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INTRODUCTION  

Obesity is a major public health problem globally and in the United States (U.S.). Amongst 

adults in the U.S., prevalence estimates of obesity reached 42.4% in 2017-2018 [1]. Obesity is 

both a contributor and outcome of chronic disease development including type 2 diabetes and 

metabolic syndrome [2,3]. Underlying modifiable risk factors for these chronic conditions include 

lifestyle habits such as dietary intake and physical activity.  

Much of nutrition research investigating the relationship of dietary intake to health 

outcomes has taken a reductionist approach with a focus on single nutrients and food groups; 

however, the complexity of the overall diet with all its constituents is being increasingly 

recognized. Dietary patterns examine the quantities, frequencies, and combinations of food and 

beverages consumed allowing a more comprehensive investigation of the diet-health relationship 

[4], yet, the concept and creation of patterns have not considered elements beyond nutrients and 

food, such as time of eating, which could be an important aspect of dietary patterns. Moreover, 

most physical activity research has focused on the effect of intensity or counts of activity on health 

[5–8], while studies investigating daily physical activity patterns have focused on distinct time 

periods i.e., type of day (weekday vs. weekend) or seasonality [9,10]. Nevertheless, connecting 

these patterns to health outcomes through the integration of time across an entire day has received 

little attention. 

Studies that have incorporated time to the concept of dietary patterns focus on behaviors 

such as breakfast skipping and late meal consumption and show associations with health  [11–14]. 

For instance, compared to early lunch eaters, late lunch eaters lost less weight and had reduced 

glucose tolerance [15,16]. In contrast, studies that have investigated timing of exercise focused on 

early vs. evening exercise [17–19]. For example, exercise performed in the morning vs. evening 

has been associated with a greater reduction in weight and odds of obesity [17,18]. Furthermore, 

several studies have investigated links between timing of exercise relative to a single meal or over 

a single day with health [20–24] and revealed a potential benefit to modulating time of these 

behaviors on postprandial metabolic response. Together, these studies establish the importance of 

timing of these behaviors in terms of links to health; however, studies are limited by a focus on 

single time spans or blocks of time in a day. Consideration of the patterns of dietary intake and 

activity throughout a day, or “temporal dietary and physical activity patterns”, are a novel concept 
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that may provide insight to the behavioral patterns related to health outcomes.  Notably, one of the 

challenges in this work is utilizing methods that will characterize dietary and physical activity 

patterns as an exposure by integrating timing and other characteristics of these patterns in relation 

to health.  

To our knowledge, there are no published reviews that have emphasized joint consideration 

of the time of eating and exercise, with a focus on the time of day of these events and association 

with health outcomes. Therefore, Chapter 1 focuses on summarizing current literature that has 

integrated both of these concepts by answering the question, how does the timing of exercise 

relative to eating throughout the day effect postprandial response in adults? Moreover, Chapters 2 

and 3, include primary research in which a novel distance measure, based on dynamic time warping, 

is used to develop independent temporal dietary and physical activity patterns over a 24-hour 

period using data from the National Health and Nutrition Examination Survey and examine their 

association with short- and long-term health outcomes.  

This thesis is divided into three chapters written in the form of research papers entitled: 

1. Chapter 1: The Effect of Timing of Exercise and Eating on Postprandial Response in Adults: 

A Systematic Review.  

2. Chapter 2: Temporal Dietary Patterns are Associated with Obesity. 

3. Chapter 3: Temporal Physical Activity Patterns are Associated with Obesity. 
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CHAPTER 1. THE EFFECT OF TIMING OF EXERCISE AND EATING 

ON POSPTRANDIAL RESPONSE IN ADULTS: A SYSTEMATIC 

REVIEW 

Marah Aqeel 1, Anna Forster 2, Elizabeth A. Richards 2, Erin Hennessy 3, Bethany 

McGowan 4, Anindya Bhadra 5, Jiaqi Guo 6, Saul Gelfand 6, Edward Delp 6 and Heather A. 

Eicher-Miller 1 

1 Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; 

aqeel@purdue.edu (M.A.) 

2 School of Nursing, Purdue University, West Lafayette, IN 47907, USA; aforste@purdue.edu 

(A.F.); earichar@purdue.edu (E.A.R.) 

3 Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, 

USA; erin.hennessy@tufts.edu (E.H.) 

4 Libraries and School of Information Studies, Purdue University, West Lafayette, IN 47907, 

USA; bmcgowa@purdue.edu (B.M.) 

5 Department of Statistics, Purdue University, West Lafayette, IN 47907, USA; 

bhadra@purdue.edu 

6 School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 

47907, USA; guo498@purdue.edu (J.G.); gelfand@ecn.purdue.edu (S.G.); 

ace@ecn.purdue.edu (E.D.) 

1.1 Abstract 

Background: Type 2 diabetes is a major public health concern. Management of this condition 

has focused on behavior modification through diet and exercise interventions. A growing body 

of evidence has focused on temporality of dietary intake and exercise and potential effects on 

health. This review summarizes current literature that investigates the question “how does the 

timing of exercise relative to eating throughout the day effect postprandial response in adults?”  

Methods: Databases PubMed, Scopus, Cochrane Library, CINAHL, and SPORTDiscus were 

searched between March–May 2019. Experimental studies conducted in healthy adults (≥ 18 y) 

and those with type 2 diabetes were included. Full texts were examined by at least two 

independent reviewers. Seventeen studies with a total of 332 participants met the inclusion 

criteria.  

Results: The primary finding supports that exercise performed post-meal regardless of time of 

day had a beneficial impact on postprandial glycemia. There was insufficient evidence regarding 

mailto:aqeel@purdue.edu
mailto:aforste@purdue.edu
mailto:earichar@purdue.edu
mailto:erin.hennessy@tufts.edu
mailto:bmcgowa@purdue.edu
mailto:bhadra@purdue.edu
mailto:guo498@purdue.edu
mailto:gelfand@ecn.purdue.edu
mailto:ace@ecn.purdue.edu
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whether timing of exercise performed pre- vs. post-meal or vice versa in a day is related to 

improved postprandial glycemic response due to inherent differences between studies.  

Conclusions: Future studies focusing on the investigation of timing and occurrence of meal 

intake and exercise throughout the day are needed to inform whether there is, and what is, an 

optimal time for these behaviors regarding long-term health outcomes. 

1.2 Introduction 

Type 2 diabetes (T2D) has increased globally and represents a major public health concern. 

An estimated 30.3 million people of all ages, 9.4% of the U.S. population, had diabetes in 2015 

[1]. Underlying modifiable risk factors for T2D include behavioral and lifestyle habits such as 

dietary intake and physical activity patterns [2,3]. 

There is an abundance of research focused on the management of T2D, with most of the effort 

focusing on evaluating the effect of increased physical activity in combination with dietary 

interventions [2,4,5]. Specifically, increased exercise has been shown to aid in weight loss and 

maintenance [6], and improve insulin sensitivity [7] and glycemic control [8]; while a dietary 

pattern characterized by a high intake of fruits, vegetables, and whole grains and lower intake of 

processed products, meat, and sugar has been linked to a reduced risk of T2D [3]. 

A growing body of evidence has focused on temporality, or timing, and health behaviors to 

better understand whether or how time and behaviors like eating and exercising interact to 

influence health. For instance, the association between breakfast-skipping and eating later in the 

day, and adverse metabolic alterations [9,10] and increased risk of T2D, are prominent in this 

literature [11–14]. Fewer studies addressed timing of exercise with regard to weight and metabolic 

control, but preliminary data point to a possible association with health [15,16]. 

A considerable number of studies have examined the association between timing of exercise 

relative to a single meal or over a single day with health [17–21]. Joint consideration of the timing 

of these two behaviors is critical in the context of their potential synergistic relationship with long-

term health. To our knowledge, there are no published reviews that focused on this investigation 

with emphasis on the time of day of these events. Therefore, the aim of this review is to summarize 

current literature that investigates the question; how does the timing of exercise relative to eating 

throughout the day effect postprandial response in adults? 
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1.3 Materials and Methods  

1.3.1 Literature Search Strategy 

A health sciences librarian (B.M.) performed literature searches during March 2019 through 

May 2019 in the following databases: MEDLINE (via PubMed), SPORTDiscus, Scopus, Cochrane 

Library Database of Systematic Reviews, and CINAHL. A final search was executed in November 

2019 to capture new publications. Searches designed for each database included controlled vocabulary 

terms (Medical Subject Headings), when applicable, and keywords (see Table S1 in the Supplementary 

material). No filters were used during the search process. The literature was searched using 

combinations of terms including “meal timing” or “eating time” or “time of eating” or “eating patterns” 

or “eating behavior” or “ingestive behavior” or “exercise time” or “pre-prandial exercise” or 

“postprandial exercise”, and “obesity” and “overweight” and “Type 2 diabetes” (Figures 1.1 and 1.2). 

PRISMA recommendations were followed and the study protocol was registered with Prospero (ID: 

CRD42019135459).  

 

Figure 1.1. Flow chart representing the review process. 

Library created with search results and uploaded into a web 

screening tool. 

Screening by title and abstract performed by two independent 

reviewers. 

Disagreement resolved by two other reviewers.  

Full texts retrieved and revised by four independent reviewers. 

Decision of inclusion determined by consensus.   

Data extracted using extraction form by three independent 

reviewers. 

Assessment of risk of bias using Cochrane Collaboration’s tool by 

four independent reviewers.  
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Figure 1.2. Flow chart representing selection of studies in the systematic review. 

1.3.2 Types of Studies and Eligibility Criteria 

Both experimental and observational studies were eligible for inclusion to be more 

inclusive of current evidence pertaining to the research question. Criteria specified healthy adults 

(≥ 18 years old) or individuals with overweight/obesity and/or T2D. Studies investigating the 

interaction of eating and exercising behaviors in the morning (i.e., exercise pre- or post-breakfast), 

evening (i.e., exercise pre- or post-dinner), or across an entire day (i.e., exercise pre- or-post several 

meals throughout the day) were eligible for inclusion. Studies involving children, women who 

were pregnant or lactating, or individuals with type 1 diabetes, gestational diabetes, or other 

chronic diseases were excluded from this review.  
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1.3.3 Study Selection 

Two reviewers independently screened articles retrieved from the search strategy by title 

and abstract simultaneously (M.A., A.F.) to determine inclusion. Articles with disagreement were 

allocated to two additional independent reviewers (H.A.E.-M., E.A.R.). Full texts were obtained 

for articles meeting inclusion criteria and were reviewed by four independent reviewers. Final 

study selection was determined by consensus. This systematic review included experimental trials 

reporting comparisons of different exercise timing interventions relative to meal consumption 

(e.g., exercise performed pre- or post-meal), which reported on postprandial (PP) glycemia. 

1.3.4 Data Collection and Extraction 

For studies meeting the inclusion criteria, three reviewers (M.A., A.F., E.H.) independently 

extracted data using an established data extraction form. The following information was extracted 

from the included studies; (i) study characteristics: Citation, publication year, setting, and 

purpose/objectives; (ii) inclusion and exclusion criteria; (iii) study design; (iv) sample 

characteristics: Sample location, size, demographic information, health status, and baseline 

anthropometric and metabolic variables; (v) description of the intervention; (vi) key results 

pertaining to the outcomes of interest; (vii) conclusions reported by the authors; (viii) funding 

sources and conflict of interest statement. 

1.3.5 Study Quality and Assessment of Risk of Bias in Included Studies 

The validity of each study was independently assessed by two reviewers (M.A., A.F.) using 

the Cochrane Collaboration’s tool for assessing risk of bias in randomized controlled trials (RCTs) 

[22]. Reviewers were not blinded to study authors or journal. The process involved critical 

assessment of several domains including selection bias (random sequence allocation and allocation 

concealment), performance bias (blinding of participants and personnel), detection bias (blinding 

of outcome assessment), attrition bias (incomplete outcome data), reporting bias (selective 

reporting), and other biases. Studies were further assessed by two additional reviewers (H.A.E.-

M., E.A.R.), uncertainties were discussed, and consensus was reached in all cases. 
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1.3.6 Data Synthesis and Analysis 

A narrative synthesis of the findings was conducted and structured around timing of exercise 

intervention relative to meal consumption throughout the day. 

1.4 Results 

1.4.1 Characteristics of Studies Included in the Review 

Seventeen studies met the inclusion criteria for this systematic review (Table 1.1). These 

studies included adults with T2D [17,18,20,21,23–29], as well as healthy [30–33] individuals and 

those with overweight/obesity and no reported comorbidities [19,34]. In terms of the interventions, 

included studies examined the effect of exercise performed relative to a meal on PP metabolic 

response. Fifteen studies included moderate-intensity aerobic exercise, three examined high-

intensity training [17,18,21], and only one consisted of resistance exercise [26]. Furthermore, ten 

studies investigated exercise relative to breakfast/morning meal [17,19–21,25,28,31–34], four 

included dinner/evening meal [23,26,27,29], and three examined exercise performed at several 

time points throughout the day [18,24,30]. In this review, the results were organized by time of 

day of performing exercise relative to meal consumption to maintain a focus on the timing and 

order of these activities.
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Table 1.1. Summary of studies included in the systematic review. 

Citation 
Study 

Length  

n  

(M: F) 

Age 

(Years) 

Mean ± SD 

Disease 

Condition 

Intervention/ 

Comparison 

Treatment 

Effects 

(↑, ↓, ↔) 

Assessment 

Duration 
Glycemic Response 

        PP Plasma Glucose Glucose AUC 

 Exercise relative to breakfast/morning meal consumption 

Erickson et 

al. [20] 
2 days 8 (5:3) 60 ± 10.7 Obesity/T2D 

Control day (no 

exercise) vs. 

exercise post-

breakfast 

↓ glucose 2 h 

Exercise post-breakfast: 

Significantly lower PG 

peak and decreasing 

glucose over time 

Significant 

difference in 

average on 2 h 

iAUC 

Huang et al. 

[17] 
4 days  

26 

(12:14) 
53.8 ± 8.6 OW/T2D 

No exercise 

(control) vs. 

exercise post-

breakfast (EX30) 

vs. exercise 60 

min post-breakfast 

(EX60) vs. 

exercise 90 min 

post-breakfast 

(EX90) 

↓ PPG NA 

Compared to control, 

declines in PG 

immediately post-

exercise were larger in 

EX30, EX60, and 

EX90; capillary glucose 

decreased significantly 

after exercise in EX30, 

EX60, and EX90 

Not reported 

Nelson et al. 

[33] 
2 days  7 (4:3) 

 

33.3 ± 2 

 

Healthy 

Control (no 

exercise) vs. post-

breakfast exercise 

↓ glycemia 
0, 30, 75, 95, 

135, 180 min. 

Post-breakfast exercise: 

Significant ↓ in 

glycemia 

Not reported 

Oberlin et al. 

[25] 
4 days 9 (4:5) 60.1 ± 1 Obesity/T2D 

Control (no 

exercise) vs. pre-

breakfast exercise 

↓ 24 h average 

blood glucose 

24 h avg 

glucose, 4 h 

glucose AUC, 2 

h PPG 

Pre-breakfast exercise 

significantly lowered 

avg. PG concentration 

during first 24 h period 

compared to control 

(5.98 vs. 6.62 mmol/L) 

Main effect of 

exercise to 

lower PPG-

AUC across all 

6 meals 

compared to 

control 
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Table 1.1 continued 

Poirier et 

al. [28] 
2 days  

10 

(10:0) 
54 ± 5 Sedentary/T2D 

Exercise pre-meal 

vs. post-breakfast 

exercise 

↓ plasma glucose 

(post-meal 

exercise) 

2 h 

Mean decrease in PG 

concentration was 4.8 ± 

1.9 mmol/L (60 ± 14% 

of baseline) vs. 1.0 ± 

0.8 mmol/L (91 ± 6% of 

baseline) in post-meal 

vs. pre-meal exercise, 

respectively. 

Significantly lower PG 

level in post-meal vs. 

pre-meal condition (7.6 

vs. 10.0 mmol/L)  

Not reported 

Terada et 

al. [21] 
5 days 10 (8:2) 60 ± 6 Obesity/T2D 

Control (no 

exercise) vs. pre-

breakfast HIIE vs. 

post-breakfast 

HIIE vs. pre-

breakfast MICE 

vs. post-breakfast 

MICE 

↓ PPG 

24 h mean 

interstitial 

glucose 

concentration, 1 

h mean PPG 

Compared to post-meal 

exercise, pre-meal 

condition significantly 

attenuated PP glycemic 

increments 

Comparing all 

exercise 

conditions to 

control, pre-

meal HIIE 

significantly 

lowered total 

post-meal 

iAUC 

Farah et 

al. [19] 
3 days  

10 

(10:0) 
28.1 ± 10.7 OW 

Control (no 

exercise) vs. pre-

breakfast vs. post-

breakfast exercise 

↔ PPG 7 h PPG 

No difference in 

glycemic response 

between conditions 

Not reported 

Lunde et 

al. [34] 
3 days  

11 

(0:11) 
44 ± NA 

Obesity/diabetes 

prone 

Control (no 

exercise) vs. post-

breakfast 20 min. 

walk vs. post-

breakfast 40 min 

walk 

↓ PPG 2 h PPG 

PPG and PG peak value 

significantly decreased 

with increasing duration 

of slow post-breakfast 

walking 

2 h glucose 

iAUC 

decreased with 

increasing 

duration of 

slow post-meal 

walking 
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Table 1.1 continued 

Høstmark 

et al. [32] 
2 days  

39 

(0:39) 

Trained 

young: 22.5 

± 0.5 

Trained 

middle-age: 

49.2 ± 1.3 

Sedentary 

young: 24.1 

± 0.7 

Sedentary 

middle-age: 

59.2 ± 1.7 

Sedentary and 

trained 

Control vs. 

exercise post- 

breakfast 

↓ peak glucose 

value 

↓ blood glucose 

NA 

Exercise post-breakfast: 

Peak PG was lower than 

control 

Not reported 

Nygaard 

et al. [31] 
3 days  

13 

(0:13) 
Not listed Healthy 

Control (no 

exercise) vs. post-

breakfast 15 min. 

walk vs. post-

breakfast 40 min 

walk 

↓ blood glucose 

15, 22.5, 30, 

37.5, 45, 55, 65, 

75, 90, 105, 120 

min 

Compared to control, 

peak PG value was 0.8 

mmol/L lower 

(significant) in post-

breakfast 40 min walk 

condition 

Significant 

main effect of 

walking time 

on 2 h iAUC; 

participants 

with the largest 

2 h PG iAUC 

on the control 

day 

demonstrated 

the greatest 

reduction in 

PPG response 

when walking 

40 min post-

breakfast 

Exercise relative to dinner/ evening meal consumption  

Colberg 

et al. [27] 
3 days 12 (6:6) 61.47 ± 2.7 Obesity/T2D 

Control day (no 

exercise) vs. 

exercise pre-

dinner vs. exercise 

post-dinner 

↓ plasma glucose 4 h 

Exercise post-dinner: 

Significantly lower PG 

levels at the end of 

exercise compared to at 

the same time point 

when participants had 

exercised pre-dinner 

Total glucose 

AUC over 4 h 

was not 

significantly 

different 

among trials 
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Table 1.1 continued 

Heden et 

al. [26] 
3 days 13 (5:8) 48.5 ± 11.9 Obesity/T2D 

No resistance 

exercise (control) 

vs. pre-dinner 

resistance exercise 

vs. post-dinner 

resistance exercise 

↓ glucose iAUC 

(exercise pre-

meal) 

NA Not reported 

Significant 

reduction in 

glucose iAUC 

by ~18% and 

30% in pre- 

and post-

dinner 

exercise, 

respectively 

Li et al. 

[23]  
2 days  

29 

(22:7) 
 51 ± 11.2 T2D 

Control (no 

exercise) vs. post-

dinner exercise 

↓ PP 

hyperglycemia 
2 h PPG 

Post-dinner exercise vs. 

control: Significant 

lowering in 2 h PPG 

spike (1.9 ± 1.3 vs. 2.7 

± 1.4 mmol/L), 2 h PP 

peak glucose (9.3 ± 1.6 

vs. 10.3 ± 2.3 mmol/L), 

and 2 h PP mean 

glucose levels (8.2 ± 1.3 

vs. 8.9 ± 2.0 mmol/L)  

Post-dinner 

exercise: 

Glucose tAUC 

1 h after 

exercise was 

significantly 

lower than 

control (493.9 

± 84.0 vs. 

559.3 ± 130.5 

mmol/L × 60 

min) 

Rees et 

al. [29] 
1 week 

73 

(33:40) 
63.5 ± 9.1 Obesity/T2D 

Control (no 

exercise) vs. pre-

dinner walking 

↓ blood glucose 
24 h glucose, 2 h 

PPG 

Exercise had no effect 

on PPG or 24 h glucose 

variability; significant 

reduction in PG 

concentration during 

walking in exercise 

condition vs. control 

(−1.56 mmol/L) 

Not reported 
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Table 1.1 continued 

Divided bouts vs. conventional continuous exercise performed pre- or post-meals consumed throughout the day 

Francois 

et al. [18] 
3 days 9 (7:2) 48 ± 6 

Obesity/insulin 

resistant T2D  

Control 

(continuous 

exercise pre-

dinner) vs. 

exercise snacking 

pre-mean meals 

(ES) vs. composite 

exercise snacking 

pre- main meals 

(CES) 

↓ mean PPG 

(post- dinner and 

breakfast) 

3 h PPG and 

mean PPG, 24 h 

glucose 

concentration 

ES significantly 

attenuated mean 3 h 

PPG concentrations 

following breakfast (0.4 

± 1.0 mmol/L) and 24 h 

mean PG concentrations 

by 0.7± 0.6 mmol/L 

relative to baseline 

Not reported 

Manohar 

et al. [30] 
3 days 12 (5:7) 37.7 ± 13.7 Healthy 

Control (no 

exercise) vs. post-

meal exercise 

↓ PPG 

excursions 
NA 

Baseline CGM PG 

concentration lower 

with post-meal exercise 

vs. control (5.61 

mmol/L vs. 5.58 

mmol/L); peak CGM 

PG concentration lower 

with post-meal exercise 

vs. control (8.25 

mmol/L and 11.99 

mmol/L) 

Post-meal 

exercise: iAUC 

was estimated 

to be 

significantly 

lower than 

control (4.5 

mmol/L/270 

min vs. 9.6 

mmol/L/270 

min), 

respectively 

Reynolds 

et al. [24] 
2 weeks 

41 

(26:15) 
60 ± 9.9 Obesity/T2D 

30 min walk at 

any time of day vs. 

10 min walk post 

3 main meals 

↓ PPG 3 h 

Significantly lower 3 h 

mean PG levels 

following evening meal 

with post-meal walking 

compared to 

conventional condition 

(−0.50 mmol/L) 

Glucose iAUC 

was 12% lower 

in the post-

meal compared 

to conventional 

condition  

Abbreviations: M (male); F (female); Avg (average); PP (postprandial); PG (plasma glucose); PPG (postprandial glucose); AUC (area under the curve); 

tAUC (total AUC); iAUC (incremental AUC); HIIE (high intensity interval exercise); MICE (moderate intensity continuous exercise); OW (overweight); 

CGM (continuous glucose monitoring); ↑ (increase); ↓ (decrease);  (no change). 
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1.4.2 Risk of Bias Assessment 

Most of the assessed studies provided insufficient information regarding randomization 

procedures (Table 1.2), whereas a few were non-randomized trials [20,32,34]. All of the studies 

were considered to be at low risk of bias for selective reporting because studies pre-specified their 

primary and secondary outcomes of interest. All of the studies reported the number of participants 

who completed the study but did not provide the total number of participants who initially enrolled. 

Additionally, blinding of participants and personnel was not feasible due to the nature of the 

interventions, thus this domain was deemed to be of low risk of bias; however, blinding of 

outcomes assessment was determined as unclear due to insufficient information for all included 

studies except Reynolds et al. [24] which was considered low risk due to blinding of their 

statistician to primary analysis. Incomplete outcome data were judged to be of low risk of bias in 

11 of the included studies; the rest of the studies [19,21,25–27,32] were considered unclear due to 

insufficient reporting of attrition.  

Table 1.2. Risk of bias assessment of included studies. 

Author [ref] 

Random 

Sequence 

Generation 

Allocation 

Concealment 

Selective 

Reporting 
Blinding 

Incomplete 

Outcome 

Data 

Other 

Bias 

    
Participant

/personnel 

Outcomes 

assessment 
  

Colberg et al. [27] U L L L U U L 

Erickson et al. [20] H L L L U L L 

Farah et al. [19] L L L L U U L 

Francois et al. [18] U L L L U L L 

Heden et al. [26] U L L L U U L 

Høstmark et al. [32] H L L L U U L 

Huang et al. [17] U L L L U L L 

Li et al. [23] U L L L U L L 

Lunde et al. [34] H L L L U L L 

Manohar et al. [30] U L L L U L M 

Nelson et al. [33] U L L L U L M 

Nygaard et al. [31] U L L L U L L 

Oberlin et al. [25] U L L L U U L 

Poirier et al. [28] U L L L U L L 

Rees et al. [29] L L L L U L L 

Reynolds et al. [24] L L L L L L L 

Terada et al. [21] L L L L U U L 

Abbreviations: H (high risk of bias); M (moderate risk of bias); L (low risk of bias); U (unclear risk of bias). 
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1.4.3 Exercise Relative to Breakfast/Morning Meal Consumption 

Studies that investigated the effect of time of exercise performance relative to a 

breakfast/morning meal on glycemic response were designed to examine PP glycemic response 

after acute intake of a standardized meal. These interventions included participants with T2D 

[17,20,21,25,28] and/or overweight/obese [19,34] as well as healthy individuals [31–33]. 

Studies in participants with T2D included an exercise intervention performed pre- [25] and post-

meal [17,20], and pre- or post-breakfast [21,28]. Evidence regarding the glucose-lowering effect 

of exercise performed pre-meal was limited. Only one study by Oberlin et al. assessed the effect 

of pre-breakfast exercise on PP glycemic response to subsequent meals using continuous glucose 

monitors, for a two-day period under two conditions; no exercise (control), or 60 min of moderate-

intensity exercise. The findings revealed that blood glucose concentration was significantly lower 

in the exercise condition compared to no exercise in the first 24 h period (p < 0.038). Additionally, 

compared to the control, exercise was associated with lower PP glucose area under the curve 

(AUC) across all meals on both days (p = 0.015). When comparing glycemic response to both 

conditions after each meal, lower PP glucose AUC was observed only after lunch (1:00 p.m.) on 

day 1 (p = 0.04) [25]. Thus, it remains unclear whether exercise performed pre-meal in the morning 

compared with no exercise is more advantageous for lowering PP glycemia in individuals with 

T2D. 

Findings regarding the effect of morning post-meal exercise on glycemic response in 

participants with T2D were more consistent. Erickson et al. assessed whether post-meal exercise 

provided an additional glucose lowering effect, beyond medication alone, in patients using add-on 

hypoglycemic agents [20]. Participants were involved in two experimental conditions in a 

crossover design in which they were provided with a standardized meal and either exercised or 

remained sedentary afterward. Glucose peak (drug only: 13.8 ± 3.7 mmol/L, drug/exercise: 9.9 ± 

2.7 mmol/L) and glucose AUC (drug only: 500 ± 136 mmol/L, drug/exercise: 357 ± 89 mmol/L) 

were significantly lower during the time of the exercise bout (p = 0.02 and p = 0.03, respectively); 

moreover, compared to the control, average 2 h incremental AUC (iAUC) during the breakfast PP 

period was significantly lower on the exercise day (p = 0.047). A finding that supported this 

evidence while evaluating the effect of varying duration of high intensity exercise revealed that 

exercise for 30 min post-meal significantly reduced blood glucose concentration to a greater extent 

compared to 60 and 90 min of post-meal exercise or no exercise [17]. Therefore, compared with 



 

27 

no exercise, post-meal exercise performed in the morning is more effective at attenuating PP 

glycemic response in participants with T2D. 

Two studies investigated the effect of pre- and post-meal exercise performed in the 

morning on PP response among individuals with T2D and reported inconsistent findings [21,28]. 

Poirier et al. compared changes in blood glucose levels in response to 1 h of moderate-intensity 

exercise performed pre-breakfast or 2 h after consumption of a standardized breakfast meal [28]. 

Compared to baseline, blood glucose concentration was significantly lower in both conditions (p 

= 0.003 and p < 0.001, respectively); however, the reduction in the post-meal condition was 

sustained during the recovery period while it returned to pre-exercise levels in the pre-breakfast 

exercise condition. Conversely, Terada et al. compared pre- vs. post-breakfast walking (60-min of 

continuous moderate intensity exercise or intervals of 1 min high/3 min lower intensity) to a no 

exercise control condition [21]. Compared to post-meal exercise, pre-meal exercise was more 

effective at reducing PP glycemic increments (p < 0.05). Moreover, high-intensity interval exercise 

lowered mean nocturnal and fasting glucose to a larger extent compared to moderate-intensity 

continuous exercise (both p < 0.05). When comparing all exercise conditions to control, pre-meal 

high-intensity exercise performed in the morning lowered mean amplitude of glycemic excursion 

and total post-meal iAUC (p < 0.05). Hence, it is unknown whether morning pre- vs. post-meal 

exercise is more effective at lowering PP glycemia in participants with T2D. 

Two studies conducted in individuals with obesity (diabetes prone) and those with 

overweight assessed glycemic response to moderate-intensity exercise performed post-breakfast 

[34] and pre- or post-breakfast [19], respectively. Lunde et al. showed that compared to a no 

exercise condition, post-meal walking attenuated the glycemic response to a carbohydrate-rich 

meal with improved outcomes with longer walking duration (40 min vs. 20 min). Contrary to these 

reports, Farah et al. assigned participants to three experimental conditions including no exercise 

(control) and exercise pre- or post-breakfast. There was no significant difference in glucose 

response over an 8.5 h observation period between conditions; however, compared to the control, 

both pre- and post-meal exercise lowered insulin response (by 19% and 24% in pre-meal and post-

meal, respectively, both p < 0.01), while only pre-breakfast exercise was associated with lower PP 

triglyceride (p = 0.025). Among those with overweight and obesity, morning exercise was shown 

to be effective at improving PP metabolic response with no clear benefit based on timing of 

exercise relative to meal consumption. 
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Studies among healthy participants included an exercise intervention performed post-

breakfast [31–33]. One intervention assessed the effect of post-breakfast walking on glycemic 

response (Three conditions: No exercise, 15 or 40 min walking) [31]. Findings revealed that post-

meal exercise performed in the morning attenuated the glycemic response to a carbohydrate-rich 

meal and this effect was enhanced with prolonged walking duration. Similarly, another study 

revealed lower peak blood glucose value in the exercise condition compared to no exercise 

irrespective of age and training condition [32]. Nelson et al. further confirmed these findings in a 

randomized controlled trial that characterized the metabolic response to moderate-intensity 

exercise performed post-meal in healthy individuals [33]. Participants were provided with a 

standardized breakfast after which they either rested for 3 h or exercised for 45 min. Compared to 

no exercise, PP glycemic response was significantly lower in the exercise condition between 45–

75 min (p < 0.05). Amongst healthy participants, compared with no exercise, post-meal exercise 

performed in the morning is more effective at attenuating PP glycemic response. 

In summary, studies reporting the effect of exercise performed relative to a morning meal 

on glycemic response were mostly drawn from randomized crossover trials that either examined 

PP response to a breakfast/morning meal or monitored response to successive meals. Consistently, 

results showed that exercise performed in the morning post-meal had an advantageous effect on 

PP glycemia in participants with T2D, overweight/obese, and healthy subjects. However, results 

were limited in regards to the effect of pre-meal exercise performed in the morning on glycemia 

in participants with T2D. Additionally, three studies, conducted in individuals with T2D [21,28] 

and those who were overweight [19], directly assessed the effect of exercise performed pre- vs. 

post-breakfast on glycemia and resulted in inconclusive findings. 

1.4.4 Exercise Relative to Dinner/Evening Meal Consumption 

Evidence regarding the effect of exercise performed relative to a dinner/evening meal on 

glycemic response has resulted from randomized crossover trials in participants with T2D 

[23,26,27,29]. Li et al. evaluated the effect of post-dinner exercise on glycemic response using 

continuous glucose monitors [23]. Participants consumed a standardized diet and were randomized 

to two experimental conditions including a no exercise group (control) or a 20 min post-dinner 

exercise group. Significant declines in 2 h PP glucose spike (p = 0.04), peak glucose (p = 0.02), 

and mean glucose (p = 0.04) levels were reported under the exercise condition compared to the 
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control. Moreover, compared to the control, 12 h standard deviation of blood glucose and the 

coefficient of variation of glucose were both significantly lower in the exercise condition (both p 

< 0.009), while mean amplitude of glycemic excursion was not significantly different. Supporting 

this evidence, two other studies examined the effect of resistance [26] or aerobic [27] exercise 

performed pre- or post-dinner on cardiovascular disease risk factors [26] and glycemic control [27] 

with a similar methodological approach. Participants were randomized to three experimental 

conditions including no exercise (control), pre-, or post-dinner exercise and were provided with 

standardized meals on experimental days. Researchers reported similar findings of improved 

markers of cardiometabolic control (significant lower triglyceride and improved insulin clearance) 

[26] and lower blood glucose values [27] with both exercise types performed post-dinner. 

Interestingly, a study by Rees et al. investigating the effect of walking pre-dinner on 24 h glycemic 

outcomes revealed no difference in most of the examined glycemic variables including 24 h 

glucose, fasting glucose, PP glucose, and glucose variability in an exercise condition compared to 

the control condition [29]. In summary, evidence regarding the effect of exercise relative to 

consumption of a dinner/evening meal on glycemic response was drawn from studies conducted 

in participants with T2D. Findings revealed that exercise in the evening has an advantageous effect 

on PP glycemic response with a potential superior effect in post-dinner exercise compared to pre-

dinner exercise. 

1.4.5 Divided Exercise Bouts vs. Conventional Continuous Sessions Performed Pre- or 

Post-Meals Consumed Throughout the Day 

Studies that investigated the effect of continuous vs. divided exercise bouts performed pre- or 

post-meal throughout the day on glycemic response were conducted in participants with T2D 

[18,24] and healthy individuals [30]. Reynolds et al. randomized participants to two experimental 

conditions, each lasting for 2 weeks, and included walking for 30 min at any time of day 

(conventional) or walking for 10 min post main meals [24]. PP glucose iAUC was 12% lower in 

the post-meal compared to conventional condition; additionally, 3 h mean blood glucose was 

significantly reduced after the evening meal in the post-meal vs. conventional condition (p = 

0.034). Nevertheless, it is important to note a significant difference in overall physical activity 

(counts/minute) between the two exercise conditions (p = 0.006) explained by reduced sedentary 

time and increased walking duration in the post-meal condition. A study that supported this 
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evidence of reduced PP glucose concentration with brief bouts of exercise compared to a single 

bout also added that this effect persisted for the subsequent 24 h with pre-meal exercise [18]. 

Supporting these results in healthy participants, Manohar et al. quantified the effect of low-

intensity exercise on glycemic variability in individuals consuming a standardized diet for three 

days at fixed times [30]. Participants walked for 5–6 h each day and were assessed using a physical 

activity monitor; in random order, one meal per day was followed by inactivity, and the other two 

meals were followed by walking. The PP glucose iAUC was significantly lower in meals followed 

by walking compared to meals followed with inactivity (p = 0.022). In summary, these studies 

showed that exercise has a beneficial effect on glycemic response in healthy participants and those 

with T2D. Furthermore, brief bouts of exercise pre- or post-meals performed throughout the day 

could be more beneficial compared to one continuous exercise bout in participants with T2D. 

1.5 Discussion 

This review sought to investigate current literature focused on the temporality of health 

behaviors to better understand whether, or how, time and activities of eating and exercising interact 

to influence health. Most research that integrated these concepts included randomized crossover 

trials conducted in participants with T2D. Studies mainly examined the effect of exercise 

performed relative to a morning or evening meal on PP glycemic response, given the importance 

of this component in T2D management [20]. Seventeen crossover studies with a total of 332 

participants were included in this review. The primary findings were: (1) Exercise performed post-

meal regardless of time of day had a beneficial impact on PP glycemia including lower plasma 

glucose concentration and glucose AUC; and, (2) there was insufficient evidence regarding 

whether the timing of exercise performed (e.g., pre- vs. post-meal) throughout the day is related to 

improved PP glycemic response. 

Exercise performed in the morning post-meal in participants with T2D, healthy, and obese 

individuals was consistently linked to acute attenuation in PP glycemia compared to sedentary 

controls (2–3 h after ingestion of a meal) [17,20,31–34]. These findings align with observations 

by Haxhi et al. in individuals with T2D and healthy participants [35]. The blunting effect of PP 

exercise on peak blood glucose level has been well established [28,32,36]. These results may be 

explained by an elevation in endogenous insulin stimulated by food intake [27] as well as muscular 

contraction which co-act to enhance skeletal muscle glucose uptake independent of insulin [37]. 
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Only three studies assessed the effect of exercise performed post-meal in the evening [23] or post 

several meals throughout the day [24,30] and reported an advantageous effect on glycemic 

response.  

Fewer studies examined the association between pre-meal exercise performed in the morning 

[25] and the evening [29] and metabolic response in participants with T2D. One study was 

conducted in the morning and revealed a decrease in mean 24 h glucose concentration in exercise 

conditions compared to control, although, the improvement from exercise was observed in the 

second meal (~4.5 h post-exercise) but not in the first meal (~30 min post-exercise) [25]. 

Additionally, Rees et al. investigated the effect of walking pre-meal in the evening and reported 

no difference in most examined glycemic outcomes in the exercise condition compared to no 

exercise [29]. A possible explanation for this finding is related to the timing of exercise which was 

performed 3–5 h post-lunch and 20 min pre-dinner. The limited evidence from studies examining 

pre-meal exercise and glycemic response may be further elucidated by future randomized 

controlled trials focused on this examination.  

Relating to this investigation, five studies compared the effect of pre- vs. post-meal exercise 

performed in the morning [19,21,28] or evening [26,27] on glycemic response. Studies that 

examined the effect of exercise performed pre- or post-meal in the morning resulted in 

inconclusive findings. One crossover trial including healthy participants [19] and another 

involving high-intensity interval training [21] reported a larger attenuation in PP glycemia with 

exercise performed pre- compared to post-breakfast. Conversely, a study including participants 

with T2D revealed significantly lower blood glucose levels when moderate-intensity exercise was 

completed 2 h post- rather than pre-breakfast [28]. The discrepancy in these findings could be 

related to differences in the type of exercise and health status of the study population (healthy vs. 

T2D). Moreover, studies differed in frequency and duration of blood sampling, specifically, post-

exercise glucose concentration was measured at 30–60 min, 15 min, or continuous intervals (using 

continuous glucose monitor) up to 7, 1.5, or 24 h in [19,21,28], respectively. Differences also 

existed in timing of the exercise bout relative to meal consumption; exercise was performed in the 

fasted state and at 30, 60, or 120 min post-meal in the morning in [19,21,28], respectively. On the 

other hand, two crossover trials examined the effect of exercise performed in the evening pre- or 

post-meal in participants with T2D and resulted in more consistent findings. Colberg et al. reported 

lower blood glucose levels with the completion of 20 min of walking, starting 15–20 min post-
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dinner, compared to pre-dinner or no walking [27]. Contrastingly, both pre- and post-dinner 

resistance exercise similarly improved blood glucose AUC subsequent to dinner irrespective of 

timing in Heden et al.; however, lower PP triglyceride was reported with post-dinner exercise 

suggesting a potential superior benefit on metabolic response [26]. The inherent differences in 

study design including time of day of exercise and eating (morning vs. evening), type of exercise 

(aerobic vs. resistance), and intensity and modality (moderate continuous vs. high intensity interval 

training) preclude conclusions regarding optimal exercise–meal timing throughout the day for 

management of glycemic response. In addition, the above findings resulted from short-term studies 

that typically included 10–13 participants observed in a controlled setting with standardized meals 

provided; therefore, further longer-term studies preferably simulating “real life” settings are 

needed to demonstrate whether modulating time of exercise relative to meals translates into an 

overall improvement in glycemic control.  

Of note, there was insufficient evidence in the reviewed studies regarding whether and how 

the time of day of eating and exercising interact to impact health outcomes. Only three studies 

investigated the effect of exercise performed pre- or post- several meals consumed during the day 

on PP response [18,24,30]; however, their main goal was to examine whether continuous vs. 

divided bouts of exercise could differentially effect PP glycemia. Additionally, although current 

findings indicate that post-meal exercise regardless of time of day has an advantageous impact on 

PP response, available evidence is limited by a focus on blocks of time during the day, specifically 

the morning period. Future studies that emphasize time of day of these behaviors, i.e., including 

both exercise and eating conditions in the morning and evening or across an entire day, are 

warranted to inform whether time of day of these behaviors is indeed related to clinically 

meaningful effects on health.  

Most of the studies included in this review involved mild- or moderate-intensity exercise and 

showed an advantageous effect on PP glycemic response. Moderate-intensity exercise is the most 

commonly recommended strategy for individuals with impaired glucose tolerance or T2D [38]. 

Self-paced exercise for 20 min in the evening resulted in lower plasma glucose levels compared to 

a no exercise condition in one study [27]. However, high-intensity interval training has gained 

recent attention as a time-efficient strategy for metabolic disease management [17,39]. Compared 

to no exercise, a single bout of high-intensity interval training performed in the morning was 

associated with reduced same-day PP glucose AUC [21]. Additionally, performing brief bouts of 
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exercise (six 1 min uphill walking intervals at 90% HRmax) before main meals throughout the day 

was more effective at reducing PP hyperglycemia when compared with a single bout of pre-dinner 

moderate-intensity walking (30 min, ~60% HRmax) [18]. Limited evidence exists examining the 

effect of high-intensity interval training on PP glycemic response; thus, this training modality is 

under-represented in this review; nevertheless, available findings suggest that engaging in any 

physical activity mode and intensity throughout the day lowers PP glycemic response in 

individuals with T2D. 

One major strength of this review included the selection of recently published studies 

investigating the interaction between eating and exercising behaviors while emphasizing the 

sequence of these behaviors throughout the day and their potential effect on health. Additionally, 

most of the studies included both male and female participants with approximately 50% of the 

study sample being female. However, collectively, the studies were not representative of a certain 

population nor group, which limits generalizability. Major limitations pertain to the crossover 

nature of the interventions, with lack of a control group in a few studies [18,24,28]. Moreover, 

three of the included trials were non-randomized [20,32,34] and most others were unclear in terms 

of their randomization procedures. Additionally, included studies varied with regards to time of 

day of eating and exercise, duration of assessment, type of exercise, and timing between exercise 

and meals, and were short-term in nature; nonetheless, findings were similar in showing an 

advantageous effect of post-meal exercise in lowering PP hyperglycemia regardless of time of day 

and pointing to a potential benefit of modulating exercise timing relative to meal consumption for 

optimizing metabolic control. Of note, most of the included studies examined the effect of exercise 

performed relative to a morning meal on health status indicators, while there was inadequate 

evidence emphasizing the time of day of both eating and exercising, and their potential associations 

with health. Considering that the distribution of eating and exercising throughout the day has a 

repetitious pattern, timing of these activities, in isolation and relative to each other, throughout the 

day could have an important link to health. Future studies focusing on the investigation of timing 

and occurrence of these behaviors across an entire day are needed to inform whether the 

development of time-specific recommendations is relevant to improved long-term health outcomes 

including T2D. 
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1.6 Conclusions 

In conclusion, the findings of this systematic review show a beneficial effect of post-meal 

exercise on improved PP glycemic response regardless of time of day in healthy individuals and 

participants with overweight/obesity and/or T2D. However, findings were less clear regarding 

optimal exercise–meal timing for enhanced glycemic response due to inherent differences between 

studies. Moreover, studies pertaining to this investigation have mostly resulted from randomized 

crossover trials with the provision of standardized meals; thus, more studies simulating “real life” 

settings are needed to elucidate how timing of eating and exercising throughout the day interact to 

influence long-term health outcomes. 
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2.1 Abstract 

Background: The integration of time with dietary patterns throughout a day, or temporal dietary 

patterns, have been linked with dietary quality but relationship to health outcomes are unknown.  

Objective: Determine the association between temporal dietary patterns and health status 

indicators and disease outcomes. 

Methods: The first-day 24-hour dietary recall from 1,627 non-pregnant U.S. adult participants 20-

65 years of the National Health and Nutrition Examination Survey 2003-2006 was used to 

determine timing and amount of energy intake and sequence of eating occasions. Modified 

dynamic time warping and kernel k-means algorithm clustered participants into four groups 

representing distinct temporal dietary patterns. Multivariate regression models determined 

associations between temporal dietary patterns and health outcomes, controlling for potential 

confounders, and adjusting for multiple comparisons and the complex survey design (p<0.05/6).  

Results: A cluster representing a temporal dietary pattern with evenly spaced, energy-balanced 

eating occasions from 6:00 a.m. to 11:00 p.m. with peaks reaching 1,200 kcal at 6:00 a.m. to 10:00 

a.m., 12:00 p.m. to 3:00 p.m., and 6:00 p.m. to10:00 p.m., had statistically significant and clinically 
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meaningful lower body mass index (p<0.0001), waist circumference (p<0.0001) and 75% lower 

odds of obesity compared to three other clusters representing patterns with higher peaks of energy: 

1,000-2,400 kcal between 3:00 p.m. to 6:00 p.m. (OR: 5.3; 95% CI: 2.8, 10.1), 800-1,600 kcal 

between 11:00 a.m. to 3:00 p.m. (OR: 4.4; 95% CI: 2.5, 7.9), and 2400 kcal between 6:00 p.m. to 

11:00 p.m. (OR: 6.7; 95% CI: 3.9, 11.6).  

Conclusions: Individuals with a temporal dietary pattern characterized by evenly spaced, energy-

balanced eating occasions had lower body mass index, waist circumference, and odds of obesity 

compared to the other three patterns with much higher energy intake peaks at different times 

throughout the day, providing evidence that incorporating time with other aspects of a dietary 

pattern may be important to health outcomes.  

Keywords: temporal, timing, dietary, patterns, body mass index, waist circumference, obesity. 

2.2 Introduction 

Obesity has increased globally and represents a major public health concern. The prevalence 

of obesity among U.S. adults was 42.4% in 2017-2018 [1]. Obesity is both an outcome and a 

contributor to chronic disease development including type 2 diabetes and the metabolic syndrome 

[2,3]. Behavioral and lifestyle habits like dietary intake are underlying modifiable risk factors for 

obesity and chronic disease [4,5]. Traditional investigation of the diet-health relationship has 

focused on singular behaviors (e.g., breakfast skipping) or aspects of dietary intake (e.g., individual 

nutrients) in relationship to health outcomes; however, numerous aspects of behavior and dietary 

components could interact to influence health [4]. Dietary patterns refer to a way of 

conceptualizing several dietary exposures including the quantities, proportions, frequencies, and 

combinations of different foods and beverages in diets, as a multi-faceted construct [4,6]. This 

multidimensional approach allows for a more inclusive examination of the diet-health relationship 

that might reveal stronger associations between indicators of health and the role of diet compared 

with single nutrients or food group approaches [6,7].   

Temporality, or timing, of eating and the influence on health is a recent area of interest [8–

12]. Most of the accumulated evidence has evaluated timing of dietary intake in a classification-

based way, for example, characterizing participants as early energy consumers or later energy 
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consumers based on the timing of the majority of their energy intake throughout the day followed 

by regression to determine links with health outcomes [13–16]. Similar classification-based 

designation of breakfast skippers compared with those who eat breakfast suggests that breakfast 

skipping is associated with higher body mass index (BMI) and impaired glucose metabolism 

manifesting as higher fasting plasma glucose and hemoglobin A1c levels in adults [17,18]. 

Moreover, studies that examined the association of late-night eating with health reported a higher 

risk of obesity, metabolic syndrome, and inflammation in late-night eaters compared to early eaters 

[13,19–21]. Collectively, these studies demonstrate that time of eating could be associated with 

health. However, the studies are limited by the focus on eating occasions at a single timespan or 

part of the day with disregard to eating occasions at other times of the day. Yet, the amount of 

energy or nutrient consumed at a certain time may affect the amount consumed at following eating 

occasions or be related to total energy intake throughout the day [23]. Thus, understanding whether 

and how patterns of intake over a 24-hour day, including the timing, amount of energy, and 

sequence of eating occasions, are linked with health outcomes will advance knowledge of the 

importance of these multiple factors to health. Insight into whether and to what extent the 

integration of time, amount, and sequence of eating determines health outcomes may also advance 

opportunities for early detection of behavioral patterns that predispose to obesity and chronic 

disease. 

Data-driven methods including cluster and factor analyses and investigator-driven methods 

including index-based analysis [25,26] have previously been used to determine dietary patterns 

and association with health outcomes; time was uniquely integrated with dietary patterns in Eicher-

Miller et al. [22]. Temporal dietary patterns (TDPs) were created by integrating the time, amount 

of energy, and sequence of eating occasions through a 24-hour day using a novel distance measure 

based on dynamic time warping technique combined with cluster analysis and was determined to 

be associated with dietary quality among U.S. adults 20-65 years [22]. Considering the elevated 

disease risk associated with poor dietary quality, these findings support hypotheses that TDPs may 

also be linked with health outcomes; yet, this relationship has not been examined. Thus, the aim 

of this study was to investigate whether TDPs, determined using dynamic time warping and kernel 

k-means clustering approach, are associated with selected health status indicators and disease 

outcomes in adult men and women in the U.S. The hypothesis builds on evidence by Eicher-Miller 

et al. [22] showing that a TDP characterized by moderate and proportionally equivalent energy 
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consumed during evenly spaced eating occasions was associated with improved dietary quality; 

therefore the hypothesis of this study is that this same TDP would emerge and associate with 

improved health status indicators and lower risk of chronic disease compared to other TDP not 

exhibiting these characteristics.  

2.3 Methods 

2.3.1 Participants and Data Collection  

The National Health and Nutrition Examination Survey (NHANES) is a cross-sectional 

survey of the noninstitutionalized, civilian, U.S. population that uses a complex, stratified, 

multistage probability cluster sampling method [27]. The National Center for Health Statistics 

(NCHS), a program of the U.S. Centers for Disease Control and Prevention, administers NHANES. 

The NCHS Research Ethics Review Board approval and documented consent is obtained from all 

participants [28]. NHANES survey protocol includes an in-person household interview followed 

by a health examination in a mobile examination center. During the in-person household interview, 

sociodemographic data including age, sex, race/ ethnicity, and income to poverty ratio (PIR) were 

collected using an in-depth questionnaire [27]. The health examination included the collection of 

a 24-hour dietary recall, anthropometric measurements, and laboratory tests.  

2.3.2 Analytic sample 

Four years of NHANES data 2003-2006 were combined for this analysis. The analytic 

sample included non-pregnant U.S. adults aged 20-65 years with reliable 24-hour recall dietary 

data, and complete anthropometric and health status indicator data (n=1,627). Pregnant women, 

children, adolescents, and adults older than retirement age were excluded because their daily 

patterns may include variations characteristic to the life stages they represent.  

2.3.3 Anthropometric Assessment and Laboratory Tests  

Selected health status indicators were chosen for their previous links with dietary 

components [29–33]. Weight was assessed using a digital scale and was measured to the nearest 

0.1 kilogram [34]. Height and WC were measured with a stadiometer and tape measure, 
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respectively to the nearest 0.1 centimeter [34]. BMI was calculated as weight in kilograms divided 

by height in meters squared [35]. Results were based on a single body measurement at examination. 

A phlebotomist obtained blood samples from participants according to a standardized 

protocol [36,37]. Fasting plasma glucose and triglycerides were assessed after participants fasted 

at least 8 hours and not more than 24 hours. Fasting plasma glucose was measured using a 

hexokinase method with a Roche/Hitachi 911 (cycle 03-04) or a Roche Cobas Mira (cycle 2005-

2006) [38,39]. Triglycerides were measured enzymatically [40,41]. Hemoglobin A1c, total 

cholesterol, and HDL-C were based on samples taken regardless of fasting state. Hemoglobin A1c 

was measured with high performance liquid chromatography using Primus CLC 330 and Primus 

CLC 385 (Primus Corporation, Kansas City, MO) in the 2003-2004 cycle and using Tosoh A1c 

2.2 Plus Glycohemoglobin Analyzer (Tosoh Medics, Inc., San Francisco, CA) in the 2005-2006 

cycle [42,43]. Total cholesterol was measured enzymatically. An instrument change occurred in 

NHANES 2005-2006 for total cholesterol, but the method and laboratory location were the same 

as in the 2003-2004 survey [44,45].  HDL-C was analyzed using a direct immunoassay method 

from 2003-2006 [45,46]. There was a change in equipment to measure HDL-C from 2005-2006, 

however the laboratory method and location were the same as in 2003-2004 [45,46]. Blood 

pressure was measured using a mercury sphygmomanometer, with systolic and diastolic blood 

pressures determined based on up to 4 measures [47]; if more than 1 measurement was obtained, 

the first was not considered, and the remaining measurements were averaged; otherwise, the first 

measurement was used. 

2.3.4 Dietary Data Assessment  

The first reliable 24-hour dietary recall collected using the U.S. Department of Agriculture 

(USDA) Automated Multiple-Pass Method [48] was used to determine energy intake, time of 

intake, and sequence of eating occasions throughout a day [49]. A reliable dietary recall indicates 

that a participant has a food record that specifies each individual food consumed, the quantity in 

grams and nutrient amounts per food component. The USDA Food and Nutrient Database for 

Dietary Studies (FNDDS) for 2003-2004 data (USDA FNDDS, version 2.0, Beltsville, MD) and 

2005-2006 data (USDA FNDDS, version 3.0, Beltsville, MD) were used to convert reported 

dietary intake information into gram amounts and to determine their energy values.  
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2.3.5 Assessment of Energy Misreporting  

Energy misreporting was examined as research shows that misreporting could bias the 

relationship between TDPs and adiposity [13,50]. Energy misreporting was assessed as the ratio 

of reported total energy intake to estimated energy requirement (EER) [51]. EER was calculated 

using the Dietary Reference Intake equations for adults based on sex, weight, height, and physical 

activity level [52]. Using accelerometry data from one valid weekday revealed that participants in 

this sample spent most of their time (minutes/day) in sedentary behavior. Calculation of physical 

activity level was attempted using methods by Gerrior et al. [53], however, the method resulted in 

very high estimates of activity levels and thus tended to overestimate energy expenditure. 

Therefore, a low active physical activity level (≥1.4 to<1.6) was used which conforms with 

national objectively measured physical activity data showing that most adults spend their time in 

sedentary behavior or light activity [54,55].  

2.3.6 Temporal Dietary Patterns  

A detailed description of the methodology used to determine the temporal dietary patterns 

has been previously described [56], with one minor change in this study in which patterns were 

developed based on absolute energy intake rather than fractional energy intake data computed over 

a 24-hour period. Briefly, one 24-hour dietary recall was used to develop time series of length 24, 

with each entry representing absolute amount of energy during an hourly time interval. The 

absolute energy and hourly time stamps of non-zero intake occasions were extracted from the time 

series to form the compact representation as defined in [56,57]. Based on our previous work to 

pattern dietary intake, several distance measures were investigated including the constrained DTW 

with Sakoe-Chiba band (CDTW) and the modified DTW (MDTW) [58]. Both CDTW and MDTW 

belong to the elastic distance family and find the optimal matching path among intake occasions 

in two time series [58]. The matching is “optimal” in the sense that the summed difference between 

matched intake occasion is minimized. The Sakoe-Chiba band in CDTW and the weight parameter 

β in MDTW are controlling parameters to avoid pathological matchings (e.g. matching intake 

activities in the morning to intake activities in the evening). While the Sakoe-Chiba band 

rigorously limits the maximum time difference between matched intake occasions, the weight 

parameter β controls the matching through a time difference penalty term: larger β indicates more 
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penalty on matching intake occasions that are different in time. Bands ranging between 60-720 

minutes (60-minute increments) and β ranging from 0-10 (2 increments) were explored in this 

paper, and parameter values outside of these ranges were omitted as they did not bring significant 

changes in the clustering results. Further, the distance measures were coupled with kernel k-means 

algorithm [59] to partition the time series into several clusters such that intake occasions are more 

similar within the same cluster and more dissimilar among different clusters. Cluster number k=4 

was selected to divide the population into clusters representing similar TDPs to maintain 

consistency with previous development of temporal patterning [22,56,58]. MDTW β=10 was 

selected out of each distance measure pairing of CDTW bandwidth=420 and MDTW β=10 with 

k-means clustering, based on inferential analyses with health outcomes prioritized as: 1) most 

significant differences between the six pairwise comparisons among all health outcomes, 2) 

highest model R2 values, and 3) largest difference between highest and lowest mean of health 

status indicators.  

2.3.7 Statistical Analysis 

The Rao Scott F adjusted chi-square statistic determined significant differences among 

clusters by selected characteristics: survey year (2003-2004 and 2005-2006), sex (male or female), 

race/ethnicity (Mexican American and other Hispanic, Non-Hispanic white, Non-Hispanic black, 

and other-race including multi-race), age groups (20-34, 35-49, and 50-65 years), poverty-income 

ratio (PIR), and BMI classified as underweight (<18.5 kg/m2), normal weight (18.5-24.9 kg/m2), 

overweight (25.0-29.9 kg/m2), and obese (>30.0 kg/m2) [35]. PIR, calculated as reported 

household income divided by the federal poverty guideline for household income, was divided 

into six categories: 0-0.99, 1-1.99, 2-2.99, 3-3.99, 4-4.99, and 5 or more. Ratios below 1 indicate 

a PIR below the officially defined poverty threshold [60].  

Disease categories included obesity, diabetes, and metabolic syndrome. Diabetes definition 

was based on elevated fasting plasma glucose (≥126 mg/dL), hemoglobin A1c (≥6.5%), or self-

report of: “yes” in response to the question “have you ever been told by a doctor you have 

diabetes?”, or to the use of glucose-lowering medications [61]. The National Cholesterol 

Education Program Adult Treatment Panel III definition of metabolic syndrome was applied to 

classify this condition based on the presence of three or more of the following risk factors: 1) WC 

(102 cm for men, 88 cm for women); 2) triglycerides (150 mg/dl) or taking antihyperlipidemic 
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medications; 3) HDL-C (40 mg/dl in men, 50 mg/dl in women); 4) hypertension (130/85 

mmHg) or taking antihypertensive medications; and 5) impaired fasting glucose (110 mg/dl) or 

taking glucose-lowering medications [62].  

Analysis of variance determined differences in mean health status indicators by TDPs. 

Multivariate models determined associations between four TDPs and health outcomes accounting 

for potential confounders including survey year, sex, race/ethnicity, age group, BMI, PIR, and 

energy misreporting (EI: EER). The EI:EER ratio was used as a continuous covariate in the 

analyses based on methods by Murakami and Livingstone, as this technique has been shown to 

result in similar findings when compared to excluding implausible reporters while avoiding 

selection bias [51,63]. Appropriate survey weights were constructed for the 2003-2006 survey 

years as directed by the NCHS [64]. Sampling weights were rescaled so that the sum of the weights 

matched the survey population at the midpoint of the 4 years covering 2003-2006. Adjustment for 

the complex survey design including clustering and stratification was completed following NCHS 

guidelines [65]. Comparisons between groups were considered statistically significant when 

p<0.05/6 (Tukey-Kramer type adjustment for multiple comparisons). Analyses were completed 

using SAS Survey procedures and inferential analysis version 9.4.  

2.3.8 Visualization 

The visualization illustrates the distribution of non-zero energy intake occasions in each 

cluster using heat maps (Figure 2.1).  Each eating occasion in the heat map is marked by its time 

stamp (x-axis) and absolute amount of energy intake (y-axis). Time axis ranged from 0=12:00 a.m. 

to 24=12:00 a.m. the next day with absolute energy intake (y-axis) ranging from 0 kcal to 4,000 

kcal at a particular time. The proportion of individuals reporting intake occasions (certain absolute 

energy intake and time stamp) is indicated through shading and ranged from 0=0% to 0.15=15% 

of each cluster. Darker shading signifies that a greater proportion of that particular cluster reported 

that specific energy intake at that specific time. Figure 2.1 exhibits four distinct TDPs of energy 

intake. Figure 2.2 adds color to differentiate the 4 clusters.  
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Figure 2.1. Heat maps for MDTW clusters which depict the absolute amount of energy intake (y-

axis) for U.S. adults 20-65 years as drawn from NHANES 2003-2006 over a 24-hour day from 

time 0=12:00 a.m. to time 24= 12:00 a.m. the next day (x-axis). 

 

 

Figure 2.2. Heat maps for MDTW clusters which depict the distribution of the largest eating 

occasion within each cluster for U.S. adults 20-65 years as drawn from NHANES 2003-2006. 
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2.4 Results 

Characteristics of participants in the four clusters representing TDPs are shown in Table 2.1. 

The number of participants was similar between Clusters 1, 2 and 3, though Cluster 4, 

characterized by evenly spaced energy-balanced eating occasions, included the highest number of 

participants, approximately 2 times the total number in the other clusters. Significant differences 

were present among clusters by sex (p<0.0001), age (p=0.001), and BMI (p=0.03), but not by 

survey year, race/ethnicity, or household PIR. Compared to the other 3 clusters, Cluster 4 had a 

proportionally greater representation of females vs. males (64.7% vs. 35.3%). Cluster 4 included 

a higher proportion of ages 50-65 years (44.6%) compared to the other age groups, specifically 

20-34 years (23.5%) and 35-49 years (31.9%). In respect to BMI, normal weight was more heavily 

represented in Cluster 4 (30.8%) compared to the other clusters (22.9%-28.3%); whereas obese 

category was prominent in Clusters 2 and 3 (38.5% and 39.2%, respectively) compared to Clusters 

1 and 4 (34.6% and 33.2%, respectively).    
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Table 2.1. Characteristics of clusters representing temporal dietary patterns of U.S. adults aged 

20-65 years as drawn from the NHANES, 2003-2006 (n=1,627). 

Characteristic Total (n) Cluster 1 Cluster 2 Cluster 3 Cluster 4 P-valuea 

n (%)b 

Total  1,627 214 (13.2) 340 (20.9) 283 (17.4) 790 (48.5)  

Survey year       

2003-2004 804 116 (54.2) 170 (50.0) 134 (47.3) 384 (48.6)  

2005-2006 823 98 (45.8) 170 (50.0) 149 (52.7) 406 (51.4) 0.66 

Sex       

Male 839 134 (62.6) 216 (63.5) 210 (74.2) 279 (35.3)  

Female 788 80 (37.4) 124 (36.5) 73 (25.8) 511 (64.7) <0.0001 

Race/ Ethnicity        

Mexican 

American 

350 56 (26.2) 84 (24.7) 47 (16.6) 163 (20.6)  

Other Hispanic 46 4 (1.9) 10 (2.9) 3 (1.1) 29 (3.7)  

Non-Hispanic 

White 

826  112 (52.3) 168 (49.4) 157 (55.5) 389 (49.2)  

Non-Hispanic 

Black 

331 33 (15.4) 61 (17.9) 66 (23.3) 171 (21.6)  

Other 74 9 (4.2) 17 (5.0) 10 (3.5) 38 (4.8) 0.35 

Age group (year)       

20-34 458 72 (33.6) 99 (29.1) 101 (35.7) 186 (23.5)  

35-49 548 67 (31.3) 130 (38.2) 99 (35.0) 252 (31.9)  

50-65 621  75 (35.0) 111 (32.6) 83 (29.3) 352 (44.6) 0.001 

PIRc       

0-0.99 219 28 (13.1) 43 (12.6) 40 (14.1) 108 (13.7)  

1.00-2.99 352 51 (23.8) 76 (22.4) 60 (21.2) 165 (20.9)  

2.00-2.99 221 27 (12.6) 41 (12.1) 36 (12.7) 117 (14.8)  

3.00-3.99 254 34 (15.9) 59 (17.4) 44 (15.5) 117 (14.8)  

4.00-4.99 152 21 (9.8) 32 (9.4) 23 (8.1) 76 (9.6)  

>5.00 370 46 (21.5) 80 (23.5) 69 (1.6) 175 (22.2) 0.98 

BMId       

Underweight 20 3 (1.4) 3 (0.9) 4 (1.4) 10 (1.3)  

Normal weight 466 49 (22.9) 94 (27.6) 80 (28.3) 243 (30.8)  

Overweight 562 88 (41.1) 112 (32.9) 88 (31.1) 274 (34.7)  

Obese 579 74 (34.6) 131 (38.5) 111 (39.2) 263 (33.2) 0.03 

aRao Scott F adjusted χ2 P-value is a goodness-of-fit, one-sided test; statistical significance is indicated when 

P<0.05. Analyses were adjusted for clustering and stratification. Sample weights were constructed and applied to 

the analysis as directed by NCHS. Weight were rescaled so that the sum of the weights matched the survey 

population at the midpoint of the 4 years covering 03-06. 

bTotal numbers do not always add up to sample size due to missing values. 

cPIR: poverty-income ratio. 

dBMI: body mass index; categories were defined per the World Health Organization [35]. 
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2.4.1 Characteristics of Temporal Dietary Patterns  

Compared to the other 3 clusters, the absolute amount of energy intake in Cluster 4 was 

moderate, reaching up to 1,200 kcal for each of three main eating occasions throughout the day 

from 6:00 a.m. to 11:00 p.m. with a greater proportion (~10%) of the cluster engaging in eating 

occasions from 6:00 a.m. to 10:00 a.m., 12:00 p.m. to 3:00 p.m., and 6:00 p.m. to 10:00 p.m. In 

contrast, the other 3 clusters revealed patterns with one distinct peak in absolute amount of energy 

intake. For instance, participants in Cluster 1 consumed less mean absolute energy (reaching up to 

1,200 kcal) at earlier hours of the day between 7:00 a.m. to 1:00 p.m., compared to a peak in intake 

between 3:00 p.m. to 6:00 p.m. with a higher proportion of the cluster (~12%) consuming between 

1,000- 2,400 kcal. Energy intake tended to be lower towards later hours of the day 7:00 p.m. to 

11:00 p.m. reaching up to 1,000 kcal. Participants in Cluster 2 had a lower average energy intake 

between 6:00 a.m. to 10:00 a.m. reaching up to 1,000 kcal compared with a peak reaching up to 

2,400 kcal from 11:00 a.m. to 3:00 p.m. (a higher proportion of the cluster ~10% consumed energy 

ranging between 800-1,600 kcal), followed by intake reaching up to 1,400 kcal between 5:00 p.m. 

to 10:00 p.m. Finally, Cluster 3 exhibited a spread-out pattern in regards to amount of energy 

consumed with mean energy intake reaching up to 1,400 kcal between 7:00 a.m. to 1:00 p.m. and 

a much higher intake occasion with energy ranging between 1,000-2,600 kcal towards later hours 

of the day between 6:00 p.m. to 11:00 p.m. (a higher proportion of the cluster ~8-10% consumed 

energy between 1,000-1,600 kcal). Figure 2.2 represents the distribution of the largest eating 

occasion for each cluster and confirms patterns observed in Figure 2.1 in which Clusters 1, 2 and 

3 exhibited distinct peaks in energy intake at different times of the day, whereas Cluster 4 displayed 

energy-balanced eating occasions with no distinct peaks.  

2.4.2 Association of Temporal Dietary Patterns with Adiposity and Chronic Disease  

Significant differences in mean BMI were present between Clusters 3 and 4 in the 

unadjusted model (p<0.05/6, simple linear regression model results not shown). Significant 

differences in mean WC and odds of obesity relative to normal weight status were present between 

Clusters 1 and 4, 2 and 4, and 3 and 4 in the unadjusted model (p<0.05/6, simple linear regression 

model results not shown). Cluster 3 had the highest mean BMI (29.20.4 kg/m2) and WC 

(100.21.0 cm), whereas Cluster 4 had the lowest mean BMI (28.40.2 kg/m2) and WC (96.10.5 
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cm) compared to the other clusters. Analysis to examine the dependence of BMI, WC, and odds 

of obesity relative to normal weight status on cluster in the adjusted models indicated significant 

differences between Clusters 1 and 4, 2 and 4, and 3 and 4 (all p<0.0001), while there were no 

significant differences in all other cluster comparisons p>0.05/6 (Tables 2.2, 2.3, and 2.4). The 

significantly different mean BMI and WC and odds of obesity were greatest between Clusters 3 

and 4 (BMI: β=4.80.4 kg/m2, WC: β=12.71.2 cm, obesity OR: 6.7; 95% CI: 3.9, 11.6), similar 

to the results of the unadjusted model (BMI: β=1.10.3 kg/m2, WC: β=5.90.9 cm, obesity OR: 

1.7; 95% CI: 1.2, 2.4; data not shown).  

Table 2.2. Mean body mass index (kg/m2) and covariate-adjusted regression model results for 

clusters representing temporal dietary patterns of U.S. adults ages 20-65 years as drawn from the 

NHANES, 2003-2006a. 

Mean Body Mass Index (kg/m2) 

   βd(SE)e 95% CI βd(SE)e 95% CI βd (SE)e 95% CI 

   Compared with: 

Adjusted 

modelsb 

n (%) Mean 

(SEM)c 

Cluster 2 Cluster 3 Cluster 4 

Cluster 1 214 (13.2) 29.10.4 0.20.5 -1.3,1.6 -0.90.6 -2.4,0.7 4.00.6 2.3, 5.6* 

Cluster 2 340 (20.9) 29.10.3   -1.00.5 -2.4,0.4 3.80.6 2.2, 5.3* 

Cluster 3 283 (17.4) 29.20.4     4.80.4 3.7, 6.0* 

Cluster 4 790 (48.6) 28.40.2       

aSimple regression model results are not shown but differences in the mean BMI were present among clusters 3 and 

4 at p<0.05/6 (Tukey Kramer adjustment for multiple comparisons). 

bModels were adjusted for survey year, sex, age, race/ethnicity, PIR, and energy misreporting (EI:EER). 

cSEM: standard error of the mean. 

dß represents the difference between mean BMI of cluster and reference cluster. Differences in mean BMI are 

different than those between raw means because they represent differences in least square means. 

eSE: standard error. 

*P-values are two-sided; statistical significance is indicated when p<0.05/6; estimates were adjusted for clustering 

and stratification. Sample weights were appropriately constructed and applied to the analysis as directed by the 

NCHS. Weights were rescaled so that the sum of the weights matched the survey population at the midpoint of the 4 

years covering 2003-2006. 
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Table 2.3. Mean waist circumference (cm) and covariate-adjusted regression model results for 

clusters representing temporal dietary patterns of U.S. adults ages 20-65 years as drawn from the 

NHANES, 2003-2006a. 

Mean WC (cm) 

   βd(SE)e 95% CI βd(SE)e 95% CI βd (SE)e 95% CI 

   Compared with: 

Adjusted 

modelsb 

n (%) Mean 

(SEM)c 

Cluster 2 Cluster 3 Cluster 4 

Cluster 1 214 (13.2) 99.41.1 0.41.5 -3.5,4.4 -2.51.4 -6.4,1.4 10.21.5 6.2,14.3* 

Cluster 2 340 (20.9) 99.50.8   -2.91.4 -6.7,0.9 9.81.4 6.1,13.5* 

Cluster 3 283 (17.4) 100.21.0     12.71.2 9.5,15.8* 

Cluster 4 790 (48.6) 96.10.5       

aSimple regression model results are not shown but differences among clusters in mean WC were similar to those in the 

adjusted model at p<0.05/6 (Tukey Kramer adjustment for multiple comparisons). 

bModels were adjusted for survey year, sex, age, race/ethnicity, PIR, and energy misreporting (EI:EER). 

cSEM: standard error of the mean. 

dß represents the difference between mean WC of cluster and reference cluster. Differences in mean WC are different 

than those between raw means because they represent differences in least square means. 

eSE: standard error. 

*P-values are two-sided; statistical significance is indicated when p<0.05/6; estimates were adjusted for clustering and 

stratification. Sample weights were appropriately constructed and applied to the analysis as directed by the NCHS. 

Weights were rescaled so that the sum of the weights matched the survey population at the midpoint of the 4 years 

covering 2003-2006. 
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Table 2.4. Odds ratio of obesity relative to normal weight and covariate-adjusted regression 

model results for clusters representing temporal dietary patterns of U.S. adults ages 20-65 years 

as drawn from the NHANES, 2003-2006a. 

Obesityd Odds Ratio 

  ORc  95% CI ORc 95% CI ORc  95% CI 

  Compared with: 

Adjusted 

modelsb 

n (%) Cluster 2 Cluster 3 Cluster 4 

Cluster 1 214 (13.2) 1.2 0.7, 2.2 0.8 0.4, 1.5 5.3 2.8, 10.1* 

Cluster 2 340 (20.9)   0.7 0.4, 1.2 4.4 2.5, 7.9* 

Cluster 3 283 (17.4)     6.7 3.9, 11.6* 

Cluster 4 790 (48.6)       

aSimple regression model results are not shown but differences among clusters in odds ratio of obesity were similar 

to those in the adjusted model at p<0.05/6 (Tukey Kramer adjustment for multiple comparisons). 

bModels were adjusted for survey year, sex, age, race/ethnicity, PIR, and energy misreporting (EI:EER). 

cOR represents odds ratio of obesity of cluster and reference cluster. 

dObesity defined as  BMI ≥ 30kg/m2 [35]. 

*P-values are two-sided; statistical significance is indicated when p<0.05/6; estimates were adjusted for clustering 

and stratification. Sample weights were appropriately constructed and applied to the analysis as directed by the 

NCHS. Weights were rescaled so that the sum of the weights matched the survey population at the midpoint of the 4 

years covering 2003-2006. 

 

Regarding the other health status indicators and outcomes investigated, there were three 

significant differences in mean HDL-C between Clusters 1 and 3, 2 and 4, and 3 and 4 (p<0.05/6) 

in the unadjusted model, however, these differences were not observed in the adjusted model except 

between Clusters 1 and 2 (data not shown). Moreover, there were no significant differences amongst 

clusters in any of the other health status indicators and diseases outcomes including type 2 diabetes 

and metabolic syndrome in both unadjusted and adjusted models (data not shown). 

2.5 Discussion 

TDPs generated from one 24-hour recall are associated with BMI, WC, and obesity but not 

with any of the other health status indicators or disease outcomes investigated. To our knowledge, 

this is the first study to assess the association of TDP based on timing, amount, and sequence of 

eating occasions throughout a 24-hour period with health outcomes in an adult U.S. population, 

while adjusting for potential confounders. Of note, the mean differences in BMI and WC 

associated with TDP were both statistically significant and clinically meaningful, implicating their 

relevance in disease management and clinical application [66–68]. Thus, observed mean 
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differences in these health status indicators may suggest that TDP could be an important health 

exposure that requires further exploration. A few studies have assessed the temporal patterning of 

energy intake in adults throughout the day [22,69]. Using latent class analysis approach, Leech et 

al., found a “conventional” pattern defined by evenly spaced meals and snacks consumed at 

conventional times in Australia, similar to Cluster 4 found in this study, to be associated with lower 

odds of overweight or obesity and central overweight or obesity in women compared to another 

pattern characterized by a higher eating frequency [69]. Moreover, findings from the current study 

support previous work which revealed that a TDP characterized by three evenly spaced, energy-

balanced eating occasions throughout the day was linked with improved dietary quality [22,24]. 

The findings of significant lower mean BMI and WC, and odds of obesity relative to normal 

weight status in Cluster 4 compared to all other clusters indicates that a pattern with evenly spaced 

energy-balanced eating occasions consumed throughout a day may be more advantageous in 

relationship to health compared to patterns with one distinct peak in absolute amount of energy 

intake throughout the day. Regular intervals of energy intake throughout the day has a positive 

impact on risk factors for diabetes mellitus and heart disease [10]. In fact, irregular patterns of total 

energy intake i.e., with intake limited to one portion of the day or continuously through the day, 

seem to be less advantageous for the maintenance of body weight and optimum cardiometabolic 

health compared to a more intentional eating strategy which entails eating at planned intervals to 

distribute total energy intake during day [10]. Further, Cluster 4 includes a higher proportion of 

the age groups 35-49 years and 50-65 years compared to 20-34 years which is consistent with 

evidence indicating that by age group, likelihood of eating three times a day is lowest during 

adolescence and young adulthood and progressively increases with age [4]. Interestingly, Cluster 

4 also included the highest number of participants (48.6%) which is consistent with evidence that 

shows that the majority of the U.S. population consumes three main meals/ day in addition to at 

least one snack [4]; however, among the U.S. population, around one fourth (24%) of daily energy 

is consumed at lunch and 24% through snacks, while most of daily energy is consumed at dinner 

(~35%) which is contradictory to a pattern of energy-balanced eating occasions [4].  

Furthermore, Cluster 3 characterized with the highest absolute energy intake towards later 

hours of the day (6:00 p.m. to 11:00 p.m.) had the highest mean BMI and WC, and odds of obesity 

relative to normal weight status compared to Cluster 4. On the other hand, compared to Cluster 4, 

Cluster 2 with the highest energy intake at earlier hours of the day (11:00 a.m. to 3:00 p.m.) had 
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the lowest mean BMI and WC, and odds of obesity relative to normal weight status. Models 

controlled for total energy intake; thus, these findings may indicate that observed differences in 

the magnitude of outcomes examined could be explained by temporal differences in these patterns. 

Evidence from epidemiologic studies suggests a positive association between evening meal 

consumption and obesity. For example, in a study of 1,245 middle-aged adults, consuming greater 

energy intake at dinner (≥48%) compared with <33% or 33-48%, was associated with a 2.33-fold 

greater odds of developing obesity [70]. Another study reported significant decreases in BMI 

among those who consumed breakfast or lunch as the largest meal relative to those who ate their 

largest meal at dinner [71]. Findings from this analysis also revealed a greater magnitude of 

difference in mean BMI and WC, and odds of obesity in a pattern with later meal intake; yet, 

instead of assessing the timing of a single meal or energy intake across stratified timespans, this 

study examined TDPs based on a novel data-driven approach which integrates the timing, amount, 

and sequence of eating occasions throughout the day 

The finding of no significant differences in health outcomes among Clusters 1, 2, and 3 was 

unexpected. These clusters were similar in terms of number of main eating occasions, however 

they differed in the timing of the highest energy intake occasion: Cluster 1 (3:00 p.m.-6:00 p.m.), 

Cluster 2 (11:00 a.m.-3:00 p.m.) and Cluster 3 (6:00 p.m. to 11:00 p.m.). Notably, the effect of 

evening meal intake on measures of adiposity remains inconclusive [72]; specifically, some 

observational studies showed that evening meal intake is associated with increased weight, BMI, 

and/or odds of overweight  [13,73,74], whereas others found no association [75–77] which may 

help explain why there were no significant differences in examined health status indicators and 

disease outcomes amongst those clusters. Additionally, it is possible that the lack of observed 

differences could be due to other factors including sleep timing and exercise which could interact 

with daily dietary patterns.  

Interestingly, TDPs were associated with long-term markers of health including BMI and 

WC, whereas no significant associations were found between patterns and other examined health 

indicators including serum biomarkers especially fasting plasma glucose and triglycerides which 

may more closely reflect dietary intake reported in the collected 24-hour recalls. Using latent class 

analysis, Leech et al. reported a “later lunch” temporal eating pattern characterized by a later lunch 

eating occasion (between 1:00 p.m.-2:00 p.m.) to be associated with systolic and diastolic blood 

pressures compared to a “conventional” pattern in women; however, no such associations were 
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found between TDPs and systolic or diastolic blood pressures in the current study. These results 

may be an artifact of laboratory procedures or may be explained by large intra- and inter-individual 

variability in serum biomarkers and blood pressure compared to BMI and WC. Otherwise, findings 

may indicate that TDPs more strongly associate with long-term or chronic health outcomes; 

however, more research is needed that examines links between TDPs and these outcomes to further 

elucidate these findings.   

Sociodemographic characteristics such as those included in this study (Table 2.1) have been 

shown to be associated with diet-related differences in health outcomes.  Limited studies have 

examined how energy distribution or timing of energy intake throughout the day may differ 

between population groups and results suggest potential differences by sociodemographic factors 

including sex and age [78]. For instance, females have been reported to be generally more 

regulated in their eating patterns compared to males [79]. Striegel-Moore et al. found that males 

are more likely than females to engage in night eating [80], which is consistent with the higher 

proportion of males in Cluster 3 with the latest meal intake occasion (6:00 p.m.-11:00 p.m.) 

compared to Cluster 4 characterized by evenly spaced energy-balanced eating occasions. 

Moreover, Cluster 4 also included the highest proportion of the age group 50-65 years compared 

to all other clusters; a regular meal pattern has been more commonly observed in older adults 

compared to young adults, where the latter group has been described as having a more “de-

synchronized” eating pattern [78,79]. Further, taken in the context of relative differences in BMI 

among the clusters, the TDP associated with the lowest BMI, WC and odds of obesity (Cluster 4), 

was more significantly represented by characteristics: female and age group 50-65 years; whereas 

the TDP associated with the highest BMI, WC, and odds of obesity (Cluster 3) comprised a higher 

proportion of males compared to females and ages 20-34 years compared to the other 2 age groups. 

Of note, multivariate regression models adjusted for sociodemographic characteristics, therefore 

observed differences in health status indicators and outcomes may be explained by differences 

amongst temporal patterns; however, variables in Table 2.1 show that certain participant 

characteristics more prevalently represented certain patterns. 

Daily dietary patterns that may be associated with behavioral factors that were outside of the 

scope of this study include exercise and sleep timing across the day and over time. As such, insight 

into how these behavioral components interact within a day and overall as part of a lifestyle pattern 

may unfold stronger associations with health outcomes compared to when they are considered 
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separately. Understanding how these behaviors interact on an individual basis could also inform 

more targeted advice and strategies that promote healthy eating and protect against chronic disease. 

Such data has become more available recently through the use of technology-assisted assessment 

tools including those targeting dietary and activity patterns and could be potentially integrated to 

determine whether or how timing of these behaviors interact to influence health. Moreover, the 

use of nutrition epidemiology analysis along with data-driven methods to integrate time to these 

behavioral patterns holds promise to explore how these temporal patterns through the day and over 

time effect health outcomes and with further development, this evidence may provide insight to 

inform population-level dietary and physical activity guideline recommendations.  

The strengths of the current analyses include the use of a data-driven approach that integrates 

amount and time of eating and sequence of eating occasions throughout an entire day for the 

development of TDPs. Additionally, our approach avoids between-subject variation that 

participants may have in regard to eating occasion definitions. Limitations of this study include 

the cross-sectional nature which provides a snapshot of the participants’ dietary intake and the 

small sample size representing ~8% of the original sample of participants included in survey years 

2003-2006; therefore, study results should be interpreted with caution. Of note, sample size 

attrition is mostly attributable to the selected age range 20-65 years and the inclusion of health 

status indicators examined in a fasting subsample of participants (both criteria resulted in loss of 

~84% of the original sample). Cluster descriptions describe the group and do not represent 

individuals. Moreover, patterns were developed based on one day of self-reported 24-hour dietary 

recalls; however, the inclusion of a second recall would have further limited our sample size; also, 

since information regarding the distribution of timing of dietary patterns over multiple days is 

unknown, exploration of the time, amount, and sequence of dietary intake over multiple days 

represents a research gap for future study. Furthermore, in this sample, around 60% of recalls were 

collected on a weekday; since dietary patterns could differ significantly between weekdays and 

weekends, it remains unclear whether different patterns could appear if the analysis was focused 

on weekends, thus future studies should consider investigation of dietary patterns over weekend 

days.  
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2.6 Conclusions 

This paper demonstrates that TDPs are associated with differences in BMI, WC, and obesity. 

Individuals with a TDP characterized by evenly spaced, energy-balanced eating occasions 

exhibited improved health status indicators and lower odds of disease compared to the other three 

patterns characterized by distinct peaks in energy intake at different times throughout the day. The 

incorporation of time to the concept of dietary patterns including amount and sequence of eating 

occasions may be important to determine links with health and could provide insight into the 

detection of behavioral patterns that predispose obesity and chronic disease to inform dietary 

guidelines recommendations.  
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3.1 Abstract 

Background:  Few attempts have been made to incorporate multiple aspects of physical activity, 

including timing and volume, to classify patterns that link to health outcomes. Temporal physical 

activity patterns integrating time and activity counts were created to determine their association 

with health status indicators: body mass index, waist circumference, fasting plasma glucose, 

hemoglobin A1c, triglycerides, high-density lipoprotein cholesterol, total cholesterol, blood 

pressure, and chronic diseases of obesity, diabetes, and metabolic syndrome.  

Methods: Physical activity accelerometry data collected from the National Health and Nutrition 

Examination Survey 2003-2006 was used to pattern absolute physical activity counts and time of 

activity from 1,627 non-pregnant adults with one random valid weekday. Modified dynamic time 

warping and kernel k-means clustering grouped participants to 4 clusters representing temporal 

physical activity patterns. Multivariate regression models controlling for potential confounders 

and adjusting for multiple comparisons (p<0.05/6) determined associations between clusters and 

health outcomes.  

Results: Participants in Cluster 2, represented by a temporal physical activity pattern with the 

highest absolute activity counts reaching >2,000 counts/minute between 9:00 a.m.-11:00 a.m. and 

tapering off through the day, had lower body mass index (p<0.0001), waist circumference 
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(p<0.0001), and 70% lower odds of obesity compared with participants in Cluster 1 with the lowest 

absolute physical activity counts of approximately 0 to 600 counts/minute from 6:00 a.m. to 11:00 

p.m. (95% CI: 0.1, 0.5). Cluster 3, characterized by a temporal physical activity pattern with high 

absolute activity counts reaching a maximum of 1,600 to 2,000 counts/minute between 6:00 p.m.-

9:00 p.m., was also associated with lower body mass index (p=0.0003) and waist circumference 

(p=0.001), and 60% lower odds of obesity compared to Cluster 1 (95% CI: 0.2, 0.6). 

Conclusions: Temporal physical activity patterns with higher activity counts ranging between 

1,600 ->2,000 counts/minute early (9:00 a.m.-11:00 a.m.) or later (6:00 p.m.-9:00 p.m.) in a day 

had significantly lower body mass index, waist circumference, and obesity odds compared with 

Cluster 1 with the lowest physical activity counts of approximately 0 to 600 counts/minute from 

6:00 a.m. to 11:00 p.m. Temporal physical activity patterns created by integrating time with physical 

activity counts throughout a day meaningfully link to health outcomes. 

Keywords (3-10 words): temporal, timing, physical activity, patterns, body mass index, waist 

circumference, obesity. 

3.2 Introduction 

Obesity is a global health problem with about 13% of the world’s adult population 

considered obese in 2016 [1]. Prevalence estimates of obesity in the United States (U.S.), increased 

between 2003-2004 and 2013-2014, reaching 42.4% among adults in 2017-2018 [2]. Obesity is 

both an outcome and a contributor to chronic disease development including type 2 diabetes and 

metabolic syndrome [3,4]. Low physical activity (PA) behavior is a potentially modifiable risk 

factor for obesity [5]. Though trends in meeting the U.S. PA Guidelines have improved between 

2008-2018 based on self-reports [5,6], percentages of U.S. adults meeting both aerobic and muscle 

strengthening guidelines remain low at around 20.6% [7].  

Engaging more of the population in PA is a public health priority given that the beneficial 

effects of PA are well documented. Specifically, increased exercise has been shown to aid in 

weight loss and maintenance [8], and lower waist circumference (WC) [9], blood pressure [10], 

and postprandial triglycerides [11]. Moreover, most previous PA research has focused on the 

association between intensity (i.e., moderate to vigorous) or counts of PA and health outcomes 

[11–14]. Beyond these two aspects of activity, the timing of activity may also be relevant to health. 
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A few studies have showed a potential benefit to modulating time of activity in relationship with 

health outcomes [15–18]. For instance one study reported higher odds of obesity in women who 

were less active in the morning hours compared to the evening [15], while another randomized 

clinical trial revealed significant lowering of body mass index (BMI) after 6 weeks of aerobic 

exercise was performed in the morning vs. evening in a group of women with overweight [16].  A 

limitation of these studies is a focus on vague unspecified parts of the day i.e., morning vs. evening 

without considering the specific timing of these activities or activity counts at other time points 

through the day. Consideration of the patterns of activity throughout a day, or “temporal PA 

patterns”, are a novel concept that may provide insight to the behavioral patterns related to health 

outcomes.  One of the challenges in this work however is utilizing methods that will characterize 

PA patterns as an exposure by integrating timing and other characteristics of PA in relation to 

health outcomes. 

A novel distance measure based on dynamic time warping (DTW) is used herein to identify 

similarities in the time and counts of activity over a 24-hour period and reduce the data using 

cluster analysis. Groups exhibiting similar activity throughout the day, or temporal PA patterns, 

are expected to display similar health status indicator values and chronic disease outcomes that are 

distinct from other temporally defined groups. Thus, the hypothesis for this study was that 

differences in health status indicators and disease outcomes exist between U.S. adult (aged 20-65y) 

participant clusters demonstrating similar 24-hour temporal PA patterns as generated from 

accelerometry data of the 2003-2006 National Health and Nutrition Examination Survey 

(NHANES).  

3.3 Methods 

3.3.1 Participants and Data Collection  

NHANES is a program of studies designed to assess the health and nutritional status of 

adults and children in the United States [19]. Participants were recruited using a complex, stratified, 

multistage probability sampling design in order to represent the civilian non-institutionalized U.S. 

population [19]. Participant characteristics including age, sex, race/ethnicity, and income to 

poverty ratio (PIR) were collected using an in-depth questionnaire during the in-person household 

interview. Survey participants were interviewed in their homes and subsequently examined in the 
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Mobile Examination Center. The health examination included the collection of anthropometric 

measurements, laboratory tests, and recruitment for the PA assessment component. Consent was 

required for all participants [20]. The NHANES protocols and content were approved by the NCHS 

Research Ethics Review Board [20]. 

3.3.2 Analytic Sample 

The NHANES data are released in 2-year cycles; because PA accelerometry data was 

collected and publicly released for survey years 2003-2004 and 2005-2006, these 4 years of data 

were combined for this analysis. Previous studies show no significant differences in the PA levels 

in these 2 cycles [21]. Data used for this analysis included non-pregnant U.S. adults ages 20-65y 

with one random weekday of valid accelerometer data and complete anthropometric and laboratory 

data (n=1,627). Pregnant women, children, adolescents, and adults older than retirement age were 

excluded because their daily activity patterns may include variation characteristic to the life stages 

they represent [5].  

3.3.3 Anthropometric assessment and Laboratory Tests  

Selected health status indicators and disease outcomes were chosen for their previous 

associations with PA [10,11,22,23]. Weight was measured using a digital scale to the nearest 0.1 

kilogram [24]. Standing height and WC were measured with a stadiometer and tape measure, 

respectively to the nearest 0.1 centimeter [24]. BMI was calculated as weight in kilograms divided 

by height in meters squared. Results were based on a single body measurement at examination.  

A phlebotomist obtained a blood sample from participants according to a standardized 

protocol [25,26]. Fasting plasma glucose and triglycerides were assessed after participants fasted 

at least 8 hours and not more than 24 hours. Fasting plasma glucose was measured using a 

hexokinase method with a Roche/Hitachi 911 (cycle 2003-2004) or a Roche Cobas Mira (cycle 

2005-2006) [27,28]. Triglycerides were measured enzymatically [29,30]. Hemoglobin A1c, total 

cholesterol, and high-density lipoprotein cholesterol (HDL-C) were based on samples taken 

regardless of fasting state. Hemoglobin A1c was measured with high performance liquid 

chromatography using Primus CLC 330 and Primus CLC 385 in the 2003-2004 cycle and using 

Tosoh A1c 2.2 Plus Glycohemoglobin Analyzer in the 2005-2006 cycle [31,32]. Total cholesterol 
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was measured enzymatically. An instrument change occurred in NHANES 2005-2006 for total 

cholesterol, but the method and laboratory location were similar to 2003-2004 cycle [33,34].  

HDL-C was analyzed using a direct HDL-C immunoassay method from 2003-2006 and similarly, 

a change in equipment to measure HDL-C was made for 2005-2006, yet the laboratory method 

and location were similar to 2003-2004 [33,35]. Blood pressure was measured using a mercury 

sphygmomanometer, with systolic and diastolic blood pressures determined based on up to 4 

measures [36]; if more than 1 measure was obtained, the first measure was not considered, and the 

remaining measures were averaged, otherwise, the first measure was used.  

3.3.4 Physical Activity Assessment  

The ActiGraph model 7164 accelerometer was used to collect objective information on 

participants’ PA. One-minute time intervals (epochs) were used to assign a count value which is a 

relative measure of changes in momentum that occurred during these intervals and which then 

could be converted to an estimate of PA intensity [37]. Monitors began recording activity 

information (for 7 consecutive days) at 12:01 a.m. the day after the health examination [38]. Ten 

hours of wear time was considered a valid day which was calculated by subtracting non-wear time 

(i.e., periods of  ≥60 consecutive minutes of zero activity counts allowing for intervals of 1-2 

consecutive minutes of relatively low activity counts i.e., 1-100 counts) from the total daily 

observation time (24 hours) [39].  

3.3.5 Temporal Physical Activity Patterns  

One random weekday of valid accelerometer data was chosen for this analysis as PA 

patterns on weekdays are shown to be different from weekend day [40]. Data from this day was 

used to develop time series of length 24, with each entry representing absolute PA counts during 

an hourly time interval. From each person’s valid days, one day was randomly selected so that 

each valid day had an equal chance of being chosen. The activity counts and hourly time stamps 

of non-zero counts were extracted from the time series to form the compact representation as 

defined in [41,42]. Several distance measures for comparing time series were investigated 

including the constrained DTW with Sakoe-Chiba band (CDTW) and the modified DTW (MDTW) 

based on our previous work to pattern dietary intake [43]. Both CDTW and MDTW belong to the 
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elastic distance family and find the optimal matching path among counts of activity in two time 

series [43]. The matching is “optimal” in the sense that the summed difference between matched 

counts is minimized. The Sakoe-Chiba band in CDTW and the weight parameter β in MDTW are 

controlling parameters to avoid pathological matchings (e.g. matching activities in the morning to 

activities in the evening). While the Sakoe-Chiba band rigorously limits the maximum time 

difference between matched entries, the weight parameter β controls the matching through a time 

difference penalty term: larger β indicates more penalty on matching entries that are different in 

time. Bands ranging between 60-720 minutes (60-minute increments) and β ranging from 0-10 (2 

increments) were explored in this paper, and parameter values outside of these ranges were omitted 

as they did not bring significant changes in the clustering results. Further, the distance measures 

were coupled with kernel k-means algorithm [44] to partition the time series into several clusters 

such that activity occasions are more similar in the same cluster and more dissimilar among 

different clusters. Cluster number k=4 was selected to divide the population into clusters 

representing similar temporal PA patterns to maintain consistency with previous development of 

temporal patterning [42,43,45]. MDTW β=10 was selected out of each distance measure pairing 

of CDTW bandwidth=360 and MDTW β=10 with k-means clustering, based on inferential 

analyses with health outcomes prioritized as: 1) most significant differences between the six 

pairwise comparisons among all health outcomes, 2) highest model R2 values, and 3) largest 

difference between highest and lowest mean of health status indicators.  

3.3.6 Statistical Analysis 

The Rao Scott F adjusted chi-square statistic was used to determine significant differences 

among clusters by selected characteristics: survey year (2003-2004 and 2005-2006), sex (male or 

female), race/ethnicity (Mexican American and other Hispanic, Non-Hispanic white, Non-

Hispanic black, and other-race including multi-race), age groups (20-34, 35-49, and 50-65y), PIR, 

and BMI categorized as underweight (<18.5 kg/m2), normal weight (18.5-24.9 kg/m2), overweight 

(25.0-29.9 kg/m2), and obese (>30.0 kg/m2) [46]. PIR, calculated as reported household income 

divided by the federal poverty guideline for household income, was divided into six categories: 0-

0.99, 1-1.99, 2-2.99, 3-3.99, 4-4.99, and 5 or more. Ratios <1 indicate a PIR below the officially 

defined poverty level [47].  
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Disease categories included obesity, diabetes, and metabolic syndrome. Diabetes 

classification was based on fasting plasma glucose (≥126 mg/dl), hemoglobin A1c (≥ 6.5%) or 

self-report of: “yes” in response to the question “have you ever been told by a doctor you have 

diabetes?” or to the use of glucose-lowering medications [48]. The National Cholesterol Education 

Program Adult Treatment Panel III definition of metabolic syndrome was applied to classify this 

condition based on the presence of three or more of the following risk factors: 1) WC (102 cm 

for men, 88 cm for women); 2) triglycerides (150 mg/dl) or taking antihyperlipidemic 

medications; 3) HDL-C (40 mg/dl in men, 50 mg/dl in women); 4) hypertension (130/85 

mmHg) or taking antihypertensive medications; and 5) impaired fasting glucose (110 mg/dl) or 

taking glucose-lowering medications [49].  

Analysis of variance determined differences in mean health status indicators by temporal 

PA patterns. Multivariate regression models examined associations between temporal PA patterns 

and health outcomes accounting for potential confounders: survey year, sex, race/ethnicity, age 

group, PIR, and BMI. Appropriate survey weights were constructed for the 2003-2006 survey 

years as directed by the NCHS [50]. Sampling weights were rescaled so that the sum of the weights 

matched the survey population at the midpoint of the 4 years covering 2003-2006. Adjustment for 

the complex survey design including clustering and stratification was completed following NCHS 

guidelines [44]. Comparisons between groups were considered statistically significant when 

p<0.05/6 (Tukey-Kramer type adjustment for multiple comparisons). Analyses were completed 

using SAS survey procedures and inferential analysis version 9.4.  

3.3.7 Visualization  

The visualization illustrates the distribution of non-zero PA counts in each cluster using 

heat maps (Figure 3.1). Each activity occasion in the heat map is marked by its time stamp (x-axis) 

and activity counts (y-axis). Time axis ranged from 0=12:00 a.m. to time 24=12:00 a.m. the next 

day with absolute daily PA counts (y-axis) ranging from 0 to > 1.2e5 counts per hour (cph) at a 

particular time (equivalent to 0-> 2,000 counts per minute (cpm)). The proportion of individuals 

that had the corresponding activity (certain activity count and time stamp) is indicated through 

shading and ranged from 0=0% to 0.12=12% of each cluster. Darker shading signifies that a greater 

proportion of that cluster reported activity at that specific time. Figure 3.1 exhibits four distinct 
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temporal PA patterns of activity occasions. Figure 3.2 adds color in order to differentiate the 4 

clusters. 

 

 

Figure 3.1. Heat maps for MDTW clusters which depict the absolute amount of activity counts 

(y-axis) for U.S. adults 20-65 years as drawn from NHANES 2003-2006 over a 24-hour day 

from time 0=12:00 a.m. to time 24= 12:00 a.m. the next day (x-axis). 

 

Figure 3.2. Heat maps for MDTW clusters which depict the distribution of the largest activity 

occasion within each cluster for U.S. adults 20-65 years as drawn from NHANES 2003-2006. 
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3.4 Results 

Characteristics of participants in the four clusters representing temporal PA patterns are 

presented in Table 3.1. Clusters 2 and 3 included proportionately equivalent numbers of 

participants, 11.2% and 12.0%, respectively, whereas Cluster 1 had the largest proportion (46.4%) 

followed by Cluster 4 (30.4%). Significant differences were present among clusters by sex 

(p<0.0001), race/ethnicity (p=0.001), age (p=<0.0001), and BMI (p=<0.0001), but not by survey 

year or PIR. Females were more heavily represented in Clusters 1 and 4 characterized by lower 

PA counts (58.1% and 44.9%, respectively) compared to Cluster 2 and 3 characterized by higher 

PA counts (29.7% and 37.2%, respectively). Whereas, Clusters 1 and 4 included a lower proportion 

of males (41.9% and 55.1%, respectively) compared to Clusters 2 and 3 (70.3% and 62.8%, 

respectively). Additionally, the non-Hispanic white group featured more prominently in Clusters 

3 and 4 (52.5% and 51.4%, respectively) compared with Clusters 1 and 2 (50.2% and 49.5%, 

respectively); whereas non-Hispanic blacks were more heavily represented in Clusters 1 and 3 

(22.9% and 20.9%, respectively) compared to the other two clusters (17.0 % and 17.4%). Further, 

Cluster 1 with the lowest activity counts included a higher proportion of age group 50-65y 

compared to other age groups, whereas Clusters 2 and 3 with much higher PA counts, included a 

higher proportion of the age group 20-34y. Regarding BMI, normal weight was more highly 

represented in Clusters 2 and 3 (36.2% and 37.2%, respectively) compared to Clusters 1 and 4 

(24.9% and 28.2%, respectively); while obese category was more heavily represented in Clusters 

1 and 4 (41.9% and 36.2%, respectively) compared to Cluster 2 and 3 (19.8% and 24.5%, 

respectively).   

Table 3.1. Characteristics of clusters representing temporal physical activity patterns of U.S. 

adults aged 20-65 years as drawn from the NHANES, 2003-2006 (n=1,627). 

Characteristic Total (n) Cluster 1 Cluster 2 Cluster 3 Cluster 4 P-valuea 

n (%)b 

Total  1,627 755 (46.4) 182 (11.2) 196 (12.0) 494 (30.4)  

Survey year 

2003-2004 804 368 (48.7) 89 (48.9) 117 (59.7) 230 (46.6)  

2005-2006 823 387 (51.3) 93 (51.1) 79 (40.3) 264 (53.4) 0.19 

Sex 

Male 839 316 (41.9) 128 (70.3) 123 (62.8) 272 (55.1)  
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Table 3.1 continued 

Female  788 439 (58.1) 54 (29.7) 73 (37.2) 222 (44.9) <0.0001 

Race/Ethnicity 

Mexican 

American 

350 141 (18.7) 51 (28.0) 38 (19.4) 120 (24.3)  

Other 

Hispanic  

46 15 (2.0) 8 (4.4) 6 (3.1) 17 (3.4)  

Non-Hispanic 

white 

826 379 (50.2) 90 (49.5) 103 (52.5) 254 (51.4)  

Non-Hispanic 

black 

331 173 (22.9) 31 (17.0) 41 (20.9) 86 (17.4)  

Other 74 47 (6.2) 2 (1.1) 8 (4.1) 17 (3.4) 0.001 

Age group (year) 

20-34 458 194 (25.7) 69 (37.9) 83 (42.3) 112 (22.7)  

35-49 548 226 (29.9) 71 (39.0) 65 (33.2) 186 (37.7)  

50-65 621 335 (44.4) 42 (23.1) 48 (24.5) 196 (39.6) <0.0001 

Household PIRc 

0-0.99 219 115 (15.2) 17 (9.3) 28 (14.3) 59 (11.9)  

1.00-2.99 352 163 (21.6) 48 (26.4) 36 (18.4) 105 (21.3)  

2.00-2.99 221 112 (14.8) 21 (11.5) 31 (15.8) 57 (11.5)  

3.00-3.99 254 99 (13.1) 35 (19.2) 34 (17.3) 86 (17.4)  

4.00-4.99 152 69 (9.1) 16 (8.8) 21 (10.7) 46 (9.3)  

>5.00 370 170 (22.5) 44 (24.2) 40 (20.4) 116 (23.5) 0.24 

BMId 

Underweight 20 13 (1.7) 2 (1.1) 2 (1.1) 3 (0.6)  

Normal 

weight 

466 188 (24.9) 66 (36.2) 73 (37.2) 139 (28.2)  

Overweight 562 238 (31.5) 78 (42.9) 73 (37.2) 173 (35.0)  

Obese  579 316 (41.9) 36 (19.8) 48 (24.5) 179 (36.2) <0.0001 

aRao Scott F adjusted χ2 P-value is a goodness-of-fit, one-sided test; statistical significance is indicated 

when P<0.05. Analyses were adjusted for clustering and stratification. Sample weights were constructed 

and applied to the analysis as directed by NCHS. Weight were rescaled so that the sum of the weights 

matched the survey population at the midpoint of the 4 years covering 03-06. 

bTotal numbers do not always add up to sample size due to missing values. 

cPIR: poverty-income ratio. 

dBMI: body mass index; categories were defined per the World Health Organization [47]. 
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3.4.1 Characteristics of Temporal Physical Activity Patterns 

Table 3.2. Qualitative description of clusters representing temporal PA patterns of U.S. adults 

NHANES 2003-2006 (n=1,627). 

 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Characteristics 

Activity level 

compared to 

other clusters 

Lowest activity Highest activity High activity low activity 

Range of activity 

counts (cpm) 

0-600 0->2,000 0-2,000 0-1,000 

Peak in activity No peaks Peak between 

9:00 a.m.-11:00 

a.m. (>2,000cpm) 

Peak between 6:00 

p.m.-9:00 p.m. 

(1,600-2,000) 

Peak between 11:00 

a.m.-2:00 p.m. 

(1,000cpm) 

Overall temporal 

pattern 

Low activity counts 

throughout the day 

with a sharp decline 

between 7:00 p.m-

9:00 p.m. (0-

200cpm) 

Highest during 

early hours; tapers 

off between 4:00 

p.m.-9:00 p.m. (0-

400cpm) 

Lowest between 

9:00 a.m.-2:00 

p.m. (0-400cpm); 

increases as day 

goes on 

Low activity counts 

throughout the day; 

lowest between 6:00 

p.m.-9:00 p.m. (0-

200cpm) 

Percentage of 

cluster engaging 

in high vs. low 

activity (within 

cluster) 

Higher percentage 

of the cluster ~10-

12% engaged in 

low activity (0-

400cpm); 

lower percentage 

~1-2% engaged in 

activity between 

400-600cpm 

Higher percentage 

of cluster ~3-8% 

engaged in activity 

between 0-1,200 

cpm; 

lower percentage 

~1-3% engaged in 

activity counts 

between 1,200-

>2,000cpm 

Higher percentage 

of the cluster ~5-

8% engaged in 

activity counts 

between 0-

1,000cpm; 

lower percentage 

1-3% engaged in 

activity counts 

between 1,200-

2,000cpm 

Higher percentage of 

the cluster ~8-10% 

engaged in activity 

between 0-800cpm; 

 

lower percentage of 

the cluster 1-2% 

engaged in activity 

counts ~1,000cpm 

cph: counts per hour 

cpm: counts per minute 

1.2e4 cph=200 cpm; 2.4e4 cph=400 cpm; 3.6e4 cph= 600 cpm; 4.8e4 cph=800 cpm; 6.0e4 cph= 1,000 cpm; 7.2e4 

cph=1,200 cpm; 9.6e4 cph=1,600cpm, >1.2e5 cph =2,000cpm 

 

Compared to all other clusters, Cluster 1 demonstrated the lowest PA counts reaching 3.6e4 

cph (600 cpm) for activity occasions throughout the day from 6:00 a.m.-11:00 p.m. with no distinct 

peaks (Figure 3.1 and Table 3.2). A more prominent decrease in activity was observed towards the 

end of the day between 7:00 p.m.-9:00 p.m. with a greater proportion of the cluster (9-12%) 

engaging in activity between 0-1.2e4 cph (0-200 cpm). Contrarily, Cluster 2 revealed a pattern with 

the highest PA counts with a major peak between 9:00 a.m.-11:00 a.m. reaching >1.2e5 cph 

(>2,000 cpm). The activity tended to taper off through the day with a higher proportion of the 

cluster (4-12%) engaging in lower activity counts ranging between 0-2.4e4 cph (0-400 cpm) 

between 4:00 p.m.-9:00 p.m. Cluster 3 demonstrated low activity counts between 9:00 a.m.- 2:00 
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p.m., where a higher proportion of the cluster (5-12%) engaged in activity ranging between 0-2.4e4 

cph (0-400 cpm), whereas the level of activity tended to increase towards later hours during the 

day reaching 9.6e4-1.2e5 cph (1,600-2,000 cpm) between 6:00 p.m.-9:00 p.m. The activity counts 

in Cluster 4 were low compared to Clusters 2 and 3 peaking at around 6.0e4 cph (1,000 cpm) 

between 11:00 a.m.-2:00 p.m., while a higher proportion of the cluster (9-12%) engaged in lower 

activity ranging between 0-1.2e4 cph (0-200 cpm) towards the end of the day 6:00 p.m.-9:00 p.m. 

Generally, in all of the clusters, the percentage of participants engaging in high activity counts 

tended to be lower compared to the percentage of participants engaging in low activity counts. 

Figure 3.2 confirms patterns revealed in Figure 3.1, most variation in patterns pertains to total 

activity counts and timing of activity peaks throughout the day.  

3.4.2 Association of Temporal Physical Activity Patterns with Adiposity and Chronic 

Disease  

Significant differences in mean BMI and WC were present among all clusters except for 

clusters 1 and 4 and 2 and 3 in the unadjusted model (p<0.05/6, simple linear regression model 

results not shown). Cluster 1 had the highest mean BMI (29.70.3 kg/m2) and WC (99.90.6 cm), 

whereas Cluster 2 had the lowest BMI (26.60.3 kg/m2) and WC (93.30.9 cm) compared to the 

other clusters. There were significant differences between all clusters (BMI: p<0.0001, WC: 

p<0.0002) except Clusters 1 and 4 as well as 2 and 3 (p>0.05/6) in the adjusted models (Tables 

3.3 and 3.4). The significantly different mean BMI and WC were greatest between Clusters 1 and 

2 (BMI: β=3.10.5 kg/m2, WC: β=8.21.3 cm), similar to the results of the unadjusted model (BMI: 

β=2.90.5 kg/m2, WC: β=6.51.4 cm; data not shown).  
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Table 3.3. Mean body mass index (kg/m2) and covariate-adjusted regression model results for 

clusters representing temporal physical activity patterns of U.S. adults ages 20-65 years as drawn 

from the NHANES, 2003-2006a. 

Mean BMI (kg/m2) 

   βd(SE)e 95% CI βd(SE)e 95% CI βd(SE)e 95% CI 

   Compared with: 

Adjusted 

modelsb 

n (%) Mean 

(SEM)c 

Cluster 2 Cluster 3 Cluster 4 

Cluster 1 755 (46.4) 29.7 (0.3) 3.10.5 1.8, 4.5* 2.90.4 1.7, 4.0* 0.40.5 -0.9, 1.8 

Cluster 2 182 (11.2) 26.6 (0.3)   -0.30.4 -1.5, 0.9 -2.70.5 -4.0, -1.4* 

Cluster 3 196 (12.1) 27.1 (0.4)     -2.40.5 -3.8, -1.0* 

Cluster 4 494 (30.4) 28.9 (0.3)       

aSimple regression model results are not shown but significant differences among clusters in mean BMI were similar 

to those in the adjusted model at p<0.05/6 (Tukey Kramer adjustment for multiple comparisons). 

bModels were adjusted for survey year, sex, age, race/ethnicity, and PIR. 

cSEM: standard error of the mean. 

dß represents difference between mean BMI of cluster and reference cluster. Differences in mean BMI are different 

than those between raw means because they represent differences in least square means. 

eSE: standard error. 

*P-values are two-sided; statistical significance is indicated when p<0.05/6; estimates were adjusted for clustering 

and stratification. Sample weights were appropriately constructed and applied to the analysis as directed by the 

NCHS. Weights were rescaled so that the sum of the weights matched the survey population at the midpoint of the 4 

years covering 2003-2006. 
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Table 3.4. Mean waist circumference (cm) and covariate-adjusted regression model results for 

clusters representing temporal physical activity patterns of U.S. adults ages 20-65 years as drawn 

from the NHANES, 2003-2006a. 

Mean WC (cm) 

   βd(SE)e 95% CI βd(SE)e 95% CI βd(SE)e 95% CI 

   Compared with: 

Adjusted 

modelsb 

n (%) Mean 

(SEM)c 

Cluster 2 Cluster 3 Cluster 4 

Cluster 1 755 (46.4) 99.9 (0.6) 8.21.3 4.7, 11.7* 7.51.2 4.2, 10.7* 1.61.3 -1.8, 5.0 

Cluster 2 182 (11.2) 93.3 (0.9)   -0.71.1 -3.7, 2.3 -6.61.1 -9.5, -3.7* 

Cluster 3 196 (12.1) 94.0 (1.0)     -5.91.4 -9.6, -2.1* 

Cluster 4 494 (30.4) 98.3 (0.7)       

aSimple regression model results are not shown but significant differences among clusters in mean WC were similar to 

those in the adjusted model at p<0.05/6 (Tukey Kramer adjustment for multiple comparisons). 

bModels were adjusted for survey year, sex, age, race/ethnicity, and PIR. 

cSEM: standard error of the mean. 

dß represents difference between mean WC of cluster and reference cluster. Differences in mean WC are different than 

those between raw means because they represent differences in least square means. 

eSE: standard error. 

*P-values are two-sided; statistical significance is indicated when p<0.05/6; estimates were adjusted for clustering and 

stratification. Sample weights were appropriately constructed and applied to the analysis as directed by the NCHS. Weights 

were rescaled so that the sum of the weights matched the survey population at the midpoint of the 4 years covering 2003-

2006. 

 

Significant differences in the odds of obesity relative to normal weight status and metabolic 

syndrome were present between all clusters except Clusters 1 and 4 and 2 and 3 in the unadjusted 

model (p<0.05/6, simple linear regression model results not shown). In the adjusted models, there 

were significant differences between all clusters (p=0.001) except Clusters 1 and 4 as well as 2 and 3 

for the obesity outcome relative to normal weight status, as well as significant differences between 

all clusters (p=0.01) except Clusters 1 and 3, 1 and 4, and 3 and 4 for odds of metabolic syndrome 

(Tables 3.5 and 3.6). The significantly different odds of obesity relative to normal and metabolic 

syndrome was greatest between Clusters 1 and 2 (obesity OR: 3.7; 95% CI: 2.0, 6.9, metabolic 

syndrome OR: 4.3; 95% CI: 1.6, 11.6), similar to the results of the unadjusted model (obesity OR: 

2.9; 95% CI: 1.6, 5.3, metabolic syndrome OR: 6.3 95% CI: 2.3, 17.0; data not shown).  
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Table 3.5. Odds ratio of obesity relative to normal weight and covariate-adjusted regression 

model results for clusters representing temporal physical activity patterns of U.S. adults ages 20-

65 years as drawn from the NHANES, 2003-2006a. 

Obesityd Odds Ratio 

  ORc  95% CI ORc 95% CI ORc  95% CI 

  Compared with: 

Adjusted 

modelsb 

n (%) Cluster 2 Cluster 3 Cluster 4 

Cluster 1 755 (46.4) 3.7 2.0, 6.9* 3.0 1.7, 5.5* 1.2 0.7, 1.9 

Cluster 2 182 (11.2)   0.8 0.4, 1.6 0.3 0.2, 0.5* 

Cluster 3 196 (12.1)     0.4 0.2, 0.7* 

Cluster 4 494 (30.4)       

aSimple regression model results are not shown but significant differences among clusters in odds ratio of obesity 

were similar to those in the adjusted model at p<0.05/6 (Tukey Kramer adjustment for multiple comparisons). 
bModels were adjusted for survey year, sex, age, race/ethnicity, and PIR. 

cOR represents odds ratio of obesity relative to normal of cluster and reference cluster. 

d Obesity was defined as BMI ≥ 30 kg/m2 [46]. 

*P-values are two-sided; statistical significance is indicated when p<0.05/6; estimates were adjusted for clustering 

and stratification. Sample weights were appropriately constructed and applied to the analysis as directed by the 

NCHS. Weights were rescaled so that the sum of the weights matched the survey population at the midpoint of the 4 

years covering 2003-2006. 
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Table 3.6. Odds ratio of metabolic syndrome and covariate-adjusted regression model results for 

clusters representing temporal physical activity patterns of U.S. adults ages 20-65 years as drawn 

from the NHANES, 2003-2006a. 

Metabolic Syndromed Odds Ratio 

  ORc  95% CI ORc 95% CI ORc  95% CI 

  Compared with: 

Adjusted 

modelsb 

n (%) Cluster 2 Cluster 3 Cluster 4 

Cluster 1 755 (46.4) 4.3 1.6, 11.6* 1.1 0.6, 2.0 1.3 0.8, 1.9 

Cluster 2 182 (11.2)   0.3 0.1, 0.8* 0.3 0.1, 0.8* 

Cluster 3 196 (12.1)     1.1 0.7, 2.0 

Cluster 4 494 (30.4)       

aSimple regression model results are not shown but significant differences among clusters in odds ratio of metabolic 

syndrome were similar to those in the adjusted model (except between Clusters 1 and 3) at p<0.05/6 (Tukey Kramer 

adjustment for multiple comparisons). 

bModels were adjusted for survey year, sex, age, race/ethnicity, PIR, and BMI. 

cOR represents odds ratio of metabolic syndrome of cluster and reference cluster. 

dMetabolic syndrome was defined using the National Cholesterol Education Program Adult Treatment Panel III based 

on the presence of ≥ 3 of the following risk factors: 1) WC (102 cm for men, 88 cm for women); 2) triglycerides 

(150 mg/dl) or taking antihyperlipidemic medications; 3) HDL-C (40 mg/dl in men, 50 mg/dl in women); 4) 

hypertension (130/85 mmHg) or taking antihypertensive medications; and 5) impaired fasting glucose (110 mg/dl) 

or taking glucose-lowering medications [49].  
*P-values are two-sided; statistical significance is indicated when p<0.05/6; estimates were adjusted for clustering and 

stratification. Sample weights were appropriately constructed and applied to the analysis as directed by the NCHS. 

Weights were rescaled so that the sum of the weights matched the survey population at the midpoint of the 4 years 

covering 2003-2006. 

 

Regarding the other health status indicators and outcomes examined, three significant 

differences in mean hemoglobin A1c, fasting plasma glucose and odds of diabetes were observed 

between Clusters 1 and 2, 1 and 3, as well as 2 and 4 (p<0.05/6) in the unadjusted models, however, 

these differences were not observed in the adjusted models (data not shown). Additionally, there was 

one significant difference in mean HDL-C between Clusters 2 and 4 in the unadjusted model, while 

there were two significant differences between Clusters 1 and 2 as well as 2 and 4 in the adjusted 

model (data not shown). Two significant differences existed in mean triglycerides among Clusters 1 

and 2 and 2 and 4 in the unadjusted models and these differences remained in the adjusted models 

(data not shown). Finally, one significant difference in mean total cholesterol (Clusters 1 and 3) and 

diastolic blood pressure (Clusters 1 and 2) and two significant differences in mean systolic blood 

pressure (Clusters 1 and 2 and 1 and 3) were observed in the unadjusted model; but these differences 

were not observed in the adjusted model (data not shown).  
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3.5 Discussion 

Temporal PA patterns generated from one valid random day of accelerometry data are 

associated with BMI, WC, obesity, and metabolic syndrome, but not with any of the other health 

status indicators examined. To our knowledge, previous studies have not attempted to derive 

temporal PA patterns through the integration of time and counts of activity throughout the day. An 

abundance of research investigates the relationship between PA and health outcomes; however, 

most studies have focused on categorizing participants based on intensity and frequency of activity 

and their links to health outcomes [51–53], while others examined daily PA patterns by focusing  

on distinct time periods when PA was reported such as type of day (weekday vs. weekend) [54], 

activity phenotypes including “weekend warrior” [40,55], and seasonality [56], without the 

additional contextual factors including the timing of activity throughout the day considered in the 

current study. It is noteworthy that mean differences in BMI and WC associated with temporal PA 

patterns were also clinically relevant implicating their potential application to clinical practice and 

treatment management [57–59]. Therefore, observed mean differences in health status indicators 

imply that temporal PA patterns could be an important health exposure that holds promise for early 

detection of lifestyle factors promoting health and disease in the population.   

Cluster 1 was associated with higher BMI, WC, and odds ratio of obesity compared with 

Clusters 2 and 3, which demonstrates that an inactive pattern (with activity counts ranging between 

0-600 cpm) throughout the day is linked with the most adverse health outcomes as evidenced by 

prior research [51,60,61]. The fact that this cluster included the highest number of participants 

(46.4%) is alarming but not surprising as previous literature has documented a high level of 

sedentary behavior (>50% of waking time) among U.S. adults [5,62,63]. Moreover, Cluster 1 

predominantly includes ages 50-65y, which is consistent with evidence that shows that activity 

tends to decline with age [64].  

Findings of lower mean BMI and WC and odds of obesity associated with Clusters 2 and 3 

(maximum counts ranging between 1,600- >2,000 cpm performed earlier or later in a day, 

respectively) compared with Cluster 1 (maximum counts of 600 cpm through the day) and Cluster 

4 (maximum counts reaching 1,000 cpm between 11:00 a.m. to 2:00 p.m.) support previous 

literature showing that higher activity counts are associated with lower BMI and WC [13,14,65], 

but add new information regarding the timing of these patterns. Limited evidence exists regarding 

the relevance of time of activity through the day in terms of links to health [15–18], so further 
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development of temporal PA patterns may allow further exploration of time as a potentially 

important factor. Moreover, the integration of time and counts of activity to clustering along with 

the findings of clinically meaningful differences in health outcomes, based on distinctive time and 

count features of activity patterns, indicates that applying a more complex patterning technique to 

characterize activity through the day, has the potential to unfold the complexity of behavior rather 

than solely describing PA patterns by sums or labels of maximum activity levels. The present study 

also contributes to evidence of how usual activity, as part of a lifestyle pattern, occurs throughout 

the day; for instance, around 3 hours involve increased activity counts as was observed in  Clusters 

2, 3, and 4 which may indicate planned exercise regimens or doing household work, whereas more 

prolonged periods of time are tied to lower activity counts, possibly indicating time while sleeping 

or time spent at classrooms or work. This is consistent with evidence that during weekdays, 

average hours per day spent in sports, exercise and recreation activities is lower than average hours 

spent per day on other leisure activities including watching television and socializing as well as 

time spent in primary activities such as sleeping, working, attending class, and eating and drinking 

[66]. 

Certain socio-demographic characteristics such as those included in this study (Table 3.1) 

have been shown to be associated with PA-related differences in health outcomes. Trends observed 

in two U.S. surveillance systems revealed that among racial/ethnic groups, non-Hispanic whites 

had the highest prevalence of being physically active and lowest prevalence of being inactive 

compared to non-Hispanic blacks [67]. Based on this, we would expect that Cluster 2, with the 

highest activity counts, would be more heavily represented by non-Hispanic whites compared to 

non-Hispanic blacks and vice versa for Cluster 1, with the lowest activity counts. However, in this 

study, Cluster 1 comprised the highest number of participants from all race/ethnicity groups, with 

the highest proportion of non-Hispanic whites. Further, taken in the context of relative differences 

in BMI among the clusters, the temporal PA pattern associated with the lowest BMI and WC 

(Cluster 2) was more significantly represented by characteristics: male, non-Hispanic white, and 

age group 35-49y, while the temporal PA pattern (Cluster 1) associated with the highest BMI and 

WC included a higher proportion of females, non-Hispanic white participants compared to non-

Hispanic black and Mexican Americans, and age group 50-65y compared to the other two age 

groups.  



 

85 

In general, activity counts tended to be lower towards the end of the day (6:00 p.m.-10:00 

p.m.) in all clusters except for Cluster 3. Cluster 3 is characterized by lower activity counts during 

earlier hours (9:00 a.m.-2:00 p.m.) with higher counts observed towards the end of the day between 

6:00 p.m.-9:00 p.m. As this cluster was more heavily represented by ages 20-35y, perhaps these 

higher PA counts in the evening may reflect sports activities or going to a gym. On the other hand, 

Cluster 2 with higher activity during early hours (9:00 a.m.-11:0 a.m.) included a higher proportion 

of ages 35-49y, potentially indicating PA during work. Finally, Clusters 1 and 4 characterized by 

lower activity counts ranging between 200-1,000 cpm were more heavily represented by age group 

50-65y which is consistent with findings that activity tends to decline with age [64].  

Elements other than intensity and duration of activity such as time of activity can be an 

important aspect of PA patterns and may describe PA better within the context of lifestyle. 

Moreover, timing of activity occasions may also be tied to dietary intake and sleep-wake regimens. 

For instance, an individual with a “night owl” behavior pattern may have a greater evening 

preference and choose to exercise later in a day compared to one with an “early bird” behavior 

pattern with morning preference [68]. Therefore, insight into how these various factors interact 

within a day and within an overall routine over longer periods of time such as over a week, month, 

or year, may reveal stronger associations to health outcomes compared to when they are considered 

separately and thus allow for more targeted interventions based on overall lifestyle, work schedules, 

and family life. Further, the rapid accumulation of data on health behaviors through technology-

assisted assessment tools including those targeting dietary and activity patterns will provide 

additional data for future investigation of whether and how the timing of these activities influences 

health. Integrating analyses of these datasets will add further knowledge of how these behavioral 

factors may contribute to metabolic dysfunction and chronic disease. Moreover, utilization of 

complex analytic tools including data-driven techniques and methods of epidemiology, to integrate 

time to behavioral patterns including activity and dietary intake, holds promise to understand how 

these temporal patterns through the day and over time influence long-term health outcomes. 

Strengths of this research include the use of a comprehensive approach to classifying PA 

exposure that considers the complexity of activity over a 24-hour period rather than examining 

single activity occasions (i.e., in the morning or evening). To our knowledge, this is the first study 

to attempt integrating time in a 24-hour day to patterns of activity. In addition, the methodology 

used in the current study to create temporal PA patterns and compare groups by health status 
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indicators and disease outcomes performed similarly when compared with the traditional 

clustering methods based on reported activity occasion (such as by engaging in different activity 

levels vs. inactivity) [69,70], and the results reveal efficacy that might be enhanced by additional 

methodologic refinement in future studies. The limitations of the study should also be mentioned. 

One important limitation is the small sample size representing ~8% of original sample of 

participants included in survey years 2003-2006; therefore, study results should be interpreted with 

caution. Of note, sample size attrition is mostly attributable to the selected age range 20-65y and 

the inclusion of health status indicators examined in a fasting subsample of participants (both 

criteria resulted in loss of ~84% of the original sample). Additionally, one valid weekday was used 

to represent the activity occasions of the participants; though one random valid day has been shown 

to be sufficient for producing reliable population-level estimates of accelerometer-measured 

activity [71], patterns of activity could differ based on type of day and may potentially vary more 

on the weekends compared with the weekdays. Thus, further studies should consider investigation 

of activity patterns over weekend days. Moreover, accelerometers do not capture all types of 

activity including static activities (e.g., riding a stationary bike or water activities such as 

swimming) [38]; therefore, although this is an objective measure of PA, it still may not represent 

the true activity levels of the U.S. population [40].  

3.6 Conclusion 

Temporal PA patterns are associated with differences in BMI, WC, and chronic disease. 

Individuals with higher activity counts performed early (9:00 a.m.-11:00 a.m.) or later (6:00 p.m.-

9:00 p.m.) in a day exhibited lower BMI, WC and odds of chronic disease compared to those with 

lower activity counts based on objectively measured PA data collected on one random weekday. 

The incorporation of time of day with counts and sequence of activity is possible to create temporal 

PA patterns that are related to health and could provide insight into early detection of behavioral 

patterns that predispose obesity and chronic disease. 
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CONCLUSION  

Primary findings from the systematic review (Chapter 1) revealed a potential benefit to 

modulating exercise timing relative to meal consumption for optimizing postprandial glycemic 

response in adults. However, a gap still remains in understanding whether the time of day of both 

these behaviors may drive this association due to a limited number of studies that investigate the 

timing of exercise performed pre- vs. post-meal, at several time points throughout the day, and 

links to health.    

Findings from Chapters 2 and 3 showed that the incorporation of time to the concepts of 

both dietary and physical activity patterns is possible and may be important to determine links with 

health. Specifically, findings showed that a temporal dietary pattern characterized by evenly 

spaced, energy-balanced eating occasions throughout the day was associated with improved 

outcomes including lower mean body mass index and waist circumference and odds of obesity 

compared to three other patterns characterized by distinct peaks in energy intake at different times 

throughout the day. This pattern is supported in the Dietary Guidelines for Americans based on 

evidence linking diet to chronic disease prevention. Moreover, a temporal physical activity pattern 

characterized by higher activity counts performed early or later in a day was associated with lower 

mean body mass index and waist circumference and odds of obesity compared to patterns with 

lower activity counts. These findings are consistent with evidence linking higher activity counts 

to improved health outcomes; and add new information regarding timing of these patterns and with 

further development may expand exploration of timing as a potentially important factor to physical 

activity patterns.  

Collectively, results from Chapters 2 and 3 revealed an independent association of temporal 

dietary and physical activity patterns with body mass index, waist circumference, and obesity using 

a novel methodology. This evidence may serve as a platform to investigating the potential joint 

effects of both these behaviors and explore their interaction within a joint temporal lifestyle pattern, 

to better understand and identify patterns that support health or predispose to obesity and chronic 

disease. Moreover, findings from the joint patterning exploration may address the gap identified 

in the systematic review and if the joint effects are demonstrated, then the findings should be 

further confirmed through randomized controlled trials which can manipulate the time of day of 

these behaviors while controlling for both dietary intake and activity. Results from these controlled 
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trials would help ascertain whether observed associations with health outcomes, as seen in findings 

from Chapters 2 and 3, may be explained by personal, environmental, or behavioral factors or 

whether there is a true causal relationship between time of day of these events and health. 
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