
STEREO VISION-BASED SYSTEM FOR DETECTION, TRACK AND

CAPTURE OF INTRUDER FLYING DRONES

by

Maria Nieves Brunet Avalos

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science in Electrical and Computer Engineering

School of Electrical and Computer Engineering

West Lafayette, Indiana

May 2020

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Mo Rastgaar, Chair

Purdue Polytechnic Institute

Dr. Shreyas Sundaram, Chair

School of Electrical and Computer Engineering

Dr. Jianghai Hu, Member

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

Head of Electrical and Computer Engineering

3

Dedicated to my family and friends.

4

ACKNOWLEDGMENTS

I would like to put into words my sincere thanks to Professors Shreyas Sundaram and Mo Rastgaar

for their constant support, guidance and encouragement in the course of this work, and for always

making time to give me guidance and direction when I faced obstacles in my program and with

my project. I greatly appreciate the opportunities mentioned by both to expand my engineering

knowledge and experience. Participating in meetings with their research groups provided me with

the preparation to excel in the presentation of this work.

I would also like to extend my gratitude to all the members of the Human Interactive Robotics Lab

(HIRoLab), for their insights, patience, and humor. Special thanks to Dr. Guilherme Aramizo

whose guidance was key for the development of this project.

I am grateful to the Fulbright Commission, the BECAL scholarship from Paraguay, and Purdue

University for allowing me to pursue my master’s degree surrounded by great people.

Lastly, I would like to express my thanks to my family and friends, who kept me strong along this

journey by being immensely supportive and positive.

5

TABLE OF CONTENTS

LIST OF TABLES .. 7

LIST OF FIGURES .. 8

ABBREVIATIONS .. 10

ABSTRACT .. 11

 INTRODUCTION ... 12

1.1 Motivation ... 12

1.2 Research objective .. 13

1.3 Assumptions .. 13

1.4 Notation and Terminology .. 14

1.5 Limitations .. 15

 LITERATURE REVIEW .. 16

2.1 Object detection .. 16

2.1.1 Computer vision ... 17

Stereo Vision ... 18

2.2 Video tracking ... 19

2.3 UAV capture methods... 20

2.4 Robotic operating system .. 21

2.5 Summary ... 22

 PROPOSED METHODOLOGY ... 23

3.1 3D Reconstruction .. 23

3.1.1 Stereo cameras ... 24

Calibration ... 24

3.1.2 Preprocessing ... 25

Using the disparity image .. 26

Using point cloud data ... 26

3.2 Object detection .. 27

3.2.1 Cluster extraction ... 27

3.2.2 Metrics used for object detection ... 27

3.3 Video tracking ... 27

6

3.3.1 Kalman Filter ... 28

3.3.2 Linear Sum Assignment .. 30

3.3.3 Performance ... 30

3.4 Motion control .. 32

3.5 Net launcher .. 33

 IMPLEMENTATION .. 35

4.1 Simulation environment .. 35

4.1.1 Evaluation of the UAV targeting in a simulated environment 37

Error Analysis of the Detection ... 38

Execution time of detection ... 39

Tracking Accuracy of the Intruder UAV .. 39

Aiming Control ... 40

4.1.2 Discussion on the simulated experiment ... 40

4.2 Experimental platform .. 41

Data flow diagram ... 44

Software architecture ... 44

Flowchart of the experimental platform .. 46

4.2.1 Evaluation of the UAV tracking in the real scenario ... 47

Quantitative Evaluation ... 49

4.2.2 Discussion about the experiments ... 50

4.2.3 Motion control experiment .. 52

 SUMMARY AND FUTURE WORK ... 53

5.1 Summary ... 53

5.2 Future Work .. 53

REFERENCES ... 55

VITA ... 58

7

LIST OF TABLES

Table 3.1. Stereo cameras considered for the project. .. 24

Table 4.1. Spatial Root Mean Square Error (RMSE) in meters. ... 38

Table 4.2. DJI Flamewheel frame specifications. ... 41

Table 4.3. DJI propulsion system for the F550 frame. ... 42

Table 4.4. Specifications of the fight controller. .. 43

Table 4.5. Specifications of the onboard computer. ... 44

8

LIST OF FIGURES

Figure 1.1 Coordinate frames of the world, UAV, and camera. The hunter drone will carry the

stereo camera and net launcher system. Image of the Tarot T18 drone carrying the proposed net

launcher and camera system. Tarot T18 can carry an 8 kg payload and it is proposed as the final

hunter prototype. ... 14

Figure 2.1. Parallel stereo camera.[18] ... 19

Figure 2.2. ROS communication between nodes. ... 22

Figure 2.3. Simplified project pipeline. .. 22

Figure 3.1. 3D Image reconstruction pipeline. ... 23

Figure 3.2. WithRobot oCamS-1CGN-U. Image retrieved from

http://withrobot.com/en/camera/ocams-1cgn-u/. .. 24

Figure 3.3. oCamS-1CGN-U, showing the coordinate systems of the IMU sensor and the image

sensors. Image retrieved from https://us.amazon.com/Stereo-Shutter-Disparity-WITHROBOT-

oCamS-1CGN-U/dp/B07R5NG6HK. ... 25

Figure 3.4. Discrete Kalman filter, the involved matrices are A: Dynamics, B: Control input,

P:State error covariance, H: Measuring, I: Unit , Q: Process noise covariance, R: Measurement

noise covariance. ... 29

Figure 3.5. Multiple detections and tracks in the same frame. Image obtained from simulated

experiments. .. 30

Figure 3.6. Figure adapted from [32]. A case illustrating an identity switch in the tracker-to-target

assignments. .. 31

Figure 3.7. Rotations: Roll is the rotation around the front-to-back axis, Pitch is the turn about the

side-to-side axis and Yaw is the direction of the heading of the UAV... 32

Figure 3.8. Net launcher system, as designed by [2]. ... 33

Figure 3.9. Experiment to determine the trajectory and speed of the net when launched by the net

launcher system. .. 34

Figure 4.1 Simulated scenario for testing. Gazebo simulator. .. 36

Figure 4.2. Image processing pipeline. Grid 1x1 m. (a) Simulated environment, a hunter UAV, and

an intruder UAV. (b) Point cloud data obtained from the camera mounted on the hunter. (c) Filtered

point cloud down-sampled into a voxel grid. (d) Cluster extraction. ... 37

Figure 4.3. Trajectory of the intruder UAV for the simulated experiment. This trajectory is used to

evaluate the detection and tracking accuracy. ... 38

Figure 4.4. Detection lag for the simulated experiment. Comparison of part of the ground truth,

detected and tracked trajectory of the intruder in the y axis. .. 39

https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601161
https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601161
https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601161
https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601161
https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601164
https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601165
https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601171
https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601171
https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601172
https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601173
https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601173

9

Figure 4.5. In red, MOTA index for the analysis of tracking accuracy. In blue, the RMSE of the

best track when compared to the ground truth data, for different values of r, scaling factor in the

Kalman filter R matrix. ... 40

Figure 4.6. a) the DJI Flamewheel F550, selected frame for the experimental hunter platform,

image from https://www.dji.com/flame-wheel-arf/feature; b) Radiolink PixHawk PX4, open

source flight controller, image from https://spexdrone.com/products/pixhawk-classic-radiolink-

pixhawk-px4-autopilot-pixhawk-px4; c) Selected onboard computer, Orbitty Carrier for NVIDIA

Jetson TX1, image from http://connecttech.com/product/orbitty-carrier-for-nvidia-jetson-tx2-tx1/;

d) Stereo camera, WithRobot oCamS-1CGN-U, image from

http://withrobot.com/en/camera/ocams-1cgn-u/. .. 42

Figure 4.7. Pixhawk PX4 requires a position estimation system. a) GPS module, image from

https://www.getfpv.com/holybro-px4-2-4-6-pixhawk-m8n-gps-pm-100mw-radio-telemetry-v3-

915mhz.html, b) PX4Flow and LiDAR Lite, image from

https://ardupilot.org/copter/docs/common-px4flow-overview.html. Both optical flow camera and

distance sensor are connected to the I2C bus of the flight controller. .. 43

Figure 4.8. Information flow diagram for the experimental platform. ... 45

Figure 4.9. Software architecture for the detection, tracking and motion planning. 45

Figure 4.10. Experimental platform using the DJI F550 hexacopter frame and the components

mentioned in Figure 4.6 and Figure 4.7. ... 46

Figure 4.11. Components of the experimental platform and data flow indication. Images obtained

from the previously mentioned sources in Figure 4.6 and Figure 4.7. ... 46

Figure 4.12. Image processing pipeline in the real scenario. (a) Outdoor testing environment with

an intruder UAV, image feed from the oCamS-1CGN-U camera. (b) Point cloud data obtained. (c)

Filtered point cloud down sampled into a voxel grid. (d) Euclidean cluster extraction. 47

Figure 4.13. The red arrow represents the best track in every frame presented. The algorithm keeps

track of the position of the intruder in successive frames. Images in a), b) and c) are taken after

successive intervals of 1s. ... 48

Figure 4.14. Detection and best track obtained in the outdoor environment. 49

Figure 4.15. Motion capture system setup for the performance analysis. 50

Figure 4.16. Indoor detection using point cloud data and the cluster extraction method. In a) only

true-positive data is detected; in b) the detections include false-positive data. 51

Figure 4.17. Object recognition using deep learning. ... 51

Figure 4.18. Simple yaw control algorithm for the experimental platform. 52

https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601183
https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601183
https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601185
https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601185
https://purdue0-my.sharepoint.com/personal/mbruneta_purdue_edu/Documents/Thesis/Template-MNB.docx#_Toc39601185

10

ABBREVIATIONS

2D Two Dimension

3D Three Dimension

AI Artificial Intelligence

CPU Central Processing Unit

CV Computer Vision

ESC Electronic Speed Controller

FCW Forward Collision Warning

FN False-Negative

FP False-Positive

FPS Frames Per Second

GPS Global Positioning System

GT Ground Truth

IMU Inertial Measurement Unit

KF Kalman Filter

LiDAR Light Detection And Ranging

LiPo Lithium Polymer

MAV Micro Aerial Vehicle

MOT Multi Object Tracking

MOTA Multi Object Tracking Accuracy

PWM Pulse Width Modulation

RF Radio Frequency

RMSE Root Mean Square Error

ROS Robot Operating System

TP True-Positive

UAV Unmanned Aerial Vehicle

11

ABSTRACT

In this thesis, the design and implementation of an autonomous system that will equip a multi-

rotor unmanned aerial vehicle (UAV) for visual detection and tracking of other UAVs is presented.

The results from detection and tracking are used for real-time motion planning.

The goal is to effectively detect unwanted UAVs, track them and finally capture them with a net.

Having a net that traps the UAVs and enables dragging intruders to another location is of great

importance, since these could be carrying dangerous loads.

The project consists of three main tasks: object detection using a stereo camera, video tracking

using a Kalman filter based algorithm, and lastly executing an optimal flight plan to aim a net at

the detected intruder UAV. The computer vision, motion tracking and planning algorithms are

implemented as ROS nodes what makes them executable on a reduced size onboard computer that

is installed on the aerial vehicle.

Previous work related to this project consists of either a UAV detection system with

computationally heavy algorithms or a tracking algorithm that does not include information about

the dynamics of the UAVs. For the capture methods, previous ideas do not consider autonomous

decisions or an optimized method to guarantee capture. In this thesis, these three aspects are

considered to develop a simple solution that can be mounted on any commercially available UAV.

12

 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) and multi-copter drones, keep increasing in quantity. As a

result of reduced prices, ease of access, advancements in technology, and creation of developer

communities, numerous applications for UAVs were enabled. That has also led to the misuse of

this technology. For example, commercial UAVs can be easily misused by carrying harmful

material to populated areas and important infrastructure [1], or to perform unwarranted

reconnaissance. Therefore, there is a demand for systems that can help safely reduce the risk that

UAV misuses may pose to the security of people and infrastructure. For these cases, the use of a

UAV hunter to intercept, capture, and remove intruder UAVs to a safe zone for neutralization is

proposed.

Previously a prototype hunter [2] that can capture other UAVs by trapping the intruder UAV in a

tethered net and dragging it to a remote location was developed by the research group. For that

system, the operator of the hunter UAV prototype used the video downlink feedback from an

onboard camera to manually aim and trigger the net launching mechanism. In this thesis the

development and evaluation of a visual-based UAV tracking algorithm and a UAV motion

controller to automate the aiming of the hunter UAV is presented.

1.1 Motivation

Drones can be used in the wrong way, either for terrorism, incidents in mass events, interference

with air traffic, spying, or disrespecting privacy. There have been several incidents reported to be

caused by UAVs.

Looking at the future, the projected number of hobbyist UAVs in use by 2021 is around 3.5 million.

E-commerce is a market looking to benefit by the drone industry's growth. As indicated by a review,

79% of U.S. web users are positive about selecting drones as a means for delivery [3]. Another

examination that the United States Postal Service directed, found that 56% of users consider drone

deliveries possibly being quicker, and at the same time 53% believe deliveries using drones will

13

be more environmentally friendly. These are only a few reasons that assure that the UAV market,

and therefore their availability and use, will only grow in number in the following years.

There is also a downside to the growing number of UAVs, and that is the threat to safety. In 2018,

drones carrying explosives approached as Venezuelan President gave a speech and the attack

injured seven soldiers [4]. On December 2018, some flights had to be delayed due to the presence

of drones near London’s Gatwick Airport [5]. Another concern is that drones can be used to spy

on people. A simple investigation simulated ordinary activities both downstairs and upstairs in a

typical house, and showed that it was easy for a drone to monitor a person on both floors while

hovering out of sight [6].

To counter the misuse of drones, a solution is needed to help decrease the risks without

compromising public safety.

1.2 Research objective

The objective of this work is to devise a reliable system that minimizes the danger of unwanted

UAVs. The proposed system consists of one UAV capable of detecting the presence of other UAVs.

A UAV is chosen as the detection platform since it has the capability of reacting with dynamics

comparable to that of the desired target.

The final intention of this project is to mount a visual detection device on the platform hunter drone.

From the visual feed the location of the invader will be estimated and then an autonomous planner

will determine the best way to approach the intruder. Finally, a net launcher will be integrated as

mentioned in the Introduction.

1.3 Assumptions

To limit the scope of the project, it is supposed that the hunt starts somewhere close to the desired

target. This is a reasonable assumption, since the protected area can have a local radar that informs

the hunter of the approximate location of an intruder. Alternatively, it can be assumed that a fleet

14

of drones flying constantly around a protected environment would detect the presence or approach

of an undesired UAV, that would be communicated to the hunter drone.

Another consideration is that the target UAV is of the size and shape of commercial, general-use

UAVs available as of today. Therefore, the dynamics of the proposed hunter UAV will be carefully

selected so that it can be as fast and maneuverable as the targets. This study does not include large

and fast military missile type drones.

The hunter UAVs are thought to be hexacopters or octocopters, which provide a more stable

platform with the ability to carry heavier payloads.

1.4 Notation and Terminology

Throughout the text, the designed UAV is referred to as the hunter, and the unwanted UAV is

referred to as the intruder. Coordinate frames fixed to the world (inertial reference frame) and to

the hunter UAV are used, labeled as W and C, respectively. Figure 1.1 shows the coordinate frames

of the world, UAV, and the camera. The hunter drone will carry the stereo camera and net launcher

system. The X-Y-Z world axes point to East-North-Up (ENU coordinate frame convention), Z and

Y for the UAV axes point forward and down, respectively.

Only for clarity of notation, it is considered that the hunter UAV and camera are fixed to each

other, and that they share the same coordinate frame.

Figure 1.1 Coordinate frames of the world, UAV, and camera. The hunter drone will

carry the stereo camera and net launcher system. Image of the Tarot T18 drone carrying

the proposed net launcher and camera system. Tarot T18 can carry an 8 kg payload and it

is proposed as the final hunter prototype.

15

The net launcher is the system that consists of the net cannon and will be carried by the hunter

drone. It has two nets containing bullets on the ends, to ensure a conic opening of the net used to

capture the intruder drone.

1.5 Limitations

The limitations of the Hunter drone are the range of detection of around 10m, the size of the target

UAVs, and the possibility of launching two nets. In future work these can be improved.

16

 LITERATURE REVIEW

2.1 Object detection

Object detection is a pre-requisite for the tracking process, as it is necessary to find the location of

the object of interest in every frame. There are various approaches for detection found in the

literature.

Radar sensors have been a crucial part of safety systems because of their weather and lights

independence. For this reason, radar is considered good for handling the detection and

classification of a variety of targets in city environments. Despite this factors, radars can face

challenges for the detection of UAVs, since these are low objects and fly with changing speed [1].

Low altitude and slow speeds may cause difficulties for separating the target from a large clutter

response. Additionally, the drones need to be differentiated from biological and other

environmental targets like birds and insects often present in the same monitored regions. Birds and

drones may have comparable values and flying patterns for radar signals, which produces a hard

challenge for classifiers to difference them.

A Radio Frequency (RF)-based approach to identify the presence of UAVs is proposed in [7]. In

general, commercial UAVs communicate with the pilot via a controller that uses RF

communication. By detecting these signals, they estimate the presence of UAVs. The interference

for this method was reduced implementing a background filtering method.

Acoustic sensors can provide an inexpensive object detection by, for example, an array with

dynamically placed microphones as presented in [8]. The method can identify and estimate the

position of the broadband sources. The paper proposes a calibration strategy to resolve the best

arrangement of the microphones to be placed. The experiments demonstrated favorable results.

Laser sensors have great potential as object detectors. In particular the method described in [9],

uses an inertial measurement unit and laser scanners to form a map of the surroundings and perform

obstacle avoidance. Laser sensors can generate point clouds and thus form a 3D map of the

17

environment. Constantly updating such a grid is computationally expensive as every ray scanned

by the laser has to be updated for all the cells it travels through.

LiDAR (Light Detection And Ranging) sensors emit laser rays of light and by analyzing the

reflection from the surrounding objects obtain a description of the environment. By filtering details

in the 3D scan of the scene, the probability of detecting objects arises. The work from [10] shows

that UAVs can be detected by this method if the dynamics of the UAVs fall within the LiDAR

sensor’s capabilities in scanning performance, range, and resolution. The downsides of LiDAR are

the high cost and the vulnerability to weather conditions.

2.1.1 Computer vision

Object Detection is a common Computer Vision problem that aims to identify and locate objects

in a digital image or video sequence. There are a few attempts to detect and track moving objects

using camera-based systems in UAVs. Background subtraction [11] is extensively used in video

sequences when they have a static background. This idea focuses on separating the image into the

foreground (moving objects) and background (static objects).

Temporal differencing presented in [12] differs from the traditional background image subtraction

method by taking differences of consecutive frames, making it more suitable for scenarios where

the camera is moving.

Optical Flow [13] is the measure of how far a pixel moves from one frame to another. Optical flow

creates a vector field in the plane of the image, also known as a motion field. This represents the

velocity and direction of the pixels in successive frames. Discontinuities in the optical flow help

to split each frame into areas that represent different objects. This method is computationally

expensive but has an advantage of detecting moving objects in video feeds having a non-static

background.

Object detection can also be achieved by training a classifier. Deep learning classifiers can learn

different object views and appearances. A trained classifier can recognize different objects and

decide if they correspond to the target object or not. These trained classifiers show powerful

18

detection performance even in challenging environments with lightning variations and background

clutters. However, to extract shape and appearance features, they assume sufficiently large and

clearly visible moving objects which are not sometimes the cases for UAV applications.

This project is based on stereo imaging and computer vision and further review of the method is

presented in the next section.

Stereo Vision

Normally, visual object detection is handled using videos acquired from a single camera setting.

Yet, replacing a single camera by a multi-camera system results in more information about the

environment. The most common multi-view camera system consists of two cameras, also known

as a stereo camera.

The stereo correspondence was a very active topic of research in the computer vision field in the

1970s. Stereo imaging consists of obtaining two images and from them, deducing a three-

dimensional map of the scene. From personal experiences, it is known that the perception is

different when comparing the left and right eye images. These two different images allow the

reconstruction of the 3D understanding of the environment [14]. The sense of depth comes from

the distance (disparity) for the same point between the left and right retinal images.

A stereo parallel camera is shown in Figure 2.1. A parallel stereo camera has two cameras to obtain

the right and left images. The cameras are placed facing in the same direction, separated by a

horizontal baseline distance. The correspondence between depth (Z) and disparities (d) is explained

by equation 2.1, where f and b are the focal and baseline distance respectively (both parameters of

the stereo camera). This method of determining disparity from depth is called triangulation.

𝑑 = 𝑓
𝑏

𝑍
 (2. 1)

An object detector using a stereo vision camera is presented in [15]. This idea detects the location

of a moving object and estimates the tracking error to servo-actuate a loop in the eye-hand system

structure of a humanoid robot. An application of depth images used for a fall detector for elderly

19

people is presented in [16]. In this case, the contour detection of the walking figure is achieved by

subtracting the background frame and estimating the floor plane in the depth images.

The effect of motion, when a camera is in movement is analyzed in [17]. A vehicle tracking

procedure based on stereo vision is presented there, where an autonomous robot is actuated and

the camera is under the movements transmitted to the structure. This study shows the incidence of

the camera movements in the calculation of the range and direction angle of the complete system.

Figure 2.1. Parallel stereo camera.[18]

2.2 Video tracking

Many attempts are described in the literature to track the position of moving objects in a video

feed. Multiple object tracking (MOT) can be divided in two parts, the first is object detection

(previous section 2.1) and the second is motion prediction. The target detection is based on image

processing and thus it tends to require a large part of the computational resources.

For multi-object tracking, the main challenge is the label association problem, for connecting

object detections to their respective tracks. Most of the batch methods formulate MOT as an

20

optimization problem. Other online methods try to achieve the data association either

probabilistically or determinatively [19].

The work from [20] features a football player tracking algorithm where the implementation is

based on a modified Hungarian algorithm for the data association and the prediction being obtained

by the use of the Kalman filter. The most important part of the tracking algorithms is the ability of

the system to manage an object’s identity even in occlusion scenarios or at boundary conditions.

An approach based on Markov Decision Processes is found in [19], where the MOT problem is

described in terms of decisions from a Markov Decision Process.

The method of Multiple Hypotheses Tracking (MHT) is presented in [21]. For every new

observation, MHT analyzes the possible associations by keeping the potential object-to-track

assignments represented as target trees. When new observations arrive for each frame, the target

trees keep spawning, and growing. The trees keep a set of hypotheses that propagate with the hope

that future input data will help resolve any assignment ambiguities. The potential thus is that MHT

can salvage wrong object-to-track associations.

For tracking in videos recorded by UAVs, an improved method for object tracking is presented in

[22]. This work implements a Mean Shift algorithm based on particle filtering, to optimize the

search of the origin of the Mean Shift algorithm. This idea can achieve the tracking of fast-moving

objects. A study for tracking vehicles was presented in [23]. In this work, the state estimation for

the agents is obtained using a Kalman filter method. The data association is done through the

Hungarian method. For this study, an extension was needed to prevent assignments of objects too

far apart from each other in space. This method is the most similar to the one being implemented

in this work.

2.3 UAV capture methods

To neutralize unwanted UAVs, work is being done to develop a drone-killing microwave weapon

to knock down drones with pulses of energy [24]. Also, radio control frequencies that disrupt

commercial drones’ communications, smart bullets, and even mobile high-energy laser weapons

to damage or destroy UAVs are being thought of. The problem of these attempts is that they either

21

alter the flight path or force-land the UAV to an unpredictable location. If the UAV is carrying

harmful materials, dropping the UAV to the ground is not an effective way to protect people or

infrastructure.

One valid approach was the use of a net hanging from a UAV as was shown by the Japanese police

[25], where the hunter system captures the intruder UAV by flying over it and having the propellers

caught in the mesh of the net. With that method, the possibility exists for the target drones falling

from the sky and causing harm or damage.

2.4 Robotic operating system

The Robot Operating System (ROS) is an open-source framework for robotic systems

development. ROS is considered a meta-operating system, because despite not being considered

an operating system in the same way Windows or Linux are, it provides a system of nodes that

allows inter-processes to occur within the selected intelligent platform. These allow the sharing of

functional messages. The architecture of a ROS system consists of five components: a ROS Master,

nodes, publishers, subscribers, and topics.

ROS allows the creation of robust software for robot platforms in general, multiple sensors and

effectors. Nodes in ROS are pieces of software written in C++ or Python. It allows the functionality

of a robot to be divided into subsets of tasks. In further chapters, it will be shown how different

parts of the system are instantiated as nodes. ROS grants the communication between different

nodes. In this way, the result obtained from a node can be an input to another.

The communication between nodes is through topics. Topics use the same type of message for the

node publishing and the node subscribing [26]. ROS is suitable for sensor data, since topics are

unidirectional and stay continuously connected to send or receive messages. Also, multiple

subscribers can receive a message from a publisher and vice versa. Multiple publishers and

subscribers’ connections are available as well (Figure 2.2).

22

Among the advantages of using ROS, the nodes can be written in either C++ or Python and work

perfectly together. Also, nodes can run on different hardware and be connected through a common

network. ROS is open source and extensive documentation can be found.

Figure 2.2. ROS communication between nodes.

Nodes can publish and subscribe to topics [27].

2.5 Summary

The detection method for the project will be based on a vision system, a stereo camera. A stereo

camera gives the same information as a single camera plus the information of distance to objects

in the scene. The tracking method will be based on the idea of a Kalman filter for prediction of the

location of the object, and the Hungarian algorithm to associate the detected objects to their tracks.

The capture system will be mounted on the hunter drone, carrying a net to have the invader drone

tangle in it. The selected platform for development is ROS, providing the modularity for the design

of the system. Figure 2.3 illustrates the pipeline for the project.

Stereo image

capture
3D

Reconstruction
Detection and

tracking
Motion

planning

Figure 2.3. Simplified project pipeline.

23

 PROPOSED METHODOLOGY

3.1 3D Reconstruction

The main purpose of the Vision System in this project is to localize an object, so that the hunter

system can act upon this information. There are a few things to consider when choosing the

detection method. The detection system is mounted on a UAV and sends the feed to an onboard

computer. Thus, the weight, communication protocol, and specific parameters related to the

detection must be considered.

The first limitation is weight, as the drone can only carry a certain amount of weight. More payload

directly impacts the battery life. Thus, choosing a device that is as light as possible is important.

Another requirement is the processing capabilities required for detection. The data coming from

the device that does the detection will have to be processed by an onboard computer that has

limited capabilities. Concerning the video quality, since the target is another flying UAV, the

detection needs to be able to detect a fast-flying object in the video feed. A good option to account

for these requirements is a camera.

A stereo camera can help to detect objects by using both the depth information (3D environment

reconstruction) and the monocular images for a further match of image features (2D image

classification). The depth information provided by a stereo camera makes tracking features over a

long distance comparatively robust. This method is effective and practical, as NASA had a stereo

camera on Curiosity, the Mars Rover.

The 3D image reconstruction pipeline is illustrated in Figure 3.1.

Stereo image
capture

Depth
calculation

3D map
generation

Downsample
for faster

processing

Figure 3.1. 3D Image reconstruction pipeline.

24

3.1.1 Stereo cameras

Two stereo cameras were selected at the beginning to be evaluated for the project, WithRobot

oCamS-1CGN-U and Mynteye S1030. The characteristics of these are shown in Table 3.1.

Table 3.1. Stereo cameras considered for the project.

 WithRobot oCamS-1CGN-U Mynteye S1030

Resolution 1280 x 720 @ 60 FPS 752 x 480 @ 60 FPS

Field of view V: 50˚ H: 92.8˚ V: 76˚ H: 122˚

Weight 30 grams 85 grams

IR Light No Yes

Range 0.5 ~ 12 m 0.5 ~ 18 m

Baseline 120 mm 120 mm

IMU Yes Yes

Color images Yes No

Figure 3.2. WithRobot oCamS-1CGN-U. Image retrieved from

http://withrobot.com/en/camera/ocams-1cgn-u/.

Calibration

To calibrate the stereo cameras, the camera_calibration library was used within ROS. This library

takes a left and right image of a printed checkerboard of known dimensions to perform the

parameter tuning. A precise calibration is key to obtaining the best results of depth in the video

feed.

The stereo cameras have two sets of parameters that must be tuned. The Intrinsic parameters are

internal and referent to the camera setup; these allow a correspondence between the camera

coordinates and the pixel coordinates in the image (camera model parameters, focal length, lens

25

distortion). The Extrinsic parameters are external to a camera; these are referent to the spatial

disposition of the camera with reference to a fixed frame (both rotation and translation can be

expressed as a homogeneous transformation matrix). The extrinsic parameters consider the

location and orientation of the two cameras related to a common world frame (Figure 3.3).

In the case of Mynteye S1030, the calibration parameters can be uploaded and saved to the camera

directory itself. For WithRobot oCamS-1CGN-U, the parameters are stored in the user’s directory

and loaded every time the camera is launched.

The selected camera for the rest of the work is WithRobot oCamS-1CGN-U (Figure 3.2, Figure

3.3). It has shown a better resolution for the same frame rate, lighter weight, and color images.

Another interesting feature of this camera is the possibility to customize the field of view by

changing the lenses.

Figure 3.3. oCamS-1CGN-U, showing the coordinate systems of the IMU sensor and the image

sensors. Image retrieved from https://us.amazon.com/Stereo-Shutter-Disparity-WITHROBOT-

oCamS-1CGN-U/dp/B07R5NG6HK.

3.1.2 Preprocessing

The stereo camera provides the image feed for the left and right cameras. The following step uses

the library stereo_image_proc to obtain the Disparity image and the Point Cloud. In the disparity

image, every pixel contains information about the disparity (the difference in location for the same

26

features) within two stereo images. In the case of a point cloud, which is an assembly of points in

three-dimensional space, each point presents the spatial location from the camera to objects in the

environment.

Using the disparity image

The first tests for object detection using a stereo camera were done on disparity images. For this

approach the first step consists of the use of a filtering stage to smooth the images and remove

noisy data.

After the filtering stage, a ground removal algorithm is needed to get rid of areas that can be close

to the camera and not representative of a UAV. A RANSAC (Random Sample Consensus)

algorithm was used to approximate the ground plane and remove it from the disparity image. After

that step, the remaining image was segmented considering the size and location of the objects in

the depth axis of to the camera. Morphological operations play an important role in segmenting

the right blobs in a disparity image [28]. The results from this stage were promising, but there is

more potential in using 3D information of the environment.

Using point cloud data

An array of points in 3D space is obtained from the left and right images. Using the camera with

a VGA resolution (640x480 pixels), running at 30 FPS, the amount of points to process every

second is of approximately nine million points. Thus, the processing cost for every frame will be

expensive.

Downsampling the point cloud data (reducing the number of points), yields a less populated point

cloud with similar information of the environment. This procedure reduces the computational cost.

With this goal, a Voxel Grid filter is considered [29]. This filter generates a three-dimensional

voxel grid (seen as boxes in 3D space) over the original point cloud data. For each voxel (each box

in 3D), all the points in that region will be approximated with their centroid. Voxel Grid is an

implementation of the method from the Point Cloud Library.

27

A filtering stage is launched after the data is downsampled. The point cloud is restricted to the

working distance range, between 0.5 ~ 10 m in the camera z-axis.

3.2 Object detection

3.2.1 Cluster extraction

A Euclidean clustering algorithm identifies clusters of points after the point cloud is filtered. A

cluster of points is at least within 0.5 m from the next one. Clusters with more than 200 points or

less than 20 points are removed since they likely do not represent the desired UAV. The detections

are selected as the centroid of each remaining cluster. Again, the Euclidean Cluster Extraction is

an implementation of the method from the Point Cloud Library.

3.2.2 Metrics used for object detection

For performance interpretation of the detection method, the Precision-Recall curves were

considered as in [30]. The precision and recall metrics evaluate the performance in detecting all

UAV appearances and in ignoring environmental or sensor noise. The equations 3.1 and 3.2

present the calculation of these indices. The quantities considered are the amount of true-positive

(TP), false-negative (FN), and false-positive (FP) detections.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3. 1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3. 2)

3.3 Video tracking

The essence of multi-object tracking is matching objects in successive frames of a video feed. The

objects of interest within the images would be tracked as the objects move around in the image in

successive frames. The tracking starts by initializing the position of the object with the information

coming from the objects’ detection.

28

For this work, the detected UAVs need to be tracked. A prediction of their motion is useful to

anticipate the trajectory of the invader. For this purpose, a Kalman filter approach is implemented

as the tracking method.

3.3.1 Kalman Filter

A discrete Kalman filter algorithm evaluates the state variables for a system, based on inaccurate

and uncertain measurements. For the studied case, the Kalman filter tracks the intruder UAV’s

position, velocity, and acceleration, given the noisy visual detections. The Kalman filter

propagates the current track state into the future assuming a motion for the intruder UAV.

Note that the sensed information (detections) can support or disprove the predictive model over

time, therefore, the algorithm keeps multiple UAV tracks at any time and continuously adds or

eliminates tracks depending on the incoming detected objects. New tracks are created when

incoming detections are too far from all existing tracks. Similarly, deficient tracks are removed

when they do not correspond to incoming detections after several consecutive iterations.

This tracking framework has the advantages of: 1) smoothing the trajectory of the track for stable

aiming, 2) interpolating temporarily-undetected UAVs, 3) estimating the velocity and

accelerations of the UAV, and finally, 4) quantifying the statistical confidence of the UAVs'

position, all using low computation resources [20].

The filter assumes a motion model of constant acceleration in 3D space; thus, the track state is

𝑋 = [𝑥, 𝑥̇, 𝑥̈]𝑇 (position, velocity, and acceleration respectively). This is not entirely true, since the

UAV track has a time-varying acceleration. This variation was incorporated as an additive random

noise to the state update equation.

The covariance matrix of this noise in the discrete space is defined as in equation 3.3, where T is

the interval between updates.

29

𝑄𝑥 = 𝑞

[

𝑇5

20⁄

𝑇4

8⁄

𝑇4

8⁄
𝑇3

6⁄

𝑇3

3⁄
𝑇2

2⁄

𝑇3

6⁄
𝑇2

2⁄ 𝑇]

 (3. 3)

The Kalman filter uses noisy detection measurements to correct the state estimates. It assumes a

3D reconstruction error with a noise covariance matrix of 𝑅𝑥 = 𝑟 ∗ 𝐼, where r is a scaling factor.

The state initialization error is modeled as a random variable with a covariance matrix in equation

3.4.

𝑃𝑥
0 = 𝑝 [

12

0

0 0
302 0

0 0 5.52

] (3. 4)

These numbers were selected since 1.0 m, 30 m/s, and 5.5 m/s2 are reasonable maximum 3D

reconstruction error, UAV speed, and UAV acceleration. Note that 𝑄𝑥 , 𝑅𝑥 , and 𝑃𝑥
0 are

respectively the model noise covariance, the measurement noise covariance, and the initial state

error covariance matrices of a Kalman filter (Figure 3.4). The parameters q, r, and p are scaling

factors, manually tuned based on the intruder UAV maneuverability and the stereo camera noise.

Figure 3.4. Discrete Kalman filter, the involved matrices are A: Dynamics, B: Control input,

P:State error covariance, H: Measuring, I: Unit , Q: Process noise covariance, R: Measurement

noise covariance.

30

3.3.2 Linear Sum Assignment

Often there might be multiple active tracks at a moment in time and multiple incoming detections

from a single camera frame (Figure 3.5). Using the linear sum assignment, also known as the

Hungarian algorithm, detections are assigned to tracks by minimizing the sum of distances

between the detections and their assigned tracks [31].

New tracks are created to accommodate detections that are farther to any other track by a maximum

position error, 𝜀𝑚𝑎𝑥. The state of the tracks that are not assigned to any detections are still projected

into the future via the update stage of the Kalman filter algorithm (this increases the state error

covariance); however, since they do not incorporate information from the measurements (which

decreases the state error covariance), their state error increases.

If the position error exceeds 𝜀𝑚𝑎𝑥, the track is eliminated. Finally, the longest living track was

selected for aiming after observing that the detections due to environmental or camera noise are

transient, and their corresponding tracks are quickly eliminated.

Figure 3.5. Multiple detections and tracks in the same frame. Image obtained from simulated

experiments.

3.3.3 Performance

For evaluation of the tracking method, the MOTA (Multiple Object Tracking Accuracy) index as

used by MOT16 (a standardized measure for object tracking), was used as a reference [32]. This

31

framework is widely used for evaluation of the performance of Multi-Object Tracking in videos,

since it combines multiple sources of errors. Besides the errors considered for Precision and Recall;

they are true-positive (TP) that describes an actual target, false-positive (FP) in the case of an

erroneous target, and false-negative (FN) when a target that is missed. MOTA also accounts for

the incorrectly matched error or Identity Switch (IDSW). An identity switch occurs when a target

has been associated with a different track number. MOTA is reported by the next equation (3.5),

where the index k refers to the frame number and GT represents the quantity of ground truth targets,

known by empirical evidence.

𝑀𝑂𝑇𝐴 = 1 −
∑ (𝐹𝑁𝑘 + 𝐹𝑃𝑘 + 𝐼𝐷𝑆𝑊𝑘)𝑘

∑ 𝐺𝑇𝑘𝑘
 (3. 5)

In Figure 3.6, an ID switch occurs when the mapping switches from the previously assigned green

track to the blue one. In frame 1 a false-negative is present. For frames 2 and 3, true-positive

detections for the green target are tracked. For the frames 4,5 and 6, true-positive detections are

tracked for the blue target. An identity switch occurs in the frame 4 where the blue target is

assigned to the same track that was started for the green target.

Figure 3.6. Figure adapted from [32]. A case illustrating an identity switch in the tracker-to-

target assignments.

32

3.4 Motion control

For the control of the hunter UAV, the work of [33] is taken as reference. There, a geometric

controller is studied and presented for the case of a quadcopter. The dynamics are studied

considering them part of the special Euclidean group SE(3). This controller focuses on tracking a

set of trajectories for the position and heading of the UAV.

For simplicity, the hunter will be controlled for position in x and z and orientation in the yaw axis

(Figure 3.7). The motion controller will be implemented using the available implementation for

the lee_position_controller in the RotorS package for ROS.

The theory for the hunter algorithm is adapted from [34]. The dynamical model can be represented

by the two defined coordinate frames, W and C (Figure 1.1). Euler angles are used to define the

hunter's attitude (roll, pitch, yaw) which are convenient to define the rotation matrix between the

two coordinate frames W and C.

For the position control of the UAV, the dynamical model developed by [33] aims to obtain

asymptotic behavior for the track of four variables, three are for the position of the UAV, and one

for the orientation of one body-fixed axis. This applies to this study, by controlling the position of

the hunter in the x-axis, z-axis, and the rotation in the yaw axis, as to always keep the invader UAV

in its field of view.

After the extraction of the best track, the hunter would know the position of the invader drone

𝑥𝐸 = [𝑥, 𝑦, 𝑧]𝐶
𝑇 in its reference frame, C. The best location of the intruder to be captured is defined

as 𝑥𝐸
𝑑. The error in the position controller of the hunter is given by equation 3.6.

Figure 3.7. Rotations: Roll is the rotation around the front-to-back axis, Pitch is the

turn about the side-to-side axis and Yaw is the direction of the heading of the UAV.

33

𝑒𝑋 = 𝑥𝐸
𝑑 − 𝑥𝐸 (3. 6)

3.5 Net launcher

The net launcher system will be the one in [2]. The system has at least one net launcher being

disposed at the base of the Hunter UAV, operable to launch a net toward a target object. A

controller responsive to a signal indicative of a detected target object, will trigger the net launch

toward the target object (Figure 3.8).

From preliminary experiments (Figure 3.9) it was found that the net launcher shoots the net with

a parabolic trajectory, initially expanding in size, then retracting. The net reaches a maximum

expanded area when its center is located approximately 2 meters in front and 1 meter below the

net launcher (equation 3.7), in the C frame.

𝑥𝐸
𝑑 = [0, 1, 2]𝑇 (3. 7)

Thus, the hunter UAV should control its attitude to place the moving intruder UAV at the desired

𝑥𝐸
𝑑 location.

Figure 3.8. Net launcher system, as designed by [2].

34

Figure 3.9. Experiment to determine the trajectory and speed of the net when

launched by the net launcher system.

a)

b)

35

 IMPLEMENTATION

The system is designed using ROS nodes for different processes. Both in simulation and a physical

scenario, the UAV can be controlled using ROS. It serves as an interface for the robot and the

sensor and actuator systems. For the simulation environment, the algorithm will subscribe to the

simulated sensor data.

ROS allows the functionality of a robot to be divided into subsets of tasks. In the further sections

of this chapter, it will be presented how different parts of the system are instantiated as nodes. For

example, the conversion from 2D images to point cloud data is done by a node, the detection of

the intruder is done by a different node, and the control of the hunter UAV will be planned by

another node.

4.1 Simulation environment

To test the proposed methods, a simulated environment using the Gazebo simulator is launched.

Gazebo allows the test of algorithms using simulated robots, and to train AI systems using realistic

scenarios.

Along with Gazebo, the RotorS simulator [35] is used. RotorS is a MAV (Micro Aerial Vehicle)

Gazebo simulator. It comes with a few multi-rotor UAV models and the possibility to include

ROS (onboard
computer)

Real system: Camera,
sensors and actuators

Simulated environment
(RotorS)

OR

36

simulated sensors (such as an IMU, odometry, and vision) mounted on them. RotorS also contains

a few examples of controllers.

A realistic scenario (also referred to as World) for the simulation is created. A few houses, an

uneven ground plane, and roads are placed. The hunter and intruder UAV are launched. The hunter

UAV is a hexacopter (Firefly model in RotorS), which is similar to the one used for tests later on

in the real scenario (Figure 4.1). On the hunter, the simulated stereo camera is mounted, with the

parameters matching the ones from the selected camera (see Table 3.1). The intruder drone/s can

be any model of UAV. A small quadrotor is chosen to be the invader UAV to test the algorithms

(Hummingbird model in RotorS).

Figure 4.1 Simulated scenario for testing. Gazebo simulator.

Rviz is another useful tool for the development of the system. It is a 3D visualization tool for ROS

applications. There the robot model can be seen, and sensor information analyzed. It also allows

the replay of recorded data.

For the simulation stage, a laptop computer running ROS Kinetic Kame, supported on Ubuntu

16.04 Xenial was used. The computer has a processor Intel Core i7-9750, video card NVIDIA

Quadro T1000 with 4GB, and 16Gb of RAM.

37

4.1.1 Evaluation of the UAV targeting in a simulated environment

As mentioned in section 3.1.2, the images coming from the simulated stereo camera were sampled

at 30 FPS, with a resolution of 640x480 pixels. Figure 4.2 illustrates the image processing pipeline.

The stereo images obtained from the simulated camera are converted to point cloud data (Figure

4.2 b). To reduce the computational time, the point cloud was downsampled into a voxel grid

(Figure 4.2 c) and filtered to the working environment values (between 0.5m and 10m).

Figure 4.2. Image processing pipeline. Grid 1x1 m. (a) Simulated environment, a hunter UAV,

and an intruder UAV. (b) Point cloud data obtained from the camera mounted on the hunter. (c)

Filtered point cloud down-sampled into a voxel grid. (d) Cluster extraction.

A Euclidean clustering algorithm (Figure 4.2 d), identifies clusters of points after the point cloud

is filtered. Clusters that are too large and too small possibly represent environment landscape (e.g.,

ground, walls) or stereo camera noise. Those clusters are removed. The detections are selected as

the centroid of each remaining cluster.

a) b)

c) d)

38

Error Analysis of the Detection

In the RotorS simulator, using a simulated stereo camera attached to the hunter UAV, an intruder

UAV is placed for testing. The simulated environment provides ground truth information about

both UAVs’ position, which is used to compare with the results from the visual detection to obtain

the performance of the method.

Figure 4.3. Trajectory of the intruder UAV for the simulated experiment. This trajectory is used

to evaluate the detection and tracking accuracy.

The experiment was designed as follows: the stereo camera mounted on the hunter UAV sees an

intruder UAV following a figure-8 trajectory in three different planes normal to the camera z-axis,

as seen in Figure 4.3. The Root Mean Square Error (RMSE) analysis in detecting the intruder's

centroid is shown in Table 4.1. This error analysis is comparing the ground truth against the

detections (not to the tracking predictions).

Table 4.1. Spatial Root Mean Square Error (RMSE) in meters.

Distance

[m]

RMSE Precision Recall

X Y Z

2.5 0.063 0.112 0.032 1.000 0.974

5.0 0.073 0.108 0.035 1.000 0.983

7.5 0.174 0.083 0.032 0.998 0.993

39

Execution time of detection

It is important to account for the delay in the detection of the algorithm. A detection lag of ∆𝑡𝐷𝑒𝑡 =

0.15 𝑠 was calculated as the maximum cross-correlation coefficient for the ground truth trajectory

and detected trajectory (Figure 4.4). Similarly, the tracking lag for the tracking trajectory, was

∆𝑡𝑇𝑟𝑎𝑐𝑘 = 0.15 𝑠. This means that the computational time of the detection is the limiting part of

the algorithm.

Figure 4.4. Detection lag for the simulated experiment. Comparison of part of the ground truth,

detected and tracked trajectory of the intruder in the y axis.

Tracking Accuracy of the Intruder UAV

In Figure 4.5, the MOTA and RMSE were evaluated for several r parameters, ranging from 0.5 to

5.0. The r parameter scales the measurement noise covariance matrix R of the Kalman filter

supporting the tracking algorithm. For all tested values of r, the MOTA index was above 0.999

and the RMSE had a minimum value of 0.09 m at r = 1.0. Note that for very small values of r the

tracks rely more on the noisy measurement (detection) data, producing a noisy track. While for

very large values of r, the tracking algorithm trusts the motion model too much, and does not

update the acceleration state on time.

40

Figure 4.5. In red, MOTA index for the analysis of tracking accuracy. In blue, the RMSE of the

best track when compared to the ground truth data, for different values of r, scaling factor in the

Kalman filter R matrix.

An advantage of the Kalman filter based algorithm is shown above in Figure 4.4, where the

tracking procedure correctly predicts the position of the intruder UAV even when there are

temporarily missing detections (between 37.0 and 37.5 seconds).

Aiming Control

The motion control for the simulated hunter was achieved sending desired pose commands to a

position controller. The sequence of pose commands set the trajectory of the hunter UAV that

will reduce the position error in Equation (3.5).

4.1.2 Discussion on the simulated experiment

Using point cloud data from a stereo camera as the rubric for UAV recognition appears to be a

feasible solution. A good recall index is needed to guarantee the detection of all invader UAVs.

Table 4.1 shows a reliable recall index, and a precision that stays high as recall increases. For

object detection, it is desirable to have good precision as recall increases.

The tracking algorithm based on a Kalman filter has the smoothing and predictive characteristics

required for a steady aiming, as shown in Figure 4.4. The detection and tracking lags were similar,

suggesting that the detection step has a longer execution time than the tracking step. This is

expected, considering that the detection step performs operations in thousands of points contained

in the point cloud. In contrast, the tracking step performs operations in a few 9x9 matrices (the

Kalman filter state has nine variables).

41

A value of MOTA above 0.999 means the tracking algorithm always assigned the intruder UAV

to the same track, even during missing detections. This is important for target aiming applications

to avoid switching between targets. Additionally, the tracking error of 0.09 m RMSE is

considerably smaller than the area of the net, which spans above 1 meter in diameter. Therefore,

this tracking error is small enough for a successful intruder UAV capture.

The simple control of the simulated hunter UAV using its visual feed for position control

performed as expected, keeping the intruder drone at the desired distance from the hunter and

staying centered in the camera’s field of view.

The next section will focus on adapting and testing the algorithm on a real-world scenario,

performing the detection and tracking using a feed from the WithRobot stereo camera, and

implementing a motion controller to send the position to a flight controller and thus aim at the

invader UAV.

4.2 Experimental platform

In this section, the overview of the proposed hunter testing platform is introduced along with the

hardware and software components. The proposed hunter drone can be analyzed by parts: aerial

vehicle frame, flight control, onboard computer, and visual input device (Figure 4.6).

A hexacopter UAV is chosen as the test platform. The DJI Flamewheel F550 (Figure 4.6 a) is built

with light and strong compounds to grant better crashworthiness. It comes with a high strength

compound PCB frame board, easy to wire, and optimized with assemble space for autopilot

systems. The specifications for the frame are found in Table 4.2. For this frame, six E300 ESCs

(Electronic Speed Controller) of 15 A control the six E300 motors. The specifications about the

propulsion system can be found in Table 4.3.

Table 4.2. DJI Flamewheel frame specifications.

DJI Flamewheel F550 Specifications

Frame Weight 478 g.

Diagonal Length 550 mm.

Takeoff Weight 1200g ~ 2400g.

42

Table 4.3. DJI propulsion system for the F550 frame.

DJI propulsion system E300 Specifications

Recommended Payload 300 g/axis

Maximum Thrust 600 g/axis

Recommended Battery 3S - 4S LiPo

KV 920 rpm/V

The flight controller used for the hunter drone is the Pixhawk PX4, manufactured by Radiolink

(Figure 4.6 b). The PX4 is an open-hardware project by Pixhawk which features leading-edge

processor and sensor technology for good performance, flexibility, and reliability for the control

and development of autonomous vehicles. The details about this flight controller are in Table 4.4.

Figure 4.6. a) the DJI Flamewheel F550, selected frame for the experimental hunter platform,

image from https://www.dji.com/flame-wheel-arf/feature; b) Radiolink PixHawk PX4, open

source flight controller, image from https://spexdrone.com/products/pixhawk-classic-radiolink-

pixhawk-px4-autopilot-pixhawk-px4; c) Selected onboard computer, Orbitty Carrier for NVIDIA

Jetson TX1, image from http://connecttech.com/product/orbitty-carrier-for-nvidia-jetson-tx2-

tx1/; d) Stereo camera, WithRobot oCamS-1CGN-U, image from

http://withrobot.com/en/camera/ocams-1cgn-u/.

A remote controller, FrSky Taranis X9D is connected to the flight controller for manual operation

of the hunter UAV and override of the autonomous mode if necessary. The Taranis X9D has 16

a) b)

c) d)

https://spexdrone.com/products/pixhawk-classic-radiolink-pixhawk-px4-autopilot-pixhawk-px4
https://spexdrone.com/products/pixhawk-classic-radiolink-pixhawk-px4-autopilot-pixhawk-px4

43

channels available, it was configured using QGroundControl to use the first 8 channels as follows:

the first four channels control the roll, pitch, throttle and yaw; channel 5 selects the flight mode

and channel 8 arms or disarms the hexacopter.

Table 4.4. Specifications of the fight controller.

Radiolink Pixhawk PX4 Specifications

Processor
32bit 32F427 ARM Cortex M4 Core

168 MHZ / 256 KB RAM / 2 MB Flash

Gyroscope ST Micro L3GD20H 16 bit

Accelerometer/magnetometer ST Micro LSM303D 14 bit

Accelerometer/gyroscope MPU 6000 3-axis

Barometer MEAS MS5611

GPS M8N GPS Module

The flight controller needs feedback on the vehicle position to perform autonomous missions. The

Pixhawk PX4 comes with a GPS module (Figure 4.7 a). For indoor tests where the GPS signal is

not available, an option to obtain odometry estimation consists of an Optical Flow setup, which

requires a downward-facing camera and a distance sensor (preferably a LiDAR). For the indoor

tests, a PX4FLOW optical flow smart camera as presented in [36] is used in conjunction with a

Garmin Lidar Lite V3 distance measurement sensor (Figure 4.7 b).

Figure 4.7. Pixhawk PX4 requires a position estimation system. a) GPS module, image from

https://www.getfpv.com/holybro-px4-2-4-6-pixhawk-m8n-gps-pm-100mw-radio-telemetry-v3-

915mhz.html, b) PX4Flow and LiDAR Lite, image from

https://ardupilot.org/copter/docs/common-px4flow-overview.html. Both optical flow camera and

distance sensor are connected to the I2C bus of the flight controller.

https://docs.px4.io/v1.9.0/en/sensor/rangefinders.html

44

For the Onboard computer, the Orbitty Carrier for NVIDIA Jetson TX1 was chosen (Figure 4.6 c).

This Orbitty Carrier board incorporates connectivity and multimedia interfaces, a few of them

being USB, Ethernet, and HDMI for the computer module Jetson TX1. This module is ideal for

robotics and unmanned applications, being low cost and granting the performance required while

keeping a low power consumption. Jetson TX1 fits the requirements for visual computing

applications.

Table 4.5. Specifications of the onboard computer.

NVIDIA Jetson TX1 Specifications

Size 87mm x 50mm

GPU 256-core NVIDIA Maxwell

CPU Quad-Core ARM Cortex - A57 MP Core

Memory 4GB 64-bit

Storage 16GB

Power Under 10W

PCIE Gen 2

Wi-Fi Yes

The input voltage required by the module is in the range 9V~14V, which makes it feasible to power

it by a LiPo battery once mounted on the hunter drone.

Data flow diagram

The information flow is as seen in Figure 4.8. Connectivity-wise, the stereo camera is attached to

the onboard computer via a USB port; the onboard computer communicates to the flight controller

using serial communication; and the flight controller sends the commands to the motors of the

hunter using PWM signals.

Software architecture

ROS nodes command the execution of the system. A diagram is shown below in Figure 4.9. A

similar ROS-based system proposed for the simulated environment processes the images obtaining

the point cloud data. This time, the images are processed by ROS nodes on the companion

computer. The detections and tracks together with a position reference given by either visual

odometry or a GPS module, feed an algorithm in ROS that will plan the motion of the hunter. This

plan is then communicated to the flight controller through MAVROS.

45

Figure 4.8. Information flow diagram for the experimental platform.

MAVROS is a package of communication tools used between systems running ROS and various

autopilots with MAVLink protocol. A joystick or remote controller is also linked to the flight

controller to provide a manual mode.

Figure 4.9. Software architecture for the detection, tracking and motion planning.

46

The flight controller Pixhawk PX4 is configured using QGroundControl. This is open source and

provides the support for the PX4 autopilot stack. QGroundControl was used to configure and tune

the parameters for the hunter hexacopter, and the desired flight modes and sensors.

Flowchart of the experimental platform

The final experimental platform is shown in Figure 4.10, and the principal components and the

flow of information is represented in Figure 4.11.

Figure 4.11. Components of the experimental platform and data flow indication. Images obtained

from the previously mentioned sources in Figure 4.6 and Figure 4.7.

Figure 4.10. Experimental platform using the DJI F550 hexacopter frame and the

components mentioned in Figure 4.6 and Figure 4.7.

47

4.2.1 Evaluation of the UAV tracking in the real scenario

The detection and tracking algorithms were tested in an outdoor scenario. A static camera was set

for the experiment, and an intruder UAV (manually controlled) was in the camera field of view.

When testing outdoors, the exposition parameter of the camera needed adjustment. A mechanism

for automatic exposure adjustment will be useful for future tests. In Figure 4.12, the obtained image

processing pipeline is shown. As a difference to the simulated environment, the Euclidean cluster

extraction needed some parameters to be tuned. The cluster tolerance was modified to 0.5m

(minimum distance between different clusters), and the smallest and largest cluster size admitted

were set to 60 and 500 respectively. These parameters were tuned after the experiment, using the

data stored in a bag file. A bag file subscribes to one or more ROS topics and stores the serialized

message data in a file as it is received. The extraction of the clusters was successful in this scenario,

as can be seen in Figure 4.12 d).

a) b)

c) d)

Figure 4.12. Image processing pipeline in the real scenario. (a) Outdoor testing

environment with an intruder UAV, image feed from the oCamS-1CGN-U camera.

(b) Point cloud data obtained. (c) Filtered point cloud down sampled into a voxel grid.

(d) Euclidean cluster extraction.

48

The tracking algorithm, by keeping the best track and using the prediction of the speed of the target

in real-time (Figure 4.13, Figure 4.14), recovered from cases when false positives were present in

the images.

The onboard camera used for the experimental platform has limited processing capabilities. Using

the library provided by the manufacturer of the stereo camera WithRobot oCamS-1CGN-U, the

maximum speed of the image feed was of 10 Hz. After a modification of the library for this camera,

with the focus of maintaining only the parameters and data that are used for this project, an input

image feed of 20 Hz was obtained.

From the image feed coming at 20 Hz, the point cloud 3D reconstruction was obtained with a

frequency of 15 Hz. The detection algorithm published a result with a frequency of 30 Hz, and the

best track runs at 100 Hz. The system proves to be valid for use as a real-time method for the

detection of unwanted UAVs.

Figure 4.13. The red arrow represents the best track in every frame presented. The algorithm

keeps track of the position of the intruder in successive frames. Images in a), b) and c) are taken

after successive intervals of 1s.

a) b) c)

49

Figure 4.14. Detection and best track obtained in the outdoor environment.

For the outdoor experiment the metrics obtained were a value of 0.95 for the Recall index, a value

of 0.92 for the Precision index, and a value of 0.94 for the MOTA index. The values stay relatively

high and close to 1.0, the ideal case scenario. With respect to the simulated tests, these indexes

have lower values due to the presence of false-positives which were mostly due to noise detected

by the stereo camera.

Quantitative Evaluation

For validation of the computer vision algorithm, a motion capture system can precisely record the

trajectory of an intruder UAV to then compare it to the estimates obtained by the onboard camera

(Figure 4.15). The setup for this test uses an array of Qualisys motion capture cameras to determine

the location of the stereo camera and the intruder drone. The onboard computer at the same time

records the detections and tracks obtained for the movement of the intruder indoors.

This experiment needs to be done indoors, in a laboratory setting. From this test, several comments

arise and need to be approached in the future. In an indoor environment the point cloud data

reconstruction results in many clusters being recognized as positive targets. Due to objects, walls,

50

ceiling, or the motion capture system, more clusters are detected and become part of the false-

positive information (Figure 4.16). When the intruder UAV is close to the walls, floor, or ceiling,

the Euclidean cluster extraction algorithm fails to detect the intruder. This happens due to the

cluster tolerance required by the method. This situation makes clear that for indoor detection of

UAVs, or environments with more features, a further cluster analysis is needed.

Figure 4.15. Motion capture system setup for the performance analysis.

4.2.2 Discussion about the experiments

From the previous experiments, the outdoor detection and tracking performed as expected, in a

similar way to the simulated tests. The hunter UAV successfully detected, tracked and acted upon

the recognition of an intruder UAV.

For indoor environments, the detection and tracking relying only on stereo vision and cluster

extraction is almost unfeasible. A few options to overcome this situation can be the use of an object

classification method based on deep learning, or SLAM (Simultaneous Localization And

Mapping) for the generation of maps of the indoor settings.

51

Figure 4.16. Indoor detection using point cloud data and the cluster extraction method. In a) only

true-positive data is detected; in b) the detections include false-positive data.

From simple tests using Darknet, an open-source neural network framework, with support for CPU

and GPU computation [37], and a set of training images for drones as in [38], promising results

were obtained (Figure 4.17).

Figure 4.17. Object recognition using deep learning.

b)

a)

52

4.2.3 Motion control experiment

A simple test to check the integration of the system can be obtaining a yaw changing motion of

the hunter drone, so that its heading tends to align with the position of the invader drone. The

hunter UAV changes its yaw orientation, hovering at a static height, in an aim to keep the intruder

drone centered in the camera’s field of view.

Figure 4.18. Simple yaw control algorithm for the experimental platform.

To achieve the motion in Figure 4.18, the onboard computer runs over ROS the detection and

tracking algorithm, a motion control node, and a MAVROS node, which allows communication

to the flight controller. A topic message controlling the desired attitude of the hunter UAV is

published with a 10 Hz frequency. The flight controller interprets and actuates the motors to

perform the desired motion.

53

 SUMMARY AND FUTURE WORK

5.1 Summary

A drone hunting platform capable of detecting invader UAVs in an area using stereo vision was

proposed in this work. The method includes an object detection step based on computer vision,

using 3D point cloud information. The tracking step is based on a Kalman filter combined with

the Linear Sum Assignment algorithm.

This method can be executed in real-time on an onboard computer and mounted on a commercial

UAV platform. The fast execution time of the algorithm added to the predictive nature of the

tracking algorithm, makes this a reliable system for the detection of intruder UAVs for use in aerial

security.

The final stage of the system controls the hunter UAV with the motion dynamics necessary to

capture the intruder.

5.2 Future Work

This project paves the way for further development. The tests using the stereo camera and point

cloud data were successful in outdoor environments more than in indoor environments.

There is an opportunity for improvement related to processing time. Adding the functionality of

the CUDA cores, already available in the selected hardware, will support parallel processing and

speed up the processing considerably.

For enhance of the detection with this method in indoor environments, a layer of control of the

positives targets can be added. The use of deep learning object recognition or SLAM algorithms

can help detect false positives and give the precision for the detection needed for a surveillance

system.

54

Related to the performance of the camera-based method, details that can be improved in future

work include using a source of infrared light for low lit environments and the use of an automatic

exposure corrector for different lighting conditions.

Concerning the motion dynamics required for the hunter drone, the addition of a gimbal for the

camera can overcome this limitation. Another gimbal can be used to mount the net launcher cannon

as well.

The adoption of a larger platform for the hunter, able to carry the weight of the net launcher and a

captured drone is necessary for a closed-loop test of the complete system. For this test, the motion

algorithm should compensate for the detection and tracking lag, the ballistic dynamics of the net,

and anticipate to the predicted trajectory of the intruder.

55

REFERENCES

[1] M. Ritchie, F. Fioranelli, H. Griffith, and B. Torvik, “Micro-drone RCS analysis,” Oct. 2015.

[2] M. R. Aagaah, E. M. Ficanha, and N. Mahmoudian, “Drone having drone-catching feature,”

US10005556B2, Jun. 26, 2018.

[3] “10 Drone Stats That Will Blow You Away.” https://www.fool.com/investing/2018/01/19/10-

drone-stats-that-will-blow-you-away.aspx (accessed Mar. 25, 2020).

[4] “The Explosive-Carrying Drones in Venezuela Won’t Be the Last,” Wired.

[5] “25 Interesting Drone Facts and Statistics (2020) | By the Numbers.”

https://expandedramblings.com/index.php/drone-statistics/ (accessed Mar. 25, 2020).

[6] “Peeping drones could be spying on you in your own home,” TODAY.com.

https://www.today.com/money/peeping-drones-could-be-spying-you-your-own-home-

t128590 (accessed Mar. 09, 2020).

[7] C. Schüpbach, C. Patry, F. Maasdorp, U. Böniger, and P. Wellig, “Micro-UAV detection using

DAB-based passive radar,” in 2017 IEEE Radar Conference (RadarConf), May 2017, pp.

1037–1040.

[8] E. E. Case, A. M. Zelnio, and B. D. Rigling, “Low-Cost Acoustic Array for Small UAV

Detection and Tracking,” in 2008 IEEE National Aerospace and Electronics Conference, Jul.

2008, pp. 110–113.

[9] B. Adler, J. Xiao, and J. Zhang, “Autonomous Exploration of Urban Environments using

Unmanned Aerial Vehicles,” J. Field Robot., vol. 31, no. 6, pp. 912–939, 2014.

[10] M. Hammer, M. Hebel, B. Borgmann, M. Laurenzis, and M. Arens, “Potential of lidar

sensors for the detection of UAVs,” in Laser Radar Technology and Applications XXIII, May

2018, vol. 10636, p. 1063605.

[11] R. Medhi, “A Review on Object Detection and Tracking Methods,” Accessed: Jan. 30,

2020. [Online]. Available: https://www.academia.edu/33497279/A_Review_

on_Object_Detection_and_Tracking_Methods.

[12] “[PDF] Moving Object tracking Based on Background Subtraction Combined Temporal

Difference | Semantic Scholar.” https://www.semanticscholar.org/paper/Moving-Object-

tracking-Based-on-Background-Combined-Chen-

Wang/9a39050f72e91c7e3351d86c91cd0bcc14f2dad9 (accessed Mar. 25, 2020).

[13] S. Krukowski and A. Perkins, “Tracking of Small Unmanned Aerial Vehicles,” p. 6.

[14] R. Szeliski, “Computer Vision: Algorithms and Applications,” p. 979.

[15] D. M. Kim, H. J. Choi, J. S. Kim, W. K. Lee, D. H. Song, and S. Jung, “Tracking Control

of a Moving Object for Robokers with Stereo Visual Feedback,” in 2007 IEEE International

Conference on Integration Technology, Mar. 2007, pp. 52–57.

[16] “3D depth image analysis for indoor fall detection of elderly people | Elsevier Enhanced

Reader.” (accessed Jan. 15, 2020).

[17] N. D. Kehtarnavaz and W. Sohn, “Analysis of camera movements in stereo vision-based

vehicle tracking,” in Proceedings of 1st International Conference on Image Processing, Nov.

1994, vol. 2, pp. 710–714 vol.2.

[18] “Stereo Vision Basics.” http://chriswalkertechblog.blogspot.com/2014/03/stereo-vision-

basics.html (accessed Apr. 01, 2020).

56

[19] Y. Xiang, A. Alahi, and S. Savarese, “Learning to Track: Online Multi-object Tracking by

Decision Making,” in 2015 IEEE International Conference on Computer Vision (ICCV),

Santiago, Chile, Dec. 2015, pp. 4705–4713.

[20] B. Sahbani and W. Adiprawita, “Kalman filter and Iterative-Hungarian Algorithm

implementation for low complexity point tracking as part of fast multiple object tracking

system,” in 2016 6th International Conference on System Engineering and Technology

(ICSET), Oct. 2016, pp. 109–115.

[21] Y. Ma, J. Anderson, S. Crouch, and J. Shan, “Moving Object Detection and Tracking with

Doppler LiDAR,” Remote Sens., vol. 11, no. 10, p. 1154, Jan. 2019.

[22] P. Fang, J. Lu, Y. Tian, and Z. Miao, “An Improved Object Tracking Method in UAV

Videos,” Procedia Eng., vol. 15, pp. 634–638, Jan. 2011.

[23] F. Luetteke, X. Zhang, and J. Franke, “Implementation of the Hungarian Method for object

tracking on a camera monitored transportation system,” in ROBOTIK 2012; 7th German

Conference on Robotics, May 2012, pp. 1–6.

[24] J. Pappalardo, “The Air Force Is Deploying Its First Drone-Killing Microwave Weapon,”

Popular Mechanics, Sep. 24, 2019. https://www.popularmechanics.com/military/weapons

/a29198555/phaser-weapon-air-force/ (accessed Mar. 09, 2020).

[25] “Watch Japan’s bizarre net-wielding police drone in action,” Digital Trends, Dec. 14, 2015.

https://www.digitaltrends.com/cool-tech/watch-japans-bizarre-net-wielding-police-drone-in-

action/ (accessed Jan. 29, 2020).

[26] “Books/ROS_Robot_Programming_English - ROS Wiki.” http://wiki.ros.org/

Books/ROS_Robot_Programming_English (accessed Mar. 12, 2020).

[27] X. Yun, “Utilizing robot operating system (ROS) in robot vision and control,” 2015.

[28] “Morphological Transformations — OpenCV-Python Tutorials 1 documentation.”

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/

py_morphological_ops/py_morphological_ops.html (accessed Jan. 30, 2020).

[29] R. B. Rusu, “Semantic 3D Object Maps for Everyday Manipulation in Human Living

Environments,” KI - Künstl. Intell., vol. 24, no. 4, pp. 345–348, Nov. 2010.

[30] J. Davis and M. Goadrich, “The relationship between Precision-Recall and ROC curves,”

in Proceedings of the 23rd international conference on Machine learning, Pittsburgh,

Pennsylvania, USA, Jun. 2006, pp. 233–240.

[31] H. W. Kuhn, “The Hungarian method for the assignment problem,” Nav. Res. Logist. Q.,

vol. 2, no. 1–2, pp. 83–97, Mar. 1955.

[32] A. Milan, L. Leal-Taixe, I. Reid, S. Roth, and K. Schindler, “MOT16: A Benchmark for

Multi-Object Tracking,” ArXiv160300831 Cs, May 2016, Accessed: Feb. 17, 2020. [Online].

Available: http://arxiv.org/abs/1603.00831.

[33] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadrotor UAV

on SE(3),” in 49th IEEE Conference on Decision and Control (CDC), Dec. 2010, pp. 5420–

5425.

[34] T. Elmokadem, “Distributed Coverage Control of Quadrotor Multi-UAV Systems for

Precision Agriculture⁎⁎This work was supported by the Australian Research Council. Also,

this work received funding from the Australian Government, via grant AUSMURIB000001

associated with ONR MURI grant N00014-19-1-2571.,” IFAC-Pap., vol. 52, no. 30, pp. 251–

256, 2019.

57

[35] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “RotorS—A Modular Gazebo MAV

Simulator Framework,” in Robot Operating System (ROS): The Complete Reference (Volume

1), A. Koubaa, Ed. Cham: Springer International Publishing, 2016, pp. 595–625.

[36] D. Honegger, L. Meier, P. Tanskanen, and M. Pollefeys, “An open source and open

hardware embedded metric optical flow CMOS camera for indoor and outdoor applications,”

in 2013 IEEE International Conference on Robotics and Automation, May 2013, pp. 1736–

1741.

[37] J. Redmon, pjreddie/darknet. 2020.

[38] Chuan-en Lin, chuanenlin/drone-net. 2020.

58

VITA

Maria Nieves Brunet Avalos received her Engineering Degree in Electronics from Universidad

Nacional de Rosario in 2015. She is currently a Master of Science student in the School of

Electrical and Computer Engineering at Purdue University. She was awarded the Fulbright

Scholarship to pursue her graduate studies. Her interests include automatic control systems,

computer vision, embedded systems and robotics.

