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ABSTRACT 

Maize (Zea mays L.) is one of the most important crops worldwide for its critical 

importance in agriculture, economic stability, and food security. Many agricultural research and 

commercial breeding programs target the efficiency of this crop, seeking to increase productivity 

with fewer inputs and becoming more environmentally sustainable and resistant to impacts of 

climate and other external factors. For the purpose of analyzing the performance of the new 

varieties and management strategies, accurate and constant monitoring is crucial and yet, still 

performed mostly manually, becoming labor-intensive, time-consuming, and costly.  

Flowering is one of the most important stages for maize, and many other grain crops, 

requiring close attention during this period. Any physical or biological negative impact in the tassel, 

as a reproductive organ, can have significant consequences to the overall grain development, 

resulting in production losses. Remote sensing observation technologies are currently seeking to 

close the gap in phenotyping in monitoring the development of the plants’ geometric structure and 

chemistry-related responses over the growth and reproductive cycle. 

For this thesis, remotely sensed hyperspectral imagery were collected, processed and, 

explored to detect tassels in maize crops. The data were acquired in both a controlled facility using 

an imaging conveyor, and from the fields using a PhenoRover (wheel-based platform) and a low 

altitude UAV. Two pixel-based classification experiments were performed on the original 

hyperspectral imagery (HSI) using Spectral Angle Mapper (SAM) and Support Vector Machine 

(SVM) supervised classifiers. Feature reduction methods, including Principal Component 

Analysis (PCA), Locally Linear Embedding (LLE), and Isometric Feature Mapping (Isomap) were 

also investigated, both to identify features for annotating the reference data and in conjunction 

with classification. 

Collecting the data from different systems allowed the identification of strengths and 

weaknesses for each system and the associated tradeoffs. The controlled facility allowed stable 

lighting and very high spatial and spectral resolution, although it lacks on supplying information 

about the plants’ interactions in field conditions. Contrarily, the in-field data from the PhenoRover 

and the UAV exposed the complications related to the plant’s density within the plots and the 

variability in the lighting conditions due to long times of data collection required. The experiments 

implemented in this study successfully classified pixels as tassels for all images, performing better 
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with higher spatial resolution and in the controlled environment. For the SAM experiment, 

nonlinear feature extraction via Isomap was necessary to achieve good results, although at a 

significant computational expense. Dimension reduction did not improve results for the SVM 

classifier.  
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 INTRODUCTION 

Concerns about food security have become a major challenge for agricultural production 

around the world. As a result, the United Nations has declared it as one of the 17 Sustainable 

Development Goals [1]. In order to address the challenge of ensuring sustainable food production, 

plant scientists have focused on production strategies such as Site-Specific Management (SSM), 

Precision Agriculture (PA), and plant breeding. These strategies have doubled the productivity and 

are more environmentally friendly, producing more with fewer inputs [2]. 

Precision agriculture and Site-Specific Management use information from technology to 

monitor the outcomes, while contributing to a long-term sustainable production [2]. Plant scientists 

and researchers from different disciplines have studied and integrated the use of multiple 

technologies and devices for agricultural purposes and benefits. For example, the inclusion of 

global positioning systems GPS-GNSS, passive and active remote sensing technologies with high 

spatial and spectral resolution, and computational algorithms are being adopted both for 

experimental and production agriculture. 

Moreover, plant breeders are actively using DNA sequencing that reduces the cost of 

genotyping in crop development [3]. To analyze the genetic connection with the performance of 

each variety, hundreds of field trials must be conducted in real-world environments, and key traits 

must be measured in different locations and at different times [4]. This field-based phenotyping 

adds many man-hours that could potentially be replaced by data acquired from remote sensing 

platforms with the ability to deliver the necessary throughput for large scale experiments.  

The study of plant development and phenotyping has primarily focused attention toward 

certain attributes that influence final yield. For maize, and many other grains crops, flowering is 

one of the most important stages as it initiates the stage of reproduction. Any external stress, 

physical or biological, can cause plant damage and result in production losses. Traditional ways to 

monitor tasseling in maize are often subjective, time consuming, labor-intensive, and expensive. 

Additionally, estimating flowering time using calendar days may have disadvantages caused by 

environmental conditions. Due to the reduction of the personnel cost and availability of high 

spatial-spectral resolution imagery that can increase area coverage, monitoring flowering and 

tassel development via remote sensing is of increasing interest in agriculture, and is the focus of 

this study.  
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The main objective of this research is to evaluate whether the additional spectral 

information in hyperspectral data provide useful information for detecting tasseling. To achieve 

this goal, hyperspectral imagery was acquired in a controlled facility and in field conditions by a 

wheeled-based vehicle and a low altitude UAV. The exploration of the data includes different 

dimension reduction approaches, and Support Vector Machine (SVM) and Spectral Angle Mapper 

(SAM) as pixel-based classifiers. 

The thesis is organized as follows: 

Chapter 2 provides a review of the literature related to candidate remote sensing 

technologies, an overview of the phenology of maize, and the approaches that have been explored 

for tassel detection in maize and headed grains. Additionally, related work on classification and 

flowering detection on maize and other similar grains is reviewed. 

Chapter 3 describes the experimental design used for acquiring, processing, and analyzing 

the data in this study.  

Chapter 4 includes experimental results from datasets acquired by the Purdue TERRA team 

to evaluate the feasibility of the proposed approach. 

Chapter 5 contains an overall evaluation of the research results, concluding remarks, and 

discussion of future work.  

  



 

 

16 

 LITERATURE REVIEW AND BACKGROUND  

This chapter provides background material related to remote sensing in agriculture, and 

particularly the use of hyperspectral imagery for image classification. A review of the life cycle of 

maize explains the importance of tasseling related to the final yield. Additionally, this chapter 

includes the foundations of the methodology that was used to conduct the data analysis in this 

research. 

2.1 Remote Sensing for Vegetation Monitoring in Agriculture 

Remote sensing involves the use of sensing technology to observe, collect data, and analyze 

information about an object, area or phenomenon of interest without being in contact with it [5]. 

The applications of optical remote sensing in agriculture rely on the basic phenomena in chemistry, 

physics, and biology, where the optical properties are related to morphological characteristics of 

the plants [1], identifying spectral features associated with plant growth conditions and stages, 

nutrient deficiency, pests and diseases, abiotic stress, and yield prediction [2], [6], [7]. Ground-

based measurements are combined with data collected from sensors mounted on vehicles, 

Unmanned Aerial Systems (UAS), manned airborne platforms or spaceborne platforms, pursuing 

non-destructive monitoring methods of plant growth and development. 

Spaceborne hyperspectral missions have been extremely limited, and the medium 

resolution imagery has been used primarily for land monitoring applications and agriculture. The 

Hyperion instrument on board on the Earth Observing-1 (EO-1) satellite, successfully acquired 

data for nearly two decades (2000-2017), collecting 220 bands with 10 nm spectral resolution and 

30 m spatial resolution. Spaceborne missions typically have a low revisit time, making it difficult 

for monitoring crops. For passive sensors in satellites, the problem is exacerbated by cloud cover 

over the area of interest at the time of the overflight. As hyperspectral cameras became more 

affordable, manned aircraft, helicopters and zeppelins are serving as platforms for hyperspectral 

data acquisition. They offer adjustable spectral and spatial resolution as well as flexibility with 

repetition of the data acquisition; this temporal flexibility to adjust for environmental conditions 

is advantageous relative to spaceborne imagery. AVIRIS (Airborne Visible/InfraRed Imaging 

Spectrometer), a NASA airborne hyperspectral sensor provide images with pixel size of 4m and 
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224 bands with spectral resolution of 10 nm with a range from 380 nm to 2500 nm. Hyperspectral 

data are also available commercially, although on a limited basis, by companies such as HyMap 

and SpecTIR. The complications for manned aircraft-based sensors rely on the technical 

preparation and specific personnel required for each mission, making it expensive and 

operationally complicated [8]. 

Both sensors and UAV platforms have radically improved agricultural monitoring in recent 

years, particularly for agricultural applications requiring high spatial, and spectral resolution data 

over limited areas, with acquisitions targeted for favorable weather in a cost-effective way 

compared with aircraft, or satellite systems [7]. The information that UAV remote sensing provides 

enables farmers and managers to identify the plants’ response to their local environment and make 

decisions for early detection, diagnosis and corrective actions of agricultural management 

problems [7]. The limitations for UAVs systems include payload size, power requirements, need 

for technical expertise for flight operations (particularly for advanced sensors), and large quantity 

of data to store, process, and analyze. 

Other methods for remote sensing used in agriculture include wheel-based systems, serving 

to capture data at plot scale exploiting more advanced global positioning systems (GPS), providing 

data with a very high spatial and spectral resolution. The challenges with these systems are related 

to a) the low platform speeds when acquiring the data, often making near simultaneous acquisitions 

of data over large fields impossible for plot comparisons, b) wet soils and soil compaction, and 

platform/sensor vibration due to the terrain [9]. 

With a goal of developing crops with high yield potential, heat and drought tolerance and 

disease resistance, plant scientists and breeders seek to identify the best genotypes (or the candidate 

genes) [2]. An effective and efficient variety can produce higher yields than others with the same 

quantity of agricultural inputs (water, nutrients, fertilizers, pesticides, etc.), is tolerant to changing 

environmental conditions, and is resistant to biotic and abiotic stressors [9]. Each variety needs to 

be proven in field conditions, evaluating the performance with field trials, and observing the 

physical characteristics of the plants as a function of the interactions of genetics, the environment, 

and management practices (GxExM), as represented in (2.1) [4], [10]. This critical component is 

referred to as phenotyping, which is typically performed manually, requires many man-hours of 

labor, resources, and often involves destructive sampling. Phenotyping methods have improved 
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very slowly over the years and are expensive, time consuming, and limited to subjective analysis 

[3], [10]. 

 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 × 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 × 𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = 𝑌𝑖𝑒𝑙𝑑 (2.1) 

Combining new platforms and sensors, remote sensing is playing a very important role in 

agriculture, providing the opportunity to monitor the development of the plants’ geometric 

structure and chemistry-related responses over the growth cycle. These physiological and spectral 

traits, captured as changes occurring when plants mature, experiencing modifications in their 

chemical, physical and biological aspects, are an expression of the genetic factors [11], [12]. 

Whether the platform is UAV or wheel-based, remote sensing is beginning to fill the gap between 

genotyping and phenotyping in plant breeding, providing researchers the opportunity to monitor 

edaphic factors and crop status while measuring the environment and phenotype reactions with a 

non-invasive solution and the requirement of high spatial, spectral and temporal resolution data at 

a low cost. 

2.1.1 Maize Phenology (life cycle) 

Maize (Zea mays L.) is one of the most important crops internationally for commercial 

applications, including food, animal feed, biodiesel and fibers, among other uses [13]. In the U.S., 

maize is the most widely produced feed grain with a planted area of 89.1 million acres reported in 

2018 [14]. Maize production is increasing at 1.6 % per year; this rate is insufficient for the 

projected required demand increase of 67 % needed by 2050 [11], unless changes can be made to 

accommodate environment or consumptions patterns. Research on this grain is critically important 

for agriculture, economic stability and food security on a global basis. 

Maize plants are C4 carbon fixation, monoecious (Greek for “one household”) grasses, 

meaning that they have separated male inflorescence (tassel) and female inflorescence (silk) on 

the same plant [15] (Figure 2.1). The tassel is located at the top of the main stem, with a central 

spike and 10 to 50 lateral spikelet flowers. Each spikelet contains a pair of glumes that contains 

two florets with 2-3 anthers, that after extrusion, shed the pollen necessary for reproduction. The 

silk is located in the middle of the stalk 
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Figure 2.1. Maize plant with tassel (male inflorescence) and ear with silks (female inflorescence). 

The maize growth is divided into the Vegetative Stage (VS) and Reproductive Stage (RS) 

(Figure 2.2). The VS starts when the plant is emerging from the soil surface and can continue for 

approximately 8 weeks (V1 to V16), ending when the tassel is fully developed (VT). At this point 

the plant has reached maximum height. The RS begins when silks are visible and pollination, when 

pollen grains contact the new moist silks (R1 to R6). The reproductive stage ends when the plants 

have reached physiological maturity and all the kernels have attained maximum dry weight. 
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Figure 2.2. Growth stages of maize. Reprinted from Staging Corn Growth - Field Facts written by Pioneer 

Agronomy Sciences. Retrieved on April 2020, from 

https://www.pioneer.com/us/agronomy/staging_corn_growth.html 

In the dynamics of plant growth and development, the emergence of the tassel (VT) 

changes the focus of the corn plant development, switching from vegetative to reproductive stage, 

redirecting the plant storage resources from growth to formation of the ear, which determines the 

grain production and weight at the end of the season [16]. At this stage of pollen shedding and 

silking, any physical or biological stress can cause more yield loss than at any other period in the 

crop’s maturity [16]. To achieve high yields on commercial corn, adequate pollen production is an 

essential prerequisite [17]. 

Tasseling, when the central spike of the tassel is completely visible, usually occurs two to 

three days before silking, when silks have not yet emerged from the ear shoot. Anthesis, when 50% 

of the tassel is shedding pollen, occurs when about 80% of the tassel is visible [18]. At this point, 

the plant has reached full height and the pollen shed begins when the tassel has fully emerged from 

the whorl. This process initiates one of the most important stages of the reproductive crop 

development, corn pollination, and is what ultimately creates the grain. Any negative impact to a 

corn plant at this time can have significant consequences to overall grain production.  

The number of flowers per plot is a relevant trait to measure in maize crops, as it is related 

directly to the final yield [17]. Current research on remote sensing for tassel detection exploits the 

high spatial resolution of RGB imagery using machine vision techniques, machine learning, and 

deep learning algorithms with data obtained in controlled facilities or laboratories [17]–[21]. 

Although very little research has been completed in the area of tassel detection for maize using 

https://www.pioneer.com/us/agronomy/staging_corn_growth.html
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hyperspectral imagery in field conditions, in part due to the extremely high resolution of imagery 

that is required, it could be advantageous to exploit the chemical and biophysical changes of the 

plant in natural conditions with different management practices.  

2.2 Hyperspectral Imaging (HSI) 

The electromagnetic energy incident on earth occurs across a wide range of wavelengths, 

including visible light, radio waves, heat, ultraviolet rays, and X-rays. The interaction of the 

electromagnetic energy with objects on the Earth’s surface involves absorption, occurring when 

radiation is absorbed into the target, transmission happening when radiation passes through the 

target, and reflection, when radiation is reflected from the target. Depending on the material and 

conditions of the target, the amount of energy absorbed, transmitted or reflected may be 

wavelength dependent. The spectral reflectance of an object as a function of wavelength is referred 

to as its spectral signature; the specific pattern of features reflected and absorbed provide insights 

chemistry-related to the characteristics of the object [5].  

Current hyperspectral imaging (HSI) sensors commonly capture data from the visible and 

near infrared (VNIR) and short-wave infrared (SWIR), covering the range of the spectrum from 

~400 nm to ~2500 nm with continuous and contiguous narrow bands (<10 nm) generating a data 

cube (Figure 2.3). The associated patterns of the spectral signatures provide capability to 

characterize materials and potentially distinguish land cover classes, vegetation state, and 

discriminate phenomena such as disease in agricultural classes, among others. 

 

Figure 2.3. Hyperspectral image data cube representing reflectance from the VNIR range of spectrum. 

Adapted from “A Spectral Imaging System for Detection of Botrytis in Greenhouses”, by Polder, Gerrit & 

Pekkeriet, Erik & Snikkers, Marco, Conference “Sustainable Agriculture through ICT Innovation”, Turin, Italy, 24-

27 June 2013 
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The reflectance of plants is determined by morphological and chemical characteristics of 

leaves or other organs varying with plant type, water content within tissues, and stage of growth. 

Remote sensing of vegetation is mainly achieved by obtaining the reflectance signature from 

canopies using passive sensors [22]. The visible reflectance of the leaves and canopies is 

contributed by the plant pigments, chlorophylls (a and b), carotenoids and anthocyanin [8]. As 

Figure 2.4 shows, the red edge and near-infrared reflectance signatures are a characteristic 

contribution by the chlorophyll strong absorption pattern and leaf internal scattering of radiant 

energy.  

 

Figure 2.4. Reflectance spectra of leaves from a senesced birch (Betula), ornamental beech (Fagus), and 

healthy and fully senesced maple (AcerLf, Acerlit) illustrating carotenoid (Car), anthocyanin (Anth), chlorophyll 

(Chl), water, and ligno-cellulose absorptions. Reprinted from Hyperspectral Indices and image Classifications for 

Agriculture and Vegetation, in Hyperspectral Remote Sensing of Vegetation, vol. II, CRC Press, 2019. By P. S. 

Thenkabail, J. G. Lyon and A. Huete [3] 

2.2.1 Feature Selection and Feature Extraction  

It is tempting to say that the large number of spectral features in HSI automatically leads 

to a greater classification accuracy when classifying data. Unfortunately, HSI data have a lower 

signal-to-noise ratio than broad band sensors, and many bands are highly correlated, providing 

redundant information, and potentially degrading the classification of the data [8]. This is referred 

to as the Hughes phenomenon and is of concern for parametric classifiers which typically require 

estimation of the covariance matrix of the bands. Hughes indicates the importance of having a 
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correct dimensionality of data and complexity for a model; therefore, an increased dimensionality 

over the optimum will decrease the classification accuracy [23]. 

Feature selection (FS) and feature extraction (FE) techniques have been proposed to 

manage the feature space, reduce the data dimensionality, and to extract more meaningful features 

of the original HSI, along with reduction in computational costs. The goal for FS methods is to 

reduce the original data dimensionality by selecting the ideal minimum subset of features. This is 

inherently a combinatorial optimization problem, and most typically involves development of a 

model where features are added and/or removed. Common approaches to feature selection include 

Jeffries–Matusita (J–M) distance, Bhattacharyya distance, Mutual Information (MI), and signal-

noise ratio [24].  

Alternatively, FE methods seek to transform and/or project the original feature space onto 

a new space with small number of features. In this process the original set is presented in a new 

compressed version [8], [25]. Feature extraction approaches include knowledge-based, such as 

vegetation indices, and statistical approaches that can be unsupervised (linear or nonlinear) or 

supervised (parametric or nonparametric) combinations of the original feature. Some of the most 

widely applied unsupervised techniques include linear methods such as principal component 

analysis (PCA), independent component analysis (ICA), minimum noise fraction (MNF), and 

nonlinear approaches including isometric feature mapping (ISOMAP), and locally linear 

embedding (LLE). Supervised FE techniques include, for example, linear discriminant analysis 

(LDA), local Fisher discriminant analysis, and nonparametric discriminant analysis (NDA) [24]. 

To manage the feature space and dimensionality reduction via FS and FE, the following 

methods are investigated for the tassel classification problem. 

2.2.1.1 Vegetation indices 

Valuable information can be extracted from the large number of wavelengths, by exploiting 

absorption features in the signature via ratios of band differences and sums. Vegetation indices 

(VI), which are widely used in agricultural studies, are usually divided into three categories: 

structure, biochemistry, and plant physiology [8]. The first category measures properties such as 

green biomass, leaf area index (LAI), senescence, and fractional cover. The second category 

provides information on water content, pigments, nitrogen compounds, lignin and cellulose; and 

the third category can be used to evaluate changes in pigments, chlorophyll content, fluorescence 
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and leaf moisture. The continuous spectrum and narrow bands offered by HSI enhance the 

capability to characterize biophysical and chemistry-based properties in a more efficient way than 

broad-band indices which can be derived from multispectral imagery, gaining interest in the plant 

sciences community for high-throughput phenotyping [3].  

A wide range of VIs have been created and are widely used for monitoring, analyzing and 

mapping temporal and spatial distributions of vegetation state, such as the normalized difference 

vegetation index (NDVI), used in [13] with a threshold of 0.1 as segmentation process to follow 

up the growth stages of cereal crops. Some VIs are proposed specifically to capture the 

photochemical processes associated with photosynthesis activity, such as light use efficiency or to 

estimate leaf pigment content [26], as for example the modified chlorophyll absorption in the 

reflectance index (MCARI) defined as shown in equation (2.2). 

 𝑴𝑪𝑨𝑹𝑰 =  [(𝑅700 − R670) − 0.2(R700 − 𝑅550)] (
𝑅700

𝑅670
) (2.2) 

The MCARI indicates the relative abundance of a chlorophyll feature, compensating for 

non-photosynthesizing materials by quantifying the depth of the absorption at 670 nm relative to 

the reflectance at 550 nm and 700 nm [27]. This index is a resourceful method of vegetation feature 

extraction from soil and other backgrounds. To relate tassel condition and pollen release during 

flowering season, [28] used VI from canopy reflectance measured with a spectroradiometer.  

2.2.1.2 Principal component analysis  

Principal Component Analysis (PCA) is one of the most widely used unsupervised methods 

for dimensionality reduction and feature extraction in high dimensional data. PCA transforms the 

data through an axis rotation, in the direction of maximum variance [29]. Successive PCs are the 

linear combinations of the variables with maximum variance, which are orthogonal to the 

previously computed components. The total variance is typically represented in a small number of 

components, which are selected as “extracted variables”. The principal components are the 

eigenvectors of the covariance matrix of the data, and the associated variance is represented in the 

corresponding eigenvalues. The PCA bands are orthogonal and have successively ordered 

variances. PCA is a global transformation, which does not accommodate unique patterns in 

individual classes, which may have local characteristics on a spectral neighborhood graph. 
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2.2.1.3 Isometric feature mapping 

Isometric feature mapping (Isomap), is a manifold based approach for nonlinear 

dimensionality reduction of a set of high-dimensional data points [30]. It attempts to recover a 

low-dimensional nonlinear embedding structure by determining the k nearest neighbors and 

computing the shortest path distance between pairs of nodes on a neighborhood graph using 

Dijkstra’s algorithm (Figure 2.5) [31]. 

 

Figure 2.5. Steps to implement Isomap algorithm, (A) Discrete representation of manifold. (B) Correlation 

between measured graph and true distances. (C) Correspondence of recovered two-dimensional feature points. 

Reprinted from: ‘Mapping a Manifold of Perceptual Observations," by J. B. Tenenbaum, 1998, Advances in Neural 

Information Processing Systems 10, MIT Press, pp. 682-688 [4] 

Global manifold methods seek to maintain the fidelity of the overall topology of the data 

set at multiple scales of the data [32]. Generally, Isomap is less susceptible to overfit the data, 

which can be beneficial for classification, but is computationally intensive and does not exploit 

relationships in local neighborhoods of the graph.  

2.2.1.4 Locally Linear Embedding 

In 2000, Roweis and Sau [33] proposed an unsupervised learning algorithm that computes 

low dimensionality, while preserving neighborhood embeddings and geometry of highly nonlinear 

dimensional data. The LLE algorithm, illustrated in Figure 2.6, first identifies 𝑘 nearest neighbors 

per data point 𝑖 measured by Euclidean distance, then computes the weights 𝑊𝑖𝑗 minimizing the 

cost function, and subsequently, constructs the low dimensional vector that represents the global 

internal coordinates on the manifold, preserving the angles and geometry of the data. Because the 

weights are invariant to translation in the vector space, it is computationally efficient requiring 

sparse matrix computations only. 
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Figure 2.6. Steps of a locally linear embedding: (1) Assigning neighbors to each data point, (2) Compute 

the weights that best lineally reconstruct the data point from its neighbors, (3) Compute the low-dimensional 

embedding vectors. Reprinted from: "Nonlinear Dimensionality Reduction by Locally Linear Embedding," by S. T. 

Roweis and L. K. Saul, Science, vol. 290, no. 5500, pp. 2323-2326, 2000 [5] 

2.3 Hyperspectral Image Classification 

In remote sensing, a wide range algorithms are used to classify data, extract useful 

information, and assign labels to images related with certain land cover. The methods seek to 

leverage specific phenomenon assuming a unique structure that can be represented by a spatial 

pattern, or spectral signature, that is consequently assigned to a class [24]. In agriculture, the 

reflectance information of the reflectance from canopies and leaves is measured using passive 

sensors [22]. 

Machine learning refers to a broad range of tools to manage and analyze data, providing 

answers to questions from predictions or inferences. In image classification, unsupervised 

approaches identify homogenous groups within the data set, while supervised classification 

algorithms learn from labeled data (training data), iteratively, to map classes with complex 

attributes [34]. 
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Detecting tassels in field conditions is difficult due to structure of the tassels, illumination, 

shadows, occlusion due to plant density, and differences in the background. Other applications for 

HSI classification are for crop and range management, weed science, plant pathology, and insect 

pest management. 

Within the broad methods to classify data in machine learning, supervised and 

unsupervised methods, parametric or non-parametric, pixel or object-based, the Support Vector 

Machine (SVM) nonparametric classifier has been widely utilized for supervised, nonparametric 

pixel-based classification of hyperspectral data. SVM classifiers were adopted for this exploratory 

study. 

2.3.1 Support Vector Machine – SVM 

Proposed by Cortes and Vapnik (1995), the Support Vector Machine (SVM) was designed 

to identify a linear boundary for two classes, or the best separating hyperplane between classes, 

learning from training data and accurately predicting unknown data. SVM has become one of the 

most widely used non-parametric classifier for hyperspectral data. 

To address the limitation of nonlinear separability, the use of the kernel trick has been implemented 

to transform the data onto a higher dimensional feature space [34], where the separation is linear. 

Common kernels used in remote sensing are polynomial kernels and the radial basis function (RBF) 

kernel.  

SVM was used successfully by [35] to perform object identification of tassels in RGB 

images taken in-field with stationary cameras, reporting precision a rate of 98% and recall rate of 

99%. The results are better when the tassels are fully developed, and the training samples are over 

10.000 images. 

More recently, [36] used an SVM classifier for image binarization to detect the cutting 

location for tassels in a natural canopy from a corn detasseling machine. The authors used color 

images and implemented morphological operations (shape and texture) to determine the potential 

tassel locations. They then implemented hierarchical clustering methods to merge multiple 

detections from the same tassel. 
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2.3.2 Spectral Angle Mapper – SAM  

Another supervised classification algorithm that compares a known spectral signature, as 

a vector equal to the number of bands, with the vector of each pixel in the image calculating the 

spectral angle as in equation (2.3) [37]. The spectral angle between the reference pixel and the 

candidate pixel are calculated. Using the direction of the vector (but not the length), SAM is 

effective in reducing illumination problems.  

 𝜶 = cos−1 ( 
𝑡 ∙ 𝑟

‖𝑡‖ ∙ ‖𝑟‖
) (2.3) 

where 𝑡 is the spectrum from the image and 𝑟 is the reference used for tassels.  

[38] experimented with a hyperspectral image of 64 bands in the VNIR and NIR region of 

the spectrum, classifying 4 classes, clear water, dense cloud, dense vegetation and fallow land. 

SAM was determined to be insensitive to changes in illumination and unknown gain factors.  

2.3.3 Other Methods  

In [18], the authors analyzed the VNIR reflectance of corn canopies to estimate tasseling 

and pollen shed stages, collecting the hyperspectral data with a spectrophotometer. They conclude 

that the canopy reflectance changes during tasseling occurs in the VNIR spectrum and can be 

detectable by the algorithms partial least squares (PLS), artificial neural networks (ANN) and 

operator-enabled genetic algorithms (ROE-GA). The authors also noted that a simple correlation 

analysis produced poor results. 

[20] presented an image-based phenotyping system to measure the tassel morphology 

(length, branch number, tassel area, tortuosity, compactness, fractal dimension, skeleton length, 

and perimeter length). The tassels were manually removed from the plants and images were 

collected in a photography box in controlled conditions. 

Corn tassel detection on image processing was presented in [39] with the goal of 

quantifying morphological features of maize tassels, such as tassel length, branch number, tassel 

area, tortuosity, compactness, fractal dimension, skeleton length, and perimeter length. The Tassel 

Image-based Phenotyping System (TIPS) imaged tassels inside a white box and computed the 

traits using a series of algorithms using the tassel image binarization provided using the HSI color 

space. Image segmentation was applied to extract morphological traits from the tassels, such as 
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length, spike length, and branch number. The correlation between the traits measured by images 

and manual measurements ranged from 0.66 to 0.89. 

While deep learning techniques are increasing in popularity and are now found more 

frequently in the remote sensing literature related to RGB imagery, classical machine learning 

approaches potentially provide important capability to derive insights related to tassel detection. 

To our knowledge, there have not been any studies to date that exploit the hyperspectral signature 

of the tassels imaged from wheeled vehicles or UAVs for in-field classification using machine 

learning algorithms. 
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 EXPERIMENTAL METHODOLOGY AND DESIGN 

This chapter describes the hyperspectral imagery selected for this study and the two 

platforms used to collect the data. Two experiments were included in the analysis, data from a 

controlled facility using plants grown in the greenhouse, and data from in-field conditions that 

were acquired with hyperspectral sensors mounted on a UAV and a converted sprayer platform 

with a custom boom, referred to as the PhenoRover. Additionally, the data pre-processing and the 

label selection using ENVI® 5.5 for ground truth is described. Python programing language using 

Spyder and Jupiter Notebook as integrated development environments (IDE), and a series of 

packages, including NumPy, Pandas, Matplotlib, Osgeo, Scipy, and Sklearn, were used to process 

the data, train, test, and evaluate the classification experiments.  

3.1 Hyperspectral Data Acquisition and Pre-Processing 

3.1.1 Controlled Facility Data 

Plants were grown in the Controlled Environment Phenotyping Facility (CEPF) at Purdue 

University in Indiana, USA, and imaged by a hyperspectral sensor. The CEPF (Figure 3.1) includes 

a plant growth facility with precise environmental controls and automated conveyors for imaging 

plants up to 5m height, using top view and side view RGB and VNIR hyperspectral cameras to 

provide high-throughput plant measurements in complex plant traits assessment [40]. 
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a) 

 

b) 

 

Figure 3.1. CEPF automatic conveyor for plants imaging. a) Side view camera, b) Top view camera. 

The hyperspectral camera MSV-500 VNIR scanner (Middleton Spectral Vision, Middleton, 

WI), provides top-view and side-view imagery from the plants with a range of 400 – 1000 nm, 

with spectral resolution of 1.3 nm (473 bands), and spatial resolution of 2.08 mm/pixel. The data 

acquired for this study were binned to 4.8 nm spectral resolution (119 bands) and processed to 

reflectance (with support of Jin lab in the Agricultural and Biological Engineering Department at 

Purdue University). 

The test involved plants of the Hybrid Mo17xB73 planted on July 15, 2019 and 

transplanted into a chamber 15 days later, with a soil mixture 50:50 mixture of profile greens grade 

and Sungrow 360 and Nitrogen rate of 100 ppm. The plants were watered to saturation each day 

and observed during the flowering time for this study. The hyperspectral images were calibrated 

using a dark and white reference to calculate the spectral reflectance using the equation (3.1) [41]. 

 𝑿𝝀 =  
𝐼𝜆 − 𝐵

𝑊𝜆 − 𝐵
 (3.1) 

where 𝑿𝝀 is the pixel calibrated reflectance for the image, 𝐼𝜆 is the original measured radiance 

value for the pixel, 𝑊𝜆 is the spectral radiance of the white reference, and 𝐵 is the black reference.  
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3.1.2 Field Data 

The field data for this study were collected during the 2019 growing season at the Indiana 

Corn and Soybean Innovation Center (ICSIC) at the Agronomy Center for Research and Education 

(ACRE), Purdue University, Indiana, USA. The field experiment Genome to Fields (G2F) 

consisted of 255 experiment panels of maize planted north to south on June 5th, with two replicas 

for a total of 510 plots (15 ranges by 68 rows), and a population density of 30 K/acre. Students 

collected ground phenotypic data as reference data (ground truth), for flowering and tasseling time 

the data was collected every other day (Figure 3.2). 

 

Figure 3.2. Field data collection crew.  

The UAV-HSI data were collected with a multi-rotor Matrice 600 Pro UAV from DJI 

(Figure 3.3. a), using a Nano-Hyperspec® VNIR sensor (Headwall Photonics Inc., Bolton, MA) 

with a spectral range of 400-1000 nm divided into 270 spectral bands and 640 spatial bands (2.2 

nm/pixel), at 1 cm spatial resolution. The data were aggregated to 135 bands of the original 270 

via averaging, and noisy bands after 920nm were removed. The system includes an Applanix APX-

15v3 GPS/IMU to accurately georeference the data, a LiDAR Velodyne VLP-16 Lite sensor, and 

an RGB Sony Alpha 7RIII camera. The UAV-HSI data were collected as close to solar noon as 

possible to reduce the impact of shadows, on August 08 with flight lines east to west, and August 

10 with flight lines north to south. 



 

 

33 

The wheel-based HSI data were collected using a commercial high-clearance spraying 

platform (LeeAgra Avenger) (Figure 3.3. b). The PhenoRover has a custom boom mounted on the 

chassis’ hydraulically operated front lift, allowing the sensors to reach a height above ground of 

up to 4.2 meters. The HSI data were collected with a Headwall Machine Vision camera with a 

wavelength range of 400-1000 nm, spectral resolution of 2.2 nm (272 bands) and spatial resolution 

of 5 mm (from 2 m above the canopy). Additionally, the PhenoRover includes two Velodyne HDL-

32E LiDAR units, and two FLIR GrassHopper3 GigE 9.1MP RGB color cameras. For direct 

georeferencing, the PhenoRover uses an Applanix POS LV 125 with dual GNSS antennas. The 

HSI data were down sampled to 136 bands via averaging. The PR-HSI data were collected on 

August 09th, during flowering time, and driving from north to south to mitigate the impact of 

shadows from the arms on the boom. 

a) 

 

b) 

 

Figure 3.3. Hyperspectral imagery field data carriers. a) UAV Matrice 600, b) PhenoRover. 

Calibrated targets with diffuse near Lambertian reflectance coating (5%, 50%, and 80%), 

Labsphere – Permaflect® were deployed in the field for each UAV data acquisition (Figure 3.4). 

The reflectance of each target was measured with a field-portable spectroradiometer SVC XHR-

1024i, Spectra Vista Corporation, using a foreoptic of 4° nominal field of view (FOV) lens, with 

a wavelength range of 250-2500 nm, and1024 bands. The data were processed considering a white 

diffuse reflectance target Spectralon 98% model CSTM-SRT-99-100, the sun angle, and the 

location of the field. All datasets were initially calibrated to radiance using SpectralView® 

(Headwall Photonics Inc., Bolton, MA) and to reflectance using PREDiCT, software developed 

by the Laboratory for Applications of Remote Sensing (LARS) at Purdue University. PREDiCT 

uses the empirical line method (ELM) to calibrate the images using the reflectance of the field 

calibrated targets which were imaged during the flight. 
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Figure 3.4. Calibrated targets for UAV data collection. 

The PhenoRover had a hydraulic arm (Figure 3.5), with two Labsphere – Permaflect® 

targets (10% and 80%) and two Type 822 Polyester target fabric targets (30% and 56%) (Group 8 

Technology, Inc.). The arm was rotated into the FOV of the sensor after each driving line, at the 

southernmost part of the field. Each driving line required ~5 minutes to be collected, and the 

PhenoRover drove back to the north side of the field to collect the next line (as noted earlier, to 

mitigate the impact of shadows from the PhenoRover arms due to sun angle). To process these 

datasets into reflectance, the spectral signatures of the calibrated targets in the arm and the 

Spectralon were used as reference for the PhenoRover and UAV data, respectively, following the 

ELM method in PREDiCT. 
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Figure 3.5. Calibrated targets on PhenoRover and Spectralon 98% used as white reference. 

For both platforms (UAV and PhenoRover), data orthorectification was performed with 

PREDiCT using a Savitzky–Golay (SG) adaptive smoothing filter, on an 8 cm digital surface 

model (DSM). The DSM was developed from the LiDAR data collected in the fields from the 

UAV following the methodology used by the Digital Photogrammetry Research Group (DPRG) 

at Purdue University. 

3.2 Data Processing and Classification 

3.2.1 Data Selection 

Two dates were selected for the CEPF-HSI data, September 04th at the beginning of the 

flowering time and September 10th during the peak of the flowering time. For the second date, both 

side view and top view data were analyzed. Table 3.1 summarizes the data analyzed for the 

experiments. 

For the in-field experiment, two plots were selected for each collection system, based on 

the shortest time between flowering and the data acquisition date, and that the same plot was 

covered on the two dates. Plot 4553 from the pedigree PHW65_MoG_0148, source LH195:0807 

and -plot 4529 PHW65_MoG_0108, source LH195:1639 both reported flowering time on August 

07th. Examples of the images from the CEPF are shown in Figure 3.6, PhenoRover images in 

Figure 3.7, and UAV images for both dates August 08th and 10th in Figure 3.8. 
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Table 3.1. HSI data summary and geometry 

System Date  Data collection orientation 

CEPF 20190904 Side view 

CEPF 20190910 Side view and Top view 

PR-HSI 20190809  North – South  

UAV-HSI  20190808 East – West flight lines 

UAV-HSI 20190810  North – South flight lines 

 

a) 

 

b) 

 

c) 

 

Figure 3.6. Hyperspectral imagery subsets for CEPF tests. a) Test 1: CEPF 20190904 – side view, b) Test 

2: CEPF 20190910 – side view c) Test 3: CEPF 20190910 – top view. 

a) 

 

b) 

 

Figure 3.7. Hyperspectral imagery subsets for PhenoRover tests. a) Test 1: PR 20190809 – Plot 1, b) Test 

2: PR 20190809 – Plot 2. 
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a) 

 

b) 

 

c) 

  

d) 

  

Figure 3.8. Hyperspectral imagery subsets for PhenoRover tests. a) Test 1: UAV 20190808 – Plot 1, b) Test 

2: UAV 20190808 – Plot 2, c) Test 1: UAV 20190810 – Plot 1, d) Test 2: UAV 20190810 – Plot 2. 

3.2.2 Data Labeling 

Supervised machine learning algorithms for classification purposes require labeled data as 

training for all the categories. Generating these labels or ground truth data is a time-consuming 

task and requires previous knowledge of the images. The label selection/annotation for this study 

was performed in ENVI® 5.5, Harris Geospatial Solutions Inc., using three images as reference: a) 

the true color (RGB) bands of the hyperspectral image, b) band 2 from principal components 

analysis (PCA), and c) band 3 of the minimum noise-fraction (MNF) transform [42] (Figure 3.9). 

Every pixel was visually classified into two classes, one for tassels and one for the rest of the image, 

generating a two class labels (Figure 3.9. d). PCA and MNF were used to generate an initial region 
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of interest (ROI) for tassels, using a threshold of 0.7 to select the dark areas for both images. 

Subsequently, the spectral signature of pixels from the original HSI image was used to correct for 

tassel pixels that were missing from the initial ROI, and missing pixels for tassels that were not 

included. In this process, shiny leaves, the midribs, and shiny soil were usually corrected from the 

initial ROI, as the spectral signature tends to be similar to the tassels.  

a) 

 

b) 

 

c) 

 

d) 

 

Figure 3.9. Hyperspectral imagery for PhenoRover test 1. a) Hyperspectral data – bands R642 G548 B468, 

b) Principal Components Analysis – band 2. c) Minimum Noise-Fraction – band 3. d) Training label – Red: Tassels, 

Black: Background 
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3.2.3 Data Visualization  

The complete classification approach consisted of a workflow using ENVI® 5.5 and a series 

of functions written in Python, using several existing libraries. Each of the HSI images was loaded 

into Python as a NumPy array with a shape corresponding to the 𝑊𝑖𝑑𝑡ℎ ×  𝐻𝑒𝑖𝑔ℎ𝑡 ×

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑎𝑛𝑑𝑠. The 𝐻𝑒𝑖𝑔ℎ𝑡 and 𝑊𝑖𝑑𝑡ℎ represent the 𝑋, 𝑌 positioning  of the pixels. The 

initial exploration of the HSI imagery includes plots of spectral signatures for all pixels to visualize 

the initial data. The series of plots allow identification of the spectral signature of each part of the 

maize plant when flowering. Figure 3.10 shows the spectral signature of data collected from the 

CEPF for the leaf area, leaf midrib, and tassel in early-stage form. The midrib and the tassel have 

very similar signatures, especially from 500 nm to the 650 nm in the green bands. The tassel and 

the leaves have a similar shape and slope of the spectral signatures from the 400 nm to the 650 nm, 

although with different magnitudes. 

a) 

  

b)  

Figure 3.10. CEPF data for maize plant flowering. a) HSI side view collected on September 4 and the 

respective pixel labeling, b) Spectral signature plot for tassel in early stage, midrib and leaf area. 

Univariate and multivariate plots were used explore the data. The correlation matrix of the 

spectral signatures (Figure 3.11) illustrates the high positive correlation between bands within the 

RGB region and the correlation between bands within the NIR region, resulting in two major 

groupings. Correlation between RGB bands and NIR bands is shown to be low, implying the 

different response to material of the visible range RGB and the NIR bands, explained in chapter 

2.2. 
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Figure 3.11. Correlation matrix for PhenoRover data Test 1 (136 bands) 

3.2.4 Model Training and Validation   

As explained in chapter 2.2 and shown in Figure 3.11, many bands in HSI are highly 

correlated. To achieve the best performance with the SAM and SVM classifiers, PCA, LLE, and 

Isomap were used to extract latent features using scikit-learn library in Python (Figure 3.12). For 

the linear dimension reduction PCA (Figure 3.12. a), the number of components was found 

identifying the elbow of a scree plot (component 3), where the proportion of variance explained 

was about 95%. LLE and Isomap (Figure 3.12. b and c), explained in chapter 2.2.1.3 and 2.2.1.4 

respectively, were computed as nonlinear dimension reduction approaches. While LLE seeks to 

preserve the topology of the manifold using local spectral information in a lower dimension, 

Isomap attempts to preserve the geodesic distances in a lower dimension using a global similarity 

matrix from local information. For both methods, the number of neighbors used to compute the 

nonlinear reduction is important. In this study, the cost function plot was used to determine the 

optimal value for number of components and neighbors, selecting the neighbors where the 

reconstruction error was lower. The calculation of LLE and Isomap requires intensive computation. 

Thus, for this study the images of the full plots were subset to smaller cubes of 240x270 pixels for 

PhenoRover and 136x300 pixels for UAV.  
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a) 

       
b) 

 
c) 

 

Figure 3.12. Feature Reduction for HSI – CEPF Test 1 data for maize plant at early flowering stage. a) 

RGB color composite from HSI and PCA with 3 components, b) LLE 5 components, c) Isomap 5 components. 

After standardizing, the datasets were split into training, validation, and testing, where the 

training set was used to train the algorithm and validation was used to perform the model selection. 

For this experiment, each hyperspectral image was split into training (60 %), validation (10%), 

and 30% not included in the training process for testing 

SVM classification is sensitive to unbalanced data and can produce inaccurate results by 

misclassifying the underrepresented dataset when the density of the majority class is higher than 

the minority class, resulting in a largely skewed hyperplane [43]. A learning solution proposed by 

[44] is to assign different misclassification costs (𝐶), one for each class (𝐶+, 𝐶−). The different 

error cost (DEC) method reduces the effect of the misclassification for the imbalanced data, setting 

the cost equal to the minority-to-majority-class ratio. The parameter estimation for the RBF kernel 

(𝐶, 𝛾) was obtained using a grid search with a 5-fold-cross-validation. The SVM-RBF model in 

this study used the parameters showing the best overall accuracy from the grid-search. Statistical 

analysis of the results was conducted based on the confusion matrix and the F1-score. 
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 EXPERIMENTAL RESULTS 

This chapter presents the results of two groups of experiments with nine different datasets 

collected from three systems (CEPF, UAV, and PhenoRover) during the flowering time in maize. 

The first experiment consisted of classifying the tassels using the SAM algorithm and the second 

experiment was completed using SVM as a classifier. For both experiments, the datasets were 

tested on the original HSI and after performing dimension reduction with PCA, LLE, and Isomap. 

Additionally, this chapter includes important findings related to the pre-processing steps.  

4.1 Data Pre-Processing Results 

4.1.1 Spectral Signature 

The high spectral and spatial resolution of the CEPF data was useful to sample the spectral 

signature from different parts of the maize plants in an early stage and late season after flowering 

time. Figure 4.1 compares the spectral signatures of a tassel in the early stage versus the tassel 

after the anthers have extruded in the same plant, showing a significant reduction in the reflectance 

in the green bands and NIR bands. Additionally, a distinctive shape in the signature between the 

670 and 700 nm was identified, where the slope of the curve for the tassel is greater than for the 

rest of the signatures. Furthermore, the plot shows the similarity of the spectral signature of the 

tassels with the midribs.  

 

Figure 4.1. Spectral signature for a tassel in early stage before anthesis collected on 09/04 (Test 1) and after 

anthesis, data collected on 09/10 (Test 2). Data collected from the CEPF. 
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4.2 Classification Model Results  

The classification performance of the models in this study was assessed using traditional 

metrics, including precision, recall, and the F1-score. These metrics are reported to address the 

problem of the imbalance data where one class can add more weight over the other class in a binary 

classification, resulting in high accuracy for the model with poor performance for the class with 

less weight [45]. Initially, a confusion matrix for the binary classification was computed to have 

better insight relative to the performance for each class, where the diagonal of the matrix represents 

the correctly classified pixels, True Positive (TP) and True Negative (TN), and the remaining cells 

representing the incorrectly classified pixels, False Positive (FP) or Type I error and False Negative 

(FN) or Type II error. Furthermore, the classification metrics were computed as follows:  

 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (4.1) 

 𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (4.2) 

 𝑭𝟏 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4.3) 

Precision is the positive predicted value and quantifies the correctly predicted pixels as 

tassels. Recall (or sensitivity) is the true positive rate that relates to the number of pixels belonging 

to tassels that were classified positive and those that the model incorrectly does not capture as 

tassels. The F1-score can be used to evaluate the entire model, balancing the precision and recall, 

making it a sensitive metric to changes in the data distribution and ratios. 

4.2.1 Spectral Angle Mapper Classification 

ENVI® 5.5 was used for mapping the spectral similarity of the image to the spectral 

reference data. As discussed in 2.3.2, SAM computes the angle between the spectral reference and 

the spectrum in the image and is not affected by the length of the vectors. The spectra collected 

from the images from the CEPF were used as reference to investigate the reflectance of the tassels 

and to later experiment with field data collected by UAV and PhenoRover. The SAM classification 
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was tested on the original hyperspectral image (HSI), hyperspectral image with PCA dimension 

reduction (HSI+PCA), hyperspectral image with LLE dimension reduction (HSI+LLE), and 

hyperspectral image with Isomap dimension reduction (HSI+ISO).  

Table 4.1 shows the tassel classification performance using SAM for the CEPF data. 

Because tests 1 and 2, show the side view of the tassel, the F1-scores are significantly higher than 

in test 3. For test 1, the side view HSI shows the tassel forming, and the spectral signature has a 

significantly higher reflectance in the NIR region than the tassel in test 2, as previously shown in 

Figure 4.1. 

Table 4.1. SAM classification results for tassel with CEPF data.  

 TP TN FP FN Pr Rc F1 

Test 1 

HSI 16 1864 1 9 0.94 0.64 0.76 

HSI+PCA 17 1860 5 8 0.77 0.68 0.72 

HSI+LLE 24 1858 7 1 0.77 0.96 0.86 

HSI+ISO 25 1799 66 0 0.27 1.00 0.43 

Test 2 

HSI 620 2641 56 967 0.92 0.39 0.55 

HSI+PCA 562 3612 15 767 0.97 0.42 0.59 

HSI+LLE 1016 3587 40 313 0.96 0.77 0.85 

HSI+ISO 475 3611 16 854 0.97 0.36 0.52 

Test 3 

HSI 233 5055 79 433 0.75 0.35 0.48 

HSI+PCA 246 5013 121 420 0.67 0.37 0.48 

HSI+LLE 235 4692 442 431 0.35 0.35 0.35 

HSI+ISO 171 4963 171 495 0.50 0.26 0.34 
TP: True positive, TN: True negative, FP: False positive, FN: False negative, Pr: Precision, Rc: Recall, F1: F1 

Score 

 

It can be clearly seen that the tassel classification accuracy declines when the anthers are 

extruding, as observed in the recall score dropping from 0.96 to 0.77. When exploring the LLE 

components for each dataset, the spectral separability of the pixels for Test 1 (Figure 4.2. a) is 

greater than in Test 2 (Figure 4.2. b), where the spectral separability of the pixels is more 

challenging in the LLE transformed coordinate system. The biological and chemical composition 

in the anthers extruding could possibly lower the reflectance in the NIR bands at the point where 

is very similar to the midrib and the leaves.  
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a) 

 

b) 

 

Figure 4.2. LLE components for CEPF data showing the separability of the tassels (orange) and 

background (blue). a) LLE components for Test 1, b) LLE components for Test 2 

Figure 4.3 shows the classification labels for the Test 1 and the classified pixels using LLE 

as a dimension reduction method. The early-stage tassel has a very well-defined spectral signature, 

especially in the NIR region that allows a reasonable pixel classification.  

 

Figure 4.3. SAM classification results for CEPF HSI test 1 data using LLE as dimension reduction method. 

From left to right: RGB color composite of HSI, ground truth for tassel label, subset for testing, and final classified 

data. 

In figure 4.4, the results for Test 2 shows the complexity of the tassel diminishing the 

number of pixels identifies as TP and misclassifying the midrib as tassel.  
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Figure 4.4. SAM classification results for CEPF HSI Test 2 data using LLE as dimension reduction 

method. From left to right: RGB color composite of HSI, ground truth for tassel label, subset for testing, and final 

classified data. 

For test 3 in the CEPF (Figure 4.5), the data were collected simultaneously with Test 2 but 

the top view of the tassel is shown when anthesis is happening. This image was processed to 

simulate the view of the sensors in the field, but in the controlled facility. The F1-score and the 

recall values are even lower than the results in Test 2 (side view) since the topmost of the tassels 

belong to the anthers extruding and the tassel without anthers is not seen by the sensor. For this 

test, the dimension reduction that best classified the pixels as tassels was PCA with an F1-score of 

0.48 and recall of 0.37, followed closely by the results from this data. From this test, it can be 

inferred that the linear dimension reduction performed better than the nonlinear dimension 

reduction methods. 

 

Figure 4.5. SAM classification results for CEPF HSI test 3 data using PCA as dimension reduction method. 

From left to right: RGB color composite of HSI, ground truth for tassel label, subset for testing, and final classified 

data. 

The experimental results from the PhenoRover data using SAM as classifier are 

summarized in Table 4.2, where the nonlinear dimension reduction LLE for Test 1 and Isomap for 

Test 2 resulted in higher F-1 scores, with 0.42 and 0.59 respectively. The lower score in these 

results, compared with the experiments in the CEPF, can be explained by the complexity of the 

image in a natural environment, where the light is not constant, and the plant density of the plots 

exacerbates the challenge of classifying tassels.  
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Table 4.2. SAM results for tassel classification with PhenoRover data 

 TP TN FP FN Pr Rc F1 

Test 1 

HSI 285 16287 506 402 0.36 0.41 0.39 

HSI+PCA 253 16469 324 434 0.44 0.37 0.40 

HSI+LLE 244 16554 239 443 0.51 0.36 0.42 

HSI+ISO 184 16652 141 503 0.57 0.27 0.36 

Test 2 

HSI 494 17631 623 452 0.44 0.52 0.48 

HSI+PCA 723 17319 935 223 0.44 0.76 0.56 

HSI+LLE 388 18028 226 558 0.63 0.41 0.50 

HSI+ISO 601 17758 496 345 0.55 0.64 0.59 
TP: True positive, TN: True negative, FP: False positive, FN: False negative, Pr: Precision, Rc: Recall, F1: F1 

Score 

 

Figure 4.6. shows the in-field image complexity in the RGB color composite of the 

hyperspectral subset. Additionally, the figure compares the reference labels with the final 

classification for Test 2 computing SAM after the Isomap transformation, where the number of 

true positives is 64% of the total amount of pixels for the tassels, and the false negative (FN) is 

about 37%. This can be explained by the similarity of the tassel’s spectral signature with the midrib, 

given that SAM calculates the angle between the reference spectra and the image spectra. 

 

Figure 4.6. SAM classification results for PhenoRover HSI test 2 data using Isomap for dimension 

reduction. From left to right: RGB color composite of HSI, ground truth for tassel label, subset for testing, and final 

classified data. 

The UAV data had similar results for both days, August 08th (Table 4.3) and August 10th 

(Table 4.4). The experiment using Isomap resulted in higher F1-scores for all tests with 0.60 and 

0.44 for the data on August 8th, and 0.54. and 0.47 for August 10th. It is important to note from 

these tables that the models using PCA have higher recall scores and produce fewer FN than the 



 

 

48 

other models for the specific tassel class, showing better performance at classifying the tassels, but 

lacks on precision in  having more FP than the rest of the models. 

 Table 4.3. SAM results for tassel classification with UAV data 20190808 

 TP TN FP FN Pr Rc F1 

Test 1 

HSI 353 17262 247 345 0.59 0.51 0.54 

HSI+PCA 506 16745 764 192 0.40 0.72 0.51 

HSI+LLE 169 17362 147 529 0.53 0.24 0.33 

HSI+ISO 477 17103 406 221 0.54 0.68 0.60 

Test 2 

HSI 169 16247 147 342 0.53 0.33 0.41 

HSI+PCA 361 15265 129 150 0.24 0.71 0.36 

HSI+LLE 284 15655 739 227 0.28 0.56 0.37 

HSI+ISO 303 15822 572 208 0.35 0.59 0.44 
TP: True positive, TN: True negative, FP: False positive, FN: False negative, Pr: Precision, Rc: Recall, F1: F1 

Score 

 

 Table 4.4. SAM results for tassel classification with UAV data 20190810 

 TP TN FP FN Pr Rc F1 

Test 1 

HSI 379 16767 352 590 0.52 0.39 0.45 

HSI+PCA 392 16812 307 577 0.56 0.40 0.47 

HSI+LLE 429 16883 236 540 0.65 0.44 0.53 

HSI+ISO 553 16595 524 416 0.51 0.57 0.54 

Test 2 

HSI 178 19575 386 469 0.32 0.28 0.29 

HSI+PCA 350 19257 704 297 0.33 0.54 0.41 

HSI+LLE 327 19254 707 320 0.32 0.51 0.39 

HSI+ISO 281 19690 271 366 0.51 0.43 0.47 
TP: True positive, TN: True negative, FP: False positive, FN: False negative, Pr: Precision, Rc: Recall, F1: F1 

Score 

 

Figures 4.7 and 4.8 illustrate the results for Test 1 on both dates using hyperspectral data 

with Isomap, where the contribution of FP is visible for both results. The high density of the plants, 

the similarity of the tassels’ spectral signature with the midrib, and the lower resolution of the 

UAV data (1 cm) resulted in low F1-scores for SAM classifier.  
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Figure 4.7. SAM classification results for UAV HSI test 1 on August 08th using Isomap for dimension 

reduction. From left to right: RGB color composite of HSI, ground truth for tassel label, subset for testing, and final 

classified data. 

 

Figure 4.8. SAM classification results for UAV HSI test 1 on August 10th using Isomap as dimension 

reduction method. From left to right: RGB color composite of HSI, ground truth for tassel label, subset for testing, 

and final classified data. 

4.2.2 Support Vector Machine Classification 

Python libraries were used to preprocess, train, validate, and test the HSI data using SVM-

RBF algorithm as a classifier. As mentioned in 3.2.4, the SVM classification algorithm is sensitive 

to imbalanced data, potentially providing inaccurate results. For this research, the DEC method 
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was used to reduce the impact of the underrepresentation of the tassels’ class (5% against 95% of 

background pixels) in the final classification score. The SVM classification was tested on the 

original hyperspectral image (HSI), a hyperspectral image with PCA dimension reduction 

(HSI+PCA), a hyperspectral image with LLE dimension reduction (HSI+LLE), and a 

hyperspectral image with Isomap dimension reduction (HSI+ISO).  

The results for the tests on the CEPF data (Table 4.5) show very high F1-scores and recall 

for all tests. In Test 1, the best performance overall was for the dataset after Isomap dimension 

reduction with an F1-score of 0.96 and a precision of 1.00, meaning that there were no FP in the 

classification process. These results are related to the structure of the tassel at the early-stage and 

the side view of the camera capturing the emergence of the tassel without obstruction. Test 2 and 

3 yielded better performance using the original HSI, 0.97 and 0.90 respectively, and in contrast 

with Test 2, Isomap resulted in the lowest F1-score. This could be explained by the complexity of 

the images that cannot be explained by the Isomap-based features since the global manifold 

methods cannot exploit relationships among the local neighbors of the spectral graph. The SVM 

model, which is robust to the number of inputs, seems to learn the complexity of the tassels better 

when all the bands are included. 

Table 4.5. SVM results for tassel classification with CEPF data. 

 TP TN FP FN Pr Rc F1 

Test 1 

HSI 50 2672 6 2 0.89 0.96 0.93 

HSI+PCA 44 2677 1 8 0.98 0.85 0.91 

HSI+LLE 23 1863 2 2 0.92 0.92 0.92 

HSI+ISO 23 1865 0 2 1.00 0.92 0.96 

Test 2 

HSI 845 3382 49 8 0.95 0.99 0.97 

HSI+PCA 843 3381 50 10 0.94 0.99 0.97 

HSI+LLE 1207 3573 54 122 0.96 0.91 0.86 

HSI+ISO 1138 3592 35 191 0.97 0.85 0.86 

Test 3 

HSI 558 5314 107 21 0.84 0.96 0.90 

HSI+PCA 526 5258 163 53 0.76 0.91 0.83 

HSI+LLE 610 3199 1935 56 0.24 0.92 0.38 

HSI+ISO 641 3428 1706 25 0.27 0.70 0.43 
TP: True positive, TN: True negative, FP: False positive, FN: False negative, Pr: Precision, Rc: Recall, F1: F1 

Score 
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Figures 4.9 and 4.10 show the final classified images for Test 2 and Test 3 using SVM. For 

both results, the number of FP is increased by the parts of the leaves that have brighter colors due 

to reflection. In both images, the midrib is also misclassified as tassel  

 

Figure 4.9. SVM classification results for CEPF HSI test 2 using the original image. From left to right: 

RGB color composite of HSI, ground truth for tassel label, and final classified data. 

 

 

Figure 4.10. SVM classification results for CEPF HSI test 3 using the original image. From left to right: 

RGB color composite of HSI, ground truth for tassel label, and final classified data. 

Table 4.6 presents the results for PhenoRover experiments. The F1-scores are considerably 

lower compared to the results presented by the CEPF data, which could be explained by the 

complexity of the in field data and the imbalance in the classes. The pixels for the tassel class are 

about 5 % of the total number of pixels in the image. The HSI without dimension reduction resulted 

in the best model, with a higher F1-score and a higher ability to classify pixels belonging to tassels. 

 

Table 4.6. SVM results for tassel classification with PhenoRover data 

 TP TN FP FN Pr Rc F1 

Test 1 

HSI 394 14832 328 286 0.55 0.58 0.56 

HSI+PCA 384 14797 363 296 0.51 0.56 0.54 

HSI+LLE 138 16742 51 549 0.73 0.20 0.32 

HSI+ISO 125 16738 55 562 0.69 0.18 0.29 
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Test 2 

HSI 654 19592 371 263 0.64 0.71 0.67 

HSI+PCA 642 19588 375 275 0.63 0.70 0.66 

HSI+LLE 390 18125 129 556 0.75 0.41 0.53 

HSI+ISO 367 18146 108 579 0.77 0.39 0.52 
TP: True positive, TN: True negative, FP: False positive, FN: False negative, Pr: Precision, Rc: Recall, F1: F1 

Score 

 

Figure 4.11 presents the final image classified for Test 2. The experiment using the original 

HSI for SVM classification had more TP than the other models, but also misclassified many pixels 

resulting in Type I and II errors 

 

Figure 4.11. SVM classification results for PhenoRover HSI test 2 using the original image. From left to 

right: RGB color composite of HSI, ground truth for tassel label, and final classified data. 

Tables 4.7 and 4.8 show the SVM classification results for the UAV data collected on 

August 8th and 10th, respectively. For both dates, the highest F1-scores correspond to the model 

using the original HSI without any dimension reduction.  

Table 4.7. SVM results for tassel classification with UAV data 20190808 

 TP TN FP FN Pr Rc F1 

Test 1 

HSI 449 17481 237 193 0.65 0.70 0.68 

HSI+PCA 419 17436 282 223 0.60 0.65 0.62 

HSI+LLE 283 17437 72 415 0.80 0.41 0.54 

HSI+ISO 320 17414 95 378 0.77 0.46 0.58 

Test 2 

HSI 433 16090 227 155 0.66 0.74 0.69 

HSI+PCA 384 16042 275 204 0.58 0.65 0.62 

HSI+LLE 136 16274 120 375 0.53 0.27 0.35 

HSI+ISO 150 16282 112 361 0.57 0.29 0.39 
TP: True positive, TN: True negative, FP: False positive, FN: False negative, Pr: Precision, Rc: Recall, F1: F1 

Score 
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Table 4.8. SVM results for tassel classification with UAV data 20190810 

 TP TN FP FN Pr Rc F1 

Test 1 

HSI 664 17013 301 626 0.69 0.72 0.70 

HSI+PCA 611 16920 394 315 0.61 0.66 0.63 

HSI+LLE 414 17014 105 555 0.80 0.43 0.56 

HSI+ISO 437 17023 96 532 0.82 0.45 0.58 

Test 2 

HSI 318 19896 237 318 0.57 0.50 0.53 

HSI+PCA 252 19877 256 384 0.50 0.40 0.44 

HSI+LLE 6 19959 2 641 0.75 0.01 0.02 

HSI+ISO 19 19947 14 628 0.58 0.03 0.06 
TP: True positive, TN: True negative, FP: False positive, FN: False negative, Pr: Precision, Rc: Recall, F1: F1 

Score 

 

Figure 4.12 shows the result for Test 1 on August 10th corresponding to the highest F1-

score for the UAV data. The SVM model produced better results for this experiment using the 

original HSI without dimension reduction.  

 

Figure 4.12. SVM classification results for UAV HSI test 2 using the original image collected on August 

10th. From left to right: RGB color composite of HSI, ground truth for tassel label, and final classified data. 
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 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The main goal of this research was to evaluate classification models for detecting tassels 

in maize crops using hyperspectral information. For this purpose, hyperspectral imagery were 

collected from a controlled facility and from crops in real environment. Three different systems 

were tested, 1) the conveyor imaging system from the Controlled Environment Phenotyping 

Facility (CEPF) with top view and side view images of the plants with a spatial resolution of 2.08 

mm/pixel, 2) the PhenoRover, a wheel-based platform with sensor above canopy collecting data 

with 5 mm/pixel, and 3) the UAV multi-rotor system collecting data above canopy with 10 

mm/pixel. Two classification models for tassels were successfully tested, SAM and SVM, using 

the original HSI and after feature reduction methods such as PCA, LLE, and Isomap. 

By performing the experiments at different locations, we concluded that the controlled 

facility is an appropriate location to investigate the development of the tassels from the early-stage 

when the spectral signature varies the most from the other parts of the plant, to the late-stage when 

the anthers have completely extruded and the signature becomes similar to the midrib and ends of 

the leaves. The top view of the CEPF data foresaw some of the challenges that are inherent with 

the above canopy data collected from the platforms in the field, such as the similarity of the tassels 

with the midribs when anthers are extruding and the complexity of the tassels’ shapes. 

The difference of the spatial resolution was an important characteristic, the higher spatial 

resolution, the better results of the classifier. Nevertheless, capturing UAV data with spatial 

resolution higher than 10 mm/pixel is a challenging, time consuming process, and generates big 

amounts of data to store and to process. The spatial resolution is also limited by the altitude that 

the platform can be flown without impacting the tassels. Additionally, the spatial resolution is 

related to the purity of the pixels, that plays an important role in the classification problem, since 

the tassels’ lateral spikelet flowers are very narrow and a spectral mixture could occur within pixels, 

reducing the ability to the algorithms to classify them correctly when the spatial resolution is too 

coarse. 

By performing the experiments in the fields conditions using different systems and 

different spatial resolutions, we faced the challenges caused by the weather, such as variations in 
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sun angle and shadows, and interception from other plants due to tall plants in adjacent plots. Also, 

the tassels have a complex geometry, variation in size and shapes, and disparity in the window of 

flowering within plots (e.g. not all plants flower at the same time). 

Regarding to the annotation required for the training labels in a pixel classification 

problem, collecting the labels is time consuming task and the shape and size of the tassels could 

lead to inaccurate labels that will impact the performance of  the algorithms Also, the number of 

pixels for the tassel class is very small compared to the rest of the image, resulting in an unbalanced 

dataset for all images collected with the three different systems. The classification methods 

implemented in this study using reflectance could handle the imbalance between the classes very 

well, but the overall performance did not overpass the 70% accuracy in the field conditions.  

By performing experiments with different feature extraction methods, it is concluded that 

the computation intensity for the non-linear dimension reduction methods depend on the number 

of neighbors and components to extract, and the dimension of the data to process (hyperspectral 

cube). It seems to be necessary to incur the computational expense when using SAM as the 

classifier, since the classification performance is better when using Isomap, for which there are 

computationally advantageous implementations. For SVM, the dimension reduction is not needed 

and yields good performance classifying tassels using hyperspectral data. Lastly, we envision that 

hyperspectral remote sensed data classification can ultimately contribute to a fast, accurate, and 

non-destructive method of monitoring tassels in maize crops. 

5.2 Future Work 

Extensions of this exploratory study in multiple areas could be fruitful: 

• Further studies are needed to investigate the performance of the classification when 

using additional features from other technologies, such as LiDAR and adding 

spatial features. Additionally, specific information from the genetics could be 

introduced. 

• The time and tremendously intensive computational overhead required for Isomap 

can be improved using Landmark Isomap, where selected points known as 

landmarks are used to compute the Isomap and embedding the lower dimensionality 

to the rest of the image.  
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• Annotation tools must be explored to extract reference data required for training 

and to evaluate the performance of the models from different labeling systems. 

• Methods based on deep learning, and particularly convolutional neural networks 

that can exploit both the spatial and spectral domains of the hyperspectral data are 

potentially promising. 
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