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ABSTRACT

Hudja, Stanton Ph.D., Purdue University, May 2020. Essays on Experimental Eco-
nomics and Innovation. Major Professor: Tim Cason and Brian Roberson.

My dissertation consists of four chapters. In the first chapter, I use a labora-

tory experiment to analyze how individuals resolve an exploration versus exploitation

trade-off. The experiment implements a single-agent exponential bandit model. I

find that, as predicted, subjects respond to changes in the prior belief, safe action,

and discount factor. However, I commonly find that subjects give up on exploration

earlier than predicted. I estimate a structural model that allows for risk aversion,

base rate neglect/conservatism, and probability mis-weighting. I find support for

risk aversion, conservatism, and probability mis-weighting as potential factors that

influence subject behavior. Risk aversion appears to contribute to the finding that

subjects explore less than predicted.

In the second chapter, I use a laboratory experiment to analyze how a group of vot-

ers experiment with a new reform. The experiment implements the continuous time

Strulovici (2010) collective experimentation model. I analyze a subset of data where

groups and single decision makers should eventually prefer to stop experimentation

and abandon the reform. I find three results that are consistent with the modeled

experimentation incentives. In this subset of data, groups stop experimentation ear-

lier than single decision makers, wait longer to stop experimentation as the number

of revealed winners increases, and stop experimentation earlier than the utilitarian

optimum predicts. However, I also find that both groups and single decision makers

stop experimentation earlier than predicted. Additional treatments show that this

result is unlikely to be explained by standard explanations such as incorrect belief

updating or risk aversion.
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In the third chapter, I use a laboratory experiment to investigate the role of

group size in an innovation contest. Subjects compete in a discrete time innovation

contest, based on Halac et al. (2017), where subjects, at the start of each period, are

informed of the aggregate number of innovation attempts. I compare two innovation

contests, a two-person and four-person contest, that only differ by contest size and

have the same probability of obtaining an innovation in equilibrium. The four-person

contest results in more innovations and induces more aggregate innovation attempts

than the two-person contest. However, there is some evidence that the two-person

contest induces more innovation attempts from an individual than the four-person

contest. Subjects’ behavior is consistent with subjects placing more weight on their

own failed innovation attempts, when updating their beliefs, than their competitors’

failed innovation attempts.

In the fourth chapter, I investigate the role of performance feedback, in the form

of a public leaderboard, in innovation competition that features sequential search ac-

tivity and a range of possible innovation qualities. I find that in the subgame perfect

equilibrium of contests with a fixed ending date (i.e., finite horizon), providing public

performance feedback results in lower equilibrium effort and lower innovation qual-

ity. I conduct a controlled laboratory experiment to test the theoretical predictions

and find that the experimental results largely support the theory. In addition, I in-

vestigate how individual characteristics affect competitive innovation activity. I find

that risk aversion is a significant predictor of behavior both with and without leader-

board feedback and that the direction of this effect is consistent with the theoretical

predictions.
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INTRODUCTION

This thesis analyzes how individuals resolve the exploration versus exploitation

trade-off. Throughout this thesis, I explore how individuals decide between exploiting

a predictable payoff and exploring an unfamiliar, but potentially lucrative, option.

I am concerned with three main questions. First, how well does economic theory

capture the resolution of this trade-off? Second, how can we improve upon our

current mechanisms for incentivizing exploration? Third, what behavioral factors

influence individuals to explore unfamiliar options? While the papers in this thesis

analyze different environments, they are connected by their attempt to address these

questions.

In the first chapter, I analyze how individuals resolve a simple exploration versus

exploitation trade-off in the laboratory. I implement the single-agent exponential

bandit model in a laboratory experiment. In this study, I am directly addressing

my first and third questions. I address the first question by analyzing how well the

single-agent exponential bandit model describes individual behavior. I focus on how

individuals respond to changes in the prior belief, safe action, and discount factor.

I find that subjects respond in the correct direction to changes in these incentives.

Subjects become more willing to experiment as their prior belief that experimentation

is efficient increases, as the opportunity cost of experimentation decreases, and as

they are induced to become more patient. However, I find that individuals under-

experiment relative to the predictions of the single-agent exponential bandit model.

I both reconcile the discrepancy between theory and behavior and address the

third question with a structural model. I incorporate risk aversion, base rate ne-

glect/conservatism, and probability mis-weighting into the model of experimentation.

Through maximum likelihood estimation, I find that each factor appears to contribute

to experimentation. However, risk aversion appears to be the main factor that is con-

tributing to the under-experimentation in the experiment. In fact, upon controlling

for risk aversion, subjects appear to over-experiment.
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In the second chapter, I analyze an environment where agents face an exploration

versus exploitation trade-off that is complicated by the presence of other agents. I

implement the Strulovici (2010) collective experimentation model in the laboratory.

In this paper, individuals, with heterogeneous preferences for exploration, must col-

lectively decide whether or not to experiment. I once again address the first and

third questions. I address the first question by focusing on the difference between

group experimentation and single-agent experimentation. Groups are predicted to be

less willing to experiment than single-agents because of negative payoff exernalities

that arise in the voting context. I find that subjects’ behavior is consistent with this

result. However, I find that both groups and single-agents experiment for less time

than predicted.

I address both this under-experimentation and the third question by design-

ing additional treatments. I explore three possible explanations for this under-

experimentation: i) subjects may over-weight the information generated from experi-

mentation relative to their prior, ii) subjects may overweight the random termination

probability and iii) risk aversion. I design two new treatments. The first treatment

removes the possibility of over-weighting the information generated from experimen-

tation. The second treatment removes this same possibility and additionally removes

the possibility that subjects over-weight the random termination probability. Addi-

tionally, I elicit risk aversion in each treatment. I find under-experimentation in each

treatment and that there is a statistical difference between each of these treatments

and the main experiment. I additionally find that risk aversion is not statistically

significant in each treatment.

In my third chapter, I analyze the role of group size on exploration in innovation

contests. I implement a discrete time version of a continuous time contest from Halac

et al. (2017), which predicts invariance to contest size. In this paper, I address the

first and second questions. I address these questions by implementing a two and

four-person innovation contest, which have the same probability of resulting in an

innovation in equilibrium, in the laboratory. I find that the four-person contest results
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in more innovations and induces more aggregate effort from contestants than the

two-person contest. I attempt to address the result that four-person contests result

in more innovations, and induce more aggregate effort, by developing a structural

model based on differential weighting of experimentation. Under differential weighting

of experimentation, subjects place more weight on the information generated by their

own experimentation than information generated by other subjects’ experimentation.

Through Maximum Likelihood Estimation, the data appears to be consistent with

differential weighting of experimentation.

In my fourth chapter, I analyze the role of leader-board feedback on exploration in

research tournaments. In this paper, I analyze a research tournament with and with-

out leader-board feedback in the laboratory. I address the first and second questions

by analyzing the aggregate number of draws and the average quality of the winning

innovation in each contest. I find that leader-board feedback actually reduces the

number of aggregate draws in a research tournament and reduces the average quality

of the winning innovation.

In addition to the first and second questions, this paper also addresses the third

question. I analyze an individual’s willingness to innovate in the contest with leader-

board feedback, the contest without leader-board feedback, and an individual inno-

vation task. The individual innovation task is designed to analyze an individual’s

willingness to innovate without competition. I analyze the effect of risk aversion,

loss aversion, and the sunk cost fallacy on an individual’s willingness to attempt an

innovation. Additionally, I analyze the effect of grit, the big five characteristics, com-

petitiveness, and achievement-striving on an individual’s willingness to innovate. I

find that risk aversion influences an individual’s willingness to innovate in each en-

vironment. Risk aversion is the only factor that appears to influence behavior in all

three environments.
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1. BEHAVIORAL BANDITS: ANALYZING THE

EXPLORATION VERSUS EXPLOITATION TRADE-OFF

IN THE LAB

with Daniel Woods

This paper uses a laboratory experiment to analyze how individuals resolve an

exploration versus exploitation trade-off. The experiment implements a single-agent

exponential bandit model. We find that, as predicted, subjects respond to changes

in the prior belief, safe action, and discount factor. However, we commonly find

that subjects give up on exploration earlier than predicted. We estimate a structural

model that allows for risk aversion, base rate neglect/conservatism, and probability

mis-weighting. We find support for risk aversion, conservatism, and probability mis-

weighting as potential factors that influence subject behavior. Risk aversion appears

to contribute to the finding that subjects explore less than predicted.

1.1 Introduction

The dilemma of whether to explore an uncertain option or exploit a familiar

option is common in economics. For example, a CEO often chooses between investing

resources into a new market and an established market. A farmer often chooses

between planting a new crop and an old crop. A researcher often chooses between

starting a new research agenda and continuing an old one. In these and many other

examples, individuals must decide whether to forgo a predictable payoff to learn more

about an uncertain, but potentially lucrative, option.

The single-agent exponential bandit model provides a simple model of this ex-

ploration versus exploitation trade-off. In economics, many models of exploration

build on this rudimentary model. This model is a starting point for models of dy-
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namic public goods problems (Keller et al., 2005), innovation contests (Halac et al.,

2017; Bimpikis et al., 2019), long-term contracts (Halac et al., 2016), moral haz-

ard in teams (Bonatti and Hörner, 2011), and voting for reforms (Strulovici, 2010;

Khromenkova, 2015). While many models build on this bandit model, there is little

empirical research on how well it describes individuals’ resolution of the exploration

versus exploitation trade-off.

In this paper, we aim to analyze how well this model describes individual behavior

and to uncover behavioral factors that influence exploration. We address two main

questions in this paper. First, how well does this model describe an individual’s

resolution of the exploration versus exploitation trade-off? Specifically, we focus on

how well it describes individuals’ response to changes in incentives and the decisions

that they make. This question is important as inaccurate predictions that arise from

this model are likely to arise in models that build on it. Second, which, if any,

unaccounted-for behavioral factors are consistent with individual behavior? This

question is important as models of exploration may not be including relevant factors.

We analyze the single-agent exponential bandit model in a laboratory experiment.

We utilize a laboratory experiment as it allows us to analyze a setting closely resem-

bling the model environment. In our experiment, an agent continually chooses, in

near-continuous time, between a risky and safe action. The safe action always pays a

certain reward, while the risky action can be good or bad. A bad risky action is dom-

inated by the safe action and never pays out a reward. A good risky action dominates

the safe action and occasionally pays out a (high) reward. An agent is initially unsure

of whether she has a good risky action and can only learn about the risky action by

trying it out over time. If she receives a reward from the risky action, she knows

that her risky action is good. If she continues to try out the risky action without

ever receiving a reward, her belief that her risky action is good should continue to

decrease.

A subject in this environment faces a trade-off. Experimentation with the risky

action provides valuable information that the agent can use to update her belief that
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her risky action is good and provides the possibility of a high reward. However, exper-

imentation comes at the cost of the safe action. The single-agent exponential bandit

model predicts that a subject will follow a threshold strategy where she will choose

the risky action for as long as her belief that the risky action is good is sufficiently

high. If her belief ever drops below this cutoff belief, the cost of experimentation out-

weighs the immediate and long-term benefits of experimentation and she will forever

choose the safe action.

The single-agent exponential bandit model predicts that the length of time that

a subject is willing to experiment will depend on various factors such as the discount

factor, value of the safe action, and prior belief. A subject is predicted to be willing

to experiment longer as the discount factor increases because the option value of

experimentation increases. A subject is predicted to be willing to experiment longer

as the value of the safe action decreases because this decreases the opportunity cost

of experimentation. Lastly, a subject is predicted to be willing to experiment longer

as the prior belief increases because this lengthens the time until the cutoff belief is

reached.

The experiment consists of four treatments: the Baseline, “High Prior”, “Low Safe

Action”, and “High Discount Factor” treatments. The High Prior, Low Safe Action,

and High Discount Factor treatments only differ from the Baseline treatment by one

parameter. The High Prior treatment has a higher prior than the Baseline treatment.

The Low Safe Action treatment has a lower value of the safe action than the Baseline

treatment. The High Discount Factor treatment induces a higher discount factor than

the Baseline treatment.

The experimental data is used to test three hypotheses, with each subsequent

hypothesis test being a less conservative test of the model’s predictions. The first

hypothesis, which considers only comparative statics, is that subjects become willing

to experiment longer as the discount factor increases, the value of the safe action

decreases, or the prior belief increases. The second hypothesis is that subjects in-

crease their willingness to experiment by the predicted length when the discount



4

factor increases, prior belief increases, or value of the safe action decreases. The

third hypothesis is that subjects are willing to experiment for as long as predicted

in each treatment. We find support for only the first hypothesis. Additionally, we

commonly find that subjects experiment less than predicted. There is strong evi-

dence of under-experimentation in three of our four treatments and mixed evidence

of under-experimentation in the other.

The experimental results suggest that subjects have unaccounted-for behavioral

factors that influence their experimentation. The variation in the experimental treat-

ments allows us to uncover these possible behavioral factors through Maximum Like-

lihood Estimation. We incorporate risk aversion, base rate neglect/conservatism, and

probability mis-weighting into a model of experimentation. We find that subjects’

behavior is consistent with risk aversion, conservatism, and probability mis-weighting.

Risk aversion appears to be the main reason why subjects under-experiment.

This paper contributes to three strands of literature. The first is the theoretical

literature on experimentation. Keller et al. (2005), building on Bolton and Harris

(1999), analyze a game where all agents want to collect information on a risky action

and can free-ride on other agents’ costly experimentation. Strulovici (2010), as well as

Khromenkova (2015), analyzes a reverse setting where experimentation may influence

individuals heterogeneously, but agents must collectively decide whether to experi-

ment or not. The theoretical literature on experimentation has also analyzed moral

hazard in teams (Bonatti and Hörner, 2011), long-term contracting (Halac et al.,

2016), and innovation contests (Halac et al., 2017; Bimpikis et al., 2019). Our paper

suggests that the comparative statics on the prior belief, cost of experimentation,

and discount factor in these theoretical models should hold up in empirical studies.

However, our paper also suggests that these models may be predicting too much

experimentation and that risk aversion, conservatism, and probability mis-weighting

should be considered when modeling experimentation environments.

The second is the literature on bandit experiments. Our paper relates to a type of

bandit experiment where the risky action has a high reward probability that can only
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take on one of two known values. Papers that analyze this type of bandit problem

are Banks et al. (1997), Hoelzemann and Klein (2018), and Hudja (2019). Our paper

addresses two questions in this literature. The first question is whether subjects

respond to incentives. Banks et al. (1997) fail to show that subjects respond to

changes in the discount factor and high reward probabilities in a discrete time bandit

where the bad risky action also pays out rewards. Hoelzemann and Klein (2018)

analyze Keller et al. (2005) in the lab and find that subjects appear to respond to

strategic incentives by free-riding. Hudja (2019) analyzes Strulovici (2010) in the

lab and finds that subjects appear to respond to payoff externalities. Our paper is

closest to Banks et al. (1997) and suggests that subjects do respond to changes in

environmental parameters like the discount factor. Power analyses suggest that their

paper is under-powered and our paper is well-powered. Our experiment, coupled

with the power analyses, suggests that subjects respond to changes in environmental

parameters. The second question is the role of risk aversion in experimentation. Banks

et al. (1997) and Hudja (2019) fail to show that elicited risk aversion is correlated

with subject behavior. Our paper suggests that risk aversion does play a role in

experimentation and that it appears to contribute to under-experimentation. This

difference may be due to the fact that we estimate risk aversion through maximum

likelihood, while the previous papers do not.

The third is the literature on continuous time experiments. Continuous time ex-

periments have mostly consisted of two types of experiments: (i) continuous time

versions of classic discrete time games and (ii) experiments featuring stochastic pro-

cesses. Our experiment falls into the latter type of continuous time experiment. Most

of the stochastic process experiments approximate either Brownian Motion (Oprea

et al., 2009; Anderson et al., 2010; Oprea, 2014) or Poisson Processes (Hoelzemann

and Klein, 2018; Hudja, 2019) in the lab. Our experiment suggests that subjects may

make mistakes when dealing with Poisson Processes as their behavior is consistent

with probability mis-weighting.
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1.2 Theory

The theory motivating this experiment is based on Keller et al. (2005).1 The

reader seeking greater detail than this section provides should consult Keller et al.

(2005).

Time (t) is continuous and payoffs are discounted at a rate r. There is an individual

who continually decides between two actions. The first action is a safe action, which

yields a flow payoff of s (> 0) per unit of time. The second action is a risky action,

which can be either good or bad. A bad risky action pays out nothing. A good risky

action pays out a reward (magnitude h) at random times based on a Poisson process

with parameter λ. The expected flow payoff of a good risky action is λh, which is

greater than the flow payoff s.

The risky action has an initial probability p0 of being good. An agent’s belief

about the risky action evolves from the prior according to Bayes’ rule. In the absence

of a reward, an agent’s belief is given by

p0e
−λt

p0e−λt + (1− p0)
,

where t is the amount of time spent experimenting.2 Note that in the absence of a

reward, an agent’s belief is decreasing in t. If and when a first reward arrives, an

agent’s belief jumps to one and she knows that she has a good risky action.

The optimal strategy depends on an agent’s belief of the state of the risky action.

An agent should implement the risky action if and only if her current belief (p) is

greater than or equal to a cutoff belief pA. The cutoff belief pA is given by

1We test the predictions of the single-agent exponential bandit model in a slightly restricted en-
vironment. Subjects must choose between the safe and risky action in each period of time, they
can not divide a resource between the two actions. This restriction has no bearing on theoretical
predictions and is consistent with similar exponential bandit experiments such as Hoelzemann and
Klein (2018). The theory that follows is for this restricted case.
2Experimentation occurs when an agent chooses the risky action while she is still uncertain of the
state of the risky action (good or bad).
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s

λh+ λ
r
(λh− s)

.

This cutoff belief solves the indifference equation pλh+λp(λh
r
− s

r
) = s. The left-hand

side of the indifference equation corresponds to the risky action, while the right-hand

side corresponds to the safe action. The effect of the risky action on an unsure agent

can be decomposed into two elements: (i) the expected payoff pλh, and (ii) the jump

in the value function (from s
r

to λh
r

when she is indifferent) if a reward is received,

which occurs at a rate λ with probability p. If the safe action is chosen, the payoff

rate is s.

One take-away from the cutoff belief is that agents are non-myopic. A myopic

individual experiments if and only if the expected flow payoff of the risky action is

greater than or equal to the flow payoff of the safe action. Thus, a myopic agent

experiments if and only if p ≥ s
λh

. Agents are non-myopic as the predicted cutoff

belief is below s
λh

. Myopic behavior is suboptimal as an agent does not value the

information generated by experimentation (the future value of learning that the risky

action is good).

The laboratory experiment focuses on how long individuals are willing to exper-

iment, that is, how long they would choose the risky action in the absence of any

rewards. The time that an individual is willing to experiment is found by solving

for how long it would take for an individual’s belief to reach her cutoff belief in the

absence of any rewards from the risky action. This time is given by

−ln
(
pA(1−p0)
p0(1−pA)

)
λ

,

where pA is the cutoff belief and p0 is the prior belief. This time is increasing in the

prior belief and decreasing in the cutoff belief.

The experimental predictions are based on changes in the environmental param-

eters. An agent is predicted to experiment longer as the value (s) of the safe action

decreases. Intuitively, as the value of the safe action decreases, the opportunity cost
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of experimentation decreases and individuals become willing to experiment longer as

they are willing to experiment at lower beliefs. An agent is also predicted to experi-

ment longer as the discount factor (1 - r) increases. Intuitively, as the discount factor

increases, individuals place more value on the future rewards associated with a good

risky action and individuals become willing to experiment longer as they are willing

to experiment at lower beliefs. Lastly, an agent is predicted to experiment longer

as the prior (p0) probability that the risky action is good increases. As the prior

increases, it takes longer for individuals to reach their cutoff belief in the absence of

rewards and thus individuals become willing to experiment longer.

1.2.1 Discrete Implementation

This paper uses a discrete time approximation to test various predictions of the

model. We utilize a discrete time approximation because it is not possible to imple-

ment a continuous time bandit problem in the laboratory. The approximation of this

model is based on Hudja (2019).

The approximation consists of dividing time into a number of ticks, each of length

∆ seconds. In the approximation, only one decision can be made in a tick and only

one payoff can be received in a tick. A bad risky action never returns h in a given

tick, while a good risky action has a probability of λ∆ of returning h in a given tick.

The safe action returns s∆, which is the payoff from exerting the safe action for ∆

seconds in a continuous time bandit.

The approximation also consists of replacing the infinite horizon of the continuous

time problem with an indefinite horizon. In a given tick, there is a probability of r∆

that the tick will end the period. This results in a discount factor of δ, which is equal

to 1− r∆.
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Table 1.1.: Values of p0, s∆, and δ for each treatment. Each treatment has a value
of λ∆ = 0.01 and h = 155. Myopic predictions are in parentheses.

Treatment Prediction Prior Safe Action Discount Rate

Baseline: 130 (5) p0 = 0.333 s∆ = 0.5 δ = 0.996

High Prior: 199 (74) p0 = 0.500 s∆ = 0.5 δ = 0.996

Low Safe Action: 198 (74) p0 = 0.333 s∆ = 0.3 δ = 0.996

High Discount Factor: 199 (5) p0 = 0.333 s∆ = 0.5 δ = 0.9983̄

1.3 Experimental Design

The experiment is designed to analyze how well the single-agent exponential ban-

dit model describes individual behavior. The primary goal of the experiment is to

determine how subjects respond to changes in incentives. The experiment has two

secondary goals. The first secondary goal is to determine whether subjects make

optimal decisions. The second secondary goal is to create a dataset that allows us to

econometrically test for unaccounted-for behavioral factors that may influence exper-

imentation.

1.3.1 Treatments and Parameters

The experiment consists of four treatments. These treatments are the Baseline

treatment, the “High Prior” treatment, the “Low Safe Action” treatment, and the

“High Discount Factor” treatment. Each treatment consists of a parameter set that

has a unique combination of p0, δ, and s∆. In each of these treatments, λ∆ is

set to 0.01 and h is set to 155 experimental points.3 The tick length ∆ is set to

200 milliseconds in all treatments. Table 1.1 displays the treatments used in the

experiment.

3We avoid analyzing these two variables. We choose to not analyze the effect of λ∆ on experi-
mentation as the effect can be non-monotonic. An increase in λ∆ increases the myopic value of
experimentation while increasing the rate of belief updating in the absence of a reward. We choose
to not analyze the effect of h as only the ratio of h

s∆ matters for predictions.
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Table 1.2.: Predictions for each treatment in discrete time and continuous time.

Willingness to Experiment Cutoff Belief

Treatment Discrete Time Cont. Time Discrete Time Cont. Time

Baseline 130.0 130.2 0.112 0.112

High Prior 199.0 199.5 0.112 0.112

Low Safe Action 198.0 198.7 0.064 0.064

High Discount Factor 199.0 199.5 0.064 0.064

The experiment uses a within-subjects design where each session consists of sub-

jects facing the Baseline treatment and one of the three other treatments. “High

Prior” sessions isolate the effect of the prior on experimentation and consist of each

subject facing the Baseline and High Prior treatments. “Low Safe Action” sessions

isolate the effect of the safe action on experimentation and consist of each subject

facing the Baseline and Low Safe Action treatments. “High Discount Factor” ses-

sions isolate the effect of the discount factor on experimentation and consist of each

subject facing the Baseline and High Discount Factor treatments. Within each ses-

sion, subjects face twenty periods of the Baseline treatment and twenty periods of

the session’s other treatment. One half of the subjects in a session start out with the

Baseline treatment and the other half of the subjects in a session start out with the

session’s other treatment.

Table 1.1 displays the predictions for each treatment. Section A.1 of the appendix

provides details for how we derived these predictions. In the Baseline treatment,

subjects are predicted to be willing to experiment for 130 ticks.4 In the High Prior

treatment, subjects are predicted to be willing to experiment for 199 ticks. In the

Low Safe Action treatment, subjects are predicted to be willing to experiment for 198

ticks. In the High Discount Factor treatment, subjects are predicted to be willing to

experiment for 199 ticks.

4In this paper, willingness to experiment refers to how long a subject is willing to experiment without
ever obtaining a reward.
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Table 1.2 compares the discrete time and continuous time predictions. The predic-

tions for the discrete time approximation are close to the continuous time predictions.

For each treatment, a subject’s predicted willingness to experiment in the discrete

time approximation is within one tick of their predicted willingness to experiment in

continuous time. For each treatment, an agent’s predicted cutoff belief in the discrete

time approximation is within one one-hundredth of their predicted cutoff belief in

continuous time.

1.3.2 Experiment

Instructions for the experiment were read aloud at the start of the experiment. The

instructions were composed of a written component that outlined the experiment and

a separate video that illustrated the experimental interface. After the instructions

were read, subjects completed five comprehension questions that were each worth

$1.00. Upon completion of the five comprehension questions, the session began.

The environment is described through an analogy of balls being drawn from a bag.

Subjects can either draw a ball (the risky action) or not draw a ball (the safe action)

in a given tick. There are two bags: (i) a “uniform” bag and a (ii) “mixed” bag. The

uniform bag consists of 100 yellow balls. The mixed bag consists of 1 red ball and

99 yellow balls. In this analogy, the mixed bag is a good state, with a red ball being

a reward and a yellow ball returning nothing. At the beginning of each period, one

of the two bags is randomly drawn for each subject. The mixed bag is drawn with

probability p0 and the uniform bag is drawn with probability 1 − p0. The bag stays

the same throughout the period.

At the start of each period, subjects have as much time as they would like to take

an initial action. Once a subject decides on an initial action, a five-second countdown

begins. At the end of the five-second countdown, the first tick occurs. If a subject

initially chooses to draw, she continually draws until, as an unsure single decision

maker, she decides to stop. Starting from the initial action, whenever a subject is
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Figure 1.1.: Example of the experimental interface.

unsure of the risky action and chooses to not draw, she is prevented from drawing

for the rest of the period.5 Additionally, a subject is prevented from switching to the

safe action once she obtains a reward.6 Ticks continue until the random termination

of the period.

Subjects receive feedback throughout the period through a graph displayed on

their screen. A red line, that does not move, is drawn at the current tick. The

number of balls drawn is displayed to the right of the center of the red line. The

current tick number is displayed to the right of the bottom of the red line. The payoff

history for the last eighty ticks is shown to the left of the red line. At the beginning

5This decision should have no theoretical effect and gives the theory the best chance as it removes
some possible decision error. This does leave the possibility that subjects trembling could lead to
under-experimentation, since a tremble to stop is irreversible.
6This prevents subjects from accidentally switching to the safe action after the initial reward reveals
that the subject has a good risky action.
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of each tick, subjects receive payoff information from the action preceding it. If the

subject previously implemented the safe action, she sees a blue line of height s∆

drawn over the previous tick. If the subject previously implemented the risky action,

she either sees no line (no reward occurred) or a blue line of height h (a reward

occurred) drawn over the previous tick. Figure 1.1 displays an example of the screen

from a High Discount Factor session.

At the end of the experiment, subjects completed a post-experimental survey,

which is displayed in section A.7 of the appendix. The post-experimental survey

collected information on gender, race, country of origin, grade point average, year of

schooling, and major. These demographics were collected to control for any hetero-

geneity in the treatments.7

1.3.3 Testable Hypotheses

The hypotheses are based on the theoretical predictions for the four treatments.

The hypotheses focus on how long an individual is willing to experiment, that is,

how long an individual is willing to implement the risky action without ever seeing

a reward. Subjects are predicted to be willing to experiment for 130 ticks in the

Baseline treatment, 199 ticks in the High Prior treatment, 198 ticks in the Low Safe

Action treatment, and 199 ticks in the High Discount Factor treatment.

Eliciting how long an individual is willing to experiment is not always possible.

There are two cases where subjects do not reveal how long they are willing to exper-

iment. The first case is where a subject receives a reward. In this case, an individual

knows for certain that she has a good risky action and thus never switches to the safe

action. The second case is where the period ends before an unsure agent switches to

7We do not present the demographics in the results section because the demographics are generally
non-informative and do not change any major results from the experiment. The role of gender may
be interesting for future experiments to uncover as men appear to be more willing to experiment
than women and the p-value associated with gender is slightly higher than 0.10. Risk aversion may
play a small role in this difference. Using the structural estimation in section 1.5, and stratifying
by gender, men have an estimated CRRA coefficient that is about 0.01 less than women’s estimated
CRRA coefficient. Men and women also have differences in base rate neglect/conservatism and
probability mis-weighting that appear to contribute to this difference.
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the safe action. In this case, it is never observed when an agent would stop experi-

menting.

This paper takes two approaches to mitigate these issues. The first approach is

to analyze a subset of data where theory always predicts a switch to the safe action.

In this subset of data, the period lasts for at least 200 ticks and either (i) the state

is bad or (ii) the first reward occurs after 199 ticks.8 The second approach is to use

the Product Limit estimator to correct for the censoring that occurs. Details on the

Product Limit estimator can be found in section A.2.1 of the appendix. These two

approaches will be used in tandem to test the three hypotheses.

The hypotheses test how well theory describes subjects’ willingness to experiment.

Each subsequent hypothesis is a less conservative test of theory. The first hypothesis

focuses on how subjects respond to changes in the experimental parameters. Sub-

jects should become willing to experiment longer when p0 increases, δ increases, or

s∆ decreases. This leads us to our first hypothesis.

HYPOTHESIS 1: Subjects become willing to experiment longer when p0 increases,

δ increases, or s∆ decreases.

The second hypothesis focuses on the magnitude of subjects’ response to changes

in the experimental parameters. For the given parameters, subjects should become

willing to experiment for 69 more ticks when p0 or δ increases and 68 more ticks when

s∆ decreases. This leads us to our second hypothesis.

HYPOTHESIS 2: The length of time that subjects are willing to experiment in-

creases by the correct magnitude when s∆, δ, or p0 is changed.

8Other cutoffs can be used. For example, the results are robust to using a cutoff of 250, that is,
the period lasts at least 250 ticks and I use observations where the state is bad or the first reward
occurs after 249 ticks.
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Figure 1.2.: First row of graphs display the effects of unilaterally increasing risk
aversion, conservatism, and probability mis-weighting for the Baseline treatment.
The second row of graphs display the effects of unilaterally increasing probability
mis-weighting of the prior, random termination probability, and reward probability
for the Baseline treatment.

The third hypothesis focuses on the length of time that subjects are willing to

experiment in each treatment. Subjects are predicted to be willing to experiment for

130 ticks in the Baseline treatment, 199 ticks in the High Prior treatment, 198 ticks in

the Low Safe Action treatment, and 199 ticks in the High Discount Factor treatment.

This leads us to our third hypothesis.

HYPOTHESIS 3: The length of time that subjects are willing to experiment is as

predicted in each treatment.
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1.3.4 Behavioral Factors

While subjects are predicted to behave according to the previous hypotheses,

they may be influenced by behavioral factors that are unaccounted-for in section 1.2.

Subjects may exhibit risk aversion, base rate neglect/conservatism, and/or probability

mis-weighting. This subsection focuses on how these behavioral factors may influence

subject behavior.

Figure 1.2 displays how subject behavior in the Baseline treatment is predicted to

change when risk aversion, base rate neglect, or probability mis-weighting is unilat-

erally varied.9 These behavioral factors have similar effects on the other treatments.

Risk aversion is modeled through CRRA utility. The first graph suggests that an

individual becomes less willing to experiment as she becomes more risk averse. This

is unsurprising as Keller et al. (2019) show that, in continuous time, experimentation

is decreasing in risk aversion when h > s. Base rate neglect is modeled as each sub-

ject treating a yellow ball drawn as if it were ψ yellow balls drawn.10 As ψ increases,

subjects’ beliefs decrease faster in the absence of any rewards. Unsurprisingly, the

second graph suggests that subjects become less willing to experiment as ψ increases.

Lastly, probability mis-weighting is modeled through a Prelec-I function.11 Subjects

may mis-weight the prior, reward probability, and random termination probability.

The third graph shows a non-monotonic effect of probability mis-weighting on a sub-

ject’s willingness to experiment.

The remaining graphs provide intuition for this non-monotonic effect. As the

probability mis-weighting parameter (α) increases, the mis-weighted reward proba-

bility, random termination probability, and prior probability decrease for the Baseline

treatment. The fourth graph suggests that as α increases, the mis-weighted prior de-

9Note that these are predictions for the discrete time approximation. More details on how these
factors are modeled can be found in section 1.5.
10This approach is similar to the approach taken in Goeree et al. (2007) and Moreno and Rosokha
(2016). Additionally, this behavioral factor only makes sense if an agent has never observed a reward.
11The Prelec-I function is given by w(p) = e−(−ln(p))α . When α < 1 (α > 1), agents over-weight
(under-weight) low probability events and under-weight (over-weight) high probability events. When
α = 1, agents correctly weight probabilities.
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creases how long subjects are willing to experiment. Intuitively, subjects’ perception

of the prior is decreasing in α. The fifth graph suggests that as α increases, the mis-

weighted random termination probability makes subjects willing to experiment longer.

Intuitively, subjects’ expectation of the period length is increasing in α. Lastly, the

sixth graph suggests a non-monotonic effect of the mis-weighted reward probability

on how long an individual is willing to experiment. Intuitively, beliefs decrease slower

in the absence of rewards and the myopic value of experimentation decreases when α

increases.

It is useful to reiterate the directional effects of these behavioral factors. First,

risk aversion appears to decrease experimentation. Second, base rate neglect (ψ > 1)

appears to decrease experimentation and conservatism (ψ < 1) appears to increase

experimentation. Third, the effect of probability mis-weighting depends on the value

of α.

1.3.5 Procedures

Experiments were run in the Vernon Smith Experimental Economics Laboratory

at Purdue University. Experiments were run in August and September 2019. Ex-

periments lasted for as little as 60 minutes and for as long as 95 minutes. Subjects

were paid for correct answers to the comprehension questions, three random periods

in their first treatment, and three random periods in their second treatment. The

average earnings for the experiment was $15.44. The standard deviation for earnings

in the experiment was $6.54. Seventy-two subjects participated in the experiment,

with twenty-four subjects in High Prior sessions, twenty-four subjects in Low Safe

Action sessions, and twenty-four subjects in High Discount Factor sessions.

1.4 Results

This section takes two approaches towards testing the three hypotheses. The first

approach is to use a subset of data where theory always predicts a switch to the safe
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Table 1.3.: Summary statistics for the experiment. “HP Session” refers to the High
Prior sessions, “LS” refers to the Low Safe Action sessions, and “HD Session” refers
to the High Discount Factor sessions. The numbers without square brackets are the
pooled averages from the Subset approach. The numbers inside of square brackets
are the average of Product Limit estimated subject means from the Product Limit
approach. “Difference” displays the difference between the summary statistics of the
two treatments in each type of session.

Treatment Prediction HP Session LS Session HD Session
Baseline 130 86.1 [81.0] 93.4 [97.9] 90.7 [100.5]

High Prior 199 96.3 [96.9] — —

Low Safe Action 198 — 131.0 [129.8] —

High Discount Factor 199 — — 143.1 [170.6]

Difference — 10.2 [15.9] 37.6 [31.9] 52.4 [70.1]

action. We will refer to this approach as the “Subset” approach. The second approach

is to use the Product Limit estimator to correct for the censoring that occurs. We

will refer to this approach as the “Product Limit” approach. We use results from

both approaches as each approach has its own strengths and weaknesses. The Subset

approach only uses a subset of the data and includes some censored observations, but

allows us to use common panel data econometric techniques.12 The Product Limit

approach only uses subject means, but corrects for censored data. This section,

including figures and graphs, will focus on the subset approach unless mentioned

otherwise.

Section 1.4.1 addresses the first hypothesis. Section 1.4.2 addresses the second

hypothesis. Section 1.4.3 addresses the third hypothesis.

1.4.1 Hypothesis 1

Hypothesis 1 states that subjects become willing to experiment longer when p0

increases, δ increases, or s∆ decreases. Table 1.3 displays summary statistics from

both the Subset approach and the Product Limit approach. The summary statistics

12Six percent of the data in the subset approach is censored.
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Figure 1.3.: Difference in subjects’ average stopping time in the Baseline treatment
and in the session’s other treatment. The other treatment is the High Prior treatment
in the first graph, the Low Safe Action treatment in the second graph, and the High
Discount Factor in the third graph. The red line displays the predicted response to
the treatment variable, while the black line displays no response to the treatment
variable. Blue dots denote subjects who had the Baseline treatment first, while black
dots denote subjects who had the Baseline Treatment second.

from both approaches suggest that subjects become willing to experiment longer when

either p0 or δ increases. Additionally, the summary statistics from both approaches

suggest that subjects become willing to experiment longer when s∆ decreases.

Figure 1.3 displays the difference in each subject’s average stopping time in the

Baseline treatment and their average stopping time in the session’s other treatment.

Fourteen out of twenty-four subjects in the High Prior sessions have a higher mean

stopping time in the High Prior treatment than the Baseline treatment. Sixteen out

of twenty-four subjects in the Low Safe Action sessions have a higher mean stopping

time in the Low Safe Action treatment than the Baseline treatment. Eighteen out

of twenty-four subjects in the High Discount Factor sessions have a higher mean

stopping time in the High Discount Factor treatment than the Baseline treatment.

While it appears that Hypothesis 1 holds, more formal analysis must be conducted.
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Hypothesis 1 can be tested under both the Subset approach and the Product

Limit approach. Random effect regressions, with subject level random effects, of the

stopping time on the treatment can be run for the High Prior sessions, Low Safe

Action sessions, and High Discount Factor sessions. The effect of increasing the prior

is positive and significant at the five percent level (p-value=0.011). Both the effect of

increasing the discount factor and decreasing the safe action are positive and signif-

icant at the one percent level. The Product Limit approach backs up these results,

except for the fact that the effect of increasing the prior is only significant at the ten

percent level (p-value=.065).13

Result 1: Subjects become willing to experiment longer when p0 increases, δ

increases, or s∆ decreases (evidence supporting Hypothesis 1).

1.4.2 Hypothesis 2

Hypothesis 2 states that the length of time that subjects are willing to experiment

increases by the correct magnitude when s∆, δ, or p0 is changed. Table 1.3, however,

suggests that Hypothesis 2 does not hold. The response to a change in p0 appears to

be less than twenty ticks. The response to a change in s∆ appears to be less than

forty ticks.

Figure 1.3 shows how subjects respond to a change in p0, δ, and s∆. Figure 1.3

plots the difference in each subject’s mean stopping time for the baseline treatment

and their session’s other treatment. Twenty-one out of twenty-four subjects have a

difference that is smaller than predicted in the High Prior sessions. Eighteen out

of twenty-four subjects have a difference that is smaller than predicted in the Low

Safe Action sessions. Seventeen out of twenty-four subjects have a difference that

13We ran bootstrapped regressions for each type of session. For example, for the change in the prior,
we ran a bootstrapped regression of the difference in each High Prior session subject’s Product
Limit estimated mean stopping time for the Baseline treatment and the High Prior treatment.
Bootstrapped regressions were run with 5000 bootstrap samples.
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is less than predicted in the High Discount Factor sessions. While it appears that

Hypothesis 2 does not hold, more formal analysis must still be conducted.

Hypothesis 2 can be tested under both the Subset approach and the Product

Limit approach. As in Figure 1.3, a subject’s response to the treatment variable can

be calculated using the difference in a subject’s mean stopping time in the Baseline

treatment and their session’s other treatment. For each variable, a bootstrapped

regression, with 5000 bootstrap samples, can be run on the difference between each

subject’s response and their predicted response. Subjects’ response to an increase

in the prior is significantly less than the predicted response at the one percent level.

Subjects’ response to an increase in the safe action is significantly less than the

predicted response at the five percent level (p-value=0.021). Subjects’ response to an

increase in the discount factor is insignificantly different than the predicted response

at the ten percent level (p-value=0.609). The Product Limit approach is conducted

similarly and backs up these results.

The High Prior Sessions can be used to test the assumption that cutoff beliefs are

independent of the prior. We can test this assumption using the Subset approach.14

In the High Prior sessions, the average cutoff belief is 0.19 in the Baseline treatment

and 0.30 in the High Prior treatment. This difference is significant at the one percent

level using a random effects regression with subject level random effects.

Result 2: The length of time that subjects are willing to experiment increases by less

than predicted when p0 increases or when s∆ decreases (evidence against Hypothesis

2). Cutoff beliefs are not independent of the prior.

14Cutoff beliefs are not easily analyzable with survival analysis.
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Figure 1.4.: Mean subject stopping times in each treatment. Red dots denote a mean
stopping time lower than the prediction. Orange dots denote a mean stopping time
equal to the prediction. Black dots denote a mean stopping time greater than the
prediction.

1.4.3 Hypothesis 3

Hypothesis 3 states that the length of time that subjects are willing to experi-

ment is as predicted in each treatment. It is clear that Hypothesis 3 does not hold

as Hypothesis 2 does not hold. However, we use this section to see if subjects sys-

tematically under-experiment or over-experiment. Table 1.3 suggests that subjects

are often willing to experiment for a shorter period of time than predicted by theory.

Subjects in the High Prior Treatment appear to under-experiment by 100 ticks. Sub-

jects in the Low Safe Action Treatment appear to under-experiment by at least 65

ticks. Subjects in the High Discount Factor treatment appear to under-experiment

by at least 25 ticks.
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Figure 1.4 compares, in each treatment, the stopping time of each subject to

the predicted stopping time. Fifty-nine out of seventy-two subjects have an aver-

age stopping time below the prediction in the Baseline treatment. Twenty-two out

of twenty-four subjects have an average stopping time below the prediction in the

High Prior treatment. Twenty-one out of twenty-four subjects have an average stop-

ping time below the prediction in the Low Safe Action Treatment. Eighteen out of

twenty-four subjects have an average stopping time below the prediction in the High

Discount Factor treatment, although some subjects have a much higher average stop-

ping time than predicted. While it appears that subjects under-experiment, more

formal analysis must be conducted.

Hypothesis tests, using both approaches, can be conducted to test whether sub-

jects under-experiment. Random effects regressions, with subject level random effects,

of the difference between each stopping time and its prediction can be run. Subjects

are overall willing to experiment for a shorter period of time than predicted by the-

ory at the one percent level. Additionally, subjects are willing to experiment for a

shorter period of time than predicted by theory at the one percent level in the Base-

line, High Prior, and Low Safe Action treatments. Subjects are willing to experiment

for a shorter period of time than predicted by theory at the ten percent level for the

High Discount Factor treatment (p-value=0.065). The Product Limit approach backs

up these results except for the High Discount Factor treatment, where subjects are

willing to experiment for an insignificantly different period of time than predicted

(p-value=0.483).15

While subjects are often willing to experiment for a shorter period of time than

predicted by theory, Table 1.3 suggests that stopping times are above the myopic pre-

diction. A myopic subject is predicted to be willing to experiment for five ticks in the

Baseline and High Discount Factor treatments and for seventy-four ticks in the High

Prior and Low Safe Action treatments. Under both approaches, the mean stopping

15We ran bootstrapped regressions for each treatment. In each treatment, we regressed the difference
of subjects’ mean Product Limit Estimated stopping time and the predicted stopping time with 5000
bootstrap samples.
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time in each treatment is above the myopic prediction. This result can be tested us-

ing both approaches. A random effects regression, with subject level random effects,

of the difference between each stopping time and the myopic prediction can be run.

Subjects are overall willing to experiment for a longer period of time than myopia

predicts at the one percent level. Additionally, subjects are willing to experiment for

a longer period of time than myopia predicts at the one percent level in the Baseline,

Low Safe Action, and the High Discount Factor treatments. Subjects are willing to

experiment for a longer period of time than myopia predicts at the five percent level

in the High Prior Treatment (p-value=0.021). The Product Limit approach backs up

these results except that subjects are only willing to experiment for a longer period

of time than myopia predicts at the ten percent level in the High Prior Treatment

(p-value=0.062).16

Result 3: Subjects are overall willing to experiment for a shorter period of time

than predicted by theory (evidence against Hypothesis 3). However, subjects are over-

all willing to experiment for a longer period of time than predicted by myopic behavior.

1.5 Estimating Behavioral Factors

The results section shows that subject behavior deviates from theory. In this

section, we estimate a model in an attempt to better understand subject behavior.

The goal of this section is to uncover behavioral factors that are consistent with

subject behavior.

16We ran bootstrapped regressions for each treatment. In each treatment, we regressed the difference
of subjects’ mean Product Limit Estimated stopping time and the myopic stopping time with 5000
bootstrap samples.
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1.5.1 Setup and Estimation

We focus on three possible deviations from theory: risk aversion, base rate ne-

glect/conservatism, and probability mis-weighting. We include risk aversion in the

model as risk is inherent in this problem and as other papers (Banks et al., 1997;

Hudja, 2019) consider risk aversion in bandit experiments. We include probability

mis-weighting as subjects encounter various probabilities (reward probability, prior

probability, random termination probability) in this experiment. Lastly, we include

base rate neglect/conservatism as subjects may weight the information generated

from experimentation too much or too little relative to the prior.

These deviations from theory are incorporated into both belief updating and the

cutoff belief. Base rate neglect/conservatism and probability mis-weighting will be

incorporated into belief updating. Base rate neglect/conservatism is modeled as a

subject treating a tick of experimentation as if it is ψ ticks of experimentation.17

Probability mis-weighting is modeled throughout this section through the Prelec-I

function. Let p̃0 = e−(−ln(p0))α be the mis-weighted value of p0. Let λ̃∆ = e−(−ln(λ∆))α

be the mis-weighted value of λ∆. An agent’s belief updating function, in the absence

of a reward, can now be modeled as

p̃0(1− λ̃∆)ψλ̃∆t

p̃0(1− λ̃∆)ψλ̃∆t + (1− p̃0)
.

Notice that belief updating is in discrete time as we are focusing on the discrete

approximation.

Risk aversion and probability mis-weighting will be incorporated into the cutoff

belief. Risk aversion is modeled using CRRA utility. Let u(x) = x1−γ

1−γ , with γ being

the coefficient of risk aversion, be an agent’s utility under risk aversion. Let δ̃ =

1 − e−(−ln(1−δ))α be the mis-weighted value of the discount factor and once again let

λ̃∆ = e−(−ln(λ∆))α be the mis-weighted value of λ∆. A subject’s cutoff belief can be

found by value function iteration, where

17As mentioned earlier, this is a similar approach as taken in Goeree et al. (2007) and Moreno and
Rosokha (2016).
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v(p) = max

{
u(s)

1− δ̃
, pλ̃∆ ∗ (u(h) + δ̃ ∗ λ̃∆u(h)

1− δ̃
) + (1− pλ̃∆) ∗ δ̃ ∗ v(p′)

}
,

is the value function and p′ is the updated belief. The first part of the maximand is

the value of stopping at this belief and the second part is the value of implementing

the risky action at the current belief. The time a subject is willing to experiment can

be found by finding where the belief updating function and cutoff belief intersect.

The parameters γ, ψ, and α can be estimated through Maximum Likelihood

Estimation. Let the prediction based solely on the parameter set and these parameters

be denoted as pred(set, γ, ψ, α), where set is the parameter set a subject is facing.

We assume that subjects make normally distributed errors around this prediction. A

subject’s willingness to experiment, in a given period, is thus given by

pred(set, γ, ψ, α) + εi,t,

where εi,t ∼ N(0, σ2).

The model estimated in this section resembles a two-limit Tobit based on the

aforementioned prediction. Let pcensori,t denote the time of first possible censoring,

which is either the time that the period ends or, if relevant, the minimum of the time

that the period ends and the time of the first reward. The probability of a subject

switching to the safe action before the first tick is equal to

Φ

(
pred(set, γ, ψ, α)

σ

)
.

The probability that a subject switches to the safe action at a time 0 < yi,t <

pcensori,t is equal to

1

σ
φ

(
yi,t − pred(set, γ, ψ, α)

σ

)
.

The probability that a subject is censored (from above) in a period is equal to
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1− Φ

(
pcensori,t − pred(set, γ, ψ, α)

σ

)
.

The joint density for subject i can thus be written as

Li =
T∏
t=1

[
Φ

(
−pred(set, γ, ψ, α)

σ

)]Iyi,t=0

×
[

1

σ
φ

(
yi,t − pred(set, γ, ψ, α)

σ

)]I0<yi,t<pcensori,t
×
[
1− Φ

(
pcensori,t − pred(set, γ, ψ, α)

σ

)]Iyi,t=pcensori,t
.

The log-likelihood can be written as LogL =
∑n

i=1 lnLi. The model will use all of

the data as this model can account for censoring. Maximum Likelihood estimation is

used to estimate the parameters.

The maximized log-likelihood is equal to 8658.03.18 The values of γ, ψ, and α

are 0.36, 0.13, and 0.65, respectively. The value of σ is 166.89. The value of γ is

significantly different than the restricted value of zero at the one percent level using

a likelihood ratio test (restricted log-likelihood is equal to 8666.27). The value of

ψ is significantly different than the restricted value of one at the five percent level

using a likelihood ratio test (restricted log-likelihood is equal to 8660.73). The value

of α is significantly different than the restricted value of one at the one percent

level using a likelihood ratio test (restricted log-likelihood is equal to 8662.00).19

These results suggest that risk aversion, conservatism, and probability mis-weighting

influence subjects’ experimentation decisions.

18The appendix, in section A.3, displays a model of experimentation that is based on the continuous
time predictions. The results are similar to the following results.
19Standard errors back these results up except that α is only significant at the ten percent level. We
utilize likelihood ratio tests since we calculate our standard errors through numerical differentiation.
These standard errors are 0.15 for γ, 0.14 for ψ, 0.20 for α, and 3.69 for σ.
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Figure 1.5.: Model predictions for the Baseline Treatment as each Behavioral factor
is varied. These predictions are obtained through simulation and are for the subset
approach. In each graph, one behavioral factor is varied, while the other two behav-
ioral factors are held constant at the estimated levels. The black square denotes the
prediction of the fully estimated model in section 1.5.1.

1.5.2 Effects

In this subsection, we explore the effects of each behavioral factor. Figure 1.5

displays the model predictions for the Baseline Treatment as each behavioral factor

is varied. These effects are similar in other treatments. These predictions are mean

predictions that are obtained by using the subset approach on one million period

simulations.

The first graph displays the effect of risk aversion as the CRRA coefficient is varied

(ψ and α are held at their estimated values). The graph shows that turning the risk

aversion channel (γ = 0) off in the estimated model leads to more experimentation.

This suggests that risk aversion is contributing to under-experimentation. The second

graph displays the effect of conservatism as the base rate neglect parameter ψ is

varied (γ and α are held constant at their estimated values). The graph shows
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Figure 1.6.: Model predictions for each treatment using the subset approach. Model
predictions are compared to the experimental predictions and to the average stopping
times using the subset approach.

that turning the conservatism channel off (ψ = 1) in the estimated model leads

to less experimentation. This suggests that conservatism makes subjects willing to

experiment longer. Lastly, the third graph displays the effect of probability mis-

weighting as α is varied (γ and ψ are held at their estimated values). The graph

shows that turning the probability mis-weighting channel off (α = 1) in the estimated

model leads to less experimentation. This suggests that probability mis-weighting

makes subjects willing to experiment longer.

1.5.3 Predictions

Figure 1.6 compares our model predictions to the experimental predictions. These

predictions are mean predictions that are obtained by using the subset approach on

one million period simulations. The model predicts an average stopping time of 105.88

ticks in the Baseline treatment, 139.10 ticks in the High Prior Treatment, 141.24
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ticks in the Low Safe Action Treatment, and 122.77 ticks in the High Discount Factor

treatment. As Figure 1.6 shows, the model predictions outperform the experimental

predictions for each treatment in the experiment.

The model can also be compared to the experimental predictions of a previous

study. Hudja (2019) reports an average stopping time for the last fifteen periods of

its sole single-agent exponential bandit treatment. The experimental prediction for

this treatment is for subjects to stop after 187 ticks without observing a reward. The

average stopping time that the paper reports is 135.3 ticks. Using the same subset

approach as in Hudja (2019), our model suggests an average stopping time of 128.3

ticks.

1.6 Power Analysis

The results section shows that subjects respond to changes in incentives. However,

it is unclear whether this result holds in other bandit environments as an earlier study

did not find a response to changes in incentives. Banks et al. (1997) analyze the role

of incentives in a similar, yet different, bandit problem in the lab. In this section, we

conduct a power analysis of both our paper and Banks et al. (1997) in an attempt to

uncover whether subjects’ response to incentives is unique to the exponential bandit

environment.

The problem in Banks et al. (1997) has two differences from our bandit problem.

First, they analyze a discrete time bandit problem. Second, the bad risky action in

their problem can also pay out rewards. They analyze how subjects respond to a

change in the discount factor and to a change in the arrival rates of the risky action.

They find an insignificant effect of both changes at the ten percent level.

We conduct a power analysis of both our paper and their paper. Details on the

power analyses can be found in section A.4 of the appendix. In the power analyses, we

assume that subjects are noisy in that they deviate from the predicted cutoff belief.
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We use two sources of noise for the power analysis.20 Under both sets of noise, in our

study, we find significant responses to changes in the discount factor, safe action, and

prior belief 100 percent of the time at the five percent level. Under both sets of noise,

in their paper, we find significant responses to a change in the discount factor less

than 65 percent of the time and significant responses to a change in the risky action

arrival rates less than 10 percent of the time at the 5 percent level. These percentages

for Banks et al. (1997) fall below the recommended 80 percent for power (Moffatt,

2016).

1.7 Conclusion

This paper uses a laboratory experiment to analyze how individuals resolve an ex-

ploration versus exploitation trade-off. We analyze the predictions of the single-agent

exponential bandit model in a laboratory experiment. We find that, as predicted,

subjects respond to changes in the discount factor, safe action, and prior belief. How-

ever, we commonly find that subjects experiment less than predicted. Maximum

Likelihood estimation suggests that subjects’ behavior is consistent with risk aver-

sion, conservatism, and probability mis-weighting.

These results have consequences for experimentation outside of the laboratory and

for theory. The finding that subjects respond to changes in experimentation incen-

tives suggests that institutions can increase experimentation by changing incentives.

Specifically, it suggests that incentives like grant money can increase experimenta-

tion by reducing the cost of experimentation. The common under-experimentation

found throughout this study suggests that individuals are sub-optimally experiment-

ing. Lastly, our model suggests that subjects’ behavior is consistent with risk aversion,

conservatism and probability mis-weighting. Our model suggests that theorists should

consider these behavioral factors when modeling experimentation environments.

20We use the High Prior Treatment in our experiment and the single-agent treatment in Hudja
(2019) for measures of noise. We use this data as both datasets have a prior belief of 0.50, which is
found in Banks et al. (1997). We want a similar spread in possible cutoff beliefs as in Banks et al.
(1997).
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There are many avenues for future research. First, other papers can focus on the

effect of the arrival rate on experimentation. The arrival rate has a non-monotonic

effect on the length of experimentation in that it can lead to an increase or decrease

in experimentation depending on the parameters. It would be interesting to see if

this non-monotonicity holds in the lab. Second, other papers can design treatments

to isolate the effects of risk aversion, conservatism, and probability mis-weighting on

experimentation. Our model is limited to what we modeled and thus may be picking

up other factors instead of those three factors. Third, other experiments can place in-

dividuals into groups to see whether groups make better decisions in experimentation

environments. Group decision making can be studied with and without communi-

cation. It would be interesting to observe discussion of experimentation strategies

among group members.
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2. VOTING FOR EXPERIMENTATION: A

CONTINUOUS TIME ANALYSIS

This paper uses a laboratory experiment to analyze how a group of voters experi-

ment with a new reform. The experiment implements the continuous time Strulovici

(2010) collective experimentation model. I analyze a subset of data where groups and

single decision makers should eventually prefer to stop experimentation and abandon

the reform. I find three results that are consistent with the modeled experimentation

incentives. In this subset of data, groups stop experimentation earlier than single de-

cision makers, wait longer to stop experimentation as the number of revealed winners

increases, and stop experimentation earlier than the utilitarian optimum predicts.

However, I also find that both groups and single decision makers stop experimenta-

tion earlier than predicted. Additional treatments show that this result is unlikely

to be explained by standard explanations such as incorrect belief updating or risk

aversion.

2.1 Introduction

Societies often implement reforms that have uncertain and heterogeneous effects

on the electorate. For example, tax reforms have effects that are hard to forecast and

that vary for individuals in different states and tax brackets. Trade deals often have

unintended consequences, which may determine the specific industries that gain or

lose from a deal. Other examples of reforms that have both uncertain and hetero-

geneous effects are health care reforms, immigration reforms, and electoral reforms.

When voters elect to implement one of these reforms, they are essentially electing to

conduct a policy experiment where the reform must produce sufficient results or be

repealed.
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I analyze how a group of voters experiment with a new reform by testing the

Strulovici (2010) model in a laboratory experiment. In the model, a group of voters

continually decide by majority vote between a safe action that yields a constant iden-

tical payoff to everyone and a risky action that for each individual can be either good

or bad. A bad type of risky action is dominated by the safe action and never returns

a payoff. A good type of risky action dominates the safe action and occasionally

pays out rewards. Voters are initially unsure of their type of risky action and learn

about their type, which is independently distributed, through experimentation with

the risky action. Voters who receive a reward from the risky action know their risky

action is good; they are sure winners. Voters who have not yet received a reward from

the risky action are unsure voters, who become more pessimistic about their type as

experimentation goes on.

Each voter faces a collective experimentation problem because of the initial un-

certainty of the risky action. Similar to an individual experimentation problem, an

unsure voter faces an exploration versus exploitation trade-off: experimentation with

the risky action comes at the cost of the safe action. However, an unsure voter must

also consider future negative externalities that voters may impose upon one another.

If the unsure voter has a bad type, her vote for the risky action can result in a ma-

jority of sure winners forming, trapping her into her (bad) risky action forever. If

the unsure voter has a good type, her vote for the risky action can reveal that she is

a winner, but this benefit may be short-lived as unsure voters may impose the safe

action in the future.

Strulovici (2010) characterizes how unsure voters resolve this experimentation

problem. He finds that the negative payoff externalites that can arise from voting

weaken unsure voters’ incentive to experiment with the risky action relative to a

single decision maker, who only faces the exploration versus exploitation trade-off.

The possibility of these externalities also reduces unsure voters’ incentive to experi-

ment relative to the utilitarian optimum. Finally, the possibility of these externalities

increases unsure voters’ incentive to experiment as the number of sure winners in-
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creases; the benefit of experimentation increases as a future sure winner is less likely

to see the reform overturned.

I implement this model in a laboratory experiment to analyze how voters make

collective decisions on a new reform in the face of these experimentation incentives. I

employ a near continuous time approximation of the Strulovici (2010) model, which

allows me to analyze an environment that has theoretical predictions close to the

theoretical predictions of the continuous time environment. The experiment consists

of two treatments. In the single-agent treatment, each subject faces an individual

experimentation problem. In the majority-vote treatment, voters in a three person

group face the collective experimentation problem.

The unique control of a laboratory experiment reveals how long groups, and single

decision makers, are willing to try the reform. A laboratory experiment, unlike field

data, allows for random assignment of groups to observations where a majority of

sure winners can never form and for random assignment of single decision makers to

observations where they never benefit from the reform. I analyze a subset of these

observations where theory predicts that groups, and single decision makers, will stop

trying the reform.

The results show that collective decisions on the reform are generally consistent

with the modeled experimentation incentives. In particular, the results support three

predictions for this subset of data: (i) groups stop trying the reform earlier than

single decision makers, (ii) groups with zero winners stop trying the reform earlier

than groups with one winner, and (iii) groups stop trying the reform earlier than the

utilitarian optimum predicts. The first result is consistent with the weaker experi-

mentation incentives under majority voting. The second result is consistent with the

increasing experimentation incentives when a winner is observed. The third result is

consistent with the socially inefficient experimentation incentives under majority vot-

ing. However, both groups and single decision makers stop trying the reform earlier

than theory predicts.
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This unexpected result is a product of subjects under-experimenting with the risky

action. Two additional treatments are designed to rule out candidate explanations

for under-experimentation. The first is similar to the single-agent treatment, but

now I give unsure single decision makers the updated probability that their risky

action is good. This treatment analyzes how belief updating affects experimentation.

The second additional treatment is similar to the first additional treatment, but

has a fixed period length. This treatment analyzes how discounting biases affect

experimentation. These additional treatments, as well as elicited risk preferences,

show that risk aversion, belief updating, and discounting biases are unlikely to be

explanations for under-experimentation.

This paper contributes to three strands of literature. First is the literature on ex-

perimentation with multiple agents, which has mostly focused on strategic experimen-

tation in which agents can free-ride on other agents’ costly experimentation (Bolton

and Harris, 1999). Keller et al. (2005) analyze strategic experimentation through

an exponential bandit framework. Hoelzemann and Klein (2018) analyze strategic

experimentation in the lab and find evidence of free-riding. Recent research on multi-

agent experimentation has considered the case of collective experimentation in which

an agent’s experimentation may depend on other group members. Strulovici (2010)

analyzes collective experimentation using exponential bandits. Khromenkova (2015)

analyzes collective experimentation, but allows for voters of any type of risky action

to learn its quality. Freer et al. (2018) build and experimentally test a collective

experimentation model. They find that majority-voting performs better than their

optimal rule in a three period signaling model. My paper is the first to experimen-

tally analyze how collective experimentation differs from individual experimentation.

I find that groups stop experimentation earlier than single-agents, as predicted by

theory.

This paper also contributes to the literature on testing political economy models of

reform. Previous studies have tested the Fernandez and Rodrick (1991) model, which

shows that individual-specific uncertainty can prevent the adoption of efficiency-
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enhancing reforms. Cason and Mui (2003, 2005) report experimental results that

supports the model. Paetzel et al. (2014) find that social preferences can mitigate

this issue. My paper is the first to directly test the Strulovici (2010) model, which

has new strategic issues that arise from voters learning over time and the initial

uncertainty over the reform’s efficiency.

Finally, this paper contributes to the literature on bandit experiments, which has

mostly analyzed situations where the high payoff probability of an unknown risky

action is randomly drawn from a continuous distribution. Meyer and Shi (1995) find

under-experimentation in this type of problem and suggest shortened planning hori-

zons as an explanation. Anderson (2001, 2012) finds under-experimentation in this

type of problem and suggests ambiguity aversion as an explanation while providing

evidence against hyperbolic discounting and risk aversion. In the current study, the

high payoff probability of an unknown risky action can take on only one of two val-

ues. Banks et al. (1997) analyze a variant of this problem and find that strategies are

unaffected by risk aversion. However, they do not analyze whether subjects under-

experiment. I find that subjects under-experiment in this type of problem and that

this under-experimentation is unlikely to be explained by incorrect belief updating,

discounting biases, and risk aversion.

2.2 Theory

The experimental model is based on Strulovici (2010). This section closely follows

section 2 of that article. The reader seeking greater detail (or proofs) than this section

provides should consult Strulovici (2010).

Time (t) is continuous and payoffs of all individuals are discounted at a rate r.

There is an odd number (N ≥ 1) of individuals, with risk neutral preferences, who

continually decide by majority vote between two actions. The two actions are the safe

action, which yields a flow s per unit of time to all individuals and the risky action,
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which can be, for each player, either good or bad. The types of the risky action are

independently distributed across the group.

If the risky action is bad for an individual, it always pays her nothing. If the risky

action is good for an individual, it pays her rewards at random times, which depend

on a Poisson process with parameter λ. The arrival of rewards is independent across

individuals, and the magnitude of a reward is h. Thus, if the risky action is good for

an individual, her expected payoff per unit of time from the risky action is g = λh,

which is greater than s.

The risky action has an initial probability p0 of being good for each individual.

This is common knowledge. All payoffs are publicly observed, so that everyone shares

the same belief about any individual’s type. Thus, the arrival of the first reward to

an individual makes her publicly a sure winner. At any time, the group is divided

into k sure winners, who always vote for the risky action, and N − k unsure voters,

who have the same probability p of having a good risky action. Unsure voters update

their probability of having a good risky action according to Bayes’ rule and become

more pessimistic as experimentation goes on. An unsure voter learns about her type

only from her own payoffs because types are independent.

When the group consists of one agent, this environment reduces to the environ-

ment of a single decision maker. The optimal strategy is for the risky action to be

chosen if and only if the current belief (p) is greater than or equal to a cutoff belief

pA. The cutoff belief pA is equal to

pA =
rs

rg + λ(g − s)
(2.1)

and solves the indifference equation pg + λp(g
r
− s

r
) = s. The left-hand side of the

indifference equation corresponds to the risky action, while the right-hand side corre-

sponds to the safe action. The effect of the risky action on an unsure single decision

maker can be decomposed into two elements: (i) the expected payoff pg, and (ii) the

jump in the value function (from s
r

to g
r

as she is currently indifferent) if a reward is
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received, which occurs at a rate λ with probability p. If the safe action is chosen, the

payoff rate is s.

The myopic strategy is for the risky action to be chosen if and only if the current

belief (p) is greater than or equal to a cutoff belief pM = s
g
. The myopic cutoff (pM)

is the probability below which the risky action yields a lower expected flow payoff

than the safe action. The myopic strategy is suboptimal because a myopic decision

maker does not value the information generated by experimentation. A myopic voter

experiments less than a non-myopic voter (as pA < pM).

When a group decides by majority vote, collective decisions are determined by

non-increasing cutoffs such that the risky action is played at time t if and only if

pt > p(kt), where kt is the number of sure winners at that time. Starting with

an appropriate initial belief p0, the risky action is elected until unsure voters reach

the threshold p(0), at which point experimentation stops if no winner has yet been

observed. If at least one winner has been observed experimentation continues until

unsure voters reach another threshold p(1) < p(0), and so forth. Experimentation

means choosing the risky action when one’s type is unknown. Only unsure voters

experiment.

When there is a majority of unsure voters, decisions are dictated by their common

interest unless and until they lose the majority. Cutoffs are therefore determined

by unsure voters’ preferences when they have the majority. These preferences are

determined by the following Hamilton-Jacobi-Bellman (HJB) equation,

ru(k, p) =max{pg + λp[w(k + 1, p)− u(k, p)]

+ λp(N − k − 1)[u(k + 1, p)− u(k, p)]

− λp(1− p)du
dp

(k, p), s},

(2.2)

where u(k, p) and w(k, p) are unsure voters’ and sure winners’ respective value func-

tion when the state is (k, p). The first part of the maximand corresponds to the risky
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action, and the second corresponds to the safe action. The effect of the risky action

on an unsure voter can be decomposed into four elements: (i) the expected payoff

rate pg, (ii) the jump of the value function if a reward is received, which occurs at

rate λ with probability p, (iii) the jump of the value function if another unsure voter

receives a reward, which occurs at rate λ with probability p(N − k − 1) and (iv) the

effect of Bayesian updating on the value function when no reward is observed. If the

safe action is chosen, the payoff rate is s.

Since unsure voters have identical value functions, they unanimously decide to

stop experimentation if p becomes too low, which occurs when the risky action part

of (2) equals s. This determines the experimentation cutoffs in Theorem 1 (Strulovici,

2010).

Theorem 1 (Strulovici, 2010): There exists a unique Markov equilibrium in

undominated strategies. This equilibrium is characterized by cutoffs p(k) for k ∈

{0, ..., N}, such that R is chosen in state (k, p) if and only if p > p(k). Further-

more, for all k ∈ {0, ..., (N − 1)/2}, pM > p(k) > pA, p(k) is decreasing in k for

k ≤ (N − 1)/2, and p(k) = 0 for all k > (N − 1)/2.

Theorem 1 characterizes the cutoffs that determine behavior in equilibrium. The

first property of the cutoffs is that unsure voters are not myopic (p(k) < pM for all

k ∈ {0, ..., (N − 1)/2}). Intuitively, all unsure voters prefer the risky action when the

expected flow payoff is greater than the safe action. However, unsure voters consider

the future rewards that come with being a winner. This property implies that groups

are willing to implement the risky action past the myopic cutoff when unsure voters

have the majority.

The second property of the cutoffs is that unsure voters are less willing to experi-

ment than a single decision maker (p(k) > pA for all k ≤ (N−1)/2). An unsure voter

has less control over the action chosen as part of a group. In a group, a winner may

have the safe action implemented. In a group, a loser’s (bad type) experimentation
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can lead to a majority of sure winners forming. This lack of control decreases the

incentive to experiment relative to a single decision maker. This property implies

that groups, when unsure voters have the majority, are less willing to implement the

risky action than an unsure single decision maker.

There are two more properties of theorem 1 worth discussing for the experiment:

(i) when unsure voters have the majority, unsure voters become more willing to ex-

periment as the number of sure winners increases (p(k) ↓ in k, for k ≤ (N − 1)/2)

and (ii) once a majority of sure winners form, the risky action is implemented forever

(p(k) = 0 for all k > (N − 1)/2). The benefit of experimentation, and becoming

a winner, increases as the number of winners increases. As the number of winners

increases, the risky action is less likely to be overturned. This property implies that

a group with one winner (N ≥ 3) is willing to implement the risky action for longer

than a group with zero winners. The last property implies that the risky action is

implemented indefinitely in the experiment once a majority of sure winners forms.

2.2.1 Discrete Implementation

It is not possible to implement continuous time bandit problems in the laboratory,

so I implement a close approximation. The approximation consists of two main parts.

The first part is dividing time into a number of ticks, each of length ∆ seconds. A

group (or single-agent) can only employ one action in each tick. The second part is

replacing the Poisson process of a good risky action with an appropriate Bernoulli

process. Under a Bernoulli process, each subject can only receive one reward per tick.

The parameters of the approximation are based on the continuous time param-

eters. In the approximation, the probability of a subject receiving a reward from a

good risky action, in a tick, is π = λ∆. This probability stems from the continu-

ous time probability of obtaining at least one reward in ∆ seconds (1 − e−λ∆). The

discount rate, in the approximation, for a tick is δ = 1 − r∆, which is based on the

continuous time discount rate for ∆ seconds (e−r∆).
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The myopic benefit of the good risky action relative to the safe action must be

the same in the approximation as it is in the continuous time model. In continuous

time, a good risky action has an expected flow value of λh, while the safe action has

a flow value of s. In the approximation, the expected payoff of a good risky action,

in a tick, is πh = λ∆h. Thus, the payoff of the safe action (σ), in a tick, must be set

to ∆s.

Lastly, this model features an infinite horizon, which can not be implemented in

the laboratory. However, the infinite horizon problem can be transformed into an

equivalent indefinite horizon problem through the use of a random stopping rule. In

the experiment, each tick has a probability of q = r∆ of ending the period. This

probability induces a discount rate of δ = 1− r∆, which is the discount rate for the

approximation.

2.3 Experimental Design and Testable Hypotheses

The treatments are designed to analyze group and single-agent experimentation.

The primary goal of the experiment is to compare group experimentation to single-

agent experimentation. The experiment has two secondary goals. The first secondary

goal is to determine how the arrival of a sure winner affects group experimentation.

The second secondary goal is to compare group experimentation to equilibrium and

utilitarian predictions.

2.3.1 Treatments and Parameters

There are two treatments in the experiment. The single-agent treatment analyzes

the single-agent setting (one subject in a group). The majority-vote treatment an-

alyzes the majority-vote setting (three subjects in a group). The experiment uses a

within-subjects design, where subjects start the experiment in one of the two treat-

ments. Eighty-four subjects experience both treatments. Each treatment lasts for

twenty-five periods.
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Table 2.1.: Predicted cutoffs, in ticks, for the experiment and the continuous time
model. In the majority-vote treatment, a switch to the safe action is predicted to
occur if there are zero winners after tick 110 or one winner after tick 153. In the
single-agent treatment, a switch to the safe action is predicted to occur if the single-
agent is not a winner after tick 187. The ‘Zero’ column displays the cutoff for when
there are zero winners, while the ‘One’ column displays the cutoff for when there is
one winner.

Majority-Vote Single-Agent
Zero One Single

Discrete (Ticks) 110.00 153.00 187.00
Continuous (Ticks) 110.77 153.55 187.18

The parameters for the experiment are chosen to simplify the environment. The

group size is set at three and the prior probability of a good state, p0, is set at 0.5.

The tick length, ∆, is 200 milliseconds, which is consistent with other experiments

in the continuous time literature (see Oprea et al., 2009; Anderson et al., 2010). The

remaining parameters are π = 0.01, δ = 0.997, σ = $0.01 and h = $2.50. The

discount rate δ gives each period an expected period length of 333.33 ticks, which

is greater than any of the predicted stopping times. These parameters approximate

a continuous bandit that has parameters λ = 0.05, r = 0.015, g = $0.125, and

s = $0.05.

The theoretical predictions for the experiment are shown in Table 2.1. Table 2.1

displays predictions for both the discrete time approximation and the continuous

time model.1 In the majority-vote treatment, groups are predicted to choose the

risky action through tick 110. If there are zero winners after tick 110, the group

switches to the safe action; otherwise, the group continues choosing the risky action

through tick 153. If there is one winner after tick 153, the group switches to the safe

action; otherwise, the group permanently chooses the risky action. In the single-agent

treatment, subjects are predicted to choose the risky action through tick 187. If the

1The continuous time predictions are derived in section B.1 of the appendix and are based on
equation (2) and other equations found in the proof of Theorem 1 in Strulovici (2010). The discrete
time predictions are derived by value function iteration (details are in section B.2.1 of the appendix).
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subject is not a winner after tick 187, she switches to the safe action; otherwise, she

permanently chooses the risky action.

2.3.2 Beginning of a Treatment

Before the start of the experiment, instructions for the first treatment were passed

out. Half of the sessions started off with twenty-five periods of the single-agent

treatment, while the other half started off with twenty-five periods of the majority-

vote treatment. After the instructions were read, subjects watched a video on the

experimental interface, and then answered five comprehension questions that were

each worth $1.00.

After the first treatment ended, subjects received instructions on the second treat-

ment. After the instructions were read, subjects started the second treatment.

2.3.3 Single-Agent Treatment

The environment in the single-agent treatment is described through an analogy of

balls being drawn from a bag. Subjects can either draw a ball (risky action) or not

draw a ball (safe action) in a given tick. There are two bags: (i) a uniform bag, which

consists of one-hundred yellow balls and (ii) a mixed bag, which consists of one red

ball and ninety-nine yellow balls. In this analogy, the mixed bag is the good state,

with a red ball being a reward and a yellow ball returning nothing. At the beginning

of each period, one of the two bags, with equal probability, is randomly drawn for

each subject. The bag stays the same throughout the period.

At the start of each period, subjects have as much time as they would like to

choose an initial action. Once every subject chooses an initial action, a five second

timer is displayed. When the timer hits zero, the first tick occurs. If a subject initially

chooses to draw a ball, she continually draws until, as an unsure single decision maker,

she decides to stop. Starting from the initial action, whenever a subject is unsure of

the risky action and chooses to not draw, she is prevented from drawing for the rest



45

Figure 2.1.: Example of a subject’s screen in the single-agent treatment. In this
example, the (fictional) subject has drawn 46 balls in 46 ticks and obtained a reward.

of the period.2 A subject must draw for the rest of the period once she receives a

reward and becomes a winner.3 Ticks continue until the random termination of the

period.

Subjects receive feedback throughout the period through a graph displayed on

their screen. A red line, that doesn’t move, is drawn at the current tick. The number

of balls drawn is displayed to the right of the center of the red line. The current tick

number is displayed to the right of the bottom of the red line. The payoff history for

the last eighty ticks is shown to the left of the red line. At the beginning of each tick,

subjects receive payoff information from the action preceding it. If the safe action

2This forces unsure single-agents to decide between drawing in the next tick and never drawing for
the rest of the period. This is the decision subjects make in theory. The advantage of this approach
is that subjects cannot switch back to the risky action in periods that last longer than expected.
3Forcing a subject to automatically choose the risky action once she becomes a winner prevents her
from later accidentally switching to the safe action and is consistent with theory.
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previously occured, the subject sees a blue line of height σ drawn over the previous

tick. If the risky action previously occured, the subject either sees no line (no reward

occurred) or a blue line of height h (reward occurred) drawn over the previous tick.

Figure 2.1 displays an example of the screen from the single-agent treatment.

At the end of the period, subjects receive summary information on the number

of balls drawn, the number of red balls drawn, the payoff, and the period length (in

ticks).

2.3.4 Majority-Vote Treatment

The environment of the majority-vote treatment differs slightly from the single-

agent environment. The analogy of the single-agent treatment is expanded as it is

now explained to subjects that they are a part of a fixed three-person group. Through

an analogy of a coin being flipped three times, subjects are informed that the type of

bag each group member is drawing from is independently determined at the start of

each period.

At the start of the treatment, subjects are randomly matched into fixed groups

of three. At the start of each period, subjects are given as much time as they would

like to make an initial vote. Once everyone in the group has made an initial vote, a

five second timer is displayed. When the timer hits zero, the first tick occurs. If the

majority of initial votes are to draw a ball, each group member continually draws a

ball from her own bag unless and until a majority composed of unsure voters votes to

stop. Starting from the initial vote, whenever a majority composed of unsure voters

votes to not draw, each group member cannot draw for the rest of the period.4 A

subject must vote ‘yes’ for the rest of the period once she receives a reward and

becomes a winner. Thus, when a majority of voters receive rewards, each group

4This forces the group to stop drawing once a majority of unsure voters votes to not draw. Subjects
are however allowed to change their vote as long as the group has never implemented the safe action.
This approach was preferred over forcing a subject to always vote for the safe action once she initially
votes for the safe action. The first voter to vote for the safe action may want to vote for the risky
action later if experimentation continues and a sure winner is later revealed.



47

Figure 2.2.: Example of a subject’s screen in the majority-vote treatment. In this
example, the (fictional) subject has drawn 192 balls in 233 ticks and the group decided
to stop drawing after the 192nd tick. One subject in this group has obtained two red
balls.

member draws a ball from their bag for the rest of the period. Ticks continue until

the random termination of the period.

In each period, each subject receives feedback through a graph displayed on their

screen. Figure 2.2 displays an example of the screen in the treatment. The graph is

similar to the single-agent graph, but now there are three numbers to the right of the

middle of the red line: (i) the number of balls drawn so far, (ii) the number of red

balls drawn by subject B in the group, and (iii) the number of red balls drawn by

subject C in the group. The number of red balls drawn by the other group members

is provided to allow subjects to determine the number of sure winners in the group.
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At the end of the period, subjects are informed of the number of balls they drew,

the number of red balls they drew, their payoff and the period length. Subjects are

also given information on the number of red balls each group member had drawn.

2.3.5 Testable Hypotheses

While theory focuses on how long voters are willing to experiment, testing these

predictions is complicated by voters’ heterogeneity. When voters are heterogeneous,

the second voter to vote for the safe action stops experimentation for all unsure voters.

For example, consider two group members who always immediately vote for the safe

action. These voters prevent experimentation and prevent observation of how long

the third voter is willing to experiment when there are zero winners.

Instead of analyzing how long unsure voters are willing to experiment, this paper

analyzes how long groups are willing to choose the risky action when unsure voters

have the majority. In other words, this paper analyzes how long groups (and single-

agents) are willing to try the risky action. Trying the risky action refers to a group

choosing the risky action when it does not yet have permanent support. Essentially,

groups are trying the risky action until a majority of sure winners form, making

the risky action irreversible, or until the group switches away from the risky action.

Single-agents try the risky action when they experiment as they are the sole voter in

the group.

Groups and single-agents are predicted to not reveal how long they are willing

to try the risky action under two scenarios. The first scenario is when the risky

action becomes permanent as there is never a switch to the safe action. This issue

theoretically arises in the majority-vote treatment if a majority of sure winners is

predicted to form and in the single-agent treatment if the single-agent is predicted to

become a winner. The second scenario is that the period may end before there is a

switch to the safe action. This issue theoretically arises if the period ends before a

predicted switch to the safe action.
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These two issues are mitigated by analyzing a subset of data where groups and

single-agents should always reveal how long they are willing to try the reform. I refer

to this dataset as the clean dataset, which consists of observations in the last fifteen

periods of each treatment where two conditions are met. The first condition is that

either a majority of group members have bad states or a single-agent has a bad state.5

The second condition is that the period lasts at least 200 ticks.6 The clean dataset

provides an unbiased estimate of how long a group or single-agent is willing to try

the reform. I conduct hypothesis tests on the clean dataset by analyzing when groups

and single-agents switch to the safe action.

Theory predicts that a group is willing to try the risky action for 110 ticks when

there are zero winners and for 153 ticks when there is one winner. Theory predicts

that a single decision maker is willing to try the risky action for 187 ticks when she is

unsure of the risky action. In the clean dataset, groups thus switch to the safe action

earlier. This leads me to hypothesis 1.

HYPOTHESIS 1: Groups switch to the safe action earlier than single decision

makers.

Theory predicts that a group with zero winners is willing to try the risky action

for 110 ticks. Theory predicts that a group with one winner is willing to try the risky

action for 153 ticks. In the clean dataset, a group thus switches to the safe action

later upon observing a winner. This leads me to hypothesis 2.

5I remove the data where a majority of voters have good states rather than use survival analysis on
those observations because survival analysis methods will be biased on those observations. Survival
analysis requires that groups who are censored at a time t have the same prospect of survival as those
who continue to be followed. This assumption does not theoretically hold when groups are censored
when a majority of sure winners forms. The censored group almost always had one winner before
being censored. Thus, if the censored group was not censored, it would have been theoretically
willing to try the risky action for longer than the average groups that were not censored.
6In the appendix, I analyze a larger subset of data where this second condition is relaxed. I find very
similar results. I relax this second condition by using survival analysis to analyze all the observations
in the last fifteen periods of each treatment where either a majority of voters have bad states or
single-agents have good states.
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HYPOTHESIS 2: Groups with one winner switch to the safe action later than

groups with zero winners.

Strulovici (2010) solves for the optimal experimentation cutoffs of a utilitarian

social planner who wants to maximize the average expected payoff of the three voters.

The utilitarian cutoffs, in ticks, are non-decreasing in the number of winners and

occur later, for each number of winners (k < N+1
2

), than the equilibrium cutoffs.

There are two reasons why unsure voters are less willing to experiment than the

utilitarian optimum requires. The first reason is that a utilitarian social planner does

not face the control-sharing effects that unsure voters do. The second reason is that

a utilitarian social planner takes into account sure winners’ utility. Unsure voters do

not consider sure winners’ utility and thus sometimes impose the safe action when

the risky action is more efficient.

Theory predicts that a utilitarian social planner that observes zero winners is

willing to try the risky action for 132 ticks. Theory predicts that a utilitarian social

planner that observes one winner is willing to try the risky action for 358 ticks.7 In

the clean dataset, groups thus switch to the safe action earlier than the utilitarian

optimum predicts. This leads me to Hypothesis 3.

HYPOTHESIS 3: Groups switch to the safe action earlier than the utilitarian

optimum predicts.

2.3.6 Procedures

Sessions were conducted at Purdue University in February 2018. Sessions lasted

about 80 minutes. Subjects received payment for their answers to the comprehension

7These cutoffs are also solved by value function iteration (details are in section B.2.2 of the appendix).
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Table 2.2.: Mean stopping times, in ticks, for the clean dataset. Overall equilibrium
prediction for the majority-vote observations is an averaged prediction.

Stopping Time Majority-Vote Single-Agent
Equil. Actual Equil. Actual

Overall 133.5
∗∗
> 113.8 187.0

∗∗∗
> 135.3

Winner Impossible 110.0 < 113.5 —— ——

Winner Predicted 153.0
∗∗∗
> 117.2 —— ——

Winner Not Predicted 110.0 > 105.0 —— ——
* p < 0.10, ** p < 0.05, *** p < 0.01

questions and received payment for five random periods in the single-agent treatment

and five random periods in the majority-vote treatment.

2.4 Results

Section 2.4.1 focuses on the summary statistics of the clean dataset. The remaining

three subsections report test of the three hypotheses.

2.4.1 General Results

Table 2.2 presents the mean stopping times (in ticks) derived from the clean

dataset.8 The mean stopping time in the majority-vote observations of the clean

dataset is 113.8 ticks. This average is significantly less than the prediction of 133.5

ticks (p-value=0.026). Hypothesis tests in this subsection are conducted using boot-

strapped regressions with 5000 samples clustered at the group level. The mean stop-

ping time in the single-agent observations of the clean dataset is 135.3 ticks, which is

also significantly less than predicted (p-value <0.001).9

8The clean dataset analyzes the last fifteen periods of each treatment. The first ten periods of each
treatment can be found in the appendix.
9Subjects in each treatment appear to not be myopic as each of these cutoffs are significantly greater
than the myopic cutoff of 41 ticks at the 1 percent level.
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Table 2.2 also divides the majority-vote observations into three subsets based on

the possibility of observing a winner.10 The first subset, when a winner is impossible,

is where all three group members have bad states. When a winner is impossible,

the mean stopping time is 113.5 ticks, which is not significantly different from the

predicted 110 ticks at the 10 percent level (p-value=0.650). The second subset, when

a winner is predicted, is where one group member has a good state and the first

reward arrives within 110 ticks of the risky action. When a winner is predicted, the

mean stopping time is 117.2 ticks, which is significantly less than the predicted 153

ticks at the 1 percent level (p-value=0.008). Finally, the third subset, when a winner

is not predicted but possible, is where one group member has a good state and the

first reward arrives after 110 ticks of the risky action. Although a winner is not pre-

dicted, as groups should stop after 110 ticks, it is possible for a winner to be observed

if groups implement the risky action longer than predicted. In this case, the mean

stopping time is 105 ticks, which is not significantly different from the predicted 110

ticks (p-value=0.701). The early stopping time in the majority-vote observations is

driven by observations where a winner is predicted.

Result 1: Both groups and single-agents switch to the safe action earlier than

predicted by theory.

The stopping times are similar in each of the subsets of the majority-vote ob-

servations, which suggests that there may not be an effect of observing a winner.

However, groups do not always observe a winner when a winner is predicted. In the

majority-vote observations, the average stopping time is 141.7 ticks when a winner is

predicted and observed. This average stopping time suggests that there is an effect of

observing a winner. However, there may be self-selection that occurs as groups that

10The period lengths, states, and arrival of rewards, were all pre-generated in the experiment. This
pre-generation allows for the majority-vote observations to be broken down into subsets. One set
of period lengths were used throughout the experiment. States and the arrival of lump-sums were
pre-generated for each subject in each period.
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Figure 2.3.: Difference between the average group stopping time in the single-agent
observations and majority-vote observations. A red dot indicates a longer mean
stopping time in the majority-vote observations, while a black dot indicates a longer
mean stopping time in the single-agent observations.

prefer to stop later are theoretically more likely to observe a winner. Section 2.4.3

addresses this issue.

2.4.2 Difference Between Treatments

Hypothesis 1 states that, in the clean dataset, groups switch to the safe action ear-

lier than single-agents. Table 2.2 shows that the mean stopping time is greater in the

single-agent observations than in the majority-vote observations (135.3 versus 113.8).

Figure 2.3 gives a deeper analysis of the difference between the stopping times in

the single-agent observations and the majority-vote observations. Figure 2.3 displays

the difference between each group’s average stopping time in the single-agent obser-
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vations and the group’s average stopping time in the majority-vote observations.11

Most groups stop later in the single-agent observations.

These results can be formalized through a random effects regression with group

level random effects. The regression includes a single indicator variable for whether

the observation was in the single-agent treatment. The coefficient on this variable is

positive (18.1) and significant at the five percent level (p-value=0.039).

Result 2: Groups switch to the safe action earlier than single-agents (evidence

supporting Hypothesis 1).

2.4.3 Observing a Winner

The second hypothesis states that, in the clean dataset, groups with one winner

switch to the safe action later than groups with zero winners. Table 2.2 suggests that

groups stop later when they observe a winner. In the majority-vote observations,

the mean stopping time is 117.2 ticks when theory predicts a winner versus 109.8

ticks when theory predicts a winner can not or will not be observed. This difference,

in the majority-vote observations, increases when comparing groups that observe a

winner to groups that can not (141.7 vs 113.5). However, this may be self-selection

as groups that stop later may be more likely to observe a winner. While these results

are consistent with the second hypothesis, an approach that controls for self-selection

is needed.

The Cox regression can be used to answer the second hypothesis and control for

self-selection. The Cox regression (Cox, 1972) estimates the impact of a covariate on

the time to an event occurring. In this analysis, an event occurs when a switch to

the safe action occurs. The Cox regression allows for the estimation of the impact of

11The mean used for the majority-vote observations is each group’s mean stopping time in the
majority-vote observations. The mean used for the single-agent observations is the mean stopping
time for the pooled data of the three group members in the single-agent observations.
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Table 2.3.: Results from a Cox regression that estimates the effect of observing a
winner on a group’s stopping time.

Coeff. Hazard Ratio Z
Winner -0.942 0.390 -4.96∗∗∗

N 284

* p < 0.10, ** p < 0.05, *** p < 0.01

time-dependent variables and can thus estimate the impact of observing a winner on

the stopping time.

Table 2.3 displays the results of the Cox regression. The variable Winner is a

time-dependent variable, which takes a value for each tick in a period. The variable

Winner is equal to zero if no winners have been observed through the current tick

and is equal to 1 if one winner has already been observed.12 The Cox regression is

clustered at the group level. The coefficient on Winner is -0.942 and the hazard ratio

is 0.390 from the Cox regression. This result implies that groups without a winner

are 2.57 times more likely, per unit of time, to switch to the safe action than groups

with a winner. This result is significant at the 1 percent level. The Cox regression

backs up the second hypothesis.

Result 3: Groups with one winner switch to the safe action later than groups

with zero winners (evidence supporting Hypothesis 2).
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Table 2.4.: Mean stopping times, in ticks, for each treatment. Stopping times use the
last fifteen periods of each treatment. Overall utilitarian prediction for the majority-
vote treatment averages the prediction for each observation in the clean dataset.

Stopping Time Majority-Vote Single-Agent
Util. Actual Util. Actual

Overall 261.4
∗∗∗
> 113.8 187.0

∗∗∗
> 135.3

Winner Impossible 132.0
∗∗
> 113.5 —— ——

Winner Predicted 358.0
∗∗∗
> 118.3 —— ——

Winner Not Predicted 132.0
∗∗∗
> 99.5 —— ——

* p < 0.10, ** p < 0.05, *** p < 0.01

2.4.4 Utilitarian Cutoffs

The third hypothesis states that, in the clean dataset, groups switch to the safe

action earlier than the utilitarian optimum predicts. The first result shows that groups

stop too early relative to equilibrium, which implies that they also stop too early

relative to the utilitarian optimum. However, it is interesting to see how groups stop

relative to the utilitarian optimum in each subset of the majority-vote observations.

Table 2.4 compares the mean stopping time in the majority-vote observations to the

utilitarian optimum. The mean stopping time in the majority-vote observations is

113.8 ticks, which is less than half of the 261.4 ticks that the utilitarian optimum

predicts. This result is significant at the 1 percent level. Hypothesis tests, for this

subsection, are conducted using bootstrapped regressions with 5000 samples clustered

at the group level.

The majority-vote observations can once again be broken down into subsets based

on whether a winner is possible. However, the data in the last two subsets change

due to the utilitarian predictions differing from equilibrium predictions. Under the

12For time-dependent variables in the Cox regression, it is crucial that a covariate can not reach
forward in time (Therneau et al., 2018). This problem is avoided in my analysis as a group can
only be recorded as observing a winner if it had in fact switched to the safe action after observing
a winner.
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utilitarian optimum, a winner is predicted when one group member has a good state

and the first reward arrives within the first 132 ticks. A winner is not predicted, but

possible, when one group member has a good state and the first reward arrives after

the first 132 ticks. Groups stop significantly earlier than predicted by the utilitarian

optimum in each subset.

Result 4: Groups switch to the safe action earlier than the utilitarian optimum

predicts (evidence supporting Hypothesis 3).

2.5 Exploring Under-Experimentation

The first result shows that both groups and single decision makers stop trying the

risky action earlier than predicted. This result is a product of under-experimentation

from both voters and single decision makers. In this section, I analyze two additional

treatments, using a between-subjects design, that each remove a potential bias from

the individual experimentation problem. The individual experimentation environ-

ment is analyzed as it has fewer potential biases. There are thirty-two subjects in

each additional treatment.

The first additional treatment is the belief treatment, which analyzes how belief

updating affects experimentation with the risky action. The belief treatment is iden-

tical to the single-agent treatment except that subjects are now given the Bayesian

update after every tick. The results from this treatment will show whether remov-

ing belief updating restores optimal experimentation. In both additional treatments,

subjects play twenty-five periods and complete the Eckel and Grossman (2002) risk

aversion task.

The second additional treatment is the no-discounting treatment, which analyzes

how discounting biases affect experimentation with the risky action. One possible

discounting bias is that subjects may overweight each tick’s small probability of ter-

minating the period. The no-discounting treatment is identical to the belief treatment
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Table 2.5.: Mean stopping times, in ticks, for the single-agent treatments. Stopping
times use the last fifteen periods of each treatment.

Equil. Actual

First Single-Agent Treatment 187.0
∗∗∗
> 137.7

Belief Treatment 187.0
∗∗∗
> 104.3

No-Discounting Treatment 187.0
∗∗∗
> 142.2

* p < 0.10, ** p < 0.05, *** p < 0.01

except that the period length is now fixed to 333 ticks and the value of a reward is

increased to 3.65 experimental dollars. Discounting biases are removed by removing

the random termination of the period. The period length is set to 333 ticks as it is the

tick length closest to the expected period length in the single-agent treatment. The

value of a reward is increased to 3.65 experimental dollars to keep optimal experimen-

tation the same as in the single-agent treatment. The results from this treatment can

determine whether removing both belief updating and discounting restores optimal

experimentation.

The results show that belief updating, discounting, and risk aversion are unlikely

to explain why subjects under-experiment with the risky action. I focus on the

last fifteen periods of each treatment and remove observations with good states or

with a period length less than 200 ticks. Table 2.5 displays the average stopping

time for the first single-agent treatment, the belief treatment, and the no-discounting

treatment.13 The average stopping time in the first single-agent treatment is 137.7,

which is similar to the overall single-agent treatment stopping time. This stopping

time is significantly less than the predicted 187 ticks at the 1 percent level using

bootstrapped regressions clustered at the subject level.14 Hypothesis tests in this

section are conducted using bootstrapped regressions with 5000 bootstrap samples

13The “first single-agent treatment” is the single-agent data from the subjects who started off with
twenty-five periods of the single-agent treatment
14I can cluster at the subject level because none of these subjects have yet interacted with their
group members.
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clustered at the subject level. The average stopping time in the belief treatment is

104.3 ticks, while the average stopping time in the no-discounting treatment is 142.2

ticks. Both of these averages are significantly less than the predicted 187 ticks at the

1 percent level. A random effects regression, with subject-level random effects, shows

that these three treatments are each not significantly different from each other at the

10 percent level. Additionally, a random effects regression, with subject-level random

effects, of stopping time on risk aversion is statistically insignificant at the 10 percent

level in each treatment.

The lack of support for belief updating, discounting, and risk aversion suggests

that heuristics may explain subjects’ under-experimentation. One possible heuristic

is that subjects prefer to stop experimentation around 100 ticks. However, only 2.4

percent of subjects have a Product Limit estimated mean stopping time, in bad states,

between 95 and 105 in the last fifteen periods of the single-agent treatment. Another

possibility is horizon truncation, which was suggested as a possible explanation for

under-experimentation in bandit problems in Anderson (2001). Horizon truncation

suggests that subjects approximate the solution to a dynamic programming problem

by solving a short horizon version of the problem and then adding an adjustment

factor for the omitted periods. If subjects were to under-adjust, this could explain

under-experimentation.

2.6 Conclusion

This paper uses a laboratory experiment to analyze how a group of voters col-

lectively experiment with a new, potentially heterogeneous, reform. The laboratory

experiment implements the Strulovici (2010) collective experimentation model. I an-

alyze a subset of data where groups and single decision makers should eventually

abandon the reform. Groups’ collective decisions support predictions of the model.

However, both groups and single decision makers stop trying the reform earlier than
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predicted. I find that risk aversion, belief updating, and discounting biases are un-

likely to explain this under-experimentation.

These results have consequences for policy experimentation outside of the lab-

oratory. Collective decisions are consistent with experimentation incentives, which

suggests that voting rules with stronger experimentation incentives should be im-

plemented to increase social welfare. Strulovici (2010) describes two voting reforms

with stronger experimentation incentives that should be considered. The first reform

forces voters to agree upon experimentation cutoffs before implementation of the pol-

icy; social welfare theoretically increases as voters make decisions under fully aligned

incentives. The second reform increases the number of votes required for the policy

deterministically over time; this reduces the possibility of the safe action being chosen

when the policy is socially efficient.

There are many avenues for future research. First, future studies can explore other

possible explanations for why subjects under-experiment with the risky action. A few

other possible explanations are cognitive biases and heuristics. Second, future studies

can attempt to elicit experimentation cutoffs for unsure voters. I avoid the strategy

method in this paper, but future papers can use my results to validate the elicitations

from the strategy method. Finally, other voting rules, including the optimal voting

rule of Strulovici (2010), can be tested in the laboratory. Other voting rules increase

election of the risky action towards the utilitarian optimum.
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3. IS EXPERIMENTATION INVARIANT TO GROUP

SIZE? A LABORATORY ANALYSIS OF INNOVATION

CONTESTS

This paper uses a laboratory experiment to investigate the role of group size in

an innovation contest. Subjects compete in a discrete time innovation contest, based

on Halac et al. (2017), where subjects, at the start of each period, are informed of

the aggregate number of innovation attempts. I compare two innovation contests, a

two-person and four-person contest, that only differ by contest size and have the same

probability of obtaining an innovation in equilibrium. The four-person contest results

in more innovations and induces more aggregate innovation attempts than the two-

person contest. However, there is some evidence that the two-person contest induces

more innovation attempts from an individual than the four-person contest. Subjects’

behavior is consistent with subjects placing more weight on their own failed innova-

tion attempts, when updating their beliefs, than their competitors’ failed innovation

attempts.

3.1 Introduction

Netflix launched an innovation contest, in 2006, to improve its current movie

recommendation algorithm. The innovation contest offered $1 million to any team

that could improve upon Netflix’s algorithm by ten percent. Thousands of teams,

from more than 100 countries, entered the contest and competed for the grand prize.

The contest lasted for almost three years until one team won the $1 million prize in

2009.

Innovation contests, like the Netflix contest, often attract a large number of com-

petitors. While it may appear that larger innovation contests are more likely to
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result in an innovation, this is not always predicted. Halac et al. (2017) analyze a

contest that is similar to the Netflix contest in both prize-sharing scheme and disclo-

sure policy. In this contest, they find that an increase in the number of contestants

has no effect on the probability of obtaining an innovation. This result is surprising

as empirical studies generally show that larger contests induce more aggregate effort

(Sheremeta (2011)), which, in the Halac et al. (2017) environment, would result in

larger contests being more likely to obtain an innovation.

In the Halac et al. (2017) environment, there is a principal who wants to obtain

an innovation. The principal can implement various contests to try to obtain an

innovation. One of these contests is the (continuous time) public winner-takes-all

contest. In this contest, the principal rewards the full prize to the first agent that

obtains an innovation and the principal discloses the arrival of an innovation to all

agents as soon as it occurs. The possibility of an innovation depends on the state

of nature. In a good state, each innovation attempt has the same probability of

resulting in an innovation. In a bad state, an innovation attempt can never result in

an innovation. The state of nature is initially unknown. In the case that no one has

yet obtained an innovation, agents become more pessimistic about the state as their

own innovation attempts fail and as they conjecture that other agents are trying and

failing to produce an innovation.

The unique equilibrium of this contest is in stopping strategies. In equilibrium,

an agent exerts effort until an innovation has been obtained or an agent’s belief that

an innovation is possible is low enough such that exerting effort decreases expected

utility. In equilibrium, agents have correct beliefs about other agents’ behavior and

thus stop exerting effort when the number of aggregate failed innovation attempts

is sufficiently high. As this critical level of failed innovation attempts is invariant

to contest size, a change in contest size has no effect on the aggregate number of

innovation attempts induced nor the probability of obtaining an innovation.

This paper analyzes a simple discrete time contest that has the same equilibrium

in stopping strategies as the continuous time public winner-takes-all contest. This
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discrete time contest simplifies the environment of Halac et al. (2017) by informing

agents, at the start of each period, of the aggregate number of innovation attempts.

In this discrete time contest, agents no longer have to conjecture about other agents’

past behavior. This contest further simplifies the environment by occurring in discrete

time, which reduces the number of decisions that agents have to make. In order to

keep incentives similar to the continuous time contest, agents are given the full prize

in the case of a tie. This removes any strategic concern of tying, which drops out in

continuous time. This discrete time contest is used in order to analyze whether this

invariance can hold in a relatively simple laboratory environment.

The laboratory experiment consists of two treatments. In the first treatment, two

subjects participate in the contest. In the second treatment, four subjects participate

in the contest. While these two contests only differ by group size, they have the same

probability of obtaining an innovation in equilibrium. A laboratory experiment is used

as it allows for groups to be randomly assigned to contests with a good or bad state

of nature. The random assignment of groups to contests with bad states allows for

an unbiased estimate of each contest’s ability to induce innovation attempts. In bad

states, the contest can never end prematurely due to an innovation being obtained.

The data shows differences between the two-person and four-person contests.

First, the four-person contest induces more aggregate innovation attempts than the

two-person contest. This result is shown through the number of innovation attempts

in bad states. The four-person contest has more innovation attempts in bad states

than the two-person contest. Second, the four-person contest results in more inno-

vations than the two-person contest. Third, as predicted by theory, there is some

evidence that the two-person contest induces more innovation attempts from an in-

dividual than the four-person contest. This result is shown through bad states; a

subject, on average, has more innovation attempts in bad states in the two-person

contest. Thus, the first two results do not appear to be driven by subjects becoming

more willing to attempt an innovation in larger contests.
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These first two results are unexplained by theory. I propose differential weighting

of experimentation as an explanation. This possible bias would imply that subjects

place more weight on their own failed innovation attempts, when updating their

beliefs, than their competitors’ attempts. If this differential weighting of experi-

mentation holds, subject behavior is less responsive to an increase in the number of

competitors than predicted by theory. I develop and estimate a model of differential

weighting of experimentation. Through Maximum Likelihood Estimation, I find that

subject behavior is consistent with differential weighting of experimentation.

This paper contributes to three strands of literature. First is the literature on

innovation contests. This literature has mostly focused on theoretically analyzing in-

novation contests. This paper implements a contest based on Halac et al. (2017), who

theoretically model innovation contests with differing prize-sharing schemes and dis-

closure policies. Bimpikis et al. (2019) analyze prize-sharing schemes and disclosure

policies for the first stage of a two stage contest. Other theory papers that ana-

lyze innovation contests are Choi (1991) and Chowdhury (2017). Recently, there has

been experimental research conducted on innovation contests. Deck and Kimbrough

(2017) experimentally analyze four types of innovation contests introduced in Halac

et al. (2017). They find that contests where principals do not disclose successful inno-

vation attempts outperform contests where principals disclose successful innovation

attempts. My paper is the first to experimentally analyze how group size influences

an innovation contest. I find that a larger contest results in more innovations than a

smaller contest.

This paper also contributes to the literature on multi-agent bandit experiments.

This literature has mostly focused on the single-agent bandit problem (Meyer and Shi

(1995); Banks et al. (1997); Anderson (2001, 2012); Gans et al. (2007)). Recently,

there have been experiments conducted on multi-agent bandit problems. Deck and

Kimbrough (2017) compare different innovation contests in the laboratory. Hoelze-

mann and Klein (2018) analyze a game of strategic experimentation, where subjects

are predicted to free-ride on other subjects’ experimentation. They find evidence
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of free-riding in the lab. Hudja (2019) analyzes collective experimentation, where

groups, under majority voting, are predicted to be less willing to try reforms than

single decision makers. Hudja (2019) finds that the data is consistent with this result.

My paper analyzes an environment where aggregate experimentation is predicted to

be invariant to group size. I find that a change in group size has an effect on aggregate

experimentation.

Finally, this paper contributes to the literature on the interaction between indi-

vidual effort and contest size in contest experiments. Sheremeta (2011) finds that

average effort is decreasing in the number of players in a Tullock contest. Morgan

et al. (2012) also find this result, while Lim et al. (2014) find that average effort does

not respond to the number of players. In all-pay auctions, Gneezy and Smorodinsky

(2006) find that average effort decreases in the number of players, while Harbring

and Irlenbusch (2003) find that average effort is weakly increasing in the number of

players. In rank-order tournaments, Orrison et al. (2004) find that average effort does

not change when the number of players increases, while List et al. (2010) find that

average effort is decreasing in the number of players. My paper is the first to analyze

how group size influences individual effort in an innovation contest environment. I

find some evidence that a smaller contest induces more innovation attempts from an

individual than a larger contest.

3.2 Theory

This section focuses on the contest implemented in the experiment. Section C.1

of the appendix displays details, and states the equilibrium, of the continuous time

public winner-takes-all contest of Halac et al. (2017).

A principal wants to obtain an innovation. An innovation may or may not be

possible depending on the state of nature. If the state is good, obtaining an innovation

is possible; if the state is bad, obtaining an innovation is impossible. The principal

has access to N ≥ 2 agents who may work towards obtaining an innovation. Time
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is discrete and there are T periods in which an agent can work towards obtaining an

innovation. In each period, an agent chooses whether to exert effort. Exerting effort

costs an agent c. If an agent exerts effort in a good state, she obtains an innovation

with probability λ (innovations are conditionally independent given the state). If an

agent exerts effort in a bad state, she cannot obtain an innovation.

The principal implements an innovation contest that lasts T periods. In each

period of the contest, an agent decides whether to exert effort. At the beginning

of each period, the principal reveals whether an innovation has been obtained and

the level of aggregate effort exerted in the contest.1 The first agent to obtain an

innovation receives a prize of w. In the case of a tie, each agent who obtained an

innovation receives w.2

There is an initial probability p0 that the state is good. Each agent updates

their belief according to Bayes’ rule. Thus, if an innovation has been obtained, the

agent knows that the state is good. In the case that an innovation has not yet been

obtained, the Bayesian update can be written as

p0(1− λ)A
t−1

p0(1− λ)At−1 + (1− p0)
, (3.1)

where At−1 is the aggregate number of innovation attempts in the contest through

the first t− 1 periods.

An agent (denoted by i) chooses a strategy to maximize

T∑
t=1

[(pt−1λw − c)ai,t](1− p0(1− (1− λ)(At−1))), (3.2)

where ai,t is the effort exerted by agent i in period t. The myopic expected payoff from

exerting effort in a given period, when the prize has not yet been won, is denoted

by pt−1λw − c. An agent who exerts effort obtains the innovation, worth w, with

1Theory is unchanged whether aggregate effort is public knowledge or hidden. Aggregate effort is
provided as public knowledge in order to simplify the environment for subjects.
2A tie occurs when two or more agents obtain an innovation in the same period. Agents receive the
same prize in the case of a tie in order to remove the strategic concerns of splitting the prize.
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probability pt−1λ. However, attempting an innovation costs c. The term (1− p0(1−

(1 − λ)(At−1))) is the probability that no agent has obtained an innovation up until

period t.

It is immediate from (2) that there is always an equilibrium in stopping strategies.

An equilibrium where each agent exerts effort until p < c
λw

or until an innovation is

obtained (or T is reached) always exists. There may be other equilibria depending

on the parameters. However, it can be shown that any other equilibrium is outcome

equivalent in the sense that the equilibrium induces the same level of aggregate effort

and has the same probability of resulting in an innovation.3 The previously mentioned

equilibrium in stopping strategies will be referenced for predictions as it is intuitive

and the experiment only tests predictions for the end of the contest.

3.3 Experimental Design

The treatments are designed to analyze the effect of group size in this contest.

The experiment has two main goals. The first main goal of the experiment is to

compare the aggregate effort induced by two contests that only differ by contest size

and have the same probability of obtaining an innovation in equilibrium. The second

main goal of the experiment is to create a dataset that I can use to test explanations

for any possible differences between the two contests.

3.3.1 Treatments and Parameters

There are two treatments in this experiment. The first is the two-person treat-

ment, where two subjects compete in an innovation contest. The second treatment

3Denote the level of aggregate effort in the previous equilibrium as SA. If an equilibrium predicts
that

∑N
i=1

∑T
t=1 ai,t > SA in a bad state, then there is at least one agent who would exert effort

when p < c
λw in the absence of an innovation. This agent would be better off not exerting effort

when p < c
λw . If an equilibrium predicts that

∑N
i=1

∑T
t=1 ai,t < SA, in a bad state, then there is

at least one agent who is exerting less effort, in the absence of an innovation, than they would if
they were using the previous stopping strategy. This agent would be better off using the previous
stopping strategy.
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is the four-person treatment, where four subjects compete in an innovation contest.

The experiment utilizes a between-subjects design. Thirty-two subjects participated

in the first treatment and thirty-two subjects participated in the second treatment.

Each treatment consists of thirty contests. There are two sessions per treatment. The

experiments were implemented in z-Tree (Fischbacher, 2007).

The parameters for the experiment are chosen to simplify the environment. The

initial probability that the state is good, p0, is set at 0.75. The probability that effort

results in an innovation in a good state, λ, is set at 0.10. The prize for an innovation,

w, is set at $10.00. The cost of effort, c, is set at $0.30. Finally, the length of the

contest, T , is set to fifteen periods.

The predictions under these parameters are as follows. In each treatment, each

subject is predicted to continue to exert effort until an innovation has been obtained or

until nineteen units of effort have occurred. Thus, in the two-person treatment, each

subject is predicted to exert up to ten units of effort in the absence of an innovation.

In the four-person treatment, each subject is predicted to exert up to five units of

effort in the absence of an innovation.

3.3.2 Experiment

Instructions for the experiment were passed out before the start of the experiment.

After the instructions were read, subjects answered five comprehension questions that

were each worth $1.00. After the comprehension questions were answered, subjects

started the experiment.

The environment is described to subjects through an analogy of balls being drawn

from a bag. Subjects are informed that there are two bags: (i) a uniform bag, which

consists of twenty blue balls and (ii) a mixed bag, which consists of two red balls and

eighteen blue balls. In this analogy, the mixed bag is a good state, with a red ball

being an innovation. Contests are described to subjects as cycles. In each contest,

subjects have a 75 percent chance of drawing from the mixed bag and a 25 percent
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chance of drawing from the uniform bag. In each contest, subjects are drawing with

replacement.

At the start of each contest, subjects are randomly matched. In each period of

the contest, subjects have the choice to draw or not draw a ball. If a subject chooses

to not draw a ball, she is paid a fixed amount. If a subject chooses to draw a ball,

two outcomes can occur: (i) she draws a blue ball and is not paid anything or (ii)

she draws a red ball, she wins the prize, and the contest ends.4 In the case that the

contest ends prematurely, each subject in the contest receives the opportunity cost

for the remaining periods in the contest.

Subjects receive feedback throughout the experiment. At the beginning of each

period, subjects are informed of the total number of balls drawn in the contest.

Subjects receive a notification at the end of the period if the period has resulted in a

red ball being drawn. This notification states that a red ball had been drawn and lets

subjects know whether they drew a red ball. At the end of each contest, subjects are

informed of the number of balls they had individually drawn, the aggregate number

of balls drawn in the contest, the number of red balls drawn in the contest, and their

individual payoff.

Upon completion of thirty contests, the Holt and Laury (2002) task was admin-

istered to elicit risk aversion. After the risk aversion task was completed, the Short

Grit Scale (Duckworth and Quinn, 2009) was administered. The Short Grit Scale

consists of eight questions that test for the psychological construct of grit.

4The contest ends once the prize is won to prevent subjects from making trivial decisions.
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3.3.3 Pre-Generated Random Variables and Payment

The random variables in the experiment were pre-generated.5 One sequence of

contest states were drawn for the experiment. The sixth, ninth, tenth, sixteenth,

twentieth, twenty-third, twenty-fourth, and twenty-ninth contests had bad states.

The remaining contests had good states. For each contest with a good state, there

was one sequence of innovations pre-generated. For example, the number of balls

drawn in order to obtain an innovation in the seventh contest was the same in each

grouping and each session.

3.3.4 Theoretical Predictions

Subjects are predicted to exert effort until an innovation has been obtained or

until nineteen or more units of effort have been exerted. In the two-person contest,

this results in subjects exerting effort until an innovation is obtained or ten periods

have ended. In the four-person contest, this results in subjects exerting effort until

an innovation is obtained or five periods have ended. In this subsection, I state the

hypotheses that follow from these theoretical predictions.

The first hypothesis regards the level of aggregate effort that each contest induces.

I refer to the level of aggregate effort that a contest induces as the level of aggregate

effort that would occur if the contest ended without an innovation. Each contest

theoretically induces the same level of aggregate effort as each contest theoretically

induces twenty units of aggregate effort. This leads me to Hypothesis 1.

5In the instructions, subjects were not informed of this pre-generation, but they were informed of the
distribution that resulted in these pre-generated random variables. I decided to pre-generate these
random variables as pre-generation increases power for the hypothesis tests by decreasing noise.
Additionally, I pre-generate so that any influence of the realization of random variables, on subject
behavior, is held constant across sessions and treatments. Papers such as Engle-Warnick and Slonim
(2006) and Dal Bó and Fréchette (2011) have shown that the realization of random variables can
influence subject behavior. I decided to not inform subjects about the pre-generation because this
information does not change beliefs or influence behavior and this information may lead to confusion
from subjects.
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Hypothesis 1: Each treatment induces the same level of aggregate effort.

The first hypothesis states that each treatment induces the same level of aggregate

effort. The second hypothesis follows from the first hypothesis. As both treatments

induce the same level of aggregate effort, each treatment is predicted to result in the

same number of innovations in expectation. The probability of a contest resulting in

an innovation is given by

p0(1− (1− λ)A
∗
),

where A∗ is the level of aggregate effort induced by the contest. As each contest

induces twenty units of aggregate effort, the probability of each contest resulting in

an innovation is the same.

However, in the experiment, each treatment should have the same number of in-

novations regardless of the realizations of any random variables. This is due to the

pre-generation of random variables. In each numbered contest, the level of aggregate

effort needed to obtain an innovation is the same in each treatment. This leads me

to hypothesis 2.

Hypothesis 2: Each treatment results in the same number of innovations.

The third hypothesis also follows from the first hypothesis. I refer to the level of

individual effort that a contest induces as the average level of individual effort that

would be observed if the contest ended without an innovation. As each contest in-

duces twenty units of aggregate effort and there are less contestants in the two-person

contest, the two-person contest is predicted to induce more effort from an individual

than the four-person contest. This leads me to Hypothesis 3.

Hypothesis 3: The two-person contest induces more effort from a subject than

the four-person contest.
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In the results section, two sets of data will be used to test the three hypotheses.

Hypotheses 1 and 3 will be tested using a subset of data where the contest can

not end prematurely. I will analyze these hypotheses on contests with bad states.

This allows for an unbiased estimate of the aggregate effort induced by a contest

as the contest can not end prematurely due to an innovation being obtained. This

also provides an unbiased estimate of each subject’s willingness to exert effort in the

contest. Hypothesis 2 will be tested using both good and bad states as I care about

the overall innovation percentage.

3.3.5 Procedures

Sessions were run at Purdue University in April 2017. Subjects received payment

from the comprehension questions, the contests, and the risk aversion task. Subjects

were paid for each comprehension question, for two randomly chosen contests, and

for one random decision in the risk aversion task.

3.4 Experimental Results

Section 3.4.1 displays summary statistics for the two treatments. Section 3.4.2

analyzes the three hypotheses. Section 3.4.3 analyzes the factors that influence indi-

vidual behavior. Section 3.4.4 analyzes a belief-updating bias that may explain the

data.

3.4.1 General Results

Table 3.1 displays the summary statistics for the two treatments. Table 3.1, and

the results section, analyzes the last twenty contests.6 Table 3.1 displays the mean

6Results for the first ten contests can be found in Section C.2 of the appendix. Figure 3 in Section
C.2 of the appendix shows the mean level of aggregate effort in all of the bad states that subjects
participated in. Behavior in the two-person treatment does not appear to stabilize until the tenth
contest.
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Table 3.1.: Mean statistics on the level of aggregate effort in bad states, the innovation
percentage, and the level of individual effort in bad states. The equilibrium innovation
percentage is found by averaging the predictions for each contest. The standard error
of the mean is in parentheses.

Treatment: Two-Person Four-Person
Equil. Actual Equil. Actual

Aggregate Effort in Bad States 20
∗∗
> 15.02 20 < 21.15

—– (0.66) —– (0.90)

Innovation Percentage 0.70
∗∗∗
> 0.61 0.70 = 0.70

—– (0.03) —– (0.04)

Individual Effort in Bad States 10
∗∗
> 7.51 5 < 5.29

—– (0.033) —– (0.028)
* p < 0.10, ** p < 0.05, *** p < 0.01

level of aggregate effort in bad states, the innovation percentage, and the mean level of

individual effort in bad states. The mean level of aggregate effort in the two-person

contest in bad states is 15.02. This is significantly different from the predicted 20

at the five percent level (p-value=0.028) using a regression of the difference in each

contest’s realized and predicted level of aggregate effort on a constant.7 Regressions in

this subsection are all bootstrapped regressions with 5000 bootstrap samples clustered

at the session level. The mean level of aggregate effort in the four-person contest in

bad states is 21.15. This is not significantly different from the predicted 20 attempts

at the ten percent level (p-value=0.498) using a regression of the difference in each

contest’s realized and predicted level of aggregate effort on a constant.

The innovation percentage is 61 percent in the two-person treatment. This is

significantly less than the predicted 70 percent at the 1 percent level using a regression

of the difference in each contest’s realized innovation rate and predicted innovation

7Under-exertion of effort may seem surprising given that many contest experiments find over-exertion
of effort. However, this contest utilizes a bandit framework and other papers that implement a
bandit framework in the laboratory (Anderson (2001); Meyer and Shi (1995); Hudja (2019)) find
under-experimentation.
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rate on a constant.8 For example, if a specific contest resulted in an innovation,

this contest’s difference is recorded as 0.30. If a specific contest did not result in an

innovation, this contest’s difference is recorded as -0.70. The innovation percentage

is 70 percent in the four-person treatment. This is exactly at the predicted seventy

percent and is thus not significantly different from the prediction.9

The mean level of individual effort in bad states is 7.51 in the two-person treat-

ment. This is significantly different from the predicted 10 at the five percent level

(p-value=0.028) using a regression of the difference in each individual’s realized and

predicted cumulative level of effort, in a given contest, on a constant. The mean level

of individual effort in bad states is 5.29 in the four-person treatment. This is not

significantly different from the predicted five at the ten percent level (p-value=0.498)

using a regression of the difference in each individual’s realized and predicted cumu-

lative level of effort, in a given contest, on a constant.

Result 1: Contests in the two-person treatment induce less aggregate effort, result

in less innovations, and induce less individual effort than predicted. Contests in the

four-person treatment do not significantly differ from the predicted level of induced

aggregate effort, the predicted number of innovations, or the predicted level of induced

individual effort.

3.4.2 Hypotheses

Hypothesis 1 states that each treatment induces the same level of aggregate effort.

Table 3.1, and the result that only the two-person contest induces less aggregate effort

than predicted, suggest that the level of aggregate effort, in bad states, is greater in

the four-person treatment than in the two-person treatment. Figure 3.1 addresses

8The predicted seventy percent stems from the pre-generated states and arrival of innovations.
9As shown in Figure 3.2, an innovation is not always obtained when it is predicted for the four
person contest. There is one time when an innovation is obtained when it is not predicted and one
time when an innovation is not obtained when it is predicted.
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Figure 3.1.: Mean level of aggregate effort in bad states for each treatment. The red
dotted line displays the equilibrium prediction for aggregate effort.

this possibility further by plotting the mean level of aggregate effort for each treat-

ment in each contest with a bad state. The figure shows a clear separation between

the two treatments. The four-person treatment has a higher mean level of aggre-

gate effort in each contest with a bad state than the two-person treatment. This

result can be formalized with a regression of the level of aggregate effort induced in

each contest on the treatment, with 5000 bootstrap samples clustered at the session

level. This regression shows that the four-person treatment has a significantly greater

level of aggregate effort, in bad states, than the two-person treatment (p-value=.048).

Result 2: Contests in the four-person treatment induce more aggregate effort

than contests in the two-person treatment (evidence against Hypothesis 1).

Hypothesis 2 states that each treatment results in the same number of innovations.

Table 3.1, and the result that only the two-person contest results in less innovations
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Figure 3.2.: Frequency of obtaining an innovation by treatment. The blue and black
lines represent the two-person and four-person treatments, respectively. The bar
graph displays the minimum number of balls drawn required to obtain an innovation,
which is denoted by V 1.

than predicted, suggest that the innovation percentage is greater in the four-person

treatment than the two-person treatment. Additionally, the result that the four-

person treatment induces more aggregate effort also suggests that the four-person

treatment results in more innovations. Figure 3.2 addresses this possibility further

by displaying the innovation percentage, for each treatment, in each period where an

innovation is possible. Innovation percentage in bad states is not displayed as innova-

tions are not possible in bad states. Figure 3.2 shows that the innovation percentage

in the four-person treatment is greater than or equal to the innovation percentage in

the two-person contest for each contest where an innovation is possible.10 Hypothesis

2 can be more formally tested by running a regression of an indicator variable denot-

10While there appears to be a trend in the number of innovation attempts required to obtain an
innovation, this trend does not appear to influence the results of this section. Figure 3.1 shows that
the level of aggregate effort induced by each treatment is stable over time. This stability additionally
implies that the level of individual effort induced in each treatment is stable over time and that a
four-person contest should consistently be more likely to obtain an innovation than a two-person
contest.



77

ing whether a contest resulted in an innovation on the treatment. This regression is

bootstrapped regression with 5000 bootstrap samples clustered at the session level.

This regression shows that the four-person contest is more likely to result in an inno-

vation than the two-person contest (p-value<0.01).

Result 3: Contests in the four-person treatment result in more innovations than

contests in the two-person treatment (evidence against Hypothesis 2).

Hypothesis 3 states that contests in the two-person treatment induce more effort

from an individual than contests in the four-person treatment. While the four-person

contest results in more innovations and induces more aggregate effort, the two-person

contest may still induce more effort from an individual than the four-person contest.

Table 3.1 suggests that contests in the two-person treatment actually do induce more

individual effort than contests in the four-person treatment. This result can be for-

mally tested using a regression of each subject’s mean level of cumulative effort in

bad state contests on the treatment, with 5000 bootstrapped samples clustered at the

session level. This regression shows that individual effort is higher in bad states in

the two-person contest than the four-person contest. This result is significant at the

10 percent level (p-value=.088).

Result 4: There is some evidence that contests in the two-person treatment in-

duce more effort from an individual than contests in the four-person treatment (some

evidence supporting Hypothesis 3).
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Table 3.2.: Logistic regression of the choice to exert effort on multiple covariates.
Standard errors in parentheses. Specifications (1) addresses the two-person treatment,
while specifications (2) addresses the four-person treatment.

Two Person Treat. Two Person Treat. Four Person Treat. Four Person Treat.
Effort Effort Effort Effort

Aggregate Effort -0.197∗∗∗ -0.234∗∗∗ -0.269∗∗∗ -0.270∗∗∗

(0.009) (0.013) (0.060) (0.065)

Risk ——– -0.830∗∗∗ ——– -4.552∗∗∗

——– (0.049) ——– (0.719)

Grit ——– -0.650∗∗∗ ——– -0.183∗∗∗

——– (0.050) ——– (0.029)

Constant 0.481∗∗∗ 24.353∗∗∗ 3.399∗∗∗ 55.093∗∗∗

(0.070) (1.844) (0.299) (8.080)

N 2,175 1,650 2,325 1,800

* p < 0.10, ** p < 0.05, *** p < 0.01

3.4.3 Individual Behavior

The previous subsection focused on testing the three hypotheses. This subsection

moves away from the hypotheses by focusing on analyzing the factors that influence

the decision to exert effort.

Regression analysis can be used to understand the decision making process of

subjects in the experiment. This subsection analyzes four different regressions. Each

regression only includes bad state contests in the last twenty periods.11 Addition-

ally, each regression is clustered at the session level. Table 3.2 displays these four

regressions.

The first two regressions focus on the decision to exert effort in the two-person

treatment. The first regression is a logistic regression of an indicator variable denot-

ing whether subject i exerted effort in period p of contest j on the current level of

aggregate effort in the contest, contest dummy variables, and subject dummy vari-

ables.12 The coefficient on aggregate effort is negative and significant at the one

11The regression only includes bad state contests as these are the only contests where subjects make
an effort decision in each period. Thus, each period is equally represented for the period variable.
12Contest dummy variables are included instead of a contest number variable because not every
contest, of the last twenty periods, is represented in this regression. However, the regression has
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percent level. The second specification is similar to the first specification except that

both risk aversion and grit are included in the regression. The coefficient on risk

aversion is negative and significant at the one percent level and the coefficient on grit

is negative and significant at the one percent level.13 These regressions suggest that

subjects in the two-person treatment are less likely to exert effort when the state is

more likely to be bad and that a subject’s decision to exert effort is decreasing in risk

aversion and grit.

The last two regressions focus on the decision to exert effort in the four-person

treatment. The third regression is similar to the first regression. The third regression

is a logistic regression of an indicator variable denoting whether subject i exerted

effort in period p of contest j on the current level of aggregate effort in the contest,

contest dummy variables, and subject dummy variables. Similarly to the two-person

treatment, the coefficient on aggregate effort is negative and significant at the one

percent level. The fourth regression is similar to the third regression except that both

risk aversion and grit are included in the regression. Similarly to the two-person treat-

ment, the coefficient on risk aversion is negative and significant at the one percent

level and the coefficient on grit is negative and significant at the one percent level.

These regressions suggests that subjects in the four-person treatment are less likely

to exert effort when the state is more likely to be bad and that a subject’s decision

to exert effort is decreasing in risk aversion and grit.

Result 6: Subjects’ willingness to exert effort is decreasing in aggregate effort,

risk aversion, and grit.

similar results with a contest number variable. Additionally, the results are similar if a period
variable denoting the period in the contest is introduced.
13The coefficient on grit is counter-intuitive, but is consistent with a similar study. Hudja et al.
(2019) analyze the decision to exert effort on various personal characteristics in an innovation contest
where the principal rewards the best innovation at a pre-specified date. They find that the coefficient
on grit is negative in all of the regressions and that it is significant in an individual innovation task.
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3.4.4 Differential Weighting of Experimentation

This section has previously showed that the four-person contest induces more

aggregate effort and results in more innovations than the two-person contest. This

subsection explores differential weighting of experimentation as a possible explana-

tion for these differences. Through Maximum Likelihood Estimation, I will analyze

whether subject behavior is consistent with this bias.

Differential weighting of experimentation occurs if subjects place more weight on

their own failed innovation attempts, when updating their beliefs, than their com-

petitors’ failed innovation attempts. It is similar to base rate neglect/conservatism,

where subjects can place too much weight or too little weight on new information

relative to their prior. However, under differential weighting of experimentation, sub-

jects implicitly treat new information generated from their own innovation attempts

differently than new information generated from their competitors’ failed innovation

attempts.

There are a few reasons to expect that individuals might implicitly differentially

weight experimentation. First, the information obtained by experimentation is costly,

while the information obtained by other individuals’ experimentation is not. There

is evidence that subjects overweight costly information relative to free information

(Robalo and Sayag, 2018). Second, subjects receive monetary feedback, in the form

of $0.00 or $10.00, when attempting an innovation and receive no monetary feedback

while other agents attempt innovations. There is evidence that belief updating is

larger under monetary feedback (Bennett et al., 2019). Lastly, the information from

attempting an innovation may be more salient than the information from other agents’

innovation attempts. This information may be more salient in part because it is costly

and comes in the form of monetary feedback. There is evidence that more salient

information receives considerably more weight than less salient information in belief

updating (Camacho et al., 2011).
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In this section, for ease of exposition, I estimate a risk-neutral model of experimen-

tation. Section C.3 of the appendix estimates a model under risk aversion and finds

similar results to this subsection. Subjects are modeled as using stopping strategies

based on a cutoff belief.14 Subjects are assumed to prefer to stop attempting an inno-

vation once the myopic benefit of innovating is below the myopic cost of innovation.

This cutoff belief is given by c
λw

. Notice that this is the same cutoff as the continuous

time equilibrium in Halac et al. (2017). Subjects are allowed to have biases in their

belief updating. Subjects are allowed to over-weight or under-weight their own failed

innovation attempts. Let ψi denote the weight that subjects place on their own failed

innovation attempts.15 Additionally, subjects are allowed to over-weight or under-

weight their competitors’ failed innovation attempts. Let ψo denote the weight that

subjects place on their competitors’ failed innovation attempts. Belief updating, in

the absence of an innovation, is now given by

p̃ =
p0(1− λ)ψiDt−1+ψoOt−1

p0(1− λ)ψiDt−1+ψoOt−1 + (1− p0)
,

where Dt−1 is the number of failed innovation attempts that a subject has had up until

period t and Ot−1 is the number of failed innovation attempts that her competitors

have had up until period t.

While subjects are assumed to use stopping strategies, subjects are allowed to

make errors. I assume that subjects’ errors become more frequent as their beliefs

14Subjects appear to use stopping strategies in the data. Overall, only 8.79 percent of effort decisions
(in bad states in the last twenty periods) appear to be inconsistent with a stopping strategy. I
consider an observation to be inconsistent with a stopping strategy if an individual has previously
chosen to not exert effort in the contest but currently has decided to exert effort. Notice that this
is a liberal notion of a violation as an individual who exerted effort in every period but the first is
credited with fourteen deviations, but the first period may have actually been the deviation from
the stopping strategy.
15Placing a weight on new information, in the belief updating process, is a common approach to
modeling individuals placing too much weight (base rate neglect) or too little weight (conservatism)
on new information relative to their prior. This approach to modeling base rate neglect/conservatism
has been used in Goeree et al. (2007) and Moreno and Rosokha (2016).
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get closer to the cutoff belief. The loglikelihood for this model can be written in the

following way

LogL =
n∑
i=1

log

[
C∏

contest=1

P∏
period=1

Φ (p̃λw − c)E (1− Φ (p̃λw − c))1−E

]
,

where E is an indicator variable for whether subject i exerted effort in the current

period of the current contest. This loglikelihood is maximized over the bad state

contests for the last twenty contests.

This loglikelihood is maximized at a value of 3053.35. The values of ψi and ψo that

maximize the loglikelihood are 3.02 and 2.78, respectively. These parameters suggest

that subjects place less weight on their competitors’ failed innovation attempts than

their own failed innovation attempts. The restriction that ψi = ψo is rejected at

the one-percent level using a likelihood ratio test (restricted loglikelihood is equal to

3066.33). Additionally, the value of ψi is significantly greater than one at the one

percent level using a likelihood ratio test (restricted loglikelihood is equal to 3156.98).

The value of ψo is significantly greater than one at the one percent level using a

likelihood ratio test (restricted loglikelihood is equal to 3161.04). This model suggests

that subject behavior is consistent with differential weighting of experimentation.

Differential weighting of experimentation is consistent with larger contests result-

ing in more innovations and inducing more aggregate effort. Assuming that subjects

use the stopping strategy modeled in this section, subjects, in the absence of an

innovation, are predicted to exert effort until

p0(1− λ)3.02Dt−1+2.78Ot−1

p0(1− λ)3.02Dt−1+2.78Ot−1 + (1− p0)
<

c

λw
.

As the number of subjects increase in a contest, Ot−1 becomes a larger share of

aggregate effort and subjects are thus more willing to experiment at a given level of

aggregate effort (in the absence of an innovation).
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3.5 Conclusion

This paper uses a laboratory experiment to analyze the role of group size in an

innovation contest. The innovation contest is based on the continuous time public

winner-takes-all contest of Halac et al. (2017). The probability of obtaining an in-

novation, and the level of aggregate effort induced, is predicted to be invariant to

group size in the continuous time public winner-takes-all contest. I analyze a simpler

discrete time version of this contest in order to see if this invariance can be found in

the laboratory. I compare two contests, a two-person and four-person contest, that

only differ by contest size and have the same probability of obtaining an innovation

in equilibrium.

The data shows that there are differences between the two contests. The four-

person contest induces more aggregate effort and results in more innovations than

the two-person contest. While the four-person contest induces more aggregate effort,

the two-person contest induces more individual effort. I suggest that subjects may be

placing more weight on their own failed innovation attempts, when belief updating,

than their competitors’ failed innovation attempts. I develop, and estimate, a model

that allows subjects to place non-negative weight on both their own failed innovation

attempts and their competitors’ failed innovation attempts when forming beliefs. I

find, through Maximum Likelihood Estimation, that subject behavior is consistent

with subjects placing more weight on their own failed innovation attempts.

These results have consequences for both theory and contest design. The larger

contest in this paper results in more innovations and induces more aggregate effort

than the smaller contest. While this experiment focused on a contest with a very

simple environment, this result has implications for innovation contests, like the con-

tinuous time public winner-takes-all contest, where there is no predicted effect of

group size on obtaining an innovation. In these types of contests, contest designers

should allow for unlimited entry into contests. Additionally, contest designers may

consider spending advertising money in order to increase the number of competitors.
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There are many avenues for future research. First, future studies can analyze

innovation contests in an experimental environment that is closer to the theoretical

environment. In this paper, I analyze a simpler environment in order to test whether

the predicted invariance occurs. However, future studies can build off of this ex-

periment and allow the prize to be split or not display the level of aggregate effort.

Second, future studies can analyze how group size affects other types of innovation

contests. For example, in Halac et al. (2017), the probability of an innovation be-

ing obtained in the continuous time hidden equal-sharing contest is non-monotonic

in group size. A future study can explore whether this non-monotonicity holds in a

laboratory experiment. Lastly, future studies can explore other reasons why a larger

contest may result in more innovations. While I focus on a belief-based explanation,

there may be other explanations.
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4. PUBLIC LEADERBOARD FEEDBACK IN

INNOVATION CONTESTS: A THEORETICAL AND

EXPERIMENTAL INVESTIGATION

with Brian Roberson and Yaroslav Rosokha

We investigate the role of performance feedback, in the form of a public leader-

board, in innovation competition that features sequential search activity and a range

of possible innovation qualities. We find that in the subgame perfect equilibrium of

contests with a fixed ending date (i.e., finite horizon), providing public performance

feedback results in lower equilibrium effort and lower innovation quality. We con-

duct a controlled laboratory experiment to test the theoretical predictions and find

that the experimental results largely support the theory. In addition, we investi-

gate how individual characteristics affect competitive innovation activity. We find

that risk aversion is a significant predictor of behavior both with and without leader-

board feedback and that the direction of this effect is consistent with the theoretical

predictions.

4.1 Introduction

Innovation contests play an increasingly important role in research and develop-

ment applications ranging from algorithmic design problems, to graphic design and

marketing, to scientific breakthroughs. For example, in 2009, Netflix ran a crowd-

sourcing contest, the Netflix Prize, with a $1 million reward and the objective to

“substantially improve the accuracy of predictions about how much someone is going

to enjoy a movie based on their movie preferences.” One key feature of this contest

was a real-time leaderboard that provided information regarding performance of the

top submitted algorithms. Since then, leaderboards have become a common feature of
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crowd-sourcing contests (e.g., Kaggle.com, drivendata.org, challenge.gov). However,

the extent to which leaderboards contribute to innovation quality and innovation

effort is not well understood.

In this paper, we theoretically and experimentally examine sequential-search in-

novation competition with a public leaderboard and a fixed ending date (i.e. finite

horizon) and compare it to innovation competition with private performance feed-

back. In each period of the innovation contest, participants have the opportunity

to engage in a costly innovation search. The search yields –a priori uncertain– in-

novation quality. We refer to the maximum of the innovation qualities among all of

the opportunities that she has developed in previous periods as the score. At the

fixed end of the contest, the participant with the highest score wins a prize. In this

context, our focus is on the effects of information disclosure in the form of a public

leaderboard on effort provision and innovation quality. We provide new results on

the characterization of the subgame perfect equilibrium for searched-based innovation

competition with public-leaderboard feedback, and compare that to the case of pri-

vate performance feedback without a leaderboard as characterized by Taylor (1995).

We then use a controlled laboratory experiment to test the theoretical predictions on

effort provision and innovation quality with and without public leaderboard feedback.

In our sequential-search environment, information disclosure in the form of public

leaderboard feedback generates incentives that are reminiscent of the dollar auction

and the penny auction.1 The dollar auction is a dynamic ascending-price auction

with public feedback of the highest standing bid (i.e. a leaderboard) and the following

features: (i) the auction opens with a standing bid of zero, (ii) the standing bid may

only be increased by a fixed bid increment (iii) bidding continues until no bidder is

willing to increase the standing bid (by the fixed bid increment), (iv) the highest

bidder wins the item up for auction, and (v) both the highest and the second highest

bidders pay their bids. Escalation arises in this setting because the losing bidder

would always be better off if she incrementally increased the standing bid and won

1See, for example, Hinnosaar (2016) on the penny auction and Shubik (1971) and O’Neill (1986) on
the dollar auction.
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the auction. Our sequential-search contest with public leaderboard feedback presents

a similar opportunity for escalation. In particular, at each stage of the contest, each

participant (i) has a sunk research cost, (ii) knows whether he or she is in the lead,

and (iii) the trailing player can try to take the lead by expending an incremental

search cost. We show that, in equilibrium, participants who trail in the competition

provide more effort. However, we also show that, in equilibrium, both participants

who are ahead and participants who are behind strategically reduce their effort as

the leader’s existing innovation quality increases.

The main takeaway from our theoretical analysis is that despite the potential

for leaderboard feedback to escalate the competition, we find that the presence of a

leaderboard generates both lower equilibrium expected effort and lower equilibrium

expected innovation quality than would be achieved without the leaderboard. The

results of our experiment largely confirm these theoretical predictions. In particular,

the experiment consist of two main treatments of the competition with the leader-

board (leaderboard feedback treatment) and without the leaderboard (private feedback

treatment). We find that the private-feedback treatment results in more effort and

a higher quality of the winning innovation than the leaderboard-feedback treatment.

We also experimentally confirm that current leaders tend to exert less effort than

followers and that both leaders and followers become less willing to exert effort as the

innovation quality increases.

Our paper contributes to several active streams of literature. First, we contribute

to the literature on innovation competitions. The existing approaches include but are

not limited to variations on the all-pay auctions (e.g., Che and Gale, 2003; Chawla

et al., 2015), the exponential-bandit contests (e.g., Halac et al., 2017; Bimpikis et al.,

2019), two-stage difference-form contests (e.g., Aoyagi, 2010; Klein and Schmutzler,

2017; Goltsman and Mukherjee, 2011; Gershkov and Perry, 2009; Yildirim, 2005),

crowdsourcing contests (e.g,. Terwiesch and Xu, 2008; DiPalantino and Vojnovic,

2009; Erat and Krishnan, 2012; Ales et al., 2017), and dynamic contests (e.g., Lang

et al., 2014; Seel and Strack, 2016). In terms of studies that focus on feedback in
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contests, our work is closely related to Mihm and Schlapp (2018) who examine a two-

period contest with leaderboard feedback, private feedback, and no feedback. The

authors show that the level of uncertainty may interact with the designer’s objective

(i.e., average effort or best performance) and lead to feedback being optimal for

some combination(s) of uncertainty and objective. Regarding models on search-based

innovation competitions, our work is most closely related to Taylor (1995), Fullerton

and McAfee (1999), and Baye and Hoppe (2003). In particular, although the existing

literature on search-based innovation competition has considered the case of private

feedback, our study is the first (to our knowledge) to provide equilibrium predictions

for dynamic contests with the leaderboard feedback in a finite-horizon setting.

Second, we contribute to the experimental literature on feedback in contests. Rele-

vant recent experimental work shows that feedback may not always be desired include

Kuhnen and Tymula (2012), Ludwig and Lünser (2012), and Deck and Kimbrough

(2017). Deck and Kimbrough (2017) experimentally confirm that in Halac et al.

(2017) setting, withholding information leads to better innovation outcomes. This re-

sult arises from the fact that the information that your opponents have not procured

the zero-one innovation lowers your own belief about the probability that innovation

is possible. That is, information may be discouraging and, thus, hiding information

may be valuable. In the dynamic effort provision setting in which there is range of

possible outcomes Kuhnen and Tymula (2012) and Ludwig and Lünser (2012) find

that feedback influences the dynamics of effort provision but not total effort. Our

experimental results are consistent with some of the findings on the dynamics of effort

provision observed in these papers. In particular, we find that leaders tend to reduce

their effort, whereas followers tend to increase their effort. It is important to note,

however, that these findings are not generalizable to all contest settings. In fact, in

a recent survey, Dechenaux et al. (2015) highlight that in some cases feedback may

result in the trailing player dropping out (e.g., Fershtman and Gneezy, 2011).

Finally, our work is related to the literature on factors that motivate individuals

to innovate. In particular, on the experimental side, recent studies have examined the
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role of incentives (Ederer and Manso, 2013), preferences (Herz et al., 2014; Rosokha

and Younge, 2017), and biases (Herz et al., 2014). On the empirical side, two re-

cent surveys by Astebro et al. (2014) and Koudstaal et al. (2015) highlight that

entrepreneurs are typically less risk and loss averse. In the current paper, we consider

the extent to which risk aversion, loss aversion, and sunk-cost fallacy play a role in

a search-based innovation competition.2 Specifically, as part of our experiment, we

elicited those three measures with incentivized multiple-price list tasks. In addition,

we asked subjects to complete several unincentivized personality questionnaires. We

find that risk aversion is a significant predictor of the number of costly innovation

actions in the contest, with more risk-averse subjects taking fewer actions. However,

we did not find that loss aversion, sunk-cost fallacy, or unincentivized measures of

personality were predictive of subjects’ behavior in the contest.

The rest of the paper is organized as follows: in section 4.2, we present the theo-

retical model. In section 4.3, we provide details of the experimental design. In section

4.4, we develop predictions for our environment and organize them into four hypothe-

ses. In section 4.5, we present main results of the experiment. Finally, in section 4.6,

we conclude.

4.2 Theory

Consider a two-player T -period dynamic innovation contest, along the lines of

Taylor (1995). In this model, innovation activity takes the form of a search process

with perfect recall. In each period t ∈ {1, . . . , T}, each player i ∈ {1, 2} has the

opportunity to exert effort at a cost of c > 0. If player i exerts effort, she obtains an

innovation, with quality level si,t, a random variable that is distributed according to

2We focus on risk aversion and loss aversion as characteristics that have been documented to matter
in the lab (e.g., Herz et al., 2014; Rosokha and Younge, 2017) and field (Astebro et al., 2014;
Koudstaal et al., 2015) settings. In addition, we consider the sunk-cost fallacy because it has been
shown to affect behavior in a related setting of penny auctions (Augenblick, 2015). Penny auctions
are auctions in which agents pay to bid and the value of the item decreases after each bid. Augenblick
(2015) shows theoretically how the sunk cost fallacy can lead to auctioneers making profit and finds
empirical support for the sunk-cost fallacy in online penny auction data. Although our environment
shares elements similar to the penny auction, we do not find evidence of the sunk-cost fallacy.
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F , where F has a continuous and strictly positive density everywhere on its support,

which is assumed to be a convex subset of R+ with a lower bound of 0.3 In the event

that player i does not exert effort in period t, let si,t = 0. Player i’s innovation “score”

at the end of period t is denoted by si,t ≡ max{si,1, . . . , si,t}. After T periods, the

contest ends and the player with the higher innovation score at the end of period T ,

that is, the player i with si,T = max{s1,T , s2,T}, is awarded a prize with value v ≥ 2c.4

In the case of a tie, the winner is randomly chosen.

We examine two levels of feedback in the dynamic-innovation contest: (i) private

feedback and (ii) leaderboard feedback. With the private-feedback innovation contest,

at the beginning of each period t, each player i knows her current score (si,t−1) and

at the end of period t, player i observes her period t innovation quality si,t. With

the leaderboard-feedback innovation contest, at the beginning of each period t, each

player i knows, in addition to her own private feedback, the current max score,5

max{s1,t−1, s2,t−1}. In the following subsection, we characterize the subgame perfect

equilibrium for the public-feedback innovation contest.

Throughout the rest of the paper, we use the convention, due to Taylor (1995), of

referring to each draw of an innovation quality si,t as a new innovation. Note, however,

that an equivalent interpretation is that player i is working on one specific innova-

tion and that each draw of an innovation quality si,t is in regards to searching over

quality improvements to that particular innovation. Depending on the application,

this second interpretation may be more natural.

3In the experiment, we assume that innovations are exponentially distributed (F (x;λ) = 1 − e−λx
and f(x;λ) = λe−λx, where λ > 0 is the rate parameter).
4Our analysis can be extended to the case of v ∈ [c, 2c), but for the sake of brevity, we focus here
on the case in which v ≥ 2c.
5Note that the game in which, at the beginning of each period, each player observes both of the
players’ current scores is theoretically equivalent to the game in which, at the beginning of each
period, each player observes her own score and the maximum of the players’ scores.
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4.2.1 Subgame Perfect Equilibrium in Innovation Contests

Private Feedback

The subgame perfect equilibrium for the private-feedback innovation contest is

characterized by Taylor (1995). In particular, Proposition 2 of that paper establishes

that the unique subgame perfect equilibrium takes the form of a stopping rule in

which each player i continues to exert effort until her max score hits a threshold –

denoted by ξi – and she stops exerting effort.

Best-Response

1

𝐹(𝑠𝑇)

1 𝑝′𝑇

𝐷 (𝑝𝑇 = 1)

𝑁𝐷 (𝑝𝑇 = 0)

0

𝐹(𝜉)

Figure 4.1.: Period T local best response for Private Feedback. sT is own score in
period T. F (.) is the distribution of innovation quality. p′T is the probability that the
other player draws in period T . ND(pT = 0) is the decision not to draw. D(pT = 1)
is the decision to draw. ξ is threshold determined by equation (4.1).

The equilibrium value of the threshold ξi is determined by the equation

v

∫ ∞
ξi

(1− F T (ξi))
F (x)− F (ξi)

1− F (ξi)
dF (x)− c = 0. (4.1)

For example, in our experiment, we assume that when a player exerts effort in a

given period the quality of the innovation in that period is a random variable that
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is distributed according to F (x;λ) = 1 − e−λx with λ = 0.125, which implies that

for T = 10, the unique subgame perfect equilibrium stopping rule has a threshold of

ξ = 12.16.

Leaderboard Feedback

In Appendix D.1, we characterize the SPNE in the leaderboard-feedback innova-

tion contest for the case of a general utility function that may allow for risk aversion,

loss aversion, and sunk-cost fallacy considerations to be modeled. For simplicity, we

focus, here, on the case of risk neutral players. Let ft (lt) denote the follower (leader)

in an arbitrary period t. We begin by characterizing the final-stage local equilibrium

strategies and corresponding equilibrium expected payoffs, and then make our way

back through the game tree. In the final period T , if the max score at the beginning

of period T is sT , then we have the following matrix game:

Table 4.1.: The local subgame of period T .

fT (follower)
D ND

lT (leader)
D v(1+F (sT )2)

2 − c, v(1−F (sT )2)
2 − c v − c, 0

ND vF (sT ), v(1− F (sT ))− c v, 0

From Table 4.1, we see that the period T follower’s (fT ’s) final-stage local expected

payoff from choosing to draw (D) when the period T leader (lT ) chooses not to draw

(ND) is v(1 − F (sT )) − c. Similarly, fT ’s expected payoff from choosing D when lT

chooses D is vF (sT )(1− F (sT )) + v(1−F (sT ))2

2
− c = v(1−F (sT )2)

2
− c. Regardless of lT ’s

period T action, the payoff to fT from choosing ND in period T is 0. The expected

payoffs for the period T leader (lT ) follow along similar lines.

To calculate the final-stage local equilibrium, let plT (pfT ) denote the probability

that the period T leader lT (period T follower fT ) draws in period T . Figure 4.2
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presents the players’ best-response correspondences as a function of the leader’s max

score at the beginning of period-T , sT , and of the probability that the opponent

draws in period T and receives a stochastic period-T innovation quality distributed

according to F (·).

Leader’s Best-Response Follower’s Best-Response

1 −
2𝑐𝑐
𝑣𝑣

1 −
2𝑐𝑐
𝑣𝑣

1

𝐹𝐹(𝑠𝑠𝑇𝑇)

1 −
𝑐𝑐
𝑣𝑣

12𝑐𝑐
𝑣𝑣

1

𝐹𝐹(𝑠𝑠𝑇𝑇)

1𝑝𝑝𝑓𝑓𝑇𝑇 𝑝𝑝𝑙𝑙𝑇𝑇

𝐷𝐷 (𝑝𝑝𝑙𝑙𝑇𝑇 = 1)

𝑁𝑁𝑁𝑁 (𝑝𝑝𝑙𝑙𝑇𝑇 = 0) 𝐷𝐷 (𝑝𝑝𝑓𝑓𝑇𝑇 = 1)

𝑁𝑁𝑁𝑁 (𝑝𝑝𝑓𝑓𝑇𝑇 = 0)

0 0

Figure 4.2.: Period T local best responses for Leaderboard Feedback. sT is the score
in period T. F (.) is the distribution of innovation quality. pfT is the probability that
follower draws in period T . plT is the probability that the leader draws in period T .
ND(piT = 0) is the decision not to draw by player i ∈ {leader, follower}. D(piT = 1)
is the decision to draw by player i ∈ {leader, follower}.

Proposition 1 characterizes the final-stage local equilibrium strategies and ex-

pected payoffs that follow directly from the best-response correspondences given in

Figure 4.2. In particular, if 1−
√

2c
v
≥ F (sT ) and pft = 1 then we see from the Leader’s

Best-Response panel of Figure 4.2 that the leader’s best response is D(plT = 1). Sim-

ilarly, if 1 −
√

2c
v
≥ F (sT ) then we see from the Follower’s Best-Response panel of

Figure 4.2 that for any value of pft ∈ [0, 1] the follower’s best response is D(pfT = 1).

The remaining cases of values of F (sT ) follow along similar lines.
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Proposition 4.2.1 The final-stage local equilibrium strategies are characterized as

follows: 
Both draw if 1−

√
2c
v
≥ F (sT )

only follower draws if 1− c
v
≥ F (sT ) > 1−

√
2c
v

neither draws if F (sT ) > 1− c
v

.

The corresponding final-stage local equilibrium expected payoffs for the leader and

follower are given in Figure 4.2.

To calculate the subgame perfect equilibrium strategies, we may take the Propo-

sition 1 final-stage local expected payoffs and work back through the game tree to

stage T − 1. The only (computational) issue in continuing the backward induction

process all the way to the root of the game in stage 1 is the calculation of the ex-

pected continuation payoffs in the period t local subgame. We provide details on

these calculations in Appendix D.1.

4.3 Experimental Design

In this section, we describe the experimental design and provide predictions for

our experiment using the theory developed above. In particular, the primary goal of

the experiment is to address the role of feedback in sequential-search innovation com-

petition. To this end, the main part of our experiment consists of two within-subject

treatments: (i) a public feedback treatment and (ii) a leaderboard feedback treat-

ment. In addition to the primary goal, our aim is to better understand factors that

may influence individuals to innovate. To this end, our design includes an individual

search task that removes the strategic aspect present in the two competitions and the

elicitation of individual (e.g., risk aversion) and personality (e.g., grit) characteristics

that may be important in an innovation setting. Next, we elaborate on details of the

design and our implementation of the experiment.



95

4.3.1 Private-Feedback and Leaderboard-Feedback Contests

At the beginning of the experiment, each subject individually reads instructions

that are displayed on their computer screen. In particular, we implemented a within-

subject design, whereby each subject starts the experiment with either eight private-

feedback contests or eight leaderboard-feedback contests and then switches to the

other feedback type for contests 9 through 16. Thus, before contests 1 and 9, subjects

are provided with detailed instructions and practice tasks that explain the setting of

the upcoming eight contests. During the practice tasks, subjects were matched with

a computer that made decisions randomly, and subjects were informed about the

random behavior of the opponent in the practice task. A copy of the instructions

used in the experiment and the practice tasks is provided in Appendix D.3.

Each contest consists of two subjects matched for 10 periods of decision-making.

Prior to the first period, each subject is given an endowment of $10.00. Within each

period, subjects have the opportunity to pay a cost c = $1.00 to draw an innovation

quality from an exponential distribution with parameter λ = 0.125. At the end of

10 periods, the contest ends and the subject with the highest-quality innovation (the

highest score) wins the prize of v = $10.00. Each subject keeps any money left over

from her endowment. These parameters were chosen to simplify the environment and

were the same for the private and leaderboard treatments as well as for the individual

search task described in section 4.3.2.

The first treatment is a two-player pravate-feedback contest in which each subject

only receives feedback on their own innovations. Specifically, in each period, subjects

decide whether to innovate. Although subjects know the quality of their own innova-

tion, they do not know whether they are winning or losing until all decision periods

are over. That is, the winning innovation is revealed only at the end of the contest. A

screenshot of the private-feedback treatment is presented in Figure 4.3(a). In particu-

lar, during each period, each subject has access to the number of times she has drawn,

the quality of each of the past innovations she has drawn, and her current innovation
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score (her innovation with the highest quality). To simplify decision-making, subjects

are told the probability that an additional draw will result in a higher individual in-

novation score. At the end of the contest, subjects are informed of the winner of the

contest and the amount of money they have earned for the contest.

The second treatment is a two-player leaderboard-feedback contest in which each

subject receives feedback on hew own innovation as well as the innovation that is

currently leading the contest. Specifically, similar to the private-feedback contest, in

each period of the leaderboard-feedback contest, subjects decide whether to innovate;

however, the contest’s best innovation is now revealed at the start of each period.

Thus, each participant knows whether she is a leader or a follower. A screenshot

of the leaderboard-feedback treatment is presented in Figure 4.3(b). Although most

aspects of the leaderboard-feedback treatment are the same as in the private-feedback

treatment, subjects receive additional feedback regarding the current highest score

in the contest. That is, subjects always know whether they are currently winning or

losing the contest and the probability that their next draw will result in their score

being higher than the current maximum score.6

6Subjects are no longer shown the probability that an additional draw will result in a higher indi-
vidual innovation score.
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(a) Private Feedback

(b) Leaderboard Feedback

Figure 4.3.: Screenshots of the Experimental Interface

4.3.2 Individual Tasks and Questionnaires

After completing both treatments, subjects were presented with several individual

tasks. In particular, subjects completed three elicitation tasks: (i) a risk-aversion

task, (ii) a loss-aversion task, and (iii) a sunk-cost-fallacy task. In each of these three

tasks, subjects chose one of two options for each of the 20 decisions. The decisions
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were organized into a multiple price list as is common in the literature (e.g., Holt and

Laury, 2002; Rubin et al., 2018). In particular, the first task was the risk-aversion

task. In this task each participant chose between a risky option (50% chance of $10.00

and a 50% percent chance of $0.00) and a safe option that was varied across decisions

(started at $0.50 and increased by $0.50 in each subsequent decision). The second

task was the loss-aversion task. In this task each participant chose between a safe

option of $0.00 and a risky option had a 50% chance at $0.00 and a 50% chance of

a loss (varied from −$0.50 to −$10.00 in increments of $0.50). The third elicitation

task was the sunk-cost-fallacy task. In this task, subjects were given an endowment

of $15.00 and were required to pay $5.00 to initiate a project. Each subject then

decided whether to complete the project at various completion costs. Completing

the project was always worth $7.50; however, the cost varied between decisions. The

completion cost started at $0.50 and increased by $0.50 in each subsequent decision.

The sunk-cost fallacy occurs if the subject completes the project at a cost greater than

$7.50. Screenshots of the three individual elicitation tasks are presented in Figures

D.5-D.7 in the Appendix.

In addition to the above elicitation tasks, each subject participated in eight in-

dividual search tasks. The individual search tasks were similar to the two contests

except that the human opponent was replaced with an existing innovation of a known

quality. In particular, the existing innovation took on five values: 15.177, 16.832,

18.421, 20.205, and 23.966.7 Each subject saw all five values and the values 15.177,

18.421, and 23.966 were repeated twice. The five values were displayed in random

order. If the subject ends the period with an innovation of greater quality than the

existing innovation, she won $10.00. Thus, these tasks allow us to analyze individual

behavior in a similar environment but without competition against another human

subject. A screenshot of the individual search task is presented in Figure D.8 in the

Appendix.

7These values correspond to 85, 88, 90, 92, and 95 percentiles of the exponential distribution,
respectively. In particular, the risk-neutral agent would be indifferent between drawing and not
drawing if the existing innovation was 18.421.
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The experiment concluded with three unincentivized personality questionnaires.

In particular, the first questionnaire measured the psychological construct of grit

through the 12-item Grit Scale (Duckworth et al., 2007). The second questionnaire

measured the big five characteristics (agreeableness, extraversion, neuroticism, open-

ness, and conscientiousness) through the 44-item big-five inventory (John and Srivas-

tava, 1999). The third questionnaire measured achievement-striving and competitive-

ness through the 10- and 6-item scales obtained from the International Personality

Item Pool.8

4.3.3 Experimental Administration

All parts of the experiment, including instructions, innovation contests, individual

elicitation tasks, and personality questionnaires, were implemented in oTree (Chen

et al., 2016). In total, subjects participated in 27 compensation-relevant tasks. Specif-

ically, the compensation-relevant tasks included the eight private-feedback contests,

the eight leaderboard-feedback contests, the risk-aversion elicitation task, the loss-

aversion elicitation task, the sunk-cost-elicitation task, and the eight individual search

tasks. At the end of the experiment, two of these 27 tasks were chosen at random by

the computer for payment.

In total, 96 students were recruited on the campus of Purdue University using

ORSEE software (Greiner, 2015). Participants were split into 12 sessions, with eight

participants per session. As mentioned above, to ensure that the order of treat-

ments did not affect the main results, half of the sessions started out with eight

private-feedback contests, while the other half of the sessions started out with eight

leaderboard-feedback contests. The experimental lasted under 60 minutes, with av-

erage earnings of $19.91.

8https://ipip.ori.org/

https://ipip.ori.org/


100

4.4 Predictions

In this section, we present predictions for the experiment that were obtained

by computationally solving for the sequential equilibrium described in section 4.2.

In particular, using the model, 1 million contests were simulated and the resulting

predictions were organized into four hypotheses: the first hypothesis pertains to the

comparison of the private- and leaderboard-feedback contests; the second hypothesis

pertains to the comparison of leader and follower behavior; the third hypothesis

pertains to the dynamics of the draws in the two contests; and the fourth hypothesis

pertains to the role of individual characteristics such as risk aversion, loss aversion,

and the sunk-cost fallacy.9

Table 4.2.: Displays the summary of predictions. Aggregate draws refers to the
predicted number of draws that occurs in a contest in each treatment. Winning
innovation refers to the predicted quality of the winning innovation in each treatment.
Known score refers to the individual score in the private-feedback treatment and the
maximum score in the leaderboard-feedback treatment. The third row displays the
draw rate of the leader and the follower in periods 2, 6, and 10 of the experiment.
The fourth row displays the draw rate in periods 2, 6, and 10 of the experiment for
known scores in the 20th-80th percentiles for that period. The fifth row displays the
difference in draw rates for known scores in the lower half and the upper half of the
known score distribution for periods 2, 6, and 10.

Private Feedback Leaderboard Feedback

Winning Innovation 23.42 21.84
Aggregate Draws 8.36 6.34

Proportion of Draws
Leader

Known Score 0–15 0.67/0.30/0.03 0.59/0.04/0.00
Known Score 15–25 0.11/0.02/0.00 0.00/0.00/0.00

Follower
Known Score 0–15 0.90/0.62/0.37 0.59/0.55/1.00
Known Score 15–25 0.58/0.19/0.08 0.14/0.38/0.32

The top part of Table 4.2 shows that a contest with private feedback is predicted

to induce more draws (8.36) and result in a greater winning innovation score (23.42)

9One million contests were simulated for each value of each bias parameter.
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than a contest with leaderboard feedback (6.34 draws; winning innovation of 21.84).

We summarize this prediction with Hypothesis 1.

Hypothesis 1 The private-feedback contest leads to more draws and a higher winning

innovation than the leaderboard-feedback contest.

The bottom part of Table 4.2 presents the proportion of draws broken down by

the period of the contest (presented as a triple of 2nd/6th/10th period), the current

score (grouped into ranges 0–15 and 15–25), and whether the player was a leader or a

follower.10 By comparing the proportion of draws between leaders and followers, the

follower is clearly predicted to be at least as likely to draw as the leader across most

of the ranges of innovation scores and periods.11 We summarize this prediction with

Hypothesis 2.

Hypothesis 2 Followers draw more frequently than leaders.

The bottom part of Table 4.2 also provides an insight regarding the dynamics

of decision-making. In the private-feedback treatment, as the individual innovation

score increases, each player becomes less willing to draw. This can be seen by com-

paring the proportion of draws between relatively low individual scores (0–15) and

relatively high individual scores (15–25) for both leaders and followers. Additionally,

in the leaderboard-feedback treatment, as the maximum score increases, each player

becomes less willing to draw. This can be seen by comparing the proportion of draws

between relatively low maximum scores (0–15) and relatively high maximum scores

(15–25) for both leaders and followers. We summarize this prediction with Hypothesis

3.

Hypothesis 3 Players become less willing to draw as their individual score increases

in the private-feedback treatment and as the maximum score increases in the leaderboard-

feedback treatment.

10Figures D.10 and D.11 in Appendix D.4 present further evidence on the proportion of draws
obtained from our computational model using simulations.
11Overall, leaders draw 8.73% of the time in the simulated contests and followers draw 39.20% of
the time in the simulated contests.
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Lastly, we incorporate three behavioral characteristics: risk aversion, loss aversion,

and the sunk-cost fallacy.12 The three panels of Figure 4.4 present the comparative

statics as we vary these characteristics one at a time. For example, to vary risk

aversion, we model both players as having a CRRA utility function with parameter

γ, and we vary this parameter across a range of values typically observed in the

experimental literature.

Figure 4.4.: Displays the decision to draw and the comparative statics. This figure
displays equilibrium predictions under different levels of (a) risk aversion, (b) sunk
cost fallacy, and (c) loss aversion. The orange line is the private-feedback treatment,
while the blue line is the leaderboard-feedback treatment.

Figure 4.4 shows that as risk aversion and loss aversion increase, the number of

total draws made in the contest decreases. The sunk-cost fallacy, however, has an

opposite effect. In particular, as the sunk-cost fallacy increases, we observe more total

draws. We summarize these predictions with Hypothesis 4.

Hypothesis 4 The number of draws increases with (a) a decrease in risk aversion,

(b) a decrease in loss aversion, (c) an increase in sunk-cost fallacy.

12Specifications of the three utility functions as well as the general procedure for obtaining predictions
are provided in Appendix D.2.
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4.5 Results

In this section, we present the results of our experiment. In particular, first, in

section 4.5.1 we compare the outcomes of the private and leaderboard treatments.

Next, in section 4.5.2, we test for differences in behavior between the leader and the

follower. Then, in section 4.5.3 we consider the dynamics observed in the experimental

data. Finally, in section 4.5.4, we discuss the role of individual characteristics in

determining innovation-contest outcomes.

4.5.1 Private vs Leaderboard Contests

The columns of Table 4.3 display the summary statistics from the two treatments.

In particular, the table is divided down into two parts. In the top part, we present the

aggregate results on the final innovation quality and the total number of draws that

we observed in each of the treatments, on average. In the bottom part, we present

the results on the proportion of draws conditional on the period in the game (periods

2, 6, and 10 are separated by ”/”), current score (we group scores into two ranges

0–15 and 15–25), and whether the decision-maker was a leader or a follower.13

13Recall that while the role of leader/follower is known to the decision-making in the leaderboard
treatment, it is not known to the decision-makers in the private feedback.
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Table 4.3.: Displays the results of the contests. Aggregate draws refers to the pre-
dicted number of draws that occurs in a contest in each treatment. Winning innova-
tion refers to the predicted quality of the winning innovation in each treatment. The
third row displays the draw rate of the leader and the follower in periods 2, 6, and
10 of the experiment. The fourth row displays the draw rate in periods 2, 6, and 10
of the experiment for scores that range in the 20th-80th percentile for that period.
The fifth row displays the difference in draw rates for scores in the lower half and the
upper half of the score distribution for periods 2, 6, and 10.

Private Feedback Leaderboard Feedback

Winning Innovation 22.87 21.47
Aggregate Draws 8.50 7.54

Proportion of Draws
Leader

Known Score 0–15 0.59/0.60/0.33 0.37/0.36/0.20
Known Score 15–25 0.16/0.16/0.11 0.08/0.08/0.07

Follower
Known Score 0–15 0.61/0.64/0.40 0.60/0.59/0.63
Known Score 15–25 0.45/0.41/0.38 0.49/0.50/0.49

* p < 0.10, ** p < 0.05, *** p < 0.01

The top part of Table 4.3 shows the average number of contest draws and the av-

erage value of the winning innovation in each treatment. In particular, in the private-

feedback treatment, the average number of draws (8.50) and the average value of the

winning innovation (22.87) are not significantly different from the theoretically pre-

dicted values (8.36 draws, p-value 0.67; score of 23.42, p-value 0.36).14 In terms of the

leaderboard feedback, we also find no difference in the value of the winning innovation

between theory and the experiment (21.84 vs. 21.47, p-value 0.42). However, we do

find a difference between theory and the experiment in terms of the number of draws

for the leaderboard-feedback treatment (6.34 vs. 7.54, p-value 0.000).15

The main focus of the aggregate results is on the comparison between private and

leaderboard feedback (i.e., Hypothesis 1). Table 4.3 shows that in our experiment,

the number of draws in the private-feedback contest (8.50) is greater than in the

14Hypothesis tests in this subsection are conducted using bootstrapped regressions, with 5,000 boot-
strap samples, on the session-level averages.
15This difference in significance between draws and winning scores for the leader-board feedback
treatment may be a product of the realization of the random draws.
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leaderboard-feedback contest (7.54). We test whether this difference is significant

using a random-effects regression with session-level effects. We find that this difference

is significant (p-value=0.000). Similarly, Table 4.3 shows that the winning technology

is greater in a private-feedback contest (22.87) than a leaderboard-feedback contest

(21.47). Again, using a random-effects regression with session-level effects, we find

that this difference is significant (p-value=0.029). We summarize these tests with

Result 1.

Result 1 A private-feedback contest results in more draws and a greater winning

innovation value than a leaderboard-feedback contest (evidence supporting Hypothesis

1).

4.5.2 Leaders vs. Followers

The bottom part of Table 4.3 shows that the proportion of time that a follower

draws is greater than the proportion of time that a leader draws. While the difference

is observed in both the private and leaderboard treatments, the difference is much

larger in the latter. Figure 4.5 presents further evidence regarding this comparison.

Formally, each panel of the figure shows a panel data logistic regression of the decision

to draw on the maximum score. The bottom row of the figure presents the comparison

of of the leader’s decision (blue) and the follower’s decision (red). The figure clearly

shows that in almost every combination of period and maximum score, followers are

more likely to draw than leaders. Thus, Figure 4.5 suggests that Hypothesis 2 holds.16

16Figure B5 provide similar figures for the remaining periods.
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Figure 4.5.: Displays the decision to draw in the Leaderboard-Feedback Treatment.
This figure displays two sets of graphs. The first set of graphs display logistic re-
gressions of the decision to draw in the pravate-feedback treatment for periods 2, 6,
and 10. The second set of graphs display logistic regressions of the leader’s decision
(blue) to draw and the follower’s decision (red) to draw in the leaderboard-feedback
treatment for periods 2, 6, and 10.

To formally test the difference between leader and follower behavior, we use a panel

data logistic regression. In particular, we regress the decision to draw on an indicator

variable for whether the subject was a leader, while accounting for subject-level ran-

dom effects and clustering standard errors at the session level.17 The coefficient on

the leader variable is negative and significant at the 1% level. We summarize these

observations with Result 2.

Result 2 Leaders draw less frequently than followers in the leaderboard-feedback treat-

ment (evidence supporting Hypothesis 2).

17Note that the regression is run on the observations where the score is greater than zero (and thus
there is a leader and a follower).
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4.5.3 Dynamics of Decision Making

Figure 4.5 suggests that subjects are less willing to draw as the individual score

increases in the private-feedback treatment and as the maximum score increases in

the leaderboard-feedback treatment. To formally test Hypothesis 3, we run panel

data logisitic regressions, with subject-level random effects and session-level clustered

standard errors, of the decision to draw on the individual score. We run these regres-

sions for the last nine periods of the private-feedback treatment. We find that in each

of the regressions, the coefficient on the individual score is negative and significant

at the 1% level. Additionally, we run similar regressions for the leaderboard-feedback

treatment with the difference being that the decision to draw is regressed on the

maximum score. Again, for each of the regressions, the coefficient on the maximum

score is negative and significant at the 1% level. We summarize these results with

Result 3.

Result 3 Subjects are less willing to draw as their individual score increases in the

private-feedback treatment and as the maximum score increases in the leaderboard-

feedback treatment (evidence supporting Hypothesis 3).

4.5.4 Role of Individual Characteristics

In our experiment, subjects completed various elicitation tasks. We used these

tasks to shed light on factors that may influence subjects’ decision to draw. Table

4.4 displays three sets of regressions that analyze the decision to draw on the elicited

characteristics.18 In particular, the regressions are carried out using a panel data

logistic regression with subject-level random effects, and standard errors are obtained

by clustering at the session level.

Table 4.4 shows that the regression analyses yield results consistent with our prior

analysis in terms of the role of the treatments and leader/follower behavior. In terms

18We relegate regressions on the individual search task to the appendix as the results are similar to
the results found in Table 4.4.
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of elicited individual characteristics, we find that risk aversion has a significantly

negative effect across a number of specifications. At the same time, we find that

our measures of loss aversion and sunk-cost fallacy are not significant in any of the

specifications. We summarize these results with Result 4.

Result 4 Risk aversion leads to a lower likelihood of drawing an innovation (evidence

supporting Hypothesis 4a).

Recall that in addition to the incentivized elicitation of risk aversion, loss aver-

sion, and the sunk-cost fallacy, we conducted a number of non-incentivized personality

questionnaires that addressed personality characteristics. In particular, in addition

to a broad questionnaire (i.e., Big 5), we selected a few characteristics as potentially

important to behavior in an innovation-contest setting (i.e., Grit and Competitive-

ness). Table 4.4 shows that virtually no personality characteristics are significant in

explaining drawing behavior for any of the regression specifications.19

19Table D.1 in the Appendix provides an alternative specification of this regression in which we first
carry out factor analysis to identify orthogonal factors present in the questionnaire. The regression
results stay largely the same. Additionally, the reader may be concerned that there is endogeneity of
the individual score in the private feedback treatment and endogeneity of the maximimum score in
the leader-board feedback treatment. We instrument for the former variable by creating a variable
for each individual’s score immediately after the first period. We instrument for the latter variable by
creating a variable for the maximum score immediately after the first period. In a pooled regression,
with these two instruments, we find similar results as before. Risk aversion is the only significant
behavioral factor.
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Table 4.4.: Displays the results of the regressions. The regression pools the data from
the individual search tasks, the private-feedback treatment, and the leaderboard-
feedback treatment.

(1) (2) (3) (4) (5) (6) (7)

Dep. Var.: Pooled Private Leaderboard
Draw Decision All Leader Follower All Leader Follower

L-Board -0.70*** — — — — — —
(0.20) — — — — — —

Priv. x Score -0.17*** -0.21*** -0.25*** -0.18*** — — —
(0.01) (0.02) (0.04) (0.02) — — —

L-Board x MaxScore -0.11*** — — — -0.11*** -0.23*** -0.11***
(0.01) — — — (0.01) (0.02) (0.01)

Period -0.12*** -0.13*** -0.19*** -0.11*** -0.10*** -0.24*** -0.03
(0.03) (0.03) (0.04) (0.04) (0.03) (0.04) (0.05)

Risk Aversion -1.13∗∗ -1.41** -1.50 -1.20** -1.05** -1.01 -0.31
(0.50) (0.72) (1.32) (0.56) (0.46) (0.87) (1.15)

Loss Aversion -0.22 -0.10 1.15 -0.83 -0.30 -1.12 -0.43
(0.65) (0.83) (1.01) (0.70) (0.63) (1.09) (0.89)

Sunk Cost Fallacy 0.06 0.14 -1.07 0.25 -0.12 -0.55 0.02
(0.61) (0.94) (0.87) (0.96) (0.45) (0.87) (0.94)

Grit -0.15 -0.28 -0.53 -0.05 -0.02 -0.17 -0.20
(0.24) (0.39) (0.47) (0.33) (0.16) (0.40) (0.47)

Competitiveness -0.18 0.12 0.00 0.42 -0.43 -0.07 -0.27
(0.31) (0.43) (0.47) (0.42) (0.28) (0.38) (0.36)

Achievement Striving 0.38 0.18 0.06 -0.18 0.57 0.66 0.08
(0.39) (0.54) (0.68) (0.49) (0.36) (0.46) (0.70)

Extraversion 0.04 -0.03 0.09 -0.07 0.09 -0.21 0.13
(0.10) (0.13) (0.17) (0.11) (0.11) (0.23) (0.13)

Agreeableness 0.19 0.09 0.03 0.00 0.27 0.20 0.26
(0.22) (0.28) (0.35) (0.29) (0.22) (0.32) (0.33)

Neuroticism 0.06 0.07 -0.14 0.12 0.04 0.13 -0.08
(0.13) (0.17) (0.22) (0.15) (0.13) (0.22) 0.26

Openness -0.18 -0.18 -0.27 -0.25 -0.23 -0.46 -0.23
(0.17) (0.26) (0.33) (0.25) (0.15) (0.33) (0.26)

Conscientiousness 0.04 0.30 0.43 0.10 -0.24 -0.34 -0.41
(0.28) (0.49) (0.46) (0.45) (0.17) (0.60) (0.34)

Constant 0.83 0.91 5.38** 1.03 0.58 2.62** 4.24*
(1.44) (2.00) (2.46) (1.95) (1.26) (1.13) (2.46)

Observations 15,360 7,680 3,451 3,451 7,680 3,411 3,411

* p < 0.10, ** p < 0.05, *** p < 0.01

4.6 Conclusion

In this paper, we investigate the role of leaderboard feedback in sequential-search

innovation competition. In particular, our contribution is threefold. First, we con-
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tribute to the existing theoretical literature by developing a model of dynamic scor-

ing contests with a finite horizon and perfect recall. Our work is the first (to our

knowledge) to formally provide an equilibrium prediction for the environment with

leaderboard feedback. Specifically, we show that leaderboard feedback may result in

lower effort as captured by the number of costly innovation decisions, which in turn

yields worse innovation quality of the innovation competition than providing private

feedback.

Second, we contribute to the experimental literature that investigates contest and

innovation competitions. Our experiment yields several results that support theory.

Specifically, we find that for a two-player finite-horizon contest, leaderboard feedback

yields less effort and lower innovation quality than private feedback. We also find that

the internal dynamics present in the data are consistent with the model. In particular,

when feedback is provided, leaders of the contest reduce their effort, whereas followers

do not. In addition, as the quality of innovation increases, agents become less likely

to invest resources to generate a new innovation.

Finally, our work also contributes to a stream of literature that studies the role

of individual characteristics in determining an individual’s propensity to innovate.

In particular, we elicit three individual characteristics that have been shown to be

important in the innovation and contest setting: risk aversion, loss aversion, and the

sunk-cost fallacy. We find that among these individual characteristics, risk aversion

stands out as being an important driver of behavior in our experiment. At the same

time, loss aversion and sunk cost fallacy are not significant in explaining the data.

In addition, we find no evidence that personality characteristics are predictive of

behavior in the dynamic contests studied in this paper.

Our work has several shortcomings that open interesting avenues for future re-

search. First, our theoretical model and laboratory experiment investigate a finite-

horizon innovation competition. Comparing it to the an infinite-horizon setting would

be interesting. Second, we considered a two-player contest, the extent to which these

results translate to a setting with more than two players is not known. Finally, sub-



111

jects in our experiment participated in the contest (although they had an option not

to draw). Investigating the extent to which our results hold if subjects could select

to withdraw from the contests entirely would be interesting.
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A. APPENDIX FOR: BEHAVIORAL BANDITS:

ANALYZING THE EXPLORATION VERSUS

EXPLOITATION TRADE-OFF IN THE LAB

A.1 Theory Appendix

This section of the appendix focuses on how predictions are obtained. The first

subsection shows how the continuous time predictions are obtained. The second sub-

section shows the discrete time approximation predictions are obtained. The third

subsection displays figures that are related to theory such as payoff hills and behav-

ioral predictions for the non-Baseline treatments.

A.1.1 Continuous Time Predictions

The continuous time predictions are taken from Strulovici (2010). The Hamilton-

Jacobi-Bellman equation for this problem can be written as

ru(p) = max

{
pλh+ λp

(
λh

r
− u(p)

)
− λp(1− p)du

dp
u(p), s

}
.

Through the smooth-pasting condition, and value matching conditions, this equation

can be rewritten as

s = pλh+ λp

(
λh

r
− s

r

)
.

This leads to a cutoff belief of

s

λh+ λ
r
(λh− s)

.
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A.1.2 Discrete Time Predictions

The discrete time predictions are found by using value function iteration on the

following equation:

u(p) = max{ s
r∆

, p ∗ λ∆ ∗ (h+ (1− r∆) ∗ λ∆ ∗ h
r∆

) + (1− p ∗ λ∆) ∗ (1− r∆) ∗ u(p′)},

where p′ = p∗(1−λ∆)
p∗(1−λ∆)+(1−p) . The value function iteration consists of 10001 values of p

starting at 0 and increasing by increments of 0.0001 until 1 is reached. The initial

guess for u(p) is s
r∆

at each value of p. The value of u(p′) is obtained through

interpolation. This value function iteration process is similarly used for sections 1.3.4

and 1.5.
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A.1.3 Additional Figures

Figure A.1.: Payoff hills for each treatment of the experiment. Payoffs are shown
for stopping times between 0 and 500. A grey dotted line is drawn at the predicted
stopping time.

Figure A.1 displays the payoff hills for each treatment. These payoff hills are

based on the discrete time approximation. Each payoff hill has a similar structure

where payoffs are increasing at a decreasing rate as the stopping time approaches the

optimal stopping time from zero. Payoffs are decreasing at a relatively flat rate as

the stopping time increases from the optimal stopping time.
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Figure A.2.: Predictions for the High Prior Treatment as different behavioral factors
are unilaterally varied.

Figure A.2 displays the predictions for the High Prior Treatment as various be-

havioral factors are uniformly varied. These responses to the behavioral factors are

similar to the responses in Figure 1.2 except that the length of time that an individual

is willing to experiment is now increasing in the mis-weighted prior as α increases.

This occurs because the Prelec-I function is centered around 0.368 and thus the mis-

weighted prior gets further away from 0.368 and closer towards it’s true value as α

increases from 0 to 1. As α increases from 1, the mis-weighted prior continues to

increase. As the mis-weighted prior is increasing in α, subjects unilaterally become

willing to experiment longer.
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Figure A.3.: Predictions for the Low Safe Action Treatment as different behavioral
factors are unilaterally varied.

Figure A.3 displays the predictions for the Low Safe Action treatment as various

behavioral factors are varied. These responses to the behavioral factors are similar

to the responses in Figure 1.2.
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Figure A.4.: Predictions for the High Discount Factor Treatment as different behav-
ioral factors are unilaterally varied.

Figure A.4 displays the predictions for the High Discount Factor treatment as

various behavioral factors are varied. These responses to the behavioral factors are

similar to the responses in Figure 1.2.
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A.2 Empirical Appendix

This section of the appendix complements the results section of the paper. The

first subsection focuses on details about the Product Limit Estimator. The second

subsection displays figures that are related to the results section.

A.2.1 Product Limit Estimator

This subsection displays how the Product Limit estimator was used to conduct

hypothesis testing. The first part of this subsection explains the Product Limit esti-

mator. This part is taken from the explanation given in Hudja (2019). The second

part of this subsection explains how the Product Limit estimator was used for hy-

pothesis testing.

The Product Limit estimator uses the information contained in the censored ob-

servations to correct for censoring bias. The Product Limit estimator uses the imple-

mentation time of the risky action. Let ti denote the observed implementation time

in cases of stopping or censoring. Note that censoring occurs when (i) the period

ends before an unsure agent switches to the safe action or (ii) an agent obtains a

reward. Each ti is ordered from smallest to largest. For each ti, let di denote the

number of events (stops) at ti, and let ni denote the number at risk right before ti

(stopped or censored at or after). The Product Limit estimator of the CDF is thus

F (t) = 1 −
∏

ti≤t
ni−di
ni

. We calculate the full CDF over observed implementation

times and use it to calculate mean stopping times.

We conduct analysis using the Product Limit estimator in the following way. We

use the Product Limit estimator to create a mean stopping time for each subject for

each treatment. We then use a bootstrapped regression with 5000 bootstrap samples

to test whether the appropriate mean (or the difference in appropriate means) is

significantly different from the predicted value.
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A.2.2 Additional Figures

Figure A.5.: Rate of censoring in each treatment under the subset approach.

Figure A.5 displays the rate of censoring in each treatment under the subset

approach. Censoring is lowest in the High Prior treatment, followed by the Baseline

treatment, Low Safe Action treatment, and High Discount Factor treatment. This

figure may explain why there are some discrepancies between the subset approach

and the Product Limit approach for the High Discount Factor treatment as the most

censoring occurs in the High Discount Factor Treatment.
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Figure A.6.: Difference in subjects’ average Product Limit estimated stopping time
in the Baseline treatment and in the session’s other treatment. The other treatment
is the High Prior treatment in the first graph, the Low Safe Action treatment in the
second graph, and the High Discount Factor in the third graph. The red line displays
the predicted response to the treatment variable, while the black line displays no
response to the treatment variable.

Figure A.6 displays the Product Limit estimated version of Figure 1.3. For each

subject, a mean Product Limit estimated stopping time for the Baseline treatment

and for their session’s other treatment was calculated. Figure A.6 plots the difference

in these two means. These graphs are similar to the graphs in Figure 1.3 as a majority

of subjects in each session appear to respond in the correct direction to a change in

the treatment variable. The graph for the High Discount Factor sessions illustrates

why the Product Limit approach fails to reject that subjects properly respond to an

increase in the discount factor. There are a few subjects that appear to over-respond

by a large factor to the change in the discount factor, which mitigates the effect of

the subjects who appear to under-respond to the change in the discount factor.
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Figure A.7.: Mean Product Limit estimated stopping times in each treatment. Red
dots denote a mean stopping time lower than the prediction. Orange dots denote a
mean stopping time equal to the prediction. Black dots denote a mean stopping time
greater than the prediction.

Figure A.7 displays the mean Product Limit estimated stopping time for each sub-

ject in each treatment. These graphs shed light on why we fail to reject that subjects

experiment for the correct length of time in the High Discount Factor Treatment. As

shown in the fourth graph, there are a few subjects that appear to over-experiment

by a large margin, which mitigates the effect of the subjects who appear to under-

experiment in the High Discount Factor treatment.
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Figure A.8.: Mean stopping times in each treatment. Red dots denote a mean stop-
ping time lower than the myopic prediction. Orange dots denote a mean stopping
time equal to the myopic prediction. Black dots denote a mean stopping time greater
than the myopic prediction.

Figure A.8 compares mean stopping times for each subject in each treatment to

the myopic predictions. This figure uses the subset approach. The myopic prediction

is equal to 5 for the Baseline and High Discount Factor treatments and is equal to 74

for the Low Safe Action and High Prior Treatments. In each figure, it is clear that a

majority of subjects in each treatment experiment longer than the myopic prediction.

Figures A.9 compares mean stopping times for each subject in each treatment to

the myopic predictions. This figure uses the Product Limit approach. The myopic

prediction is equal to 5 for the Baseline and High Discount Factor treatments and

is equal to 74 for the Low Safe Action and High Prior Treatments. In each figure,

it is clear that a majority of subjects in each treatment experiment longer than the

myopic prediction.
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Figure A.9.: Mean Product Limit estimated stopping times in each treatment. Red
dots denote a mean stopping time lower than the myopic prediction. Orange dots
denote a mean stopping time equal to the myopic prediction. Black dots denote a
mean stopping time greater than the myopic prediction.

Figure A.10 displays the predicted losses for each treatment. These are obtained

through calculating each subject’s average stopping time in a specific treatment using

the subset approach. The predicted loss is obtained by differencing the amount of

money expected from that stopping time and the amount of money expected from the

optimal stopping time. The predicted losses are relatively small, but this is a feature of

the exponential bandit problem as subjects are guaranteed a decent amount of money

if they never experiment. However, in each treatment, there is a robust number of

subjects who lose at least 50 cents.
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Figure A.10.: CDFs of predicted losses for each treatment.

A.3 Model Appendix

This section of the appendix addresses the model section of the paper. The first

subsection focuses on a continuous time model that can be estimated which backs up

the results of the discrete time approximation model. The second subsection displays

figures that complement the analysis of the model section.

A.3.1 Continuous Time Model

In this subsection, we display the details for a continuous time version of the model

that is estimated in section 1.5. This model is based on the model for experimentation

under risk aversion in continuous time (Keller et al., 2019) and uses continuous time

predictions to uncover behavioral factors.

In this section, we focus on the same behavioral factors as before: risk aversion,

base rate neglect/conservatism, and probability mis-weighting. However, we assume
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that these behavioral factors influence the continuous time environment. Base rate

neglect/conservatism is modeled similarly as before. Subjects are assumed to treat a

second of experimentation as if it where ψ seconds of experimentation in the absence

of a reward. Probabiliy mis-weighting of the prior is treated as it was before. The

mis-weighted value of the prior is equal to e−(−ln(p0))α . Subjects are still assumed to

mis-weight the probability that a good risky action results in a reward in a tick. This

probability is still equal to e−(−ln(λ∆))α . However, this results in the discrete time

approximation approximating an arrival rate of λ̃ = e−(−ln(λ∆))α × 1
∆

. Thus, we use

this value of λ̃ for continuous time predictions. In this case, belief updating can be

written, in the absence of any rewards, as

p̃0e
−ψλ̃t

p̃0e−ψλ̃t + (1− p̃0)
.

In this formulation of the problem, we have an explicit form of the cutoff belief.

Once again risk aversion is modeled through CRRA utility as u(x) = x1−γ

1−γ . The

mis-weighting of the arrival rate is modeled in the same way as it is in the previous

paragraph. Subjects mis-weight the discount rate as e−(−ln(1−r∆))α , which results in

the induced discount rate as approximating a discount rate of r̃ = e−(−ln(1−r∆))α × 1
∆

.

The continuous time cutoff belief, with risk aversion, now has a closed form solution,

from Keller et al. (2019), which can be written as

u(s)

λ̃u(h) + λ̃
r̃
(λ̃u(h)− u(s))

.

The log-likelihood can be developed in the following way as in the discrete time

model. The maximized value of the log-likelihood is equal to 8659.16. The estimated

value of γ is 0.42, the estimated value of ψ is 0.20, and the estimated value of α is

0.74. The estimated value of σ is 166.78. The value of γ is significantly different from

zero at the one percent level using a likelihood ratio test (restricted log-likelihood is

equal to 8662.25). The value of ψ is significantly different from one at the ten percent

level using a likelihood ratio test (restricted log-likelihood is equal to 8660.97). The
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value of α is significantly different from one at the five percent level using a likelihood

ratio test (restricted log-likelihood is equal to 8662.05).

Standard errors are calculated through numerical differentiation. The standard

error for γ is 0.16, the standard error for ψ is 0.17, the standard error for α is 0.13,

and the standard error for σ is 3.69. Using these standard errors, γ is significantly

different from zero at the one percent level, ψ is significantly different from one at the

one percent level, and α is significantly different from one at the ten percent level (t-

statistic=1.95). These results are similar to the discrete time approximation model as

subjects appear to display risk aversion, conservatism, and probability mis-weighting.
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A.3.2 Additional Figures

Figure A.11.: The effect of unilaterally changing the CRRA coefficient on subset
approach predictions from the model. The black dot denotes the subset approach
prediction from the model using the model’s actual estimated CRRA coefficient.

Figure A.11 displays the predictions for each treatment, using the subset approach,

when varying the CRRA coefficient. Essentially, these are the predictions using the

subset approach of varying γ while ψ, α, and σ are held constant. These graphs show

that risk aversion is contributing to subjects’ under-experimentation as risk neutral

subjects, controlling for the other behavioral factors, would experiment longer in each

treatment.
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Figure A.12.: The effect of unilaterally changing the base rate neglect parameter
on subset approach predictions from the model. The black dot denotes the subset
approach prediction from the model using the model’s actual estimated base rate
neglect parameter.

Figure A.12 displays the prediction of each treatment, using the subset approach,

when varying the base rate neglect parameter. Essentially, these are the predictions

using the subset approach of varying ψ while γ, α, and σ are held constant. These

graphs show that conservatism is unilaterally making subjects want to experiment

longer as an individual with ψ = 1, would experiment for a shorter period of time in

each treatment.
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Figure A.13.: The effect of unilaterally changing the probability mis-weighting param-
eter on subset approach predictions from the model. The black dot denotes the subset
approach prediction from the model using the model’s actual estimated probability
mis-weighting parameter.

Figure A.13 displays the prediction of each treatment, using the subset approach,

when varying the probability mis-weighting parameter. Essentially, these are the

predictions using the subset approach of varying α while γ, ψ, and σ are held constant.

These graphs show that probability mis-weighting in this environment is unilaterally

making subjects want to experiment longer as an individual with α = 1, would

experiment for a shorter period of time in each treatment.



138

A.4 Power Analysis Appendix

In this section we describe our power analysis of Banks et al. (1997) and of our

own paper. This section starts by describing the bandit problem in Banks et al.

(1997) and continues on to describe their experimental design, the specifications used

for the power analysis, and the results of the power analysis.

In their bandit problem, there is a safe action that pays out 50 tokens (five tokens

is equivalent to one cent). The risky action has a 50 percent chance of being good. A

good risky action has a probability of g of returning 100 tokens and a probability of

1− g of returning 0 tokens. A bad risky action has a probability of 1− g of returning

100 tokens and a probability of g of returning 0 tokens. In the problem, subjects

discount future payoffs through a discount factor of δ.

There are four treatments in their experiment. The experiment uses a 2x2 factorial

design where δ and g are varied. The predictions for each treatment are based on

cutpoints, which is the difference between the number of high payoffs and low payoffs

from the risky action that makes an agent indifferent between the risky and safe

action. For example, if an agent is indifferent between the risky action and safe

action when she has observed five low payoffs and three high payoffs from the risky

action, her cutpoint is two. Due to the setup of the problem, each cutpoint results in

a unique belief.1 They analyze cutpoints by increments of 0.5.

The predictions for their four treatments is as follows. The first treatment, where

δ = 0.8 and g = 0.7, has a cutpoint of -0.5 and a cutoff belief of 0.32. The second

treatment, where δ = 0.8 and g = 0.9 has a cutpoint of -0.5 and a cutoff belief of

0.20. The third treatment, where δ = 0.9 and g = 0.7, has a cutpoint of -1.0 and a

cutoff belief of 0.23. The fourth treatment, where δ = 0.9 and g = 0.9 has a cutpoint

of -0.5 and a cutoff belief of 0.12.

1This occurs because the probability of a high payoff in a good risky action is the complement of
the probability of a high payoff in a bad risky action. In this environment, the bayesian update can

be written as p0(g)cutpoint(1−g)−cutpoint
p0(g)cutpoint(1−g)−cutpoint+(1−p0) .
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The experiment consists of subjects repeatedly facing this bandit problem. The

discount factor is induced through a random termination of the period. In each

treatment, each subject repeatedly faces this bandit problem until either a maximum

amount of time (60 minutes) occurs or a maximum number of periods (5) occurs.

They analyze the data by developing a best cutpoint for each subject. The best

cutpoint is the cutpoint (c) that results in the smallest number of observed deviations

from a subject’s pooled data. They calculate a best cutpoint for each subject and run

a regression of the cutpoint on a constant, δ, γ, δ× γ, a dummy variable for whether

a subject is experienced, and the subject’s elicited risk preference. The coefficients on

δ (p-value=0.175), γ (p-value=0.616), and δ× γ (p-value=0.148) are all insignificant

at the ten percent level.

We conduct a power analysis of their paper in the following way. We assume that,

in each treatment, subjects’ preferred cutoff beliefs are normally distributed around

the predicted cutoff belief. We focus on cutoff beliefs as it is a simple way to compare

the power analysis of their paper to our paper as we have much higher predicted

cutpoints. Additionally, we assume that, in each period, subjects’ cutoff beliefs are

normally distributed around their predicted cutoff belief. We are essentially assuming

that subjects make mistakes in each period.

We obtain estimates for the between variation and within variation of cutoff beliefs

from previous data. We utilize both the High Prior Treatment in this experiment and

the single-agent treatment of Hudja (2019). We utilize these treatments as the prior

belief is 0.5 in each treatment which is the same prior belief in Banks et al. (1997).

The initial prior belief is important as it gives us a range of possible cutoff beliefs that

is similar to the range of possible cutoff beliefs in Banks et al. (1997). We obtain the

between variation by taking the standard deviation of subjects’ mean cutoff beliefs in

each of our datasets. We obtain the within variation by taking the mean of the each

subject’s cutoff belief standard deviation. We use a subset approach in each dataset

to get these variations.



140

We run 100 simulations of their experiment, for each source of noise, based on

their design. There are twenty subjects in the first treatment, nineteen subjects in

the second treatment, eighteen subjects in the third treatment, and nineteen subjects

in the fourth treatment. In each simulation, subjects are given a cutoff belief that

is randomly drawn from a normal distribution with the predicted cutoff belief as the

mean and with a standard deviation taken from one of the two noise sources. We

have each simulated subject play five periods of each bandit. In each period, each

subject’s cutoff belief is normally distributed with their preferred cutoff belief as the

mean and with a standard deviation taken from one of the two noise sources.

Once a simulation is run, we calculate the best cutpoint for each subject in the

following way. We count the number of observed deviations for cutpoints between -5

and 5 in increments of 1 for each subject. For example, if a subject draws when the

difference between the high payoffs and low payoffs is equal to 1, then all cutpoints

above 1 receive an observed deviation. We then treat the cutpoint that has the

smallest number of deviations as the best cutpoint. In the case that multiple cutpoints

have the smallest number of deviations, the midpoint of this best cutpoint interval is

taken. This is similar to how best cutpoints are calculated in Banks et al. (1997).

For each simulation, and each set of noise, we run a regression of the best cutpoint

on a dummy variable for a high value of δ, a dummy variable for a high value of g,

and the interaction of the previous two dummy variables. This is the same regression

that is run in Banks et al. (1997) except that risk aversion and experience is removed

from the regression. We avoid risk and experience in order to simplify the analysis

and this is what we would have done if we were doing an ex-ante power analysis.

We conduct this process for each level of noise. We measure power for a specific

treatment variable by counting the number of times that there is neither a response

to the relevant dummy variable nor the interaction that includes that relative dummy

variable. Using the High Prior Treatment noise, we find that subjects respond to δ

64 percent of the time at the five percent level. Using the Hudja (2019) noise, we find

that subjects respond to δ 60 percent of the time at the five percent level. Using the
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High Prior Treatment noise, we find that subjects respond to g 7 percent of the time

at the five percent level. Using the Hudja (2019) noise, we find that subjects respond

to δ 5 percent of the time at the five percent level. Both of these are lower than the

recommended 80 percent (Moffatt, 2016).

We conduct a power analysis of our paper by simulating the experiment 100 times

for each level of noise. We use the exact setup of the experiment, but once again

assume that subjects’ preferred cutoff beliefs are normally distributed around the

predicted cutoff belief (using between standard deviation from one of our two noise

sources) and that subjects’ cutoff beliefs in each period are normally distributed

around their preferred cutoff belief (using within standard deviation from one of our

two noise sources). We analyze responses to the treatment variables in the same way

that we do in the results section. For each level of noise, we find that subjects always

respond to a change in p0, s∆, and δ.
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A.5 Instructions

In this section of the appendix, we display the instructions for a High Discount

Rate session. The instructions for the High Prior and Low Safe Action sessions are

similar to these instructions except that the prior and value of the safe action are

respectively changing between blocks.

Instructions

This experiment is a study of economic decision making. The amount of money that

you earn depends partly on the decisions that you make and thus you should read

these instructions carefully. The money that you earn will be paid privately to you,

in cash, at the end of the experiment.

At the start of the experiment, you can earn $5.00 by answering five comprehension

questions about these instructions. For each correct answer to a question you will

earn $1.00. You can refer to these written instructions as you answer the questions.

From this point forward, all units of account will be in experimental points. At the

end of the experiment, points will be converted to U.S. dollars at the rate of 1 U.S.

dollar for every 100 points (i.e. 1 point is worth $0.01).

Overview: Bags

In each period of this experiment, you will make decisions on whether to draw from

a bag. In this experiment, imagine that there are two types of bags. The first type

of bag is a ‘mixed’ bag (denoted by the letter M). An M bag contains 1 red ball

and 99 yellow balls. Thus, if you draw a ball from an M bag, there is a 1 percent

chance that you will draw a red ball and a 99 percent chance that you will draw a

yellow ball. The second type of bag is a ‘uniform’ bag (denoted by the letter U). A
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U bag contains 0 red balls and 100 yellow balls. Thus, if you draw a ball from

a U bag, there is a 0 percent chance that you will draw a red ball and a 100 percent

chance that you will draw a yellow ball. After every draw the drawn ball is replaced

back into the bag, so the bag contents and the chances of drawing the balls of each

color from your current bag never change.

At the start of a new period, an M bag or a U bag will be randomly chosen. At the

start of a new period, there is a 33.3 percent chance that the M bag is chosen and a

66.7 percent chance that the U bag is chosen. It is as if a six-sided die is rolled in the

beginning of the period. If the die lands on 1, or 2 an M bag is used. If the die lands

on 3, 4, 5 or 6 a U bag is used.

The type of bag does not change within a period. Balls you draw within the

same period will all be drawn from the same bag, and the drawn ball will be put

back into the bag after each drawing, so the contents of the bag do not change

within a period.

Drawing

Each period consists of many ‘ticks’. Each tick lasts for a fifth of a second (i.e. five

ticks per second), and ticks continually occur until the period ends. How a period

ends will be discussed later. In each tick, you may draw a ball from the bag. You

will be asked whether or not you would like to initially draw a ball. If you initially

choose to draw a ball, you will keep drawing a ball in each tick until you decide to

stop drawing a ball. If you ever choose to stop drawing a ball, you can no

longer draw a ball for the rest of the ticks in the period. This also means

that if you decide to initially not draw a ball, you cannot draw a ball for any of the

ticks in the period.
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If you draw a ball, this ball will either be red or yellow. If you draw a red ball,

you earn 155 points in the current tick. Once you have drawn one red ball

you automatically draw a ball for the rest of the ticks in the period. Notice that

you can draw multiple red balls in a period. For example, if you draw a red ball,

you can earn a period payoff of 155, 310, 465 points, etc., based on how many red

balls you draw in that period. If you draw a yellow ball you will earn 0 points in

the current tick. If you have drawn yellow balls in all ticks so far, you can choose

to stop drawing a ball. If you choose to stop drawing a ball you will receive 0.50

points in the current tick and 0.50 points in each of the remaining ticks. For example,

if you do not draw for 100 ticks, you receive 50 experimental points for those 100 ticks.

How a Period Ends

There is a probability that the period will end in the current tick. The probability

that the period will end in the current tick is listed on the experimental interface to

the right of “Prob. Tick Ends Period”. For example, imagine that the probability

that the current tick ends the period is 0.4 percent. It is as if 3000 tickets, numbered

1 through 3000 are placed in a box and a ticket is randomly drawn after every tick.

If the number on the ticket is 1 through 12, the period ends. If the number on the

ticket is 13 through 3000, the period continues and the ticket is placed back in the

box, so the contents of the box never change. Under this example probability, the

average period length is 250 ticks (i.e. 50 seconds).

Blocks

You will be participating in two twenty period blocks. Throughout the experi-

ment, only the probability that the period will end in the current tick can

change. This probability can only change between blocks. Within each block, this

probability stays the same.
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At the start of a block, the probability that the period will end in the current tick

will be displayed. In order to start the block, you are required to correctly answer a

question on this probability.

You will be paid for three random periods in each block (and for your answers

to the comprehension questions).

Interface

To learn about the interface, please watch the video being shown on the projector.

Summary

• There are two types of bags: the M bag with 1 red ball and 99 yellow balls and

the U bag with 0 red balls and 100 yellow balls

• At the start of each period, there is a 33.3 percent chance that the M bag is

randomly chosen for the period and a 66.7 percent chance that the U bag is

randomly chosen for the period

• You earn 155 points for each red ball that you draw. If you ever draw a red ball

in a period, you automatically draw a ball in the remainder of the ticks in the

period. You can draw more than one red ball in a period

• You earn 0 points for each yellow ball that you draw

• You earn 0.5 points for each tick that you do not draw a ball. Once you decide

to not draw a ball, you can no longer draw a ball for the rest of the ticks in the

period

• The probability that the current tick will end the period is listed to the right

of “Prob. Tick Ends Period” on the experimental interface. This probability
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can only change between blocks. Within each block, this probability stays the

same.
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A.6 Video Transcript

In this section, we display the transcript of the interface video that we presented

to subjects at the start of the High Discount Rate session. We display the transcript

in an outline format. This outline format is read from when recording the video. The

transcript for the High Prior session and the Low Safe Action session is similar to this

transcript except details on the block information and parameter values are changed.

Transcript

This video is designed to show you how to use the experimental interface.

• The examples in this video are made up to illustrate the interface

• There are five components to the interface:

– The first component is the timer

∗ The timer is in the upper left corner

∗ Once you have made an initial decision, the timer counts down from

5 seconds to 0 seconds

∗ When the timer hits 0 seconds the first tick starts

– The second component is the table of information

∗ The table of information provides Block information and General in-

formation

· The block information tells you the probability that the current

tick ends the period

· The probability that the current tick ends the period may change

between blocks, but will not change within blocks

· In the first period of a new block, there is a question that must be

answered to start the period



148

· The general information gives you regular information from the

instructions

∗ After the last tick has occurred, the table of information gives sum-

mary information on the current period

– The third component is the graph

∗ The graph displays information relevant to the current tick

∗ We will come back to the graph once the first tick starts

– The fourth component is the decision buttons

∗ The decision buttons allow you to draw or not draw a ball

∗ The buttons are the “yes” button and the “no” button

∗ To draw, click on the “yes” button or use the left-arrow key

∗ To not draw, click on the “no” button or use the right-arrow key

∗ To finalize the initial decision, click the ready button

– The fifth component is the payoff, which displays your current payoff in

the period in points

• For this hypothetical example, I will click the “yes” button and start off drawing

balls

• I will click the ready button to start the timer

• Upon clicking the ready button, the five second timer will start

• Once the timer hits zero, the ticks start and the graph is displayed

• I will now click the ready button

• The graph has a few features worth mentioning

– A red line that doesn’t move is drawn at the current tick

– To the right of the middle of the red line is the number of balls drawn so

far
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– To the right of the bottom of the red line is the current tick number

– To the left of the red line is the payoff history in each of the last eighty

ticks

– Notice that we have not obtained any payoff yet so we are drawing yellow

balls

– Since we have not drawn a red ball yet, we can switch to not drawing balls

– I will now switch to not drawing balls by using the right-arrow key

– We now have a payoff in each tick of 0.50 points, as shown by the blue line

– The number of balls drawn, so far, are now constant

– Notice that we can not change our action to drawing a ball

– Now we wait until the random termination of the period

• At the end of the period, the table of information provides us with information

from the current period

– It shows us the payoff we receive, the number of balls drawn, how many

ticks had occurred, and the number of red balls drawn

– To continue to the next period, we click the continue button

• We will go over one more example before returning to the instructions

• Once again, we will choose an initial action, for this example I will choose to

start off drawing balls

– This is done just to show you more features of the interface

• I will click on the ready button to initialize the timer

• The five second-timer starts and when the timer hits zero, the first tick occurs

• In this example, I have received a red ball
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– The line of height 155 shows that I have received a red ball

– Notice that now I can not change my decision

– The “no” button is deactivated and clicking on it doesn’t change the de-

cision

• Notice that we have obtained more than one red ball, you are not limited to

one red ball in a period

• At the end of the period, we read the table of information and then move on to

the next period by clicking the continue button
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A.7 Post-Experimental Questionnaire

In this section, we display the questionnaire that subjects completed at the end

of the experiment. This questionnaire was used to collect demographic information

on the subjects.

Questionnaire

Question 1: What is your gender? Please write on the line below.

————————————————————————————————————–

Question 2: What country were you born in? Please write on the line below.

————————————————————————————————————–

Question 3: What is the main field of study for your undergraduate degree? Please

circle one option.

• Management/Business

• Economics

• Humanities

• Liberal Arts

• Education

• Engineering

• Science

• Social Sciences

• Agriculture

• Pharmacy

• Nursing

• Other



152

Question 4: What do you consider your primary racial identity? Please circle one

option.

• Asian

• Black

• Caucasian

• Hispanic

• Other

Question 5: What is your GPA? Please circle one option.

• 3.5-4.0

• 3.0-3.5

• 2.5-3.0

• 2.0-2.5

• Below 2.0

Question 6: Are you an undergraduate student (which year) or a graduate student?

Please circle one option.

• First Year

• Second Year

• Third Year

• Fourth Year or Above

• Graduate Student
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B. APPENDIX FOR: VOTING FOR

EXPERIMENTATION: A CONTINUOUS TIME

ANALYSIS

B.1 Theoretical Appendix

The theoretical appendix shows how the equilibrium predictions from Strulovici

(2010) are calculated. The predictions follow from the proof of Theorem 1 in the

appendix of Strulovici (2010).

Using the smooth-pasting condition of the Hamilton-Jacobi-Bellman equation (2),

the indifference threshold p(1) must solve

pg + λp
(g
r
− s

r

)
+ λp

(pg
r
− s

r

)
= s. (B.1)

Notice that w(2, p) = g
r

and that u(2, p) = pg
r

. When there are two winners, sure

winners have the majority and the risky action is chosen forever. The smooth-pasting

property implies that the derivative of the value function drops out when solving for

p(1). The value matching property implies that the value function is equal to s
r
. The

left-hand side of (3) is increasing in p, equal to 0 if p = 0 and higher than s if p = 1.

Therefore, the equation has a unique root, which can be expressed as

p(1) =
rs

rg + λ(g − s) + λ(p(1)g − s)
. (B.2)

When p > p(1) all unsure voters vote for R, when p ≤ p(1) all unsure voters vote

for S. Once all unsure voters vote for S, no learning occurs and S is played forever.

The cutoff p(1) determines the value functions w(1, p) and u(1, p) of sure and unsure

voters, which are computable in closed form:
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w(1, p) =
g

r
− g − s

r

(
1− p

1− p(1)

)2(
Ω(p)

Ω(p(1))

) r
λ

(B.3)

and

u(1, p) =
pg

r
− s− p(1)g

r

(
1− p

1− p(1)

)2(
Ω(p)

Ω(p(1))

) r
λ

(B.4)

for p ≥ p(1), where Ω(p) = (1−p)
p

. These functions are increasing in p. Using these

new functions I can solve for p(0), which must solve

pg + pλ(w(1, p)− s

r
) + 2pλ(u(1, p)− s

r
) = s. (B.5)

There is a unique root for p(0) as the left-hand side is increasing in p, equal to 0 for

p = 0 and above s for p = 1.

B.2 Value Function Iteration Appendix

The value function iteration appendix shows how the discrete time equilibrium

and discrete time utilitarian optimum predictions were obtained. The first subsec-

tion discusses the equilibrium predictions, while the second subsection discusses the

utilitarian predictions.

B.2.1 Discrete Time Equilibrium Predictions

The single-agent predictions are found by using value function iteration on the

following equation:

u(p) = max{ s
r∆

, p ∗ λ∆ ∗ (h+ (1− r∆) ∗ λ∆ ∗ h
r∆

) + (1− p ∗ λ∆) ∗ (1− r∆) ∗ u(p′)},

where p′ = p∗(1−λ∆)
p∗(1−λ∆)+(1−p) . The value function iteration consists of 1001 values of p

from .5 to .5∗(1−λ∆)1000

.5∗(1−λ∆)1000+.5
. The initial guess for u(p) is s

r∆
at each value of p. This
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initial guess for u(p), for each of the 1001 values of p, is chosen for all of the value

function iterations done in this subsection.

The one-winner predictions are found by using value function iteration on the

following equation:

u(p) =max{ s
r∆

, p ∗ λ∆ ∗ (h+ (1− r∆) ∗ λ∆ ∗ h
r∆

)

+ (p ∗ λ∆ ∗ (1− p ∗ λ∆)) ∗ (1− r∆) ∗ p
′ ∗ λ∆ ∗ h
r∆

+ ((1− pλ∆)2) ∗ (1− r∆) ∗ u(p′)}.

In order for the zero-winner predictions to be calculated, the value of becoming a

winner and the value of being an unsure voter with one winner must be calculated.

In order to calculate these values, I must use the optimal stopping time from when

there is one winner, which is at 153 ticks. Let draws(p) (= ln
(
p(1−p0)
(1−p)p0

)
/(ln(1−λ∆)))

be the number of draws that have already occurred. Notice that there is a unique

number of draws that have occurred at each p since our prior is .5. If draws(p) < 153,

the value of becoming a winner equals:

Winner(p) =λ∆ ∗ h ∗ (1− (1− r∆)153−draws(p))

r∆

+ ((1− p+ p ∗ (1− λ∆)153−draws(p))2) ∗ ((1− r∆)153−draws(p)) ∗ s

r∆

+ (1− ((1− p+ p ∗ (1− λ∆)153−draws(p))2)) ∗ ((1− r∆)153−draws(p)) ∗ λ∆ ∗ h
r∆

.

If the value of draws(p) ≥ 153, the value of becoming a winner equals:

Winner(p) =
s

r∆

as the safe action will be imposed.
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The value of being an unsure voter when there is one winner and when draws(p) <

153 equals:

Unsure(p) =p ∗ λ∆ ∗ h ∗ (1− (1− r∆)153−draws(p))

r∆

+ ((1− p+ p ∗ (1− λ∆)153−draws(p))2) ∗ ((1− r∆)153−draws(p)) ∗ s

r∆

+ (1− (1− p+ p ∗ (1− λ∆)153−draws(p))) ∗ ((1− r∆)153−draws(p)) ∗ λ∆ ∗ h
r∆

+ (1− p+ p ∗ (1− λ∆)153−draws(p)) ∗ (1− (1− p+ p ∗ (1− λ∆)153−draws(p)))

∗ ((1− r∆)153−draws(p)) ∗ p153 ∗ λ∆ ∗ h
r∆

,

where p153 = p∗(1−λ∆)153−draws(p)

p∗(1−λ∆)153−draws(p)+(1−p) . If the value of draws(p) ≥ 153, the value of

becoming an unsure voter with one winner is:

Unsure(p) =
s

r∆
.

The zero-winner predictions are found by using value function iteration on the

following equation:

u(p) =max{ s
r∆

, p ∗ λ∆ ∗ ((1− p ∗ λ∆)2) ∗ (h+ (1− r∆) ∗ winner(p′))

+ p ∗ λ∆ ∗ (1− (1− p ∗ λ∆)2) ∗ (h+ (1− r∆) ∗ λ∆ ∗ h
r∆

)

+ 2 ∗ ((1− pλ∆)2) ∗ (p ∗ λ∆) ∗ (1− r∆) ∗ unsure(p′)

+ (1− pλ∆) ∗ ((pλ∆)2) ∗ (1− r∆) ∗ p′ ∗ λ∆ ∗ h
r∆

+ ((1− pλ∆)3) ∗ (1− r∆) ∗ u(p′)}.

B.2.2 Discrete Time Utilitarian Predictions

The utilitarian prediction for when there is more than one winner is to always

choose the risky action. This occurs because the risky action provides a higher group
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payoff than the safe action when there are two or more winners. The one-winner

predictions are found using value function iteration on the following equation:

u(p) =max{ 3s

r∆
, λ∆ ∗ h+ 2 ∗ p ∗ λ∆ ∗ h

+ ((p ∗ λ∆)2) ∗ ((1− r∆)) ∗ 3 ∗ h ∗ λ∆

r∆

+ 2 ∗ (p ∗ λ∆) ∗ (1− p ∗ λ∆) ∗ (1− r∆) ∗ 2 ∗ λ∆ ∗ h+ p′ ∗ λ∆ ∗ h
r∆

+ ((1− p ∗ λ∆)2) ∗ (1− r∆) ∗ u(p′)}.

Value function iteration now preceeds in the same way as in the equilibrium predic-

tions but the intial guess at each p is now 3
r∆

.

In order to calculate the one-winner predictions, the utilitarian value when there is

one winner must be calculated. In order to calculate this value, the optimal utilitarian

stopping time when there is one winner, which is 358 ticks, must be used. Once

again, draws(p) is the number of draws that have occured. There is a unique value

of draws(p) at each p since we have a prior of .5. The utilitarian value when there is

one winner, if draws(p) < 358 is given by the following equation:

Winner(p) =(λ∆ ∗ h+ 2 ∗ p ∗ λ∆ ∗ h) ∗ 1− (1− r∆)358−draws(p)

r∆

+ ((1− p+ p ∗ (1−∆)358−draws(p))2) ∗ ((1− r∆)358−draws(p)) ∗ 3 ∗ s
r∆

+ ((1− (1− p+ p ∗ (1−∆)358−draws(p)))2) ∗ ((1− r∆)358−draws(p)) ∗ 3 ∗ λ∆ ∗ h
r∆

+ 2 ∗ (1− (1− p+ p ∗ (1−∆)358−draws(p))) ∗ (1− p+ p ∗ (1−∆)358−draws(p))

∗ ((1− r∆)358−draws(p)) ∗ 2 ∗ λ∆ ∗ h+ p358 ∗ λ∆ ∗ h
r∆

,

where p358 = p∗(1−λ∆)358−draws(p)

p∗(1−λ∆)358−draws(p)+(1−p) . If draws(p) ≥ 358, the value of one winner is

given by the following equation:

Winner(p) =
3 ∗ s
r∆

.
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The zero-winner predictions are found using value function iteration on the fol-

lowing equation:

u(p) =max{ 3s

r∆
, 3 ∗ p ∗ λ∆ ∗ h+ ((p ∗ λ∆)3) ∗ ((1− r∆) ∗ λ∆ ∗ h ∗ 3

r∆

+ 3 ∗ ((p ∗ λ∆)2) ∗ (1− p ∗ λ∆) ∗ (1− r∆) ∗ 2 ∗ λ∆ ∗ h+ p′ ∗ λ∆ ∗ h
r∆

+ 3 ∗ ((1− p ∗ λ∆)2) ∗ p ∗ λ∆ ∗ (1− r∆) ∗ winner(p′)

+ ((1− p ∗ λ∆)3) ∗ (1− r∆) ∗ u(p′)}
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B.3 Data Appendix

The data appendix is broken down into two subsections. The first subsection

analyzes the same hypotheses as the results section, but tests these hypotheses on a

larger dataset using survival analysis. The second subsection in the appendix analyzes

the first ten periods of each treatment in the experiment.

B.3.1 Larger Dataset

This subsection analyzes the same hypotheses as the results section, but on a larger

subset of data than was used in the results section. This section conducts hypotheses

on observations, in the last fifteen periods of each treatment, where a majority of

group members have bad states in the majority-vote treatment and where single-

agents have bad states in the single-agent treatment. I refer to these observations as

the larger dataset. There are three hypotheses for the larger dataset: (i) groups stop

earlier than single-agents, (ii) groups with one winner stop later than groups with zero

winners, and (iii) groups stop earlier than the utilitarian optimum predicts. These

hypotheses will be conducted using survival analysis which corrects for the censoring

that occurs due to the random termination of the period.

This subsection, unless noted otherwise, conducts tests on groups’ Product Limit

estimated mean stopping times. This analysis gets rid of the dependence that occurs

when using survival analysis on multiple observations from the same group. The av-

erage of the groups’ Product Limit estimated mean stopping times for when a winner

is impossible is 108.8. This result is not statistically significant from the predicted

110 ticks at the 10 percent level (p-value=.835). Hypothesis tests for this paragraph

are conducted using bootstrapped regressions, on the group Product Limit estimated

mean stopping times, with 5000 bootstrap samples. The average of the groups’ Prod-

uct Limit estimated mean stopping times for when a winner is predicted is 111.8. This

result is statistically significant from the predicted 153 ticks at the 1 percent level.

Lastly, the average of the groups’ Product Limit estimated mean stopping times for
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when a winner is not predicted is 100.3. This result is not statistically significant

from the predicted 110 at the 10 percent level (p-value=.278). These results back up

the results from the summary statistics of the clean dataset.

The first hypothesis states that, in the larger dataset, groups stop earlier than

single-agents. I create a Product Limit estimated mean for each group in the majority-

vote observations of the larger dataset and the single-agent observations of the larger

dataset. I create a Product Limit estimated mean in the single-agent observations

by pooling the three group members data and taking the Product Limit estimated

average. I test the hypothesis by taking the difference between the two averages

for each group and running a bootstrapped regression with 5000 bootstrap samples.

The average group stops 36.0 ticks later in the single-agent observations than in

the majority-vote observations. This result is significant at the 1 percent level (p-

value=0.006). This gives evidence for the first hypothesis on the larger dataset and

is a similar result to the first hypothesis on the clean dataset.

The second hypothesis states that, in the larger dataset, groups with one winner

stop earlier than groups with zero winners. A Cox regression on this subset of data

has a coefficient of -.9861, and a hazard ratio of .373, which is significant at the

1 percent level. This hazard ratio suggests that groups with zero winners are 2.68

times more likely, per unit of time, to switch to the safe action. This gives evidence

for the second hypothesis on the larger dataset and is a similar result to the second

hypothesis on the clean dataset.

The third hypothesis states that, in the larger dataset, groups stop earlier than

the utilitarian optimum predicts. When a winner is impossible, according to the

utilitarian optimum, in the larger dataset, the average of the groups’ average stopping

times is 108.8. This result is significantly less than the predicted 132 at the 1 percent

level. Hypothesis tests are conducted by bootstrapped regressions with 5000 boostrap

samples. When a winner is predicted, according to the utilitarian optimum, in the

larger dataset, the average of the groups’ average stopping times is 114.2. This result

is significantly less than the predicted 358 at the 1 percent level. When a winner is
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Table B.1.: Mean stopping time (in ticks) of majority-vote observations and single-
agent observations. The equilibrium prediction of overall implementation in the
majority-vote treatment was calculated from the states and rewards drawn for the
experiment.

Stopping Time Majority-Vote Single-Agent
Equil. Actual Equil. Actual

Overall 125.9
∗
< 173.5 187.0

∗∗∗
> 144.4

Winner Impossible 110.0 < 111.2 —– —–

Winner Predicted 153.0
∗∗
< 240.8 —– —–

Winner Not Predicted 110.0
∗
< 164.0 —– —–

* p < 0.10, ** p < 0.05, *** p < 0.01

impossible, according to the utilitarian optimum, in the larger dataset, the average

of the groups’ average stopping times is 92.1. This result is significantly less than the

predicted 132 at the 1 percent level. This gives evidence for the third hypothesis on

the larger dataset and is a similar result to the third hypothesis on the clean dataset.

B.3.2 First Ten Periods of Each Treatment

Throughout the paper, I analyzed observations from the last fifteen periods of

each treatment. I ignored the first ten periods of each treatment because of learning.

Subjects may be learning about their own strategies, the Bernoulli process, and the

random stopping rule. This subsection analyzes the experimental data in the first ten

periods of each treatment. The data observed is the data from the first ten periods

of each treatment, where the period lasted at least 200 ticks, and where a majority

of group members had bad states and single-agents had bad states.

Table B.1 displays the mean stopping time in the first ten periods of each treat-

ment. The data is analyzed in the same way as in the results section. Overall,

groups stop later than predicted. This result is significant at the ten percent level (p-

value=0.07). Hypothesis tests in this subsection are conducted with a bootstrapped
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Table B.2.: Displays the results from the cox regression that estimates the effect of a
time-dependent covariate, Winner, on implementation time of the risky action in the
first ten periods of each treatment.

Coeff. Hazard Ratio Z
Winner -1.458 0.233 -5.43∗∗∗

N 192
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

regression with 5000 bootstrap samples clustered at the group level. When a winner

is impossible, there is no statistical difference between stopping time and the equi-

librium prediction. When a winner is predicted, groups stop later than the predicted

153 ticks. This result is significant at the five percent level (p-value=0.043). When

a winner is not predicted, but possible, the stopping time is later than the predicted

110 ticks. This result is significant at the 10 percent level (p-value=0.077).

Single-agents stop earlier than predicted. Subjects stop earlier than the equilib-

rium prediction of 187. This result is significant at the one percent level. The results

in Table B.1 suggest that groups and single-agents both decrease their stopping time

as the experiment goes on. However, groups start off stopping later than predicted,

while single-agents start off stopping earlier than predicted. These results also sug-

gest that groups initially stop later than single-agents do. It is apparent from these

results that hypothesis 1 does not hold in the first ten periods of each treatment. It

is also apparent from these results that hypothesis 3 does hold.

Finally, Table B.2 estimates the impact of a winner on the stopping time in the

first ten periods of the majority-vote treatment. The coefficient on Winner is negative

and the hazard ratio is less than one. Thus, observing a winner makes groups less

likely to witch to the safe action in the next tick. The hazard ratio decreases by

77 percent upon observing a winner. This result is significant at the 1 percent level

and consistent with Table 6, which shows that stopping times are greater in the
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observations where a winner is possible than in the observations where a winner is

impossible.
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B.4 Instructions

In this section, I display the instructions for the majority-vote treatment and the

belief treatment, which is an additional treatment to analyze under-experimentation.

The instructions for the single-agent treatment are similar to the instructions for

the majority-vote treatment except that there is no mentioning of a group. The

instructions for the no-discounting treatment are similar to the belief treatment except

that the period length is fixed for 333 ticks and the value of a reward increases to

3.65 experimental dollars. The part 2 that is mentioned in the belief treatment is the

risk aversion elicitation task.

B.4.1 Instructions for the Majority-Vote Treatment

Part 1 - Instructions

This experiment is a study of economic decision making. The amount of money that

you earn depends partly on the decisions that you make and thus you should read

these instructions carefully. The money that you earn will be paid privately to you,

in cash, at the end of the experiment.

At the start of the experiment, you will have the opportunity to earn $5.00 based

on how you answer five comprehension questions about these instructions. For each

correct answer to a question you will earn $1.00. You will be able to refer to these

written instructions as you answer the questions.

These instructions are for the first part of a two-part experiment. The choices made

in this part of the experiment will in no way affect your earnings in the second part

of the experiment. From this point forward, all units of account will be in experi-

mental dollars. At the end of the experiment, experimental dollars will be converted

to U.S. dollars at the rate of 2 U.S. dollars for every 5 experimental dollars (i.e. .05
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experimental dollars are worth $0.02).

Background

In this experiment, imagine that there are two types of bags. The first type is a

‘mixed’ bag (denoted by the letter M), which contains 1 red ball and 99 yellow

balls. If you draw a ball from an M bag, there is a 1 percent chance that you will

draw a red ball and a 99 percent chance that you will draw a yellow ball. The second

type is a ‘uniform’ bag (denoted by the letter U), which contains 0 red balls and

100 yellow balls. If you draw a ball from a U bag, there is a 0 percent chance that

you will draw a red ball and a 100 percent chance that you will draw a yellow ball.

After every draw the drawn ball is replaced back into the bag, so the bag contents

and the chances of drawing the balls of each color do not change.

At the beginning of this part of the experiment, you will be randomly grouped with

two other people. You will be grouped with these two other individuals for all

periods in this part of the experiment. Each member of the group has their own M

bag and U bag.

You will be participating in 25 periods in this part of the experiment. At the start

of a new period, each group member has one of their bags randomly and indepen-

dently selected for them. The type of bag selected for you may differ from the type

of bag selected for another group member. At the start of a new period, there is a 50

percent chance that the bag you are drawing from is your M bag and a 50 percent

chance that the bag you are drawing from is your U bag. Your M bag is therefore

just as likely as your U bag to be selected.

The random selection of bags is independently determined before each period, as if

by flipping a coin three times. If the coin on the first flip lands on “heads” the first
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member of the group has their M bag selected, but if the coin lands on “tails” the

first member of the group has their U bag selected. The outcome of the second flip

determines the bag for the second member of the group. The outcome of the third

flip determines the bag for the third member of the group. Notice that the type of

bag selected for another member of your group does not affect the type of bag

selected for you.

The bag, for each person, does not change within a period. Balls you draw, within

the same period, will all be drawn from the same bag, and the drawn ball will be put

back into the bag after each drawing, so the contents of the bag do not change.

Period

Each period consists of many ‘ticks’. In each tick, each group member may draw a

ball from their own bag. Each tick lasts for a fifth of a second (i.e. five ticks per

second), and ticks continually occur until the period ends. The period ends with a

small probability each tick (3 out of 1000). Imagine 1000 tickets, numbered 1 through

1000 are placed in a box. It is as if, after every tick, a ticket is randomly drawn. If

the number on the ticket is 1, 2, or 3, the period ends. If the number on the ticket is

4 through 1000, the period continues and the ticket is placed back in the box, so the

contents of the box do not change. Under this probability, the average period length

is 333.33 ticks or 66.66 seconds. Many periods will last less than the average, and a

few will last much longer.

As mentioned above, in each tick, each group member may draw a ball from their

own bag. Each group member will be asked an initial question of whether or not

they would like to vote to draw a ball. In general, the vote you have previously cast

will be continually cast until you decide to change it. If a majority (two or more) of

members in your group initially vote to draw a ball, each member will continually
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draw a ball from their own bag in each tick until a majority vote to stop drawing a

ball. At any tick, if a majority of group members vote to draw a ball, everyone in the

group draws a ball from their bag. Once a majority of group members have voted to

stop drawing a ball, each member can no longer draw a ball from their own bag

for the rest of the ticks in the period. If a majority vote to initially not draw a ball,

each member cannot draw a ball for any of the ticks in the period.

If you draw a ball, you can either draw a red ball or a yellow ball. If you draw a red

ball, you obtain 2.50 experimental dollars. Your group members will be informed

that you drew a red ball. Once you have obtained a red ball you automatically

vote to draw a ball for the rest of the ticks in the period (regardless of your pre-

vious vote). Notice that if two group members draw a red ball, you will draw a ball

for the rest of the ticks in the period. You can obtain more than one red ball in a

period. For example, if you draw a red ball, you can obtain a payoff of 2.50, 5.00,

7.50 experimental dollars, etc. from the red balls you draw in that period. If you

draw a yellow ball, you will not be compensated for it. Notice that if you have drawn

yellow balls in all ticks so far, you can vote to stop drawing a ball. If a majority of

group members vote to stop drawing a ball, you obtain 0.01 experimental dollars

in the current tick and 0.01 experimental dollars in each of the remaining ticks.

Five periods from this part will be randomly chosen for payment. The periods chosen

for you may differ from the periods chosen for others.

Interface

To learn about the interface, please watch the video being shown on the projector.

Recap

The following is a recap of important parts of the instructions
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• There are two types of bags: the M bag with 1 red ball and 99 yellow balls and

the U bag with 0 red balls and 100 yellow balls

• For each period, it is equally likely that you are drawing from your M bag or

your U bag. The type of bag selected for one of your group members does not

affect the type of bag selected for you

• In each tick, if a majority of group members vote to draw a ball, all group

members draw a ball from their own bag. If a majority of group members vote

to not draw a ball, all group members do not draw a ball for the rest of the

ticks in the period

• If you draw a red ball, you obtain 2.50 experimental dollars and automatically

vote to draw a ball in the remainder of the ticks in the period. You can obtain

more than one red ball in a period

• If you draw a yellow ball, you are not compensated

• If a majority of group members vote to stop drawing a ball, you obtain .01

experimental dollars in the current tick and each of the remaining ticks (each

group member can no longer draw a ball from their bag for the rest of the ticks

in the period)

B.4.2 Instructions for the Belief Treatment

Part 1 - Instructions

This experiment is a study of economic decision making. The amount of money that

you earn depends partly on the decisions that you make and thus you should read

these instructions carefully. The money that you earn will be paid privately to you,

in cash, at the end of the experiment.
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At the start of the experiment, you will have the opportunity to earn $5.00 based

on how you answer five comprehension questions about these instructions. For each

correct answer to a question you will earn $1.00. You will be able to refer to these

written instructions as you answer the questions.

These instructions are for the first part of a two-part experiment. The choices made in

this part of the experiment will in no way affect your earnings in the second part of

the experiment. From this point forward, all units of account will be in experimental

dollars (unless noted otherwise). At the end of the experiment, experimental dollars

will be converted to U.S. dollars at the rate of 2 U.S. dollars for every 5 experimental

dollars (i.e. .05 experimental dollars are worth $0.02).

Background

In this experiment, imagine that there are two types of bags. The first type is a

‘mixed’ bag (denoted by the letter M), which contains 1 red ball and 99 yellow

balls. If you draw a ball from an M bag, there is a 1 percent chance that you will

draw a red ball and a 99 percent chance that you will draw a yellow ball. The second

type is a ‘uniform’ bag (denoted by the letter U), which contains 0 red balls and

100 yellow balls. If you draw a ball from a U bag, there is a 0 percent chance that

you will draw a red ball and a 100 percent chance that you will draw a yellow ball.

After every draw the drawn ball is replaced back into the bag, so the bag contents

and the chances of drawing the balls of each color do not change.

You will be participating in 25 periods in this part of the experiment. At the start of

a new period, there is a 50 percent chance that the bag you are drawing from is an

M bag and a 50 percent chance that the bag you are drawing from is a U bag. An

M bag is therefore just as likely as a U bag to be chosen. This random choice of the

bag is independently determined before each period, as if by flipping a coin. If the
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coin lands on “heads” an M bag is used, but if the coin lands on “tails” a U bag is used.

The bag does not change within a period. Balls you draw, within the same period,

will all be drawn from the same bag, and the drawn ball will be put back into the

bag after each drawing, so the contents of the bag do not change.

Period

Each period consists of many ‘ticks’. In each tick, a ball may be drawn from the bag.

Each tick lasts for a fifth of a second (i.e. five ticks per second), and ticks continually

occur until the period ends. The period ends with a small probability each tick (3

out of 1000). Imagine 1000 tickets, numbered 1 through 1000 are placed in a box. It

is as if, after every tick, a ticket is randomly drawn. If the number on the ticket is

1, 2, or 3, the period ends. If the number on the ticket is 4 through 1000, the period

continues and the ticket is placed back in the box, so the contents of the box do

not change. Under this probability, the average period length is 333.33 ticks or 66.66

seconds. Many periods will last less than the average, and a few will last much longer.

As mentioned above, in each tick, a ball may be drawn from the bag. You will be

asked an initial question of whether or not you would like to draw a ball. If you

initially choose to draw a ball, you will continually draw a ball in each tick until you

decide to stop drawing a ball. Once you have chosen to stop drawing a ball, you

can no longer draw a ball for the rest of the ticks in the period. If you decide

to initially not draw a ball, you cannot draw a ball for any of the ticks in the period.

If you draw a ball, you can either draw a red ball or a yellow ball. If you draw a

red ball, you obtain 2.50 experimental dollars. Once you have obtained a red

ball you automatically draw a ball for the rest of the ticks in the period. You

can obtain more than one red ball in a period. For example, if you draw a red ball,
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you can obtain a payoff of 2.50, 5.00, 7.50 experimental dollars, etc. based on how

many red balls you draw in that period. If you draw a yellow ball, you will not be

compensated for it. Notice that if you have drawn yellow balls in all ticks so far, you

can choose to stop drawing a ball. If you choose to stop drawing a ball, you obtain

.01 experimental dollars in the current tick and .01 experimental dollars in

each of the remaining ticks.

Five periods from this part will be randomly chosen for payment. The periods chosen

for you may differ from the periods chosen for others.

Conditional Probability

The interface displays a conditional probability when you have only drawn yellow

balls. The conditional probability is the probability that you have the M bag based

on the balls that you have already observed. While your bag is initially chosen by a

coin flip, the balls you draw provide information about how likely you are to have the

M bag. For example, if you were to observe 1,000 yellow balls and 0 red balls, you

know that it is unlikely that you have the M bag. The conditional probability tells

you how likely it is.

To illustrate how the conditional probability is calculated, consider a (hypothetical)

subject who has drawn 110 yellow balls and 0 red balls. In this case, the conditional

probability is equal to

P(You have an M bag and you draw 110 Yellow Balls and 0 Red Balls)

P(You Draw 110 Yellow Balls and 0 Red balls)

This probability calculates how likely it is that the M bag is responsible for you ob-

serving 110 yellow balls and 0 red balls. This probability is equal to (approximately)

.25 (= 25%), which implies that if you were to happen to observe a large number

of periods with 110 yellow balls and 0 red balls, about 25 percent of these periods
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should have M bags.

The conditional probability can change as you draw more balls. The conditional prob-

ability will change when the balls you draw provide more information about which

bag you are drawing from. As you draw, the conditional probability will continue

to decrease if you have not yet drawn a red ball. If you have not yet drawn a red

ball, each additional yellow ball is more evidence that is consistent with you having

the U bag (the U bag has more yellow balls). You should only consider the current

conditional probability and treat this probability as the probability that you have the

M bag.

The experimental interface has two built-in features to display the conditional prob-

ability. The first feature is the calculator in the lower-left box. As an example, if you

enter the number 110 into the form and click on the button, the box will display the

conditional probability when you draw 110 yellow balls and 0 red balls. The second

feature is in the upper-right box. As an example, if you enter the number 110 into

the form and click on the “Display” button, a graph will display how the conditional

probability evolves as you draw 110 yellow balls without a red ball. Both features

display probabilities to the nearest tenth of a percentage point. The following image
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displays the graph.

Interface

To learn more about the interface, please watch the video being shown on the pro-

jector.

Recap

The following is a recap of important parts of the instructions

• There are two types of bags: the M bag with 1 red ball and 99 yellow balls and

the U bag with 0 red balls and 100 yellow balls

• At the beginning of each period, it is equally likely that an M bag or a U bag

is chosen

• The conditional probability states the probability that you are drawing from

the M bag based on the balls you have already drawn

• If you draw a red ball, you obtain 2.50 experimental dollars and automatically

draw a ball in the remainder of the ticks in the period. You can obtain more

than one red ball in a period
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• If you draw a yellow ball, you are not compensated

• If you do not draw a ball, you obtain 0.01 experimental dollars in the current

tick and each of the remaining ticks (you can no longer draw a ball for the rest

of the ticks in the period)

Calculating the Conditional Probability

This page is provided to specifically show how the conditional probability is calcu-

lated. This page is provided for individuals who want to learn more about how the

conditional probability is calculated. Reading this page is optional and will not affect

your earnings as the computer automatically calculates the conditional probability in

the case where you have only drawn yellow balls.

The conditional probability if you have drawn X yellow balls are drawn and 0 red

balls is given by:

P(You have an M bag and you draw X Yellow Balls and 0 Red Balls) =

P(You Draw X Yellow Balls and 0 Red Balls)

.5×.99X .

.5×.99X+.5

The probability that you have an M bag and that you have drawn X Yellow Balls

and 0 Red Balls is given by .5*.99X because you have an initial probability of .5 of

having an M bag and have a probability of .99X that the first X balls from an M bag

are yellow. The denominator includes the probability that you have a U bag and that

the first X balls from the U bag are yellow. This probability is equal to .5 because

the first X balls from the U bag will always be yellow.
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C. APPENDIX FOR: IS EXPERIMENTATION

INVARIANT TO GROUP SIZE? A LABORATORY

ANALYSIS OF INNOVATION CONTESTS

C.1 Theory Appendix

The theory appendix explains the details of the continuous time public winner-

takes-all contest. This section is based heavily off of Halac et al. (2017).

In the continuous time public winner-takes-all contest, the full prize is awarded to

the first agent who succeeds. Let Ai,z denote (i’s conjecture of) the aggregate effort

exerted by i’s opponents at time z as long as no agent has obtained a success by z.

An agent i’s problem can be written as

max

(ai,t)t∈[0,T ]

∫ T

0

[(pi,tλw − c)ai,t]e−
∫ t
0 pi,zλ(ai,z+A−i,z)dzdt,

where pi,t is i’s belief that the state is good at time t (as long as no success has been

obtained), given by

pi,t =
p0e
−

∫ T
0 λ(ai,z+A−i,z)dz

p0e
−

∫ T
0 λ(ai,z+A−i,z)dz + (1− p0)

.

Note that e−
∫ t
0 pi,zλ(ai,z+A−i,z)dz is the agent’s belief that no success will be obtained

by time t.

Since the agent’s belief pi,t is decreasing over time, the unique solution to this

problem is ai,t = 1 if pi,t ≥ c
λw

and ai,t = 0 otherwise. It follows that in a continuous

time public winner-takes-all contest with deadline T , there is a unique equilibrium.

All agents exert effort until either a success is obtained or the public belief reaches

c
λw

(or the contest ends). The probability of obtaining an innovation is independent
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of the number of agents as multiple agents succeeding at the same instant is second

order.
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Table C.1.: Mean statistics on the innovation percentage, the level of aggregate ef-
fort in bad states, and the level of individual effort in bad states. The equilibrium
innovation percentage is found by averaging the predictions for each contest.

Treatment: Two-Person Four-Person
Equil. Actual Equil. Actual

Innovation Percentage 0.70
∗∗
> 0.66 0.70 = 0.70

Aggregate Effort in Bad States 20 > 18.25 20
∗∗∗
< 25.42

Individual Effort in Bad States 10 > 9.13 5
∗∗∗
< 6.35

* p < 0.10, ** p < 0.05, *** p < 0.01

Figure C.1.: Mean level of aggregate effort in bad states for each treatment. The red
dotted line displays the equilibrium prediction for aggregate effort.

C.2 First Ten Periods Appendix

Table C.1 displays the summary statistics for the first ten periods. In the two-

person treatment, the innovation percentage is significantly less than the predicted

70 percent at the five percent level (p-value=.034). In the two-person treatment, the

aggregate effort in bad states is not significantly different than the predicted 20 at

the ten percent level. Both of these hypotheses are conducted with bootstrapped

regressions, clustered at the session level, with 5000 bootstrap samples. The indi-



178

vidual effort in bad states is not significantly different than the predicted 10 at the

ten percent level. This hypothesis is conducted with a bootstrapped regression on

subject means, with 5000 bootstrap samples, clustered at the session level.

In the four-person treatment, the innovation percentage is equal to the predicted

70 percent. In the four-person treatment, the aggregate effort in bad states is sig-

nificantly greater than the predicted 20 at the one percent level. This hypothesis

is conducted with bootstrapped regressions, clustered at the session level, with 5000

bootstrap samples. The individual effort in bad states is significantly greater than

the predicted five at the one percent level. This hypothesis is conducted with a boot-

strapped regression on subject means, with 5000 bootstrap samples, clustered at the

session level.

The first hypothesis can once again be tested using a regression of the innovation

percentage on the treatment. The difference of 3.75 percent is significant at the ten

percent level using a bootstrapped regression with 5000 bootstrap samples, clustered

at the session level (p-value=0.052). This provides some evidence for Hypothesis 1.

The second hypothesis can be tested using a bootstrapped regression of the level of

aggregate effort on the treatment. The difference of 7.17 is significant at the 1 percent

level using a bootstrapped regression with 5000 bootstrap samples, clustered at the

session level. This supports Hypothesis 2. The third hypothesis can once again be

tested using a regression of the number of draws, in bad states, on the treatment.

The difference of -2.38 is significant at the 1 percent level when using a bootstrapped

regression of the subject means with 5000 bootstrap samples, clustered at the session

level. This supports Hypothesis 3. These results back up the results from the last

twenty contests.
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C.3 Model With Risk Aversion

In this section, I will develop and estimate a model of differential weighting of

experimentation under risk aversion. The model in this section only differs from

subsection 3.4.4 in that subjects are risk averse. Subjects are assumed to have CRRA

utility, that is, u(x) = x1−r

1−r , where r is the level of risk aversion. The optimal stopping

strategy under risk aversion is for an individual to exert effort as long as a prize has

not been obtained and that the belief is greater than or equal to u(c)
λu(w)

.1 The rest

of the model follows from subsection 3.4.4. Belief updating, in the absence of an

innovation, is still given by

p̃ =
p0(1− λ)ψiDt−1+ψoOt−1

p0(1− λ)ψiDt−1+ψoOt−1 + (1− p0)
.

The loglikelihood for this model can be written by

LogL =
n∑
i=1

log

[
C∏

contest=1

P∏
period=1

Φ (p̃λu(w)− u(c))E (1− Φ (p̃λu(w)− u(c)))1−E

]
.

This loglikelihood is maximized at a value of 3046.68. The estimated values of ψi

and ψo are 2.67 and 2.42, respectively. These parameters suggest that subjects place

less weight on their competitors’ failed innovation attempts than their own failed

innovation attempts. The estimated value of r is 0.09. This parameter suggests that

1This can be shown through the following argument. In period T, the value at belief p is given by
V (p, T ) = max{u(c), pλu(w)}, where the first term in the maximand is the utility of not exerting
effort and the second term in the maximand is the expected utility of exerting effort. Thus, when

p < u(c)
λu(w) , an individual does not exert effort and V (p, T ) = u(c). When p > u(c)

λu(w) , an individual

exerts effort and V (P, T ) > u(c). When p = u(c)
λu(w) , an individual is indifferent between exerting

effort and not exerting effort and V (P, T ) = u(c). Assume that an individual does not exert effort

in period t and V (p, t) = (T − t+ 1) ∗ u(c) if p < u(c)
λu(w) . Assume that an individual exerts effort in

period t and V (P, t) > (T − t + 1) ∗ u(c) if p > u(c)
λu(w) . Assume that an individual exerts effort in

period t and V (P, t) = (T − t + 1) ∗ u(c) if p = u(c)
λu(w) . In period t-1, the value at belief p is given

by V (p, t − 1) = max{(T − t + 2) ∗ u(c), pλ(u(w) + (T − t + 1) ∗ u(c)) + (1 − pλ) ∗ V (p, t)}, which
can be rewritten as V (p, t− 1) = max{u(c), pλ(u(w)) + (1− pλ) ∗ (V (p, t)− (T − t+ 1) ∗ u(c))}. If

p > u(c)
λu(w) , an individual is better off exerting effort. If p < u(c)

λu(w) , an individual is better off not

exerting effort. If p = u(c)
λu(w) , an individual is indifferent between exerting and not exerting effort.
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subjects are risk averse, which is consistent with subsection 3.4.3. The restriction that

ψi = ψo is rejected at the one-percent level using a likelihood ratio test (restricted

loglikelihood is equal to 3062.39). Additionally, the value of ψi is significantly greater

than one at the one percent level using a likelihood ratio test (restricted loglikelihood

is equal to 3153.10). The value of ψo is significantly greater than one at the one percent

level using a likelihood ratio test (restricted loglikelihood is equal to 3112.18). The

value of r is significantly greater than zero at the one percent level using a likelihood

ratio test (restricted loglikelihood is equal to 3053.35). This model suggests that

subject behavior is consistent with differential weighting of experimentation.

Differential weighting of experimentation is consistent with larger contests result-

ing in more innovations and inducing more aggregate effort. Assuming that subjects

use the stopping strategy modeled in this section, subjects, in the absence of an

innovation, are predicted to exert effort until

p0(1− λ)2.67Dt−1+2.42Ot−1

p0(1− λ)2.67Dt−1+2.42Ot−1 + (1− p0)
<

u(c)

λu(w)
.

As the number of subjects increase in a contest, Ot−1 becomes a larger share of

aggregate effort and subjects are thus more willing to experiment at a given level of

aggregate effort (in the absence of an innovation).
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C.4 Instructions

In this section, I will display the instructions for the four-person treatment. The

instructions for the two-person treatment are similar to these instructions except that

subjects are in four-person contests. The “part 2” referenced in this set of instructions

is the risk elicitation task. Upon completion of the instructions, subjects went on to

answer five comprehension questions.

Instructions

This experiment is a study of group and individual decision making. The amount of

money you earn depends partly on the decisions that you make and thus you should

read these instructions carefully. The money you earn will be paid privately to you,

in cash, at the end of the experiment.

The experiment is divided into two parts. These are the instructions for Part 1. You

will receive further instructions for Part 2 once Part 1 is completed. Please note that

your decisions in Part 1 will in no way affect your earnings (or the earnings of others)

in Part 2.

Background

At the start of the experiment, you will have the opportunity to earn $5.00 based

on how you answer five comprehension questions about these instructions. A correct

answer to a question is worth $1.00. You will be able to refer to these written in-

structions as you answer the questions.

In this experiment, imagine that there are two bags of balls. The first bag of balls is

a ‘mixed’ bag (denoted by the letter M), which contains 2 red balls and 18 blue

balls. If you draw a ball from the M bag, there is a 10 percent chance that you will

draw a red ball and a 90 percent chance that you will draw a blue ball. The second
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bag of balls is a ‘uniform’ bag (denoted by the letter U), which contains 0 red balls

and 20 blue balls. If you draw a ball from the U bag, there is a 0 percent chance

that you will draw a red ball and a 100 percent chance that you will draw a blue

ball. The following images are a graphical representation of the two bags.

You will be participating in 30 repetitions (called ‘cycles’) of a game. Each cycle will

consist of 15 periods. At the start of a new cycle, there is a 75 percent chance that

the bag you are drawing from is the M bag and a 25 percent chance that the bag

you are drawing from is the U bag. The M bag is therefore three times more likely

than the U bag. This random choice of the bag is independently determined before

each cycle, as if by throwing a 4-sided die. If a 1, 2, or 3 came up on the die then the

M bag is used, but if a 4 came up on the die then the U bag is used.

The bag does not change within a cycle. Balls you draw in periods 1 through 15,

within the same cycle, will all be drawn from the same bag, and the drawn ball will

be put back into the bag after each drawing so the contents of the bag do not change.

At the start of each period in a given cycle, you will have the opportunity to either

draw a ball from a bag, or collect $0.30. If you choose to draw a ball from a bag,

two things can occur: you can either draw a red ball, or you can draw a blue
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ball. If you draw a red ball, the cycle is over and you will be compensated for the

red ball. If you draw a blue ball, the cycle may or may not continue and you will

not be compensated for the blue ball. The ball you draw will be put back into the bag.

At the start of each cycle, you will be randomly paired with three subjects. You will

be paired with those subjects for each period of the cycle.

You and the subjects you are paired with will be drawing from four separate but

identical bags. Thus, you and the subjects you are paired with will have the same

probability of drawing a red ball in each period, because either you will all be

drawing from M bags or will all be drawing from U bags. Any ball that is drawn from

any bag will be put back in the bag at the end of the period. Thus, the composition

of the bag you are drawing from remains the same in each period of the cycle. For

example, if you were drawing from the M bag, you would have the same probability

of drawing a red ball in each period of the cycle.

Compensation

At the start of each period in the cycle, you have the choice to draw a ball from the

bag or to collect $0.30. If you draw a red ball from the bag you will be compensated

for it. A red ball is worth $10.00, regardless of what the subjects you are

paired with do. If you draw a red ball, you will receive $10.00 in that period. If

you draw a blue ball, regardless of what the subjects you are paired with do, you will

receive $0.00 for the period.

If you or any of the subjects you are paired with draws a red ball, the cycle will end.

You will be compensated for the rest of the periods in the cycle. For example, if a red

ball is drawn with eleven periods remaining in the cycle, your profit from the cycle

will be the sum of the payoffs from the previous and current periods in the cycle and
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$0.30 for each of the remaining eleven periods. To reiterate, you will receive

the payoffs from the previous and current periods in the cycle and $3.30 ($0.30 for

each of the remaining eleven periods).

Two of the thirty cycles will be randomly chosen for payment. The cycles chosen for

you may be different than the ones drawn for other participants.

Example

Below is an example of what a period will look like.

In each period, you will get a summary of important information from the instruc-

tions on the left side of the screen. In the top right corner of the screen is a calculator

button. If you would like to make calculations before you decide to draw a ball, you

can click on the button and a calculator will show up. The right side of the screen also

has information with regards to the current cycle, the current period, and the amount

of balls drawn in the current cycle by you and the subjects you are paired with.

In the center of the right side of the screen is a prompt asking you if you choose to
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draw a ball in the current period. Once you have made your decision as to whether

or not you will draw a ball in the current period, press the “OK” button to move on.

You will have as much time as you like to make your decision.

At the end of the cycle, you will get information about the cycle that just ended. You

will be told whether or not a red ball has been drawn, how many people drew a red

ball and how many balls were drawn in the cycle. You will receive a breakdown of

your payoff from the current cycle in terms of the periods you didn’t draw a ball and

the periods that you did draw a ball.

Recap

The following is a recap of important parts of the instructions

• There are two bags: a ‘mixed’ (M) bag with 2 red balls and 18 blue balls and

a ‘uniform’ (U) bag with 0 red balls and 20 blue balls

• For each cycle, there is a 75 percent chance you and the subjects that you are

paired with are drawing from M bags and a 25 percent chance that you and the

subjects that you are paired with are drawing from U bags

• In each period, you can either draw a ball or collect $0.30

• If you draw a red ball you earn $10.00 for the current period

• The cycle ends as soon as someone draws a red ball or at the end of 15 periods

• In the case that the cycle ends before 15 periods are completed, you will be

compensated for the remaining periods in the cycle
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D. APPENDIX FOR: PUBLIC LEADERBOARD

FEEDBACK IN INNOVATION CONTESTS: A

THEORETICAL AND EXPERIMENTAL

INVESTIGATION

D.1 SPNE for Finite-horizon Leaderboard-Feedback Innovation Contest

In this appendix, we describe the process for characterizing the subgame perfect

Nash equilibria of the finite horizon leaderboard-feedback innovation contest. Recall

that ft (lt) denotes the follower (leader) in an arbitrary period t. We begin by charac-

terizing the final-stage local equilibrium strategies and corresponding equilibrium ex-

pected payoffs, and then make our way back through the game tree. We assume that:

(i) utility is time separable and (ii) the utility u(·) in each period displays constant

absolute risk aversion (CARA), where for convenience we set u(x) =
(
1− e−xR

)
R for

R > 0 and u(x) = x for R = 0. Although our focus in this appendix is on a utility

function that displays risk aversion, it is straightforward to extend the analysis below

to allow for loss aversion and sunk-cost fallacy considerations.

Period T

Let plT [pfT ] denote the probability that the period T leader lT [period T follower

fT ] draws in period T , and let πfT (D, plT |sT ) denote the the payoff to the period T

follower fT from drawing in period T given plT and the score sT . In the final period

T , if the max score at the beginning of period T is sT , then the benefit to the period
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T follower from drawing (i.e. pfT = 1) when the period T leader does not draw (i.e.

plT = 0) is

πfT (D, plT = 0|sT ) = (1− F (sT ))u(v − c) + F (sT )u(−c). (D.1)

Next, the benefit to the period T follower from drawing when the period T leader

does draw is

πfT (D, plT = 1|sT ) =

[
1− [F (sT )]2

2

]
u(v − c) +

[
1 + [F (sT )]2

2

]
u(−c). (D.2)

Thus, at the beginning of period T and given any plT ∈ [0, 1], we have that

πfT (D, plT |sT ) = (1− plT )πfT (D, plT = 0|sT ) + plTπfT (D, plT = 1|sT ). (D.3)

For all plT ∈ [0, 1], the payoff to the period T follower from not drawing in period T ,

denoted πfT (ND, plT |sT ), is 0.

For the characterization of when player fT is indifferent between drawing and not

drawing as a function of the beginning of period T leader score sT and the leader’s

final-stage-local strategy plT , it will be convenient to refer to the change in player fT ’s

payoff in moving from drawing to not drawing given that either plT = 0 or plT = 1,

which we denote by ∆πfT (plT = 0|sT ) and ∆πfT (plT = 1|sT ) respectively, where

∆πfT (plT = 0|sT ) = πfT (ND, plT = 0|sT )− πfT (D, plT = 0|sT ) (D.4)

and

∆πfT (plT = 1|sT ) = πfT (ND, plT = 1|sT )− πfT (D, plT = 1|sT ) (D.5)

If
πfT (D, plT = 0|sT )

πfT (D, plT = 0|sT )− πfT (D, plT = 1|sT )
∈ [0, 1]
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then for

pindifflT
=

∆πfT (plT = 0|sT )

∆πfT (plT = 0|sT )−∆πfT (plT = 1|sT )

=
(1− F (sT ))u(v − c) + F (sT )u(−c)
(u(v − c)− u(−c)) 1

2
(1− [F (sT )]2)

(D.6)

it follows from equation (D.3) that

πfT (D, pindifflT
|sT ) = πfT (ND, pindifflT

|sT ) = 0

and the period T follower is indifferent between drawing and not drawing. Because

∆πfT (plT = 0|sT ) ≤ ∆πfT (plT = 1|sT ), it follows that if ∆πfT (plT = 0|sT ) =

−πfT (D, plT = 0|sT ) > 0, then player fT would have incentive to not draw for all

plT ∈ [0, 1]. Similarly, if ∆πfT (plT = 1|sT ) = −πfT (D, plT = 1|sT ) < 0, then player fT

would have incentive to draw for all plT ∈ [0, 1]. Thus, it follows that for the term

pindifflT
defined by equation (D.6) to take values in the interval [0, 1], it must be the

case that ∆πfT (plT = 0|sT ) = −πfT (D, plT = 0|sT ) ≤ 0 and ∆πfT (plT = 1|sT ) =

−πfT (D, plT = 1|sT ) ≥ 0, or equivalently, F (sT ) ∈
[√

u(v−c)+u(−c)
u(v−c)−u(−c) ,

u(v−c)
u(v−c)−u(−c)

]
.1

For the purpose of stating player fT ’s final-stage-local best-response correspon-

dence as a function of (plT , sT ) ∈ [0, 1]× supp(F ), let

Σindiff
fT

=
{
sT

∣∣∣∆πfT (plT = 0|sT ) ≤ 0 and ∆πfT (plT = 1|sT ) ≥ 0
}

denote the set of period T beginning scores sT such that pindifflT
∈ [0, 1]. Similarly, let

Σ1
fT

=
{
sT

∣∣∣∆πfT (plT = 1|sT ) < 0
}

and let

Σ0
fT

=
{
sT

∣∣∣∆πfT (plT = 0|sT ) > 0
}

1Note that in the case of risk neutrality, the equation (D.6) expression for pindifflT
becomes pindifflT

=

v(1−F (sT ))−c
v
2 (1−F (sT ))2 which takes values in [0, 1] when F (sT ) ∈

[√
1− 2c

v , 1−
c
v

]
.
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and note that Σindiff
fT

, Σ1
fT

, and Σ0
fT

form a partition of supp(F ). Player fT ’s final-

stage-local best-response correspondence is given by:

BRfT (plT |sT ) =



pfT = 1 if sT ∈ Σ1
fT

or sT ∈ Σindiff
fT

and plT < pindifflT

pfT ∈ [0, 1] if sT ∈ Σindiff
fT

and plT = pindifflT

pfT = 0 if sT ∈ Σ0
fT

or sT ∈ Σindiff
fT

and plT > pindifflT

(D.7)

Moving on to the period T leader’s problem, the payoff to the period T leader

from not drawing when the period T follower draws is

πlT (ND, pfT = 1|sT ) = F (sT )u(v)

verses a payoff of

πlT (D, pfT = 1|sT ) =

[
1 + [F (sT )]2

2

]
u(v − c) +

[
1− [F (sT )]2

2

]
u(−c).

when both the period T and the period T follower draw. Similarly, the payoff to the

period T leader from not drawing when the period T follower does not draw is

πlT (ND, pfT = 0|sT ) = u(v)

verses a payoff of

πlT (D, pfT = 0|sT ) = u(v − c)
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from drawing. Thus, the payoff to the period T leader from drawing in period T

given any pfT ∈ [0, 1], denoted πlT (D, pfT |sT ) is

πlT (D, pfT |sT ) = (1− pfT )πlT (D, pfT = 0|sT ) + pfTπlT (D, pfT = 1|sT ) (D.8)

and the payoff to the period T leader from not drawing in period T , denoted πlT (ND, pfT |sT )

is

πlT (ND, pfT |sT ) = (1− pfT )πlT (ND, pfT = 0|sT ) + pfTπlT (ND, pfT = 1|sT ). (D.9)

To define pindifffT
, we use the expressions ∆πlT (pfT = 0|sT ) and ∆πlT (pfT = 1|sT )

where

∆πlT (pfT = 0|sT ) = πlT (ND, pfT = 0|sT )− πlT (D, pfT = 0|sT ) (D.10)

and

∆πlT (pfT = 1|sT ) = πlT (ND, pfT = 1|sT )− πlT (D, pfT = 1|sT ). (D.11)

It follows from equations (D.8) and (D.9), that if

πlT (ND, pfT = 0|sT )− πlT (D, pfT = 0|sT )

[πlT (ND, pfT = 0|sT )− πlT (D, pfT = 0|sT )]− [πlT (ND, pfT = 1|sT )− πlT (D, pfT = 1|sT )]
∈ [0, 1]

then for

pindifffT
=

∆πlT (pfT = 0|sT )

∆πlT (pfT = 0|sT )−∆πlT (pfT = 1|sT )

=
u(v)− u(v − c)

(1− F (sT ))u(v)− (u(v − c)− u(−c)) 1
2

(1− [F (sT )]2)

(D.12)

it follows from equations (D.8) and (D.9) that

πlT (D, pindifffT
|sT ) = πlT (ND, pindifffT

|sT ) = 0
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and the period T leader is indifferent between drawing and not drawing.

Next, because ∆πlT (pfT = 0|sT ) ≥ max{0,∆πlT (pfT = 1|sT )}, it follows that if

∆πlT (pfT = 1|sT ) > 0 then for all pf,T ∈ [0, 1] player lT would have incentive to not

draw. For the term pfT defined by equation (D.12) to take values in the interval (0, 1),

it must be the case that ∆πlT (pfT = 1|sT ) ≤ 0.

In a manner similar to that used above for player fT ’s final-stage-local best-

response correspondence, we let

Σindiff
lT

=
{
sT

∣∣∣∆πlT (pfT = 1|sT ) ≤ 0
}

denote the set of period T beginning scores sT such that pindifflT
∈ [0, 1]. Similarly, let

Σ0
lT

=
{
sT

∣∣∣∆πlT (pfT = 1|sT ) > 0
}

and note that Σindiff
fT

and Σ0
fT

form a partition of supp(F ). Then, the period T

leader’s final-stage local best-response correspondence as a function of (pfT , sT ) ∈

[0, 1]× supp(F ) may be written as,

BRlT (pfT |sT ) =



plT = 1 if sT ∈ Σindiff
lT

and pfT > pindifffT

plT ∈ [0, 1] if sT ∈ Σindiff
lT

and pfT = pindifffT

plT = 0 if sT ∈ Σ0
lT

or sT ∈ Σindiff
lT

and pfT < pindifffT

(D.13)

Combining the period T follower’s final-stage-local best-response correspondence

from equation (D.7) with the period T leader’s final-stage-local best-response cor-

respondence from equation (D.13), we can now solve for the subgame perfect final-

stage-local equilibrium strategies.
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First note that because ∆πfT (plT = 1|sT ) ≥ 0 implies that ∆πlT (pfT = 1|sT ) ≥ 0,

it follows that Σindiff
lT

∩ Σindiff
fT

= ∅ and thus, there exists no non-degenerate final-

stage-local equilibrium. Futhermore, note that Σindiff
lT

⊂ Σ1
fT

and that Σindiff
fT

⊂ Σ0
lT

.

For final-stage-local pure-strategy equilibria, we have the following:
Both draw if sT ∈ Σindiff

lT
⊂ Σ1

fT

only follower draws if sT ∈ Σ0
lT
∩ Σ1

fT

neither draws if sT ∈ Σ0
lT
∩
(

Σ0
fT
∪ Σindiff

fT

)
Note that there exists an sB,T ∈ [0, 1] such that the set Σindiff

lT
⊂ Σ1

fT
is equivalent to

[0, sB,T ]. Similarly, there exists a sN,T ∈ [0, 1] such that the set Σ0
lT
∩
(

Σ0
fT
∪ Σindiff

fT

)
is equivalent to [sN,T , 1]. The remaining set Σ0

lT
∩ Σ1

fT
is equivalent to [sB,T , sN,T ].

At the points where there exist multiple equilibria (i.e. sB,T and sN,T ) we will make

the simplifying assumption that the player that is indifferent between drawing and

not drawing chooses to draw. That is, at sT = sB,T we focus on the final-stage-local

equilibrium in which both player’s draw and at sT = sN,T we focus on the final-stage-

local equilibrium in which player fT draws. Given sB,T and sN,T , the final-stage-local

equilibria may be characterized as:


Both draw if sT ∈ [0, sB,T ]

only follower draws if sT ∈ (sB,T , sN,T ]

neither draws if sT ∈ (sN,T , 1]

The corresponding subgame perfect final-stage local equilibrium expected payoffs

for the leader and follower, respectively, are
πlT (D, pfT = 1|sT ) & πfT (D, plT = 1|sT ) if sT ∈ [0, sB,T ]

πlT (ND, pfT = 1|sT ) & πfT (D, plT = 0|sT ) if sT ∈ (sB,T , sN,T ]

πlT (ND, pfT = 0|sT ) & πfT (ND, plT = 0|sT ) if sT ∈ (sN,T , 1]
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Periods 1 to T − 1

In moving from period T to any period t ∈ {1, . . . , T − 1}, the procedure for

calculating the subgame perfect period-t-local equilibrium strategies and payoffs fol-

lows along the exact same lines as in period T given the changes to the expres-

sions πft(pft , plt |st) and πlt(plt , pft |st) respectively. In particular, for each period

t ∈ {1, . . . , T − 1} we take the period t + 1 continuation payoffs as given and then

calculate πft(pft , plt |st) and πlt(plt , pft|st). Note that in the case of t ∈ {1, . . . , T − 1},

there are twelve possible transitions to consider:
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Outcome in t+ 1 st+1 is such that:

State Leader [lt+1] Draws |st+1

O1 st+1 = st lt Neither BRlt+1(ND|st+1) = ND

& BRft+1(ND|st+1) = ND

O2 st+1 = st lt ft+1 BRlt+1(D|st+1) = ND

& BRft+1(ND|st+1) = D

O3 st+1 = st lt lt+1 BRlt+1(ND|st+1) = D

& BRft+1(D|st+1) = ND

O4 st+1 = st lt Both BRlt+1(D|st+1) = D

& BRft+1(D|st+1) = D

O5 st+1 > st lt Neither BRlt+1(ND|st+1) = ND

& BRft+1(ND|st+1) = ND

O6 st+1 > st lt ft+1 BRlt+1(D|st+1) = ND

& BRft+1(ND|st+1) = D

O7 st+1 > st lt lt+1 BRlt+1(ND|st+1) = D

& BRft+1(D|st+1) = ND

O8 st+1 > st lt Both BRlt+1(D|st+1) = D

& BRft+1(D|st+1) = D

O9 st+1 > st ft Neither BRlt+1(ND|st+1) = ND

& BRft+1(ND|st+1) = ND

O10 st+1 > st ft ft+1 BRlt+1(D|st+1) = ND

& BRft+1(ND|st+1) = D

O11 st+1 > st ft lt+1 BRlt+1(ND|st+1) = D

& BRft+1(D|st+1) = ND

O12 st+1 > st ft Both BRlt+1(D|st+1) = D

& BRft+1(D|st+1) = D

Note that although O3, O7 and O11 do not arise in equilibrium [i.e. there exists no

t with a period-t-local equilibrium in which only the leader draws], we include that



195

here as a possibility. Also observe that in states O5-O8 it must be the case that lt

draws and in states O9-O12 it must be the case that ft draws.

For the period-t follower we have:

πft(D, plt = 0|st) = Prob(O1|st, D, plt = 0)E
(
πft+1(ND, plt+1 = 0|st+1)|O1

)
Prob(O2|st, D, plt = 0)E

(
πft+1(D, plt+1 = 0|st+1)|O2

)
+ Prob(O3|st, D, plt = 0)E

(
πft+1(ND, plt+1 = 1|st+1)|O3

)
+ Prob(O4|st, D, plt = 0)E

(
πft+1(D, plt+1 = 1|st+1)|O4

)
+ Prob(O9|st, D, plt = 0)E

(
πlt+1(ND, pft+1 = 0|st+1)|O5

)
Prob(O10|st, D, plt = 0)E

(
πlt+1(ND, pft+1 = 1|st+1)|O6

)
+ Prob(O11|st, D, plt = 0)E

(
πlt+1(D, pft+1 = 0|st+1)|O7

)
+ Prob(O12|st, D, plt = 0)E

(
πlt+1(D, plt+1 = 1|st+1)|O8

)
(D.14)
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πft(D, plt = 1|st) = Prob(O1|st, D, plt = 1)E
(
πft+1(ND, plt+1 = 0|st+1)|O1

)
Prob(O2|st, D, plt = 1)E

(
πft+1(D, plt+1 = 0|st+1)|O2

)
+ Prob(O3|st, D, plt = 1)E

(
πft+1(ND, plt+1 = 1|st+1)|O3

)
+ Prob(O4|st, D, plt = 1)E

(
πft+1(D, plt+1 = 1|st+1)|O4

)
+ Prob(O5|st, D, plt = 1)E

(
πft+1(ND, plt+1 = 0|st+1)|O5

)
Prob(O6|st, D, plt = 1)E

(
πft+1(D, plt+1 = 0|st+1)|O6

)
+ Prob(O7|st, D, plt = 1)E

(
πft+1(ND, plt+1 = 1|st+1)|O7

)
+ Prob(O8|st, D, plt = 1)E

(
πft+1(D, plt+1 = 1|st+1)|O8

)
+ Prob(O9|st, D, plt = 1)E

(
πlt+1(ND, pft+1 = 0|st+1)|O5

)
Prob(O10|st, D, plt = 1)E

(
πlt+1(ND, pft+1 = 1|st+1)|O6

)
+ Prob(O11|st, D, plt = 1)E

(
πlt+1(D, pft+1 = 0|st+1)|O7

)
+ Prob(O12|st, D, plt = 1)E

(
πlt+1(D, plt+1 = 1|st+1)|O8

)
(D.15)

πft(ND, plt = 0|st) = Prob(O1|st, ND, plt = 0)E
(
πft+1(ND, plt+1 = 0|st+1)|O1

)
Prob(O2|st, ND, plt = 0)E

(
πft+1(D, plt+1 = 0|st+1)|O2

)
+ Prob(O3|st, ND, plt = 0)E

(
πft+1(ND, plt+1 = 1|st+1)|O3

)
+ Prob(O4|st, ND, plt = 0)E

(
πft+1(D, plt+1 = 1|st+1)|O4

)
(D.16)
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πft(ND, plt = 1|st) = Prob(O1|st, ND, plt = 1)E
(
πft+1(ND, plt+1 = 0|st+1)|O1

)
Prob(O2|st, ND, plt = 1)E

(
πft+1(D, plt+1 = 0|st+1)|O2

)
+ Prob(O3|st, ND, plt = 1)E

(
πft+1(ND, plt+1 = 1|st+1)|O3

)
+ Prob(O4|st, ND, plt = 1)E

(
πft+1(D, plt+1 = 1|st+1)|O4

)
+ Prob(O5|st, ND, plt = 1)E

(
πft+1(ND, plt+1 = 0|st+1)|O5

)
Prob(O6|st, ND, plt = 1)E

(
πft+1(D, plt+1 = 0|st+1)|O6

)
+ Prob(O7|st, ND, plt = 1)E

(
πft+1(ND, plt+1 = 1|st+1)|O7

)
+ Prob(O8|st, ND, plt = 1)E

(
πft+1(D, plt+1 = 1|st+1)|O8

)
(D.17)

Given the expressions in equations (D.14)-(D.17) for the period-t follower and the

corresponding calculations for the period-t leader, the period-t-local equilibrium can

be calculated by: (i) forming the period-t version of the ‘∆’ expressions in equations

(D.4), (D.5), (D.10), and (D.11), (ii) using the period-t version of the ‘∆’ expres-

sions to form the period t indifference conditions (D.6) and (D.12) and construct

each player’s period-t-local best-response correspondences as in equations (D.13) and

(D.7), and (iii), using the player’s period-t-local best-response correspondences char-

acterize the period-t-local equilibrium.

As an example, consider the case of t = T − 1. Recall the characterization of the

final-stage-local pure-strategy equilibrium:
Both draw if sT ∈ [0, sB,T ]

only follower draws if sT ∈ (sB,T , sN,T ]

neither draws if sT ∈ (sN,T , 1]
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Note that in period T −1, we know that there exists no period T equilibrium in which

only lT draws. Thus, there is no possible transition from state T − 1 to state T in

the form of outcomes O3, O7, and O11.

If the max score at the beginning of period T − 1 is sT−1, then the probabilities

Prob(Oj|·), for j = 1, . . . , 12 in equation (D.14) are given by:

Prob(O1|sT−1, D, plT−1
= 0) =

F (sT−1) if sT−1 ∈ (sN,T , 1]

0 otherwise

Prob(O2|sT−1, D, plT−1
= 0) =

F (sT−1) if sT−1 ∈ (sB,T , sN,T ]

0 otherwise

Prob(O3|sT−1, D, plT−1
= 0) = 0

Prob(O4|sT−1, D, plT−1
= 0) =

F (sT−1) if sT−1 ∈ [0, sB,T ]

0 otherwise

Prob(O9|sT−1, D, plT−1
= 0) =

1− F (sN,T ) if sT−1 ∈ [0, sN,T ]

1− F (sT−1) if sT−1 ∈ (sN,T , 1]

Prob(O10|sT−1, D, plT−1
= 0) =


F (sN,T )− F (sB,T ) if sT−1 ∈ [0, sB,T ]

F (sN,T )− F (sT−1) if sT−1 ∈ (sB,T , sN,T ]

0 if sT−1 ∈ (sN,T , 1]

Prob(O11|sT−1, D, plT−1
= 0) = 0
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Prob(O12|sT−1, D, plT−1
= 0) =

F (sB,T )− F (sT−1) if sT−1 ∈ [0, sB,T ]

0 if sT−1 ∈ (sB,T , 1]

The corresponding probabilities for equations (D.15)-(D.17) follow directly. This

completes the description of the process for characterizing the subgame perfect Nash

equilibria of the finite horizon leaderboard-feedback innovation contest.

D.2 Incorporating Behavioral Characteristics

We obtain predictions for risk aversion, loss aversion, and the sunk cost fallacy

using the following procedure:

• First, for a maximum score in the leader-board feedback treatment and an indi-

vidual score in the private feedback treatment, we calculate the expected utility

from drawing or not drawing in the last period. At this stage, we incorporate

the relevant behavioral characteristic (risk aversion, loss aversion, sunk cost fal-

lacy) into that calculation and repeat this process for various scores in each

treatment.

• We then calculate the expected utility, and the optimal decisions, in the penul-

timate period for the same scores. We calculate the expected utility of drawing

and not drawing in the penultimate period through backward induction as we

have solved for the last period.

• We continue this process using backward induction. Once we have solved for

the optimal decisions for each score and period, we use simulations to make

contest predictions.

We use the following specifications:

• Risk aversion is modeled using CRRA utility, that is, u(x) = x1−r

1−r .
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• Loss aversion is modeled as an individual being reference dependent around

losses. Let TC be the total cost an agent has spent in the contest and E be the

agent’s endowment. When an individual loses the contest, her utility is given

by E−λ∗TC, where λ > 1. Note that an individual can never lose money when

she wins the prize in our experiment. When an individual wins the contest, her

utility is given by E + V − TC, where V is the prize value.

• The sunk cost fallacy is modeled as an individual having a preference for

drawing when she has accumulated sunk costs in the contest. An individual’s

expected utility in the last period from drawing is given by E−TC +α ∗TC +

p(V ) ∗ V , where α > 0 and p(V ) is the probability that she wins the contest.

Leader’s Best-Response Follower’s Best-Response

1

𝐹(𝑠𝑇)

1

1

𝐹(𝑠𝑇)

1𝑝𝑓𝑇
𝑝𝑙𝑇

𝑁𝐷 (𝑝𝑙𝑇
= 0)

𝑁𝐷 (𝑝𝑓𝑇
= 0)

0 0

𝐷 (𝑝𝑙𝑇
= 1)

𝐷 (𝑝𝑓𝑇
= 1)

Figure D.1.: The effect of risk aversion on period T local best responses for Leader-
board Feedback.
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Best-Response

1

𝐹(𝑠𝑇)

1 𝑝′𝑇

𝐷 (𝑝𝑇 = 1)

𝑁𝐷 (𝑝𝑇 = 0)

0

Figure D.2.: The effect of risk aversion on period T local best responses for Private
Feedback.
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D.3 Experimental Instructions

D.3.1 Introduction

Welcome and thank you for participating! Today’s experiment will last about 60

minutes. Everyone will earn at least $5. If you follow the instructions carefully, you

might earn even more money. This money will be paid at the end of the experiment

in private and in cash.

It is important that during the experiment you remain silent. If you have a

question or need assistance of any kind, please raise your hand, but do not speak -

and an experiment administrator will come to you, and you may then whisper your

question. In addition, please turn off your cell phones and put them away during the

experiment. Anybody that violates these rules will be asked to leave.

In this experiment you will face 27 tasks in which you will take the role of an

entrepreneur. Prior to each task, you will be provided with the information regarding

the task. At the end of the experiment, two of the tasks will be chosen randomly

to determine your actual money earnings. Thus, your decisions in one task will not

affect your earnings in any other task. In addition, at the end of the 27 tasks, you

will be asked to fill out several questionnaires.

Next, you will be provided detailed information pertaining to Task #1-8 of the

experiment. Before starting with the actual tasks, you will face one practice task.

Your compensation for the experiment will not depend on the practice task

D.3.2 Tasks #1–8: Description

In Tasks #1–8 of the experiment, you will be given an endowment of $10 and

choose whether to develop up to 10 technologies at a cost of $1 per technology.

The quality of each technology is uncertain and will be determined randomly using

the probability distribution to the right. However, only the best technology can be

brought to the market and yield revenue.
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The decisions whether to develop a technology will be made sequentially. In

particular, you will first decide whether to develop technology #1. If you decide to

do so, you will incur a cost of $1 and observe the quality of technology #1. Next,

you will decide whether to develop technology #2. If so, you will incur a cost of $1.

And so on. Each new technology will be obtained using an independent draw from

the distribution to the right. That is, quality of technology #2 does not depend on

technology #1, quality of technology #3 does not depend on technology #2, etc. At

each decision, you will be provided with the summary information in the graphical

and text forms.

For example, suppose you have developed 4 technologies. Each of them will be

marked on the graph with a line. At the time of each decision, you will be pro-

vided with the probability that a new technology will be better (or worse) than the

best known technology. For example, suppose you are deciding whether to develop

technology #5, then the probability that technology #5 will be better than the best

known technology is shaded in green, and is equal to 36%. The probability that

technology #5 will be worse than the best known technology is shaded in red, and is

equal to 64%.

For each task, you will be randomly matched with another participant in this

room. Each of you will simultaneously and independently decide whether to develop

up to 10 technologies (one technology at a time). At the time of each decision you

will not know the technology that has the best quality among all of the technologies

developed so far (either by you or by the participant that you are matched with).

After all of the decisions have been made, the best technology developed in during

the task (either by you or by the participant that you are matched with) will be

revealed. The best technology will be adopted by the market and yield $10 revenue.

At this time you can get some experience of drawing from the distribution. You

can click ‘Draw’ to draw a random number from the distribution. You can also click

‘Reset’ to clear all the draws. Reminder, each draw is independent from all other

draws. Note, that although the diagram shows domain to be [0,50], the domain is
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unbounded and there is a small chance (less than a quarter of one percent) that

a draw from the distribution will exceed 50. When you are done drawing random

numbers from the distribution, please click ‘Continue to Practice Task’.

Figure D.3.: Screenshots of the distribution presented in the instructions.
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D.3.3 Tasks #1–8: Practice Task

Figure D.4.: Screenshots of the practice task.
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D.4 Additional Tables and Figures

Figure D.5.: Screenshots of the risk aversion elicitation task.
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Figure D.6.: Screenshots of the loss aversion elicitation task.
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Figure D.7.: Screenshots of the sunk cost fallacy elicitation task.
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Figure D.8.: Screenshots of the individual search task.
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Table D.1.: Displays the results of regressions. The regression pools the data from the
individual search tasks, the private-feedback treatment, and the leaderboard-feedback
treatment.

(1) (2) (3) (4) (5) (6) (7)

Dep. Var.: Pooled Private Leaderboard
Draw Decision All Leader Follower All Leader Follower

L-Board -0.70*** — — — — — —
(0.20) — — — — — —

Priv. x Score -0.17*** -0.21*** -0.25*** -0.18*** — — —
(0.01) (0.02) (0.04) (0.02) — — —

L-Board x MaxScore -0.11*** — — — -0.11*** -0.23*** -0.11***
(0.01) — — — (0.01) (0.02) (0.01)

Period -0.12*** -0.13*** -0.19*** -0.11*** -0.10*** -0.24*** -0.03
(0.03) (0.03) (0.04) (0.04) (0.03) (0.04) (0.05)

Risk Aversion -1.10∗∗ -1.61** -1.71 -1.36* -0.79* -0.64 -0.20
(0.50) (0.76) (1.26) (0.70) (0.45) (0.93) (0.91)

Loss Aversion -0.13 0.02 1.26 -0.74 -0.22 -1.33 0.07
(0.63) (0.78) (1.11) (0.65) (0.66) (1.11) (0.96)

Sunk Cost Fallacy 0.11 0.29 -0.93 0.41 -0.15 -0.62 0.01
(0.63) (0.97) (0.85) (1.00) (0.51) (0.87) (0.96)

Factor 1 0.05 0.17 0.02 0.12 -0.04 -0.05 -0.31***
(0.09) (0.13) (0.14) (0.13) (0.09) (0.18) (0.12)

Factor 2 — — — — — — —
— — — — — — —

Factor 3 0.02 -0.03 0.12 -0.07 0.05 -0.23 0.12
(0.11) (0.14) (0.21) (0.13) (0.11) (0.19) (0.14)

Factor 4 0.06 0.07 -0.01 0.09 0.06 0.08 0.15
(0.06) (0.09) (0.09) (0.08) (0.07) (0.15) (0.18)

Factor 5 0.16 0.22 0.11 0.15 0.10 0.05 0.20**
(0.10) (0.16) (0.19) (0.14) (0.08) (0.18) (0.08)

Factor 6 0.18** 0.17 0.09 0.17 0.20** 0.16 0.08
(0.08) (0.11) (0.13) (0.12) (0.09) (0.17) (0.14)

Factor 7 -0.09 -0.17 -0.22 -0.17 -0.04 -0.06 -0.22
(0.11) (0.18) (0.23) (0.17) (0.08) (0.18) (0.18)

Factor 8 -0.09 -0.07 0.00 -0.10 -0.12 -0.03 -0.14
(0.08) (0.12) (0.16) (0.13) (0.09) (0.16) (0.15)

Factor 9 -0.08 -0.08 -0.19 0.02 -0.11 0.04 -0.44**
(0.12) (0.16) (0.17) (0.16) (0.10) (0.22) (0.22)

Constant 1.69*** 1.83** 4.26*** 1.17 1.17** 2.17*** 1.99***
(0.57) (0.81) (0.77) (0.86) (0.51) (0.74) (0.76)

Observations 15,360 7,680 3,451 3,451 7,680 3,411 3,411

* p < 0.10, ** p < 0.05, *** p < 0.01
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Figure D.9.: Displays the decision to draw in the Leaderboard-Feedback treatment.
This figure displays two sets of graphs. The first set of graphs display logistic regres-
sions of the decision to draw in the private-feedback treatment for periods 3, 4, 5, 7,
8, and 9. The second set of graphs display logistic regressions of the leader’s decision
(blue) to draw and the follower’s decision (red) to draw in the leaderboard-feedback
treatment for periods 3, 4, 5, 7, 8, and 9.
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Table D.2.: Displays the results of the contests. Priv. Draws refers to the mean num-
ber of draws in a contest in a session in the pravate-feedback treatment. LB Draws
refers to the mean number of draws in a contest in a session in the leaderboard-
feedback treatment. Priv. Innovation refers to the mean value of the winning innova-
tion in a session in the pravate-feedback treatment. LB Innovation refers to the mean
value of the winning innovation in a session in the leaderboard-feedback treatment.

Priv. Draws LB Draws Priv. Innovation LB Innovation

Session 1 6.53 7.16 24.02 19.20
Session 2 7.78 8.00 21.81 23.46
Session 3 8.97 7.89 19.34 23.16
Session 4 7.28 6.22 22.44 19.24
Session 5 7.41 7.25 21.06 20.84
Session 6 7.22 7.50 20.40 21.48
Session 7 9.19 7.09 26.54 19.82
Session 8 8.59 6.69 24.82 21.21
Session 9 9.28 7.72 21.62 23.91
Session 10 10.16 9.75 22.92 20.54
Session 11 9.03 7.00 24.18 21.58
Session 12 10.59 8.28 25.33 23.18
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Figure D.10.: Displays the decision to draw in the simulated Leaderboard-Feedback
contests. These graphs display logistic regressions of the leader’s decision (blue) to
draw and the follower’s decision (red) to draw in the simulated leaderboard-feedback
treatment contests for periods 2, 3, 4, 5, 6, 7, 8, 9, 10.
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Figure D.11.: Displays the decision to draw in the simulated Private-Feedback con-
tests. The first set of graphs display logistic regressions of the decision to draw in the
simulated pravate-feedback treatment contests for periods 2, 3, 4, 5, 6, 7, 8, 9, 10.
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Table D.3.: Displays regression results for the individual search task. The regression
pools the data from the individual search tasks, the pravate-feedback treatment, and
the leaderboard-feedback treatment.

(1) (2)

Dep. Var.: Individual Individual
Draw Decision

Individual Score -0.04*** -0.04***
(0.01) (0.01)

Period -0.15*** -0.15***
(0.02) (0.02)

Risk Aversion -2.70∗∗ -2.72***
(1.17) (1.00)

Loss Aversion -0.80 -0.84
(1.00) (1.02)

Sunk Cost Fallacy -0.13 -0.10
(0.59) (0.72)

Grit/Factor 1 -0.57** -0.08
(0.23) (0.14)

Competitiveness/Factor 2 0.05 —
(0.43) —

Achievement Striving/Factor 3 0.02 0.27**
(0.66) (0.11)

Extraversion/Factor 4 0.17 0.06
(0.11) (0.12)

Agreeableness/Factor 5 0.27 0.19**
(0.24) (0.08)

Neuroticism/Factor 6 -0.18 -0.10
(0.23) (0.12)

Openness/Factor 7 0.05 -0.06
(0.18) (0.19)

Conscientiousness/Factor 8 0.09 -0.19**
(0.24) (0.08)

Factor 9 — 0.07
— (0.22)

Constant -1.35 -1.48**
(0.99) (0.67)

Observations 7,680 7,680

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table D.4.: Displays the results of the demographics regressions. The regressions
analyze how demographics influence the decision to draw. Gender is a dummy variable
for male. There are multiple race dummy variables, major dummy variables, school
year dummy variables, and high school location dummy variables that are in these
regressions, but not included in the tables.

(1) (2) (3) (4) (5) (6) (7)

Dep. Var.: Pooled Private Leaderoard
Draw Decision All Leader Follower All Leader Follower

L-Board -0.70*** — — — — — —
(0.20) — — — — — —

Priv. x Score -0.17*** -0.21*** -0.25*** -0.18*** — — —
(0.01) (0.02) (0.04) (0.02) — — —

L-Board x MaxScore -0.11*** — — — -0.11*** -0.23*** -0.11***
(0.01) — — — (0.01) (0.02) (0.01)

Period -0.12*** -0.13*** -0.19*** -0.11*** -0.10*** -0.24*** -0.03
(0.03) (0.03) (0.04) (0.04) (0.03) (0.04) (0.05)

Risk Aversion -0.74∗∗ -1.15** -1.64** -0.95 -0.60 -0.22 -0.58
(0.35) (0.47) (0.80) (0.61) (0.38) (1.05) (0.65)

Loss Aversion -0.72 -0.67 0.52 -1.01* -0.79 -1.32 -1.00
(0.50) (0.59) (0.72) (0.56) (0.62) (1.06) (0.91)

Sunk Cost Fallacy 0.40 0.66 -0.47 0.77 0.07 -0.29 0.51
(0.49) (0.75) (0.67) (0.81) (0.32) (0.80) (0.62)

Gender -0.15 -0.17 -0.11 -0.03 -0.14 -0.36 0.33
(0.14) (0.20) (0.25) (0.22) (0.17) (0.30) (0.28)

Age -0.11*** -0.18** -0.23*** -0.16** -0.07 -0.04 -0.22
(0.04) (0.07) (0.08) (0.07) (0.05) (0.13) (0.13)

Constant 3.09*** 3.93** 7.35*** 2.78 2.05** 3.56 4.13*
(0.96) (1.75) (1.48) (1.83) (0.85) (2.25) (2.22)

Observations 15,360 7,680 3,451 3,451 7,680 3,411 3,411

* p < 0.10, ** p < 0.05, *** p < 0.01
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