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ABSTRACT 

 

Edge detection is one of the most important application in image processing. Field-Programmable 

Gate Arrays (FPGAs) have become popular computing platforms for signal and image processing. 

The Zynq-7000 System on Chip (SOC) is a dual-processor platform with shared memory. The 

thesis describes a novel and fast implementation of Sobel edge detection using the Zynq-7000 

SoC. Our implementation is a combination of software and hardware using the Vivado HLS and 

Zynq (SoC). As a result our implementation is fast. We make a comparison with other conventional 

edge detection techniques and show that the speed of operation of this design is much faster.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

11 

1. INTRODUCTION 

 

1.1 Overview 

For the implementation of image processing algorithms, it is essential for embedded systems to 

achieve low power and high performance at the same time. The implementation process involves 

several steps. The initial step of implementing image processing algorithms is software written in 

a high-level language like C or C++. Validation and development are much easier in high-level 

languages. The ultimate goal is a Hardware Description Language (HDL). However, producing 

optimized HDL code from that a high-level software is not easy. For this task there are High-level 

Synthesis tools that convert the high-level code into the hardware description language 

automatically.  

We describe the design and implementation of an image edge detection hardware accelerator. The 

target platform is the Zynq-7000 SoC. Here the Sobel image edge detection algorithm is developed 

in the Vivado HLS tool and then it is exported to Vivado to use it as an Intellectual Property (IP). 

After that the implementation of the generated IP is synthesized and tested on Zynq7000 Zedboard. 

Finally an application in the Software Development Kit is created to use this peripheral in order to 

apply a Sobel filter in an image which is read from a SD card connected to the board.  

The thesis is organized as following. Sobel edge detection is introduced in chapter 2. A brief 

description of Vivado HLS, different optimization techniques and libraries is given in chapter 3. 

Chapter 4 describes the Zynq-7000 in short. The development of the image processing algorithm 

in Vivado HLS and the hardware implementation on the Zynq platform, and performance 

comparison are shown in chapter 5.  

 

1.2 Advantages of the Developed Implementation 

Zynq-7000 SoC, on a single chip, is a combination of FPGA fabric in a Programmable Logic 

domain and dual-core ARM Cortex-A9 CPUs with a rich set of standard I/O peripherals and a 

multi-ported memory controller in an SoC Processing System domain. Over 2,000 interconnects 

interface the Processing System to the Programmable Logic. This provides the high-performance, 

low-latency communication, extension, flexibility, and capability between processing and 
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programmable logic that other systems connecting discrete processor-based devices to FPGAs 

through printed circuit boards cannot achieve.  

We implement the Sobel filter as a HLS Kernel. This is more efficient than a straightforward 

implementation like implementation using general processors. We create a unique HLS kernel 

using very limited resources. For example we use only 1173 Flip Flops from 106400 available Flip 

Flops. This helps to execute the operation very fast. HLS provides a technique for migrating 

algorithms into the FPGA logic from a processor. Therefore, it helps moving code from the Cortex 

ARM A9 processor to the FPGA logic. 

There are two more reasons for fast operation. We add the right amount of pragmas and techniques 

in order to achieve better performance both in memory transactions and computations. A pragma 

is a technique that helps speed up the code. Block RAM is used to store and process the input data 

and then write it back to the DDR. To transfer data with bursts we use the ‘memcpy’ command for 

the transactions. 

In the following sections we will introduce image processing, edge detection, Zedboard and related 

previous work. 

 

1.3 Image Processing 

Image processing is a method of conducting certain operations on an image to produce an 

improved image or retrieve any valuable information from it. It is a form of signal processing in 

which input is an image and output may be image or features / functions associated with that image. 

The processing of images is among increasingly rising technologies nowadays [1]. Image 

processing basically includes the following three steps: 

 Importing the image via image acquisition tools.  

 Analyzing and manipulating the image. 

 Output in which result can be altered image or report that is based on image analysis. 

There are two fundamental types of image processing: analog and digital image processing. 
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1.3.1 Analog Image Processing 

Operations like Laplace and Fourier Transforms can be used to transform the image, based on the 

algorithm's need. There are a number of problems associated with analog image processing, e.g. 

image accuracy, noise, blurred image, etc. which makes any implementation difficult. In Digital 

Image Processing, on the other hand, the image is stored in pixels and mathematical operations 

can be performed on those pixel values. Any noise level, image accuracy, and other issues, can be 

eliminated by adjusting the pixel values. That's why digital image processing is used to eliminate  

the disadvantages of analog image processing [2]. 

 

1.3.2 Digital Image Processing 

Every pixel value has its own meaning, i.e. the color, brightness etc. Data is stored in matrix form. 

The first step is to convert the image into pixel values and store them in the matrix when the image 

is acquired from any source. Then the operations on those matrices are performed. But the issue 

that occurs when getting the image from any source is that it can distort the image, change color, 

increase or decrease brightness, erase edges. It is generally called noise. Noise happens while the 

image is being captured, e.g. real time images, digital imaging, scanners. A slight noise adds 

irrelevant information that can alter the pixel values of the image. So when taking an image from 

any source, a proper way has to be found. Gaussian Blur is used to remove noise of any kind from 

the image [3]. 

 

1.4 Image Edge Detection 

Edge detection is a technique to identify the boundaries of objects inside images. This works by 

detecting discontinuities in brightness and color. The points at which image brightness changes 

sharply are typically organized into a set of curved line segments termed edges. Edge detection is 

used in fields such as image processing, computer vision, and machine vision for image 

segmentation and data extraction. Now commonly used edge detection techniques will be 

discussed. 
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1.4.1 Canny Edge Detection 

Canny Edge Detection Technique is very common edge detection technique for edge extraction in 

image processing. It's used to get the object's boundaries inside the image. This was built by John 

F. Canny in 1986. It is often used due to low error rate, proper localization and negligible response. 

Compared to other edge detection algorithms this algorithm is more difficult to implement because 

of intense computation. The Canny algorithm gives better edge detection, better localization and 

direct response [4]. 

 

1.4.2 Sobel Edge Detection 

Sobel Edge Detection is a technique based on two kernels, one kernel detects the horizontal edges 

and the other kernel recognizes the vertical edges. Each kernel has the effect of calculating the 

gradient in both a horizontal and a vertical direction. The image is read initially after start i.e. the 

pixel values are read. The image is then convolved with the filter. After that horizontal and vertical 

kernels of the operator are convolved with the original image [5]. 

 

1.4.3 Prewitt Edge Detection 

The Prewitt operator is used in image processing particularly within algorithms for edge detection. 

Technically, it is a discrete differentiation operator, which computes an approximation of the 

image intensity function gradient. At any point in the image, either the corresponding gradient 

vector or the norm of this vector is the product of the Prewitt operator. The Prewitt operator is 

based on converting the image in horizontal and vertical directions with a low, separable, and 

integer weighted filter and is thus relatively inexpensive in terms of computations such as Sobel 

and Kayyali operators [6]. 

 

1.5 ZedBoard 

ZedBoard is a low-cost, all programmable (DEFINE SOC) SoC development board for the Xilinx 

Zynq-7000. This board contains everything to build a system based on Linux, Android, Windows 

or another OS / RTOS. Additionally, the processing device and the programmable logic I/Os are 

connected to multiple expansion connectors for quick user access. The advantage is the closely 
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coupled ARM processing device Zynq-7000 AP SoCs and a programmable 7-series logic to 

construct unique and efficient designs with the ZedBoard [7]. 

The main features [8] of Zedboard are: 

 Xilinx Zynq-7000 AP SoC XC7Z020-CLG484 

 Dual-core ARM Cortex™-A9  

 512 MB DDR3  

 256 MB Quad-SPI Flash  

 On-board USB-JTAG Programming 

 10/100/1000 Ethernet  

 USB OTG 2.0 and USB-UART  

 Analog Devices ADAU1761 SigmaDSP® Stereo, Low Power, 96 kHz, 24-Bit Audio 

Codec 

 Analog Devices ADV7511 High Performance 225 MHz HDMI Transmitter (1080p HDMI, 

8-bit VGA, 128x32 OLED) 

 PS & PL I/O expansion 

 

1.6 Related Work 

In this section we review research work related to this thesis. 

 

1.6.1 A hybrid approach using Sobel and Canny operator 

Classical methods for detecting edges are noise sensitive due to the implementation of various 

modes of differential operation. For edge detection noise is observed as edge points instead of 

actual edge with noise interference. Hence good immunity to noise is required. Sobel edge 

operator's location is correct, but is noise sensitive. The Canny approach quickly detects, and 

suppresses, the weak side. Thus, using a hybrid approach enhances the outcome by visually 
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improving and completing the details of the image, there are no false edges and it has an ideal 

effect. Also, the hybrid algorithm uses a median filter to eliminate any noise. This filtering median 

smoothens the image data and provides better output. The extraction image is thus composed of 

fairly complete profile and rich detailed information. It effectively increases edge detection 

precision and gives quite an ideal effect on edge detection [9]. 

 

1.6.2 An Improved Sobel Algorithm Based on Median Filter 

The Sobel operator has been combined with median filtering, and this technique can effectively 

eliminate the image's salt and pepper noise [10]. The explanation for this is that median filtering 

performs fine when filtering out the jump signal. Mutation of continuous signal induces the 

stochastic signal of salt and pepper noise, so the combination of median filtering and Sobel 

operator will help isolate the edge of the image from the salt and pepper noise signal. This 

algorithm consists of the following steps.  The correct median filter template is chosen based on 

the consistency of noise. Process the image with a median filter, and filter out salt and pepper 

noise. The edge template coefficient was defined by the Sobel operator template in image 1 to the 

user. After the Sobel edge detect operator is given to convert with the template for every pixel of 

the image to make convolution with the template and get the point gradient. The gradient amplitude 

is the output of the point. And finally, we get the edge detected image [10]. 

 

1.6.3 Analysis of Image Quality using the Sobel Filter 

The image quality can be analyzed using the Sobel filter [11]. The suggested technique is as shown 

in Figure 1.1. Assessing the effect of satellite image bandwidth using Sobel filter. The data 

areprocured and preprocessed during the first phase of the experiment. The Sobel filter is 

implemented with 3x3, 5x5, 7x7, 9x9 and various window sizes respectively. Finally, the 

appropriate size of the window is chosen based on the statistical analysis of mean, standard 

deviation and SNR [11]. 
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Figure 1. 1: Methodology to Assess the Impact of Bandwidth using Sobel Filter [11] 

 

1.6.4 Energy Efficient Platform for Sobel Filter Implementation 

Using various embedded platforms and parallel computing systems, the Sobel filter algorithm used 

in image processing has been benchmarked to determine energy consumption and image 

processing efficiency, making design choices simpler for a software engineer. Test findings show 

that the Mali T764 GPU on Radxa Rock2 platform appeared to be 6.85x more energy efficient and 

3.7x better performing than the Parallella platform while computing Sobel filter with a 1080p 

resolution picture using 16 core Epiphany co-processor [12]. 

 

1.6.5 Gradient Estimation of Distorted Images 

The performance of the proposed Generalized Sobel Filter against the implemented Jacobian 

Gradient Correction (GCJ) process is assessed. Two simple methods in the analysis as reference 

for comparisons are found: 1) ignoring the distortion (the gradients are measured using the Sobel 

operator in the distorted space and the effects are not corrected); 2) explicit elimination of the 
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distortion (i.e. rectification) before calculating the gradient using the Sobel operator. Using regular 

Sobel filters, the reference gradient is determined from the rectilinear reference images. The high-

resolution input images are converted to blurred 1024 / 768 pixel standard resolution images. The 

calculation of the local histograms of gradient orientations is carried out using the following 

parameters: 1) each image is divided into tiles of 24 to 24 pixels and 2) 18 bins are considered 

equally spacing the interval [−180 u, 180]. In order to determine the output of the method under 

consideration with respect to different degrees of distortion, each image in the dataset is processed 

to add varying percentages of distortion ranging from a minimum of 10% to a maximum of 50% 

[13]. 

 

1.6.6 Optimization of Processor Architecture for Image Edge Detection Filter 

The processor architecture has been optimized for the image detection filter [14].  The Sobel 

instances are linked in a way that exploits the parallelism and I / O capabilities of FPGA in one 

wide Sobel combinational block. By using the calculation results of previous window operations 

of the same row and up to two previous rows, the architecture reduces the number of calculations 

over the whole cycle [14]. 

 

1.6.7 Optimized Approach of Sobel Edge Detection Using Xilinx System Generator 

For this research a new method is used which combines Sobel X-Y edge detection with Gaussian 

filter using the histogram stretching method [15]. This research is focused on medical for detecting 

tumors and fractures in the human body. The authors [15] propose  a new optimized edge detection 

technique,  which is  a better edge detection technique in terms of improved mean square error 

(MSE) and image signal to noise ratio (PSNR) using very limited resources used in the FPGA kit 

development platform SPARTAN 3A DSP 3400A [15]. 

 

1.6.8 Edge Detection via IP-Core based Sobel Filter on FPGA 

Edge detection is one of the most important image / video-processing applications. The goal of 

this paper is to extract edges of video streams in real time. The device consists of OV7670 CMOS-

Camera module, Digilent Basys3 FPGA plate, and VGA monitor to view the video stream being 
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processed. This analysis consists of three parts: capturing RGB data from the camera module, 

transforming RGB data into grayscale and then implementing Sobel filter to detect the edges of 

real-time images. Whole architecture is performed on the Vivado 2018.1 FPGA Architecture Suite 

using custom IP-Cores encoded with Very High-Speed Integrated Circuit Hardware Description 

Language (VHDL). From the test, it is shown that the design is realized with high precision and 

low level of resource utilization for the sake of FPGA's parallel processing capability [16]. 

 

1.6.9 Zynq FPGA based System Design for Video Surveillance with Sobel Edge Detection 

Advances in the semiconductor domain have allowed various applications to be realized in video 

surveillance using computer vision and deep learning, video surveillance in industrial automation, 

defense, ADAS, live traffic analysis, etc. Image comprehension requires high precision input data 

that is dependent on Image resolution and camera position. Interesting data may be thermal image 

or live stream coming for various sensors. Composite (CVBS) is a common video interface able 

to stream up to quality HD (1920x1080). Unlike serial high speed interfaces such as HDMI / MIPI 

CSI, analog composite video interface is a normal single wire that allows longer distances. Image 

comprehension includes edge detection and the further processing classification. Sobel filter is one 

of the most commonly used edge detection filters that can be integrated into live stream. This paper 

proposes Zynq FPGA-based video surveillance system architecture with Sobel edge detection, 

where the input Composite video decoded (analog CVBS input to YCbCr digital output), 

processed in HW, and transmitted to HDMI display, simultaneously stored in SD memory for later 

processing. The HW architecture is adjustable for resolutions from VGA to Full HD for 60fps and 

4K for 24fps. To highlight the usable course, the device is built on Xilinx ZC702 platform and 

TVP5146 [17].  

 

1.6.10 Sobel Filter Based on GPUs Cards 

In a few years the graphics processors or GPUs have become important devices for applications 

involving massively parallel computation. The applications currently include in multimedia 

processing, computer science and real-time image processing. They deliver other advantages from 

an equal Processing capacity, such as treatment acceleration and energy consumption down. In 
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this research, it is demonstrated that the efficacy of the sobel filter approach (extraction of features) 

by parallelizing the processing applied to various images of different sizes [18]. 

 

1.6.11 Parallel implementation of Sobel filter using CUDA 

To solve the problem of intensive computation of the image processing applications and to achieve 

high real-time efficiency, efficient solutions need to be considered. The graphics processing unit 

(GPU) is an effective and latest tool used to accelerate extensive calculation algorithms to 

minimize execution time by leveraging the power of parallel programming techniques and 

attaining the highest efficiency. In this research, it is presented that a parallel GPU implementation 

of an edge detection algorithm using CUDA (Compute Unifies Architecture) setting, using a Sobel 

operator. Moreover, by checking the algorithm on a typical central processing unit (CPU) to 

compare the computational efficiency of such systems, it is evaluated and proved that the high 

performance of GPU implementation. The experimental findings show that by its higher 

performance compared to sequential calculation the efficacy of the GPU implementation is [19].  

 

1.6.12 Power Evaluation of Sobel Filter on Xilinx Platform 

Power consumption has become a primary factor in design flow in programmable devices. Power 

consumption is crucial in FPGA designs for powered battery equipment among the key concerns 

about power consumption, device efficiency, battery life, thermal challenges, or reliability. In this 

research, it is a review of the FPGA-based architecture for the low cost fall detector Sobel Edge 

Detection algorithm, and present an accurate evaluation of dynamic power estimation and real-

time measurement. This research uses the Root Mean Square Error index to determine the rate of 

accuracy between estimated power consumption and measured. This application is implemented 

on the Zynq -7000 AP SoC family, which is low power. 

FPGA power consumption depends on the design and is determined by factors such as clock 

frequency, levels of operation, logic block and interconnection structure, voltage power supply 

and output loading. XPA may provide an instrument for deriving the strength of FPGA 

implementations. The frequency of the clock is set at 197.161 MHz and calculated power is the 

amount of static and dynamic energy. The static power depends on the family unique to FPGA. 
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Dynamic control depends on the operation of logic, input / output, signaling and clock switching 

[20]. 

 

1.6.13 An Improved Sobel Edge Detection 

This research proposes a method combining Sobel edge detection operator and de-noise soft-

threshold wavelet to detect edges on images that contain white Gaussian noises. A lot of methods 

of edge detection are being proposed in the last years. The widely used methods that combine 

mean de-noising with Sobel operator or median filtering and Sobel operator can't very well 

eliminate salt and pepper tone. We first use soft-threshold wavelets in this paper to remove noise, 

then use Sobel edge detection operator to detect edges on the image. This method is used primarily 

on images which include white Gaussian noises. From the pictures obtained from the experiment 

we can see very clearly that the approach proposed in this research has a more noticeable impact 

on edge detection compared to conventional edge detection methods. 

Sobel edge operand has the advantage of its smoothing effect on the random noises in the picture. 

And because it is the differential divided by two rows or two columns, the edge elements on both 

sides have been improved and make the edge appear dense and light. Sobel operator is operator of 

a gradient. The first derivative of a digital image is based on a variety of approximation of two-

dimensional gradient and produces a peak on the image's first derivative, or a zero-crossing point 

on the second derivative. Calculate the magnitude and the argument value of the first-order or 

second-order horizontal and vertical gradients of the image, finally calculate the maximum 

modulus along the angular direction and get the image point. But when the picture has lots of white 

Gaussian noises, the peak value of the first derivative is very difficult to achieve, the explanation 

being that the noise points and the useful signals mix up. This paper therefore incorporates de-

noising of Sobel operator and soft-threshold wavelet [21]. The core idea of the algorithm [21] is: 

 Do wavelet decomposition to the image matrix, and get noise from the wavelet coefficients. 

 Process the HL, LH and HH wavelet coefficients obtained via the decomposition, and hold 

the low frequency coefficients unchanged. 

 To eliminate Gaussian white noise signals, pick the correct threshold.  
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 Do inverse wavelet transformation to matrix of image and get the matrix of image after de-

noising. 

 After the Sobel edge detection operator template is given, convolute with this template on 

every pixel of the image, get the gradient of this point and the amplitude of the gradient is 

the output of this point. Finally a picture of the edge detection is found. 

 

1.6.14 Reconfigurable Computing Architectures 

FPGAs offer a road to the assurance of hardware customization without the immense development 

and manufacturing costs and lead times of custom Very Large Scale Integration (VLSI). More 

computational throughput per unit of silicon can be derived from FPGAs than from the processors 

[22]. 

 

1.6.15 Introduction to Reconfigurable Systems 

Reconfigurable systems are with soft-definable features. They can be as basic as a single switch 

that parameterizes a specific feature on a chip, or as complex as a data center that houses computer 

banks for a cloud computing application where hundreds of virtual machines can be temporarily 

marshaled to form a dedicated network to solve a computing problem or converted into a cluster 

of media servers to provide entertainment on demand for a large number of users at the same time 

[23]. 
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2. SOBEL EDGE DETECTION AND DESIGN FLOW 

 

2.1 Overview 

Edge Detection is a mathematical method of trying to find the regions in an image where it has a 

sharp change in intensity or a sharp change in color. A high value indicates a steep change and a 

low value indicates a shallow change. There are several commonly used edge detection techniques 

such as Canny, Prewitt, Fuzzy Logic, Roberts and Sobel [24]. 

 

2.2 Brief Description 

The Sobel Operator is used for edge detection in image processing and computer vision. It creates 

an image emphasizing edges. Technically it can be described as a discrete differentiation operator 

that can compute an approximation of the gradient of the image intensity function. At each point 

in the image, the result of the Sobel operator is the corresponding gradient vector. The Sobel 

operator is used in convolving the image with a small, separable, and integer-valued filter in the 

horizontal and vertical directions and it makes the computations relatively inexpensive. Also the 

gradient approximation that it produces is relatively crude, in particular for high-frequency 

variations in the image [25].  

 

2.3 How it works 

At first the image is processed in the X and Y direction separately. Then the results are combined 

together to form a new image which represents the sum of the X and Y edges of the image. While 

using a Sobel Edge Detector, it is best to convert the image from an RGB scale to a Grayscale 

image at first. The next step is kernel convolution. A kernel is a 3 x 3 matrix consisting of 

asymmetrically or symmetrically weighted indexes. Two 3 x 3 kernels are used, one for X direction 

and another for Y direction. Because of the the kernel matrices shown below the gradient for X-

direction has negative numbers on the left hand side and positive numbers on the right hand side. 

Some of the center pixels are preserved. Similarly, on the bottom the gradient for Y direction has 

negative numbers, positive numbers on top, and some on the middle row pixels are preserved. 
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When an image is scanned across the X direction, for example, the following X Direction Kernel 

is used to scan for large changes in the gradient [26]. 

X- Direction Kernel 

 

                                                

 

                                             

                                                               

 

 

Similarly, when the image is scanned across the Y direction, the following Y Direction Kernel is 

used to scan for large gradients as well [26]. 

Y- Direction Kernel 

 

 

 

 

 

 

 

 

An image matrix can be considered for an example. If kernel convolution is applied, an edge 

between the column of 50 and 100 values will be found [26]. 
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Figure 2. 1: Kernel convolution 

In the example shown above an X Direction Kernel is used for convolution. The image is processed 

from left to right and the example above shows the calculation of the (2, 2) point in the image 

matrix.  A value of 200 is calculated and therefore a fairly prominent edge is found at this point. 

The bigger the value at the end the more noticeable the edge will be. If the edge needs to be 

exaggerated, then the filter values of -2 and 2 must be changed to higher magnitude, perhaps -5 

and 5. This will make the gradient of the edge larger and therefore, more noticeable. 

Once the image is processed in the X direction, then the image can be processed in the Y direction. 

Then to produce final image magnitudes of both the X and Y kernels will be added together 

showing all edges in the image [26]. This is described in the next section. 

 

2.4 Sobel Algorithm 

The Sobel filter consists of two 3 x 3 kernels. One is used for changes in the horizontal direction 

and another is used for changes in the vertical direction. Both kernels are convolved with the 

original image to calculate the approximations of the derivatives. Here Gx is the image containing 

the horizontal derivative approximation and Gy is the image that contains the vertical derivative 

approximations. So the computations are 
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𝐺𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] ∗ 𝐴 

𝐺𝑦 = [
−1 −2 −1
0 0 0
1 2 1

] ∗ 𝐴 

Here A is the original source image. At each pixel in the image the gradient approximations 

denoted by Gx and Gy are combined together to calculate the gradient magnitude using 

𝐺 = √𝐺𝑥2 + 𝐺𝑦2 

The gradient’s direction is calculated using 

𝛩 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐺𝑦
𝐺𝑥
) 

A Θ value of 0 will indicate a vertical edge that is darker on the left side. 

 

Figure 2. 2: Kernel convolution in horizontal direction 

 

In Figure 2.2 on the left is the original image and on the right is Gx. 
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Figure 2. 3: Kernel Convolution in vertical direction 

In Figure 2.3 on the left is the original image and on the right is Gy. 

 

Figure 2. 4: Combined output 

The image to the right in figure 2.4 is the result of combining the Gx and Gy derivative 

approximations calculated from image A on the left [27]. 
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2.5 Design flow 

The next task is to implement the Sobel algorithm using the Zynq platform. The entire process 

consists of the following steps. 

● The first two steps of the Sobel algorithm (Converting RGB to Grayscale and Jpg to binary) are 

implemented in MATLAB. The binary file is required for the operation of programmable logic. 

● Reading the input from the memory. 

● Processing the image on the Programmable Logic side using an image processing accelerator 

● Saving the output data in the memory 

● Generate image using data from memory using MATLAB 

The high level architecture is shown in Figure 2.5. It contains processing systems and 

programmable logic units of Zedboard. There are Image processing Intellectual Property (IP) and 

Direct Memory Access (DMA) controller IP in the Programmable Logic (PL) side. 

Figure 2. 5: High Level Architecture of the Zedboard 
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3.  VIVADO HIGH LEVEL SYNTHESIS 

 

3.1 Overview 

The Xilinx Vivado High-Level Synthesis (HLS) is a very efficient tool to transform a C 

specification into a register transfer level (RTL) implementation that can be synthesized into a 

field programmable gate array (FPGA). C specifications can be written in C, C++ and the FPGA 

provides a massively parallel architecture with specific advantages in performance, cost, and 

power consumption over other computational environments such as traditional processors [28]. 

There are several benefits of High Level synthesis. 

● Hardware designers are more productive, they can work at a higher level of abstraction while 

building high performance hardware. 

● Algorithms can be developed using C, which consumes less development time. 

● Since the verification can be done at C level, the functional correctness of the design can be 

validated more quickly than other traditional hardware description languages. 

● C synthesis process can be controlled through optimization directives so the specific high 

performance hardware implementations can be created. 

● From the C source code multiple implementations can be created using optimization directives. 

 

3.2 Vivado HLS Design flow 

Using the Vivado HLS tool a C function is synthesized into an IP block that can be integrated into 

a hardware system. The rest of the Xilinx design tools is tightly integrated with it and provide 

comprehensive language support and features for creating the optimal implementation for the C 

algorithm. 
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Figure 3. 1: Vivado HLS Design Flow 
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The Vivado HLS Design Flow is shown in the Figure 3.1. In the first step the algorithm is required 

to be compiled and debugged in C. In the next step the C algorithm is synthesized using 

optimization directives. Here one top-level function is defined that can be synthesized and all other 

sub functions in its hierarchy are synthesized. 

This analysis produces a report which gives the estimation about performance, utilization, and 

interface. So, the directives can be changed for further optimization of the implementation and 

different versions of the same algorithm can be made until the desired performance characteristics 

are obtained.  

Different optimization directives include a directive to start executing a task in a 

pipeline or to set the latency for the functions and loops. Besides, the limits for the number of 

resources to be used are specified. The decision of input and output port behavior of the algorithm 

is taken by some of the directives. 

Now, in hardware description language RTL is implemented after the synthesis. For RTL 

implementation, the output is developed in either VHDL or Verilog. Later, C/RTL simulation 

verifies the RTL implementation and further results are compared with the C simulation. After 

that, this RTL implementation result is packed into IP and can be utilized by different tools in the 

design flow. 

Next, we discuss the interface implementation, verification, optimization of the design and HLS 

library. 

 

3.3 AXI4 Interfaces 

AXI (Advanced eXtensible Interface) is part of ARM’s AMBA (Advanced Microcontroller Bus 

Architecture), a family of micro controller buses first introduced in 1996. AXI4 is used for high-

performance memory-mapped requirements [29]. 

AXI4 interfaces can introduce AXI4 stream (axis), AXI-4 master (m_axi) and AXI4-Lite 

(s_axilite) which is supported by Vivado HLS [28]. Different pragmas are required to be used to 

declare interface directives. Figure 3.2 shows how the directives can also be declared by Vivado 

HLS directive editor.  
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                                        Figure 3. 2: Vivado HLS Directive editor 

 

AXI4-Stream Interface: It can be defined on input or output argument including arrays or 

pointers. Data is transferred constantly through AXI4 Stream in a sequential manner and sign bit 

is prolonged repeatedly to the next byte. In addition, data transfer begins from first address and 

any address management is not necessary. It is really useful for burst data transfer which is good 

for image processing application. AXI4 stream interface can be classified into two basic types: 

● AXI-4 stream interface without side-channel 

● AXI-4 stream interface with side-channels 

The side channel in the interface is assigned or controlled by the use of   C++ code struct. Structs 

for the side channel is included in ap_axi_sdata.h header file which is shown below. HLS provides 

hls::stream class for C++ reference argument to model stream interface.  
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After synthesis the data ports are implemented with all the side channel port, TVALID and 

TREADY protocol ports. To get access from the Zynq, TVALID and TREADY must be 1 [28]. 

The example shows 32 bit signed and unsigned AXI4 stream interface declaration and 

implementation. Here ap_axis refers signed integer and ap_axiu refers unsigned integer. In DMA 

operations, the side channel TLAST is effective. 

 

 

 

Figure 3. 3: AXI-Stream Interface Implementation 
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AXI4-Lite Interface: It can be set to any argument, but not to an array. Furthermore, multiple 

arguments can be clustered together. It is convenient when memory mapped single transfer of data 

is necessary. Burst data transfer is not supported by AXI Lite Interface since it does not support 

array parameters in the function. All the parameter results in HLS are reachable via axi4 lite 

interface and they are just some position in the memory. Vivado HLS implementation for multiple 

arguments is shown in the following example. Here return is used to show the function's return 

value and bundle is used to group all arguments, which are given with the same name. 

 

#pragma HLS INTERFACE s_axilite port=port_name bundle=multiple argument 

#pragma HLS INTERFACE s_axilite port=return bundle=multiple argument 

 

After synthesis the following ports are generated by implemented AXI4 lite port [28]. 

➢ ap_done: set when function completes complete operation 

➢ ap_ready: set when function is available to accept further data 

➢ ap_data: data input or output arguments 

➢ ap_clk: synchronous clock must be from same master clock 

➢ ap_addr: specify the address of the interface 

➢ ap_rst_n: use to reset the interface 

 

Obtained C drivers are helpful to program the interface. Here ap_done and ap_ready ports means 

when the function accomplishes all of its operation and when the function is ready to accept new 

data. 

 

AXI4 Master Interface: It specifies on pointers and array. Other arguments can be bundled 

together with this interface. 

 

3.4 I/O Protocols 

Ap_none plus ap_stable is used to indicate that I/O protocol is not required to be connected to the 

port. 
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3.5 Wire Handshakes 

The command Ap_hs is used to generate a two-way handshake signal. To read or write sequential 

order this mode can be used with arrays. 

 

3.6 Memory Interface 

ap_memory interface is applied by default to implement array argument. They are customized to 

communicate with the RAMs and ROMs in terms of necessity to access the memory, which can 

be standard BRAM interface that has data, chip-enable, address, write-enable and address ports. 

The single port or dual port is defined by the RESOURCE directive. Implementation of 

ap_memory interface is shown in the following figure 3.4. 

 

 

                                                        Figure 3. 4: RAM Interface 

 

The ap_memory and bram interface are functionally similar but in ap_memory all interfaces are 

cited as detached ports. Whilst in bram- interface shows grouped single ports are ready to connect 

Xilinx BRAM with the single point-to-point connection. Ap_fifo interface is used to when data 

from the array in a sequential manner are needed to access. The port can be permitted to be 

connected with the FIFOs by Ap_fifp interface to have empty-full communication in both 

directions.  
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                                                        Figure 3. 5: FIFO Interface 

 

3.7 Interface at block level 

Ap_start, ap_done, ap_idle and ap_ready signals are applied to the block. The developed block can 

be controlled without any effect of input-output interface constraints by this signal. 

ap_start: start the process on the data 

ap_ready: high if implemented block is ready to accept new data 

ap_ done: this signal indicates that the design finishes operation on data 

ap_idle: implemented block is idle 

 

3.8 Interface (Clock and Reset) 

All the designs will be operated by only one and the same clock. There must be a constant 

uncertainty in the clock period given by the HLS tool. As a result, it is required to deduct clock 

uncertainty every time from the estimated clock period. The uncertainty for the clock period can 

be clearly declared but by default it takes 12.5 percent. Ap_rst_n is a port which puts FPGA 

registers and BRAM in an initial reset condition. There are three reset modes which can be added 

as an optimization directives:  

None: no reset 

Control: reset all the control register 

State: reset all the control register, besides, it reset memories. Here all global and static 

variables are set back to their initial values. 
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All: reset is done for all the register and all the memories. 

 

3.9 Design Optimization 

There are optimization pragmas to obtain the important goals and for better performance. Pragma 

is special purpose directive that is used to turn on and off some features. Those pragmas can be 

included in the design to force Vivado HLS tool to generate the design as per given specifications. 

In this portion, we explain some of the optimization techniques.  

Throughput Optimization: 

Pipelining: As the whole system operates concurrently, the next step can begin its execution before 

the completion of the previous task. The pipeline directive can be applied to the loops and 

functions. Figure 3.6 describes how pipeline improves the throughput in the design.  

 

 
                                             Figure 3. 6: Function without Pipelining 

 
                                              Figure 3. 7: Function with Pipelining 
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The function takes 3 clock cycles without pipeline till next read and takes 2 clock cycles to develop 

an output. Now, pipelined function can read every clock cycle with same latency and same 

resources. Now in order to implement in a simultaneous manner, pipelining in the loop demands 

the operations within the loop. Pipelining in the loop is described for the given ‘for’ loop. 

 

                                                   Figure 3. 8: Loop without Pipelining 

 

 
                                                        

                                                      Figure 3. 9: Loop with Pipelining 
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In Figure 3.9 it is shown that loop with pipeline has latency of 4 clock cycles less than the latency 

of the loop without pipeline. The major dissimilarities between pipelined functions and pipelined 

loops is that, in functions a pipeline never finishes, it runs forever, while in loop it operates only 

for the loop iteration. 

Loop Unrolling: UNROLL directive [28] is used to partially or fully unroll the loops. All the loops 

are rolled by default, which implies that the same hardware systems used for the operations in the 

loop. 

Rolled Loop: It requires different clock cycles to complete each iteration in the loop which needs 

a multiplier and single port BRAM. 

Partially Unrolled Loop: Partially unrolled loop by the factor of 2 consists of 2 multiplier and dual 

port BRAM that performs read and write in single clock cycle. Latency of the partially unrolled 

loop is half of rolled loop. 

Unrolled Loop: One operation needs only one clock cycle to finish. In addition, it uses very few 

hardware resources.  

UNROLL directive can be supplied to the loops and it can be applied to the functions. All the 

operation will be in parallel in completely unrolled loop that depends on data dependency. 

Latency Optimization: 

Latency pragma is used for assuring that implemented design executes all the operations in the 

functions in given range of clock cycles. It gives particular latency for a single repetition of the 

loop if the latency pragma is given inside the loop and if the aim is to operate the total latency of 

the loop then this pragma should be announced outside the loop.  

For all the iterations separating latency is declared as:  

Loop A: for (i=0;i<n;i++) 

#pragma HLS latency max=10 

 

Declaration of latency for all iterations: 

#pragma HLS latency max=10 

Loop A: for (i=0;i<n;i++) 
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 There is another option to reduce latency by merging sequential loops for further optimization. In 

additional latency can also be improved by flattening the nested loop. For flattening loop directive 

should be given to the loop which is innermost of the loop body. It can be defined as: 

Set_directive_loop_flatten top/inner 

 

Area Optimization: 

It is crucial to use proper precision data types for better area optimization for the variable because 

use of improper bit-width can result in slower hardware implementation, and in addition increased 

in latency. Arrays are also implemented as RAM or registers so out of bound element may increase 

the hardware resources.  

For better optimization the INLINE directive can be used to share components by calling another 

function within the function. Small arrays can be mapped into one large array by using 

ARRAY_MAP pragma. The number of block RAM required for the hardware implementation can 

be lowered down by using this technique. To limit the number of operators by forcing the synthesis 

tool in Vivado HLS to share the operators. 

 

3.10 C Libraries 

HLS provides several libraries such as: 

● Video  

● Math stream 

● Precision Date Types math 

● Stream 

● Linear Algebra 

● DSP 

In our work we use the math, video, and stream libraries. Next, we introduce these libraries.  

hls stream: First, streaming data types do not have any address management. Furthermore, read 

and write are executed sequentially. To design stream data structure, hls::stream<> class is given 

as a C++ class. As FIFO interface with the depth of 1 and optimization directive is applied, 

streaming structure is implemented without any declaration. To adjust its depth value hls_stream.h 

header file is used to use this stream class. So blocking and non-blocking read and write methods 

can be obtained. Reading FIFO is allowed by the Non-blocking methods even if it is empty [28]. 
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hls math: This library is very efficient for the synthesis of C and C++ math library functions that 

include floating point operations. During synthesis Hls_math.h is used. Instead of using the C math 

library, using vivado hls math library gives accurate C and C/RTL simulation result. Mathematical 

operations can be performed on the float and double data types, yet, it gives unreliable output but 

fast hardware (RTL) implementation. 

hls video library: In order to include all videos and image functions (hls_video.h), the header file 

is used. Memory line buffer and window buffer is applied for the implementation of the edge 

detection algorithm. In additional, to test the algorithm OpenCV functions are used. 

Line Buffer: 

For the instantiation of line buffers this class is convenient. In this class, all the operations on the 

line buffer are defined as methods. 

● Total number of rows and columns can be defined by the users in the line buffer 

● Using methods in this class make debugging and implementation of line buffer easy. 

● Data types can be expressed in parameters. 

All the methods of line buffer class are explained with example as in below. This figure describes 

the line buffer along with initial data. 

 

Table 3. 1: Line Buffer with initial position of data 

Row Column0 Column1 Column2 Column3 Column4 

Row0 1 2 3 4 5 

Row1 6 7 8 9 10 

Row2 11 12 13 14 15 

 

Line Buffer data type is practiced as explained in the example to instantiate the line buffer. 

hls:: LineBuffer<rows,columns,type >variable; 

hls:: LineBuffer<3,4,char >Buffer_LINE 

In the line buffer data is coordinated in raster scan method. Every time various column number is 

used to sum with new data. For entering new data on the top or bottom of the column vertical shift 

shift_pixels_down [28] is helpful. To enter data insert_top_row [28] is used on the top of that 

column. The used example is to add 20 on the top of the column 1. 

Buffer_LINE.shift_pixel_down(1); [28]// is used for vertical shift of column 1 
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Buffer_LINE.insert_top_row(20,1); [28]//insert data into column 1 and on the top. 

 

Table 3. 2: Vertical shifting up the data and inserting data at the top 

Row Column0 Column1 Column2 Column3 Column4 

Row0 1 20 3 4 5 

Row1 6 7 8 9 10 

Row2 11 12 13 14 15 

 

The following example displays how to enter the new value at the bottom of the line buffer at a 

specific column. 

Here new data are added at the bottom of the column 0. 

Buffer_LINE.shift_pixels_up(0); [28]// shift data up in column 0 

Buffer_LINE.insert_bottom_row(20,0) [28] 

 

Table 3. 3: Vertical Shifting down the data and inserting data at the bottom 

Row Column0 Column1 Column2 Column3 Column4 

Row0 1 20 3 4 5 

Row1 6 7 8 9 10 

Row2 20 12 13 14 15 

 

To obtain value from any location of the line buffer method getval (row, column) is needed. 

 

Window Buffer: 

Using C++ memory window class two dimensional memory window is operated and announced 

This class has the similar specifications as Line Buffer class. Here are a few methods from this 

class is discussed through example. 

Memory window is instantiated using hls::window<row,column,type>variable. Example: 

hls::window<3,4,char>Buffer_Window;//. This will develop 3x3 memory window buffer. 
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Table 3. 4: Initial Memory Buffer 

Memory Window C0 C1 C2 

Row 0 1 2 3 

Row 1 4 5 6 

Row 2 7 8 9 

 

In this case to shift up and shift down the row data shift_pixels_down() and shift_pixels_up() are 

used respectively. This table exhibits the memory window results just after the operation. 

Buffer_Window.shift_pixels_down() [28]// is used to shift down the row and new data can be 

added to the first row. 

Buffer_Window.shift_pixels_up() [28]// is used to shift up the row and new data can be added to 

the bottom row. 

 

Table 3. 5: Operation of shifting up 

Memory 

Window 

C0 C1 C2 

Row 0 1 2 3 

Row 1 4 5 6 

Row 2 new new new 

 

Table 3. 6: Operation of shifting down 

 

 

 

 

 

 

                                                 

Memory window can be moved in left or right using shift_pixel_left() [28] and shift_data_left() 

[28] methods as above. Using insert_pixel(value,row,column) [28] method value can be inserted 

Memory 

Window 

C0 C1 C2 

Row 0 new new new 

Row 1 4 5 6 

Row 2 7 8 9 
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at any location of the window. Such as, Buffer_Window(10,2,2) will insert 10 at third row and 

third column. 

 

Table 3. 7: Inserting new Value 

Memory 

Window 

C0 C1 C2 

Row 0 1 2 3 

Row 1 4 5 6 

Row 2 7 8 10 

                                                      

Insert_row(), insert_col(), insert_left_col(), insert_right_col(), insert_top_row() and 

insert_bottom_row() are used to insert block in the window. 

 

OpenCV Video Library Functions: 

In Vivado HLS OpenCV functions are used and they can be implemented and synthesized. 

OpenCV interface functions are helpful in converting data to and from the OpenCV data types and 

AXI-4 stream data types. Video data declared as hls:: mat data types can be turned into AXI-4 

stream data type using AXI-4 stream function. It is applied as the high-performance interface. 

Video processing functions can process and edit video images. These functions can be also 

synthesized. 

 

3.11 Verification of RTL 

For the verification of synthesized RTL output C/RTL simulation is used. Verification process is 

revealed in the figure. 
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                                                 Figure 3. 10: Flow of RTL Verification  

 

In figure 3.10, output from the C simulation is applied as input vectors in RTL simulation. After 

that input vectors are provided to the implemented RTL module. The output of RTL simulation is 

verified by the C test bench. 
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4. SYSTEM ON CHIP 

 

4.1 Zynq7 Processing System 

Dual-core ARM Cortex A9 [30] processor and Xilinx programmable logic are the constituents of 

Zynq7 processing system. It gives the benefit of high performance consuming very low power. 

While booting, at first the processor system is booted which is followed by the programmable logic 

booting. It can be configured totally, partially or dynamically. Zynq7 Soc unit is provided with 

different power domain. All the functional units of the Zynq processing system are explained in 

the following block diagram. 

Figure 4. 1: Zynq Overview 
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PL and PS both have different power management unit which is displayed in the block diagram so 

the use of either one is possible for the power management.  

● PS (Processing System) blocks 

              ○ APU (Application Processor Unit) 

              ○ Memory interface 

              ○ Interconnect 

              ○ IOP (Input/Output peripherals) 

● PL (Programmable Logic). 

 Description of processing system is shown below. 

 1. Application Processor unit:  

               ● Two ARM cortex A9 processor 39  

               ● NEON 128b co-processor  

               ● Level 2 cache with parity -512 kb  

               ● Timers and watchdogs  

SCU (Snoop Control Unit) is provided in order to maintain level 1 and level 2 coherency. In 

addition to this ACP (Accelerator Coherency Port) is given to slave PS to master programmable 

Logic unit. ACP port can also access L2 cache, On-Chip Memory, and 64b AXI slave [30].  

256kb of dual port On-Chip Memory is provided with parity support. For transferring data between 

any memories in the system, four channel DMA controller is supplied in the PS, and four-channel 

DMA controller is provided for data transfer to and from memory and PL [30].  

 

2. Memory interface: 

               ● DDR controller  

               ● SMC (Static Memory Controller)  

               ● SPI-Quad Controller  

               ● Transaction Scheduler and DDR controller  

 

3. Input output peripherals  

               ● GPIO  

               ● Two gigabit Ethernet controller 
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                ● USB 2.0  

                ● Two SDIO/SD controller  

                ● Master and Slave SPI controllers  

                ● Two I2C controller  

Description for Programmable Logic is described as follows:  

● CLB-configurable logic blocks: look up table with 6 input, adders,  

● Dual port block RAM: 36kb up to 72 bit wide 

● DSP48E1 Digital signal Processing: high resolution 48 bit signal processor  

● Clock management unit: buffers for high speed and low skew clock 

● Configurable input outputs: lowest power and high speed input output  

● High performance low power gigabit transceivers: transceivers with the speed up to 6.25 Gb/s. 

● XADC- analog to digital converter: up to 17 analog input with on chip temperature and power 

supply sensor. 

● PCI express 

 

Clock and Reset system:  

Dedicated 33.3333 MHZ clock is provided for the processor subsystem. Moreover 100 MHZ clock 

is provided for the PL part. Physically spread out frequency programmable clocks are provided for 

the PL part. Reset for the PS resets all the debugging sessions and configuration morovere system 

reset wipes out all the memory contents. System reset is entirely independent of the PL portion. 

 

4.2 Timer 

Cortex A9 Processor timer: It consists of the private 32-bit timer and 32-bit watchdog timer, and 

both processors use the simple 64-bit global timer. Both timers operate on half of the CPU 

frequency.  

● Global Timer: 

Global counter gives the frequency which is half of the clock frequency and it has auto increment 

of 64 bit.  
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● Private Timer: 

Two modes are found for private mode. The first one is single shot and the next one is auto reload 

mode. Interruption is produced when 32-bit timer value comes to zero. The private timer can be 

configured for starting value.  

● System watchdog timer: 

Watchdog timer is used to handle signal catastrophic system failure. Input from PL bus clock or 

external or internal clock can be taken by watchdog timer. Besides it has 24 bit internal counter. 

At a reset, it can produce the interrupt or reset the system. 41  

● Triple Timer Counters (TTC): 

Independent timer counter has 16 bit up-down counter and 16 bit pre-scalar. Internal or external 

clock can be the input for this timers and all of them have individual interrupts.  

 

4.3 UART  

UART is a full duplex and UART controller supports large-scale baud rate and full duplex 

communication. For transmission and reception of the data, two 64 byte FIFO are used. 

Serialization and deserialization of the transmitter FIFO and receiver FIFO can be controlled by 

UART controller. Status register, interrupt status register, and modem status register are appointed 

to read states of FIFOs, modem signal and other controller function. Mode register and 

configuration register control the UART functions.  

It is shown in the figure, UART controller and APU communicate using APB bus. Data arrived 

from memory is stored in TxFIFO and received data is stored in RxFIFO. It operates on 

600,9600,28800,115200,460800,921600 baud rates and also produces this baud rates using UART 

reference clock. Data width for transmitter and receiver FIFO is 8 bit. It can run on one of the four 

mode, Normal mode, local loopback mode, automatic mode and remote loopback mode [30]. 
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                                             Figure 4. 2: UART Function Diagram 

 

4.4 DMA Controller 

DMA controller is used to transfer a large amount of data without any interference of the processor. 

Data transfer can be between anywhere system memories and PL peripherals [31]. It uses 64 bit 

AXI master interface with clock_2x frequency. DMA controller includes eight channels, which 

are all configurable. To push memory request DMA engine is used for reading or writing. All the 

status and control register are accessible through software. The figure 4.3 presents the block design 

of the DMA controller. 
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                                    Figure 4. 3: Block Diagram of DMA Controller 

DMA transmission execution engine controls DMA transmission along with processing the 

program code. Instruction is stored by instruction cache temporarily. Read and write instruction is 

used as a storage buffer for instruction before start any transmission on AXI and multi-channel 

data FIFO is used as the storage buffer for read and write during DMA transmission. DMA to PL 

peripheral interface supports asynchronous request from PL peripherals.  

 

4.5 AXI Interface 

Advanced Extensible Interface protocol is majorly used in Xilinx IPs. This protocol is a part of 

ARM advance microcontroller bus architecture (AMBA) [29]. AXI4 [29] is advanced version of 

AMBA 

Overview of AXI: Information between AXI slave and AXI master peripherals is exchanged by 

AXI interface. A structure which is called AXI interconnect connects memory mapped AXI slave 

and AXI master blocks. Xilinx AXI interconnect includes five channels.  
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• Read address channel 

• Read data channel 

• Write data channel 

• Write address channel 

• Write response channel 

 

 

                        Figure 4. 4: The above figure is the architecture for Write Channel [13]  

This interface runs bi-directionally and may have various data width. Yet it approves only 256 data 

transfer in a burst mode. AXI4 stream solely approves burst 44 data transfer while AXI4 lite can 

have merely more than one data per transaction. Due to separate dar and address connection, Bi-

directional data transfer is obtainable. It supports various pipeline phases to maintain timing 

closure. Besides, both AXI master and AXI slave has dissimilar clock. There are three types of 

AXI4 interface which are AXI4, AXI4-lite and AXI4 stream.  

 

4.6 Zed Board Hardware 

There is abundance of board peripherals achievable on the Zed board. Some peripherals are 

available by processing system On the other hand, some of them are accessible purely for 
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programmable logic. Oscillators which are used to generate clocks, UART, DDR peripherals are 

applied in this project. Developed bit stream is dumb into FPGA applying micro USB cable 

through JTAG. 

 

                                        Figure 4. 5: Zed board Block Diagram is shown.   
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5. SOBEL FILTER IMPLEMENTATION IN ZYNQ-7000 SOC 

 

5.1 Overview 

In this chapter we discuss the Sobel filter implementation for both the software and hardware part 

. The main goal for this part of the project is to generate the noise-free image and feed it into the 

Sobel filter so that edges can be detected. Also performance of the edge detection using Zynq-

7000 SoC will be compared with other platforms. 

 

 

Figure 5. 1: Working Sequence for Sobel Implementation 
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From Figure 5.1, at first the IP core for Sobel Edge Detector will be implemented. To create the 

IP core Vivado HLS will be used. After that the task of hardware generation will be done where 

the newly created IP core will be placed. In the final part, the hardware will be programmed in the 

Xilinx SDK tool. Binary image will be used as an input for the hardware, which in turn will 

generate the edge detected image. 

 

5.2 Generation of Sobel IP Core 

 

 

Figure 5. 2: Working sequence of Sobel in Vivado HLS 

 

As already discussed in Chapter 1, there are two kernels which will be used to perform convolution 

with the binary noise-free image. They are the Horizontal Kernel X and Vertical Kernel Y: 
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X Kernel (Horizontal): 

[
−1 0 1
−2 0 2
−1 0 1

] 

Y Kernel (Vertical):  

[
−1 2 −1
0 0 0
1 2 1

] 

 

Noise-free image pixel and also the two kernels from the test bench will be sent to the main core 

function. In the main core function, the first aim is to create the line buffer which will store the 

values of the noise-free image pixel. The size of the line buffer is 3*240, 3 rows and 240 columns. 

The data is not be sent till the line buffer has 240 pixel values in the first row. The convolution 

cannot work at least until the first line of the line buffer has been filled. That is why it has to wait 

241 pixel counts to start work. Once the line buffer fills up the convolution starts operating. Each 

pixel is convolved with X kernel and Y kernel, and the results are stored in appropriate locations. 

Then, the results from the two convolutions are added together and the result is transformed into 

an absolute value, which is subtracted from 255. The main part is to decide the threshold values 

which will decide the edge of the image. For the places where the image will be made black the 

threshold value is 110 and for the places where the image will be made white the threshold value 

is 25. This white color shows the edge of the image. These threshold values has been used as it 

detects almost all the edges for the image. To get the pixel value from the line buffer specific 

column and row value will be used to fetch the data and perform the convolution with the two 

different kernels. Once the values has been compared with the thresholds the data is sent to the 

output stream. Also when the row value and column value is greater than the kernel size then the 

pixel has to be shifted by 1.It is done to move the window. As discussed earlier in chapter 3 and 

also in chapter 4 that the window size should always be 3 because of the middle value can be 

compared to other values. That’s why the data is fetched from the line buffer according to a size 

of 3*3. When the line buffer on a particular row ends, increment the row size to populate more 

values into the window and also the column position will be changed to get new values from the 

line buffer. When all the pixel values has been worked on, exit from the loop and put the remaining 
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result back to the output stream. This is the basic working module of Sobel to detect the edge of 

the image. 

First the design will be simulated and will be checked whether the desired output is coming or not. 

5.3 Simulation Result 

Compiling../../../test_core.cpp in debug mode 

Compiling../../../core.cpp in debug mode 

Generating csim.exe 

Calling Core function 

Core function ended 

Saving image 

@I [SIM-1] CSim done with 0 errors. 

The simulation was successful as no errors were found. 

 

 

              Figure 5. 3: Grayscale Image.                  Figure 5. 4: Edge Detected Image 

Figure 5.3 shows the grayscale image generated. Figure 5.4 shows the edge detected image of the 

noise free image which was generated from the Vivado HLS. The white lines shows the edge of 

the image. The core that has been generated will be used to make it an IP core which in turn will 

be used in the hardware. 

Next step will be to synthesize the code. This will be used to make an IP core. After that the 

synthesis will be done the RTL will be exported to Vivado. 
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5.4 Synthesis of the Sobel Filter 

Here from Figure 5.4 it can be noticed that it took around 11.36 ns for performing the synthesis. 

Synthesis is performed so that the RTL code (VHDL/Verilog) can be used in the hardware. 

Pipelining is used to make it work in less time. Latency is the time difference where the user gives 

the data as input and get the processed data as the output. Table 5.2 shows the latency which is 

691449 for both minimum and maximum values. Also the interval is 691450. 

 

Table 5. 1: Timing for the Sobel Filter 

Clock Target Estimated Uncertainty 

ap_clk 10.00 11.36 1.25 

                                       

Table 5. 2: Latency of the Sobel filter 

Latency Interval  

max min max min Type 

691449 691449 691450 691450 none 

                                        

Table 5. 3: Utilization of the system 

Name BRAM_18K DSP48E FF LUT 

Expression - 8 0 512 

FIFO - - - - 

Instance 4 10 226 220 

Memory 3 - 0 0 

Multiplexer - - - 337 

Register - - 947 - 

Total 7 18 1173 1069 

Available 280 220 106400 53200 

Utilization (%) 2 8 1 2 
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Table 5.3 shows the DSP utilization is 8%, Flip Flop is 1% Look-Up Table is 2%. This table 

demonstrates the total utilization of the system. 

 

Table 5. 4: Generated Ports for AXI Lite 

RTL Ports Dir Bits Protocol Source Object C Type 

s_axi_CRTL_BUS_AWVALID in 1 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_AWREADY out 1 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_AWADDR in 5 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_WVALID in 1 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_WREADY out 1 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_WDATA in 32 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_WSTRB in 4 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_ARVALID in 1 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_ARREADY out 1 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_ARADDR in 5 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_RVALID out 1 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_RREADY in 1 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_RDATA out 32 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_RRESP out 2 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_BVALID out 1 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_BREADY in 1 s_axi CRTL_BUS return void 

s_axi_CRTL_BUS_BRESP out 2 s_axi CRTL_BUS return void 

s_axi_KERNEL_BUS_AWVALID in 1 s_axi KERNEL_BUS array 

s_axi_KERNEL_BUS_AWREADY out 1 s_axi KERNEL_BUS array 

s_axi_KERNEL_BUS_AWADDR in 6 s_axi KERNEL_BUS array 

s_axi_KERNEL_BUS_WVALID in 1 s_axi KERNEL_BUS array 

s_axi_KERNEL_BUS_WREADY out 1 s_axi KERNEL_BUS array 

s_axi_KERNEL_BUS_WDATA in 32 s_axi KERNEL_BUS array 

s_axi_KERNEL_BUS_WSTRB in 4 s_axi KERNEL_BUS array 

s_axi_KERNEL_BUS_ARVALID in 1 s_axi KERNEL_BUS array 
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s_axi_KERNEL_BUS_ARREADY out 1 s_axi KERNEL_BUS array 

s_axi_KERNEL_BUS_ARADDR in 6 s_axi KERNEL_BUS array 

s_axi_KERNEL_BUS_RVALID out 1 s_axi KERNEL_BUS array 

s_axi_KERNEL_BUS_RREADY in 1 s_axi KERNEL_BUS array 

s_axi_KERNEL_BUS_RDATA out 32 s_axi KERNEL_BUS array 

s_axi_KERNEL_BUS_RRESP out 2 s_axi KERNEL_BUS array 

s_axi_KERNEL_BUS_BVALID out 1 s_axi KERNEL_BUS array 

s_axi_KERNEL_BUS_BREADY in 1 s_axi KERNEL_BUS array 

s_axi_KERNEL_BUS_BRESP out 2 s_axi KERNEL_BUS array 

 

From Table 5.5 it can be observed that AXI stream has been used for both input and output stream. 

AXI stream has been used as both in the input and output stream the data comes in a burst. Whereas 

for the two kernels and the return of the control bus AXI lite has been used because the data load 

is not that big. 

 

Table 5. 5: Generated Ports for AXI Stream 

ap_clk in 1 ap_ctrl_hs doSobel return value 

ap_rst_n in 1 ap_ctrl_hs doSobel return value 

interrupt out 1 ap_ctrl_hs doSobel return value 

inStream_TDATA out 1 axis inStream_V_data_V pointer 

inStream_TVALID in 8 axis inStream_V_data_V pointer 

inStream_TREADY in 1 axis inStream_V_dest_V pointer 

inStream_TDEST out 1 axis inStream_V_dest_V pointer 

inStream_TKEEP in 6 axis inStream_V_keep_V pointer 

inStream_TSTRB in 1 axis inStream_V_strb_V pointer 

inStream_TUSER in 1 axis inStream_V_user_V pointer 

inStream_TLAST in 2 axis inStream_V_last_V pointer 

inStream_TID in 1 axis inStream_V_id_V pointer 

outStream_TDATA out 5 axis outStream_V_data_V pointer 

outStream_TVALID out 8 axis outStream_V_data_V pointer 
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outStream_TREADY in 1 axis outStream_V_dest_V pointer 

outStream_TDEST out 1 axis outStream_V_dest_V pointer 

outStream_TKEEP out 6 axis outStream_V_keep_V pointer 

outStream_TSTRB out 1 axis outStream_V_strb_V pointer 

outStream_TUSER out 1 axis outStream_V_user_V pointer 

outStream_TLAST out 2 axis outStream_V_last_V pointer 

outStream_TID out 1 axis outStream_V_id_V pointer 

                                        

From Table 5.5 it can be observed that the size of the data bus is 8 bits for both input and output 

stream. It can be increased based on the load of the data. 

 

Table 5. 6: Memory Consumed for Sobel Filter 

Memory Module BRA

M_18

K 

FF LUT Words Bits Bank

s 

W*Bits*Banks 

lineBuff_value_0_U deSobel_lineBuff_value_0 1 0 0 240 8 1 1920 

lineBuff_value_1_U deSobel_lineBuff_value_0 1 0 0 240 8 1 1920 

lineBuff_value_2_U deSobel_lineBuff_value_0 1 0 0 240 8 1 1920 

Total 3 3 0 0 720 24 3 5760 

                                         

Table 5.6 shows how much memory has been used for the implementation of the Sobel filter. Also 

it can be noticed that 4 Bram has been used. 

 

Table 5. 7: Multiplexer used for Sobel Filter 

Name LUT Input Size Bits Total Bits 

ap_NS_fsm 6 12 1 12 

ap_sig_ioackin_outStream_TREADY 1 2 1 2 

col_assign_phi_fu527_p4 32 2 32 64 

col_assign_reg_523 32 2 32 64 

countWait_1_reg_568 8 2 8 16 

countWait_ phi_fu527_p4 17 2 17 34 

countWait_reg_557 17 2 17 34 
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idxRow_phi_fu_538_p4 32 2 32 64 

idxRow_reg_534 32 2 32 64 

kernel1_address0 8 10 4 40 

kernel2_address0 8 10 4 40 

lineBuff_value_0_address0 8 3 8 24 

lineBuff_value_0_address1 8 3 8 24 

lineBuff_value_1_address0 8 4 8 32 

lineBuff_value_1_address1 8 3 8 24 

lineBuff_value_2_address0 8 4 8 32 

lineBuff_value_2_address1 8 3 8 24 

out_Stream_TDATA 8 3 8 24 

out_Stream_TDEST 6 3 6 18 

out_Stream_TID 5 3 5 15 

out_Stream_TKEEP 1 3 1 3 

out_Stream_TLAST 1 3 1 3 

out_Stream_TSTRB 1 3 1 3 

out_Stream_TUSER 2 3 2 6 

pixConvolved_phi_fu_549_p4 32 2 32 64 

pixConvolved_reg_545 32 2 32 64 

reg_595 8 2 8 16 

Total 337 95 324 810 

 

Table 5.7 describes how many multiplexers has been used. It has 337 Look Up Tables with total 

bits of 810. 

 

5.5 Co-simulation 

After the synthesis has been done co-simulation result will be analyzed. Co-simulation results 

shows whether the simulation result and the synthesis result are same or not. If it is same then it 

means that the Sobel filter will work in the hardware. Otherwise the IP core will not work in the 

hardware. Some changes need to be made to make it work in the hardware. 
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Table 5. 8: Co-simulation Result 

  Latency Interval 

RTL Status min avg max min avg max 

VHDL NA NA NA NA NA NA NA 

Verilog Pass 691453 691453 691453 691453 691453 691453 

 

Now the hardware will be made. 

 

5.6 Generating the Hardware 

In this step Sobel IP core will be used to make the hardware.  

● First the Zynq processor is initialized. It is the main processor which communicates with all the 

other modules. 

● Initialize the DMA (Direct Memory Access). It is the main memory module which will bypass 

the processor for fetching the data. 

● AXI Timer: It will generate the time to show how long the hardware need to give the output. 

Through this, the time will be tracked. 

● Sobel IP Core: This is the Sobel filter. Here the noise free image will be given as an input to this 

module which will generate the edge detected image. 

Figure 4.5 shows the hardware implementation for the Sobel filter. The hardware module will be 

dumped in the Zynq (SoC). The noise free image pixels will come from DDR and will be sent to 

the DMA. The DMA will output the pixels to the IP core. The pixels will be processed there and 

the output will be given to the DMA again. From there it will be sent to the DDR and the result 

will be saved. This result will be edge detected image pixels. AXI interconnect will take care of 

the connections. The noise free image pixels will not have to go through the processor but will be 

directly put into the DMA. After this step the bit stream will be generated for this module which 

in turn will be exported to the Xilinx SDK. 
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Figure 5. 5: Hardware for Sobel Filter Implementation 
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5.7 Xilinx SDK for Sobel Filter 

In this part the hardware will be tested to see whether it is giving the correct output or not. The 

testing procedure consists of the following steps:  

● Initialize the DMA. 

● Initialize the IP core. 

● Store the value of the noise free image pixels in the header file. Take the value from the header 

file and send it to the hardware. 

● Initialize the AXI timer. 

● Write the two Sobel Kernel values(X-Horizontal side, Y-Vertical side) and start the IP core. 

● Flush the cache. 

● Specify the transfer function from Device to DMA and also from DMA to Device. 

● Invalidate the cache. 

● Stop the timer 

When we run the hardware it shows us the following output. 

Starting Hardware...... 

Stopping the Hardware... 

Total Execution time: 0.031581 sec 

Here, it took around 0.031581 seconds to give the output. 

 

Figure 5. 6: Image Output in Zynq 
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Figure 5. 6: Sobel Output Stream 

 

Here from Figure 5.6 it can be observed that the Zynq output is same like the Vivado HLS output. 

The hardware module is working fine like the software module. It can be verified that the edge has 

been detected. The white lines are the edge of the image. 

 

Figure 5. 7: Zedboard 
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Figure 5. 8: Output screenshot for Xilinx SDK 

 

Figure 5.9 displays the output screen for Xilinx SDK. The output is stored in the form of pixel 

values which can be seen in Figure 5.7. MATLAB is used to generate the final image from the 

image pixels generated from the hardware. 

 

5.8 Comparison of Implementation of Sobel filter using different platforms 

In this section different platforms to implement the Sobel filter are discussed and compared. As 

we shall see, they are not as fast as the technique discussed here.  

 

5.8.1 Sobel Edge Detection by Vertex-5 FPGA 

The authors [32] discuss Sobel edge detection using Vertex-5 FPGA, where the the image is 

greyscale, and the number of rows is 480 and the number of columns is 640. For target device 

Xilinx FPGA device XC5VLX50 of family Vertex-5, XC6SLX25 of family Spartan-6, XC3S400 

of family Spartan- 3 is used. Processing on single frame should be completed in a certain desired 
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time to meet a real-time requirement. For typical CMOS digital sensor camera maximum frame 

rate is 30 frame per second and maximum pixel clock frequency for which pixel data outs are valid 

is 48 MHz. Processing of a single frame takes 0.07696 s, or 0.06412 s, for pixel clock frequency 

of 40MHz, or 48MHz respectively, thus meeting the real-time requirement [32]. Nevertheless the 

execution time is slower than the method described here. 

 

5.8.2 Sobel filter implementation by Aparapi and Java 

We compare three implementations of the Sobel edge detection algorithm. The first one is 

sequential version implemented in Java, the second one is thread version implemented in java 

using java thread and the third one is GPU version implemented in Java using the aparapi library. 

The first two versions run on CPU, while the third version runs on GPU. Image is read by an 

implementation using ImageIO class of java and get array of pixel using its getRGB() method. The 

same class is used for writing output image. With the various combination (Table 5.9) it can be 

seen that the speed on GPU using aparapi is 3 to 6 times as compared to CPU sequential 

implementation with sufficient workload. Speed is 2 times with GPU implementation as compared 

to threaded implementation if number of thread less than 8. On sufficient workload, time is 

constant in case of aparapi implementation and scale well. Threaded implementation give up to 2 

times speed with respect to GPU implementation using aparapi if number of thread is more than 

8. Also the speed is 2 to 10 times with respect to sequential implementation[33]. 

 

Table 5. 9: Execution time in milliseconds 

Image 

Resolution 

Sequential 

Implementation 

Threaded Implementation Aparapi 

Implementation 2 4 8 16 

255x255 40 43 38 40 47 773 

512x512 104 88 79 66 68 778 

1024x1024 295 170 149 123 104 794 

2048x2048 1060 521 315 207 158 860 

3506x3506 3155 1597 937 580 430 1185 

4096x4096 4160 1997 1096 856 612 1110 

 

From the above comparison it can be concluded that they are not fast enough as Zynq. 
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6. CONCLUSION 

 

The objective of this thesis is to develop an efficient implementation of Sobel edge detection. This 

objective has been met successfully.  The modules for the Sobel Filter are implemented in a 

combination of software and hardware. We have verified that the results are correct. Although the 

desired outcome was achieved, there are several possible areas of improvement. For example the 

runtime of the simulation in Vivado HLS for the Sobel Implementation can be decreased. Also 

more emphasis has to be given to see whether the utilization of the Programming Logic is less for 

both the IP core. Also though proper edge has detected, it can be more accurate if relevant threshold 

values can be found for the Sobel Implementation. 
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