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ABSTRACT

Das, Debasmit Ph.D., Purdue University, May 2020. On Transfer Learning Tech-
niques for Machine Learning. Major Professor: C. S. George Lee.

Recent progress in machine learning has been mainly due to the availability of

large amounts of annotated data used for training complex models with deep archi-

tectures. Annotating this training data becomes burdensome and creates a major

bottleneck in maintaining machine-learning databases. Moreover, these trained mod-

els fail to generalize to new categories or new varieties of the same categories. This

is because new categories or new varieties have data distribution different from the

training data distribution. To tackle these problems, this thesis proposes to develop

a family of transfer-learning techniques that can deal with different training (source)

and testing (target) distributions with the assumption that the availability of an-

notated data is limited in the testing domain. This is done by using the auxiliary

data-abundant source domain from which useful knowledge is transferred that can be

applied to data-scarce target domain. This transferable knowledge serves as a prior

that biases target-domain predictions and prevents the target-domain model from

overfitting. Specifically, we explore structural priors that encode relational knowledge

between different data entities, which provides more informative bias than traditional

priors. The choice of the structural prior depends on the information availability and

the similarity between the two domains. Depending on the domain similarity and

the information availability, we divide the transfer learning problem into four major

categories and propose different structural priors to solve each of these sub-problems.

This thesis first focuses on the unsupervised-domain-adaptation problem, where

we propose to minimize domain discrepancy by transforming labeled source-domain

data to be close to unlabeled target-domain data. For this problem, the categories
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remain the same across the two domains and hence we assume that the structural

relationship between the source-domain samples is carried over to the target domain.

Thus, graph or hyper-graph is constructed as the structural prior from both domains

and a graph/hyper-graph matching formulation is used to transform samples in the

source domain to be closer to samples in the target domain. An efficient optimiza-

tion scheme is then proposed to tackle the time and memory inefficiencies associated

with the matching problem. The few-shot learning problem is studied next, where we

propose to transfer knowledge from source-domain categories containing abundantly

labeled data to novel categories in the target domain that contains only few labeled

data. The knowledge transfer biases the novel category predictions and prevents the

model from overfitting. The knowledge is encoded using a neural-network-based prior

that transforms a data sample to its corresponding class prototype. This neural net-

work is trained from the source-domain data and applied to the target-domain data,

where it transforms the few-shot samples to the novel-class prototypes for better

recognition performance. The few-shot learning problem is then extended to the situ-

ation, where we do not have access to the source-domain data but only have access to

the source-domain class prototypes. In this limited information setting, parametric

neural-network-based priors would overfit to the source-class prototypes and hence

we seek a non-parametric-based prior using manifolds. A piecewise linear manifold is

used as a structural prior to fit the source-domain-class prototypes. This structure is

extended to the target domain, where the novel-class prototypes are found by project-

ing the few-shot samples onto the manifold. Finally, the zero-shot learning problem

is addressed, which is an extreme case of the few-shot learning problem where we

do not have any labeled data in the target domain. However, we have high-level

information for both the source and target domain categories in the form of semantic

descriptors. We learn the relation between the sample space and the semantic space,

using a regularized neural network so that classification of the novel categories can be

carried out in a common representation space. This same neural network is then used

in the target domain to relate the two spaces. In case we want to generate data for
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the novel categories in the target domain, we can use a constrained generative adver-

sarial network instead of a traditional neural network. Thus, we use structural priors

like graphs, neural networks and manifolds to relate various data entities like sam-

ples, prototypes and semantics for these different transfer learning sub-problems. We

explore additional post-processing steps like pseudo-labeling, domain adaptation and

calibration and enforce algorithmic and architectural constraints to further improve

recognition performance. Experimental results on standard transfer learning image

recognition datasets produced competitive results with respect to previous work. Fur-

ther experimentation and analyses of these methods provided better understanding

of machine learning as well.
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1. INTRODUCTION

1.1 Motivation and Objectives

Machine Learning (ML) is a branch of Artificial Intelligence (AI), which studies

algorithms and procedures to produce decision models for a task using past data

obtained in carrying out the task. These decision models are therefore not explicitly

programmed for the task but are trained and built from previously obtained training

samples. Thus, ML closely resembles human learning, which is based on accumulating

knowledge from previous experiences. On the other hand, AI is a broader sub-field of

computer science, the goal of which is to develop artificial systems that can perform

tasks that normally require human-level intelligence to perform. Examples of such

tasks can be visual understanding, speech recognition, natural language translation,

etc. Historically, AI has fascinated and disappointed computer scientists for over

half a century and therefore has an eventful past with rising and falling interests

throughout. Therefore, we mention the time-line of AI research and how ML became

popular in mainstream AI.

The first account of interest in AI came about with the proposal of Alan Turing’s

learning machine in 1950 [1]. The machine was supposed to be an intelligent system

that had the capability of playing the imitation game. The imitation game would

form the basis of the Turing test, where a human would be unable to distinguish

between a human and an AI system based on conversations. It has been over more

than half a century but still there has been no record of any AI system that had

passed the Turing Test completely.

The next major event in AI research was the discovery of the Perceptron by

Frank Rosenblatt in 1957 [2]. It was the first instance of a learning model that was

able to carry out binary classification and so it generated lot of excitement in the
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AI community. However, the Perceptron, being only a single-layered neural network,

failed to solve the XOR classification problem as demonstrated by Minsky and Papert

in 1969 [3]. This prevented further research into neural networks at that time. It also

set the basis for the first AI winter in the 1970’s, which resulted in abandonment and

funding cuts in AI research.

The 1980s saw a surge in interest in AI because of a number of discoveries. The

neocognitron [4], a type of neural network, was invented by Kunihiko Fukushima in

1980. This model served as an inspiration for the development of the Convolutional

Neural Network (CNN) [5] later on. John Hopfield also popularized the Hopfield

Network [6], a recurrent type of neural network with associative memory-like func-

tions. This decade also saw the application of using back-propagation of errors for

training multilayer neural networks [7]. However, given the technology of the time,

with limited computational power and less amount of available training data, deeper

neural networks were not realizable. This led to the rejection of connectionist-based

models for almost two decades.

From the early 1990s to the late 2000s saw the development of a lot of alternative

models of machine learning. This included the invention of Random Forests [8],

Support-Vector Machines (SVM) [9] and the Long-Short-Term Memory (LSTM) [10]

module for recurrent neural networks. The LSTM module was developed to take care

of the vanishing gradient problem associated with the optimization of recurrent neural

networks for sequential data. Also, the CNN was invented in 1998 [5]. Though it was

structurally similar to the Neocognitron [4], the CNN could be trained using the back-

propagation algorithm. However, most of these alternative methods failed to produce

human-level performance for AI perception tasks. Even the CNN architecture could

not be scaled up due to the computational deficiencies of the time.

The generalization performance of machine learning models on unseen data gen-

erally increases with larger amount of training data. In the 2000s, people had access

to lots of publicly generated datasets and so machine-learning models were able to

produce better recognition performance. Availability of abundant data was due to
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the fact that the Internet became accessible to more people and sensors attached to

different devices could readily upload data to the web. Photos from mobile cameras

could easily be uploaded to the Internet and people could have access to them. The

abundance of images on the web helped the creation of an organized database for

image recognition known as the ImageNet [11]. This database consisted of around

21K categories with more than 1K images per category for dominant classes. Also,

advances in the processing power of Graphic Processing Units (GPU) allowed CNNs

to be trained in parallel within a reasonable amount of time. The breakthrough came

in 2012, when a deep neural network architecture commonly known as AlexNet [12]

was proposed. This deep architecture, when trained and tested on ImageNet using

a GPU, produced results much better than previous approaches. The successful ap-

plication of deep neural networks using a large amount of labeled data lead to the

development and applications in various domains. For example, in 2012, a team from

Google Brain produced a neural network that learned to recognize cats by watching

videos on Youtube [13]. In 2014, Facebook researchers used deep learning to create

a face recognition system [14] that produced an accuracy of around 97 percent. In

2016, Google also created an AI known as AlphaGo [15] that beat professional human

players in the game of Go. There are many more examples [16–19] that show that

deep learning can be expanded to other application domains as well.

Even though deep-learning-based AI has produced amazing results, the question

still remains whether it has really lived up to the level of human intelligence. In fact,

if one thinks deeply, machine intelligence has a long way to go in terms of efficiency.

Most of these current methods in machine learning are resource intensive - they re-

quire lots of annotated data, they take up significant memory and they consume lot of

energy. As a result, these methods cannot be used for resource-constrained scenarios,

e.g., on mobile devices, in changing environments without annotations and in recog-

nizing new and rare objects, etc. Hence, there is a need to pursue machine-learning

algorithms and architectures that strive to consume less resources, i.e., require less

data-labels, require less memory and less energy. The goal of producing efficient
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machine-learning methods can be achieved with two different methods – develop

training algorithms with less amount of labeled data or produce models with less

number of parameters. Accordingly, most efficient machine-learning methods can be

broadly classified into data-efficient methods and model-efficient methods as shown

in Fig. 1.1.

Fig. 1.1. The different types of efficient machine learning strategies.

The goal of data-efficient methods is to develop machine-learning models that can

learn from less amount of labeled data. Data efficiency can be achieved by preventing

overfitting in different ways. For example, transfer learning uses abundant labeled

data in an auxiliary source domain to transfer knowledge to a sparsely labeled target

domain. This causes target domain predictions to be biased and prevents general-

ization and overfitting problems. On the other hand, generative learning approaches

learn to produce more samples for data-starved classes using variations of differ-

ent generative models like generative adversarial networks (GANs) [20], variational

autoencoder (VAE) [21], etc. Hence, traditional supervised learning methods can

be used for all the categories. Alternative data-efficient methods include: (a) self-

supervised learning, which learns surrogate tasks like rotation/location prediction in

unlabeled images to produce features for downstream tasks and (b) weakly-supervised

learning, which consists of using incomplete, inaccurate or inexact supervision to train

predictive models. The effect of these data-efficient methods include: (i) less training
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time because of less number of data samples and subsequently faster optimization

procedure; (ii) less memory footprint because there is no need to store large amount

of training samples and their labels, and (iii) less energy is consumed because of more

efficient training.

On the other hand, the goal of model-efficient methods is to develop machine

learning models that can be represented using less number of parameters. It is

mostly used for neural-network models with deep and complex architectures. Com-

mon model-efficient methods include pruning, which is a post-processing step of re-

moving neural-network nodes and weights that do not contribute to the performance

of the model. Low-rank methods approximate model weights using tensor factoriza-

tion techniques that produce less number of parameters. Knowledge distillation trains

a smaller network to reproduce the outputs of a larger network. Neural architecture

search is a more generic approach that learns the neural-network architecture from the

data. Hence, a minimal structure is learned without redundant-model parameters.

The effect of these model-efficient methods include: (i) less inference time because of

smaller models and hence efficient computation; (ii) less memory footprint because of

less amount of storage required for smaller models, and (iii) less energy is consumed

because of more efficient computation.

In this thesis, we are mainly concerned about data-efficient methods because it

is a precursor to producing efficient models. This is because less amount of labeled

training data implies that simpler models can be learned. On the other hand, efficient

models do not necessarily imply that they can learn from less amount of labeled data.

Human learning is more data-efficient compared to machine learning. In the

object-recognition domain, humans have this inherent ability to recognize new cate-

gories of objects or new varieties of the same objects from very few demonstrations.

They do that by extracting useful knowledge obtained from observing a large set

of categories throughout their lives. This knowledge is then transferred to enable

recognizing new categories or different varieties of the same categories efficiently.
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On the other hand, current approaches in deep learning require lots of labeled

data for training a high-performance model. These approaches focus on the task of

obtaining large annotated datasets like ImageNet [22]. These datasets are then used

for training models consisting of complex deep neural-network architectures over a

long time schedule [12,23]. These models are then evaluated on a carefully constructed

test dataset on which they claim to produce state-of-the-art results. Thus, most of

these deep-architecture-based models for supervised learning are closed form in nature

because they are evaluated on the same set of categories that they are trained on. In

other words, the training and testing distributions are assumed to be the same. This

scenario is very restrictive in real-world situations when new categories of objects

or new varieties of similar objects are produced everyday. Current deep-learning

models when tested on data from a new data distribution would fail miserably. The

generalization ability of deep neural networks is thus limited to only data from the

training distribution.

If the new distribution contains a few labeled data and we train a model using

only those data, the model will not generalize well to unseen data from the new

distribution. This is because of the problem of overfitting, where a complex model

with large number of parameters tries to learn from insufficient amount of data. If we

use a simpler model we may encounter underfitting, where the model has not enough

capacity to learn the intricate complexity of the sampled data. Thus, there is a need

to construct models that can deal with generalization issues arising due to new data

distributions.

As previously mentioned, humans can learn from few demonstrations very easily

and they do that by using their existing knowledge and apply that to new situations.

In machine learning, we can do something similar by using an existing model that

is akin to the existing knowledge base of the human. The existing model can be

pre-trained on abundant labeled data sampled from a source distribution. The model

can then be adapted to sparsely labeled data sampled from a new target distribution.

This model can then be expected to generalize well to unseen test data sampled from
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the target distribution. This process of transferring and adapting a model learned

from a source-data distribution to a target distribution containing few/zero labeled

data is known as Transfer Learning (TL). Transfer learning is thus an attempt to

produce human-like data-efficiency in machine learning. Hence, we pursue TL as the

topic of this thesis to resemble human-like learning.

In this thesis, we consider a family of TL techniques for recognition tasks, where

the goal is to classify a data sample into one of the predefined categories. Accordingly,

TL can be broadly classified into two kinds of problems depending on the type of

discrepancy in the source (training) and the target (testing) distributions. In the first

kind, we have the same set of categories for training and testing except that the image

varieties in the training and the testing cases are different. A toy example can be real

images of dogs and cats in the training distribution and cartoon images of dogs and

cats in the testing distribution. This example is shown in Fig. 1.2 (b). The goal would

be to classify between a dog and a cat irrespective of whether it is a cartoon or a real

image. In the second kind, we have a different set of categories in the training and

the testing distributions. A toy example can be real images of dogs and cats in the

training distribution and real images of giraffes and tigers in the testing distribution.

The goal would be to learn a model that is able to classify between giraffes and tigers

having very few/zero samples of giraffes and tigers but large number of samples from

the dog and the cat categories. This example is shown in Fig. 1.2 (c).

The problem associated with the first kind of distribution discrepancy, where we

have the same set of categories in the training and testing distributions, is commonly

known as domain adaptation (DA). It is also known that the training distribution

is also called the source domain and the testing distribution is also called the target

domain. It is assumed that we have lots of labeled data available in each of the

categories of the source domain. On the other hand, the target domain may be

sparsely labeled or fully unlabeled. This is because it is difficult to obtain annotations

for the new domain. The problem consisting of sparsely labeled data as well as

unlabeled data in the target domain is known as semi-supervised domain adaptation
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Fig. 1.2. The two kinds of transfer learning problems used in our research. The first
kind is (b) domain adaptation, where the source and the target domains have the
same set of categories and the second kind is (c) small sample learning, where the
source and the target domains have different categories.

(SSDA). The specialized case of having only unlabeled target domain data is therefore

known as unsupervised domain adaptation (UDA). Thus, the objective of DA is to

exploit the labeled source-domain data and the unlabeled/sparsely labeled target-

domain data to build a high-performance classifier for the target domain. In this

thesis, we only consider the UDA case since UDA is a more challenging and a more

realistic problem compared to SSDA, which can be trivially extended from UDA.

The problem associated with the second kind of discrepancy is known as small-

sample learning (SSL). In this case, the source and the target domains have disjoint

set of categories. SSL can be further classified into few-shot learning (FSL) or zero-

shot learning (ZSL) depending on whether the target-domain categories are sparsely

labeled or fully unlabeled, respectively. The absence of lots of labels in the target

domain can be due to the presence of novel rare categories for which obtaining real-

world samples is difficult. A restrictive extension to FSL exists where we only have

access to the source domain models or prototypes and not the data. This problem

is known as hypothesis transfer learning (HTL). Thus, the goal of SSL is to use
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the source-domain information and sparsely labeled/unlabeled data in the target

domain to build a high-performance classifier for the target domain. In this thesis,

we describe approaches to each of the subproblems of SSL; that is, few-shot learning,

zero-shot learning and hypothesis transfer learning. The overall categorization of

transfer learning and its subproblems are shown in Fig. 1.3.

Fig. 1.3. Taxonomy of transfer learning problems.

In Fig. 1.4, we represent each of the above described TL sub-problems as a plot of

the distribution discrepancy between the source and the target domains with respect

to the overall information availability. Obviously, the SSL sub-problems will have

more distribution discrepancy because of the presence of novel categories in the target

domain. For the DA sub-problem, SSDA has more information availability due to the

presence of a few labeled target domain data whereas UDA has fully unlabeled data

in the target domain. For the same reason, FSL has more information availability

compared to ZSL. However, it is tricky to compare information availability between

HTL and ZSL problems. Since the HTL problem definition suggests no access to

source data and only access to source models or prototypes, it is reasonable to put the
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HTL sub-problem as having less information availability compared to ZSL. It is also

important to note that the TL task becomes more difficult to perform as information

from the domains becomes less available and the distribution discrepancy between

the domains becomes larger. In the next section, we describe previous works on each

of these TL sub-problems.

Fig. 1.4. Plot of the different TL sub-problems as a function of the distribution
discrepancy and information availability. The plot also depicts the difficulty of each
task. Tasks closer to the top left corner are more difficult.

1.2 Literature Survey

There is a large body of prior work on transfer learning. The first survey paper [24]

introduced the definition of transfer learning and the various sub-problems along with

different application areas. However, the survey paper is outdated in the terms of the

available datasets and benchmarks. A more recent survey paper on transfer learning is

the work by Weiss et al. [25]. It includes references to more recent papers and results.

There are also survey papers specifically on each of the sub-problems of TL. As

previously discussed, TL is broadly classified into the problems - Domain Adaptation
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(DA) and Small Sample Learning (SSL). One can refer to [26] and [27] for a more

comprehensive discussion about previous methods on DA and SSL, respectively.

In the following section, we discuss in detail, prior work on each of the sub-

problems of Transfer Learning.

1.2.1 Domain Adaptation

Most of the previous DA methods can be broadly classified into two categories,

depending on whether a representation is learned or not. In this work, we refer to the

methods with/without representation learning as deep/non-deep learning methods

interchangeably. The non-deep-learning DA methods can be divided into three cat-

egories – parameter adaptation methods, instance re-weighting methods and feature

transfer methods. Parameter adaptation methods [28–31] were one of the earliest

methods that generally adapted a trained classifier in the source domain (e.g., an

SVM, Logistic Regression) in order to perform better in the target domain. Most

of these methods assumed the presence of at least a small set of labeled examples

in the target domain. As a result, they cannot be applied to the more challenging

unsupervised setting (UDA).

Instance Re-weighting methods are the second group of methods used for DA.

These methods assumed that conditional distributions were shared between the two

domains. As a result, one could just use the marginal distribution of the two domains

to find the ratio of the joint distributions. Using this assumption, the instance re-

weighting methods involved estimating the ratio between the likelihoods of the two

domains to compute the instance weight. This could be done by estimating the

likelihoods in an independent manner as in [32] or by using the density ratios [33,34].

One of the most popular measures used to weigh data instances, used in [35,36], was

the maximum mean discrepancy (MMD) [37], calculated between the distributions in

the two domains. This metric is popularly used in feature transfer methods as well.
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Feature transfer methods, on the other hand, do not assume similar conditional

distributions in the two domains. These methods generally try to find a transforma-

tion in the feature space which facilitates domain adaptation. An early but innovative

method for DA was proposed in [38], where the representation is modified such that

the source features are (xs,xs, 0) and the target features are (xt, 0,xt), where xs and

xt are source and target domain samples respectively. This method enabled iden-

tifying shared and domain-specific features simultaneously in each of the domains.

Popular feature transformation methods include subspace-based approaches. Among

these methods are the Geodesic Flow Sampling (GFS) [39,40] and the Geodesic Flow

Kernel (GFK) [41, 42] approach, where the domains are considered as samples lying

on a trajectory on the Grassmannian manifold. To carry out domain adaptation, a

domain is sampled from the manifold path so that the two domains can be mapped

onto it. Similarly, the Subspace Alignment (SA) method [43] aligned the two do-

mains by optimizing the Bregman divergence metric. The linear Correlation Align-

ment (CORAL) algorithm [44] is a statistical approach that aligned the covariance

between the two domains. The Joint Geometric and Statistical Alignment (JGSA)

method [45] combined both subspace and statistical methods to carry out DA. As

a result, it produced better results than both statistical and subspace-based meth-

ods. Transfer Component Analysis (TCA) [46] discovered shared hidden features

having similar distribution between the two domains. Chen at al. [47] proposed a

reconstruction-based approach to learn a domain invariant representation. Most of

these previous feature transformation methods learned a global alignment between

the two domains while [48] and [49] considered local approaches to match samples

between the two domains.

Deep-learning-based DA approaches learn a domain invariant representation. This

kind of representation allows the samples from the source and target domains to work

with a single classifier. The representation learning framework is realized using a

neural network architecture. Most deep-learning methods for DA use a Siamese ar-

chitecture with two streams for the two domains. The representation is learned by
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optimizing some loss function. In addition to the classification loss, these methods use

a discrepancy-based loss [50–54] or an adversarial-based loss [55–57] to produce the

domain-invariant representation. The classification loss uses the labels available from

the source domain data. The discrepancy loss aligns the two domains by minimiz-

ing some domain discrepancy metric. On the other hand, adversarial-based methods

play a minimax game of generating domain-invariant representations against a do-

main critic. Among the discrepancy-based methods, Long et al. [50, 51] used MMD

to minimize the discrepancy between the source and target representations. On the

other hand, Sun et al. [54] used covariance as the discrepancy metric between the

source and target representations. Yan et al. [58] used the principle of independence

maximization to produce domain invariant features. In addition to the criterion of

domain invariant representations, the authors of [59–61] constrained the features to

be class-discriminative by ensuring small intra-class separation but large inter-class

separation. Among the adversarial methods, Tzeng et al. [55] proposed a generic

framework for domain-adversarial methods where the loss functions and architec-

tures are user-defined. The Domain-Adversarial Neural Networks (DANN) [56] used

a gradient reversal layer to produce features that are discriminative as well as domain-

invariant. Shen et al. [57] also used an adversarial method where it minimizes the

Wasserstein distance between the representations of the two domains. Lee et al. [62]

extended the approach by using a sliced Wasserstein distance, instead. The authors

of [63] also proposed a domain agnostic learning procedure that disentangles domain

specific features from domain-agnostic ones. More recent works on adversarial do-

main adaptation explore contemporary ideas like cycle-consistency [64], conditional

information [65], spectral penalization [66] for discriminability and transferability

and domain-symmetric networks [67]. The main disadvantage of these adversarial

methods is that their training is generally not stable and therefore not convergent.

Moreover, empirically tuning the capacity of a discriminator requires lot of manual

effort.
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Between these two classes of DA methods, the state-of-the-art methods are dom-

inated by deep learning methods. However, these approaches are quite complex and

expensive, requiring re-training of the network and tuning of many hyper parameters

such as the structure of the hidden adaptation layers. Non-deep-learning domain-

adaptation methods do not achieve as good performance as a deep-representation ap-

proach, but they work directly with shallow/deep features and require lesser number

of hyper-parameters to tune. Among the non-deep-learning based domain-adaptation

methods, feature transformation methods are more generic because they directly use

the feature space from the source and target domains, without any underlying as-

sumption of the classification model. In fact, a powerful shallow-feature transforma-

tion method can be extended to deep-architecture methods, if desired, by using the

features of each and every layer and then jointly optimizing the parameters of the

deep architectures as well as that of the classification model. For example, correlation

alignment [44] has been extended for deep architectures [54], which evidently achieve

the state-of-the-art performance. Moreover, a local transformation-based approach

as in [48, 49] will result in better performance than global transformation methods

because it considers the effect of each and every sample in the dataset explicitly.

1.2.2 Few-shot Learning

For the purpose of few-shot learning (FSL), we generally have base categories from

the source domain consisting of abundant labeled data. The target domain consists

of novel categories with very few labeled data per category. It is known that direct

training using the sparsely labeled target domain data will cause the model to overfit.

Therefore, we need to utilize the source domain data to learn some useful transferable

knowledge that enables recognition of the novel categories from the sparsely labeled

data. Accordingly, previous methods can be categorized depending on the type of

transferable knowledge extracted from the source domain.
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The earlier methods used priors to facilitate FSL. Li et al. [68] used a global prior

while Salakhutdinov et al. [69] used a super-category-level prior. For application-

specific tasks like handwriting recognition, generative models have been proposed

that can produce characters from parts [70] or strokes [71]. For object recognition, a

hierarchical Bayesian program has been proposed to utilize compositional and causal

approaches to create a probabilistic generative model for visual objects [72,73]. Some

ad-hoc approaches to address few-shot learning were to carry out data augmentation

by harnessing unlabeled data [74], by transformation and adding noise [75,76], and by

synthesizing artificial examples [20,77–79] or using compositional representations [80,

81]. More recent methods that used generative modeling include the auto-encoder [82]

and variations of adversarial-network-based architectures [83, 84]. However, most

of these generative methods require lots of efforts to generate data, otherwise the

generated data do not represent the actual data distribution. Thus, recent methods

mostly take a metric-learning or a meta-learning approach to few-shot learning.

Metric learning approaches strive to preserve class neighborhood structure; that

is, the representations are learned such that features from the same class are clus-

tered together while features from different classes are kept far apart. As a result,

novel class features are expected to have more room for classification error. Koch

et al. [85] used Siamese Networks for metric-learning to match training example of

a novel category to a test example. The training was carried out using an object

recognition dataset. Vinyals et al. [86] proposed Matching Networks, which use a

nearest-neighbor classifier in addition to an attention mechanism over the training

samples. This paper was the first to introduce the episodic learning strategy for

FSL. The episodic learning strategy tries to simulate the test condition required for

classifying novel categories. Accordingly, training batches are sampled such that the

number of classes and the number of samples per class are the same as in the novel

test categories. Prototypical Networks [87] extended nearest mean classifiers [88] and

learned to classify test samples by calculating Euclidean distances to prototype fea-

tures. As an extension to Prototypical Networks, Sung et al. [89] learned a distance
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metric instead of using a predefined distance metric. A more recent method [90] used

a metric learning approach, where the metric is scaled and adapted based on the task.

Meta-learning methods for few-shot learning use a learning-to-learn scheme, where

a model extracts useful transferable knowledge about the learning procedure from a

large collection of tasks. This helps in quickly learning the novel task, which in our

case, is recognition of novel categories. Ravi and Larochelle [91] used LSTM [10]

to train a meta-learner to produce model parameter updates for optimization of a

base learner on a task. This method basically learns the optimization procedure

using data from a number of auxiliary tasks. The work on learning-to-learn [92]

approach to few-shot learning is also closely related to learning to optimize. Finn et

al. [93] built upon this work to only learn the initial parameter for gradient descent

so that it optimizes the learner for a new task in a few iterations. Mishra et al. [94]

introduced temporal convolutions over samples to predict the label of a test example,

given a sequence of labeled samples and the unlabeled test sample. The transductive

propagation network [95] classifies the whole test dataset using a graph-based label

propagation mechanism. They use an end-to-end meta-learning framework to learn

the feature embedding and graph construction simultaneously. Sun et al. [96] used a

meta-transfer learning mechanism that shifts and scales neural network weights for

new tasks. Similarly, Munkhdalai et al. [97] proposed a meta-learning scheme that

shifts the neuron activations depending on task-specific parameters.

Other relevant few-shot learning methods that deserve mentioning include memory-

based models [98,99] that store relevant information in a memory module and use that

for comparison at test time. Attentive comparators [100] compare patches of images

sequentially through an attention mechanism and then arrive at a prediction. Wang

et al. [101] proposed an unconventional method to FSL by learning a transformation

from small-sample-model parameters (parameters learned using less number of sam-

ples) to large-sample-model parameters (parameters learned using large number of

samples). The work on few-shot learning without forgetting [102] also used a trans-

formation but with a different distance metric and without any procedure to avoid



17

negative transfer. However, their transformation depends on the location of nearby

source domain categories with respect to target domain novel categories. Qiao et

al. [103] learned a category-agnostic mapping from activations to parameters that al-

lowed fast generalization to novel categories. A similar idea [104] was used to imprint

weights for the classification layer of the novel categories. Bertinetto et al. [105] used

a differential closed-form solver based on ridge regression for fast adaptation to novel

categories. Some methods extended existing machine learning concepts like graph

neural networks [106] and information retrieval [107] to few-shot learning. For a more

comprehensive survey on few-shot learning, one can refer to [27,108].

1.2.3 Hypothesis-Transfer Learning

Hypothesis-Transfer Learning is a very restrictive but realistic setting with access

to only source models/hypotheses and no access to source data. As a result, there

has been only few works addressing this setting. Early work on hypothesis transfer

learning was built around the support-vector-machine (SVM) framework and applied

to prosthetics [109]. In that work, the authors proposed that the target model should

be close to a pre-trained source model. The concept of adaptive SVMs has also been

used in video concept detection [31]. An adaptive SVM was also developed to handle

multiple source models [110]. The goal was to force the target model to be close

to a linear combination of source models. The weight of each source model signi-

fied the semantic similarity between that source category and the target category.

An incremental approach based on a similar concept was introduced to deal with

online learning of novel categories [111]. Jie et al. [112] presented a multi-class trans-

fer learning algorithm, which takes the advantage of priors as experts and transfers

their outputs to the target samples as additional information. The problem is cast

as an optimization problem within the multi-kernel-learning framework. Kuzborskij

et. al. [113] studied the algorithmic stability of HTL based on biased-regularization

of least squares. Kuzborskij et. al. [114] also established generalization and excess
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risk bounds to show that generalization happens at a fast rate if the target task is

fed with a good source hypotheses set. On the other hand, if the source hypotheses

combination is bad, the usual learning rate is obtained that would have been ob-

tained had we trained the model from scratch using the few labeled target samples.

Recently, a greedy algorithm [115] for transfer learning has been developed, which

selects relevant source hypotheses inspired from algorithms for feature subset selec-

tion. An SVM-based method [116] was developed that uses support vectors from the

source hypothesis as privileged information for learning the target model. Further-

more, Wang et. al. [117] proposed an unorthodox method of training source models

by training them in an unsupervised fashion, freeing classification to a particular set

of categories. This kind of unsupervised training would allow models to be generalized

to novel categories.

1.2.4 Zero-shot Learning

In Zero-shot learning (ZSL), we have disjoint categories in the source and target

domain with no labeled data in the target domain. To be able to recognize unseen

categories in the target domain, we train a learning model using a large collection

of labeled samples from the seen categories in the source domain and then adapt

it to unseen categories. For zero-shot recognition, the seen and unseen categories

are related through a high-dimensional vector space known as semantic description

space. Each category is assigned a unique semantic description. Examples of semantic

description can be manually defined attributes [118] or automatically extracted word

vectors [119]. Different ZSL methods are developed depending on how the feature

and the semantic description space are related.

Most ZSL methods involve mapping from the visual feature space to the semantic

description space or vice versa [120–123]. Sometimes, both the visual features and the

semantic descriptors are mapped to a common feature space [124,125]. Most of these

mapping-based approaches learn an embedding function for samples and semantic
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descriptors. The embedding is learned by minimizing a similarity function between

the embedded samples and the corresponding embedded semantic descriptors. Thus,

most ZSL methods differ in the choice of the embedding and similarity functions.

Lampert et. al [118] used linear classifiers, identity function and Euclidean distance

for the sample embedding, semantic embedding and similarity metric, respectively.

Romera-Paredes et al. [126] used linear projection, identity function and dot product.

ALE [121], DEVISE [122], SJE [127] all used a bilinear compatibility framework where

the projection was linear and the similarity metric was a dot product. They used

different variations of pairwise ranking objective to train the model. LATEM [128]

was an extension of the previous method [127], which used piecewise linear projections

to account for the non-linearity. CMT [123] used a neural network to map image

features to semantic descriptors with an additional novelty detection stage to detect

unseen categories. SAE [129] used an auto-encoder-based approach, where the image

feature is linearly mapped to a semantic descriptor as well as being reconstructed

from the semantic descriptor space. DEM [120] used a neural network to map from

a semantic descriptor space to an image feature space.

At the same time, a new evaluation setting known as Generalized Zero-Shot Learn-

ing (GZSL) and was introduced by Chao et al. [130]. The authors found that the

performance of unseen categories in the GZSL setting was poor and proposed a shifted

calibration mechanism to improve the performance. This shifted calibration mecha-

nism was meant to lower the classification scores of the seen categories. However, the

embedding methods perform poorly in the GZSL setting. This is because only the

seen categories are used in learning the embedding as a result of which there is projec-

tion domain-shift and seen class biasness. As a result, transductive approaches have

been proposed that assume access to the unlabeled testing data during the training

stage. For example, Fu et al. [131] fused semantic information from multiple sources

and carried out label propagation on the unlabeled test data. Kodirov et al. [132]

reformulated ZSL as a dictionary learning problem where the dictionary bases of the

seen and unseen classes were enforced to be similar. Rostami et al. [133] also used a
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coupled dictionary for the seen and unseen classes in a common representation space

for the visual feature and the semantic descriptor. The ZSL problem was also con-

verted into a semi-supervised learning problem [134,135] where clustering was carried

out on the unlabeled unseen data. However, this transductive approach is unrealistic

as it assumes access to the unlabeled test data from unseen categories during the

training stage. At the very least, we could carry out the test-time post-processing of

the semantic descriptors.

Hybrid models expressed image features or semantic embeddings as a combi-

nation/mixture of existing seen features or semantic embeddings. For example,

SSE [136] used relationship between classes to embed both the semantic and vi-

sual spaces to a common space. CONSE [137] utilized the probability of a novel class

sample belonging to a base class sample to make a classification decision. SYNC [125]

tried to learn a mapping between the semantic space and the parameter space. This

mapping is then used to synthesize model parameters for the novel classes. However,

these hybrid methods do not receive much attention currently. This is because the

strict assumption that unseen classes can be represented as a combination of seen

classes does not hold universally for all datasets.

Generative ZSL methods were recently proposed to tackle the GZSL problem.

They convert ZSL into a supervised-learning problem by generating data for the

novel categories. One of the earlier methods [138] carried out a comparative study of

different generative models for GZSL. Xian et al. [139] used WGAN [140] to generate

features for the novel classes. They also used an additional loss function to generate

more class-discriminative features. Zhu et al. [141] also used a GAN-based framework

to generate images of noisy text, where the generated images were constrained with a

visual centroid-based regularization. Similarly, Li et al. [142] introduced class-specific

soul samples such that the generated features are constrained to be close to these soul

samples. The variational auto-encoder framework was also used to synthesize visual

features for the unseen categories [143, 144]. More recently, an adversarial network

was proposed that carries out metric learning in addition to visual to semantic and
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semantic to visual mappings [145]. Schonfield et al. [146] used a two-VAE framework,

where a latent space was introduced to reduce cross-modal discrepancies for both

visual features and semantic descriptors. The authors of [147] used a multi-modal

consistency network for reconstruction purposes. A detailed discussion on each of

these methods can be found in a comprehensive survey on zero-shot learning [148].

A summary of all the related work and their categorization is shown in Table 1.1.

In the next section, we discuss our contributions and how we solve each of the TL

sub-problems.

Table 1.1. Categorization of previous works for different transfer learning sub-
problems.

Problem Category References

Unsupervised

Domain Adaptation

Instance Re-weighting [32–36]

Feature Transfer [38–46,48,49]

Discrepancy-based [50–54,58–61]

Adversarial-based [55–57,62–67]

Few-shot Learning

Metric-Learning [85–87,89,90]

Meta-Learning [91–97]

Generative [77–84]

Alternative [68,69,71,98–107]

Hypothesis Transfer

Learning
Combination-based [110–112,114,115]

Zero-shot Learning

Embedding-based [118,120–123,126–129]

Transductive [131–135]

Generative [138,139,141–147]

Hybrid [125,136,137]
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1.3 Contributions and Organizational Overview

In this section, we describe our contributions to the different transfer learning

sub-problems. Each of these transfer learning problems has different settings for

domain discrepancy and information availability. Hence, it is difficult to propose a

common framework for each of these problems. However, each of these transfer learn-

ing problems requires prior knowledge extracted from the source domain containing

abundantly labeled data. This prior is used to facilitate learning in the target domain,

which would otherwise overfit on the sparsely labeled data. In this thesis, we propose

the use of a prior that can be expressed through different structures. These struc-

tures encode relationships between different entities obtained from the data. This

structural encoding extracts relational knowledge from the source domain, which is

more informative compared to previous approaches. Therefore, we expect that these

proposed group of methods will perform much better than previous approaches. For

each transfer learning sub-problem, different combinations of structures and entities

are summarized in Table 1.2. A brief summary of how the structural priors are used

for the four transfer learning tasks is given below -

Table 1.2. Different structural priors that we proposed for the different transfer
learning sub-problems.

Problem Structure Entity

Unsupervised Domain

Adaptation (UDA)

Graphs and

Hypergraphs
Sample-Sample

Few-shot Learning (FSL) Neural Network Sample-Class Prototype

Hypothesis Transfer

Learning (HTL)
Manifold

Class Prototype-Class

Prototype

Zero-shot Learning (ZSL) Neural Network Sample-Semantics

• Unsupervised Domain Adaptation: We assume that the structural rela-

tionship between the data distribution is preserved across the domains. Hence,
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graphs/hyper-graphs are used as structural priors, which are constructed from

the samples in the source domain. The process is repeated in the target do-

main. Finally, the source and target graphs/hyper-graphs are matched and

transformed to minimize the domain discrepancy.

• Few-shot Learning: We use neural network as the structural prior to predict

the mean (prototype) and variance of the data-starved novel categories. This

neural network module is learned from data-abundant source categories. For the

novel category, few-shot samples are set as input to produce the class prototype

from the neural network. The prototype is again used to predict the variance

of that new category.

• Hypothesis Transfer Learning: We cannot use neural network as a struc-

tural prior because it will overfit to the source-class prototypes. Hence, we use a

non-parametric prior in the form of a manifold. The source-class prototypes are

used to fit the manifold on which the few-shot samples are projected to obtain

the novel class prototype.

• Zero-shot Learning: We use neural network as a structural prior that learns

the relationship between the semantic space and the sample space. The neural

network can be used as an embedding to map from one space to another. Also,

the neural network can be used as a generative model to synthesize samples for

a data-starved novel category given the corresponding semantic descriptor as

input.

Therefore, different structural priors are used to model relations between data en-

tities at different levels - sample (low-level), prototype (mid-level) and semantics

(high-level). Also, each method has additional learning stages, constraints or unique

optimization procedures that further improve the performance. Now, we will discuss

in details, the proposed solution for each of the four tasks.

For the UDA problem, our goal is to minimize distribution discrepancy between

the source and the target domains. To minimize the domain discrepancy, we assume
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that the structural relationship between the source samples is carried over to the

target domain as well. To model the structural arrangement in the source domain,

we use graphs or hyper-graphs as structural priors to encode the relationship between

samples in the source domain. Since the structural relationship carries over to the

target domain, we use a graph/hyper-graph matching formulation to transform the

source domain to be closer to the target domain. This localized framework produces

better domain matching than previous global methods that use statistical measures

to minimize domain discrepancy. Using this structural-matching-based concept, we

proposed three UDA methods.

The first method [149] uses first-order and second-order sample relations to match

the source-domain data and the target-domain data. Once the relations are estab-

lished, the source domain is mapped to be close to the target domain. A class-based

regularization is also used to leverage the labels present in the source domain so that

the matching is smooth. This transformation approach is computationally inefficient

and therefore the optimization problem is decomposed into solving a series of sub-

problems for which an efficient solution using a network-simplex approach exists. The

second method [150] extends the first method by using an additional third-order re-

lation followed by hyper-graph matching. A more computationally efficient method

of obtaining the solution is proposed that involves solving a series of sub-problems

using Alternating Direction Multiplier Method (ADMM) [151]. Moreover, an initial

clustering is carried out to select the most relevant instances which reduce the num-

ber of variables to be used in the optimization approach. For the third method [152],

a domain-invariant representation is learned by minimizing a novel graph matching

loss function between the source and the target domain representations. Once the

discrepancy is minimized, an additional refinement of the model is performed using

the unlabeled target domain data. The pseudo-labels of the confident unlabeled tar-

get domain data are used to make sure that the target samples lie further from the

softmax decision boundary. A brief comparison of these proposed methods is given

in Table 1.3.
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Table 1.3. Comparison of the proposed structural-matching-based approaches for
UDA.

Method
Matching

Order

Representation

Learning

Optimization

Method

I [149] First, Second No
Conditional Gradient

+ Network Simplex

II [150] First, Second, Third No
Conditional Gradient

+ ADMM

III [152] First, Second Yes
Stochastic Gradient

Descent

For the FSL problem, we have abundantly labeled source-domain data and sparsely

labeled target-domain data. Also, the categories in the source domain and the target

domain are different from each other. Since the target domain has few labeled data, it

is not possible to estimate the mean (prototype) and the variance of the target-domain

classes. Hence, training a model on the target-domain data will cause overfitting and

eventually misclassification. Thus, we seek to find a transformation from the few-shot

samples to their class mean and variance [153]. This transformation is realized using

a neural-network-based prior which is learned from the source-domain data. For the

target-domain data, this trained neural network can transform the few-shot samples

to the class mean and variance and consequently produce better classification perfor-

mance. The classification scheme involves computing Mahalanobis distances to class

prototypes and obtaining output class probabilities .

In addition to the proposed classification scheme, we propose a new represen-

tation which is constructed using pairwise distances between samples. This new

representation is low-dimensional but discriminative and hence prevents overfitting

due to the curse of dimensionality. In a way, our proposed method combines both

metric-learning (learning a representation) and meta-learning (learning to classify)
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approaches to FSL. Thus, it takes the advantages of both metric- and meta-learning

group of methods to produce much better results than previous approaches.

The HTL problem extends FSL by further assuming that we do not have access to

the source-domain data. We only have access to high-level information in the form of

source-class prototypes. Previous methods used source-domain models as high-level

information. However, we argue that using source-domain models do not allow for fair

comparison of different methods. One can use a more powerful source-domain model

to improve their performance without contributing much to their transfer learning

mechanism. On the other hand, using source prototypes allow fair comparison of

different methods where the results depend only on the training and the testing data.

Still, we need to extract prior knowledge from the source prototypes and apply that

to the target domain.

For the HTL problem, it is not possible to use a neural-network-based parametric

prior because of the simple reason that it might overfit on the small number of source

prototypes. Alternatively, we could use non-parametric methods that perform well in

low sample situations. Inspired by a previous study [154], we assume that the source-

domain-class prototypes lie on a non-linear manifold. Thus, a manifold structure

that encodes relationship between class prototypes is used as the prior extracted

from the source domain. We extend this assumption to the target domain, where the

class prototypes are found by projecting the few shot samples onto the manifold. For

classification purposes, we could use a nearest-neighbor-based classification approach.

However, the target-domain prototypes might be erroneously estimated and so there is

a need to use the global-class arrangement to carry out classification. This structural

arrangement of the class prototypes are used to induce an absorbing Markov chain.

The equilibrium probability of this absorbing Markov chain process is then used for

assigning the class of a test sample. We also proposed a parametric Bayesian baseline

to compare our proposed non-parametric manifold-based approach. Unlike neural

networks, the Bayesian baseline has less number of parameters and hence does not
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suffer from overfitting. The results of our proposed approaches can be used as a

benchmark for future research in HTL.

The ZSL problem is a special case of the FSL problem where we do not even have

access to the labels of the target-domain data. However, we have side information

in the form of semantic descriptors. The goal is to learn a mapping that relates the

sample space and the semantic space, using labeled data from the source domain.

The mapping is realized using a neural-network-based structural prior and can be

used both for embedding and generating data. However, the major problem with

current embedding and generative approaches is that they cannot use target-domain

data. As a result, most of these models are biased towards the source-domain classes

and therefore cannot generalize well to target-domain classes. We propose to address

this problem through use of constraints on the neural network as well as through

post-processing steps [155].

We use two kinds of constraints on the neural network. The first kind is an algo-

rithmic constraint, where we have additional loss functions that use one-to-one and

pairwise matching to relate the semantic space and the feature space. This structural

matching constraint allows the mapping to be generalized easily to unseen data and

also prevents the hubness problem associated with high-dimensional nearest neighbor

classification. The second kind of constraint is the architectural constraint, which is

realized by using additional neural network modules on top of generative neural net-

works. The proposed constraints are realized firstly, using a discriminative module

that classifies between seen and unseen categories and then using a reconstruction

module that produces semantics from the samples. We also explore two additional

post-processing steps. The first one is a calibration mechanism, where the classifica-

tion scores of the source classes are scaled so that the results are not biased towards

the source-domain categories. However, the calibration method does not use the un-

labeled ground-truth test data and therefore we propose to use domain adaptation as

an additional post-processing step to adapt our model to the unlabeled testing data.
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Table 1.4 summarizes our contributions to all the small-sample learning problems -

FSL, HTL and ZSL.

Table 1.4. Brief summary of the contributions to the small-sample learning problems.
The right column describes the contributions and their type.

Problem Major Contribution

FSL [153]
Representation: Relative Features

Classification: Predictive Statistics

HTL
Estimation: Manifold

Classification: Absorbing Markov Chain

ZSL [155]
Constraints: Structural Matching, Discrimination and Reconstruction

Post-Processing: Scaled Calibration and Domain Adaptation

Our proposed algorithms and architectures can also be applied to other prob-

lems in machine learning beyond transfer learning. For example, the graph-matching

metric that we proposed for UDA can be extended to generative models to measure

discrepancy between the real and the synthetic data. Similarly, the concept of pre-

dicting mean and variance for FSL can be used for generating data from the novel

categories. However, we need to model variances for all the features to capture a

more accurate distribution. For HTL, we propose a Markov-chain-based distance

function for classification. This distance function can also be used for training more

discriminative features that take into consideration the global arrangement of the

classes. Finally, we propose a ZSL framework that models bi-directional relationship

between image features and semantic descriptors. This relation can be used in media

retrieval; that is, to produce images given a description. It can also be used for image

description; that is to generate a description given an image. However, we need a

processing step in order to convert the description from the semantics and vice versa.

In this thesis, we have tried to unify the different approaches used for solving the

different transfer learning sub-problems. All of the proposed methods use a struc-

tural prior in the form of either graphs, manifolds or neural networks that encode
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relationship between samples, prototypes or semantics. These methods can be or-

ganized in the thesis as follows. Chapter 2 describes all the proposed graph and

hyper-graph matching approaches to unsupervised domain adaptation. In Chapter 3,

we discuss our meta-learning- and metric-learning-based two-stage approaches to few-

shot learning. Chapter 4 discusses two approaches to hypothesis transfer learning –

the non-parametric manifold-based approach and the parametric Bayesian approach.

In Chapter 5, we discuss the proposed non-generative and generative approaches to

zero-shot learning. In all these Chapters, we evaluate and analyze our methods on

standard image recognition datasets. Finally, in Chapter 6, we summarize our results

and discuss possible future extensions.

1.4 Publications

Portions of this research have been submitted to and/or published in the following

professional journal publications and/or professional conference proceedings:

Journal Publications:

• Debasmit Das, and C. S. George Lee. “Sample-to-sample correspondence for

unsupervised domain adaptation.” Engineering Applications of Artificial Intel-

ligence (EAAI), (73) (2018): 80-91.

• Debasmit Das, and C. S. George Lee. “A Two-Stage Approach to Few-Shot

Learning for Image Recognition.” IEEE Transactions on Image Processing (TIP),

vol. 29, no. 12, pp. 3336-3350, Dec. 2020.

• Debasmit Das, and C. S. George Lee. “A Constrained Generative Approach

to Zero-shot Object Recognition.” Under review in the IEEE Transactions on

Neural Networks and Learning Systems (TNNLS).

Conference Publications:

• Debasmit Das, and C. S. George Lee. “Graph Matching and Pseudo-Label

Guided Deep Unsupervised Domain Adaptation.” Proceedings of the Interna-
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tional Conference on Artificial Neural Networks (ICANN), Rhodes, Greece, pp.

342-352, October 4-7, 2018.

• Debasmit Das, and C. S. George Lee. “Unsupervised Domain Adaptation Us-

ing Regularized Hyper-Graph Matching,” Proceedings of the IEEE International

Conference on Image Processing (ICIP), Athens, Greece, pp. 3758-3762, Octo-

ber 7-10, 2018.

• Debasmit Das, and C. S. George Lee. “Zero-shot Image Recognition Using

Relational Matching, Adaptation and Calibration,” Proceedings of the Interna-

tional Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, pp.

1-8, July 14-19, 2019.
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2. UNSUPERVISED DOMAIN ADAPTATION USING

GRAPH AND HYPER-GRAPH MATCHING

2.1 Introduction

In Chapter two, we tackle unsupervised domain adaptation, which is a sub-

problem of transfer learning that assumes the same set of categories in both the

source and target domains. The source domain is fully labeled while the target do-

main is fully unlabeled. However, the source and target distributions have some

discrepancy as a result of which a classifier learned using source domain data would

not perform well in the target domain. An example of domain discrepancy is shown in

Fig. 2.1, where the source domain has frontal views of dogs and cats while the target

domain has side views. Our goal is to minimize this domain discrepancy by finding a

transformation that maps the source domain samples to be close to the target domain

samples.

Fig. 2.1. Discrepancy between (a) the source domain and (b) the target domain. In
the source domain, the images have frontal faces while the target domain has images
of the whole body from the side view-point.
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Most previous methods minimize the domain discrepancy using global statistical

metrics. For example, Sun et al. [44, 54] tried to minimize the covariance difference

between the source and the target domain. Long et al. [50, 51] used maximum mean

discrepancy to tackle domain shift between the source and the target distributions.

However, as shown in the toy example in Fig. 2.2(a), where the orange and red

dots indicate source and target domain samples, respectively, the source and target

samples do not match appropriately when global methods are used. To address this

problem, Courty et al. [49] introduced a local approach using optimal transport, where

each source domain sample is matched with each target domain sample. Although,

this method produces better domain adaptation, it can produce ambiguous matching

as shown in Fig. 2.2(b), especially when there is large domain discrepancy. This

erroneous matching is mainly because only one-to-one distances are used for matching

a source sample and a target sample. Therefore, we propose to exploit the intra-

domain structural arrangement using graphs/hyper-graphs to aid domain adaptation.

As shown for the example in Fig. 2.2(c), graph matching between the source and

the target graphs produces better sample-to-sample matching than both local and

global methods. Hence, the structural prior used in this setting is a graph/hyper-

graph. The graph/hyper-graph encodes the relationship between data samples and

therefore the structural information of the dataset. In our approaches, we assume that

the structural information is preserved across the domains. Therefore, we pursue

a graph/hyper-graph matching technique to minimize the domain discrepancy and

eventually transform the source domain samples to be close to the target domain

samples.

To be more specific, we describe three relevant methods based on this localized

graph/hyper-graph matching-based approach. These methods place a strong empha-

sis on establishing a sample-to-sample correspondence between each source-domain

sample and each target-domain sample. Establishing correspondences between two

sets of visual features have long been used in computer vision mostly for image regis-

tration [156,157]. To our knowledge, the approach of finding correspondences between
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Fig. 2.2. Comparison of our proposed approach with previous work. In this diagram,
the source and target domain samples are shown in orange and red, respectively.

the source-domain and the target-domain samples has never been used for domain

adaptation. The only work that is similar to finding correspondences is the work

on optimal transport [49]. They learned a transport plan for each source-domain

sample so that they are close to the target-domain samples. Their transport plan

is defined on a point-wise unary cost between each source sample and each target

sample. Our approach develops a framework to find correspondences between the

source and target domains that exploit higher-order relations beyond these unary

relations between the source and target domains. We treat the source-domain data

and the target-domain data as the source and target hyper-graphs, respectively, and

our correspondence problem can be cast as a hyper-graph matching problem. The

hyper-graph matching problem has been previously used in computer vision [158]

through a tensor-based formulation but has not been applied to domain adaptation.

Hyper-graph matching involves using higher-order relations between samples such as

unary, pairwise, tertiary or more. Pairwise matching involves matching source-domain

sample pairs with target-domain sample pairs. Tertiary matching involves matching

source-domain sample triplets with target-domain sample triplets and so on. Thus,

hyper-graph methods provide additional higher-order geometric and structural in-

formation about the data that is missing with just using unary point-wise relations

between a source sample and a target sample. The advantage of using higher-order
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information in graph matching is demonstrated in the example in Fig. 2.3. In Fig. 2.3,

the graph on the left is constructed from the source domain while the graph on the

right is constructed from the target domain. In the graph, each node represents a

sample and edges represent connectivity among the samples. Samples 1 and 1′ do

not match because those samples are not the closest pair of samples. But as a group

{1, 2, 3} matches with {1′, 2′, 3′} suggesting that higher-order matching can aid do-

main adaptation, whereas one-to-one matching between samples might not provide

enough or provide incorrect information.

Fig. 2.3. Example showing the advantage of higher-order graph matching compared
to just first-order matching.

Accordingly, in this Chapter, we describe three methods for unsupervised domain

adaptation and the corresponding experimental studies. The first two methods di-

rectly work on engineered features without learning a representation while the third

one utilizes representation learning. The first method [149] involves finding corre-

spondences between samples of the labeled source domain and the unlabeled target

domain. The correspondences are obtained by treating the source and target sam-

ples as graphs and using a convex criterion to match them. The criteria used are

first-order and second-order similarities between the graphs as well as a class-based

regularization. We have also developed a computationally efficient routine for the

convex optimization, thus allowing the proposed method to be used widely. To ver-
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ify the effectiveness of the proposed method, computer simulations were conducted

on synthetic and image classification datasets. Results validated that the proposed

local sample-to-sample matching method out-performs traditional moment-matching

methods and is competitive with respect to current local domain-adaptation methods.

In the second method [150], the matching between the samples in the two domains

are found by treating the source and target domains as hyper-graphs and carrying

out a class-regularized hyper-graph matching using first-, second- and third-order

similarities between the graphs. We have also developed a computationally efficient

algorithm by initially selecting a subset of the samples to construct a graph and then

developing a customized optimization routine for graph-matching based on Condi-

tional Gradient and Alternating Direction Multiplier Method. We also performed a

set of experiments on a standard object recognition dataset to validate the effective-

ness of our framework over state-of-the-art approaches.

In the third method [152], our solution to unsupervised domain adaptation is to

learn a domain-invariant representation that is also category discriminative. Domain-

invariant representations are realized by minimizing the domain discrepancy. To min-

imize the domain discrepancy, we propose a novel graph-matching metric between the

source and target domain representations. The graph-matching loss considers the cost

of matching the source and target graphs constructed from the corresponding repre-

sentations. The matching consists of both node-to-node matching and edge-to-edge

matching between the source and target representation graphs. This second-order

matching of edges provides additional structural and geometric information about

the representations that are absent on just using the first-order information [57]. The

feature extraction network is iteratively optimized to minimize this graph matching

loss along with minimizing the mis-classification loss using the source domain la-

beled data. Our proposed method adopts an adversarial learning scheme where the

adversarial loss is a combination of first-order and second-order graph-based match-

ings between the source and target domain features. It is important to note that

our matching approach is local and it considers matching between each instance of
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the source and target domain representations. On the other hand, methods like

CORAL [54] and those based on MMD [51,52] are global moment-matching methods

that match statistics of the domain distributions.

After the learning has converged and the source and target representations lie

in support of each other, we perform an additional refinement of the model. The

pseudo-labels (PL) of the confident unlabeled target domain data are used to make

sure that target samples lie further from the softmax decision boundary. This allows

better generalization to unseen target samples. We expect the refining step to improve

the performance further. This is validated by performing experiments on standard

image classification adaptation datasets. Results showed our proposed approach out-

perform previous domain-invariant representation learning approaches. An outline of

the proposed framework with the motivations and the impacts is shown in Fig. 2.4.

OBJECTIVE

We propose to minimize domain 
discrepancy by transforming 
labeled source-domain data close 
to unlabeled target-domain data.

MOTIVATION

• Previous methods mostly use global discrepancy metrics 
without regard to local contribution of each sample.

• Local methods can produce ambiguous matching because
of only one-to-one correspondences between samples.

• Structural Matching between source and target
graphs/hyper-graphs use higher-order information to
produce better matching.

• Graph/Hyper-graph matching is extremely time & memory
inefficient even though it generalizes well to target domain.

• Graph/Hyper-graph matching produces better recognition
performance but is slower than global methods.

• Representation learning produces more
discriminative and domain-invariant features than
global and local methods.

• Efficient optimization scheme produces faster domain 
adaptation than traditional second-order methods. 

IMPACT

PROPOSED APPROACH

Source-domain data
Target-domain data

Graph/Hyper-graph Matching
to minimize domain discrepancy

Representation learning for producing 
domain-invariant features

EFFICIENT OPTIMIZATION:
Conditional Gradient + Network Simplex/

ADMM

Source

Target

Fig. 2.4. Summary of motivations and impacts of the proposed research framework
for unsupervised domain adaptation.

The structure of this Chapter is as follows. Section 2.2 describes the problem

definition and notation. Section 2.3 describes the first method in details along with
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the experimental details The methodology and the experiments of the second method

are described in Section 2.4. In Section 2.5, we describe the third method along with

the results. Finally, the whole Chapter is summarized in Section 2.6.

2.2 Problem Definition and Notation

For unsupervised domain adaptation (UDA), we have the source domain data

matrix Xs ∈ Rns×d, vector of source domain data labels ys ∈ Rns and the target

domain data matrix Xt ∈ Rnt×d. Here, ns and nt are the number of source and target

samples respectively, and d is the dimension of the feature space. The labels in ys

range in {1, 2, · · · , C}. Both the domains share the same C number of classes. For

the purpose of UDA, we transform the source domain data close to the target domain

data such that a classifier trained on the transformed source domain predicts well on

the target instances.

2.3 Proposed Sample-to-Sample Correspondence Method

In this section, we shall first define the domain adaptation problem [24, 25], and

then formulate the proposed correspondence-and-mapping method for the unsuper-

vised domain adaptation problem.

2.3.1 Correspondence-and-Mapping Problem Formulation

Our proposed approach considers the transformation F as a point-set registration

between two point sets, where the source samples {xsi}nsi=1 are the moving point set

and the target samples {xti}nti=1 are the fixed point set. In such a case, the registration

involves alternately finding the correspondence and mapping between the fixed and

moving point sets [156, 157]. The advantage of point-set registration is that it en-

sures explicit sample-to-sample matching and not moment matching like covariance
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in CORAL [44] or MMD [50–53]. As a result, the transformed source domain matches

better with the target domain. However, matching each and every sample requires an

optimizing variable for each pair of source and target domain samples. If the number

of samples increases, so does the number of variables and the optimization procedure

may become extremely costly. We shall discuss how to deal with the computational

inefficiency later.

For the case when the number of target samples equals to the number of source

samples; that is, nt = ns, the correspondence can be represented by a permutation

matrix P ∈ {0, 1}ns×nt . Element [P]ij = 1 if the source-domain sample xsi corresponds

to the target-domain sample xtj, and 0, otherwise. The permutation matrix P has con-

straints
∑

i[P]ij = 1 and
∑

j[P]ij = 1 for all i ∈ {1, 2, . . . , ns} and j ∈ {1, 2, . . . , nt}.

Hence, if Xs ∈ Rns×d and Xt ∈ Rnt×d be the data matrix of the source-domain and the

target-domain data, respectively, then PXt permutes the target-domain data matrix.

As soon as the correspondence is established, a linear or a non-linear mapping

must be established between the target samples and the corresponding source sam-

ples. Non-linear mapping is involved when there is localized mapping for each sample,

and it might also be required in case there is unequal domain shift of each class. The

mapping operation should map the source-domain samples as close as possible to

the corresponding target-domain samples. This process of finding a correspondence

between these transformed source samples and target samples and then finding the

mapping will continue iteratively till convergence. This iterative method of alter-

nately finding the correspondence and mapping is similar to feature registration in

computer vision [156,157] but they have not been used or reformulated for unsuper-

vised domain adaptation . In fact, the feature registration methods formulate the

problem as a non-convex optimization. Consequently, these methods suffer from lo-

cal minimum as in [156], and the global optimization technique such as deterministic

annealing [157] does not guarantee convergence. Thus, we propose to formulate it as

a convex optimization problem to obtain correspondences as a global solution. It is

important to note that finding such global and unique solution to the correspondence
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accurately is more important because mapping with inaccurate correspondences will

undoubtedly yield bad results.

Formulating the proposed unsupervised domain adaptation problem as a convex

optimization problem requires the correspondences to have the following properties:

(a) First-order similarity: The corresponding target-domain samples should be as

close as possible to the corresponding source-domain samples. This implies that

we want to have the permuted target-domain data matrix PXt to be close to the

source-domain data matrix Xs, which translates to minimizing the Frobenius norm

||PXt − Xs||2F in the least-squares sense . (b) Second-order similarity: The corre-

sponding target-domain neighborhood should be structurally similar to the corre-

sponding source-domain neighborhood. This structural similarity can be expressed

using graphs constructed from the source and target domains. Thus, if the two do-

mains can be thought of as weighted undirected graphs Gs, Gt, structural similarity

implies matching edges between the source and the target graphs. The edges of these

graphs can be expressed using the adjacency matrices. If Ds and Dt are the adjacency

matrices of Gs and Gt, respectively, then these adjacency matrices can be found as,

[Ds]ij = exp(−
||xsi − xsj||22

σ2
s

)

[Dt]ij = exp(−
||xti − xtj||22

σ2
t

)

[Ds]ii = [Dt]ii = 0,

where σs and σt can be found heuristically as the mean sample-to-sample pairwise

distance in the source and target domains, respectively. For the second-order sim-

ilarity, we want the permuted target domain adjacency matrix PDtPT to be close

to the source domain adjacency matrix (region) Ds, where the superscript T in-

dicates a matrix transpose operation. We formulate it as equivalent to minimizing

||PDtPT−Ds||2F . While this cost term geometrically implies the cost of mis-matching

edges in the constructed graphs, the first-order similarity term can be thought as
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the cost of mis-matching nodes. However, the second-order similarity cost term is

bi-quadratic and we want to make it quadratic so that the cost-function is convex

and we can apply convex optimization techniques to it. This can be done by post-

multiplying PDtPT −Ds by P. Using the permutation matrix properties PTP = I

(orthogonal) and ||AP|| = ||A|| (norm-preserving), this transformation produces the

cost function ||PDt −DsP||2F .

Estimating the correspondence as a permutation matrix in this quadratic setting

is NP-hard because of the combinatorial complexity of the constraint on P. We can

relax the constraint on the correspondence matrix by converting it from a discrete to

a continuous form. The norms (i.e., Frobenius) used in the cost/regularization terms

will yield a convex minimization problem if we replace P with a continuous constraint.

Hence, if we relax the constraints on P to allow for soft correspondences (i.e., replacing

P with C), then an element of C matrix, [C]ij, represents the probability that xsi

corresponds to xtj. This matrix C is called doubly stochastic matrix DB = {C ≥ 0 :

C1 = CT1 = 1} . DB represents a convex hull, containing all permutation matrices

at its vertices. (Birkhoff-von-Neumann theorem).

In addition to the graph-matching terms, we add a class-based regularization to

the cost function that exploits the labeled information of source-domain data. The

group-lasso regularizer `2 − `1 norm term is equal to
∑

j

∑
c ||[C]Icj||2, where || · ||2

is the `2 norm and Ic contains the indices of rows of C corresponding to the source-

domain samples of class c. In other words, [C]Icj is a vector consisting of elements

[C]ij, where ith source sample belongs to class c and the jth sample is in the target

domain. Minimizing this group-lasso term ensures that a target-domain sample only

corresponds to the source-domain samples that have the same label.

It is important to note that the solution to the relaxed problem may not be

equal or even close to the original discrete problem. Even then, the solution of the

relaxed problem need not be projected onto the set of permutation matrices to get

our final solution. This is because the graphs constructed using the source samples

and the target samples are far from isomorphic for real datasets. Therefore, we do
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not expect exact matching between the nodes (samples) of each graph (domain) and

soft correspondences may serve better. As an example, consider that a source sample

xsi is likely to correspond to both xtj and xtk. In that case, it is more appropriate

to have correspondences [C]ij = 0.7 and [C]ik = 0.3 assigned to the target samples,

rather than the exact correspondences [C]ij = 1 and [C]ik = 0 or vice-versa. Thus,

we can formulate our optimization problem of obtaining C as follows:

min
C

f(C) =||CXt −Xs||2F/(nsd)+ (2.1)

λs||CDt −DsC||2F + λg
∑
j

∑
c

||[C]Icj||2

such that C ≥ 0, C1nt = 1ns , and CT1ns = 1nt ,

where λs and λg are the parameters weighing the second-order similarity term and

class-based regularization term, respectively; 1ns and 1nt are column vectors of size

ns and nt, respectively, and the superscript T indicates a matrix transpose operation.

The assumption that nt = ns is strict and it needs to be relaxed to allow more re-

alistic situations such as nt 6= ns. To analyze what modification is required to the

optimization problem in Eq. (2.1), we explore further to understand the correspon-

dences properly. In the case of nt = ns, we have one-to-one correspondences between

each source sample and each target sample. However, for the case nt 6= ns, we must

allow multiple correspondences. Initially, the constraint C1nt = 1ns implies that the

sum of the correspondences of all the target samples to each source sample is one.

The second equality constraint CT1ns = 1nt implies that the sum of correspondences

of all the source samples to each target sample is one. However, if nt 6= ns, the sum

of correspondences of all the source samples to each target sample should increase

proportionately by ns
nt

to allow for the multiple correspondences. This is reflected in

the following optimization problem.
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Problem UDA-1

min
C

f(C) = ||CXt −Xs||2F/(nsd) + λs||CDt − (
nt
ns

)DsC||2F (2.2)

+ λg
∑
j

∑
c

||[C]Icj||2

such that C ≥ 0, C1nt = 1ns , and CT1ns = (
ns
nt

)1nt

for nt 6= ns.

2.3.2 Correspondence-and-Mapping Problem Solution

Problem UDA-1 is a constrained convex optimization problem and can easily

be solved by interior-point methods [159]. In general, the time complexity of these

interior-point-methods for conic programming isO(N3.5), whereN is the total number

of the variables [160]. If we have ns and nt as source and target samples, respectively,

then the time complexity becomes O(n3.5
s n3.5

t ). Also, the interior-point method is a

second-order optimization method. Hence, it requires storage space of the Hessian,

which is O(N2) ∼ O(n2
sn

2
t ). This space complexity is more alarming and does not

scale well with an increasing number of variables. If nt and ns are greater than 100

points, it results in memory/storage-deficiency problems in most personal computers.

Thus, we need to employ a different optimization procedure so that the proposed

UDA approach can be widely used without memory-deficiency problem. We could

think of first-order methods of solving the constrained optimization problem, which

require computing gradients but do not require storing the Hessians.

First-order methods of solving the constrained optimization problem can be broadly

classified into projected-gradient methods and conditional gradient (CG) methods [161].

The projected-gradient method is similar to the normal gradient-descent method ex-

cept that for each iteration, the iterate is projected back into the constraint set.

Generally, the projected gradient-descent method enjoys the same convergence rate

as the unconstrained gradient-descent method. However, for the projected gradient-

descent method to be efficient, the projection step needs to be inexpensive. With an
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increasing number of variables, the projection step can become costly. Furthermore,

the full gradient updating may destroy the structure of the solutions such as sparsity

and low rank. The conditional gradient method, on the other hand, maintains the

desirable structure of the solution such as sparsity by solving the successive linear

minimization sub-problems over the convex constraint set. Since we expect our cor-

respondence matrix C to be sparse, we shall employ the conditional gradient method

for our problem. In fact, [162] points out that convex optimization problems over

convex hulls of atomic sets, which are relaxations of NP-hard problems are directly

suitable for the conditional gradient method. This is similar to the way we formulate

our problem by relaxing P matrix to C as shown in Algorithm 1.

Algorithm 1: Conditional Gradient Method (CG).

Given : C0 ∈ D, t = 1

Repeat

Cd = arg min
C

Tr(∇Cf(C0)TC), such that C ∈ D

C1 = C0 + α(Cd −C0), for α = 2
t+2

C0 = C1 and t = t+ 1

Until Convergence or Fixed Number of Iterations

Output : C0 = arg min
C

f(C) such that C ∈ D

As described in Algorithm 1 of the conditional gradient method, we have to solve

the linear programming problem, min
C

Tr(∇Cf(C0)TC), such that C ∈ D = {C : C ≥

0,C1nt = 1ns ,C
T1ns = (ns

nt
)1nt}. Here Tr(·) is the Trace operator. The gradient∇Cf

can be found from the equation:

∇Cf = ∇Cf1/(nsd) + λs∇Cf2 + λg∇Cf3, (2.3)

where f1, f2, and f3 are ||CXt −Xs||2F , ||CDt − (nt
ns

)DsC||2F , and
∑

j

∑
c ||[C]Icj||2,

respectively.

The gradients are obtained as follows-

∇Cf1 = 2(CXt −Xs)(Xt)T
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∇Cf2 = 2CDt(Dt)T − 2rDsC(Dt)T − 2r(Ds)TCDt + 2r2(Ds)TDsC

where r = nt
ns

and

∂f3

∂[C]ij
=


[C]ij

||[C]Ic(i)j ||2
, if ||[C]Ic(i)j||2 6= 0;

0 , otherwise;

Here, c(i) is the class corresponding to the ith sample in the source domain and Ic(i)

contains the indices of source samples belonging to class c(i). After the gradient

∇Cf is found from ∇Cf1, ∇Cf2, ∇Cf3 using Eq. 2.3, we need to solve for the linear

programming problem.

The linear programming problem can be solved easily using simplex methods

used in solvers such as MOSEK [163]. However, using such solvers would not make

our method competitive in terms of time efficiency. Hence, we convert this linear

programming problem into a min-cost flow problem, which can then be solved very

efficiently using a network simplex approach [164].

Let the gradient ∇Cf(C0) be G/ns and the correspondence matrix variable be

C = nsT. Then, the linear programming (LP) problem translates to min
T

Tr(GTT)

such that T ≥ 0,T1nt = 1ns/ns,T
T1ns = 1nt/nt. This LP problem has an equiva-

lence with the min-cost flow problem on the following graph:

• The graph is bipartite with ns source nodes and nt sink nodes.

• The supply at each source node is 1/ns and the demand at each sink node is

1/nt.

• Cost of the edge connecting the ith source node to the jth sink node is given by

[G]ij. Capacity of each edge is ∞.

Using this configuration, the min-cost flow problem is solved using the network sim-

plex. Details of the network-simplex method is omitted and one can refer [164]. The

network simplex method is an implementation of the traditional simplex method for

LP problems, where all the intermediate operations are performed on graphs. Due
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to the structure of min-cost flow problems, network-simplex methods provide results

significantly faster than traditional simplex methods. Using this network-simplex

method, we obtain the solution T∗, where [T∗]ij is the flow obtained on the edge

connecting the ith source node to the jth sink node. From that, we obtain Cd = nsT
∗

and proceed with that iteration of conditional gradient (CG) method as in Algorithm

1. In the above CG method, we also need an initial C0 and C0 can be defined as the

solution to the LP problem, min
C

Tr(DTC) such that C ∈ D = {C : C ≥ 0,C1nt =

1ns ,C
T1ns = (ns

nt
)1nt}, where [D]ij = ||xsi − xtj||2. This is also solved by the network

simplex approach after converting this LP problem into its equivalent min-cost flow

problem as described previously. After we obtain C∗ from the CG algorithm, it is

then used to find the corresponding target samples Xt
c = C∗Xt. Then, the mapping

M(·) from the source domain to the target domain is found by solving the following

regression problem M(·) : X s → X t, with each row of Xs as an input data sample and

the corresponding row of Xt
c as an output data sample. The choice of regressors can

be linear functions, neural networks, and kernel machines with proper regularization.

Once the mapping M∗(·) is found out, a source-domain sample xs can be mapped

to the target domain by applying M∗(xs). This completes one iteration of finding

the correspondence and the mapping. For the next cycle, we solve Problem UDA

with the mapped source samples as Xs and subsequently find the new mapping. The

number of iterations NT of alternatively finding correspondence and mapping is an

user-defined variable. The full domain adaptation algorithm is outlined in Algorithm

2.

2.3.3 Experimental Results and Discussions

To evaluate and validate the proposed sample-sample correspondence and map-

ping method for unsupervised domain adaptation, computer simulations were per-

formed on a toy dataset and then on image classification and sentiment classification

tasks. Our results were compared with previous published methods. For compar-
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Algorithm 2: Unsupervised Domain Adaptation using dataset registration.

Given : Source Labeled Data Xs and Ys, and Target Unlabeled Data Xt

Parameters : λs, λg, NT

Initialize : t = 0

Repeat

C∗ = argminf(C) such that C ∈ D (Find Correspondence using

CG method)

Regress M(·) s.t. Xs M−→ C∗Xt (Find Mapping)

Map Xs = M(Xs) and t = t+ 1

Until t = NT

Output : Adapted Source Data Xs,Ys to learn classifier.

isons, we used the reported accuracies or conduct experiments with the available

source code. Since we are dealing with unsupervised domain adaptation, it is not

possible to cross-validate our hyper-parameters λs, λg, and NT . Unless explicitly

mentioned, we reported the best results obtained over the hyper-parameter ranges

λs and λg in {10−3, 10−2, 10−1, 100, 101, 102, 103} and NT = 1. In our simulations, we

found that using NT > 1 only provides a tiny bump in performance or no improve-

ment in performance at all. This is because the source samples have already been

transformed close to the target samples and further transformation does not affect

recognition accuracies. After the correspondence was found, we considered mapping

between the corresponding samples. For the mapping, we used a linear mapping

W ∈ Rd×d with a regularization of 0.001. d is the dimension of the feature space in

which the data lies.

Toy Dataset: Two Interleaving Moons

For the first experiment, we used the synthetic dataset of interleaving moons previ-

ously used in [49,165]. The dataset consists of 2 domains. The source domain consists
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of 2 entangled moon’s data. Each moon is associated with each class. The target

domain consists of rotating the source domain. This can be considered as a domain-

adaptation problem with increasing rotation angle implying increasing difficulty of

the domain-adaptation problem. Since the problem is low dimensional, it allowed us

to visualize the effect of our domain-adaptation method appropriately. Figures 2.5(a)

and 2.5(b) show an example of the source-domain data and the target-domain data

respectively, and Fig. 2.5(c) shows the adapted source-domain data using the pro-

posed approach. The results showed that the transformed source domain becomes

close to the target domain.

Fig. 2.5. (a) Source-domain data. (b) Target-domain data consists of a 50-degree
rotation of the source-domain data. (c) Transformed source-domain data is now
aligned with the target-domain data.

For testing on this toy dataset, we used the same experimental procedure as

in [49, 165]. We sampled 150 instances from both the domains. The test data con-

sisted of 1000 examples from the target domain distribution. For classification, we

used a Gaussian kernel-based SVM, cross-validated using 5-fold method. The exper-

iments were conducted over 10 trials and the mean accuracy was reported. At this

juncture, it is important to note that choosing the classifier for domain adaptation

is important. For example, the two classes in the interleaving moon dataset are not

linearly separable at all. So, a linear kernel SVM would not classify the moons ac-

curately and it would result in poor performance in the target domain as well. That

is why we need a Gaussian Kernel SVM. So, we have to make sure that we choose a

classifier that works well with the source dataset in the first place.
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We compared our results with the DA-SVM [29]- a domain-adaptive support vec-

tor machine approach, PBDA [165]- which is a PAC-Bayesian based domain adap-

tation method, and different versions of the optimal transport approach [49]. OT-

exact is the basic optimal transport approach. OT-IT is the information theoretic

version with entropy regularization. OT-GL and OT-Laplace has additional group

and graph based regularization, respectively. From our results in Table 2.1, we see

that for low rotation angles, the OT-GL-based method dominates and our proposed

method yields satisfactory results. But for higher angles (≥ 50 ◦), our proposed

method clearly dominates by a large margin. This is because we have taken into

consideration second-order structural similarity information. For higher-rotation an-

gles, the point-to-point sample distance is high. However, similar structures in the

source and target domains can still correspond to each other. In other words, the

adjacency matrices, which depend on relative distances between samples, can still be

matched and do not depend on higher rotation angles between the source and target

domains. That is why our proposed method out-performed other methods for large

discrepancies between the source and target distributions.

Table 2.1. Accuracy results over 10 trials for the toy dataset domain-adaptation
problem for varying degree of rotation between source and target domain.

Angle (◦) 10 20 30 40 50 70 90

SVM-NA 100 89.6 76.0 68.8 60.0 23.6 17.2

DASVM 100 100 74.1 71.6 66.6 25.3 18.0

PBDA 100 90.6 89.7 77.5 59.8 37.4 31.3

OT-exact 100 97.2 93.5 89.1 79.4 61.6 49.3

OT-IT 100 99.3 94.6 89.8 87.9 60.2 49.2

OT-GL 100 100 100 98.7 81.4 62.2 49.2

OT-Laplace 100 100 99.6 93.8 79.9 59.8 47.6

Ours 100 100 96 87.4 83.9 78.4 72.2
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We further provided the time comparison between the network simplex method (N-

S) and MOSEK (M) for increasing number of samples of the toy dataset in Table 2.2.

Results showed that the network simplex method is very fast compared to a general

purpose linear programming solver like MOSEK.

Table 2.2. Time comparison (in seconds) of the two solvers for increasing sample
size. The sample size is the number of samples per class per domain of the inter-
leaving moon toy dataset. The target domain has a rotation of 50◦ with the source
domain. We use NT = 1. Implementation was in MATLAB in a workstation with
Intel Xeon(R) CPU E5-2630 v2 and 40 GB RAM. Results are reported over 10 trials.

n 25 50 75 100 125 150 175 200

M 62.1 83.1 103.4 128.5 387.7 680.1 1028.3 1577.6

N-S 1.5 4 6.9 10.1 16.9 23.5 31.2 41.3

Real Dataset: Image Classification

We next evaluated the proposed method on image classification tasks. The image

classification tasks that we considered were digit recognition and object recognition.

The classifier used was 1-NN (Nearest Neighbor). 1-NN is used for experiments with

images because it does not require cross-validating hyper-parameters and has been

used in previous work as well [41,49] The 1-NN classifier is trained on the transformed

source-domain data and tested on the target-domain data. Instances of the image

dataset are shown in Fig. 2.6 (a),(b) and (e). Generally, we cannot directly cross-

validate our hyper-parameters λs and λg on the unlabeled target domain data making

it impractical for real-world applications. However, for practical transfer learning

purposes, a reverse validation (RV) technique [166] was developed for tuning the

hyper-parameters. We have carried out experiments with a variant of the method to

tune λs and λg for our UDA approach..

For a particular hyper-parameter configuration, we divide the source domain data

into K folds. We use one of the folds as the validation set. The remaining source
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Fig. 2.6. Instances of the real dataset used. At the top left, we see that USPS has the
worse resolution compared to MNIST handwriting dataset. At the bottom left, we
have instances of the Amazon review dataset. There is a shift in textual domain when
reviewing for different products. On the right, we have the Caltech-Office dataset and
we see that there are differences in illumination, quality, pose, presence/absence of
background across different domains.

data and the whole target data are used for domain adaptation. The classifier trained

using the adapted source data is used to generate pseudo-labels for the target data.

Another classifier is trained using the target domain data and its pseudo-labels. This

classifier is then tested on the held-out source domain data after adaptation. The ac-

curacy obtained is repeated and averaged over all the K folds. This reverse-validation

approach is repeated over all hyper-parameter configurations. The optimal hyper-

parameter configuration is the one with the best average validation accuracy. Using

the obtained optimal hyper-parameter configuration, we then carry out domain adap-

tation over all the source and target domain data and report the accuracy over the

target domain dataset. We used K = 5 folds for all the real-data experiments. Thus,

we showed the results using this RV approach in addition to the best obtained results

over the hyper-parameters. In majority of the cases we would see that the result

obtained using the reverse validation approach matches the best obtained results

suggesting that the hyper-parameters can be automatically tuned successfully.
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Digit Recognition

For the source and target domains, we used 2 datasets – USPS (U) and MNIST

(M). These datasets have 10 classes in common (0-9). The dataset consists of ran-

domly sampling 1800 and 2000 images from USPS and MNIST, respectively. The

MNIST digits have 28 × 28 resolution and the USPS 16 × 16. The MNIST images

were resized to that of the USPS. The normalized grey levels were used to obtain a

common 256-dimensional feature space for both domains.

Object Recognition

For object recognition, we used the popular Caltech-Office dataset [40,41,49,167,

168]. This domain-adaptation dataset consists of images from 4 different domains:

Amazon (A) (E-commerce), Caltech-256 [169] (C) (a repository of images), Webcam

(W) (webcam images), and DSLR (D) (images taken using DSLR camera). The

differences between domains are due to the differences in quality, illumination, pose

and also the presence and absence of backgrounds. The features used are the shallow

SURF features [170] and deep-learning feature sets [171] – decaf6 and decaf7. The

SURF descriptors represent each image as a 800-bin histogram. The histogram is

first normalized to represent a probability and then reduced to standard z-scores. On

the other hand, the deep-learning feature sets, decaf6 and decaf7, are extracted as

the activations from the fully connected 6th and 7th layers of AlexNet. The features

are 4096-dimensional.

For our experiments, we considered a random selection of 20 samples per class

(with the exception of 8 samples per class for the DSLR domain) for the source

domain. The target-domain data is split equally. One half of the target-domain

data is used for domain adaptation and the other half is used for testing. This is in

accordance with the protocol followed in [49]. The accuracy is reported on the test

data over 10 trials of the experiment.
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We compared our approach against (a) the no adaptation baseline (NA), which

consists of carrying out classification without domain adaptation; (b) Geodesic Flow

Kernel (GFK) [41]; (c) Transfer Subspace Learning (TSL) [172]; (d) Joint Distribution

Adaptation (JDA) [173]; (e) Optimal Transport [49] with its variants - OT-IT and

OT-GL. Here, TSL and JDA match distribution moments while OT-IT, OT-GL and

our method match domain samples.

From Table 2.3, we see that in almost all the cases, the OT-GL and our proposed

method dominated over other methods, suggesting that sample-matching methods

perform better than moment-matching methods. For the handwritten digit recogni-

tion tasks (U → M and M → U), our proposed method clearly out-performs GFK,

TSL and JDA, but is slightly out-performed by OT-GL. This might be because the

handwritten digit datasets U and M do not contain enough structurally similar re-

gions to exploit the second-order similarity cost term. For the Office-Caltech dataset,

the only time our proposed method was beaten by a moment-matching method was

W → D, though by a slight amount. This is because W and D are closest pair of

domains and using sample-based matching does not have outright advantage over

moment-matching. The fact that W and D have the closest pair of domains is evi-

dent form the NA accuracy of 53.62, which is the best among NA accuracies of the

Office-Caltech domain-adaptation tasks.

We have performed a runtime comparison in terms of the CPU time in seconds

of our method with other methods and have shown the results in Table 2.4. The

experiments performed are over the same dataset as used in Table 2.3. From Table

2.4, we see that local methods like OT-GL and our method generally take more time

than moment-matching method like JDA. Our method takes more time compared

with OT-GL because of time taken in constructing adjacency matrices for the second

order cost term. Overall, the time taken for domain adaptation between USPS and

MNIST datasets is more because they contain relatively larger number of samples,

compared to the Office-Caltech dataset.
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Table 2.3. Domain-adaptation results for digit recognition using USPS and MNIST
datasets and object recognition with the Office-Caltech dataset using SURF features.

Tasks NA GFK TSL JDA OT-GL Ours Ours (RV)

U → M 39.00 44.16 40.66 54.52 57.85 56.90 56.90

M → U 58.33 60.96 53.79 60.09 69.96 68.44 66.24

C → A 20.54 35.29 45.25 40.73 44.17 46.67 46.67

C → W 18.94 31.72 37.35 33.44 38.94 39.48 39.48

C → D 19.62 35.62 39.25 39.75 44.50 42.88 40.12

A → C 22.25 32.87 38.46 33.99 34.57 38.51 38.51

A → W 23.51 32.05 35.70 36.03 37.02 38.69 38.69

A → D 20.38 30.12 32.62 32.62 38.88 36.12 36.12

W → C 19.29 27.75 29.02 31.81 35.98 33.81 32.83

W → A 23.19 33.35 34.94 31.48 39.35 37.69 37.69

W → D 53.62 79.25 80.50 84.25 84.00 84.10 84.10

D → C 23.97 29.50 31.03 29.84 32.38 32.78 32.78

D → A 27.10 32.98 36.67 32.85 37.17 38.33 37.61

D → W 51.26 69.67 77.48 80.00 81.06 81.12 81.12

We have also reported the results of Office-Caltech dataset using decaf6 and de-

caf7 features in Tables 2.5 and 2.6, respectively. The baseline performance of the

deep-learning features are better than SURF features because they are more robust

and contain higher-level representations. Expectedly, the decaf7 features have better

baseline performance than decaf6 features. However, DA methods can further in-

crease performance over the robust deep features. In Tables 2.5 and 2.6, we see that

our proposed method dominates over JDA and OT-IT but is in close competition

with OT-GL. We also noted that using decaf7 instead of decaf6 creates only a small

incremental improvement in performance because most of the adaptation has already

been performed by our proposed domain-adaptation method.



54

Table 2.4. CPU time (seconds) comparison of different domain adaptation algorithms.

Task NA GFK TSL JDA OT-GL Ours

U→M 1.24 2.62 567.8 82.34 171.84 201.23

M→U 1.13 2.43 522.37 81.13 168.23 196.15

C→A 0.46 2.6 382.98 41.6 85.95 99.9

C→W 0.24 1.45 157.52 37.89 78.73 101.1

C→D 0.36 1.35 117.81 37.33 61.17 63.38

A→C 0.54 2.69 462.12 40.11 105.87 126.18

A→W 0.39 1.47 153.95 37.63 86.12 100.21

A→D 0.42 1.31 115.87 36.82 69.29 82.1

W→C 0.33 2.92 461.1 42.39 98.26 111.2

W→A 0.61 2.52 388.23 41.64 94.38 101.45

W→D 0.34 1.37 117.47 37.9 76.5 79.25

D→C 0.45 2.36 364.13 39.75 106.21 118.12

D→A 0.43 2.14 310.18 41.24 98.41 115.35

D→W 0.24 1.05 93.73 34.62 76.23 88.69

As seen in Fig. 2.7, the source-domain samples are transformed to be near the

target-domain samples using our proposed method. Therefore, we expect a classifier

trained on the transformed source samples to perform better on the target-domain

data.

We have also studied the effects of varying the regularization parameters on

domain-adaptation performance. In Fig. 2.8, the blue line shows the accuracy when

both λs = λg = 0. When λs = 0, best performance is obtained for λg = 0.1. When

λg = 0, best performance is obtained for λg = 1. For λs, λg > 1, performance de-

grades (not shown) because we have put excess weight on the regularization terms of

second-order structural similarity and group-lasso than on the first-order point-wise

similarity cost term. Thus, the presence of second-order and regularization term,
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Table 2.5. Domain-adaptation results for the Office-Caltech dataset using decaf6
features.

Task NA JDA OT-IT OT-GL Ours Ours(RV)

C→A 79.25 88.04 88.69 92.08 91.92 89.91

C→W 48.61 79.60 75.17 84.17 83.58 81.23

C→D 62.75 84.12 83.38 87.25 87.50 87.50

A→C 64.66 81.28 81.65 85.51 86.67 85.63

A→W 51.39 80.33 78.94 83.05 81.39 81.39

A→D 60.38 86.25 85.88 85.00 87.12 87.12

W→C 58.17 81.97 74.80 81.45 82.13 81.64

W→A 61.15 90.19 80.96 90.62 88.87 88.87

W→D 97.50 98.88 95.62 96.25 98.95 98.95

D→C 52.13 81.13 77.71 84.11 83.72 83.72

D→A 60.71 91.31 87.15 92.31 92.65 92.65

D→W 85.70 97.48 93.77 96.29 96.69 96.13

weighted in the right amount is justified as it improves performance over when only

the first-order term is present.

We have also studied the effect of group-lasso regularization parameter (λg) on

the quality of the correspondence matrix C obtained for a domain-adaptation task.

Visually the second plot from the left in Fig. 2.9 appears to discriminate the 10 classes

best. Accordingly, this parameter configuration (λs = 0, λg = 0.1, NT = 1) realizes

the best performance as shown in the previous Fig. 2.8.

Sentiment Classification

We have also evaluated our proposed method on sentiment classification using the

standard Amazon review dataset [175]. This dataset contains Amazon reviews on
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Table 2.6. Domain-adaptation results for the Office-Caltech dataset using decaf7
features.

Task NA JDA OT-IT OT-GL Ours Ours(RV)

C→A 85.27 89.63 91.56 92.15 91.85 91.85

C→W 65.23 79.80 82.19 83.84 85.36 85.36

C→D 75.38 85.00 85.00 85.38 85.88 85.88

A→C 72.80 82.59 84.22 87.16 86.67 85.39

A→W 63.64 83.05 81.52 84.50 86.09 85.36

A→D 75.25 85.50 86.62 85.25 87.37 87.37

W→C 69.17 79.84 81.74 83.71 82.80 82.80

W→A 72.96 90.94 88.31 91.98 90.15 89.31

W→D 98.50 98.88 98.38 91.38 99.00 99.00

D→C 65.23 81.21 82.02 84.93 82.20 82.20

D→A 75.46 91.92 92.15 92.92 92.60 92.15

D→W 92.25 97.02 96.62 94.17 97.10 97.10

4 domains: Kitchen items (K), DVD (D), Books (B) and Electronics (E). Instances

of the dataset are shown in Fig. 2.6 (c),(d). The dimensionality of the bag-of-word

features was reduced by keeping the top 400 features having maximum mutual infor-

mation with class labels. This pre-processing was also carried out in [42,44] without

losing performance. For each domain, we used 1000 positive and 1000 negative re-

views. For each domain-adaptation task, we used 1600 samples (800 positive and

800 negative) from each domain as the training dataset. The remaining 400 samples

(200 positive and 200 negative) were used for testing. The classifier used is a 1-NN

classifier since it is parameter free. The mean-accuracy was reported over 10 random

training/test splits.

We compared our proposed approach to a recently proposed unsupervised domain-

adaptation approach known as Correlation Alignment (CORAL) [44]. CORAL is a

simple and efficient approach that aligns the input feature distributions of the source
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Fig. 2.7. t-SNE [174] visualization of a single trial of Amazon to Webcam DA problem
using decaf6 features.

Fig. 2.8. Effect of varying regularization parameters λs and λg on the accuracy
of Amazon (source domain) to Webcam (target domain) visual domain-adaptation
problem for fixed NT = 1.

and target domains by exploring their second-order statistics. Firstly, it computes

the covariance statistics in each domain and then applies whitening and re-coloring

linear transformation to the source features. Results in Table 2.7 showed that our

proposed method outperforms CORAL in all the domain-adaptation tasks. Our pro-
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Fig. 2.9. The optimal correspondence matrix C for 4 different parameter settings
visualized as a colormap, with λs = 0, NT = 1. The task involved was the Amazon
to Webcam domain adaptation.

posed method has better performance because CORAL matches covariances while

our method matches samples explicitly through point-wise and pair-wise matching.

Moreover, CORAL does not use source-domain label information. Our method uses

source-domain label information through the group-lasso regularization. However,

CORAL is quite fast in transforming the source samples compared to our method.

For a single trial, CORAL took about a second while our proposed method took

about a few minutes.

Table 2.7. Accuracy results of unsupervised domain-adaptation tasks for the Amazon
reviews dataset.

Tasks K→D D→B B→E E→K K→B D→E

NA 58.6 63.4 58.5 66.5 59.3 57.9

CORAL 59.9 66.5 59.5 67.5 59.2 59.5

Ours 63.5 69.5 62.0 69.5 64.5 61.2

Ours (RV) 60.9 69.5 62.0 69.5 64.5 59.0
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2.4 Proposed Regularized Hyper-graph Matching Method

Our proposed method consists of the following steps: (1) A mathematical frame-

work using all the first-, second- and third-order relations to match the source- and

target-domain samples along with a regularization using labels of the source-domain

data. (2) Computationally efficient method of obtaining the solution of the opti-

mization problem by solving a series of sub-problems using Alternating Direction

Multiplier Method (ADMM). Moreover, we perform an initial clustering to select the

most relevant instances and thus reduce the number of data points to be used in the

optimization approach. (3) Experimental evaluation on an object recognition dataset

with analysis of the effect of each cost term. Fig. 2.10 shows the intuition of our

method in a two-dimensional setting.

Fig. 2.10. Our approach involves extracting exemplars from both source and target
domain. Hyper-graphs are constructed from those exemplars followed by matching.

2.4.1 Finding Exemplars

In our proposed method, we initially perform clustering to extract the set of

exemplars, which is a representative subset of the original source and target domain

dataset. This clustering is required to increase the computational efficiency of our

hyper-graph matching method. We use Affinity Propagation (AP) [176] to extract the

exemplars. AP is an efficient clustering algorithm that uses message passing between



60

data-points. The algorithm requires the similarity matrix S of a dataset as the input.

Here, [S]ij = −||xi − xj||2, i 6= j and [S]ii is the preference of sample xi to be an

exemplar and is set to the same value of p for all instances. p controls the number

of exemplars obtained. For low values of p we obtain less exemplars while for large

values of p we obtain more exemplars. To obtain a desired number of exemplars, a

bisection method that adjusts p iteratively is used. For our purpose, we set η to be

the desired fraction of exemplars for both the source and the target domain dataset.

Thus, as an output of the AP algorithm, we would obtain the exemplar source and

target domain matrix X′s ∈ Rn′s×d and X′t ∈ Rn′t×d, respectively, where n′s ≈ ηns,

n′t ≈ ηnt. However, to keep up with the notation, from now onwards in this approach

we would denote Xs, Xt as the exemplar source and target datasets and ns and nt as

the number of source and target exemplars.

2.4.2 Hyper-Graph Matching

To carry out hyper-graph matching between the source and target exemplars, we

consider all first-, second- and third-order matching between the source and target ex-

emplars. We do not use just the higher order matching because the source and target

hyper-graphs will be far from isomorphic and using only the structural information

will produce misleading results. On the contrary for registration between similarly

shaped objects [158], using only higher order matching produces excellent results.

We seek to find a matching matrix C ∈ Rns×nt , where [C]ij is the measure of

correspondence between source exemplar i and target exemplar j. For the first-

order matching, we would like exemplars in the source domain to be close to similar

exemplars in the target domain. Since the operation CXt rearranges the target

exemplars, we would like the re-arranged target exemplars CXt to be close to Xs.

Thus, to enable first-order matching, we would like to minimize the normalized term

f1(C) = ||CXt −Xs||2F/(nsd), where || · ||F is the Frobenius norm.
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For the second-order matching, we would like source exemplar pairs to match with

similar target exemplar pairs. This is carried out by initially constructing a source

and a target adjacency matrix with source and target exemplars as graph nodes. If

Ds and Dt are source and target adjacency matrices, then [Ds]ij = exp(− ||x
s
i−xsj ||22
σ2
s

),

[Dt]ij = exp(− ||x
t
i−xtj ||22
σ2
t

) for i 6= j and [Ds]ii = [Dt]ii = 0. σs and σt can be found

heuristically as the mean sample-to-sample pairwise distance in the source and target

domains, respectively. For the second-order similarity, we want the row re-arranged

target domain adjacency matrix CDt to be close to the column-rearranged source

domain adjacency matrix DsC. Taking into consideration the difference in the num-

bers of source and target exemplars ns and nt, second-order graph matching implies

minimizing the term f2(C) = ||CDt − rDsC||2F , where r = nt
ns

is a correction factor.

For the third-order matching problem, we use the tensor based cost term [158].

In that paper, they try to maximize the cost term f3(C) = H⊗1 c⊗2 c⊗3 c, where

H ∈ Rnsnt×nsnt×nsnt is a third-order tensor and the index k in ⊗k indicates tensor

multiplication on the kth dimension and c ∈ Rnsnt is the vectorized matching matrix

C. Here, [H]ijk = exp(−γ||fis,js,ks − fit,jt,kt ||2). If ci is the matching variable for the

samples xsi and xti, cj for the samples xsj and xtj and ck for the samples xsk and xtk,

then fis,js,ks is the feature consisting of the sine of the angles of the triangle formed

by the data points xsi ,x
s
j and xsk and fit,jt,kt consisting of the sine of the angles of

the triangle formed by the data points xti,x
t
j and xtk. γ is calculated from the mean

pairwise squared distance between the features.

In addition to the graph-matching terms, we add a class-based regularization. The

group-lasso regularizer [177] `2 − `1 norm term is equal to fg(C) =
∑

j

∑
c ||[C]Icj||2,

where || · ||2 is the `2 norm and Ic contains the indices of rows of C corresponding

to the source-domain samples of class c. In other words, [C]Icj is a vector consisting

of elements [C]ij, where ith source sample belongs to class c and the jth sample is in

the target domain. Minimizing this group-lasso term ensures that a target-domain

sample only corresponds to the source-domain samples of the same class.
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In the case of nt = ns, we have one-to-one matching between each source sam-

ple and each target sample. However, for the case nt 6= ns, we must allow multiple

correspondences. Accordingly, if the constraint C1nt = 1ns (1n is a n × 1 vector of

ones) implies that the sum of the correspondences of all the target samples to each

source sample is one, then the second equality constraint CT1ns = ns
nt

1nt implies that

the sum of correspondences of all the source samples to each target sample should

increase proportionately by ns
nt

to allow for the multiple correspondences. Hence, the

overall optimization problem becomes

Problem UDA-2

min
C

f(C) =
1

(nsd)
||CXt −Xs||2F + λ2||CDt − rDsC||2F

− λ3H⊗1 c⊗2 c⊗3 c + λg
∑
j

∑
c

||[C]Icj||2 (2.4)

such that C ≥ 0, C1nt = 1ns , and CT1ns = (
ns
nt

)1nt .

2.4.3 Problem Solution

Problem UDA-2 can be solved quickly using second-order methods but has mem-

ory and computational issues related to storing the Hessian (O(n2
sn

2
t )). Hence, first-

order methods, specially conditional gradient method (CG) [161] can be used to solve

the problem. The CG method maintains the desirable structure of the solution such

as sparsity required of C by solving the successive linear minimization sub-problems

over the constraint set [162]. The linear programming (LP) subproblem required to

be solved is minimizing Tr(GTC) ,C ≥ 0,C1nt = 1ns ,C
T1ns = ns

nt
1nt , where G is
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the gradient of the function f in Problem UDA-2 and Tr(·) is the trace operation.

The gradient of each cost term can be derived as

∇f1(C) = 2(CXt −Xs)XtT/(nsd),

∇f2(C) = 2(CDtDtT − rDsCDtT − rDsTCDt + r2DsTDsC) ,

∇f3(C) = ([H⊗1 c⊗2 c + H⊗1 c⊗3 c + H⊗2 c⊗3 c])

∂fg
∂[C]ij

=
[C]ij

||[C]Ic(i)j||2
· δ(||[C]Ic(i)j||2 6= 0)

Here [·] operator on tensor term reshapes a vector into matrix of size ns × nt. c(i)

is the class of the ith source sample. δ(·) is an indicator function which is 1 if the

argument is true and 0 otherwise. Thus, after obtaining the gradient G = ∇f(C) =

∇f1(C)+λ2∇f2(C)−λ3∇f3(C)+λg∇fg(C), we solve the linear minimization problem

LP mentioned before using the consensus form of ADMM [151]. We let a = 1ns and

b = ns
nt

1nt . Using the consensus ADMM form, we reformulate LP as

min {g1(C1) + g2(C2) + g3(C3)}

such that Z = C1 = C2 = C3

where g1(C1) = 0.5Tr(GTC1) + I(C11nt = a), g2(C2) = 0.5Tr(GTC2) + I(CT
2 1ns =

b) and g3(C3) = I(C3 ≥ 0). Here, I(·) is an indicator function which is 0 if argument

is true and∞ otherwise. Z is an intermediate variable to facilitate consensus ADMM.

Accordingly, the ADMM updates will be as follows

Ck+1
1 = argmin

C11nt=a
(Tr((0.5G + Yk

1)TC1) +
ρ

2
||C1 − Zk||2F )

Ck+1
2 = argmin

CT
2 1ns=b

(Tr((0.5G + Yk
2)TC2) +

ρ

2
||C2 − Zk||2F )

Ck+1
3 = Π{C|C≥0}(Z

k −Yk
3), Zk+1 =

1

3
(
∑
i

Ck+1
i )

Yk+1
i = Yk

i + Ck+1
i − Zk+1 ∀i = 1, 2, 3
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Here Yi’s are dual variables. Π is the projection operator. The penalty parameter is

set ρ = 1 without loss of generality since scaling ρ is equivalent to scaling G. Updates

for Ck+1
1 and Ck+1

2 are solved using Lagrange multiplier to obtain

Ck+1
1 = Zk − G

2
−Yk

1 −
1

nt
((Zk − G

2
−Yk

1)1nt − a)1Tnt ,

Ck+1
2 = Zk − G

2
−Yk

2 −
1

ns
1ns(1

T
ns(Z

k − G

2
−Yk

2)− bT ),

Ck+1
3 = max(Zk −Yk

3 ,0)

The ADMM updates are repeated for a fixed few-hundred iterations and the optimum

value of LP is set to final value of Z. This would complete one iteration of CG. After

completing several such iterations of CG, we can obtain the optimal value of C∗.

Using that, we can map the source domain data close to the target domain data

using regression with Xs and C∗Xt as the input and output data respectively. The

whole procedure can be repeated for a number of times at the end of which the

adapted source data is used to train a classifier to be tested on target domain data.

The overall algorithm is given in Algorithm 3.

2.4.4 Time and Space Complexity

The AP clustering algorithm has a time complexity of (O(n2
s +n2

t )). The ADMM

updates are linear in the number of variables (O(η2nsnt)) and they run for a fixed

number of iterations. They are faster than interior point methods, which would result

in cubic time-complexity in the number of variables. The overall time complexity will

be multiplied by NT . For the space complexity, the AP algorithm requires storing

source and target similarity matrices of O(n2
s + n2

t ). Graph adjacency matrices also

require space complexity of O(η2n2
s + η2n2

t ). For tensor storage, we use the sparse

strategy [158] to obtain O(m) space complexity, where m is the number of non-zero

entries and m ∝ max(ηns, ηnt)
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Algorithm 3: UDA with Hyper-graph matching.

Given : Source Labeled Data Xs and ys, and Target Unlabeled Data Xt

Parameters : η, λ2, λ3, λg, NT

Initialize : to = 0

Repeat

Xs,Xt ← AP(Xs,Xt, η), (Affinity Propagation)

Initialize: C0 ∈ D, ti = 1

Repeat (Conditional Gradient)

G = ∇Cf(C0), Cd ← ADMM(G, a.b)

C1 = C0 + α(Cd −C0), for α = 2
ti+2

C0 = C1 and ti = ti + 1

Until Fixed Number of Iterations

C∗ = C0 and Regress M(·) s.t. Xs M−→ C∗Xt

Map Xs ←M(Xs) and to = to + 1

Until to = NT

Output : Adapted Source Data Xs

2.4.5 Experimental Results

Our proposed method is tested against a standard dataset, known as the Office-

Caltech dataset, for domain adaptation of the object recognition task. It consists of

a subset of the Office dataset [167]. This contains three different domains (Amazon,

DSLR, Webcam) of images. The Amazon images are from the Amazon site, the

DSLR images are captured with a high-resolution DSLR camera and the Webcam

domain contains images captured with a low-resolution webcam. The fourth domain

consists of a subset of the object recognition dataset Caltech-256 [169]. These

four domains have ten common classes (Bike, BackPack, Calculator, Headphone,

Keyboard, Laptop, Monitor, Mouse, Mug, Projector). Accordingly, we can obtain 12

DA task pairs.
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The image features are the normalized SURF [170] obtained as a 800-bin his-

togram. The classifier used was a 1-Nearest neighbor, as it is a hyper-parameter free.

For our experiments, we considered a random selection of 20 samples per class (with

the exception of 8 samples per class for the DSLR domain) for the source domain.

One half of the target-domain data is used for domain adaptation. The accuracy is

reported over 10 trials of the experiment. For our experiments, we used λg = 0.01.

We reported the best results obtained over the range λ2, λ3 ∈ {10−3, 10−2...100} with

a maximum NT = 5. For the transformation, we used a linear mapping with a `2

regularization coefficient of 10−3.

We compared our approach against popular non-deep domain adaptation methods.

Current methods involve deep architectures and would not compare fairly. So we in-

clude (a) The no adaptation baseline (NA); (b) Geodesic Flow Kernel (GFK) [41]; (c)

Subspace Alignment (SA) [43]; (d) Joint Distribution Adaptation (JDA) [173], which

jointly adapts both marginal and conditional distributions along with dimensional-

ity reduction; (e) Correlation Alignment (CORAL) [44] and (f) Optimal Transport

(OT) [49].

The comparison results are shown in Table 2.8. We see that in almost all the

cases, local DA methods like OT and our proposed method dominated over other

global methods. Moreover, our method dominates over OT for most of the tasks.

This is because our method exploits higher order structural similarity between the

source and target data points. Also, in situations where OT is slightly better than our

methods, the source and target data do not have enough structurally similar regions.

We also performed experiments to see how initial clustering affects recognition

performance of our proposed method. We see the results in Table 2.8 for η = 0.75, 0.5;

that is, when the number of exemplars are around 75%, 50% of the total number of

data-points, respectively. In general, the results showed decrease in performance

with respect to η = 1 but are still competitive with respect to some of the previous

methods. The only exception is in the tasks C → W , A → C and W → A, where
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Table 2.8. Comparing different methods in terms of classification accuracy (%) of
target data. Each task consists of source → target, where source and target represent
any of the four domains: C(Caltech-256), A(Amazon), W(Webcam) and D(DSLR).

Method C → A C → W C → D A → C A → W A → D W → C W → A W → D D → C D → A D → W

NA 21.86 20.97 22.73 23.85 24.31 21.95 19.03 23.22 50.91 23.79 26.11 51.67

GFK 33.41 33.06 35.19 32.50 33.89 31.45 25.12 31.17 79.22 30.04 32.15 71.87

SA 34.12 30.06 33.11 32.18 32.56 32.98 30.15 34.95 68.31 31.57 34.25 73.40

CORAL 31.76 25.14 27.40 30.23 28.33 30.65 24.92 29.00 78.05 27.53 28.95 74.44

JDA 40.56 34.03 34.28 34.90 34.58 31.82 32.63 34.62 85.19 30.50 30.42 78.89

OT 44.48 36.02 36.88 36.11 37.12 39.35 33.44 37.36 84.02 31.82 36.25 79.23

Ours (η = 1) 42.30 38.41 37.06 33.10 42.01 43.35 35.14 40.71 83.14 32.23 38.91 82.22

Ours (η = 0.75) 37.45 30.56 36.66 34.20 41.67 42.86 30.23 33.05 77.97 27.15 33.81 75.87

Ours (η = 0.5) 34.73 34.81 33.77 33.63 35.42 37.66 29.74 35.24 70.13 24.61 31.42 66.67

for decreasing η, the accuracy increases. This is because decreasing the number

of exemplars decreases the possibility of including outliers as unwanted nodes in

constructing the graph.

Moreover, we analyzed the effect of regularization parameters λ2, λ3, λg on the

A→ W task. Fig. 2.11 (a) and (b) showed the matching matrix C for λg = 0.01 and

λg = 0, respectively. The rows and columns in the matrix C represent the source

and target, respectively. In Fig. 2.11(a), for λg = 0.01, we see that 10 block-diagonal

matrices representing all the 10 common categories appear as heatmap on the matrix

C. It suggests that the group lasso regularizer allows discrimination of the classes

more accurately compared to Fig. 2.11(b) that is with λg = 0, where we have matching

matrix C with more uniform entries.

In Fig. 2.11 (c), we show the effect of varying λ2 and λ3. The blue straight line

shows the accuracy result when λ2 = λ3 = 0. The yellow line shows the accuracy

result when λ2 = 0 and log10 λ3 is varied. The red line shows the accuracy result when

λ3 = 0 and log10 λ2 is varied. The results suggest that including the higher order cost

terms without weighing them heavily in the cost function improves performance over

solely using the first-order matching.
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Fig. 2.11. Matching Matrix C. (a) With λg = 0.01. (b) With λg = 0. (c) Accuracy
values for different λ2, λ3. This is for A→ W task.

2.5 Unsupervised Domain Adaptation with Representation Learning

2.5.1 Problem Definition

We re-define the notation to account for the representations learned. We have

ns labeled samples, Xs = {(xsi , ysi )}n
s

i=1 from the source domain Ds. We also have

nt unlabeled samples Xt = {xti}n
t

i=1 from the target domain Dt. We assume that the

domains have the same feature and label space but have different marginal probability

distributions; that is, P (Xs) 6= P (Xt). The goal is to learn a classifier K(·) and a

representation φ(·) to minimize the target risk εt = P(x,y)∼Dt [K(φ(x)) 6= y].
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2.5.2 Minimizing Domain Discrepancy with Graph Matching

Our goal is to learn domain-invariant representations by minimizing a graph

matching loss between the source and target representations. In our case, we realize

feature extraction using a neural network. We force the feature extractor to learn

domain-invariant representations. Given an input sample x ∈ Rn from a domain, the

feature extracting network learns a function φ : Rn → Rd that maps an instance to a

d-dimensional feature space. The parameters of the feature extracting network is rep-

resented as ΘF . In order to minimize the discrepancy between the two domains, we

minimize the graph matching loss between the domain representations. To encounter

excess discrepancy between the source and target domains, we allow an additional

affine transformation on the source domain representations. Thus, we have a modified

source domain representation φ′(·) such that φ′T (xs) = φT (xs)Wmap + bTmap, where

Wmap ∈ Rd×d and bmap ∈ Rd are scaling matrix and bias, respectively. Superscript

T indicates the transpose operation. The graph-matching loss considers minimizing

a combination of first and second-order matching cost between graphs constructed

from the two domains. So, if a mini-batch contains nsb, n
t
b source and target samples

respectively, we represent the matching between the source and target representations

through a matching matrix C ∈ Rnsb×n
t
b . An element [C]ij is a measure of match-

ing between mini-batch source sample i and mini-batch target sample j. The source

mini-batch features can be stacked to form a matrix Φs ∈ Rnsb×d. Similarly, the target

mini-batch features are stacked to form Φt ∈ Rntb×d. Accordingly, for the first-order

matching we want the corresponding target representation to be close to the cor-

responding mapped source representation. Mathematically, this implies minimizing

||CΦt−Φ′s||2F where Φ′s is the modified source domain feature matrix after affine trans-

formation on Φs and || · ||F is the Frobenius norm. For the second-order matching, we

try to minimize the discrepancy between the adjacency matrix of graphs constructed

using the source and target mini-batches. Mathematically, this implies minimizing

||CDt − rDsC||2F , where Dt ∈ Rntb×n
t
b and Ds ∈ Rnsb×n

s
b are adjacency matrices con-
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structed from Φt and Φs, respectively. We use the dot product for the similarity

measure of the adjacency matrices and consequently Dt = ΦtΦtT and Ds = ΦsΦsT ,

with diagonals set to 0. r =
ntb
nsb

is a correction factor to account for the difference

in the size of the source and target mini-batches. In addition, the constraints on C

are as follows: C ≥ 0, C1ntb = 1nsb and CT1nsb = (
nsb
ntb

)1ntb . The equality constraint

C1ntb = 1nsb implies that the sum of the correspondences of all target samples to

each source sample is one. The second equality constraint CT1nsb = (
nsb
ntb

)1ntb implies

that the sum of correspondences of all source samples to each target sample should

increase proportionately by
nsb
ntb

to allow for multiple correspondences. Accordingly,

the optimization problem becomes

min
C,Wmap,bmap

L0GM =
1

(nsd)
||CΦt − Φ′s||2F + λs||CDt − rDsC||2F

s.t. C ≥ 0, C1ntb = 1nsb , CT1nsb = (
1

r
)1ntb (2.5)

In the context of training neural networks, the above optimization problem can be

solved using the projected gradient descent, where each iterate is projected onto

the constraint set. Training neural networks generally requires a lot of time and

further projection might increase the time complexity. As a result, we propose to

reformulate the equality constraints as penalties in addition to the cost function.

Thus our optimization problem becomes

min
C,Wmap,bmap

LGM =
1

(nsd)
||CΦt − Φ′s||2F + λs||CDt − rDsC||2F

+λp(||C1ntb − 1nsb ||
2
2 + ||CT1nsb − (

1

r
)1ntb||

2
2) s.t. C ≥ 0, (2.6)

where λp weighs the penalty terms. As a result, we can carry out gradient descent

on LGM and project it onto the set of positive matrices after each iteration.

In addition, we can exploit the labels of the source domain data to build a classifier

on top of the feature extractor. We add the classifier on top of the feature extraction

network. Since the graph-matching loss produces domain-invariant representations,

the classifier can be applied on the target domain. The objective of the classifier

K(·) : Rd → Rl is to compute softmax prediction for the l classes. Let the parameters
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of the classifier be denoted as ΘK . The classifier loss function is the cross-entropy

between the predictions and the ground-truth class labels:

Lc(xs, ys) = − 1

nsb

nsb∑
i=1

l∑
k=1

1(ysi = k)log(K(φ′(xsi ))k) (2.7)

where 1(ysi = k) is a 0-1 indicator function and K(φ′(xsi ))k corresponds to the kth

dimension value of the softmax output. Thus, the classification loss is combined with

the graph matching loss to obtain the following objective function

min
ΘF ,ΘK

{Lc + λ min
C≥0,Wmap,bmap

[LGM ]} (2.8)

where λ is the coefficient controlling the balance between classification and graph

matching loss. Note that the minimization is carried out using mini-batch gradient

descent. As described in Algorithm 4, using a mini-batch containing labeled source

data and unlabeled target data, LGM is optimized with respect to C and after that

iteratively projecting onto positive matrices. After the optimized matching matrix

C∗ is obtained, we solve for Wmap,bmap, for which a closed form solution exists. The

solution for Wmap, bmap can be obtained as follows:Wmap

bTmap

 =

 1

nsbd

ΦsT

1T

[Φs 1
]

+
λw
d2

 I 0

0T 0

−1  1

nsbd

ΦsT

1T

C∗Φt +
λw
d2

 I

0T

 .
(2.9)

Here λw regularizer is introduced to allow for a smooth mapping transformation. Sub-

sequently, we optimize for the total loss as in Eq. (2.8) with respect to the parameters

of the feature extracting network and the classifier. The learned representations are

domain invariant as well as target discriminative since the feature extractor parame-

ter ΘF receives gradients from both the graph matching and classification loss. The

overall framework of our method is given in Fig. 2.12(a). The detailed algorithm of

the training procedure is illustrated in Algorithm 4.
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Fig. 2.12. The overall neural network framework for training using (a) Graph Match-
ing (GM) Loss and (b) Pseudo-label (PL) Loss. On the right of (a) and (b), we see
the model we should use for inference.

2.5.3 Refinement with Pseudo-labels

This is the second stage of our proposed unsupervised domain adaptation ap-

proach. Till now, we have the mapped source domain representations in support of
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the target domain representations. Since the domain discrepancy has been minimized,

we can think of all the source and target representations belonging to a single domain.

This single domain consists of labeled and unlabeled data. This is a semi-supervised

learning setting that has been explored from a low-density separation, manifold regu-

larization point of view [178]. In this method, we propose a novel approach to exploit

the confident unlabeled target domain data to further refine the classification decision

boundary.

Algorithm 4: Graph-Matching-Guided Deep Domain Adaptation.

Given : Source Labeled Data Xs, Ys, Target Unlabeled Data Xt

Parameters : λs, λp, λ,m, Ti and learning rates

Randomly Initialize ΘF ,ΘK ,C,Wmap,bmap

Repeat

Sample mini-batch {xsi , ysi }mi=1, {xti}mi=1 from Xs and Xt

Use mini-batch to form Φt and Φs

for ti = 1, 2, ...Ti

C← C− α1∇CLGM(Φt,Φs)

C← max(C,0)

end for

Use Eq. (2.9) to obtain Wmap , bmap

ΘK ← ΘK − α2∇ΘKLc(xs, ys)

ΘF ← ΘF − α3∇ΘF [Lc(xs, ys) + λLGM(Φt,Φs)]

Until Convergence

Initially, we select a subset of a mini-batch of the unlabeled target data that

provide highly-confident labels as output. In other words, we select those sam-

ples whose maximum softmax probability output is greater than a threshold (th).

Mathematically, we select those xti for which max{K(φ(xti))k} ≥ th over all classes

k ∈ {1, 2, ...l} and we repeat this for all unlabeled target domain samples in the

mini-batch i ∈ {1, 2, ....m}. The pseudo-labels for those selected samples would be
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argmax
k
{K(φ(xti))k}. After that, we use the original labeled data {xsi , ysi }mi=1 and the

selected unlabeled samples as {xti}m
′

i=1, where m′ ≤ m to further refine our model. The

intuition for our method is that we want the unlabeled samples to be as far as possible

from the decision boundaries. This would make it possible for unseen examples in

the target domain to not be misclassified easily. As a result, we expect performance

in the target domain to increase significantly.

In our model, we have a softmax classifier that returns probabilities of each class

that the sample belongs to. Also pairwise relations between the probabilities give a

measure of how far a sample is from a decision boundary between the corresponding

pair of classes. For example, if the softmax classifier returns (p1, p2, ...pl) as outputs

to input sample x, |pi− pj| is a measure of how far the sample x is from the decision

boundary between class i and class j. If pi = pj, then the sample lies on the decision

boundary between class i and class j. The general expression for maximizing the

distance to the decision boundaries for all selected unlabeled samples and all classes

is as follows:

Lp(xt, ŷs) =
1

m′

m′∑
i=1

∑
j,k

1(ŷti = j OR ŷti = k)(pj − pk)2. (2.10)

Here, pj = K(φ(xti))j, and ŷti is the pseudo-label corresponding to the input sample

xti as obtained using thresholding. When ŷti = j or ŷti = k is true, we have 1(ŷti =

j OR ŷti = k) = 1, and 0 otherwise. We call Lp as the Pseudo-Label (PL) loss. We

also use the classification loss Lc introduced in Eq. (2.7) to regularize Lp. Hence, we

need to solve the following optimization problem,

min
ΘF ,ΘK

{−Lp + γLc}, (2.11)

where γ weighs the classification cost term. In Fig. 2.12(b), we show the overall neural

network framework for using the Pseudo-Label (PL) loss. Algorithm 5 outlines the

detailed approach of the training procedure.
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Algorithm 5: Pseudo-label-guided Deep Domain Adaptation.

Given : Source Labeled Data Xs, Ys, Target Unlabeled Data Xt

Parameters : γ, th,m and learning rates

Restart ΘF ,ΘK ,Wmap,bmap obtained from Algorithm 4

Repeat

Sample mini-batch {xsi , ysi }mi=1, {xti}mi=1 from Xs and Xt

Obtain high-confidence samples and pseudo-labels {xti, ŷti}m
′

i=1 using th

criterion and use those samples for parameter update as follows

ΘK ← ΘK − α2∇ΘK [−Lp(xt, ŷt) + γLc(xs, ys)]

ΘF ← ΘF − α3∇ΘF [−Lp(xt, ŷt) + γLc(xs, ys)]

Until Convergence

2.5.4 Experiments and Results

To evaluate the effectiveness of our proposed approach on standard domain adap-

tation datasets for image classification,we utilized the Office-Caltech dataset, a small-

scale domain adaptation benchmark dataset, initially released by [41]. The dataset

is composed of 10 common categories across 4 domains - Amazon (A), Webcam (W),

DSLR (D) and Caltech (C). Each of these domains varies in terms of image quality,

viewpoints, presence/absence of backgrounds, etc. For domain adaptation, we would

have 12 tasks, where each task consists of a source domain and a target domain

picked from the 4 domains. For our experiments, we use Decaf features as the input.

These deep features [171] are 4096-dimensional FC7 hidden activations of the deep

convolutional neural network AlexNet [12].

We compared our method to recent approaches in learning domain-invariant rep-

resentations. As a lower bound on recognition accuracy, we also compare against the

no-adaptation (NA) baseline which includes training the model using only the source

data and directly testing on the target data. The methods that we compared against

include: (a) DANN [56], (b) MMD [35], (c) CORAL [54] and (d) WDGRL [57].
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We have implemented our approach in Tensorflow and the training was carried

out using Adam [179] optimizer. We followed the standard protocol used in previous

method as in [57]. Since hyper-parameter selection is not possible using deep unsu-

pervised domain-adaptation methods, we reported the best results of each approach

after carrying out grid search on their respective hyper-parameters. For training, the

batch consisted of 32 samples from each domain. The feature extractor is a 2-layer

neural network with 500 and 100 nodes and a ReLU activation. We used this same

feature extractor in all the methods for fair comparisons. For our method, we used

the following values of the penalty parameter λp = 10, threshold th = 0.8, and map-

ping regularization λw = 0.1. We set λs, λ and γ as the tunable hyper-parameters

over which we reported the best results averaged over 10 trials in Table 2.9.

Table 2.9. Domain-adaptation results for object recognition using Office-Caltech
datasets using Decaf features for a pair of source → target domain.

Task NA MMD DANN CORAL WDGRL GM GM+PL

A→C 83.93 86.72 87.12 86.24 87.84 87.99 89.48

A→D 82.23 89.96 83.27 90.36 91.67 92.82 95.73

A→W 76.69 90.68 80.13 89.61 89.34 92.63 94.23

W→A 80.23 89.34 81.36 83.42 92.34 90.64 94.68

W→D 96.49 100 100 100 100 100 100

W→C 78.65 88.64 80.11 86.27 89.42 88.78 91.31

D→A 82.91 90.24 84.72 84.1 91.34 89.24 92.34

D→W 96.86 97.68 98.34 96.93 97.24 97.84 99.83

D→C 78.61 86.58 83.69 80.49 90.24 85.68 88.87

C→A 89.97 91.6 90.84 92.49 93.57 93.68 95.83

C→W 86.47 90.36 88.74 91.62 91.23 92.68 94.21

C→D 87.79 90.64 89.41 88.71 92.68 92.83 94.51

From Table 2.9, we see that in almost all cases our proposed graph-matching

method (GM) is close to the previous best method. However, with the additional
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pseudo-labeling stage (PL), our proposed method produces better recognition ac-

curacy in almost all the domain-adaptation tasks. Also, in almost all cases, the

improvement of GM+PL over GM is 2-3%. This justifies the exploitation of labeled

and unlabeled data after minimizing domain discrepancy, leading to an improvement

in performance. For the task D→C, GM and eventually GM+PL do not produce

the best result. This is possibly because the datasets D and C do not have enough

structurally similar regions to be matched appropriately.

We chose a particular task A→W and studied the effect of varying hyper-parameters

on recognition performance. In Fig. 2.13(a), we see that the performance reaches a

peak at λs = 10. The red-dotted line is the base-line performance for λs = 0. So,

the presence of the second-order matching term increases the performance over when

it is not. Also, for λs = 100, the performance dips by a large amount, suggesting

that putting excess weight on second-order term is not recommended. We saw a sim-

ilar trend for the hyper-parameter λ in Fig. 2.13(b). λ weighs the graph-matching

loss with respect to the classification loss. As expected, putting too much weight

(λ = 10) ignores the classification loss in domain adaptation and produces a dip in

performance. Recognition performance is comparatively less sensitive to γ as seen in

Fig. 2.13(c). This is because domain discrepancy has already been minimized and

the presence of classification loss on the source data does not affect target domain

recognition rate much. Fig. 2.13(d) shows the convergence of source and target error.

We used GM stage for the first 2000 iterations followed by the PL stage in the next

2000 iterations. We noticed the drop in error rate when the PL stage was introduced

after 2000 iterations. We also visualized the learned features using t-SNE [174] in Fig

2.14. The clusters in the figure correspond to 10 classes. The blue and red points

correspond to the source and target data respectively. For the unadapted data in

Fig. 2.14(a), the target domain classes do not form compact clusters. Also, there is

a lot of discrepancy between the corresponding source and target clusters, causing a

lot of mis-classification. For UDA, using only the GM procedure as in Fig. 2.14(b),

the target domain classes form clusters but there are still some divergence between
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Fig. 2.13. Accuracy results on the A→W task due to change in (a) λs, (b) λ, (c) γ
and (d) convergence results.

some of the corresponding source and target classes, which are reduced further using

the PL stage as shown in Fig. 2.14(c).

2.6 Conclusions

In this Chapter, we proposed three methods for unsupervised domain adaptation.

In the first method, we found correspondences between the source and target do-

main samples. The correspondences are found out by carrying out first and second

order matching between the graphs constructed from the source and target domain
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Fig. 2.14. Feature visualization for the A→W task for (a) no adaptation, (b) UDA
with only Graph Matching and (c) UDA with Graph Matching and Pseudo-labeling.

samples. The second method is an extension of the first method in the sense that

additional third-order hyper-graph matching is used. Also, to increase the computa-

tional efficiency, only a subset of the total number of samples are used for constructing

the hyper-graph. The optimization subroutine used is ADMM instead of a network

simplex one. In the third method, we proposed a two-stage approach to learning

domain-invariant-feature representations for unsupervised domain adaptation. In the

first stage, we considered minimizing graph matching (GM) loss to minimize the dis-

crepancy between source and target domains. The graph matching loss includes a

second-order structural similarity term that allows us to consider structural similarity

between two domains. For the second stage, we refined the feature/classifier using

the confident pseudo-labels (PL) of the target domain data. Experimental results

suggest that each of these methods are competitive with respect to the state-of-the-

art. Overall, the first method was found to have the fastest run-time but the worst

recognition performance. On the other-hand, the third method had the slowest run-

time but the best recognition performance. This is because this method had to learn

a representation with a lot of parameters and it also had two-stage learning.
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3. A TWO-STAGE APPROACH TO FEW-SHOT

LEARNING FOR IMAGE RECOGNITION

3.1 Introduction

In this Chapter, we tackle the few-shot learning (FSL) problem, which is a sub-

problem of transfer learning that assumes different sets of categories in the source and

target domains. The source domain contains abundant labeled data while the target

domain contains only a few-labeled data per category. The few-shot learning setting

is depicted in Fig. 3.1 from a feature space perspective. Our goal is to learn a classifi-

cation model for the novel categories. This problem setting is more difficult compared

to the unsupervised domain adaptation setting described in the Chapter two. This is

because the categories are different between the source domain and the target domain

and hence the discrepancy between the domain distributions is larger. Besides that,

the data distribution of the novel categories is not well defined because we only have

access to a few labeled data from each of the novel categories. As a result, a classifier

learned on the source-domain data will severely overfit on the target-domain data.

This limitation motivates us to estimate the statistical properties of the novel classes

in the form of means and variances. These means and the variances need to be es-

timated from the few-shot samples of the novel categories. This estimation function

can be learned from the abundant labeled source-domain data and can therefore serve

as prior knowledge for target-domain classification. Since the estimation function is

expected to be complex, we choose neural network as a structural prior to learn the

mapping from samples to statistics (mean and variance) . In addition we propose a

new low-dimensional but discriminative feature space to prevent overfitting due to

the curse of dimensionality. The results of this work have been published in [153].
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Fig. 3.1. In the few-shot learning setting, the base classes (red, green, violet) contain
lots of labeled data while the novel classes (orange, blue) contain few-labeled data.

Previous methods closely related to our proposed approach include meta-learning

and metric learning methods. Meta-learning methods use a learning-to-learn scheme

where an auxiliary meta-model is used to predict or optimize the model hyper-

parameters like the optimizer [91], the parameter initializations [93], etc. This idea

of using a meta-model to guide the original model has been depicted in Fig. 3.2.

On the other hand, metric-learning methods [86,87,89] learn a representation, where

samples of the same class are constrained to be close to one another while samples

of different classes are constrained to be kept far from each other. This concept

is shown in Fig. 3.2. Our proposed approach consists of using both meta-learning

and metric-learning components to improve recognition performance. Our proposed

neural-network module that estimates novel-class mean and variance serves as the

meta-model that learns to classify a given test sample as an input. Similarly, we
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learn a new low-dimensional metric space that uses pair-wise distances between sam-

ples as features to produce better class discriminability.

OBJECTIVE

Given abundant labeled base 
category data and sparsely labeled 
novel category data, we propose to 
transfer knowledge from base 
categories so that novel category 
predictions are biased and do not 
over-fit.

MOTIVATION

• Novel classes do not have enough data to estimate mean
and variance resulting in misclassification.

• Less data in high-dimensional space causes feature sparsity
resulting in severe over-fitting.

• Previous meta-learning and metric-learning approaches do 
not address these fundamental problems.

• Relative feature extraction step is the most effective in
improving recognition performance.

• Proposed approach produces better recognition 
performance than meta- and metric-learning methods.

• More Discriminative features are produced that can be
used for downstream tasks.

IMPACT

CONTRIBUTION

Fig. 3.2. Overall outline of our proposed framework along with motivations and
impacts.

To be more specific, we propose a multi-layer neural network structure for few-

shot image recognition of novel categories. The proposed multi-layer neural network

architecture encodes transferable knowledge extracted from a large annotated dataset

of base categories. This architecture is then applied to novel categories containing

only a few samples. The transfer of knowledge is carried out at the feature-extraction

and the classification levels distributed across the two training stages. In the first-

training stage, we introduce the relative feature to capture the structure of the data

as well as obtain a low-dimensional discriminative space. Secondly, we account for the

variable variance of different categories by using a network to predict the variance of

each class. Classification is then performed by computing the Mahalanobis distance

to the mean-class representation in contrast to previous approaches that used the

Euclidean distance. In the second-training stage, a category-agnostic mapping is
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learned from the mean-sample representation to its corresponding class-prototype

representation. This is because the mean-sample representation may not accurately

represent the novel category prototype. Finally, we evaluate the proposed network

structure on four standard few-shot image recognition datasets, where our proposed

few-shot learning system produces competitive performance compared to previous

work. We also extensively studied and analyzed the contribution of each component

of our proposed framework.

3.2 Proposed Approach

3.2.1 Problem Definition and Formulation

Our proposed few-shot learning method has both metric-learning and meta-learning

components, which are learned in two stages. The metric-learning stage learns both

absolute and relative feature sets and then uses the Mahalanobis distance metric to

compute class labels of the test sample. The idea of using relative features stemmed

from our prior work in domain adaption [149,150,152]. Domain adaptation considers

adaptation between labeled source-domain data and unlabeled target-domain data

but with the same categories in both domains. The meta-learning stage learns aux-

iliary knowledge for classification, which is a transformation from a sample to its

corresponding class prototype. This idea is related to the work of Wang et al. [101],

where they learned to transform small-sample-model parameters to large-sample-

model parameters. The work on few-shot learning without forgetting [102] also used

a category-agnostic transformation but with a different distance metric and without

any procedure to avoid negative transfer. The overall framework of our proposed

few-shot learning approach is shown in Fig. 3.3.

Our proposed few-shot learning image recognition system is trained using a large

database of Nbase base categories, which consists of a large number of samples from

each category. Each of these categories contains a large amount of data that we

can use to learn some useful generalizable knowledge. This knowledge should help
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Fig. 3.3. Overall framework for the proposed approach for a 3-way 1-shot inference
scenario. A single image from each of the 3 classes (classes are shown in different
colors) are used as support examples while a single query image is used. The output
is the probability of the query example belonging to each of the 3 classes.

the recognition of Nnovel novel categories for which only a few labeled samples per

category are available.

The knowledge can be learned using traditional supervised learning, where training

is generally carried out by feeding instances from the base categories in the form of

mini-batches and then optimizing some loss function. The model is generally tested

on the same set of categories on which it is trained. If we want the trained model

to work on novel categories, then the model can be fine-tuned on the new training

dataset [180]. However, the procedure of fine-tuning might not work if the novel

categories have very few samples in each category. In fact, the fine-tuning procedure

might cause the model to overfit on the few training samples, causing it to under-

perform on novel category test samples. The main reason for overfitting is that the

number of training samples per category is much less compared to the dimensionality

of the feature space and therefore the variance of the few samples is inaccurate to

capture the distribution of the class.

We address these shortcomings of high dimensionality and variable variance by

proposing the use of relative features, variance estimator and category-agnostic trans-
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formation. Still, the traditional training procedure involving mini-batches from a large

dataset would not be able to produce a satisfactory model since it does not simulate

the test condition well. Each test category contains only a few samples and extracting

mini-batches for training is impossible. Hence, an episodic training strategy inspired

from [86] needs to be deployed.

In episodic learning, the set of few labeled samples available from each of the novel

categories is known as the support set. The set of unobserved testing samples of the

novel categories is often called the query set. If the support set were large, we could

have just trained the model on the support set. However, since the support set is

small, traditional training of a model would result in over-fitting and consequently

the model would produce unsatisfactory performance on the testing data. However,

the episodic training strategy can avert poor performance by simulating the test

conditions. In each training episode, we first select N classes randomly from among

the Nbase base categories. From each of those selected N classes, we randomly select

K and Q disjoint samples from it. This sampling strategy is called the N -way K-

shot sampling strategy. In general, K is same as the number of support samples

present per novel category. Q is user-specified and is generally set in the range of 5

to 15 per category. Using this N -way K-shot sampling strategy, we form the training

support set S = {(xi, yi)}nsi=1, where ns = K×N , and also the training query set

Q = {(xj, yj)}nqj=1, where nq = Q×N . In the training episode, the support set is used

to represent the class while the query set is used for the evaluation.

3.2.2 Relative-Feature-Space Representation

The first step of our proposed few-shot learning framework requires feature ex-

traction from the raw samples. This is done by feeding the support set samples xi

from S and the query set samples xj from Q through the feature extraction module

fφ to produce the embeddings fφ(xi) and fφ(xj), respectively. The dimensionality of

this absolute feature map fφ is very large compared to the total number of support
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and query samples. This sparsity in the number of samples compared to the dimen-

sion volume generally leads to over-fitting and poor generalization performance. To

address this dimensionality problem, we propose the relative-feature-space represen-

tation, which has a dimensionality comparable to the total number of support and

query samples in an episode. The dimensionality of this relative feature space will

therefore be much less than the original absolute feature space.

The relative feature of a sample in an episode is computed by calculating the

squared pairwise Euclidean distance with itself and to all other samples in the episode.

Hence, if there are r = ns + nq samples in an episode, counting all ns support and

nq query samples regardless of the categories, then the dth dimension of the relative

feature fρ of a sample xk is given as

[fρ(xk)]d = ||fφ(xk)− fφ(xd)||22, (3.1)

where k, d ∈ {1, 2, ..., r} and || · ||2 is the Euclidean norm. Note that [fρ(xk)]d = 0

for k = d. The dimensionality of this relative feature map is therefore r. Since

this relative feature-space dimensionality is comparable to the number of samples

and that these features contain important structural information about the data, we

expect that the inclusion of this feature would increase few-shot testing performance.

In Fig. 3.4, we show a simple example on how to compute the relative-feature

representation from the absolute-feature representation. Consider that there are three

image samples – x1, x2 and x3 in an episode whose absolute-feature representations are

p1 = fφ(x1), p2 = fφ(x2), and p3 = fφ(x3), respectively. They are pairwise separated

through Euclidean distances of 1, 2 and 3 as shown in the figure. From Eq. (3.1),

the relative-feature representation is obtained by squaring the pairwise Euclidean

distances. Since there are three points in the episode, these points will lie in a three-

dimensional relative-feature representation space and they would be represented as

p′1 = fρ(x1) = [0, 9, 1]T , p′2 = fρ(x2) = [9, 0, 4]T and p′3 = fρ(x3) = [1, 4, 0]T .
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Fig. 3.4. This figure shows an example on how the low-dimensional relative-feature
representation is computed from the original high-dimensional representation space.
The original high dimensional feature space contains three data points. Accordingly,
we would obtain a three-dimensional feature space if we compute pairwise distances
of a data-point with itself and other points.

3.2.3 Variance Estimation

After embedding the support and query points in the absolute-feature space (fφ)

and the relative-feature space (fρ), our goal is to use these features for classification.

We do not want to tie our model to any category. We want to make our model gen-

eralizable to novel categories and therefore we do not use a classification layer that

is commonly used for traditional neural networks. Instead, a nearest-class-mean ap-

proach is used [88], where the query point embeddings are compared to the prototype

representation of each class. The prototypes of a class prφc and prρc can be found by

averaging the embedded support points of its class for both the absolute and relative

representations, respectively, as follows

prφc =
1

|Sc|
∑

(xi,yi)∈Sc

fφ(xi), (3.2)

prρc =
1

|Sc|
∑

(xi,yi)∈Sc

fρ(xi), (3.3)

where Sc is the set of samples of the support set S, which belongs to class c. Us-

ing these prototypes, we can proceed to calculate the probability distribution over

classes pφ(y = c|x) and pρ(y = c|x) for a query point x. This is done using the



88

softmax operation with distance metrics dφ(·) and dρ(·) for the absolute and relative

representations, respectively, as follows

pφ(y = c|x) =
exp(−dφ(fφ(x),prφc))∑
c′ exp(−dφ(fφ(x),prφc′ ))

, (3.4)

pρ(y = c|x) =
exp(−dρ(fρ(x),prρc))∑
c′ exp(−dρ(fρ(x),prρc′ ))

, (3.5)

where the summation
∑

c′ is over all the classes present in the episode. In Eqs. (3.4)

and (3.5), the distance metrics dφ(·) and dρ(·) need to be defined in order to com-

pute the probability distributions. Snell et. al [87] compared cosine and Euclidean

distances and found Euclidean distance to perform better for few-shot testing. They

argued that the Euclidean-distance metric is an example of Bregman Divergence. As

a result, prototype computation and inference is considered mixture density estima-

tion with exponential family distributions. However, if the Euclidean distance is used,

we assume that all the classes have the same spread in the embedding space. This

assumption may lead to poor classification performance because all the classes may

not have the same variance. Thus, we propose to use the Mahalanobis distance to

measure and include the spread of each class in the classification scheme.

The Mahalanobis metric measures the distance between a data point x and a

distribution D. If the distribution D has an associated mean µ and an invertible

covariance matrix S, then the Mahalanobis distance dM is calculated as

dM =
√

(x− µ)TS−1(x− µ), (3.6)

where S−1 is the inverse of the covariance matrix S. In case the distribution is spher-

ically Gaussian with a variance σ2 for all the feature dimensions, the Mahalanobis

distance dM is reduced to

dM =
√

(x− µ)TS−1(x− µ) =

√
(x− µ)T (σ2I)−1(x− µ)

=

√
(x− µ)T (x− µ)

σ2
=

√
||x− µ||22

σ2
=
||x− µ||2

σ
, (3.7)

where I is an appropriate identity matrix.
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The importance of using the Mahalanobis distance over the Euclidean distance

is illustrated in Fig. 3.5 in which we have three classes with prototypes centered at

prφ1 , prφ2 and prφ3 . The spread of the classes is quantified through the standard

deviations σ1, σ2 and σ3. The goal is to classify the query points x1, x2 and x3 into

one of the three classes. If we use the Euclidean distances for comparison, point x1

would yield equal probabilities for classes 1 and 2 since the point is equidistant from

those classes. This classification does not take into consideration that the spread of

class 1 is more than the spread of class 2; that is, σ1 > σ2. If we use the Mahalanobis

distance,
||x1−prφ1 ||

2
2

σ2
1

<
||x1−prφ2 ||

2
2

σ2
2

, and accordingly the query point x1 will yield a

higher probability for class 1. Similar treatment can also be applied to query points

x2 and x3.

Fig. 3.5. This figure shows an example where different classes can have different
variances. As a result, the Mahalanobis distance maybe preferred over Euclidean
distance for classifying a test query point into one of these classes.

In our model, we expect each class to have its own covariance matrix S. Therefore,

there is a need to model the covariance S as a function of each class’s prototype.

However, the covariance matrix S ∈ RD×D is very high-dimensional, requiring lots

of parameters to model it. Furthermore, the covariance matrix S is required to be

positive definite, the constraints of which need to be satisfied strictly. Hence, we settle

with using a spherical Gaussian distribution with the same variance for all the feature

dimensions. Since we let the class variance be a function of the class’s prototype, we

can write

σ2
c = fV (prφc), (3.8)
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where σ2
c and prφc are the variance and prototype of class c, respectively. This concept

of predictable variance may be difficult to grasp initially. However, one can think of

it as curve fitting of a function, where the input is the prototype and the output

is the variance of the corresponding prototype. The corresponding function is fit

using lots of data available from the base categories. Since we expect the function to

be smooth, prototypes closer to each other should produce similar variances. After

training is over, this function can then be used to predict the variance of novel-class

prototypes. The variance estimating function fV can therefore be implemented by

a neural network. Hence, using Eqs. (3.7) and (3.8), the distance metric dφ(·) in

Eq. (3.4) can be expressed as the square of the Mahalanobis distance as follows

dφ(fφ(x),prφc) =
||fφ(x)− prφc||22

σ2
c

=
||fφ(x)− prφc||22

fV (prφc)
. (3.9)

For the relative-feature space, the concept of having a variance does not have any

physical meaning. As a result, we just use the square of the Euclidean distance

metric for dρ(·) such that

dρ(fρ(x),prρc) = ||fρ(x)− prρc||22. (3.10)

The representation is learned by minimizing the negative log-probability averaged

over all the query points. The negative log-probability of a query point is given as

L(Φ,V) = − log pφ(y = c|x)− λρ log pρ(y = c|x), (3.11)

where Φ and V are composed of all the trainable parameters of the feature extractor

(fφ) and the variance estimator (fV ), respectively, and λρ is a hyper-parameter for

the regularization in Eq. (3.11). The negative log-probability averaged over all the

query points in the batch needs to be minimized.

3.2.4 Category-agnostic Transformation

After the feature-extraction model and the variance estimator are trained, we

proceed to the next stage of training. In this training stage, we propose to find a
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category-agnostic transformation from a mean-sample representation of a class to the

prototype representation of the corresponding class. Learning this transformation is

important because the novel categories have very few support samples and so the

mean-sample representation will not accurately represent the prototype. The exis-

tence of this category-agnostic transformation may be questionable. However, pre-

vious work by Wang et al. [101] suggested the existence of a similar transformation.

In that work, the authors proposed the existence of a transformation between model

parameters trained using less number of samples to model parameters trained using

large number of samples. Since model parameters and samples are dual of each other,

we conjecture the existence of a transformation between the mean-sample represen-

tation and the prototypes. We next determine this category-agnostic transformation

and the factors that this transformation depends on.

In addition to the mean-sample representation, the location of the novel-class

prototype would also depend on the nearby base-class prototypes. This is illustrated

through an example in Fig. 3.6 in which we have one support sample point for a

novel class. But this support data-point may not always be able to represent a class

prototype because it might be present on the edge of the distribution as in this exam-

ple. The transformation function mapping the support point to the unknown class

prototype should depend on the support point as well as on the nearby similar base

categories. This is because the neighboring class prototypes condition the possible

locations of the novel-class prototype. In this example, base classes 1 and 3 form

the neighboring categories on which the location of the novel-class prototype should

depend. Base class 2 is far from the novel class in the feature space and therefore it

should have little effect on the location of the novel-class prototype. We next describe

the construction of the transformation function fT.

The prototype of a novel category c depends on the mean-sample representation

and the base-category prototypes collected in Pr, where Pr ∈ Rnp×D consists of the

np base-category prototypes stacked vertically in a matrix, and D is the dimension of

the absolute-feature space in which the prototypes lie. Ideally, the prototype matrix
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Fig. 3.6. Example depicting the choice of factors affecting the category-agnostic
transformation from a support data-point to the corresponding prototype.

should be calculated using the base categories. Since each base category has a large

number of samples, the mean representation will be used as an accurate estimate of

the prototype. Thus, the prototype p′rφc of a novel class c can be represented as

p′rφc = fT(prφc ,Pr), (3.12)

where prφc is the mean-sample representation of the novel class c. We can decompose

the function fT(prφc ,Pr) into two functions, fT(prφc ,Pr) = fT1(prφc) + fT2(prφc ,Pr),

where fT1 is the contribution due to the mean-sample representation and fT2 is the

contribution due to the base-class prototypes Pr. Since the contribution of the base-

class prototypes depends on the closeness of prφc to the prototypes in Pr, fT2 will

also depend on prφc . We next discuss the construction of functions fT1 and fT2 .

Contribution of novel-class samples using residual connection. The func-

tion fT1 is a complex non-linear function that transforms the mean-sample represen-

tation prφc towards the prototype p′rφc . In case the number of samples in the novel

category is large, prφc should identically map to p′rφc . Hence, it is important for the
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function fT1 to model identity mappings. Residual connections and networks have

been shown to model identity functions smoothly [23]. In our case, the corresponding

meaningful residual connection will be fT1(prφc) = prφc + fT11(prφc), where fT11(prφc)

is a bias term and does not have a scaling effect on the mean-sample representation.

Thus, if we include a scaled residual connection, then

fT1(prφc) = prφcW1 + fT11(prφc), (3.13)

where W1 ∈ RD×D is the scaling matrix. Letting fT12(prφc) = prφcW1, the bias term

fT11(prφc) will be a complex non-linear term and can be modeled using a multi-layer

neural network.

Contribution of the base classes. The function fT2 models the contribution

of base-class prototypes to the novel-class prototype. Base classes that are similar

to the novel class will have more contribution. This similarity can be measured in

terms of Euclidean distance between a novel class mean-sample representation and a

base-class prototype. The contribution of a base class l to a novel class c is quantified

through a probability distribution,

pp(c, l) =
exp(−||[Pr]l − prφc||22)∑
l′ exp(−||[Pr]l′ − prφc ||22)

, (3.14)

where [Pr]l is the prototype belonging to the lth base class. The computation of prob-

ability is carried out for all the base classes l = 1, 2, ..., np. These are stacked together

to form a probability vector pc for the novel class c. After that, we use a threshold

th on the probability vector pc ∈ R1×np . Only the elements above the threshold th

are kept while other elements are set to zero. This thresholding step is important

as it ignores the effect of base classes that have very little contribution to the novel

classes. From the feature-space perspective, novel classes that are distant from the

base classes are ignored. This step is our attempt to prevent negative transfer [181],

where irrelevant base classes contributing to learning novel-class recognition will re-

duce the recognition performance. The thresholded probability vector is set as pthc .

This is used to combine the base-class prototypes such that

fT2(prφc ,Pr) = pthc PrW2, (3.15)
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where W2 ∈ RD×D is the scaling matrix. The factor pthc Pr linearly combines the

contributing base-class prototypes. The presence of W2 is important in scaling the

effect of this term to the whole transformation function fT. Next, we discuss the

procedure to learn this category-agnostic transformation fT, using the large labeled

dataset available from the base categories.

Training Strategy. In the second stage of training, we follow the episodic train-

ing strategy similar to the first stage. In each training episode, we randomly sample

Npn categories from among the Nbase categories. We call these Npn categories as

pseudo-novel categories. We refer to the remaining Nbase−Npn categories as pseudo-

base categories. The goal of this training strategy is to simulate the testing scenario

where we have novel classes as well as already known base classes.

In a training episode, the prototypes of the pseudo-base categories are calculated

using the mean-sample representation. These prototypes can be stacked together

to form the prototype matrix Pr. For each pseudo-novel category, we randomly

select Kpn and Qpn disjoint samples. From this, we form the training support set

Spn = {(xi, yi)}mpni=1 , where mpn = Kpn×Npn and also the training query set Qpn =

{(xj, yj)}npnj=1, where npn = Qpn×Npn. For a category c belonging to one of the Npn

categories, we calculate the corresponding class prototype p′rφc using Eqs. (3.12)-

(3.15). Using this modified prototype p′rφc , we can proceed to calculate the class

probability distribution for a query point x. This is done using the softmax operation

with the Mahalanobis distance metric as described previously

p′φ(y = c|x) =
exp(−dφ(fφ(x),p′rφc))∑
c′ exp(−dφ(fφ(x),p′rφc′ ))

, (3.16)

where the summation
∑

c′ is over all the Npn pseudo-novel classes present in the

episode.

The training is carried out by minimizing the negative log-probability averaged

over all the query points. The negative log-probability of a query point is given

as L(Θ) = − log p′φ(y = c|x), where Θ consists of the scaling matrices W1, W2

and all the trainable parameters of the residual network fT11 . We also include a
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regression-based regularization involving the ground truth and predicted prototypes

of these Npn pseudo-novel classes. If the ground truth prototype of class c is pgtrφc

and the predicted prototype is p′rφc , then the corresponding regularization becomes

Lr(Θ) = ||p′rφc − pgtrφc ||
2
2. This regularization is averaged over all the prototypes of

pseudo-novel classes. The regularization coefficient is set as λr.

After the training is done, testing is also carried out in an episodic fashion. For

each episode, we randomly sample Ntest classes from the novel test classes. From

each novel class, Ktest support samples and Qtest query samples are drawn randomly.

The class prediction for a query point x is given as the class c which minimizes

− log p′φ(y = c|x)−λρ log pρ(y = c|x). The overall training procedure of the proposed

two-stage few-shot learning method is provided in Algorithm 6.

3.3 Experimental Results

3.3.1 Datasets

To evaluate our proposed few-shot learning approach, we performed experiments

on four datasets – the Omniglot [73], the miniImagenet, the CUB-200 [182] and the

CIFAR-100 [183] datasets. These datasets provide a large variety of category-level

granularity, image resolution and categories to test upon. The Omniglot dataset con-

sists of 1623 handwritten characters taken from 50 alphabets. Each character has 20

examples associated with it. Each example is written by a different person, resulting

in sufficient intra-class variation. According to the procedure of Vinyals et al. [86], the

images are resized to 28×28. Each character class is augmented with more samples by

having rotations in multiples of 90 degrees. So around 1200 character classes (total

of 4800 including rotations) are chosen as the training (i.e., base) categories and the

remaining classes are chosen as the testing (i.e., novel) categories. The miniImagenet

dataset is a subset of the ILSVRC-12 dataset [11]. It consists of RGB color images of

size 84×84, consisting of 100 classes with 600 examples in each class. The 100 classes

are divided into 64 for training (base), 16 for validation and 20 for testing (novel).
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Algorithm 6: Proposed two-stage few-shot learning procedure.
Given: Base category training data D = {(xi, yi)}ni=1 where each yi ∈ {1, 2, . . . , C}. Dc is a subset of D

containing elements from class c

Parameters: λρ, λr

Randomly initialize parameters of feature extraction (Φ) and variance estimation (V)

for each episode

N ← Sample({1, 2, . . . , C}, N)

for c ∈ {1, 2, . . . , N}

Sc ← Sample(DNc ,K), Qc ← Sample(DNc \ Sc, Q)

prφc = 1
|Sc|

∑
(xi,yi)∈Sc fφ(xi), prρc = 1

|Sc|
∑

(xi,yi)∈Sc fρ(xi), σ
2
c = fV (prφc )

end for

L1 ← 0

for c ∈ {1, 2, . . . , N}

for (x, y) ∈ Qc
L1 ← L1 + 1

NQ
[(dφ(fφ(x),prφc )) + log(

∑
c′ exp(−dφ(fφ(x),prφc′

))))+

λρ(dρ(fρ(x),prρc )) + log(
∑
c′ exp(−dρ(fρ(x),prρc′ ))))]

end for

end for

Take gradient step of L1 with respect to Φ,V

end for

First training stage ends and second training stage starts.

Randomly initialize parameters of category-agnostic transformer (Θ)

for each episode

Nnov ← Sample({1, 2, . . . , C}, Npn)

Nbase ← {1, 2, . . . , C} \ Nnov
Pr ← Nbase [Form pseudo-base prototypes]

Prn ← Nnov [Form pseudo-novel prototypes]

for c ∈ {1, 2, . . . , Npn}

Spnc ← Sample(DNnovc
,Kpn), Qpnc ← Sample(DNnovc

\ Spnc , Qpn)

p′rφc
= fT(prφc ,Pr)

end for

L2 ← 0

for c ∈ {1, 2, . . . , Npn}

for (x, y) ∈ Qpnc

L2 ← L2 + 1
NpnQpn

[(dφ(fφ(x),p′rφc
)) + log(

∑
c′ exp(−dφ(fφ(x),p′rφc′

))))+

λr||p′rφc
− pgtrφc

||22], where pgtrφc
= [Prn]c

end for

end for

Take gradient step of L2 with respect to Θ

end for
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The CUB-200 and CIFAR-100 datasets have been introduced long before but have

only recently been used as a benchmark for few-shot learning algorithms. The CUB-

200 dataset is a fine-grained dataset consisting of 11,788 images of size 84×84×3,

distributed across 200 categories of bird species. Using the class splits in [184], we

have 100, 50 and 50 categories used for training, validation and testing, respectively.

The CIFAR-100 dataset consists of 60000 low-resolution images of size 32×32×3.

These images are distributed across 100 fine-grained categories or 20 coarse-grained

categories. Using the class splits in [185], we have 64, 16 and 20 categories used for

training, validation and testing, respectively. Figures 3.7(a), (b), (c) and (d) show

some of the examples from the Omniglot, the miniImagenet, the CUB-200 and the

CIFAR-100 datasets, respectively.

Fig. 3.7. Instances of the dataset used in our experiment for (a) Omniglot, (b)
miniImagenet, (c) CUB-200, and (d) CIFAR-100.

3.3.2 Implementation

In this sub-section, we discuss the details of our neural network architecture and

the training procedure. For the feature extractor module (fφ) of our trainable neu-

ral network architecture, we use four convolutional blocks. This feature extractor
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architecture is the same as used in previous works [86, 87]. This is done for the

sake of fair comparison. Most of these previous works selected the feature-extraction

architecture empirically. For shallow convolutional architecture and therefore more

high-dimensional feature space, the performance is poor because the features ex-

tracted are not robust and not class-discriminative enough. But, as the depth of

the convolutional architectures increases to a certain limit, we obtain a more infor-

mative low-dimensional feature space and therefore better recognition performance.

The authors of [86,87] experimented and found that the presented four-convolutional-

blocks-based architecture is lightweight and optimal. Each of these blocks consists of

a 64-filter 3×3 convolution layer with SAME padding, batch normalization layer, and

an ReLU activation followed by a 2×2 max-pooling layer all stacked upon another.

The batch normalization [186] results in better recognition performance because it

prevents internal covariate shift. When a 28×28 Omniglot image is applied as an

input to these four convolutional blocks, its output results in a 64-dimensional feature

space.

The variance estimator fV consists of two convolutional blocks. Each convolutional

block consists of 1×1 convolution layer with SAME padding, batch normalization layer

and an ReLU activation layer. The first and the second convolutional blocks consist

of 32 and 1 filters, respectively. The last layer producing the variance has softplus

operation as the activation function. This is selected to produce only positive outputs.

The transformation layer fT11 consists of three fully connected layers of 128, 96

and 64 dimensions. Except the last layer, all the layers contain batch-normalization

and ReLU activation functions. The last layer does not have an ReLU activation

so that it can provide both negative and positive transformation shifts as output.

The overall architecture of all the modules used for the Omniglot dataset is shown in

Fig. 3.8(a).

The neural-network structure was trained using the stochastic gradient descent

variant Adam [179] with an initial learning rate of 10−3. The first-stage training was

carried out using 60-way 5-shot with 5 query points per episode. The higher way is



99

Fig. 3.8. Network architecture used for different modules fφ, fV and fT11 . (a) For the
Omniglot dataset, fφ produces a 1×64 dimensional feature map from a 28×28×1
dimensional input image. The fV module produces a scalar variance from the feature
map. The fT11 regresses a 64-dimensional output from the feature map. (b) For the
miniImagenet dataset, fφ produces a 5×5×64 dimensional feature map from a 84×84×3
dimensional input image. The fV module produces a scalar variance from the feature
map. The fT11 regresses a 1600-dimensional output from the feature map.

chosen in training so that the model can learn a more difficult task of distinguishing

more classes and therefore produce a more discriminative feature space. In this Chap-

ter, the second-stage training episodic setup is always kept the same as the testing

episodic setup for all the experiments; that is, if the testing setup is N -way K-shot,

so is the second-stage training setup.

The hyper-parameters λρ, λr, and th were set to 0.1, 10−4, and 0.02, respectively.

It is important to note that these hyper-parameters are kept fixed for a particular

dataset. This is mainly because cross-validation is not always feasible for the few-shot
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learning setting, which contains only a few samples from the target category. Also,

the validation classes are not representative of the test classes.

For reporting the recognition performance, 1000 random test episodes were se-

lected and accuracy was obtained by averaging over all the test episodes. Each episode

contained the corresponding N -way K-shot support samples and 5 query samples per

way for testing.

For the miniImagenet dataset, we used the same feature extraction network archi-

tecture as the Omniglot dataset. However, since the miniImagenet dataset has images

of size 84×84×3, the convolution module produces a 1600-dimensional feature vector.

The variance estimator is also the same as that of the Omniglot dataset except that

this estimator contains a 2×2 max-pooling stage before the non-linearity. This is

required to reduce the 5×5×64 (1600-dimensional) feature map to a scalar variance

value. The transformation layer fT11 consists of three fully connected layers of 3200,

2400 and 1600 dimensions. The overall architecture of all the modules used for the

miniImagenet dataset is shown in Fig. 3.8(b).

The hyper-parameters λρ, λr and th were set to 0.1, 10−4 and 0.02, respectively.

For testing on the 5-way 1-shot and 5-way 5-shot episodic strategy, we used a 20-way

1-shot and 20-way 5-shot sampling strategy, respectively, in the first-stage training.

Each episode contained the corresponding N -way K-shot support samples and 15

query samples per way for testing. Results were reported by computing the average

accuracy over 600 such randomly sampled episodes with 95% confidence interval.

For the CUB-200 and CIFAR-100 datasets, we used the same four-convolutional-

blocks-based architecture as the feature extractor that has been previously used on

the miniImagenet and Omniglot datasets. This embedding results in 1600 and 256

dimensional feature spaces for the CUB-200 and the CIFAR-100 datasets, respec-

tively. The transformation layer fT11 for the CUB-200 dataset consists of three fully

connected layers of 3200, 2400 and 1600 dimensions. The architecture of fV for the

CUB-200 dataset is the same as that of the miniImagenet dataset. The transforma-

tion layer fT11 for the CIFAR-100 dataset consists of three fully connected layers of
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512, 384 and 256 dimensions. The architecture of fV for the CIFAR-100 dataset is

similar to that of the miniImagenet dataset except that the 2×2 max-pooling step

is applied only on the second convolutional block. The hyper-parameters λρ, λr and

th were set to 1.0, 10−3 and 0.5 on both the CUB-200 and the CIFAR-100 datasets.

It is important to note that for a fair comparison, we only report previous work

that used the simple four-convolutional-block-based embedding instead of the more

sophisticated ResNet [23] architecture.

3.3.3 Comparison against Related Approaches

Since our proposed few-shot learning method has both meta-learning and metric-

learning components, we compared our proposed method against recent meta-learning

[91,93,99] and metric-learning [85–87,89] methods. We also compared against recent

memory-based models [98, 187] and the Neural Statistician method [188] that learns

how to represent statistics of the data. The results of the comparisons on the Omniglot

dataset are shown in Table 3.1.

Table 3.1. Results of few-shot classification on the Omniglot dataset. Accuracies in
% are reported as averaged over 1000 test episodes. Some of the studies report 95%
confidence interval while some do not report results as shown by ‘–’.

Method 5-way 1-shot 5-way 5-shot 20-way 1-shot 20-way 5-shot

SIAMESE [85] 97.3 98.4 88.1 97.0

MANN [98] 82.8 94.9 - -

MATCHING NET [86] 98.1 98.9 93.8 98.5

SIAMESE MEMORY [187] 98.4 99.6 95.0 98.6

NEURAL STATISTICIAN [188] 98.1 99.5 93.2 98.1

MAML [93] 98.7±0.4 99.9±0.1 95.8±0.3 98.9±0.2

META NET [99] 99.0 - 97.0 -

PROTO NET [87] 98.8 99.7 96.0 98.9

RELATION NET [89] 99.6±0.2 99.8±0.1 97.6±0.2 99.1±0.1

OUR PROPOSED METHOD 99.2±0.3 99.5±0.2 97.2±0.3 98.9±0.3
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As seen from Table 3.1, most of the recent methods achieved almost perfect recog-

nition performance on the Omniglot dataset (8 out of 10 methods obtained an average

accuracy of more than 98% for the 5-way 1-shot task). Our proposed method ob-

tained an average accuracy of 99.2% and 97.2% for the 5-way 1-shot and 20-way 1-shot

tasks, respectively, which are better than most of the previous approaches. However,

Relational Network [89] produced the best result; that is, 99.6% and 97.6% for the

5-way 1-shot and 20-way 1-shot tasks, respectively, because it learned a distance met-

ric while our proposed method used a predefined Mahalanobis distance metric. The

confidence interval of our proposed method (98.9%-99.5%) also overlapped with that

of the Relational Network approach (99.4%-99.8%) for the 5-way 1-shot task. The

confidence interval overlapped for the 20-way 1-shot task as well. As expected, higher

shots during the testing produced better results (98.9%>97.2% for the 20-way task)

for our proposed method because they represented the class statistics better than by

just using one shot. Also, higher ways produced worse result (97.2%<99.2% for the

1-shot task) because there were more potential classes to choose from and the chances

of misclassification were higher.

For the miniImagenet dataset, the comparison is more challenging and there is

more room for improvement towards perfect performance. The results of the compar-

ison are shown in Table 3.2. From Table 3.2, we can see that our proposed method

produced an average accuracy of 52.68% and 70.91% on the 5-way 1-shot and 5-

way 5-shot tasks, respectively, which are better than most of the previous methods.

This can be mainly attributed to our two-stage training procedure, where the model

learns to both represent and classify in a low-shot regime. However, the methods

– Predicting Parameters from Activation [103] (PPA) and Transductive Propagation

Networks [95] (TPN) produced better results than our proposed method in the 1-shot

setting. Upon inspection, we realized that the PPA method used pre-trained embed-

ding while most other few-shot learning methods and our training method of the

embedding/feature extractor were done from scratch. Using a pre-trained embedding

implies that datasets beyond the base and novel categories have been used in training
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Table 3.2. Results of few-shot classification on the miniImagenet dataset. Accuracies
are reported as averaged over 600 test episodes. Most of these studies report 95%
confidence interval while unreported results are shown as ‘–’.

Method 5-way 1-shot 5-way 5-shot

META-LSTM [91] 43.44±0.77 60.60±0.71

MAML [93] 48.70±1.84 63.11±0.92

MATCHING NET [86] 43.56±0.84 55.31±0.73

META NET [99] 49.21±0.96 –

PROTO NET [87] 49.42±0.78 68.20±0.66

RELATION NET [89] 51.38±0.82 67.07±0.69

GNN [106] 50.33±0.36 66.41±0.63

REPTILE [189] 49.97 65.99

TPN [95] 53.75 69.43

PPA [103] 54.53±0.40 67.07±0.20

R2D2 [105] 51.8±0.2 68.4±0.2

OUR PROPOSED METHOD 52.68±0.51 70.91±0.85

the model and therefore the model would not be suitable for comparison. However,

we still included the results for PPA in Table 3.2 for the sake of completeness. Also,

the TPN method uses a transductive approach which assumes all the test/query data

are available as a batch. The improvement in performance of this method is mainly

due to the fact that the authors used the manifold of the unlabeled test data as well as

support data to do inference. However, the method might not work if the number of

query points is less or the query points arrive in a streaming fashion as in a real-world

situation.

The results of our proposed method in comparison with previous work for the

CUB-200 and CIFAR-100 datasets are shown in Table 3.3 and Table 3.4, respectively.

In Table 3.3, on the CUB-200 dataset, our proposed method produced about 6 points
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improvement over the second best method. Similarly, in Table 3.4, on the CIFAR-

100 dataset, our proposed method produced around 2 points improvement over the

second best method. This suggests that our proposed method can provide competitive

performance on fine-grained and low-resolution datasets as well. Also, the average

performance on the CUB-200 dataset is less than that on the CIFAR-100 dataset.

This is because the CUB-200 dataset contains more fine-grained categories compared

to the CIFAR-100 dataset and therefore classes overlap more in the CUB-200 dataset.

From these comparative studies, it is not clear how all the modules in our trainable

neural-network architecture contributed to the performance. Therefore, we resort

to further analyzing each component of our proposed method in the following sub-

sections.

Table 3.3. Results of few-shot classification on the CUB-200 dataset where our accu-
racy is reported as averaged over 600 test episodes.

Method 5-way 1-shot 5-way 5-shot

META-LSTM [91] 40.43 49.65

MAML [93] 38.43 59.15

MATCHING NET [86] 49.34 59.31

PROTO NET [87] 45.27 56.35

OUR PROPOSED METHOD 55.85 66.73

3.3.4 Ablation Study with Varying Training and Testing Conditions

The contribution of this Chapter consists of the following modules on top of the

Prototypical Network (PN) – a variance estimator (V), the relative features (R), and

the category-agnostic transformer (T). We thus performed an ablative study, where

we added all combinations of the modules on the PN and observed the change in
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Table 3.4. Results of few-shot classification on the CIFAR-100 dataset where the
accuracy is reported as averaged over 10000 test episodes. Most of these studies
report 95% confidence interval.

Method 5-way 1-shot 5-way 5-shot

MAML [93] 58.9±1.9 71.5±1.0

PROTO NET [87] 55.5±0.7 72.0±0.6

RELATION NET [89] 55.0±1.0 69.3±0.8

GNN [106] 61.9 75.3

R2D2 [105] 65.4±0.2 79.4±0.2

OUR PROPOSED METHOD 67.15±0.3 81.65±0.3

performance. Results of this experiment are reported in Table 3.5 as the training way

is varied for the 5-way 1-shot and 5-way 5-shot testing conditions.

Table 3.5. Ablative study of our approach on the miniImagenet dataset. Averaged
accuracy is reported as the training way is varied. Ablations include the Variance
estimator (V), Relative features (R), and Category-agnostic Transformer (T). The
baseline is the Prototypical Network (PN).

5-way 1-shot Testing 5-way 5-shot Testing

Training way 5 10 15 20 25 30 5 10 15 20 25 30

PN 43.987 46.956 46.589 46.122 47.253 47.3 62.693 64.742 64.524 63.578 62.416 61.9

PN+V 44.411 47.067 47.936 48.304 47.778 48.067 64.813 65.033 66.158 65.37 64.318 64.82

PN+R 47.849 50.309 52.631 52.607 52.14 51.996 66.758 70.831 70.771 70.447 71.147 62.733

PN+T 43.942 45.944 47.263 48.022 48.122 48.011 62.396 63.316 64.342 63.024 63.531 64.86

PN+V+R 49.322 51.057 51.031 52.782 52.716 51.773 69.1 70.936 71.496 71.36 70.36 68.23

PN+V+T 45.689 47.927 48.422 48.002 47.693 47.947 61.667 63.484 63.736 62.431 61.978 63.48

PN+R+T 46.913 51.224 52.338 53.036 53.789 53.66 68.76 71.38 72.34 72.151 72.584 67.34

We provided our own implementation of PN in this experiment and future ex-

periments. From Table 3.5, it reveals that the addition of the relative features (R)

has the most significant effect on the performance followed by the variance estimator

(V) and the category-agnostic transformer (T). This is because relative features try
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to diminish the difference between feature dimensionality and the number of sam-

ples, and thus try to alleviate overfitting. On the other hand, PN+T has negligible

improvement or slightly worse performance compared to the PN baseline. This is

because prototypical networks tend to cluster same-class samples very close to one

another and therefore additional transformation stage (T) to map samples to proto-

type might be redundant. In certain cases, the complex non-linear transformation

might over-fit to produce worse performance. It should be noted that higher ways in

training do not always produce better performance. For example, in a 5-way 1-shot

testing, PN+R produced a peak in performance for the 15-way training strategy with

a dip in performance on either side. Similar pattern can be observed for the 5-way

5-shot testing results. The effect of relative features is also significant in case pairs

of modules are added to the PN baseline. In Table 3.5, we can see that PN+V+R

and PN+R+T reached accuracy levels over 50% and 70% for the 5-way 1-shot and

5-way 5-shot testing cases, respectively, but PN+V+T failed to do so. An interesting

observation is that the combined effects of R+T mostly provided better performance

than V+R even though V provided better performance than T. This suggests that

adding modules upon the PN baseline did not always produce additive effects but

they also produced interactive effects between the two modules.

3.3.5 Parameter Sensitivity Studies

We also performed experiments to find how the performance of PN+R varied

with changing λρ. The results are shown in Fig. 3.9 for both 5-way 1-shot and 5-way

5-shot testing conditions. The training condition for 5-way 1-shot testing is 20-way

1-shot and that for the 5-way 5-shot testing is 20-way 5-shot. The PN baseline is

shown using the dotted line. From the plot, it is shown that the accuracy followed a

bell-curve with the maximum accuracy observed at λρ = 1. It is recommended not to

use λρ > 1 as it caused degradation in performance, which was sometimes worse than
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the PN baseline. This is because putting excess weight on relative features diminishes

the effect of absolute features that are crucial for recognition.
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Fig. 3.9. Plot of accuracy with respect to λρ for 5-way 1-shot (5w1s) and 5-way 5-shot
(5w5s) testing conditions with the prototypical network baseline. The dataset used
is miniImagenet.

We also studied the effect of changing th and λr on the recognition performance for

different testing shots. In Fig. 3.10, we see that the performance varied for different

thresholds with a peak performance obtained for a value of th between 0 and 1. In

fact, for the higher shot configuration, the peak performance was obtained at a higher

threshold. This is because for higher shots, the contribution of the few-shot sample

mean was much more compared to the contribution of the base categories. As a result,

a higher threshold th was required to reduce the contribution of the base classes.

In Fig. 3.11, we observed how the recognition performance changed as λr was

varied for different shots. As expected, the peak performance was better than the

baseline λr = 0 shown in dashed lines. However, the sensitivity at the 5-shot config-

uration was less compared to that in the 1-shot configuration. This is because, for

higher shots, the constraint corresponding to λr - that the sample mean should be

close to the prototype is automatically satisfied and therefore changing the value of

λr did not change the performance much.
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Fig. 3.10. Plot of accuracy with respect to th for 5-way 1-shot (5w1s) and 5-way
5-shot (5w5s) testing conditions with the prototypical network baseline. The dataset
used is miniImagenet.
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Fig. 3.11. Plot of accuracy with respect to λr for 5-way 1-shot (5w1s) and 5-way
5-shot (5w5s) testing conditions. The dataset used was miniImagenet.

We did additional sensitivity studies of th and λr over a smaller range of values.

The results are reported in Tables 3.6 and 3.7 for th and λr, respectively. From the

results, it showed that there was very little change when the parameters were varied

over such a small range. However, the response was oscillatory probably because of

the non-convexity of the loss functions used in our framework.
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Table 3.6. Performance sensitivity with respect to threshold th over a small range.
The dataset used is miniImagenet.

th 0.02 0.04 0.06 0.08 0.1

5-way 1-shot 48.01 48.23 48.11 48.34 48.66

5-way 5-shot 62.39 62.31 62.54 62.51 62.73

Table 3.7. Performance sensitivity with respect to λr over a small range. The dataset
used is miniImagenet.

λr 1e-4 2e-4 4e-4 8e-4

5-way 1-shot 49.51 50.64 50.50 50.78

5-way 5-shot 63.11 63.26 63.36 63.34

3.3.6 Feature Visualization

We also visualized the features in two dimensions using t-SNE [174] as shown in

Fig. 3.12. From Fig. 3.12(a), it is clear that PN produced a very compact feature

space, where the classes were very difficult to distinguish. On the other hand, the

features obtained using PN+R+V as shown in Fig. 3.12(b) were more distinguishable

class-wise. This resulted in better recognition performance.

It is important to note that removing the outlier from Fig. 3.12(a) and rescaling

the figure would make the image similar to Fig. 3.12(b). This is the point of difference

between using Prototypical Network (PN) and our (PN+R+V) method. Using PN,

we obtained more scaled-down features. Thus, these features were closer to one

another, resulting in more difficult classification compared to our (PN+R+V) method.

However, distinguishing classes in both cases was complicated and that is why we used

the Euclidean-distance-based differential nearest-neighbor classifier.
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(a) (b)

Fig. 3.12. t-SNE plot for (a) PN and (b) PN+R+V (λρ = 1). The dataset used was
miniImagenet. Same color corresponds to different samples of the same category.

3.3.7 Convergence Results

We also reported the training and testing performance with increasing training

episodes in Fig. 3.13. We used the 5-way 5-shot and 20-way 5-shot settings for testing

and training, respectively. As shown in Fig. 3.13, the test accuracy for PN+V+R

rose fast compared to that of PN. Also, the training accuracy was quite noisy. This is

because each training episode produced a newer set of categories and therefore there

was a high variance in the training accuracy.
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Fig. 3.13. Training and test accuracy with increasing number of episodes for the
prototypical network (PN) baseline and our proposed approach using relative features
and variance estimator (PN+V+R).
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3.3.8 Effect of Number of Samples

Since the relative features are constructed using both the support and query

points, it is worthwhile to note the effect on recognition performance by changing

the number of query points per class in the training and testing stages. We per-

formed two experiments for the PN+R case. The first experiment considered the

situation when the number of training query points per class was fixed at 15 and the

number of test query points was varied. The second experiment considered the situ-

ation when the number of test query points per class was fixed at 15 and the number

of training points was varied. In Fig. 3.14, it is shown that as the number of query

points increased, the recognition performance increased and it became saturated after

a while. This is because query points beyond a certain quantity did not provide ad-

ditional second-order structural information. Also, from the poor performance in the

case of one test query sample, it is evident that having sufficient query samples in the

testing stage was more important than having sufficient quantity of query samples in

the training stage.
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Fig. 3.14. Plot of accuracy when the number of training query points is fixed and
the number of test query points is varied and vice-versa. The dataset used was
miniImagenet.
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3.3.9 Effect of Base Categories

We also evaluated how the performance of PN+T varied as the number of source

base categories changed. Results are shown in Table 3.8. The recognition perfor-

mance increased with the increasing number of source categories. This is because

the increasing number of source categories trained a robust feature space. Also, the

probability of finding relevant categories became more for the category-agnostic trans-

formation stage. The performance of the category-agnostic transformation became

poorer at higher shots compared to PN. This is because the transformation became

closer to identity and its significance became less.

Table 3.8. Performance analysis as the number of base categories is varied for the
PN+T case. The dataset used is miniImagenet.

Source No. 20 30 40 50 60

5-way 1-shot (PN) 40.10 42.196 44.14 45.66 45.74

5-way 1-shot (PN+T) 41.61 43.74 45.48 46.82 47.20

5-way 5-shot (PN) 45.89 51.93 55.95 59.796 60.96

5-way 5-shot (PN+T) 43.89 50.93 55.85 59.70 61.14

Till now, we have tested our proposed approach on the novel categories. It is

also important to test our proposed approach on base categories since they are more

common and are likely to be observed more frequently compared to novel categories.

The results of applying our proposed approach to the base categories are shown

in Table 3.9 for different testing settings. As expected, the performance on base

categories was better compared to that of novel categories. Furthermore, our proposed

approach (PN+V+R) produced better results as compared to PN.
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Table 3.9. Performance comparison of testing on the base training classes.

5-way 5-shot

(PN)

5-way 1-shot

(PN)

5-way 5-shot

(PN+V+R)

5-way 1-shot

(PN+V+R)

82.236 58.409 85.293 64.111

3.3.10 Analysis of Category-agnostic Transformation

We also carried out the ablation analysis of PN+T; that is, the addition of the

category-agnostic transformer (T) on top of the prototypical network baseline (PN).

As described previously, the category-agnostic transformer (T) consists of three mod-

ules - the neural-network-based transformer (T11), the residual connection (T12), and

the contribution of the base prototypes (T2). From Table 3.10, we can see that the ad-

dition of these modules gradually improved the recognition performance, suggesting

that the addition of all these modules was important. The method PN+T11+T12+T2

used a threshold th = 0.02. It is important to note that using PN+T11+T12 was

equivalent to PN+T11+T12+T2 with threshold th = 1. We also performed an addi-

tional experiment using the method PN+T11+T12+T2 with threshold th = 0. Using

th = 0, we obtained an accuracy of 47.63% and 62.29% on the 5-way 1-shot and 5-

way 5-shot classification tasks, respectively. The recognition performance was worse

compared to using th = 0.02 because th = 0 caused all the base classes and therefore

irrelevant classes to contribute to the category-agnostic transformation thus causing

a negative transfer.

The category agnostic transformer consisted of contribution of the base categories

as described mathematically through fT2 . Using the threshold mechanism, only rele-

vant base categories were selected for contribution because these categories were closer

to the novel category in the feature space compared to the irrelevant base categories.

Using the thresholded probability vector pthc , we selected the top three relevant base

categories for a few novel categories. The results are shown in Table 3.11. As an

example, all the top relevant categories for the African hunting dog have canine fea-
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Table 3.10. Ablation analysis of each component of the category-agnostic transformer.
The dataset used was miniImagenet.

Method 5-way 1-shot 5-way 5-shot

PN+T11 47.393 62.411

PN+T11+T12 48.604 62.683

PN+T11+T12+T2 49.002 63.024

tures. The relevant categories for the mixing bowl seem to fit in context. Pictures of

Consomme and Hotdog are generally shown in plates or bowls. Also, the relevant cat-

egories of nematode, a worm-like organism involved insects and snakes. There could

be erroneous selections like harvestman spider being the most relevant category for

the Golden-retriever dog. This suggested that an additional class relevance criterion

based on WordNet [190] might be more appropriate.

Table 3.11. Novel categories and top three relevant base categories.

Novel /Relevant Class Rank 1 Rank 2 Rank 3

African hunting dog Saluki Arctic Fox Komondor

Mixing bowl Consomme Hotdog Ear

Golden-retriever Harvestman Miniature poodle Bolete

Nematode Green-mamba Lady-bug Spider-web

3.4 Conclusions

In this Chapter, we have proposed a two-stage framework for few-shot learning of

image recognition. The framework has contributions at both the feature extraction

stage and the classification stage of image recognition. At the feature extraction stage,

we proposed the use of relative-feature representation as well as the Mahalanobis
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distance metric with predictable variance. For the classification stage, we proposed a

category-agnostic transformation that produces class prototypes from class samples.

Results on standard few-shot learning datasets showed our approach to be comparable

or even better than previous approaches. We also provided further analysis on our

model and concluded that the relative-feature component was mostly responsible for

the improvement of the performance of our proposed approach. In the future, we

would like to extend our work to zero-shot classification, where we do not have any

support samples from the novel class but only high-level semantic information for

each of these classes.
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4. PARAMETRIC AND NON-PARAMETRIC

APPROACHES TO FEW-SHOT LEARNING

4.1 Introduction

In this Chapter, we extend the traditional few-shot learning (FSL) problem to the

situation when the source-domain data is not accessible but only high-level informa-

tion in the form of class prototypes is available. This limited information setup for

the FSL problem deserves much attention due to its implication of privacy-preserving

inaccessibility to the source-domain data. This limited information FSL (LI-FSL)

problem has rarely been addressed before and is depicted in Fig. 4.1.

Fig. 4.1. In this limited-information FSL problem setting, the base-class prototypes
are known but not the novel-class prototypes. The spreads of the classes (dashed
boundaries) are also unknown.

Previous works that are closely related to our LI-FSL problem setting include

[110, 112, 191]. These methods assumed access to source-class models, where the

target-class models are constrained as a linear [110] or non-linear [112] combination
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of source-class models as shown in Fig. 4.2. As a result, the recognition performance

would not only depend on their proposed transfer-learning mechanism but also on

the choice of their source-class model family. Hence, this setting does not allow for

fair comparison as results would vary with changing source-model families. On the

other hand, our proposed setting uses transferable information in the form of source-

class prototypes as shown in Fig. 4.2. This setting allows for fair comparison, where

recognition performance depends only on the data and the proposed transfer learning

approach. Thus, we redefine the LI-FSL problem setting where the results of our

proposed approach can serve as benchmark for future research.

OBJECTIVE

Given labeled base category 
prototypes and sparsely labeled 
novel category data, we propose to 
transfer knowledge from base 
categories so that novel category
predictions are biased and do not 
over-fit.

MOTIVATION

• Source-domain data can be subject to privacy restrictions
requiring the need for utilizing just high-level information.

• Using source models, previous methods do not allow for fair
comparison of transfer learning methods.

• Using source prototypes allow data-dependent results but
neural networks can still over-fit to the less data.

• Non-parametric methods (Manifold-based) or parametric
methods (Bayesian-based) with minimal number of 
parameters should be used to predict novel class prototype. 

• Manifold-based approach produces better recognition 
performance than Bayesian-based approach.

• Both approaches are most effective when base 
categories are less compared to novel categories.

• Proposed approach improves over traditional few-shot 
recognition baseline.

IMPACT

PROPOSED APPROACHPrevious Problem Setting

Proposed Problem Setting

Fig. 4.2. Overall outline of our proposed approach including motivations and impacts.

Most previous methods in FSL encoded the transferable prior knowledge from the

source domain using a parametric model. Since these methods assumed access to

lots of labeled data from the source domain, neural-network-based models are used

to encode the transferable knowledge. However, the neural-network-based parametric

models might severely overfit if we only have limited data in the form of class proto-
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types available from the source domain. Hence, in order to solve this LI-FSL problem,

it is natural to seek a non-parametric approach or a simple parametric approach with

minimal number of parameters. In this Chapter, we address this LI-FSL setting by

formulating it as a case of ill-sampling. As depicted in Fig. 4.1, the correct locations of

the base category prototypes are known but that of the novel categories are unknown.

This is because the few-shot data from a novel category might be sampled from the

periphery of the class distribution. These non-representative samples when used for

classification will result in poor recognition performance. Therefore, we propose to

use the parametric- or the non-parametric-based prior to produce a biased estimate

of the novel-class prototype location.

For the non-parametric-based prior, we find inspiration from the idea [154] that

data samples from one class lie on a low-dimensional subspace. Therefore, we can

consider all the classes as a collection of piece-wise linear subspaces. This set of

subspaces can be considered as an approximation of a non-linear manifold close to

which the class-prototypes lie. This manifold serves as a structural prior to estimate

the location of the novel-class prototype. The subspace near the novel-class prototype

is found by calculating the mean of the subspaces on which the nearby base classes lie.

The subspace on which the nearby base classes lie is again found using their nearest

neighbors as shown in Fig. 4.3. Finally, the novel-class sample can be projected onto

the mean subspace to obtain the corresponding novel-class prototype.

Once the novel-class prototypes are estimated, one can use the nearest-neighbor

(NN) approach to assign a test sample to a class based on the Euclidean distance to

all the prototypes. However, directly using NN in such a high-dimensional feature

space might lead to the phenomenon of hubness [192], where the NN prediction dis-

tribution is skewed towards only a few class prototypes and rest of the classes are not

considered. Moreover, the estimation procedure for the novel-class prototype might

still be error prone. Hence, there is a need to exploit the structural arrangement of

the manifold containing all the classes to assign a class to a test sample. This can

be achieved by constructing a graph using all the class prototypes and then using
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Fig. 4.3. The surrounding subspaces S1, S2 and S3 for a novel-class sample xn are
found by using its Nearest Neighbors (NN) and the NNs of its NNs. These subspaces
when orthonormalized are represented as points on the Grassmann manifold. Their
mean can be calculated to obtain the subspace S̄ on which the novel-class sample xn
is projected to obtain cp. The weighted average cd of the nearby prototypes are also
used to obtain the novel-class prototype.

equilibrium probability of an induced absorbing Markov-chain process to output the

most probable class.

The performance of a manifold-based, non-parametric approach may not be as

competitive as a parametric approach. This is because the manifold is constructed

directly using the data samples and without any assumption about the model family

the manifold belongs to. Alternatively, we could use the Bayesian method as a para-

metric approach where the class distribution is assumed to belong to the Gaussian

family. The Bayesian approach uses a minimal number of trainable parameters and

is less likely to overfit compared to that of a neural network. The parameters of the

Gaussian distribution is then estimated using a maximum-a-posterior method. The

prior combined with the likelihood information obtained from the novel-class samples

is used to obtain the posterior estimate of the novel-class prototype. The estimated

prototype will be closer to the true prototype compared to the few-shot sample mean

thus facilitating classification. The concept is visually described in Fig. 4.4.
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Fig. 4.4. The proposed Bayesian framework. The mean (µµµ) and the variance (σ2) of
the novel class are unknown. A Gaussian likelihood is formulated using the novel-
class data-samples with µµµ and σ2 as parameters. The priors for the µµµ and σ2 are
obtained from the base-class prototype locations.

To summarize, our major contributions in this Chapter are as follows: (a) We

introduce the limited-information setting of few-shot learning where only base cat-

egory prototypes are available; (b) We propose both non-parametric and paramet-

ric approaches to solve this limited-information setting. The non-parametric- and

parametric-based model uses a manifold and Bayesian prior, respectively. All these

priors are constructed from the base category prototypes; (c) We then study dif-

ferent models using different priors and hyper-parameters and consequently perform

experiments and analyses on two image datasets – the large-scale ImageNet and the

small-scale but fine-grained CUB-200.

4.2 Proposed Approach

4.2.1 Notation

Consider that we have access to the base category prototypes collected in the form

of a matrix C ∈ Rnb×d, where nb is the number of base prototypes and d is the dimen-

sionality of the feature space. We also have access to k examples {xn1,xn2, ...,xnk}

from the nth novel class, where xni ∈ Rd and k is very small. Our goal is to estimate
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the location of the novel-class prototype cn ∈ Rd. In our case, a prototype of a base

class is the arithmetic mean of all the samples in the class. Using these notations, we

will discuss our proposed parametric (Bayesian-based) and non-parametric (manifold-

based) approaches in the next two sub-sections. C is used to construct the manifold

or the prior in case of the Bayesian approach. Then, the novel-class samples xni are

used to estimate the novel-class prototype.

4.2.2 Proposed Manifold-based approach

Estimating Novel-Class Prototypes

We assume that all the base and novel-class prototypes lie close to a non-linear

manifold; that is, all rows of C and cn lie close to a non-linear manifold. Since the

mathematical expression of the manifold is unknown, we express it as a collection of

piece-wise linear subspaces. First, we find the surrounding classes of the novel class

by finding r nearest-neighboring prototypes of the novel-class sample xn. Let these

nearest-neighboring prototypes be denoted as cni ∈ Rd for i ∈ {1, 2, ..., r}. For each of

the r neighboring prototypes, we find q neighboring prototypes. These new prototypes

can be expressed as cnij ∈ Rd for j ∈ {1, 2, ..., q} and i ∈ {1, 2, ..., r}. Hence, cnij

represents the jth nearest neighbor of the ith nearest neighbor of the novel-class sample

xn. To represent the non-linear manifold, we form r linear subspaces using the r

nearest neighbors of the novel sample as well as the q nearest neighbors of each of the

r prototypes. The linear subspace Si corresponding to the ith nearest neighbor of xn

is represented as a column space such that Si ≡ [cni
... cni1

... cni2
... ....

... cniq]. The linear

subspace can be orthonormalized to obtain S⊥i and the operation can be repeated for

all the r nearest neighbors. The net result is r linear subspaces with dimensionality

(q + 1) surrounding the novel-class sample xn. In the example in Fig. 4.3, we chose

r = 3 and q = 3. These linear subspaces represent linearized localized versions of

the non-linear manifold on which the class prototypes lie. The subspace on which

the novel-class prototype lies close to can be found by averaging these surrounding
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r subspaces S⊥i for i ∈ {1, 2, ..., r}. For finding the average of these orthonormal

subspaces, we use the concept of Grassmann manifold.

Grassmann Manifold. A Grassmann manifold G(n, l) for n, l > 0 is the topo-

logical space composed of all l-dimensional linear subspaces embedded in an n-

dimensional Euclidean space. A point on the Grassmann manifold is represented

as an n× l orthonormal matrix S whose columns span the corresponding linear sub-

space S. It is represented as: G(n, l) = {span(S): S ∈ Rn×l,STS = Il}, where Il is a

l × l-dimensional identity matrix and superscript T indicates matrix transpose.

Following this definition, the r orthonormal subspaces S⊥i for i ∈ {1, 2, ..., r} are

points lying on a G(d, q + 1) Grassmann manifold. The average of these points on

the Grassmann manifold will represent the linear subspace to which the novel-class

prototype lies close to. The average of these points is found using the extrinsic mean.

For a set of points on the Grassmann manifold G(d, q + 1), the extrinsic mean is the

point that minimizes the Frobenius-norm-squared difference of the projections of the

points onto the space of (q + 1) ranked d × d matrices. Therefore, the optimization

problem for finding the extrinsic mean S̄ is

argmin
STS=I

r∑
i=1

d(Si,S)2,

where d(Si,S) =
||SST − SiS

T
i ||F√

2
.

(4.1)

Here || · ||F is the Frobenius norm. Let S∗ be the solution to the optimization prob-

lem (4.1), which can be found using eigenvalue decomposition as discussed in Ap-

pendix A. S∗ is the spanning matrix of the extrinsic mean of the surrounding sub-

spaces S⊥i ’s. Setting the extrinsic mean S̄ = S∗, we project the novel-class sample xn

onto the subspace spanned by the matrix S̄. The projected point cp can be obtained

as cp = S̄S̄+xn, where S̄+ = (S̄T S̄)−1S̄T . Superscripts −1 and + indicate matrix

inverse and matrix pseudo-inverse, respectively.

We also consider the direct contribution of the surrounding class prototypes into

estimating the novel-class prototype. If Cr ∈ Rr×d consists of the r nearest neighbors

of the novel-class sample xn, then their contribution cd to the novel-class prototype
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location can be found using the equation cd = CT
r pd, where pd ∈ Rr is the probability

vector formed by carrying out the exponential mapping of the Euclidean distances of

the class prototypes to xn, followed by normalization. Hence, the contributions xn,

cp and cd can be used to estimate the novel-class prototype location cn as

cn = α2[α1xn + (1− α1)cp] + (1− α2)cd, (4.2)

where α1, α2 ∈ [0, 1] are scalar weights. These scalar weights are manually set and

depend on how close xn is to the true novel-class prototype. In case xn is very

close to the novel-class prototype, α1 = α2 ≈ 1 will produce optimal classification

performance.

Classification using Absorbing Markov Chain

Once the class prototype locations of the novel classes are known, the structural

arrangement of the prototypes of both the base and novel classes are again used to

recognize a test sample. The motivation behind using the structural arrangement

of the classes is to obtain a more informed decision about the classification. This is

useful if we do not have access to all the samples of the base classes and we do not

know how spread out each class is. Nearest-neighbor classification will just compare

with each and every class individually without regard to the global arrangement of

the other classes.

The structural arrangement of the classes is represented using a k′-nearest-neighbor

(k′-NN) graph, where each node represents a class prototype. The k′-NN graph for-

mulation allows nodes to only be connected to its k′-NN nodes. The weights between

the nodes are defined using the exponential of the negative Euclidean distances. Upon

defining this graph, an absorbing Markov-chain process is induced on it. Each state

of the Markov chain corresponds to a node in the graph and therefore a category.

The transition probability from a state i to a state j is found as pij = wij/
∑

l wil,

where wil is the weight connecting nodes i and l. In the absorbing Markov chain

process, there are two kinds of states - transient and absorbing. The transient state
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and the absorbing state have self-transition probabilities pii as 0 and 1, respectively.

This suggests that a random walker on a graph cannot stay on the transient node for

the next step but for the absorbing node it will stay there forever. An example of an

absorbing Markov chain is given in Fig. 4.5, where the arrows represent the possible

transitions from one node to another.

Fig. 4.5. A random walker transitions from a transient node while it terminates on an
absorbing node. Possible transitions are shown with directed arrows. The transition
probability from a state i to a state j is pij. The transient state and the absorbing
state have self-transition probabilities pii as 0 and 1, respectively.

Overall, the Markov chain is represented using the transition matrix P, which

models the dynamics of the process. Using P, the Markov-chain equations are de-

scribed as follows:

ut+1 = utP, where P =

Tnt×nt Ant×na

0na×nt Ina×na

 , (4.3)

ut and ut+1 are the states of the process at instants t and t + 1, respectively, and

they are represented as a probability vector over all the states. T describes the

transition probabilities from one transient state to another. A describes the transition
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probabilities from transient states to absorbing states. nt and na are the number of

transient and absorbing states, respectively, and the zero and identity matrices 0na×nt

and Ina×na imply that the process cannot leave the absorbing state. Our goal is to

find the equilibrium state ut as t → ∞ for a given initial state u0. Accordingly,

u∞ = u0Pm as m → ∞. The closed-form solution of Pm as m → ∞ is treated as

P∞, where

P∞ =

0nt×nt (I−T)−1A

0na×nt Ina×na

 . (4.4)

Using this formulation, the equilibrium state probabilities can only be distributed

among the absorbing states with zero probabilities on the transient states.

The initial state u0 is calculated using the Euclidean distances of the test sample

to all the base- and novel-class prototypes and normalizing it to obtain a probability

vector. However, we need to decide how to split all the classes into transient and

absorbing states so that correct class predictions of the test sample can be obtained.

We propose to use a three-step approach to decide the class prediction of a test sample.

In the first step, we choose the novel categories and base categories as transient

and absorbing states, respectively. Using the absorbing Markov-chain formulation in

Eq. (4.3), we obtain the most probable base category from u∞. Similarly, for the

second step, we choose the novel categories and base categories as absorbing and

transient states, respectively, and then obtain the most probable novel category. In

the final step, we apply one nearest neighbor on the test sample to choose the most

probable class among the most probable base and novel categories obtained in the

previous steps. The overall procedure from the novel-class prototype estimation to

the Markov-chain-based prediction for a test sample is given in Algorithm 7. In case

we have multiple samples for a novel class, xn is set as the mean of these samples. The

time and space complexity of this manifold-based approach is analyzed in Appendix

B.

Till now, we have described our non-parametric approach to tackle the limited

information few-shot learning setting. However, the performance of a non-parametric
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Algorithm 7: Proposed two-step few-shot learning procedure using manifolds.

Given: Base category prototypes C ∈ Rnb×d, Novel class one-shot samples

xn, n ∈ {1, 2, ..., nnov} where nnov is the number of novel categories. Test sample

xte.

Parameters: r, q, k′, α1, α2

Goal: Classify xte into one of the nb + nnov categories

Step 1 Estimate class prototype for each novel class

for each novel class n ∈ {1, 2, ..., nnov}

Obtain r nearest base prototypes for xn to form Cr ∈ Rr×d

Obtain q nearest base prototypes for each of the r base prototypes

Obtain orthonormal subspaces S⊥i for i ∈ {1, 2, ..., r} using the q neighbors

S̄ ← ExtrinsicManifoldMean(S⊥1 ,S⊥2 , ...,S⊥r )

Project xn onto S̄ to obtain cp followed by distance averaging prototypes in Cr to

obtain cd

Obtain novel-class prototypes as cn ← α2(α1xn + (1− α1)cp) + (1− α2)cd

end for

Result Novel class prototypes estimated

Step 2 Predict class of test sample xte

Construct k′-nearest-neighbor graph with nb base prototypes and nnov novel

prototypes as nodes.

Find initial probability vector u0 using distance of xte to all the class prototypes.

Construct Markov chain and obtain most probable base class.

Construct Markov chain and obtain most probable novel class.

Use nearest neighbor to obtain the most probable class among the most probable

base and novel class.

Result Class prediction of test sample obtained

approach may not be as competitive as a parametric approach. Therefore, it is worth-

while to compare our non-parametric approach against a parametric baseline of which

the Bayesian framework seems to be a reasonable choice. This is because the Bayesian
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approach involves less number of parameters compared to a neural-network-based ap-

proach and it is less likely to overfit in the limited-information setting. Accordingly,

we describe the Bayesian approach in the next subsection.

4.2.3 Proposed Bayesian Approach

In this section, we describe our proposed Bayesian-based approach. For this

Bayesian-based framework, we fix the likelihood as Gaussian because of the assump-

tion that class-data distributions can be safely fitted using a Gaussian-model family.

We vary the prior distribution of the novel-class statistics (mean and variance) and

accordingly obtain different posterior estimates of the novel-class mean. The mean is

chosen to have a normal prior because the class prototypes are assumed to be sampled

from a normal distribution. For the variance, we keep it fixed or experiment with

different priors that produce known posterior distributions. Accordingly, we obtain

four model-variants of the Bayesian formulation. Each of these models are described

below.

Normal prior on Mean but fixed Variance

Let us consider that the dataset X = {xn1,xn2, ...,xnk} is generated from a nor-

mally distributed novel class with unknown mean µµµ and unknown variance σ2. We

want to find the maximum-a-posterior estimate of the class given a normally dis-

tributed prior. The description of the Bayesian model is as follows

xn1,xn2, ...,xnk ∼ N (·|µµµ, σ2), µµµ ∼ N (·|µµµ0, σ
2
0) (4.5)

where µµµ0 is set as the empirical mean of the base-class prototypes such that µµµ0 =

1
nb

∑nb
j=1 cj and cj’s are the base-class prototypes. Similarly, σ2

0 is also found from the

variance of the base-class prototypes with σ2
0 = 1

nb

∑nb
j=1 ||cj −µµµ0||22. The variance σ2

of the novel class is unknown but can be set heuristically using the pairwise distances

of the base-class prototypes. Let p = (p1, p2, ..., pl) such that l =
(
nb
2

)
.
(
nb
2

)
is the
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number of combinations in choosing pairs from nb items. p is the list of the squared

half-pairwise distances of the base-class prototypes. Accordingly, σ2 can be set as

the minimum, maximum, median or mean of the list p. The posterior density can be

described as

p(µµµ|X)︸ ︷︷ ︸
Posterior

∝ p(X|µµµ, σ2)︸ ︷︷ ︸
Likelihood

p(µµµ|µµµ0, σ
2
0)︸ ︷︷ ︸

Prior

= (4.6)

k∏
i=1

p(xni|µµµ, σ2)p(µµµ|µµµ0, σ
2
0) =

k∏
i=1

N (xni|µµµ, σ2)N (µµµ|µµµ0, σ
2
0).

The posterior density has a closed-form solution of a normal distribution with mean

µµµpost as

µµµpost =

∑k
i=1 xniσ

2
0 + µµµ0σ

2

kσ2
0 + σ2

. (4.7)

Since the mode of a normal distribution is the same as its mean, we can set the

maximum-a-posterior estimate of µµµ as µµµpost. Consequently, the novel-class prototype

estimate cn can be set as µµµpost and the steps can be repeated for all the novel classes.

We call this Bayesian model as B1 and set the maximum heuristic as the default

heuristic unless explicitly mentioned.

Normal prior on Mean, Gamma/Uniform prior on Precision

In this model, we go a step forward and assume gamma prior on the precision

λ = σ−2. Accordingly, the Bayesian model can be described as

xn1,xn2, ...,xnk ∼ N (·|µµµ, λ−1), µµµ ∼ N (·|µµµ0, σ
2
0) (4.8)

λ ∼ Ga(·|α, β)

and µµµ0 and σ2
0 are the same as in B1. Ga(·) is the gamma distribution. Hence, the

posterior distribution is

p(µµµ, λ|X)︸ ︷︷ ︸
Posterior

∝ p(X|µµµ, λ−1)︸ ︷︷ ︸
Likelihood

p(µµµ|µµµ0, σ
2
0)︸ ︷︷ ︸

Prior

p(λ)︸︷︷︸
Prior

(4.9)

=
k∏
i=1

N (xni|µµµ, λ−1)N (µµµ|µµµ0, σ
2
0)Ga(λ|α, β).
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Since we do not have a closed-form solution of the posterior distribution, we could

use the Gibbs-sampling approach to generate samples (µµµ, λ).

However, the Gibbs-sampling approach is computationally demanding and there-

fore not scalable to higher dimensions or larger number of categories. Therefore, we

experiment with variational Bayes approximation, where we assume that the poste-

rior distribution of the novel-class mean and variance has a factorization of the form

p(µµµ, λ) = p1(µµµ)p2(λ). We set p1(µµµ) = N (µµµ|µµµV , λV ) and p2(λ) = Ga(λ|αV , βV ) and

using alternating optimization technique, we obtain the following expressions

µµµV =

∑k
i=1 xni

αV
βV

+ µµµ0λ0

kαV
βV

+ λ0

, λV = k
αV
βV

+ λ0 (4.10)

αV = α +
dk

2
(4.11)

βV = β +
1

2
(
k∑
i=1

xTni(xni − 2µµµV ) + k(
d

λV
+ µµµTVµµµV )). (4.12)

The derivation of these circularly dependent equations is given in Appendix C. Be-

cause of the circular dependency among the variables µµµV , λV , αV and βV , we need to

solve the expressions alternately for a fixed number of iterations t = 5. After that,

µµµV is set as the prototype location of the new class. In case we use a uniform prior

for λ, we just need to set α = 1 and β = 0. We call this model with uniform prior as

B2 and the one with gamma prior as B3.

Normal-Gamma prior on Mean and Precision

In this model, the precision λ0 = σ−2
0 of the normal prior of the mean is a scaled

factor of the novel-class distribution precision λ = σ−2. If this scaled factor is s, then

the Bayesian model can be described as

xn1, ...,xnk ∼ N (·|µµµ, σ2), (µµµ, λ) ∼ NG(·|µµµ0, s, α, β), (4.13)
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where NG(·|µµµ0, s, α, β) is a normal-gamma distribution with parameters µµµ0, s, α and

β. The probability density function of a normal-gamma distribution is the product

of the normal (N (·)) and the gamma (Ga(·)) density function. It is described as

NG(µµµ, λ|µµµ0, s, α, β) ≡ N (µµµ|µµµ0, (sλ)−1)Ga(λ|α, β). (4.14)

We are concerned about the mode of the posterior distribution. The posterior distri-

bution can be written as

p(µµµ, λ|X)︸ ︷︷ ︸
Posterior

∝ p(X|µµµ, λ−1)︸ ︷︷ ︸
Likelihood

p(µµµ, λ|µµµ0, s, α, β)︸ ︷︷ ︸
Prior

(4.15)

=
k∏
i=1

N (xni|µµµ, λ−1)N (µµµ|µµµ0, (sλ)−1)Ga(λ|α, β).

The posterior distribution can be shown to be following a normal-gamma distribution

having a mode µµµpost as

µµµpost =

∑k
i=1 xni + µµµ0s

k + s
. (4.16)

After that, the novel-class prototype estimate cn is set as µµµpost and the steps are

repeated for all the novel classes. We call this model B4 and set s = 1 unless explicitly

mentioned.

4.3 Experiments and Discussions

4.3.1 Implementation Details

To evaluate our proposed non-parametric and parametric approaches, we used

two image recognition datasets – ImageNet and CUB-200. Originally, the ImageNet

dataset consists of 21K categories of which we used 1000 for our experiments. These

1000 categories are accordingly split into the base and novel classes. The CUB-200 is

a fine-grained dataset that consists of 200 categories of different bird species. Of these

200 classes, we used a total of 150 of which 100 are the base classes and 50 are the

novel classes. For both datasets, the image features used were the 2048-dimensional

ResNet-101 [23] because they have been found to be class-discriminative.
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The recognition performance metric used is class-wise averaged accuracy over test

samples taken from both base and novel categories. This metric ensures that major

classes do not dominate the performance and minor classes containing less number

of samples are not ignored. It is noted that performing cross-validation is impossible

since we do not have access to data from the base categories to be held out as a

validation set. Therefore, results were reported by fixing the hyper-parameters.

For evaluation and comparison purposes, we used the following models:

• NA – The No-adaptation baseline, which consists of using just the nearest-

neighbor classification on the few-shot sample mean.

• M1 – The model uses the nearest-neighbor classification on the estimated novel-

class prototypes.

• M2 – The model performs classification on the few-shot sample mean using the

manifold distance.

• M1+M2 – The model uses the manifold distance on the estimated prototypes

for classification.

• B1 – The model uses normal prior on mean but fixed variance.

• B2 – The model uses normal prior on mean but uniform prior on precision.

• B3 – The model uses normal prior on mean but gamma prior on precision.

• B4 – The model uses normal-gamma prior on mean and precision.

• Oracle – This model assumes access to novel-class prototypes and it uses

nearest-neighbor classification for prediction.

The Bayesian baselines B1, B2, B3 and B4 used the nearest-neighbor approach for

classification. For the B2 and B3 implementation, we used the variational Bayes (VB)

approximation instead of the Gibbs-sampling approach because empirically we found

out that the sampling approach showed similar recognition performance as VB but it
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was about 160 times slower. The Oracle baseline is the maximum possible recognition

performance that any of these models can achieve. In the next few subsections, we

discuss and analyze all the experiments that we have performed.

4.3.2 Effects of varying the number of classes and samples

In this subsection, we study how the recognition performance is affected by the

number of categories and the number of samples per category in the base and novel

datasets. This experiment is important to understand the sensitivity of our methods

to changes in the number of training classes and samples. For training purposes, we

used the prototypes of the base categories and the few-shot samples from the novel

categories. If we have k training samples in each novel category, we call the setting

as k-shot.

For the first set of experiments, we used the ImageNet dataset with 800 base and

200 novel categories and studied the effect of changing the number of shots per novel

category. The results were taken over 10 trials and reported in Table 4.1. Here, each

trial corresponds to a randomly sampled set of k training samples from each novel

category.

From the results, it is seen that M1 improves the recognition performance over the

no-adaptation baseline but the difference diminishes as the number of shots increases.

This is because for the novel categories, the few-shot mean becomes closer to the

prototype location as the number of shots increases. Also, the contribution of M2

over the baseline or over M1 is incremental. This can be attributed to the fact that

the ResNet-101 features are not trained using the manifold-based distance and there

is a mis-match between the training and testing evaluation measures. The standard

error reduces with the increasing number of shots because of reduced variance in

the few-shot mean and eventually reduced variance of the estimated prototype over

the trials. Also, different Bayesian models performed better than the NA baseline

suggesting that including prior information for mean µµµ of the novel class would be
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Table 4.1. Accuracy results averaged over 10 trials on the ImageNet dataset with 800
base and 200 novel categories as the number of shots per novel category is changed.
Standard error is shown in the parentheses. The hyper-parameter setting is r =
20, q = 20, k′ = 3, α1 = 0.9, α2 = 0.7.

1 shot 2 shot 5 shot 10 shot 20 shot

NA 64.31 (0.05) 67.60 (0.05) 71.09 (0.03) 72.24 (0.02) 72.89 (0.01)

M1 66.58 (0.05) 69.67 (0.05) 71.62 (0.03) 72.31 (0.02) 72.91 (0.01)

M1+M2 66.91 (0.05) 69.88 (0.05) 72.05 (0.03) 72.72 (0.02) 72.97 (0.02)

M2 65.21 (0.05) 67.98 (0.05) 71.33 (0.02) 72.07 (0.02) 72.60 (0.01)

B1 66.69 (0.05) 69.15 (0.04) 71.48 (0.03) 72.44 (0.02) 72.91 (0.01)

B2 65.66 (0.05) 68.89 (0.05) 71.19 (0.03) 72.31 (0.02) 72.89 (0.01)

B3 65.64 (0.05) 67.74 (0.05) 71.19 (0.03) 72.31 (0.02) 72.89 (0.01)

B4 66.59 (0.05) 69.12 (0.04) 71.47 (0.03) 72.44 (0.02) 72.92 (0.01)

Oracle 73.30 73.30 73.30 73.30 73.30

helpful. Surprisingly, B1 performed better than other Bayesian model variants even

though it used a fixed value of class variance σ2. Still, the Bayesian models did not

perform as good as the M1+M2 method. We repeated the same experiment for the

CUB-200 dataset, the results of which are reported in Table 4.2. In this case, we

have 100 base and 50 novel categories, all of which are fine-grained. As a result,

the recognition performance is poorer compared to ImageNet, even though CUB-200

has lesser number of categories. Still, the observed recognition performance has a

pattern similar to that of the ImageNet dataset. However, there is no reduction

in the standard error with increasing shots. This can be attributed to larger overlap

between the fine-grained classes of CUB-200. Moreover, B4 showed poor performance

at higher shots because the contribution of the few-shot samples is not increased as

compared to s = 1.
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Table 4.2. Accuracy results over 10 trials on the CUB-200 dataset with 100 base
and 50 novel categories as the number of shots per novel category is changed. The
hyper-parameter setting is r = 20, q = 20, k′ = 5, α1 = 0.5, α2 = 0.5.

1 shot 2 shot 5 shot 10 shot 20 shot

NA 43.40 (0.12) 45.28 (0.13) 51.19 (0.18) 55.70 (0.20) 58.16 (0.16)

M1 45.91 (0.23) 48.80 (0.20) 51.90 (0.16) 55.94 (0.18) 57.63 (0.14)

M1+M2 46.13 (0.28) 49.01 (0.22) 52.13 (0.11) 55.57 (0.17) 58.67 (0.12)

M2 43.81 (0.11) 45.86 (0.15) 51.45 (0.15) 55.91 (0.18) 58.31 (0.14)

B1 44.53 (0.19) 46.38 (0.17) 52.54 (0.11) 55.86 (0.02) 57.26 (0.11)

B2 44.36 (0.23) 47.33 (0.20) 52.34 (0.17) 55.85 (0.15) 57.35 (0.10)

B3 44.08 (0.21) 46.60 (0.16) 52.27 (0.13) 56.19 (0.21) 58.17 (0.15)

B4 44.76 (0.21) 46.93 (0.20) 49.89 (0.15) 51.91 (0.18) 52.56 (0.16)

Oracle 60.51 60.51 60.51 60.51 60.51

For the next set of experiments, we considered the performance change on the

ImageNet dataset for the 1-shot setting as the numbers of base and novel categories

are varied. We considered two such scenarios. In the first case, the total number of

categories was fixed at 1000 while the proportion of base categories was changed. This

setting considers less number of base categories compared to novel categories and it

has rarely been studied in previous work. The results of this setting are reported in

Table 4.3.

From the results, it can be seen that M1 improved over NA by a large margin

(9 points) especially when the number of base categories was very less (ratio of 0.1).

This is alluded to our assumption that all the class prototypes have a structural

arrangement on a manifold. Therefore, the use of this structure is especially beneficial

in the few-class regime. However, the difference between M1 and NA decreases mainly

due to the presence of more base categories and lesser amount of the difficult novel

categories for evaluation. Also, the Bayesian models produced a maximum of 10

points improvement over the NA baseline. This suggested that the Bayesian model
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Table 4.3. Accuracy results on the ImageNet dataset for the 1-shot setting as the
ratio of number of base categories to the total number of categories is changed. (x-b,
y-n) implies x base and y novel categories.

0.1 (100-b, 900-n) 0.2 (200-b,800-n) 0.4 (400-b, 600-n) 0.6 (600-b, 400-n)

NA 38.29 (0.30) 39.59 (0.29) 46.50 (0.18) 55.28 (0.11)

M1 47.70 (0.28) 49.65 (0.30) 54.65 (0.23) 60.71 (0.12)

M1+M2 47.89 (0.28) 50.33 (0.29) 55.13 (0.23) 61.34 (0.11)

M2 38.36 (0.30) 39.68 (0.29) 46.57 (0.19) 55.31 (0.11)

B1 48.41 (0.28) 50.13 (0.28) 54.68 (0.22) 60.51 (0.11)

B2 45.23 (0.31) 47.81 (0.31) 51.78 (0.21) 58.65 (0.12)

B3 45.10 (0.31) 46.46 (0.31) 51.72 (0.22) 58.60 (0.12)

B4 48.44 (0.26) 50.08 (0.26) 54.55 (0.22) 60.35 (0.11)

Oracle 73.30 73.30 73.30 73.30

was also significant when the number of base categories was less. On average, B1 and

B4 produced better results than B2 and B3. This is probably because B2 and B3

provided an approximation of the posterior distribution.

For the second experiment, we considered the setting where the total number of

categories was varied but the proportion of the base and novel categories was kept

the same at 4:1. The results of this experiment are reported in Table 4.4.

From the results, it can be seen that the upper bound of the recognition perfor-

mance; that is, the Oracle performance decreases with an increase in the number of

categories. This is mainly because classification becomes more difficult as the number

of categories increases. As expected, M1 performed better compared to NA and the

contribution of M2 was incremental. B1 and B4 also performed better than B2 and

B3.

Our proposed few-shot learning setting is new and therefore we do not have

previous work to compare with and benchmark against. However, we can study
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Table 4.4. Accuracy results on the ImageNet dataset for the 1-shot setting as the
total number of categories is changed but keeping the ratio of base categories to novel
categories as 4:1.

50 (40-b, 10-n) 100 (80-b, 20-n) 200 (160-b, 40-n) 500 (400-b, 100-n)

NA 81.76 (0.54) 75.98 (0.34) 70.25 (0.16) 67.43 (0.10)

M1 86.10 (0.45) 79.92 (0.36) 73.50 (0.16) 69.59 (0.08)

M1+M2 86.43 (0.47) 80.61 (0.51) 74.09 (0.34) 70.41 (0.08)

M2 82.52 (0.53) 75.48 (0.39) 70.88 (0.23) 67.44 (0.10)

B1 86.05 (0.48) 79.75 (0.35) 72.98 (0.15) 74.32 (0.08)

B2 84.47 (0.51) 78.34 (0.36) 72.10 (0.17) 73.37 (0.08)

B3 84.40 (0.52) 78.31 (0.36) 72.09 (0.17) 73.36 (0.09)

B4 85.97 (0.46) 79.62 (0.33) 72.73 (0.15) 74.17 (0.08)

Oracle 92.20 86.76 80.85 76.87

whether our approach can improve existing relevant work. Prototypical networks

(ProtoNets) [87] consider the mean of the few-shot samples to represent class proto-

types without using any prior information. Therefore, there is a possibility of obtain-

ing the class prototypes using our manifold-based approach and further improving the

performance. Accordingly, we tested the contribution of M1 and M2 over prototypical

networks on miniImageNet, which is a subset of the ImageNet dataset. The results

are shown in Table 4.5. In the table, K-way N -shot implies that K novel categories

are sampled per testing episode with N samples per category. From the results, it is

clear that M1 improved the performance, however M2 declined it. This is mainly be-

cause of the discrepancy between the Euclidean distance metric used during training

ProtoNets and the manifold-based distance metric used during testing. The Bayesian

models also provided an incremental improvement in performance because ProtoNets

already created a discriminative space and therefore discrepancy between the sam-
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Table 4.5. Few-shot classification accuracies on the miniImageNet dataset averaged
over 600 test episodes for different ways and shots. 95% confidence intervals are shown
in the parentheses.

5-way 1-shot 5-way 5-shot 20-way 1-shot 20-way 5-shot

ProtoNet 47.21 (0.69) 63.62 (0.61) 20.51 (0.46) 35.20 (0.59)

ProtoNet+M1 48.79 (0.51) 65.67 (0.56) 21.93 (0.62) 35.66 (0.53)

ProtoNet+M2 41.36 (0.47) 57.48 (0.43) 16.94 (0.57) 31.52 (0.64)

ProtoNet+B1 48.21 (0.49) 65.28 (0.51) 21.23 (0.52) 36.84 (0.63)

ProtoNet+B2 47.66 (0.54) 64.67 (0.55) 20.94 (0.63) 35.73 (0.51)

ProtoNet+B3 47.45 (0.50) 64.28 (0.53) 21.55 (0.59) 35.49 (0.52)

ProtoNet+B4 48.08 (0.48) 64.56 (0.44) 21.08 (0.58) 36.09 (0.65)

ple mean and the predicted prototype did not change the classification performance

much.

To summarize, in most of the cases where we have less number of shots and less

number of base categories, the manifold-based approach performed better than the

Bayesian approach. This is because non-parametric methods perform better than

parametric methods when there is less training data.

4.3.3 Parameter Sensitivity Studies

In this section, we study the effect of hyper-parameters on the recognition perfor-

mance. We only report results of sensitivity with respect to r, α1 and α2 in Fig. 4.6.

We found our recognition performance to be negligibly sensitive to q and k′. This

suggests that the location of the novel-class prototype estimate only depends on the

number of subspaces (r) rather than its dimensionality (q+1). Similarly, the Markov-

chain-based prediction does not depend on the number of nearest neighbors k′ used for

connecting the graph. In Fig. 4.6(a), the number of subspaces (r) is varied, keeping
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rest of the hyper-parameters the same. This is done for both the ImageNet (denoted

as (I)) and the CUB-200 dataset (denoted as (C)). From the plot, it is seen that the

Fig. 4.6. (a) Effect of the number of subspaces r on recognition performance for both
ImageNet (I) and CUB-200 (C). Effect of α1 and α2 on 1-shot and 5-shot recognition
performance for (b) ImageNet and (c) CUB-200. Legends of (c) hold for (b) as well.
α1 in parenthesis suggests that α1 is varied while α2 = 1 and vice versa. All results
are over 10 trials.

performance increases as the number of subspaces increases but then decreases after

reaching a peak. Initially, more linear subspaces in the neighborhood are required for

estimating the local structure of the non-linear manifold. However, additional irrele-

vant subspaces cause inaccurate estimation of the manifold resulting in a decrease in

performance.
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Next, we studied the effects of α1 and α2 on the recognition performance for the

1- and 5-shot settings of the ImageNet and the CUB-200 datasets as reported in

Figs. 4.6(b) and 4.6(c), respectively. Accordingly, we obtained an optimal perfor-

mance when α1 or α2 is between 0 and 1. From Eq. (4.2), it suggests that the location

of the novel-class prototype is within the space bounded by the few-shot sample mean

(xn), the subspace projection (cp) and the weighted mean of the nearby class proto-

types (cd). For higher number of shots, the maxima seems to move towards the right;

that is, closer to α1, α2 values of 1. This implies more contribution from the few-shot

class mean as visible from Eq. (4.2). This is intuitive because as the number of shots

increases, we expect the few-shot sample mean to converge to the class prototype. In

fact, for shots of 10 and higher, we obtained the maxima at α1 = α2 = 0.9 on both

datasets. For low values of α1, α2 (less contribution of the few-shot sample mean),

we observed a dip in performance, even sometimes worse than the NA baseline. This

suggests that the contribution of the few-shot mean is important in estimating the

novel-class prototype. From the plot, we see that the setting α1 = 0, α2 = 1 produces

much better performance as compared to α1 = 1, α2 = 0. According to Eq. (4.2),

it means that the contribution of the projection (cp) is more important compared to

contribution of nearby prototypes (cd).

We also performed additional experiments with B1, where we varied the heuris-

tic procedure to obtain the variance of the novel class σ2. We chose the minimum,

median, mean or maximum of the half-squared pair-wise distance between the base-

class prototypes to obtain σ2. The results of the experiment are shown in Fig. 4.7(a)

for both the ImageNet and the CUB-200 datasets. From the experiments, we found

out that there was not much difference in choosing the different heuristics. How-

ever, the minimum heuristic produced slightly lower performance than the rest for

both datasets. This is probably because underestimating the variance rather than

overestimating produced a prototype prediction more distant from the ground truth.
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(a) (b)

Fig. 4.7. (a) Effect of the min, median, mean and max heuristic on recognition
performance of model B1. (b) Effect of hyper-parameter s on recognition performance
of model B4 on ImageNet (I) and CUB-200 (C) dataset.

We also tested how the value of the scaling factor s affects the recognition per-

formance of B4. The results of the experiment on both ImageNet and CUB-200 are

shown in Fig. 4.7(b). From the plot, it is seen that the recognition performance

peaked at s = 1 for both datasets. This suggested that B4 performed the best when

the variance of the novel class was set equal to the variance of the prior distribution

of the novel prototype. However, having a large value of s; that is, having a more

peaky prior distribution of the mean reduced the performance, sometimes even lesser

than the NA baseline.

4.4 Conclusions

In this Chapter, we have proposed a non-parametric and parametric approach to

tackle a new setting in few-shot learning that assumes access to only the base-class

prototypes. For the non-parametric approach, we used the structural arrangement of

the class prototypes on a manifold, firstly to estimate the novel-class prototypes and

secondly to induce an absorbing Markov-chain for test-time prediction. From the ex-

periments, it is evident that our proposed method improved over the no-adaptation
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baseline but there is still a lot of room for improvement to reach the Oracle-level

performance. Therefore, our results serve as a benchmark for future researchers to

work upon. We also found our Markov-chain-based-distance approach to only provide

incremental performance improvement mainly because of different distance functions

used for learning the features. This motivates us to investigate a differentiable loss

function based on the manifold-based distance for training purposes. Further analy-

sis suggests that the novel-class prototype location depends mostly on the few-shot

sample mean followed by the projection and then on the location of the nearby pro-

totypes.

As for the parametric Bayesian baseline, it is difficult to conclude what prior is the

most effective. However, we found out that using approaches that have closed-form

posterior distribution performed better than approximation methods. In most of the

cases, the manifold-based approach performs better than the Bayesian method. Also,

both the manifold-based and Bayesian-based approaches are the most effective when

the number of base categories is much less compared to the number of novel categories.

In the future, we would like to investigate an automatic selection mechanism for

the hyperparameters and also work with alternative priors and hyper-priors for the

Bayesian baseline.
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5. EMBEDDING AND GENERATIVE METHODS FOR

ZERO-SHOT LEARNING

5.1 Introduction

In this Chapter, we tackle a special case of the few-shot learning (FSL) problem

called the zero-shot learning (ZSL) problem. The ZSL problem setting consists of

having access to abundant labeled data from the base categories but no labeled data

from the novel categories. However, access to side information in the form of semantic

descriptors for both the base and the novel categories is available. Figure 5.1 depicts

the ZSL problem in terms of how much information is available from both the source

and target domains. To solve the ZSL problem, our goal is to relate the feature space

and the semantic space so that a test sample can be mapped to a common space to

carry out classification. Since we have abundant labeled data in the source domain,

we use neural networks to learn the relation. Therefore, neural networks would serve

as the structural prior for transferring knowledge to the target domain. Depending

on the type of neural networks used, we propose two approaches - the embedding

approach and the generative approach.

Previous embedding and generative approaches do not account for the presence of

novel categories. For example, Zhang et al. [120] trained a deep neural-network-based

embedding to relate the feature space and the semantic space without adapting to

novel categories. Also, the method proposed in [139] trained a generative adversarial

network exclusively on base categories, with a constraint for strict discrimination

between only the base categories. Accordingly, these methods do not generalize well

on novel categories. We propose to tackle generalization issues on novel categories

through the use of constraints and post-processing steps as depicted in Fig. 5.2.

The constraints make sure that the embedding or the generation process is learned
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Fig. 5.1. Depiction of the zero-shot recognition problem. During training, we have
lots of labeled images from seen classes (cat, dog, elephant) but no labeled images
from unseen classes. We do have semantic descriptors of all the classes available.
Using all the information, the goal is to recognize the unseen classes.

such that the model can discriminate between seen and unseen classes and biasness

towards seen-classes is removed. This improves generalization performance on novel

categories. To further improve the performance, the post-processing steps are used

so that our model gets adapted to the unlabeled test data from the novel categories.

This post-processing step includes domain adaptation or a calibration mechanism to

bias predictions towards unseen classes.

The embedding-based approach tackles three major problems in ZSL - hubness,

domain-discrepancy and seen-class biasness using a three-step approach. Firstly, a

neural-network-based mapping is learned from the semantic-descriptor space to the
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OBJECTIVE

Given labeled base category data 
and unlabeled novel category data,
we propose to relate the feature
and semantic space so that 
classification of novel categories 
can be carried out in a common 
representation space.

MOTIVATION

• Previous generative and embedding methods do not 
account for novel categories resulting in poor generalization.

• Consequently, domain shift occurs between predicted
and real semantic embedding of novel categories .

• Seen-class biasness problem occurs which causes unseen
category samples to be classified as seen categories.

• Constraints and post-processing steps are added to adapt 
the embedding and generation process.

• Proposed approach produces better recognition 
performance than unconstrained and unadapted methods.

• Structural matching constraint reduces hubness problem
while discrimination reduces seen-class biasness problem.

• Domain adaptation found to be the most effective
component of the framework in improving recognition
performance.

IMPACT

PROPOSED APPROACH

Effect of novel categories
not considered

Constraints used to train
embedding & generator for better 

generalization

Adapts to
unseen test data

Fig. 5.2. Overall outline of our proposed approach along with motivations and im-
pacts.

feature space. This mapping learns to minimize both one-to-one and pairwise dis-

tances between semantic embeddings and the image features of the corresponding

classes. Secondly, we propose a test-time domain adaptation step to adapt the se-

mantic embedding of the unseen classes to the test data. This is achieved by finding

correspondences between the semantic descriptors and the image features. Thirdly,

we propose scaled calibration on the classification scores of the seen classes. This is

necessary because the ZSL model is biased towards seen classes as the unseen classes

are not used in the training. The results of this embedding-based approach have been

published in [155].

On the other hand, the generative approaches convert the ZSL problem into a

supervised learning problem by generating data for the novel categories. Most of

these methods use Generative Adversarial Networks (GAN) as the generative model.

However, since the GAN is trained on only the base categories, the model prediction

is biased towards base categories. Also, the generated data for the novel categories
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might not accurately represent the ground truth. To address this problem, we propose

a three-way solution. Firstly, we constrain the generation process such that the

generated data from the novel classes can be highly discriminated from that of the

base classes. This constraint tries to get rid of the biasness problem. Secondly,

we enforce semantic consistency by reconstructing the semantic attributes from the

generated data. Finally, we selectively adapt and transform the generated data from

the novel classes to be close to the ground-truth unlabeled test data.

To evaluate our proposed approaches, we tested on standard datasets for ZSL and

found our method to be highly competitive with respect to previous work. We also

carried out additional studies to better understand each component of our framework.

In the next few sections, we describe the details of each of the proposed approaches.

5.2 Embedding-based Approach

This section consists of the description of the embedding-based approach. Initially,

we will describe the ZSL problem. This will be followed by a thorough description of

the problem formulation and solution. Eventually, we will discuss the implementation

and the experimental results.

5.2.1 Problem Definition

Let the training dataset Dtr consist of Ntr samples such that Dtr = {(xi, ai, yi), i =

1, 2, . . . , Ntr}. Here, xi ∈ Rm×n×c is an image sample (m×n is the image size and c is

the number of channels) and ai ∈ Rs is the semantic descriptor of the sample’s class.

Each semantic descriptor ai is uniquely associated with a class label yi ∈ Ytr. The

goal of ZSL is to predict the class label yj ∈ Yte for the jth test sample xj. In the

traditional ZSL setting, we assume that Ytr∩Yte = ∅; that is, the seen (training) and

the unseen (testing) classes are disjoint. However, in the GZSL setting, both seen

and unseen classes can be used for testing; that is, Ytr ⊂ Yte. In the training stage,

we have the semantic descriptors of both the seen and unseen classes available but
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no labeled training data of the unseen classes are available. The overall framework of

our proposed ZSL approach is shown in Fig. 5.3.

Fig. 5.3. The semantic descriptors are mapped to the image-feature space through
the multi-layer perceptron. Then the semantic embeddings are regressed to the corre-
sponding features through one-to-one and pairwise relations. After that, the semantic
embeddings of the unseen classes are adapted to the unseen test data. This is fol-
lowed by scaled calibration during testing when classification scores of seen classes
are modified.

5.2.2 Proposed Framework

Our proposed framework consists of three steps - Relational Matching, Domain

Adaptation and Scaled Calibration. These steps are described in the following sec-

tions.

Relational Matching

Our goal is to learn a mapping f(·) that maps a semantic descriptor ai to its

corresponding image feature φ(xi). Here, xi is an image and φ(·) represents a CNN

architecture that extracts a high-dimensional feature map. The mapping f(·) is a

fully-connected neural network. Since our goal is to make the embedded semantic de-

scriptor close to the corresponding image feature, we use a least square loss function
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to minimize the difference. We also need to regularize the parameters of f(·). Includ-

ing these costs and averaging over all the instances, our initial objective function L1

is as follows:

L1 =
1

Ntr

Ntr∑
i=1

||f(ai)− φ(xi)||22 + λrg(f) , (5.1)

where g(·) is the regularization loss for the mapping function. The loss function

L1 minimizes the point-to-point discrepancy between the semantic descriptors and

the image features. To account for the structural matching between the semantic-

descriptor space and the image-feature space, we try to minimize the inter-class pair-

wise relations in these two spaces. Thus, we construct relational matrices for both

the semantic descriptors and image features. The semantic relational matrix Da is

established such that each element, [Da]uv = ||f(au) − f(av)||22, where au and av are

semantic descriptors of seen categories u and v, respectively. The image feature rela-

tional matrix Dφ is constructed such that each element, [Dφ]uv = ||φu − φv||22, where

φ
u

and φ
v

are mean representations of the categories u and v, respectively. φ
u

can be

represented as

φ
u

=
1

|Yutr|
∑
yi∈Yutr

φ(xi) , (5.2)

where the summation is over the representations of class u, and |Yutr| is the cardinality

of the training set of class u. A similar formula holds for class v. For structural

alignment, we want the two relational matrices, Da and Dφ, to be close to one another.

Hence, we want to minimize the structural alignment loss function L2,

L2 = ||Da −Dφ||2F , (5.3)

where || · ||2F stands for the Frobenius norm. Combining the loss functions L1 and L2,

we have the total loss Ltotal,

Ltotal = L1 + ρL2 , (5.4)

where ρ ≥ 0 weighs the loss contribution of L2. Ltotal is to be optimized with respect

to the parameters of the semantic-descriptor-to-visual-feature-space mapping f(·).
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Domain Adaptation

After the training is carried out, domain discrepancy may be present between the

mapped semantic descriptors and the image features of unseen categories. This is be-

cause the unseen data has not been used in the training and our regularized model does

not generalize well for the unseen categories. Hence, we need to adapt the mapped

semantic descriptors for the unseen categories using the test data from the unseen

categories. Let the mapped descriptors for the unseen categories be stacked vertically

in the form of a matrix A ∈ Rnu×d, where nu is the number of unseen categories and

d is the dimension of the mapped semantic-descriptor space, and therefore it is also

the dimension of the image-feature space. Let U ∈ Rou×d be the unseen test dataset,

where ou is the number of test instances from the unseen categories. For adapting the

mapped descriptors, we propose to find the point-to-point correspondence between

the descriptors and the test data. Let the correspondence be represented as a matrix

C ∈ Rnu×ou . We want to rearrange the rows of U such that each row of the modified

matrix corresponds to the row in A. This is done by minimizing the following loss

function L3,

L3 = ||CU−A||2F . (5.5)

This loss function enforces that CU produces the adapted semantic descriptors.

However, a problem may exist that an instance in U corresponds to more than one

descriptor in A. This would essentially result in a test sample corresponding to more

than one category. To avoid that, we use an additional group-based regularization

function L4 using Group-Lasso,

L4 =
∑
j

∑
c

||[C]Icj||2 , (5.6)

where Ic corresponds to the indices of those rows in A that belong to the unseen

class c. Therefore, [C]Icj is the vector consisting of the row indices from Ic and the

jth column. Since C is a correspondence matrix, some constraints should be enforced

such as C ≥ 0, C1ou = 1nu and CT1nu = nu
ou

1ou , where 1n is an n×1 vector of one’s.
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The second equality constraint is scaled by the factor nu
ou

to account for the difference

in the number of instances in the mapped semantic-descriptor space and the image-

feature space for the unseen categories. Hence, the domain adaptation optimization

problem becomes

min
C
{L3 + λgL4} s.t. C ≥ 0,C1ou = 1nu ,C

T1nu =
nu
ou

1ou , (5.7)

where λg weighs the loss function L4.

The above optimization problem is convex and can be efficiently solved using the

conditional gradient method [161]. The conditional gradient method requires solving

a linear program as an intermediate step over the constraints C ∈ D = {C : C ≥

0,C1ou = 1nu ,C
T1nu = nu

ou
1ou} as shown in Algorithm 8. The linear program of

finding the intermediate variable Cd in Algorithm 8 can be easily solved using a

network simplex formulation of the earth-mover’s distance problem [193].

Algorithm 8: Conditional Gradient Method (CG).

Intitialize : C0 = 1
(nuou)1nu×ou , t = 1

Repeat

Cd = argmin
C

Tr(∇C=C0(L3 + λgL4)TC), s.t. C ∈ D

C1 = C0 + α(Cd −C0), for α = 2
t+2

C0 = C1 and t = t+ 1

Until Convergence

Output : C0 = arg min
C
{L3 + λgL4} s.t. C ∈ D

Once the final solution of the correspondence matrix C0 in Algorithm 8 is obtained,

we inspect C0. For each test instance, we assign the class correspondence to the

highest value of the correspondence variable. This is done for all the test instances.

The new semantic descriptors are obtained by taking the mean of the feature instances

belonging to the corresponding class. The adapted semantic descriptors are then

stacked vertically in the matrix A′.
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Scaled Calibration

In the GZSL setting, it is known that the classification results are biased towards

the seen categories [130]. To counteract the bias, we propose the use of multiplicative

calibration on the classification scores. In our case, we use 1-Nearest Neighbor (1-

NN) with the Euclidean distance metric as the classifier. The classification score for a

test point is given by the Euclidean distance of the test image feature to the mapped

semantic descriptor of a category. For a test point x, we adjust the classification

scores on the seen categories as follows

ŷ = argmin
c∈T

||x− f(ac)||2 · I[c ∈ S] , (5.8)

where I[·] = γ if c ∈ S and 1 if c ∈ U and S ∪U = T . Here, S,U and T represent the

sets of seen, unseen and all categories, respectively. The effect of scaling is to change

the effective variance of the seen categories. When the nearest-neighbor classification

is carried out with the Euclidean distance metric, it assumes that all classes have equal

variance. But since the unseen categories are not used for learning the embedding

space, the variance of the unseen-category features is not accounted for. That is why

the Euclidean distance metric for the seen categories needs to be adjusted for. For

γ > 1, if we obtain a balanced performance between the seen and unseen classes,

it implies that the variance of the seen classes has been overestimated. Similarly, if

we obtain a balanced performance for γ < 1, it means that the variance of the seen

classes has been underestimated. The overall procedure of our proposed zero-shot

learning method from training to testing is given in Algorithm 9.

5.2.3 Experimental Results

Following the previous experimental settings [148], we used the following four

datasets for evaluation: AwA2 [118] (Animal with Attributes) contains 37,322 im-

ages of 50 classes of animals. 40 classes of animals are considered to be the seen cat-

egories while 10 classes of animals are considered to be the unseen categories. Each
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Algorithm 9: Proposed Zero-shot Learning Algorithm.

Input: Training Dataset {(xi,ai, yi)}Ntri=1

Parameters: λr, ρ, λg, γ

Repeat (Training)

Sample Minibatch of {(xi,ai)} pairs

Gradient descent L1 + ρL2 w.r.t parameters of f(·)

Until Convergence

Input: Test Dataset {(xi)}Ntei=1

Apply Algorithm 8 to obtain adapted descriptors

of unseen classes A′ (Adaptation)

Repeat for each test point x (Testing)

ŷ = argmin
c∈T

||x− f(ac)||2 · I[c ∈ S] (Calibration)

Until all test points covered

class is associated with a 85-dimensional continuous semantic descriptor. aPY [194]

(attribute Pascal and Yahoo) consists of 20 seen categories and 12 unseen categories.

Each category has an associated 64-dimensional semantic descriptor. CUB [182]

(Caltech-UCSD Birds-200-2011) is a fine-grained dataset consisting of 11,788 images

of birds. For evaluation, all the bird categories are split into 150 seen classes and

50 unseen classes. Each class is associated with a 312-dimensional continuous se-

mantic descriptor. SUN [195] (Scene UNderstanding database) consists of 14340

scene images. Among these, 645 scene categories are selected as seen categories while

72 categories are selected as unseen categories and it consists of a 102-dimensional

semantic descriptor.

For the purpose of evaluation, we used class-wise accuracy because it prevents

dense-sampled classes from dominating the performance. Accordingly, class-wise ac-

curacy is averaged as follows

acc =
1

|Y|

|Y|∑
y=1

No. of correct predictions in class y

No. of samples in class y
, (5.9)
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where |Y| is the number of testing classes. In the GZSL case, class-wise accuracy

of both seen and unseen classes are obtained separately and then averaged using

harmonic mean H [148]. This is done so that the performance on seen classes does

not dominate the overall accuracy,

H =
2× accs×accu
accs + accu

, (5.10)

where accs and accu are the class-wise accuracy on seen and unseen categories, re-

spectively. In the GZSL classification setting, the search space of predicted categories

consists of both seen and unseen categories. Based on [148] and for fair comparison,

a single trial of experimental results on a large batch of training and testing dataset

is reported.

For the experiments, we used a two-layer feedforward neural network for the

semantic embedding f(·). The dimensionality of the hidden layer was chosen as

1600, 1600, 1200 and 1600 for the AwA2, aPY, CUB and SUN datasets, respec-

tively. The activation used was ReLU. The image features used were the ResNet-101.

We compared different variations of our proposed method with previous approaches.

OURS-R variation is with the training stage including the structural loss L2. OURS-

RA includes the structural loss as well as the domain adaptation stage including

the loss functions L3 and L4. OURS-RC includes the structural loss as well as the

calibrated testing stage. OURS-RAC includes all the components of structural loss,

domain adaptation and calibrated testing. Without all these components, the pro-

posed method reduces to the Deep Embedding Model (DEM) [120] baseline. The

parameters (λr, ρ, λg, γ) for the AwA2, aPY, CUB and SUN datasets are set as

(10−3, 10−1, 10−1, 1.1), (10−4, 10−1, 10−1, 1.1), (10−2, 0, 10−1, 1.1) and (10−5, 10−1, 10−1,

1.1), respectively. For the OURS-RAC variation, we used different calibration param-

eter values of 0.98, 1.1, 0.97, 0.999 for the AwA2, aPY, CUB and SUN datasets,

respectively. ρ was set to 0 for the CUB dataset because it is a fine-grained dataset

and since the categories are very close to each other in the feature space, struc-

tural matching does not provide additional information. In Table 5.1, we reported

class-wise accuracy results for the conventional unseen classes setting (tr), general-
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ized unseen classes setting (u), generalized seen classes setting (s), and the Harmonic

mean (H) of the generalized accuracies.

Table 5.1. Results of variations of our proposed approach in comparison with previous
methods on the AwA2, aPY, CUB and SUN datasets. The best results of each
setting in each dataset are shown in boldface.

AwA2 aPY CUB SUN

Method tr u s H tr u s H tr u s H tr u s H

DAP [118] 46.1 0.0 84.7 0.0 33.8 4.8 78.3 9.0 40.0 1.7 67.9 3.3 39.9 4.2 25.1 7.2

IAP [118] 35.9 0.9 87.6 1.8 36.6 5.7 65.6 10.4 24.0 0.2 72.8 0.4 19.4 1.0 37.8 1.8

CONSE [137] 44.5 0.5 90.6 1.0 26.9 0.0 91.2 0.0 34.3 1.6 72.2 3.1 38.8 6.8 39.9 11.6

CMT [123] 37.9 0.5 90.0 1.0 28.0 1.4 85.2 2.8 34.6 7.2 49.8 12.6 39.9 8.1 21.8 11.8

SSE [136] 61.0 8.1 82.5 14.8 34.0 0.2 78.9 0.4 43.9 8.5 46.9 14.4 51.5 2.1 36.4 4.0

LATEM [128] 55.8 11.5 77.3 20.0 35.2 0.1 73.0 0.2 49.3 15.2 57.3 24.0 55.3 14.7 28.8 19.5

ALE [121] 62.5 14.0 81.8 23.9 39.7 4.6 73.7 8.7 54.9 23.7 62.8 34.4 58.1 21.8 33.1 26.3

DEVISE [122] 59.7 17.1 74.7 27.8 39.8 4.9 76.9 9.2 52.0 23.8 53.0 32.8 56.5 16.9 27.4 20.9

SJE [127] 61.9 8.0 73.9 14.4 32.9 3.7 55.7 6.9 53.9 23.5 59.2 33.6 53.7 14.7 30.5 19.8

ESZSL [126] 58.6 5.9 77.8 11.0 38.3 2.4 70.1 4.6 53.9 12.6 63.8 21.0 54.5 11.0 27.9 15.8

SYNC [125] 46.6 10.0 90.5 18.0 23.9 7.4 66.3 13.3 55.6 11.5 70.9 19.8 56.3 7.9 43.3 13.4

SAE [129] 54.1 1.1 82.2 2.2 8.3 0.4 80.9 0.9 33.3 7.8 54.0 13.6 40.3 8.8 18.0 11.8

GFZSL [196] 63.8 2.5 80.1 4.8 38.4 0.0 83.3 0.0 49.3 0.0 45.7 0.0 60.6 0.0 39.6 0.0

SR [197] 63.8 20.7 73.8 32.3 38.4 13.5 51.4 21.4 56.0 24.6 54.3 33.9 61.4 20.8 37.2 26.7

DEM [120] 67.1 30.5 86.4 45.1 35.0 11.1 75.1 19.4 51.7 19.6 57.9 29.2 40.3 20.5 34.3 25.6

OURS-R 63.4 36.5 80.6 50.3 29.9 15.3 71.4 25.2 46.6 20.2 48.6 28.6 59.9 21.7 38.1 27.6

OURS-RA 64.4 61.8 69.9 65.6 35.4 30.4 72.9 42.9 52.6 47.6 41.0 44.1 67.5 54.4 36.6 43.7

OURS-RC 63.4 57.9 72.0 64.2 29.9 26.4 53.3 35.3 46.6 27.2 43.9 33.6 59.9 42.4 32.6 36.8

OURS-RAC 64.4 60.6 72.3 65.9 35.4 34.1 63.5 44.4 52.6 44.0 45.1 44.6 67.5 54.1 36.6 43.7

From the table, we observed that our proposed approach outperforms previous

methods by a large margin in the generalized harmonic mean setting. To be more

specific, our proposed method produces an improvement of around 20%, 23%, 10%

and 16% harmonic mean accuracy over the previous best approach for the AwA2,

aPY, CUB and SUN datasets, respectively. The large improvement in performance

can be attributed to our three-step procedure for improvement. Using only the struc-

tural matching (OURS-R), we produced better results than previous approaches ex-

cept for the CUB dataset, where it produces a harmonic mean accuracy of about

28%. This is because CUB requires minute fine-grained feature extraction. Addi-
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tional usage of domain adaptation (OURS-RA) and calibrated testing (OURS-RC)

produced much better results than OURS-R for all the datasets. However, domain

adaptation produced better result than the calibration procedure. This is because

our correspondence-based approach produced class-specific adaptation of the unseen

class semantic embeddings. The scaled-calibration procedure is not class-specific and

just differentiates between seen and unseen classes. It also does not adapt to the test

data.

It is to be noted that the difference in performance between OURS-RA and OURS-

RAC is negligible. This is because the domain adaptation step transforms the unseen

semantic embeddings away from the seen categories towards the unseen categories,

thus reducing the bias towards the seen categories and rendering further calibration

ineffective. The effect of domain adaptation is visualized in Fig. 5.4 for the AwA2

dataset using t-SNE [174]. In Fig. 5.4(a), the unseen class semantic embeddings (blue)

remained very close to the seen class features (maroon). However, with the domain

adaptation step, the unseen class semantic embeddings get transformed to near the

center of unseen class feature clusters (green) as shown in Fig. 5.4(b).

Fig. 5.4. 2D t-SNE map of the embedded instances. (a) Without domain adapta-
tion and (b) with domain adaptation for the AwA2 dataset. Here, the seen and
unseen image features are shown in maroon and green, respectively. The embedded
semantic descriptors for the seen and unseen classes are shown in red and blue color,
respectively.
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We also analyzed the effect of the structural matching by varying ρ and observed

how the class-wise accuracy changes. We carried out experiments using the AwA2

and SUN datasets, the results of which are reported in Fig. 5.5. We also reported the

DEM baseline (ρ = 0) in dotted lines. From the plots, the Conventional Unseen and

the Generalized Seen accuracies are better than or equal to the baseline for only a

small range of ρ. On the other hand, the Generalized Unseen accuracy is greater than

the baseline over a large range of ρ for the AwA2 dataset while it oscillated about the

baseline for the SUN dataset. For the SUN dataset, we do not have a significant gain

over the baseline because SUN is a fine-grained dataset where structural matching

does not carry additional information. The goal of structural regularization is to

exploit the pairwise relations among classes so as to generalize better to novel classes.

Therefore, we did not see huge difference in performance from the baseline for the

Generalized Seen accuracy. Surprisingly, there was a drop in conventional unseen

accuracy as ρ was increased. This might be probably because there was no overlap

between the classes used for testing and the classes used for structural matching. This

is not the case though in the generalized setting.

We also studied the effect of varying the calibration parameter γ on the generalized

accuracy for the AwA2 and SUN datasets. The results are shown in Fig. 5.6. As

expected, the generalized unseen accuracy increases and the generalized seen accuracy

decreases with increasing γ. The peak of the harmonic mean accuracy was observed

close to when the seen and unseen accuracies became equal. The maximum unseen

accuracy is less than the maximum seen accuracy for the AwA2 dataset because the

unseen classes are less separated and therefore more difficult to classify. The situation

is reversed for the SUN dataset where the maximum unseen accuracy is more than

the maximum seen accuracy.

We also reported convergence results of the test accuracy with respect to the

number of epochs for both the AwA2 and the SUN datasets in Figs. 5.7 and 5.8,

respectively. We used the OURS-R variation with ρ = 0.1 to compare with the

DEM baseline. The convergence rate for the baseline and OURS-R variation seems
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Fig. 5.5. Results of class-wise accuracy as ρ is varied for different settings on the
AwA2 and the SUN datasets. The baseline used is DEM. The different performance
settings are Conventional Unseen Accuracy (Left Top), Generalized Seen Accuracy
(Right Top), Generalized Unseen Accuracy (Left Bottom) and Generalized Harmonic
Mean Accuracy (Right Bottom).

Fig. 5.6. Results of Generalized Seen Accuracy (Red), Generalized Unseen Accu-
racy (Green) and Generalized Harmonic Mean Accuracy (Blue) as the calibration
parameter γ is varied on the AwA2 and SUN datasets.
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to be similar in all the settings for both datasets. However, our steady-state values

were higher for the generalized unseen and generalized harmonic mean setting. For

the conventional unseen and generalized seen setting, our steady-state value was less

than the baseline. The reason is explained previously while describing performance

sensitivity to ρ.

Fig. 5.7. Convergence results of test accuracy with respect to the number of epochs
under different settings for the AwA2 dataset. OURS-R results are shown in red
color while the DEM baseline is shown in blue color.

We also studied the effect of varying the number of test unseen samples per class on

the generalized harmonic mean accuracy. We used OURS-RA variation of our model

for this study. ρ = 0.1 was set for the experiments on the AwA2 (blue color) and

the SUN (yellow color) datasets and the result was reported in Fig. 5.9. When the

fraction is 0.01 for the SUN dataset, the number of samples in some classes becomes

zero and therefore the performance is not reported. From the results, it is seen that

the test accuracy was stable with change in the fraction of total number of samples

used for testing. There is a slight increase in accuracy with decreasing number of
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Fig. 5.8. Convergence results of test accuracy with respect to the number of epochs
under different settings for the SUN dataset. OURS-R results are shown in red color
while the DEM baseline is shown in blue color.

samples, which is surprising because domain adaptation would perform poorly with

less number of samples. However, this effect is nullified since the probability of

including challenging examples is reduced and so we observed a slight improvement

in performance.

We also studied how the test performance varies as the number of seen classes

for training is reduced for the AwA2 dataset using OURS-R model. We set ρ = 0.1

and reported results over 5 trials in Fig. 5.10. We observed that the change in the

seen-class accuracy is not much because the training and testing distributions are the

same. The conventional unseen-class accuracy dips by a large amount as the number

of training classes decreases because there is less representative information to be

transferred to novel categories. However, we obtained a peak for the generalized

unseen accuracy results at a fraction of 0.4 of the number of seen classes. This is

because as the number of training classes decreases, the amount of representative
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Fig. 5.9. Generalized Harmonic Mean Accuracy results as the number of test samples
per class is varied for the AwA2 (blue) and SUN (yellow) datasets.

information decreases, causing decrease in performance. On the other hand, less

number of seen classes implies less bias towards seen categories and improvement of

unseen-class accuracies. Also, there is large performance variation for unseen-class

accuracy because training and testing distributions are different and the performance

can vary depending on how related are the training classes to the unseen classes in a

trial.

We also performed experiments to find whether the OURS-R variant reduces hub-

ness compared to DEM. The hubness of a set of predictions is measured using the

skewness of the 1-Nearest-Neighbor histogram (N1). The N1 histogram is a frequency

plot for N1[i] of the number of times a search solution i (in our case a class attribute)

is found as the Nearest Neighbor for the test samples. Less skewness of N1 histogram

implies less hubness of the predictions. We used the test samples of the unseen classes

in the generalized setting for both DEM and OURS-R on the AwA2 and the aPY

datasets. We used ρ = 0.1 and reported results averaging over 5 trials in Table 5.2.
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Fig. 5.10. Test accuracy results as the number of seen classes used for training is
varied for the AwA2 dataset.

From the results, OURS-R method produced less skewness of the N1 histogram on

both the datasets. This implies that using the additional structural term reduces

hubness and therefore the curse of dimensionality is reduced.

Table 5.2. Hubness comparison using skewness for DEM and OURS-R methods on
the AwA2 and aPY datasets.

Skewness AwA2 aPY

DEM 3.39 1.85

OURS-R 2.41 1.33
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5.3 Generative Approach

This section consists of the description of the generative approach. We will redefine

the ZSL problem for the sake of convenience. This will be followed by a thorough

description of the problem formulation and solution. Eventually, we will discuss the

implementation and the experimental results.

5.3.1 Problem Description

The training dataset Dtr contains Ntr samples, where Dtr = {(Ii, ai, yi), i =

1, 2, . . . , Ntr}. Each Ii ∈ Rh×w×c is an image where h is the image height, w is the

image width and c is the number of channels in the image. ai ∈ Rs is the semantic

descriptor of the sample category, where s is the dimension of the descriptor. ai has

an unique association with the category label yi ∈ Ytr. Our aim is to predict the

category yj ∈ Yte for the jth test image Ij. In the traditional ZSL setting, Yte consists

of only the unseen classes. In the generalized ZSL setting, Yte consists of both seen

and unseen classes. We also assume access to the semantic descriptors of both seen

and unseen classes all the time.The overall framework of our proposed generative ZSL

approach is shown in Fig. 5.11.

5.3.2 Proposed Approach

Background on GANs

GANs [20] were developed to synthesize data that have similar distribution as

the real data. They are trained by playing a minimax game between two neural

networks - the generator G and the critic C. Based on a previous study [139], it

has been shown that generating image features instead of image pixels provide better

performance for the ZSL task. Hence, we resort to generating features instead of

pixels in this work. The generator G uses input as noise z ∈ Rz sampled from a

normal distribution N (0, I) and then outputs the synthetic features x̃ ∈ Rd, where
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Reconstructed Semantics 

Real Feature

Fake Feature

D  Discriminator of seen and unseen class
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Fig. 5.11. In the proposed framework, the generator is fed with a noise input and
a semantic attribute as the conditional information. The generator is trained to
synthesize visual features that try to fool the critic from distinguishing real and
synthesized data. The discriminator D tries to distinguish between real seen features
and fake unseen features. The synthesized features are also enforced to reconstruct
their corresponding semantic descriptors. After the training is over, the generator
is used to synthesize labeled data from the unseen classes. The discriminator D is
used to separate out unlabeled unseen test data from all of the unlabeled test data.
The generated unseen data is then adapted and transformed to the unlabeled unseen
test data. The real seen data and this transformed unseen data is used for training a
classifier.

z and d are the dimensionality of the noise and the feature space, respectively. The

critic C then tries to distinguish the synthetic feature x̃ from the real features x.

On the other hand, G tries to fool C from correctly classifying seen and unseen

features. The optimizing loss function used is the Jensen-Shannon (JS) divergence

between the real and the synthetic distributions. At the end of the training, G

produces features indistinguishable from the real features. However, this conventional

GAN framework suffers from the vanishing gradient problem especially when the

probability distributions do not overlap. As a result, G is not able to receive gradient

information from the loss function and hence unable to learn properly. To tackle

this problem, the Wasserstein Generative Adversarial Network (WGAN) [140] was

introduced, which uses the Wasserstein distance [198] instead of the JS Divergence.
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It also uses an appropriate 1-Lipschitz continuity constraint [199] on C. This removes

the vanishing gradient problem, resulting in more stable training. In our case, we use

the conditional WGAN, where the semantic descriptor a is used in addition to the

noise z as the input to G. This allows G to generate samples of a particular class

whose semantic descriptor is a. Overall, the optimization problem of WGAN is

min
G

max
C
LWG = E[C(x)]− E[C(G(z, a))]− λlE[(||∇x̂C(x̂)||2 − 1)2], (5.11)

where λl > 0 is a hyper-parameter and E[·] is the expectation operator. ∇ is the gradi-

ent operator and ||·||2 is the 2-norm. The generator G(z, a) synthesizes data with noise

z and the semantic descriptor a as the input. The regularization E[(||∇x̂C(x̂)||2−1)2]

enforces 1-Lipschitz continuity constraint. Also, x̂ = νx + (1− ν)G(z, a), where ν is

sampled from the uniform distribution U [0, 1].

Use of Seen-Unseen Class Discriminator

The goal of the discriminator network D is to distinguish between seen and unseen

visual features in order to reduce the seen-class biasness problem. The input to D

will be either real seen features or synthesized unseen features. If the input to D is

x, D(x) provides two outputs: (a) Ds(x), that is, the probability of x belonging to a

seen class, and (b) Du(x), that is the probability of x belonging to an unseen class.

Obviously, Ds(x) + Du(x) = 1 to satisfy softmax probability output constraints. To

learn the parameters of D, we minimize the cross-entropy classification loss function

LD,

LD = −E[log Ds(xs)]− E[log Du(G(z, au))], (5.12)

where xs is the real seen class feature and au is the unseen class semantic descriptor. It

is important to note that LD is minimized with respect to D only. For optimizing G,

we need to synthesize features that can highly discriminate between seen and unseen

classes. In other words, D should produce peaky or low entropy probability outputs.

On the other hand, high entropy probability output corresponds to obtaining equal
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probabilities of 0.5 for seen and unseen classes. To obtain high entropy probability

outputs, we minimize the following cross-entropy loss function LE,

LE = −E[0.5 log Ds(G(z, a)) + 0.5 log Du(G(z, a))] (5.13)

Since our goal is to obtain low entropy outputs, we would maximize LE with respect to

the parameters of G only. Enforcing low entropy probability outputs would eventually

let G generate unseen class features whose predictions are not biased towards seen

classes.

Reconstructing Semantic Descriptors from Visual Features

The problem with using the seen-unseen class discriminator D is that it might

generate unseen class data that will not be semantically consistent with the ground

truth class structural arrangement. As a result, there is a need to reconstruct the

generated features back into the semantic descriptors. For that reason, we use the

reconstruction network R as shown in Fig. 5.11. However, we do not jointly learn

G and R because it might interfere with each of the network’s learning process. We

pre-train the reconstruction network using the real features from the seen classes and

its corresponding semantic attributes. The pre-training can be done by minimizing

the loss function LR,

LR = E[||R(x)− a||22]. (5.14)

If we just minimize LR, we can find R that maps features to semantic descriptors

only for seen classes but this mapping would not generalize to unseen classes. We also

do not have access to real labeled data from the unseen classes. Hence, we model the

pairwise relations between classes and expect this structural relationship of classes

to aid in better generalization. To model the structural relation between classes,

we construct distance matrices for both the mapped features and the semantics.

The semantic distance matrix Da is constructed where each element of the matrix

[Da]ij = ||ai − aj||22. ai and aj are semantic descriptors of the seen categories i and

j, respectively. The mapped visual feature distance matrix Dr is constructed where
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each element of the matrix [Dr]ij = ||ri − rj||22. rj and rj are mean of the mapped

visual features of the seen categories i and j, respectively. ri can be represented as

ri =
1

|Y is|
∑
yk∈Yis

R(xk) , (5.15)

where the summation is done for the class i. |Y is| is the number of training samples

in seen class i. We can repeat the same formula for class j. For pairwise structural

alignment between the classes, we expect the two distance matrices, Da and Dr, to

be similar to one another in the Euclidean sense. Hence, we minimize the following

loss function LS,

LS = ||Da −Dr||2F , (5.16)

where || · ||2F is the Frobenius norm. Overall, we combine the loss functions LR and

LS to obtain

LRS = LR + λsLS , (5.17)

where λs > 0 weighs the contribution of LS. Let us assume that LRS is minimized

with respect to R to obtain R∗. This optimized reconstruction network R∗ is passed

into LR to obtain LR∗ . So, after this pre-training stage is over and during training of

G, we minimize the following loss function,

LR∗ = E[||R∗(G(z, a))− a||22]. (5.18)

The loss function LR∗ is optimized with respect to the parameters of G and the

generated features are sampled from both seen and unseen classes. Thus, we have

decoupled the learning of the reconstruction network and the generator and also

preserved the semantic consistency of the classes.

Domain Adaptation

After the training of the generator G, the critic C and the discriminator D are

completed, we then proceed to adapt the generated unseen data with respect to the

unlabeled test data. However, the test data can belong to both seen and unseen
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classes. Therefore, we reuse the optimized discriminator D∗ to separate out the

unseen data from the test data. We select those samples as unseen whose unseen

class probability output is greater than a threshold, i.e., D∗u(x) > th. It is important

to note that we allow the threshold to vary, th ∈ [0, 1], instead of fixing th = 0.5.

This is because the discriminator had been calibrated on the generated data instead

of the ground-truth test data and th = 0.5 might not be an appropriate threshold

for distinguishing seen and unseen classes. Let the selected unseen class data be

Xs
u ∈ Rns×d and the generated unseen class data be Xg

u ∈ Rng×d, where ns is the

number of selected data points and ng is the number of generated data points. Our

goal is to adapt Xg
u such that it is transformed close to Xs

u. For adapting Xg
u, we use a

sample-to-sample correspondence approach inspired from [149]. The correspondence

tries to find a matching between the generated samples and selected unseen test data.

The correspondence is represented using a matching matrix M ∈ Rng×ns . Each row

of M corresponds to a generated sample while each column corresponds to a selected

sample. M operates on Xs
u and rearranges the rows of Xs

u such that they are closer

to the rows of Xg
u. To find M, we minimize the following loss function, LM ,

LM = ||MXs
u −Xg

u||2F . (5.19)

In addition, we also exploit the labeled information of the generated data by using

a Group-Lasso (GL) regularization. This GL regularization enforces a smooth trans-

formation by ensuring that a sample in Xs
u corresponds to samples of only a single

class in Xg
u. Accordingly, the GL regularization is described as

LGL =
∑
j

∑
c

||[M]Icj||2 , (5.20)

where Ic consists of the row indices in Xg
u belonging to unseen class c. Accordingly,

[M]Icj is a list of elements consisting of the row indices of Ic and the jth column. We

also enforce constraints on M such as M ≥ 0, M1ns = 1ng and MT1ng = ng
ns

1ns , where

1n is an n×1 vector of one’s. The factor ng
ns

is used to take care of the difference in the



167

number of samples between Xs
u and Xg

u. Using these constraints, the optimization

problem can be formulated as

min
M
{LM + λglLGL}

subject to M ≥ 0,M1ns = 1ng ,M
T1ng =

ng
ns

1ns ,
(5.21)

where λgl > 0 weighs the contribution of the regularization LGL. This convex opti-

mization problem is bounded by simplex constraints and it can be efficiently solved

using the Frank-Wolfe algorithm also known as the conditional gradient method [161].

This conditional gradient method iteratively solves a set of linear programs over the

same set of constraints as the original problem after which it converges to the solu-

tion. Let the constraints of the linear program be denoted as M ∈ M = {M : M ≥

0,M1ns = 1ng ,M
T1ng = ng

ns
1ns}. Accordingly, the linear program can be solved effi-

ciently using a network-simplex approach to the min-flow problem [193]. The iterative

method of obtaining M is described in Algorithm 10.

Algorithm 10: Conditional Gradient (CG) Approach.

Intitialize : M0 = 1
(ngns)

1ng×ns , t = 1

Repeat

Use network simplex to solve for Md = argmin
M∈M

Tr(∇M=M0(LM + λglLGL)TM)

MI = M0 + α(Md −M0), where α = 2
t+2

M0 = MI and t = t+ 1

Until Convergence

Output : M∗ = M0 = argmin
M∈M

{LM + λglLGL}

Using Algorithm 10, we can obtain the solution of the correspondence matrix as

M∗. This solution can then be used to transform Xg
u such that the transformed

generated data is M∗Xs
u. Finally, the transformed generated unseen class data and

the real seen class data are used to train a classifier to recognize the test data into

one of the base and novel categories.
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It is important to note that the domain-adaptation step used in this work extends

the domain-adaptation method proposed in our earlier work [155]. In [155], we as-

sumed access to the unseen test data while in our current case, we use the threshold

mechanism with the discriminator D to select the unseen test data. Also, in [155] we

carried out domain adaptation between the semantic embeddings and the unseen test

data while in this current work, we carry out domain adaptation between the gener-

ated unseen data and the test unseen data. The overall procedure of our proposed

framework is shown in Algorithm 11.

5.3.3 Experiments and Discussions

To validate our proposed constrained generative approach for the ZSL and the

GZSL settings, we conducted experiments on five standard datasets. These datasets

contain a wide variation of fine-grained and coarse-grained categories and hence serve

as standard benchmarks for ZSL and GZSL.

Dataset Description

For evaluation purposes, we experimented with the following five datasets: (a) An-

imals with Attributes (AwA) [118], containing 30,475 images of animals distributed

across 40 seen and 10 unseen classes. It consists of a 85-dimensional semantic de-

scriptor. (b) Attribute Pascal and Yahoo (aPY) [194], which contains 15,339 images

from PASCAL VOC 2008 dataset [200] and Yahoo search queries distributed across

20 seen and 12 unseen classes. It consists of a 64-dimensional semantic descriptor.

(c) Caltech-UCSD Birds-200 (CUB) [182] contains 11,778 images of bird species

distributed across 150 seen and 50 unseen classes. It consists of a 312-dimensional

semantic descriptor. (d) Scene Understanding (SUN) [195] contains 14,340 images

distributed across 645 seen and 72 unseen classes. It consists of a 102-dimensional

semantic descriptor. (e) Flowers (FLO) [201] contains 8,189 images of flower species

distributed across 82 seen and 20 unseen categories. It consists of a 1024-dimensional
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Algorithm 11: Proposed ZSL framework.
Given: The training dataset Dtr containing Ntr samples from base categories where

Dtr = {(Ii,ai, yi), i = 1, 2, . . . , Ntr}. We also have semantic descriptors au of unseen

classes

Hyper-parameters: λl, λs, λgl, λr, λe, th

Randomly initialize parameters of reconstructor (R), generator (G), critic (C) and

discriminator (D)

Step 1: Pre-train reconstruction network R

For each epoch

For each sampled batch

Take gradient descent step of LRS with respect to

parameters of R

End For

End For

Optimized reconstruction network R∗ obtained.

Step 2: Train generator G, critic C and discriminator D

For each epoch

For each sampled batch

Take gradient ascent steps of LWG with respect to

parameters of C

Take gradient descent step of LD with respect to

parameters of D

Take gradient descent step of LWG + λrLR∗−

λeLE with respect to parameters of G

End For

End For

Optimized C∗, D∗ and G∗ obtained.

Step 3: Adapt generated unseen data to test data

Use G∗ to generate data for unseen classes

Select unseen test data using D∗u(x) > th thresholding mechanism

Adapt and transform generated unseen data Xg
u towards selected unseen test data

Xs
u using Algorithm 10

Step 4: Train classifier using the transformed generated unseen data and the real

seen data
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semantic descriptor. For all these datasets, the image features used were the 2048-

dimensional ResNet-101 [23], pre-trained on ImageNet. Example of images from these

datasets are shown in Fig. 5.12.

(a) (b)

(c) (d)

(e)

Fig. 5.12. Example images from (a) AwA, (b) aPY, (c) CUB, (d) SUN and (e)
FLO datasets.

Implementation Details

The dimension of the noise input z to the generator G is kept the same as the

dimension of the semantic descriptor. Accordingly, the dimension of z is 85, 64, 312,

102 and 1024 for the AwA, aPY, CUB, SUN and FLO datasets, respectively. The

generator G, critic C and reconstructor R all use a two-layer fully connected neural

network with 4096 hidden units and ReLU activation function. The discriminator uses

single layer softmax outputs with two nodes representing seen and unseen categories.

The optimization algorithm used is Adam [179]. The number of epochs used for

training on the AwA, aPY, CUB, SUN and FLO datasets are 30, 40, 56, 40 and

80, respectively. The number of conditional gradient iterations is fixed at 20. The

hyper-parameters λl, λgl and λs are set as 10, 0.1 and 0.1, respectively. The values
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(λr, λe, th) were set as (1, 1e− 3, 0.5), (1e− 4, 10, 0.2), (1, 1e− 2, 0.2), (1, 0.1, 0.2) and

(1, 1e− 4, 0.5) for the AwA, aPY, CUB, SUN and FLO datasets, respectively.

Comparison Studies

For comparison with previous work, we used class-wise accuracy as the perfor-

mance metric because it prevents categories with larger number of samples to domi-

nate the performance. The class-wise accuracy (acc) can be expressed as

acc =
1

|Y|

|Y|∑
y=1

No. of correct predictions for class y

No. of samples for class y
(5.22)

where |Y| is the number of testing classes. In the GZSL setting, we test on both seen

and unseen class samples with a label space containing all the categories. As a result,

we obtain accs and accu as the class-wise accuracy on the seen and unseen class test

samples, respectively. accs and accu are averaged to obtain the harmonic mean H

such that

H =
2× accs × accu
accs + accu

. (5.23)

H is therefore the performance metric in the GZSL setting, which balances the class-

wise accuracy performance between the seen and unseen categories. In Table 5.3, we

compared our method with previous work on the following settings: (a) Traditional

unseen class setting (tr), which considers acc on only the unseen classes as the label

space; (b) Generalized unseen class setting (u), which considers accu on all the classes

as the label space; (c) Generalized seen class setting (s), which considers accs on all

the classes as the label space, and (d) the harmonic mean of accu and accs (H). Among

the compared methods, GAZSL [141], CLSWGAN [139] and C-UWGAN [147] used

Generative Adversarial Network (GAN) as the backbone for generating features. SE-

ZSL [144], CVAE-ZSL [143] and CADA-VAE [146] used Variational Autoencoder

(VAE) as the backbone for generating features. GFZSL [196] used Gaussian Mixture

Model (GMM) as the generative framework. Rest of the compared methods are non-
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generative in the sense that they just try to relate the feature and semantic spaces.

Table 5.3. Results of our proposed approach as compared with previous methods on
the AwA, aPY, CUB, SUN and FLO datasets. The best results are shown in
boldface.

AwA aPY CUB SUN FLO

Method tr u s H tr u s H tr u s H tr u s H tr u s H

DAP [118] 46.1 0.0 84.7 0.0 33.8 4.8 78.3 9.0 40.0 1.7 67.9 3.3 39.9 4.2 25.1 7.2 - - - -

IAP [118] 35.9 0.9 87.6 1.8 36.6 5.7 65.6 10.4 24.0 0.2 72.8 0.4 19.4 1.0 37.8 1.8 - - - -

CONSE [137] 44.5 0.5 90.6 1.0 26.9 0.0 91.2 0.0 34.3 1.6 72.2 3.1 38.8 6.8 39.9 11.6 - - - -

CMT [123] 37.9 0.5 90.0 1.0 28.0 1.4 85.2 2.8 34.6 7.2 49.8 12.6 39.9 8.1 21.8 11.8 - - - -

SSE [136] 61.0 8.1 82.5 14.8 34.0 0.2 78.9 0.4 43.9 8.5 46.9 14.4 51.5 2.1 36.4 4.0 - - - -

LATEM [128] 55.8 11.5 77.3 20.0 35.2 0.1 73.0 0.2 49.3 15.2 57.3 24.0 55.3 14.7 28.8 19.5 - - - -

ALE [121] 62.5 14.0 81.8 23.9 39.7 4.6 73.7 8.7 54.9 23.7 62.8 34.4 58.1 21.8 33.1 26.3 48.5 13.3 61.6 21.9

DEVISE [122] 59.7 17.1 74.7 27.8 39.8 4.9 76.9 9.2 52.0 23.8 53.0 32.8 56.5 16.9 27.4 20.9 45.9 9.9 44.2 16.2

SJE [127] 61.9 8.0 73.9 14.4 32.9 3.7 55.7 6.9 53.9 23.5 59.2 33.6 53.7 14.7 30.5 19.8 53.4 13.9 47.6 21.5

ESZSL [126] 58.6 5.9 77.8 11.0 38.3 2.4 70.1 4.6 53.9 12.6 63.8 21.0 54.5 11.0 27.9 15.8 51.0 11.4 56.8 19.0

SYNC [125] 46.6 10.0 90.5 18.0 23.9 7.4 66.3 13.3 55.6 11.5 70.9 19.8 56.3 7.9 43.3 13.4 - - - -

SAE [129] 54.1 1.1 82.2 2.2 8.3 0.4 80.9 0.9 33.3 7.8 54.0 13.6 40.3 8.8 18.0 11.8 - - - -

GFZSL [196] 63.8 2.5 80.1 4.8 38.4 0.0 83.3 0.0 49.3 0.0 45.7 0.0 60.6 0.0 39.6 0.0 - - - -

SR [197] 63.8 20.7 73.8 32.3 38.4 13.5 51.4 21.4 56.0 24.6 54.3 33.9 61.4 20.8 37.2 26.7 - - - -

DEM [120] 67.1 30.5 86.4 45.1 35.0 11.1 75.1 19.4 51.7 19.6 57.9 29.2 40.3 20.5 34.3 25.6 - - - -

RAC [155] 64.4 60.6 72.3 65.9 35.4 34.1 63.5 44.4 52.6 44.0 45.1 44.6 67.5 54.1 36.6 43.7 - - - -

GAZSL [141] 68.2 19.2 86.5 31.4 41.1 14.2 78.6 24.0 55.8 23.9 60.6 34.3 61.3 21.7 34.5 26.7 60.5 28.1 77.4 41.2

CLSWGAN [139] 68.2 57.9 61.4 59.6 40.5 32.9 61.7 42.9 57.3 43.7 57.7 49.7 60.8 42.6 36.6 39.4 67.2 59.0 73.8 65.6

SE-ZSL [144] 69.2 58.3 68.1 62.8 - - - - 59.6 41.5 53.3 46.7 63.4 40.9 30.5 34.9 - - - -

CVAE-ZSL [143] 65.8 - - 51.2 - - - - 52.1 - - 34.5 61.7 - - 26.7 - - - -

C-UWGAN [147] 66.8 59.6 63.4 59.8 - - - - 58.6 47.9 59.3 53.0 59.9 47.2 33.8 39.4 70.3 61.6 69.2 65.2

CADA-VAE [146] 64.0 75.0 55.8 63.9 - - - - 60.4 53.5 51.6 52.4 61.8 35.7 47.2 40.6 - - - -

OUR METHOD 73.3 61.9 81.1 70.2 41.9 33.7 73.6 46.2 59.7 53.6 53.1 53.3 58.7 51.7 33.9 40.9 70.7 69.4 78.6 73.7

tr = Traditional unseen accuracy, u = Generalized unseen accuracy, s = Generalized seen accuracy, H = Harmonic mean of u and s.

From the results in Table 5.3, our proposed method produces the best harmonic

mean accuracy on most of the datasets. Specifically, our proposed method produces

4.3, 1.8, 0.3 and 8.1 point-improvement on the AwA, aPY, CUB and FLO datasets,

respectively. The small improvement on the CUB dataset is mainly because the

categories are fine-grained and it is difficult to classify. For similar reasons, our

proposed method does not produce the best results on the CUB and SUN datasets

in the traditional setting. The average performance on the SUN dataset is the poorest

because it contains the largest number of seen and unseen categories for testing from

among all the datasets. Among the compared methods, the non-generative methods
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produce the worst results in the GZSL setting. This is because most of these methods

overfit to the seen categories as evident from their high performance in the generalized

seen accuracy setting s. For example, CONSE [137] produces the best performance

of s = 90.6 and s = 91.2 on the AwA and aPY datasets, respectively. Among the

generative based methods, there is no clear winner between GAN-based and VAE-

based methods. However, the GMM-based model GFZSL [196] performed poorly on

the GZSL setting. This is because GMMs are not expressive enough to model the data

generating distribution of the unseen classes. Also, C-UWGAN [147] used a cycle-

consistency network similar to our reconstruction network. Thus, the improvement of

our proposed method over C-UWGAN can be attributed to the discriminator network

and the domain-adaptation step. Still, we need to figure out the contribution of each

component of our proposed approach. We thus conduct ablation analysis in the next

sub-section.

Ablation Study

In this sub-section, we carry out ablations to study the contribution of each compo-

nent to the recognition performance of our framework - R (Reconstruction network),

D (Discriminator network) and A (Domain-adaptation step) on top of the WGAN

baseline B. The results of the study on the AwA, CUB and FLO datasets are shown

in Table 5.4. It is important to note that the discrimination step is a prerequisite

for the domain-adaptation step. This is because the domain-adaptation procedure

requires the discriminator network for separating out the seen and unseen class fea-

tures from the unlabeled test data. From the results, it is clear that adding each

component on top of one another improves the recognition performance gradually

both in the generalized and conventional settings. However, the improvement in per-

formance when using discrimination or reconstruction is around 1-2 points compared

to using domain-adaptation where it improves around 2-8 points. This suggests that

the domain-adaptation step is the most important component of our framework. The
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Table 5.4. Harmonic mean accuracy results of different ablations of our framework
in the GZSL setting. Conventional unseen accuracy is shown in brackets. Here, B
stands for the WGAN baseline, R stands for the reconstruction network, D stands
for the discriminator network and A stands for the domain adaptation step.

Dataset/Ablation B BR BD BRD BDA

AwA 59.7 60.7 61.4 63.1 69.3

(65.9) (66.1) (66.3) (66.4) (68.6)

CUB 48.8 49.8 49.4 49.9 51.4

(55.3) (56.6) (56.1) (57.6) (58.9)

FLO 64.1 65.2 64.9 65.6 69.2

(64.8) (64.9) (65.1) (65.5) (68.7)

performance of using just the reconstruction (BR) is greater than using just the dis-

crimination (BD) on the CUB dataset but it is the reverse for the AwA dataset.

This shows that the effect of discrimination or reconstruction depends on the dataset

used for comparison. Also, the contribution of our framework over the baseline is

more for the AwA dataset compared to fine-grained datasets like CUB and FLO.

Similarly, the contribution in the generalized setting is more than that in the con-

ventional setting suggesting that our framework caters to GZSL by considering the

contribution of the unseen classes.

Visualization of Generated Features

In this subsection, we visualize the generated features using the t-SNE [174] tool

as shown in Figs. 5.13 and 5.14. Since we are concerned about the distributional

difference between the generated and the real features of the novel categories, we only

plot the novel class feature distribution. Figure 5.13 shows the plot of the ten unseen

categories of the AwA dataset. The light blue colored features in the background are

the unlabeled test data from the unseen categories. The colored clusters consist of the

generated data from all the ten categories, where different colors represent different
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categories. These generated features are obtained after the training of our proposed

framework without the domain-adaptation step. Evidently, the generated clusters do

not overlap with real clusters of the novel categories. However, when we include the

domain-adaptation step as shown in Fig. 5.14, the generated and the real clusters

overlap and clump together as single clusters for each of the novel categories. As

a result, the domain-shift problem between the generated and real data is reduced.

Hence, training the final classifier on these adapted generated features increases the

recognition performance.
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Fig. 5.13. Generated visual features for the unseen classes of the AwA dataset
when the reconstructor and the discriminator is used along with WGAN. The colored
features represent different classes while the light blue features are the unlabeled test
data from the unseen classes.
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Fig. 5.14. Generated visual features for the unseen classes of the AwA dataset when
the reconstructor and the discriminator is used along with WGAN and the domain
adaptation step is performed.

Convergence Study

We also studied how the test accuracies change with increasing number of epochs.

The results on the AwA and CUB datasets is shown in Figs. 5.15 and 5.16, respec-

tively. From the results, it is seen that the test accuracy of our proposed framework

reaches higher values compared to WGAN in almost all the settings. However, the

difference between our framework and WGAN is less for the CUB dataset because

the dataset is fine-grained and it is more difficult to obtain better results without

using specialized learning architectures. Again, there is not much difference between

our framework and WGAN for the conventional unseen setting because the label
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space consists only of unseen categories. As a result, the discrimination and recon-

struction network does not have any effect on distinguishing the seen categories from

the unseen ones.

0 10 20 30
Epochs

0.2

0.4

0.6

0.8

T
es

t A
cc

ur
ac

y

Conventional Unseen

WGAN
WGAN+R+D

0 10 20 30
Epochs

0.2

0.4

0.6

0.8

T
es

t A
cc

ur
ac

y

Generalized Seen

WGAN
WGAN+R+D

0 10 20 30
Epochs

0

0.2

0.4

0.6

T
es

t A
cc

ur
ac

y

Generalized Unseen

WGAN
WGAN+R+D

0 10 20 30
Epochs

0.2

0.3

0.4

0.5

0.6
T

es
t A

cc
ur

ac
y

Generalized Harmonic Mean

WGAN
WGAN+R+D

Fig. 5.15. Convergence results of test accuracy with increasing epochs for the AwA
dataset. R and D stands for the reconstruction and discrimination network respec-
tively.

Effect of Number of Generated Features

We also study the effect of the number of generated features per novel class on

test accuracies. The results of the study are carried out on the FLO and CUB

datasets as shown in Figs. 5.17 and 5.18, respectively. From the results, we see that
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Fig. 5.16. Convergence results of test accuracy with increasing epochs for the CUB
dataset. R and D stands for the reconstruction and discrimination network respec-
tively.

the recognition performance saturated beyond having a certain number of generated

features. This is because the data diversity of a class does not improve beyond having

a certain number of samples per class. For both the datasets, the improvement of

WGAN+R+D is incremental over WGAN because both the datasets are fine-grained.

Therefore, it is difficult to improve the performance by a large margin without fine-

grained learning architectures. However, with the inclusion of the domain-adaptation

step (A) in WGAN+R+D+A, the recognition performance improved by a larger

amount especially for the unseen class accuracy. Also, the generalized seen class

accuracy (s) dipped when the number of generated features per novel class was in-
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creased. This is because when the number of features of the novel classes was less

and the data distribution was imbalanced, most of the test samples were classified

as seen categories. However, as the number of novel category samples increased, the

imbalance was reduced, resulting in mis-classification for the seen categories.
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Fig. 5.17. Test accuracy results as the number of generated features per unseen class
is increased for the FLO dataset. R, D and A stands for the reconstruction network,
discrimination network and domain adaptation step respectively.

Parameter Sensitivity Studies

We further study the effect of hyper-parameters λr, λe and th on the recognition

performance. The effectiveness of λl, λgl and λs has already been studied in [199],
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Fig. 5.18. Test accuracy results as the number of generated features per unseen class
is increased for the CUB dataset.

[149] and [155], respectively. Figure 5.19 shows the results of the generalized test

accuracy as the threshold th is varied for the AwA and FLO datasets. The dotted

lines represents the oracle situation where we have access to the unseen class test

data and we do not need any thresholding mechanism to adapt the generated data to

the test data. So, the oracle level is the highest possible performance possible using

our domain-adaptation mechanism. On the AwA dataset, our method reached very

close to the oracle level at th = 0.2 suggesting the effectiveness of our thresholding

step. For the FLO dataset, the class-level granularity is finer as a result of which the

gap between the oracle and the test accuracy is more. With increasing threshold th,

only a few highly confident samples were selected from the unlabeled test data. These
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confident samples were situated further from the classification decision boundary as

a result of which they did not capture the large variation of the unseen class dataset.

This caused poor domain-adaptation between the generated data and the selected

data, eventually resulting in worse recognition performance.
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Fig. 5.19. Test accuracy results as the threshold th is varied for the AwA and the
FLO dataset . Here, oracle setting considers the case when the unseen test data is
known and domain adaptation is carried out without threshold selection mechanism.

Figure 5.20 shows the parameter sensitivity of the test accuracies with respect

to λe on the AwA and FLO datasets. The plot shows a monotonically decreasing

response, where with increasing λe, the test accuracy dipped. This suggests that

small values of λe are recommended, preferably of the order 10−4. Figure 5.21 shows

the parameter sensitivity of the test accuracy with respect to λr on the AwA and

FLO datasets. The response is similar to that of λe; that is, the test accuracy is

monotonically decreasing with increasing λr. However, the response due to change in

λr was a lot more noisy. This is probably because the reconstruction module enforced

many-to-one mapping from features to semantic-descriptors. This constraint might

not be always satisfied, resulting in sudden changes in the response. Also, the test

accuracy response on the FLO dataset was relatively more stable. This is because

the classes in this dataset were comparatively closer to one another and the diversity
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of the features was less. Therefore, the many-to-one mapping constraint using the

reconstruction module was easier to be satisfied.
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Fig. 5.20. Test accuracy results as λe is varied for the AwA and the FLO dataset.
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Fig. 5.21. Test accuracy results as λr is varied for the AwA and the FLO dataset.

5.4 Conclusion

In this Chapter, we proposed two approaches to tackle the zero-shot learning

and the generalized zero-shot learning problem. Firstly, we proposed an embedding
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approach to relate the feature space and the semantic space, where the structural

matching loss term reduces the hubness problem and hence improves recognition per-

formance. Also, the calibration of seen class recognition scores prevents the seen class

biasness problem. As for the second approach, we proposed a GAN-based constrained

framework to generate data for the novel classes. The constraints are in the form of

a discriminator and a reconstruction network, both of which improve performance

over a WGAN baseline. Both of these approaches contain a domain-adaptation post-

processing step that is found to be the most effective in improving the performance.

Also, both the embedding and generative approaches produce competitive recognition

performance when compared with previous work. However, the generative framework

produces better performance compared to the embedding one for most of the datasets.
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6. CONCLUSIONS AND FUTURE RESEARCH

6.1 Summary and Conclusions

In this thesis, we have proposed different frameworks for solving different sub-

problems in transfer learning. All of the proposed frameworks learn a structural prior

from the data-abundant source domain and apply that on the data-starved target

domain. The structural priors that we learned are graphs, manifolds and neural

networks. The structural prior then encodes relationships among data entities like

samples, class-prototypes and semantics. The choice of the structural prior depended

on the type of transfer learning sub-problem especially the information availability

from the two domains. Accordingly, we proposed frameworks for four different transfer

learning problems as described below.

The first subproblem that we considered was unsupervised domain adaptation

where we have labeled source domain data and unlabeled target domain data and

both domains have distribution discrepancy but consists of the same set of cate-

gories. To minimize the distribution discrepancy, our goal was to transform the

source domain close to the target domain by exploiting structural similarity between

the two domains. Accordingly, we proposed three competitive methods to carry out

the transformation between the domains. The first method used graph matching be-

tween the source and target domain samples to minimize domain discrepancy. So,

we used graphs as the structural prior to encode sample-to-sample relationship. The

second method used hyper-graph matching to minimize domain discrepancy. In ad-

dition, we also added a preprocessing step where we used only a set of exemplars to

construct the hyper-graph, thus increasing computational efficiency. For the third

method, we used graph matching for learning a domain-invariant representation. In

addition, we also used the pseudo-labels of the target domain to further refine our
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model. When these methods were tested on standard domain adaptation datasets

for object recognition, they produced much better results than previous methods

especially global methods. Also, using higher order information in the form of hyper-

graphs improved the performance over just using graph matching. Among the three

methods, the third method produced the best recognition performance. The training

and inference time of the third method was the slowest, the fastest being the first

method. This is because the third method learned better representations for domain

adaptation. However, it involved learning a large number of parameters resulting in

computational inefficiency.

The second sub-problem we considered was few-shot learning. In this case, we

had abundant labeled data from the source domain but only sparsely labeled data

from the target domain. However, the categories in the source and target domain

were different. We identified two problems that caused few-shot learning to perform

poorly compared to traditional supervised learning. Firstly, the number of samples

in the novel classes were very less compared to the dimensionality of the feature

space. This caused the feature space to be sparse resulting in severe overfitting. To

address this problem, we proposed a low-dimensional relative representation. This

representation used pairwise distances between the few-shot samples thus exploiting

the structural information from the data. The second problem was that we could not

estimate the mean and variance of the novel classes because of only few-samples from

these novel classes. To address this problem, we learned a structural prior in the form

of a neural network that would predict the mean and variance. This neural-network

based structural prior modeled relationship between samples and class prototypes

and helped in improving recognition performance. Our framework was tested on

standard few-shot image recognition datasets where it performed considerably better

than previous methods. Upon doing ablation analysis, we found the relative feature

representation to be most effective in improving the recognition performance. Also,

the learned representations were found to be visually more discriminative as compared

to previous methods.
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We also addressed the problem of few-shot learning in a limited information set-

ting where we only had access to source class prototypes instead of the abundant

labeled data. This setting was previously not described in the few-shot learning lit-

erature. To address the problem, we proposed a non-parametric approach where the

class prototypes were assumed to lie close to a non-linear manifold. Thus, the man-

ifold was used as a structural prior to relate different class prototypes. Accordingly,

the novel class prototypes were estimated by projecting the few-shot samples onto the

non-linear manifold. Classification was also carried out using a Markov-chain-based

manifold distance instead of the traditional nearest-neighbor classification. We also

compared our framework with a Bayesian baseline. Results on two image recogni-

tion datasets suggested that the manifold-based approach performed better than the

Bayesian approach in most of the cases. However, both of them were much better

than the no-adaptation baseline in the few-shot regime. The manifold-based distance

performed only incrementally better than the nearest-neighbor approach. Among the

Bayesian approaches, the simple priors with closed-form posteriors performed better

than variational Bayes based approximation methods.

Finally, we addressed the zero-shot learning problem. In this problem, we do

not have any labeled data in the target domain. Rather semantic information for

all the classes are available. Our goal was to relate the feature space and semantic

space using a generative and non-generative approach. For the generative approach,

we used a constrained generative adversarial network. The constraints were used

to discriminate between seen-unseen classes and to reconstruct semantics from the

features. On the other hand, for the non-generative approach, we used structural

matching for relating the semantic space and the feature space. Therefore, we used

a neural network based structural prior to related the samples and the semantics. In

addition, we used domain adaptation as a post-processing step to adapt to the unseen

unlabeled data. From the experiments on five standard datasets on zero shot image

recognition, our methods performed much better than previous approaches, mainly
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due to the domain adaptation step. Also, the generative method performed better

than the non-generative approach.

Overall, the contribution of this thesis was the exploration of different mathe-

matical structures and using them as priors for improving performance on different

transfer learning problems. The reason why the structural prior based approaches

out-performed previous methods is because these structures encode relational knowl-

edge between different entities thus transferring more useful from the source domain

to the target domain. The summary of our conributions is shown in Table 6.1.

Table 6.1. Brief summary of the contributions to various transfer learning problems.
The second column describes the contributions and their type.

Problem Major Contribution

UDA [149,150,152]
Discrepancy: Graph/Hyper-graph Matching

Optimization: Conditional Gradient+Network Simplex/ADMM

FSL [153]
Representation: Relative Features

Classification: Predictive Statistics

HTL
Estimation: Manifold

Classification: Absorbing Markov Chain

ZSL [155]
Constraints: Structural Matching, Discrimination and Reconstruction

Post-Processing: Scaled Calibration and Domain Adaptation

6.2 Suggestions for future research

In this thesis, we have addressed different sub-problems of transfer learning in

settings that might still be unrealistic. We assume that we have access to labeled

data in the source domain which might not always be available. Also, the target

domain data becomes available in batch form rather than in an online incremental

manner. Similarly, it is assumed that the source domain and target domain modalities

are the same. These limitations and assumptions prevent transfer learning from being
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deployed to real-world and real-time situations. Therefore, it is worthwhile to relax

these assumptions and extend our methods as part of future work. Accordingly, we

suggest the following research directions.

In all of the transfer learning sub-problems, we assume that the source domain

contains abundant labeled data. However, it might be difficult to have all the source

classes labeled. In fact, the labeling might be imbalanced where some classes might

have lots of labels and some might not be labeled at all. Since it is difficult to predict

ahead of time which of the classes might be labeled, it is appropriate to assume that

all the source domain classes are unlabeled. This calls for an unsupervised transfer

learning setting. To solve this transfer learning setting, we could do preprocessing

where the unlabeled source domain data are clustered to obtain the different class

labels. After that, we could proceed with the traditional transfer learning steps.

However, the clustering mechanism should be robust enough to handle mis-labels,

noise, outliers etc. Alternatively, we could extract transferable knowledge in an un-

supervised fashion such that the knowledge can be extracted using distance metrics

or some other surrogate tasks used in self-supervised learning.

At the same time, we assume that the target domain data arrives in a batch. On

the contrary, in the real world, target domain data arrives sequentially in a stream-

ing manner. Therefore, our proposed approaches cannot be directly applied to this

online transfer learning case. So, we need to adapt our models so that they can cap-

ture changes in distribution sequentially. We need to develop online versions of our

model so that we do not have to train a model from scratch whenever a new target

domain data becomes available. As an example, we cannot directly use the corre-

spondence variable for unsupervised domain adaptation. This is because the target

domain samples are few at a time and we have to find a correspondence variable each

time new samples appear. Instead, it would be better if we find a dynamic relation

connecting the correspondence variables at each step. Similarly, few-shot learning

and zero-shot learning models should incrementally update the model parameters as
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new classes appear. Finally, there is a need to develop more time-efficient versions of

our algorithms so they can be used as real-time solutions.

One of the assumptions in our transfer learning models is that the feature space is

homogeneous, that is, the source and target domain data lie in the same feature space.

On the other hand, we can relax the assumption and account for heterogeneous feature

spaces. For example, the source domain can be a 2D image and the target domain can

be its 3D point cloud representation. In such situations, our methods cannot work

directly since the representation space and dimensionality would be different for the

different domains. Therefore, we need to find a new subspace where the source and

the target domain data can be mapped. In this new representation space, we could

use our traditional homogeneous transfer learning algorithms. However, there is a

need to investigate different possibilities about the type and property of the subspace

and what metric minimization is required to obtain the source and target domain

mapping.
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A. ALGORITHM FOR FINDING EXTRINSIC

MANIFOLD MEAN

To calculate the extrinsic mean, our goal is to solve for S from the following opti-

mization problem,

min
r∑
i=1

1

2
||SST − SiS

T
i ||2F such that STS = I .

We reformulate the objective function for each part of the sum. Let Qi = SiS
T
i .

Accordingly,

1

2
||SST −Qi||2F =

1

2
Tr[(SST −Qi)

T (SST −Qi)]

=
1

2
Tr(SSTSST −QT

i SST − SSTQi + QT
i Qi)

where Tr indicates a matrix Trace operation. Using the properties of Trace operation,

Tr(AB) = Tr(BA), Tr(ABC) = Tr(BCA) = Tr(CAB), and the fact that

Qi = QT
i as well as the constraint STS = I, we obtain the expression:

1

2
Tr(STS− 2STQT

i S + QT
i Qi)

=
1

2
Tr(STS)− Tr(STQT

i S) +
1

2
Tr(QT

i Qi)

=
1

2
Tr(I)− Tr(STQT

i S) +
1

2
Tr(QT

i Qi)

= − Tr(STQT
i S) + terms not depending on S.

Therefore, the objective function becomes to maximize
∑r

i=1 Tr(STQT
i S) or to max-

imize Tr(ST (
∑r

i=1 SiS
T
i )S) given the constraints STS = I. The solution to this

problem is well known and can be framed as an eigenvalue problem as described

in [202]. The algorithm for finding the extrinsic mean as an eigenvalue problem is

described in Algorithm 12.
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Algorithm 12: Computation of Extrinsic Manifold Mean.

Given: r orthonormal linear subspaces represented as Si ∈ Rd×(q+1) for

i ∈ {1, 2, ..., r}.

Goal: Obtain the Extrinsic Manifold Mean S̄ of the subspaces

Sum outer products of the matrices : A←
∑r

i=1 SiS
T
i

Obtain right-eigen value decomposition : E← eig(A)

Keep top q + 1 eigen-vectors of E to obtain S̄

Result Extrinsic Manifold Mean obtained
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B. TIME AND SPACE COMPLEXITY OF THE

MANIFOLD APPROACH

In the overall algorithm of the manifold-based approach, the computationally inten-

sive steps are: (a) computation of the extrinsic manifold mean and (b) the absorbing

Markov-chain-based inference procedure. Computing the extrinsic mean requires the

eigenvalue decomposition of a d×d matrix that has the time complexity O(d3), where

d is the dimensionality of the feature space.

In the absorbing Markov-chain process, we have the following operation to calcu-

late the steady-state probabilities - u∞na = u0
nt(I−T)−1A+u0

na . Here u0 = [u0
nt u0

na ]

and u∞ = [u∞nt u∞na ]. Also u0
nt ∈ R1×nt ,u0

na ∈ R1×na ,T ∈ Rnt×nt ,A ∈ Rnt×na . The

dominant time-consuming step is the multiplication operation. In the multiplica-

tion operation, we have an inverse operation that is O(n3
t ). Then the multiplication

(I−T)−1A is O(n2
tna). Then the multiplication u0((I−T)−1A) is O(ntna). Hence,

the overall time complexity is O(n3
t +n2

tna +ntna) = O(n3
t +n2

tna). But we have two

steps of the absorbing Markov-chain process, where the nb base and nnov novel classes

are interchanged for the roles of transient and absorbing states. Hence, the time

complexity becomes O(n3
b + n2

bnnov) + O(n3
nov + n2

novnb) = O((nb + nnov)(n
2
b + n2

nov))

after some factorization steps.

In terms of the space complexity for the extrinsic manifold mean calculation, we

have to construct and store r quantities of d×(q+1) dimensional matrices representing

the linear subspaces. Therefore, the corresponding space complexity is O(rd(q + 1)).

For the absorbing Markov-chain process, one needs to store the probability transition

matrix, which is a square matrix of size (nb + nnov)× (nb + nnov), where nb and nnov

are the numbers of base and novel categories, respectively. Hence, the corresponding

space complexity is O((nb + nnov)
2).
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C. DERIVATION OF CIRCULARLY DEPENDENT

EQUATIONS OF THE BAYESIAN APPROACH

Our goal is to derive the circularly dependent equations (i.e., Eqs. (4.10)-(4.12)).

These equations were obtained using a variational Bayes mean-field approximation

on the posterior when we use a normal prior on the mean µµµ and a gamma prior on

the precision λ.

If we use a mean-field approximation, we assume that the posterior distribution

q(·) can be factorized as

q(µµµ, λ) = q1(µµµ)q2(λ),

where q1(µµµ) = N (µµµ|µµµV , λV ) and q2(λ) = Ga(λ|αV , βV ). If we use an alternating

optimization procedure [203], we have

log q1(µµµ) ∝ Eλ[log p1(X|µµµ, λ) + log p2(µµµ) + log p3(λ)]

log q2(λ) ∝ Eµµµ[log p1(X|µµµ, λ) + log p2(µµµ) + log p3(λ)],

where p1(X|µµµ, λ) =
∏k

i=1N (xni|µµµ, λ−1), p2(µµµ) = N (µµµ|µµµ0, λ
−1
0 ) and p3(λ) = Ga(λ|α, β).

So accordingly,

log q1(µµµ) ∝ Eλ[log(
k∏
i=1

N (xni|µµµ, λ−1)) + log(N (µµµ|µµµ0, λ
−1
0 )) + log(Ga(λ|α, β))].

Upon expanding the normal and gamma distributions and separating out the constant

terms, we have

log q1(µµµ) ∝ −1

2
Eλ
[ k∑
i=1

||xni − µµµ||22λ+ ||µµµ− µµµ0||22λ0

]
= −1

2
[
k∑
i=1

||xni − µµµ||22Eλ(λ) + ||µµµ− µµµ0||22λ0].
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Since the posterior of λ is from the Ga(λ|α, β) distribution, Eλ(λ) = αV
βV

. After

plugging it in and separating out the constants with respect to µµµ, we obtain

log q1(µµµ) ∝ −1

2

[
(k
αV
βV

+ λ0)µµµTµµµ− 2(
k∑
i=1

xni
αV
βV

+ µµµ0λ0)Tµµµ
]
,

which can then be rearranged as

log q1(µµµ) ∝ −1

2
(k
αV
βV

+ λ0)||µµµ−
∑k

i=1 xni
αV
βV

+ µµµ0λ0

kαV
βV

+ λ0

||22.

Rearranging, we obtain

q1(µµµ) ∝ exp
(
−1

2
(k
αV
βV

+ λ0)||µµµ−
∑k

i=1 xni
αV
βV

+ µµµ0λ0

kαV
βV

+ λ0

||22
)
,

which is of the form q1(µµµ) = N (µµµ|µµµV , λV ), where

µµµV =
∑k
i=1 xni

αV
βV

+µµµ0λ0

k
αV
βV

+λ0
and λV = kαV

βV
+ λ0.

To derive q2(λ), we proceed accordingly and have

log q2(λ) ∝ Eµµµ
[
log
( k∏
i=1

N (xni|µµµ, λ−1)
)

+ log
(
N (µµµ|µµµ0, λ

−1
0 )
)

+ log
(
Ga(λ|α, β)

)]
.

Upon expanding the normal and gamma distributions and separating out the constant

terms, we have

log q2(λ) ∝ (α +
dk

2
− 1) log λ− λ

(
β +

1

2
Eµµµ
[ k∑
i=1

||xni − µµµ||22
])
.

We next expand

Eµµµ
[ k∑
i=1

||xni − µµµ||22
]

=
k∑
i=1

xTnixni + kEµµµ[µµµTµµµ]− 2
k∑
i=1

xTniEµµµ[µµµ].

We can easily show that Eµµµ[µµµ] = µµµV and Eµµµ[µµµTµµµ] = d
λV

+ µµµTVµµµV using the identity

Ea[a2] = Vara[a] + Ea[a]2, where a is each element of µµµV .

Plugging the expressions back, we obtain

log q2(λ) ∝ (α +
dk

2
− 1) log λ− λ

(
β +

1

2

( k∑
i=1

xTnixni − 2
k∑
i=1

xTniµµµV + k(
d

λV
+ µµµTVµµµV )

))
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or

q2(λ) ∝ λα+ dk
2
−1 exp

(
−λ
(
β +

1

2
(
k∑
i=1

xTnixni − 2
k∑
i=1

xTniµµµV + k(
d

λV
+ µµµTVµµµV ))

))
,

which can be identified as a gamma distribution such that q2(λ) = Ga(λ|αV , βV ),

where αV = α + dk
2

and

βV = β +
1

2
(
k∑
i=1

xTnixni − 2
k∑
i=1

xTniµµµV + k(
d

λV
+ µµµTVµµµV )).

Hence, the expressions for the circularly dependent equations have been derived.
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