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ABSTRACT

Garee, Michael J. Ph.D., Purdue University, May 2020. Complexity Measurement
of Macroscopic Opinion Dynamics to Infer Mechanisms within Social Influence Net-
works. Major Professors: Mario Ventresca and Hong Wan.

Social influence networks are collections of entities dealing with a shared issue

on which they have individual opinions. These opinions are dynamic, changing over

time due to influence from other entities. Mechanisms within the network can affect

how influence leads to opinion change, such as the strength and number of social ties

between agents and the decision models used by an individual to process information

from its neighbors. In real-world scenarios, these mechanisms are often hidden. Much

effort in social network analysis involves proposing models and attempting to replicate

target output data with them. Can we instead use the evolution of opinions in a

network to infer these mechanisms directly?

This work explores how opinion change in social influence networks can be used

to determine characteristics of those networks. Broadly, this is accomplished by

simulating social influence networks using various designs and initial conditions to

generate opinion data, and then identifying relationships between response variables

and changes to the simulation inputs. Key inputs include the population size, the

influence model that controls how agents change their opinions, the network structure,

the activation regime that controls the sequencing of opinion updates, and probability

distributions for communication errors. Analyzing the opinions of individual agents

can provide insights about the individuals (microscopic), but in this work, focus is

on insights into the social influence network as a complete system (macroscopic), so

opinion data is aggregated according to each response variable.
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Response variables are designed through the lens of complexity theory. Three

types of complexity measurements are applied to opinion data: regression, entropy,

and a new complexity measure. In each case, relationships between design factors and

response variables are diverse. The influence model and the distribution of commu-

nication errors—a factor often omitted from the literature—are consistently impact-

ful, with their various settings producing distinct profiles in time series plots of the

measurements. Activation regime is impactful to some entropy measures. Network

structure has little impact on the new complexity measure, and population size has

little impact in general. Overall, distinctive relationships can exist between opinions

and design factors. These relationships, as well as the measures and problem-solving

approaches used in this work, may be helpful to analysts working to infer the prop-

erties of real-world social influence networks from the opinion data those systems

generate.
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1. INTRODUCTION

What if we could understand the inner workings of our social networks simply by

tracking everyone’s opinions? Perhaps some form of analysis on how opinions change

over time could help us devise a model of how members of a social network make

decisions. Analysis of social networks provides benefits to diverse sectors of research,

such as epidemiology, political science, economics, psychology, and defense. As a

subset of the broader world of social networks, social influence networks are more

narrowly focused on changes in opinions or beliefs over time. Social influence is

“the power [that] relevant others might exercise over an individual through authority,

deference, and social conformity pressure” [1]. Models of social influence appear in

the literature across many fields of study, including psychology, sociology, political

science, statistics, mathematics, physics, and engineering [2]. As an example, in van

Maanen and van der Vecht [3], messages on the social media platform Twitter are

analyzed for user preferences about candidates in a televised talent show, and the

authors simulate various decision models applied to the actual network structure to

try to replicate the real-world data and gain insights about how the actual users might

make decisions. This is an example of a generative approach to problem solving:

manipulate inputs (in this case, the decision model) in order to generate desired

outputs (user preferences).

In this dissertation, work proceeds in the reverse direction by adopting an infer-

ential approach: infer the inputs to a process directly, given a set of desired outputs.

Following the previous example, this means that given only the set of user preferences

for the talent show candidates, we would seek to infer the decision model without re-

peated manipulation of the possible models. Such an approach is useful in scenarios

where we have limited information about or control over a model’s inputs, which is

common in many real-world scenarios.
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The primary tools and techniques used in this work are agent-based simulation,

experimental design, social influence network analysis, time-series cluster analysis,

and complexity theory. Simulation-based experimentation is used to generate a large

body of opinion data from a wide array of different social influence networks. Opin-

ion data is aggregated across the population (directly or through various complexity

measures) because the research focus is on insights into macroscopic behavior of net-

works rather than microscopic behavior of individuals. Results emphasize qualitative

relationships between changes in opinion data over time and various experimental

factors.

The remainder of this chapter proceeds as follows. I begin with a discussion

of my research philosophy, which motivates this dissertation (Section 1.1), before

detailing the overall research objective, scope, and relevance of this work (Section 1.2).

Section 1.3 contains a brief literature review of the topic; each of the next four chapters

contains a more focused literature review. Elements of the methodology for the

enclosed articles are outlined in Section 1.4. Finally, the articles themselves are

summarized in Section 1.5 to give an overview of their specific research questions and

results.

1.1 Research philosophy

My research philosophy guides the work that is presented throughout this disser-

tation. It can be expressed as:

Insights can be revealed about the inner workings or generative

mechanisms of a complex system by analyzing the current system state.

Complex systems are described in more detail below (Section 1.3), but briefly, they

are systems with a relatively high degree of difficulty in describing or creating the

system, or they have a difficult “level of organization” [4]. In the philosophy statement

above, inner workings and generative mechanisms refer to specifications, variables,

or parameters of a complex system that affect how the system is created or operates,
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and the system state is the product of such operations. So, changing the inputs may

potentially change the outputs. This relates to Kalman’s concept of observability in

control theory [5], which measures a system to be observable if “all state variables can

be determined exactly” using a finite amount of output data. My philosophy can be

viewed as a claim about a weak form of observability, in that I consider distributions

or qualitative insights about system variables, in addition to exact values, to be

meaningful insights.

It is evident that in situations where we have full knowledge of the inputs and

outputs of a complex system, such as with a computer simulation, we can search

for relationships between the two. For example, regression modeling can quantify

these relationships, within appropriate confidence intervals. Unfortunately, real-world

complex systems rarely come with complete details about their inputs. With sufficient

sample data to inform a robust understanding of input-output relationships for a

complex system, could we begin to reveal insights about the system’s inputs by

using only its outputs? This is similar to the question asked by statistical inference

methods (e.g., Bayesian inference), which work to deduce probability distributions

for a population from sample data. In simple cases, the insights I am concerned

with could be probability distributions (e.g., if random noise is in a communication

channel, what is its underlying distribution?), but in more complicated scenarios,

they may take form of a choice between one of several algorithms (e.g., is a network

structure generated by a scale-free or random graph approach?) or similar elements.

Regardless, it is my research philosophy that given the outputs of a complex

system, it is possible to infer details about the inputs or internal mechanisms of the

system. Examining this philosophy in the context of social influence networks and

the changing opinions of their members is the underlying theme of this dissertation.
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1.2 Research objective

This section discusses this dissertation’s research objective, the research scope,

and the work’s relevance to the greater field of social network analysis.

The overall objective of this dissertation is to study the degree to which opin-

ion change in social influence networks can be used to determine characteristics of

those networks (such as influence model, network structure, relevant probability dis-

tributions). In other words, given social network outputs, infer the inputs. An ideal

outcome would be to find a method to precisely identify the attributes of a social

influence network, given only the opinion values of the network members. Since

social influence networks are complex systems with stochastic elements, this is an

unlikely outcome. More realistic—yet still highly desirable—results would be quali-

tative relationships between measures computed on opinion data and input variables.

For example, if we computed some function f(x) on the opinion data from several

networks that differ only in the algorithm that generates their network structure, a

good result would be to observe different patterns in f that depend on the network

structures.

Broadly, this study proceeds by simulating social influence networks using a variety

of initial conditions and specifications, computing response variables on agent opinion

data, and identifying relationships between the response variables and changes to the

initial conditions of the simulation. Simulation is used for two reasons: comprehensive

information on real-world influence networks is lacking, and simulation allows fine

control of the various model elements. Key model elements from existing literature

include population size, influence model (controls how agents change their opinions),

network structure model, activation regime (schedules the activity of agents), and the

probability distributions for various numerical values in the simulations (e.g., initial

agent opinions, communication noise between neighbors, or edge weights). These and

other related elements are referred to as simulation design factors or experimental

design factors throughout the text.
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Agents within social influence networks can be influenced in two ways, either by

their network neighbors or by sources external to the network [6]. In this research,

focus is only on influence sources within the network. Agents individually have opin-

ions, but in this dissertation, opinions are studied at the macroscopic level, either by

aggregating (e.g., sum or average) the opinions of the population directly or through

a complexity measure. Analyzing individual opinions could provide insights about

individual agents, but here, the focus is on insights into the behavior of the social

network as a whole.

Much effort in social network analysis is focused on selecting the correct model to

replicate target data. For example, what network generation algorithm can produce

an observed network structure? The work in this dissertation contributes to those

efforts by approaching the problem backward: instead of testing different models

to produce target data, this research works toward starting with the target data and

directly inferring the model. In this way, my research has relevance to existing activity

in the problem domain.

1.3 Literature review

This literature review explores the current state of knowledge in the fields relevant

to the research objective discussed previously. Two primary topics in this section are

social influence networks and complexity theory. Background reviews within each

article are more tightly focused on that article’s work and supplement the remarks

below.

A social network is a collection of social entities—people, organizations, nations,

and so on—that are connected by social ties, like friendships, business partnerships,

or international agreements [7, 8]. In popular culture, social networks are online social

sites like Facebook and Twitter, but in the literature, social networks describe not

only social media [9], but sets of web sites [10], journal articles [11], and more (e.g.,

[12, 13]). Social networks, online or otherwise, are a worthy subject of study, as they
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are “primary conduits of information, opinions, and behaviors” [14] and are “impor-

tant in determining how diseases spread, which products we buy, how we vote, as

well as whether we become criminals, how much education we obtain, and our likeli-

hood of succeeding professionally” [15]. The study of these networks, broadly termed

social network analysis, emphasizes measures based on the structure of the network

(e.g., node degree, path length, centrality) [15]. Such analysis can give insights about

the importance of nodes, connectivity between individuals, likely communities within

the network, and mechanisms responsible for network formation. Social network

analysis finds use in diverse areas of study, including (but not limited to) epidemi-

ology [16–18], political attitudes [19], economic networks [20], viral marketing [21],

immigration projections [12], counter-terrorism [22], and diffusion of information and

innovation [23–27].

Social influence networks are a subset of social networks, in which agents exchange

information with their neighbors to influence opinions about some shared issue [28].

Social influence network theory “[formalizes] the social process of attitude changes

that unfold in a network of interpersonal influence” and “advances a dynamic social

cognition mechanism, in which individuals are weighing and combining . . . positions

on an issue in the revision of their own positions” [2]. An influence model defines the

interaction and changes of opinions [2]. Perhaps the earliest mathematical model of

social influence is that of DeGroot [29], where the social group is working to come to

a consensus (such as members of a committee that must work together). Every indi-

vidual begins with their own subjective distribution F1, . . . , Fn of a target parameter

θ, which is modified as a result of consulting with other members of the group. The

DeGroot model assumes the result of this modification is a linear combination of the

others’ subjective distributions, such that individual i changes their distribution from

Fi to Fi1 according to

Fi1 =
n∑

j=1

pijFj, (1.1)

where pi1, . . . , pin are weights chosen by individual i prior to interacting with the

group, based on some criteria (e.g., perceived expertise). As this process is iterated,
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the social group may converge to the same distribution if certain conditions about

the network structure are satisfied.

DeGroot’s linear updating model reappears in many works on social influence,

directly or as the foundation for a new influence model. However, its popularity

does not guarantee its real-world utility, since interactions between individual often

proceed in highly nonlinear ways, in part because the way an individual responds

is often also based on their identity in the group, not just their initial opinion [30].

In other words, realistic social networks are not simply collections of homogeneous

agents [23, 31]. The nonhomogeneous nature of social groups makes agent-based

modeling and simulation, the approach used in this dissertation, a tool well-suited

for social influence network analysis [12, 19, 32–36].

Another domain where agent-based simulation is valuable is complexity analysis.

Complexity does not have just a single definition or a single technique to measure

it [37–39]. Despite the lack of consensus in the field, complexity generally aims to

capture the degree of difficulty in describing and creating a system, along with its level

of organization [4]. Preeminent complexity measures include Kolmogorov complexity

for the minimum description length of a system [40], computational complexity for

algorithmic time/space costs [41] (i.e., big-O notation), self-dissimilarity [42], and

Shannon entropy [43].

Complex systems analysis is relevant to studies of social influence networks [44].

In fact, complexity theory has seen occasional use in this area, briefly covered in

the following examples. Algorithmic complexity can be applied to analysis of social

network structures [45], as can graph entropy [46]. Steeg and Galstyan [47] introduce

content transfer as a new information theory measure to trace the strength of influence

between different users’ content in an online social network. Many studies analyze

static networks, but social networks can grow and evolve, so dynamic network analysis

can help bring understanding about the processes that make this evolution occur [35].

As a complexity measure, entropy can help us characterize social influence net-

works. As one example, Kulisiewicz et al. [48] compute entropy in human interaction
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networks based on event sequences, time-ordered lists of events, with each event cap-

turing a single time-stamped pairwise interaction. This means that only the occur-

rence of communication is measured, not the content or effect of the communication.

Their main finding is that the frequency and duration of communications in real-

world human networks is not strictly random (e.g., Poisson), and they observe that

their entropy measure can be useful in community detection due to the often varied

interaction profiles of different subgroups. Chapters 3 and 4 focus heavily on various

entropy measures as applied to social influence networks.

1.4 Methodology

This dissertation follows an article-based format, with each of the subsequent

chapters (except the concluding chapter) containing a published or publication-ready

research article. The core of each article is built around one or more response variables

calculated using simulated opinion data from a variety of social influence networks.

The opinion data is generated via discrete-time (rather than discrete-event) agent-

based simulation (e.g., [49]) using custom software written in the Python program-

ming language. Simulating the social influence networks gives direct control of their

properties and required inputs, which we manipulate according to experimental de-

sign techniques [50] in order to explore a wide array of possible network designs [51],

simulation parameters [52], and mechanisms of social influence [53]. Experimental

design factors are chosen based primarily on what appears to be factors of interest

in the literature (e.g., the influence model), but some factors naturally emerge as

variables while designing the agent-based simulation (e.g., population size and the

probability distribution for creating edge weights).

Noise in agent interactions is rarely mentioned in the social influence literature,

but it captures a fundamental aspect of social influence: communication is a noisy

process, so analysis must account for that noise [44, 54, 55]. To do so, we modify each

influence model to incorporate random noise (or error) and use the noise distribution’s
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variance as a design factor. Accounting for the perturbations caused by random noise

is one benefit of using agent-based simulation for generating opinion data, versus

directly computing results of analytical influence models (e.g., DeGroot [29]).

Much of the analysis in the included research articles is qualitative in nature, using

the shapes or profiles of time series plots of the different response variables. Although

it may not appear as rigorous as numerical methods, analyzing time series data based

on its shape is an accepted approach and can be useful in complexity studies for

identifying clusters in the data [44]. One drawback is an added layer of subjectivity

present in the results. Given the exploratory nature of the research questions, this

drawback is accepted.

Real-world social influence networks are likely much more sophisticated than those

that are simulated in this dissertation. This is true of most models in scientific

practice, but regardless, the real-world applicability of the research findings may be

limited as a consequence. Fortunately, the agent-based simulations in this work are

crafted as extensible frameworks to which additional detail and nuance could easily be

added, making it straightforward to modify the simulation to answer new or refined

questions.

1.5 Summary of articles

The articles are sequenced in chronological order from oldest to newest based on

when the research was performed. Table 1.1 compares and contrasts several aspects

of the articles to demonstrate coverage of the dissertation topic. The rest of this

section contains a brief summary of each one.

Chapter 2: “Regression-based social influence networks and the linearity of aggre-

gated belief” by Michael J. Garee, Wai Kin Victor Chan, and Hong Wan, 2018. In

Proceedings of the 2018 Winter Simulation Conference.
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Table 1.1.
Comparison table of research articles presented in Chapters 2-5.

Chapter 2 Chapter 3 Chapter 4 Chapter 5

Status published submitted preparation preparation

Aggregation target opinion entropy (multiple

measures)

same as Ch. 3 complexity

(custom measure)

Aggregation method sum average average vectorization

Response variables R2 of

meta-regression

model across

replications

average of

entropy measure

(multiple

responses)

same as Ch. 3 complexity over

time

Homogeneous agents yes yes no yes

Creates new sim data yes yes no no

Results summary trends between

design factors

and regression

model quality

trends between

design factors

and aggregated

entropy measures

same as Ch. 3

but adds

nonhomogeneous

scenarios to

design factors

new complexity

measure and

trends between

design factors

and complexity
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In this paper, we simulate opinion values (i.e., beliefs) for a collection of social

influence networks, aggregate the opinions across the network in several ways, fit lin-

ear regression models to that aggregated opinion data, and analyze the relationships

between the quality of those models and the simulation input variables used for gener-

ating the opinion values. (Our use of the term belief instead of opinion in Chapter 2

is based on the usage in the prior work upon which that chapter’s research was based

[36]. We moved to opinion in later chapters as a result of literature review, but we

view the two terms as synonyms.)

Opinion values for the social influence networks are generated using an agent-

based simulation. The inputs to that simulation are varied through experimental

design methods to produce a collection of networks in which each member of a net-

work changes its opinion over time due to influence from its neighbors. Specifically,

an individual’s opinion is altered using a function of their initial opinion, a weighted

average of their neighbors’ opinions, and a random error term; this influence model

has the functional form of a linear regression equation. Next, the opinions are aggre-

gated to produce terms of a regression model for the entire network: the dependent

variable is the sum of all agents’ opinion and each independent variable is a sum of a

subset of agent opinions. The subsets are based on properties of the agent-neighbor

relationships. The R2 and p-values for the regression model are then used to clas-

sify the model as Linear (R2 ≥ 0.50, p < 0.10) or Not Linear (otherwise); however,

some experimental trials are Invalid if the data yields undefined regression values.

Finally, we study the effects on this classification that are caused by changing the

simulation input variables (design factors). In short, the paper explores how well a

system-level regression model fits data from networks where agents exchange beliefs

using an individual-level model.

Some of the key findings are as follows. The likelihood of a trial being classified

as Linear is highest when one agent at a time updates its opinion and lowest when

all agents update simultaneously (Figure 1.1). Similarly, a trial is more likely to be

Linear if the edge weights used in the influence model are sampled from the standard
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uniform distribution U(0, 1) compared to either U(−1, 1) or the standard normal

distributions, and normalizing the edge weights per-agent further improves linearity.

The classification of a trial is computed at every time step during the simulation,

and trials are able to change classification during the simulation, which shows that

observing the system at single time steps does not reliably predict future behavior.

Lastly, normalizing opinion values across the population nearly doubles the rate at

which an otherwise Invalid trial produces usable data.

Chapter 3: “Social influence network simulation design affects behavior of aggre-

gated entropy” by Michael J. Garee, Hong Wan, and Mario Ventresca, 2020. Under

review at The Journal of Mathematical Sociology.

For the second article, we change our response variables from ones using regression

models to ones involving three different entropy measures, and we study the simula-

tion using a designed experiment with five design factors based on prevalent attributes

in the literature. As before, our analysis emphasizes the relationships between design

factors and response variables for social influence networks.

Three types of entropy are applied to opinion data from social influence network

simulations: relative entropy, mutual information, and transfer entropy. Entropy is

a popular information measure, and we can view the exchange of opinions between

social agents as an information-generating process. For each agent, its opinion val-

ues over a period of time are assigned to a set of states, where the states are either

fixed-width bins over the range of possible opinion values or symbols based on the

relative values of its opinion at consecutive time steps. After mapping opinion values

to states, empirical probability distributions are used for computing the entropy mea-

sures for each agent. Relative entropy for an agent is the agent’s opinion distribution

relative to the uniform distribution (where maximum entropy is found), while mutual

information and transfer entropy are functions of joint probabilities between agent

and neighbor. Each entropy measure for the agents is aggregated to the system-level

at each time step using the mean value across the population. These values are then
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further aggregated across multiple independent replications (with different initial ran-

domization states) for an experimental trial to produce the response variables, six in

total, for each of 1800 trials.

Overall, the relationships between simulation design factors and entropy response

variables are varied. For example, the choice of influence model, which determines

how opinions are changed over time, is impactful to relative entropy when opinions are

binned but not when mapped to symbols (Figure 1.2). Also, both response variables

for transfer entropy (binned and symbolized opinions) are highly positively correlated;

the same is true for relative entropy, but not for mutual information, which has a

subset of trials with negative correlations. Population size has negligible effect on all

response variables, perhaps because the aggregation approach averages the entropy

values across the population. These results, and the many others presented in the

article, contribute to the overall effort of this dissertation by evaluating links between

the inputs and outputs of social influence network activity.

Chapter 4: “Effects of nonhomogeneous agents in social influence networks on aggre-

gated entropy” by Michael J. Garee, Hong Wan, and Mario Ventresca. In preparation.

This article is an extension of the previous one, using the same response variables

and most of the same data generation and analysis techniques, but it differs in the

composition of the agents in the social networks. Previously, all agents were homoge-

neous, varying only in their initial conditions and location in the network, but now,

agents belong to one class whose members behave differently from agents in the other

classes. The behavioral differences vary between scenarios that are based on heteroge-

neous social network studies in the existing literature, which enhances the real-world

applicability of the study: authentic social networks are rarely homogeneous.

Four independent scenarios are created for this study, and each defines two agent

classes. First, agents are either informed or uninformed. An uninformed agent ini-

tially has no opinion and does not influence others; it will remain in this class until

it has an informed neighbor whose opinion it copies, whereby it becomes informed.
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Second, agents are either agreement-seeking (Concord-type) or partially antagonistic

agents. Concord-type agents always move their opinion toward the average opinion

of their neighbors, while partially antagonistic agents move their opinion away from

their neighbors if their current opinions are too far apart. Third, agents are either

bots or humans. Agents in each class preferentially interact with and trust agents in

the same class (an example of homophily), and bots have a higher rate of network

activity. Fourth, agents are either stubborn or normal. Stubborn agents never deviate

from their initial opinion yet are able to influence other agents. For each scenario,

a smaller experimental design was used to vary scenario-specific design factors and

those common across all scenarios, as applicable. The entropy response variables from

the previous article are applied to the data from these new trials, and the analysis

focus is on the impact that the scenario designs have on a similarly designed but

homogeneous system.

A key observation from this study is that it may be less important to accurately

model nonhomogeneous systems if the purpose is to analyze many systems at once

instead of only a single system at a time. This is because the response variable

distributions across all trials for the nonhomogeneous scenarios and homogeneous

base cases were very similar overall, but the variability between an individual scenario

trial and its corresponding homogeneous system could be great—up to several orders

of magnitude—and that difference may vary as a function of scenario design factors

(Figure 1.3). Also, we observe a robust relationship between the response variables

and experimental design factors, in that the scenario design showed little impact on

the entropy measures.

Chapter 5: “A complexity measure for opinion dynamics in social influence net-

works” by Michael J. Garee, Hong Wan, and Mario Ventresca. In preparation.

In this final article, we continue to explore the relationships between opinion

change in social influence networks and the variables that lead to such changes, shift-

ing our focus from entropy in particular to complexity theory in general. We first
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establish a concept of what arrangement of opinion data is considered simple in this

context, and then construct a measure of subjective complexity that captures the

difference between our baseline simplicity and an observed set of opinion data. As

before, we study the different patterns in the results relative to changes in experi-

mental design factors.

Creating a measure of complexity requires an idea of what a simple system is for

a given situation (the subjective simplicity), a specification or instance of the simple

system (the reference simplicity), and a way to measure how an observed system differs

from the reference [56]. Our subjective simplicity for studying opinion dynamics is a

network of agents who share the same unchanging opinion. We define the reference

simplicity to be a set of opinions equal to zero (the neutral opinion for our defined

range of opinions) for all agents at all times. The difference, or dissimilarity, measure

is a function of the observed opinions’ difference from their reference opinions, and

the slope, variance, and entropy of the observed opinion time series. The output of

this measure is our subjective complexity measure and the response variable used for

this study.

This complexity measure generally behaves as desired when applied to a set of

simple, synthetic data sets: higher complexity for opinionated agents with diverse

or dynamic opinions, and lower for agents with moderate or concurrent opinions.

When applied to more complicated opinion data (borrowed from the simulation in

Chapter 3), the complexity measure is sensitive to the influence model and presence of

noise between neighbors, producing patterns in time series plots of the complexity that

could be used to differentiate the different levels for those design factors (Figure 1.4).

Varying the choice of network structure model (used for generating the network itself)

had little impact on complexity. In summary, the complexity measure created in this

article may be helpful to analysts who are working to infer the properties of social

influence networks from the opinion data those systems produce.
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1.6 Overview

The rest of this dissertations is organized as follows. Chapters 2–5 contain the

research articles summarized in the previous section. The references for each chapter

are included in the combined references section at the end of the dissertation. Supple-

mental information for the articles appears in Appendices A–D. Chapter 6 contains

overall discussion and concluding remarks.
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2. REGRESSION-BASED SOCIAL INFLUENCE
NETWORKS AND

THE LINEARITY OF AGGREGATED BELIEF

c© 2018 IEEE. Reprinted, with permission, from M. Garee, W.K.V. Chan, and H.

Wan, Regression-Based Social Influence Networks and the Linearity of Aggregated

Belief, Proceedings of the 2018 Winter Simulation Conference, December 2018, IEEE,

pp. 941-952.1

Article abstract: Consider an agent-based social influence (belief adoption)

network where agents share beliefs with neighbors using a linear regression model.

One relevant question is: can aggregated, system-level belief also be fit by a linear

regression model? Earlier work demonstrated several scenarios where system-level

linearity of belief holds. This chapter extends that research, varying model and

simulation factors through experimental design. When linearity does not hold, we

isolate the responsible factors. Finally, we investigate whether system-level linearity

acts as an absorbing state, that is, when system-level linearity is present at some time

t, it continues to hold for all later times.

2.1 Introduction

Agent-based simulation is a useful tool for building and analyzing social influence

networks—systems in which agents exchange information with their neighbors and

influence each other’s levels of belief over time. In this study, agents update their

beliefs via a linear model, based on a weighted sum of their neighbors’ beliefs and

modified by internal bias and white noise. Similar update functions are used else-

where in social network analysis [15] and sensor network consensus modeling [57]. We

1Supplemental information for this article appears in Appendix A.
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build system-level measures of influence by aggregating values from each agent. One

reasonable hypothesis is that when agents interact in a linear way, the system-level

measures may also respond in a linear fashion. Chan [36] finds that for a particular

network configuration, this idea is valid. To examine this hypothesis more completely,

we build upon the previous work by varying model and simulation elements through

experimental design, identifying factors that impact the linearity of system-level be-

lief, and exploring whether individual observations of system-level linear behavior

make good predictors of steady-state activity.

In this research, we choose to focus only on linear models and behaviors. Linear

systems are widely used in literature and in practice, so we seek to explore their

validity as social influence network models. However, we do not make any claims to

the importance of linear systems to this topic, nor wish to imply that linear systems

are more or less valid than non-linear ones.

We identify ten factors that affect the structure and properties of the network,

the schedule used for agent updates, and the settings that control the agent’s initial

states. We then build a nearly orthogonal Latin hypercube design to systematically

study the behavior of the system under different factor settings. The key constant

across all trials is the agents’ use of a linear model to update their beliefs. We find that

linear agent interactions, in most cases, do not generate linear system-level responses.

Given the ten experimental factors in our design, three factors can significantly hinder

whether we observe linear responses, and five factors have little to no effect for the

range of levels used. However, no single factor on its own is observed to absolutely

prevent system-level linear responses. Also, we observe that the degree to which

aggregated belief can be fit by a linear model can vary over time (i.e., linearity is not

an absolute absorbing state in general), so measuring linear behavior for some single

time t does not make for a perfect predictor of future performance.

The rest of this paper is organized as follows. We provide a brief review of the

literature related to our topic in Section 2.2. In Section 2.3, we develop the model.

In Section 2.4, we describe the experimental design for the study. We present our
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analysis methods and results in Section 2.5, and we provide conclusions and discuss

future work in Section 2.6.

2.2 Background

2.2.1 Social influence and learning networks

The terms contagion and social influence are often used interchangeably to de-

scribe the process of altering behavior or belief due to communication and compari-

son among actors in a social system [58]. Social learning is the process of “learning

through observation or interaction with other individuals” [59]. In social network

analysis, learning tends to be used when agents in influence networks seek an optimal

behavior or true belief.

Social learning in network analysis is broadly divided into diffusion models and

information aggregation models [60]. Diffusion looks at the spread of information

through a population; information aggregation focuses on convergence of opinions.

The Bass model is a straightforward diffusion model that describes binary adoption

of a belief or behavior without using the network structure [15]. DeGroot [29] de-

veloped a simple linear updating model to describe information aggregation. There,

agents begin with initial estimated beliefs or opinions, and all agents update simulta-

neously, replacing their current level of belief with a weighted mean of their neighbors’

belief levels and their own. Agents will converge to a consensus value if the network

structure meets certain conditions of aperiodicity and communication [14, 29].

A second way of dividing social learning is into Bayesian models and DeGroot

models. Bayesian models focus on agents learning by observing the actions of neigh-

bors and the payoffs they receive, while DeGroot models learn myopically from com-

municating and processing only the current system state [61]. The DeGroot model

remains a seminal model of information transmission and social learning analysis

[15, 20, 60, 62].
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2.2.2 Regression analysis

Regression analysis is popular in social influence studies. Here, we comment on

several recent examples. Mavrodiev et al. [30] studied indirect social influence in

a sequential decision making experiment with humans. Participants had access to

the mean of all previous decisions, but did not interact directly with other individ-

uals. The authors found a statistically significant fit for a linear regression model

relating the amount individuals changed their decision over time and the distance

between their previous decision and the current mean. Similarly, Cheng et al. [63]

used logistic regression on opinion data from a Taiwanese online bulletin board. Their

results showed that users are more likely to post comments that match the sentiment

(approval or disapproval) in recent posts, while users are indifferent to the average

sentiment of the entire history of comments. Finally, Chan [36] modeled a social

influence network where agents interact using linear regression equations. For the

particular network configurations used, he found that the aggregated system-level

belief could be well-described using a linear regression model. Those findings are a

key motivation for the present paper.

2.3 Model

2.3.1 Networks and agents

We use agent-based simulation to model a social influence network with N agents

(nodes). Each agent is connected to one or more other agents using directed edges;

self-loops are not permitted. The degree of each agent and the distribution of degree

across the network depend on the network structure model family (e.g., scale-free,

random, etc.) for a given trial. We use only static network structures for this study,

so the set of agents and their edges do not change during a run of the simulation

(Figure 2.1). Particular network instances are a function of the structure family,
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network parameters, and randomness, and we use an assortment of network instances

in our experimental design (Section 2.4).

1
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Figure 2.1. Example of directed Erdős-Rényi random graph with 15 nodes.
Arrows point from an agent to an agent’s neighbor. This structure model
allows for a different number of neighbors for each agent.

Agents are indexed i = 1, 2, ..., N . Agent i’s neighbors are the agents that receive

out-edges from i, so neighbor relationships are not reciprocal. Each agent keeps a list

of its neighbor indexes, sorted in ascending order. The list of neighbors is indexed by

j = 1, 2, ..., di, where di is the out-degree of agent i (Figure 2.2). Agents also track

their own current level of belief yi, internal bias bi0, and multipliers bij for neighbor

j’s belief, which can be thought of as weights for the network edges. As a practical

example, yi may be a person’s current opinion of a political topic, bi0 is their intrinsic

or baseline opinion that cannot be changed by others, and bij is the weight the person

places on the opinions held by their friends. When we need to explicitly compare

these values between different time steps, we use superscript (t) to index them by

time step t, as in y(t).
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i = 12

0.2 0.35 ... 0.15

14 27 ... 49

1 2 ... di

bi0:

bij:

j:

0.05

yi = 4.75 neighbor
indexes:

Figure 2.2. Data structures inside an agent. This example shows an agent
with index i = 12.
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2.3.2 Simulation procedure

First, we explain how updates are scheduled from the system-level perspective,

then we describe interactions at the agent level, and finally we provide pseudocode

for the simulation algorithm. Code for this study is written in Python 3; notewor-

thy packages include the agent-based simulation framework Mesa [64], the NetworkX

package for graph structures and algorithms [65], and Statsmodels for regression anal-

ysis [66]. Complete code and other supporting files for this study are available in our

online appendix [67].

Our simulation uses a scheduling approach we call batched simultaneous update.

We divide the population into batches of equal size. At each time step, batches are

updated one at a time in either a fixed or random sequence. When a batch is updated,

all agents in the batch update simultaneously. Simultaneous update takes two steps:

first, all agents in an updating batch compute their new belief value yi but store it in

a temporary variable, then all agents in the batch update their yi with the value of

their temporary variable. This two-step approach ensures that the update sequence

within a batch does not matter, though the sequence in which batches are visited may

affect the outcome. Once all agents in the population update, their belief values may

be normalized by dividing them by the sum of all yi values, if the trial settings call for

normalization of yi. This batched update mechanism mimics a real-world situation

in which people first exchange ideas within a small group of acquaintances and then

extend the idea exchange to other groups.

Agents are assigned to batches 1, 2, ..., nb uniformly at random, independent of the

network structure. If nb = 1, all agents are in the same batch, so the full population

updates simultaneously (as in the original DeGroot model. If nb = N , all agents are

in different batches (of size 1), so the full population updates sequentially.

Some trials create uninformed agents that have zero initial belief. If an agent is

uninformed, it updates its belief value only if it has one or more informed neighbors,
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at which time it becomes informed permanently and updates normally. This concept

can appear in information diffusion models.

Agents interact only with their neighbors. Agent i computes its level of belief yi

using the linear regression model

y
(t)
i = bi0 +

di∑
j=1

bijx
(t)
ij + ε

(t)
i (2.1)

where ε
(t)
i is a random error term generated each time step and x

(t)
ij is the current

belief value for agent i’s jth neighbor (i.e., if the jth neighbor of agent i has index k,

then xij = yk), and the other terms are as defined previously in Section 2.3.1. The

simulation procedure for a single trial is described in Algorithm 1.

2.3.3 Response variables

Our focus in this study is to explore linearity in the system-level belief, achieved

with a multiple linear regression model of the form

Y (t) = B
(t)
0 +B

(t)
1 X

(t)
1 +B

(t)
2 X

(t)
2 + ...+B

(t)
d∗X

(t)
d∗ + E(t) (2.2)

where Y (t) is the system-level belief; X
(t)
j represents the aggregated belief of neighbor

j across the network, for j = 1, 2, ..., d∗; d∗ is the maximum out-degree over all agents

in the network; B0 is the system’s internal bias; Bj is the multiplier for the aggregation

of neighbor j’s beliefs; and E(t) is the random error term. These values are captured

each time step, so they are indexed by time. These interpretations are based on Chan

[36]. The aggregated values Y (t) and X
(t)
j are the dependent and independent terms,

respectively, in our regression model and are our key response variables obtained from

the simulation:

Y (t) =
N∑
i=1

y
(t)
i and X

(t)
j =

N∑
i=1

x
(t)
ij [j ≤ di] . (2.3)

(Since di can vary between agents, x
(t)
ij may not be defined for all values of j for

some agents. The Iverson bracket [j ≤ di] resolves this.) The set of all X
(t)
j terms
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Algorithm 1 Simulation procedure for a single trial. First, the network is created

based on trial parameters. Then, values for each agent are initialized, including their

initial belief values. Finally, the belief update process is performed for each time step,

and the process is reinitialized for each replication.

1: Trial Initialization:

2: Construct network from structure model family and parameters

3:

4: for each replication of trial do

5: Replication Initialization:

6: Generate bi0, bij, and ε
(0)
i for each agent

7: Set y
(0)
i = bi0 + ε

(0)
i as initial level of belief

8: for each time step t do

9: for each batch do

10: for each agent i in batch do

11: Generate ε
(t)
i

12: Set temporary variable for new belief using Equation 2.1

13: end for

14: for each agent i in batch do

15: Set y
(t)
i equal to temporary variable

16: end for

17: end for

18: Set Y (t) =
∑N

i=1 y
(t)
i

19: If using yi normalization, set y
(t)
i = y

(t)
i /Y (t) for each agent i

20: Collect time-step level data

21: end for

22: Collect system-level data

23: end for
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for a single time step form the vector X(t). Together, Y (t) and X(t) make up a single

observation of system-level responses for the time step.

We validated our simulation framework with two tests. First, we built a DeGroot

model [29] and observed that the aggregated system-level belief converged as expected.

Then, we replicated Chan’s [36] model and obtained qualitative agreement with his

system-level regression results.

2.4 Experimental design

In this paper, a factor is an input variable that may have an impact on the

responses, levels are values a factor may be assigned, a trial is a combination of

levels for each experimental factor (one row from the design matrix, also known as

a design point), and a replication is one repetition of a trial using different initial

randomization settings. We run a replication for 500 time steps and replicate each

trial 100 times. The ten experimental factors we use for this study affect network

characteristics, update scheduling, and agent interaction. These factors and their

associated levels are:

1. Number of agents N . 100, 500, or 1000.

2. Network structure instance. For each level of N , we create 14 structure in-

stances, discussed below.

3. Number of batches nb. 1, 5, N/4, or N . For our chosen levels of N , we ensure

N mod nb = 0.

4. Update sequence. Batches are updated each time step in either a fixed or

random sequence.

5. Distribution of bij coefficients. Uniform(0, 1), Uniform(-1, 1), or Normal(0, 1).

6. bi0 coefficients. Initialize using the distribution for bij or set to zero to remove

internal agent bias.
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7. Normalize bi0 and bij coefficients. Within each agent, across the population, or

do not normalize.

8. Variance of error terms. Error terms εi are sampled from the normal distribution

with mean zero and variance σ2 of 0.5, 1.0, or 2.0.

9. Normalize yi each time step. Yes or No.

10. Fraction of uninformed agents. 0, 0.05, or 0.25. This fraction of agents have yi

set to zero and are flagged as uninformed at the start of the run.

Each factor affects one or more high-level features of the simulation that may

influence the linearity of system-level responses. Factors 1 and 2 affect the size and

shape of the network, while Factors 3 and 4 control agent update scheduling. Factors

5 to 8 govern the regression terms for the update equation (Equation 2.1) within each

agent. Factor 9 alters the scale of belief values, and Factor 10 lets us see how diffusion

of initial belief affects the results.

A network structure instance is a particular realization of a network model for a

given structure family, input parameters for that family (including network size N),

and a randomization seed, when applicable. For a given family and set of parameters,

changes to randomness can yield different network shapes with different metrics. The

network structure families we use are scale-free, directed random tree, Erdős-Rényi

random graph, and random k-out. Two to four instances from each family are made

using several sets of input parameters and randomization seeds. We select inputs

that produce a satisfactory range of values for the standard network measures of

mean out-degree, assortativity, reciprocity, and efficiency.

A full factorial crossed design for this experiment is written as 23×35×41×141 and

requires a costly 108K trials. Instead, we adopt a data farming view and use a nearly

orthogonal Latin Hypercube (NOLH) design; this choice is motivated by Sanchez and

Wan [50]. The NOLH design tool we use [68] reduces our experiment to 255 trials.

The final experimental design matrix uses all ten factors and their associated levels

defined earlier and is available with our online appendix [67].



32

2.5 Analysis and results

2.5.1 Data processing

The first stage of analysis is to convert simulation outputs into a suitable analysis

database. Figure 2.3 gives a schematic overview of our data processing activity. To

process a single trial, we group the simulation outputs
(
Y (t), X(t)

)
by time step from

across all replications of that trial. Within each time step, data cleaning removes

outliers (e.g., due to floating point error or very extreme values) based on the standard

1.5-IQR (interquartile range) rule and drops observations with null Y values (e.g.,

caused by Y growing to infinity). Using the remaining observations, we fit a main-

effects only linear regression model of the form described in Section 2.3.3, record the

model’s adjusted R2
(
R2

adj

)
, and assess R2

adj as Significant if the model’s p-value is

below 0.10 or as Not Significant otherwise. This is done for each time step of the

trial.

R2
adj and the significance rating can move unpredictably between time steps due

to randomness, so we apply to both parameters a smoothing function and the prefix

“MA” for moving average. For R2
adj, we use a five-time step simple moving average

on R2
adj (the arithmetic mean of the R2

adj values for the last five time steps) and call

the result MA-R2
adj. For the smoothed significance rating, which we call MA-Sig.,

we assess the rating at each time step as the rating of the most recent sequence of

length three or greater: Over time, as we observe three Significant time steps in a row

(based on R2
adj), we begin assigning MA-Sig. as Significant, until we observe three Not

Significant time steps in a row and switch to assigning MA-Sig. as Not Significant,

and so on, switching back and forth as needed.

R2
adj and MA-Sig. drive a function that classifies each time step as Linear, Not

Linear, or Invalid. The Invalid classification is applied if either MA-R2
adj or MA-Sig.

is undefined, which seems to occur when Y or elements of X grow too large or

have infinite variance, or when the residual degrees of freedom for the model is too

low. (The maximum degree of the network structure governs the number of elements
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 Trial 1 Trial 2 
⋯ 

𝑡 MA-𝑅𝑎𝑑𝑗
2 /MA-Sig./Class. MA-𝑅𝑎𝑑𝑗

2 /MA-Sig./Class. 

1 ~/~/~ ~/~/~  

2 ~/~/~ ~/~/~ ⋯ 

⋮ ⋮ ⋮  

 

Analysis Database

Simulation Output Database
Regression on Simulation Output

100 observations for Trial 1, 𝑡=1

+ Data cleaning

+ Linear regression model 

1 𝑅𝑎𝑑𝑗
2 , Significance pair

500 𝑅𝑎𝑑𝑗
2 , Significance pairs

Moving Average / Smoothing

Classifier

500 (MA- 𝑅𝑎𝑑𝑗
2 , MA-Significance, 

Classification) tuples for Trial 1

Analysis Database

Repeat for 

each time 𝑡

Repeat for 

each trial

Time Series/State

Change Study

Factor-Level

Classification

Regression on

Experimental Design

Trial 1 Replication 1 𝑡 = 1:  𝑌 1 , 𝐗 1   

  𝑡 = 2:  𝑌 2 , 𝐗 2   

     ⋮ 

 Replication 2 𝑡 = 1:  𝑌 1 , 𝐗 1   

     ⋮ 
 ⋮    ⋮  

 Replication 100 𝑡 = 1:  𝑌 1 , 𝐗 1   

      ⋮ 

Trial 2   

⋮   

 

Figure 2.3. Schematic for data processing and analysis. Each independent
replication of a trial yields one observation of the system

(
Y (t),X(t)

)
for

every time step t. For each time step, the set of observations are cleaned
and put into a linear regression model of the form defined in Section 2.3.3
to produce an R2

adj value and Significance rating based on the p-value. Due
to randomness, these values can move erratically between time steps, so
we apply a smoothing function and the prefix “MA” for moving average.
The smoothed data classifies each time step as Linear, Not Linear, or
Invalid, ending data processing and creating the Analysis Database. This
processed data is sliced per trial for time series studies, or per time step
to support regression analysis on our experimental design and finding
classification rates for each factor-level in the design matrix.
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in X and number of factors in the regression model, so trials with large networks

and highly-connected agents require more replications to potentially be valid.) We

also classify cases where MA-R2
adj is exactly equal to unity as Invalid; rather than

indicating a perfect fit for the regression model on the simulation output, this occurs

for some trials with very extreme Y values, many outliers, or otherwise problematic

data. A valid time step is Linear if MA-R2
adj ≥ 0.50 and MA-Sig. is Significant.

Otherwise, it is classified as Not Linear. (Note: Linear and Not Linear are defined

only with respect to our goal of fitting time step data with a model having the same

functional form as the update equation used by the agents. We acknowledge that

there may exist linear models that strongly fit data that we classify as Not Linear,

but they must contain explanatory factors outside the current scope.) The values for

MA-R2
adj, MA-Sig., and Classification for each time step, and for each trial, populate

the analysis database, which we use in concert with the experimental design matrix

for all subsequent analysis.

2.5.2 Analysis

Our first two analysis products, factor-level classification and experimental design

regression, consider the system at a single time step (t = 500), while the third is a

time series study. First, for each factor-level in the experimental design, we filter the

analysis database by trials containing that factor-level and calculate the fraction of

trials with each of the three classifications (Linear, Not Linear, and Invalid). This

provides an intuitive way of making qualitative assessments of how the factors af-

fect system-level linearity. A dot plot of this data (Figure 2.4) lets us make several

observations:

• Updating the population in a single batch is significantly worse for linearity; N

batches are best.

• Randomizing the update sequence of batches has little effect on linearity.
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• Generating bij values from the Uniform(0, 1) distribution produces linear results

significantly more often than when we use Uniform(-1, 1) or Normal(0, 1), which

both have mean of zero.

• Normalizing all bi0 and bij values per agent yields the most linear trials.

• Normalizing yi may be beneficial because it reduces the chance of a trial being

classified as invalid.

We do not include the network structure in this part of the analysis, because each

structure instance is a direct function of N and also has a very low sample size (10-20).

Next, we build regression models at t = 500 on the experimental design using

MA-R2
adj as the dependent variable and omitting any Invalid data points. (The R2

adj

of these models is only indirectly related to the R2
adj from the raw simulation output

that underpins MA-R2
adj.) The initial main effects model with the ten original design

factors performs adequately (R2
adj = 0.513). We slightly improve on this baseline

model by proxying the network structure factor, a categorical variable, with the max-

imum degree di of the network, a discrete variable. Surprisingly, if we replace the

categorical levels 1, 5, N/4, and N for number of batches with the discrete number of

batches nb, we find a significantly worse model fit. The model we select as best con-

tains only five factors: the categorical batch quantity level, the distribution function

for bij, whether we normalize yi, the way we normalize bi0 and bij, and the maximum

degree di of the network (a proxy factor for network structure instance). This model’s

R2
adj is 0.532 and is statistically significant. All factors are significant and have low

variance inflation factors. Table 2.1 summarizes the model evolution process, and

Figure 2.5 contains diagnostic plots of the best regression model. Full model results

are available in the online appendix, but we provide a brief interpretation here:

• Increasing the number of batches causes MA-R2
adj to monotonically increase,

but the rate of increase falls off rapidly above nb = 5.

• Selecting Uniform(0, 1) for the bi0 and bij distribution is associated with higher

values of MA-R2
adj.
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Figure 2.4. Dot plot of fraction of trials with each classification per level
for each factor at t = 500. Some observations from this include: the
update sequence setting has little effect on linearity, but moderate effect
on trial validity; using only one batch is detrimental to linearity; and
normalizing yi leads to more valid—but not Linear—trials. The network
structure factor is omitted from this plot.
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• Normalizing bi0 and bij values per agent, instead of population-wide or not at

all, is linked to higher MA-R2
adj.

• Normalizing yi and the maximum network degree are statistically significant

but have very minor coefficients. Removing these factors from the model lowers

R2
adj to 0.507 from 0.532, so we instead retain them.

These observations agree strongly with our earlier comments on factor-level classifi-

cation percentages.
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Figure 2.5. Diagnostic plots of main effects-only model of experimental
design regressed on MA-R2

adj. This model uses five of the ten experimental
factors and achieves R2

adj = 0.532.

We finish our regression analysis by constructing a model with main effects and

two-way interaction terms. One of the highest-quality interaction models we found

uses a slightly different set of design factors, created from the main effects model by

removing maximum degree di and adding whether the update sequence is randomized,

the variance of the error distribution, and whether bi0 is set equal to zero. Backward

elimination is used to selectively remove low p-value interaction terms, yielding a

statistically significant model with R2
adj = 0.754. Diagnostic plots of this model are

similar to Figure 2.5 but with tighter distributions.



38

Table 2.1.
Summary of regression models fit to experimental design with dependent
variable MA-R2

adj at time step t = 500. All results in the table are statis-
tically significant (p-value < 0.001).

Regression Model on Experimental Design (t = 500) R2
adj

Main Effects Only

Baseline: All 10 original factors 0.513

Proxy network structure (categorical) with max di (discrete) 0.533

Proxy batch quantity level (categorical) with batch quantity (discrete) 0.388

Best fit: baseline, omit N and randomize update sequence, use max di (8 factors) 0.538

Best model: batch quantity level, bij dist., normalize bi0 & bij , normalize yi, max

di (5 factors)

0.532

Main Effects and Two-Way Interactions

Baseline: All 10 original factors & all interactions—input rank exceeds

observation count

n/a

All 10 factors, proxy network structure (categorical) with max di (discrete) 0.739

Best fit with all interactions: baseline, omit N and uninformed rate, proxy

network structure

0.761

Best model: 7 factors, proxy network structure, backward eliminate interaction

terms

0.793
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Forward or step-wise regression is a more typical approach when using large-scale

design of experiments.2 The design used in this research was not created explicitly for

simultaneous estimation of all second-order effects and not fully support backwards

elimination.

Finally, we consider how trial classification (Linear, Not Linear, or Invalid) changes

over time, and whether linearity continues in the future once it appears. Some trials

have identical classification patterns and can be merged, reducing the data from 255

trials to 94 patterns. This data reveals that the classifications of a small number of

time steps do not help predict long-run activity (Figure 2.6). A single Linear time

step can be part of a trial where the future is always Linear, where the system moves

between classifications frequently, or as a random Linear time step as part of a mostly

Not Linear trial.

2.6 Conclusions and future work

In this paper, we use experimental design to build a collection of agent-based

social influence networks populated by agents that exchange belief via a linear re-

gression model. We then investigate the behavior of the aggregated, system-level

belief using state transition probabilities, regression analysis, and a custom classifier

of trial linearity. The hypothesis is that linear agent-level interactions would lead to

linear system-level responses, but we identify several model features that challenge

this assumption.

Features that negatively affect system-level linearity include updating the full

agent population simultaneously as a single batch, generating agent’s bij coefficients

from a zero-mean probability distribution, and choosing not to normalize bi0 and bij

values per agent. In real-world influence networks, people generally exchange ideas

within small groups of acquaintances over time, so multiple update batches are more

similar to reality. Also, the trust that real people have in their acquaintances (i.e. bij)

is unlikely to be zero, so a zero-mean distribution may be inappropriate—if people

2This paragraph was not present in the original publication of this article. Thanks to Susan M.
Sanchez for this correction.
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Figure 2.6. Trials are classified Linear, Not Linear, or Invalid at each time
step based on MA-R2

adj and MA-Sig., and trials with identical classifica-
tion patterns are merged. This figure shows the 94 distinct classification
patterns (rows), sorted left to right by time step (columns). The solid
green bar at the bottom of the figure represents trials that are Linear for
every time step (40 trials). Single time step observations do not predict
future performance.
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trust their neighbors, the whole system may be more well-behaved. Therefore, our

experimental results suggest that actual influence networks may tend more toward

linearity.

We observe no factor-level that completely prevents linearity on its own. Half of

our experimental factors have no real effect on classification for the range of levels we

selected, namely the population size, randomizing the batch update sequence, fixing

(or not) agents’ internal bias bi0 to zero, error variance, and the initial uninformed

rate of agents. Testing these factors over a greater range of levels could justify omit-

ting them from later experiments. Normalizing yi each time step is valuable not for

affecting linearity but rather for reducing trial invalidation. These findings may help

analysts design more effective simulations in the future. Lastly, if we wish to predict

long-run behavior with respect to classifying a system as linear, evaluating single time

steps is inadequate. Further study is required to understand how long-run behavior

relates to the experimental design factors.

Many rich research areas remain that can build upon this work through small

changes to the existing model, as the structure of our simulation allows us to easily test

more intricate scenarios. We assess system-level linearity based strictly on regression

models of the same functional form as the agent’s interaction equation, but relaxing

this definition and bringing new model features into the analysis may reveal new

insights. Allowing self-loops in the network structure would see agents factoring their

current belief value into the update process; applying an autoregressive-type model

may be interesting. It could be worthwhile to explore the effect that linearity has on

model behavior metrics such as speed of belief adoption. Instead of updating the full

population each time step, agents could update stochastically or subject to conditions

about their neighbors (e.g. homophily/thresholding, where agents ignore opinions too

different from their own). A more substantial change to our simulation would be to

have dynamic network structures, creating and destroying links over time. Finally,

additional network metrics in the experimental design regression analysis could shed

light on the influence of network structure on system-level linearity of belief.
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3. SOCIAL INFLUENCE NETWORK SIMULATION
DESIGN

AFFECTS BEHAVIOR OF AGGREGATED ENTROPY

Submitted to The Journal of Mathematical Sociology on 30 October 2019. Authors:

M. Garee, H. Wan, and M. Ventresca.1

Article abstract: As agents interact and influence one another in a social net-

work, the opinions they hold about some common topic can change over time. These

changes may enable us to infer mechanisms of the network that control how inter-

actions lead to opinion change. Inferring such mechanisms from opinion data could

enable analysis of social influence in data-sparse scenarios. However, limited work

has focused on this problem, despite its clear value. In order to address this gap,

we create opinion data using agent-based simulation and experimental design. By

viewing opinion changes as an information-generating process, opinion dynamics can

be studied using entropy. This work explores the relationships between aggregated

entropy and five simulation design factors. Three entropy measures are calculated on

continuous-valued opinions and are analyzed using a main effects model and cluster

analysis. Overall, the choices of influence model and error distribution are most im-

portant to the entropy measures, activation regime is important to some measures,

and population size is unimportant. Also, design variation can be detected using time

series cluster analysis. These findings may support work in inferring properties about

real-world social influence networks using opinion data collected from their members.

1Supplemental information for this article appears in Appendices B and C.
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3.1 Introduction

As agents interact and influence one another in a social network, the opinions they

hold about some common topic can change over time. To understand the relation-

ships between opinion changes and the underlying mechanisms of the network (e.g.,

influence process, interaction frequency), we can simulate social influence networks

and observe the effects that varying simulation inputs can have on agent opinions.

In this paper, we adopt the reverse perspective: given a collection of agent opinion

data, make inferences about the underlying mechanisms of the influence network.

This approach could be useful in scenarios where there is insufficient data about the

network to construct a credible simulation, yet ample data is available on how agent

opinions evolve.

Social influence networks are “social cognition structures assembled by individuals

who are dealing with a common issue” [69]. Its members, herein called agents, have

opinions about the “common issue” and the ability to modify those opinions based

on influence from other agents. The model for a social influence network defines how

an agent’s opinion changes due to interaction with its neighbors or other information

sources [70]. Following Flache et al. [53], opinion is the “agent’s property that is

affected by social influence in a model” and generically represents social terms such

as belief, behavior, and attitude. In this work, we define opinion on a continuous

scale (e.g., relative degree of support/opposition for an issue), which is consistent

with much of the existing work in opinion dynamics (e.g., [2, 14, 29, 53]).

The evolution of opinions among agents in a social network can be viewed as

an information-generating process. Entropy is a popular concept for information

measurement in general, and it has been successfully used to study opinion dynamics

for individual agents in particular. For instance, transfer entropy can be used to infer

causal relationships between peers in a social network, on the basis that influence

is detectable by changes in information distribution [31], and relative entropy can

characterize the rate of learning in a population based on injecting information at
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different locations in the network structure [71]; for other examples, see Xie et al. [72]

or Zhao et al. [73].

Here, we wish to extend the scope of analysis for social influence and entropy of

the individual to the entire system, defining system as the union of the agents, their

properties, their network, and the methods by which agents interact (i.e., the system

is everything required for creating opinion change). The entropy measures we have

selected are computed on individual agents or pairs of agents, but we wish to produce

a combined measure for the network as a whole. So, we take entropy measured for

individual agents and aggregate it across the population to look for insights about

the system. (In this work, we aggregate by averaging, but other methods can be

considered.) For example, can we use entropy measurements on population opinion

data to infer the influence model using data from previously-studied networks? We

focus on three entropy measures from the literature: relative entropy [71], mutual

information [74], and transfer entropy [47], selected for their relevance to information

movement within networks and utility in the social network analysis performed in the

cited works. We calculate entropy on social influence networks using the time series

of opinion values held by the agents in the network: opinions vary over time, and this

leads to a distribution of opinion values.

To illustrate this approach, consider one agent in a social influence network. The

relative entropy for the agent is a function of the distribution of its opinion values

over some time period, relative to a uniform distribution across the maximum range

of opinions. If the agent’s opinion changed at random, relative entropy would be near

zero, while if its opinion was unchanging, the relative entropy would be maximized.

When aggregated across the population, the order (or disorder) of the relative entropy

may reveal details about the system that we can tie to its properties, discussed later.

Similarly, mutual information and transfer entropy are functions of the joint prob-

ability distributions for the opinions of a pair of agents. Mutual information is zero if

there is no apparent relationship between the joint and marginal distributions of their

opinions, and it increases as a relationship emerges. Transfer entropy is similar but
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accounts for changes over time in greater detail (Section 3.2). There are many pairs

of agents in a network, but we assign an agent a single value for mutual information

(transfer entropy), taken as the mean of the mutual information (transfer entropy)

between that agent and each of its neighbors. We use the phrase aggregated entropy

to refer to the result of aggregating the entropy values for individual agents across

the social influence network. The inputs to this aggregation depend on the choices of

entropy measure and discretization method, but the aggregation process is the same

for each of the response variables used in this study.

Broadly, the objective of this research is to study the relationships between the

characteristics of a social influence network and the entropy measures computed on

network using agent opinion data as it changes over time. We use agent-based sim-

ulation to generate opinion data, so these network characteristics take the form of

simulation input variables, or design factors, such as the size and shape of the net-

work and the influence model controlling interactions between agents. The design of a

social network simulation should affect the observed opinion dynamics. More specif-

ically, our objective is to study the relationships between the system design factors

(input) of a social influence network simulation and the aggregated entropy measures

on the simulated opinion data (output).

In this study, we address the relationship between system design and aggregated

entropy through the following research questions:

1. Which system design factors contribute most to aggregated entropy? (This can

reveal which factors are good candidates for inference.)

2. How is system design related to the distribution and scale of entropy time series

data? (Clusters in the outputs may be linked to commonalities in the inputs.)

3. How do different entropy measures respond to changes in system design? (Some

measures may be more sensitive, and useful for inference, than others.)

For the first question, we focus on the one-way sensitivity of aggregated entropy to

changes in the system design factors by identifying patterns in response variable plots
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and performing statistical comparison tests between the experimental levels of design

factors. We address the second question through cluster analysis on time series data

from each trial and inspect cluster composition with respect to the design factors.

The third research question relies on qualitative analysis of spatial patterns in the

time series plots of the entropy response variables and correlations within trials for

different response variables.

Summary of main contributions

The results from this study identify relationships, or lack thereof, between the de-

sign factors for our social influence network simulations and the aggregated entropy

measures applied to opinion data created by the simulation. For one, relative entropy

can be sensitive to the influence model and the distribution of communication errors,

in that different choices for those factors produce different patterns in plots of rela-

tive entropy, but it is insensitive to population size, network structure, and timing

of agent interactions. The strength of such relationships with the design factors vary

for the different entropy measures and even the different discretization methods (e.g.,

influence model is more impactful to relative entropy on binned data than on symbol-

ized data). These findings may support work in inferring properties about real-world

social influence networks using opinion data collected from their members.

Also, the results add support to the idea that the presence of noise in communi-

cation between agents and the timing of agent interactions can affect the evolution of

opinions. Those design factors are challenging to capture in purely analytical models

and are often omitted from social network analysis in the literature, but they are

straightforward to build into an agent-based simulation, like the one created for this

study.

The remainder of this paper is organized as follows. In Section 3.2, we review

entropy metrics in the context of social networks. In Section 3.3, we explore de-

sign factors of social influence networks that allow simulating a diverse set of system
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designs. Section 3.4 details the methods for designing the simulations and generat-

ing data. We present the results of our different analysis techniques in Section 3.5.

Findings and conclusions are discussed in Section 3.6.

3.2 Entropy in social influence networks

Social influence networks are systems in which agents exchange information with

their neighbors to influence opinion values over time [28]. Agent activity in a social

influence network can be viewed as a kind of information-generating process, so en-

tropy can characterize the information and uncertainty associated with the exchange

of opinions. Entropy measures in social network analysis can be predominantly di-

vided into activity-based measures and structural measures. Activity-based measures

calculate entropy about message exchange between agents [47, 75], agent decisions,

or output signal distributions [71]. Structural measures, such as connectivity en-

tropy and centrality entropy [76], rely on properties of the underlying graph, like

node degree and path length. Since our focus is on changes in agent opinions caused

by interactions with their neighbors, rather than structural properties of the social

networks, activity-based measures are used herein.

Social network activity generates information through the exchange of messages

among agents, so Shannon entropy is relevant [74]. Indeed, the fundamental ideas

of Shannon entropy appear in the measures featured in this section. In this work,

an agent’s opinion values are discretized using a fixed set of states (via methods in

Section 3.2.1), and we use the empirical probability distribution associated with those

states to compute the following entropy measures.

Relative entropy (or Kullback-Leibler divergence) measures an error between two

distributions, usually between an observed and an assumed distribution [77]. Relative

entropy for a process X, representing a discrete random variable (such as discretized

opinions of an agent in a social influence network), is defined as

DX(p ‖ q) =
∑
x

p(x) log2

p(x)

q(x)
, (3.1)
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where p and q are discrete probability distributions with identical support and x

represents possible values of X.

Mutual information is an entropy measure for interacting processes. Consider-

ing two processes as discrete random variables, mutual information measures the

uncertainty reduction about one variable given knowledge of the other [78]. For

information-generating processes X and Y , it is expressed as

MXY =
∑
x,y

p (x, y) log2

p (x, y)

p(x)p(y)
. (3.2)

The uncertainty reduction increases with the value of MXY , while MXY = 0 indicates

X and Y are independent.

Transfer entropy improves on mutual information, such as by preserving the di-

rectionality of influence [74]. For a process X, let xt give the state of X at time t so

that x
(k)
t = (xt, . . . , xt−k+1) represents the k-length time series of states of X ending

at time t (and similarly for process Y ). Then, transfer entropy is defined as

TY→X =
∑
x,y

p
(
xt+1, x

(k)
t , y

(l)
t

)
log2

p
(
xt+1 | x(k)t , y

(l)
t

)
p
(
xt+1 | x(k)t

) . (3.3)

Here, TY→X measures the degree to which X depends on Y , and, unlike mutual

information, TY→X is not necessarily equal to TX→Y . The values k and l control how

much of the history of X and Y are considered.

3.2.1 Techniques for entropy of continuous variables

Entropy is often defined on discrete probability distributions. However, we will

define opinion as a continuous variable. The entropy of continuous variables can be

evaluated using binning or the symbolic approach.

Binning discretizes the continuous state-space of opinion values into discrete bins

of some width (i.e., the density histogram of the data). Building discrete probability

distributions in this way allows the use of discrete entropy measures on continuous

data without altering the equations (e.g., Reinagel et al. [79]).
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The symbolic approach transforms the input data by first mapping the elements of

a time series into patterns of relative orderings between values (e.g., increase-increase,

increase-decrease, etc.). Each pattern is identified by a distinct symbol, which allows

the data to be described with a discrete probability distribution. An additional

parameter for this approach is the pattern length, which varies the complexity of

the analysis, as the number of patterns increases with the factorial of the pattern

length. Symbolic transfer entropy is one example of this symbolic approach, applied

to transfer entropy for frequency analysis of online messages surrounding specific, rare

events [75].

3.3 Social influence network simulation design

In this section, experimental design is outlined by discussing factors that are

potentially fundamental to the design of a social influence network. These factors

involve structural aspects of the network and mechanisms by which members of the

network influence one another.

This section is organized as follows. After discussing several definitions and nota-

tions used throughout this study, we present mathematical network structure models,

agent activation schedules, social influence models, and techniques for incorporating

stochastic error terms into otherwise deterministic influence models. These items are

used as design factors in our study and are selected based on their presence (often

singly) in existing social influence network studies and literature.

3.3.1 General definitions and notations

The structure of the social influence network is defined on an edge-weighted di-

rected graph G = (V,E), where V is the set of agents, E is the set of directed edges

among these agents, e(i, j) ∈ E is an edge directed from agent i to agent j, and wij is

the edge weight for e(i, j). For e(i, j), we say j is a neighbor of i, meaning agent i can

observe the opinion of agent j and thereby be influenced by j. Network structures
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are static during simulation runs. Edge weights model the fact that social influence

between two agents need not be equal—nor even possible—in both directions. Here,

the weights are set by sampling from the standard uniform distribution U(0, 1) for

each edge and then normalizing the weights so that for each agent with outgoing

edges, the weights for those edges sum to one; using U(0, 1) for creating edge weights

is based on Garee et al. [80].

3.3.2 Network structure models

Network structure can affect opinion dynamics in social networks. Several struc-

tural models are prevalent in the social network literature, including regular lattices,

Erdős-Rényi random networks, small-world, scale-free, and spatial networks [33, 51].

In this paper, we use the Erdős-Rényi random, small-world β, and scale-free network

structure models; parameterization is detailed in Appendix B.

3.3.3 Activation regime

Activating an agent causes it to perform its assigned action, such as updating its

opinion. The model’s activation regime describes the order and frequency of agent ac-

tivation, sometimes called the “scheduling” approach [52, 81]. Many models use only

a single—often simplistic—activation regime [52], even though different approaches

to the timing of agent interactions can lead to different outcomes [53, 82]. Choosing

the correct activation regime remains an open problem [81]. In this work we con-

sider three activation regimes featured in the literature: synchronous, uniform, and

random [52, 81].

3.3.4 Influence models

The model for a social influence network defines how an agent’s opinion changes

due to interaction with its neighbors or other information sources (e.g., mass media in
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a real-world network) [70]. This research only considers influence sources within the

network by an agent’s neighbors. Below, we survey several prevalent models involving

continuous opinions. The seminal model of DeGroot [29] updates agent i’s opinion

oi to the value of a simple weighted mean of the opinions from the agent’s neighbors

as time increases from t to t + 1. The standard model of Friedkin and Johnsen [2]

augments DeGroot’s and is formulated as

oi(t+ 1) = aii
∑
j

wijoj(t) + (1− aii) oi(1), (3.4)

where oj is the opinion of j, wij is the weight assigned to j’s opinion such that

wij ∈ [0, 1], aii ∈ [0, 1] is agent i’s susceptibility to external influence, and 1−aii = wii

is the weight i places on its own initial belief oi(1).

Flache et al. [53] describe an influence model containing a similarity bias that

causes agents to ignore opinions too dissimilar from their own, acting as a type of

homophily. Agent i interacts with a single neighbor, j, if their opinions differ by

less than a “confidence threshold” that is interpreted as a measure of the uncertainty

that agents feel about their own beliefs. Agents with high uncertainty are willing

to communicate with neighbors with larger differences in opinion from their own,

compared to agents with low uncertainty. Then, if |oi(t) − oj(t)| is less than i’s

confidence threshold,

oi(t+ 1) = oi(t) + µ [oj(t)− oi(t)] , (3.5)

where µ is the rate of opinion convergence and other terms are as defined previously.

The attractive-repulsive model [53] allows for both attractive and repulsive effects

between agents as a function of the degree of opinion difference: small differences

between i and j cause their opinions to move toward one another, while large dif-

ferences push them apart. Unlike the previous models where the new opinion was

always within the range of the original opinions, this latest model can push opinions

to new extremes. We define opinion to lie in the interval [−1, 1] and use a simple

truncating rule: if an agent would update their opinion to a value outside the interval

[−1, 1], they instead set it to the nearest boundary of that interval.
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Models discussed thus far include some sort of weighting of the opinion of one

or more neighbors. Alvarez-Galvez [83] takes a different approach in their study of

social contagion called individual random contagion (or adoption): each time an agent

would update its opinion, it adopts the opinion value of only one of its neighbors,

selected at random.

3.3.5 Error terms in influence models

Real-world agents “may make errors in perceiving each others traits or similar-

ity” [53]. This can be extended to agents misjudging each other’s opinions, for ex-

ample, due to noise in a communication channel or cognitive biases affecting all

interactions. A stochastic error term is appended to each of the interaction equations

from Section 3.3.4, representing the naturally imprecise nature of communication be-

tween social agents. Literature reviewed to date does not suggest a preferred error

distribution for noisy social influence networks, so we assume the noise is created with

the zero-mean normal distribution N(0, σ), treating its standard deviation σ as an

experimental design factor.

3.4 Methods

We generated opinion data using a social influence network simulation. To create

data from a wide array of scenarios, we used experimental design to vary the five

simulation design factors (population size, network structure model, agent activation

regime, influence model, and influence error term) and created 1800 trials. For each

trial, we collected a time series of opinion data for each agent and used that to calcu-

late the six entropy-based response variables that support our analysis in Section 3.5.
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3.4.1 Experimental design

We used a full factorial design of 1800 trials, based on five design factors: pop-

ulation size, network structure model, agent activation regime, influence model, and

influence error term. (Additional details appear in Appendix D.) Each design factor

was varied over multiple levels (experimental settings). Population size N was varied

over the set {100, 1000, 10000}. The design had ten levels for network structure model:

one level for Erdős-Rényi random graphs, six levels for small-world, and three levels

for networks created via preferential attachment. These three models are prevalent

in the existing social networking literature [51], and the parameters for small-world

and preferential attachment were selected based on typical use cases in previous re-

search [36, 84, 85]. Levels for the agent activation regime were synchronous, uniform,

and random. The four influence models from Section 3.3.4—the standard model,

similarity bias, attractive-repulsive, and random adoption—plus a nonlinear model

motivated by the standard model formed the five levels for this design factor. The

influence error term was distributed according to a zero-mean normal distribution

with standard deviation σ ∈ {0.05, 0.1, 0.2}, or the error term was omitted entirely.

3.4.2 Simulation design

The simulation described in this section was implemented in the Python program-

ming language using an agent-based modeling approach. Agents independently stored

their own state information and updated their own opinion values when activated.

Also, an agent did not have global awareness of the network, instead knowing only

the identities of the agents it follows (its network neighbors) and their opinion values.

Every trial in the experimental design was replicated 100 times. Each replication

took place over a series of 500 time steps. At each time step, agents activated ac-

cording to the activation regime for the current trial, and when an agent activated,

it updated its opinion according to the trial’s influence model.
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3.4.3 Entropy calculations

The three entropy measures discussed in Section 3.2, relative entropy, mutual

information, and transfer entropy, rely on discrete data. As a first processing step,

the continuous opinion data was discretized using the approaches from Section 3.2.1.

For binning, an opinion value was mapped to a fixed-width bin; for the symbolic

method, an opinion value was mapped to a symbol from a fixed alphabet based on

its relation to the agent’s prior and later opinions (the two approaches are used for

different response variables, discussed in Section 3.4.4.). As a result, each opinion

value was mapped to a discrete state. Probability distributions associated with these

states were used for computing the entropy measures.

At each time step, entropy was calculated for each agent, based on its own states

and those of its neighbors (as necessary), for that and all previous time steps t. Rel-

ative entropy uses the empirical distribution directly (Equation 3.1), while mutual

information and transfer entropy also use joint distributions on pairs of agents or

multiple time steps (Equations 3.2-3.3). We now detail the calculation of mutual

information; the other measures follow the same process using their respective dis-

tributions and equations. Consider two agents, i and j, whose opinions have been

mapped to the set of discrete states X and Y , respectively. Let p(x, t) be the empir-

ical probability distribution of X based on agent i’s opinion data for all time steps

up to and including time t and define p(y, t) similarly for agent j. Then, let p(x, y, t)

be the empirical joint distribution of the agents’ states up to and including time t.

Mutual information for agent i at time t, following from Equation 3.2, is

MXY (t) =
∑
x,y

p (x, y, t) log2

p (x, y, t)

p(x, t)p(y, t)
, (3.6)

with the sum taking place over all pairs of states in X and Y .

Each entropy measure required us to decide on certain parameters and approaches.

For relative entropy, the agent’s data was assessed relative to the uniform distribution,

because it has the maximum entropy for any given state space and fits with the

intuitive notion of how (un)informative a data set might be. Mutual information and
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transfer entropy were computed only between neighbors. For these two measures, the

value for a single agent was defined as the average value of the measure across all

of the agent’s neighbors. Further, transfer entropy includes parameters k and l, the

number of previous time steps considered for each of the agents. Here, we followed

Schreiber [74] and de Assis and de Assis [86] and let k = l = 1.

3.4.4 Response variables

During each replication of the simulation, an N× tmax matrix was populated with

agent opinion values, where N is the size of the agent population and tmax is the

total number of time steps in the run. One element in the data matrix, oi(t), is the

opinion for agent i at time t. Each row of the matrix is a time series of opinions

for one agent. We paired each of the two continuous data techniques with each of

the three entropy measures to compute six entropy values per agent, for each time

step within a replication of the simulation. This produced six entropy time series per

agent, which were then aggregated by averaging across the population, yielding six

aggregated entropy time series for a replication. Once all 100 replications for a trial

were complete, the aggregated entropy data was averaged across replications. These

final response variables were per-trial time-series data for each of the following:

1. relative entropy, binning (RE-B);

2. mutual information, binning (MI-B);

3. transfer entropy, binning (TE-B);

4. relative entropy, symbolic approach (RE-S);

5. mutual information, symbolic approach (MI-S); and

6. transfer entropy, symbolic approach (TE-S).
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3.5 Results

The agent-based simulation experiment produced response variable time series

data for 1800 independent trials. For each research question, we provide an analysis

process overview for a single response variable (RV) before commenting on noteworthy

differences among the other RVs.

In Figure 3.1, we show the general distributions of the RVs to provide an overview

of the trial data. The distributions for RE-B and RE-S are similar in shape to each

other, as are the four MI and TE RVs.
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Figure 3.1. The time series of RE-B (left) and MI-S (right) for all trials
are plotted with an adjacent kernel density estimate of the values at the
final time step. These plots exhibit the two characteristic shapes of the
data observed for all six response variables.

Levels are encoded as a single letter in many graphics in this section for better

readability and are identified in the text as needed; a full listing appears in Table B.2.

3.5.1 Research question 1: Which system design factors contribute most

to aggregated entropy?

For this research question, we explore the one-way sensitivity of each entropy

response variable to changes in the levels of experimental design factors. This explo-

ration includes qualitative comparisons of RV distributions when trial data is grouped
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by experimental levels and statistical tests for differences between levels. These meth-

ods support a subjective evaluation of whether an RV is sensitive to changes in each

design factor. We remark that all the one-way sensitivity analyses are based on the

full set of data, and so illustrate the factors’ main effects. Plots such as those used

below could give misleading insights about main effects if the data only reflected one-

at-a-time variation of each factor from a base case, rather than a designed experiment.

Analysis results for the relative entropy, binning (RE-B) response variable for the

current research question are summarized in Table 3.1. For the overall evaluation (fi-

nal table row), we find that RE-B is not sensitive to population size N and activation

regime, while it is sensitive to changes in the levels for the other three design factors.

This evaluation is based on an experimental design main effect plot of data at the

final time step (Figure 3.2) and plots for each design factor where each trial’s RE-B

time series is grouped by level (e.g., Figure 3.3), as well as the Kruskal-Wallace test

on each factor and the Mann-Whitney U test on each pair of levels for each factor

(Table B.3).

The distribution of the data is not unimodal for some RVs (Figure 3.1, left), so

the full distribution of the data is considered rather than simply the mean. Each

half-violin in Figure 3.2 shows the distribution of RE-B at the final time step of

the simulation for each level. Differences between distributions among the levels

for a factor qualitatively show the effect that the levels have on the response. For

example, the distributions for population size N are almost identical, so we infer that

N is not important (i.e., does not have a significant effect on the RV), at least over

the levels used in the experimental design; the same holds for the agent activation

regime. On the other hand, strong differences are visible for the influence models and

error distributions, making these important to RE-B. Structure models appear to fall

into at least two similar groups, and these groups resemble the higher/lower density

networks (Appendix B.3). These observations are summarized in Table 3.1, item i.

The main effect plot uses data for only a single time step to focus on the final state

of the network. Median lines of the grouped data over the full run of the simulation
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Table 3.1.
The findings for research question 1, design factors that contribute most
to aggregated entropy, for the response variable RE-B are summarized to
support the overall evaluation of each experimental design factor (final
table row). The parenthetical before items i-iv refer to the graphic or test
that supports the item.

Factor (number of levels)

N (3) structure (10) influence model (5) error (4) activation (3)

i. (Main effect plot) What differences are present between the response variable

distributions for each level at the final time step?

negligible 2 or 3 patterns 3 or 4 patterns 3 patterns negligible

ii. (Grouped time series) What differences are present between the median response values

over the duration of the simulation?

negligible overall similar shapes;

small divide affected

by density

3 patterns;

nonlinear+standard,

similarity+random paired

3 patterns;

high+medium

variance identical

negligible

iii. (K-W test) Does the Kruskal-Wallace test indicate statistical differences in the response

variable between each level at the final time step? (i.e., is the p-value <0.05?)

no yes yes yes no

iv. (M-W U test) How many pairs of levels are statistically different (p-value <0.05)

according to the Mann-Whitney U test?

0/3 28/45 10/10 5/6 0/3

* (Evaluation) Is the response variable sensitive to changes in the level for the factor?

no yes yes yes no
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Figure 3.2. Each half-violin of this design of experiments (DoE) main
effect plot represents the distribution of relative entropy, binning (RE-B)
at the final time step for all trials, with the corresponding level on the
horizontal axis and its median indicated with a dash; the grand median
is shown for reference. This plot suggests, in part, that N and activation
are unimportant to RE-B, while zero error (level a) leads to markedly
different outcomes from the other error distributions.
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reveal the impact of time on the RV (influence model is shown in Figure 3.3). On

the plot for influence model, there is distinct separation between some levels and

pairing between others. Trials using the similarity bias and random adoption influence

models show similar behavior for RE-B, but these similarities vanish for other RVs.

Specifically, for TE-B and MI-B, results for the two influence models behave differently

from each other, while for the symbolic method RVs, they are similar to each other and

the remaining influence models. For population size and activation regime, median

lines heavily overlap. Overall, these figures reinforce what was observed in the main

effect plot. They also show that for RE-B, the median response values are stable over

time (after an initial transient), so observations made at the end of the simulation run

should be informative about the system over a longer period of time. These findings

are summarized in Table 3.1, item ii.

Grouped time series plots for the other RVs are similar in nature to those for RE-B

(initial transient, then stability), though for mutual information and transfer entropy,

many lines appear to gradually approach zero rather than some nonzero steady state

value.

With respect to the current research question, population size N is unimportant

to all six RVs used in this experiment. Network structure, influence model, and

influence error distribution are important for the RVs (and different levels of these

design factors often lead to very different results). Finally, agent activation regime is

important for mutual information and transfer entropy but not for relative entropy.

3.5.2 Research question 2: How is system design related to the distribu-

tion and scale of entropy time series data?

The preceding analysis shows that some system design factors have greater effects

on trial response values than others. We now look for relationships in the distribution

and scale using time series cluster analysis. For example, does the setting for the

influence error term strongly drive response values into distinct clusters for each
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Figure 3.3. All trials are grouped by factor-level as in Figure 3.2 and
the groups’ median response over time is plotted (solid line). Shaded
regions enclose the 25th to 75th percentiles of the data associated with
the median line. Some grouping is apparent based on the influence model.
One explanation is that the nonlinear and standard models use weighted
averages of neighbor opinion, while similarity bias and random adoption
interact with (at most) one neighbor at a time.
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level? Here, a cluster is meaningful if it is heavily composed of one or more levels or

can be well-described by some characteristic of the design factors. This is admittedly

a subjective judgment, but it supports the notion of external cluster validity with

respect to the experimental design factors. Numerical techniques do exist for external

validity, but they presuppose a benchmark set of clusters, which do not exist for the

current experiment.

In the following analysis, we produce two sets of clusters for each RV using different

distance measures and assess cluster quality by visual inspection of the RV space and

the concentration of each level within a cluster. Based on this analysis, variation in

all design factors except population size can contribute to the presence of meaningful

clusters when using dynamic time warping (DTW) as the distance measure. Error

distribution and influence model contribute most strongly—often a cluster contains

only a single level of one of these factors. For each RV, at least half of the total

clusters are meaningful when using the DTW distance measure, while no clusters are

meaningful when using Pearson’s correlation coefficient.

Cluster analysis has three elements: distance (or dissimilarity) measure, clustering

algorithm, and evaluation criteria of the resulting clusters [87]. Few guidelines exist

for designing a cluster analysis a priori, so we use an assortment of options to search

for meaningful clusters in our entropy time-series data. Distance is computed using

both DTW and Pearson’s correlation coefficient between each pair of trial time series

for an RV. DTW is a robust technique for time series cluster analysis and Pearson’s

correlation is a well-understood way of comparing data sequences of any type. Then,

each of fourteen clustering methods provided by the R library NbClust [88] suggested

an optimal number of clusters, and the number with the most “votes” was selected as

the consensus number of clusters. An agglomerative hierarchical clustering method

was then used to assign each trial to a cluster, based on the consensus number. This

process was applied to both distance measures.

We then conduct a census of the trials assigned to each cluster, with respect to

the experimental design factors (Figure 3.4). For DTW, cluster 1 contains only (but
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not all) trials with no influence error term (level a). Cluster 4 is strong in similarity

bias and random adoption influence models (levels b and d). Interestingly, cluster 4

is also very weak in lower-density network structures (levels b, d, f, and h). While

cluster 4 is meaningful, the contribution of both structure and influence model makes

the cluster’s precise nature unclear. The levels for population size N and activation

regime are uniformly distributed within each cluster, further reinforcing the evidence

from Section 3.5.1 that those factors are not important to RE-B. Using Pearson’s cor-

relation coefficient as a distance measure produced entirely undifferentiated clusters

(Appendix B).

a b c a b c d e f g h i j a b c d e a b c d a b c

1

2

3

4

N structure influence
model

error activation

membership of cluster per factor by fraction of trials,
DTW distance on relative entropy, binning (RE-B)

0% 50% 100%

Figure 3.4. For each cluster produced with DTW, the trials assigned to
the cluster are grouped by factor-level in order to find the percentage of
a cluster associated with each factor-level. Within a cluster (row), the
percentages for a single factor sum to one. For example, trials assigned to
cluster 1 mainly use error level a (no error), and trials assigned to cluster 4
mainly use either influence model b or d. Within a factor-level (column),
there are no such constraints.

In summary, variation in system design can produce clusters in the response vari-

able space for RE-B that are meaningful with respect to the experimental design

factors. This is achieved when using DTW as the distance measure, but not when

using Pearson’s correlation coefficient. When considering the other five RVs, DTW

continues to produce one or more meaningful clusters and Pearson’s correlation pro-
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duces highly or entirely homogeneous clusters that lack any meaning. Levels that

contribute to meaningful clusters most commonly include no influence error (level a)

and the similarity bias, attractive-repulsive, and random adoption influence models

(levels b–d). Activation regime and network structure density contribute to a lower

degree. Population size N is irrelevant in this cluster analysis. Overall, having no

influence error (level a) may be the most influential: four of the six RVs have a DTW

cluster composed entirely of that level. Only clusters for MI-B and TE-B are rel-

atively unaffected by influence error. Instead, these each have a cluster composed

entirely of the random adoption influence model (level d).

3.5.3 Research question 3: How do different entropy measures respond

to changes in system design?

We next consider a brief comparison of all response variables together. Overall,

two general behaviors are exhibited by the RV time-series data for the experiment

(Figure 3.1). Mutual information and transfer entropy RVs are characterized by a

rapid initial increase followed by a gradual decrease; lines for mutual information

have sharper peaks, signifying a more rapid decrease than transfer entropy. Relative

entropy, on the other hand, shows a more varied response and generally converges

to an extreme value or one of several intermediate values. These two behaviors can

be seen in other analysis products from the previous sections, as well. The main

effect violin plots for the final time step of each RV can be qualitatively grouped into

those with wide distributions and those with compact distributions and long, thin

tails (Appendix B).

With respect to sensitivity to one-way variation in design factors (Section 3.5.1),

all RVs are similarly affected by differences in network structure density and error

term variance. All RVs are also insensitive to changes in population size. Both RE-B

and RE-S are insensitive to the agent activation regime, unlike the MI and TE RVs.

The influence model factor has the least consistent median responses across RVs.
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For every trial, the Pearson correlation coefficient2 between each pair of RV time

series (15 correlation values per trial) is used to construct histograms of the corre-

lations for each RV pair (Figure 3.5). Several pairs of RVs are positively correlated

for most trials, while several other pairs have a more even spread of correlations.

For relative entropy and transfer entropy, the binning and symbolic methods produce

time series that are highly positively correlated overall; mutual information, however,

has a wide distribution of correlation values with a positive peak.

MI-B, RE-B

TE-B, RE-B TE-B, MI-B

RE-S, RE-B RE-S, MI-B RE-S, TE-B

MI-S, RE-B MI-S, MI-B MI-S, TE-B MI-S, RE-S

−1 0 1

TE-S, RE-B

−1 0 1

TE-S, MI-B

−1 0 1

TE-S, TE-B

−1 0 1

TE-S, RE-S

−1 0 1

TE-S, MI-S

Distributions of pairwise correlation per trial response variable

Figure 3.5. Broadly, MI and TE are positively correlated with each other
and not correlated with RE. For each trial, we compute the Pearson corre-
lation coefficient of the time series for each pair of RVs. These histograms
reveal the correlation patterns for the responses. For example, the upper
left distribution (MI-B, RE-B) displays a histogram of the correlation val-
ues between the MI-B and RE-B time series for all trials. The binning and
symbolic methods for both RE and TE show generally high correlation,
while those for MI show a wider spread.

2This use of correlation differs from that in the cluster analysis; there, it was a distance measure of
an RV between trials, while here it compares RVs within a trial.
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Despite differences between the response variable data for RE, MI, and TE, Fig-

ure 3.6 reveals some common themes in DTW cluster membership across the RVs.

Perhaps most interesting is that four of the RVs have one cluster containing only

trials with no influence error term (level a). For the other two RVs, MI-B and TE-B,

they show little distinction between levels for the error term and instead present one

cluster entirely composed of trials using the random adoption influence model (level

d). The network structure levels do show separation between higher and lower density

networks.

Overall, the six response variables react somewhat differently to the trials in our

experimental design. The RVs can be grouped by the shape of their time series plots

(i.e., their raw values) or main effect plots. They have a similar grouping with respect

to their correlation values within each trial. A somewhat different pattern appears

when considering their cluster analysis results. These aspects of our analysis will be

further explored in the discussion.
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Figure 3.6. This figure combines the DTW cluster membership plots (e.g.,
Figure 3.4) for all RVs, revealing similarities and differences between the
RVs. For example, four of six RVs have a cluster made wholly with no
error term (level a), and MI and TE are sensitive to the activation regime
while RE is not.
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3.5.4 Partition tree regression modeling

This final analysis step combines aspects of the previous results for the three

research questions and sets a path to future analysis of design factor interactions.

For each RV measured at t = 490, near the end of the simulation, a partition tree

metamodel is constructed. Each tree is built using ten splits to standardize trees

across the six responses. Then, we inspect the contribution of each design factor to

the R2 of the tree for each RV (Table 3.2), as inspired by work from Marlow et al.

[89]. This data complements the evaluations for research question 1 (Tables 3.1 and

B.4), though network structure is more impactful in those analyses than the current

one. These results also align well with the DTW cluster analysis: factors that are

impactful to a cluster show noteworthy contributions to the partition tree results.

Table 3.2.
Factors are classified by their contributions to R2 for partition tree meta-
models constructed separately for each RV, as measured at t = 490 (near
the end of the simulation run). Not all factors appear in every tree. Trees
are constructed with 10 splits to standardize across RVs. Classifications
in the table below come from [89]: VVS, VS, S, M, w, and vw denote
factor contributions to R2 that are very, very strong (> 0.50), very strong
(> 0.25), strong (> 0.125), moderate (> 0.0625), weak (> 0.03125), and
very weak (> 0.015625), respectively.

Response variable

Factor RE-B MI-B TE-B RE-S MI-S TE-S

Population size

Network structure model w S w S

Influence model VS VVS VVS M VS VS

Error distribution VVS M vw VVS M VS

Agent activation regime M S w VS S

R2 0.880 0.852 0.806 0.824 0.367 0.593
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This analysis approach will support future exploration of interaction effects be-

tween design factors. For example, a simpler partition tree on RE-B using five splits

(which still achieves a comparable R2) lets us observe an interaction between the error

distribution and influence model. For trials using no influence error (level ‘none’),

the random adoption and similarity bias influence models yield a mean RE-B that is

1.21 units less than trials with the other influence models; however, for trials using

influence error (the remaining three levels), the same split in influence model reveals

a difference of 2.05 units. These values correspond to a 41% change in the impact

of choice of influence model, depending on the use or omission of the influence error

term in the social influence network simulation.

3.6 Discussion and conclusions

In this study, agent-based simulation and experimental design are used to explore

the degree to which social influence network simulation design affects aggregated en-

tropy. Based on this research, variation in system design can affect the distribution of

entropy time series (Section 3.5.1); the strength of this effect depends on the partic-

ular system design factor and response variable (RV) in question. Changes in system

design can induce changes in time series of entropy measures that lead to meaningful

clusters of experimental trials (Section 3.5.2). Different entropy measures respond

differently to changes in system design (Section 3.5.3). As a result, the aggregated

entropy measures presented in this study may be useful tools for inferring properties

about real-world social influence networks from opinion data of its members.

3.6.1 Major findings

In addition to the high-level observations for the research questions posed in this

study, we present the following findings. For the six RVs in this study, varying the

population size N had no significant effect. This may be because each RV is computed

as the mean of the entropy values for individual agents, or it may reflect something
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more fundamental about entropy in networks. However, the RV distributions for each

level of N are not identical, only very similar, so it is possible that networks with

much smaller or larger populations would show more diversity in the responses.

The selection of influence model is responsible for the greatest amount of varia-

tion among RVs. The random adoption model is naturally the most disordered and

presents the most extreme differences from the other influence models, so it is sur-

prising that it strongly attracts a cluster for MI-B and TE-B yet is unimportant to

the clusters for RE-S and TE-S (Figure 3.6). In the cases where the standard and

nonlinear models show very similar behavior (as for the three binning RVs), this may

be due to how their equations are structurally similar, involving a weighted mean of

neighbor opinions.

Existing social influence literature rarely considers error or noise in the influence

process, yet real-world social systems are often noisy. The trials with error standard

deviation 0.1 and 0.2 (levels c and d of the error term design factor) showed no

significant difference. There are often differences between those trials and trials with

smaller standard deviation or no error term. The grouped median responses for error

distribution do not intersect for RE and TE; for MI, the “none” line does cross one

or more of the non-zero error levels. Present work does not explain this difference,

but it contributes to a larger point that care must be taken in applying findings from

error-free models to noisy real-world systems.

The level of activation regime leads to the greatest variation for MI and TE, little

variation for RE-S, and no variation for RE-B. This is reasonable, because RE-S

and RE-B measure entropy relative to a uniform distribution and do not directly

consider opinion differences between neighbors, so the update sequence need not affect

the outcome. MI and TE, on the other hand, are functions of information transfer

between agent pairs, so the timing of opinion updates should matter. These findings

support conclusions from existing work (e.g., [52]) that careful selection of activation

regime is important for agent-based modeling.
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All RVs for most trials show an initial period of rapid change before stabilizing.

This could allow for shorter simulation runs or for reasonable predictions to be made

about the systems well beyond t = 500. Some of this may be due to how RVs are

calculated: at each time step, the entropy is based on the agent opinions for all

previous time steps, so the number of observations per data point increases with t.

Entropy measures do tend to be calculated using all available information, but it

may be informative to compare these results to responses using a fixed-width rolling

window.

Pearson’s correlation coefficient may not typically be used as a distance measure

for cluster analysis, but it is common way of comparing two sets of observations, so

we expected it to have some utility in this study. Unfortunately, it proved entirely

unsuitable as a distance measure between response variable time series. Every set

of clusters created using correlation as the distance measure was almost completely

homogeneous, in contrast to clustering via dynamic time warping, which produced

differentiated clusters.

3.6.2 Limitations

Despite the breadth of the experimental design, response variables, and analy-

sis techniques, several factors may limit the detail or applicability of the results.

An apparent divide between network structures of higher and lower densities occurs

throughout our analysis, leading to grouped patterns in the main effect plots, stratifi-

cation in the grouped time series plots, and some visible effects on cluster assignments.

Density differences align with the variation in observed results more strongly than

degree distribution or network shape (e.g., tree, lattice, etc.). At this time, however,

we do not claim density to be a driving factor due to the limited range of density val-

ues present in the network structures in our experiment (e.g., densities in the interval

[0.01, 0.07] for N = 100 networks). A new experiment using a wide range of densities

as a design factor, rather than network structure model, could shed light on this idea.
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Real-world communication errors may not be well-described by zero-mean normal

distributions but could actually be biased. If so, then the error distributions in this

experiment may distort social influence processes.

With respect to the analysis on the experimental design, we principally studied the

main effects. Investigation of two-way (or more) interaction terms may be a direction

for later work, as motivated by the partition tree analysis in Section 3.5.4.

The cluster analysis in Section 3.5.2 produced interesting results, but they are

best treated as a starting point for future investigation. Selection of an appropriate

distance measure is perhaps the most important step of a successful cluster analy-

sis [90]; we considered merely two distance measures, and only dynamic time warping

showed any success. Also, our consensus method used many clustering algorithms to

suggest an ideal number of clusters, but we studied a single set of cluster assignments

(per RV, per distance measure). Finally, the definition of “meaningful” clusters in

this study is subjective. Future work could improve on this by classifying trials in ad-

vance, based on their experimental design settings and then measuring cluster quality

with respect to those classifications.

3.6.3 Future work

The major findings can help refine future work on social influence networks, system

design, and entropy analysis. In addition to studying interaction effects of design

factors and making improvements to cluster analysis, there exist several avenues for

future work.

Thus far, we have considered networks inhabited by homogeneous populations of

agents: in a single network, agents may differ from one another in the specific val-

ues of their attributes, but they share a common set of attributes, follow the same

interaction rules, and are created using a common process. This is not an accurate

representation of most real-world social networks. A nonhomogeneous population,

in contrast, has disjoint sub-populations (or classes) of agents that follow different
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rules or are initialized in different ways. Future work is planned to incorporate non-

homogeneous social network models from existing literature into our simulation and

analysis design.

Networks in this study are static in their structure, while real-world networks are

often dynamic. A suitable network evolution model could allow the experimental

design factors and entropy response variables to be applied to a changing network.

One obstacle is that real-world network dynamics depend on the interaction model

between agents, which we take as a design factor, so trials with different interaction

models may yield markedly different networks.

Given the growing interest in social network analysis and complexity studies, the

current results and potential outcomes of future research may be of much practical

value.
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4. EFFECTS OF NONHOMOGENEOUS AGENTS IN
SOCIAL

INFLUENCE NETWORKS ON SYSTEM-LEVEL
ENTROPY

Article in preparation for submission. Authors: M. Garee, H. Wan, and M. Ventresca.

Article abstract: Analysis of social influence networks typically involves agents

that act according to a shared set of rules. This simplifies analysis but sacrifices the di-

versity present in real-world social networks, potentially limiting the relevance of any

findings. Here, we design influence networks that have nonhomogeneous agent pop-

ulations to create four distinct scenarios to compare against a homogeneous baseline

system, based on examples from current literature. Agents are assigned to classes

that alter their influence model, network participation, homophily with same-class

neighbors, and other initial conditions. Agents influence their neighbors and opin-

ions change over time by way of an agent-based simulation. System-level entropy

measures, based on relative entropy, mutual information, and transfer entropy, are

calculated on opinion time series data. All systems produce similar output distribu-

tions when aggregated over many independent trials, and changes to system design

factors have similar impacts on all scenarios. At the individual trial level, however,

nonhomogeneity can create drastic changes in system-level entropy as compared to

a baseline system, and these changes vary in magnitude across the four scenarios.

The results suggest that accurate modeling of nonhomogeneous populations may be

vital when studying singular systems but could be discounted in studies with high

replication counts.
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4.1 Introduction

Studies in social network analysis are dominated by populations of functionally

identical agents. Within these homogeneous populations, agents interact using a

common set of rules and often differ only in their position in the network and some

numerical initial conditions. Such populations are straightforward to work with (e.g.,

a single model to consider), especially in analytic models, but fail to capture the di-

verse behaviors exhibited in real-world social groups [91, 92]. In this study, we feature

simulated nonhomogeneous agent populations and explore whether the literature’s fo-

cus on homogeneous populations degrades the ability of social network research to

properly address real-world issues.

A social network is nonhomogeneous (or heterogeneous) if some property of the

network is not uniform across the population, such as attributes or functions of the

nodes or the relationship represented by the edges. Node-based variation, especially

with respect to interaction behaviors, is the focus of this study. Perhaps the most

basic form of node-based nonhomogeneity in networks appears when agents represent

different types of objects, such as authors and documents in citation networks [93].

This can lead to different interaction modes between each type of agent, which in

turn can promote community development around shared interests or attributes [94].

Nonhomogeneous social networks have value beyond academic interest. In epi-

demiology, accurate models of disease spread are essential for selecting effective mit-

igation strategies, yet many studies use homogeneous mixing models that fail to

account for differences in infectivity and vulnerability among members of the popula-

tion, requiring researchers to act on intuition rather than data [95]. National security

also relies on nonhomogeneous networks being modeled properly: dynamic network

analysis is used to support vulnerability assessments of terrorist networks, which fea-

ture a variety of entity classes, such as actors, resources, and organizations [22].

In this study, agent classification and behavior within a network are the properties

treated as nonhomogeneous. However, some authors use the term to describe variation
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in the edges between agents or numerical values within each agent. Several examples

should help to disambiguate the term from the current experimental context. Santos

et al. [92] simply apply nonhomogeneous to networks where agents have different

edge degrees (which covers all networks except regular lattices). In Cai et al. [96],

multi-relational networks are considered, where edges represent disparate types of

links between agents (e.g., friendships versus business relationships). Galeotti et al.

[97] model network formation processes where the costs of creating a link between

two agents, and the benefits derived from having that link, depend on properties of

both agents that can vary across the population. Finally, Delre et al. [98] observe

that in diffusion models, diffusion speed increases with the heterogeneity of adoption

thresholds held by agents; this type of nonhomogeneity does not change the rules for

behavior, only the conditions under which a common action takes place.

The purpose of this study is to explore how introducing nonhomogeneity into

social influence network populations alters system-level entropy. This serves as an

extension of work by Garee [91], which examined the relationship between system

design and entropy in social networks composed of homogeneous agents. Specifically,

that study considered one-way sensitivity of several entropy measures to each of five

system design factors, cluster analysis with respect to the experimental design, and

relative differences in behavior of the six response variables. There, they found, in

part, that the influence model (interaction equation) contributed most to the variation

seen among response variables, the presence or absence of noise in the interactions did

affect the entropy measures, and there was no significant relationship between popu-

lation size and entropy. Here, we expand their findings by first reducing the system

design space and then creating four scenarios with nonhomogeneous agent popula-

tions based on compatible examples from the literature [60, 72, 99, 100]. Differences

among social network participants can generally be viewed as nonhomogeneous fea-

tures, but in the current work, nonhomogeneity is considered only with respect to

agent classification and class-associated behaviors. A subset of the data and analy-
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sis procedures from the original study [91] is used to compare the nonhomogeneous

population results to the homogeneous base cases.

In each scenario, initial conditions and interaction rules between agents are var-

ied in some way across the population. Scenario 1 features uninformed agents who

do not participate in the exchange of opinions until communication with an informed

neighbor occurs. Scenario 2 uses two distinct influence models (friendly and partly an-

tagonistic) and skews the starting opinions either positively or negatively to represent

bias toward an extreme position. In Scenario 3, an online social network composed

of human users and bots is modeled, and agents show a level of homophily toward

others of the same type. Finally, Scenario 4 designates a subset of the population as

stubborn agents that never change their own opinions but can still influence others.

This exploration uses a combination of analysis techniques: direct comparison

of entropy time series data between homogeneous and nonhomogeneous simulation

trials, response variable sensitivity to changes in individual design factors, scenario

identification through cluster analysis, and correlation patterns between entropy mea-

sures. Broadly, response variables for the nonhomogeneous scenarios as a whole have

similar distributions as the homogeneous base cases, but individual trial results of-

ten change dramatically when scenario rules are applied. System design factors have

consistent effects across the four scenarios, and not all scenario-specific factors are

important to the response variables. Cluster analysis using dynamic time warping

on system-level entropy is ineffective at assigning trials to scenarios. Finally, the re-

sponse variables show similar trial-level correlation patterns across all scenarios and

the base case.

The rest of this paper is organized as follows. Section 4.2 details the experimental

design and scenario construction. In Section 4.3, we present the results of the analysis,

and Section 4.4 concludes the work.
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4.2 Methods

The methods for this work expand on those from Garee [91], which considered

only homogeneous agent populations in social influence networks. By creating non-

homogeneous populations, we can explore whether they are better suited for studying

real-world social networks (which are rarely homogeneous). Here, we use a subset

of their experimental design (Section 4.2.1) and all of their system-level entropy re-

sponse variables (Section 4.2.3), in addition to the general design approach, described

presently.

Influence occurs between agents in a social network. Edges connecting agents are

directed; the edge e(i, j) represents the relationship where agent i can be influenced by

j (i.e., j is a neighbor of i). Agents have an opinion (about some topic), bounded to

the interval [−1, 1]. This interval supports positive, negative, and neutral opinions,

with the assumption that it is feasible to feel positive and negative opinions with

equal intensity. When an agent is activated, it may revise its opinion according to an

influence model using its neighbors’ opinions, and the revised value may be affected

by gaussian noise that represents the imprecise nature of communication. Agents

activate over a series of time steps, which forms one run of the agent-based simulation.

System parameters including the network structure, influence model, distribution of

noise, and agent activation timing are controlled by the experimental design.

4.2.1 Experimental design

Population size N is fixed at N = 1000 for this experiment, because N was

found to be unimportant to entropy analysis in [91] and is the median value used

there. Seven of the original ten network structure models show differentiated re-

sponse variable behavior and are used here. Four influence models, three influence

error distributions, and two activation regimes are kept from the original experimen-

tal design for the same reason. This reduced experimental design forms the base
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case as summarized in Table 4.1; details appear in the Supplemental Information,

Section D.1.

Table 4.1.
The experimental design from Garee and Ventresca [101] is reduced to
four factors and 168 total trials based on insights from their results. This
design is the base case upon which the nonhomogeneous scenarios are
constructed.

structure influence model error activation

Erdős-Rényi random standard model none synchronous

small-world(0.0, 3) similarity bias N(0, 0.05) random

small-world(0.0, 10) attractive-repulsive N(0, 0.10)

small-world(0.66, 3) random adoption

small-world(0.66, 10)

scale-free(1)

scale-free(5)

4.2.2 Nonhomogeneous agent populations

In a nonhomogeneous population, each agent is a member of one class of several

defined for the system. The class associates certain properties and behaviors to

its members that make them distinct from members in other classes; anything not

explicitly defined for a class is assumed to be common for members of all classes.

Simple agent classes may have different opinion update frequencies, while more novel,

complex classes may use different interaction models and treat agents of the same class

preferentially.

There may be countless ways to create sets of classes on social influence networks.

In this work, we define four scenarios using nonhomogeneous agent classes, motivated
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by existing literature. These scenarios provide diversity in the influence models, initial

opinion bias, activation regimes, and edge weights. Class definitions are adjusted

from the source material to align with model considerations and constraints in the

current experiment. Each scenario is detailed in this section, and new experimental

design factors for these scenarios are summarized in Table 4.2. The new design factors

augment the default design (Table 4.1), except where certain factor-levels are excluded

for a particular scenario.

Table 4.2.
New experimental design factors are introduced and existing factors are
omitted for several of the scenarios described below. These new factors
augment the default factors (Table 4.1), which are modified as needed for
each scenario. In total, 1974 trials make up this experiment.

Factor Levels

1. Informed/Uninformed, based on [60] (840 trials)

fraction uninformed agents {.25, .33, .50, .66, .75}

2. Concord/Partial Antagonism, based on [99] (378 trials)

fraction Concord-type agents {.25, .50, .75}
fraction left-oriented agents {0, .25, .50}
(omit influence model as factor)

3. Bots/Humans, based on [100] (84 trials)

no additional factors

(omit activation regime as factor)

4. Stubborn/Normal, based on [72] (672 trials)

fraction stubborn agents {.05, .15, .33, .50}

1. Informed/uninformed. Banerjee et al. [60] focus on a standard DeGroot

learning model, generalized to use uninformed agents. An agent is either informed

(has an opinion) or uninformed (has no opinion). If an uninformed agent activates and
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has at least one informed neighbor, it becomes informed permanently and activates

normally; otherwise, it does nothing. Informed agents ignore uninformed neighbors

when updating their own opinions. If all agents become informed, the simulation

proceeds with a homogeneous population. While an agent is uninformed, its opinion

is treated as zero for the purpose of entropy calculation.

For trials using these agent classes, the initial fraction of uninformed agents is

varied as a design factor to span the range while avoiding homogeneous networks at

0 and 1. This new design factor is combined with all base case factors (Table 4.1).

2. Concord/partial antagonism. In Kurmyshev et al. [99], they build upon an

existing homogeneous model of bounded confidence by introducing a “mixed model

that takes into account two psychological types of individuals.” Concord agents (C-

type) are friendly and always move their opinion closer to their neighbor’s when

interacting, while partial antagonism agents (PA-type) move toward or away from

their neighbor’s depending on the degree of difference in their opinions. These C-type

and PA-type agents align with the similarity bias and attractive-repulsive influence

models, respectively.

This scenario has a second level of diversity from adding a bias to the distribution

of initial agent opinions. Normally, the agents would have their initial opinions drawn

uniformly at random from the interval [−1, 1]. With the bias factor, which [99]

describes as “political preference,” agents designated as “left-oriented” draw their

initial opinion from the interval [−1, 0], while “right-oriented” agents draw theirs

from [0, 1].

For the trials using these agent classes, we vary the fraction of C-type agents and

the fraction of left-oriented agents as design factors. (Due to left-right symmetry, we

need only consider half of the latter’s range.) Agent type and orientation are assigned

independently. These two new design factors are combined with all base case factors

except influence model.

3. Bots/humans. Gilani et al. [100] classified real-world Twitter user accounts

as either humans or automated agents (“bots”), and then they conducted feature
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analysis on network activity. From their observations on the behaviors of the two

classes, they found that bots post more content on average than humans: bots gen-

erated roughly 52% of content in their data set while comprising 43% of the user

accounts. Also, users show a type of homophily by forwarding messages from mem-

bers of their own class more frequently than the other class (twice as often for humans,

three times as often for bots).

We adapt these results for the current experiment to set the fraction of the popu-

lation assigned to each class and to bias edge weights to favor neighbors in an agent’s

own class (representing greater forwarding frequency). We also alter the random

activation regime to select bots more often, since they generate more content; this

aspect of the scenario is not compatible with the synchronous and uniform activa-

tion regimes, so those levels are excluded. There are no new design factors for this

scenario, so the scenario design is applied to all base case factors except activation

regime.

4. Stubborn/normal. In Xie et al. [72], pairs of agents in an undirected network

influence each other depending on the classes of the two agents. Specifically, two

normal-class agents change their opinions with a similarity bias model, a normal

agent and a stubborn-class agent interact with some low probability based on their

current opinion difference, and two stubborn agents do nothing. In effect, a stubborn

agent blocks the flow of information.

We modify this concept for directional networks: stubborn agents never change

their opinion, and normal agents always use their assigned influence model. For

the trials using these agent classes, we vary the fraction of stubborn agents to span

half the possible range while avoiding homogeneous networks at 0 and overly-static

networks with more than half the population set as stubborn. This new design factor

is combined with all base case factors.
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4.2.3 Response variables

The simulation response variables are based on three entropy measures and two

approaches for discretizing continuous data, as used in [91]. Relative entropy (mea-

sured with respect to the uniform distribution), mutual information, and transfer

entropy are applied to agent opinion data over time. Relative entropy of an agent’s

opinion X is defined here as

DX(p ‖ q) =
∑
x

p(x) log2

p(x)

q(x)
, (4.1)

where p is the discrete probability distribution of the agent’s opinion over time and q

is a uniform distribution with the same support as p. Mutual information is measured

between two agents (X and Y ) as

MXY =
∑
x,y

p (x, y) log2

p (x, y)

p(x)p(y)
. (4.2)

Finally, transfer entropy is also measured between two agents while considering the

history of the agents’ opinions. In general, any amount of history can be included

in the calculation, but we follow the convention of using a single time step in the

histories of X and Y , such that

TY→X =
∑
x,y

p (xt+1, xt, yt) log2

p (xt+1 | xt, yt)
p (xt+1 | xt)

. (4.3)

Here, TY→X measures the degree to which Y influences X, and unlike mutual infor-

mation, TY→X might not be equal to TX→Y .

These measures operate on discrete state spaces, so agent opinions are discretized

by binning (as with histograms) and by the symbolic approach, where patterns based

on increasing or decreasing values are mapped to symbols (e.g., increase-increase maps

to A, increase-decrease maps to B). Each simulation trial is processed to create a time

series for the following response variables:

1. relative entropy, binning (RE-B);

2. mutual information, binning (MI-B);
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3. transfer entropy, binning (TE-B);

4. relative entropy, symbolic approach (RE-S);

5. mutual information, symbolic approach (MI-S); and

6. transfer entropy, symbolic approach (TE-S).

To compute a response variable, the corresponding entropy equation and continuous

data approach (binning or symbolic approach) is applied to the agents’ opinion values

at each time step, creating an entropy time series for each agent. These time series

are averaged across the population to create system-level results, and then these

are averaged across all replications of a single trial to create the trial-level response

variable.

4.3 Results

The four scenarios led to 1,974 independent simulation trials, each composed of

100 replications lasting 500 time steps. Further, a subset of the trial data from the

original study on homogeneous populations is included as the base case, using the 168

trials that share the reduced experimental design.

4.3.1 Comparison between homogeneous and nonhomogeneous trials

As a first analysis step, the scenarios are visually compared to each other and

the homogeneous base case by using their raw response variable (RV) time series

(Appendix D Figure D.1). Each scenario shows qualitatively similar behavior in the

time series plots for every RV, with respect to the profile and visual distribution of

the data. Profiles for relative entropy show a rather uniform distribution of trials that

rapidly decrease from a maximum (that varies between scenarios) to near zero, trials

that decrease slightly and remain near the maximum, and trials that fall somewhere

in-between. On the other hand, the profiles for mutual information and transfer
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entropy are dominated by a rapid increase to a maximum followed by a gradual but

continuous decrease, except for a few trials that appear to constantly increase in

entropy.

Instead of using raw RV time series data, we can consider the scenario trial results

with respect to the homogeneous base case, which captures the effects of transforming

a homogeneous system using the scenario rules from Section 4.2.2. Each trial can be

paired with a single base case trial1 that uses the same design factor-levels but does

not use any scenario-specific rules. In this way, the effect of applying scenario rules

to a homogeneous system can be directly observed. The percent change between the

a scenario trial RV and the corresponding base case data is used to account for the

different ranges of each RV (Figure 4.1). Of the 11,844 percent-change time series

(from all trials across the four scenarios and six response variables), 3,252 (27%)

showed changes of less than 10% for each time step, while 952 (8%) differed from

their respective base case trial by over 100% at one or more time steps.

For individual RVs, no patterns emerge across the four scenarios.

For individual scenarios, however, some patterns can be found across the RVs.

Scenario 4’s stubborn agents induce changes from the base case unlike any other

aspect of the nonhomogeneous scenarios. In Figure 4.2, we observe four bundles of

lines plotting the percent change in MI-S between Scenario 4 and the corresponding

base case trials. Each bundle corresponds to one level of the design factor for the

fraction of stubborn agents in the population, and as this fraction increases, the core

of the bundle becomes more negative, which indicates that as the population becomes

more stubborn, the raw entropy values approach zero. This effect occurs for both MI

and TE response variables, likely because there is no flow of information into stubborn

agents. For RE-B and RE-S, the effect is not present. The large increases for RE

may be explained by how stubborn agents’ fixed opinions maximally deviate from the

uniform distribution on the full range of opinion [−1, 1].

1Scenario 2 fits with two base case trials since its agents use both the similarity bias and attractive-
repulsive influence models. We compare this scenario’s results to a weighted average of the two base
case trials, where the weights correspond to the fraction of agents using each influence model.
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Figure 4.1. For each scenario trial, RV data from a homogeneous base
case system is selected (or constructed, for Scenario 2). The percent
change between the base case and scenario trials illustrates the effects
of applying nonhomogeneous scenario rules to the original system. (All
response variables are nonnegative.)
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Figure 4.2. The MI and TE response variables decrease relative to the
corresponding base case trials as the fraction of stubborn agents in the
population increases. MI-S is shown here, but MI-B and both TE RVs
behave similarly.
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For Scenario 2, as the left-biased fraction is increased from 0 to 0.5, the distribution

of the agents’ initial opinions approaches the uniform on [−1, 1], and therefore the MI

and TE results approach those of the homogeneous base case (not pictured). Scenario

1’s uninformed agents do not have a well-structured effect on the base case. Scenario

3 introduced subtle changes in the agents to make a nonhomogeneous population,

making humans and bots somewhat homophilic to neighbors of the same class; the

differences between these trials and the base case are likewise subtle.

4.3.2 Importance of design factors on system-level entropy

We assess the importance of individual design factors to the response variables

by grouping trials by their level for a given factor and plotting the group median

response value over time (e.g., Figure 4.3). The grouped medians plots are used to

visualize the impact of each design factor on the RVs, based on attributes such as

grouping, relative separation, line shape, etc. Detailed results appear in Table D.2.

A design factor is rated as important or not for each scenario-RV pairing; impor-

tance is based on qualitative analysis of the grouped medians plots as was done in [91]

to identify factors “having a significant effect on the RV.” Quantitative approaches

do exist; for example, we computed the covariance of the group median lines, which

reinforced the visual analysis but failed to capture any clustering of those lines. Other

numerical methods may capture both. Network structure, influence model, and er-

ror distribution are rated as important in more than 83% of the evaluations and are

important for all RVs except MI-S; activation regime and scenario-specific factors

are important in 54% and 56% of the evaluations, respectively. The scenario-specific

design factors are of rather mixed importance across the RVs, but each factor is

important to at least one RV.

Several observations from the grouped medians plots of the scenario-specific de-

sign factors serve to illustrate the impact of those factors on the RVs (Appendix

Figures D.2-D.4). For RE-B, the median lines grouped by the fraction of initially
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Figure 4.3. In each grouped medians plot, a solid line plots the median
response value for all trials with the specified factor-level, and shaded
regions enclose the 25th to 75th percentiles of the data associated with the
median line. Here, the network structure design factor has a noteworthy
impact on MI-B in Scenario 2 (concord/partial antagonism). Network
density partially explains the observed grouping of levels.
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uninformed agents (Scenario 1) for values below 0.5 rapidly reach their minimum and

then gradually increase over time, whereas those for 0.5 or greater do not increase over

time. The separation between lines and the presence of different behaviors suggest

this design factor to be important to RE-B. Increasing the fraction of Concord-type

agents (Scenario 2) decreases the median RE-B. Increasing the fraction of left-biased

agents increases median RE-B. Median MI-B decreases as the fraction of stubborn

agents increases (Scenario 4), since stubborn agents inhibit information flow between

agents. This design factor is important to MI-B.

4.3.3 Additional analyses

The nonhomogeneity of the agent population may cause the response variables to

behave in a distinctive way (e.g., Scenario 2 in Figure D.1). Specifically, the scenario

used to generate the data may be identifiable using cluster analysis. As a test of

this idea, we apply dynamic time warping (DTW) to the time series data for one

response variable (RE-B) and use hierarchical clustering to assign trials to clusters.

This clustering approach performs poorly overall, achieving a best-case identification

accuracy of 0.32. Given the visual similarity between scenarios in each of the raw

RV time series plots, the low accuracy is unsurprising. Details are available in the

appendix (Section D.3).

Finally, we compute the correlation between each pair of RV time series for each

trial and construct histograms on this data for each RV pair (Figure D.6). The corre-

lation histograms have similar profiles for each scenario, so population homogeneity

(due to scenario design) has no clear effect on the relationship between RVs for a

single trial.

4.4 Conclusions

There is tension in the overall results. On one hand, the distributions of RVs for

nonhomogeneous scenarios are qualitatively very similar to those of the homogeneous
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base case trials. On the other hand, the RVs of individual trials from each scenario

can differ radically from their base case counterparts (Figure 4.1). So, while the

nonhomogeneous populations can introduce changes in the selected response variables

for single trials, there is not enough deviation from homogeneity to cause radical

changes in the response variable profiles of many trials taken together. This suggests

the importance of accurately modeling nonhomogeneous populations may be reduced

if the research focus is on aggregate behavior of many systems rather than detailed

behavior of a single system.

Some types of population nonhomogeneity are more impactful to system-level

entropy than others. Agents who do not participate in opinion exchange act as

information bottlenecks and can have a large effect on the system, especially if they

exert influence over others (i.e., stubborn agents). The presence of multiple influence

models in a network has less impact on the response variables, so it is not a particularly

significant type of nonhomogeneity. Low levels of homophily applied to edge weights

is not impactful.

Scenario design has little effect on the importance of individual system design

factors on the system-level entropy response variables, over the range of scenarios

used in this experiment. This suggests a relationship between system design and

entropy that is robust to variation in population nonhomogeneity. Similarly, the

correlation between RVs for individual trials is robust to variation in scenario design.

Scenario-specific elements can impact entropy measurements. Stubbornness in-

creases relative entropy and decreases mutual information and transfer entropy. Un-

informed and stubborn agents have much in common, but Scenarios 1 and 4 have

vastly different effects on the homogeneous case (Figure 4.1). Uninformed agents

eventually become informed and their opinions can change, but stubborn agents never

change. Also, uninformed agents are ignored by the rest of the network, while stub-

born agents continue to influence others. These aspects of the two scenarios may

explain the observed differences.
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Cluster analysis using dynamic time warping and hierarchical agglomeration on

the response variable time series does not achieve high accuracy in matching trial

data to scenarios. Other clustering methods may give higher accuracy, as could using

equal sample sizes across the scenarios. However, the findings here demonstrate

that different types of nonhomogeneous population design can manifest in the output

data in distinctive ways: Scenarios 2 and 4 each had over forty percent of their trials

grouped together, while the other scenarios had thirty percent or less.

A key limitation of the work is that the scenarios use only two agent classes each.

Real-world social networks are not limited in the diversity of their populations, and

while not all types of diversity have an effect on system-level entropy, it is likely that

there are ways to vary the populations not included in this study or the surveyed

literature. Future work can include networks with greater nonhomogeneity, such as

by using more than two classes at once. An additional limitation is the reliance

on visual, qualitative analysis. Although it is an accepted technique for time series

analysis, quantitative methods exist, and they could yield better results.

While this study may not cover the full range of possibilities in social influence

network design, these findings should prove informative to researchers seeking to add

greater realism and diversity to their social network analysis.
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5. A COMPLEXITY MEASURE FOR OPINION
DYNAMICS

IN SOCIAL INFLUENCE NETWORKS

Article in preparation for submission. Authors: M. Garee, H. Wan, and M. Ventresca.

Article abstract: In the age of big data, it has become routine to observe opinion

dynamics on social systems. Their study has facilitated research of political polar-

ization, technology adoption, and more. In this paper, we propose a new method for

using opinion dynamics to measure complexity in social influence networks, which

may be useful for inferring properties of real-world social systems via the dynamics of

individual opinions or behaviors. A framework built on a context-dependent, subjec-

tive notion of complexity supports the development of a dissimilarity measure based

on functions of the location, velocity, variance, and entropy of network-wide opinion

changes over time. Leveraging simulated social network data as a case study, we find

that complexity is sensitive in varying degrees to different simulation design factors,

such as influence model and population size. These findings suggest that the new

complexity measure could be useful for differentiating social network designs via the

population’s opinion data, perhaps further acting as a foundation for future studies

that combine social influence and complexity theory.

5.1 Introduction

Social influence networks are systems wherein social agents interact with one an-

other in order to exchange information and influence each other’s opinions over time.

These systems can be used to study political polarization [19], purchasing decisions

[102], the spread of innovation [23], and many other topics. Multiple disciplines take
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interest in the opinion dynamics that result from interactions among network members

over time [103], with special interest on the conditions that lead to group consensus

versus fragmentation [104] and the roles that society’s most influential members play

in affecting public opinion [105]. Recent applications also include the influence of bots

and “fake news” in social networks on the outcome of political elections [106, 107].

Characteristics of individual agents can be inferred from the time series of their

opinion values; we refer to this time series as the agent’s opinion history. For example,

an agent with a fixed opinion may be described as stubborn or may simply not be

receiving new information [72], while an agent that attracts others to its opinion may

be unusually influential and a good target for word-of-mouth marketing [102]. Can

the collective opinion histories of the network population be used in a similar way

to inform us about the social influence network as a whole? Rather than comparing

agents within a single population, we wish to compare entire networks with one

another. For instance, similarities in the opinion histories of two groups of consumers

may help a product recommendation system make better selections.

The dynamics of opinion histories for a network population, taken as a whole,

may reveal insights about the underlying system (structure, influence model, etc.).

Several possible scenarios and system-level interpretations include:

• all agents begin with different opinions but converge to a shared opinion: the

population has communicated and reached a consensus;

• all agents hold different and unchanging opinions: communication is not taking

place, or agents do not trust their neighbors;

• opinions fluctuate, apparently at random: communication is taking place in a

noisy environment, perhaps with rapidly changing external factors; and

• opinions converge to several different values across the network: members of

smaller communities are reaching consensus with each other but not with neigh-

boring communities.
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An analyst might study the opinion histories of a social influence network and arrive

at these kinds of insights and inferences [108], but such a manual process relies on

the experience of the individual, making it difficult to reproduce or transfer to other

situations. Accordingly, a framework for obtaining these results is desired, with some

sort of measurement at its core.

We choose complexity measurement as the basis for such a framework. Specifically,

we wish to use a measure of complexity on the opinion dynamics from social influence

networks in order to capture insights about them, like those discussed previously.

According to Sporns [109], “Differences in complexity among such related systems

may reveal features of their organization that promote complexity.” Social influence

networks can display behavior that may be casually viewed as “complex,” but this

differs from the formal discipline of complexity studies. Complexity takes on various

and often unrelated forms across different contexts, and unfortunately, the term is

often used without definition or qualification, stripping it of much of its meaning

[37, 44]. Nonetheless, complexity broadly captures elements of both randomness and

order in a system’s structure or behavior [44] and the related difficulty of reproducing

or describing the system [110]. This tension between order and chaos is present in

many models of social influence (and likely all real-world social networks) where noise

or randomness exists, so complexity measurement is appropriate for the systems in

our research context.

5.1.1 Objective and contributions

A complexity measure for the aggregated opinion dynamics of social influence

networks has not been identified in the existing literature. The research objective of

this paper is to develop one.

We approach complexity measurement through an objective-subjective frame-

work [56] and begin by identifying a context-dependent notion of simplicity (opposed

to complexity) for a set of opinion histories from a social influence network. This
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leads to a baseline “reference simplicity” in the form of specific opinion histories.

Next, we construct a function to measure the degree to which an observed data set

deviates from the baseline. That function is our subjective complexity measure and

is the main contribution of this paper. It is based on the location, velocity, variance,

and entropy of the observed opinion data with respect to the baseline, as detailed in

Section 5.3.3.

The subjective complexity measure is applied to two case studies. The first demon-

strates the measure on simple, synthetic data sets. The second uses opinion data from

previous work with social influence network simulation and explores the use of the

complexity measure for inferring simulation inputs. Overall, the behavior of the sub-

jective complexity measure broadly agrees with our notion of subjective complexity.

The measure is sensitive to several of the simulation design parameters tested, sug-

gesting that it may be useful for distinguishing different social network designs based

on the agents’ opinion data.

5.1.2 Overview

The remainder of this paper is organized as follows. In Section 5.2, we review

relevant literature on the topic. Section 5.3 details our methods for developing a

complexity measure for social influence networks. We evaluate the complexity mea-

sure through two case studies in Section 5.4 and discuss our findings in Section 5.5.

5.2 Background

In this section, we give a brief overview of complexity, remark on how noise in com-

munication can affect the complexity of social influence data, and share a complexity

measurement framework to combine these items together.
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5.2.1 Complexity

Measuring complexity is difficult [44]. Some of that difficulty arises from the

various ways in which complexity is defined and categorized in different contexts.

Complexity measures can be categorized as either deterministic or statistical [37].

Deterministic complexity measures, such as Kolmogorov complexity, must “account

for every bit—random or not—in an object” and become dominated by randomness,

while statistical complexities (often based on entropy), “discount for randomness” and

better capture the regularities of a system. We consider only statistical complexity in

the current work, because the social influence networks under study feature stochastic

elements and the research focus is on the behavior of systems rather than their precise

reproduction.

Adding to the challenges of studying complexity is disagreement in what charac-

terizes maximum complexity. There are two general approaches for defining the range

of a complexity measure. One has complexity monotonically increase with increasing

randomness or disorder of a system, while the other has complexity reach its minimum

for both fully ordered and fully random systems and is maximized in-between [111]. In

other words, the first approach treats complexity as a measure of disorder, while the

second treats it as a measure of the mixture of order and randomness. For example,

Shannon entropy is maximized for the maximally-random uniform distribution [43],

but the physical complexity measure of Huberman and Hogg [112] is maximized for

systems that are “intermediate between perfect order and complete disorder.” The

approach one chooses largely depends on whether one views complexity as a measure

of randomness or as a measure of structure and information [109].

We adopt the former position, treating pure randomness as maximum complexity,

in alignment with our focus on statistical complexity measures. With this approach,

complexity monotonically increases with increasing randomness. This provides un-

ambiguous comparisons between two systems—if system x has a greater measured

complexity than system y, then x is more random. Also, this approach differentiates
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purely random and purely ordered systems. In the current research context, this

is appropriate, because different insights can be gleaned about systems at the two

extremes. Based on this discussion, associating maximum complexity with purely

random systems is a better fit for measuring the complexity of aggregated social

influence network opinion histories.

5.2.2 Noise in communication

Communication is a noisy process. Since “the effects of noise, communication

errors, and in general random fluctuations, should not be disregarded in any realistic

representation of information spreading” [54], we must consider the presence of noise

when studying opinion dynamics in social influence networks. Indeed, in complex

social systems, the line separating signal and noise is “likely to be blurred” [44].

Techniques do exist to filter noise from input signals, but with noise filtering, there is

a risk of removing genuine signal from the inputs. For example, white noise applied

to the links between agents is an artifact of communication errors in the system and

should be considered noise, while the random adoption influence model has agents

engage in stochastic behavior yet represents actual behavior in the system [83]. In

other words, a signal can appear noisy due to actual noise, chaotic inputs, or a

combination of both.

For the analysis in Section 5.4, we primarily focus on unfiltered data (which may

contain random noise) to avoid confounding the effects of noise filtering with the

actual performance of our complexity measure. We illustrate these effects in Figure 5.4

by applying a 5-period moving average filter [113] to opinion history data prior to

computing the complexity. Such a filter is able to produce good noise reduction results

in general [113]; identifying an optimal filtering technique for opinion history data is

outside the scope of this research.



99

5.2.3 Framework for complexity measurement

Network complexity measures typically center around structural properties of the

network [46]. While these can address complexity associated with information chan-

nels, they do not account for actual information flow in the context of social influence.

This requires an approach that can be sensitive to interactions taking place in the

network.

Efatmaneshnik and Ryan [56] present a general framework for complexity built

on the foundation that complexity has both objective elements and subjective ele-

ments. Objective complexity is based on the size or a description of the system and

is independent of the observer. Subjective complexity is constructed relative to the

observer and the observer’s “reference simplicity.” For example, a complexity mea-

sure for the structure of a network could relate the objective element to the number

of nodes and edges in the network, while it could relate the subjective element to

the network’s departure from a complete graph (as the reference simplicity). This

framework does assume that the observer can confidently evaluate what is “simple”

in a given situation.

A criticism of this framework is its dependence on the observer’s selection of the

subjective element, which is focused on a specific application and may not be mean-

ingful in different contexts. Another minor weakness is that for certain situations,

the objective and subjective elements could be defined to be the same, in which case

this framework provides no benefit over other approaches. However, the objective-

subjective framework is sufficiently valuable in our current study of social influence

networks and opinion dynamics that we accept these drawbacks and leverage the

framework to construct a complexity measure in the next section.

We focus on the subjective elements of the framework in the current study. There

are options for the objective complexity of networks, such as the number of nodes

and edges, but measuring a network’s objective complexity remains an open question

in the field [114, 115], is highly sensitive to changes in network structure [109], and is
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not part of the current research focus. Therefore, we omit objective complexity from

the remainder of this paper.

5.3 Methodology

This section defines our methods for measuring the complexity of dynamic opinion

data from social influence networks. It proceeds in three parts. First, we present

general definitions used throughout this section. Next, we construct the reference

system against which complexity is to be measured; this is based on our subjective

interpretation of simple and complex systems as they relate to opinion dynamics in

social influence networks. Finally, we define the dissimilarity measure to quantify how

an observed set of opinion data deviates from the reference system, which becomes

the measure of complexity used in Section 5.4.

5.3.1 General

A social influence network is a collection of individual agents connected with and

able to influence one another via a network. The network is defined on the graph

G = (V,E) with each agent i ∈ V connected to its neighbors via weighted directional

edges in the set E. The agent population is of size |V | = N . Each agent has an

opinion, the “agent’s property that is affected by social influence in a model” [53],

which encodes their attitude or position on some topic at a given time. Agent i’s

opinion at time t is expressed as o(i, t) and is defined on the continuous interval

o(i, t) ∈ [−1, 1] to allow for two extreme positions, a neutral opinion at zero, and a

spectrum of intermediate opinions in between. Opinions can change over time due

to interactions among agents and random factors (e.g., noise), but external influence

(e.g., mass media) is not a part of this study. Interactions are governed by an influence

model and take place only along network edges. These interactions can be affected

by random noise to model the imperfect nature of communication.
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We call the sequence of an agent’s opinion as it changes over time its opinion

history. The term system refers to the entire set of processes and structures involved

in creating opinion data: network, influence model, agent characteristics, etc. As an

analogy, if we consider the opinion histories to be a set of signals, then the system is

a signal generator.

5.3.2 Reference simplicity

Complexity analysis must be done “within the context of an appropriate frame-

work” or else risk the production of “misleading or useless results” [44]. The objective-

subjective framework from Efatmaneshnik and Ryan [56], detailed in Section 5.2.3,

splits complexity into objective and subjective components; the objective component

measures the size of the system or its minimum description, and the subjective com-

ponent captures the system’s deviation from a context-dependent reference model.

The reference model is called the reference simplicity and is based on a subjective

simplicity : “an idea of what is simple in a given context.”

Our research context is opinion dynamics, and we posit that social influence net-

works that have agents with unchanging opinions are very simple. Simpler yet are

networks where all agents share the same unchanging opinion. Lastly, a population

sharing the same neutral opinion is less complex than one sharing an extreme opin-

ion (a neutral opinion is effectively the same as no opinion, which intuitively has no

complexity at all). From this subjective simplicity, the reference simplicity is defined

as a set of opinion histories with values equal to zero for all agents at all times; zero

is chosen as a neutral opinion because we define opinion to lie in the interval [−1, 1].

Formally, the reference simplicity contains a reference opinion for agent i at time t of

oref (i, t) = 0 ∀i ∈ V, t ∈ Z+. (5.1)

This approach does ignore the connections between agents (i.e., network struc-

ture), but we argue that the effects of those connections are present in the opinion

histories: opinions change over time due to agent interactions along network edges, so
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the time series of an agent’s opinion depends (in part) on the network structure. If the

network structure were changed, agent opinions could change. Alternative reference

systems are discussed in Section 5.5.

Using this reference simplicity as a baseline, we expect the measured complex-

ity to depend on the value of observed individual opinions (e.g., opinions far from

neutral are more complex than those near neutral), the velocity of an agent’s opinion

(e.g., rapidly changing opinions are more complex than stable ones), and the distribu-

tion of opinions (e.g., populations with high variance in their opinions contain more

complexity than those that are closely grouped). In the next section, we present a

dissimilarity measure based on these expectations.

5.3.3 Dissimilarity measure

The reference simplicity serves as the baseline or zero-point of the complexity

measure. Next, we must define the dissimilarity measure for quantifying how much a

target system (observation) deviates from the simplicity. Given our construction of

the reference simplicity as a set of equal, straight lines with value zero, we identify

four key characteristics describing how an observed system deviates from the reference

simplicity: location, dynamics, density, and disorder (Figure 5.1). Location refers to

the distance that opinion histories lie from their reference lines (which need not be

measured with a true distance metric), dynamics describes the rate of change of

opinions at a point in time, density refers to the spread of opinions across the whole

population, and disorder captures the uniformity of their distribution.

We measure location using the L1-norm between observed opinion histories and

the reference simplicity.1 The dynamics term is a function of the change in opinion

between consecutive, discrete time steps. Density is captured with the variance of

opinion values. Disorder is a function of the Shannon entropy of discretized opin-

ion values. These are straightforward approaches that philosophically capture our

1The L1-norm is chosen instead of the more common L2-norm based on results from Aggarwal et al.
[116], which found that in high-dimensional spaces, the L1-norm is more well-behaved.
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0

location dynamics

0

density disorder

Key characteristics of dissimilarity

Figure 5.1. The four characteristics that are the basis of our dissimilarity
measure are shown here at lower and higher values in each half of the sub-
plots. Each line segment represents an individual opinion history, showing
opinion on the vertical axis and time on the horizontal; zero opinion is
the reference simplicity. For example, the slowly changing opinion on the
left of the dynamics plot represents a low value of the dynamics element,
while the right side shows rapid change and a higher dynamics value.
Most line segments are shown with constant opinion to emphasize a single
dissimilarity characteristic.
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identified characteristics of dissimilarity. It is reasonable to consider both variance

and entropy, as they capture slightly different aspects of the distribution of data:

“Variance is a measure of spread from the mean of a distribution, whereas entropy

measures the spread across the distribution” [44]. The dissimilarity measure is de-

fined as the sum of the four elements, detailed below. Each element is normalized,

either by its theoretical maximum value for the problem context or by the maximum

observed value for a given data set, in order to make the term dimensionless and

equally weighted in the sum. This does cause each element to be bounded to the

interval [0, 1] as a coincidence, not a deliberate choice of scaling.

1. Location. To measure the location at time t, we treat both the observed and

reference opinions as vectors, defining −→o (t) = (o(1, t), . . . , o(N, t)) and −−→oref (t) =
−→
0 N ,

respectively.2 Then we compute the L1-norm on the difference of the two vectors:

|−→o (t)−−−→oref (t)|1 =
N∑
i=1

|o(i, t)− 0|. (5.2)

Subjective complexity should not simply scale with the size of the network—that

is the role of objective complexity—but Equation 5.2 does (at least for our choice

of reference simplicity). To correct this, we divide Equation 5.2 by the maximum

possible L1-norm for a given population size N , based on the reference simplicity and

the possible range of opinion values. The maximum L1-norm for the current situation

happens to be N , since opinion is bounded to [−1, 1] and the reference value is zero,

making the maximum distance per agent equal to 1. Therefore, the location element

for our dissimilarity measure for time step t is

Location(t) =

∑N
i=1 |o(i, t)|
N

. (5.3)

2. Dynamics. This element of the dissimilarity measure addresses the velocity

of opinions. In agent-based systems, complexity measures should “reflect increasing

complexity with increasing activity of agents” [38]. For each agent, we compute

2While we chose zero as the reference simplicity, this approach generalizes for any choice of reference,
as −−→oref (t) = (oref (1, t), . . . , oref (N, t)).
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the absolute difference between two consecutive time steps and normalize by the

maximum observed absolute difference across the population for a given time:

∆(i, t) =
|o(i, t+ 1)− o(i, t)|

maxj |o(j, t+ 1)− o(j, t)| . (5.4)

If the maximum is zero, then ∆(i, t) is set to zero. The absolute value is used because

we do not consider the sign of the difference to be relevant to the reference simplicity—

in our perspective, a negative opinion is no more complex than a positive opinion.

Then, ∆(i, t) is averaged across the population to yield

Dynamics(t) =
1

N

N∑
i=1

∆(i, t). (5.5)

3. Density. The density element is the variance of the opinion history data for

some time t divided by the maximum possible variance, based on the allowed bounds

of opinion values. In general, for data X with upper bound b and lower bound a, the

population variance Var(X) is bounded by

0 ≤ Var(X) ≤
(
b− a

2

)2

. (5.6)

For data on the interval [−1, 1], variance has an upper bound of 1. Thus, for the set

of opinion values at a single time step, −→o (t), the density element of the dissimilarity

measure is

Density(t) =
Var (−→o (t))

1
. (5.7)

4. Disorder. The disorder element is measured by normalizing the Shannon

entropy of the discretized opinion values. Shannon entropy can be regarded as a

measure of the information content of a distribution and is defined by Shannon [43]

as

H(X) = −
∑
s

p (xs) log2 p (xs) , (5.8)

where p(xs) is the probability of finding variable X in state s. Adapting this to

the current research context, p(xs) is the probability of an agent’s opinion occupying

state s, but states are discrete and opinion is continuous. So, we map each of the
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continuous opinion values into one of twenty discrete bins of equal width, which form

the set of states.3 Then, the entropy H(X) is computed for each time step based on

the empirical probabilities associated with each bin: p(xs) is the fraction of agents

with opinions that map to bin s. To normalize entropy (as is done for the other

elements), we divide H(X) by the maximum possible entropy. Entropy is maximized

when data is uniformly distributed (i.e., each of the 20 bins has equal probability),

so

0 ≤ H(X) ≤ −
20∑
s=1

1

20
log2

1

20
= log2 20. (5.9)

Therefore, the normalized entropy that is the disorder element of our subjective com-

plexity is

Disorder(t) =
H(X)

log2 20
. (5.10)

The sum of Equations 5.3, 5.5, 5.7, and 5.10 defines the dissimilarity measure for

an observed set of opinion histories, relative to a reference simplicity:

Dissimilarity(t) = Location(t) + Dynamics(t) + Density(t) + Disorder(t)

=

∑N
i=1 |o(i, t)|
N

+

∑N
i=1 ∆(i, t)

N
+ Var (−→o (t)) +

H(X)

log2 20
.

(5.11)

Dissimilarity is bounded to the interval [0, 4] by construction, but the achievable max-

imum may be lower due to competition between variance and entropy (e.g., maximum

variance occurs for data evenly split into two extremes, which yields very low entropy

due to two occupied states). The dissimilarity value is dimensionless and can be scaled

as desired for comparing with other complexity measures. This equation becomes the

measure of subjective complexity applied to opinion history data in Section 5.4.

5.4 Case studies

The subjective complexity measure developed in Section 5.3.3 was applied to

opinion history data from two case studies. (All uses of “complexity measure” in this

3The specification of bins can affect the outcome, but many approaches for “optimal” binning exist.
Different sets of bins are not explored in the current study.
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section refer only to the subjective complexity; objective complexity is not included

in this analysis, as discussed in Section 5.2.3.) In the first case study, notional data

was created based on the illustrative examples in Section 5.1 to show different values

along a subjective range of complex systems. This demonstrated that the complexity

measure shows the expected behavior in simple data sets. In the second case study,

simulation data from prior work representing 39 instances of social influence networks

was repurposed for use with the new measure. This exercises the measure on more

realistic opinion history data where the simulation inputs could be used to anticipate

changes in complexity. Complexity was computed at multiple time steps over the

length of the opinion histories, producing a new time series of complexity values. The

results showed that the performance of the complexity measure generally aligns with

our notion of subjective complexity and that the measure may have potential as a

tool for differentiating different social network designs.

5.4.1 Case study 1: notional systems for illustration

For this case study, we constructed six notional data sets that represent opinion

histories inspired by scenarios from the introduction (Figure 5.2). These scenarios

help demonstrate that the complexity measure performs as expected for several simple

systems and are described as follows:

1. static and equal: agents have equal, unchanging opinions;

2. static but unequal: agents have different and unchanging opinions;

3. uniform random: opinions are set uniformly at random for all time steps, with

no dependence on the previous time step;

4. single convergent: agents begin with different opinions but converge to a shared

opinion;

5. multiple convergent: opinions converge to several different values across the

population; and
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6. divergent: agents begin with one of several opinions before diverging into many

different opinions (the multiple convergent scenario, reversed).

−1

0

1
static and equal static but unequal uniformly random

0 250 500

time

−1

0

1
single convergent

0 250 500

time

multiple convergent

0 250 500

time

divergent

Opinion histories for case study 1

Figure 5.2. The opinion histories represented by the six notional data
sets in case study 1. For each set of axes, time is on the horizontal axis
and opinion is on the vertical. For the bottom three scenarios, vertical
grid lines mark convergence/divergence times. The measured subjective
complexity values for each of these data sets are presented in Figure 5.3.

As a basis for assessing the complexity measure, we made predictions for each of

the simple scenarios (Table 5.1). The static and equal scenario should have constant

complexity equal to the fixed opinion value of the population, with only the location

term contributing to complexity: the dynamics term is zero (all opinion histories have

zero slope), the density term is zero (each observation is equal to the mean), and the

disorder term is zero (the entropy of all data in a single bin is zero). For the static

but unequal case, the complexity should be constant at 1
2

+0+ 1
3

+1 = 1.83: with the

opinion data distributed uniformly in the interval [−1, 1], the mean of the absolute

value of the data (location) is approximately 1/2, all slopes are zero (dynamics), the

variance is 1
12

(1−−1)2 = 1
3

(density), and the entropy is maximized (disorder equals

1).

The uniform random data is the same as the previous case, except each time

step is independent, so the slopes between time steps may not be zero, leading to a
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small positive expected value for the dynamics term. For this data set, the slopes

are distributed according to a triangular distribution4 with expected value 2/3, and

from a Monte Carlo simulation, the expected maximum slope for such opinion data is

approximately 1.82. This gives an average dynamics term around 0.36 and a predicted

complexity of 1.83 + 0.36 = 2.2. The data in the remaining scenarios is too diverse to

afford simple proofs and numerical predictions, but our qualitative estimates appear

in Table 5.1.

Table 5.1.
Predictions about the complexity of each system for case study 1 are
compared to the result of computing the complexity measure for the data.
For most scenarios, the predicted and observed behaviors closely agree
(X). The disagreements (X) were likely due to failure to predict the
impact of random number generation variability on the small sample size
(N = 100).

Scenario Predicted Observed

static and equal constant at fixed opinion (0.44) constant at 0.44 X

static but unequal constant near 1.83 constant at 1.72 X

uniform random constant near 2.2 noisy but flat near 2.14 X

single convergent moderate, trending lower matches X

multiple convergent moderate, trending slightly lower matches X

divergent reverse of multiple convergent matches X

Results

The measured complexity for each scenario is graphed in Figure 5.3. Expected

behavior of the complexity measure time series for each of the scenarios is compared to

the observed behavior in Table 5.1. In most cases, the desired and observed behaviors

4The distribution of the absolute difference of two uniformly distributed random variables is trian-
gular. For U(−1, 1) variables, the triangular distribution has minimum 0, maximum 2, and mode
0.
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closely agreed. For example, we predicted the complexity for the single convergent

scenario to be “moderate, trending lower,” and the result was a complexity time

series that began at a moderate level (near 2), gradually dropped to a low value (near

0.5) as the opinions converged (at time t = 250), then remained constant.5 We did

expect a greater range of complexity for the multiple convergent scenario, in the form

of larger decreases (relative to the other fluctuations in complexity) as each group

converged in opinion.
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2

static and equal static but unequal uniform random
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time

0

1

2

single convergent

0 250 500

time

multiple convergent

0 250 500

time

divergent

Complexity time series for case study 1

Figure 5.3. The complexity measure defined in Section 5.3 is computed
for on the opinion history data for the six scenarios in the first case study.
This measure is bounded to the interval [0, 3]. For the last three scenarios,
the vertical grid lines correspond to the convergence/divergence times as
in Figure 5.2.

The disagreements between expected and observed behavior for this case study

were the static but unequal and the uniform random scenarios. For the former, we

correctly predicted a constant value but erred by 0.1 units in the magnitude. This

difference is likely due to uneven distribution of the opinion data (Figure 5.2) and

small sample size (N = 100). For the latter, the magnitude differed from prediction

5The complexity for the single convergent scenario reached its minimum slightly before the opinion
values actually converged, which is likely due to the bin size for the entropy calculation—once all
opinions fit in one bin, they are indistinct with respect to entropy.
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by about 0.06 units and the complexity time series was noisy instead of smooth, a

difference likely caused by variability from the random number generation.

In Section 5.2.2, we discussed the impact of noise on social influence networks, but

the results presented so far have used unfiltered opinion history data. We analyzed the

raw data so as not to confound the effect of noise filtering with the genuine behavior

of our complexity measure. For Figure 5.4, we measure the complexity of filtered data

to highlight the impact of noise filtering. When using a noise filter, the uniformly

random data has lower complexity than the static but unequal scenario, which at first

appears to violate our intuition of subjective complexity. On further consideration,

however, this contrast reinforces our understanding: purely random data contains no

real signal, so any apparent complexity that is a result of noise should be discounted.
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time
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Complexity time series for case study 1 (noise filtered)

Figure 5.4. The complexity measurements for this cases study were re-
peated after filtering the opinion history data using a 5-period moving
average. The complexity measure is designed with the goal of being max-
imized for random data, but filtering makes the data more similar to static
data with lower variance, driving down the complexity.

In this first case study, the complexity measure was shown to perform mostly as

expected for a set of simple scenarios (four of six predictions matched). This helps to

build confidence in and intuition about the measure, supporting the analysis of more

realistic opinion data in the next case study.
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5.4.2 Case study 2: simulation data from prior work

The second case study evaluated opinion history data from Garee and Ventresca

[101], which created opinion histories for a wide range of simulated social influence

networks by varying five different simulation and network design factors from the lit-

erature (population size, network structure model, agent activation regime, influence

model, and influence error distribution) for each simulation trial. While still artifi-

cial, that data is more representative of real-world influence networks than the simpler

data sets in the first case study. We selected 13 trials from their experimental design,

chosen to allow comparisons between trials that intuitively should have different de-

grees of complexity.6 For example, given two trials that differ in their design only by

the presence of random noise in the links between agents, it is reasonable to expect

the noisy trial to have greater measured complexity than the noise-free trial. Single

replications are used in this analysis for illustrative purposes; a more comprehensive

analysis of the complexity measure would use all available data.

For each of the five original design factors listed previously, we chose a distinct

set of trials that differ only by the setting (level) of that design factor (i.e., one-way

variation). Specifically, for each design factor, we randomly selected a trial from

among all trials in the reduced data set. Then, we (non-randomly) selected the trials

that differed from the randomly selected trial in only the given design factor. For

example, if the randomly selected trial for population size has a population size of 100,

we then manually select the trial with the same settings except with population size

10,000. A different random trial was chosen for each factor. The selected settings for

each design factor and our predictions about the relative complexity measurements

(within each factor) are described as follows:

6In Garee and Ventresca [101], each trial is replicated 100 times using different random number seeds
and then aggregated by that study’s response variables. Here, we select single replications for the
chosen trials.
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• network structure model—Erdős-Rényi random graph, small world, or preferen-

tial attachment: these are ordered from greatest to least predicted complexity,

based on the relative degrees of structure versus randomness in the models;

• agent activation regime—random, uniform, or synchronous: ordered from great-

est to least predicted complexity, based on the degree of randomness in schedul-

ing within each regime;

• influence model—random adoption, attractive-repulsive, or standard model:

these are ordered from greatest to least predicted complexity, since the first

uses a random selection among neighbors, the second may move opinion closer

to or further from neighboring opinions, and the third averages the opinion

values among neighbors;

• influence error term—no error or normally-distributed zero-mean error with

variance 0.1: trials with no error term should have lower complexity than those

with an error term; and

• population size—100 or 10,000 agents: negligible difference is predicted, since

network size is an element of the objective, rather than subjective, complexity.

We classify as impactful the factors where we expect to see distinct behavior in the

complexity time series for the different settings. In this case, we predict all factors

except population size to be impactful (Table 5.2).

Results

The complexity for each trial was calculated on its (unfiltered) opinion history

using the measure defined in the previous section, and the time series for several of

the factor-level comparisons are presented in Figures 5.5-5.9. We performed a visual

assessment to classify each factor as impactful or not, which we compare with our

predictions in Table 5.2 and detail below. Overall, two of five factors were impactful,
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Table 5.2.
For three of the network and simulation design factors, our predicted and
observed impact assessments closely agreed (X). The other two factors
showed disagreement (X).

Impact on complexity

Factor Predicted Observed

network structure model impactful not impactful X

agent activation regime impactful not impactful X

influence model impactful impactful X

influence error term impactful impactful X

population size not impactful not impactful X
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and the results agreed with our predictions for three factors. Note that the results

from Table 5.2 do not necessarily mean that network structure, activation regime, and

population size have no impact on the complexity measure, merely that they have

no apparent impact as main effects as measured using our qualitative visual analysis.

Interaction effects may exist and are an avenue for future exploration.

The three trials for network structure model produced erratic and frequently in-

tersecting time series for the complexity measurement (Figure 5.5), although the

small-world complexity has about half the range and less average complexity than

the other two. But with such little visual distinction between the three trials, the

network model is not impactful; this disagrees with our prediction. For agent activa-

tion regime, all three trials showed noisy but rather flat complexity plots with small

vertical ranges of approximately 0.15 units (Figure 5.6). The lines intersect in many

places and lack any visual distinction, so we conclude activation regime to be not

impactful, also in disagreement with our prediction.

On the other hand, we correctly predicted influence model to be impactful to

complexity (Figure 5.7). The three influence models had clear differences in complex-

ity: the plot for random adoption moves erratically, while the other two models were

flat with minimal noise and large separation (approximately 0.8 units). However, the

attractive-repulsive model was more complex than the random adoption, likely due to

the effect of polarizing opinions on the density (variance) element of the complexity

measure. The influence error distribution factor behaved as expected and is impactful,

showing clear separation (0.2 units) between the two settings (Figure 5.8). Finally,

changes in population led to little difference in complexity (Figure 5.9). The plot for

the larger population is smooth, while that for the smaller population is very erratic,

but both are flat and within about 0.05 units of each other on average. Population’s

classification as not impactful agrees with our prediction.

Thus far, we have considered only a single set of trials for each factor. To ex-

pand our study, the complexity measurement process was repeated using data from

a different replication of the same trials (i.e., simulation data via a different random
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Complexity time series for case study 2, network model factor

Figure 5.5. The high degree of overlap of complexity time series for the
three network structure models suggests this factor is not impactful to the
complexity measure.
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Complexity time series for case study 2, activation regime factor

Figure 5.6. The three agent activation regimes show little distinction in
complexity, leading to an assessment of not impactful for this factor.
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Complexity time series for case study 2, influence model factor

Figure 5.7. For the three trials differing by the influence model used be-
tween agents, the attractive-repulsive model led to the greatest complexity
value. One may expect the random adoption to be most complex, but the
attractive-repulsive model can polarize opinions into two extreme groups,
maximizing the variance term of the dissimilarity measure.
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Figure 5.8. Unlike the random adoption influence model, the influence
error distribution directly adds noise to the opinion histories. Thus the
complexity of the trial with no added noise is lower than the trial with
added noise, as predicted.
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Figure 5.9. The two trials that differed only in the population size, 100
versus 10,000, produced complexity time series with similar average values.
This result agrees with our prediction that population size is not impactful
for the complexity measure.
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number seed), and then again using a different set of trials, selected to support the

same comparisons between design factor settings. Results for these two additional

data sets differed from the original results in terms of their measured complexity

values but not with respect to their qualitative behavior and our impact assessments.

In this case study, we applied our complexity measure to opinion history data

from a number of simulated social influence networks. Only the choice of influence

model and influence error distribution were found to be impactful to the complexity.

We expected population size to not be impactful based on our notion of subjective

complexity. The lack of impact for the network structure model and agent activation

regime was unexpected; this is discussed further in the next section.

5.5 Conclusion

We conclude this paper with a discussion of the major findings, before covering

alternative reference systems, outlining some limitations of our results, and remarking

on opportunities for future work.

In this paper, we developed a subjective complexity measure for analyzing opinion

time series data from social influence networks. The measure performed well in the

two case studies. Overall, the results showed that its performance generally aligns

with our notion of subjective complexity and that the measure may be a viable tool for

distinguishing different social network designs. We observed the complexity measure

to be sensitive to the selection of influence model and influence error term, in that

the different settings of those parameters produced visually distinct behavior in time

series plots of the complexity. This in particular indicates that the measure could be

useful to studies that try to infer those parameters from opinion data.

The objective-subjective complexity framework [56] at the heart of development

process was valuable. Its notion of subjective simplicity made creating a reference

system an intuitive process and helped scope the complexity measure. However, it



121

does not aid in the actual definition of the measure, which remains an exploratory

activity.

The results agreed with our predictions in four of six scenarios in case study 1

and three of five in case study 2. The discrepancies in the first case study are due

to minor errors in our prediction process. In the second case study, it was surprising

to observe such little impact on complexity from the selection of network structure

model, which may weaken our claim that the effect of the network structure is present

in the opinion histories. The actual network structures from the different trials may

have been quite similar to begin with, or the settings for the other experimental

factors may be dominating the complexity measure.

5.5.1 Alternative reference systems

In this study, we selected a constant, neutral opinion as the reference simplicity,

where zero is the neutral value for opinions bounded to [−1, 1]. Below, we identify

several alternative approaches.

First, reference values could be set to the average opinion across the network. In

such a case, populations with a narrow range of opinions have low complexity, regard-

less of their magnitude: a population with opinions concentrated at an extreme is no

more complex than one with neutral opinions. This does not match our subjective

notion of complexity but is a feasible approach.

We have assumed in this work that network structure is implicit in opinion his-

tories, but if incorrect, an alternative reference system could explicitly include the

network structure with the reference opinions. This does limit use of the complexity

measure to social influence networks where the full structure is known, which can

be difficult in real-world situations (such as an application where users record their

preferences but not their sources of influence or their interactions with other users).

The dissimilarity measure presented in this paper does not make explicit use of the
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network structure, so the measure would need to be revised or replaced for it to

operate directly on structural information.

A third alternative is a set of opinion histories generated at random. This exists

at the opposite end of the order-chaos spectrum from a set of static opinions, so it

could be a reasonable reference simplicity. However, it carries with it questions about

what sampling distribution to use. It also causes the complexity measurement to

be stochastic, since different initial randomization conditions would lead to differ-

ent reference systems. For these reasons, a randomly generated reference system is

undesirable.

5.5.2 Limitations and future work

Although the objective-subjective framework proved valuable here, its use leads

to complexity measures that are highly context-dependent. Such measures cannot be

viewed as general-purpose tools, so our complexity measure may only be valid in our

defined scope.

Objective complexity for a network is often based on its size (e.g., number of nodes

and edges). Subjective complexity ignores the network’s size. Since our analysis did

not use objective complexity, large and small populations had similar complexity.

This may conflict with more common notions of larger systems as being naturally

more complex. Also, different configurations of edges for the same population can

have different objective complexities (sparse versus dense graphs), but our measure

was not significantly impacted by changes in network structure.

The time over which the system is observed has a significant impact on the mea-

sured complexity. Referring to Figure 5.3 for example, a complexity value of approx-

imately 1 could be associated with the single convergent system at time 200 (bottom

left), the multiple convergent system at time 500 (bottom center), or the divergent

system near time 0 (bottom right). If these systems were only observed near the

specified times, we could conclude the systems are similar in complexity, despite the
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different ways the systems evolve. Changes to the dissimilarity measure that could

compensate for this effect would be desirable.

Interaction between the various system design factors in case study 2 may be

confounding our results on which factors impact our complexity measure. A full

experimental design using all simulation data from Garee and Ventresca [101] could

clarify the relationships between the five design factors and the complexity of the

opinion histories.

Our subjective complexity measure is the sum of four terms (location, dynamics,

density, and disorder), weighted equally. The measure could be modified to weight the

terms unequally to prioritize the complexity due to some characteristics over others.

Further, Thompson and Young [44] observe that some researchers require multiple

measures of complexity to study a system, while others focus on single summary

measures. We developed a single complexity measure, but its four terms could be

studied separately. A detailed analysis of the relationships among those terms may

provide insights for refining the measure or for weighting the terms unequally.
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6. CONCLUSION

The objective of this dissertation was to explore the degree to which opinion change

in social influence networks could be used to determine characteristics of those net-

works. Complexity theory was the lens through which this exploration was conducted,

so opinion data from simulated social influence networks was analyzed using several

complexity measures (regression, several types of entropy, and a new measure). Over-

all, changing the inputs and specifications for a social influence network simulation

can change how opinion evolves over time in the network; this in itself is not a

particularly surprising result. What is noteworthy is that for some design factors,

relationships exist that may allow researchers to infer some details of the inputs by

analyzing only the outputs. These relationships are diverse: not all design factors

affect opinion equally. The influence model and the distribution of communication

errors—a factor often omitted from the literature—are consistently impactful, with

their various settings producing distinct profiles in time series plots of the measure-

ments. Activation regime is impactful to some entropy measures. Network structure

has little impact on the new complexity measure developed in Chapter 5, and popula-

tion size has little impact in general. These relationships, as well as the measures and

problem-solving approaches used in this work, may be helpful to analysts working

to infer the properties of real-world social influence networks from the opinion data

those systems generate.

Results presented in this dissertation are not without limitations. Many of the

detailed findings in this work are qualitative in nature, using the shapes or profiles of

time series plots of the different response variables, and may not appear as rigorous as

numerical methods (although comparison of profiles is an accepted approach in time

series studies). This methodology adds a layer of subjectivity to the results and may

invite disagreement from experts in the field. Also, all opinion data in this dissertation
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was generated via agent-based simulation to ensure direct control of system design

factors. Real-world social influence networks are likely much more sophisticated than

those in the simulations, however, and this difference in sophistication may limit how

well the broader findings can be applied to authentic social networks. Nonetheless,

the conclusions presented throughout this document can serve as a foundation for

further studies that expand the scope of the work performed herein.

6.1 Future perspectives

Several findings from this dissertation may help focus continued study of social

influence networks. Since the overall findings demonstrate the potential for inferring

network properties from dynamic opinion data, future efforts would benefit from a

larger database of relationships between network inputs and outputs. Rather than

waiting for the next research question to arise, we can set to work now develop-

ing large-scale social network databases to analyze for relationships. Then, as new

questions emerge, researchers could rapidly leverage that database to help them un-

derstand their particular social networking context.

With respect to individual system design factors, activation regime and commu-

nication error should receive more consideration in the literature. Some theoretical

results find that synchronous and random asynchronous activation regimes lead to

little difference in qualitative behavior for some DeGroot-like models1 and should

therefore not be treated as an important factor. However, experimental findings here

show differentiation among activation regimes in many situations, especially when

using the more stochastic design elements (e.g., communication error or the random

adoption influence model). DeGroot-like and other theoretical models of influence

rarely include communication noise between agents, so it is understandable that ac-

tivation regime is also often ignored, but both factors can be impactful to opinion

1Based on private correspondence from an anonymous journal reviewer.
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dynamics and should be included (or omitted only with careful justification) in future

research.

Related to the activation regime is the choice of discrete-event versus discrete-time.

The discrete-time approach is used for all simulations in this dissertation, as is nearly

universal for agent-based simulation. However, work by Buss and Al Rowaei [117]

questions this approach, observing excessive penalties in output accuracy of discrete-

time simulations, relative to their discrete-event counterparts. Future studies could

model social influence networks using discrete-event methodology, which may give

more accurate results. That would also better align with the intuitive understanding

of social influence as a stochastic process: in this work, influence effectively flows at

a constant rate through our simulated networks,2 but the rate of real-world social

interactions vary.

Additionally, nonhomogeneity among network populations is sometimes important

(Chapter 4) and deserves closer scrutiny in future studies. At the level of individual

trials, nonhomogeneity created drastic changes in system-level entropy as compared

to a baseline homogeneous trial. Dividing interacting agents into distinct classes is a

challenge for analytical models, but real-world social networks are not as homogeneous

as such analytical models would imply. Skillful use of agent-based simulation can

overcome this challenge and improve the degree to which analysis results can be

applied to real-world scenarios.

Throughout this dissertation, we have observed diversity between system design

factors and their importance to different response variables in a variety of circum-

stances. The diversity of these relationships emphasizes the value of using experimen-

tal design techniques for simulation-based investigations of social influence networks.

We focused on the impact of individual design factors on the simulation outputs—

this is a main effects approach. Using the same data, we can explore the impact

of multiple factors at a time, measuring the interaction effects. These effects may

2Trials using the random activation regime have at least some agents update their opinions each
time step, while all other trials have the entire population update at each time step.
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provide new and interesting insights into the relationships between opinion dynamics

and the inner workings of social influence networks.

Also, more emphasis should be placed on defining complexity measures within a

rigorous framework, as was done with the new complexity measure in Chapter 5. Too

often, existing measures are applied to new situations with limited consideration by

the authors about what exactly that measure is describing. Entropy, for example, is

widely adapted for use as a complexity measure, but authors rarely articulate what it

actually describes about their research context, leaving open questions such as, “what

does high/low entropy tell us about the system?” (This critique could reasonably be

made about Chapter 3’s entropy response variables.) Independent of the primary

findings from applying the new complexity measure to opinion data, developing the

measure within an established framework (i.e., measuring the difference between an

observed complex system and a notional simple reference system) produced the most

cogent interpretations of the three approaches to complexity measurement featured

in this dissertation. Not only would more explicit use of frameworks enhance the

understanding of individual complexity measures, it would benefit complexity theory

at large by better communicating the aims of the work.

Each of us is a member of multiple social influence networks: friends, family, pro-

fessional relationships, and more, that are all responsible for influencing our opinions

on a multitude of topics. Improved understanding of the mechanisms that shape our

opinions in these networks could reveal insights about ourselves and the world around

us. This dissertation has endeavored to support that understanding by adding to our

knowledge of the relationships between influence and opinion change in these complex

systems, which could help us to be open to, or guarded against, influence from our

network peers in the future.
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A. SUPPLEMENTAL MATERIAL FOR CHAPTER 2

This appendix provides supplemental information for the article, “Regression-based

social influence networks and the linearity of aggregated belief.”

Table A.1.
Network structure characteristics. We use network metrics not to rigor-
ously analyze each graph, but only to show that there exist some sorts of
structural differences between them. Networks are slightly modified to en-
sure all agents have neighbors and no self-loops exist. The randomization
seed parameter is omitted in the table.

Family Parameters Mean

out-degree

centrality

Assor-

tativity

Reciprocity Effi-

ciency

Directed

random tree

N , edges point

toward/away from root

Low High Low Low

Scale-free N , α, β, γ, δin, δout Low High Low to

Moderate

Low

Erdős-Rényi N , connection

probability p

High Low Low or High

(based on p)

High

Random

k-out

N , k Exactly k Unde-

fined

Various Mod-

erate

A.1 Experimental design matrix

Table A.2 contains an excerpt of the experimental design matrix used for this

simulation experiment.
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A.2 Source code

Complete source code is available online at https://github.com/mgaree/wsc2018.

Below is an excerpt.

class Agent:

"""

Args:

unique_id (int): Unique id number associated with instance.

model (obj:Model): Reference to parent Model.

Attributes:

unique_id (int): Unique id number associated with this agent

.

model (obj:Model): Reference to parent Model.

y_i (float): Belief value.

b_0 (float): Internal bias.

b_j (np.array of floats): Coefficients for neighbors belief.

neighbors (list of Agents): Neighbors of self , based on

edges in

self.model.G of the form (self , other).

x_ij (np.array of floats): Most recently cached values of

neighbors

belief.

"""

def __init__(self , unique_id , model):

""" Create a new agent. """

self.unique_id = unique_id

self.model = model

# Meet the neighbors

self.neighbor_ids = list(self.model.G.neighbors(self.

unique_id))

self.d_i = len(self.neighbor_ids)

# Set b_* coefficients

if self.model.b_0_is_zero:

self.b_0 = 0

else:

self.b_0 = self.model.b_distro ()

self.b_j = np.array([self.model.b_distro () for _ in self.

neighbor_ids ])

self.y_i = self.b_0 + self.model.error_distro () # last term

is eps_i

self._next_y_i = 0

https://github.com/mgaree/wsc2018
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self.informed = True # Model will decide if an agent is

uninformed

<...>

def step(self):

""" Update belief level using linear regression equation."""

self.x_ij = self.get_neighbor_beliefs ()

if not self.informed:

# Check up on neighbors

neighbor_status = [nn.informed for nn in self.neighbors]

if True in neighbor_status:

self.informed = True

else:

return

eps_i = self.model.error_distro ()

self._next_y_i = self.b_0 + np.dot(self.b_j , self.x_ij) +

eps_i

def advance(self):

""" Complete the SimultaneousActivation -style step."""

if self.informed is False:

return

self.y_i = self._next_y_i

A.3 Full model results

Table A.2. Regression results (ordinary least-squares) for the preferred main-

effects only model on MA-R2
adj at t = 500. This model uses the batch quantity

g level, bij distribution, how bi0 and bij are normalized, whether or not yi is normal-

ized, and the maximum di for the network num X vars (a proxy factor for network

structure).

Dep. Variable: MA-R2
adj R-squared: 0.556

Model: OLS Adj. R-squared: 0.532

Method: Least Squares F-statistic: 22.68

No. Observations: 173 Prob (F-statistic): 1.11e-24

Df Residuals: 163 Log-Likelihood: 5.2028

Df Model: 9 AIC: 9.594

BIC: 41.13

coef std err t P> |t| [0.025 0.975]
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Intercept 0.2016 0.067 2.987 0.003 0.068 0.335

g level[T.5] 0.3342 0.056 6.002 0.000 0.224 0.444

g level[T.N] 0.4057 0.065 6.268 0.000 0.278 0.534

g level[T.N/4] 0.3771 0.056 6.761 0.000 0.267 0.487

b distro[T.U-11] -0.0365 0.047 -0.771 0.442 -0.130 0.057

b distro[T.U01] 0.2628 0.053 4.921 0.000 0.157 0.368

normalize bs[T.network] -0.3148 0.044 -7.171 0.000 -0.401 -0.228

normalize bs[T.no] -0.1623 0.050 -3.276 0.001 -0.260 -0.064

normalize yis[T.True] -0.0994 0.040 -2.502 0.013 -0.178 -0.021

num X vars 0.0021 0.001 2.260 0.025 0.000 0.004

Omnibus: 2.188 Durbin-Watson: 1.943

Prob(Omnibus): 0.335 Jarque-Bera (JB): 2.181

Skew: 0.219 Prob(JB): 0.336

Kurtosis: 2.667 Cond. No. 141.

Table A.3. Regression results (ordinary least-squares) for the preferred main-

effects and two-way interactions model on MA-R2
adj at t = 500. This model uses

seven of the ten original design factors and uses backward elimination to remove low

p-values interaction terms. Diagnostics of this model are graphed in Figure A.1.

Dep. Variable: MA-R2
adj R-squared: 0.823

Model: OLS Adj. R-squared: 0.754

Method: Least Squares F-statistic: 12.01

No. Observations: 173 Prob (F-statistic): 1.01e-28

Df Residuals: 124 Log-Likelihood: 84.743

Df Model: 48 AIC: -71.49

BIC: 83.02

coef std err t P>t| [0.025 0.975]

Intercept 0.9822 0.191 5.136 0.000 0.604 1.361

g level[T.5] -0.1799 0.155 -1.162 0.248 -0.486 0.127

g level[T.N] -0.0868 0.170 -0.510 0.611 -0.424 0.250

g level[T.N/4] 0.0243 0.157 0.155 0.877 -0.287 0.335

b distro[T.U-11] -0.5490 0.169 -3.242 0.002 -0.884 -0.214

b distro[T.U01] -0.2380 0.169 -1.405 0.162 -0.573 0.097

norm yis[T.True] -0.5095 0.142 -3.579 0.000 -0.791 -0.228

rand update seq[T.True] 0.0756 0.134 0.566 0.572 -0.189 0.340

norm bs[T.network] -0.8281 0.129 -6.416 0.000 -1.084 -0.573

norm bs[T.no] -0.4398 0.159 -2.771 0.006 -0.754 -0.126

b 0 is zero[T.True] 0.0956 0.054 1.773 0.079 -0.011 0.202

g level[T.5]:b distro[T.U-11] 0.1824 0.110 1.653 0.101 -0.036 0.401

g level[T.N]:b distro[T.U-11] 0.0302 0.137 0.221 0.825 -0.240 0.301

g level[T.N/4]:b distro[T.U-11] 0.0535 0.115 0.467 0.641 -0.173 0.280

g level[T.5]:b distro[T.U01] 0.2706 0.119 2.275 0.025 0.035 0.506

g level[T.N]:b distro[T.U01] 0.0940 0.136 0.690 0.492 -0.176 0.364

g level[T.N/4]:b distro[T.U01] 0.2667 0.120 2.221 0.028 0.029 0.504

g level[T.5]:norm yis[T.True] 0.1849 0.101 1.832 0.069 -0.015 0.385

g level[T.N]:norm yis[T.True] 0.2338 0.116 2.022 0.045 0.005 0.463
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coef std err t P>t| [0.025 0.975]

g level[T.N/4]:norm yis[T.True] 0.2732 0.103 2.644 0.009 0.069 0.478

g level[T.5]:rand update seq[T.True] 0.0285 0.090 0.316 0.753 -0.150 0.207

g level[T.N]:rand update seq[T.True] 0.1010 0.104 0.975 0.331 -0.104 0.306

g level[T.N/4]:rand update seq[T.True] 0.1458 0.091 1.599 0.112 -0.035 0.326

b distro[T.U-11]:norm bs[T.network] 0.1444 0.095 1.519 0.131 -0.044 0.333

b distro[T.U01]:norm bs[T.network] -0.1666 0.102 -1.634 0.105 -0.368 0.035

b distro[T.U-11]:norm bs[T.no] 0.0868 0.103 0.840 0.402 -0.118 0.291

b distro[T.U01]:norm bs[T.no] 0.2225 0.120 1.851 0.067 -0.015 0.460

b distro[T.U-11]:norm yis[T.True] 0.2346 0.101 2.322 0.022 0.035 0.435

b distro[T.U01]:norm yis[T.True] 0.3520 0.108 3.248 0.001 0.138 0.567

b distro[T.U-11]:rand update seq[T.True] -0.0583 0.082 -0.709 0.479 -0.221 0.104

b distro[T.U01]:rand update seq[T.True] -0.1605 0.090 -1.776 0.078 -0.339 0.018

norm bs[T.network]:norm yis[T.True] 0.4496 0.081 5.547 0.000 0.289 0.610

norm bs[T.no]:norm yis[T.True] 0.1863 0.099 1.886 0.062 -0.009 0.382

norm bs[T.network]:rand update seq[T.True] 0.0360 0.073 0.491 0.624 -0.109 0.181

norm bs[T.no]:rand update seq[T.True] 0.1574 0.078 2.010 0.047 0.002 0.312

norm bs[T.network]:b 0 is zero[T.True] -0.2001 0.071 -2.824 0.006 -0.340 -0.060

norm bs[T.no]:b 0 is zero[T.True] -0.1081 0.078 -1.391 0.167 -0.262 0.046

norm yis[T.True]:rand update seq[T.True] -0.2956 0.067 -4.435 0.000 -0.428 -0.164

rand update seq[T.True]:b 0 is zero[T.True] 0.0824 0.061 1.341 0.182 -0.039 0.204

error variance -0.2415 0.102 -2.359 0.020 -0.444 -0.039

g level[T.5]:error variance 0.1987 0.081 2.456 0.015 0.039 0.359

g level[T.N]:error variance 0.2082 0.090 2.317 0.022 0.030 0.386

g level[T.N/4]:error variance -0.0011 0.084 -0.014 0.989 -0.168 0.166

b distro[T.U-11]:error variance 0.1460 0.073 2.005 0.047 0.002 0.290

b distro[T.U01]:error variance 0.1175 0.078 1.515 0.132 -0.036 0.271

norm bs[T.network]:error variance 0.2271 0.070 3.229 0.002 0.088 0.366

norm bs[T.no]:error variance -0.0081 0.085 -0.096 0.924 -0.176 0.159

norm yis[T.True]:error variance -0.0937 0.067 -1.403 0.163 -0.226 0.038

rand update seq[T.True]:error variance 0.0777 0.063 1.241 0.217 -0.046 0.202

Omnibus: 1.727 Durbin-Watson: 1.759

Prob(Omnibus): 0.422 Jarque-Bera (JB): 1.647

Skew: 0.238 Prob(JB): 0.439

Kurtosis: 2.948 Cond. No. 77.3
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Figure A.1. Diagnostic plots of model with main effects and two-way in-
teractions of experimental design regressed on MA-R2

adj. This model uses
seven experimental factors and achieves R2

adj = 0.754.

Figure A.2. Simulation configured for standard DeGroot-style interaction
shows convergence in total network belief, as expected. This is one part of
validating the simulation code.
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Figure A.3. Simulation configured for standard DeGroot-style interaction is
modified to include Normal(0, 1) noise as part of belief update step. Total
network belief no longer converges.
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B. SUPPLEMENTAL MATERIAL FOR CHAPTER 3

This appendix provides supplemental information for the article, “Social influence

network simulation design affects behavior of aggregated entropy.”

B.1 Methods

The simulation described in this section was implemented in Python 3 using an

agent-based modeling approach. Noteworthy libraries include the NetworkX for graph

structures and algorithms [65], RandomGen for improved control of random number

generation and stream management [120], and Statsmodels for statistical analysis [66].

Complete source code is available at [91].

Replications within a trial use different seeds for the random number generator to

ensure independence of responses; replications across trials (e.g., the third replication

for every trial) use the same seeds to reduce uncontrolled randomness between trials.

B.1.1 Experimental design

We used a full factorial design of 1800 trials, based on five design factors: pop-

ulation size, network structure model, agent activation regime, influence model, and

influence error term. The design matrix is summarized in Table B.1

Network structure models were drawn from Erdős-Rényi random graphs, small-

world graphs, and graphs created through preferential attachment, and parameters

were varied within each of these types as detailed in Section B.3. Each of these have

different parameters affecting the resulting graph. Erdős-Rényi random graphs have

parameter p for the probability of adding each possible edge to the graph. When

p ≥ logN
N

, the probability the graph being connected tends to one. We prefer to study
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Table B.1.
The experimental design for this study is a 32 × 41 × 51 × 101 full factorial
design on the five factors specified in this table, resulting in 1800 distinct
trials. Note that two of the network structure model levels are compressed
here but represent all combinations of their respective parameters. Refer-
ences are cited for factors and levels where appropriate; see text for further
explanation. A complete listing of trials is available online [91].

Factor Level References

Population size N (3 levels)

100

1000 [85]

10,000

Network structure model (10 levels)

Erdős-Rényi random, p = logN/N [51]

small-world, k ∈ 3, 10, p ∈ 0, 0.33, 0.66 (6 levels) [36, 85]

preferential attachment, m ∈ 1, 3, 5 (3 levels) [84]

Agent activation regime (3 levels) [52]

synchronous

uniform

random

Influence model (5 levels)

standard model [2]

similarity bias [53]

attractive-repulsive [53]

individual random adoption [83]

nonlinear [Chan 2017]*

Influence error terms (4 levels) [53, 57]

none [29]

N(0, σ = 0.05)

N(0, 0.1)

N(0, 0.2)

*WKV Chan, personal communication, 2017
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a single connected component in our experiment, so we set p equal to this threshold

value. The small-world model takes two parameters: the degree of nodes in the

initial ring lattice k and the probability of “rewiring” p. We chose k ∈ {3, 10} based

on existing work [36, 85]. We selected p ∈ {0, 0.33, 0.66} to span the allowed range

p ∈ [0, 1]; the value p = 1 was omitted because it produces a purely random graph,

which is already supplied by the Erdős-Rényi random graph model. Finally, the

preferential attachment model from Barabasi and Albert [84] uses a single parameter,

m, the number of edges used to attach a new node to the existing network. In their

original paper, they use m = 1 and m = 5. We used those values here and added

m = 3 as a midpoint. In total, we had ten levels for network structure model: one level

for Erdős-Rényi random graphs, six levels for small-world (each pairwise combination

of k and p), and three levels for networks created via preferential attachment.

Four of the five influence models are detailed in the main text. The final influence

model for this design factor was an explicitly nonlinear function of neighbor weights:

oi(t+ 1) =
bi

1 + exp (wi1o1(t) + wi2o2(t) + . . .)
, (B.1)

where bi is a U(0, 1)-distributed individual bias and all other terms are as defined for

the standard model (Equation 3.4). Our use of this model was motivated by (Wai K.

V. Chan, personal communication, April 20, 2018).

The values for the influence error distribution standard deviation σ were chosen

such that 95% of the time, the magnitude of the error term accounts for no more

than 10%, 20%, or 40% of the possible range of opinion values, respectively.

Synchronous activation has all agents take their actions “simultaneously in one

discrete time step” [53] by using the system state from the end of the previous time

step; this approach is used in DeGroot’s original social learning model [29]. Uniform

activation triggers agents one at a time, and the sequence is shuffled after each pass

through the full population, akin to sampling without replacement. For both syn-

chronous and uniform, agents have an equal number of activations. Finally, random

activation samples the population with replacement, so agents may see an unequal

number of activations.
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Figure B.1. Symbolic approach for transfer entropy with a sub-sample
length of 3 leads to 6 possible patterns or symbols. (Figure adapted
from [75], Supplementary Materials.)

B.1.2 Response variables

Each continuous data technique has several implementation details for computing

entropy for individual agents. For binning, we constructed histograms on the opinion

data using a fixed number of bins, depending on the entropy measure. Bin counts

were chosen to balance the number of bins with the expected number of data points

per bin. We used fixed bins rather than an adaptive partitioning method so that

comparisons between trials were not influenced by the specification of bins. The

histograms for an entropy calculation at time t were built with opinion values from

time 0 to t. Then, we built probability mass functions on the histogram values to be

used with the discrete forms of the entropy measures.

The symbolic approach transforms the input data by first mapping the elements of

a time series into patterns of relative orderings between values (e.g., Figure B.1). It

required us to select the number of data points (time steps) used in one symbol. More

data points per symbol can more faithfully capture the dynamics of the time series,

but computational costs rapidly increase due to the growing probability state-space

in the entropy calculations. Since the goal is to study changes in entropy rather than

optimally measure it, we used the minimum recommended number of data points per

symbol, three [75]. This gave an alphabet of 3! = 6 symbols (breaking ties between

consecutive equal values at random).
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Note: The symbolic method on all entropy measures and transfer entropy in

general use agent opinions from multiple time steps in order to calculate the entropy

value for a single time step. As a result, the final few time steps are not available for

some RVs. We truncate them uniformly at t = 490, while the unaffected RVs have

data through t = 500. These are considered the final time steps for their respective

RVs.

B.2 Results

The agent-based simulation experiment produced response variable time series

data for 1800 independent trials.

Table B.2.
In many of the results graphics, experimental levels are encoded as single
letters for better readability.

N structure influence model error activation

a 100 erdos renyi random(N) standard model none synchronous

b 1000 small world(N, 0.0, 3) similarity bias N(0, σ = 0.05) uniform

c 10000 small world(N, 0.0, 10) attractive repulsive N(0, 0.1) random

d small world(N, 0.33, 3) random adoption N(0, 0.2)

e small world(N, 0.33, 10) nonlinear

f small world(N, 0.66, 3)

g small world(N, 0.66, 10)

h scale free(N, 1)

i scale free(N, 3)

j scale free(N, 5)
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B.2.1 Experimental design analysis

The Kruskal-Wallace test is used to determine if varying the level of each factor

has a statistically significant effect on the response variable. At the 0.05 level of sig-

nificance, when the data is split into levels for population size N and for activation

regime, the values for RE-B appear to come from the same population. Practi-

cally, this suggests that varying these two factors—over the levels specified in our

experiment—does not have a significant effect on the RV. This agrees with what we

observe in the previous figures. These results are summarized in Table 3.1, item iii.

We see similar agreement for the other RVs between the Kruskal-Wallace test results

and the main effect plots.

Table B.3.
The Kruskal-Wallace test is conducted on RE-B values for trials at t = 500
to test if changing the level for a factor has a statistical effect on the response
value. The asterisks indicate that population size N and activation regime
show no significant impact on RE-B.

factor K-W test stat p-value

population size N 2.05 * 3.57e-01

network structure 29.37 5.60e-04

influence model 622.07 2.58e-133

error distribution 892.12 4.51e-193

activation regime 0.13 * 9.33e-01

Although the Kruskal-Wallace test indicates that for RE-B, differences exist among

levels for the structure, influence model, and error factors, it does not identify where

those differences are. For that, we use the Mann-Whitney U test on each pair of

levels for a factor (Figure B.2). A significant (< 0.05) p-value indicates a statistical

difference between the tested pair of experimental levels. This shows that all influence

models are significantly different from one another, while only some network struc-

tures differ. The Mann-Whitney U test also finds no significant differences between
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Mann-Whitney U test significance by factor
on relative entropy, binning (RE-B)

Figure B.2. We use the Mann-Whitney U test for post-hoc comparison test-
ing to determine which levels are statistically different within each factor.
The numbers in cells for the pairs with a significant test statistic (< 0.05)
express the p-value as a percentage (e.g. 3* means the p-value is at least
0.03 and less than 0.04).

levels for N and activation regime, further supporting their lack of importance for

RE-B. These results are summarized in Table 3.1, item iv.

Across all RVs, network structures tend to be statistically different from structures

in different density groups (higher/lower density; detailed in Section B.3). Interest-

ingly, TE-B shows only three out of 45 pairs of network structures to be statistically

different, while other RVs have many more differing pairs; that difference is not un-

derstood at this time.
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Table B.4.
Each Evaluation row from the summary tables (e.g., Table 3.1) for research
question 1 are combined to allow comparisons among all RVs. Only the
activation regime changes based on the entropy measure.

* (Evaluation) Is the response variable sensitive to changes

in the level for the factor?

Factor (number of levels)

RV N (3) structure (10)

influence

model (5) error (4) activation (3)

RE-B no yes yes yes no

MI-B no yes yes yes yes

TE-B no yes yes yes yes

RE-S no yes yes yes no

MI-S no yes yes yes yes

TE-S no yes yes yes yes
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B.2.2 Cluster analysis

Table B.5 summarizes the total and meaningful cluster quantities for each RV and

distance measure.

Table B.5.
Cluster analysis using dynamic time warping (DTW) as the distance mea-
sure can produce at least one meaningful cluster, with respect to the exper-
imental design, for each RV, while clusters based on Pearson’s correlation
coefficient are meaningless.

DTW Pearson corr.

total

clusters

meaningful

clusters

total

clusters

meaningful

clusters

RE-B 4 2 2 0

MI-B 3 2 12 0

TE-B 2 1 2 0

RE-S 2 1 2 0

MI-S 5 4 2 0

TE-S 4 3 3 0

DTW for RE-B produced four fairly dense clusters (Figure B.3), while Pearson’s

correlation produced two homogeneous clusters (Figure B.4). In the clustered time

series plots for the other RVs, DTW produces dense groups for nearly every clus-

ter (suggesting potentially high quality), and Pearson’s correlation produces clusters

spread rather uniformly across the range (suggesting low quality).

B.2.3 Comparison among response variables

Figure B.6 shows the profiles of all trials for each RV. Two general patterns appear:

one for relative entropy and another for mutual information and transfer entropy.
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Figure B.3. When using dynamic time warping (DTW) as the distance
measure between pairs of time series for RE-B, the consensus method pro-
duces four clusters, each highlighted here on the original time series plot
(Figure 3.1, left). The densely grouped nature of these clusters suggest a
potentially high degree of cluster quality.
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Figure B.4. When using Pearson’s correlation as the distance measure,
the consensus method produces only two clusters. The results are visually
indistinct and may indicate low cluster quality.
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Figure B.5. Clusters produced with Pearson’s correlation are completely
undifferentiated.
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These two patterns also manifest in the main effect violin plots for the corresponding

RVs (Figure B.7).
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normalized response variables for all trials

Figure B.6. RVs for all trials reveal two distinct behaviors: one for relative
entropy (RE) and a second for mutual information (MI) and transfer en-
tropy (TE). Data in each subplot is normalized to its maximum value for
that RV.

Figure B.7. The two characteristic behaviors in the complete time-series
data (Figure B.6) appear in the main effect violin plots, represented here
with RE-B (left, repeated from Figure 3.2) and MI-S (right). RE-B shows
generally wide distributions while MI-S features compact distributions with
long, thin tails.
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B.3 Network structure information

We use three network structure models in our experimental design, as introduced

in Section 3.3.2: Erdős-Rényi random, small-world β, and preferential attachment.

We also use an assortment of parameters for these models, detailed below. In total,

this provides ten levels in the experimental design for the network structure factor.

Each level is represented as one of the following:

• erdos renyi random(N) produces an Erdős-Rényi random graph with density

lnN
N

. This density equation is chosen as it is percolation threshold above which

the probability of the network being connected approaches one.

• small world(N, p, k) uses the β-model of Watts and Strogatz [85], where p is the

probability of rewiring each edge in a ring lattice network that initially has each

node connected to its k nearest neighbors.

• scale free(N, m) produces a graph using the Barabasi-Albert preferential attach-

ment process [84], where nodes are added to the network one at a time using m

edges.

The ten network structure levels in the experimental design are:

a. erdos renyi random(N),

b. small world(N, 0.0, 3),

c. small world(N, 0.0, 10),

d. small world(N, 0.33, 3),

e. small world(N, 0.33, 10),

f. small world(N, 0.66, 3),

g. small world(N, 0.66, 10),

h. scale free(N, 1),

i. scale free(N, 3), and

j. scale free(N, 5).
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(a)
erdos renyi random(100)

(b)
small world(100, 0.0, 3)

(c)
small world(100, 0.0, 10)

(d)
small world(100, 0.33, 3)

(e)
small world(100, 0.33, 10)

(f)
small world(100, 0.66, 3)

(g)
small world(100, 0.66, 10)

(h)
scale free(100, 1)

(i)
scale free(100, 3)

(j)
scale free(100, 5)

Figure B.8. Network structures for the first replication of N = 100 trials.
Based on the visual layout, the structures exhibit three patterns. Structures
d, f, and h are tree-like; structure b and c are ring lattices; and the remaining
structures (a, e, g, i, and j) appear as denser networks. The graphics are
created using the yFiles radial layout in Cytoscape.

N is the population size of the network. In our design, N ∈ {100, 1000, 10,000}.
Figure B.8 shows an instance of each of the the network structures for N = 100.

Based on the shapes of the networks, three structural patterns are apparent: tree-like,

ring lattices, and denser networks. Network density proved to be the most compelling

metric for understanding (some of) the similarities and differences in simulation re-

sponse variable distributions across each network structure (Figure B.11).

Each trial replication uses a different random number seed to create the network

structure, so the structures differ slightly across the replications of a single trial.

However, the seeds are controlled such that for every trial, replications use the same

sequence of seeds. Therefore, the first replication for all trials with a given setting
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(a)
erdos renyi random(1000)

(b)
small world(1000, 0.0, 3)

(c)
small world(1000, 0.0, 10)

(d)
small world(1000, 0.33, 3)

(e)
small world(1000, 0.33, 10)

(f)
small world(1000, 0.66, 3)

(g)
small world(1000, 0.66, 10)

(h)
scale free(1000, 1)

(i)
scale free(1000, 3)

(j)
scale free(1000, 5)

Figure B.9. Network structures for the first replication of N = 1000 trials.
Despite the larger network population, these visual layouts fall into the
same three categories as with N = 100 (Figure B.8) and are a qualitative
match with their counterparts that have the smaller population.

for N and network structure model have the same network structure, and so on for

each replication. Figure B.8 diagrams the network structures for N = 100 using the

random number seed for the first replication; diagrams for structures created using

the seed for the 100th replication (not pictured) show the same three patterns while

differing in exact details.

These three groups are preserved when increasing the population size. Figure B.9

shows the results for N = 1000. Unfortunately, the networks for N = 10,000 exceeded

the rendering software’s capabilities, but we predict the same three patterns to be

present.

Degree distributions (Figure B.10) did not exhibit the expected similarity be-

tween distribution of the same visual pattern, nor did average degree connectivity or
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Out-degree densities for N = 100, replication 1

Figure B.10. Out-degree density distributions of the network structures
in Figure B.8 do not fully align with the three visual patterns (tree-like,
ring lattice, and denser networks), where we would expect more similarity
between structures h and f, as well as between j and g.

shortest paths. However, network density proved to be the most compelling metric

for understanding (some of) the similarities and differences in simulation response

variable distributions across each network structure (Figure B.11).
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Figure B.11. The groupings of network densities more closely align with
the response variable behavior observed in Section C, so density may have
an effect on the entropies measured in this research.
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C. DETAILED RESULTS PER RESPONSE VARIABLE
FOR CHAPTER 3

In this part, each of the six response variables are analyzed independently of one

another with respect to research questions 1 and 2. In C.1, we present detailed anal-

ysis of a single response variable with accompanying rationale for why the analysis

was performed that way and explanation of some of the tests used. C.2-C.6 repeat

that analysis with the remaining response variables but will omit the rationale and

explanation elements for brevity; otherwise, all following sections will proceed iden-

tically. All readers are encouraged to read C.1 to orient themselves to the processes

and figures.

We use a full factorial design for the experiment, so every combination of the

experimental levels is equally represented in the data used for the following analysis.

Table C.1 maps experimental level names to single letters that are used in many of

the figures, in order to conserve space.

C.1 Response variable 1 - relative entropy, binning (RE-B)

Relative entropy, binning (RE-B) assigns agent opinion to one of a set of equal-

width bins and computes the relative entropy (Equation 3.1) of the resulting dis-

tribution p(x) with respect to the uniform distribution q(x), averaging across each

agent and each replication to produce the trial-level response. Figure C.1 shows the

time series of RE-B for each trial and an associated kernel density estimate (KDE)

for the final time step. This shows some groupings within trials—hinting at possible

cluster analysis outcomes—and shows the data set as a whole to not be normally

distributed—limiting the relevance of mean values and analysis tools like ANOVA.
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Table C.1.
In the following plots, experimental levels are mapped to single letters for
spacing reasons.

N structure influence model error activation

a 100 erdos renyi random(N) standard model none synchronous

b 1000 small world(N, 0.0, 3) similarity bias N(0, 0.05) uniform

c 10000 small world(N, 0.0, 10) attractive repulsive N(0, 0.1) random

d small world(N, 0.33, 3) random adoption N(0, 0.2)

e small world(N, 0.33, 10) nonlinear

f small world(N, 0.66, 3)

g small world(N, 0.66, 10)

h scale free(N, 1)

i scale free(N, 3)

j scale free(N, 5)
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Figure C.1. The time series of RE-B values for each trial are plotted on the
same axes to reveal visual clusters at the extremes and center of the range.
A gaussian kernel density estimate for the RE-B values at t = 500 shows
the data to be somewhat tri-modal and also reinforces the visual clustering.

Each trial undergoes an initial transient period before becoming monotonic. For

some trials, RE-B approaches zero (the minimum bound for relative entropy) but

does not reach it within the length of the simulation. The upper extreme appears to

correspond to trials where individual agent opinion converged; we use fifty bins for

RE-B, so the upper limit for relative entropy with respect to the uniform distribution

occurs when its opinion takes on only a single value:

DX(p ‖ q) =
∑
x

p(x) log2

p(x)

q(x)
= 1 log2

1

1/50
≈ 5.644. (C.1)
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Research question 1: Which system design factors contribute most to

aggregated entropy?

For this research question, we explore the one-way sensitivity of each entropy

response variable to changes in the levels of individual experimental design factors.

This exploration includes qualitative comparisons of RV distributions when the trial

data is grouped by experimental levels and statistical tests for differences between

levels. These methods support a subjective evaluation of whether an RV is sensitive

to changes in the level of each design factor. In Table C.2, we summarize the analysis

results for the current response variable for this research question.

Analysis for design of experiments (DoE) typically focuses on changes to mean

responses. However, the non-normal distribution of the data (Figure C.1) shows

multiple modes, so the mean value is not salient. Instead, we look for main effects

using the full distributions of the data when grouped by experimental level. Fig-

ure C.2 presents these distributions for RE-B at the final time step, t = 500, using a

half-violin plot. Differences between distributions among the levels for a single fac-

tor qualitatively show the effect each level has on the response. For example, the

distributions for population size N are almost identical, so we infer that N is not

important (i.e., does not have a significant effect on the response variable), at least

over the range of levels used in the experimental design; the same holds for the agent

activation regime. On the other hand, strong differences between distributions are

visible for the influence model and error distribution, marking these as important to

RE-B. Structure models appear to fall into at least two groups of similar response

distributions, and these groups resemble the higher/lower density networks (identified

in B.3, Figure B.11).

Figure C.2 uses data for only a single time step. To reveal the effect of time on

the response variable, Figures C.3-C.7 plot the medians of the grouped data over the

full length of the simulation. The two inner quartiles (25th to 75th percentiles) are

indicated by the shaded regions around each line. Overall, these figures reinforce the



166

Table C.2.
The findings for research question 1 on RE-B are summarized to support
the overall evaluation of each experimental design factor (final table row).

Factor (number of levels)

N (3) structure (10) influence model (5) error (4) activation (3)

i. (Main effect plot) What differences are present between the response variable

distributions for each level at the final time step?

negligible 2 or 3 patterns 3 or 4 patterns 3 patterns negligible

ii. (Grouped time series) What differences are present between the median response values

over the duration of the simulation?

negligible overall similar shapes;

small divide affected

by density

3 patterns;

nonlinear+standard,

similarity+random paired

3 patterns;

high+medium

variance identical

negligible

iii. (K-W test) Does the Kruskal-Wallace test indicate statistical differences in the response

variable between each level at the final time step? (i.e., is the p-value <0.05?)

no yes yes yes no

iv. (M-W U test) How many pairs of levels are statistically different (p-value <0.05)

according to the Mann-Whitney U test?

0/3 28/45 10/10 5/6 0/3

* (Evaluation) Is the response variable sensitive to changes in the level for the factor?

no yes yes yes no
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Figure C.2. Each half-violin of this design of experiments (DoE) main effect
plot represents the distribution of RE-B at t = 500 for all trials with the
corresponding level on the horizontal axis, and its median is indicated with
a horizontal dash; the grand median is shown for reference. For the network
structure factor, horizontal space separates the three model families (Erdős-
Rényi random, small world, and scale-free). Refer to Table C.1 to identify
all experimental levels, and see text for further discussion.

This plot suggests that N and activation are unimportant to the response variable,

while zero error (level a) leads to significantly different outcomes than the other error

distributions.
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Figure C.3. All trials are grouped by experimental level as in Figure C.2
and the groups’ median response value over time is plotted. Shaded regions
around each line enclose the 25th to 75th percentiles of the data. For
population size N , these regions almost entirely overlap, which reinforces
the low importance of N shown in the DoE main effect plot.

similarities and differences observed in the main effect plot. They also show that the

(median) response values are fairly stable over time, after an initial transient, so any

observations made at t = 500 should be informative about the system over a longer

period of time.

Thus far, we have use qualitative approaches to show the effect of varying indi-

vidual design factors. Now, we turn to statistical measures. ANOVA is the classical

tool for analyzing the results of a designed experiment, but it assumes the data to

be normally distributed, which is not the case here (Figure C.1). Further, Levene’s

test shows that three of the five design factors violate ANOVA’s assumption of ho-

mogeneity of variance. While ANOVA is robust to violations of these assumptions,

we instead adopt a non-parametric approach to measuring differences between exper-

imental levels.
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Figure C.4. Following Figure C.3 in design, this plot shows some differentia-
tion between network models but many are very similar. The line labels are
allowed to overlap to reinforce the small differences between experimental
levels. The scale free (N, 1) model does stand out above the rest.
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Figure C.5. Some grouping is apparent based on the level of the influence
model. One explanation is that nonlinear and the standard model both use
weighted averages of neighbor opinion, while similarity bias and random
adoption interact with (at most) one neighbor at a time.
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Figure C.6. With the influence error distribution, we observe clear sepa-
rations in the response variable, again reinforcing the findings from Fig-
ure C.2.
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Figure C.7. As with population size N , the agent activation regime appears
to be unimportant to RE-B, although some differences are present in the
early time steps.
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Table C.3.
The Kruskal-Wallace test is ran on trial-level RE-B values at t = 500 to
test if changing the level for a factor has a statistical effect on the response
value. The asterisks indicate that population size N and activation regime
show no significant impact on RE-B.

factor K-W test stat p-value

N 2.05 * 3.57e-01

structure 29.37 5.60e-04

influence model 622.07 2.58e-133

error 892.12 4.51e-193

activation 0.13 * 9.33e-01

The Kruskal-Wallace test lets us statistically determine if varying the level of each

factor has a significant effect on the response variable. Based on the p-values from

the Kruskal-Wallace test (Table C.3) on RE-B at t = 500, when the data is split into

levels for both population size N and activation regime, the data appears to come

from the same population. Practically, this suggests that varying these factors—

over the levels specified in our experiment—does not have a significant effect on the

response variable. This agrees with what we observe in the previous figures.

Although the Kruskal-Wallace test indicates that differences exist among levels

for the structure, influence model, and error factors, it does not identify where those

differences are. For that, we use the Mann-Whitney U test on each pair of levels for

a factor. A significant (< 0.05) p-value indicates a statistical difference between the

tested pair of experimental levels. Figure C.8 aggregates the results. (We include N

and activation regime in the results to show consistency between the Mann-Whitney

U test results and Kruskal-Wallace.)

Some interesting observations can be made about what pairwise results are/are

not significant. For example, in the network structure models, structures with higher
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on relative entropy, binning (RE-B)

Figure C.8. We use the Mann-Whitney U test for post-hoc comparison test-
ing to determine which levels are statistically different within each factor.
The numbers in cells for the pairs with a significant test statistic (< 0.05)
express the p-value as a percentage (e.g. 3* means 0.03 ≤ p-value < 0.04).
The non-significant results for N and activation are consistent with the pre-
vious findings. The results for influence model are somewhat unexpected
since similar pairs of models appear in Figures C.2 and C.5. See text for
further discussion.

density test as similar to nearly all other higher density structures, while structures

with lower density test as different from most other low density structures (see Fig-

ure B.11 for density values). Also, this test finds a significant difference between

the standard model (level a) and nonlinear (level e) influence models, which is not

apparent from the DoE main effect or grouped time series plots.
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Overall, for the RE-B response variable, varying population size N and the agent

activation regime has no significant effect; influence model error terms set to zero

leads to higher relative entropy than normally distributed, zero mean error, and that

effect varies slightly with the variance of the distribution; differences in the response

due to changing the network structure model are slight, though tree-like structures

have a higher minimum response than dense graphs; and influence models that cause

agents to interact with one neighbor at a time lead to lower response values than

those that interact with all neighbors at once.

Research question 2: How is system design related to the response space

of entropy time-series values?

Cluster analysis has three elements: clustering algorithm, distance (or dissimi-

larity) measure, and evaluation criteria of the results [87]. Few guidelines exist for

designing a cluster analysis a priori, so we used an assortment of options to search for

meaningful clusters in our entropy time-series data. For the distance (or dissimilarity)

measure, we used dynamic time warping (DTW) and Pearson’s correlation coefficient

between each pair of trial-level time series for the response variable. Then, we used

fourteen clustering methods provided by the R library NbClust.1 Each clustering

method suggested an optimal number of clusters (which we bounded between two

and twelve, inclusive), then the number of clusters with the most “votes” was passed

to an agglomerative hierarchical clustering method to assign each trial to a cluster.

This process was applied to both distance measures.

Cluster assignments are summarized in the following figures. DTW for RE-B

produced four clusters (Figure C.9), while Pearson’s correlation produced two clusters

(Figure C.10). With respect to the time series plots, DTW led to rather differentiated

clusters, while Pearson’s correlation produced highly homogeneous clusters.

1NbClust provides more than fourteen methods, but ten produced errors due to the dimensions of
the data, and several were omitted due to their overwhelming computation time.
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Figure C.9. Using dynamic time warping (DTW) as the distance measure
between pairs of response variable time series, the consensus method pro-
duces four clusters, each highlighted here using the original time series plot
(Figure C.1). The densely grouped nature of these clusters suggest a high
level of cluster quality.
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Figure C.10. Using Pearson’s correlation as the distance measure, the con-
sensus method produces only two clusters. The results are less visually
satisfying than DTW (Figure C.9) and may indicate less meaningful clus-
ters.
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Figure C.11. For each cluster produced through DTW, the trials assigned to
the cluster are grouped by experimental level in order to find the percentage
of a cluster associated with each experimental level. Within a cluster (row),
the percentages for a single factor sum to one; within a experimental level
(column), there are no such constraints. For example, all trials assigned to
cluster 1 use error level a (no error), and trials assigned to cluster 4 use
either influence model b or d.

However, clusters differentiated in the response variable space are not necessarily

meaningful. In Figures C.11 and C.12, we conduct a “census” of the trials assigned

to each cluster, with respect to the experimental design factors. For DTW, cluster 1

contains exclusively trials with no influence error term (error level a), though other

clusters do contain a small number of such trials, as well. Cluster 4 is strong in

the similarity bias and random adoption influence models (levels b and d), perhaps

because those models have agents interact with a single neighbor at a time, while the

other models have agents interact with all neighbors at once. Interestingly, cluster 4 is

also very weak in lower-density network structures (levels b, d, f, and h). The levels

for population size N and activation regime are uniformly distributed within each

cluster, further reinforcing the earlier evidence that those factors are not important

to RE-B.

In summary, the variation in system design studied here can produce meaning-

ful clusters, with respect to the experimental design factors, in the response space
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Figure C.12. Clusters produced through Pearson’s correlation are com-
pletely undifferentiated.
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Figure C.13. The time series of MI-B values for each trial are plotted on
the same axes to reveal a visual cluster at the bottom of the range.

for RE-B. This effect is achieved when using dynamic time warping as the distance

measure, but not when using Pearson’s correlation coefficient.

C.2 Response variable 2 - mutual information, binning (MI-B)

Mutual information, binning (MI-B) assigns agent opinion to one of a set of equal-

width bins and computes the mutual information (Equation 3.2) between each agent-

neighbor pair, averages across the neighbors for each agent, and then averages across

each agent and each replication to produce the trial-level response. Figure C.13 shows

the time series of MI-B for each trial and an associated kernel density estimate (KDE)

for the final time step. This shows a grouping near zero mutual information, and that

most—but not all—trials decrease over time.
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Research question 1: Which system design factors contribute most to

aggregated entropy?

For this research question, we explore the one-way sensitivity of each entropy

response variable to changes in the levels of individual experimental design factors.

This exploration includes qualitative comparisons of RV distributions when the trial

data is grouped by experimental levels and statistical tests for differences between

levels. These methods support a subjective evaluation of whether an RV is sensitive

to changes in the level of each design factor. In Table C.4, we summarize the analysis

results for the current response variable for this research question.

Figure C.14 presents the distributions grouped by experimental level for MI-B at

the final time step, t = 500, using a half-violin plot. Differences between distributions

among the levels for a single factor qualitatively show the effect each level has on the

response. For example, the distributions for population size N are almost identical,

so we infer that N is not important (i.e., does not have a significant effect on the

response variable), at least over the range of levels used in the experimental design. On

the other hand, strong differences between distributions are visible for the influence

model, marking it as important to MI-B.

Figure C.14 uses data for only a single time step. To reveal the effect of time on

the response variable, Figures C.15-C.19 plot the medians of the grouped data over

the full length of the simulation. The two inner quartiles (25th to 75th percentiles)

are indicated by the shaded regions around each line. Overall, these figures reinforce

the similarities and differences observed in the main effect plot.

Thus far, we have use qualitative approaches to show the effect of varying individ-

ual design factors. We now adopt a non-parametric approach to measuring differences

between experimental levels, using the Kruskal-Wallace test and Mann-Whitney U

test.

Based on the p-values from the Kruskal-Wallace test (Table C.5) on MI-B at

t = 500, when the data is split into levels for population size N , the data appears to
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Table C.4.
The findings for research question 1 on MI-B are summarized to support
the overall evaluation of each experimental design factor (final table row).

Factor (number of levels)

N (3) structure (10) influence model (5) error (4) activation (3)

i. (Main effect plot) What differences are present between the response variable

distributions for each level at the final time step?

negligible 3 or 4 patterns 5 patterns 2 patterns;

error vs no error

synchronous different

than others

ii. (Grouped time series) What differences are present between the median response values

over the duration of the simulation?

negligible initial grouping by density,

then partial convergence

4 patterns;

nonlinear+standard similar

most initially distinct,

then partial convergence

minor early variation,

then partial convergence

iii. (K-W test) Does the Kruskal-Wallace test indicate statistical differences in the response

variable between each level at the final time step? (i.e., is the p-value <0.05?)

no yes yes yes yes

iv. (M-W U test) How many pairs of levels are statistically different (p-value <0.05)

according to the Mann-Whitney U test?

0/3 24/45 10/10 3/6 3/3

* (Evaluation) Is the response variable sensitive to changes in the level for the factor?

no yes yes yes yes
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Figure C.14. Each half-violin of this design of experiments (DoE) main
effect plot represents the distribution of MI-B at t = 500 for all trials with
the corresponding level on the horizontal axis, and its median is indicated
with a horizontal dash; the grand median is shown for reference. This plot
suggests that N is unimportant to the response variable, while influence
model leads to highly varied outcomes.
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Figure C.15. All trials are grouped by experimental level as in Figure C.14
and the groups’ median response value over time is plotted. Shaded regions
around each line enclose the 25th to 75th percentiles of the data. For
population size N , these regions almost entirely overlap due to the closeness
of the median lines, which reinforces the low importance of N shown in the
DoE main effect plot.
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Figure C.16. Following Figure C.15 in design, this plot shows some differen-
tiation between network models but many are very similar. An interesting
split into two groups occurs during the initial transient between lower den-
sity (lower group) and higher density (upper group) networks.
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Figure C.17. The standard model and nonlinear model are closely aligned
in this plot, but all other levels are well-differentiated from each other. One
explanation is that nonlinear and the standard model both use weighted
averages of neighbor opinion, while the other models do not.
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Figure C.18. With the influence error distribution, we observe initial differ-
ences in the response variable, but the median lines converge after t = 300.

0 100 200 300 400 500

time step t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

synchronous
uniform
random

median mutual information, binning (MI-B), all trials, grouped by activation

Figure C.19. The median lines for the three activation regimes are nearly
identical, but their variability differs, as also indicated in the main effect
plot.
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Table C.5.
The Kruskal-Wallace test is ran on trial-level MI-B values at t = 500 to
test if changing the level for a factor has a statistical effect on the response
value. The asterisk indicates that population size N has no significant
impact on MI-B.

test stat p-value

N 1.12 * 5.69e-01

structure 28.80 6.99e-04

influence model 1317.66 4.93e-284

error 47.96 2.16e-10

activation 41.50 9.70e-10

come from the same population. Practically, this suggests that varying this factor—

over the levels specified in our experiment—does not have a significant effect on the

response variable. This agrees with what we observe in the previous figures.

Figure C.20 aggregates the results of the Mann-Whitney U test applied to each

pair of levels within a factor. Some interesting observations can be made about what

pairwise results are/are not significant. In the network structure models, only some

of the similar pairs of levels (i.e., those with grey cells in the figure) have similar

densities.

Overall, for the MI-B response variable, varying population size N and agent

activation regime has no significant effect; differences in network structure models

and error terms have greater effects early in a run but very minor effects in the long

term; and each influence model has a distinct signature.
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Figure C.20. We use the Mann-Whitney U test to determine which levels
are statistically different within each factor. The numbers in cells for the
pairs with a significant test statistic (< 0.05) express the p-value as a
percentage (e.g. 3* means 0.03 ≤ p-value < 0.04). The non-significant
results for N are consistent with the previous findings.
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Figure C.21. Using dynamic time warping (DTW) as the distance mea-
sure between pairs of response variable time series, the consensus method
produces three clusters, each highlighted here using the original time series
plot (Figure C.13). The densely grouped nature of these clusters suggest a
reasonable level of cluster quality.

Research question 2: How is system design related to the response space

of entropy time-series values?

Using the cluster analysis process described in C.1, trials are assigned to clusters

for both DTW and Pearson’s correlation. These assignments are summarized in

the following figures. DTW for MI-B produced three clusters (Figure C.21), while

Pearson’s correlation produced twelve clusters (Figure C.22), the maximum number

of clusters considered by our analysis process. (Conventional guidance says that if

multiple clustering methods call for the minimum/maximum number of clusters, then

the selected methods or distance metric may be unsuitable for clustering the data.)

With respect to the time series plots, DTW led to rather differentiated clusters, while

Pearson’s correlation produced highly homogeneous clusters.
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Figure C.22. Using Pearson’s correlation as the distance measure, the con-
sensus method produces twelve clusters. The results show no clear pattern
and may indicate less meaningful clusters.
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Figure C.23. For each cluster produced through DTW, the trials assigned to
the cluster are grouped by experimental level in order to find the percentage
of a cluster associated with each experimental level. For example, all trials
assigned to cluster 2 use influence model d (random adoption) and include
more of the higher density network structures.

In Figures C.23 and C.24, we conduct a “census” of the trials assigned to each

cluster, with respect to the experimental design factors. For DTW, cluster 1 contains

exclusively trials with the random adoption influence model (level d) and is low in

trials with tree-like network structures For Pearson’s correlation, cluster membership

is homogeneous and indistinct.

In summary, the variation in system design studied here can produce meaning-

ful clusters, with respect to the experimental design factors, in the response space

for MI-B. This effect is achieved when using dynamic time warping as the distance

measure, but not when using Pearson’s correlation coefficient.

C.3 Response variable 3 - transfer entropy, binning (TE-B)

Transfer entropy, binning (TE-B) assigns agent opinion to one of a set of equal-

width bins and computes the transfer entropy (Equation 3.3) between each agent-

neighbor pair, averages across the neighbors for each agent, and then averages across

each agent and each replication to produce the trial-level response. Figure C.25 shows

the time series of TE-B for each trial and an associated kernel density estimate (KDE)
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Figure C.24. Clusters produced through Pearson’s correlation are mostly
undifferentiated, suggesting this distance measure is unsuitable for the re-
sponse variable.
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Figure C.25. The time series of TE-B values for each trial are plotted on
the same axes to reveal a visual cluster at the bottom of the range.

for the final time step.2 This shows a grouping near zero transfer entropy, and that

most—but not all—trials decrease over time.

Research question 1: Which system design factors contribute most to

aggregated entropy?

For this research question, we explore the one-way sensitivity of each entropy

response variable to changes in the levels of individual experimental design factors.

This exploration includes qualitative comparisons of RV distributions when the trial

data is grouped by experimental levels and statistical tests for differences between

levels. These methods support a subjective evaluation of whether an RV is sensitive

2Because transfer entropy as calculated here uses two time steps per calculation, the final time step
of the simulation has no response value. We trim the data to t = 490 for ease of reading but observe
no unusual behavior after 490.
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to changes in the level of each design factor. In Table C.6, we summarize the analysis

results for the current response variable for this research question.

Table C.6.
The findings for research question 1 on TE-B are summarized to support
the overall evaluation of each experimental design factor (final table row).

Factor (number of levels)

N (3) structure (10) influence model (5) error (4) activation (3)

i. (Main effect plot) What differences are present between the response variable

distributions for each level at the final time step?

negligible 2 or 3 patterns 5 patterns 2 patterns;

error vs no error

3 patterns

ii. (Grouped time series) What differences are present between the median response values

over the duration of the simulation?

negligible initial grouping by density,

then partial convergence

3 patterns; random

adoption is outlier

3 patterns;

high+medium

variance identical

minor early variation,

then partial convergence

iii. (K-W test) Does the Kruskal-Wallace test indicate statistical differences in the response

variable between each level at the final time step? (i.e., is the p-value <0.05?)

no no yes yes yes

iv. (M-W U test) How many pairs of levels are statistically different (p-value <0.05)

according to the Mann-Whitney U test?

0/3 3/45 10/10 5/6 2/3

* (Evaluation) Is the response variable sensitive to changes in the level for the factor?

no yes yes yes yes

Figure C.26 presents the distributions grouped by experimental level for TE-B at

the final time step, t = 490, using a half-violin plot. Differences between distributions

among the levels for a single factor qualitatively show the effect each level has on the

response. For example, the distributions for population size N are almost identical,
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Figure C.26. Each half-violin of this design of experiments (DoE) main
effect plot represents the distribution of TE-B at t = 500 for all trials with
the corresponding level on the horizontal axis, and its median is indicated
with a horizontal dash; the grand median is shown for reference. This plot
suggests that N is unimportant to the response variable, while influence
model leads to highly varied outcomes.

so we infer that N is not important (i.e., does not have a significant effect on the

response variable), at least over the range of levels used in the experimental design. On

the other hand, strong differences between distributions are visible for the influence

model, marking it as important to TE-B.

Figure C.26 uses data for only a single time step. To reveal the effect of time on

the response variable, Figures C.27-C.31 plot the medians of the grouped data over

the full length of the simulation. The two inner quartiles (25th to 75th percentiles)

are indicated by the shaded regions around each line. Overall, these figures reinforce

the similarities and differences observed in the main effect plot.
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Figure C.27. All trials are grouped by experimental level as in Figure C.26
and the groups’ median response value over time is plotted. Shaded regions
around each line enclose the 25th to 75th percentiles of the data. For
population size N , these regions almost entirely overlap due to the closeness
of the median lines, which reinforces the low importance of N shown in the
DoE main effect plot.
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Figure C.28. Following Figure C.27 in design, this plot shows some differen-
tiation between network models but many are very similar. A distinct split
into two groups occurs during the initial transient between lower density
(lower group) and higher density (upper group) network structures.
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Figure C.29. The standard model, attractive-repulsive model, and nonlin-
ear model are closely aligned in this plot; similarity bias has a different
characteristic shape, and random adoption is an extreme outlier.
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Figure C.30. With the influence error distribution, we observe clear differ-
ences in the response variable, but the differences are very small relative to
the total range of transfer entropy observed in the trials.
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Figure C.31. The median lines for the three activation regimes are very
similar, but their variability differs, as also indicated in the main effect
plot.
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Table C.7.
The Kruskal-Wallace test is ran on trial-level TE-B values at t = 490 to
test if changing the level for a factor has a statistical effect on the response
value. The asterisk indicates that population size N has no significant
impact on TE-B.

test stat p-value

N 0.04 * 9.76e-01

structure 7.11 * 6.24e-01

influence model 1284.07 9.41e-277

error 267.21 1.23e-57

activation 12.38 2.04e-03

Thus far, we have use qualitative approaches to show the effect of varying individ-

ual design factors. We now adopt a non-parametric approach to measuring differences

between experimental levels, using the Kruskal-Wallace test and Mann-Whitney U

test.

Based on the p-values from the Kruskal-Wallace test (Table C.7) on TE-B at

t = 490, when the data is split into levels for population size N and network structure

model, the data appears to come from the same population. Practically, this suggests

that varying these factors—over the levels specified in our experiment—does not have

a significant effect on the response variable. This agrees with what we observe in the

previous figures.

Figure C.32 aggregates the results of the Mann-Whitney U test applied to each

pair of levels within a factor.

Overall, for the TE-B response variable, varying population size N and agent

activation regime have no real effect; the different densities of the network structure

models have an effect on the response; and influence models and error distributions

have distinct signatures.
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Figure C.32. We use the Mann-Whitney U test to determine which levels
are statistically different within each factor. The numbers in cells for the
pairs with a significant test statistic (< 0.05) express the p-value as a
percentage (e.g. 3* means 0.03 ≤ p-value < 0.04). The non-significant
results for N are consistent with the previous findings. The low number of
differences in the network structure models is unexpected, since the main
effect plot showed marked differences in distribution tail length among some
levels.
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Figure C.33. Using dynamic time warping (DTW) as the distance mea-
sure between pairs of response variable time series, the consensus method
produces two clusters, each highlighted here using the original time series
plot (Figure C.25). The densely grouped nature of these clusters suggest a
reasonable level of cluster quality.

Research question 2: How is system design related to the response space

of entropy time-series values?

Using the cluster analysis process described in C.1, trials are assigned to clusters

for both DTW and Pearson’s correlation. These assignments are summarized in the

following figures. Both DTW and Pearson’s correlation produced two clusters for

TE-B (Figures C.34 and Figure C.33). (Conventional guidance says that if multiple

clustering methods call for the minimum/maximum number of clusters, then the

selected methods or distance metric may be unsuitable for clustering the data.) With

respect to the time series plots, DTW led to rather differentiated clusters, while

Pearson’s correlation did not.

In Figures C.35 and C.36, we conduct a “census” of the trials assigned to each

cluster, with respect to the experimental design factors. For DTW, one cluster con-

tains exclusively trials with influence model d (random adoption), but is also low in

trials with tree-like network structures. For Pearson’s correlation, cluster membership

is almost entirely homogeneous.

In summary, the variation in system design studied here does produce a somewhat

meaningful cluster, with respect to the experimental design factors, in the response
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Figure C.34. Using Pearson’s correlation as the distance measure, the con-
sensus method produces two clusters. The results show no clear pattern and
may indicate less meaningful clusters. Difference in perceived brightness is
due to the z-ordering of the lines and different cluster sizes.
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Figure C.35. For each cluster produced through DTW, the trials assigned to
the cluster are grouped by experimental level in order to find the percentage
of a cluster associated with each experimental level. For example, all trials
assigned to cluster 2 use influence model d (random adoption) and fewer
trials with lower density networks (b, d, f, and h).



203

a b c a b c d e f g h i j a b c d e a b c d a b c

1

2

N structure influence
model

error activation

membership of cluster per factor by fraction of trials,
Pearson distance on transfer entropy, binning (TE-B)

0% 50% 100%

Figure C.36. Clusters produced through Pearson’s correlation are com-
pletely undifferentiated, suggesting this distance measure is unsuitable for
the response variable.
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space for TE-B. This effect is achieved when using dynamic time warping as the

distance measure, but not when using Pearson’s correlation coefficient. However,

in both cases, only two clusters were created, which limits the usefulness of cluster

analysis for this response variable.

C.4 Response variable 4 - relative entropy, symbolic approach (RE-S)

Relative entropy, symbolic approach (RE-S) transforms each agent’s sequence of

opinion values into a pattern of relative orderings (e.g., Figure B.1) and computes

the relative entropy (Equation 3.3) of the resulting distribution p(x) with respect

to the uniform distribution q(x), averaging across each agent and each replication

to produce the trial-level response. Figure C.37 shows the time series of RE-S for

each trial and an associated kernel density estimate (KDE) for the final time step.3

The upper extreme appears to correspond to trials where individual agent opinion

converged; we use six symbols (patterns) for RE-B, so the upper limit for relative

entropy with respect to the uniform distribution occurs when its opinion takes on

only a single value:

DX(p ‖ q) =
∑
x

p(x) log2

p(x)

q(x)
= 1 log2

1

1/6
≈ 2.585. (C.2)

Research question 1: Which system design factors contribute most to

aggregated entropy?

For this research question, we explore the one-way sensitivity of each entropy

response variable to changes in the levels of individual experimental design factors.

This exploration includes qualitative comparisons of RV distributions when the trial

data is grouped by experimental levels and statistical tests for differences between

levels. These methods support a subjective evaluation of whether an RV is sensitive

3Because the symbolic method uses multiple time steps per calculation, the final time steps of the
simulation have no response value. We trim the data to t = 490 for ease of reading.
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Figure C.37. The time series of RE-S values for each trial are plotted on
the same axes to reveal several visual clusters near the bottom of the range
and a small grouping near the maximum value.
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to changes in the level of each design factor. In Table C.8, we summarize the analysis

results for the current response variable for this research question.

Table C.8.
The findings for research question 1 on RE-S are summarized to support
the overall evaluation of each experimental design factor (final table row).

Factor (number of levels)

N (3) structure (10) influence model (5) error (4) activation (3)

i. (Main effect plot) What differences are present between the response variable

distributions for each level at the final time step?

negligible 2 patterns 2 or 3 patterns;

attractive-repulsive

significantly different

2 patterns;

error vs no error

random adoption

different than others

ii. (Grouped time series) What differences are present between the median response values

over the duration of the simulation?

negligible overall similar shapes;

small divide affected

by density

2 patterns;

attractive-repulsive

distinct

no error significantly

different from rest

2 patterns

iii. (K-W test) Does the Kruskal-Wallace test indicate statistical differences in the response

variable between each level at the final time step? (i.e., is the p-value <0.05?)

no yes yes yes yes

iv. (M-W U test) How many pairs of levels are statistically different (p-value <0.05)

according to the Mann-Whitney U test?

0/3 37/45 7/10 3/6 2/3

* (Evaluation) Is the response variable sensitive to changes in the level for the factor?

no yes yes yes no

Figure C.38 presents the distributions grouped by experimental level for RE-S at

the final time step, t = 490, using a half-violin plot. Differences between distributions
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Figure C.38. Each half-violin of this design of experiments (DoE) main
effect plot represents the distribution of RE-S at t = 490 for all trials with
the corresponding level on the horizontal axis, and its median is indicated
with a horizontal dash; the grand median is shown for reference. This plot
suggests that N is unimportant to the response variable, while the other
factors lead to varied outcomes, to greater or lesser extents.

among the levels for a single factor qualitatively show the effect each level has on the

response. For example, the distributions for population size N are almost identical, so

we infer that N is not important (i.e., does not have a significant effect on the response

variable), at least over the range of levels used in the experimental design. On the

other hand, strong differences between distributions are visible for the influence model

and error term, marking them as important to RE-S. The results for the network

structure shows four levels above the grand median line, which happen to be the four

network structures with lower density (Figure B.11).

Figure C.38 uses data for only a single time step. To reveal the effect of time on

the response variable, Figures C.39-C.43 plot the medians of the grouped data over
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Figure C.39. All trials are grouped by experimental level as in Figure C.38
and the groups’ median response value over time is plotted. Shaded regions
around each line enclose the 25th to 75th percentiles of the data. For
population size N , these regions almost entirely overlap due to the closeness
of the median lines, which reinforces the low importance of N shown in the
DoE main effect plot.

the full length of the simulation. The two inner quartiles (25th to 75th percentiles)

are indicated by the shaded regions around each line. Overall, these figures reinforce

the similarities and differences observed in the main effect plot.

Thus far, we have use qualitative approaches to show the effect of varying individ-

ual design factors. We now adopt a non-parametric approach to measuring differences

between experimental levels, using the Kruskal-Wallace test and Mann-Whitney U

test.

Based on the p-values from the Kruskal-Wallace test (Table C.9) on RE-S at

t = 490, when the data is split into levels for population size N , the data appears to

come from the same population. Practically, this suggests that varying this factor—

over the levels specified in our experiment—does not have a significant effect on the

response variable. This agrees with what we observe in the previous figures.
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Figure C.40. Following Figure C.39 in design, this plot shows some differ-
ences in magnitude between network models but all have the same char-
acteristic shape. Lower density structures have higher median values for
RE-S.

Table C.9.
The Kruskal-Wallace test is ran on trial-level RE-S values at t = 490 to test
if changing the level for a factor has a statistical effect on the response value.
The asterisk indicates that population size N has no significant impact on
RE-S.

test stat p-value

N 1.14 * 5.65e-01

structure 234.41 1.92e-45

influence model 231.76 5.51e-49

error 859.47 5.46e-186

activation 159.54 2.26e-35
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Figure C.41. The attractive-repulsive model is clearly differentiated from
the other influence models in both magnitude and shape of the median
response line.
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Figure C.42. With the influence error distribution, we observe clear dif-
ferences between no error term and the normally distributed error terms,
while the median lines for the three normally distributed terms are indis-
tinguishable.
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Figure C.43. The median lines for the three activation regimes are very
similar in shape, but the random regime converges to a slightly higher
entropy value than the others.
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Figure C.44. We use the Mann-Whitney U test to determine which levels
are statistically different within each factor. The numbers in cells for the
pairs with a significant test statistic (< 0.05) express the p-value as a
percentage (e.g. 3* means 0.03 ≤ p-value < 0.04). The non-significant
results for N are consistent with the previous findings.

Figure C.44 aggregates the results of the Mann-Whitney U test applied to each

pair of levels within a factor. Level pairs for network structure that are similar (grey

cells) are almost all for pairs of higher density graphs.

Overall, for the RE-S response variable, varying population size N has no sig-

nificant effect; lower density and higher density network structure models lead to

different outcomes; trials with no error term have much higher RE-S than any trial



214

0 100 200 300 400 500

time step t

1

2

cluster 1 emphasized

0 100 200 300 400 500

time step t

1

2

cluster 2 emphasized

relative entropy, symbolic approach (RE-S), all trials, DTW clusters

Figure C.45. Using dynamic time warping (DTW) as the distance mea-
sure between pairs of response variable time series, the consensus method
produces two clusters, each highlighted here using the original time series
plot (Figure C.37). The densely grouped nature of these clusters suggest a
reasonable level of cluster quality.

with an error term; the random activation regime yields somewhat higher RE-S; and

results for each influence model, except attractive-repulsive, are quite similar.

Research question 2: How is system design related to the response space

of entropy time-series values?

Using the cluster analysis process described in C.1, trials are assigned to clusters

for both DTW and Pearson’s correlation. These assignments are summarized in the

following figures. Both DTW and Pearson’s correlation produced two clusters for

RE-S (Figures C.46 and Figure C.45). (Conventional guidance says that if multiple

clustering methods call for the minimum/maximum number of clusters, then the

selected methods or distance metric may be unsuitable for clustering the data.) With

respect to the time series plots, DTW led to rather differentiated clusters, while

Pearson’s correlation did not.

In Figures C.47 and C.48, we conduct a “census” of the trials assigned to each

cluster, with respect to the experimental design factors. For DTW, one cluster con-

tains exclusively trials with error term a (no error). For Pearson’s correlation, cluster

membership is almost entirely homogeneous.
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Figure C.46. Using Pearson’s correlation as the distance measure, the con-
sensus method produces two clusters. The results show no clear pattern
and may indicate less meaningful clusters.
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Figure C.47. For each cluster produced through DTW, the trials assigned to
the cluster are grouped by experimental level in order to find the percentage
of a cluster associated with each experimental level. For example, all trials
assigned to cluster 2 use error term a (no error) and have a slight preference
for lower density networks (b, d, f, and h).
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Figure C.48. Clusters produced through Pearson’s correlation are com-
pletely undifferentiated, suggesting this distance measure is unsuitable for
the response variable.
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In summary, the variation in system design studied here does produce a somewhat

meaningful cluster, with respect to the experimental design factors, in the response

space for RE-S. This effect is achieved when using dynamic time warping as the

distance measure, but not when using Pearson’s correlation coefficient. However,

in both cases, only two clusters were created, which limits the usefulness of cluster

analysis for this response variable.

C.5 Response variable 5 - mutual information, symbolic approach (MI-S)

Mutual information, symbolic approach (MI-S) transforms each agent’s sequence

of opinion values into a pattern of relative orderings (e.g., Figure B.1) and computes

the mutual information (Equation 3.2) between each agent-neighbor pair, averages

across the neighbors for each agent, and then averages across each agent and each

replication to produce the trial-level response. Figure C.49 shows the time series of

MI-S for each trial and an associated kernel density estimate (KDE) for the final time

step.4

Research question 1: Which system design factors contribute most to

aggregated entropy?

For this research question, we explore the one-way sensitivity of each entropy

response variable to changes in the levels of individual experimental design factors.

This exploration includes qualitative comparisons of RV distributions when the trial

data is grouped by experimental levels and statistical tests for differences between

levels. These methods support a subjective evaluation of whether an RV is sensitive

to changes in the level of each design factor. In Table C.10, we summarize the analysis

results for the current response variable for this research question.

4Because the symbolic method uses multiple time steps per calculation, the final time steps of the
simulation have no response value. We trim the data to t = 490 for ease of reading.
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Figure C.49. The time series of MI-S values for each trial are plotted on
the same axes to reveal a dense visual cluster near the bottom of the range.
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Table C.10.
The findings for research question 1 on MI-S are summarized to support
the overall evaluation of each experimental design factor (final table row).

Factor (number of levels)

N (3) structure (10) influence model (5) error (4) activation (3)

i. (Main effect plot) What differences are present between the response variable

distributions for each level at the final time step?

N = 10k has

much longer tail

2 or 3 patterns 5 patterns 2 patterns;

error vs no error

3 patterns

ii. (Grouped time series) What differences are present between the median response values

over the duration of the simulation?

negligible initial grouping by density,

then partial convergence

initial separation,

then partial convergence

no error somewhat

different from rest

minor early variation,

then partial convergence

iii. (K-W test) Does the Kruskal-Wallace test indicate statistical differences in the response

variable between each level at the final time step? (i.e., is the p-value <0.05?)

no yes yes yes yes

iv. (M-W U test) How many pairs of levels are statistically different (p-value <0.05)

according to the Mann-Whitney U test?

0/3 12/45 9/10 5/6 3/3

* (Evaluation) Is the response variable sensitive to changes in the level for the factor?

no yes yes yes yes
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Figure C.50. Each half-violin of this design of experiments (DoE) main
effect plot represents the distribution of MI-S at t = 490 for all trials with
the corresponding level on the horizontal axis, and its median is indicated
with a horizontal dash; the grand median is shown for reference. This
plot suggests that N is fairly unimportant to the response variable, while
changes in influence model lead to more varied outcomes.

Figure C.50 presents the distributions grouped by experimental level for MI-S at

the final time step, t = 490, using a half-violin plot. Differences between distributions

among the levels for a single factor qualitatively show the effect each level has on the

response. For example, the distributions for population size N are almost identical

(except in the length of the upper tails), so we infer that N is not very important

(i.e., does not have a significant effect on the response variable), at least over the

range of levels used in the experimental design. On the other hand, strong differences

between distributions are visible for the influence model, marking it as important to

MI-S.
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Figure C.51. All trials are grouped by experimental level as in Figure C.50
and the groups’ median response value over time is plotted. Shaded regions
around each line enclose the 25th to 75th percentiles of the data. For
population size N , these regions almost entirely overlap due to the closeness
of the median lines, which reinforces the low importance of N shown in the
DoE main effect plot.

Figure C.50 uses data for only a single time step. To reveal the effect of time on

the response variable, Figures C.51-C.55 plot the medians of the grouped data over

the full length of the simulation. The two inner quartiles (25th to 75th percentiles)

are indicated by the shaded regions around each line. Overall, these figures reinforce

the similarities and differences observed in the main effect plot.

Thus far, we have use qualitative approaches to show the effect of varying individ-

ual design factors. We now adopt a non-parametric approach to measuring differences

between experimental levels, using the Kruskal-Wallace test and Mann-Whitney U

test.

Based on the p-values from the Kruskal-Wallace test (Table C.11) on MI-S at

t = 490, when the data is split into levels for population size N , the data appears to

come from the same population. Practically, this suggests that varying this factor—
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Figure C.52. Following Figure C.51 in design, an interesting split into
two groups occurs during the initial transient between lower density (lower
group) and upper density (upper group) networks, but all converge by the
end.
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Figure C.53. The various influence models show some initial differences,
but all nearly converge by the end of the run.
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Figure C.54. With the influence error distribution, we observe clear dif-
ferences between no error term and the normally distributed error terms,
while the median lines for the three normally distributed terms are indis-
tinguishable.
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Figure C.55. The median lines for the three activation regimes experience
initial differences but rapidly converge.
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Table C.11.
The Kruskal-Wallace test is ran on trial-level MI-S values at t = 490 to test
if changing the level for a factor has a statistical effect on the response value.
The asterisk indicates that population size N has no significant impact on
MI-S.

test stat p-value

N 0.39 * 8.20e-01

structure 21.18 1.18e-02

influence model 720.43 1.30e-154

error 154.74 2.49e-33

activation 112.10 4.52e-25

over the levels specified in our experiment—does not have a significant effect on the

response variable. This agrees with what we observe in the previous figures.

Figure C.56 aggregates the results of the Mann-Whitney U test applied to each

pair of levels within a factor. Only network structure levels i and j (the two higher-

density scale-free networks) show any differentiation. Similarity bias (level b) and

attractive-repulsive (c) influence models test as similar here, despite their very differ-

ent functional forms; however, they do both use the magnitude of opinion difference

to vary the strength of the interaction.

Overall, for the MI-S response variable, varying population size N and agent

activation regime has no significant effect; density differences in network structure

models have greater effects early in a run but very minor effects in the long term; and

each influence model has a different response distribution but nearly identical median

responses in the long term.
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Figure C.56. We use the Mann-Whitney U test to determine which levels
are statistically different within each factor. The numbers in cells for the
pairs with a significant test statistic (< 0.05) express the p-value as a
percentage (e.g. 3* means 0.03 ≤ p-value < 0.04). The non-significant
results for N are consistent with the previous findings.
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Research question 2: How is system design related to the response space

of entropy time-series values?

Using the cluster analysis process described in C.1, trials are assigned to clusters

for both DTW and Pearson’s correlation. These assignments are summarized in the

following figures. DTW for MI-S produced five clusters (Figure C.57), while Pearson’s

correlation produced two clusters (Figure C.58). With respect to the time series plots,

DTW led to somewhat differentiated clusters, while Pearson’s correlation did not.

In Figures C.59 and C.60, we conduct a “census” of the trials assigned to each

cluster, with respect to the experimental design factors. For DTW, cluster 2 contains

exclusively trials with the synchronous activation regime (level a), while cluster 3

contains only trials with no error term (level a); cluster 5 omits random activation

and lower density network structures. For Pearson’s correlation, cluster membership

is almost entirely homogeneous.

In summary, the variation in system design studied here does produce a somewhat

meaningful cluster, with respect to the experimental design factors, in the response

space for MI-S. This effect is achieved when using dynamic time warping as the

distance measure, but not when using Pearson’s correlation coefficient.

C.6 Response variable 6 - transfer entropy, symbolic approach (TE-S)

Transfer entropy, symbolic approach (TE-S) transforms each agent’s sequence of

opinion values into a pattern of relative orderings (e.g., Figure B.1) and computes the

transfer entropy (Equation 3.3) between each agent-neighbor pair, averages across the

neighbors for each agent, and then averages across each agent and each replication to

produce the trial-level response. Figure C.61 shows the time series of TE-S for each

trial and an associated kernel density estimate (KDE) for the final time step.5

5Because the symbolic method uses multiple time steps per calculation, the final time steps of the
simulation have no response value. We trim the data to t = 490 for ease of reading.
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Figure C.57. Using dynamic time warping (DTW) as the distance mea-
sure between pairs of response variable time series, the consensus method
produces two clusters, each highlighted here using the original time series
plot (Figure C.49). The densely grouped nature of these clusters suggest a
moderate level of cluster quality.
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Figure C.58. Using Pearson’s correlation as the distance measure, the con-
sensus method produces two clusters. The results show no clear pattern
and may indicate less meaningful clusters.
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Figure C.59. For each cluster produced through DTW, the trials assigned to
the cluster are grouped by experimental level in order to find the percentage
of a cluster associated with each experimental level. For example, all trials
assigned to cluster 3 use error term a (no error).
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Figure C.60. Clusters produced through Pearson’s correlation are com-
pletely undifferentiated, suggesting this distance measure is unsuitable for
the response variable.
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Figure C.61. The time series of TE-S values for each trial are plotted on
the same axes to reveal a dense visual cluster near the bottom of the range.
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Research question 1: Which system design factors contribute most to

aggregated entropy?

For this research question, we explore the one-way sensitivity of each entropy

response variable to changes in the levels of individual experimental design factors.

This exploration includes qualitative comparisons of RV distributions when the trial

data is grouped by experimental levels and statistical tests for differences between

levels. These methods support a subjective evaluation of whether an RV is sensitive

to changes in the level of each design factor. In Table C.12, we summarize the analysis

results for the current response variable for this research question.

Figure C.62 presents the distributions grouped by experimental level for TE-S at

the final time step, t = 490, using a half-violin plot. Differences between distributions

among the levels for a single factor qualitatively show the effect each level has on the

response. For example, the distributions for population size N are almost identical

(except in the length of the upper tails), so we infer that N is not very important

(i.e., does not have a significant effect on the response variable), at least over the

range of levels used in the experimental design. On the other hand, strong differences

between distributions are visible for the influence model, marking it as important to

TE-S. While the shape of the distributions for the lower density networks (b, d, f,

and h) are inconsistent, they do happen to be the four levels with medians below the

grand median.

Figure C.62 uses data for only a single time step. To reveal the effect of time on

the response variable, Figures C.63-C.67 plot the medians of the grouped data over

the full length of the simulation. The two inner quartiles (25th to 75th percentiles)

are indicated by the shaded regions around each line. Overall, these figures reinforce

the similarities and differences observed in the main effect plot.

Thus far, we have use qualitative approaches to show the effect of varying individ-

ual design factors. We now adopt a non-parametric approach to measuring differences
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Table C.12.
The findings for research question 1 on TE-S are summarized to support
the overall evaluation of each experimental design factor (final table row).

Factor (number of levels)

N (3) structure (10) influence model (5) error (4) activation (3)

i. (Main effect plot) What differences are present between the response variable

distributions for each level at the final time step?

negligible 4 or 5 patterns 3 patterns 2 patterns;

error vs no error

significant differences

between all levels

ii. (Grouped time series) What differences are present between the median response values

over the duration of the simulation?

negligible overall similar shapes;

small divide affected

by density

initial separation between

levels, then partial

convergence

no error significantly

different from rest

random adoption

initially different,

then partial convergence

iii. (K-W test) Does the Kruskal-Wallace test indicate statistical differences in the response

variable between each level at the final time step? (i.e., is the p-value <0.05?)

no yes yes yes yes

iv. (M-W U test) How many pairs of levels are statistically different (p-value <0.05)

according to the Mann-Whitney U test?

0/3 25/45 10/10 3/6 3/3

* (Evaluation) Is the response variable sensitive to changes in the level for the factor?

no yes yes yes yes
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Figure C.62. Each half-violin of this design of experiments (DoE) main
effect plot represents the distribution of TE-S at t = 490 for all trials with
the corresponding level on the horizontal axis, and its median is indicated
with a horizontal dash; the grand median is shown for reference. This
plot suggests that N is fairly unimportant to the response variable, while
changes in influence model lead to more varied outcomes.
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Figure C.63. All trials are grouped by experimental level as in Figure C.62
and the groups’ median response value over time is plotted. Shaded regions
around each line enclose the 25th to 75th percentiles of the data. For
population size N , these regions almost entirely overlap due to the closeness
of the median lines, which reinforces the low importance of N shown in the
DoE main effect plot.
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Figure C.64. Following Figure C.63 in design, this plot shows two groupings
of network models: lower density (lower group) and higher density (upper
group).
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Figure C.65. The various influence models show some initial differences,
but begin to converge by the end of the run.
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Figure C.66. With the influence error distribution, we observe clear dif-
ferences between no error term and the normally distributed error terms,
while the median lines for the three normally distributed terms are indis-
tinguishable.
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Figure C.67. The median lines for the three activation regimes experience
initial differences but begin to converge at the end of the run.



240

Table C.13.
The Kruskal-Wallace test is ran on trial-level TE-S values at t = 490 to test
if changing the level for a factor has a statistical effect on the response value.
The asterisk indicates that population size N has no significant impact on
TE-S.

test stat p-value

N 0.23 * 8.91e-01

structure 133.57 2.17e-24

influence model 458.17 7.41e-98

error 558.63 9.35e-121

activation 206.61 1.36e-45

between experimental levels, using the Kruskal-Wallace test and Mann-Whitney U

test.

Based on the p-values from the Kruskal-Wallace test (Table C.13) on TE-S at

t = 490, when the data is split into levels for population size N , the data appears to

come from the same population. Practically, this suggests that varying this factor—

over the levels specified in our experiment—does not have a significant effect on the

response variable. This agrees with what we observe in the previous figures.

Figure C.68 aggregates the results of the Mann-Whitney U test applied to each

pair of levels within a factor. Structure pairs are primarily different if they are have

different relative network densities (lower vice higher density, with respect to all

network structures in the experiment).

Overall, for the TE-S response variable, varying population size N has no signifi-

cant effect, while varying all other factors produce noticeable differences in response

distributions.
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Figure C.68. We use the Mann-Whitney U test to determine which levels
are statistically different within each factor. The numbers in cells for the
pairs with a significant test statistic (< 0.05) express the p-value as a
percentage (e.g. 3* means 0.03 ≤ p-value < 0.04). The non-significant
results for N are consistent with the previous findings.
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Figure C.69. Using dynamic time warping (DTW) as the distance mea-
sure between pairs of response variable time series, the consensus method
produces four clusters, each highlighted here using the original time series
plot (Figure C.61). The densely grouped nature of these clusters suggest a
moderate level of cluster quality.

Research question 2: How is system design related to the response space

of entropy time-series values?

Using the cluster analysis process described in C.1, trials are assigned to clusters

for both DTW and Pearson’s correlation. These assignments are summarized in

the following figures. DTW for TE-S produced four clusters (Figure C.69), while

Pearson’s correlation produced three clusters (Figure C.70). With respect to the time

series plots, DTW led to somewhat differentiated clusters, while Pearson’s correlation

did not.

In Figures C.71 and C.72, we conduct a “census” of the trials assigned to each

cluster, with respect to the experimental design factors. For DTW, cluster 2 contains

exclusively trials with no error term (level a) and is somewhat higher in tree-like

network structures; cluster 1 is strong in the random activation regime (level c), while
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Figure C.70. Using Pearson’s correlation as the distance measure, the con-
sensus method produces three clusters. The results show no clear pattern
and may indicate less meaningful clusters.
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Figure C.71. For each cluster produced through DTW, the trials assigned to
the cluster are grouped by experimental level in order to find the percentage
of a cluster associated with each experimental level. For example, all trials
assigned to cluster 2 use error term a (no error).
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Figure C.72. Clusters produced through Pearson’s correlation are com-
pletely undifferentiated, suggesting this distance measure is unsuitable for
the response variable.

cluster 4 is strong in the other regimes and happens to omit lower density networks.

For Pearson’s correlation, cluster membership is almost entirely homogeneous.

In summary, the variation in system design studied here can produce meaning-

ful clusters, with respect to the experimental design factors, in the response space

for TE-S. This effect is achieved when using dynamic time warping as the distance

measure, but not when using Pearson’s correlation coefficient.
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D. SUPPLEMENTAL MATERIAL FOR CHAPTER 4

This appendix provides supplemental information for the article, “Effects of nonho-

mogeneous agents in social influence networks on system-level entropy.”

D.1 Experimental design

The original experimental design in [91] is reduced here to take advantage of their

findings. Population size N is fixed at N = 1000 for this experiment, because N was

found to be unimportant to their entropy analysis; thus N is not a design factor in

the current work. We delete three of the original ten network structure models due

to them having highly similar response variable behavior as other structure models in

the design. The nonlinear influence model performed very similarly to the standard

model, so we omit the former. For the gaussian influence error term, N(0, σ = 0.1)

and N(0, 0.2) are nearly indistinguishable in the original results, so we delete the

latter. Finally, results for the uniform activation regime were very similar to at least

one of the other two regimes across all response variables and is deleted from the

design.

D.2 Comparison between homogeneous and nonhomogeneous trials

As a first analysis step, the scenarios are compared to each other and the homoge-

neous base case by visualizing their raw RV time series (e.g., Figure D.1). Scenarios

2 and 3 omit certain design factors present in the base design, so they are compared

to the appropriate subsets of the base case trials. Each scenario shows qualitatively

similar behavior in the time series plots for every RV, with respect to the profile and

visual distribution of the data.
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Table D.1.
The experimental design from [91] is reduced to four factors and 168 total
trials based on insights from their results. This design is the base case upon
which the nonhomogeneous scenarios are constructed.

structure influence model error activation

Erdős-Rényi random standard model none synchronous

small-world(0.0, 3) similarity bias N(0, 0.05) random

small-world(0.0, 10) attractive-repulsive N(0, 0.10)

small-world(0.66, 3) random adoption

small-world(0.66, 10)

scale-free(1)

scale-free(5)

0

1

Base case, 168 trials Scenario 1, 840 trials Scenario 4, 672 trials

0

1

Base case, reduced
influence models, 84 trials Scenario 2, 378 trials

0 200 400

time step t

0

1

Base case, reduced
activation regimes, 84 trials

0 200 400

time step t

Scenario 3, 84 trials

transfer entropy, binning (TE-B)

Figure D.1. The raw RV data for the scenarios and the base case have
similar profiles and visual distributions. Each line plots a single trial. Sce-
narios 2 and 3 omit some design factors from the base design and are each
compared to a subset of base case trials. TE-B is shown here to emphasize
the importance of comparing scenarios to an appropriate subset of homo-
geneous trials, but similar results appear for each RV.
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Table D.2.
Design factor importance for each scenario and response variable is indi-
cated with a y (is important) or n (is not important); dashes mark factors
that are not applicable for a scenario. Importance is based on qualitative
analyses of the grouped medians plots (e.g., Figure 4.3). The scenario-
specific design factors are fraction (of population) uninformed (Scenario 1),
fraction Concord-type & fraction left-biased (2), and fraction stubborn (4).

Scenario Scenario

Factor 1 2 3 4

base

case 1 2 3 4

base

case

RE-B RE-S

structure y y y y y y y y y y

influence model y - y y y y - y y y

error y y y y y y y y y y

activation n y - y n y y - y y

scenario-specific y y,y - y - y n,n - y -

MI-B MI-S

structure y y y y y n n n n n

influence model y - y y y n - n n n

error y y y y y y n n n y

activation y y - y n n n - n n

scenario-specific y y,y - y - n n,n - n -

TE-B TE-S

structure y y y y y y y y y y

influence model y - y y y y - y y y

error y y y y y y y y y y

activation n n - n n y y - y y

scenario-specific y y,n - n - n n,n - y -
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A selection of grouped medians plot observations for the scenario-specific design

factors serve to illustrate the impact of those factors on the RVs (Figures D.2-D.4).

Since each of the four scenario-specific factors are continuous variables, the median

lines change between levels in a rather smooth way, unlike some of those for the

categorical design factors (e.g., Figure 4.3).
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Figure D.2. For RE-B, the median lines grouped by the fraction of initially
uninformed agents in Scenario 1 for values below 0.5 show different behavior
than those at 0.5 or greater. The separation between lines and the presence
of different behaviors suggest this design factor to be important to RE-B.

D.3 Cluster analysis for identifying scenario from response variable

The nonhomogeneity of the agent population may cause the response variables to

behave in a distinctive way (e.g., Scenario 2 in Figure D.1). Specifically, the scenario

used to generate the data may be identifiable using cluster analysis. As a test of this

idea, we apply dynamic time warping (DTW) to the time series data for one response

variable (RE-B) and use hierarchical clustering to assign trials to clusters. DTW is an
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Figure D.3. Increasing the fraction of Concord-type agents (using the simi-
larity bias influence model) in Scenario 2 decreases the median RE-B, while
increasing the fraction of left-biased agents increases median RE-B.
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Figure D.4. Median MI-B decreases in Scenario 4 as the fraction of stubborn
agents increases, since more stubborn agents leads to less information flow
between agents. This design factor is important to MI-B.
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appropriate dissimilarity measure for comparing time series data, while hierarchical

clustering is selected due to its familiarity.

This clustering approach performs poorly overall, achieving a best-case identi-

fication accuracy of only 0.32. (Cluster labels are permuted to maximize scenario

identification accuracy, since the clustering algorithm has no concept of scenario num-

ber.) The confusion matrix of the clustering results illustrates the accuracy of cluster

assignment (Figure D.5). There, we see Scenario 4 (stubborn agents) is the most

distinctive, with nearly half of its trials assigned to a single cluster, followed by Sce-

nario 2 (concord/partial antagonism). The classification rates for Scenarios 2 and

4 also differ the most from those for the base case. The other scenarios show far

less differentiation, both independently and relative to the base case. Some of this

poor performance may attributable to the mismatch between actual trial counts and

cluster size [121], summarized in Table D.3.
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Figure D.5. (Left) The confusion matrix shows the number of trials for each
scenario assigned to each cluster. The homogeneous base case is labeled
as scenario/cluster 0. Cluster analysis is performed using dynamic time
warping (DTW) and hierarchical clustering. DTW computes a dissimilarity
value between the RE-B time series data for each pair of trials across all
scenarios. (Right) The same data is row-normalized to show the fraction
of a scenario’s trials assigned to each cluster.
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Table D.3.
The assigned cluster paired to Scenario 4 is nearly the correct size (though
less than half of those trials are correctly identified); those for other sce-
narios differ greatly.

Scenario 1 2 3 4 base case

Assigned cluster size 539 306 218 668 411

Actual trial count 840 378 84 672 168

Assigned : Actual 0.64 0.81 2.60 0.99 2.45
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Figure D.6. MI and TE are somewhat positively correlated with each other
and not with RE. For each trial, we compute the correlation between the
time series of each response variable. The five lines in each subplot show the
density of correlation values for each scenario, and the base case, revealing
correlation patterns for the responses (i.e., each line outlines a histogram).
For example, TE-S and MI-S are very positively correlated for most trials.
The densities for each scenario exhibit the same general trend for each RV
pair, suggesting that the relationships among RVs are not strongly affected
by network homogeneity.

D.4 Comparison between entropy measures

Finally, we compute the correlation between each pair of RV time series for each

trial and construct histograms on this data for each RV pair (Figure D.6). As in the

original study, some RV pairs are positively correlated for many trials, while other

pairs show a more even distribution. The correlation histograms show little variation

across scenarios, so network homogeneity and scenario design does not appear to have

a strong effect on the relationship between RVs for a single trial.
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