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5.2 Scenario II : Näıve Sensors . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Scenario III : Limited Field of View Sensors . . . . . . . . . . . . . . . 38

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



vi

LIST OF FIGURES

Figure Page

1.1 Two types of network architectures . . . . . . . . . . . . . . . . . . . . . . 2

3.1 An example of a weighted directed graph . . . . . . . . . . . . . . . . . . . 15

5.1 Scenario I − Fully connected network . . . . . . . . . . . . . . . . . . . . . 31

5.2 Scenario I − Trajectory of the target overlaid with the estimate of sensor
3, for the fully connected sensor network shown in Fig. 5.1, using the
OKCF-WDG algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Scenario II − Chain topology . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Scenario II − Mean squared estimation error (averaged over 10,000 sim-
ulations) where the shaded region indicates the time steps where sensors
4, 5 and 6 cannot observe the target. . . . . . . . . . . . . . . . . . . . . . 36

5.5 Scenario II − Consensus gains computed at sensor 4 (averaged over
10,000 simulations), where the shaded region indicates the time steps
where sensors 4, 5 and 6 cannot observe the target. . . . . . . . . . . . . . 37

5.6 Scenario III − Sensor network topology . . . . . . . . . . . . . . . . . . . 40

5.7 Scenario III − Sensor specifications (shaded region represents its FOV) . 40

5.8 Scenario III − Estimates of sensor using the KCF algorithm, simulated
for 20 time steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.9 Scenario III − Estimates of sensor using the OKCF algorithm, simu-
lated for 20 time steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.10 Scenario III − Estimates of sensor using the OKCF-WDG algorithm,
simulated for 20 time steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.11 Scenario III − Mean squared error of sensor 1, averaged over 10,000
simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.12 Scenario III − Mean squared error of sensor 7, averaged over 10,000
simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



vii

SYMBOLS

Rn n-dimensional real space

Rm×n set of all m× n real-valued matrices

vT transpose of vector v

M−1 inverse of matrix M

E[a] expectation of random variable a

E[a|b] conditional expectation of variable a, given event b has occurred

δij Kroenecker delta, which is 1 if i = j and 0 otherwise

‖.‖ 2-norm operator on the Euclidean vector space

‖.‖F Frobenius norm operator

V ×W Cartesian product of sets V and W

{x|Φ(x)} set of all x that satisfy a logical predicate Φ(x)

|V| cardinality of set V

col(.) block matrix with elements arranged as a column

diag(.) block matrix with elements arranged diagonally, off diagonal ele-

ments are zero-valued

Id identity matrix of rank d

A⊗B Kroenecker product of A and B

span(.) linear span operator

φ empty set



viii

ABBREVIATIONS

UAV unmanned aerial vehicle

LiDAR light detection and ranging

IoT internet of things

KF Kalman filter

EKF extended Kalman filter

UKF unscented Kalman filter

DKF distributed Kalman filter

KCF Kalman consensus filter

GKCF generalized Kalman consensus filter

ICF information weighted consensus filter

IFDKF information driven fully distributed Kalman filter

OKCF optimal Kalman consensus filter

OKCF-WDG optimal Kalman consensus filter for weighted directed graphs

MMSE minimum mean squared error

MAP maximum a priori

FOV field of view



ix

ABSTRACT

Khan, Shiraz M.S., Purdue University, May 2020. Optimal Information-Weighted
Kalman Consensus Filter . Major Professor: Inseok Hwang.

Distributed estimation algorithms have received considerable attention lately, ow-

ing to the advancements in computing, communication and battery technologies.

They offer increased scalability, robustness and efficiency. In applications such as

formation flight, where any discrepancies between sensor estimates has severe con-

sequences, it becomes crucial to require consensus of estimates amongst all sensors.

The Kalman Consensus Filter (KCF) is a seminal work in the field of distributed

consensus-based estimation, which accomplishes this.

However, the KCF algorithm is mathematically sub-optimal, and does not account

for the cross-correlation between the estimates of sensors. Other popular algorithms,

such as the Information weighted Consensus Filter (ICF) rely on ad-hoc definitions

and approximations, rendering them sub-optimal as well. Another major drawback of

KCF is that it utilizes unweighted consensus, i.e., each sensor assigns equal weightage

to the estimates of its neighbors. This fact has been shown to cause severely degraded

performance of KCF when some sensors cannot observe the target, and can even cause

the algorithm to be unstable.

In this work, we develop a novel algorithm, which we call Optimal Kalman Con-

sensus Filter for Weighted Directed Graphs (OKCF-WDG), which addresses both

of these limitations of existing algorithms. OKCF-WDG integrates the KCF formu-

lation with that of matrix-weighted consensus. The algorithm achieves consensus

on a weighted digraph, enabling a directed flow of information within the network.

This aspect of the algorithm is shown to offer significant performance improvements

over KCF, as the information may be directed from well-performing sensors to other
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sensors which have high estimation error due to environmental factors or sensor lim-

itations. We validate the algorithm through simulations and compare it to existing

algorithms. It is shown that the proposed algorithm outperforms existing algorithms

by a considerable margin, especially in the case where some sensors are näıve (i.e.,

cannot observe the target).
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1. INTRODUCTION

1.1 Background and Motivation

Autonomous machines have become widely popular today, due to their increased

reliability and efficiency as compared to human labor. They are also immune to the

fatigue that arises from repetitive tasks, as well as the errors that could result from

it. These machines are often required to interface with the real world, in order to

accomplish their objectives. They do so through a variety of sensors, such as cam-

eras, accelerometers and LiDARs [1] [2]. The measurements made by these sensors

invariably have noise present in them. This noise gets compounded when information

is processed and transmitted through communication channels. The problem of ex-

tracting meaningful information from noisy measurements has been a popular topic

in the signal processing community. Estimation algorithms achieve this by analyz-

ing a series of measurements made over a duration of time, while incorporating the

statistical properties of the noise [3].

When there are multiple sensors making observations, the redundancy from their

measurements can be exploited to further filter this noise out. Such an arrangement of

sensors is called a sensor network. Conventionally, the measurements of all the sensors

in a network were transmitted to a central computer called a supervisor, which then

does all of the processing using an estimation algorithm. Such a network architecture

is said to be centralized (Fig. 1.1a). Centralized estimation is highly susceptible to

hardware failures as well as adversarial attacks, since the performance of the network

is hinged entirely on the supervisor [4] [5]. As a result of recent advancements in

computation, communication and battery technology, many autonomous systems are

moving towards decentralized architectures instead (Fig. 1.1b) - in which there are no
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central supervisors. Rather, in a decentralized network, the computational burden is

shared by multiple (or all) agents in the network.

(a) A centralized network (b) A decentralize network

Figure 1.1.: Two types of network architectures

The problem of distributed estimation considers a network of sensor agents where

each agent can communicate with some (not necessarily all) of the other agents,

make measurements, as well as carry out computational tasks. The common protocol

followed by all agents in the network is called a distributed estimation algorithm.

Distributed estimation algorithms have gained industrial popularity due to the arrival

of new markets like autonomous vehicles and internet-of-things (IoT). It has also

emerged as a popular topic in many academic fields, including computer science and

controls. Distributed estimation algorithms have the added benefit of being more

scalable and computationally efficient than centralized estimation algorithms.

In consensus-based distributed estimation, the sensor agents have the additional

objective of arriving at the same estimate as each other. This becomes an important

aspect in applications where the agents must collectively and cooperatively accomplish

a global objective, such as remote sensing and target tracking [6] [7] [8], as well as

in applications where discrepancies in sensor estimates can have severe consequences,

such as formation flight and flocking [9] [10].
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1.2 Distributed Estimation Algorithms in Literature

As centralized estimation is a relatively older topic, there is abundant literature on

it [11] [12]. A popular centralized estimation algorithm is the Kalman Filter, which

models the measurement noise as Gaussian processes [3]. The choice of Gaussian

random variables to model uncertainties is motivated by their ease of analysis, as well

as the provision of the central limit theorem, which states that the sum of independent

random distributions tends to that of the Gaussian distribution. The Kalman Filter

has been extended to nonlinear processes by way of the Extended Kalman Filter

(EKF) [13], which linearizes the system about a point. The Unscented Kalman Filter

(UKF) [14] is another popular nonlinear filter which uses a deterministic sampling

technique and achieves better performance than EKF. Since centralized estimation

requires all sensors to be connected to a central supervisor, it is highly vulnerable to

hardware failures and cyber-attacks [4].

Distributed estimation, although a relatively newer topic, has also been well-

researched. The Distributed Kalman Filter (DKF) was introduced in [15] to be used in

conjunction with fully-connected sensor networks, where each sensor can communicate

with all the other sensors. The DKF algorithm arrives at an accurate estimate at

each sensor, but the requirement of a fully-connected network greatly constrains the

scalability of the algorithm, amongst other considerations. Further work in the field

relaxed this assumption, by requiring each sensor to be connected with only a subset

of the other sensors [16].

Another class of distributed algorithms that has received considerable attention

is that of distributed consensus [17] [18]. The objective of distributed consensus algo-

rithms is for the estimates of all agents of a sensor network to converge to a common

global value. This problem formulation can be extended to that of average consen-

sus, where the sensors must arrive at the global average of the initial conditions.

The Kalman Consensus Filter (KCF) [19] is a notable work in distributed estimation,

which integrates the distributed consensus problem with a localized Kalman filter.



4

The resulting algorithm ensures that not only is an accurate estimate obtained at

every sensor, but that the converged values of all sensors are the same. As a conse-

quence, it is no longer required that all the sensors have full observability; The system

being sensed must be collectively observable by the sensor network. Consensus based

distributed estimation algorithms have been applied to target tracking [6], unmanned

aerial vehicles [7] [8] and health monitoring [20], among other applications [21] [22].

The original KCF formulation required the updates across the network to be

synchronous, at discrete intervals. Such synchronicity necessitates the presence of a

supervisor that can coordinate all the sensors, and hence violates the conditions for

an algorithm to be fully distributed, which is something that was addressed in [23].

Other successful extensions of KCF have addressed its linearity [13] [14], constraints

on observability [24] [25] as well as sub-optimality [26]. The work on the Generalized

KCF (GKCF) [24] considers the case of camera networks, wherein it is common for

some cameras to be completely oblivious of the system being sensed, due to their

limited field of view. In the presence of such sensors − called näıve sensors − it is

demonstrated that KCF performs very poorly.

Amongst subsequent consensus-based distributed estimation algorithms [27] [28]

[24], the Information weighted Consensus Filter (ICF) [25] is notable for its supe-

rior performance and robustness in presence of sensor näıvety. The authors of the

Information-driven Fully Distributed Kalman Filter (IFDKF) [29] acknowledge that

many existing algorithms, although claimed to be fully distributed, require global

information about the sensor network, such as the maximum degree of the graph

representing the sensor connectivity. The IFDKF algorithm relaxes this requirement,

while still providing performance improvements in the presence of naïıve sensors.

Despite the popularity of GKCF, ICF and IFDKF, none of these algorithms are

mathematically optimal.
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1.3 Objectives and Contributions

The poor performance of KCF in the presence of näıve sensors can be attributed

to the fact that a sensor utilizing KCF does not differentiate between the information

received by it from neighboring sensors. As a result of this, the presence of a näıve

sensor causes all sensors in its vicinity to perform poorly. As we will see in Chapter 2,

the connectivity of a sensor network can be modelled as a directed graph. Under this

formulation, the KCF estimation logic achieves consensus on an unweighted graph,

i.e., it does not assign relative weightage to the edges. Depending on the graph

topology and sensor noise characteristics, this fact can even cause the algorithm to

diverge at certain (and eventually all) sensors.

The GKCF, ICF and IFDKF algorithms introduced in Section 1.2 are all notable

works which address this issue, by way of weighing the information received from

neighboring sensors [24] [25] [29]. By assigning a lower weightage to the information

received from a näıve neighbor, a sensor may selectively choose to incorporate useful

information and discard extraneous information. Furthermore, the effect of sensor

näıvety is heightened for certain topologies. The path graph is an example of a net-

work topology where weighted consensus algorithms can perform significantly better

than those employing unweighted consensus.

The second major drawback of KCF is with regards to its sub-optimality, some-

thing which even subsequent algorithms such as GKCF suffer from. The KCF al-

gorithm was designed to be in keeping with the centralized Kalman filter, which is

a linear quadratic state estimator that achieves the minimum mean squared error.

However, the development of KCF was facilitated by introducing approximations

that enabled the author to arrive at simplified expressions [30]. Specifically, the au-

thor uses an approximation based on an order of magnitude argument. A second

approximation is made in the choice of consensus gains in KCF, ultimately rendering

the algorithm sub-optimal and defeating the purpose of striving towards a minimum

mean squared error estimator. The authors in [26] presented the optimal KCF gains
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which do not rely on approximations, but the optimal KCF (OKCF) algorithm still

underperforms in presence of näıve sensors, as it was developed using the framework

of distributed Kalman filtering with unweighted consensus.

Similarly, the derivation of the ICF and IFDKF algorithms, although motivated by

centralized Maximum A Priori (MAP) estimation, uses ad-hoc approximations which

make it sub-optimal. The derivation of ICF begins with a centralized MAP estimator

and extends it to the distributed case. It does so by considering the two separate cases

of uncorrelated sensors and fully correlated sensors, which can be thought of as the

initial and the converged states of the network respectively. The algorithm is shown

to be optimal and tractable for the two aforementioned cases, but its performance

during the transitional case (partially correlated sensors) is claimed to be comparable,

supported only by experimental results.

Another approximation that recurs throughout the literature on distributed es-

timation comes from the assumption that sensors are completely uncorrelated with

each other [19] [31]. The cross-covariance between the estimation errors of a pair

of sensors is therefore assumed to be zero. In reality, the cross-covariances between

sensors become of considerable significance when designing an optimal estimation al-

gorithm. Since distributed estimation algorithms are iterative update rules employed

at each sensor in the network, over time, some of these sensors become highly corre-

lated. Consensus-based algorithms can only achieve optimal performance when this

correlation has been taken into account, such that they may assign lower weightage

to redundant information. The lack of optimality of aforementioned algorithms, as

well as the poor performance of algorithms such as optimal KCF (OKCF) in the

presence of sensor näıvety, motivate us to design a distributed estimation algorithm

that addresses both concerns simultaneously.

The algorithm developed in this body of work accomplishes both of those ob-

jectives [32]. We present here a mathematically rigorous derivation of a distributed

estimation algorithm that arrives at consensus on a weighted digraph. This is achieved

by using localized Kalman filters at each sensor, and integrating them with a matrix-
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weighted consensus algorithm. The consensus weights thus introduced ensure that

the direction of flow of information within the network is implicitly controlled.

The requirement of optimality is guaranteed as well, since this work does not

rely on the ad-hoc arguments or approximations that plague existing algorithms. It

instead utilizes a locally optimal formulation which results in the minimum mean

squared estimation error amongst comparable distributed estimation algorithms. In

order to achieve this, the error cross-covariances between the sensors are accounted

for.

It is shown that the proposed algorithm outperforms other algorithms in literature,

which is as expected. This is especially apparent in the presence of näıve sensors, as

showcased in the simulation results.

1.4 Organization

The organization of this thesis is as follows. In Chapter 2, the problem formulation

is detailed. The models describing the system and sensor network are discussed. The

Kalman Consensus Filter is introduced as well, as it sets a precedent for the algorithm

developed as part of this work. In Chapter 3, the proposed algorithm is derived, by

solving the minimum mean squared error (MMSE) estimation problem. Chapter 4

contains further analysis of the algorithm, and derives the closed-form expressions for

the equations introduced in the previous chapter. Subsequently, the information form

of the algorithm is formulated, which is easier to implement and compare to existing

algorithms.

In Chapter 5, the present algorithm is validated by considering a simulated sce-

nario of a 2-dimensional dynamical system with noise, being sensed by a sensor net-

work. A second simulation scenario considers the same dynamical system, but a

special sensor network topology that helps illustrate the effects of sensor näıvety.

The performance of the present algorithm is compared with those of existing algo-

rithms. The third simulation scenario is that of a camera network, which serves as an
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example of a real world situation where some sensors may become näıve, and cause

poor estimation performance in algorithms with unweighted consensus.
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2. PROBLEM FORMULATION

In this chapter, the mathematical models of the sensors as well as the system being

observed are introduced. We also present the Kalman Consensus Filter, and briefly

discuss the rationale behind the algorithm.

2.1 System and Observation Models

The dynamical system being observed (called the target) can be represented as a

discrete-time linear time-varying system,

x(k + 1) = A(k)x(k) +B(k)w(k) (2.1)

where x(k) ∈ Rn is the state and w(k) ∈ Rm is the system noise at time step

k. A(k) and B(k) are the system matrices at time step k. x(0) = x0 is the initial

condition of the system, which is assumed to be unknown to the sensors observing it.

Assumption 1 (Linearity) It is assumed that the system as well as the observation

models of the sensors can be adequately modeled as discrete-time linear time-varying

systems. In non-linear dynamical systems, this can be accomplished by linearizing the

system at discrete intervals.

The system is being observed by a network of sensors that have communication

channels between them, but cannot necessarily establish all-to-all communication.

The communication topology of the sensor agents (at time step k) can be modeled

as a dynamic directed graph G(k) = (V , E(k)). In the graph, V = {1, 2, . . . , N} is the

set of vertices, and represents the N sensor agents. We refer to the number assigned

to each sensor agent as its index. The set of edges E(k) ⊆ V × V represents the

communication links.
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Assumption 2 (Two-way Communication) The communication link between any

two sensors is two-way. Messages can be transmitted simultaneously in both direc-

tions along the communication link1.

Assumption 3 (Instantaneous Communication) Each sensor can simultaneously and

instantaneously communicate with all of its neighbors. Communication delays, al-

though a more realistic proposition, will not be addressed in this work.

The edge weights do not have any physical significance; Rather they model the

flow of information in the sensor network, taking into consideration that some sensors

might discard some of the received information on account of it being redundant.

Each sensor makes measurements in accordance with the model

zi(k) = Hi(k)x(k) + vi(k) i = 1, 2 . . . N (2.2)

where i denotes the index of the sensor, zi(k) ∈ Rp is the measurement made by the

sensor and vi(k) ∈ Rp is the measurement noise.

Assumption 4 (Collective Observability) The sensor network can collectively ob-

serve the target, i.e., the observability matrix of the entire network, constructed as,

O =



H

HA

HA2

...

HAn−1


, where H =


H1

H2

...

HN


has row rank equal to n.

The system and measurement noise (w(k) and vi(k), respectively) are each mod-

eled as mutually independent white Gaussian random variables, such that

E[w(r)w(s)T ] = Q(r)δrs

E[vi(r)vj(s)
T ] = Ri,j(r)δrsδij

(2.3)

1Notwithstanding Assumption 2, the edge weights in either direction may be different, which admits
a directional flow of information in the network. This is discussed further in Chapter 3.
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where E[·] is the expectation operator and δrs is the Kronecker delta, i.e., δrs = 1 if

r = s, and δrs = 0, otherwise.

Assumption 5 (Uncorrelated Measurement Noise) We assume that the measure-

ment noise of the sensors is pairwise independent. So Ri,j = 0 if i 6= j.

It should be noted that Assumption 5 may often be invalid. An example of

this when the measurement noise is a manifestation of environmental factors such as

weather. Such a case will not be discussed here.

Assumption 6 (State-Transition Matrix) We assume that all sensors know the state-

transition matrix A, which represents the deterministic dynamics of the target, or that

it can be estimated using an appropriate system identification algorithm.

Let us denote the history of measurements made by sensor i as

Zi(k) := {zi(0), zi(1), . . . , zi(k)}

The estimates of the target at sensor i, before and after incorporating the mea-

surement information at the current time step k, are respectively

x̄i(k) = E[x(k) | Zi(k − 1)]

x̂i(k) = E[x(k) | Zi(k)]
(2.4)

where x̄i(k) is referred to as the prior estimate and x̂i(k) as posterior estimate of the

target state.

η̄i = x̄i− x and η̂i = x̂i− x are the prior and posterior estimation errors at sensor

i, respectively. The prior and posterior cross covariance matrices of the estimation

errors are

Pi,j = E[η̄iη̄
T
j ]

Mi,j = E[η̂iη̂
T
j ]

(2.5)

respectively. The cross-covariance between two sensors (Mi,j where i 6= j) is a mea-

sure of the redundancy of information between sensors. As we will see later, these

quantities must be estimated as well, in order to design an optimal estimation algo-

rithm.
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2.2 Estimation Algorithm

2.2.1 Kalman Filter

The objective of an estimation algorithm is to utilize the history of measurements

made over a duration to estimate the true state of the target, x. This is equivalent

to requiring that the estimation error goes to zero. The Kalman filtering algorithm

achieves this by making the assumption that the deterministic dynamics of the target

in (2.1) is known. At every time step, it uses the measurement information z(k) to

update the current prior estimate x̄(k) of the system towards the posterior estimate

x̂(k), as

x̂(k) = K(k)(z(k)−H(k)x̄(k)) (2.6)

where K(k) is called the Kalman gain and H(k) is the observation matrix of the

sensor. The evolution of the target between consecutive time steps k and k + 1 is

accounted for by propagating the prior estimate as x̄(k + 1) = Ax̂(k). The optimal

value of K(k) which minimizes the mean squared estimation error, is

K = PHT (R +HPHT )−1 (2.7)

where R is the measurement noise covariance matrix, P = E[(x̄− x)(x̄− x)T ] and all

quantities correspond to their evaluations at time step k. For brevity, we will omit

the time step k from here on.

2.2.2 Kalman Consensus Filter

The Kalman Consensus Filter (KCF) [19] algorithm uses a localized Kalman filter

such as (2.6) at each sensor in conjunction with a consensus term. The KCF update

equation is,

x̂i = x̄i +Ki(zi −Hix̄i) + Ci
∑
j∈Ni

(x̄j − x̄i) (2.8)
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where Ci is called the consensus gain for sensor i. Ni is the set of indices of the neigh-

bors of sensor i. The second term in (2.8) incorporates information from the current

sensor measurement into the prior estimate. The third term drives the estimates of

all sensors in a network towards consensus. In the absence of measurement noise, the

state x̂1 = x̂2 = · · · = x̂n = x is a fixed point of (2.8).

The author proposes the following choice for the consensus gain Ci [30], which is

chosen such that the algorithm satisfies a sufficient (but not necessary) condition for

stability,

Ci = ε
Pi,i

1 + ‖Pi,i‖F
(2.9)

where ‖ . ‖F is the Frobenius norm. The constant ε is a design parameter of the order

of the discretization time step.

It is proposed by the author that the Kalman gain can be designed such that

the total posterior mean squared estimation error, given by
∑N

i=1E[‖x̂i − x‖2], is

minimized. This is done by noting that the total mean squared error is equal to∑N
i=1 tr(Mi). The optimal Kalman gain for the choice of consensus gain in (2.9), is

Ki = PiIεH
T
i (Ri +HiPiH

T
i )−1 (2.10)

where Iε is a small perturbation of the identity matrix, given by

Iε = I + ε

∑
j∈Ni

(Pj,i − Pi,i)
1 + ‖Pi,i‖F

(2.11)

Furthermore, the author makes the approximation Iε ≈ I. The resulting KCF algo-

rithm does not account for the cross-covariances Pi,j. In [26], the authors simultane-

ously optimize the gains Ki and Ci of the KCF algorithm. The resulting algorithm

(henceforth referred to as Optimal KCF) accounts for the cross-covariances between

sensors.
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3. ALGORITHM DEVELOPMENT

3.1 Extension of KCF to Weighted Consensus

The KCF and OKCF algorithms introduced in the previous chapter use un-

weighted consensus, which we define as follows.

Definition 3.1 (Unweighted Consensus) Distributed estimation algorithms that

can be written in the form

x̂i = f1(x̄i) + f2(zi) + f3(
∑
j∈Ni

(x̄j − x̄i))

where f1, f2 and f3 are linear vector-valued functions, are said to utilize unweighted

consensus.

The flow of information in a sensor network following an unweighted consensus al-

gorithm is diffusive in nature. Unweighted consensus does not account for the case

where there is significant difference between the quality of estimates of neighboring

sensors. Since sensors utilizing a consensus-based algorithm communicate with each

other, in the case where one of the sensors has high sensor noise, it imparts this noisy

information to each of its neighbors as well.

Definition 3.2 (Weighted Consensus) Distributed estimation algorithms are said

to utilize weighted consensus, if they can be written in the form

x̂i = f1(x̄i) + f2(zi) +
∑
j∈Ni

gj,i(x̄j − x̄i)

where f1, f2 are linear vector-valued functions, and {gj,i|j ∈ Ni} is a set of non-

identical linear functions.
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Weighted consensus algorithms achieve a directed flow of information, which can be

exploited to ensure that the collective performance of the network is optimal [33].

This motivates the extension of KCF towards weighted consensus.

The KCF update equation (2.8) can be generalized to incorporate weighted con-

sensus, as

x̂i = x̄i +Ki(zi −Hix̄i) +
∑
j∈Ni

[Cj,i(x̄j − x̄i)] (3.1)

where we define Cj,i as the consensus gain for the information transmitted from sensor

j to sensor i. A sensor network utilizing the update equation (3.1) can be represented

as a weighted directed graph, such as the one depicted in Fig. 3.1. The consensus gain

Cj,i can be represented as the weight of the directed edge from node j to node i. The

KCF algorithm (2.8) can be considered as a special case of (3.1) where Cm,i = Cn,i

∀m,n ∈ Ni.

Figure 3.1.: An example of a weighted directed graph

The set of estimation gains {Ki, Cj,i|j ∈ Ni} needs to be determined. One way of

choosing estimation gains is by deciding on a performance metric to be optimized. A

widely accepted metric of the accuracy of a distributed estimation algorithm is the

total mean squared error, defined as

Total Mean Squared Error =
N∑
i=1

E[‖x̂i − x‖2] (3.2)
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3.2 Conditions for Optimality

Theorem 3.1 The distributed estimation algorithm following the update rule (3.1) is

an optimal minimum mean squared estimator, if and only if the following conditions

are satisfied,

(I −KiHi −
∑
s∈Ni

Cs,i)(Pi,j − Pi,i) =
∑
s∈Ni

Cs,i(Ps,i − Psj) ∀j ∈ Ni (3.3)

Ki = (Pi,iH
T
i +

∑
s∈Ni

Cs,i(Ps,i − Pi,i)HT
i )∆−1i (3.4)

where ∆i = Ri +HiPi,iH
T
i .

Proof To find the expression for Mi,j, let us consider the following relation between

the prior and posterior estimation errors of sensors i and j. Subtracting x from both

sides of (3.1) for sensors i and j,

η̂i = Fiη̄i +
∑
r∈Ni

[Cr,i(η̄r − η̄i)] +Kivi

η̂j = Fj η̄j +
∑
s∈Nj

[Cs,j(η̄s − η̄j)] +Kjvj

(3.5)

where Fi = I −KiHi. The cross covariance Mi,j can be written as:

Mi,j = FiPi,jF
T
j + Fi

∑
s∈Nj

E[η̄i(η̄
T
s − η̄Tj )CT

s,j]

+
∑
r∈Ni

E[Cr,i(η̄r − η̄i)η̄Tj ]F T
j +KiRi,jK

T
j

+
∑
r∈Ni

∑
s∈Nj

E[Cr,i(η̄r − η̄i)(η̄Ts − η̄Tj )CT
s,j]

(3.6)

For brevity, let us denote Mi,i, Pi,i and Ri,i as Mi, Pi and Ri, respectively. Substituting

the outer product terms with the corresponding covariance matrices in (2.5), we have

Mi = FiPiF
T
i +

∑
r∈Ni

[Cr,i(Pr,i − Pi)]F T
i

+ Fi
∑
s∈Ni

[(Pi,s − Pi)CT
s,i] +KiRiK

T
i

+
∑
r∈Ni

∑
s∈Ni

[Cr,i(Pr,s − Pr,i − Pi,s + Pi)C
T
s,i]

(3.7)
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The total mean squared estimation error
∑N

i=1E[‖x̂i − x‖2] can be equivalently

written as
∑N

i=1 tr(Mi). Considering that the gains at sensor i only influence the

value of Mi, the optimal Ki and Cj,i are the solutions to

∂tr(Mi)

∂Ki

= 0,
∂tr(Mi)

∂Cj,i
= 0 (3.8)

Applying the matrix trace operator tr(·) to (3.7), we get

tr(Mi) = tr(Pi)− 2tr(PiH
T
i K

T
i ) + tr(KiHiPiH

T
i K

T
i )

+ 2tr[(I −KiHi)
∑
s∈Ni

(Pi,s − Pi)CT
s,i]

+ tr(
∑
r∈Ni

∑
s∈Ni

[Cr,i(Pr,s − Pr,i − Pi,s + Pi,j)C
T
s,i])

+ tr(KiRiK
T
i )

(3.9)

Taking the partial derivative of tr(Mi) with respect to Ki, we can get

∂tr(Mi)

∂Ki

= −2PiH
T
i + 2Ki(HiPiH

T
i )

− 2
∑
r∈Ni

[Cr,i(Pr,i − Pi)]HT
i + 2KiRi = 0

(3.10)

From (3.10), the optimal Kalman gain Ki in terms of Cj,i is obtained as

Ki = (Pi +
∑
r∈Ni

[Cr,i(Pr,i − Pi)])HT
i ∆−1i (3.11)

where ∆i = Ri+HiPiH
T
i . Substituting the optimal Kalman gain determined in (3.11)

into (3.9), and taking the derivative with respect to Cj,i, we have

∂tr(Mi)

∂Cj,i
= (I − PiHT

i ∆−1i Hi)(Pi,j − Pi)

−
∑
s∈Ni

Cs,i(Ps,i − Pi)HT
i ∆−1i Hi(Pi,j − Pi)

+
∑
s∈Ni

Cs,i(Ps,j − Ps,i − Pi,j + Pi) = 0

(3.12)

Equation (3.12) is valid for any sensor j in Ni. It represents a system of |Ni| inde-

pendent linear equations in |Ni| unknowns, and thus can be solved uniquely.

Equation (3.11) and the system of equations (3.12) are the necessary and sufficient

conditions for optimality of the present algorithm.
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3.3 Optimal KCF for Weighted Directed Graphs

The system of equations (3.3) and (3.4) may be solved using the local information

at any sensor i, as well as the set of cross-covariances {Pji|j ∈ Ni}. One way of

accomplishing this is to rewrite (3.4) in matrix form, and carry out a matrix inversion

to obtain the set of optimal consensus gains {Cji|j ∈ Ni}.

To write these matrices out mathematically, we wish to represent the estimation

gains of sensor i in a block matrix form. Let us assign an arbitrary ordering to the set

of neighbors Ni ⊂ V 1, such that it is an ordered list of elements, also called a tuple.

We define the function Ni(k) : 1, 2 . . . |Ni| → Ni, which maps the positive integer k

to the kth element in the tuple of vertices Ni.

Now let B = col(B1,B2 . . .B|Ni|) be a block column matrix, and A be a block

matrix, of the form

Br = (I − Pi,iHT
i ∆−1i Hi)(Pi,Ni(r) − Pi,i)

Ar,s = (PNi(r),i − Pi,i)HT
i ∆−1i Hi(Pi,Ni(s) − Pi,i)

− [PNi(r),Ni(s) − PNi(r),i − Pi,Ni(s) + Pi,i]

(3.13)

then the consensus gains can be obtained as,

[
CNi(1),i CNi(2),i . . . CNi(|Ni|),i

]
= BA−1 (3.14)

Finally, the Kalman gain Ki may be computed as a function of the consensus gains.

The resulting optimal distributed state estimation algorithm is summarized in Al-

gorithm 1, which we call the Optimal Kalman Consensus Filter for Weighted Directed

Graphs (KCF-WDG).

1The rest of the analysis is independent of this ordering, so there is no loss of generality.
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Algorithm 1 Optimal KCF for Weighted Directed Graphs

Given : Ni; Pi,j(0) = Pi,j,0 ∀ i, j; x̄i(0) = x̄i,0 ∀ i; x(0) = x0;

At sensor i, time step k,

1: The measurement zi is made.

2: Prior estimate x̄i and cross covariance matrices Pi,j are sent to neighboring sensors

j ∈ Ni.

3: Information received from the neighboring sensors is assimilated to obtain the

consensus gains, by constructing the block matrices in (3.13) and carrying out

the matrix inversion presented in (3.14). The Kalman gains Ki are computed as

a function of consensus gains, as

Ki = (Pi +
∑
r∈Ni

[Cr,i(Pr,i − Pi)])HT
i ∆−1i

∆i = Ri +HiPiH
T
i

4: The computed gains are used to determine the posterior estimate (x̂i) of sensor

i, given by

x̂i = x̄i +Ki(zi −Hix̄i) +
∑
j∈Ni

Cj,i(x̄j − x̄i)

The posterior covariance matrices are computed using

Mi,j = FiPi,jF
T
j +

∑
r∈Ni

Cr,i(Pr,j − Pi,j)F T
j

+ Fi
∑
s∈Nj

(Pi,s − Pi,j)CT
s,j +KiRi,jK

T
j

+
∑
r∈Ni

∑
s∈Ni

[Cr,i(Pr,s − Pr,j − Pi,s + Pi,j)C
T
s,j]

5: The values of Pi,j and x̄i for the next timestep are obtained by propagating the

posterior quantities, as

Pi,j ←AMi,jA
T +BQBT

x̄i ←Ax̂i
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4. FURTHER ANALYSIS AND OPTIMALITY

In the last chapter, we derived the OKCF-WDG algorithm, as well as the necessary

and sufficient conditions for its optimality. In this chapter, we will obtain the closed-

form expressions for the estimation gains which satisfy these conditions. To be able

to do so, we first rewrite the estimation gains in a vector form.

4.1 Estimation Gain Vector

The estimate propagation equation (3.1) can be equivalently written as

x̂i = Kizi + (I −KiHi −
∑
j∈Ni

Cj,i)x̄i +
∑
j∈Ni

Cj,ix̄j (4.1)

The coefficient in the second term of (4.1) can be interpreted as the gain for the

prior estimate of sensor i. This motivates us to define

Ci,i = I −KiHi −
∑
j∈Ni

Cj,i (4.2)

The set of gains1 to be determined at sensor i can be written as the block-matrix

Ci =
[
CNi(1),i CNi(2),i . . . CNi(|Ni|),i Ci,i

]
(4.3)

where Ci ∈ Rn×n(|Ni|+1). Since Ci resembles a row-vector, we will henceforth refer to

it as the estimation gain vector.

Accordingly, define the vector of estimation errors as

n̄i =
[
η̄TNi(1)

η̄TNi(2)
. . . η̄TNi(|Ni|) η̄Ti

]T
(4.4)

1Note that we still have |Ni|+ 1 independent gains in total, as Cii can be uniquely determined as a
function of the other gains.
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It is demonstrated in Theorem 4.1 that the covariance of this vector is of significance,

and is defined as

Pi = E[n̄in̄
T
i ] (4.5)

which can be equivalently computed as

Pi =



PNi(1),Ni(1) PNi(1),Ni(2) . . . PNi(1),Ni(|Ni|) PNi(1),i

PNi(2),Ni(1) PNi(2),i

...
. . .

...

PNi(|Ni|),Ni(1) PNi(|Ni|),i

Pi,Ni(1) Pi,Ni(2) . . . Pi,Ni(|Ni|) Pi,i


(4.6)

Theorem 4.1 (Necessary Condition for Optimality)

If the distributed estimation protocol following the update rule (3.1) minimizes the

total mean-squared error defined in (3.2), then the estimation gain vectors have the

form

Ci = C̃i1
TP−1i ∀i ∈ V (4.7)

for some C̃i ∈ Rn×n, where

1 =
( [

1 1 . . . 1
]
⊗ In

)T
In is the identity matrix of rank n and ‘⊗’ is the Kroenecker product operator.

Proof Substituting the definition for Ci,i (4.2) in the first optimality condition (3.3)

at sensor i, we get

∑
s∈N ′

i

Csi(Psi − Psj) = 0In j ∈ Ni (4.8)

where N ′i = Ni
⋃
{i}. The system of equations (4.8) can be written in a matrix form

as
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Ci


PNi(1),i − PNi(1),Ni(1) . . . PNi(1),i − PNi(1),Ni(|Ni|) PNi(1),i − PNi(1),i

...
...

PNi(|Ni|),i − PNi(|Ni|),Ni(1) PNi(|Ni|),i − PNi(|Ni|),i

Pi,i − Pi,Ni(1) . . . Pi,i − Pi,Ni(|Ni|) Pi,i − Pi,i

 = 0T

(4.9)

where

0 =
( [

0 0 . . . 0
]
⊗ In

)T
Note that the matrix in (4.9) is rank-deficient, since the last n columns are zero-

valued. These columns represent the equation obtained by setting j = i in (4.8),

which is trivially satisfied by any choice of gains. Since, for any matrix, column-

rank equals row-rank, the matrix in (4.9) has a non-trivial left null-space, which in

turn guarantees the existence of a non-zero estimation gain vector Ci satisfying the

optimality condition.

Equation (4.8) can be written as

Ci





PNi(1),i

PNi(2),i

...

PNi(|Ni|),i

Pi,i


1T − Pi


= 0T (4.10)

From the definition of Pi, we have



PNi(1),i

PNi(2),i

...

PNi(|Ni|),i

Pi,i


= Pi




0
...

0

1

⊗ In
 (4.11)
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Substituting (4.11) in (4.10), we get

Ci(Pi




0
...

0

1

⊗ In
 1T − Pi) = 0T (4.12)

The Kroenecker product is associative, and satisfies, for matrices A1, A2, B1 and B2

of appropriate dimensions,

(A1 ⊗ A2)(B1 ⊗B2) = (A1B1)⊗ (A2B2)

which is known as the mixed-product property. Using this property in (4.12), we get

CiPi





−1 0 . . . 0 0

0 −1 . . . 0 0
. . .

0 0 . . . −1 0

1 1 . . . 1 0


⊗ In


= 0T (4.13)

The left null-space of the matrix in (4.13) is one-dimensional. Therefore, we have

the equality

kerL





−1 0 . . . 0 0

0 −1 . . . 0 0
. . .

0 0 . . . −1 0

1 1 . . . 1 0




= span(

[
1 1 . . . 1

]
) (4.14)

where kerL(A) = {x|xTA = 0, x ∈ Rm}. So the optimality condition (4.13) is equiva-

lent to

CiPi = C̃i(
[
1 1 . . . 1

]
⊗ In) (4.15)

Since Pi is a symmetric positive-definite matrix, it is invertible. This completes the

proof.
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Going back to the analogous comparison of Ci to a vector, Theorem 4.1 gives us

the optimal direction for this vector. The optimal matrix-valued magnitude for this

vector may be obtained utilizing the second condition (3.4) in Theorem 3.1.

Theorem 4.2 (Necessary and Sufficient Condition for Optimality)

The distributed estimation protocol following the update rule (3.1) minimizes the total

mean-squared error defined in (3.2) if and only if

Ci = C̃i1
TP−1i ∀i ∈ V (4.16)

where

C̃i = (1TP−1i 1 +HT
i R
−1
i Hi)

−1 (4.17)

Proof Substituting (4.2) in the second optimality condition (3.4), we have

∑
s∈N ′

i

Cs,i[I + (Ps,i − Pi,i)HT
i ∆−1i Hi] = I − PiiHT

i ∆−1i Hi (4.18)

where ∆i = Ri +HiPi,iH
T
i . Rewriting (4.18) in terms of the estimation gain vector,

Ci




I − Pi,iHT

i ∆−1i Hi

I − Pi,iHT
i ∆−1i Hi

...

I − Pi,iHT
i ∆−1i Hi

+


PNi(1),iH

T
i ∆−1i Hi

PNi(2),iH
T
i ∆−1i Hi

...

PNi(|Ni|),iH
T
i ∆−1i Hi



 = I − Pi,iHT
i ∆−1i Hi (4.19)

Substituting (4.11) in (4.19), we get

Ci

1(I − Pi,iHT
i ∆−1i Hi) + Pi




0
...

0

1

⊗ In
HT

i ∆−1i Hi

 = I − Pi,iHT
i ∆−1i Hi (4.20)
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We now utilize the result of Theorem 4.1. Substituting the estimation gain vector

with its optimal expression (4.7),

C̃i

1TP−1i 1(I − Pi,iHT
i ∆−1i Hi) + 1T




0
...

0

1

⊗ In
HT

i ∆−1i Hi

 = I − Pi,iHT
i ∆−1i Hi

(4.21)

By invoking the mixed-product property of Kroenecker products once again, we get

C̃i

(
1TP−1i 1(I − Pi,iHT

i ∆−1i Hi) +HT
i ∆−1i Hi

)
= I − Pi,iHT

i ∆−1i Hi (4.22)

which simplifies to give,

C̃i = (1TP−1i 1 + ((HT
i ∆−1i Hi)

−1 − Pi,i)−1)−1 (4.23)

We can simplify this further by recalling the Woodbury Matrix Identity,

(A+ UCV )−1 = A−1 − A−1U(C−1 − V A−1U)−1V A−1

Using this identity, equation (4.23) can be reduced to (4.17), thus completing our

proof.

4.2 Information Form of OKCF-WDG

Consider the matrix P constructed as

P =


P1,1 P1,2 . . . P1,N

P2,1 P2,2
...

...
. . .

PN,1 . . . PN,N

 (4.24)

The inverted matrix F = P−1 is referred to as the information matrix, which shows

up quite often in the literature on distributed estimation. The information matrix is

(in a vague sense) proportional to the collective information possessed by the network.
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In our proposed algorithm, the quantity Fi = P−1i is of interest, as noted in

Theorems 4.1 and 4.2. We will refer to this quantity as the distributed information

matrix.

Let Fi = [Fr,s] be a block matrix (for convenience, we let r and s take the same

values as the indices in Pi, though it must be noted that Fr,s is not solely a function

of Pr,s). We then have the expressions,

1TP−1i = 1TFi =

[ ∑
r∈N ′

i

Fr,Ni(1)

∑
r∈N ′

i

Fr,Ni(2) . . .
∑
r∈N ′

i

Fr,|Ni|
∑
r∈N ′

i

Fr,i

]
(4.25)

and

1TP−1i 1 = 1TFi1 =
∑
r∈N ′

i

∑
s∈N ′

i

Fr,s (4.26)

Substituting these in our expression for the estimation gain vector, the optimal

consensus gain at sensor i, corresponding to a neighboring sensor j ∈ Ni, is

Cj,i = (
∑
r∈N ′

i

∑
s∈N ′

i

Fr,s +HT
i R
−1
i Hi)

−1
∑
r∈N ′

i

Fr,j (4.27)

and the Kalman gain can thereafter be determined using

Ki = (
∑
r∈N ′

i

∑
s∈N ′

i

Fr,s +HT
i R
−1
i Hi)

−1HT
i R
−1
i (4.28)

Also, from (4.1), we have the following expression for the estimation error,

η̂i = Cin̄i (4.29)

which gives the following expression for the cross-covariances,

Mi,j = C̃i1
TP−1i



PNi(1),Nj(1) PNi(1),Nj(2) . . . PNi(1),Nj(|Nj |) PNi(1),j

PNi(2),Nj(1) PNi(2),j

...
. . .

...

PNi(|Ni|),Nj(1) PNi(|Ni|),j

Pi,Nj(1) Pi,Nj(2) . . . Pi,Nj(|Nj |) Pi,j


P−1j 1C̃j

(4.30)
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or

Mi,j = C̃i
∑
r∈N ′

i

∑
t∈N ′

j

(
(
∑
s∈N ′

i

Fr,s)Pr,t(
∑
s∈N ′

j

Ft,s)
)
C̃j (4.31)

Thus we arrive at the information form of OKCF-WDG, as summarized in Algo-

rithm 2.
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Algorithm 2 Information Form of Optimal KCF-WDG

Given : Ni; Pi,j(0) = Pi,j,0 ∀ i, j; x̄i(0) = x̄i,0 ∀ i; x(0) = x0;

At sensor i, time step k,

1: The measurement zi is made.

2: Prior estimate x̄i and cross covariance matrices Pi,j are sent to neighboring sensors

j ∈ Ni.

3: The information matrix Fi = P−1i is computed at sensor i.

4: The estimation gains at sensor i are

Cj,i = (
∑
r∈N ′

i

∑
s∈N ′

i

Fr,s +HT
i R
−1
i Hi)

−1
∑
r∈N ′

i

Fr,j

Ki = (
∑
r∈N ′

i

∑
s∈N ′

i

Fr,s +HT
i R
−1
i Hi)

−1HT
i R
−1
i

5: The computed gains are used to determine the posterior estimate (x̂i) of sensor

i, given by

x̂i = x̄i +Ki(zi −Hix̄i) +
∑
j∈Ni

Cj,i(x̄j − x̄i)

The posterior covariance matrices are computed using

Mi,j = C̃i
∑
r∈N ′

i

∑
t∈N ′

j

(
(
∑
s∈N ′

i

Fr,s)Pr,t(
∑
s∈N ′

j

Ft,s)
)
C̃j

C̃i = (
∑
r∈N ′

i

∑
s∈N ′

i

Fr,s +HT
i R
−1
i Hi)

−1

C̃j = (
∑
r∈N ′

j

∑
s∈N ′

j

Fr,s +HT
j R
−1
j Hj)

−1

6: The values of Pi,j and x̄i for the next timestep are obtained by propagating the

posterior quantities, as

Pi,j ←AMi,jA
T +BQBT

x̄i ←Ax̂i
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4.3 Comparison with Existing Algorithms

In this section, we draw parallels between the Optimal KCF-WDG algorithm and

other distributed estimation algorithms in literature.

Maximum a priori (MAP) estimation is a Bayesian approach to the estimation

problem. The centralized MAP estimate x̂MAP, for the case where all sensors are

connected to a central computer, is given by

x̂MAP =
(∑
r∈V

∑
s∈V

Fr,s +
∑
r∈V

HT
r R
−1
r Hr

)−1(∑
i∈V

∑
r∈V

Fr,ix̄i +
∑
i∈V

HT
i R
−1
i zi

)
(4.32)

where we have followed the notation used in this work. Here, we call F = [Fr,s] = P−1

the centralized prior information matrix.

The Information weighted Consensus Filter (ICF) is derived by starting with the

centralized MAP and extending it to the distributed case, by approximating the

centralized prior information matrix P−1. The ICF algorithm uses sub-iterations to

arrive at consensus on the normalization factor in (4.32), which is
(∑

r∈V
∑

s∈V Fr,s+∑
r∈V H

T
r R
−1
r Hr

)
.

With these characteristics of existing algorithms in mind, we can draw comparisons

of these algorithms to OKCF-WDG,

• The normalization factor in MAP (4.32) is the centralized equivalent of the nor-

malization factor in OKCF-WDG (4.27). The gains in MAP are also computed

similarly to OKCF-WDG, through an inversion of the centralized information

matrix.

• The ICF algorithm assumes that the centralized prior information matrix must

be estimated in order to achieve best estimation performance. However, we

have shown in this work that it is sufficient (and possibly necessary) to utilize

the distributed information matrix P−1i instead, in order to achieve the optimal

estimation performance.
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• The MAP, ICF and OKCF-WDG algorithms update the posterior estimate

towards a convex combination of the information available locally. In other

words, the sum of weights assigned to the prior estimate, current measurement

and neighbors’ estimates equal to In. The same is not true for KCF. This is

apparent when one considers the information form of KCF; The normalization

factor in KCF is (P−1i,i +HT
i R
−1
i Hi), whereas the consensus gain depends on an

arbitrary design parameter ε.
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5. VALIDATION AND BENCHMARKING OF

ALGORITHM

In this chapter, we present some simulation results which validate the algorithm

developed in this work, and showcase the improvements that it offers over existing

algorithms.

5.1 Scenario I : Fully Connected Network

As a preliminary demonstration of the proposed algorithm, we consider the case

where a fully connected network of 6 sensors (shown in Fig. 5.1) observes a 2-

dimensional target.

Figure 5.1.: Scenario I − Fully connected network



32

The target traverses a circular path, in presence of system noise. The resulting

trajectory is approximately circular with perturbations. The motion of the target can

be represented by the dynamical system in (2.1), with the system matrices

A =

cos (π/200) − sin (π/200)

sin (π/200) cos (π/200)

 B =

1 0

0 1

 (5.1)

The initial condition is x0 =
[
20 0

]T
.

In this scenario, each sensor can fully observe the target. The observation model of

the sensors is given by (2.2). The sensor noise covariance and system noise covariance

are

Ri,j =

δij 0

0 δij

 Q =

1 0

0 1

 (5.2)

respectively.

The target is simulated for 500 time steps, while the sensor network utilizes the

OKCF-WDG algorithm to estimate the target. In Fig. 5.2, the trajectory of the

target is plotted, overlaid with the estimate at sensor 3.

The Kalman and consensus gains (Ki and Cj,i respectively) are functions of the

estimated error covariances, and are therefore time-varying quantities. However, since

the deterministic dynamics of the target, system noise and observation matrices are

time-invariant, the estimation gains approach a steady-state value after sufficient time

steps. The values of the estimation gains of OKCF-WDG, at time step 500, are

Ki = 0.565I2 Cj,i = 0.0725I2 ∀i, j ∈ {1, 2 . . . 6}

where I2 is the identity matrix of order 2.

For comparison, the simulation was also run with the OKCF algorithm for 500

time steps. The steady-state values of the gains in the OKCF algorithm were found

to be

Ki = 0.565I2 Ci = 0.0725I2 ∀i ∈ {1, 2 . . . 6}

which are identical to the corresponding gain values in the OKCF-WDG simulation.

This is because all the sensors in the network in Fig. 5.1 have statistically identical
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Figure 5.2.: Scenario I− Trajectory of the target overlaid with the estimate of sensor

3, for the fully connected sensor network shown in Fig. 5.1, using the OKCF-WDG

algorithm.
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observation models, and each node of the graph has the same degree. The steady-state

performance of the proposed algorithm is therefore consistent with that of the OKCF

scheme. That is to say, the steady-state values of consensus gains in OKCF-WDG

equal that of the single consensus gain in OKCF, when all sensors are statistically

identical.

5.2 Scenario II : Näıve Sensors

The previous simulation scenario used a fully connected network, and was shown

to be a degenerate case that exhibits identical estimation performance with either of

unweighted and weighted consensus algorithms. In this simulation we consider the

chain topology (shown in Fig. 5.3), which is a path graph of 6 sensors connected

serially. The target follows the same dynamical model as in scenario 1.

Figure 5.3.: Scenario II − Chain topology

Letting NNäıve(k) denote the set of näıve sensors at time step k, we define that

i ∈ NNäıve(k) if and only if sensor i cannot observe the target altogether at time step

k, i.e., its measurements contain no useful information. The simulation duration is

60 time steps, during which the set of näıve sensors switches as

NNäıve(k) =

 φ, k ∈ [0, 20)
⋃

[40, 60]

{4, 5, 6}, k ∈ [20, 40)

where φ is the empty set. So, from time steps 40 to 60, the target becomes oblivious

to the right half of the sensor network in Fig. 5.3. Such a scenario can arise when

some sensors in the network malfunction, due to hardware failures or cyber attacks.

It can also occur due to limited sensing range.
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For the purpose of the simulation, the effect of sensor näıvety is imposed by varying

the noise covariances of corresponding sensors,

Ri(k) =

 I2, i /∈ NNäıve(k)

106I2, i ∈ NNäıve(k)

In Fig. 5.4, the mean squared estimation error is plotted for the sub-optimal

KCF, OKCF and OKCF-WDG algorithms, averaged over 10,000 statistically identical

Monte Carlo simulations. Between time steps 20−40 (shaded region in Fig. 5.4, where

sensors 4, 5 and 6 are näıve) the mean squared estimation error of KCF is seen to

increase drastically. The OKCF-WDG algorithm achieves the lowest mean squared

error in this region, and remains saturated at this value. When the system becomes

observable at all sensors, the performance of all algorithms becomes comparable once

again.

Figure 5.5 shows the consensus gains computed at sensor 4 over the duration of

the simulation. Since these gains are matrix valued, we compare their Frobenius

norms. In the OKCF-WDG algorithm, the consensus gains C3,4 and C5,4 are almost

equal during time steps 0− 20 and 40− 60, when all sensors can observe the target.

This is akin to what was observed in the previous simulation scenario. During time

steps 20− 40, sensor 4 becomes näıve. It has one neighbor that is also näıve (sensor

5) and one neighbor that can fully observe the target (sensor 3). Consequently, the

OKCF-WDG algorithm assigns higher weightage to information received from sensor

3 (C3,4) and reduces the weightage given to sensor 5 (C5,4).

On the other hand, Optimal KCF has a single consensus gain C4 at sensor 4,

which is used to weigh the information coming from sensors 3 and 5. During time

steps 20− 40, the value of C4 increases, and is seen to exhibit a chattering behavior

thereafter. As a result, at sensor 4, the amount of useful information incorporated

from sensor 3 is greater during this duration, as is the amount of noisy information

incorporated from sensor 5. The combination of these two conflicting effects is what

is observed in the estimation error dynamics presented in Fig. 5.4 − leading to a net

degradation of estimation performance.
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Figure 5.4.: Scenario II − Mean squared estimation error (averaged over 10,000

simulations) where the shaded region indicates the time steps where sensors 4, 5 and

6 cannot observe the target.



37

5 10 15 20 25 30 35 40 45 50 55 60

Time Step

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
ro

b
e

n
iu

s
 N

o
rm

 o
f 

C
o

n
s
e

n
s
u

s
 G

a
in

Figure 5.5.: Scenario II − Consensus gains computed at sensor 4 (averaged over

10,000 simulations), where the shaded region indicates the time steps where sensors

4, 5 and 6 cannot observe the target.
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5.3 Scenario III : Limited Field of View Sensors

A common real world scenario where a part of the sensor network can be näıve, is in

the case of a network of limited field of view (FOV) sensors, such as cameras. Camera

measurements are typically instantaneous 2-dimensional projections of 3-dimensional

objects in motion, and therefore a singular camera sensor has limited observability

of the target. Moreover, cameras have a limited field of view, i.e., when the physical

location of the target is outside a certain region (henceforth called the FOV) defined

by the sensor specifications, the camera can no longer record measurements of the

target in a reliable manner.

In this simulation, we consider a 4-dimensional target, following the dynamical

model in (2.1), with the system matrices

A =


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


and B = I4 and initial condition x0 =

[
0 0 0 0

]T
. The system noise covariance is

Q =


50 0 0 0

0 50 0 0

0 0 5 0

0 0 0 5


The resulting trajectory of the target starts at the origin and moves in a random

direction away from it. The target can be thought of as an enemy agent attempting

to escape from the simulation area, wherein the camera sensors attempt to estimate

its position and velocity.
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The sensor network observing the target has the cycle topology shown in Fig. 5.6,

consisting of 7 sensors connected cyclically. The sensor network surrounds the target

from all sides. Of these, each sensor has the observation model

Hi =

1 0 0 0

0 1 0 0


which is a realistic model for sensors such as cameras, since cameras measurements

are typically 2-dimensional image frames. Each sensor has a limited FOV which is

triangular in shape, with the apex of this triangle is anchored at the camera (depicted

in Fig. 5.7). The apex angle of this triangle is 80◦ and the height of the triangle is

200 units.

Sensor i belongs to the set NNäıve if and only if the target is not contained in the

FOV of sensor i. The sensor näıvety is imposed by varying the sensor noise covariance

as

Ri =

100I2, i ∈ NNäıve

105I2, i /∈ NNäıve

We run the simulation for 20 time steps. The rationale behind the simulation

parameters is that the target starts from the origin and moves towards one of the

sensors, which circumscribe the target. At the first time step, nearly all the sensors

can observe the target, but towards the end of the simulation most sensors are obliv-

ious of the target. As a result, it becomes imperative for the sensors to utilize the

information received from their respective neighbors in an optimal manner, in order

to accurately estimate the target.

Figures 5.8, 5.9 and 5.10 show the trajectory of the target for one such simulation,

overlaid with the estimates of sensor 1 using the algorithms KCF, OKCF and OKCF-

WDG, respectively. We choose to plot the estimates of sensor 1 in particular as it is

on the far end of the network when compared to the final position of the target.

In the KCF algorithm (Fig. 5.8), the estimate of sensor 1 diverges from the true

position of the target when the latter takes a sharp right turn. As the neighbors of

sensor 1 are näıve as well, this sensor is unable to estimate the target over the course



40

Figure 5.6.: Scenario III − Sensor network topology

Figure 5.7.: Scenario III − Sensor specifications (shaded region represents its FOV)
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Figure 5.8.: Scenario III − Estimates of sensor using the KCF algorithm, simulated

for 20 time steps
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Figure 5.9.: Scenario III − Estimates of sensor using the OKCF algorithm, simu-

lated for 20 time steps
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Figure 5.10.: Scenario III− Estimates of sensor using the OKCF-WDG algorithm,

simulated for 20 time steps
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of the simulation. Using the OKCF algorithm (Fig. 5.9), sensor 1 is able to estimate

the state of the target better than KCF, but its estimate lags behind the true state

of the target. This is because the propagation of the information within the network

is slow on account of the algorithm utilizing unweighted consensus.

In contrast, the OKCF-WDG algorithm (Fig. 5.10) is able to estimate the target

most accurately. The estimate of sensor 1 is able to keep up with the trajectory of the

target even as a majority of the sensor network becomes näıve. It should be noted

that similar trends were seen in other evaluations of this simulation as well.

To compare the average trend of estimation performance of each algorithm, we use

the Monte Carlo method. Figures 5.11 and 5.12 show the mean squared estimation

error at sensors 1 and 7 respectively, averaged over 10,000 Monte Carlo simulations.

The simulations where the target escapes (all sensors become näıve) within 15 time

steps were discarded. It is observed that the mean squared error of the KCF algorithm

increases exponentially towards the end of the simulation. The mean squared error of

the OKCF algorithm is 2 to 3 times that of the OKCF-WDG algorithm, which once

again showcases the best performance of the three.
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Figure 5.11.: Scenario III − Mean squared error of sensor 1, averaged over 10,000

simulations
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Figure 5.12.: Scenario III − Mean squared error of sensor 7, averaged over 10,000

simulations
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6. CONCLUSIONS

In this thesis, we developed a novel distributed estimation algorithm that was mo-

tivated by the drawbacks of unweighted consensus algorithms such as the Kalman

Consensus Filter (KCF). The defining characteristic of the proposed algorithm, which

we call the Optimal Kalman Consensus Filter for Weighted Directed Graphs (OKCF-

WDG), is that it uses a weighted consensus term at each sensor. This was accom-

plished by assigning different consensus gains to the estimates of each of the neigh-

boring sensors. In contrast, KCF and several of its derived works utilize unweighted

consensus.

The optimal estimation gains of the proposed algorithm were derived, which mini-

mize the mean squared estimation error. The gains were obtained in a mathematically

rigorous manner, without relying on approximations such as the ones made in several

algorithms in distributed estimation literature. The performance of the algorithm

was validated and compared against that of the sub-optimal and optimal KCF al-

gorithms. It was noted that the OKCF-WDG algorithm exhibits significantly better

estimation performance when some of the sensors in the network are näıve, i.e., cannot

observe the target. A real world example where this is the case is limited field of view

(FOV) sensors. A simulation scenario considering limited FOV sensors showcased the

superior performance of OKCF-WDG.

Future work will focus on making the algorithm fully distributed. One way of

achieving this is by implementing consensus sub-iterations at every estimation step,

similar to what is done in the ICF protocol. However, since the OKCF-WDG algo-

rithm uses the distributed information matrix, and not the centralized information

matrix used in ICF, OKCF-WDG can be expected to require fewer consensus sub-

iterations to achieve near-optimal estimation performance.
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Another prospect for future work is that of the stability of the algorithm. It

remains to be shown that the estimation error of OKCF-WDG remains bounded,

which is something that could be studied using non-linear analyses such as Lyapunov

stability theory.
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