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ABSTRACT

Ogbe, Dennis Osasumwen PhD, Purdue University, May 2020. Adaptive Beamform-
ing and Coding for Multi-node Wireless Networks. Major Professors: David J. Love
and Chih-Chun Wang.

As wireless communications continue to permeate many aspects of human life and

technology, future generations of communication networks are expected to become

increasingly heterogeneous due to an explosion of the number of different types of

user devices, a diverse set of available air interfaces, and a large variety of choices

for the architecture of the network core. This heterogeneity, coupled with increas-

ingly strict demands on the communication rate, latency, and fidelity demanded by

a growing list of services delivered using wireless technologies, requires optimizations

across the entire networking stack. Our contribution to this effort considers three key

aspects of modern communication systems: First, we present a set of new techniques

for multiple-input, multi-output beam alignment specifically suited for unfavorable

signal-to-noise ratio regimes like the ones encountered in beamformed millimeter-wave

wireless communication links. Second, we present a computationally efficient estima-

tion algorithm for a specific class of aeronautical channels, which applies to systems

designed to extend wireless coverage and communication capacity using unmanned

aerial vehicles. Third, we present a new class of multi-hop relaying schemes designed

to minimize communication latency with applications in the emerging domain of ultra-

reliable and low-latency communications. Each of the three problem areas covered in

this work is motivated by the demands of a future generation of wireless communi-

cation networks and we develop theoretical and/or numerical results outperforming

the state of the art.
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1. INTRODUCTION

Wireless communication networks have manifested themselves as a critical part of the

global infrastructure and have permeated many aspects of human society and techno-

logical progress. As the demand for wireless services continues to grow exponentially,

the total number of mobile wireless connections surpassed the world population at

some point between the years 2018 and 2019 [1] and similar trends can be observed

for the number of wireless local area networks [2].

The technologies underpinning mobile wireless networks are developed and de-

ployed on a roughly "generational" schedule, with each generation improving on some

or all aspects on its predecessors. The first generation of mobile networks, often abbre-

viated as 1G, provided analog voice communications for a small number of cell phone

subscribers from the 1980s to the early 1990s. Second-generation (2G) networks first

employed digital modulations for voice and low-rate data transmissions starting in

the 1990s, with some legacy 2G systems still operational into the early 2020s. Third-

generation (3G) mobile networks, first deployed in the early 2000s, provided early

mobile broadband speeds and paved the way for the mass adoption of smartphones.

By the time fourth-generation (4G) mobile networking technology, introduced in the

2010s, matured and penetrated the market, smartphones developed into commodity

devices and mobile broadband enabled a significant fraction of the world population

to consume near-real-time and high-bandwidth services such as high-quality video

telephony and mobile gaming. The fifth and sixth generation (5G and 6G) of mobile

networks are promising further increases in bandwidth, coverage, and the number of

devices and use cases.

The increased sophistication of the user devices and the services delivered using

them continues the drive the demand for higher throughput, increased coverage, and

lower latencies. In an attempt to meet these ever-growing demands, the architecture
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of the core networks serving the users is growing increasingly complex and hetero-

geneous, evolving from the traditional cellular model from 1G through 4G to more

flexible and adaptive models developed as part of 5G and 6G. As an example, it is

not unrealistic to expect to encounter scenarios like the one sketched in Figure 1.1 as

5G and 6G mobile networks continue to mature.

small cell
wireless backhaul

UAV relay

Fig. 1.1.: Illustration of examples of a future heterogeneous mobile network. A mobile
broadband user is served through a UAV backhaul relay. A low-latency user is served
by a small cell communicating wirelessly with a fiber-equipped cell tower. In both
cases, multi-hop relaying is employed.

We highlight a few key technologies of next-generation mobile networks in Fig-

ure 1.1: Starting with late technologies of fourth-generation networks, academic and

industry stakeholders distilled different fundamental "use cases" for the users of mo-

bile networks of the fifth generation and beyond [1]. These use cases map to different

requirements on the communication throughput, the latency, and the fidelity. The

enhanced mobile broadband (eMBB) use case covers applications like video streaming

and bulk file downloads with throughput in the 10s of Gbps. The massive machine-

type communications (mMTC) use case covers applications in sensing and the In-

ternet of Things (IoT) and envisions unprecedented devices densities. Finally, the

ultra-reliable low latency (URLLC) use case covers applications which require com-
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munication latencies on the order of single milliseconds. To increase coverage and ca-

pacity, many network providers are deploying so-called "small cells", which serve users

while being themselves wirelessly connected to a wired base station. A straightfor-

ward evolution of this concept is to deploy flexible small cells mounted on unmanned

aerial vehicles (UAVs) to either extend coverage termporarily or increase capacity in

areas of peak demand. In both cases, the data between the users and their serving

base station traverses multiple "hops", each with different channel characteristics.

Putting it all together, we can thus envision a scenario in which a mobile broadband

user accesses the network through a UAV-based multi-hop relay, while a low-latency

user access the network through a small cell wireless relay, for example.

Of course, there are many more possible combinations of the aforementioned tech-

nologies, but these examples were not picked at random. Indeed, the topics covered

in this dissertation all address one or more aspects of these next-generation wireless

networks.

In chapter 2, we present a set of novel beam alignment techniques for multiple-

input multiple-output (MIMO) time-division duplex (TDD) wireless communication

links utilizing beamforming. These types of links are utilized between network users

and base stations as well as backhaul links between small cells and the core network.

In 5G systems, beamforming is used to compensate for the increased path loss incurred

at millimeter wave (mmWave) frequencies. There exist a variety of beam alignment

techniques to choose from in the literature, but the optimally-aligned beams for any

channel depend on the quality of the channel state information (CSI) at each end of

the link. Given the large number of antennas utilized in these systems, this CSI is

difficult to obtain. In contrast, the techniques we present in chapter 2 circumvent

this problem by exploiting the inherent reciprocity of wireless channels inspired by

a classical subspace estimation technique called the "power method" to estimate the

optimally-aligned beams.

In chapter 3, we present a novel estimation algorithm to obtain the CSI of a spe-

cial set of aerial wireless channels commonly found between unmanned aerial vehicles.
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One major aspect of aerial channels is the Doppler shift due to vehicle motion and

its effect on the signals used to convey information. This Doppler shift can severely

degrade any signals transmitted and received by UAVs, creating a need for compu-

tationally efficient signal processing schemes to estimate and compensate for it. The

work in chapter 3 presents a scheme to jointly estimate the Doppler shift and the

channel coefficients, again utilizing ideas from the power method subspace estimation

technique.

In chapter 4, we present a novel set of transmission schemes designed to minimize

communication latency over multi-hop relay channels. As we mentioned earlier, these

multi-hop channels appear in a variety of places throughout the modern network.

Combined with the emergence of novel low-latency use cases, a treatment of multi-hop

channels from a latency perspective becomes paramount. The work in chapter 4 first

lays a theoretical foundation for the analytical comparison of different transmission

schemes from a latency perspective before introducing two novel transmission schemes

which are designed from first principles to minimize latency.

While one common thread of this dissertation is the application of all three parts

to some aspect of a modern wireless communication network, another commonality

resides in the overall method of treatment of each of the subjects. In each of the

subsequent chapters, we begin by identifying the need for further investigation and

performance optimization of one specific aspect of the network. From this, we distill a

concise theoretical model and problem statement. We then present novel algorithms

or techniques to achieve the performance improvement we set to seek out in the be-

ginning. Finally, whenever applicable, we demonstrate the viability of our approaches

using numerical simulations.
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2. NOISY BEAM ALIGNMENT TECHNIQUES FOR
RECIPROCAL MIMO CHANNELS

© 2017 IEEE. Reprinted, with permission, from: D. Ogbe, D. J. Love, and V. Ragha-
van, “Noisy beam alignment techniques for reciprocal MIMO channels,” IEEE Trans-
actions on Signal Processing, vol. 65, no. 19, pp. 5092–5107, Oct. 2017.

2.1 Introduction

Advanced multi-input multi-output (MIMO) systems will be among the most im-

portant technologies to realize the ever-increasing data rate demands of 5G wire-

less communication networks [3, 4]. The two most promising MIMO applications1,

millimeter-wave (mmWave) MIMO [5–8] and massive MIMO [9–11] rely on utilizing

large beamforming gains to realize the large data rate requirements set for future

5G networks. In mmWave systems, beamforming will be used to compensate for

the increased path and penetration losses in the 25–100 GHz band [12, 13], whereas

massive MIMO systems will multiplex signals of different users via multi-user beam-

forming [14,15] in sub-6 GHz bands.

Many recent works such as [16–19] study the information theoretic limits of beam-

forming with practical mmWave hardware constraints. However, the substantial gains

promised by these studies can be realized only if sufficient channel state informa-

tion (CSI) is available at the communication nodes. In current state-of-the-art sys-

tems, this information is acquired by the use of channel sounding sequences and

feedback [20–23]. The use of a large number of antenna elements in mmWave and
1We use the terms massive and mmWave MIMO in the sense of the common understanding at
3GPP 5G-NR with massive MIMO typically corresponding to sub-6 GHz systems and mmWave
MIMO typically corresponding to over-25 GHz systems.
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massive MIMO systems will make CSI acquisition via the traditional approach im-

practical [24–26]. Further, in mmWave channels with a relatively small coherence

period, it is not possible to simultaneously estimate all the elements of the channel

matrix due to hardware constraints that render per-antenna sampling inefficient.

One way to circumvent this problem is to exploit the reciprocal nature2 of wireless

channels using time-division duplexing (TDD) systems. Channel reciprocity reduces

the overall resources spent on channel sounding since CSI about the channel in one

direction can be used to adapt to the channel in the reverse direction. Without readily

available channel estimates, communication nodes are forced to obtain their optimal

beamformer/combiner pair by sounding different beams during a beam alignment

phase [27]. Furthermore, since it is desirable to minimize the usage of time and power

resources of the beam alignment phase relative to actual data transmission [24–26],

it is necessary to employ greedy strategies that maximize the signal-to-noise-ratio

(SNR) during each time slot.

One approach to this goal is to leverage the underlying sparse structure [26,28–31]

or the directional structure [32–36] of mmWave channels via the use of low-complexity

beamforming approaches. The focus of this work is on another approach that lever-

ages greedy TDD-based beamforming. Many recent works such as [35, 37–41] have

pursued this approach. The common theme that ties these works is the fact that

repeated conjugation, normalization, and retransmission of an arbitrarily initialized

beamforming vector through a reciprocal MIMO channel (with no noise) is akin to

performing the power method3 on the channel matrix.

Beam alignment algorithms based on the power method are attractive due to their

simplicity and low computational complexity. However, simple implementations like

the ones proposed in [35,37,38] are likely to perform poorly in the low-SNR regime [35].

Other approaches for finding good beams using the power method have been proposed
2This work assumes that the radio-frequency (RF) circuit asymmetries in the uplink and downlink
have been compensated via calibration and hence does not consider these aspects.
3The power method is a result from numerical linear algebra which provides a simple algorithm to
find the dominant eigenvector(s)/eigenspace of a matrix [42].
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in [40] and [43]. These techniques offer improvements on the robustness and speed

of convergence of the basic power method at the cost of additional complexity. The

main idea behind these improved techniques is to combine previous estimates of the

optimal beams with the received information during each time slot. In addition

to these techniques, recent works such as [44] study the application of the more

general Arnoldi iteration to the beam alignment problem. Furthermore, feedback-

based beam alignment techniques for frequency-division duplexing (FDD) systems,

which represent the majority of currently deployed commercial systems, have been

studied in [45] and [46].

Building on [40, 43, 44], this section presents multiple novel techniques for the

TDD MIMO beam alignment problem in reciprocal channels. These techniques im-

prove upon the performance of the simple power method-based algorithms, especially

in low-SNR environments which are typical of practical mmWave systems [35]. The

first technique, labeled the sequential least-squares method, is based on constructing

a least-squares estimate of the channel matrix sequentially using the previously-used

sounding beams. The channel estimates at each iteration can then be used to com-

pute the next sounding beamformer/combiner pair, which is exchanged through a

feedback4 link. The second technique, labeled the summed power method, does not

require a feedback link and computes a normalized running sum of the previous beam-

formers, thus gaining greater robustness against noise through averaging.

The first technique achieves better performance in the high-SNR regime at the

cost of additional complexity and feedback5 overhead. On the other hand, the second

technique achieves better performance in the low-SNR regime and yet does not need

significant complexity/feedback overhead. However, this technique has deteriorating

performance as the SNR increases due to continued noise averaging. To enjoy the

complementary advantages of both techniques, we propose a third technique, labeled
4Due to the small packet overheads, the feedback link is assumed to be ideal: error-free and incurring
no delay.
5Nevertheless, the feedback link in itself is not onerous given that mmWave links are expected to
support Gbps rates.
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the least-squares initialized summed power method, that switches from the first tech-

nique to the second technique after a certain number of iterations. By appropriately

choosing the switching point kswitch, significant performance improvement can be re-

alized in the high-SNR regime with a small increase in feedback and computational

complexity. The motivation behind the third technique is that the high-SNR perfor-

mance of a beam alignment algorithm critically depends on the beam initialization.

By choosing this initialization from a scheme that rejects noise near-optimally, we are

able to prime a low-complexity scheme and improve performance. Thus, the proposed

approaches in this chapter provide useful low-complexity solutions for realizing the

large beamforming gains of mmWave systems.

The rest of this chapter is organized as follows. Section 2.2 provides an overview of

the system model. Sections 2.3 — 2.5 give detaild descriptions of the power methods

proposed. Simulation results illustrating the advantages of the proposed techniques

are presented in Section 2.6 with concluding remarks provided in Section 2.7.

Notations: The following notations are used in this chapter. Bold upper-case

and lower-case letters (such as A and a) denote matrices and column vectors, respec-

tively. The operators (·)T, (·), (·)∗ and (·)† denote matrix transposition, element-wise

complex conjugation, matrix Hermitian transposition and Moore-Penrose pseudoin-

verse operations, respectively. ‖·‖2 denotes the vector `2-norm and ‖·‖F denotes the

Frobenius norm of a matrix. x ∼ CN (µ,Σ) denotes a complex Gaussian random vec-

tor with mean µ and covariance matrix Σ. Cn×m, Cn and E{·} stand for the space

of n × m complex matrices, n × 1 complex vectors and the expectation operator,

respectively.

2.2 System Model

We consider a multi-antenna communication system such as the one shown in

Fig. 2.1, consisting of two transceivers (communication nodes), with Mt antennas at

node 1 and Mr antennas at node 2. The two nodes communicate over a channel
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H ∈ CMr×Mt . We also assume that H is reciprocal, i.e. the channel matrix from

node 2 to node 1 (uplink) is the transpose of the channel matrix from node 1 to node 2

(downlink). For a transmission on the downlink channel, the transmit data at node 1

is precoded by a unit-norm transmit beamforming vector f =
[
f1 f2 . . . fMt

]T
∈

CMt , sent over the channel, and combined at node 2 with a unit-norm receive combiner

z =
[
z1 z2 . . . zMr

]T
∈ CMr . Hence, for a data symbol so[k] sent on the downlink

channel, we obtain the received symbol

ro[k] =
√
ρo z∗Hfso[k] + no[k], (2.1)

where ρo is the downlink SNR and no[k] ∼ CN (0, 1) is additive Gaussian noise,

which we assume to be independent and identically distributed (i.i.d.) spatially as

well as temporally. Similarly, for a data symbol se[k] sent on the uplink channel, node

1 obtains the received symbol

re[k] =
√
ρe fTHTzse[k] + ne[k]. (2.2)

HT

H
f1

f2

...

fMt

... ... ...

z1

z2

zMr

Beamforming
selection

Beamforming
selection

Ye Yo

Fig. 2.1.: Communication node 1 transmits data over the downlink channel H to
node 2, while node 2 transmits data over the uplink channel HT.
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In both (2.1) and (2.2), we denote |z∗Hf |2 = |fTHTz|2 as the effective channel

gain, which we want to maximize in order to achieve reliable communications and

the highest possible data rates in both directions. We denote the vectors that achieve

this as fopt and zopt, respectively. It is well-known from [47, 48] that the effective

channel gain is maximized when f and z are the right- and left-singular vectors of

H corresponding to the largest singular value of H and that its maximum achievable

value is ‖H‖2
2 = λmax (H∗H). Further, we assume that neither node has knowledge

of the channel. It is therefore impossible for either node to compute the estimates of

fopt and zopt using the singular value decomposition (SVD) of their channel estimate.

Instead, as mentioned earlier, these estimates are obtained iteratively.

In the proposed techniques, both nodes cooperatively determine fopt and zopt dur-

ing a beam training phase by exploiting the channel’s reciprocity property. To model

this, our system operates on a ping-pong observation framework, which divides each

discrete channel use into two time slots. During slot 1 (ping), node 1 sends a training

symbol to node 2 on the downlink channel H. During slot 2 (pong), node 2 sends a

training symbol back to node 1 on the uplink channel HT. Since the two nodes are

exchanging training symbols that are known to both sides, we focus on the received

signal vectors after correlating with the known training data. Hence, the observation

at slot 1 (at node 2) during the k-th channel use is given as

yo[k] =
√
ρo Hf [k] + no[k]. (2.3)

In (2.3), the term f [k] denotes an estimate of fopt at training phase time-index k and

no[k] ∼ CN (0, I) is a complex Gaussian noise vector of sizeMr. Due to the reciprocity

of the uplink and downlink channels, the observation at slot 2 (at node 1) is given as

ye[k] =
√
ρe HTz[k] + ne[k]. (2.4)
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Similar to (2.3), ρe denotes the uplink SNR, z[k] denotes an estimate of zopt at training

phase time-index k and ne[k] ∼ CN (0, I) is a complex Gaussian noise vector of size

Mt.

2.3 Power Method Using A Sequentially Estimated Channel Matrix

2.3.1 Batch Least-Squares Estimator

In the first scheme, since the channel matrix is not known at either node, the nodes

construct a least-squares estimate of H before each ping-pong time slot using all of

the previous estimates of fopt and zopt. These estimates are then used to compute the

next state of their beamforming vectors.

In particular, using all observations up to time slot k, we can write (2.3) and (2.4)

in matrix form as

Yo,k =
√
ρo HFk + No,k (2.5)

and

Ye,k =
√
ρe HTZk + Ne,k. (2.6)

In (2.5) and (2.6), Fk = [f [0] f [1] . . . f [k]] and Zk = [z[0] z[1] . . . z[k]] contain all of

the estimates of fopt and zopt up to time-index k. Also, Yo,k = [yo[0] yo[1] . . . yo[k]]

and Ye,k = [ye[0] ye[1] . . . ye[k]] contain all of the observed signal vectors, respec-

tively. On the other hand, No,k = [no[0] no[1] . . . no[k]] and Ne,k = [ne[0] ne[1] . . . ne[k]]

contain all of the noise vectors, respectively.

Based on this information, node 1 constructs an estimate of the channel by solving

the least-squares problem

Ĥe,k = argmin
H̃∈CMr×Mt

(∥∥∥YT
e,k−1 −

√
ρe Z∗k−1H̃

∥∥∥2

F

)
. (2.7)
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Similarly, node 2 constructs an estimate of the channel by solving

Ĥo,k = argmin
H̃∈CMr×Mt

(∥∥∥Yo,k −
√
ρo H̃Fk

∥∥∥2

F

)
. (2.8)

Note that there exists an asymmetry in the time-index between (2.7) and (2.8). The

solutions to these least-squares problems (Ĥe,k and Ĥo,k) are obtained using all of the

previously observed outputs and beamforming vectors and are as follows:

Ĥe,k =

(
Z∗k−1

)†
YT
e,k−1√

ρe
, (2.9)

Ĥo,k =
Yo,k (Fk)

†

√
ρo

. (2.10)

In (2.9) and (2.10), the (·)† operation stands for the Moore-Penrose pseudoinverse6

of the underlying matrix. Using the definitions of the pseudoinverse, we have the

following simplifications:

Ĥe,k =
1
√
ρe
·

 Zk−1

(
Z∗k−1Zk−1

)−1
YT
e,k−1 if k < Mr(

Zk−1Z
∗
k−1

)−1
Zk−1Y

T
e,k−1 if k ≥Mr,

(2.11)

Ĥo,k =
1
√
ρo
·

 Yo,k (F∗kFk)
−1 F∗k if k < Mt

Yo,kF
∗
k (FkF

∗
k)
−1 if k ≥Mt.

(2.12)

Note that the second condition in both (2.11) and (2.12) has been separated (from

the first) at the k = Mr and k = Mt cases artificially. Since the solutions in (2.9) and

(2.10) use all the underlying data up to time-index k, we call this approach the batch

least-squares method. Once Ĥe,k and Ĥo,k have been estimated, beamforming vector

computation follows directly from the SVD theorem [42,49].

6Note that the expressions in (2.9) and (2.10) hold even in the case when k < Mr since it can be
shown that the left pseudoinverse of a “tall matrix”, i.e., a K1×K2 matrix with K1 > K2 minimizes
‖AC− I‖2, where C is optimized over all K2 ×K1 matrices.
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Lemma 2.3.1 Let the SVD of a matrix A be denoted as A = UΣV∗. We can obtain

a multiple of the i-th left-singular vector of A by multiplying A with its i-th right-

singular vector, i.e., Avi = σiui. Here, σi is the i-th singular value. Similarly, we

can obtain a multiple of the i-th right-singular vector by multiplying A∗ with its i-th

left-singular vector, i.e., A∗ui = σivi.

Applying Lemma 2.3.1, we note that node 1 can compute its k -th estimate for

fopt as

f [k] =
Ĥ∗e,kz[k − 1]∥∥∥Ĥ∗e,kz[k − 1]

∥∥∥
2

. (2.13)

Similarly, applying Lemma 2.3.1, we note that node 2 obtains its k-th estimate for

zopt as

z[k] =
Ĥo,kf [k]∥∥∥Ĥo,kf [k]

∥∥∥
2

. (2.14)

Some comments are in order at this stage.

1. We have the following result on error covariance matrices with the batch esti-

mators.

Theorem 2.3.1 If k ≥ max(Mt,Mr), the error covariance matrices of the

columns of Ĥe,k and Ĥo,k under the assumption of a channel H with independent

and identically distributed (i.i.d.) entries are given as

Ce,k =
1

ρe

(
Zk−1Z

∗
k−1

)−1 (2.15)

and

Co,k =
1

ρo
(FkF

∗
k)
−1 , (2.16)

respectively.
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For the proof, see Appendix A.1.

2. The proposed algorithm is valid for a general channel matrix H and the i.i.d.

assumption has been made only in the context of Theorem 2.3.1. From Theo-

rem 2.3.1, we note that the estimation error is monotonically decreasing in the

SNRs, ρe and ρo. This shows that a reasonable channel estimate can be ob-

tained in the medium- to high-SNR regimes. Nevertheless, the low-SNR regime

is typical in mmWave systems, especially with self-blocking or blocking due to

other humans, vehicles, buildings, foliage, etc. [13,35]. Thus, Section 2.6 studies

the performance of the different approaches proposed in this work as a function

of the SNR as well as for both i.i.d. and sparse channel models.

3. While we need ρe and ρo to compute Ĥe,k and Ĥo,k, the beamformer estimates

do not depend on these quantities. Therefore, a mismatched estimate of ρe and

ρo is still sufficient to implement the proposed scheme.

4. The computation of Ĥe,k and f [k] at node 1 requires the feedback of z[k − 1]

from node 2. Similarly, computation of Ĥo,k and z[k] at node 2 requires the

feed forward of f [k] from node 1. While on a first glance this feedback and

feed forward sounds onerous, given the Gbps rates that mmWave systems are

expected to realize, these feedback overheads can be supported on either a lower

frequency control/data channel or on a mmWave control channel. This feed-

back/feed forward has to be specified only over a large sub-band (a component

carrier, for example) or on a wideband basis, further reducing the overhead.

Thus, it makes sense to not dismiss this approach as impractical and study its

performance gain relative to other competing approaches. This is the subject

of Section 2.6. We will also consider other lower feedback overhead approaches

in Sections 2.4 and 2.5.

5. Throughout this text, we are assuming that the initial transmit beam f [0] is

a unit-norm complex random vector. An alternative approach which could
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be considered for channels with a large line-of-sight component would be to

initialize f [0] with an omni-directional beam pattern that approximates equal

gain in every spatial direction. Omni-directional beams have been constructed

and used in [27], but are out of the scope of this work.

The batch least-squares estimators are obtained by computing the Moore-Penrose

pseudoinverse. The complexity in computing these estimators in (2.11) and (2.12) is

limited to the inversion of a k̃ × k̃ matrix where k̃ = min(Mr, k) in the former case

and k̃ = min(Mt, k) in the latter case. However, computation of the matrix to be

inverted requires a multiplication count that scales with k and can hence be onerous.

2.3.2 Optimal Sequential Least-Squares Estimator

Following a similar approach to [50], we therefore propose a sequential algorithm

that updates each previous channel estimate based on the current received signal

vector. This approach minimizes computational burden as well as eliminates the

need to store all of the previously received signal. Since (2.13) uses the conjugate

transpose of the channel to compute a new beamformer, we use an algorithm that

directly computes an estimate for Ĥ∗e,k instead of Ĥe,k. This choice is made here

simply to make the derivation of the sequential formulas more consistent between

the two nodes. In this setup, the sequential version of (2.9) (the channel estimator

update) is given as

Ĥ∗e,k = Ĥ∗e,k−1 +

(
ye[k − 1]
√
ρe

− Ĥ∗e,k−1z[k − 1]

)
Ke,k (2.17)

where

Ke,k =
z∗[k − 1]Ce,k−1

1 + z∗[k − 1]Ce,k−1z[k − 1]
(2.18)
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and the covariance matrix update is given as

Ce,k = Ce,k−1 (I− z[k − 1]Ke,k) . (2.19)

After obtaining Ĥ∗e,k, node 1 uses (2.13) to obtain the k-th estimate for fopt. The

value of this beamformer then needs to be fed back to node 2, where it will be used

to obtain the next estimate for zopt.

At node 2, the same sequential algorithm is used to solve the least-squares problem,

and the update expression for Ĥo,k becomes

Ĥo,k = Ĥo,k−1 +

(
yo[k]
√
ρo
− Ĥo,k−1f [k]

)
Ko,k (2.20)

where

Ko,k =
f∗[k]Co,k−1

1 + f∗[k]Co,k−1f [k]
(2.21)

with the covariance matrix update

Co,k = Co,k−1 (I− f [k]Ko,k) . (2.22)

Node 2 then obtains z[k] from (2.14), which in turn is fed back to node 1 to compute

f [k + 1].

We observe that these sequential least-squares (SLS) estimators are only equiva-

lent to their batch estimators when the beamformer matrices Fk and Zk are of full

column rank. That is, for k ≤ rank[H], both nodes would need to compute their chan-

nel estimates using the batch approach. Theorem 2.3.2 establishes that the sequential

approach is equivalent to using the batch estimator for all k.

Theorem 2.3.2 The sequential least-squares estimator ĤSeq
o,k is identical to the batch

least-squares estimator ĤBatch
o,k for k > r if ĤSeq

o,r = ĤBatch
o,r where r = rank[H].

For the proof, see Appendix A.2.
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Motivated by Theorem 2.3.2, we propose to initialize f [0] as a complex ran-

dom unit-norm vector. We then use the batch estimator from (2.9) and (2.10) for

k ≤ rank[H] and switch to the sequential estimator for k > rank[H]. Under these as-

sumptions, the Gauss-Markov Theorem states that the least-squares estimator is the

best linear unbiased estimator (BLUE) for the channel matrix H [50]. The asymptotic

normality property of the least-squares estimator [51] then shows how our sequential

estimates for the channel matrix converge to its true value. As the channel estimate

becomes more accurate with the number of iterations, steps (2.13) and (2.14) essen-

tially perform a two-iteration power method without noise, which converges at a rate

of (σ1/σ2)2 [42]. The description under Algorithm B.1 (see Appendix B.1) gives a suc-

cinct summary of this technique (labeled as SLS Estimator (Optimal)) corresponding

to stopping at kmax iterations, where kmax is chosen appropriately.

2.3.3 Suboptimal Sequential Least-Squares Estimator

For large antenna dimensions as is typical in mmWave systems, it can be compu-

tationally difficult to use the batch estimator for the first Mt iterations. In this case,

we initialize the sequential least-squares estimator with an arbitrary initial covariance

estimate. With such a choice, the following result shows that we are guaranteed to

asymptotically approach the batch least-squares estimate.

Theorem 2.3.3 The sequential least squares estimate ĤSeq
o,k , initialized with Co,0 =

αI approaches the batch least-squares estimate ĤBatch
o,k as α→∞.

For the proof, see Appendix A.3

Using Theorem 2.3.3, the alternative algorithm (labeled as SLS Estimator (Subop-

timal)) also requires us to initialize f [0] as a complex random unit-norm vector. The
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nodes then transmit this vector across H according to (2.3) and (2.4) and compute

their initial rank-1 channel estimates and beamforming vectors as follows.

Ĥo,0 =
yo[0]f∗[0]
√
ρo

(2.23)

z[0] =
Ĥo,0f [0]∥∥∥Ĥo,0f [0]

∥∥∥
2

=
yo[0]

‖yo[0]‖2

(2.24)

Ĥ∗e,1 =
ye[0]z∗[0]
√
ρe

(2.25)

f [1] =
Ĥ∗e,1z[0]∥∥∥Ĥ∗e,1z[0]

∥∥∥
2

. (2.26)

The nodes then initialize Co,0 = Ce,1 = αI for an appropriately chosen α. The nodes

then use the sequential formulas (2.17) — (2.22) to estimate their beamformers. To

conclude this section, Algorithm B.2 (see Appendix B.2) provides a brief summary of

this technique corresponding to kmax iterations.

2.4 Summed Power Method

We now propose an alternate approach, labeled the summed power method, to

align the beams at the two nodes. The main idea behind this scheme is that both

nodes calculate their next beamformers as a function of the running sum of their

previously received vectors, effectively averaging out noise in the estimation process.

This low-complexity approach adds only one additional vector addition per iteration

at each node when compared to the simple power method [35,37]. Additionally, there

is no need for a feedback link, as neither node needs to have knowledge of the other

node’s beamformer.

As described in Section 2.2, both nodes exchange training symbols according

to (2.3) and (2.4). However, instead of simply conjugating and retransmitting their

received vector as in the simple power method, both nodes obtain their next beam-
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formers from a running sum of all of their previous received vectors. At each time-

index k, node 1 computes its next beamformer as

f [k + 1] = αk [ye[k] + ye[k − 1] + · · ·+ ye[0]] (2.27)

= αk se[k]. (2.28)

Similarly, node 2 computes its next beamformer as

z[k + 1] = βk [yo[k] + yo[k − 1] + · · ·+ yo[0]] (2.29)

= βk so[k]. (2.30)

In (2.28) and (2.30), se[k] and so[k] are the state vectors at each node which hold the

running sum of the received vectors. The terms αk and βk are normalization factors

ensuring the unit-norm constraint and are given as

αk =
1

‖se[k]‖2

(2.31)

and

βk =
1

‖so[k]‖2

. (2.32)

Algorithm B.3 (see Appendix B.3) provides an overview of the proposed technique.
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For further analysis of the proposed algorithm, it is useful to define the state-

space model of the combined system state: s[k] =
[
sTe [k] sTo [k]

]T. A straightforward

simplification of s[k] shows that

s[k] =

se[k]

so[k]

 (2.33)

=

 I
√
ρeβk−1H

∗

√
ρoαk−1H I

 s[k − 1] + n[k] (2.34)

=
k−1∏
i=0

 I
√
ρeβk−1−iH

∗

√
ρoαk−1−iH I

 s[0]

+
k∑
`=1

k−1∏
j=`

 I
√
ρeβk−1+`−jH

∗

√
ρoαk−1+`−jH I

n[`] (2.35)

where

n[k] =

 ne[k]

no[k]

 . (2.36)

Without loss in generality, we can transform an Mr ×Mt channel matrix to an

M ×M channel matrix by appending zero columns/rows where M = max(Mr,Mt).

Thus, we restrict attention to square channel matrices. We can also assume that

ρe = ρo = ρ without loss in generality to simplify the convergence studies. While

establishing a convergence result under the general Rayleigh fading model appears

difficult, we now establish this under certain restrictions. Nevertheless, numerical

studies in Section 2.6 show that convergence of the summed power method holds true

even for general channel matrix settings. These assumptions (listed as Hypotheses

1-3) are as follows:

• Hypothesis 1: Since convergence studies make more sense in the high-SNR

regime, we assume that ρ� 1.
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• Hypothesis 2: Let f [i] = [fi,1, · · · , fi,M ]T and z[i] = [zi,1, · · · , zi,M ]T. We make

the assumptions that as k increases,
∑k

i=0 fi,n ≈ Ck for all n and
∑k

i=0 zi,m ≈ Ck

for all m. In other words, the statistics of the beamformers remain invariant to

the antenna indices at either node as k increases.

• Hypothesis 3: We consider real-valued, diagonal channel matrices

H = Diag ([h1, · · · , hM ]) with diagonal elements ordered in non-increasing or-

der. These assumptions can be viewed as restricting all the signal processing to

happen within the bases corresponding to the left- and right-singular vectors of

H. Also, assume that h1 > h2 implying a singular dominant eigen-mode for H.

We now discuss the behavior of the summed power method as k (the number of

iterations) increases under the above assumptions. Under Hypothesis 3, it can be

seen that the optimal beamformers reduce to a scaled version of the first column

of the M ×M -dimensional identity matrix, denoted as e1. Thus, the desired state

vector is sopt =
[
αeT

1 βeT
1

]T
=
[
α 0 · · · 0 β 0 · · · 0

]T
for some α and β. The

impreciseness in the choice of α and β is because the beamforming vector is defined

only up to a point on the Grassmann manifold [20,21,52].

Convergence of the summed power method is equivalent to the limiting behav-

ior/convergence of s[k] from (2.33) to sopt. Lemma 2.4.1 provides a preliminary result

needed to establish this convergence result.

Lemma 2.4.1 Under Hypothesis 3, the state transition matrix from (2.35) is diago-

nalized by

Uk−1 =

√ βk−1

αk−1+βk−1
I

√
βk−1

αk−1+βk−1
I√

αk−1

αk−1+βk−1
I −

√
αk−1

αk−1+βk−1
I

 . (2.37)

For the proof, see Appendix A.4.

Note that Uk−1 is not unitary for general αk−1 and βk−1. However, we have the

following additional result that simplifies Uk−1.
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Lemma 2.4.2 Under Hypotheses 1-3, we can assume that αk ≈ βk for large k.

Thus, as k increases, Uk−1 converges to

Ũ =
1√
2

I I

I −I

 . (2.38)

For the proof, see Appendix A.5.

We now have the following main result.

Theorem 2.4.1 Under Hypotheses 1-3, we have that s[k]→ sopt as k increases.

For the proof, see Appendix A.6.

The results of Section 2.6 will show that these results hold for more general chan-

nel models and are not restricted to satisfaction of Hypotheses 1-3. In addition,

Section 2.5 presents two modifications to the summed power method which aim to

improve performance over a wider range of SNRs while maintaining low computa-

tional complexity.

2.5 Least-Squares Initialized Summed Power Method

We now consider a refinement that trades off the advantages of both the ap-

proaches in Sections 2.3 and 2.4 in terms of complexity, feedback and performance.

The main motivation behind this approach is the observation that the performance

of a beam alignment algorithm critically depends on how f [0] (or z[0]) is initialized.

When f [0] is initialized as a complex random unit-norm vector, we rely on multiple

iterations over the channel to re-align this choice towards the singular vectors of the

channel. Depending on the approach used for alignment as well as the SNR on the

downlink and uplink, the beam alignment algorithm could take a substantial number

of iterations to improve the effective channel gain.

In this context, we note that the (sequential/batch) least-squares approach from

Section 2.3 achieves good performance in the high-SNR regime by optimally estimat-

ing the channel matrix over every iteration and re-aligning the alignment problem at
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every step. However, this gain comes at the cost of complexity and feedback overhead

of the algorithm. On the other hand, at low-SNR, averaging over the noise results in

significant performance improvement with the summed power method from Section

2.4, which is a low-complexity/feedback overhead scheme.

These observations suggest that the two approaches can be married together,

which is the focus of the least-squares initialized summed power (LISP) method. In

this method, both nodes “prime” their beamformers using either the batch/sequential

least-squares method for the first kswitch iterations, after which they switch to the

summed power method. In particular, we have the following description in Algo-

rithm B.4 (see Appendix B.4) for the proposed technique with the sequential least-

squares initialization. The switching point kswitch can be chosen in multiple ways.

Specific choices for kswitch include min(Mr,Mt), max(Mr,Mt) or via some optimality

studies as in Sec. 2.6.

2.6 Numerical Studies

In this section, we present performance comparisons of the proposed schemes

obtained via Monte Carlo experiments. We first present results on the convergence

properties of the different techniques under varying conditions. We then present the

impact of an increase in Mt on the performance of these schemes.

2.6.1 Convergence Studies

We study two variants of the proposed sequential least-squares technique from

Section 2.3: “SLS (Optimal)” and “SLS (Suboptimal).” The first variant computes

the batch least-squares estimator for the first Mr (or Mt) iterations before switching

to the sequential version after that. The second variant relies on the result from The-

orem 2.3.3 to be computationally efficient and to avoid having to compute the batch

estimator. It is initialized with α = 1000 and uses the sequential estimator starting at

the first iteration. We also study the performance of the iterative solutions based on
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the summed power method from Section 2.4 and the least-squares initialized summed

power method with kswitch = max(Mr,Mt) from Section 2.5. These approaches are

denoted as “Summed Power” and “LISP” in the plots, respectively.

In terms of performance benchmarking, we consider the one-dimensional versions

of the techniques proposed in [37] and [40]. The algorithm from [37] is called Blind

Iterative MIMO Algorithm (BIMA) by the authors and is denoted as “BIMA” in the

plots here. The algorithm from [40] is called Best Singular Mode (BSM) estimation

by the authors and is denoted as “BSM” in the plots here. The value of the design

parameter µ for the BSM algorithm from [40] is set to 1.5k where k is the time-index.

In Figs. 2.2 — 2.4, we compare the performance of these six schemes at different

SNR values with Mr = 4 and Mt = 32 (corresponding to a downlink channel matrix

H of dimensions 4 × 32). The channel matrix H has i.i.d. entries. In particular,

Figs. 2.2a and 2.2b show the results for uplink and downlink SNR values of −10 dB,

whereas, Figs. 2.3a and 2.3b, and Figs. 2.4a and 2.4b provide similar plots for an

SNR of 0 dB and 20 dB, respectively. These SNR values are expected to be typical

of low-, medium- and high-SNR regimes, respectively.

Practical mmWave channels are expected to be sparser [31,35] than i.i.d. channels.

In this context, Fig. 2.5 illustrates the performance of the same set of six schemes

in a sparse MIMO channel model with λ/2 spaced uniform linear arrays (ULAs) at

both ends corresponding to Mr = 4 and Mr = 32. Both downlink and uplink SNRs

are assumed to be −10 dB and fc = 28 GHz is used. The channel is made of K = 3

dominant clusters with one path per cluster (hence the channel matrix H is rank-

deficient). The angles of arrival and departure are assumed to be in the azimuth plane

and uniformly distributed in a 120o angular spread at both ends. Rayleigh fading is

assumed for the path gains. Such a model is commonly used in mmWave system

analysis (see [35] and references therein for details).
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We study two metrics capturing the performance of these six schemes: i) the

instantaneous effective channel gain |z∗[k]Hf [k]|2 at time-index k, and ii) the angle

between the true singular vector fopt and its estimate f [k], given as

φk = cos−1
(
|f∗optf [k]|

)
, (2.39)

and measured in radians. Note that φk equivalently captures the chordal distance

between fopt and f [k]. In order to average results over different channel realizations,

we normalize the effective channel gain by ‖H‖2
2 = λmax(H

∗H). Fast convergence of

the algorithm is then equivalent to fast convergence of the normalized instantaneous

effective channel gain to 1.
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(a) Average values of |z∗Hf |2/‖H‖22

100 200 300 400

Iteration index k

10−1

100

101

(b) Average of |φk|2

Fig. 2.2.: Simulation results for the i.i.d. channel model at ρe = ρo = −10 dB with
Mr = 4,Mt = 32

From Figs. 2.2 — 2.4, we make the following remarks:

1. There is a minor performance gap (both in terms of gains and angles) between

the optimal and suboptimal variants of the SLS estimator across all the three

SNRs, even though there is a significant complexity reduction with the subop-
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Fig. 2.3.: Simulation results for the i.i.d. channel model at ρe = ρo = 0 dB with
Mr = 4,Mt = 32

Summed Power
SLS (Optimal)

SLS (Suboptimal)
LISP

BIMA
BSM

50 100 150 200

Iteration index k

0.80

0.85

0.90

0.95

1.00

(a) Average values of |z∗Hf |2/‖H‖22

50 100 150 200

Iteration index k

10−4

10−3

10−2

10−1

100

101

(b) Average of |φk|2

Fig. 2.4.: Simulation results for the i.i.d. channel model at ρe = ρo = 20 dB with
Mr = 4,Mt = 32

timal variant. Thus, this study motivates the use of the suboptimal variant of

the SLS estimator over the optimal variant.
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Fig. 2.5.: Simulation results for the sparse mmWave channel model at ρe = ρo = −10
dB with Mr = 4,Mt = 32

2. In the low-SNR regime typical of mmWave settings, the summed power method

significantly outperforms all the methods for small k values, whereas the ad-

ditional channel estimation step of the SLS estimator contributes to its utility

for large k values. While the method from [40] is better in performance than

the one from [37], neither method produces a performance comparable to the

schemes proposed in this work.

3. The performance of the schemes in [40] and [37] improve with SNR. In the high-

SNR regime, both methods become comparable to the SLS estimator. However,

the summed power method is significantly inferior in this regime as it cannot

suppress the effect of noise from the beamformer estimates for large k values.

4. The switching between the SLS part and the summed power part means that

the LISP method shows a switch in terms of performance at k = kswitch =

max(Mr,Mt) = 32. But more importantly, in the low-SNR regime, the LISP

method approaches the performance of the summed power method for large k

and in the high-SNR regime, it approaches the performance of the SLS estimator
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(even for small k values) without the additional complexity overhead of these

methods. Thus, this method may be a suitable low-complexity alternative to

the SLS estimator in the medium- to high-SNR regime.

5. In the sparse mmWave setting with low SNR, the summed power method out-

performs all the methods over all the values of k considered here. The LISP

method quickly approaches the performance of the summed power method after

k = kswitch.

Summarizing the above statements, we have the following conclusions: i) In the

low-SNR regime, the summed power method is advantageous for small k and the SLS

estimator is advantageous for large k. If computational complexity is an important

issue for large k, the LISP method can be a useful alternative. ii) In the high-SNR

regime, the LISP method or the method proposed in [37] are advantageous for all

k. iii) These broad conclusions appear to be true for both i.i.d. as well as sparse

mmWave channel models.

2.6.2 Impact of Antenna Dimensions and kswitch

Fig. 2.6 studies the impact of Mt (as Mt increases from 6 to 64) on the effective

channel gain after k = 100 iterations with the different beam alignment techniques.

The low-SNR regime corresponding to ρe = ρo = −10 dB and Mr = 4 is considered

in this study. Figs. 2.6a and 2.6b present the results for the i.i.d channel model and

the sparse mmWave channel model introduced earlier.

This study reinforces the advantages of the summed power and least-squares ini-

tialized summed power methods relative to other methods. In particular, the per-

formance of the summed power method remains approximately invariant in the i.i.d.

case as Mt increases. On the other hand, the smaller rank of the channel matrix in

the sparse case improves the fraction of power in the dominant eigen-mode, which

is reflected in improving performance as Mt increases. But more importantly, the

performance of all other schemes depreciate with Mt suggesting their sensitivity to
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larger antenna dimensions. Nevertheless, the LISP method appears closest to the

summed power method in performance at low-SNR and is also superior at high-SNRs.

From these results, we conclude that the proposed beam alignment techniques and in

particular, the LISP method can deliver substantial performance improvement as Mt

increases with low complexity and feedback overheads making them viable candidates

for practical large/massive MIMO systems.

Figs. 2.7a and 2.7b study the choice of kswitch to be used in the LISP method with

Mr = 4, Mt = 32 and ρe = ρo = 0 dB and ρe = ρo = −10 dB, respectively. From

Fig. 2.7a, we note that there exists an optimal kswitch that maximizes the effective

channel gain for both the i.i.d. and sparse mmWave channel models. The optimal

kswitch value is typically small in the case of sparse mmWave channels for both SNR

settings. In fact, for ρe = ρ0 = −10 dB, the optimal kswitch in the sparse setting is

1 implying that the summed power method starting at k = 1 is better than a noisy

initialization based on the SLS estimator. While the optimal kswitch can be high in the

i.i.d. setting, constraining it to be a small number does not result in a significantly

poorer performance relative to the optimal kswitch value. Thus, Figs. 2.7a and 2.7b

suggest that, in the moderate- to high-SNR regime and depending on the level of

richness/sparsity structure of the channel, a small kswitch may be a better choice than

the use of summed power method (kswitch = 1). Thus, an improved performance can

be ensured with the LISP method at the cost of a small feedback and complexity

overhead.

2.6.3 Comparison with a Pilot-Based Channel Estimation Scheme

We are now interested in comparing the performance of the proposed beam align-

ment schemes with a traditional pilot-based channel estimation scheme. In order to

simplify the structure of the pilot-based scheme, we assume that the channel matrices

are i.i.d. Rayleigh fading. In order to fairly compare the iterative schemes with the

batch-oriented pilot-based scheme, we impose a constraint on the total energy used
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Fig. 2.6.: Average value of |z∗Hf |2 normalized by ‖H‖2
2 at k = 100 for ρe = ρo = −10

dB using different channel models with Mr = 4 and Mt ∈ 6, 8, 10, · · · , 64
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Fig. 2.7.: Optimization of normalized channel gain as a function of kswitch for different
SNR regimes. Mr = 4,Mt = 32.

during the beam alignment/channel estimation phase. Let kmax be the number of time

slots allocated for this phase. With the iterative schemes considered in this work, the

total energy used by nodes 1 and 2 reduces to ρo · kmax and ρe · kmax, respectively.
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With the pilot-based scheme, it is well understood [24, 25, 53] that the quality of the

channel estimate only depends on the energy in the training matrices (denoted as

Po and Pe for the downlink and uplink, respectively) as long as the number of pilot

symbols exceeds the transmit antenna dimensions. Thus, we can assume that Po and

Pe are Mt×Mt and Mr ×Mr scaled-unitary matrices meeting the energy constraint,

respectively. With the energy scaling, we have the following system equations:

Yo =
√
ρo · kmax/Mt HPo + No (2.40)

for the downlink, and

Ye =
√
ρe · kmax/Mr HTPe + Ne (2.41)

for the uplink.

Upon reception of Yo and Ye, each node computes a minimum mean-squared

error (MMSE) channel estimate as follows:

Ĥo =

√
ρo · kmax/Mt

1 + ρo · kmax/Mt

·YoP
∗
o (2.42)

Ĥe =

√
ρe · kmax/Mr

1 + ρe · kmax/Mr

·YeP
∗
e. (2.43)

The beamformers are estimated using the SVD of the channel estimates. In our

study, we use scaled discrete Fourier transform (DFT) matrices for Po and Pe over

the i.i.d. channel. With kmax = 100, the normalized channel gain across different

SNR values is plotted for the different schemes in Fig. 2.8. These results show that in

addition to outperforming iterative schemes from prior works in the low-SNR regime,

the proposed methods also compare favorably to the pilot-based channel estimation

scheme. The pilot-based scheme requires a substantial pre-beamforming SNR (over

5-10 dB) for improved performance which may not be feasible in practical mmWave
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systems. Further, it also requires a computational overhead in computing the SVD

of the channel estimate.

−10 −5 0 5 10 15 20

SNR ρ [dB]

0.0

0.2

0.4

0.6

0.8

1.0
|z
∗ H

f|
2
/‖

H
‖2 2

Summed Power
SLS (Optimal)
SLS (Suboptimal)
LISP
BIMA
BSM
Channel Estimation

Fig. 2.8.: Normalized channel gain with kmax = 100 for varying values of ρ = ρo = ρe
in the i.i.d Rayleigh fading channel case.

2.7 Concluding Remarks

This chapter studied the problem of estimating the dominant singular vectors of a

MIMO channel matrix in a TDD system. Such a task is of importance in realizing the

full analog beamforming gains in practical mmWave systems, typically impaired with

low SNR. We presented multiple iterative approaches based on the power method

to address this problem. These approaches included batch and sequential least-

squares estimation, summed power method, and least-squares initialized summed

power method. Numerical studies and analysis established that the proposed ap-
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proaches enjoy several advantages over competing approaches from the literature.

These advantages include improved convergence and/or performance (beamforming

gain) at low- as well as high-SNR at a low-complexity and feedback overhead.

That said, this work has only scratched the surface of the noisy beam alignment

problem. Further studies on developing an analytical/manifold optimization-based

framework for the rate of convergence of the proposed algorithms as a function of the

SNR, antenna dimensions, mmWave channel eigen-mode/sparsity structure, etc. are

important. Such a step could also be of independent interest in problems in machine

learning, principal component analysis, and linear algebra. Other problems of inter-

est include understanding the impact of an imperfect (e.g., finite-rate, noisy, etc.)

feedback link on the performance of the sequential least-squares estimation scheme,

performance comparison with other directional learning approaches [35], impact of

temporal variation in the channel and wideband aspects on the performance of the

proposed schemes, extending the proposed analog beamforming schemes to a hybrid

architectural set-up or multi-user settings [36], intuitive understanding of kswitch and

further optimization of the beam alignment parameters given an asymmetrical an-

tenna setting in the single-user case, etc.
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3. EFFICIENT CHANNEL ESTIMATION FOR AERIAL
WIRELESS COMMUNICATIONS

© 2019 IEEE. Reprinted, with permission, from: D. Ogbe, D. J. Love, M. Rebholz,
and T. P. Bidigare, “Efficient channel estimation for aerial wireless communications,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 55, no. 6, pp. 2774–
2785, Dec. 2019.

3.1 Introduction

The performance of modern wireless communication systems fundamentally de-

pends on the quality of the channel estimates at either the receiver, the transmitter, or

both. This statement holds of course for aerial wireless communication systems, which

have recently experienced a resurgence of interest from both the academic and indus-

trial community. Aerial communication systems, especially those based on unmanned

aerial vehicle (UAV) platforms, are considered enabling technologies for future wire-

less networks like the consumer-oriented fifth-generation (5G) cellular networks and

ad-hoc public safety networks [54]. In addition to 5G applications like UAV control

and video streaming, aerial communication systems are actively being researched, de-

veloped, and deployed as part of the ongoing effort to increase the number of people

connected to the Internet, lead by initiatives like Google’s balloon-based "Project

Loon" [55]. These efforts seek to increase the availability of low-cost Internet access

by connecting a distributed set of airborne transmitters through wireless backhaul.

Furthermore, apart from being considered for future communication networks, aerial

wireless communication systems continue to play a significant role in other civilian

applications like air traffic control as well as in a variety of military applications.
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In addition to the time dispersion due to multipath propagation present in many

wireless channels, the effects of vehicular motion inherent to aeronautical communi-

cation systems may induce frequency dispersion due to the Doppler effect [56]. The

general class of channels exhibiting both time dispersive and frequency dispersive

effects, usually referred to as doubly dispersive channels, is continuing to attract con-

siderable interest from researchers and practitioners, in part due to its ubiquity in

modern wireless communication systems, e.g., [57–63]. In the classical channel esti-

mation followed by data transmission set-up, which we follow in this manuscript, it is

thus desirable from a channel estimation perspective to obtain knowledge of the pa-

rameters governing both the time dispersion of the channel—assumed to be modeled

as a discrete-time tapped delay line [64] —as well as the frequency dispersion, here

assumed to be mainly caused by the Doppler effect due to vehicular motion.

The specific model we introduce and consider in this manuscript arises from our

consideration of communication systems on high-velocity airborne vehicles. The gen-

eral model of doubly dispersive channels where the frequency dispersion is due to

Doppler assumes that the Doppler effect and thus the resulting frequency shift varies

for each multipath component of the channel, resulting in a Doppler spectrum. In this

manuscript however, we assume that for high-velocity airborne vehicles the Doppler

spectrum is dominated by the bulk frequency shift due to the motion of the vehi-

cle (see Section 3.2), rendering the individual shifts on each multipath component

negligible in our analysis.

The model and corresponding estimation problem of a single bulk frequency shift

coupled with multipath transmission mirrors the well-researched problem of estimat-

ing the frequency offset in orthogonal frequency division multiplexing (OFDM) sys-

tems. The tightly-spaced subcarriers in OFDM systems lose orthogonality in the

presence of any kind of frequency offset, resulting in inter-channel interference. It

has been shown that the bit error rate increases significantly if those offsets are left

uncompensated [65].
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The popularity of OFDM in modern communication systems has lead to the de-

velopment of many different techniques to estimate and compensate for the frequency

offset due to the Doppler effect and/or mismatches between the transmitter and re-

ceiver local oscillators. In general, the available frequency offset estimators can be

classified into two categories. Blind techniques provide estimates of the frequency

offset without the need for pilot symbols. The technique in [66] exploits the cyclo-

stationarity inherent to OFDM waveforms to extract an estimate of the frequency

offset. The authors of [67] derived a kurtosis-based estimator, which generalizes their

single input, single output (SISO) results to multiple input, multiple output (MIMO)

OFDM systems. The other class of OFDM frequency offset techniques includes semi-

blind and non-blind estimators. The common property of all of these techniques,

which relates to the results of this paper, is the reliance on some sort of redundancy

in the structure of the waveform to compute the estimates. The work in [68] presented

a frequency offset estimator based on the repetition of two OFDM symbols. The work

in [69] uses a similar principle, keeping the redundant data within one OFDM symbol

and using a second symbol for fine estimation as well as timing synchronization. The

main idea behind these two techniques is that the cross-correlation of the repeated

time-domain sequence of the receiver would perfectly reproduce the frequency offset

in the absence of noise. The technique presented by Schmidl and Cox in [69] exploits

the fact that the inverse discrete Fourier transform (IDFT) of a subcarrier alloca-

tion where every other subcarrier is set to zero produces a time-domain sequence

of two repeated half-symbols. This concept was extended in [70] and generalized to

produce time-domain sequences with more than two repetitions. The complexity of

the Schmidl and Cox technique was further simplified in [71], reducing the number

of OFDM pilot symbols needed from two to one. Furthermore, the work in [72–74]

exploits the inherent redundancy of the usage of a cyclic prefix in OFDM to estimate

the frequency offset. Finally, the frequency offset compensation problem was studied

specifically for aeronautical channels in [75] and the references therein. The authors
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assume a two-ray, dual Doppler shift model and compensate for each Doppler shift

using the techniques from [72] after separating the signals of the two incoming paths.

Our contribution to the problem is a technique inspired by the various OFDM

frequency offset estimators which jointly estimates the bulk Doppler shift and chan-

nel taps of an aeronautical channel. In contrast to the aforementioned OFDM-based

techniques, our algorithm assumes single-carrier modulation, but could potentially

be adapted to support multi-carrier modulations with a few modifications. More

specifically, although our algorithm requires a certain time-domain structure com-

bined with time-domain processing of the sounding signals, it places no restriction on

the data transmission, allowing multi-carrier modulations to be used. The main idea

behind our technique is to transmit a cyclically prefixed training sequence consisting

of a repeated shorter training pulse. The receiver then computes an estimate of the

Doppler shift using a combination of subspace estimation and matched filtering. Af-

ter estimating and correcting for the effects of the Doppler shift, the receiver then

computes the conditional maximum-likelihood (ML) estimate of the channel taps.

We summarize the contributions of this paper as follows.

• We introduce a system model for high-velocity airborne wireless communication

systems exhibiting time dispersion due to multipath and frequency dispersion

due to a bulk Doppler shift caused by vehicular motion

• We derive the estimation-theoretic lower bound for estimating the channel taps

as well as the Doppler shift of these channels

• We develop a pulse-repetition based channel estimator for these parameters

• We show that using constant amplitude, zero autocorrelation (CAZAC) se-

quences as pulses in our algorithm decreases the computational burden of our

estimator

• We present numerical studies analyzing the performance of our estimator
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The rest of this paper is structured as follows. Section 3.2 describes the system

model considered throughout the paper. In Section 3.3 we derive the Cramer-Rao

lower bound (CRLB) for the joint estimation of the Doppler shift and the channel taps

using the observation model given in Section 3.2. We present and discuss the joint

estimation algorithm in Section 3.4 and discuss the special case for CAZAC sequences

in Section 3.4.4. Simulation results are presented and discussed in Section 3.5 and we

provide some concluding remarks in Section 3.6.

Notation: We will use the following notation throughout this manuscript. Bold

upper-case and lower-case letters (such as A and a) denote matrices and column

vectors, respectively. The operators (·)T, (·) and (·)∗ denote matrix transposition,

element-wise complex conjugation and matrix Hermitian transposition, respectively.

‖·‖2 denotes the vector `2-norm and ‖·‖F denotes the Frobenius norm of a matrix.

CN (a,A) denotes a complex Gaussian random vector with mean a and covariance

matrix A.

3.2 System Model

Our system model consists of a single-antenna transmitter and receiver pair com-

municating over a single-input, single-output (SISO) doubly dispersive wireless com-

munication channel. Under these assumptions, the general discrete-time complex

baseband input-output model between the transmitter and the receiver can be writ-

ten as

y[k] =
√
ρ

L−1∑
`=0

hk[`]s[k − `] + n[k], (3.1)

where we denote hk[`], ` ∈ {0, . . . , L− 1} as the `-th complex channel filter tap at

time index k. Furthermore, s[k], k ∈ {0, . . . , Ls − 1} denotes the k-th sample of an

arbitrary data or sounding sequence of length Ls, n[k] ∼ CN (0, σ2
k) is a sample of an

additive Gaussian noise process, and ρ is a transmit signal-to-noise ratio (SNR) term.
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Our channel model assumes an airborne platform where the Doppler shift is ap-

proximated as being of the same magnitude on each multipath component of hk[`].

In general, the expression for a channel tap hk[`] can be written as [56]

hk[`] =
1√
Np

Np∑
n=1

ejθnej2πfdnkTsgtotal(`Ts − τn), (3.2)

where Np denotes the number of paths, θn and τn denote the phase shift and time

delay of path n, gtotal denotes the convolution of the transmitter and receiver pulse

shaping filters, Ts denotes the sampling period of the system, and fdn represents

the Doppler shift on the n-th path from transmitter to receiver. As mentioned in

Section 3.1, we make the assumption that the Doppler shift is equal across all paths,

i.e., fd1 = fd2 = · · · = fdNp
= fd. This is a reasonable assumption when considering

a ring of scatterers close to the transmitter traveling at the same velocity as the

transmitter, for example the surface of an airplane. In this case, if we let v denote the

relative velocity between the transmitter and receiver, we can define the Doppler shift

as fd = fcv/c, fc being the carrier frequency of the communication system. Figure 3.1

illustrates two possible scenarios of our system model. In either case (air-to-air or

air-to-ground), the Doppler shift creating a frequency offset at the receiver is due

to non-zero relative velocities between the transmitter and the receiver. To further

illustrate the near-equal Doppler shift assumption, consider the case of scattering

off the airframe. In this case, the Doppler spread, i.e., the variance of the Doppler

shifts on the different paths, will be most significantly affected by the roll, pitch,

and yaw rates of the aircraft. Suppose for example scattering off the engines of a

commercial two-engine airliner. The yaw rate for a "dutch roll" maneuver is 2.2

rad/second [76], resulting in a maximum Doppler frequency of fc
c
· 12.4 meters per

second for an engine offset by 6 meters from the fuselage. However, realistic cruising

speeds for commercial jet airliners are around 250 meters per second, resulting in a

bulk Doppler shift about 20 times larger than the Doppler spread due to maneuvering.

Similar arguments can be made for scattering off the ground in the air-to-ground case.
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Here, the ratio of the Doppler spread due to the scatterers and the Bulk Doppler shift

is bounded by the ratio of the diameter of the ring of scatterers and the distance from

the transmitter to the receiver. Scatterer ring diameters in the single-kilometer range

and standoff distances on the order of tens of kilometers (expected standoff ranges for

tactical distributed beamforming applications, for example [77]) give bulk/scatterer

ratios comparable to the aforementioned air-to-air setting. Considering, for example,

a distance of 50 km and a scatterer ring diameter of 1 km, the bulk Doppler shift is

approximately 50 times larger than the shifts due to scattering.

To simplify notation, we denote the sampled baseband frequency offset as α =

2πTsfd. We can thus rewrite (3.2) as

hk[`] = ejαk
Np∑
n=1

1√
Np

ejθngtotal(`Ts − τn), (3.3)

where, if the number of paths Np grows large, we can approximate the summation

term as a circularly symmetric complex Gaussian random variable [64]. We can thus

write the time-varying channel impulse response as

hk[`] = ejαkh[`], (3.4)

where h[`] can be approximated as CN (0, 1). Our doubly dispersive channel model

thus consists of two separate components. We model the frequency dispersive part due

to the Doppler shift with the complex exponential ejαk. We model the time dispersive

part as a purely feed-forward tapped delay line with L taps. For the remainder of

this manuscript, we will refer to these taps as finite impulse response (FIR) taps of

the channel and denote them as h[`], ` ∈ {0, . . . , L− 1}. Substituting (3.4) in (3.1)

yields the input-output relationship that is considered in this paper:

y[k] = ejαk
√
ρ

L−1∑
`=0

h[`]s[k − `] + n[k]. (3.5)
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Fig. 3.1.: An aircraft wishes to estimate the channel taps h of an air-to-ground or
air-to-air channel with a single dominant Doppler component.

In our model, the receiver wishes to estimate a vector consisting of the L FIR

taps of the channel impulse response h[`] using the received samples of a known

training sequence s[k]. We assume the that the training sequence s[k] contains Ls

samples. The received signal y[k] thus consists of N = Ls + L− 1 samples after the

convolution with the channel impulse response. Using matrix-vector notation, and

after defining the vectors s = [s[0], · · · , s[Ls − 1]]T, h = [h[0], · · · , h[L− 1]]T, and

y = [y[0], · · · , y[N − 1]]T, as the training sequence, received samples, and channel

impulse response vectors, respectively, the vector of received samples y can be written

as

y =
√
ρVαSh + n, (3.6)

where Vα = diag
([

1 ejα · · · ejα(N−1)
])

represents the Doppler shift matrix, n ∼

CN (0,C) is a vector of complex Gaussian noise samples with covariance matrix C,

and S ∈ CN×L is the Toeplitz matrix obtained by linearly shifting the samples of the

training sequence s for each column.
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The estimation problem that the receiver is seeking to solve is a joint Doppler/channel

estimation problem, since the Doppler shift α is unknown. More specifically, using

our proposed technique, the receiver will use its estimate of α to correct for the effects

of the Doppler shift matrix Vα when obtaining an estimate of the vector of FIR taps

h. In the next section, we derive theoretical bounds on the variance of the estimators

for the Doppler shift α and the channel taps h in this joint estimation framework.

3.3 Cramer-Rao Lower Bound

The derivation of the Cramer-Rao lower bounds for the joint estimator of the

Doppler shift and the channel taps follows. The receiver wishes to estimate the

parameter vector

θ =
[
α hT

]T (3.7)

from the observation given in (3.6). In order to derive the CRLB for any estimator

θ̂, we construct the Fisher information matrix I(θ), where its elements are defined

as [50]

Ik,` (θ) =

[
∂µ(θ)

∂θk

]∗
C−1

[
∂µ(θ)

∂θ`

]
(3.8)

and µ(θ) denotes the expectation of θ. A lower bound on the variance of the i-th

element of θ is then given by

var(θ̂i) ≥
[
I−1(θ)

]
ii
. (3.9)
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Lemma 3.3.1 For θ as defined in (3.7) and the observation model given in (3.6),

the Fisher information matrix is given by

I(θ) = ρ

−h∗S∗V∗αA
∗C−1AVαSh −jh∗S∗V∗αA∗C−1VαS

jS∗V∗αC
−1AVαSh S∗V∗αC

−1VαS


(3.10)

where A = diag ([0 · · · N − 1]).

Proof: By inspection of (3.6), we have µ(θ) =
√
ρVαSh. It can then be shown

that

∂µ(θ)

∂θ1

=
√
ρ
∂Vα

∂α
Sh = j

√
ρAVαSh, (3.11)

where A = diag ([0 · · · N − 1]). It can further be shown that

∂µ(θ)

∂θ2

=
√
ρVαS. (3.12)

After application of (3.8), we arrive at (3.10).

Theorem 3.3.1 The Cramer-Rao Lower Bound for any estimate of the Doppler fre-

quency α, denoted by α̂, is given by

var(α̂) ≥ (1/ρ)·(
h∗S∗V∗αA

∗C−1AVαSh

+h∗S∗V∗αA
∗C−1VαS

(
S∗V∗αC

−1VαS
)−1 ·

S∗V∗αC
−1AVαSh

)−1
. (3.13)
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Furthermore, the Cramer-Rao Lower Bound for any estimate of the channel h, de-

noted by ĥ, is given by

cov(ĥ) ≥ (1/ρ)·(
S∗V∗αC

−1VαS

+S∗V∗αC
−1AVαSh·(

h∗S∗V∗αA
∗C−1AVαSh

)−1 ·

h∗S∗V∗αA
∗C−1VαS

)−1
, (3.14)

where A ≥ B for two compatible matrices A and B means A − B is a positive

semi-definite matrix, or, equivalently, the product x∗ (A−B) x ≥ 0 for all x ∈ Cn.

Proof: We invert (3.10) using the Schur complement formula [49] and ap-

ply (3.9) to arrive at (3.13) and (3.14).

We note that (3.13) and (3.14) hold for arbitrary noise covariance matrices C. In

the case of white noise, the expressions for the CRLB simplify significantly, a fact

shown in Corollary 3.3.1.

Corollary 3.3.1 If the additive noise in (3.6) is i.i.d. Gaussian distributed, i.e.,

n ∼ CN (0, I), the Cramer-Rao Lower Bounds are given by

var(α̂) ≥ 1

ρ

(
h∗S∗A∗ASh + h∗S∗A∗S(S∗S)−1S∗ASh

)−1 (3.15)

and

cov(ĥ) ≥ 1

ρ

(
S∗S + S∗ASh(h∗S∗A∗ASh)−1h∗S∗A∗S

)−1
. (3.16)

The expressions for the CRLB for both the Doppler and the channel estimates

are crucial tools for analyzing the performance of our proposed algorithms. The

simulation results in Section 3.5 will verify that our proposed techniques fall within

a desirably small margin to the theoretical bounds on the estimator performance.
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3.4 Estimation Procedure

This section provides a detailed description of our proposed block-based estimation

algorithm. Subsection 3.4.1 covers the details of the block structure of the training

signal, which is required in Subsection 3.4.2 to extract information about the Doppler

shift at the receiver. The Doppler information is then used in Subsection 3.4.3 to

compute an estimate of the channel coefficients. We close this section by providing

an overview of the estimation steps in Algorithm 3.2.

3.4.1 Block-based processing

Our proposed algorithm demands that the training sequence consists of M repe-

titions of an arbitrary training pulse x and a cyclic prefix xCP . Specifically, in the

notation of Section 3.2, the training sequence is structured as

s =
[

xT
CP︸︷︷︸

cyclic prefix

xT xT · · · xT︸ ︷︷ ︸
M training pulses

]T
, (3.17)

where the cyclic prefix samples xCP = [x[K − L+ 1] · · · x[K − 1]]T ∈ CL−1×1

consist of a block of L− 1 data symbols rotated cyclically [64]. In order to mitigate

the effects of inter-symbol interference (ISI) induced by the time dispersion due to

the L channel taps of h, the receiver processes only the samples in the time interval

k ∈ [L,KM + L− 1] and discards the rest. This results in a modified input/output

model, which can be expressed in terms of the cyclic convolution of concatenation

of M training pulses and the channel vector h [64]. In addition to the cyclic prefix

removal operation, the receiver also reorders the M segments of the received signal

corresponding to the M transmitted training pulses into columns of a matrix of

received samples denoted as Y ∈ CK×M . The process of cyclic prefix removal and

sample reordering is visualized in Figure 3.2.
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yT = yT
CP,a yT

0 yT
1 · · · yT

M−1 yT
CP,bw�

Y = y0 y1 · · · yM−1

Fig. 3.2.: The receiver drops the cyclic prefix components (red), extracts M receive
pulses (green, K samples each), and re-orders them into the matrix of received pulses
Y.

The goal of this block processing at the receiver is to write an expression for the

individual columns of Y in terms of the cyclic convolution of one sequence pulse x

with the channel vector h, which is given as

y` =
√
ρ Ṽ`X̃h + n`, ` ∈ 0, . . . , M − 1. (3.18)

Here, the additive noise vector n` is drawn from the complex Gaussian distribution

with zero mean and covariance matrix C̃, which is a truncated version of C from (3.6).

The diagonal matrix Ṽ` ∈ CK×K accounts for the Doppler shift of the )`-th block

and is given by

Ṽ` = ej`Kαdiag
([
ej(L−1)α ejLα · · · ej(K+L−2)α

])
. (3.19)

Furthermore, X̃ ∈ CK×L is the cyclic convolution matrix obtained from the training

pulse x, truncated to its first L columns. The K × K cyclic convolution matrix
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obtained from a vector x ∈ CK×1 is given by the matrix of cyclic shifts of x and is

defined as

X =



x[0] x[K − 1] · · · x[1]

x[1] x[0] · · · x[2]

x[2] x[1] · · · ...
... x[2] · · · x[K − 2]

x[K − 2]
...

... x[K − 1]

x[K − 1] x[K − 2] · · · x[0]


. (3.20)

Upon further inspection of (3.19), we note that the effects of the Doppler shift

α can be separated into the Doppler shift internal to each block and the frequency

offset between the blocks. Specifically, if we let Ṽ0 represent the Doppler shift on each

block (Ṽ` from (3.19) with ` = 0) and define the inter-block Doppler offset vector d∗

as

d∗ =
[
1 ejKα · · · ej(M−1)Kα

]
, (3.21)

we can write the expression for Y as

Y =
√
ρ Ṽ0X̃hd∗ + N, (3.22)

where X̃ is defined as above and N = [n0 · · · nM−1] is the matrix of additive noise

vectors. Writing the input/output model like (3.22) is a desirable step, since it lets

us break the estimation algorithm into two distinct parts: The first step computes an

estimate of the Doppler frequency, denoted α̂, which is then used to cancel out the

effects of d∗ and Ṽ0, effectively turning the estimation of the channel coefficients into

a straightforward linear Gaussian estimation problem.
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3.4.2 Doppler Estimation

This estimation step directly exploits the block structure of the training sequence.

We observe that at high SNRs, i.e., for large ρ, the received signal matrix Y can be

approximated as the rank-1 outer product of the vectors √ρ Ṽ0X̃h and d∗. It is a well

known fact that the singular value decomposition (SVD) can be used to construct

low-rank approximations to matrices of any dimension [78]. In order to extract an

estimate of d∗ from (3.22), we can therefore use the SVD of Y, defined as

Y = UΣV∗ =

u1 · · · uK



σ1

. . .

σK


v1 · · · vM


∗

. (3.23)

If Y were truly rank one, we would have σ2 = σ3 . . . = σK = 0 and could therefore

write the SVD as the outer product Y = σ1u1v
∗
1. Comparing with the model given

in (3.22), it becomes clear that in high SNRs, d∗ must be some scaled version of

the vector v∗1, which is often referred to as the dominant right singular vector. This

observation is the key to the Doppler estimation step, and we define the estimate of

the Doppler offset vector, denoted as d̂, as

d̂ =
√
Mv1, (3.24)

where the scale factor
√
M compensates for the fact that v1 is usually obtained with

unit norm. The simulation results from Section 3.5 will show that this estimator

provides acceptable results even in low-SNR regimes, where Y is unlikely to be of

rank one due to noise.

Since the estimator for d only requires the dominant right singular vector of Y,

computing the full SVD of Y can be a waste of computational resources. Fortunately,

there exist well-known iterative algorithms in numerical linear algebra to compute the

dominant eigenvectors and singular vectors directly, with the simplest one being the

power method [42]. The power method belongs to a larger class of general eigenvalue
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or "power" iterations, which have been applied to problems in the space of multiple-

input, multiple-output (MIMO) communication systems in recent works [44,79]. The

basic idea behind the power method is that the repeated multiplication of a randomly

selected vector x with a matrix A converges to a scalar multiple of the dominant

eigenvector of A. Normalization between the iterations of the power method produces

the unit norm dominant eigenvector of A. The algorithm is defined as

Algorithm 3.1 Power Method
Input: A diagonalizable matrix A ∈ Cn×n

Let q(0) be a randomly chosen unit vector ∈ Cn

for k = 1, 2, . . . do
z(k) = Aq(k−1)

q(k) = z(k)/‖z(k)‖2

end for

In Lemma 3.4.1, we briefly show the convergence of q(k) to the dominant eigen-

vector of A.

Lemma 3.4.1 The power method given in Algorithm 3.1 converges to a scalar mul-

tiple of the dominant eigenvector of A.

Proof: Without loss of generality, we suppose that the eigenvalues of A are

ordered as

|λ1| > |λ2| ≥ |λ3| · · · ≥ |λn|, (3.25)

where we denote λ1 as the dominant eigenvalue and the corresponding eigenvector x1

as the dominant eigenvector. Then, since A is diagonalizable, we can write q(0) as

linear combination of the eigenvectors of A, i.e.,

q(0) =
n∑
i=1

qixi. (3.26)
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We can thus write Akq(0) as

Akq(0) = q1λ
k
1

(
x1 +

n∑
i=2

qi
q1

(
λi
λ1

)k
xi

)
(3.27)

It is straightforward to show that q(k) is a scalar multiple of Akq(0). Furthermore,

since the ratio (λi/λ1)k approaches zero for all i 6= 1, all components of q(k) corre-

sponding to eigenvectors other than x1 vanish as k →∞.

Since the set of right singular vectors of Y is equal to the set of eigenvectors of

Y∗Y, we can use the power method to compute the dominant right singular vector

v1, from which the estimator d̂ can be obtained. Note that due to the block structure

of Y we can safely assume that (3.25) holds for moderate to high SNRs, since the

signal component of Y is rank 1 and all higher-rank components are due to additive

noise. In practice, this means that a sufficiently accurate estimate of the dominant

right singular vector can be obtained with a moderate number of iterations.

Recall that in order to mitigate the effects of the Doppler shift in the model

from (3.22), the receiver must ideally cancel both the block-based Doppler offset due

to d∗ as well as the intra-block Doppler shift due to Ṽ0. With perfect knowledge of

α, the receiver could simply construct the inverse of Ṽ0 for this. However, since α is

not known, the receiver has to extract an estimate of it from the previously computed

estimate of the Doppler offset vector d∗. This estimate can be constructed using a

simple correlation operation, and is given by

α̂ = arg max
β∈R+

∣∣∣∣∣
M∑
`=1

ej(`−1)Kβd̂`

∣∣∣∣∣ , (3.28)

where d̂` is the `-th element of d̂. To minimize computational cost, the receiver could

have a precomputed set of vectors to correlate against stored, resulting in a single

matrix multiplication per estimation.



51

3.4.3 Channel Estimation

To arrive at the expression for the estimates of the L channel taps, we observe

that with perfect knowledge of α, the channel estimation problem would reduce to

the well known linear Gaussian estimation problem, for which we could write the

estimator as [50]

ĥα =
1

M
√
ρ

(
X̃∗Ṽ∗0C̃

−1Ṽ0X̃
)−1

X̃∗Ṽ∗0C̃
−1Yd. (3.29)

Since in our system setup the Doppler shift α is unknown, the receiver has to resort

to using the estimates of Ṽ0 and d, which are obtained as described in the previous

subsection. More specifically, the receiver computes the estimate as

ĥ =
1

M
√
ρ

(
X̃∗V̂∗0C̃

−1V̂0X̃
)−1

X̃∗V̂∗0C̃
−1Yd̂, (3.30)

where d̂ was derived in the previous section and V̂0 is constructed using the Doppler

shift estimate α̂ as

V̂0 = diag
([
ej(L−1)α̂ ejLα̂ · · · ej(K+L−2)α̂

])
. (3.31)

To conclude our discussion on the specifics of our proposed estimation algorithm,

the steps outlined in 3.2 provides a short summary of the necessary steps at the

receiver with our proposed technique.

Algorithm 3.2 Doubly dispersive channel estimation (Summary)
Input: Received estimation sequence y . (3.6)
1. Drop cyclic prefix and reshape . (3.22), Fig. 3.2
2. Estimate Doppler shift vector d . (3.24), Alg. 3.1
3. Estimate Doppler frequency using correlation . (3.28)
4. Compute channel estimate ĥ . (3.30)
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3.4.4 Simplified Channel Estimation using CAZAC Sequences

Until now, the discussion of our channel estimation algorithm has remained inde-

pendent of the choice of base sequence for our training pulses, denoted earlier as x.

While there are many potential choices of pseudo-random (PN) training sequences,

we have exclusively considered the class of Zadoff-Chu sequences [80] in this work.

Zadoff-Chu sequences belong to the class of constant-amplitude, zero autocorrelation

(CAZAC) waveforms and have most recently found use in various applications in the

LTE physical layer [81]. The k-th symbol of a Zadoff-Chu sequence of length K is

given by

xk =

{
e−jπuk(k+2q)/K if K is even

e−jπuk(k+1+2q)/K if K is odd,
(3.32)

where the parameter q is any positive integer or zero and the parameter u is

some positive integer relatively prime to K. For the remainder of this text, we

used the values q = 0 and u = 1. Zadoff-Chu sequences have various beneficial

properties, the most interesting for this application being the fact that cyclic shifts

of the same sequence are orthogonal. Recall that our estimator, given in (3.30),

utilizes the circular convolution matrix obtained from a training pulse, denoted as X̃.

If the training pulse x is a Zadoff-Chu sequence, it can be shown that the circular

convolution matrix X̃ satisfies

X̃∗X̃ = X̃X̃∗ = KI, (3.33)

which greatly simplifies the computation of (3.30), since it is easily shown that

under white noise this expression simplifies to
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ĥ =
1

M
√
ρ
X̃∗V̂∗0Yd̂. (3.34)

The switch from (3.30) to (3.34) obviates the need to compute expensive high-

dimensional matrix inverses on-the-fly in the white noise regime, resulting in a sub-

stantially decreased computational load. Given these favorable properties, the re-

mainder of this paper will assume that every training pulse is a Zadoff-Chu sequence

of appropriate length. An added benefit to using Zadoff-Chu sequences in practical

systems are their constant-cross-correlation properties [80], which are leveraged in

the LTE physical random access channel (PRACH) to resolve collisions using initial

access. In multi-user systems employing our proposed estimation technique, different

users could be assigned different root parameters u and q to minimize conflicts during

channel estimation.

3.5 Numerical Studies

In this section, we evaluate the performance of our proposed algorithm using

Monte-Carlo methods and synthetic data. Our quantities of interest for all simulations

are the sample mean squared error of the channel estimates ĥ and the sample error

variance of the Doppler frequency estimate α̂. In all results of this section, the L

channel taps were drawn independently from a complex Gaussian distribution, i.e.,

h[`] ∼ N (0, I), ` ∈ 0, . . . , L − 1. In all simulations, the length of the cyclic prefix

was held constant at L− 1 symbols, the minimum required length to write the input-

output model using circular convolution. Furthermore, for each Monte-Carlo iteration

a channel realization, noise realization, and a initial seed vector for the power method

iteration was generated independently.
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3.5.1 Comparison to theoretical optimum

Figure 3.3 studies the performance of our proposed estimator in relation to the

theoretical optimum derived in Section 3.3. Specifically, in Fig. 3.3a) we examine

the difference between the sample mean squared error of the channel estimate and

the CRLB given in (3.14) for signal-to-noise ratios ranging from -10 dB to 20 dB.

Correspondingly, Fig. 3.3b) examines the difference between the sample variance of

the estimation error of α̂ and the CRLB given in (3.13) for the same range of SNRs.

We compare these performance metrics in both figures for three different cases.

1. White Noise. The curves labeled "White Noise" present results for uncorre-

lated white complex Gaussian noise, i.e., C = I. As noted earlier, the training

pulses consist of Zadoff-Chu sequences, with the sequence length K fixed to

127. The equation used for the channel estimation step is thus (3.34).

2. Correlated Noise. The curves labeled "Correlated Noise" examine the per-

formance of our estimator for correlated noise environments. To simulate such

an environment, we constructed a synthetic noise correlation matrix

C =



1 β β2 · · · βN

β 1 β · · · βN−1

β2 β 1 · · · βN−2

...
...

... . . . ...

βN βN−1 βN−2 · · · 1


, (3.35)

where the specific correlation parameter β used for producing the curves in

Fig. 3.3 was β = 0.8. Due to the structure of C, the channel estimation step

uses (3.30), including the costly matrix inverses.

3. Grid Search. We provide an alternative channel and Doppler estimation al-

gorithm as a point of reference for our proposed algorithms. This estimator,
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denoted as "Grid Search" in Figure 3.3, computes an approximate maximum-

likelihood estimate of the channel taps and the frequency offset α by performing

the minimization

α̂ = argmin
β∈G

‖y − yβ‖2 , (3.36)

ĥ = ĥα̂, (3.37)

where

yβ =
√
ρVβShβ (3.38)

ĥβ =
1
√
ρ

(
S∗V∗βC

−1VβS
)−1

S∗V∗βC
−1y (3.39)

over a pre-defined set of grid points G for the observation vector y (3.6). We

note that in (3.36), Vβ = diag
([

1 ejβ · · · ejβ(N−1)
])
. In order to obtain a fair

comparison, the set of grid points is chosen to be equivalent to the set of points

over which our proposed estimators perform the Doppler correlation step (3.28),

rendering this search prohibitively expensive from a computational perspective.

However, this estimator helps to provide a good baseline for the performance

of our proposed algorithms due to its near-optimal performance.

We show the error curves in Figure 3.3 for three different values of the Doppler

frequency, each presented using a different line style. More specifically, the mapping

is described in Table 3.1. Although our studies suggest that the impact of the specific

Doppler frequency on the estimation error is minimal, these three values were chosen

to provide examples of realistic conditions and reasonable values for reference. For

example, the aforementioned cruising speed of 250 m/s combined with a transmission

at the center frequency fc = 120 MHz (reserved for aeronautical mobile radio ac-

cording to [82]) results in a bulk Doppler shift of approximately 100 Hz. The values

of 50 Hz and 0 Hz were studied to provide additional points for reference. In all

of these studies, one training sequence pulse consisted of a Zadoff-Chu sequence of
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fd Style
0 Hz dotted
50 Hz dashed
100 Hz solid

Table 3.1.: Doppler shift to line style mapping for Figs. 3.3a)– 3.5

length K = 127, while the entire training sequence consisted of M = 5 pulses with a

cyclic prefix. At each iteration, L = 16 channel taps were generated.

The results in Figure 3.3 indicate that our proposed algorithm produces desirable

results largely independent of the magnitude of the Doppler shift present, especially

for medium to high SNRs. Note that due to the loss of information from performing

cyclic prefix removal at the receiver, our proposed estimator never fully attains the

CRLB, even for high SNRs. Our algorithm performs especially well for the white noise

scenario, quickly approaching a sub-1 dB difference from the theoretical optimum and

a difference to the computationally expensive minimum-distance grid search estimator

of less than 0.5 dB. The constant gap for the colored noise case is explained by the

fact that the estimator from (3.30) disregards any correlation across blocks that could

be present in the noise samples.

The contrast between Figure 3.3a) and Figure 3.4 illustrates the importance of

the intra-block Doppler correction for this algorithm. To generate the results in

Figure 3.4, we disabled the intra-block Doppler correction from (3.28), resulting in

V̂0 = I at all iterations. The severe performance penalty of only correcting for the

per-block Doppler shifts is evident in the increasing loss in estimator performance as

a function of increasing SNR. We note that as expected, this performance loss does

not occur for the 0 Hz case.

3.5.2 Performance under Model Mismatch

Figure 3.5 studies the loss in performance of our proposed estimator when the

bulk Doppler assumption introduced in Section 3.2 does not apply and the Doppler
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Fig. 3.3.: Difference between sample statistics and CRLB vs. SNR of our proposed
estimator for white noise and colored noise environments. Grid seach based estimator
included for reference. K = 127 samples, M = 5 pulses, L = 16 channel taps.
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Fig. 3.4.: Difference between sample MSE of the channel estimate ĥ and the
CRLB (3.14) vs. SNR of our proposed estimator for white noise without intra-block
Doppler correction from (3.28). K = 127 samples, M = 5 pulses, L = 16 channel
taps.

shift varies across the multipath components of the channel. In this case, the channel

model from (3.4) becomes

hk[`] = ejα[`]kh[`], (3.40)
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where α[`] = 2πTsfd[`] and fd[`] is sampled from a probability distribution for each

channel tap. We furthermore restrict ourselves to the white noise case for this study

and re-use the parametersK = 127, L = 16, andM = 5 from the previous subsection.

Figure 3.5 plots these trials for normally distributed fd[`] ∼ N (fd, σ
2
f ) for the three

different mean values fd given in Table 3.1 as a function of the standard deviation

σf . Each curve is obtained by using our proposed algorithms (designed for the bulk

Doppler-only model) on the channel model from (3.40). The plot shows the difference

in mean squared error between this mismatched scenario (Estimator assumes equal

Doppler, but channel model generates random Doppler per multipath component)

and the matched scenario from in Fig. 3.3a) (Estimator assumes equal Doppler and

channel model generates equal Doppler per multipath component) for a range of SNR

regimes. As expected, the performance of our estimator degrades with increasing

standard deviation of the Doppler frequency. The simulation furthermore indicates

that the performance in high-SNR regimes is limited by the model mismatch, whereas

it is limited by the noise power in the low to medium SNR regime. This implies that

our estimators remain attractive options in the low-to medium SNR regime, especially

in the 0-10 dB range. We note that the choice of normally distributed Doppler shifts

is applicable especially in the air-to-ground scenario with automobiles as scatterers

due to the widely accepted assumption of normally distributed velocities [83–86].

3.5.3 Pulse Length and Repetition Count

The plot in Figure 3.6a) shows the channel estimation MSE as the length of a

training pulse K increases. The results were obtained assuming white noise, i.e.,

β = 0, M = 5 training pulse repetitions, L = 16 channel taps, and transmit powers

ranging from -10 dB to 30 dB. The training sequence pulses were again chosen to

be Zadoff-Chu sequences with the length of one pulse varying from K = 29 to K =

331. For these simulations, the Doppler shift was fixed to fd = 50 Hz. As we

can see, performance gains can be achieved when increasing the pulse length, but
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Fig. 3.5.: Increase in mean squared error relative to the bulk-only Doppler shift model
when using our proposed estimator on the mismatched random Doppler shift model
from (3.40). “MSE Increase” denotes the difference in mean square error performance
between the matched and mismatched scenario. K = 127 samples, M = 5 pulses,
L = 16 channel taps. Pictured for various SNR regimes.

the magnitude of the performance gains decreases with the length. Figure 3.6b)

gives a similar comparison, however, whereas the number of pulses M was fixed in

Figure 3.6a), we now fix the length of one training pulse to K = 127 symbols and

vary the number of pulses M between M = 2 and M = 20. In this case, the MSE

behaves similar as it does with increasing pulse length.

3.6 Concluding Remarks

This chapter studied the problem of jointly estimating the bulk Doppler shift and

the channel taps of a doubly dispersive aerial channel. Work in this area is of impor-
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channel taps.

Fig. 3.6.: Impact of sounding signal length factors on MSE for different SNRs.

tance and significance because channel estimation is an essential part of any modern

wireless communication system, including aeronautical systems. This chapter and

other current and future work focusing on aeronautical wireless communication sys-

tems is in line with the recent surge in popularity of airborne platforms in consumer

electronics, public safety networks, and defense applications. Our contribution to the

field concerns a special class of channels in which the Doppler spread is dominated by

the bulk Doppler shift due to vehicular motion. For this class of channels, we presented

a simple channel model incorporating time and frequency dispersion before deriving

the theoretical bounds of the resulting channel estimation problem. In addition to the

theoretical analysis, we developed a novel channel estimation algorithm by combin-

ing traditional pulse-repetition techniques with simple and computationally efficient

processing techniques. Our numerical studies indicate that our proposed techniques

perform comparatively well to computationally expensive brute-force search methods.
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The main contribution of this chapter lies in our combination of prior work in

estimation theory and signal processing into an efficient algorithm for our model.

However, aerial channels like the one considered in this chapter are still sources of

many open problems. More specifically, future work in this area includes the extension

of our model to multi-antenna systems and multi-user scenarios.
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4. ON THE OPTIMAL DELAY GROWTH RATE OF
MULTI-HOP LINE NETWORKS

© 2020 IEEE. Reprinted, with permission, from: D. Ogbe, C.-C. Wang, and D. J.
Love, “On the optimal delay growth rate of multi-hop line networks — asymptoti-
cally optimal designs for low-latency relays,” Submission to: IEEE Transactions on
Information Theory, May 2020.

4.1 Introduction

4.1.1 Reliability Function

Along with capacity, the reliability of a communication channel, which describes

the probability of erroneous message reception for a fixed-length message transmis-

sion, has played a significant role in the development of information theory. This

emphasis on the error rate vs. codeword length tradeoff is particularly relevant for

modern ultra-reliable ultra-low-latency (URLLC) communications [87] and massive

machine-type communications (mMTC) [88] since long codeword lengths translate

directly to a long transmission delay between the start of the transmission at the

sender and the actual extraction of the messages at the receiver, even if we assume

that the underlying encoding/decoding algorithms can be carried out and finished

instantaneously (with infinite hardware clock rate).

The reliability function of point-to-point channels is a well-studied subject. In

1959, Shannon discovered upper and lower bounds on the error exponent of the AWGN

channel [89], which spearheaded numerous follow-up works in the next decades, in-

cluding but not limited to [90–98]. More advanced studies of the reliability function

other than error exponent analysis have received significant attention in recent years
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under the new framework of finite-length analysis, see e.g., [99–104]. These latter

works focus on the more practical communication rate vs. codeword length tradeoff

under a fixed error rate requirement as opposed to the more traditional error rate vs.

codeword length tradeoff under a fixed communication rate requirement. Essentially,

both the reliability function and finite-length analysis study the joint relationship

between the error rate, the throughput, and the delay, and this work falls under the

same umbrella as these important prior results.

4.1.2 Multi-hop Line Networks

One signature trait of modern wireless communication systems is the overall den-

sification of the network due to novel infrastructure devices such as femto- or pico-

cells. With the continuing densification in 5G and beyond-5G networks, these "small

cells" are increasingly not directly connected to fiber-optic networks due to cost or

other site-specific constraints. Instead, they rely on wireless connections to the big-

ger cell(s), an architecture commonly referred to as "integrated access and backhaul"

(IAB) [105,106]. This has kindled renewed interest in classical relay channels.

The history of the relay channel dates back to the general three-terminal chan-

nels by van der Meulen [107] in the 1970s, and a comprehensive review can be found

in [108]. Fig. 4.1a) describes the most general relay channel model, for which the

relay channel is modeled as the joint conditional probability P (Y2, Y1 |X1, X2 ), where

Y1 and Y2 represent the received signals at the relay and the destination, respectively,

and X1 and X2 represent the signals transmitted at the source and the relay, respec-

tively. While the relay channel has continued to attract research interest throughout

the years [109–118], the capacity of the most general relay model remains unknown.1

The difficulty of characterizing the general relay channel capacity lies in the fact

that with an arbitrarily given conditional distribution P (Y2, Y1 |X1, X2 ), a relay may
1A short, non-comprehensive list of the types of relay channels for which the capacity is known is:
separated relay channel (see Sec. 4.2), degraded and reversely degraded relay channel [108], semi-
deterministic relay channel [109], permuting relay channel [110], deterministic relay channel [111],
two-way relay channel [113], diamond channel [114], (genie-aided) non-causal relay channel [116].
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Fig. 4.1.: Variations on the relay channel model.

"assist" with the communication task between the source and the destination by judi-

cially selecting its transmitted value X2. Various ideas have since been developed for

the relay to better assist in the communication task, including Compress-&-Forward

(CompressF) [108,119], Compute-&-Forward [120], Noisy Network Coding [121], etc.

As challenging as the general relay channel study can be, in practice, almost

all practical relay systems are assuming the so-called separated relay channel in

Fig. 4.1b)., for which there is no direct link between the source and the destina-

tion. Specifically, the joint distribution admits a simpler form P (Y2, Y1 |X1, X2 ) =

P1(Y1 |X1 )P2(Y2 |X2 ) that separates the destination from the source. By the max-

flow/min-cut theorem, the capacity of the separated relay channel is the bottleneck

hop capacity: C = min(C1, C2), where C1 (resp.\ C2) is the capacity of the source-to-

relay (resp. relay-to-destination) channel, and the capacity is achieved by Decode-&-

Forward (DF) [108]. The separated relay channel model and its capacity analysis can

be easily extended to the multi-hop line network depicted in Fig. 4.1c). While being

one of the simplest communication networks, multi-hop line networks are arguably

the most widely used relay model for any wireless/wireline network, for which the sole
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task of the intermediate nodes is to "relay" the messages from source to destination,

not to actively alter/assist the direct transmission2 through P (Y2, Y1 |X1, X2 ).

4.1.3 Reliability Function of Multi-hop Line Networks

Motivated by the renewed focus on lowering the latency of dense communication

networks, this work studies the reliability function of multi-hop line networks. As is

commonly adopted in the early studies of point-to-point channels, we use the error

exponent as a tool to analyze the communication latency over these networks. In

particular, we study the following questions:

Question 1: For any given multi-hop line network, does there exist an

upper bound on the (largest) error exponent for any transmission scheme

one can possibly design?

Question 2: If such a bound on the error exponent exists, can we design

a new scheme from scratch that attains said bound?

Our goal of finding the optimal error exponent among all possible schemes sepa-

rates this work from the existing results. For example, [96] derived the error exponents

of the existing (partial) DF scheme, the Compress-F scheme, etc., and no new scheme

was developed.3 In contrast, this work is not bound by any existing solutions and

aims to directly optimize the end-to-end error exponent by proposing new analytical

approaches and design ideas.
2In wireless network terminology, if a third-party node actively alters/assists the main transmission
from A to B, it is sometimes known as a distributed multi-input, multi-output (MIMO) solution [122]
rather than being a relay design.
3As will be shown in Lemma 4.2.1 in Sec. 4.2, none of the existing block-based schemes, including
DF, Compress-&-Forward, noisy network coding, etc., can attain the error exponent upper bound
in Proposition 4.3.1.
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4.1.4 Our Contributions

4.1.4.1 A new problem formulation

Any rigorous discussion of "optimality" must be accompanied by a clear definition

of the set of schemes over which the optimality is defined. In this work, we formulate a

general class of relay schemes for multi-hop line networks with L hops, which has the

following desirable features: (i) It includes any existing relay schemes as special cases

and enables fair comparison that takes into account various important techniques

like Markov block coding, pipelining, and/or full-duplex capability; (ii) It is flexible

for any L ≥ 1; (iii) If L = 1 the class of schemes (and its definitions of rates and

block-lengths) naturally coincides with the traditional definitions of block codes for

point-to-point channels [89]; and (iv) If L = 2, the class of schemes (and its definitions

of rates and block lengths) naturally falls back to the definitions of traditional block

codes for the classical channel model [108].

With the new problem formulation, for any arbitrarily given scheme, we introduce

a new metric dubbed the delay amplification factor (DAF), which essentially measures

the ratio of the delay of applying the scheme over the L-hop line network to the

(optimal) random-coding delay over just the bottleneck hop, assuming we operate in

the asymptotic regime R → C and ε → 0. For example, over a 5-hop line network,

a scheme achieving DAF=3.5 has an asymptotic delay roughly 3.5 times higher than

the random-coding delay over just the bottleneck hop, and incurs only 3.5
5

= 70%

delay when compared to a uniform time-division transmission scheme.4 We can then

use the new DAF metric to compare the delay performance of any different schemes.
4A uniform time-division transmission scheme over an L-hop line network will take L times the delay
experienced in the bottleneck hop for the packets to traverse from the source to destination over the
L hops.
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4.1.4.2 An achievability scheme for the open-loop setting

It is intuitive5 that the DAF≥ 1 for any scheme and that for DF schemes, we have

DAF=O(L) since their delay grows linearly with respect to the number of hops. To

answer the questions posed in Sec. 4.1.3, we thus need to close the gap between the

lower bound DAF≥ 1 and the state-of-the-art DAF= O(L). In particular, we show

that by designing a new scheme from scratch, we can attain DAF=1 if the bottleneck

hop is the L-th hop (the last hop) of the line network. The contribution of this finding

is two-fold. Analytically, it shows that the common belief that the delay over an L-hop

line network grows linearly with respect to L is not a fundamental limit, but rather an

artifact of the delay-suboptimal DF schemes. Operationally, it shows that with new

transmission schemes, system designers could significantly lower the end-to-end delay

when compared to the de-facto industry standard DF solutions. This thus opens

up new possibilities for next-generation low-latency communication standards. Also

see [123] for some system-level design ideas and numerical verifications on lowering

the end-to-end delay beyond what is possible in the traditional DF-based paradigm.

4.1.4.3 An achievability scheme for the stop-feedback setting

Motivated heavily by the goals of designing new practical URLLC schemes, we

also consider the effects of feedback from the perspective of DAF. Specifically, Con-

tribution 2 is based on an open-loop feedback-free setting with fixed transmission

duration. However, for practical wireless multi-hop communications, we almost al-

ways have (some form of) ACK feedback for each of the L hops. Even in the simpler

point-to-point channel (L = 1), the use of ACK feedback has led to significant perfor-

mance improvements in the form of hybrid ARQ [124–126]. In this contribution, we

thus consider the setting of one-time stop-feedback [100] of the system. Namely, we

consider a variable-length relay scheme that adjusts its transmission duration based

on a one-time, one-bit stop-feedback within the network. We show that with the
5We will formalize this part of discussion in Sec. 4.2.
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help of the stop-feedback, we can relax the condition "bottleneck hop must be the

last hop" and design a scheme with DAF=1 for arbitrary line networks. This finding

establishes that with the one-time stop-feedback, the asymptotic delay of a multi-hop

line network can always be made as small as the asymptotic delay of its bottleneck

hop.6

The remainder of this paper is structured as follows. We give the channel model

and all necessary definitions in Sec. 4.2.1 – 4.2.3. Sec. 4.3.1 contains the problem

formulation in the form of a simple converse bound on the DAF metric. We provide

some intuition and discuss the application of our analysis to the DF and Amplify-&-

Forward (AF) schemes in Sec. 4.2.4. Our two DAF-optimal transmission schemes are

presented in Sec. 4.3 and 4.4, respectively. Finally, we conclude the paper in Sec. 4.5.

4.2 Problem Formulation

4.2.1 The Multi-hop Line Network Channel Model

We define the stationary memoryless L-hop line network as follows, also see

Fig. 4.1c). Denote the source node as s, the destination node as d and the L − 1

intermediate relay nodes as r` for all ` = 1, . . . , L− 1, respectively. Consider slotted

transmission for t = 1, 2, . . .. One symbol is sent in each time slot, which is sometimes

called a channel use7 Each hop is discrete and memoryless and we denote the input

and output symbols of the `-th hop at time slot t as X`(t) and Y`(t), respectively. We

denote the input alphabet, output alphabet, and conditional distribution of the `-th

channel as X`, Y`, and P`(y|x), respectively, i.e., for any input symbol X = x ∈ X`,

the probability of observing Y = y ∈ Y` at the channel output is denoted as P`(y|x).

We refer to the `-th channel as W` = (X`,Y`, P`).
6It is known that the stop-feedback can shorten the (expected) delay of variable length coding [100].
For fair comparison, we define the DAF in Sec. 4.2.3 as the ratio of the expected delay of the given
scheme over the improved expected delay over the bottleneck hop. The discussion of DAF=1 for
one-time stop-feedback is based on this new definition.
7In practice, the time for each channel use may vary from hop to hop. For simplicity, our model
assumes all hops sharing a common channel use time. Our results can be easily revised to handle
heterogeneous slot duration as well.
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Fig. 4.2.: Starting times, transmission duration, and encoding/decoding timepoints
for an example open-loop scheme (unit: slots).

Denote the capacity of the `-th hop by C` (unit: nats/slot), which is finite since

the alphabet X` is discrete and finite. Clearly, the capacity of the end-to-end channel

is C = min`C`.

Technical Assumptions. Assumption 1: All our results assume exclusively that

there exists a unique hop `∗ with the lowest capacity, i.e., ∃`∗ such that C` > C`∗ ∀` 6=

`∗. We refer to this hop as the bottleneck hop and assume C`∗ > 0. In practice, the

corner case that there are two hops satisfying C`1 = C`2 with infinite precision is

very unlikely. Furthermore, one can always apply some infinitesimal perturbation to

break the tie if it happens. This assumption is thus not very restrictive for practical

applications.

Assumption 2: We assume that all transmission probabilities are non-zero, i.e.,

P`(y|x) > 0 ∀x, y, `. This assumption is to ensure that the error exponent of any

of the L hops is bounded away from infinity and can be relaxed in ways similar to

Conditions (a) and (b) in [127, [Sec. 1].
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The source s wishes to send an integer messagem, drawn uniformly randomly from

M = {1, 2, . . . , |M|} to destination d using a transmission scheme Φ. A transmission

scheme consists of the following elements depending on whether it is an open-loop

setting or if stop-feedback is allowed.

4.2.2 Open-loop setting

Starting times and duration. A sequence of L deterministic, non-decreasing time

points τ1 = 0 ≤ τ2 ≤ · · · ≤ τL <∞ determines the starting times (unit: slots) of data

transmission for the corresponding hops. The maximum duration8 of the transmission

at each node is denoted as Tdur (unit: slots). Fig. 4.2 gives an example for Tdur = 9

and starting times τ1 = 0, τ2 = 2, τ3 = 3, and τ4 = 6 over L = 4 hops.

Sequential encoders at the relay nodes. We assume full-duplex relays with

causal encoding. That is,

X1(t) = f
(1)
t (m), ∀t ∈ (τ1, τ1 + Tdur] (4.1)

X`(t) = f
(`)
t ([Y`−1]t−1

∗ ), ∀` ≥ 2, ∀t ∈ (τ`, τ` + Tdur] (4.2)

where f (`)
t is the encoder of the `-th hop at time slot t, and

[Y`−1]t−1
∗ , {Y`−1(τ) : τ ∈ (τ`−1,min(t− 1, τ`−1 + Tdur)]} (4.3)

denotes all causally received observations from the upstream hop. The definition

Y`−1(τ) imposes that the observation at the transmitter of the `-th hop is always a

subset of the upstream hop’s "active period" (τ`−1, τ`−1 + Tdur].

Block decoder at the destination. The final block-based decoding function is

given as

m̂ = g([YL]τL+Tdur
∗ ). (4.4)

8Tdur is the maximum number of slots that can be used by each hop. A scheme can instruct some
of its relays to use less than Tdur slots if desired.
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The reason for defining τ1 to τL and the maximum duration Tdur is to accommodate

pipelined transmission. That is, once the source finishes transmitting the current

message at time τ1 + Tdur = Tdur, it can immediately inject the next message at time

Tdur +1, even though the current message is still being transmitted to the destination

by the rest of the network. This behavior is illustrated with the dotted lines in

Fig. 4.2. While this model requires full-duplex capability, it is in line with most

existing information-theoretic relay models, e.g., [96, 108, 112], for which full duplex

is commonly assumed. In practice, different hops may be operating over different

bands, for which the half-duplex receivers of the previous hop and the half-duplex

transmitters of the next hop may operate simultaneously. One may also employ the

recent development of full-duplex antennas [128,129] for in-band transmission.

The consequence of this pipelining assumption is that messages arrive at the des-

tination once every Tdur slots, which is less than the total delay τL + Tdur. This

observation leads to the following classification of open-loop transmission schemes.

Definition 4.2.1 An L-hop open-loop transmission scheme attains a delay-throughput-

error-rate tuple (T,R, ε) if it satisfies

T ≥ τL + Tdur (4.5)

R ≤ ln (|M|)
Tdur

(4.6)

ε ≥ Pr(m̂ 6= m) . (4.7)

Let AΦ denote the set of all (T,R, ε)-tuples attained by scheme Φ, i.e.,

AΦ , {(T,R, ε) : Φ attains (T,R, ε)} . (4.8)

Definition 4.2.2 The end-to-end error exponent of an open-loop scheme Φ is defined

as

EΦ(R) , lim sup
T→∞

sup
ε:(T,R,ε)∈AΦ

− ln(ε)

T
. (4.9)
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Denote the optimal random-coding error exponent of the `-th hop as Erc,` (R).

Here we note that since the random-coding error exponent usually depends on the

input distribution used, we assume that in all of our use cases the optimal (i.e., maxi-

mizing the exponent) input distribution is used. Put succinctly, if Erc,` (R,Q) denotes

the random coding error exponent of the `-th hop for channel symbols distributed

according to Q, then we always use Erc,` (R) , Erc,` (R,Q∗(R)) as a shorthand assum-

ing the optimal distribution of the channel symbols for the given rate (here denoted

as Q∗(R)).

Finally, Def. 4.2.3 presents the main metric investigated in this text for the open-

loop setting.

Definition 4.2.3 The delay amplification factor (DAF) of an L-hop open-loop trans-

mission scheme Φ is defined as

ΓΦ , lim
R→C

Erc,`∗ (R)

EΦ(R)
. (4.10)

4.2.3 Stop-feedback setting

In the stop-feedback setting, we assume the existence of a feedback link for all

hops. The feedback model we assume is the one-time stop-feedback model [100].

In this model, we assume that there is a feedback channel from the destination to

all other nodes (the source plus the relays). The feedback channel is assumed to be

delay-free and error-free and can be used (by the destination) only once per message to

indicate the end of a message transmission. The main motivation behind this feedback

model is its application to real-world communication systems, in which control data

like feedback messages are usually handled by a different layer than the bulk data

transmission [100]. From this perspective, it is a more realistic model than the per-

slot channel output feedback model commonly found in the literature [130–138], which

assume that every channel output symbol is causally available at the transmitter and

can be prohibitively expensive in terms of the delay and bandwidth requirements
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imposed on the feedback channel(s). In contrast, the stop-feedback model is closer to

real systems like hybrid ARQ where only a small amount of feedback is transmitted

per message.

Technically, the stop-feedback model implies a) that the message duration Tdur

becomes a stopping time of the filtration generated by [YL]t∗, since the destination

now triggers the end-of-transmission for each message and b) since there is only a

single stop-feedback for each message, before the stop-feedback, all nodes are working

simultaneously on transmitting the same message and collectively switch to the next

message after receiving the end-of-transmission feedback.

As a result, we hardwire τ1 = τ2 = · · · = τL = 0 and modify Def. 4.2.1 for the

stop-feedback setting as follows.

Definition 4.2.4 An L-hop stop-feedback transmission scheme attains a delay-throughput-

error-rate tuple (T,R, ε) if it satisfies

T ≥ E{Tdur} (4.11)

R ≤ ln (|M|)
E{Tdur}

(4.12)

ε ≥ Pr(m̂ 6= m) . (4.13)

Namely, T in (4.11) defines the average delay, R in (4.12) defines the long-term

throughput, and ε in (4.13) defines the probability of error for each variable-length

transmission.

The definition of the end-to-end error exponent for the stop-feedback setting re-

mains identical to Def. 4.2.2. However, due to the availability of the stop-feedback,

the bottleneck error exponent changes. Results in [100] show that for a point-to-point

channel, stop-feedback improves the random-coding error exponent from Erc,` (R) to

a strictly larger value

Esf,` (R) = (C` −R)+ , max(C` −R, 0), (4.14)
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which we use in the following new definition of the DAF.

Definition 4.2.5 The DAF of an L-hop variable-length stop-feedback scheme Φ is

defined as

Γ̃Φ , lim
R→C`∗

Esf,`∗ (R)

EΦ(R)
= lim

R→C`∗

C`∗ −R
EΦ(R)

. (4.15)

4.2.4 Discussion #1: Decode-&-Forward is a special instance of this

framework

Our first contribution is the new formulation of the L-hop line network in Sec. 4.2.1

to 4.2.3. One can easily see that when L = 1, since we always have τ1 = 0, the

term Tdur is equivalent to the codeword length of block coding. The new definitions

in Secs. 4.2.1 and 4.2.2 are thus identical to the traditional point-to-point channel

reliability functions.

To further illustrate the flexibility of the new framework, we provide some intuition

and discussion on how it includes DF as a special case. We restrict our focus to

the open-loop setting since it is how DF was originally designed, but the insights

gained apply to the stop-feedback variation of DF e.g., using the stop-feedback scheme

in [100] as part of DF.

For illustration purposes, we assume that the DF scheme uses random block codes

for each of the L hops. Specifically, in a DF scheme the source s first produces

a corresponding randomly-generated codeword of block length t1 (unit: slot) and

forwards it over the first channel to r1. After the codeword is received, possibly in

error, at the relay r1, r1 computes an estimate of the message and produces another

randomly generated codeword using this estimate. Suppose that the length of r1’s

codeword is t2 (unit: slots). This codeword is then forwarded to r2, and so forth.

After L hops, the destination receives a codeword of length tL and computes an

estimate of the original message, denoted by m̂. This procedure is illustrated in items
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t
t1 t`∗ t3

Hop 1
2
3

(a) s starts tx of m1 (e) s starts tx of m2

(c) DF at r2

(b) DF at r1

(d) m1 arrives at d (f) m2 arrives at d

Tdur = t`∗

Fig. 4.3.: Relaying a message through an example 3-hop line network using the DF
scheme.

(a)–(d) of Fig. 4.3. The codeword lengths t1, t2, . . . , tL may vary for each hop and the

end-to-end delay is thus T , t1 + t2 + · · ·+ tL.

We now explain how this DF description fits the framework in Secs. 4.2.1 and 4.2.2.

Define `∗∗ , argmax`{t`}. We set the starting times {τ`} and duration Tdur to be

τ` = max
(

0,−t`∗∗ +
∑̀
j=1

tj

)
∀` ∈ [1, L] (4.16)

Tdur = max
`
t` = t`∗∗ . (4.17)

With the above choices, one can easily verify that (i) τ1 = 0 ≤ τ2 ≤ · · · ≤ τL; and (ii)

the forwarding time slots of the `-th hop are (
∑`−1

j=1 tj,
∑`

j=1 tj], which is a subset of

its active period (τ`, τ` + Tdur]. The DF encoders and decoders can thus be rewritten

as a special instance of (4.1) to (4.4).



76

The achievable tuple (T,R, ε) then satisfies

T =
L∑
`=1

t` = τL + Tdur (4.18)

R =
ln(|M|)
t`∗∗

=
ln(|M|)
Tdur

(4.19)

ε = Pr(m̂ 6= m) = 1−
L∏
`=1

(1− ε`) ≤
L∑
`=1

ε` (4.20)

where ε` is the random coding error probability of the `-th hop. Note that our

pipelining rate definition in (4.19) (and thus (4.6)) indeed matches the commonly

used definition of the achievable rate of DF and the delay definition in (4.18) also

matches the commonly used definition of the delay of DF.

Following similar reasoning, one can easily show that other schemes like AF,

Compress-F, Noisy Network Coding, etc. are all special instances of the new frame-

work, and the rate and delay definitions of ours coincide with the commonly used

definitions for the individual schemes. This thus provides the footing for a fair com-

parison between different schemes.

4.2.5 Discussion #2: The physical interpretation of the DAF

We now demonstrate the relationship between the DAF and the end-to-end delay

of an arbitrarily given scheme Φ. Specifically, by (4.9), for any fixed rate R and error

probability ε, the end-to-end delay T of scheme Φ is approximately

T (R, ε) ≈ − ln(ε)/EΦ(R). (4.21)

If we apply a rate-R random code over just the bottleneck hop `∗ (while ignoring

all other hops), to achieve the same error probability ε, the corresponding delay is

approximately

Tbttl(R, ε) ≈ − ln(ε)/Erc,`∗ (R) . (4.22)
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The delay ratio, T (R,ε)
Tbttl(R,ε)

, when evaluated in the asymptotic regime R→ C and ε→ 0

is indeed the DAF in (4.10).

The main motivation behind this DAF definition is to enable fair comparison of

the end-to-end delay between different transmission schemes. In particular, since the

latency performance depends on the channel distribution of all L hops, the expres-

sion of the end-to-end reliability function will inevitably be affected by the intricate

interactions among all L hops (assuming general schemes, not necessarily the highly

structured DF solution) and may not reveal the fundamental attributes of the pro-

posed concepts and design choices. In contrast, the DAF captures the multiplicative

increase in latency—or, effectively, the error exponent penalty—when communicating

over L hops as opposed to communicating over the bottleneck hop alone. In proposing

a metric relative to the underlying channel, we circumvent the complexity of jointly

considering L heterogeneous hops and enable an even playing field for comparison.

To further demonstrate the new DAF metric, we calculate the DAF value of the

DF scheme9 discussed in Sec. 4.2.4.

Lemma 4.2.1 For the DF scheme, we have

ΓDF =
L∑
`=1

C`∗

C`
(4.23)

We note that DF represents a class of schemes that can have different choices10

of the alphabet size |M| and the active periods of each hop t`, see Sec. 4.2.4. As

a result, to prove Lemma 4.2.1, we have to show (i) there exists a way of choosing

(|M|, t1, · · · , tL) such that the corresponding DAF ≤
∑L

`=1
C`∗
C`

; and (ii) regardless

9Since we exclusively consider discrete memoryless channels, there is no concept of "amplifying" the
received signal and thus there is no amplify-&-forward scheme. Additionally, DAF is defined only
over capacity-achieving schemes because of the limit R → C in (4.10) and (4.15). Since AF is in
general not capacity-achieving, its DAF=∞ even if we relax the models from discrete channels to
continuous channels.
10In fact, the description of DF also includes how to choose the codebook for each hop. Lemma 4.2.1
and its proof in Appendix C.1 allow the class of DF to include any possible codebook choices as
well. Nonetheless, due to the (near-)optimality of random codes, it is more intuitive for readers to
temporarily assume random coding over each hop and focus only on the choices of (|M|, t1, · · · , tL).
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how we choose (|M|, t1, · · · , tL), we always have DAF ≥
∑L

`=1
C`∗
C`

. The detailed

proofs of both directions are provided in Appendix C.1.

Remark: While the proof of Lemma 4.2.1 involves carefully applying the definitions

in Secs. 4.2.1 and 4.2.2 to calculate the error exponents and its DAF value, the results

are actually quite intuitive. Namely, suppose the source would like to send b bits to

the destination using DF. It takes roughly b
C`

time slots to traverse over the `-th

hop. The total delay is thus
∑L

`=1
b
C`
. If we only have the bottleneck hop, then the

point-to-point channel delay is b
C`∗

. The ratio of total delay versus point-to-point

bottleneck delay
∑L

`=1
C`∗
C`

is indeed the DAF. Also see the first couple of paragraphs

in Sec. 4.2.5.

For example, if C1 = 5 (nats/symbol), C2 = 4, and C3 = 3, the DAF of DF

is 3
5

+ 3
4

+ 3
3

= 2.35. Namely, the end-to-end delay of DF in this 3-hop example is

roughly 2.35 times the delay experienced in a point-to-point system consisting of only

the third hop. One can clearly see that the DAF grows linearly with respect to L,

assuming all {C`} are of comparable magnitude.

4.3 Main Result #1: The open-loop setting

All the results in this section are based exclusively on the open loop setting in

Secs. 4.2.1 and 4.2.2.

4.3.1 The converse of the optimal DAF

Proposition 4.3.1 Regardless of the transmission scheme Φ, we always have

ΓΦ ≥ 1.

Proof The proof is by reduction. Suppose there exists an L-hop line network

{P`(y`|x`) : ` ∈ [1, L]} and a scheme Φ such that ΓΦ < 1, which implies that

EΦ(R) > Erc,`∗ (R) for some R sufficiently close to C = C`∗ . Recall that a scheme Φ
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is determined by {τ` : ` ∈ [1, L]}, Tdur, and the encoding/decoding functions in (4.1)

to (4.4). We will use the given scheme to construct a block code over the point-to-

point (p2p) channel P`∗(y`∗|x`∗) and show that the corresponding error exponent will

be strictly larger than the sphere packing bound Esp,`∗ (R), the needed contradiction.

The rest of the proof is straightforward. The block length of the p2p channel is set

to T = τL + Tdur. The encoder of the p2p channel uses the given multi-hop scheme,

encodes the message, simulates the operations/transmissions of the first `∗ − 1 hops,

and physically sends out the encoded symbols of what is supposed to be over the

`∗-th hop over the physical p2p channel. Namely, it forfeits the first τ`∗ time slots and

only uses the interval (τ`∗ , τ`∗+Tdur] even though the overall block length is τL+Tdur.

The receiver of the p2p channel will simulate the remaining L− `∗ hops plus the final

decoder. Per our definitions in (4.5) to (4.9), if the given multi-hop scheme achieves

the error exponent EΦ(R) > Erc,`∗ (R), then the new p2p scheme will attain the same

error exponent > Erc,`∗ (R). However, when R is sufficiently close to C, we must

have Erc,`∗ (R) = Esp,`∗ (R). This implies that the code surpasses the sphere packing

bound. By contradiction, the proof is complete.

Proposition 4.3.1 effectively answers Question 1 from Sec. 4.1.3.

4.3.2 An achievability scheme for the setting `∗ = L

Proposition 4.3.2 Consider arbitrary L ≥ 2 and arbitrary channels P`(y`|x`). If

the unique bottleneck hop is the last hop, i.e., `∗ = L, then there exists a scheme that

achieves ΓΦ = 1.

For the rest of this section, we explicitly construct such a scheme. By the lower

bound from Proposition 4.3.1, such a scheme is DAF-optimal. Attaining DAF=1

also shows that the linearly growing delay DAF=O(L) is an artifact of the existing

DF designs, see Lemma 4.2.1, and it is possible to surpass it and attain the true

fundamental limit DAF=1 with a new relay scheme in scenarios where `∗ = L. In
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Sec. 4.3.3, we describe the mechanics of the scheme in detail. We then prove that our

scheme achieves the optimal DAF in Sec. 4.3.4.

4.3.3 Description of the Transmission Scheme

The main ideas of the scheme are as follows. Each message m is mapped to K

microblocks of equal length ∆ symbols. The K microblocks are obtained using a

concatenated code consisting of a single end-to-end outer code and a set of inner

codes for each individual hop. After the source generates the K microblocks, each

microblock is relayed through the L hops using DF in a pipelined block Markov coding

fashion, but the decoders use only the inner codes. Since each of the K microblocks

will take L ·∆ time slots to traverse from the source to the destination using DF, the

destination will receive all K microblocks after (K − 1 + L)∆ slots once we assume

pipelined transmission. Also see Fig. 4.4. After accumulating all K microblocks, the

destination performs optimal joint inner/outer-code ML decoding.

We call such a scheme transcoding since the relay nodes do not perform full global

decoding and re-encoding. Instead, the decoding and re-encoding operates on a local

scale and "transforms" the signals from one inner codeword to another inner codeword

along the hops. The detailed description of the transcoding scheme is provided below.

The transcoding scheme for an L-hop line network is parameterized by the number

of microblocks K, the code rate R (unit: nats/symbol), and the microblock length

∆. It consists of the following elements.

Partitioning the time axis as microblocks. Every ∆ time slots are grouped as a

microblock. That is, the k-th micro block refers to the time slots t ∈ (k∆, (k + 1)∆].

All the operations are aligned with the microblocks. In particular, we set the starting

time instant τ` = (`− 1)∆ for all ` ∈ [1, L] and the duration Tdur = K∆.

Inner/outer code architecture.

• We define the inner code rate RI = K
K−1

R, for which the physical interpretation

will be clear shortly after.
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X
(1)
1 X

(1)
2 X

(1)
3

Outer code CO

Joint inner/outer decoder

m̂1

m1 m2

Hop 1
2
3

∆ K∆

Bottleneck
transmissionInner

code CI

microblock DF

Fig. 4.4.: A DAF-optimal transmission scheme for bottleneck-terminated DMC line
networks. K microblocks using concatenated code construction. (K = 3 and L = 3
pictured for illustration)

• The message set isM = [1, eK∆R] = [1, e(K−1)∆RI ].

• The outer code CO is a single parity check code over K super symbols, where

each super symbol is chosen from [0, e∆RI ). Namely, any message m ∈ M

is first bijectively mapped to a (K − 1)-dimensional vector (i
[m]
1 , . . . , i

[m]
K−1) ∈

[0, e∆RI )(K−1). Then a parity super symbol i[m]
K is computed from the parity

check equation (
K∑
k=1

i
[m]
k mod e∆RI

)
= 0.

• A set of K · L random inner codes

CI =
{
{X(1)

1 , . . . ,X
(1)
K }, . . . , {X

(L)
1 , . . . ,X

(L)
K }
}
.
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As will be shown later, X
(`)
k is the k-th codebook used by the `-th hop. We

assume that X
(`)
k is of codeword length ∆ symbols and is randomly generated

by

X
(`)
k =

{
x

(`)
k,i ∈ (X`)∆ : i ∈ [0, e∆RI )

}
,

where each coordinate of the i-th (∆-dimensional) codeword x
(`)
k,i is sampled

independently and identically (i.i.d.) from the capacity-achieving input distri-

bution P ∗` (X`) of the `-th channel P`(y`|x`). The random codebook is generated

independently for different k and ` as well. Namely, even for the same `, we

repeat the independent random codebook construction for different k1 and k2.

Encoding at the source node. The source encoding function f1 : M 7→ (X1)K∆

maps a message m to a block of symbols of length K∆ by

f1(m) =

(
x

(1)

1,i
[m]
1

,x
(1)

2,i
[m]
2

, . . . ,x
(1)

K,i
[m]
K

)
,

where the i[m]
k are obtained from the single-parity outer code and each microblock x

(1)
k,i

is drawn from Xk,1. Since τ1 = 0 and Tdur = K∆ and all transmissions are aligned

with the microblocks, the source s will transmit each inner codeword x
(1)

k,i
[m]
k

during

the k-th microblock.

Relaying through the network. We define a set of K · (L− 1) relaying functions

f
(`)
k : (Y`−1)∆ 7→ (X`)∆ for all ` ∈ [2, L] which map the channel outputs from the

(`− 1)-th hop to the inputs of the `-th hop at the relays. The mapping is performed

by combining the maximum-likelihood (ML) inner code decoder of the previous hop

plus the inner code encoder of the current hop, i.e.,

f
(`)
k (~Y`−1[k + `− 2]) = x

(`)

k,̂i
(`−1)
k

, (4.24)

where the vector ~Y`−1[j] , {Y`−1(τ) : τ ∈ ((j − 1)∆, j∆] is the ∆-dimensional ob-

servation of the (`− 1)-th hop over the j-th microblock; the microblock index being
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k + ` − 2 is because since the starting time of the `-th hop is τ`−1 = (` − 1)∆, the

k-th microblock of the (` − 1)-th hop is occupying the (k + ` − 2)-th microblock in

the overall time axis, also see Fig. 4.4. The index

î
(`−1)
k = argmax

i∈[0,e∆RI )

P`−1

(
~Y`−1[k + `− 2]

∣∣∣x(`−1)
k,i

)
(4.25)

is the optimal ML inner code decoder over the just received microblock, for which we

slightly abuse the notation P`−1(·|·) by letting

P`−1

(
~Y`−1[k + `− 2]

∣∣∣x(`−1)
k,i

)
, Pr

(
~Y`−1[k + `− 2]

∣∣∣ ~X`−1[k + `− 2] = x
(`−1)
k,i

)
.(4.26)

After decoding in (4.25) and re-encoding in (4.24), the k-th microblock of the

`-th hop will be transmitted in the (k + `− 1)-th microblock in the overall time axis

(recalling that the starting time τ` = (`− 1)∆).

Decoding at the destination. We define a decoding function g : (YL)K∆ 7→ M

which maps an observation of K microblocks at the destination to an estimate of the

message m̂ using the ML joint inner/outer decoder, i.e.,

m̂ = argmax
m∈M

PL

([
~YL

]K
1

∣∣∣c[m]
L

)
, (4.27)

where
[
~YL

]K
1

=
{
~YL[j + L− 1] : j ∈ [1, K]

}
denotes the K microblocks received

through the L-th hop;

c
[m]
L =

(
x

(L)

1,i
[m]
1

, . . . ,x
(L)

K,i
[m]
K

)
(4.28)

is the concatenation of the outer code with the K inner codebooks X
(L)
1 through X

(L)
K

designed for the L-th hop; and PL(y |c) is the conditional probability (likelihood) of

receiving y ∈ (YL)K∆ at the destination given that c ∈ (XL)K∆ was transmitted over

the last hop, i.e., we slightly abuse the notation in a way similar to (4.26).
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The error probability is defined as ε = Pr(m 6= m̂). In the next subsection, we

demonstrate how to choose the parameters (K,R,∆) of the transcoding scheme to

attain ΓΦ = 1.

4.3.4 DAF Analysis

Recall that any transcoding scheme is defined by the tuple (R,K,∆). As a result,

its error exponent is determined by the pair R,K since in (4.9) we let T → ∞ and

thus the third coordinate ∆→∞. As a result, we use the notation EΦ(R,K) for the

error exponent of the transcoding scheme Φ(R,K,∆). We then have

Lemma 4.3.1 Assume `∗ = L. For any R < C = C`∗ that is sufficiently close to C,

we have

EΦ(R,K∗(R)) =
K∗(R)

K∗(R) + L− 1
Erc,L (R) , (4.29)

where K∗(R) is the smallest K such that RI = K
K−1

R < C. The closed-form expres-

sion of K∗(R) is

K∗(R) ,

⌊
C

C −R

⌋
+ 1 (4.30)

One can easily see that when letting R→ C, the transcoding scheme Φ(R,K∗(R))

attains DAF=1 in Proposition 4.3.2 once we apply the definition in (4.10). The

remainder of this section proves the above lemma.

Probability of Error

Recall that m was the selected message at the source. The corresponding tuple of

microblock messages, generated by the source, is denoted as i[m] =
(
i
[m]
1 , i

[m]
2 , . . . , i

[m]
K∗

)
.

During the transmission, the estimate of the k-th microblock message at the receiver

of the `-th hop is denoted as î(`)k . Define A as the event that there exists at least one

pair (k, `) satisfying simultaneously k ∈ [1, K∗], ` ∈ [1, L− 1], î
(`)
k 6= i

[m]
k .
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Recall that
[
~YL

]K
1

denotes the received symbols at the destination. Using the

union bound, we can then bound the probability of message error as

ε , Pr(m̂ 6= m)

≤ Pr(A) + Pr

(
g

([
~YL

]K
1

)
6= m

∣∣∣Ac) . (4.31)

The intuition behind (4.31) is that since we transmit the message over L hops, there

are two types of errors. The first type is the error caused by performing DF using

only the inner codes during the first (L− 1) hops, and the second type is the error of

the joint inner/outer decoder at the destination.

We proceed by bounding the two terms in (4.31) individually. For the first term,

we use the individual random coding error exponents for the first L − 1 hops and

obtain the bound

Pr(A) ≤
K∗∑
k=1

L−1∑
`=1

e−∆Erc,`(RI)

≤ K∗
L−1∑
`=1

e−∆Erc,`(CL) (4.32)

≤ K∗(L− 1)e−K
∗∆Erc,L(R), (4.33)

where (4.32) follows from RI < CL due to our choice of K∗(R) in (4.30). (4.33)

follows from the fact that when R is sufficiently close to C = CL, we have

Erc,L (R) <
minl∈[1,L−1]Erc,` (CL)

K∗
. (4.34)

The reason is that Erc,L (R) = O((C −R)2) is a quadratic function of (C −R) when

R is sufficiently close to C [139, Ex. 5.23], but K∗(R) (or simply K∗ as shorthand)

is approximately C
C−R .

For the second term, we use the results in [140], which show that if the outer

code is a Maximum Distance Separable (MDS) code, then the ML joint inner/outer

decoder of any concatenated code over a point-to-point channel (assuming the outer
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codeword length K is fixed and the inner codeword length ∆ grows to infinity) can

achieve the same error exponent as non-concatenated random coding over the same

channel. Since our parity-check outer code in (4.24) is MDS and we condition on

the event Ac, the concatenated coding is essentially applied only to the L-th hop

and [140] immediately implies

Pr(m̂ 6= m |Ac ) ≤ e−K
∗∆Erc,L(R)+ς(∆), (4.35)

where ς(∆) signifies a term which diminishes as ∆→∞.

Combining (4.33) and (4.35), we then get

ε ≤ (K∗(L− 1) + 1) e−K
∗∆Erc,L(R)+ς(∆). (4.36)

End-to-end Latency

The length of each microblock is ∆. There are K∗ total microblocks per message.

Each microblock needs to traverse L hops. In total, the latency of one message is

given as

T = (K∗ + L− 1)∆. (4.37)

Error Exponent and DAF

Now, combining the results about the error probability and delay, we can derive the

end-to-end error exponent of the proposed transmission scheme:

EΦ(R) = lim
T→∞

− ln(ε)

T

= lim
∆→∞

− ln
[
(K∗(L− 1) + 1) e−K

∗∆Erc,L(R)+ς(∆)
]

(K∗ + L− 1)∆

=
K∗

K∗ + L− 1
Erc,L (R) . (4.38)
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The proof of Lemma 4.3.1 is complete.

We now note that even if the bottleneck hop is not the last hop, i.e., `∗ 6= L, we

can iteratively apply our proposed scheme to achieve the following DAF value.

Corollary 4.3.1 For the case of `∗ 6= L, define `∗0 = 0 and iteratively define `∗i =

arg min`∈(`∗i−1,L] C` for i = 1, 2, 3, · · · until `∗i = L. Suppose there are I such `∗i , i.e.,

`∗I = L. Also assume the minimum is unique when computing each `∗i . Then we can

construct a scheme Φ such that

ΓΦ =
I∑
i=1

C`∗

C`∗i
. (4.39)

In Corollary 4.3.1, one can easily see that our scheme outperforms the DAF of DF

in all scenarios except the ones for which the capacity of each hop rises in ascending

order C1 ≤ C2 ≤ · · · ≤ CL. Corollary 4.3.1 can be proved by combining the DF

principle and the transcoding scheme from Proposition 4.3.2.

4.4 Main Result #2: The stop-feedback setting

In this section, we present a transmission scheme which achieves DAF=1 in the

stop-feedback setting. It is worth pointing out that DAF is defined as the asymptotic

delay ratio between a given scheme over L hops and the random coding scheme

over only the bottleneck hop. For the stop-feedback setting, there is no guaranteed

optimality for random codes, which is in contrast with the open-loop setting for

which random codes are known to be error-exponent optimal when R → C. As a

result, unlike Proposition 4.3.1 for the open-loop setting, our investigation has not

established the converse DAF≥ 1 for the stop-feedback setting. That said, random

coding currently achieves the highest error exponent out of all existing stop-feedback

solutions and we thus use it as the benchmark in our DAF definition.
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Fig. 4.5.: A DAF-optimal transmission scheme for DMC line networks with stop-
feedback. Illustration for L = 3 hops and K = 3 microblocks. The bottleneck
transmitter continues to send encoded microblocks after the initial K microblocks
are forwarded. The sequential learning phase at the bottleneck receiver lasts K + 1
microblock in this example. During the correction phase, the bottleneck receiver
sends correction messages to the destination.

Proposition 4.4.1 Consider arbitrary L ≥ 2 and arbitrary channels P`(y`|x`). In

the stop-feedback setting described in Section 4.2.3, there exists a scheme that achieves

Γ̃Φ = 1.

We proceed according to the same recipe as in Sec. 4.3 and first describe the

scheme in detail in Sec. 4.4.1 before proving in Sec. 4.4.2 that it achieves DAF=1

regardless of whether `∗ = L or not.

4.4.1 Description of the Transmission Scheme

Recall that we refer to the hop with the minimum capacity as the bottleneck hop

`∗. Our scheme operates regardless whether `∗ = L or not. To describe the operation

of each relay node, we need some additional terminology. We refer to the transmitter

and receiver of the bottleneck hop as the bottleneck transmitter and bottleneck receiver,

respectively. All relays between the source and the bottleneck transmitter are referred
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to as the pre-bottleneck relays while all relays between the bottleneck receiver and the

destination are referred to as the post-bottleneck relays.

The proposed scheme is a variable-length scheme with termination, i.e., all of the

nodes in the network work on the same message until the destination signals an end-

of-transmission (EOT) message over the feedback link. This feedback message then

instantly propagates through the entire network and triggers the transmission of the

next message.

In the subsequent discussion, we will use Fig. 4.5 as illustration, which shows

an example transmission over an L = 3 hop line network where the bottleneck hop

is the second hop, i.e., `∗ = 2. Similar to the scheme from Sec. 4.3, this scheme

utilizes a concatenated code consisting of an outer code mapping the message to a

set of microblock messages and a set of inner codes mapping microblock messages

to microblock codewords. Comparing to the fixed-length scheme in Section 4.3, that

scheme uses its outer code to generate a fixed number of microblock messages, the

outer code from this variable-length scheme generates a variable-length sequence of

microblock messages for each message. However, as illustrated in Fig. 4.5, the source

node and all the transmitters of the pre-bottleneck hops generate and transmit only

the first K microblocks of the infinite-length sequence generated by the outer code.

The additional microblock messages are used/sent only by the bottleneck transmitter

and all the transmitters of the post-bottleneck hops until the destination declares

EOT.

As will be elaborated further, among all the nodes, the bottleneck transmitter and

the bottleneck receiver play the most important roles in this scheme. The bottleneck

transmitter is the first node that operates indefinitely until receiving the EOT (all

pre-bottleneck hops send only K microblocks) and the bottleneck receiver is the node

that consumes the sequential microblock transmission over the bottleneck until it can

compute an estimate of the source message with high confidence.11

11In this discussion, we use the term high confidence by its intuitive definition. The concept of high
confidence will be made rigorous once we provide the complete proof in Sec. 4.4.2.
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The superior (asymptotic) delay performance of our scheme lies in the unique

design of the bottleneck receiver. For comparison, in a traditional DF scheme, only

when the bottleneck receiver has high confidence of the source message, does it start to

re-encode and forward the message to its downstream node(s). However, obtaining a

high-confidence estimate requires accumulating a lot of received symbols, which incurs

long delay. The main idea of our new scheme is for the bottleneck receiver to start

forwarding even before it has deduced a high-confidence estimate, thus the reduced

delay. The cost of this early forwarding is that at the time when the bottleneck

receiver finally has a high-confidence estimate, it has already forwarded many "low-

confidence" microblocks and some of them may be in error, which leads to higher

error rate.

To address this drawback, we note that when the bottleneck receiver finally has

enough observations to deduce a high-confidence estimate of the source message, it

also has compiled the records of all low-confidence microblock messages that have

been forwarded to downstream nodes prematurely (before having the high-confidence

source message). As a result, we let the bottleneck receiver use the high-confidence

estimate of the source message to recompute the set of high-confidence microblocks

that should have been forwarded to its downstream nodes if it could go back in time.

Then it compares the low-confidence microblocks that have actually been forwarded

against the high-confidence microblocks that should have been forwarded. If there is

any mismatch, the bottleneck receiver forwards additional microblocks to correct the

ones it now knows were relayed in error.

To realize the above idea, we design two separate phases of the message trans-

mission at the bottleneck receiver. In the sequential learning phase, the bottleneck

receiver aims to obtain the high-confidence message estimate from its observations.

In the correction phase, the bottleneck receiver aims to correct any mistake(s) due

to premature forwarding. Also see the illustration in Fig. 4.5. Note that the lengths

of both phases are random (and correlated), where the duration of the first phase

depends on the channel realization and the duration of the second phase depends on
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how many previously transmitted microblocks were in error. Since only the bottle-

neck receiver knows when the first phase ends and the second phase starts, it has to

"instruct" the downstream nodes how to correctly interpret the traffic. To that end,

we thus insert a correction flag in the forward traffic. The correction flag Ξ can take

values in {0, 1, · · · , K}. The value Ξ = 0 indicates that there is no correction needed

and Ξ = j indicates that we will send an additional j microblocks that are meant

to replace j of the previously transmitted microblocks. We limit the maximum num-

ber of replacements to be K, the reason of which will be made clear in the detailed

analysis.

The post-bottleneck hops mainly perform DF to help relay the initial microblocks

(during the sequential learning phase) and the correction microblocks (during the

correction phase) to the destination. After the destination receives the correction

flag Ξ, it terminates the transmission of the message for the entire network using

the stop-feedback if Ξ = 0. Or, if Ξ = j ≥ 1, it terminates the transmission after

receiving j additional microblocks.

Based on the above high-level description, we now give a concise definition of the

codes used in our proposed scheme. Specifically, the scheme has four deterministic

parameters (K,∆, R, α), where ∆ is the microblock length and α ∈ (0, 1) is a tuning

parameter that will be used during the construction. The deterministic parameter K

is the target number of microblocks used in the transmission since the actual number

of microblocks is random. R is directly related to the message alphabet size via

R = log(|M|)
K∆

and can be interpreted as the target end-to-end throughput. Again, the

actual throughput depends on the expected duration of the variable-length scheme,

see (4.12), and will be analyzed later.
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Since we always operate within the capacity, we are exclusively interested in the

set of parameter values satisfying R < C = C`∗ . For given values of (K,∆, R, α), we

compute the following constants:

RI , R +
α + 1

2
(C`∗ −R) (4.40)

Kmax = KeK∆α(C`∗−R) (4.41)

η = e−K∆α(C`∗−R). (4.42)

Intuitively, RI is the inner code rate; Kmax is the upper bound on the length of our

variable-length scheme which keeps the scheme from running indefinitely; and η is

the target error rate of the given scheme.

Outer code at the source. The scheme uses a sequential random permutation

outer code (SRPOC) S. Given any (K,∆, R,RI) tuple, the SRPOC is a rateless code

consisting of

1. The message setM = [1, eK∆R].

2. A finite sequence of permutations {πk : k ∈ [1, Kmax]}.

• A permutation π on M is a bijective mapping from M to M. In total,

there are |M|! different permutations.

• Each πk in the finite sequence of permutations πk : M 7→ M for k ∈

[1, Kmax] is drawn independently and uniformly randomly from the set of

all |M|! possible permutations.

3. A finite sequence of encoding functions {fk}.

• It is best to interpret k as the microblock index.

• For any k ∈ [1, Kmax] and the randomly chosen permutation πk, the k-th

encoding function fk :M 7→ [1, e∆RI ] maps a message m to an outer-code

symbol i ∈ [1, e∆RI ].
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• Specifically, given any m ∈M, the output i[m]
k is the unique integer satis-

fying

(i
[m]
k − 1) · |M|

b
< πk(m) ≤ i

[m]
k ·
|M|
b
. (4.43)

where b , e∆RI .

• This mechanism partitions the message set M into buckets of b , e∆RI

messages and selects the corresponding bucket index i[m]
k for a given mes-

sage m ∈ M after applying the permutation πk. This is closely related to

the random binning technique, though described in a deterministic fash-

ion. Furthermore, the bins/buckets are re-labeled independently for each

k.

Inner codes. We use the standard random block code construction extensively.

Namely, the coordinate values of each codeword are chosen i.i.d. according to the

capacity-achieving input distribution. For mathematical rigor, we never reuse any

codebook and all codewords/codebooks are generated independently. We now de-

scribe how many inner codebooks are used in our scheme.

1. For each of the pre-bottleneck hops ` ∈ [1, `∗) and for all k ∈ [1, K], we have a

random inner codebook X
(`)
k for which the codeword length is ∆ (unit: symbol)

and the total number of codewords in each codebook is e∆RI . In total, there

are K(`∗ − 1) of them and these codebooks are used for microblock-based DF

in the pre-bottleneck hops.

2. For the bottleneck hop, we have a finite number of inner codebooks X
(`∗)
k for all

k ∈ [1, Kmax] for which the codeword length is ∆ (unit: symbol) and the total

number of codewords in each codebook is e∆RI . The only difference between the

bottleneck hop and the pre-bottleneck hops is that the bottleneck hop needs to

support variable-length encoding and thus we need to prepare a larger number

of codebooks Kmax ≥ K.
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3. For each of the post-bottleneck hops ` ∈ [`∗+1, L], we have two finite sequences

of codebooks and we denote them by {X̊(`)
k : k ∈ [1, Kmax]} and {X̃(`)

k : k ∈

[1, K]}, respectively. The constructions of X̊
(`)
k and X̃

(`)
k have the following

subtle but important differences.

• Each X̊
(`)
k codebook has codeword length ∆ but the total number of code-

words is e∆RI +K+1. Namely, compared to the pre-bottleneck codebooks,

X̊
(`)
k has K + 1 additional codewords which are used to represent the cor-

rection flag values Ξ = 0 to Ξ = K discussed previously.

• Each X̃
(`)
k codebook has codeword length ∆̃ = ∆ + log(K)

RI
and the total

number of codewords is e∆̃RI = Ke∆RI . Namely, the effective rate of the

codebook X̃
(`)
k is still RI (units: nats/symbol), but we slightly elongate the

codeword length to accommodate a factor12 of K more codewords than the

pre-bottleneck codebooks X
(`)
k . The new codebook X̃

(`)
k is used to carry the

correction microblocks. More specifically, to correct a microblock, one not

only has to specify the new value of the previously incorrect microblock

but also which of the previous microblocks is being corrected (i.e., the

microblock index). Thus, we expand the number of codewords by a factor

of K so that we can specify, out of the K previously sent microblocks,

which one needs to be corrected by which value. More details can be

found shortly after.

We are now ready to describe how to assemble the outer and inner codes for the

final scheme.

Encoding at the source node. The source first maps m to a sequence of K

microblock messages {i[m]
k }Kk=1 using the outer code S . Then it transmits x

(1)

k,i
[m]
k

, one

codeword for each microblock, sequentially for k ∈ [1, K]. In the end, the source

12For comparison, X̊(`)
k has an additional K + 1 codewords when compared to X

(`)
k and X̃

(`)
k has K

times more codewords than X
(`)
k .
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transmits K∆ symbols over the first hop. After the end of its transmission, the

source idles13.

Relaying at the pre-bottleneck nodes. The transmitters of the pre-bottleneck

hops (2 ≤ ` < `∗) perform microblock DF using the inner-code decoders and encoders.

More specifically, the transmitter of the `-th hop decodes the message of the k-th

microblock using the codebook X
(`−1)
k into an estimate î(`−1)

k and forwards the re-

encoded codeword x
(`)

k,̂i
(`−1)
k

∈ X
(`)
k to the next node. After forwarding K microblocks,

each of the pre-bottleneck nodes enter the idle state.

Operation of the bottleneck transmitter. While relaying the firstK microblocks,

the bottleneck transmitter mirrors the behavior of the transmitters of the pre-bottleneck

hops. However, after forwarding K microblocks through the bottleneck hop, the op-

eration of this transmitter starts to differ.

After receiving theK-th microblock, the bottleneck transmitter checks whether its

pastK estimates of the microblock messages {̂ik}Kk=1 correspond to a unique codeword

m̃ from the message set. Namely, using the SRPOC outer code, the bottleneck

transmitter computes

∼
M`∗−1 ,

{
m : î

(`∗−1)
k = i

[m]
k ∀k ∈ [1, K]

}
. (4.44)

If the set contains a single message, i.e.,
∼
M`∗−1 = {m̃}, the bottleneck transmitter

effectively subsumes the role of the source and continues to use SRPOC outer code

to transmit microblocks of the estimated message m̃ until the stop-feedback from the

destination or until it has reached the maximum number of transmissions k = Kmax.

That is, it sends x
(`∗)

k,i
[m̃]
k

∈ X
(`)
k for k ∈ [K + 1, Kmax] until EOT.

If
∣∣∣ ∼M`∗−1

∣∣∣ 6= 1, i.e., either no such m̃ can be found or multiple m̃ correspond to

the past decisions, the transmitter declares an error event14 and enters the idle state.
13Due to the lack of a special "idle" symbol, in the subsequent discussion, we assume that a node in
the idle state arbitrarily picks one symbol from its channel input alphabet and transmits it repeatedly
until the next message is to be transmitted.
14Note that the transmitter does not need to send any "error flags" to the downstream nodes and
only needs to idle. The error-event declaration is only used for analysis purposes.
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This mechanism is illustrated in Fig. 4.5, where the bottleneck transmitter uses its

message estimate m̃ to produce additional microblocks.

Operation of the bottleneck receiver. As we briefly mentioned earlier, the op-

eration of the bottleneck receiver during one message transmission consists of two

distinct phases: the sequential learning phase and the correction phase. We describe

both phases separately below.

1) The sequential learning phase. During the sequential learning phase, the bottle-

neck receiver computes a running log-likelihood ratio (LLR) for each of the messages

in the message setM. When any of the ratios exceeds a certain threshold, it switches

to the correction phase. More precisely, recall that ~Y`∗ [k] denotes the ∆-dimensional

received signals of the k-th microblock and let
[
~Y`∗
]k

1
=
{
~Y`∗ [j + `∗ − 1] : j ∈ [1, k]

}
denote the vector of all observed channel outputs at the bottleneck receiver after the

receiving the k-th microblock. Then, for every message m ∈ M = [1, eK∆R], the

bottleneck receiver computes the LLR

Zm(k) = ln


Pr

([
~Y`∗
]k

1

∣∣∣∣m)∑
m′ 6=m

Pr

([
~Y`∗
]k

1

∣∣∣∣m′)
 , (4.45)

where the conditional probability functions are computed by

Pr

([
~Y`∗
]k

1

∣∣∣∣m) , Pr

([
~Y`∗
]k

1

∣∣∣∣ c[m]
`∗

)
(4.46)

=
k∆∏
i=1

P`∗(yi| ci) (4.47)

and

c
[m]
`∗ =

(
x

(`∗)

1,i
[m]
1

,x
(`∗)

2,i
[m]
2

, . . .

)
. (4.48)

That is, the conditional probability function is based on the assumption that the se-

quence of transmitted channel symbols (over the bottleneck hop) is produced directly
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by the message m using the joint outer/inner encoder. Note that this assumption

is false since the symbols transmitted over the `∗-th hop are based either on the

inner codeword estimate î(`
∗−1)

k of the previous hop (for those k ∈ [1, K]) without

the help of the outer codebook, or on the re-encoded versions based on m̃ (for those

k ∈ [K + 1, Kmax]), cf.\ the discussion around (4.44). Hence (4.46) should be viewed

as a way of computing the "score" of each message m, not the actual likelihood of

receiving m.

Using this running LLR value for each k, the bottleneck receiver performs what is

essentially a sequential probability ratio test [141] to determine the end of the phase

and an estimate of the current message. In other words, the sequential learning phase

ends whenever there exists one m such that

Zm(k) > ln

(
1

η

)
, (4.49)

where η is the target error probability parameter fixed earlier. Since log
(

1
η

)
> 0 per

our choice of η, by (4.45) we can have at most one m satisfying (4.49). Namely, if

there exists any m satisfying (4.49), such m must be unique.

Additionally, to limit the maximum latency of our scheme, we further restrict the

length of the sequential learning phase to be at most Kmax. Namely, if the sequential

learning phase has not properly ended by the Kmax-th microblock (i.e., there was

no such m satisfying (4.49)), we declare "sequential learning failure" and forcefully

terminate the sequential learning phase.

In addition to performing the described probability ratio test, during the sequen-

tial learning phase, the bottleneck receiver, (i.e., the transmitter of the (`+1)-th hop)

continues to relay microblocks using the familiar microblock DF scheme. However, it

uses the codebooks X̊
(`+1)
k defined earlier, which have the same microblock length ∆

but contain e∆RI +K + 1 codewords. The additional K + 1 codewords represent the

value of the correction flag Ξ and are not used at all during the sequential learning

phase.
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Other than using a slightly modified codebook, the microblock DF operation for

the (`∗+1)-th hop (performed by the bottleneck receiver) mirrors the operation of the

pre-bottleneck hops: The k-th microblock is mapped to an estimate of the microblock

message î(`
∗)

k using ML decoding and then used to generate the microblock codeword

x̊
(`∗+1)

k,̂i
(`∗)
k

∈ X̊
(`+1)
k , which is forwarded to the next node.

2) The correction phase. The description herein assumes that the sequential learn-

ing phase is properly terminated, i.e., there exists a unique m̊ satisfying (4.49). The

operations under the forced termination scenario k = Kmax are inconsequential since

they are lumped under the "error event". During the correction phase, the bottle-

neck receiver transmits up to K additional microblocks that aim to correct the first

K microblocks it transmitted. For this, it must first compile the set of microblocks

which were forwarded in error. Let k̃ denote the microblock index for which the se-

quential learning phase ends and let m̊ denote the message which triggered the end

of the sequential learning phase. Next, let i[m̊] denote the corresponding sequence of

microblock messages generated by m̊ for the first K microblocks, i.e.,

i[m̊] =
{
i
[m̊]
1 , . . . , i

[m̊]
K

}
. (4.50)

Since the bottleneck receiver observes the transmission over the `∗-th hop, we let

î(`
∗) denote the sequence of microblock messages that were decoded (using only the

inner code decoder of the `∗-th hop) and forwarded to the (`∗ + 1)-th hop during the

sequential learning phase, i.e.,

î(`
∗) =

{̂
i
(`∗)
1 , . . . , î

(`∗)
K

}
. (4.51)

We call m̊ the high-confidence estimate since it is based on the sequential log-likelihood

ratio test that jointly considers the inner and outer codes while (4.51) is of (relatively)

low confidence due to the use of only the inner decoders.
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Finally, denote the set of microblock messages forwarded in error as

Kerr =
{
k ∈ [1, K] : î

(`∗)
k 6= i

[m̊]
k

}
. (4.52)

The transmission of the correction microblocks during the correction phase starts

immediately after the k̃-th microblock is received and Kerr is computed. As described

earlier, to correct a single microblock, the bottleneck receiver needs to send (i) a cor-

rection flag Ξ = |Kerr| that instructs the downstream nodes to expect Kerr additional

correction microblocks; (ii) the new/corrected content of the microblock message; and

(iii) the microblock index which is being corrected. As a result, after k̃ microblock

transmissions from X̊`∗+1
k : k ∈ [1, k̃], the next microblock k = k̃+1 will still be chosen

from the inner codebook X̊
(`∗+1)

k̃+1
, but we transmit one of the additional (K+ 1) code-

words of X̊
(`∗+1)

k̃+1
that signifies the value of Ξ ∈ [0, K]. Then, for purposes (ii) and (iii),

we use the different codebooks X̃
(`+1)
k , which have K times the number of codewords

of the regular codebooks. Specifically, after transmitting the Ξ value, the bottleneck

receiver picks one microblock index j from Kerr that has not been "corrected" and

maps the index/payload pair (j, i
[m̊]
j ) to the corresponding codeword from X̃

(`+1)
k . It

then repeats this process until all k ∈ Kerr have been "corrected". Effectively, the

correction phase consumes ∆ + |Kerr|∆̃ slots, where ∆ of which are used to transmit

the flag Ξ and |Kerr|∆̃ of which are used to correct all microblocks in Kerr.

Once all microblocks in Kerr have been corrected, the bottleneck receiver remains

idle. This mechanism is illustrated in Fig. 4.5, where two correction microblocks are

displayed.

Relaying at the post-bottleneck nodes. The operation of the post-bottleneck

nodes mostly mirrors that of the pre-bottleneck nodes. That is, DF is performed

on all microblocks. The main difference is, as described, how to coordinate the use

of the two codebooks of different sizes. Specifically, the post-bottleneck receivers

initially perform ML decoding for every ∆ received channel symbols based on the

length-∆ inner decoders of X̊
(`)
k for each k. However, once its ML decoder outputs a
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correction flag Ξ ∈ {0, · · · , K}, say it decodes Ξ = j, the post-bottleneck receivers

then anticipate the next j microblocks to be based on the length-∆̃ inner codebooks

X̃
(`)
k and thus use the inner codebooks X̃

(`)
k to perform DF (instead of the pre-Ξ

codebooks X̊
(`)
k ).

Decoding at the destination. The destination operates in the same way as the

other post-bottleneck receivers with some minor additions. That is, after its ML

decoder X̊
(L)
k outputs a correction flag Ξ = j, the destination starts anticipating

the final j correction microblocks and will decode them based on the length-∆̃ inner

decoder X̃
(L)
k . After the final j correction microblocks, it sends the stop-feedback

signal through the feedback channel.

To decode the original message m, the destination takes the very first K mi-

croblock messages it previously decoded using the inner code ML decoders, and then

replaces a subset of those estimates by the final j correction microblocks received after

receiving Ξ = j. Let
{
qık ∈ [1, e∆RI ] : k ∈ [1, K]]

}
denote the resulting K microblock

messages after correction/replacement of Ξ = j of them. The destination uses the

SRPOC outer code S to compute the compatible set

M̂ ,
{
m ∈M : qık = i

[m]
k

}
. (4.53)

The destination then proceeds as follows. If M̂ contains exactly one message m̂,

then output such m̂. If M̂ contains zero or multiple messages, then declare error.

In either case, the destination stops the transmission of the entire network after the

final j microblocks after decoding Ξ = j.

It is possible that the destination’s ML decoder X̊
(L)
k never outputs a correction

flag even after receiving Kmax microblocks. In this case, the destination also sends

out the one-time stop-feedback. Namely, the destination aborts the transmission of

the entire network once the waiting time for the correction flag exceeds the upper

limit Kmax (unit: microblocks).
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4.4.2 DAF Analysis

Recall that our proposed scheme is defined by the four deterministic parameters

(K,∆, R, α). Analogous to the analysis in Section 4.3.4, the second coordinate ∆→

∞ since we let T → ∞ in (4.9). The error exponent of our proposed scheme is thus

determined by the tuple (K,R, α) and we use the notation EΦ(K,R, α). We then

have

Lemma 4.4.1 For any R < C = C`∗ that is sufficiently close to C, we have

EΦ(K∗(R,α), R, α) =
K∗(R,α)

K∗(R,α) + L
· α(C`∗ −R), (4.54)

where K∗(R,α) is the largest integer K satisfying

α(C`∗ −R) <
min`6=`∗ Erc,` (C`∗)

K
(4.55)

where Erc,` (R) is the open-loop random coding error exponent (even though this lemma

is analyzing a stop-feedback scheme).

For any fixed α ∈ (0, 1), when R → C = C`∗ , we have K∗(R,α) → ∞. By

Lemma 4.4.1 and the definition of the DAF in (4.15), the proposed scheme thus

achieves Γ̃ = 1
α
. Finally, letting α→ 1 lets the proposed scheme attain DAF=1. The

remainder of this section proves the above lemma.

Probability of Error

We first introduce some definitions. We denote the message sent by the source as

m0.

Definition 4.4.1 We say that the SRPOC outer code is reversible (with respect to

m0) if there exists no other m ∈M\{m0} such that

(
i
[m]
1 , i

[m]
2 , . . . , i

[m]
K

)
=
(
i
[m0]
1 , i

[m0]
2 , . . . , i

[m0]
K

)
. (4.56)
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Namely, by observing the first K coded outer code messages (i
[m0]
1 , i

[m0]
2 , . . . , i

[m0]
K ),

one can uniquely recover the original sent message m0.

Recall that k̃ is defined as the time then the sequential probability test ends (i.e.,

when (4.49) holds for some m or when we reach the time limit Kmax). We can further

formalize this discussion by the following definition.

Definition 4.4.2 Define k̃m as the microblock index at which the LLR for a specific

message m first crosses the threshold in (4.49), assuming we run the sequential prob-

ability test indefinitely without the maximum constraint. As a result, we can rewrite

k̃ as

k̃ , min

(
Kmax, min

m∈M
k̃m

)
. (4.57)

We then note that the following conditions are sufficient for an error-free message

transmission.

C1: There are no microblock decoding errors at the pre-bottleneck relays.

C2: The encoding function of the SRPOC S is reversible. When both C1 and C2

hold, the bottleneck transmitter can correctly decode the message m0 after K

microblocks, successfully subsume the role of the source, and continue to transmit

the correct microblocks across the bottleneck hop.

C3: The message decision at the end of the sequential learning phase at the bottleneck

receiver is within the hard time limit (i.e., minm k̃m ≤ Kmax) and is correct (i.e.,

m̊ = m).

C4: There is no microblock decoding error over all the post-bottleneck hops.

When C1 to C4 all hold, the destination can recover the first K microblock messages

generated at the source correctly either during the sequential learning phase or during

the correction phase. Note that since C2 ensures reversibility of the outer SRPOC,

when C1 to C4 hold, the destination can recover the message correctly.
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We can distill a set of useful error events from these observations. First, let

Npre and Npost denote the total number of microblock errors over all pre- and post-

bottleneck hops, respectively. For example,

Npre =
`∗−1∑
`=1

K∑
k=1

1{̂
i
(`−1)
k 6=î(`)k

}(k), (4.58)

where (i) the indicator function 1A(x) is defined as

1A(x) =

 1 if x ∈ A

0 if x 6∈ A
(4.59)

(ii) we recall that î(`−1)
k is the estimate when applying the ML inner code decoder over

the upstream hop (the (` − 1)-th hop); and (iii) we slightly abuse the notation by

setting î(0)
k = i

[m0]
k as the k-th microblock message since the source node does not have

an upstream hop. The expression for Npost is more complicated since (i) the active

duration of the post-bottleneck hops is a random number, which is in contrast with

the pre-bottleneck hops that are active for only K microblocks; and (ii) two different

codebooks X̊
(`)
k and X̃

(`)
k are used in the post-bottleneck hops. Since our proof does

not rely on the exact form of Npost, we omit its closed-form expression.

We then define the following (error) events:

A1 =
{
Npre > 0

}
(4.60)

A2 =
{
the SRPOC is not reversible

}
(4.61)

A3 =
{

min
m

k̃m > Kmax

}
(4.62)

A4 =
{
the output of the sequential LLR test m̊ 6= m0

}
(4.63)

A5 =
{
Npost > 0

}
(4.64)
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By mapping the above events to the previous discussion of sufficient conditions C1

to C4, the error probability of our scheme must satisfy

ε , Pr(m̂ 6= m0)

≤ Pr

(
5⋃
i=1

Ai

)
≤ Pr(A1) + Pr(A2) + Pr(A3|Ac1Ac2)

+Pr(A4|Ac1Ac2Ac3) + Pr(A5|Ac1Ac2) , (4.65)

for which we use the set equation
⋃5
i=1Ai = A1 ∪A2 ∪ (A3\A1A2)∪ (A4\A1A2A3)∪

(A5\A1A2).

To continue the analysis, we must bound each of the five terms in (4.65) separately.

We begin with A1. Using the individual random coding error exponents for the pre-

bottleneck hops, we can bound

Pr(A1) ≤ K
`∗−1∑
`=1

e−∆Erc,`(RI). (4.66)

From the code construction of the SRPOC S , we know that the probability of the

event A2 satisfies the following union bound.

Pr(A2) ≤
∑
m′ 6=m

K∏
k=1

Pr
(
i
[m′]
k = i

[m]
k

)
(4.67)

=
∑
m′ 6=m

K∏
k=1

( |M|
e∆RI

− 1

|M| − 1

)
(4.68)

= (|M| − 1)

(
|M|e−∆RI − 1

|M| − 1

)K
(4.69)

≤ (|M| − 1)e−K∆RI (4.70)

≤ e−K∆(RI−R), (4.71)

where (4.68) is due to the uniform random choices of of the permutation πk of S .

To continue, the following lemma provides a bound on the third term of (4.65).



105

Lemma 4.4.2 The third term of (4.65) satisfies

Pr(A3|Ac1Ac2) ≤ (1 + ς1(K))e−K∆α(C`∗−R), (4.72)

where the term ς1(K)→ 0 as K →∞.

For the proof refer to Appendix C.2.

For the fourth term of (4.65), we note that at the moment15 that the sequential

decision rule from (4.49) reaches the threshold ln 1/η, the conditional error probability

is upper bounded by η. Since we chose the target error probability η by (4.42), we

have

Pr(A4 |Ac1Ac2Ac3 ) ≤ η = e−K∆α(C`∗−R). (4.73)

Next, the following lemma provides a bound on the final term of (4.65).

Lemma 4.4.3 The fifth term of (4.65) satisfies

Pr(A5 |Ac1Ac2 ) ≤ K(1 + ς2(K))
L∑

`=`∗+1

e−∆Erc,`(RI),

(4.74)

where the term ς2(K)→ 0 as K →∞.

For the proof refer to Appendix C.5.

We now make the following observations.

1. Due to (4.55) and (4.66), we have

Pr(A1) ≤ e−K∆α(C`∗−R) (4.75)
15One needs to carefully argue whether there is a non-zero probability that the sequential value
in (4.49) never reaches the threshold, i.e., Pr

(
minm k̃m =∞

)
> 0. That is why we upper bound

Pr(A3| Ac
1Ac

2) separately from Pr(A4| Ac
1Ac

2Ac
3).



106

and

Pr(A5|Ac1Ac2) ≤ e−K∆α(C`∗−R) (4.76)

for sufficiently large ∆.

2. Due to (4.40) and (4.71), we have

Pr(A2) ≤ e−K∆α(C`∗−R) (4.77)

for sufficiently large ∆.

In other words, with the selected parameters, all of the terms in (4.65) decay expo-

nentially with the rate K∆α(C`∗ −R). Combining all terms, we can thus write

ε ≤ (5 + ς1(K))e−K∆α(C`∗−R) (4.78)

for sufficiently large ∆.

End-to-end Latency

We next must derive a bound on the expected end-to-end delay T for one message.

For this, we will first bound the expectation of the total duration of message reception

at the destination, denoted by D. This time, measured from the time slot in which

the first microblock arrives until the end of the last microblock, does not include the

amount of time it takes to relay all microblocks from the source to the destination. As

a result, D and T are directly related by T = D+(L−1)∆, where the incremental term

accounts for the time it takes for the first microblock to be relayed to the destination.

We then have

Lemma 4.4.4 The expected total duration of message reception satisfies

E{D} ≤ K (1 + ς3(K,∆)) ∆ (4.79)

where ς3(K,∆)→ 0 if we let ∆→∞ and then K →∞ in this order.
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For the proof refer to Appendix C.6.

Using this result, we can thus write

E{T} < [K (1 + ς3(K,∆)) + (L− 1)] ∆. (4.80)

Error Exponent and DAF

Using the results of the above analysis, we can bound the error exponent as

EΦ(R) = lim
∆→∞

− ln(ε)

E{T}

≥ lim
∆→∞

− ln
[
(5 + ς1(K))e−K∆α(C`∗−R)

]
[K (1 + ς3(K,∆)) + (L− 1)] ∆

=
K · α(C`∗ −R)

K (1 + lim∆→∞ ς3(K,∆)) + (L− 1)
. (4.81)

Since limK→∞ lim∆→∞ ς3(K,∆) = 0 and sinceK∗(R)→∞ when R→ C, by choosing

a sufficiently large R → C satisfying lim∆→∞ ς3(K,∆) ≤ 1, we have proven the

statement of Lemma 4.4.1.

4.5 Summary, Discussion, & Conclusion

In the beginning of this article, we made the case for approaching the analysis of

multi-hop line networks from a low-latency perspective. On the one hand, this idea

was motivated by the increased densification of modern communication networks and

the resulting increased number of hops a message must traverse on its way from the

originating source to the its destination. On the other hand, as the demand for

real-time and mission-critical services grows, designers of multi-hop communication

systems find themselves under increased pressure of lowering the end-to-end latency

of their networks.

One of the main goals of this work was to introduce a new metric for fair compar-

ison between the asymptotic delay performance of different transmission schemes. To
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this end, we introduced and discussed the motivation behind the delay amplification

factor in Section 4.2. This simple metric captures the error exponent penalty a sys-

tem suffers when communicating over L hops as compared to communicating over the

bottleneck hop, which provides a firm lower bound on the latency. We then showed

how the de-facto standard transmission scheme, consisting of block codes and decod-

ing and re-encoding at each relay, is strictly sub-optimal due to its linear growth in

delay. This came at no surprise, since the DF strategy was not designed with latency

in mind.

We then proceeded to introduce two novel transmission schemes designed with

DAF optimality in mind. For the open-loop feedback free setting, we showed that by

judicially combining (i) the concept of block Markov coding for relay channels, (ii)

concatenated coding for point-to-point channels, and (iii) the ML joint inner/outer

decoder, we can achieve the optimal DAF in bottleneck-terminated DMC line net-

works. This channel model is applicable to real-world scenarios in which the last hop

is of particular low quality, for example, line networks composed of microwave links

delivering a real-time service to a cellular device limited by a low-quality connection

to and from its base station.

For the one-time stop feedback setting, the scheme presented in Section 4.4 lifted

this restriction on the bottleneck position and can provably achieve DAF=1 for any

line network. The design judicially combines several new components: (i) block

Markov coding for microblocks; (ii) use of a rateless code as the outer code; (iii)

sequential probability ratio test at the bottleneck receiver based on the ML joint

inner/outer decoder; (iv) the bottleneck receiver sending correction packets; (v) the

carefully chosen inner and outer code rates and other system parameters to bal-

ance the error probabilities within the line network; (vi) carefully incorporating the

network-layer concepts of the timer Kmax and the correction flag Ξ into the physical

-layer code design. Since the one-time stop feedback is commonly used in real-world

systems, the proposed scheme could have broad impact on low-latency communication

systems.
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Finally, the results of this paper are intended to provide a theoretical background

and insight for designers of low-latency communication networks. In this regard,

one of the key conclusions gained from this work is the fact that carefully designed

transmission schemes utilizing microblocks and concatenated codes can be used to

comply to the stringent low-latency requirements of modern networks in ways that

simple, more intuitive schemes like Decode-&-Forward cannot.
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5. CONCLUSION

This dissertation presented three topics related to the areas of beamforming and

channel coding of multi-node wireless networks. In chapter 2 we presented a set

of novel beam alignment techniques for beamformed MIMO channels. We provided

theoretical insights about the convergence of our algorithms and illustrated their

performance using numerical simulations. In chapter 3 we presented a novel channel

and Doppler shift estimation algorithm for aerial communication links. Here, we

again developed a theoretical foundation before demonstrating the viability of our

approach using numerical simulations. Finally, in chapter 4 we presented a novel

analysis framework and transmission schemes for low-latency communication over

multi-hop relay channels. This line of work will aid in enabling future low-latency

real-time control and sensing applications.

Innovations like the transmission schemes and signal processing techniques dis-

cussed in this dissertation will continue to push the technological boundaries en-

abling network operators worldwide to deliver critical services and infrastructure to

their subscribers. Our networks are thus in a continuous cycle of evolution. As our

technological capabilities improve, the demand for wireless systems increases. As

this demand increases, engineers will continue to improve our networks’ underlying

technologies.

Of course, the topics of this dissertation represent merely a tiny sliver of the on-

going innovation in this vast field. In this sense, our work is truly "standing on the

shoulder of giants". In this spirit, we would like to leave this work with the reminder

that wireless is and will be for the foreseeable future the most popular and most

accessible means of communication and connection. It is our belief that connecting

people across the globe provides a net benefit to the entirety of humanity. As re-
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searchers and engineers, we thus must continue to push forward and drive progress

and innovation in this fundamental technology.



APPENDICES
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A. PROOFS FOR CHAPTER 2

A.1 Proof of Theorem 2.3.1

The derivation of (2.16) mirrors (2.15) and thus it suffices to establish (2.15).

Transposing (2.6) at time k − 1, we get

YT
e,k−1 =

√
ρe Z∗k−1H + NT

e,k−1. (A.1)

Since the columns of H are i.i.d. complex Gaussian random vectors, we focus on the

first column without loss in generality. Let this first column of H be denoted as h1

and let its estimator be ĥ1. With ỹ denoting the first column of YT
e,k−1, we have

ỹ =
√
ρe Z∗k−1h1 + ñ, (A.2)

where ñ is the first column of NT
e,k−1 with i.i.d. complex Gaussian entries. The

estimator of h1 is given as

ĥ1 =

(
Z∗k−1

)†
ỹ

√
ρe

(A.3)

with error covariance matrix Ce,k, defined as Ce,k , E
{(

h1 − ĥ1

)(
h1 − ĥ1

)∗}
. It

can be seen that

h1 − ĥ1 = h1 −
(
Z∗k−1

)†
√
ρe

(√
ρeZ

∗
k−1h1 + ñ

)
(A.4)

=
−
(
Z∗k−1

)†
√
ρe

ñ (A.5)
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and

Ce,k =

(
Z∗k−1

)†
√
ρe

E{ññ∗} (Zk−1)†
√
ρe

(A.6)

=
1

ρe

(
Zk−1Z

∗
k−1

)−1
Zk−1Z

∗
k−1

(
Zk−1Z

∗
k−1

)−1 (A.7)

=
1

ρe

(
Zk−1Z

∗
k−1

)−1
. (A.8)

Note that the above equation holds only under the i.i.d. H assumption and for

k ≥Mr. �

A.2 Proof of Theorem 2.3.2

Without loss in generality, we can assume that ρe = ρo = 1. From (2.10), we have

ĤBatch
o,k = Yo,kF

∗
kCo,k (A.9)

= Yo,kF
∗
k (FkF

∗
k)
−1 (A.10)

=
[
Yo,k−1 yo[k]

]F∗k−1

f∗[k]

[Fk−1 f [k]
]F∗k−1

f∗[k]

−1

(A.11)

=
[
Yo,k−1F

∗
k−1 + yo[k]f∗[k]

] (
Fk−1F

∗
k−1 + f [k]f∗[k]

)−1
. (A.12)

Substituting (2.16) and applying the Woodbury matrix identity [49] to the second

term, we get

Co,k = Co,k−1 −
Co,k−1f [k]f∗[k]Co,k−1

1 + f∗[k]Co,k−1f [k]
. (A.13)

We now let

Ko,k =
f∗[k]Co,k−1

1 + f∗[k]Co,k−1f [k]
(A.14)
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and write

ĤBatch
o,k = Yo,k−1F

∗
k−1Co,k−1 −Yo,k−1F

∗
k−1Co,k−1f [k]Ko,k

+ yo[k]f∗[k]Co,k−1 − yo[k]f∗[k]Co,k−1f [k]Ko,k. (A.15)

Now, since

yo[k]f∗[k]Co,k−1 = yo[k] (1 + f∗[k]Co,k−1f [k]) Ko,k, (A.16)

we get

ĤBatch
o,k = Ĥo,k−1 (I− f [k]Ko,k) + yo[k]Ko,k (A.17)

= Ĥo,k−1 +
(
yo[k]− Ĥo,k−1f [k]

)
Ko,k (A.18)

= ĤSeq
o,k . (A.19)

�

A.3 Proof of Theorem 2.3.3

Along the same lines of the proof of Theorem 2.3.2, let us assume that ρe = ρo = 1.

Suppose that node 2 has access toMt previous observations at time slot k = 0, indexed

from k = −(Mt − 1) to k = 0. Using this data, node 2 could thus compute the batch

estimate at time slot k = 0, given as

ĤBatch
o,0 = Yo,0F

†
0 = Yo,0F

∗
0 (F0F

∗
0)−1 , (A.20)

where

F0 =
[
f [−(Mt − 1)] f [−Mt] . . . f [0]

]
(A.21)
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and

Yo,0 =
[
yo[−(Mt − 1)] yo[−Mt] . . . yo[0]

]
. (A.22)

Using Theorem 2.3.1, we note that the covariance matrix of each column of this

estimated matrix is given as

Co,0 = (F0F
∗
0)−1 . (A.23)

Applying the result of Theorem 2.3.2, we note that for any k > 0, a sequential

least-squares estimator would be identical to the batch estimator using all of the data

from k = −(Mt − 1) up to k. We can thus write

ĤSeq
o,k = ĤBatch

o,k = Yo,kF
†
k (A.24)

=

 k∑
n=−(Mt−1)

yo[n]f∗[n]

 k∑
n=−(Mt−1)

f [n]f∗[n]

−1

, (A.25)

where we have rewritten ĤBatch
o,k in terms of individual vector outer products. After

separating the hypothetical data from k = −(Mt−1) to k = 0 from the data starting

at k = 1, we have for the sequential estimator

ĤSeq
o,k =

 0∑
n=−(Mt−1)

yo[n]f∗[n] +
k∑

n=1

yo[n]f∗[n]


·

 0∑
n=−(Mt−1)

f [n]f∗[n] +
k∑

n=1

f [n]f∗[n]

−1

(A.26)

= (Yo,0F
∗
0 + Yo,kF

∗
k) (F0F

∗
0 + FkF

∗
k)
−1 (A.27)

=
(
Ĥo,0C

−1
o,0 + Yo,kF

∗
k

) (
C−1
o,0 + FkF

∗
k

)−1
. (A.28)
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Upon further inspection of (A.26), we observe that for any k > Mt, the product

FkF
∗
k is invertible and we can let C−1

o,0 arbitrarily approach the matrix of all zeros.

This can be accomplished by choosing Co,0 = αI. If Co,0 is indeed chosen this way,

(A.26) loses its dependence on the previous data from the supposition and we can start

the sequential iteration at k = 1. For sufficiently large α, the sequential estimator

will approach the batch estimator for any k > Mt. �

A.4 Proof of Lemma 2.4.1

Under Hypothesis 3, the state transition matrix for a real, diagonal channel matrix

H is given as

Sk−1 =

 I
√
ρβk−1 ·H

√
ραk−1 ·H I

 (A.29)

since H = H∗ = diag ([h1, · · · , hM ]). Note that the size of Sk−1 is 2M × 2M . The

characteristic equation of Sk−1 is given as

χ(Sk−1, λ) = det (Sk−1 − λI) (A.30)

= det

 I− λI
√
ρβk−1 ·H

√
ραk−1 ·H I− λI

 . (A.31)

By using the Schur complement lemma [49], this equation can be written as

χ(Sk−1, λ) = det
(
I− λI

)
·

det
(
I− λI− ραk−1βk−1 ·H (I− λI)−1 H

)
. (A.32)
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Since all of the matrices involved are diagonal, we can write the determinants as the

product of the diagonal elements, resulting in

χ(Sk−1, λ) = (1− λ)2M
2M∏
i=1

{
(1− λ)− ραk−1βk−1 · h2

i

1− λ

}
(A.33)

=
2M∏
i=1

{
(1− λ)2 − ραk−1βk−1 · h2

i

}
, (A.34)

which has 2M roots (denoted as λ1, · · · , λ2M) of the form 1 ±
√
ραk−1βk−1 · hi for

i = 1, . . . ,M . We can thus write the eigenvalue matrix Λk−1 as

Λk−1 = diag



λ1

...

λ2M


 (A.35)

= diag





1 +
√
ραk−1βk−1 · h1

...

1 +
√
ραk−1βk−1 · hM

1−
√
ραk−1βk−1 · h1

...

1−
√
ραk−1βk−1 · hM




. (A.36)

Solving for the 2M eigenvectors (i.e. solving Sk−1ui = λiui for i = 1, . . . , 2M)

and normalizing each column to unit-norm finally results in the following eigenvector

matrix:

Uk−1 =

√ βk−1

αk−1+βk−1
I

√
βk−1

αk−1+βk−1
I√

αk−1

αk−1+βk−1
I −

√
αk−1

αk−1+βk−1
I

 . (A.37)

Note that Uk−1 is not unitary in general and Sk−1 can be written as Sk−1 = Uk−1 ·

Λk−1 · (Uk−1)−1. �
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A.5 Proof of Lemma 2.4.2

Let H = {Hm,n}, f [i] = [fi,1, · · · , fi,M ]T and z[i] = [zi,1, · · · , zi,M ]T. Also, let

ne[i] = [ne,1[i], · · · ,ne,M [i]]T and no[i] = [no,1[i], · · · ,no,M [i]]T. Now observe that

1

α2
k

= ‖se[k]‖2
2 =

∥∥∥∥∥
k∑
i=0

ye[i]

∥∥∥∥∥
2

2

(A.38)

=
M∑
n=1

∣∣∣∣∣√ρ
M∑
m=1

Hm,n

k∑
i=0

zi,m +
k∑
i=0

ne,n[i]

∣∣∣∣∣
2

. (A.39)

Similarly, we have

1

β2
k

=
M∑
m=1

∣∣∣∣∣√ρ
M∑
n=1

Hm,n

k∑
i=0

fi,n +
k∑
i=0

no,m[i]

∣∣∣∣∣
2

. (A.40)

From (A.38) and (A.40), we have the following simplifications.

1

ρ · α2
k

(a)
≈

M∑
n=1

∣∣∣∣∣
M∑
m=1

Hm,n

k∑
i=0

zi,m

∣∣∣∣∣
2

(A.41)

(b)
≈ |Ck|2 ·

M∑
n=1

∣∣∣∣∣
M∑
m=1

Hm,n

∣∣∣∣∣
2

(A.42)

(c)
= |Ck|2 · Tr(HH∗) (A.43)

where (a), (b) and (c) follow from Hypotheses 1-3, respectively. Similarly, we have

1

ρ · β2
k

≈ |Ck|2 · Tr(HH∗). (A.44)

Thus, when Hypotheses 1-3 hold, αk ≈ βk as k increases. �
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A.6 Proof of Theorem 2.4.1

When Hypotheses 1-3 hold, from Lemma 2.4.2, we have that αk ≈ βk and Uk−1 ≈

Ũ. Thus, the state-space model in (2.35) can be written as

s[k] =

Ũ

∏k−1
i=0

(
I +
√
ραiH

)
0

0
∏k−1

i=0

(
I−√ραiH

)
 Ũ∗s[0]

+ Ũ
k∑
`=1

∏k−1
j=`

(
I +
√
ραjH

)
0

0
∏k−1

j=`

(
I−√ραjH

)
 Ũ∗n[`]. (A.45)

Let us now consider the 2M × 2M -dimensional diagonal matrix Λ̃k−1,0.

Λ̃k−1,0 =

∏k−1
i=0

(
I +
√
ραiH

)
0

0
∏k−1

i=0

(
I−√ραiH

)
 . (A.46)

From Hypothesis 3, since the diagonal entries of H are arranged in non-increasing

order and h1 > h2, we have

∏k−1
i=0 (1 +

√
ραih1)∏k−1

i=0 (1 +
√
ραih`)

≈
(
h1

h`

)k
→∞ as k →∞ (A.47)

for ` = 2, · · · ,M . Similarly, we have

∏k−1
i=0 (1−√ραih1)∏k−1
i=0 (1−√ραih`)

≈
(
h1

h`

)k
→∞ as k →∞ (A.48)

for ` = 2, · · · ,M and

∏k−1
i=0 (1 +

√
ραih1)∏k−1

i=0 (1−√ραih1)
≈ (−1)k as k →∞. (A.49)
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Thus, the diagonal entries of Λ̃k−1,0 are dominated by (as k increases) the first entry,

which is denoted as

λ1,0 ≈ (
√
ρh1)k ·

k∏
i=0

αi, (A.50)

and the (M + 1)-th entry, which is denoted as

λM+1,0 ≈ (−√ρh1)k ·
k∏
i=0

αi. (A.51)

Similarly, we can consider the diagonal matrices Λ̃k−1,` for ` = 1, · · · , k − 1:

Λ̃k−1,` =

∏k−1
i=`

(
I +
√
ραiH

)
0

0
∏k−1

i=`

(
I−√ραiH

)
 . (A.52)

Following the same logic as before, these matrices are also dominated by the first

entry, which is denoted as

λ1,` ≈ (
√
ρh1)k−` ·

k−1∏
i=`

αi, (A.53)

and the (M + 1)th entry, which is denoted as

λM+1,` ≈ (−√ρh1)k−` ·
k−1∏
i=`

αi. (A.54)

With s[0] = [s1(0), · · · , s2M(0)]T, s[k] = [s1(k), · · · , s2M(k)]T, and n[`] = [n1(`), · · · , n2M(`)]T,

it is straightforward to see that as k increases and for ρ� 1, we have

s1(k)(√
ρh1

)k ·∏k−1
i=0 αi

→

 s1(0) if k is even

sM+1(0) if k is odd
(A.55)

sM+1(k)(√
ρh1

)k ·∏k−1
i=0 αi

→

 sM+1(0) if k is even

s1(0) if k is odd.
(A.56)
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And we also have s`(k)

(√ρh1)
k
·
∏k−1

i=0 αi

→ 0 for all ` ∈ {2, · · · ,M,M + 2, · · · , 2M}. Thus,

s[k]→ sopt as k increases. �
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B. ALGORITHMS FOR CHAPTER 2

B.1 SLS Estimator (Optimal)

Algorithm B.1 SLS Estimator (Optimal)
Initialize f [0] as a complex random unit-norm vector.
for all k = 1, . . . , kmax do

Node 2 receives yo[k − 1] as in (2.3) and gets f [k − 1] from Node 1
if k ≤ rank[H] then

Node 2 estimates Ĥo,k−1 as in (2.12)
else if k > rank[H] then

Node 2 estimates Ĥo,k−1 as in (2.20)
end if
Node 2 computes z[k − 1] as in (2.14)

Node 1 receives ye[k − 1] as in (2.4) and gets z[k − 1] from Node 2
if k ≤ rank[H] then

Node 1 estimates Ĥe,k as in (2.11)
else if k > rank[H] then

Node 1 estimates Ĥe,k as in (2.17)
end if
Node 1 computes f [k] as in (2.13)

end for
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B.2 SLS Estimator (Approximate)

Algorithm B.2 SLS Estimator (Suboptimal)

Initialize f [0] as a complex random unit-norm vector and obtain Ĥo,0, z[0], Ĥe,1

and f [1] as in (2.23)-(2.26).
Initialize Co,0 = Ce,1 = αI for an appropriate α.
for all k = 1, . . . , kmax do

Node 2 receives yo[k] as in (2.3) and gets f [k] from Node 1
Node 2 estimates Ĥo,k as in (2.20)
Node 2 computes z[k] as in (2.14)

Node 1 receives ye[k] as in (2.4) and gets z[k] from Node 2
Node 1 estimates Ĥe,k+1 as in (2.17)
Node 1 computes f [k + 1] as in (2.13)

end for

B.3 Summed Power Method

Algorithm B.3 Summed Power Method
Initialize f [0] and z[0] as complex random unit-norm vectors.
for all k = 1, . . . , kmax do

Node 2 receives yo[k − 1] as in (2.3)
Node 2 computes z[k] as in (2.29)

Node 1 receives ye[k − 1] as in (2.4)
Node 1 computes f [k] as in (2.27)

end for
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B.4 LISP Method

Algorithm B.4 Least-squares Initialized Summed Power Method

Initialize f [0] as a complex random unit-norm vector and obtain Ĥo,0, z[0], Ĥe,1

and f [1] as in (2.23)-(2.26).
Initialize Co,0 = Ce,1 = αI for an appropriate α.
for all k = 1, . . . , kmax do

if k ≤ kswitch then
Node 2 receives yo[k] as in (2.3) and gets f [k] from Node 1
Node 2 estimates Ĥo,k as in (2.20)
Node 2 computes z[k] as in (2.14)

else if k > kswitch then
Node 2 receives yo[k − 1] as in (2.3)
Node 2 computes z[k] as in (2.29)

end if

if k ≤ kswitch − 1 then
Node 1 receives ye[k] as in (2.4) and gets z[k] from Node 2
Node 1 estimates Ĥe,k+1 as in (2.17)
Node 1 computes f [k + 1] as in (2.13)

else if k > kswitch − 1 then
Node 1 receives ye[k] as in (2.4)
Node 1 computes f [k + 1] as in (2.27)

end if
end for
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C. PROOFS FOR CHAPTER 4

C.1 Proof of Lemma 4.2.1

The proof in this section is reproduced from [142]. We first prove ΓDF ≤
∑

`
C`∗
C`

.

To this end, we will construct explicitly the Tdur, τ1 to τL and analyze its performance,

assuming random coding for each hop.

For any arbitrarily given δ > 0, we define δ`∗ = δ and for any ` 6= `∗, we define

δ` , inf

{
x > 0 :

Erc,` (C` − x)

C` − x
≥ 2 · Erc,`∗ (C`∗ − δ)

C`∗ − δ

}
(C.1)

It is well known that any random coding error exponent must satisfy Erc,` (C` − x)→

0 when x → 0 (including ` = `∗). Therefore, we have δ` → 0 for all ` when δ → 0.

We then choose t`, the active duration of the `-th hop, as

t` =
ln(|M|)
C` − δ`

, ∀` ∈ [1, L]. (C.2)

With random coding on each hop, the description of the DF scheme is thus complete,

once we fix the values of |M| and δ. We now analyze the DAF value under this

construction.
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Since δ` → 0 if δ → 0, we have `∗∗ = argmax`{t`} = `∗ = argmin`{C`} when

δ is sufficiently small. By the discussion in Sec. 4.2.4, Tdur = t`∗∗ = t`∗ . The tuple

(T,R, ε) of this DF scheme thus satisfies

T =
L∑
`=1

t` = ln(|M|) ·
L∑
`=1

1

C` − δ`
(C.3)

R =
ln(|M|)
Tdur

=
ln(|M|)
t`∗

= C`∗ − δ`∗ = C − δ (C.4)

ε ≤
L∑
`=1

ε` ≤
L∑
`=1

exp

{
−t`Erc,`

(
ln(|M|)

t`

)}
(C.5)

=
L∑
`=1

exp

{
− ln(|M|)
C` − δ`

Erc,` (C` − δ`)
}

(C.6)

≤ exp

{
− ln(|M|)
C`∗ − δ`∗

Erc,`∗ (C`∗ − δ`∗)
}

+(L− 1) exp

{
− ln(|M|)
C`∗ − δ`∗

2 · Erc,`∗ (C`∗ − δ`∗)
}

(C.7)

where (C.3) follows from the construction of t`; (C.4) follows from t`∗∗ = t`∗ ; (C.5)

follows from the random coding reliability function; and (C.7) follows from the con-

struction of δ` in (C.1).

Letting |M| → ∞, by (4.9) we have

EDF(R) = EDF(C`∗ − δ`∗)

≥
1

C`∗−δ`∗∑L
`=1

1
C`−δ`

· Erc,`∗ (C`∗ − δ`∗) . (C.8)

Finally, letting δ → 0, by (4.10) and (C.8), we have

ΓDF ≤ lim
δ→0

∑L
`=1

1
C`−δ`

1
C`∗−δ`∗

=
L∑
`=1

C`∗

C`
. (C.9)

Namely, the above DF construction attains DAF ≤
∑L

`=1
C`∗
C`

.
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We now prove that regardless how one chooses (|M|, t1, · · · , tL), the DAF is always

lower bounded by
∑L

`=1
C`∗
C`

. Suppose a given choice of (|M|, t1, · · · , tL) attains the

tuple (T,R, ε). Assuming sufficiently small ε, we must have the following inequalities.

t` ≥
ln(|M|)
C`

, ∀` ∈ [1, L] (C.10)

T =
L∑
`=1

t` ≥
L∑
`=1

ln(|M|)
C`

(C.11)

R ,
ln(|M|)
Tdur

=
ln(|M|)
max` t`

≤ ln(|M|)
t`∗

≤ C (C.12)

ε ≥ ε`∗ ≥ exp

{
−t`∗Esp,`∗

(
ln(|M|)
t`∗

)
− o(t`∗)

}
(C.13)

≥ exp {−t`∗Esp,`∗(R)− o(t`∗)} (C.14)

where we have (C.10) since in order to achieve small ε, the coding rate per hop ln(|M|)
t`

must be less than the capacity C`; (C.11) follows from (C.10); (C.12) follows from the

definition of Tdur; (C.13) follows from the fact that the end-to-end error rate is lower

bounded by the error rate of the `∗-th hop, which is lower bounded later by the sphere

packing bound; and (C.14) follows from (C.12) and Esp,`∗ (·) being non-increasing.

By (C.14) and (C.11), we have

− ln(ε)

T
≤ t`∗Erc,`∗ (R) + o(t`∗)∑L

`=1
ln(|M|)
C`

⇐⇒

Erc,`∗ (R)
− ln(ε)
T

≥
∑L

`=1
ln(|M|)
C`

t`∗ + o(t`∗)
(C.15)

where we use the fact that Esp,`∗(R) = Erc,`∗ (R) when R is sufficiently close to C. We

note that by (C.12), we always have ln(|M|)
C
≤ t`∗ ≤ ln(|M|)

R
. By letting |M| → ∞ and

then R→ C, the left-hand side of (C.15) becomes the DAF and the t`∗ in the right-

hand side becomes ln(|M|)
C`∗

. We have thus proven DAF ≥
∑L

`=1
C`∗
C`

for any possible

choices of (|M|, t1, · · · , tL) and any possible codebook for each hop.
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C.2 Proof of Lemma 4.4.2

Let qk = minm k̃m, and note that

Pr
(
A3

∣∣∣Ac1Ac2) = Pr
(

qk ≥ Kmax

∣∣∣Ac1Ac2) . (C.16)

For notational simplicity, we denote the expectation conditioned on the event Ac1Ac2
as E∗

{
·
}
, E

{
·
∣∣∣Ac1Ac2}. Using Markov’s inequality, we then have

Pr
(

qk ≥ Kmax

∣∣∣Ac1Ac2) ≤ E∗

{
qk
}

Kmax
. (C.17)

To bound E∗
{

qk
}
, we first note that the definition of Zm(k) in (4.45) holds only

for the range of k ≥ 1. To facilitate our discussion, we define

Zm(0) = −K∆R + ln
1

1− e−K∆R
> −K∆R

. Namely, before we receive any observations (i.e., k = 0), the LLR value is computed

using the uniform prior P (m) = e−K∆R overM = [1, eK∆R]. We then introduce the

following Lemmas.

Lemma C.2.1 For any fixed ∆, there exists a constant B such that

|Zm(k + 1)− Zm(k)| < ∆ ·B

with probability one regardless of the values of m ∈M and k ≥ 0.

For the proof of this Lemma, see Appendix C.3.

Lemma C.2.2 For sufficiently large but fixed ∆ and assuming m0 is the transmitted

message, the random process

Zm0(k)− k∆ (R + α(C`∗−R)) (C.18)
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is a submartingale with respect to the time index k ≥ 0.

For the proof of this Lemma, see Appendix C.4.

We then notice that

Pr
(
Zm(j) < ln (1/η)

)
= Pr

(
Zm(j) < K∆α(C`∗ −R)

)
= Pr

(
Zm(j)− j∆(R + α(C`∗ −R))− Zm(0) < (K − j)∆(R + α(C`∗ −R))

)
≤ c1 ≤ e−jc2 (C.19)

for some positive constants c1, c2 > 0, where (C.19) is by applying Lemma C.2.1 and

Azuma’s inequality to the submartingale Zm(j) − j∆ (R + α(C`∗−R)) from Lemma

C.2.2. We then have

E∗

{
k̃m0

}
=
∞∑
j=0

Pr
(
k̃m > j

)
(C.20)

≤
∞∑
j=1

Pr
(
Zm(j) < ln(1/η)

)
<∞. (C.21)

Namely, the stopping time k̃m0 has finite expectation. With bounded E∗
{
k̃m0

}
and

the globally bounded variation established in Lemma C.2.1, we can then apply Doob’s

optional stopping theorem and get

E∗

{
Zm(k̃m0)− k̃m0∆ (R + α(C`∗−R))

}
≥ E∗{Zm(0)}

≥ −K∆R

which implies

E∗

{
k̃m0

}
≤
E∗

{
Zm(k̃m0)

}
+K∆R

∆(R + α(C`∗−R))
. (C.22)
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We then note that

E∗

{
Zm0(k̃m0)

}
≤ E∗

{
Zm0(k̃m0 − 1)

}
+ ∆ ·B (C.23)

≤ K∆α(C`∗−R) + ∆ ·B, (C.24)

where the first inequality is due to Lemma C.2.1 and the second inequality is because

at time k = k̃m0 − 1, the term Zm0(k) has not hit the threshold K∆α(C`∗ −R) yet.

We then note that since qk ≤ k̃m0 , we have E∗
{

qk
}
≤ E∗

{
k̃m0

}
. Then, after

combining (C.22) and (C.24), we get

E∗

{
qk
}
≤ K +

B

R + α(C`∗−R)
. (C.25)

Finally, after combining (C.25) and (C.17), we get

Pr
(
A3

∣∣∣Ac1Ac2) ≤ (1 + ς1(K))e−K∆α(C`∗−R), (C.26)

where the term ς1(K) = B/[K(R + α(C`∗ −R))] goes to zero as K →∞. �

C.3 Proof of Lemma C.2.1

Recall (4.45) and note that we can write

Zm(k + 1) = ln


Pr

([
~Y`∗
]k

1

∣∣∣∣m) · Pr

(
~Y`∗ [k + `∗]

∣∣∣x(`∗)

k+1,i
[m]
k+1

)
∑
m′ 6=m

Pr

([
~Y`∗
]k

1

∣∣∣∣m′) · Pr

(
~Y`∗ [k + `∗]

∣∣∣x(`∗)

k+1,i
[m′]
k+1

)
 , (C.27)

where we recall that ~Y`∗ [k+ `∗] denotes the channel output symbols of the (k+ 1)-th

microblock at the bottleneck receiver and we slightly abuse notation for

Pr

(
~Y`∗ [k + `∗]

∣∣∣x(`∗)

k+1,i
[m]
k+1

)
= Pr

(
~Y`∗ [k + `∗]

∣∣∣ ~X`∗ [k + `∗] = x
(`∗)

k+1,i
[m]
k+1

)
. (C.28)
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Next, we define

pmin , min
X∈X`∗ ,Y ∈Y`∗

P`∗(Y |X) (C.29)

and

pmax , max
X∈X`∗ ,Y ∈Y`∗

P`∗(Y |X). (C.30)

Since X`∗ and Y`∗ are finite and P`(y|x) > 0 for all (` ∈ [1, L], x ∈ X`, y ∈ Y`), we

know that pmin and pmax exist and are > 0.

We then notice that for any fixed ∆, for any choice of m, and for any micro-block

index k, we have

(pmin)
∆ ≤ Pr

(
~Y`∗ [k + `∗]

∣∣∣x(`∗)

k+1,i
[m]
k+1

)
≤ (pmax)

∆. (C.31)

We thus have

Zm(k + 1) ≤ ln


(
pmax

pmin

)∆

·
Pr

([
~Y`∗
]k

1

∣∣∣∣m)∑
m′ 6=m

Pr

([
~Y`∗
]k

1

∣∣∣∣m′)


= ∆ ln

(
pmax

pmin

)
+ Zm(k) (C.32)

and similarly

Zm(k + 1) ≥ ∆ ln

(
pmin

pmax

)
+ Zm(k). (C.33)

Applying the bounds (C.32) and (C.33) to the absolute difference |Zm(k+1)−Zm(k)|,

we get

|Zm(k + 1)− Zm(k)| ≤ ∆ ·
∣∣∣∣ln pmax

pmin

∣∣∣∣ , ∆ ·B, (C.34)
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which completes the proof. �

C.4 Proof of Lemma C.2.2

We first define the filtration Fk on which the submartingale is defined. Let Yk ,[
~Y`∗
]k

1
denote the history of all observed channel outputs at the bottleneck receiver

after the k-th microblock, let [π]k denote all permutations π1 to πk for the outer code,

and let [X(`∗)]k denote all existing inner codebooks until time k. The filtration Fk is

then generated by the tuple (Yk, [π]k, [X(`∗)]k). To prove Lemma C.2.2, we thus have

to prove (i) E{|Zm0(k)|} <∞ and (ii)

E∗

{
Zm0(k + 1)− Zm0(k)

∣∣∣Fk} ≥ ∆ (R + α(C`∗ −R)) . (C.35)

The finite expectation can be quickly proven by iteratively applying Lemma C.2.1.

To prove the second statement, let yk+1 , ~Y`∗ [k + `∗] denote the channel outputs of

the bottleneck hop corresponding to only the (k + 1)-th microblock. Without loss

of generality, we assume that the transmitted message m0 results in i[m0]
k+1 = 1 based

on the randomly chosen permutation πk+1 from (4.43). This can be achieved by

renaming whatever the output i[m0]
k+1 is as the first symbol. For ease of exposition, for

the remainder of this section, we drop the explicit mention of the (`∗)-th hop when

discussing the microblock codewords, i.e., we will set x
(`∗)
k,i , xk,i for the rest of this

section. We continue by writing

Zm0(k + 1) = ln

 Pr
(
Yk
∣∣∣m0

)
· Pr
(
yk+1

∣∣∣xk+1,1

)
∑
m6=m0

Pr
(
Yk
∣∣∣m) · Pr

(
yk+1

∣∣∣x
k+1,i

[m]
k+1

)
 . (C.36)
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The difference between (C.36) and (4.45) thus becomes

Zm0(k + 1)− Zm0(k) = ln



( ∑
m 6=m0

Pr
(
Yk
∣∣∣m)) · Pr

(
yk+1

∣∣∣xk+1,1

)
∑
m6=m0

Pr
(
Yk
∣∣∣m) · Pr

(
yk+1

∣∣∣x
k+1,i

[m]
k+1

)
 . (C.37)

Since our scheme is based on a concatenated inner/outer code construction, the

corresponding analysis, as will be seen, is much more involved than the single random

code construction. Specifically, we notice that the above difference depends on the

realizations of the following sets of random variables.

(a) With the inner/outer code construction, any message m ∈ M will be encoded

as i[m]
k+1 ∈ [1, e∆RI ] based on the randomly chosen permutation πk+1, see the

definition in (4.43). The first random variable to consider is thus the random

outer code permutation πk+1.

(b) For any outer code message i ∈ [1, e∆RI ], the corresponding inner codeword xk,i

is chosen randomly. The second set of random variables is the random choices

of xk,i for all i ∈ [2, e∆RI ]. Namely, the choices of inner codewords that are

not selected by the actual transmitted message m0. (Recall that we assume

i
[m0]
k+1 = 1.)

(c) The (k + 1)-th microblock codeword xk+1,1, i.e., the codeword choice of the

transmitted outer code message i[m0]
k+1 .

(d) The channel output symbols corresponding to the (k + 1)-th microblock yk+1

when the input codeword is xk+1,1.

In the following, we take a sequence of conditional expectations until we reach the

desired conditional expectation in (C.49).

Our first step is to take the expectation over the randomness in (b) while condi-

tioning on (a), (c), and (d). Specifically, we note that ln
(
a
x

)
is a convex function of x
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and apply Jensen’s inequality to (C.37) while conditioning on (a), (c), and (d). This

leads to the bound

E∗

{
Zm0(k + 1)− Zm0(k)

∣∣∣xk+1,1, πk+1,yk+1,Fk
}

≥ ln



( ∑
m 6=m0

Pr
(
Yk
∣∣∣m))Pr

(
yk+1

∣∣∣xk+1,1

)
∑
m6=m0

Pr
(
Yk
∣∣∣m)E∗{Pr

(
yk+1

∣∣∣x
k+1,i

[m]
k+1

) ∣∣∣xk+1,1, πk+1,yk+1

}
 ,(C.38)

which uses the fact that given xk+1,1, πk+1, yk+1, and Fk, the terms Pr
(
Yk
∣∣m) and

Pr
(
yk+1

∣∣xk+1,1

)
become deterministic.

To continue, we define the set

M[m0]
k+1 =

{
m ∈M : i

[m]
k+1 = i

[m0]
k+1

}
, (C.39)

which contains all outer code messages m that result in the same microblock message

i
[m]
k+1 for the (k + 1)-th microblock as that of the transmitted message m0. It is clear

thatM[m0]
k+1 is a function of the permutation πk+1.

Now, continuing from (C.38), we observe the following. First, for all messages

m ∈M[m0]
k+1 , since the microblock messages are equal, the microblock codewords must

be equal too and thus

E∗

{
Pr
(
yk+1

∣∣∣x
k+1,i

[m]
k+1

) ∣∣∣xk+1,1, πk+1,yk+1

}
= Pr

(
yk+1

∣∣∣xk+1,1

)
(C.40)

for all m ∈ M[m0]
k+1 . Second, for all messages m 6∈ M[m0]

k+1 , taking the expectation over

the distribution of the microblock codewords gives the marginal distribution, and

E∗

{
Pr
(
yk+1

∣∣∣x
k+1,i

[m]
k+1

) ∣∣∣xk+1,1, πk+1,yk+1

}
= Pr

(
yk+1

)
(C.41)
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for allm 6∈ M[m0]
k+1 . Using these observations, (C.38) can be rewritten in the equivalent

form

E∗

{
Zm0(k + 1)− Zm0(k)

∣∣∣xk+1,1, πk+1,yk+1,Fk
}
≥

ln



( ∑
m 6=m0

Pr
(
Yk
∣∣∣m))Pr

(
yk+1

∣∣∣xk+1,1

)
∑
m 6=m0

Pr
(
Yk
∣∣∣m)(1M[m0]

k+1 \{m0}
(m)Pr

(
yk+1

∣∣∣xk+1,1

)
+ 1M\M[m0]

k+1

(m)Pr
(
yk+1

))
 ,

(C.42)

where the indicator function 1A(x) is defined as in (4.59).

By further averaging over πk+1 and applying Jensen’s inequality again, we obtain

the bound

E∗

{
Zm0(k + 1)− Zm0(k)

∣∣∣xk+1,1,yk+1,Fk
}

≥ ln



( ∑
m 6=m0

Pr
(
Yk
∣∣∣m))Pr

(
yk+1

∣∣∣xk+1,1

)
∑
m 6=m0

Pr
(
Yk
∣∣∣m)(p1 · Pr

(
yk+1

∣∣∣xk+1,1

)
+ p2 · Pr

(
yk+1

))
 , (C.43)

where p1 , Pr
(
m ∈M[m0]

k+1\{m0}
)
and p2 , Pr

(
m 6∈ M[m0]

k+1

)
. This simplifies to

E∗

{
Zm0(k + 1)− Zm0(k)

∣∣∣xk+1,1,yk+1,Fk
}

≥ ln

 Pr
(
yk+1

∣∣∣xk+1,1

)
|M|e−∆RI − 1

|M| − 1
· Pr
(
yk+1

∣∣∣xk+1,1

)
+
|M| − |M|e−∆RI

|M| − 1
· Pr
(
yk+1

)
(C.44)

by noting that regardless of the value of m, we always have p1 = |M|e−∆RI−1
|M|−1

and

p2 = |M|−|M|e−∆RI

|M|−1
due to the uniform random permutation of πk+1.
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To further bound (C.44), we notice that by the asymptotic equipartition property

of yk+1 and xk+1,1, there exists a sufficiently large ∆ for any ε > 0 such that the event

Pr
(
yk+1

)
> e−∆(H(Y )+ε) and (C.45)

e−∆(H(Y |X)+ε) < Pr
(
yk+1

∣∣∣xk+1,1

)
< e−∆(H(Y |X)−ε) (C.46)

has probability ≥ 1− ε. Using this property and Lemma C.2.1, we obtain

E∗

{
Zm0(k + 1)− Zm0(k)

∣∣∣Fk}
≥ ε∆B + (1− ε) ln

 e−∆(H(Y |X)+ε)

|M|e−∆RI − 1

|M| − 1
e−∆(H(Y |X)−ε) +

|M| − |M|e−∆RI

|M| − 1
e−∆(H(Y )−ε)


(C.47)

By upper bounding |M|e
−∆RI−1
|M|−1

≤ e−∆RI and |M|−|M|e
−∆RI

|M|−1
≤ 1 in the denominator

of (C.47), we have

E∗

{
Zm0(k + 1)− Zm0(k)

∣∣∣Fk} ≥ ε ·∆ ·B + (1− ε) ln

(
1

e−∆(RI−2ε) + e−∆(C`∗−2ε)

)
.

(C.48)

Now, since our choice of RI in (4.40) satisfies RI < C`∗ and ε can be made arbitrarily

small when a sufficiently large ∆ is used, we can rewrite (C.48) as

E∗

{
Zm0(k + 1)− Zm0(k)

∣∣∣Fk} ≥ ∆RI + ς(∆) (C.49)

where ς(∆)→ 0 for sufficiently large ∆. Finally, the choice of RI from (4.40) always

satisfies RI > R + α(C`∗ − R). Using a sufficiently large ∆, (C.49) implies (C.35),

finishing the proof. �
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C.5 Proof of Lemma 4.4.3

In this section, for notational simplicity, we denote the expectation conditioned

on the event Ac1Ac2 as E∗
{
·
}
, E

{
·
∣∣∣Ac1Ac2}.

We now bound the probability of the event A5 |Ac1Ac2 . We first notice that the

bottleneck receiver will transmit qk = minm k̃m microblocks of size ∆ during the se-

quential learning phase, 1 microblock of size ∆ for the correction flag, and at most

K additional microblocks of size ∆̃. We then observe that whether a microblock in

any of the post-bottleneck hops is in error is determined by the post-bottleneck hop

channel realizations and is thus independent of the number of microblocks transmit-

ted by the bottleneck receiver. As a result, by Wald’s lemma, we can employ the

same union bound argument as in (4.66) using the expected number of microblock

transmissions and obtain

Pr(A5 |Ac1Ac2 ) ≤
(
E∗

{
qk
}

+ 1
)
· E∆ +K · E∆̃ (C.50)

where

E∆ =
L∑

`=`∗+1

e−∆Erc,`(RI) (C.51)

and E∆̃ is defined similarly by replacing ∆ with ∆̃. Due to (C.25), we know E∗

{
qk
}
≤

K(1 + ς1(K)).

Now we note that we can re-write (C.50) as

Pr(A5 |Ac1Ac2 ) ≤
L∑

`=`∗+1

(
E∗

{
qk
}

+ 1
)
e−∆Erc,`(RI) +Ke−∆̃Erc,`(RI). (C.52)

Next, since ∆̃ = ln(K)
RI

+ ∆, we have for any values of ∆ and any hop `

Ke−∆̃Erc,`(RI) = Ke
− ln(K)

RI
Erc,`(RI)

e−∆Erc,`(RI)

≤ Ke
− ln(K)

RI
Erc,`∗ (RI)

e−∆Erc,`(RI), (C.53)
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meaning we can re-write (C.52) as

Pr(A5 |Ac1Ac2 ) ≤
(
E∗

{
qk
}

+ 1 +Ke
− ln(K)

RI
Erc,`∗ (RI)

)
·

L∑
`=`∗+1

e−∆Erc,`(RI)

≤ K(1 + ς2(K)) ·
L∑

`=`∗+1

e−∆Erc,`(RI), (C.54)

where ς2(K)→ 0 as K →∞. This completes the proof. �

C.6 Proof of Lemma 4.4.4

In this section, for notational simplicity, we denote the expectation conditioned

on the event Ac1Ac2 as E∗
{
·
}
, E

{
·
∣∣∣Ac1Ac2}. We start with the observation that

we can write the expected duration as

E{D} = E{D |A1 ∪ A2}Pr(A1 ∪ A2) + E∗{D}Pr(Ac1Ac2) . (C.55)

For the first term in (C.55), we note that the maximum possible duration of D (unit:

slots) is given by

Dmax = (Kmax + 1)∆ +K∆̃. (C.56)

We can thus bound this term by

E{D |A1 ∪ A2}Pr(A1 ∪ A2) ≤ Dmax (Pr(A1) + Pr(A2)) , (C.57)

where we note that due to (4.66) and (4.71), the upper bound decays exponentially

as a function of ∆.

For the second term in (C.55), define D`∗ as the combined duration of the learning

and correction phase of the bottleneck receiver. We can then bound E∗{D} as

E∗{D} ≤ E∗
{

(D −D`∗)
+
}

+ E∗{D`∗} (C.58)
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and note that (D−D`∗)
+ > 0 implies that the event A5 must be true, since it is only

possible for the bottleneck receiver’s duration to be longer than the destination’s if any

of the post-bottleneck transmissions are in error, which destroys the synchronization

between the bottleneck receiver and the destination. In addition, it is also trivially

true that (D −D`∗)
+ ≤ Dmax. We thus have

E∗
{

(D −D`∗)
+
}
≤ DmaxP (A5|Ac1Ac2). (C.59)

We note that by (4.41), Dmax grows exponentially at a rate eK∆α(C`∗−R) and by (4.74),

Pr(A5| Ac1Ac2) decays exponentially fast in ∆. Combining these results, we have

E{D} ≤ E∗{D`∗}P (Ac1Ac2) + ς(∆)

≤ E∗{D`∗}+ ς(∆)

≤
(

1 + E∗

{
qk
})

∆ + E∗{|Kerr|} ∆̃ + ς(∆), (C.60)

where ς(∆) signifies a term which diminishes as ∆→∞. The term E∗

{
qk
}

is upper

bounded in (C.25). We now upper bound E∗{|Kerr|}.

First, define Ktrue as the number of erroneous bucket indices at the bottleneck

receiver assuming that it knows the true m. We then have

E∗{|Kerr|} ≤ E∗
{

(|Kerr| −Ktrue)
+
}

+ E∗{Ktrue} (C.61)

Note that (|Kerr| − Ktrue)
+ > 0 implies that the sequential learning phase did not

provide the correct estimate, i.e., the sequentially learned m̊ 6= m0, the actual trans-

mitted message. This implies that eitherA3 or A4 must be true. Combined with the

fact that (|Kerr| −Ktrue)
+ ≤ K, we have

E∗
{

(|Kerr| −Ktrue)
+
}
≤ K · Pr

(
A3 ∪ A4

∣∣∣Ac1Ac2)
≤ K(2 + ς1(K))e−K∆α(C`∗−R), (C.62)
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where (C.62) is due to (4.72) and (4.73). Furthermore, since Ktrue is computed based

on the actual transmitted message m0, each of the first K microblocks that is in error

(i.e., contributing to Ktrue) is an independent event with probability ≤ e−∆Erc,`∗ (RI).

By the union bound, we have

E∗{Ktrue} < K · e−∆Erc,`∗ (RI). (C.63)

Combining these results, we get

E∗{|Kerr|} ≤ K
(
(2 + ς1(K))e−K∆α(C`∗−R) + e−∆Erc,`∗ (RI)

)
. (C.64)

Finally, combining (C.64), (C.60), and (C.25).

E{D} ≤ [1 +K(1 + ς1(K))] ∆ + K
(
(2 + ς1(K))e−K∆α(C`∗−R) + e−∆Erc,`∗ (RI)

)
·
(

∆ +
ln(K)

RI

)
+ ς(∆)

≤ K (1 + ς3(K,∆)) ∆, (C.65)

where ς3(K,∆)→ 0 if we let ∆→∞ and then K →∞ in this order. �
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