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ABSTRACT

Yang, Jing Ph.D., Purdue University, May 2020. The error estimation in finite ele-
ment methods for elliptic equations with low regularity. Major Professor: Professor
Zhiqiang Cai .

This dissertation contains two parts: one part is about the error estimate for the

finite element approximation to elliptic PDEs with discontinuous Dirichlet boundary

data, the other is about the error estimate of the DG method for elliptic equations

with low regularity.

Elliptic problems with low regularities arise in many applications, error estimate

for sufficiently smooth solutions have been thoroughly studied but few results have

been obtained for elliptic problems with low regularities. Part I provides an error esti-

mate for finite element approximation to elliptic partial differential equations (PDEs)

with discontinuous Dirichlet boundary data. Solutions of problems of this type are

not in H1 and, hence, the standard variational formulation is not valid. To circum-

vent this difficulty, an error estimate of a finite element approximation in the W 1,r(Ω)

(0 < r < 2) norm is obtained through a regularization by constructing a continuous

approximation of the Dirichlet boundary data. With discontinuous boundary data,

the variational form is not valid since the solution for the general elliptic equations

is not in H1. By using the W 1,r (1 < r < 2) regularity and constructing continu-

ous approximation to the boundary data, here we present error estimates for general

elliptic equations.

Part II presents a class of DG methods and proves the stability when the solu-

tion belong to H1+ε where ε < 1/2 could be very small. we derive a non-standard

variational formulation for advection-diffusion-reaction problems. The formulation is

defined in an appropriate function space that permits discontinuity across element
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interfaces and does not require piece wise Hs(Ω), s ≥ 3/2, smoothness. Hence, both

continuous and discontinuous (including Crouzeix-Raviart) finite element spaces may

be used and are conforming with respect to this variational formulation. Then it es-

tablishes the a priori error estimates of these methods when the underlying problem

is not piece wise H3/2 regular. The constant in the estimate is independent of the

parameters of the underlying problem. Error analysis presented here is new. The

analysis makes use of the discrete coercivity of the bilinear form, an error equation,

and an efficiency bound of the continuous finite element approximation obtained in

the a posteriori error estimation. Finally a new DG method is introduced i to over-

come the difficulty in convergence analysis in the standard DG methods and also

proves the stability.
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1. INTRODUCTION

Partial differential equations with low regularity arise in many physical modelling

problems. The low regularity usually comes from the non-smoothness of the mod-

ellings, for example, the non-smoothness of the domain, the non-smoothness of the

boundary data and the non-smoothness of the coefficients. The finite element method

(FEM) is the most widely used method for solving PDE problems of engineering and

mathematical models. In the study of FEM, the error estimate plays an important

role, which is one of the main topics of my Ph.D. research. There are two major types

of error estimates for finite element methods, a priori and a posteriori error estimates.

The main feature of a priori estimates is that they give us the order of convergence of

a given method, that is, they tell us the finite element error ‖u− uh‖ in some norm

‖·‖ is O(hλ), where h is the maximum mesh size and λ is positive. And in adaptive

mesh refinement, a posteriori error estimates are used to indicate where the error is

large and a mesh refinement is then placed in those elements. The process is repeated

until a satisfactory error tolerance is reached. And the low regularity may lead to the

difficulty in the error analysis.

In this chapter, we briefly introduce some examples of the elliptic problems with

low regularity and some preliminaries for finite element methods. In this thesis, bold-

face letters represent vectors, vector fields, or tensors and light- face letters represent

scalar or scalar valued functions. The letter C with or without subscripts denotes a

generic positive constant, possibly different at different occur- rences.

1.1 PDEs with non-smooth boundary data

The partial differential equations with discontinuous boundary data have arisen

in many physical models. The difficulty of this kind of problems is that when the
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boundary data is not continuous, the solution will not belong to H1 space, and hence,

does not satisfy the standard variational formulation. Even though finite element

approximations may be defined as usual by choosing a value of either g
D

(x−) or

g
D

(x+) at discontinuous point x ∈ ∂Ω, it is difficult to estimate error bound of finite

element approximation due to lack of error equation. In the following, we introduce

two examples of this kind of problems.

1.1.1 Poisson equations with non-smooth boundary data

In [9], Apel, Nicaise and Pfefferer first studied Poisson equations with L2 boundary

data.

Consider the boundary value problem

−4u = f, in Ω, u = y, on Γ := ∂Ω,

with right hand side f ∈ H−1(Ω) and boundary data y ∈ L2(Γ). We assume Ω ∈

<2 to be a bounded polygonal domain with boundary Γ. Such problems arise in

optimal control when the Dirichlet boundary control is considered in L2(Γ) only, see

for example the papers [11, 20].

This paper introduces the most popular method to solve this kind of problem,

which is the transposition method. It is based on the use of some integration by

parts and leads to the very weak formulation: Find u ∈ U such that

(u,4v)Ω = (u, ∂nv)Γ − (f, v)Ω, ∀v ∈ V

with (w, v)G :=
∫
G
wv denoting the L2 (G) scalar product or an appropriate duality

product. The main issue is to find the appropriate trial space U and test space

V. The main drawback of the very weak formulation is the fact that a conforming

discretization of the test space should be made by C1-elements.
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1.1.2 Stokes equations with non-smooth Dirichlet boundary data

In [3], it provides strict error estimates for different finite element approximations

of the two-dimensional Stokes lid driven cavity flow.

Consider the two-dimensional Stokes driven cavity problem:
−∆u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on ∂Ω

where Ω is a bounded polygonal domain, u is the velocity, p is the pressure, f is the

external force and g is the velocity boundary data satisfying
∫
∂Ω
g · n = 0.

The main approach is to regularize the problem by constructing a continuous

approximation to the discontinuous boundary data.

1.2 PDEs with non-smooth coefficients

PDEs with non-smooth coefficients arise in a lot of modelling problems, such as

molecular electrostatics [25], geophysics [26], ecology [27], astrophysics [28].

Example 1.2.1 Consider the following interface problem (i.e., the diffusion problem

with discontinuous coefficients):

−∇ · (α(x)∇u) = f in Ω

with homogeneous Dirichlet boundary conditions

u = 0 on ∂Ω,

where Ω is a bounded polygonal domain in <d with d = 2 or 3; f ∈ L2(Ω) is a given

function; and diffusion coefficient α(x) is positive and piecewise constant with possible

large jumps across subdomain boundaries (interfaces):

α(x) = αi > 0 in Ωi for i = 1, ..., n.

Here, Ωi
n
i=1 is a partition of the domain Ω with Ωi being an open polygonal domain.
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In [20], Bernardi1 and Verfürth studied the error estimates for this kind of problem

and proved the estimates to be robust with respect to jumps of the coefficients. The

key technique is the using of a modification of Clement’s quasi-interpolation operator

which allows to obtain estimates for the interpolation error which are independent of

the size of the jumps of α. But in the analysis, the Quasi-monotonicity assumption

is needed, which is the following:

Quasi-monotonicity assumption. Assume that any two different subdomains Ωi

and Ωj , which share at least one point, have a connected path passing from Ωi to

Ωj through adjacent subdomains such that the diffusion coefficient α(x) is monotone

along this path.

In [22], Cai, He and Zhang proved the robustness of estimations without QMA by

using the efficiency bound of the a posteriori error estimation.

1.3 Preliminaries

The finite element method (FEM) is the most widely used numerical method

for solving partial differential equations in two or three space variables (i.e., some

boundary value problems). To solve a problem, the FEM subdivides a large system

into smaller, simpler parts that are called finite elements. This is achieved by a

particular space discretization in the space dimensions, which is implemented by the

construction of a mesh of the object: the numerical domain for the solution, which has

a finite number of points. The finite element method formulation of a boundary value

problem finally results in a system of algebraic equations. The method approximates

the unknown function over the domain. The simple equations that model these finite

elements are then assembled into a larger system of equations that models the entire

problem. The FEM then uses variational methods from the calculus of variations to

approximate a solution by minimizing an associated error function.
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1.3.1 Sobolev spaces and norms

Let Ω is a bounded open connected set in <d, k ∈ N ∪ {0} and r ∈ [1,∞]. Define

the Sobelov space W k,p is defined by

W k,r(Ω) := {u ∈ Lr(Ω) : Dαu ∈ Lr(Ω), ∀α with |α|≤ k},

where Dαu are the weak derivatives of u.

This space is equipped with the norm

‖u‖k,r,Ω:=
∑
|α|≤k

‖Dαu‖Lr(Ω).

When r = 2, the Sobolev space W s,2(Ω) and W s,2(∂Ω) are denoted by Hs(Ω) and

Hs(∂Ω), and the associated inner product are denoted by (·, ·)s,Ω and (·, ·)s,∂Ω, re-

spectively. (We omit the subscript Ω from the inner product and norm designation

when there is no risk of confusion.)

And the fractional Sobolev norm is defined as follows(see, e.g., [4,6]). For s = m+t

with integer m ≥ 0 and 0 < t < 1, the norm ‖·‖s,r,Ω is defined by:

‖v‖s,r,Ω=

‖v‖rm,r,Ω+
∑
|α|=m

∫
Ω

∫
Ω

|Dα(x)−Dα(y)|r

|x− y|1+tr
dxdy

1/r

for all v ∈ W s,r(Ω).

1.3.2 Variational formulations

Suppose that
H is a Hilbert space ,

V is a closed subspace ∈ H,

a(·, ·) is a bounded, coercive bilinear form on V.

In general, a variational formulation is posted as followed:

Given F ∈ V ′, find u ∈ V such that a(u, v) = F (v),∀v ∈ V .
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Example 1.3.1 Let Ω ∈ <2 to be a bounded polygonal domain with boundary Γ.

Consider the boundary value problem

4u = f, in Ω u = g, on Γ.

Define the solution space

H1
g (Ω) = {v ∈ H1(Ω) : v = g on Γ}

and

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on Γ}.

The corresponding variational problem is to find u ∈ H1
g (Ω) such that

a(u, v) = F (v), ∀v ∈ H1
0 (Ω),

where a(u, v) = (∇u,∇v) and F (v) = (f, v).
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2. GENERAL ELLIPTIC PROBLEMS WITH

NON-SMOOTH DIRICHLET BOUNDARY DATA

Let Ω be a bounded polygonal domain in R2 with boundary ∂Ω = ΓD ∪ ΓN and

ΓD ∩ΓN = ∅. Assume that ΓD and ΓN are connected open sets and that two internal

angles at ΓD ∩ ΓN are less than or equal to π/2.

Consider the following general elliptic partial differential equation
−α∆u+ β · ∇u+ cu = f in Ω,

u = g
D

on ΓD,

α∇u · n = g
N

on ΓN ,

(2.0.1)

where f ∈ L2(Ω) and g
N
∈ H1/2(ΓN). Let ΓD = ∪ni=0ΓDi and the Dirichlet boundary

data g
D

is piecewise H3/2 on ΓD, i.e., g
D
∈ H3/2(ΓDi) for i = 1, 2, ..., n. It is easy to

check that g
D
∈ W 1−1/r,r(ΓD) for all 1 < r < 2 not in H1/2(ΓD). Assume that there

exists a positive constant ρ0 such that

ρ := −1

2
∇ · β + c ≥ ρ0 > 0,

which guarantees the coercivity of the bilinear form of the problem.

Problem (2.0.1) has the following regularity property [5]:

Theorem 2.0.1 Let Ω be a convex polygon. Assume that f ∈ W−1,r(Ω), g
N
∈

W−1/r,r(ΓN) and g
D
∈ W 1−1/r,r(ΓD) where 1 < r < 2, then problem (2.0.1) has a

unique solution u ∈ W 1,r(Ω) satisfying

‖u‖1,r,Ω≤ Cr
(
‖f‖−1,r,Ω+‖g

D
‖1−1/r,r,ΓD+‖g

N
‖−1/r,r,ΓN

)
,

where Cr is a positive constant independent of f , g
D

, and g
N

, but may depend on r.
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2.1 Smooth approximation of Dirichlet boundary data g
D

To regularize problem (2.0.1), we introduce a smooth approximation gε ∈ H3/2(ΓD)

to the Dirichlet boundary data g
D

. To this end, let

r(t) = 〈x(t), y(t)〉, for 0 < t < 1

be a parametrization of ΓD. Without loss of generality, assume that the parametrized

curve is oriented counterclockwise.

Let {ti}ni=1 be a partition of interval [0, 1] such that

0 = t0 < t1 < · · · < tn+1 = 1 (2.1.1)

and that r(t) for ti ≤ t ≤ ti+1 is a parametrization of ΓDi for i = 0, 1, · · · , n. Let

g
D

(t) = g
D

(x(t), y(t)) and gε(t) = gε(x(t), y(t)),

where gε(t) = g
D

(t) on t ∈ [0, 1]\∪ni=1[ti, ti + ε] for a sufficiently small ε > 0 such that

ti + 2ε < ti+1 for i = 1, · · · , n.

On the interval [ti, ti+ε] for i = 1, · · · , n, let gε(t) be the cubic Hermit interpolant

of g
D

using data: {g
D

(t−i ), g′
D

(t−i ), g
D

(ti+ε), g
′
D

(ti+ε)}, where g
D

(t−i ) = lim
t→t−i

= g
D

(t).

That is, gε(t) satisfies the following interpolation conditions:

g(k)
ε (ti) = g(k)

D
(t−i ) and g(k)

ε (ti + ε) = g(k)
D

(ti + ε) for k = 0, 1. (2.1.2)

Let φk(t) and ψk(t) for k = 0, 1 be the basis function of the Hermit cubic polynomial

on interval [0, 1], then

φ0(t) = (t− 1)2(2t+ 1), ψ0(t) = t(t− 1)2,

φ1(t) = t2(−2t+ 3), and ψ1(t) = t2(t− 1).

On [ti, ti + ε], gε(t) has the form of

gε(t) = g
D

(t−i )φ0

(
t− ti
ε

)
+ g

D
(ti + ε)φ1

(
t− ti
ε

)
+ε g′

D
(t−i )ψ0

(
t− ti
ε

)
+ ε g′

D
(ti + ε)ψ1

(
t− ti
ε

)
.
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Remark 2.1.1 Since gε(t) is in C1(ti, ti+ε) for i = 1, 2, , ..., n, hence gε ∈ H3/2(ΓD).

It is easy to see that on (ti, ti + ε), there exist positive constants c0, c1, and c2 inde-

pendent of ε such that

gε(t) ≤ c0, g′ε(t) ≤ c1ε
−1, and g′′ε (t) ≤ c2ε

−2.

To derive the error estimates in Sobolev norms, the following inequalities will be

needed.

Lemma 2.1.2 For any r ∈ (1, 2) and ti ∈ [0, 1], i = 1, ..., n defined in (2.1.1), we

have the following estimates:∫ ti

0

∫ ti+ε

ti

(x− ti)r

|x− y|r
dxdy ≤ ε2 ln ε−1, (2.1.3)

∫ 1

ti+ε

∫ ti+ε

ti

(ti + ε− x)r

|x− y|r
dxdy ≤ ε2 ln ε−1. (2.1.4)

Moreover, if 0 < ε < 1/2, then∫ ti

0

∫ ti+ε

ti

(x− ti)2

|x− y|2
dxdy ≤ ε2/2. (2.1.5)

Proof It suffices to prove (2.1.3) since (2.1.4) can be shown in a similar fashion. To

this end, a direct integration gives

I ≡
∫ ti

0

∫ ti+ε

ti

(x− ti)r

|x− y|r
dxdy =

∫ ti+ε

ti

(x− ti)r
(x− ti)1−r − x1−r

r − 1
dx. (2.1.6)

Let h(x, r) = (x− ti)1−r − x1−r, since h(x, 1) = 0, there exists a ξ ∈ (1, r) such that

h(x, r)

r − 1
=

h(x, r)− h(x, 1)

r − 1
=
∂h

∂r
(x, ξ)

= x1−r lnx− (x− ti)1−r ln(x− ti) ≤ −(x− ti)1−r ln(x− ti),

which, together with (2.1.6), gives

I ≤ −
∫ ti+ε

ti

(x− ti) ln(x− ti) dx =
1

2
ε2
(

1

2
− ln ε

)
≤ ε2 ln ε−1.

It follows from a direct integration and Tayler expansion of the function ln(1 + x)

at x = 0 that∫ ti

0

∫ ti+ε

ti

(x− ti)2

|x− y|2
dxdy = tiε− t2i ln(ti + ε) + t2i ln(ti) = tiε− t2i ln(1 +

ε

ti
) ≤ ε2/2,

which implies (2.1.5). This completes the proof of the lemma.
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With Lemma 2.1.2, we are ready to estimate approximation property of gε and its

upper bounds.

Theorem 2.1.3 Let g
D

and gε be the discontinuous Dirichlet boundary data and its

continuous approximation as previously defined, respectively. Then for any 1 < r < 2

and 1/2 < α ≤ 1, the following estimates hold:

‖g
D
− gε‖r1− 1

r
, r,ΓD

. ε2−r ln ε−1,

and ‖gε‖2
1/2+α,ΓD

. ε−2α ln ε−1.

Here and thereafter, we use the symbol . for less than or equal to up to a constant

independent of ε and r .

Proof Let

δg = g
D
− gε =


g
D
− gε, t ∈ ∪ni=1(ti, ti + ε),

0, otherwise.

From the definition of the fractional Sobolev norm, it follows that

‖δg‖r
1− 1

r
,r,ΓD

= ‖δg‖r0,r,ΓD+

∫
ΓD

∫
ΓD

|δg(x)− δg(y)|r

|x− y|r
dxdy

=
n∑
i=1

∫ ti+ε

ti

|δg|rdx+
n∑
i=1

n∑
j=1

∫ tj+ε

tj

∫ ti+ε

ti

|δg(x)− δg(y)|r

|x− y|r
dxdy

+2
n∑
i=1

∫ ti+ε

ti

∫
[0,1]\∪ni=1[ti,ti+ε]

|δg(y)|r

|x− y|r
dxdy

≡ II + II1 + II2.

Let M = max{max
i

max
ΓDi

|δg|,max
i

max
ΓDi

|g′
D
|,max

i
max
ΓDi

|g
D
|}, by the triangle inequality,

we have that

II ≤ nM rε . ε.
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To bound II1, it follows from the triangle inequality, the definition of δg, and

Remark 2.1.1 that for i = j,

|δg(x)− δg(y)|≤ |g
D

(x)− g
D

(y)|+|gε(x)− gε(y)|. |x− y|+ε−1|x− y|.

For i 6= j, it implies that |x− y|> ε and

|δg(x)− δg(y)|r ≤ |δg(x)− δg(ti)|r+|δg(y)− δg(tj)|r

. ε−r|x− ti|r+ε−r|y − tj|r.

Together with Lemma 2.1.2, we have that

II1 .
n∑
i=1

∫ ti+ε

ti

∫ ti+ε

ti

|δg(x)− δg(y)|r

|x− y|r
dxdy

+
n∑
i=1

∑
j 6=i

∫ tj+ε

tj

∫ ti+ε

ti

|δg(x)− δg(y)|r

|x− y|r
dxdy

.
n∑
i=1

∫ ti+ε

ti

∫ ti+ε

ti

ε−r|x− y|r

|x− y|r
dxdy

+
n∑
i=1

∑
j 6=i

∫ tj+ε

tj

∫ ti+ε

ti

ε−r
|x− ti|r+|y − tj|r

|x− y|r
dxdy

. ε2 · ε−r + ε−r · ε2 ln ε−1 . ε2−r ln ε−1

Arguing in a similar way, for y ∈ [ti, ti + ε], it follows that

|δg(y)|r≤ |δg(y)− δg(ti)|r. ε−r|y − ti|r.

Together with Lemma 2.1.2, it implies that

II2 .
n∑
i=1

∫ ti+ε

ti

∫
[0,1]\[ti,ti+ε]

ε−r|y − ti|r

|x− y|r
dxdy . ε2−r ln ε−1.

Combining II, II1, and II2 implies that

‖δg‖r
1− 1

r
,r,ΓD

. ε2−r ln ε−1,

which completes the proof of the first inequality.



12

To prove the second inequality, since g
D
∈ H3/2(ΓDi), the embedding theorem im-

plies that g
D
∈ H1/2+α(ΓDi). With gε = g

D
− δg, it suffices to estimate ‖δgε‖1/2+α,ΓD .

To this end, it follows from the fractional Sobelov norm and the construction of δg

that

‖δg‖2
1/2+α,ΓD

= ‖δg‖2
1,ΓD

+

∫
ΓD

∫
ΓD

|δg′(x)− δg′(y)|2

|x− y|2α
dxdy.

≤
n∑
i=1

∫ ti+ε

ti

(
|δg|2+|δg′|2

)
+

n∑
j=1

n∑
i=1

∫ tj+ε

tj

∫ ti+ε

ti

|δg′(x)− δg′(y)|2

|x− y|2α
dxdy

+2
n∑
i=1

∫
[0,1]\∪ni=1[ti,ti+ε]

∫ ti+ε

ti

|δg′(x)|2

|x− y|2α
dxdy.

It follows from Remark 2.1.1 and Lemma 2.1.2 that

n∑
i=0

∫ ti+ε

ti

(
|δg|2+|δg′|2

)
. ε(M2 + ε−2) . ε−1.

Arguing as before, consider the integral over x ∈ [ti, ti + ε] and y ∈ [tj, tj + ε]. For

i = j, it follows from the triangle inequality, the definition of δg and Remark 2.1.1

that

|δg′(x)− δg′(y)|2≤ |g′
D

(x)− g′
D

(y)|2+|g′ε(x)− g′ε(y)|2.M2 + ε−4|x− y|2.

And for i 6= j, it implies that

|δg′(x)− δg′(y)|2 ≤ |δg′(x)− δg′(ti)− δg′(y) + δg′(tj)|2

. ε−4|x− ti|2+ε−4|y − tj|2+M2.
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Together with Lemma 2.1.2, it implies that

n∑
j=1

n∑
i=1

∫ tj+ε

tj

∫ ti+ε

ti

|δg′(x)− δg′(y)|2

|x− y|2α
dxdy

.
n∑
i=1

∫ ti+ε

ti

∫ ti+ε

ti

ε−4|x− y|2−2αdxdy +
n∑
i=1

∑
j 6=i

∫ tj+ε

tj

∫ ti+ε

ti

ε−4 |x− ti|2

|x− y|2α
dxdy

+
n∑
i=1

∑
j 6=i

∫ tj+ε

tj

∫ ti+ε

ti

ε−4 |y − tj|2

|x− y|2α
dxdy +

n∑
i=1

∑
j 6=i

∫ tj+ε

tj

∫ ti+ε

ti

1

|x− y|2α
dxdy

. ε−4 · ε2−2αε2 + ε−4 · ε2 ln ε−1 · ε2−2α + ε2 · ε−2α . ε−2α ln ε−1

Similarly, it can be proved that

n∑
i=1

∫
[0,1]\∪ni=1[ti,ti+ε]

∫ ti+ε

ti

|δg′(x)|2

|x− y|2α
dxdy . ε−2α ln ε−1.

Combining all the parts gives that

‖δg‖2
1/2+α,ΓD

. ε−2α ln ε−1,

which, in turn, proves the result.

2.2 A priori error estimate

With the continuous approximation gε of the Dirichlet data g
D

, consider the fol-

lowing regularized problem:
−α∆uε + β · ∇uε + cuε = f in Ω,

uε = gε on ΓD,

α∇uε · n = g
N

on ΓN ,

(2.2.1)

Let H1(Ω) = W 1, 2(Ω) and let

H1
gε, D(Ω) := {v ∈ H1(Ω) : v = gε on ΓD} and H1

D(Ω) := H1
0, D(Ω).

The corresponding variational formulation of the problem in (2.2.1) is to find uε ∈

H1
gε,D

(Ω) such that

a(uε, v) = f(v), ∀ v ∈ H1
0,D(Ω), (2.2.2)
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where the bilinear and linear forms are defined by

a(uε, v) = (α∇uε, ∇v) + (β · ∇uε, v) + (c uε, v) and f(v) = (f, v) + (g
N
, v)ΓN ,

respectively.

To discretize problem (2.2.2), let Th = {K} be a finite element triangulation of

the domain Ω. Denote by hK the diameter of the element K and let h = maxK∈Th hK .

For each element K ∈ Th, let Pk(K) be the space of polynomials of degree less than

or equal to k.

Denote the continuous linear finite element space associated with the triangulation

by

Vh = {v ∈ H1(Ω) : v|K∈ P1(K) ∀K ∈ T }.

Let g̃ε be the linear interpolation of gε and let

Vh,g̃ε = {v ∈ Vh : v = g̃ε on ΓD} and Vh,0 = Vh ∩H1
D(Ω).

Then the finite element approximation is to find uε, h ∈ Vh,g̃ε such that

a(uε, h, vh) = f(vh), ∀vh ∈ Vh,0. (2.2.3)

The following theorem gives the detailed error estimates.

Theorem 2.2.1 Let u, uε, and uε, h be the solutions of (2.0.1), (2.2.1), and (2.2.3),

respectively. Assume that uε ∈ H1+α(Ω) for 1/2 < α ≤ 1, then for 1 < r < 2 and

ε = O(h), the following error estimate holds:

‖u− uε, h‖2−2/r,Ω . h2/r+α−2 lnh−1.

Proof Let Ih be the nodal interpolation operator from Hs(Ω) (s > 1) into Vh. Then

by the triangle inequality, the embedding theorem and Theorem 2.0.1, we have

‖u− uε, h‖2−2/r,Ω

≤ ‖u− uε‖2−2/r,Ω+‖uε − Ihuε‖2−2/r,Ω+‖Ihuε − uε, h‖2−2/r,Ω

. ‖u− uε‖1,r,Ω+‖uε − Ihuε‖2−2/r,Ω+‖Ihuε − uε, h‖2−2/r,Ω

. Cr‖gD − gε‖1−1/r,r,ΓD+‖uε − Ihuε‖2−2/r,Ω+‖Ihuε − uε, h‖2−2/r,Ω.
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It follows from the approximation property of Ih (see, e.g., [1]), the inverse in-

equality and the fact that uε is in H1+α(Ω) that

‖uε − Ihuε‖2−2/r,Ω . h2/r+α−1‖uε‖1+α,Ω

. h2/r+α−1
(
‖gε‖α+1/2,ΓD+‖g

N
‖α−1/2,ΓN+‖f‖α−1,Ω

)
and that

‖Ihuε − uε, h‖2−2/r,Ω . h2/r−2‖Ihuε − uε, h‖0,Ω

. h2/r−2(‖Ihuε − uε‖0,Ω+‖uε − uε, h‖0,Ω)

. h2/r−2(h1+α + h2α)‖uε‖1+α,Ω

. h2/r+2α−2
(
‖gε‖1/2+α,ΓD+‖g

N
‖α−1/2,ΓN+‖f‖α−1,Ω

)
.

Finally for ε = O(h) and 1/2 < α ≤ 1, it follows from Theorem 2.1.3 that

‖u− uε, h‖2−2/r,Ω . Cr‖gD − gε‖1− 1
r
,r,ΓD

+h2/r+2α−2‖gε‖1/2+α,ΓD

. Cr
(
ε2−r ln ε−1

)1/r
+ h2/r+2α−2

(
ε−2α ln ε

)1/2

. Crh
2/r−1 lnh−1 + h2/r+α−2 lnh−1

. h2/r+α−2 lnh−1.

This completes the proof of the theorem.

Remark 2.2.2 The order of the error estimate in Theorem 2.2.1 is not optimal when

α < 1 due to the use of the triangle inequality and the L2 norm estimate of the finite

element approximation of uε ∈ H1+α(Ω),

‖uε − uε, h‖0,Ω. h2α‖uε‖1+α,Ω,

in the estimate of the difference between the interpolation and the finite element ap-

proximation of uε, ‖Ihuε − uε, h‖2−2/r,Ω. In general, the quantity Ihuε − uε, h should be

much smaller than the quantity uε − uε, h. For example, the former is equal to zero
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for the Poisson equation in one dimension, and one has (see, e.g., [7]) the following

expansion:

Ihuε − uε, h = C(x)h2 + o(h2)

for smooth uε and for two dimensions. With the assumption

‖Ihuε − uε, h‖0,Ω. h1+α‖uε‖1+α,Ω,

the estimate in Theorem 2.2.1 may be improved to be the order of h2/r−1 lnh−1.

2.3 Numerical results

In this section, we report numerical results of solving the elliptic problems with

discontinuous Dirichlet boundary condition. Let Ω = (0, 1)2 be the unit square,

consider the following problems

−4u+ u = 1, in Ω,

with the discontinuous boundary conditions:

either Π1 :


u(x, 1) = 1, x ∈ [0, 1]

u(x, y) = 0, (x, y) ∈ ∂Ω \ [0, 1]× {1}

or Π2 :


u(x, 1) = 1, x ∈ (0, 1)

u(x, y) = 0 (x, y) ∈ ∂Ω \ (0, 1)× {1}.

The domain Ω is partitioned by a uniform triangulation with triangle elements.

Continuous linear finite elements are used for all numerical experiments. Numerical

solutions with boundary conditions Π1 and Π2 are respectively depicted in Figures 2.1

and 2.2 with 225 degrees of freedom and in Figures 2.3 and 2.4 with 16129 degrees of

freedom.
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Figure 2.1. Π1 Figure 2.2. Π2

Figure 2.3. Π1 Figure 2.4. Π2

Since those two boundary conditions differs only at two points (0, 1) and (1, 1), the

H1 norm of the difference of two solutions with the boundary conditions Π1 and Π2

on the domain Ω excluding three elements with nodes (0, 1) and (1, 1) is depicted in

Figure 2.5. It shows that two solutions corresponding to the two boundary conditions

are super close.



18

Figure 2.5. H1 norm of the difference of two solutions
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3. DISCONTINUOUS GALERKIN METHODS

Discontinuous Galerkin methods (DG methods) are a class of numerical methods

for solving partial differential equations. They combine the features of the finite

element and the finite volume framework and have been successfully applied to hy-

perbolic, elliptic, parabolic and mixed form problems arising from a wide range of

applications. DG methods have in particular received considerable interest for prob-

lems with a dominant first-order part, e.g. in electrodynamics, fluid mechanics and

plasma physics.

Discontinuous Galerkin methods were first proposed and analyzed in the early

1970s as a technique to numerically solve partial differential equations. In 1973 Reed

and Hill introduced a DG method to solve the hyperbolic neutron transport equation.

Recently, Ayuso and Marini in [12] and Ern, Stephansen, and Zunino in [13] studied

discontinuous Galerkin (DG) finite element methods for advection-diffusion-reaction

problems. Optimal a priori error estimates in suitable norms were established pro-

vided that the exact solution is at least in H3/2+ε, for any ε > 0. For comments and

remarks on various DG methods studied by researchers, we refer readers to [12, 13]

and references therein.

3.1 Notations

Throughout the paper, we will use the standard notations for the norms and

seminorms in Sobolev Space. For a domain Ω, denote the Sobolev space by W s,r(Ω)

equipped with the standard Sobolev norm ‖·‖s,r,Ω and seminorm |·|s,r,Ω, where s is a

real number and 1 ≤ r ≤ ∞. When r = 2, W s,2(Ω) is a Hilbert space and is denoted

by Hs(Ω) with the norm ‖·‖s,Ω and seminorm |·|s,Ω. (We omit the subscript Ω from
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the inner product and norm designation when there is no risk of confusion.) To keep

the homogeneity of dimensions, on a domain Ω with diameter L we define

‖v‖2
k,Ω:=

k∑
s=0

L2s|v|2s,Ω for v ∈ Hk(Ω), k ≥ 0 (3.1.1)

and

‖v‖k,∞,Ω:=
k∑
s=0

Ls|v|s,∞,Ω for v ∈ W k,∞(Ω), k ≥ 0. (3.1.2)

3.2 Jumps and Averages

Let Th = {K} be a finite element triangulation of the domain Ω. Let hK be the

diameter of the element K ∈ Th and h = maxK∈Th hK . Assume that the triangulation

Th is regular and also the interfaces F = {∂Ωi ∩ ∂Ωj : i, j = 1, ..., n} do not cut

through any element K ∈ Th.

Let EK be the set of three edges of element K ∈ Th. Denote the set of all edges of

the triangulation Th by

E := E
I
∪ E

D
∪ E

N
,

where E
I

is the set of all interior element edges, and E
D

and E
N

are the sets of all

boundary edges belonging to the respective ΓD and ΓN . And define

EΓ± := E ∩ Γ±.

For each e ∈ E , let he be the length of the edge e and ne be a unit normal vector

to e. For each interior edge e ∈ EI , choose ne such that β ·ne > 0 and let K−e and K+
e

be the two elements sharing the common edge e such that the unit outward normal

vector of K−e coincides with ne. When e ∈ EΓ± , ne is the unit outward normal vector

and denote the element by K±e . For any e ∈ E , denote by v|−e and v|+e , respectively,

the traces of a function v over e.

Define jumps over edges by
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[[v]]e :=


v|−e −v|+e e ∈ EI ,

v|−e e ∈ EΓ− ,

v|+e e ∈ EΓ+ .

Let w+
e and w−e be weights defined on e satisfying

w+
e (x) + w−e (x) = 1, (3.2.1)

and define the following weighted averages by

{v(x)}ew=


w−e v

−
e +w+

e v
+
e e ∈ EI ,

v|−e e ∈ EΓ− ,

v|+e e ∈ EΓ+ ,

and {v(x)}we=


w+
e v
−
e +w−e v

+
e e ∈ EI ,

v|+e e ∈ EΓ− ,

v|−e e ∈ EΓ+

for all e ∈ E . Denote by {v(x)}e the weighted average of v with w+
e = w−e = 1

2
.

When there is no ambiguity, the subscript or superscript e in the designation of the

jump and the weighted averages will be dropped. A simple calculation leads to the

following identity:

[[uv]]e = {v}we [[u]]e + {u}ew [[v]]e. (3.2.2)

Let e be the interface of elements K+
e and K−e , i.e., e = ∂K+

e ∩ ∂K−e , and denote

by α+
e and α−e the diffusion coefficients on K+

e and K−e , respectively. Denote by

We = {α}ew

the weighted average of α on edge e. For boundary edges, set

w−e = 1, We = k−e if e ∈ Γ− and w+
e = 1, We = k+

e if e ∈ Γ+.

In this paper, in order to guarantee the robust convergence, we take harmonic

weights w±e = α∓
e

α−
e +α+

e
. Let αe,min = min{α+

e , α
−
e } and αe,max = max{α+

e , α
−
e }, thus
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We =
2α+

e α
−
e

α+
e + α−e

and αe,min ≤ We ≤ 2αe,min. (3.2.3)
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4. ADVECTION-DIFFUSION-REACTION PROBLEMS

WITH NON-SMOOTH COEFFICIENTS

Let Ω be a bounded polygonal domain in <2 with boundary ∂Ω = Γ̄D ∪ Γ̄N and

ΓD∩ΓN = ∅ and let n = (n1, n2) be the outward unit vector normal to the boundary.

Let β = (β1, β2)t ∈ W 1,∞(Ω)2 be the velocity vector field defined on Ω. Define inflow

and outflow boundaries of ∂Ω by

Γ− = {x ∈ ∂Ω : β(x) · n(x) < 0} and Γ+ = {x ∈ ∂Ω : β(x) · n(x) > 0

respectively, and let

Γ±D = ΓD ∩ Γ± and Γ±N = ΓN ∩ Γ±.

Consider the following advection-diffusion-reaction problem with discontinuous

diffusion coefficients:

−∇ · (α(x)∇u− βu) + γu = f in Ω (4.0.1)

with boundary conditions

u = g
D

on ΓD and n ·
(
βuχΓ−

N
− α∇u

)
= g

N
on ΓN , (4.0.2)

where f ∈ L2(Ω), g
D
∈ H1/2(ΓD), and g

N
∈ H−1/2(ΓN) are given functions; χΓ−

N
is

the characteristic function of the set Γ−N ; and the diffusion coefficient α(x) is non-

negative and piecewise constant on polygonal subdomains of Ω with possible large

jumps across subdomain boundaries (interfaces):

α(x) = αi ≥ 0 in Ωi for i = 1, ..., n.

Here, {Ωi}ni=1 is a partition of the domain Ω with Ωi being an open polygonal domain.
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For the stability and error analysis, the assumptions on the coefficients introduced

in [12,24] are adopted in this paper:

(1) There exists a constant ρ0 ≥ 0 such that

ρ(x) =
1

2
∇ · β + γ ≥ ρ0 ≥ 0, in Ω; (4.0.3)

(2) The advection field has no closed curves and stationary points. This implies that

there exists a η ∈ W 2,∞(Ω) such that

β · ∇η ≥ 2b0 := 2
‖β‖0,∞,Ω

L
, in Ω; (4.0.4)

(3) There exists a constant cβ > 0 such that

|β(x)|≥ cβ‖β‖1,∞,Ω, in Ω; (4.0.5)

(4) There exists a constant cρ > 0 such that

‖ρ‖0,∞,K≤ cρ(min
K

ρ(x) + b0), ∀K ∈ Th, (4.0.6)

where Th = {K} is a given shape-regular triangulation of Ω.

Remark 4.0.1 Assumption (5.3a) guarantees the stability of the advection-reaction

part. Also, the following useful inequality is deduced from (3.1.2) and (4.0.5) :

|β|1,∞,Ω≤
‖β‖1,∞,Ω

L
≤ 1

cβ

‖β‖0,∞,Ω

L
=
b0

cβ
. (4.0.7)

4.1 Variational formulations

Following [21], we derive a variational formulation of problem (4.0.1) - (4.0.2) held

for piecewise smooth test functions. The key of this derivation is the introduction of a

proper solution space in which integrals over inter-edges are well-defined. Moreover,

the proper solution space is crucial for a priori error estimates of the underlying

problem with low regularity.

Let u be the solution of problem (4.0.1) - (4.0.2), then it is well known from the

regularity estimate [14] that u is in H1+s(Ω) for some positive s which could be very
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small. Since f ∈ L2(Ω), it is then easy to see that divergences of the diffusion and

advection fluxes, α∇u and βu, are square integrable, i.e.,

α∇u, uβ ∈ H(div; Ω) ≡ {τ ∈ L2(Ω)2 : ∇ · τ ∈ L2(Ω)}. (4.1.1)

Consider the following solution space

V 1+ε(Th) = {v ∈ H1+ε(Th) : ∇ · (α∇v) ∈ L2(K), ∀K ∈ Th}

for 0 < ε � 1, where Hs(Th) is the broken Sobolev space of degree s > 0 with

respect to Th:

Hs(Th) = {v ∈ L2(Ω) : v|K∈ Hs(K), ∀K ∈ Th}.

Denote the discrete gradient and divergence operators by

(∇hv)|K= ∇(v|K) and (∇h · τ )|K= ∇ · (τ |K),

for all K ∈ Th, respectively.

Multiplying equation (4.0.1) by a test function v ∈ V 1+ε(Th), integrating by parts,

and using boundary conditions (4.0.2), we have the following :

(f, v) = (α∇hu,∇hv)−
∑

e∈EI∪ED

∫
e

[[α∇u · nev]] +
∑
e∈EN

∫
e

g
N
v

+ (u, −β · ∇hv + γv) +
∑

e∈EI∪EΓ+

∫
e

[[βeuv]] +
∑
e∈ED−

∫
e

βegDv,

where ED− = ED ∩Γ− and βe = β ·ne. Note that the Dirichlet boundary condition is

used on the inflow boundary. By (4.1.1), it is easy to see that the normal components

of the diffusion and advection fluxes are continuous across the internal edges. Then

for any e ∈ EI and v ∈ V 1+ε(Th),∫
e

[[α∇u · ne]] {v}w ds = 0 and

∫
e

[[uβ · ne]] {v}w ds = 0.
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By identity (3.2.2) and the Dirichlet boundary condition in (4.0.2), we have that for

all v ∈ V 1+ε(Th),

(α∇hu,∇hv) + (u, −β · ∇hv + γv)−
∑

e∈EI∪ED

∫
e

{α∇u · ne}w[[v]]

+
∑

e∈EI∪EΓ+

∫
e

{βeu}w[[v]] = (f, v)−
∑
e∈ΓN

∫
e

g
N
v −

∑
e∈ED−

∫
e

βegDv. (4.1.2)

Since the derivation does not make use of the continuity of the solution, one needs

to impose such a continuity in order to achieve stability. To do so, it is natural and

well-known to stabilize the diffusion and the advection operators by adding proper

jump terms of the solution. Following the idea of [13] (also see [21]), we stabilize the

diffusion operator by adding the following equation :∑
e∈EI∪ED

∫
e

γ
θ
h−1
e We[[u]][[v]] ds =

∑
e∈ED

γ
θ
h−1
e We

∫
e

g
D
v ds, ∀ v ∈ V 1+ε(Th). (4.1.3)

Since the diffusion operator is self-adjoint, it is then natural to symmetrize the

diffusion part by adding the following equation:

θ
∑

e∈EI∪ED

∫
e

{α∇v · ne}w[[u]] ds = θ
∑
e∈ED

∫
e

g
D

(α∇v · ne) ds, ∀ v ∈ V 1+ε(Th) (4.1.4)

with θ = {−1, 0, 1}. Both (4.1.3) and (4.1.4) follow from the continuity of u ∈

H1+s(Ω) and the Dirichlet boundary condition. When θ = 1, (4.1.4) plays a role

of stabilization and, hence, (4.1.3) is not needed. For the advection-reaction term,

introduce the following general upwind average:

{βeu}eup = βeξ
−
e u
− + βeξ

+
e u

+, where ξ−e + ξ+
e = 1 and ξ−e > 1/2, (4.1.5)

which is more general than that in [12] since ξ+
e could be negative. When ξ−e = 1,

(4.1.5) is the classic upwind. As pointed out in [23], the jump-stabilization is more

general than the classic upwind. But it is easy to see that the jump-stabilization is

equivalent to (4.1.5).
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Now, define bilinear forms for u, v ∈ V 1+ε(Th) by

ad,θ(u, v) = (α∇hu,∇hv) + θ
∑

e∈EI∪ED

∫
e

{α∇v · ne}w[[u]] ds (4.1.6)

−
∑

e∈EI∪ED

∫
e

{α∇u·ne}w[[v]] ds+
∑

e∈EI∪ED

∫
e

γ
θ
h−1
e We[[u]][[v]] ds

for θ ∈ {−1, 0, 1} and

ac(u, v) = (u, −β · ∇hv + γv) +
∑
e∈EI

∫
e

{βeu}up[[v]] ds+
∑
e∈EΓ+

∫
e

βeuv ds. (4.1.7)

Define the linear form for v ∈ V 1+ε(Th) by

f
θ
(v) = (f, v) +

∑
e∈ED

γ
θ
h−1
e We

∫
e

g
D
v ds+

∑
e∈EN

∫
e

g
N
v ds

+θ
∑
e∈ED

∫
e

g
D

(k∇v · ne) ds−
∑
e∈ED−

∫
e

(β · ne)gD v ds.

The weak solution of (4.0.1) - (4.0.2) satisfies the following variational problem:

find u ∈ V 1+ε(Th) such that

aθ(u, v) ≡ ad,θ(u, v) + ac(u, v) = fθ(v), ∀v ∈ V 1+ε(Th). (4.1.8)

4.2 Discontinuous finite element approximation

Let Pk(K) be the space of polynomials of degree at most k on element K ∈ Th.

Denote the discontinuous finite element space associated with the triangulation Th by

Ukh = {v ∈ L2(Ω) : v|K∈ Pk(K), ∀K ∈ Th}.

Discontinuous Galerkin (DG) finite element method is to find uh ∈ Ukh ⊂ V 1+ε(Th)

such that

aθ(uh, v) = fθ(v), ∀ v ∈ Ukh . (4.2.1)

The method corresponding to θ = −1 and the classic upwind was introduced

and analyzed recently in [13] for different boundary conditions. When α(x) = ε,
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the methods corresponding to θ = 0, 1 and the classic upwind reproduce the first

two methods in [12]; the third (introduced in [17]) and fourth methods in [12] are

corresponding to (4.2.1) with the respective classic and general upwind averages for

both the diffusion and advection terms. A priori error bounds for DG methods had

been established by various researchers (see [12, 13] and references therein) provided

that the solution is at least piecewise H3/2+ε smooth and that γ
θ

is large enough.

In the remainder of this section, we prove the stability that implies the well-

posedness of (4.2.1). To this end, for any v ∈ Ukh , define the DG norms for the

diffusion and advection-reaction parts by

|||v|||2d := ‖α1/2∇hv‖2
0,Ω+‖v‖2

j (4.2.2)

with

‖v‖2
j :=

∑
e∈EI∪ED

h−1
e We‖[[v]]‖2

0,e

and

|||v|||2c := ‖(ρ+ b0)1/2v‖2
0,Ω+

∑
e∈E

‖c1/2
e [[v]]‖2

0,e (4.2.3)

respectively, where b0 = ‖β‖0,∞/L, ρ is a piece wise constant function defined as

ρK(x) = min
x∈K

ρK(x) = min

(
1

2
∇ · β + γ

)
K

, ∀K ∈ Th (5.3a)

and

ce =



(
ξ−e − 1

2

)
βe, on e ∈ EI ,

1
2
βe, on e ∈ EΓ+ ,

−1
2
βe, on e ∈ EΓ− .

(5.3b)

The DG norm is defined as

|||v|||
DG

=
(
|||v|||2d+|||v|||2c

)1/2
(4.2.4)
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4.3 Stability

To prove the stability, we introduce the two useful lemmas as following.

Lemma 4.3.1 For any u ∈ Ukh and v ∈ V 1+ε(Th), there exists a positive constant Cg,

depending only on the degree of the polynomial and the triangulation, such that∑
e∈EI∪ED

∫
e

∣∣∣{α∇hu · ne}w[[v]]
∣∣∣ds ≤ Cg‖α1/2∇u‖0,Ω‖v‖j (4.3.1)

and ∑
e∈EI∪ED

∫
e

∣∣∣{αu}w[[v]]
∣∣∣ds ≤ Cg‖α1/2u‖0,Ω‖v‖j. (4.3.2)

Proof It follows from the definition of We and the harmonic averages that

wωe
√
αωe ≤

√
2

2

√
We, where ω = −,+.

Together with the inverse and the Cauchy-Schwarz inequalities, it gives that∑
e∈EI∪ED

∫
e

∣∣∣{α∇u·ne}w[[v]]
∣∣∣ds =

∑
e∈EI∪ED

∫
e

∣∣∣(w+
e α

+
e ∇u·n+

e +w−e α
−
e ∇u·n−e )[[v]]

∣∣∣ds
≤ c1

∑
e∈EI∪ED

h−1/2
e W 1/2

e ‖[[v]]‖0,e

∑
ω=+,−

‖α1/2∇u‖0,Kω

≤ C1‖α1/2∇u‖0,Ω‖v‖j,

where C1 may depend on the polynomial degree k and the triangulation Th, is inde-

pendent of α and h.

In a similar way, we obtain that∑
e∈EI∪ED

∫
e

∣∣∣{αu}w[[v]]
∣∣∣ds =

∑
e∈EI∪ED

∫
e

∣∣∣(w+
e α

+
e u

++w−e α
−
e u
−)[[v]]

∣∣∣ds
≤ c2

∑
e∈EI∪ED

h−1/2
e W 1/2

e ‖[[v]]‖0,e

∑
ω=+,−

‖α1/2u‖0,Kω

≤ C2‖α1/2u‖0,Ω‖v‖j,

Where C2 may depend on the triangulation Th and the polynomial degree k. Let

Cg = max{C1, C2} and this completes the proof of the lemma.
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Lemma 4.3.2 For any function v ∈ Ukh , there exists a positive constant Cp, depend-

ing on the minimum angel of the triangulation Th of Ω, such that

‖α1/2v‖0,Ω≤ CpL
(
‖α1/2∇hv‖2

0,Ω+‖v‖2
j

)1/2
, (4.3.3)

where L is the diameter of the domain Ω.

Proof For any piece wise H1 function v, the following Poincaré-Friedrichs inequality

is proved in [16]:

‖v‖0,Ω≤ CL

(
‖∇hv‖2

0,Ω+
∑

e∈EI∪ED

h−1
e ‖[[v]]‖2

0,e

)1/2

(4.3.4)

where C is a positive constant depending on the minimum angle of the triangulation

Th of Ω.

Since the diffusion coefficient α is piece wise constant, (4.3.4) implies that

‖α1/2v‖0,Ω≤ CL

(
‖α1/2∇hv‖2

0,Ω +
∑

e∈EI∪ED

h−1
e ‖[[α1/2v]]‖2

0,e

)1/2

,

for any v ∈ Ukh .

To show the validity of (4.3.3), it suffices to prove that∑
e∈EI∪ED

h−1
e ‖[[α1/2v]]‖2

0,e≤ C
(
‖α1/2∇hv‖2

0,Ω+‖v‖2
j

)
, (4.3.5)

for any v ∈ Ukh .

To this end, let αe,min = α−e < α+
e . It follows from the trace inequality and (3.2.3)

that for each e ∈ EI ∪ ED,

‖[[α1/2v]]‖2
0,e = ‖

√
α−e v

− −
√
α+
e v

+‖2
0,e

= ‖
√
α−e (v−−v+)+(

√
α−e −

√
α+
e )v+‖2

0,e

≤ 2
(
‖α1/2

e,min[[v]]‖2
0,e+‖

√
α+
e v

+‖2
0,e

)
≤ C

(
We‖[[v]]‖2

0,e+hK+
e
‖
√
α∇hv‖2

0,K+

)
.

Multiplying by h−1
e and summing up over e ∈ EI ∪ ED imply (4.3.5). This completes

the proof of the lemma.
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To establish the stability of the bilinear form aθ(·, ·) in the DG norm, we follow

the idea in [12]. To this end, introduce the weight function

ϕ = e−η +K := χ+K, (4.3.6)

where η is defined in (4.0.4) and K is a positive constant.

Since η ∈ W 1,∞(Ω), there exist positive constants χ1, χ2, and χ3 such that

χ1 ≤ χ ≤ χ2 and ‖∇χ‖∞≤ χ3. (4.3.7)

Choose the constant K such that

χ1 +K > 6(1 + Cg)CpLχ3 and 2(χ1 +K) > χ2 +K. (4.3.8)

with Cg and Cp defined in Lemma 4.3.1 and Lemma 4.3.2, respectively.

Lemma 4.3.3 Let ad,θ(·, ·) and ac(·, ·) be the bilinear forms defined in (4.1.6) and

(4.1.7), respectively, with γθ ≥ γ0 > max{9C2
g , 1}. For any vh ∈ Ukh , the following

inequalities hold:

ad,θ(vh, ϕvh) ≥
χ1 +K

6
|||vh|||2d, ac(vh, ϕvh) ≥ χ1|||vh|||2c (4.3.9)

and

|||ϕvh|||DG≤
√

5(χ1 +K)|||vh|||DG. (4.3.10)

Proof By the definition of the bilinear form ad,θ and the continuity of ϕ, we have

ad,θ(vh, ϕvh)

= (α∇hvh, ϕ∇hvh) + (α∇hvh, vh∇ϕ) + θ
∑

e∈EI∪ED

∫
e

(∇ϕ · ne){αvh}w[[vh]]

+(θ − 1)
∑

e∈EI∪ED

∫
e

ϕ{α∇vh · ne}w[[vh]] +
∑

e∈EI∪ED

∫
e

γ
θ
h−1
e Weϕ[[vh]]

2.

It follows from the Cauchy-Schwarz inequality, (4.3.7), and Lemma 4.3.1 and 4.3.2

that

(α∇hvh, vh∇ϕ) ≤ χ3‖α1/2∇hvh‖0,Ω‖α1/2vh‖0,Ω≤ χ3CpL|||vh|||2d,
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and that∑
e∈EI∪ED

∫
e

(∇ϕ · ne){αvh}w[[vh]] ≤ χ3Cg‖α1/2vh‖0,Ω|||vh|||d≤ χ3CgCpL|||vh|||2d.

By Lemma 4.3.1, (4.3.8), and the assumption that γθ ≥ γ0 > max{9C2
g , 1}, we

have ∑
e∈EI∪ED

∫
e

ϕ{α∇vh ·ne}w[[vh]] ≤ (χ2 +K)Cg‖α1/2∇hvh‖0,Ω‖vh‖j

≤ (χ1 +K)

3

(
‖α1/2∇hvh‖2

0,Ω+γ0‖vh‖2
j

)
.

For θ ∈ {−1, 0, 1}, combining the above equality and inequalities gives that

ad,θ(vh, ϕvh) ≥ (χ1 +K)
(
‖α1/2∇hvh‖2

0,Ω+γ0‖vh‖2
j

)
− χ3CpL|||vh|||2d

−χ3CgCpL|||vh|||2d−
2(χ1 +K)

3

(
‖α1/2∇hvh‖2

0,Ω+γ0‖vh‖2
j

)
≥

(
χ1 +K

3
− (1 + Cg)χ3CpL

)
|||vh|||2d

≥ χ1 +K
6
|||vh|||2d.

The last inequality used (4.3.8). And this proves the first inequality in (4.3.9).

For the advection-reaction part, it follows from the identity that vh∇vh = 1
2
∇h(v

2
h),

integration by parts, and the continuity of φ and β that

(vh,−β · ∇h(ϕvh)) = −1

2

∫
Ω

ϕβ · ∇h(v
2
h)−

∫
Ω

(β · ∇ϕ)v2
h

=
1

2

∫
Ω

v2
h∇ · (ϕβ)− 1

2

∑
K∈Th

∫
∂K

ϕv2
hβ · n−

∫
Ω

(β · ∇ϕ)v2
h

=
1

2

∫
Ω

(∇ · β)ϕv2
h −

1

2

∫
Ω

(β · ∇ϕ)v2
h −

1

2

∑
e∈E

∫
e

βeϕ[[v2
h]].
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With the definition of ce in (5.3b), a simple computation gives that

−1

2

∑
e∈E

∫
e

βeϕ[[v2
h]] +

∑
e∈EI

∫
e

{βevh}up[[ϕvh]] +
∑
e∈EΓ+

∫
e

βeϕv
2
h

= −1

2

∑
e∈EI

∫
e

βeϕ(v+
h + v−h )[[vh]]−

1

2

∑
e∈EΓ−

∫
e

βeϕv
2
h +

1

2

∑
e∈EΓ+

∫
e

βeϕv
2
h

+
∑
e∈EI

∫
e

βeϕ(ξ+
e v

+
h + ξ−e v

−
h )[[vh]] =

∑
e∈E

∫
e

ceϕ[[vh]]
2.

Combining these two identities gives that

ac(vh, ϕvh) = (vh,−β · ∇h(ϕvh) + γϕvh) +
∑
e∈EI

∫
e

{βevh}up[[ϕvh]] +
∑
e∈EΓ+

∫
e

βeϕv
2
h

=

∫
Ω

(γ +
1

2
∇ · β)ϕv2

h −
1

2

∫
Ω

(β · ∇ϕ)v2
h +

∑
e∈E

∫
e

ceϕ[[vh]]
2.

From (4.0.4) and (4.3.7), we have

−β · ∇ϕ = (β · ∇η)e−η ≥ 2b0e
−η ≥ 2b0χ1.

Together with the definition of ρ in (5.3a), we obtain that

ac(vh, ϕvh) ≥ (χ1 +K)

∫
Ω

ρv2
h + χ1

∫
Ω

b0v
2
h + (χ1 +K)

∑
e∈E

∫
e

ce[[vh]]
2

≥ χ1‖(ρ+ b0)1/2vh‖2
0,Ω+χ1

∑
e∈E

‖c1/2
e [[vh]]‖2

0,e

≥ χ1|||vh|||2c ,

which proves the second inequality in (4.3.9).

To estimate the upper bound of the DG norm of ϕvh, Lemma 4.3.2, (4.3.7) and

(4.3.8) give that

|||ϕvh|||2d = ‖α1/2ϕ∇hvh‖2
0,Ω+‖α1/2vh∇ϕ‖2

0,Ω+
∑

e∈EI∪ED

∫
e

h−1
e Weϕ

2[[vh]]
2

≤ ((χ2 +K)2 + χ2
3C

2
pL

2)|||vh|||2d

≤ 5(χ1 +K)2|||vh|||2d,
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and that

|||ϕvh|||2c = ‖(ρ+ b0)1/2ϕvh‖2
0,Ω+

∑
e∈E

‖c1/2
e ϕ[[vh]]‖2

0,e

≤ (χ2 +K)2|||vh|||2c ,

which implies that

|||ϕvh|||DG ≤ (5(χ1 +K)2|||vh|||2d+(χ2 +K)2|||vh|||2c)1/2

≤
√

5(χ1 +K)|||vh|||DG,

which proves (4.3.10) and, hence, completes the proof of the lemma.

The following lemma is about the approximation results of the L2-projection in

the DG space, which have been proved in [18] and [19].

Lemma 4.3.4 Let ϕ ∈ W 1,∞(Ω) be the function defined in (4.3). For any vh ∈ Ukh ,

let ϕ̃vh be the L2-projection of ϕvh into Ukh , then the following estimates hold:

‖ϕvh − ϕ̃vh‖p,2,Ω≤ Ch1−p‖χ‖1,∞,Ω‖vh‖0,Ω/L, p = 0, 1

and (∑
e∈E

‖ϕvh − ϕ̃vh‖2
0,e

)1/2

≤ Ch1/2‖χ‖1,∞,Ω‖vh‖0,Ω/L,

where C is a positive constant independent of K and L is the diameter of Ω.

With Lemma 4.3.4, we estimate the upper bounds of the norms |||ϕvh− ϕ̃vh|||d and

|||ϕvh − ϕ̃vh|||c in the following lemma.

Lemma 4.3.5 For any vh ∈ Ukh , then the following estimates hold:

|||ϕ̃vh − ϕvh|||d≤ CCp‖χ‖1,∞|||vh|||d

and

|||ϕ̃vh − ϕvh|||c≤ C

(
h

L

)1/2

‖χ‖1,∞‖(ρ+ b0)1/2vh‖0,Ω.
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Proof For any function vh ∈ Ukh , since α is a piece wise constant function, then

α1/2vh ∈ Ukh and α1/2ϕ̃vh is the L2 projection of α1/2ϕvh into Ukh .

Lemma 4.3.4 gives that

‖α1/2ϕvh − α1/2ϕ̃vh‖p,2,Ω≤ Ch1−p‖χ‖1,∞‖α1/2vh‖0,Ω/L, p = 0, 1

and (∑
e∈E

‖α1/2ϕvh − α1/2ϕ̃vh‖2
0,e

)1/2

≤ Ch1/2‖χ‖1,∞,Ω‖α1/2vh‖0,Ω/L.

Together with the definition of d-norm in (4.2.2), the fact that αe,min ≤ We ≤

2αe,min and Lemma 4.3.2, we have

|||ϕvh − ϕ̃vh|||2d = ‖α1/2∇h(ϕvh − ϕ̃vh)‖2
0,Ω+

∑
e∈EI∪ED

h−1
e We‖[[ϕvh − ϕ̃vh]]‖2

0,e

≤ C2‖χ‖2
1,∞‖α1/2vh‖2

0,Ω/L
2

≤ C2C2
p‖χ‖2

1,∞|||vh|||2d,

which proves the first inequality.

In a similar way, by the fact that ρ + b0 is a piece wise constant function and

Lemma 4.3.4, we have that

‖(ρ+ b0)1/2(ϕvh − ϕ̃vh‖p,2,Ω≤ Ch1−p‖χ‖1,∞‖(ρ+ b0)1/2vh‖0,Ω/L, p = 0, 1.

Together with the inequality that

|ce|≤ ‖β‖0,∞≤= b0L, ∀e ∈ E

and the fact that h/L ≤ 1, we obtain that

|||ϕ̃vh − ϕvh|||c =

(
‖(ρ+ b0)1/2(ϕ̃vh − ϕvh)‖2

0,Ω+
∑
e∈E

‖c1/2
e [[ϕ̃vh − ϕvh]]‖2

0,e

)1/2

≤
(
C2 h

2

L2
‖χ‖2

1,∞‖(ρ+ b0)1/2vh‖2
0,Ω+b0LC

2 h

L2
‖χ‖2

1,∞‖vh‖2
0,Ω

)1/2

≤ C

(
h

L

)1/2

‖χ‖1,∞‖(ρ+ b0)1/2vh‖0,Ω,

which proves the second inequality and, hence, completes the proof of the lemma.
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Lemma 4.3.6 Under the same hypotheses of Lemma 4.3.3, for any vh ∈ Ukh , there

exist constants χ4 and χ5 independent of K, such that

ad(vh, ϕvh − ϕ̃vh) ≤ χ4|||vh|||2d (5.15a)

and that

ac(vh, ϕvh − ϕ̃vh) ≤ χ5(h/L)1/2|||vh|||2c . (5.15b)

Proof By the definition of ad,θ in (4.1.6), the Cauchy-Schwarz inequality, the as-

sumption that γθ ≥ γ0 > max 9C2
g , 1, Lemma 4.3.1, and Lemma 4.3.4, we have that

ad,θ(vh, ϕ̃vh − ϕvh)

= (α∇hvh,∇h(ϕ̃vh − ϕvh)) +
∑

e∈EI∪ED

∫
e

γθh
−1
e We[[vh]][[ϕ̃vh − ϕvh]]ds

−
∑

e∈EI∪ED

∫
e

{α∇hvh · ne}w[[ϕ̃vh − ϕvh]]ds+ θ
∑

e∈EI∪ED

∫
e

{α∇h(ϕ̃vh − ϕvh) · ne}w[[vh]]ds

≤ γ
θ
|||vh|||d|||ϕ̃vh − ϕvh|||d+Cg‖α1/2∇vh‖0,Ω‖ϕ̃vh − ϕvh‖j+C

‖χ‖1,∞

L
‖α1/2vh‖0,Ω‖vh‖j

≤ (γ
θ

+ Cg + CCp‖χ‖1,∞,Ω) |||vh|||d|||ϕ̃vh − ϕvh|||d.

This proves the validity of (5.15a) with χ4 = γ
θ

+Cg +CCp‖χ‖1,∞,Ω, independent of

K.

Rewriting the advection - reaction part by integration by parts and using (3.2.2)

give that, for any u, v ∈ V 1+ε(Th),

ac(u, v) = (u, γv) + (∇h(uβ), v)−
∑
e∈E

∫
e

βe[[uv]] +
∑
e∈EI

∫
e

βe{u}up[[v]] +
∑
e∈Γ+

∫
e

βeuv

= (u, (γ +∇·β)v) + (β ·∇hu, v)−
∑
e∈EI

∫
e

βe{v}up[[u]]−
∑
e∈Γ−

∫
e

βeuv

= (u, (γ +∇·β)v) + (β ·∇hu, v) +
∑
e∈EI

∫
e

ce[[u]][[v]]−
∑

e∈Γ−∪EI

∫
e

βe[[u]]{v}.

Let Pβ be the L2 projection of β onto U0
h , i.e., the space of piece wise constant

with respect to Th with the following approximation property holds:

‖β − Pβ‖0,∞,Ω≤ Ch|β|1,∞,Ω. (4.3.11)
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Since Pβ · ∇hvh ∈ Ukh , the definition of ϕ̃vh gives that∫
Ω

Pβ · ∇hvh(ϕvh − ϕ̃vh) = 0.

Combining the identities gives that

ac(vh, ϕ̃vh − ϕvh)

=

∫
Ω

(γ+∇·β)vh(ϕ̃vh−ϕvh)+

∫
Ω

(ϕ̃vh − ϕvh)(β−Pβ)·∇hvh

+
∑
e∈EI

∫
e

ce[[vh]][[ϕ̃vh−ϕvh]]−
∑

e∈EΓ−∪EI

∫
e

βe[[vh]]{ϕ̃vh−ϕvh}

:= I + II + III + IV.

It follows from (4.0.6), (4.0.7) and Lemma 4.3.4 that

I =

∫
Ω

ρvh(ϕ̃vh − ϕvh) +
1

2

∫
Ω

∇ · βvh(ϕ̃vh − ϕvh)

≤ cρ‖(ρ+ b0)1/2vh‖Ω‖(ρ+ b0)1/2(ϕ̃vh − ϕvh)‖Ω+
b0

2cβ
‖vh‖Ω‖ϕ̃vh − ϕvh‖Ω

≤ (cρ +
1

2cβ
)C

h

L
‖χ‖1,∞‖(ρ+ b0)1/2vh‖2

0,Ω.

Using (4.3.11), (4.0.7), Lemma 4.3.4 and the inverse inequality gives that

II ≤ Ch|β|1,∞‖∇hvh‖
h

L
‖χ‖1,∞‖vh‖≤ C

h

L

b0

cβ
‖χ‖1,∞,Ω‖vh‖2

0,Ω.

By (4.0.4), Lemma 4.3.4 and the Cauchy-Schwarz inequality, we have

III + IV ≤ C

(∑
e∈E

‖c1/2
e [[vh]]‖0,e

)(
h1/2

L
‖β‖1/2

0,∞‖χ‖1,∞‖vh‖
)

≤ C

(
h

L

)1/2

‖χ‖1,∞

(∑
e∈E

‖c1/2
e [[vh]]‖2

0,e+b0‖vh‖2
0,Ω

)
.

Together with the fact that h/L < 1, we obtain that

ac(vh, ϕ̃vh − ϕvh) ≤ (1 + cρ +
2

cβ
)C‖χ‖k+1,∞,Ω

(
h

L

)1/2

|||vh|||2c ,

which completes the proof with χ5 = (1 + cρ + 2
cβ

)C‖χ‖k+1,∞,Ω.
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Next theorem gives the stability of the variational form.

Theorem 4.3.7 Under the hypotheses of Lemma 4.3.3, there exist positive constants

a0 and h0 such that for all h < h0 and vh ∈ Ukh ,

sup
wh∈Ukh

aθ(vh, wh)

|||wh|||DG
≥ a0|||vh|||DG. (4.3.12)

Proof For any vh ∈ Ukh , let wh = ϕ̃vh ∈ Ukh be the L2 projection of ϕvh onto Ukh .

First it follows from the triangle inequality, Lemma 4.3.3 and Lemma 4.3.5 that

|||ϕ̃vh|||DG≤ (|||ϕ̃vh − ϕvh|||DG+|||ϕvh|||DG) ≤ C|||vh|||DG.

To show the validity of (4.3.12), it suffices to show that

aθ(vh, wh) ≥ C|||vh|||2DG. (4.3.13)

To this end, by Lemma 4.3.3 and Lemma 4.3.6, we have that

ad,θ(vh, ϕ̃vh) = ad,θ(vh, ϕ̃vh − ϕvh) + ad,θ(vh, ϕvh)

≥
(
χ1 +K

6
− χ4

)
|||vh|||2d.

Note that in Lemma 4.3.6, the constant χ4 is independent of K, so we can choose

K such that χ1 +K is bigger that 12χ4. Then it follows that

ad,θ(vh, ϕ̃vh) ≥ χ4|||vh|||2d.

And in a similar way, then for h < h0 we have that

ac(vh, ϕ̃vh) ≥ c|||vh|||2c ,

with c only depending on χ1 and χ5.

Combining the two inequalities gives (4.3.13) and, hence, completes the proof of

the theorem.
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4.4 A priori error estimate

In this section, we establish the a priori error estimate in the norm (4.2.4) for

the discontinuous finite element methods presented.

Let P be the L2-projection in Ukh . The standard approximation argument in

[20,21] gives that: for u ∈ V 1+ε(Th) ∩H1+s(Th) with ε ≤ s ≤ 1,

‖α1/2∇(u− Pu)‖ε,Ω≤ C

(∑
K∈Th

h
2(s−ε)
K ‖α1/2∇u‖2

s,K

)1/2

, (4.4.1)

‖u− Pu‖r,p,K≤ Chs+1−r|u|s+1,p,K , r = 0, 1, 1 ≤ p ≤ ∞, K ∈ Th. (4.4.2)

Together with the trace inequality, the following estimate holds:

‖u− Pu‖0,e ≤ Ch
s+1/2
Ke
|u|s+1,Ke , ∀e ∈ E . (4.4.3)

Let fk be the L2 projection of f onto Ukh , define

osc(f,K) :=
hK√
αK
‖f − fk−1‖0,K

and

asc(f) :=

(∑
K∈Th

osc(f,K)2

)1/2

.

Remark 4.4.1 The symbol . used in this section denotes lower than or equal, up

to a positive constant depending only on the triangulation Th, the domain Ω , the

polynomial degree k, independent of the coefficients of the problem and h.

The next lemma proved in [22] gives a trace inequality of functions with low

regularities.

Lemma 4.4.2 For any K ∈ Th, assume that v ∈ V 1+s(K) and wh ∈ Pk(K), then

the following trace inequality holds:∫
e

(∇v · n)whds . h−1/2
e ‖wh‖0,e(‖∇v‖0,K+hK‖4v‖0,K).
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Lemma 4.4.3 Let u ∈ V 1+s(Th)
⋂
H1+ε(Ω) be the solution of (4.0.1) with boundary

conditions (4.0.2). Let v ∈ Ukh , and set ξ = u−v. Then on any K ∈ Th, the following

estimate holds:

hK‖α1/24ξ‖0,K . ‖α1/2∇ξ‖0,K+
hK√
α
‖∇ · (βξ) + γξ‖0,K+osc(f,K).

Proof For any K ∈ Th, define

rK = −∇ · (α∇v) +∇ · (βv) + γv − fk−1.

It follows that

hK‖α1/24ξ‖0,K = hKα
−1/2‖∇ · (α∇u)−∇ · (α∇v)‖0,K

= hKα
−1/2‖∇ · (βu) + γu− f −∇ · (α∇v)‖0,K

= hKα
−1/2‖rK + fk−1 − f +∇ · (βξ) + γξ‖0,K

≤ hKα
−1/2 (‖rK‖0,K+‖∇ · (βξ) + γξ‖0,K) + osc(f,K).

Let ψK be the local interior bubble function on K, then we have

‖rK‖2
0,K .

∫
K

(−∇ · (α∇v) +∇ · (βv) + γv − fk−1) rKψK

=

∫
K

(∇ · (α∇ξ)−∇ · (βξ)− γξ + f − fk−1)rKψK

=

(
−
∫
K

α∇ξ∇(rKψK) +

∫
K

(f − fk−1 −∇ · (βξ)− γξ)rKψK
)

. (‖α∇ξ‖|rKψK |1+(‖∇·(βξ)+γξ‖+‖f−fk−1‖) ‖rKψK‖

.
(
h−1
K ‖α∇ξ‖+‖∇ · (βξ) + γξ‖+‖f − fk−1‖

)
‖rK‖0,K .

It follows that

‖rK‖0,K . h−1
K ‖α∇ξ‖0,K+‖∇ · (βξ) + γξ‖0,K+‖f − fk−1‖0,K .
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Finally we obtain

hK‖α1/24ξ‖0,K . ‖α1/2∇ξ‖0,K+
hK√
α
‖∇ · (βξ)+γξ‖0,K+osc(f,K).

Theorem 4.4.4 Let u ∈ V 1+s(Th)
⋂
H1+ε(Ω) be the solution of (4.0.1) with boundary

conditions (4.0.2), and u|K∈ H1+sK be the restriction on K ∈ Th. Let uh be the

solution of discrete problem (4.2.1). There exists a positive constant C, depending on

the domain, the triangulation Th and the polynomial degree (but independent of mesh

size h and the coefficients of the problem), such that

|||u− uh|||DG ≤ C
∑
K∈Th

hsKK |u|1+sK ,K

(
α

1/2
K + h

1/2
K ‖β‖

1/2
0,∞,Ω+hK‖ρ‖1/2

0,∞,Ω

+h2
Kα
−1/2
K ‖ρ‖0,∞,Ω + hKα

−1/2
K ‖β‖0,∞,Ω

)
+ osc(f).

Proof Define

E = u− Pu and Eh = uh − Pu.

It follows from Theorem 4.3.7 and the error equation that

a0|||Eh|||DG ≤ aθ(Eh, vh)

|||vh|||DG
=
aθ(E, vh)

|||vh|||DG
.

First consider the diffusion part. The definition of ad,θ in (4.1.6)gives that

ad,θ(E, vh) = (α∇hE,∇hvh) + θ
∑

e∈EI∪ED

∫
e

{α∇vh · ne}w[[E]]

−
∑

e∈EI∪ED

∫
e

{α∇E · ne}w[[vh]] +
∑

e∈EI∪ED

∫
e

γ
θ
h−1
e We[[E]][[vh]]

:= I1 + I2 + I3 + I4

It follows easily from Lemma 4.3.1 and the Cauchy-Schwarz inequality that

I1 + I2 + I4 . |||E|||d|||vh|||d.



42

Using Lemma 4.4.2, Lemma 4.4.3 and the Cauchy-Schwarz inequality gives that

I3 ≤
∑

e∈EI
⋃
ED

h−1/2
e W 1/2

e ‖[[vh]]‖0,e

∑
ω=+,−

(
‖α1/2∇E‖0,Kω+hKω‖α1/24E‖0,Kω

)
≤ ‖vh‖j

(
‖α1/2∇hE‖0,Ω+

∑
K∈Th

hK‖α1/2
K 4E‖0,K

)

≤ |||vh|||d
(
|||E|||d+

∑
K∈Th

hK√
αK
‖∇ · (βE) + γE‖0,K+osc(f)

)
.

Summing up all the terms gives that

ad,θ(E, vh) . |||vh|||
(
|||E|||d+

∑
K∈Th

hK√
αK
‖∇ · (βE) + γE‖0,K+osc(f)

)
.

It follows from (4.0.5), (4.0.7), (4.4.1)-(4.4.3) and the fact that h/L < 1 that

‖∇ · (βE) + γE‖0,K = ‖ρE + E∇ · β/2 + β · ∇E‖0,K

. (‖ρ‖0,∞,Ω+|β|1,∞)‖e‖0,K+‖β‖0,∞,Ω|e|1,K

. h1+sK‖ρ‖0,∞,Ω|u|1+sK ,K+hsK‖β‖0,∞,Ω|u|1+sK ,K

and that

|||E|||d .
∑
K∈Th

hsKK α
1/2
K |u|1+sK ,K .

Hence, we obtain that

ad,θ(E, vh) . ‖vh‖d

(∑
K∈Th

hsKK α
1/2
K

(
1 +

h2
K‖ρ‖0,∞,Ω

αK
+
hK‖β‖0,∞,Ω

αK

)
|u|1+sK ,K+osc(f)

)
.

Next consider the convection-reaction part. It follows from the definition of ac

that

ac(E, vh) = (E, −β · ∇hvh + γvh) +
∑
e∈EI

∫
e

{βeE}up[[vh]] +
∑
e∈EΓ+

∫
e

βeE vh.

It follows from the definition of the projection and Pβ · ∇hvh ∈ Ukh that∫
Ω

Pβ · ∇hvhE =

∫
Ω

Pβ · ∇hvh(u− Pu) = 0.



43

Together with (4.0.7), the inverse inequality and (4.4.1) - (4.4.2), it implies that∫
Ω

−β · ∇hvhE =

∫
Ω

(Pβ − β) · ∇hvhE

. h|β|1,∞,Ω‖∇hvh‖0,Ω‖E‖0,Ω

. ‖b1/2
0 vh‖0,Ω‖b1/2

0 E‖0,Ω

. |||vh|||c
∑
K∈Th

h1+sK
K ‖β‖1/2

0,∞,Ω|u|1+sK ,K .

Applying γ = ρ− 1
2
∇ · β, (4.0.6), (4.0.7) and (4.4.1)-(4.4.3) gives that

(E, γvh) =

∫
Ω

(ρ− 1

2
∇ · β)E vh

. cρ‖E‖0,Ω‖(ρ+ b0)vh‖0,Ω+
b0

cβ
‖E‖0,Ω‖vh‖0,Ω

. |||vh|||c
∑
K∈Th

(‖ρ‖0,Ω+‖β‖0,∞,Ω)1/2 h1+sK
K |u|1+sK ,K

and∑
e∈EI

∫
e

{βeE}up[[vh]] +
∑
e∈EΓ+

∫
e

βeEvh . |||vh|||c
∑
K∈Th

h
1/2+sK
K ‖β‖1/2

0,∞,Ω|u|1+sK ,K .

Summing up the three parts gives that

ac(E, vh) . |||vh|||c
∑
K∈Th

h
1/2+sK
K

(
‖β‖1/2

0,∞,Ω+h
1/2
K ‖ρ‖

1/2
0,∞,Ω

)
|u|1+sK ,K .

Collecting the diffusion and convection-reaction parts implies that

aθ(E, vh) . |||vh|||DG
( ∑
K∈Th

hsKK |u|1+sK ,K

(
α

1/2
K + h

1/2
K ‖β‖

1/2
0,∞,Ω+hK‖ρ‖1/2

0,∞,Ω

+h2
Kα
−1/2
K ‖ρ‖0,∞,Ω + hKα

−1/2
K ‖β‖0,∞,Ω

)
+ osc(f)

)
.

Together with (4.4.4) and the triangle inequality, it implies that

|||u− uh|||DG .
∑
K∈Th

hsKK |u|1+sK ,K

(
α

1/2
K + h

1/2
K ‖β‖

1/2
0,∞,Ω+hK‖ρ‖1/2

0,∞,Ω

+h2
Kα
−1/2
K ‖ρ‖0,∞,Ω + hKα

−1/2
K ‖β‖0,∞,Ω

)
+ osc(f).



44

4.5 A new discontinuous Galerkin method

In Chapter 3, we stabilize the diffusion operator by adding the following equation

: ∑
e∈EI∪ED

∫
e

γ
θ
h−1
e We[[u]][[v]] ds =

∑
e∈ED

γ
θ
h−1
e We

∫
e

g
D
v ds, ∀ v ∈ V 1+ε(Th).

The order h−1
e may lead to the difficulty in the convergence analysis.

Considering this, for any v ∈ V 1+ε(Th), denote the tangential derivative along

edge e by

γe(∇v) =
∂v

∂t
.

And for any v ∈ V 1+ε(Th), we add the following term to stabilize :∑
e∈EI∪ED

∫
e

γ
θ
heWe[[γe(∇u)]][[γe(∇v)]] ds =

∑
e∈ED

γ
θ
heWe

∫
e

γe(∇gD)γe(∇v) ds.

Now, define the new bilinear form for u, v ∈ V 1+ε(Th) by

âd,θ(u, v) = (α∇hu,∇hv) +
∑

e∈EI∪ED

∫
e

γ
θ
heWe[[γe(∇u)]][[γe(∇v)]] ds

+θ
∑

e∈EI∪ED

∫
e

{α∇v · ne}w[[u]] ds−
∑

e∈EI∪ED

∫
e

{α∇u·ne}w[[v]] ds

for θ ∈ {−1, 0, 1} .

And define the new linear form for v ∈ V 1+ε(Th) by

f̂
θ
(v) = (f, v) +

∑
e∈ED

γ
θ
heWe

∫
e

γe(∇gD)γe(∇v) ds+
∑
e∈EN

∫
e

g
N
v ds

+θ
∑
e∈ED

∫
e

g
D

(k∇v · ne) ds−
∑
e∈ED−

∫
e

(β · ne)gD v ds.

The new variational formulation is to find û ∈ V 1+ε(Th) such that

âθ(û, v) ≡ âd,θ(û, v) + ac(û, v) = f̂θ(v), ∀v ∈ V 1+ε(Th).

To discretilize the problem, modify the DG finite element space associated with

the triangulation Th as

Ûkh = {v ∈ L2(Ω) : v|K∈ Pk(K), ∀K ∈ Th and [[v]]e = 0, ∀e ∈ EI},
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where ve = 1
|e|

∫
e
v ds is the average of v on e.

The new DG finite element method is to find ûh ∈ Ûkh such that

âθ(ûh, v) = f̂θ(v), ∀ v ∈ Ûkh .

For any v ∈ Ûkh , define the norm for the modified DG space by

|||v|||2dg = ‖α1/2∇hv‖2
0,Ω+‖v‖2

dj+|||v|||2c ,

where

‖v‖2
dj :=

∑
e∈EI∪ED

heWe‖[[γe(∇v)]]‖2
0,e.

The following lemma implies the equivalence between ‖[[u]]‖ and he‖[[γe(∇u)]]‖ in

the DG finite element space.

Lemma 4.5.1 For any v ∈ Ûkh and any e ∈ EI , ‖[[v]]‖0,e and he‖[[γe(∇u)]]‖ are equiv-

alent, i.e, there exist positive constants cm and cM such that

cm‖[[v]]‖0,e≤ he‖[[γe(∇u)]]‖≤ cM‖[[v]]‖0,e.

Proof By a scaling argument, it suffices to prove that ‖[[γe(∇v)]]‖= 0 implies that

v ≡ 0 on e. It follows that

[[γe(∇v]]e = [[
∂v

∂te
]]e =

∂

∂te
[[v]]e = 0.

Hence, [[v]]e is a constant, which implies that

[[v]]e = [[v]]e =
1

|e|

∫
e

[[v]]e ds = [[v]]e = 0.

This completes the proof of the lemma.

Corollary 4.5.2 For any v ∈ Ûkh , ad,θ(v, v) and âd,θ(v, v) are equivalent.
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5. CONCLUSION

In conclusion, this thesis discussed the error estimates in finite element methods

for two typical kinds of non-smooth elliptic problems. Chapter 1 introduced some

problems of low regularity. Chapter 2 discussed the a priori error estimate for elliptic

equations with non-smooth boundary data. Chapter 3 introduced the discontinuous

Galerkin methods, and Chapter 4 discussed the stability of the discontinuous Galerkin

methods, and also the a priori error estimates for this kinds of problems.

The main part of the thesis is about the a priori error estimates. The a posterior

error estimate also plays an important role in the adaptive finite element methods.

For the a posterior error estimate, the low regularity may lead the difficulty in the

analysis of the robustness of the the error estimates. For non-smooth boundary

data problem, if we consider the adaptive finite element methods, we need a local

indicator and a global error estimate. The indicator and error estimate may depend

on the regularization process, which means they depend on ε. When ε is very small,

the problem may have boundary layers like the singularly perturbed problems. So

the robustness analysis of the error estimates is essential and also may be the main

challenge. The non-smooth coefficients problem may face the similar situation. Since

the coefficients are piece-wise constant, it may have the interior layers. And in the

thesis, we only consider about the diffusion coefficients to be non-smooth. In some

applications, the advection coefficients may be also non-smooth, which is also an

interesting topic.
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