
LEAKAGE CONVERSION FOR TRAINING MACHINE LEARNING SIDE

CHANNEL ATTACK MODELS FASTER

A Thesis

Submitted to the Faculty

of

Purdue University

by

Rohan Kumar Manna

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Shreyas Sen, Chair

School of Electrical and Computer Engineering

Dr. Kaushik Roy

School of Electrical and Computer Engineering

Dr. Anand Raghunathan

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

Head of the School Graduate Program

iii

ACKNOWLEDGMENTS

I would first like to express my sincere gratitude and thank my thesis advisor

Prof. Shreyas Sen for his continuous support towards my research, encouragement,

and vast expertise. Moreover, I would also like to thank other professors present in

my master’s thesis committee: Prof. Kaushik Roy and Prof. Anand Raghunathan,

for their intuitive opinions, suggestions, and motivation.

I would like to thank my fellow lab mates in the SPARC lab group: Debayan

Das and Josef Danial, for the inspiring discussions, recommendations, and support.

Also, I would like to thank my childhood friend Sourjya Roy along with his family,

Sutapa Roy and Rwitti Roy for their endless support and making me feel at home.

Moreover, I am also thankful to my close friends Jyotsana Jha, Shrihari Sridharan,

and Sangamesh Kodge for helping me whenever needed.

Finally, I would like to thank and express my profound appreciation to my father

Manishi Nath Manna, mother Ruma Manna, sister Rimita Manna, brother-in-law

Anil Surapathi, and grandmother Swapna Chatterjee for their constant support and

for helping me in every way possible throughout my years of study. This thesis or

achievement would not have been possible without them. Thank you.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

SYMBOLS . ix

ABBREVIATIONS . x

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Preliminaries . 1

1.1.1 Side Channel Attack . 2

1.1.2 Power Side Channel Attack . 3

1.1.3 EM Side Channel Attack . 4

1.1.4 Digital Signal Processing Filters 6

1.1.5 Artificial Neural Networks . 7

1.2 Motivation . 10

1.3 Contribution . 11

1.4 Thesis Orientation . 12

2 DIGITAL SIGNAL PROCESSING FILTERS VERSES ARTIFICIAL NEU-
RAL NETWORKS . 13

2.1 Adaptive LMS FIR Filters . 13

2.1.1 Adaptive LMS FIR Filter of order 0 14

2.1.2 Adaptive LMS FIR Filter of order 1 15

2.1.3 Adaptive LMS FIR Filter of order 2 16

2.1.4 Adaptive LMS FIR Filter of order 3 16

2.1.5 Adaptive LMS FIR Filter of order 4 17

2.1.6 Adaptive LMS FIR Filter of order 5 18

v

Page

2.2 Artificial Neural Networks . 19

2.2.1 Experiment 1 . 21

2.2.2 Experiment 2 . 21

2.2.3 Experiment 3 . 22

2.2.4 Experiment 4 . 23

2.2.5 Experiment 5 . 23

2.2.6 Experiment 6 . 24

2.2.7 Experiment 7 . 25

2.2.8 Experiment 8 . 25

2.2.9 Experiment 9 . 26

3 LEAKAGE CONVERSION . 27

3.1 Power to Average EM . 27

3.1.1 Graphical representation of the result after using the modified
network architecture . 28

3.1.2 Heat Map . 29

3.2 EM to Power . 29

3.3 CEMA . 30

3.4 N-Average Comparison . 32

3.4.1 Impact of averaging on training 32

3.4.2 Impact of averaging on validation 33

3.5 Modified Model for Reducing Error . 35

3.5.1 Heat maps for converting power to averaged EM and EM to
power by using the modified model 35

4 SUMMARY AND CONCLUSION . 38

5 RECOMMENDATIONS AND FUTURE WORK 39

REFERENCES . 43

VITA . 47

vi

LIST OF TABLES

Table Page

1.1 Some general types of filters in Signal Processing 6

3.1 Traces used for different N values of averaging 33

vii

LIST OF FIGURES

Figure Page

1.1 Waveform of power and EM traces. 2

1.2 A detailed sketch showing how the secret key can be extracted from power
traces. 4

1.3 A detailed sketch showing how the secret key can be extracted from EM
traces. 5

1.4 Diagrammatic description of the different stages and the structure of a
basic ANN. 8

1.5 Comparison of an artificial neuron in ANN to a neuron in the brain. 9

1.6 A graph showing how leakage conversion will be conducted. 10

2.1 Diagrammatic representation of an adaptive LMS filter. 13

2.2 Zeroth order graphical waveform representation of the filter output. 14

2.3 First order graphical waveform representation of the filter output. 15

2.4 Second order graphical waveform representation of the filter output. 16

2.5 Third order graphical waveform representation of the filter output. 17

2.6 Fourth order graphical waveform representation of the filter output. 18

2.7 Fifth order graphical waveform representation of the filter output. 19

2.8 Training and validating on a specific key value with fixed plain text 21

2.9 Training and validating on another specific key value with fixed plain text 22

2.10 Training on one specific key value but validating on another specific key
value while fixing the plain text in both cases 22

2.11 Training and validating on any specific random key value with fixed plain
text (Attempt 1) . 23

2.12 Training and validating on any specific random key value with fixed plain
text (Attempt 2) . 24

2.13 Training on any random specific key value but validating on another ran-
dom specific key value (Attempt 1) . 24

viii

Figure Page

2.14 Training on any random specific key value but validating on another ran-
dom specific key value (Attempt 2) . 25

2.15 Training on data having all possible key combinations and validating on
any random key value . 25

2.16 Training on data having random plain text and key value while validating
on data having a different random plain text and key value 26

3.1 Result of one trace and 3000 time samples 28

3.2 Zoomed in sample output after training and testing the model 28

3.3 Power to EM Heat Map for 38 different key values (rows) and 40 different
plain texts (columns) . 29

3.4 EM to power heat map for 38 different key values (rows) and 40 different
plain texts (columns) . 30

3.5 Plot showing MTD for Key0 byte . 31

3.6 Plot showing MTD for Key1 byte . 31

3.7 Plot showing MTD for Key2 byte . 32

3.8 Plot showing MTD for Key3 byte . 32

3.9 Comparing using training accuracy . 34

3.10 Comparing using validation accuracy . 34

3.11 Power to EM heat map for 25 same key values (rows) and 40 same plain
texts (columns) . 35

3.12 EM to power heat map for 25 same key values (rows) and 40 same plain
texts (columns) . 36

3.13 Generated EM traces are tested for predicting the correct key value by
using the modified model. The red curve which deviates out represents
the correct key value and the rest represents the incorrect key value. 37

5.1 Trace 71 with error 0.0007 . 40

5.2 Zoomed in trace 71 with error 0.0007 . 40

5.3 Validating the 30 generated traces for key0 41

5.4 Validation accuracy for respective key values 41

5.5 Some preliminary results on implementing model specific training 42

5.6 Benefit of the model . 42

ix

SYMBOLS

ρth Correlation Coefficient

δ Dirac Delta function

µ Learning Rate

x

ABBREVIATIONS

IoT Internet of Things

SCA Side Channel Attack

ML Machine Learning

DL Deep Learning

SNR Signal to Noise Ratio

ANN Artificial Neural Network

DSP Digital Signal Processing

CEMA Correlation Electromagnetic Analysis

MTD Minimum Traces to Disclosure

EM Electromagnetic

CMOS Complementary Metal–Oxide–Semiconductor

SPA Simple Power Analysis

DPA Differential Power Analysis

DEMA Differential EM Analysis

CPA Correlation Power Analysis

P-ML-SCA Power Machine Learning SCA

EM-ML-SCA EM Machine Learning SCA

HW Hamming Weight matrix

DUT Device Under Attack

LMS Least Mean Square

FIR Finite Impulse Response

IIR Infinite Impulse Response

xi

ABSTRACT

Manna, Rohan Kumar Master’s, Purdue University, May 2020. Leakage Conversion
For Training Machine Learning Side Channel Attack Models Faster. Major Professor:
Shreyas Sen.

Recent improvements in the area of Internet of Things (IoT) has led to extensive

utilization of embedded devices and sensors. Hence, along with utilization the need

for safety and security of these devices also increases proportionately. In the last two

decades, the side-channel attack (SCA) has become a massive threat to the interre-

lated embedded devices. Moreover, extensive research has led to the development of

many different forms of SCA for extracting the secret key by utilizing the various

leakage information. Lately, machine learning (ML) based models have been more

effective in breaking complex encryption systems than the other types of SCA mod-

els. However, these ML or DL models require a lot of data for training that cannot

be collected while attacking a device in a real-world situation. Thus, in this thesis,

we try to solve this issue by proposing the new technique of leakage conversion. In

this technique, we try to convert the high signal to noise ratio (SNR) power traces

to low SNR averaged electromagnetic traces. In addition to that, we also show how

artificial neural networks (ANN) can learn various non-linear dependencies of features

in leakage information, which cannot be done by adaptive digital signal processing

(DSP) algorithms. Initially, we successfully convert traces in the time interval of 80

to 200 as the cryptographic operations occur in that time frame. Next, we show the

successful conversion of traces lying in any time frame as well as having a random

key and plain text values. Finally, to validate our leakage conversion technique and

the generated traces we successfully implement correlation electromagnetic analysis

(CEMA) with an approximate minimum traces to disclosure (MTD) of 480.

1

1. INTRODUCTION

Since the invention of computers, their capacity to perform various tasks has gone up

exponentially. This consequently has led to the rapid development and improvement

of interrelated computing devices. Now, these devices require some protective crypto-

graphic algorithm for communicating safely over the insecure channel or internet. The

algorithms stated above provide security to the transmitting data with the help of a

secret key value. Hence, a simple stochastic attack on the cryptographic algorithms

has a very minute chance of success, which in turn provides an upper hand to the

sender and receiver over the attacker. But due to the physical employment of these

algorithms information leaks out in the form of power consumed [1], [2], electromag-

netic emission’s (EM) [3], [4], encryption timing [5], [6], and audible vibrations [7].

The adversary can utilize this freely accessible information to discover the private

key from any complementary metal-oxide-semiconductor (CMOS) based embedded

device.

1.1 Preliminaries

Almost all CMOS-based embedded devices running encryption techniques are

made from simple-logic gates consisting of several transistors. When a charge is

applied to the gate of a transistor electrons flow over the silicon substrate. This flow

of electrons results in the consumption of power and subsequent production of EM

radiations [8]. The power consumed can be measured with the help of Ohm’s law [9]

and by using a resistor placed in series with the power input. Hence, by dividing the

voltage difference across the resistor with the resistor value the power consumed can

be measured. Now, these power measurements can be digitally sampled and relocated

to a computer for performing power analysis. The EM radiations are collected using

2

a commercially available EM probe which might be attached to a wide-band low-

noise amplifier. The power consumption or EM radiation measured for an encryption

process is referred to as a trace. For instance, an encryption operation occurring for

one millisecond with a sampling rate of three megahertz will produce a trace with

three thousand time points. This thesis will be focusing on only two types of leakage

information, power, and EM from an embedded device.

(a) Traces for performing Power Analysis. (b) Traces for performing EM Analysis.

Fig. 1.1. Waveform of power and EM traces.

1.1.1 Side Channel Attack

Cryptanalytic attacks like the SCA can steal the private key from an encrypted

device by using the various types of leakage information [10]. There are two types

of SCA attacks, non-profiled SCA and profiled SCA [11], [12]. In a non-profiled

SCA attack, the adversary having prior knowledge of the target builds a model by

gathering a bunch of the side channel information with known stochastic inputs and

anonymously fixed key values. Subsequently, the adversary merges essential assump-

tions with the help of analytical distinguishers like Person’s Correlation to extract

the private key value from the side-channel information. Attacks like Simple Power

3

Analysis (SPA) [13], Differential Power Analysis (DPA) [1], Differential EM Analysis

(DEMA) [14], Correlation Power Analysis (CPA) [15], and CEMA [16] fall into the

category of non-profiled SCA. However, the success rate of a non-profiled attack is

hugely dependent on the quality of the trained model, which is highly vulnerable to

the device architecture and software implementation. Moreover, numerous hardware

and software countermeasures implementing the technique of varying power consump-

tion have demonstrated high success rates against non-profiled attacks. Thus, profiled

SCA attacks dominate over the non-profiled ones.

In a profiled SCA attack the attacker utilizes the side-channel leakage information

along with system noise. This attack is performed in two phases. The first phase can

be referred to as the training stage where a model is trained with numerous traces

having differing sub-key (a small part of the entire encryption key) values. Now in

the second phase, the trained model from phase one is used to predict every sub-

key of the encryption device being attacked. Thus, by utilizing the system noise for

training profiled attacks tend to be stronger against countermeasures like shuffling

and masking. Attacks like Power Machine Learning SCA (P-ML-SCA), and EM

Machine Learning SCA (EM-ML-SCA) fall into the category of profiled SCA [17].

1.1.2 Power Side Channel Attack

In figure 1.2 [18] we can see how the power traces from an Advanced Encryption

Standard (AES) are collected using a power pin. These traces are measured by vary-

ing the plain text and by keeping the private key value constant. After the collection

stage is complete we move towards the attack stage. For the attack stage initially,

a hamming weight matrix (HW) is constructed. This matrix possesses the required

power consumption values of the Device Under Attack (DUT) when it performs cer-

tain cryptographic operations. Moreover, the matrix is made by keeping the plain text

fixed and having all viable combinations of key bytes. Thus, HW helps us to reduce

the total possible value for each key byte to 256 (28 = 256). Now between the power

4

trace and the power assumption we compute the correlation coefficient (ρth). Finally,

the key byte which separates from the others portrays the maximum correlation and

represents the secret key. To reveal all the bits in the AES-128 encryption engine we

need to repeat the above-mentioned process sixteen times (as 8 × 16 = 128) [19].

Fig. 1.2. A detailed sketch showing how the secret key can be ex-
tracted from power traces.

1.1.3 EM Side Channel Attack

Figure 1.3 [20] provides us with an overview of how the EM traces from an AES-

128 encryption engine are collected using a low cost commercially available EM probe.

These traces are gathered with the help of an oscilloscope over varying plain text and

fixed private key value. Now after the collection stage is complete we move towards

5

the attack stage. Similar to CPA, for the attack stage initially an HW is constructed

which represents a theoretical model. This matrix possesses the required EM radiation

values of the DUT when it performs certain cryptographic operations. Moreover, the

matrix is constructed by keeping the input plain texts fixed and by having all viable

combinations of key bytes. Thus, similar to CPA again HW helps us to reduce the

total possible value for each key byte to 256 (28 = 256). Now between the EM trace

and the EM assumption, we compute ρth. Finally, the key byte which separates from

the others portrays the maximum correlation and represents the secret key. To reveal

all the bits in the AES-128 encryption engine we need to repeat the above-mentioned

process sixteen times (as 8 × 16 = 128).

Fig. 1.3. A detailed sketch showing how the secret key can be ex-
tracted from EM traces.

6

1.1.4 Digital Signal Processing Filters

In the field of signal processing, the Dirac Delta function (δ) is referred to as

the impulse function. Thus, an impulse function can be defined on the real line

having an infinite value at the origin and zero values everywhere else. Now when any

dynamic system receives an impulse function it responds to the external changes in

a specific way, this response is referred to as an impulse response. Moreover, these

concepts are used to make a filter which is a class in the area of signal processing.

Thus, a filter [21] can be defined as a mechanism or mathematical process which

discards certain undesired components from a signal. There are numerous ways of

classifying filters but there is no specific hierarchical order. Hence, for this thesis, we

will be focusing only on adaptive digital filters but Table 1.1 given below very briefly

describes some of the major types of filters used and their basis of classification [22].

Table 1.1.
Some general types of filters in Signal Processing

Basis for Classification Type 1 Type 2

Time Signal Digital Analog

Impulse Response Finite Impulse Response Infinite Impulse Response

Framework Discrete-time Continuous-time

Output Signal Linear Non-linear

Dependence on f(t) Time-variant Time-invariant

Component Used Active Passive

Signal Domain Casual Non-casual

Digital filters usually increase or decrease certain features of discrete-time signals

as opposed to analog filters that operate on continuous-time signals. Mainly there

are two types of digital filters, finite impulse response filters (FIR) [23], and infinite

impulse response filters (IIR) [24]. A finite impulse response filter can be defined

7

as a filter having limited impulse response while an infinite impulse response filter

typically consists of a feedback mechanism with a decaying response. Now for the first

implementation of this thesis, we need to define the Adaptive Least Mean Squared

(LMS) filters. Adaptive filters [25] are linear filters having a transfer function with

varying parameters. These parameters are governed by the optimization algorithm.

Moreover, they utilize error signals in a feedback mechanism to polish the transfer

function and reduce the cost for the next cycle.

1.1.5 Artificial Neural Networks

An ANN [26] is a computational mechanism that tries to replicate the way biolog-

ical neurons [27] function in the human brain. They intend to learn and comprehend

data in the same manner as the human brain. In the last decade, artificial neural

networks have shown promising results in the area of image processing and pattern

recognition due to the vast availability of data and computational resources. How-

ever, in this thesis, we will be using ANN for generating averaged EM traces from

raw power traces. Mostly, an ANN comprises three important stages which can be

described as follows [28].

• Pre-process stage: In this stage, the input data is modified so that it contains

only certain key features required during the training stage of the model.

• Training stage: The most important stage in which the weights associated with

each neuron is adjusted for reducing the difference between the actual and the

predicted result. This adjustment is performed in multiple epochs so that the

difference is minimum.

• Validation stage: In this stage, the trained model is used to generate new values.

These newly generated values are now compared to the actual values by which

the efficiency of the network is measured.

8

Fig. 1.4. Diagrammatic description of the different stages and the
structure of a basic ANN.

Figure 1.4 given above describes the input layer, hidden layer, and the final output

layer. The input layer accepts any type of data than initially multiplies the data with

random weights and applies the activation function to it for producing output for

that layer. Now the output for the input layer is the input to various hidden layers.

The Hidden layers further try to learn the non-linear dependencies by following the

concept of multiplying inputs with the weights then adding bias and the activation

function to it. Finally, the outputs of the hidden layers are the inputs to the output

layer. Thus, to summarize mathematically ANN performs the summation of prod-

ucts of the input data and the weights associated with the input, then it applies an

activation function to it for producing the output. A few important points to note

are that the hidden layers are optional but usually, the network would not learn well

without a hidden layer. Moreover, the activation function must be differentiable or

else back-propagation cannot be applied for computing gradients. Thus, if gradients

cannot be computed for the weights then the weights cannot be optimized by using

9

an optimization algorithm. Figure 1.5 given below compares an artificial neuron in

ANN to an actual neuron in the brain [29].

Fig. 1.5. Comparison of an artificial neuron in ANN to a neuron in the brain.

10

1.2 Motivation

Vast developments in the field of technology have led to an increase in demand for

mathematically secure and robust encryption engines. These encryption engines are

widely implemented in numerous CMOS-based embedded devices. AES [30] is one

of the most popular encryption engines used for encrypting data in most IoT edge

devices. However, different forms of SCA attacks like power and EM have become

increasingly popular to break these encryption engines and steal the secret information

being communicated. In the last decade, machine-learning-based power and EM SCA

attacks have shown very promising results and advantages over template attack [31].

Moreover, these machine learning or deep learning-based attacks do not require much

statistical analysis for discovering the leakage points. However, as EM traces have

low SNR [32] the number of traces required for training the EM-ML-SCA model is a

lot and usually, it is difficult to collect that many traces in a real-life scenario. Thus,

to solve this issue we try to collect power traces (having high SNR) [32] and convert

them directly into averaged EM traces.

Fig. 1.6. A graph showing how leakage conversion will be conducted.

11

Figure 1.6 shown above graphically portrays how we plan to convert a value in

the power trace to a value in the EM trace. We overlap both the traces on a single

graph to show how a particular power value after passing through a general function

or model produces the required EM value. This thesis mainly deals with an AES

128-bit encryption engine, different types of DSP filters, different ANN models for

conducting leakage conversion, CEMA, and EM-ML-SCA.

1.3 Contribution

In this thesis, we introduce a new technique referred to as leakage conversion

where we generate EM traces from power and power traces from EM by using the

knowledge and benefits of artificial neural networks. The primary objective of this

new technique is to allow faster training of the EM-ML-SCA model by collecting 10X

lesser EM traces from the DUT. Hence, the specific and essential contributions of this

thesis are briefly outlined as follows.

• At first, we implement the technique of leakage conversion using different types

of DSP algorithms. For our implementation, we try to convert power traces to

EM. After implementation, we validate the generated EM traces by performing

CEMA. Unfortunately, none of the results pass the test but we deduce that

adaptive LMS FIR filter of order one produces the best result out of the lot. Now

a comparative analysis was performed between the different DSP algorithms

and ANN. Results from the analysis show that the ANN model produces much

better EM traces than the DSP filters.

• All machine learning models require a lot of data to train. Similarly, the EM-

ML-SCA model requires the collection of 10X (X refers to any natural number)

traces from the physical encryption device for training with X number of traces.

Hence, after showing how an ANN model can outperform any DSP filter, we

use ANN to try and convert raw power traces to N-averaged EM traces (where

N equals 10). Thus, by collecting one type of leakage information and then

12

transforming it into an averaged EM trace we show how the EM-ML-SCA model

can be trained faster. Consequently, this faster training will lead to faster

execution of the profiled SCA attack.

• We validate the authenticity of the generated EM traces by performing the

non-profiled CEMA attack with the generated EM traces. Results show the

successful extraction of the entire encryption key. Moreover, we also show the

successful generation of power traces from EM. However, as EM traces have low

SNR, the power traces generated from them do not have enough information

for performing CPA.

• Finally, after testing the generated EM traces on the EM-ML-SCA model we

encounter a failed profiled attack. Now we decipher the cause of the failure

and suggest a new key specific ANN model for leakage conversion. This new

technique portrays success to a certain extent. Hence, proving the successful

implementation of leakage conversion. Moreover, we also state certain rec-

ommendations which might give more concrete results for performing profiled

attacks faster.

1.4 Thesis Orientation

The rest of the thesis is oriented in the following order. In section 2, a comparative

study between DSP algorithms and ANN is conducted to determine which algorithm

gives better generated EM traces. In section 3 we propose the technique of leakage

conversion by converting power traces to EM traces and vice-versa. We show how

the generated EM traces can be used for non-profiled CEMA and why the generated

power traces fail CPA. Finally, we also state how EM-ML-SCA can be trained faster

using the technique of leakage conversion. Section 4 very briefly summarizes our

discoveries, work done for this thesis, and finally concludes on our mission statement.

Section 5 provides some recommendations and highlights the possibility of future

research work.

13

2. DIGITAL SIGNAL PROCESSING FILTERS VERSES

ARTIFICIAL NEURAL NETWORKS

2.1 Adaptive LMS FIR Filters

An LMS FIR filter [33] is a type of adaptive filter that tries to find filter coefficients

that produce the minimum mean square error between the required signal and the

output signal (error signal). The filter follows an iterative optimization method of the

cost function (stochastic gradient descent). The adaptive LMS FIR algorithm [34]

mainly involves three stages. The first stage involves generating the filter output by

using the filter coefficients and the input signal. The second stage involves generating

the error by subtracting the generated signal from the desired signal. Finally, the third

stage involves adjusting the weights or filter coefficients. This three-stage algorithm

is repeated n times for producing the final filter coefficients.

Fig. 2.1. Diagrammatic representation of an adaptive LMS filter.

14

Figure 2.1 given above shows the control flow of the filter and its various stages

but mathematically the three stages can be described as follows:

• Output o(i) =
N−1∑
i=0

x(i)c(i), where N represents the length of the filter, x(i)

represents the input signal, and c(i) represents the filter coefficients or weights.

• Error e(i) = r(i) − o(i), where r(i) represents the required or desired signal.

• Adaptation c(i+ 1) = c(i) +µ× [x(i)e(i)], where µ represents the learning rate.

The following graphs (figure 2.2 to figure 2.7) will now portray our results obtained by

performing our proposed technique of leakage conversion (Power traces to Averaged

EM traces) using adaptive LMS FIR filters of different orders.

2.1.1 Adaptive LMS FIR Filter of order 0

Fig. 2.2. Zeroth order graphical waveform representation of the filter output.

Final Filter Coefficients - [0.83922959] ; µ = 0.9 for key 0 which is averaged over

10000 traces. Concept used : y(1) = c0x(1) ; where y(n) represents the nth EM trace

value, x(n) represents the nth Power trace value, and cn represents the nth coefficient.

15

From the error curve, we observe that the error ranges between -0.2 to 0.5. Moreover,

we also observe that the error range for order 0 is the least when compared to the

error range values of the other ordered filters. Thus, we can claim that an adaptive

LMS FIR filter of order 0 produces the best possible value.

2.1.2 Adaptive LMS FIR Filter of order 1

Fig. 2.3. First order graphical waveform representation of the filter output.

Final Filter Coefficients - [0.43308635] [0.35484849] ; µ = 0.9 for key 0 which is

averaged over 10000 traces. Concept used : y(2) = c0x(2) + c−1x(1). From the error

curve, we observe that the error ranges between -0.2 to 0.75. Thus, we can claim that

an adaptive LMS FIR filter of order 1 generates more error than a filter of order 0.

Moreover, we also observe flattening of the peaks which depict a loss of information

during the conversion.

16

2.1.3 Adaptive LMS FIR Filter of order 2

Final Filter Coefficients - [0.37321845] [0.26339759] [0.17164171] ; µ = 0.7 for key 0

which is averaged over 10000 traces. Concept used : y(3) = c0x(3)+c−1x(2)+c−2x(1).

From the error curve, we observe that the error ranges between -1.0 to 0.6. Thus,

we can claim that an adaptive LMS FIR filter of order 2 generates more error than a

filter of order 1. Moreover, we also observe more flattening of the peaks which depict

a greater loss of information during the conversion.

Fig. 2.4. Second order graphical waveform representation of the filter output.

2.1.4 Adaptive LMS FIR Filter of order 3

Final Filter Coefficients - [0.34180162] [0.33443942] [0.27419134] [0.20584869] ;

µ = 0.4 for key 0 which is averaged over 10000 traces. Concept used : y(4) =

c0x(4) + c−1x(3) + c−2x(2) + c−3x(1). From the error curve, we observe that the error

ranges between -2.0 to 1.0. Thus, we can claim that an adaptive LMS FIR filter

of order 3 generates more error than a filter of order 2. Moreover, we now observe

17

Fig. 2.5. Third order graphical waveform representation of the filter output.

complete flattening of the peaks which depicts a complete loss of information during

the conversion.

2.1.5 Adaptive LMS FIR Filter of order 4

Final Filter Coefficients - [0.19140527] [0.23340909] [0.23580694] [0.21169692]

[0.18601405] ; µ = 0.3 for key 0 which is averaged over 10000 traces. Concept used

: y(5) = c0x(5) + c−1x(4) + c−2x(3) + c−3x(2) + c−4x(1). From the error curve, we

observe that the error ranges between -2.0 to 1.5. Thus, we can claim that an adaptive

LMS FIR filter of order 4 generates more error than a filter of order 3. Moreover, we

now observe a complete erroneous filter output which has no relation to the desired

EM trace in blue. However, we still observe the successful execution of the filter as

the output curve converges to some minima even though the results do not meet our

expectations.

18

Fig. 2.6. Fourth order graphical waveform representation of the filter output.

2.1.6 Adaptive LMS FIR Filter of order 5

Final Filter Coefficients - [0.17838873] [0.17897847] [0.19031284] [0.19362094]

[0.18585556] [0.17730956] ; µ = 0.1 for key 0 which is averaged over 10000 traces.

Concept used : y(6) = c0x(6)+c−1x(5)+c−2x(4)+c−3x(3)+c−4x(2)+c−5x(1). From

the error curve, we observe that the error again ranges between -2.0 to 1.5. Thus, we

can claim that an adaptive LMS FIR filter of order 5 generates an equal amount of

error as a filter of order 4. But, we now observe a almost flat filter output in green

which is worse than the output observed for order 4.

Now, there is no point in running filters of order greater than 5 as it would generate

more erroneous results. Hence, we can claim that generally digital filters are not a

suitable tool for performing the task of leakage conversion as they are unable to learn

the non-linear dependencies. This thought leads us to the direction of neural networks

which recently have shown tremendous potential in a wide array of problems.

19

Fig. 2.7. Fifth order graphical waveform representation of the filter output.

2.2 Artificial Neural Networks

ANNs have the unique ability to learn and model complex dependencies between

the inputs and the outputs [35]. Moreover, they also possess the ability to generalize

[36] without applying constraints on the input data. Hence, we choose ANNs for

performing our proposed leakage conversion technique. In this experiment, we aim to

find a correlation between power and averaged EM traces taking time samples 80 to

200 into consideration as the encryption operation occurs in that interval. Moreover,

we Normalize [37] the data set between zero and one initially just for the sake of

testing. The data sets used are as follows.

• 2357 traces.npy – Old 10,000 power traces with 3000 time samples, utilized for

training and testing. Moreover, 70% of the data is reserved for training and the

rest is used for testing.

• 1516 traces.npy – Old 10,000 EM traces with 3000 time samples, utilized for

training and testing. Moreover, 70% of the data is reserved for training and the

rest is used for testing.

20

• 2019.05.11-16.46.40 traces transfer power1.npy – Newer 100 power traces with

3000 time samples, utilized as the input while training. Moreover, the traces

have the same key and plain text values.

• 2019.05.11-16.40.12 traces transfer EM1.npy – Newer 100 EM traces with 3000

time samples, utilized as the desired output while training. Moreover, the

traces have the same key and plain text values as mentioned in 2019.05.11-

16.46.40 traces transfer power1.npy.

• 2019.05.11-16.44.49 traces transfer power2.npy – Newer 100 Power traces with

3000 time samples, utilized as the input while validating. Moreover, the traces

have the same key and plain text values.

• 2019.05.11-16.42.22 traces transfer EM2.npy – Newer 100 EM traces with 3000

time samples, utilized as the desired output while validating. Moreover, the

traces have the same key and plain text values as mentioned in 2019.05.11-

16.44.49 traces transfer power2.npy.

Figure 2.8 to figure 2.16 given below represents the output waveform from the trained

neural network model (y-output) in green, the required EM trace waveform (d-target)

in blue, and the input power trace waveform (power) in red. The network architecture

used is as follows, the input layer consists of 120 neurons for the 120 time samples,

the first hidden layer consists of 60 neurons, the second hidden layer consists of 30

neurons, and the output layer again has 120 neurons to generate the averaged EM

trace having 120 time samples. Moreover, the model is sequential with all linear layers

and no dropout values. The hidden layers have sigmoid activation [38]. For training 80

power traces with 120 time samples and 80 EM traces (averaged by 10) with 120 time

samples were selected. For testing 20 power traces with 120 time samples and 20 EM

traces (averaged by 10) with 120 time samples were selected. Other hyper-parameters

include a learning rate [39] of 0.001, 20 epochs, Mean Squared Error (MSE) [40] as

the cost function [41], and stochastic gradient descent [42] as the optimizer. Finally,

21

if we want to claim that ANNs are a suitable tool for performing the conversion then

we need to look at all the possible cases of input data variation. Hence, we now look

at the following graphical representations of our results from the various experiments

performed with ANNs.

2.2.1 Experiment 1

Fig. 2.8. Training and validating on a specific key value with fixed plain text

Here we train and validate with ”2019.05.11-16.46.40 traces transfer power1.npy”

and ”2019.05.11-16.40.12 traces transfer EM1.npy”. Moreover, graphically we can

observe a much better result than the resultant curve with filters and the MSE value

while testing was observed to be 0.0024.

2.2.2 Experiment 2

Here we train with ”2019.05.11-16.46.40 traces transfer power1.npy” and ”2019.05

.11-16.40.12 traces transfer EM1.npy” and validate using “2019.05.11-16.44.49 traces

transfer power2.npy” and “2019.05.11-16.42.22 traces transfer EM2.npy”. Moreover,

the MSE value while testing was observed to be 0.0007 which shows us that the model

learns more with more data.

22

Fig. 2.9. Training and validating on another specific key value with fixed plain text

2.2.3 Experiment 3

Fig. 2.10. Training on one specific key value but validating on another
specific key value while fixing the plain text in both cases

Here we train and validate with ”2019.05.11-16.44.49 traces transfer power2.npy”

and “2019.05.11-16.42.22 traces transfer EM2.npy”. Moreover, the MSE value while

testing was observed to be 0.0090 which is quite similar to the MSE value observed

in experiment 1.

23

2.2.4 Experiment 4

Fig. 2.11. Training and validating on any specific random key value
with fixed plain text (Attempt 1)

Here we train with “2019.05.11-16.44.49traces transfer power2.npy” and “2019.05.

11-16.42.22 traces transfer EM2.npy” and validate using “2019.05.11-16.46.40 traces

transfer power1.npy” and “2019.05.11-16.40.12 traces transfer EM1.npy”. Moreover,

the MSE value while testing was observed to be 0.0020 which is again quite similar

to the MSE value observed in experiment 1.

2.2.5 Experiment 5

The training and validation data are the same as mentioned in experiment 4.

Moreover, the MSE value while testing was observed to be 0.0021. Hence, we can

now test for any random configuration of the input data. However, we also observe

that the peaks (green and blue) do not co-inside in many cases. It should be noted

that to eliminate the possibility of randomly testing the same key values we perform

two experiments (4 and 5) with the same configuration.

24

Fig. 2.12. Training and validating on any specific random key value
with fixed plain text (Attempt 2)

2.2.6 Experiment 6

The training and validation data are the same as mentioned in experiment 4 but

the plain text values are not fixed anymore. Moreover, the MSE value while testing

was observed to be 0.0024. Hence, we can now claim that for all the different types

of configurations we will surely get a small error value.

Fig. 2.13. Training on any random specific key value but validating
on another random specific key value (Attempt 1)

25

2.2.7 Experiment 7

The training and validation data are the same as mentioned in experiment 4.

Moreover, the MSE value while testing was observed to be 0.0023. Again, it should

be noted that to eliminate the possibility of randomly testing the same key values we

perform two experiments (6 and 7) with the same configuration.

Fig. 2.14. Training on any random specific key value but validating
on another random specific key value (Attempt 2)

2.2.8 Experiment 8

Fig. 2.15. Training on data having all possible key combinations and
validating on any random key value

26

The training and validation data are the same as mentioned in experiment 4.

Moreover, the MSE value while testing was observed to be 0.0095. Hence, we can

now claim that we have successfully trained a model by considering all the parameters

evenly.

2.2.9 Experiment 9

Fig. 2.16. Training on data having random plain text and key value
while validating on data having a different random plain text and key
value

The training and validation data are the same as mentioned in experiment 4.

Moreover, the MSE value while testing was observed to be 0.0097. However, in

experiments 8 and 9 given above, we observe a drastic change in the error value when

we do not apply any data restrictions. Hence, even though the results are better

than a filter we still need to fine-tune the network for validating our proposed leakage

conversion technique. Finally, to summarize in this chapter we perform a comparative

analysis between adaptive LMS FIR filters and ANNs. We also claim that ANNs are a

better tool for performing leakage conversion. In the next chapter, we will be looking

into the modifications made to the ANN for successfully running CEMA and a few

other observations along the way.

27

3. LEAKAGE CONVERSION

If we want to claim that ANNs are a suitable tool for performing the conversion then

we need to remove all the constraints we initially imposed on the input data and work

with data over any time interval (Let’s take 3000 time samples as we cannot test till

infinity). Hence, we now look at the following graphical and heat map representations

of our results from the various experiments performed with ANNs. Moreover, it should

be noted that device number two was used to collect all the traces.

3.1 Power to Average EM

Figures 3.1 and 3.2 given below represents the output waveform from the trained

neural network model (y-output) in green, the required EM trace waveform (d-target)

in blue, and the input power trace waveform (power) in red. The network architecture

used is as follows, the input layer consists of 3000 neurons for the 3000 time samples,

the first hidden layer consists of 1028 neurons, the second hidden layer consists of

256 neurons, and the output layer again has 3000 neurons to generate the averaged

EM trace having 3000 time samples. Moreover, the model is sequential with all linear

layers and no dropout values. The hidden layers have sigmoid activation. For training

1000 power traces with 3000 time samples and 10000 EM traces (averaged by 10 to

finally get 1000) with 3000 time samples were utilized. For testing 1500 power traces

with 3000 time samples and 15000 EM traces (averaged by 10 to finally get 1500)

with 3000 time samples were used. Moreover, the averaging was performed according

to the key and plain text values. Other hyper-parameters include a learning rate of

0.001, 20 epochs, MSE as the cost function, and stochastic gradient descent as the

optimizer.

28

3.1.1 Graphical representation of the result after using the modified net-

work architecture

Fig. 3.1. Result of one trace and 3000 time samples

Fig. 3.2. Zoomed in sample output after training and testing the model

The MSE value while testing was observed to be 0.0262, which is quite low. More-

over, as we are now testing over a larger time domain the error must also be larger

than the MSE values observed in chapter 2. However, from the above two graphs, we

only observe one trace so with the help of a heat map we observe the MSE values by

varying the keys and plain text values.

29

3.1.2 Heat Map

Note that in key 38 we have fixed a certain value for plain texts 21 to 40 so that

we can observe what happens to the MSE values in that case.

Fig. 3.3. Power to EM Heat Map for 38 different key values (rows)
and 40 different plain texts (columns)

3.2 EM to Power

In this experiment, we try to inverse the object by generating power traces from

raw EM traces. It is similar to performing an inverse of the complex function used

to generate the EM from power traces. We observe the MSE values using the heat

map below. Due to the high SNR characteristic of power traces we see a relatively

low MSE value in each case. However, this is a much harder problem as we are trying

30

to remove noise from data already have a low SNR value. We also observe that CPA

fails then the generated power traces are used. Hence, we can now claim that the

inverse of the power to EM complex function does not exist by using ANNs. Again

it should be noted that in key 38 we have fixed a certain value for plain texts 21 to

40 so that we can observe what happens to the MSE values in that case.

Fig. 3.4. EM to power heat map for 38 different key values (rows)
and 40 different plain texts (columns)

3.3 CEMA

Now we need to make sure that the generated averaged EM traces can be used

to extract the secret key. Hence, we use the common method of CEMA on the

generated traces. Below are the graphical representations of our results. Here, we see

31

that for the majority of the keys (1,2, and 3) MTD is lesser than for raw traces but

for key 0 MTD is almost the same as that of the raw traces. Moreover, for the graphs

given below the red curve represents the correct key value and the remaining green

ones represent all the other incorrect key values. Finally, with these curves, we can

confidently claim the successful generation of the averaged EM traces.

Fig. 3.5. Plot showing MTD for Key0 byte

Fig. 3.6. Plot showing MTD for Key1 byte

32

Fig. 3.7. Plot showing MTD for Key2 byte

Fig. 3.8. Plot showing MTD for Key3 byte

3.4 N-Average Comparison

We perform this experiment to observe how the training and validation accuracy

changes with different N-averaging values. Table 3.1 given below lists the number of

traces used for different N values of averaging. Moreover, we need to observe these

results to claim that there are some benefits of averaging.

3.4.1 Impact of averaging on training

From figure 3.9 given below, we observe that the training accuracy becomes con-

stant after n=3 for the generated power traces but there is always some room for

33

Table 3.1.
Traces used for different N values of averaging

N value Training traces Validation traces

1 7987 998

3 4915 614

5 4300 538

7 4300 538

9 4096 512

11 4096 512

13 3891 486

15 3891 486

17 3891 486

19 3891 486

21 3686 461

23 3276 410

25 3072 384

27 2867 358

29 2662 333

improvement when generating the EM traces. From this curve, we can also infer

why the inverse of the complex function when converting power to averaged EM was

unsuccessful.

3.4.2 Impact of averaging on validation

From figure 3.10 given below, we observe that for the generated power traces

validation accuracy initially increases till n=3 but degrades beyond it. However, for

the generated EM traces validation accuracy increases till n=19 but beyond that, the

34

Fig. 3.9. Comparing using training accuracy

Fig. 3.10. Comparing using validation accuracy

curve flattens out. To summarize we can now claim that we do see an increase in

validation and training accuracy with an increase in N values of averaging.

35

3.5 Modified Model for Reducing Error

Last time we observed an increase in MSE values for the heat map. Hence, in

this experiment, we try to improve our model so that we can produce more realistic

averaged traces.

3.5.1 Heat maps for converting power to averaged EM and EM to power

by using the modified model

Fig. 3.11. Power to EM heat map for 25 same key values (rows) and
40 same plain texts (columns)

The hyper-parameters include a learning rate of 0.01, 3 epochs, MSE as the cost

function, and stochastic gradient descent as the optimizer. The network architecture

used is as follows, the input layer consists of 3000 neurons for the 3000 time samples,

the first hidden layer consists of 2056 neurons, the second hidden layer consists of

36

Fig. 3.12. EM to power heat map for 25 same key values (rows) and
40 same plain texts (columns)

1028 neurons, the third hidden layer consists of 512 neurons, the fourth hidden layer

consists of 256 neurons, and the output layer again has 3000 neurons to generate

the averaged EM trace having 3000 time samples. Moreover, the model is sequential

with all linear layers and no dropout values. All the hidden layers have sigmoid

activation. For training 1500 power traces with 3000 time samples and 15000 EM

traces (averaged by 10 to finally get 1500) with 3000 time samples were utilized. For

testing 1000 power traces with 3000 time samples and 10000 EM traces (averaged by

10 to finally get 1000) with 3000 time samples were used.

We use a fully connected neural network model. Sometimes an error can be higher

when training and validating the data with the same key value. The reason for such

an anomaly could be due to over-fitting. From the above results, we can state that

the neural network learns the correlation between the power and EM traces. It does

not learn as per the key values. The heat map shows the MSE for all 1500 traces

37

Fig. 3.13. Generated EM traces are tested for predicting the correct
key value by using the modified model. The red curve which devi-
ates out represents the correct key value and the rest represents the
incorrect key value.

collected from device number two. Figure 3.13 portrays an MTD of 480 for key 0,

which is a big improvement over the last model. Moreover, it also shows that the

generated EM traces can predict the correct key values.

Finally, to summarize very briefly power to EM conversion gives an accuracy over

99% and the key can be predicted using CEMA but fails in the EM-ML-SCA model

due to the minute errors the EM-ML-SCA model thinks of the traces from another

device. EM to Power conversion gives an accuracy of over 99% but the key cannot

be predicted using the CPA algorithm as during denoising the model removes the

required information from the traces. As the conversion function will be a higher

degree polynomial which cannot produce 100% accuracy.

38

4. SUMMARY AND CONCLUSION

In this thesis, we focus and try to improve the training stage of machine learning-

based EM SCA. Recently, these ML-based SCA models have shown to be very efficient

in extracting the secret key but they require a lot of data for training. Hence, we

utilize the new technique of leakage conversion, where we convert power traces to

N-averaged EM traces. Initially, we used adaptive DSP algorithms for the conversion

but unfortunately, the generated traces were no way similar to the required traces.

Next, we utilized neural networks for learning the non-linear dependencies which

the adaptive DSP algorithm was unable to learn. Now, fortunately, the generated

traces from the ANN model have very little error and are almost similar to the actual

traces. Thus, we can claim that neural networks are better than DSP algorithms

in this scenario. Moreover, we show the successful conversion of traces having a

random key and plain text values. Finally, to further validate our generated traces

we successfully run CEMA on our generated traces, where we observe the correct key

value to diverge away from the rest. Hence, correctly validating the generated traces

and completing the leakage conversion technique. A few additional works done in this

thesis include showing how EM to power conversion is a much harder problem than

the power to EM and how averaging impacts the training and validation accuracy. To

conclude in this thesis we successfully convert power to averaged EM traces. Now for

future work and our recommendation for training ML SCA models would be to adopt

a key specific leakage conversion approach. As noise is random for each key-value we

suggest training a separate model for each key so that the generated traces resemble

more like the actual one. Moreover, in this thesis, we implemented this method which

currently gives a low validation accuracy. Thus validating our approach of leakage

conversion for training ML SCA models faster.

39

5. RECOMMENDATIONS AND FUTURE WORK

We aim to speed up the training process of the EM-ML-SCA model by convert-

ing the power traces to averaged EM traces. For training EM-ML-SCA model by

20,000 traces we need to collect 200,000 EM traces then again average by 10. But by

converting power to averaged EM we only need 20,000 power traces with the corre-

sponding key values which give a 10x improvement in training speed. Hence, for the

recommendation, we propose a new model which we have already tested. It produces

better results than the models mentioned in the previous chapters. The details are

as follows. Moreover, for future work, we propose a key specific model training.

25600 power traces from device 2 was collected. 51200 averaged EM traces (aver-

aged by 10) from device 2 was collected. This 51200 averaged EM traces were divided

equally into two parts. The second part having 25600 averaged EM traces were used

for training and validating the EM-ML-SCA model. In the EM-ML-SCA model af-

ter performing principal component analysis, 20482 traces were used in training and

2560 traces were used to validate. Validation accuracy is 78.75% and loss equals

0.672491542622447. Note that the EM-ML-SCA model uses only plain text 0 and

predicts key byte 0.

The 25600 power traces and the first half of the averaged EM traces (25600) were

used in training and validation. Learning rate equals 0.01 and epochs equals 5. The

input layer has 3000 neurons, the second layer has 1000 neurons, the third layer has

500 neurons and finally, the output layer has 3000 neurons. Both hidden layers are

of Relu type. Adam optimizer is used instead of Sigmoid. Originally The model

is trained separately for 256 different key values. For each key-value, there are 100

traces. Thus, 80 traces are used for training and 20 are used for validation.

From figure 5.6 we propose that the benefit will come once all the 256 models

are trained; we can reuse that model to generate more EM traces thus reducing the

40

Fig. 5.1. Trace 71 with error 0.0007

Fig. 5.2. Zoomed in trace 71 with error 0.0007

collection time from the physical device. We generally want to train with more traces

to achieve greater validation accuracy so this model will come in handy for reducing

the time required for collecting traces from the physical device.

Figures 5.1 and 5.2 represents the output waveform from the above mentioned

trained neural network model (y-output) in green, the required EM trace waveform

(d-target) in blue, and the input power trace waveform (power) in red. Finally, figures

5.3 to 5.6 represent very preliminary results to show how the future work needs

to carry on after the successful implementation of the leakage conversion method.

Moreover, in figure 5.5 we train on 70 traces belonging to the first half of the EM

trace dataset and validate on all 100 original EM traces from the second half of the

dataset. Another idea for future work can be to create a custom loss function [43]

41

Fig. 5.3. Validating the 30 generated traces for key0

Fig. 5.4. Validation accuracy for respective key values

which will simultaneously find the time interval for the encryption operation and

learn the transformation at that instance [44]. This should prevent the model from

learning unnecessary noise [45].

42

Fig. 5.5. Some preliminary results on implementing model specific training

Fig. 5.6. Benefit of the model

REFERENCES

43

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in
Cryptology — CRYPTO’ 99, M. Wiener, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 388–397.

[2] E. Brier, C. Clavier, and F. Olivier, “Optimal statistical power analysis,” Cryp-
tology ePrint Archive, Report 2003/152, 2003, https://eprint.iacr.org/2003/152.

[3] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema): Measures and
counter-measures for smart cards,” in Smart Card Programming and Security,
I. Attali and T. Jensen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 200–210.

[4] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Concrete
results,” in Cryptographic Hardware and Embedded Systems — CHES 2001, Ç. K.
Koç, D. Naccache, and C. Paar, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 251–261.

[5] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems,” in Advances in Cryptology — CRYPTO ’96, N. Koblitz, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 104–113.

[6] D. Brumley and D. Boneh, “Remote timing attacks are practical,” Computer
Networks, vol. 48, no. 5, pp. 701 – 716, 2005, web Security. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128605000125

[7] D. Genkin, A. Shamir, and E. Tromer, “Rsa key extraction via low-bandwidth
acoustic cryptanalysis,” in Advances in Cryptology – CRYPTO 2014, J. A. Garay
and R. Gennaro, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp.
444–461.

[8] H. Kour and R. K. Jha, “Em radiation reduction in wcn: Towards safe genera-
tions,” in 2020 International Conference on COMmunication Systems NETworkS
(COMSNETS), Jan 2020, pp. 559–562.

[9] L. Onsager, “Deviations from ohm’s law in weak electrolytes,” The Journal
of Chemical Physics, vol. 2, no. 9, pp. 599–615, 1934. [Online]. Available:
https://doi.org/10.1063/1.1749541

[10] D. Oswald, B. Richter, and C. Paar, “Side-channel attacks on the yubikey 2
one-time password generator,” in Research in Attacks, Intrusions, and Defenses,
S. J. Stolfo, A. Stavrou, and C. V. Wright, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 204–222.

44

[11] D. Oswald and C. Paar, “Breaking mifare desfire mf3icd40: Power analysis and
templates in the real world,” in Cryptographic Hardware and Embedded Systems
– CHES 2011, B. Preneel and T. Takagi, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 207–222.

[12] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic Hard-
ware and Embedded Systems - CHES 2002, B. S. Kaliski, ç. K. Koç, and C. Paar,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 13–28.

[13] C. Clavier, D. Marion, and A. Wurcker, “Simple power analysis on aes key
expansion revisited,” in Cryptographic Hardware and Embedded Systems – CHES
2014, L. Batina and M. Robshaw, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 279–297.

[14] E. De Mulder, P. Buysschaert, S. B. Ors, P. Delmotte, B. Preneel, G. Van-
denbosch, and I. Verbauwhede, “Electromagnetic analysis attack on an fpga
implementation of an elliptic curve cryptosystem,” in EUROCON 2005 - The
International Conference on ”Computer as a Tool”, vol. 2, Nov 2005, pp. 1879–
1882.

[15] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a leak-
age model,” in Cryptographic Hardware and Embedded Systems - CHES 2004,
M. Joye and J.-J. Quisquater, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2004, pp. 16–29.

[16] T.-H. Le, J. Clédière, C. Canovas, B. Robisson, C. Servière, and J.-L. Lacoume,
“A proposition for correlation power analysis enhancement,” in Cryptographic
Hardware and Embedded Systems - CHES 2006, L. Goubin and M. Matsui, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 174–186.

[17] D. Das, A. Golder, J. Danial, S. Ghosh, A. Raychowdhury, and S. Sen,
“X-deepsca: Cross-device deep learning side channel attack,” in Proceedings of
the 56th Annual Design Automation Conference 2019, ser. DAC ’19. New York,
NY, USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3316781.3317934

[18] D. Das, S. Maity, S. B. Nasir, S. Ghosh, A. Raychowdhury, and S. Sen, “Asni: At-
tenuated signature noise injection for low-overhead power side-channel attack im-
munity,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65,
no. 10, pp. 3300–3311, Oct 2018.

[19] ——, “High efficiency power side-channel attack immunity using noise injection
in attenuated signature domain,” in 2017 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), May 2017, pp. 62–67.

[20] D. Das, M. Nath, B. Chatterjee, S. Ghosh, and S. Sen, “Stellar: A generic
em side-channel attack protection through ground-up root-cause analysis,”
2019 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), 2019.

[21] A. Peled and B. Liu, Digital signal processing: Theory, design, and implementa-
tion. New York, John Wiley and Sons, Inc., 1976.

[22] A. V. Oppenheim, Applications of digital signal processing. Englewood Cliffs,
N.J., Prentice-Hall, Inc., 1978.

45

[23] Xiangkun Chen and T. Parks, “Design of fir filters in the complex domain,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 2,
pp. 144–153, February 1987.

[24] Sunghwan Ong, Cheolwoo You, Sooyong Choi, and Daesik Hong, “A decision
feedback recurrent neural equalizer as an infinite impulse response filter,” IEEE
Transactions on Signal Processing, vol. 45, no. 11, pp. 2851–2858, Nov 1997.

[25] M. G. Bellanger, Adaptive digital filters. Marcel Dekker, 2001.

[26] M. Gardner and S. Dorling, “Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences,” Atmospheric
Environment, vol. 32, no. 14, pp. 2627 – 2636, 1998. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1352231097004470

[27] R. C. Elson, A. I. Selverston, R. Huerta, N. F. Rulkov, M. I. Rabinovich,
and H. D. I. Abarbanel, “Synchronous behavior of two coupled biological
neurons,” Phys. Rev. Lett., vol. 81, pp. 5692–5695, Dec 1998. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.81.5692

[28] M. Ghiassi, H. Saidane, and D. Zimbra, “A dynamic artificial neural
network model for forecasting time series events,” International Journal
of Forecasting, vol. 21, no. 2, pp. 341 – 362, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0169207004001116

[29] M. A. Cowley, J. L. Smart, M. Rubinstein, M. G. Cerdán, S. Diano, T. L.
Horvath, R. D. Cone, and M. J. Low, “Leptin activates anorexigenic pomc
neurons through a neural network in the arcuate nucleus,” Nature, vol. 411, no.
6836, pp. 480–484, 2001. [Online]. Available: https://doi.org/10.1038/35078085

[30] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti,
and E. Roback, “Report on the development of the advanced encryption
standard (aes),” Journal of research of the National Institute of Standards
and Technology, vol. 106, no. 3, pp. 511–577, Jun 2001. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/27500035

[31] L. Lerman, R. Poussier, O. Markowitch, and F.-X. Standaert, “Template attacks
versus machine learning revisited and the curse of dimensionality in side-channel
analysis: extended version,” Journal of Cryptographic Engineering, vol. 8, no. 4,
pp. 301–313, 2018. [Online]. Available: https://doi.org/10.1007/s13389-017-
0162-9

[32] P. Kubáň and P. C. Hauser, “Fundamental aspects of contactless conductivity
detection for capillary electrophoresis. part ii: Signal-to-noise ratio and stray ca-
pacitance,” ELECTROPHORESIS, vol. 25, no. 20, pp. 3398–3405, 2004. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/elps.200406060

[33] S. C. Douglas, Quanhong Zhu, and K. F. Smith, “A pipelined lms adaptive
fir filter architecture without adaptation delay,” IEEE Transactions on Signal
Processing, vol. 46, no. 3, pp. 775–779, March 1998.

[34] F. Reed, P. Feintuch, and N. Bershad, “Time delay estimation using the lms
adaptive filter–static behavior,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 29, no. 3, pp. 561–571, June 1981.

46

[35] R. E. Uhrig, “Introduction to artificial neural networks,” in Proceedings of
IECON ’95 - 21st Annual Conference on IEEE Industrial Electronics, vol. 1,
Nov 1995, pp. 33–37 vol.1.

[36] J. W. Halle, A. M. Marshall, and J. E. Spradlin, “Time delay: A technique
to increase language use and facilitate generalization in retarded children,”
Journal of Applied Behavior Analysis, vol. 12, no. 3, pp. 431–439, 1979. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1901/jaba.1979.12-431

[37] B. Thirion, G. Flandin, P. Pinel, A. Roche, P. Ciuciu, and J.-B. Poline, “Dealing
with the shortcomings of spatial normalization: Multi-subject parcellation of
fmri datasets,” Human Brain Mapping, vol. 27, no. 8, pp. 678–693, 2006. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.20210

[38] M. Rezaeian Zadeh, S. Amin, D. Khalili, and V. P. Singh, “Daily outflow
prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid
activation functions,” Water Resources Management, vol. 24, no. 11, pp. 2673–
2688, 2010. [Online]. Available: https://doi.org/10.1007/s11269-009-9573-4

[39] C. Chinrungrueng and C. H. Sequin, “Optimal adaptive k-means algorithm with
dynamic adjustment of learning rate,” IEEE Transactions on Neural Networks,
vol. 6, no. 1, pp. 157–169, Jan 1995.

[40] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error
(mae) over the root mean square error (rmse) in assessing average model
performance,” Climate Research, vol. 30, no. 1, pp. 79–82, 2005. [Online].
Available: https://www.int-res.com/abstracts/cr/v30/n1/p79-82/

[41] S. F. Crone, “Training artificial neural networks for time series prediction using
asymmetric cost functions,” in Proceedings of the 9th International Conference
on Neural Information Processing, 2002. ICONIP ’02., vol. 5, Nov 2002, pp.
2374–2380 vol.5.

[42] S. Ruder, “An overview of gradient descent optimization algorithms,” 2016.

[43] C. G. Rowbottom, S. Webb, and M. Oldham, “Beam-orientation cus-
tomization using an artificial neural network,” Physics in Medicine and
Biology, vol. 44, no. 9, pp. 2251–2262, aug 1999. [Online]. Available:
https://doi.org/10.1088%2F0031-9155%2F44%2F9%2F312

[44] S. J. Nowlan and G. E. Hinton, “Simplifying neural networks by soft
weight-sharing,” Neural Computation, vol. 4, no. 4, pp. 473–493, 1992. [Online].
Available: https://doi.org/10.1162/neco.1992.4.4.473

[45] A. Rahideh and M. H. Shaheed, “Mathematical dynamic modelling of
a twin-rotor multiple input-multiple output system,” Proceedings of the
Institution of Mechanical Engineers, Part I: Journal of Systems and
Control Engineering, vol. 221, no. 1, pp. 89–101, 2007. [Online]. Available:
https://doi.org/10.1243/09596518JSCE292

VITA

47

VITA

Rohan is currently a Master’s student in the Electrical and Computer Engineering

department and a Graduate Teaching Assistant in the Computer Science department

at Purdue University. He serves as a lab lead and has taught object-oriented program-

ming to over 200 students over the past two years. His master’s thesis focuses on the

topic of hardware security, proving artificial neural networks give better accuracy than

traditional digital signal processing algorithms. He will continue to pursue a Ph.D.

degree from Purdue University, where he will continue his work on Machine/Deep

Learning algorithms. Before coming to Purdue, he completed his Bachelor’s degree

from KIIT University, India. During his undergraduate studies, he worked on image

processing and software cost estimation using a modified particle swamp optimiza-

tion algorithm. He anticipates developing robust machine learning algorithms for

autonomous racing vehicles.

