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ABSTRACT 

Sewer pipelines are an essential component of wastewater infrastructure and serve as the 

primary means for transporting wastewater to treatment plants. In the face of increasing demands 

and declining budgets, municipalities across the US face unprecedented challenges in maintaining 

current service levels of the 800,000 miles of public sewer pipes. Inadequate maintenance of sewer 

pipes leads to inflow and infiltration, sanitary sewer overflows, and sinkholes, which threaten 

human health and are expensive to correct. Accurate condition information from sewers is essential 

for planning maintenance, repair, and rehabilitation activities and ensuring the longevity of sewer 

systems. Currently, this information is obtained through visual closed-circuit television (CCTV) 

inspections and deterioration modeling of sewer pipelines. CCTV inspection facilitates the 

identification of defects in pipe walls whereas deterioration modeling estimates the remaining 

service life of pipes based on their current condition. However, both methods have drawbacks that 

limit their effective usage for sewer condition assessment. For instance, CCTV inspections tend to 

be labor intensive, costly, and time consuming, with the accuracy of collected data depending on 

the operator’s experience and skill level. Current deterioration modeling approaches are unable to 

incorporate spatial information about pipe deterioration, such as the relative locations, densities, 

and clustering of defects, which play a crucial role in pipe failure. This study attempts to leverage 

recent advances in deep learning and data mining to address these limitations of CCTV inspection 

and deterioration modeling and consists of three objectives.  

 

The first objective of this study seeks to develop algorithms for automated defect interpretation, to 

improve the speed and consistency of sewer CCTV inspections. The development, calibration, and 

testing of the algorithms in this study followed an iterative approach that began with the 

development of a defect classification system using a 5-layer convolutional neural network (CNN) 

and evolved into a two-step defect classification and localization framework, which combines a 

the ResNet34 CNN and Faster R-CNN object detection model. This study also demonstrates the 

use of a feature visualization technique, called class activation mapping (CAM), as a diagnostic 

tool to improve the accuracy of CNNs in defect classification tasks—thereby representing a crucial 

first step in using CNN interpretation techniques to develop improved models for sewer defect 

identification.  
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Extending upon the development of automated defect interpretation algorithms, the second 

objective of this study attempts to facilitate autonomous navigation of sewer CCTV robots. To 

overcome Global Positioning System (GPS) signal unavailability inside underground pipes, this 

study developed a vision-based algorithm that combines deep learning-based object detection with 

optical flow for estimating the orientation of sewer CCTV cameras. This algorithm can enable 

inspection robots to estimate their trajectories and make corrective actions while autonomously 

traversing pipes. Hence, considered together, the first two objectives of this study pave the way 

for future inspection technologies that combine automated defect interpretation with autonomous 

navigation of sewer CCTV robots. 

 

The third and final objective of this study seeks to develop a novel methodology that incorporates 

spatial information about defects (such as their locations, densities, and co-occurrence 

characteristics) when assessing sewer deterioration. A methodology called Defect Cluster Analysis 

(DCA) was developed in order to mine sewer inspection reports and identify pipe segments that 

contain clusters of defects (i.e., multiple defects in proximity). Additionally, an approach to mine 

co-occurrence characteristics among defects is also introduced (i.e., identification of defects which 

occur frequently together). Together the two approaches (i.e., DCA and co-occurrence mining) 

address a key limitation of existing deterioration modeling approaches (i.e., the lack of 

consideration to spatial information about defects)—thereby leading to the generation of new 

insights into pipeline rehabilitation decision-making.  

 

The algorithms and approaches presented in this dissertation have the potential to improve the 

speed, accuracy, and consistency of assessing sewer pipeline deterioration, leading to better 

prioritization strategies for maintenance, repair, and rehabilitation. The automated defect 

interpretation algorithms proposed in this study can be used to assign the subjective and error-

prone task of defect identification to computer processes, thereby enabling human operators to 

focus on decision-making aspects, such as deciding whether to repair or rehabilitate a pipe. 

Automated interpretation of sewer CCTV videos could also facilitate re-evaluation of historical 

sewer inspection videos, which would be infeasible if performed manually. The information 

gleaned from re-evaluating these videos could generate insights into pipe deterioration, leading to 



 

14 

improved deterioration models. The algorithms for autonomous navigation could enable the 

development of completely autonomous inspection platforms that utilize unmanned aerial vehicles 

(UAVs) or similar technologies to facilitate rapid assessment of sewers. Furthermore, these 

technologies could be integrated into wireless sensor networks, paving the way for real-time 

condition monitoring of sewer infrastructure. The DCA approach could be used as a diagnostic 

tool to identify specific sections in a pipeline system that have a high propensity for failure due to 

the existence of multiple defects in proximity. When combined with contextual information (e.g., 

soil properties, water table levels, and presence of large trees), DCA could provide insights about 

the likelihood of void formation due to sand infiltration. The DCA approach could also be used to 

periodically determine how the distribution of defects and their clustering progresses with time 

and when examined alongside contextual data (e.g., soil properties, water table levels, presence of 

trees) could reveal trends in pipeline deterioration.  
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  INTRODUCTION 

Wastewater infrastructure represents a significant investment in physical assets, with over 800,000 

miles of public sewage pipes and 500,000 miles of private wastewater pipeline laterals in the US 

alone (ASCE 2017). While municipalities have invested heavily in wastewater pipeline system 

expansion, they have allocated a relatively smaller proportion of the budget to wastewater pipeline 

rehabilitation (AWWA 2012). As a result, many municipalities across the US face the problem of 

aging wastewater infrastructure in dire need of repair, rehabilitation or renewal. The lack of 

funding towards wastewater infrastructure rehabilitation is highlighted in the Clean Watersheds 

Needs Survey, which estimated the wastewater and stormwater treatment and collection 

requirements for the US at $271 billion, as of January 1, 2012 (EPA 2012).  

Sanitary sewer pipes are an essential component of wastewater infrastructure and serve as the 

primary means for transporting wastewater to treatment plants (Baah et al. 2015). Inadequate 

maintenance of sewer pipes leads to issues such as inflow and infiltration, sanitary sewer overflows, 

and sinkholes, which threaten human health and also tend to be very expensive to correct. For 

instance, the cost to repair the 2016 Fraser sinkhole in Michigan was estimated at over US $78 

million. Inflow and infiltration, which are often caused by cracks in wastewater pipeline walls, 

root intrusions, and leaking manholes, cost municipalities an additional treatment cost of $2 to $5 

per thousand gallons of sewage (EPA 2014). The EPA also estimates between 23,000 and 75,000 

sanitary sewer overflows each year in the US, which release large quantities of untreated sewage 

into the environment, exposing humans to a variety of illnesses (EPA 2016). Accurate condition 

information about sewer pipelines is essential to plan maintenance, renewal and rehabilitation 

activities. Currently, this information is obtained through visual closed-circuit television (CCTV) 

inspections and deterioration modeling. However, both methods have serious drawbacks limiting 

their usage for sewer condition assessment. 

1.1 Limitations of Manual CCTV Inspections 

Over the past 40 years, municipalities in North America have used closed-circuit television (CCTV) 

as the primary technique for inspecting non-man-entry wastewater pipes (see Figure 1.1). CCTV 



 

16 

inspection involves recording a video of the inner surface of a pipe using a camera equipped 

crawler. Trained inspectors review the recorded CCTV videos either in real-time (i.e., while 

navigating the camera crawler) or offline (i.e., after the inspection has been completed), and 

manually identify defects (e.g., roots, deposits, cracks, etc.). However, this manual process of 

reviewing CCTV sewer inspection videos relies on a subjective evaluation of defects and has the 

propensity to be error prone and inconsistent (Harvey and McBean 2014).  

 

Figure 1.1 Overview of the CCTV inspection technique 

 

Dirksen et al. (2013) showed CCTV images of sewer defects from 60 different sewer inspections 

to six trained operators in order to compare the operators’ interpretations. Their study found that 

the operators’ interpretations disagreed on approximately 40 percent of the images, highlighting 

the subjective nature of CCTV inspections. Based on data from 45,049 sewer inspections in the 

city of Braunschweig, Germany, Caradot et al. (2018) calculated that operators underestimated 

and overestimated the severity of 15 percent and 20 percent of the defects, respectively. Manual 

review of the inspection videos also tends to be slow and labor intensive since the operators must 

carefully inspect the videos to identify potential defects in the pipe. In order to ensure consistency 

in defect reporting, CCTV reports are frequently reviewed and audited offsite, leading to low 

overall inspection rates and higher inspection costs. According to an EPA study, US municipalities 

on average spend $0.84 per linear foot for sewer CCTV inspections (Feeney et al. 2010). Due to 

the high inspection costs, municipalities typically inspect only a small fraction of their networks, 

owing to budgetary limitations. A survey of 75 US municipalities by the National Association of 

Clan Water Agencies found that about half of the municipalities inspect less than 10% of their 
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system each year. (AMSA 2003). Hence, there is a need for technologies to improve the defect 

interpretation consistency and speed of sewer CCTV inspections. 

1.2 Limitations of Sewer Deterioration Modeling 

CCTV inspections provide a snapshot about the condition of a pipe on the date of inspection. 

Deterioration modeling aims to predict the future condition of pipes which is essential for 

developing long-term maintenance, renewal, and rehabilitation plans. However, a major limitation 

of current sewer deterioration modeling approaches (Chapter 8 provides a more in-depth 

discussion about the limitations of existing deterioration modeling approaches) is a lack of 

consideration for spatial information about defects in a pipe.  For instance, upon completion of 

CCTV inspections, the identified defects in pipes are assigned numerical grades (typically between 

1 and 5) to denote their severity. The grades of defects in a pipe are then aggregated (i.e., typically 

by calculating the sum of individual defect grades) into a single condition grade to represent the 

amount of deterioration of a pipe. The aggregated condition grade is then used as basis to estimate 

a pipe’s likelihood of failure, remaining service life, and to determine the optimal choice and 

timing of maintenance or repairs. However, the aggregation of defect grades into a single condition 

grade leads to a loss of spatial information, i.e., information about the density, severity, and co-

occurrence characteristics of defects—information which can play a crucial role in calculating a 

pipe’s likelihood of failure. For instance, the approach of using a single aggregated condition grade 

overlooks the increased likelihood of failure of a pipe with defect clusters (i.e., areas with multiple 

defects in proximity). Figure 1.2 illustrates this problem. Under the conventional method of 

assigning a single grade to pipes, the pipes in Figure 1.2a and Figure 1.2b would both be assigned 

identical condition grades and hence be deemed to be equally prone to failure. 
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Figure 1.2 Illustration to signify the importance of considering defect locations along a pipe 

However, it could be argued that the pipe in Figure 1.2b has a higher likelihood of failure for the 

following reasons: (1) defects, which are close to each other could propagate and coalesce into 

more severe defects; (2) multiple cracks and fractures may lead to soil infiltration leading to the 

formation of voids over the pipe. Voids over pipes are known to result in sinkholes; and (3) 

multiple defects in proximity can lead to a localized region of weakness, resulting in an increased 

likelihood of collapse. Hence, existing deterioration modeling approaches, which rely on 

aggregated condition scores, do not account for the relationships between defect locations and 

likelihood of failure. Thus, there is a need to develop techniques that also consider spatial 

information about defects when assessing pipe condition. 

1.3 Research Objectives 

This study aims to leverage recent advances in deep learning and data mining to address the 

challenges mentioned in Section 1.1 and Section 1.2 and consists of three research objectives. The 

first two objectives address the challenge of improving the defect interpretation consistency and 

speed of sewer CCTV inspections, whereas the third objective seeks to address the lack of 

consideration about spatial information of defects. The three objectives are as follows:  

Objective 1 – Development of an Automated Interpretation System for Sewer CCTV 

Inspections 

The primary focus of this study is on developing an automated interpretation system for sewer 

CCTV inspections, specifically, the development of algorithms for automated identification of 
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defects in CCTV videos (see Figure 1.3). The accuracy and speed of the defect identification 

algorithms will be evaluated will be evaluated in the detection of structural defects (i.e., cracks, 

fractures, and deformations), operational defects (i.e., root intrusions and deposits), and 

construction features (i.e., lateral connections), since these categories represent the majority of 

sewer defects and features. Additionally, the algorithms will be calibrated with emphasis on 8-

inch, 10-inch, and 12-inch diameter vitrified clay pipes (VCPs), since these pipes comprise a 

majority of the sewer mains in the US (Tafuri and Selvakumar 2002). However, the approaches 

described in this study can be extended to pipes of other materials and diameters.  

The development, calibration, and testing, of the algorithms in this study follows an iterative 

approach, beginning with algorithms for defect classification and concluding with a two-step 

defect detection framework that incorporates neural network interpretation techniques. Chapters 2, 

3, 4, 5, and 6 describe the various stages involved in the development and testing of the algorithms.  

 

Figure 1.3 Development of proposed automated CCTV inspection video interpretation system 

 

Objective 2 – Development of Algorithms to Facilitate Autonomous Navigation of Sewer 

Inspection Robots 

Extending the development of the automated interpretation system, the second objective of this 

study focuses on the development of algorithms that can facilitate autonomous navigation of 

CCTV inspection robots. Since underground pipelines are GPS-denied environments, this study 

aims to develop vision-based techniques for localizing the position of sewer CCTV inspection 

robots in pipes—in order to facilitate ‘self-driving’ inspection robots (see Figure 1.3). The 

algorithms will be calibrated for sewer CCTV robots operating in 8-inch, 10-inch, and 12-inch 
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diameter VCPs because these pipes represent a majority of sewer mains in the US. However, the 

algorithms can be extended for other inspection platforms, such as indoor unmanned aerial 

vehicles (UAVs), and for pipes of other materials and diameters. Autonomous navigation in sewers 

could facilitate significantly faster inspections and lead to reductions in labor requirements. 

Chapter 7 describes the development and evaluation of the autonomous navigation algorithms. 

 

Figure 1.4 Development of algorithms to facilitate autonomous navigation of sewer inspection 

robots 

 

Hence, considered together, the first two objectives of this study lay the foundation for the 

development of completely autonomous sewer pipeline inspection systems, that could 

significantly improve the speed, accuracy, and consistency of current condition assessment efforts. 

We envision that the future of sewer inspections would involve a network of robots that 

continuously and autonomously monitor the condition of pipes and relay the information to 

engineers, via wireless sensor networks, who make repair, rehabilitation, or replacement decisions. 

Although these research objectives encompass wastewater pipeline infrastructure, the approaches 

are adaptable to other horizontal infrastructure domains (such as water, oil, and gas pipelines) as 

well. 

Objective 3 – Mining Spatial Characteristics of Defects from Sewer Inspection Records 

Given the large extent of wastewater pipeline infrastructure and the burgeoning of rapid inspection 

technologies, the volume and velocity of pipe condition data is likely to grow at an unprecedented 

pace. Moreover, many municipalities have begun sharing information about their pipeline assets 
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through initiatives such as Data.gov (https://www.data.gov), thereby ushering in the creation of 

large datasets of publicly accessible sewer pipeline condition information. Hence, the third 

objective of this study seeks to develop techniques to mine these large datasets and discover 

insights that can be used to guide maintenance prioritization efforts. 

Specifically, this study seeks to develop a novel methodology for assessing sewer deterioration by 

incorporating spatial information, such as the locations, densities, and co-occurrence 

characteristics of defects in pipes (see Figure 1.4). A methodology called Defect Cluster Analysis 

(DCA) was developed in order to mine sewer inspection reports and identify pipe segments which 

contain defect clusters. Additionally, an approach to mine co-occurrence characteristics among 

defects is also introduced (i.e., identification of defects which occur frequently in pairs). Together 

the two approaches (i.e., DCA and co-occurrence mining) address the limitations of existing 

deterioration modeling approaches (i.e., the lack of consideration to spatial information about 

defects) thereby leading to new insights in pipe asset management and rehabilitation decision-

making. Chapter 8 describes the development and evaluation of the DCA and co-occurrence 

mining approaches. 

 

Figure 1.5 Mining large datasets of wastewater pipeline condition information 

1.4 Anticipated Contributions of this Study 

The algorithms for automated interpretation of CCTV videos, which are an outcome of Objective 

1, could facilitate consistent, accurate, and quick condition assessment of sewers by minimizing 

inspection errors due to fatigue, biases, and differing skill levels. The repetitive and error-prone 

task of identifying defects in videos could be assigned to computer processes, thereby enabling 
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inspectors to shift their focus on decision-making aspects, such as deciding to repair or rehabilitate 

a pipe. Automated interpretation of sewer CCTV videos could also facilitate re-evaluation of 

historical sewer inspection videos, which is a task that would be infeasible if performed manually. 

The information obtained from re-evaluating these videos could be used to develop statistical 

models for predicting sewer deterioration. For instance, the rate of deterioration of a pipe can be 

calculated by comparing multiple inspection videos of the same pipe, which were recorded at 

different instances of time. Automated defect detection algorithms can be incorporated into 

existing CCTV inspection reporting software, facilitating adoption by municipalities and condition 

assessment contractors. Moreover, these algorithms can also be extended to facilitate automated 

defect detection in water pipelines. Furthermore, this study aims to leverage deep learning to 

develop algorithms and approaches that improve upon the accuracy and speed of current sewer 

defect identification approaches.   

The algorithms for autonomous navigation, which are an outcome of Objective 2, could facilitate 

the development of completely autonomous inspection platforms for sewers. For instance, these 

algorithms could be integrated onboard unmanned aerial vehicles (UAVs) or similar technologies, 

to facilitate rapid inspection of sewers. Constrained by the speed at which the human eye can 

interpret videos, most sewer CCTV inspections are limited to a maximum speed of 1 foot/second. 

Inspection platforms that combine autonomous navigation with automated defect interpretation 

could facilitate inspections at significantly higher speeds, enabling a larger percentage of pipes to 

be inspected each year.   

The DCA approach developed as part of Objective 3, could provide asset managers with a tool to 

consider defects and their proximity in a way that has not been previously possible. DCA could be 

used as a diagnostic tool to identify sections of the pipe that are likely to fail or have the propensity 

to progress into severe defects. When combined with contextual information, DCA could provide 

additional insights, such as the likelihood of void formation due to sand infiltration. The DCA 

approach could be used to periodically determine how the distribution of defects and their 

clustering progresses with time and could reveal pipeline deterioration patterns. The identification 

of defect clusters could also inform the choice of rehabilitation option. For instance, the 

identification of defect clusters could lead to insights into whether whole length rehabilitation or 
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local patch repairs should be pursued. Furthermore, the mining of co-occurrence characteristics 

among sewer defects could highlight groups of defects which occur frequently together, allowing 

for the creation of customized maintenance plans. For instance, the identification of pipes which 

contain high water marks and fractured walls could indicate a high propensity for sewage 

exfiltration during sewer surges. Additionally, the identification of successive exfiltration and 

infiltration locations along a pipe could indicate the presence of external water flows that have the 

potential to compromise the pipe bedding, leading to sewer collapses.  

1.5 Chapter Organization 

This dissertation is divided into nine chapters and follows the ‘multiple publications’ format. Each 

chapter is self-contained and has its own introduction, review of related studies, methodology, 

analysis, and conclusion sections. Significant portions of these chapters have been published or 

submitted for review and publication in peer reviewed journals and/or refereed conferences. 

Chapter 1 discusses the motivations and objectives of this study and provides an overview of the 

methodological approach.  

Chapter 2 provides an overview of sewer CCTV inspections and reviews existing studies on 

automated interpretation of sewer CCTV inspections. This chapter discusses the limitations of 

feature engineering approaches and explains the rationale behind utilizing deep learning 

approaches for automated defect interpretation. 

Chapter 3 describes a framework that uses an ensemble of deep convolutional neural networks 

(CNNs) to classify root intrusions, deposits, and cracks in CCTV images. The framework also 

enables the classification of multiple instances of defects in images. This chapter is reprinted in 

part from Kumar, S. S., Abraham, D. M., Jahanshahi, M. R., Iseley, T., and Starr, J. (2018). 

Automated Defect Classification in Sewer Closed Circuit Television Inspections using Deep 

Convolutional Neural Networks. Automation in Construction, 91, 273-283. Permission to reprint 

not required by Elsevier. Tables and figure captions have been modified to maintain the form of 

the dissertation. 



 

24 

Chapter 4 extends the automated system proposed in Chapter 3, to facilitate detection (i.e., 

classification and localization) of defects. To this end, the three state-of-the-art CNN models—

single-shot detector (SSD), you only look once (YOLO), and faster region-based convolutional 

neural network (Faster R-CNN)—are evaluated for speed and precision in detecting sewer defects. 

This chapter is reprinted in part from Kumar, S. S., Wang, M., Abraham, D. M., Jahanshahi, M. 

R., Iseley, T., and Cheng, J. C. (2020). Deep Learning–Based Automated Detection of Sewer 

Defects in CCTV Videos. Journal of Computing in Civil Engineering, 34(1), 04019047. With 

Permission from ASCE (see Appendix A). Tables and figure captions have been modified to 

maintain the form of the dissertation. 

Chapter 5 describes a two-step CNN framework, which uses a pre-processing step to determine 

whether images contain defects or not and applies a defect detection algorithm only to those images 

that contain defects. The pre-processing step helps avoid unnecessary computations enabling faster 

and more accurate detection of sewer defects. This chapter is reprinted in part from Kumar, S. S. 

and Abraham, D. M. (2019). A Deep Learning Based Automated Structural Defect Detection 

System for Wastewater Pipelines, ASCE International Conference on Computing in Civil 

Engineering (i3CE 2019), Atlanta, Georgia, USA. With Permission from ASCE (see Appendix B). 

Tables and figure captions have been modified to maintain the form of the dissertation. 

Chapter 6 discusses how class activation mapping (CAM) can be used for interpreting CNNs and 

how the insights from CAM can lead to the development of a more generalizable automated defect 

detection system. This chapter is reprinted in part from Kumar, S. S. and Abraham, D. M. (2020). 

Leveraging Visualization Techniques to Develop Improved Deep Neural Network Architectures 

for Sewer Defect Identification, ASCE Construction Research Congress (CRC 2020), Tempe, 

Arizona, USA. With Permission from ASCE (see Appendix C). Tables and figure captions have 

been modified to maintain the form of the dissertation. 

Chapter 7 describes the development of a vision-based algorithm to determine the position of 

inspection robots in sewer pipelines. The algorithm proposed in this chapter serves two purposes: 

(1) facilitating autonomous navigation of sewer robots in pipelines and (2) automated localization 

of defects (i.e., longitudinal and circumferential) in pipelines. The work presented in this chapter 
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will be prepared as a journal paper and submitted to the Automation in Construction Journal in 

May 2020.  

Chapter 8 presents methods for mining spatial characteristics of defects from sewer pipeline 

inspection reports. Two approaches are presented in this chapter: (1) DCA, for identifying regions 

of high defect concentrations and (2) association rule mining of sewer defects to identify co-

occurrence patterns among different categories of defects. This chapter is reprinted from a 

manuscript that is currently under preparation: Kumar, S. S., Abraham, D. M., Choi, J. (2020). A 

Framework for Mining Spatial Characteristics of Sewer Defects from Inspection Databases. Tables 

and figure captions have been modified to maintain the form of the dissertation. 

Chapter 9 concludes the dissertation with a summary of the work, the contributions to the body of 

knowledge and practice, the limitations of the research, and recommendations for future research. 
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 BACKGROUND ON WASTEWATER PIPELINE 

INSPECTION AND ASSESSMENT 

Wastewater pipeline CCTV inspections typically involve multiple steps. First, the access points of 

a pipeline are located, typically through a review of as-built records and/or aerial imagery. For the 

types of pipes addressed in this study (i.e., vitrified clay sewer pipes with diameters ranging 

between 8 inches and 12 inches), the access points are typically manholes. Once the access points 

are located, the operators lower a CCTV camera-equipped inspection crawler down the access 

point into the pipe. The crawlers are connected with coaxial cables that supply power to the 

electronics on-board the crawler and also transmit the video feed from the cameras back to the 

operator. Inspection of the pipe involves navigating the inspection crawler from one end of the 

pipe to the other end and back, while simultaneously monitoring the video-feed. When defects 

(e.g., cracks, fractures, roots, etc.) are encountered in the pipe, the operator typically stops the 

motion of the robot and codes the defect (usually with the help of inspection reporting software). 

Coding a defect involves classifying the defect using an accepted convention such as the North 

American Society of Sewer Service Companies (NASSCO) Pipeline Assessment and Certification 

Program (PACP®), which requires the operator to identify the defect’s category (e.g., spiral crack, 

medium roots, large joint offset, hole, etc.), the defect’s longitudinal location, i.e., its linear 

distance from the access point, and its circumferential location, i.e., its location relative to the cross 

section of the pipe. Additionally, the NASSCO PACP also requires operators to code any lateral 

connections to the pipe. Once the pipe has been traversed and all defects and laterals identified, 

the crawler is navigated in the reverse direction towards the access point of entry, where it can be 

retrieved from. 

Defects are typically a function of ageing, environmental loading, quality of construction, 

inappropriate material usage, soil conditions, hydraulic properties, increased overburden loads, 

unanticipated user demands, or natural forces. The most common defects in wastewater pipeline 

systems are categorized as structural defects or operational defects according to the NASSCO 

PACP. Table 2.1 and Table 2.2 provide definitions of common operational and structural defects, 

respectively. 
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Table 2.1 Operational defects as defined by the NASSCO (2018) PACP 

Category Definition Types 

Deposits This code is used to report a wide range of 

deposits in wastewater pipeline systems. 

Deposits can cause flow turbulence and partial 

blockages and may reduce the hydraulic 

capacity of the wastewater pipeline. 

Attached deposits, settled 

deposits, ingressed 

deposits 

Roots This code is used to describe the ingress of roots 

through defects in the wastewater pipeline, pipe 

connections, or manholes. 

Fine roots, tap roots, 

medium roots, ball roots 

Infiltration Infiltration is the ingress of groundwater through 

a defect or porous area of pipe wall. 

 

Infiltration stain, 

infiltration weeper, 

infiltration dripper, 

infiltration runner, 

infiltration gusher 

Obstacles This code is used to record the presence of large 

and medium sized obstacles that are likely to 

cause a serious obstruction to the flow. 

Brick or masonry, pipe 

material in invert, object 

protruding through wall, 

rocks 
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Table 2.2 Structural defects as defined by the NASSCO (2018) PACP 

Category Definition Types 

Crack The crack code is used where a crack line 

is visible on a surface, but it is not visibly 

open, i.e., there is no gap between the 

edges of the crack. 

Longitudinal crack, 

circumferential crack, 

multiple cracks, spiral cracks, 

hinge cracks 

Fracture A fracture is a crack which is visibly open 

although the sections of the wall are still in 

place and not able to move. 

Longitudinal fracture, 

circumferential fracture, 

multiple fractures, spiral 

fractures, hinge fractures 

Hole This code is used when the pipe material is 

missing, and the surrounding soil exposed. 

This occurs where the pipe pieces have 

been completely dislodged from the pipe 

wall. 

Hole soil visible, hole void 

visible 

Deformed This code is used when the pipe is 

damaged to a point that the original cross-

section is noticeable altered. Deformation 

is the last stage of severity before collapse. 

Deformation vertical, 

deformation horizontal 

Collapse A collapse is termed as a deformation 

where there is complete loss of structural 

integrity with greater than 40 percent of 

the cross-sectional area lost. Collapses 

prevent the camera from passing this 

defect and hence surveys stop once a 

collapse is encountered. 

Collapse in pipe, collapse in 

brick wastewater pipeline 

Joint Offsets This defect code indicates a defective 

displacement at joints.  

Joint offset, joint separated, 

joint angular 

2.1 Related Studies on Automated Interpretation of CCTV Videos 

An automated method for interpreting wastewater pipeline CCTV videos could assist inspectors 

in quickly identifying defects and provide a more accurate and consistent method of evaluating 

pipe condition. The repetitive and error-prone task of identifying defects in videos could be 

assigned to computer processes, thereby enabling inspectors to shift their focus on decision-

making aspects, such as deciding to repair or rehabilitate a pipe.  
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Depending on the quality of video footage, an automated interpretation system could perform the 

following tasks: 

1. Classify defects by category (i.e., crack, fracture, etc.) 

2. Classify defects by type (i.e., circumferential crack, longitudinal crack, etc.) 

3. Determine the longitudinal location of defects (i.e., distance from the point of entry of the 

camera) 

4. Determine the circumferential location of defects (i.e., position relative to the cross-section) 

 

Prior research on automated interpretation of wastewater pipeline CCTV videos focuses primarily 

on defect classification by category. That is given an image from a wastewater pipeline, algorithms 

are developed to categorize the type of defects that are visible in the images. Between 1997 and 

2018 most research studies typically attempted to perform automated defect interpretation using 

feature engineering approaches. However, recent studies (i.e., 2018 onwards) have demonstrated 

improved defect detection accuracies and generalization capabilities when utilizing feature 

learning approaches (such as deep neural networks). 

2.1.1 Feature Engineering Approaches 

Early studies by Xu et al. (1998) and Moselhi and Shehab (2000) used image processing techniques 

such as edge detection, binary image thresholding, and Fourier transforms to extract features from 

wastewater pipeline CCTV images. Xu et al. (1998) used the extracted features to measure the 

cross-section profile of a pipe and identify deformations in plastic pipes, whereas Moselhi and 

Shehab (2000) used the extracted features to identify cracks, joint displacements, cross-section 

reduction, and spalling in 305mm (12-inch) diameter concrete and clay pipes. More recent studies 

used a two-step methodology which first segmented images into regions of interest and then 

extracted features from the regions of interest. This method of extracting features only from the 

regions of interest reduces the number of pixels that have to be analyzed, which reduces the 

processing time. Guo et al. (2009) used the concept of frame differencing to identify regions of 

interest, where candidate images are subtracted from a reference image of a healthy pipe section. 

The regions of interest are then inputted to feature extraction and classification modules to classify 

the type of defects. Guo et al. (2009) demonstrated their approach on approximately 300 images 
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extracted from 305mm (12 inches) diameter vitrified clay and concrete pipes located in Pittsburgh, 

Pennsylvania. Halfawy and Hengmeechai (2014a) and Halfawy and Hengmeechai (2014b) used 

morphological operations to identify regions of interest and histograms of oriented gradients (HOG) 

to extract features from the regions of interest. Their method used a support vector machine 

classifier to classify defects based on the extracted features. Their method was evaluated using 

images from concrete and vitrified clay pipes having diameters ranging from 250mm to 900mm, 

which were located in Regina and Calgary, Canada. Su and Yang (2014) used morphological 

segmentation based on edge detection to extract regions of interest and demonstrated on a test set 

consisting of images from vitrified clay pipes. This method had a higher accuracy than 

conventional morphological operations. Moradi and Zayed (2017) extracted spatio-temporal 

features from CCTV videos and trained a Hidden Markov Model to identify images that showed 

defects or anomalies in the pipe. They evaluated their method on images extracted from 610mm 

(24 inches) diameter concrete pipes located in Quebec, Canada. Hawari et al. (2018) proposed a 

method that used image processing techniques including thresholding, Gabor transformation, 

ellipse fitting, and segmentation to classify the defects contained in CCTV images of wastewater 

pipelines. Their method was tested on a sample of 32 images extracted from vitrified clay pipelines 

that were located in Qatar and had condition ratings ranging from very good to poor. Their method 

achieved precision scores, i.e., the ratio of true positives to the sum of true positives plus false 

positives of 73.7%, 52.9%, and 65.3% in classifying images of cracks, deposits, and displaced 

joints, respectively.  

2.1.2 Limitations of Feature Engineering Based Approaches 

The use of morphologies and feature extraction approaches limits the generalization capability of 

previously developed automated systems. Generalization capability of a classifier can be defined 

as the ability to classify images that exhibit significant variations (i.e., in terms of shape, color, 

texture, etc.) from the images used for training.  For instance, morphological operations require 

structuring elements (e.g., simple shapes used to convolve images with) to be manually calibrated 

through repeated trials on training images. As a result, structuring elements which may work well 

with training images captured under specific conditions (e.g., focal length of camera, distance 

between object and camera, focal length of lens, illumination conditions, etc.) may not be optimal 

for images captured under different conditions. Furthermore, morphological approaches are 
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susceptible to generating false positives in wastewater pipeline that have variations in internal 

surface colors due to surface staining, relining of pipes, change of material, etc. As a result, 

morphological approaches cannot be successfully used to extract ROIs in images that differ 

significantly from the training images, which the structuring elements are based on.  

Feature extraction methods, which use pre-engineered (or manually specified) features, have 

worked well in areas of pattern recognition, such as face detection, pedestrian tracking, etc. 

However, classifying images based on pre-engineered features results in a poorer generalization 

capability than recent deep learning-based automatic feature extractors (LeCun et al. 2015). As a 

result, the use of feature extraction methods for classifying images leads to a reduction in 

performance if the images used for testing vary significantly from the images used for training. 

Traditional feature extraction methods thus lack the generalization capability to deal with 

wastewater pipeline CCTV images that are known to exhibit large variations arising from 

differences in pipe geometry, materials, nature of defects, presence of internal linings, camera 

specifications, etc. Previous automated wastewater pipeline CCTV image classification methods 

have yielded high defect classification accuracies when applied to small datasets of images 

collected from a few sources.  For instance, the method proposed by Halfawy and Hengmeechai 

(Halfawy and Hengmeechai 2014c) yielded an average classification accuracy of 86% in 

classifying root intrusion defects, when tested on a set of 100 wastewater pipeline CCTV images 

collected from Regina and Calgary, in Canada. However, in order to develop an automated system 

for interpreting CCTV inspection videos, the classification performance, as measured by the 

accuracy, precision and recall of the classifier, should be tested on significantly larger datasets (i.e., 

few thousands) of images collected from multiple pipeline inspections.  

2.2 Deep Learning Approaches 

In recent years, there have been rapid improvements in image classification tasks due to the advent 

of deep learning. The breakthrough in deep learning occurred when Krizhevsky et al. (2012) 

created AlexNet, a deep convolutional neural network (CNN) with five convolutional layers, 

which won the ImageNet contest to classify 1.2 million high-resolution images. This breakthrough 

demonstrated that CNNs had a better generalization capability than feature extraction methods 

such as speeded up robust features (SURF) by Bay et al. (2008) and histograms of oriented 
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gradients (HOG) by Dallal and Triggs (2005). Generalization capability in this context refers to 

the ability to correctly classify images that exhibit significant variations in size, shape, color, or 

texture. Deep learning-based methods have a better generalization performance compared to 

previous methods since they do not use pre-engineered (i.e., manually specified) features for 

classifying images. Previous methods such as SURF and HOG use manually specified features 

(e.g., edges, corners, and gradients) as indicators for classifying images. Deep learning-based 

methods instead utilize a technique called feature learning, which does not rely on manually 

specified features. Instead, the optimal features for classifying images are automatically learned 

through an algorithm called backpropagation. Deep learning-based image classifiers have the 

capability to learn tens of thousands of optimal image features for classifying images, and these 

features are not limited to edges, corners, or gradients. As a result, deep learning-based methods 

can discern intricate patterns in images resulting in substantial improvements in generalization 

capability over previous methods such as SURF and HOG (LeCun et al. 2015). 

Chapter 3 of this dissertation describes the development of a CNN-based method for defect 

classification and has been published as Kumar et al. (2018). The automated system proposed by 

Kumar et. (2018) achieved an average classification accuracy of 87% on a test set comprising of 

2,000 images extracted from CCTV inspections of 8-inch and 10-inch diameter VCPs, prestressed 

concrete cylinder pipes, and ductile iron pipes. Their method took sewer images as input and used 

an ensemble of binary CNNs to identify whether the images contained root intrusions, deposits, or 

cracks. Hence, Kumar et al. (2018) demonstrated that CNNs could classify sewer CCTV images 

more accurately than the previous methods which used feature engineering.  
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 CNN-BASED AUTOMATED DEFECT 

CLASSIFICATION 

[ A version of this chapter has been published in the journal Automation in Construction]1 

In the last 5 years, there has been an emergence of deep learning algorithms for image classification, 

especially CNNs. CNNs discover tens of thousands of optimal pixel signatures to classify images 

with, resulting in significantly higher classification accuracies and a better generalization 

capability than previous methods (LeCun et al. 2015). A previous shortcoming of CNNs was the 

need for large datasets of training images and a subsequent high computational cost. However, this 

shortcoming has been overcome through the establishment of well-annotated databases such as 

ImageNet; and through advances in parallel computations using graphic processing units (GPUs) 

(Russakovsky et al. 2015). CNNs are capable of differentiating between a large number of object 

categories, as evidenced by their state-of-the-art classification performance on the ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC) datasets which contain 1000 object categories 

(Krizhevsky et al. 2012).  

Recently, CNNs have made large strides in the automated interpretation of endoscopic images, 

which display large variations in illumination, shape, and texture (Greenspan et al. 2016). In the 

civil engineering domain, Soukup and Huber-Mork (2014) used CNNs for classifying defects in 

rail surfaces, and Cha and Choi (2017) used CNNs for classifying deposits in concrete surfaces. 

Kim et al. (2017) used a region-based CNN for detecting equipment on construction sites. The 

images in these previous studies, however, were obtained under relatively controlled conditions, 

making them more homogenous than images collected from wastewater pipeline CCTV 

inspections. In order to develop a wastewater pipeline CCTV image classifier with a high 

generalization capability, it is essential to carefully configure a CNN architecture by using training 

 
1 Kumar, S. S., Abraham, D. M., Jahanshahi, M. R., Iseley, D. T., and Starr, J. (2018). Automated Defect 

Detection in Sewer Closed Circuit Television Inspections using Deep Convolutional Neural Networks, 

Automation in Construction, 91, 273 – 283, https://doi.org/10.1016/j.autcon.2018.03.028. 
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images collected from multiple sources under a wide variety of conditions. The next section 

describes the development of a CNN-based automated defect classification system.  

3.1 Proposed Framework 

The proposed framework uses an ensemble of binary CNNs where each CNN is trained to classify 

images as containing or not containing a particular type of defect and supports the classification 

of multiple defect/feature instances in images. The proposed system takes CCTV inspection videos 

as input and identifies the presence of two operational defects: root intrusions and deposits, and 

one structural defect: cracks. Training each CNN to classify a particular defect i consists of feeding 

the CNN large datasets of positive samples (i.e., images containing defect i) and negative samples 

(i.e., images not containing defect i). The CNN uses the positive and negative samples to discover 

features or pixel signatures to distinguish between images. The selection of features to distinguish 

between images is iteratively optimized through a process called backpropagation. In order to 

improve the generalization capability of the classifier, it is vital to use training samples that are 

representative of the commonly occurring variations in wastewater pipeline CCTV images. As a 

result, training images were collected from over 200 CCTV inspections of pipelines with varying 

materials (i.e., VCP, DIP, and PCCP) and geometries (i.e., diameter 8-in, 10-in, and 12-in) that 

were captured using different brands of CCTV equipment (see Figure 3.1). 

 

Figure 3.1 Description of the images used for training and testing the CNN classifiers 

 

The overall CNN classification framework used in this study is as follows: first CCTV inspection 

videos are converted into a sequence of RGB image frames. Each image frame is then passed 

through multiple CNNs, with each CNN being trained to classify a particular type of defect (see 

Figure 3.2). This approach enables the classification of multiple types of defects in a given image. 

While the focus of this study is detecting the presence of defects in images, techniques to determine 
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the camera position, such as the optical flow method proposed by Halfawy and Hengmeechai 

(2014c) can be integrated with the system. Knowledge of the camera position facilitates 

localization of defects, which is mandatory according to wastewater pipeline defect reporting 

standards such as the Pipeline Assessment and Certification Program (PACP) (NASSCO 2010).  

 

 

Figure 3.2 Overall training and classification pipeline 

3.2 Architecture of the CNN 

CNNs are an extension of traditional neural networks in that they are constructed using artificial 

neurons with weights, biases, and activation functions. Artificial neurons are mathematical 

functions that receive one or multiple inputs and output their weighted sum. There are four main 

operations in a CNN: convolution, non-linearity (or activation), pooling (or sub-sampling), and 



 

36 

 

fully-connected (or classification). The CNN used in this study consists of two convolutional 

layers, two pooling layers, and two fully-connected layers. The input image, which is a matrix of 

pixel values, undergoes convolution, activation, pooling, and passes through the fully-connected 

layer, resulting in an output vector. Binary CNNs, use two output channels (or a two-dimensional 

vector) to indicate whether an image contains or does not contain a particular type of defect (see 

Figure 3.3). The outputs are one-hot encoded, such that a final output value of [1, 0]𝑇 indicates the 

presence of a defect, whereas an output of [0, 1]𝑇 indicates the absence of a defect, in an image.  

CNNs perform the spatial decomposition of images, over multiple stages (van Noord and Postma 

2017). This spatial decomposition is achieved through alternating convolution and pooling 

operations. Convolutions transform images by a set of filters with limited spatial extent, whereas 

pooling reduces the dimensionality of the inputs. At each convolution-pooling step, the output of 

the previous stage is convolved with another set of filters and subsequently pooled to further reduce 

the dimensionality of the feature maps (LeCun and Bengio 1995). As a result, relatively simple 

features in the image, with small spatial extents are processed in the initial layers, and more 

complex visual patterns are discovered in the later layers of the CNN (LeCun and Bengio 1995).  

A CNN can be viewed as a large network of interconnected weights, non-linearities, and down-

samplings, which transforms an input image into a single output value. The weights of the network 

are adjusted through backpropagation, such that the CNN outputs the desired value for a set of 

images known as the training set. This process of adjusting the weights is performed in iterations 

or epochs, such that the CNN can correctly classify almost all of the images in the training dataset. 

Training of the CNN is stopped when successive epochs cease to produce improvements in the 

classification accuracies on the training sets. Another dataset of images known as the validation 

set is used to measure the classification accuracy of the trained CNN, based on which, the number 

of layers, size of convolution kernels, activation function, and learning rate are selected. For 

example, in the proposed CNN switching from one fully-connected layer to two fully-connected 

layers resulted in a four percent improvement in classification accuracy on the validation sets. As 

a result, two fully-connected layers were used in the final CNN architecture. A third dataset of 

images called the testing set is used to measure the actual classification accuracy of the trained 

CNN. CNNs use the training images to adjust the parameters (weights and biases) of the network, 
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whereas validation sets are used for selecting the hyper-parameters such as the number of hidden 

layers, learning rate, loss function, batch size, etc.  

 

Figure 3.3 Architecture of the CNN for wastewater pipeline feature classification 

 

3.2.1 Convolution 

CNNs get their name from the convolution operation, which extracts local features from an input 

image. The convolution operation is the weighted sum of pixels over local regions in the input. 

Note: in signal-processing this operation represents cross-correlation and not convolution. 

However, most deep learning articles refer to this operation as convolution and hence we use the 

same name. The weights used by the convolution operation are stored in matrices called kernels. 

As shown in Figure 3.4, computing the weighted sum of a 5×5×3 patch of pixels with a kernel of 

5×5×3 = 125 weights, results in a single value. Sliding the 5×5×3 patch of pixels one pixel at a 

time, to cover all 5×5×3 regions of the input and computing the weighted sum with the kernel 

results in a single output layer. A single bias value is then added to all of the values in the output 

layer, and the resulting output is passed through an activation function. The kernel weights and 

bias values are initialized with random values, which are then optimized during training. 

A convolution operation on an RGB image, using a kernel of size 5×5×3, can be represented using 

the following equation: 
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𝑦𝑢,𝑣 = 𝜎 (𝑏 + ∑ ∑ ∑ 𝑤𝑖,𝑗  𝑥𝑢+𝑖,𝑣+𝑗,𝑘

3

𝑘=0

2

𝑗=−2

2

𝑖=−2

), (3.1) 

where 𝑦𝑢,𝑣 represents the output value at position (𝑢, 𝑣), 𝜎 is an activation function, 𝑏 is the bias 

term, 𝑤𝑖,𝑗 is the weight of each cell in the convolution kernel, and 𝑥𝑢+𝑖,𝑣+𝑗,𝑘 refers to the input 

values.  

 

Figure 3.4 Example of a convolution operation on an RGB image 

In the proposed architecture, input images are of size 256×256×3 (length, width, and number of 

color channels). Each input image is convolved with 32 different kernels, each having a size of 

5×5×3 (length, width, and number of color channels). In order to ensure that the input and output 

have the same dimensions, the images have to be padded with zeros. Each output channel after the 

first convolution has a size of 256×256, and there are 32 such channels (i.e., one channel for each 

kernel). The resulting output of size 256×256×32 is first passed through an activation function and 

then subsampled to 128×128×3 using a max pooling operation. 

The output of the max pooling operation becomes the input to the second convolution stage. Here 

the input of size 128×128×32 is convolved with 64 different kernels, each of size 5×5×32, resulting 

in 64 output channels each of size 128×128. After adding a bias to each of the 64 channels, the 
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result is passed through an activation function. The resulting output of size 128×128×64 is 

subsampled to 64×64×64 using max pooling.  

The number of kernels in the first and second convolution layers was determined experimentally. 

CNN architectures with 32, 64, 96, and 128 kernels in each of the two convolution layers were 

evaluated for classification accuracy. The architecture with 32 kernels in the first layer and 64 

kernels in the second layer yielded the highest accuracy on the validation sets. 

3.2.2 Activation Functions (ReLU and ELU) 

In artificial neural networks, the sigmoid function (hyperbolic tangent function) is typically used 

to add nonlinearity to the output channels. Introducing nonlinearity is essential, otherwise the CNN 

would be computing linear combinations of linear functions and would hence be unable to model 

non-linear functions. Nair and Hinton (Nair and Hinton 2010) demonstrated that the rectified linear 

unit (ReLU) nonlinear activation function caused CNNs to converge faster than those using 

sigmoid functions. The ReLU function is defined as the identity line (i.e., 𝑦 = 𝑥), for all positive 

arguments, and zero otherwise. Recently, Clevert et al. (Clevert et al. 2015) demonstrated that the 

exponential linear units (ELU) activation function outperforms the ReLU function on networks 

with more than five channels – leading to shorter convergence times and better generalization 

performance (Clevert et al. 2015). ELU networks have also demonstrated better performance than 

ReLUs on classification benchmarks such as the CIFAR-10, CIFAR-100 and ImageNet (Clevert 

et al. 2015). As a result, in this study, we use the ELU activation function, which is represented by 

the following equation: 

𝑓(𝑥) = {
 𝑥,                                    𝑥 > 0
𝛼 (exp(𝑥) − 1),          𝑥 ≤ 0

 , (3.2) 

where 𝑥 refers to the net output after convolution, and 𝛼 is a hyperparameter.  

3.2.3 Max Pooling 

The convolution and activation operations are followed by a spatial pooling step. Spatial pooling 

(also known as subsampling or down sampling) reduces the dimensions of a feature map while 
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retaining the most important information. The max pooling operation outputs the maximum value 

over different regions of the input (see Figure 3.5). The amount of reduction in dimensionality 

depends on the size of the window and the stride size (i.e., the number of pixels by which the 

window is shifted). Max pooling is frequently used in convolutional neural networks to 

progressively reduce the number of features and the computational complexity of the network. 

Pooling operations generalize the results after the convolutional stages, reducing the sensitivity of 

the output to shifts and distortions (LeCun and Bengio 1995). In the proposed CNN architecture 

one max pooling stage following each convolution is used to reduce the dimensions by a factor of 

two. The max pooling operation after the first convolution stage reduces the size of each output 

channel from 256×256 to 128×128. The max pooling operation after the second convolution stage 

further brings down the size of each output channel from 128×128 to 64×64.   

 

Figure 3.5 Max pooling using a 2×2 window and a stride size of one 

3.2.4 Fully-Connected Layers 

Fully-connected (FC) layers are commonly used in neural network architectures and are arranged 

such that neurons between two adjacent fully-connected layers are fully pairwise connected, while 

neurons within a single layer share no connections (see Figure 3.6). The outputs from neurons in 

one FC layer undergo a weighted sum and are passed through an activation function. In CNN 

architectures, FC layers are used at the end of the network after feature extraction and consolidation 

have been performed by the convolutional and pooling layers. They are used to create final non-
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linear combinations of features and for predicting the output (final step in the neural network). 

Increasing the number of neurons in each FC layer, or increasing the number of FC layers, leads 

to an increase in the number of parameters (or weights) in the network. For example, two FC layers 

with three neurons in each layer create nine additional parameters (weights) in the network, 

assuming that no-biases are added (see Figure 3.6). 

The number of FC layers in a CNN architecture is a hyper-parameter, which must be selected 

based on the classification performance on the validation set. For the proposed binary CNN 

architecture sample tests were performed using one, two and three FC layers, with 1024 neurons 

in each layer. On average, there was no decrease in classification accuracy (number of correctly 

classified images divided by total number of images) when switching from three FC layers to two 

FC layers. The reduction in one FC layer (from three to two layers) lead to a decrease of around 

one million parameters in the CNN, resulting in a more streamlined implementation with a reduced 

likelihood of overfitting. However, switching from two FC layers to one FC layer, resulted in a 

four percent (average) decrease in classification accuracy. As a result, the final architecture uses 

two FC layers with 1024 neurons in each layer. 

 

Figure 3.6 Example of two fully-connected (FC) layers with three neurons in each layer 
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3.2.5 Output Layer 

The last layer of the CNN architecture is used to transform the outputs into classification scores. 

The softmax function, or normalized exponential function is the most commonly used method and 

it outputs probability scores that add up to 1. The softmax function take as input the predicted class 

scores, or labels, and outputs a probability score: 

𝑃(𝑦𝑖  | 𝑥𝑖) =
𝑒𝑓𝑦𝑖

∑ 𝑒𝑓𝑦𝑖𝑗

 , (3.3) 

where, 𝑦𝑖 represents the correct label of image 𝑥𝑖, and 𝑓𝑦𝑖
 represents the predicted score, which is 

a vector. The CNNs used in this study are binary, i.e. they have two output channels (Defect and 

No Defect). Since the probability scores for the two outputs must have a sum of one, a score greater 

than 0.5 is used to indicate the class prediction. For instance, if an input image results in the output 

channel Defect having a probability score of 0.55, the image would be considered to belong to the 

class Defect.   

3.2.6 Mini-batch Gradient Descent 

In the CNN architecture, all of the weights are initialized with random values, and as a result, the 

predicted output scores and actual output scores do not usually coincide. Training the network 

involves feeding the network with large datasets of training images, and iteratively adjusting the 

weights of neurons through a process called backpropagation. Backpropagation uses the output 

error (i.e., deviation of the predicted outputs from the actual outputs) to adjust the weights of 

neurons, in a sequential manner, starting from the neurons in the final layer (i.e., output layer) and 

ending with the neurons in input layer. 

The amount of adjustment to the weights is computed using an algorithm known as gradient 

descent. Gradient descent uses the derivatives of successive layers in the CNN to compute the 

adjustment in weights, so as to minimize the output error. Conventional gradient descent computes 

the aggregated output error of the entire batch of training images and is hence computationally 

expensive. Instead a method known as mini-batch gradient descent is typically used, which splits 

the training set into smaller batches. The output errors are computed for these smaller batches of 
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images, rather than for the entire set of training images. Based on the size of our network and GPU 

memory (12 GB), we selected a mini-batch size of 50 images for training, validation, and testing. 

3.3 Techniques to Prevent Overfitting 

In the proposed CNN architecture, the number of parameters (i.e., weights in the convolution 

kernels) is in the order of millions, whereas the number of training samples is in the order of 

thousands. Since the number of parameters far exceeds the training samples, we risk overfitting 

the training data. Overfitting occurs when the CNN memorizes the training dataset, and results in 

high classification performance on the training images, but low classification accuracies on the 

validation and testing images. The following procedures are implemented in this study to prevent 

overfitting. 

3.3.1 Data Augmentation 

Data augmentation is a common method used to avoid overfitting (Chatfield et al. 2014; 

Krizhevsky et al. 2012; Radford et al. 2015). In data augmentation, the number of training images 

is considerably increased by applying label preserving transformations on images (Krizhevsky et 

al. 2012). In this study, random flips, brightness changes, contrast changes, and motion blur were 

applied sequentially to each input image (see Figure 3.7). The data augmentations boosted the size 

of the training dataset by a factor of 1000, to over 12 million images.  

 

Figure 3.7 Sample data augmentation through changes in brightness, contrast, and motion blur 
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3.3.2 Dropout 

In neural network architectures, regularization or having an even distribution of weights is 

essential to avoid the classifier from overfitting the data. L1 regularization, L2 regularization, and 

max-norm constraints are the commonly used forms of regularization (Srivastava et al. 2014). 

Srivastava et al. (2014) developed an effective regularization method called Dropout, which has 

been shown to reduce overfitting and significantly outperforming other methods. Dropout, which 

is implemented only during the training stage, makes neurons active with a certain probability. As 

the network is trained, neurons (and their weights) get randomly deactivated, forcing the network 

to adapt. As a result, the learned weights get more evenly distributed, leading to better 

generalization of the predictive capabilities. 

 In the proposed CNN architecture, a variety of dropout rates were evaluated for training. Dropout 

rates greater than 0.5 resulted in a significant amount of overfitting, while dropout rates lower than 

0.5 resulted in a reduction in validation accuracies. As a result, a dropout rate of 0.5 was used for 

training implying that neurons are dropped from the network with a probability of 0.5. A dropout 

rate of 1.0 was used for the validation and testing sets, indicating that none of the neurons were 

dropped during validation and testing.  

3.4 Experimental Results and Discussion 

The application of the CNN is demonstrated in classification three of the most commonly 

encountered wastewater pipeline defects, namely root intrusions, deposits, and cracks. Root 

intrusions and deposits usually result in a reduction of the cross-sectional area of wastewater 

pipeline, reducing the flow capacity, and potentially leading to sanitary wastewater pipeline 

overflows (SSOs). Cracks are classified as structural defects, which if not remediated can lead to 

fractures and ultimately wastewater pipeline collapses. Wastewater pipeline collapses have been 

shown to cause sinkholes, leading to the loss of life and damage to property. 

3.4.1 Preparation of Training, Validation and Testing Data Sets 

A total of 12,000 images were used for training, validation and testing the CNN classifiers (see 

Table 3.1). The images were collected from over 200 CCTV inspections of 8-inch and 10-inch 
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diameter vitrified clay pipes (VCPs), prestressed concrete cylinder pipes (PCCPs), and ductile iron 

pipes (DIPs). The images could be grouped into eight distinct categories: (1) root intrusions, (2) 

deposits, (3) cracks, (4) infiltration, (5) debris, (6) connections, (7) material change, and (8) general 

photographs (undamaged pipe sections). Figure 3.8 shows samples of images used for the 

development of the CNN classifiers.  

 

Figure 3.8 Sample images used for training and testing 

 

Ten thousand of the 12,000 images were captured by the RedZone® Solo autonomous CCTV 

crawler and had resolutions between from 1440×720 and 320×256 pixels. The images were 

collected from CCTV wastewater pipeline inspections in the state of Georgia, US. The remaining 

2,000 images originated from CCTV wastewater pipeline inspections in the state of California, US, 

and were captured using an unidentified pan, tilt, and zoom camera that produced images at a 

resolution of 320×256.  

CNNs can be theoretically trained using images of any size, while higher resolution images 

generally provide a greater amount of information than lower resolution images. However, the 

increase in computational complexity from using higher resolution images results in a significant 

increase in processing time. As a result, CNNs are usually trained using images with resolutions 

ranging between 128×128 to 256×256 pixels. In this study, all images were scaled down to 
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256×256 pixels. The images were then normalized by subtracting the mean pixel intensity for each 

channel and dividing by the standard deviation of pixel intensity. As a result, the normalized 

images had a zero mean and unit standard deviation. Normalization ensures that all images have a 

similar range of pixel intensities, so that the gradients computed during backpropagation do not 

exhibit disproportionately large variations. Normalization, therefore, improves the speed at which 

training converges. The images were normalized using the following equation: 

𝑥𝑛 =
𝑥 − 𝑥̅

𝑠
 , (3.4) 

where 𝑥𝑛 is the normalized pixel intensity, 𝑥 is the original pixel intensity, 𝑥̅ and 𝑠 refer to the 

average and standard deviations of pixel intensities of the original image, respectively.  

The set of 12,000 images was partitioned into training, validation and testing sets. Seven thousand 

five hundred images were used for training, 2500 for validation, and 2000 for testing (see Table 

3.1). The training, validation and testing sets were created using a five-fold cross validation scheme, 

such that five triples of training, validation, and testing sets were randomly selected and tested. 

This approach ensures a reduction in biases while reporting the classification performance. The 

training, validation and testing sets were equally split into positive and negative image datasets 

(see Table 3.2). Positive datasets comprised of images containing a particular type of defect, 

whereas negative datasets comprised of images where that particular type of defect was absent. 

For instance, in developing a CNN to classify root intrusion defects, images of root intrusions 

would be assigned positive labels, whereas images of deposits, cracks, infiltration, debris, 

connections, material change, and general photographs would be assigned negative labels.  
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Table 3.1 Number of images in each category used for training, validation, and testing 

Defect Category Training Validation Testing 

Root intrusions 2500 500 500 

Deposits 1500 300 300 

Cracks 1000 200 200 

Infiltration 500 300 200 

Debris 500 300 200 

Connections 500 300 200 

Material Change 500 300 200 

General Photographs 500 300 200 

Total 7500 2500 2000 

 

Table 3.2 Number of positive and negative samples used 

Defect Category 
Training Validation Testing 

Positive Negative Positive Negative Positive Negative 

Root intrusions 2500 2500 500 500 500 500 

Deposits 1500 1500 300 300 300 300 

Cracks 1000 1000 200 200 200 200 

 

3.4.2 Classification Accuracy, Precision, and Recall 

The CNN was developed using Python and the TensorFlow API, which is an open source software 

library for computation using data flow graphs (Abadi et al. 2015). Training, validation and testing 

were implemented using a UNIX server, and accelerated using an NVIDIA Titan X 12GB DDR5 

GPU. Training converged between 50 and 70 epochs (iterations) and took approximately 500 

seconds for each CNN. The criteria for convergence was achieving the maximum accuracy on the 

validation sets.   Multiple training and validation iterations were performed to optimize the hyper-

parameters such as number of layers, number of neurons in each layer, convolution kernel size, 

convolution stride length, etc. The entire process was repeated five times, one for each pair of 

training, validation, and testing sets. Figure 3.9 shows the training and validation accuracies for 

the five folds of training and validation sets, for each defect category. The classification accuracies 

were calculated using Equation 1.1. 
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The training accuracies were nearly equal to 100% for each of the five-folds, across each defect 

category. The average validation accuracies averaged over the five-folds were 92.8%, 90.72%, and 

90% for the root intrusions, deposits and cracks, respectively. The maximum validation accuracies 

over the 5-folds were 93.2%, 91%, and 90.4% for root intrusions, deposits and cracks, respectively. 

The average validation accuracy for root intrusions, deposits, and cracks, taken together was 

91.62%. The difference between training and validation accuracies of approximately 8.48% 

indicates that overfitting exists in the network. Overfitting could be a result of the large number of 

parameters (i.e., greater than one million parameters) that are trained in the network (see Table 

3.3). The average validation accuracy for root intrusions was the greatest followed by deposits and 

finally cracks.  

 

Table 3.3 Total number of parameters optimized during training 

Layer 
Size Number of Parameters 

Convolution (first) 5×5×3 (kernel dimensions) (5×5×3+1)×32 = 2432 

Convolution (second) 5×5×32 (kernel dimensions) (5×5×32+1)×64 = 51,264 

Fully-connected (first) 1024 (input)×1024 (output) (1024+1)×1024 = 1,049,600 

Fully-connected (second) 1024 (input)×2 (output) (1024+1)×2 = 2050 

  Total = 1,105,346 

 

Five batches of 2000 images (one for each of the five-folds), which was previously unseen by the 

CNN, were used for testing the trained and validated CNN. The confusion matrix of the classifiers 

averaged across five-folds of testing sets is shown in Table 3.4. 
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Figure 3.9 Training, validation, and testing accuracies on the 5 folds of root intrusion, deposit, 

and crack defect images
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Table 3.4 Confusion matrix of testing sets (averaged across 5-folds) 

Defect 

Category 

 Positive 

Images 

Negative 

Images 
TP TN FP FN Accuracy Precision Recall 

Root 

Intrusions 

 500 500 471 438 62 29 0.909 0.883 0.942 

Deposits  300 300 261 255 45 39 0.860 0.853 0.870 

Cracks  200 200 174 162 38 26 0.840 0.821 0.870 

Total  1000 1000 906 855 145 94 0.862 0.877 0.906 

 

Two measures of classification performance, precision and recall were calculated using the 

equations 1.2 and 1.3 respectively. The average testing accuracy, precision, and recall averaged 

over root intrusions, deposits, and cracks, and aggregated over the five-folds of 2000 testing 

images, were 0.862, 0.877, and 0.906, respectively. The average testing accuracies on root 

intrusions, deposits, and cracks were 0.909, 0.860, and 0.840, respectively. In comparison, the 

method proposed by Halfawy et al (2014a), which was based on HOG features and SVM 

classification, achieved an accuracy, precision, and recall of 0.86, 0.86, and 0.86, respectively, in 

classifying images of roots, when tested on a dataset of 100 images. The method proposed by 

Halfawy et al. (2014b), which is based on edge detection and morphological segmentation, 

achieved a marginally higher crack detection accuracy, precision, and recall of 0.85, 0.83, and 0.88, 

respectively. However, their method was tested on a set of 100 images, which is significantly 

smaller than the sample size used for testing in this study (i.e., 400 images).  

 

The classification performance, measured by accuracy, precision and recall over the testing sets, 

was greatest for root intrusions, followed by deposits and cracks. The classifiers generated a larger 

number of false positives (145) than false negatives (94), indicating a conservative classification 

approach. The higher classification performance for root intrusions compared to cracks and 

deposits could be attributed to the larger number of samples used to train the root intrusion 

classifier. Another reason for the higher classification performance of root intrusions could be the 

distinct appearance in terms of shape, size, color, and texture of roots in comparison to deposits 

and cracks.  

A potential cause for the inaccuracies in defect classification (across all categories of defects) is 

that the classification was based on static two-dimensional (2D) images, which lead to a loss of 
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depth information. Without depth information images that have similar silhouettes appear almost 

identical, leading to misclassification by the CNN. For instance, in static 2D images, the footprint 

of cracks, infiltration, and fine roots appear very similar, making it difficult to distinguish between 

these classes of defects (see Figure 3.10). The use of temporal relationships between successive 

image frames could provide the necessary information to avoid the aforementioned 

misclassification errors. CNN classifiers that utilize temporal information from sequences of 

images rather than single static images could thus improve the classification performance (Chen 

and Jahanshahi 2017). 

 

Figure 3.10 Examples of similarities in appearance between different categories of images 

3.5 Chapter Summary 

This chapter described a framework for automated defect classification in CCTV inspections of 

wastewater pipelines using multiple binary CNNs, each trained to classify a specific class of defect. 

By passing CCTV wastewater pipeline images through an ensemble of binary CNNs, defects 

belong to multiple categories can be classified in the same image.  The binary CNN used in this 

study consisted of two layers of convolution, activation (using the ELU function), max-pooling, 

and fully-connected operations, followed by one output layer.  

 

Many of the previously proposed automated defect classification approaches used feature 

extraction and morphological methods, leading to poor generalization capabilities. The proposed 

system significantly improves upon the generalization capabilities of previously proposed 

automated defect classification approaches, by utilizing deep neural networks trained on a set of 
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12,000 images from over 200 wastewater pipeline inspections. A data augmentation scheme 

involving changes in brightness, contrast and motion blur was applied to increase the size of the 

training sets, to reduce overfitting in the network. The average values of accuracy (0.862), 

precision (0.877), and recall (0.906) on the testing sets show that the proposed CNN can be used 

for automated classification of root intrusions, deposits and cracks in CCTV wastewater pipeline 

videos. Furthermore, the proposed system was tested on images obtained from a diverse set of 

pipes (i.e., geographic location, diameter, and materials) indicating that the trained CNNs can be 

used to classify wastewater pipeline CCTV images to a reasonably high accuracy, even when the 

images exhibit variations due to differences in pipe materials, diameters, and illumination 

conditions.  

 

At the current stage, the proposed CNNs can be used to classify root intrusions, deposits, and 

cracks, which are broad classes of wastewater pipeline defects. However, the CNNs do not support 

localization of defects. According to NASSCO, which sets the standard of sewer inspection 

reporting in the United States of America, it is mandatory for an inspection report to contain the 

longitudinal (i.e., distance from the manhole or point of entry) and circumferential position (i.e., 

position relative to the pipe’s cross-section) of defects (NASSCO 2018). Most CCTV crawlers 

have equipment to measure the distance travelled by the robot, which is typically displayed at one 

of the corners of the recorded video. Hence, the longitudinal position of a defect can be obtained 

relatively easily by using a text recognition algorithm on the images and reading the distance 

travelled (Jahanshahi 2011; Halfawy and Hengmeechai 2014c; Dang et al. 2018). Identifying the 

circumferential location of defects is significantly more complicated and has been addressed by 

few studies in this domain. The systems proposed by Xu et al. (1998), Moselhi and Shehab (1999), 

Guo et al. (2009), Halfawy and Hengmeechai (2014a), Halfawy and Hengmeechai (2014b), Su 

and Yang (2014), Moradi and Zayed (2017), Hawari et al. (2018), and Kumar et al. (2018), perform 

defect classification, i.e., given an input image, the system attempts to recognize the type of defect 

shown in the image. The models used in these studies cannot be directly extended to perform defect 

localization (i.e., identifying the position and extent of the defects relative to images). Note: Defect 

localization is a necessary first step in determining the circumferential location of defects. To 

perform defect localization, these models would have to be applied to images using a sliding-

window approach. However, recent deep-learning-based object detection models have been shown 
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to achieve significantly higher accuracies and processing speeds than sliding window approaches, 

when tested on benchmark datasets (Girschick et al. 2014; Girschick 2015; Ren et al. 2016). 

Chapter 4, which has also been published as Kumar et al. (2019) addresses the problem of defect 

localization. 
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 CNN-BASED AUTOMATED DEFECT DETECTION 

[ A version of this chapter has been published in the ASCE Journal of Computing in Civil 

Engineering]2 

In computer vision, the process of simultaneously classifying and localizing defects is called defect 

detection. Figure 4.1 shows an example to illustrate the difference between defect classification 

and defect detection. To address the limitations of previous studies (i.e., the lack of defect 

localization capability), Cheng and Wang (2018) used the Faster Region-based Convolutional 

Neural Network (Faster R-CNN) method for detecting (i.e., classifying and localizing) four 

different concrete sewer pipe defect types (i.e., root intrusions, cracks, water infiltration, and 

deposits) in CCTV inspection images. Their study optimized the hyper-parameters (i.e., the size 

of convolution kernels, stride size, number of parameters, learning rate, etc.) of the Faster R-CNN 

model by comparing the mean average precision (mAP) of the model across multiple experiments. 

Cheng and Wang (2018), however, have validated their method only on a limited dataset of images 

and have not cross-validated the results. Without cross-validation, the reported results contain 

sampling biases and may not be indicative of the actual performance of the model. Furthermore, 

their method is validated using specific images of defects and not on actual CCTV videos. 

  

 
2 Kumar, S. S., Wang, M., Abraham, D. M., Jahanshahi, M. R., Cheng, J. C., and Iseley, D. T. (2019). Deep 

Learning Based Automated Detection of Sewer Defects in Closed Circuit Television Videos, ASCE Journal 

of Computing in Civil Engineering, 34(1), https://doi.org/10.1061/(ASCE)CP.1943-5487.0000866. 
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Figure 4.1 a) Example to demonstrate defect classification, b) Example to demonstrate defect 

detection 

 

Algorithms for automated interpretation of CCTV videos could be installed on desktop computers 

or servers, facilitating defect detection in videos that have been previously recorded. In such 

situations, the automated defect detection algorithms could either be used to assist the human 

inspectors in identifying defects, or for quality checking purposes. Algorithms for automated 

interpretation of CCTV videos could also be hosted as embedded applications on inspection robots, 

facilitating real-time defect detection. In such situations, defect detection could be combined with 

autonomous navigation systems of robots such as the RedZone® Robotics Solo platform. The 

requirements of the algorithms in terms of computational complexity differ in each situation. For 

instance, the algorithms hosted on a desktop computer or server have a greater processing power 

compared to those using the on-board processors on inspection robots. As a result, the algorithms 

used on a desktop computer or server for offline review of videos may not facilitate real-time 

defect detection on inspection robots. To determine the most suitable algorithm for each 

application (i.e., on-board or offline), a comparison of the accuracy and detection speed of various 

deep learning-based object detection methods must be performed. 

 

This chapter extends the discussion in Cheng and Wang (2018) and Kumar et al. (2018) by 

describing the development of a prototype system for the automated classification and localization 

of defects in sewer CCTV videos. The contributions of this study are as follows: 
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(1) The speed and classification performance of three state-of-the-art deep learning-based object 

detection models (i.e., Single Shot Detector (SSD), You Only Look Once version 3 (YOLOv3), 

and Faster R-CNN) are evaluated within the context of detecting root intrusions and deposits 

in CCTV sewer inspection videos. Since a diverse set of 3,800 un-augmented images are used 

for training and testing, the results presented in this study are a better indicator of the 

performance of these models in detecting sewer defects. Furthermore, sampling bias is 

minimized by performing 5-fold cross-validation. The results of these experiments will assist 

developers in selecting appropriate models for real-time and offline defect detection. 

(2) To determine the viability of defect detection in practice, a prototype tool is developed and 

validated on sample CCTV sewer inspection videos of 20 cm (8-inch) diameter VCP sewers.  

4.1 Evaluation of CNN-Based Object Detection Models 

Object detection is an extension of image classification, which includes the identification of the 

location of detected objects in an image, in addition to identifying which category the object 

belongs to. Deep-learning based object detection gained recognition, when Girshick et al. (2014) 

developed the region-based convolutional neural network (R-CNN) method which used a method 

called selective search to produce bounding box region proposals (i.e., rectangular boxes to 

localize objects). The R-CNN applied a CNN classifier to each bounding box region proposal in 

an image, to classify the object in that region. However, The R-CNN message used 2000 region 

proposals and 2000 CNN classifications per images, resulting in the R-CNN method being 

computationally expensive. The Fast R-CNN by Girshick (2015), improved upon the speed of the 

R-CNN, by using a single CNN for all region proposals, rather than one CNN for each region 

proposal.  The Faster R-CNN by Ren et al. (2016) improved upon the speed of the Fast R-CNN 

method by using a trained region proposal network (i.e., a CNN trained to detect ROIs in an image) 

which is much faster than the selective search region proposal method used in R-CNN and Fast R-

CNN. Currently, deep learning-based object detection models fall into three categories: (1) sliding 

window approach where an image is divided into small sub-windows, which might have 

significant overlap, and each sub-window is analyzed for the existence of an object (e.g., Atha and 

Jahanshahi 2017, and Chen and Jahanshahi 2018), (2) two-stage object detection frameworks that 

improve upon the speed of sliding window approaches by combining a CNN classifier with a 

region proposal such as the RCNN, Fast R-CNN, and Faster R-CNN, and (3) single stage detectors 
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such as the SSD by Liu et al. (2015) and YOLO detector by Redmon et al. (2015). Sliding window 

approaches use CNNs or other neural network architectures over multiple regions of an image and 

aggregate the classifications. As a result, these methods have a high accuracy of object detection; 

however, they are typically too slow to be used for object detection in videos and are thus not 

considered in this study.  Two-stage object detection frameworks are known to be highly accurate 

at detecting objects; however, they have a computational overhead compared to single stage 

detectors due to the additional region proposal step. Owing to their trade-offs between speed and 

accuracy, each method finds application in different tasks. The three object detection models which 

are evaluated in this study are the: (1) SSD, which is known to be a computationally inexpensive 

object detection model (Liu et al. 2015), (2) YOLOv3 by Redmon and Farhadi (2018), which is 

computationally more expensive than the SSD, and (3) Faster R-CNN, which is the most 

computationally expensive of the three models. 

To determine the correctness of a detection, a metric called the intersection over union (IOU) is 

used in this study. IOU measures the degree of overlap between a ground-truth image (i.e., the 

bounding box manually created during the preparation of the training data) and the bounding box 

predicted by the model. IOU is calculated by taking the ratio of the area of intersection to the area 

of union between a predicted bounding box and ground truth bounding box (see Figure 4.2). Next, 

a threshold value is selected as the minimum IOU, for a detection to be considered correct. For 

example, a threshold IOU of 0.2 implies that detections which have an IOU less than 0.2 would be 

considered incorrect. 
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Figure 4.2 Illustration of intersection over union 

 

Training an object detection model consists of three steps: (1) performing the forward pass, (2) 

computing the loss, and (3) updating the weights of the network. During the forward pass, a 

training image (i.e., an image in which the defects have been manually identified) is passed through 

the model, and the resulting output is calculated, usually as a one-dimensional array of outputs. 

The output is then compared with the ground-truth output to compute the loss. The goal of training 

is to minimize this loss (i.e., the difference between predicted outputs and ground-truth outputs). 

The loss is minimized through an algorithm known as backpropagation, which uses the computed 

loss to update the weights of the model. By training a model with a variety of images, the model 

‘learns’ to predict the correct output for previously unseen images.       

4.1.1 Single Shot Multibox Detector (SSD) 

This model is so named because the task of object classification and localization are performed in 

a single forward pass of the network. SSD’s improvement in speed comes from the elimination of 

bounding box proposals and the subsequent feature resampling stage (Liu et al. 2015). The SSD 

model is based on a feed-forward convolutional neural network. Similar to the Faster R-CNN and 

unlike YOLO, the SSD model uses the concept of default anchor boxes, which are used to indicate 

the position of an object. The SSD generates 8,732 default bounding box detections per object 

class, across six feature maps, for each input image (refer to Figure 3, A + B + C + D + E + F). 
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For instance, if there are three object classes (e.g., defect 1, defect 2, and background), the total 

number of detections made by the model, per image is 26,196 (i.e., 8,732 × 3). The SSD may 

produce several overlapping bounding boxes for each object detected in an image. Since only one 

bounding box per object is desired, a technique called non-maximum suppression, which computes 

predicted class confidences and uses an intersection over union (IOU) threshold is applied to 

discard the extra bounding box predictions per detected object. The original SSD implementation 

by Liu et al. (2016) consisted of adding convolutional feature layers to the end of a truncated VGG-

16 (originally proposed by Simonyan and Zisserman (2014)). However, any convolutional neural 

network architecture can be used as a base network. The model can be made faster with a slight 

loss in accuracy by replacing the VGG-16 base network with MobileNets (developed by Howard 

et al. (2017)) and replacing all forward convolutions with depth-wise separable convolutions. 

MobileNets is significantly faster than VGG-16 since it uses depth wise separable convolutions 

which requires fewer computations than regular convolutions (Howard et al. 2017). In this study, 

the SSD is implemented with MobileNets as the base network rather than VGG-16 (see Figure 

4.3).  

 

Figure 4.3 Conceptual architecture of the SSD 

4.1.2 YOLOv3  

You only look once (YOLO) is a unified convolutional network which treats object detection as a 

regression problem through end to end training. YOLO predicts both the bounding box location 

and class probabilities simultaneously for each object on a given image (Redmon et al. 2015). The 
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original YOLOv1 has limitations such as the requirement of fixed input size and poor performance 

for detecting small objects. YOLOv3 has a significant improvement in terms of detection speed 

and accuracy. Instead of predicting a fixed number of bounding boxes as YOLOv1, YOLOv3 uses 

anchor boxes to predict bounding boxes and applies K-means clustering to generate appropriate 

dimensions for those anchor boxes, such that the network can learn the box locations more 

efficiently (Redmon et al. 2018). As shown in Figure 4.4, during training, the model divides the 

image into S×S grid cells and predicts B bounding boxes for each cell. For each bounding box, 

there are five predicted values including 𝑥, 𝑦, 𝑤, ℎ and a confidence value. Here, (𝑥, 𝑦) represents 

box centroid coordinates relative to the bounds of the grid cell, while (𝑤, ℎ) represents the box 

width and height relative to the image, respectively. The confidence value indicates the certainty 

of the prediction that the bounding box contains an object and how accurately the box fits the 

object. The confidence is calculated using equation (4.1).  

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = Pr(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ                                     (4.1) 

where 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) is equal to 0 if there is no object in the grid cell; otherwise, it is equal to 1. 

𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ represents the intersection over union (IOU) between the predicted bounding box and 

the ground truth bounding box. The ground truth bounding box refers to the bounding box created 

manually by the human annotator during data preparation. In addition, for each grid cell containing 

an object, the model predicts probability scores for all the classes, represented by 

Pr (𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡). Therefore, in the testing period, each box predicts a confidence score for each 

class by equation (4.2).  

 

Pr(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) ∗ Pr(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ = Pr(𝐶𝑙𝑎𝑠𝑠𝑖) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ       (4.2) 
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Figure 4.4 An example of how YOLOv3 detects multiple objects in an image 

 

4.1.3 Faster R-CNN 

The Faster R-CNN model represents an improvement over the Fast R-CNN object detection model. 

Unlike the Fast R-CNN model which uses the selective search algorithm to generate bounding 

boxes, the Faster R-CNN model uses a region proposal network (RPN) (see Figure 4.5). The 

forward pass in a Faster R-CNN model consists of three main steps. First, a pre-trained 

convolutional neural network is utilized on the raw images to generate a feature map. The original 

implementation of the Faster R-CNN method used the VGG12 convolutional neural network to 

generate the feature map, but recent implementations use the ResNet. Next, a RPN, which is a 

single fully convolutional network, is applied to the feature map. The RPN identifies regions of 

interest (ROIs), i.e., areas where an object might be present, and generates bounding box 

coordinates to indicate the location of these objects. The RPN may generate several bounding 

boxes for a single object. Hence, an intermediate step called non-maximum suppression is applied 

such that bounding boxes with a high degree of overlap are discarded. At the end of the RPN step, 
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the network has produced several object predictions (i.e., regions in the image where there may be 

an object). The next task is to determine which class each object belongs to (i.e., whether the object 

is a root intrusion, deposit, or neither). To do so, a region based convolutional neural network 

(RCNN) is used. The regions in the image corresponding to each bounding box (i.e., for each ROI) 

are cropped, reshaped, down sampled, and flattened, in that order, and passed through two fully 

connected convolutional layers. The output of the fully connected layers are a class probability 

score (i.e., the probability that the ROI represents a particular class) and a bounding box adjustment 

factor, which attempts to better fit the bounding box to the object. 

Since the Faster R-CNN contains two trainable layers (i.e., the RPN and an RCNN), the training 

objective consists of four losses. These losses are: (1) the bounding box localization loss in the 

RPN step, (2) the classification loss in the RPN step, (3) the bounding box localization loss in the 

RCNN step, and (4) the object classification loss in the RCNN step.  

 

Figure 4.5 Faster R-CNN conceptual architecture (Wang and Cheng, 2018) 

4.2 Experimental Results and Discussion 

In this study, the automated defect detection systems were evaluated in the context of detecting 

root intrusions and deposits.  Roots enter pipes through loose joints and openings in the pipe wall 
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due to damage (Stål 2007; Ridgers 2007). Root intrusions can expand existing openings in 

wastewater pipelines, allowing the surrounding soil to enter through the defect, further weakening 

the pipe, and ultimately causing breakage and collapse of the wastewater pipeline structure 

(Schrock 1994). Deposits are typically caused by fats, oils, and grease (FOG), and combined with 

root intrusions lead to a reduction in hydraulic capacity of the pipe (Marlow et al. 2011). To avoid 

potential wastewater pipeline overflows arising from such blockages, it is essential to routinely 

clear the pipes of root intrusions and deposits. Hence, the location and severity of root intrusions 

and deposits must be known in order to plan maintenance operations on a pipe. In this study, the 

automated defect detection model characterizes these defects and identifies their location. The 

severity of defects is however not measured and could be a topic for further investigation.  

4.2.1 Preparation of Training and Evaluation Data Sets 

A total of 3,800 images were used for training and validation of the defect detection models. The 

images were recorded using front facing CCTV cameras and had resolutions between 720×576 

and 1507×720. The images were recorded from over 200 CCTV inspections of 203 mm (8-inch), 

254 mm (10-inch), and 305 mm (12-inch) VCPs, PCCPs, and polyvinyl chloride (PVC) pipes. The 

sewer pipes were in the states of Virginia and Ohio in the United States of America. The images 

used in the study depicted eight categories of sewer features including root intrusions, deposits, 

cracks, infiltration, debris, connections, material change, and general photographs (i.e., 

undamaged pipe sections). Figure 4.6 shows examples of the images that were used for training, 

validation, and testing. One thousand one hundred (1100) images contained root intrusions only, 

1100 images contained deposits only, 1100 images contained features other than root intrusions or 

deposits, and 500 images contained root intrusions and deposits simultaneously (see Table 4.1). 
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Figure 4.6 Examples of images used for training and testing (Kumar et al. 2018) 

 

To train and validate the defect detection models, the defects in the images should first be manually 

identified. The manually annotated images serve as ground truth images that are used by the defect 

detection models to learn to detect defects. The annotated images are also used to evaluate the 

accuracy of the models by comparing their similarity with the detections automatically generated 

by the object detection models. LabelImg, an open source image annotation tool, was used during 

this study (Tzutalin 2015). Annotating an image consists of identifying all instances of features in 

that image and drawing separate rectangular bounding boxes around each feature. The bounding 

boxes serve to identify the position and extent of each feature in a rectangular coordinate frame. 

In this study, the annotations were saved as Extensible Markup Language (XML) files in the Pascal 

Visual Object Classes (VOC) format (see Figure 4.7). 
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Table 4.1 Number of Images used for training and validation 

Image Category Training Validation Testing Total 

Root intrusions only 880 110 110 1100 

Deposits only 880 110 110 1100 

Do not contain root intrusions or deposits 880 110 110 1100 

Root intrusions and deposits 400 50 50 500 

Total 3040 380 380 3800 

 

CCTV images have a high variability, which can make the determination of the type of feature in 

an image highly subjective. Furthermore, due to the large number of images that were used in this 

study, the annotations were performed by two individuals. To improve consistency in the 

annotations approximately 50 random images were initially selected and annotated by both 

individuals. To improve inter-coder reliability, the 50 annotated images were then compared to 

highlight inconsistencies in the annotations created by the two individuals. 

4.2.2 Training and Evaluation of the Defect Detection Models 

In machine learning studies, it is common practice to use between 70 to 90 percent of the data for 

training and the remainder for testing (Halfawy and Hengmeechai 2014a; Soukup and Huber-Mork 

2014; Cha and Choi 2017; Chen and Jahanshahi 2018). In this study, eighty percent of the data 

(i.e. 3,040 images) were used as the training set, 10 percent (i.e., 380 images) were used as the 

validation set, and 10 percent (i.e., 380 images) were used for testing. Since the deep neural 

network architectures evaluated in this study contain over a million parameters, increasing the 

number of training images would decrease the amount of overfitting and likely improve the 

classification accuracy on the testing set.  

The training and validation sets were created using a 5-fold cross-validation technique, i.e., five 

sets of training and validation sets were created by randomly partitioning the dataset. Training data 

are used to compute the gradients for the backpropagation algorithm, whereas the validation data 

are used to determine the optimal number of training iterations. Since 5-fold cross validation was 

used, five sets of training and validation tests were conducted, and the classification performance 

measured in mAP was averaged over the five sets. Based on the average scores, the training 
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iteration corresponding to the highest mAP on the validation set was chosen as the optimal training 

iteration. Finally, the model corresponding to the best validation mAP is evaluated upon the testing 

dataset.  

Training, validation, and testing were performed using a desktop computer comprising of an Intel 

CPU and an NVidia Training, validation, and testing were performed using a desktop computer 

comprising of an Intel CPU and an NVidia P4000 Quadro CUDA supported graphics card with 

8GB memory. To compare training times, each model was trained up to 150,000 iterations. At 

intervals of 10,000 iterations, each model was saved, and its mAP measured on the validation set. 

The Faster R-CNN model took the longest time to train (i.e., the time taken to complete 150,000 

training iterations) at approximately 12 hours, whereas the YOLO and SSD models took 

approximately 10 hours and 2 hours to train, respectively. The optimal number of training 

iterations was determined by plotting each model’s mAP (i.e., averaged over 5-folds) in detecting 

defects in the validation dataset at an IOU threshold of 0.2, and selecting the iteration 

corresponding to the highest mAP (see Figure 4.8). In Figure 4.8, the mAP on the validation set 

first increases up to a certain number of iterations (i.e., 50,000 iterations for YOLOv3, 70,000 

iterations for Faster R-CNN, and 70,000 iterations for SSD) and then tends to decrease. This 

decrease in mAP is due to overfitting, i.e., when the model learns the details and noise in the 

training data such that the performance on the validation set is negatively affected.  The mAP at 

IOU thresholds of 0.3, 0.4, and 0.5 were also calculated and are reported in Table 4.2.  
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Figure 4.7 Peak mAP curve used to find optimal training iterations for the three models 

4.2.3 Performance of the Models 

The highest average validation accuracy for the SSD, YOLOv3 and Faster R-CNN were 0.544, 

0.745, and 0.762, respectively. The models corresponding to the highest validation accuracy are 

then tested on the testing dataset. Table 4.2 summarizes the performance for the two categories of 

defects on the testing dataset. Four threshold IOU values (i.e., 0.2, 0.3, 0.4, and 0.5) are 

experimented with. An IOU threshold of 0.5 indicates that only predicted bounding boxes which 

have an IOU greater than or equal to 0.5 will be considered as correct detections. It is common 

practice to use an IOU threshold of 0.5 for object detection. For instance, the PASCAL VOC 

Project, which is a benchmark for testing object detection models uses an IOU threshold of 0.5 

(Everingham et al. 2010).  Sewer defects, however, are often spread out and have discontinuities 

in their boundaries. Furthermore, it is preferable for the detectors to capture a larger number of 

defects with a lower localization accuracy, rather than capturing fewer instances of defects with a 

higher localization accuracy, since missed defects could lead to unforeseen failures. Upon visual 

observation of the detections produced at various IOU thresholds, it was found that an IOU 

threshold of 0.2 is appropriate for detecting sewer defects. 
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Table 4.2 Summary of defect detection average precision values for the different 

IOU thresholds on the testing set 

 Average  

Precision @  

IOU = 0.5 

Average  

Precision @  

IOU = 0.4 

Average Precision 

@ 

IOU = 0.3 

Average Precision 

@   IOU = 0.2 

 Deposit Root Deposit Root Deposit Root Deposit Root 

SSD 0.393 0.496 0.419 0.489 0.498 0.510 0.515 0.545 

YOLOv3 0.445 0.589 0.577 0.696 0.646 0.719 0.682 0.708 

Faster R-CNN 0.515 0.605 0.624 0.722 0.637 0.728 0.662 0.775 

 

The testing mAP at an IOU threshold of 0.2 was 0.530, 0.695, and 0.718 for the SSD, YOLOv3, 

and Faster R-CNN models, respectively. Figure 4.9 shows examples of predicted bounding boxes 

generated by each model at an IOU threshold of 0.2. 

In general, the Faster R-CNN model yielded the highest average precision among the three models.  

The average time taken to evaluate a single image by the SSD, YOLOv3, and Faster R-CNN was 

approximately 33 ms, 57 ms, and 110 ms, respectively, using the same computing system and an 

image of size 1500 × 720.  
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Figure 4.8 Comparison of the bounding box detections by the SSD (a – f), YOLOv3 (g – l), and 

Faster R-CNN (m – r) models 
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4.2.4 Discussion of Experimental Results 

The SSD was found to be significantly faster than YOLOv3 and Faster R-CNN; however, the 

classification performance (i.e., as measured by the mAP) was considerably lower at all IOU 

thresholds. The three models tend to miss certain defects, with this tendency most pronounced in 

the SSD, as shown in Figure 4.9b, Figure 4.9e, and Figure 4.9f. The Faster R-CNN model had only 

a slight advantage over YOLOv3 in terms of defect detection accuracy. YOLOv3 however, was 

found to be almost twice as fast as the Faster R-CNN in evaluating images. Due to its high 

detection accuracy and speed, the YOLOv3 model could be suitable for deployment on the on-

board electronics of autonomous sewer inspection robots. The slower but more accurate Faster R-

CNN model could be used for the off-site review of inspection videos. 

A potential cause for the inaccuracies in defect classification (i.e., across all categories of defects) 

is that the classification was based on static two-dimensional (2D) images leading to a loss of depth 

information. Without depth information, images that have similar silhouettes appear almost 

identical, leading to misclassification by the CNN. For instance, in static 2D images, the footprint 

of cracks, infiltration, and fine roots appear very similar, making it difficult to distinguish between 

these classes of defects (see Figure 4.10). The use of temporal relationships between successive 

image frames could provide the necessary information to avoid the aforementioned 

misclassification errors. CNN classifiers that utilize temporal information from sequences of 

images rather than single static images could thus improve the classification performance. 

Inconsistencies in the ground truth annotations (i.e., the manually annotated images) are another 

cause for incorrect classifications. This inconsistency was typically observed in images of root 

intrusions and deposits. Due to similarities in the appearance of certain types of deposits and roots, 

the human defect coders tended to interchange the labels. Furthermore, defects that spanned the 

entire circumference of the pipe cross-section were often labelled inconsistently by the coders. For 

instance, the defect in Figure 4.9a could be annotated in multiple ways (i.e., either using three 

bounding boxes as shown in Figure 4.9b and Figure 4.9c, or using a single bounding box as shown 

in Figure 4.9d). Since the ground-truth dataset contained biases, all three models trained on this 

dataset exhibited biases as well. The training data would have been less biased had the images 

been annotated by experienced CCTV coders. 
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Figure 4.9 Example showing multiple ways to annotating a defect that spans the circumference 

of the pipe 

4.3 Demonstration Example 

To demonstrate the viability of the proposed approach in practice, a prototype automated defect 

detection tool was created using the Faster R-CNN model as the detection engine. The prototype 

tool takes CCTV videos as input and identifies regions where root intrusions or deposits are present, 

in real-time. Rather than output two class labels (i.e., root intrusion or deposit), the tool outputs 

one class label and calls it ‘defect’. The simplification to one class label allows for a reduction in 

computational complexity, allowing the model to run faster thereby facilitating future deployment 

on a sewer inspection robot. The identification of defects in this manner would be useful in 

developing autonomous inspection robots. Autonomous inspection robots could use such a defect 

detection tool to locate areas in the pipe that contain defects. Once the defect regions are identified, 

the autonomous robots could then zoom in on those regions to provide a closer inspection. The 

framework for producing the detections on the video is shown in Figure 4.10. Images are sampled 

from the video at 30 frames per second using OpenCV (Bradski 2000). Each extracted image is 

then passed through a Faster R-CNN model to detect defects. 
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Figure 4.10 Framework for producing defect detections on an input CCTV video 

 

To demonstrate the accuracy of the prototype system, three CCTV inspection videos of 20 cm (8-

inch) VCP sewer laterals are considered for evaluation. The three videos cumulatively represent 

approximately 45 minutes of CCTV inspections and televise approximately 335 meters (1100 feet) 

of sewer laterals. Out of a known total of 56 instances of root intrusions and deposits defects (i.e., 

26 roots and 30 deposits), the automated defect detection tool was able to identify 51 (i.e., 25 roots 

and 26 deposits) instances of defects (i.e., 91 percent of the defects) while generating 7 false 

positive detections. Figure 4.11 shows examples of the detections produced by the prototype tool.  

The CCTV videos used in the demonstration are sampled at 30 frames per second. The criteria for 

a defect to be considered ‘detected’ is that a detection should have been produced in at least 1 

frame. Similarly, a detection on a non-defect region is considered a false positive if the detection 

is produced in at least 1 frame. However, this may not be the best approach, and could lead to 

many false positives. An alternate approach would be to consider different thresholds (e.g., a defect 

should be detected in 20% of the frames) and evaluate the accuracy, precision, and recall of the 

automated system to determine the optimal threshold value. The measurement of true positive and 

false positive detections was performed by a human observer, i.e., through visual inspection of the 

videos. This approach to measuring true positive and false positive detections was undertaken to 

simulate the real-world scenario where a CCTV operator observes the video in real time. A sample 

video demonstrating automated defect detection in videos can be found at (Kumar 2018). 
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Figure 4.11 Example images showing the defects detected by the automated defect detection tool 

applied to a CCTV video in real-time 

4.4 Limitations 

A limitation of this method is that it applies the Faster R-CNN method to every image frame 

extracted from a CCTV video regardless of whether the image contains a defect or not. However, 

only a small fraction of the images extracted from a video contain defects.  As a result, this method 

performs unnecessary computations on images that do not contain defects. Furthermore, the 

method was evaluated for the detection of operational defects only. Chapter 5 of this study, which 

is partly published as Kumar and Abraham (2019) involves using a two-step framework to improve 

the speed of detecting defects in CCTV videos and also addresses the detection of structural defects. 
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 TWO-STEP DEFECT DETECTION FRAMEWORK 

[A version of this chapter was published in the proceedings of the 2019 ASCE International 

Conference on Computing in Civil Engineering]3 

In Chapter 4, we demonstrated a prototype sewer defect detection system using the Faster R-CNN 

model for detecting root intrusions and deposits in sewer CCTV videos. Root intrusions and 

deposits were selected for detection because: (1) they have an adverse impact on the hydraulic 

capacity of a pipe, and (2) they have the potential to progress into structural defects or exacerbate 

existing structural defects. The system was first trained and tested using 3,800 images of defects, 

which were extracted from over 200 CCTV inspections of 8-in, 10-in, and 12-in VCP and Concrete 

sewers located in the US states of Florida and Ohio. The system was then evaluated on CCTV 

videos televising 335 meters of sewer laterals. The Faster R-CNN-based system could detect 51 

out of 56 instances (i.e., 91 percent of the defects) of root intrusions and deposits while generating 

7 false positives.  

A limitation of this method is that it applies the Faster R-CNN model to every image frame 

extracted from a CCTV video regardless of whether the image contains a defect or not, although 

only a fraction of the entire duration of a video depicts defects. As a result, the previous method 

performs unnecessary computations on image frames that do not contain defects. As a result, the 

previous method that we proposed could be slow to process CCTV videos and may not be able to 

perform real-time detection, when executed on computers without powerful computing abilities 

(e.g., onboard electronics of CCTV cameras).  

This chapter extends the discussion in Chapter 4 by proposing a framework for real-time defect 

detection. The proposed framework uses a pre-processing step to determine whether an image 

contains a defect or not and then applies the Faster R-CNN model only on image frames that 

contain defects. The pre-processing step helps improve the speed and accuracy of defect detection 

and avoids unnecessary computations on images that do not contain defects. Furthermore, this 

 
3 Kumar, S. S. and Abraham, D. M. (2019). A Deep Learning Based Automated Structural Defect Detection 

System for Wastewater Pipelines, ASCE International Conference on Computing in Civil Engineering 

(i3CE 2019), Atlanta, Georgia, USA 
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report extends the automated system to encompass the detection of root intrusions, fractures, and 

lateral connections. 

5.1 Description of the Framework 

Prior methods for automated defect classification in sewers have also used two-step methods. For 

instance, Sinha and Fieguth (2006a, 2006b) used a morphological method to segment defects (i.e., 

separate defect pixels from non-defect pixels) and then applied multiple crack detection filters to 

detect the presence of cracks in images captured by the Sewer Scanning and Evaluation 

Technology (SSET). SSET cameras produce cylindrical unrolled images of the pipe wall and are 

thus more uniform than those captured by front-facing CCTV cameras. However, front-facing 

CCTV is the primary technology used in inspection of sewers in the US and is hence the focus of 

this project (Halfawy and Hengmeechai 2014). Due to the high variability (i.e., size of defects, 

angle at which image is captured, illumination, etc.) in CCTV images, morphological and feature 

classification approaches are not effective in identifying defects. Deep learning-based methods, 

however, result in a significant improvement in accuracy over feature classification methods, on 

images which have high variability (LeCun et al. 2015). As a result, the two-step method proposed 

in this chapter leverages deep learning. 

The first step involves using an anomaly identification system based on the ResNet34 CNN to 

determine whether images contain anomalies or not. The anomaly identification system is 

described in Section 5.2. This step does not provide the location information about the anomalies. 

In the second step, images that have been classified as anomalies are processed by a Faster R-CNN 

detector to localize the defects. The overall framework is illustrated in Figure 2.3. The ResNet34-

based anomaly identification system consists of significantly fewer computations than the Faster 

R-CNN-based defect localization system and can thus process images significantly faster. Based 

on datasets of videos which we have collected, generally 20 percent of the entire duration of a 

CCTV sewer video depicts defects with the remaining 80 percent not depicting defects. The 

rationale behind adopting the pre-processing step is that it allows the Faster R-CNN based system 

to be used only on image frames depicting defects, thereby improving the overall speed of defect 

detection, when applied to videos. 
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Figure 5.1 Illustration of the two-stage detection framework 

5.2 Development of Anomaly Identification System 

Anomaly identification seeks to identify which image frames in a sewer CCTV video contain 

anomalies or regions of interest. We define anomalies as cracks, fractures, broken pipes, joint 

offsets, root intrusions, deposits, and lateral connections. Sewer anomaly identification has been 

previously addressed through feature classification and morphological approaches by Moselhi and 

Shehab (2000), Sinha and Fieguth (2006a, 2006c), and Halfawy and Hengmeechai (2014). 

However, since deep learning-based image classification methods have been demonstrated to 

achieve significantly higher classification accuracies and generalization capabilities than feature 

classification approaches, we use CNNs for anomaly identification.  

The anomaly identification system was developed based on the ResNet34 CNN, since this model 

has been demonstrated to achieve one of the highest image classification accuracies on benchmark 

datasets (He et al. 2015). The anomaly identification system takes color images as input and 

produces one out of two outputs: (1) ‘Anomaly’ if the system identifies an anomaly in an image 

and (2) ‘No Anomaly’ if the system is not able to identify an anomaly in an image. The ResNet34 

CNN was trained using a dataset consisting of 12,000 images of anomalies and 12,000 images 

without anomalies. A separate dataset consisting of 3,000 images of sewer anomalies and 3,000 

images without anomalies was used to test the performance of the system. Table 5.1 describes the 

dataset used for training and testing the automated anomaly identification system. The images 

originated from over 2,000 different sewer pipe inspections of 8-inch and 10-inch diameter VCPs 

in Florida, Georgia, and Ohio. All images were collected by front-facing CCTV cameras and had 
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a native resolution of 640×480. The images were provided by Hazen and Sawyer, and Hydromax 

USA. 

Table 5.1 Description of the dataset used for training and testing the automated anomaly 

identification system 

 Number of Images 

 Crack Fracture Broken Joint 

Offset 

Root Deposit Lateral No 

Anomaly 

Training 2000 2000 1000 1000 2000 2000 2000 12000 

Testing 500 500 250 250 500 500 500 3000 

Total 2500 2500 1250 1250 2500 2500 2500 15000 

 

Deep neural networks such as ResNet34 are susceptible to overfitting and data augmentation is a 

common method to reduce overfitting. In data augmentation, the number of training images is 

considerably increased by applying label preserving transformations on images (Krizhevsky et al. 

2012). In this study, the training dataset was augmented through horizontal flips (i.e., taking mirror 

images across a vertical axis) and image rotations. The augmentations boosted the number of 

images in the training dataset by a factor of 16, resulting in 192,000 images of anomalies and 

192,000 images without anomalies. The trained ResNet34 CNN was evaluated on 6,000 images 

(i.e., 3,000 images of anomalies and 3,000 images without anomalies). The system yielded an 

accuracy of 98.4% on this dataset. After training and validation, the trained ResNet34 CNN was 

incorporated as the first step in the two-step framework. 

5.3  Results of Testing on CCTV Videos 

The two-step framework was tested on 10 videos of 8-inch diameter VCP which collectively 

represent 2200 feet of sewer mains. The framework is tested in the detection of cracks/fractures, 

root intrusions, and lateral connections in pipes. Cracks/fractures are selected for detection since 

they are important indicators of the structural health of sewers. Root intrusions are selected for 

detection because they have an adverse impact on the hydraulic capacity of a pipe and have the 

potential to progress into structural defects or exacerbate existing structural defects. Lateral 

connections are selected for detection because sewer defects (such as root intrusions and 

infiltration) are often concentrated around these locations. Furthermore, it is mandatory to report 
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the location of lateral connections in PACP reports. Note: At the current stage due to the high 

variability in panning, tilting, and zooming of the CCTV cameras, the system cannot distinguish 

between cracks and fractures. As a result, we have trained the detector to identify cracks and 

fractures as a single category, hereafter referred to as crack/fracture. The dataset used for testing 

the automated system consisted of 10 videos (see Table 5.2). 

Table 5.2 Description of the video files used for testing the automated system 

 Meta Data About the Pipes 

Video Id Video 

Resolution 

Location Diameter 

(inches) 

Pipe 

Material 

Year 

Surveyed 

Length 

(feet) 

Presence 

of Grease 

1 720×480 Alabama 8 VCP 2015 53 Absent 

2 720×480 Alabama 8 VCP 2015 198 Present 

3 720×480 Alabama 8 VCP 2015 154 Present 

4 720×480 Alabama 8 VCP 2015 412 Present 

5 720×480 Alabama 8 VCP 2015 390 Absent 

6 640×480 Ohio 8 VCP 2016 252 Absent 

7 640×480 Ohio 8 VCP 2016 205 Present 

8 640×480 Ohio 8 VCP 2016 145 Present 

9 640×480 Ohio 8 VCP 2016 174 Present 

10 640×480 Ohio 8 VCP 2016 217 Absent 

Note: All of the videos were recorded using pan, tilt, and zoom CCTV cameras 

The results of the tests are shown in Table 5.3. The system correctly detected 112 out of 124 (i.e., 

90.3%) instances of cracks/fractures, 88 out of 98 (i.e., 89.8%) instances of root intrusions, and 54 

out of 59 (i.e., 92%) instances of lateral connections. Figure 5.2 shows examples of correct 

detections. The automated system also generated 45 false positive detections of cracks/fractures, 

29 false positive detections of root intrusions, and 1 false positive detection of lateral connections. 

The system tends to misclassify pipe joints as cracks/fractures due to high visual similarities in 

their silhouettes (see Figure 5.3). The system also tended to misclassify fine roots as 

cracks/fractures due to high visual similarities in the two defects. A sample video of the automated 

system applied to CCTV videos can be accessed from: https://youtu.be/JFiVZd489Fg.   
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Table 5.3 Defect detection results 

Video 

Id 

Number of Defects True Positive Detections False Positive Detections 

F R C F R C F R C 

1 3 0 1 3 0 1 1 0 0 

2 6 0 5 6 0 5 3 1 0 

3 16 0 4 14 0 4 5 2 0 

4 42 56 12 38 52 10 16 12 0 

5 18 13 11 15 11 9 5 5 0 

6 12 10 8 11 8 7 5 3 0 

7 4 5 5 4 5 5 1 1 1 

8 3 0 4 3 0 4 2 1 0 

9 4 0 3 4 0 3 2 1 0 

10 16 14 6 14 12 6 5 3 0 

Total 124 98 59 112 88 54 45 29 1 

Note: F – Fracture; R – Root Intrusion; C – Connection 

 

 

Figure 5.2 Examples of correct detections by the system 

 

 

Figure 5.3 Examples of incorrect detections by the system 

a) Crack/Fracture b) Root Intrusion c) Lateral Connection

a) Joint Detected as Fracture b) Root Detected as Fracture
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Since the automated system correctly detected approximately 90% of cracks/fractures and root 

intrusions, as well as 92% of the lateral connections, we believe that the tool can be used in practice 

to support off-site review of CCTV videos. The tool in its current form can significantly shorten 

the duration of CCTV video required to be watched by inspectors, thereby improving the speed of 

coding defects.  

The tool has the potential to support automated PACP coding in the future if the number of false 

positives be significantly reduced. An iterative procedure of training and evaluation could assist 

in reducing the number of false positives. We propose the development of an iterative procedure 

to aggregate the correct and incorrect detections from tests on CCTV videos, in order to improve 

the training dataset. The procedure will provide a feedback mechanism in order to iteratively 

improve the accuracy of the system by updating the training dataset. Figure 5.4 shows a schematic 

diagram of the proposed procedure. Using the proposed procedure, incorrect detections (e.g., joints 

that are detected as fractures) could be flagged, extracted, and used for re-training the automated 

system. Hence, with continued use of the automated system, the percentage of incorrect detections 

can be significantly reduced. 

 

Figure 5.4 Schematic diagram of the iterative procedure to aggregate incorrect detections 
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5.4 Development of Supplementary Tool for Training Image Preparation 

Deep learning-based automated defect detection algorithms typically require tens of thousands of 

images for training and testing. In this study, the research team curated a dataset of 30,000 sewer 

CCTV images for training and testing. As described in Section 5.2, the 30,000 images included 

15,000 images of defects and 15,000 images of healthy pipe sections (i.e., images without any 

defects) and originated from over 4,000 sewer pipe inspections of 8-inch and 10-inch diameter 

vitrified clay pipes. During the initial stages of this research study, many of these images were 

tediously extracted from CCTV sewer inspection videos. However, we later developed a software 

tool called ImgXtract to streamline the process of image extraction from videos. This section 

describes the challenges faced in training image collection and provides an overview of ImgXtract. 

Municipalities, contractors, and consultants typically use sewer inspection software such as 

ITPipes, PipeTech, and WinCan, to manage information from inspections. These software 

programs typically organize the information from inspections into the following databases: 

a. Inspection videos, which contain the inspection video files from a cohort of pipes, 

b. Defect snapshots, which contain images of defects that have been identified in the videos, and 

c. Inspection reports, which typically consist of Microsoft Excel or Microsoft Access databases 

that provide metadata about each inspection (e.g., location of the pipeline, pipe material, types 

of defects identified in a pipe, time(s) in the video when defects were identified, etc.). 

 

We had planned to use images from the defect snapshots databases for development of the 

automated system. However, the following challenges were encountered when using these images 

for training the CNNs:  

1. The defect snapshots generated by the software programs were typically overlaid with the 

defect labels (see Figure 5.5a). Upon using these images for training, it was discovered that the 

CNNs had learned to classify the labels, rather than learn discriminatory features about the 

defects. As a result, the CNNs tended to overfit the training data and were not able to generalize 

to images without the labels. The research team experimented with masking the labels, 
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however, the masks obscured important portions of the images and hindered the classification 

performance.  

2. The snapshots were not always accurate representations of the defects (Figure 5.5b). Several 

images contained in the defect snapshots databases did not clearly show the defects and were 

thus unsuitable for use as training images. 

3. The defect snapshots databases did not contain images of healthy pipe sections (i.e., images 

which do not contain any defects) which were needed to train the CNNs.  

 

 

Figure 5.5 a) Original image with label; b) Image after addition of the mask to cover the label in 

the original image. 

Note: the label indicates ‘Crack Longitudinal’ although the crack is not clearly visible in the image. 

Hence, this image would not be suitable for training the automated system. 

The database of inspection videos contained the raw footage from pipe inspections and could be 

used to extract training images. However, the process of extracting images from videos requires 

significant manual effort. Initial experiments showed that the speed of image extraction was 

typically 15 images of unique defects per hour, and that 50 images of healthy pipe sections per 

hour could be extracted from the videos per hour.  

ImgXtract was developed to improve the speed of image extraction from videos. Using ImgXtract, 

the speed of image extraction was determined to be approximately 300 images of unique defects 

a) Original image b) Image with mask
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per hour and 500 images of healthy pipe sections per hour. The next section describes the 

functionality of the tool. 

5.4.1 Description of ImgXtract 

ImgXtract is a graphical image annotation tool written in Python and leverages the OpenCV library. 

The tool requires a database of sewer CCTV inspection videos, currently supporting videos 

with .mpg, .mp4, and .avi extensions, and the associated PACP database that contains the meta-

data related to the inspection videos, currently supporting files with .csv extension. The tool 

operates in two modes: (1) defect image extraction and (2) healthy pipe section image extraction. 

Upon running the tool, the user is presented with a GUI to select the mode. Once the mode is 

selected, the user is requested to provide the path (i.e., the directory) where the video files are 

stored as well as the path to the PACP database. 

In the defect image extraction mode, the tool searches the PACP database for the time(s) when 

defects have been identified in inspection videos and correlates this information with the video 

files. The tool then displays only the sections in the video where defects have been identified. To 

obtain the most representative image of a defect, the tool displays 9 images and allows the user to 

select the best image by entering a number from 1 to 9 into the computer’s keyboard (see Figure 

5.6). We believe that image selection using keyboard input is significantly faster than mouse clicks, 

since the necessity to hover the mouse pointer is avoided. However, in future versions of this tool, 

support for mouse clicks will also be provided. 
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Figure 5.6 Schematic diagram of ImgXtract 

 

The tool also provides options to traverse forward or backward in the video, to aid in the selection 

of the best image. Upon receiving the user input, the tool saves the selected image in a folder based 

on the type of defect (see Figure 5.7). The tool uses the NASSCO PACP convention of naming 

defects. In the healthy pipe section image extraction mode, the tool extracts image frames at 10 

second intervals and displays the images as a grid of 9 images. The tool ensures that images 

containing defects are not displayed to the user. Once an image is selected, the image is saved to 

the ‘NoDefect’ folder.

Video 

Id

Defect / 

Feature

Time in 

Video 

(sec)

1 AMH 0.0

1 JOM 10.1

1 B 177.8

2 AMH 0.0

Inspection Reports Database

Database of Video Files

Retrieve Defect Time(s)

Retrieve Video File(s)

Id 1 Id 2 Id 3

Id 4 Id 5 Id 6

Extract Image Frames

Display 3×3 Image Grid
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Figure 5.7 a) ImgXtract displays a grid of nine images to the user; b) The tool automatically 

stores images in folders based on the defect type. 

Note: the grid of nine images allows the user to select the most suitable image for training the 

automated system. The user selects the best image by using the keyboard to enter a number from 

‘1’ to ‘9’. For example, if the user enters the number ‘8’, then the eighth image in the grid is saved 

to the folder.

a) Grid of 9 images displayed by the tool b) Directory structure used to store defect images
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 CNN INTERPRETATION TECHNIQUES 

[A version of this chapter was published in the proceedings of the 2020 ASCE Construction 

Research Congress]4 

Although CNNs outperform conventional feature engineering methods on image classification 

tasks, the large number of parameters and complex interconnections in these models leads to a lack 

of interpretability and CNNs being used as ‘black boxes’. The lack of interpretation capabilities 

results in the loss of generalization capability, i.e., the algorithms may produce unexpected results 

when exposed to edge cases. This issue is prevalent in CNNs used for automated sewer defect 

identification since the training and testing images differ significantly. For example, municipalities 

typically maintain large numbers (i.e., several thousands) of labeled sewer defect images as an 

outcome of their sewer inspection programs; however, these images typically contain the defect 

labels imprinted on the images. Cropping the labels out or obscuring them is manually 

cumbersome and typically results in loss of information from the images. Hence, CNNs trained 

with these labeled images may exhibit unusual behavior, such as being sensitive to defect labels 

and other markers in the images and may result in significantly lower classification accuracies 

when tested on unlabeled images.  

The focus of this chapter is on leveraging CNN interpretation techniques to improve the 

generalization capability of automated defect identification models used in sewer CCTV video 

interpretation. We define generalization capability of automated defect identification models as 

the ability to generalize to images that differ significantly from the images used for training. The 

contributions of this study are as follows. (a) A CNN interpretation technique called class 

activation mapping (CAM) is used as a diagnostic tool to interpret the generalization capability of 

CNNs in sewer defect identification. (b) We demonstrate that the insights gained from CAM 

enables the development of more accurate sewer defect classification models.    

 
4 Kumar, S. S. and Abraham, D. M. (2020). Leveraging Visualization Techniques to Develop Improved 

Deep Neural Network Architectures for Sewer Defect Identification, ASCE Construction Research 

Congress (CRC 2020), Tempe, Arizona, USA. 
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6.1 CNN Feature Visualization 

Various approaches for visualizing the learned features in CNNs have been developed in literature 

as a response to their lack of interpretability. In this section, we briefly survey some of these 

approaches and related work.  

A common visualization technique involves showing the activations of the network during the 

forward pass. For untrained CNNs, these activations usually start out looking relatively dense. 

However, as training progresses the activations appear sparser and more localized. A drawback of 

this technique is that the layer activations are complicated and require significant expertise to 

interpret. Furthermore, given the large number of layer activations, this technique tends to be 

manually cumbersome. Another CNN interpretation strategy involves visualizing the learned 

weights. These weights are usually most interpretable in the first few convolutional layers that take 

raw pixel data as inputs These weights are useful to visualize because well-trained CNNs usually 

display smooth filters with few noisy patterns. Noisy patterns can be indicative of CNNs that have 

not been trained sufficiently enough or exhibit low regularization strength. This technique suffers 

from the same issue as the previous method in that the weights require significant effort and 

expertise to interpret. Furthermore, the insights that these techniques provide, such as under-

training and overfitting, can also be detected by comparing the training, validation, and testing 

accuracies of CNNs. 

CAM is a technique which was developed by Zhou et al. (2016) that can be applied to CNN 

architectures that use a global average pooling layer (e.g., AlexNet, ResNet, VGGNet, etc.). CAM 

takes a trained CNN and a sample image as input and finds the discriminative regions in the sample 

image which results in a particular output. CAM takes into consideration the weights in the fully 

connected layers of a CNN, determines the features which contribute to a particular classification 

(e.g., root), and project these features back onto the input images in the form of heatmaps (see 

Figure 6.1). For a CNN that is trained to classify images as either belonging to the root, fracture, 

or lateral category, CAM can be applied to a sample image to determine the regions in the image 

that lead it to be classified as a root or classified as a fracture (see Figure 6.1). Note: The red 

regions in Figure 6.1 represent pixels in the image that the CNN gives maximum importance to. 
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Figure 6.1 CAM applied to an example CCTV image.  

 

The results of CAM can be visualized as a heatmap and thus provide an intuitive explanation of 

what the CNN learns to recognize. The limitation of this method is that it can only be applied to 

CNNs with a global average pooling layer and is hence not directly applicable to object detection 

architectures such as Faster R-CNN, SSD, and YOLO. However, since object detection 

architectures also use CNNs as feature extractors, this method can provide an indirect assessment 

of object detection methods. In this study, we consider CAM as a CNN interpretation technique 

due to its highly intuitive visualizations. 

6.2 Experiments and Discussions 

The datasets used for training and testing were created to facilitate the measurement of the 

generalization capability of CNNs. The training dataset consisted of images that had previously 

been manually coded by municipalities. Imprinted on these images were the defect labels (see 

Figure 6.2). Municipalities typically maintain large volumes of such images in their databases as 

a result of their sewer inspection programs. The test dataset, however, consisted of images that 

were manually extracted from un-coded CCTV videos. Since these images were manually 

extracted from the videos, they did not contain defect labels (see Figure 6.2). Note: The images 

used in the training datasets have labels imprinted (on the bottom left of the image), whereas the 

images used for testing do not have labels imprinted on the images. Experiments were then 

conducted to evaluate whether the CNNs trained using the images with labels would be able to 

Convolution 

Layers

Input Image Features

Maps

Global

Average

Pooling

…

Root

Fracture

Lateral

No Defect

Weights

w1

w2

w3

w1 * w2 * w3 *+ +



 

89 

 

generalize to images without the labels imprinted on them. Such an experimental setup simulates 

the real-world scenario where large volumes of archived images are readily available for training 

automated defect identification algorithms. However, the trained models are intended to be applied 

to images that may differ significantly from the images used for training. 

 

Figure 6.2 Examples of images used for training and testing  

 

Three categories of sewer defects/features, i.e., fractures, root intrusions, and lateral connections 

were considered for automated identification. Fractures are considered as structural defects and 

are crucial for evaluating the health and remaining service life of pipes, whereas root intrusions 

can expand existing openings in sewers, further weakening the pipe, and ultimately causing 

breakage and collapse of the pipe. Lateral connections are regions where drainage and plumbing 

from homes and offices connect to the main line. These defects were considered in this study 

because of their typically high frequency of occurrence in sewer pipes. These are regions of stress 

concentration and are often regions of infiltration. In addition to images of defects/features, images 

of healthy pipe sections were also included in the training and test datasets.  
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Table 6.1 lists the number of images from each defect/feature category that were used for training, 

validation, and testing. In total, 14,400 images were used for training and testing. The training 

images originated from 8-inch diameter vitrified clay pipes in Ohio, whereas the images used for 

testing originated from 8-inch diameter vitrified clay pipes in South Carolina. The number of 

images of healthy pipe sections was three times that of either defect category. A larger number of 

healthy pipe section images was incorporated into the datasets to account for the observation made 

by Meijer et al. (2019) that images of healthy pipe sections far outnumber images of defects, 

leading to biased CNNs if fewer defect images are incorporated into the training datasets. These 

images had already been classified by trained human inspectors and we consider these human-

labeled images as ground-truths. 

Table 6.1 Number of images in each category used for training, validation, and testing 

Defect Category Training Validation Testing 

Fractures 1600 400 400 

Root Intrusions 1600 400 400 

Lateral Connection 1600 400 400 

Healthy Pipe Sections 4800 1200 1200 

Total 9600 2400 2400 

 

In this chapter, a single CNN architecture (i.e., the ResNet34) was used for training and testing. 

ResNet34, developed by He et al. (2015), was selected since it has been shown to achieve state-

of-the-art image classification accuracies on benchmark datasets, while being relatively fast 

(ResNet34 has an error rate of 21% compared to VGG-Net, which has an error rate of 24% on the 

ImageNet dataset. Our tests also showed that ResNet34 could process images at a rate of 40 frames 

per second on a computer with a Nvidia GTX1070Ti graphics card). However, multiple data 

augmentation hyperparameters were incorporated to improve the classification accuracy of the 

trained model. Data augmentation is a common method used to improve the classification accuracy 

of CNNs and involves applying label preserving transformations on the training images. By 

implementing data augmentations on the training images, CNNs are exposed to a larger set of 

images with geometric variations 
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First, four ResNet34 models were trained with various combinations of data augmentations, 

including horizontal flips, vertical flips, and centre crops as (see Table 6.2). Each model was 

trained until the validation accuracy reached a maximum value and decreased upon further training. 

This method of using the validation accuracy as an indicator of the best model is typical practice 

in training sewer defect identification models (Halfawy and Hengmeechai 2014, Cheng and Wang 

2018, Kumar et al. 2018, Meijer et al. 2019). Model 3, i.e., the model which was trained with 

images augmented by horizontal and vertical flips was found to be the best model, with a validation 

accuracy of 94.8%. The precision (i.e., ratio of true positives to the sum of true positives and false 

positives) was 93.6% and the recall (i.e., ratio of true positives to the sum of true positives and 

false negatives) was 96.16%. Note: Since human-identified labels were considered as ground-

truths for training and testing, an accuracy of 100% would indicate that the model’s classification 

accuracy is equivalent to that of a trained human inspector.  

Table 6.2 Data augmentation options considered 

Model 

No. 

Data Augmentations Model Accuracy 

Validation Set 

1 No data augmentations 90.3% 

2 Horizontal flips 93.6% 

3 Horizontal flips, Vertical flips 94.8% 

4 Center cropping, Horizontal flips, Vertical flips 92.6% 

Note: Accuracy is defined as the ratio of correctly classified images to the total number of images 

CAM was then used to interpret what Model 3 had learned. The CAM outputs on sample validation 

images of fractures, root intrusions, and lateral connections are shown in Figure 6.3. It can be seen 

that the CNN was sensitive to the presence of image labels, i.e., the labels were used to bolster the 

predictions. The sensitivity of the CNN to the defect pixels was low as shown in Figure 3d and 

Figure 3e. We hypothesize that the CNNs learned to recognize the labels rather than defect pixels 

because of the distinct and localized nature of the labels. That is, the labels were always located in 

approximately the same region of the image. The defect pixels on the other hand, were not confined 

to a single location. In other words, the labels represent ‘low hanging fruit’, and CNNs are able to 

learn to recognize the labels much faster than learning to recognize the defect pixels. However, 

unlike images of fractures and root intrusions, lateral connections are usually confined to a few 

locations since they are constructed based on standardized designs. As seen in Figure 6.3f the CNN 
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was able to prioritize the pixels of the lateral connection instead of the image labels. From the 

CAM outputs it is evident that the CNN would not generalize well to images of fractures and root 

intrusions in the test set. It was found that the accuracy on the test set was approximately 15% 

lower than the accuracy on the validation set (i.e., the validation and test accuracies were 94.8% 

and 79.9%, respectively, see Table 6.3). The precision and recall on the test set were 90.2% and 

67%, respectively, indicating that a significant number of false negatives (i.e., missed defects). 

The missed defects were presumably due to the absence of labels imprinted on the test images. 

Hence, it can be concluded that the CNN learned to ‘cheat’ during training, by leveraging statistical 

similarities in the images rather than learning the distinguishing features of the defects.  

 

Figure 6.3 CAM outputs for model 3 on validation images. 

In order to mitigate this behaviour of learning the labels, we implemented a data augmentation 

technique which included inducing random rotations of less than or equal to 90 degrees in the 

images. We believe that by randomly rotating the images, the labels would not always be confined 

to the same areas and would increase the difficulty of learning the labels. Figure 6.4 compares the 

CAM outputs of model 3 trained with and without the incorporation of rotations. The heatmaps 

produced by CAM show that augmenting the training data with rotations, results in the model 

giving a higher importance to defect pixels rather than on the labels. However, an interesting 

observation is that the validation accuracy of this model decreased by 1.5% (see Table 6.3). We 

believe that the decrease in validation accuracy is because the model trained with rotations did not 
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learn to recognize the defect labels and rather focused on the defect pixels alone. Hence, the model 

was not able to ‘cheat’ on the test resulting in a lower classification accuracy. However, the 

accuracy on the test set of this model was 90.5%, which is comparable to the same model’s 

validation accuracy (93.3% as shown in Table 6.3) and significantly higher than the test accuracy 

of the model without rotations (79.9% as shown in Table 6.3). Furthermore, the recall on the test 

set, of the model with rotations was 90.0%, which is significantly higher than that of the model 

without rotations (67.0%) indicating significantly fewer false negative detections (i.e., missed 

defects). The higher recall indicates that the model was able to correctly classify defects in the 

absence of imprinted labels. The significantly higher accuracy on the test set and insignificant 

decrease from the validation accuracy indicates a higher generalization capability of the model 

with rotations.  

 

Figure 6.4 Example CAM of model 3 with and without the incorporation of rotations as a data 

augmentation technique 
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Table 6.3 Data augmentation options considered 

Data Augmentations Model Accuracy 

Validation Set Test Set 

Accuracy Precision Recall Accuracy Precision Recall 

Horizontal flips, 

Vertical flips 

94.8% 93.6% 96.2% 79.9% 90.2% 67.0% 

Horizontal flips, 

Vertical flips, 

Rotations 

93.3 % 93.2% 93.4% 90.5% 90.9% 90.0% 

6.3 Chapter Summary 

Deep learning-based methods such as CNNs are increasingly being used in lieu of feature 

engineering techniques in automated sewer CCTV inspection studies. However, the large number 

of parameters and complex interconnections in CNNs contributes to their lack of interpretability, 

which may result in a loss of generalization capability (i.e., CNNs may produce unexpected results 

when exposed to edge cases). This issue is significant in CNNs used for automated sewer defect 

identification, since the images used for training typically differ from the images used for testing. 

For instance, municipalities possess several thousands of labeled sewer defect images which are 

suitable for training deep learning models. However, these images typically contain defect labels 

and other text data imprinted on them. CNNs trained with these pre-labeled images tend to exhibit 

unusual behavior, such as being sensitive to defect labels and other markers in the images, leading 

to lower classification accuracies when tested with unlabeled images. In this study, CAM, which 

is a CNN interpretation technique, is used to guide the development of sewer defect identification 

models that have a higher generalization capability. 

Our experimental setup consists of training CNNs using 12,000 images pre-labeled images (i.e., 

images with labels imprinted on them) and evaluating the accuracies of the trained models using a 

test set consisting of 2,400 unlabeled images. An analysis of the heatmaps produced by CAM 

indicated that CNNs trained using the pre-labeled images were highly sensitive to the image labels. 

We believe that the CNNs learned to recognize the labels rather than defect pixels because of the 

distinct and localized nature of the labels, (i.e., the labels were always located in approximately 

the same region of the image). In order to decrease this tendency of learning the labels, we 

implemented a data augmentation technique which included inducing random rotations in the 
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training images. We hypothesized that by incorporating random rotations in the images, the labels 

would not be confined to the same locations in the images, resulting in an increased difficulty for 

the CNNs to learn the labels. CAM showed us that the CNNs trained using images augmented with 

rotations gave much higher importance to the defect pixels and disregarded the image labels. The 

model trained with rotated images also achieved a significantly higher classification accuracy on 

the test set. 

Hence, this study represents a shift towards using CNN interpretation techniques to develop sewer 

defect identification models with better generalization capabilities. A limitation of this study is 

that the CNN interpretation technique used (i.e., CAM) cannot be directly applied to object 

detection models, due to their lack of a global average pooling layer. However, various methods 

such as image occlusion sensitivity exist for interpreting object detection models. Our future 

research will investigate how CNN interpretation techniques can be combined with CNN pruning 

to develop robust and computationally efficient architectures for automated sewer defect 

identification.  
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 VISION-BASED ORIENTATION ESTIMATION OF 

CCTV ROBOTS TO SUPPORT DEFECT LOCALIZATION AND 

AUTONOMOUS NAVIGATION  

In the US, closed-circuit television (CCTV) is the primary method used by municipalities for 

inspecting non man-entry sewers (Halfawy and Hengmeechai 2014c). This method of inspection 

involves televising the inner surfaces of pipes using a CCTV camera equipped robot crawler. 

Trained operators review the video-feed transmitted by the CCTV cameras in order to identify 

defects in the pipe. The process of reviewing inspection videos to identify defects is called defect 

coding and most municipalities in the US adopt the NASSCO PACP convention of coding defects. 

According to the NASSCO PACP convention, defects must be classified according to their type 

(e.g., crack, fracture, hole, root, etc.), and their locations in the pipe must be identified. Due to the 

reliance on manual interpretation of videos, sewer CCTV inspections have the propensity to be 

slow and inconsistent. Dirksen et al. (2013) conducted a study, where sewer CCTV images from 

60 sewers were shown to six trained operators, and their results compared. The study found that 

on average the trained operators failed to report approximately 25% of the defects. Automated 

sewer CCTV inspections have the potential to address the limitations of manual inspections and 

can improve the consistency, accuracy, and speed of sewer condition assessment. Hence multiple 

research studies have sought to develop methodologies to automate various components of the 

sewer CCTV inspection process. The next section summarizes the contributions of these studies. 

7.1 Related Studies 

Research on automated sewer CCTV inspections has addressed the following two themes: (1) 

automated defect interpretation, which attempts to replicate the manual process of identifying 

defects in videos and (2) autonomous robot navigation, which attempts to automate the control and 

navigation of inspection robots in sewers.   

7.1.1 Automated Defect Interpretation 

Automated defect interpretation involves using computer vision techniques to process inspection 

videos and perform the following three tasks: 1) defect classification, i.e., assigning defect labels 
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to defects (e.g., root medium joint, fracture longitudinal, joint offset medium, etc.),  2) longitudinal 

localization, i.e., reporting the distance along the pipe where a defect is located, and 3) 

circumferential localization, i.e., reporting the position of a defect relative to the cross-section of 

a pipe (see Figure 7.1).  

 

Figure 7.1 Example to illustrate the attributes of defects that are identified during sewer CCTV 

inspections 

 

Prior research work on automated defect interpretation, has addressed defect classification and 

longitudinal localization (refer to Section 2.1.1 for details about the methodologies, contributions, 

and limitations of these research studies). Circumferential localization of defects, however, is 

significantly more challenging and has been addressed by few studies in this domain. Research in 

the area of defect circumferential localization, is currently limited to the identification of the height, 

width, and position (i.e., in pixel coordinates) of defects in images. Cheng and Wang (2018) used 

the Faster R-CNN model to detect cracks, roots, and deposits in CCTV images whereas Kumar et 

al. (2019) developed a two-step CNN framework to detect fractures, roots, and lateral connections 

in CCTV videos. The approaches presented by Cheng and Wang (2018) and Kumar et al. (2019) 

process CCTV images and produce bounding boxes to identify the height, width, and position of 

defects in images (refer to Chapter 4 for details about the methodologies, contributions, and 

limitations of these two studies). However, the bounding boxes alone are not enough to deduce the 

circumferential location of defects, since the images are not referenced to regions in the pipe. For 
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instance, if the camera is oriented straight down the pipe, then the resulting image frame is a 

forward view frame, such as shown in Figure 7.2a. If the camera is oriented left off the center or 

right off the center, then the resulting image frames resemble Figure 7.2b and Figure 7.2c, 

respectively. Estimating the orientation of a camera, aids in referencing the images to regions of 

the pipe, which facilitates circumferential localization. Since CCTV robots do not possess special 

equipment to determine the camera orientation, a vision-based technique to estimate camera 

orientation would enable circumferential localization of defects.  

 

Figure 7.2 Example to illustrate how camera orientation affects the appearance of images 

7.1.2 Autonomous Navigation of Sewer Robots 

Autonomous navigation of sewer CCTV inspection crawlers is an area of research which seeks to 

develop algorithms that can enable CCTV inspection robots to traverse sewer pipes without human 

control. For an inspection robot to navigate autonomously in a sewer pipe, the robot must be able 

to determine its position and orientation relative to the pipe. For instance, if the robot is aligned 

parallel to the centerline of the pipe as shown in Figure 2a, it should continue traveling forward. 

However, if the robot is oriented left off the centerline (see Figure 2b) or right off the centerline 

(see Figure 2c), it should steer right and left, respectively.  
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A considerable body of research exists on the development of autonomous navigation systems for 

sewer robots. However, most studies use depth cameras, lasers, LiDAR, or orientation sensors to 

determine the location and orientation of robots in pipes—sensors which are not typically found 

on sewer CCTV inspection robots. Sewer CCTV robots generally contain a single RGB camera, 

as opposed to an array of sensing devices. Ahrary et al. (2007) developed an autonomous mobile 

robot system called KANTARO, which was demonstrated to successfully navigate through dry 

concrete pipes of diameters ranging between 8 inches and 12 inches. However, their study used 

multiple sensing devices such as RGB cameras, 2D lasers, and infrared sensors to determine the 

location of robots in pipes—whereas typical CCTV inspection robot only contain a single RGB 

camera. Hence, the method proposed by Ahrary et al. (2007) cannot be directly applied to CCTV 

inspection robots. Nassiraei et al. (2010) developed a robot localization system to enable 

autonomous sewer inspections of pipes with diameters ranging from 8 inches to 12 inches. Their 

method uses a robot that is equipped with passive arms on either side (i.e., left and right). During 

inspections, these arms brush against the walls of the pipe, and the angle made by the arms is used 

to determine the robot’s orientation. However, adapting this method for sewer CCTV inspections 

would entail retrofitting of existing robots with passive arms, which could have various practical 

limitations. Lee et al. (2011) developed an autonomous navigation system for sewer inspection 

robots using a pathfinding concept called landmark recognition. Their study used a custom robot 

that was equipped with line lasers to identify the locations of landmarks, such as elbow joints and 

branches in a pipe. Additionally, a 3D orientation sensor was used to determine the robot’s 

orientation with respect to the landmarks and to calculate the inspection trajectory. Meeks (2016) 

attempted to develop an autonomous robot for the inspection of storm sewers. Their robot 

contained an RGB camera and LiDAR scanner to visually inspect sewers, and a GPS device to 

estimate the robot’s position and orientation. However, since underground pipes are GPS-denied 

environments Meeks (2016) evaluated the robot’s autonomous navigation capabilities on open 

pipes, rather than in underground sewers. To enable autonomous navigation in underground sewers, 

their study recommended the development of methods to determine a robot’s position without the 

use of GPS. Alejo et al. (2019) and Alejo et al. (2020) developed a framework to determine the 

position of robots in sewers, in the absence of GPS. Their framework utilized robot odometry and 

GIS information about the location of sewer manholes to determine the position of robots in pipes. 

However, the methods proposed by Alejo et al. (2019) and Alejo et al. (2020) utilize 7 RGBD 
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cameras, in order to create a 3D map of the sewer, whereas most municipalities in the US use 

CCTV robots with a single RGB camera. Hence, their method cannot be directly applied to CCTV 

inspection robots either.  

In order to facilitate autonomous inspections using sewer CCTV robots, there is a need for methods 

that use information from a single camera sensor to determine the (1) position and (2) orientation 

of robots in pipes. Halfawy and Hengmeechai (2014c) partially addressed this need by developing 

a vision-based method to determine the longitudinal position of sewer CCTV robots. This study 

extends upon work proposed by Halfawy and Hengmeechai (2014c) by developing a vision-based 

method for estimating the orientation of sewer CCTV robots in pipes.  

7.1.3 Contributions of this Study 

The proposed method takes a CCTV video as input and estimates the orientation of the sewer 

CCTV camera in every image frame of the video. The estimated camera orientation, which is an 

output of this method, could enable automated circumferential localization of sewer defects, which 

is an unaddressed problem in literature. Additionally, the proposed methodology for vision-based 

estimation of camera orientation could also benefit autonomous sewer navigation, by enabling 

inspection robots to estimate their trajectories and take corrective actions while traversing pipes. 

Although the proposed method is developed for CCTV inspections that use robot crawlers, the 

approach is adaptable to other inspection platforms such as unmanned aerial vehicles (UAVs) and 

to pipes of different sizes and materials. Hence, an anticipated outcome of this study is the 

development of autonomous inspection platforms that leverage UAVs or other inspection 

technologies for rapid condition assessment of sewer pipe networks. 

7.2 Methodology 

The proposed framework uses visual markers in sewer images to infer the orientation of a CCTV 

camera in a pipe. Specifically, the position of the vanishing point of a pipe is used to characterize 

the orientation of a camera relative to the center line of a pipe. This study defines the vanishing 

point of a pipe as the point at which the sewer walls appear to converge in images (see Figure 7.3). 

In order to detect vanishing points in images, the study uses a deep learning-based object detection 
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model called the Single Shot Detector (SSD). The SSD was selected for vanishing point detection 

because of its relatively low computational complexity (in comparison to other deep learning-

based object detection models such as the Faster R-CNN), which enables the video-feed to be 

processed in real-time, i.e., a processing speed of 30 image frames per second or higher, facilitating 

autonomous navigation (refer to Section 7.2.2.2 for further details about the processing speed). 

The camera orientation is then estimated based on the position of the detected vanishing points in 

images.  

 

Figure 7.3 Illustration of sewer pipe vanishing point 

 

However, due to large variations in images due to variable camera orientations, illumination 

conditions, motion blur, gas buildup, etc., the vanishing point may either not be visible in images 

or the SSD model fails to detect its presence. Hence, a technique called optical flow is used to infer 

the orientation of the camera when vanishing points are not detected. The conceptual framework 

consists of two modules: (1) Vanishing Point Detection Module and (2) Optical Flow Calculation 

Module (see Figure 7.4). 
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Figure 7.4 Conceptual framework for vision-based estimation of camera orientation 

7.2.1 Image Frame Categorization 

A major challenge in estimating the camera orientation is the lack of knowledge about the intrinsic 

parameters (i.e., focal length, lens distortion, and principal point) of the sewer CCTV cameras. 

The intrinsic parameters affect the field of view seen through the lens of the camera and cause 

distortions in the scale of the images. Without information about these intrinsic parameters, it is 

impossible to measure the angle made by the camera with the pipe centerline. Additionally, the 

intrinsic parameters of sewer CCTV cameras vary greatly based on the manufacturer, type of 

camera, and model year. In order to circumvent this problem, the approach presented in this study 

focuses on classifying the orientation of a camera into distinct classes, rather on measuring the 

angle made by the camera. This approach allows us to develop a framework that can be broadly 

used across multiple camera types. A similar approach has been proposed in a study by Halfawy 

and Henmeechai (2014), where the orientation of cameras is classified into two classes: (1) forward 

view, where the camera direction is parallel to the centerline of the pipe and (2) wall view, where 

the camera orientation is perpendicular to the centerline of the pipe. However, CCTV inspections 

typically consist of images captured at various camera orientations, which cannot be accounted for 

by the method proposed by Halfawy and Hengmeechai (2014c).  
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In order to account for the variations in camera orientation, this study groups camera orientations 

into the following five classes:  

(1) Left-wall view (LV), which represents a situation where the camera is oriented towards the left 

wall of the pipe (see Figure 7.4a). The vanishing point of the pipe is not visible in image frames 

captured at this orientation.  

(2) Left wall/forward view (LF), which represents a situation where the camera is oriented between 

the left wall and pipe centerline (see Figure 7.4b). The vanishing point as well as the left wall 

are partially visible in image frames captured at this orientation. 

(3) Forward view (FV), which represents a situation where the camera is oriented along the pipe 

centerline (see Figure 7.4c). The vanishing point is clearly visible and approximately in the 

center of these image frames. 

(4) Right-wall/forward view (RF), which represents a situation where the camera is oriented 

between the right wall and pipe centerline (see Figure 7.4d). The vanishing point as well as the 

right wall are partially visible in these image frames. 

(5) Right-wall view (RV), which represents a situation where the camera is oriented towards the 

right wall (see Figure 7.4e). The vanishing point of the pipe is not visible in image frames 

captured at this orientation. 

The images corresponding to different camera orientation classes bear visual similarities. For 

example, LV images are similar to LF images, in that the left wall of the pipe is typically visible 

in both sets of images. Images corresponding to LF, FV, and RF classes are similar in that the 

vanishing point is typically visible in all three images. RV images and RF images are similar in 

that the right wall of the pipe is typically visible in both sets of images. To account for these 

similarities, this study introduces the concept of adjacent classes and defines three sets of adjacent 

classes: {LV, LF}, {LF, FV, RF}, and {RV, RF}.  
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Figure 7.4 Five camera orientations addressed by the methodology 
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The next sections describe the Vanishing Point Detection Module and the Optical Flow Calculation 

Module. 

7.2.2 Vanishing Point Detection Module 

This module identifies the position of vanishing points in images and uses an SSD MobileNets 

model that is trained using 1000 annotated sewer images to facilitate the detection of vanishing 

points in images.  

SSD MobileNets 

The architecture of SSD MobileNets model used for vanishing point detection is similar to the 

model described in Section 4.1.1 and performs object classification and localization in a single 

forward pass of the network. However, unlike the model described in Section 4.1.1, the output of 

the model in this section consists of two object classes (i.e., vanishing point and background). 

Since the SSD produces 8,732 detections per object class, the total number of detections per image 

is 17,464 (i.e., 8,732 × 2). The SSD may produce several overlapping bounding boxes for each 

vanishing point detected in an image. Since only one bounding box per vanishing point is desired, 

a technique called non-maximum suppression, is applied to discard the extra bounding boxes. 

Similar to the SSD model described in Section 4.1.1, the SSD for vanishing point detection is 

implemented with MobileNets as the base network to reduce computational complexity (see Figure 

7.5). 

 

Figure 7.5 Architecture of the SSD MobileNets model used for vanishing point detection 
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Model Training and Inference 

The SSD MobileNets model was trained using 1000 annotated sewer images. The images used for 

training were extracted from CCTV inspections of over 100 vitrified clay sewer pipe segments. 

The pipe diameters were 8 inches and 10 inches and originate from Ohio and Florida. The images 

were manually annotated, such that bounding boxes were drawn over the vanishing points. In order 

to reliably be able to detect vanishing points in CCTV videos, it was important to train the model 

with representative inspection images, i.e., images that exhibited large variations in camera 

orientations, illuminating conditions, and motion blur were included in the training and testing 

data sets. Among the 1000 images, 80 percent of the images were used in the training set, 10 

percent in validation set, and 10 percent in the testing set. Images in the training and validation 

sets were augmented by applying combinations of image rotations, contrast changes, and random 

cropping. The augmentations serve to artificially enhance the training set with greater variations 

in the images. The model was trained for approximately two hours using an Nvidia GTX1070Ti 

8GB graphics card to accelerate the training process. The mAP on the validation and testing set 

were found to be 0.90 and 0.87, respectively, using an IOU threshold of 0.5. The mAP on the 

testing set was approximately 0.03 lower than the mAP on the validation set, indicating low 

overfitting of the model.  

The trained model was then applied to CCTV videos with native resolutions equal to 

640 × 480 pixels. The inference was performed using a desktop computer with an Nvidia 

GTX1070Ti 8GB graphics card and yielded a video processing frame rate of 44 frames per second. 

The frame rate could further be improved by incorporating techniques such as neural network 

pruning. However, since our model achieved faster than real time performance (i.e., a frame rate 

greater than 30 frames per second), we did not implement pruning at the current stage.  

Camera Orientation Estimation from Vanishing Point Position 

The trained SSD model takes CCTV images as input and outputs the position of the vanishing 

point, represented by four bounding box coordinates (i.e., the x and y coordinates of the top left 

and bottom right vertices) (see Figure 7.6). Note: the images have a size of 640 pixels (horizontal) 

by 480 pixels (vertical). The coordinates of the center of the vanishing point are then calculated 

by averaging the coordinates of the two vertices. It was observed that the position of the center of 
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the vanishing point is highly dependent on the orientation of the camera. For instance, when a 

camera is oriented left off the centerline, the vanishing point center appears towards the right of 

the image, and when the camera is oriented right off the centerline, the vanishing point center 

appears towards the left of the image (see Figure 7.7). Hence, the methodology presented in this 

study, uses the position of the vanishing point center to determine the orientation of a camera.  

Based on an analysis of 1000 image frames that we manually annotated, the following observations 

were made: LF orientations resulted in the vanishing point center’s x coordinate lying between 0 

and 209 pixels, FV orientations resulted in the vanishing point center’s x coordinate lying between 

210 and 430 pixels, and RF orientations resulted in the vanishing point center’s x coordinate lying 

between 431 and 640 pixels. Vanishing points were typically not visible in LV or RV frames. 

Thus in order to estimate the camera orientation in CCTV videos, our method first detects 

vanishing points using the SSD model, and then uses the following rule to classify the camera 

orientation: If the vanishing point’s x coordinate lies between: (1) 0 and 209 pixels, the camera 

orientation is classified as LF; (2) 210 and 430 pixels, the camera orientation is classified as FV; 

and (3) 431 and 640 pixels, the camera orientation is classified as RV. However, vanishing points 

are not always visible or reliably detected in CCTV images and the Optical Flow Calculation 

Module is used to estimate the camera orientation in the absence of vanishing points.   

 

Figure 7.6 Example bounding box coordinates output by the SSD 
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Figure 7.7 Example to illustrate how the vanishing point center varies with camera orientation 

7.2.3 Optical Flow Calculation Module 

Optical flow is a computer vision technique, which when applied to a video, can be used to estimate 

the direction of motion of the camera, in order to determine whether a camera travels forward, 

turns left, turns right, or rotates on one of its axes. Hence, optical flow can be used to estimate the 

orientation of a camera in the absence of vanishing point detections. The approach presented in 

this study uses optical flow to determine and quantify the motion of a camera in a video, based on 

which its orientation is determined.  

Background on Optical Flow 

Optical flow-based motion estimation calculates the motion of corresponding pixels in successive 

image frames. The algorithm first identifies keypoints (i.e., visually significant features such as 

Canny Edges) in the first image frame of a video. Next, a set of matching keypoints, i.e., features 

which are visually similar to the keypoints in the first image are identified in the second image 

frame. The algorithm then computes the displacement vectors of the matching keypoints from one 

image to the next (see Figure 7.8). These displacement vectors, which are also referred to as optical 

flow vectors, indicate the velocity of motion. Since objects in sewer CCTV videos are 

predominantly stationary, the optical flow vectors would correspond to the motion of the camera. 

Thus, the optical flow vectors can be used to estimate whether the camera is stationary, moving 

forward, or turning towards a wall. Note: the proposed method would not be applicable in videos 
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with floating objects, vermin, and infiltration gushers, since the assumption of sewer objects being 

stationary would be violated. 

 

Figure 7.8 Illustration of optical flow vectors computed between two image frames 

Several algorithms exist for calculating optical flow, such as the Horn-Schunck and Block 

Matching Algorithm). Halfawy and Hengmeechai (2014c) demonstrated that the Lucas-Kanade 

algorithm (Lucas and Kanade 1981) yields the highest accuracy when applied to sewer CCTV 

videos, since it is not sensitive to image noise. The Lucas-Kanade algorithm uses the following 

three assumptions to determine flow vectors between two images: (1) brightness of pixels does not 

change significantly between consecutive image frames, (2) the camera motion is relatively small, 

and (3) adjacent pixels have nearly similar flow vectors. In general, sewer CCTV videos satisfy 

these constraints; however, a small fraction of the images violate the brightness constancy 

assumption, due to reflection of camera light on wet surfaces. Despite this violation, Halfawy and 

Hengmeechai (2014c) found the Lucas-Kanade technique to outperform other methods. The 

Lucas-Kanade algorithm was also used successfully by Chen et al. (2018) to determine whether 

CCTV cameras are in motion or stationery; however, their study does not report the accuracy of 

using the algorithm. Aligning with the rationale of these previous studies, the approach presented 

in the current study also uses the Lucas-Kanade algorithm for optical flow calculation. 
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Sewer CCTV Camera Motion Estimation using Optical Flow 

The optical flow vectors calculated for a particular image frame represent the displacement in 

pixels of the keypoints moving from the previous frame to the current frame. The direction of 

camera motion can be determined from these vectors. The approach in this study uses the optical 

flow vectors to estimate whether the robot is turning left, turning right, or not turning at all. Based 

on preliminary tests the following observations were made. When the robot travels forward, the 

optical flow vectors tend to point radially outward, whereas backward motion results in radially 

inward vectors (see Figure 7.9a). Right turns result in flow vectors that tend to point left, whereas 

left turns result in right pointing vectors (see Figure 7.9b). The proposed approach for estimating 

the camera motion involves identifying optical flow vectors in successive image frames and 

computing the length and direction of each these vectors. The length of an optical flow vector 

indicates the distance travelled by a keypoint in successive frames and can be used to determine 

the magnitude of camera motion. Longer vectors are indicative of greater motion between 

successive image frames than shorter vectors. For instance, vector number 6 in Figure 7.9b has a 

magnitude of 28 pixels indicating greater motion than vector number 1 in Figure 7.9a, which has 

a magnitude of 17 pixels.  
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Figure 7.9 Optical flow vectors corresponding to forward motion and right turn of a CCTV 

camera 

Determining the orientation of a camera using optical flow requires the flow vectors to first be 

calibrated. Our approach for calibrating the flow vectors is as follows. First, 25 video snippets of 

CCTV videos where the camera turns towards the left wall and 25 video snippets of CCTV videos 

where the camera turns towards the right wall were extracted from a dataset of CCTV videos. Each 

snippet begins with the camera facing forward, i.e., FV and ends with the camera pointing at a 

wall, i.e., LV or RV. The average duration of the snippets was 1.5 seconds.  
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Figure 7.10 Example optical flow vectors computed on image frames that depict a right turn 

 

For each video snippet (among the 50 snippets), image frames are extracted at a frame rate of 30 

frames per second. Hence, for a video with a duration of 1.5 seconds, 45 image frames are extracted. 

Optical flow vectors are then calculated between successive image frames. For 45 image frames, 

44 sets of optical flow vectors would be calculated. Figure 7.10 illustrates image frames extracted 

from a video snippet of a right turn. Note for illustration simplicity, Figure 7.10 only shows three 

image frames, whereas the actual methodology would extract image frames at 30 frames per 

second and then calculate optical flow vectors between successive frames. The horizontal 

components of the optical flow vectors are then computed. For instance, the flow vectors computed 

for the video snippet in Figure 7.10 have an average magnitude of 267.5 pixels in the left direction. 

Upon computing the flow vectors for all 50 video snippets it was found that for left turns, the 

average magnitude of flow vectors was 252.1 pixels with a standard deviation of 56.5 pixels. For 

right turns, the average magnitude of flow vectors was 237.8 pixels with a standard deviation of 

50.3 pixels.  

In order to determine the orientation of a camera, our approach computes the magnitudes of optical 

flow vectors in the horizontal direction and compares this value with the average magnitude for 

left and right turns. If the computed magnitude is 252.1 pixels ± 56.5 pixels in the left direction, 

then the camera is assumed to have made a turn towards the left wall and the resulting view is LV. 

If the computed magnitude is 128 pixels ± 28.3 pixels (i.e., half the magnitude of a left turn) in 

the left direction, our methodology assumes that the resulting view is LF. If the computed 
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magnitude of flow vectors is 237.8 pixels ± 50.3 pixels, then the camera is assumed to have made 

a turn towards the right wall and the resulting view is RV. If the computed magnitude is 118.9 

pixels ± 25.1 pixels (i.e., half the magnitude of a right turn) in the right direction, our methodology 

assumes that the resulting view is LR. 

7.3 Experiments and Discussions 

A prevalent issue in the area of automated sewer CCTV inspections is the lack of benchmark 

datasets to evaluate and compare the performance of different methodologies (Haurum et al. 2020). 

Hence, the datasets used for experimental evaluation are constrained by the availability of data and 

the time needed for data cleaning, preprocessing, and annotation. The methodology presented in 

this study was evaluated on a set of 10 sewer CCTV videos of 8-inch diameter vitrified clay sewer 

pipes located in Florida and Ohio. Note: these videos are different from the videos used for training 

the vanishing point detection. The average video duration was 15 minutes and the average length 

of pipe was 280 feet. The objective of the experimental setup was to evaluate the accuracy of 

camera orientation estimation, when applied to the CCTV videos. Hence, the frames in the videos 

were first manually annotated to denote the angle made by the robot. Since measuring and 

annotating the angle of each and every frame in the videos would be too time consuming, a set of 

50 candidate frames were selected for annotation from each video (resulting in a total of 500 

annotated frames). These 500 frames were then manually categorized as belonging to five different 

classes (i.e., LV, LF, FV, RF, RV), based on the orientation of the camera according to the 

convention depicted in Figure 7.4. The total amount of manual effort needed to extract and 

categorize the 500 image frames was approximately 15 manhours.  

The proposed method for estimating camera orientation was then applied to each of the 10 CCTV 

videos. In order to calculate the accuracy of the algorithm, the orientation estimates generated by 

the proposed algorithm were compared with the ground truth values (i.e., manually determined 

orientations). If the orientation estimate produced by the algorithm matched exactly with the 

ground truth annotation, then it was considered a perfect match. For example, if the ground truth 

orientation of a frame was FV and the orientation estimate produced by the algorithm was also FV, 

then the estimate would be considered a perfect match. If the estimated orientation differed from 

the ground truth, but belonged to an adjacent class, it would be considered as a soft match. For 
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example, if the ground truth annotation of an image was FV, but the estimated orientation was LF 

or RF, the output would be considered a soft match, since LF and RF are the classes adjacent to 

FV. However, if the estimated orientation differed from the ground truth and did not belong to an 

adjacent class, it would be considered as an incorrect classification. For instance, if the ground 

truth orientation of a frame was FV but the output of the algorithm was RV or LV, then the estimate 

would be considered incorrect, since RV and LV are not adjacent to FV. Figure 7.11 provides a 

conceptual overview of the experimental setup. 

 

Figure 7.11 Conceptual overview of experimental setup for accuracy evaluation 

 

The soft match category was created to account for edge cases, i.e., images which could be 

interpreted as belonging to multiple classes. Based on the number of perfect matches and soft 

matches, two accuracy metrics were calculated using the following two equations: 
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𝑃𝑒𝑟𝑓𝑒𝑐𝑡 𝑀𝑎𝑡𝑐ℎ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜. 𝑜𝑓 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠
 

(7.1) 

𝑆𝑜𝑓𝑡 𝑀𝑎𝑡𝑐ℎ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜. 𝑜𝑓 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 + 𝑁𝑜. 𝑜𝑓 𝑠𝑜𝑓𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠
 

(7.2) 

The results of orientation estimation applied to the 500 image frames are listed as a confusion 

matrix in Table 7.1. The proposed method yielded 399 (i.e., 83+74+84+76+82) perfect matches 

and 41 (i.e., 6+10+3+4+5+5+6+2) soft matches. Hence, the perfect match accuracy of the 

proposed method on the candidate image frames is 0.798 (i.e., 79.8 percent) and the soft match 

accuracy is 0.880 (i.e., 88.0 percent). 

Table 7.1 Confusion matrix for camera orientation estimation 

  Output of Camera Orientation Estimation Algorithm 

  LV FV/LV FV FV/RV RV 

Ground-truth 

Frame 

Classifications 

LV 

(Total = 100) 83 6 4 4 3 

LF 

(Total = 100) 10 74 3 7 6 

FV 

(Total = 100) 3 4 84 5 4 

RF 

(Total = 100) 6 7 5 76 6 

RV 

(Total = 100) 3 4 6 5 82 

 

The proposed method yielded 101 (out of 500) incorrect orientation estimates, i.e., 41 soft matches 

and 60 incorrect classifications. An analysis of these images revealed two sources of errors. The 

first source of error, which accounted for 8 soft matches and 38 incorrect classifications originates 

from incorrect vanishing point detections. This occurred when the SSD object detection model 

identified vanishing points in images, but the bounding box coordinates of the vanishing points 

were inaccurate (see Figure 7.12a). This error could be reduced by using more computationally 

expensive models such as YOLO and RetinaNet instead of the SSD. YOLO and RetinaNet have 

been shown to achieve higher mAP values on the PASCAL VOC and MSCOCO benchmark 

datasets compared to SSD (Redmon et al. 2016, Lin et al. 2018), and could hence generate more 
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precise detections of vanishing points. Additionally, the SSD model also tended to erroneously 

identify a small fraction of lateral connections as sewer mains, resulting in incorrect estimates of 

the camera orientation (see Figure 7.12b). These incorrect detections stem from the visual 

similarities between some lateral connections and of sewer mains. Retraining the SSD model to 

distinguish between lateral connections and sewer mains is a possible solution to this problem and 

will be explored in future research.  

 

Figure 7.12 Images to illustrate errors originating from incorrect vanishing point detections 

 

The second source of error, which accounted for 7 soft matches and 16 incorrect classifications 

originates from errors in optical flow calculation. These errors are caused by the optical flow 

vectors indicating an incorrect direction of motion. An example of such an error is a sequence of 

image frames where the camera turns right, however, the optical flow vectors indicate that the 

camera turned left. These errors are caused because distinct keypoints could not be identified in 

image frames and most notably due to brightness and contrast changes. For example, some images 

appeared overly bright due to the reflection of camera light on the pipe walls, resulting in a 

violation of the Lucas-Kanade method’s brightness constancy assumption, leading to erroneous 

optical flow calculation. A potential solution to this problem could be the incorporation of deep 

learning-based optical flow techniques, such as FlowNet (Dosovitskiy et al. 2015) into the camera 

orientation estimation framework. Techniques such as FlowNet use CNNs to estimate optical flow 
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between images, rather than keypoint matching (used by the Lucas-Kanade method), resulting in 

more accurate motion estimation. However, Dosovitskiy et al. (2015) mention that the preparation 

of training images for CNN-based optical flow requires considerable manual effort, which is why 

FlowNet has only been validated using synthetic images (i.e., virtual images generated using 

computer graphics techniques). Hence, further research is required to adapt CNN-based optical 

flow techniques for sewer camera orientation estimation. 

A major limitation of our proposed approach is that it cannot account for rotations along the 

forward axis of the camera (see Figure 7.13a). Such rotations typically result in image frames that 

appear tilted. However, this type of rotation can be identified by analyzing the position of water 

lines (i.e., flow lines on the bottom of pipes) in images (see Figure 7.13b). Hence, a separate 

module to detect the position of water lines in sewer images could be incorporated into the 

proposed approach to account for such rotations. 

 

Figure 7.13 Example image to demonstrate camera rotations about forward axis 

7.4 Conclusions  

This chapter presents the development of a novel vision-method for estimating the orientation of 

cameras in sewer CCTV inspection videos. The proposed method could become an important 

component in the development of automated defect interpretation systems by facilitating 

circumferential localization of defects. Additionally, the method could find application in 

autonomous sewer robotics, by enabling robots to determine their position and orientation inside 
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pipes, in the absence of GPS signals.  The proposed method leverages visual cues in CCTV images, 

such as the positions of vanishing points and optical flow vectors, to classify the camera orientation 

into five classes (i.e., LV, LF, FV, RF, RV). The position of the vanishing point of a pipe, i.e., the 

point at which the walls appear to converge, is used to characterize the orientation of a sewer 

camera. In order to detect vanishing points, a deep learning-based object detection model called 

SSD-MobileNets was used due to its high processing speed. The SSD-MobileNets model was 

developed using a dataset of 1000 images, using an 80/10/10 training/validation/testing split, and 

achieved a mAP of 0.87 on the testing set. Since vanishing points are not be visible in all image 

frames (e.g., when the camera is oriented towards a wall) of a CCTV video, a technique called 

optical flow is used to infer the orientation of a camera when vanishing points are not detected. 

The Lucas-Kanade algorithm was adopted for optical flow calculation, and the flow vectors were 

calibrated using 50 video snippets from CCTV videos. Evaluation of the proposed camera 

orientation estimation method on 500 images (from 10 CCTV videos of 8-inch diameter VCP 

sewers in Florida and Ohio) yielded a classification accuracy of 79.8%. Two sources of error that 

accounted for a majority of the incorrect detections were 1) imprecise detection of vanishing points 

and 2) erroneous optical flow vector calculation due to brightness changes in images. At the current 

stage, the proposed method is limited to classifying the camera orientation into five classes; 

however, further research is required to estimate the camera orientation in degrees. Additionally, 

the proposed method cannot address camera rotations along the forward axis, which lead to tilted-

view frames.  

Automated CCTV inspections of sewers have the potential to improve the consistency, accuracy, 

and speed of condition assessment. Prior research on automated CCTV inspections has focused on 

two areas, automated interpretation of defects and autonomous robot navigation. However, both 

areas are challenged by the lack of techniques to estimate the orientation of CCTV cameras in 

sewer pipelines. In the area of automated defect interpretation, this challenge manifests as the 

inability to determine the circumferential location of defects, which is a crucial component of pipe 

structural integrity assessment. In the area of autonomous robot navigation, this challenge leads to 

an inability in determining a robot’s orientation in a pipe, which is essential for path planning. 

Hence, the proposed camera orientation estimation algorithm developed in this study represents 

advancements in automated defect interpretation and autonomous robot navigation, paving the 
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way for future inspection systems that combine both technologies. The development of UAV-

based sewer pipeline inspection systems is an emerging area of research (Rizzo et al. 2016) and 

the method proposed in this study could be integrated with such UAV systems, to facilitate rapid 

inspection and assessment of sewers at a fraction of the cost of current methods. Additionally, 

using a network of wireless sensors, such inspection technologies could relay information about 

the condition of pipes in real-time, which would enable asset managers to make quick, pre-emptive 

maintenance decisions. Furthermore, since the proposed method is vision-based, it may also find 

application in other GPS-denied environments, such as utility tunnels, boreholes, and underground 

mines.    
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 A FRAMEWORK FOR MINING SPATIAL 

CHARACTERISTICS OF SEWER DEFECTS FROM INSPECTION 

DATABASES 

[The content in this chapter is reprinted from a manuscript that is currently under preparation]5 

Currently, municipalities rely on visual inspections and deterioration modeling to plan 

maintenance, repair, and rehabilitation activities. Visual inspections seek to assess the condition 

of pipes by identifying various types of defects (e.g., cracks, fractures, broken walls, etc.) in pipes. 

Visual inspections also entail assigning numerical grades (typically between 1 and 5) to defects, 

in order to represent their severity and provide a snapshot about the condition of a pipe at an 

instance of time. Since budget constraints limit the percentage of pipes that can be inspected each 

year, asset managers rely on deterioration modeling to estimate the future condition of pipes, based 

on which maintenance, repair, and rehabilitation decisions are made (Harvey and McBean 2014). 

Current deterioration modeling approaches represent the condition of pipes using single numeric 

grades and do not account for information about individual defects in pipes. For instance, current 

approaches represent the average condition of a pipe as the sum of grades of individual defects. 

However, the aggregation of defect grades into a single condition grade leads to a loss of spatial 

information, i.e., information about the density, severity, and co-occurrence characteristics of 

defects—information which can play a crucial role in calculating a pipe’s likelihood of failure. For 

instance, the approach of using a single aggregated condition grade overlooks the increased 

likelihood of failure of a pipe with defect clusters (i.e., areas with multiple defects in proximity). 

Figure 8.1 illustrates this problem. Under the conventional method of assigning a single grade to 

pipes, the pipes in Figure 8.1a and Figure 8.1b would both be assigned identical condition grades 

and hence be deemed to be equally prone to failure. 

 
5  Tentative title: Kumar, S. S., Abraham, D. M., Choi, J. (2020). A Framework for Mining Spatial 

Characteristics of Sewer Defects from Inspection Databases. Tables and figure captions have been modified 

to maintain the form of the dissertation. 
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Figure 8.1 Illustration to signify the importance of considering defect locations along a pipe 

 

However, it could be argued that that the pipe in Figure 8.1b has a higher likelihood of failure for 

the following reasons: (1) defects, which are close to each other could propagate and coalesce into 

more severe defects; (2) multiple cracks and fractures may lead to soil infiltration leading to the 

formation of voids over the pipe. Voids over pipes are known to result in sinkholes; and (3) 

multiple defects in proximity can lead to a localized region of weakness, resulting in an increased 

likelihood of collapse. Hence, existing deterioration modeling approaches, which rely on 

aggregated condition scores, do not account for the relationships between defect locations and 

likelihood of failure. The lack of consideration for spatial information also affects maintenance, 

repair, and rehabilitation decisions. For instance, if defects are evenly distributed along the length 

of a pipe, such as the case depicted in Figure 8.1a, it is likely that the entire length of pipe must be 

repaired or rehabilitated. However, for instances where only a section of the pipe is deteriorated 

with the rest of the pipe being in good condition such as the case depicted in Figure 8.1b, patch 

repairs may be an economical alternative to repairing the entire length of pipe. Thus, there is a 

need to develop techniques that also consider spatial information about defects when assessing 

sewer pipe condition. 

8.1 Related Studies on Sewer Deterioration Modeling 

Development of deterioration models to forecast the condition of sewer pipes is an active area of 

research and consists of two predominant approaches: physical modeling and statistical modeling 

(Ana and Bauwens 2010; Wilson, Filion, and Moore 2017; Nicolas Caradot et al. 2017). Physical 

modelling aims to simulate the physical processes of deterioration and the failure mechanisms of 

buried pipes through an analysis of the loads (physical and environmental) and estimated capacity 
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of the pipes to resist the loads (Ana and Bauwens 2010). Prior studies have mainly used physical 

models to estimate the condition of sewer pipes under the influence of corrosion. For example, 

Konig (2005) used soil moisture, soil aggressiveness, and resistance of the cement as key factors 

to estimate the magnitude of external corrosion on sewer concrete pipes in millimeters. Their study 

used empirical observations to calibrate the effects of soil moisture (i.e., dry, medium, or wet), soil 

aggressiveness (non, medium, or high corrosive), and cement resistance (good, medium, or poor) 

on the magnitude of external corrosion. However, the authors concluded that the physical 

mechanisms that lead to pipe failure are multifaceted and complex, and their approach could only 

provide a rough estimation of the external corrosion of pipes (without stating formally the accuracy 

of their prediction). Vollertsen and Konig (2005) and Wells and Melchers (2014) attempted to 

predict internal corrosion of pipes using biological and chemical indicators, such as organic matter 

and presence of gas at the water/gas surface. Both of these studies entailed the collection of a wide 

range of data from pipes such as the pH of concrete, concrete thickness, hydrogen sulfide 

concentration, temperature, humidity, etc., to develop physical models to represent pipe 

deterioration. Because of the intensive data collection requirements, their approach is only suitable 

for assessing the condition of individual pipes and not economically feasible for analyzing a 

network of pipelines. Additionally, because of the complexity of modeling the physical 

deterioration in pipes, physical modeling has low adoption rates among municipalities (Ana and 

Bauwens 2010; Rokstad and Ugarelli 2015).  

To address the limitations of physical models, researchers have proposed statistical models, which 

attempt to predict the condition of sewer pipes through an analysis of historical sewer condition 

data. This approach does not entail the collection of new data/samples from pipes and relies 

entirely on historical data that have already been collected during routine inspections. A wide 

variety of statistical models have been proposed in literature, based on cohort survival functions 

(Baur and Herz 2002), Markov chains (Wirahadikusumah et al. 2001; Micevski et al. 2002; Tran 

et al. 2006; Le Gat 2008; Ana 2009; Rokstad and Ugarelli 2015) and logistic or multiple regression 

(Ariaratnam et al. 2001; Chughtai and Zayed 2008; Ahmadi et al. 2013; FuchsHanusch et al. 2015). 

More recently, Mohammadi et al. (2019) proposed a logistic regression model to predict the 

condition of sanitary sewer pipes of the City of Tampa, Florida. The model used physical factors 

(i.e., pipe age, material, size, depth, slope, and length) and environmental factors (i.e., soil type 
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and water table level) to predict pipe condition and calibrated their model based on condition data 

from 20,282 pipe segments. The authors used 80% of the data for training and 20% for validation 

and state that their model achieves an 81% accuracy in predicting the condition of pipes in the 

validation set. Recent approaches have also used machine learning techniques such as neural 

networks (Tran et al. 2006; Sousa et al. 2014; Sousa et al. 2019), random forests (Vitorino et al. 

2014; Harvey and McBean 2014; Laakso et al. 2018), decision trees (Harvey and McBean 2015), 

and support vector machines (Sousa et al. 2014; Hernández et al. 2018), to predict the condition 

of sewer pipes. For instance, Harvey and McBean (2015) showed that decision tree models could 

be used to predict the condition of a pipe (either as ‘good’ or ‘bad’) at an accuracy of 76% using 

pipe-specific attributes such as pipe age, diameter, and length for pipes based in Guelph, Ontario, 

Canada.  Laakso et al. (2018) applied the random forest algorithm to model the physical condition 

of sewer pipes in southern Finland with a data set for 6,700 inspected sewer pipes. Their model 

could predict the condition of sewers with an accuracy of 62% using seven explanatory variables 

(i.e., pipe location, pipe slope, pipe age, pipe length, pipe installation year, sewage flow, and 

construction class).  

Despite advancements in sewer condition prediction, the approaches proposed in all previously 

mentioned studies represent the condition of pipes using single numeric grades. That is, the 

condition grades of individual defects are aggregated into a single numeric score to represent the 

condition of a pipe. However, this approach leads to a loss of spatial information (i.e., locations, 

densities, and co-occurrence characteristics) about defects. Our study aims to address this 

limitation by developing a methodology for assessing sewer deterioration by incorporating spatial 

information, such as the locations, densities, and co-occurrence characteristics of defects in pipes. 

A methodology called Defect Cluster Analysis (DCA) is proposed to identify and quantify defect 

clusters (i.e., areas with multiple defects in close proximity) in pipes. DCA could be used as a 

diagnostic tool to identify sections of the pipe that are likely to fail or have the propensity to 

progress into severe defects. When combined with contextual information, DCA could provide 

additional insights into pipe failure, such as the likelihood of sinkhole formation due to sand 

infiltration. The DCA approach could be used to periodically determine how the distribution of 

defects and their clustering progresses with time and could reveal pipeline deterioration patterns. 

The identification of defect clusters could also inform the choice of rehabilitation option. For 
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instance, the identification of defect clusters could lead to insights into whether whole length 

rehabilitation or local patch repairs should be pursued. 

8.2 Methodology 

This section describes two techniques (i.e., DCA and co-occurrence mining), which have been 

developed to facilitate the assessment of pipe deterioration based on the relative locations of 

defects in pipe segments. The first technique is called DCA and identifies pipeline segments that 

contain multiple defects which are closely located to one another. The second technique is called 

defect co-occurrence mining and identifies pairs of defects which occur frequently together in 

pipes. 

8.2.1 Defect Cluster Analysis (DCA) 

In this study, a defect cluster is defined as a set of defects that are spatially collocated, i.e., 

consecutive defects which are within a predefined distance from one another. For a pipe segment 

with 𝑛 defects {𝐷𝑖 , 𝐷𝑖+1, … , 𝐷𝑛}, 𝐷𝑖  and 𝐷𝑖+1 belong to defect cluster 𝐶𝑗 , if 𝑑𝑖𝑠𝑡(𝐷𝑖 , 𝐷𝑖+1) ≤ 𝑆. 

Where, 𝑑𝑖𝑠𝑡(𝐷𝑖 , 𝐷𝑖+1) is the longitudinal distance between the defects 𝐷𝑖  and 𝐷𝑖+1, and 𝑆 is a 

threshold that specifies the maximum distance between consecutive defects in a cluster. Figure 3 

illustrates this concept using an example of a pipe segment with seven defects. In Figure 8.2, if  𝐷1 

to 𝐷7 refer to defects located along a pipe segment, and the distance threshold 𝑆 is taken to be two 

(2) meters, then {𝐷1, 𝐷2, 𝐷3}, {𝐷4, 𝐷5} and {𝐷6, 𝐷7} are considered as three (3) defect clusters in 

the pipe segment. If 𝑆  is assumed to be one (1) meter, then {𝐷1, 𝐷2, 𝐷3} and {𝐷6, 𝐷7} will be 

considered as defect clusters in the pipe segment. In practice, the selected value of 𝑆 would depend 

on pipe material, soil type, pipe age, and the asset manager’s preference. Hence, the algorithm is 

developed such that different values of 𝑆 can be considered.  
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Figure 8.2 Illustration of a pipe segment with seven defects 

 

To quantify the severity of degradation in a cluster, two metrics are defined. The first metric called 

Cluster Severity is defined as the sum of defect grades in a cluster, whereas cluster severity density 

is defined as the sum of defect grades in a cluster divided by the length of the cluster. Thus, cluster 

severity represents the total degradation in a cluster, however, the cluster severity grade represents 

the degradation per unit length of pipe. Cluster severity density controls for the unit length of 

cluster.  A longer pipe may have more clusters (by virtue of it being longer), however, no statistical 

relationships between pipe length and cluster severity or cluster severity density were observed. 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = 𝑆𝑢𝑚 𝑜𝑓 𝐷𝑒𝑓𝑒𝑐𝑡 𝐺𝑟𝑎𝑑𝑒𝑠 𝑖𝑛 𝑎 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 (8.1) 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑆𝑢𝑚 𝑜𝑓 𝐷𝑒𝑓𝑒𝑐𝑡 𝐺𝑟𝑎𝑑𝑒𝑠 𝑖𝑛 𝑎 𝐶𝑙𝑢𝑠𝑡𝑒𝑟

 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐶𝑙𝑢𝑠𝑡𝑒𝑟
 

(8.2) 

Cluster severity is an aggregate of the amount of deterioration in a cluster, whereas cluster severity 

density provides insights into how highly localized the defects are. Figure 8.3 illustrates three 

examples of defect clusters with different cluster severities and cluster severity densities. In Figure 

8.3, Cluster 2 has higher cluster severity and cluster severity density values than cluster 1 and 

hence we consider it to be more deteriorated than Cluster 1. Cluster 2 and Cluster 3 have the same 

cluster severities, however, the cluster severity density in Cluster 2 is higher. This indicates that 

the defects in Cluster 2 are more localized than the defects in Cluster 3. The next section describes 

an algorithm that was developed to identify defect clusters in sewer pipe inspection databases.
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Figure 8.3 Illustration of three example defect clusters
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Defect Cluster Identification Algorithm 

The defect cluster identification algorithm takes a PACP inspection spreadsheet as input and 

outputs a list of clusters of various sizes, cluster severities, and cluster severity densities. Table 8.1 

illustrates an example of such an inspection spreadsheet of a pipe segment that is approximately 

100 meters long. For a pipe segment having less than or equal to 𝑛 defects, the algorithm has a 

linear execution time (i.e., 𝑂(𝑛)). That is, the number of execution steps taken by the algorithm is 

proportional to the number of observations in the spreadsheet. Figure 8.5 illustrates the execution 

time of the algorithm on inspection spreadsheets of varying sizes. The execution time was 

computed using a desktop computer equipped with an Intel Core i7-8700 CPU and using Python 

3.6. From Figure 8.5 it can be observed that the execution time is approximately proportional to 

the number of defects in the spreadsheet. For instance, the time taken to process a spreadsheet 

containing 10 defects was 12 milliseconds, whereas the time taken to process a spreadsheet 

containing 81 defects was 77 milliseconds. Thus, when the number of defects increases eight times, 

the execution time of the algorithm increased approximately by a factor of eight. However, if the 

algorithm had a quadratic execution time (instead of a linear execution time), the execution time 

would increase approximately by a factor of 82 (i.e., 64), resulting in a slow processing time. Thus, 

because the algorithm developed in this study has a linear execution time, it is suitable for 

processing spreadsheets that contain hundreds or even thousands of defects.  
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Figure 8.4 Execution time of the algorithm for inspection spreadsheets 

 

Table 8.1 Example PACP spreadsheet table that the Defect Cluster Identification Algorithm 

takes an input 

Defect Index Defect Code Distance (m) 

0 FC (fracture circumferential) 25 

1 CL (crack longitudinal) 26 

2 B (broken) 28 

3 CS (crack spiral) 52 

4 JOM (joint offset medium) 88 

5 FL (fracture longitudinal) 89 

 

Let 𝑑[𝑖] be the distance of the 𝑖𝑡ℎ defect, and 𝑁 be the total number of defects in a single pipe 

segment. Let 𝑐[𝑗] represent the 𝑗𝑡ℎ defect cluster. 𝑆 represents the cluster threshold. The algorithm 

(written in pythonic pseudo code) for finding all defect clusters in the database is as follows:  

𝑗 = 0 // j refers to the index of the cluster 

for 𝑖 = 0 to 𝑁 − 1: 

     if |𝑑[𝑖] − 𝑑[𝑖 + 1]| ≤ 𝑆:  // if the distance between ith and (i+1)th defect is less than the threshold 
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           𝑐[𝑗]. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑖)  // append ith defect to cluster j 

       else: 

 𝑗 = 𝑗 + 1 

Table 8.2 shows the execution steps of the algorithm on the sample PACP spreadsheet presented 

in Table 2. For this example, 𝑆 is assumed to be 2 meters. At the final step of execution, two defect 

clusters are identified. The first cluster (i.e., 𝑐[0]) consists of defects FC, CL, and B whereas the 

second cluster (i.e., 𝑐[1]) consists of defects JOM and FL. Note: additional constraints could be 

incorporated while searching for defect clusters, e.g., different distance thresholds for different 

classes of defects. The algorithm can be adapted to accommodate the preferences of a 

municipality/organization. 
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Table 8.2 Execution steps of the cluster finding algorithm 

Step of 

Execution 

Index of 

Defect 

Cluster 𝑗 

Index of 

Defect 𝑖 
Algorithm Logic and Execution Clusters 

Identified 𝑐 

1 0 0 𝑆𝑖𝑛𝑐𝑒 |𝑑[𝑖] − 𝑑[𝑖 + 1]|
≤ 𝑆, 𝑎𝑝𝑝𝑒𝑛𝑑 𝑖 𝑡𝑜 𝑐[𝑗] 

𝑖 =  𝑖 +  1 

𝑐[0]  =  [0] 

2 0 1 𝑆𝑖𝑛𝑐𝑒 |𝑑[𝑖] − 𝑑[𝑖 + 1]|
≤ 𝑆, 𝑎𝑝𝑝𝑒𝑛𝑑 𝑖 𝑡𝑜 𝑐[𝑗] 

𝑖 =  𝑖 +  1 

𝑐[0]  =  [0, 1] 

3 0 2 𝑆𝑖𝑛𝑐𝑒 |𝑑[𝑖] − 𝑑[𝑖 + 1]|
> 𝑆, 𝑎𝑛𝑑 |𝑑[𝑖] − 𝑑[𝑖
− 1]|
≤ 𝑆, 𝑎𝑝𝑝𝑒𝑛𝑑 𝑖 𝑡𝑜 𝑐[𝑗] 

𝑖 =  𝑖 +  1 
𝑗 =  𝑗 +  1 

𝑐[0]  =  [0, 1, 2] 

4 1 3 𝑆𝑖𝑛𝑐𝑒 |𝑑[𝑖] − 𝑑[𝑖 + 1]|
> 𝑆, 𝑎𝑛𝑑 |𝑑[𝑖] − 𝑑[𝑖
− 1]| > 𝑆 

𝑖 =  𝑖 +  1 

𝑐[0]  =  [0, 1, 2] 
𝑐[1]  =  [ ] 

5 1 4 𝑆𝑖𝑛𝑐𝑒 |𝑑[𝑖] − 𝑑[𝑖 + 1]|
≤ 𝑆, 𝑎𝑝𝑝𝑒𝑛𝑑 𝑖 𝑡𝑜 𝑐[𝑗] 

𝑖 =  𝑖 +  1 

𝑐[0]  =  [0, 1, 2] 
𝑐[1]  =  [4] 

6 1 5 𝑆𝑖𝑛𝑐𝑒 |𝑑[𝑖] − 𝑑[𝑖 + 1]|
> 𝑆, 𝑎𝑛𝑑 |𝑑[𝑖] − 𝑑[𝑖
− 1]|
≤ 𝑆, 𝑎𝑝𝑝𝑒𝑛𝑑 𝑖 𝑡𝑜 𝑐[𝑗] 

𝑖 =  𝑖 +  1 
𝑗 =  𝑗 +  1 

𝑐[0]  =  [0, 1, 2] 
𝑐[1]  =  [4, 5] 

8.2.2 Defect Co-Occurrence Mining 

In this study, a technique called association rule mining is applied to databases of sewer inspection 

records to discover correlations among the occurrences of different types of defects. Association 

rule mining (also known as market basket analysis) is a method that is typically used for 

discovering customer purchasing patterns by extracting associations or co-occurrences from 

transactional databases. For example, discovering that online shoppers are likely to purchase two 

specific items together can assist in the design of websites and marketing strategies. Association 

rule mining was introduced by Agrawal et al. (1994) and can be stated as follows: Given two items 

𝑋 and 𝑌, an association rule 𝑋 → 𝑌 indicates that if 𝑋 exists, then 𝑌 also exists. In this study, 

association rule mining is adapted to determine associations between defects in pipe segments, and 
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in clusters. 𝑋 → 𝑌 𝑝𝑖𝑝𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 indicates that if defect 𝑋 exists in a pipe segment, then defect 𝑌 also 

exists in the same pipe segment. 

Various metrics have been defined in literature to measure the strength of association rules. Three 

of the most commonly used metrics are support, confidence, and lift. Support measures how 

frequently an itemset (e.g., 𝑋, 𝑌) appears in a dataset. Hence for a rule 𝑋 → 𝑌𝑝𝑖𝑝𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 , the 

support can be calculated as follows: 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋 → 𝑌𝑝𝑖𝑝𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡) =
𝑁𝑜. 𝑜𝑓 𝑝𝑖𝑝𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋 𝑎𝑛𝑑 𝑌

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑖𝑝𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
 

(8.3) 

Confidence is an indication of how often the rule is found to be true, and can be calculated as 

follows: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝑋 → 𝑌𝑝𝑖𝑝𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡) =
𝑁𝑜. 𝑜𝑓 𝑝𝑖𝑝𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋 𝑎𝑛𝑑 𝑌

𝑁𝑜. 𝑜𝑓 𝑝𝑖𝑝𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋
 

(8.4) 

Hence, confidence can also be interpreted as an estimate of the conditional probability of finding 

item 𝑌 given item 𝑋.  

Lift is the ratio of confidence to the expected confidence of a rule. A lift value greater than 1 

indicates that an itemset appears more often together than expected, whereas a lift value less than 

1 indicates that an itemset appears less frequently than expected. Lift can be calculated as follows: 

𝐿𝑖𝑓𝑡 (𝑋 → 𝑌𝑝𝑖𝑝𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡)

=
𝑁𝑜. 𝑜𝑓 𝑝𝑖𝑝𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝑋 𝑎𝑛𝑑 𝑌

𝑁𝑜. 𝑜𝑓 𝑝𝑖𝑝𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑌

∗
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑖𝑝𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑁𝑜. 𝑜𝑓 𝑝𝑖𝑝𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋
 

(8.5) 
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8.3 Experiments and Discussions 

The defect cluster identification algorithm described in the previous section was applied to a 

dataset containing 7193 sewer inspections (each inspection corresponds to a single sewer pipe 

segment between two manholes) of vitrified clay pipes. Note: pipe segment in this context refers 

to the region of pipe between consecutive manholes. The pipe segments are located in cities in 

South Carolina, Florida, and Ohio, and have a total length of approximately 457 kilometers. Figure 

8.5 shows the pipe materials and sizes. The predominant pipe material is vitrified clay and most 

of the pipes are 30 cm (12 inches) in diameter. The length of pipe segments ranged from 88 feet 

to 550 feet, with the average length of pipe being approximately 64 m (210 ft). Since, all 

inspections in this dataset were manhole-to-manhole inspections, the length of inspected pipe 

equals the total length of pipe. The pipe segments contained a total of 15,527 instances of structural 

defects. Figure 8.6 shows the ten most frequent structural defects in the dataset.  

 

Figure 8.5 Number of pipe segments by: a) materials and b) diameters 

 

Figure 8.6 Number of instances of structural defects 

a) Pipe Materials b) Pipe Diameters

Vitrified Clay

Prestressed 

Concrete 

Cylinder

Other

5323 (74%)

1440 (20%)

359 (5%)

Diameter = 30 cm

791 (11%)

Diameter > 30 cm 

5683 (79%)

Diameter < 30 cm 

719 (10%)

320

429

841

957

980

1285

1614

2485

2586

3215

BSV (Broken Pipe Soil Visible)

CS (Crack Spiral)

FS (Fracture Spiral)

JOM (Joint Offset Medium)

FL (Fracture Longitudinal)

FC (Fracture Circumferential)

CC (Crack Circumferential)

CL (Crack Longitudinal)

CM (Crack Multiple)

FM (Fracture Multiple)
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8.3.1 Identification of Defect Clusters 

In this study, DCA is applied to the sewer inspection dataset as follows. First, the defect cluster 

identification algorithm is executed with a threshold distance (i.e., 𝑆) of 0.1 m (0.3ft), which is 

approximately three times the average diameter of the pipes. Based on the selected value of 𝑆, the 

algorithm outputs a list of defect clusters, with associated cluster severities and cluster severity 

densities. The algorithm is then executed with the threshold distance (i.e., 𝑆) relaxed to 0.3 m (1.0 

ft) and 0.9 m (3 ft). Table 8.4 lists the number of defect clusters of various sizes, along with their 

maximum, minimum, and average cluster severity densities. With 𝑆 = 0.9 m (3 ft), the algorithm 

identified 627 clusters that contained two or more structural defects, with the longest cluster 

containing 16 defects (see Table 8.3). With 𝑆 = 0.3 m and 0.1 m, the algorithm identified 197 and 

28 defect clusters, respectively (see Tables 8.4 and 8.5). The top five highest severity density 

clusters are visually depicted in Figure 8.7.  

Based on the values of the average, maximum, and minimum cluster severity densities, it was 

observed that lower values of 𝑆 lead to the identification of clusters with higher cluster severity 

densities (see Tables 8.3, 8.4, and 8.5). However, the number of clusters identified by the algorithm 

are fewer for lower values of 𝑆. The identified clusters are then sorted according to their cluster 

severity densities in descending order. Duplicates, i.e., the same clusters which are identified 

across different values of 𝑆 are deleted, leaving behind a sorted list of unique clusters sorted 

according to their cluster severity densities. In practice, we recommend using the algorithm in a 

staged approach, starting with a low value of 𝑆 (e.g., 0.1 m). The low values of 𝑆 will help identify 

the most severe clusters (i.e., clusters with highest severity density) and hence the pipe segments 

which are most prone to failure. The algorithm can then be executed with incrementally higher 

values of 𝑆 to identify clusters with lower severity densities.  
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Table 8.3 Defect clusters containing structural defects with (S = 0.1m (0.3ft)) 

Cluster Size 

(i.e., number 

of defects) 

Number of 

Occurrences 

Average 

Cluster Severity 

Density 

(grade/meter) 

Maximum 

Cluster Severity 

Density 

(grade/meter) 

Minimum Cluster 

Severity Density 

(grade/meter) 

2 22 25.12 33.90 20.00 

3 6 29.50 33.82 21.10 

 

Table 8.4 Defect clusters containing structural defects with (S = 0.3m (1ft)) 

Cluster Size 

(i.e., number 

of defects) 

Number of 

Occurrences 

Average 

Cluster Severity 

Density 

(grade/meter) 

Maximum 

Cluster Severity 

Density 

(grade/meter) 

Minimum Cluster 

Severity Density 

(grade/meter) 

2 125 10.31 20.15 6.66 

3 56 13.17 25.10 5.30 

4 13 13.98 35.19 5.37 

5 4 29.19 36.10 20.9 

 

Table 8.5 Defect clusters containing structural defects with (S = 0.9m (3ft)) 

Cluster Size 

(i.e., number 

of defects) 

Number of 

Occurrences 

Average 

Cluster Severity 

Density 

(grade/meter) 

Maximum 

Cluster Severity 

Density 

(grade/meter) 

Minimum Cluster 

Severity Density 

(grade/meter) 

2 304 7.22 20.15 2.11 

3 153 7.68 25.10 2.36 

4 82 9.31 32.16 3.07 

5 47 9.54 36.14 3.14 

6 25 8.71 33.00 3.83 

7 5 9.74 16.10 6.44 

8 5 4.92 5.54 3.99 

9 2 9.14 12.05 6.30 

10 1 17.59 17.59 17.59 

11 1 9.17 9.17 9.17 

12 1 4.75 4.75 4.75 

16 1 8.48 8.48 8.48 
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Figure 8.7 Visualization of the five clusters with the highest cluster severity score
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DCA is not intended to be used as the sole determiner of a pipe’s likelihood of failure. The defect 

clusters should be analyzed alongside contextual information of the pipe, such as soil profiles or 

ground water table levels. To facilitate such analyses, a prototype web-based graphical user 

interface (GUI) tool was created to provide a visual depiction of clusters on a pipeline system map. 

The tool takes inspection spreadsheets and map files containing the coordinates of pipes as input 

and plots the identified defect clusters on the pipeline system map (see Figure 8.8). At the current 

stage, the tool allows this plot to be overlaid with information about soil profiles enabling the 

identification of potential failure scenarios (see Figure 8.8b). For instance, a high severity cluster 

which is located in a region of sandy soil could pose a threat of void formation over the pipe, 

leading to the formation of sinkholes. Hence, by incorporating contextual information sources with 

the identification of clusters, the web-tool enables a comprehensive analysis of pipe condition. 

Future work will focus on incorporating additional sources of contextual information, such as the 

locations of trees, ground water table levels, soil corrosivity, etc., into the web-tool. 

 

Figure 8.8 Example cluster visualizations generated by the web-tool 

8.3.2 Defect Co-Occurrence Mining 

The proposed method for calculating association rules (as described in Section 8.2.2) was also 

applied to the structural defects in the dataset. Based on discussions with subject matter experts, 

four key association rules were identified and are listed in Table 8.5. These rules have 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 >  0.5 and 𝑙𝑖𝑓𝑡 >  1. 
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Table 8.6 Association rules with confidence greater than 0.5 and lift greater than 1 

Rule (X→Y) Number of 

Pipes with X 

Number of 

Pipes with X 

and Y 

Confidence Lift Support 

FL→FM 421 304 0.72 1.81 0.042 

FS→FM 294 199 0.68 1.70 0.028 

JOL→FM 69 36 0.52 1.31 0.004 

 

The first rule states that if a pipe contains a longitudinal fracture (grade 3 defect), then the 

probability that the pipe also contains a multiple fracture (grade 4 defect) is 72%. The lift value, 

which is 1.81 (>1) indicates that these two defects occur more frequently than expected. Had the 

defects been randomly distributed among the pipe segments, the expected number of occurrences 

of longitudinal fracture and multiple fracture occurring simultaneously would have been 168. 

However, there were 304 observed co-occurrences of longitudinal fracture and multiple fracture. 

The second rule states that if a pipe contains a spiral fracture (grade 3 defect), then the probability 

that the pipe also contains a multiple fracture (a grade 4 defect) is 68%. The lift value, which is 

1.70 (>1) indicates that these two defects occur together more frequently than expected. Had the 

defects been randomly distributed among the pipe segments, the expected number of occurrences 

of spiral fracture and multiple fracture occurring simultaneously would have been 117. However, 

there were 199 observed co-occurrences of fracture spiral and fracture multiple. The third rule 

states that if a pipe contains a joint offset (large), which is a grade 2 defect, then the probability 

that the pipe also contains a multiple fracture (a grade 4 defect) is 52%. The lift value, which is 

1.31 (>1) indicates that these two defects occur together more frequently than expected. Had the 

defects been randomly distributed among the pipe segments, the expected number of pipes in 

which joint offsets and multiple fracture occur simultaneously would have been 27. However, 

there were 37 observed co-occurrences of joint offset large and fracture multiple. 

When considered together, the three rules indicate that given the presence of a less severe defect 

(i.e., FL, FS, or JOL), the propensity of the pipe to also contain a defect of higher severity (i.e., 

FM) increases. These rules could indicate that the two types of defects may have a common 

underlying cause and could be used by asset managers to determine maintenance activities that 

consider the presence of frequently occurring pairs of defects. 
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8.3.3 Validation of the Approach 

Validation of the approach involved collecting feedback about the assumptions, methodologies, 

and findings of the study from nine subject matter experts (SMEs) representing eight different 

organizations (i.e., Brown Equipment Company, CTSpec, Evanco Environmental, Greely and 

Hansen, Hazen and Sawyer, HDR, Hydromax USA, and SewerAI). Each of the nine SMEs had 

prior work experience in the area of sewer condition assessment, ranging from 3.5 years to 49 

years, with the work average experience being 16.5 years. The validation process included face-

to-face meetings as well as electronic communications via email, during which the DCA and defect 

co-occurrence mining approaches were explained to the SMEs in detail. The overall methodology 

was presented to the SMEs in the form of four themes: methodological assumptions, 

methodological approach, outputs and findings, and operational validity. Table 8.7 lists the 

components of the methodology that were validated by the SMEs. 
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Table 8.7 Validation scores based on assessment by SMEs 

Validation 

Component 

Validation Features Average 

Score* 

(Standard 

Deviation) 

Median 

Score* 

Methodological 

Assumptions 

Pipes with closely spaced defects are more likely to fail than 

pipes with the same defects not closely spaced. 

 

4.0 (0.7) 4 

 Defects that are in proximity could propagate into more 

severe defects; multiple defects in proximity can lead to soil 

infiltration and sinkholes; and multiple closely spaced 

defects lead to a localized region of weakness. 

 

4.1 (0.9) 4 

 The identification of defect clusters and their cluster 

severity densities could provide asset managers with useful 

information to determine repair/rehabilitation actions for 

pipelines. 

 

3.9 (0.9) 4 

Methodological 

Approach 

A new metric to gauge the closeness of defects (in addition 

to their severities) would be beneficial to sewer asset 

managers. 

4.2 (0.8) 4 

    

 The cluster severity density (defined as the sum of defect 

grades in a cluster divided by the length of the cluster) 

represents a metric that can be used to gauge the closeness 

and severities of defects. 

3.6 (0.5) 4 

    

Outputs and 

Findings 

The clusters depicted in Figure 8.8, represent pipe segments 

that could have a high propensity for failure.  

3.9 (0.9) 4 

 The identified co-occurrence characteristics among defects 

(shown in Table 8.7) could be used to prioritize pipes for 

inspection and/or maintenance. 

3.9 (0.9) 4 

    

Operational 

Validity 

The information presented in the web-tool (i.e., the 

locations and severities of defect clusters plotted on a 

pipeline system map), could be beneficial in planning 

repair/rehabilitation. 

4.0 (0.9) 4 

   
 

 The graphical/animation outputs of the web-tool provide 

asset managers with a convenient method for identifying 

highly deteriorated regions. 

4.2 (1.2) 5 

 
  

 

* 1: Strongly Disagree, 2: Disagree, 3: Neutral, 4: Agree, 5: Strongly Agree 
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From the SMEs’ evaluation of the methodological assumptions it is evident that they supported 

the assumptions underpinning this study, i.e., all other factors being equal, pipes with closely 

spaced defects are more likely to fail than pipes with defects that are spaced further apart. The 

SMEs recommended having separate classification systems based on the pipe material, because 

the modes of failure of rigid pipes (e.g., clay and concrete) are different from those of flexible 

pipes (e.g., polyvinyl chloride and high-density polyethylene). For instance, rigid pipes tend to 

develop visible cracks, whereas flexible pipes tend to deflect and fail abruptly. At the current 

stage, the methodology presented in this study (as well as the experimental results) apply only to 

rigid pipes. Future work will seek to develop a method of analysis for flexible pipes. 

 

The SMEs agreed about the need for creating a metric to gauge the proximity of defects (in addition 

to their severities) and the SMEs agreed that at the current stage, the cluster severity density could 

be used to quickly identify pipes with multiple severe defects in proximity to one another. 

However, they suggested that additional considerations related to pipe material, pipe diameter, and 

soil type should be considered when creating such a proximity metric, since in their experiences 

pipe-soil interactions play a crucial role in determining the likelihood of failure. Hence, a future 

direction of this research would explore the creation of a metric which accounts for the pipe-soil 

interactions. 

 

The output of the methodology, i.e., the clusters sorted according to their cluster severity densities 

(see Figure 8.8), was also judged to be of benefit to the asset management practice. The SMEs 

believed that the clusters identified using the DCA approach (see Figure 8.7) represented highly 

deteriorated pipe sections which could face an imminent threat of failure due to the large 

concentration of defects. They also agreed that identifying and quantifying the severity of the 

clusters would be useful for making repair/rehabilitation decisions, The SMEs agreed about the 

usefulness of identifying co-occurrence characteristics among defects in supporting inspection and 

maintenance prioritization.  

 

Finally, the SMEs recognize the value provided by the web-tool for identifying defect clusters. 

They agreed about the usefulness of the graphical/animation outputs in identifying highly 

deteriorated pipes and in making repair/rehabilitation activities. However, one SME pointed out 
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that requiring users to manually upload CSV files increases the potential for errors in data handling 

(e.g., incorrect file uploads). According to that SME, CSV files could be used during initial tests, 

however, the web-tool should be integrated into GIS eventually. 

8.3.4 Conclusions and Chapter Summary 

Due to the rise of rapid sewer inspection technologies, the amount of pipe condition data is likely 

to grow at an unprecedented pace. Many municipalities in the US have begun sharing information 

about the condition of sewer pipes through initiatives such as ‘Data.gov’, ushering in the creation 

of large datasets of publicly accessible pipeline condition information. This chapter discussed the 

development of techniques to mine such large datasets of pipe condition information to reveal 

insights that can be used to guide maintenance prioritization efforts. Specifically, this chapter 

develops two novel techniques for pipeline deterioration, i.e., DCA and defect co-occurrence 

mining, which consider spatial information of defects, such as the locations, densities, and co-

occurrence characteristics of defects in pipes. 

The DCA approach introduces the concept of defect clusters (i.e., pipe regions that contain 

multiple defects in close proximity) and develops an algorithm (with linear execution time) to 

identify defect clusters in sewer inspection databases. A web-based GUI tool was created to 

provide a visual depiction of clusters on a pipeline system map and to assist asset managers in 

identifying clusters of various severity levels. The proposed approach was evaluated on a dataset 

of 7193 inspections of 8-in, 10-in, and 12-in diameter VCP sewers from South Carolina, Florida, 

and Ohio and led to the identification of 627 defect clusters that contained two or more structural 

defects. Among the 627 clusters, the five clusters with the highest severity densities were presented 

to nine subject matter experts—who judged the clusters to pose imminent threat of failure due to 

high concentrations of defects. In the absence of the DCA approach, these high severity clusters 

would have most likely been overlooked. When combined with contextual information, DCA may 

provide additional insights, such as the likelihood of void formation due to sand infiltration. 

Additionally, given inspection data pertaining to the same pipe across multiple time frames, the 

progression of defects in clusters could be analyzed facilitating the calculation of pipe deterioration 

rates. The identification of defect clusters could also inform rehabilitation decisions. For instance, 
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the identification of defect clusters could lead to insights into whether whole length rehabilitation 

or local patch repairs should be pursued. 

The defect co-occurrence mining approach identifies defects which occur frequently together. 

Evaluating the approach on the dataset of 7193 pipe inspections led to the insight that pipes which 

contained longitudinal fracture defects, spiral fracture defects, or large joint offsets exhibited a 

greater propensity to also contain multiple fracture defects. When combined with contextual 

information (e.g., pipe age, pipe location, soil types, etc.), the co-occurrence characteristics could 

highlight common underlying causes for deterioration and further our understanding of sewer pipe 

deterioration. For example, the approach can be extended to analyze co-occurrences between 

external factors, such as the presence of trees and heavy industries, and specific types of defects 

in pipes. Considered together, the two approaches (i.e., DCA and co-occurrence mining) address 

the limitations of existing deterioration modeling approaches (i.e., the lack of consideration to 

spatial information about defects) and could provide new insights in pipe asset management and 

rehabilitation decision-making. 
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 CONCLUSIONS AND RECOMMENDATIONS 

Municipalities across the U.S. rely on visual CCTV inspections to assess the condition of sewer 

pipelines. The tedious and subjective nature of CCTV inspections limits the consistency and 

accuracy of data collected. Additionally, operator fatigue due to lengthy inspection sessions could 

lead to erroneous assessment of sewer condition. However, CCTV inspections only provide a 

snapshot about the condition of pipes at a particular instance of time. Asset managers use 

deterioration models to predict the future condition of pipes which is essential for developing long-

term maintenance, renewal, and rehabilitation plans. However, current sewer deterioration 

modeling approaches do not account for spatial information about defects, which often play a 

crucial role in determining a pipe’s likelihood of failure. The first two objectives of this research 

address the challenge of improving the defect interpretation consistency and speed of sewer CCTV 

inspections by developing algorithms to facilitate automated defect interpretation and autonomous 

navigation. The third objective of this research attempts to develop approaches for assessing sewer 

deterioration by analyzing spatial information about defects in pipes. The first section of this 

chapter summarizes the methodologies, findings, and limitations of this study. The second and 

third section of this chapter discusses the study’s technical and practical contributions, respectively. 

Finally, the fourth section recommends potential future research directions.     

9.1 Summary of the Research 

Table 9.1 lists the methodologies, datasets, findings, and limitations of the various components of 

this research study. Prior research on automated defect identification used feature extraction and 

morphological methods, leading to poor generalization capabilities and low defect classification 

accuracies. To improve upon the generalization capabilities of these previous approaches, the 

automated framework proposed in Chapter 3 utilized deep neural networks trained on a set of 

12,000 images from over 200 sewer pipeline inspections. The data were obtained from 8-in, 10-in, 

and 12-in DIP, PCCP, and VCP sewers located in Georgia and California. The proposed 

framework passes images through multiple binary CNNs, each trained to classify a particular class 

of defect, in order to identify multiple types of defects. To reduce overfitting, the images in the 

training set were augmented by inducing changes in brightness, contrast and motion blur. The 
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automated system was evaluated on the basis of classifying root intrusions, deposits, and cracks in 

2000 CCTV images, and yielded 86.2% classification accuracy, 87.7% precision, and 90.6% recall 

on this dataset. This approach did not facilitate localization of defects in images, which is a 

necessary first step in determining the circumferential location of defects in pipes.  

In Chapter 4, the development of a deep-learning-based framework for the classification and 

localization of sewer defects was discussed. Three state-of-the-art object detection models (i.e., 

SSD, YOLO, and Faster R-CNN) were evaluated for their speed and mean average precision in 

detecting sewer defects (note: object detection is a regression task and the accuracy of such models 

are represented using mean average precision instead of classification accuracy, precision, and 

recall). The three models were evaluated in the context of detecting root intrusions and deposits, 

since the presence of these two defects plays a crucial role in determining maintenance activities 

for sewers. Additionally, root intrusions and deposits, when left untreated, could progress into 

more severe structural defects. Each model was trained using 3,420 images (i.e., 3,040 images in 

the training set and 380 images in the validation set) and subsequently tested on 380 images that 

were not present in the training or validation sets. The Faster R-CNN model was found to yield 

the highest accuracy of detecting root intrusions and defects in CCTV images, with a mAP 0.718 

on the testing set (mAP of YOLO and SSD were 0.695 and 0.530, respectively). However, the 

Faster R-CNN was also the slowest model, requiring approximately 110 ms to process each image, 

when evaluated using an Nvidia P4000 Quadro CUDA GPU (processing time for YOLO and SSD 

were 57 ms and 33 ms, respectively). To test automated defect detection capabilities in practice, a 

prototype system was developed for detecting root intrusions and deposits and evaluated on 

inspection videos televising 335 meters of sewer laterals. The objective of this evaluation was to 

determine the number of defects that could be correctly detected and the number of false positives, 

when automated defect detection was performed on actual CCTV videos. Hence, the Faster R-

CNN was used as the underlying model, since it had the highest mAP among the previously three 

evaluated models. The prototype system detected 51 out of 56 instances of root intrusions and 

deposits and generated seven false positives. A limitation of this method was that it applied the 

Faster R-CNN model to every image frame of a CCTV video, even though only few images 

contained defects.  As a result, this method results in unnecessary computations on images that do 

not contain defects. 
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Chapter 5 discussed the development of a two-step framework to improve the speed of defect 

detection in sewer CCTV videos. The two-step framework (1) uses a CNN to classify whether 

images contain defects or not, and (2) subsequently applies a Faster R-CNN only to the images 

that contain defects. The two-step framework was evaluated on the basis of detecting 

cracks/fractures, root intrusions, and lateral connections in 10 videos of 8-inch diameter VCP 

sewer mains (from Alabama and Ohio) which have a total length of 2200 feet. The two-step 

framework correctly detected 112 out of 124 (90.3%) instances of cracks/fractures, 88 out of 98 

(89.8%) instances of root intrusions, and 54 out of 59 (92%) instances of lateral connections in the 

videos. The two-step framework also led to 45 false positive detections of cracks/fractures, 29 

false positive detections of root intrusions, and one false positive detection of lateral connections. 

The lack of interpretability of CNNs makes diagnosing these errors difficult, resulting in a loss of 

generalization capability (i.e., CNNs may produce unexpected results when exposed to edge cases).  

Hence, Chapter 6 discussed the use of CNN interpretation techniques to improve the generalization 

capability of automated defect identification models. Specifically, a CNN interpretation technique 

called CAM was used to facilitate an ‘under-the-hood’ analysis of a ResNet34 CNN classifier and 

guide the development of more generalizable models. Note, the ResNet34 was selected since it has 

been demonstrated to achieve one of the highest image classification accuracies on benchmark 

datasets (He et al. 2015). A dataset of 12,000 pre-labeled images (i.e., images with defect labels 

imprinted on them) were used for training a CNN model. The accuracy of the model was then 

evaluated on 2,400 unlabeled images (i.e., images without defect labels imprinted on them). An 

analysis of the heatmaps generated by CAM suggested that CNNs trained using pre-labeled images 

learned to recognize the defect labels imprinted on the images rather than the defect pixels. 

However, our study showed that the sensitivity of the ResNet 34 CNN classifier to defect labels 

could be minimized by augmenting the training images with random rotations and horizontal flips. 

We hypothesize that by incorporating random rotations in the images, the labels would not be 

confined to the same locations in the images, resulting in an increased difficulty for the CNNs to 

learn the labels. The automated defect detection framework that was developed in this study, takes 

RGB images as input (i.e., images that contain red, green, and blue channels). Using 

monochromatic images as input (i.e., images that contain single channel) instead of RGB images 

could lead to improved processing speeds, since monochromatic images are one third the size of 
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RGB images. However, the loss of color information, from using monochromatic images, could 

also lead to reduced defect detection accuracies. Hence, future work could quantify the tradeoffs 

between speed and defect detection accuracy, when using monochromatic images as input to the 

automated system. The current automated system does not address defect tracking, i.e., identifying 

and counting unique defects. Future development efforts could incorporate tracking algorithms 

such as Simple Online and Realtime Tracking (SORT) to count individual defects in videos. 

Chapter 7 discussed the development of a vision-based method for estimating the orientation of 

sewer CCTV cameras in pipes. The proposed method takes a CCTV video as input and uses deep 

learning-based object detection and optical flow to classify the camera orientation into five 

categories (i.e., left-wall view, left-wall/forward view, forward view, right-wall/forward view, and 

right-wall view). The estimated camera orientation, which is an output of this method, could allow 

for autonomous sewer navigation, by enabling inspection robots to estimate their trajectories and 

take corrective actions while traversing pipes. Additionally, the proposed method could facilitate 

automated circumferential localization of sewer defects, which has not addressed in prior research. 

The proposed method was evaluated on 500 image frames from 10 CCTV inspections videos of 

8-inch diameter VCP sewers from Florida and Ohio. It was found that 79.8% of the image frames 

were correctly classified, meaning that the orientation estimates produced by the proposed method 

matched the manually estimated orientation. An additional 8.2% of the evaluated frames were ‘soft 

matches’, that is, the orientation estimate produced by the automated method differed from the 

manually estimated orientation by one class. A limitation of this method is that it cannot address 

rotations along the forward axis of a camera, which result in tilted image frames (see Figure 7.13). 

This limitation can be addressed by expanding the current approach to analyze the position of 

water flow lines in images to detect such rotations. Although the focus of this study was to develop 

algorithms for CCTV inspection robots, the proposed approaches and techniques can be expanded 

to facilitate automated detection and navigation in multi-sensory inspection technologies, such as 

the SSET and PANORAMO. 

Given the emergence of rapid sewer inspection technologies, access to pipe condition data is likely 

to grow at an unprecedented pace. Additionally, many municipalities in the US have begun sharing 

information about their pipelines through initiatives such as ‘Data.gov’, leading to the creation of 
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large datasets of publicly accessible sewer pipeline condition information. Hence, Chapter 8 

discussed the development of techniques to mine these large datasets and discover insights that 

can be used to guide maintenance prioritization efforts. Specifically, this chapter discusses a novel 

methodology for assessing sewer deterioration by incorporating spatial information such as the 

locations, densities, and co-occurrence characteristics of defects in pipes. A methodology called 

DCA was developed to mine sewer inspection records and identify pipe segments which contain 

multiple defects in close proximity. A web-based GUI tool was created to provide a visual 

depiction of clusters on a pipeline system map and to assist asset managers in identifying clusters 

of various severity grades. Additionally, an approach to mine co-occurrence characteristics among 

defects was also introduced (i.e., identification of defects which occur frequently together). 

Together the two approaches (i.e., DCA and co-occurrence mining) address the limitations of 

existing deterioration modeling approaches (i.e., the lack of consideration to spatial information 

about defects) and could provide new insights in pipe asset management and rehabilitation 

decision-making.  
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Table 9.1 Summary of methodologies, datasets, findings, and limitations 

Research 

Component 

Methodology and Datasets Results and Findings Limitations 

CNN-based 

Automated 

Defect 

Classification 

(Chapter 3) 

 

 

 

 

 

 

 

 

 

 

• An ensemble of binary CNNs were 

trained to classify root intrusions, 

deposits, and cracks 

 

• Number of images used for training, 

validation, and testing are 

7500, 2500, and 2000, respectively 

 

• Images originate from 8-in, 10-in, and 

12-in diameter DIP, PCCP, and VCP 

sewers from Georgia and California 

• Using an ensemble of CNNs enables 

multi-defect classification, i.e., multiple 

categories of defects can be identified in 

the same image 

 

• The classification accuracy on the testing 

set was 90.9%, 86.0%, and 84.0% for root 

intrusions, deposits, and cracks, 

respectively 

• Visual similarities between the 

silhouettes of defects lead to 

misclassification errors (see Figure 

3.10) 

 

• The proposed framework cannot 

address defect localization in images 

 

• The framework was evaluated on 

1000 images of defects and 1000 

images without defects, however, in 

CCTV videos, the number of image 

frames without defects far exceeds the 

number of defect frames (Meijer 

2019) 

CNN-based 

Automated 

Defect 

Detection 

(Chapter 4) 

• Three object detection models i.e., SSD, 

YOLO, and Faster R-CNN were 

evaluated for speed and mAP in 

detecting root intrusions and deposits 

 

• Number of images used for training, 

validation, and testing are 3040, 380, 

and 380, respectively 

 

• Images originate from 8-in, 10-in, and 

12-in diameter PVC, PCCP, and VCP 

sewers from Virginia and Ohio 

 

• The defect detection capabilities of the 

models were evaluated on CCTV videos 

from 8-inch diameter VCP sewers (with 

a total length of 1100 feet) 

• Proposed approach can facilitate defect 

localization in images, which is a 

necessary first step for automated 

circumferential location identification of 

defects 

 

• The Faster R-CNN model yielded the 

highest accuracy with a mAP of 71.8% 

compared to the SSD (53.0% mAP) and 

YOLO (69.5% mAP)  

 

• The trained Faster R-CNN model could 

correctly detect 51 out of 56 known 

instances of defects and generated 7 false 

positives when inferenced on the three 

CCTV videos 

 

• Inconsistencies in the annotation of 

ground-truth images lead to biased 

models (see Figure 4.9) 

 

• The proposed framework applies the 

Faster R-CNN to every image frame, 

although only a small fraction of the 

images contains defects, resulting in 

unnecessary computations  
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Two-Step 

Defect 

Detection 

Framework 

(Chapter 5) 

• A two-step framework consisting of a 

ResNet34 image classifier in the first 

step and a Faster R-CNN in the second 

step, was developed to facilitate defect 

detection in CCTV videos 

 

•  The framework was trained using a 

dataset consisting of 30,000 images from 

8-inch and 10-inch diameter VCP 

sewers in Florida, Georgia, and Ohio 

 

• The defect detection capabilities of the 

framework were evaluated on 10 CCTV 

videos from 8-inch diameter VCP 

sewers (with a total length of 2200 feet) 

 

• The proposed framework correctly 

detected 112 out of 124 (i.e., 90.3%) 

instances of cracks/fractures, 88 out of 98 

(i.e., 89.8%) instances of root intrusions, 

and 54 out of 59 (i.e., 92%) instances of 

lateral connections, in the CCTV videos 

 

• 45 false positive detections of 

cracks/fractures, 29 false positive 

detections of root intrusions, and 1 false 

positive detection of lateral connections, 

were generated 

• Due to the large number of parameters 

and complex interconnections of the 

underlying Faster R-CNN and 

ResNet34 models, it is difficult to 

diagnose the reason behind false 

positives and other misclassification 

errors 

   

• Although the proposed framework 

facilitates localization of defects in 

images, it falls short of identifying the 

circumferential location of defects in 

images 

CNN 

Interpretation 

Techniques 

(Chapter 6)  

• A CNN visualization technique called 

CAM was used as a diagnostic tool, to 

guide the development of an automated 

defect interpretation system 

 

• 12,000 pre-labeled images, which 

contained defect labels imprinted on 

them were used for training, whereas 

2400 images without imprinted labels 

were used for evaluating the defect 

classification accuracy of a ResNet34 

CNN 

• Models trained using the pre-labeled 

images resulted in high training and 

validation accuracies, however, the 

accuracies when evaluated on the un-

labeled testing set were significantly lower 

 

• An analysis of the CAM outputs indicated 

that the models learned to ‘cheat’ by 

recognizing the pixels corresponding to the 

labels, rather than the defect pixels 

 

• Augmenting the training images by 

inducing random rotations and horizontal 

flips minimized the tendency of the CNNs 

to recognize the labels 

 

• CAM cannot be directly applied to 

object detection models such as Faster 

R-CNN, which do not contain a global 

average pooling layer 

  

• Future work could consider 

incorporating methods such as image 

occlusion sensitivity for interpreting 

object detection models 
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Table 9.1 continued 

Vision-based 

Orientation 

Estimation of 

CCTV Robots 

for Defect 

Localization 

and 

Autonomous 

Navigation 

(Chapter 7) 

 

 

 

 

 

 

 

 

 

 

• A vision-based method for estimating 

the orientation of CCTV cameras in 

sewer pipes was developed to facilitate 

autonomous sewer navigation and the 

identification of circumferential position 

of defects 

 

• The framework uses deep learning-based 

object detection in conjunction with 

optical flow, to classify the orientation 

of cameras (in CCTV videos) into five 

categories (i.e., left-wall view, left-

wall/forward view, forward view, right-

wall/forward view, and right-wall view) 

 

• Five hundred images from 10 CCTV 

videos of 8-in diameter sewers in Florida 

and Ohio were used for evaluating the 

accuracy of the proposed method 

• The proposed method correctly classified 

the orientation of 79.8% of the image 

frames 

 

• An additional 8.2% of the evaluated 

frames were ‘soft matches’, i.e., the 

orientation estimate produced by the 

automated method differed from the 

manually estimated orientation by one 

class 

• At the current stage, the proposed 

method classifies the orientations of 

cameras into five categories, but 

cannot estimate the camera orientation 

in degrees 

 

• Image frames that contained rapid 

brightness changes due to the 

reflection of camera light on pipe 

walls, led to errors in computation of 

optical flow vectors 

A Framework 

for Mining 

Spatial 

Characteristics 

of Sewer 

Defects from 

Inspection 

Databases 

(Chapter 8) 

• Two approaches (i.e., DCA and defect 

co-occurrence mining), which 

incorporate spatial information about 

defects in pipes, were developed 

 

• A web-based GUI tool was created to 

provide a visual depiction of clusters on 

a pipeline system map and to compare 

clusters against contextual data 

 

• The proposed approaches were 

evaluated on a dataset of 7193 

inspections of 8-in, 10-in, and 12-in 

diameter VCP sewers from South 

Carolina, Florida, and Ohio 

• The DCA approach identified 627 clusters 

that contained two or more structural 

defects—the longest cluster had 16 defects 

 

• The five highest severity density clusters 

were presented to nine subject matter 

experts, who judged the clusters to pose 

imminent threat of failure 

 

• The DCA approach led to the insights that 

pipes which contained longitudinal 

fracture defects, spiral fracture defects, or 

large joint offsets exhibited a greater 

propensity to also contain multiple fracture 

defects 

• At the current stage, the proposed 

approaches do not account for the 

complexities of pipe-soil mechanics 

when evaluating defect clusters and 

co-occurrences 

 

• Future work could track the 

progression of defect clusters over 

time in order to determine the rate of 

pipe deterioration and predict the 

remaining service life of pipes 
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9.2 Contributions to the Body of Knowledge 

There is a considerable body of previous research, which uses feature engineering methods for 

automated classification of defects in sewer pipes. The previously used methods include (1) edge 

detection and Fourier descriptors (Xu et al. 1998, Moselhi and Shehab 2000), (2) discrete wavelet 

transforms (Yang and Su 2008), (3) scale invariant feature transform (SIFT) (Guo et al. 2009), 

morphological segmentation (Su et al. 2011, Hawari et al. 2018), and histograms of oriented 

gradients (HOG) (Halfawy and Hengmeechai 2014, Halfawy and Hengmeechai 2015, Moradi and 

Zayed 2017). However, the automated systems proposed in these studies are constrained by the 

low generalization capabilities (i.e., the ability to classify images that exhibit significant variations 

in shape, color, texture, illumination, etc.) of the underlying feature engineering methods, and lead 

to low defect identification accuracies when applied to sewer CCTV images. Furthermore, the 

automated systems proposed in these prior studies could not identify multiple categories of defects 

in the same image (for instance, the simultaneous identification of the presence of roots and 

deposits). The approach in Chapter 3 leveraged CNNs for automated defect identification in sewer 

CCTV images. CNNs significantly outperform the generalization capabilities of feature 

engineering methods (LeCun et al. 2015) and are thus better equipped to deal with sewer CCTV 

images. To the best of our knowledge, ours was the first study to demonstrate the superior accuracy 

of CNNs over feature engineering methods in automated sewer CCTV defect identification. 

Additionally, by using an ensemble of CNNs our approach facilitates identification of multiple 

defect categories in images, which was not addressed by prior studies.  

Building upon the initial successes of CNNs in sewer CCTV defect classification, Chapter 4 

explored the use of CNN-based object detection models to classify and localize defects in sewer 

CCTV images. Defect localization is a necessary first step for identifying the circumferential 

locations of defects in pipes and was partially addressed by Cheng and Wang (2018), who 

evaluated the detection capabilities of the Faster R-CNN model on approximately 180 unique 

images of defects without cross-validation. Our study extended the discussion presented in Cheng 

and Wang (2018), by evaluating the speed and accuracy of three state-of-the-art object detection 

models (i.e., SSD, YOLO, and Faster R-CNN) in the context of sewer defect detection, and by 

cross-validating the tests to minimize sampling biases. Our study found that although the Faster 

R-CNN model yielded the highest accuracy, it also emerged as the slowest model among the three 
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and led to several false positive detections. This study also revealed that applying object detection 

models to every image frame of a sewer CCTV video resulted in unnecessary computations and a 

large number of false positives, because only a small fraction (i.e., approximately 10%) of the 

image frames contain sewer defects. Hence, Chapter 5 developed a prototype automated defect 

detection system that utilized a two-step framework to improve the speed and accuracy of defect 

detection in CCTV videos. The framework uses a CNN to classify whether images contain defects, 

and only passes the defect images to the object detector, facilitating increased processing speeds 

and lower false positive detections. 

One of the challenges in training CNNs for defect identification is their lack of interpretability.  

These interpretation challenges result in the loss of generalization capability, that is, the algorithms 

may produce unexpected results when exposed to edge cases. This issue is prevalent in CNNs used 

for automated sewer defect identification since the training and testing images differ significantly. 

For example, municipalities typically maintain large numbers (i.e., several thousands) of labeled 

sewer defect images as an outcome of their sewer inspection programs; however, these images 

typically contain the defect labels imprinted on the images. Cropping the labels out or obscuring 

them is manually cumbersome and typically results in loss of information from the images. Hence, 

CNNs trained with these labeled images may exhibit unusual behavior, such as being sensitive to 

defect labels and other markers in the images and may result in significantly lower classification 

accuracies when tested on unlabeled images. Chapter 6 demonstrates how a visualization technique 

called CAM can be used as a diagnostic tool to improve the generalizability of CNN models. Our 

study showed that CNNs trained with labeled images (i.e., image with defect labels imprinted on 

them) were sensitive to the defect labels. However, augmenting these labeled images by inducing 

random rotations forced the CNNs to learn the defect pixels rather than the image labels, resulting 

in improved generalization capabilities. To the best of our knowledge, ours was the first study to 

use CNN interpretation techniques to improve the accuracy of automated sewer defect 

identification. 

Automated circumferential localization of defects in sewer CCTV videos remains a crucial yet 

unaddressed problem. Determining the circumferential location of defect is challenging because 

the orientation of sewer CCTV cameras in pipes is typically unknown.  Chapter 7 proposed a 
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vision-based method to estimate the orientation of sewer CCTV cameras and paves the way for 

automated identification of circumferential location of defects. This method also has the potential 

added benefit of facilitating autonomous navigation of sewer CCTV robots in pipes. A 

considerable body of research exists in the development of autonomous navigation systems for 

multi-sensor sewer robots. However, most approaches use depth cameras, lasers, LiDAR, or 

orientation sensors to determine the location and orientation of robots in pipes—sensors which are 

not typically found on sewer CCTV inspection robots. The method proposed in this study, uses 

information from a single camera to estimate the orientation of a camera, thereby enabling the 

development of autonomous navigation systems for sewer CCTV robots.  

Chapter 8 introduces two new approaches: DCA and defect co-occurrence mining. These methods 

consider spatial information about defects when analyzing sewer deterioration. The DCA approach 

introduces the concept of defect clusters (i.e., pipe regions with multiple defects in close proximity) 

and develops an algorithm to identify defect clusters in sewer inspection databases. When 

combined with contextual information, DCA may provide additional insights, such as the 

likelihood of void formation due to sand infiltration. The DCA approach could be applied 

periodically to determine how the distribution of defects and their clustering progresses over time 

and reveal pipeline deterioration patterns. The defect co-occurrence mining approach could 

highlight groups of defects which occur frequently together in pipes. When combined with 

contextual information (e.g., pipe age, pipe location, soil types, etc.), the co-occurrence 

characteristics could highlight common underlying causes for deterioration and further our 

understanding of sewer pipe deterioration. The information obtained from co-occurrence mining 

of defects could be used as apriori knowledge for automated defect detection algorithms. This 

apriori information could reduce the search space of the algorithms in order to facilitate a more 

efficient implementation of automated sewer defect detection. 

9.3 Contributions to the Body of Practice 

The research presented in Chapters 3, 4, 5, 6, and 7 develops algorithms that offer important 

advancements to the current state of automated sewer defect interpretation. Automated defect 

interpretation, as proposed in this study, could enhance the manner in which CCTV inspections 

are currently conducted. For instance, CCTV operators typically code the defects during inspection, 
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while simultaneously navigating the inspection crawler in pipes. This practice requires operators 

to inefficiently stop the crawler to enter a defect code every time a defect is encountered during 

inspection, incurring additional time in the field. As a result, CCTV operators are gradually 

adopting a ‘inspect in the field, code in the office’ approach, whereby the coding of defects is 

performed after inspection, rather than during inspection. Automated defect interpretation would 

enable simultaneous inspection and coding of the pipes, without requiring operators to stop the 

crawler during inspection. This approach could significantly reduce the time spent by inspectors 

in the field, while enabling improving the speed and efficiency of inspections. The current 

NASSCO PACP protocol recommends the speed of inspection crawlers to be 1 foot/sec, which is 

based on human operators’ response times. However, if videos were to be interpreted using 

computer processes, it could be feasible to inspect pipes at much higher speeds. 

Asset managers are typically concerned with identifying major defects in pipes, i.e., structural 

defects which are classified as level 4 or level 5 according to the NASSCO PACP. Examples of 

such defects include: Collapsed Section, Deformed Section, Broken Pipe, Hole, Hinge Fracture, 

etc. However, the NASSCO PACP protocol requires inspectors to also report the locations of level 

1, level 2, and level 3 defects, which are often more frequent than level 4 or 5 defects. Hence, 

operators spend a significant amount of time coding minor defects, which are often overlooked 

when making repair/rehabilitation decisions. Algorithms for automated defect interpretation could 

be used to automatically code level 1, level 2, and level 3 defects, while assigning the more severe 

level 4 and level 5 defects to be coded by experienced human operators. The two-step framework 

proposed in Chapter 5 could be extended to accommodate a third step, which facilitates this 

approach (see Figure 9.1). 
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Figure 9.1 Framework for defect interpretation—assigning minor defects to computer processes 

and severe defects for human interpretation 

 

Automated defect interpretation could also facilitate the processing of large volumes of historical 

inspection videos, which would not be practically feasible if performed manually. Information 

about the frequency, location, and severity of defects could be used to develop deterioration 

models to predict the future condition of sewers. For example, by comparing condition information 

from the same pipeline inspected at different instances of time, deterioration/defect progression 

rates can be calculated for various types of sewers. 

The vision-based camera orientation estimation algorithm discussed in Chapter 7, leads to 

advancements in automated defect interpretation as well as autonomous robot navigation. could 

be integrated onboard UAVs or similar inspection technologies to facilitate rapid inspection and 

assessment of sewers. Furthermore, these technologies could be integrated into wireless sensor 

networks, paving the way for real-time condition monitoring of sewer infrastructure. The 

development of UAV-based sewer pipeline inspection systems is an emerging area of research 

(Rizzo et al. 2016) and the method proposed in this study could be integrated with such UAV 

systems, to facilitate rapid inspection and assessment of sewers at a fraction of the cost of current 

methods. Additionally, using a network of wireless sensors, such inspection technologies could 

relay information about the condition of pipes in real-time, which would enable quick decision-
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making related to maintenance and repair. Furthermore, since the proposed method is vision-based, 

it may also find application in other GPS-denied environments, such as utility tunnels, boreholes, 

and underground mines.    

The DCA algorithm presented in Chapter 8, provides a novel approach that can be used to consider 

defects and their proximity in a way that has previously not been possible. DCA could be used 

periodically to analyze how the distribution of defects and their clustering progresses with time 

and could reveal trends in pipe deterioration. The identification of defect clusters could also inform 

rehabilitation decisions. For instance, the identification of defect clusters could lead to insights 

into whether whole length rehabilitation or local patch repairs should be pursued. Furthermore, the 

mining of co-occurrence characteristics among sewer defects could highlight groups of defects 

which occur frequently together, allowing for the creation of customized maintenance plans. For 

instance, the identification of pipes which contain high water marks and fractured walls could 

indicate a high propensity for sewage exfiltration during sewer surges. Additionally, the 

identification of successive exfiltration and infiltration locations along a pipe could indicate the 

presence of external water flows that have the potential to compromise the pipe bedding, leading 

to sewer collapses. 

9.4 Recommendations for Future Research 

Based on the insights gained from this study, the exploration of the following three research themes 

are recommended: (1) autonomous UAVs for rapid inspection and monitoring of sewers, (2) data-

driven prediction of water and sewer pipeline failures, and (3) smart, secure, and open source 

pipeline asset information model. 

9.4.1 Autonomous UAVs for Rapid Inspection and Monitoring of Sewers  

Current methods of sewer inspection rely on camera equipped robotic crawlers, which tend to be 

expensive and prone to getting stuck in pipes. Given the rapid advancements in UAVs and battery 

technologies, there is potential to develop pipeline inspection systems that leverage swarms of 

autonomous micro-UAVs (Rizzo et al. 2016). The better maneuverability and relatively low 

hardware costs of UAVs, in comparison to traditional camera crawlers, could facilitate rapid 
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assessment of pipelines at a fraction of the cost of current methods. Lightweight CNNs could be 

integrated onto the onboard processing units of these UAVs to facilitate automated defect detection 

on the edge. These UAVs could also be programmed to replicate the capabilities of traditional 

CCTV robots, such as panning and tilting to look inside sewer lateral connections. Furthermore, 

these inspection technologies could communicate using wireless sensor networks, paving the way 

for real-time condition monitoring of sewer infrastructure. 

9.4.2 Data-driven Prediction of Water and Sewer Pipeline Failures 

Pipeline deterioration is strongly influenced by contextual influences, such as trees, hydrology, 

and soil conditions. However, few studies have explored the effects of these factors, owing to a 

lack of publicly available datasets containing such information. Hence, there is potential to utilize 

data mining techniques to extract contextual information from disparate sources, such as satellite 

imagery and geological surveys, and investigate their impact on pipeline deterioration. For 

instance, computer vision could be used to identify the locations of trees and heavy industries from 

satellite imagery and map this information to existing pipeline condition databases. By considering 

this entire gamut of information, highly accurate deterioration prediction models can be developed 

to improve maintenance prioritization efforts.  

9.4.3 Smart, Secure, and Open Source Pipeline Asset Information Model 

There is a need for the creation of a smart, secure, and open source water and wastewater pipeline 

asset information model. The need for this research arises from the “data silo” problem faced by 

many municipalities in the US. Specifically, this problem refers to difficulties in accessing and 

sharing data due to the use of numerous incompatible software applications. Due to the existence 

of data silos, many municipalities are unable to utilize their data for predictive analytics and revert 

to antiquated asset management practices. The building construction management industry has 

addressed this problem by developing the Industry Foundation Classes (IFC) data model, which is 

an open-source format for representing building information. The development of a similar data 

model will be hugely beneficial for the water and wastewater industry since it would break down 

data silos and enable information sharing regardless of which software is being used.   
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