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ABSTRACT

She, Dongming Ph.D., Purdue University, May 2020. Local Langlands Correspon-
dence for the Twisted Exterior and Symmetric Square ε-Factors of GL(n). Major
Professor: Freydoon Shahidi.

Let F be a non-Archimedean local field. Let An(F ) be the set of equivalence

classes of irreducible admissible representations of GLn(F ), and Gn(F ) be the set of

equivalence classes of n-dimensional Frobenius semisimple Weil-Deligne representa-

tions of W ′
F . The local Langlands correspondence(LLC) establishes the reciprocity

maps Recn,F : An(F ) −→ Gn(F ) , satisfying some nice properties. An important in-

variant under this correspondence is the L- and ε-factors. This is also expected to be

true under parallel compositions with a complex analytic representations of GLn(C).

J.W. Cogdell, F. Shahidi, and T.-L. Tsai proved the equality of the symmetric and

exterior square L- and ε-factors [7] in 2017. But the twisted symmetric and exterior

square L- and ε-factor are new and very different from the untwisted case. In this pa-

per we will define the twisted symmetric square L- and γ-factors using GSpin2n+1, and

establish the equality of the corresponding L- and ε-factors. We will first reduce the

problem to the analytic stability of their γ-factors for supercuspidal representations,

then prove the supercuspidal stability by establishing general asymptotic expansions

of partial Bessel function following the ideas in [7].
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1. INTRODUCTION

The local Langlands Correspondence(LLC) for GLn has been proved by G. Laumon,

M. Rapoport, and U. Stuhler for function fields (1993, [14]), by G. Henniart (2000,

[12]) and also by M. Harris and R. Taylor (2001, [10]), and later by P. Scholze (2010,

[15]) using a different approach for p-adic fields. Let ρ be an n-dimensional Frobenius

semisimple representation of the local Weil-Deligne group W ′
F , and π = π(ρ) be its

corresponding irreducible admissible representation of GLn(F ), then one expects the

equality of their L- and ε-factors:

ε(s, ρ, ψ) = ε(s, π(ρ), ψ),

L(s, ρ) = L(s, π(ρ)),

where the local arithmetic ε-factor ε(s, ρ, ψ) is defined by P. Deligne in [9], in which

he showed that the global ε-factors admit a factorization into a product of local ones.

Here L(s, ρ) is the local Artin L-factor and ψ is a non-trivial additive character of

F . The local analytic ε(s, π(ρ), ψ) and L(s, π(ρ)) are defined by Langlands-Shahidi

method first for generic representations, then for tempered representations and finally

using Langlands classification for all irreducible admissible representations of GLn(F ).

If r is a continuous representation of GLn(C), then one can define the local Artin L-

and ε-factors L(s, r ◦ ρ, ψ) and ε(s, r ◦ ρ, ψ). Therefore a natural question is to see if

the following equalities hold:

L(s, r ◦ ρ) = L(s, π, r),

ε(s, r ◦ ρ, ψ) = ε(s, π, r, ψ),

as long as the factors on the analytic side are defined. We have a finite list of such

factors defined by Langlands-Shahidi method, first for tempered representations, then
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use Langlands classification and multiplicativity to generalize the definitions to all

irreducible admissible representations ([16], [17]). One has the following relationship

for analytic ε-, γ-, and L-factors:

ε(s, π, r, ψ) =
γ(s, π, r, ψ)L(s, π, r)

L(1− s, π̃, r)
.

On the arithmetic side, one can naturally define

γ(s, r ◦ ρ, ψ) =
ε(s, r ◦ ρ, ψ)L(1− s, r ◦ ρ∨)

L(s, r ◦ ρ)
.

So the equalities of ε- and L-factors are equivalent to the equalities of γ- and L-

factors. One method to prove equalities like this was first introduced by J.W. Cogdell,

F. Shahidi, and T.-L. Tsai [7] in 2017, for the case where r = ∧2 and Sym2. The

proof uses a globalization method and certain reductions, and relies on two main

results called the arithmetic stability and analytic stability of γ-factors respectively.

The former was introduced and proved by P. Deligne in [9], the later for the case

r = ∧2 (and by symmetry also r = Sym2) was proved in [7]. The authors used the

group H = GSp2n and its maximal self-associate Levi subgroup MH ' GLn×GL1 to

construct the analytic factors for r = ∧2, using the fact that the adjoint representation

r of LMH on LnH = Lie(LNH) decomposes as r = r1 ⊕ r2, where r1 is isomorphic to

the standard representation of GLn(F ) and r2 = ∧2. As a consequence the problem

was reduced to establishing the stability of Shahidi local coefficients, which can be

written as the Mellin transform of certain partial Bessel functions [19] under some

conditions. The partial Bessel functions defined on the relevant part of the big Bruhat

cells have nice asymptotic behaviors. Their asymptotic expansions can be written as

a sum of two parts. The first part depends only on the central character of π(ρ), and

the second part is a uniformly smooth function on certain torus, which becomes zero

after a highly ramified twist.

In this paper we will define the twisted symmetric and exterior square γ- and

L-factors of GLn(F ), and prove the following result:

Theorem 1.0.1 Let F be a non-archimedean local field, ρ be an n-dimensional Φ-

semisimple Weil-Delinge representation of W ′
F , π = π(ρ) be the corresponding irre-
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ducible admissible representation of G = GLn(F ) attached to ρ under the local Lang-

lands correspondence. Let Sym2 and ∧2 denote the symmetric and exterior square

representations of LG = GLn(C), fix a character η : F× → C×. Let ε(s, π, Sym2⊗η, ψ)

and ε(s, π,∧2 ⊗ η, ψ) be the twisted symmetric and exterior square local analytic ε-

factors, and ε(s, Sym2ρ ⊗ η, ψ), ε(s,∧2 ⊗ η, ψ) their corresponding local arithmetic

ε-factors. Then

ε(s, Sym2ρ⊗ η, ψ) = ε(s, π, Sym2 ⊗ η, ψ);

ε(s,∧2ρ⊗ η, ψ) = ε(s, π,∧2 ⊗ η, ψ);

and

L(s, Sym2ρ⊗ η) = L(s, π, Sym2 ⊗ η);

L(s,∧2ρ⊗ η) = L(s, π,∧2 ⊗ η)).

We will show the equalies of their γ- and L-factors.

First, the γ-factors γ(s, π, Sym2 ⊗ η, ψ) and γ(s, π,∧2 ⊗ η, ψ), once constructed,

will have to satisfy the symmetry

γ(s, (π × π)× η, ψ) = γ(s, π,∧2 ⊗ η, ψ)γ(s, π, Sym2 ⊗ η, ψ),

γ(s, (ρ⊗ ρ)⊗ η, ψ) = γ(s,∧2ρ⊗ η, ψ)γ(s, Sym2ρ⊗ η, ψ).

As the LLC preserves L- and ε-factors of pairs, and is compatible with twisting by

characters, it suffices to prove Theorem 1.0.1 only for the twisted symmetric square γ-

factors. We will use Langlands-Shahidi method for odd GSpin groups to produce the

twisted symmetric square γ-factors. The reason is that when n is odd, the maximal

parabolic subgroups in GSpin2n that produce the twisted exterior square γ-factors, are

not self-associate, although their unipotent radicals have relatively simpler structures.

Hence Theorem 6.2 of [19], which we will use to write the local coefficient as the Mellin

transform of partial Bessel functions, can not be applied in this situation.
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2. TWISTED SYMMETRIC SQUARE L- AND

γ-FACTORS

We will construct the twisted symmetric square γ- and L-factors of GLn using the

group H = GSpin2n+1. It is a reductive group of type Bn with derived group Spin2n+1,

which is the simply connected double cover of SO2n+1. By Proposition 2.1 of [2], the

root datum of H can be given as:

X = Ze0 ⊕ Ze1 ⊕ · · · ⊕ Zen,

X∨ = Ze∗0 ⊕ Ze∗1 ⊕ · · · ⊕ Ze∗n,

∆ = {α1 = e1 − e2, α2 = e2 − e3, · · · , αn−1 = en−1 − en, αn = en}

∆∨ = {α∨1 = e∗1 − e∗2, α∨2 = e∗2 − e∗3, · · · , α∨n−1 = e∗n−1 − e∗n, α∨n = 2e∗n − e∗0}.

Take the self-associate parabolic subgroup PH of H with Levi decomposition PH =

MHNH , where MH = Mθ, θ = ∆ − {αn}. Then MH ' GLn × GL1 (Theorem 2.7,

[1]). Let ψ be a non-trivial additive character of F , and (π, V ) be an irreducible

ψ-generic representation of GLn(F ). Let η : F× → C× be a character of F×. We

lift π to a ψ-generic representation σ of MH(F ), being trivial on the GL1-component.

Define a generic representation ση : MH(F ) ' GLn(F ) × GL1(F ) −→ GL(V ) by

ση(m(g, a))v = η−1(a)π(g)v.

Denote the L-group of H by LH, similarly we can define LMH and LNH . We have

LH ' GSp2n(C) = {h ∈ GL2n(C) : thJh = φ(h)J for some φ(h) ∈ F×}, where

J =

 J ′

−tJ ′

 , J ′ =


1

−1

. .
.

(−1)n−1

 ,
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and φ : H → C× is the similitude character of H. Therefore we have

LMH = {m = m(g, a0) =

g
a0J

′tg−1J ′−1

 : g ∈ GLn(C), a0 ∈ C×)}

' GLn(C)×GL1(C).

Let LnH = Lie(LNH). The adjoint action r : LMH −→ GL(LnH) is irreducible

(Appendix A, (Bn,ii), [17]). Then by Langlands-Shahidi method (Theorem 3.1 in

[16] or Theorem 8.3.2 in [17]), the local γ-factor γ(s, ση, r, ψ) is well-defined. ση is

unramified if both π and η are. Fix a uniformizer $ of F , then the semisimple

conjugacy class c(π) attached to π is given by c(π) = diag{χ1($), · · · , χn($)}, where

χ1, · · · , χn are n unramified characters of F×. Therefore the semisimple conjugacy

class attached to σ is given by

c(σ) = diag{χ1($), · · · , χn($), χn($)−1, · · · , χ1($)−1}.

On the other hand, c(η) = diag{1, · · · , 1, η($)−1, · · · , η($)−1}, so

c(ση) = c(σ)c(η) = diag{χ1($), · · · , χn($), η($)−1χn($)−1, · · · , η($)−1χ1($)−1}.

It follows that

L(s, ση, r) = det(1− r(c(ση)q−sF ))−1 =
∏

1≤i≤j≤n

(1− (χiχjη)($)q−sF )−1

which is what we usually referred as the unramified twisted symmetric square local

L-factor for GLn (section 1, [20]).

We can use Langlands-Shahidi method to first define the twisted symmetric square

L-factor for π being tempered, and use Langlands classification and multiplicativity to

define for any irreducible admissible representation π of GLn(F ) that L(s, π, Sym2 ⊗

η) = L(s, ση, r) and γ(s, π, Sym2 ⊗ η, ψ) = γ(s, ση, r, ψ). This is how the general

definitions of all Langlands-Shahidi γ- and L-factors are given ([16], [17]).
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3. STABLE EQUALITY

Suppose ρ is mapped to π = π(ρ) under the local Langlands correspondence. The

character η : F× −→ C×can be viewed as a character of the local Weil group WF by

WF � W ab
F ' F× → C× through the local Artin map Art−1

F : W ab
F ' F×. We still

denote it by η. On the other hand, ρ and η define a homomorphism

ρη : WF −→ LMH ' GLn(C)×GL1(C)

by ρη(w) = (ρ(w), η−1(w)). It is easy to see that r ◦ ρη ' Sym2ρ⊗ η.

Now Let χ : F× → C× be a continuous character of F×, viewed as a character of

GLn(F ) through the determinant. Similar to η we can also view χ as a character of

WF . ρ and χ determine a homomorphism

ρ⊗ χ : WF −→ GLn(C)

by w 7→ χ(w)ρ(w). Consequently we also have

(ρ⊗ χ)η : WF −→ LMH ' GLn(C)×GL1(C)

defined by (ρ⊗χ)η(w) = ((ρ⊗χ)(w), η−1(w)) = (χ(w)ρ(w), η−1(w)). We can see that

r◦(ρ⊗χ)η ' Sym2(ρ⊗χ)⊗η. Therefore on the arithmetic side we have L(s, Sym2(ρ⊗

χ)⊗ η) = L(s, r ◦ (ρ⊗ χ)η) and γ(s, Sym2(ρ⊗ χ)⊗ η, ψ) = γ(s, r ◦ (ρ⊗ χ)η, ψ). We

aim to prove the following proposition in this section.

Proposition 3.0.1 (Stable Equality) Let F be a p-adic field of characteristic zero,

η a fixed character of F×, and ρ be an n-dimensional continuous irreducible repre-

sentation of WF . Then for every sufficiently highly ramified character χ of F×, we

have

γ(s, Sym2(ρ⊗ χ)⊗ η, ψ) = γ(s, π ⊗ χ, Sym2 ⊗ η, ψ),
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where π = π(ρ) ∈ Irr(GLn(F )) is the irreducible admissible representation attached

to ρ under the local Langlands correspondence.

We will prove Proposition 3.0.1 by induction on n. It is important to point out

that the induction hypothesis will be used in the proof of Proposition 3.0.2 using a

global-to-local argument. We will first establish the proposition for a fixed irreducible

representation ρ0 of WF (Proposition 3.0.2), then use both the arithmetic and ana-

lytic stability of γ-factors (Proposition 3.0.3 & 3.0.4) on the two sides to deform the

equality for the fixed representation to obtain the result of Proposition 3.0.1 for all

n-dimensional representations ρ. We begin with the first step:

Proposition 3.0.2 (Stable Equality at a base point) Let F be a p-adic field,

fix a character η of F×. Given a character ω0 of F×, there exists an irreducible n-

dimensional representation ρ0 of WF with det ρ0 corresponding to ω0 by local class

field theory, such that for all characters χ of F×, we have

γ(s, Sym2(ρ0 ⊗ χ)⊗ η, ψ) = γ(s, π(ρ0)⊗ χ, Sym2 ⊗ η, ψ),

Proof This is essentially the same as the proof of Proposition 3.2 in [7]. Using

the globalization method provided by Lemma 3.1 in [7], we see that there exists a

number field F and an irreducible continuous n-dimensional representation Σ of the

global Weil group WF, such that if Σv = Σ|WFv
, then there is a place v0 of F such

that Fv0 = F , det Σv0 corresponds to ω0 by local class field theory. Moreover, Σv0 is

irreducible, Σv is reducible for all v <∞ with v 6= v0, and Π = π(Σ) := ⊗vπ(Σv) is a

cuspidal automorphic representation of GLn(AF). Therefore all the local components

Πv are generic. Let Ψ = ⊗vΨv be a nontrivial additive character of F\AF so that

Ψv0 = ψ, the nontrivial additive character which defines the generic character of

Un(F ). We also take τ : F×\A×F → C× to be a Hecke character with τv0 = η. Outside

a finite set of places S containing v0 and the infinite places, Πv, τv and Ψv are all

unramified.

Take ξ : F×\A×F → C× a Hecke character such that ξv0 = χ, it is easy to see that

globally we have π(Σ⊗ξ)τ = (Π⊗ξ)τ . Similar to the local case the global L-functions
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are given by L(s, Sym2(Σ⊗ ξ)⊗ τ) = L(s, r ◦ (Σ⊗ ξ)τ ) and L(s,Π⊗ ξ, Sym2 ⊗ τ) =

L(s, (Π⊗ ξ)τ , r).

Now we apply the global functional equations for the Artin L-functions in general

as given in [9], and the twisted symmetric square L-function for the automorphic

side through Langlands-Shahidi method as in [17], and do some simple calculation

on the unramified places, we will be able to match the the product of L-factors at

those places. We obtain the equality of the product of local γ-factors at those ”bad”

places. Since by [18] we know that the arithmetic and the analytic factors defined by

the Langlands-Shahidi method always agree at all Archimedean places [18], we are left

with the product of γ-factors of a finite set of places at which the local components Σv

are all reducible, and a fixed place v0. Let Σv = Σv,1⊕· · ·⊕Σv,rv be the decomposition

of Σv into irreducibles. We will prove the equality γ(s, Sym2((Σv,1 ⊕ · · · ⊕ Σv,rv) ⊗

ξv)⊗ τv,Ψv) = γ(s, Ind(Πv,1 ⊗ · · · ⊗ Πv,rv)⊗ ξv, Sym2 ⊗ τv,Ψv), by induction on rv.

Since Σv is reducible, rv ≥ 2. When rv = 2 we have

γ(s, Sym2((Σv,1 ⊕ Σv,2)⊗ ξv)⊗ τv,Ψv)

= γ(s, Sym2(Σv,1 ⊗ ξv)⊗ τv,Ψv)γ(s, Sym2(Σv,2 ⊗ ξv)⊗ τv,Ψv)

·γ(s, ((Σv,1 ⊗ ξv)⊗ (Σv,2 ⊗ ξv))⊗ τv,Ψv)

= γ(s,Πv,1 ⊗ ξv, Sym2 ⊗ τv,Ψv)γ(s,Πv,2 ⊗ ξv, Sym2 ⊗ τv,Ψv)

·γ(s, ((Πv,1 ⊗ ξv)× (Πv,2 ⊗ ξv))⊗ τv,Ψv)

= γ(s, Ind(Πv,1 ⊗ Πv,2)⊗ ξv, Sym2 ⊗ τv,Ψv).

Here the first equality is the additivity of the arithmetic γ-factors, the second equal-

ity follows from our induction hypothesis of Proposition 3.0.1 on the dimension n

of ρ, and the fact the LLC preserves the local γ-factors in pairs. The last equal-

ity is a consequence of the multiplicativity of the analytic γ-factors. Indeed, re-

call that the adjoint action r : LMH ' GLn(C) × GL1(C) −→ GL(LnH) is irre-

ducible. LMH = {m = m(g, a0) =

g
a0J

′tg−1J ′−1

 g ∈ GLn(C), a0 ∈ GL1(C)}
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and LnH = {

0 X

0 0

 : J ′tXJ ′ = X}. Let Y = XJ ′−1 then J ′tXJ ′ = X ⇔ tY = Y.

Denote n(Y ) =

0 X

0 0

 =

0 Y J ′−1

0 0

. Then an easy calculation shows that

r(m(g, a0))n(Y ) = n(a0gY
tgJ ′). Let θ1 ⊂ θ ⊂ ∆ be the subset of simple roots which

gives the Levi subgroup Mθ1 ' GLn1 × GLn2 × GL1 with n = n1 + n2, therefore

LMθ1 ' GLn1(C)×GLn2(C)×GL1(C). Write Y =

Y1 Y2

Y3 Y4

, then tY = Y is equiv-

alent to say that tY1 = Y1, Y3 = tY 2 and tY 4 = Y4. According to the inductive

construction of local γ-factors through Langlands-Shahidi method, we need to de-

compose the restriction of the adjoint action r on LMθ1 on LnH into a direct sum

of irreducible subrepresentations (Theorem 8.3.2 of [17]). In our case each of them

contributes to a local γ-factor. The restriction gives that

r(m(

g1

g2

), a0)(n(Y )) = n(a0

g1

g2

 Y1 Y2

tY 2 Y4

tg1

tg2

 J ′)
= n(

a0g1Y2
tg2J

′
n2

a0g1Y1
tg1J

′
n1

a0g2Y4
tg2J

′
n2

a0g2
tY 2

tg1J
′
n1

 ,
where J ′ =

 J ′n1

J ′n2

 with J ′ni the same type of matrix as J ′ of size ni.

Now let’s get back to our setting. For v ∈ S, non-archimedean and v 6= v0,

Πv,1 and Πv,2 are irreducible admissible representations of GLn1(Fv) and GLn2(Fv)

respectively. τv is a fixed character of F×v , and ξv is a character of F×v . Notice

that here Y2 is a free matrix of size n1 × n2, so the two diagonal blocks above give

an irreducible subrepresentation. It is isomorphic to the tensor product Πv,1 and

Πv,2, twisted by a character τv which is given by the a0-component in the above

expression. Therefore it contributes to the twisted Rankin-Selberg local γ-factor

γ(s, (Πv,1 ×Πv,2)⊗ τv,Ψv). If we take Πv,i ⊗ ξv instead of Πv,i, we obtain the twisted

Rankin-Selberg γ-factor γ(s, ((Πv,1⊗ξv)×(Πv,2⊗ξv))⊗τv,Ψv). Moreover, notice that

tY 1 = Y1 and tY4 = Y4, and the form of each of the rest blocks shows that each of them
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is isomorphic to the adjoint action of LMi on Lni, where Mi is the same type of Siegel

Levi inside GSpin2ni+1. Therefore they are both irreducible, and they contribute to

the twisted symmetric square local γ-factors γ(s,Πv,i, Sym2⊗ τv,Ψv), i = 1, 2. Again

take Πv,i⊗ξv instead of Πv,i, we obtain the two γ-factors γ(s,Πv,1⊗ξv, Sym2⊗τv,Ψv)

and γ(s,Πv,2 ⊗ ξv, Sym2 ⊗ τv,Ψv). Therefore by the multiplicativity of the local

analytic γ-factors, we obtain that

γ(s, Ind(Πv,1 ⊗ Πv,2)⊗ ξv, Sym2 ⊗ τv,Ψv)

= γ(s,Πv,1 ⊗ ξv, Sym2 ⊗ τv,Ψv)γ(s,Πv,2 ⊗ ξv, Sym2 ⊗ τv,Ψv)

·γ(s, ((Πv,1 ⊗ ξv)× (Πv,2 ⊗ ξv))⊗ τv,Ψv).

This establishes the last equality. The general case follows from the case rv = 2

by induction on rv. Hence from the global functional equations we are left with

γ(s, Sym2(ρ0 ⊗ χ)⊗ η, ψ) = γ(s, π(ρ0)⊗ χ, Sym2 ⊗ η, ψ).

To prove Proposition 3.0.1, besides Proposition 3.0.2, we also need both the arith-

metic and analytic stability for γ-factors. We will explain as follows.

On the arithmetic side, P. Deligne showed the existence and uniqueness of the local

ε-factors on page 535-547 in [9]. For V a finite dimensional complex representation

of the local Weil group, χ is sufficiently ramified character of F×, the arithmetic ε-

factor attached to V ⊗χ depends only on det(V ) and dim(V ). Apply this to the case

when V ' Sym2ρ⊗ η where ρ is an irreducible n-dimensional representation of WF ,

and η is a character of F× viewed as a character of WF as before. Also notice that

L(s, V ⊗ χ) = 1 for χ sufficiently ramified, we obtain:

Proposition 3.0.3 (Arithmetic Stability for the twisted symmetric square

γ-factors) Let ρ1 and ρ2 be two continuous n-dimensional representations of WF

with det(ρ1) = det(ρ2), η be a fixed character of F×. Then for all sufficiently ramified

characters χ of F× we have

γ(s, Sym2(ρ1 ⊗ χ)⊗ η, ψ) = γ(s, Sym2(ρ2 ⊗ χ)⊗ η, ψ).
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On the analytic side, π = π(ρ) is supercusipidal when ρ is irreducible, therefore

analogously we should have:

Proposition 3.0.4 (Supercuspidal Stability for the twisted symmetric square

γ-factors) Let π1 and π2 be two supercusipidal representations of GLn(F ) with

ωπ1 = ωπ2, and η is a fixed character of F×. Then for all sufficiently ramified char-

acters χ of F×, whose degree of ramification depends only on π1 and π2, identified as

characters of GLn(F ) through the determinant, we have

γ(s, π1 ⊗ χ, Sym2 ⊗ η, ψ) = γ(s, π2 ⊗ χ, Sym2 ⊗ η, ψ).

This is the main result of this paper and will be established in the remainder of

the text.

With Proposition 3.0.2, 3.0.3, and 3.0.4, we are ready to prove Proposition 3.0.1.

Proof (Proof of Proposition 3.0.1) We will do induction on the dimension n with

the help of a globalization method provided as on page 2061-2065 in [7].

When n = 1 we obtain that both sides equal to 1, and there is nothing to prove.

For n = 2, one could either follow [8] directly, or instead we show γ(s,∧2(ρ ⊗ χ) ⊗

η, ψ) = γ(s, π ⊗ χ,∧2 ⊗ η, ψ). These γ-factors are in general defined again through

Langlands-Shahidi method by the adjoint action of LM on Ln where M is the max-

imal Levi isomorphic to GLn × GSpin0 ' GLn × GL1 inside GSpin2n(Theorem 2.7

[1]). Notice that in this case ∧2ρ⊗ η = det(ρ)⊗ η. On the other hand, it is not hard

to see that γ(s, π,∧2 ⊗ η, ψ) = γ(s, ωπ × η, ψ), where ωπ is the central character of

π, and the right hand side is the γ-factor attached to the Rankin-Selberg L-function

L(s, ωπ × η). Since we know that det ρ ↔ ωπ under the local Langlands correspon-

dence, and tensor product of representations on the arithmetic side corresponds to

Rankin-Selberg convolutions on the analytic side, so det ρ ⊗ η ↔ ωπ × η. Moreover,

since LLC is compatible with twisting by characters, we see that the stable equality

is true for the twisted exterior square γ-factors when n = 2, and for this case we don’t

even need to assume χ is highly ramified. Now apply the equalities

γ(s, (π × π)× η, ψ) = γ(s, π,∧2 ⊗ η, ψ)γ(s, π, Sym2 ⊗ η, ψ)
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γ(s, (ρ⊗ ρ)⊗ η, ψ) = γ(s,∧2ρ⊗ η, ψ)γ(s, Sym2ρ⊗ η, ψ),

and by the fact that LLC preserves the L- and ε-factors of pairs, we see that the

proposition is true for the case when n = 2 and any character χ.

Now ρ is an irreducible n-dimensional representation of WF , let π = π(ρ) be its

corresponding supercuspidal representation of GLn(F ). Take ω0 = ωπ in Proposition

3.0.2, then there exists an irreducible n-dimensional representation ρ0 of WF and its

corresponding supercuspidal representation π0 = π(ρ0) of GLn(F ) such that ωπ =

ωπ0 , det(ρ) = det(ρ0) and γ(s, Sym2(ρ0 ⊗ χ) ⊗ η, ψ) = γ(s, π0 ⊗ χ, Sym2 ⊗ η, ψ).

Take χ sufficiently ramified such that Proposition 3.0.3 holds for the pair (ρ, ρ0), and

Proposition 3.0.4 holds for the pair (π, π0). Then for such χ we have

γ(s, Sym2(ρ⊗ χ)⊗ η, ψ) = γ(s, Sym2(ρ0 ⊗ χ)⊗ η, ψ)

= γ(s, π0 ⊗ χ, Sym2 ⊗ η, ψ) = γ(s, π ⊗ χ, Sym2 ⊗ η, ψ)

The degree of ramification now depends on (ρ, π) and (ρ0, π0), so one needs to fix

such a base point (ρ0, π0) for every character ω0. As in [7], this can be reduced to just

fix the character ω0 since twisting by unramified characters can be absorbed into the

complex parameter s of the γ-factors. This completes the proof of Proposition 3.0.1.

Next we extend our result to Weil-Deligne representations.

Corollary 3.0.1 Let ρ be a continuous n-dimensional Φ-semisimple complex repre-

sentation of the Weil-Deligne group W ′
F , and η a fixed character of F×. Then for

sufficiently ramified characters χ of F× we have

γ(s, Sym2(ρ⊗ χ)⊗ η, ψ) = γ(s, π(ρ)⊗ χ, Sym2 ⊗ η, ψ).

Proof The corollary follows from the following facts: (1) the compatibility of the

construction of Φ-semisimiple representations of W ′
F from irreducible representations

of WF and the Bernstein-Zelevinsky construction [3] of irreducible representations of

GLn(F ) from supercuspidals; (2) the local γ-factors attached to ρ only depends on
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its semisimplification(as representations of WF )(page 201, [4]); (3) LLC is compatible

with pairs of local L-factors and the twisted symmetric square L-factors on both the

arithmetic and the analytic sides, and under highly ramified twists these become 1

[12]; (4), the additivity of the arithmetic local γ-factors [7] and the multiplicativity

of the analytic local γ-factors, which was proved by an induction argument as in

Proposition 3.0.2.

Corollary 3.0.2 (General analytic stability for the twisted symmetric square

γ-factors) Let π1 and π2 be two irreducible admissible representations of GLn(F )

with ωπ1 = ωπ2, η is a fixed character of F×. Then for any sufficiently ramified

character χ of F× we have

γ(s, π1 ⊗ χ, Sym2 ⊗ η, ψ) = γ(s, π2 ⊗ χ, Sym2 ⊗ η, ψ)

Proof Let ρ1 and ρ2 be two continuous n-dimensional Φ-semisimple representa-

tions of the Weil-Deligne group W ′
F and πi = π(ρi) (i=1,2) be their correspond-

ing irreducible admissible representations of GLn(F ). By corollary 3.0.1 we have

γ(s, Sym2(ρi⊗χ)⊗ η, ψ) = γ(s, πi⊗χ, Sym2⊗ η, ψ). Then we can see that the result

would follow if we have the analogue of Proposition 3.0.3 for Weil-Deligne representa-

tions. On the other hand, we know that the arithmetic γ-factors depend only on the

semisimplification, i.e., we have γ(s, ρ, ψ) = γ(s, ρss, ψ). Since the semisimplification

does not change the determinant det ρ and dim(ρ1) = dim(ρ2) = n, so again since

the local arithmetic ε-factors depend only on det(ρ) and dim(ρ) under suitably highly

ramified twist by χ, as we mentioned earlier. So we can take χ sufficiently ramified

such that the arithmetic stability of γ-factors follows for Weil-Deligne representations.

That is, γ(s, Sym2(ρ1⊗χ)⊗η, ψ) = γ(s, Sym2(ρ2⊗χ)⊗η, ψ). Then the result follows

immediately from Corollary 3.0.1.
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4. PROOF OF THE MAIN THEOREM

In this section we will prove our main theorem(Theorem 1.0.1), by assuming the

analytic stability of the twisted symmetric square γ-factors attached to supercuspidal

representations(Proposition 3.0.4).

Before we proceed, as in [7], we make a remark on the additive character ψ of

F . Take a ∈ F× and fix a non-trivial additive character ψ of F . Let ψa denote the

character given by ψa(x) = ψ(ax). By the study of Henniart [11] and Deligne [9]

respectively, it turns out that as a function of a ∈ F×, both the analytic γ-factors

γ(s, π, r, ψa) and the corresponding arithmetic γ-factors γ(s, r ◦ ρ, ψa) vary in the

same way. Therefore it suffices to prove the result for a fixed ψ.

We will first establish the equality for the γ-factors, and then use it to obtain the

equality for L-factors. We begin with some lemmas:

Lemma 4.0.1 (Equality for monomial representations) Let E/F be a finite

Galois extension of degree n contained in a fixed algebraic closure F of F , and η be

a fixed character of F×. Denote G = Gal(E/F ). Let F ⊂ L ⊂ E be an intermediate

extension and χ be a finite-order character of H = Gal(E/L). Let ρ = IndGH(χ), then

γ(s, Sym2ρ⊗ η, ψ) = γ(s, π(ρ), Sym2 ⊗ η, ψ)

Proof This is the same globalization method as used in Lemma 3.2 in [7], one may

simply replace the ∧2 there by Sym2⊗η, change the equalities in the proof accordingly

and use Proposition 3.0.1 and 3.0.2.

Lemma 4.0.2 (Equality for Galois representations) Let ρ be an irreducible

continuous n-dimensional representation of WF with det(ρ) being a character of finite

order, and η be a fixed character of F×. Then

γ(s, Sym2ρ⊗ η, ψ) = γ(s, π(ρ), Sym2 ⊗ η, ψ).
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Proof This is also a straightforward analogue of Lemma 3.3 in [7]. A very similar

argument shows that the arithmetic and analytic twisted symmetric square local γ-

factors satisfy the same formalism, then we use additivity and multiplicativity of

the arithmetic and analytic twisted symmetric square γ-factors respectively, together

with Lemma 4.0.1 then we are done.

Now we have all the ingredients for the proof of Theorem 1.0.1.

Proof (Proof of Theorem 1.0.1) First we prove the equality of γ-factors. By

Lemma 4.0.2, we have the equality of the local twisted symmetric square γ-factors

for irreducible continuous representations of WF with finite order determinant. After

tensoring with an unramified character, we can extend the result to any irreducible

continuous n-dimensinal representation of WF . Both LLC and the formalism of the

twisted symmetric square γ-factors are compatible with twisting by characters. Since

LLC also preserves the local γ-factors for direct sums of representations on the arith-

metic side with isobaric sums of the corresponding representations on the analytic

side, we can further extend the result in Lemma 4.0.2 to arbitrary continuous n-

dimensional representations of WF .

Next, as in the proof of Corollary 3.0.1, we can extend the result to all continuous

Φ-semisimple n-dimensional representations of the Weil-Deligne group W ′
F . This com-

pletes the proof of the equality of the twisted symmetric square γ-factors in Theorem

1.0.1.

We are left with the equality of L-factors. We use a similar argument as Henniart’s

proof in [12] to show that the equality of γ-factors imply the equality of their cor-

responding L-factors. One can also see this by using the Langlands-Shahidi method

([16],[17]).

Recall that π is an irreducible representation of GLn(F ). Suppose π ↔ ρ under

LLC, where ρ = (ρ′, V,N). In general if r is any analytic representation of GLn(C) we

have that r ◦ ρ = (r ◦ ρ′, r(V ), d
dx
|x=0(r ◦ ρ)(x)) is also a Weil-Deligne representation,

where r(V ) is the space given by r and V , i.e., r : LG = GLn(C) −→ GL(r(V )).
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Notice that the monodromy operator N satisfies ρ(x)v = exp(xN)v for all v ∈ V and

x ∈ Ga. Recall that W ′
F ' WF o Ga. So N = d

dx
|x=0ρ(x), therefore in general the

monodromy operator T for r ◦ ρ is given by T = d
dx
|x=0(r ◦ ρ)(x).

Following Henniart’s terminology in [12], we say a Weil-Delinge representation ρ is

tempered if all its indecomposable constituents are of the form ρ′i⊗Sp(mi) where ρ′i is

an irreducible unitary representation of WF and Sp(mi) is a special representation of

dimension mi, corresponding to a Steinberg representation of GLmi(F ). Equivalently,

if we define the Weil-Delinge group to be WF o SL2(C), then the image of WF is

bounded in GL(V ). Since we have the exact sequence

0→ IF → WF → Z→ 0

where IF is the inertial subgroup, which is compact, it is the same as saying that

the image of the geometric Frobenius is a unitary operator on V . For this purpose

here we use another definition of the Weil-Deligne group given by WF o SL2(C).

By Theorem 2.8 of [20], the triple ρ = (ρ′, V,N) is equivalent to a representation

ϕ : WF o SL2(C) → GLn(C) such that ϕ is trivial on an open subgroup of IF ,

ϕ(Φ) is semi-simple and ϕ|SL2(C) is algebraic. By Lemma 2.9 of [23], there exists

a unique sl2-triple (e, f, h) such that e = N = glρ(IF )
n (Φ)(q−1), f = glρ(IF )

n (q), and

h = glρ(WF )
n = glρ(IF )

n (1), where q = |OF/mF | is the cardinality of the residue field and

V (q) denotes the q-eigenspace of the action of ρ(Φ) on V. Then the corresponding

representation ϕ : WFoSL2(C)→ GLn(C) is given by ϕ(w) = exp(−v(w)
2

log q·h)ρ(w).

First we assume that π is tempered and η is unitary. Then it follows that the

representation ση of MH(F ) is tempered. We show Sym2ρ ⊗ η is also tempered.

ρ = (ρ′, V,N) implies that Sym2ρ ⊗ η = (Sym2ρ′ ⊗ η, Sym2(V ), 1 ⊗ N + N ⊗ 1),

here we identify Sym2ρ as a subspace of ρ ⊗ ρ generated by ei ⊗ ej + ej ⊗ ei where

{ei}ni=1 is a basis of V . Now if ρ is given by ϕ as above, then Sym2ρ ⊗ η is given

by ϕ̃ : WF o SL2(C) → GLn(C) by ϕ̃(w) = exp(−v(w)
2

log q · H)Sym2ρ ⊗ η(w) =

exp(−v(w)
2

log q · H)(ρ ⊗ ρ)|Sym2(V )(w) · η(w), where H = 1 ⊗ h + h ⊗ 1. Notice that

if e = N, f, h form an sl2-triple, then E = 1 ⊗ N + N ⊗ 1, F = 1 ⊗ f + f ⊗ 1,

and H = 1 ⊗ h + h ⊗ 1 also form an sl2-triple. π being tempered implies that ρ is
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tempered, therefore U = ϕ(Φ) = exp(1
2

log q · h)ρ(Φ) is unitary. Since η is unitary, it

suffices to show that exp(1
2

log q · (1 ⊗ h + h ⊗ 1))(ρ ⊗ ρ)|Sym2(V )(Φ) is unitary, thus

it suffices to show that exp(1
2

log q · (1 ⊗ h + h ⊗ 1))(ρ ⊗ ρ)(Φ) is unitary. We have

exp(log
√
q(1⊗h+h⊗1))(ρ⊗ρ)(Φ) = exp(log

√
q(1⊗h))·exp(log

√
q(h⊗1))((1⊗ρ)(Φ)·

(ρ⊗1)(Φ)) = exp(1⊗log
√
q·h)(1⊗ρ(Φ))·exp(log

√
q·h⊗1)(ρ⊗1)(Φ) = (1⊗U)·(U⊗1)

is unitary since U is unitary. Therefore Sym2ρ⊗ η is tempered.

In this case we have that L(s, Sym2ρ⊗ η) has no poles for Re(s) > 0, and for the

same reason we have that L(1 − s, Sym2ρ∨ ⊗ η−1) has no poles for Re(s) < 1. By

Langlands-Shahidi method we have

γ(s, π, Sym2 ⊗ η, ψ) = ε(s, Sym2ρ⊗ η, ψ)
L(1− s, Sym2ρ∨ ⊗ η−1)

L(s, Sym2ρ⊗ η)

Moreover, γ(s, π, Sym2⊗η, ψ) is a rational function of q−s. To be precise, γ(s, π, Sym2⊗

η, ψ) = F (q−s) where F (X) = cXa P (X)
Q(X)

with P (X), Q(X) ∈ C[X] such that P (0) =

Q(0) = 1, c ∈ C and a ∈ Z. We also know that ε(s, Sym2ρ ⊗ η, ψ) is a monomial

of q−s. The local tempered L-factor is defined as L(s, π, Sym2 ⊗ η) = P (q−s). Since

L(s, Sym2ρ ⊗ η) and L(1 − s, Sym2ρ∨ ⊗ η−1) have no poles in common, similar to

Henniart’s proof in [12], we can conclude that L(s, π, Sym2 ⊗ η) = L(s, Sym2ρ⊗ η).

Now if ση is quasi-tempered, then π is quasi-tempered and η is arbitrary. Let

τ0 : M(F ) ' GLn(F ) × GL1(F ) → C× be an unramified character of M(F ) given

by τ0 = | det(·)|s1| · |s2 , where s1, s2 ∈ C. The fundamental weight attached to α is

given by α̂ = 〈ρ, α〉−1ρ where ρ is half of the sum of positive roots in NH . In our case

α = αn = en and ρ = 1
2
(
∑

1≤i<j≤n(ei + ej) +
∑n

i=1 ei) = n
2

∑n
i=1 ei, therefore we have

〈ρ, α〉 =
2(ρ, α)

(α, α)
=

2(n
2

∑n
i=1 ei, en)

(en, en)
= n

where (·, ·) is a Weyl group invariant non-degenerate bilinear form on a∗ = X∗(H)⊗Z

R. So α̂ = 〈ρ, α〉−1ρ = n−1(n
2

∑n
i=1 ei) = 1

2

∑n
i=1 ei.

For s ∈ C, define ση,s = ση ⊗ q〈sα̂,HM (·)〉 ' (σs)η where σs is the lift of the

representation π ⊗ | det(·)| s2 of GLn(F ) to MH(F ). So for v ∈ Vπ, σs(m(g, a))v =

| det(g)| s2π(g)v and ση,s(m(g, a))v = η−1(a)| det(g)| s2π(g)v. Let ηs = η · | · |s, then
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ση ⊗ τ0 ' ση−s2 ,2s1 . Now if η = η0| · |z0 where η0 is unitary and z0 ∈ C∗, take s2 = z0,

and take s1 such that π ⊗ | det(·)|s1 is tempered, then by the previous case we have

L(s, ση ⊗ τ0, r) = L(s, (σ2s1)η0 , r) = L(s, Sym2(ρ⊗ || · ||s1)⊗ η0)

= L(s+ 2s1, Sym2ρ⊗ η0) = L(s+ 2s1 + s2, Sym2ρ⊗ η).

On the other hand, we apply section 2.7 of [12], which states how the local analytic

γ-factor shifts under twists by unramified character of the maximal split quotient of

MH , to our case. The maximal split quotient T0 of MH ' GLn×GL1 is isomorphic to

GL1 ×GL1, since the derived group MH,der of MH is isomorphic to SLn. The adjoint

action r : LMH −→ GL(LnH) is irreducible, so its restriction on the torus T̂0 is given

by a character χr : T̂0 −→ C×. In our case, r is given by the symmetric square action

twisted by a character given by the GL1 part of LMH . A direct calculation shows

that χr : T̂0 −→ GL(LnH) is given by (xIn, y) 7→ x2y. Taking dual of this map we

obtain a one-parameter subgroup χ̂r : F× −→ T0 ' GL1×GL1 given by x 7→ (x2, x).

Notice that τ0 ∈ Xun(M), and MH,der ⊂ ker(HMH
), where HMH

: MH(F ) −→ aMH
=

Hom(X(MH)F ,Z)⊗R is the Harish-Chandra map. Therefore τ0 defines an unramified

character on T0(F ), say τ 0 : T0(F ) −→ C× such that τ 0 ◦ (det×id) = τ0. Since

τ0 = | det(·)|s1| · |s2 , we see that τ 0 = | · |s1 | · |s2 . Following [12], this defines an

unramified character τ 0 ◦ χ̂r : F× −→ C× given by x 7→ |x2|s1 |x|s2 = |x|2s1+s2 .

Therefore by section 2.7 of [12] we obtain γ(s+ 2s1 + s2, π, Sym2 ⊗ η, ψ) = γ(s, ση ⊗

τ0, r, ψ), therefore also L(s+ 2s1 + s2, π, Sym2⊗ η) = L(s, ση ⊗ τ0, r), by the previous

argument on the tempered case. Compare it with the arithmetic side we obtain

L(s + 2s1 + s2, π, Sym2 ⊗ η) = L(s + 2s1 + s2, Sym2ρ ⊗ η). Then by the uniqueness

of complex meromorphic functions we see that L(s, π, Sym2 ⊗ η) = L(s, Sym2ρ⊗ η).

This shows the case when ση is quasi-tempered.

In general, if ρ is an n-dimensional Φ-semisimple representation of W ′
F , then ρ =

⊕ri=1ρi, where each ρi is indecomposable and ρi ' ρ′i ⊗ Sp(mi), where each ρ′i is an

irreducible n′i-dimensional representation of WF . Let π′i = π(ρ′i)↔ ρ′i under LLC, and

let ∆i be the segment {π′i, π′i(1), · · · , π′i(mi−1)} where π′i(j) = π′i⊗| det(·)|j. Then the
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Bernstein-Zelevinsky’s classification [3] tells us that ρi ↔ Q(∆i), where Q(∆i) is the

unique irreducible subquotient of Ind
GLnimi (F )

GLni (F )m π
′
i⊗π′i(1)⊗· · ·⊗π′i(mi− 1) and π(ρ) is

the unique irreducible subquotient of Ind
GLn(F )∏

GLnimi (F )Q(∆1)⊗Q(∆2)⊗· · ·⊗Q(∆r). To

simplify the notation we useQ(∆1)×· · ·×Q(∆r) to denote this induced representation.

For each 1 ≤ i ≤ r there exists a unique βi ∈ R such that Q(∆i)(−βi) is square

integrable, thus tempered. We can order the ∆i’s such that α1 := β1 = β2 = · · · =

βm1 > α2 := βmi+1 = · · · = βm2 > · · · > αs := βms−1+1 = · · · = βr. In this order

∆i does not precede ∆j for i < j and all ∆i’s corresponding to the same αj are

not linked. For 1 ≤ j ≤ s, let πj = Q(∆mj−1+1)(−αj) × · · · × Q(∆mj)(−αj) where

m0 = 0 and ms = r. Then all the πj’s are irreducible tempered representations, and

π = π(ρ) is the unique irreducible subquotient of π1(α1) × · · · × πs(αs). This gives

the Langlands classification [13]. We denote the corresponding parabolic subgroup

by P and let σ = π1 × · · · × πs, ν = | det(·)|α1 ⊗ | det(·)|α2 ⊗ · · · ⊗ | det(·)|αs , and

π = π(ρ) = J(P, σ, ν).

On the other hand, by section 1.4* of [18] we know that J(P, σ, ν) = Ĩ(P, σ̃,−ν)

where˜denotes the contragredient, and I(P, σ, ν) denotes the unique irreducible sub-

representation of the parabolic induction IndGP (σ ⊗ ν) [5]. By Langlands-Shahidi

method we know the multiplicativity of the local analytic γ-factors attached to generic

representations which appear as subrepresentations of parabolic inductions from irre-

ducible generic representations. We also have the multiplicativity of their correspond-

ing local analytic L-factors. Using J(P, σ, ν) = Ĩ(P, σ̃,−ν) and the local functional

equation γ(s, π, Sym2⊗ η, ψ)γ(1− s, π̃, Sym2⊗ η−1, ψ) = 1, we obtain the multiplica-

tivity of γ(s, π, Sym2⊗η, ψ) and L(s, π, Sym2⊗η) with respect to their quasi-tempered

inducing data. Since we already showed the equality of L-factors for quasi-tempered

case, we finally obtain that L(s, π(ρ), Sym2⊗η) = L(s, Sym2ρ⊗η). By the symmetry

between ∧2 and Sym2 we also obtain that L(s, π(ρ),∧2 ⊗ η) = L(s,∧2ρ⊗ η).

So far we have successfully reduced the problem to the supercuspidal stability(Proposition

3.0.4), which will be established in the rest part of this paper. We will start with some

preparations in Chapter 5, in which we will obtain a formula of the local coefficients
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in our case as the Mellin transform of some partial Bessel functions, and relate the

partial Bessel functions with partial Bessel integrals. Then we will study the anal-

ysis of partial Bessel integrals in Chapter 6 and obtain their asymptotic expansion

formulas, generalizing the results in [7].



21

5. PREPARATIONS FOR SUPERCUSPIDAL STABILITY

We’ve already seen that the adjoint action r : LMH −→ GL(LnH) gives the twisted

symmetric L- and γ-factors. Moreover, since r is irreducible we have that the local

coefficient Cψ(s, π) = γ(s, π, Sym2 ⊗ η, ψ)(Chapt. 5, [14]). So it reduces the proof

of Proposition 3.0.4 to the stability of local coefficients. The local coefficients can

be written as the Mellin transform of certain partial Bessel functions under some

conditions (Theorem 6.2, [19]). In order to study the Mellin transform in our case, we

need to understand the following things at first: the structure of H = GSpin2n+1, the

structure and measure of the orbit space that the partial Bessel function is integrating

on, and certain Bruhat decompositions.

5.1 The Structure of GSpin2n+1

Let H = GSpin2n+1. We want to understand its structure and its relationship

with HD = Spin2n+1 and SO2n+1. We have an exact sequence

1 −→ Z/2Z −→ Spin2n+1
ϕ−→ SO2n+1 −→ 1

where ϕ is the covering map. We fix the standard Borel subgroup B = TU of SO2n+1,

and denote the corresponding Borel subgroup of H(resp. HD) by BH = THUH(resp.

BHD = THDUHD). We see that U ' UHD ' UH .

As in the proof of Proposition 2.4 of [1], we start by fixing a basis f1, · · · , fn of

the character lattice X∗(T ) of SO2n+1. The root datum of SO2n+1 can be given as

follows:

X∗(T ) = Zf1 ⊕ Zf2 ⊕ · · · ⊕ Zfn

∆ = {γ1 = f1 − f2, γ2 = f2 − f3, · · · , γn−1 = fn−1 − fn, γn = fn}

X∗(T ) = Zf ∗1 ⊕ Zf ∗2 ⊕ · · · ⊕ Zf ∗n
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∆∨ = {γ∨1 = f ∗1 − f ∗2 , γ∨2 = f ∗2 − f ∗3 , · · · , γ∨n−1 = f ∗n−1 − f ∗n, γ∨n = 2f ∗n}.

Then the weight lattice PSO2n+1 = {λ ∈ X∗(T ) : 〈λ, γ∨〉 ∈ Z,∀γ ∈ Φ}. If

〈Σcifi, γ∨i 〉 ∈ Z, for 1 ≤ i ≤ n − 1, this implies that ci − ci+1 ∈ Z, and if i = n, this

implies that 2cn ∈ Z. Therefore PSO2n+1 = {Σcifi : ci ∈ Z
2
, ci − cj ∈ Z}, hence equal

to the Z-span of f1 · · · , fn, f1+f2···+fn
2

. The group Spin2n+1 is the simply connected

double cover of SO2n+1, hence its character lattice is equal to the root lattice of

SO2n+1, and its cocharacter lattice is the root lattice of type Cn, so we obtain the

root datum of HD = Spin2n+1:

X∗(THD) = Zf1 ⊕ Zf2 ⊕ · · · ⊕ Zfn + Z
f1 · · ·+ fn

2

∆HD = {β1 = f1 − f2, β2 = f2 − f3, · · · , βn−1 = fn−1 − fn, βn = fn}

X∗(THD) = Zβ∨1 ⊕ Zβ∨2 ⊕ · · · ⊕ Zβ∨n

∆∨HD = {β∨1 = f ∗1 − f ∗2 , β∨2 = f ∗2 − f ∗3 , · · · , β∨n−1 = f ∗n−1 − f ∗n, β∨n = 2f ∗n}.

We can realize

H = GSpin2n+1 = (GL1 × Spin2n+1)/{(1, 1), (−1, β∨n (−1))}.

We add another character f0 so that the character lattice of GL1×Spin2n+1 is spanned

by f0, f1, f2, · · · , fn, f1+···fn
2

. Taking the ones that are trivial on (−1, β∨(−1)), we

see that the character lattice of GSpin2n+1 is spanned by e0 = f0 + f1+···fn
2

, e1 =

f1, e2 = f2, · · · , en = fn. Taking the dual basis, we have that the cocharacter lattice

of GSpin2n+1 is spanned by e∗0 = f ∗0 , e∗1 = f ∗1 +
f∗0
2
, e∗2 = f ∗2 +

f∗0
2
, · · · , e∗n = f ∗n +

f∗0
2

.

Therefore the root datum of H = GSpin2n+1 is given by:

X∗(TH) = Ze0 ⊕ Ze1 ⊕ · · · ⊕ Zen

∆H = {α1 = e1 − e2, α2 = e2 − e3, · · · , αn−1 = en−1 − en, αn = en}

X∗(TH) = Ze∗0 ⊕ Ze∗1 · · · ⊕ Ze∗n

∆∨H = {α∨1 = e∗1 − e∗2, α∨2 = e∗2 − e∗3, · · · , α∨n−1 = e∗n−1 − e∗n, α∗n = 2e∗n − e∗0}.
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It is easy to see that the three groups share the same root system, and we can identify

αi = βi = γi for all 1 ≤ i ≤ n.

Take the Siegel Levi MH = Mθ where θ = ∆−{αn}. We have MH ' GLn×GL1.

Accordingly we will have that the Siegel Levi subgroup M of SO2n+1 is isomorphic to

GLn. Let MHD be the corresponding Levi subgroup of Spin2n+1. In the rest of this

section we will realize MHD inside MH . It is crucial for the Bruhat decomposition in

section 5.3.

The covering map ϕ induces a surjective map on the two corresponding Levi

subgroups, then we have the following commutative diagram:

GLn ×GL1 ' MH M ' GLn

MHD

pr

j
ϕ

where j is the injection map and pr is the projection of MH ' GLn × GL1 onto

the GLn-factor. Note that j is induced from the surjective homomorphism of the

character groups X∗(TH) � X∗(THD) by mapping ei to fi for 1 ≤ i ≤ n − 1 and

e0 7→ f0 + f1+···+fn
2

. Since Spin2n+1 is simply connected, any element in its maxmal

torus can be uniquely written as t =
∏n

i=1 β
∨(xi). Any element in TH is of the form∏n

i=0 e
∗
i (ti). Hence if t =

∏n
i=1 β

∨
i (xi) ∈ TH , since β∨i = α∨i for all 1 ≤ i ≤ n, we have

t =
n∏
i=1

β∨i (xi) =
n∏
i=1

α∨i (xi) =
n−1∏
i=1

(e∗i − e∗i+1)(xi) · (2e∗n − e∗0)(xn)

= e∗1(x1)e∗2(
x2

x1

) · · · e∗n−1(
xn−1

xn−2

)e∗n(
x2
n

xn−1

)e∗o(x
−1
n ).

Therefore the injection j : THD ↪→ TH ' Tn × T1 is given by
∏n

i=1 β
∨
i (xi) 7→∏n

i=1 e
∗
i (ti) 7→ e∗1(x1)e∗2(x2

x1
) · · · e∗n−1(xn−1

xn−2
)e∗n( x2n

xn−1
)e∗o(x

−1
n ) for all xi ∈ Gm. On the

other hand, the covering map ϕ induces a surjective map ϕ : MHD � M . Since

Spin2n+1 and SO2n+1 share the same roots, ϕ is given by the surjective map THD � T ,

hence by the injection X∗(T ) ↪→ X∗(THD), fi 7→ fi, 1 ≤ i ≤ n, and in return by the
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surjective map X∗(THD) � X∗(T ), β∨i 7→ γ∨i , 1 ≤ i ≤ n. As a result, THD � T can

be explicitly written as

n∏
i=1

β∨i (xi) 7→
n∏
i=1

γ∨i (xi) =
n−1∏
i=1

(f ∗i − f ∗i+1)(xi) · (2f ∗n)(xn)

= f ∗1 (x1)f ∗2 (
x2

x1

) · · · f ∗n−1(
xn−1

xn−2

)f ∗n(
x2
n

xn−1

).

The kernel of this map is isomorphic to Z/2Z with generator β∨n (−1).

The above discussion shows that we have a commutative diagram on the corre-

sponding tori:

Tn × T1 ' TH Tn

THD

pr

j
ϕ

where Tn and T1 are the maximal tori of GLn and GL1 respectively. Taking the

isomorphisms on the root subgroups and Weyl groups of these groups, and using

the Bruhat decomposition, we get the commutative diagram of Levi subgroups we

discussed earlier. Moreover, from this we can also realize MHD ⊂ MH ' GLn ×GL1

by

MHD = {m(g, a) ∈MH , det(g)a2 = 1}◦,

where ◦ means taking the connected component.

5.2 The Space Z0
MH

UMH
(F )\NH(F ), its Orbit Representatives and Measure

The partial Bessel functions that we are going to define will be integrating over

this space. We proceed by first working on the space UMH
(F )\NH(F ), then define

Z0
MH

and consider its action after that.

Let H = GSpin2n+1, as an algebraic group defined over F . We fix the Borel

subgroups BH = THUH , B = TU of H and SO2n+1 respectively as in section 5.1.

Notice that the Siegel parabolic PH = MHNH of GSpin2n+1 share the same unipotent

radical NH with the corresponding parabolic subgroup P = MN of SO2n+1. Let

UMH
= UH ∩MH , and UM = U ∩N . We need to study the UMH

-action on the NH by
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conjugation, both of which lie in the derived group of H. We have UMH
' UM , and

NH ' M , and the action of UMH
on NH in H = GSpin2n+1 is compatible with the

UM -action on N in SO2n+1. Therefore UMH
\NH ' U\N . Hence it suffices to study

the UM -action on N .

We realize SO2n+1 as

SO2n+1 = {h ∈ GL2n+1 : thJ̃h = J̃},

where J̃ =


J ′

1

tJ ′

 and J ′ =


1

−1

...

(−1)n−1

 . An easy calculation

shows that the M = {m = m(g) =


g

1

J ′tg−1J ′−1

 : g ∈ GLn}. Consequently

UM = {


u

1

J ′tu−1J ′−1

 : u ∈ Un}, where Un is the unipotent radical of the

standard Borel subgroup of GLn consists of upper triangular unipotent matrices.

And the unipotent radical of P = MN is

N = {n = n(X,α) =


I α X

1 −tαJ ′

I

 : X tJ ′ + J ′tX + αtα = 0 (∗)}

A simple calculation shows that the conjugate action of UM(F ) on N(F ) is equivalent

to

X 7→ uXJ ′tuJ ′−1, α 7→ uα. · · · · · · (a)

Let Z = X tJ ′+ αtα
2

, then (∗)⇔ Z + tZ = 0. Now X = (Z − αtα
2

)tJ ′−1 = (Z − αtα
2

)J ′.

So n = n(Z, α) ∈ NH(F ) is therefore parameterized by Z ∈ Skn(F ), the set of

skew-symmetric matrices with F -coefficients, and α ∈ F n. The action (a) translates

into

Z 7→ uZtu, α 7→ uα. · · · · · · (a′),
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since if we denote X ′ = uXJ ′tuJ ′−1, α′ = uα, then the corresponding

Z ′ = X ′tJ ′ +
α′tα′

2
= (uXJ ′tuJ ′−1)tJ ′ +

uαtα′tu

2
= u(X tJ ′ +

αtα

2
)tu = uZtu.

Now it is equivalent to find the orbit representatives for the action of Un(F ) on

Skn+1(F ) because Skn(F ) × F n −→ Skn+1(F ) defined by (Z, α) 7→

 Z α

−tα 0


is a homeomorphism of p-adic manifolds. If we identify Un(F ) with its image in

Un+1(F ) by the embedding u 7→

u
1

, we also have

u
1

 Z α

−tα 0

tu
1

 = uZtu uα

−t(uα) 0

 . So it suffices to find orbit representatives of the action of Un(F ) on

Skn+1(F ) by u.Z̃ =

u
1

 Z̃
tu

1

 where u ∈ Un(F ) and Z̃ ∈ Skn+1(F ). For

our concern it suffices to find such orbit representatives for an open dense subset of

N(F ) under the p-adic topology. We will define this open dense subset inductively.

Let’s begin with a few lemmas:

Lemma 5.2.1 Let ϕ : M → N be a surjective submersion of manifolds. If we have

an open dense subset V ⊂ N , then U = ϕ−1(V ) is open dense in M.

Proof It suffices to show this locally. Thus without loss of generality, assume M '

Fm and N ' F n with m ≥ n, and ϕ = pr : Fm → F n is the projection map. Then if

V is dense in F n, we have ϕ−1(V ) = pr−1(V ) ' V ×Fm−n. So ϕ−1(V ) ' V × Fm−n '

V × Fm−n ' F n × Fm−n ' Fm 'M . Since ϕ−1(V ) ⊂M , we have ϕ−1(V ) = M .

Lemma 5.2.2 Let ϕi : Ski+1(F ) −→ Ski(F ) be defined by Z =

 Z ′ β

−tβ 0

 7→ uiZ
′tui

where ui =

Ii−1 γ

0 1

, β =

β′
bi

 with bi 6= 0, Ii−1 denotes the (i−1)× (i−1) identity

matrix and γ = −b−1
i β′. Then ϕi is a surjective submersion of p-adic manifolds.
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Proof Write Z ′ =

 Z ′′ α′

−tα′ 0

 with Z ′′ ∈ Ski−1(F ). Also notice that uiZ
′tui =Ii−1 γ

0 1

 Z ′′ α′

−tα′ 0

Ii−1 0

tγ 1

 =

Z ′′ − γtα′ + α′tγ α′

−tα′ 0

. The map

Ski−1(F )× F i−1 × F i−1 × F ∗ −→ Ski−1(F )× F i−1

(Z ′′, α′, β′, bi) 7→ (Z ′′ − γtα′ + α′tγ, α′)

is a submersion because the Jacobian of this map contains an i × i identity matrix,

due to that the coefficient of Z ′′ is 1 on both hand sides. The surjectivity is clear by

the definition of ϕi.

Lemma 5.2.3 Denote Vi = {Z ∈ Ski(F ) : zi−1,i 6= 0} and let

V = {Z ∈ Skn+1(F ) : ϕn−i ◦ ϕn−i+1 ◦ · · · ◦ ϕn(Z) ∈ Vn−i−1,∀0 ≤ i ≤ n− 2}

where ϕi : Ski+1(F ) −→ Ski(F ) as in Lemma 5.2, which is a surjective submersion.

Then V is open dense in Skn+1(F ).

Proof By the previous two lemmas, each Vi is open dense in Ski(F ). Since the

composition of surjective submersions is still a surjective submersion, the topology

of Ski(F ) ↪→ Ski+1(F ) is the induced topology. So the subset V , which is defined

inductively, is a finite intersection of open dense subsets, therefore open dense.

Based on the above discussion, we obtain
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Proposition 5.2.1 Let N(F )′ = {n =


I α (Z − αtα

2
)J ′

1 −tαJ ′

I

 :

 Z α

−tα 0

 ∈ V }.

Then N(F )′ ⊂ N(F ) is open dense. Moreover, for ∀n(Z, α) ∈ N(F )′, ∃u ∈ Un(F ),

such that u · n(Z, α) = n(uZtu, uα) where

 uZtu uα

−t(uα) 0

 =



0 a1

−a1 0

. . .

0 an

−an 0


with ai ∈ F ∗. This gives a set of orbit representatives for the adjoint action of

UM(F ) ' Un(F ) on N(F )′.

Proof First, by the previous argument, N(F )′ is open dense in N(F ) under the

p-adic topology. Now take un as in Lemma 5.2.2 and write Z̃ =

 Z α

−tα 0

. Then we

have unZ
tun = ϕn(Z̃) ∈ Vn and unα = [0, · · · , 0, an]t with an 6= 0 by the construction

of N(F )′. Now unZ
tun ∈ Vn ⊂ Skn(F ), by induction on n we end up with some

u ∈ Un(F ) as stated in the lemma.

Let R denote this orbit representatives, as we saw above it is homeomorphic

to (F ∗)n. So we have a continuous surjective map: Un(F ) × R −→ V given by

(u, (a1, · · · , an)) 7→

u
1




0 a1

−a1 0

. . .

0 an

−an 0


tu

1

. The map is clearly

continuous. It has an inverse. In fact, the inverse map is just given by the process of

finding the orbit representatives as we showed above, which is apparently continuous

since all maps arising are again just matrix multiplications. Hence to show it is a

homeomorphism, we only need to show that any two matrices of this form lie in
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different orbits. This follows easily by induction on the size of the matrix. Indeed,

suppose u =

u′ γ

1

 and let Z̃ =



0 a1

−a1 0

. . .

0 an

−an 0


=

 Z̃1 α

−tα 0

 with

α = [0, · · · , 0, an]t and Z̃1 is the principal (n−1)×(n−1) block of Z̃. Now suppose Z̃ ′

is another such matrix with entries a′i and

u
1

 Z̃
tu

1

 = Z̃ ′, and similarly we

define Z̃ ′1 and α′. This implies that uα = α′, hence u has to be the form u =

u′ 0

0 1

.

This gives that

u′
1

 Z̃1

tu′
1

 = Z̃ ′1 where Z̃1 and Z̃ ′1 are of the same form

as Z̃ and Z̃ ′ respectively, but of strictly smaller size, so by induction hypothesis, we

derive that u′ = In−1, which also means that u = I. This forces Z̃ = Z̃ ′, so ai = a′i

for 1 ≤ i ≤ n.

Moreover, the action is simple, i.e., if u ·Z = Z, then u = I. To see this, just take

Z̃ ′ = Z̃ in the above argument, and a similar process gives u = I.

Now we have a homeomorphism UM(F )×R ' N(F )′ ⊂ N(F ) with N(F )′ ⊂ N(F )

open dense. Recall that we have isomorphisms of algebraic groups UMH
' UM ,

NH ' N , given by identifying the corresponding root subgroups. So we obtain

homeomorphisms of p-adic manifolds: UMH
(F ) ' UM(F ) and NH(F ) ' N(F ). De-

note the homeomorphic image of N(F )′ in NH(F ) by NH(F )′, then it’s clear that

NH(F )′ ⊂ NH(F ) is also open dense. Moreover, the UMH
(F )-action on NH(F ) is

compatible with the UM(F )-action onN(F ). From now on we identify the p-adic man-

ifolds: UMH
(F ) ' UM(F ), NH(F ) ' N(F ), NH(F )′ ' N(F )′, and UMH

(F )\NH(F ) '

UM(F )\N(F ). We also identifyR as the orbit space representatives of UMH
(F )\NH(F ).

Now let’s discuss the invariant measure on the orbit space. Any measurable func-

tion f on NH(F ) can be viewed as a function on UMH
(F ) × R. Let du and dn the
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Haar measure on UMH
(F ) and NH(F ) respectively. Let da be the measure on R such

that the integration formula
∫
UMH (F )

∫
R
f(u · a)duda =

∫
NH(F )

f(n)dn holds. We also

need to construct an invariant measure on R. When the dimension n = 2, UMH
(F ) '

U2(F ) = {

1 x

1

 : x ∈ F} ' F , R ' {


0 a1 0

−a1 0 a2

0 −a2 0

 : a1, a2 ∈ F ∗} ' (F ∗)2, and

NH(F ) ' {n(Z, α) : Z ∈ Sk2(F ), α ∈ F 2} ' F 3. The action of U2(F ) on R is give by
1 x

0 1

1




0 a1 0

−a1 0 a2

0 −a2 0




1 0

x 1

1

 =


0 a1 a2x

−a1 0 a2

−a2x a2 0


So

F × (F ∗)2 ' UMH
(F )×R −→ NH(F ) ' F 3

is given by

(x, a1, a2) 7→ (a1, a2x, a2).

So we can write f(u · a) = f(a1, a2x, a2). Let da = da1|a2|da2, then∫
UMH (F )

∫
R

f(u · a)duda =

∫
(a1,a2)∈(F ∗)2

∫
x∈F

f(a1, a2x, a2)dxda1|a2|da2.

Let x′ = a2x, a
′
1 = a1, a

′
2 = a2, then dx′ = |a2|dx. Then the above integral

=

∫
F

∫
(F ∗)2

f(a′1, x
′, a′2)

dx′

|a′2|
da′1|a′2|da′2 =

∫
F

∫
(F ∗)2

f(a′1, x
′, a′2)dx′da′1da

′
2

=

∫
F 3

f(a′1, x
′, a′2)dx′da′1da

′
2 =

∫
NH(F )

f(n)dn.

It is straightforward to show by induction on the dimension n that the invariant

measure on the space of orbits R is given by da =
∏n

i=1 |ai|i−1dai =
∏n

i=1 |ai|id×ai.

Next, we define Z0
MH

and consider its action on UMH
(F )\NH(F ).

Lemma 5.2.4 H = GSpin2n+1. Let ZH and ZMH
denote the centers of H and MH

respectively, then ZH = {e∗0(λ) : λ ∈ GL1} and ZMH
= {e∗0(λ)e∗1(µ) · · · e∗n(µ) : λ, µ ∈

GL1}. There exists an injection: α∨ : F× ↪→ ZH\ZMH
such that α(α∨(t)) = t for

∀t ∈ F ∗.
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Proof The structure of ZH and ZMH
follows from Proposition 2.3 of [2]. For the

second part of the lemma, take α∨ : t 7→ ZH(e∗1(t) · · · e∗n(t)). Then α∨ is an injection,

since if ZH(e∗1(t) · · · e∗n(t)) = ZH , then e∗1(t) · · · e∗n(t) ∈ ZH , therefore e∗1(t) · · · e∗n(t) =

e∗0(λ) for some λ ∈ GL1, but the cocharacters are independent since they form a basis

for the cocharacter lattice, it forces e∗1(t) = e∗2(t) = · · · = e∗n(t) = e∗0(λ) = 1, this

implies t = 1. Moreover, since α = αn = en, we have α(α∨(t)) = en(e∗1(t) · · · e∗n(t)) =

en(e∗n(t)) = t.

Let Z0
MH

= {α∨(t) : t ∈ F ∗} be the image of the map α∨ we just constructed. For

z = α∨(t) =
∏n

i=1 e
∗
i (t) and n(Z, α) ∈ NH(F ) as before it’s easy to see that

α∨(t)n(Z, α)α∨(t)−1 = n(t2Z, tα).

Therefore the Z0
MH

-action on NH(F ) induces an action Z0
MH
× R −→ R, given by

(t, (a1, · · · , an)) 7→ (t2a1, · · · t2an−1, tan).

We also need to define a measure on the space of orbits R′ of Z0
MH

UMH
\NH such

that it is compatible with the measure on R we constructed. We can take an = 1 to

identify R′ with {(a′1, · · · , a′n−1, 1) : a′i ∈ F ∗}. By the measure on R we can see that

the measure on R′ is of this form da′ =
∏n−1

i=1 |a′i|kida′i with ki ∈ Z. Recall that ρ is

the half of the sum of positive roots in NH , as we computed before ρ = n
2

∑n
i=1 ei. So

for z = α∨(t), we have q〈2ρ,HMH (z)〉 = |n
∑n

i=1 ei(
∏n

i=1 e
∗(t))| = |t|n2

. Then we should

have ∫
R

f(a)da =

∫
Z0
MH

∫
R′
f(z · a′)q〈2ρ,HMH (z)〉da′dz

=

∫
F ∗×R′

f(t2a′1, · · · , t2a′n−1, t)|t|n
2−1

n−1∏
i=1

|a′i|kida′idt.

Let ai = t2a′i for 1 ≤ i ≤ n − 1, and an = t. Then da′i = |t|−2dai and dan = dt. So

the above integral

=

∫
F ∗×R′

f(a1, · · · , an−1, an)|an|n
2−1

n−1∏
i=1

|t−2ai|ki |an|−2(n−1)daidan.
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On the other hand, we should also have∫
(F ∗)n

f(a1, · · · , an)
n∏
i=1

|ai|i−1dai =

∫
R

f(a)da.

By comparing this with the above discussion we can see that it forces each ki = i−1.

This means that

da′ =
n−1∏
i=1

|a′i|i−1da′i

gives the desired measure on the space of orbits R′ of Z0
MH

UMH
(F )\NH(F ).

5.3 A Bruhat Decomposition

Theorem 6.2 of [19] allows us to write the local coefficients as the Mellin transform

of some partial Bessel functions, whose definitions rely on a Bruhat decomposition.

We will study the Bruhat decomposition in this section.

As before H = GSpin2n+1. Let wH and wθ be the long Weyl group element of H

and Mθ = MH , respectively. We denote the length of w by l(w). Then l(wH) = n2 and

l(wθ) = n(n−1)
2

, since in general l(w) is the number of positive roots that are mapped

to negatives ones by w. Their reduced decompositions can be given as follows:

wH = wαn−1(wαn−2wαn−1) · · · (wα2 · · ·wαn−1)(wα1 · · ·wαn−1)

·wαn(wαn−1wαn) · · · (wα2 · · ·wαn)(wα1 · · ·wαn)

and

wθ = wαn−1(wαn−2wαn−1) · · · (wα2 · · ·wαn−1)(wα1 · · ·wαn−1)

In general there is a canonical way to pick the Weyl group representative ẇ of

w ∈ W by a given splitting {uα : Gm → Uα}α∈Φ+ : Fix a reduced decomposition

w =
∏

αwα with each wα a simple reflection, there is a unique yα ∈ Gm such

that wα(1)w−α(yα)wα(1) normalizes the maximal torus. For each wα pick ẇα =

uα(1)u−α(yα)uα(1) and let ẇ =
∏

α ẇα. This makes each ẇα the image of

 1

−1


under the homomorphism SL2 → H attached to the sl2-triple {Xα, Hα, H−α}.
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One can compute that we should pick ẇαi = uαi(1)u−αi(−1)uαi(1) for 1 ≤ i ≤ n−1

and ẇαn = uαn(1)u−αn(−2)uαn(1). Now we pick ẇH and ẇθ as in the above process

and let ẇ0 = ẇHẇ
−1
θ . Moreover, given ψ : F → C∗ a non-trivial additive character,

recall that we can define a generic character of UH(F ), which is still denoted by ψ,

by setting ψ(u) = ψ(
∑

α∈∆ uα). We can identify u = m(u′, 1) ∈ UMH
(F ) ' Un(F )

with m(u′) ∈ UM , where u′ ∈ Un. Then a straightforward calculation shows that the

generic character ψ is compatible with the choice of the Weyl group representative

ẇ0, i.e., we have ψ(ẇ0uẇ
−1
0 ) = ψ(u).

Let NH = ẇHNHẇ
−1
H . We need to find some open dense subset of NH(F ) such

that the Bruhat decomposition ẇ−1
0 n = mn′n̄ holds for n lying in this open dense

subset, where m ∈MH , n′ ∈ NH and n̄ ∈ NH .

Observe that in this decomposition m is uniquely determined by n. Since n, n′ and

n are all in the derived group HD = Spin2n+1, so is m. Instead of doing this directly

in Spin2n+1(or in GSpin2n+1), we first do it in SO2n+1. We identify the Weyl group

elements in H = GSpin2n+1 and SO2n+1. A direct computation in SO2n+1 shows that

we should pick

ẇH =


(−1

2
)J ′

(−1)n

(−2) · tJ ′

 , ẇθ =


J ′

1

J ′

 .

Hence ẇ0 = ẇHẇ
−1
θ =


(−1

2
)I

(−1)n

(−1)n2I

. Therefore

ẇ−1
0 =


(−1)n 1

2
I

(−1)n

−2I

 =


(−1

2
)I

1

−2I

 ·


(−1)n−1I

(−1)n

I

 .
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Let w̃−1
0 =


(−1)n−1I

(−1)n

I

, then the above formula shows that

ẇ−1
0 = m(−1

2
I)w̃−1

0

To simplify our computation, let’s first compute the decomposition w̃−1
0 n = m(g)n′n

in SO2n+1. We have

w̃−1
0 n =


(−1)n−1I

(−1)n

I



I α X

1 −tαJ ′

I

 =


(−1)n−1I

(−1)n (−1)n−1tαJ ′

I α X



and if we assume m(g) =


g

1

J ′tg−1J ′−1

 with g ∈ GLn, n′ =


I β Y ′

1 −tβJ ′

I



and n̄ =


I

(−1)n2tγ 1

4tJ ′ZtJ ′ (−1)n−12tJ ′γ I

. Let γ′ = −2γ and Z ′ = 4Z, then

m(g)n′n̄ =


g

1

J ′tg−1J ′−1



I − (−1)nβtγ′ + Y ′tJ ′Z ′tJ ′ β + (−1)nY ′tJ ′γ′ Y ′

(−1)n−1tγ′ − tβZ ′tJ ′ 1− (−1)ntβγ′ −tβJ ′

tJ ′Z ′tJ ′ (−1)ntJ ′γ′ I



=


g(I − (−1)nβtγ′ + Y ′tJ ′Z ′tJ ′) g(β + (−1)nY ′tJ ′γ′) gY ′

(−1)n−1tγ′ − tβZ ′tJ ′ 1− (−1)ntβγ′ −tβJ ′

(−1)n−1J ′tg−1Z ′tJ ′ −J ′tg−1γ′ J ′tg−1J ′−1

 .
Assume that det(X) 6= 0, then the equality w̃−1

0 n = m(g)n′n̄ in our case is equiv-

alent to the following conditions:

(1) I − (−1)nβtγ′ + Y ′tJ ′Z ′tJ ′ = 0; (2) β + (−1)nY ′tJ ′γ′ = 0; (3) gY ′ = I;

(4)(−1)n−1tγ′ − tβZ ′tJ ′ = 0; (5) 1 − (−1)ntβγ′ = (−1)n; (6) (−1)n−1tαJ ′ = −tβJ ′;

(7) (−1)n−1J ′tg−1Z ′tJ ′ = I; (8) −J ′tg−1γ′ = α; (9) J ′tg−1J ′−1 = X.
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We also recall that by the definition of NH(F ), we also have

(i) X tJ ′ + J ′tX + αtα = 0⇐⇒ tJ ′X + tXJ ′ + tJ ′αtαJ ′ = 0

We need to simplify this first. Note that

(9)⇐⇒ g = J ′tX−1J ′−1; (6)⇐⇒ β = (−1)nα; (7)⇐⇒ Z ′ = tJ ′X−1J ′−1;

(8)⇐⇒ γ′ = −tJ ′X−1α; (3)⇐⇒ Y ′ = g−1 = J ′tXJ ′−1.

Next, we have (5)⇐⇒ (−1)n− tβγ′ = 1⇐⇒ tβγ′ = (−1)n− 1⇐⇒ tαtJ ′X−1α =

(−1)n − 1 We call this formula (ii).

Also we have

(4)⇐⇒ (−1)n−1γ′ − J ′tZ ′β = 0

⇐⇒ (−1)n−1(−tJ ′X−1α)− J ′(tJ ′−1tX−1J ′)(−1)nα = 0

⇐⇒ tJ ′X−1α− J ′J ′tX−1J ′α = 0⇐⇒ (tJ ′X − (−1)n−1tXJ ′)X−1α = 0.

We call the last formula (4’).

Also notice that (2) ⇐⇒ (−1)nα + (−1)n(J ′tXJ ′−1)tJ ′(−tJ ′X−1α) = 0 ⇐⇒

α + J ′tX(−1)n−1(−tJ ′X−1α) = 0 ⇐⇒ α − (−1)n−1J ′tX tJ ′X−1α = 0 ⇐⇒ α −

J ′−1tX tJ ′X−1α = 0⇐⇒ tX−1J ′α− tJ ′X−1α = 0⇐⇒ (tX−1J ′ − tJ ′X−1)α = 0⇐⇒

(tJ ′X − (−1)n−1tXJ ′)X−1α = 0⇐⇒ (4′). So (2)⇐⇒ (4′)⇐⇒ (4).

Next we show that (i)+(ii) =⇒ (4′). Notice that (i)⇐⇒ tJ ′X+tXJ ′+tJ ′αtαJ ′ =

0⇐⇒ tJ ′X + tXJ ′ + (−1)n−1J ′αtαJ ′ = 0⇐⇒ tJ ′X + tXJ ′ + J ′αtαtJ ′ = 0, multiply

this by X−1α we obtain tJ ′α+ tXJ ′X−1α+J ′α((−1)n−1) = 0. When n is even, this

is equal to tJ ′α + tXJ ′X−1α = 0, on the other hand in this case we have (4′) ⇐⇒

(tJ ′X+tXJ ′)X−1α = 0⇐⇒ tJ ′α+tXJ ′X−1α = 0; When n is odd, this is saying that

tJ ′α+tXJ ′X−1α−2J ′α = 0, but since tJ ′ = (−1)n−1J ′ = J ′ in this case, we have that

this is the same as saying tJ ′α− tXJ ′X−1α = 0, while (4′)⇐⇒ (tJ ′X− tXJ ′)X−1α =

0 ⇐⇒ tJ ′α − tXJ ′X−1α = 0. Hence in both cases we have that (i) + (ii) =⇒ (4′),

and this is the same as saying that (5) + (i)⇐⇒ (i) + (ii) =⇒ (2)&(4). So we obtain

that (1) + (2) + · · ·+ (9) + (i)⇐⇒ (i) + (ii) + (1).

We are left with (1). We have

(1)⇐⇒ I − α(−tαtX−1J ′) + (tJ ′tXJ ′−1)
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·tJ ′(tJ ′X−1J ′−1)tJ ′ = 0⇐⇒ I + αtαtX−1J ′ + J ′tXJ ′X−1 = 0,

we call the last formula (iii).

We show that if we pick n ∈ NH(F )′, the open dense subset of NH(F ) constructed

in the last section, then both (ii) and (iii) are implied by (i).

If we let Y = X tJ ′ and Z = X tJ ′ + αtα
2

= Y + αtα
2

as in the previous section

in which we find orbit representatives for UMH
(F )\NH(F ), then there exists u ∈

Un(F ) such that uZtu =



0 a1

−a1 0

. . .

0 an−1

−an−1 0


, we denote this matrix by

Z(a1, · · · , an−1). And we also have uα = [0, · · · , 0, an]t, hence

uY tu =



0 a1

−a1 0

. . .

0 an−1

−an−1 −a2n
2


,

we denote this matrix by Y (a1, · · · , an). Then we see that (i) ⇐⇒ Y + tY + αtα =

0⇐⇒ u(Y + tY + αtα)tu = 0⇐⇒ uY tu+ t(uY tu) + (uα)t(uα) = 0;

(ii) ⇐⇒ tαY −1α = −1 − (−1)n−1 ⇐⇒ t(uα)(uY tu)−1(uα) = −1 − (−1)n−1;

(iii)⇐⇒ I+(−1)n−1αtαtY −1+tY Y −1 = 0⇐⇒ u(I+(−1)n−1αtαtY −1+tY Y −1)u−1 =

0⇐⇒ I + (−1)n−1(uα)t(uα)t(uY tu)−1 + t(uY tu)(uY tu)−1 = 0.

Therefore, without loss of generality, we can assume that Y = Y (a1, · · · , an) and

α = [0, · · · , 0, an]t with all ai 6= 0 in this proof. We work on the cases when the size

of the matrix n is even or odd separately.

Case 1: When n is even;

Now we have that tJ ′ = J ′−1 = (−1)n−1J ′ = −J ′. So (ii)⇐⇒ tαY −1α = 0, notice

that α is a vector with only the last entry non-zero, so only the last entry in Y −1

contributes. Let Y ∗i,j denote the (i, j)-th entry of the adjoint matrix of Y . Then we
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see that tαY −1α = a2
n(detY −1)Y ∗n,n. But since n is even and therfore the (n, n)-th

minor of Y is an (n− 1)× (n− 1) skew-symmetric matrix of odd size, thus Y ∗n,n = 0,

hence tαY −1α = 0; And we also have that (iii) ⇐⇒ I − αtαtY −1 + tY Y −1 = 0 ⇐⇒

I−Y −1αtα+tY −1Y = 0. But (i)⇐⇒ Y +tY +αtα = 0⇐⇒ tY −1Y +I+tY −1αtα = 0,

so if we replace tY −1Y by −I− tY −1αtα in the last formula for (iii) right above, then

we have (iii)⇐⇒ (Y −1 + tY −1)αtα = 0. But now αtα is a matrix with only the last

entry non-zero and equals a2
n, so only the last column of Y −1+tY

−1
contribute. For the

same reason we have that Y ∗n,n = tY ∗n,n = 0. On the other hand, for the matrix Y , we

see that Yi,j = −Yj,i for all (i, j) 6= (n, n), so we see that tY ∗i,n = (−1)n−1Y ∗i,n = −Y ∗i,n
for all 1 ≤ i ≤ (n− 1). This implies that (Y −1 + tY −1)αtα = 0.

Case 2: When n is odd.

Now (ii) ⇐⇒ tαY −1α = −2. We see that Y ∗n,n = detYn−1 where Yn−1 is the

principal (n − 1)-th minor of Y , therefore one can easily prove by induction that

detYn−1 =
∏

k odd,k 6=n a
2
k but on the other hand detY = −1

2

∏
k odd a

2
k, which can also

be proved by induction on the size. Therefore we have tαY −1α = (detY )−1Y ∗n,na
2
n =∏

k odd,k 6=n a
2
k

− 1
2

∏
k odd a

2
k

· a2
n = −2. We also have (iii) ⇐⇒ I + αtαtY −1 + tY Y −1 = 0 ⇐⇒

I +Y −1αtα+ tY −1Y = 0. Again by (i) we have tY −1Y = −I− tY −1αtα, so (iii)⇐⇒

(Y − tY −1)αtα = 0. But in this case Y ∗n,n = tY ∗n,n =
∏

k odd,k 6=n a
2
k, and tY ∗i,n =

(−1)n−1Y ∗i,n = Y ∗i,n, therefore it shows that (Y − tY −1)αtα = 0.

From the above argument we see that in both cases if we pick n = n(X,α) ∈

NH(F )′, with detX 6= 0 then (i)⇐⇒ (i) + (ii) + (iii)⇐⇒ (i) + (1) + · · ·+ (9).

We have showed that for n = n(X,α) ∈ NH(F ), assume det(X) 6= 0, then

w̃−1
0 n(X,α) = m(J ′tY −1)n′n. Since ẇ−1

0 = m(−1
2
I)w̃−1

0 , we see that

ẇ−1
0 n = m(−1

2
I)m(J ′tY −1)n′n̄ = m(−1

2
J ′tY −1)n′n

holds for n ∈ NH(F )′, which already implies that detX 6= 0 since X = Y tJ ′−1 = Y J ′,

and det(Y ) = det(Y (a1, · · · , an)) 6= 0. This gives the decomposition in SO2n+1.

The decomposition ẇ−1
0 n = mn′n̄ in SO2n+1 and Spin2n+1 differ only by the m

part. Recall that at the end of section 5.1 we have MHD = {m(g, a) ∈ MH '
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GLn×GL1 : det(g)a2 = 1}◦, and the covering map ϕ : MHD →M ' GLn is given by

m(g, a) 7→ m(g) 7→ g. So for n ∈ NH(F )′, we see that ẇ−1
0 n = m(g, a(g))n′n, where

g = (−1
2
)J ′tY −1, and a(g) is uniquely determined by the relation det(g) · a(g)2 = 1,

since from the realization of MHD in MH the F -points of MHD is given by a pair

(g, a) ∈ GLn(F )×GL1(F ) such that det(g) = a−2 is a square in F× and this a is the

unique square root of det(g)−1 that lies in the identity component of the F -points of

the variety {(g, a) ∈ GLn ×GL1 : det(g)a2 = 1}.

If Y = Y (a1 · · · , an), we can see that det(g) = det((−1
2
)J ′tY (a1, · · · , an)−1) =

(− 1
2

)n∏
k odd a

2
k

if n is even, and (−1
2
)n · −2∏

k odd a
2
k

=
(− 1

2
)n−1∏

k odd a
2
k

if n is odd. Hence a(g) =

( 1
2

)
n
2∏

k odd ak
if n is even, and

( 1
2

)
n−1
2∏

k odd ak
if n is odd. So we obtain the desired Bruhat

decomposition in Spin2n+1 and therefore in H = GSpin2n+1.

5.4 Local Coefficients and Partial Bessel Functions

Now we are ready to apply Theoerem 6.2 of [19] to express the local coefficients

as the Mellin transform of partial Bessel functions in our setting.

Recall that we have an injection α∨ : F ∗ ↪→ ZH\ZMH
and α(α∨(t)) = t for t ∈ F ∗

(Lemma 5.5). By the last section we also obtained that the decomposition ẇ−1
0 n =

mn′n̄ holds for n ∈ NH(F )′ ⊂ NH(F ). Moreover, by the work of R. Sundaravaradhan

in [22], we have that except for a set of measure zero on NH(F ), UMH ,n = U ′MH ,m
,

where UMH ,n = {u ∈ UMH
: unu−1 = n}, and U ′MH ,m

= {u ∈ UMH
: mum−1 ∈

UMH
& χ(mum−1) = χ(u)}. The above two properties imply that the assumptions

for Theorem 6.2 in [19] are satisfied.

Let π be a ψ-generic representation of GLn(F ) and η a character of F×, and λ

be a Whittaker functional attached to π. Since UMH
' Un, ψ can be viewed as a

character of UMH
. The representation ση of MH(F ) is also generic. Since ψ(u)λ(v) =

λ(π(u)v) = λ(ση(m(u, 1)v)), λ can also be viewed as a Whittaker functional of ση.

Let a∗H,C = a∗H ⊗R C, where a∗H = X(MH)F ⊗Z R, and aH = Hom(X(MH)F ,R)

is the real Lie algebra. The Harish-Chandra map HMH
: MH −→ aH is defined
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by q〈χ,HMH (m)〉 = |χ(m)|F for all χ ∈ X(MH)F . Given µ ∈ a∗H,C, let I(µ, ση) =

IndHMHNH
((ση ⊗ q〈µ,HMH (·)) ⊗ 1NH ) be the induced representation, and denotes its

space by V (µ, ση). As before let ση,s denote the representation ση⊗q〈sα̂,HMH (·)〉, where

α̂ = 〈ρ, α〉−1ρ =
(α, α)

2(ρ, α)
ρ =

(en, en)

2 · n
2
(
∑n

i=1 ei, en)
· (n

2

n∑
i=1

ei) =
1

2

n∑
i=1

ei.

For s ∈ C, define I(s, ση) = I(sα̂, ση) and let V (s, ση) be its space. The local

standard intertwining operator A(s, ση) : I(s, ση) −→ I(−s, w0(ση)) is defined by

A(s.ση)f(h) =
∫
NH

f(ẇ−1
0 nh)dn for ∀h ∈ H and f ∈ V (s, ση). We identify λ as a

Whittaker functional for ση, and denote λψ(s, ση) the Whittaker functional for I(s, ση)

given by λ, defined as λψ(s, ση)(f) =
∫
NH
〈f(ẇ−1

0 n), λ〉 · ψ−1(n)dn. Then since ψ is

compatible with ẇ0, λψ(−s, w0(ση)) ◦ A(s, ση) defines another Whittaker functional

for I(s, ση). So by uniqueness of the local Whittaker functionals we obtain that the

local coefficient Cψ(s, ση) is defined by λψ(s, ση) = Cψ(s, ση)·λψ(−s, w0(ση))◦A(s, ση).

As in [19] we will choose N0 ⊂ NH(F ) to be open compact so that α∨(t)N0α
∨(t)−1

depends only on |t| for all t ∈ F ∗. Define ϕκ(X) = 1 if |Xi,j| ≤ q(i+j−1)κ , and 0

otherwise.

From the calculation of the decomposition ẇ−1
0 n = mn′n̄ in the last section we

see that if n = n(X,α) with det(X) 6= 0, then n̄ =


I

−t(J ′X−1α) 1

X−1 X−1α I

, we

denote


I

−t(J ′X̃α) 1

X̃ X̃α I

 by n̄(X̃, α). Let

N0,κ = {n̄ = n̄(X̃, α) : ϕκ(−
1

8
$2(d+f) · tX̃J ′−1) = 1},

where d is the conductor of χ and f is the conductor of w−1
π (w0wπ). And let ϕN0,κ

be the characteristic function of N0,κ.
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Let n ∈ NH(F )′ with w−1
0 n = mn′n̄, and let z ∈ Z0

M = {α∨(t) : t ∈ F ∗}. As in

(6.21) of [19], the partial Bessel function on MH(F )× Z0
MH

is defined by

jση,s,κ(m, z) =

∫
UMH

Wση,s,v(mu
−1)ϕN0,κ

(zu−1n̄uz−1)ψ−1(u)du

where Wση,s,v ∈ W (ση,s) is a Whittaker model attached to the ση,s, with v a fixed

vector in the represenattion space. For partial Bessel functions for quasi-split groups,

we refer the reader to [6].

In our case m = m(g, a(g)) with det(g)a(g)2 = 1, and u = m(u′, 1) for u′ ∈ Un.

Hence Wση,s,v(m(g, a(g))) = λ(ση,s(m(g, a(g)))v) = η(a(g))−1| det(g)| s2λ(π(g)v) =

η(a(g))−1| det(g)| s2Wπ,v(g). Moreover, let z = α∨($d+fuαn(ẇ0n̄ẇ
−1
0 )), and define for

g ∈ GLn(F ),

jπ,η,ẇθ,κ(g) = jση,s,κ(m,α
∨($d+fuαn(ẇ0n̄ẇ

−1
0 ))),

where m = m(g, a(g)). This defines the partial Bessel function on GLn(F ) in our case.

Now apply Theorem 6.2 in [19], we obtain

Proposition 5.4.1 Let π be an irreducible admissible ψ-generic representation of

GLn(F ), lifted as a ψ-generic representation σ of MH(F ) ' GLn(F ) × GL1(F ) by

pull-back through the projection on the GLn-factor. η : F× → C× is a fixed continuous

character. Define the representation ση as before. Suppose that ωση(w0ω
−1
ση ) is ramified

as a character of F×. Then for all sufficiently large κ we have

Cψ(s, ση)
−1 = γ(2〈α̂, α∨〉)s, ωση(w0w

−1
ση ) ◦ α∨, ψ)−1

·
∫
Z0
MH

UMH \NH
jπ,η,ẇθ,κ(g)ω−1

ση,s(α
∨(un))(w0ωση,s)(α

∨(un))q〈sα̂+ρ,HM (m)〉dṅ

where off a set of measure zero, the decomposition ẇ−1
0 n = mn′n̄ holds as in the

previous section. Here un = uαn(ẇ0n̄ẇ
−1
0 ) ∈ Uα, γ(2〈α̂, α∨〉s, ωση(w0ω

−1
ση ) ◦ α∨, ψ) is

an abelian γ-factor depending only on ωπ and η.

Let’s simplify this formula. First recall that in our case α = en, ρ is the half of the

sum of roots in NH . The roots in NH are ei + ej(1 ≤ i < j ≤ n) and ei(1 ≤ i ≤ n),

so ρ = 1
2
(
∑

1≤i<j≤n(ei + ej) +
∑n

i=1 ei) = n
2

∑n
i=1 ei.
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We have

〈ρ, α〉 =
2(ρ, α)

(α, α)
=

2(n
2

∑n
i=1 ei, en)

(en, en)
= n.

So α̂ = 〈ρ, α〉−1ρ = n−1(n
2

∑n
i=1 ei) = 1

2

∑n
i=1 ei. Since α∨ =

∑n
i=1 e

∗
i , so we have for

∀t ∈ F ∗, t〈α̂,α
∨〉 = α̂(α∨(t)) = 1

2

∑n
i=1 ei(

∏n
i=1 e

∗
i (t)) = tn/2. Therefore 〈α̂, α∨〉 = n

2
.

This implies that q〈sα̂,HMH (m) = q〈sα̂,HMH (m(g,a(g))) = | det(g)|s/2. Then ωση,s(m(g, a(g)))

= ωση(m(g, a(g)))| det g|s/2 = η−1(a(g))| det(g)| s2ωπ(g).

Secondly, since we have w0 = wH · wθ, where θ = ∆ − {αn} = ∆ − {α}, and

wH : ei 7→ −ei, wθ : ei 7→ en+1−i, we obtain w−1
0 ·

∏n
i=1 e

∗
i (t) ·w0 =

∏n
i=1(−e∗n+1−i(t)) =∏n

i=1(−e∗i (t)). This implies that

ωση(w0ω
−1
ση )(α∨(t)) = ωση(

n∏
i=1

e∗i (t)) · ω−1
ση (w−1

0 ·
n∏
i=1

e∗i (t) · w0) =

ωση(
n∏
i=1

e∗i (t)) · ω−1
ση (

n∏
i=1

(−e∗i (t))) = ωση(
n∏
i=1

e∗i (t)) · ωση(
n∏
i=1

e∗i (t)) = ω2
ση(α

∨(t)) = ω2
π(t),

since η is trivial on the GLn-component of MH . So ωπ(w0ω
−1
π ) ◦ α∨ = ω2

π.

Similarly

ω−1
ση,s(w0ωση,s)(α

∨(t)) = ω−1
ση,s(

n∏
i=1

e∗i (t)) · ωσηs (
n∏
i=1

(−e∗i (t))) = ω−2
σηs

(
n∏
i=1

e∗i (t))

= ω−2
π (α∨(t)) · |tn|−(s/2)·2· = ω−2

π (t) · |t|−ns.

So ω−1
ση,s(w0ωση,s) ◦ α∨ = ω−2

π (·)| · |−ns.

Finally

q〈sα̂+ρ,HMH (m)〉 = |(s
2

n∑
i=1

ei +
n

2

n∑
i=1

ei)(m(g, a(g)))| =

|(s+ n)

2

n∑
i=1

ei(m(g, a(g))))| = | det(g)|
s+n
2 .

From the above discussion we obtain a simplified version of the local coefficient

formula in our case, namely

Proposition 5.4.2 Let π be an irreducible admissible ψ-generic representation of

GLn(F ), lifted as a ψ-generic representation σ of MH(F ) ' GLn(F ) × GL1(F ) by
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pull-back through the projection on the GLn-factor. η : F× → C× is a fixed continuous

character. Define the representation ση as before. Suppose that ωση(w0ω
−1
ση ) is ramified

as a character of F×. Then for all sufficiently large κ we have

Cψ(s, ση)
−1 = γ(ns, ω2

π, ψ)−1

·
∫
Z0
MH

UMH \NH
jπ,η,ẇθ,κ(g)ω−2

π (un)|un|−ns| det(g)|
s+n
2 dṅ.

where off a set of measure zero, the decomposition ẇ−1
0 n = mn′n̄ holds as in the

previous section. Here un = uαn(ẇ0n̄ẇ
−1
0 ) ∈ Uαn = Uα. And γ(ns, ω2

π, ψ) is an

abelian γ-factor depending only on ωπ.

In the proof of stability, we also need an integral formula for the local coefficient

Cψ(s, (ση ⊗ χ))−1 for a sufficiently ramified character χ of F×, viewed as a character

of MH(F ) by χ(m(g, a)) = χ(det(g)). Therefore it is important to be able to choose

κ or equivalently, N0 ⊂ NH(F ) to be independent of χ.

To make this work, as in the proof of Theorem 6.2 in [19] and the corresponding

discussion in [7], if we fix an irreducible generic representation π′ of G such that ωσ′η

is ramified, where σ′ is the lift of π′, σ′η is defined in the same way as ση. Then N0 is

chosen to satisfy (1) ∃f ∈ V (s, σ′η) such that f is supported in PHN0; (2) N0 is large

enough such that α∨(t)N0α
∨(t)−1 depends only on |t| for all t ∈ F×. Note that here

(2) does not depend on π′. For (1), as in the proof of Theorem 6.2 in [19], there exist

f ∈ V (s, σ′η) s.t. f is compactly supported modulo PH . Fix such an f and choose N0

sufficiently large such that it contains the support of f , then f is supported in PHN0.

Now let’s get back to our case. We fix a character χ0 of F× such that ωσηχ
n
0 =

η−1ωπχ
n
0 = ωση⊗χ0 is ramified. Then we take κ0 such that both conditions (1) and

(2) above are satisfied for N0,κ0 and fχ0 ∈ V (s, ση⊗χ0). Also note that if κ ≥ κ0, we

have N0,κ0 ⊂ N0,κ. Therefore (1) and (2) hold for ση ⊗ χ0 and all κ ≥ κ0. Let χ be

any other character of F× such that ωσηχ
n is ramified. Then as discussed above we

can choose fχ ∈ V (s, ση ⊗ χ) which is supported in PHN0,χ for some open compact

N0,χ ⊂ NH . Now if N0,χ ⊂ N0,χ0 , then Proposition 5.4.2 holds for ση ⊗ χ and all
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κ ≥ κ0. While if not, note that α∨(t) =
∏n

i=1 e
∗
i (t) ∈ MH , then R(α∨(t)−1)f will

be supported in PH(α∨(t)−1N0,χα
∨(t)). To see this, note that for n̄(X̃, α) ∈ NH(F ),

we have α∨(t)−1n̄(X̃, α)α∨(t) = n̄(t2X̃, tα). Therefore if we take |t| sufficiently small,

we will have α∨(t)−1N0,χα
∨(t) ⊂ N0,κ0 . So if we take such a t and replace f with

f ′χ = R(α∨(t)−1)fχ, we see that f ′χ will be supported in PHN0,κ0 and Proposition 5.4.2

holds for ση ⊗ χ and for all κ ≥ κ0. Now we obtain a stronger version of Proposition

5.4.2.

Proposition 5.4.3 Let π be an irreducible admissible ψ-generic representation of

GLn(F ), lifted as a ψ-generic representation σ of MH(F ) ' GLn(F ) × GL1(F ) by

pull-back through the projection on the GLn-factor. η : F× → C× is a fixed continuous

character. Define the representation ση as before. Suppose that ωση(w0ω
−1
ση ) is ramified

as a character of F×. Then there exist a κ0 such that for all κ ≥ κ0 and all χ such

that ωσηχ
n is ramified, we have

Cψ(s, ση ⊗ χ)−1 = γ(ns, (wπχ)2n, ψ)−1

∫
Z0
MH

UMH \NH
jπ⊗χ,η,ẇθ,κ(g)(ωπχ

n)−2(un)

·|un|−ns| det(g)|
s+n
2 dṅ.

where off a set of measure zero, the decomposition ẇ−1
0 n = mn′n̄ holds as in the

previous section. Here un = uαn(ẇ0n̄ẇ
−1
0 ) ∈ Uαn = Uα. And γ(ns, (ωπχ)2n, ψ) is an

abelian γ-factor depending only on ωπ and χ.

Next, we use our orbit space representatives and measure to further simplify the

integral in the local coefficient formula. Recall that we have the decomposition

ẇ−1
0 n = mn′n̄ holds for n lying in the open dense subset NH(F )′ of NH(F ). Now

for n = n(X,α), let Y = X tJ ′ = (Z − αtα
2

)J ′tJ ′ = Z − αtα
2

. Then by section 5.2 on

orbit space and measure, if n ∈ NH(F )′, then Z can be taken as Z(a1, · · · , an−1) and

α can be taken as [0, · · · , 0, an]t, consequently Y can be given as Y (a1, · · · , an)(see

section 5.3). Also recall that the calculation of the decomposition w−1
0 n = mn′n̄

gives m = m(g, a(g)) where g = (−1
2
)J ′tY −1 and a(g) =

( 1
2

)
n
2∏

k odd ak
if n is even and

a(g) =
( 1
2

)
n−1
2∏

k odd ak
if n is odd.
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We have seen that in the decomposition ẇ−1
0 n = mn′n̄, if n = n(X,α), then the

corresponding n̄ = n̄(X−1, α) =


I

−t(J ′X−1α) 1

X−1 X−1α I

 . So

ẇ0n̄ẇ
−1
0 =


(−1

2
)I

(−1)n

(−1)n2I




I

−t(J ′X−1α) 1

X−1 X−1α I



·


(−1)n 1

2
I

(−1)n

−2I

 =


I (−1)n−1 1

2
X−1α (−1)n−1 1

4
X−1

1 −1
2

t
(J ′X−1α)′

I


So un = uαn(ẇ0n̄ẇ

−1
0 ) is the last entry of (−1)n−1 1

2
X−1α. Since only the last entry

of α is non-zero, un = (−1)n−1 1
2
(detX)−1X∗n,nan, where X∗n,n is the (n, n)-th entry of

the adjoint matrix of X. Since X = Y tJ ′−1 = Y J ′, Y is the matrix given as above,

it is not hard to see that X∗n,n = (−1)n−1
∏n−1

i=1 ai. Therefore we have that un =

1
2
(detX)−1

∏n
i=1 ai. Also notice that X = Y J ′ and det J ′ = 1, so det(X) = det(Y ).

Hence un = 1
2
(detY )−1

∏n
i=1 ai.

Next, we work on zu−1n̄uz−1. Let z0 = $d+fun = 1
2
$d+f (detY )−1

∏n
i=1 ai, let

t = (detY )−1
∏n

i=1 ai ∈ F×, then z0 = 1
2
$d+f t. Let u = m(u0, 1) and z = α∨(z0) =

m(z0I, 1) = with u0 ∈ Un(F ) ⊂ GLn(F ). Since Y = X tJ ′, so X−1 =t J ′Y −1,

therefore n̄(X−1, α) = n̄(tJ ′Y −1, α) =


I

−tαtY −1 1

tJ ′Y −1 tJ ′Y −1α I

. Then a direct cal-

culation shows that u−1n̄(tJ ′Y −1, α)u = n̄(tJ
′tu0Y

−1u0, u
−1
0 α). This implies that

zu−1n̄(tJ ′Y −1, α)uz−1 = n̄(z−2
0 · tJ ′tu0Y

−1u0, z0u
−1
0 α).

We have z0 = 1
2
$d+f t, with t = (detY )−1

∏n
i=1 ai ∈ F×. Let Y ′ = t2Y and

α′ = tα. Recall that N0,κ = {n̄ = n̄(X̃, α) : ϕκ(−1
8
$2(d+f) · tX̃J ′−1) = 1}. Therefore

ϕNo,κ
(zu−1n̄uz−1) = ϕκ(−

1

8
$2(d+f) · (1

2
$d+f t)−2 · t(tJ ′tu0Y

−1u0)J ′−1)

= ϕκ(−
1

2
t−2(tu0

tY −1u0J
′)J ′−1) = ϕκ(−

1

2
t−2 · tu0

tY −1u0) = ϕκ(−
1

2
tu0

tY ′−1u0).
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We pick the long Weyl group representative of G = GLn by ẇG = J ′, then

jπ,η,ẇθ,κ(g) = jπ,η,ẇθ,κ(−
1

2
ẇG

tY −1)

=

∫
UMH

Wση,s,v(m(−1

2
ẇG

tY −1, a(g))u)ϕN0,κ
(zu−1n̄uz−1)ψ−1(u)du

=

∫
Un

η(a(g))−1| det(g)|
s
2Wπ,v(−

1

2
ẇG

tY −1u0)ϕκ(−
1

2
tu0

tY ′−1u0)ψ−1(u0)du0

= η(a(g))−1| det(g)|
s
2

∫
Un

Wπ,v(gu)ϕκ(
tuẇ−1

G g′u)ψ−1(u)du.

where g′ = −1
2
ẇG

tY ′−1(so g = t2g′), Un is the upper triangular unipotent matrices of

size n in GLn. We also used the fact that Wπ,v(g) = λ(π(g)v), therefore

Wση,s,v(m(g, a(g))) = λ(ση,s(m(g, a(g))))

= η(a(g))−1| det(g)|
s
2λ(π(g)v) = η(a(g))−1| det(g)|

s
2Wπ,v(g).

Moreover, substitute un = 1
2
(detY )−1

∏n
i=1 ai into the local coefficient formula,

and use the orbit space measure we constructed earlier. After some simplifications,

we obtain

Proposition 5.4.4 Let π be an irreducible admissible ψ-generic representation of

GLn, lifted as a ψ-generic representation σ of MH(F ) ' GLn(F ) × GL1(F ) by pull-

back through the projection on the GLn-factor. η : F× → C× is a fixed continuous

character. Define the representation ση as before. Suppose that ωση(w0ω
−1
ση ) is ramified

as a character of F×. Then for all sufficiently large κ, we have

Cψ(s, ση)
−1 = γ(ns, ω2

π, ψ)−1

∫
F×\R

jπ,η,ẇθ,κ(−
1

2
ẇG

tY −1)

·ωπ(4 det(Y )2

n∏
i=1

a−2
i )|1

2
|
n(n−s)

2 | det(Y )|
2ns−s−n

2

n∏
i=1

|ai|i−1−nsdai

In addition, there exists a constant κ0 such that for all κ ≥ κ0 and all χ such that

η−1ωπχ
n is ramified, we have

Cψ(s, ση ⊗ χ)−1 = γ(ns, (ωπχ
n)2, ψ)−1

∫
F×\R

jπ,η,ẇθ,κ(−
1

2
ẇG

tY −1)

·(ωπχn)(4 det(Y )2

n∏
i=1

a−2
i )|1

2
|
n(n−s)

2 | det(Y )|
2ns−s−n

2

n∏
i=1

|ai|i−1−nsdai.
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5.4.1 Partial Bessel Integrals

For the proof of the stability of local coefficients, it is important to relate partial

Bessel functions with partial Bessel integrals, which have nice asymptotic expansions

under some conditions.

Let G be a split reductive group over F , and G = G(F ). Fix a Borel subgroup

B = AU and let B, A, U denote the groups of their F -points respectively. Suppose

Θ : G −→ G is an involution defined over F , i.e., Θ2 = 1 and Θ 6= 1. Let π be a ψ-

generic supercuspidal representation of G with its central character ωπ. Let f ∈M(π)

be a matrix coefficient of π. Then f ∈ C∞c (G;ωπ), the space of smooth functions on G

with compact support modulo the center ZG such that f(zg) = ωπ(z)f(g) for z ∈ ZG
and g ∈ G. We associate f with the Whittaker functionW f (g) =

∫
U
f(u′g)ψ−1(u′)du′.

The integral convergences since the coset UZg is closed in G and f ∈ C∞c (G;ωπ).

We can normalize it by choosing f ∈ Mπ such that W f (e) = 1, where e ∈ G is the

identity element.

We define the twisted centralizer of g ∈ G by

Ug = {u ∈ U : Θ(u−1)gu = g}.

Suppose G = ZGG
′, write g = zg′ with z ∈ ZG, g ∈ G′. Then we define the partial

Bessel integral

BG
ϕ̃ (g, f) =

∫
Ug\U

W f (gu)ϕ̃(Θ(u−1)g′u)ψ−1(u)du,

where ϕ̃ is some cut-off function. Note that the above definitions can also be applied

to any Levi subgroup M of G.

If we apply the above settings to the case G = GLn, Θ(g) = ẇG
tg−1ẇ−1

G , and

ϕ̃ = LẇGϕ, where Lsϕ(g) = ϕ(s−1g) is the left translation of ϕ, we obtain

BG
ϕ (g, f) =

∫
Ug\U

W f (gu)ϕ(tuẇ−1
G g′u)ψ−1(u)du,
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which is the definition of partial Bessel integrals in [7]. And in this case the twisted

centralizer of g is given by

Ug = {u ∈ U : tuẇ−1
G gu = ẇ−1

G g}

We will only use this definition for partial Bessel integrals and twisted centralizers in

the rest part of the paper.

On the other hand, it is not hard to see by induction on the size n that if g =

−1
2
ẇG

tY −1 for Y = Y (a1, · · · , an) with (a1 · · · , an) ∈ (F×)n as in the last part of

section 5.4, the twisted centralizer Ug is trivial. Hence the partial Bessel integral

BG
ϕ (g, f) =

∫
U

W f (gu)ϕ(tuẇ−1
G g′u)ψ−1(u)du,

where g = zg′, z ∈ Z. Now choose f ∈M(π) such that Wπ,v = W f , and W f (e) = 1.

Take ϕ = ϕκ. From the calculations right before Proposition 5.4.4, we have

jπ,η,ẇθ,κ(g) = η(a(g))−1| det(g)|
s
2

∫
Un

Wπ,v(gu)ϕκ(
tuẇ−1

G g′u)ψ−1(u)du.

Therefore we obtain

Proposition 5.4.5 Let f ∈M(π) such that W f (e) = 1, and let ϕ = ϕκ, then

jπ,η,ẇθ,κ(g) = η(a(g))−1| det(g)|
s
2 ·BG

ϕ (g, f),

for g = −1
2
ẇG

tY −1, where Y = Y (a1, · · · , an) with all ai ∈ F×.

Now we have successfully related our partial Bessel functions with partial Bessel

integrals, whose asymptotic expansions will lead to the proof of stability.
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6. ANALYSIS OF PARTIAL BESSEL INTEGRALS

Let G be a split connected reductive group over F . Fix a Borel subgroup B = AU,

and let U− be the unipotent group generated by all the negative roots. We use G,

B, A, U , U− to denote their groups of F -points respectively. Denote the Weyl group

of G by W . We begin by stating some basic facts and properties.

• B(G). Define the subset of W that supports Bessel functions by B(G) = {w ∈

W : α ∈ ∆ s.t. wα > 0 ⇒ wα ∈ ∆}, or equivalently, B(G) = {w ∈ W :

wGw = wM for some standard Levi M ⊂ G}. We take the representatives

ẇ of w ∈ B(G) so that ẇ = ẇGẇ
−1
M . Then there is a one-to-one correspondence

between elements in B(G) and Levi subgroups standard parabolic subgroups of

G. To be precise, to a w ∈ B(G) we associate θ+
w = {α ∈ ∆ : wα > 0} ⊂ ∆

which determines a standard parabolic subgroup Pw = MwNw, such that Mw =

ZG(∩α∈θ+w kerα). We also have that θ+
w = θ−wM = ∆M ⊂ ∆, where wM is the

long Weyl group element of M .

• U+
w ,U

−
w . For each w ∈ W we define two unipotent subgroups U+

w and U−w of U

to be U+
w = {u ∈ U : wuw−1 ∈ U} and U−w = {u ∈ U : wuw−1 ∈ U−}. In other

words, U+
w (resp. U−w ) is generated by those roots that are made positive(resp.

negative) by w. One can see that U+
w = U ∩ w−1Uw, U−w = U ∩ w−1U−w, and

U = U+
wU

−
w . Moreover, if w ∈ B(G), suppose ẇ = ẇGẇ

−1
M , so w associates

the Levi M = Mw of G. Let UM = U ∩M , then UM is the standard maximal

unipotent subgroup of M . If we denote NM to be the unipotent radical of

the corresponding parabolic, i.e., PM = MNM . Then U = UMNM . Now for

w = wM , we can see that U+
wM

= NM , U
−
wM

= UM and for w = wG, we have

U+
wG

= {e}, U−wG = U . In general for w = wGwM we have U+
w = UM , U

−
w = NM .
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• Bessel distance For w,w′ ∈ B(G) with w > w′ we define the Bessel distance

as follows: dB(w,w′) = max{m : ∃wi ∈ B(G) s.t w = wm > wm−1 > · · · >

w0 = w′}. And if we denote ∆Mw to be the set of simple roots associated with

the standard Levi Mw, we have ∆Mw ⊂ ∆M ′w and dB(w,w′) = |∆Mw′
−∆Mw |.

• Bruhat order For w ∈ W we denote the Bruhat cell by C(w) = UwAU , we

define the Bruhat order on W by w ≤ w′ ⇐⇒ C(w) ⊂ C(w′).

• The relevant torus Aw. For w ∈ B(G), define Aw = {a ∈ A : a ∈

∩α∈θ+w kerα}◦ ⊂ A, which is also the center ZMw of Mw.

• The relevant Bruhat cell Cr(ẇ). We call Cr(ẇ) = UẇAwU
−
w the relevant

part of the Bruhat cell C(w). Note that Cr(ẇ) depends on the choice of the

representative ẇ of w.

• Transverse tori Let w,w′ ∈ B(G) and let M = Mw and M ′ = Mw′ be their

associated Levi subgroups respectively. Suppose w′ ≤ w. Then M ⊂ M ′ and

Aw′ ⊃ Aw. Let Aw
′

w = Aw ∩Md
w′ = ZM ∩ (M ′)d. Note that in particular Aww =

ZM∩Md is finite since M is reductive and in general we have that Md∩R(M) =

Md ∩ Z0 is finite, where Z0 is the connected component of Z and R(M) is the

radical of M . In the case of G = GLn the center is connected, and Aww consists

of certain roots of unity on the diagonal blocks of M . Similarly Aw
′

w ∩Aw′ = Aw
′

w′

is finite and the subgroup Aw
′

w Aw′ ⊂ Aw is open and of finite index. So this

decomposition is essentially a ”transfer principal” for relevant tori, from the

larger one Aw to the smaller one Aw′ which differs by the transverse torus Aw
′

w ,

on which the germ functions live on, as we will see later.

Here are some useful properties of B(G):

1, For w,w′ ∈ B(G). Then w′ ≤ w ⇐⇒ Mw ⊂ Mw′ ⇐⇒ Aw ⊃ Aw′ . (Lemma 5.1

in [7])

2, For each w ∈ B(G), say ẇ = ẇGẇ
−1
M . Then for all u ∈ U+

w = UM , we have

ψ(ẇuẇ−1) = ψ(u), where ψ is the generic character. (Proposition 5.1 in [7])
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3, Let Ωw =
⊔
w≤w′ C(w′), we see that Ωw is invariant under the two-sided action

of U × U and as in Lemma 5.2 in [7], Ωw is an open subset of G and C(w) is closed

in Ωw.

As stated in [7] we also have:

Lemma 6.0.1 Suppose w ∈ B(G) is associated with a standard Levi M of G, then

we have Ωw ' U−w−1 × ẇM × U−w . This decomposition is unique.

Suppose π is a generic representation of M(F ). Let C∞c (Ωw;wπ) denote the space of

smooth functions of compact support modulo the center Z, so ∀g ∈ Ωw and z ∈ Z,

f(zg) = wπ(z)f(g). Since Ωw is open in G, we have C∞c (Ωw;wπ) ⊂ C∞c (G;wπ).

Lemma 6.0.2 There is a surjective map: C∞c (M ;wπ)→→ C∞c (Ωw′ ;wπ) given by h =

hf 7→ f where h(m) = hf (m) =
∫
U−
w′

∫
U−
w′−1

f(x−ẇmu−)ψ−1(x−u−)dx−du−.

Proof See Lemma 5.9 [7].

6.1 Partial and Full Bessel Integrals

Let w ∈ B(G) and g = u1ẇau2 ∈ Cr(ẇ), the relevant cell associated to w, which

depends on the choice of the representative ẇ of w. Let M = Mw be the Levi subgroup

of G such that w = wGwM . We have

Lemma 6.1.1 For g = u1ẇau2 ∈ Cr(ẇ) with w = wGwM ∈ B(G), then

Ug ⊂ u−1
2 U+

w u2 = u−1
2 UMu2

Proof u ∈ Ug ⇐⇒t uẇ−1
G u1ẇGẇ

−1
M au2u = ẇ−1

G u1ẇGẇ
−1
M au2. Let u1 = ẇ−1

G u1ẇG ∈

U−, then this is equivalent to (u1)−1tuu1ẇ
−1
M au2uu

−1
2 = ẇ−1

M a, which is the same as

(u1)−1tuu1 = ẇMau2u
−1u−1

2 a−1ẇM .

Notice that (u1)−1tuu1 ∈ U−, and au2u
−1u−1

2 a−1 ∈ U . This implies that

au2u
−1u−1

2 a−1 ∈ U−wM = UM .

Therefore u2u
−1u−1

2 ∈ a−1UMa = UM since a ∈ Aw. So u−1 ∈ u−1
2 UMu2, thus

u ∈ u−1UMu2 = u−1
2 U+

w u2.
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Next, we will show an equality that relates partial Bessel integrals with full Bessel

integrals.

First, decompose U = u−1
2 Uu2 = (u−1

2 U+
w u2)(u−1

2 U−w u2) and for u ∈ U , write

u = u′+(u−1
2 u−u2) with u′+ = u−1

2 u+u2 where u+ ∈ U+
w , and u− ∈ U−w . Since by

lemma 6.1.1, Ug ⊂ u−1
2 U+

w u2, we have

BG
ϕ (g, f) =

∫
Ug\u−1

2 U+
w u2

∫
U−w

∫
U

f(xgu′+u−1
2 u−u2)

·ϕ(t(u−1
2 u−u2)

t
u′+ẇ−1

G g′u′+u−1
2 u−u2)ψ−1(x)ψ−1(u′+u−1

2 u−u2)dxdu−du′+

=

∫
Ug\u−1

2 U+
w u2

∫
U−w

∫
U

f(xu1ẇa(u2u
′+u−1

2 )u−u2)

·ϕ(t(u−1
2 u−u2)

t
u′+ẇ−1

G u1ẇa
′(u2u

′+u−1
2 )u−u2)ψ−1(x)ψ−1(u′+u−1

2 u−u2)dxdu−du′+

=

∫
Ug\u−1

2 U+
w u2

∫
U−w

∫
U

f(xu1ẇau
+u−u2)ϕ(tu2

tu−
t
u+tu−1

2 ẇ−1
G u1ẇa

′u+u−u2)

·ψ−1(x)ψ−1(u−1
2 u+u−u2)dxdu−du+.

Now since a ∈ Aw, we have au+ = u+a. So the above integral

=

∫
Ug\u−1

2 U+
w u2

∫
U−w

∫
U

f(xu1(ẇu+ẇ−1)ẇau−u2)ϕ(tu2
tu−

t
u+tu−1

2 ẇ−1
G u1ẇa

′u+u−u2)

·ψ−1(x)ψ−1(u−1
2 u+u−u2)dxdu−du+.

Let x′ = xu1(ẇu+ẇ−1) and u′− = u−u2, then dx′ = dx and du′− = du−.

After this change of variable we have the above integral

=

∫
Ug\u−1

2 U+
w u2

∫
U−w

∫
U

f(x′ẇau′−)ϕ(tu′−
t
u+tu−1

2 ẇ−1
G u1ẇa

′u+u′−)

·ψ−1(x′(u1ẇu
+ẇ−1)−1)ψ−1(u−1

2 u+u′−)dxdu′−du+

= ψ(u1)ψ(u2)

∫
Ug\u−1

2 U+
w u2

∫
U−w

∫
U

f(x′ẇau′−)ϕ(tu′−
t
u+tu−1

2 ẇ−1
G u1ẇa

′u+u′−)

·ψ−1(x′)ψ(ẇu+ẇ−1)ψ−1(u+)ψ−1(u′−)dxdu′−du+.

By compatibility of ψ and ẇ, we have ψ(ẇu+ẇ−1) = ψ(u+), so

BG
ϕ (g, f) = ψ(u1)ψ(u2)

∫
Ug\u−1

2 U+
w u2

∫
U−w

∫
U

f(x′ẇau′−)
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·ϕ(tu′−
t
u+tu−1

2 ẇ−1
G u1ẇa

′u+u′−)ψ−1(x′)ψ−1(u′−)dxdu′−du+

Now take f ∈ C∞c (Ωw;wπ). Since g is fixed, a is fixed. Since by Lemma 5.2 of

[7], C(w) is closed in Ωw, there exists open compact subsets U1 ⊂ U and U2 ⊂ U−w

such that the support of the function (x, u−) 7→ f(xẇau−) lies in U1 × U2. Take

N large enough such that ϕ = ϕN is invariant under the left and right action of

U2 as in Lemma 4.2 of [7], i.e., ϕ(tugu) = ϕ(g) for all u ∈ U2. Then we have

ϕ(tu′−
t
u+tu−1

2 ẇ−1
G u1ẇa

′u+u′−) = ϕ(tu+tu−1
2 ẇ−1

G u1ẇa
′u+).

Define

ϕ̃GM(g′) =

∫
Ug\u−1

2 U+
w u2

ϕ(tu+tu−1
2 u1ẇa

′u+)du+,

then

ϕ̃GM(g′) =

∫
Ug\u−1

2 U+
w u2

ϕ(tu+tu−1
2 ẇ−1

G g′u−1
2 u+)du+

=

∫
Ug\u−1

2 U+
w u2

ϕ(tu−2
t
u′+ẇ−1

G g′u′+u−1
2 )du′+.

So we have

BG
ϕ (g, f) = ψ(u1)ψ(u2)ϕ̃GM(g′)

∫
U−w

∫
U

f(xẇau−)ψ−1(x)ψ−1(u−)dxdu−

= ψ(u1)ψ(u2)ϕ̃GM(g′)BG(ẇa, f) = ϕ̃GM(g′)BG(g, f)

We just showed the following result:

Lemma 6.1.2 For w ∈ B(G) and any g = u1ẇau2 ∈ Cr(ẇ), g′ = u1ẇa
′u2 where

a = za′, z ∈ Z and a′ ∈ A′, we have

BG
ϕ (g, f) = ϕ̃GM(g′)BG(g, f).

where

BG(g, f) =

∫
U×U−w

f(xgu−)ψ−1(x)ψ−1(u−)dxdu−

is the full Bessel integral and ϕ̃GM(g′) as defined above.
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6.2 Twisted Centralizer and Transfer Principle

For G = GLn, G = G(F ), and f ∈ C∞c (G;wπ), we defined the partial Bessel

integral as

BG
ϕ (g, f) =

∫
Ug\U

W f (gu)ϕ(tuẇ−1
G g′u)ψ−1(u)du

=

∫
Ug\U

∫
U

f(xgu)ϕ(tuẇ−1
G g′u)ψ−1(x)ψ−1(u)dxdu,

where ϕ is the characteristic function of some compact neighborhood of zero in

Matn(F ). Now for any Levi subgroup M of G, we define the twisted centralizer

of m ∈ M in UM = U ∩ M to be UM,m = {u ∈ UM : tuẇ−1
M mu = ẇ−1

M u}. Let

h ∈ C∞c (M ;wπ), the space of smooth functions of compact support modulo Z on M ,

satisfying h(zm) = wπ(z)h(m), for z ∈ Z = ZG. The partial Bessel integral on M is

then given by

BM
ϕ (m,h) =

∫
UM,m\UM

∫
UM

h(xmu)ϕ(tuẇ−1
M m′u)ψ−1(xu)dxdu,

wherem′ is obtained bym from the decomposition ZM = ZA′M , i,e., ifm ∈ UM ẇAMU−M,w,

then m′ ∈ UM ẇA′MU−M,w, z ∈ Z and m = zm′.

Now Let L ⊂M ⊂ G be standard Levi subgroups of G, as before let wG, wM and

wL be the long Weyl group elements of G,M and L respectively. And let ẇG, ẇM , and

ẇL be their representatives chosen to be compatible with ψ as before. Now denote

wML = ẇM · ẇ−1
L , similarly if M is replaced by G.

Take g ∈ Cr(wGL ), the relevant cell for wGL . Suppose g = u1ẇ
G
Lau2 is the Bruhat de-

composition of g, where a ∈ AwGL = ZL. Decompose u1 = u−1 u
+
1 ∈ U−(w′)−1U

+
(w′)−1 = U ,

also u2 = u+
2 u
−
2 ∈ U+

w′U
−
w′ = UMNM = U , where w′ = wGM . Therefore g = u1w

′au2 =

u−1 u
+
1 w
′au+

2 u
−
2 = u−1 w

′(w′−1)u+
1 w
′au+

2 u
−
2 . Since Cr(w

G
L ) ⊂ Ωw′ , by Lemma 6.0.1, g

has a unique decomposition g = u−1 w
′mu−2 , u−1 ∈ U−(w′)−1 , and u−2 ∈ U−w′ . On the other

hand, since w′(w′−1u+
1 w
′)w′−1 = u+

1 ∈ U , so by definition (w′−1)u+
1 w
′ ∈ U+

w′ = UM ⊂

M . Therefore (w′−1)u+
1 w
′au+

2 ∈ M . Now compare the two decompositions and by

uniqueness of Lemma 6.0.1, we see that m = w′−1u+
1 w
′au+

2 .

Now we prove the following transfer principal for partial Bessel integrals:
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Proposition 6.2.1 (Transfer principle for partial Bessel integrals)For any

given g ∈ Cr(wGL ), suppose g = u−1 w
′mu−2 , then

BG
ϕ (g, f) = ψ(u−1 )ψ(u−2 )BM

ϕ (u−1 , u
−
2 ,m, hf ).

where

BM
ϕ (u−1 , u

−
2 ,m, hf ) =

∫
UM,m∩n0UM,mn

−1
0 \UM

∫
UM

hf (x
′mu′)

·ϕ(tu′
t
n0ẇ

−1
M m′u′)ψ−1(x′)ψ−1(u′)dx′du′

and hf 7→ f through the surjective map: C∞c (Ωw′ ;wπ) � C∞c (M ;wπ), and n0 =

t(u−1 )(u−2 )−1 ∈ NM .

To prove this, we first need to deal with the twisted centralizers in the above two

partial Bessel integrals.

Lemma 6.2.1 Suppose that we have a chain of standard Levi subgroups L ⊂M ⊂ G

with associated Weyl group elements wGL ∈ B(G) and wML ∈ B(M) respectively. Then

for g ∈ Cr(wGL ) with g = u1w
G
Lau2 = u−1 w

′mu−2 ∈ Cr(wGL ) ⊂ Ωw′ ' U−(w′)−1 × ẇ′M ×

U−w′ , where a ∈ AwGL = ZL and w′ = wGM , u = u−1 u
+
1 ∈ U−(w′)−1U

+
(w′)−1 = U , also

u2 = u+
2 u
−
2 ∈ U+

w′U
−
w′ = UMNM = U.

Then the twisted centralizer of g and m satisfies

Ug = (t(u−1 )−1UM,m

t
u−1 ) ∩ ((u−2 )−1UM,mu

−
2 )

where u−1 = ẇ−1
G u−1 ẇG.

Proof We have g = u1w
G
Lau2 = u−1 u

+
1 w
′wML au

+
2 u
−
2 = u−1 w

′(w′−1u+
1 w
′wML au

+
2 )u−2 =

u−1 w
′mu−2 where m = w′−1u+

1 w
′wML au

+
2 . Notice that we have w′−1U+

(w′)−1w
′ = U+

w′ =

UM . The above decomposition is unique by Lemma 6.0.1.

Now we show that u−1 = ẇ−1
G u−1 ẇG ∈ N−M , or equivalently, tu−1 ∈ U−(w′) = NM .

To see this, since u−1 ∈ U−(w′)−1 ⊂ U , u−1 = ẇ−1
G u−1 ẇG ∈ U−. On the other hand, we

have that w′−1u−1 w
′ = ẇM ẇ

−1
G u−1 ẇGẇ

−1
M = ẇMu

−
1 ẇ
−1
M ∈ U− by the definition of u−1 .

Taking transpose and using the fact that tẇM = ẇ−1
M by the way we choose the Weyl
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group representatives, we see that this is the same as saying ẇM
t
u−1 ẇ

−1
M ∈ U , this

shows that tu−1 ∈ U+
ẇM

= NM .

Next, we see that

u ∈ Ug ⇐⇒ ẇG
tuẇ−1

G gu = g

⇐⇒ ẇG
t
u−

t
u+ẇ−1

G u−1 w
′mu−2 u

+u− = u−1 w
′mu−2

⇐⇒ ẇG
t
u−

t
u+ẇ−1

G u−1 ẇGẇ
−1
M mu−2 u

+u− = u−1 w
′mu−2 · · · · · · (w′ = ẇGẇ

−1
M )

⇐⇒ ẇG
t
u−

t
u+u−1 ẇ

−1
M mu−2 u

+u− = u−1 w
′mu−2 · · · · · · (u−1 = ẇ−1

G u−1 ẇG ∈ NM)

⇐⇒ ẇG
t
u−

t
u+u−1 (

t
u+)−1tu+ẇ−1

M mu−2 u
+u− = u−1 w

′mu−2

⇐⇒ ẇG
t
u−(

t
u+u−1 (

t
u+)−1)ẇ−1

G (ẇGẇ
−1
M )ẇM

t
u+ẇ−1

M mu+(u+)−1u−2 u
+u− = u−1 w

′mu−2

⇐⇒ (ẇG
t
u−(

t
u+u−1 (

t
u+)−1)ẇ−1

G )w′(ẇM
t
u+ẇ−1

M mu+)((u+)−1u−2 u
+u−) = u−1 w

′mu−2

We call the last equality (A). Now notice that
t
u+u−1 (

t
u+)−1 =

t

((u+)−1
t
u−1 u

+), and

((u+)−1
t
u−1 u

+) ∈ NM since we showed that
t
u−1 ∈ NM and u+ ∈ UM , UM normalizes

NM . So we have
t
u+u−1 (

t
u+)−1 ∈ N−M .

Next, we claim that ẇG
t
u−(

t
u+u−1 (

t
u+)−1)ẇ−1

G ∈ U
−
(w′)−1 . To see this, notice that

this is equivalent to w′−1ẇG
t
u−(

t
u+u−1 (

t
u+)−1)ẇ−1

G w′ ∈ U−, which is the same as

saying ẇM
t
u−

t
u+u−1 (

t
u+)−1ẇ−1

M ∈ U−, since w′−1 = ẇM ẇ
−1
G . Also note that tu− ∈ N−M

and
t
u+u−1 (

t
u+)−1 ∈ N−M , and it is not hard to see that ẇMN

−
M ẇ

−1
M ⊂ U−, so the claim

follows.

Moreover, clearly we have ẇM
t
u+ẇ−1

M mu+ ∈M and (u+)−1u−2 u
+u− ∈ NM .

Summarize what we obtained so far, we have ẇG
t
u−(

t
u+u−1 (

t
u+)−1)ẇ−1

G ∈ U
−
(w′)−1 ,

ẇM
t
u+ẇ−1

M mu+ ∈M and (u+)−1u2u
+u− ∈ U−w′ . In addition, by the uniqueness of the

decomposition Ωw′ = U−(w′)−1 × w′M × U−w′ as in Lemma 6.0.1 and equality (A), the

following three equalities hold at the same time:

(a), ẇG
t
u−(

t
u+u−1 (

t
u+)−1)ẇ−1

G = u−1 ;

(b), ẇM
t
u+ẇ−1

M mu+ = m;

(c), (u+)−1u−2 u
+u− = u−2 .
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Notice that (a) ⇐⇒ tuu−1 (
t
u+)−1 = u−1 ⇐⇒ (u+)−1

t
u−1 u =

t
u−1 ⇐⇒ u+ =

t
u−1 u(

t
u−1 )−1, hence

t
u−1 u(

t
u−1 )−1 = u+ ∈ UM . On the other hand, from (b) we see

that u+ ∈ UM,m, so (a)&(b) implies that
t
u−1 u(

t
u−1 )−1 ∈ UM,m. Since we started

with u ∈ Ug, we see that Ug ⊂ (
t
u−1 )−1UM,m

t
u−1 . Similarly, (c) ⇐⇒ u−2 u(u−2 )−1 =

u+ =⇒ u−2 u(u−2 )−1 = u+ ∈ UM and again by (b) we have u+ ∈ UM,m, therefore

u−2 u(u−2 )−1 ∈ UM,m. So (b)&(c) implies that Ug ⊂ (u−2 )−1UM,mu
−
2 . We conclude that

Ug ⊂ (t(u−1 )−1UM,m

t
u−1 ) ∩ ((u−2 )−1UM,mu

−
2 ).

Conversely, if u = t(u−1 )−1u′
t
u−1 = (u2)−1u′′u−2 with u′, u′′ ∈ UM,m, we see that

u+u− = u = u′(u′)−1t(u−1 )−1u′
t
u−1 = u′((u′)−1t(u−1 )−1u′)

t
u−1 . Since

u′ ∈ UM , (u′)−1t(u−1 )−1u′ ∈ NM , U = UM ×NM , and UM ∩NM = {1},

we have u+ = u′ and u− = (u′)−1t(u−1 )−1u′
t
u−1 . Replace

t
u−1 by u−2 ∈ NM in the above

argument we also obtain u+ = u′′. This implies (b).

Moreover, from u = t(u−1 )−1u′
t
u−1 = (u2)−1u′′u−2 , we see that t(u−1 )u

t
u−1
−1

= u′ =

u+ ⇐⇒ (a) and u−2 u(u−2 )−1 = u′′ = u+ ⇐⇒ (c). Since u ∈ Ug is equivalent to

(a), (b), (c) to hold at the same time, hence it proves the reverse inclusion Ug ⊃

(t(u−1 )−1UM,m

t
u−1 ) ∩ ((u−2 )−1UM,mu

−
2 ).

So we finally obtain that Ug = (t(u−1 )−1UM,m

t
u−1 ) ∩ ((u−2 )−1UM,mu

−
2 ).

Remark: From the above argument, u = t(u−1 )−1u′
t
u−1 = (u2)−1u′′u−2 ∈ Ug =

(t(u−1 )−1UM,m

t
u−1 ) ∩ ((u−2 )−1UM,mu

−
2 ) automatically implies that

u′ = u′′ ∈ UM,m ∩ Cent(t(u−1 )u−1
2 ).

Now we can show the proposition based on the above lemma:

Proof (Proposition 6.2.1) For any given g ∈ Cr(wGL ),

g = u1w
G
Lau2 = u−1 w

′mu−2 ∈ Cr(wGL ) ⊂ Ωw′ = U−w′−1 × w′M × U−w′

By Lemma 6.2.1, Ug = (t(u−1 )−1UM,m

t
u−1 ) ∩ ((u−2 )−1UM,mu

−
2 ). To simplify the no-

tations, we denote n = t(u−1 )−1 and n0 =
t
u−1 (u−2 )−1, then they both lie in NM .
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Since n ∈ U , we have U = nUn−1 = (nUMn
−1) × (nNMn

−1). For f ∈ C∞c (Ωw′ ;wπ)

we have BG
ϕ (g, f) =

∫
Ug\U

∫
U
f(xgu)ϕ(tuẇ−1

G g′u)ψ−1(xu)dxdu. Make a change of

variable u 7→ nun−1, and decompose U as U = nUn−1 = (nUMn
−1) × (nNMn

−1).

Then Ug = (t(u−1 )−1UM,m

t
u−1 )∩ ((u−2 )−1UM,mu

−
2 ) = n(UM,m∩n0UM,mn

−1
0 )n−1. We can

rewrite the integral as

BG
ϕ (g, f) =

∫
n(UM,m∩n0UM,mn

−1
0 )n−1\nUMn−1

∫
U−
w′

∫
U+

(w′)−1

∫
U−
(w′)−1

f(x−x+u−1 w
′mu−2 nu

+u−n−1)ϕ(tn−1tu−
t
u+tnẇ−1

G u−1 ẇGẇ
−1
M m′u−2 nu

+u−n−1)

·ψ−1(x−x+)ψ−1(nu+u−n−1)dx−dx+du−du+

=

∫
UM,m∩n0UM,mn

−1
0 \UM

∫
NM

∫
U+

(w′)−1

∫
U−
(w′)−1

f(x−x+u−1 (x+)−1w′(w′)−1x+

·w′mu+(u+)−1u−2 nu
+u−n−1)ϕ(tn−1tu−

t
u+(u−1 )−1u−1 ẇ

−1
M m′u−2 nu

+u−n−1)

·ψ−1(x−x+)ψ−1(nu+u−n−1)dx−dx+du−du+

=

∫
UM,m∩n0UM,mn

−1
0 \UM

∫
NM

∫
U+

(w′)−1

∫
U−
(w′)−1

f(x−x+u−1 (x+)−1w′(w′)−1x+

·w′mu+(u+)−1u−2 nu
+u−n−1)ϕ(tn−1tu−

t
u+ẇ−1

M m′u−2 nu
+u−n−1)

·ψ−1(x−x+)ψ−1(nu+u−n−1)dx−dx+du−du+.

Now let x′ = w′−1x+w′, then x′ ∈ UM , and by compatibility we have ψ(x′) =

ψ(x+). Moreover, let y− = x−x+u−1 (x+)−1, then since U+
(w′)−1 normalizes U−(w′)−1 ,

we see that x+u−1 (x+)−1 ∈ U−(w′)−1 . As a result, we have y− ∈ U−(w′)−1 . Let v− =

(u+)−1u−2 nu
+u−n−1 ∈ NM . And also let u′ = u+. Then since all variables live in

unipotent subgroups therefore are all unimodular, we see that dy− = dx−, dv− = du−,

and du′ = du+.

After making the above change of variables, the above integral

=

∫
UM,m∩n0UM,mn

−1
0 \UM

∫
NM

∫
U−
(w′)−1

∫
UM

f(y−w′x′mu′v−)

·ϕ(tv−
t
u′
t
(u−2 )−1tn−1ẇ−1

M m′u′v−)ψ(u−1 )ψ(u−2 )ψ−1(y−)ψ−1(x′)ψ−1(v−)ψ−1(u′)
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dx′dy−dv−du′.

Since here f ∈ C∞c (Ωw′ ;wπ), the decomposition Ωw′ = U−(w′)−1 × w′M × U−w′ im-

plies that there exists open compact subsets U1 ⊂ U−(w′)−1 , and U2 ⊂ U−w′ such that

f(y−w′x′mu′v−) 6= 0 =⇒ y− ∈ U1, v
− ∈ U2. Therefore we can take N large enough,

such that ϕ = ϕN is invariant under large open compact subgroups of U−w′ , as in

Lemma 4.2 [7]. Consequently,

ϕ(tv−
t
u′
t
(u−2 )−1tn−1ẇ−1

M m′u′v−) = ϕ(tu′
t
(u−2 )−1tn−1ẇ−1

M m′u′).

So now we have

BG
ϕ (g, f) =

∫
UM,m∩n0UM,mn

−1
0 \UM

∫
NM

∫
U−
(w′)−1

∫
UM

f(y−w′x′mu′v−)

·ϕ(tu′
t
(u−2 )−1tn−1ẇ−1

M m′u′)ψ(u−1 )ψ(u−2 )ψ−1(y−)ψ−1(x′)ψ−1(v−)ψ−1(u′)

dx′dy−dv−du′

=

∫
UM,m∩n0UM,mn

−1
0 \UM

∫
U−
w′

∫
U−
(w′)−1

∫
UM

f(y−w′x′mu′v−)

·ϕ(tu′
t
n0ẇ

−1
M m′u′)ψ(u−1 )ψ(u−2 )ψ−1(y−)ψ−1(x′)ψ−1(v−)ψ−1(u′)

dx′dy−dv−du′.

Now by Lemma 6.0.2, there exists an h = hf ∈ C∞c (M ;wπ) such that

h(m) = hf (m) =

∫
U−
w′

∫
U−
(w′)−1

f(x−ẇmu−)ψ−1(x−u−)dx−du−.

This implies that

BG
ϕ (g, f) = ψ(u−1 )ψ(u−2 )

∫
UM,m∩n0UM,mn

−1
0 \UM

∫
UM

hf (x
′mu′)

·ϕ(tu′
t
n0ẇ

−1
M m′u′)ψ−1(x′)ψ−1(u′)dx′du′

= ψ(u−1 )ψ(u−2 )BM
ϕ (u−1 , u

−
2 ,m, hf ),

where

BM
ϕ (u−1 , u

−
2 ,m, hf ) =

∫
UM,m∩n0UM,mn

−1
0 \UM

∫
UM

hf (x
′mu′)
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·ϕ(tu′
t
n0ẇ

−1
M m′u′)ψ−1(x′)ψ−1(u′)dx′du′.

One can check that this integral is well-defined. Suppose v′ ∈ UM,m ∩ n0UM,mn
−1
0 ,

then by the remark after the previous lemma, we see that for u ∈ UM , v′ ∈ Cent(n0),

tu′tv′tn−1
0 ẇ−1

M m′v′u′ = tu′tv′tn−1
0

tv′−1tv′ẇ−1
M m′v′u′ = tu′tn0ẇ

−1
M m′u′. In particular, if

n0 = 1, i.e., t(u−1 ) = u−2 , we have

BG
ϕ (g, f) = ψ(u−1 )ψ(u−2 )BM

ϕ (m,hf ).

6.3 Small Cell Analysis

The philosophy to prove supercuspidal stability is to analyze the asymptotic be-

havior of the partial Bessel integrals through looking at the contribution of each

Bruhat cell inductively. In this section we will analyze the small cell of both G and

its Levi subgroups.

The following lemmas(lemma 6.3.1, 6.3.2, 6.3.3), which were proved in [7], show

that the non-zero contributions are only from the relevant parts of those Bruhat

cells that support Bessel functions. We will use them, together with the transfer

principal(proposition 6.2.1) to obtain the asymptotic expansion for partial Bessel

integrals.

Lemma 6.3.1 Let w ∈ B(G) and f ∈ C∞c (Ωw;ωπ). Suppose BG
ϕ (ẇa, f) = 0 for all

a ∈ Aw. Then there exists f0 ∈ C∞(Ω′ẇ;ωπ), where Ω′ẇ = Ωw − Cr(ẇ), such that for

sufficiently large ϕ depending only on f , we have BG
ϕ (g, f) = BG

ϕ (g, f0) for all g ∈ G.

Proof See Lemma 5.12, [7].

Lemma 6.3.2 Let w ∈ B(G) and f ∈ C∞c (Ωw;ωπ), Ω◦w = Ωw − C(w). Suppose

BG(ẇa, f) = 0 for all a ∈ Aw. Then there exists f0 ∈ C∞c (Ω◦w, ωπ) such that, for all

sufficiently large ϕ depending only on f , we have BG
ϕ (g, f) = BG

ϕ (g, f0) for all g ∈ Ωw.

Proof See Lemma 5.13, [7].



60

Lemma 6.3.3 Let w = wGwM ∈ B(G). Let Ωw,0 and Ωw,1 be U×U and A-invariant

open sets of Ωw such that Ωw,0 ⊂ Ωw,1 and Ωw,1 − Ωw,0 is a union of Bruhat cells

C(w′) such that w′ does not support a Bessel function, i.e, w′ /∈ B(G). Then for any

f1 ∈ C∞c (Ωw,1;ωπ), there exists f0 ∈ C∞c (Ω;ωπ) such that, for all sufficiently large ϕ

depending only on f1, we have BG
ϕ (g, f0) = BG

ϕ (g, f1) for all g ∈ G.

Proof See Lemma 5.14, [7].

Now let’s work on the inductive process of the asymptotic expansion of partial

Bessel integrals. We begin with the analysis of the small cell of G. Consider e as

a Weyl group element, then Me = G,Ae = ZG = Z, and U+
e = U. We also have

Ωe =
⊔
e≤w C(w) = G. Take the representative of e to be ė = I. Take f ∈ M(π) ⊂

C∞c (G;ωπ) with W f (e) = 1. We also fix an auxiliary function f0 ∈ C∞c (G;ωπ) such

that W f0(e) = 1. Decompose G = GdAe = GdZ, where Gd is the derived group of G.

Since Gd∩Z is finite, if we write g = g1c for g ∈ G and g1 ∈ Gd, c ∈ Z, then there are

only finitely many such decompositions and they differ by elements in the transverse

torus Aee. In the case of G = GLn, Aee consists of diagonal matrices whose entries are

n-th roots of unity, and notice that there is no such decomposition if det(g) is not an

n-th power in F×. Now let

f1(g) =
∑
g=g1c

f0(g1)BG(ėc, f) =
∑
g=g1c

f0(g1)ωπ(c)

if det(g) is an n-th power in F×, and f1(g) = 0 otherwise. Then f1(g) ∈ C∞c (G;ωπ),

since the subgroup of all g ∈ G such that det(g) is an n-th power in F× is open in G.

We have

Lemma 6.3.4 BG
ϕ (ėa, f1) = BG

ϕ (ėa, f) for all a ∈ Ae = Z.

Proof See Lemma 5.15, [7].

Proposition 6.3.1 Fix an auxiliary function f0 ∈ C∞c (G;ωπ) with W f0(e) = 1.

Then for each f ∈ C∞c (G;ωπ) with W f (e) = 1 and for each w′ ∈ B(G) with
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dB(e, w′) = 1, there exists a function fw′ ∈ C∞c (Ωw′ ;ωπ) such that for any w ∈ B(G)

and any g = u1ẇau2 ∈ Cr(ẇ) we have

BG
ϕ (g, f) =

∑
w′∈B(G),dB(w′,e)=1

BG
ϕ (g, fw′) +

∑
a=bc

ωπ(c)BG
ϕ (u1ẇbu2, f0)

where a = bc runs over the possible decompositions of a ∈ Aw with b ∈ Aew and

c ∈ Ae = Z.

Proof We construct f1 from f0 as above. By Lemma 6.3.4, BG
ϕ (ėa, f − f1) = 0 for

all a ∈ Ae = Z. We have Cr(e) = AeU = ZU ⊂ C(e) = AU and Ω◦e = Ωe − C(e) =

G − AU =
⊔
w 6=eC(w). Then by Lemma 6.3.2, there exists an f ′2 ∈ C∞c (Ω◦e;ωπ)

such that BG
ϕ (g, f − f1) = BG

ϕ (g, f ′2) for all g ∈ G. Let Ω1 =
⋃
w∈B(G),w 6=e Ωw =⋃

w′∈B(G),dB(w′,e)=1 Ωw′ =
⊔
w′′≥w′∈B(G),dB(w′,e)=1 C(w′′) and Ω0 = Ω◦e = G − C(e) =⊔

w 6=eC(w). So Ω0 − Ω1 is a union of Bruhat cells C(w) such that w /∈ B(G), since

dB(w′, e) = 1 in the definition of Ω1.

By Lemma 6.3.3, there exists f2 ∈ C∞c (Ω1, ωπ) such that for sufficiently large ϕ

we have BG
ϕ (g, f2) = BG

ϕ (g, f ′2) = BG
ϕ (g, f −f1) for all g ∈ G. Then we use a partition

of unity argument, to get f2 =
∑

w′∈B(G),dB(w′,e)=1 fw′ with fw′ ∈ C∞c (Ωw′ ;ωπ). Thus

for any w ∈ B(G) and any g ∈ Cr(ẇ) we have

BG
ϕ (g, f) = BG

ϕ (g, f1) +
∑

w′∈B(G),dB(w′,e)=1

BG
ϕ (g, fw′).

Now we work with BG
ϕ (g, f1) for g ∈ Cr(ẇ). We have

BG
ϕ (g, f1) =

∫
Ug\U

∫
U

f1(xgu)ϕ(tuẇ−1
G g′u)ψ−1(x)ψ−1(u)dxdu

=

∫
Ug\u−1

2 U+
w u2

∫
U−w

∫
U

f1(xgu′+u−1
2 u−u2)ϕ(t(u−1

2 u−u2)
t
u′+ẇ−1

G g′u′+u−1
2 u−u2)

·ψ−1(x)ψ−1(u′+u−1
2 u−u2)dxdu−du′+.

Since f1(g) =
∑

g=g1c
f0(g1)BG(ėc, f) =

∑
g=g1c

f0(g1)ωπ(c), we need to decompose

xgu′+u−1
2 u−u2 = g1c with g1 ∈ Gd and c ∈ Z. Write g = u1ẇau2, then g1 =

xu1ẇac
−1u2u

′+u−1
2 u−u2 ∈ Gd. So 1 = det(g1) = det(ac−1). This says that b = ac−1 ∈
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Aew = SLn(F ) ∩ ZL, where L = Lw is the Levi given by w = wGwL ∈ B(G). We

decompose Aw = ZAw′ , then a = za′ and a′ = (bc)′ = b′. Therefore we have

f1(xgu′+u−1
2 u−u2) =

∑
a=bc

f0(xu1ẇbu2u
′+u−1

2 u−u2)ωπ(c).

So eventually we have

BG
ϕ (g, f1) =

∫
Ug\U

∫
U

f1(xgu)ϕ(tuẇ−1
G g′u)ψ−1(x)ψ−1(u)dxdu

=

∫
Ug\u−1

2 U+
w u2

∫
U−w

∫
U

f1(xgu′+u−1
2 u−u2)ϕ(

t
(u−1

2 u−u2)
t
u′+ẇ−1

G g′u′+u−1
2 u−u2)

= ωπ(c)
∑
a=bc

∫
Ug\u−1

2 U+
w u2

∫
U−w

∫
U

f0(xu1ẇbu2u
′+u−1

2 u−u2)ϕ(
t
(u−1

2 u−u2)
t
u′+ẇ−1

G

·u1ẇbu2u
′+u−1

2 u−u2)ψ−1(x)ψ−1(u′+u−1
2 u−u2)dxdu−du′+

=
∑
a=bc

ωπ(c)

∫
Ug\U

∫
U

f(xu1ẇbu2u)ϕ(tuẇ−1
G u1ẇbu2u)ψ−1(x)ψ−1(u)dxdu

=
∑
a=bc

ωπ(c)BG
ϕ (u1ẇbu2, f0).

A very similar process works for Levi subgroups M ⊂ G. If w′ = wGwM ∈ B(G), then

Aw
′

w′ = ZM ∩Md, which is also finite. In the case G = GLn, Md ' SLn1 × · · · × SLnt
for some t ≥ 1, and Aw

′

w′ = Aw ∩ (Mw′)
d consists of ni-th roots of unity in the i-th

block of M .

Let’s analyze the small cell of M . For h ∈ C∞c (M ;ωπ), and c ∈ ZM = Aw′ , define

the Bessel integral on M by BM(c, h) =
∫
UM

h(xc)ψ−1(x)dx. Take h0 ∈ C∞c (M ;ωπ),

such that BM(e, h0) = 1
κM

, where κM = |Z∩Aw′w′ | <∞, and BM(b, h0) = 0 for b ∈ Aw′w′

but b /∈ Z ∩Aw′w′ . Decompose M = MdZM , where Md ∩ZM = Aw
′

w′ is finite. Define h1

on M by h1(m) =
∑

m=m′c h0(m′)BM(c, h) with m′ ∈Md and c ∈ ZM = Aw′ . Similar

to the case for G, if m = diag{m1,m2, · · · ,mr}, det(mi) is not an ni-th power on

each block, then h1(m) = 0. We have

Lemma 6.3.5 BM
ϕ (a, h1) = BM

ϕ (a, h) for all a ∈ ZM = Aw′.
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Proof See Proposition 5.4, [7].

Now suppose g ∈ Cr(ẇG) with g = u1ẇGau2, then for w′ = ẇGẇ
−1
M we have

Cr(ẇG) ⊂ Ωw′ = U−w′−1 × w′M × U−w′ .

We further decompose g as = u−1 u
+
1 ẇGau

+
2 u
−
2 with u−1 ∈ U−w′−1 , u

+
1 ∈ U+

w′−1 , u
+
2 ∈ U+

w′ ,

u−2 ∈ U−w′ , u1 = u−1 u
+
1 , u2 = u+

2 u
−
2 . Then

g = u−1 w
′(w′)−1u+

1 w
′ẇMau

+
2 u
−
2 = u−1 w

′mu−2

where m = (w′)−1u+
1 w
′ẇMau

+
2 ∈ CM

r (ẇM), the relevant cell of ẇM in M , and a ∈

AwG = A. Recall that

BM
ϕ (u−1 , u

−
2 ,m, h1) =

∫
UM,m∩n0UM,mn

−1
0 \UM×UM

h1(xmu)ϕ(tutn0ẇ
−1
M m′u)ψ−1(xu)dxdu

where m′ = (w′)−1u+
1 w
′ẇMa

′u+
2 . Here a = za′ is the decomposition of a ∈ A = ZA′.

It follows that BM
ϕ (u−1 , u

−
2 ,m, h1) = ωπ(z)BM

ϕ (u−1 , u
−
2 ,m

′, h1).

Since h1(m) =
∑

m=m1c
h0(m1)BM(m′, h) with m1 ∈Md and c ∈ ZM , to compute

the above integral, we need to decompose xm′u = m1c. This gives

xw′−1u+
1 w
′ẇ−1

M a′u+
2 uc

−1 = m1 ∈Md.

Since x,w′, ẇM , u, u
+
1 , u

+
2 ∈ Md, it suffices to decompose a′ = bc for b ∈ A ∩Md and

c ∈ ZM . Now we can write

h1(m′) =
∑
a′=bc

h0(xw′−1u+
1 w
′ẇMbu

+
2 u)BM(c, h).

Decompose b = zbb
′ and c = zcc

′, with zb, zc ∈ Z, b′ ∈ A′ and c′ ∈ Z ′M . Then

a′ = bc = zbzcb
′c′ =⇒ a′ = b′c′, and zbzc = 1. As h, h0 ∈ C∞c (M ;ωπ), we have

h0(xw′−1u+
1 w
′ẇMbu

+
2 u)BM(c, h) = ωπ(zbzc)h0(xw′−1u+

1 w
′ẇMb

′u+
2 u)BM(c′, h)

= h0(xw′−1u+
1 w
′ẇMb

′u+
2 u)BM(c′, h).

Thus

BM
ϕ (u−1 , u

−
2 ,m

′, h1) =

∫
UM,m∩n0UM,mn

−1
0 \UM×UM

∑
a=bc

h0(xw′−1u+
1 w
′ẇMb

′u+
2 u)BM(c′, h)
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·ϕ(tutn0ẇ
−1
M w′−1u+

1 w
′ẇMb

′u+
2 uc

′)ψ−1(xu)dxdu

=
∑
a′=b′c′

BM(c′, h)

∫
UM,m∩n0UM,mn

−1
0 \UM×Um

h0(xw′−1u+
1 w
′b′u+

2 u)

·ϕ(tutn0ẇ
−1
M w′−1u+

1 w
′ẇMb

′u+
2 uc

′)ψ−1(xu)dxdu.

Now since a′ = b′c′, c′ ∈ Z ′M ⊂ ZM , let mb′ = w′−1u+
1 w
′ẇMb

′u+
2 , then

m′ = w′−1u+
1 w
′ẇMa

′u+
2 = w′−1u+

1 w
′ẇMb

′c′u+
2 = mb′c

′

Meanwhile we have

UM,m′ = {u ∈ UM : tuẇ−1
M m′u = ẇ−1

M m′}

= {u ∈ UM : ẇM
tuẇ−1

M m′u = m′}

= {u ∈ UM : ẇM
tuẇ−1

M mb′c
′u = mb′c

′}

= {u ∈ UM : ẇM
tuẇ−1

M mb′uc
′ = mb′c

′}

= {u ∈ UM : ẇM
tuẇ−1

M mb′u = mb′} = UM,mb′

So we obtain

BM
ϕ (u−1 , u

−
2 ,m

′, h1) =
∑
a′=b′c′

BM(c′, h)

∫
UM,mb′

∩n0UM,mb′
n−1
0 \UM×UM

h0(xmb′u)

·ϕ(tutn0ẇ
−1
M mb′uc

′)ψ−1(xu)dxdu

=
∑
a′=b′c′

BM(c′, h)BM
ϕc′

(u−1 , u
−
2 ,mb′ , h0)

where ϕc
′
(m) = ϕ(mc′) for c′ ∈ Z ′M .

In particular, when n0 = 1, we have

BM
ϕ (m,h1) =

∑
a=bc

BM(c, h)BM
ϕc(mb′ , h0).
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6.4 Uniform Smoothness

The key to prove supercuspidal stability is that the asymptotic expansions of

partial Bessel integrals have two parts, one part depends only on the central character

of π, the other is a uniform smooth function on certain torus. Therefore under

highly ramified twist, the uniform smooth part becomes zero. We study the uniform

smoothness in this section.

Definition 6.4.1 A smooth function B on a torus T ⊂ A is uniformly smooth if

there exists a fixed open compact subgroup T0 ⊂ T such that B(tt0) = B(t) for t0 ∈ T0

and all t ∈ T .

Proposition 6.4.1 For g(a) = u−1 (a)w′m(a)u−2 (a) ∈ CG
r (ẇG) with m = m(a) =

ũ1(a)ẇMaũ2(a) ∈ CM
r (ẇM), a ∈ Aw′ẇGAw′ ⊂ AẇG = A, u−1 (a), u−2 (a), ũ1(a) and ũ2(a)

are rational functions(as morphisms of algebraic varieties) of a. Let a = bc be a fixed

decomposition with b ∈ Aw′wG and c ∈ Aw′. Then all decompositions are of the form

a = (bζ−1)(ζc) with ζ ∈ Aw′w′ = Aw
′

wG
∩Aw′, a finite set with appropriate roots of unity

on the diagonal. Moreover, if c = c′z with c′ ∈ A′w′ = Z ′M and z ∈ Z, then for each

fixed b, z,

BM
ϕ (u−1 (a), u−2 (a),m(a), h1) = ωπ(z)BM

ϕ (u−1 (bc′z), u−2 (bc′z), ũ1(bc′z)ẇMbc
′ũ2(bc′z), h1)

is uniformly smooth as a function of c′ ∈ Z ′M .

Proof First fix one decomposition a = bc. To simplify the notation, we denote

u−i = u−i (a) and ũi = ũi(a). Then we have

BM
ϕ (u−1 , u

−
2 ,m, h1) =

∑
a=bc

BM(c, h)BM
ϕc(u

−
1 , u

−
2 ,mb′ , h0)

=
∑
ζ

BM(ζc, h)BM
ϕζc(u

−
1 , u

−
2 , ũ1ẇMbζ

−1ũ2, h0)

Since |ζ| = 1, so we have ϕζc = ϕc. This implies that

BM
ϕ (u−1 , u

−
2 ,m, h1) =

∑
ζ

BM(ζc, h)BM
ϕc(u

−
1 , u

−
2 , ũ1ẇMbζ

−1ũ2, h0).



66

Now

BM(ζc, h) =

∫
UM

h(xζc)ψ−1(x)dx = ωπ(ζ1z)

∫
U

h(xζ ′c′)ψ−1(x)dx

where ζ = diag(ζ1In1 , · · · , ζtInt) and ζ ′ = diag(In1 , ζ
−1
1 ζ2In2 · · · , ζ−1

1 ζtInt). Since h ∈

C∞c (M ;ωπ), xζc ∈ AMUM = BM and CM(eM) = BM is closed in M , there exists

compact subsets U1 ⊂ U , K ′′ ⊂ A′ s.t. h(xζ ′c′) 6= 0 =⇒ x ∈ U1, ζ
′c′ ∈ K ′. Moreover,

since Z ′M ⊂ A′ is closed and ζ ′c′ ∈ Z ′M , there exists a further compact subset K ′′ ⊂ Z ′M

s.t. h(xζ ′c′) 6= 0 =⇒ x ∈ U1, ζ
′c′ ∈ K ′′. Write a = bc = bc′z, we see that

BM
ϕ (u−1 , u

−
2 ,m, h1) = ωπ(z)

∑
ζ

BM(ζc′, h)BM
ϕc(u

−
1 , u

−
2 , ũ1ẇMbζ

−1ũ2, h0)

is zero unless c′ ∈
⋃
ζ′(ζ

′)−1K ′′, which is compact since it is a finite union of compact

subsets.

So

BM
ϕ (u−1 , u

−
2 ,m, h1) = BM

ϕ (u−1 , u
−
2 , ũ1ẇMaũ2, h1) = BM

ϕ (u−1 , u
−
2 , ũ1ẇMbc

′ũ2, h1)

= ωπ(z)BM
ϕ (u−1 , u

−
2 , ũ1ẇMbc

′ũ2, h1)

has compact support on c′ ∈ Z ′M , depending only on h through the choice of K ′′ and

AMd ∩ ZM . Thus independent of a and b.

Since h is smooth and its support in c′ is compact, for each fixed b, z, there exists

uniform compact subset Ωb,z ⊂ Z ′M s.t. h(xζc′c1) = h(xζc′), u−i (bzc′c1) = u−i (bzc′),

ũi(bzc
′c1) = ũi(bzc

′) (i = 1, 2) for all c1 ∈ Ωb,z, x ∈ U1, and c′ ∈ Z ′M . Shrinking Ωb,z if

necessary, we may assume that Ωb,z ⊂ Z ′M(OF ), so ϕcc
′

= ϕc for all c1 ∈ Ωb,z. So we

have proved that

BM
ϕ (u−1 (ac1), u−2 (ac1),m(ac1), h1)

= BM
ϕ (u−1 (bzc′c1), u−2 (bzc′c1), ũ1(bzc′c1)ẇMbzc

′c1ũ2(bzc′c1), h1)

= BM
ϕ (u−1 (bc′z), u−2 (bc′z), ũ1(bc′z)ẇMbc

′zũ2(bc′z), h1)

= ωπ(z)BM
ϕ (u−1 (bc′z), u−2 (bc′z), ũ1(bc′z)ẇMbc

′ũ2(bc′z), h1)

= BM
ϕ (u−1 (a), u−2 (a),m(a), h1)
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for all c1 ∈ Ωb,z, a = bc.

Finally note that since Aw
′

wG
Aw′ ⊂ AwG = A is open of finite index, one can extend

BM
ϕ (u−1 (a), u−2 (a),m(a), h1) on all of A.

6.5 Asymptotic Expansions

We are ready to establish a more general version of the asymptotic expansion

formula for partial Bessel integrals as in [7]. The formula that will be established

works for all elements in the relevant Bruhat cells.

The following proposition is the key to prove the main results in this section.

Proposition 6.5.1 Let w′ = ẇGẇ
−1
M ∈ B(G), and fw′ ∈ C∞c (Ωw′ ;ωπ). There exists

f1,w′ ∈ C∞c (Ωw′ ;ωπ), such that

(1), ∃ a family of functions {fw′′}w′′∈B(G) with dB(w′′, w′) = 1, w′′ > w′, such that

fw′′ ∈ C∞c (Ωw′′ ;ωπ), and for ∀w ∈ B(G) and g ∈ CG
r (w), we have

BG
ϕ (g, fw′) = BG

ϕ (g, f1,w′) +
∑

w′′∈B(G),w′′>w′,dB(w′′,w′)=1

BG
ϕ (g, fw′′);

(2), Let g = u1(a)ẇGau2(a) ∈ CG
r (ẇG), where ui(a)’s are rational functions(as

algebraic varieties) of a. Write u1(a) = u−1 (a)u+
1 (a) ∈ U−(w′)−1U

+
(w′)−1 = U and u2(a) =

u+
2 (a)u−2 (a) ∈ U+

w′U
−
w′ = U , then u±i (a)’s are all rational functions of a ∈ A. Then

g = u−1 (a)w′m(a)u−2 (a) and m(a) = w′−1u+
1 (a)w′ẇMau

+
2 (a) = ũ1(a)ẇMaũ2(a) where

ũ1 = w′−1u+
1 w
′, ũ2 = u+

2 . And we have And we have

BG
ϕ (g, f1,w′) = ωπ(z)BG

ϕ (u1(bc′z)ẇGbc
′u2(bc′z), f1,w′)

is uniformly smooth as a function of c′ ∈ A′w′ = Z ′M for each fixed b and z.

Proof Take h = hfw′ ∈ C∞c (M,ωπ) which maps to fw′ under the surjective map

C∞c (M ;ωπ) � C∞c (Ωw′ , ωπ) in Lemma 6.0.2. Construct h1 based on h as Lemma 6.3.5

such that BM
ϕ (a, h1) = BM

ϕ (a, h) for all a ∈ ZM = Aw′ . We have h1 ∈ C∞c (M ;ωπ). Let

f1 be the image of h1 under the map C∞c (M ;ωπ) � C∞c (Ωw′ , ωπ). Then by the transfer



68

principal of partial Bessel integrals (Proposition 6.2.1), we have for Levi subgroups

L, M of G with A ⊂ L ⊂M ⊂ G, and g = u1ẇ
G
Lau2 = u−1 w

′mau−2 ∈ Cr(wGL ),

BG
ϕ (g, f1) = ψ(u−1 )ψ(u−2 )BM

ϕ (u−1 , u
−
2 ,m, h1).

Apply this with the case when L = M , and g = w′a, a ∈ AwGM = Aw′ = ZM , then

u−1 = u−2 = 1. So we have

BG
ϕ (w′a, f1) = BM

ϕ (a, h1) = BM
ϕ (a, h) = BG(w′a, fw′)

by Lemma 6.3.5. So BG
ϕ (w′a, fw′ − f1) = 0 for all a ∈ Aw′ = ZM and fw′ − f1 ∈

C∞c (Ωw′ ;ωπ). Therefore by Lemma 6.3.1, Lemma 6.3.2, and Lemma 6.3.3, in addition

with a partition of unity argument, we can find a family of functions {fw′ : w′′ ∈

B(G), w′′ > w′, dB(w′′, w′) = 1, fw′′ ∈ C∞c (Ωw′′ ;ωπ)} such that for any w ∈ B(G) and

any g ∈ Cr(ẇ), we have

BG
ϕ (g, fw′) = BG

ϕ (g, f1) +
∑

w′′∈B(G),w′′>w′,dB(w′′,w′)=1

BG
ϕ (g, fw′′).

Moreover for each fw′′ we have w′′ = wGM ′′ , this will be used for induction later.

On the other hand if we apply the transfer principal (Proposition 6.2.1) for partial

Bessel integrals to the case L = A, then for g = u1ẇGau2 = u−1 w
′mu−2 ∈ Cr(ẇG) =

C(ẇG), where m = w′−1u+
1 w
′ẇMau

+
2 ∈ CM

r (ẇM) = CM(ẇM), we obtain that

BG
ϕ (g, f1) = BG

ϕ (u1ẇGau2, f1) = ψ(u−1 )ψ(u−2 )BM
ϕ (u−1 , u

−
2 ,m, h1)

If we decompose a ∈ Aw′wGAw′ as a = bc, and assume that u1 = u1(a) = u−1 (a)u+
1 (a),

u2 = u2(a) = u+
2 (a)u−2 (a) are rational maps in a, then g = g(a) = u1(a)ẇGau2(a) is

rational in a as well. Then by proposition 6.4.1 we have

BG
ϕ (g, f1) = BG

ϕ (g(a), f1) = BG
ϕ (u1(a)ẇGau2(a), f1)

= ψ(u−1 (a))ψ(u−2 (a))BM
ϕ (u−1 (a), u−2 (a),m(a), h1)

= ωπ(z)ψ(u−1 (bc′z)u−2 (bc′z))BM
ϕ (u−1 (bc′z), u−2 (bc′z), w′−1u+

1 (bc′z)w′ẇMbc
′u+

2 (bc′z), h1)

is compactly supported in c′ ∈ A′w′ = Z ′M , and therefore BG
ϕ (g(bc′z), f1) is uniformly

smooth as a function of c′ ∈ Z ′M for each fixed b, z.
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Next we are going to perform an induction on the Bessel distance dB(w, e), to obtain

the following main proposition for our final proof of supercuspidal stability:

Proposition 6.5.2 Fix an auxiliary function f0 ∈ C∞c (G;ωπ) with W f0(e) = 1. Let

f ∈M(π) with W f (e) = 1, and m ∈ Z with 1 ≤ m ≤ dB(wG, e) + 1. Then

(1) there exists a function f1,e ∈ C∞c (G;ωπ);

(2) for each w′ ∈ B(G) with 1 ≤ dB(w′, e) there exists f1,w′ ∈ C∞c (Ωw′ ;ωπ), and

for each w′′ ∈ B(G) with dB(w′′, e) = m there exists a function fw′′ ∈ C∞c (Ωw′′ ;ωπ)

such that for sufficiently large ϕ we have

(a) for any w ∈ B(G) we have

BG
ϕ (g, f) = BG

ϕ (g, f1,e) +
∑

1≤dB(w′,e)<m

BG
ϕ (g, f1,w′) +

∑
dB(w′′,e)=m

BG
ϕ (g, fw′′)

for ∀g ∈ Cr(ẇ);

(b) for each w ∈ B(G),BG
ϕ (g, f1,e) depends only on the auxiliary function f0 and

wπ for all g ∈ Cr(ẇ);

(c) for each w′ ∈ B(G) with 1 ≤ dB(w′, e) < m, and g = g(a) = u1(a)wGMau2(a) ∈

Cr(ẇ), parameterized by a ∈ A and such that ui(a)’s are both rational functions of

a ∈ A, we have that

BG
ϕ (g(a), f1,w′) = wπ(z)BG

ϕ (u1(bc′z)ẇGbc
′u2(bc′z), f1,w′)

is uniformly smooth as a function of c′ ∈ A′w′ = Z ′M for each fixed b, z, where

BG
ϕ (g(a), f1,w′) defined apriori on a = bc = bc′z ∈ Aw

′
ẇG
Aw′ ⊂ AẇG = A and finally

extended on all a ∈ A.

Proof First we fix an auxiliary function f0 ∈ C∞c (G;ωπ) with W f0(e) = 1. Take

f ∈M(π) ⊂ C∞c (G,ωπ) normalized such that W f (e) = 1. Then by Proposition 6.3.1,

we have the following result:

There exists f1,e ∈ C∞c (G;ωπ) and, for each w′ ∈ B(G) with dB(w′, e) = 1, there

exists a function fw′ ∈ C∞c (Ωw′ ;ωπ) such that for sufficiently large ϕ,
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(i) For any w ∈ B(G), we have

BG
ϕ (g, f) = BG

ϕ (g, f1,e) +
∑

w′∈B(G),dB(w′,e)=1

BG
ϕ (g, fw′)

for all g ∈ Cr(ẇ), the relevant cell attached to w;

(ii) For each w ∈ B(G), the partial Bessel integral BG
ϕ (g, f1,e) in (i) depends only

on the auxiliary function f0 and the central character ωπ for all g ∈ Cr(ẇ). (This

can be seen directly from the expansion formula for BG
ϕ (g, f1,e) as in the proof of

Proposition 6.3.1.)

By proposition 6.5.1, we also have that for each fw′ ∈ C∞c (Ωw′ ;ωπ), there exists

f1,w′ ∈ C∞c (Ωw′ ;ωπ) such that for sufficiently large ϕ,

(i) There exists a family of functions {fw′,w′′} ∈ C∞c (Ωw′′ ;ωπ), parameterized by

w′′ ∈ B(G) with w′′ > w′ and dB(w′′, w′) = 1 such that for any w ∈ B(G) and any

g ∈ Cr(ẇ), we have

BG
ϕ (g, fw′) = BG

ϕ (g, f1,w′) +
∑

w′′∈B(G),w′′>w′,dB(w′′,w′)=1

BG
ϕ (g, fw′,w′′);

(ii) Let g = u1(a)ẇGau2(a) ∈ CG
r (ẇG) = CG(ẇG), where ui(a)’s are rational

functions of a ∈ A. Write u1(a) = u−1 (a)u+
1 (a) ∈ U−w′−1U

+
w′−1 = U and u2(a) =

u+
2 (a)u−2 (a) ∈ U+

w′U
−
w′ = U , then u±i (a)’s are all rational functions of a ∈ A, then

g = u−1 (a)w′m(a)u−2 (a) and m(a) = w′−1u+
1 (a)w′ẇMau

+
2 (a) = ũ1(a)ẇMaũ2(a) where

ũ1 = w′−1u+
1 w
′, ũ2 = u+

2 . And we have

BG
ϕ (g, f1,w′) = wπ(z)BG

ϕ (u1(bc′z)ẇGbc
′u2(bc′z), f1,w′)

is uniformly smooth as a function of c′ ∈ A′w′ = Z ′M for each fixed b, z.

Combine the above two results we obtain that for any w ∈ B(G),

BG
ϕ (g, fw′) = BG

ϕ (g, f1,w′) +
∑

dB(w′,e)=1

BG
ϕ (g, f1,w′)

+
∑

dB(w′′,w′)=dB(w′,e)=1

BG
ϕ (g, fw′,w′′)
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= BG
ϕ (g, fw′) = BG

ϕ (g, f1,w′) +
∑

dB(w′,e)=1

BG
ϕ (g, f1,w′) +

∑
dB(w′′,e)=2

BG
ϕ (g, fw′,w′′)

for any g ∈ Cr(ẇ).

Let fw′′ =
∑

dB(w′′,w′)=1 fw′,w′′ , then we see that fw′′ ∈ C∞c (Ωw′′ ;ωπ). Hence for

any w′′ ∈ B(G) with dB(w′′, e) = 2, there exist fw′′ ∈ C∞c (Ωw′ ;ωπ) such that for

sufficiently large ϕ

(i) for any w ∈ B(G) and g ∈ Cr(ẇ) we have

BG
ϕ (g, fw′) = BG

ϕ (g, f1,w′) +
∑

dB(w′,e)=1

BG
ϕ (g, f1,w′) +

∑
dB(w′′,e)=2

BG
ϕ (g, fw′′);

(ii) for each w ∈ B(G), BG
ϕ (g, f1,e) depends only on the auxiliary function f0 and

the central character ωπ for all g ∈ Cr(ẇ);

(iii) for g = u1(a)ẇGau2(a) ∈ CG
r (ẇG) = CG(ẇG), parameterized by a, where

ui(a)’s are rational functions of a, we have

BG
ϕ (g, f1,w′) = wπ(z)BG

ϕ (u1(bc′z)ẇGbc
′u2(bc′z), f1,w′)

is uniformly smooth as a function of c′ ∈ A′w′ = Z ′M for each fixed b, z.

We proceed by induction on m = dB(w, e) with w ∈ B(G), and use Proposition

6.5.1 on each step, we obtain the statements in the Proposition.

Now if we apply Proposition 6.5.2 to the case when m = dB(wG, e) + 1, we obtain

a final result that we need for the proof of supercuspidal stability in our case:

Proposition 6.5.3 Fix an auxiliary function f0 ∈ C∞c (G;ωπ) with W f0(e) = 1. Let

f ∈M(π) with W f (e) = 1, Then

(1) there exists a function f1,e ∈ C∞c (G;ωπ);

(2) for each w′ ∈ B(G) with 1 ≤ dB(w′, e) there exists f1,w′ ∈ C∞c (Ωw′ ;ωπ) such

that for sufficiently large ϕ we have

(a)

BG
ϕ (g, f) = BG

ϕ (g, f1,e) +
∑

1≤dB(w′,e)

BG
ϕ (g, f1,w′)

for g ∈ Cr(ẇG) = C(ẇG);
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(b) BG
ϕ (g, f1,e) depends only on the auxiliary function f0 and wπ for all g ∈ C(ẇG);

(c) for each w′ ∈ B(G) with 1 ≤ dB(w′, e), and g = g(a) = u1(a)ẇGau2(a) ∈

C(ẇG), parameterized by a ∈ A and such that ui(a)’s are both rational functions of

a ∈ A, we have that

BG
ϕ (g(a), f1,w′) = wπ(z)BG

ϕ (u1(bc′z)ẇGbc
′u2(bc′z), f1,w′)

is uniformly smooth as a function of c′ ∈ A′w′ = Z ′M for each fixed b, z.
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7. SUPERCUSPIDAL STABILITY

Now we have all the ingredients for the final proof of supercuspidal stability in our

case. First recall that we have reduced Proposition 3.0.4 to the proof of the stability

of local coefficient, since the adjoint action r : LMH −→ GL(LnH) is irreducible. And

from Langlands-Shahidi method, Cψ(s, π) = γ(s, π, Sym2⊗ η, ψ). We wrote the local

coefficients as the Mellin transform of the partial Bessel functions jπ,η,ẇθ,κ(g), where

g = −1
2
ẇG

tY −1. By an appropriate choice of orbit space representatives of the space

UMH
\NH , we can pick Y = Y (a1, · · · , an). Then by induction on n we can show

that such g lies in the big cell. Let g = u1ẇGau2 be its Bruhat decomposition. Since

g 7→ u1, g 7→ a, g 7→ u2 are all morphisms of algebraic varieties, we see that here the

entries of a, u1 = u1(a), and u2 = u2(a) are all rational functions of (a1, a2, · · · , an) ∈

(F×)n. We have g = u1ẇGau2 = u1(a)ẇGau2(a) ∈ Cr(ẇG) = C(ẇG) ⊂ Ωw′ , write

g = u1ẇGau2 = u−1 u
+
1 ẇGau

+
2 u
−
2 = u−1 w

′mu−2 ,

where m = (w′)−1u+
1 w
′ẇMau

+
2 ∈ CM

r (ẇM) with u−1 ∈ U−(w′)−1 , u
+
1 ∈ U+

(w′)−1 , u
+
2 ∈

U+
w′ , u

−
2 ∈ U−w′ , u1 = u−1 u

+
1 , u2 = u+

2 u
−
2 . Since u1(a) and u2(a) are both rational

functions of a, the projection maps ui(a) 7→ u±i (a) are rational maps, so u±i (a)’s are

all rational functions of a. So we can apply Proposition 6.4.1 to our case with ũ1(a) =

(w′)−1u+
1 (a)w′, ũ2(a) = u+

2 (a). Now we see that the conditions for Proposition 6.17

are all satisfied for our g.

By Proposition 5.4.4,

Cψ(s, ση)
−1 = γ(ns, ω2

π, ψ)−1

∫
F×\R

jπ,η,ẇθ,κ(−
1

2
ẇG

tY −1)

·ωπ(4 det(Y )2

n∏
i=1

a−2
i )|1

2
|
n(n−s)

2 | det(Y )|
2ns−s−n

2

n∏
i=1

|ai|i−1−nsdai
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In the Bruhat decomposition g = −1
2
ẇG

tY −1 = u1(a)ẇGau2(a) if we write a =

diag{d1, · · · , dn}, then a direct calculation shows that

d1 =

∏
j even a

2
j∏

k odd a
2
k

, d2 =

∏
k 6=1, odd a

2
k

4
∏

j even a
2
j

, d3 =

∏
j 6=2, even a

2
j∏

k 6=1, odd a
2
k

,

d4 =

∏
k 6=1,3, odd a

2
k

4
∏

j 6=2, even a
2
j

, · · · , dn

and dn = 1
4a2n

if n is even, dn = 1
a2n

if n is odd. And no matter n is even or odd

we have di · di+1 = 1
4a2i

for all 1 ≤ i ≤ n − 1. Recall that the action of F× on

R ' (F×)n is given by t · (a1, · · · , an) = (t2a1, t
2a2, · · · t2an−1, tan). From the above

observation, it is clear that this action is equivalent to the action of F× on A =

{diag{d1, · · · , dn) : di ∈ F×} by t · diag(d1, d2, · · · , dn) = diag(d1
t2
, d2
t2
, · · · , dn

t2
). Thus

the action of F× on R translates into the action of Z on A. Meanwhile the change

of variable (a1, · · · , an) 7→ (d1, · · · , dn) translates the measure given by the ai’s into

a unique measure given by the di’s, with the determinant of the Jacobian matrix a

rational function of the di’s. Recall that by the computation at the end of section

5.3, det(g) = det(Y )−1 =
(− 1

2
)n∏

k odd a
2
k
, if n is even; det(g) = det(Y −1) =

(− 1
2

)n−1∏
k odd a

2
k

if n

is odd. In both cases det(Y −1) ∈ (F×)2. On the other hand, det(Y )2 = 1
(d1···dn)2

=

1
d1(d1d2)(d2d3)···(dn−1dn)dn

. The last expression is equal to 1
d1

(4a2
1)(4a2

2) · · · (4a2
n−1)(4a2

n) if

n is even, and 1
d1

(4a2
1)(4a2

2) · · · (4a2
n−1)a2

n if n is odd. Therefore det(Y )2
∏n

i=1 a
−2
i = 4n

d1

if n is even and 4n−1

d1
if n is odd. Meanwhile,

∏n
i=1 |ai|i−1−ns =

∏n
i=1 |a2

i |
i−1−ns

2 =∏n−1
i=1 (| 1

4di·di+1
| i−1−ns

2 ) · | 1
4dn
|n−1−ns

2 = |1
2
|
n(n+1)

2
−ns−1 ·

∏n−1
i=1 (| 1

di·di+1
| i−1−ns

2 ) · | 1
dn
|n−1−ns

2 if

n is even, and
∏n

i=1 |ai|i−1−ns =
∏n−1

i=1 (| 1
4di·di+1

| i−1−ns
2 ) · | 1

dn
|n−1−ns

2 = |1
2
|
n(n−1)

2
−ns−1 ·∏n−1

i=1 (| 1
di·di+1

| i−1−ns
2 ) · | 1

dn
|n−1−ns

2 if n is odd. Let ν(n, s) = n(n−s)
2

+ n(n+1)
2
− ns − 1 if

n is even and n(n−s)
2

+ n(n−1)
2
− ns− 1 if n is odd.

Let A = A′Z, which gives d′i = di/d1, (1 ≤ i ≤ n). Then since d′1 = 1,

ωπ(4 det(Y ′)2
∏n

i=1 a
′−2
i ) is equal to ωπ(4n+1) if n is even and ωπ(4n) if n is odd,

denote this number by cπ. From the above observations we see that there exists com-
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plex numbers τ(i, s), which are of the form τ(i, s) = pi + sqi, s ∈ C with pi, qi ∈ Q

depending only on 1 ≤ i ≤ n, such that

Cψ(s, ση)
−1 = cπ|

1

2
|ν(n,s)γ(ns, w2

π, ψ)−1

∫
A′
jπ,η,ẇθ,κ(g

′(a))
n∏
i=2

|d′i|τ(i,s)

2∏
i=2

d×d′i

where g′ = g(a′) = u1(a′)ẇGa
′u2(a′) with a = a′z, and a′ = diag{d′1, · · · , d′n}.

Now let’s prove Proposition 3.0.4.

Proof (Proof of Proposition 3.0.4) If we are given two irreducible supercuspidal

representations π1 and π2 of GLn(F ) with the same central character wπ1 = wπ2 , lift

them to representations of MH(F ) and denote them by σ1 and σ2 respectively, then

by Proposition 5.9 and the above argument,

Cψ(s, σ1,η ⊗ χ)−1 − Cψ(s, σ2,η ⊗ χ)−1 = cπ|
1

2
|ν(n,s)γ(ns, (wπχ

n)2, ψ)−1Dχ(s)

where

Dχ(s) =

∫
A′

(jπ1⊗χ,η,ẇθ,κ(g(a′))− jπ2⊗χ,η,ẇθ,κ(g(a′)))
n∏
i=2

|d′i|τ(i,s)

n∏
i=2

d×d′i

Pick fi ∈ M(πi) such that W fi(e) = 1, for i = 1, 2, and such that for g =

−1
2
ẇG

tY −1 = g(a) = u1(a)ẇGau2(a). By Proposition 5.4.5,

jπi,η,ẇθ,κ(g(a), fi) = η(a(g))−1| det(g)|
s
2BG

ϕ (g(a), fi).

For convenience let Jπi,η,ẇθ,,κ(g, fi) = η(a(g))| det(g)|− s2 · jπi,η,ẇθ,,κ(g, fi). We may

also assume that κ is sufficiently large so that Proposition 6.5.2 holds for both f1 and

f2 with the same auxiliary function f0. Then apply Proposition 6.5.3 (2)(a), we have

Jπ1,η,ẇθ,κ(g(a′))− Jπ2,η,ẇθ,κ(g(a′)) = BG
ϕ (g(a′), f1)−BG

ϕ (g(a′), f2)

= BG
ϕ (g(a′), f1,1,e)−BG

ϕ (g(a′), f2,1,e) +
∑

1≤dB(w′,e)

(BG
ϕ (g(a′), f1,1,w′)−BG

ϕ (g(a′), f2,1,w′))

Now since both BG
ϕ (g(a′), f1,1,e) and BG

ϕ (g(a′), f2,1,e) depend only on the auxiliary

function f0, the central character ωπ = ωπ1 = ωπ2 , and η, we see that

BG
ϕ (g(a′), f1,1,e)−BG

ϕ (g(a′), f2,1,e) = 0.
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So we are left with

Jπ1,η,ẇθ,κ(g(a′))− Jπ2,η,ẇθ,κ(g(a′)) =
∑

1≤dB(w′,e)

(BG
ϕ (g(a′), f1,1,w′)−BG

ϕ (g(a′), f2,1,w′))

Meanwhile, notice that jπ⊗χ,η,ẇθ,κ(g) = χ(det(g))jπ,η,ẇθ,κ(g). So we have

jπ1⊗χ,η,ẇθ,κ(g(a′))− jπ2⊗χ,η,ẇθ,κ(g(a′))

= χ(det(a′))(jπ1,η,ẇθ,κ(g(a′))− jπ2,η,ẇθ,κ(g(a′))).

Moreover, since det(g′) = det(a′) = d1···dn
dn1

, and as we saw before both d1 · · · dn and

d1 are in (F×)2, so det(g′) ∈ (F×)2. Recall that at the end of section 5.1, we have

MHD = {(g, a) ∈ MH : det(g)a(g)2 = 1}◦, there is a unique a(g) ∈ F× such that

det(g)a(g)2 = 1, denote it by det(g)−
1
2 . Then η(a(g′)) = η(det(g′)−

1
2 ) = η(det(a′)−

1
2 ).

Now put everything together we obtain that

Dχ(s) =

∫
A′

(
∑

1≤dB(w′,e)

(BG
ϕ (g(a′), f1,1,w′)−BG

ϕ (g(a′), f2,1,w′)))χ(det(a′))

·η(det(a′)−
1
2 )−1| det(a′)|

s
2

n∏
i=2

|d′i|τ(i,s)

n∏
i=2

d×d′i

=
∑

1≤dB(w.e)

∫
Aw
′

ẇG

(

∫
A′
w′

(BG
ϕ (g(bc′), f1,1,w′)−BG

ϕ (g(bc′), f2,1,w′))
n∏
i=2

|c′i|τ(i,s)χ(det(c′))

·η(det(c′)−
1
2 )−1| det(c′)|

s
2dc′)χ(det(b))η(det(b)−

1
2 )−1| det(b)|

s
2

n∏
i=2

|bi|τ(i,s)db.

where a = diag(d1, · · · , dn) = bc = bc′z gives the corresponding entries bi of b and c′i

of c′ for 1 ≤ i ≤ n, and the measure db and dc′ on Aw
′

ẇG
and Aw′ respectively.

Notice that inside the inner integral the function

(BG
ϕ (g(bc′), f1,1,w′)−BG

ϕ (g(bc′), f2,1,w′))
n∏
i=2

|c′i|τ(i,s)

is uniformly smooth as a function of c′ ∈ Aw′ for each fixed b ∈ Aw
′

ẇG
, since both

BG
ϕ (g(bc′), f1,1,w′) and BG

ϕ (g(bc′), f2,1,w′) are by Proposition 6.5.3.
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Therefore if we take χ to be sufficiently ramified, we see that the inner integral∫
A′
w′

(BG
ϕ (g(bc′), f1,1,w′)−BG

ϕ (g(bc′), f2,1,w′))
n∏
i=2

|c′i|τ(i,s)χ(det(c′))

·η(det(c′)−
1
2 )−1| det(c′)|

s
2dc′ = 0

So we obtain that Dχ(s) = 0, and therefore

Cψ(s, σ1,η ⊗ χ) = Cψ(s, σ2,η ⊗ χ).
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