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ABSTRACT 

Highway infrastructure, including roads/pavements, contributes significantly to a country’s 

economic growth, quality of life improvement, and negative environmental impacts. Hence, 

highway agencies strive to make efficient and effective use of their limited funding to maintain 

their pavement infrastructure in good structural and functional conditions. This necessitates 

predicting pavement performance and scheduling maintenance interventions accurately and 

reliably by using appropriate performance modeling and maintenance optimization methodologies, 

while considering the impact of influential variables and the uncertainty inherent in pavement 

condition data. 

 

Despite the enormous research efforts toward stochastic pavement performance modeling and 

maintenance optimization, several research gaps still exist. Prior research has not provided a 

synthesis of Markovian models and their associated methodologies that could assist researchers 

and highway agencies in selecting the Markov methodology that is appropriate for use with the 

data available to the agency. In addition, past Markovian pavement performance models did not 

adequately account for the marginal effects of the preventive maintenance (PM) treatments due to 

the lack of historical PM data, resulting in potentially unreliable models. The primary components 

of a Markov model are the transition probability matrix, number of condition states (NCS), and 

length of duty cycle (LDC).  Previous Markovian pavement performance models were developed 

using NCS and LDC based on data availability, pavement condition indicator and data collection 

frequency. However, the selection of NCS and LDC should also be based on producing pavement 

performance models with high levels of prediction accuracy. Prior stochastic pavement 

maintenance optimization models account for the uncertainty of the budget allocated to pavement 

preservation at the network level. Nevertheless, variables such as pavement condition deterioration 

and improvement that are also associated with uncertainty, were not included in stochastic 

optimization models due to the expected large size of the optimization problem. 

 

The overarching goal of this dissertation is to contribute to filling these research gaps with a view 

to improving pavement management systems, helping to predict probabilistic pavement 

performance and schedule pavement preventive maintenance accurately and reliably. This study 
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reviews Markovian pavement performance models using various Markov methodologies and 

transition probabilities estimation methods, presents a critical analysis of the different aspects of 

Markovian models as applied in the literature, reveals gaps in knowledge, and offers suggestions 

for bridging those gaps. This dissertation develops a decision tree which could be used by 

researchers and highway agencies to select appropriate Markov methodologies to model pavement 

performance under different conditions of data availability. The lack of consideration of pavement 

PM impacts into probabilistic pavement performance models due to absence of historical PM data 

may result in erroneous and often biased pavement condition predictions, leading to non-optimal 

pavement maintenance decisions. Hence, this research introduces and validates a hybrid approach 

to incorporate the impact of PM into probabilistic pavement performance models when historical 

PM data are limited or absent. The types of PM treatments and their times of application are 

estimated using two approaches: (1) Analysis of the state of practice of pavement maintenance 

through literature and expert surveys, and (2) Detection of PM times from probabilistic pavement 

performance curves. Using a newly developed optimization algorithm, the estimated times and 

types of PM treatments are integrated into pavement condition data. A non-homogeneous 

Markovian pavement performance model is developed by estimating the transition probabilities of 

pavement condition using the ordered-probit method. The developed hybrid approach and 

performance models are validated using cross-validation with out-of-sample data and through 

surveys of subject matter experts in pavement engineering and management. The results show that 

the hybrid approach and models developed can predict probabilistic pavement condition 

incorporating PM effects with an accuracy of 87%. 

 

The key Markov chain methodologies, namely, homogeneous, staged-homogeneous, non-

homogeneous, semi- and hidden Markov, have been used to develop stochastic pavement 

performance models. This dissertation hypothesizes that the NCS and LDC significantly influence 

the prediction accuracy of Markov models and that the nature of such influence varies across the 

different Markov methodologies. As such, this study develops and compares the Markovian 

pavement performance models using empirical data and investigates the sensitivity of Markovian 

model prediction accuracy to the NCS and LDC. The results indicate that the semi-Markov is 

generally statistically superior to the homogeneous and staged-homogeneous Markov (except in a 

few cases of NCS and LDC combinations) and that Markovian model prediction accuracy is 
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significantly sensitive to the NCS and LDC: an increase in NCS improves the prediction accuracy 

until a certain NCS threshold after which the accuracy decreases, plausibly due to data overfitting. 

In addition, an increase in LDC improves the prediction accuracy when the NCS is small. 

 

Scheduling pavement maintenance at road network level without considering the uncertainty of 

pavement condition deterioration and improvement over the long-term (typically, pavement design 

life) likely results in mistiming maintenance applications and less optimal decisions. Hence, this 

dissertation develops stochastic pavement maintenance optimization models that account for the 

uncertainty of pavement condition deterioration and improvement as well as the budget constraint. 

The objectives of the stochastic optimization models are to minimize the overall deterioration of 

road network condition while minimizing the total maintenance cost of the road network over a 

20-year planning horizon (typical pavement design life). Multi-objective Genetic Algorithm 

(MOGA) is used because of its robust search capabilities, which lead to global optimal solutions. 

In order to reduce the number of combinations of solutions of stochastic MOGA models, three 

approaches are proposed and applied: (1) using PM treatments that are most commonly used by 

highway agencies, (2) clustering pavement sections based on their ages, and (3) creating a filtering 

constraint that applies a rest period after treatment applications. The results of the stochastic 

MOGA models show that the Pareto optimal solutions change significantly when the uncertainty 

of pavement condition deterioration and improvement is included.
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CHAPTER 1. INTRODUCTION 

Highway infrastructure, including roads/pavements, contributes significantly to the economic 

growth of countries, the improvement of life quality, and the impacts on environment. Hence, 

highway agencies are striving to manage their infrastructure assets efficiently in order to maintain 

them in good functional and structural conditions while utilizing their limited resources optimally. 

 Motivation 

Roads provide mobility, connectivity and accessibility throughout countries (Labi et al. 2019). In 

the United States, for example, in 2017 roads were expanded to over 4 million miles, comprising 

various functional classes, e.g., interstates, non-interstate, urban and rural and ranging from multi-

lane interstates to residential streets. In 2019, the share of the transport sector to the U.S. Gross 

Domestic Product (GDP) was estimated as $2,249.4 billion (10.71% of GDP) (“Trading 

Economics, United States” 2019). Roads contribute significantly to the U.S. transport and is 

expected to contribute more in the future. The number of travelled lane miles in 2017 was found 

to be 3.2 trillion, which is more than 300 round trips between Earth and Pluto (ASCE Infrastructure 

Report Card 2017). Freight demand is expected to increase from 17 billion tons in 2012 to 25.3 

billion tons in 2045 (FHWA 2018), which requires more expanded roads in good condition. 

 

The ASCE Infrastructure Report Card (2017) indicated that the roads in the U.S. are generally in 

“poor” condition, which translates on the Pavement Condition Index (PCI) scale into an average 

score of 3 out of 10. A total of $121 billion (ASCE Infrastructure Report Card 2017) or $300 per 

American driver (Wright 2016) were estimated as extra annual expenses on vehicle operation and 

repair due to poor condition of pavements. Additionally, more than 35,000 people were killed in 

vehicle crashes in 2015 (ASCE Infrastructure Report Card 2017) for several reasons, among them 

is the poor condition of pavements (Chen et al. 2019). However, a spending of $1 on highways 

(roads and bridges) maintenance and improvement could return $5.20 in the form of lower vehicle 

maintenance costs, decreased delays, reduced fuel consumption, improved safety,  lower road and 

bridge maintenance costs, and reduced emissions as a result of improved traffic flow (ASCE 

Infrastructure Report Card 2017). 
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The U.S. public spending on highways, provided by federal, state and local governments, covers 

capital and operation and maintenance expenditures. The overall public spending on highways 

dropped from almost 1.8% of GDP in the 1950s to about 0.9% of GDP in the 1980s, when it has 

plateaued until 2017 (Office of Management and Budget 2018). Capital spending on highways has 

been decreasing since 2003, while operation and maintenance spending on highways has flattened. 

Although the federal spending has declined recently in 2017, the state and local spending has 

increased marginally (Office of Management and Budget 2018). Hence, the U.S. highways are 

suffering from chronic underfunding (ASCE Infrastructure Report Card 2017). 

 

The significant role that roads play (connectivity, accessibility and mobility) necessitates 

maintaining roads in good functional and structural conditions; however, the ASCE Infrastructure 

Report Card (2017) announced that the roads in the U.S. are in “poor” condition resulting in several 

implications such as an annual additional cost of $121 billion for vehicle operations and repair. 

Consequently, U.S. roads are in a profound need to be repaired and upgraded, with chronic 

underfunding in addition to a mammoth backlog of $420 billion in highway maintenance (ASCE 

Infrastructure Report Card 2017). 

 Problem Statement 

Highway agencies need an efficient pavement management system to effectively allocate their 

limited resources to optimally selected projects at optimal times and to the most cost-effective 

maintenance treatments. An efficient pavement management system should assist in predicting 

future pavement condition incorporating the positive and negative effects of relevant influential 

factors, while accounting for the uncertainty inherently attributed to pavement condition data. 

Additionally, it should support the optimization of pavement maintenance and rehabilitation 

treatments taking into account the stochasticity and randomness associated with the data and the 

decision variables considered in optimization models. 

 

Despite the enormous efforts made in previous research on probabilistic modeling of pavement 

performance and optimization of pavement maintenance and rehabilitation (M&R), the relevant 

body of knowledge and body of practice still have gaps. Markov chains process has been 
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extensively used for probabilistic modeling of pavement performance; however, the literature 

lacks a synthesis of Markovian pavement performance methodologies and models that would help 

researchers and highway agencies select the appropriate Markov methodology for their data. Prior 

Markovian pavement performance models did not adequately account for the marginal effects of 

the preventive maintenance (PM) treatments owing to data absence and limitation. The 

consideration of PM impacts into Markovian pavement performance models is of paramount 

importance in the decision-making of M&R. Moreover, previous Markov models were developed 

for pavement performance using a number of condition states (NCS) and a length of duty cycle 

(LDC) (two main components of Markov chain models) on the basis of data availability, pavement 

condition indicator and data collection frequency. Nevertheless, the selection of the NCS and LDC 

should be also based on the resulting prediction accuracy of pavement performance. 

 

Stochastic optimization of pavement maintenance considers the uncertainty inherently attributed 

to pavement condition data and decision-making variables when scheduling maintenance 

interventions for a road network. In the literature, stochastic optimization models developed for 

pavement maintenance account for the uncertainty of budget constraint only. Other variables, such 

as pavement condition deterioration and improvement, are also associated with uncertainty, but 

were not adequately considered in stochastic optimization models due to the expected large 

number of combinations of solutions.   

 Research Questions 

The dissertation contributes to solving the aforementioned problem and bridging the research gaps 

mentioned above. The research questions answered by this dissertation fall into two categories: 

modeling of pavement performance and optimization of pavement preventive maintenance. 

 

Modeling of Pavement Performance: What are the appropriate types and methodologies of 

Markov chains for modeling pavement performance? How can the impacts of preventive 

maintenance be incorporated into probabilistic pavement performance models? What is the 

statistical significance of the number of condition states (NCS) and the length of duty cycle (LDC) 

for the prediction accuracy of Markovian pavement performance models, and for the selection of 

Markovian methodology and model types? 



 

21 
 

 

Optimization of Pavement Preventive Maintenance: What is the effect of considering the 

uncertainty of pavement condition deterioration and improvement on the decision-making of 

pavement maintenance? How can the computational complexity in terms of the number of 

combinations of solutions, be reduced for stochastic Multi-objective Genetic Algorithm (MOGA) 

models used for road network preventive maintenance optimization? 

 Research Objectives 

The overarching goal of the current research is to develop methodologies and pavement 

performance and optimization models that will enhance pavement management systems and assist 

in accurately predicting future pavement condition and effectively allocating the limited resources 

of highway agencies to maintain pavements in a desired condition. The main objective of this 

research is to provide highway agencies with a stochastic pavement management system capable 

of predicting stochastic pavement condition over the long term and constructing pavement 

maintenance schedules that consider the uncertainty associated with decision-making variables. In 

the course of achieving this main objective, four research objectives have been developed as 

follows: 

1- Synthesize the literature on Markovian pavement performance models. Develop a decision 

tree to be used for selecting the appropriate Markov methodology and its design parameters 

for pavement performance modeling. 

2- Develop and validate a hybrid approach to incorporate the impacts of preventive 

maintenance (PM) into probabilistic pavement performance models. Create and validate a 

non-homogenous Markov model to predict probabilistic pavement condition, considering 

the influence of preventive maintenance. 

3- Compare different Markovian methodologies and models along with various combinations 

of number of condition states (NCS) and length of duty cycle (LDC) for pavement 

performance. Identify the statistical significance of the NCS and LDC for the prediction 

accuracy of probabilistic pavement condition using Markov chains. 

4- Develop stochastic pavement preventive maintenance optimization models at the road 

network level. Develop and implement approaches to reduce the number of combinations 

of solutions of the proposed stochastic optimization models. 
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 Research Overview 

Figure 1.1 outlines the general framework for the four research objectives of the current research. 

First, as in previous research, Markovian pavement performance methodologies and models have 

been critically reviewed and synthesized to summarize the state-of-the-art Markov chains used for 

modeling probabilistic pavement performance. Besides, a decision-tree instrument was 

constructed to help future researchers and highway agencies select the appropriate Markov chain 

methodology and its design parameters for managing their pavements. 

 

Second, a hybrid approach was developed to incorporate the marginal effects of PM into 

probabilistic pavement performance models. To apply and validate the developed hybrid approach, 

survey questionnaires were designed and deployed to State Transportation Agencies (STAs) across 

the United States. In addition, condition data of interstate flexible pavements (black-topped roads 

that include asphalt and composite) across the Midwestern states were retrieved from the Long-

Term Pavement Performance (LTPP) database to implement the hybrid approach, and to develop 

and validate a non-homogenous Markov model for pavement performance. 

 

Third, the condition data collected for interstate flexible pavements across the Midwestern states 

were used to build Markov chain models using various Markovian methodologies along with 

different combinations of number of condition states (NCS) and length of duty cycle (LDC). Then 

the developed Markov models were compared in terms of their predictive power to assess the 

statistical significance of NCS and LDC for the prediction accuracy of Markovian pavement 

performance models. 

 

Finally, stochastic optimization models were developed to optimally schedule the preventive 

maintenance treatments at road network level. The Multi-Objective Genetic Algorithm (MOGA) 

was used to satisfy the objective functions of minimum maintenance costs and minimum 

deterioration of pavement network and to obtain global optimal solutions. The stochastic MOGA 

models were demonstrated in the context of interstate flexible pavements. Three approaches were 

proposed and implemented to overcome the expected large size of the optimization problem when 

using stochastic MOGA models to optimize pavement preventive maintenance at road network 

level. 
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Figure 1.1. Research framework 

 Organization 

This dissertation consists of six chapters and follows the “multiple publications” format. Each of 

the Chapters 2, 3, 4 and 5 has its own introduction, literature review, methodology, results and 

discussion, and conclusion sections. Significant portions of these chapters have been submitted or 

are in preparation for submission for review and publication in peer reviewed journals and/or 
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refereed conferences. Chapter 1 introduces the motivation for the current research, problem 

statement and research objectives. Chapter 2 reviews the previous research efforts with regard to 

modeling of pavement performance and discusses and synthesizes the use of Markov chains in the 

probabilistic modeling of pavement performance. Chapter 3 introduces a hybrid approach to 

incorporate preventive maintenance impacts into probabilistic pavement performance models. In 

addition, chapter 3 discusses the results of the development and validation of non-homogeneous 

Markov model for pavement performance. This chapter is under review in the ASCE Journal of 

Transportation Engineering, Part B: Pavements, 2020, Mohamed S. Yamany, Dulcy M. 

Abraham, Hybrid Approach to Incorporate Preventive Maintenance Effectiveness into 

Probabilistic pavement Performance Models. Tables and figures captions were modified to 

maintain the form of the dissertation. 

 

Chapter 4 discusses the evaluation and comparison of different Markovian techniques used to 

model the probabilistic performance of pavement infrastructure. This chapter analyzes the 

prediction accuracy of Markovian methodologies and models when accounting for the number of 

condition states and length of duty cycle (two main components of Markov models). This chapter 

is under review in the ASCE Journal of Infrastructure Systems, 2020, Mohamed S. Yamany, 

Dulcy M. Abraham, and Samuel Labi, Comparative Analysis of Markovian Methodologies for 

Modeling Infrastructure System Performance. Tables and figures captions were modified to 

maintain the form of the dissertation. 

 

Chapter 5 discusses the stochastic optimization models that were developed using the multi-

objective genetic algorithm to schedule the preventive maintenance treatments for road network. 

This chapter compares the results of the developed stochastic models with the typical deterministic 

models and highlights the contributions that stochastic optimization models can provide to the 

body of knowledge and to highway decision-makers. Chapter 6 presents the conclusions of the 

dissertation, the contributions to the body of knowledge and practice, and the limitations of the 

current research and recommendations for future research. 
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CHAPTER 2. PRIOR RESEARCH ON PAVEMENT PERFORMANCE MODELS 

This chapter reviews prior research on pavement performance models and presents the state-of-

the-art probabilistic modeling of pavement performance using Markov chain techniques. In 

addition, it discusses the limitations and drawbacks of prior Markovian pavement performance 

models and identifies the knowledge and practice gaps. 

 Pavement Condition and Distresses 

The purpose of a pavement system is to provide smooth surface over which vehicles may safely 

pass under all climatic conditions for the specific performance period of pavement. Figure 2.1 

shows the basic components of the typical pavement system. 

 

 

Figure 2.1. Basic components of pavement system (adapted from Christopher et al. 2006) 

 

The types of pavements according to their construction materials or surface types are flexible or 

Asphalt, rigid (Portland Cement Concrete, PCC), composite (Asphalt and PCC), and unpaved. 

Flexible pavements have an asphaltic surface layer, with no underlying Portland cement slabs. The 

asphaltic surface layer may consist of high quality, hot mix asphalt (HMA) concrete, or it may be 

some type of lower strength and stiffness asphaltic surface treatment. In either case, flexible 

pavements rely heavily on the strength and stiffness of the underlying unbound layers to 

supplement the load carrying capacity of the asphaltic surface layer. Figure 2.2 displays the various 

common flexible pavement sections. Rigid pavements have a surface course of Portland Cement 

Concrete (PCC). The PCC slabs constitute the dominant load-carrying component in a rigid 

pavement system. Figure 2.3 shows the typical structural layers of rigid pavements. Composite 
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pavements combine elements of both flexible and rigid pavement systems, usually consisting of 

an asphaltic concrete surface placed over PCC or bound base. Unpaved roads or naturally surfaced 

roads simply are not paved, relying on granular layers and the subgrade to carry the load. Seal 

coats are sometimes applied to improve their resistance to environmental factors. 

 

 

 

Figure 2.2. Common flexible pavement profiles (adapted from NCHRP 1-37A Design Guide, 

2002). 
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Figure 2.3. Rigid pavement profile (adapted from NCHRP 1-37A Design Guide, 2002) 

 

Since the research of this dissertation was demonstrated using interstate flexible pavement data, 

this section briefly discusses the distresses associated with the flexible/asphalt pavements. The 

discussion is based on a review of the technical report “Maintenance Technical Advisory Guide.” 

developed by the State of California Department of Transportation (2008). The common distresses 

in flexible pavements are placed into five categories: (1) cracking, (2) deformation, (3) 

deterioration, (4) mat problems, and (5) problems associated with seal coats. Figures 2.4 to 2.8 

show examples of these distresses. 

 

1- Cracking:  

• Fatigue: cracks in asphalt layers that are caused by repeated traffic loadings. The cracks 

indicate fatigue failure of the asphalt layer. When cracking is characterized by interconnected 

cracks, the cracking pattern resembles that of an alligator’s skin or chicken wire. Therefore, it 

is also referred to as alligator cracking. 

• Longitudinal: cracks that are approximately parallel to pavement centerline and are not in the 

wheel path. Longitudinal cracks are non-load associated cracks. Location within the lane 

(wheel path versus non-wheel path) is significant. Longitudinal cracks in the wheel path are 

normally rated as Alligator ‘A’ cracking. 

• Transverse: cracks that are predominately perpendicular to pavement centerline and are not 

located over Portland cement concrete joints. Thermal cracking is typically in this category. 
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• Reflective: cracks in HMA overlay surfaces that occur over joints in concrete or over cracks 

in HMA pavements. 

• Block: pattern of cracks that divides the pavement into approximately rectangular pieces. 

Rectangular blocks range in size from approximately 0.1 square yard to 12 square yards. 

• Edge: crescent-shaped cracks or fairly continuous cracks that intersect the pavement edge and 

are located within 2 feet of the pavement edge, adjacent to the unpaved shoulder. Includes 

longitudinal cracks outside of the wheel path and within 2 feet of the pavement edge. 

 

  
Fatigue cracking Longitudinal 

  
Transverse Reflective 

  
Block Edge 

Figure 2.4. Types of cracks in flexible/asphalt pavements (Maintenance Technical Advisory 

Guide 2008) 
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2- Deformation 

• Rutting: longitudinal surface depression that develops in the wheel paths of flexible pavement 

under traffic. It may have associated transverse displacement.  

• Corrugation: transverse undulations appear at regular intervals due to the unstable surface 

course caused by stop-and-go traffic. 

• Shoving (Wash Boarding): a longitudinal displacement of a localized area of the pavement 

surface. It is generally caused by braking or accelerating vehicles, and is usually located on 

hills or curves, or at intersections. It also may have vertical displacement. 

• Depressions: small, localized surface settlement that can cause a rough, even hazardous ride to 

motorists. 

• Overlay Bumps: in newly overlaid pavements, bumps occur where cracks in old pavements 

were recently filled. This problem is most prevalent on thin overlays. 

 

3- Deterioration 

• Delamination: loss of a large area of pavement surface. Typically, there is a clear separation 

of the pavement surface from the layer below. Slippage cracking may often occur as a result 

of poor bonding or adhesion between layers. 

• Potholes: bowl-shaped holes of various sizes in the pavement surface. Minimum plane 

dimension is 6 inches. 

• Patching: portion of pavement surface, greater than 0.1 square yard, that has been removed and 

replaced or additional material applied to the pavement after original construction. 

• Raveling: wearing away of the pavement surface in high-quality hot mix asphalt concrete that 

may be caused by the dislodging of aggregate particles and loss of asphalt binder. 

• Stripping: the loss of the adhesive bond between asphalt cement and aggregate, most often 

caused by the presence of water in asphalt concrete, which may result in raveling, loss of 

stability, and load carrying capacity of the HMA pavement or treated base. 

• Polished Aggregate: surface binder worn away to expose coarse aggregate. 

• Pumping: seeping or ejection of water and fines from beneath the pavement through cracks. 
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Rutting 

  
Corrugation 

 
Shoving (Wash Boarding) 

  
Overlay Bumps Depressions 

Figure 2.5. Types of deformation in flexible/asphalt pavements (Maintenance Technical 

Advisory Guide 2008) 
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Delamination Potholes 

  
Patching Raveling 

  
Stripping Polished Aggregate 

 
Pumping 

Figure 2.6. Types of deterioration in flexible/asphalt pavements (Maintenance Technical 

Advisory Guide 2008) 
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4- Mat Problems 

• Segregation: separation of coarse aggregate from fine aggregate as a result of mishandling of 

the mix at several points during mix production, hauling, and placing operations. Segregation 

leads to non-uniform surface texture and non-uniform density. 

• Checking: short transverse cracks, usually 1 inch to 3 inches in length and 1 inch to 3 inches 

apart, which occur in the surface of the HMA mat at some time during the compaction process. 

The cracks do not extend completely through the depth of the course but are only 3/8 to ½ inch 

deep. 

• Bleeding: excess bituminous binder occurring on the pavement surface. May create a shiny, 

glass- like, reflective surface that may be tacky to the touch. Usually found in the wheel paths. 

 

  
Segregation Checking 

 
Bleeding 

Figure 2.7. Types of mat problems in flexible/asphalt pavements (Maintenance Technical 

Advisory Guide 2008) 

 

5- Problems associated with seal coats 

• Raveling (Rock Loss): wearing away of the pavement surface in seal coats. 

• Segregation: separation of coarse aggregate from fine aggregate as a result of mishandling of 

the mix at several points during mix production and placing operations. Segregation leads to 

non-uniform surface texture. 
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• Bleeding/Fat Spots: excess binder occurring on the surface treated pavements. May create a 

shiny, glass-like, reflective appearance. Fat spots are localized bleeding. 

• Delamination: loss of portion of pavement surface treatment. Usually there is a clear 

separation of the surface treatment from the layer below.  

 

  
Raveling (Rock Loss) Segregation 

  
Bleeding/Fat Spots Delamination 

Figure 2.8. Problems associated with seal coats (Maintenance Technical Advisory Guide 2008) 

 Pavement Performance Models 

Pavement performance is the pavement serviceability pattern over a period of time, where the 

serviceability implies the ability of pavements to meet the demand for traffic under their current 

conditions. Pavement performance models which are critical for effective pavement maintenance 

and rehabilitation (M&R) decision-making require reliable and accurate pavement condition 

predictions. 

2.2.1. Pavement Condition Indicators/Indices 

The performance of pavements is identified by measuring and observing their condition over their 

lifetime. Several types of indices or indicators are used for characterizing pavement condition. 
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Pavement condition indicators can represent pavement structural condition (e.g., pavement 

structural number or distress score), pavement functional condition (e.g., International Roughness 

Index (IRI) or riding quality), or both pavement structural and functional conditions (e.g., 

Pavement Condition Index (PCI) or Pavement Condition Rating (PCR)). Each State Highway 

Agency (SHA) in the U.S. uses different pavement condition indices based on its policy and 

pavement management system. For instance, the state of Ohio uses the PCR (Rajagopal 2006), 

whereas, the states of Indiana, Illinois, Connecticut, Colorado, and California use the IRI (Bektas 

et al. 2014). The IRI, PCR and Rutting (RUT) were used to measure the effectiveness of 

rehabilitation treatments for the state of Indiana in the study by Labi et al. (2006), and to predict 

pavement condition in the studies by Sarwar and Anastasopoulos (2016 and 2017). The majority 

of SHAs and past studies (see Table 2.1) use the IRI to measure the surface condition of Asphalt 

or flexible pavements. 

2.2.2. Factors Affecting Pavement Condition  

Past studies have found several factors that affect the deterioration of pavement performance. 

These factors are placed into five categories (Figure 2.9): traffic, climate, material, M&R, and 

other. As shown in Table 2.1, the most common variables affecting pavement condition are 

pavement age, climatic conditions, and traffic loading. Pavement age has been recognized as the 

most statistically significant variable in predicting pavement performance (Abaza 2004; Kim and 

Kim 2006; Rajagopal 2006). Ahmed et al. (2016) used traffic loading and climate conditions to 

predict pavement deterioration. Other variables that were employed to predict pavement 

performance include subgrade resilient modulus (Hong and Somo 2001; Abaza 2004), 

construction quality (Rose et al. 2018), and pavement treatment expenditure (Montgomery et al. 

2018). 

2.2.3. Pavement Performance Modeling Approaches 

Pavement performance has been modeled using deterministic, Artificial Intelligence (AI) and 

probabilistic approaches (Table 2.1). Deterministic models (e.g., Abaza 2004; Chu and Durango-

Cohen 2008) assume that pavement condition can be predicted exactly. Therefore, they do not 

consider the inherent uncertainty and randomness of pavement condition. Although the Artificial 
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Neural Networks (ANNs) models, the most common AI approach, have been developed in 

previous research (Plati et al. 2016; Amin and Amador-Jiménez 2017; Yamany et al. 2019b; 

Yamany et al. 2020b) to predict pavement performance, the interpretation of their findings is not 

easy and they are considered as black boxes (García de Soto et al. 2018). 

 

Unlike deterministic and AI models, probabilistic models duly acknowledge the uncertainties 

inherently attributed to pavement condition data, and their results are easy to comprehend and 

interpret. Probabilistic models result in more reliable and robust pavement condition predictions 

than deterministic models (Rose et al. 2018; Qiao et al. 2019). Markov chains is the most 

extensively used probabilistic approach to model pavement condition. One category of Markov 

chains models is the non-homogeneous Markov models, which are accurate and realistic in 

estimating and predicting pavement performance because they account for the non-stationary 

nature of pavement deterioration. However, these models require a large amount of historical data, 

which is hindered by limited resources for data collection, storage and management. 

 

 

Figure 2.9. Factors affecting pavement condition
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Table 2.1. Summary of insights from past research [adapted from Yamany et al. (2020b)] 

AUTHOR(S) YEAR STUDY 

REGION 

USA/INT. PAVEMENT 

SURFACE 

TYPE 

CONDITION 

INDICATOR 

ROAD 

CLASS  

DATA SOURCE MODELING 

METHODOLOGY 

EXPLANATORY VARIABLES 

ABAZA  2004 − USA AC PSI − AASHTO FP  PA, MR, ESALs, SN 

ABDELAZIZ ET AL. 2018 − USA, 

Canada 

AC IRI − LTPP FP, ANN   PA, Initial IRI, Transverse and 

Alligator Cracks, RUT 

AHMED ET AL. 2016 Indiana USA AC, PCC IRI IS, NHS-
NIS 

INDIPAVE2000, 
InDoT 2011a 

FP AADT, AAFI, Time 

ALEADELAT ET AL. 2018 Wyoming  USA AC PSI Locals Pathway services 

Inc. 2014 

FP PCI, IRI, Rut 

AL-SULEIMAN AND 

SHIYAB 

2003 Dubai UAE AC IRI Majors In situ gathered data FP PA, PSI 

AMIN AND AMADOR-

JIMÉNEZ 

2016 Montreal 

City  

Canada AC, PCC PCI Collectors

, Arterials 

Montreal City 

database 

ANN (BPN, GDR 

algorithms) 

AADT, ESALs, SN, PA, Layer 

Thickness 

BEKTAS ET AL. 2014 Iowa USA AC, PCC, 

others 

PCI-2  IS, Non-

NHS 

Iowa database FP Cracking, Riding, Faulting Indices 

BIANCHINI AND 

BANDINI 

2010 Minnesota US 

(Midwest) 

AC PSI Rural MnRoad  ANN/feedforward, Fuzzy 

Logic 

SCI, Deflection RUT, Layer 

Thickness, ESALs 

DALLA ROSA ET AL. 2017 Texas USA AC IRI Rural, 

Urban 

TxDOT database FP PA, Initial IRI, Climate Zone, ESALs, 

Layer Thickness 

HONG AND PROZZI 2010 Minnesota USA 

(Midwest) 

AC IRI Rural MnRoad  FP, RP, RE ESALs, Layer Thickness, PA, Frost 

Heave, Maintenance, Asphalt Mixture 

KHAN ET AL. 2014 Queensland Australia AC DR − Queensland (TMR-

QLD database) 

Markov chain PA, Layer Thickness, AADT, ESALs 

KHATTAK ET AL. 2014 Louisiana  USA Composite IRI IS, 

Arterials, 
Collectors 

 Louisiana DOT 

database 

FP ESALs, Pre- and Post-treatment IRI, 

PI, TI 

KIM AND KIM 2006 Georgia USA AC PACES State, IS PACES database of 

Georgia 

FP PA, AADT 

LA TORRE ET AL. 1998 − USA AC IRI − LTPP ANN ESALs, Freezing Index, Air Voids, 
Base Thickness, Precipitation, PA 

LABI ET AL. 2006 Indiana USA 

(Midwest) 

AC IRI, PCR, RUT IS, NIS INDOT, Indiana 

County Flow Map, 
NOAA 

FP AADT, %truck, ESALs, Freeze Thaw 

Cycles, Freezing Index, Micro-
surfacing Treatment 

LOU ET AL. 2001 Florida USA AC, PCC CI − FDOT database ANN (BPN) Maintenance Cycle, PA  

LUO 2013 Ohio  USA 

(Midwest) 

AC PCR − Ohio DOT database Auto-regression PA, Past Pavement Condition 

MAZARI AND 

RODRIGUEZ 

2016 *Multiple 

Regions 

USA, 

Canada 

AC IRI − LTPP GEP, ANN, Hybrid GEP and 

ANN 

PA, ESALs, Initial IRI 

ELDIN AND SENOUCI 2011 Oregon USA AC CR − Oregon DOT 

database 

ANN (BPN) RUT, Bleeding, Alligator 

&Transverse, and Block Cracking, 
patching/pothole, Raveling 
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PLATI ET AL. 2016 − Greece AC Ɛ − In situ gathered data FP, ANN  Deflection, Layer Thickness 

PROZZI AND MADANAT 2003 − USA AC PSI − AASHO Road Test 
1962 

FP, RE ESALs, Frost Gradient, Layer 
Thickness 

RAJAGOPAL  2006 Ohio  USA 

(Midwest) 

AC, PCC PCN Urban 

Majors, 
Minors  

Cincinnati database FP PA, Surface Condition, 

Environmental Factors 

ROSE ET AL. 2018  India AC Raveling, 

Pothole, Edge 

Failure  

Rural  Binu’s (2012)  Probabilistic PA, Construction Quality 

SAEED ET AL. 2017 − − Multiple 

Types  

− Multiple 

Classes 

− FP Traffic Loading, Freezing Index 

SANDRA AND SARKAR 2013 Rajasthan 
state 

India AC IRI NHS, 
State, 

Major 

District  

In situ gathered data FP Cracking, Potholes, Patching, RUT, 
Raveling 

SILVA ET AL.  2000 Michigan USA 
(Midwest) 

AC PASER − Michigan Counties Logistic growth, Markov 
chain 

PA 

TERZI 2007 − USA AC PSI − AASHTO  ANN (LMBPN) IRI, Cracking, Patching, RUT 

XU ET AL. 2015 Kentucky USA AC IRI, Cracking, 

Raveling 

IS 

Parkways 

KTC  FP AADT, PA, Cracking, Raveling, IRI 

YANG ET AL.  2003 Florida USA AC, PCC Cracking, 

Riding, RUT  

− FDOT database ANN (BPN) PA, Maintenance Cycle 

ZIARI ET AL. 2016 − USA AC IRI − LTPP ANN, GMDH PA, AAP, AADT, AAFI, AAT, 

AADTT, ESALs, ST, PT 

Note: CI: Crack Index, BPN: Backpropagation Neural,  FDOT: Florida Department of Transportation, CR: Condition Rating, PSI: Present Serviceability Index, LMBPN: Levenberg-

Marquardt Backpropagation Neural, GMDH: Group Method of Data Handling, AAP: Annual Average Precipitation, AAT: Annual Average Temperature, AAFI: Annual Average 

Freezing Index, ESALs: Equivalent Single Axle Loads, AADT: Annual Average Daily Traffic, AADTT: Annual Average Daily Truck Traffic, TxDOT: Texas Department of 

Transpiration, GEP: Gene Expression Programming, SN: Structural Number, PASER: Pavement Surface Evaluation and Rating, MnRoad: Databased of Minnesota Road Test Project, 

RE: Random Effects Model, RP: Random-parameter Regression, FP: Fixed-parameter Regression, NHS: National Highway System, Non-NHS: Non- National Highway System, 

PCI-2: Pavement Condition Index Developed for Iowa state,  FWD: Falling Weight Deflectometer, SCI: Surface Curvature Index, NOAA: National Oceanic and Atmospheric 

Administration,  INDOT: Indiana Department of Transportation, NHS-NIS: National Highway System-Non Interstates, IS: Interstate Highways, INDIPave: Database for Indiana 

state, PCR: Pavement Condition Rating, PI: Precipitation Index, TI: Temperature Index, PCI: Pavement Condition Index, AC: Asphalt Concrete pavements, PCC: Portland Cement 

Concrete pavements, PA: Pavement Age, and *Multiple Regions: Indiana, Iowa, Maryland, New Jersey, New York, Tennessee, Arkansas, and Oklahoma in United States, New 

Brunswick and Prince Edward Island in Canada. 
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 Probabilistic Modeling of Pavement Performance 

Reliable models of pavement deterioration play a crucial role in effective decision-making for 

maintaining and rehabilitating this class of infrastructure. Probabilistic modeling approaches have 

gained popularity in pavement deterioration modeling because they account not only for the 

stochastic nature of pavement behavior and deterioration factor variations but also for the 

imperfections and inadequacy of pavement condition data in certain situations. One of these 

approaches, Markov chains, has been used extensively to model the probabilistic performance of 

pavements through an interesting variety of methodological tweaks in the Markov model structure. 

Unfortunately, the current literature lacks a synthesis of Markovian models and their associated 

methodologies, as used in this manner. It is anticipated that a comprehensive synthesis of these 

models and their various forms can provide some insight into the variations of Markov model 

forms and methodologies, and the appropriate Markov model type to use for pavement 

deterioration modeling under given conditions of data types and availability. To address this issue, 

this section reviews Markovian models that were used in the literature to model pavement 

deterioration and the methodologies used to estimate the transition probabilities which are a key 

feature of Markov models. This section presents a critical analysis of various aspects of Markovian 

models as they were applied in the literature, reveals gaps in knowledge, and offers suggestions to 

address these gaps. This section also presents a proposed decision tree that an infrastructure agency 

could use to select appropriate Markov model type and methodology, to model the deterioration 

of a given pavement under given conditions of data availability. 

2.3.1. Introduction 

Pavement condition is evaluated with respect to its structural and functional capacities. Pavement 

structural capacity refers to its load-carrying strength, while pavement functional capacity refers 

to its level of service provided to roadway users. These structural and functional capacities are 

represented by condition indices/indicators such as international roughness index (IRI) and present 

serviceability rating (PSR). A closely related concept is pavement performance which refers to, 

according to AASHTO (1993), the trend of pavement serviceability over a period of time, where 

the serviceability indicates the ability of pavements to serve the traffic demand in the existing 
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condition. Pavement performance models that are essential for effective decision-making of 

pavement maintenance and rehabilitation (M&R) need reliable and accurate predictions of 

pavement condition. The reliability and accuracy of condition predictions hinge on the quality and 

availability of pavement condition data and the modeling methodology. 

 

Pavement performance models can be deterministic or probabilistic. Unlike deterministic models 

(Yamany et al. 2019b; Yamany et al. 2020b) the probabilistic models account for the variability 

and uncertainty in pavement condition data. These variability and uncertainty stem from: (a) 

measurement errors; (b) randomness of pavement deterioration; (c) inability to model the true 

deterioration process; (d) difficulties in quantifying the effect of all significant relevant variables; 

and (e) potential bias associated with the models built by using subjective expert judgment (Li 

2005; Rose et al. 2018). Probabilistic models are categorized as follows: econometric, Markov 

chain, and reliability analysis models (Li 2005; Porras-Alvarado et al. 2014). Another way to 

classify probabilistic models is the criterion for change: state-based vs. time-based. State-based 

models, e.g., Markov processes, estimate the probability that pavement condition changes from 

one state to another in a given time period. Time-based models, e.g., duration models, estimate the 

probability of the time taken by pavement to change its condition state (Ford et al. 2011). 

 

Although Markov models are the most commonly used probabilistic method for pavement 

performance modeling, the current relevant literature lacks a synthesis of Markovian models and 

their associated methodologies. Such a comprehensive synthesis of these models and their various 

forms can provide insights into the variations of Markov model forms and methodologies, and the 

appropriate Markov model type to use for pavement deterioration modeling under given conditions 

of data types and availability. As such, section 2.3 presents a state-of-the-art review for the 

probabilistic modeling of pavement performance using Markov chains. It discusses the properties 

and assumptions of Markov chain models, the categories of Markov chain models and the methods 

of estimating pavement transition probabilities. In addition, section 2.3 introduces a critical 

assessment for prior Markovian pavement performance models. Based on the insights from the 

literature, a decision tree is proposed to help future researchers and highway agencies select their 

appropriate Markov models for their pavements. Finally, this section highlights the existing gaps 
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in the pertinent knowledge and suggests future research solutions and methodologies to bridge 

these gaps. 

2.3.2. Markov Chain Models: Properties and Assumptions 

Markov chain models consist of three main components: condition state vector (𝑆), duty cycle or 

transition period, and transition probability matrix (TPM). Figure 2.10 depicts a graphical 

representation example of general Markov transition probabilities with condition states in nodes 

and transition probabilities on arrows. 

 

 

Figure 2.10. Transition probabilities diagram 

 

The state space in this example is 𝑋 =  {1,  2 , 3}, and the transition probability matrix is as 

follows: 

 

TPM =  ℙ =  [
𝑃11 𝑃12 𝑃13

𝑃21 𝑃22 𝑃23

𝑃31 𝑃32 𝑃33

]                       (2.1) 

 

In pavement performance models, the state space represents different pavement conditions 

measured by composite condition indices (e.g., pavement condition index (PCI)), individual 

distresses (e.g., cracking), or remaining service lives (Porras-Alvarado et al. 2014).  The condition 

state vector is a list of probability distributions corresponding to the pertinent state space; 

𝑆𝑖 = {𝑆𝑖1,  𝑆𝑖2, 𝑆𝑖3, … }; where 𝑆𝑖  is the condition state vector at time 𝑖, any 𝑆𝑖𝑋  ≤ 1, and ∑ 𝑆𝑖𝑋
𝑋 =

1. Markov models estimate the future pavement condition (𝑆𝑖+1) based on the current pavement 

condition (𝑆𝑖) according to the memoryless property of Markov process and the transition 

probabilities of pavement deterioration and improvement (TPM ); 𝑆𝑖+1 = 𝑆𝑖  ×  TPM . 
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Pavement condition bounces across three phases: (1) stays at its current state 𝑖, (2) transits to lower 

states 𝑖 + 1, 𝑖 + 2,… etc., or (3) transits to upper states 𝑖 − 1, 𝑖 − 2,… etc., when maintenance or 

rehabilitation treatment is implemented. The condition state vector is comprised of a number of 

condition states defined by their probability distributions. The number of condition states depends 

on data availability  (Martin and Kadar 2012), and it needs to be chosen prudently to capture the 

entire pavement condition over its lifespan (Porras-Alvarado et al. 2014). In pavement 

performance models, typically 10 condition states (from 1 to 10) are assumed; where state 1 

represents the best condition, and state 10 represents the worst condition. However, past research 

assumed different numbers of pavement condition states such as 20 states (Macleod and Walsh 

1998) and four states (Porras-Alvarado et al. 2014). The probability distribution of each condition 

state is calculated as the percentage of the number of pavement sections or the number of pavement 

lane-miles that lies within each state to the total size of pavement network. 

 

The duty cycle is the duration during which pavement section transits from a condition state (𝑖) to 

another state (𝑗) with a corresponding probability (𝑃𝑖𝑗). The duty cycle can be a continuous time 

as in continuous-time Markov chain or a discrete time as in discrete-time Markov chain.  Most 

prior studies assume discrete transition times for pavement performance models (Abaza 2016b; 

Abaza et al. 2004; Kobayashi et al. 2010; Pérez-Acebo et al. 2018). The selection of the duty cycle 

length depends on the analysis level, pavement deterioration rate and pavement inspection 

intervals. Prior research (Abaza 2016a, b; Abaza and Murad 2010; Butt et al. 1987; Li et al. 1996; 

Pulugurta et al. 2009) reported that a duty cycle of one-year length for the entire pavement lifespan 

is reasonable since most agencies monitor their infrastructure annually. The length of the duty 

cycle can be of fixed value other than one-year (Pérez-Acebo et al. 2018) or of varying values 

corresponding to different pavement deterioration rates. 

 

The common assumptions of Markov chain models for pavement condition prediction include 

pavement deterioration is a discrete process, whereas it is continuous in nature. The duty cycle is 

one year because most highway agencies inspect their pavements annually. Pavement condition 

states can only move to one state lower every duty cycle. In other words, in the square TPM 

matrix, 𝑃𝑖,𝑖 and 𝑃𝑖,𝑖+1 are the only existent probabilities in each row of the matrix; where 𝑖 is the 
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state number, and 𝑃𝑖,𝑖 + 𝑃𝑖,𝑖+1 = 1. The effect of the maintenance and rehabilitation treatments is 

not considered in estimating pavement transition probabilities, i.e. 𝑃𝑖,𝑖−1 =  0. The last state (𝑛) is 

an absorbing state, i.e., 𝑃𝑛,𝑛 = 1, because it is the worst condition state pavements can occupy.  

2.3.3. Types of Markov Chain Models 

Based on the assumptions of the transition probability matrix and the dependent variable (i.e. 

pavement condition), Markov chain models can be categorized as follows: homogeneous Markov, 

staged-homogeneous Markov, non-homogeneous Markov, semi-Markov, and hidden Markov 

models. Figure 2.11 shows the types of Markov chain models and the corresponding TPM 

estimation methods for pavement performance. 

 

 

Figure 2.11. Markov Chain models and TPM estimation methods for pavement performance 

2.3.3.1. Homogeneous Markov Models 

These models are time-independent, do not require large amounts of historical data, and are 

computationally simpler for pavement condition prediction. The data needed for these models is 

the pavement condition observations of two successive transitions. The future pavement condition 

after a period of time 𝑡 is calculated by multiplying the current probability distributions (𝑆0) by 

the TPM (ℙ) raised to the power 𝑡; 𝑆𝑡 = 𝑆0  ×  ℙ𝑡. 
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The TPM of homogeneous Markov models is estimated using the expected-value or percentage 

transition methods. The expected-value method estimates 𝑃𝑖𝑗  by minimizing the difference 

between the predicted pavement condition using Markov models and predetermined control points. 

These control points could be: [1] the actual pavement condition, [2] the predicted pavement 

condition using simple linear regression analysis, or [3] the actual probability distributions of 

pavement condition. The percentage transition method estimates 𝑃𝑖𝑗  as the percentage of pavement 

sections (number of pavement sections, total length of pavement sections, or total remaining 

service lives of pavement sections) that have moved from state 𝑖 to state 𝑗 during the time 𝑡 to the 

total pavement sections that were originally in state 𝑖. 

 

Ortiz-García et al. (2006) used the expected-value method to derive TPMs for homogeneous 

Markov models to predict pavement cracking, raveling, roughness and rutting. To estimate the 

TPM, they minimized the difference between the models’ predictions and each control point. Ten 

condition states and 1-year duty cycle were assumed for the Markovian model structure. Different 

pavement performance patterns were assumed, and then pavement condition data was generated 

for 20 years. Pavement condition was predicted using the minimization with respect to each type 

of control points and then compared with the actual observations. For the control points 1 and 2, 

the predicted pavement conditions were found to be different from the actual observations, but for 

the third type of control points, the predicted and actual probability distributions were found to be 

similar. Hence, the excepted-value method is considered of high reliability in estimating pavement 

TPM when the third type of control points is used. Wang et al. (1994) derived TPMs for 

homogeneous Markovian models using the percentage transition method to predict pavement 

cracking and roughness in Arizona. Pavement sections were categorized into various groups based 

on traffic volume and weather condition to account for the variation in the data of pavement 

sections. Wang et al. (1994) found that the developed pavement performance curves using the 

percentage transition method match the actual performance curves. Pulugurta et al. (2009) 

developed homogeneous Markov models to predict pavement distress ratings and PCR in the state 

of Ohio. Ten condition states and 1-year duty cycle were assumed for the Markov model structure. 

The transition probabilities were estimated using the percentage transition method and the 

methodology introduced by Wang et al. (1994). Pavements were grouped based on their respective 
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traffic volume, weather condition, and treatment type. The estimated TPM was found to be 

overestimated during the latter ages of pavement, and so the researchers used the statistical 

imputation to overcome this overestimation. 

 

Abaza and Murad (2010) and Abaza (2014) estimated the TPM for homogeneous Markovian 

models to optimize pavement rehabilitation treatments and predict pavement distress rating (DR) 

in Palestine. Ten condition states and 1-year duty cycle were assumed for the Markovian models’ 

structure. The TPM was estimated as the percentage of the number of remaining pavement sections 

in each state at the end of the duty cycle to the total number of sections at the beginning of the duty 

cycle. Butt et al. (1987) had found that pavement deterioration rates do not change significantly 

during a period of 5 or 6 years, and thus Abaza and Murad (2010) assumed an analysis period of 

5 years for their model. Abaza (2014) investigated the sensitivity of the TPM to pavement section 

lengths 10, 30, 50 and 100m, and he concluded that the transition probabilities become more 

unstable when pavement section length increases. As a result, he recommended using shorter 

pavement sections to avoid instability in TPM values. 

 

Abaza (2004) developed homogeneous Markov models to predict pavement present serviceability 

index (PSI). He estimated the TPM as the ratio between the actual transition time that each state 

takes to move to the next state and the duty cycle. He assumed five condition states and one and 

two years for the duty cycle. The transition time was interpolated from a deterministic pavement 

performance curve that represents the relation between pavement PSI and respective equivalent 

single axle loads (ESALs) using the AASHTO's design methodology (AASHTO 1993). The 

estimated transition probabilities were found to be consistent with the engineering intuition. Table 

2.2 shows the key studies that used the expected-value and the percentage transition methods to 

estimate TPMs for homogenous Markov models for pavements. 
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Table 2.2. Prior homogenous Markov models and associated TPM estimation methods 

Expected-value Percentage Transition 

Control Points Key Studies Percentage 

Calculation 
Key Studies 

Actual pavement 

condition 
Shafahi and 

Hakhamaneshi (2009) 

Percentage of 

pavement length that 

transits to different 

states 

Wang et al. (1994); 

Pulugurta (2007); Chou et al. 

(2008); Pulugurta et al. 

(2009); Hassan et al. (2017a; 

b); Osorio-Lird et al. (2018),  

Predicted 

pavement 

condition using 

linear regression 

Ranjith et al. (2011) Percentage of the 

number of pavement 

sections that transit 

to different states 

Macleod and Walsh (1998); 

Panthi (2009); Mandiartha et 

al. (2010); Abaza and Murad 

(2010); Abaza (2014); Pérez-

Acebo et al. (2018)  

Actual probability 

distributions of 

pavement 

condition 

Ortiz-García et al. 

(2006); Chun et al. 

(2012); Porras-

Alvarado et al. (2014) 

Percentage of the 

duty cycle to the 

transition time 

Abaza (2004) 

 

Although the homogenous Markov models are computationally easy, they suffer from several 

drawbacks. The results of homogeneous Markov models can be questionable because of their 

stationary assumption (Li 2005). This assumption ignores the change in pavement deterioration 

rate due to the increase in traffic loading and the degradation of pavement structural capacity 

(Abaza 2016a). Additionally, the homogeneous Markovian models do not account for the impact 

of the exogenous variables such as traffic loads and environmental conditions. To overcome this 

limitation, pavement sections can be segmented based on pavement attributes such as pavement 

age, traffic loading, and climate severity. However, the pavement section segmentation decreases 

the sample size which in turn lowers the accuracy of Markovian models. Homogeneous Markov 

models could yield an overestimation of pavement condition over the entire lifetime of pavement 

(Durango 2002) or its latter ages (Pulugurta et al. 2009). This overestimation could lead to 

insufficient M&R actions during pavement life. Statistical imputation techniques were 

recommended by Pulugurta et al. (2009) to avoid this expected overestimation. 

 

The expected-value and transition percentage methods are typically used to derive constant TPMs 

for the homogeneous Markov models of pavement condition prediction. These methods require 

two consecutive transitions of pavement conditions, which is insufficient to capture the historical 
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behavior of pavements. To overcome this limitation, Ortiz-García et al. (2006) suggested 

calculating the average transition probabilities for more than one duty cycle. Ranjith et al. (2011) 

concluded that the expected-value method is more accurate than the percentage transition in 

estimating the TPM for modeling timber bridges’ elements. In the expected-value method, the 

methodology of minimizing the difference between the estimated pavement condition using simple 

linear regression and using Markov models is unreliable since the relationship between pavement 

condition and pavement age is non-linear, and pavement age is not the only variable influences 

pavement condition.  

2.3.3.2. Staged-homogeneous Markov Models 

Butt et al. (1987) introduced this type of models to overcome the limitation of data unavailability 

when developing a non-homogeneous Markov model. Staged-homogeneous Markov models 

involve dividing the analysis period into zones, each of 5 or 6 years at maximum. Pavement 

sections are sorted and grouped based on their ages. Homogeneous TPMs are established for every 

zone. The future condition of pavement section at any time 𝑡  is calculated by multiplying the 

current probability distributions of this section by the TPM of every zone until the time 𝑡, i.e., 𝑆𝑡 =

𝑆0 ×  ℙ1
𝑧 ×  ℙ2

𝑧  × …×  ℙ𝑡
𝑡−𝑛𝑧; where ℙ1

𝑧 is the TPM of the first zone raised to power 𝑧, and 

𝑧 is the zone size in years; ℙ𝑡
𝑡−𝑛𝑧 is the TPM of the zone that includes the time 𝑡, and 𝑛 is the 

number of zones until the zone that includes 𝑡. In the staged-homogeneous Markov models the 

TPM is estimated using the expected-value or percentage transition methods.  

 

Butt et al. (1987) developed a staged-homogeneous Markov model to predict pavement PCI using 

data from the PAVER database.  They assumed 10 condition states with 1-year duty cycle for the 

Markov model structure. The zone size was assumed to be 6 years. The TPM was estimated using 

the expected-value method by minimizing the difference between the actual and predicted 

pavement condition. The developed model was validated by comparing its predictions with the 

actual observations and with the predictions from a previous homogeneous Markov model that 

was developed by Keane and Wu (1985) in collaboration with the U.S. Army Construction 

Engineering Research Laboratory (USA-CERL). The results showed that the staged-homogeneous 

Markov model of Butt et al. (1987) outperforms its homogeneous counterpart of Keane and Wu 

(1985). Abaza (2016a) presented staged-homogeneous Markov models to predict pavement 
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deterioration rate (DR) using data spanning from 1998 to 2015 for a major urban arterial road in 

Palestine. Two models were built: three-year and five-year staged-homogeneous Markov models. 

The TPMs were estimated using the percentage transition method with the transition probability 

equals the proportion of the number of pavement sections that transits from one state to another. 

The TPM was assumed to change by a constant C every stage/zone (3 or 5 years) in both models. 

The constant C was assumed to take on values greater than 1, and its value was exactly determined 

by minimizing the difference between the actual and predicted transition probabilities/DRs.  Both 

models of Abaza (2016a) were found to be statistically reliable in predicting pavement condition. 

However, the three-year staged-homogeneous Markov model was found to be superior to the other 

model with respect to the sum square errors (SSE). Table 2.3 presents the key studies that used 

staged-homogeneous Markov models and their corresponding TPM estimation methods for 

pavement performance modeling. 

 

Table 2.3. Prior staged-homogenous Markov models and associated TPM estimation methods 

Expected-value Percentage Transition 

Control Points Key 

Studies 

Percentage Calculation Key 

Studies 

Actual pavement condition - Percentage of pavement length that 

transits to different states 

- 

Predicted pavement condition 

using linear regression 

Butt et al. 

(1987) 

Percentage of the number of pavement 

sections that transit to different states 

Abaza 

(2016a) 

Actual probability 

distributions of pavement 

condition 

- Percentage of the duty cycle to the 

transition time 

- 

 

The staged-homogeneous Markov models have two advantages. First, they are more reliable than 

the homogeneous Markov models in pavement condition prediction because they account for the 

non-stationary process of pavement deterioration. Second, they require relatively limited amounts 

of data. However, since the staged-homogeneous Markov models use the expected-value and 

percentage transition methods to estimate TPMs, they suffer from the limitations of these TPMs’ 

estimation methods (discussed earlier). Unlike the staged-homogeneous Markov models found in 

the literature and because pavement deterioration rate varies over time, the analysis period should 
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be divided into unequal zones based on pavement performance curve and its respective rate of 

deterioration, not into constant zones. 

2.3.3.3. Non-homogeneous Markov Models 

These models are time-dependent and consider the non-stationary property of pavement 

deterioration process. These models account for the uncertainty inherently attributed to 

explanatory variables such as traffic loads and weather conditions (Abaza 2016a; Kobayashi et al. 

2010; Li 1997, 2005). Although non-homogeneous Markov models fit realistically the random 

behavior of pavement condition over time, they have not been adopted widely in pavement 

performance modeling because they require extensive computation and large amounts of data. The 

future condition of pavement at any time 𝑡 is calculated by multiplying the current probability 

distributions of this pavement by the TPM of every duty cycle until the time 𝑡, i.e., 𝑆𝑡 =

𝑆0  ×  ℙ1  ×  ℙ2  × …× ℙ𝑡. In non-homogeneous Markov models, the TPM is estimated using 

one of the following methods: percentage transition, simulation-based, econometric models or 

duration models. 

 

Abaza (2017a) developed a non-homogeneous Markov model to predict pavement DR in Palestine. 

Ten condition states and 1-year duty cycle were assumed for the Markovian model structure. He 

used the percentage transition method to estimate the TPM of the first duty cycle. The remaining 

TPMs were calculated by multiplying the TPM of the first duty cycle by the two factors: traffic 

loads and pavement structure number. The developed models yielded transition probabilities 

comparable with the actual data, which ascertains that the change in pavement deterioration rate 

due to traffic loading should be considered when modeling pavement performance. Furthermore, 

the TPM can be estimated using the simulation-based method in which transition probabilities are 

expressed in terms of the percentiles of pavement condition states. Li (1997) and Li et al. (1996) 

used this method to develop non-homogeneous Markov models to predict pavement condition. 

The pavement deterioration formula developed in the model of Ontario Pavement Analysis of Cost 

(2000) was employed, and the impact of the ensuing explanatory variables was included: material 

modulus and thickness of each pavement layer, subgrade modulus, annual average daily traffic 

(AADT), traffic growth rate, truck percentage, number of traffic lanes in each direction, and 

ESALs. Using Monte Carlo simulation, the transition probabilities of pavement condition were 
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estimated assuming that the studied variables follow the standard normal distribution. The 

researchers further checked the sensitivity of the transition probabilities to the independent 

variables considered in their study, and they found that pavement transition probabilities are 

significantly sensitive to traffic growth rate, subgrade strength and pavement layer thickness. 

 

The econometric models are recommended for TPM estimation to reflect the historical behavior 

of pavement condition based on large amounts of historical data. These models associate pavement 

deterioration with the influential pertinent explanatory variables. Also, they yield pavement 

condition predictions that are more accurate than that obtained from the abovementioned methods, 

percentage transition and simulation-based (Madanat et al. 1995, 1997; Yang et al. 2005). The key 

econometric models that are used in Markovian pavement performance models include probit, 

logit and ordered-probit. Probit and logit models are employed to statistically model pavement 

condition states as discrete variables. They are grouped into binary and multinomial models based 

on the number of outcomes of the model. These models assume a latent continuous dependent 

variable (𝑈) that takes values from −∞ to ∞, and correlates with an explanatory variables vector 

(𝑋). The probability of selecting a specific choice or for the outcome to be equal to a specific value 

depends on the estimated 𝑈 for all choices or for all expected values. Equation 2.2 shows the 

estimation of the probit or logit models; where 𝑃(𝑖) is the probability of choice 𝑖, 𝐼 is the total 

number of choices, 𝑛 is the number of observations, 𝛽 is the model parameter, and 휀 is the error 

term. 

 

𝑃𝑛(𝑖) = 𝑃(𝛽𝑖𝑋𝑖𝑛− 𝛽𝐼𝑋𝐼𝑛  ≥ 휀𝐼𝑛 − 휀𝑖𝑛)      ∀ 𝐼 ≠ 𝑖                               (2.2) 

  

In probit models, the error term follows the standard normal distribution (Φ), whereas, in logit 

models, it follows the logistic distribution. The maximum likelihood estimation (MLE) method is 

used to estimate models’ parameters (𝛽) by maximizing the log-likelihood function that is 

illustrated in Equations 2.3 and 2.4 for probit and logit models, respectively. 

 

𝐿𝑜𝑔_𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 𝐿𝐿 = ln 𝑃(𝑖)

= ∑ 𝛿𝑖 𝑙𝑛 𝛷(

𝑁

𝑛=1

𝛽1𝑋1𝑛− 𝛽2𝑋2𝑛) + (𝛿𝑖 − 1) 𝑙𝑛 𝛷(𝛽1𝑋1𝑛− 𝛽2𝑋2𝑛)            (2.3) 
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𝐿𝐿 =  ∑ ∑𝛿𝑖𝑛

𝐼

𝑖=1

[(𝛽𝑖𝑋𝑖𝑛) − 𝑙𝑛 ∑ 𝐸𝑋𝑃(𝛽𝐼𝑋𝐼𝑛)
∀𝐼

]

𝑁

𝑛=1

                                (2.4) 

 

where 𝛿𝑖 is the value of the choice 𝑖. Yang et al. (2005) developed a non-homogeneous Markov 

model to predict pavement cracking rate using logit models to estimate the TPM. Pavement 

condition data were retrieved from the state of Florida during the period from 1986 to 2003. The 

pavement age, ESALs, crack index (CI) and a number of rehabilitation cycles were found to be 

statistically significant in estimating pavement TPMs. The researchers set the pavement data of 

2003 aside to build a homogeneous Markov model, and then compare its results with that of the 

non-homogeneous Markov model. The values of the validation measures: average absolute error 

(AAE), root mean square error (𝑅𝑀𝑆𝐸) and coefficient of determination (𝑅2), demonstrated the 

superiority of the non-homogeneous Markov model to the homogeneous Markov model. The study 

conducted by Yang et al. (2005) assures that pavement condition propagates due to exogenous 

variables that  should be taken into account when developing Markovian prediction models for 

pavements. Yang et al. (2006) developed an artificial neural networks (ANNs) model to predict 

pavement CI. The research team compared the results of the ANNs model with that of their non-

homogeneous Markov model of 2005. Based on the values of the same validation measures they 

used in 2005 with respect to both models, they found that both models have a similar performance 

for a single-year prediction, but the non-homogeneous Markov model was found to be more 

accurate than the ANNs for multiple-year predictions. 

  

Ordered-probit models estimate discrete and ordered dependent variables when the order matters. 

Equations 2.5 shows the estimation of ordered-probit models. 

 

𝑃(𝐶𝑛 = 𝑘) =  Φ(Ψ𝑘 −  𝛽𝑋𝑛) −  Φ(Ψ𝑘−1 −  𝛽𝑋𝑛)                     (2.5) 

 

where 𝐶𝑛 is the choice of 𝑛 observations, 𝑘 is the choice value (0, 1 , … , 𝐾), Φ is the cumulative 

distribution function, and Ψ𝑘 is the order of the choice 𝑘. The MLE method is used to estimate the 

model’s parameters (𝛽,Ψ). Li (2005) developed ordered-probit and sequential logit models to 

estimate the TPM for pavement PSI prediction. The sequential logit model is a series of 
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independent binary logit models. Unlike ordered-probit models, sequential logit models account 

for the dependency between condition states. Pavement structure and environment relevant 

variables and traffic loading were considered in these models. Data from the AASHO Road Test 

was employed for models’ validation. These models were compared with prior three models 

namely, the non-homogeneous and homogenous Markov models of Butt et al. (1987) and Wang 

et al. (1994), respectively, and the duration model of Prozzi and Madanat (2000). The ordered-

probit and sequential logit models were found to be reliable in the prediction of pavement PSI, and 

more accurate than the prior three models.  

 

Duration models assume that the transition probability of pavement condition is the probability 

distribution of the time elapsed until pavement changes its condition state.  Duration models are 

effective in estimating the TPMs if relevant data are available for more than 10 years. Also, they 

account for censored data that is inherently associated with infrastructure data collection (Mauch 

and Madanat 2001). In the duration models, the data is considered either left-censored, right-

censored or interval censored if the duration of leaving a given state is less than a certain value, 

greater than a certain value or on an interval between two values, respectively. The estimation of 

pavement transition probabilities using duration models is presented in Equations 2.6 and 2.7 based 

on the study of Mishalani and Madanat (2002). 

 

𝑅(𝑡, ∆𝑡) =  𝑃(𝑡 < 𝑇 < 𝑡 + ∆𝑡 |𝑇 > 𝑡)                             (2.6) 

 

𝑅(𝑡, ∆𝑡) =  
𝑃(𝑡 < 𝑇 < 𝑡 + ∆𝑡 )

𝑃(𝑇 > 𝑡)
=  

𝐹(𝑡 + ∆𝑡) − 𝐹(𝑡)

1 − 𝐹(𝑡)
=  

𝐹(𝑡 + ∆𝑡) − 𝐹(𝑡)

𝑆(𝑡)
          (2.7) 

 

where 𝑅(𝑡, ∆𝑡) is the transition probability from state 1 to state 0 during the time ∆𝑡 conditional 

on the observed state 1 at time 𝑡,  𝐹(𝑡) is the cumulative distribution function of the duration 

random variable 𝑇, 𝑆(𝑡) is the survivor probability. When ∆𝑡 approaches Zero the transition 

probability is called hazard rate. The hazard rate is estimated using parametric, semi-parametric or 

nonparametric models. In parametric models, the hazard rate follows a pre-specified distribution 

such as the normal or exponential distribution, which is a limitation of these models (Mishalani 

and Madanat 2002). Semiparametric models relax the limitation of the parametric models and 
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determine the distribution of the hazard rate based on the actual data. Unlike parametric models, 

Semiparametric models relate the hazard rate to its pertinent exogenous variables. Nonparametric 

models neither assume distribution function nor derive a specific relation between the hazard rate 

and its exogenous variables (Mauch and Madanat 2001), but it mainly depends on the training 

dataset. Kobayashi et al. (2010) developed condition prediction models for pavement IRI, rutting 

and cracking. For the estimation of pavement TPMs, they implemented the duration models to 

account for the irregularities in pavement inspection periods. Pavement condition was discretized 

to five condition states. Four hazard models following the exponential distribution were developed 

to calculate the transition probabilities of states 1, 2, 3 and 4. The ESALs and the structural number 

(SN) variables were included in the hazard models. Data from a national highway in Korea was 

used for models’ validation. The results showed that the predicted transition probabilities fit the 

actual observations. Table 2.4 shows a summary of the TPM estimation methods for non-

homogeneous Markovian models along with the key studies that used these methods for pavement 

condition predictions. 

 

Li (2005) stated that the simulation-based method is less expensive with respect to the computation 

process and data collection than the transition percentage method when they are used for non-

homogeneous Markovian models. Prior researchers such as Li et al. (1996) and Li (1997) used the 

simulation-based method to estimate pavement TPMs; however, they were limited to the 

assumption that the explanatory variables follow the standard normal distribution. The 

econometric models link relevant explanatory variables to a latent continuous variable that is 

further used to estimate the discrete dependent variable (condition states). A methodology which 

simulates the latent nature of pavement deterioration process. Since these models consider the 

effect of pertinent independent variables in the estimation of pavement TPMs, the segmentation of 

pavement sections that is recommended to capture the impact of exogenous variables in other 

models, is not necessary. These econometric models utilize the MLE method to estimate models’ 

parameters, thus they need an extensive amount of data. The MLE method assumes the standard 

normal distribution or logistic distribution and the homoscedasticity. If these assumptions are 

violated, the computation process becomes complex, and the accuracy of the models becomes 

questionable. Also, the interpretation of parameters estimated by the MLE is difficult compared 

with that by the Ordinary Least Squares (OLS). The econometric models assume that condition 
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states are independent and identically distributed; however, future condition states of pavements 

hinge on the current and previous historical condition states. Additionally, these models do not 

account for data censoring that results from the infrequent or lack of pavement condition 

inspections (Mishalani and Madanat 2002). Madanat et al. (1997) developed a random-effect 

probit model to predict the condition of bridge decks. They found that when probit models were 

associated with random-effect models, they were able to capture the heterogeneity attributed to 

infrastructure data and yield more accurate predictions than when using probit models only. Future 

research is encouraged to explore the association of random effect with the probit models 

developed for pavement condition prediction to account for the heterogeneity that is attributed to 

pavement condition data. 

Table 2.4. Prior non-homogenous Markov models and associated TPM estimation methods 

Percentage Transition Simulation-

based 

Econometric Models Duration Models 

Percentage 

Calculation 

Key 

Studies 

Key Studies Models Key Studies Hazard 

Rate 

Technique 

Key 

Studies 

Percentage of 

pavement 

length that 

transits to 

different states 

- Li et al. 

(1996); 

Li (1997) 

Probit - Parametric Mishalani 

and 

Madanat, 

(2002) 

Percentage of 

the number of 

pavement 

sections that 

transits to 

different states 

Abaza 

(2017a) 

Ordered-

Probit 

Madanat et al. 

(1995); Li 

(2005); 

Yamany and 

Abraham 

(2020a, b) 

Semi-

parametric 

Mauch 

and 

Madanat 

(2001)  

Percentage of 

duty cycle to 

the transition 

time 

- Random-

effect 

Probit 

Madanat et al. 

(1997)  

Non-

parametric 

Kobayashi 

et al. 

(2010); 

Madanat 

et al. 

(2005) 

Logit Yang et al. 

(2005, 2006)  

Sequential 

Logit 

Li (2005)  Combined 

parametric 

and semi-

parametric 

Yang et 

al. (2013) 
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Duration models are recommended for pavement performance estimation because the initiation 

time of pavement distresses is highly variable (Madanat et al. 2005), and they account for the 

irregularity inherently attributed to pavement condition inspections (Kobayashi et al. 2010). 

Duration models are appropriate in estimating pavement transition probabilities if frequent and 

continuous observations over a long time (i.e. 20 years) are available (Mauch and Madanat 2001). 

The common assumption of hazard and survivor models is that each condition state lowers down 

by only one state during a duty cycle (Khan et al. 2014), which disregards the condition states that 

deteriorate by more than one state. Data collected for a short window (i.e. less than 10 years) is 

usually left-censored (Mauch and Madanat 2001). As such, if the duration models are to be used 

to estimate pavement transition probabilities, data should be collected for a long time (i.e. 20 years) 

to reduce the potential data censoring. Based on the guidance from prior research, survival models 

are preferable for pavement condition models because they relax the assumption of the 

econometric models (condition states are independent and identically distributed).  Also, to avoid 

data left-censoring, condition states can be assumed to transit midway between two consecutive 

inspection times (Mishalani and Madanat 2002). Lethanh and Adey (2012) used the Bayesian 

estimation approach to estimate the parameters of the econometric and duration models and found 

it to be more accurate than the MLE method. 

2.3.3.4. Semi-Markov Models 

Unlike staged-homogeneous Markov models, semi-Markov models estimate the TPMs of 

pavement condition by dividing pavement lifetime into uneven intervals (holding times: the times 

that pavements take to completely leave their current states) corresponding to pavement 

performance curve. Figure 2.12 shows a graphical representation of pavement deterioration over 

time, in which condition states may take different holding time lengths until migrating to other 

condition states. To estimate a TPM for each interval, the holding time is assumed to follow a 

specific probability distribution. Semi-Markov models assume that holding times could follow any 

continuous-time distribution, so they are more flexible than the traditional Markov models that 

assume that holding times follow exponential distribution (Thomas and Sobanjo 2012). 
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Figure 2.12. Graphical representation of the holding times of pavement condition states 

 

Thomas and Sobanjo (2012) developed semi-Markov and homogeneous Markov models to predict 

pavement CI in the state of Florida. Data were obtained from the Florida Department of 

Transportation (FDOT) for more than 20 years. Fifty percent of the data was retained for validation 

and assessment of models’ performance. Due to data limitation, seven condition states were 

created (from state 10 to state 4). The holding times were assumed to follow the Weibull 

distribution. The parameters of the Weibull distribution were estimated by minimizing the 

difference between the estimated and actual probability distributions. Wang et al.’s methodology 

of 1994 was used to estimate the homogeneous Markov model. Monte Carlo simulation was used 

to generate the TPMs and the probability distributions for both models. Both models were found 

to be statistically significant in terms of the Chi-square test statistic; however, the semi-Markov 

model was found to outperform its counterpart. Additionally, the semi-Markov model was found 

to over-predict pavement condition during the 7–11 years period due to data limitation during this 

period. 

 

Semi-Markov models outperform homogeneous and staged-homogeneous Markov models 

because they relax the assumption of stationary transition probabilities; however, they require 
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more extensive data to estimate the distribution of the holding times. With the continuous increase 

in the collected pavement condition data, semi-Markov models could be computationally less 

expensive than non-homogeneous Markov models (Nesbit et al. 1993). It is difficult to apply semi-

Markov models at the pavement network level because the holding times may follow different 

distributions for different pavement sections (Ferreira and Santos 1999). 

2.3.3.5. Hidden Markov Models 

Hidden Markov Models (HMMs) assume pavements have two types of condition states: observed 

states and hidden states. All pavement distresses such as cracking and potholes that can be 

inspected and measured are observable, whereas pavement condition indices such as PCI and PSR 

are unobservable or hidden states. Figure 2.13 shows the structural and temporal representation of 

the HMMs. The transition probabilities of the hidden states (i.e., 𝐻1, 𝐻2, 𝐻3) are estimated using 

the data of the observed states (i.e., 𝑂1, 𝑂2, 𝑂3) and the emission probabilities. 

 

 

Figure 2.13. Hidden Markov Model diagram  

 

Lethanh and Adey (2012) developed an HMM to predict pavement composite condition index 

(CCI) when data is incomplete. They assumed that pavement CCI represents roughness and 

cracking indicators. Pavement roughness data was assumed to be complete while cracking data 

was assumed to be incomplete. The hidden states were expressed by the CCI, whereas the observed 
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states were expressed by the roughness and cracking indicators. The transition probabilities of the 

observed states were estimated using the multi-stage hazard methodology of Tsuda et al. (2006). 

The probability distribution of the hidden states was assumed to follow the exponential 

distribution. The probability distribution, transition probabilities, and exponential rate were 

estimated using the MLE method and the expectation-maximum algorithm. Data were acquired 

from Vietnam for Years 2001 and 2004. Pavement sections were grouped into five condition states 

based on the CCI. The variables traffic volume and pavement thickness were found to be 

statistically significant in estimating the transition probabilities of pavements in state 2, whereas 

the pavement thickness was the only statistically significant variable in estimating the transition 

probabilities of pavements in states 3 or 4. The estimated deterioration rates for pavements in states 

from 1 to 5 were found to be higher than the typical deterioration rates for typical pavements in 

Vietnam. To test the capability of the developed model for an incomplete data scenario, only 

pavement roughness data was used to estimate pavement deterioration rates. The estimated 

deterioration rates were found to be approximately similar to that when the entire data was used. 

 

Lethanh and Adey (2013) extended their prior work to study to examine the accuracy of predicting 

pavement condition against the amount of available data. They assumed that the pavement CCI 

involves the roughness and texture depth of pavement. The transition probabilities of pavement 

roughness and texture depth were assumed to follow the exponential distribution. Lethanh and 

Adey (2013) used the data of their 2012 study. Four scenarios of incomplete data were created. 

The entire roughness data was used in all scenarios, but 100%, 50%, 25% and 10% of the texture 

depth data was used in scenarios 1, 2, 3 and 4, respectively. The results showed that the total 

duration taken by newly constructed pavements to move to state 5 is 14 years, which was consistent 

with pavement deterioration trends in Vietnam. Also, the predicted deterioration rates for 

pavements in states 1 and 2 were found to be similar across all scenarios. The predicted 

deterioration rates for pavements in states 3 and 4 for scenarios 2, 3 and 4 were found to be higher 

than that for scenario 1. These results indicate that the accuracy of pavement condition prediction 

improves if greater amounts of data are used for the HMM. Additionally, with 50% of the texture 

depth data the model was capable to predict pavement condition with 3% deviation from the 

predictions when the entire texture depth data was used. These results indicate that the required 
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amount of data for modeling pavement performance can be reduced if the HMM methodology is 

used. 

 

Lethanh et al. (2014) presented an HMM model to estimate pavement cracking rates and potholes 

for heavy traffic urban roadways in Japan from 2007 to 2011. The cracking rates were modeled 

using the Markov model developed by Kobayashi et al. (2012), while the potholes number was 

modeled using the Poisson process. Markov Chain Monte Carlo simulation and Gipp's sampler 

algorithm (i.e., Bayesian estimation approach) were used to estimate the models’ parameters. 

Pavement sections were categorized into five condition states based on the cracking rates; where 

state 1 represents the lowest cracking rates and state 5 represents the highest cracking rates.  The 

estimated deterioration rates associated with pavements in state 1 were found to be high with a 

holding time of 7 years. The probability of potholes occurrence is negligible during the first 

condition state but it goes up during the latter condition states.  

 

Prior research (Lethanh et al. 2014; Lethanh and Adey 2012, 2013) developed HMMs to predict 

pavement condition when data is incomplete. Lethanh et al. (2014) did not test the validity of their 

model with actual data, while Lethanh and Adey (2012 and 2013) used data for only 2 years which 

may not be sufficient to capture the historical behavior of pavements. Additionally, the estimated 

transition probabilities were assumed to follow the exponential distribution, which means that 

pavement deterioration rates were assumed constants. Hence, further research is required to 

investigate the results of the HMMs when more extensive pavement condition data is employed, 

and other distribution functions are used. 

2.3.4. Decision Tree 

Based on the guidance and insights gained form the literature, a decision tree was developed to 

assist pavement asset managers in the selection of appropriate Markovian methodologies and TPM 

estimation methods. The criteria for selecting Markovian methodologies and TPM estimation 

methods are data availability and model assumption. Figure 2.14 shows the developed decision 

tree that will help highway agencies and future researchers choose the Markov methodologies that 

are appropriate for their data availability and desired level of accuracy and reliability.  It can be 

noticed that if only two consecutive transitions of pavement condition are available, then the 
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appropriate Markov methodology is the homogeneous one. On the other hand, if an extensive 

historical pavement condition data is available, including observations of the potentially influential 

variables, then the non-homogeneous Markov models are recommended in order to obtain more 

accurate and reliable pavement condition prediction models. In addition, the developed decision 

tree recommends TPM estimation methods for use in Markov models. If the historical pavement 

condition data are available but there is no information on explanatory variables exists, then the 

percentage transition method can be used with non-homogeneous Markov models, which may lead 

to less reliable models because of the lake of consideration of the explanatory variables.  
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Figure 2.14. Decision tree for selection of Markov methodologies and TPM methods 
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 Summary 

The accuracy and reliability of pavement condition prediction depends on the employed Markov 

model type, the TPM estimation method, the correlated explanatory variables, and the quality and 

available amount of data. Markovian models and TPM estimation techniques need varying 

amounts of data. Some models such as non-homogenous Markov models need large amounts of 

data to yield accurate predictions, but that comes at the expense of data collection, storage, and 

management. On the other hand, other models such as homogeneous Markov models need smaller 

amounts of data and they are computationally more economical, but that is at the expense of 

prediction accuracy. Although the literature is rich in the discussion of Markov pavement 

performance models, several limitations were found. Previous studies assumed that the impact of 

pavement maintenance and rehabilitation can be captured in Markovian models by updating the 

condition state vector (S) every period of time when pavement condition observations are 

available. This assumption is valid only for short-term predictions and necessitates frequent 

monitoring of pavement condition. For long-term (during rehabilitation lifecycle) predictions, the 

effect of pavement preventive maintenance should be considered when estimating pavement 

transition probabilities. Additionally, prior research focused on estimating the TPM for Markov 

models, but exhibited gaps in estimating the number of condition states, the length of duty cycle, 

and the probability distributions. Further research is needed to estimate the impact of the number 

of condition states and the length of duty cycle on Markov model prediction accuracy and on the 

decision-making regarding the programming of pavement maintenance and rehabilitation 

treatments. The Bayesian estimation approach is more accurate than the MLE method in 

determining the globally optimal solution for the parameters of econometric and duration models 

(Lethanh and Adey 2012). Future research is needed to further investigate the accuracy of the 

estimated parameters in econometric and duration models when using the MLE and Bayesian 

estimation approaches. To contribute in bridging some of the abovementioned research gaps, 

Chapter 3 in this dissertation, provides a hybrid approach to account for the effect of maintenance 

into Markovian pavement performance models, while Chapter 4 presents a comparative analysis 

of Markovian methodologies regarding the prediction accuracy of pavement condition for different 

combinations of number of condition states and lengths of duty cycle.  
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CHAPTER 3. HYBRID APPROACH TO INCORPORATE PREVENTIVE 

MAINTENANCE EFFECTIVENESS INTO PROBABILISTIC PAVEMENT 

PERFORMANCE MODELS 

[A version of this chapter is under review at the Journal of Transportation Engineering, Part B: 

Pavements].1 

Various methodologies are being developed to build and improve probabilistic pavement 

performance models that have high prediction capabilities. However, the effectiveness of 

preventive maintenance (PM) has not been adequately considered in such models due to the lack 

of historical PM data. Consequently, the predicted pavement condition is erroneous and often 

biased, which leads to non-optimal M&R decisions. This chapter introduces and validates a hybrid 

approach to incorporate the impact of PM into probabilistic pavement performance models when 

historical PM data is absent. The types of PM treatments and their times of application are 

estimated using two approaches: (1) Analysis of the state of practice of pavement maintenance 

through literature and expert surveys, and (2) Detection of PM times from probabilistic pavement 

performance curves. Using a newly developed optimization algorithm, the estimated times and 

types of PM treatments are integrated into pavement condition data. A non-homogeneous 

Markovian pavement performance model is developed by estimating the transition probabilities of 

pavement condition using the ordered-probit method. The developed hybrid approach and 

performance models are validated using cross-validation with out-of-sample data and through 

surveys of subject matter experts in pavement engineering and management. The results show that 

the hybrid approach and models developed predict probabilistic pavement condition incorporating 

PM effects with an accuracy of 87%. 

 Introduction 

Highway agencies need effective pavement management systems to efficiently allocate their 

limited resources. Effective pavement management system requires pavement performance 

 
1 Yamany. M.S., and Abraham, D.M. Hybrid Approach to Incorporate Preventive Maintenance Effectiveness into 

Probabilistic Pavement Performance Models. Submitted to Journal of Transportation Engineering, Part B: Pavements, 

ASCE. 
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models of accurate and reliable predictability for pavement condition and performance, 

incorporating the positive and negative stochastic and deterministic effects of relevant influential 

factors. Pavement performance has been modeled using deterministic, Artificial Intelligence (AI) 

and probabilistic approaches. Deterministic models (e.g., Abaza 2004; Chu and Durango-Cohen 

2008) assume that pavement condition can be predicted exactly. Therefore, they do not consider 

the inherent uncertainty and randomness of pavement condition. Although the Artificial Neural 

Networks (ANNs) models, the most common AI approach, have been developed in previous 

research (Plati et al. 2016; Amin and Amador-Jiménez 2017; Yamany et al. 2019b; Yamany et al. 

2020b) to predict pavement performance, the interpretation of their findings is not easy and they 

are considered as black boxes (García de Soto et al. 2018). 

 

Unlike deterministic and AI models, probabilistic models duly acknowledge the uncertainties 

inherently attributed to pavement condition data, and their results are easy to comprehend and 

interpret. Probabilistic models result in more reliable and robust pavement condition predictions 

than deterministic models (Rose et al. 2018; Qiao et al. 2019). Markov chains is the most 

extensively used probabilistic approach to model pavement condition. One category of Markov 

chains models is the non-homogeneous Markov models, which are accurate and realistic in 

estimating and predicting pavement performance because they account for the non-stationary 

nature of pavement deterioration. However, these models require a large amount of historical data, 

which is hindered by limited resources for data collection, storage and management. 

 

Despite their superiority, past Markovian pavement performance models did not account for the 

influence of preventive maintenance (PM) on pavement performance because of the lack of PM 

data. PM is implemented on pavement surface to retard pavement deterioration but does not 

enhance its structural strength. Examples of PM treatments include thin overlay and micro-

surfacing. Lack of consideration of the effectiveness of PM in Markovian pavement performance 

models could result in incorrect condition predictions, compromising on the reliability of model 

predictability, and/or failure to recognize the correlation between PM and pavement condition 

evolution. Additionally, failure to take PM effects into consideration could ultimately lead to less 

cost-effective and non-optimal maintenance and rehabilitation (M&R) strategies for pavements. 
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This chapter introduces and validates a hybrid approach to incorporate PM impact into 

probabilistic pavement performance models when historical PM data is absent or insufficient. The 

methodology is demonstrated using pavement condition data retrieved from the Long-Term 

Pavement Performance (LTPP) database for interstate flexible pavements. Table 3.1 shows the 

descriptive statistics of the key variables on which this data was collected. A non-homogeneous 

Markovian pavement performance model was developed and validated to estimate and predict 

pavement condition probabilistically. The methodology and performance model developed with 

the inclusion of PM impacts are useful for enhancing pavement management systems. 

 Prior Studies on Probabilistic Pavement Performance Modeling using Markov Chains 

Markov chains have been extensively utilized to model pavement performance probabilistically. 

The accuracy of Markovian pavement performance models depends on the employed 

methodology, explanatory variables, and data quality and availability. Markovian models 

developed for pavement performance can be categorized into homogeneous Markov, staged-

homogeneous Markov, semi-Markov, hidden Markov, and non-homogeneous Markov models. 

 

Homogeneous Markov models are time-independent, i.e., the transition probabilities of pavement 

condition are constant over time. This type of models requires observations of pavement condition 

for only two successive transitions. Hence, several previous researchers including Wang et al. 

(1994), Macleod and Walsh (1998), Chou et al. (2008), Pulugurta et al. (2009), Mandiartha et al. 

(2010), Abaza and Murad (2010), Abaza (2014), Hassan et al. (2017a, b), Osorio-Lird et al. (2018) 

and Pérez-Acebo et al. (2018) chose to develop homogeneous Markov pavement performance 

models because of data limitation. Nevertheless, homogeneous Markov models suffer from a 

serious limitation because they assume that pavements deteriorate in a stationary or steady state 

process, which is contrary to the continuous natural change in pavement deterioration rates over 

time (Butt et al. 1987; Abaza 2016a). 

 

Staged-homogeneous Markov models were introduced by Butt et al. (1987). These Markov models 

assume that the transition probabilities of pavement condition do not change significantly during 

a time interval or stage of five or six years, which is close to reality. Therefore, they consist of 

multiple homogeneous Markov models, each intended for each stage. Although staged-



 

65 
 

homogeneous Markov models are more reliable in predicting pavement condition than 

homogeneous Markov models, they fall short of capturing changes in pavement condition 

developed during the presumed stages. They also require more data than homogeneous Markov 

models, leading few studies to use this kind of Markov models such as Butt et al. (1987) and Abaza 

(2016a). 

  

Compared to staged-homogeneous Markov models, semi-Markov models assume that the 

transition probabilities of pavement condition should vary according to the change in pavement 

performance over uneven intervals (holding times). Since semi-Markov models further relax the 

assumption of stationary transition probabilities by considering changes in pavement deterioration 

rates at unequal stages, they outperform the homogeneous and staged-homogeneous Markov 

models (Thomas and Sobanjo 2012). However, semi-Markov models require additional pavement 

condition data to estimate the holding times or the length of the uneven intervals. These models 

may overestimate pavement condition when insufficient pavement condition data is used (Thomas 

and Sobanjo 2012). Besides, these models cannot capture the incremental continual changes in 

pavement condition. 

  

Hidden Markov models assume two condition state types: observed and hidden. Pavement 

distresses that can be inspected and measured such as cracking, potholes and roughness represent 

observed condition states, whereas pavement condition indices such as International Roughness 

Index (IRI) and Present Serviceability Rating (PSR) are unobservable or hidden condition states. 

The transition probabilities of hidden states are estimated using information on the observed states. 

Since hidden Markov models assist in mapping the relationship between the observed and hidden 

states, they can be employed to estimate pavement condition when pavement condition data are 

incomplete (Lethanh and Adey 2012, 2013; Lethanh et al. 2015). 

 

Non-homogeneous Markov models are time-dependent, i.e., the transition probabilities of 

pavement condition change over time. In addition to capturing the unsteady effect of relevant 

explanatory variables, non-homogeneous Markov models consider the nonstationary property or 

the changes in pavement deterioration rate over time. Although these models accurately fit the 

random behavior of pavements compared to the other counterpart models, they requisite extensive 
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computation and large amounts of data. Many highway agencies are hindered from taking 

advantage of these models until they have sufficient historical data to estimate such models. 

Although prior non-homogeneous Markov models (Madanat et al. 1995b; Li et al. 1996; Yang et 

al. 2005, 2006; Kobayashi et al. 2010; Tabatabaee et al. 2013; Abaza 2017a) outperform their 

counterparts by capturing the non-stationary nature of pavement deterioration, they assume that 

pavement condition deteriorates over time and does not improve, i.e., they do not account for PM 

effects over pavement life, which could lead to less cost-effective and non-optimal M&R 

decisions. 

 Research Methodology 

This study uses a novel hybrid approach that incorporates PM impact into probabilistic pavement 

performance models. Six major research tasks form the core of this approach (Figure 3.1): data 

collection and analysis; data simulation; estimation of initial times for PM treatments; data 

generation; estimation of transition probability matrix (TPM); and validation of the approach and 

models developed, mathematically and by a survey of Subject Matter Experts (SMEs) with the 

experience in pavement engineering and management. The ensuing subsections discuss the 

proposed methodology and its components in detail. 
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Figure 3.1. Research methodology 

3.3.1. Data Collection and Analysis & Survey 1 

In the United States, interstate highways have the highest percentage of vehicle miles traveled 

compared to other functional classes. Of these interstate roads, 76% are flexible asphalt and 

composite roadways (FHWA 2017). Hence, more historical data is expected to be collected, stored 
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and managed for interstate roadways across the U.S. Pavement condition data for interstate flexible 

pavements (black-topped roads that include asphalt and composite) from 1989 to 2016 were 

retrieved from the LTPP database. Details about the LTPP database can be accessed through the 

webpage of the U.S. Department of Transportation, Federal Highway Administration. To ensure 

the applicability of the proposed methodology to more than one state/location, data can be 

collected from multiple states. One criterion for the selection of appropriate states is that the 

selected states should be located in the same climate region so that these states most likely use 

similar standard specifications for design, construction, and/or maintenance and rehabilitation of 

pavements. According to the USGCRP 2018, the U.S. is divided into 10 climate regions 

(Reidmiller et al. 2018). In this study, transportation agencies from the Midwest region provided 

the highest percentage (about 63%) of responses to Survey 1 (conducted as part of this study to 

collect information on pavement condition and maintenance treatments). Therefore, pavement 

condition data were collected from the eight Midwest states: Indiana, Illinois, Wisconsin, 

Michigan, Ohio, Minnesota, Iowa and Missouri. 

 

According to Survey 1, which was created and sent to the 50 State Transportation Agencies (STAs) 

to collect data regarding pavement condition and PM, around 58% of the respondents use one 

condition indicator to represent pavement condition. Moreover, about 60% of the respondents 

employ the IRI as the pavement condition indicator. Further details about Survey 1 will be 

discussed later. Hence, the collected data includes information about one pavement condition 

indicator, namely IRI as the response variable. The collected data includes six explanatory 

variables as listed in Table 3.1. Although other variables, such as the pavement structure (number, 

type and thickness of pavement layers), affect pavement condition, they were not considered in 

this dissertation because STAs have different standards and specifications for the design, 

construction and maintenance of pavements. 

 

Data were pre-processed by detecting and cleaning the extreme outliers and high-leverage points 

using the methodology employed by Belsley et al. (1980), Luo (2013) and Ahmed et al. (2016). 

The outlier point has a studentized residual out of ±3, whereas the high-leverage point has a 

statistical leverage greater than 2𝑝/𝑛, where 𝑝 is the number of independent variables including 
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the constant term, and 𝑛 is the number of observations (1159). The number of observations was 

966 after data had been cleaned. Table 3.1 shows the descriptive statistics of the data collected. 

 

Table 3.1. Descriptive statistics 

Variable Description Mean STD Min Max 

IRI International Roughness Index (in/mi) 80.9 27.8 31.3 194.9 

Age Years since construction or rehabilitation  9.6 6.6 0.0 27.0 

AAP Annual Average Precipitation (inches) 38.1 7.7 24.4 61.4 

AAT Annual Average Temperature (°F) 50.5 3.3 42.8 59.7 

AAFI Annual Average Freezing Index (°F days) 788 393 70 1924 

AADTT Annual Average Daily Truck Traffic  2169 802 249 5115 

ESALs Equivalent Single Axle Loads (18-Kip) 1115 534 122 3195 

3.3.2. Data Simulation 

Since the data acquired for interstate flexible roads are limited, an extensive amount of data was 

generated through simulation to implement the proposed methodology and estimate the non-

homogenous Markovian models. Data was simulated to facilitate the incorporation of the PM 

treatments into pavement condition data. To simulate pavement condition in terms of IRI, a 

regression model was developed to estimate the IRI in relation to the statistically significant 

explanatory variables. To ensure the validity of the regression model, ten percent of the gathered 

data was reserved for subsequent use in a cross-validation process. The Root Mean Square Error 

(RMSE) was calculated to check the performance of the developed model. The smaller the RMSE 

value, the greater the accuracy and better fit of the model. 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝐼𝑅𝐼𝐴𝑐𝑡𝑢𝑎𝑙 − 𝐼𝑅𝐼𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

𝑁

𝑖

                                      (3.1) 

 

where 𝑁 is the number of observations set aside for validation purposes. The probability 

distribution of the explanatory variables was identified by fitting different probability distributions 

for each variable. The probability distribution that results in the least negative log-likelihood was 
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selected. Finally, pavement sections were generated using the developed regression model and 

selected probability distributions for the explanatory variables.  

3.3.3. Initial Times for Preventive Maintenance Treatments 

Three approaches were used to estimate the initial times for PM treatments over pavement service 

life: literature search, questionnaire Survey 1, and detection of PM times from probabilistic 

pavement performance curves. Relevant literature was investigated to find information on the 

actual or recommended PM treatments and their timings. 

 

Survey 1 was designed and sent out to 50 STAs in the U.S. to seek information about practices in 

the pavement condition and maintenance. The questions of this survey covered the following 

themes: (1) PM treatments applied to interstate flexible pavements, (2) Timings of PM treatments, 

(3) Criteria for selecting treatments and their timings, (4) Pavement condition indicators, and (5) 

Short-term and long-term effectiveness of PM treatments. Eighteen STAs responded to the survey 

including five from the Midwest states (Figure 3.2). The respondents have expertise in pavement 

engineering and management ranging from assistant pavement design engineer to director of 

pavement asset management.  

 

 

Figure 3.2. Geographical representation of STAs that responded to Survey 1 
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To detect the times of PM treatments, pavement performance curves were developed using the 

actual pavement condition data. A probabilistic model (Model A) was proposed to account for the 

uncertainty attributed to the data, and to capture more detail in pavement performance. Pavement 

IRI was discretized into 𝑛 number of condition states based on the IRI range, available 

observations and representation percentage of the condition states. The first state represents best 

condition, whereas the last state 𝑛 denotes worst condition. 

 

The ordered-probit approach was used to develop Model A because the condition states are ordinal 

discrete variables. This approach assumes that the probability of occurrence of an outcome can be 

estimated in relation with a latent variable 𝑈 and a threshold parameter 𝜇. 𝑈 is a latent continuous 

variable takes on values ∞ to −∞. Whilst 𝜇  is a cutoff value that separates the probabilities of 

possible outcomes of 𝑌 (e. g.  𝑦1, 𝑦2, … ), and is estimated by mapping the relationship between the 

outcomes of 𝑌 and 𝑈. If the first threshold begins at zero, 𝜇0 = 0, the required number of 

thresholds is the number of outcomes minus 2. For further details on the ordered-probit approach 

the reader is referred to Washington et al. (2011). 

 

The statistical significance of the ordered-probit model was assessed using the Likelihood Ratio 

test by calculating the Chi-square ( 𝜒2) as 

 

𝜒 
2 = −2 [𝐿𝐿(𝛽𝑅) − 𝐿𝐿(𝛽𝑈)]                                  (3.2) 

 

where 𝐿𝐿(𝛽𝑅) is the log-likelihood of restricted model in which predictors’ parameters are set to 

zero. Whereas 𝐿𝐿(𝛽𝑈) is the log-likelihood of unrestricted model in which predictors’ parameters 

are counted. Models are deemed statistically significant if the estimated 𝜒 
2 is greater than a 

calculated critical 𝜒 
2 at a 95% confidence level (Washington et al. 2011). 

 

Ten percent of the actual data was retained to cross-validate Model A. The RMSE was calculated 

to assess the model’s validity as follows:  
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝐶𝑆𝐴𝑐𝑡𝑢𝑎𝑙 − 𝐶𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

𝑁

1

                                      (3.3) 

 

where 𝐶𝑆 is pavement condition state (1…𝑛), and 𝑁 is the number of observations retained for 

validation purposes.  

3.3.4. Data Generation Including Types and Times of Preventive Maintenance 

The estimated initial times of PM were integrated into the simulated pavement condition data. An 

optimization model was created to guarantee that the generated data is comparable to the actual 

LTPP data. The objectives of the optimization model are: (1) to ensure that PM treatments are 

assigned to pavement sections at times aligned with the initial times estimated for the PM, and (2) 

to meet the limited funds allocated to pavement PM. The design variables of the optimization 

model are PM treatment types, application times, costs, effectiveness, pavement condition 

threshold, and available annual funds.  The data on the design variables were obtained from the 

collected LTPP data, literature search, questionnaire Survey 1, and detection of PM times from 

probabilistic pavement performance curves. The future value of PM costs was calculated as:  

 

𝐹𝑉 =  𝑃𝑉 × (1 + 𝑟)𝑛                                      (3.4) 

 

where FV and PV denote the future and present values of PM costs in USD, respectively; 𝑟 

represents the interest rate, and 𝑛 is the number of periods/years. The annual interest rates were 

obtained from the National Highway Construction Cost Index (NHCCI 2019). 

 

Half of the STAs that responded to Survey 1 reported using the worst-first approach among 15 

other criteria to make decisions on pavement maintenance. Hence, a greedy algorithm (Figure 3.3) 

was designed and used to optimize the types and times of PM treatments for pavement sections 

eligible for PM. To obtain pavement performance comparable to the pavement performance 

developed using the LTPP data, different percentages of the required annual funds were specified 

to be the available 𝐵𝑢𝑑𝑔𝑒𝑡(𝑖) in the greedy algorithm (Figure 3.3). For each percentage of annual 

funds, a complete cycle of the greedy algorithm was run. Then, ordered-probit Models B were 
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developed using the data resulted from the optimization runs. The reduction in the percentage of 

funds decreases the amount of PM assigned to pavement sections, and hence affects the overall 

pavement performance. The percentage of funds that resulted in performance curves best fit the 

performance curves developed using the LTPP data was selected to build the final Model C. 

 

 

Figure 3.3. Greedy algorithm flow chart 

3.3.5. Transition Probability Matrix Estimation 

Using the generated pavement condition data that includes PM data, an ordered-probit Model C 

was developed using the same methodology employed to develop Model A. Model C was then 

validated using cross-validation with a 10% out-of-sample data to verify its predictability. Then, 

it was used to determine the condition state vector (𝑆𝑖  = {S𝑖1,  S𝑖2, S𝑖3, … S𝑖n}) at each year 𝑖; where 

S𝑖n is the probability of pavement condition being in state n at year i. The transition probability 
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matrix (Equation 3.5) of pavement condition states at each time 𝑖 was then calculated by dividing 

the condition state vector 𝑆𝑖 at each year 𝑖 by the condition state vector 𝑆𝑖−1 at each year 𝑖 − 1. 

 

ℙ =

[
 
 
 
 
𝑃11 𝑃12 𝑃13 ⋯ 𝑃1𝑛

𝑃21 𝑃22 𝑃23 ⋯ 𝑃2𝑛

𝑃31 𝑃32 𝑃33 ⋯ 𝑃3𝑛

⋮ ⋮ ⋮  ⋮
𝑃𝑛1 𝑃𝑛2 𝑃𝑛3 ⋯ 𝑃𝑛𝑛]

 
 
 
 

                             (3.5) 

 

where ℙ is a square matrix of pavement transition probabilities. The elements on the diagonal of 

this matrix, i.e., 𝑃11, 𝑃22 … 𝑃𝑛𝑛 represent the probabilities that pavements will stay at the same 

condition state after one year. The elements above the diagonal such as 𝑃12 and 𝑃23 denote the 

probabilities that a pavement will transition from its present condition state to a worse condition 

state after one year (e.g., from state 2 to state 3 as denoted by 𝑃23). Elements below the diagonal 

like 𝑃21 and 𝑃32 represent the probabilities that pavements will migrate from their current condition 

state to better condition states after one year (e.g., from state 2 to state 1 as denoted by 𝑃21). These 

elements (below diagonal) are typically specified to be equal to zero, indicating that the effect of 

pavement maintenance is not considered in Markov models developed for pavement condition 

prediction (Ortiz-García et al. 2006). The hybrid approach proposed in this research will therefore 

help to estimate the P values below the diagonal, which represent the probability of pavement 

condition improvement due to PM applications. 

 Results and Discussion 

The results of the research methodology and models developed are presented and discussed in the 

following subsections. The validation of the methodology and models is presented as well.  

3.4.1. Data Simulation 

To simulate the actual pavement condition, regression models were developed to estimate the IRI 

in relation to influential independent variables. These regression models were created with 

different mathematical formulations (e.g., Linear, Power, and Exponential). Two explanatory 

variables, Cum. AAFI (i.e., AAFI×Age) and Cum. AADTT (i.e., AADTT×Age) were created to 
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capture the interaction between the variables listed in Table 3.1. The Cum. AADTT was also created 

as a proxy for the cumulative AADTT data that was not available. The best statistical model was 

selected based on the coefficient of determination (R2) and the t-statics and p-values of the 

independent variables at a 95% confidence level. The exponential multiple regression model 

represented in Equation 3.6 was selected to simulate pavement condition. 

 

IRI =  𝐸𝑥𝑝(4.0875 +  0.12224 Cum. AAFI +  0.07876 Cum. AADTT)           (3.6) 

 

where Cum. AAFI is equal to AAFI × pavement age in 104 °F days; and Cum. AADTT is equal to 

AADTT × pavement age in 104 trucks. 

 

The t-statistics and p-values for the Cum. AAFI and Cum. AADTT were found to be 5.66 and <0.05, 

and 10.96 and <0.05, respectively, indicating their statistical significance at a 95% confidence 

level (tcritical = 1.96). However, at the same confidence level, the other variables listed in Table 3.1, 

(AAP, AAT and ESALs) were found to be statistically insignificant with t-statistics smaller than 

tcritical. 

 

The exponential multiple regression model (Equation 3.6) was validated using the reserved 10% 

of the actual pavement condition data. The RMSE was found to be 18.72 in/mi. Thus, the model 

has a satisfactory performance in predicting pavement IRI with respect to the Cum. AAFI and Cum. 

AADTT. To further check the model predictability, the estimated RMSE was compared with that 

of prior similar models. Past pavement condition prediction models of Ziari et al. (2016) and Dalla 

Rosa et al. (2017) have RMSE values of 20 in/mi. and 22.17 in/mi., respectively.  Although these 

models differ from the current model regarding the data used in models’ development and 

explanatory variables, the estimated RMSE of the current model indicates that its predictability is 

consistent with the literature.  

 

Different probability distribution functions were tested to fit pavement age, AAFI and AADTT. The 

optimal function was chosen based on the value of the negative log-likelihood. The optimal 

distribution functions were chosen based on the minimum value of the negative log-likelihood. 

The minimum values of the negative log-likelihood for pavement age, AAFI and AADTT were 
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found to be equal to 3.04×103, 7.05×103 and 7.61×103, respectively, with the Gaussian Mixture 

functions of 3, 3 and 2 components, respectively for each variable. Table 3.2 shows the properties 

of the Gaussian Mixture functions selected for those three variables. 

 

Table 3.2. Properties of Gaussian Mixture functions selected for pavement age, AAFI and 

AADTT  

Variable Gaussian Mixture Properties 

Number of 

Components 

Component Proportion Mean Standard Deviation 

Pavement age 3 

1st 0.145 01.55 00.39 

2nd 0.484 07.06 07.95 

3rd 0.369 16.22 29.52 

AAFI 3 

1st 0.271 0.36×103 1.82×104 

2nd 0.416 0.76×103 1.55×104 

3rd 0.311 1.19×103 1.08×105 

AADTT 2 
1st 0.919 2.00×103 2.41×105 

2nd 0.081 4.05×103 4.78×105 

 

The Indiana Department of Transportation (INDOT) owns and operates approximately 5,500 miles 

of interstate roadways. Hence, to generate a reasonable number of pavement sections for the 

current research, 5,500 interstate flexible pavement sections (each one mile long) were generated 

according to the identified probability distributions and the developed exponential multiple 

regression model.  

3.4.2. Initial Times for Preventive Maintenance Treatments 

Relevant literature was reviewed for information on the types and times of PM treatments. Table 

3.3 summarizes the types and times of PM treatments applied to flexible pavements. 
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Table 3.3. Types and times of PM treatments  

Treatment Geoffroy 

(1996) 

Mamlouk and 

Zaniewski 

(1999) 

Labi and Sinha 

(2003) 

Peshkin 

et al. 

(2004) 

Ong et al. 

(2010) 

INDOT 

Design 

Manual 

(2013) 

Crack Sealing 

(Rout and Seal) 

N/A 8 and 16 yrs 3 yrs for 1st 

application and 

every 4 yrs 

afterwards 

1 to 3yrs IRI < 60.9in./mi Years of 3, 

6, 9, 12, 15, 

18 

Crack Filling Every 4 yrs N/A N/A N/A IRI < 60.9in/mi. N/A 

Fog Seal N/A 3 and 6 yrs N/A 0 to 3 yrs N/A N/A 

Chip Seal N/A 9 and 18 yrs 7 yrs 2 to 5 yrs IRI < 73.5in/mi. N/A 

Slurry Seal N/A 9 and 18 yrs N/A 2 to 6 yrs IRI < 73.5in/mi. N/A 

Scrub Seal N/A N/A N/A 2 to 6 yrs N/A N/A 

Sand Seal N/A N/A 12 yrs N/A N/A N/A 

Micro-surfacing N/A N/A 15 yrs 3 to 7 yrs N/A IRI< 130 

in/mi. 

Ultrathin Bonded 

Wearing Course 

(UBWC) 

N/A N/A N/A 2 to 6 yrs N/A IRI < 140 

in/mi. 

Thin HMA Inlay or 

Overlay less than 

or equal to 1.5 in 

12 yrs N/A 17 to 20 yrs 5 to 8 yrs IRI<79.9in/mi. IRI < 150 

in/mi. 

Note: N/A indicates that the corresponding treatment is not considered as preventive maintenance, or there is no 

information presented about this treatment in that study. 

 

The effectiveness of PM treatments or the improvement in pavement condition due to PM was 

investigated from the relevant literature. The improvement or performance jump in pavement IRI 

after the implementation of micro-surfacing, UTBWC and thin HMA overlay were calculated as 

provided in Labi and Sinha (2003), Ong et al. (2010), and Ji et al. (2015). According to the INDOT 

design manual (2013), crack sealing, crack filling, fog seal, and chip seal do not improve the 

condition of pavement surface, but they help in retarding pavement deterioration. 

   

The results of Survey 1 showed that about 58% of the responding STAs use one pavement 

condition indicator to assess pavement condition and make respective maintenance decisions. 

However, some STAs use up to four pavement condition indicators. For instance, Texas DOT uses 

the IRI, ride quality index, condition score and distress index. In addition, the survey results 

indicated that among various pavement condition indicators such as Pavement Condition Index 
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(PCI) and Pavement Serviceability Index (PSI), the IRI is the most widely used (60%) across the 

responding STAs. 

 

Survey 1 also helped to generate information on PM treatments used in maintaining interstate 

flexible pavements. Figure 3.4(a) shows the distribution of PM treatments used across the STAs 

respondents. Crack sealing was reported as the most frequently used PM treatment, most likely 

due to the low cost of its application and recognized effectiveness in retarding pavement 

deterioration (Peshkin et al. 2004). The second most frequently used treatments are thin overlay, 

micro-surfacing and UTBWC.  Figure 3.4(b) shows that different PM treatments implemented 

over time until pavement age of 20 years [typical pavement design life (Morian et al. 2005; Ceylan 

et al. 2009; Santos and Ferreira 2013)]. The first PM application is due at the age of 3 years when 

most STAs respondents reported using crack sealing.  The most frequent times for PM treatments 

are 3 years – usually for first application of crack sealing, 9 to 13 years – nearly mid-age of 

pavement, and 15 years. 

 

The STAs were asked to identify their criteria for choosing the type and time of application of PM 

treatments. They were also asked to rate their criteria on a scale from 1 to 5; where 1 is the least 

important, and 5 is the highest important. Sixteen pavement maintenance decision criteria were 

identified by the participants in Survey 1, and the most important criteria were found to be 

“pavement condition” and “maintenance cost” with mean importance ratings equal to nearly 4.1 

and 3.1, respectively. 
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a) PM Treatments (17 respondents) b) Times for PM (15 respondents) 

Figure 3.4. Distribution of types and times of PM treatments across STAs 

 

The main goal of PM is to improve pavement surface condition and keep pavements in a state of 

good repair. One way to identify the actual times of PM is to investigate pavement performance 

curves and detect the times when pavement condition starts to improve. Thus, pavement IRI was 

first discretized into five condition states as follows: state 1 (𝐼𝑅𝐼 ≤ 55), state 2  (55 < 𝐼𝑅𝐼 ≤ 70), 

state 3 (70 < 𝐼𝑅𝐼 ≤ 95), state 4 (95 < 𝐼𝑅𝐼 ≤ 120), and state 5 (𝐼𝑅𝐼 > 120). The number of 

condition states and their ranges were determined based on the available observations, IRI 

variation, and the percentage of each state from the data. An ordered-probit Model A was then 

developed to estimate the probability of pavement condition being in each condition state.  Finally, 

pavement performance curves were developed from which the actual times of PM treatments were 

detected. 

 

Table 3.4 shows the estimation results of the developed Model A. Based on their t-statistics and 

p-values, the Cum. AADTT and Cum. AAFI along with the threshold parameters were found to be 

statistically significant at a 95% confidence level. The estimated 𝜒 
2 was found to be equal to 

313.59, which is greater than the critical 𝜒 
2 (11.07) indicating that Model A is statistically 

significant at a 95% confidence level. The positive signs of the Cum. AADTT and Cum. AAFI 

indicate that an increase in AADTT or AAFI and/or pavement age increases the probability of 
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pavement deterioration over time, which is in line with the engineering intuition and prior 

Markovian models discussed earlier.  

 

Table 3.4. Estimation results of Model A 

Variable Description Parameter 

Estimate 

t-

statistic 

p-

value 

Constant  0.32143 5.11 <0.001 

Cum. AADTT Cumulative Annual Average Daily Truck Traffic 

in 10,000 Trucks 

0.29414 10.25 <0.001 

Cum. AAFI Cumulative Annual Average Freezing Index in 

10,000 °F days 

0.43719 6.22 <0.001 

𝜇1 

Threshold Parameters 

0.83518 20.12 <0.001 

𝜇2 2.15401 44.12 <0.001 

𝜇3 2.83864 45.13 <0.001 

Log-likelihood of restricted model = -1422.78 

Log-likelihood of unrestricted model = -1265.98 

Estimated 𝜒 
2 = −2 [𝐿𝐿(𝛽𝑅) − 𝐿𝐿(𝛽𝑈)] = 313.59 

Degree of freedom (unrestricted number of parameters – restricted number of parameters) = 5 

Critical 𝜒 
2 at a 95% confidence level = 11.07 

 

Model A was used to predict pavement condition using the 10% retained data; then the predictions 

were compared with the actual pavement conditions. The RMSE value was found to be 0.75, 

indicating that the model can predict the mean condition state of pavement with a mean error of 

0.75 or approximately 15 in/mi. Compared with the models of Ziari et al. (2016) and Dalla Rosa 

et al. (2017) of RMSE of 20 in/mi. and 22.17 in/mi., respectively, Model A can predict pavement 

condition probabilistically with satisfactory accuracy. 

 

Probabilistic pavement performance curves were developed for the five condition states over 

pavement age (Figure 3.5). The probability of pavement condition being in states 1 and 2 (best 

condition) decreases over time, whereas the probability of being in state 5 (worst condition) 

increases over time. The probability of pavement condition being in states 3 and 4 increases over 

time during the early age (less than 10 years) of pavement life, but gradually drops after different 

points in time. 
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A closer investigation of the pavement performance curves in Figure 3.5 helps detect the actual 

times for PM applications. The annotated boundaries a, b and c show the time windows for possible 

application of PM. Figure 3.5 indicates that the probability of pavement condition being in states 

3 or 4, i.e., good or fair conditions increases over time from the beginning of pavement life until 

the times when these probabilities start to decrease. These are the times when PM treatments might 

have been implemented to keep pavement condition at a desirable state. The last applicable time 

to implement PM, when pavement is most likely to be in good condition (70 < IRI <= 95 in/mi.), 

is around the 10th year of pavement age. The last chance to apply PM could be at about 15 years 

of age when the probability of being in state 5 begins to exceed the probability of being in state 4. 

 

 

Figure 3.5. Probabilistic pavement performance curves using Model A 

 

The probabilities of condition states at each time 𝑖 shown in Figure 3.5 represent the state vector 

𝑆𝑖 of pavement condition, where 𝑖 denotes the time from 0 to pavement age. The transition 

probabilities of pavement condition states were calculated by dividing each consequent state 

vectors (𝑆𝑖+1/𝑆𝑖). Also, the transition probability curves for condition states 3, 4 and 5 were 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35

P
ro

b
ab

il
it

y

Years

State 1 State 2 State 3 State 4 State 5

a 

c 

b 



 

82 
 

developed. Then approximate ranges of pavement age during which PM treatments might have 

been implemented have been identified. The range of 4 to 10 years is the time window to apply 

PM that results in the highest probability of pavements in state 3 to stay in the same state or move 

to states 2 or 1. The range of 11 to 15 years is the time window to apply PM that yields the highest 

probability of pavements in state 4 to stay in the same state or transition to states 3, 2 or 1. The 

range of 16 to 20 years is the time window to apply PM that results in the highest probability of 

pavements in state 5 to move to states 4, 3, 2, or 1. 

 

The effectiveness of the PM, i.e., the improvement in pavement condition after PM implementation 

was calculated from the estimated transition probabilities of condition states 3, 4 and 5 as they are 

the candidate states for PM. Equation 3.7 shows the estimation of pavement condition 

improvement or the drop in the IRI after PM application. 

 

𝐷𝐼𝑅𝐼,𝑖,𝑡 = ∑ 𝑃𝑖,𝑖−𝑗

𝑗=𝑖−1

𝑗=1

× (𝐼𝑅𝐼𝑖 − 𝐼𝑅𝐼𝑖−𝑗),        ∀ 𝑖 = 3, 4 and 5          (3.7) 

 

where DIRI,𝑖,𝑡 is the drop in the IRI value (in/mi.) for pavement in condition state 𝑖 at time 𝑡; j takes 

on the values from 1 to 4;  𝑃𝑖,𝑖−𝑗 is the transition probability of pavement condition from state 𝑖 to 

state 𝑖 − 𝑗. IRI𝑖 and IRI𝑖−𝑗 are the values of IRI (in/mi.) for pavements in condition states 𝑖 and 

𝑖 − 𝑗, respectively. The results showed that the highest improvement in pavement condition occurs 

when pavements in state 3 receive PM as early as 4 years of age, and when pavements in states 4 

and 5 receive PM at approximate ages 13 and 17 years, respectively.  

 

Based on the literature search (Table 3.3) and results of Survey 1, the most widely used PM 

treatments for interstate flexible pavements are crack sealing, micro-surfacing, thin overlay, and 

UTBWC. Since the crack sealing does not cause improvement in pavement condition, the micro-

surfacing, thin overlay and UTBWC were used for pavement condition data generation. Based on 

the literature search, the micro-surfacing, UTBWC and thin overlay treatments can be 

implemented if pavement IRI < 130 in/mi., < 140 in/mi. and < 150 in/mi., respectively. The initial 

times for these treatments were assumed to follow the normal distribution, which is commonly 
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used to represent uncertainties in engineering problems. The standard deviation of the time for 

each treatment was estimated as one-fourth of the range (Taylor 2013) of treatment application 

times. The ranges and standard deviations of application times in years for the micro-surfacing, 

UBWC and thin overlay are 4 – 10 and 1.5, 11 - 15 and 1, and 16 - 20 and 1, respectively for each 

treatment type. Finally, the effectiveness of these PM treatments was calculated as the average of 

the estimated drop in IRI (𝐷𝐼𝑅𝐼,𝑖,𝑡) and the effectiveness calculated from Labi and Sinha (2003), 

Ong et al. (2010) and Ji et al. (2015).  

3.4.3. Data Generation Incorporating Types and Times of Preventive Maintenance 

The developed greedy algorithm was employed to optimize PM treatments subject to different 

percentages of funds (100% to 40%) allocated for PM. The optimization of PM at each percentage 

of funds results in pavement condition data includes IRI, Cum. AADTT, Cum. AAFI, and optimal 

times and types of PM treatments. These data were then used to develop ordered-probit models 

(Models B) to estimate pavement performance. To be comparable with Model A, the explanatory 

variables used to create Models B are Cum. AADTT and Cum. AAFI, without considering the effect 

of PM. 

 

Using Models B, pavement performance curves were developed, closely investigated, and 

compared to those of Model A. In addition, the RMSE was calculated to measure the difference 

between the estimated pavement performances using the models developed at different 

percentages of funds (Models B) and Model A. The findings indicated that the decrease in the 

percentage of PM funds from 100% to 60% associates with pavement performance more 

comparable to that of Model A and results in a reduction in the RMSE. Whereas, the percentages 

below 60% correspond to pavement performance less comparable to that of Model A and yields 

an increase in the RMSE. Hence, the 60% funding was selected to generate the final dataset used 

in the subsequent analysis. 

3.4.4. Transition Probability Matrix Estimation 

The finally generated data was used to develop an ordered-probit model (Model C) to estimate and 

predict the probability of pavement condition states. IRI was discretized into five condition states 
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as follows: state 1 (𝐼𝑅𝐼 ≤ 60), state 2  (60 < 𝐼𝑅𝐼 ≤ 70), state 3 (70 < 𝐼𝑅𝐼 ≤ 80), state 4 (80 <

𝐼𝑅𝐼 ≤ 100), and state 5 (𝐼𝑅𝐼 > 100). 

 

The estimation results shown in Table 3.5 highlight the statistical significance of the Cum. AADTT, 

Cum. AAFI, micro-surfacing (MCR), UTBWC, and thin HMA overlay (OVR), as well as the 

significance of the threshold parameters (𝜇1, 𝜇2, 𝜇3). The estimated 𝜒 
2 value was found to be 

60417.08, which is greater than the critical 𝜒 
2 (15.05) indicating the statistical significance of 

Model C at a 95% confidence level. The positive signs of the Cum. AADTT and Cum. AAFI indicate 

their negative effect on pavement condition, while the negative signs of the PM treatments (MCR, 

UTBWC and OVR) imply their positive impact on pavement condition. 

 

Table 3.5. Estimation results of Model C 

Variable Description Parameter 

Estimate 

t-

statistic 

p-

value 

Constant  0.35140 41.17 <0.001 

Cum. AADTT Cumulative Annual Average Daily Truck Traffic 

in 10,000 Trucks 

0.78778 146.01 <0.001 

Cum. AAFI Cumulative Annual Average Freezing Index in 

10,000 °F days 

1.51216 97.46 <0.001 

MCR 1 if micro-surfacing is implemented, 0 

otherwise  

-0.94987 -43.70 <0.001 

UTBWC 1 if UTBWC is implemented, 0 otherwise -0.99930 -31.95 <0.001 

OVR 1 if thin HMA overlay is implemented, 0 

otherwise 

-4.19084 -98.07 <0.001 

𝜇1 

Threshold Parameters 

1.77384 217.42 <0.001 

𝜇2 3.56871 360.12 <0.001 

𝜇3 6.03055 300.36 <0.001 

Log-likelihood of restricted model = -84142.73 

Log-likelihood of unrestricted model = -53934.19 

Estimated 𝜒 
2 = −2 [𝐿𝐿(𝛽𝑅) − 𝐿𝐿(𝛽𝑈)] = 60417.08 

Degree of freedom (unrestricted number of parameters – restricted number of parameters) = 8 

Critical 𝜒 
2 at a 95% confidence level = 15.05 

 

 

Using Model C, the non-homogeneous transition probability of pavement condition states can be 

calculated as follows: 
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𝑈𝑖 =  0.35140 +  0.78778𝐶𝑢𝑚. 𝐴𝐴𝐷𝑇𝑇 + 1.5121𝐶𝑢𝑚. 𝐴𝐴𝐹𝐼 −  0.94987 𝑀𝐶𝑅 −  0.99930 𝑈𝑇𝐵𝑊𝐶

−  4.19084𝑂𝑉𝑅  

𝑆𝑖 = [𝒩(−𝑈𝑖), 𝒩(1.77384 − 𝑈𝑖) − 𝒩(−𝑈𝑖),𝒩(3.56871 − 𝑈𝑖)

− 𝒩(1.77384 − 𝑈𝑖),𝒩(6.03055 − 𝑈𝑖) − 𝒩(3.56871 − 𝑈𝑖), 1 − 𝒩(6.03055 − 𝑈𝑖)] 

ℙ =  inverse (𝑆𝑖) × 𝑆𝑖+1 

Where 𝑈 is the utility function or the latent variable, 𝒩 is the normal probability distribution, 𝑖 is 

the time in years, 𝑆𝑖 is the 1 × 5 condition state vector at time 𝑖, and ℙ is the transition probability 

matrix. 

 

Figure 3.6 presents the probabilistic pavement performance curves for condition states 1, 2, 3, 4 

and 5 represented by curves S1c, S2c, S3c, S4c and S5c, and S1p, S2p, S3p, S4p and S5p, 

respectively for each condition state and for using current and past studies. These probability 

curves were developed at the mean value of AAFI (772 °F days) while the AADTT increases by a 

truck growth rate of 2.8% over pavement age. Using the current study, the expected pavement age 

is 32 years when pavement condition transitions to state 5 (IRI > 100 in/mi.). The impact of PM 

on pavement condition is more significant if implemented on pavements in states 3 or 4 rather than 

in states 1 or 2. STAs should therefore implement PM treatments on pavement surfaces when 

pavement roughness exceeds IRI of 70 in/mi. for superior maintenance effectiveness. 

 

Figure 3.6 shows that with a probability of 38% the newly constructed pavements have an IRI less 

than or equal to 60 in/mi. The probability of a pavement being in condition state 2 (60 < IRI ≤ 70 

in/mi.) decreases at different rates from the age of 6 to 12 years due to the effect of the expected 

application of PM treatments such as MCR or UTBWC. However, this probability begins to 

increase at the age of 17 years because of the effect of the expected application of PM treatments 

such as OVR. The probability of pavement condition being in state 3 (70 < IRI ≤ 80 in/mi.) 

decreases over pavement age from 9 to 16 years, during which the probability of being in state 4 

(80 < IRI ≤ 100 in/mi.) increases with fluctuating deterioration rates. At the age of 32 years, 

pavements are expected to be in condition state 5 with IRI greater than 100 in/mi. 
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Figure 3.6. Probabilistic pavement performance curves using current (c) and prior (p) studies 

Marginal Effects 

To analyze the impact of the significant explanatory variables on pavement condition, their 

marginal effects were estimated following the methodology presented by Washington et al. (2011). 

Figure 3.7 demonstrates the marginal effects of Cum. AADTT, Cum. AAFI, MCR, UTBWC and 

OVR on the five pavement condition states: S1c, S2c, S3c, S4c and S5c. Besides, Figure 3.7 shows 

the marginal effects of Cum. AADTT and Cum. AAFI on the five condition states: S1p, S2p, S3p, 

S4p and S5p when the impact of PM is not considered. The estimated marginal effects indicate the 

expected change in the probability of pavement condition state when the Cum. AADTT and/or 

Cum. AAFI change (decease/increase) by one unit, or when the MCR, UTBWC and/or OVR are 

implemented (1) or not (0). Since the Cum. AADTT and Cum. AAFI were assumed in 10,000 in the 

models’ estimation, one unit of the Cum. AADTT and Cum. AAFI is equal to 10,000 Trucks and 

10,000 °F days, respectively. 
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Figure 3.7. Marginal effects of explanatory variables 

 

The Cum. AADTT and Cum. AAFI have negative effects on the probabilities of condition states 1 

and 2, but positive effects on the probabilities of the rest of the condition states. Conversely, the 

MCR, UTBWC and OVR have positive effects on the probability of the condition states 1 and 2, 

but negative effects on the probabilities of the rest of the condition states. Figure 3.7 implies that 

an increase of 10,000 trucks could result in decreasing the probability of pavements being in states 

1 and 2 (S1c and S2c) by about 1% and 22%, respectively, whereas increasing the probability of 

pavements being in states 3 and 4 (S3c and S4c) by 7% and 17%, respectively. Figure 3.7 also 

indicates that an increase of 10,000 °F days in the Cum. AAFI could result in a 44% reduction in 

the probability of pavements being in state 2 (S2c). Figure 3.7 shows that the marginal effects of 

the Cum. AADTT and Cum. AAFI on condition state 1 (S1p) are overestimated when the impact of 

PM is not accounted for. On the other hand, their marginal effects on the rest of the condition states 

are underestimated when the impact of PM is not incorporated. Such incorrect estimated marginal 

effects yield inaccurate prediction of pavement condition and, therefore, non-optimal M&R 

decision-making.   

 

The implementation of PM treatments increases the probability of pavements being in states 1 and 

2, whilst decreasing the probability of being in states 3, 4 and 5. The effects of MCR and UTBWC 
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are quite similar; however, they are recommended at different pavement ages and conditions. The 

MCR should be used in earlier pavement ages than the UTBWC. The OVR significantly improves 

the condition of pavements in states 3 or 4 (70 < IRI ≤ 100 in/mi.). In other words, when OVR is 

implemented on pavements of condition states 3 or 4, they are expected to move to condition state 

1 with a probability of more than 90%. 

 Methodology and Model Validation 

The methodology and Model C were validated mathematically using the cross-validation with the 

actual or out-of-sample data and using a survey of SMEs with strong background in pavement 

engineering and management. Model C was cross-validated by comparing its predictions with the 

actual pavement conditions in terms of RMSE and MAPE. A new set of data (10% of the data used 

to develop Model C) was generated randomly to be used in the validation. The estimated RMSE 

of Model C was found to be equal to 0.65, which is equivalent to a MAPE of 13%. This indicates 

that Model C is robust and capable of predicting the mean pavement condition state with a validity 

percentage of 87%. This, in turn, emphasizes the reliability of the proposed methodology. 

 

Two questionnaire surveys (Surveys 2 and 3) were designed and deployed to SMEs from eight 

Midwestern states to evaluate the results of the current study compared to the previous studies. 

The eight Midwestern states include Indiana, Illinois, Wisconsin, Michigan, Ohio, Minnesota, 

Iowa and Missouri. The SMEs were chosen based on their experience in pavement engineering 

and management to ensure that the results of the proposed methodology and Model C are 

consistent with the engineering practice and judgement. The results of using the proposed 

methodology and Model C were compared to the results of using prior non-homogeneous Markov 

models such as Yang et al. (2005), Kobayashi et al. (2010), Tabatabaee et al. (2013) and Abaza 

(2017a). The common assumptions of prior non-homogeneous Markov models are: (1) pavement 

condition deteriorates continually over time and does not improve, and (2) the effect of PM is not 

considered in pavement performance prediction. Under these assumptions, a non-homogeneous 

Markov model was developed using the generated data from the current study. Pavement 

performance curves were then simulated using the models of the current and previous research.  
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The purpose of Survey 2 is to assess the trend of the pavement performance curves of the five 

condition states estimated using the models of current and past studies. Each condition state curve 

was divided into segments according to the change of deterioration rate. The SMEs were requested 

to assign a score from 0 to 3 for each curve segment; where the score of 0, 1, 2, or 3 indicates that 

whether the curve segment strongly disagrees, disagrees, agrees, or strongly agrees with the actual 

pavement behavior, respectively. Figure 3.6 displays the probabilistic pavement performance 

curves developed using the current (S1c, S2c, S3c, S4c and S5c) and prior (S1p, S2p, S3p, S4p 

and S5p) studies. The aim of Survey 3 is to evaluate the marginal effects of the influential 

explanatory variables on pavement condition, which were estimated based on the proposed 

methodology and models. The SMEs were asked to give scores similar to those of Survey 2 to the 

estimated marginal impacts of the influential independent variables based on their engineering and 

practical perspectives. Figure 3.7 shows the marginal effects of Cum. AADTT, Cum. AAFI, MCR, 

UTBWC and MCR estimated for each condition state using the current study (S1c, S2c, S3c, S4c 

and S5c) and prior research (S1p, S2p, S3p, S4p and S5p). 

 

As shown in Figure 3.6, the expected pavement age using the model of prior research is 20 years, 

which is consistent with the estimate of most prior research. However, the expected pavement age 

using Model C of the current study is 32 years. This difference in pavement age is the expected 

extension in pavement service life due to different PM treatments implemented over pavement life 

span, which was not adequately considered in previous research. It is worth noting that at the times 

when PM is not expected (e.g., up to the age of 6 years), the trends of pavement performance based 

on the current and past research are comparable. In addition, pavements in condition state 1 

deteriorate similarly using both models. However, the deterioration rates of pavements in the 

remaining condition states are different, particularly at the times of expected PM. Following the 

previous studies, pavements are shown most probably to be in poor condition (IRI > 100 in/mi.) at 

ages greater than 16 years. On the contrary, following the current model, pavements are more 

likely to be in poor condition around the age of 27 years. 

 

Six SMEs from the states of Indiana, Iowa and Minnesota and from the National Center for 

Pavement Preservation (NCPP) responded to Surveys 2 and 3. They confirmed that the pavement 

condition and marginal effects of the influential variables estimated using Model C are consistent 
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with the state of practice. The SMEs’ overall assessment of the estimated pavement performance 

curves for the five condition states using the current and prior research is presented in Table 3.6. 

The pavement performance curves developed using the newly developed hybrid approach are more 

compatible with the actual pavement behavior than those based on past studies. The average scores 

provided by the SMEs to the estimated marginal effect of Cum. AADTT, Cum. AAFI, MCR, 

UTBWC and MCR are 1.90, 1.75, 2.00, 1.92, and 1.80, respectively, demonstrating the consistency 

of the estimated marginal effects with the actual practice. 

 

The SMEs from the state of Indiana agree with the estimated pavement performance of condition 

state 1 (less than 38% of new pavements are expected to have IRI less than 60 in/mi.) since the 

target value of IRI for newly constructed pavements in Indiana is 70 in/mi. On the contrary, the 

SMEs from the states of Iowa and Minnesota disagree with the SMEs from Indiana as the 

acceptable IRI of newly built or resurfaced pavements in Minnesota is about 35 in/mi. The SMEs 

from Iowa mentioned that the percentage of new pavements with an IRI of less than 60 in/mi. is 

greater than 38%, and pavements more than 8 years old may have IRI less than 60 in/mi. The 

SMEs from Indiana agree with the expected improvement in the performance curves of states 2 

and 3 owing to the impact of PM. In contrast, Iowa's SMEs anticipated higher probabilities of 

condition states 2 and 3 for pavements below 12 years old than those shown in Figure 3.6. 

 

Table 3.6. Assessment of SMEs to pavement performance curves of current and past research  

Condition 

State 

Average Scores of SMEs Assessment  

Current Study Past Studies (e.g., Yang et al. 2005; Kobayashi et al. 2010; 

Tabatabaee et al. 2013; Abaza 2017a) 

1 2.50 2.25 

2 2.20 1.80 

3 2.00 1.45 

4 1.90 1.33 

5 2.10 1.36 

Note: Score of 0, 1, 2, or 3 indicates that the performance curve of a condition state strongly disagrees, 

disagrees, agrees, or strongly agrees with the state of practice, respectively.  

 

The SMEs from Indiana indicated that the marginal impact of the Cum. AADTT is reasonable, 

whilst the SMEs from Iowa stated that the Cum. AADTT’s effect is higher than expected. The 
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Indiana’s SMEs stated that the impact of the Cum. AAFI should be lower than the estimated value 

(22% decrease in probability of condition state 2) because of the application of binder of 

performance grade (PG) of low temperature and/or freeze-thaw resistant material that limits the 

deterioration of pavement condition. Similarly, they indicated that if MCR is applied to pavement 

surface, the pavement condition is less likely to be in state 1 (IRI < 60 in/mi.), which agrees with 

the estimated marginal effects. Furthermore, they stated that pavements are most likely to be in 

condition states 1 or 2 if OVR is implemented. 

 Summary 

The hybrid approach proposed in this study helps incorporate the effectiveness of PM into 

probabilistic pavement performance models when the historical PM data is absent or insufficient. 

This approach is comprised of six major tasks: data collection and analysis; data simulation; 

estimation of initial times for preventive maintenance treatments; data generation; estimation of 

transition probability matrix (TPM); and validation of the approach and models developed, both 

mathematically and through a survey of SMEs in pavement engineering and management.  

 

Pavement condition data were collected form the LTPP database for interstate flexible pavements 

from eight Midwestern United States. Data were simulated through developing an exponential 

multiple regression model and determining the probability distribution of the dependent and 

independent variables. The traffic and climate loadings were found to be the statistically significant 

variables affecting pavement condition in the absence of historical PM data. The initial times for 

PM treatments were determined through literature search, Survey 1 of STAs to collect data of 

pavement condition and PM, and detection of PM times from probabilistic pavement performance 

curves. Based on the literature search and results of Survey 1, the most common effective PM 

treatments were found to be micro-surfacing, ultra-thin bonded wearing course (UTBWC), and 

thin HMA overlay. 

 

An ordered-probit Model A was built to develop probabilistic pavement performance curves used 

to identify the approximate probable times for PM application, and to estimate the effectiveness 

of PM treatments. Eventually, the initial times for the PM treatments were estimated as 4 – 10 

years with 1.5-year standard division (STD) for micro-surfacing, 11 - 15 years with 1-year STD 
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for UTBWC, and 16 – 20 years with 1-year STD for thin overlay. Since the implementation of PM 

is constrained by limited funding, a greedy algorithm was developed to prioritize PM schedule 

based on pavement condition and treatment costs, and under the constraint of the estimated initial 

times for PM. The amount of funding was specified as a percentage (100% to 40%) of the total 

funding required to implement PM to pavement sections at the estimated initial times. For each 

percentage of funding, the greedy algorithm results in pavement condition data used to develop 

ordered-probit Models B. Probabilistic pavement performance models were created using Models 

B and then compared with that of Model A. The results showed that at a 60% funding the simulated 

data including types and times of PM treatments performs comparably to the actual data. 

 

An ordered-probit Model C was developed to estimate the non-homogeneous transition 

probabilities of pavement condition incorporating PM impact. The traffic and climate loadings, as 

well as the PM treatments micro-surfacing, UTBWC and thin HMA overlay, were found to be 

statistically significant. The statistical significance of PM in pavement performance prediction 

emphasizes the necessity of collecting and managing PM data. Probabilistic pavement 

performance curves were developed, and the marginal effects of the explanatory variables were 

estimated. It was noticed that the lack of inclusion of the effect of PM on pavement condition 

causes an underestimation of the condition and remaining service life of pavement, which could 

lead to erroneous and non-optimal pavement M&R decisions. 

 

The hybrid approach and the developed non-homogeneous Markov model were validated 

mathematically through the cross-validation with the actual/out-of-sample data, and practically 

using two surveys (Surveys 2 and 3) sent to the SMEs in pavement engineering and management. 

The cross-validation was performed to ensure that the predicted pavement condition is comparable 

to the actual pavement condition. The RMSE was found to be equal to 13%, indicating that the 

methodology and models developed are reliable and accurate in probabilistic pavement condition 

prediction. Survey 2 was deployed to the SMEs to assess the trends of pavement performance 

curves developed using the current and prior research. Survey 3 was used to assess the estimated 

marginal effects of the explanatory variables. The SMEs’ validation revealed that pavement 

performance curves developed using the current study are more accurate and practical than those 

developed using prior studies. Furthermore, although the SMEs do not strongly agree with some 
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trends of pavement performance curves such as that of state 4, their overall evaluations range from 

agreement to strong agreement. 
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CHAPTER 4. COMPARATIVE ANALYSIS OF MARKOVIAN 

METHODOLOGIES FOR MODELING PAVEMENT PERFORMANCE  

[A version of this chapter is under review at the Journal of Infrastructure Systems, ASCE].2 

A variety of Markov chain methodologies have been used to develop stochastic performance 

models for infrastructure systems. These are the homogeneous, staged-homogeneous, non-

homogeneous, semi-, and hidden Markov. The primary components of a Markov model are the 

transition probability matrix, condition states, and duty cycle. This chapter hypothesizes that the 

number of condition states (NCS) and length of duty cycle (LDC) significantly influence the 

prediction accuracy of a Markov model, and that the nature of such influence varies across the 

different Markov methodologies. In previous studies on Markovian performance modeling, not 

only is this hypothesis unanswered but also there is lack of comparison across the different Markov 

methodologies. Addressing these questions can be beneficial to practitioners who seek guidance 

on selecting appropriate Markov models for modeling the performance of their road infrastructure 

networks. In a bid to throw light on this issue, this chapter develops and compares the Markovian 

performance models using empirical data. This chapter also investigates the sensitivity of the 

Markovian model prediction accuracy to NCS and LDC. The results indicate that the semi-Markov 

is generally statistically superior to the homogeneous and staged-homogeneous Markov (except in 

a few cases of NCS and LDC combinations) and that the prediction accuracy of Markovian models 

is significantly sensitive to NCS and LDC: an increase in NCS improves the prediction accuracy 

until a certain NCS threshold after which the accuracy diminishes, plausibly due to data overfitting. 

In addition, an increase in LDC improves the prediction accuracy when the NCS is small. The 

results can help guide highway agencies and future researchers in selecting appropriate Markovian 

methodologies, and for a selected methodology, in deciding the appropriate number of condition 

states and duty cycle length. 

 
2 Yamany. M.S., Abraham, D.M., and Labi, S. Comparative Analysis of Markovian Methodologies for Modeling 

Infrastructure System Performance. Submitted to Journal of Infrastructure Systems, ASCE. 
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 Introduction 

Highway agencies need reliable infrastructure performance models so they can predict the future 

condition of the infrastructure more confidently. These future predictions serve as a basis for 

developing realistic and efficient maintenance and rehabilitation (M&R) schedules and strategies 

to manage their limited resources and keep their infrastructure in a state of good repair (Walls III 

and Smith 1998; Peshkin et al. 2004). Infrastructure performance models can be categorized as: 

deterministic, Artificial Intelligence (AI) and probabilistic (Yamany and Elwakil 2019, 2020; 

Yamany et al. 2019b; Yamany et al. 2020b). Deterministic models have been widely used for 

infrastructure performance but do not account for the uncertainty associated with infrastructure 

condition data. AI models, specifically Artificial Neural Networks (ANNs) have been successful 

in infrastructure condition prediction but are considered as black boxes and therefore tend to yield 

results that are difficult to interpret (García de Soto et al. 2018; Yamany et al. 2020a, b). 

 

Unlike deterministic and AI models, probabilistic models explicitly consider the inherent 

uncertainty associated with infrastructure condition data, and therefore they yield results that are 

relatively more robust and intuitive (Saeed et al. 2017; Qiao et al. 2019). Greene and Henscher 

(2010) argued that although probabilistic models may be less precise, they are more robust than 

deterministic models. Of the probabilistic techniques for performance modeling, the Markov chain 

is the most widely used. Based on the reviewed literature, Markov chain methodologies can be 

categorized as follows: homogeneous, staged-homogeneous, non-homogeneous, semi-, and hidden 

Markov. The primary components of a Markov model are the transition probability matrix (TPM), 

condition states, and the duty cycle or step time. The transition probability matrix is a 𝑛 × 𝑛 square 

matrix that describes the probability of infrastructure assets migrating from one condition state to 

another; where 𝑛 is the number of condition states. The condition states are discrete ratings of 

infrastructure condition, such as excellent, fair and poor. The duty cycle is the time interval or the 

frequency of data collection, which is typically one year. Figure 4.1 depicts the transition 

probabilities in Markov models, where 𝑃𝑖𝑖 is the probability that an infrastructure component of 

condition state i stays in the same state after one unit of duty cycle, and 𝑃𝑖𝑛 is the probability that 

an infrastructure component of condition state i transitions to state n after one unit of duty cycle. 
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Figure 4.1. Transition probability diagram 

 

Markov models estimate the future condition (𝑆𝑖+1) of an infrastructure component based on its 

current condition (𝑆𝑖) (the memoryless property of Markov process) and its deterioration and 

improvement TPM; 𝑆𝑖+1 = 𝑆𝑖  ×  TPM , where the TPM can be written as follows: 

 

TPM =  [
𝑃11 ⋯ 𝑃1𝑛

⋮ ⋱ ⋮
𝑃𝑛1 ⋯ 𝑃𝑛𝑛

]                          (4.1) 

 

The current chapter begins with a review of the literature on the use of Markovian techniques for 

infrastructure deterioration modeling with the emphasis on pavements. This is followed by the 

research methodology where the data collection and study hypotheses are described. To 

circumvent potential statistical bias often associated with the use of different sets of condition data 

as evidenced in past studies, the comparative analysis in this chapter used only one set of data. In 

the methodology, the following hypotheses are presented: (i) the different Markov methodologies 

yield models with different prediction accuracies, (ii) the Markov model performance is 

significantly influenced by the integrity of the underlying TPM, the number of condition states 

(NCS), and the length of duty cycle (LDC), and (iii) the nature of these influences varies across 

the different combinations of NCS and LDC levels. This chapter presents the methods used for the 

comparative and sensitivity analysis, discusses the results, and explains the practical benefits of 

the results. 
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 Prior Research on Using Markovian Techniques for Pavement Deterioration Modeling  

A number of previous research studies have reported the superiority and validity of Markov models 

in terms of their prediction accuracy of infrastructure condition based on two criteria: (1) the 

consistency of the model assumption with the natural behavior of infrastructure deterioration; and 

(2) the validation of the model results. 

 

Abaza (2016a, b), Abaza (2017a) and Pérez-Acebo et al. (2019) stated that the homogeneous 

Markov technique generally has the lowest prediction accuracy (compared to other Markov 

techniques) because it makes the rather restrictive assumption that the transition probability of 

pavement condition is fixed over the pavement lifetime. The homogeneous Markov methodology, 

however, presents the only choice when data are limited, for example, when data are available for 

only two consecutive transitions of pavement condition. The staged-homogeneous Markov 

technique is generally used to simulate the actual deterioration more realistically compared to the 

homogeneous Markov technique. This technique assumes that the pavement condition does not 

change significantly over a period of 5 - 6 years (Butt et al. 1987; Abaza 2016a), and therefore 

inherently assumes that the transition probabilities of pavement condition change every fixed 

period of time or stages. For this reason, the staged-homogeneous Markov methodology is likely 

to yield more accurate predictions compared to the homogeneous Markov methodology. 

Nevertheless, the period of 5 or 6 years may be too short or too long for pavements with slow or 

fast deterioration rates, respectively, and may result in overestimation or underestimation of 

pavement condition. 

 

The semi-Markov technique (Nesbit et al. 1993; Thomas and Sobanjo 2012) assumes that over the 

pavement age, the transition probabilities change from one holding time to another, and that the 

holding times may differ in their durations based on the different deterioration rates. For this 

reason, the semi-Markov methodology is likely to have higher prediction accuracy compared to 

the staged-homogeneous and homogeneous Markov methodologies. The non-homogeneous 

Markov methodology (Yang et al. 2005, 2006; Kobayashi et al. 2010; Tabatabaee et al. 2013; 

Abaza 2017a) assumes that the pavement condition transition probabilities vary continually over 

pavement lifespan. Also, the non-homogeneous Markov methodology considers the impact of 

explanatory variables on the transition probabilities, and therefore is more powerful in capturing 
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data variability. Therefore, this methodology is expected to yield the most reliable predictions of 

pavement deterioration. The hidden Markov methodology assumes two condition states: hidden 

and observed, and is used to estimate the probability of hidden condition states when data on the 

observed condition states are provided. Therefore, the hidden Markov technique is typically used 

when data are incomplete (Lethanh and Adey 2012, 2013; Lethanh et al. 2015). 

 

Previous research studies such as Yang et al. (2005 and 2006) and Thomas and Sobanjo (2012) 

reported that their Markov models are robust and can provide accurate predictions by comparing 

their predictions with actual data. Other research studies, for example, Butt et al. (1987) and Li 

(2005), validated their Markov models by contrasting their prediction accuracy with that of the 

Markov models developed by Keane and Keane (1985), Wang et al. (1994) and Madanat et al. 

(1995a, b). Notwithstanding, Butt et al. (1987) and Li (2005) used condition data for pavements 

that was not the same as those used by Keane and Keane (1985), Wang et al. (1994) and Madanat 

et al. (1995a, b). It is worth noting that different sets of pavement condition data have different 

variations that influence the prediction accuracy of the respective Markov models. Moreover, the 

use of one Markov methodology across different datasets does not necessarily yield the same 

prediction accuracy across these datasets. Hence, the prediction power of Markovian models 

should not be judged across distinct sets of data. 

 

The number of condition states (NCS) in Markovian pavement performance models has been 

assumed based on the availability of data (Martin and Kadar 2012) and a specific indicator of 

pavement condition. Typically, 10 condition states (NCS = 10) have been used in Markovian 

pavement performance models (Li et al. 1996; Yang et al. 2005, 2006; Ortiz-García et al. 2006; 

Abaza 2014, 2017a). Some researchers used NCS values as large as 20 (Macleod and Walsh 1998) 

and as small as 3 (Pérez-Acebo et al. 2019). Pérez-Acebo et al. (2018 and 2019) developed 

homogeneous Markovian models for flexible and rigid pavements in the Republic of Moldova: 6 

condition states were used for flexible pavements, while 3 - 4 condition states were used for each 

of the three sub-classes of rigid pavements. Pérez-Acebo and his team selected the NCS based on 

the guidance from the previous research by Odoki and Kerali (2000) and Adedimila et al. (2009). 

Nevertheless, these two studies by Pérez-Acebo et al. (2018 and 2019) did not address the 

significance of the NCS on the prediction accuracy of their Markovian pavement performance 
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models, which indicates that their selected NCS might not have yielded models with the highest 

possible prediction accuracy. It is worth mentioning that the NCS should be selected not only on 

the basis of data availability but also to adequately capture the changes in pavement condition over 

its lifetime (Porras-Alvarado et al. 2014). 

 

The length of duty cycle (LDC) in Markovian pavement performance models is the interval 

between data collection. The typical LDC value reported in the literature is one year because most 

highway agencies collect pavement condition data annually (Butt et al. 1987; Abaza and Murad 

2010; Abaza 2016a, b). However, some researchers assumed 2-year duty cycle for their Markovian 

pavement performance models (Abaza 2004; Hassan et al. 2017a, b). There are yet others, such as 

Pérez-Acebo et al. (2018 and 2019) that used a half-year duty cycle (because their data were 

collected biannually) but still added the caveat that a half-year duty cycle might be rather short 

and could lead to data overfitting. The current research recognizes that the LDC should be selected 

on the basis of not only the data collection frequency, but also the influence on the model’s 

prediction accuracy. 

 Research Methodology 

The chapter’s conceptual framework (Figure 4.2) has five main parts: (1) development of 

Markovian models, (2) establishing the NCS and LDC combinations, (3) creating 24 

homogeneous, 40 staged-homogeneous and 8 semi-Markov Models, each with different 

specifications and assumptions, (4) comparative analysis of the Markovian models within each 

Markov methodology, and (5) comparative analysis of Markovian models across all Markov 

methodologies. 
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Figure 4.2. Conceptual framework 

 Development of Markovian Models 

The three primary components of a Markov model are the transition probability matrix, the duty 

cycle, and the condition states. The estimation and settings of these three Markovian elements can 

influence profoundly the estimation and prediction accuracy of Markov models. In this chapter, 
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different Markov models with different NCS and LDC configurations were developed, and their 

prediction accuracy is calculated and compared to each other.  

4.4.1. Data Collection and Analysis 

Interstate flexible pavement condition data were acquired from the LTPP database for eight 

Midwestern states (Indiana, Illinois, Wisconsin, Michigan, Ohio, Minnesota, Iowa and Missouri). 

The data were cleaned by deleting the extreme outliers and high-leverage points (Belsley et al. 

1980; Ahmed et al. 2016), resulting in 966 observations. Table 4.1 shows the descriptive statistics 

of the variables considered in the analysis. 

 

Table 4.1. Descriptive statistics  

Variable Description Mean STD Min Max 

IRI International Roughness Index (in/mi) 80.9 27.8 31.3 194.9 

Age Years since construction or rehabilitation  9.6 6.6 0.0 27.0 

AAP Annual Average Precipitation (inches) 38.1 7.7 24.4 61.4 

AAT Annual Average Temperature (°F) 50.5 3.3 42.8 59.7 

AAFI Annual Average Freezing Index (°F days) 788 393 70 1924 

AADTT Annual Average Daily Truck Traffic  2169 802 249 5115 

ESALs Equivalent Single Axle Loads (18-Kip) 1115 534 122 3195 
 

 

To fill some gaps in the database, data input was carried out using simulation. Statistically 

significant explanatory variables, with their respective probability distributions, were used in the 

simulation. 

4.4.2. Design of Condition States  

This section establishes the NCS, the range of each condition state (in terms of lower and upper 

values of pavement condition indicator), and the LDC. In the past literature on Markovian 

pavement performance models, different NCS ranging from 3 to 20 were used, and these were 

based on the adopted pavement condition indicator, data availability and the level of detail required 

in condition prediction. The LDC values spanned from 6 months to 2 years based on the frequency 

of data collection and the highway agency policy. 
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Due to data limitation, the NCS used in this study is 4, 5, 8 and 10, and the LDC ranges from 1 to 

2 years (these are the most widely used duty cycles in the literature). To build Markov chain 

models, the pavement IRI values were discretized into n condition states (n = 4, 5, 8 and 10). The 

range of the intervals or the cut-offs of the condition states in terms of IRI values were designed 

to satisfy two requirements: (1) equal range widths for all the condition states as indicated by Butt 

et al. (1987), Odoki and Kerali (2000) and Pérez-Acebo et al. (2018), and (2) a sufficient 

percentage of number of observations in each condition state to achieve significant results (Pérez-

Acebo et al. 2019). The minimum percentage of observations in each condition state was specified 

as 10% for the 4 or 5 condition states, and 5% for the 8 or 10 condition states. In cases where the 

minimum percentage of observations for a condition state was not achieved, either the range of 

that state was extended or that state was combined with the lower or higher neighboring state as 

recommended by Pérez-Acebo et al. (2019). Figure 4.3 presents the distribution of the discretized 

pavement condition values in terms of IRI. Table 4.2 presents the range and percentage of 

observations of the final design of each condition state, for each NCS value used in the analysis. 

 

 

Figure 4.3. Distribution of pavement condition in terms of IRI 
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Table 4.2. Discretization of IRI into NCS 

NCS  
Condition State 

1 2 3 4 5 6 7 8 9 10 

4 
Range  

IRI
≤ 60 

60
< IRI
≤ 75 

75
< IRI
≤ 100 

IRI
> 100 

- - - - - - 

P 9.52 38.19 31.84 20.33 - - - - - - 

5 
Range 

IRI
≤ 60 

60
< IRI
≤ 70 

70
< IRI
≤ 80 

80
< IRI
≤ 100 

IRI
> 100 

- - - - - 

P 9.52 26.49 20.72 22.63 20.33 - - - - - 

8 
Range 

IRI
≤ 60 

60
< IRI
≤ 65 

65
< IRI
≤ 70 

70
< IRI
≤ 75 

75
< IRI
≤ 80 

80
< IRI
≤ 90 

90
< IRI
≤ 100 

IRI
> 100 

- - 

P 9.52 13.18 13.26 11.19 9.33 13.55 8.97 20.33 - - 

10 
Range  

IRI
≤ 60 

60
< IRI
≤ 64 

64
< IRI
≤ 68 

68
< IRI
≤ 72 

72
< IRI
≤ 76 

76
< IRI
≤ 80 

80
< IRI
≤ 86 

86
< IRI
≤ 93 

93
< IRI
≤ 100 

IRI
> 100 

P 9.52 9.95 11.49 9.76 8.47 7.29 8.86 7.75 5.92 20.33 

Note: P is the percentage of observations in each condition state; IRI value is in in/mi. 

4.4.3. Estimation of Transition Probabilities  

Five methods have been used in the literature to estimate the transition probabilities of pavement 

condition, namely the expected-value, the percentage transition, the simulation-based, the 

econometric models, and the duration models (Ortiz-García et al. 2006; Abaza 2016a; Abaza 

2017a; Yamany et al. 2019a). Of these five methods, the percentage transition is the most common, 

and was used in this study. The percentage transition method estimates the transition probabilities 

as the pavement proportions that transition from one state to another in one unit of duty cycle. The 

pavement proportions are calculated in terms of the number of pavement sections of a fixed length 

(Abaza 2014; Pérez-Acebo et al. 2018) or the cumulative length of pavement sections of different 

lengths (Hassan et al. 2017a, b; Osorio-Lird et al. 2018). In this chapter, the transition probability 

of a condition state 𝑖 is calculated as the proportion of the number of 1-mile-long pavement 

sections that transitions from one state to another: 

 

 𝑃𝑖𝑗 =
𝑁𝑖,𝑡−1 −  𝑁𝑖,𝑡

𝑁𝑖,𝑡−1
                                               (4.2) 
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where  𝑃𝑖𝑗 is the probability of pavement condition transitioning from state 𝑖 to any other state 𝑗 

after one unit of duty cycle, 𝑁𝑖,𝑡 is the number of 1-mile-long pavement sections in state 𝑖 at time 

𝑡, and  𝑁𝑖,𝑡−1 is the number of 1-mile-long pavement sections in state 𝑖 at time 𝑡 minus one unit of 

duty cycle. 

4.4.4. Prediction Accuracy of Markovian Models 

In the current research, the accuracy of pavement condition prediction is the criterion for 

comparing the different Markov models and methodologies. The prediction accuracy is expressed 

in the values of the mean absolute percent error (MAPE, %) and the root mean square error 

(RMSE, in/mi.) which compare the actual and predicted pavement condition. Here, the RMSE is 

estimated by a unit of condition state in each Markov model. To compare the RMSE values of the 

Markov models with different NCS and cutoffs, the computed RMSE (Equation 4.4) was adjusted 

by the term 
(𝑃𝐼𝑚𝑎𝑥−𝑃𝐼𝑚𝑖𝑛)

𝑛
; where 𝑛 is the NCS of each Markov model, and (𝑃𝐼𝑚𝑎𝑥 − 𝑃𝐼𝑚𝑖𝑛) is the 

range of pavement condition (PI is the pavement condition indicator). 

 

MAPE = (
1

𝑁
 ∑(

|𝐸𝑖,𝐴𝑐𝑡𝑢𝑎𝑙 − 𝐸𝑖,𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝐸𝑖,𝐴𝑐𝑡𝑢𝑎𝑙
)

𝑁

𝑖

) ×  100                 (4.3) 

 

RMSE = √
1

𝑁
∑(𝐸𝑖,𝐴𝑐𝑡𝑢𝑎𝑙 − 𝐸𝑖,𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2
𝑁

𝑖

              (4.4) 

 

where 𝐸 is the expected value of pavement condition (𝑃1 × 1 + 𝑃2 × 2 + ⋯+ 𝑃𝑛 × 𝑛), 𝑃 is the 

probability of being in states 1, 2, …or 𝑛; 𝑛 is the NCS of each Markov model; and 𝑁 is the number 

of observations. 
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 Homogeneous Markov Models 

Homogeneous Markov models assume that pavements deteriorate at a constant rate over their 

design life. This assumption can be considered unrealistic because in reality, the deterioration of 

pavements has been determined to be non-linear with respect to time. Due to the relative simplicity 

of their computational analysis, these models have been used in pavement management systems at 

highway agencies such as the Arizona DOT. These models do not require large amounts of 

historical data; rather they require data on only two transitions of pavement condition. 

  

Homogeneous Markov models have been developed in past research for prediction using pavement 

condition data that are readily available for model estimation. These data were collected for two 

consecutive pavement condition transitions during any time period of the pavement life. A road 

network consists of pavement/road sections of different ages, and the pavement section age is 

defined as the number of years since construction, reconstruction or last rehabilitation. Due to 

differences in the deterioration rates over pavement age, using data from the early ages to predict 

pavement condition may yield a different prediction accuracy compared to using data from the late 

ages. Therefore, the time of data collection should be considered when assessing the prediction 

accuracy of the homogeneous Markov models. The current research hypothesizes that using 

pavement condition data collected at the early ages could yield low accuracy of pavement 

condition predictions compared to using data collected at the late ages. In this study, pavement 

sections were categorized into three age-based cohorts: (P1) 0 – 9th year cohort, (P2) 10 – 18th 

year cohort, and (P3) 19 – 27th year cohort (Figure 4.4). A cohort is a collection of pavements that 

exist in the network at a given time. Pavements in the P1 cohort are those constructed or in-service 

during the early ages (0-9 years) of the pavement network, while pavements in the P2 or P3 cohorts 

are those constructed or in-service during the middle (10-18 years) or the late ages (19-27 years), 

respectively of the pavement network. Homogeneous Markov models were developed using data 

of each pavement cohort (P1, P2 and P3), and for each of two duty cycles (one-year and two-year) 

and number of condition states ranging from 4 to 10. Therefore, twenty-four homogeneous Markov 

models were established and analyzed. 
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Figure 4.4. Cohorts in the pavement network 

4.5.1. Significance of Time of Data Collection  

Figures 4.5(a and b) present the estimated MAPE and RMSE for the homogeneous Markov models 

developed during the three periods or pavement cohorts (P1, P2 and P3). For the homogeneous 

Markov technique, models developed using pavement condition data collected at the early ages of 

pavement network (P1, 0-9 years) yielded the least accurate predictions across all the NCS and 

LDC combinations. This could be due to the fact that the deterioration of pavement condition 

begins with minimal rates over the early ages of pavement life. In addition, according to the 

distribution of the pavement age variable, most of the pavement sections in the 0-9th year cohort 

were newly constructed (1 or 2 years old). Hence, using data gathered for the early ages to forecast 

pavement condition for the remaining ages (up to the age of 27 years) raises the prediction error. 

On the contrary, the homogenous Markov models developed using data collected during P2 (10-

18 years) or P3 (19-27 years) have similar lower prediction errors (MAPE = 5% to 12%). 
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(a) 

 
(b) 

Figure 4.5. Variation of prediction accuracy of homogeneous Markov models across periods of 

data collection and different NCS and LDC combinations: (a) MAPE; and (b) RMSE 



 

108 
 

4.5.2. Significance of Number of Condition States 

Figures 4.6(a and b) show that the prediction accuracy of homogeneous Markov models developed 

during P1 increases (i.e., MAPE and RMSE decrease) when the NCS increases from 4 to 8 at 1-

year duty cycle. However, the prediction accuracy decreases when the NCS becomes greater than 

8, which could be an indication of overfitting for the actual pavement condition data. Furthermore, 

this change in prediction accuracy when the NCS is greater than 8 suggests a limit to increasing 

the NCS. Such a limit should be determined for each unique dataset. These figures indicate that 

the prediction accuracy improves when the NCS rises from 4 to 5 at a 2-year duty cycle but 

decreases when the NCS is greater than 5. This implies that the upper limit of the NCS depends 

on the LDC. These findings support the hypothesis that for the homogenous Markov models, the 

number of condition states (NCS) affects the prediction accuracy of pavement condition. 

4.5.3. Significance of Length of Duty Cycle  

Figures 4.6(a and b) indicate that the homogeneous Markov models developed during the early 

years (P1), assuming a 2-year duty cycle, are more accurate compared to their 1-year duty cycle 

counterpart. It is worth noting that homogeneous Markov models are built using data for two 

consecutive transitions of pavement condition. Besides, there is relatively little variation in the 

pavement condition during its early age. Therefore, increasing the LDC helps in capturing a larger 

change in the pavement condition, which in turn may lead to more accurate predictions of 

pavement condition. During P2 and P3, increasing the LDC from 1 to 2 years increases the 

prediction errors, except when the NCS is 4. This indicates that, when a large NCS is used, a short 

transition/duty cycle should be adopted. On the other hand, when the NCS is small (e.g., 4 states), 

a long transition/duty cycle should be used to capture the variations in the deterioration of 

pavement condition from one state to another. 
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(a) 

 
(b) 

Figure 4.6. Variation of prediction accuracy of homogeneous Markov models across NCS and 

LDC and different periods of data collection: (a) MAPE; and (b) RMSE 



 

110 
 

 Staged-homogeneous Markov Models 

Staged-homogeneous Markov models were first developed by Butt et al. (1987) to partially relax 

the assumption of the homogeneous Markov models related to the constant deterioration rate of 

pavement condition. Staged-homogeneous Markov models assume that the pavement condition 

deteriorates at varying rates at every stage or period of time. In other words, staged-homogeneous 

Markov models can be defined as a series of homogeneous Markov models, each with different 

estimates of the transition probability matrix over the pavement life span. For pavements, the stage 

length in the staged-homogeneous Markov models has been assumed to be 5 or 6 years because 

pavement condition rarely changes significantly over periods less than 5 - 6 years (Butt et al. 1987). 

Nevertheless, this is not always the case, particularly when the NCS and LDC are taken into 

consideration. Staged-homogeneous Markov models are more likely to have greater accuracy in 

predicting pavement condition compared to homogenous Markov models, because they partly 

consider the continuous change in pavement condition from one stage to another. However, they 

still do not capture the continual non-stationary nature of pavement condition during the presumed 

stage length. 

 

The current research hypothesizes that the length of the stage has a significant effect on the 

prediction accuracy of the staged-homogeneous Markov models for different NCS and LDC 

combinations. Hence, staged-homogeneous Markov models were developed for each duty cycle 

(one-year and two-year), each number of condition states ranging from 4 to 10, and each stage size 

from 3 to 7 years. Therefore, a total of 40 staged-homogeneous Markov models were established 

and analyzed.   

4.6.1. Significance of Length of Stage  

Figures 4.7(a and b) present the estimated MAPE and RMSE of the predicted pavement condition 

using different staged-homogeneous Markov models at different lengths of stage. It can be 

observed that the most accurate predictions for pavement condition can be achieved when the stage 

length is 7 years for almost all NCS and LDC combinations. On the contrary, the prediction 

accuracy was found to be the worst when the stage length is 4 years for all NCS at 2-year duty 

cycle, and when the stage length is 5 or 6 years for all NCS at 1-year duty cycle. In past studies 
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(Butt et al. 1987; Abaza 2016a, b), the typical design of the staged-homogeneous Markov models 

is: 10 condition states, 1-year duty cycle and 5 - 6 years of stage. Abaza (2016a) developed two 3- 

and 5-year stage Markov models at NCS and LDC of 10 states and 1 year, respectively, and found 

that the 3-year stage model outperforms the 5-year stage model. The findings of this research 

indicate that the staged-homogeneous Markov models of 3-year stage are more accurate compared 

to that of 5-year stage, when the NCS and LDC are equal to 10 states and 1 year, respectively. This 

is similar to Abaza (2016a)’s findings but goes further to test the significance of the stage length 

with several NCS and LDC combinations. Based on the results of the current study, the typical 

design of staged-homogeneous Markov models can be improved if different stages, such as the 7-

year stage, are adopted. These findings support the notion that the length of the stage in staged-

homogeneous Markov models has a significant impact on the accuracy of pavement condition 

predictions. 

 

 
(a) 
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(b) 

Figure 4.7. Variation of prediction accuracy of staged-homogeneous Markov models of different 

lengths of stage with NCS and LDC combinations: (a) MAPE; and (b) RMSE 

4.6.2. Significance of Number of Condition States 

Figure 4.8(a) presents the prediction errors in terms of MAPE of the predicted pavement condition 

using different staged-homogeneous Markov models and with different NCS and LDC 

combinations. This figure clearly indicates that the most accurate predictions are obtained when 

the staged-homogeneous Markov models are designed using 5 condition states, 2-year duty cycle 

and 7-year stage. At the stage of 7 years and 1-year duty cycle, the rise in the NCS increases the 

prediction accuracy, but when the NCS is greater than 8 the prediction accuracy begins to decline. 

On the basis of these results, the typical design of staged-homogeneous Markov models (10 

condition states, 1-year duty cycle and 5- or 6-year stage) can be improved if 5 condition states 

and 2-year duty cycle are used instead, at the same stage length of the typical design. Such results 

reinforce the argument that the NCS does influence the prediction accuracy of staged-

homogeneous Markov models for pavement condition. 
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4.6.3. Significance of Length of Duty Cycle 

As observed in Figure 4.8(b), for a 1-year duty cycle, the best configuration of the staged-

homogeneous Markov models is 10 condition states with a 7-year stage. On the other hand, for a 

2-year duty cycle, the best design is 5 condition states with a stage length of 7 years. It can be 

indicated that the staged-homogeneous Markov models of 2-year duty cycle are more likely to 

yield higher accurate predictions than that of 1-year for all combinations of NCS and stage lengths 

except for the 4-year stage with 8 or 10 condition states. These findings suggest that the LDC does 

have a significant effect on the prediction accuracy of staged-homogeneous Markov models for 

pavement condition. 

 

 
(a) 
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(b) 

Figure 4.8. Variation of prediction accuracy of staged-homogeneous Markov models across NCS 

and LDC combinations and with different stage lengths: (a) MAPE; and (b) RMSE 

 Semi-Markov Models 

The holding time, which is the period of time that infrastructure asset remains in a specific 

condition state, is a specific component of the semi-Markov models. In this research, the holding 

time of a condition state 𝑠 is estimated as the average value of the holding times of that condition 

state for all pavement sections: 

 

ℎ𝑠 = 
∑ 𝑡𝑠,𝑖

𝑖=𝑁
𝑖=1

𝑁𝑠
                                       (4.5) 

 

where ℎ𝑠 is the mean holding time for condition state 𝑠, 𝑡𝑠,𝑖 is the holding time of condition state 

𝑠 for pavement section 𝑖, 𝑁 is the total number of pavement sections in the road network, and 𝑁𝑠 

is the number of pavement sections that were in condition state 𝑠. Table 4.3 shows the computed 

holding times for each condition state at each NCS (4, 5, 8 and 10). The holding times of the last 

state in each group of condition states (e.g., state 4 in the group of 4 condition states) are not 
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calculated because whenever pavement section enters the last state, it stays there until major 

rehabilitation or reconstruction is carried out. 

 

Table 4.3. Holding times of condition states 

Holding Times 

(years) 

Number of Condition States 

4 5 8 10 

𝒉𝟏 1.00 1.00 1.00 1.00 

𝒉𝟐 4.00 2.80 1.39 1.10 

𝒉𝟑 4.64 2.73 1.59 1.36 

𝒉𝟒 - 3.77 1.51 1.28 

𝒉𝟓 - - 1.38 1.21 

𝒉𝟔 - - 2.28 1.15 

𝒉𝟕 - - 2.03 1.50 

𝒉𝟖 - - - 1.58 

𝒉𝟗 - - - 1.48 

𝒉𝟏𝟎 - - - - 

 

Eight semi-Markov models were developed for each duty cycle (one-year and two-year) and each 

number of condition states: 4, 5, 8 and 10.  

4.7.1. Significance of Number of Condition States 

Figure 4.9 presents the estimated prediction errors (MAPE and RMSE) for the eight semi-Markov 

models that were developed. The best configuration of the semi-Markov models (that is, the one 

with the lowest MAPE and RMSE) has 5 condition states and a 2-year duty cycle. The worst design 

for the semi-Markov models is 4 condition states and 1-year duty cycle. Figure 4.9 also implies 

that the increase in the NCS when the duty cycle is 1 year boosts the semi-Markov model 

prediction accuracy. Nevertheless, when the NCS is greater than 8 the prediction accuracy reduces. 

Likewise, the prediction accuracy of the semi-Markov models at 2-year duty cycle improves if the 

NCS increases from 4 to 5, but begins to decrease when the NCS exceeds 5. This observation is 

suggestive of the existence of interactions between the NCS and LDC. Overall, the results support 

the hypothesis that the NCS has an effect on the semi-Markov model prediction accuracy. 



 

116 
 

4.7.2. Significance of Length of Duty Cycle  

As Figure 4.9 indicates, for semi-Markov models, the prediction accuracy of a 2-year duty cycle 

is significantly higher than that of a 1-year duty cycle, at 4 or 5 condition states. Conversely, at 8 

or 10 condition states the semi-Markov models of a 1-year duty cycle outperform those of a 2-year 

duty cycle. Previous semi-Markov models by Nesbit et al. (1993) and Thomas and Sobanjo (2012) 

used 10 condition states and a 1-year duty cycle. The results of the current research imply that the 

semi-Markov models with the NCS and LDC used in the previous research yield more accurate 

pavement condition predictions than others with different NCS and LDC combinations. Yet still, 

the analysis of the current study shows that more accurate predictions could be obtained if the 

semi-Markov models use the following designs: 2-year duty cycle with 4 or 5 states or 1-year duty 

cycle with 8 states. These findings support the argument that for semi-Markov models, the LDC 

has an impact on the prediction accuracy of pavement condition. 

 

 

Figure 4.9. Variation of prediction accuracy of semi-Markov models at different NCS and LDC 

combinations 

 Comparative Analysis of Markovian Models across the Markov Methodologies 

This section discusses the prediction accuracy of Markov models of different methodologies 

(homogeneous, staged-homogeneous and semi-Markov) with different NCS and LDC 

combinations. Figure 4.10 shows that for all three Markov methodologies, there is a decrease in 
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the prediction error when the NCS increases from 4 to 8. However, when 10 condition states are 

used, their prediction errors increase. This indicates that there seems to exist an upper limit beyond 

which an increase in the NCS is not desirable. In future research, this threshold must be determined 

for each Markov methodology. 

 

 

Figure 4.10. Prediction accuracy of the three Markov methodologies at different NCS and 1-year 

duty cycle 

 

Table 4.4 and Figure 4.11 summarize the best designs of Markov models of different 

methodologies and their corresponding prediction errors (MAPE/RSME). The Markov models 

with the designs shown in Table 4.4 have comparable prediction accuracy for pavement condition. 

It can be seen that most of the best models consist of 5 condition states and 2-year duty cycle. 

However, the homogeneous Markov model with the design of 4 condition states and 2-year duty 

cycle using data collected during the period P2 has the highest prediction accuracy of 

approximately 95% (i.e., MAPE = 5.29%). 
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Table 4.4. Summary of the highest performing Markovian models 

Markov Models Design Prediction Error 

Methodology 

Periods of 

Data 

Collection 

NCS 
LDC 

 (years) 
MAPE/RMSE 

Homogeneous 

Markov 

P1 (0-9 yrs) 5 2 10.94/18.37 

P2 (10-18 yrs) 4 2 5.29/8.20 

P3 (19-27 yrs) 4 2 6.57/10.25 

Staged-

homogeneous 

Markov 

every 3 yrs 5 2 10.28/15.08 

every 4 yrs 5 2 14.14/20.99 

every 5 yrs 5 2 7.53/12.46 

every 6 yrs 5 2 8.77/15.08 

every 7 yrs 5 2 6.72/9.84 

Semi-Markov 0-27 yrs 5 2 7.33/10.49 

 

Figure 4.11 indicates that in most Markov models, the semi-Markov models outperform the staged-

homogeneous Markov models which, in turn, outperform the homogeneous Markov counterparts. 

These results are consistent with the literature (Butt et al. 1987; Thomas and Sobanjo 2012; Abaza 

2016a, b). However, some instances shown in Table 4.4 and Figure 4.11 (marked a and b in Figure 

4.11) imply that the homogeneous and staged-homogeneous Markov models outperform the semi-

Markov models when different NCS, LDC, data collection time and stage length configurations 

are used. These findings confirm the hypothesis of the current study that the NCS and LDC have 

a significant impact on the prediction accuracy of Markov models for pavement condition. 

Furthermore, the time of data collection in the homogeneous Markov models and the stage size in 

the staged-homogeneous Markov models were found to have significant effects on the accuracy 

of pavement condition predictions. The homogenous and staged-homogeneous Markov models 

can produce more accurate predictions compared to the semi-Markov models when NCS, LDC, 

data collection time and stage size are considered in the design parameters of Markov models. 

Also, it is worth mentioning that they are less computationally expensive compared to semi-

Markov models. 
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Figure 4.11. Best designs for homogeneous, staged-homogeneous and semi-Markov models 

 

The nomograph shown in Figure 4.12 was constructed as a decision-making tool to select the 

appropriate Markov technique given the NCS and LDC. This graph was designed using the results 

of the current research for the semi-Markov models, the homogenous Markov models developed 

at the period P3 (i.e., when data are collected during late pavement ages), and the staged-

homogeneous Markov models built at the typical stage size of 5 and 6 years. This graph shows, 

for example, that if a 1-year duty cycle and 5 condition states are used to build a Markov model, 

say M, the most accurate methodology for predicting pavement condition is the homogeneous 

Markov. 
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Figure 4.12. Nomograph for Markov methodology selection  

 Summary 

This chapter analyzed the statistical significance of the design parameters of Markovian pavement 

performance models for the prediction accuracy of pavement condition, namely the number of 

condition states (NCS), the length of duty cycle (LDC), the periods of data collection (P1, P2 and 

P3) in the homogeneous Markov models and the stage size in the staged-homogeneous Markov 

models. A comparative analysis was carried out for the different Markovian pavement 

performance modeling techniques, and for each technique, the different configurations of their 

design parameters. 

 

The results suggest that in some instances the semi-Markov models outperform the staged-

homogeneous and the homogeneous Markov counterparts, which is consistent with the literature. 

Nevertheless, the staged-homogeneous and homogeneous Markov models were found to be 

superior to the semi-Markov models when using specific NCS and LDC. The results also showed 

that the NCS and LDC significantly affect the prediction accuracy of each of the three 

methodologies: homogeneous, staged-homogeneous and semi-Markov. It was found that 

increasing the NCS increases the prediction accuracy of the three Markov methodologies until the 

NCS reaches 8 (for a 1-year duty cycle) and 5 (for a 2-year duty cycle). Beyond these thresholds, 

the prediction accuracy begins to decrease. Such reductions in the prediction accuracy could be 
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attributed to data overfitting as the NCS increases. Future researchers and highway agencies should 

therefore investigate whether the critical NCS and LDC identified in this research are really the 

best choice in terms of model prediction accuracy. 

 

In the homogeneous and staged-homogeneous Markov models, the pavement cohorts (P1, P2 and 

P3) at data collection time and stage size were found to have significant impacts on the predictive 

accuracy of Markov models. The homogeneous Markov models were found to have high 

prediction accuracy when using data collected during the middle or late pavement ages. Unlike the 

early ages, the middle and late ages include a variety of pavement sections with different pavement 

ages and varying conditions, which are more useful for the prediction accuracy of statistical 

models. The results also confirm that the use of a stage length other than the typical length (5 or 6 

years) for the staged-homogeneous Markov models yields more accurate predictions. For example, 

the staged-homogeneous Markov model with 7-year stage length, 5 condition states and 2-year 

duty cycle is more accurate than that with 5- or 6-year stage length. Therefore, when designing 

homogeneous and staged-homogeneous Markov models, more attention should be paid to the data 

collection time and the stage length, respectively.
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CHAPTER 5. STOCHASTIC OPTIMIZATION OF PAVEMENT PREVENTIVE 

MAINTENANCE 

While seeking to improve the condition of their pavement network by implementing maintenance 

and rehabilitation (M&R) interventions, highway agencies are challenged by limited funding 

resources. As a means to manage their limited resources, they develop M&R strategies that 

contribute to the 3R concept: the right treatment at the right time for the right pavement section. 

Deterministic optimization models that consider decision variables to be fixed values have been 

widely developed and used to schedule M&R for road networks. On the other hand, current 

stochastic optimization models, which account for the uncertainty of the M&R decision variables, 

consider the uncertainty of budget constraint only and do not account for decision variables, such 

as the deterioration of pavement condition and the improvement of pavement condition following 

maintenance interventions, which may also have uncertain outcomes. The selection of optimal 

timings and types of maintenance treatments for a pavement network over the long-term (pavement 

design life) without considering the uncertainty of expected pavement condition and maintenance 

effectiveness can lead to mistiming of maintenance applications and can therefore result in less 

optimal alternatives. 

 

This chapter develops stochastic pavement maintenance optimization models accounting for the 

uncertainty of the deterioration and improvement of pavement condition as well as the budget 

constraint. The objectives of the models are to minimize the overall road network deterioration, 

while at the same time minimizing the total maintenance costs of road network during a planning 

horizon of 20 years [typical pavement design life (Morian et al. 2005; Ceylan et al. 2009; Santos 

and Ferreira 2013)]. Multi-objective Genetic Algorithm (MOGA) is used due to its robust search 

capability resulting in optimal or near-optimal global solutions. To reduce the large size of the 

stochastic MOGA optimization problem at the network level, three approaches were proposed and 

applied to interstate flexible pavements across the Midwestern States. These approaches are: (1) 

identifying and adopting the most commonly used maintenance treatments (2) clustering pavement 

sections based on pavement age, and (2) creating a filtering constraint that applies a rest period 

after treatment applications. The results of the current study show that the Pareto optimal solutions 
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significantly change when considering the uncertainty of pavement condition deterioration and 

improvement. The developed stochastic MOGA models can provide highway agencies with 

probabilistic Pareto optimal solutions that account for the expected uncertainty in pavement 

condition data. 

 Introduction 

This section presents the different pavement maintenance and rehabilitation (M&R) treatments 

that have been used by highway agencies to keep their infrastructure in a state of good condition. 

Besides, it discusses pavement M&R strategies, measures of effectiveness of maintenance 

treatments and levels of M&R decision-making. 

5.1.1. Pavement Maintenance and Rehabilitation 

Pavement rehabilitation is defined as the activities that restore the original pavement serviceability 

(Humphries and Ma 2004) and implemented to structurally deficient pavements. On the other 

hand, pavement maintenance or preservation is defined, according to Federal Highway 

Administration (FHWA) and the U.S. Department of Transportation, as “a program employing a 

network level, long-term strategy that enhances pavement performance by using an integrated, 

cost-effective set of practices that extend pavement life, improve safety and meet motorist 

expectations.” A pavement maintenance program consists primarily of three components:  

1. Minor rehabilitation (non-structural)  

2. Preventive maintenance  

3. Routine maintenance 

 

An effective maintenance program addresses the pavement while it is still in good condition. A 

cost-effective treatment in a timely manner restores pavements to their original conditions. By 

doing so, the cumulative costs of such treatment are substantially lower than reconstruction or 

major rehabilitation over pavement life (Wilde et al. 2014). In addition, the disruption of traffic is 

less for more frequent and minimal treatments in comparison to the reconstruction or major 

rehabilitation interventions. The main objectives of pavement maintenance are preventing 

moisture and/or debris from infiltrating into the pavement through cracks and/or joints and 
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reducing or preventing deterioration due to environmental effects. Table 5.1 shows the general 

guidelines of applying the different types of maintenance and rehabilitation activities to 

pavements, and the effects of each activity on: pavement strength, aging and serviceability. 

 

Table 5.1. Pavement preservation guidelines (adapted from Wilde et al. 2014) 

 
Activity 

Increase 

Strength 
Reduce Aging 

Restore 

Serviceability 

 Major 

Rehabilitation 
X X X 

Pavement 

Preservation 

Minor 

Rehabilitation 
 X X 

Preventive 

Maintenance 
 X X 

Routine 

Maintenance 
  X 

 Corrective 

Maintenance 
  X 

 

Preventive maintenance should be applied to pavements in good condition that have significant 

remaining service life (RSL). It applies cost-effective treatments to the surface or near surface of 

structurally sound pavements to preserve, retard future deterioration, and maintain or improve the 

functional condition of the highway surface. The pavement engineer must rely on knowledge of 

pavement deterioration processes, engineering judgment, time, and traffic levels to determine the 

timing and type of the required preventive maintenance treatments. Since the stochastic 

optimization models developed in this dissertation are demonstrated within the context of interstate 

flexible/asphalt pavements, examples of preventive maintenance treatments applied to flexible 

pavements might include the following: 

• Crack sealing  

• Chip seals  

• Micro-surfacing  

• Ultra-Thin Bonded Wearing Course (UTBWC) 

• Thin hot-mix asphalt (HMA) overlay 

 

Crack sealing is a treatment used to prevent water and debris from entering cracks in the pavement. 

It may require routing to clean the crack and create a reservoir to hold the sealant. Crack sealing 
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should be applied as needed whenever cracks are observed (Figure 5.1). Chip seals are typically 

constructed by spraying a layer of asphalt emulsion binder on a roadway and then embedding 

finely graded aggregate (3/8-inch crushed rock) into it (Figure 5.2). The aggregate is rolled after 

being evenly dispersed on pavement surface. Chip seal is primarily used on low-volume roads 

(average daily traffic < 5,000 and 10,000 vehicle per day for rural and urban roads, respectively) 

(Peshkin et al. 2011) because it creates excessive noise and loose chips can break windshields (Lee 

and Shields 2010). 

 

  

Figure 5.1. Crack Sealing Figure 5.2. Chip Seal 

 

Micro-surfacing treatments involve the laying of a mixture of crushed mineral aggregate, polymer-

modified asphalt emulsion, mineral filler, water, and an additive to control hardening of the 

mixture. A self-propelled pug mill mixes the components and lays the mix immediately after 

mixing (Figure 5.3). No compaction is required, and the finished surface can generally be opened 

to traffic soon after placement [1hour (Peshkin and Hoerner 2005)]. A micro-surfacing layer may 

be as thin as 3/8 inch and is capable of filling wheel ruts up to 1.5 or 2 inches deep (Labi et al. 

2006). 
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Figure 5.3. Micro-surfacing 

 

Ultra-Thin Bonded Wearing Course (UTBWC) is the application of a warm polymer modified 

emulsion membrane followed immediately with an ultra-thin wearing course (3/8-inch crushed 

rocks) (Figure 5.4). The surface is then compacted, and no traffic is allowed until pavement has 

cooled (Lee and Shields 2010). The UTBWC can be as thin as 0.5 to 1.5-inch-thick (Midland 

Asphalt Materials Inc. 2018).  

 

  

Figure 5.4. Ultra-Thin bonded Wearing Course (UTBWC) 

 

Thin HMA overlay consists of one thin layer of HMA pavement (generally 1.5 inches). The 

existing pavement is first profile-milled, then a light tack coat is placed prior to placing a uniform 

lift of the HMA mixture (Figure 5.5). Finally, the surface is compacted by rolling to achieve the 

desired density. The finished surface can be opened to traffic immediately after the rolling 

operation is completed (Lee and Shields 2010).  
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Milled Surface Finished Surface 

Figure 5.5. Thin HMA Overlay 

5.1.2. Pavement Maintenance Strategies 

Highway agencies develop pavement maintenance strategies to maintain their assets at desired 

condition levels and to optimize their limited financial resources. These maintenance strategies 

determine which pavement sections need maintenance, what type of maintenance treatments are 

needed, and at which times over the life of each pavement section. The main goal of maintenance 

strategy is to attain as much improvement as possible in the condition of the entire pavement 

network at the lowest cost possible. To this end, life-cycle cost analysis is usually adopted to 

compare different strategies from the economic perspective and determine the most cost-effective 

one over a planning horizon. If the available funding is less than those identified as needed for any 

year during the analysis period, prioritization/ranking models (Wong et al. 2003; Kulkarni et al. 

2004) or optimization models (Lampety et al. 2010; Irfan at al. 2012; Abaza et al. 2004; Madanat 

et al. 2006; Elhadidy et al. 2015; Aleadelat et al. 2018; Augeri et al. 2019; Guo et al. 2020; Sindi 

and Agbelie 2020) can be used to optimally allocate the available funding to achieve the greatest 

overall return on investment at the system-level performance.  

5.1.3. Levels of Decision-Making for Pavement Maintenance 

Decisions regarding pavement maintenance are made either at the network level or at the project 

level. At the network level, the decision is made to choose different pavement sections to be 

maintained in order to improve the entire roadway network efficiency/performance. The objective 

of this level of optimization is to maximize pavement network condition under the constraint of 

limited budget. Whereas at the project level, the decision is made to determine the optimal 
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condition and time for maintenance application and the cost-effective maintenance treatments. The 

optimization objective at this level is to maximize the cost-effectiveness of pavement maintenance 

under the constraints of available budget and allowable level of pavement condition (M&R 

triggers/thresholds). Figure 5.6 shows the levels of decision-making for pavement maintenance. 

From the left to the right-hand side (Figures 5.6(a, b, c)), at the network-level a group of pavement 

sections is first selected for maintenance. Then, for each pavement section a project-level 

optimization is carried out to select the cost-effective treatments. Finally, another project-level 

optimization is conducted to optimize the maintenance timing to ensure implementing the right 

treatment at the right time. 

             

 

Figure 5.6. Levels of decision-making for pavement maintenance 

5.1.4. Measures of Pavement Maintenance Effectiveness 

At the project-level optimization of pavement maintenance, the objective function is usually to 

maximize the benefits/effectiveness of pavement maintenance by selecting the optimal treatment 

and timing. In order to measure the maintenance effectiveness, three measures of effectiveness 

(MOE) have been found in the literature: performance jump (PJ), extension in service life (SL), 

and area bounded by performance curves. As shown in Figure 5.7(a), the performance jump is the 

instant improvement in pavement condition after the treatment implementation. This improvement 

may be an increase in pavement condition if a decreasing indicator (a condition indicator such as 

the pavement condition rating (PCR); the decrease in its value means more pavement deterioration) 
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is used, or a drop in pavement condition if an increasing indicator (a condition indicator such as 

the international roughness index (IRI); the increase in its value means more pavement 

deterioration) is used. The extension in service life is the elapsed time, (𝑡2 − 𝑡1) until a treated 

pavement section returns to the pre-treatment condition 𝐶1 (Figure 5.7(b)). The third MOE is the 

area bounded by performance curves. In decreasing indicators, it is the area under the post-

treatment performance curve (Figure 5.7(c)). In increasing indicators, it is the area above the post-

treatment curve. The third MOE captures the instant improvement of pavement condition, the 

extended service life, and the pavement deterioration rate after treatment. The PJ is used for the 

short-term assessment of pavement maintenance effectiveness, whereas extension in SL and area 

bounded by performance curves are used for the long-term measurement of pavement maintenance 

effectiveness. The measure of area bounded by performance curves has been widely utilized in 

estimating the effectiveness of pavement maintenance and rehabilitation (Lamptey et al. 2008; 

Khurshid 2010; Khurshid et al. 2011;  Khurshid et al. 2014). 

 

 

(a)    (b)                     (c) 

Figure 5.7. Measures of effectiveness: (a) Performance jump; (b) Extension in service life; and 

(c) Area bounded by performnce curves 

5.1.5. Approaches of Pavement Maintenance Scheduling 

Highway agencies develop their pavement maintenance strategies according to either an age-based 

approach or a condition-based approach. The age-based approach identifies the timing of pavement 

maintenance without requiring regular monitoring of pavement condition. This approach can result 

in implementing maintenance either earlier or later than pavement reaches the optimal condition 

for maintenance. Most highway agencies in the U.S. use this approach to avoid the short-term cost 
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of monitoring; however, the mistiming of pavement maintenance typically associated with this 

approach is expensive and can result in waste of resources and decrease of treatment effectiveness. 

On the contrary, the condition-based approach depends largely on regular monitoring of pavement 

condition whereby the true time for treatment is determined. This approach is more expensive than 

the age-based approach due to the additional cost of monitoring of pavement condition. 

5.1.6. Optimization of Pavement Maintenance 

Optimization models are mainly composed of three components: (1) the decision variable, (2) the 

objective function or the desired goal, and (3) the constraints that are the upper and lower limits 

for each variable in the optimization models. The most common objective function is the 

minimization of M&R costs (Abaza et al. 2004; Madanat et al. 2006). Another objective function 

is the maximization of road network quality or performance (Abaza et al. 2001; Abaza 2006). 

Yang et al. (2013) developed an optimization model to establish pavement maintenance strategy 

considering two objective functions: minimization of maintenance cost and maximization of 

pavement network performance. The most common constraints are the limited budget allotted for 

M&R interventions and the allowable level of pavement condition or M&R thresholds (Abaza 

2006; Ferreira et al. 2009; Lampety et al. 2010; Irfan at al. 2012; Jorge and Ferreira 2012). 

 

Pavement maintenance optimization models can be placed into two main categories: deterministic 

and stochastic. Deterministic optimization models assume that the optimization design parameters 

are of fixed values and does not consider the randomness and uncertainty that are inherently 

attributed to pavement data. Unlike deterministic optimization models, stochastic optimization 

models have been developed for pavement maintenance to account for the uncertainty inherently 

associated with pavement data, and to provide the decision makers with more accurate tools that 

lead to more effective decisions and suits their level of risk/uncertainty. This chapter develops 

stochastic multi-objective optimization models to schedule pavement preventive maintenance for 

roadway network. Because the Multi-Objective Genetic Algorithm (MOGA) approach has a robust 

search for global optimal solutions (compared to other optimization techniques that will be 

discussed in the following section 5.2), it was used to schedule preventive maintenance 

interventions for road network while maximizing the functional performance of pavement network 

and minimizing the total life cycle cost of preventive maintenance. 
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 Prior Research on Pavement Maintenance Optimization 

Optimization models can be categorized based on the number of objective functions into two 

categories: (1) single-objective optimization models that solve for one objective function, and (2) 

multi-objective optimization models that solve for multiple objective functions. The single-

objective optimization models have been employed by pavement researchers and practitioners to 

avoid the complexity and computational expenses of multi-objective optimization models. 

However, the solutions obtained from these single-objective models are most likely suboptimal 

compared to those derived from multi-objective optimization models (Fwa et al. 2000; Meneses et 

al. 2013). The main challenge of the single-objective optimization models is the selection of one 

objective function that rationally represents the other objective functions and ensuring that the 

other objective functions are satisfied (Fwa et al. 2000; Wu and Flintsch 2009). 

 

Multi-objective optimization modeling of pavement M&R have been developed by researchers to 

overcome the limitations of the single objective models. Fwa et al. (2000) developed an 

optimization model with three objective functions: (a) the maximization of the work production, 

(b) the minimization of the total maintenance cost, and (c) the maximization of overall network 

pavement condition. The model was applied to four highway classes, each one with three need-

urgency levels (high, medium and low), considering four M&R interventions and a planning 

timespan of 45 working days. Wang et al. (2003) developed an optimization model with two 

objectives: (a) the maximization of the total M&R effectiveness, and (b) the minimization of the 

total M&R disturbance cost. The model was applied to a small network of 10 road sections 

considering a planning time-span of 5 years. Meneses et al. (2013) developed a Multi-Objective 

Decision-Aid Tool (MODAT) and tested it with data from the Estradas de Portugal's Pavement 

Management System. Two objectives were considered in this study: (a) minimization of agency 

costs (M&R costs), and (b) minimization of user costs. Meneses and his team used the 

deterministic pavement performance model from the AASHTO flexible pavement design. Wu and 

Flintsch (2009), Yang et al. (2013) and Denysiuk et al. (2017) developed optimization models with 

two objectives: (a) the maximization of pavement network condition, and (b) the minimization of 

the total M&R cost. 
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Several parameters are used in the optimization models of pavement M&R such as time, cost, 

pavement condition, maintenance effectiveness, and maintenance treatments. These parameters 

are continuous or discrete, and linear or non-linear variables. Based on the type of these 

parameters, several optimization techniques have been employed in the literature. Examples of 

these techniques are linear programming, non-linear programming, integer programming, mixed-

integer linear programing and Genetic Algorithm. Golabi et al. (1982) used linear programming 

for solving a homogeneous system problem with the decision variables being the proportions of 

facilities that need a specific M&R activity at a certain state. Integer programming is another 

approach to model the infrastructure maintenance problem over a certain planning horizon (Fwa 

et al. 1988; Jacobs 1992; Wang et al. 2003; Irfan et al. 2012). Medury and Madanat (2014) used a 

mixed-integer linear programming to optimize pavement M&R at the project and network levels. 

The Genetic Algorithm (GA) was used in the studies of Chan et al. (1994), Yang et al. (2013), 

Elhadidy et al. (2015) and Santos et al. (2019) to establish optimal pavement M&R strategies for 

highway network. Sindi and Agbelie (2020) used the GA method to develop M&R strategies for 

road network, and they reported that the use of GA results in reliable and accurate global optimal 

solutions when used at the road network level.  

 

Pavement maintenance optimization models can be placed into two main categories: deterministic 

and stochastic. Deterministic models are those that assume that the optimization design parameters 

(input variables) are of fixed/certain values and does not consider the randomness and uncertainty 

that are inherently attributed to pavement condition data. Such an assumption may be reasonable 

in some situations in which the deployed data is of high certainty. Prior research has presented a 

number of deterministic optimization models for pavement M&R such as Fwa  et al. (2000), Abaza 

et al. (2001), Ouyang and Madanat (2004) and Santos et al. (2018; 2019). Deterministic 

optimization models cannot produce accurate solutions before pavement condition reaches a 

steady state. Li and Madanat (2002) realized that pavement condition reaches a steady state at the 

time of the first resurfacing. Thus, they developed a deterministic optimization model to optimize 

pavement resurfacing. Deterministic optimization models for pavement maintenance can be 

effective for instantaneous or short-term (e.g., 3 years) decision-making when data are accurately 

determined, and at the time of steady state of pavement condition (Li and Madanat 2002). For any 
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decision-making between present and time of the steady state, stochastic optimization models need 

to be considered.  

 

Unlike deterministic optimization models, stochastic optimization models have been developed 

for pavement maintenance to account for the uncertainty inherently associated with pavement 

condition data, and to provide decision makers with more accurate tools and additional insights 

that lead to more cost-effective decisions. Stochastic optimization approaches attempt to achieve 

the best expected objective value over all possible realizations of randomness/uncertainty. Thus, 

stochastic optimization models can capture the uncertainty in data and the variability associated 

with multiple optimal solutions. Failure to include these uncertainties may lead to expensive, even 

disastrous consequences if the anticipated situation is not realized (Gao and Zhang 2008). Li and 

Puyan (2006) built a stochastic optimization model to select optimal pavement projects for 

rehabilitation and they considered the uncertainty of budget constraints. Gao and Zhang (2008 and 

2011) accounted for the uncertainty of the budget constraints in their pavement maintenance 

optimization models. They assumed that pavements deteriorate linearly, and the maintenance 

improvements can be measured in terms of the performance jump. Wu and Flintsch (2009) 

developed a chance-constrained programming model to control the probability of going over 

budget for network-level M&R scheduling. Tables 5.2 encapsulates the key studies found in the 

literature with respect to stochastic optimization of pavement M&R. This table shows the prior 

stochastic optimization models, objective functions, constraints, methodology, and uncertainty 

considerations. 

 

 

 

 

 

 

 

 

 

 



 

134 
 

Table 5.2. Prior stochastic optimization models for pavement maintenance  

Research 

Team 

Objective 

Functions 
Constraints Methodology 

Uncertainty 

Considerations 

Gao and 

Zhang (2008)  

Minimize 

maintenance cost 

Pavement 

condition 

threshold; 

budget 

Scenario method Budget 

Wu and 

Flintsch 

(2009) 

 

Maximize service 

level of pavement 

network and 

minimize 

maintenance cost 

Budget Chance-constrained 

programming 

Budget 

Li et al. (2010) Minimize 

maintenance cost 

and work zone time 

Budget Heuristic model 

using lagrange 

relaxation technique 

Budget 

Gao and 

Zhang (2011, 

2013) 

Minimize 

maintenance cost 

Pavement 

condition 

threshold; 

budget 

Multi-stage of linear 

stochastic 

programming; 

Augmented 

Lagrangian 

Decomposition 

(ALD) method 

Budget 

Ameri et al. 

(2019) 

Maximize service 

level of pavement 

network and 

minimize 

maintenance cost  

Pavement 

condition 

threshold; 

budget 

Two-stage stochastic 

model with integer 

programming using 

General Algebraic 

Modeling System 

(GAMS) software 

Budget 

  

Pavement maintenance strategies are developed using optimization models that vary according to 

several considerations, such as objectives functions and constraints, decision variables, and data 

certainty or uncertainty. Based on the discussed literature, the main decision variables in pavement 

maintenance optimization models are pavement condition, maintenance effectiveness, 

maintenance time, maintenance costs, and available budget. Prior stochastic pavement 

maintenance optimization models (such as those presented in Table 5.2) considered the uncertainty 

of budget constraint but did not consider the uncertainty of pavement degradation and 

improvement, and the time and cost of maintenance interventions. The selection of optimal timings 

and types of maintenance treatments for a pavement network over the long-term (pavement design 

life) without considering the uncertainty of expected pavement condition and maintenance 

effectiveness has the potential to lead to mistiming of maintenance applications and can therefore 

result in less optimal alternatives. Hence, this chapter develops stochastic pavement maintenance 
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optimization models with the consideration of budget uncertainty in addition to the uncertainty of 

predicted pavement condition and maintenance effectiveness. 

 Research Methodology 

Figure 5.8 shows the proposed research framework to achieve the research objective of this 

chapter, in particular the stochastic optimization of pavement preventive maintenance, considering 

the uncertainties of budget constraint and pavement condition deterioration and improvement. 

5.3.1. Data Collection and Analysis 

A questionnaire survey was designed (see Appendix A.1) and deployed to the 50 State 

Transportation Agencies (STAs) to collect data regarding pavement condition, preventive 

maintenance (PM) treatments and criteria for scheduling pavement maintenance. Eighteen STAs 

responded to the survey including five STAs from the Midwest states. Around 58% of the 

respondents use one condition indicator to represent pavement condition. Moreover, about 60% of 

the respondents use IRI as the pavement condition indicator. Further information on the results of 

the survey can be found in Chapter 3. The data were collected for a single pavement condition 

indicator, namely IRI as the response variable. The collected data includes six explanatory 

variables (pavement age, annual average freezing index, annual average daily truck traffic, etc.) as 

shown in Table 5.3. Although other variables, such as the pavement structure (number, type and 

thickness of pavement layers), affect pavement condition, they were not considered in the current 

research because STAs have different standards and specifications for the design, construction and 

maintenance of pavements. 
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Figure 5.8. Conceptual research framework 

 

Pavement condition data were acquired for the interstate flexible pavements from the LTPP 

database across eight Midwestern states (Indiana, Illinois, Wisconsin, Michigan, Ohio, Minnesota, 

Iowa and Missouri). The data were cleaned by deleting the extreme outliers and high-leverage 

points (Belsley et al. 1980; Ahmed et al. 2016), resulting in 966 observations. Table 5.3 shows the 

descriptive statistics of variables considered in the analysis. 
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Table 5.3. Descriptive statistics 

Variable Description Mean STD Min Max 

IRI International Roughness Index (in/mi) 80.9 27.8 31.3 194.9 

Age Years since construction or rehabilitation  9.6 6.6 0.0 27.0 

AAP Annual Average Precipitation (inches) 38.1 7.7 24.4 61.4 

AAT Annual Average Temperature (°F) 50.5 3.3 42.8 59.7 

AAFI Annual Average Freezing Index (°F days) 788 393 70 1924 

AADTT Annual Average Daily Truck Traffic  2169 802 249 5115 

ESALs Equivalent Single Axle Loads (18-Kip) 1115 534 122 3195 

 

As the data collected for the interstate flexible roads is not sufficient to carry out the proposed 

study, a large amount of data has been produced by simulating the collected pavement condition 

data. An exponential multiple regression model has been developed to estimate pavement 

condition (IRI, in/mi.) in relation to the influential independent variables that have been found to 

statistically significant. To simulate the statistically significant explanatory variables different 

probability distributions were fitted for each variable, and the distributions that resulted in the 

minimum negative log-likelihood value were used. The Indiana Department of Transportation 

(INDOT), as one of the states from which pavement condition data were collected, owns and 

operates approximately 5,500 miles of interstate roads. Hence, to generate a reasonable number of 

pavement sections for the current research, data on 5,500 interstate flexible pavement sections 

(each one mile long) were generated according to the identified probability distributions and the 

developed exponential multiple regression model. 

 

The questionnaire survey also collected data on PM treatments and criteria for scheduling 

pavement maintenance (selecting the right treatment at the right time for the right pavement 

section). Figures (5.9 and 5.10) show the results of the survey with respect to the different PM 

used and the criteria for maintenance scheduling identified by the responded STAs, respectively. 

Figure 5.9 indicates that the most commonly used treatments are crack sealing, Thin HMA overlay, 

Micro-surfacing and UTBWC. Figure 5.10 shows that the most important criteria for scheduling 

pavement maintenance are pavement condition and maintenance costs.  
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Figure 5.9. Pavement preventive maintenance treatments used by the responded STAs  

 

 

Figure 5.10. Criteria for scheduling PM treatments considered by the responded STAs 

5.3.2. Formulation of Optimization Models 

Identification of model’s objective functions and constraints: the results of the survey indicate that 

the main objectives of the STAs are to improve pavement condition at the lowest cost of 

maintenance. This study identifies the objective functions of the optimization models as: (1) 
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minimizing the overall deterioration of road network in terms of IRI over an analysis period of 20 

years [typical pavement design life (Morian et al. 2005; Ceylan et al. 2009; Santos and Ferreira 

2013)], and (2) minimizing the overall maintenance costs of road network over the 20-year analysis 

period. As STAs suffer from the limited and shrinking funding for pavement preservation, this 

research considers the limited annual budget to be the first and main constraint for the optimization 

models. In addition, the current study focuses on the optimization of pavement PM only during a 

rehabilitation lifecycle (between rehabilitations or rehabilitation and re/construction). Therefore, 

the second constraint identified in this study is the threshold for the rehabilitation or reconstruction 

of pavement. 

5.3.2.1. Model Variables and Parameters 

Decision Variables: Treatment actions 𝑥𝑖,𝑗; where 𝑥𝑖,𝑗 is the PM treatment action for pavement 

section i at the time j. 𝑥𝑖,𝑗 = {0, 1, 2, 3, …, U}; where 0 is do nothing action, and 1 is the first PM 

treatment candidate, whereas U is the PM treatment candidate number U. 

 

Other Variables and Parameters: 

• Pavement section of 1-mile long in road network i; where 𝑖 = {1, 2, … , 𝐼}; where I is the 

total number of 1-mile pavement sections, which is equal to 5,500 sections (the total 

number of the 1-mile pavement sections in the road network demonstrated by this study). 

• Time j: is the time in years for PM treatment applications: 𝑗 = {0, 1, 2, … 𝑇}; where T is the 

analysis period, which is equal to 20 years [typical pavement design life (Morian et al. 

2005; Ceylan et al. 2009; Santos and Ferreira 2013)]. 

• Condition of pavement section i at the scheduling time (𝑗 = 0): Cond𝑖,0. The values of the 

Cond𝑖,0 were extracted from the data simulated in the section 5.3.1.  

• Cost of different PM treatments: Cost(𝑥𝑖,𝑗). The cost of each treatment action was 

determined from the literature (Wang 2013; Roadresource 2019) in the 2019 dollars. 

• Treatment effectiveness: Eff(𝑥𝑖,𝑗). The performance jump (PJ) is the MOE that is most 

commonly used to measure the effectiveness of pavement treatments (Gao and Zhang 

2008; Gao and Zhang 2011; Elhadidy et al. 2015), and thus was used in this study as the 
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Eff(𝑥𝑖,𝑗) of the different PM treatment actions. The Eff(𝑥𝑖,𝑗) for each value of 𝑥 was 

assumed to be constant for any pavement section i at any time j. 

• Deterioration rate of pavement section i at time j: Deter𝑖,𝑗. The deterioration rates are 

calculated in terms of IRI according to Chen and Zhang (2011) as IRI𝑖,𝑗  =

 50.43 × 𝐸𝑋𝑃(0.0539 × 𝑡𝑖,𝑗), in/mi.; where 𝑡𝑖,𝑗 is equal to Agei,0 + j; where Agei,0 is the 

age of pavement section i at the time of scheduling zero in years. 

• Discount rate (d): an interest rate used to account for the value of money over time and is 

specified in this study as d = 2.25% (NHCCI 2019). 

• Available Annual budget (B𝑗): the amount of funding available to STA at each year j to 

preserve its pavement network. 

• Threshold for pavement rehabilitation (IRImax): the maximum allowable IRI in in/mi. for 

pavement sections before the rehabilitation is due. According to the FHWA (2017) IRImax 

is set at 170 in/mi. in this study. 

5.3.2.2. Mathematical Formulation of the Optimization Problem 

Minimize:   F  (𝑥) = [f1(𝑥), f2(𝑥)]T         (vector of objective functions) 

where f1(𝑥) is the first objective function: minimizing the overall deterioration of pavement 

network in terms of IRI, in/mi.; whereas f2(𝑥) is the second objective function: minimizing the 

total maintenance cost of pavement network. 

 

𝑓1(𝑥𝑖,𝑗) =  ∑∑Deter𝑖,𝑗

𝑇

𝑗=1

 −

𝐼

𝑖=1

   ∑∑Eff(𝑥𝑖,𝑗)

𝑇

𝑗=1

𝐼

𝑖=1

 

 

𝑓2(𝑥𝑖,𝑗) =   ∑∑
1

(1 + 𝑑)𝑗
× Cost(𝑥𝑖,𝑗)

𝑇

𝑗=1

𝐼

𝑖=1

  

 

Subject to:  C  (𝑥) = [C1(𝑥), C2(𝑥)]T             (vector of constraints) 

where C1(𝑥) is the budget constraint function; and  C2(𝑥) is the constraint function of pavement 

condition threshold. 

https://www.researchgate.net/scientific-contributions/2059536649_Jie_Zhang
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𝐶1(𝑥𝑖,𝑗) =  ∑
1

(1 + 𝑑)𝑗
× Cost(𝑥𝑖,𝑗)  

𝐼

𝑖=1

 ≤ B𝑗  

 

𝐶2(𝑥𝑖,𝑗) = Cond𝑖,𝑜 + ∑Deter𝑖,𝑗

𝑗

1

− Eff(𝑥𝑖,𝑗) ≤  IRI𝑚𝑎𝑥 

∀ 𝑖 from 1 to I pavement sections, and  

𝑗 from 1 to 20-year analysis horizon 

 

                                 𝑔  (𝑥) = [ ], ℎ (𝑥)   =  [ ]   (equality and inequality constraints) 

        𝑙𝑏 (𝑥) = 0, 𝑢𝑏 (𝑥)  =  𝑈            (lower and upper bounds) 

5.3.2.3. Selection of Optimization Algorithm 

According to the formulation of the optimization model, the objective functions are non-linear. In 

addition, the optimization problem includes combination of continuous and discrete variables. This 

optimization problem is complex, constrained (2 constraints), has non-linear objective functions, 

and has continuous variables and variables restricted to be integer-valued (treatment actions), 

which could lead to multiple local optimal solutions. Therefore, global optimal solution methods 

should be used. 

 

Genetic Algorithm (GA) is a global optimal solution method based on natural selection - the 

process that drives biological evolution. GA can deal with problems with discrete and continuous 

variables. GA can handle complex, constrained and unconstrained, and non-linear problems (Fwa 

et al. 2000; Deshpande et al. 2010; Santos et al. 2019). The GA can be applied to solve a variety 

of optimization problems that are not well suited for standard optimization algorithms, including 

problems in which the objective function is discontinuous, non-differentiable, stochastic, or highly 

nonlinear. The GA can address problems of mixed integer programming, where some components 

are restricted to be integer valued. The GA differs from the classical derivative-based optimization 

algorithms (e.g., linear and mixed-integer linear programming) in two main ways. Classical 

algorithms generate single point at each iteration and choose the next point in the sequence by a 

deterministic computation, while GA repeatedly modifies a population of individual solutions 
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generated in a number of steps (Plati et al. 2017; Sindi and Agbelie 2020). At each step, the GA 

randomly selects individuals from the current population to be parents and uses them to produce 

children for the next generation. Over successive generations, the population evolves toward an 

optimal solution. 

 

Previous studies by Chan et al. (1994), Yang et al. (2013), Elhadidy et al. (2015), Santos et al. 

(2019) and Sindi and Agbelie (2020) used the GA to develop optimal pavement M&R strategies 

for highway network because the GA provides more robust and precise global optimal solutions 

compared to other classical derivative-based optimization algorithms. Sindi and Agbelie (2020) 

concluded that the GA is associated with high accurate global solutions for selecting road network 

M&R interventions and solving large optimization problems. Since the GA has been shown to 

effectively solve pavement maintenance optimization problems at network level, it was used to 

solve the current optimization problem.  

 

The GA uses two main groups of processes (Figure 5.11) at each running step to reproduce next 

generation: 

• Group 1: Selection rules select the individuals or parents that contribute to the population 

at the next generation. 

• Group 2: Modification rules comprise two processes: (i) Crossover rules combine two 

parents to form children for the next generation, and (ii) Mutation rules apply random 

changes to individual parents to form children. 
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Figure 5.11. Typical GA sequence of procedures 

 

GA algorithms have several estimation parameters: crossover fraction (𝑃𝑐), mutation rate (𝑃𝑚), 

population size, number of generations and stopping criteria. The values of the GA parameters are 

specific to each optimization problem and can be determined by trials (Reddy et al. 2004). 

Consequently, a sensitivity analysis was carried out for a range of values (from literature and 

typical practice) for each parameter, and the values that contribute to the best fitness function (the 

lowest objective function values in this study) were chosen. 

 

The optimization problem of this study has two objective functions; therefore, the multi-objective 

optimization process is used to help search for a diverse set of solutions with these two objectives 

that can be optimized at one time. The Multi-Objective Genetic Algorithm (MOGA) “gamultiobj” 

provided by the MathWorks developer in the MATLAB software was used, which uses a 

controlled elitist GA that favors individuals with better fitness value and increases population 

diversity. Diversity required for model convergence is maintained by controlling the elite members 

of the population as the algorithm progresses. Two options, ParetoFraction and 

DistanceMeasureFcn, control the elitism. ParetoFraction limits the number of individuals on the 

Pareto front (elite members). The distance function, selected by DistanceMeasureFcn, helps to 
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maintain diversity on a front by favoring individuals that are relatively far away on the front. The 

algorithm stops if the spread, a measure of the movement of the Pareto front, is small. 

5.3.2.4. Encoding of Solutions 

The most frequently used GA encodings are binary and integer representations. Binary encoding 

uses the ‘0’ or ‘1’ binary digit. The binary strings of 0s and 1s represent the genes that are 

concatenated to form the full chromosome (solution or decision variable values). Binary strings 

are useful because the GA operations with them are easier to explain. Whereas, integer encoding 

represents the decision variable in its actual values [treatment actions (0-U)]. Figure 5.12 displays 

the binary and integer representations for the current optimization solutions.  

 

0000 0001 0000 0101 0001 0000 0001 1001 0000 0011 ------------- 0001 

(a) 

 

0 1 0 5 1 0 1 9 0 3 ------------- 1 

(b) 

Figure 5.12. Encoding of an arbitrary solution for one pavement section over 20 years: (a) Binary 

coding; and (b) Integer coding 

 

The effectiveness of the GA when used in real-world problems depends heavily on choosing the 

appropriate encoding representation (Santos et al. 2019). Although the binary representation is 

simpler than the integer, significant computational efforts are needed to convert integer values 

(treatment actions) to binary values. The integer encoding was therefore used to represent the 

solutions of the current stochastic MOGA model (treatment actions of every pavement section in 

the network over 20 years). Each possible MOGA solution is represented by an 𝐼 × 𝑇 matrix 

(gene); where I is the number of pavement sections in a road network; T is the analysis horizon 

(20 years in the current optimization problem); and the allele values of each gene are a combination 

of integer values (treatment actions range from 0 to U).  
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5.3.3. Development of Stochastic Optimization Models 

The stochastic optimization models are developed using the selected optimization algorithm, i.e., 

MOGA. One major challenge commonly encountered in MOGA optimization models is the 

corresponding high computational expenses or slow convergence (Augeri et al. 2019). This is 

mainly because of the random selection of generations and the number of iterations that GA runs 

until optimal solutions are reached. When “optimal” is stated hereinafter it indicates the best 

solution found by the MOGA, which may not be globally optimal. In the current MOGA model, 

the size of the problem is expressed by the number of combinations in terms of number of 

pavement sections (5,500), analysis period (20 years) and the number of treatment actions [1 action 

(do nothing) + 9 actions (PM treatments identified by the STAs in response to the survey)]. The 

number of combinations in this case would be (10 actions) (5,500 sections × 20 years), which is equal to 

10110,000. Moreover, when the budget constraint and pavement condition deterioration and 

improvement are defined in probabilistic terms, the MOGA algorithm requires large number of 

iterations to reach an optimal solution. A large number of iterations (e.g., 1,000 runs) is needed to 

sufficiently capture the probability distribution of the input variables (budget constraint and 

pavement condition deterioration and improvement) and build the probability distribution of the 

output (optimal solutions).  

 

One solution to reach a feasible number of combinations for the proposed stochastic MOGA model 

is to reduce the search space for the MOGA algorithm. This study proposes three approaches to 

reduce the MOGA search space: (1) identifying and considering the most commonly used PM 

treatments; (2) clustering pavement sections; and (3) application of rest period. 

(1) Most commonly used PM treatments 

In order to reduce the search space for the stochastic MOGA model, the results of the survey 

(discussed earlier in section 5.3.1) were investigated in order to select the most commonly used 

PM treatments identified by the STAs respondents. From the survey results, the most commonly 

used PM treatments are crack sealing, Thin HMA overlay, Micro-surfacing and UTBWC. Crack 

sealing does not improve pavement condition (roughness, IRI) (Lee and Shields (2010), thus only 

Micro-Surfacing, UTBWC and Thin HMA overlay are considered in this study. Hence, four 
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treatment actions were considered in this study as follows: 0 (do nothing), 1 (Micro-surfacing), 2 

(UTBWC) and 3 (Thin HMA overlay). This approach has reduced the number of treatment actions 

from 10 to 4 by considering only the most widely used PM treatments, which in turn reduces the 

stochastic MOGA search space.  

(2) Clustering of pavement sections 

Pavement family/group concept has typically been used for clustering pavement sections for 

pavement performance and maintenance optimization models. Pavement families may be defined 

by the pavement type (e.g., asphalt or concrete), pavement use (e.g., roadways or parking), 

functional classification (e.g., interstates or locals), and/or any other similar characteristics. This 

study implements the proposed stochastic MOGA for the interstate flexible pavements; however, 

the number of interstate flexible pavement sections is 5,500 1-mile long (as identified earlier in 

section 5.3.1). Thus, the pavement sections are further grouped in order to reduce the search space 

for the proposed stochastic MOGA model. One way of clustering the 5,500 pavement sections is 

by a common characteristic among these sections. 

 

This study clusters pavement sections into groups with a similar age range in years. Previous 

research grouped pavement sections into classes of age ranges of 5 years (Ahmed et al. 2015) and 

3 years (Nunez and Shahin 1986; Khattak et al. 2013). Since the data collected for this study 

include pavement sections ranging from 0 to 27 years of age, an interval of 4 years was identified 

as the age range for pavement groups. Thus, the pavement sections (5,500) were grouped according 

to their ages into 7 groups: (1) from 0 to 3; (2) from 4 to 7; (3) from 8 to 11; (4) from 12 to 15; (5) 

from 16 to 19; (6) from 20 to 23; and (7) from 24 to 27 years. The number of pavement sections 

in each group at the scheduling time (𝑗 = 0) is 1,107, 1,345, 1,286, 686, 555, 384 and 137 for 

groups from 1to 7, respectively. This approach has reduced the number of pavement sections from 

5,500 individuals to 7 groups (each with a 4-year range), which in turn reduces the stochastic 

MOGA search space. 

 

It is worth noting that the pavement sections of the same age range may not have the same 

condition. In addition, not all pavement sections that are in the same age range (even if they are of 
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the same condition) technically receive PM treatments at the same time. This study therefore adds 

the decision variable “group percentage” (percentage of each pavement group that receives 

treatment actions 0, 1, 2, or 3) to the optimization problem. This percentage can take on any value 

from 0 to 100 percent as determined by the MOGA algorithm.  

(3) Application of Rest Period 

To further reduce the search space for the proposed stochastic MOGA model, this study suggested 

applying a rest period to the search space. The rest period is defined as the minimum time in years 

between two PM treatments. The purpose of applying the rest period concept is to refrain the 

MOGA algorithm from searching for a solution over a specific period starting from the time of a 

previously selected solution. In other words, if the MOGA optimization algorithm chooses to apply 

Micro-surfacing for a particular pavement section at year j, no treatments should be applied to this 

pavement section at any time during a specified rest period after year j. Figure 5.13 shows a 

schematic diagram for the concept of rest period. 

 

 

Figure 5.13. Rest period and possible times for treatments 

 

The length of the rest period can be either the service life or the warranty period of each PM 

treatment. This study considers the rest period to be the warranty period of each PM treatment. 

According to the specifications of pavement maintenance provided by the FHWA or STAs such 

as INDOT, contractors are responsible for the warranted preventive maintenance treatments. In 

this study, Micro-surfacing, UTBWC and Thin HMA overlay are warranted PM treatments 

(FHWA 2017; INDOT 2020). The warranty period for each of the three PM treatments is 3 years 

from the date of the substantial completion of the treatment application (FHWA 2017; INDOT 

2020). The rest period was therefore specified as 3 years for each of the three PM treatments. To 
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apply the rest period to the MOGA algorithm, a filtering constraint was created to force the 

algorithm to assign a value of zero (Do nothing action) during the rest period. The significance of 

applying the rest period constraint is in twofold: (1) reducing the search space for the stochastic 

MOGA algorithm, and (2) avoiding the erroneous and impracticable results of the MOGA model 

that might suggest an optimal solution during the warranty period. 

 Results and Discussion 

This section presents the results and discussions of the stochastic MOGA optimization models 

developed following the implementation of the proposed research framework. It presents the 

estimation of the MOGA parameters, the results of the stochastic MOGA optimization models, 

and the performance curves of pavement groups over the analysis period.  

5.4.1. MOGA Parameters 

The values of the MOGA parameters are specific to optimization problem. Therefore, a sensitivity 

analysis was carried out for a range of values (from literature and/or as a typical practice) for each 

parameter (Table 5.4), and the values that contribute to the best fitness function (in this study, the 

lowest values for objective functions) were chosen. 

 

Table 5.4. MOGA parameters values from literature and common practice, and specified ranges 

for the sensitivity analysis 

MOGA Parameter Previous Studies Common Practice Ranges for Sensitivity 

Analysis  

Crossover Fraction 0.6 (Elhadidy et al. 

2015) 

0.8 (MATLAB) 0.6 – 0.9 

Mutation Rate 0.01 (Elhadidy et al. 

2015) 

0.05 (MATLAB) 0.001 – 0.1 

Population Size 10 times the number of 

decision variables: 

2800 (Storn 1996; Chen 

et al. 2015) 

50 for a number of 

decision variables ≤ 5, 

or 200 otherwise 

(MATLAB) 

1,000 – 5,000 

Number of Generations - 100 (MATLAB) 0 - 250 
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Selection of Crossover Fraction: The default value for the crossover fraction (𝑃𝑐) in the MOGA 

algorithm provided in the MATLAB is 0.8. However, to ensure that the selected crossover fraction 

yields the best values for the objective functions, a sensitivity analysis was performed for the 𝑃𝑐 

values ranging from 0.5 to 0.9 for each mutation rate (𝑃𝑚) (ranging from 0.001 to 0.1), population 

size equals to 3000 and number of generations equals to 50. Figures 5.14(a-e) present the Pareto 

frontiers for the different 𝑃𝑐 values at the 𝑃𝑚 values 0.001, 0.005, 0.01, 0.05 and 0.1, respectively. 

The Pareto frontiers show that the crossover fractions of 0.5 and 0.6 values yield comparable best 

results (lowest values for both objective functions) for all 𝑃𝑚 values. However, the value of 0.6 

was selected in order to ensure an enough crossover of the population; the same value (𝑃𝑐 = 0.6) 

was adopted by Elhadidy et al. (2015). 

 

  
(a) (b) 

  
(c) (d) 
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(e) 

Figure 5.14. Pareto frontiers for the objective functions for the 𝑃𝑐 values from 0.5 to 0.9 and 𝑃𝑚 

values: (a) 𝑃𝑚 =0.001; (b) 𝑃𝑚 =0.005; (c) 𝑃𝑚 =0.01; (d) 𝑃𝑚 =0.05; and (e) 𝑃𝑚 =0.1 

 

Selection of Mutation Function and Rate: The Adaptive Feasible function 

“mutationadaptfeasible” was used as the mutation function as it is typically used when a MOGA 

problem includes constraints and to randomly generate adaptive directions for the last successful 

or unsuccessful generation. The default value for the mutation rate (𝑃𝑚) in the MOGA algorithm 

provided in the MATLAB is 0.05; however, to ensure that the used mutation rate yields the best 

values for the objective functions, a sensitivity analysis was carried out for the 𝑃𝑚 values ranging 

from 0.001 to 0.1, and the best value was selected. Figure 5.15 shows the results of using the 

abovementioned values of the 𝑃𝑚 range at the selected 𝑃𝑐 value (0.6). It can be noticed that similar 

optimal Pareto frontiers were obtained for all 𝑃𝑚 values and the 𝑃𝑐 value of 0.6. It is worth 

mentioning that low mutation rates reduce the possibility of exploring new solutions, whereas high 

mutation rates increase the MOGA computational time (i.e., slow MOGA convergence) (Morcous 

and Lounis 2005). The mutation rate value was therefore chosen to be 0.01 as used in the MOGA 

model by Elhadidy et al. (2015). 
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Figure 5.15. Pareto frontiers for the objective functions for the 𝑃𝑚 values from 0.001 to 0.1 and 

𝑃𝑐 value of 0.6 

 

Selection of Population Size and Number of Generations: The MOGA algorithm provided in the 

MATLAB sets the default value for the population size as 50 for a number of decision variables 

less than or equal to 5, or 200 otherwise. Based on the guidelines from prior research (Storn 1996; 

Chen et al. 2015), the population size of the evolutionary algorithms, including MOGA, can be 

specified as ten times the search space dimensionality (i.e., number of decision variables). In 

addition, the population size of MOGA model can be determined based on trials (Reddy et al. 

2004). Thus, a sensitivity analysis was conducted to select the population size that yields the 

shortest Euclidean distance (the lowest values for the two objective functions in the current study). 

The population size was specified to take on the range of values around 10 times the number of 

decision variables (10 × 280 =  2,800). Therefore, the population size was specified to range 

from 1,000 to 5,000. Figure 5.16 shows the calculated Euclidean distance (Equation 5.1) of the 

two objective functions when the population size ranges from 1,000 to 5,000 at the 𝑃𝑐 of 0.6, 𝑃𝑚 

of 0.01 and number of generations equal to 50. Figure 5.16 indicates that at the population size of 
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4,000, the Euclidean distance is the shortest (the lowest values for the two objective functions), 

and therefore the population size was specified as 4,000 for the current MOGA problem. 

 

Euclidean distance =  √(𝑋 − 𝑋𝑚𝑖𝑛)2 + (𝑌 − 𝑌𝑚𝑖𝑛)2              (5.1) 

 

where X is the value of the first objective; while Y is the value of the second objective. 

 

 

Figure 5.16. Population size versus Euclidean distance of the two objective functions 

 

The default value for the number of generations in the MOGA provided in the MATLAB is 100; 

however, a sensitivity analysis was performed to ascertain that the number of generations used in 

the current MOGA problem yields the shortest Euclidean distance of the two objective functions. 

The number of generations was identified to take on the values from 0 to 250 at the selected values 

of the other MOGA parameters: 𝑃𝑐 = 0.6, 𝑃𝑚 = 0.01 and population size =4,000. Figure 5.17 

displays the number of generations versus the calculated Euclidean distance of both objective 

functions (Equation 5.1). The number of generations was therefore selected to be equal to 100 

because this value corresponds to the shortest Euclidean distance. 
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Figure 5.17. Number of generations versus Euclidean distance of the two objective functions 

 

MOGA Stopping Criteria and Convergence: The stopping criterion of MOGA can be determined 

on the basis of the convergence of any of the following measures: (i) the objective-function value 

of the best genotype in each generation; (ii) the average objective-function value of parent 

genotypes in each generation; and (iii) the average objective-function value of offspring genotypes 

in each generation (Fwa et al. 1996 and 1997). The MOGA stopping criterion can be established 

based on a certain number of generations (Fwa et al. 1996; 1997). The stopping criterion of number 

of generations was set to be 50 by Li and Wang (2019), 100 by Fwa et al. (1996) or 150 by Fwa et 

al. (1997). The terminating criterion of number of generations for the current MOGA models was 

specified to be equal to 100, at which the shortest Euclidean distance was obtained (Figure 5.17).  

5.4.2. Stochastic MOGA Optimization Models  

In this study, stochastic MOGA optimization models were developed taking into account the 

uncertainty of the variables: budget constraint, pavement deterioration and improvement in 

pavement condition after the application of PM treatments. These variables were assumed to 

follow the normal distribution, which commonly used to represent uncertainties in engineering 

problems. The mean and standard deviation values of the budget constraint are equal to $9M and 

$225,000, respectively, while the mean and standard deviation values for pavement condition 

deterioration and improvement (drop in IRI) are shown in Table 5.5. 



 

154 
 

Table 5.5. Means and standard deviations of pavement condition deterioration and improvement 

Deterioration (in/mi.) Improvement (in/mi.) 

Pavement Group Mean STD Treatment Action Mean STD 
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𝑃
(0

.0
5
3
9

×
𝑡)

 1.0 Do Nothing 0 0.0 

2 1.5 Micro-surfacing 10 1.25 

3 2.0 UTBWC 15 2.0 

4 2.5 Thin HMA Overlay 20 2.5 

5 3.0    

6 3.5    

7 4.0    

 

1. Stochastic MOGA Considering the Uncertainty of Budget Constraint 

A stochastic MOGA model was developed to account for the uncertainty of budget constraint only. 

Figure 5.18 shows the Pareto frontiers with probabilities of 5%, 50% and 95% of the budget 

constraint less than or equal to the values: mean - 2STD, mean and mean + 2STD, respectively. 

Figure 5.18 indicates that there is an insignificant difference between the Pareto frontiers with the 

probabilities of 5% or 95% and the probability of 50% (equivalent to the deterministic MOGA), 

which implies that the influence of the uncertainty of budget constraint on the optimal solutions is 

not significant. This is because the specified budget variation of $225,000 may be too small to 

affect the variation of the optimal solutions. However, it can be concluded that if the variation in 

the budget constraint is expected to be within the value specified herein (5% of the available fund 

or $225,000), there will be an insignificant difference whether a stochastic or deterministic (with 

a 50% probability) MOGA model is being developed. 

 

https://www.researchgate.net/scientific-contributions/2059536649_Jie_Zhang
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Figure 5.18. Pareto frontiers for the stochastic optimal solutions considering the uncrtainty of 

budget constraint 

 

2. Stochastic MOGA Considering the Uncertainty of Pavement Condition Deterioration and 

Improvement and Budget Constraint 

In order to estimate the impact of the uncertainty of pavement condition deterioration and 

improvement on the PM scheduling for pavement network, the stochastic MOGA model is run 

using the means and standard deviations set out in Table 5.5 for 1,000 runs. Due to the large 

number of the decision variables (280) and the consideration of probability distributions, the 

MOGA model is expected to be expensive in computation. As such, a number of 

combinations/scenarios for the change in pavement condition deterioration and improvement were 

created as shown in Table 5.6. The change in each variable was assumed to be equal to ±2𝑆𝑇𝐷 

corresponding to the 95% and 5% probabilities. The deterioration of pavement condition is 

expected to change by +2𝑆𝑇𝐷 and −2𝑆𝑇𝐷 from the expected mean value with probabilities of 

95% and 5%, respectively. Whereas, the improvement in pavement condition after treatment 

implementation is expected to change by −2𝑆𝑇𝐷 and +2𝑆𝑇𝐷 from the expected mean value with 

probabilities of 95% and 5%, respectively. 
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Table 5.6. Combinations/scenarios of pavement condition deterioration and improvement  

 Expected Condition Improvement 

Increase (5%) Decrease (95%) 

Expected Condition 

Deterioration 

Increase (95%) II ID 

Decrease (5%) DI DD 

 

Figure 5.19 shows Pareto frontiers for the optimal solutions of the stochastic MOGA model when 

the uncertainty of budget constraint and pavement condition deterioration and improvement are 

considered. It shows the Pareto frontiers for each scenario presented in Table 5.6 and the 50% 

probability (mean values). All of the Pareto frontier curves of the four scenarios (representing the 

stochastic MOGA) have trends similar to that of the 50% probability (deterministic MOGA). 

Nevertheless, Figure 5.19 indicates a significant difference in the values of the objective functions 

of the stochastic MOGA from that of the deterministic MOGA, which, in turn, underscores the 

need to account for the uncertainty associated with pavement condition deterioration and 

improvement in pavement maintenance optimization models. The stochastic MOGA models 

provide optimal solutions that indicate at each optimal maintenance cost there are multiple 

expected pavement deterioration values. This highlights the importance of considering the 

uncertainty of pavement condition in the MOGA pavement maintenance optimization models. 
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Figure 5.19. Pareto frontiers for the stochastic optimal solutions considering the uncrtainty of 

condition deterioraiton and improvement and the uncertainty of budget constraint 

 

If the decision-maker chooses to adopt a solution at a minimum maintenance cost of, for example, 

$120M, this solution corresponds to an expected pavement network deterioration of 387,000 in/mi. 

with a 50% probability. The $120 million is approximately equal to $120/20 = $6 million per year 

for 20 years. While, a 387,000 in/mi. deterioration is approximately equal to 387,000/5,500 = 70 

in/mi., an average deterioration for each pavement section (assuming that all pavement sections 

deteriorate at similar levels). Table 5.7. shows the PM schedule (treatment actions and the 

corresponding percentage of each pavement group receiving treatment actions) for the 7 pavement 

groups over an analysis period of 20 years. For instance, for pavement group 4, five treatment 

actions are scheduled over the 20-year analysis period: three thin HMA overlay applications – one 

each at Year 1 (20% of pavements in group 4), 5 (50% of pavements in group 4) and 17 (40% of 

pavements in group 4); one Micro-surfacing application at Year 9 for 50% of pavements in group 

4; and one UTBWC application at Year 13 for 20% of pavements in group 4. 
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Table 5.7 (a). Preventive maintenance for pavement groups over 20-year analysis period and the 

respective percentage of pavement groups that receive PM treatments 

  Year 

 

 

 

Pavement  

Group (age range) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 (00-03yrs) 3 0 0 0 2 0 0 0 1 0 0 0 3 0 0 0 1 0 0 0 

2 (04-07yrs) 2 0 0 0 2 0 0 0 1 0 0 0 0 0 1 0 0 0 3 0 

3 (08-11yrs) 1 0 0 1 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0 0 

4 (12-15yrs) 3 0 0 0 3 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0 

5 (16-19yrs) 1 0 0 0 3 0 0 0 1 0 0 0 1 0 0 0 3 0 0 0 

6 (20-23yrs) 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 3 0 0 0 

7 (24-27yrs) 1 0 0 0 2 0 0 0 2 0 0 0 3 0 0 0 1 0 0 0 

Note: 0: Do nothing, 1= Micro-surfacing, 2= UTWBC, and 3= thin HMA overlay 

 

Table 5.7 (b). Preventive maintenance for pavement groups over 20-year analysis period and the 

respective percentage of pavement groups that receive PM treatments 

Year 

 

 

 

 

Group 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0.1 0 0 0 0.6 0 0 0 0.4 0 0 0 0.2 0 0 0 0.9 0 0 0 

2 0.3 0 0 0 0.3 0 0 0 0.2 0 0 0 0 0 0.2 0 0 0 0.4 0 

3 0.2 0 0 0.4 0 0 0 0.8 0 0 0 0.3 0 0 0 0.2 0 0 0 0.2 

4 0.2 0 0 0 0.5 0 0 0 0.5 0 0 0 0.2 0 0 0 0.4 0 0 0 

5 0.5 0 0 0 0.3 0 0 0 0.3 0 0 0 0.6 0 0 0 0.2 0 0 0 

6 0.6 0 0 0 0.5 0 0 0 0.5 0 0 0 0.7 0 0 0 0.3 0 0 0 

7 0.4 0 0 0 0.3 0 0 0 0.2 0 0 0 0.3 0 0 0 0.2 0 0 0 

5.4.3. Pavement Performance Curves Using Stochastic MOGA Models 

The optimal solution chosen and provided in Table 5.7 is further used to investigate the impact of 

the uncertainty of pavement condition deterioration and improvement on pavement performance. 

Figures 5.20(a, b and c) show the performance curves of the pavement groups: 1 (1107 pavement 

sections), 4 (686 pavement sections) and 7 (137 pavement sections), respectively, as examples of 
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the early (0 - 3 years), middle (12 -15 years) and late (24 – 27 years) age sets of pavement sections. 

For each set of ages, the performance curves were developed at 95%, 50% and 5% probabilities. 

Figures 5.20(a, b and c) imply that there is a significant difference between pavement performance 

with a 50% probability (deterministic MOGA) and 95% and 5% probabilities (stochastic MOGA). 

Moreover, the variation in the expected pavement performance in terms of IRI values for early age 

pavements (group 1) is lower than that for middle age pavements (group 4), which, in turn, have 

lower pavement performance variations than for late age pavements (group 7). 

 

 

(a) Group #1: 0-3 years (b) Group #4: 12-15 years 

 

 

(c) Group #7: 24-27 years 

Figure 5.20. Performance curves with 95%, 50% and 5% probabilities for pavement groups: (a) 

Group #1; (b) Group #4; and (c) Group #7 
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 Summary  

Prior stochastic pavement maintenance optimization models considered the uncertainty of budget 

constraint but due to the associated additional computational complexity in terms of the number 

of combinations did not adequately account for the uncertainty of pavement condition deterioration 

and improvement. The selection of optimal timings and types of maintenance treatments for a 

pavement network over the long-term (pavement design life) without considering the uncertainty 

of expected pavement condition and maintenance effectiveness has the potential to lead to 

mistiming of maintenance applications and can therefore result in less optimal alternatives. This 

chapter discussed the development of stochastic pavement maintenance optimization models with 

the consideration of budgetary uncertainty in addition to the uncertainty of expected pavement 

condition deterioration and improvement. The Multi-Objective Genetic Algorithm (MOGA) 

method was used to obtain the optimal or near-optimal global solutions for the two objective 

functions: minimum total preventive maintenance costs and minimum overall pavement network 

deterioration. The stochastic MOGA models were designed with two constraints: a limited budget 

and a pavement condition threshold. The results showed that deterministic MOGA models provide 

one PM schedule for each expected total maintenance cost. Whereas, stochastic MOGA models 

offer multiple PM schedules for each expected total maintenance cost, each PM schedule is 

associated with the probability of a corresponding pavement network deterioration. At a specific 

maintenance cost for pavement network using deterministic MOGA model, pavement will have 

one expected value of condition at each year. The developed stochastic MOGA models provide 

decision-makers with multiple optimal maintenance schedules that may be appropriate to their 

level of risk/uncertainty.
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

Highway infrastructure, including roads/pavements contributes significantly to a country’s 

economic growth, life quality improvement and negative environmental impacts. Highway 

agencies therefore aim to manage their infrastructure assets efficiently to keep them in good 

condition while making optimal use of their limited and dwindling resources. This dissertation 

aimed to bridge the gaps in the body of knowledge and practice regarding pavement management 

systems, particularly pavement performance modeling and maintenance optimization. The first 

section of this chapter provides an overview and summary of the research, while the second section 

provides a summary of the findings of the research. The third section of this chapter discusses the 

significance of this research to the body of knowledge and practice. The fourth section underlines 

the limitations of this study, whilst the fifth section proposes recommendations for future research. 

 Summary of the Research 

The overarching goal of this dissertation is to enhance pavement management systems by 

contributing to pavement performance modeling and pavement maintenance optimization. The 

research conducted in this dissertation was demonstrated within the context of interstate 

flexible/Asphalt pavements. Pavement condition data were collected from the LTPP database for 

interstate flexible pavements from eight Midwestern states in the U.S. Also, three questionnaire 

surveys were developed and deployed to subject matter experts (SMEs) from the U.S. State 

Transportation Agencies (STAs), with background and experience in the field of pavement 

engineering and management. 

  

The first component of this dissertation presented a state-of-the-art review for the probabilistic 

modeling of pavement performance using Markov chains. Based on the reviewed literature, 

Markov chain techniques were categorized as follows: homogeneous, non-homogeneous, staged-

homogeneous, hidden, and semi-Markov. Various methods used in the literature to estimate the 

transition probability matrix (TPM) of pavement condition were synthesized and discussed. The 

TPM estimation methods include the expected-value, percentage transition, simulation-based 
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methods, and econometric and duration models. Furthermore, based on guidance and insights 

acquired from prior research, this doctoral research developed a decision tree for selecting the 

appropriate Markov technique and TPM estimation method for probabilistic modeling of pavement 

performance. 

 

The second component of this dissertation introduced a hybrid approach to incorporate the 

effectiveness of preventive maintenance (PM) into probabilistic pavement performance models in 

the absence or insufficiency of historical PM data. The approach consists of six major tasks: data 

collection and analysis; data simulation; estimation of initial times for preventive maintenance 

treatments; data generation; estimation of transition probability matrix; and validation of the 

approach and developed models. Pavement condition data were collected from the LTPP database 

for interstate flexible pavements from eight Midwestern states.  Data were simulated by developing 

an exponential multiple regression model and determining the probability distribution of 

dependent and independent variables. The initial times for PM treatments were determined through 

literature search, a survey (Survey 1) of SMEs to gather information on pavement condition and 

PM, and detection of PM times from probabilistic pavement performance curves. 

 

An ordered-probit Model A was built to develop probabilistic pavement performance curves that 

were utilized to identify the approximate probable times for PM applications, and to estimate the 

effectiveness of PM treatments. Since the implementation of PM is restricted by limited funding, 

a greedy algorithm was developed to prioritize PM schedule based on pavement condition and 

treatment costs, and under the constraint of the estimated initial PM times. The amount of funding 

was specified as a percentage (100% to 40%) of the total funding needed to implement PM for all 

roadway sections of the road network at the estimated initial times. For each percentage of funding, 

the greedy algorithm resulted in pavement condition data that were used to develop ordered-probit 

Models B. Probabilistic pavement performance curves were created using the developed Models 

B and compared with that of Model A. An ordered-probit Model C was developed to estimate the 

non-homogeneous transition probabilities of pavement condition incorporating PM impact. The 

statistical significance of PM in pavement performance prediction found in Model C demonstrates 

the necessity of collecting and managing PM data. The probabilistic pavement performance curves 
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with PM effects were developed, and the marginal effects of the explanatory variables were 

estimated. 

 

The hybrid approach and the developed non-homogeneous Markov model were validated 

mathematically through cross-validation with the actual/out-of-sample data and practically using 

two surveys (Surveys 2 and 3) sent to the SMEs in pavement engineering and management. The 

cross-validation was performed to ensure the predicted pavement condition is comparable to the 

actual pavement condition. Survey 2 was deployed to the SMEs to assess the trends in pavement 

performance curves developed using current and prior research, while Survey 3 was used to assess 

the estimated marginal effects of the explanatory variables. 

 

The third component of this dissertation addressed the statistical significance of the design 

parameters of Markovian models for the pavement condition prediction accuracy. These design 

parameters are the number of condition states (NCS), the length of duty cycle (LDC), the data 

collection time at pavement cohorts (P1, P2 and P3) in the homogeneous Markov models, and the 

stage length in the staged-homogeneous Markov models. A comparative analysis was carried out 

for the various Markovian techniques, and for each technique, the different combinations of 

Markov design parameters. The results of the comparative analysis provide guidance to future 

researchers and highway agencies to determine whether the NCS and LDC used for their Markov 

models are associated with the most accurate Markovian pavement performance models. 

Moreover, when designing homogeneous and staged-homogeneous Markov models, the data 

collection time and the stage length, respectively, should be given greater attention. 

 

The fourth component of this dissertation discussed the development and significance of stochastic 

optimization models for the network-level scheduling of pavement preventive maintenance. Multi-

objective Genetic Algorithm (MOGA) optimization approach was used to obtain global optimal 

solutions while accounting for the two main objectives of effective maintenance strategies: 

minimum maintenance cost and maximum pavement performance over pavement lifecycle 

[typically 20 years (Morian et al. 2005; Ceylan et al. 2009; Santos and Ferreira 2013)]. Pavement 

condition deterioration and improvement and budget constraint were specified in probability 

distribution terms to account for their inherent uncertainty. In the past, stochastic MOGA models 
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were deemed to be highly computationally complex for pavement maintenance optimization, 

hindering prior research from considering decision variables, such as the pavement condition 

deterioration and improvement, in probabilistic terms. The current study proposed three 

approaches to incorporate the uncertainty of pavement condition deterioration and improvement 

while avoiding high computational complexity to achieve feasible number of combinations. These 

three approaches are (1) using PM treatments that are most commonly used by STAs, (2) clustering 

pavement sections into seven groups based on their ages, and (3) creating a filtering constraint by 

applying the notion of rest period after pavement treatment applications to reduce the search space 

for the stochastic MOGA algorithm. Whenever a pavement section receives a treatment, no further 

treatment is provided to this section during a rest period specified as three years in this study. The 

parameters of the MOGA model (crossover fraction, mutation rate, population size and number of 

generations) were first determined using sensitivity analysis and based on the lowest values for the 

fitness functions. The stochastic MOGA models were developed using these estimated MOGA 

parameters. 

 Summary of the Results 

The research conducted in this dissertation answers the research questions and accomplishes the 

research objectives outlined in Chapter 1. Table 6.1 summarizes the research objectives, analyses 

performed and findings from the analyses. 

 

Table 6.1. Research objectives, analyses performed and summary of the findings 

Research 

objectives 

Analyses performed Summary of the findings 

State-of-the-art 

review for 

Markov models 

• Synthesis of Markov 

models and TPM 

estimation methods 

• Decision Tree 

• Homogeneous Markov models require observations 

of pavement condition for only two successive 

transitions 

• Staged-homogeneous Markov models need two 

consecutive transitions of pavement condition every 

stage (5-6 years) 

• Semi-Markov models need pavement performance 

curves 

• Hidden Markov models are used when pavement 

condition data are incomplete 
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• Non-homogeneous Markov models require 

extensive historical pavement condition data and 

consider explanatory variables effects 

• If percentage transition method is used to estimate 

the TPM in non-homogeneous Markov models, the 

effect of explanatory variables is not incorporated, 

leading to less reliable models 

Incorporating PM 

impacts into 

probabilistic 

pavement 

performance 

models 

Data Simulation The traffic and climate loadings were found to be the 

statistically significant variables affecting pavement 

condition in the absence of historical PM data 

Initial times and types of 

PM (literature, Survey 1 

and ordered-probit Model 

A) 

The initial times for the PM treatments were estimated 

as 4 – 10 years with 1.5-year standard deviation (STD) 

for micro-surfacing, 11 - 15 years with 1-year STD for 

UTBWC, and 16 – 20 years with 1-year STD for thin 

overlay 

Data generation (Greedy 

Algorithm optimization 

and ordered-probit 

Models B) 

At a 60% funding the simulated data including types 

and times of PM treatments performs comparably to the 

actual data 

Ordered-probit model C • Traffic and climate loadings, as well as the PM 

treatments micro-surfacing, UTBWC and thin HMA 

overlay, were found to be statistically significant 

• The lack of inclusion of the effect of PM on 

pavement condition causes an underestimation of the 

condition and remaining service life of pavement, 

which could lead to erroneous and non-optimal 

pavement M&R decisions 

Validation • The MAPE of the non-homogenous Markov model 

developed using the introduced hybrid approach was 

found to be equal to 13%, indicating that the 

methodology and models developed are reliable and 

accurate in probabilistic pavement condition 

prediction 

• The SMEs’ validation revealed that pavement 

performance curves developed using the current 

study are more accurate and practical than those 

developed using prior studies 

• Although the SMEs do not strongly agree with some 

trends in pavement performance curves such as that 

in condition state 4, their overall evaluations range 

from agreement to strong agreement 

Comparative 

analysis of 

Markovian 

methodologies 

Statistical comparative 

analysis between 

homogeneous, staged-

homogeneous and semi-

Markov models with 

respect to NCS, LDC, 

data collection time and 

stage length 

• For some NCS and LDC combinations, the semi-

Markov models outperformed the staged-

homogeneous and the homogeneous Markov 

counterparts, which is consistent with the literature 

• The staged-homogeneous and homogeneous Markov 

models were found to be superior to the semi-

Markov models when using specific NCS and LDC 
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• The NCS and LDC significantly affect the prediction 

accuracy of homogeneous, staged-homogeneous and 

semi-Markov models 

• Increasing the NCS increases the prediction 

accuracy of the three Markov methodologies until 

the NSC reaches 8 (for a 1-year duty cycle) and 5 

(for a 2-year duty cycle). Beyond these thresholds, 

the prediction accuracy begins to decrease 

• In the homogeneous and staged-homogeneous 

Markov models, the data collection time at different 

pavement cohorts (P1, P2 and P3) and stage size 

were found to have significant impacts on the 

predictive accuracy of Markov models 

• Homogeneous Markov models were found to have 

high prediction accuracy when using data collected 

during the middle (10-18 years) or late (19-27 years) 

ages 

• The use of a stage length other than the typical length 

(5 or 6 years) for the staged-homogeneous Markov 

models yields more accurate predictions of 

pavement conditions 

Stochastic 

pavement PM 

optimization 

MOGA sensitivity 

analysis 
• MOGA parameters were selected by performing 

sensitivity analyses and their values are as follows: 

o Crossover fraction: 0.6 

o Mutation rate: 0.01 

o Population size: 4000 

o Number of generations: 100 

• These MOGA parameters can be used in future 

similar MOGA models for optimizing pavement 

maintenance at network level 

Stochastic MOGA 

optimization model 

considering the 

uncertainty of pavement 

condition deterioration 

and improvement 

• The uncertainty or variation of pavement condition 

deterioration and improvement significantly 

influences the optimal Pareto frontiers for PM 

scheduling 

• This uncertainty is more significant in late age (>20 

years) than early age (<7 years) pavements 

• Deterministic MOGA models provide one PM 

schedule for each expected total maintenance cost. 

Whereas, stochastic MOGA models offer multiple 

PM schedules for each expected total maintenance 

cost, each PM schedule is associated with the 

probability of a corresponding pavement network 

deterioration. This provides decision makers with 

multiple choices that suit their level of 

risk/uncertainty 
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 Limitations of the Study 

The current research was carried out for interstate flexible pavements using pavement condition 

data collected from the LTPP database from Midwestern states. Therefore, the results and their 

implications are specific to the collected data, its quantity, quality and variation. Since pavement 

condition data were collected from various Midwest states, data variation and unobserved 

heterogeneity may be higher because STAs have different standards and specifications for 

pavement design, construction, and maintenance. Using data from different states may also result 

in spatial heterogeneity. In addition, the results are limited to the condition data and preventive 

maintenance treatments of interstate flexible pavements. 

 

This dissertation used the international roughness index (IRI) as the sole pavement condition 

indicator for modeling pavement performance and optimizing PM. However, the results of Survey 

1 show that some STAs use pavement condition indicators and distresses other than the IRI, such 

as PCI, PSI, rutting and crack index, either individually or in combination, to assess pavement 

condition and to make M&R decisions. Moreover, the findings of Survey 1 reveal that half of the 

responding STAs apply the worst-first approach to pavement maintenance decision-making. 

Accordingly, a greedy algorithm was designed for the optimization of pavement PM in the hybrid 

approach developed to account for the PM impacts in probabilistic pavement performance models. 

Furthermore, only three PM treatments (micro-surfacing, UTBWC and thin HMA overlay) were 

considered in the hybrid approach and the stochastic MOGA optimization models based on the 

reviewed literature and results of Survey 1, as these PM treatments were recognized as the most 

commonly used among highway agencies. 

 

Two independent variables (cum. AADTT and cum. AAFI) were found to be the only statistically 

significant variables contributing to pavement deterioration possibly because of the quality and 

limited amount of data. However, other explanatory variables, such as pavement layer thickness, 

modulus of subgrade, construction quality and drainage, also have varying impacts on pavement 

deterioration. The lack of consideration of such influential variables may lead to omitted variable 

bias, and unreliable and erroneous results. The ordered-probit method was used for the 

development of pavement performance models in the hybrid approach; however, this method 

assumes that pavement condition data are normally distributed, which is often untrue.  
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Due to data limitations, this study adopts only eight different combinations of NCS and LDC to 

conduct the comparative analysis for Markovian methodologies. Nonetheless, more combinations 

should be created to further investigate the effect of the NCS and LDS on the prediction accuracy 

of pavement condition using various Markovian techniques. The percentage transition method was 

used to estimate the transition probabilities of pavement condition. Other methods which may be 

more computationally intensive, like the expected-value and econometric models, may yield more 

reliable estimates for the transition probabilities of pavement condition. In the developed semi-

Markov models, the holding times were computed as the average time for pavement sections to 

stay in a particular condition state prior to migrating to the following states, which is often untrue. 

To calculate the average holding times, only the historical pavement condition data was used, 

without taking into account the effect of the potential influential variables on pavement condition. 

 

To overcome the computational complexity of the stochastic MOGA optimization models for 

pavement PM at the network level, pavement sections were clustered into 7 groups based on their 

ages, which may not fully capture all incremental changes in pavement condition over time. 

Another approach proposed to reduce the expected large number of combinations of the stochastic 

MOGA solutions was to apply a rest period of 3 years after any application of PM treatment; 

however, the rest period should be correlated with the different PM treatments. The uncertainty of 

the budget constraint and pavement condition deterioration and improvement was represented in 

the stochastic MOGA by the normal distribution, commonly used to represent uncertainties in 

engineering problems. Nevertheless, the uncertainty associated with these decision variables 

should be estimated on the basis of the actual data. 

 Contributions of the Research 

This research makes various contributions to the body of knowledge and the body of practice in 

the area of pavement infrastructure asset management. The overall contribution of this research is 

to enhance probabilistic pavement performance modeling and decision-making for pavement 

preventive maintenance. 
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6.4.1. Contributions to the Body of Knowledge 

The comprehensive synthesis of Markov methodologies and models provides insights into the 

selection of Markov methodologies and TPM estimation methods for pavement deterioration 

modeling under given conditions of data types and availability. This dissertation presented critical 

analyses of various aspects of Markovian models as they were applied in the literature, revealed 

research gaps in the relevant body of knowledge, and offered suggestions to address these gaps for 

future research. Also, it introduced a decision tree for selecting the appropriate Markov technique 

and TPM estimation method, which provides researchers with guidance and decision support in 

selecting appropriate probabilistic techniques for modeling pavement deterioration in a robust 

manner. 

 

Probabilistic pavement performance models should be developed using quality pavement 

condition data. The first process of building pavement performance models is data cleaning by 

removing the observations of extreme outliers. Past studies (e.g., Wang et al. 1994; Thomas and 

Sobanjo 2012; Pérez-Acebo et al. 2018, 2019) considered observations of improved pavement 

condition as outliers and, consequently, such observations were removed from the dataset 

primarily because historical PM data were absent or insufficient. Some PM treatments, however, 

are used to maintain pavement surfaces at their current condition, making it difficult to identify 

and/or remove such observations. Hence, data used in prior studies are skewed and less reflective 

of reality, resulting in underspecified, erroneous and unreliable models suffering from the omitted 

variable bias. Moreover, although the validation process of most previous models shows their 

highly accurate predictability for pavement condition, these models have used out-of-sample data 

that are part of the data cleaned from observations of improved pavement condition. Therefore, 

prior models are expected to be less accurate when the validation is performed using data 

containing observations of improved pavement condition. The current study contributes to the 

body of knowledge by introducing a hybrid approach to incorporate the effect of PM into 

probabilistic pavement performance models when historical PM data are absent or insufficient. In 

such cases, the observations of improved pavement condition were not deleted, but rather the types 

and times of PM treatments that probably associate with these observations were investigated using 

three complementary methods: literature search, survey of STAs to collect data on pavement 

condition and PM, and detection of PM times from probabilistic pavement performance curves. 
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This study indicated that three PM treatments: micro-surfacing, UTBWC and thin HMA overlay 

are statistically significant for pavement condition prediction, along with variables such as traffic 

and climate loadings. This, in turn, eliminates the omitted variable bias, as well as improves 

models’ predictability when cross-validated with data containing observations of improved 

pavement condition. 

 

Previous research (Thomas and Sobanjo 2012; Abaza 2016a, 2017a) highlighted the need to assess 

the predictive accuracy of different Markov models based on the estimation of the transition 

probability matrix (a key component of Markov models). Nevertheless, the influence of the 

number of condition states (NCS) and length of duty cycle (LDC) (key components of Markov 

models as well) were not investigated. Hence, this research explored the statistical significance of 

the NCS and LDC on the performance of Markov modeling techniques based on their predictive 

accuracy. This dissertation introduced two new design parameters (NCS and LDC) for Markov 

chain models for pavement infrastructure. In addition, this study used a consistent set of pavement 

condition data (for interstate flexible pavements collected from the LTPP database) to avoid the 

potential bias associated with comparing different statistical models across different data sets. The 

findings of this research are of paramount importance for future relevant research as it adds new 

design parameters to the design and development of Markov models for pavement condition 

prediction. 

 

In addition, this research contributes to the body of knowledge by proposing three approaches to 

overcome the computational complexity of stochastic MOGA models for network-level pavement 

PM schedule. These three approaches are (1) using PM treatments that are most widely used by 

STAs, (2) clustering pavement sections into 7 groups based on their ages, and (3) creating a 

filtering constraint that forces the stochastic MOGA searches to assign zero value (Do Nothing 

decision) during a rest period (specified as 3 years in this study) following PM treatment 

applications. These three approaches assisted in investigating the effect of the uncertainty of 

pavement condition deterioration and improvement on the global optimal PM schedule, the 

expected overall lifecycle maintenance costs and the corresponding total deterioration of pavement 

network. 
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6.4.2. Contributions to the Body of Practice 

This dissertation has also made significant contributions to the body of practice. It developed a 

decision tree, which could be used by highway agencies to choose the appropriate Markov 

methodology and TPM estimation method for modeling the deterioration of their pavements under 

the data availability condition. 

 

Highway agencies are working to maintain their pavements in a state of good condition by 

developing and implementing effective PM strategies. Still, they are challenged by the collection 

and management of PM data mainly due to limited resources. As a result, Departments of 

Transportation such as Indiana (Gulen et al. 2001) and Arizona (Zaghloul et al. 2006) have built 

and used pavement performance models that do not account for the impact of PM treatments, 

despite their prominent influence on pavement condition, due to the absence or insufficiency of 

historical PM data. Such models, which do not reflect the correct evolution of pavement condition, 

would lead to erroneous prediction of pavement condition and remaining service life, and could 

ultimately result in non-optimal and less cost-effective M&R decisions. The current research 

contributes to the body of practice by providing highway agencies with a hybrid approach to 

improve their pavement performance models by considering the significance of PM when 

historical PM data are not available or insufficient. The proposed hybrid approach helps highway 

agencies develop probabilistic pavement performance models that account for the impact of PM, 

given their limited funding for data collection and management. Although this study makes a 

significant contribution to highway agencies that either have limited PM data or lack historical PM 

data, it can also contribute to the agencies that have sufficient historical PM data. Such agencies 

can use the proposed hybrid approach along with their current PM data, and modify the initial 

times for PM treatments in the model based on the actual application times of PM treatments. Also, 

pavement performance models A, B and C can be assessed and adjusted on the basis of their 

validation with the actual historical PM data. As a result, these agencies may collect future PM 

data only to validate and improve the approach and pavement performance models, thereby 

decreasing the frequency of future PM data collection, which, in turn, would reduce the costs of 

data collection, storage and management. 
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Highway agencies use their specific or the typical pavement condition indicators that may be 

discrete (e.g., present serviceability rating (PSR): 0-5) or continuous (e.g., IRI: greater than 0) such 

as those used in the states of Ohio and Minnesota, respectively. To develop Markov models, 

highway agencies use the same discrete indicators or the discretized form of the continuous 

indicators as the condition states without considering the effect of the NCS on the prediction 

accuracy of Markovian pavement performance models. Moreover, highway agencies tend to 

assume that the LDC is the frequency of data collection, typically 1 year, or the frequency of data 

available for model development. The current research indicates that the NCS in Markovian 

pavement performance models has significant influence on the accuracy of pavement condition 

prediction. Additionally, this study reveals that for a specific NCS, for instance 4 states, even 

though pavement condition data may be available every year, using pavement condition data every 

two years could yield more accurate predictions. These findings can help highway agencies relate 

the frequency of data collection, the pavement condition indicators that represent the NCS and the 

prediction accuracy of pavement performance models. This new relationship could contribute to 

potential cost savings in data collection and management, as well as to improving the prediction 

accuracy of pavement condition, which in turn will improve the decision-making of M&R 

interventions. 

 

Furthermore, this research contributes to the body of practice by developing stochastic MOGA 

models to schedule pavement PM at the network level. These models consider the uncertainties of 

budget constraint and pavement condition deterioration and improvement, so that decision-makers 

(risk-averse or risk-taking) can have more tools and information to plan their maintenance 

interventions according to their level of risk/uncertainty. By considering the uncertainties of these 

decision variables, decision-makers will be able to choose their optimal solutions to ensure that 

future condition of pavement network meets the required standards with a probability of 95%. 

 Recommendations for Future Research 

To overcome the limitations of this study, future research may investigate the applicability of the 

current research to other types of pavement surfaces and different functional classes, and/or using 

data from other states across the U.S. Different functional classes and pavement surface types can 

be considered to investigate whether the uncertainty of pavement condition deterioration and 
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improvement could affect PM schedules and/or probabilistic pavement performance. The 

proposed hybrid approach and developed pavement performance models should use pavement 

condition data collected from a single state to reduce data variation. If highway agencies do not 

have sufficient amount of data to use with the proposed hybrid approach, they may incorporate 

data from other highway agencies that adopt similar standards and specifications and are located 

in similar climatic zones. Future research should also account for the potential unobserved 

heterogeneity arising from the inconsideration of all influential variables, by using random 

parameters regression models to test for the randomness of the parameters of the developed 

ordered-probit models. Besides, future research may carry out a spatial transferability test to 

account for the possible heterogeneity resulting from the use of data from different locations/states. 

 

Furthermore, future research may investigate the use of pavement condition indicators, such as 

PCI, PSI, rutting and crack index, either individually or in combination, for the application of the 

current research to account for the STAs that use condition indicators other than the IRI. Also, 

some of the respondents to Survey 1 stated that they use criteria other than the worst-first to 

optimize pavement maintenance interventions. Thus, future research could use maintenance 

decision criteria such as cost-effectiveness and traffic volume to perform the data simulation 

required in the proposed hybrid approach developed to account for the PM impacts in probabilistic 

pavement performance models. Survey 1 may be deployed again to the STAs that have not 

responded to collect more data about the types and timings of pavement PM so that every possible 

maintenance intervention is considered in the application of the hybrid approach and the stochastic 

MOGA models. Due to the lack of data on pavement preventive maintenance, the proposed hybrid 

approach and the non-homogeneous Markov model were validated through surveys of SMEs 

(Surveys 2 and 3) to gauge the practicality of the results in terms of the probabilistic pavement 

performance curves and marginal effects of the explanatory variables. Nevertheless, future 

research may further validate the approach and non-homogenous Markov model using actual 

historical PM data from one or more state DOTs when PM data are accessible. 

 

The significance of more explanatory variables on probabilistic pavement performance should be 

explored when more pavement condition data are accessible. The consideration of all potentially 

influential variables (e.g., pavement layer thickness, modulus of subgrade and construction 
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quality) contributes to eliminating the omitted-variable bias, otherwise ordered-probit models with 

random parameters should be developed to reduce this bias. To avoid the assumption of normal 

distribution in the ordered-probit method, other modeling techniques such as artificial neural 

networks (ANNs) may be used to apply the proposed hybrid approach and develop probabilistic 

pavement performance models that incorporate PM impacts. 

 

In addition, researchers can explore the significance of additional combinations of NCS and LDC 

that may shed more light on the conclusions reached in this dissertation regarding the selection of 

appropriate Markovian methodologies and pavement condition prediction accuracy. Future 

research may also investigate the use of the expected-value method (more reliable than the 

percentage transition) to estimate the transition probabilities of pavement condition used in the 

comparative analysis of Markovian techniques. Moreover, the duration modeling method could be 

explored to estimate the holding times of semi-Markov models, and to account for the influence 

of explanatory variables on the estimated holding times, as this might help produce more reliable 

predictions for pavement condition. The current research investigated the prediction accuracy of 

pavement condition using different Markovian methodologies (homogeneous, staged-

homogeneous and semi-Markov) based on the values of the performance measures: MAPE and 

RMSE. Nevertheless, future work can further compare the prediction accuracy of pavement 

condition using these Markovian methodologies by evaluating pavement performance curves 

developed using these methodologies. Regarding the stochastic MOGA optimization models, 

future research is recommended to create more pavement groups (more than the 7 groups used in 

this study) to capture more detail in pavement deterioration and improvement. It is also 

recommended that the rest period be estimated as the service life of each PM treatment (with a 

minimum time equal to the warranty period of that treatment) and then used in the development 

of stochastic MOGA models. The values of the MOGA parameters were determined by performing 

a sensitivity analysis that takes a large number of iterations and may result in a set of parameters 

that are not associated with the best fitness functions (minimum network deterioration and 

maintenance costs). Other approaches, such as hyper-heuristic or adaptive parameters, may 

therefore be used in future research to automatically tune MOGA parameters. 
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APPENDIX 

A.1. Questionnaire Survey 1 

Preventive Maintenance of Pavements 

I am Mohamed Yamany, a Ph.D. candidate in the Lyles School of Civil Engineering, Purdue 

University. For my doctoral studies, I am analyzing the effect of preventive maintenance on 

pavement condition. This survey aims at collecting data of the preventive maintenance 

treatments implemented on Interstate Asphalt Pavements. 

  

 Thank you for participating in this survey. 

 

 

Q1. Name of State Transportation Agency (STA): 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 
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Q2. Please enter each preventive maintenance treatment used by your agency for Interstate Flexible Pavements, and at what pavement 

ages (from 1 to 35) each treatment is implemented. 

Treatme
nts 

Pavement Age in years 

1  2  3  4  5  6  7  8  9  
1

0 

1

1  

1

2  

1

3  

1

4  

1

5  

1

6  

1

7  

1

8  

1

9  

2

0  

2

1  

2

2  

2

3 

2

4 

2

5 

2

6 

2

7 

2

8 

2

9 

3

0 

3

1 

3

2 

3

3 

3

4 

3

5 

1: 

▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  

2: 

▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  

3: 

▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  

4: 

▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  

5: 

▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  

6: 

▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  ▢  
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Q3. What are the criteria for the choice of preventive maintenance treatments and their timings? 

Please list each criterion (e.g., cost, effectiveness, worst first, etc.) and its score from 1 to 5; where 

1 represents the least important criterion and 5 is the most important criterion? 

Criteria 
Score 

1 2 3 4 5 

1:  
     

2: 
     

3:  
     

4: 
     

5 : 
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Q4. Which pavement condition indicator does your agency use? 

Y/N Pavement Condition Indicator 

 IRI 

 PCI   

 PSI 

 Other, please enter__________________________________________ 
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Q5. Based on the chosen condition indicator, how much improvement in pavement condition do 

you think would occur (a) immediately (within 1 year) after implementing the treatment, and (b) 

over the pavement lifetime? For example, crack sealing is typically expected to decrease pavement 

IRI by 5 in/mile or 5% immediately after treatment implementation and decrease the rate of 

deterioration over pavement lifetime by 10%. 

Treatments 

How much improvement (value or % of improvement)? 

Immediate improvement 
Over pavement lifetime 

improvement 

1:  
  

2: 
  

3: 
  

4: 
  

5: 
  

6: 
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Q6. What is the cost per lane mile of each treatment for agency? 

Treatments Cost $ per lane mile 

1:   

2:  

3:  

4:  

5:  

6:  
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Q7. On average, what is the production rate of implementing each treatment? 

 

Treatments Linear or square foot per day (approximate) 

1:   

2:  

3:  

4:  

5:  

6:  
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Q8. If you are interested in engaging further with the researcher on this study and for receiving a 

copy of the final results, please fill in the following information. 

Name: 

________________________________________________________________ 

State Transportation Agency (STA): 

________________________________________________________________ 

Role in STA: 

________________________________________________________________ 

 

Postal Address: 

________________________________________________________________ 

Email Address: 

________________________________________________________________ 

Phone Number: 

________________________________________________________________ 
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A.2. Questionnaire Survey 2 

Prediction of Pavement Condition  

Validation by Subject Matter Experts 

This research aims at predicting pavement condition when the impact of preventive maintenance 

is considered in pavement condition prediction models.  

 

Data for the period 1989 to 2016 were retrieved from the Long-Term Pavement Performance 

(LTPP) for: 

• Road/pavement group: Flexible (black-topped roads that include asphalt and composite) 

Interstate roads 

• Location: Midwestern states (Indiana, Illinois, Wisconsin, Michigan, Ohio, Minnesota, 

Iowa and Missouri) 

• Pavement condition is expressed in the International Roughness Index (IRI, in/mi.) 

The range of the IRI values is:  

• From less than 60 in/mi. as a newly constructed pavement 

• To more than 100 in/mi.  

Pavement condition was categorized into 5 states based on the value of the IRI: 

• State 1 if IRI is less than or equal to 60 in/mi. 

• State 2 if IRI is greater than 60 in/mi. or less than or equal to 70 in/mi. 

• State 3 if IRI is greater than 70 in/mi. or less than or equal to 80 in/mi. 

• State 4 if IRI is greater than 80 in/mi. or less than or equal to 100 in/mi. 

• State 5 if IRI is greater than 100 in/mi. 

 

Past research studies related to pavement condition prediction have a common assumption: 

pavement condition deteriorates over pavement age and does not improve, i.e., they do not 

consider the effect of preventive maintenance treatments. My research study relaxes the common 

assumption of past research studies by considering the impact of preventive maintenance in 

pavement condition prediction model. 
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Through my research study, I was able to develop a research framework to estimate the actual 

times and types of preventive maintenance treatments that could have been implemented to 

pavement surfaces. Also, this research framework was built to incorporate the estimated times and 

types of preventive maintenance treatments with the typical pavement condition data (pavement 

condition indicator (IRI), traffic and climate factors). Finally, I developed a pavement condition 

prediction model that considers the effect of preventive maintenance on pavement performance.  

 

To validate my developed model, I developed another model based on the aforementioned 

common assumption of past research studies, and then compared its results with that of my model. 

 

The following pages contain graphs (Figures 1 - 5), each one displays the probability of pavement 

being in a specific condition at a particular pavement age. These graphs were developed under the 

following assumptions: 

(1) Annual Average Freezing Index (representing the climate condition effect) = 772 °F days, 

which is the mean value obtained from the collected data, 

(2) Annual Average Daily Truck Traffic (representing the traffic loading effect) = 2169 trucks, 

which is the mean value obtained from the collect data, 

(3) Truck growth rate is assumed to be 2.8%, 

(4) Application of micro-surfacing at any year from pavement age of 4 to 10 year with a probability 

distribution calculated from the developed research framework, 

(5) Application of Ultra-Thin Bonded Wearing Course (UTBWC) at any year from pavement age 

of 11 to 15 year with a probability distribution calculated from the developed research framework, 

and 

(6) Application of HMA thin overlay at any year from pavement age of 16 to 20 year with a 

probability distribution calculated from the developed research framework 

 

Please review Figures 1 to 5 (probability curves) and give comments as requested. 
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Pavements in state 1 (IRI ≤ 60 in/mi.) 

The probability curve represents the likelihood of pavement being in state 1 (IRI ≤ 60 in/mi.) over 

its life. My study indicates that at 35 years the pavement is expected to be in poor condition). 

 

There are two curves: the green curve (S1c) represents the probabilities resulting from my research 

study, while the black dashed curve (S1p) represents the probabilities resulting from past research 

studies. 

 

Figure A.2.1. Probability curves of pavements being in condition state 1 

The probability curve reads as follows: at pavement age of zero (right after construction or major 

rehabilitation), there is about 38% of probability that the pavement IRI is less than or equal to 60 

in/mi (see point A). At the age of 8 years there is a zero probability that the pavement IRI is less 

than or equal to 60 in/mi. (see point B). 

Since both curves (green and black dashed) are similar, do you agree with their decreasing trend? 

 Yes – Please provide reason 

 

 No – Please provide reason 
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Do you agree with the values of the probabilities shown in Figure 1?  

 Yes – Please provide reason 

 

 No – Please provide reason 
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Pavements in State 2 (60<IRI ≤ 70 in/mi.) 

The probability curve represents the likelihood of pavement being in state 2 (60<IRI ≤ 70 in/mi.) 

over its age (from 0 to 35 years). 

 

There are two curves in Figure 2: the green curve (S2c) represents the probabilities resulting from 

my research study, while the black dashed curve (S2p) represents the probabilities resulting from 

past research studies. 

 

Figure A.2.2. Probability curves of pavements being in condition state 2 

Note: The probability here is the likelihood of pavement IRI ranges from 60 to 70 in/mi. over 

time. 

Both probability curves (green and black dashed) have similar trends from zero to 6 years, but 

after the age of 6 years the black dashed curve keeps going down with a specific rate while the 

green curve trend can be described as follows: 

• The probability decreases with different rates from the age of 6 to 12 years due to effect of 

the expected application of preventive maintenance treatments such as micro-surfacing or 

UTBWC. 
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• The probability begins to increase back again at the age of 17 years due to the effect of the 

expected application of preventive maintenance treatments such as HMA thin overlay. 

• The probability is about 35% at the age of 20 years when preventive maintenance 

treatments such as HMA thin overlay is most likely implemented.    

 

On a scale from 0 to 3; where 0 refers to “strongly disagree” or “never seen in practice”, 1 being 

“disagree”, 2 being “agree”, and 3 “being strongly agree” or “most similar to practice”, to what 

extent do you agree with the trends of the green and black-dashed curves over the intervals (A, B, 

C, D, and E) of pavement age shown in Figure 2? 

Intervals (years) A (0-6) B (6-12) C (12-17) D (17-20) E (20-25) 

Green Curve      

Black-dashed Curve      

Comments: 
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Pavements in State 3 (70<IRI ≤ 80 in/mi.) 

The probability curve represents the likelihood of pavement being in state 3 (70<IRI ≤ 80 in/mi.) 

over its age (from 0 to 35 years). 

 

There are two curves in Figure 3: the green curve (S3c) represents the probabilities resulting from 

my research study, while the black dashed curve (S3p) represents the probabilities resulting from 

past research studies. 

 

Figure A.2.3. Probability curves of pavements being in condition state 3 

On a scale from 0 to 3; where 0 being “strongly disagree” or “never seen in practice”, 1 being 

“disagree”, 2 “being agree”, and 3 being “strongly agree” or “most similar to practice”, to what 

extent do you agree with the trends of the green and black-dashed curves over the intervals (A, B, 

C, D, and E) of pavement age shown in Figure 3? 

Intervals (years) A (0-7) B (7-16) C (16-18) D (18-21) E (21-28) 

Green Curve      

Black-dashed Curve      

Comments: 
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Pavements in State 4 (80<IRI ≤ 100 in/mi.) 

The probability curve represents the likelihood of pavement being in state 4 (80<IRI ≤ 100 in/mi.) 

over its age (from 0 to 35 years). 

 

There are two curves in Figure A. 2. 4: the green curve (S4c) represents the probabilities resulting 

from my research study, while the black dashed curve (S4p) represents the probabilities resulting 

from past research studies. 

 

Figure A.2.4. Probability curves of pavements being in condition state 4 

On a scale from 0 to 3; where 0 being “strongly disagree” or “never seen in practice”, 1 being 

“disagree”, 2 being “agree”, and 3 being “strongly agree” or “most similar to practice”, to what 

extent you are agree with the trends of the green and black-dashed curves over the intervals (A, B, 

C, D, E, and F) of pavement age shown in Figure 4? 

Intervals (years) A (0-13) B (13-16) C (16-19) D (19-22) E (22-25) F (25-32) 

Green Curve       

Black-dashed Curve       

Comments: 
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Pavements in State 5 (IRI > 100 in/mi.) 

The probability curve represents the likelihood of pavement being in state 5 (IRI > 100 in/mi.) 

over its age (from 0 to 35 years). 

 

There are two curves in Figure 5: the green curve (S5c) represents the probabilities resulting from 

my research study, while the black dashed curve (S5p) represents the probabilities resulting from 

past research studies. 

 

Figure A.2.5. Probability curves of pavements being in condition state 5 

On a scale from 0 to 3; where 0 being “strongly disagree” or “never seen in practice”, 1 being 

“disagree”, 2 being “agree”, and 3 being “strongly agree” or “most similar to practice”, to what 

extent do you agree with the trends of the green and black-dashed curves over the intervals (A, B 

and C) of pavement age shown in Figure? 

Intervals (years) A (0-10) B (10-22) C (22-32) 

Green Curve    

Black-dashed Curve    

Comments:  
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A.3. Questionnaire Survey 3 

The Effect of Traffic Load on Pavement Condition 

Pavement condition is expressed in the International Roughness Index (IRI, in/mi.). 

Traffic load is expressed in the Annual Average Daily Truck Traffic (AADTT). 

 

Figure 1 shows the effect of the cumulative AADTT (annual average daily truck multiplied by 

pavement age) on the probability of pavement being in any condition state such as state 1 (IRI less 

than 60 in/mi.). It shows the effect of increasing the cumulative AADTT by 10,000, which is 

equivalent to approximately 5 years of 2000 trucks per year. 

 

Figure A.3.1. Change in the probability of pavements in any state due to an increase in AADTT 

Figure 1 shows that increasing the cumulative AADTT by 10,000 could cause the following: 

• Decrease in the probability that pavement IRI is less than 60 in/mi by about 1% 

• Decrease in the probability that pavement IRI ranges from 60 to 70 in/mi by about 22% 

• Increases in the probability that pavement IRI ranges from 70 to 80 in/mi. by about 7% 

• Increase in the probability that pavement IRI ranges from 80 to 100 by 17% 

On a scale from 0 to 3; 0 being “strongly disagree” or “never seen in practice”, 1 being “disagree”, 

2 being “agree”, and 3 being “strongly agree” or “most similar to practice”, to what extent do you 

agree with the effect of cumulative AADTT on each state of pavement condition?  
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Condition state  Effect Score 

(0-3) 

Comment 

IRI ≤ 60in/mi -1%   

60<IRI ≤ 70in/mi -22%   

70<IRI ≤ 80in/mi +7%   

80<IRI ≤ 100in/mi +17%   

IRI > 100in/mi +   

 

The Effect of Weather Condition on Pavement Condition 

Weather condition is expressed in the Annual Average Freezing Index (AAFI), °F days. AAFI is 

the cumulative number of degree-days below 32 °F during the year. 

 

Figure 2 shows the difference in the probability of pavement being in each condition state between 

pavements in two regions of different AAFI, e.g., Minnesota and Indiana. The average AAFI 

values in 2017 were found to be: 1387 (°F days) in Minnesota, and 232 (°F days) in Indiana. So, 

the difference in the AAFI between these two states is about 1000 (°F days). Figure 2 shows the 

effect of 5,000 cumulative AAFI (5 years of 1000 (°F days) difference in AAFI) on the probability 

of pavement in any condition state. 

 

Figure A.3.2 Change in the probability of pavements in any state due to change in AAFI 
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For instance, Figure 2 indicates that after 5 years of 1000 (°F days) difference in the AAFI between 

two regions, the probability of pavements in the colder region having an IRI of 60 to 70in/mi. (i.e., 

being in State 1) is 22% less than that in the warmer region. 

 

On a scale from 0 to 3; 0 being “strongly disagree” or “never seen in practice”, 1 being disagree, 

2 being “agree”, and 3 being “strongly agree” or “most similar to practice” , to what extent do you 

agree with the effect of the cumulative AAFI on each state of pavement condition?  

Condition state  Effect Score 

(0-3) 

Comment 

IRI ≤ 60in/mi -1%   

60<IRI ≤ 70in/mi -22%   

70<IRI ≤ 80in/mi +7%   

80<IRI ≤ 100in/mi +16%   

IRI > 100in/mi +   
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The Effect of Micro-surfacing Application on Pavement Condition 

Figure 3 shows the effect of applying micro-surfacing to pavement surface on the probability of 

pavement being in any condition state such as state 1 (IRI less than 60 in/mi).  

 

Figure A.3.3. Change in the probability of pavements in any state due to micro-surfacing 

application 

On a scale from 0 to 3; 0 being “strongly disagree” or “never seen in practice”, 1 being “disagree”, 

2 being “agree”, and 3 being “strongly agree” or “most similar to practice”, to what extent do you 

agree with the effect of applying micro-surfacing on each state of pavement condition?  

Condition state  Effect Score 

(0-3) 

Comment 

IRI ≤ 60in/mi +5%   

60<IRI ≤ 70in/mi +30%   

70<IRI ≤ 80in/mi -22%   

80<IRI ≤ 100in/mi -12%   

IRI > 100in/mi -   
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The Effect of Ultra-Thin Bonded Wearing Course Application on Pavement 

Condition 

Figure 4 shows the effect of applying ultra-thin bonded wearing course (UTBWC) to pavement 

surface on the probability of pavement being in any condition state such as state 1 (IRI less than 

60 in/mi.). 

 

Figure A.3.4. Change in the probability of pavements in any state due to UTBWC application 

On a scale from 0 to 3; 0 being “strongly disagree” or “never seen in practice”, 1 being “disagree”, 

2 being “agree”, and 3 being “strongly agree” or “most similar to practice, to what extent do you 

agree with the effect of applying ultra-thin bonded wearing course on each state of pavement 

condition?  

Condition state  Effect Score 

(0-3) 

Comment 

IRI ≤ 60in/mi +6%   

60<IRI ≤ 70in/mi +31%   

70<IRI ≤ 80in/mi -25%   

80<IRI ≤ 100in/mi -12%   

IRI > 100in/mi -   
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The Effect of HMA Thin Overlay Application on Pavement Condition 

Figure 5 shows the effect of applying HMA thin overlay to pavement surface on the probability of 

pavement being in any condition state such as state 1 (IRI less than 60 in/mi).  

 

Figure A.3.5. Change in the probability of pavements in any state due to thin overlay application 

On a scale from 0 to 3; 0 being “strongly disagree” or “never seen in practice”, 1 being disagree, 

2 being “agree”, and 3 being “strongly agree” or “most similar to practice”, to what extent do you 

agree with the effect of applying HMA thin overlay on each state of pavement condition?  

Condition state  Effect Score 

(0-3) 

Comment 

IRI ≤ 60in/mi +95%   

60<IRI ≤ 70in/mi -17%   

70<IRI ≤ 80in/mi -63%   

80<IRI ≤ 100in/mi -15%   

IRI > 100in/mi -   
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