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ABSTRACT

Kumar, Akash PhD, Purdue University, May 2020. Spectral Approach to Modern
Algorithm Design. Major Professor: Saugata Basu.

Spectral Methods have had huge influence of modern algorithm design. For algo-

rithmic problems on graphs, this is done by using a deep connection between random

walks and the powers of various natural matrices associated with the graph. The

major contribution of this thesis initiates attempts to recover algorithmic results in

Graph Minor Theory via spectral methods.

We make progress towards this goal by exploring these questions in the Property

Testing Model for bounded degree graphs. Our main contributions are

• The first result gives an almost query optimal one-sided tester for the property

of H-minor-freeness. Benjamini-Schramm-Shapira (STOC 2008) conjectured

that for fixed H, this can be done in time Õ(
√
n). Our algorithm solves this in

time n1/2+o(1) which nearly resolves this upto no(1) factors.

• BSS also conjectured that in the two-sided model, H-minor-freeness can be

tested in time poly(1/ε). We resolve this conjecture in the affirmative.

• Lastly, in a previous work on the two-sided-question above, Hassidim-Kelner-

Nguyen-Onak (FOCS 2009) introduced a tool they call partition oracle. They

conjectured that partition oracles could be implemented in time poly(1/ε) and

gave an implementation which took exp(poly(1/ε)) time. In this work, we

resolve this conjecture and produce such an oracle.

Additionally, this work also presents an algorithm which can recover a planted 3-

coloring in a graph with some random like properties and suggests some future re-

search directions alongside.
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1 THE POWER OF SPECTRAL APPROACHES IN ALGORITHM DESIGN

1.1 Introduction

Graphs have been a rich source of problems in discrete mathematics and algo-

rithms for several decades. Spectral approaches have been the mainstay of modern

graph algorithms for quite sometime. For details, see [1,2] and the references therein.

One of the most intriguing avenues where spectral methods find use in graph algo-

rithms concern graph partitioning problems [1, 3–5]. This thesis explores spectral

methods on two fronts: First, it makes an effort to improve the quality of partition

given by (spectral graph theory) toolkit for some special family of graphs; and second

it also adds more ammo to this toolkit for solving novel graph theoretic problems.

Using spectral techniques, jointly with Seshadhri and Stolman, we designed the

first (almost query optimal) algorithm for finding minors in bounded degree graphs

in sublinear time [6]. In another joint work with the same authors [7], we showed that

in the so-called two-sided-testing model, minor-freeness in bounded degree graphs is

efficiently testable. Earlier, it was known to be testable but not efficiently testable.

These works are covered in Chapter 2 and Chapter 3 respectively. Chapter 4 builds

up on these works and further refines our spectral partitioning tools to give the first

polynomial time partition oracles for bounded degree minor-free graphs. All three of

these questions were open for at least a decade and interestingly spectral techniques

led to results that eluded the previous combinatorial approaches.

In another direction, spectral techniques also appear powerful for understanding

planted problems. Notably, [8] used spectral methods to find an outrageously large

planted clique (of size Ω(
√
n)) in a n-vertex graph. In another work, [9] used spec-

tral methods to recover the color classes in a 3-colorable graph which comes from a

nice random family of graphs with a planted 3 coloring. In [10], jointly with Anand
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Louis and Madhur Tulsiani, we gave spectral algorithms to recover a 3-coloring when

the graph has some pseudorandom or random-like properties and admits a planted

3-coloring (which is again pseudorandom). Recent works have shown that the guar-

antees given by spectral methods can also be achieved or improved upon by using the

sum-of-squares or SoS approach [11] (which can also be thought of as “higher order

spectral methods”). 1 This brings us to another topic we recently started working

on: polynomial optimization using the SoS method. This is briefly discussed in §1.3

Unlike the case with planted problems, for worst case problems, it appears that

the sum-of-squares approach is indeed more powerful than spectral methods. In an

ongoing work, we are trying to understand (with my collaborators) the problem of

optimizing polynomials over the sphere using the SoS approach. In particular, we are

exploring a conjecture which essentially postulates that a huge class of randomly dis-

tributed homogeneous polynomials (with degree d in n variables) can be approximated

to within a nd/4−1/2 factor. Apriori, it was conceivable that random polynomials can-

not be approximated to within a factor which is o(nd/2−1) (see [13, 14]). §1.3.3 has

more discussion on this and suggests some directions to explore this further.

1.2 Organization of the Thesis

One of the huge success stories of modern graph theory is the celebrated Graph

Minor Theorem of Robertson and Seymour [15, 16]. Unfortunately, huge chunks of

this literature have not been ported to the toolkit of the modern algorithm designer.

Together with C. Seshadhri and Andrew Stolman, our research attempts to bridge

this gap. In particular, under the assumption that the input graph G is sufficiently far

from being H-minor-free, (one must delete εdn edges to get a H-minor-free graph) we

give an algorithm that finds an H-minor in G in time n1/2+o(1). This almost resolves a

decade old conjecture by Benjamini, Schramm and Shapira [17]. Our algorithm uses

random walks which is a major point of departure from previous works (which used

1we note that in a curious twist, [12] brings us full circle by showing that for numerous planted
problems the guarantees given by SoS can also be met by more nuanced spectral methods.
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a combinatorial approach). One notes that it is rather easy using spectral arguments

to show that there is Õ(
√
n) random walk based algorithm for finding minors in

expanders. Letting |V (H)| = r, fix some sufficiently small δ > 0 and set a parameter

` = nδ (the length of the walk). Let us make a definition: call a vertex s ∈ V (G) leaky

if random walks of length ` from s mix (and thus have a small norm – at most `−10r
2
.

Suppose the graph G has at least n/` leaky vertices. Our key contribution is that

a simple random walk based algorithm which we used in the expanding case (with

some important modifications) can still find a Kr-minor (and thus, an H-minor). In

the other case, when the number of leaky vertices is super small, at most n/`, our

analysis shows that G admits a hyperfinite decomposition. That is, G can then be

partitioned into several tiny pieces many of which contain an H-minor. Moreover,

our algorithm can find a superset of any piece by performing random walks in G.

Putting all of this together, we are able to find minors with a number of queries tiny

bit bigger than the bound conjectured by BSS. This is further explored in Chapter 2.

Chapter 3 considers a followup to this work [7], where we attack the two-sided

version of this problem. This involves distinguishing graphs which are H-minor-free

from those graphs which are ε-far from being H-minor-free as opposed to one-sided

version above (which involves finding the H-minor). This problem was first studied

by [17] who gave an algorithm runs in time triply exponential in 1/ε and returns the

correct verdict with probability 2/3. A series of improvements followed [18,19] got the

runtime down to 1/εO(log (1/ε)). [7] uses spectral arguments and gets the running time

down to poly(1/ε). The key here is to estimate the number of leaky vertices (which

can be done with very few queries). And if the number of leaky vertices is large, then

the estimation process can straight up reject the graph. Otherwise, if this number

is much smaller, we show that the graph again admits a hyperfinite decomposition.

Moreover, just like earlier these pieces can be discovered by performing random walks.

Chapter 4 considers the problem of constructing a poly(1/ε) time partition oracle

for minor-free graphs. [18] introduced the notion of partition oracles for two-sided-
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testing H-minor-freeness. These oracles are local procedures which output the con-

nected component a vertex lies in with no knowledge of the explicit global partition.

This is challenging as one must maintain consistency across queries. The final con-

struction of [18] is an intricate recursive procedure that requires expO(d/ε) queries.

This was improved by [19] who gave an algorithm that makes expO(log2 d/ε) queries.

Constructing a partition oracle which makes poly(1/ε) queries has been a huge open

question. Building up on the tools introduced in [6,7] we give a (random walk based)

global algorithm which can be used to partition the graph. We show how this global

procedure can be locally simulated by using the “diffusion-like” view of random walk

on graphs. As of the writing of this thesis, this work (jointly with Seshadhri and Stol-

man) is currently in submission to FOCS 2020 and it gives the first construction of

partition oracles for minor-free graphs which run provably in time poly(1/ε) settling

a question open for a little more than a decade.

Spectral methods are really versatile and can be used to attack a wide variety of

algorithmic problems. Chapter 5 explores this versatility by using spectral methods

for the graph coloring problem. This chapter reports the partial progress towards

obtaining subexponential time algorithms for coloring a 3-colorable graph with O(nδ)

colors. 2 The starting point of this chapter is the seminal result of [9] which con-

siders the planted problem of recovering a 3-coloring in a special family of random

graphs. It turns out, that this random family has some spectrally nice properties

which can be used to show that a simple spectral clustering heuristic successfully col-

ors expanding graphs. Chapter 5 shows that the essentially the same heuristic with

the subspace enumeration approach from [4,20] continues to recover “pseudorandom”

3-colorings in graphs which are “pseudorandom” and do not enjoy the spectral prop-

erties needed in the analysis of [9]. We make an important comment about this result.

To do this, let us introduce some terminology. We call a graph G partially 3-

colorable if there is a set S ⊆ V (G) with |S| ≥ (1 − α)n such that G[S] admits a

2The exact statement of the conjecture appears in §1.3
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pseudorandom proper 3-coloring. Our algorithm has the key additional property that

it can correctly color 1−O(α) fraction of the vertices and leave the remaining vertices

uncolored. §1.3 explains why is this desirable in more detail.

1.3 Future Directions

The results described in the thesis lead to a number of interesting questions. We

collected a few of those in §1.2. Below, I present a list of representative problems I

would like to explore in the near future.

1.3.1 Future Directions: Problems related to minor freeness

Motivated by the power of spectral techniques for minor-freeness testing problems,

we are interested in understanding to what extent can spectral arguments be used

to recover algorithmic results which rely on the theory of graph minors. Below, I

mention an assortment of some of these problems.

An alternate proof of graph minor theorem? For a bounded degree graph G,

our work seems to suggest that the echoes of G being H-minor-free are visible in the

random walk behavior from numerous nodes in G. If the random walks from more

than a mere handful vertices mix rapidly over their support, G cannot be minor-free.

Thus, one can attempt to characterize H-minor-freeness by looking at the rate of

decay of random walk vectors.

Near-Linear Time algorithms for Balanced Separators Over the past several

years, some of the deepest advances in Graph Minor Theory have been used to re-

cover a balanced separator in H-minor-free graphs [21–23]. However, getting a Õ(n)

time algorithm which returns a separator of size Õ(
√
n) remains elusive. It would be

interesting to see how good a separator can we recover using our random walk based
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decomposition algorithms.

Other problems concerning graph minors There are numerous other problems

concerning minor-free graphs where I would like to see if spectral methods can say

something interesting. One of the major open questions in this area is whether there

exists an o(n2) algorithm which decides whether or not an input graph G is H-minor-

free where |V (H)| = O(1). The current best algorithm due to [24] runs in quadratic

time and it again uses the Graph Minor Theory toolkit.

1.3.2 Future Directions: Spectral Algorithms for Partial Colorings

As described in §1.2, one of our long term goals is to show that we can color a

3-colorable graph in subexponential time (at least in the bi-criteria setting below).

To this end, we have the following conjecture.

Conjecture for Subexponential time coloring algorithms for expanders Fix

δ, ε > 0. Then there exits an algorithm which when given an expanding graph G as

input, runs in time exp(nδ) ·
(
1
ε

)1/δ
and returns a coloring χ such that

• No edges are violated under χ.

• At most εn vertices are left uncolored.

Approaching Partial 3-coloring It is also of interest to explore the partial 3-

coloring problem that we considered in [10]. In particular, we would like to understand

how small can we make α > 0 such that there exists a polynomial time algorithm

which, on input a (1 − ε) partially 3-colorable graph, returns a (1 − O(ε)) partial

coloring with nα colors? Some partial progress on these questions was made recently

in [25].
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1.3.3 Future Directions: Approximation algorithms using SDP hierarchies

Finally, we turn to the SDP sum-of-squares connection mentioned earlier in §1.1.

As noted there, SDP’s and spectral approaches seem to be equally powerful for planted

problems. For worst case problems, SDP’s do seem more powerful. Sum-of-Squares

approach for optimization problems consists of solving a semidefinite program at the

end of the day where the size of the SDP depends on the degree d of the SoS relaxation.

To understand the power and limitations of degree d-SOS better, a classical problem

often considered is polynomial optimization over the unit sphere [13]. Degree d poly-

nomial optimization can be thought of as capturing higher order spectral methods

using SOS. The algorithmic problem considered seeks to find max f(x)s.t.‖x‖2 = 1

where f ∈ R[X1, X2, . . . , Xn] and degree(f) = d. [13] earlier showed that there exists

a distribution µ supported on homogeneous degree d polynomials such that with high

probability for f ∼ µ, SoS(f)/OPT (f) ≥ nd/4−1/2. It was shown in [14] that, for any

polynomial f , we have SOS(f)/OPT (f) ≤ nd/2−1 and thus there is a quadratic gap

between the best approximation a degree d SOS can achieve and the known lower

bound on the quality of approximation. [26] introduced another distribution (which

we denote by
∏

) polynomials coming from which have some nicer properties. Namely,

for large d and the number of variables n held fixed, [27] showed that the number

of connected components of the zero set of f has many more connected components

than what we typically see in a random polynomial from µ (the distribution consid-

ered in [13]). Naively, this leads to the conjecture that perhaps one could “hide” the

maximum better from degree d SOS by using the random family
∏

. We give a re-

port of our ongoing work on this problem and have not included any chapter on this.

We managed to show that with very high probability, a random polynomial f ∼
∏

satisfies that maxx∈Sn−1f(x) ≤ O(
√
n). It remains to be seen what approximation

factor can SOS achieve for polynomials coming from this family. Thus, we also ask

Approximating polynomials on the sphere Let f ∼
∏

where
∏

is the

distribution supported over homogeneous degree d polynomials defined in [26]. We
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would like to understand what is the best approximation factor to the maximum value

of f over the unit sphere that can be achieved using degree d SOS.
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2 FINDING FORBIDDEN MINORS IN SUBLINEAR TIME

Deciding if an n-vertex graph G is planar is a classic algorithmic problem solvable in

linear time [28]. The Kuratowski-Wagner theorem asserts that any non-planar graph

must contain a K5 or K3,3-minor [29,30]. Thus, certifying non-planarity is equivalent

to producing such a minor, which can be done in linear time. Can we beat the linear

time bound if we knew that G was “sufficiently” non-planar?

Assume random access to an adjacency list representation of a bounded degree

graph, G. Suppose, for some constant ε > 0, one had to remove εn edges from G

to make it planar. Can one find a forbidden (K5 or K3,3) minor in o(n) time? It is

natural to ask this question for any property expressible through forbidden minors.

By the famous Robertson-Seymour graph minor theorem [31], any graph property

P that is closed under taking minors can be expressed by a finite list of forbidden

minors. We desire sublinear time algorithms to find a forbidden minor in any G that

requires εn edge deletions to make it have P .

This problem was first posed by Benjamini-Schramm-Shapira [32] in the context of

property testing on bounded degree graphs. We follow the model of property testing

on bounded degree graphs as defined by Goldreich-Ron [33]. Fix a degree bound d.

Consider G = (V,E), where V = [n], and G is represented by an adjacency list. We

have random access to the list through neighbor queries. There is an oracle that,

given v ∈ V and i ∈ [d], returns the ith neighbor of v (if no neighbor exists, it returns

⊥).

Given any property, P , of graphs with degree bound d, the distance of G to P is

defined to be the minimum number of edge additions/removals required to make G

have P divided by dn. This ensures that the distance is in [0, 1]. We say that G is

ε-far from P if the distance to P is more than ε.
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A property tester for P is a randomized procedure that takes as input (query

access to) G and a proximity parameter ε > 0. If G ∈ P , the tester must accept with

probability at least 2/3. If G is ε-far from P , the tester must reject with probability

at least 2/3. A one-sided tester must accept G ∈ P with probability 1, and thus must

provide a certificate of rejection.

We are interested in properties expressible through forbidden minors. Fix a finite

graph H. The property PH of H-minor-freeness is the set of graphs that do not

containH as a minor. Observe that one-sided testers for PH have a special significance

since they must produce an H-minor whenever they reject. One can cast one-sided

property testers for PH as sublinear time procedures that find forbidden minors. Our

main theorem follows.

Theorem 2.0.1 Fix a finite graph H with |V (H)| = r and arbitrarily small δ > 0.

Let PH be the property of H-minor-freeness. There is a randomized algorithm that

takes as input (oracle access to) a graph G with maximum degree d, and a parameter

ε > 0. Its running time is dn1/2+O(δr2) + dε−2 exp(2/δ)/δ. If G is ε-far from PH , then,

with probability > 2/3, the algorithm outputs an H-minor in G.

Equivalently, there exists a one-sided property tester for PH with the above running

time.

The graph minor theorem of Robertson and Seymour [31] asserts the following.

Consider any property Q that is closed under taking minors. There is a finite list

H of graphs such that G ∈ Q iff G is H-minor-free for all H ∈ H . If G is ε-far

from Q, then G is Ω(ε)-far from PH for some H ∈ H . Thus, a direct corollary of

Theorem 2.0.1 is the following.

Corollary 2.0.2 Let Q be any minor-closed property of graphs with degree bound

d. For any δ > 0, there is a one-sided property tester for Q with running time

O(dn1/2+δ + dε−2 exp(2/δ)/δ).

In the following discussion, we suppress dependences on ε and nδ by O∗(·) (where

δ > 0 is arbitrarily small). Previously, the only graphs H for which an analogue of
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Theorem 2.0.1 was known are the following: O∗(1) time for H being a forest, O∗(
√
n)

for H being a cycle [34], and O∗(n2/3) for H being K2,k, the (k × 2)-grid, and the

k-circus [35]. No sublinear time bound was known for planarity.

Corollary 2.0.2 implies that properties such as planarity, series-parallel graphs,

embeddability in bounded genus surfaces, and bounded treewidth are all one-sided

testable in O∗(
√
n) time.

We note a particularly pleasing application of Theorem 2.0.1. Suppose a bounded

degree graph, G, has more than (3 + ε)n edges. Then it is guaranteed to be ε-far

from being planar, and thus, there is an algorithm to find a forbidden minor in G in

O∗(
√
n) time. Since all minor-closed properties have constant average degree bounds,

analogous statements can be made for all such properties.

2.0.1 Related work

Graph minor theory is a deep topic, and we refer the reader to Chapter 12 of

Diestel’s book [36] and Lovász’s survey [37]. For our purposes, we use as a black-

box a polynomial time algorithm that finds fixed minors in a graph. A result of

Kawarabayashi-Kobayashi-Reed provides an O(n2) time algorithm [24].

Property testing on graphs is an immensely rich area of study, and we refer the

reader to Goldreich’s recent textbook for more details [38]. There is a significant dif-

ference between the theory of property testing for dense graphs and that of bounded

degree graphs. For the former, there is a complete characterization of properties

(one-sided, non-adaptive) testable in query complexity independent of graph size.

There is a deep connection between property testing and the Szemeredi regularity

lemma [39]. Property testing for bounded degree graphs is much less understood.

This study was initiated by Goldreich-Ron, and the first results focused on con-

nectivity properties [33]. Czumaj-Sohler-Shapira proved that hereditary properties

of non-expanding graphs are testable [40]. A breakthrough result of Benjamini-

Schramm-Shapira (henceforth BSS) proved that all minor-closed (more generally,
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hyperfinite) properties are two-sided testable in constant time. The dependence on ε

was subsequently improved by Hassidim et al, using the concept of local partitioning

oracles [41]. A result of Levi-Ron [42] significantly simplified and improved this anal-

ysis, to get a final query complexity quasi-polynomial in 1/ε. Indeed, it is a major

open question to get polynomial dependence on 1/ε for two-sided planarity testers.

Towards this goal, Ito and Yoshida give such a bound for testing outerplanarity [43],

or Edelman et al generalize for bounded treewidth graphs [44].

In contrast to dense graph testing, there is a significant jump in complexity for

one-sided testers. BSS first raised the question of one-sided testers for minor-closed

properties (especially planarity) and conjectured that the bound is O(
√
n). Czumaj

et al [34] made the first step by giving an Õ(
√
n) one-sided tester for the property of

being Ck-minor-free [34]. For k = 3, this is precisely the class of forests. This tester

is obtained by a reduction to a much older result of Goldreich-Ron for one-sided

bipartiteness testing for bounded degree graphs [45] (the results in Czumaj et al are

obtained by black-box applications of this result). Czumaj et al adapt the one-sided

Ω(
√
n) lower bound for bipartiteness and show an Ω(

√
n) lower bound for one-sided

testers for H-minor-freeness when H has a cycle [34]. This is complemented with a

constant time tester for H-minor-freeness when H is a forest.

Recently, Fichtenberger-Levi-Vasudev-Wötzel give an Õ(n2/3) tester for H-minor-

freeness when H is one of the following graphs: K2,k, the (k × 2)-grid or the k-circus

graph (a wheel where spokes have two edges) [35]. This subsumes the properties of

outerplanarity and cactus graphs. This result uses a different, more combinatorial

(as opposed to random walk based) approach than Czumaj et al.

The use of random walks in property testing was pioneered by Goldreich-Ron [45]

and was then (naturally) used in testing expansion properties and clustering struc-

ture [46–51]. Our approach is inspired by the Goldreich-Ron analysis, and we discuss

more in the next section. A number of previous results have used random walks for

routing in expanders [52,53]. We use techniques from Kale-Seshadhri-Peres to analyze

random walks on projected Markov Chains [50]. We also employ the local partitioning
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methods of Spielman-Teng [54], which is in turn derived from the Lovász-Simonovits

analysis technique [3].

2.1 Main Ideas

We give an overview of the proof strategy and discuss the various moving parts

of the proof. Assume that G is a d-regular graph. It is instructive to understand the

method of Goldreich-Ron (henceforth GR) for one-side bipartiteness testing [45]. The

basic idea to perform O(
√
n) random walks of poly(log n) length from a uar vertex s.

An odd cycle is discovered when two walks end at the same vertex v, through path

of differing parity (of length).

The GR analysis first considers the case when G is an expander (and ε-far from

bipartite). In this case, the walks from s reach the stationary distribution. One can

use a standard collision argument to show that O(
√
n) suffice to hit the same vertex

v twice, with different parity paths. The deep insight is that any graph G can be

decomposed into pieces where the algorithm works, and each piece P has a small cut to

P . This has connections with decomposing a graph into expander-like pieces [55,56].

Famously, the Arora-Barak-Steurer algorithm [4] for unique games basically proves

such a statement. We note that GR does not decompose into expanders, but rather

into pieces where the expander analysis goes through. So, one might hope to analyze

the algorithm by its behavior on each component. Unfortunately, the algorithm

cannot produce the decomposition; it can only walk in G and hope that performing

random walks in G suffice to simulate the procedure within P . This is extremely

challenging, and is precisely what GR achieve (this is the bulk of the analysis). The

main lemma produces a decomposition into such pieces, such that for each piece P ,

there exists s ∈ P wherein short random walks (in G) from s reach all vertices in P

with sufficient probability. One can think of this a simulation argument: we would

like to simulate the random walk algorithm running only on P , through random walks

in G.
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The challenge of general minors: With planarity in mind, let us focus on

finding K5 minors. It is highly unlikely that random walks from a single vertex will

find a such a minor. Intuitively, we would need to find 5 different vertices, launch

random walks from all of them and hope these walks will produce a minor. Thus, we

would need to simulate a much more complex procedure than the (odd) cycle finder

of GR. Most significantly, we need to understand the random walks behavior from

multiple sources within P simultaneously. The GR analysis actually constructs the

pieces P by a local partitioning looking at the random walk distribution from a single

vertex. There is no guarantee on random walk behavior from other vertices in P .

There is a more significant challenge from arbitrary minors. The simulation does

not say anything about the specific structure of the paths generated. It only deals

with the probability of reaching v from s by a random walk in G when v and s are

in the same piece. For bipartiteness, as long as we find two paths of differing parity,

we are done. They may intersect each other arbitrarily. For finding a K5 minor, the

actual intersection matter. We would need paths between all pairs of 5 seed vertices

to be “disjoint enough” to give a K5 minor. This appears extremely difficult using

the GR analysis. Even if we did understand the random walk behavior (in G) from

all vertices in P , we have little control over their behavior when they leave P . (Based

on the parameters, the walks leave P with high probability.) They may intersect

arbitrarily, and thus destroy any minor structure.

2.1.1 When do random walks find minors?

Inspired by GR, let us start with an algorithm to find a K5 minor in an expander G

(variants of these ideas were present in a result of Kleinberg-Rubinfeld that expanders

contain an H-minor for any H with n/poly(log n) edges [53]). Let ` denote the mixing

time. Pick u.a.r. a vertex, s, and launch 5 random walks each of length ` to reach

v1, v2, . . . , v5. From each vi, launch
√
n random walks each of length `. With high

probability, a walk from vi and a walk from vj will “collide” (end at the same vertex).
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We can collect these collisions to get paths between all vi, vj, and one can, with some

effort, show that these form a K5-minor.

Our main insight is to show that this algorithm, with minor modifications, works

even when random walks have extremely slow mixing properties. When the random

walks mix even more slowly than the requisite bound, we can essentially perform

local partitioning to pull out very small (nδ for arbitrarily small δ > 0) pieces that

have low conductance cuts. We can simply query all edges in this piece and run a

planarity test.

There is a parameter δ > 0 that can be set to an arbitrarily small constant. Let us

set the random walk length ` to nδ, and let ps,` be the random walk distribution after

` steps from s. Our proof splits into two cases, where α = cδ for explicit constant

c > 1:

• Case 1 (the leaky case): For at least εn vertices s, ‖ps,`‖22 ≤ 1/nα.

• Case 2 (the trapped case): For at least (1− ε)n vertices s,‖ps,`‖22 > 1/nα.

In the leaky case, random walks are hardly mixing by any standard of convergence.

We are merely requiring that a random walk of length nδ (roughly speaking) spreads

to a set of size ncδ.

We prove that, in the leaky case, the procedure described in the first paragraph

succeeds in finding a K5 with high probability. We give an outline of this proof

strategy.

Let us assume that pv,`/2 = pv,` (so `-length walks have “stabilized”). Let us

make a slight modification to the algorithm. We pick v1, . . . , v5 as before, with `-

length random walks from s. We will perform O(
√
n) `/2 length random walks from

each vi to produce the K5 minor. By symmetry of the random walks, the probability

that a single walk from vi and one from vj collide (to produce a path) is exactly

pvi,`/2 · pvj ,`/2. Thus, we would like these dot products to be large. By the symmetry

of the random walk, the probability of an `-length random walk starting from s and

ending at v is ps,`/2 · pv,`/2. In other words, the entries of ps,` are precisely these
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dot products, and ‖ps,`‖22 =
∑

v∈V (ps,`/2 · pv,`/2)2 = Ev∼ps,`/2 [ps,`/2 · pv,`/2]. Since

ps,`/2 = ps,`, we rewrite to get ps,`/2 · ps,`/2 = Ev∼ps,`/2 [ps,`/2 · pv,`/2].

Think of the dot products as correlations between distributions. We are saying

that the average correlation (over some distribution on vertices) of pv,`/2 with ps,`/2

is exactly the self-correlation of ps,`/2. If the distributions by and large had low `2-

norm (as in the leaky case), we might hope that these distributions are reasonably

correlated with each other. Indeed, this is what we prove. Under some conditions, we

show that Evi,vj∼ps,`/2 [pvi,`/2 ·pvj ,`/2] can be lower bounded, where ps,`/2 is exactly the

distribution the algorithm picks the vi and vj from. This is evidence that `/2-length

random walks will connect the vi’s through collisions.

There are four difficulties in increasing order of worry.

1. We only have a lower bound of the average pvi,`/2 · pvj ,`/2. We would need

bounds for all (or most) pairs to produce a minor.

2. pv,` might be very different from pv,`/2.

3. The expected number of collisions between walks from vi and vj is controlled

by the dot product above, but the variance (which really controls the probability of

getting a collision) can be large. There are instances where the dot product is high,

but the collision probability is extremely low.

4. There is no guarantee that these paths will produce a minor since we do not

have any obvious constraints on the intermediate vertices in the path.

The first problem is surmounted by a technical trick. It turns out to be cleaner

to analyze the probability of getting a biclique minor. So, we perform 50 random

walks from s to get sets A = {a1, a2, . . . , a25} and an analogous B. We launch `/2-

length random walks from each vertex in A∪B. The average lower bound on the dot

product suffices to get a lower bound on the probability of getting a K25,25-minor,

which contains a K5-minor.

For the second problem, what we can show is that the weaker bound of ‖pv,`‖2 =

Ω(n−δ‖pv,`/2‖2) suffices. We could try to search for some value of ` where this happens.

If there was no (small) value of ` where this bound held, then it suggest that ‖pv,nδ‖2
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is extremely small (say Θ(1/n)). This kind of reasoning is detailed more in the next

subsection.

The third problem requires bounds on the variance, or higher norms, of pv,`/2.

Unfortunately, there appears be no handle on these. At a high level, our idea is to

truncate pv,`/2 by ignoring large entries. This truncated vector is not a probability

vector any more, but we can hope to redo the analysis for such vectors.

Now for the fourth problem. Naturally, if the vertices v1, . . . , v5 are close to each

other, we do not expect to get a minor by connecting them. Suppose they were

sufficiently “spread out”, One could hope that the paths connecting the vi, vj pairs

would only intersect “near” the vi. The portion of the paths nears the vi’s could be

contracted to get a K5-minor. We can roughly quantify how far the vi’s will be by

the variance of pv,`/2. Thus, the third and fourth problem are coupled.

2.1.2 R-returning walks

The main technical contribution of our work is in defining R-returning walks.

These are walks that periodically return to a given set of vertices, R. A careful

analysis of these walks provides the tools to handle the various problems discussed

above.

Fix ` as before. Formally, an R-returning walk of length j` (for j ∈ N) is a

walk that encounters R at every i` step ∀i ∈ [j]. While random walk distributions

can have poor variance, we can carefully choose R to ensure that the distribution of

R-returning walks is well-behaved. We will quantify this as approximate “support

uniformity” (being approximatedly uniform on the support).

In the leaky case, there is some (large) set, R, such that ∀s ∈ R, ‖ps,`/2‖22 ≤ 1/nα.

Let p[R],s,` be the random walk distribution restricted to R. Suppose for some s ∈ R,

‖p[R],s,`‖22 ≥ 1/nα+δ. Observe that each entry in p[R],s,` is ps,`/2 · pv,`/2, for s, v ∈ R.

By Cauchy-Schwartz, this is at most 1/nα. For any distribution v, the condition

‖v‖22 = ‖v‖∞ is equivalent to support uniformity. Thus, p[R],s,` is approximately
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support uniform, up to nδ deviations. The math discussed in the previous section

goes through for any such s. In other words, if the random walk algorithm started

from s, it succeeds in finding a K5 minor.

Suppose only a negligible fraction of vertices satisfied this condition, and so our

algorithm would not actually find such a vertex. Let us remove all these vertices from

R (abusing notation, let R be the resulting set). Now, ∀s ∈ R, ‖p[R],s,`‖22 ≤ 1/nα+δ.

So, the bound on the l2-norm has fallen by an nδ factor. What does p[R],s,` · p[R],v,`

signify? This is the probability of a 2`-length random walk starting from s, ending

at v, and encountering R at the `th step. This is an R-returning walk of length 2`.

Let q[R],s,2` denote the vector of R-returning walk probabilities. Suppose for some

s, ‖q[R],s,2`‖22 ≥ 1/nα+2δ. By Cauchy-Schwartz, ‖q[R],s,2`‖∞ ≤ 1/nα+δ, implying that

q[R],s,2` is approximately support uniform. Again, the math of the previous section

goes through for such an s.

We remove all vertices that have this property, and end up with R such that

∀s ∈ R, ‖q[R],s,2`‖22 ≤ 1/nα+2δ. Observe that q[R],s,2` · q[R],v,2` is a probability of a 4`

R-returning walk. We then iterate this argument.

In general, this argument goes through phases. In the ith phase, we find all s ∈ R

that satisfy ‖q[R],s,2i`‖22 ≥ 1/nα+iδ. We show that the random walk procedure of

the previous section (with some modifications) finds a K5-minor starting from such

vertices. We remove all such vertices from R, increment i and continue the argument.

The vertices removed at the ith phase are called the ith stratum, and we refer to

this entire process as stratification. Intuitively, for vertices in the ith stratum, the

R-returning (for the setting of R at that phase) walk probabilities roughly form a

uniform distribution of support nα+iδ. Thus, for vertices in higher strata, the random

walks are spreading to larger sets.

There is a major problem. The q vectors are not distributions, and the vast

majority of walks are not R-returning. Indeed, the reduction in norm as we increase

strata might simply be an artifact of the lower probability of a longer R-returning walk

(note that the walks lengths are increasing exponentially in the phase number). We
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prove a spectral lemma asserting that this is not the case. As long as R is sufficiently

large, the probabilities of R-returning walks are sufficiently high. Unfortunately,

these probabilities (must) decrease exponentially in the number of returns. In the

ith phase, the walk length is 2i` and it must return to R 2i times. Here is where

the nδ decay in l2-norm condition saves us. After 1/δ phases, the ‖q[R],s,2i`‖22 is

basically 1/n. The spectral lemma tells us that if R is still large, the probability

that a 21/δ` length walk is R-returning is sufficiently large. Thus, the norm cannot

decrease, and almost all vertices end up in the very next stratum. If R was small,

then there is an earlier stratum containing Ω(δεn) vertices. Regardless of the case,

there exists a i ≤ 1/δ+O(1) such that the ith stratum contains Ω(δεn) vertices. For

all these vertices, the random walk algorithm to find minors succeeds with non-trivial

probability.

2.1.3 The trapped case: local partitioning to the rescue

In this case, for almost all vertices ‖ps,`‖22 ≥ 1/nα. The proofs of the (contraposi-

tive of the) Cheeger inequality basically imply the existence of a set of low condutance

cut Ps “around” s. By local partitioning methods such as those of Spielman-Teng

and Anderson-Chung-Lang [54, 57], we can actually find Ps in roughly nα time. We

expect our graph to basically decompose into O(nα) sized components with few edges

between them. Our algorithm can simply find these pieces Ps and run a planarity

test on them. We refer to this as the local search procedure.

While the intuition is correct, the analysis is difficult. The main problem is that

actual partitioning of the graph (into small components connected by low conductance

cuts) is fundamentally iterative. It starts by finding a low conductance set Ps1 ,

then finding a low conductance set Ps2 in Ps1 , then Ps3 in Ps1 ∪ Ps2 , and so on. In

general, this requires conditions on the random walk behavior inside
⋃
j<i Psj . On

the other hand, our algorithm and the trapped case condition only refer to random
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walk behavior in all of G. Furthermore,
⋃
j<i Psj can be as small as Θ(εn), and so we

do expect the random walk behavior to be quite different.

The GR bipartiteness analysis surmounts this problem and performs such a de-

composition, but their parameters do not work for us. Starting from a source vertex

s, their analysis discovers Ps such that probabilities of reaching any vertex in Ps (from

s) is roughly uniform and smaller than 1/
√
n. On the other hand, we would like to

discover all of Ps in nO(δ) time so that we can run a full planarity test.

We employ a collection of tools, and use the methods of Kale-Peres-Seshadhri

to analyze “projected” Markov Chains [50]. In the analysis above, we have some

set S (
⋃
j<i Psj) and want to find a low conductance set P completely contained

in S. Moreover, we wish to discover P using random walks in G. We construct a

Markov chain, MS, with vertex set S, and include new transitions that correspond

to walks in G whose intermediate vertices are not in S. Each such transition has an

associated “cost,” corresponding to the actual length in G. (GR also have a similar

idea, although their Markov chain introduces extra vertices to track the length of the

walk in G. This makes the analysis somewhat unwieldy, since low conductance cuts

in MS may include these extra vertices.)

Using bounds on the return time of random walks, we have relationships between

the average length of a walk in G whose endpoints are in S and the corresponding

length when “projected” to MS. On average, an `-length walk in G with endpoints

in S corresponds to an `|S|/n-length walk in MS. Roughly speaking, we hope that

for many vertices s, an `|S|/n-length walk in MS is trapped in a set of size nα.

We employ the Lovász-Simonovits curve technique to produce a low conductance

cut Ps in MS [3]. We can guarantee that all vertices in Ps are reachable with roughly

n−α probability from s through `|S|/n-length random walks in MS. Using the average

length correspondence between walks in MS to G, we can make a similar statement

in G - albeit with a longer length. We basically iterate over this entire argument to

produce the decomposition into low conductance pieces.
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In our analysis, we use the stratification itself to (implicitly) distinguish between

the leaky and trapped case. Stratification peels the graph into 1/δ+O(1) strata. If a

vertex s lies in a stratum numbered at least some fixed constant b, we can show that

the algorithm finds a Kr-minor with s as the starting vertex. Thus, if at least (say)

n1−δ vertices lie in stratum b or higher, we are done. If s is in a low stratum, we have

a lower bound on the random walks norm. This allows for local partitioning around

s.

2.2 The algorithm

We are given a bounded degree graph G = (V,E), with max degree d. We

assume that V = [n]. We follow the standard adjacency list model of Goldreich-Ron

for (random) access to the graph. This model allows an algorithm to sample u.a.r.

vertices and perform edge queries. Given a pair (v, i) ∈ [n] × [d], the output of an

edge query is the ith neighbor of v according to the adjacency list ordering. If the

degree of v is smaller than i, the output is ⊥.

In the algorithm, the phrase “random walk” refers to a lazy random walk on

G. Given a current vertex, v, with probability 1/2, the walk remains at v. With

probability 1/2, the procedure generates u.a.r. i ∈ [d]. It performs the edge query

for (v, i). If the output is ⊥, the walk remains at v, otherwise the walk visits the

output vertex. This is a symmetric, ergodic Markov chain with a uniform stationary

distribution.

Our main procedure FindMinor(G, ε,H), tries to find a H-minor in G. We prove

that it succeeds with high probability if G is ε-far from being H-minor-free. There

are three subroutines:

• LocalSearch(s): This procedure perform a small number of short random walks

to find the piece described in §2.1.3. This produces a small subgraph of G, where an

exact H-minor finding algorithm is used.
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• FindPath(u, v, k, i): This procedure tries to find a path from u to v. The

parameter i decides the length of the walk, and the procedure performs k walks from

u and v. If any pair of these walks collide, this path is output.

• FindBiclique(s): This is the main procedure mostly as described in §2.1.1. It

attempts to find a sufficiently large biclique minor. First, it generates seed sets A

and B by performing random walks from s. Then, it calls FindPath on all pairs in

A×B.

We fix a collection of parameters.

• δ: An arbitrarily small constant.

• r: The number of vertices in H.

• `: The random walk length. This will be n5δ.

• εCUTOFF: εCUTOFF = n
−δ

exp(2/δ) . If ε < εCUTOFF, the algorithm just queries the

whole graph.

• KKR(F,H): This refers to an exact H-minor finding process (in F ). For concrete-

ness, we use the quadratic time procedure of Kawarabayashi-Kobayashi-Reed [24].

FindMinor(G, ε,H)

1. If ε < εCUTOFF, query all of G, and output KKR(G,H)

2. Else

(a) Repeat ε−2n35δr2 times:

i. Pick uar s ∈ V

ii. Call LocalSearch(s) and FindBiclique(s).
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LocalSearch(s)

1. Initialize set B = ∅.

2. For h = 1, . . . , n7δr4 :

(a) Perform ε−1n30δr4 independent random walks of length h from s.

Add all destination vertices to B.

3. Determine G[B], the subgraph induced by B.

4. Run KKR(G[B], H). If it returns an H-minor, output that and termi-

nate.

FindBiclique(s)

1. For i = 5r4, . . . , 1/δ + 4:

(a) Perform 2r2 independent random walks of length 2i+1` from s.

Let the destinations of the first r2 walks be multiset A, and the

destinations of the remaining walks be B.

(b) For each a ∈ A, b ∈ B:

i. Run FindPath(a, b, nδ(i+18)/2, i)

(c) If all calls to FindPath return a path, then let the collection of

paths be the subgraph F . Run KKR(F,H). If it returns an H-

minor, output that and terminate.

FindPath(u, v, k, i)

1. Perform k random walks of length 2i` from u and v.

2. If a walk from u and v terminate at the same vertex, return these paths.

(Otherwise, return nothing.)

Theorem 2.2.1 If G is ε-far from being H-minor-free, then FindMinor(G, ε,H)

finds an H-minor of G with probability at least 2/3. Furthermore, FindMinor has

a running time of dn1/2+O(δr2) + dε−2 exp(2/δ)/δ.

The query complexity is fairly easy to compute. The total queries made in the

LocalSearch calls is dnO(δr4). The main work happens in the calls of FindPath, within

FindBiclique. Observe that k is set to nδ(i+18)/2, where i ≤ 1/δ+4. This leads to the
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√
n in the final complexity. (In general, a setting of δ < 1/ log(ε−1 log log n) suffices

for an n1/2+o(1) running time.)

Outline: There are a number of moving parts in the proof, which we relegate to

their own subsections. We first develop the notion of R-returning walks and the strat-

ification process in §2.3. In §2.4, we use these techniques to prove that FindBiclique

discovers a sufficiently large biclique-minor in the leaky case. In §2.5, we prove a local

partitioning lemma that will be used to handle the trapped case. Finally, in §2.6, we

put the tools together to complete the proof of Theorem 2.2.1.

2.3 Returning walks and stratification

We introduce the concept of R-returning random walks for any R ⊆ V . These

definitions are with respect to a fixed length `.

Definition 2.3.1 For any set of vertices R, s ∈ R, u ∈ R, and i ∈ N, we define

the R-returning probability as follows. We denote by q
(i)
[R],s(u) the probability that a

2i`-length random walk from s ends at u, and encounters a vertex in S at every j`th

step, for all 1 ≤ j ≤ 2i. The R-returning probability vector, denoted by q
(i)
[R],s, is the

|R|-dimensional vector of returning probabilities.

Proposition 2.3.1 q
(i+1)
[R],s (u) = q

(i)
[R],s · q

(i)
[R],u

Proof We use the symmetry of (returning) random walks in G.

q
(i+1)
[R],s (u) =

∑
w∈S

q
(i)
[R],s(w)q

(i)
[R],w(u) =

∑
w∈R

q
(u)
[R],s(w)q

(i)
[R],u(w) = q

(i)
[R],s · q

(i)
[R],u

Let M be the transition matrix of the lazy random walk on G. Let PR be the

n× |R| matrix on R, where each column is the unit vector for some s ∈ R. For any

set U , we use 1U for the indicator vector on U . If no subscript is given, it is the all

ones vector, for the appropriate dimension.
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Proposition 2.3.2 q
(i)
[R],s = (PTRM `PR)2

i
1s

Now for a critical lemma. We can lower bound the total probability of an R-returning

random walk. If R contains at least a β-fraction of vertices, the average R-returning

walk probability, for t returns, is at least βt.

Lemma 2.3.1 |R|−1
∑

s∈R ‖q
(i)
[R],s‖1 ≥ (|R|/n)2

i

Proof We will express
∑

s∈R ‖q
(i)
[R],s‖1 = 1T (PTRM `PR)2

i
1. Let us first prove the

lemma for i = 0. Note
∑

s∈R ‖q
(0)
[R],s‖1 = 1TRM

`1R = ((MT )`/21R)T (M `/21R) =

‖M `/21R‖22. Since M `/2 is a stochastic matrix, ‖M `/21R‖1 = ‖1R‖1 = |R|. By a

standard norm inequality, ‖M `/21R‖22 ≥ ‖M `/21R‖21/n = |R|2/n. This completes the

proof for i = 0.

Let N = PTRM `PR, which is a symmetric matrix. We have just proven that

1TN1 ≥ |R|2/n. Let the eigenvalues of N be 1 ≥ λ1 ≥ λ2 . . . λ|R|, with corresponding

eigenvectors u1,u2, . . . ,us. We can express 1 =
∑

k≤|R| αkuk, where
∑

k α
2
k = |R|.

Observe that N2i1 =
∑

k≤|R| αkλ
2i

k uk

Let µk = α2
k/
∑

j α
2
j , noting that

∑
k µk = 1. We apply Jensen’s inequality below.

1TN2i1

|R|
=

∑
k α

2
kλ

2i

k∑
j α

2
j

=
∑
k

µkλ
2i

k ≥ (
∑
k

µkλk)
2i

For i = 0, we already proved that 1TN1/|R| =
∑

k µkλk ≥ |R|/n. We plug this

bound to complete the proof for general i.

2.3.1 Stratification

Stratification results in a collection of disjoint sets of vertices denoted by S0, S1, . . .

which are called strata. The corresponding residue sets denoted by R0, R1, . . .. The

zeroth residueR0 is initialized before stratification and subsequent residues are defined

by the recurrence Ri = R0 \
⋃
j<i Sj. The definitions and claims may seem technical,

and the proofs are mostly norm manipulations. But these provide the tools to analyze

our main algorithm.
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Definition 2.3.2 Suppose Ri has been constructed. A vertex s ∈ Ri is placed in Si

if ‖q(i+1)
[Ri],s
‖22 ≥ 1/nδi.

We have an upper bound for the length of Ri-returning walk vectors.

Claim 2.3.2 For all s ∈ Ri and 1 ≤ j ≤ i, ‖q(j)[Ri],s
‖22 ≤ 1/nδ(j−1).

Proof Suppose ∃j ≤ i, ‖q(j)[Ri],s
‖22 > 1/nδ(j−1). By assumption, s ∈ Ri ⊆ Rj−1. An

Ri-returning walk from s is also an Rj−1-returning walk. Thus, every entry of q
(j)
[Rj−1],s

is at least that of q
(j)
[Ri],s

. So ‖q(j)[Rj−1],s
‖22 ≥ ‖q

(j)
[Ri],s
‖22 > 1/nδ(j−1). This implies that

s ∈ Sj−1 or an earlier stratum, contradicting the assumption that s ∈ Ri.

We prove an `∞ bound on the returning probability vectors. Note that we allow

j to be i+ 1 in the following bound.

Claim 2.3.3 For all s ∈ Ri and 2 ≤ j ≤ i+ 1, ‖q(j)[Ri],s
‖∞ ≤ 1/nδ(j−2).

Proof By Prop. 2.3.1, for any v ∈ Ri, q
(j)
[Ri],s

(v) = q
(j−1)
[Ri],s

· q(j−1)[Ri],v
. Note that 1 ≤

j − 1 ≤ i. By Cauchy-Schwartz and Claim 2.3.2, q
(j)
[Ri],s

(v) ≤ 1/nδ(j−2).

As a consequence of these bounds, we are able to bound the amount of probability

mass retained by Ri-returning walks.

Claim 2.3.4 For all s ∈ Si, ||q(i+1)
[Ri],s
||1 ≥ n−δ.

Proof Since s ∈ Si, ||q(i+1)
[Ri],s
||22 ≥ n−iδ, and by Claim 2.3.3, ||q(i+1)

[Ri],s
||∞ ≤ n−δ(i−1).

Since, ||q(i+1)
[Ri],s
||22 ≤ ||q

(i+1)
[Ri],s
||1||q(i+1)

[Ri],s
||∞, we conclude ||q(i+1)

[Ri],s
||1 ≥ n−iδnδ(i−1) = n−δ.

We prove that most vertices lie in “early” strata.

Lemma 2.3.5 Suppose ε ≥ εCUTOFF. At most εn/log n vertices are in R1/δ+3.



27

Proof We prove by contradiction. Suppose that R1/δ+3 has at least εn/ log n ver-

tices. The previous residue, R1/δ+2, is only bigger and thus |R1/δ+2| ≥ εn/ log n as

well. By Lemma 2.3.1,

|R1/δ+2|−1
∑

s∈R1/δ+2

‖q(1/δ+3)
[R1/δ+2],s

‖1 ≥
(

ε

log n

)21/δ+3

. (2.1)

By averaging and a standard l1-l2 norm inequality,

||q(1/δ+3)
[R1/δ+2],s

‖22 ≥ n−1
(

ε

log n

)21/δ+4

. (2.2)

By assumption, ε ≥ εCUTOFF ≥ n−δ/ exp(1/δ). For sufficiently small δ, δ/ exp(1/δ) <

2δ/21/δ+4. Thus, ε ≥ (log n)n−2δ/(2
1/δ+4). Plugging into the RHS of the previous

equation, ||q(1/δ+3)
[R1/δ+2],s

‖22 ≥ 1/n1+2δ = 1/nδ(1/δ+2). This implies that v ∈ S1/δ+2 - a

contradiction.

2.3.2 The correlation lemma

The following lemma is an important tool in our analysis. Here is an intuitive ex-

planation. Fix some s ∈ Si. By Prop. 2.3.1, the probability q
(i+1)
[Ri],s

(v) is the correlation

between the vectors q
(i)
[Ri],s

and q
(i)
[Ri],v

. If many of these probabilities are large, then

there are many v such that q
(i)
[Ri],v

is correlated with q
(i)
[Ri],s

. We then expect many of

these vectors are correlated among themselves.

Definition 2.3.3 For s ∈ Ri, the distribution Ds,i has support Ri, and the probability

of u ∈ Ri is q̂
(i+1)
[Ri],s

(v) = q
(i+1)
[Ri],s

(v)/‖q(i+1)
[Ri],s
‖1.

Lemma 2.3.6 Fix arbitrary s ∈ Ri.

Eu1,u2∼Ds,i [q
(i)
[Ri],u1

· q(i)[Ri],u2
] ≥ 1

‖q(i+1)
[Ri],s
‖21
·
‖q(i+1)

[Ri],s
‖42

‖q(i)[Ri],s
‖22
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Proof

Eu1,u2∼Ds,i [q
(i)
[Ri],u1

· q(i)[Ri],u2
] (2.3)

=
∑

u1,u2∈Ri

‖q(i+1)
[Ri],s
‖−21 q

(i+1)
[Ri],s

(u1)q
(i+1)
[Ri],s

(u2)q
(i)
[Ri],u1

· q(i)[Ri],u2
(2.4)

=‖q(i+1)
[Ri],s
‖−21

∑
u1,u2∈Ri

(q
(i)
[Ri],s
· q(i)[Ri],u1

)(q
(i)
[Ri],s
· q(i)[Ri],u2

)(q
(i)
[Ri],u1

· q(i)[Ri],u2
) (Prop. 2.3.1)

(2.5)

=‖q(i+1)
[Ri],s
‖−21

∑
u1,u2∈Ri

(q
(i)
[Ri],s
· q(i)[Ri],u1

)(q
(i)
[Ri],s
· q(i)[Ri],u2

)
∑
w∈Ri

q
(i)
[Ri],u1

(w)q
(i)
[Ri],u2

(w)) (2.6)

=‖q(i+1)
[Ri],s
‖−21

∑
w∈Ri

∑
u1,u2∈Ri

[(q
(i)
[Ri],s
· q(i)[Ri],u1

)q
(i)
[Ri],u1

(w)][(q
(i)
[Ri],s
· q(i)[Ri],u2

)q
(i)
[Ri],u2

(w)] (2.7)

=‖q(i+1)
[Ri],s
‖−21

∑
w∈Ri

[∑
u∈Ri

(q
(i)
[Ri],s
· q(i)[Ri],u

)q
(i)
[Ri],u

(w)

]2
(2.8)

We now write out ‖q(i+1)
[Ri],s
‖22 =

∑
u∈Ri q

(i+1)
[Ri],s

(u)2 =
∑

u∈Ri(q
(i)
[Ri],s

· q(i)[Ri],u
)2, by

Prop. 2.3.1. We expand further below. The only inequality is Cauchy-Schwartz.

‖q(i+1)
[Ri],s
‖22 =

∑
u∈Ri

(q
(i)
[Ri],s
· q(i)[Ri],u

)
∑
w∈Ri

q
(i)
[Ri],s

(w)q
(i)
[Ri],u

(w) (2.9)

=
∑
w∈Ri

q
(i)
[Ri],s

(w)
[∑
u∈Ri

(q
(i)
[Ri],s
· q(i)[Ri],u

)q
(i)
[Ri],u

(w)
]

(2.10)

≤
√∑

w∈Ri

q
(i)
[Ri],s

(w)2
√∑

w∈Ri

[∑
u∈Ri

(q
(i)
[Ri],s
· q(i)[Ri],u

)q
(i)
[Ri],u

(w)
]2

(2.11)

= ‖q(i)[Ri],s
‖2‖q(i+1)

[Ri],s
‖1
√

Eu1,u2∼Dsi [q
(i)
[Ri],u1

· q(i)[Ri],u2
] (2.12)

The last step above follows by (2.8). We rearrange and take squares to complete the

proof.

We can apply previous norm bounds to get an explicit lower bound. To see the

significance of the following lemma, note that by Claim 2.3.2 and Cauchy-Schwartz,

∀u1, u2 ∈ Ri, q
(i)
[Ri],u1

· q(i)[Ri],u2
≤ 1/nδ(i−1) (fairly close to the lower bound below).

Lemma 2.3.7 Fix arbitrary s ∈ Si.

Eu1,u2∼Ds,i [q
(i)
[Ri],u1

· q(i)[Ri],u2
] ≥ 1/nδ(i+1)
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Proof By Lemma 2.3.6, the LHS is at least 1

‖q(i+1)
[Ri],s

‖21
·
‖q(i+1)

[Ri],s
‖42

‖q(i)
[Ri],s

‖22
. Note that ‖q(i+1)

[Ri],s
‖1 ≤

1. By Definition 2.3.2, ‖q(i+1)
[Ri],s
‖22 ≥ 1/nδi. Since s ∈ Si ⊆ Ri, by Claim 2.3.2,

‖q(i)[Ri],s
‖22 ≤ 1/nδ(i−1).

2.4 Analysis of FindBiclique

This is the central theorem of our analysis. It shows that the FindBiclique(s)

procedure discovers a Kr2,r2 minor with non-trivial probability when s is in a suffi-

ciently high stratum.

Theorem 2.4.1 Suppose s ∈ Si, for 5r2 ≤ i ≤ 1/δ + 3. The probability that the

paths discovered in FindBiclique(s) contain a Kr2,r2 minor is at least n−4δr
4
.

Theorem 2.4.1 is proved in §2.4.5. Towards the proof, we will need multiple tools.

In §2.4.1, we perform a standard calculation to bound the success probability of

FindPath. In §2.4.2, we use this bound to show that the sets A and B sampled by

FindBiclique are successfully connected by paths as discovered by FindPath. In

§2.4.3, we argue that the intersections of these paths is “well-behaved” enough to

induce a Kr2,r2 minor.

We note that the
√
n in the final running time comes from the calls to FindPath

in FindBiclique.

2.4.1 The procedure FindPath

For convenience, we reproduce the procedure FindPath. It is a relatively straight-

forward application of a birthday paradox argument for bidirectional path finding.

FindPath(u, v, k, i)

1. Perform k random walks of length 2i` from u and v.

2. If a walk from u and v terminate at the same vertex, return these paths.
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Lemma 2.4.2 Let c be a sufficiently large constant. Consider u, v ∈ Ri. Suppose

there exist α ≤ β such that max(‖q(i)[Ri],u
‖22, ‖q

(i)
[Ri],v
‖22) ≤ 1/nα and q

(i)
[Ri],u

· q(i)[Ri],v
≥

1/2nβ. Then, with k ≥ cnβ/2+4(β−α), FindPath(u, v, k, i) returns an Ri-returning

path of length 2i+1` with probability ≥ 2/3.

Proof First, define W = {w|q(i)[Ri],u
(w)/q

(i)
[Ri],v

(w) ∈ [1/(8nβ−α), 8nβ−α]}.∑
w/∈W

q
(i)
[Ri],u

(w)q
(i)
[Ri],v

(w) ≤ (8nβ−α)−1
∑
w/∈W

max(q
(i)
[Ri],u

(w), q
(i)
[Ri],v

(w))2

≤(8nβ−α)−1(‖q(i)[Ri],u
‖22 + ‖q(i)[Ri],v

‖22) ≤ 1/4nβ

Therefore,
∑

w∈W q
(i)
[Ri],u

(w)q
(i)
[Ri],v

(w) ≥ 1/2nβ.

For a, b ≤ k, let Xa,b be the indicator for the following event: the ath 2i`-length

random walk from u is an Ri-returning walk that ends at some w ∈ W , and the bth

random walk from v is also Ri-returning, ending at the same w. Let X =
∑

a,b≤kXa,b.

Observe that the probability that FindPath(u, v, k, i) returns a path is at least Pr[X >

0].

We bound E[
∑

a,b≤kXa,b] = k2
∑

w∈W q
(i)
[Ri],u

(w)q
(i)
[Ri],v

(w) ≥ k2/4nβ ≥ (c2/4)n4(β−α).

Let us now bound the variance. First, let us expand out the expected square.

E[(
∑
a,b

Xa,b)
2] =

(∑
a,b

E[X2
a,b] + 2

∑
a6=a′,b

E[Xa,bXa′,b] + 2
∑
a,b 6=b′

E[Xa,bXa′,b]

+2
∑

a6=a′,b 6=b′
E[Xa,bXa′,b′ ]

)
(2.13)

Observe that X2
a,b = Xa,b. Furthermore, for a 6= a′, b 6= b′, by independence of the

walks, E[Xa,bXa′,b′ ] = E[Xa,b]E[Xa′,b′ ]. (This term will cancel out in the variance.) By

symmetry,
∑

a6=a′,b E[Xa,bXa′,b] ≤ k3E[X1,1X2,1] (and analogously for the third term

in (2.13)). Plugging these in and expanding out the E[X]2,

var[X] ≤ E[X] + 2k3E[X1,1X2,1] + 2k3E[X1,1X1,2]

Note that X1,1X2,1 = 1 when the first and second walks from u end at the same vertex

where the first walk from v ends. So, we see E[X1,1X2,1] =
∑

w∈W q
(i)
[Ri],u

(w)2q
(i)
[Ri],v

(w).

Since w ∈ W , q
(i)
[Ri],v

(w) ≤ 8nβ−αq
(i)
[Ri],u

(w). Plugging this bound in,
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2k3E[X1,1X2,1] ≤ 16k3nβ−α
∑
w∈W

q
(i)
[Ri],u

(w)3

≤ 16k3nβ−α[
∑
w∈W

q
(i)
[Ri],u

(w)2]3/2 (l2-l3 norm inequality)

= 16nβ−α[k2
∑
w∈W

q
(i)
[Ri],u

(w)2]3/2

We can apply the bound q
(i)
[Ri],u

(w) ≤ 8nβ−αq
(i)
[Ri],v

(w).

2k3E[X1,1X2,1] ≤ 16nβ−α[k2
∑
w∈W

q
(i)
[Ri],u

(w)q
(i)
[Ri],v

(w) · 8nβ−α]3/2

≤ 512n5(β−α)/2[k2
∑
w∈W

q
(i)
[Ri],u

(w)q
(i)
[Ri],v

(w)]3/2 (2.14)

Note that k2
∑

w∈W q
(i)
[Ri],u

(w)q
(i)
[Ri],v

(w)]3/2 is exactly E[X]. We have previously

bounded E[X] ≥ (c2/4)n8(β−α). Thus, 512n5(β−α)/2 ≤ E[X]1/2/(c/100). Applying the

bounds in (2.14), we deduce that

2k3E[X1,1X2,1] ≤ (E[X]1/2/(c/100))(E[X]3/2) = E[X]2/(c/100).

We get an identical bound for 2k3E[X1,1X1,2]. Putting it all together, we can prove

that var[X] ≤ 4E[X]2/c′, for c′ = Θ(c). An application of Chebyshev proves that

Pr[X > 0] > 2/3.

2.4.2 The procedure FindBiclique

For convenience, we reproduce FindBiclique.
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FindBiclique(s)

1. For i = 5r4, . . . , 1/δ + 4:

(a) Perform 2r2 independent random walks of length 2i+1` from s.

Let the destinations of the first r2 walks be multiset A, and the

destinations of the remaining walks be B.

(b) For each a ∈ A, b ∈ B:

i. Run FindPath(a, b, nδ(i+18)/2, i)

(c) If all calls to FindPath return a path, then let the collection of

paths be the subgraph F . Run KKR(F,H). If it returns an H-

minor, output that and terminate.

Lemma 2.4.3 Suppose s ∈ Si, for some i ≤ 1/δ + 4. Condition on the event that

A,B ⊆ Ri, during the ith iteration in FindBiclique(s). With probability (4n2δ)−r
4
,

the calls to FindPath output paths from every a ∈ A to every b ∈ B, where each path

is an Ri-returning walk of length 2i+1`.

Proof The probability that a 2i+1`-length random walk from s ends at u is at least

q
(i+1)
[Si],s

(u) = q̂
(i+1)
[Ri],s

(u)‖q(i+1)
[Ri],s
‖1. In the rest of the proof, let t = |A| = |B| = r2 denote

the common size of the multisets A and B. For any a, b ∈ V , let τa,b be the probability

that FindPath(a, b, nδ(i+18)/2, i) succeeds in finding an Ri-returning walk between a

and b (of length 2i+1`). The probability of success for FindBiclique(s) conditioned

on A,B ⊆ Ri is at least

∑
A∈Rri

∑
B∈Rri

∏
a∈A

q̂
(i+1)
[Ri],s

(a)
∏
b∈B

q̂
(i+1)
[Ri],s

(b)τa,b

=
∑
A∈Rri

∑
B∈Rri

∏
a∈A

q̂
(i+1)
[Ri],s

(a)
(∏
b∈B

q̂
(i+1)
[Ri],s

(b)
)(∏

b∈B

τa,b

)
=
∑
B∈Rri

(∏
b∈B

q̂
(i+1)
[Ri],s

(b)
) ∑
A∈Rri

∏
a∈A

[
q̂
(i+1)
[Ri],s

(a)
(∏
b∈B

τa,b

)]
=
∑
B∈Rri

∏
b∈B

q̂
(i+1)
[Ri],s

(b)
(∑
a∈Ri

q̂
(i+1)
[Ri],s

(a)
∏
b∈B

τa,b

)r
.
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Observe that
∏

b∈B q̂
(i+1)
[Ri],s

(b) is a probability distribution over Rr
i . By Jensen, we lower

bound.∑
B∈Rri

∏
b∈B

q̂
(i+1)
[Ri],s

(b)
(∑
a∈Ri

q̂
(i+1)
[Ri],s

(a)
∏
b∈B

τa,b

)r
≥
[∑
B∈Rri

(∏
b∈B

q̂
(i+1)
[Ri],s

(b)
)∑
a∈Ri

q̂
(i+1)
[Ri],s

(a)
∏
b∈B

τa,b

]r
Note that we can write[ ∑

B∈Rri

(∏
b∈B

q̂
(i+1)
[Ri],s

(b)
)∑
a∈Ri

q̂
(i+1)
[Ri],s

(a)
∏
b∈B

τa,b

]r
=
[∑
a∈Ri

∑
B∈Rri

q̂
(i+1)
[Ri],s

(a)
(∏
b∈B

q̂
(i+1)
[Ri],s

(b)
)(∏

b∈B

τa,b

)]r
Thus, we can manipulate the latter further.[∑

a∈Ri

q̂
(i+1)
[Ri],s

(a)
∑
B∈Rri

∏
b∈B

q̂
(i+1)
[Ri],s

(b)τa,b

]r
=

[∑
a∈Ri

q̂
(i+1)
[Ri],s

(a)
(∑
b∈Ri

q̂
(i+1)
[Ri],s

(b)τa,b
)r]r

≥
[∑
a∈Ri

∑
b∈Ri

q̂
(i+1)
[Ri],s

(a)q̂
(i+1)
[Ri],s

(b)τa,b

]r2
=

[
Ea,b∼Ds,i [τa,b]

]r2
. (2.15)

where the inequality follows by Jensen. Towards lower bounding τa,b, we first lower

bound q
(i)
[Ri],a

· q(i)[Ri],b
. By Lemma 2.3.7, Ea,b[q

(i)
[Ri],a

· q(i)[Ri],b
] ≥ 1/nδ(i+1). Applying

Cauchy-Schwartz, q
(i)
[Ri],a

· q(i)[Ri],b
≤ 1/nδ(i−1). Let p be the probability (over a, b) that

q
(i)
[Ri],a

· q(i)[Ri],b
≥ 1/2nδ(i+1).

1/nδ(i+1) ≤ Ea,b[q
(i)
[Ri],a

· q(i)[Ri],b
] ≤ (1− p)/2nδ(i+1) + p/nδ(i−1)

Thus, p ≥ 1/2n2δ.

By Claim 2.3.2, for every a ∈ Ri, ‖q(i)[Ri],a
‖22 ≤ 1/nδ(i−1) (similarly for b ∈ Ri).

Suppose q
(i)
[Ri],a

· q(i)[Ri],b
≥ 1/2nδ(i+1). Let us apply Lemma 2.4.2, with α = δ(i − 1)

and β = δ(i+ 1). The number of paths taken in FindPath (the value k) is nδ(i+18)/2.

Note that δ(i + 18)/2 > δ(i + 1)/2 + 8δ = β/2 + 4(α − β). By Lemma 2.4.2, in

this case, τ ≥ 1/2. As argued in the previous paragraph, this will happen with

probability 1/2n2δ (over the choice of a, b ∼ Ds,i). We plug in (2.15) and deduce that

the probability of success is at least (1/4n2δ)r
4
.



34

2.4.3 Criteria for FindBiclique to reveal a minor

Fix s ∈ Si, as in Lemma 2.4.3. This lemma only asserts that all pairs in A×B are

connected by FindBiclique (with non-trivial probability). We need to argue that

these paths will actually induce a Kr2,r2-minor.

As in Lemma 2.4.3, let us focus on the ith iteration within FindBiclique, and

condition on A,B ∈ Ri. For every a ∈ A, b ∈ B, we call FindPath(a, b, nδ(i+18)/2, i).

Within each such call, a set of walks is performed from both a and b, with the hope

of connecting a to b. We use a, a′ (resp. b, b′) to refer to elements in A (resp. B).

• Let us use W b
a to refer to the set of walks from a performed in the call to

FindPath(a, b, nδ(i+18)/2, i) that are Ri-returning. We stress that these walks do not

necessarily end at b, and come from a distribution independent of b (but we wish to

track the specific call of FindPath where these walks were performed). Note that W a
b

is the set of Ri-returning walks starting from b performed in the same call.

We use Wa to denote the set of all vertices in
⋃
b∈BW

b
a .

• Let Pa,b be a single path from a to b discovered by FindPath(a, b, nδ(i+18)/2, i),

that consists of a walk in W b
a and a walk W a

b that end at the same vertex. If there

are many possible such paths, pick the lexicographically least.

Note that any of the paths/sets described above could be empty. We will think of

paths as sequences, rather than sets, since the order in which the path is constructed

is relevant. For any path, P , we use P (t) to denote the tth element in the sequence.

We use P (≥ t) to denote the sequence of elements with index at least t. When we

refer to intersections of paths being empty/non-empty, we refer to sets induced by

the corresponding sequences.

For s ∈ Si, conditioned on A,B ⊆ Ri, Lemma 2.4.3 gives a lower bound on

Pr[
⋂
a∈A,b∈B Pa,b 6= ∅]. We will define some bad events that interfere with minor

structure.

Recall that A and B are multisets (it is convenient to think of them as sequences).

The same vertex may appear multiple times in A∪B, but we think of each occurrence
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as a distinct multiset element. Therefore, equality refers to vertex at the same index

in A (or B). By definition, elements in A are disjoint from B.

Definition 2.4.1 The following events are referred to as bad events of Type 1, 2, or

3. We set τ = 2i−1`.

1. ∃a, b, c ∈ A ∪B, c 6= a, b, such that Wc ∩ Pa,b 6= ∅.

2. ∃a, b, b′ (all distinct) such that ∃W ∈ W b
a where W (≥ τ) ∩ Pa,b′ 6= ∅. (Or,

∃a, a′ ∈ A, b ∈ B, all distinct, such that ∃W ∈W a
b where W (≥ τ) ∩ Pa′,b 6= ∅.)

3. ∃a, b,Wa ∈W b
a ,Wb ∈W a

b such that Wa,Wb end at the same vertex and ∃t1, t2
such that min(t1, t2) ≤ τ and Wa(t1) = Wb(t2).

For clarity, let us express the above bad events in plain English. Note that τ is

the index of the midpoint of the walks, so it splits walks into halves.

1. A walk from c ∈ A ∪B intersects Pa,b, where c 6= a, b.

2. The second half of a walk in W b
a (which starts from a) intersects Pa,b′ for b 6= b′.

3. A walk in W b
a and a walk in W a

b intersect twice. Note that this is a pair of

walks, one from a and the other from b. The first intersection is in the first half of

either of the walks. The walks also end at the same vertex.

Claim 2.4.4 If all Pa,b sets are non-empty and there is no bad event, then
⋃
a,b Pa,b

contains a Kr2,r2-minor.

Proof The Pa,b’s may not form simple paths, and it will be convenient to “clean

them up”. Each Pa,b is formed by Wa ∈ W b
a and Wb ∈ W a

b that end at the same

vertex. Since there is no Type 3 bad event, Wa(≤ τ) is disjoint from Wb (and vice

versa). Therefore (by removing self-intersections and loops), we can construct a

simple path from a to b with the following (vertex) disjoint contiguous simple paths:

Qa,b ⊆ Wa(≤ τ), P̂a,b ⊆ Wa(≥ τ) ∪Wb(≥ τ), and Qb,a ⊆ Wb(≤ τ).

In each bullet below, we first make a statement about the disjointness of these

various sets. The proof follows immediately. We consider a, a′ ∈ A and b, b′ ∈ B,

where the elements in A (or B) might be equal.
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• If a 6= a′, Qa,b ∩Qa′,b′ = ∅. If b 6= b′, Qb,a ∩Qb′,a′ = ∅.

Consider the first statement. (Note that we allow b = b′.) Observe that Qa,b ⊆ Wa

and Qa′,b′ ⊆ Pa′,b′ . So Wa ∩ Pa′,b′ 6= ∅, implying a Type 1 bad event. The second

statement has an analogous proof.

• Qa,b ∩Qb′,a′ = ∅.

If a = a′, b = b′, then this holds by the argument in the first paragraph (no Type 3

bad events). Suppose a 6= a′. Then (as before), Qa,b ⊆Wa and Qb′,a′ ⊆ Pa′,b′ . Since

no Type 1 bad events occur, Wa ∩ Pa′,b′ = ∅. The case b 6= b′ is analogous.

• If a 6= a′ or b 6= b′, P̂a,b ∩ Pa′,b′ = ∅.

Wlog, assume a 6= a′. Note that P̂a,b ⊆ Wa(≥ τ) ∪Wb(≥ τ), where Wa ∈ W b
a and

Wb ∈ W a
b . If Wa(≥ τ) ∩ Pa′,b′ 6= ∅, then Wa ∩ Pa′,b′ 6= ∅ (a Type 1 bad event).

Suppose Wb(≥ τ) ∩ Pa′,b′ 6= ∅. If b 6= b′, this is Type 1 bad event. So suppose b = b′,

so Wb(≥ τ) ∩ Pa′,b 6= ∅. Since Wb ∈W a
b (for a 6= a′), this is Type 2 bad event.

We construct the minor. Let C(a) =
⋃
b∈B Qa,b and C(b) =

⋃
a∈AQb,a. Each

C(a), C(b) forms a connected subgraph. By the disjointness properties of the Qa,b

sets, all the C(a), C(b) sets/subgraphs are vertex disjoint. Note that P̂a,b is disjoint

from all other Pa′,b′ paths and all the C(a), C(b) sets. (We construct Pa,b to be disjoint

from Qa,b and Qb,a in the first paragraph. Every other Qa′,b′ is contained in Pa′,b′ .)

Thus, we have disjoint paths from each C(a) to C(b), which gives a Kr2,r2-minor.

2.4.4 The probabilities of bad events

In this section, we bound the probability of bad events, as detailed in Defini-

tion 2.4.1. As before, we fix s ∈ Si and condition on A ∪B ⊆ Ri.

We require some technical definitions of random walk probabilities.

Definition 2.4.2 Let σs,S,t(v) be the probability of a walk from s to v of length t being

S-returning. (We allow ` - t, and require that the walk encounters S at every j`th

step, for j ≤ bt/`c.)
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We use σs,S,t to denote the vector of these probabilities. More generally, given any

distribution vector x on V , σx,S,t denotes the vector of S-returning walk probabilities

at time t.

We stress that this is not a conditional probability. Note that if t = 2i`, then

σs,S,t = q
(i)
[S],s. We show some simple propositions on these vectors. Let IS denote the

n× n matrix that preserves all coordinates in S and zeroes out other coordinates.

Proposition 2.4.1 The vector σx,S,t evolves according to the following recurrence.

Firstly, σx,S,0 = x. For t ≥ 1 such that ` - t, σx,S,t = Mσx,S,t−1. For t ≥ 1 such that

` | t, σx,S,t = ISMσx,S,t−1

Proposition 2.4.2 For all x and all t ≥ 1, ‖σx,S,t‖∞ ≤ ‖σx,S,t−1‖∞.

Proof Since M is a symmetric random walk matrix, it computes the “new” value at

a vertex by averaging the values of the neighbors (and itself). This can never increase

the maximum value. Furthermore, IS only zeroes out some coordinates. This proves

the proposition.

In what follows, we fix the walk length to 2i`. To reduce clutter, we drop notational

dependencies on this length.

Definition 2.4.3 The distribution of 2i`-length walks from u is denoted Wu. For

any walk W , Wu(t) denotes the tth vertex of the walk.

The Boolean predicate ρ(Wu) is true if Wu is Ri-returning.

Recall thatDs,i is the distribution with support Ri, where the probability of u ∈ Ri

is q̂
(i+1)
[Ri],s

(v)/‖q(i+1)
[Ri],s
‖1 (Definition 2.3.3). Conditioned on a ∈ Ri, this is precisely

the distribution that the elements of the sets A and B are drawn from. Refer to

FindBiclique, where A ∪ B are the destinations of 2i+1`-length random walks from

s. Since i is fixed, we will simply write this as Ds.

Claim 2.4.5 For any F ⊆ V :
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1.

Pr
a∼Ds,Wa∼Wa

[ρ(Wa) ∧Wa ∩ F 6= ∅] ≤ 2i`|F |/(nδ(i−1)‖q(i+1)
[Ri],s
‖1).

2. For any a ∈ Ri,

Pr
Wa∼Wa

[∃t ≥ τ | ρ(Wa) ∧Wa(t) ∈ F ] ≤ 2i`|F |/nδ(i−2)

Proof We prove the first part. Let x be the probability vector corresponding to

Ds. So ‖x‖∞ = ‖q(i+1)
[Ri],s
‖∞/‖q(i+1)

[Ri],s
‖1. By Prop. 2.4.2, ∀t ≥ 1, ‖σx,Ri,t‖∞ ≤ ‖x‖∞.

sing Claim 2.3.3, this is at most 1/(nδ(i−1)‖q(i+1)
[Ri],s
‖1). We union bound over F and the

walk length.

Pr
a∼Ds,Wa∼Wa

[ρ(Wa) ∧Wa ∩ F 6= ∅] ≤
∑
t≤2i`

∑
v∈F

Pr
a∼Ds,Wa∼Wa

[ρ(Wa) ∧Wa(t) = v]

≤
∑
t≤2i`

∑
v∈F

‖x‖∞ ≤ 2i`|F |/(nδ(i−1)‖q(i+1)
[Ri],s
‖1)

Now for the second part. By the union bound, the probability is bounded above

by ∑
t≥2i−1`

∑
u∈F

Pr
Wa∼Wa

[ρ(Wa) ∧Wa(t) = u] ≤
∑

t≥2i−1`

∑
u∈F

‖σa,Ri,t‖∞ (2.16)

By Prop. 2.4.2, the infinity norm is bounded above by ‖σa,Ri,2i−1`‖∞ = ‖q(i−1)[Ri],a
‖∞.

By Claim 2.3.3, the latter is at most 1/nδ(i−2). Plugging in (2.16), we get an upper

bound of 2i−1`|F |/nδ(i−2).

Claim 2.4.6 For any a ∈ Ri,

Pr
[
ρ(Wa) ∧ ρ(Wb) ∧Wa(2

i`) = Wb(2
i`)∧

∃ta, tb,min(ta, tb) ≤ τ,Wa(ta) = Wb(tb))] ≤ 22i`2

(nδ(2i−2)‖q(i+1)
[Ri],s
‖1)

Here, the probability is taken over the following joint distribution: b ∼ Ds,Wa ∼

Wa,Wb ∼ Wb

Proof Let us write out the main event in English. We fix an arbitrary a, and pick

b ∼ Ds. We perform Ri-returning walks of length 2i` from both a and b. We are
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bounding the probability that the “initial half” (less than 2i−1` steps) of one of the

walks intersects with the other, and subsequently, both walks end at the same vertex.

To that end, let us define two vertices w1, w2. We want to bound the probability

of that both walks first encounter w1, and then end at w2. It is be very useful to treat

the latter part simply as two walks from w1, where one of them is at least of length

2i−1`. Note that w1 might not be in Ri.

Let Za,t be the random variable denoting the tth vertex of a random walk from

a. Let us also define Ri-returning walks with an offset g, starting from w. Basically,

such a walk starts from w (that may not be in Ri) and performs g steps to end up

in Ri. Subsequently, it behaves as an Ri-returning walk. Observe that the second

parts of the walks are Ri-returning walks from w1, with offsets of ` − [ta(mod `)],

` − [tb(mod `)]. Let Yw,t be the random variable denoting the tth vertex of an Ri-

returning walk from w, with the offset ` − [t(mod `)]. We use primed versions for

independent such variables.

Let us fix values for ta, tb such that min(ta, tb) ≤ τ = 2i−1`. (We will eventually

union bound over all such values.) The probability we wish to bound is the follow-

ing. We use independence of the walks to split the probabilities. There are four

independent walks under consideration: one from a, one from b, and two from w.∑
w1∈V

∑
w2∈V

Pr
b∼Ds

Wa,Wb,Ww1

[Za,ta = w1 ∧ Zb,tb = w1 ∧ Yw1,2i`−ta = w2 ∧ Y ′w1,2i`−tb = w2]

=
∑
w1∈V

∑
w2∈V

Pr
Wa

[Za,ta = w1] Pr
b∼Ds
Wb

[Zb,tb = w1] Pr
Ww1

[Yw1,2i`−ta = w2] Pr
Ww1

[Yw1,2i`−tb = w2]

(2.17)

Consider Prb∼Ds,Wb
[Zb,tb = w1]. This is exactly the w1th entry in σx,Ri,tb where x is

the distribution given by Ds. By Prop. 2.4.2, this is at most ‖x‖∞, which is at most

1/(nδ(i−1)‖q(i+1)
[Ri],s
‖1) (as argued in the second pat of the proof of Claim 2.4.5).

Since min(ta, tb) ≤ τ , at least one of 2i` − ta or 2i` − tb is at least 2i−1`. Thus,

one of PrWw1
[Yw1,2i`−ta = w2] or PrWw1

[Yw1,2i`−tb = w2] refers to a walk of length at

least 2i−1`. Let us bound PrWw1
[Yw1,t = w2] for t ≥ 2i`. We can break such a walk
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into two parts: the first `− [t(mod `)] steps lead to some v ∈ Ri, and the second part

is an Ri-returning walk of length at least 2i` from v to w. Recall that px,d(y) is the

standard random walk probability of starting from x and ending at y after d steps.

For some t′ ≥ 2i`,

Pr
Ww1

[Yw1,t = w2] =
∑
v∈Ri

pw1,`−[t(mod `)](v)σv,Ri,t′(w2)

≤
∑
v∈Ri

pw1,`−[t(mod `)](v)‖σv,Ri,t′‖∞

≤
∑
v∈Ri

pw1,`−[t(mod `)](v)‖q(i)[Ri],v
‖∞

≤
∑
v∈Ri

pw1,`−[t(mod `)](v)n−δ(i−1)

= n−δ(i−1).

Plugging these bounds in (2.17), for fixed ta, tb, there exists t ∈ {2i` − ta, 2i` − tb}

such that the probability of the main event is at most

1

nδ(i−1)‖q(i+1)
[Ri],s
‖1
· 1

nδ(i−1)

∑
w1∈V

∑
w2∈V

Pr
Wa

[Za,ta = w1] Pr
Ww1

[Yw1,t = w2]

≤ 1

nδ(2i−2)‖q(i+1)
[Ri],s
‖1

∑
w1∈V

Pr
Wa

[Za,ta = w1]
∑
w2∈V

Pr
Ww1

[Yw1,t = w2] =
1

nδ(2i−2)‖q(i+1)
[Ri],s
‖1

A union bound over all pairs of ta, tb completes the proof.

We now bound the total probability of bad events. Most of the technical work is

already done in the previous lemmas; we only need to perform some union bounds.

Lemma 2.4.7 Conditioned on A ∪ B ⊆ Ri, the total probability of bad events is at

most
22i+4r8n30δ

nδi/2‖q(i+1)
[Ri],s
‖1

(2.18)

Proof We bound the bad events by type. Recall that ` = n5δ.

Type 1: ∃a, b, c ∈ A ∪B, c 6= a, b, such that Wc ∩ Pa,b 6= ∅.
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Fix a choice of a ∈ A, b ∈ B. Conditioned in A ∪ B ⊆ Ri, any c 6= a, b is

drawn from Ds. In Claim 2.4.5, set F = Pa,b. By the first part of Claim 2.4.5, the

probability that a single walk drawn from Wc is Ri-returning and intersects Pa,b is

at most 2i`(2i+1`)/nδ(i−1)‖q(i+1)
[Ri],s
‖1. The set Wc consists of at most r2nδ(i+18)/2 such

walks. We union bound over all these walks, and all r4 choices of a, b, and plug in

` = n5δ to get an upper bound of

22i+1`2r6nδ(i+18)/2

nδ(i−1)‖q(i+1)
[Ri],s
‖1

=
22i+1r6n20δ

nδi/2‖q(i+1)
[Ri],s
‖1

Type 2: ∃a, b, b′ (all distinct) such that ∃W ∈ W b
a where W (≥ τ) ∩ Pa,b′ 6= ∅.

(Or, ∃a, a′ ∈ A, b ∈ B with analogous conditions.)

Fix a, b, b′. Set F = Pa,b′ in Claim 2.4.5. By the second part of Claim 2.4.5, the

probability that a single walk from Wa is Ri-returning and intersects F at step ≥ τ

is at most 2i`(2i+1`)/nδ(i−2). We union bound over all the r2nδ(i+18)/2 walks in Wa

and all r6 choices of a, b, b′. (We also union bound over choosing b, b′ or a, a′.) The

upper bound is 22i+1r6n21δ/nδi/2.

Type 3: ∃a, b,Wa ∈W b
a ,Wb ∈W a

b such that Wa,Wb end at the same vertex and

∃t1, t2 such that min(t1, t2) ≤ τ and Wa(t1) = Wb(t2).

This case is qualitatively different. We will take a union bound over pairs of walks,

and require the stronger bound of Claim 2.4.6.

Fix a ∈ A. Observe that b ∼ Ds. For a single walk Wa ∼ Wa and a single walk

Wb ∼ Wb, the probability of a Type 3 bad event is bounded by Claim 2.4.6. The

upper bound is 22i`2/(nδ(2i−2)‖q(i+1)
[Ri],s
‖1). We union bound over the r4nδ(i+18) pairs of

walks from a and b, and then over the r4 choices of a, b. The final bound is:

22ir4`2nδ(i+18)

nδ(2i−2)‖q(i+1)
[Ri],s
‖1

=
22ir4n30δ

nδi‖q(i+1)
[Ri],s
‖1

We complete the proof by taking a union bound over the three types. Note that

‖q(i+1)
[Ri],s
‖1 ≤ 1, so we can upper bound the probability of each type of bad event by

22i+1r8n30δ

nδi/2‖q(i+1)
[Ri],s

‖1
.
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2.4.5 Proof of Theorem 2.4.1

Proof Fix s ∈ Si. Let C be the event that A ∪ B ⊆ Ri, let E be the event⋂
a∈A,b∈B Pa,b 6= ∅, and let F be the union of bad events. By Claim 2.4.4, the prob-

ability that FindBiclique(s) find a minor is at least Pr[E ∩ F ]. We lower bound as

follows: Pr[E ∩ F ] ≥ Pr[C] Pr[E ∩ F|C] ≥ Pr[C](Pr[E|C]− Pr[F|C]).

Note that Pr[C] = ‖q(i+1)
[Ri],s
‖2r21 . By Claim 2.3.4, ‖q(i+1)

[Ri],s
‖1 ≥ n−δ, so Pr[C] ≥ n−2δr

2
.

Lemma 2.4.3 provides a lower bound for Pr[E|C], and Lemma 2.4.7 provides an

upper bound for Pr[F|C]. We plug these bounds in below.

Pr[E|C]− Pr[F|C] ≥ 1

(4n2δ)r4
− 22i+4r8n30δ

nδi/2‖q(i+1)
[Ri],s
‖1

(2.19)

Observe how the positive term is independent of i, while the negative term decays

exponentially in i. This is crucial to argue that for a sufficiently large (constant) i,

the lower bound is non-trivial.

When i ≥ 5r4, niδ/2 ≥ n2δr4+δr4/2 ≥ n2δr4+40δ (note that, r, the number of vertices

in H, is at least 3). By Claim 2.3.4, ‖q(i+1)
[Ri],s
‖1 ≥ n−δ. Thus, for sufficiently large n,

Pr[F|C] ≤ 1/(2(4n2δ)r
4
). Putting it all together, the probability of finding a Kr2,r2-

minor is at least n−4δr
4
.

2.5 Local partitioning in the trapped case

Theorem 2.4.1 tells us that if there are Ω(n1−δ) vertices in strata numbered 5r4

and above, then FindMinor finds a biclique minor with high probability. We deal with

the case when most vertices lie in low strata, i.e, random walks from most vertices

are trapped in a very small subset.

We will argue that (almost) all vertices in low strata can be partitioned into

“pieces”, such that each piece is a low conductance cut, and (a superset of) each

piece can be found by performing random walks in G. If FindMinor fails to find a
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minor, this lemma can be iteratively applied to make G H-minor-free by removing

few edges (this argument is given in §2.6).

We use ps,t(v) to denote the probability that at t length random walk from s ends

at v.

Lemma 2.5.1 Let α ≥ n−δ/2. Consider some subset S ⊆ V and i ∈ N such that

∀s ∈ S, ‖q(i)[S],s‖22 ≤ 1/nδ(i−1). Define S ′ ⊆ S to be {s|s ∈ S and ‖q(i+1)
[S],s ‖22 ≥ 1/nδi}.

Suppose |S ′| ≥ αn. Then, there is a subset S̃ ⊆ S ′, |S̃| ≥ αn/8 such that for

∀s ∈ S̃: there exists a subset Ps ⊆ S where

• E(Ps, S \ Ps) ≤ 2n−δ/4d|Ps|

• ∀v ∈ Ps, ∃t ≤ 160nδ(i+7)/α such that ps,t(v) ≥ α/nδ(2i+14).

The aim of this section is to prove this lemma. Henceforth, we will assume that

S, S ′ are as defined in the lemma.

Using the norm bounds, we show that for every vertex s ∈ S ′, there is a large

set of destination vertices that are all reached with high probability through random

walks of length 2i+1`.

Claim 2.5.2 For every s ∈ S ′, there exists a set Us ⊆ S, |Us| ≥ nδ(i−2), such that

∀u ∈ Us, ps,2i+1`(u) ≥ 1/2nδi.

Proof By Prop. 2.3.1, for any u ∈ U , q
(i+1)
[S],s (u) = q

(i)
[S],s · q

(i)
[S],u. By the property of S

and Cauchy-Schwartz, q
(i+1)
[S],s (u) ≤ 1/nδ(i−1).

Since s ∈ S ′,
∑

u∈S q
(i+1)
[S],s (u)2 ≥ 1/nδi. Let us simply define Us to be {u|u ∈

S, q
(i+1)
[S],s (u) ≥ 1/2nδi}. Note that ps,2i+1`(u) ≥ q

(i+1)
[S],s (u).

1/nδi ≤
∑
u∈S

q
(i+1)
[S],s (u)2 =

∑
u∈Us

q
(i+1)
[S],s (u)2 +

∑
u/∈Us

q
(i+1)
[S],s (u)2

≤ |Us|/n2δ(i−1) + (1/2nδi)
∑
u/∈Us

q
(i+1)
[S],s (u)

≤ |Us|/n2δ(i−1) + 1/2nδi

We rearrange to bound the size of Us.
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2.5.1 Local partitioning on the projected Markov chain

We define the “projection” of the random walk onto the set S. This uses a

construction of [50]. We define a Markov chain MS over the set S. We retain all

transitions from the original random walk on G that are within S, and we denote

these by e
(1)
u,v for every u to v transition in the random walk on G. Additionally, for

every u, v ∈ S and t ≥ 2, we add a transition e
(t)
u,v. The probability of this transition

is equal to the total probability of t-length walks in G from u to v, where all internal

vertices in the walk lie outside S.

SinceG is irreducible and the stationary mass on S is non-zero, all walks eventually

reach S. Thus the outgoing transition probabilities from each v in MS sum to 1, and

hence MS is a valid Markov chain. Furthermore, by the symmetry of the original

random walk, e
(t)
u,v = e

(t)
v,u. Therefore the transition matrix of MS remains symmetric,

and the stationary distribution is uniform on S.

For a transition e
(t)
u,v in MS, we define the length of this transition to be t. For

clarity, we use “hops” to denote the length of a walk in MS, and retain “length” for

walks in G. The length of an h hop random walk in MS is defined to be the sum of

the lengths of the transitions it takes. We note that these ideas come from the work

of Kale-Peres-Seshadhri to analyze random walks in noisy expanders [50].

We use τs,h to denote the distribution of the h-hop walk from s, and τs,h(v)

to denote the corresponding probability of reaching v. We use Wh to denote the

distribution of h-hop walks starting from the uniform distribution in S.

We state Kac’s formula (Corollary 24 in Chapter 2 of [58], restated).

Lemma 2.5.3 (Kac’s formula) The expected return time (in G) to S of a random

walk starting from S is reciprocal of the fractional stationary mass of S, ie n/|S|.

The following is a direct corollary.

Lemma 2.5.4 EW∼Wh
[length of W ] = hn/|S|
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Proof Since the walk starts at the stationary distribution, it remains in this distri-

bution at all hops. By linearity of expectation, it suffices to get the expected length

for the first hop (and multiply with h). This is precisely expected return time to S,

if we performed random walks in G. By Kac’s formula above, the expected return

time to S equals the reciprocal of the stationary mass of S, which is just n/|S|.

The next lemma is an analogue of Claim 2.5.2 for MS. Recall that ` = n5δ.

Lemma 2.5.5 There exists a subset S ′′ ⊆ S ′, |S ′′| ≥ |S ′|/2, such that ∀s ∈ S ′′,

‖τs,nδ‖∞ ≥ 1/nδ(i+6).

Proof Define event Es,v,h as follows. The event Es,v,h occurs when an h-hop random

walk from s has length 2i+1` and ends at v. Observe that ps,2i+1`(v) =
∑

h≤2i+1` Pr[Es,v,h]

(because the number of hops is always at most the length). Since τs,h is a random walk

vector in a symmetric Markov Chain, the infinity norm is non-increasing in h. Thus,

it suffices to find a subset S ′′ ⊆ S ′, |S ′′| ≥ |S ′|/2 such that ∀s ∈ S ′′, ∃v ∈ S, h ≥ nδ,

Pr[Es,v,h] ≥ 1/nδ(i+6).

We define Us as given in Claim 2.5.2. For all v ∈ Us, by Claim 2.5.2, ps,2i+1`(v) ≥

1/2nδi. Therefore, for all v ∈ Us,∑
h≤2i+1`

Pr[Es,v,h] ≥ 1/2nδi (2.20)

We will construct S ′′ by finding s where for some v ∈ Us,
∑

h≤nδ Pr[Es,v,h] is sufficiently

small.

For any h,

1

|S|
∑
s∈S′

∑
v∈Us

Pr[Es,v,h](2i+1`) ≤ EW∼Wh
[length of W ] = hn/|S|

Suppose h ≤ 2i+1`/n4δ. (This is true for all h ≤ nδ). Then
∑

s∈S′
∑

v∈Us Pr[Es,v,h] ≤

n1−4δ, and
∑

h≤nδ
∑

s∈S′
∑

v∈Us Pr[Es,v,h] ≤ n1−3δ.

We rearrange to get ∑
s∈S′

∑
v∈Us

∑
h≤nδ

Pr[Es,v,h] ≤ n1−3δ
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By the Markov bound, there is a set S ′′ ⊆ S ′, |S ′′| ≥ |S ′|/2 such that for all

s ∈ S ′′,
∑

v∈Us
∑

h≤nδ Pr[Es,v,h] ≤ 2n1−3δ/|S ′|. By averaging, ∀s ∈ S ′′, ∃v ∈ Us,

such that
∑

h≤nδ Pr[Es,v,h] ≤ 2n1−3δ/(|S ′| · |Us|). By the assumptions of Lemma 2.5.1,

|S ′| ≥ αn ≥ n1−δ/2. Claim 2.5.2 bounds |Us| ≥ nδ(i−2). Plugging these in,∑
h≤nδ

Pr[Es,v,h] ≤
2n1−3δ

n1−δ/2nδ(i−2)
≤ 2

nδ(i+1/2)
(2.21)

Subtracting this bound from (2.20),
∑

h∈[nδ,2i+1`] Pr[Es,v,h] ≥ 1/4nδi. By averaging,

for some h ∈ [nδ, 2i+1`], Pr[Es,v,h] ≥ 1/(2i+3nδi`) ≥ 1/nδ(i+6). This completes the

proof.

We perform local partitioning on MS, starting with arbitrary s ∈ S ′′. We apply

the Lovász-Simonovits curve technique. (The definitions are originally from [3]. Refer

to Lecture 7 of Spielman’s notes [59] as well as Section 2 in Spielman-Teng [54].) This

requires a series of definitions.

• Ordering of states at time t: At time t, let us order the vertices in MS as

v
(t)
1 , v

(t)
2 , . . . such that τs,t(v

(t)
1 ) ≥ τs,t(v

(t)
2 ) . . ., breaking ties by vertex id.

• The LS curve ht: We define a function ht : [0, |S|] → [0, 1] as follows. For

every k ∈ [|S|], set ht(k) =
∑

j≤k[τs,t(v
(t)
j ) − 1/|S|]. (Set ht(0) = 0.) For

every x ∈ (k, k + 1), we linearly interpolate to construct h(x). Alternately,

ht(x) = max~w∈[0,1]|S|,‖~w‖1=x
∑

v∈S[τs,t(v)− 1/n]wi.

• Level sets: For k ∈ [0, |S|], we define the (k, t)-level set,

Lk,t = {v(t)1 , v
(t)
2 , . . . , v

(t)
k }.

The minimum probability of Lk,t denotes τs,t(v
(t)
k ).

• Conductance: for some T ⊆ S we define the conductance of T in MS to be

Φ(T ) =

∑
u∈T
v∈S\T

τu,1(v)

min(|T |, |S \ T |)
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The main lemma of Lovász-Simonovits is the following (Lemma 1.4 of [3]).

Lemma 2.5.6 For all k and all t,

ht(k) ≤ 1

2
[ht−1(k − 2 min(k, n− k)Φ(Lk,t)) + ht−1(k + 2 min(k, n− k)Φ(Lk,t))]

The typical use of the Lovász-Simonovitz technique is to argue about rapid mixing

when all conductances (or conductances of sufficiently large sets) are lower bounded.

We consider a scenario in which only sets with minimum probability at least (say) p

have high conductance. In this case, we can guarantee that the largest probability

will converge to p.

Lemma 2.5.7 Suppose the following holds. For all t′ ≤ t, if the minimum probability

of Lk,t′ is at least 1/10nδ(i+6), then Φ(Lk,t′) ≥ n−δ/4, Then, ∀x ∈ [0, n], ht(x) ≤
√
x(1− n−δ/2/4)t + x/10nδ(i+6).

Proof Notice that it suffices to show this claim for integral values of x since ht is

concave. To begin with, note that if x = k ≥ nδ(i+6), then the RHS is at least 1.

Thus the bound is trivially true. Let us assume that k < nδ(i+6) < n/2. We pro-

ceed by induction over t and split into two cases based on the conductance of level sets.

Suppose k is such that Φ(Lk,t) ≥ n−δ/4. By Lemma 2.5.6 and concavity of h, we

have the following at x = k

ht(k) ≤ 1

2

(
ht−1(k(1− 2n−δ/4)) + ht−1(k(1 + 2n−δ/4))

)
(2.22)

≤ 1

2

(√
k(1− 2n−δ/4)(1− n−δ/2/4)t−1

+
√
k(1 + 2n−δ/4)(1− n−δ/2/4)t−1 +

2k

10nδ(i+6)

)
(2.23)

≤ 1

2

(√
k(1− 2n−δ/4)t−1(

√
1− 2n−δ/4 +

√
1 + 2n−δ/4) +

2k

10nδ(i+6)

)
(2.24)

≤
√
k(1− nδ/2/2)t + k/nδ(i+6) (2.25)

For the last inequality we use the bound
(√

1 + z +
√

1− z
)
/2 ≤ 1− z2/8.
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Now, consider the case where k is such that Φ(Lk,t) ≤ n−δ/4. By assumption,

it must be that Lk,t′ must have minimum probability less than 1/10nδ(i+6). Let k′

be the largest integer less than k such that Φ(Lk′,t) ≥ n−δ/4. By the previous case,

ht(k
′) ≤
√
k′(1− nδ/2/2)t + k/nδ(i+6). Using this and the concavity of ht, we get

ht(k) ≤ ht(k
′) + (k − k′)/10nδ(i+6) (2.26)

≤
√
k′(1− n−δ/2/2)t + k′/10nδ(i+6) + (k − k′)/10nδ(i+6) (2.27)

≤
√
k(1− n−δ/2/2)t + k/10nδ(i+6) (2.28)

2.5.2 Proof of Lemma 2.5.1

Proof Define S ′′ as given in Lemma 2.5.5. For any s ∈ S ′′, ‖τs,nδ‖∞ ≥ 1/nδ(i+6).

By the definition of the LS curve, hnδ(1) ≥ 1/nδ(i+6). Suppose (for contradiction’s

sake) all level sets for t ≤ nδ with minimum probability at least 1/10nδ(i+6) have

conductance at least n−δ/4. By Lemma 2.5.7, hnδ(1) ≤ (1 − n−δ/2/4)n
δ

+ 1/10nδ(i+6)

< 1/nδ(i+6). This contradicts the bound obtained by Lemma 2.5.5.

Thus, for every s ∈ S ′′, there exists some level set for ts ≤ nδ with minimum

probability at least 1/10nδ(i+6) and conductance < n−δ/4. Let us call this level set Ps.

We also use the fact that |Ps| < |S|/2. By the construction of MS, we have,

Φ(Ps) ≥

∑
x∈Ps
y∈S\Ps

τx,1(y)

min(|Ps|, |S \ Ps|)
=
E(Ps, S \ Ps)

2d|Ps|
The first inequality follows because we restrict the numerator to length one transitions

in the Markov Chain MS (which correspond to edges in G). Rearranging, we get

E(Ps, S \ Ps) ≤ n−δ/4(2d|Ps|).

For all s ∈ S ′′ and v ∈ Ps, τs,nδ(v) ≥ 1/10nδ(i+6). Set L = 160nδ(i+7)/α. Let S̃ be

the subset of S ′′ such that ∀s ∈ S̃, Ps is such that ∀v ∈ Ps,
∑

l≤L ps,l(v) ≥ 1/20nδ(i+6).

By averaging, ∃l ≤ L such that ps,l(v) ≥ α/nδ(2i+14).

We have seen that S̃ satisfies the two desired properties: for all s ∈ S̃ E(Ps, S \

Ps) ≤ 2n−δ/4d|Ps|/α and for all v ∈ Ps, ∃t ≤ 160nδ(i+7) such that ps,t(v) ≥ α/nδ(2i+14).
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It only remains to prove a lower bound on size, or alternately, an upper bound on

|S ′′ \ S̃|.

Consider any s ∈ S ′′ \ S̃. There exists some vs ∈ Ps such that τs,nδ(vs) ≥

1/10nδ(i+6) but
∑

l≤L ps,l(vs) < 1/20nδ(i+6). Let us use p̂s,l(vs) to denote the proba-

bility of reaching vs from s in an l-length walk that makes nδ hops. Observe that

τs,nδ(vs) =
∑
l≥nδ

p̂s,l(vs) =
L∑

l=nδ

p̂s,l(vs) +
∑
l>L

p̂s,l(vs) ≤
L∑

l=nδ

ps,l(vs) +
∑
l>L

p̂s,l(vs) (2.29)

< 1/20nδ(i+6) +
∑
l>L

p̂s,l(vs) (2.30)

The last inequality follows from the fact that s ∈ S ′′ \ S̃, and hence
∑L

l=nδ ps,l(vs) <

1/20nδ(i+6). Since τs,nδ(vs) ≥ 1/10nδ(i+6), it follows that
∑

l>L p̂s,l(vs) > 1/20nδ(i+6).

Thus,

1

|S|
∑

s∈S′′\S̃

∑
l>L

p̂s,l(vs)L >
|S ′′ \ S̃| · L
|S|20nδ(i+6)

=
160α−1nδ(i+7) · |S ′′ \ S̃|

20|S|nδ(i+6)
=

8nδ|S ′′ \ S̃|
α|S|

(2.31)

By Lemma 2.5.4,

1

|S|
∑

s∈S′′\S̃

∑
l>L

p̂s,l(vs)L ≤ EW∼Wδ
n
[length of W ] =

n1+δ

|S|
(2.32)

Combining the above, |S ′′ \ S̃| ≤ αn/8. By Lemma 2.5.5, |S ′′| ≥ |S ′|/2 ≥ αn/2,

yielding the bound |S̃| ≥ αn/4.

2.6 Wrapping it all up: the proof of Theorem 2.2.1

We have all the tools required to complete the proof of Theorem 2.2.1. Our aim

is to show that if FindMinor(G, ε,H) outputs an H-minor with probability < 2/3,

then G is ε-close to being H-minor-free. Henceforth in this section, we will simply

assume the “if” condition.

The following decomposition procedure is used by the proof. We set parameter

α = ε/(50r4 log n).
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Decompose(G)

1. Initialize S = V and P = ∅.

2. For i = 1, . . . , 5r4:

(a) Assign S ′ :=
{
s ∈ S : ||q(i+1)

[S],s ||22 ≥ 1/nδi
}

(b) While |S ′| ≥ αn:

i. Choose arbitrary s ∈ S ′′, and let Ps be as in Lemma 2.5.1.

ii. Add Ps to P and assign S := S \ Ps
iii. Assign S ′ :=

{
s ∈ S : ||q(i+1)

[S],s ||22 ≥ 1/nδi
}

(c) Assign S := S \ S ′

(d) Assign Xi := S ′

3. Let X =
⋃
iXi.

4. Output the partition P , X, S

The procedure Decompose repeatedly employs Lemma 2.5.1 for values of i ≤ 5r4.

In the ith iteration, eventually |S ′| becomes too small for Lemma 2.5.1. Then, S ′ is

moved (from S) to an “excess” set Xi, and the next iteration begins. Decompose ends

with a partition P , X, S where each set in P is a low conductance cut, X is fairly

small, and FindBiclique succeeds with high probability on every vertex in S.

This is formalized in the next lemma.

Lemma 2.6.1 Assume ε > εCUTOFF. Suppose FindMinor(G, ε,H) outputs an H-

minor with probability < 2/3. Then, the output of Decompose satisfies the following

conditions.

• |X| ≤ εn/10.

• |S| ≤ εn/10.

• ∀Ps ∈ P , v ∈ Ps, ∃t ≤ 160n6δr4/α such that ps,t(v) ≥ α

n11δr2
.

• There are at most εn/10 edges that go between different Ps sets.

Proof Consider the Xi’s formed by Decompose. Each of these has size at most

αn = εn/50r4 log n, and there are at most 5r4 of these. Clearly, their union has size

at most εn/10.
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The third condition holds directly from Lemma 2.5.1. Consider the number of

edges that go between Ps and the rest of S, when Ps was constructed (in Decompose).

By Lemma 2.5.1 again, the number of these edges is at most

2n−δ/4d|Ps|/α = 40r4(log n)ε−1n−δ/4d|Ps|.

Note that ε > εCUTOFF. For sufficiently small constant δ, the number of edges between

Ps and S \Ps (at the time of removal) is at most ε|Ps|/10. The total number of such

edges is at most εn/10 (since Ps are all disjoint).

Suppose, for contradiction’s sake, that |S| > εn/10. Consider the stratification

process with R0 = S. By construction of S, ∀s ∈ S, ||q(5r
4+1)

[S],s || ≤ 1/n5δr4 . Thus,

all of these vertices will lie in strata numbered 5r4 or above. Since ε > εCUTOFF, by

Lemma 2.3.5, at most εn/ log n vertices are in strata numbered more than 1/δ+3. By

Theorem 2.4.1, for at least εn/10−εn/ log n ≥ εn/20 vertices, the probability that the

paths discovered by FindBiclique(s) contain a Kr2,r2-minor is at least n−4δr
4
. Since

a Kr2,r2 minor contains an H-minor, the algorithm (in this situation) will succeed in

finding an H-minor.

All in all, this implies that the probability that a single call to FindBiclique finds

an H minor is at least n−5δr
4
. Since FindMinor makes n20δr4 calls to FindBiclique,

an H-minor is found with probability at least 5/6. This is a contradiction, and we

conclude that |S| ≤ εn/10.

And now, we can prove the correctness guarantee of FindMinor.

Claim 2.6.2 Suppose FindMinor(G, ε,H) outputs an H-minor with probability <

2/3. Then G is ε-close to being H-minor-free.

Proof If ε ≤ εCUTOFF, then FindMinor runs an exact procedure. So the claim is

clearly true. Henceforth, assume ε > εCUTOFF. Apply Lemma 2.6.1 to partition V

into P , X, S.
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Call s ∈ V bad if there is a corresponding Ps ∈ P and Ps induces an H-minor.

By Lemma 2.6.1, for all v ∈ Ps, ∃t ≤ 160n6δr4/α such that ps,t(v) ≥ α/n11δr4 .

Note that 160n6δr4/α ≤ n7δr4 and α/n11δr4 ≥ n−12δr
4
. Also, |Ps| ≤ 160(n6δr4/α) ×

(n11δr4/α) ≤ n18δr4 . Note that LocalSearch(s) performs walks of all lengths up

to n7δr4 , and performs n30δr4 walks of each length. For any v ∈ Ps, the probabil-

ity that LocalSearch(s) does not add v to B (the set of “discovered” vertices in

LocalSearch(s)) is at most (1 − n−12δr4)n30δr4 ≤ 1/n2. Taking a union bound over

Ps, the probability that Ps is not contained in B is at most 1/n. Consequently, for

bad s, LocalSearch(s) outputs an H-minor with probability > 1− 1/n.

Suppose there are more than n1−30δr4 bad vertices. The probability that a u.a.r.

s ∈ V is bad is at least n−30δr
4
. Since FindMinor(G, ε,H) invokes LocalSearch n35δr4

times, the probability that LocalSearch(s) is invoked for a bad vertex is at least

1− 1/n. Thus, FindMinor(G, ε,H) outputs an H-minor with probability > 1− 2/n,

contradicting the claim assumption.

We conclude that there are at most n1−30δr4 bad vertices. Each Ps has at most

n18δr4 vertices, and |
⋃
s bad Ps| ≤ n1−12δr4 ≤ εn/10.

We can make G H-minor-free by deleting all edges incident to X, all edges incident

to S, all edges incident to vertices in any bad Ps sets, and all edges between Ps sets.

By Lemma 2.6.1 and the bound given above, the total number of edges deleted is at

most 4εdn/10 < εdn.

Finally, we bound the running time.

Claim 2.6.3 The running time of FindMinor(G, ε,H) is

dn1/2+O(δr2) + dε−2 exp(2/δ)/δ

Proof If ε < εCUTOFF, then the running time is simply O(n2). Since ε < n−δ/ exp(2/δ),

this can be expressed as ε−2 exp(2/δ)/δ.

Assume ε ≥ εCUTOFF. The total number of vertices encountered by all the

LocalSearch calls is nO(δr4). There is an extra d factor to determine all incident
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edges through vertex queries. Thus, the total running time is dnO(δr4), because

of the quadratic overhead of KKR. Consider a single iteration for the main loop of

FindBiclique. First, FindBiclique performs 2r2 random walks of length 2i+1n5δ,

and then for each of these, FindPath performs nδi/2+9δ walks of length 2in5δ. Hence,

the total steps (and thus queries) in all walks done in a single call to FindBiclique

is

1/δ+3∑
i=5r2

(
2r22i+1n5δ + 2r2nδi/2+9δ2in5δ

)
= r2n1/2+O(δ). (2.33)

While this is the total number of vertices encountered, we note that the calls made to

KKR(F,H) are for much smaller graphs. The output of find path has size O(21/δn5δ),

and the subgraph F constructed has at most O(21/δn5δ) vertices. We incur an extra

d factor to determine the induced subgraph through vertex queries. Thus, the time

for each call to KKR(F,H) is nO(δ). There are nO(δr4) calls to FindBiclique, and we

can bound the total running time by dn1/2+O(δr4).
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3 A TWO-SIDED-TESTER FOR MINOR FREENESS IN BOUNDED DEGREE

GRAPHS

The classic result of Hopcroft-Tarjan gives a linear time algorithm for deciding pla-

narity [28]. As the old theorems of Kuratowski and Wagner show, planarity is char-

acterized by the non-existence of K5 and K3,3 minors [29,30]. The monumental graph

minor theorem of Robertson-Seymour proves that any property of graphs closed un-

der minors can be expressed by the non-existence of a finite list of minors [15,16,31].

Moreover, given a fixed graph, H, the property of being H-minor-free can be decided

in quadratic time [24]. Thus, any minor-closed property of graphs can be decided in

quadratic time.

What if an algorithm is not allowed to read the whole graph? This question

was first addressed in the seminal result of Benjamini-Schramm-Shapira (BSS) in the

language of property testing [32]. Consider the model of random access to a graph

adjacency list, as introduced by Goldreich-Ron [33]. Let G = (V,E) be a graph where

V = [n] and the maximum degree is d. We have random access to the list through

neighbor queries. There is an oracle that, given v ∈ V and i ∈ [d], returns the ith

neighbor of v (if no neighbor exists, it returns ⊥).

For a property P of graphs with degree bound d, the distance of G to P is the

minimum number of edge additions/removals required to make G have P , divided by

dn. We say that G is ε-far from P if the distance to P is more than ε. A property

tester for P is a randomized procedure that takes as input (query access to) G and

a proximity parameter, ε > 0. If G ∈ P , the tester must accept with probability at

least 2/3. If G is ε-far from P , the tester must reject with probability at least 2/3.

A tester is one-sided if it accepts G ∈ P with probability 1.

Let P be some minor-closed property such as planarity. BSS proved the re-

markable result that any such P is testable in time independent of n. Their query
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complexity was triply exponential in (d/ε). Hassidim-Kelner-Nguyen-Onak improved

this complexity to singly exponential, introducing the novel concept of partition or-

acles [41]. Levi-Ron gave a more efficient analysis, proving the existence of testers

with query complexity quasi-polynomial in (d/ε) [42]. For the special cases of outer-

planarity and bounded treewidth, poly(d/ε) query testers are known [43,44].

It has been a significant open problem to get poly(d/ε) query testers for all minor-

closed properties. In Open Problem 9.26 of Goldreich’s recent book on property

testing, he states the “begging question of whether [the query complexity bound of

testing minor-closed properties] can be improved to a polynomial [in 1/ε]” [38]. Even

for classic case of planarity, this was unknown.

In this paper, we resolve this open problem.

Theorem 3.0.1 Let P be any minor-closed property of graphs with degree bound d.

There exists a (two-sided) tester for P that runs in d2 · poly(ε−1) time.

Thus, properties such as planarity, series-parallel graphs, embeddability in bounded

genus surfaces, linkless embeddable, and bounded treewidth are all testable in time

d2 · poly(ε−1).

By the graph minor theorem of Robertson-Seymour [31], Theorem 3.0.1 is a corol-

lary of our main result for testing H-minor-freeness. As alluded to earlier, for any

minor-closed property P , there exists a finite list of graphs {H1, H2, . . . , Hb} satisfy-

ing the following condition. A graph G is in P iff for all i ≤ b, G does not contain

an Hi-minor. Let PHi be the property of being Hi-minor-free. The characterization

implies that if G is ε-far from P , there exists i ≤ b such that G is Ω(ε)-far from

PHi . Thus, property testers for Hi-minor freeness imply property testers for P (with

constant blowup in the proximity parameter).

Our main quantitative theorem follows.

Theorem 3.0.2 There is an absolute constant c such that the following holds. Fix

a graph H with r vertices. The property of being H-minor-free is testable in d(r/ε)c

queries and d2(r/ε)2c time.
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We stress that c is independent on r. Currently, our value of c is likely more than

100, and we have not tried to optimize the exponent of ε. We believe that significant

improvement is possible, even by just tightening the current analysis. It would be of

significant interest to get a better bound, even for the case of planarity.

3.0.1 Related work

Property testing on bounded-degree graphs is a large topic, and we point the

reader to Chapter 9 of Goldreich’s book [38]. Graph minor theory is immensely deep,

and Chapter 12 of Diestel’s book is an excellent reference [36]. We will focus on the

work regarding property testing of H-minor-freeness.

As noted before, this line of work started with Benjamini-Schramm-Shapira [32].

Their tester basically approximates the frequency of all subgraphs with radius 21/ε,

which leads to the large dependence in d/ε. Central to their result (and subsequent)

work is the notion of hyperfiniteness. A hyperfinite class of graphs has the property

that the removal of a small constant fraction of edges leaves connected components of

constant size. Hassidim-Kelner-Nguyen-Onak design partition oracles for hyperfinite

graphs to get improved testers [41,42]. These oracles are local procedures that output

the connected component that a vertex lies in, without explicit knowledge of any

global partition. This is extremely challenging as one has to maintain consistency

among different queries. The final construction is an intricate recursive procedure

that makes exp(d/ε) queries. Levi-Ron gave a significantly simpler and more efficient

analysis leading to their query complexity of (dε−1)log ε
−1

. Newman-Sohler show how

partition oracles lead to testers for any property of hyperfinite graphs [60].

Given the challenge of poly(dε−1) testers for planarity, there has been focus on

other minor-closed properties. Yoshida-Ito give such a tester for outerplanarity [43],

which was subsumed by a poly(dε−1) tester by Edelman et al for bounded treewidth

graphs [44]. Nonetheless, poly(dε−1) testers for planarity remained open.



57

Unlike general (two-sided) testers, one-sided testers for H-minor-freeness must

have a dependence on n. BSS conjectured that the complexity of testing H-minor-

freeness (and specifically planarity) is Θ(
√
n). Czumaj et al [34] showed such a lower

bound for any H containing a cycle, and gave an Õ(
√
n) tester when H is a cycle.

Fichtenberger-Levi-Vasudev-Wötzel give an Õ(n2/3) tester for H-minor-freeness when

H is K2,k, the (k × 2)-grid or the k-circus graph [35]. Recently, Kumar-Seshadhri-

Stolman (henceforth KSS) nearly resolved the BSS conjecture with an n1/2+o(1)-query

one-sided tester for H-minor-freeness [6]. The underlying approach uses the proof

strategy of the bipartiteness tester of Goldreich-Ron [45].

The body of work on two-sided (independent of n) testers is primarily combinato-

rial. The proof of Theorem 3.0.2 is a significant deviation from this line of work, and

is inspired by the spectral graph theoretic methods in KSS. As we explain in the next

section, we do not require the full machinery of KSS, but we do follow the connec-

tions between random walk behavior and graph minors. The tester of Theorem 3.0.2

is simpler than those of Hassidim et al and Levi-Ron, who use recursive algorithms

to construct partition oracles [41,42].

3.0.2 Main ideas

Let us revisit the argument of KSS, that gives an n1/2+o(1)-query one-sided tester

for H-minor-freeness. We will take great liberties with parameters, to explain the

essence. The proof of Theorem 3.0.2 is inspired by the approach in KSS, but the proof

details deviate significantly. We discover that the full machinery is not required. But

the main idea is to exploit connections between random walk behavior and graph

minor-freeness.

First, we fix a random walk length ` = nδ � 1/ε, for small constant δ > 0. One

of the building blocks is a random walk procedure that finds H-minors by performing
√
n · poly(`) random walks of length `. For our purposes, it is not relevant what the

algorithm is, and we simply refer to this as the “random walk procedure”. One of
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the significant concepts in KSS is the notion of a returning random walk. For any

subset of vertices S ⊂ V , an S-returning random walk of length ` is a random walk

that starts from S and ends at S. For any vertex s ∈ S, we use q[S],s,` to denote

the |S|-dimensional vector of probabilities of an S-returning walk of length ` starting

from s.

KSS proves the following two key lemmas. We use c to denote some constant that

depends only on H.

1. Suppose there is a subset S ⊆ V , |S| ≥ n/`, with the following property. For

at least half the vertices s ∈ S, ‖q[S],s,`‖ ≤ `−c. Then, whp, the
√
n · poly(`)-time

random walk procedure finds an H-minor.

2. Suppose there is a subset S ⊆ V , |S| ≥ n/`, with the following property. For

at least half the vertices s ∈ S, ‖q[S],s,`‖ > `−c. Then, for every such vertex s, there

is a cut of conductance at most 1/` contained in S, where all vertices (in the cut) are

reached with probability at least 1/poly(`) by `-length S-returning walks from s.

To get a one-sided tester, we run the
√
n · poly(`) random walk procedure. If it

does not find an H-minor, then the antecedent of the second part above is true for

all S such that |S| ≥ n/`. The consequent basically talks of local partitioning within

S, even though random walks are performed in the whole graph G. The statement

is proven using arguments from local partitioning theorems of Spielman-Teng [54].

By iterating the argument, we can prove the existence of a set of εdn edges, whose

removal breaks G into connected components of size at most poly(`). Moreover, a

superset of any piece can be “discovered” by performing poly(`) random walks (of

length `) from some starting vertex. Roughly speaking, each piece has a distinct

starting vertex. Thus, if G was ε-far from being H-minor-free, an ε-fraction (by size)

of the pieces will contain H-minors. A procedure that picks poly(`) random vertices

(to hit the starting vertex of these pieces) and runs poly(`) random walks of length `

will, whp, cover a subgraph that contains an H-minor. We refer to this as the “local

search procedure”, which runs in poly(`) time.
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This sums up the KSS approach. Observe that in the first case above, by the

probabilistic method, we are guaranteed the existence of a minor. Let us abstract

out the argument as follows. Let Q be the statement/condition: there exists a subset

S ⊆ V , |S| ≥ n/` such that for at least half the vertices s ∈ S, ‖q[S],s,`‖ ≤ `−c. KSS

basically proves the following lemmas, which we refer to subsequently as Lemma 1

and Lemma 2.

1. Q⇒ G contains an H-minor.

2. ¬Q ⇒ If G is ε-far from being H-minor-free, the local search procedure finds

an H-minor whp.

We now have an approach to get a poly(ε−1) tester. Suppose we could set the

random walk length ` to be poly(ε−1). And suppose we could test the condition Q

in time poly(ε−1). We could then run local search on top of this, and get a bonafide

tester.

A simple adaptation of proofs of both Lemma 1 and Lemma 2 run into some

fundamental difficulties. The proof of Lemma 1 crucially requires ` to be nδ (or

at least Ω(log n)). The existence of the minor is shown through the success of the
√
n · poly(`) random walk procedure. Constant length random walks cannot find an

H-minor, even if G was Ω(1)-far from being H-minor-free (G could be a 3-regular

expander).

From hyperfiniteness to ` = poly(ε−1). We employ a different (and simpler)

approach to reduce the walk length. A classic result of Alon-Seymour-Thomas asserts

that any H-minor-free bounded-degree graph G satisfies the following “hyperfinite”

decomposition: for any α ∈ (0, 1), we can remove an α-fraction of the edges to

get connected components of size O(α−2). Let us set α = poly(ε) and the walk

length ` � 1/α. We can show that `-length random walks in G encounter the

removed edges with very low probability. By and large, the walks behave as if they

were performed on the decomposition. Thus, walks in G are “trapped” in the small

components of size O(α−2). Quantitatively, we can show that most vertices s, |p`s‖2 ≥
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poly(ε). (We use p`s to denote the random walk distribution with starting vertex s.)

By the contrapositive: if there are at least poly(ε)-fraction of vertices s such that

|p`s‖2 ≤ poly(ε), then G contains an H-minor. This is easily testable. We get a more

convenient, poly(ε−1)-query testable version of Lemma 1.

Clipped norms for local partitioning. We can now express our new condition

¬Q as: for more than a (1− poly(ε))-fraction of vertices s, ‖p`s‖2 ≥ poly(ε). This is

a weakening of the antecedent. Previously, the condition referred to returning walks,

which have smaller norm. Furthermore, the returning walks specifically reference S,

the set in which we are performing local partitioning. Thus, we have some conditions

on the behavior of random walks within S itself, which is necessary to perform the

local partitioning. Our new condition only refers to the l2-norms of random walks in

G.

The new condition appears to be too fragile to get local partitioning within S. It

is possible that the l2-norm of p`s is dominated by a few vertices outside of S, whose

l1-norm is tiny. In other words, an event of small probability dominates the l2-norm.

The existing proof of Lemma 2 (from KSS) is not sensitive enough to handle such

situations.

We overcome this problem by using a more robust version of norm, called the

clipped norm. We define cl(x, ξ) for distribution vector x and ξ ∈ (0, 1) to be the

smallest l2-norm obtained by removing ξ probability mass (l1-norm) from x. In other

words, we can measuring the l2-norm after “clipping” away ξ probability worth of

outliers. We can prove a version of Lemma 2 with a lower bound of the clipped norm.

We need to now rework Lemma 1 in terms of clipped norms. This turns out to be

relatively straightforward.

Putting it all together. Our final tester is as follows. The length ` is set to

poly(ε−1). It picks some random vertices, and estimates the l2-norm of clipped prob-

ability vectors of `-length random walks from these vertices. If sufficiently many of

them have “small” (poly(ε−1)) norms, then the tester rejects. Otherwise, it runs
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poly(ε−1) walks to find a superset of a low conductance cut. The tester employs some

exact H-minor finding algorithm on the observed subgraph.

3.1 The algorithm

In the algorithm and analysis, we will use the following notation.

• Random walks - Unless stated otherwise, we consider lazy random walks on

graphs. If the walk is at a vertex, v, it transitions to each neighbor of v with

probability 1/2d and remains at v with probability 1− dv
2d

where dv is the degree

of the vertex v. Note that the stationary distribution is uniform. We use M to

denote the transition matrix of this random walk.

• ptv - the n-dimensional probability vector, where the uth entry is the probability

that a length t random walk started from v ends at u. We denote each entry as

ptv(u).

• ‖ · ‖p - the usual lp norm on vectors.

The two parameters to the algorithm are ε ∈ [0, 1/2], and a graph H on r ≥ 3

vertices. We set the walk length ` = αr3 + dε−20e, where α is some absolute constant.

Our algorithm runs as a subroutine the exact quadratic time minor-finding algo-

rithm of Kawarabayashi-Kobayashi-Reed [24]. We denote this procedure by KKR.

FindMinor(G, ε,H)

1. Pick multiset S of `21 uniform random vertices.

2. For every s ∈ S, run EstClip(s) and LocalSearch(S).

3. If any call to LocalSearch returns FOUND, REJECT.

4. If more than 2`20 calls to EstClip return LOW, REJECT.

5. ACCEPT
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LocalSearch(s)

1. Perform `21 independent random walks of length `11 from s. Add all

the vertices encountered to set Bs.

2. Determine G[Bs], the subgraph induced by Bs.

3. If KKR(G[Bs], H) finds an H-minor, return FOUND.

EstClip(s)

1. Perform w = `14 walks of length ` from s.

2. For every vertex v, let wv = number of walks that end at v.

3. Let T = {v | wv ≥ `7/2}.

4. If
∑

v∈T wv ≥ w/3, output HIGH, else output LOW.

Theorem 3.0.2 follows directly from the following theorems.

Theorem 3.1.1 If G is H-minor-free, FindMinoroutputs ACCEPT with probability

at least 2/3.

Theorem 3.1.2 If G is ε-far from H-minor-freeness, then FindMinoroutputs RE-

JECT with probability at least 2/3.

Claim 3.1.3 There exists an absolute constant, c such that the query complexity of

FindMinor is O(d(r/ε)c) and time complexity is O(d2(r/ε)2).

Proof The entire algorithm is based on performing poly(`) random walks of length

poly(`). Note that ` = poly(r/ε). The dependence on d appears because the subgraph

G[Bs] is constructed by query the neighborhood of all vertices in Bs. The quadratic

overhead in running time is because of KKR.

3.2 Random walks do not spread in minor-free graphs

We first define the clipped norm.

Definition 3.2.1 Given x ∈ (R+)|V | and parameter ξ ∈ [0, 1), the ξ-clipped vec-

tor cl(x, ξ) is the lexicographically least vector y optimizing the program: min ‖y‖2,

subject to ‖x− y‖1 ≤ ξ and ∀v ∈ V,y(v) ≤ x(v).
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The clipping operation removes “outliers” from a vector, with the intention of

minimizing the l2-norm. For a probability distribution p`s, a small value of ‖p`s‖22 is

a measure of the spread of the walk. But this is a crude lens. There may be one

large coordinate in p`s that determines the norm, while all other coordinates are (say)

uniform. The clipped norm better captures (for our purposes) the notion of a random

walk spreading.

We state the main result of this section. The constant 3/8 below is just for

convenience, and can be replaced by any non-zero constant (with a constant drop in

the lower bound).

Lemma 3.2.1 There is an absolute constant α such that the following holds. Let H

be a graph on r vertices. Suppose G is a H-minor-free graph. Then for any ` ≥ αr3,

there exists at least (1− 1/`)n vertices such that ‖cl(p`v, 3/8)‖22 ≥ `−7.

In order to show this lemma, we will use the classic decomposition theorem for

minor-free graphs by Alon-Seymour-Thomas [21]. It originally appears phrased in

terms of a weight function w : V → R+. We use the uniform weight function ∀v ∈ V

w(v) = 1/n to obtain the restatement below.

Lemma 3.2.2 (Proposition 4.1 of [21]) There is an absolute constant α such that

the following holds. Let H be a graph on r vertices. Suppose G is an H-minor-free

graph with maximum degree d. Then, for all k ∈ N, there exists a set of at most

αnr3/2/k1/2 vertices whose removal leaves G will all connected components of size at

most k.

It is convenient to think of the Markov chain on G in terms of a multigraph on

G, with 2d edges from each vertex. Each edge has probability exactly 1/2d, and

self-loops consist of many such edges. Note that every edge of the original graph is

a single edge in this multigraph. For any subset of vertices C ⊆ V , let us define the

random walk restricted to C. We remove every cut edge (u, v) (where u ∈ C and

v /∈ C) and add a self-loop of the same probability at u. This produces a Markov
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chain on C that is symmetric. Given a subset C and v ∈ C, we use p′v,t to denote

the distribution of endpoints of t-length random walk starting from v and restricted

to C. (In our use, C will apparent from context, so we will not carry the dependence

on C in the notation.)

The following claim relates the clipped norms of the ptv and p′v,t vectors.

Claim 3.2.3 Let C ⊂ V and v ∈ C. Let η be the probability that a t-length random

walk from v (in G) leaves C. For any σ > η, ‖cl(ptv, σ − η)‖22 ≥ ‖cl(p′v,t, σ)‖22.

Proof The random walk restricted to C is obtained by adding some self-loops that

are not in the original Markov chain. Color all these self-loops red. Let rv,t(u) be the

probability of a t-length walk from v to u that contains a red edge. Any path without

a red edge is a path in G (with the same probability), so p′v,t(u) ≤ ptv(u) + rv,t(u).

Note that
∑

u∈C rv,t(u) is the total probability of a random walk from u restricted

to C encountering a red self-loop. Red self-loops correspond to cut edges in the

original graph, and thus, this is the probability of encountering a cut edge. Hence,∑
u∈C rv,t(u) ≤ η.

Intuitively, we can obtain a σ-clipping of p′v,t by first clipping at most η probability

mass to get ptv, and then performing a (σ−η)-clipping of ptv. We formalize this below.

Let q = cl(ptv, σ − η), and let us define the |C|-dimensional vector w by w(u) =

min
(
q(u),p′v,t(u)

)
. Since w is non-negative and w(u) ≤ q(u) for all u ∈ C, it follows

that ‖w‖22 ≤ ‖q‖22 = ‖cl(ptv, σ−η)‖22. By construction, for all u ∈ C, w(u) ≤ p′v,t(u).

We will prove that ‖w − p′v,t‖1 ≤ σ, implying that ‖cl(p′v,t, σ)‖22 ≤ ‖w‖22. This will

complete the argument.

Let D ⊆ C be the set of coordinates such that q(u) < p′v,t(u). Since w(u) =

min(q(u),p′v,t(u)), ‖p′v,t−w‖1 =
∑

u∈D[p′v,t(u)−q(u)]. Combining with the previous

observations and noting that q = cl(ptv, σ − η),

‖p′v,t −w‖1 ≤
∑
u∈D

[ptv(u) + rv,t(u)− q(u)] (3.1)

≤ ‖ptv(u)− q‖1 +
∑
u∈C

rv,t(u) ≤ (σ − η) + η = σ (3.2)
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We now prove the main lemma of this section.

Proof [Proof of Lemma 3.2.1] Fix some ` ∈ N, ` > αr3 and use Lemma 3.2.2 with

k = r3`6. There exists a subset R of at most αdn/`3 edges whose removal breaks up G

into connected components of size at most r3`6. Refer to these as AST components.

Now, consider an `-length walk in G starting from the stationary distribution (which

is uniform). The probability that this walk encounters an edge in R at any step is

exactly |R|/2dn. Let the random variable Xv be the number of edges of R encountered

in an `-length walk from v. Note that when Xv = 0, then the walk remains in the

AST component containing v. Thus, letting Ev denote the event that walk from v

leaves its AST component, we get

(1/n)
∑
v

Pr[Ev] ≤ Ev∼u.a.r.[Xv] = `|R|/2dn ≤ α/(2`2)

Since ` > αr3 > 4α, we can upper bound by 1/8`. By the Markov bound, for at least

(1− 1/`)n vertices, the probability that an `-length walk starting at v encounters an

edge of R and thus leaves the AST piece containing v is at most 1/8. Denote the set

of these vertices by S.

Consider any s ∈ S. Suppose it is contained in the AST component C. Note

that ‖cl(p′s,`, 1/2)‖1 ≥ 1/2. Furthermore, it has support at most |C| ≤ r3`6. By

Jensen’s inequality, ‖cl(p′s,`, 1/2)‖22 ≥ 1(4r3`6). As argued earlier, the probability

that a random walk (in G) from s leaves C is at most 1/8. Applying Claim 3.2.3 for

σ = 1/2 and η = 1/8, we conclude that ‖cl(p`s, 1/2− 1/8)‖22 ≥ 1/(4r3`6) ≥ 1/`7. (For

convenience, we assume that α > 4.)

3.3 The existence of a discoverable decomposition

If many vertices have large clipped norms, we prove that G can be partitioned

into small low conductance cuts. Furthermore, each cut can be discovered by poly(`)

`-length random walks. The analysis follows the structure given in [6].
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Lemma 3.3.1 Let c > 1 be a parameter. Suppose there exists S ⊆ V such that

|S| > n/`1/5 and ∀s ∈ S, ‖cl(p`s, 1/4)‖22 > `−c. Then, there exists S̃ ⊆ S with

|S̃| ≥ |S|/4 such that for each s ∈ S̃, there exists a subset Ps ⊆ S where

• ∀v ∈ Ps,
∑

t<16`c+1 ps,t(v) ≥ 1/8`c+1.

• |E(Ps, S \ Ps)| ≤ 4d|Ps|
√
c`−1/5 log `.

A straightforward application of this lemma leads to the main decomposition

theorem.

Theorem 3.3.2 Suppose there are ≥ (1−1/`1/5)n vertices s such that ‖cl(p`s, 1/4)‖22 >

`−c. Then, there is a partition {P1, P2, . . . , Pb} of the vertices such that:

• For each Pi, there exists s ∈ V such that: ∀v ∈ Pi,
∑

t<10`c+1 ps,t(v) ≥ 1/8`c+1.

• The total number of edges crossing the partition is at most 8dn
√
c`−1/5 log `.

Proof We simply iterate over Lemma 3.3.1. Let T = {s | ‖cl(p`s, 1/4)‖22 ≤ `−c}. By

assumption, |T | ≤ n/`1/5. We keep a partition of the vertices {T,Q1, Q2, . . . , Qa, S}

with the following properties. (1) Each Qi satisfies the first condition of the theorem.

(2) In addition, we also have that the total number of edges crossing the partition is

no bigger than 4d
√
c`−1/5 log `

∑
i≤a |Qi|+d|T |. We initialize with the trivial partition

{T, S = V \ T}.

As long as |S| > n/`1/5, we invoke Lemma 3.3.1. We get a new set Q ⊆ S satisfying

the first condition of the theorem, and the number of edges from Q to S \ Q is at

most 4d
√
c`1/5 log `|Q|. We add Q to our partition, reset S = S \Q, and iterate.

When this process terminates, |S| ≤ n/`1/5. We get the final partition by removing

all edges incident to S∪T . Alternately, every single vertex in S∪T becomes a separate

set. Note that a single vertex trivially satisfies the first condition of theorem, since

for all s, ps,s(1) ≥ 1/2. The total number of edges crossing the partition is at most

4dn
√
c`−1/5 log `+ 2dn`−1/5 ≤ 8dn

√
c`−1/5 log `.
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3.3.1 Proving Lemma 3.3.1

An important tool used to argue about conductances within S is the projected

Markov chain. These ideas come from the work of Kale-Peres-Seshadhri to analyze

random walks in noisy expanders [50], and were used by the authors in their previous

paper on one-sided testers for minor-freeness [6]. We closely follow the structure and

notation of that paper, and explicitly mention the differences.

We define the “projection” of the random walk onto the set S. We define a Markov

chain MS, over the set S. We retain all transitions from the original random walk on

G that are within S, and we denote these by e
(1)
u,v for every u to v transition in the

random walk on G. Additionally, for every u, v ∈ S and t ≥ 2, we add a transition

e
(t)
u,v. The probability of this transition is equal to the total probability of t-length

walks in G from u to v, where all internal vertices in the walk lie outside S.

Note that e
(t)
u,v = e

(t)
v,u. Since G is irreducible and the stationary mass on S is

nonzero, all walks eventually reach S. Thus, for any u,
∑

t

∑
v e

(t)
u,v = 1, so MS is a

symmetric Markov chain. The stationary distribution of MS is uniform on S.

For a transition e
(t)
u,v in MS, define the “length” of this transition to be t. For

clarity, we use “hops” to denote the number of steps of a walk in MS, and retain

“length” for walks in G. The length of an h hop random walk in MS is defined to be

the sum of the lengths of the transitions it takes.

We use τs,h to denote the distribution of the h-hop walk from s, and τs,h(v)

to denote the corresponding probability of reaching v. We use Wh to denote the

distribution of h-hop walks starting from the uniform distribution.

The following lemma is crucial for relating walks in G with MS.

Lemma 3.3.3 (Lemma 6.4 of [61]) EW∼Wh
[length of W ] = hn/|S|

We come to an important lemma. The conditions in Lemma 3.3.1 are on the

clipped norms of random walks in G, but the conclusion (regarding the cut) refers

to conductances within the projected Markov chain MS. The following lemma shows

that random walks in MS must also be sufficiently trapped. This is an analogue of
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Lemma 6.5 of [61], but the proof deviates significantly because of the use of clipped

norms.

Lemma 3.3.4 ∃S ′ ⊆ S, |S ′| ≥ |S|/2, such that ∀s ∈ S ′, ‖τs,`1/5‖∞ ≥ 1/2`c+1.

Proof Consider `-length random walks in G starting from s ∈ S. For any such walk,

we can define the number of hops it makes as the number of vertices in S encountered

minus one.

For h ∈ N and s ∈ S, define the event Es,h that an `-length walk from s makes h

hops. We will further split this event into Fs,h, when the walk ends at S, and Gs,h,

when the walk does not end at S. A walk that ends in S directly corresponds to an

h-hop walk in MS. By Lemma 3.3.3, |S|−1
∑

s∈S Pr[Fs,h]` ≤ hn/|S|. Consider any

walk in the event Gs,h. If one continued until it ends in S, this gives a walk in MS

with a single additional hop (and a longer length). Thus, the total probability mass

Pr[Gs,h] corresponds to walks in MS that make (h+ 1) hops and have length at least

`. By Lemma 3.3.3 again, |S|−1
∑

s∈S Pr[Gs,h]` ≤ (h+ 1)n/|S|.

Summing these bounds and applying the size bound on S,∑
s∈S Pr[Es,h]
|S|

` ≤ (2h+ 1)n/|S| ≤ `1/5(2h+ 1) =⇒
∑

s∈S Pr[Es,h]
|S|

≤ `−4/5(2h+ 1)

Now, we sum over h and use the fact that ` is a sufficiently large constant.

|S|−1
∑
h≤`1/5

∑
s∈S

Pr[Es,h] ≤ `−4/5
∑
h≤`1/5

(2h+ 1) ≤ 4`−2/5 < 1/10

By the Markov bound, there is a set S ′, |S ′| ≥ |S|/2 such that ∀s ∈ S ′, it holds that∑
h≤`1/5 Pr[Es,h] < 1/5.

For v ∈ V , let ys(v) be the probability that an `-length walk from s to v makes

at most `1/5 hops. Note that
∑

v∈S ys(v) ≤
∑

h≤`1/5 Pr[Es,h] < 1/5. We now use the

clipped norm definition. Since ‖cl(p`s, 1/4)‖22 ≥ `−c,
∑

v∈V (ps,`(v) − ys(v))2 ≥ `−c.

This is important, since we can “remove” the low hop walks and still have a large

norm.

Consider the probability α that a 2`-length walk from s back to s makes at least

`1/5 hops. (Note that this corresponds to walks in MS.) Clearly, any walk going
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from s to v in an `-length walk making at least `1/5 hops and then returning to s

in an `-length walk contributes to this probability. Thus, we can lower bound α by∑
v∈V (ps,`(v)− ys(v))2 ≥ `−c. Note that all walks considered make at most 2` hops.

Thus,
∑2`

h≥`1/5 ‖τs,`1/5‖∞ ≥ `−c. Since the infinity norm is non-increasing in hops,

by averaging, ‖τs,`1/5‖∞ ≥ 1/2`c+1.

The remaining proof of Lemma 3.3.1 is almost identical to analogous calculations

in Section 6 of [61]. Therefore, we move it to the end of this chapter in §3.5

3.4 Proof of main result

Before we show Theorem 3.1.1 and Theorem 3.1.2, we argue about the guarantees

of EstClip. The proofs of the next two claims are relatively routine concentration

arguments. Recall that T is the vertex set constructed in a call to EstClip(s).

Claim 3.4.1 Consider any vertex s. With probability at least 1 − 2−1/ε
2

over the

randomness in EstClip(s): all v such that p`s(v) ≥ 1/`7 are in T , and no v such that

p`s(v) ≤ 1/`8 is in T .

Proof Consider v such that p`s(v) ≥ 1/`7. Recall that the total number of walks

is w = `14. The expected value of wv is at least `14/`7 = `7. Note that wv is a

sum of Bernoulli random variables. By a multiplicative Chernoff bound (Theorem

1.1 of [62]), Pr[wv ≤ `7/2] ≤ exp(−`7/8). There are at most `7 such vertices v. By a

union bound over all of them, the probability that some such v is not in T is at most

`7 · exp(−`7/8) ≤ exp(−`6) ≤ 2−2/ε
2
. (Note that ` > ε−20.) This proves the first part.

For the second part, consider v such that p`s(v) ≤ 1/`8. We split into two cases.

Case 1, p`s(v) ≥ exp(−`/2). The expectation of wv is at most `14/`8 = `6. Since

`7/2 ≥ 2e`6, by a Chernoff bound (third part, Theorem 1.1 of [62]), Pr[wv ≥ `7/2] ≤

2−`
7/2. There are at most exp(`/2) such vertices v. Taking a union bound over all of

them, the probability that any such vertex appears in T is at most exp(`/2)2−`
7/2 ≤

2−`
5 ≤ 2−2/ε

2
.
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Case 2, p`s(v) < exp(−`/2). For convenience, set p = p`s(v). The probability

that wv ≤ 1 is:

(1−p)w+wp(1−p)w−1 ≥ (1−wp)+wp(1−p(w−1)) = 1−p2w(w−1) ≥ 1−p2w2 (3.3)

(We use the inequality (1 − x)r ≥ 1 − xr, for |x| ≤ 1, r ∈ N.) Thus, the probability

that wv > 1 is at most p2w2. Note that `7/2 (the threshold to be placed in T ) is at

least 2.

Let us take a union bound over all such vertices. We note that w = `14 and

` > ε−20. The probability that any such v is placed in T is at most∑
v:p`s(v)<exp(−`/2)

p`s(v)2w2 ≤ `28 exp(−`/2)
∑
v

p`s(v) ≤ exp(−1/ε2) (3.4)

We union bound over all errors to complete the proof.

We can now argue about the main guarantee of EstClip.

Claim 3.4.2 For all vertices s, with probability at least 1−2−1/ε over the randomness

of EstClip(s):

• If ‖cl(p`s, 1/4)‖22 < `−8/400, then EstClip(s) outputs LOW.

• If ‖cl(p`s, 3/8)‖22 > `−7, then EstClip(s) outputs HIGH.

Proof Consider the first case. Let H = {v |p`s(v) ≥ `−8}. We first argue that∑
v∈H p`s(v) ≤ 1/4 + 1/20. Suppose not. Then, any clipping of 1/4 of the probability

mass of p`s leaves at least 1/20 probability mass on H. The size of H is at most `8.

By Jensen’s inequality, ‖cl(p`s, 1/4)‖22 ≥ 1/400`8, contradicting the case condition.

Thus,
∑

v∈H p`s(v) ≤ 1/4+1/20. The expected value of
∑

v∈H wv ≤ w(1/4+1/20).

By an additive Chernoff bound (first part, Theorem 1.1 of [62]), we get Pr[
∑

v∈H wv ≥

w/3] ≤ exp(−2(1/3− 1/4− 1/20)2w) ≤ exp(−`13). By Claim 3.4.1, with probability

at least 1 − 2−1/ε
2
, T ⊆ H. By a union bound, with probability at least 1 − 2−1/ε,∑

v∈T wv ≤
∑

v∈H wv < w/3, and the output is LOW.
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Now for the second case. Let H ′ = {v |p`s(v) ≥ `−7}. We will show that∑
v∈H p`s(v) ≥ 3/8. Suppose not. We can clip away all the probability mass of

p`s that is on H, which is at most 3/8. All remaining probability/entries of the

clipped vector are at most `−7. Thus, the squared l2-norm is at most `−7, implying

‖cl(p`s, 3/8)‖22 ≤ `−7 (contradiction).

Thus,
∑

v∈H′ p
`
s(v) ≥ 3/8. By an additive Chernoff bound (first part, Theorem

1.1 of [62]), we get Pr[
∑

v∈H wv < w/3] ≤ exp(−2(3/8 − 1/3)2w) ≤ exp(−`13). By

Claim 3.4.1, with probability at least 1 − 2−1/ε
2
, H ′ ⊆ T . By a union bound, with

probability at least 1− 2−1/ε,
∑

v∈T wv ≥
∑

v∈H′ wv ≥ w/3, and the output is HIGH.

We now prove completeness, Theorem 3.1.1. We will prove that if G is H-minor-

free, then the tester FindMinor accepts with probability > 2/3. This follows almost

directly from Lemma 3.2.1.

Proof [Proof of Theorem 3.1.1] Suppose G is H-minor-free. Note that calls to

LocalSearch can never return FOUND, so rejection can only happen because of

the output of calls to EstClip.

By Lemma 3.2.1, there are at least (1− 1/`)n vertices such that ‖cl(p`s, 3/8)‖22 ≥

`−7. Call these vertices heavy. The expected number of light vertices in the multiset

S chosen in Step 1 of FindMinor is at most 1/` × `21 = `20. By a multiplicative

Chernoff bound (Theorem 1 of [62]), the number of light vertices in S is strictly less

than 2`20 with probability at least 1 − exp(−`19) > 9/10. Let us condition on this

event. The probability that any call to EstClip(s) returns HIGH for a heavy s ∈ S

is at least 1 − 2−1/ε, by Claim 3.4.2. By a union bound over the at most `21 heavy

vertices in S, all calls to EstClip(s) for heavy s ∈ S return HIGH with probability

at least 1− `212−1/ε > 9/10.

We now remove the conditioning. With probability > (9/10)2 > 2/3, there are

strictly less than 2`18 calls (for the light vertices) that return LOW. When this hap-

pens, FindMinor accepts.
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Now we prove soundness, Theorem 3.1.2. We prove that if G is ε-far from H-

minor-freeness, the tester rejects with probability > 2/3. The main ingredient is the

decomposition of Theorem 3.3.2.

Proof [Proof of Theorem 3.1.2] Assume G is ε-far from being H-minor free. We

split into two cases.

Case 1: There are less than (1− 1/`1/5)n vertices such that ‖cl(p`s, 1/4)‖22 > `−9.

Then, there are at least n/`1/5 vertices such that ‖cl(p`s, 1/4)‖22 ≤ `−9. The ex-

pected number of such vertices (with repetition) in the multiset S (of Step 1) is at

least `21/`1/5. By a multiplicative Chernoff bound, there are at least `21/2`1/5 > 2`20

such vertices in S, with probability at least 1− exp(−`20/4). For each such vertex s,

the probability that EstClip(s) outputs LOW is at least 1−2−1/ε (Claim 3.4.2). By a

union bound over all vertices in S, with probability > (1− exp(−`20))(1− `212−1/ε) >

5/6, there are at least 2`20 calls to EstClip(s) that return LOW. So the tester rejects.

Case 2: There are at least (1− 1/`1/5)n vertices such that ‖cl(p`s, 1/4)‖22 > `−9.

We apply the decomposition of Theorem 3.3.2 (with c = 9). There is a partition

{P1, P2, . . . , Pb} of the vertices such that:

• For each Pi, there exists s ∈ V such that: ∀v ∈ Pi,
∑

t<10`10 ps,t(v) ≥ 1/8`10.

Call s the anchor for Pi, noting that multiple sets may have the same anchor.

• The total number of edges crossing the partition is at most 24dn
√
`−1/5 log `.

Among the sets in the partition, let {Q1, Q2, . . . , Qa} be the sets of vertices that

contain an H-minor (or technically, the subgraphs induced by these sets contain an

H-minor). Note that one can remove d
∑

i≤a |Qi|+24dn
√
`−1/5 log ` edges to make G

H-minor-free. Since ` > ε−20, 24dn
√
`−1/5 log ` ≤ εnd/2. Since G is ε-far from being

H-minor free, we deduce from the above that
∑

i≤a |Qi| ≥ εn/2.

Let Z = {s |s is anchor for some Qi}. Let us lower bound |Z|. For every Qi, there

is some s ∈ Z such that ∀v ∈ Qi,
∑

t<10`10 ps,t(v) ≥ 1/8`10. Thus, for every Qi, there
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is some s ∈ Z such that
∑

v∈Qi

∑
t<10`10 ps,t(v) ≥ |Qi|/8`10. Let us sum over all s ∈ Z

(and note that
∑

v∈V ps,t(v) = 1).∑
i≤a

|Qi|/8`10 ≤
∑
s∈Z

∑
v∈V

∑
t<10`10

ps,t(v) ≤
∑

t<10`10

∑
s∈Z

∑
v∈V

ps,t(v) ≤ 10`10|Z| (3.5)

Since
∑

i≤a |Qi| ≥ εn/2, |Z| ≥ εn/160`20 ≥ 5n/`21.

Focus on the multiset S in Step 1 of FindMinor. Note that S contains an element

of Z with probability ≥ 1− (1− 5/`21)`
21 ≥ 9/10. Let us condition of this event, and

let s ∈ S ∩ Z. There exists some Qi such that ∀v ∈ Qi,
∑

t<10`10 ps,t(v) ≥ 1/8`10. By

averaging over walk length, ∀v ∈ Qi, ∃t < 10`10 such that ps,t(v) ≥ 1/80`20.

Now, consider the call to LocalSearch(s). The set Bs in Step 1 of LocalSearch

is constructed by performing `21 random walks of length `11. For any v ∈ Qi,

the probability that v is in Bs is at least 1 − (1 − 1/80`20)`
21 ≥ 1 − exp(−`/80).

Taking a union bound over all v ∈ Qi, the probability that Qi ⊆ Bs is at least

1− `21 exp(−`/80) ≥ 9/10. When Qi ⊆ Bs, then G[Bs] contains an H-minor and the

tester rejects. The probability of this happening is at least (9/10)2 > 2/3.

3.5 Local Partitioning Proofs

3.6 Local partitioning, and completing the proof of Lemma 3.3.1

We perform local partitioning on MS, starting with an arbitrary s ∈ S ′. We apply

the Lovász-Simonovits curve technique. (The definitions are originally from [3]. Refer

to Lecture 7 of Spielman’s notes [59] as well as Section 2 in Spielman-Teng [54]. This

is also a restatement of material in Section 6.1 of [61], which is needed to state the

main lemma.)

• Conductance: for some T ⊆ S we define the conductance of T in MS to be

Φ(T ) =

∑
u∈T
v∈S\T

τu,1(v)

min {|S \ T |, |T |}
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• Ordering of states at time t: At time t, let us order the vertices in MS as

v
(t)
1 , v

(t)
2 , . . . such that τs,t(v

(t)
1 ) ≥ τs,t(v

(t)
2 ) . . ., breaking ties by vertex id. At

t = 0, we set τs,0(s) = 1, and all other values to 0.

• The LS curve ht: We define a function ht : [0, |S|] → [0, 1] as follows. For

every k ∈ [|S|], set ht(k) =
∑

j≤k τs,t(v
(t)
j ). (Set ht(0) = 0.) For every

x ∈ (k, k + 1), we linearly interpolate to construct h(x). Alternately, ht(x) =

max~w∈[0,1]|S|,‖~w‖1=x
∑

v∈S[τs,t(v)− 1/n]wi.

• Level sets: For k ∈ [0, |S|], we define the (k, t)-level set,

Lk,t = {v(t)1 , v
(t)
2 , . . . , v

(t)
k }.

The minimum probability of Lk,t denotes τs,t(v
(t)
k ).

The main lemma of Lovász-Simonovits is the following (Lemma 1.4 of [3], also

refer to Theorem 7.3.3 of Lecture 7 in [59]).

Lemma 3.6.1 For all k and all t,

ht(k) ≤ 1

2
[ht−1(k − 2 min(k, n− k)Φ(Lk,t)) + ht−1(k + 2 min(k, n− k)Φ(Lk,t))]

We employ this lemma to prove a condition of the level set conductances. An

analogous lemma was proven in [61] for specific parameters. We redo the calculation

here.

Lemma 3.6.2 Suppose there exists φ ∈ [0, 1] and p > 2/n such that for all t′ ≤ t it

is true that for all k ∈ [n] that if Lk,t′ has a minimum probability of at least p, then

Φ(Lk,t) ≥ φ. Then for all k ∈ [0, n], ht(k) ≤
√
k(1− φ2/2)t + pk.

Proof We will prove by induction over t. For the base case, consider t = 0. The

RHS is at least 1, proving the bound.

Now for the induction. Note that ht is a concave, and the RHS is also concave.

Thus, it suffices to prove the bound for the integer points (ht(k) for integer k). If
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k ≥ 1/p, then the RHS is at least 1. Thus the bound is trivially true. Let us assume

that k < 1/p < n/2. We now split the proof into two cases based on the conductance

of Lk,t.

First let us consider the case where Φ(Lk,t) ≥ φ. By Lemma 3.6.1 and concavity

of h,

ht(k) ≤ 1

2

(
ht−1

(
k(1− 2φ)

)
+ ht−1

(
k(1 + 2φ)

))
(3.6)

≤ 1

2

(√
k(1− 2φ)(1− φ2/2)t−1 +

√
k(1 + 2φ)(1− φ2/2)t−1 + 2kp

)
(3.7)

≤ 1

2

(√
k
(
1− φ2/2

)t−1 (√
1− 2φ+

√
1 + 2φ

)
+ 2kp

)
(3.8)

≤
√
k
(
1− φ2/2

)t
+ kp (3.9)

For the last inequality we use the bound
(√

1 + z +
√

1− z
)
/2 ≤ 1− z2/8.

Now we deal with the case when Φ(Lk,t) < φ. By assumption, Lk,t has minimum

probability less than p. Let k′ < k be the largest index such that Lk′,t has minimum

probability at least p. Note that Φ(Lk′,t) ≥ φ. Therefore, as proven in the first

case, ht(k
′) ≤

√
k′ (1− φ2/2)

t
+ k′p. Every vertex we add to Lk′,t adds less than p

probability mass to Lk′,t, and therefore, by the concavity of ht(x),

ht(k) ≤ ht(k
′) + (k − k′)p (3.10)

≤
√
k′
(
1− φ2/2

)t
+ k′p+ (k − k′)p (3.11)

≤
√
k′
(
1− φ2/2

)t
+ kp ≤

√
k
(
1− φ2/2

)t
+ kp (3.12)

For convenience, we restate Lemma 3.3.1.

Lemma 3.6.3 Let c > 1 be a parameter. Suppose there exists S ⊆ V such that

|S| > n/`1/5 and ∀s ∈ S, ‖cl(p`s, 1/4)‖22 > `−c. Then, there exists S̃ ⊆ S with

|S̃| ≥ |S|/4 such that for each s ∈ S̃, there exists a subset Ps ⊆ S where

• ∀v ∈ Ps,
∑

t<16`c+1 ps,t(v) ≥ 1/8`c+1.
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• |E(Ps, S \ Ps)| ≤ 4d|Ps|
√
c`−1/5 log `.

Proof By Lemma 3.3.4, there is a set S ′ ⊆ S, |S ′| ≥ |S|/2 such that for all s ∈ S ′,

‖τs,`1/5‖∞ ≥ 1/2`c+1. Consider any s ∈ S ′.

Suppose for all t′ ≤ `1/5, all level sets Lk,t′ with minimum probability 1/2`c+1 have

conductance at least
√

4c`−1/5 log `. Lemma 3.6.2 implies that ‖τs,`1/5‖∞ = h`1/5(1) ≤

(1−2c`−1/5 log `)`
1/5

+1/4`c+1 < 1/4`c+1 +1/4`c+1 = 1/2`c+1. This is a contradiction.

Thus, for every s ∈ S ′, there exists a level set denoted Ps with minimum probabil-

ity 1/2`c+1 and conductance at most
√

4c`−1/5 log `. Note that |Ps| ≤ 2`c+1 < |S|/2.

√
4c`−1/5 log ` ≥ Φ(Ps) =

∑
x∈Ps
y∈S\Ps

τx,1(y)

min(|Ps|, |S \ Ps|
≥ E(Ps, S \ Ps)

2d|Ps|
(3.13)

The inequality is obtained by only considering transitions from S to S \ Ps that

come from a single edge in G. Each such edge has a traversal probability of 1/2d.

Therefore, E(Ps, S \ Ps) ≤ 4d|Ps|
√
c`−1/5 log `.

Set L = 8`c+2. Define S̃ ⊆ S ′ to be the vertices s ∈ S ′ with the property that

∀v ∈ Ps,
∑

l<L ps,v(l) ≥ 1/8`c+1. Together with the cut bound above, this clearly

satisfies the conditions on the lemma. It remains the prove a suitable upper bound

of |S ′ \ S̃|, to show that S̃ is sufficiently large.

For every s ∈ S ′ \ S̃, there exists vs ∈ Ps such that
∑

l<L ps,l(v) < 1/8`c+1. Let

p̂s,l(v) denote that probability that an `1/5-hop walk in MS from s reaches v with

length l. Consider s ∈ S ′ \ S̃.

τs,`1/5(vs) =
∑
l≥`1/5

p̂s,l(vs) =
L−1∑
l≥`1/5

p̂s,l(vs) +
∑
l≥L

p̂s,l(vs) ≤
L−1∑
l≥`1/5

ps,l(v) +
∑
l≥L

p̂s,l(v)

(3.14)

Since the minimum probability of Ps is at least 1/4`c+1, τs,`1/5(vs) ≥ 1/4`c+1. We

argued above that
∑L−1

l≥`1/5 ps,l(v) ≤
∑

l<L ps,l(v) < 1/8 ≤c+1. We conclude that
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∑
l>L p̂s,l(v) ≥ 1/8`c+1. Note that all of this probability mass corresponds to `1/5-hop

walks that have a large length. We now lower bound EW∼W
`1/5

[length of W ].

EW∼W
`1/5

[length of W ] ≥ 1

|S|
∑
s∈S′\S̃

(∑
l>L

p̂s,l(vs)
)
L ≥ |S

′ \ S̃|
|S|

· L

8`c+1
≥ `|S ′ \ S̃|

|S|

(3.15)

By Lemma 3.3.3, EW∼W
`1/5

[length of W ] = `1/5n/|S|. Combining, |S ′ \ S̃| ≤ n/`4/5 ≤

n/4`1/5 ≤ |S|/4. By Lemma 3.3.4, |S ′| ≥ |S|/2. By the setting of Lemma 3.3.1,

|S| > n/`1/5. Thus, |S ′ \ S̃| ≤ n/4`1/5, and |S̃| ≥ |S|/4.
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4 AN EFFICIENT PARTITION ORACLE FOR BOUNDED DEGREE GRAPHS

The algorithmic study of planar graphs is a fundamental direction in theoretical

computer science and graph theory. Classic results like the Kuratowski-Wagner char-

acterization [29, 30], linear time planarity algorithms [28], and the Lipton-Tarjan

separator theorem underscore the significance of planar graphs [63]. The celebrated

theory of Robertson-Seymour give a grand generalization of planar graphs through

minor-closed families [15, 16, 31]. This has led to many deep results in graph algo-

rithms, and an important toolkit is provided by separator theorems and associated

decompositions [64].

Over the past decade, there have been many advances in sublinear algorithms for

planar graphs and minor-closed families. We focus on the model of random access to

bounded degree adjacency lists, introduced by Goldreich-Ron [33]. Let G = (V,E) be

a graph with vertex set V = [n] and degree bound d. The graph is accessed through

neighbor queries : there is an oracle that on input v ∈ V and i ∈ [d], returns the ith

neighbor of v. (If none exist, it returns ⊥.)

One of the key properties of bounded-degree graphs in minor-closed families is that

they exhibit hyperfinite decompositions. A graph G is hyperfinite if ∀ 0 < ε < 1, one

can remove εdn edges from G and obtain connected components of size independent

of n (we refer to these as pieces). For minor-closed families, one can remove εdn edges

and get pieces of size O(ε−2).

The seminal result of Hassidim-Kelner-Nguyen-Onak (HKNO) [41] introduced the

notion of partition oracles. This is a local procedure that provides “constant-time”

access to a hyperfinite decomposition. The oracle takes a query vertex v and outputs

the piece containing v. Each piece is of size independent of n, and at most εdn edges

go between pieces. Furthermore, all the answers are consistent with a single hyper-

finite decomposition, despite there being no preprocessing or explicit coordination.
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(All queries uses the same random seed, to ensure consistency.) Partition oracles

are extremely powerful as they allow a constant time procedure to directly access a

hyperfinite decomposition. As observed in previous work, partition oracles lead to a

plethora of property testing results and sublinear time approximation algorithms for

minor-closed graph families [41,60]. In some sense, one can think of partition oracles

as a moral analogue of Szémeredi’s regularity lemma for dense graph property test-

ing: it is a decomposition tool that immediately yields a litany of constant time (or

constant query) algorithms. We also note that the breakthrough result of Benjamini-

Schramm-Shapira that gave the first property testers for planarity implicitly yields

partition oracles [32].

We give a formal definition of partition oracles.

Definition 4.0.1 Let P be a family of graphs. A procedure A is an (ε, t(ε))-partition

oracle for P if it satisfies the following properties. The deterministic procedure takes

as input random access to G = (V,E) in P, random access to a random seed r (of

length polynomial in graph size), a proximity parameter ε > 0, and a vertex v of G.

(We will think of fixing G, r, ε, so denote the procedure AG,r,ε. All probabilities are

with respect to r.) The procedure AG,r,ε(v) outputs a set of vertices.

1. (Consistency) The sets {AG,r,ε(v)}, over all v, form a partition of V .

2. (Size bound) For every v, |AG,r,ε(v)| ≤ t(ε).

3. (Cut bound) With probability (over r) at least 2/3, the number of edges between

the sets AG,r,ε(v) is at most εdn.

We stress that there is no explicit “coordination” or sharing of state between calls

to AG,r,ε(v) and AG,r,ε(v
′) (for v 6= v′). There is no global preprocessing step once

the random seed is fixed. The consistency guarantee holds with probability 1.

The challenge in partition oracles is to bound t(ε). HKNO gave a partition oracle

with t(ε) = (dε−1)poly(dε
−1). Levi-Ron [42] built on the ideas from HKNO and dra-

matically improved the bound to t(ε) = (dε−1)log(dε
−1). Yet, all minor-closed families
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are (ε,Θ(ε−2))-hyperfinite, which is quite far from the bounds of partition oracles.

HKNO raise the natural open question as to whether (ε, poly(dε−1))-partition oracles

exist.

In this paper, we resolve this open problem.

Theorem 4.0.1 Let P be the set of d-bounded degree graphs in a minor-closed family.

There is an (ε, poly(dε−1))-partition oracle for P.

We also note that in our definition of partition oracles, we enforce the size bound

with probability 1, whereas in previous results, the size bound fails with non-zero

probability.

4.0.1 Consequences

As observed by HKNO and Newman-Sohler [60], partition oracles have many

consequences for property testing and sublinear algorithms.

Recall the definition of property testers. LetQ be a property of graphs with degree

bound d. The distance of G to Q is the minimum number of edge additions/removals

required to make G have Q, divided by dn. A property tester for P is a randomized

procedure that takes query access to an input graph G and a proximity parameter,

ε > 0. If G ∈ P , the tester accepts with probability at least 2/3. If the distance of G

to Q is at least ε, the tester rejects with probability at least 2/3. We often measure

the query complexity as well as time complexity of the tester.

A direct consequence of Theorem 4.0.1 is an “efficient” analogue of a theorem of

Newman-Sohler, which states that all properties of hyperfinite graphs are testable.

Theorem 4.0.2 Let Q be any property of bounded degree graphs of a minor-closed

family. There exists a poly(dε−1)-query tester for Q.

If membership in Q can be determined exactly in polynomial (in input size) time,

then Q has poly(dε−1)-time testers.
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An appealing consequence of Theorem 4.0.2 is that the property of bipartite planar

graphs can be tested in poly(dε−1) time. For any fixed subgraph H, the property of

H-free planar graphs can be tested in the same time. And all of these bounds hold

for any minor-closed family.

As observed by Newman-Sohler, partition oracles give sublinear query algorithms

for any graph parameter that is “robust” to edge changes. Again, Theorem 4.0.1

implies an efficient version for minor-closed families.

Theorem 4.0.3 Let f be a real-valued function on graphs that changes by O(1) on

edge addition/removals, and has the property that f(G1 ∪ G2) = f(G1) + f(G2) for

graphs G1, G2 that are not connected to each other.

For any minor-closed family P, there is a randomized algorithm that, given ε > 0

and G ∈ P, outputs an additive εn-approximation to f(G) and makes poly(dε−1)

queries. If f can be computed exactly in polynomial time, then the above algorithm

runs in poly(dε−1) time.

The functions captured by Theorem 4.0.3 are quite general. Functions such as

maximum matching, minimum vertex cover, maximum independent set, minimum

dominating set, maxcut, etc. all have the robustness property. As a compelling

application of Theorem 4.0.3, we can get (1 + ε)-approximations1 for the maximum

matching in planar (or any minor-closed family) graphs in poly(dε−1) time.

These theorems are easy consequences of Theorem 4.0.1. Using the partition or-

acle, an algorithm can essentially assume that the input is a collection of connected

components of size poly(dε−1), and run an exact algorithm on a collection of randomly

sampled components. We give formal proofs in §4.5.

1The maximum matching is Ω(n/d) for a connected bounded degree graph. One simply sets ε� 1/d
in Theorem 4.0.3.
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4.0.2 Related work

The subject of property testing and sublinear algorithms in bounded degree graphs

is a vast topic. We refer the reader to Chapters 9 and 10 of Goldreich’s textbook [38].

We focus on the literature relevant to sublinear algorithms for minor-closed families.

The first step towards a characterization of testable properties in the bounded-

degree model was given by Czumaj-Sohler-Shapira, who showed hereditary proper-

ties in non-expanding graphs are testable [40]. This was an indication that notions

like hyperfiniteness are connected to property testing. Benjamini-Schramm-Shapira

achieved a breakthrough by showing that all minor-closed properties are testable, in

time triply-exponential in dε−1 [32]. Hassidim-Kelner-Nguyen-Onak introduced par-

tition oracles, and designed one running in time exp(dε−1). Levi-Ron improved this

bound to quasipolynomial in dε−1, using a clever analysis inspired by algorithms for

minimum spanning trees [42]. Newman-Sohler built on partition oracles for minor-

close families to show that all properties of hyperfinite graphs are testable.

There are two dominant combinatorial ideas in this line of work. The first is using

subgraph frequencies in neighborhood of radius poly(ε−1) to characterize properties.

This naturally leads to exponential dependencies in poly(ε−1). The second idea is to

use random edge contractions to reduce the graph size. Recursive applications lead to

hyperfinite decompositions, and the partition oracles of HKNO and Levi-Ron simulate

this recursive procedure. This is extremely non-trivial, and leads to a recursive local

procedure with a depth dependent of ε. Levi-Ron do a careful simulation, ensuring

that the recursion depth is at most log(dε−1), but this simulation requires looking

at neighborhoods of radius log(dε−1). Following this approach, this is little hope

of getting a recursion depth independent of ε, which is required for a poly(dε−1)-

time procedure. As an aside, the size guarantee of the components is necessarily

probabilistic, since the random contractions could lead to large sizes.

Much of the driving force behind this work was the quest for a poly(dε−1)-time

tester for planarity. This question was resolved recently (by the authors) using a
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different approach from spectral graph theory, which was itself developed for sublinear

time algorithms for finding minors [6,7]. A major inspiration is the random walk based

one-sided bipartiteness tester of Goldreich-Ron [45]. This paper is a continuation of

that line of work, and is a further demonstration of the power of spectral techniques for

sublinear algorithms. The tools build on local graph partitioning techniques pioneered

by Spielman-Teng [54], which is itself based on classic mixing time results of Lovász-

Simonovits [3]. In this paper, we develop new local partitioning tools that form the

core of partition oracles.

We also mention other key results in the context of sublinear algorithms for minor-

closed families, notably the Czumaj et al [34] upper bound of O(
√
n) for testing

cycle minor-freeness, the Fichtenberger et al [35] upper bound of O(n2/3) for testing

K2,r-minor-freeness, and poly(dε−1) testers for outerplanarity and bounded treewidth

graphs [43,44].

4.1 Main Ideas

The starting point for this work are the spectral methods used in [6, 7]. These

methods allow discovering cut properties within a neighborhood of radius poly(dε−1),

without explicitly constructing the entire neighborhood.

One of the key tools used in these results in a local partitioning algorithm, based

on techniques of Spielman-Teng [54]. The algorithm takes a seed vertex s, performs

a diffusion from s (equivalently, performs many random walks) of length poly(dε−1),

and tracks the diffusion vector to detect a low conductance cut around s in poly(dε−1)

time. We will use the term diffusions, instead of random walks, because we prefer the

deterministic picture of a unit of “ink” spreading through the graph. A key lemma

in previous results states that, for graphs in minor-closed families, this procedure

succeeds from more than (1 − ε)n seed vertices. This yields a global algorithm to

construct a hyperfinite decomposition with components of poly(dε−1) size. Pick a
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vertex s at random, run the local partitioning procedure to get a low conductance

cut, remove and recurse. Can there be a local implementation of this algorithm?

Let us introduce some setup. We will think of a global algorithm that processes

seed vertices in some order. Given each seed vertex s, a local partitioning algorithm

generates a low conductance set C(s) containing s (this is called a cluster). The final

output is the collection of these clusters. For any vertex v, let the anchor of v be the

s such that v ∈ C(s). A local implementation boils down to finding the anchor of

query vertex v.

Observe that at any point of the global procedure, some vertices have been clus-

tered, while the remaining are still free. The global procedure described above seems

hopeless for a local implementation. The cluster C(s) is generated by diffusion in

some subgraph G′ of G, which was the set of free vertices when seed s was processed.

Consider a local procedure trying to discover the anchor of v. It would need to figure

out the free set corresponding to every potential anchor s, so that it can faithfully

simulate the diffusion used to cluster v. From an implementation standpoint, it seems

that the natural local algorithm is to use diffusions from v in G to discover the an-

chor. But diffusion in a subgraph G′ is markedly different from G. It appears that a

local implementation needs to simulate the partitioning used to find clusters by using

diffusion directly in G.

Finding low conductance cuts in subsets, by diffusion in supersets: Let

us now modify the global algorithm with this constraint in mind. At some stage of the

global algorithm, there is a set F of free vertices. We need to find a low conductance

cut contained in F , while running random walks in G. Note that we must be able

to deal with F as small as O(εn). Thus, random walks (even starting from F ) will

leave F quite often, leading to technical challenges in getting low conductance cuts

contained in F .

One of our main insights is that these challenges can be dealt with, even for dif-

fusions of poly(dε−1) length. We show that, for a uniform random vertex s ∈ F , a

spectral partitioning algorithm that performs diffusion from s in G can detect low
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conductance cuts contained in F . Diffusion in the superset (all of V ) provides in-

formation about the subset F . This is a rather technical and non-trivial result, and

crucially uses the spectral properties of minor-closed families. Note that diffusions

from F can spread very rapidly in short random walks, even in planar graphs. Con-

sider a graph G, where F is a path on εn vertices, and there is a tree of size 1/ε rooted

at every vertex of F . Diffusions from any vertex in F will initially be dominated by

the trees, and one has to diffuse for at least 1/ε timesteps before structure within

F can be detected. Thus, the proof of our theorem has to look at average behavior

over a sufficiently large time horizon before low conductance cuts in F are “visible”.

Remarkably, it suffices to look at poly(dε−1) timesteps to find structure in F , because

of the behavior of diffusions in minor-closed families.

The main technical tool used is the Lovász-Simonovits curve technique [3], whose

use was pioneered by Spielman-Teng [54]. We also use the truncated probability

vector technique from Spielman-Teng to give cleaner implementations and proofs.

A benefit of using diffusion (instead of random walks) on truncated vectors is the

partitioning process, as well as the size bounds, becomes deterministic.

The problem of ordering the seeds: With one technical hurdle out of the way,

we end up at another gnarly problem. The above procedure only succeeds if the seed

is in F . Quite naturally, one does not expect to get any cuts in F by diffusing from a

random vertex in G. From the perspective of the global algorithm, this means that we

need some careful ordering of the seeds, so that low conductance cuts are discovered.

Unfortunately, we also need some local procedures to discover this ordering. The

authors struggled with carrying out this approach, but to no avail.

To rid ourselves of the ordering problem, let us consider the following, almost

naive global algorithm. First, order the vertices according to a uniform random

permutation. At any stage, there is a free set F . We process the next seed vertex s

by running some spectral partitioning procedure, to get a low conductance cut C(s).

Simply output C(s)∩F (instead of C(s)) as the new cluster, and update F to F \C(s).

It is easy to locally implement this procedure. To find the anchor of v, perform a
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diffusion of poly(ε−1) timesteps from v. For every vertex s with high enough value in

the diffusion vector, determine if C(s) 3 v. The vertex s that is lowest according to

the random ordering is the anchor of v. Unfortunately, there is little hope of bounding

the number of edges cut by the clustering. When s is processed, it may be that s /∈ F ,

and there is no guarantee of C(s) ∩ F . Can we modify the procedure to bound the

number of cut edges, but still maintain its ease of local implementability?

The amortization argument: Consider the scenario when F = Θ(εn). Most of

the subsequent seeds processed are not in F and there is no guarantee on the cluster

conductance. But every Θ(1/ε) seeds (in expectation), we will get a “good” seed s

contained in F , such that C(s) ∩ F is a low conductance set. (This is promised by

the diffusion algorithm that we develop in this paper, as discussed earlier.) Our aim

is to perform some amortization, to argue that |C(s) ∩ F | is so large, that we can

“charge” away the edges cut by the previous Θ(1/ε) seeds.

This amortization is possible because our spectral tools give us much flexibility in

the (low) conductances obtained. Put differently, we essentially prove that existence

of many cuts of extremely low conductance, and show that it is “easy” for a diffusion-

based algorithm to find such cuts. (This is connected to the spectral behavior of

minor-closed families.) As a consequence, we can actually pre-specify the size of the

low conductance cuts obtained. We show that for F = Ω(εn), there exists a value

k = poly(ε−1) such that for at least poly(ε)n vertices s ∈ F , a spectral partition-

ing procedure seeded at s can find a cut of size Θ(k) and conductance at most εc.

Moreover, this cut contains at least εc
′
k vertices in F , despite the procedure being

oblivious to F . The parameter c can be easily tuned, so we can increase c arbitrarily,

at the cost of polynomial increases in running time. This tunability is crucial to our

amortization argument. We also show that given query access to F , we can actually

determine such a value k in poly(dε−1) time.

So when the global algorithm processes a seed s, it runs the above spectral proce-

dure to try to obtain a set of size Θ(k) with conductance at most εc. (If the procedure

fails, the global algorithm simply set C(s) = {s}.) Thus, we cut O(εckd) edges for
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each seed processed. But after every O(1/ε) seeds, we choose a “good” seed such

that |C(s)∩ F | > εc
′
k. The total number of edges cut is O(εckd× ε−1) = O(εc−1kd).

The total number of new vertices clustered is at least εc
′
k. Because we can tune

parameters with much flexibility, we can set c� c′. So the total number of edges cut

is O(εc−c
′−1d) times the number of vertices clustered, where c − c′ − 1 > 1. Overall,

we will cut only O(εnd) edges.

Making it work through phases: Unfortunately, as the process described

above continues, F shrinks. Thus, the original choice of k might not work, and more-

over, the guarantees on |C(s) ∩ F | for good seeds no longer hold. So we need to

periodically recompute the value of k. In a careful analysis, we show that this recom-

putation is only required poly(ε−1) times. Formally, we implement the recomputation

through phases. Each vertex is independently assigned to one of poly(ε−1) phases.

Technically, we choose the phase of a vertex by sampling an independent geometric

random variable. We heavily use the memoryless property in our analysis.

In each phase, the value of k is fixed (in our analysis, we call it rh). At the end

of each phase, we compute a fresh value of k, using random access to the free set

F at that point. The local partition oracle simply computes all values of k (for all

phases) before beginning any partition. The oracle (for v) runs a diffusion from v

to get a collection of candidate anchors. For each candidate s, the oracle determines

its phase, runs the spectral partitioning algorithm with correct phase parameters,

and determines if the candidate’s low conductance cut contains v. Call such an s

successful. The anchor is simply the successful vertex of minimum phase, with ties

broken by vertex id.

4.2 Algorithm overview

We first present the global algorithm that the partition oracle simulates. It takes

as input a graph G from a minor-closed family, a parameter ε, and a random seed R.
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The following parameters are derived from R which is discussed in §4.2.4. For now

we will introduce the following which are independent random variables:

• hv: For each s ∈ V associate a number which is min2 log(1/β)
δ

, Geom(δ). Thus,

phases are geometrically distributed with rate δ (unless, the Geometric Variable

takes on a very large value in which case we truncate it down to 2 log(1/β)
δ

.

• ts,h: For each s ∈ V and phase h, we select a uar length in ts,h from [1, `].

The following parameters are derived from ε:

• ρ = ε1500: This is the minimum probability parameter.

• ` = ε−30: This is the random walk length.

• β = 50ε: This is the unclustered fraction cutoff.

• δ = ε1600: This is the probability with which a free vertex is added to Ph

globalPartition(G, ε,R)

1. Initialize the free set, F0 = V .

2. Initialize the partition P as an empty collection.

3. For h = 1 to 2 log(1/β)
δ

:

(a) Set rh = findr(h,R).

(b) Assign Ph = {w ∈ V : hw = h} to be the set of phase h vertices,

and initialize the first free set in this phase F(h,1) = Fh

(c) For vi in Ph, i = 1 to |Ph| ordered according to label:

i. Compute C = cluster(rh, tv,h, v)

ii. Add C ∩ F(h,i) to the partition P .

iii. Set F(h,i+1) = F(h,i) \ C

(d) Set Fh+1 = Fh,|Ph|+1

4. For every v such that hv >
2 log(1/β)

δ
and v ∈ F−2 log β/δ+1, add {v} to

the partition P .

5. Output P .
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Theorem 4.2.1 Given random access to a graph G from a minor-closed family, ran-

dom access to random seed R, and ε ∈ [0, 1], the partition P output by the procedure

globalPartition(G, ε,R) has the following properties.

• In expectation over the randomness of R, at 100εdn edges cross between parts

of P .

• Every set of vertices in P has size at most 2`80.

The proof of Theorem 4.2.1 is in §4.2.5. The proof relies on the procedure findr

detailed in §4.2.3.

4.2.1 The partition oracle

We now describe the main partition oracle procedure, findPartition(v,R). (Re-

call that R represents all the randomness.) The real work is done by an auxiliary

procedure findAnchor(v,R) that outputs the seed whose cluster contains v.

findAnchor(v,R)

1. Compute B(v).

2. Initialize D = ∅.

3. For every s ∈ B(v):

(a) Call findr(hs) to get rhs .

(b) Using rhs , compute C = cluster(rhs , ts,hs , s).

(c) If C contains v, add s to D.

4. Output the smallest vertex according to label in D.

findPartition(v, ε,R)

1. Call findAnchor(v) to get the anchor s.

2. Call findr(hs)

3. Compute C = cluster(rhs , ts,hs , s).

4. Initialize P = ∅.

5. For every u ∈ C: call findAnchor(u). If the output is s, add u to P .

6. Output P .
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Claim 4.2.2 For some absolute constant c, findPartition(v, ε,R) returns a set

containing v that is consistent with the partition from globalPartition(G, ε,R), in

time O((d/ε)c).

Proof First let us show that the set returned by findPartition(v, ε,R) is the

same as some part in the partition P produced by globalPartition(G, ε,R). In

the global algorithm, let anchor(v) be the least vertex, s, according to label such

that v ∈ cluster(rhs , ts,hs , s). By construction, for every part, P , in the par-

tition returned by the global algorithm, there is some vertex, s, such that P =

{u ∈ V : anchor(u) = s}.

For any u, findAnchor(u) must return anchor(u). Suppose this does not hold.

Then we would have that findAnchor(u) = t, but anchor(u) = s, s 6= t. It

must be that s ∈ B(u) since random walks on G are symmetric and since u ∈

cluster(rhs , ts,hs , s), ps,ts,hs (u) ≥ ρ. So, if findAnchor(u) = t, then t precedes s

according to label and u ∈ cluster(rht , tt,ht , t), which would mean s = t which is a

contradiction.

Fix some v ∈ V , and let P ⊆ V be the part v belongs to in the global algorithm,

and let Q be the part v belongs to according to findPartition(v). If u ∈ Q,

then findAnchor(u) = findAnchor(v) = anchor(v) and so u ∈ P . If u ∈ P , then

anchor(u) = anchor(v) = findAnchor(v) and also u ∈ cluster(rhs , ts,hs , s) and so

u ∈ Q. Therefore, P = Q and the two algorithms are consistent.

The runtime calculation is the sum of the time taken over all the steps. The

time to compute B(v) is O((d/ε)1530), by Claim 4.2.3. The procedure findAnchor(v)

then takes time TfindAnchor = |B(v)| (Tfindr + Tcluster) where one observes Tfindr =

O((d/ε)3200) is the time complexity of findr (Claim 4.2.6), Tcluster = O((d/ε)3001)

is the time complexity of cluster (Claim 4.2.4) and |B(v)| ≤ `/ρ = O(ε−2000)

(Definition 4.2.2). Combined, this gives the call to findAnchor a time complexity of

O((d/ε)5200). The call to findr in the next line is subsumed by this running time.

The size of each cluster is at most 1/ρ. The loop in line 5 involves at most ρ−1 = ε−1500

calls to findAnchor, which gives us an overall time complexity of O ((d/ε)6700).
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4.2.2 The cluster() routine

Now we define the objects essential to our implementation and analysis of the

partition oracle. We will need a little setup first. We use M to denote the transition

matrix of the lazy random walk.

Definition 4.2.1 For any non-negative vector ~x and δ > 0, let tr(~x, δ) be the vector

obtained by zeroing out all coordinates whose values is at most δ.

Define operator M̂~x as tr(M~x, ρ).

Abusing notation, for any vertex v ∈ V , we will use ~v to denote the unit vector

corresponding to vertex v.

Definition 4.2.2 • Define p̂v,t(w) to be the coordinate corresponding to vertex

w in M̂ t~v. Also, define the coordinate corresponding to vertex w in M t~v be

denoted as pv,t(w).

• Define B(v) = {w | ∃t ≤ `, p̂w,t(v) 6= 0}.

• We define the level set Lv,t,k to be the set of vertices corresponding to the k

largest coordinates in M̂ t~v. Ties are broken by vertex id.

We first argue that B(v) can be computed efficiently.

Claim 4.2.3 The set B(v) can be computed in time O((d/ε)3100).

Proof Truncated walks are not symmetric, so this need a little care. Let us define

Bt(v) = {w|p̂w,t(v) 6= 0}, so we wish to compute
⋃
t≤`Bt(v). Note that given any

w, we can determine if w ∈ Bt(v) by computing M̂ t ~w in time dt/ρ by simulating

diffusion. Note that the support of M̂ t ~w has size at most 1/ρ for any t, and so we

can update all d neighbors of every vertex in the support at time s to obtain M̂ t+1 ~w.

We repeat for t ≤ ` steps to get M̂ t ~w in time O(d`/ρ).

Note that if p̂w,t(v) 6= 0, then pw,t(v) ≥ ρ. Since the standard random walk is

symmetric, this means that pv,t(w) ≥ ρ. Thus, |Bt(v)| ≤ 1/ρ.
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Observe that if w ∈ Bt(v), then some neighbor of w is in Bt−1(v). Thus, if we

can compute Bt−1(v), we can go over all neighbors of vertices in Bt−1(v), and check if

each belongs to Bt(v). The set B0(v) is just {v}. By iterating over t, we can compute

all sets Bt(v) in time O(`×(d/ρ)×d`/ρ) = O((d/ε)3100 (by the choice of parameters).

We now describe a key procedure, that finds low conductance cuts around a vertex

v.

cluster(r, t, v)

1. Determine M̂ t~v

2. For all k = 2r, 2r + 1, . . . , 2r+1 calculate E(Lv,t,k, Lv,t,k)

3. Let k′ be the largest k such that E(Lv,t,k, Lv,t,k)2
rh/`1/3 if it exists

4. Set C = Lv,t,k′ if k′ exists else C = ∅

5. Return C ∪ {v}

Claim 4.2.4 cluster(r, t, v) runs in time O((d/ε)3001).

Proof As in the proof of the previous claim, one can compute M̂ t~v for all t ≤ ` in

time O(d`/ρ) by simulating diffusion and truncating at every step. By the properties

of findr(Theorem 4.2.5), 2r = O(1/ρ). In line (3), there are 2r sets of vertices to

consider, each has size at most 1/ρ with at most d edges adjacent. Counting all these

edges take time O(2rd/ρ) = O(d`100/ρ) = O((d/ε)3001).

4.2.3 The routine findr

IsFree(v, h,R)

1. If h = 0, output TRUE.

2. Determine B(v). Let U be the subset of B(v) with phase at most h−1.

3. For every u ∈ U , compute cluster(rhu , tu,hu , u).

4. If any cluster(rhu , tu,hu , u) contains v, output FALSE. Else output

TRUE.
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findr(h,R)

1. Call findr(h− 1,R) to determine r1, . . . , rh−1.

2. Use R to determine Sh by letting Sh = {w ∈ Ah : hw ≥ h}

3. For every 0 ≤ r ≤ 100 log ` and s ∈ Sh:

(a) Compute M̂ ts,h(~s).

(b) For every k ∈ [2r, 2r+1] and every w ∈ Ls,ts,h,k, call IsFree(w, h).

(c) If there is a k such that E(Ls,ts,h,k, Ls,ts,h,k) ≤ kd/`1/3 and

|Ls,ts,h,k ∩ Fh−1| ≥ β3k, mark s as an r-SUCCESS.

4. If, for some r, there are at least |Sh|/10 lg ` successes, output this value

as rh. Otherwise, output 0

The utility of this routine lies in the following theorem guaranteeing that, with

high probability overR, the value rh returned by findr(h) has the important property

that cluster(rh, ts,h, s) contains many free vertices whenever the free set is sufficiently

large.

Theorem 4.2.5 The following holds with probability at least 1− exp(−1/ε). For all

h, if |Fh−1| ≥ βn, then findr(h) outputs a (non-zero) rh ≤ − lg ρ+O(1) that satisfies

the following property. There are at least β5n vertices s ∈ Vh−1 such that: there exists

k ∈ [2rh , 2rh+1] such that E(Ls,ts,h,k, Ls,ts,h,k) ≤ 2rh/`1/3 and |Ls,ts,h,k ∩ Fh−1| ≥ β3k.

The proof of Theorem 4.2.5 is the subject of §4.4.

Claim 4.2.6 findr(h) runs in time O((d/ε)3200).

Proof Consider a call to findr(h). Let us consider what happens after the recursive

call in step 1. Fix an integer r ∈ [0, 100 log `]. Fix s ∈ Sh (and recall |Sh| ≤ log4 `/β).

Let τb denote the time taken in step 1(b) of findr(h) (for the fixed r and s above).

Let τmax denote the maximum time spent in any call to IsFree(w, h) where w belongs

to some level set of size k for k ∈ [2r, 2r+1]. We have

τb ≤ τmax

2r+1∑
k=2r

k ≤ 4τmax · 2r.
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Thus, total time spent in step 2(b) over all r ∈ [0, 100 log `] and all s ∈ Sh is at

most 4τmax|Sh|
∑

2r. Note that the time taken in IsFree(w, h′) is at most

τmax ≤
∑

u∈B(w)

time taken to find C(u)

By Claim 4.2.4 and Claim 4.2.3, this is at most d`/ρ ·O(d`100/ρ) = O(d2`101/ρ2).

Thus total time taken in step 1.(b) across all iterations is at most Tb = O(|Sh|`100 ·

d2`101/ρ2). Step 2.(c) and Step 3 take time at most O(Tb) each and thus the over-

all running time after the recursive calls is O(d2`201/(β10ρ)). Each recursive call

takes at most the same amount of time and summing over all h of them gives

O (d2h`201/(β10ρ)) = O((d/ε)3200).

4.2.4 The random seed

In this section, we will describe how the various parameters are derived from R.

We think of R as a random tape with the following components:

• hv for v ∈ V : For a vertex v, we pick gv ∼ Geom(δ) and let hv = min(gv,
2 log(1/β)

δ
)

• ts,h, for each s ∈ V : For each s ∈ V and phase h ∈ [H], we select a uar length

in ts,h from [1, `].

• Ah: For each h ≤ 2 log(1/β)
δ

, we sample a (multi)set of log10 `/β20 random numbers

from 1 to n.

This set Ah is used to find a multiset Sh which is used in the findr routine. We

simply set Sh = {w ∈ Ah : hw ≥ h}.

Let h0 = 2 log(1/β)
δ

. We have the following

Claim 4.2.7 With probability at least 1− 2 log(1/β)
δ

exp(−1/12β4)−exp(−β4n/12), we

have that for all 1 ≤ h ≤ 2 log(1/β)
δ

, |Sh| ≥ (log `)4/β10.

Proof We will find a lower bound on |Vh0| that holds with high probability. For a

vertex v, let Iv denote the indicator that v ∈ Vh0 . We have

E[Iv] = Pr(Iv = 1) = (1− δ)h0 ≥ exp(−2δh0) ≥ β4
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Thus, E[|Vh0|] ≥ β4n and, by Chernoff bounds, the probability that |Vh0| ≥ β4n/2 is

at least p = 1 − exp(−β4n/12). This means for h < h0, we have |Vh| ≥ β4n holds

with probability at least p.

Now, we will show that for any h(< h0) we have |Sh| ≥ (log `)4/β10. To do this,

note that E[|Sh|] ≥ (log `)4/β16 and thus, by a multiplicative Chernoff Bound, we

have |Sh| ≥ (log `)4/2β16 with probability at least (1 − exp(−1/12β16)). This holds

for a particular phase, phase h. Taking a union bound over all h ≤ h0 finishes the

proof.

4.2.5 Proof of Theorem 4.2.1

Proof The proof crucially hinges on the choice of various parameters. We will

design a charging scheme that deposits charge on vertices. We will ensure that, with

exceedingly high probability, the total charge is at least the number of cut edges.

Finally, we bound the expected charge on each vertex.

The charging is done phase by phase. Note that in each phase, the edges cut are

only incident to Fh.

• If |Fh| ≥ βn: invoking Theorem 4.2.5, there are at least β5n vertices s ∈ Vh

such that: there exists k ∈ [2rh , 2rh+1] such that E(Ls,ts,h,k, Ls,ts,h,k) ≤ 2rh/`1/3 and

|Ls,ts,h,k ∩ Fh−1| ≥ β3k. Some of these vertices s will be in Ph, and thereby be seeds

for phase h. Call any such s good for phase h. For every good s, and for every vertex

in Ls,ts,h,k∩Fh, we add dβ−3`−1/3 units of charge. Note that a vertex may get charged

from various good seeds s.

Finally, we multiply every non-zero charge with 32β−5. We refer to this as the scaling

step.

• If |Fh| < βn: all vertices in Fh get d units of charge, and the charging procees

terminates.
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Observe that every vertex v is charged in exactly one phase. When a vertex

received charge in some phase, then it must have got clustered (or was in the last

charging phase). Thus, it cannot be in any free set for a subsequent phase.

Claim 4.2.8 With probability at least 1− exp(−δ2β5n), the total charge is an upper

bound on the number of edges cut.

Proof We will argue phase by phase. The easy case is when |Fh| < βn. In this case,

the total amount of charge deposited is |Fh|d, which is at least the total number of

edges incident to Fh. No more than |Fh|d edges can be cut from Fh.

Consider phase h where |Fh| ≥ βn. Let us first account for the edges cut by

clusters from good seeds (call these good clusters). For any cluster generated in

phase h, the number of edges cut is at most kd/`1/3, where k is the cluster size. By

the property of good seeds, for any good seed s, there are at least β3k vertices in

Ls,ts,h,k ∩ Fh. Each of these vertices gets dβ−3`−1/3 units of charge, leading to a total

charge of β3k× dβ−3`−1/3 = kd`−1/3. This is at least the number of edges cut by the

cluster.

By Theorem 4.2.5, there are at least β5n good seeds in Vh. By the properties of

the geometric random variables used to generate phases, conditioned on being in Vh,

the probability that a seed is in Ph is δ (and these are independent for all seeds). The

expected number of good seeds in Ph is at least δβ5n. By a multiplicative Chernoff

bound, the probability of there being at least δβ5n/2 good seeds in Ph is at least

1− exp(−δβ5n/12).

Conditioned on Vh, the expected number of seeds in Ph is at most δn. By a

multiplicative Chernoff bound, the probability of there being at most 2eδn seeds in

Ph is at least 1− exp(−2eδn).

By a union bound, these bounds both hold with probability≥ (1−2 exp(−δβ5n/12)).

Assuming these bounds, the total number of edges cut in phase h is at most

|Ph|(d2rh+1`−1/3 ≤ 4eδ2rh`−1/3n.
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The total number of edges cut by good clusters is at least (δβ5n/2)×d2rh`−1/3. Thus,

the total number of edges cut is at most 8eβ−5 times the number of edges cut by good

clusters.

Our initial charge was an upper bound on the number of edges cut by good clusters.

The scaling step multiplied all charges by 32β−5(≥ 8eβ−5), so the total charge now

upper bounds the total number of edges cut in this phase. We union bound over all

the c/δ2 phases, and simply upper bound by (c/δ2)(2 exp(−δβ5n/12) which is at most

exp(−δ2β5n) to complete the proof.

Let E be the event that the total charge upper bounds the total number of edges

cut. By Claim 4.2.8, Pr[E ] ≤ exp(−δ2β5n).

E[# edges cut] ≤ Pr[E ]E[# edges cut|E ] + Pr[E ]E[# edges cut|E ]

≤ Pr[E ]E[# total charge|E ] + exp(−δ2β5n)dn

≤ E[# total charge] + 1/n (4.1)

Thus, it suffices to bound the total charge. Let us define a collection of events.

Fix a vertex v. For phase h, the event Ev,h is the event that |Fh| ≥ βn and that v

is assigned charge in phase h. Let Fv be the event that v ends up in some Fh where

|Fh| < βn. For a fixed v, note that all these events are disjoint and partition the

event of v receiving non-zero charge.

Claim 4.2.9 For any phase h, E[charge on v from phase h|Ev,h] ≤ 16dβ−8`−1/3.

Proof Let E ′h be the event that |Fh| ≥ βn and v ∈ Fh. Note that if v is not captured

in this phase, then it gets no charge in this phase.

E[charge on v from phase h|E ′h] = (Pr[v captured phase h]

×E[charge on v from phase h|Ev,h]) (4.2)

Conditioned on E ′h, v will receive charge if a good seed s that captures v is selected

in Ph. Suppose there are kv such good seeds. Crucially, observe that kv ≤ `ρ−1. Each
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cluster is constructed from a level set, which contains vertices v such that p̂s,ts,h(v) is

non-zero. This means that pv,ts,h(s) ≥ ρ. For fixed v and any value of ts,h, there are

most ρ−1 such values of s. There are most ` timesteps, leading to the upper bound

of `ρ−1.

Each good seed is selected in Ph with probability δ. The probability that v is

captured is 1− (1− δ)kv . Since we have by the choice of parameters that δkv < 1/2,

it follows this probability is at least δkv/2.

If there are b good vertices that capture v, then v receives 4bdβ−8`−1/3 units of

charge. The probability of b such vertices being chosen is
(
kv
b

)
δb ≤ (δkv)

b.

Using the fact that δkv < 1/2,

E[charge on v from phase h|E ′h] =
∑
b≥0

4bdβ−8`−1/3(δkv)
b ≤ 8dβ−8`−1/3(δkv)

By (4.2),

E[charge on v from phase h|Ev,h] ≤
8dβ−8`−1/3(δkv)

δkv/2
= 16dβ−8`−1/3

We can now break up the expected charge on vertex v into various conditional

expectations.

E[charge on v] =
∑
h

Pr[Eh]E[charge on v from phase h|Eh] + Pr[Fv]d (4.3)

By Claim 4.2.9, E[charge on v|Eh] ≤ 16dβ−8`−1/3. Thus, the expected charge

is at most 16dβ−8`−1/3 + Pr[Fv]d. Note that
∑

v Pr[Fv] =
∑

v E[Xv], where Xv is

an indicator random variable for v being in some |Fh| < βn. But
∑

vXv < βn, so∑
v Pr[Fv]d ≤ βdn. All in all, the expected total charge is at most (16β−8`−1/3+β)dn.

By Claim 4.2.8, the expected number of edges cut is at most twice expected charge,

which by the setting of parameters is at most 2β = 100ε.
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4.3 Random walks behavior on minor-free families

Like before, we use M to denote the transition matrix of the lazy random walk.

Also, recall Definition 4.2.1. We will also need another definition.

Definition 4.3.1 A vertex v is spreading if there exists t ≤ ` such that ‖M̂ t(~v) −

MM̂ t−1(~v)‖1 ≥ ρ1/3.

The following corollary based off of [21] appears in [7]

Corollary 4.3.1 Suppose G is a graph with maximum degree that comes from a

minor closed family. Then, there exists a subset of at most γρ1/4dn edges on deleting

which G breaks up into connected components each with size at most 1/
√
ρ (where γ

is an explicit constant which depends on the description of the minor closed family).

Now, let us fix a graph G with maximum degree ≤ d that comes from a minor

closed family and use Corollary 4.3.1 to obtain pieces of size 1/
√
ρ with a total of at

most γρ1/4dn edges between them. Refer to these as AST pieces and the set of edges

between pieces by R. We have the following claim which asserts that short enough

random walks starting at any vertex are unlikely to leave the AST piece they start

in.

Claim 4.3.2 For at least (1 − ρ1/8) fraction of vertices v, the probability that an

`-length walk starting at v encounters an edge in R is at most `γρ3/8.

(And thus the probability that the walk beginning at such v leaving its AST copy

is also at most `γρ3/8)

Proof Consider an `-length walk in G starting from the stationary distribution

(which is uniform). The probability that this walk encounters an edge in R at any

step is exactly |R|/2dn. Let the random variable Xv be the number of edges of R

encountered in an `-length walk from v. Note that when Xv = 0, then the walk



100

remains in the AST component containing v. Thus, letting Ev denote the event that

walk from v leaves the AST component, we get

(1/n)
∑
v

Pr[Ev] ≤ Ev∼u.a.r.[Xv] = `|R|/2dn ≤ γ`ρ1/4/2

By Markov’s, we have that for at least (1−ρ1/8) fraction of vertices the probability

that an `-length walk starting at v encounters an edge in R and thus leaves the AST

piece is at most `γρ3/8.

We define the notion of good vertices.

Definition 4.3.2 A vertex v ∈ V (G) is called good if the probability that a random

walk of length ` starting at v leaves its AST piece is at most `γρ3/8.

With this setup behind us, we can now prove the main lemma of this section.

Lemma 4.3.3 At most ρ1/8n vertices are spreading.

Proof By Claim 4.3.2, we know that there are at least (1− ρ1/8)n good vertices in

G. We will show that none of the good vertices are spreading. Fix a good vertex

v. Let C denote the AST component for v. Fix any time step t ∈ [`]. Let pt =

M̂ t(~v)−MM̂ t−1(~v). Letting `� 1/(γρ1/40), we have

‖pt‖1 =
∑
w∈C

pt(w) +
∑
w 6∈C

pt(w) (4.4)

(1)

≤ ρ · (1/√ρ) +
∑
w 6∈C

pt(w) (4.5)

(2)

≤ √ρ+ Pr[` length walk from v leaves C] (4.6)

(3)

≤ √ρ+ `γρ3/8 (4.7)

≤ √ρ+ ρ7/20 < ρ1/3 (4.8)

Here, (1) holds because |C| ≤ 1/
√
ρ and at most ρ amount of l1 mass can be

lost at any vertex w in a step of M̂ . So, the total mass lost over all of C can be
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upperbounded by
√
ρ. (2) follows because of the following 2 observations. First, that

the the value at any coordinate under the action of M̂ on a non-negative vector v

cannot exceed the value at that coordinate under the action of standard random walk

matrix M . And the other one being the fact that mass lost at any fixed t ∈ [`] can be

no bigger than mass lost over all the ` steps. (3) follows because v is a good vertex.

The last step follows by upperbounding ` by 1/(γρ1/40). This indeed confirms that

any good vertex v is not spreading because at any time step t ∈ [`], ‖pt‖1 < ρ1/3.

This means that the number of spreading vertices is at most ρ1/8n as desired.

Claim 4.3.4 If v is a good vertex, then ‖M̂ `(~v)−M `~v‖1 ≤ 2`ρ7/20.

Proof We write

‖M̂ `(~v)−M `~v‖1 = ‖
t=`−1∑
t=0

(
M tM̂ `−t(~v)−M t+1M̂ `−t−1(~v)

)
‖1 (4.9)

(1)

≤
t=`−1∑
t=0

‖M tM̂ `−t(~v)−M t+1M̂ `−t−1(~v)‖1 (4.10)

(2)

≤
t=`−1∑
t=0

‖M̂ `−t−1(~v)−MM̂ `−t−1(~v)‖1 (4.11)

(3)

≤ ` · 2ρ7/20 (4.12)

Here (1) is just triangle inequality. (2) follows because multiplying with a stochas-

tic (M) cannot increase the l1-norm of a vector. The last step follows because v is a

good vertex.

4.4 Correctness of findr

The proof has a number of moving parts. It will be convenient to collect all the

values various parameters for ease of reference.

We start by doing technical calculations involving the Lovász-Simonovits tech-

nique.
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Table 4.1.Symbols Used

Notation Meaning Where defined Value chosen

β Unclustered fraction cutoff §4.2 50ε

α Heavy Bucket Parameter Definition 4.4.3 ε4/3/1000

` Walk Length §4.2 ε−30

ρ Min Probability §4.2 ε1500

δ Phase rate §4.2.4 ε1600

4.4.1 The Lovász-Simonovits lemma

Our analysis closely follows that in [54] which is based on techniques from [3]. We

reproduce the following definition.

Definition 4.4.1 For a vector p over V , the function I(p, x) : Rn × [n] → [0, 1] is

defined as

I(p, x) = max
w∈[0,1]n∑
w(u)=x

∑
u∈V

p(u)w(u)

This is equivalent to summing over the x heaviest elements of p when x is an integer,

and linearly interpolating between these points otherwise.

For notational convenience, we define the following reparameterization:

Is,t(x) = I(M̂ t(~v), x).

The fundamental lemma of Lovász-Simonovits is the following.

Lemma 4.4.1 Let x = min(x, n − x). Consider any non-negative vector ~p, and let

Sx denote the level set of M~p with x vertices.

I(M~p) ≤ (1/2)(I(~p, x− 2xΦ(Sx)) + I(~p, x− 2xΦ(Sx)))

Note that this implies monotonicity, I(M~p) ≤ I(~p). The application of this lemma

to our setting leads to the following statement.
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Lemma 4.4.2 For all t ≤ ` and x ≤ 1/ρ,

Is,t(x) ≤ (1/2)(Is,t−1(x(1− Φ(Ls,t,x))) + Is,t−1(x(1 + Φ(Ls,t,x))))

Let ft,w,y be the straight line between the points (w, Is,t(w)) and (y, Is,t(y)).

Lemma 4.4.3 Let t0 < t1 < . . . < th be time steps. Suppose ∀i ≤ h and x ∈ [w, y],

Φ(Ls,ti,x) ≥ φ. Then, ∀i ≤ h, x ∈ [w, y],

Is,ti(x) ≤ ft0−1,w,y(x) +
√

min(x− w, y − x)(1− φ2/8)i

Proof For convenience, let ∆(x) = min(x− w, y − x). We prove by induction over

i.

Base case, i = 0. We do a case analysis.

• Suppose x = w or x = y. By monotonicity, Is,t0(x) ≤ Is,t0−1(x). Since x ∈

{w, y}, the latter is exactly ft0,w,y(x).

• Suppose x ∈ [w + 1, y − 1]. Then ∆(x) ≥ 1 and Is,t0(x) ≤ 1 ≤
√

∆(x).

• Suppose x ∈ (w,w + 1). Note that ∆(x) = w − x < 1. By the definition of the

LS curve, Is,t0(x) = Is,t0(w) + (w − x)(Is,t0(w + 1)− Is,t0(w)) ≤ Is,t0−1(w) +
√
w − x

≤ ft0−1,w,y(x) +
√

∆(x).

• Suppose x ∈ (y − 1, y). An identical argument to the above holds.

Now for the induction. By Lemma 4.4.2,

Is,ti(x) ≤ (1/2)[Is,ti−1(x(1− Φ(Ls,ti,x))) + Is,ti−1(x(1 + Φ(Ls,ti,x)))] (4.13)

≤ (1/2)[Is,ti−1
(x(1− Φ(Ls,ti,x))) + Is,ti−1

(x(1 + Φ(Ls,ti,x)))] (4.14)

Note that ∆x ≤ x, so by concavity,

Is,ti(x) ≤ (1/2)[Is,ti−1
(x−∆(x)φ)) + Is,ti−1

(x+ ∆(x)φ))] (4.15)
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Note that x −∆(x)φ and x + ∆(x)φ both lie in [w, y]. Therefore, we can apply the

induction hypothesis.

Is,ti(x) ≤ (1/2)[ft0−1,w,y(x−∆(x)φ) +
√

∆(x−∆(x)φ)(1− φ2/8)i−1 (4.16)

+ft0−1,w,y(x+ ∆(x)φ) +
√

∆(x+ ∆(x)φ)(1− φ2/8)i−1] (4.17)

= (1/2)[ft0−1,w,y(x−∆(x)φ) + ft0−1,w,y(x+ ∆(x)φ)]

+(1/2)
[√

∆(x−∆(x)φ)(1− φ2/8)i−1

+
√

∆(x+ ∆(x)φ)(1− φ2/8)i−1
]

(4.18)

Since ft0−1,w,y is a linear function, the first term is exactly ft0−1,w,y(x). We analyze

the second term.

We first assume that ∆(x) = x− w (instead of y − x).

∆(x− φ∆(x)) = min(x− φ∆(x)− w, y − x+ φ∆(x)) (4.19)

= min((1− φ)∆(x), y − x+ φ∆(x)) ≤ (1− φ)∆(x) (4.20)

Analogously,

∆(x+ φ∆(x)) = min(x+ φ∆(x)− w, y − x− φ∆(x)) (4.21)

= min((1 + φ)∆(x), y − x− φ∆(x)) ≤ (1 + φ)∆(x) (4.22)

Thus, the second term of (4.18) is at most (1/2)(1−φ2/8)
√

∆(x)(
√

1− φ+
√

1 + φ).

Now, we consider ∆(x) = y − x.

∆(x− φ∆(x)) = min(x− φ∆(x)− w, y − x+ φ∆(x)) (4.23)

= min(x− φ∆(x)− w, (1 + φ)∆(x)) ≤ (1 + φ)∆(x) (4.24)

Analogously,

∆(x+ φ∆(x)) = min(x+ φ∆(x)− w, y − x− φ∆(x)) (4.25)

= min(x+ φ∆(x)− w, (1− φ)∆(x)) ≤ (1− φ)∆(x) (4.26)

In this case as well, the second term of (4.18) is at most

(1/2)(1− φ2/8)
√

∆(x)(
√

1− φ+
√

1 + φ)
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In both cases, we can upper bound (4.18) as follows. (We use the inequality
√
1−z+

√
1+z

2
≤ 1− z2/8.

Is,ti(x) ≤ ft0−1,w,y(x) + (1− φ2/8)i−1
√

∆(x)

√
1− φ+

√
1 + φ

2

which means Is,ti(x) ≤ ft0−1,w,y(x) + (1− φ2/8)i
√

∆(x)

4.4.2 From leaking timesteps to the dropping of the LS curve

We fix a source vertex s, and are looking at the evolution of M̂ t(~s). Therefore,

we drop the dependence of s from much of the notation.

We use p̂t to denote M̂ t(~s). In this section, there will be a designated free set of

vertices, denoted F .

Definition 4.4.2 A timestep t is called leaking for source s if, for all k ≤ 2(ρα)−1

such that |Ls,t,k ∩ F | ≥ α2k/6. Ls,t,k has conductance at least 1/`1/3.

If timestep t is not leaking for s, there exists k ≤ 2(ρα)−1 such that |Ls,t,k ∩ F | ≥

α2k/6 and φ(Ls,t,k) < 1/`1/3. Such a k is denoted as an (s, t)-certificate of non-

leakiness.

We will set α = ε4/3/1000.

Following the construction of the LS curve Is,t, we will order each vector p̂t in

decreasing order of coordinations, breaking ties by id. The rank of a vertex is its

position in (the sorted version of) p̂t.

Definition 4.4.3 Let the bucket Bt,r denote the set of vertices whose rank in p̂t is

in the range [2r, 2r+1).

A bucket Bt,r is called heavy if
∑

v∈Bt,r∩F p̂t(v) ≥ α. (The free part of the bucket

has large probability.)

Lemma 4.4.4 Fix r ≥ 0. Suppose `′ = β`/8 and we have `′ leaking timesteps

t0 < t1 < . . . < t`′ such that for all 0 ≤ i ≤ `′, Bti,r is heavy. Then, Is,t`′ (2
r+1) <

Is,t0(2
r+1)− α/4.
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Proof Since Bt0,r is heavy, Is,t0(2
r) < 1. Since the support of p̂t is at most ρ−1, this

implies that 2r < ρ−1 and r ≤ − lg ρ (and this holds by the choice of parameters).

For all v ∈ Bt,r, p̂t(v) ≤ 1/2r. Since
∑

v∈Bt,r∩F p̂t(v) ≥ α, |Bt,r ∩ F | ≥ α2r.

Call w ∈ [2r, 2r+1) a balanced split for t if |Lt,w ∩F | ≥ α2r/3 and
∑

v∈Bt,r\Lt,w p̂t(v) ≥

α/3. For convenience, let T = {t0, t1, . . . , t`′}.

Claim 4.4.5 There exists w that is a balanced split for at least an α/3-fraction of

timesteps in T .

Proof An averaging argument. Pick w uar in [2r, 2r+1). Let Xi be the indicator

for w being a good split for ti. Recall that |Bti,r ∩ F | ≥ α2r. Sort the vertices of

Bti,r ∩F by increasing rank and consider the vertices in positions α2r/3 and 2α2r/3].

Let the rank corresponding to these vertices by u1 and u2. We first argue that any

rank w ∈ [u1, u2] is a balanced split. We have |Lt,w ∩ F | ≥ α2r/3 because w ≥ u1.

For all v ∈ Bti,r, p̂ti(v) ≤ 1/2r. Thus,
∑

v∈Lti,u2
p̂ti(v) ≤ (1/2r)(2α2r/3) = 2α/3.

Note that
∑

v∈Bti,r
p̂t(v) ≥ α, since the bucket is heavy Hence, for any w ≤ u2,∑

v∈Bt,r\Lt,w p̂t(v) ≥ α− 2α/3 = α/3.

As a consequence, for any ti, there are at least α2r/3 values of w that are balanced

splits. In other words, E[Xi] ≥ α/3. By linearity of expectation, E[
∑

i≤`′ Xi] ≥ α`′/3.

Thus, there must exist some w ∈ [2r, 2r+1) that is a good split for at least α`′/3

timesteps.

Pick such a w, as promised by Claim 4.4.5, and let ti1 < ti2 < . . . < tiα`′/3 be the

timesteps for which w is a good split. Let y = 2r+dlg(1/α)e ∈ [2r/α, 2r+1/α]. Since

r ≤ − lg ρ, y ≤ 2(ρα)−1. Note that for all j ≤ α`′/3 and x ∈ [w, y], Ltij ,x contains

least α2r/3 vertices of F . Thus, at least a (α2r/3)/(2r+1/α) ≥ α2/6-fraction of Ltij ,x

is in F . Since tij is leaking, Φ(Ltij ,x) ≥ 1/`1/3.

We apply Lemma 4.4.3. For all x ∈ [w, y], Is,t`′ (x) ≤ Is,tiα`′/3
(x) ≤ fti1−1,w,y(x) +

√
x(1 − 1/8`2/3)α`

′/3. By the choice of parameters, for sufficiently small ε (say 0 <

ε < 1/50), we have `′ = β`/8 ≥ 1/α2β and therefore we have (1 − 1/8`2/3)α`
′/3 ≤
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exp(−1/α) By monotonicity of the LS curves, Is,t`′ (x) ≤ fti1−1,w,y(x) + exp(−1/α)

≤ fti0 ,w,y(x) + exp(−1/α). Specifically, we get

Is,t`′ (2
r+1) ≤ fti0 ,w,y(2

r+1) + exp(−1/α). (4.27)

Since w is a good split, Is,ti0 (2r+1) ≥ Is,ti0 (w) + α/3. Note that

fti0 ,w,y(2
r+1) = Is,ti0 (w) + (2r+1 − w)

(
Is,ti0 (y)− Is,ti0 (w)

y − w

)
≤ Is,ti0 (w) + 2r+1/(y/2) (4.28)

≤ Is,ti0 (w) + 2r+1 × (α2/2r) = Is,ti0 (w) + 2α2 (4.29)

The first inequality above follows by upper bounding Is,ti0 (y) − Is,ti0 (w) by 1,

dropping the negative term and noting that y − w ≥ y/2 for a sufficiently small α.

Together with (4.27), we get

Is,t`′ (2
r+1) ≤ fti0 ,w,y(2

r+1) + exp(−1/α)

≤ Is,ti0 (w) + 2α2 + exp(−1/α)

≤ Is,ti0 (2r+1)− α/3 + 2α2 + exp(−1/α) (4.30)

By monotonicity of the LS curve, Is,t`′ (2
r+1) < Is,t0(2

r+1)− α/4.

Now for the main lemma of this subsection. It is a direct corollary of the previous

lemma.

Lemma 4.4.6 Fix any r. There are at most 8`′/α leaking timesteps t where Bt,r is

heavy.

Proof We prove by contradiction. Suppose there are more than 8`′/α > 4(`′+ 1)/α

leaking timesteps t where Bt,r is heavy. We break these up into 4/α contiguous blocks

of `′ + 1 leaking timesteps. By Lemma 4.4.4, after every such block of timesteps,

Is,t(2
r+1) reduces by more than α/4. Note that Is,0(2

r+1) ≤ 1, and thus, after 4/α

blocks, Is,t(2
r+1) becomes negative. Contradiction to the non-negativity of Is,t(2

r+1).
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4.4.3 From relevant vertices to the final proof

We will need the following simple “reverse Markov” inequality for bounded random

variables.

Fact 4.4.7 Let X be a random variable taking values in [0, 1] such that E[X] ≥ δ.

Then Pr[X ≥ δ/2] ≥ δ/2.

Proof Let p be the probability that Pr[X ≥ δ/2].

δ ≤ E[X] = Pr[X ≥ δ/2]E[X|X ≥ δ/2] + Pr[X < δ/2]E[X|X < δ/2]

≤ p+ (1− p)(δ/2) ≤ p+ δ/2

Claim 4.4.8 Assume that |F | ≥ βn. There are at least β2n/2 vertices s ∈ F such

that: for at least β`/8 timesteps t ∈ [`], M̂ t~s(F ) ≥ β/16.

Proof Define θs,t as follows. For s ∈ F and t ∈ [`]: if t is odd, θs,t = 0. If t is even,

then θs,t is the probability that a t-length (standard) random walk starting from s

ends in F .

Let us pick a uar source vertex in s ∈ F , pick a uar length t ∈ [`]. We use the

fact that M is a symmetric matrix.

Es,t[θs,t] = 1TF

`/2∑
i=1

(M2i/`)(1F/|F |) =

∑
i≤`/2

`|F |
1TFM

2i1F =

∑
i≤`/2

`|F |
‖M i1F‖22 (4.31)

Note that ‖M i1F‖1 = |F |, so by Jensen’s inequality, ‖M i1F‖22 ≥ |F |2/n. Plugging

in (4.31), Es,t[θs,t] ≥ `−1 × (`/2)|F |/n ≥ β/2. For any s, Et[θs,t] ≤ 1. By Fact 4.4.7,

there are at least β|F |/4 vertices s ∈ F such that Et[θs,t] ≥ β/4. Again applying

Fact 4.4.7, for at least β|F |/4 vertices s ∈ F , there are at least β`/8 timesteps in [`]

such that M t~s(F ) ≥ β/8.

By Lemma 4.3.3, there are at most ρ1/8n ≤ β2n/8 ≤ β|F |/8 bad vertices. (Here,

the first inequality follows by the choice of parameters). And moreover, for any good



109

vertex, for all t ∈ [`], ‖M t~s−M̂ t~s‖1 ≤ 2`ρ7/20 ≤ β/16. Subtracting these bounds from

the guarantees of the previous paragraph, there are at least β|F |/8 vertices s ∈ F

such that: for at least β`/8 timesteps in [`], M̂ t~s(F ) ≥ β/16.

Lemma 4.4.9 There are at least β2n/2 vertices s ∈ F , such that: there are at least

β`/16 timesteps t in [`] that are not leaking for s.

Proof We fix any vertex s satisfying the conditions of Claim 4.4.8, and prove by

contradiction. There are at least β`/8 − β`/16 = β`/8 timesteps t that are leaking

for s, and such that M̂ t~s(F ) ≥ β/16. Fix any such timestep t, and consider the

buckets Bt,r. There are at most − lg ρ buckets with non-zero probability mass, and

by averaging, there exists r ≤ − lg ρ such that
∑

v∈F∩Bt,r ps,t(v) ≥ β/(−16 lg ρ). By

the choice of parameters, for any ε, we have
∑

v∈F∩Bt,r ps,t(v) ≥ α, and Bt,r is heavy.

Thus, for each of the β`/8 leaking timesteps t obtained above, there exists some

r ≤ − lg ρ such that Bt,r is heavy. By averaging, there exists some r ≤ − lg ρ such

that for β`/(−8 lg ρ) leaking timesteps t, Bt,r is heavy. But this means β`/(−8 lg ρ) >

8`′/α, which contradicts Lemma 4.4.6.

Lemma 4.4.10 Let |F | ≥ βn. There exists a r ≤ lg(2(ρα)−1) such that for at

least β2n/(2 lg(ρα)−1 vertices s ∈ F , the following holds. For ≥ β`/(32(lg(ρα)−1))

timesteps t, there exists k ∈ [2r, 2r+1] that is an (s, t)-certificate of non-leakiness.

Proof This is an averaging argument. Apply Lemma 4.4.9. For each of the β2n/2

vertices s ∈ F , there are at least β`/16 timesteps t that are not leaking for s. Thus,

for every such (s, t) pair, there exists ks,t ≤ 2(ρα)−1 that is an (s, t)-certificate of

non-leakiness. We basically bin the logarithm of the certificates. Thus, to every pair

(s, t) (of the above form), we associate rs,t = blg ks,tc. By averaging, for each relevant

s, there is a value rs such that for at least β`/(16 lg(2(ρα)−1)) timesteps t, there is

an (s, t)-certificate in [2rs , 2rs+1]. By averaging again, there exists r ≤ lg(2(ρα)−1)

such that there are at least β2n/ lg(2(ρα)−1) vertices s ∈ F for which there exist
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at least β`/(16 lg(2(ρα)−1)) timesteps t, such that there is an (s, t)-certificate for

non-leakiness in [2r, 2r+1].

Proof (of Theorem 4.2.5) The proof has two parts. In the first part (which uses

Lemma 4.4.10), we argue that a non-zero rh is output with high probability. The

second part (which is a routine Chernoff bound calculation), we argue that any non-

zero rh that is output has the desired properties with high probability.

For convenience, we use ξ := lg(2(ρα)−1). By Lemma 4.4.10, there exists r ≤ ξ

such that for at least β2n/ξ vertices s ∈ Fh, there are at least β`/(16ξ) timesteps t

for which there is an (s, t)-certificate in [2r, 2r+1]. Fix this r. Refer to these timesteps

as safe for s. For any s in consideration, the probability (over the choice of ts,h) that

ts,h is a safe timestep is at least β/(16ξ). Call s in consideration relevant if ts,h is

safe. Note that Fh ⊂ Vh. The probability that a uar vertex s ∈ Vh (probability over

the choice of ts,h and over choosing s) is relevant is at least (β2n/ξ)/|Vh| × β/(16ξ)

≥ β3/(16ξ2). Thus, the expected number of vertices in s ∈ Sh such that ts,h is

good is at least β3|Sh|/(16ξ2) ≥ β−2. By a multiplicative Chernoff bound (over the

choices of various ts,hs and of Sh), with probability 1 − exp(−β−2/12) there are at

least β3|Sh|/(32ξ2) vertices in Sh that are relevant.

Let us now uncoil the definition of relevant. We fixed r in the previous paragraph.

Each relevant vertex s has the following property. There is an (s, ts,h)-certificate for

non-leakiness in the range [2r, 2r+1]. Meaning, there is a k ∈ [2r, 2r+1] such that such

that |Ls,t,k ∩ F | ≥ α2k/6 (which, by the choice of parameters, is at least β3k for

sufficiently small ε > 0) and Ls,t,k has conductance at least 1/`1/3. Thus, a relevant

vertex is labeled as an r-success in findr(h), and there are at least β3|Sh|/(32ξ2)

vertices of Sh labeled as such. All in all, with probability at least 1− exp(−β−2/12),

findr(h) returns a non-zero rh.

We move to the second part of the proof, which asserts that (with high prob-

ability), an output non-zero rh has the desired properties. Fix any r ≤ ξ. Sup-

pose that the number of vertices that are r-successes in Vh is at most β5n. Then,

the expected number of r-successes in Sh is at most β5n/|Vh| × |Sh| ≤ β4|Sh|.
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(We use the lower bound |Vh| ≥ |Fh| ≥ βn.) By a Chernoff bound, for any t >

2eβ4|Sh|, Pr[# r-successes in Sh > t] < 2−t. The probabiility of there being more

than 10β4|Sh| ≥ β−2 r-successes is exp(−β−2). By a union bound over all choices of

r, with probability at least 1− ξ exp(−β−2), if there are fewer than β5n r-successes in

Vh, then there are fewer than 10β4|Sh| r-successes in Sh. Taking the contrapositive,

with probability at least 1− ξ exp(−β−2), if a non-zero rh is output, there are at least

β5n r-successes in Vh.

By the first part, with probability at least 1− exp(−β−2/12), findr(h) returns a

non-zero rh. A union bound completes the proof.

4.5 Proofs of applications

The proofs here are quite straightforward and appear (in some form) in previous

work. We sketch the proofs, and do not give out the specifics of the Chernoff bound

calculations. Specifically, we mention Theorem 9.28 and its proof in [38], which

contains these calculations.

Proof (of Theorem 4.0.2) For input graph G, we set up the partition oracle. Note

that we can estimate the number of edges cut by random sampling. We pick a vertex

u uniformly at random, pick a uar neighbor v, and call the partition oracle on u and

v. If these lie in different components, the edge (u, v) is cut. By sampling Θ(1/ε), we

can determine with high probability if more than εnd edges are cut by the partitioning

(Chernoff bound). If so, we simply reject, since G is far from being in a minor-closed

family.

Otherwise, we sample poly(ε−1) uar vertices, and determine the component that

each vertex belongs to. For each component, we directly determine if it belongs to Q.

(If there is an efficient algorithm, we can run that algorithm.) By a Chernoff bound,

if G was ε-far from Q, with high probability, one of the components would not be in

Q. Overall, the query complexity is poly(dε−1).
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Proof (of Theorem 4.0.3) As with the previous proof, we set up the partition oracle.

With high probability, at most εdn/c edges are cut by the partitioning given by the

oracle, where c is the largest amount by which an edge addition/deletion changes f .

We sample poly(dε−1) uar vertices and determine the component that each vertex

belongs to. For each component, we compute f exactly. We take the sum of f -values,

and rescale appropriately to get an additive εnd estimate for f .
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5 SPECTRAL ALGORITHMS FOR COLORING PROBLEMS

5.1 Introduction

Given an undirected graph G = (V,E), a k-coloring of G is a map χ : V → [k] such

that for all edges {u, v} ∈ E, we have χ(u) 6= χ(v). Finding the minimum number

of colors with which a graph can be colored, or even finding a coloring which uses

few colors for a graph G which is promised to be 3-colorable has been a major open

problem in the field of algorithm design. Starting from an early work of Wigderson [65]

who showed how to color 3-colorable graphs with O(
√
n) colors, there has been a

series of works using novel combinatorial ideas, as well as ideas based on semidefinite

programming (SDP), which give algorithms for coloring 3-colorable graphs with fewer

colors [66–72]. The most recent algorithm of [72] achieves a coloring with o(n1/5)

colors. On the hardness side, Dinur, Mossel and Regev [73] showed the hardness of

coloring 3-colorable graphs with any constant number of colors, assuming a variant

of the Unique Games Conjecture. It is also known [74, 75] to be NP-hard to find an

independent set of size n/9 (which is a weaker goal than 9-coloring) in a graph G

on n vertices, when G is promised to have a (1− ε)-partial 3-coloring i.e., a coloring

which properly colors the induced subgraph on at least (1− ε) · n vertices.

There has also been a significant amount of research trying to recover a planted

3-coloring in special families of graphs [9,76,77]. Notably, an algorithm by Alon and

Kahale [9], shows how to 3-color a random 3-colorable graph G (with high probability

over the choice of G). The graphs in their model, denoted G3,p,n, are generated by

dividing the vertices in three color classes of size n/3 each, and connecting each

pair of vertices in distinct color classes independently with probability p. As their

main result, [9] are able to recover the color classes in polynomial time with a small

probability of failure even when p is as small as 3d/n for a constant d. Notice that
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in expectation a vertex in this graph will have degree 2d and will have d neighbors in

each color class different from its own.

A generalization of the above result is to consider models with limited amount

of randomness (semi-random) or arbitrary graphs with random-like properties (pseu-

dorandom graphs). While both models seek to capture the minimal assumptions

needed for the methods developed for random graphs, the study of pseudorandom-

ness properties is also motivated by developing decompositions of worst-case objects

into structured and pseudorandom parts [78]. The works by Blum and Spencer [76]

already considered semi-random models for p = n−(1−δ). Motivated by the notion

of pseudorandomness and decompositions and pseudorandomness used in the sub-

exponential algorithms for Unique Games [79, 80], Arora and Ge [71] showed how

to find a large independent set in 3-colorable graphs with small threshold rank. A

recent work of David and Feige [77] shows that even when the graph is pseudorandom

(an expander) and the 3-coloring is arbitrary, one can recover the coloring on most

vertices of the graph. They also show that when the coloring is random, it can be

recovered for all vertices in the graph.

Our Results

In this work, we focus on showing that the first 2 steps in [9]’s proof can be adapted

to (almost) 3-color a special family of pseudorandom graphs with a pseudorandom

coloring (see Subsection 5.1.1 for a comparison with [77]). To state our results, we

first define the relevant notions of pseudorandomness. Note that in the definitions

below, we take the average degree of the graph to be 2d, since we think of the degree

in each color class as being d.

Definition 5.1.1 (Pseudorandom colorings) Let G = (V,E) be any graph with

|V | = n and |E| = d · n. Let χ : V → {1, 2, 3} be a (proper or improper) coloring of

vertices with 3 colors. For a proper or improper coloring χ, we say
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Definition 5.1.2 χ is a low variance coloring if for all i, j ∈ {1, 2, 3}, we have

varv∈COLidij(v) ≤ ε · d2. If all balanced 3 colorings χ fail to have variance less than

ε, we say that G only admits high variance colorings.

χ is considered (2d, ε)-pseudorandom if

1. χ is balanced i.e., all color classes (1, 2, 3 above) have the same size, n
3
.

2. The coloring of G in the above step is a low variance coloring.

The first family of pseudorandom graphs is low threshold-rank graphs, which (in the

context of coloring) are defined as having a small number of negative eigenvalues with

a large magnitude. This notion of pseudorandomness (with a different notion of the

threshold) was also considered in the work of Arora and Ge [71].

Definition 5.1.3 (Threshold Rank) A graph G = (V,E) with |E| = d · n. The

threshold rank of G is defined to be the number of eigenvalues of the adjacency matrix

that are smaller than −9d/10.

We will also require the following notion of a partial coloring.

Definition 5.1.4 (Partial Coloring) For a graph G = (V,E), a function χ : V →

[3] ∪ {⊥} is said to be a (1− γ)-partial 3-coloring if

- |χ−1(⊥)| ≤ γ · n.

- χ is a proper 3-coloring for the induced subgraph on χ−1([3]).

Note that there exists a (1 − γ)-partial 3-coloring χ of G if and only if there exits a

total (but not necesarily proper) coloring χ′ : V → [3] such that χ′ can be made a

(1− γ)-partial 3-coloring by replacing the colors of γ fraction of vertices by ⊥. Since

our pseudorandomness properties are defined only for total colorings, we will abuse

notation to say that there is a pseudorandom (1− γ)-partial 3-coloring if there exists

a pseudorandom χ′ which agrees with a (1− γ)-partial 3-coloring χ on χ−1([3]). We

will refer to such a coloring as (2d, ε)-pseudorandom (1 − γ)-partial 3-coloring. We

now state the first theorem we prove.
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Theorem 5.1.1 There exists an algorithm which, given G = (V,E) such that

- |E| = d · n and th(G) = r, and

- there exists χ, which is (2d, ε)-pseudorandom and forms a (1 − γ)-partial 3-

coloring of G,

runs in time
(√

r·n
ε

)r
· poly(n) and w.h.p. returns a (1−O (ε+ γ))-partial 3-coloring

of G.

We also consider the futher specialized pseudorandom family, where the graphs will

also be required to be expanding. Note that the graphs below capture the random

family considered by Alon and Kahale [9]. For graphs in this family, we will recover

all the color classes exactly.

Definition 5.1.5 (Expanding 3-colorable graphs) A 3-colorable graph is said to

be expanding if for some small positive constant δ < 1, |λi| ≤ δd holds ∀ 2 ≤ i ≤ n−2

i.e., if all eigenvalues other than the leading eigenvalue and the last two are small in

magnitude.

For graphs coming from this family, we have the following theorem.

Theorem 5.1.2 There exists a polynomial-time algorithm which, given G = (V,E)

such that

- G is an expanding 3-colorable graph with |E| = d · n, and

- there exists χ : V → [3], which is (2d, ε)-pseudorandom and a proper 3-coloring

of G,

recovers χ.

Let G be an expanding 3-colorable graph. Note that this algorithm will recover a 3

coloring as long as there is some partition of V (G) into color classes which have the

low variance property (it does not have to be explicitly planted, as long as it exists

Theorem 5.1.2 will find it.
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5.1.1 Related work

There is a huge amount of literature devoted to find a complete or partial (legal)

3-coloring of an input graph under some assumptions on the graph and/or some

assumptions on some 3-coloring of the given graph. Here we briefly examine works

related to the current work.

The algorithm of Alon and Kahale.

In [9], Alon and Kahale described how to 3-color a random graph G ∼ G3,d/n,n.

Thus, they have a random graph with a planted 3-coloring which they 3-color using

a three phase algorithm. Their main result shows that graphs coming from G3,d/n,n

have nice spectral properties which, in the first phase, can be exploited by a spectral

clustering approach to find a good candidate coloring, χ1, which misclassfies very few

vertices. This candidate coloring is later refined to obtain a coloring χ2 in the next

phase. The second phase is a local search which locally improves the coloring on the

set H ⊆ V of vertices which have close to d neighbors in each color class according

to the current coloring. This is then followed up by a cleanup phase which recolors

vertices in V \H (all the components on the subgraph induced on these vertices have

logarithmic sizes and can be brute forced upon).

We show how to construct χ1 in low threshold-rank graphs which admit a pseudo-

random partial coloring. When the graphs are also expanding admit a full coloring,

we also show how to complete the second phase.

The results of David and Feige.

In [77], David and Feige considered extensions of the problem of coloring random

3-colorable graphs in several directions. In particular, they tried to relax the random-

ness assumption on the graph and the planted coloring inherent in [9]. To this end,

they considered 4 models. They take as input an approximately d-regular (spectrally)
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expanding graph which can be either adversarial or random and a balanced planted

coloring which again can be adversarial or random.

Our results are somewhat incomparable with theirs. Perhaps the most directly

related setting from their work is the one where the graph is an arbitrary expander

with an arbitrary (balanced) 3-coloring. In this case, they recover a (1 − γ) partial

coloring. In this work, we start with additional pseudorandomness assumptions on

the coloring (beyond balance), and can recover a partial coloring without assuming

expansion in the input graph G, but making a different assumption about the negative

eigenvalues. When G is also expanding in addition to these properties, we can recover

the coloring completely.

Notation

Our notations are standard. We will write vectors and matrices in boldface (like

u and A respectievely). For a graph G we will denote its adjacency matrix by

A = A(G). We denote a unit vector along the direction of u with û. And the

transpose of a vector u is denoted uT . Also, 1 will denote the vector which is 1 in

every coordinate. The stationaty distribution of random walks will be denoted µ. We

denote the degree of a vertex i ∈ V by deg(i). The set of edges with one end point

in a set S and the other in T is denoted E(S, T ).

5.2 Partially 3-coloring partially 3-colorable graphs

As a first step, we use lemma 5.2.1, to get a full coloring which only miscolors an

O (ε+ γ) fraction of the vertices. In the next step, we will uncolor the incorrectly

colored vertices. The first step is summarized by the following lemma.

Lemma 5.2.1 There exists an algorithm which given a graph G = (V,E) such that

– |E| = d · n and th(G) = r
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– there exists a coloring χ which is a (2d, ε)-pseudorandom coloring, and forms a

(1− γ)-partial-3-coloring of G

runs in time O
(√

r·n
ε

)r
and returns a coloring which has (1 − O (ε+ γ)) fraction of

the vertices colored correctly, i.e., the graph induced on them has no monochromatic

edges.

Following [9], we consider two special vectors which we call x and y as defined below.

x(v) =


2 if v ∈ COL1,

−1 if v ∈ COL2,

−1 if v ∈ COL3,

y(v) =


0 if v ∈ COL1,

1 if v ∈ COL2,

−1 if v ∈ COL3,

(5.1)

The point of these vectors is that they are both constant on all color classes and so

are their linear combinations. Simlar to [9], we will try to find a vector which is close

enough to some linear combination of x and y and use it to obtain a coloring of the

kind Lemma 5.2.1 seeks. Now let us detail our algorithm.

Algorithm 1 Find Coloring

Require: Graph G with th(G) = r and the eigenvectors {vn−r+1,vn−r+2, · · ·vn}

1: Let t← Subspace enumeration(
√

ε
r
)

2: Let COL1 = { i ∈ V : ti > 1/2 }, COL2 = { i ∈ V : ti < −1/2 } and COL3 =

V \ (COL1 ∪COL2)

This algorithm relies on a procedure called Subspace Enumeration which is described

below.
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Algorithm 2 Subspace enumeration(τ)

Require: Graph G with th(G) = r and the eigenvectors {vn−r+1,vn−r+2, · · ·vn}

1: Let Br ← [−100
√
n, 100

√
n]r

2: . Br denotes a bounding box in the space of r eigenvectors above

3: Partition Br into grid cells. Each cell has length τ in all dimensions.

4: . The number of cells produced is O
(

200
√
n

τ

)r
5: Let Pr denote the set of all corners of any grid cell.

6: . Thus, Pr = { p ∈ Br : τ divides all r coordinates in p }

7: Find in Pr a point t which has

– med(t) = 0 and ‖t′‖2 = Θ(
√
n)

– distance at most ≤ O
(√

εn+ γn+ τ 2r
)

from span(x,y).

8: . We later show, in Claim 5.2.4 that such a vector exists.

9: return t

To put this plan in motion, we make the following claims which are generalization of

the corresponding claims in [9].

Claim 5.2.2 ‖Ax+ d(1− γ)x‖22, ‖Ay + d(1− γ)y‖22 ≤ O (εnd2 + γnd2).

Claim 5.2.3 There exist small shift vectors sn and sn−1 with ‖sn‖22, ‖sn−1‖
2
2 ≤

O (εn+ γn) such that both x− sn and y− sn−1 are the linear combinations of last r

eigenvectors of A.

Claim 5.2.4 Algorithm 2 finds a vector t in the span of {vn−r+1,vn−r+2, . . .vn} in

time O
(√

n
τ

)r
such that

– med(t) = 0 and ‖t′‖2 = Θ(
√
n)

– ‖t− f‖2 ≤ O (
√
εn+ γn) where f is some vector that lies in span(x,y).

Now, using these claims we will sketch how to establish Lemma 5.2.1. Taking cue

from [9], we find a vector in the span of the last r eigenvectors, which we denote
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as span(vn−r+1,vn−r+2, . . . ,vn), a vector t which is close to a vector f ∈ span(x,y)

has length Θ(
√
n) and median zero. In particular, the intuition is to have t (which

the algorithm finds) be close to a vector f which has large positive entries indicating

the first color class, large negative entries for the second color class and 0 entries for

the last color class. In t hopefully the large positive entries and negative entries of

f will remain away from zero and maintain their sign and the zero entries in f will

hopefully remain close to 0. The remaining details of the proof are delegated to the

last Section, section 5.5. The proof follows [9].

With the proof of Lemma 5.2.1, let us see how to prove Theorem 5.1.1.

Proof (Of Theorem 5.1.1)

Let Ebad ⊆ E be the set of edges which have both endpoints with the same color

in the coloring derived using the first step described in the proof of Lemma 5.2.1. Let

Ubad ⊆ V be the set of endpoints of these edges and consider the graph G[Ubad] induced

on these vertices. We note that the set U of vertices misclassified in Lemma 5.2.1

also forms a vertex cover in G[Ubad]. By the standard 2-approximation algorithm

for vertex cover we can find a vertex cover C ⊆ Ubad where |C| ≤ 2|U |. And on

“uncoloring” the vertices in the set C we obtain a partial coloring which omits only

a O(|U |) of the vertices – which is a (1−O (ε+ γ))-partial 3-coloring.

Now, let us prove Claim 5.2.2 and Claim 5.2.3.

Proof (Of Claim 5.2.2) Let us prove this for the vector x. The proof with vector

y is similar. Let u = Ax + d(1 − γ)x. Let aTi denote the ith row in A. Thus,

ui = aTi x + dxi. Let us say that in the vector x, xi = 2 for i ∈ COL1, and it is −1

otherwise. Note that for i ∈ COL1, we get u2
i = (aTi x+ d(1− γ)xi)

2

= (−d12(i)− d13(i) + 2d11(i) + 2d(1− γ))2 ≤ O (M1(i))

where M1(i) := (d12− d)2 + (d13− d)2 + (d11− γd)2. In a similar fashion, we see that

for i ∈ COL2 u
2
i ≤ O (M2(i)) where M2(i) = (d21(i)−d)2 +(d23(i)−d)2 +(d22−γd)2.

And an analogous upper bound holds for u2
i when i ∈ COL3. Thus,
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‖u‖22 =
∑

u2
i ≤

∑
i∈COL1

M1(i) +
∑

i∈COL2

M2(i) +
∑

i∈COL3

M3(i) ≤ O
(
εnd2 + γnd2

)
as the varv∈COLidii(v) ≤ εd2 as well. The proof for upperbound on ‖Ay + dy‖22

is similar.

And next, we prove Claim 5.2.3 as well. Here is a quick adaptation of [9]’s proof.

Proof (Of Claim 5.2.3) Write x =
∑
civi in the eigenbasis. Again let u = Ax +

d(1− γ)x.

‖u‖22 =
n∑
i=1

c2i (λi + d(1− γ))2 ≥
n−r∑
i=1

c2i (λi + d(1− γ))2 ≥ Ω(d2)
n−r∑
i=1

c2i

The last step above follows because the first n − r eigenvalues are all at least

−9d/10. And together with the fact that ‖u‖22 ≤ O (εnd2 + γnd2), we get
∑i=n−r

i=1 c2i ≤

O (εn+ γn). And this is the shift vector sn we seek with the desired bound on its

length. A similar argument can be made to find sn−1 and its length using the vector

y.

Proof (Of Claim 5.2.4)

Let I denote the set of indices that are left uncolored in the hidden partial coloring.

Let us define a vector z as z(i) = −1 for i ∈ COL1, z(i) = 0 for i ∈ I ∪ COL2 and

z(i) = +1 for i ∈ COL3. Note that there exists a vector (say f) in span(x,y) such

that z and f are pretty close – the distance is at most
√
εn+ γn. Further, there also

exists a vector t ∈ span(vn−r+1,vn−r+2, · · · ,vn) such that ‖t − z‖2 ≤ O(
√
εn+ γn

by arguments similar to Claim 5.2.2 and Claim 5.2.3. And therefore, the distance

‖t− f‖2 ≤ O (
√
εn+ γn). And finally, we also note that med(t) = 0 and ‖t‖2 =

Θ(
√
n).

This only proves that such a vector exists. We need to algorithmically find one.

To this end, we use the subspace enumeration procedure described earlier. Given
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any vector p ∈ Br (which, recall, was defined in Algorithm 2), this procedure finds

a vector t which is within a distance τ
√
r of p. In particular, this also holds for

t′. Moreover, t′ being close to z has several 0 entries one of which is the median.

And the vector t being τ
√
r close to t′ also has med(t) = 0, length Θ(

√
n) and has

‖t− f‖2 ≤ O
(√

εn+ γn+ τ 2r
)

as can be easily seen by triangle inequality.

5.3 Coloring expanding-3-colorable Graphs

In the case of (2d, ε)-expanding-3-colorable, γ = 0. So, the coloring obtained by

the first step of the algorithm returns a (1−O (ε)) partial coloring. We briefly review

what [9] do in the second step for 3-coloring a random 3-colorable graph G ∈ G3,d/n,3n.

Their algorithm receives as input a 3-colored graph G and a set U of bad vertices

(with |U | = O(n/d)) that have been incorrectly colored. This bad 3 coloring of G is

improved via an iterative process. Each step in the iteration reduces the number of

bad vertices by a constant factor. The algorithm is given below, and we use the same

algorithm. However, our analysis is different.

Algorithm 3 Improve Coloring

Require: A (1−O (ε))partial 3-coloring of G vertices.

1: Let the current color classes be denoted V 0
1 , V

0
2 and V 0

3

2: Add the uncolored vertices arbitrarily to the partitions in any order.

3: for i = 1: log n do

4: For j ∈ {1, 2, 3}, put v ∈ V i
j only if |N(v)∩V i−1

j | ≤ |N(v)∩V i−1
l | for all l 6= j

5: . i.e.,, put v in the least popular color class among its neighbors from previous

iteration

6: . V i
1 , V

i
2 , V

i
3 denotes the color classes in the ith iteration

7: end for
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The above algorithm derives from the following intuition. Given a 3-colored graph

G ∈ G3,d/n,3n with a small set U of bad vertices, a “local search procedure” can recolor

those vertices in V which do not have way too many neighbors in U . Thus, another

way to express the intuition is to say that a bad vertex at the beginning of iteration

i remains bad after iteration i finishes only if it is surrounded by many bad vertices.

To make this formal, let us consider the set

W = { v ∈ V : degU(v) ≥ d/4 } .

W will be referred to as being U-rich. The main step in the argument is to show

that the size of U -rich set is at most |U |
2

and that at the end of every iteration the set

which remains incorrectly colored is only a subset of the U -rich set. We will now use

this argument in the case of expanding graphs. This is done in the following lemma.

Lemma 5.3.1 There exists a polynomial time algorithm which on input a (2d, ε)-

expanding-3-colorable graph G = (V,E) (recall that this means for some absolute pos-

itive constant δ < 1, |λi| ≤ δd for 2 ≤ i ≤ n − 2) and which admits a (1 − O(ε))

partial 3-coloring of V , a proper 3 coloring of V .

We will prove Lemma 5.3.1 by using the expander mixing lemma. The key here

would be to again show that |U |-rich sets have small size if |U | is small. This is done

in the following claim.

Claim 5.3.2 Let U ⊆ V be a set with size at most O(εn). Let

W = { v ∈ V : degU(v) ≥ 2d/5 } .

Then |W | ≤ 0.99|U |.

Proof (Of Claim 5.3.2) We begin by finding upper bounds and lower bounds for

|E(U,W )|. We see that

|E(U,W )| ≥ 1

2
· 2d|W |

5
=
d|W |

5
.
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The inequality here comes because there are 2d
5

edges incident on every vertex in |W |

with at least one endpoint in U . The factor of 1/2 compensates for the fact that both

the endpoints of the edge may belong to U .

Now, we need to upper bound |E(U,W )|. To do this, we use expander mixing lemma.

Let the indicator vector for U be denoted 1U and the indicator vector for W be

denoted 1W. Let us write 1U =
∑
αivi and 1W =

∑
βivi. We know

|E(U,W )| = 1U
TA1W = |

(∑
αiv

T
i

)
A
(∑

βjvj

)
| = |

∑
(αiβiλi) |

And it is immediately seen that the following holds

|E(U,W )| ≤ |α1β1λ1|+ |αnβn| · |λn| + |αn−1βn−1| · |λn−1|+
n−2∑
i=2

|αiβiλi| (5.2)

Now, we upper bound the RHS of Equation 5.2. We show how to bound each of

the summands seprately. Let us begin by bounding the first summand. For intuition

sake consider the ε = 0 case. Then in fact we have a 2d regular graph and v1 = un

where un = 1√
n
· 1 denotes the normalized uniform distribution vector.

|α1β1λ1| ≤|1U
Tv1| · |1W

Tv1| · 2d

=
|U |√
n
· |W |√

n
· 2d =

|U | · |W | · 2d
n

(5.3)

In case ε > 0, we will show that something close holds. In particular, we will show

that the vector v1 has a large dot product with un. Denote by µ the stationary

distribution vector for random walks on G (and thus, µi = deg(i)∑
deg(i)

). Now, note

(
vT1 1√
n

)2

=

(
1√
n
·
(

µ

‖µ‖2

))2

=
1

n
· (
∑
µi)

2

‖µ‖22
=

1

n
· 1

‖µ‖22
=

(
∑
deg(i))2

n
∑
deg(i)2

=
(Edeg(i))2

Edeg(i)2
=

1

1 +
vari∼V deg(i)

Edeg(i)2

≥ 1

1 + 4εd2/d2
=

1

1 + 4ε

≥ 1− 8ε
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Here the first inequality follows because of Claim 5.3.3 which is proved later in this

section.

Claim 5.3.3 vari∼V deg(i) ≤ 4εd2.

This means that the vector v1 is very close to the vector 1/
√
n. Now, we know that

vector 1U
T 1√

n
is small. And we know that

vT1 1√
n

is large. It follows from this that

1U
Tv1 will also be fairly small. In particular, we get

|α1β1λ1| ≤ 5
|U |√
n

(1 + 8ε) · |W |√
n

(1 + 8ε) · 2d ≤ |U | · |W | · 2d(1 + 20ε)

n
(5.4)

Now, we bound the second summand.

As we will see in Claim 5.5.1, we have
√
nvn can be expressed as a linear combi-

nation of vectors x−sn and y−sn−1 with coefficients O(1) in absolute value. So, let

us write
√
nvn = a1(x− sn) + b1(y− sn−1) with a1 and b1 being constants. A similar

expression can be obtained for
√
nvn−1. Now, we claim

Claim 5.3.4 |αnβnλn| ≤ O

(
d ·
(
|U ||W |
n

+
|U |
√
|W |
√
ε

√
n

+
|W |
√
|U |
√
ε

√
n

+ ε
√
|U ||W |

))
Proof (Of Claim 5.3.4)

|αnβnλn| ≤
1√
n
|1U

T
√
nvn| ·

1√
n
|1W

T
√
nvn| · 2d

≤ |1U
Ta1(x− sn) + 1U

T b1(y − sn−1)|√
n

× |1W
Ta2(x− sn) + 1W

T b2(y − sn−1)|√
n

· 2d

(5.5)

We now need to understand how to bound terms like 1√
n
|1U

Ta1(x− sn)|. To this

end, note that we have the following.

1. |1U
Ta1(x− sn)| ≤ |1U

Ta1x|+ |a1|‖sn‖2‖1U‖2 ≤ |1U
Ta1x|+ |a1|

√
ε
√
n
√
|U |.
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2. |1U
Tx| = |2U1 − U2 − U3| ≤ 2|U |

Here U1 refers to number of vertices colored with COL1 in U . Other terms have

analogous meaning.

Putting all of this together and absorbing all constants in the O (.), we get

|αnβnλn| ≤ O

(
d ·
(
|U |√
n

+
√
ε
√
|U |
)
·
(
|W |√
n

+
√
ε
√
|W |

))
(5.6)

The 3rd summand has an analogous bound to the one above. That is, we have

|αn−1βn−1λn−1| ≤ O(|αnβnλn|) (5.7)

The last summand can be simply bounded by using Cauchy Schwartz and the fact

that all other eigenvalues are at most δd for some sufficiently small δ. This gives

n−2∑
i=1

|αiβiλi| ≤ δd ·
√
|U | · |W | (5.8)

Putting all of these bounds Equation 5.4, Equation 5.6, Equation 5.7, Equation

5.8 together we get and upper bound on |E(U,W )|. Also, we already computed a

lower bound on |E(U,W )| ≥ d|W |/5. Chaining the upper bound and the lower bound

thus obtained, using the fact that |U | ≤ O(εn) we get

√
|W |
5
≤

2|U |
√
|W |(1 + 20ε)

n
+O

(
|U |
√
|W |

n
+

√
ε|U ||W |√

n
+

√
ε|U |√
n

+ ε
√
|U |

)
+δ
√
|U |

=⇒
√
|W |
10

≤ O
(
ε
√
|U |+ δ

√
|U |
)

=⇒ |W | ≤ O
(
δ2 + ε2

)
|U |.

This finishes the proof of Claim 5.3.2.
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Proof (Of Lemma 5.3.1) Observe that by Claim 5.3.2, it follows that the set of

badly colored vertices shrinks significantly in each step of the local search. Thus,

after O (log |U |) many steps, we do not have any bad vertices and we get a proper

3-coloring. This finishes the description of the algorithm for adapting the second step

of [9] algorithm which finishes the proof of Lemma 5.3.1

Proof (Of Claim 5.3.3) Note that here we are taking variance in the degree of

a random vertex over the full graph whereas by definition in (2d, ε)-expanding-3-

colorable graph case we only know varv∈COLjdij(v) ≤ εd2. So, a little more work

is needed. Let us begin by noting that Edeg(i)2 =
∑

j∈{1,2,3}Edeg(i)2|i ∈ COLj/3.

Also, note Edegi|i ∈ COL1 = Edeg(i)|i ∈ COL2 = Edeg(i)|i ∈ COL3 = d. Let M1 =

Ei∈COL1 [(d12(i) + d23)
2] and N1 = Ei∈COL1 [(d12(i)

2 + d13(i)
2)] and similarly define

M2, N2 and M3, N3. So, writing vari∼V deg(i) = Edeg(i)2 − Edeg(i)2 and expanding

by using the foregoing expressions, we get

vari∼V =
∑

j∈{1,2,3}

Edeg(i)2|i ∈ COLj − 4d2

3

=
∑

j∈{1,2,3}

Mj − 4d2

3

≤
∑

j∈{1,2,3}

2Nj − 4d2

3

=
2(vard12 + vard13 + . . .vard32 + vard31)

3

≤ 4εd2

5.4 Future Work

Our work also suggests the following tantalizing conjecture for graph 3 coloring.
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Conjecture 5.4.1 Fix δ, ε > 0. Then there exits an algorithm which when given an

expanding graph G which as input, runs in time exp(nδ) ·
(
1
ε

)1/δ
and returns a coloring

χ such that

• No edges are violated under χ.

• At most εn vertices are left uncolored.

Suppose we are given a graph G as input which we know admits a low-variance

coloring. Then by Theorem 5.1.2 we can find a partial 3-coloring of G in polynomial

time. What about graphs which only admit high variance colorings Definition 5.1.2?

The conjecture above states that this can be done in subexponential time in such

graphs.

Acknowledgements We thank Elena Grigorescu for helpful discussions.

5.5 Missing Proofs

Proof (Of Lemma 5.2.1)

Obtain vectors t and f from Claim 5.2.4. These vectors have several useful

properties which will be useful for us in what follows. Write t = f + w. We have

‖w‖2 ≤ O
(√

εn+ γn+ τ 2r
)

.

Now, let αi = f
∣∣
COLi

for 1 ≤ i ≤ 3 – that is, αi’s are scalars and equal the constant

value that f takes over the ith color class. Assume α1 ≥ α2 ≥ α3. Using the fact

that ‖w‖2 ≤ O(εn + γn + τ 2r), it follows that only O (εn+ γn+ τ 2r) coordinates

in w can take on values large in magnitude (at least 0.01). Note that this means

|α2| ≤ 1/4. This is because, we have t − f = w and only a few entries in w can

be big in magnitude. In more detail, suppose if α2 > 1/4 were to hold then at least

2n−O (εn+ γn+ τ 2r) entries in t will be big too and thus will have the same sign.

This contradicts the 0 median assumption in t. An analogous argument prevents

α2 < −1/4.
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Finally, recall that α1 + α2 + α3 = 0 (since f ∈ span(x,y)) and

α2
1 + α2

2 + α2
3 =
‖f‖2

n/3
≥ ‖t‖

2 − ‖w‖2

n/3
≥ 6−O

(
ε+ γ + τ 2r/n

)
.

Together with the fact that |α2| ≤ 1/4, this implies that α1 ≥ 3/4 and α3 ≤ −3/4.

This means that t which is obtained by corrupting f on at most O(εn) entries coming

from the noisy vector is a pretty good coloring. And the number of misclassified

vertices in the coloring according to t is at most O(εn+ γn+ τ 2r) – the `22 length of

the noisy vector w.

And now note that setting τ =
√

ε
r

prodcues w with ‖w‖22 = O (εn+ γn). And

the size of the discrete subspace that we search over is at most O
(√

r·n
ε

)r
as claimed.

And this finishes the proof.

Claim 5.5.1 The vectors
√
nvn and

√
nvn−1 can be expressed as a linear combination

of vectors x− sn and y− sn−1 with coefficients at most a constant in absolute value.

Proof (Of Claim 5.5.1)

Let us first quickly see that vn lies in span(x − sn,y − sn−1). By definition of

(2d, ε)-expanding-3-colorable graphs, we have that all eigenvalues other than λ1, λn−1

and λn are small in absolute value. So, there exist tiny shift vectors sn, sn−1 (according

to Claim 5.2.3) such that both x−sn,y−sn−1 lie in span(vn,vn−1). Thus, the space

spanned by the last 2 eigenvectors is a tiny perturbation of span(x,y). So, any vector

in span(vn,vn−1) also lies in span(x− sn,y − sn−1). And so, does
√
nvn.

Intuitively, the at most constant in absolute value part should follow because

x− sn,y − sn−1,
√
nvn,

√
nvn−1 have length Θ(

√
n) and x− sn,y − sn−1 are nearly

orthogonal. This is because x and y are orthogonal and sn and sn−1 are very tiny

perturbations to these orthogonal vectors. In more detail,
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√
nvn = α(x− sn) + β(y − sn−1)

=⇒ αx+ βy =
√
nvn + αsn + βsn−1

=⇒ ‖αx+ βy‖2 ≤
√
n+ |α| · ‖sn‖2 + |β| · ‖sn−1‖2 (5.9)

On taking squared `2 norms on both sides of (5.9), it follows that

6nα2

3
+

2nβ2

3
≤ n+O(α2 + β2)εn.

On simplifying it is clear that this means both |α| and |β| are O(1).
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[30] K. Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische Annalen,
114:570–590, 1937. 9, 54, 78

[31] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture.
Journal of Combinatorial Theory Series B, 92(1):325–357, 2004. 9, 10, 54, 55,
78

[32] I. Benjamini, O. Schramm, and A. Shapira. Every minor-closed property of
sparse graphs is testable. In Symposium on the Theory of Computing (STOC),
pages 393–402, 2008. 9, 54, 56, 79, 82

[33] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorith-
mica, 32(2):302–343, 2002. 9, 11, 54, 78

[34] Artur Czumaj, Oded Goldreich, Dana Ron, C Seshadhri, Asaf Shapira, and
Christian Sohler. Finding cycles and trees in sublinear time. Random Structures
& Algorithms, 45(2):139–184, 2014. 11, 12, 57, 83

[35] Hendrik Fichtenberger, Reut Levi, Yadu Vasudev, and Maximilian Wötzel. On
testing minor-freeness in bounded degree graphs with one-sided error. CoRR,
abs/1707.06126, 2017. 11, 12, 57, 83

[36] Reinhard Diestel. Graph Theory, Fourth Edition. Springer, 2010. 11, 56

[37] L. Lovász. Graph minor theory. Bulletin of the American Mathematical Society,
43(1):75–86, 2006. 11

[38] O. Goldreich. Introduction to Property Testing. Cambridge University Press,
2017. 11, 55, 56, 82, 111

[39] N. Alon, E. Fischer, I. Newman, and A. Shapira. A combinatorial characteriza-
tion of the testable graph properties : it’s all about regularity. Symposium on
the Theory of Computing (STOC), pages 251–260, 2006. 11

[40] Artur Czumaj, Asaf Shapira, and Christian Sohler. Testing hereditary prop-
erties of nonexpanding bounded-degree graphs. SIAM Journal on Computing,
38(6):2499–2510, 2009. 11, 82

[41] A. Hassidim, J. Kelner, H. Nguyen, and K. Onak. Local graph partitions for
approximation and testing. In Foundations of Computer Science (FOCS), pages
22–31, 2009. 12, 55, 56, 57, 78, 79

[42] Reut Levi and Dana Ron. A quasi-polynomial time partition oracle for graphs
with an excluded minor. ACM Transactions on Algorithms (TALG), 11(3):24,
2015. 12, 55, 56, 57, 79, 82

[43] Yuichi Yoshida and Hiro Ito. Testing outerplanarity of bounded degree graphs.
Algorithmica, 73(1):1–20, 2015. 12, 55, 56, 83

[44] Alan Edelman, Avinatan Hassidim, Huy N. Nguyen, and Krzysztof Onak. An
efficient partitioning oracle for bounded-treewidth graphs. pages 530–541, 2011.
12, 55, 56, 83



135

[45] O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs.
Combinatorica, 19(3):335–373, 1999. 12, 13, 57, 83

[46] O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs.
ECCC, TR00-020, 2000. 12

[47] Artur Czumaj and Christian Sohler. Testing expansion in bounded-degree
graphs. Combinatorics, Probability & Computing, 19(5-6):693–709, 2010. 12

[48] S. Kale and C. Seshadhri. Testing expansion in bounded degree graphs. Proc.
35th ICALP, pages 527–538, 2008. 12

[49] A. Nachmias and A. Shapira. Testing the expansion of a graph. ECCC, TR07-
118, 2007. 12

[50] Satyen Kale, Yuval Peres, and C. Seshadhri. Noise tolerance of expanders and
sublinear expansion reconstruction. SIAM J. Comput., 42(1):305–323, 2013. 12,
20, 44, 67

[51] Artur Czumaj, Pan Peng, and Christian Sohler. Testing cluster structure of
graphs. In Symposium on the Theory of Computing (STOC), pages 723–732,
2015. 12

[52] Andrei Z. Broder, Alan M. Frieze, and Eli Upfal. Static and dynamic path selec-
tion on expander graphs: A random walk approach. Random Struct. Algorithms,
14(1):87–109, 1999. 12

[53] Jon M. Kleinberg and Ronitt Rubinfeld. Short paths in expander graphs. In
Foundations of Computer Science (FOCS), pages 86–95. IEEE Computer Soci-
ety, 1996. 12, 14

[54] D. Spielman and S.-H. Teng. A local clustering algorithm for massive graphs
and its application to nearly-linear time graph partitioning. SIAM Journal on
Computing, 42(1):1–26, 2012. 13, 19, 46, 58, 73, 83, 85, 102

[55] Luca Trevisan. Approximation algorithms for unique games. In Foundations of
Computer Science (FOCS), pages 197–205. IEEE, 2005. 13

[56] Shayan Oveis Gharan and Luca Trevisan. Approximating the expansion profile
and almost optimal local graph clustering. In Foundations of Computer Science
(FOCS), pages 187–196. IEEE Computer Society, 2012. 13

[57] R. Andersen, F. R. K. Chung, and K. Lang. Local graph partitioning using
pagerank vectors. Foundations of Computer Science (FOCS), pages 475–486,
2006. 19

[58] David Aldous and James Allen Fill. Reversible markov chains and random walks
on graphs, 2002. Unfinished monograph, recompiled 2014, available at http:
//www.stat.berkeley.edu/~aldous/RWG/book.html. 44

[59] D. Spielman. Lecture notes on spectral graph theory.
http://www.cs.yale.edu/homes/spielman/eigs/. 46, 73, 74

[60] Ilan Newman and Christian Sohler. Every property of hyperfinite graphs is
testable. SIAM Journal on Computing, 42(3):1095–1112, 2013. 56, 79, 80

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html


136

[61] Akash Kumar, C. Seshadhri, and Andrew Stolman. Finding forbidden minors in

sublinear time: a o(n1/2 + o(1))-query one-sided tester for minor closed prop-
erties on bounded degree graphs. CoRR, abs/1805.08187, 2018. 67, 68, 69, 73,
74

[62] D. P. Dubhashi and A. Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge, 2009. 69, 70, 71

[63] Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator
theorem. SIAM J. Comput., 9(3):615–627, 1980. 78

[64] Noga Alon, Paul D. Seymour, and Robin Thomas. Planar separators. SIAM J.
Discrete Math., 7(2):184–193, 1994. 78

[65] Avi Wigderson. Improving the performance guarantee for approximate graph
coloring. Journal of the ACM (JACM), 30(4):729–735, 1983. 113

[66] Avrim Blum. New approximation algorithms for graph coloring. J. ACM,
41(3):470–516, 1994. 113

[67] David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph
coloring by semidefinite programming. J. ACM, 45(2):246–265, 1998. 113

[68] Avrim Blum and David R. Karger. An õ(nˆ{3/14})-coloring algorithm for 3-
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