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ABSTRACT 

Naturally-occurring biological materials with stiff mineralized reinforcement embedded in a 

ductile matrix are commonly known to achieve excellent balance between stiffness, strength and 

ductility. Interestingly, nature offers a broad diversity of architectural motifs, exemplify the 

multitude of ways in which exceptional mechanical properties can be achieved. Such diversity is 

the source of bio-inspiration and its translation to synthetic material systems. In particular, the 

helicoid and the “brick and mortar” architectured materials are two key architectural motifs we are 

going to study and to synthesize new bio-inspired materials.  

Due to geometry mismatch(misorientation) and incompatibilities of mechanical properties 

between fiber and matrix materials, it is acknowledged that misoriented stiff fibers would rotate in 

compliant matrix beneath uniaxial deformation. However, the role of fiber reorientation inside the 

flexible matrix of helicoid composites on their mechanical behaviors have not yet been extensively 

investigated. In the present project, fiber reorientation values of single misoriented laminae, mono-

balanced laminates and helicoid architectures under uniaxial tensile are calculated and compared. 

In the present work, we introduce a Discontinuous Fiber Helicoid (DFH) composite inspired by 

both the helicoid microstructure in the cuticle of mantis shrimp and the nacreous architecture of 

the red abalone shell. We employ 3D printed specimens, analytical models and finite element 

models to analyze and quantify in-plane fiber reorientation in helicoid architectures with different 

geometrical features. We also introduce additional architectures, i.e., single unidirectional lamina 

and mono-balanced architectures, for comparison purposes. Compared with associated mono-

balanced architectures, helicoid architectures exhibit less fiber reorientation values and lower 

values of strain stiffening. The explanation for this difference is addressed in terms of the measured 

in-plane deformation, due to uniaxial tensile of the laminae, correlated to lamina misorientation 

with respect to the loading direction and lay-up sequence. 

In addition to fiber, rod-like, reinforced laminate, platelet reinforced composite materials, 

“brick and mortar” architectures, are going to be discussed as well, since it can provide in-plane 

isotropic behavior on elastic modulus that helicoid architecture can offer as well, but with different 

geometries of reinforcement. Previous “brick and mortar” models available in the literature have 

provided insightful information on how these structures promote certain mechanisms that lead to 

significant improvement in toughness without sacrificing strength. In this work, we present a 
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detailed comparative analysis that looks at the three-dimensional geometries of the platelet-like 

and rod-like structures. However, most of these previous analyses have been focused on two-

dimensional representations. We 3D print and test rod-like and tablet-like architectures and 

analyze the results employing a computational and analytical micromechanical model under a 

dimensional analysis framework. In particular, we focus on the stiffness, strength and toughness 

of the resulting structures. It is revealed that besides volume fraction and aspect ratio of 

reinforcement, the effective shear and tension area in the matrix governs the mechanical behavior 

as well. In turns, this leads to the conclusion that rod-like microstructures exhibit better 

performance than tablet-like microstructures when the architecture is subjected to uniaxial load. 

However, rod-like microstructures tend to be much weaker and brittle in the transverse direction. 

On the other hand, tablet-like architectures tend to be a much better choice for situations where 

biaxial load is expected. 

Through varying the geometry of reinforcement and changing the orientation of 

reinforcement, different architectural motifs can promote in-plane mechanical properties, such as 

strain stiffening under uniaxial tensile, strength and toughness under biaxial tensile loading. On 

the other hand, the various out-of-plane orientation of the reinforcement leads to functionally 

graded effective indentation stiffness. The external layer of nacre shell is composed of calcite 

prisms with graded orientation from surface to interior. This orientation gradient leads to 

functionally graded Young’s modulus, which is confirmed to have higher fracture resistance than 

homogenous materials under mode I fracture loading act. 

Similar as graded prism orientation in calcite layer of nacre, the helicoid architecture found 

in nature exhibits gradients on geometrical parameters as well. The pitch distance of helicoid 

architecture is found to be functionally graded through the thickness of biological materials, 

including the dactyl club of mantis shrimp and the fish scale of coelacanth. This can be partially 

explained by the long-term evolution and selection of living organisms to create high performance 

biological materials from limited physical, chemical and geometrical elements. This naturally 

“design” procedure can provide us a spectrum of design motifs on architectural materials.  

In the present work, linear gradient on pitch distance of helicoid architectures, denoted by 

functionally graded helicoid (FGH), is chose to be the initial pathway to understand the 

functionality of graded pitch distance, associated with changing pitch angle. Three-point bending 

on short beam and low-velocity impact tests are employed in FEA to analyze the mechanical 
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properties of composite materials simultaneously. Both static(three-point bending) and 

dynamic(low-velocity impact) tests reveal that FGH with pitch angle increasing from surface to 

interior can provide multiple superior properties at the same time, such as peak load and toughness, 

while the helicoid architectures with constant pitch angle can only provide one competitive 

property at one time. Specifically, helicoid architectures with smaller pitch angle, such as 15°, 

show higher values on toughness, but less competitive peak load under static three-point bending 

loading condition, while helicoid architectures with middle pitch angle, larger than or equal to 

22.5° and smaller than 45°, exhibit less value of toughness, but higher peak load. The explanation 

on this trend and the benefits of FGH is addressed by analyzing the transverse shear stresses 

distribution through the thickness in FEA, combined with analytical prediction. In low-velocity 

impact tests, the projected delamination area of helicoid architectures is observed to increase when 

the pitch angle is decreasing. Besides, laminates with specific pitch angles, such as 45°, classical 

quasi-isotropic laminate, 60°, specific angle ply, and 90°, cross-ply, are designed to compare with 

helicoid architectures and FGH. 
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 INTRODUCTION 

1.1 Biological materials 

Bio-composites found in the exoskeletons of crustacean and mollusk shells combine stiff 

mineralized (inorganic) reinforcement with ductile biopolymers (organic) to form complex 

hierarchical architectures (Chen et al., 2012; Meyers et al., 2008; Zhang et al., 2010a). The superior 

mechanical properties of these protective architectured materials, such as stiffness, strength, and 

fracture toughness, are of critical importance to the organism survival. This is accomplished in 

part through the combination of stiff and ductile materials and a hierarchical architecture over a 

range of length scales. Interestingly, nature offers a broad diversity of architectural motifs, 

exemplify the multitude of ways in which exceptional mechanical properties can be achieved. Such 

diversity is the source of bio-inspiration and its translation to synthetic material systems. Indeed, 

bio-inspired materials made by additive manufacturing technologies display similar deformation 

mechanisms and superior properties (de Obaldia et al., 2015; Porter et al., 2017; Studart, 2016; 

Suksangpanya et al., 2018; Yin et al., 2019; Zhang et al., 2016, 2015). On the other hand, metallic 

layered composites made by sintering exhibit enhanced damage tolerance(Hofer et al., 2020). 

In part of fiber reorientation, Chapter 2, we combine two architectures: (i) the “fiber helicoid 

(or Bouligand)” (Bouligand, 1972; Meyers et al., 2008) and (ii) the “brick and mortar” to 

investigate discontinuous fiber helicoids (DFH) first introduced and investigated in (Zaheri et al., 

2018). The fiber helicoid is found in the dactyl club of the Peacock mantis shrimp (Stomatopod) 

(Grunenfelder et al., 2014a; Guarín-Zapata et al., 2015; Weaver et al., 2012), the cuticle of 

arthropods (Cheng et al., 2011, 2008a; Grunenfelder et al., 2014a; Raabe et al., 2005; Sachs et al., 

2008; Weaver et al., 2012; Yao et al., 2013; Zelazny and Neville, 1972), fish scales (Bigi et al., 

2001; Bruet et al., 2008; Fang et al., 2014; Gil-Duran et al., 2016; Ikoma et al., 2003; Lin et al., 

2011; Meyers et al., 2012; Murcia et al., 2017a; Torres et al., 2008; Yang et al., 2014, 2019; Zhu 

et al., 2012; Zimmermann et al., 2013), and plants (Chung et al., 2011; Roland et al., 1989). The 

“brick and mortar” is found in sea shells, e.g., the innermost layers of red abalone (Haliotis 

rufescens) (Barthelat et al., 2016; Ji and Gao, 2004; Menig et al., 2000; Salinas and Kisailus, 2013; 

Sun and Bhushan, 2012a). 
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In addition to DFH synthesized from helicoid and “brick and mortar” architectures, nacreous 

laminar architecture, which is original motif in nature of “brick and mortar” architecture, is studied 

and compared with rod-like architecture in Chapter 3. The former architecture is bio-inspired by 

the nacreous microstructures in the inner layer of seashells of Mother-of-pearl (nacre), staggered 

tablet-like architectures. Its mechanical properties are far superior to its constituents, ceramic and 

protein (Barthelat et al., 2007; Chintapalli et al., 2014; Pro et al., 2015; Salinas and Kisailus, 2013; 

Sun and Bhushan, 2012b; Yaraghi and Kisailus, 2018; Zhang et al., 2010b). The rod-like 

architecture is bio-inspired by the radular teeth of the gumboot Chiton, which consist of 

biomineralized rod-like magnetite fibers and soft organic material. Through controlling the 

interface strength between fibers, the possibility of catastrophic failure can be decreased and 

therefore the Chiton tooth is able to achieve impressive abrasion resistance (Escobar de Obaldia et 

al., 2016).  

While the inner layer of the black-lipped pearl oyster Pinctada margaritifera is made of 

nacreous architecture as described above, the outer protective prismatic layer yields a functionally 

gradient material with varying Young’s modulus (David Wallis et al., in press). This gradient 

Young’s modulus is induced by a gradual change of the crystal lattice orientation. A common 

gradient on Young’s modulus in biominerals is often considered as a nonfunctional outcome, 

which is partially induced by incipiently deficient mineralization control (Gilbert et al., 2008; 

Hovden et al., 2015). Nevertheless, this functional gradient previous unrecognized in crystalline 

solids can provide smooth stress transition from surface to interior and promote superior fracture 

resistance, compared with other constitutive motifs on Young’s modulus, which is analyzed in 

Chapter 4. 

As the gradient on Young’s modulus of Pinctada mentioned above, functional gradients and 

heterogeneities are evolved from nature material to impart high-performance biological materials. 

The translation of evolution confers us a spectrum of design elements associated with the 

variations of chemical compositions/constituents and structural characteristics involved in the 

arrangement, distribution, dimensions and orientations of the building units (Liu et al., 2017). One 

of the rich toolboxes given by nature is the porosity arrangements. The porosity of growth ring 

from wood stems, for instance, decreases gradually from the earlywood to the latewood (Eder et 

al., 2009; Gibson, 2012; Speck and Burgert, 2011) and thus this arrangement leads to opposite 

pattern on density and stiffness, which is beneficial to water transport and mechanical stability 
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during the growth period. Besides, gradients on Young’s modulus and other mechanical properties 

also reveal unprecedent contact damage resistance that cannot be realized in conventional 

homogenous materials (Pender et al., 2001; Suresh, 2001). In addition to porosity arrangement, 

many biological materials are featured with various dimensions of their constituents to achieve 

specific functionality. A primary example is the sponge spicules, constituted by a central core of 

hydrated silica surrounded by changing layers of silica and proteinaceous material(Liu et al., 2017). 

The thickness of silica layers is decreasing from core to surface(Aizenberg et al., 2005; Miserez et 

al., 2008), which can effectively resist the depth of crack penetration from surface, since cracks 

tends to propagate through organic ductile layers. Like what we introduced at the beginning of the 

introduction chapter, many biological materials consist of anisotropic structural elements, such as 

fibers, tablet reinforcement and prisms. Accordingly, their properties are highly dependent on the 

orientation of these structural elements. Helicoid architectures, found in the fish scale and the shell 

of arthropods, encompass successively different lamina orientations layer by layer, such that the 

material is featured with close-to in-plane isotropic behavior(Yang et al., 2019) and remarkable 

toughening mechanisms via crack twisting(Suksangpanya et al., 2018, 2017) or reorientation, 

stretching and delamination of fibrils to dissipate more energy under loading(Quan et al., 2018; 

Yang et al., 2014; Zimmermann et al., 2013).  

In nature, majority biological materials are featured with not only one element of gradient, 

but integration of multiple gradient elements. For instance, tooth are combined both chemical and 

structural gradients to achieve mastication function(Ho et al., 2009, 2007), up to 1000 N biting 

forces over innumerable cycled during its lifetime(Lawn et al., 2010). The dactyl club of mantis 

shrimp is another remarkable example of integration of multiple gradient elements. Besides 

helicoid architecture, consisting of successively different lamina misorientations through the 

thickness, found in the periodic region of dactyl club, a decreasing pitch distance is also observed 

in this region (Guarín-Zapata et al., 2015). In Chapter 5 we are going to design potential 

synthesized helicoid materials encompassing the integration of common helicoid architecture and 

the gradient on pitch distance found in nature.  

1.2 Motivation 

While the fracture resistance, toughening behavior and photonic sensory mechanism of 

helicoid architecture under out-of-plane impact, bending (Ginzburg et al., 2017; Grunenfelder et 
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al., 2014a; Mencattelli and Pinho, 2019; Suksangpanya et al., 2018, 2017; Weaver et al., 2012), 

and uniaxial tensile loading (Zaheri et al., 2018) (Kose et al., 2019; Shishehbor and Zavattieri, 

2019) have been extensively investigated, the mechanical behavior of fiber helicoid architectures, 

prior to failure, have been much less studied. For instance, it has been recently proposed that 

helicoidal arrays of fibrils, present in Arapaima Gigas scales, adapt to the loading environment 

through laminae rotation towards the loading direction, whereas other laminae, with large off-axis 

angle, rotate away from the loading direction (Quan et al., 2018; Yang et al., 2014; Zimmermann 

et al., 2013). As reported by Zimmerman et al. (Zimmermann et al., 2013), this so-called 

“sympathetic” fiber reorientation has been found to contribute to enhanced ductility and toughness 

in fish scales (Yang et al., 2019). In the spirit of bio-mimicry, Zaheri et al. (Zaheri et al., 2018) 

designed a discontinuous fiber helicoidally sample to gain further insight into the phenomenon. 

Tensile experiments performed on such samples shown features of strain stiffening consistent with 

large deformation effects. However, detailed modeling accounting for fiber rotation and matrix 

constitutive response are needed to decouple the two effects and gain insight into the potential of 

discontinuous fiber helicoidally structures. Among the few models reported in the literature for 

related phenomenon, we can mention the work by Yang et al. (W. Yang et al., 2017), which 

formulated a theoretical framework to predict the rotation of two-dimensional hard particles in a 

soft matrix. However, such model is limited to particles with small aspect ratios and does not 

incorporate the anisotropic behavior typically found in composite materials. Besides, their model 

does not consider the rotation of particles in a multilayer laminate. Accordingly, the study of fiber 

reorientation in misoriented laminates requires different theoretical and computational treatments. 

On the other hand, the superior mechanical properties of biological composite materials 

stimulate scientists and engineers to design and fabricate bio-inspired materials which can provide 

similar properties that biological materials have. “Brick and mortar” architecture can represent 

three-dimensional(3D) tablet-like and rod-like architectures by simplifying inclusions from 3D to 

2D as staggered 2D brick tablets. Shear-lag analytical model is ubiquitously used to predict the 

mechanical properties of “brick and mortar” architecture (Sakhavand and Shahsavari, 2015; Wei 

et al., 2012), allowing large shear deformation in the matrix, which is sandwiched by two stiff 

tablets. Tension-shear chain (TSC) model (Gao, 2006; Ji and Gao, 2004) illustrates the tensile 

deformation resistance of “brick-and-mortar” architecture through passing normal stress in 

discontinuous-stiff tablets and transferring shear stress in compliant matrix. Volume fraction (𝑉𝑓) 
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and aspect ratio of inclusions (𝐿 𝑀⁄ ) are two key parameters to predict the mechanical properties 

of “brick and mortar” model.  

Shear-lag and TSC models assume plane strain condition for 2D analytical model, indicating 

infinite thickness out of plane. However, the inclusion of biological composite material is 

discontinuous out of plane and it also exhibits distinct geometries, such as rod-like and tablet-like 

architectures from microstructures in the chiton tooth and in the seashell of nacre respectively. 

Seashell of nacre is the protective layer of interior-soft material, able to resist exterior multiaxial 

loading, impact load and penetration, while Chiton teeth is used to rasp to expose algae growing 

on the surface of hard rocky substrates (Escobar de Obaldia et al., 2016). Their functionalities are 

different and therefore the morphologies of the macro geometries and micro-structure are distinct. 

In the present paper, we are trying to understand why nature chooses rod-like architecture to resist 

longitudinal normal loading and uses tablet-like architecture to endure multiaxial loading. To 

accomplish this analysis, extending 2D to 3D model is necessary and not only 𝑉𝑓 and 𝐿 𝑀⁄  should 

be considered in the analysis, but also effective shear 𝐴𝑠 and tension area 𝐴𝑡 needs our attention.  

The present work in Chapter 3 extends the 2D analytical model (shear-lag combined with 

tension effects from matrix) to 3D and then compare the predicted mechanical properties, stiffness, 

strength and toughness, under longitudinal and transverse uniaxial tensile loading with 

corresponding experiments and finite element analysis (FEA) in 3D. To compare two architectures 

at the same level, dimensionless parameters are designed, including 𝑉𝑓 and 𝐿 𝑀⁄ .  

Last but not least, it is acknowledged that helicoidal fiber reinforced laminated structures 

with uniform pitch angle are provided with efficient energy dissipation through the thickness and 

in-plane isotropic behavior to resist materials failure. However, helicoid architectures with small 

pitch angles dissipate energy via in-plane delamination (Ginzburg et al., 2017; Grunenfelder et al., 

2014a). Delamination failure is exhibited to have large reduction on material stiffness, strength 

and can even initiate failure of the whole laminate (Garg, 1988) and impair the buckling resistance 

when under compression load (Aslan and Şahin, 2009). However, delamination is also an effective 

method to dissipate energy. On the other hand, intralaminar damage, such as fiber breakage and 

matrix split, also plays a significant role in the damage resistance of the materials, especially stiff 

fibers’ breakage, which can release large amount of energy, but easier to lead to catastrophic 

damage, unable to provide any resistance when most fibers break through the cross-section. 

Considering the delamination failure occurring ubiquitously in the helicoid architectures, in 
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Chapter 5 transverse shear stresses dominant experiments, such as three-point bending on short 

beam and low-velocity impact tests, are going to be adopted.  

Interestingly, in nature, the pitch distance of helicoid architectures in biological materials 

was found not constant through the thickness of the materials, but functionally decreasing from 

surface to interior. It is reported that the pitch distance in dactyl club varies from 150um(or 80um), 

close to surface, to 10um, close to interior (Guarín-Zapata et al., 2015). Although the specific 

values of pitch distance in the fish scale of Coelacanth were not measured, it is also observed that 

the pitch distance is decreasing from surface to interior in the Coelacanth fish scale (Quan et al., 

2018). 

In biological helicoid architectures, the integration gradients exist as the way of gradually 

changing orientations of laminae and varying pitch distance through the thickness, which can be 

induced by different pitch angles or distinct thickness of each lamina. Due to minor pitch angles 

observed in dactyl club, it needs extensively studies to determine the gradient pitch distance from 

surface to interior is dependent on lamina thickness or different pitch angles Nevertheless, (Quan 

et al., 2018) reported that the pitch angle in the double Bouligand structures of Coelacanth fish 

scale is increasing from surface to interior. Accordingly, it is necessary to investigate the specific 

function of varying pitch angles first along the thickness of the materials. Moreover, the 

contribution of the gradient of the pitch angle in helicoid architectures to the overall mechanical 

behaviors and fracture resistance behaviors has not yet been studied. This presents an opportunity 

to study and understand the specific function of the gradient of the pitch distance associated with 

varying pitch angles through the thickness of the materials. Thus, in the present study we are going 

to study the contribution of gradient pitch distance, associated with varying pitch angles, to the 

mechanical behaviors under static and dynamic loading conditions in Chapter 5. 

1.3 Objectives and goals 

The goal of this work is to understand the fundamental mechanical behaviors of bio-

inspired composite materials featured with functionally graded lamina orientations and different 

geometries of architectural reinforcements in terms of deformation and failure mechanics. 

Specifically, the deformation resistance before failure and damage propagation, incorporated with 

fracture mechanism, are going to be studied on these bio-inspired composite materials. In order to 

achieve this goal, I propose the following objectives, 
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1. To study the effect of fiber reorientation on strain stiffening, and the reason inducing 

fiber reorientation of helicoidal architectures.  

2. To conduct mechanical behavior analysis in three-dimension by using effective shear and 

tension deformation in the matrix of architectures featured with tablet-like(nacre) and 

rod-like(chiton) reinforcements.  

3. To investigate the contribution of gradients associated with structural characteristics of 

helicoid architectures and nacreous architectures to fracture tolerance.  
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 FIBER REORIENTATION IN THE HYBRID BIOINSPIRED 

HELICOIDAL COMPOSITES WITH COMPLIANT MATRICES 

Chapter 2 is part of the publication “Fiber Reorientation in Hybrid Helicoidal Composites”, Journal of the 

Mechanical Behavior of Biomedical materials (2020), Status: submitted and revisions being processed 

2.1 Introduction 

Bio-composites found in the exoskeletons of crustacean and mollusk shells combine stiff 

mineralized (inorganic) reinforcement with ductile biopolymers (organic) to form complex 

hierarchical architectures (Chen et al., 2012; Meyers et al., 2008; Zhang et al., 2010a). The superior 

mechanical properties of these protective architectured materials, such as stiffness, strength, and 

fracture toughness, are of critical importance to the organism survival. This is accomplished in 

part through the combination of stiff and ductile materials and a hierarchical architecture over a 

range of length scales. Interestingly, nature offers a broad diversity of architectural motifs, 

exemplify the multitude of ways in which exceptional mechanical properties can be achieved. Such 

diversity is the source of bio-inspiration and its translation to synthetic material systems. Indeed, 

bio-inspired materials made by additive manufacturing technologies display similar deformation 

mechanisms and superior properties (de Obaldia et al., 2015; Porter et al., 2017; Studart, 2016; 

Suksangpanya et al., 2018; Yin et al., 2019; Zhang et al., 2016, 2015). On the other hand, metallic 

layered composites made by sintering exhibit enhanced damage tolerance(Hofer et al., 2020). In 

this work we combine two architectures: (i) the “fiber helicoid (or Bouligand)” (Bouligand, 1972; 

Meyers et al., 2008) and (ii) the “brick and mortar” to investigate discontinuous fiber helicoids 

(DFH), which was first introduced and investigated in (Zaheri et al., 2018).  
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Figure 2.1. Biological structures found in nature: (a) Helicoid structure of the mantis shrimp dactyl club, 

and (b) regular helicoid architecture. (c) Biological brick-and-mortar structure of the red abalone, and (d) 

regular brick-and-mortar architecture. (e) The discontinuous fiber helicoid architecture (DFH), and (f) 

Dimensions of the DFH architecture. (g) Undeformed single layer with misorientation 𝜃 with respect to 

the loading axis. (h) Schematic of fiber rotation ∆𝜃𝑐 due to stretch only. Photo credits (a) S. Baron with 

adapted size, under CC by 2.0(left) and adapted from (Grunenfelder et al., 2014a)(right); (c) courtesy of 

Southwest Fisheries Science Center, NOAA Fisheries Service (left) and adapted from (Barthelat et al., 

2007)(right). 
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As a complement to this previous work, the current paper focuses on the fiber reorientation 

and its contribution to strain stiffening behavior before failure occurs, which is analyzed via 

nonlinear micromechanical finite elements. The fiber helicoid is found in the dactyl club of the 

Peacock mantis shrimp (Stomatopod) (Figure 2.1(a) and (b))(Grunenfelder et al., 2014a; Guarín-

Zapata et al., 2015; Weaver et al., 2012), the cuticle of arthropods (Cheng et al., 2011, 2008a; 

Grunenfelder et al., 2014a; Raabe et al., 2005; Sachs et al., 2008; Weaver et al., 2012; Yao et al., 

2013; Zelazny and Neville, 1972), fish scales (Bigi et al., 2001; Bruet et al., 2008; Fang et al., 

2014; Gil-Duran et al., 2016; Ikoma et al., 2003; Lin et al., 2011; Meyers et al., 2012; Murcia et 

al., 2017a; Torres et al., 2008; Yang et al., 2014, 2019; Zhu et al., 2012; Zimmermann et al., 2013), 

and plants (Chung et al., 2011; Roland et al., 1989). The brick and mortar is found in sea shells, 

e.g., the innermost layers of red abalone (Haliotis rufescens) (Barthelat et al., 2016; Ji and Gao, 

2004; Menig et al., 2000; Salinas and Kisailus, 2013; Sun and Bhushan, 2012a) (Figure 2.1(c) and 

(d)). 

While the fracture resistance, toughening behavior and photonic sensory mechanism of 

helicoid architecture under out-of-plane impact, bending (Ginzburg et al., 2017; Grunenfelder et 

al., 2014a; Mencattelli and Pinho, 2019; Suksangpanya et al., 2018, 2017; Weaver et al., 2012), 

and uniaxial tensile loading (Zaheri et al., 2018) (Kose et al., 2019; Shishehbor and Zavattieri, 

2019) have been extensively investigated, the mechanical behavior of fiber helicoid architectures, 

prior to failure, have been much less studied. For instance, it has been recently proposed that 

helicoidal arrays of fibrils, present in Arapaima Gigas scales, adapt to the loading environment 

through laminae rotation towards the loading direction, whereas other laminae, with large off-axis 

angle, rotate away from the loading direction (Quan et al., 2018; Yang et al., 2014; Zimmermann 

et al., 2013). As reported by Zimmerman et al. (Zimmermann et al., 2013), this so-called 

“sympathetic” fiber reorientation has been found to contribute to enhanced ductility and toughness 

in fish scales (Yang et al., 2019). In the spirit of bio-mimicry, Zaheri et al. (Zaheri et al., 2018) 

designed a discontinuous fiber helicoidally sample to gain further insight into the phenomenon. 

Tensile experiments performed on such samples showed features of strain stiffening consistent 

with large deformation effects. However, detailed modeling accounting for fiber rotation and 

matrix constitutive response are needed to decouple the two effects and gain insight into the 

potential of discontinuous fiber helicoidally structures. Among the few models reported in the 

literature for related phenomenon, we can mention the work by Yang et al. (W. Yang et al., 2017), 
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which formulated a theoretical framework to predict the rotation of two-dimensional hard particles 

in a soft matrix. However, such model is limited to particles with small aspect ratios and does not 

incorporate the anisotropic behavior typically found in composite materials. Besides, their model 

does not consider the rotation of particles in a multilayer laminate. Accordingly, the study of fiber 

reorientation in laminates with distinct misaligned angle requires different theoretical and 

computational treatments. 

As illustrated in Figure 2.1(e), the DFH architecture consists of aligned and staggered fibers 

(in the x-y plane), in which each lamina presents a fiber rotation by a constant pitch angle, 𝜃ℎ, from 

the preceding lamina (along the z-axis). For example, for 𝜃ℎ =  30 °  the lay-up sequence is 

[0/30/60/90/120/150], where the angle is defined between the fiber and the x-axis. Once the lamina 

achieves 180° rotation, with respect to laminae with misorientation 0°, a full period in the helicoid 

architecture is achieved. The number of laminae needed to complete a 180° rotation is n= 𝐷 𝑑⁄ = 

180/𝜃ℎ, where 𝐷 is the period of the DFH architecture, also called pitch distance (Guarín-Zapata 

et al., 2015), Figure 2.1(e). 𝑑 is the height of one lamina, composed of fiber height, w, and the 

separation between two fibers, t, such as d = w + t, as shown in Figure 2.1(f). Employing this 

geometry and Finite Element Analysis (FEA), we investigate the fiber rotation and matrix response, 

for several matrix constitutive laws, to elucidate the origin of strain stiffening in the DFH 

architecture as a function of imposed deformation (Zaheri et al., 2018). Both nonlinear constitutive 

response and finite deformations are investigated. To decouple the effects of fiber rotation, Figure 

2.1(g) and (h), and matrix constitutive response on strain stiffening, linear elastic, hyper-elastic, 

and elasto-plastic matrix constitutive responses are considered. To decouple the composite lay-up 

effects on fiber rotation upon uniaxial tensile, we introduce two ancillary architectures: 

discontinuous single lamina (DSL) and discontinuous mono-balanced (DMB). We expect this 

analysis to provide information on interlaminar constrains in terms of strain and stress, a key 

characteristic in composites. The computational study will provide information on strain stiffening 

measured in the DFH architecture, and insights for the design of bio-inspired composites, with the 

DFH architecture, exhibiting strain stiffening.  
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2.2 Methods 

2.2.1 Geometry of 3D Printed Discontinuous Fiber Helicoids 

The discontinuous fiber helicoid (DFH) composites are 3D printed with two materials. A 

stiff polymer (VeroWhite (Stratasys Ltd., 2018)) for the fibers and soft polymer, rubber like(nearly 

incompressible), materials (TangoPlus (Stratasys Ltd., 2019)) for the matrix, see section A1 of the 

supplemental material (SI), following Zaheri et al., (2018). VeroWhite material is more than 3 

order of magnitude stiffer than the TangoPlus. On the other hand, TangoPlus is brittle under 

tension and shear deformation and it shows anisotropic behavior, due to the printing process. 

The fibers are printed with a square cross-section area to maximize resolution of the 3D printer. 

The stiff fibers have a length, l, and a square cross-section with width, w (Figure 2.1(f)). We choose 

a fiber aspect ratio 𝑙 𝑤 = ⁄ 20 for all the cases and a sample gauge length to fiber length 𝐿 𝑙 ⁄ = 2.8 

for 𝐿 𝑊 =⁄  2, which is the aspect ratio of the gauge, see Figure 2.1(g). The soft matrix separates 

the fibers in all three dimensions by a thickness 𝑡, as illustrated in Figure 2.1(f). The ratio of matrix 

thickness over the fiber width is also kept constant 𝑡 𝑤 =⁄  0.8 for all the cases. As such, the fiber 

volume fraction is 29.7%. Further analysis indicates that materials with this fiber volume fraction 

are sufficient to be considered as a homogeneous anisotropic behavior in each lamina. Within the 

plane of a single lamina, the fiber and matrix form a brick and mortar structure, where fibers are 

off-set from neighboring rows by a distance (𝑙 + 𝑡) 2⁄  to provide optimum staggering for shear 

transfer, Figure 2.1(f). This results in maximum in-plane stiffness in the longitudinal direction 

(Sakhavand and Shahsavari, 2015; Wei et al., 2012; Zhang et al., 2015, 2010a). Each lamina is 

defined by its misorientation, 𝜃𝑖 , with respect to the loading direction (𝑥-direction). Here, the 

subscript “𝑖” refers to the misorientation in a given lamina, Figure 2.1(g). For example, 𝜃30 

represents the lamina with a misorientation of 30° with respect to the loading direction. Any fiber 

reorientation upon deformation is labeled as ∆𝜃𝑐, as shown in Figure 2.1(h). Further details of 

specimens and testing are given in (Zaheri et al., 2018). 

2.2.2 FEA model 

The FEA model of 3D printed dog-bone samples is depicted in Figure A1. Geometries are 

meshed using first order tetrahedral elements (C3D4). The mesh size is selected such that there is 

mesh convergence (See section A2). Finite deformation is included in all simulations. The fiber 
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material is modeled as linear elastic with a Young’s modulus E = 1.108 GPa and Poisson’s ratio 𝑣 

= 0.3. The matrix is modeled as a hyperelastic material with a 2nd order polynomial model (Rivlin 

and Saunders, 1951). The model parameters are obtained by fitting matrix stress-strain 

experimental results in tensile and shear deformation, see section A1. In a subset of simulations, 

the matrix is also considered to be linear elastic with a Young’s modulus 𝐸 = 0.337 MPa and 

elasto-plastic with a bilinear law with a hardening modulus of 0.03 MPa and a yielding stress of 

0.014MPa. 

Most of the numerical simulations are conducted on specimens with finite size and free-

edge boundary conditions on the faces with normal vectors in the y- and z-directions to replicate 

the conditions during the experiments, Figure A1 and Figure A3(c). However, to assess the 

applicability of these results to architectures with a large number of laminae in the z-direction 

(number of pitches, 𝑁 → ∞), a set of simulations is carried out with periodic boundary conditions 

on the planes perpendicular to the z-axis. Faces with vector normal in the direction of the y-axis 

remain free. Hence, we denote this configuration as free-periodic boundary condition, see Figure 

A3(d). A uniform displacement is prescribed in the x-direction, on the loading faces of the 

specimen, while the faces of the tabs normal to y- and z-axes are fixed in the y- and z-directions, 

Figure A3(c-d), for both free-free and free-periodic boundary conditions. 

Fiber reorientation in each individual lamina is directly extracted from the FEA by 

computing the average rigid body rotation in each fiber. The simulations reveal that fiber rotation 

induced by stretch only, ∆𝜃𝑐, is hindered by the rotation of the gauge section, see section A3. Thus, 

in addition to the rotation that arises through stretching, rotation of the gauge section of the 

specimen (warping effect) also contributes to the apparent rotation, Figure A5(b). The latter 

contribution is removed since this is a geometric effect related to the fiber initial orientation, 

dimensions of the specimen, boundary condition, and the number of periodic layers. In the 

calculations, the warping effect is removed by polar decomposition of the deformation gradient. 

Details of the calculation process are provided in Section A4. 

2.2.3 Analytical model 

While limited to small strains, analytic methods can be used to obtain homogenized 

properties for both single oriented lamina and laminate composed of multiple laminae. Here, we 

employ the Halpin-Tsai equation (Halpin, 1969; Tucker and Liang, 1999) to predict the elastic 
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modulus of each layer with staggered-discontinuous fibers. Since Halpin-Tsai requires scalar 

quantities for the moduli, inputs are obtained through linearization of the matrix material under 

uniaxial tensile.  The Halpin-Tsai equation for moduli is give as: 

𝑃

𝑃𝑚
=

1+𝜉𝜂𝑣𝑓

1−𝜂𝑣𝑓
  with  𝜂 =

(𝑃𝑓/𝑃𝑚)−1

(𝑃𝑓/𝑃𝑚)+𝜉
 ,                                                                                                  (2.1) 

where, 𝑃 represents one of the homogenized composite moduli, such as 𝐸11, 𝐸22 and 𝐺12. 

𝑃𝑓 and 𝑃𝑚 are the fiber and matrix moduli, respectively. 𝜉 is an empirically derived factor that 

depends on the boundary conditions. For the quantities 𝐸11, 𝐸22 and 𝐺12, the factor  takes the 

values: 2(𝑙/𝑤), 2 and 1, respectively. Classical Laminate Plate Theory (CLPT) (Isaac M Daniel 

and Ori Ishai, 1994; Ramirez, 1999) is used for predicting the in-plane stiffness of a complete 

laminate.  

2.3 Results and discussion 

2.3.1 Stress and strain response of hybrid helicoids 

The experimental stress-strain response of the 3D printed DFH architecture with various 

pitch angles 𝜃ℎ shows a complex behavior as it can be observed in a typical stress-strain response 

in Figure 2.2(a) (Case 𝜃ℎ =30o). The complete set of experimental data and FEA data for 𝜃ℎ in the 

range 15o-180o is given in section A5. The stress-strain response for all DFH architectures can be 

divided into 3 distinct regions, Figure 2.2(a). Region I is defined by an initial elastic response with 

modulus 𝐸𝑖𝑛𝑖 . Region II shows a drop in the tangent modulus associated with fiber-matrix 

debonding at the fiber ends, followed by a hardening response. In this region a minimum and 

maximum tangent modulus can be defined, 𝐸𝑚𝑖𝑛  and 𝐸𝑚𝑎𝑥 , respectively, details described in 

section A6. Likewise, we can define a stiffening parameter defined as the ratio of  𝛤=𝐸𝑚𝑎𝑥 𝐸𝑚𝑖𝑛⁄ . 

Region III describes the material response as it accumulates further damage followed by final 

failure (Zaheri et al., 2018). 

2.3.2 Moduli and strain stiffening  

In our FEA, Regions I and II are independently considered to study the behavior of 

laminates without and with local discontinuity in the matrix between fiber ends, see section A7. 

The purpose of the first set of simulations is designed to capture the initial modulus 𝐸𝑖𝑛𝑖 (Region 
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I with intact matrix), while the second set of simulations includes discontinuities at the ends of the 

fibers (debonded fiber-matrix interface) to capture the stress-strain behavior in Region II. The 

second set of models is also employed to compute the stiffening parameter 𝛤. Specifically, in the 

FEA with discontinuous matrix (Region II), the elastic modulus after accumulated deformation is 

defined as 𝐸𝑚𝑎𝑥 and the elastic modulus at the beginning of the stress and strain curve is defined 

as 𝐸𝑖. Hence, 𝛤𝑖𝑜𝑓 = 𝐸𝑚𝑎𝑥 𝐸𝑖⁄  defines the stiffness ratio, which is a measure of strain stiffening. 

Further details on these parameters can be found in section A6 with the difference between 𝛤𝑖𝑜𝑓 

and 𝛤 depicted in Figure A8(a). The longitudinal elastic modulus of lamina with misorientation 0°, 

𝜃0 or 𝜃180, denoted by 𝐸180, are obtained following the Halpin-Tsai equation. Then using the CLPT 

model, the laminate properties are estimated as depicted in Figure 2.2(b). The employed 

constituent properties for the fiber are 𝐸 =1108 MPa, 𝑣 =0.3 and for the matrix 𝐸 =0.337 MPa, 

𝑣 =0.48. The model predicted a lamina longitudinal elastic modulus of 6.07 MPa and a transverse 

modulus of 0.76 MPa. 
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Figure 2.2. (a) Experimental stress and strain curve of DFH 𝜃ℎ = 30°  with 𝐿 𝑊 = 2⁄  and definition of 

elastic modulus of three regions. (b) Initial elastic modulus, 𝐸𝑖𝑛𝑖, normalized by the elastic modulus of the 

lamina with misorientation 0° with respect to the loading direction, 𝐸180, as a function of pitch angle, 𝜃ℎ. 

(c) Contour plot of maximum principal logarithmic strain, 휀𝑙𝑛, as predicted by FEA, layer by layer. (d) 

FEA predictions and experimental measurements (DIC) of maximum principal logarithmic strain, 휀𝑙𝑛, in 

the 𝜃30 layer of the DFH with 𝜃ℎ = 30°. (e) 𝛤 as a function of 𝜃ℎ calculated from FEA prediction with 

the hyperelastic matrix when applied strain, 𝜖, is 15% , compared with 𝛤 calculated from experimental 

stress and strain curves (Zaheri et al., 2018). (f) Fiber reorientation due to stretch only, denoted by ∆𝜃𝑐, as 

a function of applied strain, 𝜖, of individual laminae. 



 

 

37 

The analytical, experimental, and FEA predictions of 𝐸𝑖𝑛𝑖  are in close agreement, as it can 

be observed in Figure 2.2(b). Since the FEA analysis uses a hyperelastic model for the matrix, 

while the analytical predictions are based on linear elasticity, the agreement is consistent with the 

isotropic constitutive model. Unlike 𝜃ℎ = 0°, the DFH architectures with different pitch angles 𝜃ℎ 

provide more compliant in-plane behavior. Note that some differences between theory/FEA and 

experimental measurements are apparent when 𝜃ℎ  is smaller than 45o. This maybe partially 

induced by the distinct components of extensional-bending coupling in the tested asymmetric 

laminate. 

The maximum logarithmic strain distributions for the DFH with 𝜃ℎ = 30° obtained from 

the FEA are plotted lamina-by-lamina in Figure 2.2(c). We can observe that the logarithmic strain 

is distributed evenly in the matrix along the gauge section, which implies finite sample size effects 

can be neglected. According to the strain distribution at the top surface of the DFH 𝜃ℎ = 30° , 

both FEA and experimental results display large strains in the region between fiber ends (red color), 

Figure 2.2(d). Less prominent matrix strains between parallel fibers are also observed (blue color), 

up to 25% lower than the matrix strains between fiber ends. 

2.3.3 Mechanisms giving rise to strain stiffening 

As discussed before, region II of the stress-strain curve is characterized by a strain 

stiffening behavior, i.e., 𝛤 > 1. A comparison between experiments and FEA predictions is shown 

in Figure 2.2(e). We note that the FEA results exhibit a similar trend as that measured in 

experiments, both achieving a peak value when 𝜃ℎ = 60˚, although the strain stiffening is less 

prominent in FEA since the 3D printed matrix material employed in experiment exhibits a slightly 

different behavior at large strains. We surmise that the difference between FEA and experiment 

in terms of absolute values of 𝛤 is due to the 3D printed material for matrix. While our model 

assumes isotropic behavior, the 3D printed material is anisotropic. The detailed explanation and 

comparison between experiment and FEA is addressed in section S1 (See. Fig. S2 for example). 

Besides, the reason why 𝜃ℎ =60° shows the largest difference on 𝛤 can be explained by the fact 

that the individual layer 𝜃 =60° in 𝜃ℎ =60° undergoes significant global transverse contraction 

than the individual layer 𝜃 =60° in 𝜃ℎ =30° for instance, and therefore, there is more local shear 

deformation between fibers in the matrix leading to a larger strain stiffening. On the other hand, a 

likely source for such stiffening is fiber reorientation towards the loading direction, as 
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hypothesized by Zimmermann et al., (2013). Hence, we quantify fiber reorientation caused by 

stretching, ∆𝜃𝑐, in the DFH with 𝜃ℎ = 30°, by tracking the coordinate of the individual fibers, in 

each lamina, in their undeformed and deformed configurations. The averaged fiber reorientation 

values as a function of strain and fiber orientation in each lamina, are plotted in Figure 2.2(f), 

where positive value indicating that fibers rotating toward the loading direction. It is observed that 

∆𝜃𝑐 of laminae with small misorientation, such as 𝜃30 and 𝜃150 = 𝜃−30, show higher values than 

the laminae with larger misorientation, such as 𝜃60 and 𝜃120 = 𝜃−60. Moreover, the ∆𝜃𝑐 for fibers 

along 𝜃0  and 𝜃90  is close to 0 as expected. Indeed, the motion of fibers along 𝜃0  and 𝜃90 , is 

translation in the loading direction, despite the significant mismatch of mechanical properties 

between fiber and matrix. Plots of ∆𝜃𝑐 as a function of applied strain for the DFH architecture with 

various fiber to matrix moduli ratios, in the range of 0.01 to 3000, are given in section A8. Clearly, 

softer matrices result in a more prominent reorientation of the fibers towards the loading direction.  

 

Figure 2.3. (a) DMB with absolute misorientation 𝜃𝑏. Comparison of (b) Normalized FEAvand analytical 

results for DSLs and DMBs architectures, all with linear elastic matrix. 

While our FEA shows the presence of fiber reorientation in each lamina of the DFH 

architecture, the effects of the composite lay-up sequence, the occurrence order of lamina 

misorientation from bottom to top in one laminate, and matrix constitutive response needs to be 

fully understood to ascertain its impact. For example, a hyperelastic matrix response may also lead 

to strain hardening. Likewise, it is useful to compare the DFH architecture with other architectures 

such as discontinuous single lamina (DSL) and discontinuous mono-balanced laminate (DMB). 
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The DSL architecture simply comprises one lamina with one misorientation with respect to the 

loading axis, and the DMB architecture consists of balanced pairs of laminae, where every positive 

orientation is adjacent to its negative counterpart, shown in Figure 2.3(a). In a sense, the DSL 

architecture configuration avoids interlaminate incompatibilities in terms of deformation. 

Conversely, the DMB architecture exhibits a simplified lay-up sequence, with one absolute 

misorientation (see Figure 2.3(a)). By contrast, the DFH architecture presents a mixture of 

different misorientations. Simply stated, the DSL architecture provides an example of 

unconstrained rotational behavior, while the DMB architecture exhibits a symmetrically 

constrained configuration, which can be compared to rotations observed in the DFH architecture. 

To some extent, this allows us to extract information about the fiber reorientation effect as a 

function of lay-up sequence. 

Role of fiber reorientation 

We start by comparing analytic predictions of 𝐸𝑖𝑛𝑖 for the DSL and DMB architectures. As 

depicted in Figure 2.3(b), both architectures exhibit the same 𝐸𝑖𝑛𝑖 when 𝜃𝑖 = 0° and for a range of 

𝜃𝑖  between 56° and 90 ° . The DMB architecture exhibits a greater stiffness than the DSL 

architecture with misorientations between 0° and 56°. This is due to the reduced contribution of 

the shear deformation due to the restriction imposed by the adjacent laminae misorientation in the 

DMB architecture.  

Another interesting observation, which could influence the contribution of fiber 

reorientation to strain stiffening, is that the relation between lamina misorientation, 𝜃𝑠, and 𝐸𝑖𝑛𝑖 is 

not linear, as shown in Figure 2.3(b). For instance, even if fibers in 𝜃𝑠 = 60° rotate 20° toward the 

loading direction, reoriented at 40°, the stiffening effect would be much less than the stiffening 

effect of 𝜃𝑠 = 30° rotating 10° toward the loading direction. FEA are included in Figure 2.3(b) for 

comparison purposes. As it can be observed, the FEA predictions are in good agreement with the 

analytical results. For the DMB case, the free-periodic boundary condition makes only a small 

difference on 𝐸𝑖𝑛𝑖 with respect to DMB architecture with free-free boundary.  

We next analyze fiber reorientation and define fibers rotating toward the loading direction 

as positive and away as negative, as illustrated in Figure 2.4(a) and (b). Figure 2.4(c) shows the 

stretching-induced rotation, ∆𝜃𝑐, in the DFH architecture alongside rotation in the DMB and DSL 
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architectures. Each point in the figure represents the mean value of ∆𝜃𝑐 , in the corresponding 

lamina, and the error bar is defined by the standard deviation among fibers in each lamina. It is 

observed that the ∆𝜃𝑐 values of each lamina in the DFH architecture are smaller than the ones 

obtained with the DSLs, up to 29.5% difference. Thus, the fibers in one lamina without constraint 

from other laminae have more freedom to rotate under uniaxial tensile. The DMB architecture with 

𝜃𝑏 = 30°, 𝜃𝑏 = 45°, and 𝜃𝑏 = 60° shows generally higher ∆𝜃𝑐  values than those in the DFH 

architecture with 𝜃ℎ = 30°, 𝜃ℎ = 45°, and 𝜃ℎ = 60°. The maximum difference in ∆𝜃𝑐 between the 

DMB and the DFH architectures is observed between the individual layer 𝜃45 in 𝜃𝑏 = 45° and 

𝜃ℎ = 45°, which is 28.6%. 
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Figure 2.4. (a)-(b) Definition of direction on fibers rotation. Positive means fibers rotate toward the loading 

axis, whereas negative means fibers rotate away from the loading direction. The x-axis is the loading direction. 

1’ and 2’ axes are local axes after deformation. (c)Fiber reorientation due to stretch only, ∆𝜃𝑐, of individual 

lamina in DFH/DMB/DSL under 10% local uniaxial strain. (d) Histogram of ∆𝜃𝑐in lamina 𝜃30 (e) Semi-

analytical 𝛤𝑖𝑜𝑓 calculated based on ∆𝜃𝑐 in DFH 𝜃ℎ = 30°/DMB/DSL under 10% local uniaxial strain. 

Different lay-up sequences promote distinct in-plane mechanical properties, such as 

Poisson’s ratio and coupling coefficients, which in turn influences deformation of each lamina and 
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reorientation of fibers embedded in the matrix. Here we discuss the histogram of ∆𝜃𝑐 in different 

architectures, see Figure 2.4(d), which depicts the difference of distribution of fiber reorientation 

among distinct laminates. It is observed that the distribution of ∆𝜃𝑐 in 𝜃𝑠 = 30° is concentrated 

between 5° and 6°, while fibers along 𝜃30 of the DFH architecture with 𝜃ℎ = 30° shows its ∆𝜃𝑐 

values between 3 °  and 5 ° . However, ∆𝜃𝑐  in the DMB architecture with 𝜃𝑏 =  30 ° exhibits 

increasing fiber amounts with growing ∆𝜃𝑐, which could be partially explained by the specific 

contraction that DMB architecture undergoes. 

The direct correlation between fiber reorientation and stiffness variation is obtained by 

using a semi-analytical method. 𝐸𝑖 can be obtained by considering the lay-up sequence, before 

deformation, in the CLPT model, and then calculated as 1/ℎ𝑆11
̅̅ ̅̅ , where h is the height of the 

laminate and 𝑆11
̅̅ ̅̅  is the in-plane component of compliance matrix in the first row and first column. 

An averaged fiber reorientation can be obtained by computing the angle between fiber orientations 

before and after deformation from the FEA. Next, the new deformed lay-up sequence is calculated 

by using the initial fiber orientation to subtract the averaged fiber reorientation values, when the 

initial fiber orientation is less than or equal to 90°.When the initial fiber orientation is larger than 

90°, we consider sum of the initial fiber orientation and fiber reorientation values as new deformed 

fiber orientation. 𝐸𝑚𝑎𝑥 can then be computed by the new deformed lay-up sequence combined 

with CLPT. The calculation procedure is the same as the one used for 𝐸𝑖. Finally, the values of 

𝛤𝑖𝑜𝑓 for 𝜃𝑏 = 30°, 60° and 𝜃𝑠 = 0°, 30°, 60°, 90° (associated laminae of the DFH 𝜃ℎ = 30°) are 

shown in Figure 2.4(e) in comparison with DFH architecture with 𝜃ℎ =30°. 

The bar chart shows that DMB 𝜃𝑏 = 30°and DSL 𝜃𝑠 = 30° stiffen more than the DFH 

architecture with 𝜃ℎ = 30°, up to 30.4%, under the same uniaxial tensile stretch. Other laminates, 

𝜃𝑠 = 0°, 60°, 90° and 𝜃𝑏 = 60°, show negligible stiffening, compared with  𝜃𝑠 = 30° and 𝜃𝑏 = 

30°. This could be explained by the trends shown in Figure 2.3(b), in which no strain stiffening is 

expected once 𝜃𝑠 is larger than 56° , unless very large ∆𝜃𝑐 occur. Thus, based on these observation, 

it is possible to conclude that the reason why the DFH architecture with  𝜃ℎ = 30° exhibits lower 

stiffening (𝛤𝑖𝑜𝑓) is because it shows smaller values of ∆𝜃𝑐  in each lamina, when compared to 

corresponding lamina misorientation in DSL (𝜃𝑠 = 30° and  𝜃𝑠 = 60°) and DMB (𝜃𝑏 = 30° and 

𝜃𝑏 = 60°) architectures. 
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Figure 2.5. (a) ∆𝜃𝑐 as a function of misaligned angle 𝜃𝑖 (b) Colormap of ∆𝜃𝑐 as a function of 𝑈12 and  

𝑈22, where red dot represents for lamina 𝜃30 in DMB 𝜃𝑏 = 30°, black dot represents for lamina DSL 

𝜃𝑠 = 30°, and blue dot represents for lamina 𝜃30 in DFH 𝜃ℎ = 30° (c) Configuration of individual layer 

𝜃30 of DFH 𝜃ℎ = 30° (d) Configuration of individual lamina 𝜃30 of DMB 𝜃𝑏 = 30° (e) Configuration of 

individual layer 𝜃60 of DFH 𝜃ℎ = 30° (f) individual layer 𝜃30 of DSL 𝜃𝑠 = 30°, before(light grey) and 

after deformation(darker grey for matrix and blue for fibers) 

Explanation on fiber reorientation based on mechanism 

We now look into potential mechanistic explanations on fiber reorientation and its 

contribution to strain stiffening based on the anisotropic behavior of the different laminae and their 

individual in-plane shear and transverse contraction deformation induced by the uniaxial load. 

Using the polar decomposition method, an analytical expression for ∆𝜃𝑐 as a function of in-plane 

components of the stretch tensor, 𝑼, can be derived. Consider a unit vector describing fibers in the 

undeformed configuration with orientation, 𝜃, namely, 𝑣0̅̅ ̅ = (𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃). If �̅� is the vector in the 
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deformed configuration, �̅� and 𝑣0̅̅ ̅are related by �̅� = 𝑼 ∙ 𝑣0̅̅ ̅ (Reddy, 2013) with the angle between 

them given by 𝑐𝑜𝑠∆𝜃𝑐 =
�̅�∙𝑣0̅̅ ̅

|�̅�||𝑣0̅̅ ̅|
, or  

∆𝜃𝑐 = arccos {
[𝑐𝑜𝑠2𝜃𝑈𝑥𝑥+𝑠𝑖𝑛2𝜃𝑈𝑦𝑦+2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑈𝑥𝑦]

√(𝑈𝑥𝑥𝑐𝑜𝑠𝜃+𝑈𝑥𝑦𝑠𝑖𝑛𝜃)2+(𝑈𝑥𝑦𝑐𝑜𝑠𝜃+𝑈𝑦𝑦𝑠𝑖𝑛𝜃)2
}                            (2.2) 

where 𝑈𝑥𝑥, 𝑈𝑦𝑦, and 𝑈𝑥𝑦 are the in-plane components of the 𝑼. A close examination of 

Figure A5(d) reveals that the theoretical prediction of ∆𝜃𝑐 is in close agreement with the results 

obtained by FEA and those calculated from whole laminate deformations. A color map of ∆𝜃𝑐, as 

a function of the individual stretch tensor components can be constructed using equation (2.2), as 

shown in Figure 2.5(a). Moreover, the ∆𝜃𝑐 of each individual lamina for various architectures can 

be analyzed based on the components of the stretch tensor obtained from simulations. For example, 

the ∆𝜃𝑐 of the individual lamina 𝜃30 in the DMB 𝜃𝑏 = 30° (shown as a red dot in left-top corner 

of the color map in Figure 2.5(a)) implies that transverse contraction, rather than in-plane shear 

deformation,  𝑈𝑥𝑦 , is the one promoting fiber reorientation in the architecture. This result is 

consistent with the prediction of the CLPT model for balanced architecture, in which the 

extensional-shear coupling components are zero, i.e., no in-plane shear deformation due to uniaxial 

tension(Carlsson et al., 2014). By contrast, the ∆𝜃𝑐 of the DSL with 𝜃𝑠 = 30° (shown as a black 

dot in Figure 2.5(a)) primarily results from 𝑈𝑥𝑦, 8.15 times higher than the 𝑈𝑥𝑦 value of 𝜃30 in 

DMB 𝜃𝑏 = 30°, and moderately results from transverse contraction, 𝑈𝑦𝑦, 42.2% lower than the 

one of DMB architecture. Interestingly, when comparing the DMB architecture to the DSL 𝜃𝑠 = 

30°, the former exhibits a 93.4% higher value of the effective Poisson’s ratio, 𝑣𝑥𝑦, see Figure 

2.5(b). The DFH architecture exhibits a behavior in which both in-plane shear deformation and 

transverse contraction are smaller, blue dot in Figure 2.5(a). Less shear deformation than 

corresponding DSL architectures is because in the DFH architecture, for each lamina with 

misorientation 𝜃, there is always a lamina with misorientation −𝜃. Accordingly, at the laminate 

level, the DFH architecture also satisfies the balanced laminate condition, which means no in-

plane shear deformation due to uniaxial tension. On the other hand, unlike the DMB architecture 

composed of multiple laminae with one absolute value of misorientation, indicating compatible 

properties lamina by lamina, the DFH architecture is composed of multiple laminae with different 

absolute values of misorientation, which means incompatible properties lamina by lamina. 

Therefore, the DFH architecture cannot reach as high transverse contraction as the DMB 
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architecture, and then the individual lamina with different 𝜃 in the DFH architecture will rotate 

less than the corresponding DSL and DMB architectures, see Figure 2.5(b) and Figure A7. The 

global deformation of the DFH, DMB, and DSL architectures is illustrated in Figure 2.5(c-f) and 

the deformation magnitudes of the different architectures, under the same uniaxial tensile strain, 

are tabulated in Table A1. 

 

Figure 2.6. FEA predictions on elastic modulus of laminates with linear elastic matrix deformed within 

1% local true strain, ϵ𝑡, (𝐸𝐿𝐸1%) and at ~4% ϵ𝑡 (𝐸𝐿𝐸4%). Analytical predictions are based on the CLPT 

model. (a) Comparison among θℎ = 30°, θ𝑏 = 30° and θ𝑏 = 45° (b) Comparison between θℎ = 30° and 

the disorder architecture with lay-up sequence [30/150/60/120/0/90/30] (c) Elastic modulus as a function 

of local true strain, ϵ𝑡. (d) Stiffening parameter 𝛤𝑖𝑜𝑓(𝜖𝑡) as a function of ϵ𝑡. 
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Role of matrix mechanical behavior 

In the previous section, we studied the correlation between ∆𝜃𝑐 and strain stiffening, 𝛤𝑖𝑜𝑓, 

by using a semi-analytical method and examining the ∆𝜃𝑐  distribution computed for different 

architectures. In this section, we investigate the effect of matrix constitutive behavior on strain 

stiffening. We begin by analyzing a linear elastic matrix and conclude with the analysis of an 

elasto-plastic matrix. 

In analyzing the effect of a linear elastic matrix, a maximum local true strain 𝜖𝑡 = 4% is 

used for comparing various laminates. The local strain is based on the deformation at two ends of 

the gauge region, 𝑢𝑔𝑎𝑢𝑔𝑒 𝐿𝑔𝑎𝑢𝑔𝑒⁄  whereas the global(applied) strain, 𝜖, is calculated by the applied 

deformation at the end of dog-bone sample, 𝑢𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝐿𝑔𝑎𝑢𝑔𝑒⁄ . A free-periodic boundary condition 

is applied to all FEA in this section. Moreover, it is important to note that the fiber reorientation 

values for the DFH and the DMB architectures with linear elastic matrix are the same as the fiber 

reorientation values computed for the DFH and the DMB architectures with hyperelastic matrix, 

see section A10. 

The normalized elastic modulus, along various orientations, for the 𝜃ℎ = 30° and 𝜃𝑏 = 30° 

architectures, at 𝜖𝑡 = 1% (𝐸𝐿𝐸1%), and at 4% (𝐸𝐿𝐸4%), are plotted in Figure 2.6(a). By contrast, 

FEA and analytical predictions are in close agreement for the DMB architectures, 3.95% difference 

for 𝜃𝑏 = 30° in both longitudinal and transverse directions. The normalized elastic modulus for 

the DFH architecture with 𝜃ℎ = 30°, for both 𝐸𝐿𝐸1%/𝐸180 and 𝐸𝐿𝐸4%/𝐸180 are smaller than the 

analytical prediction. This is the case, because in the FEA, the DFH architecture is modeled by 

discontinuous fibers, resulting in localized failure (fiber end-matrix debonding). As expected, the 

DFH architecture presents close to in-plane isotropic behavior on elastic modulus, whereas the 

𝐸𝐿𝐸1% of 𝜃𝑏 = 30° is relatively large only in the direction close to the initial lamina misorientation 

30°. The 𝐸𝐿𝐸1% of the 𝜃𝑏 = 30° along the longitudinal direction is three times and a half overthe 

𝐸𝐿𝐸1% in transverse direction.  

We next examine 𝛤𝑖𝑜𝑓(4%), where 𝛤𝑖𝑜𝑓(4%) is defined as the strain stiffening of architecture 

finally deformed under 4% of 𝜖𝑡  in uniaxial direction (subscript “4%” means 4% of 𝜖𝑡 ), and 

𝛤𝑖𝑜𝑓(𝜖𝑡) = 𝐸𝑚𝑎𝑥(𝜖𝑡)/𝐸𝑖, value 𝐸𝑚𝑎𝑥 as a function of 𝜖𝑡 over 𝐸𝑖. In Figure 2.6(c), although 𝜃𝑏 = 

45° shows the maximum ∆𝜃𝑐 and strain stiffening 𝛤𝑖𝑜𝑓(4%) = 1.16, compared with 𝜃𝑏 = 30° and 

𝜃ℎ = 30°, the 𝐸𝐿𝐸1% of 𝜃𝑏 = 45° is only 18.8% of the value of 𝜃ℎ = 30° both in the longitudinal 
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and transverse directions. Although a small stress softening value (𝛤𝑖𝑜𝑓(4%) = 0.92) is exhibited 

by the DFH architecture, isotropic stiffness is achieved.  

It is important to understand if the specific lay-up sequence of the DFH architecture can 

influence ∆𝜃𝑐  and strain stiffening and thus, we consider a disorder laminate 

𝜃𝑟 =[30/150/60/120/0/90/30], which contains the same associated laminae but different lay-up 

sequence from 𝜃ℎ = 30°. 𝜃𝑟 is representative of other alternative laminates with different lay-up 

sequences, since 𝐸𝑖 calculated by CLPT is independent on the lay-up sequence, shown in section 

A11. In Figure 2.6(b), the elastic modulus of disorder laminate 𝜃𝑟 before and after deformation, 

compared with 𝜃ℎ = 30° is shown. It is observed that the values of 𝐸𝑖 of 𝜃𝑟 and 𝜃ℎ = 30° show 

close agreement on both analytical prediction and FEA. However, the 𝛤𝑖𝑜𝑓(4%)  of 𝜃𝑟  due to 

difference on fiber reorientation, see Figure A18 of section A11, is 1.44% higher than the value of 

𝜃ℎ = 30°, as depicted in Figure 2.6(d). This means that different lay-up sequence does influence 

the stiffness variation caused by fiber reorientation. However, compared with the strain stiffening 

𝛤𝑖𝑜𝑓(𝜖𝑡) of the DMB 𝜃𝑏 = 30°, Figure 2.6(d), the difference between 𝜃𝑟  and DFH 𝜃ℎ = 30° is 

negligible.  

The above results show that the strain stiffening of the DFH architecture in the 

experimental system is mostly the result of the hyperelastic properties of the matrix, since in this 

section we show that fiber reorientation in the DFH architecture is constrained by the specific lay-

up sequence and therefore strain stiffening was not predicted, which is consistent with the 

explanation in section of “Explanation on fiber reorientation based on mechanism” and the 

analytical prediction in Figure 2.4(e).. Moreover, we investigated the effect of an elasto-plastic 

matrix to replace the linear elastic matrix for the DFH architecture with 𝜃ℎ = 30°, large strains, 

and found no strain stiffening either, see sectionA12.  

2.4 Conclusions 

This work examines the mechanical properties of a hybrid architecture, the Discontinuous 

Fiber Helicoid (DFH), which takes inspiration from a regular helicoid composite and a ‘brick and 

mortar’ architecture. The combination of these two motifs gives rise to some unique composite 

mechanics. Like the regular helicoid, each unidirectional lamina is highly anisotropic due to the 
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alignment of the fibers. However, the elastic behavior of whole helicoidal laminate is transversely 

isotropic. 

The properties of DFH architecture are a function of the geometry and the property of its 

constituents. Among the dominant geometrical features, we can mention pitch angle, 𝜃ℎ . 

Constitutive properties, such as the fiber to matrix stiffness ratio, as well as the matrix nonlinear 

behavior, are relevant as they relate to strain stiffening and overall failure. To deconvolve the 

various effects, we examined various architectures, namely DFH/DMB/DSL, to gain insights into 

the contribution of deformation to fiber reorientation, ∆𝜃𝑐, as it relates to lamina misorientation 

with respect to the loading direction and lay-up sequence.  

• We found that the DFH architecture exhibits less in-plane shear deformation and less 

transverse contraction leading to smaller values of fiber reorientation, ∆𝜃𝑐, compared with 

the DMB and DSL architectures. We compared and quantified ∆𝜃𝑐 in individual laminae 

from different architectures. For instance, we found that the individual lamina 𝜃30 of the 

DFH 𝜃ℎ = 30° exhibits up to 29.5% lower ∆𝜃𝑐 that found in the DSL 𝜃𝑠 = 30° upon 15% 

𝜖. On the other hand, the 𝜃45 lamina in the DMB architecture exhibits 28.6% higher value 

of ∆𝜃𝑐 than the 𝜃45 lamina in the DFH with 𝜃ℎ = 45°. In fact, the DFH architecture, due to 

its overall balanced lay-up sequence, exhibits smaller in-plane shear deformation than the 

DSL architecture and less contraction in the transverse direction than the DMB architecture. 

The DMB 𝜃𝑏 = 30° exhibits a 93.4% higher 𝑣𝑥𝑦 than the DSL architecture with 𝜃𝑠 = 30°. 

This is due to its compatible mechanical properties among balanced laminae. 

• The analysis reported in this study revealed that the DFH architecture, with a linear elastic 

or elasto-plastic matrix with small plastic hardening, shows negligible strain stiffening, 

compared with the DMB architecture, under uniaxial tensile loading, whereas the DMB 

architecture, show superior strain stiffening compared with DFH architecture (up to 16% 

under 4% local 𝜖𝑡 and 33.6% under 10% local 𝜖𝑡). Furthermore, evidence that no strain 

stiffening shown in the FEA with linear elastic matrix and very small values obtained from 

the plate theory indicates that the strain stiffening observed in 3D printed samples is 

primarily due to the hyperelastic constitutive response of the matrix. 

• Although the DFH architecture and the disorder laminates show the same elastic modulus 

before deformation, their fiber reorientation and strain stiffening values are slightly 

different after the same tensile strain (4% local 𝜖𝑡). This observation confirms that lay-up 
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sequence influences the deformation in each lamina through the thickness and thus, has an 

impact on the fiber reorientation behavior.  

In closing, we have provided a rigorous analytical, experimental, and computational 

analysis of deformation and strain stiffening for a variety of discontinues fiber architectures, which 

should be valuable for the design of composite materials in which tailoring of constitutive behavior, 

following some inspiration from these natural materials, can lead to better mechanical performance. 

The DFH architecture exhibits some interesting mechanical behavior, which can be employed in 

some specific applications. For example, helicoidal composites with compliant matrix and stiffer 

fibers can find applications where isotropic elastic properties are required under general and 

relatively low loads, but higher strength and toughness, along the loading direction, under higher 

loads. 
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 ON THE 3D ARCHITECTURE OF NATURALLY OCCURRING 

LAMELLAR STRUCTURES: A COMPARATIVE ANALYSIS 

Chapter 3 is part of the publication “On the 3D Architecture of Naturally-occurring Lamellar Structures. 

A Comparative Analysis”, (2020), Status: In progress 

 

In addition to the fiber reinforced laminate materials, nacreous lattice structure, shown in 

Figure 3.1(c), can endure high toughness without sacrificing strength. In Chapter 3, we plan to 

compare tablet-like architecture found in the nacreous layer of the abalone shells and the rod-like 

microstructure of the radula teeth of Chiton, Figure 3.1(a), through different dimensionless 

parameters. Previous studies have provided insightful information on how these structures promote 

certain mechanisms. However, few of them focus on three-dimensional representations. In this 

work, we present a detailed comparative analysis that looks at the three-dimensional geometries 

of the rod-like and tablet-like structures. We 3D print and test rod-like and tablet-like architectures 

and analyze the results employing a computational and analytical micromechanical model under a 

dimensional analysis framework. In particular, we focus on the stiffness, strength and toughness 

of the resulting structures. Our preliminary results show that besides volume fraction and aspect 

ratio of the building blocks, the specific shear area governs the mechanical behavior of these 

microstructures. In turns, this leads to the conclusion that rod-like microstructures exhibit better 

performance than tablet-like microstructures when the architecture is subjected to uniaxial load. 

However, rod-like microstructures tend to be much weaker and brittle in the transverse direction. 

On the other hand, tablet-like architectures tend to be a much better choice for situations where 

biaxial load is expected. 

3.1 Introduction 

Biological composite materials, combination of stiff mineralized inclusions and compliant 

biopolymers, are ubiquitous in nature. Living organisms ingeniously evolve these architectural 

materials to perform remarkably under specific circumstances for survival. One of the examples is 

the nacreous microstructures in the inner layer of seashells of Mother-of-pearl (nacre), staggered 

tablet-like architectures, shown in Figure 3.1(c). Its mechanical properties are far superior to its 

constituents, ceramic and protein (Barthelat et al., 2007; Chintapalli et al., 2014; Pro et al., 2015; 
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Salinas and Kisailus, 2013; Sun and Bhushan, 2012b; Yaraghi and Kisailus, 2018; Zhang et al., 

2010b). Another example is the radular teeth of the gumboot Chiton, shown in Figure 3.1(a), which 

consist of biomineralized rod-like magnetite fibers and soft organic material. Through controlling 

the interface strength between fibers, the possibility of catastrophic failure can be decreased and 

therefore the Chiton tooth is able to achieve impressive abrasion resistance (Escobar de Obaldia et 

al., 2016). Studies on the microstructures of Stomatopod dactyl club (Grunenfelder et al., 2014b; 

Weaver et al., 2012), crab shell (Cheng et al., 2008b; Yao et al., 2013), fish scale (Murcia et al., 

2017b; Zimmermann et al., 2013) and cuticles of beetles (Vargas et al., 2016; R. Yang et al., 2017) 

reveal that they are composed of biomineralized fibers reinforced laminates. Each lamina rotates 

a specific angle through the thickness to accomplish 180° rotation. This architecture, denoted 

helicoid architecture, displays high-energy dissipation during impact and crack propagation by 

amplifying the surface area per unit crack length (Weaver et al., 2012). 

These superior mechanical properties of biological composite materials stimulate scientists 

and engineers to design and fabricate bio-inspired materials which can provide similar properties 

that biological materials have. “Brick and mortar” architecture can represent three-dimensional(3D) 

tablet-like and rod-like architectures by simplifying inclusions from 3D to 2D as staggered 2D 

brick tablets, shown in Figure 3.1(b). Shear-lag analytical model is ubiquitously used to predict 

the mechanical properties of “brick and mortar” architecture (Sakhavand and Shahsavari, 2015; 

Wei et al., 2012), allowing large shear deformation in the matrix, which is sandwiched by two stiff 

tablets. Tension-shear chain (TSC) model (Gao, 2006; Ji and Gao, 2004) illustrates the tensile 

deformation resistance of “brick-and-mortar” architecture through passing normal stress in 

discontinuous-stiff tablets and transferring shear stress in compliant matrix. Volume fraction (𝑉𝑓) 

and aspect ratio of inclusions (𝐿 𝑀⁄ ) are two key parameters to predict the mechanical properties 

of “brick and mortar” model.  

Shear-lag and TSC models assume plane strain condition for 2D analytical model, 

indicating infinite thickness out of plane. However, the inclusion of biological composite material 

is discontinuous out of plane and it also exhibits distinct geometries, such as rod-like and tablet-

like architectures from microstructures in the chiton tooth and in the seashell of nacre respectively, 

shown in Figure 3.1(d). Seashell of nacre is the protective layer of interior-soft material, able to 

resist exterior multiaxial loading, impact load and penetration, while Chiton teeth is used to rasp 

to expose algae growing on the surface of hard rocky substrates (Escobar de Obaldia et al., 2016). 
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Their functionalities are different and therefore the morphologies of the macro geometries and 

micro-structure are distinct. In the present paper, we are trying to understand why nature chooses 

rod-like architecture to resist longitudinal normal loading and uses tablet-like architecture to 

endure multiaxial loading. To accomplish this analysis, extending 2D to 3D model is necessary 

and not only 𝑉𝑓 and 𝐿 𝑀⁄  should be considered in the analysis, but also effective shear 𝐴𝑠  and 

tension area 𝐴𝑡 needs our attention.  

The present paper extends the 2D analytical model (shear-lag combined with tension 

effects from matrix) to 3D and then compare the predicted mechanical properties, stiffness, 

strength and toughness, under longitudinal and transverse uniaxial tensile loading with 

corresponding experiments and finite element analysis (FEA) in 3D. To compare two architectures 

at the same level, dimensionless parameters are designed, including 𝑉𝑓 and 𝐿 𝑀⁄ .  

 

 

Figure 3.1 (a) SEM micrograph showing the radula teeth of Chitons and its rod-like microstructure (de 

Obaldia et al., 2015) (b) Basic 2D shear lag model. (c) California red abalone with pearlescent interior of 

nacre and the micrograph of its nacreous tablet-like microstructure(Salinas and Kisailus, 2013). (d) 

Biomimetic 3D rod-like and tablet-like inclusions 
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3.2 Problem formulation 

3.2.1 Three-dimensional architectures 

We designed two 3D architectures based on the microstructures of biological materials, 

inner layer of nacre and radular teeth of Chitons. Tablet-like 3D architecture, bio-inspired by the 

microstructure of nacre, is composed of in-plane hexagon tablets, exhibiting staggered pattern 

through the thickness, shown in Figure 3.2(a) and (b). We are going to apply uniaxial tensile in the 

longitudinal direction (along 𝑥 -axis) and in transverse direction (along 𝑦 -axis) to study the 

stiffness, strength and toughness behavior of this bio-inspired tablet-like architectures. Different 

from 2D shear-lag model, architectures in 3D are featured with effective shear area and tension 

area, dependent on 3D geometry and arrangement of the reinforcement, to resist the uniaxial 

deformation in longitudinal direction. As shown in Figure 3.2(c), matrix above and below hexagon 

tablets (blue) are under shear deformation and the matrix between two tablets in-plane (yellow) is 

under tension deformation when the whole architecture is under uniaxial tensile. Because of 

periodicity of the representative volume element (RVE), we extract one hexagon tablet and three 

tablets from adjacent top and bottom layers separately, see Figure 3.2(c). In further step, due to 

geometrical symmetry in 𝑧 direction of this unit cell, only half of the thickness is considered in our 

analytical analysis, shown as the region enveloped in red curve in Figure 3.2 (c). The volume of 

the unit cell is 𝑉𝑐𝑒𝑙𝑙, including tablets and surrounded matrix. The other architecture is rod-like 

structure bio-inspired by the microstructure of Chitons teeth, shown in Figure 3.2(d) and (e). 

Similar as the arrangement pattern of tablet-like architectures, we staggered adjacent columns of 

fibers by 50% of the length of one RVE, which including one fiber and surrounded matrix. The 

unit cell of rod-like architecture is half length of the RVE in the longitudinal direction due to 

symmetry geometry, shown in Figure 3.2(f). In rod-like architecture, effective shear zone (blue) 

are the matrix between two fibers with 50% off-set in their longitudinal direction, whereas the 

tension zone (yellow) are the matrix between two aligned fibers, shown in Figure 3.2(f). The 

detailed calculation of effective shear (𝐴𝑠) and tension area (𝐴𝑡) are described in appendix B. 

We introduce the length in longitudinal direction of both tablet and rod reinforcements as 

𝐿, the thickness of hexagon tablet as 𝑀 while the 𝑀 of the rod-like architecture is the distance 

between two parallel edges of hexagon cross-section, shown in Figure 3.2(c) and (f). The matrix 

gap between reinforcements is 𝑡. We denote 𝑤𝑛 and 𝑤𝑐 as the edge length of hexagon of tablet-
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like and rod-like architectures separately. The dimensions of each sample we tested are tabulated 

in Table 3.1.  

Besides aspect ratio (𝐿 𝑀⁄ ) and volume fraction (𝑉𝑓), two key parameters for 2D theoretical 

model, we assume that 𝐴𝑠 and 𝐴𝑡 are another two critical parameters necessary to be considered 

in 3D when we consider the effective mechanical property of rod-like and tablet-like architectures. 

3.2.2 Prerequisite and loading conditions 

When 3D tablet-like nacreous architecture is in comparison with rod-like chiton 

architecture, both two architectures are with the same 𝑉𝑓 and 𝐿 𝑀⁄ , which are the key parameters 

of 2D shear-lag model. We designed two sets of experiments under uniaxial tensile loading 

condition in longitudinal and transverse directions respectively to investigate the mechanical 

properties of tablet-like and rod-like architectures, shown in Figure 3.2 (a) and (d). 

 

Figure 3.2. (a) Biomimetic 3D tablet-like structures. (b) General top view of the hexagon tablets. (c) 

model of one unit cell and its effective shear and tension area. (d) Biomimetic 3D rod-like architecture. 

(e) Cross-section design of 3D rod-like structures. Hexagons with grey color and with blue color represent 

that they are not in the same plane, which have 50% out-of-plane offset distance. (f) Unit cell of 3D rod-

like architecture and its effect shear and tension area. 

We expect there is difference between tablet-like and rod-like architectures even when they 

are featured with the same 𝑉𝑓 and 𝐿 𝑀⁄ , since their 𝐴𝑠 and 𝐴𝑡 are different. On the other hand, rod-
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like architectures can provide less deformation resistance in transverse direction compared with 

its resistance in longitudinal direction, while tablet-like structures, due to its in-plane geometry, 

can offer close to consistent deformation resistance in both loading directions. 

3.3 Materials and loading machine 

3.3.1 Materials 

Multi-material 3D printer (fused deposition modeling) is used to print our bio-inspired 

tablet-like and rod-like architectures. Stiff polymer is applied as the materials of reinforcement 

(fibers and tablets) and tabs, while soft elastomer is employed for matrix materials.  

 

Figure 3.3. (a) DIC of 3D architectures under uniaxial tensile loading in longitudinal direction. (b)DIC of 

3D architectures under uniaxial tensile loading in transverse direction. (c) Stress and strain curves of 3D 

rod-like and tablet-like architectures under uniaxial tensile loading in longitudinal and transverse 

directions. (d) The crack surface of 3D architectures after loading in transverse direction. (e) The crack 

surface of 3D architectures after loading in longitudinal direction. (f) The CAD file of 3D-printed samples 

3.3.2 loading machine 

Uniaxial tensile test is conducted with the assistance of MTS machine equipped with two 

mechanical grips. The loading rate is 0.2 mm/min. Digital image correlation (DIC) is in 
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conjunction with the uniaxial tensile loading to measure the strain distribution map, shown in 

Figure 3.3(a) and (b). 

3.4 Results 

The stress and strain curves of uniaxial tensile tests both in transverse and longitudinal 

directions are illustrated in Figure 3.3(c). We consider the initial slope of the stress and strain curve 

as stiffness 𝐸, first peak load as strength 𝜎𝑦 and the area enveloped under stress and strain curve 

as toughness 𝑇𝑐. The strength 𝜎𝑦 of 3D tablet-like architecture in transverse direction is 88.7% of 

its 𝜎𝑦 in longitudinal direction. However, 𝜎𝑦 of 3D rod-like architecture in transverse direction is 

only 30.75% of its 𝜎𝑦value in longitudinal direction. The toughness of rod-like architecture in 

transverse direction can reaches 23.08% of the toughness of rod-like architecture in longitudinal 

direction. Meanwhile, the toughness of tablet-like architecture in transverse direction can provide 

40% of the toughness of tablet-like architecture in longitudinal direction. Both two results are 

under our expectation in the previous stage. 

The area of fracture interface can visually explain how much energy dissipated by the 

materials. Both architectures under tensile exhibit similar fracture mechanism. The crack 

propagates through the ductile interlayer between tablets or rods through the thickness, performing 

crack interface like a zig-zag shape, shown in Figure 3.3(d) and (e). The samples before printing 

are shown in Figure 3.3(f). 

It is observed that rod-like architecture behaves more beneficial in longitudinal direction 

than its transverse direction, which is under our expectation. The stiffness, strength (1st peak stress) 

and toughness of tablet-like and rod-like structures in both loading directions are summarized in 

Figure 3.4(a) and (b) separately. In longitudinal direction, Figure 3.4(a) shows that rod-like 

architecture with the same 𝑉𝑓 = 70% and 𝐿 𝑀 = 15⁄  of tablet-like architecture performs with 

higher stiffness and toughness, up to 43.3% and 39.2% respectively, in the longitudinal direction 

than the values of tablet-like architecture, though they can provide close value of strength, only 

0.5% difference. This difference on stiffness and toughness is induced by distinct effective shear 

and tension area 𝐴𝑠 and 𝐴𝑡, tabulated in Table 3.1. On the other hand, the behavior in transverse 

direction of tablet-like architecture exhibits robust benefit over rod-like architecture in stiffness, 

strength and toughness. 
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Based on these results, in order to confirm the influence of 𝐴𝑠  and 𝐴𝑡  on mechanical 

behaviors, we need to compare the two 3D architectures analytically by dimensionless group 

parameters.  

 

 

Figure 3.4. (a) Radar plot of elastic modulus, strength and toughness of 3D tablet-like nacreous and rod-

like chiton architectures in longitudinal direction. (b) Radar plot of elastic modulus, strength and 

toughness of 3D tablet-like nacreous and rod-like chiton architectures in transverse direction. 

Table 3.1. Geometrical parameters of designed samples 

Name 𝐿(mm) 𝑡(mm) 𝑀(mm) 𝐿/𝑀 𝑉𝑓 𝐴𝑠

𝑉𝑐𝑒𝑙𝑙
(𝑚𝑚) 

𝐴𝑡

𝑉𝑐𝑒𝑙𝑙
(𝑚𝑚) 

Nacre0 16.8 0.4 1.12 15 0.698 0.59 0.076 

Chiton0 31 0.4 2.078 14.915 0.694 0.44 0.083 

3.5 Analytical model and FEA 

As previous study of (Zhang et al., 2015), shear-lag model was extended from 2D to 3D 

with hexagon cross-section, considering tension effect between fiber ends for rod-like 

architectures. This 3D analytical model is applied for elastic modulus prediction on our rod-like 

architectures bio-inspired by chiton.  

1

𝐸
=

1

𝐸𝑓𝑉𝑓
+

1

𝑐𝑚
𝑙𝑠
𝑡

+𝐸𝑓𝑉𝑓
𝑘

4
tanh (

𝑘

4
)
                                                                                                                          (3.1) 
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where 𝑘 = √
2𝐺𝑚𝑤𝑐𝑙𝑠

2

𝐸𝑚𝐴𝑡
, 𝑐𝑚 =

𝐸𝑚(1−𝑣𝑚)

(1+𝑣𝑚)(1−2𝑣𝑚)
, 𝐴 =

1

4

3√3

2
𝑤𝑐

2 

In the present paper, we can provide the analytical model of 3D tablet-like architecture 

based on the shear-lag model, considering the effects of tension between two aligned tablets.  

3.5.1 Analytical model 

One hexagon tablet and its three tablets from adjacent top and bottom layers respectively, 

combined with the interlayer matrix, are extracted as RVE of our analytical 3D model, shown in 

Figure 3.5(a). Because of its symmetry to 𝑥1 − 𝑥2 and 𝑥1 − 𝑥3 planes, the unit cell can be cut by 

half both in 𝑥2 and in 𝑥3 directions, illustrated in Figure 3.5(b). Based on the unit cell, the cross-

section at the midline of the trapezoid (black dashed line in Figure 3.5(b)) is employed to represent 

the 3D tablet-like architecture in 2D(𝑥1 − 𝑥2 plane). The effective length of the top hexagon tablet, 

𝑙𝑠 =
3

2
𝑤𝑛 −

2

√3
𝑡, of the unit cell excludes the longitudinal distance of matrix gap in between two 

adjacent tablets. The effective length, 𝑙𝑤, of the bottom tablet in the unit cell projected in 𝑥1 − 𝑥2 

plan is determined by the effective shear area of the hexagon tablets. 

𝑙𝑤 =
𝐴𝑠ℎ𝑖𝑓𝑡

𝐴𝑠
𝑙𝑠                                                                                                                         (3.2) 

where 𝐴𝑠ℎ𝑖𝑓𝑡 is the area enveloped by red dashed line in Figure 3.5(a), which is the overlap 

area of two tablets stacked along 𝑥2 direction. 
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Figure 3.5. (a) Top view of 3D tablet-like structure including shift distance, shift area, effective shear area 

and the length of the unit cell. (b) Half of the 3D tablet-like structure with projected 2D geometry in blue 

color and their effective dimensions. (c) Projected 2D segments with effective length and boundary 

conditions. (d) Elastic modulus as a function of dimensionless parameter𝛼. (e) Dimensionless parameter 𝜉 

as a function of 𝛼. (f) shear stress distribution map of interlayer matrix when 𝛼=0.5. (g) shear stress 

distribution map of interlayer matrix when 𝛼=0.387 and 𝜉=0.5. 

Stress in tension from matrix (𝜎𝑚) and normal stress of tablets (𝜎𝑓) are applied as boundary 

condition of the unit cell, shown in Figure 3.5(c). Based on the analysis of free body diagram, we 

have  

∫
𝜕𝜎𝑓(𝑥1)

𝜕𝑥1𝑉
dV = ∫ 𝜏(𝑥1)

𝐴
dA                                                                                                                       (3.3) 

Transfer to differential equation, 

𝜕𝜎𝑓(𝑥1)

𝜕𝑥1
d𝑥1𝑓d𝑥2𝑓d𝑥3𝑓 = 𝜏(𝑥1)d𝑥1𝑚d𝑥3𝑚                                                                                              (3.4) 

Put d𝑥1d𝑥3 = 𝑑𝐴𝑠, 

𝜕𝜎𝑓(𝑥1)

𝜕𝑥1
d𝑥2𝑓𝑑𝐴𝑠 = 𝜏(𝑥1)𝑑𝐴𝑠                                                                                                                        (3.5) 

Integrate through thickness on one tablet, 

𝜕𝜎𝑓(𝑥1)

𝜕𝑥1

ℎ𝑛

2
= 𝜏(𝑥1)                                                                                                                                                (3.6) 

Finally, for each tablet, we set up equilibrium equations as, 
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Right part of tablet 1:                         
𝜕2𝑢𝑟(𝑥1)

𝜕𝑥1
2 =

𝑘2

𝑤𝑛
2 (𝑢𝑟(𝑥1) − 𝑤(𝑥1))                                            (3.7) 

Left part of tablet 1:                           
𝜕2𝑢𝑙(𝑥1)

𝜕𝑥1
2 =

𝑘2

𝑤𝑛
2 (𝑢𝑙(𝑥1) − 𝑣(𝑥1))                                               (3.8) 

Tablet 2:                                             
𝜕2𝑢𝑟(𝑥1)

𝜕𝑥1
2 =

𝑘2

𝑤𝑛
2 (𝑣(𝑥1) − 𝑢𝑙(𝑥1))                                                    (3.9) 

Tablet 3:                                             
𝜕2𝑢𝑟(𝑥1)

𝜕𝑥1
2 =

𝑘2

𝑤𝑛
2 (𝑤(𝑥1) − 𝑢𝑟(𝑥1))                                                 (3.10) 

Where 𝑘 = √
2𝑤𝑛

2𝐺𝑚

𝐸𝑓ℎ𝑛𝑡
, 𝑢𝑟(𝑥1), 𝑢𝑙(𝑥1), 𝑣(𝑥1) and 𝑤(𝑥1) are the displacement functions of 

tablet 1 on right, tablet 1 on left, tablet 2 and tablet 3 separately. 

The boundary conditions of these three tablets are shown below, where 𝑀𝑐𝑜𝑓 = 𝑐𝑚𝑤𝑛 𝐸𝑓𝑡⁄ . 

𝑢𝑟 (0) = 0                                                                                                                                                            (3.11) 

𝑢𝑟
′ (𝑙𝑤) =

𝑀𝑐𝑜𝑓

𝑟
(−(𝑣(−𝑙𝑣) − 𝑢𝑙(−𝑙𝑣)) + 𝑤(𝑙𝑤) − 𝑢𝑟(𝑙𝑤))                                                       (3.12) 

𝑢𝑙
′(−𝑙𝑣) =

𝑀𝑐𝑜𝑓

𝑟
(−(𝑣(−𝑙𝑣) − 𝑢𝑙(−𝑙𝑣)) + 𝑤(𝑙𝑤) − 𝑢𝑟(𝑙𝑤))                                                    (3.13) 

𝑢𝑙  (0) = 0                                                                                                                                                            (3.14) 

𝑣′ (−𝑙𝑣) = 𝑃                                                                                                                                                      (3.15) 

𝑣′ (0) =
𝑀𝑐𝑜𝑓

𝑟
(−(𝑣(−𝑙𝑣) − 𝑢𝑙(−𝑙𝑣)) + 𝑤(𝑙𝑤) − 𝑢𝑟(𝑙𝑤))                                                       (3.16) 

𝑤′ (0) =
𝑀𝑐𝑜𝑓

𝑟
(−(𝑣(−𝑙𝑣) − 𝑢𝑙(−𝑙𝑣)) + 𝑤(𝑙𝑤) − 𝑢𝑟(𝑙𝑤))                                                       (3.17) 

𝑤′ (𝑙𝑤) = 𝑃                                                                                                                                                         (3.18) 

Based on the boundary conditions and equilibrium equations, the displacement functions 

𝑢𝑟(𝑥1), 𝑢𝑙(𝑥1), 𝑣(𝑥1) and 𝑤(𝑥1) are able to be solved in closed form. Besides, numerical solution 

is employed as well to confirm the results and the displacement plots are shown in appendix B. 

The average strain is defined as, 

휀̅ =
|𝑤(𝑙𝑤)−𝑢𝑟(𝑙𝑤)|+|𝑣(−𝑙𝑣)−𝑢𝑙(−𝑙𝑣)|

𝑙𝑤+𝑙𝑣
                                                                                                               (3.19) 

The average stress is 

𝜎 = (𝜎𝑚 + 𝜎𝑓)𝑉𝑓                                                                                                                                               (3.20) 

Now the elastic modulus is  

𝐸𝑛𝑎𝑐𝑟𝑒 =
𝜎

̅
                                                                                                                                                            (3.21) 

The details of the equation of 𝐸𝑛𝑎𝑐𝑟𝑒 are described in appendix B. 
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However, 3D tablet-like architecture with 50% off-set distance in longitudinal direction is 

not featured with the optimum deformation resistance, because the shear stress distribution in the 

matrix is not uniform, shown in Figure 3.5(f). Thus, in the next step, the off-set distance is defined 

as a variable of 𝐿𝑠ℎ𝑖𝑓𝑡 ∈ (0, 𝑤 +
𝑡

√3
] , illustrated in Figure 3.5(a), to investigate the maximum 

elastic modulus the unit cell can provide and its corresponding geometry. 

Instead of directly using 𝐿𝑠ℎ𝑖𝑓𝑡, 𝛼 =
𝐿𝑠ℎ𝑖𝑓𝑡 

𝐿
∈ (0,0.5] is introduced to do the optimization 

analysis. Specifically, to set up the connection between 3D geometry to 2D analytical model, 

dimensionless parameter 𝜉 =
𝐴𝑠ℎ𝑖𝑓𝑡(𝛼,𝑡,𝑤) 

𝐴𝑠ℎ𝑒𝑎𝑟(𝛼,𝑡,𝑤)
=

𝑙𝑤

𝑙𝑠
 is introduced. The elastic modulus as a function of 

𝛼 and the relationship between 𝛼 and 𝜉 are illustrated in Figure 3.5(d) and (e) respectively. It is 

revealed that when 𝜉 = 0.5, which represents the off-set area occupies 50% area of the whole 

effective shear area, the 3D tablet-like model is provided with the optimum in-plane elastic 

modulus in the longitudinal direction. However, the dimensionless length parameter 𝛼 is 0.387, 

not 0.5, when the 3D tablet-like model achieves the maximum elastic modulus. Featured with 

optimum arrangement, 𝜉 = 0.5 and 𝛼 = 0.387, 3D tablet-like architecture exhibits uniform shear 

stress distribution in the matrix interlayer, shown in Figure 3.5(g).  

The finite element models and 3D printed samples discussed in this work are all based on 

this optimum geometry.  

3.5.2 Finite Element Analysis (FEA) 

The FEA unit cells of rod-like and tablet-like architectures are shown in Figure 3.6(a) and 

(b). At least 4 elements are assigned in the matrix between two fibers in all chiton models. Reduced 

integration 2nd order brick element (C3D8R) is used for analysis. The analysis is under linear static 

solver, since the elastic modulus is the required output. 

Materials 

Matrix material are represented by elastic linear model, featured with elastic modulus equal 

to 0.437MPa and Poisson’s ratio equal to 0.41, which are characterized from uniaxial tensile test 

on compliant elastomer material. At the same time, fiber is defined as elastic linear model as well, 
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with elastic modulus equal to 2500MPa and Poisson’s ratio equal to 0.3. The stress and strain 

curves of the material characterization tests are described in the appendix B. 

Boundary condition 

Periodic boundary condition is applied to the unit cells of tablet-like and rod-like 

architectures to represent the infinite boundary in nature and exclude the size effect. Nodes at top 

and bottom surfaces perpendicular to the 𝑦 and 𝑧 axes satisfy the following equations 

𝑢𝑖
𝑡𝑜𝑝 − 𝑢𝑖

𝑏𝑜𝑡𝑡𝑜𝑚 = 0, where 𝑖 = 𝑦 and 𝑧                                                                                               (3.22) 

The displacement at nodes of paired surfaces perpendicular to the 𝑥 axis is correlated to 

the displacement of dummy node, which is located away from the model (Al Kassem and Weichert, 

2009).  

𝑢𝑥
𝑡𝑜𝑝 − 𝑢𝑥

𝑏𝑜𝑡𝑡𝑜𝑚 = 𝑢𝑥
𝑑𝑢𝑚𝑚𝑦

                                                                                                                          (3.23) 

 

Figure 3.6. Unit cell with mesh in FEA on 3D rod-like structure (a) Unit cell of 3D rod-like structure and 

its dimensions (b) Unit cell of 3D tablet-like structure and its dimensions 
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Table 3.2 Geometrical parameters of designed samples 

Name-Direction Nacre1-𝑥 Nacre2-𝑥 Chiton1-𝑥 Chiton2-𝑥 Chiton3-𝑥 

𝐿(mm) 14 5.06 18.6 16.8 50 

𝑡(mm) 0.4 0.4 0.4 0.4 0.4 

𝑀(mm) 2.4 0.79 1.25 1.12 3.3 

𝐿/𝑀 5.833 6.405 14.9 15 15.033 

𝑉𝑓 0.803 0.557 0.557 0.530 0.790 

𝐴𝑠/𝑉𝑐𝑒𝑙𝑙(mm) 0.315 0.591 0.591 0.616 0.314 

𝐴𝑡/𝑉𝑐𝑒𝑙𝑙(mm) 0.091 0.231 0.153 0.169 0.048 

3.6 Results and discussion 

 

Figure 3.7. Elastic modulus of composites in longitudinal direction normalized by elastic modulus of 

fiber(𝐸𝑥/𝐸𝑓) as a function of dimensionless groups(𝑉𝑓 𝑎𝑛𝑑 𝐴𝑠𝑙𝑠
2/𝑉𝑐𝑒𝑙𝑙𝑡), all with 𝐿/𝑀 = 15 except two 

nacre structures, which are with 𝑉𝑓 =0.56 and 0.8, shown in Table 3.2 

3.6.1 Elastic modulus and new dimensionless parameter 

To compare the tablet-like nacre architectures and rod-like chiton architectures in the same 

level, five dimensionless groups of parameters are introduced. They are 𝜋1 = 𝐸𝑥/𝐸𝑓, 𝜋2 = 𝐸𝑓/𝐸𝑚, 

𝜋3 = 𝑉𝑓, 𝜋4 = 𝐿/𝑀 and 𝜋5 = 𝑣𝑚, where 𝐸𝑥 is the elastic modulus in longitudinal direction, 𝐸𝑓 

and 𝐸𝑚 are the elastic modulus of fibers and matrix respectively, 𝑉𝑓 is the volume fraction of fibers, 

𝐿 and 𝑀 are the length and width of the unit cells separately and 𝑣𝑚 is the Poisson’s ratio of matrix 
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material. Alternatively, 𝑉𝑓 can be replaced by 𝜋3 = 𝐴𝑠𝑙𝑠
2/𝑉𝑐𝑒𝑙𝑙𝑡, where 𝐴𝑠 is the effective shear 

area. This dimensionless term is determined by the extreme case that fibers are infinite stiff 

compared with the stiffness of matrix. The detailed description is explained in appendix B. 

In addition to the samples illustrated in Figure 3.4, alternative experimental samples of 

tablet-like and rod-like architectures with different 𝐿/𝑊  and 𝑉𝑓  are introduced and compared, 

which is tabulated in Table 3.2. As what is observed in Figure 3.4(a), even tablet-like nacre and 

rod-like chiton architectures are featured with the same volume fraction and aspect ratio, their 

elastic modulus is different in FEA and analytical prediction, shown in Figure 3.7(a). The rod-like 

architecture, for instance, due to 4.7 larger value of 𝐴𝑠𝑙𝑠
2/𝑉𝑐𝑒𝑙𝑙𝑡 over the tablet architecture, can 

provide stiffer behavior in longitudinal direction, up to 2.75 times. Alternatively, the considerable 

amount of effective tension area 𝐴𝑡 could be another reason to explain the stiffer behavior of chiton 

architecture.  

𝐴𝑠𝑙𝑠
2/𝑉𝑐𝑒𝑙𝑙𝑡  can provide accurate deformation resistance when the 3D model is under 

uniaxial tensile loading, since Figure 3.7(b) shows that once the model ignores the contribution of 

tension effects, the analytical predictions on elastic modulus of 3D tablet-like and rod-like 

architectures closely align with each other when 𝐴𝑠𝑙𝑠
2/𝑉𝑐𝑒𝑙𝑙𝑡 are the same. On the other hand, see 

Figure 3.7(b), the difference between the elastic modulus with tension effects and the one without 

tension effects indicates that the tension mechanism in our 3D models cannot be ignored. 

3.6.2 Critical stress and toughness 

Critical stress 

To examine the strength and toughness of the 3D biomimetic architectures, we introduce 

another two dimensionless groups 𝜎𝑦𝑠/𝜏𝑐 and 𝑇𝑐/𝜏𝑐, where 𝜎𝑦𝑠 is the critical (maximum) stress of 

3D architectures, 𝜏𝑐 is the critical shear stress of the matrix material, and 𝑇𝑐 is the toughness of 

architectures. 
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Figure 3.8. (a) Critical stress 𝜎𝑦𝑐 as a function of 𝐴𝑠𝑡/𝑉𝑐𝑒𝑙𝑙 from experiments and analytical prediction. 

Black axis represents for analytical prediction and red axis represents for experimental results. (b) 

Toughness as a function of 𝐴𝑒𝑠𝑡/𝑉. Dots with blue color shadow are from prediction and dots under 

green shadow are the results from experiments. 

According to the known displacements 𝑢𝑟(𝑥1), 𝑢𝑙(𝑥1), 𝑣(𝑥1) and 𝑤(𝑥1) of three tablets 

in the unit cell, solved in the previous equivalent equations, the shear stress distributed in the matrix 

interlayer is able to be calculated. The shear stress of right and left segments of the tablets is 

defined as the function of displacements of the tablets, 

𝜏𝑟𝑖𝑔ℎ𝑡 =
𝑢𝑟−𝑤

𝑡
𝐺𝑚                                                                                                                                              (3.24) 

𝜏𝑙𝑒𝑓𝑡 =
𝑢𝑙−𝑣

𝑡
𝐺𝑚                                                                                                                                                  (3.25) 

The shear stress distribution along the longitudinal direction is illustrated in appendix B. 

From Figure B5, the shear stress reaches the maximum value at both ends of the tablets, while 

minimum value, 𝜏𝑚𝑎𝑥, locates at the middle of the tablets. Accordingly, when 𝑥 =0 or 𝑥=−𝑙𝑣, 

shear stress in the matrix shows maximum value and then the corresponding critical normal stress 

is achieved by 𝜎𝑐 = 𝜏𝑚𝑎𝑥𝐴𝑠
𝑀

2
/𝑉𝑐𝑒𝑙𝑙, which is described in appendix B. 

Same algorithm of calculating critical stress is applied for 3D rod-like architectures, and then the 

critical load of 3D rod-like architecture is, 

𝜎𝑐 =
𝜏𝑐𝐸𝑚𝑡

𝐺𝑚
(

2𝑐𝑚

𝐸𝑚𝑡𝑉𝑓
+

𝑘

𝑙𝑠tanh (𝑘/4)
)𝐴𝑠

𝑀

2
/𝑉𝑐𝑒𝑙𝑙                                                                                         (3.26) 

It is revealed that results from analytical prediction and experiments are summarized in 

Figure 3.8(a). It is interesting to show that as 𝐴𝑠𝑀/𝑉𝑐𝑒𝑙𝑙 is increasing, the value of critical stress 

of both 3D models is increasing, while the value of 𝜎𝑦𝑠/𝜏𝑐 in experimental 3D rod-like architecture 

exhibits increasing inclination as well. However, the value of analytical prediction is 4 times higher 
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than the experimental results, which can be explained by that the critical stress, 𝜎𝑦𝑠, is induced by 

tension failure between rods end in the experiments, rather than the maximum shear stress as 

predicted by analytical model. 

Toughness 

Instead of using the shear area 𝐴𝑠 of unit cell and volume of unit cell 𝑉𝑐𝑒𝑙𝑙, for experimental 

results, the effective shear area is measured based on the crack surface of failure samples 𝐴𝑒𝑠 and 

the volume is the whole gauge part of the samples 𝑉𝑔𝑎𝑢𝑔𝑒. If we assume the crack would propagate 

through the interlayer of matrix of each unit cell in the experimental sample, the prediction would 

be highly overestimated. We assume that once the shear stress of matrix from the interlayer equals 

to critical shear stress 𝜏𝑐 along the longitudinal axis, the matrix material starts to fail and then the 

whole structure fails. Thereby, the analytical prediction of the 3D tablet-like and rod-like 

architectures is based on following equation.𝑉𝑠ℎ𝑒𝑎𝑟 is 𝐴𝑒𝑠𝑡. 

𝑇𝑐 =
𝑉𝑠ℎ𝑒𝑎𝑟

𝑉𝑔𝑎𝑢𝑔𝑒

𝑡𝑐
2

2𝐺𝑚
                                                                                                                                                   (3.27) 

Normalized toughness 𝑇𝑐/𝜏𝑐 as a function of 𝑉𝑠ℎ𝑒𝑎𝑟 𝑉𝑔𝑎𝑢𝑔𝑒⁄  is illustrated in Figure 3.8(b). 

It reveals that with the increase of 𝑉𝑠ℎ𝑒𝑎𝑟 𝑉𝑔𝑎𝑢𝑔𝑒⁄ , both experimental results and analytical 

prediction exhibit that normalized toughness is amplifying, which is under our expectation. 

3.7 Conclusions 

In the present paper, we set up the comparison between 3D tablet-like nacre architectures 

and rod-like chiton architectures based on dimensionless groups of mechanical properties and 

geometry parameters. Rigorous analytical, experimental and numerical analyses are exploited to 

compare and analyze the properties of two architectures from different associated factors. 

Compared to 3D tablet-like nacre architectures, rod-like chiton architectures are more 

efficient on mechanical properties in longitudinal direction when both featured with the same 

volume fraction 𝑉𝑓  and aspect ratios 𝐿/𝑀. However, 3D rod-like nacre architectures are more 

beneficial in biaxial loading. This also answers our initial question that why nature chooses rod-

like chiton structures to endure axial loading in their longitudinal direction and chooses tablet-like 

structures to be the structured components of the shell of nacre. This phenomenon can be explained 
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by the different effective shear and tension area of the architectures, which are the hidden 

confounder for general geometry parameters, 𝑉𝑓  and 𝐿/𝑀, and mechanical properties, such as 

stiffness, strength and toughness. Accordingly, in three-dimension, in addition to 𝑉𝑓 and 𝐿/𝑀, the 

effective shear and tension area are another two key parameters needed to be considered to 

calculate mechanical properties, encompassing elastic modulus, critical load and toughness.  

In closing, the comparative analysis of two architectures can provide valuable design 

insights to study architectures inspired by different building units. 
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 RESISTANCE OF CRACK INITIATION OF MATERIALS WITH 

FUNCTIONALLY GRADED ELASTIC MODULUS 

Chapter 4 is part of the publication “Functional gradients by crystallographic gradation toughens 

calcareous bivalves”. (2020), Status: In progress 

4.1 Background 

We introduced nacreous structure, inner layer of nacre, in Chapter 3. Here we are going to 

investigate the calcite layer, exterior layer of Pinctada margaritifera, which is composed of space-

filling prismatic pillar. Nacre is composed of calcite external layer and nacreous inner layer. The 

orientation of longitudinal direction of crystallite prisms varies from exterior to interior. As a result 

of changing prisms orientation, the Young’s modulus varies graded functionally through the 

thickness of Pinctada, shown as red in Figure 4.1(c). We are interested in exploring why nature 

chooses this specific graded pattern and what the relation is between gradient and fracture tolerance. 

4.2 Methods and results 

4.2.1 Dimension of model 

Based on the graded Young’s modulus as shown in Figure 4.1(c), we set up classical 

tension test on one strip with half crack (Mode I) and its size is a, as shown in Figure 4.1(b). The 

length (L) and width (W) of the strip is 4.8mm and 0.6mm separately. Additionally, layered sample 

has been divided into 6 constant values on Young’s modulus by using trapezoidal rule and the 

width is 𝑤0 (0.1mm). And the values are 79.4GPa, 91.0GPa, 92.8GPa, 88.3GPa, 86.5GPa and 

86.4GPa. Besides, we perform finite element analysis (FEA) with seven crack sizes, a=1 𝜇𝑚, 

12 𝜇𝑚, 25 𝜇𝑚, 38 𝜇𝑚, 50 𝜇𝑚, 75 𝜇𝑚, 100 𝜇𝑚, 125 𝜇𝑚 and 150 𝜇𝑚 combined with above four 

patterns of Young’s modulus so as to calculate the J-integral.  

4.2.2 Element and boundary condition 

The element type is CPE4R, which is the plane strain two-dimensional brick element. The 

singular element close to the crack tip is collapsed by 4 nodes. The basic mesh condition is shown 

in Figure C1(a). The mesh size around the crack tip was determined by a preliminary convergence 
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study on the values of the J-integral values with three different mesh sizes, shown in Figure C2. 

Thereby, the element size near the crack tip was determined to be small enough to provide an 

accurate stress field. The ratio of mesh size close to crack tip over crack size, a, keeps the same 

through all of samples we are going to test here. Uniform displacement is applied at the top of the 

strip and we extract half of the sample as shown in Figure 4.1(b) to analyze because it is symmetry. 

4.2.3 Modified J-integral 

The fracture resistance for each case is measured in terms of the predicted stress intensity 

factor (𝐾𝐼) as a function of the initial crack length. For comparison purposes we also considered 

layered, inverse graded, and homogeneous materials as shown in Figure 4.1(c).  

Since the Young’s modulus is not constant through the growing thickness, the calculation 

of domain J-integral is modified as equation (4-1). According to this modified calculation, the J-

integral is independent on contours. The plot of comparison between modified J-integral and 

classic domain integral method is illustrated in Figure C1(b) for “Graded” material and in Figure 

C1(c) for “Inverse graded” material. It is exhibited that the values of modified J integral of 

“Graded” and “Inverse graded” material through different contours close to crack tip are constant, 

while the calculation of domain integral for “Graded” and “Inverse graded” materials is various 

over distinct contours. Besides, the domain integral predicted by Abaqus is the same as what we 

calculate. 

,1 1, 1,1 ,1 1

1

det
N

k
ij i j p

A p l p

x
J u q Wq W q w

=

 
 = − −    

                                                                           (4.1) 

Where, 𝑤𝑝 is the weights of integration. det() is the determinant of Jacobian matrix. W is 

the strain energy density. 𝑢𝑖,1 is the derivative on x of displacements. 𝑞1 is a continuous function 

and has value zero on the outer contour and has value one on the contour close to crack tip (Anlas 

et al., 2000; Gu et al., 1999; Li et al., 1985; Raju and Shivakumar, 1990). N is the number of 

integration points. 𝐴 is the area of integration contour. 𝜎𝑖𝑗  is the components of Cauchy stress 

tensor. 



 

 

70 

And 𝑊,1 =
𝑑𝑊

𝑑𝑥
=

𝑑𝑊

𝑑𝐸(𝑥)
∙

𝑑𝐸(𝑥)

𝑑𝑥
. E is a function of x and 𝑊 = 0.5(휀11𝜎11 + 휀22𝜎22 +

𝛾12𝜎12). Based on the constitutive law of plane strain, we could derive the equation of  
𝑑𝑊

𝑑𝐸(𝑥)
. 

Because of chain rule, we have 

𝑞1,𝑖 = {

𝜕𝑞1

𝜕𝑥
𝜕𝑞1

𝜕𝑦

} = [

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

]

−1

{

𝜕𝑞1

𝜕𝜉

𝜕𝑞1

𝜕𝜂

}                                                                                                             (4.2)  

Where 𝜉 and 𝜂 are orthogonal axes of standard quadrilateral element. 𝑞1 = 𝑁𝑚𝑄𝑚 . N is 

the shape function of element and Q is the scalar value 1 or 0. 

And then, use equation (4-3) to calculate intensity factor 𝐾𝐼.  

21

tip

I

J E
K

v


=

−
                                                                                                                                                     (4.3) 

4.2.4 Stress distribution 

According to the normalized stress distribution, shown in Figure 4.1(d), it is exhibited that 

there is high values of stress concentration around the crack tip of homogeneous case, compared 

with other two cases. Though the values of stress distribution of graded material away from crack 

tip (region from 1.0𝜎𝑦𝑦/𝜎∞  to 1.1𝜎𝑦𝑦/𝜎∞  in Figure 4.1(d) is higher than the values of same 

position of homogeneous material, the graded material releases the stress concentration close to 

crack tip. Material with graded Young’s modulus has smoothly graded stress transition. In the 

same time, material with layered Young’s modulus possesses sharp stress transition at the 

discretion boundary. Detailed normal stress distribution along the growing thickness is illustrated 

in Figure C2(a). We could see the opening stress close to crack tip of graded material for all of 

crack sizes is modest among other cases. Additionally, like what we described for Figure 4.1(d), 

in Figure C2(a) the stress transition along the crack growth direction of graded material is smooth 

without “jump”. 

4.2.5 Results 

Stress intensity factors (𝐾𝐼) calculated by equation (4-1) and (4-3) of samples with four 

designs of Young’s modulus distribution are illustrated in Figure 4.1(e) with the development of 
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crack sizes a. The graded Young’s modulus material has less values of 𝐾𝐼, compared with the trend 

of layered, homogeneous and inverse graded Young’s modulus distribution. Graded material has 

maximum 20% higher fracture resistance than homogeneous material. However, inverse graded 

material has lower fracture resistance, compared with homogeneous material. As shown in Figure 

4.1(f), the trend of normalized difference between stress intensity factor of homogeneous material 

(𝐾𝐼ℎ) and of graded material (𝐾𝐼𝑔), and the trend of normalized difference between 𝐾𝐼ℎ and inverse 

graded materials (𝐾𝐼𝑖) are closely symmetry to the x-axis (difference of two absolute values equals 

to 0). Though layered material possesses more benefits on fracture resistance compared with 

inverse graded material, it does not have as good fracture resistance behavior as graded material 

does. Especially when we compare the stress transition between graded material and layered 

material. Thus, the materials increasing Young’s modulus smoothly from exterior to interior are 

equipped with more fracture resistance in mode I. 
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Figure 4.1. Simulation of FGMs and other types of materials. (a) Nature Pinctada (b) Size and boundary 

condition of FEA simulation model (c) Functionally graded material on Young‘s modulus in Pinctada, 

layered distribution of Young‘s modulus based on first case, homogeneous material and inverse graded 

Young‘s modulus distribution which is the mirror of graded materials based on axis of homogeneous 

case. (d) Normalized stress distribution of layered Young’s modulus, graded Young’s modulus and 

homogeneous materials with crack size 25um. (e) Stress intensity factor of samples with different crack 

sizes. (f) Comparison in percentage on stress intensity factor between graded materials in nature Pinctada 

and homogeneous materials, inverse graded Young’s modulus and homogeneous materials, coupled with 

layered Young‘s modulus and homogeneous materials. 
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4.3 Conclusions 

Although the layered material possesses more benefits on fracture resistance compared 

with inverse graded material, it does not have as good fracture resistance as the graded case. 

Besides, the stress transition of graded material is smooth, not like the discrete transition of layered 

material, shown in Figure 4.1(d). Thus, the materials increasing Young’s modulus smoothly from 

exterior to interior are equipped with more outstanding fracture resistance in mode I. 

The function of specific gradients of prism orientation in calcite layer of nacre is analyzed. 

At the same time, as mentioned in Chapter 1, the gradients of pitch distance D in helicoid laminate 

is possibly favorable to delamination resistance, which will be discussed in the next chapter, 

Chapter 5. 
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 INTER- AND INTRA-LAMINAR DAMAGE OF HELICOID WITH 

GRADIENT PITCH ANGLES 

5.1 Introduction and motivations 

In nature, the pitch distance of helicoid architectures in biological materials was found not 

constant through the thickness of the materials, but functionally decreasing from surface to interior. 

The pitch distance is defined as the thickness to accomplish 180-degree rotation in helicoid 

architecture, which is the same as the definition in Chapter 2. It is reported that the pitch distance 

in dactyl club varies from 150um(or 80um), close to surface, to 10um, close to interior (Guarín-

Zapata et al., 2015). Although the specific values of pitch distance in the fish scale of Coelacanth 

were not measured, it is also observed that the pitch distance is decreasing from surface to interior 

of Coelacanth fish scale (Quan et al., 2018). 

Functional gradients and heterogeneities have been evolved to create high-performance 

biological materials in living organisms (Kokkinis et al., 2018; Liu et al., 2017). In the map of 

biological materials design, the gradients are functionally related to the changes in two major sorts 

of elements, chemical compositions/constituents, and structural characteristics, involving the 

arrangement, distribution, dimensions and orientations of structural building units (Liu et al., 2017). 

In biological helicoid architectures, the gradients of pitch distance can exist as the way of 

orientations of fibers in each laminate or the thickness of each laminate. Due to the minor pitch 

angles observed in dactyl club, whether the gradient of pitch distance from surface to interior is 

dependent on laminate thickness or different pitch angles needs extensively studies. Nevertheless, 

(Quan et al., 2018) reported that the pitch angle in the double Bouligand structures of Coelacanth 

fish scale is increasing from surface to interior. Thus, it is necessary to investigate the function of 

varying pitch angle first in helicoid architectures. Moreover, the contribution of the gradient of the 

pitch angle in helicoid architectures to the overall mechanical behaviors and fracture resistance 

behaviors has not yet been studied. This presents an opportunity to study and understand the 

specific function of the gradient of the pitch distance associated with varying pitch angles through 

the thickness of the materials. Thus, in the present study we are going to study the contribution of 

gradient pitch distance, associated with varying pitch angles, to the mechanical behaviors under 

static and dynamic loading conditions. Although the possibility that varying pitch distance is 
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induced by changing lamina thickness cannot be excluded, it will not be discussed in the present 

work, which can be the potential future work for other colleagues in the lab. 

Functional gradients and heterogeneities are evolved from nature material to impart high-

performance biological materials. The translation of evolution confers us a spectrum of design 

elements associated with the variations of chemical compositions/constituents and structural 

characteristics involved in the arrangement, distribution, dimensions and orientations of the 

building units (Liu et al., 2017). One of the rich toolboxes given by nature is the porosity 

arrangements. The porosity of growth ring from wood stems, for instance, decreases gradually 

from the earlywood to the latewood (Eder et al., 2009; Gibson, 2012; Speck and Burgert, 2011) 

and thus this arrangement leads to opposite pattern on density and stiffness, which is beneficial to 

water transport and mechanical stability during the growth period. Besides, gradients on Young’s 

modulus and other mechanical properties also reveal unprecedent contact damage resistance that 

cannot be realized in conventional homogenous materials (Pender et al., 2001; Suresh, 2001). 

Except for porosity arrangement, many biological materials are featured with various dimensions 

of their constituents to achieve specific functionality. A primary example is the sponge spicules, 

constituted by a central core of hydrated silica surrounded by changing layers of silica and 

proteinaceous material(Liu et al., 2017). The thickness of silica layers is decreasing from core to 

surface(Aizenberg et al., 2005; Miserez et al., 2008), which can effectively resist the depth of crack 

penetration from surface, since cracks tends to propagate through organic ductile layers. Like what 

we introduced at the beginning of the introduction chapter, many biological materials consist of 

anisotropic structural elements, such as fibers, tablet reinforcement and prisms. Accordingly, their 

properties are highly dependent on the orientation of these structural elements. Helicoid 

architectures, found in the fish scale and the shell of arthropods, encompass successively different 

lamina orientations layer by layer, such that the material is featured with close-to in-plane isotropic 

behavior(Yang et al., 2019) and remarkable toughening mechanisms via crack 

twisting(Suksangpanya et al., 2018, 2017) or reorientation, stretching and delamination of fibrils 

to dissipate more energy under loading(Quan et al., 2018; Yang et al., 2014; Zimmermann et al., 

2013).  

It is known that helicoidal fiber reinforced laminated architectures with uniform pitch angle 

can provide efficient energy dissipation through the thickness and in-plane isotropic behavior to 

resist materials failure. However, helicoid architectures with small pitch angles dissipate energy 
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via in-plane delamination (Ginzburg et al., 2017; Grunenfelder et al., 2014). Delamination failure 

can lead to large reduction on material stiffness, strength and can even initiate failure of the whole 

laminate (Garg, 1988) and impair the buckling resistance when under compression load (Aslan 

and Şahin, 2009). However, delamination is also an effective method to dissipate energy, which is 

also discussed in (Ginzburg et al., 2017). On the other hand, intralaminar damage, such as fiber 

breakage and matrix split, also plays a significant role in the damage resistance of the materials, 

especially stiff fibers’ breakage, which can release large amount of energy, but easier to lead to 

catastrophic damage, unable to provide any resistance when most fibers break through the cross-

section. Accordingly, considering the delamination failure occurring ubiquitously in the helicoid 

architectures, in this chapter transverse shear stresses dominant experiments, such as three-point 

bending on short beam and low-velocity impact tests, are going to be adopted.  

Three-point bending tests can provide overall stiffness, strength (peak load) and toughness, 

which can be indicators of damage resistance of one beam structure. On the other hand, peak load 

or maximum deflection and energy absorbed after impact are significant outputs that need to be 

considered when we do the low-velocity impact tests.  

The peak load and toughness under static plate bending as a function of pitch angle is 

illustrated and summarized in Figure 5.1.(a) and (b), combined with their normalized results shown 

in Figure 5.1(c), based on the reports of (Cheng et al., 2011; Liu et al., 2018a, 2020; Zhang and 

Zhang, 2015). It is shown that when the pitch angle of laminates is decreasing, the laminate can 

provide increasing peak load under static plate bending when the layer number is less than 37. 

However, when layer number increases to 74, it seems that there is an optimum pitch angle for the 

maximum peak load, which is also dependent on fiber material. Accordingly, there is no consistent 

results on peak load of helicoid architectures under plate bending and the framework is not 

consistent either for comparison purpose. Furthermore, the toughness under static plate bending is 

not discussed in these references. So far, the peak load and toughness values of laminate with 

different pitch angles starting from 0° to 90° under bending needs extensively study under a 

consistent framework, since there is no consistent results and conclusions on these helicoidal 

laminates with different pitch angles. Besides, the influence of different thickness on delamination 

resistance and in-plane damage resistance is not the objective in the present study, which can be a 

potential future work for others. 
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Figure 5.1. (a) Peak load under static loading condition as a function of pitch angle of thinner laminate 

(layer number less than 37) (Cheng et al., 2011; Liu et al., 2020, 2018a; Zhang and Zhang, 2015) (b) Peak 

load under static loading condition as a function of pitch angle of thicker laminate (layer number larger 

than 37)(Liu et al., 2020) (c) Peak load normalized by its maximum peak load of different layers and 

materials(Cheng et al., 2011; Liu et al., 2020, 2018a; Zhang and Zhang, 2015) 

It is observed that less pitch angle leads to higher peak load under low-velocity impact tests 

(LVI), shown in Figure 5.2.(a), while there is no clear trend in energy absorbed with the 

development of pitch angles under LVI tests, shown in Figure 5.2.(b). The Ashby plots of peak 

load and absorbed energy from low-velocity impact tests are also summarized in Figure 5.2.(c)-

(e). Results from (Ginzburg et al., 2017) with 32 carbon fiber layers show little difference on 

absorbed energy among different pitch angles, whereas (Mencattelli and Pinho, 2019) reported 

carbon fiber laminates with 146 layers exhibit that larger pitch angle laminates can provide higher 

absorbed energy but lower values of peak load.  
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Figure 5.2. Target outputs of laminates with different numbers of layers and distinct fiber materials under 

dynamic-impact loading condition (a) Peak load of laminates as a function of pitch angle (b) Absorbed 

energy of laminates as a function of pitch angle (c) Ashby plot of absorbed energy and peak load (d)-(e) 

zoom in version of Ahsby plot (c) 

In addition to the observation on different pitch angles summarized in the last paragraph, 

it has been observed that laminate with smaller pitch angles exhibit less penetration damage, but 

larger in-plane delamination after low velocity impact tests while larger pitch angle shows less 

delamination area but larger amount of intralaminar damage through the thickness (Ginzburg et 

al., 2017; Grunenfelder et al., 2014). Besides, laminates with larger pitch angle exhibit longer crack 

path under low-velocity impact and quasi-static plate bending (Jiang et al., 2019; Liu et al., 2020, 
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2018b; Suksangpanya et al., 2017) and thus it can absorb less energy and maintain higher values 

of toughness. However, the distribution of interlaminar stresses is discrete through limited 

thickness of the materials with larger pitch angle, representing that maximum interlaminar stresses 

occur very often through the thickness. Inversely, helicoids with smaller pitch angle is with smooth 

distribution of interlaminar stresses through the thickness (Liu et al., 2018a; Mencattelli and Pinho, 

2019), indicating limited occurrence of maximum interlaminar stresses when the thickness of the 

material is fixed. Accordingly, the number of delamination interfaces through the thickness is 

highly inclined to be larger in the laminate with larger pitch angle, compared with smaller one. 

However how this number of delamination interfaces can influence the delamination area and the 

projected delamination area needs to be extensively investigated, since the larger number of the 

delamination interfaces does not mean larger delamination area in all.  

We suppose that gradient pitch angles of helicoidal architectures can provide multiple 

competitive mechanical properties to create a high-performance material, since the synthesized 

functionally graded pitch angles integrate the benefits and functions of different pitch angles. This 

integration can offer the global architectures multiple competitive mechanical properties 

simultaneously, such as achieving higher toughness and peak load simultaneously, due to the 

combination of factors including 1) laminates with distinct pitch angles can provide different 

values of maximum transverse stresses at free-edge and discrepancy on transverse stresses 

distribution through the thickness, 2) delamination initiation and evolution are based on strength 

and energy release rate and the energy release rate is supposed to show local discrepancy in distinct 

off-axis angles, which are related to different pitch angles and 3) the number of laminae with 

misorientation close to(< 5°) or equal to 0° can influence the in-plane damage evolution of the 

whole laminate when the total thickness, T, is fixed. For instance, helicoid with constant pitch 

angle 𝜃ℎ = 30° can behave as a coating material, delaying delamination induced by concentration 

stress close to bottom and top surfaces, and then can provide higher peak load, but less toughness 

among pitch angles in the range of 15° and 60°, while 𝜃ℎ = 45° can offer superior toughness over 

other helicoids dropped in the range of 15° and 60°. FGH with 𝜃ℎ = 30° arranged close to top and 

bottom surfaces and 𝜃ℎ = 45° arranged in the middle of the laminate along the thickness can 

provide higher peak load and superior toughness at the same time under bending.  

The importance of continuous gradient on pitch angle/distance is to provide the whole 

material a smooth stress transition along the thickness direction, instead of discrete stress transition 
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with a lot of “jumps”, similar as what we discussed in Chapter 4. In Chapter 4, specifically graded 

elastic modulus can lead to smooth stress transition from crack tip to interior and then it can 

provide benefits on fracture resistance over the case with discrete stress distribution. However, this 

is still a developing claim, which needs further study in analytical prediction and numerical 

calculations to explain in the future. 

In the present work, quasi-static three-point bending tests on short beam and low velocity 

impact tests are conducted on helicoid architectures with different constant pitch angles and 

linearly varying pitch angles. Both experiments consider interlaminar (delamination) and 

intralaminar damage simultaneously.  

5.2 Methods 

5.2.1 Designs of composite laminates 

In the present work, the whole thickness of the laminate (𝑇) is fixed for both short beam 

bending and low-velocity tests separately. The thickness of each layer in the laminate (𝑡) is 

constant through the thickness as well. Accordingly, the number of layers for each laminate is 𝑛 =

𝑇 𝑡⁄  and 𝑛 is 24 for both tests. In short-beam bending tests, the length and width of the laminates 

are denoted by 𝐿 and 𝑊 separately, and the aspect ratio 𝐿/𝑊 is fixed as 3.125 for all the short-

beam bending tests. In the low-velocity impact tests, instead of using rectangular shape for the 

laminates, in-plane circular shape was used to represent the isotropy property of helicoid 

architectures. The radius of the plate is denoted by 𝑅. 

Pitch angle 𝜃ℎ was introduced in Chapter 2 and in this Chapter, the 𝜃ℎ is 15°, 22.5°, 30°, 

36°, 45°, 60°, and 90°, including the associated 𝜃ℎs in functionally graded helicoids. Like what we 

introduced in Chapter 2, when the fiber reinforced laminae accomplish (180° − 𝜃ℎ) rotation, we 

call it one pitch and the thickness to accomplish the rotation is one pitch distance 𝐷. The number 

of pitches in one laminate, 𝑁, is determined by 𝑛/(180° 𝜃ℎ)⁄  in the laminate with constant pitch 

angle. However, when we need to define functionally gradient helicoids, 𝑇 and 𝑁  need to be 

defined first and then determine the gradient of the pitch angles through the thickness. In the 

present work, the gradient of pitch angle, 𝑘, is defined by the first and last pitch angles along the 

thickness of one laminate, which is linear and the pitch angles are monotonically decreasing from 

surface to interior, bio-inspired by biological materials(Guarín-Zapata et al., 2015; Quan et al., 
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2018). It is deserved to be noticed that all the laminates are symmetric to its middle plane, since 

unsymmetrical laminates can lead to extension-bending coupling behavior, indicating that [𝐵] ≠

0 in classical laminate plate theory. The detailed definition of pitch-angle gradient is shown in the 

following equation. 

𝑘 =
𝜃ℎ1−𝜃ℎ𝑁

𝐻1−𝐻𝑁
                                                                                                                                                          (5.1) 

Where 𝐻𝑖 = ∑ 𝐷𝑖 +
𝐷𝑁

2

𝑖−1
𝑖=1 , 𝐷𝑖 =

𝜋

𝜃ℎ𝑖
𝑡, 𝑇 = ∑ 𝐷𝑖

𝑁
𝑖=1 . 𝐻𝑖  is the height of the 𝑖 th pitch, 

representing the distance from surface to the middle point of one pitch laminate, as shown in Figure 

5.3. The designs of FGH1sym and FGH2sym are illustrated in Figure 5.3(a) and (b). Besides, their 

pitch distance, 𝐷, as a function of the height, 𝐻, of each pitch is shown in Figure 5.3(c) as well. 

FGH1symdisorder, including 𝜃ℎ =45°, 𝜃ℎ =36° and 𝜃ℎ =60° from surface to interior, is designed 

for validating the contribution of decreasing pitch distance to delamination and in-plane damage 

under short beam bending, see Figure 5.3(c). 

 

Figure 5.3. (a)-(b) Designs of functionally gradient helicoids (FGHs) and (c) their pitch distance, 𝐷, as a 

function of height, 𝐻. 

5.2.2 Necessary information in FEA 

The intralaminar and interlaminar properties of E glass/Epoxy composite materials for FEA 

are tabulated in Table 5.1. Due to transversely isotropic properties of aligned fiber reinforced 

laminates, the transverse shear strength and fracture energy in two different directions are the same. 
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Table 5.1. In-plane and interface properties of composite laminates 

In-plane properties 

Elastic (GPa) 𝐸1 = 30.5, 𝐸2 = 𝐸3 = 4.02, 𝑣12 = 𝑣13 = 0.29, 𝑣23 = 0.39, 𝐺12 =
𝐺13 = 2.08, 𝐺23 = 1.44 

Strength (MPa) 𝑋𝑡 = 686, 𝑋𝑐 = 270, 𝑌𝑡 = 35, 𝑌𝑐 = 88, 𝑆12 = 52, 𝑆23 = 27 

Fracture Energy (N/m) 𝐺1𝑡 = 62000, 𝐺1𝑐 = 47000, 𝐺2𝑡 = 250, 𝐺2𝑐 = 920 

Interface properties 

Strength (MPa) 𝜎𝑛
𝑐 = 35, 𝜎𝑠

𝑐 = 𝜎𝑡
𝑐 = 52 

Fracture energy (N/m) 𝐺𝐼
𝑐 = 280, 𝐺𝐼𝐼

𝑐 = 𝐺𝐼𝐼𝐼
𝑐 = 440 

 

Laminae in FEA were modeled by 3D continuum shell elements (SC8R), which are based 

on Mindlin-Reissner plate theory, considering transverse shear stresses, 𝜎13 and 𝜎23, through the 

thickness. The accuracy of plate theory under bending is confirmed by (Pagano, 1970) and SC8R 

elements are confirmed by conducting corresponding experiments as well (Jiang et al., 2019; Liu 

et al., 2018b; Long et al., 2015; Shang et al., 2016). Specifically, the justification of this continuum 

shell combined with cohesive interaction is discussed in section 5.4.4. The intra-laminar damage 

criterion is represented by Hashin damage model(Camanho and Davila, 2002; Hashin, 1980; 

Hashin and Rotem, 1973; Matzenmiller et al., 1995), including fiber tension, fiber compression, 

matrix tension and matrix compression, four categories of damage modes. The damage criterion 

is shown in the following equations. 

Fiber tension (𝜎11 ≥ 0): 

𝐹𝑓
𝑡 = (

𝜎11

𝑋𝑡
)

2

+ 𝛼 (
𝜎12

𝑆12
)

2

                                                                                                                                   (5.2) 

Fiber compression (𝜎11 ≤ 0): 

𝐹𝑓
𝑐 = (

𝜎11

𝑋𝑐
)

2

                                                                                                                                                           (5.3) 

Matrix tension (𝜎22 ≥ 0): 

𝐹𝑚
𝑡 = (

𝜎22

𝑌𝑡
)

2

+ (
𝜎12

𝑆12
)

2

                                                                                                                                      (5.4) 

Matrix compression (𝜎22 ≤ 0): 

𝐹𝑚
𝑐 = (

𝜎22

2𝑆23
)

2

+ ((
𝑌𝑐

2𝑆23
)

2

− 1) (
𝜎22

𝑌𝑐
) + (

𝜎12

𝑆12
)                                                                                      (5.5) 

Delamination was simulated by zero-thickness surface-based cohesive contact model. In 

the contact normal direction, when the stress components 𝜎33 < 0(compression), the two surfaces 

are governed by pressure-overclosure relationship. When the stress components 𝜎33 > 0(tensile) 
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or there are transverse shear stresses at interface, the bilinear traction and separation law will take 

charge of the case (Hibbit et al., 2012; Zhang and Zhang, 2015). If the surface does not begin to 

damage, then only traction and separation law contributes to interlaminar stresses. Once the 

cohesive stiffness starts degrading, the friction model with coefficient 0.3 activates and contributes 

to shear stresses. To avoid penetration between two surfaces, penalty contact behavior was added 

in the normal direction. 

The contact stiffness in normal and transverse directions satisfy the requirements raised by 

(Turon et al., 2007, 2006), which is that the contact stiffness in normal direction needs to be larger 

than 50 𝐸2 𝑡⁄ , so as to without numerical singularity problems, where 𝑡 is the thickness of adjacent 

laminae and 𝐸2 is the elastic modulus in the transverse direction. The contact stiffness in transverse 

direction needs to be larger than 50𝐺12 𝑡⁄ , where 𝐺12 is the in-plane shear modulus of aligned 

fibers reinforced lamina. Besides, the mesh size at interface satisfies the requirement that it should 

be less than or equal to the cohesive zone length. All laminates are designed to be symmetric to 

their middle plane, and thus the cohesive traction in the normal direction, 𝑡𝑛, is decoupled from 

the cohesive separation in the transverse shear directions, 𝛿𝑠 and 𝛿𝑡, as shown in the following 

equation. 

[

𝑡𝑛

𝑡𝑠

𝑡𝑡

] = [

𝑘𝑛𝑛 0 0
0 𝑘𝑠𝑠 0
0 0 𝑘𝑡𝑡

] [

𝛿𝑛

𝛿𝑠

𝛿𝑡

]                                                                                                                      (5.6) 

Delamination damage initiates, indicating the cohesive stiffness starts degrading, when the 

traction stresses in normal, 𝑡𝑛, and transverse directions, 𝑡𝑠 and 𝑡𝑡, satisfy the following equation, 

which is quadratic stress criterion. 

{
〈𝑡𝑛〉

𝜎𝑛
𝑐 }

2

+ {
𝑡𝑠

𝜎𝑠
𝑐}

2

+ {
𝑡𝑡

𝜎𝑡
𝑐}

2

≥ 1                                                                                                                          (5.7) 

The overall degrading scalar 𝐷 was employed to capture the overall delamination failure 

propagation and its relationship with separation is shown in the equation (5.8). 

𝐷 =
𝛿𝑚

𝑓
(𝛿𝑚

𝑚𝑎𝑥−𝛿𝑚
𝑜 )

𝛿𝑚
𝑚𝑎𝑥(𝛿𝑚

𝑓
−𝛿𝑚

𝑜 )
                                                                                                                                               (5.8) 

Where 𝛿𝑚
𝑚𝑎𝑥 is the effective separation when surfaces are totally fail under mixed-mode. 

𝛿𝑚
𝑜  represents for the separation of delamination onset. 𝛿𝑚

𝑓
 is the effective separation during failure 

propagation. The relationship between effective separation and separation in normal and shear 

direction is shown in the equation(5.9) (Camanho and Davila, 2002). 
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𝛿𝑚 = √〈𝛿𝑛〉2 + 𝛿𝑠
2 + 𝛿𝑡

2                                                                                                                                (5.9) 

The interface failure propagation satisfies Benzeggagh-Kenane (B-K) fracture 

criterion(Benzeggagh and Kenane, 1996; Camanho and Davila, 2002; Hibbit et al., 2012), shown 

in the equation (5.10), which is suitable for transversely isotropic laminae (𝐺𝐼𝐼
𝑐 = 𝐺𝐼𝐼𝐼

𝑐 ). 

𝐺𝐼
𝑐 + (𝐺𝐼𝐼

𝑐 − 𝐺𝐼
𝑐) {

𝐺𝑆

𝐺𝑇
}

𝜂

= 𝐺𝑚
𝑐                                                                                                                     (5.10) 

Where 𝐺𝑆 = 𝐺𝐼𝐼 + 𝐺𝐼𝐼𝐼 , 𝐺𝑇 = 𝐺𝐼 + 𝐺𝐼𝐼 + 𝐺𝐼𝐼𝐼 , 𝐺𝑚
𝑐  is the critical fracture energy release 

rate under mixed-mode and 𝜂 = 1.45 is the cohesive property parameter. 

In the present work, three-point bending, and low-velocity impact tests are going to be 

employed to analyze the damage of helicoid composites, and thus surface-based cohesive contact 

model was used, instead of cohesive elements. Cohesive elements are based on traction and 

separation law and only when cohesive elements totally fail, the penalty contact can contribute to 

the normal stresses (Hibbit et al., 2012). Cohesive elements work very well if the two surfaces 

through the thickness of the laminates are under tension or shear. However, if the dominant loading 

condition is compression, then cohesive elements are not accurate for predicting stresses and 

failure (Li et al., 2008; Zhang and Zhang, 2015). 

Mesh convergence study is conducted by three or four sets of simulations both for short 

beam bending and low-velocity impact tests. In the short beam three-point bending, the first set is 

with 2024 SC8R (3 integration points per layer) elements per lamina and 480, 360 for second and 

third sets separately. The mesh convergence status of maximum peak load (𝑃) and toughness (𝑇𝑐) 

is shown in Figure 5.4(a) and (b), indicating that both 𝑃 and 𝑇𝑐 show the converged value with 

mesh size 2024 per layer. 

In the low-velocity impact (LVI) tests on plate with 6mm thickness, 2013, 2422 and 3329 

SC8R elements are created per layer for the laminates. Mesh convergence study on 𝑃 and absorbed 

energy per unit volume is plotted in Figure 5.5(a)-(c). The converged inclination is clearly 

observed in Figure 5.5 (a) and Fig. (b) and thus models with 3329 elements per layer are employed 

for all LVI tests. On the other hand, for the plate with 24mm thickness, 2592, 3416, 4736 and 7040 

SC8R elements are created per layer for the plate. Results of 𝑃 and absorbed energy per unit 

volume are shown to be converged when the element number is 7040 per layer, see Figure 5.5(d)-

(f). 
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Figure 5.4. Mesh convergence study of (a) 𝑇𝑐 (b) 𝑃. Mesh condition of short beam under three-point 

bending (c) with 480 elements per layer and (d) with 2024 elements per layer. 
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Figure 5.5. (a) 𝑃 as a function of mesh number per layer with 6mm plate thickness (b) Absorbed energy 

per unit volume as a function of mesh number per layer with 6mm plate thickness (c) Mesh condition of 

LVI test with 3329 elements per layer with 6mm plate thickness (d) 𝑃 as a function of mesh number per 

layer with 24mm plate thickness (e) Absorbed energy per unit volume as a function of mesh number per 

layer with 24mm plate thickness (f) Mesh condition of LVI test with 7040 elements per layer with 24mm 

plate thickness 
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Figure 5.5 continued 

 

5.2.3 Loading conditions 

Three-point bending on short beam and low velocity impact tests are chosen for validating 

the function of pitch angle gradient in helicoid architectures. The disadvantages of delamination 

are described in section 5.1, and our motivation is to understand if FGHs can provide balanced 

material properties derived from different 𝜃ℎ𝑠, such as balanced delamination failure and internal 

fiber/matrix damage to achieve higher toughness and higher peak load. Bending, compression and 

impact are three major loading conditions for validating delamination resistance, since 

delamination is sensitive to these loading conditions (Garg, 1988). In the present work, instead of 

long beam bending tests, we employ short beam bending, since short beam bending is transverse-
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shear-stress dominant, rather than flexure failure which often occurs in long beam bending. Thus, 

the maximum peak load, 𝑃, represents for the maximum load to resist catastrophic delamination 

failure. Low velocity impact tests are conducted because no plastic deformation is observed in real 

experiments with low impact velocity(Ginzburg et al., 2017) and thus we can adopt linear elastic 

fracture mechanics and its sub-branch, cohesive model. Besides, low velocity impact, due to long 

time contact between impactor and the surface of plates, can produce global structure deformation, 

such as bending and transverse shear deformation, while ballistic impact can provide short time 

contact and the damage is highly localized. 

 

Figure 5.6. (a)the boundary and dimensions of short beam bending test and (b)the boundary condition of 

low velocity impact test 

In FEA of three-point bending tests, the dimensions of short beam and indenter satisfy the 

requirements of ASTM D2344, as shown in Figure 5.6(a). The aspect ratios 𝐿/𝑇 = 4 and 𝑊/𝑇 =

4/3  keep constant through all the bending analyses. Loading cell is assigned 5mm/sec velocity 

downward (negative z direction) in ABAQUS/Explicit solver. General contact is employed for the 

whole model and cohesive contact behavior is specified at each interface of the laminated short 

beam. 

In FEA of LVI tests, circular in-plane shape is with diameter 150mm and the clamped top 

and bottom surfaces (𝑈𝑥 = 𝑈𝑦 = 𝑈𝑧 = 0) constrain the plate with effective internal diameter as 

125mm, shown in Figure 5.6(b). The impactor is assigned 40J energy for 6mm thick plate and 

150J energy for 24mm thick plate (considering initial velocity and velocity due to drop height) 

before touch the surface of the laminate. General contact combined with specific cohesive contact 

behavior is employed in ABAQUS/Explicit solver, which is the same as the short beam bending 
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analysis. The dimensions of LVI tests reference ASTM D7136/D7136M – 15, except the shape of 

the laminates. Cylinder shape with suggested 6mm or 24mm thickness is used to avoid directional 

size effect of the damage and fracture that can be associated with the aspect ratio (Ginzburg et al., 

2017), instead of rectangular shape as mentioned in the standard. Plates with 24mm thickness are 

created to keep lamina thickness consistent as the model of short beam bending test. 

5.3 Dimensionless group of target parameters 

There are substantial amounts of geometric and mechanical parameters involved in our 

study, and thus we need to do dimensionless group study to compare properties at the same level. 

For the case that helicoid architectures with constant 𝜃ℎ, the known and unknown parameters are 

listed in the Table 5.2 and their potential dimensionless groups are included as well. The in-plane 

properties are also involved in the dimensionless groups study, including modulus of laminate 

( 𝜃ℎ = 0° ), 𝐸1 , 𝐸2 , 𝑣12 , 𝑣23 , 𝐺12 , 𝐺23 , and its tension and compression strength both in 

longitudinal(𝑋𝑡, 𝑋𝑐) and transverse directions(𝑌𝑡, 𝑌𝑐). In-plane shear strength (𝑆12) and transverse 

shear strength (𝑆23) are also included. Besides, energies dissipated during fiber tension(𝐺1𝑡), fiber 

compression(𝐺1𝑐), matrix tension(𝐺2𝑡) and matrix compression(𝐺2𝑐) failure modes are introduced 

to represent the linear softening of the laminate. Detailed values are tabulated in Table 5.2. Since 

we consider cohesive interaction at each interface, cohesive zone length (𝑙𝐼𝐼𝑐 = √
𝐸2𝐺𝐼𝐼

𝑐

𝑆12
2 𝑡) for mode 

II is included as well. Through using Buckingham 𝜋 theorem, three sets of 25 dimensionless 

groups of parameters are all linearly independent to each other. 
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Table 5.2. Dimensionless groups of parameters in three-point bending test with constant 𝜃ℎ 

Known 𝑇, 𝐿,𝑊, 𝑡, 𝑙𝐼𝐼𝑐, 𝜃ℎ , 𝜎𝑛
𝑐 , 𝜎𝑠

𝑐 ,𝐺𝐼
𝑐, 𝐺𝐼𝐼

𝑐 , 𝐸1, 𝐸2, 𝑣12, 𝑣23, 𝐺12, 𝐺23, 𝑋𝑐, 𝑋𝑡, 𝑌𝑐, 

𝑌𝑡, 𝑆12, 𝑆23, 𝐺1𝑡, 𝐺1𝑐, 𝐺2𝑡, 𝐺2𝑐 

Unknown 𝑃, 𝐴𝑑 𝑇𝑐 No. of physical variables 27 

Units [F][L] Necessary dimensionless 

groups 

25 

Input dimensionless 

group 
𝜋1 =

𝑇

𝐿
, 𝜋2 =

𝑡

𝑇
, 𝜋3 =

𝜋

𝜃ℎ
, 𝜋4 =

𝑌𝑐

𝑆23
, 𝜋5 =

𝜎𝑛
𝑐

𝜎𝑠
𝑐 , 𝜋6 =

𝐺𝐼
𝑐

𝐺𝐼𝐼
𝑐 , 𝜋7 = 𝑣12 , 𝜋9 =

𝑣23 , 𝜋10 =
𝑋𝑡

𝐸1
, 𝜋11 =

𝑋𝑐

𝐸1
, 𝜋12 =

𝑌𝑡

𝐸2
, 𝜋13 =

𝑌𝑐

𝐸2
, 𝜋14 =

𝑆12

𝐺12
, 𝜋15 =

𝑆23

𝐺23
, 

𝜋16 =
𝐺1𝑡

𝐺2𝑡
, 𝜋17 =

𝐺1𝑐

𝐺2𝑐
, 𝜋18 =

𝜎𝑛
𝑐

𝑌𝑡
, 𝜋19 =

𝜎𝑠
𝑐

𝑆12
, 𝜋20 =

𝐺𝐼
𝑐

𝐺2𝑡
, 𝜋21 =

𝐺𝐼𝐼
𝑐

𝑆23
, 𝜋22 =

𝑋𝑡

𝑌𝑐
, 𝜋23 =

𝐺2𝑐

𝐺1𝑡
, 𝜋24 =

𝑙𝐼𝐼𝑐

𝑇
, 𝜋25 =

𝑊

𝐿
 

Output dimensionless 

group 
𝜋8=

𝑃/𝐿𝑊

𝜎𝑠
𝑐 , 𝜋8=

𝐴𝑑

𝐿𝑊
, 𝜋8=

𝑇𝑐∙𝑊

𝐺𝐼𝐼
𝑐  

 

Same for the case that helicoid with gradient 𝜃ℎ  through the thickness of the laminate, 

which is tabulated in Table 5.3. 𝑘 is the linear slope of 𝜃ℎ as a function of height 𝐻, 𝑘 =
𝜃ℎ1−𝜃ℎ𝑁

𝐻1−𝐻𝑁
, 

where 𝜃ℎ1 is the first pitch angle close to surface(top), 𝜃ℎ𝑁 is the last pitch angle close to middle 

plane, which is shown in Figure 5.3, and 𝐻𝑖 = ∑ 𝐷𝑖 +
𝐷𝑁

2

𝑖−1
𝑖=1 , 𝐷𝑖 =

𝜋

𝜃ℎ𝑖
𝑡,  𝑇 = ∑ 𝐷𝑖

𝑁
𝑖=1 . All 26 

dimensionless parameters are linearly independent to each other. 

Table 5.3.Dimensionless groups of parameters in three-point bending test with gradient 𝜃ℎ 

Known 𝑇, 𝐿,𝑊 , 𝑡 , 𝑙𝐼𝐼𝑐, 𝑘 , 𝑁,  𝜎𝑛
𝑐 ,  𝜎𝑠

𝑐 , 𝐺𝐼
𝑐 , 𝐺𝐼𝐼

𝑐 , 𝐸1 , 𝐸2 , 𝑣12 , 𝑣23 , 𝐺12 , 𝐺23 , 𝑋𝑐 , 

𝑋𝑡, 𝑌𝑐, 𝑌𝑡, 𝑆12, 𝑆23, 𝐺1𝑡, 𝐺1𝑐, 𝐺2𝑡, 𝐺2𝑐 

Unknown 𝑃, 𝐴𝑑 𝑇𝑐 No. of physical variables 28 

Units [F][L] Necessary dimensionless 

groups 

26 

Input dimensionless 

group 
𝜋1 =

𝑇

𝐿
,  𝜋2 =

𝑡

𝑇
, 𝜋3 =

𝑘𝑡

𝜋
,  𝜋4 = 𝑁 , 𝜋5 =

𝑌𝑐

𝑆23
, 𝜋6 =

𝜎𝑛
𝑐

𝜎𝑠
𝑐 , 𝜋7 =

𝐺𝐼
𝑐

𝐺𝐼𝐼
𝑐 , 𝜋9 =

𝑣12 , 𝜋10 = 𝑣23 , 𝜋11 =
𝑋𝑡

𝐸1
, 𝜋12 =

𝑋𝑐

𝐸1
, 𝜋13 =

𝑌𝑡

𝐸2
, 𝜋14 =

𝑌𝑐

𝐸2
, 𝜋15 =

𝑆12

𝐺12
, 

𝜋16 =
𝑆23

𝐺23
, 𝜋17 =

𝐺1𝑡

𝐺2𝑡
, 𝜋18 =

𝐺1𝑐

𝐺2𝑐
, 𝜋19 =

𝜎𝑛
𝑐

𝑌𝑡
, 𝜋20 =

𝜎𝑠
𝑐

𝑆12
, 𝜋21 =

𝐺𝐼
𝑐

𝐺2𝑡
, 𝜋22 =

𝐺𝐼𝐼
𝑐

𝑆23
, 𝜋23 =

𝑋𝑡

𝑌𝑐
, 𝜋24 =

𝐺2𝑐

𝐺1𝑡
, 𝜋25 =

𝑙𝐼𝐼𝑐

𝑇
, 𝜋26 =

𝑊

𝐿
 

Output dimensionless 

group 
𝜋8=

𝑃/𝐿𝑊

𝜎𝑠
𝑐 , 𝜋8=

𝐴𝑑

𝐿𝑊
, 𝜋8=

𝑇𝑐∙𝑊

𝐺𝐼𝐼
𝑐  
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For low-velocity impact tests. Instead of using rectangular shape in-plane, circular shape 

with radius, 𝑅, is employed. The dimensionless groups with functionally gradient 𝜃ℎ under low-

velocity impact are shown in Table 5.4. Buckingham theory is used to calculate the linear 

dependency of all 25 dimensionless groups of parameters and the all of them are linearly 

independent to each other. 

Table 5.4. Dimensionless groups of parameters in low-velocity impact test with gradient 𝜃ℎ 

Known 𝑇, 𝑅, 𝑡 , 𝑙𝐼𝐼𝑐, 𝑘 , 𝑁,  𝜎𝑛
𝑐 ,  𝜎𝑠

𝑐 , 𝐺𝐼
𝑐 , 𝐺𝐼𝐼

𝑐 , 𝐸1 , 𝐸2 , 𝑣12 , 𝑣23 , 𝐺12 , 𝐺23 , 𝑋𝑐 , 𝑋𝑡 , 

𝑌𝑐, 𝑌𝑡, 𝑆12, 𝑆23, 𝐺1𝑡, 𝐺1𝑐, 𝐺2𝑡, 𝐺2𝑐 

Unknown 𝑃, 𝐴𝑑𝑝 𝐾𝐸 No. of physical variables 27 

Units [F][L] Necessary dimensionless 

groups 

25 

Input dimensionless 

group 
𝜋1 =

𝑇

𝑅
,  𝜋2 =

𝑡

𝑇
, 𝜋3 =

𝑘𝑡

𝜋
,  𝜋4 = 𝑁 , 𝜋5 =

𝑌𝑐

𝑆23
, 𝜋6 =

𝜎𝑛
𝑐

𝜎𝑠
𝑐 , 𝜋7 =

𝐺𝐼
𝑐

𝐺𝐼𝐼
𝑐 , 𝜋9 =

𝑣12 , 𝜋10 = 𝑣23 , 𝜋11 =
𝑋𝑡

𝐸1
, 𝜋12 =

𝑋𝑐

𝐸1
, 𝜋13 =

𝑌𝑡

𝐸2
, 𝜋14 =

𝑌𝑐

𝐸2
, 𝜋15 =

𝑆12

𝐺12
, 

𝜋16 =
𝑆23

𝐺23
, 𝜋17 =

𝐺1𝑡

𝐺2𝑡
, 𝜋18 =

𝐺1𝑐

𝐺2𝑐
, 𝜋19 =

𝜎𝑛
𝑐

𝑌𝑡
, 𝜋20 =

𝜎𝑠
𝑐

𝑆12
, 𝜋21 =

𝐺𝐼
𝑐

𝐺2𝑡
, 𝜋22 =

𝐺𝐼𝐼
𝑐

𝑆23
, 𝜋23 =

𝑋𝑡

𝑌𝑐
, 𝜋24 =

𝐺2𝑐

𝐺1𝑡
, 𝜋25 =

𝑙𝐼𝐼𝑐

𝑇
 

Output dimensionless 

group 
𝜋8=

𝑃/𝜋𝑅2

𝜎𝑠
𝑐 , 𝜋8=

𝐴𝑑𝑝

𝜋𝑅2, 𝜋8=
𝐾𝐸∙𝑅

𝐺𝐼𝐼
𝑐  
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5.4 Results and discussion 

5.4.1 Three-point bending on short beam by using FEA 

 

Figure 5.7. (a) Delamination failure distribution through the thickness of short beams FGH1sym and 

H36sym (b) Load and displacement curves of FGH1sym(red) and H36sym(black) (c) Delamination area 

distribution layer by layer. Different shaded color represents for different pitches of FGH1sym 

In this section, the results of FGH1sym and FGH2sym, combined with their associated 

helicoid architectures, H30sym( 𝜃ℎ = 30° ), H36sym( 𝜃ℎ = 36° ), H45sym( 𝜃ℎ = 45° ), 

H60sym(𝜃ℎ = 60°) and H90sym(𝜃ℎ = 90°) are introduced and discussed. In order to investigate 

the trend of different pitch angle, H15sym(𝜃ℎ = 15°), H22.5sym(𝜃ℎ = 22.5°) are also adopted to 

compare the mechanical properties. Our target outputs, as introduced in section 5.3, are maximum 

peak load, 𝑃 , toughness, 𝑇𝑐 , and whole delamination area through the thickness, 𝐴𝑑 , of the 

laminated beam.  

Figure 5.7(a) shows the schemes of delamination failure at proceeding applied 

displacement points shown in Figure 5.7 (b). At point 1, local delamination failure occurs in the 

laminates close to rigid indenter due to concentrated contact force. However, this local 

delamination failure cannot lead to catastrophic failure for the whole laminate, which means huge 
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drop in the force and displacement curve. This local delamination failure only brings minor drop 

in the load and displacement curve, and the degradation of stiffness before and after drop can be 

ignored, see Figure 5.12(a)-(c). The maximum peak load before 1st drop, 𝑃1𝑠𝑡𝑑, occurring in the 

force and displacement curve is illustrated as a function of pitch angle, 𝜃ℎ , shown in Figure 

5.12(d). Except H90sym, helicoids with increasing values of 𝜃ℎ exhibit higher 𝑃1𝑠𝑡𝑑. The FGHs 

do not show any benefits over their associated laminates with same 𝜃ℎ. However, 𝑃1𝑠𝑡𝑑 is unable 

to present the general property of the whole laminated beam, and thus this parameter is not our 

target output. 

It is observed that H36sym shows catastrophic delamination failure earlier than FGH1sym 

at point 2 of applied displacement, indicating that maximum peak load, 𝑃, of FGH1sym is higher 

than the 𝑃  of H36sym under 3-point bending. From point 2 to point 4, it is clear to see the 

propagation of delamination failure through the thickness of two laminated beams. As shown in 

Figure 5.7 (b), after 𝑃 occurs, FGH1sym stores more energy than H36sym before total failure 

happens and FGH1sym can provide more deformation than H36sym. The delamination area layer 

by layer of FGH1sym and H36sym is illustrated in Figure 5.7 (c). Although maximum 

delamination area occurs in the middle layer of H36sym, the sum of the delamination area through 

the thickness, 𝐴𝑑 , of FGH1sym is 1.6% larger than the 𝐴𝑑 of H36sym. Compared with H36sym, 

FGH1sym also shows 1.1% higher value of 𝑃 and up to 23.8% benefits on 𝑇𝑐. The comparison on 

𝐴𝑑, 𝑃 and 𝑇𝑐 between FGH1sym and its other associated laminated helicoidal beam is summarized 

in Figure 5.8 and Figure 5.9. Besides, the comparison on delamination propagation between 

FGH1sym and FGH1symdisorder is shown in Figure D5. 
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Figure 5.8. (a) Delamination failure distribution through the thickness of short beams FGH1sym and 

H45sym (b) Load and displacement curves of FGH1sym(red) and H45sym(black) (c) Delamination area 

distribution layer by layer. Different shaded color represents for different pitches of FGH1sym 
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Figure 5.9. (a) Delamination failure distribution through the thickness of short beams FGH1sym and 

H60sym (b) Load and displacement curves of FGH1sym(red) and H60sym(black) (c) Delamination area 

distribution layer by layer. Different shaded color represents for different pitches of FGH1sym 

As shown in Figure 5.8 and Figure 5.9, FGH1sym is featured with 8.2% and 10.6% higher 

𝑃 compared with H45sym and H60sym separately, which represents that FGH1sym can endure 

more load before catastrophic delamination failure occurs. Although, FGH1sym does not show 

benefits on 𝑇𝑐 over H45sym, 8.5% lower 𝑇𝑐 than H45sym, it provides generally higher 𝑃 and up 

to 23.8% higher 𝑇𝑐 than H36sym. The comparison between FGH2sym and its associated laminates 

is illustrated in Appendix D1. 

The comparison on 𝑃 and 𝑇𝑐 among FGHs and helicoids with constant 𝜃ℎ under 3-point 

bending are illustrated in Figure 5.10. 𝑃 values of helicoids show decreasing values when 𝜃ℎ is 

increasing from 30° to 90°, whereas helicoids with 𝜃ℎ = 15° and 𝜃ℎ = 22.5° exhibit lower value 

of 𝑃 . 𝑇𝑐  of H45sym is maximum among other helicoids, whereas H15sym also exhibits 

competitive value of 𝑇𝑐. It is worthy to be noted that H90sym does not totally fail until the applied 

displacement point that we calculate the 𝑇𝑐, which is 6mm in z direction. FGH1disorder exhibits 
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lower peak load value than its associate laminates, while it can provide the same toughness of 

H36sym, but lower value than H45sym and H60sym. 

 

Figure 5.10. (a) 𝑃 as a function of 𝜃ℎ of helicoidal-laminated-short beam under 3-point bending (b) 𝑇𝑐 as 

a function of 𝜃ℎ of helicoidal-laminated-short beam under 3-point bending (red dots represent for FGHs 

with corresponding 𝜃ℎ laid close to surface and blue dot represents for FGH1disorder) 

To compare overall properties of FGHs and their associated helicoid laminates 

simultaneously, Ashby plot with target outputs, P and 𝑇𝑐, is designed and illustrated in Figure 

5.11(a). Helicoids with constant 𝜃ℎ either show higher 𝑃 but lower 𝑇𝑐, or larger 𝑇𝑐 but lower 𝑃, 

while FGHs can provide higher 𝑇𝑐 and 𝑃 at the same time. As shown in Figure 5.11(a), only FGHs 

and H45sym locate at the optimum area of the Ashby plot. FGH1symdisorder exhibits lower values 

of peak load and toughness. Helicoids with middle 𝜃ℎ, such as 𝜃ℎ = 22.5°, 𝜃ℎ = 30° and 𝜃ℎ =

36°, provide substantial 𝑃, whereas helicoids with smaller 𝜃ℎ , such as 𝜃ℎ = 15°, stores more 

energy and then can provide more deformation before catastrophic failure occurs. Larger pitch 

angle laminates, such as H90sym, H60sym and H45sym laminates, which are closer to 

conventional cross-ply, angle-ply, and quasi-isotropic laminates respectively, can provide less 

peak load, but higher toughness under three-point short beam bending. 

In three-point short beam bending tests, transverse shear stresses are dominant for failure, 

and thus 𝑃  and 𝑇𝑐  are dependent on delamination initiation and evolution. It is necessary to 

investigate the relationship among delamination area, 𝐴𝑑 , 𝑃 and 𝑇𝑐 , which is shown in Figure 

5.11(b)-(c). Delamination failure releases the stress concentration through the thickness of 

laminated short beams and thus the initiation of intralaminar damage, especially fiber breakage, 

can be delayed, which can store more energy before catastrophic failure occurs, since stiffness of 
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fibers contributes majority stiffness to the overall laminated beams. Matrix split through the 

thickness is another important failure mechanism needs our attention. In Figure 5.11(c), FGHs, 

H15sym, H60sym and H45sym locate at the optimum area, which means that they can provide 

higher 𝑇𝑐 and higher 𝐴𝑑 simultaneously. However, in Figure 5.11(d), only FGHs and H45sym still 

drop in the optimum area of Ashby plot with parameters 𝑃 and 𝐴𝑑. 

 

Figure 5.11. Ashby plots of three-point short beam bending tests (a) Ashby plot with parameters 𝑃 and 𝑇𝑐 

(b) 3D Ashby plot with parameters 𝑇𝑐, 𝑃 and 𝐴𝑑 (c) Ashby plot of parameters 𝑃 and 𝐴𝑑 (d) Ashby plot of 

parameters 𝑇𝑐 and 𝐴𝑑(red dots represent for FGHs with corresponding 𝜃ℎ laid close to surface and blue 

dot represents for FGH1disorder) 
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Figure 5.12. (a) Force and displacement plot of H45sym under three-point bending test (b) Zoom in plor 

of force and displacement curve of H45sym under three-point bending test (c) First derivative on force 

and displacement curve of H45sym (d) Peak load before 1st drop in displacement and load curves of short 

beams with different pitch angles, 𝜃ℎ, and functionally gradient helicoids (FGH1syma and FGH2sym, 

shown in red dots). The 𝜃ℎ of FGH1sym and FGH2sym shown here is the first 𝜃ℎ (close to top) of FGH 

laminated beam. 

5.4.2 Low velocity impact on the laminated plate using FEA 

In addition to quasi-static analysis, dynamic analysis is also conducted in the present work, 

since impact loading condition is one of the major loading acts for biological materials. Two sets 

of models are prepared, one with 6mm thickness under 40J impact and one with 24 mm thickness 

under 150J impact. The latter model is with the same thickness as short beam bending models. 

Thinner plate with 6mm thickness is dominant by global flexure deformation, while thicker plate 

with 24mm thickness is dominant by transverse shear stresses. Both sets of models are under the 

impact of shear wave and tension stress wave, whereas compression stress wave does not influence 

delamination. 
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Figure 5.13. Contours of delamination process of H15sym under 40J LVI with 6mm thickness (a) The 

cross-section of H15sym at final state of LVI simulation (b) Zoom-in contour of delamination distribution 

through the thickness of H15sym at final state of LVI simulation (c)-(i) Zoom-in contours of delamination 

process through the thickness of H15sym (j) Zoom-in contour of delamination distribution through the 

thickness of H15sym at peak dent depth before rebounding 

Figure 5.13(a)-(j) show the process of delamination at cross-section in 𝑥 − 𝑧 plane, where 

𝐶𝑆𝐷𝑀𝐺 is the failure factor to present the level of delamination. As introduced in section 5.4.2, 

when 𝐶𝑆𝐷𝑀𝐺 > 0, it represents that the two nodes at one point of interface start to damage, in the 

propagation of damage. 𝐶𝑆𝐷𝑀𝐺 = 1  represents for the case that two nodes at one point of 

interface are totally separate, denoted as delamination. As shown in Figure 5.14(a)-(d), the 

laminate can provide peak load and peak dent depth under 40J and 150J LVI loading. Once the 

force reaches the maximum load, it rebounds to the original point of force and displacement curve. 

No plasticity and viscosity are added to the laminate.  
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Figure 5.14. (a) Plot of force and displacement in LVI tests with total thickness 6mm (b) Force and time 

plot of LVI tests with total thickness 6mm (c) Plot of kinetic energy as a function of time with total 

thickness 6mm (d) Plot of force and displacement in LVI tests with total thickness 24mm (e) Force and 

time plot of LVI tests with total thickness 24mm (f) Plot of kinetic energy as a function of time with total 

thickness 24mm 

From Figure 5.14(c), before impactor touches the surface of the laminate, the input energy 

is 40J. After rebounding, the energy of the whole model, including laminate and impactor, 

decreases to different values, which is dependent on the 𝜃ℎ  of the laminates, since the only 

parameter we changed during the analyses is 𝜃ℎ. Besides, Figure 5.14(d) to (f) exhibit the force 

and displacement plot, force as a function of time plot and kinetic energy as a function of time plot 

of 24mm thick plate under 150J LVI. With increasing thickness of the plate, the difference among 

models with distinct pitch angles are augmenting as well. 

Target outputs of LVI tests are absorbed energy (𝐾𝐸), Peak load (𝑃), delamination area 

(𝐴𝑑) and projected delamination area (𝐴𝑝𝑑), combing with the energy from intralaminar damage 

(𝐴𝐿𝐿𝐷𝑀𝐷). Most significant outputs, representing for the general mechanical behaviors of the 

materials, are 𝐾𝐸 and 𝑃. 𝐾𝐸 is the key factor to represent for the ability of dissipating energy, 

while 𝑃  is the factor to show the maximum load before rebounding. 𝐴𝑑  can provide the 

information about the contribution of absorbed energy from interlaminar, whereas 𝐴𝐿𝐿𝐷𝑀𝐷 
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provides the information of intralaminar damage energy. 𝐴𝑝𝑑 convey the extent of delamination 

area in 𝑥 − 𝑦 plane. 

 

Figure 5.15. Projected delamination area 𝐴𝑝𝑑of (a) H15sym, (b) H30sym, (c) H36sym, (d) H45sym, (e) 

H60sym and (f) H90sym with thickness 6mm 

 

Figure 5.16. Projected delamination area 𝐴𝑝𝑑of (a) FGH1sym, (b) FGH2sym with thickness 6mm (c) 

Normalized projected delamination area as a function of pitch angle(normalized by the maximum value of 

each set of data) 

From Figure 5.15(a)-(f), the 𝐴𝑝𝑑 through the thickness of laminates with different 𝜃ℎ is 

presented. Light yellow represents for the delamination area close to top surface, whereas the dark 

blue denotes the delamination close to the bottom of the laminates. Here height is multiplied by 
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five in order to show the delamination through thickness clearly, which is shown in appendix D3. 

It is observed that the laminate with less 𝜃ℎ  shows larger extent of in-plane delamination 

area(𝐴𝑝𝑑), up to 47.2% difference between H15sym and H90sym, also shown in Figure 5.17(c), 

which is the same as the observation from (Ginzburg et al., 2017; Grunenfelder et al., 2014b), see 

Figure 5.16(c). Projected delamination, 𝐴𝑝𝑑, of smaller pitch angle is larger than others is because 

laminates with smaller pitch angle include more material principal directions in 𝑥 − 𝑦 plane than 

the laminates with larger pitch angle and delamination propagates along the fiber direction(the 

direction with higher strain energy) of both layers close to the interface(Jiang et al., 2019; Long et 

al., 2015). The interesting observation is that FGH1sym shows generally larger 𝐴𝑝𝑑  compared 

with H36sym, H45sym and H60sym, while FGH2sym shows balanced value of 𝐴𝑝𝑑, larger than 

H90sym but less than H30sym. However, the summation of delamination area through the 

thickness 𝐴𝑑 of both FGH1sym and FGH2sym is larger than helicoid laminates with constant 𝜃ℎ, 

as shown in Figure 5.17 (d). It also exhibits laminates with larger 𝜃ℎ can provide higher value of 

𝐴𝑑 , but lower value of 𝐴𝑝𝑑 . The projected delamination area (𝐴𝑝𝑑) of models with 24 mm 

thickness is illustrated in appendix D4, which reveals the similar distribution on 𝐴𝑝𝑑 as 6mm thick 

plate does, also shown in Figure 5.18(c).  
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Figure 5.17. (a) Absorbed kinetic energy (𝐾𝐸) as a function of pitch angle (𝜃ℎ) with plate thickness 6mm 

(b) Peak load (𝑃) as a function of 𝜃ℎ with plate thickness 6mm (c) Projected delamination area (𝐴𝑝𝑑) as a 

function of 𝜃ℎ with plate thickness 6mm (d) Delamination area in all through the thickness (𝐴𝑑) as a 

function of 𝜃ℎ with plate thickness 6mm 

Figure 5.17(a) exhibits that functionally gradient helicoids can provide up to 15.3% higher 

absorbed kinetic energy (𝐾𝐸) than its associated 𝜃ℎ of helicoid laminates. The relation between 

helicoids with different 𝜃ℎ and absorb higher values of 𝐾𝐸 are not monotonically increasing or 

decreasing. The difference on 𝑃 among laminates with different 𝜃ℎ is minor, less than 5%. The 

values of 𝑃 of FGHs do not overcome its laminates with associated 𝜃ℎ, but maintain the 𝑃 of 𝜃ℎ 

close to top surface. 
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Figure 5.18. (a) Absorbed kinetic energy (𝐾𝐸) as a function of pitch angle (𝜃ℎ) with plate thickness 

24mm (b) Peak load (𝑃) as a function of 𝜃ℎ with plate thickness 24mm (c) Projected delamination area 

(𝐴𝑝𝑑) as a function of 𝜃ℎ with plate thickness 24mm (d) Delamination area in all through the thickness 

(𝐴𝑑) as a function of 𝜃ℎ with plate thickness 24mm 

Similar as architectures with 6mm thickness in FEA, architectures with 24mm thickness 

also show that helicoid architectures with gradient pitch angle are featured with up to 40.8% higher 

values of absorbed energy than H90sym and 13.3% higher values of absorbed energy than 

H30sym, which are the associated architectures in FGH2sym, shown in Figure 5.18(a). Peak load, 

𝑃, of FGHs does not show generally superior benefits over their associated architectures, see 

Figure 5.18(b), which needs further comparison and analysis in Ashby plots considering energy 

absorbed and peak load simultaneously. In Figure 5.18(c), it is revealed that in thicker plate the 

projected delamination area, 𝐴𝑝𝑑 , is increasing once the pitch angle, 𝜃ℎ , is decreasing, except 

H90sym, which is much closer to cross-ply, instead of helicoid architecture. This result is similar 

as what we achieved in thinner plate under 40J impact, shown in Figure 5.17(c). FGHs show 
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maximum 32.5% larger values on summation of delamination area, 𝐴𝑑 , than their associated 

architectures, shown in Figure 5.18(d). 

 

Figure 5.19. (a) Energy dissipated from intralaminar failure as a function of 𝜃ℎ featured with thickness 

6mm (b) Energy dissipated from intralaminar failure as a function of 𝜃ℎ featured with thickness 24mm 

Laminates also employed intralaminar damage to dissipate energy, such as fiber and matrix 

damage, which is represented by Hashin criteria in the present work. Energy dissipated by 

intralaminar damage(ALLDMD) of helicoid architectures with thickness 6mm and 24mm is 

summarized in Figure 5.19(a) and Figure 5.19(b). The difference on ALLDMD among different 𝜃ℎ 

featured with 6mm thickness is minor, less than 36.9%, while the difference on 𝐴𝐿𝐿𝐷𝑀𝐷 among 

different 𝜃ℎ featured with 24mm thickness is up to 90.0%. Except H60sym, architectures with 

smaller 𝜃ℎ  exhibit higher values of energy dissipated by intralaminar damage in 24mm thick 

laminate, whereas architectures with 6mm thickness do not show obvious trend on 𝐴𝐿𝐿𝐷𝑀𝐷 as a 

function of 𝜃ℎ. The value of 𝐴𝐿𝐿𝐷𝑀𝐷 of FGH2sym with 6mm thickness is close to the values of 

their associated laminates, and the difference is less than 6.7%. FGH1sym with 6mm thickness 

provides higher values of 𝐴𝐿𝐿𝐷𝑀𝐷 than H36sym and H45sym, up to 15.7%, but 2.7% lower value 

of 𝐴𝐿𝐿𝐷𝑀𝐷 than H60sym, Architectures with 𝜃ℎ = 60° reveal outstanding energy dissipated by 

intralaminar damage both in 6mm and 24mm thickness among other pitch angles. If we assume 

the kinetic energy is majorly contributed by intralaminar damage (𝐴𝐿𝐿𝐷𝑀𝐷) and interlaminar 

damage (𝐴𝑑) since the energy dissipated by friction and artificial work is minor, it is observed that 

𝐴𝐿𝐿𝐷𝑀𝐷 plays a more significant role compared with 𝐴𝑑 , see Figure 5.18(a), (d) and Figure 

5.19(b). For example, H60sym dissipates higher values of kinetic energy by 𝐴𝐿𝐿𝐷𝑀𝐷, whereas 



 

 

106 

its 𝐴𝑑 is the smallest among other architectures. H90sym is featured with lowest value of kinetic 

energy dissipated and lowest value of 𝐴𝐿𝐿𝐷𝑀𝐷, but highest value of 𝐴𝑑 among other helicoid 

architectures. According to these results, it is clear that 𝐴𝐿𝐿𝐷𝑀𝐷  occupies more weights 

contributing to kinetic energy absorption, compared with interlaminar damage(delamination). 

From Figure 5.17(a) and (d), combined with Figure 5.19(a), it is observed that the benefits 

on 𝐾𝐸 of FGHs over their associated laminates are derived from both the energy dissipated by 

intralaminar damage (𝐴𝐿𝐿𝐷𝑀𝐷) and interlaminar failure (𝐴𝑑). However, the weight of dissipated 

energy by interlaminar failure contributed to 𝐾𝐸 is much smaller than the weight of intralaminar 

damage, especially fiber damage. FGHs sacrifice less intralaminar damage, but larger value of 

interlaminar failure to achieve higher value of 𝐾𝐸, compared with their associated laminates. 

 

Figure 5.20. (a) Ashby plot of absorbed energy 𝐾𝐸 and Peak load 𝑃 of models with thickness 6mm (b) 

Ashby plot of energy dissipated by intralaminar damage and absorbed energy 𝐾𝐸 of models with 

thickness 6mm (c) Ashby plot of delamination area 𝐴𝑑 and absorbed energy 𝐾𝐸 of models with thickness 

6mm 
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Similar as three-point bending tests, Ashby plots of key parameters outputted from LVI 

tests with thickness 6mm are illustrated to analyze the optimum 𝜃ℎ and the functions of gradient 

in pitch angle, see Figure 5.20. In the range of smaller and middle 𝜃ℎ, such as H15sym, H22.5sym, 

H30sym and H36sym, the energy absorbed, 𝐾𝐸, are relatively smaller than the KE of larger 𝜃ℎ, as 

shown in Figure 5.20(a). Meanwhile, laminates with larger 𝜃ℎ either show higher 𝑃 but less 𝐾𝐸, 

or larger 𝐾𝐸 but lower values of 𝑃. For instance, H60sym exhibits highest value of 𝐾𝐸, whereas 

it provides lower 𝑃 among helicoids. Same with the results of three-point bending tests, FGHs 

occupy the optimum area of Ashby plot, which is the upper right corner with higher values of 𝐾𝐸 

and 𝑃 at the same time. As shown in Figure 5.20(b) and Figure 5.20(c), the highest values of KE 

of H60sym is contributed by larger amount of intralaminar damage, compared with other helicoid 

laminates. FGH1sym can absorb higher values of 𝐾𝐸, up to 13.2% over its associated laminates, 

is largely dependent on superior delamination area. Additionally, H90sym also behaves superior 

to other helicoid laminates under LVI with 40J, locating in the optimum corner of Ashby plot with 

higher values of 𝑃 and 𝐾𝐸.  

FGHs also exhibit superior properties on 𝑃 and 𝐾𝐸 simultaneously in the architectures 

with thicker plate, 24mm thick, shown Figure 5.21(a) to (c). Similar as architectures with 6mm 

thickness, H60sym with 24mm thickness can provide highest value of 𝐾𝐸  in the helicoid 

architectures with constant pitch angle. Although more helicoid architectures are involved in the 

optimum corner of Ahsby plot with 𝑃 and 𝐾𝐸 under 150J impact with 24mm thickness plate, such 

as H22.5sym, H45sym and H30sym, FGHs are still located in the optimum corner of Ashby plot 

with higher values of 𝑃 and 𝐾𝐸 at the same time. 
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Figure 5.21. (a) Ashby plot of absorbed energy 𝐾𝐸 and Peak load 𝑃 of models with thickness 24mm(b) 

Ashby plot of energy dissipated by intralaminar damage and absorbed energy 𝐾𝐸 of models with 

thickness 24mm (c) Ashby plot of delamination area 𝐴𝑑 and absorbed energy 𝐾𝐸 of models with 

thickness 24mm 

5.4.3 Explanation 

Transverse shear stresses distribution through the thickness 

a. Analytical prediction 

It is necessary to show how the transverse shear stresses distributed in FGHs, and thus we 

can see the difference or benefits of FGHs over other helicoids. In this section, extended CLPT 

was employed to calculate the transverse shear stress 𝑆𝑥𝑧 in the laminated beam under three-point 

bending loading condition. The detailed calculation process is descripted in Appendix D5. 

The boundary condition is shown in Figure 5.22.(a) and the 𝑆𝑥𝑧 distribution of H30sym in 

x-z plane is illustrated in Figure 5.22.(b), where maximum value of 𝑆𝑥𝑧 is achieved in the middle 
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plane of the laminate, which is also shown in Figure 5.22(c). Figure 5.22.(d) shows the difference 

of 𝑆𝑥𝑧  distribution along the thickness between laminate H15sym and H45sym. Smaller pitch 

angle 𝜃ℎ = 15° can provide smoother stress distribution from surface to interior, while larger pitch 

angle 𝜃ℎ = 45° exhibits step-wise manner, with big jumps occurring in the specific locations that 

one pitch ends. It is interesting to know that the maximum values of 𝑆𝑥𝑧 shown in the middle of 

the beam, of helicoids with different constant pitch angles respectively are very close, except 

H90sym. The reason that inducing this higher value of 𝑆𝑥𝑧 in H90sym is because 𝑆𝑥𝑧 is related to 

𝑆𝑥𝑥 due to stress equilibrium equations, and then 𝑆𝑥𝑥 is influenced by the shear modulus 𝐸𝑥𝑥 when 

the applied strain is the same. The 𝐸𝑥𝑥 of H90sym is larger than all other helicoids and thus its 

value of 𝑆𝑥𝑧 is higher than other helicoid composites.  

It is deserved to be noted that FGH1sym exhibits similar distribution of 𝑆𝑥𝑧 as H36sym 

does, which is the helicoid architecture close to surface and occupies majority number of layers in 

the whole laminate, shown in Figure 5.22.(f). Same behavior is observed between FGH2sym and 

H30sym as well, shown in Figure 5.22.(g). However, FGHs can also balance the 𝑆𝑥𝑧 distribution 

among its associated laminates. For example, pitch of 𝜃ℎ = 90° in FGH2sym can provide less 𝑆𝑥𝑧 

than H90sym, up to 14.7% difference. Accordingly, it is not a surprise that FGHs can provide 

balanced peak load, P, among helicoid laminates with larger and smaller pitch angles separately. 

However, the maximum 𝑆𝑥𝑧 value of FGH1sym is very close to the maximum 𝑆𝑥𝑧 of H36sym, 

shown in zoom-in figure of Figure 5.22(b) and thus the peak load of FGHs is not only dependent 

on the maximum value of 𝑆𝑥𝑧, but also dependent on other factors, which will be discussed in the 

following section. 
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Figure 5.22. (a) Boundary conditions of quasi-static three-point bending test (b) Transverse shear stress 

𝑆𝑥𝑧 distribution in 𝑥 − 𝑧 plane predicted by extended CLPT (c) 𝑆𝑥𝑧 distribution along the thickness of the 

laminate H30sym when 𝑥1 = 𝐿 (d) Comparison on 𝑆13 between H15sym and H45sym (e) Comparison on 

𝑆𝑥𝑧 among helicoid laminates with different pitch angles separately (f) Comparison on 𝑆𝑥𝑧 among 

FGH1sym and its associated laminates (g) Comparison on 𝑆𝑥𝑧 among FGH2sym and its associated 

laminates. 

b. FEA using solid model with two C3D20R elements per lamina 

In FEA, the transverse shear stresses of smaller pitch angle, such as 𝜃ℎ = 15°, continuously 

distributed along the thickness of the whole laminate, while laminates with larger pitch angles 

exhibit discrete transverse shear stresses, as shown in Figure 5.23 and Figure 5.24, which is the 

same as predicted by extended CLPT. 
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Figure 5.23. Transverse shear stress 𝑆𝑥𝑧 distribution along the thickness of the laminates with different 

constant pitch angles separately 

Laminates with smooth transverse shear stresses can provide less localized delamination 

failure compared with the laminates with discrete distribution of transverse shear stresses, which 

exhibit high values of transverse shear stresses with high frequency in the 𝑥 − 𝑧 cross-section 

when the thickness is fixed, shown in Figure 5.23 and Figure 5.24. This difference on transverse 

shear stresses distribution also influence the maximum peak load, 𝑃, and the toughness, 𝑇𝑐.  

 

Figure 5.24. Transverse shear stress 𝑆𝑦𝑧 distribution along the thickness of the laminates with different 

constant pitch angles separately 
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Figure 5.25. (a) Maximum 𝑆𝑥𝑧 at free-edge (close to top indenter) of the laminated beam of helicoid 

laminates with symmetry lay-up to the middle plane and the laminates without symmetry lay-up to the 

middle plane (b) Maximum 𝑆𝑥𝑧 at free-edge (close to bottom rollers) of the laminated beam of helicoid 

laminates with symmetry lay-up to the middle plane (c) Maximum 𝑆𝑦𝑧 at free-edge (close to top indenter) 

of the laminated beam of helicoid laminates with symmetry lay-up to the middle plane and the laminates 

without symmetry lay-up to the middle plane (d) Maximum 𝑆𝑦𝑧 at free-edge (close to bottom rollers) of 

the laminated beam of helicoid laminates with symmetry lay-up to the middle plane separately  

 

Figure 5.26. (a) Maximum 𝑆𝑧𝑧 at free-edge (close to the indenter) of the laminated beam of helicoid 

laminates (b) Local maximum 𝑆𝑥𝑧 at free-edge (close to the half thickness) of the laminated beam of 

helicoid laminates  
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As shown in Figure 5.25 (a) and (c), combined with Figure 5.26, 𝑆𝑥𝑧 is dominant in three-

point short beam bending, compared with 𝑆𝑦𝑧 and 𝑆𝑧𝑧, which is agreed on the prediction of beam 

theory. Unlike long beam bending, the values of  𝑆𝑥𝑧 here do not have absolute benefits over the 

values of  𝑆𝑦𝑧. As the 𝜃ℎ is decreasing, the values of maximum 𝑆𝑥𝑧 close to indenter is increasing 

and thus 𝑃 of laminates with smaller 𝜃ℎ is dependent on the local maximum 𝑆𝑥𝑧 close to indenter, 

while 𝑃 of laminates with larger 𝜃ℎ is not related to the local maximum 𝑆𝑥𝑧 close to indenter. FEA 

considering intralaminar and interlaminar failure can provide further confirmation on this 

conclusion. The 𝑃  of laminates with 𝜃ℎ = 15°  and 𝜃ℎ = 22.5°  is characterized by local 

delamination close to indenter, shown in Figure D1(a), while 𝑃  of laminates with larger 𝜃ℎ , 

changing from 30° to 60°, is determined by the large extent of interlaminar failure close to bottom 

rollers or intralaminar failure close to top surface, shown in Figure 5.7(a), Figure 5.8(a), Figure 

5.9(a) and Figure D2(a). Figure 5.25(b) and (d) show the maximum transverse shear stresses close 

to bottom rollers and 𝜃ℎ = 30° exhibits the minimum values on both of them, which explain the 

optimum 𝑃 that 𝜃ℎ = 30° achieves shown in Figure 5.10(a). 

𝜃ℎ smaller than 30° can provide smoother distribution of transverse shear stresses through 

the thickness, which limit the number of stress concentration under fixed thickness and restrict the 

local crack propagation at interface close to bottom rollers. This behavior also plays a significant 

role on bending resistance before total failure, value of 𝑇𝑐. For example, after first large drop on 

displacement and force curve, 𝜃ℎ = 15° does not show large extent of delamination failure, shown 

in Figure D1, and thus before total failure occurs, 𝜃ℎ = 15°  can provide more interfaces to 

separate, indicating storage more energy before losing total resistance.  

From Figure 5.25 and Figure 5.26, the difference on maximum transverse stresses found 

in localization due to the influence of contact from rollers among laminates with distinct pitch 

angle are shown. The maximum transverse stresses found in the middle of the laminates with 

different pitch angles also reveal the difference, shown in Figure 5.26(b). This result is different 

from what we predicted by extend CLPT, which ignores the transverse shear strains in the laminate 

and shows the consistent maximum transverse shear stresses in the middle of the laminate. 

However, in our FEA models considering delamination and in-plane damage, the Mindlin-

Reissner plate theory is adopted for each lamina stacked in the laminate, which considers constant 

transverse shear strain/stress for each lamina, and the interface is connected by cohesive interaction 

based on surface. This method effectively shows the difference on transverse stresses/strain of 
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laminates with different pitch angle, which is validated in section 5.4.4. Accordingly, the 

corresponding components in the strain energy, which is related to the delamination initiation and 

evolution, of laminates with different pitch angle can be distinguished. 

Laminates with 𝜃ℎ equal to and larger than 45° exhibit competitive 𝑇𝑐, induced by slower 

propagation between each delamination failure, including intralaminar matrix damage, which is 

induced by the number of 0° lamina. Larger pitch angle featured with a greater number of 0° 

lamina, which shows the maximum strength and energy release rate in the longitudinal 

direction(align with the longitudinal direction of the beam in the global coordinates), can provide 

more deformation resistance under bending along the longitudinal direction of the beam. For 

example, the available applied displacement between first and second large extent of delamination 

and in-plane damage in 𝜃ℎ = 36° is 0.721mm, while 𝜃ℎ = 45° can apply 2.482mm deflection 

between these two large extent of delamination failures, which is 3.44 times over the value of 𝜃ℎ =

36°. 

Accordingly, FGHs with increasing pitch angles from surface to interior can provide 

specific transverse shear stress distribution at specific location along the thickness and thus 

optimize the peak load and toughness of the whole beam under bending. Also, the component 

layers, off-axis angle close to 0°, of helicoid laminate with different pitch angles can influence the 

intralaminar damage under bending. 

For example, laminae close to top and bottom surfaces can be influenced by concentrated 

contact force and larger tensile and compression deformation. Laminates with smaller(such as 

𝜃ℎ =15° and 𝜃ℎ =22.5°) pitch angle although have larger transverse shear stress at free-edge, their 

distribution of transverse shear stress along the thickness is smoother and thus they can lead to 

lower peak load, but higher toughness, since the location of delamination occurs less than 

laminates with larger pitch angle when the thickness is fixed. Laminates with middle (such as 

𝜃ℎ =30° and 𝜃ℎ =36°) pitch angle can provide higher peak load, but less toughness. Larger pitch 

angle (such as 𝜃ℎ =45°, 𝜃ℎ =60° and 𝜃ℎ =90°) can provide less peak load, but higher toughness, 

which is influenced by the larger quantity of 0° lamina. Accordingly, for our FGHs, encompassing 

𝜃ℎ =30° or 𝜃ℎ =36° close to bottom and top surfaces can provide higher peak load, but in the 

middle of the beam along thickness is composed of 𝜃ℎ =45°, 𝜃ℎ =60° or 𝜃ℎ =90°, which can 

provide more bending resistance because of larger number of 0 °  laminae. The continuous 

increasing pitch angle from surface to interior can provide a much smoother stress distribution 
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along the thickness and it can provide benefits on fracture resistance, which is also discussed in 

Chapter 4. 

Laminate FGH1disoder which is composed of disorder pitches of the components of 

FGH1sym shows that its peak load value and toughness value are lower than its associated helicoid 

laminates and it cannot locate at the optimum area in the Ashby plot, which is shown in Figure 

5.11(a). 

 

Figure 5.27 (a) 𝑆𝑥𝑧 as a function of off-axis angle, including the two cases of beam and plate (b) 

Transverse shear modulus as a function of off-axis angle (c) Chentsov’s coefficients as a function of off-

axis angle 

On the other hand, the reason of laminates with smaller pitch angle can provide higher 

values of 𝑆𝑥𝑧 can be explained by the relation of 𝑆𝑥𝑧 and off-axis angle when their 𝜖𝑥𝑧 is the same, 

shown in Figure 5.27, predicted by constitutive law of monoclinic material. Our FEA on short 

beam bending is somewhere in between the beam case (𝜖𝑦𝑧 = 0) and plate case (𝜖𝑥𝑧 = 𝜖𝑦𝑧). The 

specific equation is shown as below. It is observed that smaller off-axis angle exhibits higher value 

of 𝑆𝑥𝑧 based on the constitutive relation of monoclinic material, since each lamina with off-axis 

angle can be considered as monoclinic material. 

𝑆𝑥𝑧 = (𝜖𝑥𝑧 − 𝜇𝑦𝑧,𝑥𝑧 𝜖𝑦𝑧)𝐺𝑥𝑧
1

1−𝜇𝑦𝑧,𝑥𝑧𝜇𝑥𝑧,𝑦𝑧
                                                                                            (5.11) 
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5.4.4 Justification of finite element model 

Continuum shell model (SC8R) is adopted to represent the lamina composite materials in 

the present work. It is necessary to study the accuracy of this model and to justify its feasibility to 

discern the difference induced by distinct pitch angles. 

Continuum shell model in commercial software ABAQUS is based on first order shear 

deformation theory (FOSDT), which is also called Mindlin-Reissner plate theory. It is confirmed 

that FOSDT can provide accurate in-plane stress (Pagano, 1970; Yu, 2005) for composite materials 

with different lay-up sequence. However, the accuracy of prediction on transverse shear stresses 

needs to be studied case by case. In the present work, the distribution of transverse shear stress 𝑆𝑥𝑧 

and logarithmic strain in 𝑥 − 𝑧 direction 𝐿𝐸𝑥𝑧 in the continuum shell model, the major part of 

transverse stresses/strain in short-beam bending test, is extracted at free-edge of short-beam to 

compare with the 𝑆𝑥𝑧 distribution of solid model, as shown in Figure 5.28 and Figure 5.29. The 

𝑆𝑥𝑧 at interface from solid model due to large change in lamina orientation (from 0° to 60°), there 

are two values assigned to one node at the interface. Accordingly, in Figure 5.28 and Figure 5.29, 

the value of 𝑆𝑥𝑧 at interface is achieved by averaging the two values from two adjacent laminae. It 

is observed that continuum shell model can provide a good match on 𝑆𝑥𝑧 at interface between 0° 

and 60° or -60° plies, but it overestimates the 𝑆𝑥𝑧 value at the interface between 60° and -60° plies. 

Besides, the continuum shell model underestimates the 𝑆𝑥𝑧 value in the lamina with smaller off-

axis angle, such as 0° and 15°, and overestimates the 𝑆𝑥𝑧 value in lamina with larger off-axis angle, 

such as 90° and 75°. Generally, continuum shell reduces the discrepancy on 𝑆𝑥𝑧  value among 

laminae with different off-axis angles, compared with the homogenized solid model. Due to the 

short beam structure we use here, 𝑆𝑦𝑧 and 𝐿𝐸𝑦𝑧 are not going to be discussed. 

Although the difference on 𝑆𝑥𝑧 value can not be ignored between continuum shell and solid 

models, as long as the continuum shell model can provide the relative difference on 𝑆𝑥𝑧 and 𝐿𝐸𝑥𝑧 

among distinct laminates with different pitch angles, the continuum shell is one of the most 

efficient ways to predict the delamination behavior of fiber reinforced composite materials.  
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Figure 5.28. (a) 𝑆𝑥𝑧 distribution along z-direction at free-edge of short-beam H60sym (b) 𝑆𝑥𝑧 distribution 

along z-direction at free-edge of short-beam H15sym  

 

Figure 5.29. 𝐿𝐸𝑥𝑧 distribution along z-direction at free-edge of short-beam H15sym 



 

 

118 

The relative comparison on 𝑆𝑥𝑧 distribution and 𝑈𝑥 distribution along the thickness of the 

laminate at free-edge is illustrated in Figure 5.30 and Figure 5.31 respectively. It is observed that 

continuum shell can provide relative discrepancy on 𝑆𝑥𝑧 and 𝑈𝑥 between laminate H15sym and 

laminate H60sym, compared with solid model. 

 

Figure 5.30. (a) 𝑆𝑥𝑧 distribution along z-axis at free-edge of short beam H15sym and H60sym both 

created by solid model (b) 𝑆𝑥𝑧 distribution along z-axis at free-edge of short beam H15sym and H60sym 

both created by continuum shell model 
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Figure 5.31. (a) 𝑢𝑥 distribution along z-axis at free-edge of short beam H15sym and H60sym created by 

solid model and continuum shell models (b) 𝑑𝑢𝑥/𝑑𝑧 distribution along z-axis at free-edge of short beam 

H15sym and H60sym created by solid model and continuum shell models 

Besides, we also compare the strain energy of the whole laminate in solid and continuum 

shell models, shown in Figure 5.32, since it is related to energy release rate of the crack at interface. 

It reveals that continuum shell model underestimates the strain energy of the whole laminate. 

However, it accurately predicts that there is little difference on strain energy between H15sym and 

H60sym, which is induced by the consistent value of transverse shear modulus 𝐺𝑥𝑧  and 𝐺𝑦𝑧 

between H15sym and H60sym. Additionally, the transverse shear modulus and in-plane shear 

modulus of all laminates with different pitch angles are tabulated in Table 5.5. Analytical predicted 

transverse shear modulus and in-plane shear modulus of helicoid composites and FGHs The 

method we used is described in the appendix of (Cheng et al., 2011). 
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Table 5.5. Analytical predicted transverse shear modulus and in-plane shear modulus of helicoid 

composites and FGHs 

(MPa) H15sym H30sym H45sym H60sym H90sym FGH1sym FGH2sym 

𝐺𝑥𝑧 1.76E+03 1.76E+03 1.76E+03 1.76E+03 1.76E+03 1.76E+03 1.76E+03 

𝐺𝑦𝑧 1.76E+03 1.76E+03 1.76E+03 1.76E+03 1.76E+03 1.76E+03 1.76E+03 

𝐺𝑥𝑦 5.11E+03 5.11E+03 5.11E+03 5.11E+03 2.08E+03 5.11E+03 4.60E+03 

 

 

Figure 5.32. Strain energy as a function of applied displacement before any damage or failure occurs in 

continuum shell models 

On the other hand, two C3D20R elements per lamina used for transverse shear stress/strain 

prediction is confirmed to be robust enough to predict the transverse shear stresses through the 

layers through comparing the transverse shear stress/strain at free-edge of two C3D20R elements 

per layer and eight C3D20R elements per layer, shown in Figure 5.33. Except the interface at free 

edge between laminae with dissimilar misorientation, other locations exhibit converged results on 

transverse shear stress/strain. The stresses at the interface close to free-edge between laminae with 

dissimilar misorientation has difficulty to converge due to singularity in FEA (Goodsell et al., 2013; 
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Goodsell and Pipes, 2016; Peng et al., 2016). However, the cohesive zone model at interface can 

eliminate the stress/strain singularity at interface close to free edge.  

 

Figure 5.33. (a) Transverse shear strain 𝐿𝐸𝑥𝑧 through the thickness at free edge of solid model with two 

C3D20R and with eight C3D20R per lamina (b) Zoom in plot of strain distribution at interface between -

60° and 60° 
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Figure 5.34. Transverse shear strain 𝐿𝐸𝑥𝑧 through the thickness at free edge of solid model with two 

C3D20R and with four C3D8R per lamina 

Furthermore, in order to validate the delamination initiation and propagation in our FEA 

model, solid model with four C3D8R elements per lamina considering delamination only is 

employed to compare with the continuum shell model with one SC8R per lamina considering 

delamination only. Due to the unavailability of C3D20R element under explicit solver in 

ABAQUS, model with four C3D8R elements per layer is replaced to compare with the continuum 

shell model. The accuracy of four C3D8R elements per layer is shown in Figure 5.34. Due to the 

characteristics of continuum shell model, constant transverse shear strain and stress in each lamina, 

our FEA based on continuum shell model has difficulty to predict the transverse shear stress and 

strain induced by in-plane shear stress under tension/compression at the interface between −𝜃 

lamina and 𝜃 lamina, shown in Appendix D6. Accordingly, H60sym, the worst case, and H30sym 

with 12 laminae in all are designed to validate our continuum shell FEA model. The ratios of length 

over thickness and width over thickness are consistent as the previous 24 laminae short beam. The 

load and displacement curves are shown in Figure 5.35(a) and Figure 5.36(a), combined with the 

delamination initiation and propagation in continuum shell model and solid model, shown in 

Figure 5.35(b-c) and Figure 5.36(b-c).  
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Figure 5.35. (a) Load and displacement curve of H30sym model under short beam bending with 12 

laminae through the thickness. Red curve represents for continuum shell considering delamination only 

and black curve represents for solid model considering delamination only. (b) Delamination initiation and 

propagation in continuum shell model (c) Delamination initiation and propagation in solid model 
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Figure 5.36. (a) Load and displacement curve of H60sym model under short beam bending with 12 

laminae through the thickness. Red curve represents for continuum shell considering delamination only 

and black curve represents for solid model considering delamination only. (b) Delamination initiation and 

propagation in continuum shell model (c) Delamination initiation and propagation in solid model 

It reveals that the peak load due to delamination initiation from continuum shell model is 

lower than the peak load, 𝑃, from solid model, up to 20.3% lower value than the solid model, 

shown, in Figure 5.37(a), but the critical loading displacement when 𝑃 occurs from continuum 

shell model aligns with the critical loading displacement of solid model, shown in Figure 5.37(b). 
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The toughness, 𝑇𝑐, extracted from the continuum shell model can be up to 11.55% lower than the 

𝑇𝑐  of solid model shown in Figure 5.37(b). Besides, the location and order of delamination 

initiation and propagation from the continuum shell model highly matches the location and order 

of delamination propagation from the solid model, shown in Figure 5.36(b-c) and Figure 5.38(a-

b). It reveals that in the worst case, H60sym, the delamination area, 𝐴𝑑 , after 𝑃  occurs in 

continuum shell model aligns with the results of solid model, shown in Figure 5.38(c). However, 

the 𝐴𝑑 at the last increment of 4.75mm displacement loading in 𝑧-direction of the continuum shell 

model is 56.8% higher than the 𝐴𝑑 of the solid model, shown in Figure 5.38(d). Another difference 

is that the continuum shell model can provide slower delamination propagation after delamination 

initiates under same displacement loading, compared with the solid model. In general, the 

continuum shell model combined with cohesive interaction underestimates the 𝑃 and 𝑇𝑐  of the 

short beam compared with the solid model considering delamination only. However, the accuracy 

of relative relationship on 𝑃 and 𝑇𝑐 among different pitch angles can be guaranteed, except the 𝑇𝑐 

of H60sym dependent on delamination only, which needs further improvement in the future. 

 

Figure 5.37. (a) Comparison on peak load, 𝑃, between solid and shell models in H30sym and H60sym (b) 

Comparison on toughness, 𝑇𝑐, between solid and shell models in H30sym and H60sym 



 

 

126 

 

Figure 5.38.(a) Delamination area distribution along the thickness of the 12 layer short beam of H30sym 

after first peak load occurs (b) Delamination area distribution along the thickness of the 12 layer short 

beam of H30sym at the last increment under 4.75mm loading displacement in 𝑧 direction (c) 

Delamination area distribution along the thickness of the 12 layer short beam of H60sym after first peak 

load occurs (d) Delamination area distribution along the thickness of the 12 layer short beam of H60sym 

at the last increment under 4.75mm loading displacement in 𝑧 direction 

Additionally, we suppose that due to continuity of transverse shear stresses (𝑆𝑥𝑧 and 𝑆𝑦𝑧) 

at interface and the influence of different pitch angles(𝜃ℎ) on 𝑆𝑥𝑧 and 𝑆𝑦𝑧, the maximum value of 

𝑆𝑥𝑧 and 𝑆𝑦𝑧 in specific pitch of functionally graded helicoids(FGHs) can be smaller or larger than 

the corresponding value shown in the same position of associated helicoid composites with 

constant 𝜃ℎ , which is denoted “sympathetic behavior”, discussed in section 5.4.3.a. However, 

through extracting the maximum 𝑆𝑥𝑧 in corresponding pitch of FGHs, such as 𝜃ℎ = 36° and 𝜃ℎ =

60° in FGH1sym, and maximum 𝑆𝑥𝑧 at the same location in H36sym and H60sym, it is observed 

that the difference on maximum 𝑆𝑥𝑧 at these locations is less than 2% in the solid models(less than 
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3.5% in the solid models of FGH2sym and its associated helicoid composites). The continuum 

shell model with cohesive contact at interface can also predict this “sympathetic behavior” by 

introducing up to 2.5% difference on maximum 𝑆𝑥𝑧 at same location of FGHs and its associated 

helicoid composites. Accordingly, due to the minor difference on transverse shear stresses from 

same location but with different lay-up sequence, the influence of “sympathetic behavior” can be 

ignored under 3-point short beam bending. 

According to the justification shown above, the continuum shell model is a relatively robust 

and efficient method to predict the difference on transverse shear stresses induced by distinct pitch 

angles in helicoid composites and the delamination initiation and propagation. 

5.5 Conclusions 

In the short-beam bending tests, 𝜃ℎ = 30° is the optimum pitch angle for peak load, 𝑃, and 

𝜃ℎ = 45° is the optimum pitch angle for toughness, 𝑇𝑐. In the comparison analysis of 𝑃 and 𝑇𝑐, 

helicoid with constant 𝜃ℎ  is observed without higher 𝑃  and 𝑇𝑐  at the same time, while FGHs 

occupy the optimum area of Ashby plot with higher 𝑃 and 𝑇𝑐 simultaneously. This is because first 

the maximum transverse shear stress is observed at the interfaces close to top indenter and two 

bottom rollers, although maximum transverse shear stresses is achieved in the middle of the 

laminate along the thickness in the 𝑥 − 𝑧 plane except for the paths going through the thickness 

close to rollers and indenter, shown in Figure 5.23 and Figure 5.24. Secondly, except for the 

laminates with smaller pitch angle, which laminate’s peak load is dependent on the delamination 

close to top indenter, showing the higher transverse shear stress 𝑆𝑥𝑧 among other helicoids, shown 

in Figure 5.25(a), other helicoids revels that their peak load is dependent on the maximum 𝑆𝑥𝑧 

close to the bottom surface. H30sym shows the minimum value of 𝑆𝑥𝑧 at the interfaces close to 

bottom rollers at the same applied displacement and thus it can behave as a coating material, 

delaying the occurrence of delamination, and then provide the maximum peak load. Accordingly, 

𝜃ℎ = 30° and 𝜃ℎ = 36° arranged close to the top and bottom surfaces of FGHs respectively can 

achieve the maximum peak load. Besides, H45sym and H60sym reveal benefits on toughness over 

other helicoids, since their damage evolution is slower than other helicoids due to a greater number 

of 0° laminae, which is the toughest lamina under bending. H90sym should be tougher as well 

since it encompasses larger number of 0° lamina, but its weak peak load reduces the energy 



 

 

128 

absorbed under 6mm deflection, compared with others. FGHs composed of 𝜃ℎ = 45° and 𝜃ℎ =

60° close to the middle of their whole laminate along the thickness highly increases the energy 

storage under damage and delamination evolution, since the delamination and damage propagates 

slowly due to larger number of 0° laminae.  

Laminate FGH1symdisorder, which is composed of the same component pitches of 

FGH1sym but with different order of arrangement along the thickness from surface to interior, 

exhibits lower toughness and peak load compared with its associated helicoid laminates. The 

detailed comparison on delamination propagation between FGH1symdisorder and FGH1sym is 

shown in Figure D5. 𝜃ℎ = 45° is not beneficial for delaying delamination due to concentrated 

stresses induced by contact, as discussed before, which has been assigned close to bottom and top 

surfaces of FGH1symdisorder. In the meantime, 𝜃ℎ = 36°  assigned close to the middle of 

FGH1symdisorder cannot provide enough in-plane deformation resistance after delamination 

initiation close to the bottom surface. Accordingly, it seems that the arrangement order of different 

pitch angles along the thickness is related to the delamination and in-plane damage resistance.  

Furthermore, the distribution of transverse shear stresses in the short beam bending test is 

predicted by FEA and analytical calculation. It is shown that, due to the smooth transition of the 

transverse shear stress and less number of stress concentration at interfaces along the thickness in 

the architectures with smaller pitch angles at a given applied load/displacement, they can endure 

more bending deformation before large extent of delamination occurs at the bottom of the beam. 

However, laminates with smaller pitch angle, less than 22.5°, show lower value of 𝑃 due to local 

maximum transverse shear stress concentration close to the indenter. 

In the LVI tests, FGHs exhibit superior values of 𝐾𝐸 and 𝑃 at the same time over their 

associated helicoid laminates with constant pitch angle as well. 24mm thick laminate due to 

smaller span over thickness ratio, the global deformation is dominant by transverse shear stresses, 

while 6mm thick laminate due to larger span over thickness ratio deforms under flexure. This is 

also the reason why H90sym in 24mm thick laminate exhibits less toughness but shows higher 

value of toughness in 6mm thick laminate. 𝜃ℎ = 60° is with the highest values of absorbed energy 

𝐾𝐸 both in the plate with 6mm and 24mm thickness, which is largely contributed by intralaminar 

damage. 𝜃ℎ = 90° shows the maximum peak load 𝑃 in the plate with 6mm thickness and 𝜃ℎ =

22.5° reveals the maximum peak load P while the thickness of plate is 24mm (𝜃ℎ = 90° also 

shows competitive value of 𝑃  in the plate with 24mm thickness). The FEA has shown that 
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FGH1sym with 6mm thickness can provide up to 2.95 times larger values of delamination area 𝐴𝑑 

over its associated helicoid laminates with constant 𝜃ℎ and then it can contribute to superior energy 

absorption. The 𝐴𝑑  is increasing with increasing values of 𝜃ℎ  in helicoid laminates with 6mm 

thickness. However, when the plate thickness increases to 24mm, with increasing of the pitch angle, 

the values of 𝐴𝑑 decrease from 𝜃ℎ =15° to 𝜃ℎ =30° and then increase from 𝜃ℎ =45° to 𝜃ℎ =90°.. 

The projected delamination area 𝐴𝑝𝑑 shows that smaller 𝜃ℎ has larger extent of delamination area 

both in 6mm thick and 24mm thick plates, which aligns with the results of other publications 

(Ginzburg et al., 2017; Grunenfelder et al., 2014a).That projected delamination area for laminates 

with smaller pitch angle is larger than laminates with larger pitch angles because laminates with 

smaller pitch angle include more fiber directions in 𝑥 − 𝑦 plane than the laminates with larger 

pitch angle and delamination propagates along the fiber direction(the direction with higher strain 

energy) of both layers close to the interface. This results also support the explanation that the 

discrepancy of energy release rate and strength of laminates with different pitch angles are related 

to the different transverse stresses/strains distribution.  

Comparing the results of 3-point short beam bending and low-velocity impact tests, we can 

observe that both tests can achieve superior values of energy storage or energy absorption, up to 

60% and 15% higher values than other helicoid laminates with constant pitch angle, when 𝜃ℎ =

60° and 𝜃ℎ = 45°. On the other hand, both tests show that when 𝜃ℎ = 22.5° and 𝜃ℎ = 36°, they 

can achieve benefits on peak load over other helicoids with constant pitch angles.  

The relative relationship on transverse stress/strain of laminates with different pitch angles 

along the thickness in the continuum shell model aligns with the solid model, although the 

discrepancy between different lamina misorientations in the laminate is smaller than the solid 

model. Higher component value of transverse shear strain energy in x-z direction is observed in 

the laminae with smaller misorientation, which is the same as solid model. Besides the 

delamination initiation and propagation of continuum shell is validated through comparing the 

delamination propagation from solid model considering delamination only. 

In general, FGHs show superior mechanical behaviors at the same time over their 

associated laminates with constant 𝜃ℎ  both in static and dynamic analyses according to the 

characteristics on transverse stresses/strain of distinct pitch angles and their specific arrangement 

through the thickness. 
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 CONLCUSIONS 

From my thesis work, it is exhibited that bio-inspired stiff fibers, tablets or prisms 

reinforced composite materials can provide multi-functional behaviors through varying structural 

parameters, such as pitch angle 𝜃ℎ  of helicoid architectures, effective shear area or effective 

tension area of fibers/tablets reinforced composite materials, orientation of prisms in nacreous 

architectures and pitch distance of helicoid architectures. 

Fiber reorientation behaviors due to deformation of the laminates with different 𝜃ℎ and 

laminates with distinct lay-up sequences, combined with its contribution to the strain stiffening are 

analyzed in Chapter 2.  

Among the dominant geometrical features, we can mention pitch angle, 𝜃ℎ. Constitutive 

properties, such as the fiber to matrix stiffness ratio, as well as the matrix nonlinear behavior, are 

relevant as they relate to strain stiffening and overall failure. To deconvolve the various effects, 

we examined various architectures, namely DFH/DMB/DSL, to gain insights into the contribution 

of deformation to fiber reorientation, ∆𝜃𝑐, as it relates to lamina misorientation with respect to the 

loading direction and lay-up sequence. We found that the DFH architecture exhibits less in-plane 

shear deformation and less transverse contraction leading to smaller values of fiber reorientation, 

∆𝜃𝑐 , compared with the DMB and DSL architectures. We compared and quantified ∆𝜃𝑐  in 

individual laminae from different architectures. For instance, we found that the individual lamina 

𝜃30 of the DFH 𝜃ℎ = 30° exhibits up to 29.5% lower ∆𝜃𝑐 that found in the DSL 𝜃𝑠 = 30° upon 15% 

𝜖. On the other hand, the 𝜃45 lamina in the DMB architecture exhibits 28.6% higher value of ∆𝜃𝑐 

than the 𝜃45 lamina in the DFH with 𝜃ℎ = 45°. In fact, the DFH architecture, due to its overall 

balanced lay-up sequence, exhibits smaller in-plane shear deformation than the DSL architecture 

and less contraction in the transverse direction than the DMB architecture. The DMB 𝜃𝑏 = 30° 

exhibits a 93.4% higher 𝑣𝑥𝑦 than the DSL architecture with 𝜃𝑠 = 30°. This is due to its compatible 

mechanical properties among balanced laminae. 

The analysis reported in this study revealed that the DFH architecture, with a linear elastic 

or elasto-plastic matrix with small plastic hardening, shows negligible strain stiffening, compared 

with the DMB architecture, under uniaxial tensile loading, whereas the DMB architecture, show 

superior strain stiffening compared with DFH architecture (up to 16% under 4% local 𝜖𝑡 and 33.6% 
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under 10% local 𝜖𝑡). Furthermore, evidence that no strain stiffening shown in the FEA with linear 

elastic matrix and negligible strain stiffening predicted by the plate theory revealed that the strain 

stiffening observed in 3D printed samples is primarily due to the hyperelastic constitutive response 

of the matrix. 

Although the DFH architecture and the disorder laminates show the same elastic modulus 

before deformation, their fiber reorientation and strain stiffening values are slightly different after 

the same tensile strain (4% local 𝜖𝑡). This observation confirms that lay-up sequence influences 

the deformation in each lamina through the thickness and thus, has an impact on the fiber 

reorientation behavior.  

In Chapter 3 we provided a detailed comparative analysis that looks at the three-

dimensional geometries of the rod-like and tablet-like architectures. Their mechanical behaviors, 

such as stiffness, strength and toughness, under uniaxial tensile in two orthogonal directions are 

analyzed to investigate why nature chooses two different geometries in three-dimension for the 

living organisms, though their two-dimensional structures are the same.  

We set up the comparison between 3D tablet-like nacre architectures and rod-like chiton 

architectures based on dimensionless groups of mechanical properties and geometry parameters. 

Rigorous analytical, experimental and numerical analyses are exploited to compare and analyze 

the properties of two architectures from different associated factors. 

Compared to 3D tablet-like nacre architectures, rod-like chiton architectures are more 

efficient on mechanical properties in longitudinal direction when both featured with the same 

volume fraction 𝑉𝑓 and aspect ratios 𝐿/𝑀. However, 3D tablet-like nacre architectures are more 

beneficial in biaxial loading. This also answers our initial question that why nature chooses rod-

like chiton structures to endure axial loading in their longitudinal direction and chooses tablet-like 

structures to be the structured components of the nacre shell. This phenomenon can be explained 

by the different effective shear and tension area of the architectures, which are the hidden 

confounder for general geometry parameters, 𝑉𝑓  and 𝐿/𝑀, and mechanical properties, such as 

stiffness, strength and toughness. Accordingly, in three-dimension, besides 𝑉𝑓  and 𝐿/𝑀 , the 

effective shear and tension area are another two key parameters needed to be considered to 

calculate mechanical properties, encompassing elastic modulus, critical load and toughness.  

From Chapter 4, it is introduced that the functionally graded modulus distribution through 

the thickness of Pinctada shell can provide superior fracture resistance than other modulus 
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distributions, such as constant modulus, layered modulus and inversed functionally graded 

modulus. It is interesting to see that the functionally graded modulus due to varying orientations 

of prisms in the outer layer of the Pinctada shell can overcome other patterns of modulus 

distribution. Accordingly, extending from this analysis, we focus on the study of helicoid 

architectures with stiff fibers reinforced laminates again, which are found with functionally graded 

pitch distance through the thickness of dactyl clubs of mantis shrimp. 

Quasi-static tests and low-velocity impact tests are designed to analyze the mechanical 

behaviors of helicoid architectures with different 𝜃ℎ and the functionally graded helicoids (FGHs). 

In Chapter 5, two types of FGHs are designed with linearly decreasing pitch distance from surface 

to interior, which is found in the dactyl clubs of mantis shrimp and the fish scale of coelacanth. 

Although the minimum 𝜃ℎ can only reach to 15°, which is not as small as the one occurring in the 

biological architectures found in dactyl clubs of mantis shrimp, theses 𝜃ℎ can still represent the 

architectures in fish scales.  

In the short-beam bending tests, 𝜃ℎ = 30° is the optimum pitch angle for peak load, 𝑃, and 

𝜃ℎ = 45° is the optimum pitch angle for toughness, 𝑇𝑐. In the comparison analysis of 𝑃 and 𝑇𝑐, 

helicoid with constant 𝜃ℎ  is observed without higher 𝑃  and 𝑇𝑐  at the same time, while FGHs 

occupy the optimum area of Ashby plot with higher 𝑃 and 𝑇𝑐 simultaneously. This is because first 

the maximum transverse shear stress is observed at the interfaces close to top indenter and two 

bottom rollers, although maximum transverse shear stresses is achieved in the middle of the 

laminate along the thickness in the 𝑥 − 𝑧 plane except for the paths going through the thickness 

close to rollers and indenter, shown in Figure 5.23 and Figure 5.24. Secondly, except for the 

laminates with smaller pitch angle, which laminate’s peak load is dependent on the delamination 

close to top indenter, showing the higher transverse shear stress 𝑆𝑥𝑧 among other helicoids, shown 

in Figure 5.25(a), other helicoids revels that their peak load is dependent on the maximum 𝑆𝑥𝑧 

close to the bottom surface. H30sym shows the minimum value of 𝑆𝑥𝑧 at the interfaces close to 

bottom rollers at the same applied displacement and thus it can behave as a coating material, 

delaying the occurrence of delamination, and then provide the maximum peak load. Accordingly, 

𝜃ℎ = 30° and 𝜃ℎ = 36° arranged close to the top and bottom surfaces of FGHs respectively can 

achieve the maximum peak load. Besides, H45sym and H60sym reveal benefits on toughness over 

other helicoids, since their damage evolution is slower than other helicoids due to a greater number 

of 0° laminae, which is the toughest lamina under bending. H90sym should be tougher as well 
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since it encompasses larger number of 0° lamina, but its weak peak load reduces the energy 

absorbed under 6mm deflection, compared with others. FGHs composed of 𝜃ℎ = 45° and 𝜃ℎ =

60° close to the middle of their whole laminate along the thickness highly increases the energy 

storage under damage and delamination evolution, since the delamination and damage propagates 

slowly due to larger number of 0° laminae.  

Laminate FGH1symdisorder, which is composed of the same component pitches of 

FGH1sym but with different order of arrangement along the thickness from surface to interior, 

exhibits lower toughness and peak load compared with its associated helicoid laminates. The 

detailed comparison on delamination propagation between FGH1symdisorder and FGH1sym is 

shown in Figure D5. 𝜃ℎ = 45° is not beneficial for delaying delamination due to concentrated 

stresses induced by contact, as discussed before, which has been assigned close to bottom and top 

surfaces of FGH1symdisorder. In the meantime, 𝜃ℎ = 36°  assigned close to the middle of 

FGH1symdisorder cannot provide enough in-plane deformation resistance after delamination 

initiation close to the bottom surface. Accordingly, it seems that the arrangement order of different 

pitch angles along the thickness is related to the delamination and in-plane damage resistance.  

Furthermore, the distribution of transverse shear stresses in the short beam bending test is 

predicted by FEA and analytical calculation. It is shown that, due to the smooth transition of the 

transverse shear stress and less number of stress concentration at interfaces along the thickness in 

the architectures with smaller pitch angles at a given applied load/displacement, they can endure 

more bending deformation before large extent of delamination occurs at the bottom of the beam. 

However, laminates with smaller pitch angle, less than 22.5°, show lower value of 𝑃 due to local 

maximum transverse shear stress concentration close to the indenter. 

In the LVI tests, FGHs exhibit superior values of 𝐾𝐸 and 𝑃 at the same time over their 

associated helicoid laminates with constant pitch angle as well. 24mm thick laminate due to 

smaller span over thickness ratio, the global deformation is dominant by transverse shear stresses, 

while 6mm thick laminate due to larger span over thickness ratio deforms under flexure. This is 

also the reason why H90sym in 24mm thick laminate exhibits less toughness but shows higher 

value of toughness in 6mm thick laminate. 𝜃ℎ = 60° is with the highest values of absorbed energy 

𝐾𝐸 both in the plate with 6mm and 24mm thickness, which is largely contributed by intralaminar 

damage. 𝜃ℎ = 90° shows the maximum peak load 𝑃 in the plate with 6mm thickness and 𝜃ℎ =

22.5° reveals the maximum peak load P while the thickness of plate is 24mm (𝜃ℎ = 90° also 
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shows competitive value of 𝑃  in the plate with 24mm thickness). The FEA has shown that 

FGH1sym with 6mm thickness can provide up to 2.95 times larger values of delamination area 𝐴𝑑 

over its associated helicoid laminates with constant 𝜃ℎ and then it can contribute to superior energy 

absorption. The 𝐴𝑑  is increasing with increasing values of 𝜃ℎ  in helicoid laminates with 6mm 

thickness. However, when the plate thickness increases to 24mm, with increasing of the pitch angle, 

the values of 𝐴𝑑 decrease from 𝜃ℎ =15° to 𝜃ℎ =30° and then increase from 𝜃ℎ =45° to 𝜃ℎ =90°.. 

The projected delamination area 𝐴𝑝𝑑 shows that smaller 𝜃ℎ has larger extent of delamination area 

both in 6mm thick and 24mm thick plates, which aligns with the results of other publications 

(Ginzburg et al., 2017; Grunenfelder et al., 2014a).That projected delamination area for laminates 

with smaller pitch angle is larger than laminates with larger pitch angles because laminates with 

smaller pitch angle include more fiber directions in 𝑥 − 𝑦 plane than the laminates with larger 

pitch angle and delamination propagates along the fiber direction(the direction with higher strain 

energy) of both layers close to the interface. This results also support the explanation that the 

discrepancy of energy release rate and strength of laminates with different pitch angles are related 

to the different transverse stresses/strains distribution.  

Comparing the results of 3-point short beam bending and low-velocity impact tests, we can 

observe that both tests can achieve superior values of energy storage or energy absorption, up to 

60% and 15% higher values than other helicoid laminates with constant pitch angle, when 𝜃ℎ =

60° and 𝜃ℎ = 45°. On the other hand, both tests show that when 𝜃ℎ = 22.5° and 𝜃ℎ = 36°, they 

can achieve benefits on peak load over other helicoids with constant pitch angles.  

The relative relationship on transverse stress/strain of laminates with different pitch angles 

along the thickness in the continuum shell model aligns with the solid model, although the 

discrepancy between different lamina misorientations in the laminate is smaller than the solid 

model. Higher component value of transverse shear strain energy in x-z direction is observed in 

the laminae with smaller misorientation, which is the same as solid model. Besides the 

delamination initiation and propagation of continuum shell is validated through comparing the 

delamination propagation from solid model considering delamination only. 

In general, FGHs show superior mechanical behaviors at the same time over their 

associated laminates with constant 𝜃ℎ  both in static and dynamic analyses according to the 

characteristics on transverse stresses/strain of distinct pitch angles and their specific arrangement 

through the thickness. 
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In closing, we have provided rigorous analytical, experimental, and computational analyses 

on studying the mechanical behaviors of bio-inspired composite materials, including elastic and 

elasto-plastic behaviors under large deformation, damage and fracture resistance behaviors under 

static and dynamic loading conditions. The impact of functionally varying structural parameters 

and geometrical parameters on these composite materials are quantified and analyzed, which 

should be valuable to those designing composite materials in which tailoring of constitutive 

behavior is inspired by motifs found in nature. 
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APPENDIX A. SUPPLEMENTAL MATERIAL FOR CHAPTER 2 

 

Figure A1. (a) 3D-printed sample with 𝐿 𝑊 = 2⁄ , and (b) FEA model with 𝐿 𝑊 = 2⁄  (c) and (e) 

undeformed and deformed dog-bone samples of DSL 𝜃𝑠 = 30° with 𝐿 𝑊 = 6⁄  (d) and (f) undeformed 

and deformed oblique tab samples of DSL 𝜃𝑠 = 30° with 𝐿 𝑊 = 4⁄  

A1 Material curve fitting 

The energy potential of incompressible hyperelastic material with model of polynomial 

𝑁 = 2 model is shown in s(1), where 𝐼1 and 𝐼2 are the 1st and 2nd deviatoric strain invariants. 

 𝑈 = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) + 𝐶20(𝐼1 − 3)2 + 𝐶11(𝐼1 − 3)(𝐼2 − 3) + 𝐶02(𝐼2 − 3)2 

                                                                                                                                         A(1) 

For uniaxial mode, the relationship between traction 𝑇𝑈 and stretch 𝜆𝑈 is, 

𝑇𝑈 = 2(1 − 𝜆𝑈
−3)[𝐶10𝜆𝑈 + 𝐶01 + 2𝐶20𝜆𝑈(𝐼1 − 3) + 𝐶11(𝐼1 − 3 + 𝜆𝑈(𝐼2 − 3)) +

2𝐶02𝜆𝑈(𝐼2 − 3)]                                                                                                                                                                   A(2) 

For simple shear mode, the relationship between traction 𝑇𝑆 and stretch 𝛾 is, 

𝑇𝑆 = 2(𝐶01 + 𝐶10)𝛾 + 4(𝐶20 + 𝐶11 + 𝐶02)𝛾3                                                                                     A(3) 

Based on the constitutive law of isotropic material, the initial slope of stress and strain 

curve extracted in the simple shear test is the shear modulus (𝐺) of the material. It must satisfy the 

equation of 𝐺 =
𝐸

2
/(1 + 𝑣) , where 𝐸  is the elastic modulus and 𝑣  is the Poisson’s ratio. 

Nonetheless, 𝐺 calculated according to the simple shear test of 3D printed matrix material does 
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not satisfy the constitutive law of isotropic material, showing higher value on 𝐺 than the isotropic 

material characterized from uniaxial tensile loading. Accordingly, we simplified the matrix 

material to isotropic hyperelastic model in FEA by employing least squares fit approach to 

represent the stress and strain behavior in uniaxial tensile and simple shear deformation, as shown 

in equation A(4). Specific results and coefficients are illustrated in Figure A2. 

𝐸𝑟𝑟𝑜𝑟 = 𝑤1 ∑ (
𝑇𝜏−𝑇𝑖

𝑇𝜏
)2𝑛

𝑖=1 + 𝑤2 ∑ (
𝑇𝜎−𝑇𝑖

𝑇𝜎
)2𝑛

𝑖=1                                                                                         A(4) 

Where 𝐸𝑟𝑟𝑜𝑟 is the permitted error between the fitting curve and the test results. 𝑤1 is the 

weight for simple shear test and 𝑤2 is the weight for uniaxial tensile test. 𝑇𝜏 is the stress value 

from the simple shear test data and 𝑇𝜎 is the stress value from the uniaxial tensile test. 𝑇𝑖 comes 

from equations s(2) and s(3). n is the number of data points. 
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Figure A2. Stress strain curves of (a) VeroWhite fiber material under uniaxial tensile loading, and (b) 

TangoPlus matrix material under uniaxial tensile loading and (c) under simple shear loading 
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Figure A3 (a) Finite element implementation of the helicoid geometry (𝜃ℎ = 30°), with (b) Close up 

showing mesh refinement across fiber and surrounding matrix (c) Illustration of free-free boundary 

condition (d) Illustration of free-periodic boundary condition 

A2 Mesh condition and mesh convergence study 

The mesh size 0.2mm is selected such that there are approximately 2 to 3 elements across 

the width of the fibers and 2 to 4 elements across the matrix region between fibers, Figure A3(a) 

and (b).  Nodes at top and bottom surfaces of gauge satisfy equations 𝑢𝑖
𝑡𝑜𝑝 − 𝑢𝑖

𝑏𝑜𝑡𝑡𝑜𝑚 = 0, where 

𝑖 = 𝑥, 𝑦 and 𝑧, which is the periodic boundary condition, shown in Figure A3(d). 

Mesh convergence study is conducted on DSL 𝜃𝑠 = 90°, which is shown as an example 

here. Mesh sizes 0.2mm, 0.24mm, 0.3mm and 0.4mm are used in the FEA. As it can be seen in 

Figure A4, convergence can be attained as the number of elements increases. However, 

calculations with higher number of elements (beyond 6.5×105) becomes a limiting factor in terms 

of memory requirements and CPU time,  and thus a mesh size with element size of 0.2mm (total 

of 638,901 elements) is robust enough for all the FEA simulations reported in this paper(e.g., 

Figure A3(a) and (b)).  
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Figure A4. Initial elastic modulus, 𝐸𝑖, in FEA as a function of total number of elements  

A3 Warping effects in DSL and its solution 

Most specimens were waisted (“dog-bone”) specimens with normal tabs, as shown in 

Figure A1(b). However, in DSL architectures, the anisotropic in-plane behavior results in an ‘S’ 

shape in the deformed geometry, shown in Figure A5(b). This in-plane warping behavior 

influences the measurement of the fiber reorientation due to stretch only. To mitigate this effect, 

oblique tabs are introduced for DSL specimens (Sun and Chung, 1990) to reduce warping effects. 

The details are introduced in the following and the comparison between waisted and oblique tab 

samples is illustrated in Figure A1(e) and (f).  

Based on constitutive law of uniaxial stress condition (𝜎𝑥𝑥 = 𝜎0), we have relationship, 

{

휀𝑥𝑥

휀𝑦𝑦

𝛾𝑥𝑦

} = [

𝑆11 𝑆12 𝑆16

𝑆12 𝑆22 𝑆26

𝑆16 𝑆26 𝑆66

] {

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

}                                                                                                  A(5) 

휀𝑥𝑥 = 𝑆11𝜎0; 휀𝑦𝑦 = 𝑆12𝜎0; 𝛾𝑥𝑦 = 𝑆16𝜎0                                                                                      A(6) 

The displacement field should be linear in 𝑥 and 𝑦 directions, 

𝑢𝑥 = 휀𝑥𝑥𝑥 + 𝐶1𝑦 + 𝐶3; 𝑢𝑦 = 휀𝑦𝑦𝑥 + 𝐶2𝑥 + 𝐶4                                                                          A(7) 

In order to avoid rigid body translation and rotation, we set up  

𝐶3 = 𝐶4 = 0; 𝐶1 = 𝑆16𝜎0                                                                                                             A(8) 
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Which means that the edges of specimen parallel to the loading direction before 

deformation keep parallel after deformation. In order to satisfy this requirement and have uniform 

tensile deformation along the longitudinal direction of the specimen, the edges should be oblique 

as 

𝑦 =
𝑢𝑥

𝑆16𝜎0
−

𝑆11

𝑆16
𝑥; 𝑡𝑎𝑛 𝜑 = −

𝑆11

𝑆16
                                                                                                  A(9) 

where, 𝜑 is the angle between the oblique edge and the horizontal tab edge. 

The relationship between misaligned angle 𝜃𝑠 and its corresponding oblique tab angle 𝜑 

under the specific homogenized material property in the present work is illustrated in Figure A5(a), 

Based on the displacement field, it is clear that this boundary condition includes rotation 

of the homogenized materials, which is shown in A(10) 

𝑤12 =
1

2
𝑆16𝜎0                                                                                                                            A(10) 

In order to exclude the rotation in the gauge region of the laminate, the polar decomposition 

method is going to be introduced and discussed in section A4. The deflection of sample with dog-

bone shape is relatively uniform in the gauge zone, as shown in Figure A5(b), and thus the 

homogenized rotation matrix can be excluded by using polar decomposition method. It is observed 

that the difference on fiber reorientation values due to stretch only, ∆𝜃𝑐, between dog-bone sample 

and the sample with oblique tab is small, shown in Figure A5(c). Further confirmation can be 

observed in Figure A5(d), which is the comparison among the ∆𝜃𝑐 measured from FEA results, 

calculated by using global displacement map and volume averaged deformation gradient from each 

element in FEA. Details are described at the end of section A4. Thus ∆𝜃𝑐 can be independent on 

the boundary conditions and the warping induced by fixed ends of the sample. Subsequently, 

oblique tab, which is with less rotation of the whole laminate compared with dog-bone sample, 

chosen to be the major approach applied in DSL.  
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Figure A5 (a) Oblique tab angle, 𝜑, as a function of laminae misoriention, 𝜃𝑠, corresponding to the 

loading axis; (b) Theoretical deflection and rigid body rotation of dog-bone sample along longitudinal 

axis in uniaxial tensile; (c) Fiber reorientation of DSL with oblique tab and normal dog-bone tab. (d) ∆𝜃𝑐 

measured and calculated by three different methods as a function of misorientation 𝜃𝑖 in DFH 𝜃ℎ = 30° 

with free-periodic boundary condition 

A4 The method to exclude rigid body rotation 

Before doing polar decomposition, the middle gauge region of the specimen with 𝐿/𝑊 = 

2 is the target part to be analyzed and homogenized. Deformation gradient(F) from FEA is 

achieved from the Gauss point of each element in the matrix and from the rotation matrix(R) of 

the fiber, considered as a rigid body. The deformation gradient is volume averaged by the deformed 

volume of each element, as shown in equation A(11). 

𝑭 = [∑ (𝑉𝑓𝑖𝑭𝑓𝑖) + ∑ (𝑉𝑚𝑖𝑭𝑚𝑖
𝑁
𝑖=1 )]/(𝑉𝑓

𝑛
𝑖=1 + 𝑉𝑚)                                                                      A(11) 
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Where N is the number of matrix elements, n is the number of fibers, 𝑉𝑓 is the volume of 

all fibers in the target gauge region, 𝑉𝑚 is the whole volume of deformed matrix in the gauge region, 

𝑉𝑚𝑖 is the volume of each deformed matrix element, 𝑉𝑓𝑖 is the volume of each fiber, 𝑭𝑚𝑖 is the 

deformation gradient of each matrix element and 𝑭𝑓𝑖 is the corresponding deformation gradient 

representing for each fiber. 

Then, the volume averaged deformation gradient can be decomposed to the product of 

orthogonal rotation tensor, 𝑹 , and right stretch tensor, 𝑼 . After calculation, 𝑹  tensor of the 

homogenized laminate is available, as shown in equation s(12). Then based on the uniform 

warping deformation in the gauge part, we can conduct the calculation on all the fibers in gauge 

region to exclude the rotation effect from the homogenized laminate.  

Once finish the calculation on fibers reorientation, the model with oblique tab and the dog-

bone shape with normal tab should have the same values of fiber reorientation, ∆𝜃𝑐 , which is 

induced by deformation, 𝑼 tensor, only. The results calculated from two methods are illustrated in 

Figure A5(c). 

𝑭 = 𝑹 ⋅ 𝑼                                                                                                                                   A(12) 

Further confirmation is established by comparing the ∆𝜃𝑐 extracted from the displacement 

field in FEA, theoretical-homogenized 𝑭 tensor, and the values measured directly from FEA, as 

shown in Figure A5(d). The first method assumes that homogeneous deformation is distributed in 

each individual lamina. Based on the deformed and undeformed coordinates at four vertices of the 

gauge region, the deformation map can be achieved, and then polar decomposition method is 

implemented again to extract right stretch tensor 𝑼. In the next step, the deformed vector is 

calculated as �̅� = 𝑼𝑣0̅̅ ̅, where 𝑣0̅̅ ̅ is the initial unit vector before deformation, such as (cos30°, 

sin30°). The angle between �̅� and 𝑣0̅̅ ̅ is arccos (
�̅�∙𝑣0̅̅ ̅̅

|�̅�||𝑣0̅̅ ̅|
).The 2nd method (theoretical-homogenized 

𝑭 tensor) is introduced in section 2.3.3 of the main text and the 3rd method is introduced in this 

section. The 𝑭 tensor from 2nd and 3rd method both are based on the volume averaged deformation 

gradient components from matrix and fibers. 

The fiber reorientation due to stretch only, ∆𝜃𝑐 , and fiber reorientation considering in-plane 

warping effects, ∆𝜃 , as a function of applied strain, ϵ , from DFH, DMB and DSL architectures are 

illustrated in Figure A6. 
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Figure A6 (a)-(b)Fiber reorientation values due to stretch, ∆𝜃𝑐, and fiber reorientation considering in-

plane warping effects, ∆𝜃, of DFH, DMB and DSL architectures. 

Table A1 Components of stretch tensor polar decomposed from deformation gradient extracted from FEA 

  𝑈𝑥𝑥 𝑈𝑦𝑦 𝑈𝑥𝑦 𝑈𝑦𝑥 

𝜃30 in 𝜃ℎ = 30° 𝜃ℎ30 1.1104 0.9455 -0.0196 -0.0196 

𝜃60 in 𝜃ℎ = 30° 𝜃ℎ60 1.1059 0.9606 -0.0047 -0.0047 

𝜃30 in 𝜃𝑏 = 30° 𝜃𝑏30 1.1099 0.9018 -0.0097 -0.0097 

𝜃𝑠 = 30° 𝜃𝑠30 1.1121 0.9432 -0.0791 -0.0791 
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Figure A7. Poisson’s ratio 𝑣𝑥𝑦 and extensional-shear coupling coefficients 𝜂𝑥𝑦,𝑥 as a function of 

misorientation 𝜃𝑠.  

A5 Stress and strain plots 

Stress and strain curves in region II of DFHs in FEA, compared with experimental results 

are summarized in Figure A8. Hyperelastic model is used in this part with 15% of ϵ. Similarly, 

stress and strain curves of DSLs with hyperelastic matrix in FEA are plotted in Figure A10(a). 

Stress and strain curves of DFH, DMB and DSL architectures with linear elastic matrix 

under 4% of ϵ𝑡 are illustrated in Figure A10(b)-(d). 
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Figure A8. Stress and strain curves in experiments (L/W=2) and FEA of DFHs (a) 𝜃ℎ = 30°, (b) 𝜃ℎ =
45°, (c) 𝜃ℎ = 60°, (d) 𝜃ℎ = 90°.  

 

Figure A9. Stress and strain curves in experiments with (a) L/W=2 and (b) L/W=4 
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Figure A10. (a)Stress and strain curves in FEA of DSL architectures with hyperelastic matrix (b-d)True 

stress and strain curves in FEA of DSL architectures, DFH and DMB architectures with linear elastic 

matrix material. 

A6 The stiffening parameter 𝜞 and 𝜞𝒊𝒐𝒇 

The stiffening parameter 𝛤 is defined as 
𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛
 in region II of the stress and strain curve. 

𝐸𝑚𝑖𝑛  is calculated by fitting a linear model within the interval from 𝜖= 5% to 6%, where 𝜖 

represents for the applied strain, in the stress and strain curve for all the experimental results. 𝐸𝑚𝑎𝑥 

is calculated by fitting a linear model within the interval from 𝜖= 14% to 15%, see Figure A8(a). 

𝛤 value of architecture 𝜃ℎ = 0°  was not shown in Figure 2.2(e), since fiber reorientation in 

unidirectional laminate due to uniaxial tensile is not our focus. Besides, due to long plateau of 
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stress and strain curve induced by propagation of local failures at fiber ends after 1st peak stress of 

𝜃ℎ = 0°, shown in Figure A9, the value of 𝐸𝑚𝑖𝑛 is close to zero. 

The approach to calculate 𝛤 in FEA is similar. In order to match the same deformation that 

the sample from experiments undergo, 𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥 are defined by fitting linear models based 

on 5% to 6% and 14% to 15% of 𝜖  separately from the stress and strain curves in region 

II(discontinuous matrix), as shown in Figure A8(a).   

𝛤𝑖𝑜𝑓 is the stiffening parameter in the specific case that it represents for the 𝐸𝑚𝑎𝑥 over the 

initial modulus, 𝐸𝑖  (the interval between 0% to 1% of ϵ in FEA). This is implemented in the 

calculation of semi-analytical prediction, as shown in Figure 2.4(e) and the stiffness variation of 

models with linear matrix, shown in Figure 2.6(c) and (d). 𝛤𝑖𝑜𝑓 in Figure 2.4(e) is not based on 

stress and strain curve of FEA, yet it is based on the fiber orientation after 15% of 𝜖 , while 𝛤𝑖𝑜𝑓(4%) 

in Figure 2.6(c-d) is based on local true strain, 𝜖𝑡, and true stress curve. 

A7 Inclusion of discontinuities to represent early failure 

The modulus mismatch between fiber and matrix results in a severe stress concentration at 

the fiber ends. This has the consequence of an early failure at relatively low ϵ (~3%) at these 

positions in the experiments. Since a fracture criterion is not implemented in FEA, a separate 

simulation is conducted to capture the resultant impact of these fractures on the macroscopic stress-

strain response. Here, discontinuities are placed within the matrix structure at the fiber ends to 

represent the local failures, Figure A11. 

 

Figure A11. Discontinuities in the matrix between two fibers to mimic the local failures at the beginning 

of region II  
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A8 Study on ratio of elastic modulus of fibers (𝑬𝒇𝒊𝒃𝒆𝒓) over elastic modulus of matrix 

(𝑬𝒎𝒂𝒕𝒓𝒊𝒙) 

In the present paper, 𝐸𝑓𝑖𝑏𝑒𝑟/𝐸𝑚𝑎𝑡𝑟𝑖𝑥 is approximately 3288. In this section, 𝐸𝑓𝑖𝑏𝑒𝑟/𝐸𝑚𝑎𝑡𝑟𝑖𝑥 

is extended to 0.01, 0.1, 1, 10, 100 and 1000. From Figure A12(a) and (b), it is observed that once 

the ratio of 𝐸𝑓𝑖𝑏𝑒𝑟/𝐸𝑚𝑎𝑡𝑟𝑖𝑥 is increasing, the ∆𝜃𝑐 value and the strain stiffening 𝛤𝑖𝑜𝑓 is going to be 

converged. In Figure A12(a), with the deceasing of 𝐸𝑓𝑖𝑏𝑒𝑟/𝐸𝑚𝑎𝑡𝑟𝑖𝑥 , the material property 

incompatibility is eliminated. Thereby, minor fiber reorientation is observed. 

 

Figure A12. (a) ∆𝜃𝑐 of 𝜃ℎ = 30° with different ratios of  𝐸𝑓𝑖𝑏𝑒𝑟/𝐸𝑚𝑎𝑡𝑟𝑖𝑥 as a function of local strain. (b) 

Strain stiffening of 𝜃ℎ = 30° as a function of 𝐸𝑓𝑖𝑏𝑒𝑟/𝐸𝑚𝑎𝑡𝑟𝑖𝑥. 
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Figure A13. Maximum logarithmic strain, 휀𝑙𝑛 distribution of 𝜃ℎ = 30° with different 𝐸𝑓𝑖𝑏𝑒𝑟/𝐸𝑚𝑎𝑡𝑟𝑖𝑥 

A9 Shear strain distribution at lamina interface of DMB 𝜽𝒃 = 𝟑𝟎° and DFH 𝜽𝒉 = 𝟑𝟎° 

The in-plane shear deformation and contraction due to uniaxial tensile of single lamina is 

dependent on misaligned angle 𝜃𝑖 , shown in Figure A7. However, in a laminate, the adjacent 

laminae and lay-up sequence can change the deformation of lamina with 𝜃𝑖, as discussed in section 

3.3.1. In this section, we focus on the local in-plane shear deformation of laminates with distinct 

lay-up sequences. 

Based on the in-plan shear strain distribution map at each interface of DFH 𝜃ℎ = 30° and 

DMB 𝜃𝑏 = 30°  under same uniaxial tensile, as shown in Figure A14, large amount of shear 

deformation is observed at the interface between individual layer 𝜃0 and 𝜃30(𝜃150) of 𝜃ℎ = 30°. 

Unignorable shear deformation is also found in the matrix gap between two aligned fibers at the 
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interface between laminae θ30 and θ60, compared with the shear deformation at all interfaces of 

DMB 𝜃𝑏 = 30°  

  

Figure A14. In-plane shear strain, 𝐿𝐸12, distribution at the interface of DMB 𝜃𝑏 = 30°(left) and DFH 

𝜃ℎ = 30°(right) 

After seeing the strain distribution in plane, the shear strain distribution through the 

thickness is also deserved to be noted. Figure A15 shows the shear strain distribution through the 

thickness along two distinct paths. These paths go through the matrix part between two parallel 

fibers, shown in Figure A15. 

The in-plane logarithmic shear strain, 𝐿𝐸12, of DMB is diminished to 0 or close to 0 at the 

interface between laminae, whereas DFH is with more shear strain distribution, shown in Figure 

A15(e) and (f). The paths we chose to show is representative since the shear strain distribution is 

periodical in-plane, Figure A14. 
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Figure A15. Shear strain distribution,  𝐿𝐸12, through the thickness of different two paths of DFH 𝜃ℎ =
30° and DMB 𝜃𝑏 = 30° 

A10 Comparison on ∆𝜽 between models with hyperelastic and linear elastic matrix. 

Fiber reorientation values, ∆𝜃, are illustrated as a function of loading displacement, which 

is shown in Figure A16. ∆𝜃 is the fiber reorientation values without excluding rotation tensor 𝑹 of 

the homogenized lamina using polar decomposition method. It is observed that ∆𝜃 of DFH 𝜃ℎ =

30° and DMB 𝜃𝑏 = 30° with hyperelastic matrix is consistent with the results of DFH 𝜃ℎ = 30° 

and DMB 𝜃𝑏 = 30° with linear elastic matrix. 

 

Figure A16. Fiber reorientation, ∆𝜃, as a function of applied displacement in (a) DFH 𝜃ℎ = 30°and (b) 

DMB 𝜃ℎ = 30° with hyperelastic and linear elastic matrix. 
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A11 Fiber reorientation in models with free-periodic boundary condition 

∆𝜃𝑐 values in DFH with free-periodic boundary condition totally exclude the size effect in 

z direction. ∆𝜃𝑐  values in DFH show the symmetry results corresponding to vertical axis 𝜃90 , 

shown in Figure A17. However, due to discontinuous lay-up sequence, the ∆𝜃𝑐 values of disorder 

laminate 𝜃𝑟=[30/150/60/120/0/90/30] are not symmetry to the vertical axis 𝜃90. ∆𝜃𝑐 of individual 

lamina 𝜃60 in 𝜃𝑟  is 15.5% higher than the individual lamina 𝜃60 of 𝜃ℎ = 30°, due to larger in-

plane shear deformation of adjacent lamina 𝜃150 in 𝜃𝑟 and more contraction in transverse direction 

due to “balanced” effect of adjacent lamina 𝜃120 in 𝜃𝑟. 

The 𝐸𝑖𝑛𝑖 of disorder laminates with the same lamina misorientations of DFH 𝜃ℎ = 30°, but 

with different lay-up sequence is tabulated in Table A2. All these results are calculated by CLPT 

and there are 120 N repeated in z direction to represent infinite case in the material. 

  

Figure A17. Fiber reorientation (a) after and (b) before excluding rotation tensor 𝑹 as a function of initial 

misorientation of laminae 

Table A2 𝐸𝑖𝑛𝑖 of alternative disorder lay-up sequence predicted by CLPT with 120 N(pitches) 

 [30/150/60/120/0/90] [90/60/150/0/30/120] [30/60/0/150/90/120] 

𝐸𝑖𝑛𝑖 [MPa] 

2.4423 2.4423 2.4423 

[150/90/60/30/120/0] [0/30/60/90/120/150] [60/0/150/30/90/120] 

2.4423 2.4423 2.4423 
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A12 Matrix with elasto-plastic model 

To remedy the limited deformation of model with linear elastic matrix, elasto-plastic matrix 

is used in FEA. The yielding stress and hardening slope are 𝜎𝑦  =0.014 (MPa) and 𝐸𝑝𝑙𝑎𝑠𝑡𝑖𝑐  = 

0.03(MPa) respectively. 

The true stress and strain curve and the elastic modulus as a function of local true strain, 

𝜖𝑡 , is illustrated in Figure A18. It is observed that even with elasto-plastic matrix and large 

deformation, the DFH 𝜃ℎ = 30° does not show any strain stiffening. 

 

Figure A18. (a) True stress and strain curve of DFH 𝜃ℎ = 30°. (b) Elastic modulus as a function of local 

true strain. 

A13 Rotation distribution in matrix 

In Figure A19(a) to (j), the values of rotation are illustrated by the integration points in the 

matrix elements from three categories of laminates: DMB, DSL and DFH. The rotation in the 

matrix around one single fiber exhibits diagonal pattern, shown in Figure A19(e), which means 

the rotation values in upper right and lower left (main diagonal zone) or upper left and lower right 

area(minor diagonal zone)  encircling one fiber are respectively the same in these three types of 

laminates. The main and minor diagonal zones in a DSL are with positive counter-clockwise 

rotation, but their values are different as a result of in-plane shear deformation, as shown in Figure 

A19(a) and (d). In DFH and DMB, the rotation values surrounding fibers in main diagonal zone 

are positive, whereas in the minor zones the rotation values are found to be negative (clockwise). 

The difference on absolute rotation values of diagonal zones in individual lamina of DFH is larger 



 

 

155 

than the absolute values of DMB since there is less in-plane shear deformation in the DMB, shown 

in Figure A19(b)-(c) and (d)-(e).  

Meanwhile non-negligible shear deformation exists in the individual lamina 𝜃30 of 𝜃ℎ =

30°. However, the in-plane shear deformation in individual layer of helicoidal laminate is less than 

the shear deformation of corresponding single lamina due to interlayer restriction. The green field 

values, in Figure A19(b) and (c), from DFH and DMB represent the rotation value of interlayer 

matrix. The dark blue zones, as shown in Figure A19(d), of DSL exhibit the rotation values of 

interlayer matrix. These two rotation values from interlayer matrix above/below fibers are the same 

as the rotation values of fibers that we measured from simulation by setting up vectors from two 

ends of fibers.  

The rotation distribution maps along Y direction are illustrated in Figure A19(h-j) and there 

is less size effect on rotation in DSL. Due to less in-plane shear deformation of DFH and DMB, 

size effect on rotation distribution in the matrix is larger than DSL. 

Fiber reorientation after correction as a function of applied strain is illustrated in Figure 

A6(a)-(c). One point deserved to be mentioned is that the maximum reorientation of 𝜃𝑠 = 5° for a 

given applied strain, is larger than the original orientation 𝜃𝑠 = 5°. This is due to the procedure 

that fibers rotate toward the loading direction and then rotate away from the loading axis (X-axis) 

once fiber longitudinal axis coincides the loading direction. 
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Figure A19. (b) rotation map of matrix of 𝜃𝑠 = 30° from two different of views; (c) rotation map of 

matrix of 𝜃30 of 𝜃ℎ = 30° from two different of views; (d) rotation map of matrix of 𝜃30 of 𝜃𝑏 = 30°; 

from two different of views; (e) rotation distribution in matrix surrounding fiber and shear\tension zone 

illustration; (f) Rotation values along Y direction of lamina 𝜃30 in DFH 𝜃ℎ = 30°; (g) Rotation values 

along Y direction of lamina 𝜃30 of DMB 𝜃𝑏 = 30°; (h) Rotation values along Y direction of DSL 𝜃𝑠 =
30°. 

A14 In-plane shear and transverse strain at the middle of 𝜽𝟑𝟎 laminae from DFH, DSL and 

DMB 

Figure A20(a) to (d) illustrated the strain distribution of logarithmic transverse strain (LE22) 

and logarithmic shear strain (LE12) in the matrix of lamina 𝜃30 of DSL 𝜃𝑠 = 30° and DFH 𝜃ℎ =

30°. The directions of LE22 and LE12 are all negative around fibers in DSL 𝜃𝑠 = 30, whereas the 
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directions of strain around fibers of DFH 𝜃ℎ = 30° are staggered (“positive” and “negative”). 

However, this kind of deformation is not obvious in 𝜃ℎ = 60° , shown in Figure A20(g), (h), (k) 

and (j). This specific staggered directions of deformation around fibers could be one of the reasons 

of limited fiber rotation and relatively isotropic in-plane property of each laminae in DFH. 

It is exhibited that the transverse deformation LE22 of DFH 𝜃ℎ = 30° is larger than SL 

𝜃𝑠 = 30°, however smaller than MBL 𝜃𝑏 = 30°. Compared to other two, transverse squeezing 

deformation of DMB contributes more to the fiber reorientation. Same behavior is found in 𝜃𝑏 =

60°, shown in Figure A19(i) and (l). The shear strain in the matrix of 𝜃𝑏 = 60° is close to zero 

during the global deformation.  

At the same time, DSL 𝜃𝑠 = 30 is with the maximum in-plane shear deformation, shown 

in Figure A20(c) and (f). However, turn to DSL 𝜃𝑠 = 60, illustrated in Figure A20(i) and (l), the 

benefits of shear are not solid compared with transverse strain. Stimulation of fiber reorientation 

in DSL probably mainly comes from in-plane shear deformation when off-axis angle is small. 

Nevertheless, once turn to larger off-axis angle, transverse squeezing plays more roles in fiber 

reorientation. 

DFH 𝜃ℎ = 30 does not perform outstanding either in LE22 or in LE12 with the same axial 

elongation of DMB and DSL.  

It is worthy to be noticed that there is less shear, greater transverse strain with larger 𝜃ℎ, 

for a fixed 𝜃𝑖, such as 𝜃60 laminae in 𝜃ℎ = 30 and 𝜃ℎ = 60 laminates. For a fixed 𝜃ℎ, there is less 

shear and transverse strain with larger off-axis angle, such as 𝜃30 and 𝜃60 in 𝜃ℎ = 30 laminate. 
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Figure A20. (a) Logarithmic strain in 𝑌 direction of SL30 and (b) individual lamina 30 of DFH30 with 

PBC. (c) Disrtibution of Logarithmic strain in 𝑌 direction along the perpendicular distance. (d) In-plane 

shear logarithmic strain of SL30 and (e) individual lamina 30 of DFH30. (f) Disrtibution of In-plane shear 

logarithmic strain along the perpendicular distance. (g) Logarithmic strain in Y direction of SL60 and (h) 

individual lamina 60 of DFH60 with PBC. (i) Disrtibution of Logarithmic strain in Y direction along the 

perpendicular distance. (j) In-plane shear logarithmic strain of SL60 and (k) individual lamina 60 of 

DFH60. (l) Disrtibution of In-plane shear logarithmic strain along the perpendicular distance. 

A15 Definite values of 𝑬𝒊𝒏𝒊 

Due to high Poisson’s ratio 0.48, the hydrostatic resistance in the zone between two aligned 

fibers is considerably high. However, CLPT does not consider this contribution. Thus, the 

difference between 𝐸𝑖𝑛𝑖 , Elastic modulus of 𝜃𝑠 = 0°, of CLPT and FEA is high, illustrated in 
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Figure A21(a). Once we use 𝐸𝑖𝑛𝑖 from 𝜃𝑠 = 0° without local failures to normalize other values 

from FEA, other off-axis angle laminae would be with lower normalized elastic modulus than 

prediction from CLPT, shown in Figure 2.2(b). Specifically, the definite value of Elastic modulus 

of  𝜃𝑠 = 0° from FEA without local failures is 14.59MPa, when the Poisson’s ratio of matrix is 

0.48. However once the Poisson’s ratio of matrix changes to 0.3, the Elastic modulus turns to 

9.75MPa. At the same time, the elastic modulus of  𝜃𝑠 = 0° with local failures are 5.69MPa and 

5.94 MPa separately of models with 0.48 and 0.3 matrix Poisson’s ratio. 

 

Figure A21. (a) Definite value of 𝑬𝒊𝒏𝒊 of DSL and DMB (b) Definite value of 𝑬𝒊𝒏𝒊 of DFH 

 

Figure A22. Strain stiffening as a function of local true strain of numerical and analytical prediction with 

linear elastic matrix 
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APPENDIX B. SUPPLEMENTAL MATERIALS FOR CHAPTER 3 

B1 Effective shear and tension volume of 3D models 

The effective shear/tension area over volume of unit cell of nacre structure 
𝐴𝑠

𝑉𝑐𝑒𝑙𝑙
 and 

𝐴𝑡

𝑉𝑐𝑒𝑙𝑙
 

are calculated by equation B(1) and B(2). 

𝐴𝑠

𝑉𝑐𝑒𝑙𝑙
=

2×(𝐴ℎ𝑒𝑥−3𝐴𝑡𝑒𝑛𝑠𝑖𝑜𝑛)

𝐿×𝑊×(
𝐻

2
)

=
2(

3√3

2
𝑤𝑛

2−3(𝑤𝑛𝑡−
√3

6
𝑡2))

(3𝑤𝑛+√3𝑡)(√3𝑤𝑛+𝑡)(ℎ+𝑡)
                                                                             B(1) 

𝐴𝑡

𝑉𝑐𝑒𝑙𝑙
=

8×(𝑤𝑛+
𝑡

2√3
)(

ℎ

2
+𝑡) cos(30°)

𝐿×𝑊×
𝐻

2

                                                                                                                       B(2) 

Where volume fraction 𝑉𝑓 =
4∙

ℎ

2
(

3√3

2
𝑤𝑛

2)

𝐿𝑊𝐻∙0.5
=

3√3

2
𝑤𝑛

2ℎ

3√3

2
(𝑤𝑛+

𝑡

√3
)

2
(ℎ+𝑡)

 

The effective shear/tension area over volume of unit cell of chiton structure 
𝐴𝑠

𝑉𝑐𝑒𝑙𝑙
 and 

𝐴𝑡

𝑉𝑐𝑒𝑙𝑙
 

are calculated as following. 

𝐴𝑠

𝑉𝑐𝑒𝑙𝑙
=

(ℎ−𝑡)

2
𝑤𝑐

𝐿

2
×

𝑊

4
×𝐻/2

=
(ℎ−𝑡)

2
𝑤𝑐

(3𝑤+√3𝑡)

2

2(√3𝑤+𝑡)

4

(ℎ+𝑡)

2

=
4(ℎ−𝑡)𝑤𝑐

(3𝑤𝑐+√3𝑡)(√3𝑤𝑐+𝑡)(ℎ+𝑡)
                                                 B(3) 

𝐴𝑡

𝑉𝑐𝑒𝑙𝑙
=

2(
𝐿

2
×

𝑊

4
−

𝐴ℎ𝑒𝑥
4

)

𝐿

2
×

𝑊

4
×𝐻/2

=
2(

𝐿

2
×

𝑊

4
−

𝐴ℎ𝑒𝑥
4

)

(3𝑤𝑐+√3𝑡)

2

2(√3𝑤𝑐+𝑡)

4

(ℎ+𝑡)

2

=
2(3𝑤𝑐+√3𝑡)(√3𝑤𝑐+𝑡)−4𝐴ℎ𝑒𝑥

(3𝑤𝑐+√3𝑡)(√3𝑤𝑐+𝑡)(ℎ+𝑡)
                                     B(4) 

Where volume fraction 𝑉𝑓 =

1

2
(

3√3

2
𝑤𝑐

2)
ℎ

2
𝐿

2
×

𝑊

4
×𝐻/2

=
3√3

2
𝑤𝑐

2ℎ

3√3

2
(𝑤𝑐+

𝑡

√3
)

2
(ℎ+𝑡)

 

B2 Analytical prediction of 3D nacre structure 

The displacements of 3D nacre structure solve by equilibrium equations are in B(5) to B(8). 

𝑢𝑙(𝑥) =
1

3
𝜎𝑓√3 (−𝑘√2 𝑥𝑐𝑜𝑠ℎ (

𝑘√2(𝑙𝑣−𝑙𝑤)

𝑤𝑛
) + 𝑘√2𝑥𝑐𝑜𝑠ℎ (

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
) +

4𝑀𝑥𝑠𝑖𝑛ℎ (
𝑘√2𝑙𝑤

𝑤𝑛
) + 4𝑀𝑥𝑠𝑖𝑛ℎ (

𝑘√2𝑙𝑣

𝑤𝑛
) + 4𝑀𝑥𝑠𝑖𝑛ℎ (

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
) − 𝑤𝑛 sinh (

𝑘√2(𝑙𝑣−𝑙𝑤+𝑥)

𝑤𝑛
) +

𝑤𝑛 sinh (
𝑘√2(𝑙𝑣+𝑙𝑤+𝑥)

𝑤𝑛
) + 𝑤𝑛 sinh (

𝑘√2(𝑙𝑤−𝑥)

𝑤𝑛
) + 𝑤𝑛 sinh (

𝑘√2(𝑙𝑤+𝑥)

𝑤𝑛
) − 2 sinh (

𝑘√2(𝑙𝑤)

𝑤𝑛
) 𝑤𝑛 +
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𝑤𝑛 sinh (
𝑘√2(𝑙𝑣−𝑙𝑤)

𝑤𝑛
) − 𝑤𝑛 sinh (

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
)) /𝐸𝑓 (−𝑘√2 cosh (

𝑘√2(𝑙𝑣−𝑙𝑤)

𝑤𝑛
) +

𝑘√2cosh (
𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤 𝑛
) + 2𝑀𝑠𝑖𝑛ℎ (

𝑘√2𝑙𝑤

𝑤𝑛
) + 2𝑀𝑠𝑖𝑛ℎ (

𝑘√2𝑙𝑣

𝑤𝑛
) + 2𝑀𝑠𝑖𝑛ℎ(

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
))                 B(5) 

𝑢𝑟(𝑥) =
1

3
𝜎𝑓√3 (−𝑘√2 𝑥𝑐𝑜𝑠ℎ (

𝑘√2(𝑙𝑣−𝑙𝑤)

𝑤𝑛
) + 𝑘√2𝑥𝑐𝑜𝑠ℎ (

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
) +

4𝑀𝑥𝑠𝑖𝑛ℎ (
𝑘√2𝑙𝑤

𝑤𝑛
) + 4𝑀𝑥𝑠𝑖𝑛ℎ (

𝑘√2𝑙𝑣

𝑤𝑛
) + 4𝑀𝑥𝑠𝑖𝑛ℎ (

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
) − 𝑤𝑛 sinh (

𝑘√2(𝑙𝑣+𝑙𝑤−𝑥)

𝑤𝑛
) −

𝑤𝑛 sinh (
𝑘√2(𝑙𝑣+𝑥)

𝑤𝑛
) − 𝑤𝑛 sinh (

𝑘√2(𝑙𝑣−𝑥)

𝑤𝑛
) − 𝑤𝑛 sinh (

𝑘√2(𝑙𝑣−𝑙𝑤+𝑥)

𝑤𝑛
) + 2 sinh (

𝑘√2(𝑙𝑣)

𝑤𝑛
) 𝑤𝑛 +

𝑤𝑛 sinh (
𝑘√2(𝑙𝑣−𝑙𝑤)

𝑤𝑛
) + 𝑤𝑛 sinh (

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
)) /𝐸𝑓 (−𝑘√2 cosh (

𝑘√2(𝑙𝑣−𝑙𝑤)

𝑤𝑛
) +

𝑘√2cosh (
𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤 𝑛
) + 2𝑀𝑠𝑖𝑛ℎ (

𝑘√2𝑙𝑤

𝑤𝑛
) + 2𝑀𝑠𝑖𝑛ℎ (

𝑘√2𝑙𝑣

𝑤𝑛
) + 2𝑀𝑠𝑖𝑛ℎ(

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
))                 B(6) 

𝑣(𝑥) =
1

3
𝜎𝑓√3 (−𝑘√2 𝑥𝑐𝑜𝑠ℎ (

𝑘√2(𝑙𝑣−𝑙𝑤)

𝑤𝑛
) + 𝑘√2𝑥𝑐𝑜𝑠ℎ (

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
) +

4𝑀𝑥𝑠𝑖𝑛ℎ (
𝑘√2𝑙𝑤

𝑤𝑛
) + 4𝑀𝑥𝑠𝑖𝑛ℎ (

𝑘√2𝑙𝑣

𝑤𝑛
) + 4𝑀𝑥𝑠𝑖𝑛ℎ (

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
) + 𝑤𝑛 sinh (

𝑘√2(𝑙𝑣−𝑙𝑤+𝑥)

𝑤𝑛
) −

𝑤𝑛 sinh (
𝑘√2(𝑙𝑣+𝑙𝑤+𝑥)

𝑤𝑛
) − 𝑤𝑛 sinh (

𝑘√2(𝑙𝑤−𝑥)

𝑤𝑛
) − 𝑤𝑛 sinh (

𝑘√2(𝑙𝑤+𝑥)

𝑤𝑛
) − 2 sinh (

𝑘√2(𝑙𝑤)

𝑤𝑛
) 𝑤𝑛 +

𝑤𝑛 sinh (
𝑘√2(𝑙𝑣−𝑙𝑤)

𝑤𝑛
) − 𝑤𝑛 sinh (

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
)) /𝐸𝑓 (−𝑘√2 cosh (

𝑘√2(𝑙𝑣−𝑙𝑤)

𝑤𝑛
) +

𝑘√2cosh (
𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤 𝑛
) + 2𝑀𝑠𝑖𝑛ℎ (

𝑘√2𝑙𝑤

𝑤𝑛
) + 2𝑀𝑠𝑖𝑛ℎ (

𝑘√2𝑙𝑣

𝑤𝑛
) + 2𝑀𝑠𝑖𝑛ℎ(

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
))                 B(7) 

𝑤(𝑥) =
1

3
𝜎𝑓√3 (−𝑘√2 𝑥𝑐𝑜𝑠ℎ (

𝑘√2(𝑙𝑣−𝑙𝑤)

𝑤𝑛
) + 𝑘√2𝑥𝑐𝑜𝑠ℎ (

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
) +

4𝑀𝑥𝑠𝑖𝑛ℎ (
𝑘√2𝑙𝑤

𝑤𝑛
) + 4𝑀𝑥𝑠𝑖𝑛ℎ (

𝑘√2𝑙𝑣

𝑤𝑛
) + 4𝑀𝑥𝑠𝑖𝑛ℎ (

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
) + 𝑤𝑛 sinh (

𝑘√2(𝑙𝑣+𝑙𝑤−𝑥)

𝑤𝑛
) +

𝑤𝑛 sinh (
𝑘√2(𝑙𝑣+𝑥)

𝑤𝑛
) + 𝑤𝑛 sinh (

𝑘√2(𝑙𝑣−𝑥)

𝑤𝑛
) + 𝑤𝑛 sinh (

𝑘√2(𝑙𝑣−𝑙𝑤+𝑥)

𝑤𝑛
) + 2 sinh (

𝑘√2(𝑙𝑣)

𝑤𝑛
) 𝑤𝑛 +

𝑤𝑛 sinh (
𝑘√2(𝑙𝑣−𝑙𝑤)

𝑤𝑛
) + 𝑤𝑛 sinh (

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
)) /𝐸𝑓(−𝑘√2 cosh (

𝑘√2(𝑙𝑣−𝑙𝑤)

𝑤𝑛
) +

𝑘√2cosh (
𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤
) + 2𝑀𝑠𝑖𝑛ℎ (

𝑘√2𝑙𝑤

𝑤𝑛
) + 2𝑀𝑠𝑖𝑛ℎ (

𝑘√2𝑙𝑣

𝑤𝑛
) + 2𝑀𝑠𝑖𝑛ℎ(

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
))                    B(8) 

Where 𝑘 = √
2𝑤𝑛

2𝐺𝑚

𝐸𝑓ℎ𝑡
, 𝑀 =

𝐶𝑚𝑤𝑛

𝐸𝑓𝑡
 and the displacement distribution under unit 

loading(𝜎𝑓 = 1) is illustrated in Figure B1. 
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Figure B1. Displacement distribution of the analytical prediction on 3D nacre model 

B3 Material characterization of matrix and fiber 

Simple shear and uniaxial tension tests are prepared to conduct material characterization 

under different thickness. Vertically and horizontally printed samples are shown in Figure B2. The 

elastic modulus of compliant matrix material is shown in Figure B3(1) and the maximum shear 

stress 𝜏𝑐 of matrix material is in Figure B3(2). The elastic modulus E and maximum shear stress 

𝜏𝑐 could be achieved as 0.437MPa (horizontally printed value) and 1.256MPa. 
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Figure B2. 3D printed (vertically and horizontally) material characterization samples for simple shear 

(2nd row) and uniaxial tension (1st row) tests with different thickness of matrix material (prepared by 

Chan Hue Jeong). 

 

Figure B3. (1) Elastic modulus E and (2) maximum shear stress 𝜏𝑐 of matrix material with different 

thickness. 
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B4 Periodic boundary condition 

Periodic boundary condition is implemented on 3D nacre and chiton Representative 

Volume Element (RVE) to avoid size effect. The detailed description is introduced in (Al Kassem 

and Weichert, 2009). Three pairs of surfaces are correlated by equation s(9), where dummy 

represents for dummy node, a node out of the model itself. 

𝑢𝑖
𝑘+ − 𝑢𝑖

𝑘− + 𝑢𝑖
𝑑𝑢𝑚𝑚𝑦

= 0                                                                                                                              B(9) 

Where indices ‘𝑘 +’ and ‘𝑘 −’ represent for the kth pair of opposite parallel surfaces of 

one RVE. Index ‘i’ identify the dimension, such as 1, 2 and 3. 

B5 𝝅𝟑 = 𝑨𝒔𝒍𝒔
𝟐/𝑽𝒄𝒆𝒍𝒍𝒕 

The shear-lag model is illustrated in Figure B4 and we assume fibers are infinitely stiff. 

Another assumption is there is no sliding between fiber and matrix, which means the interface 

between fiber and matrix is perfect boundary. Concentrated load P is applied at the right edge of 

the top fiber, which induces shear deformation in the compliant matrix. Thus the shear stress in 

the matrix could be represented by equation s(10). 

𝑃

𝐴𝑠
= 𝐺

∆

𝑡
                                                                                                                                                                   B(10) 

Also equation s(10) could be transferred to s(11), where 𝐴𝑒𝑓 is the effective cross-section 

area of the shear-lag model and 𝐿𝑒𝑓𝑓 is the effective length of shear-lag model. 

𝑃

𝐴𝑒𝑓
= 𝐺

𝐴𝑠∆

𝑡𝐴𝑒𝑓𝐿𝑒𝑓𝑓
𝐿𝑒𝑓𝑓                                                                                                                                                           B(11) 

𝑃

𝐴𝑒𝑓
  could be considered as normal stress applied on the shear-lag model and 

∆

𝐿𝑒𝑓𝑓
  is the 

engineering strain. Thus equation s(11) could be transferred to equation s(12) and s(13). 

𝜎 = 𝐺
𝐴𝑠𝐿𝑒𝑓𝑓

𝑡𝐴𝑒𝑓
휀                                                                                                                                                      B(12) 

𝜎 = 𝐺
𝐴𝑠𝐿𝑒𝑓𝑓

2

𝑡𝑉𝑐𝑒𝑙𝑙
휀                                                                                                                                                    B(13) 

It is observed that 
𝐴𝑠𝐿𝑒𝑓𝑓

2

𝑡𝑉𝑐𝑒𝑙𝑙
 is the dimensionless geometry parameter influencing the stiffness 

of the shear-lag model. 

 



 

 

165 

 

Figure B4. 2D shear-lag model 

B6 critical shear stress in matrix 

As discussed in section 3.2.1, maximum shear stress is located at both ends of the tablet, 

shown in Figure B5. Replacing 𝑥 = −𝑙𝑣 could achieve the maximum shear stress and we define 

𝜏𝑐 as the maximum shear stress of matrix material. Then the yield strength 𝜎𝑐 of 3D nacre could 

be achieved by equation s(14).  

 

Figure B5. (a) normalized shear stress in matrix and (b) normalized shear stress in prism 2, which is a 

zoom in figure. 

𝜎𝑐 =

−
√3

2

𝜏𝑐𝑡𝐸𝑓(−√2𝑘𝑐𝑜𝑠ℎ(
𝑘√2(𝑙𝑣−𝑙𝑤)

𝑤𝑛
)+√2𝑘𝑐𝑜𝑠ℎ(

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
)+2𝑀𝑐𝑜𝑓𝑠𝑖𝑛ℎ(

𝑘√2(𝑙𝑤)

𝑤𝑛
)+2𝑀𝑐𝑜𝑓𝑠𝑖𝑛ℎ(

𝑘√2(𝑙𝑣)

𝑤𝑛
)+2𝑀𝑐𝑜𝑓𝑠𝑖𝑛ℎ(

𝑘√2(𝑙𝑣+𝑙𝑤)

𝑤𝑛
))

𝐺𝑚𝑤𝑛(𝑠𝑖𝑛ℎ(
𝑘√2(𝑙𝑣−𝑙𝑤+𝑥)

𝑤𝑛
)−𝑠𝑖𝑛ℎ(

𝑘√2(𝑙𝑣+𝑙𝑤+𝑥)

𝑤𝑛
)−𝑠𝑖𝑛ℎ(

𝑘√2(𝑙𝑤−𝑥)

𝑤𝑛
)−𝑠𝑖𝑛ℎ(

𝑘√2(𝑙𝑤+𝑥)

𝑤𝑛
))

𝐴𝑠
𝑀

2
/

𝑉𝑐𝑒𝑙𝑙                                                                                                                                           B(14) 

  



 

 

166 

APPENDIX C. SUPPLEMENTAL MATERIAL FOR CHAPTER 4 

C1 mesh condition, J-integral comparison and stress distribution 

 

Figure C1. (a) Boundary condition and mesh condition of mode I crack; (b) Comparison of J-integral 

calculation for isotropic material and Graded, coupled with the prediction of ABAQUS; (c) Comparison 

of J-integral calculation for isotropic material and Inverse graded, coupled with the prediction of 

ABAQUS. 
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Figure C2. (a) Normalized opening stress distribution close to crack tip for three different sizes of crack 

model (b) Mesh convergence study on model with crack size a=50𝜇𝑚. 
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APPENDIX D. SUPPLEMENTAL MATERIAL FOR CHAPTER 5 

D1. Delamination procedure of FGH2sym and its associated laminates 

 

Figure D1. (a) Delamination failure distribution through the thickness of short beams H30sym and 

H15sym (b) Load and displacement curves of H15sym(red) and H30sym(black) (c) Delamination area 

distribution layer by layer. Different shaded color represents for different pitch of FGH1sym 
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Figure D2. (a) Delamination failure distribution through the thickness of short beams FGH2sym and 

H30sym (b) Load and displacement curves of FGH2sym(red) and H30sym(black) (c) Delamination area 

distribution layer by layer. Different shaded color represents for different pitches of FGH2sym 
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Figure D3. (a) Delamination failure distribution through the thickness of short beams FGH2sym and 

H45sym (b) Load and displacement curves of FGH2sym(red) and H45sym(black) (c) Delamination area 

distribution layer by layer. Different shaded color represents for different pitches of FGH2sym 
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Figure D4. (a) Delamination failure distribution through the thickness of short beams FGH2sym and 

H90sym (b) Load and displacement curves of FGH2sym(red) and H90sym(black) (c) Delamination area 

distribution layer by layer. Different shaded color represents for different pitches of FGH2sym 
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Figure D5. (a) Delamination failure distribution through the thickness of short beams FGH1sym and 

FGH1symdisorder (b) Load and displacement curves of FGH1sym(red) and FGH1symdisorder(black) (c) 

Delamination area distribution layer by layer. Different shaded color represents for different pitches of 

FGH1sym 

D2. 1st drop on force and displacement plot 

There are minor drops (stiffness is close to 0) on the stiffness in force and displacement 

plot due to delamination initiation when short beam is under 3-point bending. These drops on 

stiffness do not show severe drop (stiffness is much less than 0) on the force and displacement plot, 

which means no catastrophic failure observed in the beam. 
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Figure D6. Force and displacement plot of H45sym under 3-point bending test(left) and stiffness as a 

function of displacement plot of H45sym under 3-point bending plot 

D3. Delamination area distribution in 3D 

 

Figure D7. Delamination distribution in 3D of H30sym 
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D4. Projected delamination area of models with 24 mm thickness under LVI 

 

Figure D8. Projected delamination area 𝐴𝑝𝑑of (a) H15sym, (b) H30sym, (c) H36sym, (d) H45sym, (e) 

H60sym and (f) H90sym with thickness 24mm 

 

 

Figure D9. Projected delamination area 𝐴𝑝𝑑of (a) FGH1sym, (b) FGH2sym with thickness 24mm 

D5. Analytical prediction on transverse shear stress of 3-point bending test 

According to the classical laminate plate theory, resultant forces and strain at middle plane 

has following relationship(Reddy, 2004; Yu, 2016). 
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[
𝑁
𝑀

] = [
𝐴 𝐵
𝐵 𝐷

] [휀0

𝜅0]                                                                                                                                            D(1) 

In our case, the laminate is symmetry to middle plane, and thus 𝐵 = 0. We have 

𝑁11 = 𝐴11𝑢1,1 + 𝐴16(𝑢1,2 + 𝑢2,1)                                                                                                              D(2) 

𝑁22 = 𝐴12𝑢1,1 + 𝐴26(𝑢1,2 + 𝑢2,1)                                                                                                              D(3) 

𝑁12 = 𝐴16𝑢1,1 − 𝐵16𝑢3,11 + 𝐴66𝑢2,1                                                                                                        D(4) 

𝑀11 = 𝐵11𝑢1,1 + 𝐵16𝑢2,1 − 𝐷11𝑢3,11                                                                                                        D(5) 

𝑀22 = 𝐵12𝑢1,1 + 𝐵26𝑢2,1 − 𝐷12𝑢3,11                                                                                                        D(6) 

𝑀12 = 𝐵16𝑢1,11 + 𝐵66𝑢2,1 − 𝐷16𝑢3,11                                                                                                      D(7) 

Due to resultant force equilibrium of uniform stress element in the plate (Yu, 2016), which 

is  

 

Figure D10 loading condition of short beam 3-point bending test 

𝜕𝑁11

𝜕𝑥1
+

𝜕𝑁12

𝜕𝑥2
+ 𝑝1 = 0                                                                                                                                         D(8) 

𝜕𝑁21

𝜕𝑥1
+

𝜕𝑁22

𝜕𝑥2
+ 𝑝2 = 0                                                                                                                                         D(9) 

𝜕2𝑀11

𝜕𝑥1
2 +

𝜕2𝑀22

𝜕𝑥2
2 + 2

𝜕2𝑀12

𝜕𝑥1𝑥2
+

𝜕𝑞2

𝜕𝑥1
−

𝜕𝑞1

𝜕𝑥2
+ 𝑝2 = 0                                                                                  D(10) 

Where 𝑞2and 𝑞1 are moments and 𝑝𝑖 is distributed force. 

We have 

𝐴11𝑢1,11 + 𝐴16𝑢2,11 = 0                                                                                                                               D(11) 

𝐴16𝑢1,11 + 𝐴66𝑢2,11 = 0                                                                                                                               D(12) 

−𝐷11𝑢3,1111 = 0                                                                                                                                               D(13) 

Accordingly, from 𝑥1 = 0 to 𝑥1 = 𝐿/2  

𝑢3
− =

𝐶1

6
𝑥1

3 + 𝐶2𝑥1
2 + 𝐶3𝑥1 + 𝐶4                                                                                                             D(14) 

𝑢1
− = 𝐶5𝑥1 + 𝐶6                                                                                                                                               D(15) 
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𝑢2
− = 𝐶7𝑥1 + 𝐶8                                                                                                                                               D(16) 

and from 𝑥1 = 𝐿/2 to 𝑥1 = 𝐿 

𝑢3
+ =

𝐶1
+

6
𝑥1

3 + 𝐶2
+𝑥1

2 + 𝐶3
+𝑥1 + 𝐶4

+                                                                                                 D(17) 

𝑢1
+ = 𝐶5

+𝑥1 + 𝐶6
+                                                                                                                                         D(18) 

 

𝑢2
+ = 𝐶7

+𝑥1 + 𝐶8
+                                                                                                                                         D(19) 

 

According to boundary conditions as following for the left part of the beam, 

𝑢3
−(0) = 0                                                                                                                                                          D(20) 

𝑢3
−(𝐿/2) = 𝑍                                                                                                                                                     D(21) 

𝑢3,11
−(0) = 0                                                                                                                                                     D(22) 

We have 𝐶4 = 0, 
𝐶1𝐿3

48
+

𝐶3𝐿

2
= 𝑍, 𝐶2 = 0 

According to boundary conditions as following for the right part of the beam, 

𝑢3
+(𝐿) = 0                                                                                                                                                          D(23) 

𝑢3
+(𝐿/2) = 𝑍                                                                                                                                                     D(24) 

𝑢3,11
+(𝐿) = 0                                                                                                                                                     D(25) 

We have 𝐶4 = 0, 
𝐶1𝐿3

48
+

𝐶3𝐿

2
= 𝑍, 𝐶2 = 0 

𝐶1
+

6
𝐿3 +

𝐶2
+

2
𝐿2 + 𝐶3

+𝐿 + 𝐶4
+ = 0                                                                                                           D(26) 

𝐶1
+𝐿 + 𝐶2

+ = 0                                                                                                                                                 D(27) 

𝐶1
+

6

𝐿3

8
+

𝐶2
+

2

𝐿2

4
+ 𝐶3

+ 𝐿

2
+ 𝐶4

+ = 𝑍                                                                                                             D(28) 

Furthermore, considering the continuity at the middle of the beam, we have 

𝑢3,1
−(𝐿/2) = −𝑢3,1

+(𝐿/2)                                                                                                                         D(29) 

𝑢3,11
−(𝐿/2) = 𝑢3,11

+(𝐿/2)                                                                                                                        D(30) 

Solve the equilibrium equations combined with boundary conditions, we can achieve 

𝑢3
− =

3𝑍𝑥1

𝐿
−

4𝑍

𝐿3 𝑥1
3                                                                                                                                             D(31) 

𝑢3
+ = −𝑍 +

9𝑍𝑥1

𝐿
−

12𝑍

𝐿2 𝑥1
2 +

4𝑍

𝐿3 𝑥1
3                                                                                                            D(32) 

Strain for individual layer is 

휀11 = 휀11
0 + 𝑥3𝜅0=𝑢1,1 − 𝑥3𝑢3,11                                                                                                           D(33) 
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From 𝑥1 = 0 to 𝑥1 = 𝐿/2 

휀11
− =

24𝑍

𝐿3
𝑥1𝑥3                                                                                                                                                  D(34) 

from 𝑥1 = 𝐿/2 to 𝑥1 = 𝐿 

휀11
+ =

−24𝑍

𝐿3
𝑥1𝑥3 +

24𝑍

𝐿2
𝑥3                                                                                                                            D(35) 

For each individual layer, the relationship between stress and strain is 

[

𝜎11

𝜎22

𝜏12

] = [

𝑄11 𝑄12 𝑄13

𝑄21 𝑄22 𝑄23

𝑄31 𝑄32 𝑄33

] [

휀11

휀22

𝛾12

]                                                                                                              D(36) 

𝜎11 = 𝑄11{

24𝑍

𝐿3 𝑥1𝑥3, 𝑥1 ∈ [0,
𝐿

2
]  

−24𝑍

𝐿3 𝑥1𝑥3 +
24𝑍

𝐿2 𝑥3, 𝑥1 ∈ [𝐿/2, 𝐿]
                                                                                    D(37) 

Thus, according to 𝑑𝑖𝑣𝜎 + 𝑏 = 0, we can achieve 

𝜎13 = − ∫
𝜕𝜎11

𝜕𝑥1
𝑑𝑥3 + 𝐶                                                                                                                                  D(38) 

Combined with the boundary condition that 𝜎13 = 0 at bottom and top surface and 𝜎13 is 

continuous at interface, we can solve the 𝜎13 distribution map as Figure 5.22(b). 
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D6. Transverse shear strain induced by in-plane shear stress in mono-balanced laminate 

 

Figure D11. (a) Transverse shear strain (𝐿𝐸𝑥𝑧) distribution of [-30/30/-30/30] along the thickness at free 

edge of mono-balanced laminate under uniaxial tensile (b) Displacement in x direction of [-30/30/-30/30] 

along the thickness at free edge of mono-balanced laminate under uniaxial tensile. (c) Transverse shear 

strain (𝐿𝐸𝑥𝑧) distribution of H30sym along the thickness at free edge of mono-balanced laminate under 

uniaxial tensile. (d) Displacement in x direction of [-30/30/-30/30] along the thickness at free edge of 

mono-balanced laminate under uniaxial tensile. 
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Figure D12. (a) Transverse shear strain (𝐿𝐸𝑥𝑧) distribution of [-60/60/-60/60] along the thickness at free 

edge of mono-balanced laminate under uniaxial tensile (b) Displacement in x direction of [-60/60/-60/60] 

along the thickness at free edge of mono-balanced laminate under uniaxial tensile. (c) Transverse shear 

stress (𝑆𝑥𝑧) distribution of [-60/60/-60/60] along the thickness at free edge of mono-balanced laminate 

under uniaxial tensile. 
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