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ABSTRACT 

Food security is a major concern of human civilization. A way to ensure food security is to 

grow plants in a greenhouse under controlled conditions. Even under careful greenhouse 

production, stress in plants can emerge, and can cause damaging disease. To prevent yield loss 

farmers, apply resources, e.g., water, fertilizers, pesticides, higher/lower humidity, lighting, and 

temperature, uniformly in the infected areas. Research, however, shows that the practice leads to 

non-optimal profit and environmental protection.  

Precision agriculture (PA) is an approach to address such challenges. It aims to apply the 

right amount or recourses at the right time and place. PA has been able to maximize crop yield 

while minimizing operation cost and environmental damage. The problem is how to obtain timely, 

precise information at each location to optimally treat the plants. There is scant research addressing 

strategies, algorithms, and protocols for analytics in PA. A monitoring and treating systems are 

the foci of this dissertation.  

The designed systems comprise of agent- and system-level protocols and algorithms. There 

are four parts: (1) Collaborative Control Protocol for Cyber-Physical System (CCP-CPS); (2) 

Collaborative Control Protocol for Early Detection of Stress in Plants (CCP-ED); (3) Optimal 

Inspection Profit for Precision Agriculture; and (4) Multi-Agent System Optimization in 

Greenhouse for Treating Plants. CCP-CPS, a backbone of the system, establishes communication 

line among agents. CCP-ED optimizes the local workflow and interactions of agents. Next, the 

Adaptive Search algorithm, a key algorithm in CCP-ED, has analyzed to obtain the optimal 

procedure. Lastly, when stressed plants are detected, specific agents are dispatched to treat plants 

in a particular location with specific treatment.  

Experimental results show that collaboration among agents statistically and significantly 

improves performance in terms of cost, efficiency, and robustness. CCP-CPS stabilizes system 

operations and significantly improves both robustness and responsiveness. CCP-ED enabling 

collaboration among local agents, significantly improves the number of infected plants found, and 

system efficiency. Also, the optimal Adaptive Search algorithm, which considers system errors 

and plant characteristics, significantly reduces the operation cost while improving performance. 
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Finally, with collaboration among agents, the system can effectively perform a complex task that 

requires multiple agents, such as treating stressed plants with a significantly lower operation cost 

compared to the current practice. 
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 INTRODUCTION 

 Research Motivation 

To secure food production, the farmer grows plants in a greenhouse. While greenhouse 

plants are well nurtured and are provided with almost perfect conditions to grow, they are far from 

precision controlled. Fluctuations in environmental parameters such as temperature, humidity, and 

airflow cause stress and lead to some initial state of diseases in plants. In the US, crop stresses 

which are caused by environmental condition change causes damage more than $200 billion worth 

between 1980 and 2012 (Suzuki, Rivero, Shulaev, Blumwald, & Mittler, 2014). To minimize the 

severity of the production loss in crops, an abnormal condition of plants such as stresses must be 

detected, localized, and treated early (Gueroui & Labraoui, 2015). Currently, farmers apply 

resources (i.e., water, fertilizer, and pesticide) evenly over the agriculture area as aim to prevent 

diseases and yield loss (Mandal & Ghosh, 2000). It, however, wastes resources, money, and time 

as previous research reports that over or under water may fail to boost crops yield (Drechsel et al., 

2015). In addition, improper fertilizing can damage both financial return and crop production 

(Ribaudo et al., 2012). Hence, uniform resource management in agriculture may not lead to the 

desired outcome as it damages both profit and environment.  

Precision Agriculture (PA), which aims to apply the right amount of resources to the right 

location at the right time by utilizing information technologies, is a promising approach which 

gains much attention now. PA can ensure the proper treatment for each plant while minimizing 

unnecessary resources used (Thompson, Bir, Widmar, & Mintert, 2019). Also, the ability to detect 

and localize stress in plants early can strengthen PA benefit as the cost of treatment in the early 

state is typically lower (Mahlein, 2016). Moreover, to deal with an unexpected situation in the 

agricultural area, smart agriculture and advanced technologies with PA, called Agriculture Robotic 

System (ARS), are necessary to enhance the advantages. Farmers should be able to work and 

monitor crops remotely, and, with a decision support system, they can deal with a current and 

unexpected situation correctly. Therefore, the smart and precision agriculture will reduce the 

overall cost of food production while ensuring human food security and minimizing damage to 

environment. 
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Definition 1.1. Agriculture Robotics System (ARS) is a smart agriculture system 

that utilizes the strength of agents to optimize system performance with limited 

resources. 

 

The definition addresses the objectives and challenges of ARS. Advanced technologies 

such as sensors and agriculture robotics together with new solutions such as Cyber-Physical 

System (CPS), Internet of Things and Internet of Services (IoT/IoS), Task Administration Protocol 

(TAP), Collaborative Control Theory (CCT), and Precision Collaboration (PCol) must be utilized 

to develop a system and its protocol for supporting the ARS. The ARS consists of multiple sensors, 

human operators, robots, algorithms, and other supporting tools.  Because each system agent has 

its strengths and weaknesses, collaboration among agents is critical. For example, although sensors 

have advantages to monitor and collect data which can be analyzed to create a proper treatment 

for each plant (Gongal, Amatya, Karkee, Zhang, & Lewis, 2015), they cannot work without 

agricultural robotics and human operators (Min Hyuc, Beom-Sahng, Kyoung Chul, Suprem, & 

Mahalik, 2015).  Besides, an algorithm that provides output for a particular situation also requires 

input from sensors. Lastly, communications among system agents will be less efficient and contain 

conflicts and errors (C&E), if no synchronization workflow is established. Therefore, ensuring 

collaboration among agents is necessary to provide the optimal outcome of the agricultural system.  

System analytics and operations research have been utilized for more than five decades to 

help make better decisions in business, production, supply chain, and healthcare. Decisions — 

especially in a structured and error-free environment — are studied extensively and in many cases, 

are solved to optimality. On the other hand, the unstructured system is still a challenge for 

researchers. Because of complexity, the system usually trades optimality for higher flexibility or 

lower cost. In this study, an agricultural system, which is relatively unstructured and prone to error 

by nature, is selected as a representative of unstructured system. Therefore, this study not only 

address issues in agriculture robotic system, but also the optimal operations in an unstructured 

system are solved.  
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 General Assumptions 

In this section, the general assumptions which are assumed throughout the study are 

discussed. There are four types of assumptions; research scope assumption, modeling assumption, 

agent assumption, and terminologies assumption. 

1.2.1 Assumption 1: System scope assumption 

The ARS comprises humans, robots, and sensors. Humans are the decision makers who 

will solve complex, unanticipated real-time problems. The mobile robot will be guided to selected, 

assigned locations for inspecting plant samples at those locations. From system engineering 

perspectives, the robot that moves through required locations needs to be equipped with arms and 

sensors to monitor the conditions at each spot (Edan & Miles, 1994). The robot will carry several 

types of sensors which contain detecting agents.  

Where crops are grown, especially in relatively large areas, it is hard to inspect every single 

plant to check its status and detect whether it is under stress. Hence, every day, a representative 

sample of plants is selected for assessment and monitoring. Utilizing the plant sampling approach, 

the chosen sample of plants can be assumed to represent that local area, thus saving time and cost. 

Robot-Human Base Point (Figure 1.1) is the location where robots and humans are located. Data 

collected during the monitoring process are transferred to the Robot-Human Base Point for further 

analysis (if needed). Figure 1.1 presents the description above, which is the environment of the 

research in this study. 
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Figure 1.1. System scope assumption 

1.2.2 Assumption 2: Modeling assumption 

In this study, input parameters of the models such as the number of agents, agent speed and 

capabilities, greenhouse structure, other modeling inputs are assumed to be known as the 

parameters that can be measured before designing the system. 

Moreover, the parameters are also assumed to be constant and not changed over time. In 

other words, there are no learning effect impacts on the parameters. With this assumption, in the 

situation that humans and machines are involved in the monitoring system, the system and analysis 

are for the worst-case scenario.  

The uncertainties of the input parameters, however, are considered in models. The 

distribution of the input parameter represents the uncertainties of parameters. For example, 

inspection time, travel speed, and the robot’s arm movement speed are the parameters that are 

assumed to have a normal distribution. 

Some parameters, such as C&E and stressed plant locations, are assumed to exist in the 

system. The exact location, status, and value, however, are unknown. This assumption reflects the 

real situation of the system, where parameters have existed in the system, but the system designers 

do not know the real value.  
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1.2.3 Assumption 3: Agents assumption 

The third assumption relates to agents and the capabilities of agents. In the study, agents 

such as humans, robots, and sensors are employed to perform a specific task. As discussed earlier 

and presented in Table 1.1, humans are assumed to be superior to other agents in terms of real-

time decision making. On the other hand, robots are good at repetitive tasks. Lastly, sensors are 

responsible for collecting a massive amount of data. Base on the task descriptions, agents are 

assumed to be able to work independently. For example, robots can work by their capability 

regardless of whether other agents are working (but it may cause an inferior performance). Robots 

can move and approach plants even though sensors are ready to operate or not. Also, some agents 

such as sensors and IoT/IoS may need support from other agents to perform a completed process, 

but there are no condition sequences between agents’ operations. 

With the independent working condition, the system agents are able to work in parallel, 

which supports the e-Work Parallelism principle in CCT. Because of the parallelism, the system 

operation time can be minimized, unlike sequential operation. The system, however, has a higher 

probability of containing C&E. Thus, the Error Prevention and Conflict Resolution design 

principle of CCT must be appropriately utilized to balance the benefit gains from the parallel work 

design and loss from the C&E in the system. 

Table 1.1. Main role and responsibility of agents 

Main agents Roles of agent 
Humans Real-time decision-makers; Solve unexpected situations 

Robot, manipulator, and 
mobile robot cart 

Move into a greenhouse; Approach specific parts of plants; 
Computing and responding to the command; 

Sensors Collect data; Transmit data 

1.2.4 Assumption 4: Terminologies assumption  

There are common terms that are used throughout the studies. First, the term ARS refers to 

the entire monitoring system, not just a single agent. The reason is that an agent in the system 

cannot work to deliver the desired output. The system agents need to work in order to achieve the 

system goal collaboratively. Therefore, ARS must represent the entire system as a team. 
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In ARS, three main agents are humans, robots, and sensors. Humans include farmers, 

researchers, and experts who can make a judgment for most of the situation. Humans have higher 

knowledge comparing to other agents.  

Robots refer to the robot cart, robot’s arms, and other manipulators that move into the 

greenhouse, approach plants in multi-direction, and connect to the command from humans in the 

case of emergencies. The robots also include treatment robots that are dispatched in the case of 

stress and disease treatment. 

Lastly, sensors refer to multi-spectral cameras, thermal sensors, video cameras, high-

definition cameras, and other IoT/IoS devices, which responsible for collecting data and detecting 

the condition of plants. 

 Research Problem and Research Questions 

1.3.1 Research problem 

To increase food security, preventing production loss of crops is crucial. Because plants 

usually develop stress before the diseases emerge, detecting stress as early as possible, and treat 

the stress precisely, are not only prevent yield loss from crops diseases but also reduce the 

production cost of food. The key challenge is, therefore, with the limited resources available, to 

identify stress locations in order to design the proper treatment before diseases developed. 

1.3.2 Research questions 

The following research questions (RQ) are defined for attempting to address the research 

problem. The RQs are as follows. 

Research question 1 (RQ1) 

How can we design and develop the CPS framework, which can combine algorithms, 

sensors, robots, humans, and other agents to work effectively and facilitate real-time 

communications for the greenhouse system? 
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Research question 2 (RQ2) 

How can we design the cyber collaborative protocol for the agents in a greenhouse under 

the CPS framework to perform their job to maximize the system performance, reflect real-time 

characteristics of plants, and utilize available time most effectively, even optimally, for the earliest 

detection of stress in crops? 

Research question 3 (RQ3) 

How can we effectively utilize the new information found during the inspection process to 

provide the optimal collaborative interaction procedures between agents to maximize system 

performance during the monitoring process? 

Research question 4 (RQ4) 

How can we develop a protocol which effectively and collaboratively manages agents to 

treat the stressed plants that may require a specific type of agent or interaction among multiple 

agents? 

 Dissertation Structure 

The dissertation is organized as follows: Chapter 2 provides a summary of current research 

related to the topic. Chapter 3 introduces the CPS for the agricultural robotic framework and the 

validation of the benefits of CPS in agriculture. Chapter 4 presents the mechanism at the agent 

level, which collaboratively works by the collaborative control protocol. Chapter 5 presents an 

analysis of the agent procedure. Chapter 6 describes the methodologies and validation of 

collaborative agent procedures to respond to emergencies. Finally, Chapter 7 presents conclusions, 

discussion, and future challenges. 
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 LITERATURE REVIEW 

 Agriculture Robotics System (ARS) 

For decades, researchers and engineers have utilized agriculture robotics for working in an 

agricultural field. Because of the advancement in sensors and robotic technology, the ideas of 

applying robots in the unstructured area such as agricultural field and assist other agents such as 

humans and sensors become feasible (Belforte, Deboli, Gay, Piccarolo, & Ricauda Aimonino, 

2006; Gay, Piccarolo, Aimonino, & Deboli, 2008; McIntosh, 2015). As automation and robots are 

good at repetitive tasks and able to work in the long period of time continuously, they usually are 

responsible for routine operations such as irrigation, harvesting, and inspection, and help or replace 

farmers (Keicher & Seufert, 2000; Reid, Zhang, Noguchi, & Dickson, 2000). Also, in extreme 

weather conditions, robots with smart technology can work with reliable results (Pedersen, Fountas, 

Have, & Blackmore, 2006). Hence, automation and robots are commonly used for the agriculture 

system in various fields. 

Greenhouse automation and its operating system are the focus as the greenhouse 

environment capture challenges form not only an open field environment but also indoor issues. 

In a greenhouse, plots are organized as in the open field but have limited space to maneuver and 

visualize. Also, GPS and connection ability in a greenhouse are limited. Automation and robots 

which work in the greenhouse, thereby, are designed and prepare for such challenges and 

constraints.  

The typical greenhouse operations which are focused by researchers on applying 

automation and robots are harvesting robots, data collection and crop inspection robots, 

environmental control systems, spraying robots, and yield improvement robots. The following 

section describes and explains each of them. 

2.1.1 Harvesting Robot 

Even though researchers and engineers put substantial effort into developing a precision 

harvesting system for fruits and vegetables, the success rate still low, and the issue still challenges 

(Bac, Henten, Hemming, & Edan, 2014). A series of harvesting system of agricultural products 
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such as oranges, tomatoes, and strawberries which are developed for the past 30 years shows 

development and attempts of harvesting robotic system. Examples of harvesting approaches for 

PA are apple harvesting robot (Silwal et al., 2017), strawberry yield monitoring and picking carts 

(Khosro Anjom, Vougioukas, & Slaughter, 2018), orchard robotic bin handling (Ye et al., 2018), 

and kiwi automation technology (Mu, Liu, Cui, Fu, & Gejima, 2018). 

With the current approach, fruits and vegetables harvesting robots are far from commonly 

used in a practical setting. The main challenges are the diversity of agricultural products, limitation 

of the machine to deal with the real-time situation (e.g., inaccurate operation, high cost, slow 

procedure, and inflexible tools) (Spekken & Bruin, 2013). 

2.1.2 Data collection and crops inspection robots 

Using PA, data for each location are critical for analyzing and predicting crop output, such 

as fruit mass or number of leaves (Figure 2.1). Robots, therefore, are utilized for collecting data at 

each location in the agriculture area. For example, a watch-dog robot (Nagasaka et al., 2004), and 

a weed control robot (Astrand & Baerveldt, 2002) are sensor integrated robots that can both work 

in the field and collect data at the same time. 

Not only the data collection task, but robots with sensors are also able to perform crop 

inspection and disease detection tasks (Liao et al., 2017). In the past, it requires workers to walk 

and inspect each plant, which yields low accuracy and unreliable outcome. Agricultural robotics, 

however, improve the speed and accuracy of the inspection system because of an improvement of 

automation accuracy and sensor performance (i.e., more reliable, faster, more accurate, and 

requires less energy) (Sai, Fan, Yuliang, Lei, & Yifong, 2016). Moreover, by using sensors which 

can perform a non-contact inspection, contamination, and spread of diseases are minimized. Figure 

2.2 shows diseases and stress monitoring by the robot in the laboratory. 
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Figure 2.1. (Left) Fruit mass prediction; (Right) Number of leaves prediction (Finkelshtain, 

Bechar, Yovel, & Kósa, 2017) 

 

 

 

Figure 2.2. Disease and stress monitoring by the robot (Schor et al., 2016; Schor et al., 2017)  
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2.1.3 Environmental Control System 

In a greenhouse, environmental parameters such as light density, temperature, humidity, 

CO2 concentration, and airflow can be manipulated accurately (Simonton, 1990) because of the 

sensor and microcomputer (Kondō, Monta, & Noguchi, 2011). Therefore, farmers can extend the 

growing period, shorten the production cycle, and maximize crops output. Climate control models 

in a greenhouse which require various input variables influence both weather condition inside 

greenhouse and growth rate of crops. The models utilize proportional integral derivative control, 

cascade control, nonlinear control, predictive control, and adaptive control in order to have a 

closed-loop system (Albright, 2002; Bailey, 2006; Essahafi & Lafkih, 2018). Because of the 

feedback loop, the models can also provide a suggestion for parameter setting and change 

controlled parameters through wireless sensors and auto-aerial control system in the greenhouse 

(Diker & Bausch, 2003; Ferentinos, Katsoulas, Tzounis, Bartzanas, & Kittas, 2017; Manfreda et 

al., 2018). 

Internet network also supports a connection in a greenhouse control system. Researchers 

develop automation and robots which are connected and managed through mobile/web 

applications and the internet to perform specific tasks (Chebrolu et al., 2017; Ishibashi, Iida, Suguri, 

& Masuda, 2013). The internet network in the greenhouse also enables human-in-the-loop design, 

which can both simplify the system and improve system performance in dealing with unexpected 

situations (Bechar, Meyer, & Edan, 2009). For example, a human, robot, and sensors design system 

for monitoring greenhouse crops show superior performance when humans are integrated into the 

system (Guo, Dusadeerungsikul, & Nof, 2018). 

2.1.4 Spraying Robot 

An automation sprayer (Figure 2.3) can apply specific fertilizer, pesticide, liquid chemical, 

or water to a specific crop location in the greenhouse (Min Hyuc et al., 2015). With an unmanned 

spraying robot, farmers have minimized the exposure to chemical substances. The advancement 

of unmanned robots such as drone which can take-off and landing in the limited space has a very 

high potential in the near future to use in agricultural context (Cappelleri & McArthur, 2019). 
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Figure 2.3. An autonomous sprayer (Dar, Edan, & Bechar, 2011) 

 

A machine visualization system (Figure 2.4) and a selective sprayer generating map and 

guidance for automation to location/site-specific treatment have been developed to solve an issue 

about autonomous control for unmanned sprayer (Kunz, Weber, Peteinatos, Sökefeld, & Gerhards, 

2018; Xue, Zhang, & Grift, 2012). Moreover, a review of alternative spraying methods and 

solutions which can be applied to the PA context is provided (Bechar & Vigneault, 2016, 2017). 

 

 

Figure 2.4. Machine visualization for mapping in the greenhouse (Dar et al., 2011) 
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2.1.5 Yield Improvement Robot 

The last category is of ARS is the yield improvement robot. The yield improvement robot 

is automation, which helps farmers increase the quality and quantity of agriculture outputs. 

Examples of the robots in this category are tree pruning robot and seedling production automation. 

Figure 2.5 shows a tree pruning robot that can both calculate the path for reaching the tree branch 

as well as prune the targeted tree branch accordingly. In addition, the robot can suggest the tree 

branches to prune in order to optimize agriculture outputs. The machine operations are first, 

calculate the optimal trajectory (Figure 2.5 Left) and then prune the unnecessary branches by using 

end-effector (Figure 2.5 Right).  

 

   

Figure 2.5. (Left) Computing optimal trajectory tree pruning; (Right) End-effector for pruning 

(Bechar, Nof, & Wachs, 2014) 

 

Another example of yield improvement automation is seedling production automation. As 

seedling production is an essential factor in ensuring the high-quality agriculture product, attempts 

to develop an automation for seedling production are prevalent. Machines that are either semi-

automated, such as selecting seed, seeding, transplanting, grafting, cutting, and sticking (Kondo & 

Ting, 1998) or fully automated (Mitsuhashi, Yamazaki, & Shichishima, 1994) have been designed 

and developed to help farmers perform such tasks. A nursery greenhouse containing systems such 

as the germination chamber, tray support system, irrigation system, heating system, and cooling 

system are developed to ensure the optimal growing conditions for young seedlings (Balliu, 
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Sallaku, & Nasto, 2017). Besides, robots have been applied and commercialized to various 

operations such as grafting and transplanting as they can improve the product quality, crop yield, 

and disease resistance. Also, the IoT/IoS in the greenhouse becomes an essential element in 

seedling production automation as young seedling are sensitive to abiotic and biotic stresses 

(Gonzalez-Amarillo et al., 2018). 

Although robots and agricultural machinery can help farmers improve task performance, 

they cannot overcome obstacles that prevent PA in real implementation. Challenges mainly come 

from constraints and characteristics of agricultural tasks which are relatively unstructured (Edan, 

Han, & Kondo, 2009), and may cause C&E in the system. Taking a crop monitoring process as an 

example, the automation needs to deal with unclear data during the inspection process. More 

importantly, the system may contain the discrepancy of data, which leads to C&E during the 

operation. With the current approach, the automation cannot deal with such expected or 

unexpected C&E. Also, the capability to respond to the diversities of products, interactions among 

agents, and requests to the real-time information are limited. Lastly, knowledge-based response 

and operation predictability by historical data are not utilized effectively. Hence, the current 

automation approach suffers from dealing with mentioned challenges, and PA cannot be 

implemented in the practical setting. 

Therefore, to overcome such shortcomings, a new support system is necessary. Such 

support systems are expected to improve productivity, reliability, safety, and continuity of the 

system, optimize work methods, increase accuracy, reduce waste, and as a result, provide better 

crop quality and higher yield (Dusadeerungsikul & Nof, 2019). 

 Cyber-Augmented System in Agriculture 

2.2.1 Cyber-Physical System (CPS) in Agriculture 

In agricultural CPS, robots are considered to help humans perform an operational task such 

as moving in a greenhouse and approach the suspicious areas. Sensors which are faster in detection 

than other devices are mounted on the robot to perform inspection task. Sensors transmit data 

gathered from plants to agricultural experts, which remotely monitor conditions of crops in real-

time. The experts can consider a plant to deal with the situation at each particular location. For 
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example, a new mobile robot may be dispatched for taking pictures or videos and transmitting by 

WIFI or 4G technologies for further investigation, or a robot may order to treat the plant by 

applying fertilizer to the location. 

The cyber-support system for agriculture described above can be defined as an agricultural 

Cyber-Physical System (CPS). The CPS, which utilizes information/knowledge technologies, 

cybernetics, and high-performance computers, can effectively combine and connect agents and 

features, i.e., wireless communication, real-time control, intensive computing, and brain-inspired 

models.  

Because of the advancement and re-evaluation of information and communication 

technologies, CPS has been extensively used in the 21st century in various complex systems such 

as medical device operation, traffic control, safety engineering, infrastructure control, and 

agricultural robotics (Zhong & Nof, 2015). With support from the cyber-augmented system and 

abilities to compute and operate in real-time, CPS can solve an unexpected situation spontaneously. 

For instance, a CPS and multi-sensor system support a precision pesticide spraying task by 

minimizing the amount of chemical applied to plants (Stark, Rider, & Chen, 2013). Because of the 

complexity of CPS architecture, a three layers system, the physical layer, the network layer, and 

the decision layer; is detailed designed and applied to PA (Nie, Sun, & Li, 2014). Lastly, utilizing 

the benefit from real-time response and advancement of new technologies, a CPS framework of 

monitoring, detecting, and responding cyber-physical framework has been designed and validated 

to have superior performance than the traditional approaches (Guo et al., 2018). Researchers are 

extensively used CPS developments for PA as presented in the current research articles (Biradar 

& Shabadi, 2017; Cimino et al., 2017; Dong, Vuran, & Irmak, 2013; Goap, Sharma, Shukla, & 

Rama Krishna, 2018; Morimoto, 2018; Perez-Exposito, Fernandez-Carames, Fraga-Lamas, & 

Castedo, 2017). An agricultural CPS enables system to have better intelligence and real-time 

control; therefore, move the system another step closer to PA objective. 

2.2.2 Internet of Things and Internet of Services (IoT/IoS) in agriculture 

The advancement of technologies narrows down a gap between a physical object and cyber 

layers. The self-contained components (IoT) and the self-contained actions/services (IoS) are 

essential links to bridge such gaps. IoT/IoS, which allows the decentralized and distributed control 
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enables researchers to intergrade isolated systems as well as connect the physical and cyber system 

together (Moghaddam & Nof, 2018). Moreover, to deal with a current problem in which its 

complexity grows exponentially, the system needs abilities to receive new information and reflect 

the situation emerged (Alberts, 2014; C.-Y. Huang, Ceroni, & Nof, 2000; Putnik et al., 2013). 

IoT/IoS, which are components and equipment in a system, can support such requirements by 

obtaining/transmitting data from/to network systems (Wu, Dai, & Dai, 2013) and adapting 

themselves according to the situation in real-time. Also, because of IoT/IoS, components, services, 

and human operators have effectively connected to the network and allow human-in-the-loop 

design. With utilizing IoT/IoS advantages, researchers can explore new system designs and 

overcome the existing challenges.  

Because of the mentioned IoT/IoS capabilities, IoT/IoS are applied in various applications 

such as smart transportation, environment monitoring, warehouse, and factory of the future 

(Dusadeerungsikul, He, Sreeram, & Nof, 2020; Madakam, Ramaswamy, & Tripathi, 2015). 

IoT/IoS is also considered to be a support operation in smart and precision agriculture. IoT/IoS are 

also utilized as detection agents and connection agents in a greenhouse monitoring system 

(Dusadeerungsikul, Nof, Bechar, & Tao, 2019; Guo et al., 2018). With the active collaboration 

and connection among agents by IoT/IoS, the system shows superior performance in terms of stress 

detection, robustness, and response time. 

 Collaborative Control Theory (CCT) 

2.3.1 Design principle of CCT 

Collaborative Control Theory (CCT) is the design principles for the multi-agent system. 

With the nine CCT principles which facilitate multiple agent interactions and collaboration, 

engineers can effectively design a complex system that has higher performance. The nine CCT 

principles are 1) Collaboration Requirement Planning (CRP), 2) e-Work Parallelism (EWP), 3) 

Keep It Simple, System (KISS), 4) Error Prevention and Conflict Resolution (EPCR), 5) 

Collaborative Fault Tolerance (CFT), 6) Association and Dissociation (AD), 7) Emergent Lines of 

Collaboration and Command (ELOCC), 8) Best Matching (BM), and 9) Collaborative 

Visualization and Comprehension (CVC) (Nof, Ceroni, Jeong, & Moghaddam, 2015).  
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Engineers and researchers have been applied CCT principles in various fields to design the 

response and control mechanism. Some examples are to respond to a market uncertainty of demand 

and supply, an algorithm for prevention and detection C&E, network design, telerobotic 

collaboration, and protocol designs (Chen & Nof, 2012; Ko & Nof, 2012; Moghaddam & Nof, 

2014; Nof, 2007; Zhong, Wachs, & Nof, 2013). 

In agriculture fields, researchers and engineers have been applied CCT to design and plan 

agriculture tasks. For example, Asynchronous Cooperation Requirement Planning, which can 

improve harvesting and grasping performance and cost of agriculture robots, has been designed 

and developed (Zhong, Nof, & Berman, 2015). CPS framework with CCT principles is designed 

for Monitor, Detection, and Response in CPS for greenhouse crops (Guo et al., 2018). The 

designed framework yields better detection performance and response to an unexpected situation. 

Also, in the Collaborative Control Protocol for Early Detection of Stress in Crop 

(Dusadeerungsikul & Nof, 2019), the designed protocol for managing multiple agriculture agents 

utilizes CCT for assigning tasks to agents and preventing/resolving system error/conflicts. 

Based on the examples mentioned, the full range applications of CCT are explored and 

yield better planning/control operation and service systems. To achieve PA, CCT methods and 

approaches can support and utilize (Nof, 2015). Table 2.1 shows PA tasks, CCT methods, as well 

as their challenges. 

Table 2.1. Challenge in Precision Agriculture with CCT principles and methods 

PA Task Related CCT Principle(s) CCT Method(s) Challenge(s) 

Harvesting CRP; EWP; KISS; EPCR; 
AD; BM 

Humans-Robots-
Sensors team  

Agent collaboration in 
CPS for given tasks in PA 

Data collection 
and crops 
inspection 

CRP; EPCR; CFT; ELOCC; 
BM; CVC 

Humans-Robots-
Sensors team 
algorithm and 

protocol 

Multiple agent 
collaboration; conflicts 
prevention and errors 

resolution; 
Environmental 

control CRP; EWP; EPCR DHM-R tools Collaborative machine 
learning 

Spraying CRP; EWP; EPCR; CVC Swarms robot Collaboration for 
precision operation 

Yield 
improvement EWP; EPCR; AD; ELOCC Demand and 

Capacity Sharing 

Could communication for 
collaborative control 

decision support system 
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2.3.2 Task Administration Protocol (TAP) 

Integrations, communications, and interactions among agents distributed and decentralized 

have increased as the complexity of the system and the problem growth. Hence, an agent 

collaboration protocol, called Task Administration Protocol (TAP), is required for effective works 

and operations in the system (Nof et al., 2015). TAP, which has an objective to maximize system 

performance, is a coordination and collaboration protocol managing agents, algorithms, and 

databases with rules, heuristics, and interaction procedures. Three main planning and control 

elements in TAP are Task 7 (45/6+), Resource 9 (+./0123.)), and Time 6 (47$.=). 45/6+ is an 

activity or operation which requires agents (+./0123.)) to operate. +./0123.) is an agent which 

can perform a given 45/6+. 47$.= is a specific point of time and duration of time which 45/6+ 

will perform by the assigned +./0123.).  

TAP has helped engineers and researchers to design the effective workflow and 

coordination procedure in various fields such as workflow design, task allocation design, time-out 

design, and Petri-net model design (Anussornnitisarn, Nof, & Etzion, 2005; Ko & Nof, 2008; Nof 

et al., 2015). With the TAP framework, the TAP protocol outperforms a non-TAP protocol because 

of the active synchronization among agents (Ko & Nof, 2010). In PA, the TAP framework is also 

applied to design protocol for early detection stress in greenhouse crops, called Collaborative 

Control Protocol for Early Detection of Stress in Plant (Dusadeerungsikul & Nof, 2019). The 

protocol manages both system agents (humans, robots, and sensors) and algorithms and yields 

superior performance in resource allocation and utilization. 

2.3.3 Precision Collaboration (PCol) 

A collaboration support system which can work, collaborate, coordinate, and communicate 

precisely and smartly, called Precision Collaboration (PCol), is considered as a useful element for 

PA. The support system can improve the interaction between inputs/outputs and its performance 

measurement (Bechar et al., 2014; Bechar, Nof, & Wachs, 2015). 

In PCol, the system can include physical, logical, and virtual agents to perform a given task 

by collaboration procedure. Because of PCol that can prevent and resolve system C&E, the system 

with complex interactions will be robust and can work effectively. Therefore, to achieve PCol, it 
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requires an integrated communication, synchronization, control, information, and analysis to have 

a PCol for an exact position, identification, recognition, location, dimensions, proximity, 

awareness, and other attributes (Bechar, Wachs, Lumkes, & Nof, 2012). 

Figure 2.6 presents the Human-Computer-Robot (HCR) PCol framework (Nof, 2015). 

There are four possible collaborations; Human-Human (H-H), Human-Computer (H-C), Human-

Robot (H-R), and Robot-Robot (R-R) (Dusadeerungsikul, Nof, & Bechar, 2020). For example, a 

simple object targeting and monitoring tasks for a specific location (Figure 2.7) require R-R type 

collaboration – robot manipulator and robot cart. The laser sensor is utilized for spotting location 

for a precise target, which helps the collaboration more efficient. On the other hand, mapping, 

localizing, and human detection tasks (Figure 2.8) are more complex and need multiple 

collaboration types; H-C collaboration – human operator and computer/sensor detection, H-R 

collaboration – human operator and robot cart, and R-R collaboration – robot manipulator and 

robot cart. In this case, a laser sensor is utilized for scanning maps, communication between agents, 

transmit signal, and detecting an object.  

As presented in Figure 2.6 and examples, a laser is an essential technology for PCol. It has 

the unique ability in accurately and rapidly transfers signal, data, and energy. The roles of laser in 

PCol are presented in Figure 2.6. 
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Figure 2.6. Precision Collaboration Support Framework (Nof, 2015) 

 

 

 

Figure 2.7.  Object targeting and monitoring 
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Figure 2.8. Mapping, localizing, and human detection tasks 

 

 

 

Figure 2.9. Collaboration support features and their precision requirements (Bechar et al., 2012) 

  



 
 

43 

 Optimization in Agriculture 

2.4.1 Traveling Salesman Problem for Robotic Monitoring and Inspection 

In general, if we need to develop a path for visiting every desired node once, the Traveling 

salesman problem (TSP) is used to describe this situation. TSP is a well-known NP-hard problem 

that many researchers have explored extensively in numerous variations. In TSP, given n integer 

nodes and n-dimensional square matrix of the distance between nodes, the objective is to find a 

tour that visits each location once with the lowest total cost (Bellmore & Nemhauser, 1968). 

Solving real cases, TSP is relatively difficult to apply. Methods such as dynamic programming, 

branch and bound, and other heuristics can be used for solving TSP. Heuristics approaches were 

developed to find a good feasible solution in different scenarios (Lin & Kernighan, 1973). Genetic 

algorithm (GA) is a popular algorithm to obtain the solution for a combinatorial optimization (Jun, 

Lee, & Chun, 2019). Research has been explored GA to solve TSP because it can provide an 

acceptable solution within a limited time, even though the optimal solution is not guaranteed by 

solving the problem with a heuristic approach (Nagata & Kobayashi, 2013; Potvin, 1996). Other 

bio-inspired algorithms, such as ant colony system and neural network, are also developed to solve 

TSP. Both algorithms provide similar performance in terms of the quality of the result and numeric 

computing (Xiao, Tao, & Chen, 2012). Besides, a novel bio-inspired algorithm named elephant 

search algorithm can be applied to solve TSP with stable performance comparing to other 

metaheuristics. The performance of the algorithm in terms of fitness value, however, is inferior to 

other algorithms (Deb et al., 2016). 

Currently, researchers utilize TSP and its variance for solving problem in various areas 

such as last-mile delivery and logistics. For example, the integrating of drone and track with TSP 

and routing problem has been shown the significant improvement of the system performance 

(Jeong, Song, & Lee, 2019; Kitjacharoenchai et al., 2019).  

Consider this study, a monitoring plants in a greenhouse task has a similarity to TSP. A 

mobile robot is required to move to assigned locations for inspecting conditions of plants as part 

of RQ2. If we apply the TSP concept to solve plant monitoring tasks, we can obtain higher system 

performances, which are measured with system performance metrics. 
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2.4.2 Object Search by Robot 

Object search is one of the major tasks for service robots (Miura, Kadekawa, Chikaarashi, 

& Sugiyama, 2016). Recently, a mobile robot is required to not only move to the assigned location, 

but it is also required to have the ability to detect and recognize objects at a specific location (Sjo, 

Galvez Lopez, Paul, Jensfelt, & Kragic, 2009). To find an object, the robot must move and examine 

various parts of the environment. An active search for an object by robot needs to combines tasks 

of localization, mapping, and motion control by maintaining effectiveness in the system 

(Makarenko, Williams, Bourgault, & Durrant-Whyte, 2002). Blind search is a common and typical 

search procedure for the unknown environment. The robot starts from a specific location and 

expands the search area from that location until it meets with an object. A system can be trained 

by some guidance or knowledge-based information to assist the direction of robot search or move 

(Sadhu, Abhiram, Chandan, Madhu, & Shreedarshan, 2013). By combing knowledge-based about 

the environment, search performance can be improved. Recently, research about a single robot and 

multiple robots search problems have been done in various fields (Kulich, Preučil, & Bront, 2014). 

For example, The development of a search algorithm by robot’s manipulation utilizing a greedy 

algorithm has shown the significant improvement of search quality in some certain conditions 

(Dogar, Koval, Tallavajhula, & Srinivasa, 2014). 

Moreover, if maps or prior knowledge of the environment are known, localizing and 

detecting the object can be done faster and more accurately, comparing with the unknown 

environment (Boussard & Miura, 2013). Also, for the cases that objects are required not to contact 

by a robot’s arm, sensors typically integrate into the robot to serve this requirement.  

There are three hierarchical search levels; local search, global search, and exploration, 

which serve to improve search performance from different perspectives (Sprute, Pörtner, Rasch, 

Battermann, & König, 2017). Learning and detection algorithms for multi-object tracking are 

developed and tested. The learning part of the algorithm has been proven to improve search 

performance by differentiating noise and target (Malagi & Rangarajan, 2016).  

Research about object searches in robots has been explored in various contexts such as 

military, household, automotive industry, and the healthcare system. The concept of object search, 

however, is rarely used in an agricultural environment. It is a high potential to apply the concept 
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of the blind search for an object to find stresses or diseases in plants as, in principle, they are close 

to each other. Also, a combination of search algorithms and knowledge-based information about 

directions of plant disease propagation can improve search performance and reflect the real 

characteristics of a plant. Moreover, the search algorithm needs to adapt itself according to the 

new information found to indicate the severity of an area.  

2.4.3 Optimal Cost Balancing in Agriculture 

Optimal cost balancing in agriculture is a practical and useful problem in the monitoring 

process. During the monitoring and inspection process, the decision to stop monitoring in the 

current location and move to another location strongly relates to monitoring cost and the benefit 

gains from continue inspecting or moving to the next location. The longer time the robot inspects 

in the area, the higher the confidence level at the location.  On the other hand, spending too much 

time at one location might not be desirable as the available time of the system is limited. 

The question described earlier is close to a classical problem in optimization, called 

Newsvendor Model (NVM). The NVM is utilized mainly on inventory management problems 

(Qin, Wang, Vakharia, Chen, & Seref, 2011). The generic setting of the problem is as follows. 

Consider a supplier, a vendor, and customers, at the beginning of the period, the vendor is 

interested in the stock policy (Q), which can yield the optimal profit. The demand of the product 

is a random variable R that has stochastic characteristics with the probability density function 

(PDF); S(R) and cumulative density function (CDF); E(R). The selling price of the product is 

fixed as D per unit. The vendor assumed to be unlimited capacity and zero lead time from the 

supplier. Lastly, inventory cannot be leftover across the period.  

If the amount of stock Q is larger than the demand R, the remaining inventory (Q − R) 

needed to be sold as salvage with price U. On the other hand, if the demand R is larger than the 

stock Q, thee unfulfilled demand (R − Q) will cost 1 to the vendor. It can be assumed that 1 > U 

for the obvious reason. The cost 3	of the product is assumed to be fixed. Therefore, the end of 

period profit for the vendor can be presented as in Equation (2.1). 
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 π(Q, R) = Y
(D − R)Q − 1(R − Q); 7S	R ≥ Q
DR + U(Q − R) − 3Q; 	7S	R < Q

 
(2.1) 

To maximize the total expected profit, it can be shown as follows. 

 

E[`(Q, R)] = (D + 1 − 3)b QS(R)AR
>

?
+ 1b RS(c)AR

>

?
	

+(D − U)b RS(R)AR
>

?
− (3 − U)b QS(R)AR

>

?
 (2.2) 

Where G[∙] represent the expectation function. Equation (2.2) can be shown as a concave 

function in Q (Silver, 1998). Therefore, the optimal value of Q (represent as optimal order Q∗) is 

as follow.  

 
(Q∗) =

H + 1 − 3
H + 1 − U

	

=
M$

M# + M$
 

(2.3) 
Where M$ represent underage cost or cost from unsatisfied demand, which is equal to H −

3 + 1. M# is the overage cost or cost from having leftover inventory, which is equal to 3 − U.  

NVM has been extended in many areas, such as in multi-product considerations, 

developing a pricing and discounting policy, and multi-period consideration (Khouja, 1999). 

Researchers have been investigated and improved by relaxing constraints so that NVM can have 

more practical implications. For example, when the demand information is incomplete, NVM can 

be used to provide the order quantity that minimizes the maximum regret of not acting optimally. 

The result is suited for the application, which requires robustness but not a conservative solution 

(Andersson, Jörnsten, Nonås, Sandal, & Ubøe, 2013; Perakis & Roels, 2008). NVM can also be 

utilized for the order quantity, which synchronizes vendor and manufacturer. The generalized 

NVM for the coordination problem provides the structure and connection between vendor and 

manufacturer so that the overall cost is minimized (Weng, 2004).   

Even though NVM gives a promising suggestion of the inventory policy (Whitin, 1955), 

applications are mainly on the supply chain setting such as airline, and other perishable items 
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(Cachon, 2003). There is a scant work that applies the NVM in the agriculture setting. As capacity 

and time can also be considered as a perishable resource, utilizing them most effectively is essential 

in PA. Not only can the ARS spend time on the critical locations, but the overall production cost 

is also expected to be minimized.   

2.4.4 Multi-agent System Optimization 

The multi-agent system comprises of a set of agents that have the same or different 

capabilities and interact with each other by a protocol defining rules and procedures (Barbati, 

Bruno, & Genovese, 2012). The multi-agent system is studied extensively in engineering, 

economics, and social sciences (Billari, Fent, Prskawetz, & Scheffran, 2006). The multi-agent 

system is also utilized in the production system (Cowling, Ouelhadj, & Petrovic, 2003). The 

primary motivation for adopting a multi-agent system in the industry is the possibility of reducing 

production costs by having agents (e.g., robots) working faster and in parallel (Brogårdh, 2007). 

Cooperative work reduces processing time and thus improves the efficiency of operations. Instead 

of having single powerful, and complicated robots, a group of small yet simple robots, is easier to 

implement (Khamis, Hussein, & Elmogy, 2015) and yield superior performance (Nof et al., 2015). 

When cooperating machine sets share the same functionality, the overlap of machine capability 

introduces redundancy to the system. The benefit is especially significant at process bottlenecks, 

in which cases a single failure can disrupt the entire workflow. 

Moreover, the overlap of machine capability through collaboration adds another dimension 

of flexibility due to the additional tasks that can be performed by the cooperating machine set 

(Rajan & Nof, 1996). When the parallel machines have different capabilities, the combination of 

skillset enables the team to accomplish tasks that cannot be performed by any single one. Another 

argument is based on the relative simplicity in design. Having simple robots can be simpler and 

cheaper to implement than having a single powerful, and complicated robot. 

The multi-agent system aims to exploit each agent’s capabilities to achieve system 

objectives either independently, or through collaboration. In such systems, tasks can be assigned 

either to individual robots or cooperative teams of robots with enhanced capabilities (Ceroni & 

Nof, 1999). The challenging problem in a multi-agent system is the Multi-Robot Task Allocation 

(MRTA) problem, especially when it comes to heterogeneous, unreliable robots equipped with 
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different types of sensors and actuators (Khamis et al., 2015). Effective MRTA means forming 

teams under the task constraint and requirement in an optimal way. This problem can be seen as 

finding the task-to-agent assignment to achieve the overall system goals. The following challenges, 

therefore, need to be addressed when designing a solution to an MRTA problem (Parker, 1999): 

(1) How to assign a set of tasks to a set of robots? (2) How the robot teaming is coordinated 

efficiently and reliably? (3) How to make the robot teams adapt autonomously to dynamic changes 

in the environment?  

To address and solve the challenges in multi-agent optimization systematically, workflow 

optimization protocol is utilized developed and used as a critical tool (Nof et al., 2015; Tkach, 

Edan, & Nof, 2017) with the combination of optimization techniques such as linear programming, 

mixed integer programming, and dynamic programming. Even though the multi-agent system has 

been utilized in various fields, it rarely applies to the relatively unstructured environment, such as 

agriculture. Taking the development of the multi-agent optimization into account, its benefits to 

the agricultural task is noticeable. 

 Summary of Research Gaps 

From the literature survey, four main gaps are found. The first gap (G1) comes from agent’s 

communication. In a current monitoring system, the communication procedure between 

agricultural agents is not well established. It leads to the independent work among agents. Because 

of lack of communication, the system is inefficient and creates C&E during monitoring process. 

The second gap (G2) is the non-optimal interaction between agents. Resulting from G1, 

agents do not well communicate; hence, it leads to a non-optimal interaction among them. The 

current agricultural robotics procedure emphasizes on effective movements of agents (robots and 

machinery). The interactions between agents are ignored by the current literature. Without an 

optimal interaction between agents, the system cannot provide the highest performance and 

contains a lot of inefficient actions. 

Next, the third gap (G3) deals with the information obtained during the monitoring process. 

The current approaches of agriculture robotic system, epically monitoring system, ignore to utilize 

real-time information. Because the current approaches mostly utilize pre-programmed agents, the 
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approaches rarely make adjustment after obtaining new data during plant inspections. New data 

collected, however, may provide the insight of the specific locations and lead to the better solution 

of the system. 

Lastly, the fourth gap (G4) is the collaboration gap. Because most of the current approaches 

aim to utilizing a single agent (such as robot or machine) to perform a task, the collaboration has 

been ignored. Moreover, in the case of the multi-agent systems, each agent has its specific role 

which rarely collaborates to others. Additionally, the non-collaborative approach typically leads 

to higher cost comparing to collaborative approach as the system requires a specific agent for a 

specific task. Moreover, the collaborative approach usually requires weaker (less expensive) 

agents, but, because of the collaborative procedure, the complex tasks can be accomplished. Table 

2.2 maps the research gap with literature section, RQs, and methodologies presented in the later 

sections. Moreover, Table 2.3 presents the sample of previous work and indicates drawback of 

each approach. 

Table 2.2. Summary of the research gaps corresponding with the RQs and methodologies 

Research Gaps Literature sections RQs Methodologies 

Communication  Section 2.1, 2.2, 2.3 RQ1, RQ2, 
RQ3, RQ4 

Chapter 3: Collaborative Control 
Protocol for Cyber-Physical System 

(CCP-CPS) 

Interaction  Section 2.1, 2.2, 2.3, 
2.4.1, 2.4.2, 2.4.4 

RQ2, RQ3, 
RQ4 

Chapter 4: Collaborative Control 
Protocol for Early Detection of 

Stress in Plants (CCP-ED) 
Utilization new 

Information  Section 2.1, 2.4.3 RQ2, RQ3 Chapter 5: Optimal Inspection Profit 
for Precision Agriculture 

Collaboration  Section 2.1, 2.2, 2.3, 
2.4.4 

RQ1, RQ2, 
RQ4 

Chapter 6: Multi-Agent System 
Optimization in Greenhouse for 

Treating Plants 
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Table 2.3. Recent research on agricultural robotics for crop monitoring (sample) 

Agricultural 
Monitoring Purpose Focus of Approach Research Gap Included 

G1 G2 G3 G4 
Weed Control 

(Astrand & Baerveldt, 2002) 
An autonomous mobile robot with vision systems works in 

the outdoor environment. No Partial No No 

Maize crops 
(Diker & Bausch, 2003) 

Using remote sensing to estimate in-season plant and fertilizer 
in the soil. No Yes Partial No 

Agricultural fields 
(Nagasaka et al., 2004) 

An autonomous watch-dog robot is equipped with a 
camcorder and GPS to record information about the 

monitored crops 
Yes No No No 

Weed monitoring 
(Barbati et al., 2012) A system that can plan and manage monitoring task in a field. No No Yes No 

Cornfields 
(Xue et al., 2012) 

A variable field-of-view machine vision method guides a 
robot to move between fields. Yes Yes Partial No 

Field operations 
(Spekken & Bruin, 2013) 

Minimize non-productive movements and maneuvering by 
agricultural machinery. Yes Yes No No 

Agricultural Robot 
(Ishibashi et al., 2013) 

Remote web-based monitoring system to order and control a 
robot in the field. Yes No Yes No 

Greenhouse spraying 
(Min Hyuc et al., 2015) Driving strategies for autonomous agricultural mobile robots. No No Partial No 

Agricultural monitoring 
(Sai et al., 2016) 

Algorithm to minimize sensor deployment nodes for 
intelligent monitoring. Partial No Yes No 

Sugar beet fields 
(Chebrolu et al., 2017) 

A robot carries a multi-spectral camera and an RGB-D sensor 
for recording, classifying and localizing plants. Yes Yes No No 

Growth rate of crops 
(Liao et al., 2017) 

An IoT/IoS-base system to monitor a growth rate of 
greenhouse crops Yes No Yes No 

Greenhouse crops 
(This study) 

Collaborative control protocol and algorithms to monitor and 
treat the stress of individual plants. 

Yes Yes Yes Yes 
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 COLLABORATIVE CONTROL PROTOCOL FOR CYBER-
PHYSICAL SYSTEM (CCP-CPS) 

The first part is the development of a protocol called Collaborative Control Protocol for 

Cyber-Physical System (CCP-CPS). The protocol is the backbone of the ARS, which has three 

main agents; humans, robots, and sensors. In this chapter, the design of the protocol is discussed. 

Also, the protocol is validated by the experiments to investigate the impacts of CPS on the 

agricultural system, especially the monitoring system. Note that the methodologies, protocols, and 

algorithms designed in the later chapter are the supporting part in enhancing the performance of 

CCP-CPS. 

 Collaborative Control Protocol for Cyber-Physical System (CCP-CPS) design 

A CPS oriented framework and workflow is modified from Monitoring, detecting, and 

responding – cyber-physical system framework (MDR-CPS) by Guo, Dusadeerungsikul, & Nof 

(2018) and improved by Dusadeerungsikul, Nof & Bechar (2020). The main objective is to show 

the significance of the CPS integration greenhouse as, in PA, the greenhouse needs CPS to operate 

collaboratively, effectively communicate, and exchange information.  

3.1.1 CPS framework for PA 

Without CPS, a monitoring system cannot perform its full capacity. Figure 3.1 illustrates 

the CPS framework. Figure 3.1 and Figure 3.2, which derived from TAP, show the system has two 

layers, Task layer (T layer) and Resource layer (R layer). At any time !"#$!, the two layers are 

connected and communicate by CPS. R layer is the agent or %$&'()*$" which needs to perform 

a given task !+&,# in the T layer. As agents in the R layer are distributed and decentralized, they 

require effective communication and information exchange to operate on the task. Arrows in 

Figure 3.2 represent the necessary communication between agents and tasks. Therefore, CPS, 

which is the middle node, is necessary to establish a reliable and capable connection between the 

T layer and R layer. In CPS node, it has four main parts Wireless Sensor Network (WSN), Cloud 

platform, Transmission mode, and Agricultural robots and other actuators. The following section 

will elaborate on each part in CPS for agricultural monitoring tasks. 
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Figure 3.1. CPS framework for monitoring plants conditions in a greenhouse (Guo et al., 2018) 

 

 

 

Figure 3.2. CPS Framework for greenhouse monitoring system 
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Wireless sensor network (WSN) deployment 

Sensors are the essential components of the overall system for environmental monitoring 

and control. As the crop conditions inside greenhouses are moderated, the implementation of 

wireless sensor technologies is more accessible than in outdoor applications. The deployment of 

WSN refers to the deployment of sensor nodes located in greenhouses to provide information about 

environmental parameters that influence the development of the crops. Also, the WSN receives 

and sends the signal from the local sensors mounted on the robot. There are different kinds of 

heterogeneous agricultural sensors in model: monitoring the environmental parameters or abiotic 

stresses, such as humidity, temperature, pressure, CO2 density, sunshine density, and water levels; 

monitoring diseases or static biotic stresses on crops, for instance, bacteria, fungi, viruses; 

monitoring mobile biotic stresses on crops, such as insects, rats, and other unexpected intruders; 

monitoring chemical insults, such as crops nutrients, soil PH value and pesticides influence on 

crops. The sensor types are shown in Table 3.1. 

Table 3.1. Different sensors monitoring different parameters 

Type Monitoring category Monitoring parameters Monitoring devices 

1 Environmental 
parameters 

Temperature, humidity, CO2 density, 
sunshine density, water levels Stationary sensors 

2 Soil parameters 
Soil water density, soil pesticides, soil 

temperature, soil PH value, soil 
compaction 

Stationary sensors 

3 Crops growth 
parameters 

Stress in a plant, Leaves’ temperature, 
leaves’ humidity, crony temperature, 
stem micro change, fruits swelling 

Sensors installed on 
mobile robots 

4 Crops diseases Bacteria, fungi, viruses Stationary sensors + 
HD Cameras 

+mobile robots 5 Intruders Insects, rats, bugs, worms 
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Parameters of type 1 and type 2 in Table 3.1 are simpler to monitor by stationary sensors 

or wireless sensor networks. Parameters of type 3 are usually monitored by sensors that are difficult 

to be fixed on leaves or stems where they need to be monitored. In our scenario, sensors for 

monitoring type 3 are installed on mobile robots, and robots navigate to the crops which are needed 

to be checked. Parameters of type 4 and 5 are usually to be sensed or captured by optical/thermal 

sensors or HD cameras; however, they are limited by computing ability and memory, photos 

transmitted may not be clear enough to be analyzed. Therefore, humans sometimes still need to 

dispatch a robot to obtain more information. 

Cloud platform 

The agricultural cloud platform in our model is used in the agricultural field based on a few 

server clusters. It contains two components, which are cloud storage and cloud computing/expert 

system, and not only stores a great deal of sensing data, but provides services, such as crop diseases 

analysis, intruders’ alarm, and stresses identified. Agricultural cloud is constructed based on cloud 

computing theory and technology with the advantage of low cost, keeping and maintaining rich 

resources, and reducing the burden on farmers. According to the trained database, an expert system 

can determine whether there are particular stresses on crops or plants. For instance, if there is a 

disease on plant leaves, cameras take and transmit images to the cloud platform, after expert system 

processing, and an appropriate alarm is delivered to farmers. It is the prior and current art of 

machine learning and artificial intelligence. We do not focus on how to establish and train the 

expert system in this study. Here we focus on how the agricultural CPS can be controlled by 

collaborative workflow to monitor, detect, and respond to agricultural stresses. 

Transmission mode 

The network layer provides routing and data aggregation services. As shown in Figure 3.1, 

in the framework of CPS, sensors transmit data to sink nodes, cameras, and sink nodes connect to 

the gateway through wireless links. The gateway connects the agricultural cloud by GPRS/4G, 

Internet, WIFI, or local area networks. Human operators or farmers can access agricultural data 

through a web browser or smartphone, which enables them to resolve a problem in real-time. The 

detailed transmission technologies are shown in Table 3.2. 
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Table 3.2. Communication technologies applied in CCP-CPS 

Connect methods Application areas Connection attribute 

ZigBee Sensors to sensors; sensors to sink nodes; 
robots to sensors or sink nodes Wireless link 

GPRS/4G, Internet, 
WIFI, LAN 

Gateway to the agricultural cloud; 
agricultural cloud to the web browser 

(users) or smartphone; robots to a 
gateway 

A wired or wireless 
link 

Agricultural robots and other actuators 

Sensors monitor the physical environment, and actuators activate physical processes. The 

terminal computation module contains basic executive rules of an actuator and has a small storage 

capacity of real-time data. For instance, if temperature, humidity, and solar radiation do not match 

the preset parameters, the interfaces between software and hardware trigger the corresponding 

hardware/actuation equipment to adjust automatically. Therefore, we pay much attention to 

agricultural robots in our model. The design of an agricultural robot is to aid detection in particular 

situations for particular stresses. Though sensors can do much of the monitoring work and can 

obtain pictures or photos, they are limited by power, fixed location, and transmission ability. For 

instance, suppose the agricultural expert system finds out there may be an abnormal situation, such 

as fungi on plant leaves, according to photos obtained by cameras. It is challenging to decide what 

kind of disease, and at what scale it happens, because the data transmitted by WSN are insufficient, 

or unclear. That is why farmers need a mobile robot to reach the nodes which convey ambiguous 

images in that scenario. When the robot arrives at the given location, cameras installed on the robot 

could take more pictures or record a video and transmit them to an agricultural expert system to 

carry out further analysis. That is a reasonable requirement for the robot because it can be designed 

as a mobile service with powerful computing ability, large memory, and sufficient electrical power. 

According to the descriptions above, we can determine the computational structure of an 

agricultural robot for CCP-CPS, as shown in Figure 3.3. The purpose of the robot computer is to 

run the necessary software for interfacing with the robot platform and sensors, sensor information 

processing, mission planning and execution, navigation, implementation control, user interface, 

network communication. 
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Figure 3.3. Computational structure for CCP-CPS agricultural robot 

 

3.1.2 CCP-CPS design  

The workflow for the CCP-CPS framework is shown in Figure 3.1. The details of the 

workflow can be described as following. 

Step 1 CCP-CPS system initialization. 

Step 2 Sensors have been triggered to monitor the greenhouse. 

Step 3 Sensed data have been transmitted to the agricultural cloud. 

Step 4 Data have been saved in the agricultural cloud storage. 

Step 4 An agricultural expert system has analyzed  

Step 6 If no stresses have been found, no action. 

Step 7 If confirmed stresses have been detected, the corresponding mechanism will be 

triggered. 

Step 8 If an agricultural expert system cannot confirm because photos are unclear or 

insufficient, then produce an informed alarm signal and deliver it to humans. 
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Step 8.1 Humans order a robot to navigate to a given area to collect more data upon 

receiving the alarm signal. 

Step 8.2 The robot is launched to navigate when it receives an order from humans. 

Step 8.3 The robot takes photos or records videos when it reaches the given crops 

in terms of the order. 

Step 8.4 The robot transmits the data to the agricultural cloud when it finishes the 

collection. 

Note: for Step 4 and Step 5, the Agricultural expert system detects again according to the 

new data; if stresses can be confirmed, the procedure turns to Step 7, otherwise Step 8. 

If human operators receive two consecutive alarm signals for a given plant or sensor packet, 

they can decide whether to order a robot to check the area or check by a farmer. The pseudo-code 

is shown below. The workflow is described by a chart with conversion conditions, as shown in 

Figure 3.4. 

 
 -./0/1/2	4. 6:	88- − 8-: 
1. CCP − CPS	system	initialization 
2. Sensors	have	been	triggered	to	monitor	the	greenhouse 
3. Sensed	data	have	been	transmitted	to	the	agricultural	cloud 
4. Data	have	been	saved	in	the	agricultural	cloud	storage 
5. The	agricultural	expert	system	has	analyzed	data 
6. UV	No	stresses	have	been	found,Z[ 
7. No	action 
8. \]^\	UV	Confirmed	stresses	have	been	detected, Z[ 
9. The	corresponding	mechanism	is	triggered 
10. \]^\	UV	Agricultural	expert	system	cannot	confirm,Z[ 
11. Alarm	signal	and	deliver	it	to	humans 
12. Humans	order	a	robot	to	collect	more	data 
13. The	robot	is	launched	to	navigate	 
14. The	robot	takes	photos	or	records	video 
15. Robot	transmits	the	data	to	the	agricultural	cloud 
16. \cZ	UV 
17. Protocol	Terminated 
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Figure 3.4. CCP-CPS relationship diagram 

 

 

 

Figure 3.5. CCP-CPS workflow chart 
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3.1.3 Collaborative control theory in CCP-CPS 

Collaborative architecture for CCP-CPS 

To achieve the required tasks, collaborations are needed to utilize resources available in 

the system effectively. Collaborations will enable a more efficient system with fewer errors. In the 

model, collaboration can be categorized into five levels: collaborative sensing, collaborative data 

processing, collaborative communication, collaborative acting, and collaborative control (Figure 

3.6). 

 

Figure 3.6. Collaborative architecture for CCP-CPS 

 

Collaborative sensing happens with sensors measure sensing environment data and static 

plant physical attribute data. When data are measured, a mobile robot that is equipped with sensors 

needs to approach the target and sense attributes such as leaves’ temperature, soil humidity, disease 

on stems. Collaborative processing means a mobile robot is equipped with a computer that can 

analyze data for application needing high-performance computing high-resolution image 

processing, video processing, and pattern recognition. This collaboration is critical when the 

operation areas are far from the base point or when results from processing are needed in real-time 

control to activate remedy actions. Collaborative communication is a significant part of CCP-CPS. 

In many situations, a mobile robot downloads data from the sensor, and at the same time, it receives 

data from sensors that are installed on it. All data are combined and transmitted to the expert system 
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or human operation to diagnose disease of the plant on time. Collaborative acting requires human, 

a robot, and sensors to coordinate to perform monitoring, detecting, and responding effectively. 

The collaborative acting is critical for enabling real-time control for detecting stress in plants and 

achieving high-quality results. Collaborative control requires the different control mechanisms to 

work synchronously to achieve a specific task, effectively use resources, provide safe operations, 

and control the fault-tolerant mechanisms.   

Collaboration requirement plan (CRP) 

For the workflow and referring to the CRP principle in CCT, two stages of CRP, CRP-I, 

and CRP-II are deployed. In CRP-I, a detailed plan is generated, based on the work objectives and 

available resources. In CCP-CPS, CRP is utilized to assign and manage tasks and resources in CPS. 

Figure 3.2 presents the initial assigning tasks to resources.  

In the second stage CRP-II plan execution & revision, Figure 3.7 shows an application of 

the CRP plan in agricultural CPS. CRP-II executes the plan generated by CRP-I real-time and 

revises the plan following spatial and temporal challenges, changes, and constraints. The purpose 

of CRP-II is to assign or reassign tasks to resources. CRP-II identifies all existing plans for each 

task, resolves the conflicts between the plans, and supports collaboration within a plan. 

 

 

Figure 3.7. CRP architecture for agricultural CCP-CPS 
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Error prevention and conflict resolution (EPCR) 

EPCR Principle deals with cyber-supported detection of errors and conflicts among 

collaborating agents, and the cost associated with resolving the detected errors and conflicts. 

Naturally, any system that cannot overcome its errors and conflicts effectively will get out of 

control and eventually collapse.  

Refer to the definition of C&E, in the CCP-CPS model, the errors and conflicts may emerge 

at any device or cell. In this study, C&E by sensors, robots, and humans are mainly considered.  

The following example illustrates an error and conflict produced by a robot. Suppose the 

robot navigates at a greenhouse at 10 a.m. according to a scheduled routine. During the process, it 

receives an order from a farmer to arrive at a given location where data delivered by a stationary 

sensor were found to be suspicious. Define a navigating task as !+&,$, and a locating task as 

!+&,%, and two agents are matching them, respectively, define a conflict for the robot at time t as 

follows. 

∃(!+&,$(f) ∩ !+&,%(f))
&'("!	*(+,-+#.	/	$	!&.0
i⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯klmn%o1+-2*(f)p	 

 

When a conflict (l) occurred in the ARS at multiple agents at time f (n%o1+-2*(f)), first, 

there is a mechanism to detect the conflict; for instance, the robot can call an interrupt to report 

the conflict to the farmer or control center. The following steps are specified for the algorithm to 

resolve a conflict in this scenario, and the result presents in Figure 3.8. The robot will respond to 

the emergent event (new order) first, even during the process of pre-scheduled navigation. 

The followings are the Resolve conflict in robot tasks algorithm together with the pseudo-

code.  

Step 1 Detection. A control module on the robot calls an interrupt to report the conflict to 

the farmer or control center. 

Step 2 Identification. According to the definition of conflict, a control center identifies it 

is a conflict. 
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Step 3 Diagnostics. Control center determines the type, magnitude, time, and cause of the 

out-of-control status. 

Step 4 Control center analyzes, predicts, and prevents propagation of the conflict. 

Step 5 Conflict resolution. The control center resolves the conflict with a method that 

defines every event priority. For example, a mechanism is set to the event’s priorities. Define 

regulations as:  

• Regular events’ priorities are lower than emergent events.  

• Earlier emergent events’ priorities are higher than later emergent events’ 

priorities. (It can be changed with emergency priority code if needed.) 

• A robot can execute only one event task (order) at time f. 

Step6 Exception handing. Managing exceptions, i.e., constructive deviations from the 

process. In this example, the robot will respond to the emergent event (new order) first, even during 

the process of pre-scheduled navigation. Figure 3.8 shows the process. 

 

 

Figure 3.8. Robot conflict propagation and the resolution process (Guo et al., 2017) 
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The pseudo-code of the Resolve conflict in the robot tasks algorithm is presented below. 

 q2r/.s0tu	4. v:	wxy/2zx	1/{|2s10	s{	./}/0	0~y�y 
1. ZÄÅÄÇÅÉÑÖ 
2. n	*'Üf)'á	#'à(á$	'Ü	fℎ$	)'ä'f	*+áá&	+Ü	"Üf$))(ãf 
3. %$ã')f	fℎ$	*'Üåá"*f	f'	fℎ$	å+)#$)	')	*'Üf)'á	*$Üf$) 
4. UçÄÖÅÉéÉÇèÅÉÑÖ 
5. l'Üf)'á	*$Üf$)	"à$Üf"å"$&	+	*'Üåá"*f 
6. ZÉèêÖÑëÅÉÇë 
7. í$f$)#"Ü$&	fìã$,#+îÜ"f(à$, f"#$	+Üà	*+(&$ 
8. nÜ+áìï$&, ã)$à"*f&, +Üà	ã)$ñ$Üf&	ã)'ã+î+f"'Ü	'å	*'Üåá"*f 
9. ZÄéÉÖÄ	óÄêòôèÅÉÑÖë 
10. %$î(á+)	$ñ$Üf&’	ã)"')"f"$&	+)$	á'õ$)	fℎ+Ü	$#$)î$Üf	$ñ$Üf& 
11. ú+)á"$)	$#$)î$Üf	$ñ$Üf&’	ã)"')"f"$&	+)$	ℎ"îℎ$)	fℎ+Ü	á+f$) 
12. ùf	*+Ü	ä$	*ℎ+Üî$à	õ"fℎ	$#$)î$Ü*ì	ã)"')"fì	*'à$	"å	Ü$$à$à 
13. %'ä'f	*+Ü	$û$*(f$	'Üáì	'Ü$	$ñ$Üf	f+&,	(')à$))	+f	f"#$	f	 
14. \üÇÄ†ÅÉÑÖ	°èÖçÉÖê 
15. ¢+Ü+î"Üî	$û*$ãf"'Ü&, ". $. , ã)'*$&&	*'Ü&f)(*f"ñ$	à$ñ"+f"'Ü& 
16. Algorithm STOP 

 

3.1.4 Monitoring alternatives 

In order to understand the impact of CPS, two schemes for monitoring greenhouse crops 

are considered; 1) CPS scheme for monitoring greenhouse crops, 2) Non-CPS scheme for 

monitoring greenhouse crops. Because CPS that allows real-time control and communication 

among system agents, the first scheme can include humans, robot, and sensors which is the CCP-

CPS design. As Non-CPS scheme has a limitation in connection, communication, and 

collaboration from human to robot and sensor agents, the system can only have a mobile robot 

equipped with multiple sensors and no human in the design.  Next, each scheme will be described 

in detail.  
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CPS Scheme 

In the CPS scheme, three main agents (humans, robots, and sensors) are collaborating as a 

system. Hyperspectral sensors are mounted on a mobile robot, and it reaches assigned locations to 

inspect plants. Figure 3.9 (left) presents the CPS scheme workflow of operation procedure and 

operation time of each step (in parentheses). As illustrates in Figure 3.9 (right), the monitoring 

process by the CPS scheme begins at a Base Point where human operators work, and a mobile 

robot starts. The robot travels which takes time (!"#$$) to the assigned location. At the location, 

the inspection process is performed. !"#$%, !"#$3, !"#$4, and !"#$5 are used for localization, 

obtaining images, moving manipulator, and sensors operation, respectively. After parameters are 

measured, and signals are transmitted to human operators who take !"#$6 to determine the quality 

of the data, the human operators may, in turn, assign the robot to re-measure the parameter if C&E 

happens during the operation or measure additional parameters such as additional images or 

temperature for a better decision or conclusion about the status of such plant. Otherwise, the robot 

moves to the next location, and the process repeats until the robot visits all locations.  

 

 

Figure 3.9. CPS Scheme 
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Non-CPS Scheme 

In the Non-CPS scheme, the system consists of a mobile robot and multiple sensors that 

are mounted on the robot. Figure 3.10 (left) describes the Non-CPS scheme workflow and its 

operation time (in parentheses). Also, the pictorial of the scheme is illustrated in Figure 3.10 (right). 

Similar to the CPS scheme, the monitoring process starts at the Base Point. With the same 

conditions of the robot, it takes !"#$$ to move to the assigned location. Robot and sensors require 

the same amount of time to perform the inspection process; !"#$%, !"#$3, !"#$4, and !"#$5. In 

this scheme, however, the real-time response about data quality is not possible because of no CPS 

facilitating; thus, no response from human operators. The robot will not transmit information to 

the Base Point, but it will move to the next location immediately. The process will reiterate until 

all locations are visited, and the robot moves back to the Based Point location. At Base Point, data 

will be transferred to a computer, and if additional information is needed, the robot will be 

dispatched again to obtain the missing data from the specific locations which will take time to re-

operate as !"#$$7 , !"#$%7 , !"#$37 , !"#$47 , and !"#$57 . 

 

 

Figure 3.10. Non-CPS Scheme 
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 Experiments and results 

Three experiments by computer simulation have been conducted to evaluate different 

perspectives and performance (Sanchez & Wan, 2015) of the two monitoring frameworks; CPS 

scheme and Non-CPS scheme. 

3.2.1 Experiment 3.1 – Total operation time 

The first experiment aims to compare the total operation time of the two schemes. In the 

experiment, the same parameters (i.e., movement speed, inspection rate, and C&E rate), target 

locations, and maps are assigned to both schemes. The two schemes need to complete the assigned 

tasks, and the total operation time for each scheme are captured. The scheme which has lower total 

operation time is considered as a superior scheme. 

Results and analysis 

The results from the 100 computer simulation replications are presented in Table 3.3. While 

the results show similar outcomes from the two schemes in the average operation time (0.16% 

different), the standard deviations (SD) are significantly different (810.34% different). To compare 

the differences between both operation times, the t-test is conducted with the null hypothesis 

indicates the two schemes have the same operation time. Because the p-value is less than 0.005, 

the null hypothesis is rejected. Therefore, the CPS scheme has statistically lower in average 

operation time than the Non-CPS scheme at a 99.5% confidence level. 

Table 3.3. Experiment 3.1 results 

 CPS Scheme Non-CPS Scheme 
Average operation time (second) 873.20 874.61 

SD of operation time (second) 0.29 2.64 

3.2.2 Experiment 3.2 – Conflicts and error tolerance 

The second experiment tests the two schemes with different probability of C&E. Because, 

in agriculture context, C&E can be expected, the scheme which has lower sensitivity to C&E or, 

in other words, has higher C&E toleration is the preferred scheme. By having C&E toleration, the 
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total operation time will not increase, or increases increase with the lower rate. In the experiment, 

the two schemes which are assigned with the same map, tasks, and parameters are given a 

probability of C&E from 0% (C&E free, ideal system) to 90% with a 10% increment step. Lastly, 

the total operation time for both schemes is measured and analyzed. 

Results and analysis 

The results from the 100 computer simulation experiments are shown in Figure 3.11. The 

results show that, for both schemes, the total operation time is increased when the system has a 

higher probability of C&E. The average operation time of the CPS scheme, however, increases at 

a slower rate compares to the Non-CPS scheme. The T-test is conducted to compare the average 

operation time of both schemes at each C&E level. Because the p-value at each C&E level is less 

than 0.005, the CPS scheme has statically lower operation time than the Non-CPS scheme with a 

99.5% confidence level.  

 

 
Figure 3.11. Experiment 3.2 results 
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3.2.3 Experiment 3.3 - Emergency response 

The third experiment has an objective to capture emergency response performance. 

Because emergencies such as plant disease, unexpected plant conditions, and a new request from 

human operators can happen in a greenhouse, the scheme which can respond faster and more 

accurately would prevent yield loss and be considered as a better scheme.  

In the experiment, human operators assume to know critical information of plants and 

diseases such as characteristics of infected plants, characteristics of plant diseases, and severity of 

diseases (Mahlein, 2016). Hence, in the CPS scheme, after an emergency, e.g., plant disease, 

happens, the robot will receive an emergency procedure from human operators or a knowledge-

based expert system that the robot can respond and follow immediately. Non-CPS scheme, 

however, the robot does not have any specific procedure or direction from human operators or an 

expert system. Therefore, the robot needs to randomly inspect plants surrounding the infected 

location to find the propagation direction before responding to the emergency. 

Results and analysis 

The result from 100 computer simulation experiments is presented in Table 3.4. The 

average response time to an emergency and SD of the CPS scheme is significantly lower than the 

other. When CPS is applied, the robot can focus only on the direction of disease propagation 

provided by human operators or expert systems. On the other hand, without CPS, the robot needs 

to inspect plants one by one, which is less efficient and therefore requires a longer completion time. 

Moreover, with the assumptions about human operators’ knowledge, not only time and cost of 

operation are reduced, the environmentally friendly crop production system is promoted as 

pesticides are minimizing to use (Gebbers & Adamchuk, 2010). 

Table 3.4. Experiment 3.3 results 

 CPS Scheme Non-CPS Scheme 
Average operation time (second) 1122.05 13061.56 

SD of operation time (second) 60.65 1485.971 
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3.2.4 Conclusion and discussion 

The study demonstrates a significant relative advantage of CPS in CCP-CPS. Because of 

the framework, communication, and collaboration among CCP-CPS agents, humans, a mobile 

robot, and sensors are possible and useful. The study demonstrates a framework, workflow, as well 

as application of CCT and CPS in an agricultural greenhouse setting. The framework includes 

humans, a mobile robot, and sensors. An agricultural CPS aims at collaborative monitoring, 

detection, and responses to stresses at identified locations. The workflow of the CPS environment 

is designed and tested in the study. 

To validate the model for the integration and collaboration of CCP-CPS, computer 

simulation is utilized to perform the experiments. The results show that integrating a CPS 

environment with the CCP, a system can reduce the total operational time for monitoring and 

detection, thanks to faster and more effective communication among participating agents. Also, 

the system has relatively higher fault tolerance. With conflicts and errors occurring in a system, 

collaboration among agents in the system can endure them better and stabilize the continuity, hence 

the available operational time of the system. In other words, it can operate more harmoniously. 

Lastly, a CPS can enable better emergency response compared to the alternative system designs. 

Because collaboration among agents in the system is managed under the CPS environment, CCP's 

performance is effectively improved. 
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 COLLABORATIVE CONTROL PROTOCOL FOR EARLY 
DETECTION OF STRESS IN PLANTS (CCP-ED) 

In this chapter, a protocol which can capture plant characteristics and coordinate among all 

collaborating participant in the system to work most effectively is developed and validated. 

Collaborative control protocol for early detection of stress in plants (CCP-ED) has three main 

algorithms: routing algorithm, adaptive search algorithm, and detection algorithm 

(Dusadeerungsikul & Nof, 2019; Dusadeerungsikul, Nof, & Bechar, 2018). Recent research about 

robotics in agriculture does not consider collaboration yet. Therefore, the current system cannot 

overcome some key issues such as C&E, efficiency, and production cost. CCP-ED has been 

developed to solve this issue by focusing on collaboration among agents in the system (humans, 

robots, and sensors). Besides, by considering C&E during experiments, it will reflect the real 

system condition.  Lastly, the adaptive search algorithm is developed to reflect plant characteristics. 

 Task description 

As discussed in the system scope assumption (Section 1.2.1), the ARS is to monitor the 

status of plants in the greenhouse. Humans, robots, and sensors are work as a team by having 

decision-makers (humans), a facilitator (robot), and inspectors (sensors). As a robot will move in 

a greenhouse and carry sensors that have detection agent, a robot tour which guide direction of a 

robot in a greenhouse environment is required to perform planning in an unstructured but 

predictable, knowledge-based environment.  

After all, locations to visit is selected, a robot is guided from the Human-Robot Base Point 

(see Figure 4.1) to the locations by the robot routing algorithm. There, it will acquire sensor data 

about any stress among the sampled local plants. Data collected from each location can indicate 

the potential of the crops as either being under control (meaning, unstressed) or not. When a plant 

displays unusual stress, surrounding plants may already have the same problem.  

Given scientifically established stress and disease behaviors for certain predictable diseases, 

the stress and disease will more likely spread in specific known directions. Such directional spread 

may be influenced by sunlight and other light sources, by airflow direction, and other causes. 
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Suppose, for example, that Northern and Western greenhouse directions tend to have relatively 

more stressed plants, given one stressed plant was found at a specific inspected location. Hence, 

the adaptive search algorithm needs to further check at the surrounding plants in those directions. 

The adaptive search algorithm cannot have information about the stress of a particular plant until 

it reaches each sampled location. The algorithm needs to be adaptive based on new information 

found during the operation period (possibly updated by remote experts). Figure 4.1 illustrates the 

situation described above. 

 

 

Figure 4.1. Agricultural robotic system operation; North and West propagation directions 

assumed as given by experts for this crop season 

 CCP-ED 

The protocol is derived from the Collaborative Control Theory (CCT) principles. The 

system components are considered as agents that have the mutual goal of saving cost (time) while 

finding as early as possible the maximum number of stressed or already infected crops. The system 

agents need to collaborate intelligently to perform the task effectively. As all agents of the system 

are working together, this is “Mandatory Collaboration,” or collaborate as required.  

The collaborative control protocol is designed to integrate agents in the ARS system to 

work seamlessly. The protocol design starts with creating Collaborative Requirement Planning 
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(CRP), which helps the designer to allocate tasks to agents. After the planning of tasks has 

completed, potential conflicts and errors in the system and its operations are discussed. Lastly, the 

step by step protocol which combines the routing algorithm and adaptive search algorithm is 

explained. 

4.2.1 Collaboration Requirement Planning (CRP) 

By applying the CRP concept to design the ARS system, we can obtain as follows. 

CRP-I: Plan Generation 

Referring to the CCT framework, the initial route can be mapped with CRP-I, which is the 

planning phase. In order to develop the CRP-I, establishing the requirements generating from the 

Collaboration Requirement Metrix (CRM) is necessary. CRM can be expressed as follow. 

 nñ"á+äá$£%$&'()*$8§ × !+&,9 	→ 	l%¢ 
(4.1) 

nñ"á+äá$£%$&'()*$8§  denotes the set of %$&'()*$9  available for each !+&,9 . !+&,9 

denotes as tasks and %$&'()*$"  denotes available agent or group of agents. The matrix will 

generate l%¢  which contain l%¢£!+&,9 , %$&'()*$8§ = 0   when resource %$&'()*$9  is not 

available for task !+&,9 .	  and l%¢£!+&,9 , %$&'()*$8§ = 1    when resource %$&'()*$8 	 is 

available for task !+&,9. 

For this situation, at each location, the robot inspects several parameters to the defined task, 

and only one robot is required in this ARS. The system will have several types of tasks !+&,9  in 

CCP-ED. 

!+&,$ = compute the routing 

!+&,% = moving to the location 

!+&,3 = measure the parameter 

!+&,4 = error and conflict checking 



 

 

73 

!+&,5	= stress status checking 

!+&,6 = decision making 

For the agent or group of agents	%$&'()*$9, one can define the following team: 

%$&'()*$$ = robot 

%$&'()*$% = sensors 

%$&'()*$3 = human 

%$&'()*$4 = team of robot and sensor 

%$&'()*$5 = team of robot and human 

%$&'()*$6 = team of sensor and human 

%$&'()*$: = team of a robot, sensor, and human 

Therefore, the l%¢ matrix, which has a group of agents in a row and task in a column, is 

derived as follows to define what collaboration modes are feasible. 

l%¢ =	

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 1 1
0 1 1 0 0 0
1 1 0 1 1 1
1 0 1 1 1 1
1 1 1 1 1 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

CRP-II: Plan Execution & Revision 

CRP-II is the execution phase that obtains the plan from CRP-I.  When more information 

is obtained during the process, the plan from CRP-I can be adjusted, which is the CRP-II role.  

In this situation, the initial plan created for routing and inspecting tasks needs to be 

generated. The plan will define the route and parameters that are needed to be measured by sensors. 
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Therefore, the plan will define a route of a mobile robot, an order of locations to be visited, an 

order of information to be obtained at each location, and assignment of a sensor(s) to measure 

parameters.  Also, the plan will be updated over time based on new information found during the 

monitoring process, and the sequence of the location will be updated.   

4.2.2 Error Prevention and Conflict Resolution (EPCR) 

In the ARS, there are potential conflicts and errors. CCP-ED will take potential conflicts 

and errors into account by having conflict and error rates in the protocol and during experiments. 

Having conflict and error rates, the real performance of the protocol can be analyzed. 

Error prevention and conflict resolution (EPCR) principle will help to resolve conflicts and 

errors as early as possible. Errors occur when the input, output, or intermediate result of ARS does 

not meet specifications or expectations. Error is defined as follows. 

 ∃úmn%o;9"'<((f)p, "å	o=>;!"#$%&(f)
?9..&!9.,@
i⎯⎯⎯⎯⎯⎯k	∞+(f) 

(4.2) 

Where ú is an error, n%o;9"'<((f) is ARS’ single agent at time f, o=>;!"#$%&(f) is the state 

of ARS agent at time f, and ∞+(f) is the set of constraints, ), at time f.  

Moreover, conflict refers to the difference between the information, goals, plans, tasks, 

operations, or activities of the collaborating agents. Conflict is defined as follows. 

 ∃lmn%o1+-2*(f)p, "å	o=>;'()*+(f)
?9..&!9.,@
i⎯⎯⎯⎯⎯⎯k	∞+(f) 

(4.3) 

Where l is conflict, n%o'+-2*(f)is a group of ARS’ agents at time t, o=>;'()*+(f) is the 

state of the group of ARS agent at time f, and ∞+(f)  is the set of constraints, ), at time f.  

If dissatisfaction of conflicts or errors is found, conflicts or errors are detected and need to 

be solved. According to the definition of errors and conflicts, potential errors and conflict are 

described in Table 4.1. 
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Table 4.1. Major potential errors and conflicts examples in ARS planning and control 
Type Example Collaborator(s) State Constraint 

Error Path error Human Human inputs wrong data 
and parameters 

The objective of the 
routing 

Error Routing 
error Robot Robot cannot move 

according to routing plan Robot’s goal 

Error Measuring 
error Sensor(s) Sensor measures the wrong 

parameter Sensor’s goal 

Conflict Command 
conflict 

Human and 
Robot 

Human commands the robot 
to deviate from initial route 

Human/operator 
objective 

Conflict Information 
conflict 

Human and 
sensor 

Human does not receive 
information on time 

Sensor’s 
objective/capacities 

Conflict 
Time 

measuring 
conflict 

Robot and 
sensor 

Robot moves to a new 
location, but sensor has not 

yet finished measuring 

Robot’s and 
sensor(s)’ 

objectives/capacities 

Conflict Transition 
conflict 

Human, robot, 
and sensor 

A robot does not send 
information to human 

Robot’s capacity; 
Sensor’s capacity 

Conflict Sensor 
conflict 

Multiple 
sensors 

Two sensors provide 
different results Sensor’s capacity 

Conflict Human 
conflict 

Two or more 
humans 

A decision from two 
humans are different Human’s capacity 

 

4.2.3 Elements in CCP-ED 

CCP-ED’s objective is to utilize resources available to detect stress in greenhouse crops. 

The following sections describe CCP-ED in detail. 

Decision variables: 

û98 =	±
1	"å	n%o	f)+ñ$)&$	å)'#	"	f'	≤

0	'fℎ$)õ"&$
 

ì9 =	 ±
1	"å	n%o	&$+)*ℎ	+f	á'*+f"'Ü	"

0	'fℎ$)õ"&$
 

Parameters: 

*98 = f)+ñ$á	*'&f	å)'#	"	f'	≤ 

ã8 = ã)'*$&&"Üî	f"#$	+f	Ü'à$	≤ 

ã′8 = $ûf)+	ã)'*$&&"Üî	f"#$	+f	Ü'à$	≤ 

¥8 = &$+)*ℎ"Üî	f"#$	+f	Ü'à$	≤ 
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¥′8 = $ûf)+	&$+)*ℎ"Üî	f"#$	+f	Ü'à$	≤ 

µ8 = ã)'ä+ä"á"fì	f'	å+"á	f'	"Ü&ã$*f	+f	Ü'à$	≤ 

∂8 = ã)'ä+ä"á"fì	f'	å+"á	f'	&$+)*ℎ	+f	Ü'à$	≤ 

! = f'f+á	+ñ"äá$	f"#$ 

!′ = f'f+á	ã)'*$&&"Üî	f"#$ 

í = !'f+á	Ü(#ä$)	'å	"Üå$*f$à	á'*+f"'Ü&	å'(Üà 

à9 = Ü(#ä$)	'å	"Üå$*f$à	ãá+Üf&	å'(Üà	à()"Üî	'ã$)+f"'Ü	+f	á'*+f"'Ü	" 

4.2.4 CCP-ED design 

This section, CCP-ED step, is presented together with pseudo-code as below. The protocol 

which aims to detect stress in crops has three main algorithms; routing algorithm, adaptive search 

algorithm, and stress detection algorithm. The stress detection algorithm (Wang et al., 2019) is 

utilized and not be discussed in this study as the focus is on the ARS collaborative system. First, 

the protocol steps are presented as follows by pseudo-code for the protocol. 

Collaborative control protocol for early detection of stress in plants (CCP-ED) steps 

Step 1 Sample n nodes  

Step 2 Create a tour for n nodes by routing algorithm 

Step 3 If cij < T – T’, visit node j and T’ = T’ + cij 

Else End algorithm 

Step 4 If pj < T - T’, inspection at j with probability of reinspection  µ8 and T’ = T’ + pj  

Else go to Step 3 

Step 5 If the sensor finished the task go to Step 6 

  Else, if p’i < T - T’, spend p’j to finish the measuring task and T’ = T’ + p’j 

Step 6 Checking the quality of data obtained from the sensor, if good, go to Step 7. 
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  Else, re-measure the data and T’ = T’ + pj + p’j 

Step 7 If the status of node j is good or q > T - T’, then go to Step 10 

  Else, make decision yi for search with a probability of re-searching	∂8, T’ = T’ + qi 

ì9 =	±
1	&$+)*ℎ"Üî	å')	fℎ$	&())'(Üà"Üî	+)$+	å')	fℎ$	&(&ã$*f$à	ãá+Üf

0	'fℎ$)õ"&$
 

  For searching the surrounding area, the ARS will use time qi 

Step 8 If the sensor finished the task go to Step 9 

  Else, if q’i < T - T’, spend q’j to finish the searching task and T’ = T’ + q’j 

Step 9 Checking the quality of data obtained from the sensor, if good, go to Step 10. 

  Else, re-measure the data and T’ = T’ + qj + q’j 

Step 10  Update D = D + dj, then do to Step 3. 

The pseudo-code for CCP-ED is presented below. 

 -./0/1/2	∑. 6:	88- − ∏π 
1. CCP − CE	initialization 
2. Routing	algorithm	generates	an	initial	tour 
3. ªºw	"	from	1	to	#locations 
4. Detection	Algorithm	investigate	location	" 
5. æª	Detection	Algorithm	found	stress, πº 
6. Adaptive	Search	is	activated 
7. ∏øπ	æª 
8. ∏¿:∏	ªºw 
9. Protocol	Terminated 
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A routing algorithm for agriculture robotics algorithm 

As the route of the robots can be represented as a TSP, traveling salesman problem can be 

formalized as follows. 

Let 

û98 =	 ±
1	"å	fℎ$	n%o	f)+ñ$)&$	å)'#	"	f'	≤

0	'fℎ$)õ"&$
 

*98 = *'&f	å)'#	"	f'	≤ 

Objective function: 

 min ï =¡¡*98û98

"

8A$

"

9A$

 
(4.4) 

 

Subject to: 

 ¡û98 = 1

9

; å')	+áá	≤ 
(4.5) 

 ¡û98 = 1

8

; å')	+áá	" (4.6) 

 ¡¡û98
8∈.̅9∈.

≥ 2; å')	+áá	"	+Üà	≤ (4.7) 

 û98 	ä"Ü+)ì	å')	+áá	"	+Üà	≤ (4.8) 

The objective function (4) is to minimize the cost of traveling from i to j. 

• If xij = 1, meaning that there is a tour from i to j. Therefore, in TSP, one would like 

to minimize the cost of travel from node i to j by the sum of a tour that has the 

smallest cost cij. 

Constraint (5) is the constraint that forces all nodes has only one incoming arc. 

• For all nodes, j will have only one arc from node i. 
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Constraint (6) is the constraint that forces all nodes has only one outgoing arc. 

• For all nodes, i will have only one arc out to node j. 

Constraint (7) is sub-tour elimination constraint. 

Let o and o̅ be the partition of the integer i = (1, 2… n) so that	o ∩ o̅ = 	∅	+Üà	o ∪ o̅ = 	". 

When we partition a group of nodes, as mentioned above, this constraint ensures that every 

partition has at least two arcs. It means at least one arc-in and one arc-out for each partition. 

Because of this constraint, one can ensure that the sub-tour is eliminated.  

Figure 4.2 (from Bellmore and Nemhauser, 1968) shows how constraint (7) can eliminate 

sub-tours. Which (a) has a sub tour since there is no path from o to o̅ but (b) and (c) do not have 

any sub-tour since there are two or more arcs from o to o̅. 

 

 

Figure 4.2. Sub-tour elimination 

 

The mathematical model presented above is an NP-hard problem that cannot be solved in 

polynomial time. To guide a mobile robot to visit sampled locations, an effective routing algorithm 

that can create an optimal or near-optimal tour is needed. An effective routing algorithm can save 

traveling time for mobile robots and allow the ARS system to spend more time on finding infected 

plants. In this work, a genetic algorithm is applied to find a tour for a mobile robot. The algorithm 

steps and pseudo code are as follow. 
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Step 1 Generate initial population: 1,000 initial population (tour) are randomly generated 

by having the same probability of choosing each path. Each chromosome in this genetic algorithm 

is the list of locations that a mobile robot will visit. Also, all initial populations are feasible 

solutions with different fitness values. No initial tours are eliminated. 

Step 2 Select parents: roulette wheel selection rule is used in the algorithm to select a 

parent based on fitness value (total distance). Roulette wheel selection rule will give more chances 

to select a chromosome with better fitness value. Only the selected chromosome will move to 

crossover (Step 3) and mutation (Step 4). 

Step 3 Crossover: single-point crossover is implemented in the algorithm with 0.9 

probability of successful crossover. 

Step 4 Mutation: mutation is performed by switching randomly two locations (two genes) 

in each chromosome. The probability to successfully mutate is 0.9. 

Step 5 Evaluation: all new offspring from the mutation step will be evaluated. Only the 

offspring, which has better fitness value (shorter distance), will replace the parent. 

After performing all five steps, the process repeats for 300 iterations (stopping criterion). 

The result is a planned tour for a mobile robot to visit and monitor the stress conditions of inspected 

plants. The algorithm can be translated to pseudo-code as follows. 
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 q2r/.s0tu	∑. 6:	w/»0s{r	~2r/.s0tu	|/.	~r.s1»20».x	./}/0s1y 
1. Initialize 
2. Parameter 
3. Ü	 ← #locations	 × 10 
4. # 
5. ªºw	"	from	1	to	Ü	πº 
6. )'(f$9 ← random	generation	 
7. À"ff$à9 	← The	total	distance	of	each	route 
8. ∏øπ	ªºw 
9. ªºw	≤	from	1	to	#	πº 
10. Select	#	route	base	on	the	roulette	wheel 
11. Single	crossover 
12. Mutation 
13. ªºw	,	from	1	to	#/2	πº 
14. À"ff$à0 	← The	total	distance	of	each	route 
15. \cZ	V[œ 
16. ∏øπ	ªºw 
17. Terminate	Algorithm 

 

Adaptive search algorithm 

The adaptive search algorithm (AS) is an essential part of the collaborative control protocol 

to indicate the severity of disease at plants in a greenhouse. Based on the behavior of a given plant, 

stress and disease usually propagate at scientifically predictable directions. Stress and disease will 

more likely spread at directions influenced by sunlight and airflow, as discussed earlier. Therefore, 

given this knowledge, we can construct an adaptive search algorithm, which can reflect the real 

characteristics of plant stress or disease propagation. 

Suppose Northern and Western directions of the plant in the greenhouse are more likely to 

have similar stress symptoms; therefore, the adaptive search algorithm should further inspect 

plants in the given directions once the first infected plant is found in Figure 4.3. 
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Figure 4.3. Adaptive search when propagation directions are known from previous research 

 
 

Based on the information discussed above, the Adaptive search algorithm steps and pseudo 

code are as follows. 

Step 1 Sensors inspect plant at the sampled location 

Step 2 If the sampled plant has an abnormal condition (sign of stress, diseases), the 

adaptive search algorithm will be activated by starting to search at the first potential locations (L1). 

Step 3 After performing the first search operation, if more than half of the plants inspected 

are also infected, the second search operation (L2) will be activated. 

Step 4 All information about infected locations will be sent to the host. 

By performing four steps of the adaptive search algorithm, farmers can know the 

magnitude and number of stressed or already infected plants, hence plan a precise, localized, and 

safe mitigation procedure. The adaptive search algorithm will be activated once sensors found the 

first signs of stress in the plant. This procedure will save time for searching in unlikely plants’ 

locations. The algorithm can be translated to pseudo-code as follows. 
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 q2r/.s0tu	∑. v:	q–~—0szx	:x~.1t	q2r/.s0tu 
1. Initialize 
2. Parameter 
3. "	 ← plant	status 
4. UV	" = &f)$&&	Z[ 
5. The	adaptive	search	algorithm	is	activated	(“$) 
6. á ← #stress	locations 
7. UV	á > Treshold	Z[ 
8. The	adaptive	search	algorithm	is	activated	(“%) 
9. \cZ	UV 
10. \cZ	UV 
11. Information	transmitted 
12. Terminate	Algorithm 

 

 Experiments  

4.3.1 Experimental setting 

The CCP-ED is applied to computer simulation in order to validate the effectiveness of the 

protocol. With the same operational resources (time, agent capacity, and the number of agents), 

the protocol is tested against alternative protocols. Table 4.2 shows the protocols used in the 

experiment. 

Table 4.2. Alternative protocols design 

Protocol design No. Routing algorithm Search algorithm Inspection Algorithm 
1 (CCP-ED) Genetic Algorithm Adaptive Search OR-AC-GAN 

2 Genetic Algorithm Always Search OR-AC-GAN 
3 Genetic Algorithm None OR-AC-GAN 
4 Random Routing Adaptive Search OR-AC-GAN 
5 Random Routing Always Search OR-AC-GAN 
6 Random Routing None OR-AC-GAN 

4.3.2 Performance metrics 

The following metrics are used for measuring the performance of the protocol in different 

aspects.  
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Number of Infected Plants Found (NIPF) 

The protocol aims to find existing stressed or infected locations in a greenhouse correctly. 

The first metric is the total number of existing stressed/infected locations found. 

 ∞ù‘À = 	¡à9

"

9A$

 
(4.9) 

NIPF = total number of infected plants found 

di = number of infected locations found at location i 

n = number of sampled locations in the greenhouse 

Overall Robotic Effectiveness - ORE  

Overall Robotic Effectiveness (ORE) measures the overall detection ability of the robotic 

system. The measurement comprises three main components: Utilization (U), Performance (P), 

and Success (S). Each of the components measures a different aspect of the system. 

• Utilization (U) measures the proportion of uptime in the total available time for a 

robot in the ARS system.   

• Performance (P) measures the time that a robot performs work (finding infected 

plants) during its uptime. 

• Success (S) measures the percentage of successful operations that have been 

completed by the robot, meaning the proportion of infected plants found out of the 

total number of plants inspected by this robot. 

 ’%ú = ÷ × ‘ × o 
(4.10) 

Where 

 ÷ =	
∑ ∑ (ã9 + ¥9 + *98)

D
9A$

E
8A$

!
 

(4.11) 
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‘ = 	

∑ (ã9 + ¥9)
D
9A$

∑ ∑ (ã9 + ¥9 + *98)
D
9A$

E
8A$

 (4.12) 

 
o = 	

∑ à9
D
9A$

∑ &9
D
9A$

 (4.13) 

 

U = utilization 

P = performance 

S = success 

T = total available time 

pi = inspection time at location i 

qi = searching time at location i 

cij = travel time from i to j 

di = number of infected plants found during operation at location i 

si = number of inspected plants at location i 

M, N = number of sampled locations in the greenhouse 

The above metrics will be applied in the computer simulation experiments, which are 

described in the next chapter. 

4.3.3 Experimental Results 

From 100 computer simulation replication experiments, the results are presented in Figure 

4.4 and Figure 4.3. The results show that CCP-CPS finds a significantly higher Number of Infected 

Plants Found (NIPF). The designed protocol can improve the NIPF by 73% compared with the 

baseline protocol (Protocol#6). 

To test the difference in a mean of NIPF, ANOVA tests are conducted, and results are 

shown in Table 4.3. The ANOVA results show that at least one protocol design yields the 

difference in a mean of NIPF at 0.005 significant level. The more in-depth analysis of protocol 

performance is performed by conducting the Fisher Pairwise comparison tests. The result indicates 

that CCP-CPS yields the highest NIPF, which is the main objective of ARS, indicating stress 

locations in the greenhouse. 
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After that, Overall Robotic Efficiency (ORE), which derives from Utilization (U), 

Performance (P), and Success (S) of the system (Dusadeerungsikul & Nof, 2019) is calculated and 

analyzed to compare resource used. ANOVA test indicates that, based on p-value, which less than 

0.005, at least one protocol has a difference in ORE. Then, the Fisher Pairwise comparison tests 

are performed, and results indicate the CCP-CPS provides the highest ORE value. Because of the 

highest ORE (ORE = 30.23%), the CCP-CPS can be considered as a protocol that can most 

effectively utilize resource (time) given to the system. 

 

Figure 4.4. NIPF under each protocol design 

 

 

Figure 4.5. ORE under each protocol design 
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Table 4.3. ANOVA analysis 

 ANOVA Analysis P-value 
1 The average of NIPF is the same among protocol designs <0.005 
2 The average of ORE is the same among protocol designs. <0.005 

*At significance level 0.05, all null hypotheses shown are rejected 

Analysis of ORE 

With 100 replications of simulation, ORE and its component, ÷, ‘ and o, for each scenario 

are shown in Figure 4.6. The ORE of the developed protocol is higher than others which means 

the highest productivity of a monitoring system. Although protocol 3, 4, 5, and 6 have the highest 

utilization, the system stopped before visiting all nodes since it spent most of the time on an 

unnecessary task such as traveling or searching the area which has no potential. 

Overall, the developed protocol outperforms others by detecting the more existing infected 

locations and utilizes most of resources available to detect infected locations. It visited all the 

assigned locations before it stopped since the utilization is less than 100%. The high performance 

indicates that, for the given time, the developed protocol uses time to perform inspection task (not 

for traveling). Lastly, the high successfulness means adaptive search algorithm can successfully 

capture character of disease in plant. 
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Figure 4.6. ORE and its components 

 

4.3.4 Conclusion and Discussion 

In this study, the CCP-ED is developed to enhanced CCP-CPS capability. The CCP-ED 

aims to monitor the condition of greenhouse crops by the system with humans, a mobile robot, and 

sensors, which are the local agent and does not involve in CCP-CPS. The CCP-ED is validated 

and compared with alternative protocols. CCP-ED utilizes CCT, TAP, and PCol to have a useful 

system under limited resources. CPS and IoT/IoS, which are mainly discussed, are the connection 

and communication elements of CCP-ED. The protocol is composed of three algorithms, namely, 

Routing algorithm, Adaptive search algorithm, and Stress detection algorithm.  
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Two metrics used for capturing monitoring and detection performance are NIPF and ORE. 

The NIPF presents the performance of the monitoring system, and ORE shows the effectiveness 

of the system. 

Computer simulations are conducted to test the designed protocol, and results show its 

superior performance. The Routing algorithm, which can save travel time for the agent by 11%, 

allows the robot to perform more valuable tasks – inspection and monitoring tasks. Also, the 

Adaptive search, which connects to the disease propagation database and is activated after the 

Stress detection algorithm trigger enhances system performance by focusing on the locations 

which have a high potential of stressed/infected plants. Hence, the robot effectively utilizes the 

given time and improves mean NIPF by 73%. 

The study has shown the significance of knowledge-based information and effective 

collaboration among system agents. The knowledge-based information helps the system to save 

cost and time, enhance the collaboration between system agents, and prepare for undesirable issues 

in agricultural fields, which are relatively unstructured. Machine learning, deep learning, and 

artificial intelligence techniques can be applied to improve CCP-ED. Moreover, CPS enables 

agents in the system to have effective communication, collaboration, decentralize decision making, 

distributed control, and real-time response are required for productive smart and precision 

agriculture. The second case study will demonstrate the importance of CPS in smart and precision 

agriculture.  
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 OPTIMAL INSPECTION PROFIT FOR PRECISION 
AGRICULTURE  

This chapter aims to enhance the capability of AS. The previous research has shown that 

AS has a promising ability to improve the performance of the monitoring system. Therefore, it is 

worthwhile to investigate the algorithm more in-depth to find the optimal policy of AS. The 

optimal AS is expected to take the dynamic of a system, such as errors that can be occurred and 

the difference in disease characteristics into account. Therefore, a search policy, call Dynamic 

Adaptive Search (D-AS), is developed and tested in this chapter to be integrated into the CCP-ED 

as an optimal search policy. 

In this chapter, first, two types of error in the monitoring system which impact the 

performance of AS are discussed. Because of the two types of error, the system contains 

uncertainties that lead to additional cost of the system, overage cost, and underage cost. The proof 

of the optimal adaptive search balancing overage and underage cost is presented and discussed to 

deal with system errors. Experiments are conducted to investigate the optimal policy and, lastly, 

the sensitivity analysis has been conducted. 

 Type of system errors in AS 

As discussed earlier, in the agricultural environment, there are potential errors in the plant 

monitoring system. With the null hypothesis of the stress detection algorithm is a plant that does 

not have stress (ŸF: ‘á+Üf	"&	ℎ$+áfℎì), there are two types of errors in the system; Type 1 Error 

(∂), and Type 2 Error (µ). Figure 5.1 shows the relationships and conditions of the errors in the 

system.  
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Figure 5.1. Type of errors in a monitoring system 

 

Type 1 error (∂ ) or False Positive (FP) happens when the stress detection algorithm 

indicates stress in the plant when in truth is none. Without error, the stress detection algorithm 

must indicate True Negative (TN). Therefore, the probability of making a type 1 error in the 

monitoring system is presented in Equation (5.1). 

 ∂ = ‘(%|o) 
(5.1) 

Where 

% = %$≤$*f"'Ü	)$î"'Ü	(%$≤$*f	fℎ$	Ü(áá	ℎìã'fℎ$&"&) 

o7 = ‘á+Üf	à'$&	Ü'f	ℎ+ñ$	&f)$&& 

 

Type 2 error (µ) or False Negative (FN) is an error when the stress detection algorithm 

does not indicate stress in a plant when the truth is that the plant has stress. Without error, the stress 

detection algorithm must indicate True Positive (TP).  So, the probability of making a type 2 error 

in the monitoring system is shown in Equation (5.2). 

 µ = 1 − ‘(%|o) 
(5.2) 
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Where 

% = %$≤$*f"'Ü	)$î"'Ü	(%$≤$*f	fℎ$	Ü(áá	ℎìã'fℎ$&"&) 

o = ‘á+Üf	ℎ+ñ$	&f)$&& 

Moreover, the power of the monitoring system, which is the ability to detect when it has 

stress in a plant is presented in Equation (5.3). 

 ‘'õ$)	'å	#'Ü"f')"Üî	&ì&f$# = 1 − µ = 	‘(%|o) 
(5.3) 

In PA, plants are necessary to inspect to ensure the healthiness or prepare treatment if 

needed. The system errors in the monitoring process, however, will lead to misinterpretation of 

information. For example, a plant can be seen as unhealthy and needs further inspection for 

obtaining the impact of the diseases or treatment, while, in fact, the plant is healthy. In this case, 

time and resources are spent too much than it should be, which increases the overall operation cost. 

Therefore, the system that can deal with the errors by balancing between the risk of error and cost 

of an inspection is needed to minimize the operation cost. 

 Monitoring Profit 

In the monitoring process, the system will gain system profit (or loss) during the operation. 

Monitoring profit defines as a benefit from gaining new information to the system. The monitoring 

profit from finding stress in crops is denoted as ‘; and the profit from finding healthy plant denoted 

as ‘G. Because plant that has stress needs the treatment to prevent yield loss, the system will gain 

more profit and information when indicating plant with stress than healthy plant; then it is 

reasonable to assume that ‘; > ‘G.  

Also, there will be an inspection cost (lH) incurred in every step of inspection. The system 

better to save operation costs (meaning not to operate) if the plant is healthy, but if the plant has 

stress, the system needs to inspect and indicate such location. Therefore, from this analysis, it is 

safe to assume that ‘; > lH > ‘G. 

Moreover, when the system has errors (either Type 1 or Type 2), there will be an additional 

cost associated with them. In the next section, errors are quantified to operation costs to capture 

the impact of each error type. 
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5.2.1 Overage Cost 

The Overage cost (l-) happens when the search algorithm spends extra time inspecting in 

the location, which is already sure to have the disease. 

Lemma 5.1: Type 1 error incurs the Overage cost (l-) and the amount of l- is equal to 

∂	 ×	lG where lG denotes of cost of inspecting the healthy plant, lH − ‘G. 

Proof: At each location that plant does not have diseases, cost of expanding the search is 

equal to. 

 l- = ‘(n|	o′) × lG 
(5.4) 

Where 

n = nà+ãf"ñ$	&$+)*ℎ	"&	+*f"ñ+f$à 

o′ = ‘á+Üf	à'$&	Ü'f	ℎ+ñ$	&f)$&& 

lG = l'&f	'å	"Ü&ã$*f"Üî	ℎ$+áfℎì	ãá+Üf 

By definition,  

the ‘(+*f"ñ+f$	&$+)*ℎ	|	ãá+Üf	à'$&	Ü'f	ℎ+ñ$	à"&$+&$) is a Type 1 error. 

 l- = ∂ × lG 
(5.5) 

  ∎ 

5.2.2 Underage Cost 

The underage cost (l2) occurs when the search algorithm does not spend enough time to 

inspect the location in which information about the disease is not sufficiently clear. 

Lemma 5.2: Type 2 error incurs the Underage cost (l2) and the amount of l2 is equal to 

µ	 ×	l; where l; denotes the cost of not inspecting the infected plant, ‘; − lH. 

Proof: At each location that plants have diseases, the cost of not expanding the search is 

equal to. 
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 l2 = ‘(n′	|	o) × l; 
(5.6) 

Where 

n7 = nà+ãf"ñ$	&$+)*ℎ	"&	Ü'f+*f"ñ+f$à 

o = ‘á+Üf	ℎ+&	&f)$&& 

l; = l'&f	'å	Ü'f	"Ü&ã$*f"Üî	"Üå$*f$à	ãá+Üt 

By definition,  

the ‘(à'	Ü'f	+*f"ñ+f$	&$+)*ℎ	|	ãá+Üf	ℎ+&	à"&$+&$) is Type 2 error. 

 l2 = µ × l; 
(5.7) 

  ∎ 

 Optimal Balancing 

In order to optimize system profit by balancing l- and l2. Theorem 5.1 is proposed as 

follows. 

Theorem 5.1 Optimal Expansion of Dynamic Adaptive Search: Assuming a cost of 

inspection healthy plant and cost of not inspect infected plant are equal, the optimal expansion for 

an infected location is when the search algorithm inspects at location # such that the cumulative 

distribution function (CDF) is greater than or equal to critical ration	(%F). 

 %F = ‘(¢ ≤ #∗) = À(#∗) ≥
µ

µ + ∂
 

(5.8) 

Proof:  

At the location ¢, the algorithm should expand search to # location while 

‘(¢ ≤ #)l- < ‘(¢ > #)l2 

From Lemma 1 and Lemma 2, 

‘(¢ ≤ #) × ∂ × lG < ‘(¢ > #) × µ × l; 
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From assumption, lG = l; 

‘(¢ ≤ #) × ∂ < P(¢ > #) × µ 

The algorithm should stop expanding search at #∗ which is the optimal location when 

‘(¢ ≤ #∗) × ∂ ≥ ‘(¢ > #∗) × µ 

‘(¢ ≤ #∗) × ∂ ≥ (1 − ‘(¢ ≤ #∗)) × µ 

 

 À(#∗) = ‘(¢ ≤ #∗) ≥
µ

∂ + µ
 

(5.9) 

  
∎ 

 

Therefore, from Theorem 5.1, the optimal expansion to maximize profit gain is when the 

search algorithm expands the search to the first # such that the CDF, À(#∗),	is less than or equal 

to critical ration, %F. 
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5.3.1 Dynamic Adaptive Search Algorithm 

Develop from Theorem 5.1, Dynamic Adaptive Search Algorithm (D-AS) is present as 

follows. 

 q2r/.s0tu	fi. 6:	πfl{~us1	q–~—0szx	:x~.1t 
1. Initialize 
2. Parameter 
3. Calculate	Critical	Ratio 
4. V[œ	all	location	#9 	in	monitoring	plan	Z[ 
5. Inspect	#9 
6. " ← 0 
7. UV	#9 	is	infected	Z[ 
8. V[œ	%	 < 	%F	Z[  
9. Inspect	#9J$ 
10. % = % + ‘(" + 1) 
11. " = " + 1 
12. \cZ	V[œ 
13. \]^\ 
14. ‡·U]\	%	 < 	1 − %F	Z[  
15. Inspect	#D" 
16. % = % + ‘(" + 1) 
17. " = " + 1 
18. \cZ	‡·U]\ 
19. \cZ	UV 
19. \cZ	V[œ 
20. Terminate	Algorithm 

5.3.2 Propagation Probability Map Model 

As the D-AS requires CDF of the infected plant, ‘(‚ < #∗), to determine the optimal 

search progression. In this section, the theory and algorithm of how to model and determine the 

probability of each location are presented. 

Lemma 5.3: Because of environmental conditions, the plant may generate diseases on its 

own. Once the plant is infected, the disease can propagate to the nearby locations in some specific 

directions based on the type of disease, sunlight, seasons of the year, and airflow. Moreover, the 

disease has a maximum distance to propagate.  
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Theorem 5.2 Diseases Propagate Probability: The probability of location Ü is infected 

from location #F if #F	is infected is ‘(Ü	"&	"Üå$*f$à). 

Where 

 ‘(Ü	"&	"Üå$*f$à) = „

ã¥EK$(1 − ¥")

1 − ¥

0; 	'fℎ$)õ"&$

;#E ≤ Ü,#E >	#F 
(5.10) 

Proof: Based on Lemma 5.3 and Figure 5.2, the disease can be modeled as follow. 

 

Figure 5.2. Disease propagation 

 

Let ã  denotes the probability that the plant develops diseases. ¥  is the probability to 

propagate in a specific direction. The disease can propagate at most ¢ locations (to #E) from the 

original location	#F. Therefore, the probability of a plant #E ≠ #F is infected by the first location 

#F is as follows.  

‘(Ü	"&	"Üå$*f$à) =
ã¥"K$

∑ ã¥9EK$
9AF

 

 

Consider ∑ ã¥9EK$
9AF  

¡ã¥9
E

9AF

= ã¥F + ã¥$ + ã¥% +⋯+ ã¥EK$ 
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= ã(1 + ¥$ + ¥% +⋯+ ¥EK$) 

Let 

Ê = 1 + ¥$ + ¥% +⋯+ ¥EK$ 

¥Ê = ¥ + ¥% + ¥3 +⋯+ ¥E 

(1 − ¥)Ê = 1 − ¥E 

Ê =
1 − ¥E

1 − ¥
 

Therefore,  

‘(Ü	"&	"Üå$*f$à) = „

ã¥"K$(1 − ¥)

1 − ¥E 	

0; 	'fℎ$)õ"&$

;#E ≤ Ü,#E >	#F 

∎ 

 

Algorithm 5.2: To generate CDF at each location in a greenhouse map, the Algorithm 

5.2 can be utilized. 

 q2r/.s0tu	fi. v:	-./}~}s2s0fl	Á~— 
1. Initialize 
2. Parameter 
3. Ü ← 0 
4. ‡·U]\	Initial	location	Ü ≤ maximum	distance	¢	Z[ 
5. Calculate	the	probability	of	#"	according	to	Equation	(4) 
6. \cZ	‡·U]\ 

 

 Experiments, Results, and Analysis 

In this section, numerical experiments are conducted using computer simulation. The 

proposed algorithm, D-AS, is compared against the alternatives in terms of cost and system 

performance. Lastly, the sensitivity analysis is conducted to analyze the robustness of the 

algorithm. 
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5.4.1 Experimental Setting 

The experiment involves 100 plants in the greenhouse for the initial inspection, which are 

sampled randomly. Table 5.1summarizes the details of simulation parameters. 

Table 5.1. Summary of parameter settings 
Parameter Value 

Number of simulations runs 100 
Type 1 error ∂ = 10% 
Type 2 error µ = 30% 

The maximum distance of disease to propagate  #E = 5	á'*+f"'Ü& 
Inspection profit of inspecting and found stress ‘; = 5	*'&f	(Ü"f/á'*+f"'Ü 

Inspection profit of inspecting and not found stress ‘G = 1	*'&f	(Ü"f/á'*+f"'Ü 
Inspection cost lH = 3	*'&f	(Ü"f/á'*+f"'Ü 

5.4.2 Search policies alternatives 

The proposed algorithm, D-AS, is validated against other alternative policies – Static 

Adaptive Search, Always Search, and None Search. The first two search procedure is categorized 

as an adaptive search, while the last two options are non-adaptive search. Each of the AS policy is 

described in detail as follow. 

Dynamic Adaptive Search 

The Dynamic Adaptive Search (D-AS) is the proposed method and described earlier in the 

methodology section. The algorithm considers C&E in a system that can adjust search progression 

according to new information found. The D-AS has described in Algorithm 5.1. Moreover, 

Algorithm 5.2 is required for calculating CDF at each location. Figure 5.3 represents Algorithm 

5.1, Algorithm 5.2, and the linkage. 
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Figure 5.3. Dynamic Search Algorithm 

Static Adaptive Search 

The Static Adaptive Search (S-AS) is modified from (Dusadeerungsikul & Nof, 2019). The 

S-AS has linked to knowledge-based information, which helps the algorithm to emphasize the 

specific direction as the knowledge-based information contains the disease propagation direction. 

Even though the algorithm can adapt based on new information found, the progression of how 

further in search is predetermined. The algorithm is present as in Algorithm 5.3. 

 q2r/.s0tu	fi. 4:	:0~0s1y	q–~—0szx	:x~.1t 
1. Initialize 
2. Parameter 
3. V[œ	all	location	#9 	in	monitoring	plan	Z[ 
4. Inspect	#9  
5. UV	#9 	is	infected	Z[ 
6. Inspect	#9J$	+Üà	#9J% 
7. Calculate	infected	ratio	%H 		 
8. UV	%H > 	Ì	Z[ 
9. Inspect	#9J3	+Üà	#9J4 
10. \cZ	UV 
11. \cZ	UV 
12. \cZ	V[œ 
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Always Search 

The Always Search algorithm represents the system without real-time information. The 

system agent cannot determine whether the inspected location is infected or not. The system, 

however, has scientific knowledge about the disease propagation direction. Therefore, the system 

will always search in such a direction to gain the most information. 

 q2r/.s0tu	fi. ∑:	q2Ó~fly	:x~.1t 
1. Initialize 
2. Parameter 
3. V[œ	all	location	#	in	monitoring	plan	Z[ 
4. Inspect	#9 , #9J$, #9J%, #9J3, #9J4 
5. \cZ	V[œ 

None Search 

The None Search algorithm represents the current practice of farmers. As the current 

practice does not utilize the knowledge-based, the worker will inspect only the assigned location 

according to the monitoring plan. Algorithm 5 presents the None Search algorithm. 

 q2r/.s0tu	fi. fi:	ø/{x	:x~.1t 
1. Initialize 
2. Parameter 
3. V[œ	all	location	#	in	monitoring	plan	Z[ 
4. Inspect	#$ 
5. \cZ	V[œ 

5.4.3 Computational Experiment and Results 

System Performance Analysis 

In this section, the system performance will be analyzed by using a computer simulation 

experience. The matrices that are utilized to capture system performance are True Positive Ratio 

(!‘%) and True Negative Ratio (!∞%). 
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True Positive Ratio 

True Positive Ratio (!‘%) indicates how many TP found from the total positive location 

indicated (both TP and FP). The objective of the system is to indicate TP locations; therefore, the 

system that has higher !‘% is considered as a better system. !‘% can be calculated as present in 

Equation (5.11). 

 !‘% =
∑ !‘9
D
9A$

∑ !‘9 + À‘9
D
9A$

 
(5.11) 

Where 

∞ = ∞(#ä$)	'å	"Ü"f"+á	"Ü&ã$*f$à	á'*+f"'Ü& 

!‘9 = !)($	‘'&"f"ñ$	å'(Üà	å)'#	fℎ$	"Ü"f"+á	á'*+f"'Ü	" 

À‘9 = À+á&$	‘'&"f"ñ$		å'(Üà	å)'#	fℎ$	"Ü"f"+á	á'*+f"'Ü	" 

True Negative Ratio 

True Negative Ratio (!∞%) represents the ratio between TN and total negative location 

indicated (both TN and FN). The system that has higher !∞% is the preferred system because the 

system can indicate the true healthy plant and not false, indicating the healthy plant. !∞% can be 

calculated as present in Equation (5.12). 

 !∞% =
∑ !∞9
D
9A$

∑ !∞9 + À∞9
D
9A$

 
(5.12) 

Where 

∞ = ∞(#ä$)	'å	"Ü"f"+á	"Ü&ã$*f$à	á'*+f"'Ü& 

!∞9 = !)($	∞$î+f"ñ$	å'(Üà	å)'#	fℎ$	"Ü"f"+á	á'*+f"'Ü	" 

À∞9 = À+á&$	∞$î+f"ñ$	å'(Üà	å)'#	fℎ$	"Ü"f"+á	á'*+f"'Ü	" 
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Experimental Results 

Table 5.2 shows results from experiments. In general, the D-AS outperforms (or as good 

as) other policies in terms of !‘%. On the other hand, !∞% results are very similar among different 

policies. The ANOVA test and Post-hoc Bonferroni test are performed. Results show that, in the 

low diseases which have a low probability of developing or propagating, such as ã or ¥ equal to 

30%, the D-AS performs None Search policy, and they outperform the other two policy with 95% 

confidence level. On the other hand, when the diseases developed or spared quickly, the D-AS 

performs as good as an S-AS with a 95% confidence level. The Always Search policy, which is 

the most conservative approach, the !‘% is lower than other policies. On the other hand, in terms 

of !∞%, the Always Search outperforms other policies with a 95% confidence level.  

In conclusion, as the D-AS can adapt to the different input, it modifies the optimal search 

policy at each situation in terms of !‘%. For example, if the input indicates the low propagation 

rate (¥ equal to 30%), the D-AS has changed itself to the None Search policy as the results are 

statistically the same. The D-AS, however, expands search further if the propagation rate is high. 

Table 5.2. Performance analysis 

† and Ô D-AS S-AS Always Search None Search 
Òœ cœ Òœ cœ Òœ cœ Òœ cœ 

ã = 30% 
¥ = 30% 

Avg 0.557 0.947 0.434 0.962 0.216 0.987 0.558 0.939 
Std 0.070 0.030 0.064 0.020 0.036 0.006 0.066 0.034 

ã = 30% 
¥ = 60% 

Avg 0.538 0.944 0.487 0.955 0.270 0.983 0.562 0.943 
Std 0.083 0.027 0.088 0.022 0.070 0.010 0.070 0.033 

ã = 30% 
¥ = 90% 

Avg 0.546 0.943 0.542 0.943 0.343 0.974 0.560 0.943 
Std 0.110 0.031 0.113 0.030 0.124 0.016 0.075 0.033 

ã = 60% 
¥ = 30% 

Avg 0.625 0.915 0.562 0.939 0.353 0.973 0.624 0.911 
Std 0.132 0.068 0.107 0.030 0.111 0.015 0.130 0.070 

ã = 60% 
¥ = 60% 

Avg 0.645 0.910 0.596 0.927 0.390 0.968 0.662 0.893 
Std 0.123 0.052 0.120 0.039 0.124 0.018 0.141 0.079 

ã = 60% 
¥ = 90% 

Avg 0.640 0.904 0.638 0.903 0.448 0.953 0.689 0.881 
Std 0.143 0.066 0.144 0.067 0.174 0.040 0.143 0.081 

ã = 90% 
¥ = 30% 

Avg 0.730 0.820 0.649 0.901 0.457 0.953 0.728 0.818 
Std 0.165 0.179 0.136 0.064 0.163 0.037 0.164 0.178 

ã = 90% 
¥ = 60% 

Avg 0.728 0.857 0.672 0.889 0.485 0.947 0.758 0.768 
Std 0.147 0.091 0.142 0.069 0.170 0.039 0.173 0.216 

ã = 90% 
¥ = 90% 

Avg 0.705 0.853 0.702 0.852 0.530 0.921 0.781 0.730 
Std 0.159 0.129 0.159 0.126 0.205 0.083 0.176 0.234 
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Cost Analysis 

In this section, the cost to operate D-AS is compared with the alternative AS by using 

Monitoring Profit. The computer simulation experience is used for analyzing each algorithm. 

Monitoring Profit 

Monitoring Profit (¢‘) shows profit by the information gain from expanding search with 

respect to the operation cost. At each location, the new information about the status of the plant 

will lead to the benefits gain of the system. It, however, also has a cost of the inspection, such as 

location as well. The ¢‘ captures the difference between benefit and cost. Hence, the system 

which has higher ¢‘ is preferred. The calculation of ¢‘ is presented in Equation (5.13).   

 ¢‘ =¡(‘; × !‘9 + ‘G × !∞9)

D

9A$

− ∞lH 
(5.13) 

Where  

‘; = Ù$Ü$å"f	î+"Ü	"å	"Ü&ã$*f"'Ü	á'*+"f'Ü	ℎ+&	&f)$&& 

‘G = Ù$Ü$å"f	î+"Ü	"å	"Ü&ã$*f"'Ü	á'*+"f'Ü	à'$&	Ü'f	ℎ+&	&f)$&& 

∞ = ∞(#ä$)	'å	"Ü&ã$*f"'Ü 

lH = ùÜ&ã$*f"'Ü	*'&f 

Note that  

‘; > lH > ‘G 

Experimental Results 

Table 5.3 presents the results of the experiments. The D-AS indicates the best performance 

among the search policy. ANOVA test and Post-hoc Bonferroni test are performed to investigate 

the statistical difference among policies. Results show that, with a 95% confidence level, in most 

of the case, the D-AS is statistically higher ¢‘ than other policies.  

Only the case that ã and ¥ are low (30%), the D-AS, and None Search have the same ¢‘. 

The D-AS yields the same result as None Search because, as mentioned before, in the low 
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propagation rate case, D-AS is performed as the None Search. It is intuitively as the diseases hardly 

propagate to the next location. The algorithm should not expand to the nearby location even though 

the first location is found infected as the cost of expanding might exceed the expected information 

gain. 

On the other hand, the Always Search policy has the lowest ¢‘. The reason is that the 

policy investigates further locations no matter what the information obtained. It makes the system 

has too much cost and yields the lowest ¢‘. 

 
Table 5.3. Cost analysis 

† and Ô D-AS S-AS Always Search None Search 
ıÒ ıÒ ıÒ ıÒ 

ã = 30% 
¥ = 30% 

Avg 22.120 -31.941 -326.521 22.120 
Std 4.298 5.157 5.786 4.298 

ã = 30% 
¥ = 60% 

Avg 21.530 -2.500 -275.802 21.421 
Std 5.449 6.517 8.160 4.254 

ã = 30% 
¥ = 90% 

Avg 37.580 37.533 -180.507 22.401 
Std 8.507 8.479 12.376 4.307 

ã = 60% 
¥ = 30% 

Avg 51.867 51.065 -174.790 51.864 
Std 7.367 8.233 11.573 7.367 

ã = 60% 
¥ = 60% 

Avg 91.250 83.232 -130.288 68.928 
Std 8.697 9.522 12.339 7.746 

ã = 60% 
¥ = 90% 

Avg 132.043 131.060 -29.307 80.467 
Std 11.783 11.735 16.375 7.817 

ã = 90% 
¥ = 30% 

Avg 144.446 105.966 -23.417 105.966 
Std 11.508 9.188 15.778 9.188 

ã = 90% 
¥ = 60% 

Avg 176.685 171.125 20.670 125.315 
Std 12.292 11.143 16.169 9.707 

ã = 90% 
¥ = 90% 

Avg 228.291 227.758 126.102 140.076 
Std 14.298 14.306 19.695 9.913 
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Sensitivity Analysis 

This section aims to analyze the sensitivity and robustness of the proposed algorithm. The 

D-AS is compared with the alternative options when the conditions deviate from the assumptions 

in Table 5.1. Robustness is an essential characteristic of an algorithm which operates in the 

agricultural environment because the environment is less structured and has high fluctuations. The 

algorithm has higher robustness (or less sensitive) to the change in the parameters considered to 

be a better option. In the analysis, four parameters, ã, ¥, ∂ and µ, have varies to see changes in the 

metrics. The sensitivity is defined as follows. 

 o$Ü&"f"ñ"fì =
ˆ(û)

ˆ(û∗)
 

(5.14) 

Where  

ˆ(û) = %$&(áf	å)'#	+&&(#$à	ã+)+#$f$)& 

ˆ(û∗) = %$&(áf	å)'#	+*f(+á	ã+)+#$f$)&	(’ãf"#+á	)$&(áf) 

Experimental Results 

From the simulation experiment, sensitivity results are presented in Table 5.4, Table 5.5, 

Table 5.6, and Table 5.7. Table 5.4 presents the sensitivities of different search policies when ã 

deviate from the known parameters while Table 5.5 shows the sensitivities when ¥ is different. 

Table 5.6 and Table 5.7 demonstrate the sensitivities when ∂ and µ have deviated from the setting.  

Although the deviations of parameters are range from 10% to 25%, D-AS provides results 

that no more than 10% from the optimal setting. In other words, the D-AS is robust and gives near-

optimal results at the situation that input has uncertainty. 

Other algorithms are less robust compared to the D-AS. Always Search is the most 

sensitive algorithm, especially when ã and ¥ are lower than the known value. 
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Table 5.4. Sensitivity analysis 1 

%Deviation 
of ! 

D-AS S-AS Always Search None Search 
"#$ "%$ &# "#$ "%$ &# "#$ "%$ &# "#$ "%$ &# 

+10% Avg 1.018 0.988 1.002 1.016 0.992 1.074 1.031 0.995 1.414 1.021 0.978 1.076 
SD 0.007 0.024 0.009 0.016 0.027 0.017 0.014 0.031 0.021 0.000 0.018 0.005 

+25% Avg 1.027 0.980 1.044 1.025 0.986 1.124 1.051 0.992 1.963 1.032 0.962 1.129 
SD 0.034 0.052 0.036 0.045 0.059 0.047 0.043 0.066 0.051 0.027 0.041 0.028 

-10% Avg 1.046 0.971 1.019 1.045 0.979 1.214 1.084 0.988 3.878 1.055 0.946 1.216 
SD 0.018 0.073 0.032 0.029 0.083 0.050 0.045 0.094 0.065 0.010 0.060 0.025 

-25% Avg 1.070 0.962 1.109 1.069 0.973 1.324 1.120 0.985 6.764 1.081 0.932 1.320 
SD 0.020 0.090 0.019 0.001 0.103 0.045 0.039 0.119 0.076 0.024 0.078 0.015 

 
 
 

Table 5.5. Sensitivity analysis 2 

%Deviation 
of ' 

D-AS S-AS Always Search None Search 
"#$ "%$ &# "#$ "%$ &# "#$ "%$ &# "#$ "%$ &# 

+10% Avg 1.009 0.995 1.043 1.008 0.996 1.045 1.015 0.998 0.549 1.013 0.991 1.052 
SD 0.012 0.022 0.017 0.017 0.024 0.020 0.021 0.026 0.023 0.009 0.021 0.015 

+25% Avg 1.015 0.990 1.076 1.011 0.994 1.071 1.020 0.997 0.438 1.023 0.982 1.102 
SD 0.034 0.044 0.039 0.042 0.050 0.047 0.049 0.053 0.050 0.025 0.041 0.031 

-10% Avg 1.024 0.986 1.019 1.021 0.991 1.124 1.038 0.995 0.320 1.031 0.975 1.148 
SD 0.043 0.064 0.054 0.052 0.071 0.062 0.063 0.075 0.068 0.039 0.060 0.048 

-25% Avg 1.034 0.982 1.069 1.032 0.987 1.191 1.059 0.993 0.248 1.040 0.968 1.195 
SD 0.049 0.084 0.066 0.055 0.089 0.071 0.067 0.097 0.082 0.053 0.081 0.064 

 
 
 

Table 5.6. Sensitivity analysis 3 

%Deviation 
of ( 

D-AS S-AS Always Search None Search 
"#$ "%$ &# "#$ "%$ &# "#$ "%$ &# "#$ "%$ &# 

+10% Avg 1.006 0.997 1.032 1.006 0.998 1.036 1.011 0.999 0.896 1.008 0.995 1.037 
SD 0.011 0.018 0.015 0.012 0.020 0.016 0.015 0.021 0.018 0.011 0.018 0.015 

+25% Avg 1.012 0.995 1.062 1.012 0.997 1.071 1.022 0.998 0.821 1.015 0.991 1.072 
SD 0.022 0.039 0.030 0.025 0.040 0.032 0.030 0.042 0.036 0.021 0.038 0.030 

-10% Avg 1.016 0.992 1.089 1.015 0.994 1.103 1.031 0.997 0.763 1.021 0.986 1.105 
SD 0.037 0.056 0.046 0.040 0.056 0.049 0.047 0.061 0.054 0.035 0.054 0.046 

-25% Avg 1.020 0.990 1.114 1.018 0.992 1.132 1.038 0.996 0.716 1.025 0.981 1.137 
SD 0.051 0.071 0.062 0.056 0.071 0.066 0.064 0.078 0.072 0.050 0.070 0.062 

 

 

 

 



 

 

108 

Table 5.7. Sensitivity analysis 4 

%Deviation 
of ) 

D-AS S-AS Always Search None Search 
"#$ "%$ &# "#$ "%$ &# "#$ "%$ &# "#$ "%$ &# 

+10% Avg 1.006 0.998 1.024 1.006 0.999 1.028 1.009 0.999 0.952 1.006 0.997 1.028 
SD 0.009 0.016 0.014 0.009 0.016 0.014 0.012 0.017 0.016 0.009 0.016 0.014 

+25% Avg 1.013 0.997 1.051 1.013 0.997 1.060 1.021 0.999 0.910 1.015 0.994 1.056 
SD 0.008 0.031 0.025 0.008 0.031 0.027 0.020 0.034 0.031 0.010 0.031 0.027 

-10% Avg 1.015 0.995 1.072 1.015 0.996 1.084 1.025 0.998 0.873 1.018 0.991 1.084 
SD 0.022 0.046 0.039 0.021 0.046 0.041 0.035 0.050 0.045 0.023 0.046 0.040 

-25% Avg 1.013 0.993 1.089 1.012 0.995 1.102 1.025 0.997 0.843 1.018 0.988 1.109 
SD 0.033 0.060 0.053 0.034 0.060 0.056 0.051 0.066 0.060 0.036 0.061 0.053 

 

 Conclusion and Discussions 

In this chapter, the AS is considered to account for an effective monitoring process focusing 

on the high potential locations. The D-AS, which aims to balance between inspection cost and 

system profit as well as system errors, is developed. Two theorems, namely Optimal Expansion of 

Dynamic Adaptive Search and Diseases Propagation Probability, are derived to support the D-AS. 

The Optimal Expansion of Dynamic Adaptive Search theorem indicates the expansion level of D-

AS to maximum the system benefits. The Probability at Location, which Diseases Propagate 

theorem provides the CDF at each location to indicate the relative chance diseases are propagated. 

The procedure is validated against other heuristics and current practice. The results indicate that 

the D-AS outperforms other heuristics by giving the relatively the same infected/non-infected 

locations found per inspection, but with the lower cost (higher monitoring profit). Sensitivity 

analysis shows if the parameters deviate from known value, the D-AS still provide the near-optimal 

solutions. 
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 MULTI-AGENT SYSTEM OPTIMIZATION IN 
GREENHOUSE FOR TREATING PLANTS 

In this chapter, a protocol called Collaboration Requirement Planning protocol for HUB-

CI (CRP-H) is presented (Dusadeerungsikul, Sreeram, et al., 2019). The objective of CRP-H is to 

improve the plant treatment process in greenhouse by applying cyber collaboration to the system 

and synchronize system agents. As CRP-H which is a TAP integrated with CRP has two main 

parts, namely CRP-I (Optimization) and CRP-II (Harmonization), the CRP-I aims to minimize the 

total operation cost, CRP-II has an objective to sequence agents to work smoothly.   

 Cyber Collaborative for Plant Treatment (C2T) 

One of the primary operations in PA is applying proper farming resources such as fertilizer, 

water, and pesticide at a specific location. Consider the objectives of the C2T system as follows: 

(1) apply fertilizer at given locations with the lowest total operational cost; (2) minimize the total 

weighted completion time; (3) minimize makespan. The second and third objectives are solved by 

scheduling. Since plant states are not identical, there are relative priorities associated with each 

location. For example, higher priority locations can have more severe time constraints than regular 

priority locations. Also, considering that the system can receive unexpected/emergency requests 

which can often impact the current schedule, it is advantageous to minimize total completion time 

as the objective function since the system will complete the highest number of tasks earlier during 

the planned period. Thus, if there is a new request during the operation, it will have a lesser impact 

on the overall schedule.  

For the rest of the article, the following model is used: The C2T contains two unique types 

of robots (%+): %$ and %%. There are three possible robot teaming options: %$, %%, %$ + %%; Tasks 

can be executed either by %$ or %% separately, or by a collaborative team of both %$ and %%, (%$ +

%%). Task types are distinguished based on the ability of either robot or team to accomplish the 

task, and the performance of the task for each robot/team is monitored.  
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6.1.1 Cyber Collaborative Greenhouse Operation Types  

There are two types of operations in C2T; Planned operation and Unplanned operation. 

Because of the dynamic environment in the greenhouse, not every operation can schedule 

beforehand. There is a high potential to receive an additional request during the normal operation 

process. Hence, the greenhouse should be able to deal with an unplanned request. The following 

describes details for each operation type. 

(1) Planned operation. Under normal operation, the operation starts with the receipt of the 

task list, indicating the type of farming resources, location, and priority. The task list is a list of 

locations to treat, which usually receives beforehand according to farming schedule and material 

planning. The type of package information will specify the handling procedure, which indicates 

which type and number of a robot(s) are needed. The location is the destination of the robot or 

team of the robot within the greenhouse. Naturally, the farther the distance of the plant location 

from the robot-human basepoint, there will be higher operation costs (Liu, Li, Yang, Wan, & Reha, 

2011) and longer time required. Lastly, the priority value of a given location indicates its severity 

of the plant status. Relatively higher priorities (higher priority weight) indicate stricter time 

constraints for this location, and hence, the tasks associated with this package need to be 

accomplished earlier than others.   

(2) Unplanned operation. During the monitoring process, the system may receive 

additional requirements called Unplanned Request (UR). The UR must be integrated into the 

current plan. Typically, re-optimizing the entire array of the remaining tasks along with the UR 

would provide the best results. However, given that the re-optimizing process usually comes with 

additional cost, if the additional cost exceeds the saving from re-optimization, the system should 

have the decision support systems in place to ensure that an entire schedule re-optimization is not 

required.  

6.1.2 Type of Plant Treatment Tasks 

In the operation process (either planned or unplanned operation), the task in a greenhouse 

by robots can be categorized into five types, which are explained as follows as well as in Table 

6.1. 
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Type 1: No-bottleneck. The first type is the simplest task, which can be performed by either 

%$, %% or the collaborative team, (%$ + %%). This is the most common task type in greenhouses.  

Type 2: Robot 1 is critical. In this task type, %$ is necessary to complete the task. The task 

can either be completed by %$ or the collaborative team, (%$ + %%).  

Type 3: Robot 2 is critical. Similar to Type 2, %% is necessary for this task type. The task 

can either be completed by %% or the collaborative team, (%$ + %%).  

Type 4: Complementary task. The fourth type of task requires both robots working together 

but cannot be accomplished individually, for example, the complex task which cannot be 

performed alone by either robot but can be performed when they work collaboratively.  

Type 5: Constraint task. In this task type, the task can be performed by %$  or %% 

individually, but not collaboratively as a team. Examples of such tasks can include tasks where the 

location has space constraints such as narrow aisles.  

Table 6.1. Task type in C2T 

Task Type Robot 1 
(œL) 

Robot 2  
(œM) 

Team of robot 1 and robot 2  
(œL + œM) 

1 + + + 
2 + - + 
3 - + + 
4 - - + 
5 + + - 

6.1.3 Task Operational Cost 

The cost for each task to be performed by the robots or their collaborative teams is defined 

in the CRM. As an assumption, the cost of individual robot allocations is strictly cheaper than 

when performed by a team. The example of CRM is shown below where *#" is a cost for tasks # 

performed by robots (or team of robots)	Ü. For task types 1, 2, and 3, if a team of robots performs 

the task, the operational cost is the total operation cost performed by the individual robots, which 

is strictly higher.  



 

 

112 

 l%¢ =	˜

*$$ ⋯ *#$
⋮ ⋱ ⋮

*$" ⋯ *#"

˙ 
(6.1) 

6.1.4 Task Operational Time 

The operational task time is the total time to complete the task, which includes receiving 

the order, picking the package, moving to the location, storing the package, and moving back to 

the base location. For task types 1, 2, and 3, if a team of robots performs the task, the operational 

time is assumed to be strictly lesser. In other words, the team of robots can perform the task at a 

faster rate than an individual robot operation. 

 Cyber Collaborative Greenhouse System Architecture 

The designed C2T system has three main agents; human operators, robots, and sensors. 

The system receives input from human operators via a spatial-visual programming software called 

VIPO (G. Huang et al., 2020). VIPO allows human operators to allocate system tasks in the spatial 

context within an interface, which can minimize the learning time. An output from VIPO is a 

computer script that indicates the type of package, location to store, and priority. VIPO symbolizes 

the human in the loop (HITL) components of this article, where human operators can schedule and 

allocate tasks to the robots based on their expertise.  

There are two types of input from the human operator to VIPO - normal input and 

additional input. The normal input which enters the system before the operation begins will 

generate to the planned operation, and additional input will create UR. The input will feed to HUB-

CI, a system brain model, which can manage tasks in real-time and deciding to maximize system 

performance.  

HUB-CI maintains the Collaboration Requirement Planning protocol for HUB-CI (CRP-

H). CRP-H connects CRP to TAP for both allocating tasks to agents (by CRP) and optimize 

workflow and interaction among system agents (by TAP). The CRP, which is the fundamental 

design principle in CCT, has two main modules; optimizer (CRP-I) and harmonizer (CRP-II). The 

optimization module is responsible for assigning task(s) to a robot or a team of robots (one to one 
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or one to many matching). The harmonization module takes care of sequencing and scheduling a 

robot or team of robots to perform tasks.  

After the inputs are processed by HUB-CI, utilizing CRP-H, the generated plan will be 

executed and simulator. Besides, the plan will also be distributed to other system agents. The 

system architecture is presented in Figure 6.1. 

 

Figure 6.1. Cyber Collaborative Greenhouse system architecture 

 CRP-H Protocol design 

For effective coordination, a Collaboration Requirement Planning protocol for HUB-CI 

called CRP-H is developed in this section. The CRP-H is the workflow optimization and 

collaboration protocol in HUB-CI for task allocation and task scheduling/sequencing. Figure 6.2 

presents the CRP-H and its components. 



 

 

114 

 

Figure 6.2. CRP-H protocol 

 

As mentioned before, CRP-H has two modules, Optimization (CRP-I) and Harmonization 

(CRP-II). The following section will describe each part of CRP-H in detail. 

6.3.1 CRP-I Optimization 

The CRP-I aims to minimize total operating costs for planned operations. The 

mathematical model for CRP-I is presented as follows. 
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6.3.2 A mathematical model for CRP-I 

Mathematical model 

Let 

*#" = *'&f	å')	f+&,	#	"&	ã$)å')#$à	äì	+	)'ä'f	')	f$+#	'å	)'ä'f&	Ü 

û#" = ±
1	"å	f+&,	#	"&	ã$)å')#$à	äì	+	)'ä'f	')	f$+#	'å	)'ä'f&	Ü

0	'fℎ$)õ"&$
	 

∞> 	= 	∞(#ä$)	'å	)'ä'f	')	f$+#	'å	)'ä'f& 

∞N = ∞(#ä$)	'å	f+&, 

∞# 	= ∞(#ä$)	'å	f+&,	"Ü	fìã$	≤ 

¢+û"#(#	á'+à"Üî	å+*f') = max ˚¸
∞N

∞>
˝	 , #+û

#
(∞#)˛ 

Objective function 

 #"Ü	ï	 =¡¡*#"û#"
"#

 
(6.2) 

Subject to 

 ¡û#" = 1

"

; ∀# 
(6.3) 

 ¡û#" ≤ !
#

; ∀Ü 
(6.4) 

 û#" ∈ {1,0}, ∀#, Ü 
(6.5) 

 # = 1,2,… ,ℳ 
 

 Ü = 1,2,… ,'	
 

As mentioned before, the objective of the optimizer is to minimize total operational costs 

presenting in Equation (6.2). *#" is the operational cost defined in the CRM. The CRM will update 

continuously with the new information received from IoT/IoS agents and human operators. 
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The first constraint, Equation (6.3), ensures that a robot or team of robots will perform all 

tasks. The second constraint, Equation (6.4), ensures that the robot or team of robots will not be 

overloaded.   

In the planned operation, the input data (task, distance, and priority) are received in advance. 

CRP-I, which requires more computational power and processing time due to the volume of data 

being processed, and hence can be initiated ahead of the actual operation. 

The output from CRP-I is the assignment of the task(s) to robot or team of robots.  Two 

types of assignments from the CRP-I is (1) collaborative assignment and (2) non-collaborative 

assignment. The collaborative assignment is the task that assigns for a team of robot (%$ + %%) 

while the non-collaborative assignment is the task which assigns to a single robot (%$or %%).  

The output, however, does not indicate the sequence of tasks for each team of agents. 

Therefore, the harmonization module (CRP-II) is necessary.  

6.3.3 CRP-II Harmonization 

The second phase of CRP-H is harmonization. The harmonizer has the main objective of 

the sequencing task at each robot or team of robots concerning minimizing makespan (l#&O) and 

total summation of weighted completion time (∑õ9l9). The objective is selected to ensure that in 

case of unexpected conditions such as new UR, robot delays, operation conflicts, and errors, the 

high priority tasks are scheduled as early as possible to minimize heavier losses due to re-

optimization. 

6.3.4 A mathematical model for CRP-II 

The mathematical model for harmonization can be presented as below. 

Mathematical model 

Let 

ì#! = ±
1	"å	f+&,	#	&f+)f	+f	f"#$	f

0	'fℎ$)õ"&$
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ã# = ã)'*$&&"Üî	f"#$	'å	f+&,	" 

õ# = ã)"')"fì	'å	f+&,	" 

Objective function 

 min ï = 	¡¡õ#(f + ã#)ì#!
!#

 
(6.6) 

Subject to 

 ¡ ì#! = 1

P,-.K$

!AF

; ∀# 
(6.7) 

 ¡ ¡ ì#2 = 1

!K$

2A(RST	(!K*/,F)

ℳ

#A$

; ∀f 
(6.8) 

 
ì#! ∈ {0,1}; ∀#, f  

 
# = 1,2,… ,ℳ  

 
f = 0,1,2,… , lRST − 1  

The objective function, Equation (6.6), ensures the minimization of total weighted 

completion time. The first constraint, Equation (6.7), ensures that any task has a single starting 

point. The second constraint, Equation (6.8), ensures that only one task can be performed at a time. 

By solving the above mathematical model, the schedule that minimizes the total weighted 

completion time is generated. The minimization of makespan is ensured by having a non-delay 

schedule. 

It, however, needs significant computational power and time. Therefore, an algorithm for 

CRP-II, called Collaborative Robots Scheduling (CRS), is developed. 
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6.3.5 Collaborative Robots Scheduling (CRS) Algorithm 

As the harmonization module provides real-time control and adaptation from the new 

information, harmonization will be performed at the local agent(s) levels to provide efficient 

responsiveness. Solving the mathematical model presented before which contains a large number 

of decision variables (f × ì#!) requires powerful computational power, which is difficult given 

time constraints and local agent limitations. With the objective of harmonizer, an algorithm called 

Collaborative Robots Scheduling (CRS) is developed to ensure that the optimal schedule is 

achieved locally at lower computational costs. 

The CRS utilizes the advantages of the Weighted Shortest Processing Time first (WSPT) 

algorithm that yields the optimal solution for the total weighted completion time problem by 

developing multi-level of WSPT. The CRS algorithm is as follows. 

 
 q2r/.s0tu	(. 6:	8w:	q2r/.s0tu 
1. Initialize 
2. Parameter 
3. Schedule collaborative assignment tasks according to WSPT (called 

collaborative schedule) 
4. Schedule non-collaborative assignment tasks according to WSPT (called 

non-collaborative schedule) 
5. Combine the collaborative schedule with the non-collaborative schedule 

while the release time of non-collaborative schedule is makespan 
(l#&O) of the collaborative schedule 

6. Terminate algorithm 
 

 

Theorem 6.1: The optimal schedule for collaborative robots 

The CRS yields the optimal total weighted completion time for each robot and team of 

robots. 

Proof. At each particular robot (and a team of robots), the problem becomes 1||∑õ#l# 

problem. 
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Let task # has a weight õ#, the time to process ã#, and task #′ has a weight õ#0, the 

time to process ã#0 so that X/
*/

<
X/0
*/0

.  

Suppose schedule o′, which starts at time f	contradicted with WSPT rule. There will be at 

least one pair of the task such that  X/
*/

<
X/0
*/0

. However, task # is placed before #′ (Figure 6.3). 

The total weighted completion time of o′ is ) +õ#(f + ã#0) + õ#0(f + ã# + ã#0) where ) is 

the total weighted completion time of all tasks except # and #′. 

 

Figure 6.3. Schedule o′ 

If task # and #′ are interchanged and produce schedule o (Figure 6.4), the total weighted 

completion time of o is ) +õ#(f + ã#0) + õ#0(f + ã# + ã#0). Note that ) of o and o′ are the 

same as all tasks except # and #′ reaming unchanged. 

 

Figure 6.4. Schedule	o 

Because  X/
*/

<
X/0
*/0

, then õ#(f + ã#0) + õ#0(f + ã# + ã#0) > õ#(f + ã#0) +

õ#0(f + ã# + ã#0)  Moreover, the new schedule, which follows WSPT, has a strictly lesser 

objective function. 

Moreover, since a non-collaborative task requires the strictly longer processing time (by 

definition of the task) and has strictly lower priority (because it uses only a single robot), to 

schedule the task optimally, the non-collaborative schedules must be released after the completion 

of the collaborative schedule. 

∎ 
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Theorem 6.2: The guarantee optimal makespan for collaborative robot schedule 

The optimal makespan l#&O∗ 	of the system is. 

 lRST
∗ = ¡ ã0

0∈>1J>2

+max* ¡ ã#
#A>1

, ¡ ã#0

#0A>2

+ 
(6.9) 

Proof. There are two sub-schedules for the makespan; makespan form collaborative 

schedule and from the non-collaborative schedule. 

First, consider a robot team (%$ + %%). Regardless of the sequence of tasks, the makespan 

of the robot team equals to the total processing time of task assigned to the team (∑ ã00∈>1J>2 ). 

Next, consider a single robot agent (%$ and %%). Each robot can work individually, and the 

makespan of all single robot agent become maximum total completion time of all robots 

(max(∑ ã9>1 , ∑ ã90>2 )). Also, the earliest time that each robot can start working is immediately 

after the collaboration task has done. Therefore, the optimal makespan for the robotic schedule is. 

lRST
∗ = ¡ ã0

0∈>1J>2

+max* ¡ ã#
#A>1

, ¡ ã#0

#0A>2

+ 

∎ 

 Human Role and Human-in-the-loop Design for C2T 

Human support has become an essential aspect of production system design, assessment, 

and improvement (Zhang, Schmidt, Schlick, Reuth, & Luczak, 2008). In the C2T, human subject 

matter expert (SME) is considered as an intelligent agent who is capable of providing decision-

making capabilities in real-time (Dusadeerungsikul & Nof, 2019). SME’s can fill in the missing 

information in tasks which contain incomplete information and thus restructure the system. For 

example, the system might come across packages that might have incomplete or erroneous data. 

In such cases, it is up to the human operators to use their expertise to provide the missing data for 

the packages, which can include appropriating the priority weights of the packages, updating the 

plant location, adding these packages to the queue once the information is complete. The humans 
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interact with the system in real-time, and the performance metrics are collected appropriately. In 

the experiments, the SME’s are simulated re-prioritizing a fixed proportion of the task queue, and 

these added changes occur in real-time. Thus, the system considers the dynamic impact of 

modeling humans as physical agents capable of leveraging expertise for decisions and thus can 

prove to be more robust than entirely autonomous systems.  

 Experiments 

To validate the protocol and algorithm designed, three computer simulations experiments 

are constructed as follows.  

6.5.1 General Experimental Setting 

Mode of operation  

For all cases, the greenhouse scenario with the monitoring tasks is simulated. Any task can 

be performed in three ways: either by %$, %%, or %$ + %%. 

Time 

In a greenhouse scenario, the operation can be simplified into a single metric – processing 

time. The processing time for each task by one of the three-team is derived from travel distance 

with the assumption that the collaborative team achieves a faster processing rate than the task done 

by either %$ or %%.  

Capability 

As mentioned earlier, different tasks have distinct operational requirements. The robots’ 

ability to complete a task is assigned to the five potential types of operation.  

Weight 

Weight denoting the priority level between 0 to 10 is assigned to each task. Weight 10 

being the highest priority, while the task with weight 0 does not have a deadline.  
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Cost 

The cost of operation is directly proportional to time with the fixed cost. Each robot has a 

fixed price for every time unit in operation. The unit cost of the collaboration team is the 

summation of the participating agents.   

6.5.2 Modeling Procedure 

The simulation experiments are constructed in MATLAB. Given the above experimental 

settings, the collaborative tasks incur higher costs for a faster processing rate. The performance 

metrics are the total operation cost, makespan (l#&O) and weighted completion time (∑õ#l#).In 

tune with CRP, the CRM that reflects the status of the system is updated in real-time. Hence, CRM 

is a dynamic matrix that is administrated and updated by the administrator of the system.  

6.5.3 Experiment 6.1: Performance Analysis in Planned Operations 

Experiment 6.1 aims to compare the designed protocol with the standard procedure 

(Baseline). The system description is as follows.  

System Description 

Agents: 2 robots (%$ and %%) and 1 robot team (%$ + %%.) 

Tasks: 100 tasks with different priorities and available immediately at the beginning of the 

operation time. 

Operation procedures: Two types of operation procedures. 

(1) CRP – H: The designed protocol. 

(2) Baseline procedure: Random task to robot/team of robot assignment with First come first 

serve (FCFS) scheduling 



 

 

123 

6.5.4 Experiment 6.2: Performance Analysis with Unplanned Operations  

Experiment 6.2 aims to compare the performance of the CRP-H with the baseline when 

unplanned operations happen (e.g., UR). The designed protocol is tested against the standard 

procedure to deal with unplanned operations (Baseline). The system description is as follows.  

System Description 

Agents: 2 robots (%$ and %%) and 1 robot team (%$ + %%.) 

Tasks: 90 tasks available immediately with different priorities and ten tasks added after the 

beginning of the operation. 

Operation procedures: Two types of operation procedures. 

(1) CRP – H: The designed protocol with re-schedule the new task according to CRP-II 

(2) Baseline procedure:  Utilizing CRP-I for the task to robot/team of robot assignment with 

First come first serve (FCFS) for the new tasks 

6.5.5 Experiment 6.3: Performance Analysis with HITL design  

Experiment 6.3 allows human experts to be involved in the decision-making process. The 

CRP-H, which allows with human-in-the-loop features, is validated against the non-human 

procedure. The system description is as follows. 

System Description 

Agents: 2 robots (%$ and %%) and 1 robot team (%$ + %%.) 

Tasks: 90 tasks available immediately and ten tasks without priority added after the 

beginning of the operation. 

Operation procedures: Two types of operation procedures. 

(1) CRP – H: The protocol with HITL. 
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(2) Baseline procedure: The protocol without HITL. 

 Results 

6.6.1 Experiment 6.1 Results 

In experiment 6.1, the result from the random task to agent assignment with FCFS rule is 

used as the design baseline. Table 6.2 and Figure 6.5 summarizes two performance metrics based 

on the result of 100 operation runs. The average total operation cost and the average weighted 

completion time of the CRP-H is 11.84% and 37.11% lower than the baseline, respectively. At the 

significance level 0.05, two sample standard t-tests (p<0.0001) confirm that the CRP-H 

significantly outperforms the baseline both in terms of total operating cost and total weighted 

completion time. CRP-H yields statistically significant lower makespan than the baseline as the 

result of the optimization objective of cost and priority. Importantly, the makespan from the CRP-

H has met the guarantee optimal makespan from Theorem 2. 

Table 6.2. Result of Experiment 6.1  

 CRP-H Baseline % Difference  

Average Total Operational Cost ($) 4916.02  
(235.97) 

5576.10  
(267.65) 11.84%* 

Average Total Weighted Completion time 
(sec) 

1.61×105  
(2.01×104) 

2.56×105  
(2.87×104) 37.11%* 

Average Makespan (sec) 893  
(75.91) 

901  
(58.57) 0.89%* 

Note: Standard deviations are given in parentheses, * Statistically significant at (p<0.0001) 
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Figure 6.5. Experiment 6.1 results 

Next, to see the impact of the saving from the CRP-H, the cost and time saving is calculated, 

as shown in Equation (6.10) and (6.11). 

Cost-saving 

 ∆l'&f = lY&.(Z<9"( − lP>[KG 
(6.10) 

Where  

∆l'&f = Cost saving 

lY&.(Z<9"( = Total operation cost from the baseline procedure 

 lP>[KG = Total operation cost from CRP-H 

Time-saving 

 ∆-$"îℎf$à	l'#ãá$f"'Ü	!"#$ =-Y&.(Z<9"( −-P>[KG 
(6.11) 

Where  

∆-$"îℎf$à	l'#ãá$f"'Ü	!"#$ = Time saving 

-Y&.(Z<9"( = Total weighted completion time from the baseline procedure 
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 -P>[KG = Total weighted completion time from CRP-H 

Figure 6.6 shows the cost and time-saving at various task loads. The results show that cost-

saving is linearly proportional (R2 =0.997) to the increasing number of tasks, and, interestingly, 

the time saving is in a polynomial relationship, non-linear relationship (R2 =0.981) with the 

number of tasks in the queue. The results also validate the robustness of the CRP-H in a multi-

robot task allocation problem as both cost and time saving are always positive.  

 

 

Figure 6.6. Experiment 6.1: Cost and time-saving at different number of tasks 

 

6.6.2 Experiment 6.2 Results 

In Experiment 6.2, 10% of the tasks are added to the queue after the robot-task assignment 

and optimizing the schedule has performed. The goal of the experiment is to understand the impact 

of dynamic changes in the environment and determine the criteria for re-optimization. Table 6.3 

and Figure 6.7 compare the performance metrics from the result of 100 operation runs. Even 

though the difference in total operation cost arises from the 10% of the tasks that are inserted after 

initiating the work sequence (due to the fact that the majority of the task sequence had been 

optimized under CRP-I), at significant level of 0.05, the average operational cost of CRP-H is 

lower (p=0.04) than the baseline. Also, the weighted completion time of CRP-H is 10.7% lower 

(p<0.0001) than the baseline. In the actual working scenario, the criteria for re-optimization is 
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when the saving in cost and weighted completion time is more significant than the fixed 

optimization cost.  CRP-H also provide a statistically significant lower makespan than the baseline.  

Note that the makespan by the CRP-H in the experiment 2 is larger than the guaranteed bound 

from Theorem 2. The makespan from the theorem captures only planned operation while the actual 

makespan reflects the URs. 

Table 6.3. Result of Experiment 6.2  

 CRP-H Baseline Difference % 

Average Total Operational Cost ($) 4916.02  
(235.97) 

4984.31  
(234.49) 1.37%* 

Average Total Weighted Completion time 
(sec) 

1.61×105  

(2.01×104) 
1.84×105  

(2.11×104) 12.50%* 

Average Makespan (sec) 893  
(75.91) 

897  
(75.35) 0.45%* 

Note: Standard deviations are given in parentheses, * Statistically significant at (p<0.0001) 
 

 

 

Figure 6.7. Experiment 6.2 results 
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6.6.3 Experiment 6.3 Results 

In Experiment 6.3, a certain percentage of tasks received during the operation process 

(unplanned requests, UR) arrive with missing information, such as priority or deadlines. The 

experiment studies the impact of human intervention in the task allocation and sequencing problem. 

For this experiment, the human agent assigns the missing priority of tasks before the optimization, 

as compared to the baseline state where these tasks are added at the end of queue with minimal 

priority. The results for 10% of UR are shown in Table 6.4 and Figure 6.8, which suggests that 

HITL design significantly improves both the total operational cost and weighted completed time 

when compared to the baseline (p<0.0001). An additional human involvement cost for the 

reprioritization tasks is assumed to be zero, since the involvement can be considered part of routine 

human tasks. On the other hand, if there is an additional human involvement cost, the cost should 

be lower than a cost threshold (the difference between total operation cost from CRP-H and 

baseline) to be considered as a cost-effective situation. 

 
Table 6.4. Result of Experiment 6.2  

 CRP-H Baseline Difference % 

Average Total Operational Cost ($) 5071.68 
(239.46) 

5437.81 
(267.65) 6.73%* 

Average Total Weighted Completion time 
(sec) 

1.61×105 

(2.00×104) 
1.83×105 

(2.12×104) 10.23%* 

Average Makespan (sec) 893 
(19.32) 

897 
(11.35) 0.45%* 

Note: Standard deviations are given in parentheses, * Statistically significant at (p<0.0001) 
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Figure 6.8. Experiment 6.3 results 

Figure 6.9 shows the cost difference at various UR percentages. The results show the cost 

differences are linearly proportional (R2 = 0.998) to the increasing percentage of unplanned tasks, 

which suggests that with increasing unplanned or unexpected events, CRP-H improves cost 

reduction via augmented stabilization of performance. 

 

  

Figure 6.9. Cost differences between CRP-H and baseline when percentage of UR increases 
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 Conclusion and Discussion 

As stresses are usually the initial states of diseases, detecting and treating them early is 

critical. In this chapter, a new protocol called CRP-H is designed, developed, and validated to 

address such a challenge. By studying a cyber collaborative system, five types of tasks are defined 

to represent the greenhouse functional tasks. CRP-H is composed of two main parts: CRP-I for a 

task(s) to robot(s) assignment optimization; and CRP-II for task sequencing, scheduling, and 

harmonization. CRP-I operates at the global level of the C2T, which requires high computational 

time while CRP-II operates at the local-agent level, which has only limited computational power 

to respond to dynamic change in the greenhouse.  

Two theorems are presented in this article. Theorem 6.1, the optimal schedule for 

collaborative robots proves that the CRS algorithm provides the optimal schedule for collaborative 

robots in the greenhouse. Theorem 6.2, the guarantee optimal makespan for collaborative robot 

schedule, can provide the optimal makespan of the collaborative robot schedule. The guaranteed 

optimal makespan has utilized information available at the time. If the system obtains URs after 

makespan is calculated, the actual system makespan is greater than or equal to the optimal 

makespan from the Theorem 6.2. 

Based on the three experiments, observations indicate that the Collaboration Requirement 

Planning protocol for HUB-CI (CRP-H) delivers superior performance in terms of total operation 

cost, makespan, and total weighted completion time when compared to a common practice in 

today's operations. Lower operational cost is enabled by the use of the CRP-I part of the CRP-H, 

which optimally assigns tasks to the robot(s). Moreover, total weighted completion time and 

makespan are minimized because of the CRP-II part of the CRP-H, which can update the execution 

schedule in real-time, by the collaborative cyber connectivity with IoT/IoS devices’ information. 

The experimental results also show that HITL design can help the system become more robust, 

given that the versatility of human decision-making is appropriately applied. HITL Systems help 

to deal with new and emergent errors such as diseases in plants, without a significant increase in 

cost.  

Importantly, as presented in Figure 6.6, the experiments also show that when the number 

of tasks received by the C2T is increased, the CRP-H can linearly improve the performance of the 
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system in terms of total operation cost. Also, the total weighted completion time is improved in 

the polynomial relationship to the number of tasks. In addition, Figure 6.9 shows the cost saving 

from having HITL can linearly save the operation cost when percentage of UR increases. 

In the practical implications, the CRP-H can save both money and time for the system 

without additional investment. CRP-I can be performed in the background before the operations 

begin. CRP-II, which requires only small computational power due to the simple rules of algorithm, 

can support the system by adjusting the operation during the ongoing process to respond to the 

unplanned requests. Additionally, with HITL design, the system can overcome the unexpected 

situation such as missing data with the minimal incremental cost. On the other hand, if the 

additional cost due to HITL (e.g., worker cost) exceeds the difference between CRP-H and the 

baseline case, then it is not attractive to maintain HITL. It, however, must be mentioned that if the 

human input were not included, the tasks would either incur hidden costs from erroneous from 

missing information, or cost from wrong treatments, both of which are undesired outputs. Human 

agents can identify erroneous cases and assign missing priority to them, thus preventing further 

and future losses in cases.   
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 CONCLUSION AND DISCUSSION 

 Summary and Original Contributions 

Food security has drawn a lot of attention from society now. Because of food security, 

researchers and farmers grow plants in greenhouse to protect them from undesirable conditions 

and to maximize the crops output. Plant, however, are far from precision controlled. Moreover, 

they are fostered and manipulated to produce crops in the unusual cycle. Such conditions, in many 

cases, causes plants to develop stresses or diseases, leading to loss of crops yields. To minimize 

the loss, farmers utilize uniform resource management i.e., apply water, fertilizer, pesticide evenly 

over the greenhouse field. The uniform resource management approach, however, has been proven 

to be the non-optimal solution for food production in both profit and environmental protection. 

The alternative solution to the food security is PA. PA has a high potential in the near future. 

Many international companies are developing and testing real-world applications of PA. PA aims 

to apply the right amount of resources such as water, fertilizer, and pesticide to a specific location 

at the right time so that the farming resources are minimized and environmental is protected. 

The critical point of PA is how to use limited resources effectively. The resources are not 

only water, fertilizer, and pesticide, but also time and effort which are put in the farming process. 

Moreover, information obtained during the farming process must be utilized effectively in order 

to achieve the optimal output in PA. As the farming equipment and automation are limited in terms 

of operation hours, the procedure to maximize information gained within the limited time is 

essential. 

In this study, the monitoring system which inspects the status of the plant in the greenhouse 

is the focus. Because knowing the status of the plant in a specific location can provide directions 

on how to allocate resources properly, the monitoring system is necessary. The study has four sub-

studies that aim to improve the monitoring process. The first study, which utilizes CPS for PA, is 

the backbone of the following studies as it develops the high-level picture of the monitoring system. 

The second study is the detailed operations of how local agents work together to perform the 

collaborative monitoring task. The third study analyzes the performance of the local agent’s 
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algorithm and provides the optimal procedure to reduce time while maximizing the information 

gain. Lastly, the fourth study is to design the optimal procedure after receiving information about 

the status of plants. 

In order to have an effective monitoring system, the study first explores the roles and 

implementation of CPS in a greenhouse. Because of the newly emerged approaches, namely CPS, 

IoT/IoS, TAP, CCT, and PCol, CCP-CPS can perform collaboratively and effectively. The CCP-

CPS utilizing CCT, TAP, and PCol is developed for coordinating and optimizing system agents 

(humans, a mobile robot, and sensors), which can increase the productivity of the system to achieve 

its goal. Working collaboratively, which tends to minimize resources used, is essential when 

resources are limited. Also, CPS and IoT/IoS help the system to have effective real-time 

communication and control, which also improves system performance.  

Three experiments are conducted in the first study to investigate the different perspectives 

of CCP-CPS. The first experiment aims to compare the operation cost for the CPS and Non-CPS 

(current practice) schemes. The result shows that with the CPS, the system yields a significantly 

lower operation cost by 23.5%. Because of CPS enables real-time communication and response, 

costs which relate to traveling and delaying are minimized. Next, the second experiment aims to 

test the robustness of both schemes. With changing system C&E, the results show that the 

operation time from the non-CPS scheme significantly increases when compared to the CPS 

scheme. In the agriculture context, which is relatively unstructured by nature, a system that can 

tolerate to C&E in the system is preferred. Hence, the CPS scheme shows superior performance 

than the non-CPS scheme. Lastly, the third experiment investigates the performance when the 

robot receives the emergency request. The experimental result indicates that, with CPS, the 

response time of the robot is significantly lower than the non-CPS scheme. 

Even though the CPS designed scheme provides thee relatively superior performances in 

terms of cost, robustness, and time, the scheme does not indicate how the local agents interact with 

each other. Hence, a new protocol called CCP-ED is developed in the second study. The protocol 

aims for managing local agents, namely humans, robots, and sensors, to inspect plants. Also, the 

protocol has three main algorithms, routing algorithm, adaptive search algorithm, and stress 

detection algorithm. The algorithms enable agents to perform the assigned tasks. 
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Two performance metrics are applied to capture the performance of CCP-ED; NIPF and 

ORE. The experimental results indicate that the CCP-ED yields the better in terms of infected 

locations found and efficiency. CCP-ED can significantly improve NIFP, which represents the 

performance of the system. Also, CCP-ED yields significantly higher ORE, which represents the 

system efficiency. As ORE consists of three components; ÷, ‘, and o, the CCP-ED, which results 

in 85.3% ORE, is considered a healthy system. Lower than 80% of ORE would be considered as 

an inefficient system as the system wastes time for performing unnecessary tasks. On the other 

hand, nearly 100% of ORE would not be desirable, especially in the agriculture system, as it lacks 

flexibility. Lacking flexibility would result in the incapable of acting to the change in the system, 

which may lead to the inability to respond to urgent situations. 

The CCP-ED provides insight into how the collaborative system operates. It would be more 

meaningful to further investigate one of the core algorithms, the Adaptive Search algorithm, to 

suggest the optimal procedure of the system. In the third study, the objective is to investigate the 

optimal procedure of the AS to save the inspection time and provide the maximum information 

gain. Moreover, to reflect the real system situation, the procedure will include C&E, which impacts 

the decision of AS. The inspection process may have errors (either type 1 or type 2), which can 

affect the performance of the system significantly. Therefore, the D-AS is developed to improve 

the search procedure by incorporating system errors and disease’s characteristics, such as disease 

generated probability and disease propagation probability. 

Two theorems are developed and proved based on the observation and finding in the system 

characteristics. The first theorem, Optimal Expansion of Dynamic Adaptive Search, indicates the 

optimal expansion of D-AS with respect to the character of disease as well as error in the system. 

The second theorem, Diseases Propagate Probability, indicates the probability of diseases found 

at each particular location. 

Three experiments are conducted to have a more in-depth investigation of the D-AS. In the 

first experiment, performance analysis aims to investigate inspection performance in terms of !‘% 

and !∞% . !‘%  and !∞%	capture the quality of inspection ratio (number of true infected/true 

healthy plant found against complete inspection). Therefore, the superior search policy must have 

a higher value of !‘%  and !∞% . The experimental results show that the D-AS provide the 
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significantly better (or the same) as the alternative search policies. As the D-AS adapts to the 

situation of disease, in the situations in which diseases are rare to generate and propagate, the D-

AS will perform as None Search policy. 

On the other hand, when the probability of disease to generate and propagate is higher, the 

D-AS will expand the search accordingly. As a result, it keeps the D-AS at least as good as other 

search policies, and in most of the case, the D-AS perform significantly better in term of !‘%. In 

terms of	!∞%, the D-AS does not perform significantly differently from others. 

The second experiment, cost analysis, investigates the performance in terms of cost, and 

benefit from the inspection process. ¢‘ is utilized to measure the inspection profit for each search 

policy. As the information gain during the inspection process is very important for planning 

resources and treatment for crops, the more useful information the system gain, the better the 

system is. Results show that D-AS increases ¢‘ by 12.8% compare to the current practice (None-

Search policy). It means that using the D-AS as a search policy can yield the maximum inspection 

profit to the system. 

Lastly, to investigate the sensitivity of the D-AS and other search policies, the third 

experiment is conducted. By having the actual parameters (such as the probability of disease 

emerges and the probability of disease propagation) deviates from the setting, changes in results 

from the optimal solutions are defined as the sensitivity of the algorithm. The experimental results 

show that D-AS provides a robust result (non-sensitive). When the input parameters are deviated 

by 25%, the results deviate from the optimal solution by 4.9%. On the other hand, the other search 

policies are less robust to the change in the input parameters (more sensitive). As discussed earlier, 

in the agricultural context, the system has high potential to have deviation of inputs. For example, 

the probability of disease to generate may not be exact to the setting parameter. As a result, the 

system which can work efficiently even though the deviation of the setting exists is preferred. 

Moreover, the system may contain errors as errors are typically found in every system. The D-AS, 

which balances between over inspection (by type 1 error) and under inspection (by type 2 error), 

can provide the optimal procedure for AS. 
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After inspecting and identify the stress locations, the next important task is to send the 

robot to treat or remove the plants. Therefore, the last protocol, CRP-H, is designed, developed, 

and validated to address the task. Five types of tasks are defined to represent greenhouse functional 

tasks. CRP-H is composed of two main parts: CRP-I and CRP-II. The CRP-I which performs in a 

global level aims to optimally assign task(s) to robot(s) (many to many matching) by minimizing 

the total operation cost. As a result, the CRP-I requires high computational power because of the 

complexity of the problem. On the other hand, CRP-II which aims to response to the real-time 

information needs to operate at the local-agent level which has only limited computational power. 

Two theorems are derived from the analysis of observations. Theorem 6.1, Optimal 

Schedule for Collaborative Robots, indicates that the CRS algorithm yields the optimal schedule 

for collaborative robots in the greenhouse. Next, theorem 6.2, Guaranteed Optimal Makespan for 

a Collaborative Robot Schedule, proves the optimal makespan (lower bound) of the collaborative 

robot schedule in greenhouse.  

In order to validate the performance of CRP-H, three experiments are conducted. Three 

performances of the CRP-H are captured by three main metrics, total operation cost, makespan, 

and weighted completion time. The experimental results show that CRP-H yields superior 

performance comparing to the current practice. CRP-I enable the operation cost saving because 

the CRP-I assign task(s) to robot(s) optimally. In addition, the CRP-II which obtains real-time 

updated information and execution schedule by the collaborative cyber connectivity with IoT/IoS 

devices in greenhouse schedules tasks according to CRS algorithm and non-delay schedule policy 

so that the makespan and total weighted completion time are minimized. Lastly, the experimental 

results indicate the benefit of the HITL design that can increase the robustness of the system. 

Because the human experts can deal with the unexpected situations such as priority of the task, the 

total operation cost is minimized.  

The original contributions of the study are: 

1. Contribution 1; A CPS framework for the agricultural systems, a representative of an 

unstructured system. Also, the framework is adaptable to other unstructured systems. 

2. Contribution 2; A collaborative control protocol which can synchronize operations and 

communications at the local level agents containing simple operation algorithms. 
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3. Contribution 3; Analysis of operations in an unstructured system that some system 

information is unknown in advanced.  

4. Contribution 4; An interaction optimization procedure for agents in unstructured systems, 

which enables to logically leverage the capabilities of agents and yield a relatively superior 

system in performing complicated tasks 

Table 7.1 shows the relationship of each chapter to the research questions and original 

contribution of the study. By having CCP-CPS, which utilizes the CPS scheme, it is possible to 

have a collaborative system which composes of multiple agents (i.e., humans, a mobile robot, 

sensors, IoT/IoS) in the system, address RQ1. The CCP-ED is the detailed operation of each agent 

in the system addressing RQ2. The information obtains from CCP-CPS and CCP-ED can be most 

utilized by using D-AS, which addressing RQ3. Lastly, once the system can localize the unhealthy 

plants, CRP-H is used to treat plants in the locations effectively, addressing RQ4. 
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Table 7.1. Relationship between research questions, contributions, and dissertation structure 
Research Question Contributions Relative Sections 

RQ1 

How can we design and 
develop the CPS framework, 

which can combine 
algorithms, sensors, robots, 
humans, and other agents to 

work effectively and facilitate 
real-time communications for 

the greenhouse system? 

Contribution 1 
and 3 

3.1 Collaborative Control 
Protocol for Cyber-Physical 
System (CCP-CPS) design 

 

3.1.1 CPS framework for 
PA 

3.1.2 CCP-CPS design 
3.1.3 Collaborative control 

theory in CCP-CPS 

RQ2 

How can we design the cyber 
collaborative protocol for the 
agents in a greenhouse under 

the CPS framework to perform 
their job to maximize the 

system performance, reflect 
real-time characteristics of 
plants, and utilize available 
time most effectively, even 
optimally, for the earliest 

detection of stress in crops? 

Contribution 2 
and 4. 

4.2 Collaborative Control 
Protocol for Early Detection 
of Stress in Plants (CCP-ED) 

 
4.2.1 Collaboration 

Requirement Planning 
(CRP) 

 
4.2.2 Error Prevention and 

Conflict Resolution 
(EPCR) 

 4.2.3 Elements in CCP-ED 
 4.2.4 CCP-ED design 

RQ3 

How can we effectively utilize 
the new information found 

during the inspection process 
to provide the optimal 

collaborative interaction 
procedures between agents to 
maximize information gains 

during the monitoring 
process? 

Contribution 3 
and 4 

5.1 Type of system errors in AS 
5.2 Monitoring Profit 
 5.2.1 Overage Cost 
 5.2.2 Underage Cost 
5.3 Optimal Balancing 
 5.3.1 Dynamic Adaptive 

Search Algorithm 
 5.3.2 Propagation 

Probability Map 
Model   

RQ4 

How can we develop a 
protocol which effectively and 

collaboratively manages 
agents to treat the stress plants 

that may require a specific 
type of agent or interaction 

among multiple agents? 

Contribution 2 
and 4 

6.1 Cyber Collaborative for Plant 
Treatment (C2T) 

6.2 Cyber Collaborative 
Greenhouse System 
Architecture 

6.3 CRP-H Protocol design 
6.4 Human Role and Human-in-

the-loop Design for C2T 
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 Limitation and Future Research Directions 

PA now gains more attention to becoming a crucial part of solving the food security issue. 

The existing knowledge is not sufficient to address challenges and issues in PA. Therefore, this 

study developed concepts, methodologies, theories, and applications that can be applied to improve 

and optimize the operation system in PA. To this end, the following research directions are 

recommended to strengthen the work and investigate limitations of the study in the optimization 

in PA. 

1. Unexpected events or requests to the system: The monitoring system of greenhouse crops 

can be requested to deal with unexpected events or requests such as add the additional 

location to the existing plan, re-inspect the previous locations, or delay from the impaction 

process. Future research can be the designing of protocols and algorithms to respond to the 

requests. 

2. Utilizing historical data: During the monitoring and inspection process, massive data are 

collected by sensors. The data can be analyzed and provide meaningful insight. The 

insights are, for example, the change in directions of the disease’s propagation, factors that 

impact the disease, and the states of stress in the plant.  

3. Integration of learning algorithms: As mentioned earlier, the massive data collected every 

day are very valuable and can be used for training the agents to become more efficient in 

performing tasks. Researchers can consider problems about how to integrate the learning 

algorithm to the monitoring system. 

4. Additional system agents: Two sub-directions can be considered in this direction; adding 

the additional type of agents or adding the same type of agent. Adding more types of agents 

can improve the agent system performance. The additional type of agent would be drones, 

field workers, or other types of robots. As the different type of agents has different strength 

(and weaknesses), the collaboration of agent would strengthen the system performance and 

capability. On the other hand, the more significant number of agents in the system will lead 

to a higher complexity of the system as well. Therefore, the more complex protocol which 

can deal with the multi-agent system is required. Another direction is to add the existing 

type of agent to the system. Researchers can consider a larger scale of problems, such as a 

greenhouse where multiple robots are needed. With multiple robots, it can be considered 
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as another variation of vehicle routing problem, the vehicle routing problem for service 

operations. Developing a protocol for multi-robot working for a large greenhouse will be 

an interesting research question to the researchers.  

5. Conflicts and errors: As conflicts and errors can happen in every system, the system which 

can resolve conflicts and prevent errors is considered as an efficient system. In the study, 

some types of conflicts and errors are considered. The future research should address issues 

about the resolution and prevention of the conflicts and errors in the monitoring system, 

for example, the delay of the information or inconsistency of the information received. 
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