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ABSTRACT 

Traffic safety management on interstates is crucial during adverse winter weather. According 

to the Federal Highway Administration (FHWA), there are over 5,891,000 vehicle crashes each 

year in the United States. Approximately 21% of these crashes are weather-related. INDOT spends 

$60 million on winter operations each year to minimize the weather impacts on driver capability, 

vehicle performance, road infrastructure, and crash risk. Several studies have sought to investigate 

the relationship of crash counts with weather, speed, traffic and roadway data during snow events, 

in order to help agencies, identify needs and to distribute the resources effectively and efficiently 

during winter weather events. The limitation of these studies is that weather variables are often 

correlated to each other, for example, visibility may be correlated to snow precipitation and air 

temperature may be correlated to net solar surface radiation. The randomness of crash occurrence 

also increases difficulty in such studies.  

In this study, a random parameter negative binomial model was used for Interstate I-465 in 

Indianapolis in winter 2018 and 2019. The results show that during snow events in Indiana, air 

temperature, wind speed, snow precipitation, net solar surface radiation, and visibility significantly 

impact the number of crashes on I-465. Driving over the speed limit (55 mph), especially on wet 

pavements are more likely to lose control of vehicles and cause crashes. Travel speed between 45 

mph to 55 mph and travel speed between 15 mph to 25 mph are both strong factors. Somewhat 

surprising was that speeds between 25 mph and 45 mph were not found to be significant. The 

number of interchanges is also positively related to crash counts due to the high number of conflict 

points at ramp merging sections. Also, travelling over speed limit is a random parameter with 

unobserved heterogeneity which is intuitive since speeding could be more dangerous in certain 

areas with complex road geometry and narrower lanes. Traffic counts have a negative correlation 

with crash counts, likely due to faster speeds when fewer vehicles are travelling on the loop. 

Crash counts increased about 70% during severe storm days on I-465, and visibility and air 

temperature are highly correlated to crash counts. These key findings can help the agency to deploy 

warnings when visibility is low, or temperature falls sharply.  
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 INTRODUCTION 

Data from the National Highway Traffic Safety Administration (NHTSA) suggest that 

weather is predominantly responsible for approximately 21% of vehicle crashes and 5,376 deaths 

and 418,005 injuries from 2007 to 2016 (FHWA, 2020). This research evaluated several models 

and proposed a random parameter negative binomial (RP-NB) regression model to estimate the 

relationship between highway features, weather impacts, and traffic factors with crash counts 

across I-465 around Indianapolis, Indiana. The primary objective was to investigate which factors 

significantly contribute to the crash counts during snow events. The secondary objective was to 

conduct a statistical model to find the contributing factors to crash counts. 

Crashes are defined as events that result in property damage, person injury or fatality due to 

a collision involving a motorized vehicle, bicyclist, pedestrian, or obstacle. The terms “crash”, 

“collision”, or “accident” typically have the same meaning in transportation literature. “Crash 

frequency” or “crash counts” are defined as the number of crashes occurring at a certain place, in 

a chosen time period. Crash counts observed at a highway segment, an intersection, an interchange, 

or a roundabout are commonly used as a fundamental safety performance measure for roadway 

safety analysis. A high level of randomness resides in crash count data because crash counts 

naturally vary over time at different places and under different circumstances. The randomness of 

an accident occurrence indicates that short-term crash counts alone are not a reliable estimator of 

long-term crash counts. However, it could identify the major contributing factors to crashes and 

make highway agencies and the public aware of these situations and develop the appropriate 

countermeasures. In this study, a two-year period of crashes on I-465 was analyzed to estimate 

crash counts. It is worth noting that the snow events during the two-year period are adequate to 

carry out the analysis, but additional years of data are expected to throw more light on the trend.  

The total number of crashes that occurred on I-465 in 2018 and 2019 are 859 and 940, 

respectively. During January to March 2018 and January to March 2019, there were 353 crashes 

that occurred during snow days. 
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1.1 Study Area 

The study area is I-465, a beltway around Indianapolis, Indiana, which is 53-miles in length 

(85 kilometers) and has 30 interchanges. All interchanges and their location mile markers (MM) 

are described in Table 1.1. The travel speed limit on I-465 is 55 miles per hour (mph). However, 

it is observed that vehicles often travel at higher speeds on I-465, especially during rush hours. 

The beltway spans three counties (Marion, Boone, and Hamilton) in Indiana. It is also one of the 

most congested highways in Indiana, serving both in-state commuters and out-of-state visitors. I-

465 also intersects with other major interstates, like I-65, I-69, I-70, I-74 and I-865, which lead to 

a mix of trucks, commercial vehicles, and regular cars in the traffic. This study divided the entire 

beltway/ loop into eight segments when carrying out the analysis. Each segment is highlighted 

with a different color and is labeled with a number near the segment shown in Figure 1.1. The 

average length of the segment is about 6.5 miles, and the start and end mile marker of each segment 

are shown in Table 1.2. 

 

 

Figure 1.1 Study location I-465 with eight segments 
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Table 1.1 I-465 interchanges with location mile marker (MM) 

No. Intersect with MM  No. Intersect with MM 

2 U.S. 31 / East St. 2.2  25 I-865 24.26-24.63 

4 S.R. 37 4.3  27 U.S. 421 26.42 

7 Mann Road 7.33  31 U.S. 31/ Meridian St. 30.27 

8 S.R. 67/Kentucky Avenue 8.51  33 U.S. 431/ Keystone Ave. 32.87 

9 I-70 9.32  35 Allisonville Rd. 34.94 

11 Sam Jones Parkway 10.48  37 I-69/ S.R. 37/ Binford Dr. 36.50 

12 U.S 40/ Washington St. 11.77  40 56th Street/Fall Creek/Shadeland Ave. 38.83 

13 U.S 36/ Rockville Road 12.91  42 Pendleton Pike/ S.R. 67/ U.S. 36 41.05 

14 10thSt. 13.95  44 I-70 43.43 

16 I-74/ Crawfordsville Rd. 15.55-15.77  46 U.S. 40/ Washington St. 45.27 

17 38thSt. 17.02  47 U.S. 52/Brookville Rd at I-465 46.81 

19 56thSt. 19.03  48 Shadeland Ave at I-465 47.27 

20 I-65/ Lafayette Rd. 19.80  49 I-74/Southeastern Ave. 48.33 

21 71st St. 20.82-21.45  52 Emerson 51.40 

23 86th Street 23.15  54 I-65 52.79 

 

Table 1.2 I-465 segment start and end mile markers with number of interchanges 

I-465 Inner Loop  I-465 Outer Loop 

Start MM End MM # of interchanges  Start MM End MM # of interchanges 

0.88 7.59 3  1.36 7.62 3 

7.59 12.25 4  7.62 12.65 4 

12.25 20.7 6  12.65 20.76 6 

20.7 25.86 3  20.76 25.95 3 

25.86 32.34 2  25.95 32.73 2 

32.34 38.38 3  32.73 38.45 3 

38.38 47.14 5  38.45 47.1 5 

47.14 0.88 4  47.1 1.36 4 

 

1.2 Study Period 

This study included a two-year period for January to March in 2018 and 2019. The final 

dataset contained weather variables, speed attributes, traffic counts, roadway information, and 

crash counts. Each observation was obtained and aggregated into a six-hour period for the analysis 

and modelling. Many previous studies aggregated data by year and did the modelling on a macro 

scale (Qiu & Nixon, 2008) (Khattak & Knapp, 2001). However, to get a better understanding on 

crash counts during winter events for I-465, it was beneficial to investigate the data in a micro way. 

The hourly data could provide more precision in weather variables. However, the tradeoff was the 

excessive zeros in the crash counts, since it is unlikely, on each segment, that a crash would happen 

https://www.in.gov/indot/div/interchange/maps/465/ic025_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic004_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic027_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic007_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic031_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic008_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic033_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic009_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic035_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic011_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic037_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic012_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic040_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic013_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic042_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic014_465.pdf
https://www.in.gov/indot/div/interchange/maps/70/ic090_70.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic016_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic046_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic017_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic047_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic019_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic048_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic020_465.pdf
https://www.in.gov/indot/div/interchange/maps/74/ic094_74.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic021_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic052_465.pdf
https://www.in.gov/indot/div/interchange/maps/465/ic023_465.pdf
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on an hourly basis. Thus, aggregating time into 6 hours was selected as a reasonable compromise. 

A sample of observations is shown below, which means on Mar 24th, 2018 12:00 to 18:00, there 

were 2 crashes in segment 1, and 1 crash in segment 5. 

 

Table 1.3 Sample data for crash counts 

Datetime Crash counts Segment 

Mar 24th, 2018 12:00 to 18:00 2 1 

Mar 24th, 2018 12:00 to 18:00 1 5 

 

1.3 Study Motivation 

INDOT spends more than $60 million annually on winter operations and strives the best to 

provide a safe and reliable roadway system during adverse weather conditions. Each year, more 

than 1,000 snowplows are deployed to keep 29,000 miles of interstate, U.S routes, and state roads 

clean and safe. Up to 2,000 operators, mechanics, and clerks work on alternating 12-hour shifts, 7 

days per week as needed. The three major goals of INDOT on winter operation website are to: (1) 

Keep all roads and bridges open and passable; (2) Operate as efficiently and effectively as possible; 

(3) Maximize safety and mobility during winter weather conditions (Indiana Department of 

Transportation, 2018). Even though great efforts were made, severe snow days still increase crash 

counts by 70% on I-465. FHWA reports have found that snow events may cause interstate speed 

to reduce by 35% to 42%. Studies also showed consistently that traffic flow on arterial is reduced 

by 13% in light snow events and 25% to 30% in heavy snow events (Qiu & Nixon, 2008). 

Researchers have been actively working on crash prediction models in the past two decades, but 

there are no general applicable standards or models that could be used to deliver a microscopic 

analysis for the case of I-465. At the same time, knowing contributing factors to crash counts are 

crucial for the agencies to get prepared and develop weather-responsive traffic management plans. 

Hence, a model to quantify the critical factors is in urgent need for future winter operation planning 

and could also aid in delivering key messages to drivers through dynamic message signs. 

It is noted that although congestion always leads to low travel speed on highways, low speed 

does not always imply congestion. Camera images in Figure 1.2 showed congested condition, low 

speed condition/ uncongested condition with or without snow below.  
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In Figure 1.2 d, the travel speed is low. However, it is a different situation compared with 

Figure 1.2 a and b which the roadway was heavy congested, and vehicles can barely move. It is 

beneficial in future work to either use a “congested” variable or to combine speed bins so that low 

speed, median speed and high speed could be used as factors to assess their impacts on crash counts 

(Lord, 2005) (Tarko, 2016). 

A summary table of primary factors for these crashes were provided in Table 1.4. It is worth 

noting that “Speed too fast for weather conditions” and “Road surface condition” combined to 

19.6% of the crashes in 2018 January to March and to 25.3% in 2019 January to March. For road 

surface conditions, the snow/ slush condition totaled 13.8% in 2018 January to March and 21.7% 

in 2019 January to March (JTRP, 2020). Two pie charts for illustrating the results are shown in 

Figure 1.3. 

 

Table 1.4 Primary factors for crash on I-465 during winter 2018 and winter 2019 

Primary factors for crash on I-465 2018 (Jan to Mar) 2019 (Jan to Mar) 

Following too closely 30% 28.5% 

Speed too fast for weather conditions 17.5% 23.5% 

Unsafe lane movement 20.3% 20.1% 

Ran off road 5.5% 6.2% 

Overcorrecting/oversteering 4.7% 3.3% 

Animal/ object in roadway 3.9% 2.8% 

Road surface condition 2.1% 1.8% 

Driver 2.8% 1.5% 

Tire failure or defective 1.3% 0.8% 

Other 12% 11.5% 

 

An internal Purdue Research team’s “heatmap” was used to monitor and diagnose real-time 

traffic/ congestion problems on I-465 (Desai et al., 2020). A clear-day and snow-day heatmap 

comparison is shown in Figure 1.4, where the x-axis is the time of day by hour and the y-axis is 

the mile marker (location) on I-465. Jan 12th, 2019 was a heavy snow day whereas Jan 5th, 2019 

was a clear day without adverse winter weather conditions. On the heatmap (Figure 1.4 a-d), white 

circles represent property-damage-only crashes and grey circles represent injury crashes; green 

areas mean that vehicle travel speeds were over 55 mph, while yellow areas are where congestions 
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(speed smaller than 45 mph but greater than 35 mph) started to occur and red areas are where 

queueing started since vehicles were travelling under 35 mph. 

  
a. Congestion without snow b. Congestion with snow 

  
c. No congestion without snow d. Low speed with snow 

Figure 1.2 Congestion, low speed and no congestion on I-465 with or without snow 

 

From Figure 1.4, it is clearly shown that the snow day had more congestion on I-465 

especially during the snow time in the morning; at the same time, there were significantly more 

crashes during the snow day compared to the clear day. Callout i and ii are two camera images 

showing the roadway and environmental condition at the same location, at the same time of day 

(9:01 a.m.) for the two days. The images also indicate that the visibility and pavement condition 

both deteriorate during snow days.  

For the same two days as above, Figure 1.5 (clear day) and Figure 1.6 (snow day) show the 

crash counts, Interstate miles below 45 mph, temperature and precipitation for each hour of day. 

These figures also indicate more crashes and congestion during the snow day compared to the clear 

day. The clear day on January 5th has a total of 4 reported crashes and a summary for each direction 

on I-465 is shown below.  



 

 

 

16 

 

• Inner Loop (0 property-damage-only; 0 injury; 0 fatal)  

• Outer Loop (3 property-damage-only; 1 injury; 0 fatal) 

For the snow day on January 12th, however, the total crash count is 63 with a summary for 

each direction on I-465 shown below. 

• Inner Loop (22 property-damage-only; 3 injury; 0 fatal) 

• Outer Loop (36 property-damage-only; 2 injury; 0 fatal) 

An overview of the monthly ”interstate miles below 45 mph” on I-465 for 2018 and 2019 

winter seasons is provided in Figure 1.7 to Figure 1.12. It can be observed that the pattern has been 

very consistent, being relatively higher during weekdays than during weekends, except for some 

major snow/ storm days during which more low speed/ congestions occurred. There were about 

four or five major winter events (storm days) each year during the studied period. It is also noticed 

that most of the winter events and snow days seemed to have significant impact on I-465. For 

example, in Figure 1.10, the snow day (January 12th, 2019, also shown as winter event 19-2) has a 

lot more miles which travel speed under 45 mph compared to the previous Saturday which was a 

clear day (January 5th, 2019). However, in Figure 1.7 there was low traffic/ congestion impact on 

Jan 8th, 2018, even though it was a winter event. This means snow is not the only factor causing 

more crashes. Hence, it is critical to find the other contributing factors for the low speed/ 

congestion and crashes during such snow days. That way, the agency will have the information 

needed to allocate resources to increase both the mobility and safety on the road.
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Figure 1.3 Pie charts for primary factors of crashes in winter 2018 and winter 2019 (Source: 

Purdue JTRP, 2020) 

2018 (Jan to Mar)

Following too closely Speed too fast for weather conditions
Unsafe lane movement Ran off road
Overcorrecting/oversteering Animal/ object in roadway
Road surface condition Driver
Tire failure or defective Other

2019 (Jan to Mar)

Following too closely Speed too fast for weather conditions
Unsafe lane movement Ran off road
Overcorrecting/oversteering Animal/ object in roadway
Road surface condition Driver
Tire failure or defective Other
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(a) I-465 Inner Loop Heatmap for 01/05/2019 (b) I-465 Inner Loop Heatmap for 01/12/2019 

  

  
(c) I-465 Outer Loop Heatmap for 01/05/2019 (d) I-465 Outer Loop Heatmap for 01/12/2019 

  
(e) Camera image at MM11.7 for 01/05/19 (f) Camera image at MM11.7 for 01/12/19 

Figure 1.4 I-465 Heatmap with crashes and camera image comparisons for clear day 

(01/05/2019) and snow day (01/12/2019) 
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Figure 1.5 Crash counts, interstate miles below 45 mph, temperature and winter precipitation for 

clear day (01/05/2019) 
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Figure 1.6 Crash counts, interstate miles below 45 mph, temperature and winter precipitation for 

snow day (01/12/2019) 
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Figure 1.7 I-465 2018 January weekly interstate miles below 45 mph (Monday to Sunday) for 

both directions (inner loop and outer loop) 
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 Figure 1.8 I-465 2018 February weekly interstate miles below 45 mph (Monday to Sunday) for 

both directions (inner loop and outer loop) 
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Figure 1.9 I-465 2018 March weekly interstate miles below 45 mph (Monday to Sunday) for 

both directions (inner loop and outer loop) 
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Figure 1.10 I-465 2019 January weekly interstate miles below 45 mph (Monday to Sunday) for 

both directions (inner loop and outer loop) 
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Figure 1.11 I-465 2019 February weekly interstate miles below 45 mph (Monday to Sunday) for 

both directions (inner loop and outer loop) 
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Figure 1.12 I-465 2019 March weekly interstate miles below 45 mph (Monday to Sunday) for 

both directions (inner loop and outer loop)



 

 

 

27 

 

 LITERATURE REVIEW 

There are two attributes from the literature review section. First is to help identify the 

potential predominant factors to crashes. Second is to figure out the models utilized in the crash 

count modelling and provide fundamentals for the model selection in this study. The aim of the 

literature review is to better understand the problem and assess some best practices to develop a 

suitable model for adverse weather conditions and ultimately provide insights to lower the crash 

counts and increase efficiency in safety management.  

2.1 Predominant Factors related to Crashes 

Among the risk factors, driver’s age and gender, speed zone, traffic control type, time of day, 

crash type and seatbelt usage are significantly related to highway crashes (Chen et al., 2012) (Sinha 

et al., 2007). Winter weathers and work zones also play critical roles in crash analysis. Identifying 

the predominant factors are especially important for roadway safety planning. The chapter 

examines potential key factors that could raise risks for crashes, as discussed in previous research 

papers on highway safety. 

2.1.1 Human Factors 

Human factors account for several crashes due to erroneous driving behavior and incorrect 

decisions. Several studies suggested that driver age and physical condition are strongly correlated 

with collision. Elderly drivers (Hakamies-Blomqvist, 1993), young drivers (Dissanayake & Lu, 

2002), drivers with invalid license (Willis, 2000), and drivers without seatbelts (Cohen & Einav, 

2003) are more likely to be involved in a collision. The safety-related studies revealed that the 

driver’s age and crash risk relationship is bell-shaped under similar amount of exposure (Mayhew 

et al., 2006). When taking severity of the crash into consideration, elderly drivers are the most 

vulnerable (Hanrahan et al., 2009). Due to elderly drivers’ reduced psychological and physical 

driving abilities, such as “inattention, perceptual lapses, misjudgment and illness”, behaviors as 

failure to yield the right-of-way, disobeying traffic controls, or involvement in other traffic 

offenses were more frequently observed (Mayhew et al., 2006). Alcohol is also a non-negligible 
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factor which resulted in 35% of fatal crashes in the U.S., this means about one in three traffic 

deaths involves a drunk driver. Alcohol-related crashes in the United States cost the public more 

than $44 billion in 2016, plus unforeseeable quality-of-life losses (Centers for Disease Control and 

Prevention, 2017). 

2.1.2 Vehicle Design/ Safety Features 

New vehicle design concepts and safety features, such as, lane-keeping assist, traction 

control, automatic emergency braking, blind spot warning and adaptive cruise control, were 

introduced in the past decades to increase the safety on the road and protect the vulnerable roadway 

users like pedestrians and motorcyclists. The National Highway Traffic Safety Administration 

(NHTSA) promotes these driver assistance technologies and states “if used properly, the 

technology will save lives”. On the other hand, vehicles with outdated design or with no safety 

features could be under higher risk of causing crashes (USDOT, 2016).  

2.1.3 Roadway  

Roadway characteristics are also critical components for safety analysis studies (Labi, 2006). 

For example, many studies suggested replacing an intersection with a roundabout to reduce crash 

counts and crash severity because a roundabout typically has only eight conflicting points whereas 

a four-way intersection has thirty-two conflicting points. Thus, roundabouts could reduce injury 

crashes by 30%-50% and fatal crashes by 50%-70% (Elvik, 2003). Moreover, number of lanes and 

lane width are also significant since many crashes happen when the driver is trying to change or 

merge into different lanes (Karim, 2015). Similarly, number of interchanges and exits are also 

important since plenty of crashes occur on ramps or exit areas. 

2.1.4 Weather 

Various environmental factors and weather parameters were studied, such as pavement 

temperature, air temperature, atmospheric visibility, wind speed and direction, as well as snow 

intensity, duration, and coverage (Xiao et al., 2006). A study conducted on the interstate highway 

system in Iowa used detailed crash counts, weather, traffic exposure, and roadway geometry data. 
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The results showed that higher wind speed (gusts) led to more injurious crashes, whereas higher 

snowfall intensity tended to result in less injurious crashes (Khattak & Knapp, 2001). Although 

the previous results varied, conclusions for such studies were mutually consistent (Xiao et al., 

2006)(Eisenberg & Warner, 2005)(Brown & Baass, 1997). All emphasized the safety benefits 

offered by winter maintenance roadway de-icing activities. Researchers studied the economic 

impacts of winter road maintenance on roadway users and found a significant decrease in crash 

rates after de-icing maintenance activity when compared with crash rates prior to de-icing(U.S. 

National Research Council, 1993). Another study was conducted in Quebec, Canada, of crash rates 

during winter months as compared with crash rates during summer months. The research indicated 

that winter months had higher minor and material damage accident rates but lower severe and fatal 

crash rates. They acknowledged, however, that these results could change if winter road 

maintenance activities were modified (Brown & Baass, 1997). Snow-event based study claimed 

that weather conditions such as rain, snow, sleet, fog, and ice are accountable for reducing road 

surface friction, impairing driver visibility, obstructing roadway and thus, engendering traffic 

collisions (Xiao et al., 2006).  

Snow and Rain precipitation 

Snow has a greater effect on crash counts than rain. It can increase the crash rate by 84% and 

the injury rate by 75%, while rain can increase the crash rate by 71% and the injury rate by 49%. 

As precipitation intensity increases, the crash risk also increases (Qiu & Nixon, 2008). Roadway 

friction condition could be reduced significantly during such events and would therefore require 

longer stopping distances. 

Visibility 

Low Visibility caused by wind-blown snow, heavy rain, fog, and smoke can significantly 

decrease drivers’ performance and judgement, and increase the crash risk. Low visibility could 

also decrease the overall system’s travel speed and cause congestion. Each year, over 38,700 

vehicle crashes occur in low visibility conditions. Over 600 people are killed and more than 16,300 

people are injured in these crashes annually (FHWA, 2018). 

Temperature 

A sudden air temperature drop causing freezing rain or snow could be very challenging for 

highway treatment. Studies showed that temperature extremes have a direct influence on traffic 

volume or amount of mobility (Chrzan & Smal, 2015). Although the results about temperature 
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varied, its negative influence on the number of accidents seemed to dominate (Hermans et al., 

2006). However, temperature around freezing point could lead to different complex scenarios 

which could lead to different outcomes. 

Solar flux 

Solar radiation and sunshine duration both had a significant negative impact on road safety 

(Hermans et al., 2006). The more solar radiation during winter season means the snow are melting 

down and road surface condition getting back to normal so the probability of crash decreases. 

2.1.5 Temporal 

Time of the day or day of the week could also impact crash counts since people’s travel 

pattern and travel behavior change during different times. For example, the peak hours always 

have more commute traffic and may lead to more crashes. Nighttime may have poor visibility 

compared to daytime. Studies reported that weekend trip length and travel duration are usually 

longer than weekday trips which could leave impacts on crash counts as well (Theses & Agarwal, 

2004).   

2.1.6 Traffic 

Annual average daily traffic (AADT) was widely adopted when considering factors 

influencing crash counts (Labi, 2011) (Tarko & Songchitruksa, 2005). The studies’ results varied 

due to the studied location (urban or rural), the methodology used to aggregate data, and the type 

of accidents being investigated. Positive linear relationships between traffic volume and total 

accidents were a common finding, as were the U-shaped functions, where accident occurrence was 

greatest at extreme low and extreme high levels of traffic volume (Martin, 2002). Shefer proposed 

that, when considering only fatal accidents, the opposite would be observed; fatalities were 

predicted to be greatest at median levels of traffic volume and lowest when congestion was extreme 

low or high (Shefer, 1994). 

Additionally, researchers identified that winter storms were responsible for a traffic volume 

reduction of 7% to 56% on the major rural highways in the U.S. based on the snowfall intensity 

(National Research Council (U.S.). Transportation Research Board., 1993). Similarly, Knapp 

estimated an average of 16% to 47% reductions in traffic volume on the interstate highways in 
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Iowa during severe winter storms (at least 4-hour duration of snowfall with 0.51cm/hour) (Knapp 

& Smithson, 2000). 

2.1.7 Spatial 

Different study location would obviously have a different impact on crash counts. The 

demographics information like population density, household income and land use patterns would 

significantly impact the traffic count and travel behavior. For example, population has been widely 

employed as an indicator for crash exposure in previous macroscopic safety studies (Karlaftis & 

Tarko, 1998). Also, different type of road (urban, rural, freeway, or arterial) could lead to different 

number of crashes (Chen et al., 2019). 

2.2  Crash Count Models 

The fact that a crash could happen under any circumstances makes it extremely hard to model. 

However, it is critical for practitioners and engineers to understand the major contributing factors 

to crashes so that proactive activities/ decisions could be made to minimize crashes. Lord and 

Mannering did a review and assessment of methodological alternatives for crash modelling and 

suggested that different models needed to be considered based on the nature of the dataset (Lord 

& Mannering, 2010). Below are some of the suggested models that may fit the dataset of this study. 

2.2.1 Poisson and Negative Binomial models   

Poisson and negative binomial models are the most used models for crash count analysis 

(Anastasopoulos et al., 2010). Such models are suitable for predicting random, discrete and non-

negative crash counts. Poisson regression is helpful for exploring the relationship between crashes 

and contributing factors when the mean and variance of the crash frequencies are equal. According 

to Lord and Mannering, both negative binomial (NB) regression and zero-inflated negative 

binomial (ZINB) regression can be effective when overdispersion is high. When experimental 

variance of the data is greater than the anticipated variance or mean, the condition is considered 

overdispersion (Lord et al., 2005). 
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Noland employed negative binomial count data models to demonstrate the associations 

between spatially disaggregate land use type data with traffic fatalities in England (Noland & 

Quddus, 2004). Studies also used negative binomial models to detect the relationship between 

crash injuries and major influential factors (Mitra, 2009)(Quddus, 2008)(Chen et al., 2017). 

Extensive studies have also been conducted on analyzing the relationship between adverse weather 

and crash incidences (Khattak & Knapp, 2001) (Qiu & Nixon, 2008).  

2.2.2 Zero-Inflated Poisson and Zero-Inflated Negative Binomial Models  

Zero-inflated Poisson (ZIP) and Zero-inflated negative binomial (ZINB) models are getting 

popular in the past decades for modelling crash counts. Since a crash is an event with high 

randomness, and based on different aggregation methods, the crash counts could have excessive 

zeros in the dataset. Both ZIP and ZINB work in a two-step process. The first one being generating 

excess zero count derived from a binary model and second one being generating non-negative 

counts for crashes including zero crashes, which are estimated from the Poisson or negative 

binomial distribution. Although zero-inflated models can provide more reliable models by 

eliminating the noise effect of excessive zeros, there has been debate  on the validation of these 

models(Lord et al., 2005) (Anastasopoulos et al., 2010). 

2.2.3 Random Parameter Models 

Random parameter models are the ones with parameters varying across observations. This 

type of model is practically suitable for modelling crash counts because they can address the 

unobserved heterogeneity issue in the dataset. Considering such unobserved heterogeneity across 

the spatial zones will provide better insight into the influences of the contributing factors on crash 

counts (Ukkusuri et al., 2011)(Chen et al., 2019),. 

2.2.4 Panel Data Models  

Panel data models are useful for data with both spatial and temporal dimensions while 

accounting for heterogeneity across individual observations. Road crash data often involves cross-
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sectional and time-series information, panel data count models have been adopted frequently to 

isolate the time or location impacts on the crash counts. 
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 DATA PROCESSING 

3.1 Weather Data 

This study uses data from North American Land Data Assimilation System (NLDAS) for the 

weather attributes. The data are available in 1-hour intervals and each weather station covers an 

area of twelve-kilometer by twelve-kilometer grid. Weather related data were collected from the 

eight weather stations closest to I-465 shown in Figure 3.1 below. Each station’s weather data were 

then assigned to the nearest segment shown in Figure 1.1 (Downing et al., 2020).  

 

 

Figure 3.1 Weather stations near I-465 
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3.2 Speed Data 

Probe vehicle data collected and provided by INRIX Analytics was used for speed data (Day 

et al., 2016). The data were collected by dividing the roadway into small segments (“xdid”, which 

is a serial number for each location). Each segment is in a range of 0.3 to 1.5 miles. For speed 

variables, if the name of the variable is “Mean_below_15” then it means the average travelling 

speed on the segment is greater than 0 mph and lower than 15 mph; if it is “Mean_below_25” then 

the average travelling speed is greater than 15 mph and lower than 25 mph. The rest of the speed 

variables also correspond to different speed bins in the same manner. The data was provided in 

fifteen-minute intervals, and for each “xdid”, the duration (minutes) of travel speed under certain 

miles per hour was recorded. For example, if the raw data showed 5 for speed below 15 mph at 

location “xdid 1”, then there were 5 minutes out of the 15-minute interval when the overall speed 

at this particular location was under 15 mph. By aggregating the data into one-hour intervals to 

achieve consistency with weather data, this study first checked how many “xdids” were in each of 

the segment and found the mean speed variables at all the “xdids” in that segment. Then, the 

researchers of this study repeated the same process and aggregated the data into six-hour intervals. 

It was realized that by doing this the resolution of the data might suffer. However, the congestion 

trend would not change much. If there was severe congestion during the six-hour period, then the 

mean time for congestion would be high.  

3.3 Traffic Data 

Traffic data, were provided by INDOT’s Traffic Management Center This involved an 

hourly traffic counts near each interchange, for all thirty interchanges on I-465 (INDOT, 2020). 

For further analysis, a new hourly traffic count was calculated by taking the average of the data 

between interchanges on each of the eight segments, after which a six-hour aggregation was 

calculated by taking the sum of each six hours. For example, a typical Monday and Saturday hourly 

traffic count were shown in Figure 3.2 and  Figure 3.3, respectively. It was observed in the dataset 

that, the traffic count for weekends from 1:00 p.m. to 7:00 p.m. were recorded as the same count. 

However, the trend for a six-hour aggregation was not affected significantly. As of the time of this 

study, 2019 traffic count data were not available. According to INDOT, the AADT generally had 

the same trend from 2018 to 2019, thus the traffic count for 2019 was assumed to be the same for 
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2018. It is noted that location 6 and 7 have the highest traffic volume; location 2,3,5,8 have medium 

traffic; and location 1 and 4 have the lowest traffic. 

3.4 Crash Data 

The crash data used for this analysis was extracted from Automated Reporting Information 

Exchange System (ARIES) used by the Indiana State Police to record all crash incidents occurring 

on roadways in the state of Indiana(Tarko et al., 2016). Crash data were generated through first 

responder crash reports and collected within ARIES. Crash data are available whenever the police 

officers enter them into the system. For some severe crashes, it may take longer time to investigate 

and process the reports. This dataset includes crash details such as vehicle information, road 

conditions, crash severity, weather conditions, location, date, and time. Due to the confidential 

nature of this dataset and the parties involved, this study does not use any personal or identifying 

information from the crash database.  

The total number of crashes occurred on I-465 are 859 and 940 in 2018, and 2019, 

respectively. This study focuses mostly on snow days, and the total crashes during the defined 

snow days in two years, is 353.  
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Figure 3.2 I-465 Typical Monday average hourly traffic count in each location (segment) 

 

 

Figure 3.3 I-465 Typical Saturday average hourly traffic count in each location (segment) 
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 ANALYSIS 

To understand the relationship between the contributing factors and crash counts, with the 

extracted data from police reports and state highway-asset-management database, the analyses of 

traffic safety estimate the likelihood of a traffic crash. The number of crashes occurring on a 

defined spatial entity over a specific time period (for example, the number of crashes occurred at 

segment one of I-465 during Jan 3rd 0:00 a.m. to 6:00 a.m.) would be considered as the dependent 

variable, while most of the factors available and affecting the likelihood of a traffic crash are 

analyzed and examined. Although data on certain factors were not available for inclusion in this 

study, the major factors that are relevant to the traffic crashes have been incorporated and the 

model functional form was selected carefully in order to yield promising results. This section 

explains how the final data were selected, what variables were used, and which model provided 

the best fit. 

4.1 Data Selection 

After processing all the data, the snow days only dataset was filtered out and used in 

modelling. Doing this helped to reduce the excessive zeros in the crash counts. Snow days were 

defined as the days when the mean snow precipitation is greater than 0. Daily crash counts with 

congestion-mile hours plots for both 2018 and 2019 are shown in Figure 4.1 and Figure 4.2 below. 

Congestion-mile hours is a concept introduced in 2015 Indiana Mobility Report (Day et al., 2016), 

and the threshold for congestion was defined to be speed below 45 miles per hour. It is obvious 

for storm dates that both the number of crashes and congestion mile hours are high. However, for 

snow days with light precipitation, the correlation is not that evident. It is more reasonable to 

choose the snow days only dataset over the full dataset and the storm days only dataset (where 

mean snow precipitation > 0.1 millimeter), just to include sufficient and non-misleading 

information for predicting the crash counts. Figure 4.3 shows the dates selected for the modelling; 

days highlighted in red were winter event days (storm) and days highlighted in blue were the days 

with relatively light precipitation (snow). 
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Figure 4.1 Daily congestion-mile hours vs. crash counts in 2018 with snow condition 

 

 

Figure 4.2 Daily congestion-mile hours vs. crash counts in 2019 with snow condition 



 

 

 

40 

 

 

Figure 4.3 Dates selected for modelling with either precipitation or winter events 

4.2 Model Selection 

Poisson model is commonly used as the starting point to model crash counts. In the Poisson 

regression model, considering the number of crashes occurring per six hours in 2018 and 2019 at 

various segments on I-465, the probability of segment 𝑖  having 𝑦𝑖  crashes in every six hours 

(where 𝑦𝑖 is a non-negative integer) is given by (Equation 1): 

𝑃(𝑦𝑖) =
𝐸𝑋𝑃(−𝜆𝑖)𝜆𝑖

𝑦𝑖

𝑦𝑖!
(1) 

Where: 𝑃(𝑦𝑖)  is the probability of segment 𝑖  having 𝑦𝑖  accidents per six hours, and 𝜆𝑖  is the 

Poisson parameter for segment 𝑖, which is equal to segment 𝑖’s expected number of crashes per 

six hours, 𝐸[𝑦𝑖]. Poisson regression models are estimated by specifying the Poisson parameter 𝜆𝑖 

as a function of explanatory variables. In this study, explanatory variables include weather 

attributes, speed variables, traffic counts, number of interchanges and so on. The most common 

relationship between explanatory variables and the Poisson parameter is the log-linear model 

(Equation 2): 

𝜆𝑖 = 𝐸𝑋𝑃(𝛽𝑋𝑖) (2) 
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where 𝑋𝑖 is a column vector of explanatory variables and 𝛽 is a row vector of estimated parameters. 

In this formulation, the expected number of events per period is given by 𝐸[𝑦𝑖] = 𝜆𝑖. 

From the results, we get the value 𝛼, the dispersion parameter, meaning the variance is 

greater than mean and indicating the data is overdispersed. Overdispersion can arise for a variety 

of reasons, depending on the phenomenon under investigation (Karlaftis & Tarko, 1998). The 

primary reason in many studies was that variables influencing the Poisson rate across observations 

had been omitted from the regression. The use of a negative-binomial model would be more 

appropriate compared to Poisson model for addressing the overdisperson issue. The negative 

binomial model can be derived from the Poisson model with 𝜆𝑖 as follows (Equation 3): 

𝜆𝑖 = 𝐸𝑋𝑃(𝛽𝑋𝑖 + 𝜀𝑖) (3) 

Where: 𝐸𝑋𝑃(𝜀𝑖) is a Gamma-distributed disturbance. 

As with the Poisson regression model, the signs of the estimated parameters in the negative 

binomial model are as expected and are significant. In addition, the overdispersion parameter is 

statistically significant, confirming that the variance is larger than the mean. The restricted log-

likelihood test suggests that the fitted model is superior to one with only the constant term. 

Zero-inflated negative binomial model is also utilized to address the problem of excessive 

zeros in the crash counts. There are two steps to perform zero-inflated negative binomial model: 

(1) follow the binary logit model; (2) follow the traditional negative binomial methodology. For 

the binary logit model, one meaning for zero crash count is, according to certain criteria or under 

certain exposure, the event will almost never happen. An extreme example to illustrate this could 

be, if no vehicle travelled on segment one then the crash count should always be zero. Such 

scenarios can be called “zero count state”. The second meaning for zero crash count is just simply 

going through the data and finding that the number of crashes occurred during a time period at 

certain location could be one, two or zero. These scenarios are referred as the result of “normal 

count state”. 

Previous studies suggest that for a highway 1-kilometer section, with conditions of straight 

roadway with wide lanes, low traffic volumes, and no roadside objects, the likelihood of a vehicle 

accident occurrence may be extremely small, but still present because an extreme human error 

could cause an accident. These sections are in a zero-accident state or a low risk zone because the 

likelihood of a crash is so small (the expectation of a reported accident may occur only once in a 
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100-year period). Thus, the zero count state may refer to situations where the likelihood of an event 

occurrence is extremely rare in comparison to the normal-count state where event occurrence is 

inevitable and follows some known count process (Lambert, 1992).  

It is common not to know whether the observation is in the zero state or not - so the statistical 

analysis process must uncover the separation of the two states as part of the model estimation 

process. Models that account for this dual-state system are referred to as zero-inflated models 

(Lambert, 1992)(Greene, 2011). For model comparison purposes, the criteria for the exposure 

parameters were chosen as speed below twenty-five and snow. In reality, however, this model’s 

concept is hard to be using the current dataset. The binary process of defining a zero-state is almost 

impossible since no strong evidence can conclude the crash count to be none at any of the segment 

during a six-hour period. Even though the result of this model gave us a lower AIC number which 

was preferred, it is more conservative in theory to use the negative binomial model to analyze the 

data. 

The modeling approaches chosen so far, all treated parameters as constant across 

observations. However, the effect of some individual explanatory variables is not always the same 

for each observation. (Chen et al., 2017) For such cases, the fixed-parameter assumption could 

lead to biased results. For example, based on the different design or geometry of different segment 

of the roadway, speeding could be more dangerous on a complex and narrow road segment 

compared with a straight and wide road segment. This could be further interpreted in that travelling 

70 mph may be not relevant to crash counts on segment one but may significantly impact crash 

counts on segment two. Thus, a random parameter negative binomial model was chosen to 

complete the modelling process.  

To add random parameters in count-data models, estimated parameters are written as 

(Equation 4): 

𝛽𝑛 = 𝛽 + 𝜔𝑛 (4) 

where 𝜔𝑛 is a randomly distributed term (e.g., a normally distributed term with mean zero and 

variance 𝜎2). With this equation, the parameter becomes (Equation 5): 

𝜆𝑛|𝜔𝑛 = 𝐸𝑋𝑃(𝛽𝑛𝑋𝑛 + 𝜀𝑛) (5) 

in the negative binomial with the corresponding probabilities for negative binomial now being 

𝑃(𝑦𝑖|𝜔𝑖). 
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The random parameter negative binomial model was estimated using simulation-based 

maximum likelihood with 200 Halton draws. The number of Halton draws was selected because 

it has been proven to produce consistent and accurate parameter estimates (Mannering & Bhat, 

2014). Halton draws were used for the simulation instead of random draws, because it has been 

shown that fewer Halton draws are required to attain convergence compared to random draws. 

Also, the efficiency of Halton draws is generally more significant than random draws. In order to 

select the random parameter density functional forms, the following distributions were 

investigated: uniform, lognormal and normal distributions, where the normal distributions were 

found to yield the best statistical fit for all the parameters amongst the three. Nonetheless, future 

studies could be conducted to further investigate and compare the different distributions for 

random parameter model in crash count analysis. 

4.3 Variable Selection 

A list of variables considered for this study is shown in Table 4.1 below. Multiple 

combinations of variables were used to find the best representative variables to be used in the 

model. By checking both the AIC numbers (preferring lower ones) and p-values (removing the 

ones that were not statistically significant), a combination of variables in Table 4.2 was selected 

for the final model.  

Correlation is the state where two variables are highly correlated and contain similar 

information about the variance within the given dataset. A correlation matrix was generated to 

detect the collinearity among variables, and variables with large absolute values were not used. To 

address the multicollinearity issue, the Variance Inflation Factor (VIF) was used to measure the 

collinearity among predictor variables within a multiple regression. In general, the VIF was wanted 

to be at least smaller than 5 and ideally less than 2.5. Table 4.2 shows the result of VIFs of the 

selected variables and all seem acceptable even though the speed factor were a bit high due to its 

natural correlation to traffic counts and other speed bins. 
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Table 4.1 All Variable Names with Descriptions 

Variables Names Descriptions Units 

X1 Min_air_Temp Minimum air temperature K 

X2 Mean_air_Temp Mean air temperature K 

X3 Max_air_Temp Max air temperature K 

X4 Min_rain Minimum rain precipitation mm 

X5 Mean_rain Mean rain precipitation mm 

X6 Max_rain Maximum rain precipitation mm 

X7 rain_time Rain Duration hr 

X8 Min_snow Minimum snow precipitation mm 

X9 Mean_snow Mean snow precipitation mm 

X10 Max_snow Maximum snow precipitation mm 

X11 snow_time Snow Duration hr 

X12 Min_wind_speed Minimum wind speed (gust) m/s 

X13 Mean_wind_speed Mean wind speed (gust) m/s 

X14 Max_wind_speed Maximum wind speed (gust) m/s 

X15 Min_visibility Minimum horizontal visibility m 

X16 Mean_visibility Mean horizontal visibility m 

X17 Max_visibility Maximum horizontal visibility m 

X18 Min_snow_depth Minimum snow depth m 

X19 Mean_snow_depth Mean snow depth m 

X20 Max_snow_depth Max snow depth m 

X21 Min_net_surface_solar_radiation Minimum solar influx W/m^2 

X22 Mean_net_surface_solar_radiation Mean solar influx W/m^2 

X23 Max_net_surface_solar_radiation Max solar influx W/m^2 

X24 Wday Day of week (0 to 7) - 

X25 Startmm Segment start mile marker - 

X26 Endmm Segment end mile marker - 

X27 Mean_below_fifteen Duration of speed below 15 mph per hour min 

X28 Mean_below_twentyfive Duration of speed below 25 mph per hour min 

X29 Mean_below_thirtyfive Duration of speed below 35 mph per hour min 

X30 Mean_below_fourtyfive Duration of speed below 45 mph per hour min 

X31 Mean_below_fiftyfive Duration of speed below 55 mph per hour min 

X32 Mean_below_sixtyfive Duration of speed below 65 mph per hour min 

X33 Mean_over_sixtyfive Duration of speed over 65 mph per hour min 

X34 Crash counts Number of crashes - 

X35 Length Length of the segment miles 

X36 Weekday Weekday (1), Weekend (0) - 

X37 Interchange Number of interchanges - 

X38 Location Segment number (0 to 8) - 

X39 Six-Hours Traffic Six hourly traffic counts 
cars/six 

hrs 

X40 Interchange Inner and Outer loop combined X37 - 

X41 Location Inner and Outer loop combined X38 - 
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Table 4.2 Selected Variables for modelling and their collinearity 

Variables Name Tolerance VIF 

X2 Air Temperature (K) 0.75 1.34 

X9 Snow (mm) 0.48 2.09 

X13 Wind Speed (m/s) 0.81 1.23 

X16 Visibility (m) 0.40 2.47 

X22 Net Surface Solar Radiation (W/m^2) 0.59 1.70 

X28 Speed Below Twenty-five 0.57 1.75 

X29 Speed Below Thirty-five 0.36 2.74 

X31 Speed Below Fifty-five 0.24 4.21 

X32 Speed Below Sixty-five 0.26 3.78 

X39 Six-Hours Traffic 0.57 1.75 

X40 Number of Interchanges 0.99 1.01 

 

A summary table of descriptive statistics of estimated variables is shown in Table 4.3. This 

table represents all the selected variables used in the model are provided with minimum, mean, 

standard deviation and maximum values. For example, the air temperatures used for the model are 

within a range of 260.06 Kelvin to 277.08 Kelvin with an average of 270.68 Kelvin which is below 

freezing point (273.15 Kelvin). This is reasonable because the snow days only dataset was chosen, 

and the air temperature was supposed to be relatively low. It is noted the snow (X9) is measured 

in the melted water equivalent, and an average of 0.2 millimeter means that the hourly wintry 

precipitation is approximately 0.1 inch throughout the snow days in 2018 and 2019. The maximum 

as 2 millimeters means hourly wintry precipitation peaked at 1 inch at certain location of I-465. 

 

Table 4.3 Descriptive Statistics of Estimated Variables 

Variables Name Minimum Mean Standard Deviation Maximum 

X2 Air Temperature (K) 260.06 270.68 3.39 277.08 

X9 Snow (mm) 0 0.2 0.28 2.01 

X13 Wind Speed (m/s) 0.77 10.37 4.17 19.76 

X16 Visibility (m) 832.68 15581.3 7797.96 24100 

X22 Net Surface Solar Radiation (W/m^2) 0 33.71 56.47 268.09 

X28 Speed Below Twenty-five 0 0.27 0.76 6.82 

X29 Speed Below Thirty-five 0 0.97 2.34 18.02 

X31 Speed Below Fifty-five 0 7.34 9.55 49.33 

X32 Speed Below Sixty-five 1.74 40.78 13 58.82 

X39 Six-Hours Traffic 5061.33 24353.7 13332.69 58514 

X40 Number of Interchanges 2 3.68 1.18 6 
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4.4 Signs of Coefficients 

From the model results in Table 4.4, it is observed that the snow precipitation (X9) is highly 

correlated to crash counts. Intuitively, the more it snowed, the more crashes happened. Wind speed 

(X13) was found to have a negative effect on crash counts, due to the risk compensation effect 

(Labi, 2016) (Mannering, 2009): people drive more cautiously on windy, snowy days. Especially 

for truck drivers, wind could have a significant impact on overturned truck crashes, so if more 

attention was raised during such situations, crash counts would drop. At the same time, low 

visibility (X16) would leave drivers less time to react to incidents, especially when lane markings 

are covered by snow. The net surface solar radiation (X22) is negatively related to crash counts. A 

higher solar influx accelerates the snow/ ice removal and provides a better road surface condition, 

thus reduces the probability of a crash. However, it is realized that there exists time lag effect 

associated with solar radiation variable, which could be addressed in future studies.  

All the speed related factors (X28, X29, X31, X32) had a positive impact on crash count. 

This is also very intuitive since the more congestion on the road, the higher possibility of rear end 

crash to occur. Studies in Colorado showed a consistent result and stated that, larger differences 

between the legal speed limit and the traffic speed contribute to an increase of crash frequency (F. 

Chen et al., 2016) (Yu et al., 2013). Additionally, if drivers are travelling under 55 mph, it means 

they are transferring from normal driving conditions to just slowing down. This could result in a 

high chance of a crash because of a failure to slow down or stop. Travel speed between 55 mph to 

65 mph (X32) also has a positive impact on crash counts since the speed limit on I-465 is 55 mph 

and travelling over the speed limit could result in a higher number of crashes.  

The traffic count has a negative relationship with crash counts because the capacity of I-465 

is always generally fixed. This means the more traffic on the road, the less likely speeding is to 

occur and, ultimately, the less likely a crash is to occur. Air temperature (X2) has a positive 

relationship with crash counts since the dataset only contains the snow day observations. On a 

typical snow day, if the air temperature rises above freezing point, then the snow/ ice starts to melt. 

This could lead to a slipperier and messier roadway condition causing more crashes to occur.  

Finally, the highway environment is always crucial in predicting crash counts. The number 

of interchanges (X40) are positively related to crash counts since a large portion of highway 

crashes happen on the ramp and exit areas. 
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4.5 Random Parameter and Elasticity 

Ninety-nine percent of the data shows that during snow days, an increase in air temperature 

will increase the probability of crash; 98% of the data shows that travel speed over 65 mph will 

increase the crash counts; and 96% of the data shows that increasing the number of interchanges 

will increase the possibility of crash occurrence. Clearly, these factors vary on different segments 

on I-465. 

Elasticity is commonly used to determine the relative importance of a variable in terms of its 

influence on a dependent variable (Chen et al., 2017) (Chen et al., 2019). In this case, the dependent 

variable is the crash counts. Elasticity is generally interpreted as the percent change in the 

dependent variable induced by a 1% change in the independent variable. Elasticity values only 

make valid sense for continuous variables and not for indicator or discrete variables. Elasticities 

are an appropriate way to evaluate the relative impact of each variable in the model. The results 

are shown in Table 4.5 below. An example interpretation is, for travel speed between 55 mph and 

65 mph (high-speed bin), the elasticity of 1.37 means an increase in the crash counts by 1.37% 

when the high-speed bin increases by 1%. Similarly, it is observed during snow events that, as air 

temperature increases by 1%, the crash counts could result in an 15.72% increase.  

 

Table 4.4 Estimation Results of Random Parameter Negative Binomial Model 

Description Parameter Estimate Std. Error P-value Significance Level 

Constant -19.07 6.17 0.002 *** 

Non-Random Parameter 

Snow (mm)  0.81 0.24 0.0006 *** 

Wind Speed (m/s)  -0.058 0.016 0.0002 *** 

Visibility (m) -3.90E-05 1.10E-05 0.0005 *** 

Net Surface Solar Radiation -0.0031 0.0019 0.0927 * 

Speed Below Twenty-five 0.21 0.072 0.0038 *** 

Speed Below Thirty-five  0.081 0.033 0.0133 ** 

Speed Below Fifty-five  0.058 0.013 0 *** 

Traffic Count -8.70E-06 5.00E-06 0.0808 * 

Random Parameter 

Air Temperature (K)  0.058 (0.0023) 0.022 (0.00021) 0.0098 (0.0000) *** (***) 

Speed Below Sixty-five  0.033 (0.015) 0.0099 (0.0015) 0.0007 (0.0000) *** (***) 

Number of Interchanges 0.24 (0.042) 0.047 (0.013) 0.0000 (0.0014) *** (***) 

Log Likelihood (restricted): -852.48 Log Likelihood (unrestricted): -700.21 

Χ2: 304.55 𝜌2: 0.18 

AIC: 1432 
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Table 4.5 Elasticity for the random parameter negative binomial model 

Variable Name Description Elasticity 

X2 Air Temperature (K) 15.72 

X9 Snow (mm) 0.16 

X13 Wind Speed (m/s) -0.61 

X16 Visibility (m) -0.61 

X22 Net Surface Solar Radiation (W/m^2) -0.11 

X28 Speed Below Twenty-five 0.056 

X29 Speed Below Thirty-five 0.079 

X31 Speed Below Fifty-five 0.43 

X32 Speed Below Sixty-five 1.37 

X39 Six-Hours Traffic -0.21 

X40 Number of Interchanges 0.86 

 

4.6 Discussion 

Most of the results are consistent with literatures mentioned before. More plots for discussion 

are provided in this section. Visibility vs. crash counts during snow days is shown in Figure 4.4. 

It can be seen in the blue box that low visibility increases the chance of crash as well as the number 

of crashes. A possible reason for this could be that, situations like snow, fog or haze happened 

when visibility was under 10,000 meters. In Figure 4.5, negative correlation can be seen between 

visibility and total number of crashes. This finding could lead agencies to closely monitor the 

weather condition especially when visibility drops below 7,000 meters during snow events. 

Roadway assistance warnings delivered at these situations can alert the roadway users to drive 

more cautiously. In Figure 4.6, two cases were presented to show the significance of low visibility 

in causing more crashes. Callout A and B showed the same location’s camera image during winter 

storm on Jan 12th, 2019, when the air temperature was about 272 Kelvin during both time periods. 

The number of crashes during callout A’s time period (0:00 a.m. - 6:00 a.m.) was four and the 

average visibility at this location was about 1,000 meters, whereas callout B (6:00 p.m. - 24:00 

p.m. in the same day) had zero crash and a much higher visibility (6,000 meters). The other case 

showed in callout C and D also confirms the result of lower visibility causing higher crash counts. 

Air temperature vs. crash counts during snow days is shown in Figure 4.7. Clearly, the crash 

counts increase when air temperature is near freezing point, where icy road conditions and low 

pavement friction can occur. Drivers could make judgment mistakes around air temperature at 30-
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32 Fahrenheit. In Figure 4.8, one of the key findings is that the crash counts’ peak is at air 

temperature around 30 Fahrenheit instead of the freezing point (32 Fahrenheit). This information 

will be very helpful for agencies to set up thresholds in monitoring the weather and making snow/ 

ice removal treatment plans. Figure 4.9 and Figure 4.10 present a case where air temperature could 

be the significant contributing factor for the increasing number of crashes. In Figure 4.9,  from the 

ten-day overview, it can be seen that number of crashes (callout a) are highly related to the wintry 

precipitation (callout b). With a more detailed look in Figure 4.10, it can be found that after the 

snow event, the number of crashes increased twice (callout c and e) when there was an obvious 

change in temperature (callout d and f). Even if the increase of crash counts in callout e could also 

be related to the increase of traffic count during daytime, however, it is observed in Figure 4.9 that, 

in the previous Saturday the traffic was not very heavy during morning hours. Hence, sudden 

change in temperature plays critical role in the increasing number of crashes for that day on I-465.   
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Figure 4.4 Visibility vs. crash counts during snow days 

 

 

Figure 4.5 Negative correlation between visibility and total number of crashes  
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(a) Examples of low visibility with high crash counts and high visibility with low crash counts 

 
(b) Camera images with different visibilities at the same locations 

Figure 4.6  Low visibility high crash counts 

C D

A B
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Figure 4.7 Air temperature vs. crash counts during snow days 

 

  

Figure 4.8 Relationship between air temperature (F) with crash counts 
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Figure 4.9 Indianapolis Greenfield District crash counts, temperature and winter precipitation for 

a ten-day view (01/24/2019 to 02/02/2019)  

Thursday       Friday        Saturday       Sunday      Monday      Tuesday    Wednesday    Thursday     Friday       Saturday

a

b
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Figure 4.10 Indianapolis Greenfield District crash counts, temperature and winter precipitation 

for a three-day view (01/31/2019 to 02/02/2019) 
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 CONCLUDING REMARKS 

5.1 Conclusion 

This paper developed a random parameter negative binomial model to find the contributing 

factors to crashes on I-465 around Indianapolis. Most of the variables used in the model showed 

statistical significance and were consistent with results from similar studies. Some of the results 

also have practical meanings and can be used for improving current winter operation. One of the 

key findings is that the critical air temperature is slightly below the freezing point, most likely due 

to some stored thermal energy in the pavement and residual salt. Visibility, solar influx and wind 

speed all show negative impact on crash counts. It is notable that lower visibility has great impact 

on number of crashes during snow days. It is unclear if that is because reduced visibility is 

correlated with increased snow fall rate, or with reduction in reaction times.   

 Both highly congested areas and high-speed areas are the high crash risk zones for snow 

days. Severe storm days could result in higher number of crashes, so de-icing treatments are very 

critical. Although the R-square value was relatively low, it was not surprising given the nominal/ 

binary properties of the dependent variable and the stochastic nature of crash involvement (Af 

Wåhlberg, 2003). This model result could be used as a basis framework to develop tools for traffic 

safety management. Some of the important weather (temperature and visibility) or speed variance 

information could also be delivered to highway users via intelligent signage systems, so that they 

are well informed to avoid some dangerous situations. 

5.2 Study Limitations 

One of the limitations is weather conditions could corelated to each other. For example, 

visibility can be correlated to snow precipitation and air temperature can be correlated to net 

surface solar radiation. Another limitation is that lower speed variables does not always implies 

congestion. Congested, uncongested and transition conditions all have different impact on crashes. 

It would be helpful for future studies to include a “congested” variable in the model. If more years 

of data available, then different aggregation methods should be tested (by each mile or by each 

hour). Some random non-snow days’ data should be included in order to get an unbiased model 
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result. Endogeneity issues often caused by omitting variables or the explanatory variables selected 

for the model were impacted by the dependent variable. The limitation of this study is that different 

speed flow could be impacted by the crash counts. Multiple crashes or a severe crash could cause 

significant delay and queueing in traffic thus the travelling speed of the system would be relatively 

low. Future studies could address this issue by including traffic density in the variables. 

5.3 Future Work 

Several future developments could be done based on this study. Firstly, Purdue JTRP 

researchers have started to investigate wind speed factor which showed statistical significance to 

crash counts in this study. More validated cases would be helpful to find the threshold of wind 

speed or direction that causes more crashes. Since lower visibility is found to have more impact 

on crash counts, future studies can divide visibility into different intervals for further analysis. 

More precise visibility data from HRRR database could be applied instead of the current weather 

database. The HRRR weather station is in 1-mile spatial fidelity so the resolution will be increased 

significantly. 

Secondly, more variables can be gathered, and more data can be collected to refine the model. 

For example, earlier winter months like November and December as well as variables like 

pavement temperature, pavement friction, lane width, lane marking, demographics information, 

etc., can be taken into consideration for the refinement. Also, more indicator variables could be 

used to find the high-risk locations/ time. Segment length with frequency of interchanges were 

recommended to be added and could potentially refine the model. Also, some of the non-

significant variables may worth to add in the model if it can be verified that they would have 

impact on the dependent variable. 

Thirdly, since this dataset came solely from I-465, which is within urban area. A comparison 

analysis between the current urban result and a rural segment of a highway (e.g., I-65) can help 

cross-check the variables’ impact differences.  

Finally, real-time monitoring tools can be developed with pop-up warnings once conditions 

get worse than a certain threshold. This can serve both the traffic management center for 

distributing resources as well as the public for obtaining real-time roadway assistance messages.  
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APPENDIX A. DESCRIPTIVE STATISTICS FOR ALL VARIABLES 

Variable Name Minimum Mean Deviation Maximum 

x1 Min_air_Temp 257.90 269.65 3.59 276.24 

x2 Mean_air_Temp 260.06 270.68 3.39 277.08 

x3 Max_air_Temp 261.86 271.92 3.59 283.03 

x4 Min_rain 0.00 0.00 0.01 0.18 

x5 Mean_rain 0.00 0.03 0.14 1.34 

x6 Max_rain 0.00 0.14 0.54 4.46 

x7 rain_time 0.00 0.25 0.65 4.00 

x8 Min_snow 0.00 0.06 0.16 1.36 

x9 Mean_snow 0.00 0.20 0.28 2.01 

x10 Max_snow 0.00 0.57 0.65 4.50 

x11 snow_time 0.00 2.34 1.69 6.00 

x12 Min_wind_speed 0.20 8.98 4.12 19.00 

x13 Mean_wind_speed 0.77 10.37 4.17 19.76 

x14 Max_wind_speed 1.62 11.67 4.32 21.56 

x15 Min_visibility 59.74 9878.65 9636.63 24100.00 

x16 Mean_visibility 832.68 15581.26 7797.96 24100.00 

x17 Max_visibility 900.00 20798.28 7033.64 24100.00 

x18 Min_snow_depth 0.00 0.03 0.03 0.14 

x19 Mean_snow_depth 0.00 0.03 0.04 0.14 

x20 Max_snow_depth 0.00 0.04 0.04 0.14 

x21 Min_net_surface_solar_radiation -0.05 5.00 15.40 115.89 

x22 Mean_net_surface_solar_radiation 0.00 33.71 56.47 268.09 

x23 Max_net_surface_solar_radiation 0.00 80.43 124.19 522.05 

x24 Wday 1.00 NA NA 7.00 

x25 Startmm 0.88 NA NA 47.14 

x26 Endmm 0.88 NA NA 47.14 

x27 Mean_below_fifteen 0.00 0.11 0.51 7.91 

x28 Mean_below_twentyfive 0.00 0.27 0.76 6.82 

x29 Mean_below_thirtyfive 0.00 0.97 2.34 18.02 

x30 Mean_below_fourtyfive 0.00 1.39 2.59 16.71 

x31 Mean_below_fiftyfive 0.00 7.34 9.55 49.33 

x32 Mean_below_sixtyfive 1.74 40.78 13.00 58.82 

x33 Mean_over_sixtyfive 0.00 5.34 5.12 32.45 

x35 Length 4.66 NA NA 8.76 

x36 Weekday (If yes, 1, otherwise 0) 0.00 NA NA 1.00 

x39 Six-Hours Traffic 5061.33 24353.74 13332.69 58514.00 

x40 Interchange 2.00 3.68 1.18 6.00 

x41 Location 1.00 NA NA 8.00 
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