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ABSTRACT

She, Dongming Ph.D., Purdue University, May 2020. Local Langlands Correspon-
dence for the Twisted Exterior and Symmetric Square e-Factors of GL(n). Major
Professor: Freydoon Shahidi.

Let F' be a non-Archimedean local field. Let A, (F) be the set of equivalence
classes of irreducible admissible representations of GL, (F'), and G, (F') be the set of
equivalence classes of n-dimensional Frobenius semisimple Weil-Deligne representa-
tions of W}.. The local Langlands correspondence(LLC) establishes the reciprocity
maps Rec, r : A, (F) — G,(F) , satisfying some nice properties. An important in-
variant under this correspondence is the L- and e-factors. This is also expected to be
true under parallel compositions with a complex analytic representations of GL,(C).
J.W. Cogdell, F. Shahidi, and T.-L. Tsai proved the equality of the symmetric and
exterior square L- and e-factors [7] in 2017. But the twisted symmetric and exterior
square L- and e-factor are new and very different from the untwisted case. In this pa-
per we will define the twisted symmetric square L- and y-factors using GSpin,,, , ;, and
establish the equality of the corresponding L- and e-factors. We will first reduce the
problem to the analytic stability of their «-factors for supercuspidal representations,
then prove the supercuspidal stability by establishing general asymptotic expansions

of partial Bessel function following the ideas in [7].



1. INTRODUCTION

The local Langlands Correspondence(LLC) for GL,, has been proved by G. Laumon,
M. Rapoport, and U. Stuhler for function fields (1993, [14]), by G. Henniart (2000,
[12]) and also by M. Harris and R. Taylor (2001, [10]), and later by P. Scholze (2010,
[15]) using a different approach for p-adic fields. Let p be an n-dimensional Frobenius
semisimple representation of the local Weil-Deligne group W}, and = = m(p) be its
corresponding irreducible admissible representation of GL, (F'), then one expects the

equality of their L- and e-factors:
e(s,p,¥) = €(s,m(p), V),

L(s, p) = L(s,m(p)),

where the local arithmetic e-factor €(s, p, 1) is defined by P. Deligne in [9], in which
he showed that the global e-factors admit a factorization into a product of local ones.
Here L(s, p) is the local Artin L-factor and ¢ is a non-trivial additive character of
F. The local analytic e(s,m(p),?) and L(s,n(p)) are defined by Langlands-Shahidi
method first for generic representations, then for tempered representations and finally
using Langlands classification for all irreducible admissible representations of GL,,(F).
If  is a continuous representation of GL,(C), then one can define the local Artin L-
and e-factors L(s,r o p,1) and €(s,r o p,1)). Therefore a natural question is to see if

the following equalities hold:
L(Sa ro p) = L(S, T, T))

E(S’T o p? w) = 6(877T7 T,QZJ),

as long as the factors on the analytic side are defined. We have a finite list of such

factors defined by Langlands-Shahidi method, first for tempered representations, then



use Langlands classification and multiplicativity to generalize the definitions to all
irreducible admissible representations ([16], [17]). One has the following relationship

for analytic e-, 7-, and L-factors:

(s, m, ) L(s, m, 1)

On the arithmetic side, one can naturally define

E(S,’l“ °p, @D)L(l — 5,70 pV)
L(s,r0p) '

V(s,rop, ) =

So the equalities of e- and L-factors are equivalent to the equalities of ~- and L-
factors. One method to prove equalities like this was first introduced by J.W. Cogdell,
F. Shahidi, and T.-L. Tsai [7] in 2017, for the case where r = A? and Sym®. The
proof uses a globalization method and certain reductions, and relies on two main
results called the arithmetic stability and analytic stability of ~-factors respectively.
The former was introduced and proved by P. Deligne in [9], the later for the case
r = A? (and by symmetry also 7 = Sym?) was proved in [7]. The authors used the
group H = GSp,,, and its maximal self-associate Levi subgroup My ~ GL,, x GL; to
construct the analytic factors for r = A%, using the fact that the adjoint representation
rof "My on Ing = Lie(LNH) decomposes as r = ry @ ry, where r; is isomorphic to
the standard representation of GL,(F) and ry = A%. As a consequence the problem
was reduced to establishing the stability of Shahidi local coefficients, which can be
written as the Mellin transform of certain partial Bessel functions [19] under some
conditions. The partial Bessel functions defined on the relevant part of the big Bruhat
cells have nice asymptotic behaviors. Their asymptotic expansions can be written as
a sum of two parts. The first part depends only on the central character of 7(p), and
the second part is a uniformly smooth function on certain torus, which becomes zero
after a highly ramified twist.

In this paper we will define the twisted symmetric and exterior square - and

L-factors of GL,(F), and prove the following result:

Theorem 1.0.1 Let F' be a non-archimedean local field, p be an n-dimensional ®-

semisimple Weil-Delinge representation of Wi, m = w(p) be the corresponding irre-



ducible admissible representation of G = GL,(F) attached to p under the local Lang-
lands correspondence. Let Sym?® and N? denote the symmetric and exterior square
representations of “G' = GL,(C), fir a charactern : F* — C*. Let e(s, m, Sym*@mn, )
and e(s,m, A2 @ n,) be the twisted symmetric and exterior square local analytic -
factors, and €(s, Sym*p @ 1,v), (s, N> @ n,v) their corresponding local arithmetic

e-factors. Then
e(s, Sym’p @ 0, ¥) = e(s,m, Sym® @ n, ¥);
e(s, N’p@n,v) = e(s, m, A @n,0);

and

L(s, Sym*p @ n) = L(s, m, Sym® @1);
L(s,N’p®@mn) = L(s,m, A2 ®@n)).

We will show the equalies of their 7- and L-factors.
First, the y-factors (s, m, Sym? ® 1,v) and (s, 7, A2 ® n,1)), once constructed,

will have to satisfy the symmetry
(s, (mx ) x 0, 9) = (s, m, A2 @0, 9)y(s, T, Sym* @ 1, 1)),

v(s, (p @ p) @ n,1) = (s, N’p @ n,10)v(s, Sym*p @ 0, ).

As the LLC preserves L- and e-factors of pairs, and is compatible with twisting by
characters, it suffices to prove Theorem 1.0.1 only for the twisted symmetric square -
factors. We will use Langlands-Shahidi method for odd GSpin groups to produce the
twisted symmetric square y-factors. The reason is that when n is odd, the maximal
parabolic subgroups in GSpin,,, that produce the twisted exterior square vy-factors, are
not self-associate, although their unipotent radicals have relatively simpler structures.
Hence Theorem 6.2 of [19], which we will use to write the local coefficient as the Mellin

transform of partial Bessel functions, can not be applied in this situation.



2. TWISTED SYMMETRIC SQUARE L- AND
~-FACTORS

We will construct the twisted symmetric square v- and L-factors of GL,, using the
group H = GSpin,,,_ ;. It is a reductive group of type B,, with derived group Spin,,, ,;,
which is the simply connected double cover of SOsg,,1. By Proposition 2.1 of [2], the

root datum of H can be given as:
X =Zey® Zey & -+ D ZLey,

XV =Zey®Ze; ® - & Le,

n’
A={og =€ —eg,a0=ey—e3, - , 01 =€p_1 — En, Ay, = €y}

VvV _ VvV o % * VvV % * Vv *
A ={a] =€} —e3, a3 =e3—e3,,a,_

| = €y — ey = 2e, — €}

Take the self-associate parabolic subgroup Py of H with Levi decomposition Py =
My Ny, where My = My, § = A — {a,}. Then My ~ GL, x GL; (Theorem 2.7,
[1]). Let ¢ be a non-trivial additive character of F, and (m,V’) be an irreducible
y-generic representation of GL,(F). Let n : F* — C* be a character of F*. We
lift 7 to a 1-generic representation o of My (F'), being trivial on the GL;-component.
Define a generic representation o, : My(F) ~ GL,(F) x GL{(F) — GL(V) by
ay(m(g, a))v =n~"(a)m(g)o.

Denote the L-group of H by L' H, similarly we can define My and “Ny. We have
LH ~ GSpy,(C) = {h € GL4,(C) : *hJh = ¢(h)J for some ¢(h) € F*}, where

1
J 1
_ty




and ¢ : H — C* is the similitude character of H. Therefore we have

9 y
"My = {m = m(g,a0) = 19 € GL,(C),a9 € C*)}
aojltgilJlil

~ GL,(C) x GL,(C).

Let 'ny = Lie(*Ny). The adjoint action r : “My — GL(*ny) is irreducible
(Appendix A, (B,.), [17]). Then by Langlands-Shahidi method (Theorem 3.1 in
[16] or Theorem 8.3.2 in [17]), the local y-factor (s, oy, 7,¢) is well-defined. o, is
unramified if both 7 and n are. Fix a uniformizer w of F', then the semisimple
conjugacy class ¢(7) attached to 7 is given by ¢(m) = diag{x1(@), - , xn(w@)}, where
X1, , Xn are n unramified characters of F'*. Therefore the semisimple conjugacy

class attached to o is given by

c(0) = diag{x1 (@), -+, Xa(@), Xu(@) '+ xa(@) 7'}
On the other hand, ¢(n) = diag{1,--- ,1,9(w)™t, - ,n(w) '}, so

-1

c(oy) = e(o)e(n) = diag{x1(@), -, Xa(@), 0(@) "Xu(@) '+ 0(@) xa(@) '}

It follows that
L(s, 0y, 1) = det(1 = r(c(oy)gz*) " = [ (1= Guxom)(@)gp’) ™
1<i<j<n
which is what we usually referred as the unramified twisted symmetric square local
L-factor for GL,, (section 1, [20]).

We can use Langlands-Shahidi method to first define the twisted symmetric square
L-factor for 7 being tempered, and use Langlands classification and multiplicativity to
define for any irreducible admissible representation 7 of GL,,(F) that L(s, 7, Sym* ®
n) = L(s,0,,r) and (s, m,Sym® ® n,v) = ~(s,0,,7,9). This is how the general
definitions of all Langlands-Shahidi - and L-factors are given ([16], [17]).



3. STABLE EQUALITY

Suppose p is mapped to m = m(p) under the local Langlands correspondence. The
character n : F”* — C*can be viewed as a character of the local Weil group Wy by
Wg — W ~ F* — C* through the local Artin map Art.' : W ~ F*. We still

denote it by n. On the other hand, p and n define a homomorphism
Pyt Wp — LMH ~ GLn(C) X GLl(C)

by pn(w) = (p(w), n~H(w)). It is easy to see that r o p, ~ Sym?p @ 7.
Now Let x : F* — C* be a continuous character of F'*, viewed as a character of
GL,(F') through the determinant. Similar to n we can also view x as a character of

Wpg. p and x determine a homomorphism
p®x: Wrp— GL,(C)
by w — x(w)p(w). Consequently we also have
(p@X)y: Wp — "My ~ GL,(C) x GL,(C)

defined by (p@x)y(w) = ((p@x)(w), n~ (w)) = (x(w)p(w),n~" (w)). We can see that
ro(p®x)y = Sym*(p®x)®@n. Therefore on the arithmetic side we have L(s, Sym?(p®

X) ®@n) = L(s,ro(p®x),) and v(s,Sym*(p ® x) ® n,¢) = (s,r 0 (p @ X)y, 1b). We

aim to prove the following proposition in this section.

Proposition 3.0.1 (Stable Equality) Let F' be a p-adic field of characteristic zero,
1 a fived character of F*, and p be an n-dimensional continuous irreducible repre-
sentation of Wg. Then for every sufficiently highly ramified character x of F™*, we

have

v(s, Sym*(p ® x) @ n,¥) = (s, 7 ® x, Sym* @ n, V),



where m = w(p) € Irr(GL,(F)) is the irreducible admissible representation attached

to p under the local Langlands correspondence.

We will prove Proposition 3.0.1 by induction on n. It is important to point out
that the induction hypothesis will be used in the proof of Proposition 3.0.2 using a
global-to-local argument. We will first establish the proposition for a fixed irreducible
representation py of Wr(Proposition 3.0.2), then use both the arithmetic and ana-
lytic stability of y-factors (Proposition 3.0.3 & 3.0.4) on the two sides to deform the
equality for the fixed representation to obtain the result of Proposition 3.0.1 for all

n-dimensional representations p. We begin with the first step:

Proposition 3.0.2 (Stable Equality at a base point) Let F' be a p-adic field,
fix a character n of F*. Given a character wy of F*, there exists an irreducible n-
dimensional representation py of W with det py corresponding to wy by local class

field theory, such that for all characters x of F*, we have

v(s, Sym*(po @ x) ®n, 1) = (s, m(po) ® x, Sym* @ 0, V),

Proof This is essentially the same as the proof of Proposition 3.2 in [7]. Using
the globalization method provided by Lemma 3.1 in [7], we see that there exists a
number field F and an irreducible continuous n-dimensional representation X of the
global Weil group Wy, such that if ¥, = Y|y, , then there is a place vy of F such
that F,, = F, det X,, corresponds to wy by local class field theory. Moreover, ¥, is
irreducible, ¥, is reducible for all v < co with v # vg, and Il = 7(%) := ®,7(%,) is a
cuspidal automorphic representation of GL,,(Ar). Therefore all the local components
II, are generic. Let ¥ = ®,V, be a nontrivial additive character of F\Ar so that
V,, = 1, the nontrivial additive character which defines the generic character of
Un(F). We also take 7 : F*\Ay — C* to be a Hecke character with 7,, = 7. Outside
a finite set of places S containing vy and the infinite places, II,, 7, and ¥, are all
unramified.

Take & : F*\Ay — C* a Hecke character such that &,, = x, it is easy to see that
globally we have (X ®¢), = (II®¢&),. Similar to the local case the global L-functions



are given by L(s,Sym*(2® &) ®7) = L(s,r 0 (X ®¢&),) and L(s, I ® &, Sym* ® 7) =
L(s,(IT® &), 7).

Now we apply the global functional equations for the Artin L-functions in general
as given in [9], and the twisted symmetric square L-function for the automorphic
side through Langlands-Shahidi method as in [17], and do some simple calculation
on the unramified places, we will be able to match the the product of L-factors at
those places. We obtain the equality of the product of local y-factors at those ”bad”
places. Since by [18] we know that the arithmetic and the analytic factors defined by
the Langlands-Shahidi method always agree at all Archimedean places [18], we are left
with the product of y-factors of a finite set of places at which the local components 3,
are all reducible, and a fixed place vy. Let ¥, =¥, 1®---®%,,, be the decomposition
of ¥, into irreducibles. We will prove the equality (s, Sym*((Z,1 @ - & X,,,) ®
&) @7, 0,) = (s, Ind(ll,; ® - -- @ ,,,) @&, Sym* ® 7, ¥,,), by induction on 7,.

Since Y, is reducible, r, > 2. When r, = 2 we have
Y(s, Sym*((Zp1 ® By2) ® &) @ 70, 1)

= (s, Sym*(Zy1 @ &) ® 70, Uy )Y (s, Sym? (Ep2 ® &) @ 7, U,y)
(8 (Bu1 ® &) ® (B2 ® &) ®@ T, U)
= (5,111 @ &, Sym® @ 7, Uy )y(s, 1Ly @ &, Sym® @ 7, U,,)
(s, (Mo @ &) X (2 ® &) @ 70, Wy
= 7y(s,Ind(Il,; ® I1,5) ® &, Sym? ® 7, ¥,,).

Here the first equality is the additivity of the arithmetic y-factors, the second equal-
ity follows from our induction hypothesis of Proposition 3.0.1 on the dimension n
of p, and the fact the LLC preserves the local v-factors in pairs. The last equal-
ity is a consequence of the multiplicativity of the analytic y-factors. Indeed, re-
call that the adjoint action r : My ~ GL,(C) x GL;(C) — GL(fny) is irre-
g

g € GL,(C),a0 € GL,(C)}

ducible. “My = {m = m(g,ay) =
aojltg—ljl—l



0 X

and ‘ny = { cJ'XJ = X} Let Y = XJ'7! then J'XJ =X &Y =Y.
0 0
0 X 0 YJ! .
Denote n(Y) = = . Then an easy calculation shows that
0 0 0 0

r(m(g,ao))n(Y) = n(aggY'gJ’). Let 61 C 6 C A be the subset of simple roots which

gives the Levi subgroup My, ~ GL,, x GL,, x GL; with n = n; + ny, therefore

Y, Y.
LMp, ~ GLy, (C) x GLy,(C) x GLy(C). Write Y = | = ~?|, then 'Y =Y is equiv-
Y; Y,

alent to say that 'Y; = Y;, Y3 = 'Yy and 'Y, = Y;. According to the inductive
construction of local v-factors through Langlands-Shahidi method, we need to de-
compose the restriction of the adjoint action 7 on “My, on Iny into a direct sum
of irreducible subrepresentations (Theorem 8.3.2 of [17]). In our case each of them

contributes to a local «y-factor. The restriction gives that

9 9 i Yzl |y
r(m( ), a0)(n(Y')) = n(ao ' J)
92 g| |'Y2 Y, ‘9
_ n( (l091Y2t92J7,12 (1091Y1t91t]7/11
aogzntggjéz a0g2tY2tg1J,’“

/

ni

where J' = with J), the same type of matrix as J' of size n;.

g,
Now let’s get back to our setting. For v € S, non-archimedean and v # wvy,

IT,; and II, 5 are irreducible admissible representations of GL,, (F,) and GL,,(F,)

X
v

respectively. 7, is a fixed character of [, and &, is a character of . Notice
that here Y5 is a free matrix of size n; X ns, so the two diagonal blocks above give
an irreducible subrepresentation. It is isomorphic to the tensor product II,; and
IL, 2, twisted by a character 7, which is given by the ajp-component in the above
expression. Therefore it contributes to the twisted Rankin-Selberg local ~-factor
(s, (Iy1 X I 0) @ 7, U,,). If we take 11, ; ® £, instead of 11, ;, we obtain the twisted
Rankin-Selberg ~-factor (s, (IL, 1 ®&,) X (I, 2 ®&,)) @7, ¥,,). Moreover, notice that

Y, =Y, and 'Y, = Y4, and the form of each of the rest blocks shows that each of them
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is isomorphic to the adjoint action of “M; on “n;, where M; is the same type of Siegel
Levi inside GSpiny,, ;. Therefore they are both irreducible, and they contribute to
the twisted symmetric square local v-factors (s, 11, ;, Sym?® 7, U,), i =1,2. Again
take I1, ; ® &, instead of I1, ;, we obtain the two y-factors (s, I, 1 ®&,, Sym?® T, U,)
and (s, 1,2 ® &,Sym? ® 7,,¥,). Therefore by the multiplicativity of the local

analytic y-factors, we obtain that
’}/(S, Ind<Hv,1 ® Hv,Z) ® gva Sym2 ® T, qjv)

= 7(37 Hv,l ® &us Sym2 & Ty, \I]v>7(57 Hv,2 ® &us Sym2 @ Ty, ‘Ijv)
'7(57 ((Hv,l ® &;) X (Hv,2 ® &) ® Ty, \Ijv)-

This establishes the last equality. The general case follows from the case r, = 2

by induction on r,. Hence from the global functional equations we are left with

(s, Sym®*(po ® x) ® n,%) = v(s,7(po) ® x, Sym® @ n,v). m

To prove Proposition 3.0.1, besides Proposition 3.0.2, we also need both the arith-
metic and analytic stability for y-factors. We will explain as follows.

On the arithmetic side, P. Deligne showed the existence and uniqueness of the local
e-factors on page 535-547 in [9]. For V a finite dimensional complex representation
of the local Weil group, x is sufficiently ramified character of F'*, the arithmetic e-
factor attached to V' & x depends only on det(V') and dim(V'). Apply this to the case
when V ~ Sym?p ® n where p is an irreducible n-dimensional representation of Wy,
and 7 is a character of F'* viewed as a character of Wy as before. Also notice that

L(s,V ® x) = 1 for x sufficiently ramified, we obtain:

Proposition 3.0.3 (Arithmetic Stability for the twisted symmetric square
v-factors) Let p; and ps be two continuous n-dimensional representations of Wg
with det(py) = det(ps), n be a fixed character of F*. Then for all sufficiently ramified

characters x of F* we have

v(s, Sym? (pr @ x) @ n,¥) = (s, Sym®(p2 @ x) @1, ).
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On the analytic side, m = m(p) is supercusipidal when p is irreducible, therefore

analogously we should have:

Proposition 3.0.4 (Supercuspidal Stability for the twisted symmetric square
v-factors) Let m and my be two supercusipidal representations of GL,(F) with
Way = Wry, and 1 1S a fived character of F*. Then for all sufficiently ramified char-
acters x of F*, whose degree of ramification depends only on m and o, identified as

characters of GL,(F') through the determinant, we have

7(87 m & X5 Sym2 & n7¢) = 7(8771—2 & X Sym2 ® 7]71/})

This is the main result of this paper and will be established in the remainder of
the text.

With Proposition 3.0.2; 3.0.3, and 3.0.4, we are ready to prove Proposition 3.0.1.

Proof (Proof of Proposition 3.0.1) We will do induction on the dimension n with
the help of a globalization method provided as on page 2061-2065 in [7].

When n = 1 we obtain that both sides equal to 1, and there is nothing to prove.
For n = 2, one could either follow [8] directly, or instead we show (s, A*(p ® x) ®
n, ) = (s, ™ ® x,\*> ®n,v). These y-factors are in general defined again through
Langlands-Shahidi method by the adjoint action of “M on ‘n where M is the max-
imal Levi isomorphic to GL, x GSpin, ~ GL, x GL; inside GSpin,, (Theorem 2.7
[1]). Notice that in this case A%p ® n = det(p) @ . On the other hand, it is not hard
to see that (s, 7, A2 ® n,v¢) = y(s,wy X 1,1), where w, is the central character of
7, and the right hand side is the y-factor attached to the Rankin-Selberg L-function
L(s,w, x n). Since we know that det p <+ w, under the local Langlands correspon-
dence, and tensor product of representations on the arithmetic side corresponds to
Rankin-Selberg convolutions on the analytic side, so det p ® <> w, x n. Moreover,
since LLC is compatible with twisting by characters, we see that the stable equality
is true for the twisted exterior square y-factors when n = 2, and for this case we don’t

even need to assume Yy is highly ramified. Now apply the equalities

Y(s, (7 x ) X, 0) = (s, m, A> @n,9)y(s, m, Sym® @ n, )
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v(s, (p® p) @, 1) = (s, N’p @ n,¥)y(s, Sym*p @ 1, ),

and by the fact that LLC preserves the L- and e-factors of pairs, we see that the
proposition is true for the case when n = 2 and any character y.

Now p is an irreducible n-dimensional representation of Wg, let m = m(p) be its
corresponding supercuspidal representation of GL,, (F'). Take wy = w, in Proposition
3.0.2, then there exists an irreducible n-dimensional representation py of Wr and its
corresponding supercuspidal representation my = m(pg) of GL,(F) such that w, =
Wrys det(p) = det(po) and (s, Sym®(po @ x) @ n,4) = 7(s,m ® X, Sym* © 1, ¢).
Take y sufficiently ramified such that Proposition 3.0.3 holds for the pair (p, po), and
Proposition 3.0.4 holds for the pair (7, 7). Then for such y we have

v(s,Sym*(p ® x) ®@1,¢) = (s, Sym*(po ® x) @ 1,)

= 7(s,m ® X, Sym® @ n,¢) = (s, 7 ® x, Sym® @ n, V)

The degree of ramification now depends on (p,7) and (pg, ), so one needs to fix
such a base point (pg, ) for every character wy. As in [7], this can be reduced to just
fix the character wy since twisting by unramified characters can be absorbed into the
complex parameter s of the y-factors. This completes the proof of Proposition 3.0.1.

Next we extend our result to Weil-Deligne representations.

Corollary 3.0.1 Let p be a continuous n-dimensional ®-semisimple complex repre-
sentation of the Weil-Deligne group Wi, and n a fized character of F*. Then for

sufficiently ramified characters x of F* we have

v(s, Sym? (p @ x) @ n,p) = (s, 7(p) ® x, Sym® @ 1, ).

Proof The corollary follows from the following facts: (1) the compatibility of the
construction of ®-semisimiple representations of W from irreducible representations
of Wr and the Bernstein-Zelevinsky construction [3] of irreducible representations of

GL,(F) from supercuspidals; (2) the local v-factors attached to p only depends on
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its semisimplification(as representations of Wr)(page 201, [4]); (3) LLC is compatible
with pairs of local L-factors and the twisted symmetric square L-factors on both the
arithmetic and the analytic sides, and under highly ramified twists these become 1
[12]; (4), the additivity of the arithmetic local v-factors [7] and the multiplicativity
of the analytic local vy-factors, which was proved by an induction argument as in

Proposition 3.0.2. [

Corollary 3.0.2 (General analytic stability for the twisted symmetric square
v-factors) Let m and my be two irreducible admissible representations of G L, (F)
with Wy, = wWg,, N s a fivzed character of F*. Then for any sufficiently ramified

character x of F* we have
(s, m @ X, Sym? @ n,9) = (s, m @ X, Sym* @ 1,))

Proof Let p; and p; be two continuous n-dimensional ®-semisimple representa-
tions of the Weil-Deligne group Wy and m; = w(p;) (i=1,2) be their correspond-
ing irreducible admissible representations of GL,(F'). By corollary 3.0.1 we have
v(s,Sym?(p; @ x) @ n,1) = v(s, 7 @ x, Sym? ®1,¢). Then we can see that the result
would follow if we have the analogue of Proposition 3.0.3 for Weil-Deligne representa-
tions. On the other hand, we know that the arithmetic v-factors depend only on the
semisimplification, i.e., we have (s, p, 1) = (s, p°*, ). Since the semisimplification
does not change the determinant det p and dim(p;) = dim(p2) = n, so again since
the local arithmetic e-factors depend only on det(p) and dim(p) under suitably highly
ramified twist by y, as we mentioned earlier. So we can take y sufficiently ramified
such that the arithmetic stability of ~-factors follows for Weil-Deligne representations.
That is, (s, Sym?(p1 ® x) @1, 1) = v(s, Sym*(p2 @ x) ®n, ). Then the result follows
immediately from Corollary 3.0.1. [ ]
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4. PROOF OF THE MAIN THEOREM

In this section we will prove our main theorem(Theorem 1.0.1), by assuming the
analytic stability of the twisted symmetric square y-factors attached to supercuspidal
representations(Proposition 3.0.4).

Before we proceed, as in [7], we make a remark on the additive character ¢ of
F. Take a € F* and fix a non-trivial additive character i) of F'. Let 1) denote the
character given by ¥*(z) = ¢(ax). By the study of Henniart [11] and Deligne [9]
respectively, it turns out that as a function of a € F'*, both the analytic y-factors
v(s,m,r,1*) and the corresponding arithmetic ~y-factors (s, o p,9*) vary in the
same way. Therefore it suffices to prove the result for a fixed .

We will first establish the equality for the y-factors, and then use it to obtain the

equality for L-factors. We begin with some lemmas:

Lemma 4.0.1 (Equality for monomial representations) Let E/F be a finite
Galois extension of degree n contained in a fized algebraic closure F of F, and n be
a fized character of F*. Denote G = Gal(E/F). Let F C L C E be an intermediate
extension and x be a finite-order character of H = Gal(E/L). Let p = IndS(x), then

V(s, Sym®p @, ¢) = (s, 7(p), Sym®> @ n, 1)

Proof This is the same globalization method as used in Lemma 3.2 in [7], one may
simply replace the A2 there by Sym?®1, change the equalities in the proof accordingly
and use Proposition 3.0.1 and 3.0.2. [ |

Lemma 4.0.2 (Equality for Galois representations) Let p be an irreducible
continuous n-dimensional representation of Wr with det(p) being a character of finite

order, and n be a fized character of F*. Then

v(s, Sym*p @ n,¥) = (s, w(p), Sym* @ 0, ).
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Proof This is also a straightforward analogue of Lemma 3.3 in [7]. A very similar
argument shows that the arithmetic and analytic twisted symmetric square local ~-
factors satisfy the same formalism, then we use additivity and multiplicativity of
the arithmetic and analytic twisted symmetric square y-factors respectively, together

with Lemma 4.0.1 then we are done. [ ]

Now we have all the ingredients for the proof of Theorem 1.0.1.

Proof (Proof of Theorem 1.0.1) First we prove the equality of ~-factors. By
Lemma 4.0.2, we have the equality of the local twisted symmetric square y-factors
for irreducible continuous representations of Wy with finite order determinant. After
tensoring with an unramified character, we can extend the result to any irreducible
continuous n-dimensinal representation of Wr. Both LLC and the formalism of the
twisted symmetric square vy-factors are compatible with twisting by characters. Since
LLC also preserves the local y-factors for direct sums of representations on the arith-
metic side with isobaric sums of the corresponding representations on the analytic
side, we can further extend the result in Lemma 4.0.2 to arbitrary continuous n-
dimensional representations of Wg.

Next, as in the proof of Corollary 3.0.1, we can extend the result to all continuous
$-semisimple n-dimensional representations of the Weil-Deligne group W;.. This com-
pletes the proof of the equality of the twisted symmetric square v-factors in Theorem
1.0.1.

We are left with the equality of L-factors. We use a similar argument as Henniart’s
proof in [12] to show that the equality of y-factors imply the equality of their cor-
responding L-factors. One can also see this by using the Langlands-Shahidi method
([16],[17]).

Recall that 7 is an irreducible representation of GL,(F'). Suppose 7 <> p under

LLC, where p = (p/, V, N). In general if r is any analytic representation of GL,,(C) we

d
? dx

where (V) is the space given by r and V| ie., r : 'G = GL,(C) — GL(r(V)).

have that ro p = (rop/,r(V), £|,—0(r o p)(z)) is also a Weil-Deligne representation,
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Notice that the monodromy operator N satisfies p(z)v = exp(xN)v for all v € V' and
x € G, Recall that Wi, ~ Wp x G,. So N = d%|w:0p(x), therefore in general the
monodromy operator 1" for o p is given by T' = ZL|,_o(r 0 p)(x).

Following Henniart’s terminology in [12], we say a Weil-Delinge representation p is
tempered if all its indecomposable constituents are of the form p; ® Sp(m;) where pf, is
an irreducible unitary representation of Wyr and Sp(m;) is a special representation of
dimension m;, corresponding to a Steinberg representation of GL,, (F). Equivalently,
if we define the Weil-Delinge group to be Wg x SLy(C), then the image of W is

bounded in GL(V'). Since we have the exact sequence
0—=1Ip —=Wr—=24-—0

where I is the inertial subgroup, which is compact, it is the same as saying that
the image of the geometric Frobenius is a unitary operator on V. For this purpose
here we use another definition of the Weil-Deligne group given by Wr x SLy(C).
By Theorem 2.8 of [20], the triple p = (p/,V, N) is equivalent to a representation
¢+ Wp x SLy(C) — GL,(C) such that ¢ is trivial on an open subgroup of Ip,
(@) is semi-simple and ¢|gr,(c) is algebraic. By Lemma 2.9 of [23], there exists
a unique sly-triple (e, f,h) such that e = N = gltUs) (@) (¢~ 1), f = glP""(q), and
h = gltWr) = g1PUr) (1), where ¢ = |Op /mp| is the cardinality of the residue field and
V(q) denotes the g-eigenspace of the action of p(®) on V. Then the corresponding
representation ¢ : WpxSLy(C) — GL,(C) is given by p(w) = exp(%(w) log q-h)p(w).

First we assume that 7 is tempered and 7 is unitary. Then it follows that the
representation o, of My (F) is tempered. We show Sym?p ® 7 is also tempered.
p = (¢, V,N) implies that Sym?’p ® n = (Sym?p’ ® n,Sym*(V),1® N + N ® 1),
here we identify Sym?p as a subspace of p ® p generated by e; ® ej +e; ® e; where
{e;}, is a basis of V. Now if p is given by ¢ as above, then Sym?p ® n is given
by ¢ + Wr x SLy(C) — GL,(C) by @(w) = exp(=4=logq - H)Sym*p @ n(w) =
exp(_véw) logq - H)(p ® p)lsym2(vy(w) - n(w), where H = 1® h + h ® 1. Notice that
if e = N, f h form an sly-triple, then F = 1 N+ NQLLF =1 f + f ® 1,

and H =1® h+ h® 1 also form an sly-triple. 7m being tempered implies that p is
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tempered, therefore U = ¢(®) = exp(3 logq - h)p(®) is unitary. Since 7 is unitary, it
suffices to show that exp(ilogg- (1@ h+h®1))(p® P)|sym2(v)(®) is unitary, thus
it suffices to show that exp(3logq- (1@ h+ h ® 1))(p ® p)(P) is unitary. We have
expllog G(1&h-+ho1)(pp)(®) = exp(log yG(1LER))-exp(log y/A(hE1) (180)(@).
(p@1)(®)) = exp(1®log /q-h)(1@p(P))-exp(log /q-h®@1)(p®1)(®) = (1QU)-(U®1)
is unitary since U is unitary. Therefore Sym?p ® 7 is tempered.

In this case we have that L(s, Sym?p ®n) has no poles for Re(s) > 0, and for the
same reason we have that L(1 — s,Sym?p¥ ® n~!) has no poles for Re(s) < 1. By
Langlands-Shahidi method we have

L(1 —s,Sym*p” @)
L(s, Sym*p ® 1)

v(s,m,Sym® @ n, ) = €(s, Sym*p ®@n, 1))

Moreover, (s, T, Sym*®n, 1) is a rational function of g*. To be precise, (s, 7, Sym*®
n,vY) = F(q~*) where F(X) = ch% with P(X),Q(X) € C[X] such that P(0) =
Q(0) =1, c € Cand a € Z. We also know that (s, Sym®p @ n,1) is a monomial
of ¢*. The local tempered L-factor is defined as L(s, 7, Sym® ® 1) = P(¢™*). Since
L(s,Sym?p ® n) and L(1 — s,Sym?*p" ® n~!) have no poles in common, similar to
Henniart’s proof in [12], we can conclude that L(s,7,Sym® ® 1) = L(s, Sym?p @ n).
Now if o, is quasi-tempered, then 7 is quasi-tempered and 7 is arbitrary. Let
70 @ M(F) ~ GL,(F) x GL;(F) — C* be an unramified character of M (F') given
by 1o = |det(-)|*!] - |**>, where s1,s9 € C. The fundamental weight attached to « is
given by & = (p, a) "' p where p is half of the sum of positive roots in Ng. In our case
a=a,=e,and p= 503 i (ei+e;) + 200 ei) = 5 30, e, therefore we have

2(107 a) _ 2(% 2?21 €, en) _
(o, ) (€n,€n)

(p,a) =

where (-, -) is a Weyl group invariant non-degenerate bilinear form on a* = X*(H) ®y
R.Sod=(pa) p=nt(BXL e) = 150, e

For s € C, define 0,5 = 0, ® qlseHu () ~ (05), where o, is the lift of the
representation 7 @ |det(-)|2 of GL,(F) to My(F). So for v € V,, a,(m(g,a))v =
|det(g)|3m(g)v and ays(m(g, @)v = 7~ (a)| det(g) [3n(g)o. Let 5 = - |- |, then
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N i . . . . B
Oy ® To =2 0y, 25,- Now if 5 = 1| - |** where 7 is unitary and 2, € C*, take sy = 2,

and take s; such that 7 ® | det(-)|** is tempered, then by the previous case we have
L(s, 04 ® 10,7) = L(s, (025, )o, 7) = L(s, Sym*(p @ || - [|) @ o)

= L(s + 2s1,Sym?p @ 19) = L(s + 2s1 + 5o, Sym>p @ 7).

On the other hand, we apply section 2.7 of [12], which states how the local analytic
~v-factor shifts under twists by unramified character of the maximal split quotient of
My, to our case. The maximal split quotient Ty of My ~ GL,, x GL; is isomorphic to
GL; x GL;, since the derived group My ge, of My is isomorphic to SL,. The adjoint
action r : "My — GL(*ny) is irreducible, so its restriction on the torus T is given
by a character x, : Ty — C*. In our case, 7 is given by the symmetric square action
twisted by a character given by the GL; part of “My. A direct calculation shows
that x, : Ty — GL(Fny) is given by (x1,,y) — x%y. Taking dual of this map we
obtain a one-parameter subgroup ¥, : F* — Ty ~ GL; x GL; given by z — (22, ).
Notice that 79 € X, (M), and My ger C ker(Hyy,, ), where Hyy,, @ My (F) — ay,, =
Hom(X (Mpg)r, Z)®R is the Harish-Chandra map. Therefore 7 defines an unramified
character on To(F'), say 7o : To(F) — C* such that 7o o (det xid) = 75. Since
0 = |det(:)[*!] - |°2, we see that 7o = |- |*'] - |*2. Following [12], this defines an
unramified character 7y o X, : F* — C* given by = — |22|t|z]? = |z|*1T52.
Therefore by section 2.7 of [12] we obtain (s + 2s1 + s, T, Sym® ® 1,v) = (s, 0, ®
7,7, %), therefore also L(s + 2s; + sq, ™, Sym® ® ) = L(s, 0, ® 7o, 1), by the previous
argument on the tempered case. Compare it with the arithmetic side we obtain
L(s + 251 + 59,7, Sym? ® 1) = L(s + 251 + 55, Sym®p ® n). Then by the uniqueness
of complex meromorphic functions we see that L(s, 7, Sym? ® ) = L(s, Sym*p ® n).
This shows the case when o, is quasi-tempered.

In general, if p is an n-dimensional ®-semisimple representation of W, then p =
®I_,pi, where each p; is indecomposable and p; ~ pl ® Sp(m;), where each p) is an
irreducible n}-dimensional representation of Wr. Let 7} = m(p}) <> p; under LLC, and

let A; be the segment {r}, 7/(1),- -, wi(m;—1)} where 7.(j) = 7.®| det(-)|]”. Then the
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Bernstein-Zelevinsky’s classification [3] tells us that p; <> Q(A;), where Q(4A;) is the
unique irreducible subquotient of IndgE:Tng)ﬂ; RT(1)®-- - @7i(m; —1) and 7(p) is
the unique irreducible subquotient of Ind?{%ﬁfjmi( QA1) ®Q(A2) ®---®@Q(A,). To
simplify the notation we use Q(A;)x- - -xQ(A,) to denote this induced representation.
For each 1 < i < r there exists a unique f; € R such that Q(A;)(—p5;) is square
integrable, thus tempered. We can order the A;’s such that a; == 1 =y = --- =
By > g = Bpyy1 = -+ = Pmy > -+ > a5 = L._+1 = -+ = Br. In this order
A; does not precede A; for i < j and all A;’s corresponding to the same «a; are
not linked. For 1 < j <'s, let m; = Q(Ap,_,1)(—a) X -+ X Q(Ay,;)(—a;) where
mo = 0 and mg = r. Then all the 7;’s are irreducible tempered representations, and
m = m(p) is the unique irreducible subquotient of mi(ay) X - -+ X ms(as). This gives
the Langlands classification [13]. We denote the corresponding parabolic subgroup
by P and let 0 = m X -+ X g, v = |det(-)|** @ |det(-)]*? ® --- @ | det(+)
T =mn(p) = J(P,o,v).

On the other hand, by section 1.4* of [18] we know that J(P,o,v) = I(P,&, —v)

@ and

where ~denotes the contragredient, and I(P, o, ) denotes the unique irreducible sub-
representation of the parabolic induction Ind%(o ® v) [5]. By Langlands-Shahidi
method we know the multiplicativity of the local analytic y-factors attached to generic
representations which appear as subrepresentations of parabolic inductions from irre-
ducible generic representations. We also have the multiplicativity of their correspond-
ing local analytic L-factors. Using .J(P,o,v) = I(P,&,—v) and the local functional
equation (s, 7, Sym? ® 7, ¢)y(1 — s, %, Sym* ® ™', ¢) = 1, we obtain the multiplica-
tivity of v(s, m, Sym?®n, ¢) and L(s, 7, Sym*®n) with respect to their quasi-tempered
inducing data. Since we already showed the equality of L-factors for quasi-tempered
case, we finally obtain that L(s, w(p), Sym?®n) = L(s, Sym®p®mn). By the symmetry
between A2 and Sym? we also obtain that L(s,7(p), A2 ®n) = L(s, A2p ®@n). u

So far we have successfully reduced the problem to the supercuspidal stability (Proposition
3.0.4), which will be established in the rest part of this paper. We will start with some

preparations in Chapter 5, in which we will obtain a formula of the local coefficients
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in our case as the Mellin transform of some partial Bessel functions, and relate the
partial Bessel functions with partial Bessel integrals. Then we will study the anal-
ysis of partial Bessel integrals in Chapter 6 and obtain their asymptotic expansion

formulas, generalizing the results in [7].
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5. PREPARATIONS FOR SUPERCUSPIDAL STABILITY

We've already seen that the adjoint action r : “My — GL(*ny) gives the twisted
symmetric L- and ~-factors. Moreover, since r is irreducible we have that the local
coefficient Oy (s, m) = (s, 7, Sym* ® 7,v)(Chapt. 5, [14]). So it reduces the proof
of Proposition 3.0.4 to the stability of local coefficients. The local coefficients can
be written as the Mellin transform of certain partial Bessel functions under some
conditions (Theorem 6.2, [19]). In order to study the Mellin transform in our case, we
need to understand the following things at first: the structure of H = GSpin,,,, , the
structure and measure of the orbit space that the partial Bessel function is integrating

on, and certain Bruhat decompositions.

5.1 The Structure of GSpin,,

Let H = GSpiny, ;. We want to understand its structure and its relationship

with Hp = Spin,, . ; and SOg,;1. We have an exact sequence
1 — Z/2Z — Spin2n+1 & SOQn+1 — 1

where ¢ is the covering map. We fix the standard Borel subgroup B = T'U of SOg,,1,
and denote the corresponding Borel subgroup of H(resp. Hp) by By = TyUpy(resp.
By, = Tu,Upn,). We see that U ~ Uy, ~ Upy.

As in the proof of Proposition 2.4 of [1], we start by fixing a basis fi, -, f, of
the character lattice X*(T') of SOs,+1. The root datum of SOy, can be given as
follows:

X (T)=Zfi®Zf, @ - - DLfy
A= {’71 :fl_f27’72:f2_f3a"' y Yn—1 :fn—l_fna’yn:fn}

X (T)=Zff®ZfsD - DLS;
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AV = {’71/ = fik - féku’yg/ - f2* - f§7 7’)/1’\14/—1 = f;:—l - fn*a/yx - 2fr*L}
Then the weight lattice Pgo,,,, = {A € X*(T) : (\,yY) € Z,Vy € o}. If
(3cifi,V)) € Z, for 1 < i < n — 1, this implies that ¢; — ¢;41 € Z, and if i = n, this

implies that 2c¢, € Z. Therefore Pgo,, ., = {X¢:fi : ¢; € 5,¢i — ¢; € Z}, hence equal

Z
29
to the Z-span of f1---, fn, M The group Spin,, . is the simply connected
double cover of SO,,.1, hence its character lattice is equal to the root lattice of
SOs,41, and its cocharacter lattice is the root lattice of type C),, so we obtain the

root datum of Hp = Spiny,, ;:

it fa
2

App={Bi=fi—fo.Bo=fo— fs, -+, Ba1 = fao1 — [n, Ba = fu}

X(Tu,) =728 ®LBy & --- ® LB,

X*(Tup) =2ZfL ®Zfs®--- ®Lf,, +Z

Afy =B =i = f5.85 = fs = 5, Bus = foos — . By = 210}
We can realize
H = GSpiny,; = (GLy x Spiny,,;)/{(1,1), (~1, 8, (=1))}.

We add another character fj so that the character lattice of GL; X Spin,,, , ; is spanned

by fo, fi, fa, - ,fn,%. Taking the ones that are trivial on (—1,5Y(—1)), we
f1+fn J—

see that the character lattice of GSpiny, ., is spanned by ey = fo + 2572 e =
fi,e2 = fa, -+ ,e, = fn. Taking the dual basis, we have that the cocharacter lattice
of GSpin,,,, is spanned by e; = fi, ef = fi + f—g,e§ = f3 + %0, e = fr+ %0
Therefore the root datum of H = GSpin,,,,, is given by:
X*(TH> = ZGO EB Zel EB e EB Zen
Ag={ar=e1—eg,ap =€y — €3, ,Qp 1= €1 — €, Oy = €}

X (Ty) = Zey ® Zey - - - @ Ze,

Vv VvV % * Vo x * \ % * * * *
Ap={af =e] —e5,ay =e5—e€3, -, 0, 1 =€, —€,,0, = 2e, — €}
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It is easy to see that the three groups share the same root system, and we can identify
a;, = ;= forall 1 <i<n.

Take the Siegel Levi My = My where 0 = A — {«,,}. We have My ~ GL,, x GL;.
Accordingly we will have that the Siegel Levi subgroup M of SO,,,; is isomorphic to
GL,. Let My, be the corresponding Levi subgroup of Spin,, ;. In the rest of this
section we will realize My, inside Mp. It is crucial for the Bruhat decomposition in
section 5.3.

The covering map ¢ induces a surjective map on the two corresponding Levi

subgroups, then we have the following commutative diagram:

GL, x GL; ~ My —— M ~ GL,

7

Mpy,
where j is the injection map and pr is the projection of My ~ GL, x GL; onto
the GL,-factor. Note that j is induced from the surjective homomorphism of the
character groups X*(Ty) — X*(Tw,) by mapping e; to f; for 1 < i < n —1 and
eo — fo+ % Since Spiny,; is simply connected, any element in its maxmal
torus can be uniquely written as ¢ = [[\_, ¥ (z;). Any element in Ty is of the form
[T, € (t;). Henceif t =], 8 (x:) € Tw, since 5} = for all 1 <i < n, we have

n—1

t= Hﬁiv(xz‘) = H%V(fﬁi) = [](e; —ei) (@) - (2¢, — €b) ()

=1

) Tn—1 T 1

= ci()es(2) - e (e er o)

Therefore the injection j : Ty, < Ty ~ T, x Ty is given by [[i_, 8 (x;) —
n * * *x (T * Tn— * x% * —
I[-, e (t) — 61@1)62(;?)"'en—1(ﬁ)€n(m)eo($nl) for all x; € G,,. On the
other hand, the covering map ¢ induces a surjective map ¢ : My, — M. Since
Spiny,, ;; and SOs, 1 share the same roots, ¢ is given by the surjective map Ty, — T,

hence by the injection X*(T") < X*(Tw,), fi = fi, 1 <i < n, and in return by the
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surjective map X, (Ty,) - X.(T), 5 — 7/, 1 <i <n. As aresult, Ty, — T can
be explicitly written as

n n n—1

H/BZ-V(%) = H%V(xz') = H(fi* = fiv)(@i) - (2f7) (@)

Ty x?

) fa(—=).

Tn—2 Tn—1

* * z *
= fi(@1)f; (_2) o el
T
The kernel of this map is isomorphic to Z/27Z with generator 5 (—1).

The above discussion shows that we have a commutative diagram on the corre-

sponding tori:
T, x Ty =~ Ty —" T,

127

Ty,
where T,, and T} are the maximal tori of GL, and GL; respectively. Taking the
isomorphisms on the root subgroups and Weyl groups of these groups, and using
the Bruhat decomposition, we get the commutative diagram of Levi subgroups we
discussed earlier. Moreover, from this we can also realize My, C My ~ GL,, x GL;
by

My, = {m(g,a) € My, det(g)a® = 1}°,

where o means taking the connected component.

5.2 The Space Z3; Uy, (F)\Nu(F), its Orbit Representatives and Measure

The partial Bessel functions that we are going to define will be integrating over
this space. We proceed by first working on the space Uy, (F)\Ng(F), then define
Z&H and consider its action after that.

Let H = GSpiny, ;, as an algebraic group defined over F. We fix the Borel
subgroups By = TyUy, B = TU of H and SOy, respectively as in section 5.1.
Notice that the Siegel parabolic Py = My Ny of GSpin,,,, ; share the same unipotent
radical Ny with the corresponding parabolic subgroup P = MN of SOs,,;. Let
Unvy, = Ug N My, and Uy = UNN. We need to study the Uy, -action on the Ny by
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conjugation, both of which lie in the derived group of H. We have Uy, ~ Uy, and
Ny ~ M, and the action of Uy, on Ny in H = GSpin,, ., is compatible with the
Upr-action on N in SOg, 1. Therefore Uy, \Ny ~ U\N. Hence it suffices to study
the Uys-action on N.

We realize SO, 11 as

SOQTL+]_ = {h € GL2n+1 : thjh == j},

1
J/
~ —1
where J = 1 and J' = _ . An easy calculation
tJ/
(=) |
g
shows that the M = {m = m(g) = 1 : g € GL, }. Consequently
Jltgflt]/—l
u
Uy = { 1 : u € Uy}, where U, is the unipotent radical of the
J/tufljlfl

standard Borel subgroup of GL, consists of upper triangular unipotent matrices.

And the unipotent radical of P = M N is

I o X
N={n=nXa) = 1 —ta | : X T +J'X+ala=0 (%)}
I

A simple calculation shows that the conjugate action of Uy, (F') on N(F') is equivalent
to

X = uXJ S ar ua. (a)
Let Z = X'J' + %9 then (%) & Z+'Z = 0. Now X = (Z — @)L~ = (Z — %) ],
Son = n(Z,a) € Ng(F) is therefore parameterized by Z € Sk,(F'), the set of
skew-symmetric matrices with F-coefficients, and o € F™. The action (a) translates
into

Z = uZlu, - uo. e (a),
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since if we denote X’ = uXJ"*uJ'~1, o/ = ua, then the corresponding

1ty t 1t t
7= x") + Y ux It Y+ “O‘;‘ Ot + %)tu — uZtu.

Now it is equivalent to find the orbit representatives for the action of U, (F') on

J «
Skni1(F) because Sk,(F) x F" — Skp1(F) defined by (Z,«a) —

—ta 0
is a homeomorphism of p-adic manifolds. If we identify U,(F') with its image in
t

u u Z ol |'u
Un+1(F) by the embedding u +— , we also have =
1 1| [~'a O 1
uZlu  ua _ _ _ _
. So it suffices to find orbit representatives of the action of U, (F’) on
—"(ua) 0
. u - | tu .
Skni1(F) by u.Z = Z where u € U,(F) and Z € Sky,41(F). For
1 1

our concern it suffices to find such orbit representatives for an open dense subset of
N(F) under the p-adic topology. We will define this open dense subset inductively.

Let’s begin with a few lemmas:

Lemma 5.2.1 Let ¢ : M — N be a surjective submersion of manifolds. If we have

an open dense subset V.C N, then U = o~ (V) is open dense in M.

Proof It suffices to show this locally. Thus without loss of generality, assume M =~
F™and N ~ F™ with m > n, and ¢ = pr : F'™ — F" is the projection map. Then if
V is dense in F™, we have o ' (V) = pr }(V) = VX F™ ™" So o1 (V) =V x F'm—n ~
V X F"" o~ F7 x " ~ F™ ~ M. Since p~1(V) C M, we have o=1(V) =M. ®

Z/
Lemma 5.2.2 Let p; : Skii1(F) — Ski(F) be defined by Z = . b = u 2",
—t3 0
liy vy 63 . . : ‘ ‘
where u; = , B = with b; # 0, I;_y denotes the (i —1) x (i — 1) identity
0 1 b;

matriz and v = —b; ' 3. Then g; is a surjective submersion of p-adic manifolds.
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Z// /

a
Proof Write 7' = with Z"” € Sk;_1(F). Also notice that u;Z"u; =
_ta/ O
]i—l ol Z// O{/ Ii—l 0 Z// _ ,Yta/ + O/t’}/ O.// ™
- . The map
0 1] |- 0 by 1 —to/ 0

Ski_1(F)x F©"l x F'" P x F* — Sk;_((F) x F'™!
(Z”,Oél,ﬂl, bz) — (Z// o 'Yta/ + O/t’}/,Oé,)

is a submersion because the Jacobian of this map contains an ¢ x ¢ identity matrix,
due to that the coefficient of Z” is 1 on both hand sides. The surjectivity is clear by
the definition of ;. [ ]

Lemma 5.2.3 Denote V; ={Z € Sk;(F) : zi_1; # 0} and let
V= {Z € Skn—i—l(F) $Pn— OPn_j41 00 @n(Z) € Vn—i—lavo S i S n— 2}

where @; : Skiy1(F) — Sk;(F) as in Lemma 5.2, which is a surjective submersion.

Then V is open dense in Skp41(F).

Proof By the previous two lemmas, each V; is open dense in Sk;(F'). Since the

composition of surjective submersions is still a surjective submersion, the topology
of Ski(F) < Sk;11(F) is the induced topology. So the subset V', which is defined

inductively, is a finite intersection of open dense subsets, therefore open dense. [ |

Based on the above discussion, we obtain



Proposition 5.2.1 Let N(F) = {n

t

I a (Z-2%2)7

1

—tOéJ,

I
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Then N(F) C N(F) is open dense. Moreover, for Yn(Z,a) € N(F)', Ju € U,(F),

such that u-n(Z, ) = n(uZ'u, ux) where

with a; € F*.

0

a1

0

0

_G’TL

Qn

0

This gives a set of orbit representatives for the adjoint action of

Uy (F) = U,(F) on N(F)'.

!/

Proof First, by the previous argument, N(F')" is open dense in N(F') under the

. Then we
—ta 0

have u,Z'u, = p,(Z) € V,, and u,o0 = [0, - -+ ,0, a,]" with a,, # 0 by the construction
of N(FY).
u € U,(F) as stated in the lemma.

p-adic topology. Now take u, as in Lemma 5.2.2 and write Z =

Now u,Z'u, € V,, C Sk,(F), by induction on n we end up with some

Let R denote this orbit representatives, as we saw above it is homeomorphic

to (F*)". So we have a continuous surjective map: U,(F) x R — V given by

(u, (ar, -+ an)) = |

0

a

0

0

G

. The map is clearly

—a, 0
continuous. It has an inverse. In fact, the inverse map is just given by the process of

finding the orbit representatives as we showed above, which is apparently continuous
since all maps arising are again just matrix multiplications. Hence to show it is a

homeomorphism, we only need to show that any two matrices of this form lie in
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different orbits. This follows easily by induction on the size of the matrix. Indeed,

0 aq

—ay 0
Y - . .

suppose u = and let 7 = . = with

0 a,

—a, 0

a=1[0,---,0,a,]" and Z; is the principal (n—1) x (n—1) block of Z. Now suppose Z’
t

u - |tu -
is another such matrix with entries a and Z = 7', and similarly we
1 1
- o u 0
define Z| and ’. This implies that ua = o/, hence u has to be the form u = )
0 1
u - |t - . .
This gives that 7 = Z| where Z; and Z] are of the same form
1 1

as Z and Z' respectively, but of strictly smaller size, so by induction hypothesis, we
derive that «/ = I,_;, which also means that v = I. This forces Z = Z, so a; = a;
for 1 <3 <n.

Moreover, the action is simple, i.e., if u- Z = Z, then u = I. To see this, just take

Z' = Z in the above argument, and a similar process gives u = I. [ ]

Now we have a homeomorphism Uy, (F)x R~ N(F) C N(F) with N(F) C N(F)
open dense. Recall that we have isomorphisms of algebraic groups Uy, =~ Uy,
Ny ~ N, given by identifying the corresponding root subgroups. So we obtain
homeomorphisms of p-adic manifolds: Uy, (F) ~ Uy (F) and Ny (F) ~ N(F). De-
note the homeomorphic image of N(F) in Ngy(F) by Ng(F)', then it’s clear that
Ny (F) C Ny(F) is also open dense. Moreover, the Uy, (F)-action on Ny (F) is
compatible with the Uy (F')-action on N (F'). From now on we identify the p-adic man-
ifolds: Upyy, (F) >~ Uy (F), Ng(F) ~ N(F), Ng(F) ~ N(F)', and Upy,, (F)\Ng (F) ~
Un(F)\N(F). We also identify R as the orbit space representatives of Uy, (F)\Ng (F).

Now let’s discuss the invariant measure on the orbit space. Any measurable func-

tion f on Ny(F') can be viewed as a function on Uy, (F') X R. Let du and dn the
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Haar measure on Uy, (F') and Ny (F') respectively. Let da be the measure on R such
that the integration formula fUMH(F) [ f(u-a)duda = fNH(F) f(n)dn holds. We also
need to construct an invariant measure on R. When the dimension n = 2, Uy, (F') ~
0 aq 0
1 =z
Uy(F)={ cx€FY~F, R~{|—-a;, 0 ay| :a,as€ F*}~(F*)? and
1

0 —as 0
Ny(F)~{n(Z,a): Z € Sky(F),a € F?} ~ F3. The action of Us(F) on R is give by

1 =« 0 a; 0 1 0 0 ap Ao
0 1 —aq 0 ao z 1 =1 —a; 0 a9
1 0 —ay O 1 —agr az 0
So
F x (F*)? ~ Uy, (F) x R— Ng(F) ~ F?
is given by

(xvala CL2> — <a17a2x7a2)'

So we can write f(u-a) = f(a1, a2z, as). Let da = day|as|dag, then

/ /f(u~a)duda:/ f(ay, asx, as)dxday |as|das.
Unty (F) JR (a1,a2)€(F*)2 JzeF

Let 2’ = asx, a)] = a1, ay = ag, then dz’ = |as|dz. Then the above integral

d/
_ / / Fldy, ', ) " dal | ablday = / F(d) o, dy)da'dddd
F J(F*)2 F J(F*)2

|as]

= [ f(a},2',ab)dx'da’\day = / f(n)dn.

F3 Ng(F)
It is straightforward to show by induction on the dimension n that the invariant

measure on the space of orbits R is given by da = [[}_; |a:|" 'da; = ]}, |a:['d*a;.

Next, we define Z3; and consider its action on Uy, (F)\Nu(F).

Lemma 5.2.4 H = GSpin,, . Let Zy and Zy, denote the centers of H and My
respectively, then Zy = {ej(\) : X € GL1} and Zy,, = {ef(Nej(p)---ei(n) - A\, p €
GLy}. There exists an injection: o« : F* — Zy\Zyy,, such that a(a¥(t)) =t for
vVt e F*.
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Proof The structure of Zy and Zy, follows from Proposition 2.3 of [2]. For the
second part of the lemma, take a¥ : ¢t — Zy(ef(t)---eX(t)). Then o is an injection,

since if Zy(ef(t)---ei(t)) = Zy, then ef(t)---e(t) € Zy, therefore ej(t)--- ek (t) =

n n
es(N) for some A € GLy, but the cocharacters are independent since they form a basis
for the cocharacter lattice, it forces ej(t) = e3(t) = --- = € (t) = ej(\) = 1, this

implies t = 1. Moreover, since a = «;,, = €, we have a(aV(t)) = e,(ef(t)---ei(t)) =

en(en (1)) = t. m

Let Z3, = {aV(t):t € F*} be the image of the map " we just constructed. For
z=a"(t) =]I_,€e(t) and n(Z,«a) € Ny(F) as before it’s easy to see that

o (n(Z,a)a” ()™ = n(t*Z, ta).

Therefore the Z3, -action on Ny (F) induces an action Z3, x R — R, given by
(t, (a1, -+ ,an)) = (B2ay, - t2a,_1, tay,).

We also need to define a measure on the space of orbits R' of Z3;, Uns,, \Nu such
that it is compatible with the measure on R we constructed. We can take a,, = 1 to

identify R’ with {(da},--- ,a

'_1,1) :a; € F*}. By the measure on R we can see that

the measure on R’ is of this form da’ = [/} |a}|*da} with k; € Z. Recall that p is

the half of the sum of positive roots in Ny, as we computed before p = 2 >"" | €;. So
for z = aV(t), we have ¢@/un ) = |n 37" ey ([T, e*(t))| = [¢["*. Then we should

have

/ f(a)da = / f(z-a)g® ) e/ dz
R 28, R

Fidaldt.

n—1
- / F(t2a;, 2l 0 ] !
F*xR' i=1

Let a; = t?a} for 1 <i < n—1, and a, = t. Then da; = |[t|?da; and da, = dt. So
the above integral

n—1

= / f(a/l’... 7a/n*17a/n)|an|n271H ’tiQO,Z
F*x R’

i=1

i an|’2(”’1)daidan.
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On the other hand, we should also have

/( . flay, - an) }:[1 la;|" ' da; = /Rf(a)da.

By comparing this with the above discussion we can see that it forces each k; =7 — 1.

This means that )
e

da' = H ]aﬂi_lda;
i=1

gives the desired measure on the space of orbits R’ of Z3; Uy, (F)\Ny(F).

5.3 A Bruhat Decomposition

Theorem 6.2 of [19] allows us to write the local coefficients as the Mellin transform
of some partial Bessel functions, whose definitions rely on a Bruhat decomposition.
We will study the Bruhat decomposition in this section.

As before H = GSpin,,, ;. Let wy and wy be the long Weyl group element of H
and My = Mpy, respectively. We denote the length of w by [(w). Then I(wg) = n? and
l(wy) = @, since in general [(w) is the number of positive roots that are mapped

to negatives ones by w. Their reduced decompositions can be given as follows:
Wi = Wayp 1 (Wap Wap 1)+ (Way *+ Way 1) (Way =+ Way, ;)

Wa, (Wa, Way,) +* (Way *+* Way, ) (Way +** Wa,, )

and
Wy = Weay, 4 (wan72wan71) T (waz o 'wanfl)(wm e 'wanfl)

In general there is a canonical way to pick the Weyl group representative w of
w € W by a given splitting {u, : G,, = Ugs}aco+: Fix a reduced decomposition
w = [[,w, with each w, a simple reflection, there is a unique y, € G,, such

that wa(1)w_o(Ya)wa(1) normalizes the maximal torus. For each w, pick w, =

1
Ua(1)u_q(Ya)ua(l) and let w = ], w,. This makes each w, the image of
—1

under the homomorphism SLy — H attached to the sly-triple {X,, Hy, H_,}.
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One can compute that we should pick t,, = ta,; (1)U—qn,(—1)uq, (1) for 1 <i <n-—1
and W, = U, (1)u_q, (—2)uq, (1). Now we pick wy and wy as in the above process
and let 1y = g, '. Moreover, given ¢ : F' — C* a non-trivial additive character,
recall that we can define a generic character of Uy (F’), which is still denoted by 1,
by setting (u) = ¥(>_,cn ta). We can identify u = m(u',1) € Upy, (F) =~ Uy(F)
with m(u’) € Uy, where v’ € U,,. Then a straightforward calculation shows that the
generic character ¢ is compatible with the choice of the Weyl group representative
1y, i.e., we have 1 (woutig ') = (u).

Let Ny = wyN Hw;}. We need to find some open dense subset of Ny (F') such
that the Bruhat decomposition wy'n = mn'n holds for n lying in this open dense
subset, where m € My, n’ € Ny and i € Ny.

Observe that in this decomposition m is uniquely determined by n. Since n,n’ and
7 are all in the derived group Hp = Spin,,, so is m. Instead of doing this directly
in Spiny,,;(or in GSpin,, ), we first do it in SOg,;1. We identify the Weyl group
elements in H = GSpin,, ; and SOgy, 1. A direct computation in SOy, shows that

we should pick

(=37 J
wH == (_1)11 ,’Li)@ == 1
(_2> Lt J
(=3)1
Hence wy = wngl = (—1)" . Therefore
(=121
o] [=h (1)
gt = (=1)" = 1 (=1)"
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()17

Let @, " = (—=1)" , then the above formula shows that

To simplify our computation, let’s first compute the decomposition 'n =m(g)n'n

in SOg, 1. We have

()| I o« X (=)
u?gln = (—1)” 1 —taJ'| = (_1)n (_1)n71ta<]/

1 I 1 « X

g I g Y

and if we assume m(g) = 1 with ¢ € GL,, n' = 1 =gy
J/tg—ljl—l T
1

and n = |(—1)"2'y 1 . Let v/ = =2y and Z' = 47, then

4zt (=0t 1

g I — (_1)715157/ 4 Y/tjlzltJ/ B + (—1>nY,tJ,’}// y!
m(g)n’ﬁ = 1 (_1)7171157/ _ tBZItJI 1— <_1)nt6’7/ _tBJ/
J/tg—1J/—1 tJ/Z/tJ/ (_1)ntJ/,y/ T

o — (LYY YT ZT) g5 (CYIY) g
= |ty -z L= (-0 B
(=) tytg=tzty —J'tgly J'tg=t gt

Assume that det(X) # 0, then the equality @, 'n = m(g)n'n in our case is equiv-
alent to the following conditions:

(1) I — (=B +Y"'JZ"] = 0; (2) B+ (=1)"Y'' Ty = 0; (3) gV’ = I
D=y =182 = 0; (5) 1= (=1)"By" = (=1)"; (6) (-=1)" e = —'BJ;
(1) (-1 T = I (8) — g = s (9) T = X
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We also recall that by the definition of Ny (F), we also have

i) X'+ J'X +dla=0<= "X +'XJ +'Jala] =0

We need to simplify this first. Note that

9) = g=J"'X"1JL (6) <= B=(-1)"; (T) <= Z' =T X)L

Q)<=+ =-TX"1a; )<= Y =g =TJ!XJ L

Next, we have (5) <= (—1)" -8y =1 <=1y = (-1)" -1 <= "' J X la =
(—1)™ — 1 We call this formula (ii).

Also we have

(4) <= (-1 = J"Z'3=0
= (1) (=TI X ) =TT (1) a =0
' JXa-JI'X VTa=0= ("JX - (-1)""XJ)X ta=0.

We call the last formula (47).

Also notice that (2) < (—1)"a + (=1)"(J*'XJH)J(-'JXa) = 0 <
a+ JX(1)" (=T X ) = 0 <= a— (-1)"TX'TX o =0 <= a-
JUXTX o =0 <= "X o~ X o =0 <= (X — ' TX a =0 <
((JX — (1) UXJ) X la=0< (4). So (2) < (4) < (4).

Next we show that (i)+(ii) = (4'). Notice that (i) <= 'J' X +'XJ +'Jolat =
0= X+ XJ + (-1 Jala) =0« 'JX +1XJ + JalalJ =0, multiply
this by X 'a we obtain *J'a+'XJ' X ta+ J'a((—1)"—1) = 0. When n is even, this
is equal to 'J'a + X J' X ta = 0, on the other hand in this case we have (4') <=
(TX+' X)X a=0«= "Ja+'XJ X 'a=0; When n is odd, this is saying that
tEa+'XJ' X ta—2J'a =0, but since *.J' = (—1)""1J" = J' in this case, we have that
this is the same as saying '.J'a— X J'X 'a = 0, while (4) < ({J X —'XJ )X la =
0 < 'Ja—'XJ X 'a = 0. Hence in both cases we have that (i) + (i1) = (4'),
and this is the same as saying that (5) + (i) <= (i) + (it) = (2)&(4). So we obtain
that (1) + (2) +--- 4+ (9) + (i) < (i) + (4i) + (1).

We are left with (1). We have

(1) <= I —a(-"a' XTI+ (J'XT™
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LTCTXTITTT =0 = T+ o' X1 + JIXT X =0,
we call the last formula (7).

We show that if we pick n € Ng(F)’, the open dense subset of Ny (F') constructed

in the last section, then both (i) and (7i7) are implied by (7).

If welet Y = XtJ and Z7 = XtJ + O‘tTa =Y + O‘tTa as in the previous section

in which we find orbit representatives for Uy, (F)\Ng(F'), then there exists u €

0 a
—a; 0
U,(F) such that uZ'u = , we denote this matrix by
0 Ap_1
L —Gp1 0]
Z(ay, ++ ,an,_1). And we also have ua = [0,--- ,0,a,]", hence
T . -
—a; 0
uY'u = ,
0 Ap_1
we denote this matrix by Y (ay,- -+ ,a,). Then we see that (i) <= Y + 'Y + ola =

0 <= u(Y +1Y + ata)u = 0 <= uYtu + *(uY'u) + (ua)(ua) = 0;

(i) <= oY la = -1 — (-1)"! = “(ua)(uY'u)Hua) = -1 — (=1)"7%;
(iit) <= [+ (—1)" Y1+ Y Y ! = 0 <= u(I+(-1)" Y '+ Y Y Hu !t =
0= I+ (—1)" ! (ua) (ua) (uY'u)™ +  (uYu)(uYtu)~! = 0.

Therefore, without loss of generality, we can assume that Y =Y (ay,--- ,a,) and
a=1[0,---,0,a,]" with all a; # 0 in this proof. We work on the cases when the size
of the matrix n is even or odd separately.

Case 1: When n is even;

Now we have that 'J' = J'=1 = (=1)""'J' = —J'. So (ii) <= 'aY 'a = 0, notice
that « is a vector with only the last entry non-zero, so only the last entry in Y1

contributes. Let Y;*; denote the (i, j)-th entry of the adjoint matrix of Y. Then we
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see that 'aY o = a2 (det Y ~')Y,* . But since n is even and therfore the (n,n)-th
minor of Y is an (n — 1) x (n — 1) skew-symmetric matrix of odd size, thus Y7, = 0,
hence ‘aY "'a = 0; And we also have that (i7i) <= [ — o'oY 1 + 1YY ! = () <
I-Y lala+'Y ™'Y = 0. But (i) <= Y+'Y+ala = 0 <= 'Y 'Y +I1+'YV ala = 0,
so if we replace 'Y 'Y by —I — 'Y !ala in the last formula for (iii) right above, then
we have (i17) <= (Y ! + 'Y ala = 0. But now o'« is a matrix with only the last
entry non-zero and equals a2, so only the last column of Y14ty " contribute. For the
same reason we have that Y7, =Y* = 0. On the other hand, for the matrix Y, we
see that Y;; = =Y}, for all (i,7) # (n,n), so we see that 'Y, = (=1)"'Y;, = =Y,
for all 1 < < (n —1). This implies that (Y ' +'Y1)ala = 0.

Case 2: When n is odd.

Now (1) <= ‘oY 'a = —2. We see that Y;", = detY,_; where Y,,_; is the
principal (n — 1)-th minor of Y, therefore one can easily prove by induction that
det Yo 1 =TI} oadprn ai but on the other hand det Y = —3 [, 4447, which can also
be proved by induction on the size. Therefore we have ‘oY ~ta = (det Y)~'Y* a2 =

nn-'n

a2
% -a? = —2. We also have (iii) <= [ + oY1+ YY" ! = (0
2 k odd Yk
I+Y lala+tY =Y = 0. Again by (i) we have 'Y 'Y = —T — 'Y~ lala, so (iii) <
(Y —"Y"Ya'a = 0. But in this case V7, = "V, = T, odd.fitn ag, and 'Yy, =

()Y, = Y5

@,n)

therefore it shows that (Y — 'Y !)ala = 0.

From the above argument we see that in both cases if we pick n = n(X,«a) €
Ny (F)', with det X # 0 then (i) <= (i) + (i1) + (i9i) <= (1) + (1) +--- + (9).

We have showed that for n = n(X,a) € Ng(F), assume det(X) # 0, then

Wy 'n(X, a) =m(J"Y )n'n. Since wg' = m(—11)d; ", we see that
s —1 1 1ty —1\, /5 1 1ty —1\,, /=~
W n:m(—ﬁl)m(J Y )nn:m(—iJ Y )n'n

holds for n € Ng(F)', which already implies that det X # 0 since X = Y'J'"! =Y .J,
and det(Y') = det(Y(aq,- -+ ,a,)) # 0. This gives the decomposition in SOgy, 1.
The decomposition iy 'n = mn/fi in SOg,+1 and Spin,,,,; differ only by the m

part. Recall that at the end of section 5.1 we have My, = {m(g,a) € My =~
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GL, x GL : det(g)a* = 1}°, and the covering map ¢ : My, — M ~ GL, is given by
m(g,a) — m(g)  g. So for n € Ny(F)', we see that 1y 'n = m(g,a(g))n'n, where
g=(—3%)J"Y"!, and a(g) is uniquely determined by the relation det(g) - a(g)* = 1,
since from the realization of My, in My the F-points of My, is given by a pair
(g,a) € GL,(F) x GL;(F) such that det(g) = a2 is a square in F* and this a is the
unique square root of det(g)~! that lies in the identity component of the F-points of
the variety {(g,a) € GL, x GL; : det(g)a® = 1}.

Y =Y(a;---,a,), we can see that det(g) = det((—

(=)™ . . 1\n 2 (=)t . .
—2. _ if nis even, and (—z)" - = 2 if n is odd. Hence a =
[Tk oddai ! ( 2) L [Tk odda‘% [Tk odda% (g)

1\ % 1)y
SILE even, and H(:)—Ta if n is odd. So we obtain the desired Bruhat

[Tk oqaan odd k

V'Y (ay, -+ a,)7h) =

1
2

decomposition in Spin,, ; and therefore in 4 = GSpiny,, ;.

5.4 Local Coefficients and Partial Bessel Functions

Now we are ready to apply Theoerem 6.2 of [19] to express the local coefficients
as the Mellin transform of partial Bessel functions in our setting.

Recall that we have an injection o” : F* < Zg\Zy,, and a(aV(t)) =t for t € F*
(Lemma 5.5). By the last section we also obtained that the decomposition 1y, 'n =
mn'n holds for n € Ny (F)" C Ny (F'). Moreover, by the work of R. Sundaravaradhan
in [22], we have that except for a set of measure zero on Ng(F), Unym = Uppy s
where Uppyn = {u € Uny - unu™ = n}, and Uy, = {u € Upy : mum™" €
Un,y & x(mum™) = x(u)}. The above two properties imply that the assumptions
for Theorem 6.2 in [19] are satisfied.

Let 7 be a t-generic representation of GL,(F) and 7 a character of F'*, and A
be a Whittaker functional attached to w. Since Uy, =~ U,, % can be viewed as a
character of Uyy,,. The representation o, of My (F') is also generic. Since ¢ (u)A(v) =
A(m(u)v) = Aoy (m(u, 1)v)), A can also be viewed as a Whittaker functional of o,,.

Let aj; ¢ = ajy ®r C, where a}; = X(Mpy)r ®z R, and ay = Hom(X(Mpy)r, R)
is the real Lie algebra. The Harish-Chandra map Hy;, : My — ay is defined
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by ¢Hun () — |y (m)|p for all x € X(My)p. Given u € ayc, let I(p,0p) =
Ind]\H4H Ny (o ® ¢y ® 15,) be the induced representation, and denotes its

space by V (i1, 0,)). As before let 7, , denote the representation o, ® ¢*®#11 () where

A -1 _ (a>a) o (enaen) n B 1
O ) = ) T TR e 22 T2

For s € C, define I(s,0,) = I(s&,0,) and let V(s,0,) be its space. The local

standard intertwining operator A(s,o;) : I(s,0,) — I(—s,wo(0y)) is defined by

A(s.ay) f(h) = [y, flig'nh)dn for Vh € H and f € V(s,0,). We identify X as a
Whittaker functional for o,), and denote Ay (s, ‘777) the Whittaker functional for I(s, o))
given by A, defined as (s, o,)( fNH n),A) - =1 (n)dn. Then since 1) is

compatible with g, Ay(—s, wo(an)) o A(s, Un) defines another Whittaker functional
for I(s,0,). So by uniqueness of the local Whittaker functionals we obtain that the
local coefficient Cy (s, o) is defined by A\y(s, 0y,) = Cy (s, ) - Ay(—s, wo(0,)) 0 A(s, 0yy).

As in [19] we will choose Ny C N (F) to be open compact so that oV (t)NoaV (t)~!
depends only on [t| for all t € F*. Define ¢,.(X) = 1 if |X,;| < ¢@=Y% " and 0
otherwise.

From the calculation of the decomposition g 'n = mn'n in the last section we

1
see that if n = n(X,a) with det(X) # 0, then n = | —*(J’X'a) 1 , we
X! X ta I

1
denote |—*(J'Xa) 1 by (X, ). Let
X Xa I

_ ~ 1
Ny, ={n=n(X,a): gp,i(—gw 2(d+1) XJ' 1) =1},

where d is the conductor of x and f is the conductor of w, " (wow,). And let ¢, .

be the characteristic function of NO,&-
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Let n € Ny(F) with wy'n = mn'n, and let 2 € 23, = {aV(t) : t € F*}. Asin
(6.21) of [19], the partial Bessel function on My (F) x Z3; is defined by

Jogem(M, 2) = / Won,s,v(mu_l)gpﬁoK(zu_lﬁuz_l)w_l(u)du
Unmy 7

where W, ., € W(oy,) is a Whittaker model attached to the o, ,, with v a fixed
vector in the represenattion space. For partial Bessel functions for quasi-split groups,
we refer the reader to [6].

In our case m = m(g,a(g)) with det(g)a(g)* = 1, and u = m(«/, 1) for v’ € U,.
Hence Wy, ..(m(g.a(g))) = Moys(m(g,alg)))v) = nlalg))~"|det(g)]z\(m(g)v) =
n(a(g))~t det(g)|2 Wy (g). Moreover, let 2z = o (w*fu,, (1onty')), and define for
g € GL,(F),

jw,n,wg,n(g> = jan,s,n(m, a” (w
where m = m(g,a(g)). This defines the partial Bessel function on GL, (F') in our case.

Now apply Theorem 6.2 in [19], we obtain

Proposition 5.4.1 Let © be an irreducible admissible 1-generic representation of
GL,(F), lifted as a 1-generic representation o of My(F) ~ GL,(F) x GL(F) by
pull-back through the projection on the GL,-factor. n: F* — C* is a fized conlinuous
character. Define the representation o, as before. Suppose that wan(wgw;}) 18 ramified

as a character of F*. Then for all sufficiently large k we have
Cy(s,0,) " = 7(2(&, a"))s, We, (wow;nl) oaV )
/ S (9051, (0 (1)) (i, ) (0 ) g 47
Z3r, Uy \Nu

where off a set of measure zero, the decomposition Wy n = mn'n holds as in the
. . o . —_ . _1 A \Vi _1 \V4 .
previous section. Here u, = ug, (woniy ) € Uy, 7(2(&, )8, w,, (wow, ) o ¥, ) is

an abelian y-factor depending only on w, and 7.

Let’s simplify this formula. First recall that in our case a = e, p is the half of the
sum of roots in Ny. The roots in Ny are e; +¢;(1 <7 < j <n) and €;(1 <i < n),
SO p = %(Zl§i<j§n(ei +e;) + Z?:l e;) = 5 Z?:l €i-
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We have

2<pa O‘) _ 2(% Zi:l €1, en) _
(o, @) (en, en)
Soa=(pa)y tp=n"HEX" &) =35> €. Sincea¥ =3 " e, sowe have for
vt € F*, 190 = a(a¥(t)) = 137 ei(TT, ei(t)) = t™/2. Therefore (&, aV) = 2.

2 i=1 %1 3
This implies that ¢{*®m (m) = glsé-Har, (mlg.2(9))) — | det(g)|*/?. Then w,, , (m(g, a(g)))

= wo, (m(g,a(g)))| det g|*'* = n~"(a(g))| det(g)|>wx(g).

Secondly, since we have wy = wy - wy, where § = A — {a,,} = A —{a}, and

<P, a> =

Wt € > —€;, Wy : € — €414, We obtain wo_1~H?:1 ef(t) - wo = [ (—elq_4(t) =
[T, (—e€;(t)). This implies that

n n

&
Q
3
—~
g
o
&
S
S
~—
—~
Q
<
—~
~
~—
~—
I
&
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—
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—~
~
~
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S|
—_
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—~
~
~
g
o
~
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([ L) - (LT (€1 0) = wo, ([T e20) -, ([ [ 1 0)) = w2, (0" 1)) = w20,

since 7 is trivial on the GL,-component of My. So w,(wow, ') o " = w?.

Similarly

Way, (Wosr, ) (' (1) = wy (H ¢; (1)) - Wa,, (H(—GZ‘ (1)) = w,.. (H ¢; (1))

= w2 (aV(8)) - [T = W 2() - [

™

So wy !, (wows, ) 0 @ = w2 ()] - [T
Finally
5 n o
qberr il = (23 Teit 5 Y e)(mlg,alg))] =

i=1 i=1
(s+n) < stn
5> _eilmlg, a(9))| = | det(g)| ="

i=1

From the above discussion we obtain a simplified version of the local coefficient

formula in our case, namely

Proposition 5.4.2 Let m be an wrreducible admissible 1 -generic representation of

GL,(F), lifted as a 1-generic representation o of My(F) ~ GL,(F) x GL,(F) by
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pull-back through the projection on the GL,-factor. n: F* — C* is a fized continuous
character. Define the representation o, as before. Suppose that wan(wgw;}) 18 ramified

as a character of F*. Then for all sufficiently large k we have

Cy(s,09)"" =7(ns,wy,9)7"
. _ _ stn .
| St (972 ) ] | det(g)|H it
28, Uniyr \Nu
where off a set of measure zero, the decomposition wy'n = mn'n holds as in the
previous section. Here wu, = ug, (Wonty") € U,, = U,. And v(ns,w? 1)) is an

abelian vy-factor depending only on wy.

In the proof of stability, we also need an integral formula for the local coefficient
Cy(s, (0, ® x))~* for a sufficiently ramified character y of F*, viewed as a character
of My(F) by x(m(g,a)) = x(det(g)). Therefore it is important to be able to choose
x or equivalently, Nog C Ng(F) to be independent of .

To make this work, as in the proof of Theorem 6.2 in [19] and the corresponding
discussion in [7], if we fix an irreducible generic representation 7’ of G such that w,r
is ramified, where o’ is the lift of 7', o7 is defined in the same way as 0,. Then Ny is
chosen to satisfy (1) 3f € V(s,07) such that f is supported in PiNo; (2) Ny is large
enough such that oV (t)Noa"(t)~! depends only on |t| for all + € F*. Note that here
(2) does not depend on 7’. For (1), as in the proof of Theorem 6.2 in [19], there exist
f€V(s,0,)st. fiscompactly supported modulo Pg. Fix such an f and choose No
sufficiently large such that it contains the support of f, then f is supported in Py No.

Now let’s get back to our case. We fix a character xo of F'* such that ws, x5 =

"X = Wo,ay, 1s ramified. Then we take xo such that both conditions (1) and

-
(2) above are satisfied for Ny ., and f,, € V (s, 0, ® Xo). Also note that if k > rq, we
have No,,{o C No,ﬁ. Therefore (1) and (2) hold for 0, ® xo and all K > kg. Let x be
any other character of F™* such that w,, x" is ramified. Then as discussed above we

can choose f, € V(s,0, ® x) which is supported in PHNQX for some open compact

NO,X C Ny. Now if NO,X C Nom, then Proposition 5.4.2 holds for o, ® x and all
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k > Ko. While if not, note that aV(t) = [\, ef(t) € My, then R(a(t)™")f will
be supported in Py (aV(t)""NoaV(t)). To see this, note that for (X, a) € Ny (F),
we have oV (t)'7(X, @)oY (t) = A(t2X, ta). Therefore if we take [t| sufficiently small,
we will have oV (t)"'Ng,a"(t) C No.,. So if we take such a t and replace f with
= R(a¥(t)™') fy, we see that [y will be supported in Py Ny, and Proposition 5.4.2

holds for ¢, ® x and for all K > ky. Now we obtain a stronger version of Proposition

5.4.2.

Proposition 5.4.3 Let m be an irreducible admissible 1-generic representation of
GL,(F), lifted as a -generic representation o of My(F) ~ GL,(F) x GL,(F) by
pull-back through the projection on the GL,-factor. n: F* — C* is a fized continuous
character. Define the representation o, as before. Suppose that wgn(wow;’l) 18 ramified
as a character of F*. Then there exist a ko such that for all Kk > ko and all x such
that ws, X" is ramified, we have

Cyp(s,07 @ x) " = v(ns, (wx)>", )" / rereminsn (9) (WaX™) "> (uy)
2% Uty \Ni

Jun| 5| et (g)] =" din.

where off a set of measure zero, the decomposition 1wy 'n = mn'n holds as in the
previous section. Here u, = uq, (onttiy ') € Uy, = Uy. And y(ns, (wex)?", 1) is an

abelian vy-factor depending only on w, and x.

Next, we use our orbit space representatives and measure to further simplify the
integral in the local coefficient formula. Recall that we have the decomposition
wy'n = mn'n holds for n lying in the open dense subset Ny (F) of Ny(F). Now
for n =n(X,a),let Y = X'J' = (Z — %")J’U’ =7 - O‘tTa Then by section 5.2 on
orbit space and measure, if n € Ny (F)’, then Z can be taken as Z(aq,--- ,a,_1) and
« can be taken as [0,--- ,0,a,]’, consequently Y can be given as Y (aq, - ,a,)(see

section 5.3). Also recall that the calculation of the decomposition wy'n = mn'n

n

1\n
gives m = m(g,a(g)) where g = (=3)J"Y ! and a(g) = ﬁ if n is even and
1 n—1 °
a(g) = (3) 7 - if n is odd.

T Ik saac
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We have seen that in the decomposition wy'n = mn'n, if n = n(X, ), then the

corresponding 7 = (X', a) = | —{(J' X a) 1 . 50

(=31 I
oy = (—1)" —H(JX ) 1
(—1)m2I X! X la 1
(=131 I (- X (-1 ieX!
(—1)" = 1 (X tay
—97I 1

SO Un, = Ua, (Woithy ') is the last entry of (—1)""'2X . Since only the last entry
of av is non-zero, u,, = (—1)""'3(det X)"' X7 a,, where X}  is the (n,n)-th entry of
the adjoint matrix of X. Since X = Y'J""! = Y.J', Y is the matrix given as above,
it is not hard to see that X} = (—1)"" 17 a;. Therefore we have that u, =
$(det X)~'TT"; a;. Also notice that X = YJ" and det J' = 1, so det(X) = det(Y).
Hence u, = 3(detY) "' [T, a;.

Next, we work on zu'fuz"'. Let zp = @™ u, = @™/ (detY) ' [], a;, let
t=(detY) [T, a; € F*, then zo = 30/t Let u = m(up, 1) and z = a¥(z) =
m(z0l,1) = with vy € U,(F) C GL,(F). Since Y = X'J', so X~! =t Jy~1

I
therefore (X1 o) = n(*JY 1 a) = | —taty ! 1 . Then a direct cal-
YUYl T
culation shows that u~'a(*J'Y ", a)u = a(*J Y ‘ug,ug'e). This implies that
 n(t Y L @)uz Tt = nlzg % - I Y g, zoug ta).

We have zp = 3w/, with ¢ = (detY) ' [],a; € F*. Let Y = ¢*Y and

o/ = ta. Recall that No, = {7 = 7(X,a) : O (— 24T -tXJ'*l) = 1}. Therefore

1 1
ON, (zu_lﬁuz_l) = (pn(_ng(d-ﬁ-f) . (Ewd+ft)_2 . t(tjltuoy—luo)J/—l)

1 _ B 3 1 - 1 )
= @a(—gt (Y oSN = (=5t 'Y o) = (=5 Y o).
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We pick the long Weyl group representative of G = GL,, by wg = J', then

, . 1.,
,]w,n,u';g,/g(g) = ]w,n,w97n(—§thY 1)

1
= [ W alml=Gu6Y alg)ulor,, (a0 ()
Uniyy ’
s 1. _ 1 , _
:/ n(a(g>>71’det(g)yiwﬂ',v(_ﬁthY 1U0)90n(—§tuoty 1U0)¢ 1(u0)du0

— nlalg) ! det())F | Waalgwn(uiig'g'u)o (u)d
where ¢’ = — ’LDGtY/ L(so g = t*¢’), U, is the upper triangular unipotent matrices of

size n in GL,,. We also used the fact that W, ,(g) = A(7(g)v), therefore

W, .o(m(g,a(g))) = Moy,s(m(g,a(g))))

=n(a(g)) " det(g)|2A(m(g)v) = n(alg)) | det(g)|2Wru(g).

Moreover, substitute u, = %(det Y) '], a; into the local coefficient formula,
and use the orbit space measure we constructed earlier. After some simplifications,

we obtain

Proposition 5.4.4 Let m be an wrreducible admissible 1-generic representation of
GL,, lifted as a ¥-generic representation o of My (F) ~ GL,(F) x GL(F) by pull-
back through the projection on the GLy-factor. n : F* — C* s a fixed continuous
character. Define the representation o, as before. Suppose that wg, (wow;nl) is ramified

as a character of F*. Then for all sufficiently large k, we have

_ _ . T
Cols, o)™ = s, o2, 9) ! / Jrmian(—56Y )
FX\R

<(4det(Y 2I_Ia_2 |—|nn . det(Y)| ™2 nH|aﬂ 1=n5qa,

In addition, there exists a constant ko such that for all k Z ko and all x such that
n~twex" is ramified, we have

1

Cq/,(S, On & X>_1 = 7(”87 (WWXn)27 ¢)_1 / jw,n,wg,n(_athY_l)

FX\R

n(n—s)

“ 1 2ns—s—n L .
. nY(4 Y 2 -2y = 121 Ji—1—ns N
(wrx") (4 det(Y) 11@ )51 det(Y)|™ = [[Iaz! da;
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5.4.1 Partial Bessel Integrals

For the proof of the stability of local coefficients, it is important to relate partial
Bessel functions with partial Bessel integrals, which have nice asymptotic expansions
under some conditions.

Let G be a split reductive group over F, and G = G(F). Fix a Borel subgroup
B = AU and let B, A, U denote the groups of their F-points respectively. Suppose
© : G — @ is an involution defined over F, i.e., ©2 = 1 and © # 1. Let 7 be a 9-
generic supercuspidal representation of G with its central character w,. Let f € M(m)
be a matrix coefficient of 7. Then f € C°(G;w,), the space of smooth functions on G
with compact support modulo the center Zg such that f(zg) = w.(z)f(g) for z € Zg
and g € G. We associate f with the Whittaker function W/ (g) = [, f(«/g)v " (uv')du/.
The integral convergences since the coset UZg is closed in G and f € C®°(G;w,).
We can normalize it by choosing f € M, such that W/(e) = 1, where e € G is the
identity element.

We define the twisted centralizer of g € G by
Uy={ueU:0(u")gu=g}

Suppose G = ZgG', write g = z¢' with z € Zg, g € G'. Then we define the partial

Bessel integral

BS(g. f) = . W (gu)@(0(u)g'u)e (u)du,

where ¢ is some cut-off function. Note that the above definitions can also be applied
to any Levi subgroup M of G.
If we apply the above settings to the case G = GL,, O(g) = wg'g lug', and

@ = Ly, where Lyp(g) = ¢(s71g) is the left translation of ¢, we obtain

BS(g. f) = . W (gu)o(tuiog' g'u)yy™" (u)du,
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which is the definition of partial Bessel integrals in [7]. And in this case the twisted

centralizer of g is given by
U, ={u €U : uwig'gu =1ig'g}

We will only use this definition for partial Bessel integrals and twisted centralizers in
the rest part of the paper.

On the other hand, it is not hard to see by induction on the size n that if g =
—swe'Y ! for Y = Y(ay, -+ ,a,) with (a;--+,a,) € (F*)" as in the last part of

section 5.4, the twisted centralizer U, is trivial. Hence the partial Bessel integral

BS(g, ) = /U W (gu)o(uisghg'u)d (u)du,

where g = 2¢/, z € Z. Now choose f € M(m) such that W, , = W/, and W/(e) = 1.

Take ¢ = ¢,. From the calculations right before Proposition 5.4.4, we have

Jranial9) = n(a9)) | det(@)E | WenlgwonCuiggu)i (w)d
Therefore we obtain

Proposition 5.4.5 Let f € M(n) such that W/(e) =1, and let p = ¢, then

Jrmaies(9) = n(alg) ™" det(g)|? - BS (g, ),
for g = _%thYfl, where Y =Y (a1, ,ay,) with all a; € F*.

Now we have successfully related our partial Bessel functions with partial Bessel

integrals, whose asymptotic expansions will lead to the proof of stability.
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6. ANALYSIS OF PARTIAL BESSEL INTEGRALS

Let G be a split connected reductive group over F'. Fix a Borel subgroup B = AU,
and let U™ be the unipotent group generated by all the negative roots. We use G,
B, A, U, U™ to denote their groups of F-points respectively. Denote the Weyl group
of G by W. We begin by stating some basic facts and properties.

e B(G). Define the subset of W that supports Bessel functions by B(G) = {w €
W:aeA st. wa>0= wa e A}, or equivalently, B(G) = {w € W :
wgw = wy for some standard Levi M C G}. We take the representatives
W of w € B(G) so that W = wg;, . Then there is a one-to-one correspondence
between elements in B(G) and Levi subgroups standard parabolic subgroups of
G. To be precise, to a w € B(G) we associate 6 = {a € A : wa >0} C A
which determines a standard parabolic subgroup P, = M, N,,, such that M, =
Za(Nyeqr kera). We also have that 6 = 0, = Ay C A, where wyy is the

wpm

long Weyl group element of M.

e U/ U.. For each w € W we define two unipotent subgroups U, and U, of U
tobe Uf ={ue U :wuw? €U} and U, = {ue U :wuw ' €U} In other
words, U/ (resp. U,) is generated by those roots that are made positive(resp.
negative) by w. One can see that U} = U Nw 'Uw, U, = U Nw U w, and
U = UfU,. Moreover, if w € B(G), suppose 1 = gt , 0 w associates
the Levi M = M, of G. Let Uy, = U N M, then Uy, is the standard maximal
unipotent subgroup of M. If we denote Nj; to be the unipotent radical of
the corresponding parabolic, i.e., Pyy = M Ny;. Then U = Uy Ny;. Now for
w = wy, we can see that Ul = Ny, U- = Uy and for w = wg, we have

wn wn

Us =1e}, Uy, = U. In general for w = wgwys we have U = Uy, Uy = Ny
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e Bessel distance For w,w’ € B(G) with w > w’ we define the Bessel distance
as follows: dp(w,w’) = maz{m : Jw; € B(G) st w = wy, > Wy_q > - >
wo = w'}. And if we denote Ay, to be the set of simple roots associated with

the standard Levi M, we have Ay, C Ay and dp(w,w’) = |Ay, — A, |-

e Bruhat order For w € W we denote the Bruhat cell by C(w) = UwAU, we

define the Bruhat order on W by w < w' <= C(w) C C(w').

e The relevant torus A,. For w € B(G), define A, = {a € A : a €

Nacot ker a}® C A, which is also the center Zyy,, of M,,.

e The relevant Bruhat cell C,(w). We call C,.(w) = UwA,U,, the relevant
part of the Bruhat cell C'(w). Note that C,(w) depends on the choice of the

representative w of w.

e Transverse tori Let w,w’ € B(G) and let M = M,, and M’ = M,, be their
associated Levi subgroups respectively. Suppose w’ < w. Then M C M’ and
Ay D Ay Let AY = A, N M = Zy; 0 (M')%. Note that in particular AY =
ZyrN M4 is finite since M is reductive and in general we have that MYNR(M) =
M ZY is finite, where Z° is the connected component of Z and R(M) is the
radical of M. In the case of G = GL,, the center is connected, and A consists
of certain roots of unity on the diagonal blocks of M. Similarly A% N A, = A%
is finite and the subgroup A% A, C A, is open and of finite index. So this
decomposition is essentially a ”transfer principal” for relevant tori, from the
larger one A, to the smaller one A, which differs by the transverse torus A%,

on which the germ functions live on, as we will see later.

Here are some useful properties of B(G):

1, For w,w’ € B(G). Then v’ < w <= M,, C My <= A, DO Ay. (Lemma 5.1
in [7])

2, For each w € B(G), say @ = gy, . Then for all u € U} = Uy, we have

P(wuw ™) =1 (u), where 9 is the generic character. (Proposition 5.1 in [7])
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3, Let Q, = ||« C(w'), we see that (), is invariant under the two-sided action
of U x U and as in Lemma 5.2 in [7], €, is an open subset of G and C(w) is closed
in Q.

As stated in [7] we also have:

Lemma 6.0.1 Suppose w € B(G) is associated with a standard Levi M of G, then

we have 0, ~ U, X wM x U, . This decomposition is unique.

Suppose 7 is a generic representation of M (F'). Let C2°(9,; w,) denote the space of
smooth functions of compact support modulo the center Z, so Vg € 0, and z € Z,

f(zg) = wa(2)f(g). Since €, is open in G, we have C°(Qy,; w,) C C(G; wy).

Lemma 6.0.2 There is a surjective map: C°(M;w,) —» C2(Qy; wy) given by h =

hy — f where h(m) = hy(m) = [, fo/_l flx=mu™ ) Yz~ u™)dzdu.

Proof See Lemma 5.9 [7]. u

6.1 Partial and Full Bessel Integrals

Let w € B(G) and g = wjwauy € C.(w), the relevant cell associated to w, which
depends on the choice of the representative w of w. Let M = M,, be the Levi subgroup

of G such that w = wgw,,. We have
Lemma 6.1.1 For g = uywauy € C,.(w) with w = wgwyr € B(G), then
U, Cuy ' Ufuy = uy ' Uppug

Proof u ¢ U, =t uwglulwgw;jamu = wglulwgw;;am. Let w; = wglule S

U~, then this is equivalent to (u)~‘utiy;, auguuy* = 1y a, which is the same as

() "ttty = wpsaugu uy fa iy
Notice that (uy) ‘fuu; € U™, and augu'uy'a™ € U. This implies that

1

augu tuytat € Upyy = Unr-

1 1

Therefore uou™'u,* € a~'Upya = Uy since a € A,. So u™' € uy 'Upruy, thus

_ ~1
u € utUpus = uy ' Ut us. [ ]
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Next, we will show an equality that relates partial Bessel integrals with full Bessel
integrals.
First, decompose U = uy'Uuy = (uy 'Ufuy)(uy'Ugug) and for u € U, write

u = w7 (uy 'uTuy) with u't = uy 'utuy where ut € UF

w I

and u~ € U, . Since by

lemma 6.1.1, U, C uy U uy, we have

Bon-[ [ [ et
Ug\uy "Uduz JU, JU

g
o(t(uy ) gt g T uy fumug ) (@) (u g T g ) daedu du'
:/ / / f(zurba(ugu’ uy u"ug)
Ug\uy "Ubus JU, JU
oty M u) W g g (upt uy T ug) T () (W uy T ug ) dadu du'
:/U\ L /_/Uf(a:ulwau*uuQ)Lp(tugtutu+tu21wG1u1wa'u+uug)
g \Ug U2
A @) (uy e T ug ) dedu dut
Now since a € A,,, we have aut = uta. So the above integral
:/U\ . //Uf(:pul(wu+u')_1)wau_u2)gp(tu2tu_tu+tu2_1wélulwa’wu_ug)
g\Uz u2

AN @) (uy e T ug ) dadu dut

Let 2’ = zuy(wutw™) and v/~ = u~uy, then do’ = dz and du'~ = du™.

After this change of variable we have the above integral

/Uq\% . / /fxwau ot g o b
WY (wrdut ) ) (uy utd deded dut
= (i) | . / [ et yotut= s i i)
N2 (™) w )T (W) dedu'~ du

By compatibility of 1 and w, we have ¢ (wutw™) = ¢ (u™), so

BY(g, ) = (un )b (uz) /

/ / f(z"wau'™)
Ug\uy 'Ubus JUZ JU
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ot~ ut g Vg uga e ) (@) () daedu! dut

Now take f € C(Q,;w,). Since g is fixed, a is fixed. Since by Lemma 5.2 of
[7], C(w) is closed in £, there exists open compact subsets U; C U and Uy C U,
such that the support of the function (z,u~) — f(zwau~) lies in U; x Uy. Take
N large enough such that ¢ = ¢y is invariant under the left and right action of
Uy as in Lemma 4.2 of [7], ie., o(fugu) = p(g) for all u € Us. Then we have

t 1. . _ t o1 . .
o(tu' " ut uy g uid utu' ) = p(tut ug Mg uyaut).

Define
259 :/U\ L o(tut uy ugau ) dut
g \Ug w U2
then
o(g) = /U - p(ut uy g g uy ) dut
g \Ug u2
:/ o(tuy w TG g T uy Y du'
Ug\uz Uy u2
So we have

B2, ) = 0w (o) [ [ flan ) @) o ydedu
Uy JU
= ¥ (un) P (u2) @5y (9') B (wa, f) = & (9") B (g, )
We just showed the following result:

Lemma 6.1.2 For w € B(G) and any g = upwauy € C.(w), ¢ = ujwa’uy where

a=zd,z€Z andd € A, we have
BS(g, f) = &5(9) B (g, f)-

where

B ) = [ gy @0 o dedu”

is the full Bessel integral and ¢$,(g') as defined above.



93

6.2 Twisted Centralizer and Transfer Principle

For G = GL,, G = G(F), and f € C*(G;w,), we defined the partial Bessel

integral as

BS(g,f) = . W (gu)p(tuibg g'u)yy ™" (u)du

= [ [ Haguettuigtquy @0 w)dadu
U\U JU

where ¢ is the characteristic function of some compact neighborhood of zero in
Mat,, (F'). Now for any Levi subgroup M of G, we define the twisted centralizer
of m € Min Uy = UNM to be Uy = {u € Uy : tuibyfmu = iy u}. Let
h € C*(M;w,), the space of smooth functions of compact support modulo Z on M,
satisfying h(zm) = w.(2)h(m), for z € Z = Zg. The partial Bessel integral on M is
then given by

By(m,h):/ / h(zmu)p(fuy, m'u)y ™ (ru)drdu,
Unt,m\Un Y Uns

where m’ is obtained by m from the decomposition Zyy = Z Ay, i,e., if m € Uy AyUy; s
then m' € Uyw Ay Uy, 2 € Z and m = 2m’.

Now Let L C M C G be standard Levi subgroups of G, as before let wg, wy, and
wy, be the long Weyl group elements of G, M and L respectively. And let wg, Wy, and
wy, be their representatives chosen to be compatible with 1) as before. Now denote
wM =iy, -ab; ", similarly if M is replaced by G.

Take g € C,.(w¥), the relevant cell for w¥. Suppose g = u1w auy is the Bruhat de-
composition of g, where a € Awf = /. Decompose u; = ul_u;r € U(;,),l (J;,),l =U,
also uy = ugu, € U, U, = Uy Ny = U, where w' = w§;. Therefore g = ujw'auy =
uyufwauguy = uyw' (wHufw'auguy . Since Cp(w¢) C Q,r, by Lemma 6.0.1, g
has a unique decomposition g = u; w'muy , u; € Ulwry-1> and u, € U_,. On the other
hand, since w'(w' ™ ufw)w'=! = uf € U, so by definition (v ')ufw’ € U}, = Uy C
M. Therefore (w'~')ujw'auy € M. Now compare the two decompositions and by

-1, + +

uniqueness of Lemma 6.0.1, we see that m = w'~'uj w'aus .

Now we prove the following transfer principal for partial Bessel integrals:



54

Proposition 6.2.1 (Transfer principle for partial Bessel integrals)For any

given g € Cp(w¥), suppose g = uy w'muy , then

BS(g, ) = v(uy W(uy ) BY (uy, uy ,m, hy).

where

Bi/[(ul_au2_7ma h’f) :/ ) / hf(:vlmu')
Unt,mmoUns,mng \Un YUy
-go(tu’tnow;/llm'u’)@b_l(a:')@/)_l(u’)dx'du'
and hy — f through the surjective map: C°(Qy;wy) — CX(M;wy), and nyg =

"(ur)(uy) ™" € N

To prove this, we first need to deal with the twisted centralizers in the above two

partial Bessel integrals.

Lemma 6.2.1 Suppose that we have a chain of standard Levi subgroups L C M C G
with associated Weyl group elements w¥ € B(G) and w¥ € B(M) respectively. Then

for g € C.(w8) with g = wywlauy = uyw'mu, € Cp (W) C Ny =~ Upyry-1 ¥ w'M x

w/

U, where a € Awf = Zp and w' = w§,, u = uju € U(:U,),lU(J{U,),l = U, also

Then the twisted centralizer of g and m satisfies

t_

Uy = (" (1) Ustm 0r) 0 ((43) ™ Urtmtiy)
where E =gty g

Proof We have g = wyw¥auy = uyuj wwWaugu; = uyw (w' " ufwwaus)u, =

up w'muy where m = w'™'ufw'wy'auy . Notice that we have w'™'U[, v’ = U, =
Upr. The above decomposition is unique by Lemma 6.0.1.

Now we show that E = g uy g € Ny, or equivalently, tE € Uy = Nu.
To see this, since u; € U(;/)_l cU, E = g uj g € U~. On the other hand, we
have that w'"uyw’ = wythg uy gy = wyug iy € U™ by the definition of u] .

Taking transpose and using the fact that ‘s, = 1} by the way we choose the Weyl
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t—
group representatives, we see that this is the same as saying s uyw;; € U, this
— + _
shows that ‘u; € UJ = Ny,
Next, we see that
ue U, < thuwélgu =g

P S L JU s E s U
<~ Wg U U'lUGU,IU)mUQUU = U] W Muy

ottt o4 . .1 - 4 - — r . .1
= g U UG up Wely Muy wuT =g w'muy - (W' = wauy,)

ot . — — — — — . _ .
=g u utupiy muyutuT = uyw'muy e (uy = ig'uyig € Nas)

+,,=(t, -1t . + T
= g v wtuy (ot et oy muy vt = upw'mag

= g (g () i

)w(;l(wgw;;)wMu (N )y ut

u)rugutuT = upw'muy

— (g'u (utuy (ut) g w (i u iyt mut) ((wh) g wt ) = upw'muy

We call the last equality (A4). Now notice that ‘utu; (‘ut)~! = t((u*) 1tu1 u™), and
((u*)*ltflﬁ) € Ny since we showed that tE € Ny and ut € Uy, Uy normalizes
Ny So we have ‘uuy (‘u™)™ € Ny;.

Next, we claim that g v (‘utuy (fut)~ Dig! € Ulyy-1- To see this, notice that

this is equivalent to w'~!

wetu (‘utuy (‘ut) gl € U™, which is the same as
saying /v~ utuy (‘ut) iy} € U™, since w'™! = g Also note that fu~ € N,
and ‘utuy ("ut)~! € Ny, and it is not hard to see that wy, Ny iy} C U™, so the claim
follows.

Moreover, clearly we have iy 'uTwy mut € M and (ut)uyutu™ € Ny

Summarize what we obtained so far, we have wg'v~ ('utuy (fut)~ D! € Uyt
s utiy mut € M oand (ut) " lugutu~ € U,,. In addition, by the uniqueness of the
decomposition €, = Ufyry-1 % w'M x U, as in Lemma 6.0.1 and equality (A), the
following three equalities hold at the same time:

(@), weu (e (u) gt = up

(b), p Ty mut =m;

(c), (uM)lugutu™ =u;.
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Notice that (a) < fwu; (‘'ut)™! = u; < (u*)*ltfu = tE — ut =
tfu(tf)_l, hence tfu(tf)_l = u™ € Uy. On the other hand, from (b) we see
that u™ € Uprm, so (a)&(b) implies that tfu( uy)™" € Uprm. Since we started
with v € Uy, we see that U, C (tul) UMm uy. Similarly, (¢) <= uyu(uy)™! =

ut = wyu(uy)™t = ut € Uy and again by (b) we have u™ € Uy,y,, therefore

uyu(uy )™t € Uprm- So (b)&(c) implies that U, C (uy ) *Unrmus . We conclude that
Uy C ((u7) " Vst ) 0 ((53) Ungtiy ):

Conversely, if u = (E)*lu’tf = (u2) "uuy with u',u” € Uy, we see that
wru =u =/ (W) () ul =u ((u’)_lt(ul_)_lu/)tf. Since

u' € Up, ()™ (ug) ™' € Ny, U = Upg x Nag,and Uy 0Ny = {13,

we have u™ = ' and u~™ = (u’)_lt(f)_lu’tf. Replace tf by u, € Ny in the above
argument we also obtain u™ = «”. This implies (b).

Moreover, from u = t(E)*lu’tf = (ug) 'u"uy , we see that t(f)utf_l = =
ut <= (a) and uzu(uy )™t = v’ = ut < (¢). Since u € U, is equivalent to
(a), (b), (c) to hold at the same time, hence it proves the reverse inclusion U, D
() Ut 7)1 () Vpt iy ).

So we finally obtain that U, = (*(uy)~'Ux mtul )N ((uy) Unpmuy ). |

—_— t_
Remark: From the above argument, u = ‘(uy) ' uy = (up) w'uy; € U, =

(“(up)"'U Mme) N ((uy )" Unrmuy ) automatically implies that
u=u" € UpymN Cent(*(u; Juzt).
Now we can show the proposition based on the above lemma:
Proof (Proposition 6.2.1) For any given g € C,.(w%),
g =wwiauy = uyw'muy € Cp(wf) C Qy =U,,_, x w'M x U,

By Lemma 6.2.1, U, = (t(E)*lUMymtE) N ((ug ) 'Uprmuy ). To simplify the no-

tations, we denote n = ‘(uy)~! and ny = ul( ;)% then they both lie in Nj;.
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Since n € U, we have U = nUn~' = (nUpyn™') X (nNyn™1). For f € CZ(Qu; wy)
we have BS(g, f) = ng\U Ji fzgu)o(tuig'g'u)y~ (zu)drdu. Make a change of

1

' and decompose U as U = nUn™' = (nUpyn™"') x (nNyn™t).

variable u — nun~
Then U, = (“(u;) Wit @) N ((5)  Untmtty ) = 10U N120Unzmig nt. We can

rewrite the integral as

Bla.0) = | / / N
(UMmmnOUano n— 1\TLU1VITL 1 -

_ _ _ _ 1t _t t - _ . - _ _
f@ v uyw'muy nutu n e ('n ™ uT ut nig uy ey m uy nutuTn Tt

/)1

(nutu n Ndr drdu” du™

.¢*1

(z7a )y~
_ / / / / Faatup (@) () et
Unt,mMmoUng,mmng "\Un J Ny (w')—1 s
+

l)l

aw'mut () " uy nutun et et (up) T ey iyt ml g nutu Y

A N nutun ) de " dat du” dut

/ / / / flo~ztuy (7))t (w') et
Unt,mMmoUnt,mng "\Un + Nag -

/)1

aw'mut (ut) g nutun 1)«,0(11 "utu iy m uy nutu Y

A oz N nutu n Y de detdu” dut
Now let ' = w'~'zTw’, then 2’ € Uy, and by compatibility we have ¢ (z') =
Y(xT). Moreover, let y~ = z~atu (z7)~!, then since U&:},),l normalizes U1,
we see that ztuy (z7)7! € Uppy-1- As a result, we have y= € U, 1. Let v7 =
(uT)tugnutun™' € Nj. And also let v/ = u™. Then since all variables live in
unipotent subgroups therefore are all unimodular, we see that dy~ = dx™, dv™ = du~,
and du' = du™.

After making the above change of variables, the above integral

/ / / f y~w'z'mu'vT)
Unt,mMmoUns,mng NUwM J Ny (w1

(v (uy) T T ey o) (ug ) (ug )T (T ) (@) T (0T ) (W)
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dz'dy~ dv™du'.
Since here f € C2°(Qy;wr), the decomposition Qur = U,y X w'M x U, im-
plies that there exists open compact subsets U; C U(ZU,),I, and Uy, C U, such that
fly-w'a'muv™) #0 =y~ € Uy,v~ € Us. Therefore we can take N large enough,

such that ¢ = ¢y is invariant under large open compact subgroups of U_,, as in

Lemma 4.2 [7]. Consequently,

o(to~"w (uy) " Nt m ) = (! (uy) T e gt m ).

So now we have

5. = [ Jo [ s
UM mMNnoUpp mno \U]M Npy (w')— 1

ot (ug )™ gt ) (g )b (ug )y ) (@) (0T ) ()

dx'dy~ dv~du’

/ / / f y~w'z'mu'v7)
Ut oUnr,mng \Un -

<o (" ntb ' u Yo (uy ) (ug ) (y™ )Wl(ﬂ?/)w*l(f)w*l(ul)
dx'dy~dv~du'.

Now by Lemma 6.0.2, there exists an h = hy € C2°(M;w,) such that

h(m) / / C famimu ) @ )dadu

/)1

This implies that

G . - — / /
By (9, f) = ¥(uy )¥(uy) /UM,mmnoUM,mnEl\UM /UM hy(z'mu’)
-gp(tu'tnow;jm'u')@fl(a:')@b_l(u')dx'du'
= (u )P (uy) By (g, uy ,m, hy),

where

M/, — —
Bgo (u17u27m7 hf) :/ / hf(x’mu’)
UM,mﬁnoUM,mnSl\UM Unmr
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ot ngwtmu Y ) (W) da' dud.
One can check that this integral is well-defined. Suppose v' € Unrim N noUprmng L
then by the remark after the previous lemma, we see that for u € Uy, v’ € Cent(ng),
bty tng iy miv'y’ = 't tng T iy miv'u = tutngiy m/’. In particular, if

. t, — _
no =1, i.e., "(u;) = uy, we have

BZ (g, f) = (ui)e(uz) By (m, hy).

6.3 Small Cell Analysis

The philosophy to prove supercuspidal stability is to analyze the asymptotic be-
havior of the partial Bessel integrals through looking at the contribution of each
Bruhat cell inductively. In this section we will analyze the small cell of both G and
its Levi subgroups.

The following lemmas(lemma 6.3.1, 6.3.2, 6.3.3), which were proved in [7], show
that the non-zero contributions are only from the relevant parts of those Bruhat
cells that support Bessel functions. We will use them, together with the transfer
principal(proposition 6.2.1) to obtain the asymptotic expansion for partial Bessel

integrals.

Lemma 6.3.1 Let w € B(G) and f € CZ(Qu;w,). Suppose BS (wa, f) = 0 for all
a € Ay,. Then there ezists fo € C®(,; wx), where Q, = Q,, — C.(W), such that for
sufficiently large ¢ depending only on f, we have Bg(g7 f)= Bg(g7 fo) forallg € G.

Proof See Lemma 5.12, [7]. u

Lemma 6.3.2 Let w € B(G) and f € CX(Qu;wy), Q) = Q, — C(w). Suppose
BY(a, f) = 0 for all a € A,. Then there exists fo € C%(QS,,w;) such that, for all
sufficiently large @ depending only on f, we have Bg(g, f) = Bg(g, fo) forall g € Q.

Proof See Lemma 5.13, [7]. [
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Lemma 6.3.3 Let w = wgwy € B(G). Let Q0 and Q1 be U x U and A-invariant
open sets of Q,, such that Q0 C Q1 and Q1 — Qyo s a union of Bruhat cells
C(w') such that w' does not support a Bessel function, i.e, w' ¢ B(G). Then for any
f1 € C2(Qup1;wa), there exists fo € CX(Qwy) such that, for all sufficiently large ¢
depending only on fi, we have Bg(g, fo) = Bg(g, f1) forall g € G.

Proof See Lemma 5.14, [7]. u

Now let’s work on the inductive process of the asymptotic expansion of partial
Bessel integrals. We begin with the analysis of the small cell of G. Consider e as
a Weyl group element, then M, = G, A, = Zg = Z, and U} = U. We also have
Qe =<, O(w) = G. Take the representative of e to be é = I. Take f € M(rm) C
C®(G;wy) with W/(e) = 1. We also fix an auxiliary function f; € C%°(G;w,) such
that W/ (e) = 1. Decompose G = G?A, = G?Z, where G? is the derived group of G.
Since GYN 7 is finite, if we write ¢ = gic for ¢ € G and ¢; € G%, ¢ € Z, then there are
only finitely many such decompositions and they differ by elements in the transverse
torus A¢. In the case of G = GL,,, A¢ consists of diagonal matrices whose entries are
n-th roots of unity, and notice that there is no such decomposition if det(g) is not an

n-th power in F’*. Now let

fil9) = Y folg)BY(éc, ) = > folgr)wx(c)
g=4g1c g=gic
if det(g) is an n-th power in F*, and fi(g) = 0 otherwise. Then fi(g) € C*(G;wx),
since the subgroup of all g € G such that det(g) is an n-th power in F'* is open in G.

We have

Lemma 6.3.4 BS(éa, f1) = BS(éa, f) for alla € A, = Z.
Proof See Lemma 5.15, [7]. u

Proposition 6.3.1 Fiz an auziliary function fo € C®(G;w,) with Wh(e) = 1.
Then for each f € C®(G;wy) with W/(e) = 1 and for each w' € B(G) with
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dp(e,w') =1, there exists a function f,, € C2°(Qy;wx) such that for any w € B(G)
and any g = wwauy € C,.(w) we have
BS(g.f) = > BS(g, fur) + Y wa(e) BE (urtibus, fy)
w'€B(G),dp(w’,e)=1 a=bc
where a = bc runs over the possible decompositions of a € A, with b € A, and

ceA. = 7.

Proof We construct f; from f; as above. By Lemma 6.3.4, Bg(éa, f—/fi) =0 for
all a € A, = Z. We have C,(e) = A.U = ZU C C(e) = AU and ¢ = Q. — C(e) =
G — AU = |, C(w). Then by Lemma 6.3.2, there exists an f; € C2°(2¢;wx)
such that BS (g, f — fi) = BS(g, f3) for all g € G. Let O = Upep@) e Qv =
Uw’EB(G),dB(w’,e):l Q’LU/ - I—lw”Zw’EB(G),dB(w’,e):l C(w”) and QO - QZ =G — C<€) =
Lz C(w). So Qo — € is a union of Bruhat cells C(w) such that w ¢ B(G), since
dp(w',e) =1 in the definition of €.

By Lemma 6.3.3, there exists fo € C°(21,w,) such that for sufficiently large ¢
we have Bg(g, fo) = Bg(g, 5 = Bg(g7 f—f1) for all g € G. Then we use a partition
of unity argument, to get fo = Zw,eB(G),dB(w,ﬂ):l fur with fir € C°(Qy;w,). Thus
for any w € B(G) and any g € C,.(w) we have

BS(g,f) = BS(g, /) + > BS(g, fu)-
w'€B(G),dp(w',e)=1

Now we work with BS(g, f1) for g € C,(w). We have

B (g, fi) = / / fi (egu)p(tuig g uyy (@) (u)dedu
U,\U JU

N /U \ug 'U. /U /(Jfl(xguuru?luu?)@(t(uzlu“2> U+wclglul+uz U up)
g\Uz u2 J Uy
A @) (u uy T ug ) daedu du' T

Since f1(g) = 3, _gre fo(g1)BE(e, ) = 3y _oro folgr)wn(c), we need to decompose
rgutuy'uTuy = gic with gy € G? and ¢ € Z. Write ¢ = ujiaus, then g, =

rupac  ugu/Tuy fuTuy € G So 1 = det(g;) = det(ac™t). This says that b = ac™! €
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A¢ = SL,(F)N Zy, where L = L, is the Levi given by w = wew, € B(G). We

decompose A,, = ZA,, then a = za' and o’ = (bc)’ = /. Therefore we have

fi(zguTuy 'u"uy) = Z fo(zurbbugu uy 'u~ug)wy(c).

a=bc
So eventually we have

B, = |

g

\ /fl(a:gu)@(tuwGlg’u)z/Jl(x)wl(u)da:du

vJu

:/ / /fl(:cgu’JrugluuQ)gp(t(quuug) Mg g g u T ug)
Uq\u2 wug Uy JU

@y [ J S S
Ug\uy "Ugus JU5 JU

a=bc

upbbugu T uy M ug) (@) T (u ey e g ) daedu” du't

:Zwﬂ(c)/\ /f(xulwbugu)gp(tuw(_;lulwbmu)@b_l(m)w_l(u)dxdu
U\U JU

a=bc

= wa(e)BE (urtivbusy, fo).

a=bc

A very similar process works for Levi subgroups M C G. If w’ = wgwys € B(G), then
Aﬁj = Zy N M9, which is also finite. In the case G = GL,,, M? ~ SLy, X% SLy,
for some ¢ > 1, and AY, = A, N (M,)? consists of n;-th roots of unity in the i-th
block of M.

Let’s analyze the small cell of M. For h € C°(M;w,), and ¢ € Zy; = A, define
the Bessel integral on M by BY(c,h) = [, h(zc)y~"(z)dr. Take hg € CZ(M;wy),
such that BM (e, hy) = ﬁ, where ry; = |ZNAY| < oo, and BM (b, hy) = 0 for b € AY,
but b ¢ Z N AY. Decompose M = M?Zy;, where M40 Zy; = A, is finite. Define h,
on M by hiy(m) =13, _ . ho(m')BM(c,h) withm’ € M? and ¢ € Zy; = A,. Similar
to the case for G, if m = diag{my, ms,--- ,m,}, det(m;) is not an n;-th power on

each block, then h;(m) = 0. We have

Lemma 6.3.5 B/ (a,h) = Bl (a,h) for all a € Zy = Ay
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Proof See Proposition 5.4, [7]. u
Now suppose g € C,(1¢) with g = ujtbgaus, then for w' = wg,; we have

Cpltig) C Qu = Uy x w'M x U,

We further decompose g as = uy uf weauiuy withuy € U\, ui € Uy, ug € U},

+
uy €U, up = ujuf, upg = uguy. Then

=y N=1 - oy
g =ujw (W) u wipaus us = uyw'musg

where m = (') tufwhinrauy € CM (), the relevant cell of 1wy in M, and a €

Ay, = A. Recall that

Bf(uf, Uy ,m,y hy) = / ha(xmu)e(tu'noy; m'u)y ! (zu)dzdu
Unm

mnoUar,mng "\Unr xUns
where m’ = (w') " tufw'iya’us. Here a = za' is the decomposition of a € A = ZA'.
It follows that B (uy,us,m, h) = wx(2)BY (uy, uy ,m/, hy).
Since hy(m) =, ho(my)BM(m/, h) with my € M% and ¢ € Zy, to compute

the above integral, we need to decompose xm/u = myc. This gives
rw' " ufw' iyt duguet = my € MY

Since z, w', iy, u,ul, uy € M4, it suffices to decompose a’ = be for b € AN M? and

c € Zy;. Now we can write

hy(m') = Z ho(xw' ™ uf w'ingbug u) B (¢, h).
a’=bc

Decompose b = zb' and ¢ = z.¢, with z,,2. € Z, b € A" and ¢ € Z);. Then
a' =bc=zzbd = a =V, and z,z. = 1. As h,hy € C°(M;w,), we have
ho(zw' ™ uf w'inbug u) BY (¢, h) = wr(2pze ) ho(w' ™ uf w'ingb'ud u) BM (¢, h)

= ho(zw " ufwipybufu) BM (d h).

Thus

B (uy,uy,m', hy) = / Z ho(zw' ™ uf w'ingb'ug w) BM (¢, h)
Up

—1
/I,mmnoU]W,mnO \UMXUM a=bc
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o("ungiyf w' ™ uf wiy b ud ud )y (zu)dedu

Z BM(c’,h)/ ho(zw' ™ uf w'b'ug w)

1
a'=b ¢! UM,mmnOUIVI,mno \UI\/I XUp,

o(tulngyf w' ™ w i b ug ud ) (ru) dedu.

+

Now since o' =V, ¢ € Z,, C Zy, let my = w' " ufw'wyb'ul, then
) M 9 1 29

m' = w' tufwiyduy = w' T win b duy = myd

Meanwhile we have
/
Ut = {u € Upy = 'uairyfm'u = iy m'}
= {u € Uy : ips'wibyfm'u = m'}
= {u € Uy : wps'wtvy; myc'u = myc'}
= {u € Uy : ps"wiby myud = myc'}
_ oy b e —1 _ _
= {U S UM CWh UWp My U = mb/} = UM,mb/

So we obtain
M — — / My o
B (uy,us,m' hy) = E B (d, h)/ 1 ho(zmyw)
o =b ! Unt,my, moUnt,my, g - \Un XUnr

-o("u'ngiyfmyud ) (zu)dzdu

Z BM(C’,h)B%(ul_,u;,mb/,ho)
a'=bc

where ¢ (m) = p(mc) for ¢ € 7,

In particular, when ng = 1, we have

BY (m,hy) = BM(c, h) B3 (muy, ho).

a=bc
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6.4 Uniform Smoothness

The key to prove supercuspidal stability is that the asymptotic expansions of
partial Bessel integrals have two parts, one part depends only on the central character
of m, the other is a uniform smooth function on certain torus. Therefore under
highly ramified twist, the uniform smooth part becomes zero. We study the uniform

smoothness in this section.

Definition 6.4.1 A smooth function B on a torus T C A is uniformly smooth if
there exists a fixed open compact subgroup To C T such that B(tty) = B(t) forty € Ty
and allt € T.

Proposition 6.4.1 For g(a) = uj (a)w'm(a)uy (a) € C%(ig) with m = m(a) =
iy (a)ipatiz(a) € CM (i), a € AY Ay C Ay, = A, ui (a), vy (a), @ (a) and Gz(a)
are rational functions(as morphisms of algebraic varieties) of a. Let a = be be a fized
decomposition with b € Ag’a and ¢ € Ay. Then all decompositions are of the form
a = (b¢Y)(Ce) with ¢ € A%, = AZ’)IG N Ay, a finite set with appropriate roots of unity
on the diagonal. Moreover, if ¢ = 'z with ¢ € Al, = Z},; and z € Z, then for each

fixed b, z,
B (ug (a), uy (a), m(a), hy) = we(2) BY (uy (bd'z), uy (b z), ity (be' 2)tinsbc' iy (bc' 2), ha)
is uniformly smooth as a function of ¢ € Zj,.

Proof First fix one decomposition a = bc. To simplify the notation, we denote

u; =u; (a) and @; = @;(a). Then we have

ngy(ul_vugama hl) - Z BM(C7 h)B%(ul_au;amb’ahO)

a=bc

= Z BY(¢e, h)B%C(u;, Uy , tytiarbC g, o)
¢
Since || = 1, so we have ¢ = ¢°. This implies that

Bg]ow(ul_a U’Q_?ma hl) = ZBM(CQ h)B%(Uf7u2_7 alebC_lﬂg, hO)
¢
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Now

BY(ce) = [

Unm

h(eCepy (2)de = we((r2) / h(a¢'d Y ()de

U

where ¢ = diag((il,,, -+, ly,) and ¢ = diag(L,,, ¢ Colp, - -+, (T ¢ Iy,). Since h €
C®(M;w,), xCc € ApyUy = By and CM(ey) = By is closed in M, there exists
compact subsets Uy C U, K" C A’ s.t. h(z('d) # 0= x € Uy,('d € K'. Moreover,
since Z;; C A’isclosed and ('c’ € Z),, there exists a further compact subset K" C Z),

s.t. h(z('d)# 0=z € U, ('d € K". Write a = bc = bc’z, we see that

ngp‘/[(ul_a u2_7 m, hl) = (JJ,,(Z) Z BM(CC,> h’)stp‘{(ul_7 u2_7 ﬁlebC_lﬂQ, hO)
¢

is zero unless ¢’ € [J.,(¢")~" K", which is compact since it is a finite union of compact
subsets.

So

BM(UI_7U2_7m7h1) = BM

— — ~ . ~ M — — ~ . / ~
) o (U1, uy  ybpratip, hy) = B (uy , ug , Utiarbc g, hy)

©
= w,r(z)Bg[(ul_, Uy , Uy prbc g, hy)

has compact support on ¢ € Z},, depending only on h through the choice of K” and
Apa N Zyy. Thus independent of a and b.

Since h is smooth and its support in ¢’ is compact, for each fixed b, z, there exists
uniform compact subset €, , C Z); s.t. h(x(c'c1) = h(z(), u; (bzc'cy) = u; (bzd),
U;(bzdcy) = w;(bzd) (i = 1,2) for all ¢; € O, v € Uy, and ¢ € Z},. Shrinking €, if
necessary, we may assume that Q. C Z4,(OF), so ¢ = ¢° for all ¢; € Q.. So we
have proved that

By(uf(acl), uy (acy), m(acy), hy)
= B;V[(ul_(bzc’cl), uy (bzd cy), iy (bzd ¢y )wpbzd ertig(bzder), hy)

= B (uy (b¢'z), uz (b¢'z), iy (be 2 )b 215 (b 2), by )

= we(2)BY

o (uy (b'2), ug (b’ 2), 1y (b 2)1p b Ui (b 2), ha)

= B (uy (a), u3 (a), m(a), h)
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for all ¢; € ., a = be.
Finally note that since A‘w”laAw/ C Ay, = Ais open of finite index, one can extend

Bl (uy (a),uz (a), m(a), hy) on all of A. u

6.5 Asymptotic Expansions

We are ready to establish a more general version of the asymptotic expansion
formula for partial Bessel integrals as in [7]. The formula that will be established
works for all elements in the relevant Bruhat cells.

The following proposition is the key to prove the main results in this section.

Proposition 6.5.1 Let w' = wgi;, € B(G), and fu € C°(Qu;wy). There exists
frw € C2(Qy;wr), such that

(1), 3 a family of functions { fur }wrepe) with dg(w”,w') =1, w"” > w', such that
furr € C(Qur;wy), and for Vw € B(G) and g € CY(w), we have

Bg(gvfw’>:BS(gafl,w’)+ Z Bg(g,fw”);

w"”€B(G),w">w',dp(w"” w')=1

(2), Let g = wi(a)igaus(a) € C%(g), where u;(a)’s are rational functions(as
algebraic varieties) of a. Write uy(a) = uy (a)uy (a) € Uy (J;,),l = U and us(a) =
uy (a)uy (a) € UHLU,, = U, then ui(a)’s are all rational functions of a € A. Then

g = uy (@)w'm(a)uy (a) and m(a) = W' uf (a)w'wyaus (a) = 4y (a)prats(a) where

iy = w " ufw', Gy = ui. And we have And we have

BS (9, fraw) = wa(2) BS (u1 (b’ 2)babc us (b 2), fruw)
is uniformly smooth as a function of ¢ € Al, = Z}, for each fized b and z.

Proof Take h = hy, € C°(M,w,) which maps to f,, under the surjective map
CX(M;w,) = CP(Qy, wy) in Lemma 6.0.2. Construct hy based on h as Lemma 6.3.5
such that B} (a, h1) = B} (a,h) foralla € Zy = Ay. We have hy € C2°(M;w,). Let
f1 be the image of hy under the map C°(M;w,) — C2 (2, wr). Then by the transfer
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principal of partial Bessel integrals (Proposition 6.2.1), we have for Levi subgroups

L, M of G with AC LC M C G, and g = ujifauy = uy wmau, € Cp(wf),
B (9, f1) = w(ui ) (uy) By (uy uy, m, ha).

Apply this with the case when L = M, and g = w'a, a € Ang = Ay = Zy , then

u; = u, = 1. So we have
B;;(w,a’ fl) = Bg]z\;/l(aa hl) = Bg[(av h) = BG(’LU/CL, fw’)

by Lemma 6.3.5. So Bg(w’a, fw—fi)=0foralla € Ay = Zy and fur — f1 €
C(Qy; wr). Therefore by Lemma 6.3.1, Lemma 6.3.2, and Lemma 6.3.3, in addition
with a partition of unity argument, we can find a family of functions {f, : w” €
B(G),w" > w',dg(w",w') =1, fur € CX(Qyr;w,)} such that for any w € B(G) and
any g € C,(w), we have
BS(g, fur) = BS(g, )1) + > BS(g, fur)-
W €B(G) " >w' dp (w w')=1

Moreover for each f,» we have w” = w§,,, this will be used for induction later.

On the other hand if we apply the transfer principal (Proposition 6.2.1) for partial
Bessel integrals to the case L = A, then for g = ujwgaus = uyw'muy, € C.(wg) =

C(ig), where m = w'"'uf whinraug € CM(ipr) = CM (1), we obtain that
B (g, fr) = B (uiigaus, fr) = (uy ) (ug ) By (u, uy,m, hu)

If we decompose a € AY A, as a = be, and assume that u; = ui(a) = u; (a)uf (a),
uy = us(a) = uj (a)uy (a) are rational maps in a, then g = g(a) = ui(a)gaus(a) is
rational in a as well. Then by proposition 6.4.1 we have

Bg(g, fi) = Bf(g(a), fi) = Bf(ul(a)waauz(a%fl)
= ¥(ur (@)t () B (uy (a), uz (a), m(a), ha)
= wr(2)¥(uy (b z)uy (be'2)) BY (uy (be'2), uy (be'2), w'™ uf (be 2)w'tnsbc'ug (be'z), hy)

is compactly supported in ¢ € Al, = Z},, and therefore BG(g(bc'z), f1) is uniformly

smooth as a function of ¢ € Zj, for each fixed b, 2. [ |
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Next we are going to perform an induction on the Bessel distance dg(w, €), to obtain

the following main proposition for our final proof of supercuspidal stability:

Proposition 6.5.2 Fir an auziliary function fo € C°(G;w,) with Wo(e) = 1. Let
f € M(m) with W/(e) =1, and m € Z with 1 <m < dg(wg,e) + 1. Then

(1) there exists a function fi1. € C*(G;wy);

(2) for each w' € B(G) with 1 < dg(w',e) there exists f1. € C°(Qu;wx), and
for each w" € B(G) with dg(w",e) = m there exists a function fy» € C°(Qyr;wy)
such that for sufficiently large @ we have

(a) for any w € B(G) we have

Bg(97f):Bg<g7f1,e)+ Z Bg(g7f1,w’)+ Z Bg(gafw”)

1<dp (w',e)<m dp (w",e)=m
for Vg € Cp(w);

(b) for each w € B(G),Bg(g, fie) depends only on the auxiliary function fo and
wy for all g € Cy(W);

(¢) for each w' € B(G) with 1 < dg(w',e) < m, and g = g(a) = uy(a)wSraus(a) €
C,(w), parameterized by a € A and such that u;(a)’s are both rational functions of

a € A, we have that
Bg(g(a), frw) = wﬂ(z)Bg(ul(bc’z)wgbc'ug(bc’z), frw)

is uniformly smooth as a function of ¢ € Al, = Z); for each fized b,z, where
BS(g(a), frw) defined apriori on a = be = bdz € Ag;Aw/ C Ay, = A and finally

extended on all a € A.

Proof First we fix an auxiliary function fy € C®(G;w,) with W/o(e) = 1. Take
f € M(m) C C®(G, w,) normalized such that W/ (e) = 1. Then by Proposition 6.3.1,
we have the following result:

There exists fi1. € C2°(G;w,) and, for each v’ € B(G) with dg(w’,e) = 1, there

exists a function f,, € C°(Q,;w,) such that for sufficiently large ¢,
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(i) For any w € B(G), we have

BS(g, f) = BS(g, fre) + > BS(g, fu)

w' €B(Q).dp (v ,e)=1
for all g € C,.(w), the relevant cell attached to w;

(i) For each w € B(G), the partial Bessel integral Bg(g, fie) in (i) depends only
on the auxiliary function fy and the central character w, for all g € C,.(w). (This
can be seen directly from the expansion formula for Bg (9, f1.) as in the proof of
Proposition 6.3.1.)

By proposition 6.5.1, we also have that for each f,, € C°(€;wy), there exists
frw € C°(Qy; wy) such that for sufficiently large ¢,

(i) There exists a family of functions { fy/ .} € C(Qyr;wy), parameterized by
w” € B(G) with w” > w" and dg(w”,w’) = 1 such that for any w € B(G) and any

g € C.(w), we have

Bg(g7fw'):Bg(g7fl,w/>+ Z Bg(.gafw’,w”>;

w’€B(G),w">w' dp (w w')=1
(ii) Let ¢ = ui(a)wgaua(a) € CC(wg) = C%1ig), where u;(a)’s are rational
functions of a € A. Write ui(a) = uj(a)uf(a) € U, U}, = U and us(a) =
uy (a)uy (@) € ULU,, = U, then u;(a)’s are all rational functions of a € A, then

g = uy (a)w'm(a)uy (a) and m(a) = w'tuf (a)winaus (a) = iy (a)wyaiia(a) where

iy = wufw'; Gy = uy . And we have

BS (g, fruw) = wa(2) BS (u1 (b 2)bgbc usy (bc'2), fiu)

is uniformly smooth as a function of ¢’ € A!, = Z), for each fixed b, 2.

Combine the above two results we obtain that for any w € B(G),

Bg(gafw’):Bg(gvfl,w’)+ Z Bg(gvfl,w’)

dp(w’,e)=1

+ Z Bg(Qa fw’,w”)

dp(w” w)=dp(w’,e)=1
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:Bg(g>fw/>:B§<g7f1,w’)+ Z B§<g7f1,w’)+ Z Bg(gvfw’,w”)

dp(w’,e)=1 dp(w",e)=2

for any g € C.(w).

Let fur = 34w wh=1 Ju wr, then we see that fun € CZ°(Qyr;wr). Hence for
any w” € B(G) with dg(w”,e) = 2, there exist f,» € C°(Qy;w,) such that for
sufficiently large ¢

(i) for any w € B(G) and g € C,.(w) we have

BS(g. fw) = BS(g, frw)+ > BSlg, frw)+ Y. BS(g fur);

dp (1w e)=1 dp (" e)=2

(ii) for each w € B(G), BS (g, f1.c) depends only on the auxiliary function f, and
the central character w, for all g € C,.(w);

(iii) for g = uy(a)vgauz(a) € C%(g) = C(ig), parameterized by a, where

u;(a)’s are rational functions of a, we have
BS (g, fruw) = wa(2) BS (u1 (bl 2)babc uy (bc'2), fuu)

is uniformly smooth as a function of ¢’ € Al , = Z), for each fixed b, z.
We proceed by induction on m = dg(w,e) with w € B(G), and use Proposition

6.5.1 on each step, we obtain the statements in the Proposition. [ |

Now if we apply Proposition 6.5.2 to the case when m = dg(wg, €) + 1, we obtain

a final result that we need for the proof of supercuspidal stability in our case:

Proposition 6.5.3 Fiz an auziliary function fo € C®(G;wy) with W/o(e) = 1. Let
f € M(rw) with W/(e) =1, Then
(1) there exists a function f,. € C°(G;wy);
(2) for each w' € B(G) with 1 < dg(w',e) there exists fi. € C2°(Qy;wr) such
that for sufficiently large ¢ we have
(a)
BS(g,f) = BS (g, fre) + BS (g, frw)

for g € Cr(wg) = C(wg);
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(b) Bg(g, fie) depends only on the auxiliary function fo and w, for all g € C(wg);
(c) for each w' € B(G) with 1 < dg(w',e), and g = g(a) = ui(a)wgaus(a) €
C(wq), parameterized by a € A and such that u;(a)’s are both rational functions of

a € A, we have that
BZ(g(a), frur) = wa(2) BE (ua(be' )b us(be'z), frou)

is uniformly smooth as a function of ¢ € Al , = Z}, for each fized b, z.
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7. SUPERCUSPIDAL STABILITY

Now we have all the ingredients for the final proof of supercuspidal stability in our
case. First recall that we have reduced Proposition 3.0.4 to the proof of the stability
of local coefficient, since the adjoint action 7 : “My — GL(*ng) is irreducible. And
from Langlands-Shahidi method, Cy (s, 7) = (s, 7, Sym* ® 0, 1)). We wrote the local
coefficients as the Mellin transform of the partial Bessel functions jr ,w,.x(g), where
g= —éw(;tyfl. By an appropriate choice of orbit space representatives of the space
Unry \Ng, we can pick Y = Y(ay, -+ ,a,). Then by induction on n we can show
that such g lies in the big cell. Let g = ujwgaus be its Bruhat decomposition. Since
g — ui, g — a, g — u are all morphisms of algebraic varieties, we see that here the
entries of a, u; = uy(a), and uy = us(a) are all rational functions of (aq, as, - ,a,) €

(F*)™. We have g = ujgaus = ui(a)wgaus(a) € C.(wg) = Clwg) C Qy, write
g = upgaus = uy uj Weaus U, = u; w'musy

where m = (w')"'ufwinauy € CM () with uy € Uy, uf € Ul uj €

Ub,uy € Uy, uy = ujuf, us = ujuy. Since u;(a) and us(a) are both rational
+

functions of @, the projection maps u;(a) — u;-(a) are rational maps, so u;"(a)’s are
all rational functions of a. So we can apply Proposition 6.4.1 to our case with 4, (a) =
(w)"tuf (a)w', Gz(a) = uj (a). Now we see that the conditions for Proposition 6.17
are all satisfied for our g.

By Proposition 5.4.4,

_ _ . |
Colss00) ™ =952 ) ™ [ syl )
FX\R

i 1 n(n—s ns—s—n " .
wr(4det(Y)? [T 51" det(v) 5 [ ] lasf =~ da
i=1 =1
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In the Bruhat decomposition ¢ = —1we'Y ™ = wi(a)igaus(a) if we write a =
diag{dy,--- ,d,}, then a direct calculation shows that

2 2 2
H] even aj Hk#l odd ak Hj#Z, even aj
dy = <SS g, = kAL odd R g 0#2 even )

dg -
) 9
k odd ak 41_[] even ] Hk;él, odd Uk
I1 aj,
d k#1,3, odd Tk d
4 = 4 o2y " Un
Hg;ﬁQ even ]
and d,, 2 if n is even, d, a—2 if n is odd. And no matter n is even or odd

n

we have di cdiy = @ for all 1 < ¢ < n — 1. Recall that the action of F'* on
R ~ (F*)" is given by t - (ay,- -+ ,a,) = (t?ay, t*ay, - - t*an_1,ta,). From the above
observation, it is clear that this action is equivalent to the action of F* on A =
{diag{dy, -~ ,d,) : d; € F*} by t - diag(dy,ds, - -+ ,d,) = diag(%, %, ,%). Thus
the action of F* on R translates into the action of Z on A. Meanwhile the change
of variable (ay,--- ,a,) — (di,--- ,d,) translates the measure given by the a;’s into
a unique measure given by the d;’s, with the determinant of the Jacobian matrix a

rational function of the d;’s. Recall that by the computation at the end of section

_ 1 (=) B 1y (=
5.3, det(g) = det(Y)™! - jdd -, if n is even; det(g) = det(Y ') = M= Qoddai if n
is odd. In both cases det(Y"') € (£)*. On the other hand, det(Y)? = -7 =
CTALCE d3§ @2z, Lhe last expression is equal to o (4a?)(4a3) - - - (4l _,)(4a) if

n is even, and - (4a1)(4a2) -(4a?_;)a2 if nis odd. Therefore det(Y)* T, a;? = 4=

. n i—l—-ns __ n 9|izl=ns
if n is even and 4 d_1 if n is odd. Meanwhile, []'_, |a; = [ la;

—1 i—l—ns —1—n nnt+l) 1 i—1—me ns |
H?:1(|4di'ili+1 l 2"“>.|i|n = =37z ™ 1'H?:1(di+i+11 2m)'|L|n o f
. 1 _ i—1—ns —1— (n—=1) .
s even, and TTL Jad ™ = TES (g1 757) - 131770 = 37
H?;ll(ldi-;i+1 )| L™ if nis odd. Let v(n,s) = "("2_8) + (n;l) ns — 1 if

n is even and "("275) + n(n;l)

Let A = A’Z, which gives d = d;/dy, (1 < i < n). Then since dj = 1,
wr(4det(Y)2 T, a;?) is equal to w,(4"1) if n is even and w,(4") if n is odd,

=1 "1

—ns — 1 if nis odd.

denote this number by c¢,. From the above observations we see that there exists com-
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plex numbers 7(i, s), which are of the form 7(i,s) = p; + sq;, s € C with p;,¢; € Q

depending only on 1 <+ < n, such that

n 2
— 1 v(n,s - . T(2,8
Colssy) ™ = ealg s )™ [ el @) L1 [L e
=2 =2

where ¢’ = g(d’) = uy(a')wga’us(a’) with a = d'z, and o« = diag{d;,--- ,d.,}.

Now let’s prove Proposition 3.0.4.

Proof (Proof of Proposition 3.0.4) If we are given two irreducible supercuspidal
representations m; and my of GL,(F') with the same central character w,, = wx,, lift
them to representations of My (F') and denote them by ¢y and o9 respectively, then

by Proposition 5.9 and the above argument,

- - 1 v(n n -
Co(5,010 ©3) ™ = Culs, 72 @ X) 7 = al5 0y (ms, (wex™)?, ) Dy (5)

where

Dy(s) = /A Umexnao(9(a) = Jraoxninn(9(a'))) | I A
2 =2

Pick f; € M(m;) such that W/i(e) = 1, for i = 1,2, and such that for g =

—2we'Y ™ = g(a) = ui(a)wgaus(a). By Proposition 5.4.5,

Jmnainn(9(a), fi) = n(alg) ™| det(g)|2 BZ (g(a), f)-

For convenience let Jr, ... (9, fi) = n(a(g))| det(g) —3 < Jrimavg.s (G, fi). We may

also assume that « is sufficiently large so that Proposition 6.5.2 holds for both f; and
fo with the same auxiliary function fy. Then apply Proposition 6.5.3 (2)(a), we have

Jm,??ﬂbeﬁ(g(a/)) - Jﬂz,n,we,n(g(a/)) = Bg(g(a/)a fi) — Bg(ﬂ(a/)a f2)

= B§(9<a/)v fl,l,e) - Bgf(g(a/)v f2,1,e) + Z (BS@(al)a fl,l,w’) - Bg(g(a/>7 f2,1,w’))
1<dp(w'.e)

Now since both B (g(a'), f11.) and BS(g(a’), fa1..) depend only on the auxiliary

function fj, the central character w, = w;, = wy,, and 7, we see that

Bg(Q(a/)a fl,l,e) - Bg(g(a,)y f2,1,e) = 0.
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So we are left with

Tevnaivo e 9(@)) = Trsmainw(9(a)) = Y (B (9(a), friw) = BE(9(a), forur))

1<dp(w’,e)

Meanwhile, notice that jreyn.ig.x(9) = X(det(g))jxnuip.x(9). So we have
jm@x,n,we,n(g(a/)) - jﬂz@x,n,we7n(g(a/))

= x(det(a) (s maip.n(9(0")) = Jra maing.x(9(a)))-

Moreover, since det(g") = det(a’) = ",; = and as we saw before both d; - --d,, and
dy are in (F*)2, so det(g’) € (F*)% Recall that at the end of section 5.1, we have

= {(g,a) € Mg : det(g)a(g)? = 1}°, there is a unique a(g) € F* such that
det(g)a(g)? = 1, denote it by det(g)~2. Then n(a(g')) = n(det(g’)~2) = n(det(a’)"2).
Now put everything together we obtain that

Dy(s) = / (S (BE(g(@), fraw) — BE(9(@), fonw)))x(det(a))

" 1<dp(w )

1

n(det(a’)"2) " det(a’

H|d/"rzs ded/

= [ B0, R~ B0, S T] 6 xtder )

1<dp(w.e)’ Abg 7 Aw =2
et(e)2) ™| det() Fae)x(det(B))n(det(b) )| det(4) | T o
where a = diag(dy,- - ,d,) = be = bc’z gives the corresponding entries b; of b and ¢}

of ¢ for 1 <i < n, and the measure db and dc’ on Ag’a and A, respectively.

Notice that inside the inner integral the function
(Bg(g(bc,)7 fl,l,w’) - Bg(g(bcl), f2717w/)) H |C{L,|T(i75)
i=2

is uniformly smooth as a function of ¢ € A, for each fixed b € AY > since both

BS(g(b'), fi1u) and BS (g(bc’), fo1,ur) are by Proposition 6.5.3.



7

Therefore if we take y to be sufficiently ramified, we see that the inner integral

/A (B (9(b¢), frawr) = B (g(be), foaw)) [ T 17 x(det ()

iu/ =2
n(det(c)"2) | det(d)|2dd’ =0

So we obtain that D, (s) = 0, and therefore

01/1(37 O1,n ® X) = Ow<37 O2.n X X)
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