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ABSTRACT 

Biological dynamics have been studied by many methods. Fluorescence dynamic 

microscopy and optical coherence tomography provided fundamental understandings of biological 

systems. However, their high NA optics only represent local characteristics. Biodynamic imaging 

(BDI) technique implements a low NA optics and acquires the statistical average of Doppler shifts 

that occurred by dynamic light scattering with biological dynamic subsystems provided globally 

averaged dynamic characteristics.  

BDI is used for this study to investigate biomedical applications. The chemotherapy efficacy 

measurement by BDI demonstrated a good agreement between the Doppler spectral phenotypes 

and the preclinical outcomes. Also, dynamic responses of microbiomes by chemical stimuli 

demonstrated featured Doppler characteristics. The bacterial infection of epithelial spheroids 

showed consistent spectral responses and antibiotic-resistant E. coli infection treatment with a 

sensitive and resistive antibiotic showed a dramatic contrast. Furthermore, the phase-sensitive 

characteristics of BDI provided a clue to understanding the characteristics of the random process 

of biological systems. Levy-like heavy-tailed probability density functions are demonstrated and 

the shape changed by infection will be discussed. 
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 INTRODUCTION TO BIODYNAMIC IMAGING AND 

ITS APPLICATIONS 

1.1 Introduction to Biodynamic Imaging 

Biodynamic imaging (BDI) is a biomedical imaging technique that is performed in vitro on small 

(mm3 – size) living tissue samples.  The image contrast is provided by intracellular motion, which 

is detected through volumetric dynamic speckle using a low-coherence light source. Speckle forms 

when coherent light illuminates a heterogeneous target and is reflected as partial waves that have 

random intensity and phase distributions. The speckle intensity distribution would be static if a 

specimen has no internal dynamics. However, intensity fluctuations from living tissue are caused 

by Doppler shifts from light scattering from dynamic processes within a specimen. Typical 

Doppler shifts from intracellular motions are in the range from 0.01 Hz to 10 Hz, arising from 

intracellular speeds between 3 nm/s to 3 m/s using the current measurement scheme. 

1.2 Speckle Spectroscopy by Dynamic Light Scattering  

Dynamic light scattering (DLS) measures light intensity correlations of random light scattered 

from a dynamic specimen [1-4]. Dynamics are represented through the correlation function of the 

speckle, obtained by time-autocorrelation A() or temporal Fourier transformation S() that are 

related through the Wiener-Khinchin Theorem [5] 

( ) ( ) iS A e d  






        (1.1) 

In much of the following presentation, temporal Fourier transformation is the primary approach 

used to measure a specimen’s dynamics through Doppler frequency shifts.  

 

Dynamics within a specimen, such as molecular transport, membrane undulations or cellular shape 

changes, have different velocities and different persistence times. (Note that thermal molecular 

diffusion has time scales too fast to detect with our system.  Hence, all dynamics measured by BDI 

relate to active transport driven by molecular motors and cytoskeletal restructuring.)  The 

dynamics are represented in dynamic speckle intensity as beats among their Doppler frequency 

shifts induced by light scattering from moving particles inside the specimen. When a photon 
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propagates with a wave vector k1, it becomes k2 after scattering with a dynamic particle, and the 

momentum transfer is 

q = k1 – k2      (1.2) 

where the magnitude of the transferred momentum into a scattering angle  is 

2 sin
2

k
 

  
 

q      (1.3) 

The frequency shift of a photon D    is related to a particle’s speed v through  

  D  q v       

In our experiments,  = 840 nm, and the maximum amplitude of the momentum transfer vector q 

is 20 m-1 in our backscattering geometry. The Doppler frequency shift by a particle with a 1 m/s 

velocity corresponds to a 3 Hz frequency shift [6-8].  

1.3 Low-coherence Light and Coherence-gated Spectroscopy 

Spectroscopy can study material characteristics by measuring optical absorption and reflection [9-

12]. Low-coherence light has replaced pulsed lasers in the spectroscopy of biomedical optics 

because low-coherence light can generate optical coherence without requiring pulsed lasers [13-

15]. Pulsed lasers operating in direct detection of time-of-flight require precise temporal control, 

while low-coherence only requires spatial precision, which is easier to acomplish. The low-

coherence light source has a limited coherence length that enables optical-path specific 

interference. To form an interference pattern with the low coherence light, the optical path lengths 

of the reference and the object arm should be matched within the coherence length. Selective 

interference using the advantage of short-coherence is called coherence gating because the 

coherence-gated position determines the selected section of the optical coherence image (OCI). 

Furthermore, 3-dimensional OCI reconstruction of a volumetric structure is possible by scanning 

through a volume with the coherence-gate. 
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Figure 1.1 Schematic diagram of volumetric scattering from a biological specimen. Reflected light 

forms volumetric speckle at an image plane of the collecting optics. Selective interference is 

possible by adjusting the optical path delay in a reference beam. With shorter coherence, a better 

volumetric resolution is possible. 

 

The optical configuration of the BDI Mach-Zehnder-type interferometer is shown in Figure 1.2. 

Low-coherence light (central wavelength  = 840 nm, Superlum S850-G-I-20, coherence length 

20 m ) is split into object and reference arms with a 9:1 intensity ratio. The beam in the object 

arm illuminates the specimen at normal incidence. Reflected speckle is collected by lens L1. The 

speckle is transferred to the image plane (IP) by a 4-f system (L1 and L2, f = 15 cm). The Fourier 

lens (L3, f = 5 cm) performs a Fourier transform and forms a Fourier image at the Fourier plane 

(FP) where it is recorded by the camera (QImaging, Rolera EM-C2) with 25 fps sampling 

frequency. The coherence-length of the low-coherence light is approximately 20 m, and the 

optical path lengths of the object and reference arms are matched to within 20 m to form an 

interference pattern at the FP. Volumetric light scattering from the specimen can be selectively 

interfered by adjusting the optical path delay in the reference arm. 
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Figure 1.2 Optical configuration of biodynamic imaging (BDI). A Mach-Zehnder interferometer 

with low-coherence light forms an off-axis digital holographic interference pattern at the camera 

by adjusting the optical path delay at the reference arm. The optical delay can be adjusted in 1 m 

steps. The beam splitters BS2 and BS3 are slightly tilted (2 degrees) to avoid specular reflection 

from a specimen [6-8]. 

  

Holographic reconstruction is performed using a 2-dimensional spatial Fourier transform on the 

Fourier image that is captured by the digital camera at the FP.  A Fourier image is shown in Figure 

1.3 (a) with a fringe orientation at approximately 135-degrees and the Fourier transform has two 

conjugated images in the 1st and 3rd quadrants.  
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Figure 1.3 OCI reconstruction by Fourier transform. (a) Fourier image taken at the FP (b) two 

conjugated twin images after performing spatial Fourier transform on the Fourier image (c) speckle 

reconstruction at the FP after demodulation, and (d) autocorrelation of the FP speckle. 

 

The two images are identical OCI versions of the specimen but are phase conjugated. The intensity 

of the 1st quadrant OCI in Figure 1.3 (b) was obtained by taking the absolute value of the complex 

field squared at each reconstructed pixel. The speckle size was estimated by demodulating a carrier 

frequency [16] in Figure 1.3 (a) and performing an inverse Fourier transform to obtain speckle at 

the FP, shown in Figure 1.3 (c). The spatial autocorrelation in Figure 1.3 (d) shows the size of 

speckle which is approximately 80 m on the FP. 
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The scattered light collected at the FP by L3 with the aperture   and the focal length f can be 

approximated by Fraunhofer diffraction. The electric field of the light scattered from the object at 

the FP is 

 ' '

( , ) ' '

q
i xx yy

obj f

FP x y e dx dy




     (1.5) 

Assuming the reference beam is a plane wave propagating with the direction r, the interference 

intensity at the FP becomes 
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q r   (1.6) 

where IDC is a background intensity that does not interfere. Recorded holograms at the Fourier 

plane are reconstructed by performing a spatial Fourier transform of Eq.(1.6). The OCI distribution 

at the digitally reconstructed holographic image is 

   *( , ) , ,x y x yOCI x y f x r y r x r y r        
 

  (1.7) 

The locations of the OCIs are at  ,x yr rx  and  ,x yr r  x  with complex conjugate phase. The 

maximum spatial frequency is limited by the Nyquist sampling theorem so 3 pixels record one 

fringe. The center of the OCI should be at 45 degrees from the origin to avoid overlapping with 

truncation rods, then the spatial frequency of the holographic images at the FP is 

1 1

3 3
x y

pixel

k k
x W

  


     (1.8) 

When the CCD pixel size is 8 m then the spatial frequency of the fringes pixelW  is 40 mm-1.  



 

 

20 

 

Figure 1.4 DLS with randomly moving particles. Particles in 3-dimensional space have isotropic 

dynamic densities. Doppler shifts with 3D Isotropic motion induce a broadband Doppler shift. The 

broadband power spectrum has a power-law shape [17]. 

 

Scattered light from randomly moving particles in Figure 1.4 forms temporally fluctuating 

dynamic speckle. The intensity fluctuation is induced by particles’ dynamics [1]. The (2)g ( )  

correlation function of the intensity fluctuation is the conventional way of quantifying the dynamic 

characteristics of particles.  

(2)
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( ) ( )
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The (2) ( )g   correlation function is an intensity correlation, and the power spectrum derived from  

(2) ( )g   is a homodyne power spectrum. A phase-sensitive correlation is 
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and has a complex value. For classical random light,   (1)g   and (2) ( )g  have a relation that is 

[18] 

2
(2) (1)( ) 1 ( )g g         (1.11) 
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Performing a temporal Fourier transform on  (1)g   gives a heterodyne power spectrum. The 

(2) ( )g   correlation function in Eq. (1.11) is a phase-insensitive measurement, because taking an 

absolute value of  (1)g   loses phase dependence. However, the intensity fluctuations induced by 

random interference carry phase information by Eq.(1.4). Therefore, the beating interference 

caused by the Doppler shifts enables measurements of Doppler shifts indirectly. Homodyne and 

heterodyne spectra have mathematically similar characteristics with different sensitivities due to 

the beating interference. A more detailed analysis will be provided in CHAPTER 5. Because our 

interest is in Doppler shifts, the analysis results will be represented in power spectra.   

 

Dynamic speckle has intensity fluctuations caused by the specimen’s internal dynamics. One 

simple estimate of the motility of a specimen is the normalized standard deviation (NSD) of the 

intensity time series, which is [6-8] 

2
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I x y I x y
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 
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where N is the number of OCI time series. A map of NSD represents a motility contrast image 

(MCI) which shows the dynamic activity of a specimen.  
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Figure 1.5 Example of an intensity time series in dynamic speckle. 

 

Examples of OCI and MCI are shown in Figure 1.6. OCI is the temporal-average intensity of 

speckle. The baseline MCI has NSD values close to 1, which represents a highly active state. 

However, after adding chemotherapeutic agents, the MCI is significantly suppressed.  
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Figure 1.6 Backscatter brightness (BSB) map of reconstructed holographic image (OCI) and 

motility contrast image (MCI) of a canine lymphoma biopsy. OCI and MCI of post-dose speckle 

were measured 7 hours after adding CHOP (doxorubicin (10µM), 4-hydroxycyclophosphamide 

(5µM), vincristine (60 nM), and prednisolone (0.6 µM) with 0.1% DMSO) [19]. 

1.4 Temporal Fourier Transformation and Power Spectrum 

A power spectrum can be obtained by conducting a temporal Fourier transform on a time-

dependent signal. Dynamic speckle produces a time series from an intensity array. Conducting a 

temporal Fourier transform on speckle time series produces a power spectrum of the dynamic 

speckle. The temporal Fourier transform for obtaining a power spectrum is  
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where, I(rij,t) is the time series of intensity at coordinate rij, and the total number of pixels is N.  
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Figure 1.7 Calibration experiments on dynamic speckle and power spectra. (a) Schematic diagram 

of the experimental design. Two identical pieces of paper were prepared in plastic wells. One is 

fixed at the bottom and the other one is sinking with a constant velocity caused by the water surface 

evaporation. (b) Homodyne fluctuation power spectra of the two paper targets on a log-log scale. 

A Doppler peak appears in the power spectrum of the sinking paper at 0.45 Hz, which corresponds 

to a settling speed of 150 nm/s. 

 

Dynamic speckles from two identical pieces of paper were measured (shown in Figure 1.7). One 

remained stationary, and the other vertically moved with a constant velocity caused by water 

surface evaporation. The water temperature was set to be 37 degrees Celsius and the evaporation 

speed was estimated at 10 mm/day (100 nm/s). To measure the speed of paper induced by water 

evaporation, a circular shaped paper with a 3 mm diameter and 15 m thickness floated at the 

water surface. The diameter of the paper was slightly smaller than the radius of a 96-well plate’s 

reservoir diameter. When the paper was at the coherence-gated depth, a holographic dynamic 

speckle was recorded with 25 fps for 20 seconds. Fourier transformation on the 500-frame intensity 

time series has 249 positive and negative non-zero frequency components and one DC component 

at  = 0. Positive and negative non-zero Fourier components are symmetric, and the positive 

components are plotted in Figure 1.7 (b).  The homodyne power spectrum shows a clear peak at 

0.45 Hz, which corresponds to a constant velocity of 150 nm/sec for the vertically moving paper.  

The homodyne spectrum shows only a “residual” Doppler peak.  In Chapter 5, a phase-sensitive 

heterodyne power spectrum will be shown that displays a strong Doppler signature for the sinking 

paper target.  Because living tissue has isotropic motion (and little or no directed motion), the 

homodyne detection approach provides the characteristic Doppler spectrum while maintaining 
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better spectral stability compared to phase-sensitive heterodyne detection.  This will be part of the 

discussion of CHAPTER 5. 
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 PRECLINICAL TRIAL ON CANINE LYMPHOMA 

CANCER AND CHOP THERAPY 

One of the applications for BDI is phenotypic drug-response measurements on living biopsies 

taken from cancer patients during the diagnostic phase of their prognostic assessment. The drug 

response of the biopsies (measured by BDI) to various chemotherapeutic agents show consistent 

behavior. With a low sample-by-sample variation, a preclinical phenotype measurement by BDI 

can estimate the efficacy of the chemotherapeutic treatments. Predicting chemotherapy sensitivity 

becomes an important task to improve patients’ quality of life and prescribe a personalized drug 

combination [1]. Chemosensitivity tests that rely on two-dimensional cell culture derived from 

cancer patient biopsies have not achieved significant improvement in the selection of 

chemotherapy. The two-dimensional assay format loses the important three-dimensional tumor 

microenvironment that controls many aspects of drug distribution and efficacy [2-5]. Alternatively, 

tests that rely on xenograft growth in PDX models are time-consuming and expensive [6], and the 

PDX models produce non-native host microenvironments and possible phenotypic outgrowth that 

does not represent the personal biology of the cancer patient. Therefore, there is a pressing need 

to develop a rapid, inexpensive test of the efficacy of chemotherapy, applied to ex vivo biopsies, 

that can inform doctors about patient resistance to standard-of-care treatments. 

2.1 Introduction to Preclinical Trial for Chemotherapy Efficacy Assessment  

Patient resistance to chemotherapy is a major problem for cancer treatment. Although there is 

standard-of-care for specific cancers, it has been statistically shown that only about 40% of patients 

experience remission (averaged across all cancers and treatments). Assays for the selection of 

effective drugs have relied on 2D cell culture from patients, but it has not shown a significant 

improvement over standard-of-care [1]. One reason may be that 2D cell culture often loses the 3-

dimensional characteristics and local microenvironment of the sample [2-5]. Non-Hodgkin 

lymphomas (NHL) in dogs have histopathologic, molecular, and clinical features similar to NHL 

in humans [7]. Doxorubicin-based combination chemotherapy is the standard of care for dogs with 

NHL with the goal to provide durable cancer remission and long-term disease palliation while 

preserving the quality of life, rather than to cure cancer. Clinical endpoints can be assessed rapidly 
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in dogs with NHL. Objective response to chemotherapy appears within days following treatment, 

and the progression-free survival time (PFST) after chemotherapy is approximately 4–9 months 

[8]. Spontaneous NHL in dogs is biologically and clinically diverse, with a response to 

chemotherapy varying dramatically from dog to dog. The heterogeneity in response to therapy 

makes NHL in dogs an appropriate model for comparative oncology in which to study the canine 

analog of the human disease. Despite this heterogeneity, ex vivo biodynamic imaging (BDI) has 

shown great promise as a means to discriminate NHL in dogs that will respond favorably or 

unfavorable to chemotherapy. For instance, Custead et al. [9] reported that ex vivo BDI on canine 

B-cell lymphoma predicted sensitivity to single-agent doxorubicin chemotherapy with high 

accuracy. A preclinical trial was performed which directly tested chemotherapeutic-agent 

responsivities by measuring the dynamics of patients’ biopsies. The preclinical trial included 19 

enrolled canine patients with Non-Hodgkin lymphomas (NHL). Biopsies were collected at the 

Purdue college of veterinary medicine. For each patient, 32 biopsy-cells were prepared and 

standard-of-care drugs were applied. BDI measured the drug response phenotypes and were 

analyzed by machine-learning software.   

 

The study protocol was approved by the Purdue Animal Care and Use Committee (PACUC), and 

written informed consent was obtained from each dog’s owner before enrollment. All dogs 

underwent surgical lymph node biopsy at the time of enrollment. A portion of each dog’s lymph 

node biopsy was submitted for histopathologic confirmation of disease, while the residual portion 

was reserved for ex vivo BDI. Following the biopsy, all dogs were treated with the previously-

described 25-week CHOP chemotherapy protocol. CHOP combination therapy consists of 

doxorubicin, prednisolone, vincristine, and the active metabolite of cyclophosphamide. The 

therapy is administered as a combination therapy in humans, but as a sequence of monotherapies 

in dogs. Objective response to chemotherapy was assessed by caliper-based measurement of 

peripheral lymph nodes, according to previously-described criteria [10]. Dogs that completed their 

25-week course of chemotherapy were re-evaluated at the PUVTH once monthly until the time of 

measurable cancer progression or death due to any cause, whichever came first. Progression-free 

survival (PFS) time for each dog was defined as the time (in days) from initiation of CHOP 

chemotherapy to the time that the sum of the longest diameters of up to 5 peripheral lymph nodes 

was at least 20% greater than its lowest recorded value. 
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2.2 Chemotherapeutic Agents Phenotypes Measured by Biodynamic Imaging 

Harvested biopsies from a preclinical trial patient were dissected into 16 pieces at the college of 

veterinary medicine in Purdue and immobilized in a 96-well plate by agar. The volume of the well 

is 350 L, and 50 L was filled by a dissected biopsy and an agar immobilization unit. The rest of 

the volume was filled by RPMI-1640 medium containing penicillin (100 U/ml), streptomycin (0.1 

mg/mL), and 25 mM HEPES. For reagents, 0.1 % DMSO was used as a carrier agent, and CHOP 

chemotherapeutic agents were prepared. When applying chemotherapeutic agents, 150 L of 

RPMI-1640 medium was subtracted and prepared drugs were added.  

 

The protocol for biopsy phenotyping by BDI consists of 3 hours of baseline measurements and 7.5 

hours of post-dose measurements. For a given patient, 32 sections of a single lymph-node biopsy 

were measured over two days, and 5-replicate-wells were prepared for each drug. The 

measurement and data analysis took 12 hours and 4 hours, respectively. Drug phenotypes could 

be obtained within one day after a biopsy was delivered. A control group of biopsy segments was 

treated with 0.1% DMSO which is the drug carrier. 

2.3 Phenotype Correlation and Similarity Matrices for Machine Learning 

The drug-response spectrogram averages are shown in Figure 2.1.  These are 2D plots of power 

spectra normalized by the baseline measurement. Drug-response phenotype spectrograms D(,t) 

were generated by 

 0( , ) log ( , ) log ( )D t S t S        (2.1) 

where the baseline S0 is a 4-baseline average [11] 
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Figure 2.1 Spectrograms of various drug-response phenotypes. (a) Drug-resistant spectrograms 

and (b) sensitive spectrograms. (c) Spectrogram difference between resistant and sensitive groups. 

Prednisolone showed a minimal phenotypic difference, and Doxorubicin showed the most 

significant phenotypic difference [12]. 

 

The averaged power spectrograms show the phenotypes of the corresponding drugs. The 

spectrograms were converted into feature values using coefficients Pn of Legendre polynomials  
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The set of coefficients form a multi-dimensional vector v, and each spectrogram can be represented 

by this feature vector, where each vector component is called a biomarker [11-14]. Feature vectors 

are multi-dimensional vectors and their correlations were obtained by taking direction cosines. 

Similarity matrix elements Aij are direction cosine of feature vectors of ith and jth patients vi and 

vj obtained as 
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The direction cosine value becomes positive unity or negative unity in cases of perfect correlation 

and anti-correlation, respectively. A similarity matrix in Figure2.2(b) displays the direction cosine 

cross-correlation between all feature vectors.  

 

Figure 2.2 (a) Feature vectors of patients and (b) similarity matrix. (c) Progression-free survival 

time (PFS) [12]. 

 

The degree of correlation of the similarity matrix with clinical outcome can be used to predict 

which phenotype is drug resistant or sensitive by applying machine learning to analyze the feature 

vectors and classify their phenotypes. The linear separability of resistive and sensitive groups by 

an N-dimensional hyperplane was estimated using a neural perceptron algorithm [15, 16]. A 

perceptron is the simplest possible neural net with a single neuron having multiple inputs (the 

values of the feature vector) and a single output (clinical outcome). The optimization process finds 

the neural weights of the inputs and the bias of the neuron that minimizes a cost function. The 

neuron sigmoidal response function is a hyperbolic tangent (tanh) that saturates to ± 1 for large 

positive/negative arguments that are compared to the ± 1 classification based on the PFS. The cost 

function uses a chi-squared error and a regularization cost. The regularization cost measures the 

mean squared distance from the mean hyperplane that is defined as the bisector of the vector 

between the center of mass of each class of points. Regularization is required when finding 

hyperplanes to keep the hyperplane parameters from drifting to large values during optimization. 

The regularization factor in our analysis was chosen to be 10%, which is a commonly-used rule-

of-thumb. The perceptron is trained using gradient descent on the cost function. The linear 

separability analysis of the canine B-cell lymphoma trial agreed with objective clinical outcome 

(progression-free survival) with 84% accuracy [12]. 
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An alternative linear separation method to cross-validate the perceptron machine-learning process 

was done by log-likelihood (LL) estimation [15] 
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       (2.5) 

where the sum is over all selected biomarkers for a given patient and PR and PS are the probability 

density function of resistive and sensitive groups according to their clinical outcomes. A 

comparison on the perceptron and LL is shown in Figure 2.3.  The classifier results were obtained 

through training a simple neural perceptron. The perceptron was trained using the hold-out 

procedure in which 18 of the dogs were used for training and the 19th dog was classified, and then 

repeating the hold-out procedure 19 times (once per dog). The perceptron identified the best linear 

separability of the point cloud in the feature space separating the sensitive from the resistant 

patients. All but three patients (Cli, Jo and Jul) were correctly classified for the majority of the 

training runs using gradient descent for cost-function minimization. Three additional patients were 

marginal (Yum, Cod and Bai). The patient Jul showed very strong biodynamic signatures of 

therapy sensitivity, yet had a medium PFS time similar to Boo and should have been classified as 

resistant. On the other hand, no distinct clinical observations could be highlighted for the other 

two misclassified patients and the three marginal cases. It is important to point out that the 

biodynamic assay measures the response of biopsy tissues ex vivo and disconnected to the immune 

system of the patient, while the ability to sustain remission depends on an individual’s immune 

system. Measures of endogenous anti-tumor immunity in lymphoma patients correlates with 

survival, and it is becoming clear that the immune system is probably a major factor keeping a 

cancer in remission once that remission has been produced by the chemotherapy. 
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Figure 2.3 Comparison of log-likelihood and perceptron quorum. Two linear separabilities in N-

dimensional space showed 84 % accuracy according to patient PFS [12]. 

  

Network similarities were obtained and are visualized in Figure 2.4. The similarity network 

showed 3 miss-classified cases (1 false-negative and two false positives). The direction cosine is 

independent of the overall magnitude of the feature vector while capturing the similarities in the 

patterns of feature values. The resulting similarity matrix is converted into a similarity network by 

selecting a threshold that converts the similarity matrix into an adjacency matrix for the network. 

The key result of the similarity network analysis is the segregation of the long-PFS and short-PFS 

patients into two relatively distinct sub-clusters.  
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Figure 2.4 Similarity network between canine patients. Red nodes and blue nodes represent short-

PFS and long-PFS respectively. The separation between short-PFS and long-PFS showed 84% 

accuracy with one false-negative and two false-positives [12]. 

2.4 Discussion  

This chapter described the application of biodynamic digital holography to assess the response of 

ex vivo living biopsies to a standard-of-care combination therapy (CHOP) that is prescribed for 

both human and canine patients with non-Hodgkin’s B-cell lymphoma. In the ex vivo testing, 

separate biopsy samples were exposed to physiologically-relevant doses of each of the single-agent 

therapies (doxorubicin, cyclophosphamide, prednisolone, and vincristine) as well as the 

combination therapy. By testing the single-agent therapies, the drug-response biodynamic 

signatures of each agent (having distinct mechanisms of action) are isolated, allowing the 

individual responses to be assessed in addition to the response to the combination therapy. The 

mean-subtracted and normalized biomarkers are feature vectors in a high-dimensional feature 

space representing the response of each of the 19 canine patients to the ex vivo treatments. The 

analysis identifies biodynamic biomarkers, selected from the collection of single-agent and 

combination therapies, that are most consistent in the classification of patient response to therapy. 
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Relative similarities among all pairs of patients are calculated using the feature vectors. While 

there are many ways to define similarity in a multidimensional vector space  we found that the 

direction cosine provides a simple, robust and reproducible measure of similarity among the 

patient drug-response feature vectors. The direction cosine is independent of the overall magnitude 

of the feature vector while capturing the similarities in the patterns of feature values. The resulting 

similarity matrix is converted into a similarity network by selecting a threshold that converts the 

similarity matrix into an adjacency matrix for the network. The key result of the similarity network 

analysis is the segregation of the long-PFS and short-PFS patients into two relatively distinct 

subclusters. The classifier results were obtained through training a simple neural perceptron. The 

perceptron was trained using the hold-out procedure in which 18 of the dogs were used for training 

and the 19th dog was classified and then repeating the hold-out procedure 19 times. The perceptron 

identified the best linear separability of the point cloud in the feature space separating the sensitive 

from the resistant patients. All but three patients (Cli, Jo and Jul) were correctly classified for the 

majority of the training runs using gradient descent for cost function minimization. Three 

additional patients were marginal (Yum, Cod, and Bai). The patient Jul showed very strong 

biodynamic signatures of therapy sensitivity, yet had a medium PFS time similar to Boo and should 

have been classified as resistant. In the clinical assessment, Jul was a very large dog and 

subsequently may have been under-dosed. The selection of individual doses is based on the 

patient's surface area, which is a procedure that may under-dose large patients. The fact that Jul 

was an outlier in the patient size distribution may account for its incorrect classification in this 

trial. On the other hand, no distinct clinical observations could be highlighted for the other two 

misclassified patients and the three marginal cases. It is important to point out that the biodynamic 

assay measures the response of biopsy tissues ex vivo and disconnected to the immune system of 

the patient, while the ability to sustain remission depends on an individual’s immune system. 

Furthermore, there may be some physiologic processes within the patients that the biodynamic 

profile cannot capture, such as drug delivery to the tumor. Finally, tumor heterogeneity as well as 

biopsy subsampling heterogeneity contributes large variances to the biodynamic measurements 

with only 3 to 5 replicates for each treatment. The multiple subsamples help to average over the 

variability, but some patients may still have large variances. Future developments of higher 

multiplexed assays and stronger histological guidance for subsample dissection may further reduce 

the effects of sample variance. Producing spectrograms from smaller regions could image this 
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heterogeneity directly, further improving the spatial selection of the most relevant drug responses. 

Also, it would be interesting in future work to study whether patients displaying marginal 

biodynamic response signatures have different genotypes. The biodynamic signatures of drug 

mechanisms of action are only beginning to be mapped out. The connection between physiological 

effects of a drug, and especially the personal response, are still largely unknown. Nonetheless, the 

high accuracy of this preclinical trial and the strong phenotypic differences between sensitive and 

resistant patient responses provide a significant approach for predicting patient response to therapy. 

Future development of biodynamic profiling will continue to utilize tool compounds and reference 

drugs with known mechanisms of action to identify the biodynamic signatures of specific 

subcellular processes. More extensive use of neural networks in the analysis of biodynamic 

biomarkers may help in this process as well as in the selection of the biomarkers that carry the 

most information related to drug sensitivity. An important next step in the analysis, using 

multilayer neural networks with hidden-layer neurons, is to develop a continuous-valued predictor 

that can differentiate strong responders from moderate responders, providing a continuous degree 

of sensitivity to help clinicians make decisions. Future developments of biodynamic profiling will 

seek to identify which therapies are best matched to individual patients for personalized therapy 

selection. Additional biodynamic therapy assessment studies are currently underway in human 

ovarian and breast cancer as well as human esophageal cancer.  
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 BIODYNAMIC IMAGING OF BACTERIAL SWARMS 

3.1 Environmental Rapid Change Induced Migration 

Bacteria are among the simplest lifeforms on Earth. Their biological features are well known and 

deeply studied. However, physical aspects such as swarming or chemotaxis mechanisms are still 

under investigation. Swarming motion and long-distance bacteria interaction by chemical 

signaling show cellular communication. As bacteria are the most primitive lifeform, understanding 

the biophysical characteristics of bacterial collective motion would provide a preliminary 

understanding of the random process of homogeneous individuals. To establish statistics of 

swarms, it is necessary to collect dynamic information of swarms beyond the order of the 

microbiome’s cell size. Frequently-used methods to measure bacterial motility are soft agar assay 

and optical imaging [1-4]. The soft agar assay requires many cell cycles to measure a meaningful 

colony diameter to estimate bacterial motility, which limits real-time and high throughput 

measurements. Also, dynamic characteristics vary over time. Optical imaging methods [1-3, 5-8] 

have a limited field of view (FOV), and data acquisition of bacterial motility is localized. The 

advantages of BDI compared to conventional motility measurements are: i) the coherence-gate and 

the large beam diameter enable the collection of signals from a large number of the specimen 

(several millions of bacteria), ii) quasi-real-time measurement using a short data acquisition time, 

and iii) controlling the chemical composition of the medium during measurement. The 

measurements conducted by BDI in this chapter tested nutrient-shock and anti-biotic-driven 

motility within a high-cell-density bacterial pellet. The following chapter explores bacterial 

infecting living tissue.  

 

Bacteria strains used for the experiments are motile bacteria. Their flagella induce swimming and 

tumbling motions and bacteria can freely migrate by changing the frequencies of the motions. The 

dynamics of bacteria at free space and swarm have distinct characteristics. Using dynamic light 

scattering is one of the effective ways to study the dynamics of a huge number of bacteria. BDI 

has a beam diameter illuminating a sample is about 400 m, which covers the area about 0.5 mm2, 

and assuming bacteria are packed in the scanning volume (beam diameter times the coherence-
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gating depth (20 m)), then the signal collected at the FP is from about 20 millions of bacteria. To 

make a packed structure of bacteria, the bacteria medium was centrifuged.  

 

The different strain has different characteristics. Escherichia coli (E. coli), Salmonella enterica (S. 

enterica) Listeria monocytogenes (L. monocytogenes) Listeria innocua (L. innocua) are foodborne 

pathogens and commonly found in daily lives. Their physical dimensions and microscopic images 

are shown in Figure 3.1. Bacteria were cultured in an LB medium (1% tryptone, 0.5% bacto yeast 

extract, 0.1% glucose, and 1.5% bacto agar) [9] for 24 hours at 37 degrees Celsius to reach 108 

CFU/ml concentration. During cell culture, test tubes were shaken with 90 rpm. L. innocua have a 

slow reproduction rate, so cells were cultured for 48 hours.   

 

 

Figure 3.1 SEM pictures of (a) E. coli [10] (b) S. enterica [11] and (c) L. monocytogenes [12]. The 

dynamic and physical characteristics are shown in the table below. 

 

Table 3.1 Bacterial strains and corresponding physical characteristics 

Strain E. coli L. monocytogenes S. enterica 

Speed (m/s) 20[13] 6[14] 20[15] 

Width (m) 0.25[16] 0.7~1.5[17] 0.4~0.5[18] 

Length (m) 1~2 2.0~5.0 1~2 

 

Table 3.2 Bacterial strain information 

Strain E. coli L. monocytogenes L. innocua S. enterica 

ID# 43894 104035S  Phage Type 21 
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3.2 Nutrient and Osmolarity Shock on Bacteria Pellets 

To measure the 3D dynamics of bacteria, a bacterial pellet is formed by centrifuging a bacterial 

medium (108 CFU/mL).  The centrifuging process increases the density of bacteria (1010 CFU/mL) 

and forms an opaque viscous material. The cellular packing of a bacterial pellet is easily disrupted 

by various external stimuli such as mechanical perturbations, nutrients, osmotic pressure, or 

antibiotics.  The bacteria in steady-state are relatively quiescent in terms of speckle motility but 

external stimuli produce bacterial dynamics within a pellet. To measure bacterial dynamics within 

a pellet, 20 L of the pellet was prepared at the bottom of a 96-well plex and carefully dipped in 

300 L of 1% NaCl medium. To establish bacteria in the steady-state, measurements were 

conducted after 5 hours of resting time. After 5 hours, 3 baselines were measured and half of the 

medium (150 L) was subtracted. Then the well was filled by double-concentration LB medium 

(2% tryptone, 1% bacto yeast extract, 0.2% glucose, and 3% bacto agar) after measuring baselines, 

so the medium inside of the well has the standard LB medium chemical component concentration. 

The wells were held at 36 degrees Celsius, which is an optimized temperature for bacteria. An 

experiment consisted of 3 baselines and 13 post-dose measurements. Each measurement took 

approximately 2 minutes, and 2058 frames were recorded including 10 background frames. To 

investigate the nutrient shock effect, 150 L of the LB medium was added. The pipetting 

perturbation effect was tested by subtracting and adding the same medium from the well (old 

medium). The effect of adding a fresh medium without nutrient was examined by refreshing half 

of the medium volume.  
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Figure 3.2 OCI and MCI image of E. coli pellet. LB medium was applied to induce a motility 

response. Post-dose OCI and MCI were measured immediately after applying the lysogeny-broth 

(LB) medium. MCI enhancement at post-dose is prominent when compared to baseline MCI. 

 

The backscatter brightness (BSB) and the NSD are shown in Figure 3.3 for E. coli,  S. enterica, 

and L. monocytogenes pellets.  The three curves are measurements of responses after applying the 

old medium (subtracted from a well containing a bacteria pellet), 1% NaCl and the LB medium, 

respectively.  When the LB medium was applied, a prominent increment in BSB was observed, 

while the wells with other reagents did not show observable changes.  The BSB increases within 

6 minutes and remained at the same level.  The motility shows an immediate increase after 

applying the LB medium and decreases slowly over 10 minutes.  The final motility value becomes 

lower than the initial NSD for E. coli but remains higher in the cases of L. monocytogenes and S. 

enterica. 

 

An increase in BSB may be caused by increased optical heterogeneity in the pellet.  The fact that 

it stabilizes at a higher value than the starting value in all three bacteria cases suggests that there 

is a permanent (over at least 20 minutes which is comparable to a cell cycle) change in the physical 

property of the pellet, or dynamics of the individual bacterial cells, stimulated by the LB medium.  
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The immediate increase in the motility is probably caused by chemotaxis, but the later decrease 

could be caused by increased BSB (NSD is normalized by BSB). 

 

Figure 3.3 Temporal responses of BSB and NSD for Escherichia coli (E. coli), Salmonella enterica 

(S. enterica), and Listeria monocytogenes (L. monocytogenes) pellets after applying various 

reagents.  The three curves represent the temporal responses of the old medium, 1% NaCl and the 

LB medium, respectively. All data points are 3-replicate averages. 

3.3 Doppler Spectroscopy of Bacterial Pellets 

To study dynamics induced by chemotaxis, the power spectral density was analyzed which is 

called tissue dynamics spectroscopy (TDS) [19]. Previously, TDS studied chemotherapeutic 

response phenotypes of biopsies, xenografts and standard cancer cell lines.  Applying the same 

approach to the bacterial pellets, 3D dynamics that occurred after applying the LB medium can be 

investigated by TDS. It is known that motile bacteria have flagella and gain propulsion force by 

manipulating flagella. To compare the dynamics of bacteria in the stationary state or dynamic state, 

extracted pellet rested in 1% NaCl medium for 5 hours to ensure the bacteria in pellets are in the 
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stationary state. 3 baselines were measured (Figure 3.3) and the LB medium was applied to induce 

chemotaxis.  The baseline spectra for E. coli, S. enterica, and L. monocytogenes are shown in 

Figure 3.4.  The frequency span is from 0.01 Hz to 10 Hz which corresponds to the approximate 

speed of 3 nm/s to 3 m/s.  The baseline spectra show 1/f spectral density which represents the 

Doppler signal produced by 3D random diffusive dynamics [20]. 

 

 

Figure 3.4 Baseline spectra of E. coli, S. enterica, and L. monocytogenes. The spectra in all three 

samples show with 1/f-like spectral density. The expected bacterial dynamics of the spectral 

densities are 3D isotropic motion [20].  
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Figure 3.5  Example of a Doppler-edge fit to the bacterial pellet response to a nutrient shock.  The 

average edge frequency and Doppler number are shown for two times: one immediately after the 

nutrient application, and another 2 minutes later, showing a rapid relaxation back towards the 1/f 

spectrum. 

 

The response of an E. coli pellet to a nutrient shock is shown in Figure 3.5.  Immediate spectral 

enhancement occurred after the LB medium was applied. The shape of the spectral enhancement 

is called a Doppler edge. From the Doppler edge, the average speed and the characteristic time can 

be estimated by obtaining the maximum spectral enhancement. The Doppler edge’s maximum 

spectral enhancement occurs at the inverse of the characteristic time c [20], 

1

c
 q v       (3.1) 

where q and v are the wavevector and scattering element’s velocity respectively. The immediate 

responses of Doppler edges are shown in Figure 3.6(a) for several bacterial strains. The maximum 

spectral density enhancement occurred at 0.2 Hz for E. coli (corresponding to the average speed 

of about 100 nm/s).  The Doppler spectral density shows a clear hump after applying the LB 

medium and estimated Doppler numbers are about ND = 3.  This Doppler signal represents about 

100 nm/s average swarming speed produced by the LB medium.  Within 2 minutes after applying 

the LB medium, the Doppler edge shifted to 0.05 Hz with a lower-bound Doppler number of 1.  

This rapid relaxation process is consistent with the rapid relaxation of NSD shown in Figure 3.2.  
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E. coli showed the strongest spectral response. S. enterica showed a moderate enhancement and L. 

monocytogenes showed the weakest enhancement.  The spectral enhancement comparison is 

shown in Figure 3.5 (b) by normalizing the enhanced spectral density by the average baseline 

spectral density.  All bacteria showed spectral enhancements and prominent Doppler edges after 

applying the LB medium. 

 

 

Figure 3.6 (a) Doppler edges produced by applying the LB medium. (b) Relative spectral 

enhancements of E. coli, S. enterica, and L. monocytogenes pellets are demonstrated.  The 

responses occurred immediately after applying the LB medium. 

 

The temporal responses of spectral density can be visualized in a 2D spectrogram by using Eq. 

(2.1). The nutrient shock spectrograms of various bacterial strains are shown in Figure 3.7. The 

background suppression that occurred in the E. coli response was caused by the enhanced BSB 

enhancement shown in Figure 3.2.  
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Figure 3.7  Nutrient shock-responses of E. coli, S. enterica, and L. monocytogenes pellets. 

Dramatic low-frequency enhancement occurred (the Doppler edge). The nutrient shock showed 

the strongest response in E. coli. Spectra were normalized by the baselines averages. (Intensity 

normalization) 

 

The measured average speed of 100 nm/s is much slower than the free-swimming speed of E. coli 

that is about 30 microns per second.  The speeds of bacteria in pellets may be suppressed by the 

dense structure of the pellets.  Detailed pictures of bacterial motions will be demonstrated in 

CHAPTER 5 on phase-sensitive detection.  

3.4 Tissue Dynamics Spectroscopy (TDS) of Antibiotic Responses 

Testing antibiotic efficacy is one possible application of BDI. The indiscriminative use of 

antibiotics has caused the rise of antibiotic-resistant bacteria. Rapid detection of antibiotic-resistant 

bacteria and selecting sensitive antibiotics is an important task, and the bacterial motion measured 

by BDI may demonstrate a sensitive or resistant response of bacteria when various antibiotics are 

applied. An example of inhibition of E. coli dynamics by ethanol is shown in Figure 3.8. The 

spectral densities of mid and low frequency are inhibited by approximately 60%, while the highest 

frequency is relatively unaffected. The response of E. coli to NaOH and bleach are shown in Figure 

3.9.  The responses of ethanol and bleach are similar, while NaOH shows broad inhibition of 

activity (broad-frequency cell death). 
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Figure 3.8 Response of E. coli pellets to ethanol (70 %).  The response is inhibitory with strong 

60% suppression in the mid and lower frequencies. 

  

 

 

Figure 3.9 Spectrograms of E. coli pellets after applying NaOH and bleach respectively. Low 

frequency is highly suppressed after adding chemical agents. 
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The responses of E. coli, S. enterica, and L. monocytogenes pellets to the antibiotic Ciprofloxacin 

(Cipro) are shown in Figure 3.10(a). Cipro is a broadband antibiotic used for various bacterial 

infections. The mechanism of action of Cipro is inhibiting DNA gyrase, a Type II topoisomerase, 

and topoisomerase IV [21, 22] which prohibits DNA replication and results in cell death.  To 

increase water solubility, Ciprofloxacin hydrochloride was used for the antibiotic resistance test 

(3.5 g/mL). The spectral density changes in the spectral content for Cipro are shown in Figure 

3.10(b), and the corresponding spectrograms are shown in Figure 3.11.  The response to Cipro is 

similar to the response produced by the LB medium.  Bacterial strains are stimulated by Cipro and 

induce chemotaxis.  L. monocytogenes has the weakest response to Cipro, while E. coli and S. 

enterica showed stronger Doppler edge enhancement.  The highest frequencies in all three cases 

are not affected.  In contrast to the nutrient shock, the Nyquist floors of spectral densities were not 

altered.  

 

Figure 3.10 (a) Ciprofloxacin (Cipro) responses of E. coli, S. enterica, and L. monocytogenes 

respectively. (b) The spectral response within 2 minutes after applying Cipro to the three bacterial 

strains.  The Nyquist floors for 3 strains showed almost identical values.  The low-frequency 

responses were immediate and weaker than for the LB medium.  L. monocytogenes has the weakest 

response to Cipro.  The corresponding spectrograms are shown in Figure 3.11 
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Figure 3.11 Cipro response spectrograms of E. coli, S. enterica, and L.monocytogenes. All strains 

do not have Cipro resistance. 

 

The antibiotic responses in Figure 3.11 showed a marginal difference compared to the nutrient 

shock shown in Figure 3.7. The reason why the bacteria showed similar dynamics is that the 

bacteria swarm when they are exposed to exotic chemical compounds. To test the antibiotic 

responses further, mammalian host cells are infected by the bacterial strains. The infection assay 

testing antibiotic sensitivity will be demonstrated in CHAPTER 4.  

3.5 Spectral Density Normalization 

Previous measurements on biological samples have not had significant BSB enhancement. 

However, BSB enhancements by bacterial inoculation are physical phenomena that may be caused 

by bacterial proliferation and increased cellular heterogeneity. Increasing BSB enhances power 

spectral density and different spectrogram normalizations would result in different analyses. 

Conventionally, spectral densities were normalized by the sum of spectral components including 

the DC component ( 0  ). However, a sudden increase in BSB also increases the DC component 

and makes interpretations of spectrograms confusing. To compensate for the effect and to focus 

on spectral shifts, three different normalization methods are defined.  
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The first normalization is simply the averaged raw baseline spectral density. The result includes 

the shift of optical power, and the method is not appropriate for analyzing bacterial infection. The 

second method is normalizing power spectral density by the intensity square. As the total sum of 

spectral density is the optical intensity square, this normalization method represents the relative 

dynamic density and excludes the optical power shift. The method assumes the spectral density 

beyond 12.5 Hz contributes to the Nyquist floor by the stroboscopic effect. The last method is 

similar to the second method, but the normalization only considers the limited bandwidth (0.01 Hz 

~ 12.5 Hz) which deals with the power spectral density from the perspective of probability. The 

methods are called “Raw spectrum”, “intensity normalization”, and “zero-sum normalization”, 

respectively. For instance, 4 different spectrograms of S. enterica infection (107 CFU/well) with 

different normalization methods are shown in Fig 3.12.  

 

 

Figure 3.12 Spectrograms obtained from different normalization methods. S. enterica infection of 

DLD-1 (107 CFU/well). 

 



 

 

51 

In Figure 3.12, the spectrogram derived from raw spectra shows strong enhancement at the low 

and high-frequency region. The conventional Onekey normalization partially compensates the 

optical power shift effect, but the spectral enhancement still contains the BSB enhancement effect. 

Intensity normalization shows the temporal relative dynamic density changes after inoculation 

while the overall power spectral density is suppressed. Zero-sum normalization shows the 

probabilistic dynamic density after inoculation. 

3.6 Examples of Normalizations and Representations 

To demonstrate the perspectives of the normalization methods, two cohorts of genetically identical 

host-cells were prepared using two different culture conditions and were subsequently infected by 

L. monocytogenes (106 CFU per well). The experiments performed in this paper used a relatively 

fast growth technique that uses non-adherent Corning U-bottom plates to allow cells to aggregate 

within two days to form lose spheroid samples.  Alternatively, a rotating bioreactor can be used to 

grow tumor spheroids starting from small clumps of cells.  The bioreactor growth requires 

approximately 3 weeks and produces more tightly bound tumor spheroids with a significantly 

denser extracellular matrix than for the U-bottom samples.  

 

The signature of L. monocytogenes infecting U-bottom spheroids is compared to the infection of 

bioreactor-grown spheroids in Figure 3.13 for the different normalization methods. The lower 

extracellular matrix (ECM) density of the U-bottom samples produces higher characteristic 

frequencies than the ECM-rich bioreactor samples.  The characteristic frequencies are a factor of 

3x to 5x lower for the bioreactor tissue, reflecting the tighter cellular junctions with the ECM. The 

infection signature of higher ECM density shows a minor spectral enhancement in the high-

frequency region (1~10 Hz) after inoculation while the lower ECM density shows globally 

suppressed spectral density.  
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Figure 3.13 L. monocytogenes infection of DLD-1 with different extracellular matrix (ECM) 

densities. Infection signature by L. monocytogenes of DLD-1 with lower ECM density (U-bottom 

growth) and higher ECM density (bioreactor growth).  The red dashed lines represent the L. 

monocytogenes inoculation by 106 CFU per well.  The average rate of L. monocytogenes infection 

of higher ECM density shows slower development.  The vertical dashed lines represent the 

frequency shift of maximum Doppler spectral density at f1 to f2. 

 

The physical representation of the 3 different normalization methods can be summarized by 

comparing the spectrogram shapes of the low ECM density cohort and the high ECM density 

cohort. From the un-normalized spectrograms, the maximum spectral density bands can be 

compared.  The enhancements include increased BSB effects, but the maximum densities represent 

the maximum dynamic density enhancement after inoculation. The un-normalized spectrograms 

cannot distinguish the enhancement or suppression of the quantitative dynamic, but the qualitative 

comparison of the dynamic density enhancement is possible. The intensity normalized 

spectrograms show a quantitative dynamic density comparison. Spectral densities are compensated 

to exclude BSB enhancement effects, and the quantitative dynamic density shows the difference 

at the 1 Hz band. The high ECM density cohort has lower high-frequency dynamics which possibly 

show the dynamics of L. monocytogenes immediately after inoculation. The estimated L. 

monocytogenes speed is 330 nm/s (about 20 m/min) which approximately agrees with the speed 

measured from previous reports (10 m/min). The zero-sum normalization spectrograms show a 
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temporal probability of dynamic densities. The spectral density of the low ECM density cohort has 

a stable spectral density of about 120 minutes after inoculation. However, the spectral density of 

the high ECM density cohort shows stabilization after 240 min. 

3.7 Discussion 

Bacterial motility induced by various reagents were demonstrated. Bacteria is the simplest lifeform, 

and the swarming characteristics have been recently highlighted to help understand cell-to-cell 

communication and long-distance interactions. Studying swarming dynamics with conventional 

methods often hinder establishing reasonable statistics because the number of bacteria forming a 

swarm is enormous. BDI provides statistical average by measuring Doppler shifts over a million 

bacteria at the same time. To provide good signal-to-noise ratios and statistics, the bacterial 

medium was condensed and pellets were extracted. Several strains of bacteria are used to test the 

swarming motions induced by various reagents. The application of the LB medium stimulated a 

strong mechanical excitation of the bacterial pellet and changed the optical characteristics. The 

brightness of the pellet increased immediately after applying the LB medium which is possibly 

caused by increased optical heterogeneity. In contrast, applying Cipro induced persistent dynamics, 

but the brightness of the pellet did not change. Testing antibiotic resistance characteristics could 

not differentiate bacterial dynamics, because reagents always induced bacterial motion inside of 

the pellet. Infection of mammalian cells with a limited number of bacteria and their characteristic 

change will be demonstrated in CHAPTER 4. 
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 BIODYNAMIC IMAGING OF BACTERIAL INFECTION 

OF LIVING TISSUE 

4.1 Infection Assay of Pathogenic Bacteria within a Cell Line 

Immortalized cancer cell lines are a common and versatile resource as three-dimensional tissue 

surrogates to study intracellular dynamics in microenvironments that simulate natural living tissues 

[1-4].  These tissue constructs have characteristic biodynamic spectra that span three orders of 

magnitude in Doppler frequencies and tend to have characteristic frequencies, known as knee 

frequencies, that are a single broad spectral feature.  Different cell lines can display different knee 

frequencies depending on how cohesive the tissue is. To investigate infection phenotypes, DLD-1 

(adenocarcinoma cancer cell line) were used. All bacterial strains in this study are foodborne 

pathogens and they actively engage epithelial cells. DLD-1 is a cluster of epithelial cells and has 

a 3D structure that is expected to represent practical infection processes. 

 

Bacterial infection of living tissue occurs through several different mechanisms.  For instance, L. 

monocytogenes actively penetrate the cell membrane (Figure 4.1) [5], while S. enterica hijack the 

actin processes of the cellular membrane to allow them to be internalized (Figure 4.2) [6].  E. coli, 

in contrast, adheres to the exterior of the cell [7].  These different mechanisms may be expected to 

alter the underlying cellular dynamics of the tissue in different ways that may be related to the 

characteristics of the bacteria. DLD-1 was inoculated by various strains and the infection 

phenotypes of the bacterial strains were studied. Furthermore, antibiotic-resistant bacteria 

infection phenotypes were compared by treating with sensitive and resistive antibiotics.   
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Figure 4.1 L. monocytogenes infection mechanism.  (From [5]) L. monocytogenes physically 

penetrate a host cell’s membrane and internalize. After internalization, L. monocytogenes 

polymerize actin molecules and form polymeric Filament-actins (F-actin). The F-actin formation 

at the end of L. monocytogenes physically pushes toward the neighboring host cell and spreads the 

infection. The average propulsion speed is about 10 m/min. 
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Figure 4.2 S. enterica internalization.  (From [6]).  S. enterica adheres to a host cell’s membrane 

and manipulates F-actin formation. F-actin formation induces a local cellular membrane motion 

that engulfs S. enterica. Internalized S. enterica uses the host cell’s resources and replicates. After 

multiple replications inside of a host cell S. enterica saturates, bursts, and releases S. enterica 

daughter cells that forage other host cells.  

4.2 Infection-Induced Intracellular Activity 

The temporal responses of bacterial infection of DLD-1 spheroids are shown in Figure 4.3.  107 

colony formation units (CFU) of bacteria were inoculated per well [8]. All of the speckle brightness 

increased, and NSD decreased after bacterial inoculation.  L. innocua has a minimal effect on 

DLD-1 due to their inefficient replication [9], while other bacterial strains changed the optical 

characteristics of DLD-1.  E. coli inoculation induced the strongest BSB enhancement. The 

negative control has a stable BSB and NSD. 
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Figure 4.3 Inoculation with 107 CFU/well. (a) BSB change of E. coli and S. enterica, L. 

monocytogenes, and L. innocua after inoculation in DLD-1 spheroids (red dashed lines).  (b) 

Temporal responses of NSD. 

 

Bacterial replication inside of wells may enhance BSB significantly which may be caused by 

increased optical heterogeneity. 106 CFU/well inoculation is also demonstrated in Figure 4.4. S. 

enterica and L. monocytogenes showed a similar degree of BSB enhancement, while E. coli 

showed a decreased BSB enhancement compared to 107 CFU/well BSB enhancement.  
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Figure 4.4 Inoculation by a lower number of bacteria (106 CFU/well). (a) BSB enhancement of all 

strains showed a similar degree of enhancement. (b) NSD of L. monocytogenes decreased most 

rapidly and S. enterica showed the slowest decrease. 

  

BSB and NSD are two phenotypic features representing dynamic characteristics of DLD-1, but the 

significant enhancement of BSB might dominate NSD. To investigate the bacteria inoculation 

effect, the dynamic range (DR) was introduced as a BSB independent biomarker and compared. 

DR of the spectral density estimates the change in dynamics. DR is the ratio of the first 5 lowest-

frequency Doppler power spectral density average divided by the highest-frequency 5 components. 

DR decreases when the Nyquist floor increases. The increment of the Nyquist floor is contributed 

by the stroboscopic effect [10] which represents the increasing high-velocity dynamics above 12.5 

Hz bandwidth.  On the other hand, the dynamic range increases if the dynamics around 0.01 Hz in 

the low-frequency band is enhanced. The change in dynamic range relative to the pre-inoculation 

averages is shown in Figure 4.5. Increased dynamic range after inoculation was observed for E. 

coli, S. enterica, and L. innocua, but not for L. monocytogenes.  Non-monotonic behavior may 

represent successive “waves” of infection or competition for nutrients.   
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Figure 4.5 Dynamic range of (a) 107 CFU/well and (b) 106 CFU /well. The lower dose inoculation 

shows temporally delayed responses. 106 CFU inoculation of L. monocytogenes shows different 

behavior of 107 CFU which suggests 107 CFU inoculation partially captures Doppler signals from 

rapidly moving bacteria as well. 

 

The difference between 107 CFU and 106 CFU inoculations are compared in terms of DR in Figure 

4.5. Temporal DR responses of 106 CFU inoculation showed about 80 minutes of delayed response 

compared to 107 CFU inoculations. The reproduction cycle takes about 20~30 minutes and 80 

minutes correspond to 3~4 reproduction cycles (8~16 times) which is consistent with the initial 

inoculation concentration difference.  

 

Inoculations of 107 CFU/well and 106 CFU/well induce different optical characteristics due to the 

different number of bacteria/spheroid density. By assuming the bacteria inoculations spread 

bacteria at the bottom of the well, the bacteria density per area becomes 
63 10 CFU/mm2 and 

53 10 CFU/mm2 for 107 CFU/well and 106 CFU/well, respectively. Approximating the shape of 

DLD-1 spheroids as a cylinder with the diameter 1 mm and thickness 0.5 mm, the CFU of 

inoculated bacteria directly interacting with DLD-1 becomes 
62.4 10 CFU and 

52.4 10 CFU. 

The estimated bacterial density with a uniform infection of DLD-1 becomes 
97 10 CFU/mL and 

87 10  CFU/mL, and corresponding estimated optical densities (OD660) are 2.23 cm-1 and 0.2 cm-
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1, respectively [11]. The total intensity of scattered light from bacteria inside of DLD-1 spheroids 

can be estimated by the relation 

 

0 (1 10 )ODzI I        (4.1) 

 

From Eq.(4.1) and obtained ODs, the reflected light portions from bacteria are about 22% and 2% 

of incident light for 107 CFU/well and 106 CFU/well inoculation, respectively. The inoculation 

concentration 106 CFU/well was used for the antibiotic susceptibility assays.  

 

OCI images of DLD spheroids, before and after infection by E. coli, S. enterica,  L. monocytogenes, 

and L. innocua are shown in Figure 4.6 and Figure 4.7.  Infection increased BSB for all bacterial 

strains. Increasing bacterial density in the host cell increased BSB by increasing optical 

heterogeneity around 3D cellular structures.  The OCI images after infection showed a more 

heterogeneous intensity distribution.  Also, MCI showed overall suppression with heterogeneous 

NSD distributions. The shape of the speckles did not change significantly.   
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Figure 4.6 Initial and final (a) OCI and (b) MCI of DLD-1 spheroids infection by various bacteria 

strains by inoculating 107 CFU/well. 
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Figure 4.7 (a) OCI and (b) MCI for 106 CFU/well inoculation. 
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4.3 TDS of Infection Assays 

Bacteria-host-cell interaction can be quantified by measuring power spectral variation after 

inoculation. Doppler spectral bands correspond to different dynamics such as the rheology band 

(0.01 Hz), the membrane band (0.1 Hz), and the organelle transport band (1 Hz) [12]. Suppression 

or enhancement of the power spectral density represents changes in dynamic characteristics. The 

power spectral densities of DLD-1 under 107 CFU/well E. coli inoculation are shown in Figure 

4.8.  The initial spectrum of the DLD-1 has a knee frequency feature at 0.1 Hz (corresponding to 

a characteristic intracellular speed of 30 nm/sec).  When DLD-1 is exposed to E. coli, the spectral 

shape is converted to a 1/f spectrum with a suppression of the Doppler knee in the mid-frequency 

region, with an increased low-frequency rheology band, and a slight increase in the high-frequency 

region. Spectral densities are normalized by the intensity squared using the intensity normalization 

method. All spectrograms in this chapter used the intensity squared normalization. The TDS 

spectrograms of various bacterial infections are shown in Figure 4.9. 

 

Figure 4.8 Spectrum of DLD-1 under infection by 107 CFU/well of E. coli.  The time difference 

between the baseline and the final measurement is 6 hours. 

 

Suppression on the spectral densities occurs for inoculation by all bacterial strains. E. coli shows 

an initial weak enhancement at the low-frequency region immediately after the inoculation. S. 

enterica shows a spectral enhancement at the high-frequency region about 200 minutes after 

inoculation which is also demonstrated in Figure 4.5. L. monocytogenes shows instantaneous high-
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frequency enhancement which may be caused by bacterial foraging. L. innocua shows a minimal 

suppression at the mid-frequency region and minor delayed enhancement at the high-frequency 

region.  

 

Figure 4.9 Tissue dynamics spectrograms (TDS) of DLD-1 tissue spheroids inoculated (red dashed 

lines) by 107 CFU/well of E. coli, S. enterica, L. monocytogenes, and L. innocua.  

 

From Figure 4.5, different DR behavior of L. monocytogenes after inoculation suggests 107 

CFU/well inoculation captures direct light scattering from bacterial while 106 CFU/well does not. 

To try to isolate the cellular response of DLD-1, 106 CFU/well was also inoculated and analyzed 

in Figure 4.10. 
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Figure 4.10 Spectrograms of E. coli, L. monocytogenes, and S. enterica at 106 CFU/well. 

 

Spectral suppression induced by E. coli is not as significant as at 107 CFU/well inoculation. The 

high-frequency enhancement of L. monocytogenes observed in Fig 4.9 is not observed in Figure 

4.10. The high-frequency enhancement of S. enterica is observed for 106 CFU/well as well as 107 

CFU/well, which may be caused by the infection mechanism of S. enterica which hijacks the host 

cell’s cellular functions and uses the host cell’s resources to replicate.  

4.4 Doppler Spectral Band Analysis 

The time traces of selected spectral ranges are shown in Figure 4.11 for the rheology band (10 

mHz) and the organelle transport band (2 Hz – 6Hz) for an applied exposure of 107 CFU/ well. 

The rheology band is associated with slow cellular shape changes and also with reduced speeds of 

mid-frequency processes related to membranes or larger organelles like the nucleus.  At the high 

bacterial load of 107 CFU/well there is a strong non-monotonic time dependence of the spectral 

density of the rheology band as a maximum appears after approximately 2 hours and then the 
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signal decreases.  In the case of S. enterica and L. monocytogenes, the secondary minimum gives 

way to a later increase, while for the non-pathogenic E. coli and L. innocua the secondary 

minimum does not occur.  The organelle band presents a relatively “clean” signal because the only 

intracellular constituents that contribute to this spectral range are the smaller organelles and 

vesicles.  The spectral density of the organelle band is enhanced for all but E. coli infection.  

Organelle and vesicle transport are associated with active cellular responses to xenobiotics as well 

as with early-stage apoptosis.  The higher frequencies are also associated with the motion of the 

bacteria themselves. 
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Figure 4.11 Time development of the relative spectral changes for a dose of 107 CFU/well.  (a) 

The low-frequency limit for the rheology band.  All bacterial strains showed temporal variation in 

this band.  E. coli infection displays the strongest suppression.  The two pathogenic strains, S. 

enterica, and L. monocytogenes show non-monotonic increases, with a decrease after the first 

maximum, followed by a long-term increase.  Long-term increases for the rheology band have 

been associated with blebbing or the formation of apoptotic bodies associated with either 

uncontrolled or controlled cell death. L. innocua show a slow and monotonic increase. (b) Change 

in the Doppler rheology band for three selected times and standard errors.  (c) Time dependence 

of the high-frequency band associated with organelle transport. L. monocytogenes show strong 

initial increases within one hour followed by a slow decrease at longer times. S. enterica show a 

weak enhancement at 3 hours after inoculation.  The case for E. coli shows strong suppression 

consistent with an overall inhibition of Doppler activity.  (d) Change in the Doppler organelle 

transport band at three selected times. 
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4.5 Tissue-dynamic Spectroscopic Imaging of Infection Assay  

Tissue-dynamic spectroscopic imaging (TDSI) is an algorithm that creates maps of spectral shape 

evolution. For instance, the power spectral response of a DLD-1 spheroid may have regional 

heterogeneity due to inhomogeneous distribution of nutrients. Conventional BDI takes averages 

of the power spectra across the entire tissue sample, but spatial information is lost.  To study the 

spatial characteristics of tissues, the spectral responses are obtained for each pixel of the OCI 

reconstruction.  After measuring the baseline spectra for each pixel, the TDSI algorithm compares 

the spectral variation over time compared to the averaged baseline of the sample.  Spectral shape 

changes can be mapped using biomarkers, and the multi-color algorithm marks pixels with red 

when the spectral response is strongly correlated to the biomarker and blue for anticorrelated 

(Figure 4.12). 

 

 

Figure 4.12 An example of tissue-dynamic spectroscopic imaging (TDSI). The blue and red color 

represents a blueshift or a redshift of power spectral density. The region R1 and R2 show different 

spectral shifts. 

 

The biomarker for TDSI in Figure 4.13 was SDIP0 which detects spectral blue- and redshifts. As 

the bacterial infection induces an anomalous high-frequency enhancement, TDSI captures the 

spreading of the infection. Examples of TDSI for several bacterial strains are shown in Figure 4.13.  
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Figure 4.13 Bacterial infection and the corresponding TDSI. The invasive strains (S. enterica and 

L. monocytogenes) show spreading blueshift while non-invasive strains (E. coli and L. innocua) 

did not. Lower graphs represent a 1D plot at the centers of TDSIs. 

 

Control and non-invasive strains did not show significant changes. In contrast, invasive strains (S. 

enterica and L. monocytogenes) showed spreading blueshifts toward the inner core which may be 

caused by bacterial migrations to neighboring uninfected host cells.  

4.6 Antibiotic Responses of Antibiotic Resistance Bacteria 

The standard method for testing antibiotic resistance is the agar plating method [13]. The method 

uses an agar plate containing nutrients and antibiotics, and establishes bacterial colonies on the 

agar surface for 24 hours. When bacteria are sensitive to the antibiotics in the agar, no colony can 

be formed on the agar. In contrast, when bacteria are resistive to the antibiotics, bacteria can form 

colonies. The method has good sensitivity but it requires 24 hours to have a result. BDI can 

measure infection signals, and antibiotics are expected to inhibit bacterial activities and recover 

the intracellular dynamics of the host cells.  
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Bacterial antibiotic responses were measured by applying antibiotics after applying bacteria to the 

DLD-1 spheroids.  To measure antibiotic resistance, E. coli green-fluorescence protein (GFP) 

strain was selected (O157:H7 American Type Culture Collection 43894).  E. coli GFP has 

ampicillin resistance because genes are genetically engineered to have an ampicillin resistance 

gene at the same promoter as the GFP synthesizing gene  [14]. The E. coli strain used for the 

antibiotic resistance assay has ampicillin resistance enabling the bacteria to survive up to a dose 

of 50 g/ml ampicillin. 106 CFU/well E. coli were inoculated into DLD-1 wells. After the 

inoculation, the infection progressed for 5 hours. The negative control group was treated by the 

RPMI-1640 medium that does not contain antibiotics. The antibiotic treatment used two antibiotics 

separately which are ampicillin and Cipro. The ampicillin-resistant E. coli secretes -lactamase 

enzymes and neutralizes chemical toxicity against E. coli [15]. However, the chemical structure of 

Cipro is different from ampicillin, and the ampicillin resistance mechanism is unable to neutralize 

the toxicity of Cipro (Figure 4.14).  

 

Figure 4.14 Ampicillin resistant E. coli colony formation on an agar plate (a) with ampicillin and 

(b) with Cipro. (c) The RPMI-1640 medium inoculated by 106 CFU/well E. coli and incubated for 

24 hours. The pH of the RPMI-1640 medium was altered by the E. coli growth but the medium 

with Cipro did not. The increment of pH of the RPMI-1640 medium is caused by losing CO2 

dissolved in the bicarbonate buffer. 
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Figure 4.15 Antibiotic-resistant assay. The upper row group was inoculated by E. coli. The lower 

group was not inoculated. The first column was treated by the RPMI-1640 growth medium without 

antibiotics. The second column was treated by RPMI-1640 with ampicillin (50 g/mL). The last 

column was treated by Cipro (3.5 g/mL). The group treated by Cipro completely recovered from 

the infection. 

 

BDI tracks the E. coli infection spectrum of DLD-1 for 4.5 hours, at which time three different 

treatments are applied to the tissue sentinels in separate wells: growth medium (control), ampicillin 

(50 g/ml) and ciprofloxacin (3.5 g/ml).  The time-course spectrograms are shown in Figure 4.15 

for the three treatments.  The top row shows the responses for the infected DLD-1 spheroids.  The 

dashed red line is the time of bacterial inoculation, and the dashed black line is the time of 

antibiotic application.  The bottom row shows the responses of the tissue sentinel controls without 

bacterial infection.  The controls are similar for all treatments, displaying a mild mid-frequency 

enhancement in response to the treatment that includes replenished growth medium with nutrients.  

The DLD-1 spheroids with bacterial infection show a broad-band suppression of activity within 

the tissue.  Application of ampicillin has little effect (for this ampicillin-resistant strain), while 

Cipro removes the bacterial infection and returns the tissue to a condition comparable to the control. 
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4.7 Discussion 

Light scattered from living tissue displays a broad range of Doppler frequency shifts related to 

complex cellular processes and their associated dynamic motion.  The Doppler fingerprint of living 

tissue is extremely sensitive to subtle changes in intracellular dynamics, and BDI provides a 

powerful new technique for monitoring the response of 3D living tissue to xenobiotic challenges.  

In this chapter, we describe the first use of BDI to monitor the infection of 3D living tissue by 

bacteria.  Bacteria affect many of the dynamic processes within the living host, allowing the 

cellular response to perform the role of a living sentinel, reporting on the effects of the bacterial 

infection as well as monitoring the efficacy of antibiotic treatments.  To illustrate the infection-

induced power spectral responses, tumor spheroids of the DLD-1 colon adenocarcinoma cell lines 

were used to highlight different characteristics caused by infection by different bacterial strains.  

The spectral enhancements represent changes in dynamics with different frequency ranges 

associated with different types of intracellular motion.  This work demonstrates the potential to 

translate BDI to the clinic to test for antibiotic-resistant infections. 

4.8 References 

[1]. C. Unger, N. Kramer, A. Walzl, M. Scherzer, M. Hengstschlager, and H. Dolznig, 

"Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer 

drug development," Adv Drug Deliv Rev 79-80, 50-67 (2014). 

[2]. B. Weigelt, C. M. Ghajar, and M. J. Bissell, "The need for complex 3D culture models to 

unravel novel pathways and identify accurate biomarkers in breast cancer," Adv Drug 

Deliv Rev 69-70, 42-51 (2014). 

[3]. B. M. Baker and C. S. Chen, "Deconstructing the third dimension – how 3D culture 

microenvironments alter cellular cues," Journal of Cell Science 125, 3015 (2012). 

[4]. K. Jeong, J. J. Turek, and D. D. Nolte, "Volumetric motility-contrast imaging of tissue 

response to cytoskeletal anti-cancer drugs," Opt Express 15, 14057-14064 (2007). 

[5]. M. Hamon, H. Bierne, and P. Cossart, "Listeria monocytogenes: a multifaceted model," 

Nat Rev Microbiol 4, 423-434 (2006). 

[6]. S. Hannemann, B. Gao, and J. E. Galán, "Salmonella modulation of host cell gene 

expression promotes its intracellular growth," PLoS Pathog 9, e1003668-e1003668 (2013). 



 

 

75 

[7]. S. P. Riley, K. C. Goh, T. M. Hermanas, M. M. Cardwell, Y. G. Chan, and J. J. Martinez, 

"The Rickettsia conorii autotransporter protein Sca1 promotes adherence to nonphagocytic 

mammalian cells," Infect Immun 78, 1895-1904 (2010). 

[8]. S. Y. Lee, "High cell-density culture of Escherichia coli," Trends Biotechnol 14, 98-105 

(1996). 

[9]. J. Slaghuis, M. Goetz, F. Engelbrecht, and W. Goebel, "Inefficient replication of Listeria 

innocua in the cytosol of mammalian cells," J Infect Dis 189, 393-401 (2004). 

[10]. D. Pasculli and G. Manacorda, "Real-time, pseudo real-time and stroboscopic sampling in 

time-domain GPRs," in 2015 8th International Workshop on Advanced Ground 

Penetrating Radar (IWAGPR), 2015), 1-4. 

[11]. H. Pan, Y. Zhang, G.-X. He, N. Katagori, and H. Chen, "A comparison of conventional 

methods for the quantification of bacterial cells after exposure to metal oxide 

nanoparticles," BMC microbiology 14, 222 (2014). 

[12]. Z. Li, H. Sun, J. Turek, S. Jalal, M. Childress, and D. D. Nolte, "Doppler fluctuation 

spectroscopy of intracellular dynamics in living tissue," J Opt Soc Am A Opt Image Sci 

Vis 36, 665-677 (2019). 

[13]. L. B. Reller, M. Weinstein, J. H. Jorgensen, and M. J. Ferraro, "Antimicrobial 

Susceptibility Testing: A Review of General Principles and Contemporary Practices," 

Clinical Infectious Diseases 49, 1749-1755 (2009). 

[14]. P. M. Fratamico, M. Y. Deng, T. P. Strobaugh, and S. A. Palumbo, "Construction and 

Characterization of Escherichia coli O157:H7 Strains Expressing Firefly Luciferase and 

Green Fluorescent Protein and Their Use in Survival Studies‡," Journal of Food Protection 

60, 1167-1173 (1997). 

[15]. R. Fernandes, P. Amador, and C. Prudêncio, "β-Lactams: Chemical structure, mode of 

action and mechanisms of resistance,"  (2013). 

 



 

 

76 

 PASE-SENSITIVE BIODYNAMIC IMAING 

5.1 Introduction and Background 

The mechanical properties of biological systems have been investigated by many optical 

techniques. For example, optical coherence tomography [1] and fluorescence imaging [2] can 

visualize micro-scale dynamics in real-time to provide a deeper understanding of biological 

dynamics. However, at high resolution, the quantitative analysis of dynamics is limited by the 

optical field of view. Biodynamic imaging (BDI) provides a quantitative analysis of intracellular 

dynamics [3, 4]  by implementing a large field of view with low NA optics. BDI uses digital 

holographic spectroscopy to measure the broadband Doppler shifts caused by dynamic light 

scattering (DLS) with 3-dimensional intracellular dynamics of biological specimens [5]. Doppler 

shifts form a dynamic interference in speckle intensity, and the power spectral density of the 

Doppler signal can be acquired by performing temporal Fourier transforms of the dynamic speckle 

intensity fluctuations. The Doppler power spectral density changes over time after applying 

reagents. The method has measured the chemotherapy responses of various biological specimens, 

such as canine B-cell lymphoma [6], 3-dimensional xenografts [7], and standard cancer cell lines 

[8].   

 

The Doppler signal is intrinsically carried by the phase of images. However, there exist difficulties 

analyzing the phase information due to inherent phase instability contributed by external 

mechanical perturbations. Heterodyne detection is highly sensitive to mechanical motions, and 

phase noise makes the interpretation of the heterodyne power spectral density challenging. Many 

methods have been proposed to stabilize the phase information of functional images by introducing 

complicated optical set-ups [9-11]. Here we describe a stabilized and sensitive Doppler power 

spectrum through a method that acquires a probability density function (PDF) of Doppler phase 

displacements. This provides an intuitive dynamic picture of the target, and the Doppler power 

spectral density derived from the PDF shows greater sensitivity and stability than the conventional 

heterodyne power spectrum. Furthermore, changes in the PDF shape induced by bacterial 

infections of epithelial cells demonstrates pathogenic bacterial dynamics characterized by random-

walk models with anomalous ballistic motions. 
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5.2 Dynamic Light Scattering: Homodyne and heterodyne detection 

 Biodynamic imaging (BDI) uses a digital holographic low-coherence Mach-Zehnder 

interferometer to measure broadband Doppler spectra induced by DLS inside a living tissue sample 

(Figure 5.1 (a)). Digitally reconstructed dynamic speckle from a holographic image at the Fourier 

plane (FP) has intensity and phase information. A power spectrum of the broadband Doppler signal 

is obtained by performing a temporal Fourier transform on an intensity time series. The power 

spectrum obtained from the temporal intensity information is defined as a homodyne power 

spectrum as 

2

hom ( ) ( ) i tS I t e dt        (5.1) 

where I is the intensity time series. The power spectrum from Eq. (5.1) does not include the phase 

information. The phase of functional images can further represent the intracellular dynamics of the 

sample. A heterodyne power spectrum incorporates the phase information by performing temporal 

Fourier transforms on complex-valued fields by   

2
( )( ) ( ) i t i t

hetS E t e e dt         (5.2) 

where E(t) and eif(t) are the time series of amplitude and phase values of the complex-valued electric 

field of the digitally reconstructed holograms (Figure 5.1 (a)). 

5.3 Calibration Experiments 

5.3.1 Vertically Moving Paper 

For calibration, a circular-shaped paper sheet with a 3 mm radius and 15 m thickness was 

prepared. The paper floated on a water reservoir surface and vertically moved toward the bottom 

of the reservoir caused by water surface evaporation. The evaporation speed was measured to be 

about 10 mm/day which corresponds to around 0.1 m/s. While the paper is vertically moving, the 

low-coherence light illuminates the paper and an interference pattern is formed at the Fourier plane 

by matching the optical path difference between the object and reference arms to within the 

coherence length (~20 mm) of the optical source. The evaporation speed is constant and the vertical 

motion induced by the evaporation is steady, giving the power spectral density in Figure1(b) a 

Doppler peak.  
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Figure 5.1 Calibration experiments of the power spectra of dynamic speckle. (a) Schematic 

diagram of BDI and (b) reconstructed hologram intensity and phase at a fixed time. Speckle formed 

at the image plane (IP) is Fourier transformed to the Fourier plane (FP). (c) Homodyne and 

heterodyne power spectra of the vertically moving paper due to the water surface evaporation. A 

Doppler peak appears in the power spectrum of the sinking paper at 0.45 Hz, which corresponds 

to a settling speed of 150 nm/s. (d) Homodyne power spectral density enhancement of Escherichia 

coli (E. coli) pellet by applying the Lysogeny broth (LB) medium shows a prominent Doppler edge, 

(e) while the heterodyne power spectra cannot detect the Doppler edge. 

 

The characteristics of homodyne and heterodyne power spectra are compared in Figure 5.1. The 

homodyne and heterodyne power spectra of the vertically moving paper were measured (shown in 

Figure 1(c)). When the paper was at the coherence-gated depth, holographic dynamic speckle was 

recorded with 25 fps for 20 seconds (bandwidth 0.02 Hz to 12.5 Hz). Fourier transformation on 

the 500-frame intensity time series has 249 positive and negative non-zero frequency components 

and one DC component at  = 0. Positive and negative non-zero Fourier components are 

symmetric for a homodyne power spectrum, and the positive components are plotted in Figure 1 

(c). The heterodyne power spectrum has an asymmetric shape because the dynamics of the 

vertically moving paper is biased. The heterodyne power spectrum of the negative Fourier 

components containing the Doppler peak was plotted. The homodyne power spectrum shows a 

clear peak at 0.45 Hz, which corresponds to a speed of 150 nm/sec for the moving paper.  On the 

other hand, the homodyne spectrum shows only a “residual” Doppler peak.   
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5.3.2 Bacterial Dynamics 

Homodyne and heterodyne power spectra of bacterial chemotaxis-induced swarming are 

demonstrated in Figure 1(d) and (e). BDI depth scanning can measure the Doppler power spectra 

of bacterial swarms driven by chemotaxis of more than a million bacteria in real-time. The 

statistical characteristics of bacterial swarms were analyzed by measuring the Doppler edge 

frequency which is caused by 3-dimensional ballistic motion with long persistence times [5]. To 

measure the 3-dimensional bacterial swarm induced by chemotaxis, a dense Escherichia coli (E. 

coli) high-bacterial-density pellet (1010 CFU/mL) was extracted from a culture medium (108 

CFU/mL) by centrifugation (15000 rpm for 3 min). The pellets were dipped in 300 mL of 1% 

NaCl solution for 5 hours to establish E. coli in the stationary state. To induce a nutrient shock and 

chemotaxis, 150 mL of the medium was removed and added to 150 mL of the Lysogeny-broth 

(LB) medium. The Doppler signals of E. coli pellets were measured by BDI before and after 

applying the LB medium, and 2048 holograms were recorded per measurement with the sampling 

frequency of 25 fps. The collective motion of E. coli after applying the LB medium was observed 

by the homodyne detection method in Figure 5.1(d). A prominent Doppler edge appeared 

immediately after applying the LB medium, while the heterodyne detection spectra did not show 

a measurable power spectral enhancement in Figure 5.1(e). The Doppler edge shown in Figure 

5.1(d) represents 3-dimensional persistent motion. The frequency of the maximum spectral density 

enhancement by the nutrient shock represents the inverse characteristic time tc of the persistent 

motion [5], which is related to the average speed of the bacterial swarm along the vertical direction 

as 

1

c
 q v                                                        (5.3)   

As shown in Figure 5.1(c), heterodyne detection on the slowly moving paper shows much better 

sensitivity. However, the higher sensitivity often becomes a disadvantage if phase stabilization of 

the measurement system was not achieved. The contrast of spectral shape changes shown in Figure 

5.1(d) and (e) demonstrates the disadvantage of heterodyne detection. While the homodyne power 

spectra show a Doppler edge, the heterodyne spectra do not.  
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5.4 Phase-Sensitive Detection 

The dynamic characteristics of random processes can be characterized as diffusive or ballistic. 

Biological processes have more ballistic characteristics due to active transport such as molecular 

motors, intracellular undulations, cell crawling, etc. Doppler shifts produced by scattering from 

biological systems carry the characteristics of ballistic phase displacements. However, the phases 

of scattered photons also carry random phase excursions caused by external mechanical 

perturbations, diffusive background, and optical phase drifts which disturb the heterodyne power 

spectral densities of Doppler signals as shown in Figure 5.1(e). The advantage of obtaining the 

temporal PDF uses the characteristics of ballistic motions which have persistent lengths and times. 

The time evolution of the PDF demonstrates both persistent phase displacement and phase noise 

excursions in terms of the temporal shift of maximum likelihood and the temporal width-

broadening of PDF, respectively. Random processes with different dynamic characteristics are 

shown in Figure 5.2. Systems with diffusive characteristics (Figure 5.2(a), 3D isotropic) and 

ballistic (Figure 5.2(b), 1D isotropic or 3D ballistic) induce different Doppler shifts and speckle 

formation has different phase displacement statistics. The analysis of the phase displacement 

statistics and the extraction of ballistic characteristics of the Doppler shift will be demonstrated by 

introducing PDFs.  

 

Figure 5.2 Schematic diagram of dynamic light scattering. The total phase value tot is determined 

by contributions of N identical photons with slightly different phases. Black and red arrows 

represent the average velocities of scattering elements over the sampling window (40 ms) and 

wave vectors of scattered photons, respectively.  When photons interact with (a) 3D random 

isotropic dynamic particles, the average phase displacement of the Doppler shift per sampling 

window becomes zero. (b) On the other hand, when the dynamic particle has 3D ballistic dynamics 

or 1D isotropic motion, the average phase displacement of the Doppler shift has a non-zero value. 
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5.4.1 Phase Displacements and Probability Density Function (PDF) 

Reconstructed dynamic speckle at the Fourier plane (FP) produces a functional image that contains 

Doppler information. The phase of reconstructed holograms is limited to values between - to + 

radian, and the time series of the phase often drifts through external phase noise. As previously 

demonstrated in Figure 5.1(e), the heterodyne power spectrum cannot demonstrate spectral 

enhancement when phase stabilization has not been achieved. An alternative approach finds the 

drifting phase of individual pixels within specified times and constructs a probability density 

function (PDF) of phase displacements.  The PDF of phase displacements shows the characteristics 

of the dynamics of the sample. Two different dynamic characteristics were assumed in Figure 5.2. 

3D isotropic motion produces a power-law Doppler power spectral density. When motion is 1D 

isotropic or 3D ballistic, then the Doppler power spectral density has a Doppler edge. For instance, 

when bacteria are in the stationary state, the Doppler power spectrum has 3D isotropic motion 

characteristics (Figure 5.2(a)). When DLS occurs with 3D isotropic dynamic particles that have a 

short persistence time, the averaged phase displacement with the sampling window (40 ms) is zero 

(tot = 0) which means the shape of the PDF is symmetric. However, when light is scattered by 

persistently moving particles as shown in Figure 5.2(b), the phase displacement per sampling 

window has a non-zero averaged phase displacement. The phase of randomly interfering photons 

can be described as, 

1

tot n

N
i i

n

Ae e
 



      (5.3) 

where A is an arbitrary amplitude after vector summation in Figure 5.2. A photon with wavevector 

q scatters from a scattering element at r contributing to the phase angle and is assumed to have 

isotropic Doppler shifts. The average Doppler shift can be expressed as 

( , ) ( )tot geot t   r q r v      (5.4) 

where geo is a global phase angle determined by a geometric factor of scattering elements. The 

geometric contribution is static when we assume the distribution of the scattering elements does 

not change rapidly. On the other hand, the Doppler frequency shift contribution to phase is on the 

time term, so the time derivative of tot(r,t) contains the total contribution from Doppler shifts.  As 

a result, the time-averaged total Doppler shifts contributing to speckle phase can be defined as 

 



 

 

82 

 
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 
 


 


r

r                  (5.5) 

To avoid the phase wrapping problem, the phase displacements were acquired by 
 f iiie e
     

between consecutive reconstructed holograms. The phase time series  , r  of the functional 

images are reconstructed by adding    1 ( , ) ( , )( , ) tan Im Rei ie e         
 

r r
r  to the previous 

frame.  

5.4.2 Probability Density Function (PDF) of Phase Excursions 

The phase of dynamic speckle varies with time, and experimentally acquired PDFs show a stable 

distribution (Figure 5.3). The PDF of dynamic speckle phase variance introduces phase-sensitive 

detection to the dynamic characteristics of a specimen. The phase difference from Eq. (5.4) and 

(5.5) is 

t


 


q v                                           (5.6) 

and the phase displacement by N dynamic scattering elements contributing to the Doppler shift 

can be estimated by 

1

cos
N

i i

i

qv
t










                                         (5.7) 

where vi and i are the velocities, respectively. The experimentally measured time-averaged phase 

displacement (  ) over a sampling window () becomes 

1

cos
N

i i

i

q x 


                                              (5.8) 

Here, the time-averaged displacement Δ𝑥̅𝑖 of the ith dynamic particle should be a non-zero value 

to contribute to the phase shift. When the persistence time of the dynamic particle is shorter than 

the sampling window, or the particle’s dynamics are intrinsically diffusive, then the time-averaged 

Doppler shift induced by the time-averaged dynamics vanishes. The probability of i  and ix

has the relation 
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which ensures that the PDF measures the net Doppler shifts contributed by dynamic particles. Also, 

the averaged phase displacement   derived from a PDF represents an average persistence length 

x  of the dynamic particles. When an external noise contributes to the PDF, it contributes to the 

width of the PDF, while the expectation value of the average phase displacement   remains 

constant. For instance, mechanical oscillations or optical source noise can perturb the average    

between two consecutive frames, but the effect vanishes by taking a time average over many 

frames due to the zero-mean noise characteristic [12].  

5.4.3 Calibration with Macroscopic Directed Motion 

To obtain a PDF from functional images, the statistical phase displacements of the functional 

images from the experiment conducted in Figure 5.1 were acquired. The schematic diagram of the 

temporal phase information is shown in Figure 5.3(a). A phase displacement distribution can be 

acquired by subtracting two frames with the time interval , and the normalized histogram of the 

phase displacement represents the probability density function. The PDF of the phase displacement 

of the time interval  is obtained by 

 
1 ,

1
( ) ( , ) ( , )

N

t x y

PDF histogram t t
N

   


   r r    (5.10) 

The statistics of   are collected over the dynamic speckle, and the spatial information (x and y) 

is lost during this procedure. The temporal evolution of the PDF is shown in Figure 5.3(b) and (c). 

The stationary paper has phase noise contributions from the optical source, mechanical vibrations, 

and detector noise, and the Gaussian distribution is shown in Figure 5.3(b). The vertically moving 

paper has persistent motion and the optical measurement captures the Doppler signal caused by 

the vertical dynamics and the background noise simultaneously. Here the Doppler slope is defined 

as an averaged phase displacement   per time delay t which can be obtained by 

1
( )PDF



 


 

   


              (5.11) 
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The sign of the phase was set to be positive for upward and negative for downward, so the PDF 

with different t in Figure 5.3(c) shows the negative Doppler slope in Figure 5.3(f).  

 

Figure 5.3 Doppler information acquisition from functional images. (a) Schematic diagram of 

phase information time series of dynamic speckle. PDF() is obtained from the subtraction 

between frames with a  difference and histogrammed. PDFs of (b) stationary paper and (c) slowly 

moving paper in Figure 5.1 (b) and the corresponding 2D PDF representations of (d) stationery 

paper and (e) moving paper. The Doppler slope of the average displacement   shown in (f) with 

different time intervals in (c) is 2.70 rad/s which corresponds to 0.43 Hz and 143 nm/s by Eq. 5.6. 

The Doppler peak of the power spectrum in Figure 5.1(b) and the average phase displacement of 

the PDF show good agreement. 

 

Both of the amplitudes of PDF shown in Figure 5.3 (b) and (c) decreased because of the optical 

decoherence [12]. However, the time-averaged speed of the slowly moving paper can be estimated 

from  . The speed of the paper was estimated to be 143 nm/s which is consistent with the power 

spectral Doppler peak frequency in Figure 5.1(b).  
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5.4.4 PDF of Bacterial Swarms Induced by Nutrient Shock 

The nutrient shock of bacterial pellets induced by chemotaxis showed prominent Doppler shifts in 

the homodyne spectra in Figure5.1(c). The same method used for obtaining the PDF in Figure 5.3 

was used to obtain the chemotaxis PDFs of E. coli pellets. The time evolution of the PDF showed 

non-zero phase displacement immediately after adding a nutrient. Equal volumes (150 mL) of 

reagents were added to the wells (medium was subtracted and re-added to the same wall to test the 

pipetting-perturbation effect) and 1% and 7% NaCl media were used to verify the effect of 

applying medium without nutrient and to test osmotic pressure of the LB medium without nutrient 

components. The sign of the phase was calibrated by the moving paper experiment from Figure5.3 

and set a positive direction for upward, and negative direction for downward. The baselines were 

measured 3 times for 6 minutes while the E. coli pellet was in a stationary state. After applying 

reagents, responses were measured 13 times for 26 minutes. The temporal evolution of PDFs 

immediately after applying reagents are shown in Figure 5.4. (a) and (b). The average Doppler 

slopes from each measurement are shown in Figure 5.4 (c). The average Doppler slope showed 

immediate responses after applying reagents then decays exponentially. The temporal decay 

coefficients  and amplitudes of the average Doppler slopes are shown in Figure 5.4(c) and 

summarized in Table 5.1.  

 

Figure 5.4 Temporal evolution of PDFs of E. coli pellets and Doppler slopes. (a) Temporal 

response of PDFs immediately after applying negative-control reagents (perturbed medium with a 

pipette and adding 1% NaCl medium) and (b) high-osmotic pressure solution (7% NaCl), and 

nutrient (LB). (c) Doppler slopes from PDFs. One data point represents a single measurement. 

Applying medium (pipetting perturbation) and 1% NaCl solution (LB medium base without 

nutrient compound) did not induce significant shifts. 7% NaCl (osmotic shock) and LB (nutrient 

shock) media showed shifts of PDFs with opposite signs. 
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Table 5.1 Response characteristics to different reagents. 

Reagent  (t-1) Maximum Doppler Slope Amplitude 

(rad/s) 

Average velocity 

(nm/s) 

Old Medium N.A. N.A. N.A. 

NaCl (1%) 0.53 0.41  0.05 0.04  2.6 2.2  

NaCl (7%) 0.59 0.06  0.31 0.1   15.4 5   

LB 0.26 0.06  0.25 0.05  13 3  

 

The Doppler slope measurements on E. coli pellets after applying various reagents showed 

different characteristics. Applying 1% NaCl solutions showed the slowest speed (2.6 nm/s). In the 

case of applying 7% NaCl solutions, it induced a net motion in the negative direction (downward) 

with the fastest speed (15.4 nm/s). The motions of E. coli induced by 1% and 7% NaCl solutions 

showed similar decay coefficients. The LB medium induced an intermediate speed, and the motion 

lasted about twice longer than applying NaCl solution. The pipetting perturbation of the E. coli 

pellet was not measurable.  

5.4.5 Stabilization of the Heterodyne Doppler Spectrum 

The time evolution of a PDF is equivalent to the temporal correlation of the Doppler shift. The 

experimentally-obtained PDF becomes stable while averaging the phase displacement distribution. 

Therefore, the reconstruction of the power spectral density from a PDF should have a more stable 

Doppler spectral density. The autocorrelation of a field with a time interval  can be estimated 

from a PDF by calculating the expectation value of 
ie 

 which can be denoted as 

    2( )
i

AC E PDF e
 



  




                                                        (5.12) 

by assuming the field amplitude varies more slowly than the phase displacement ( )  . The 

stabilized heterodyne power spectrum of the signal can be obtained by performing a Fourier 

transform on AC() by the Wiener-Khinchin theorem [13].  

( ) ( ) i

hetS AC e d         (5.13) 

From the PDF of the vertically moving paper (Figure 3(e)) and the E. coli pellet (Figure 5.4(b)), 

the autocorrelation and the corresponding power spectrum were obtained and shown in Figure5.5. 
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The Fourier transform of the autocorrelation has a limited time window due to the limited sampling 

bandwidth (0.02 Hz ~ 12.5 Hz). The sampling time window is 20 sec and the AC shown in Figure 

5.5(b) has a limited time window from -10 sec to 10 sec. The spectrum obtained from the 

autocorrelation has a similar spectral shape to the heterodyne detection spectra in Figure 5.5(c). 

The heterodyne power spectrum of vertically moving paper shows about 50 times enhanced 

detection sensitivity compared to the conventional heterodyne power spectrum by suppressing the 

phase noise through the PDFs. The raw heterodyne power spectrum did not display the Doppler 

edge shown in Figure 5.5(d). But the heterodyne power spectra derived from the PDFs show 

prominent Doppler edges in Figure 5.5(f). Although there exist aliasing effects due to the limited 

  domain of the histograms, the low-frequency spectral components illustrate much better 

heterodyne spectral enhancement than the raw heterodyne spectra. Also, the homodyne spectrum 

is always symmetric which means the spectrum cannot distinguish the signs of dynamics, but the 

refined heterodyne power spectrum shows well-characterized heterodyne power spectral 

enhancement including the sign of dynamics as shown in Figure 5.5(c).  
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Figure 5.5 (a) PDF of the vertically moving paper from Figure 5.3 (b) Autocorrelation (AC) 

obtained from (a) by Eq. (5.12). The AC of negative time is the complex conjugate of positive 

time, so the real valued AC is symmetric and the imaginary valued AC is asymmetric. (c) The 

power spectrum derived from the complex autocorrelation by the Weiner-Khinchin theorem and 

compared with the heterodyne spectrum. Positive and negative spectral components are compared. 

(d) Homodyne power spectrum of nutrient shock applied to an E. coli pellet and (e) the raw 

heterodyne power spectrum. (f) Heterodyne power spectrum derived from PDFs in Figure 5.4(b).  

For the relative spectral density comparisons, all Nyquist floors were calibrated to have the same 

values at 12.5 Hz. 

5.5 Levy Stable Distributions 

The dynamics of scattering elements may have Levy-flight-like anomalous occasional ballistic 

motions [14-16]. DLS with Levy-flight particles can have large random phase excursions with low 

probability which can form power-law tails. The slope of the power-law tails represents the 

frequency of the occasional ballistic motions. Probability distributions can have power-law 

behavior at large values of the random variable.  For instance, the probability in the tail may behave 

as [17] 
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  1
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x


        (5.14) 

Such distributions are said to have heavy tails because the probability falls more slowly than 

exponential for large arguments.  Heavy tails on a distribution cause rare but high-amplitude events 

that are referred to as outliers and sometimes as “black swans” [18].  These events are 

fundamentally part of the distribution and are not anomalies, but can have a disproportionate effect 

when attempting to calculate variances or even mean values.  For instance, there is a large class of 

probability distributions for which the variance and high-order moments are infinite.  A subset of 

such distributions includes stable distributions. 

 

In probability theory, a class of distributions is called stable if a sum of two independent random 

variables that come from a distribution have the same distribution.  The normal (Gaussian) 

distribution has this property because the sum of two normally distributed independent variables 

is also normally distributed.  The variance and possibly the mean may be different, but the 

functional form is still Gaussian.   

 

The general form of a probability distribution can be obtained by taking a Fourier transform as 

1
( ) ( )

2

ikxP x k e dk






        (5.15) 

where j k( ) is known as the characteristic function of the probability distribution.  A special case 

of a stable distribution is the Lévy symmetric stable distribution obtained as [17] 

,
0

1
( ) cos( )qP x e qx dq



 



        (5.16) 

and characterized by the parameters  and .  The characteristic function, in this case, is a stretched 

exponential.  The Lévy distribution has a power-law tail at large values, given by Eq.(5.14), but 

for smaller values has a characteristic length scale set by the parameter .  The special case of the 

Lévy distribution for  = 2 is a normal distribution.  The special case of the Lévy distribution for 

 = 1 is the Cauchy distribution given by 

1, 2 2

1
( )P x

x




 



        (5.17)  
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The Cauchy distribution is normalizable (probabilities integrate to unity) and has a characteristic 

scale set by , but it has a divergent mean value, violating the central limit theorem.  For 

distributions that satisfy the central limit theorem, increasing the number of samples from the 

distribution allows the mean value to converge on a finite value.  For the Cauchy distribution, on 

the other hand, increasing the number of samples increases the chances of obtaining a black swan, 

which skews the mean value to larger values as the mean value diverges to infinity in the limit of 

an infinite number of samples. 

 

Examples of Levy stable probability distribution functions are shown in Figure 5.6 for a range 

between  = 1 (Cauchy) and  = 2 (Gaussian).  The heavy tail is seen even for the case  = 1.99 

close to the Gaussian distribution.  In the case of the Gaussian distribution, the mean-squared 

displacement is finite.  However, for all other cases, the mean-squared displacement is divergent, 

caused by the large path lengths that become more probable as  approaches unity. 

 

 

Figure 5.6 Levy stable probability distribution functions between  = 1 (Cauchy) and  = 2 

(Gaussian).  The heavy tail is seen even for  = 1.99 close to the Gaussian case. 
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Stable distributions with divergent moments play important roles in biology.  For instance, a 

random walk with a Levy distribution of path lengths, known as a Levy flight, can be an efficient 

means for an organism to search for food [16, 19].  They also can participate in intracellular 

transport processes.  Waiting times can have stable distributions as well as path lengths.  The 

sampling of these processes from stable probability distributions is one way that anomalous 

transport emerges in intracellular motion. 

5.6 Levy Spectroscopy 

The PDF represents the statistical characteristics of the random process associated with scattering 

elements. The phase displacements   have a one-to-one correspondence to the displacements 

x  of the scattering elements by Eq. (5.8). Fitting the shape of the PDF with the Levy distribution 

of Eq.(5.16) may help display the anomalous ballistic characteristics of scattering elements. To 

reduce the external phase noise contribution to the shape of the PDF, the smallest sampling window 

min  was used to analyze the statistical characteristics of min( )PDF  . Analysis of the power-law 

tails requires a large sample size because the characteristics of power-law tails depend on the 

decaying tendency of rare probabilities. The size of the functional image is about 104 pixels and 

the images were recorded for more than 2000 frames. Therefore, the statistics of the PDF were 

established on about 107 samples of experimental measurements. The PDF of   spanned from -

 to  radian with a resolution of 0.01 radian. Various PDFs were analyzed in terms of Levy  

values in Eq.(5.16).   

5.6.1 Levy-like Characteristics of PDFs 

Calibration experiments were analyzed by Levy alpha spectroscopy. The Levy fits of the PDFs of 

the stationary paper, sinking paper, tumor spheroids, and E. coli pellets are shown in Figure 5.7. 

The PDF of stationary paper showed a Levy alpha close to 2 which represents the Gaussian phase 

noise of the optical source. The moving paper from Figure 5.1(b) shows a slightly decreased alpha 

contributed by the mechanical motion, but the alpha is still close to 2. The biological objects, such 

as tumor spheroids and an E. coli pellet, showed a Levy alpha less than 1.6 which are more Cauchy-

like and may be related to ballistic random-walks observed in biological systems [14-16].  
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Figure 5.7 PDFs of various targets fitted with Levy, Gaussian, and Cauchy distributions of (a) 

stationary paper, (b) vertically moving paper, (c) DLD-1 spheroids, and (d) E. coli pellet. The 

Cauchy probability density shows power-law tails with a = 1 (black solid lines) and the Gaussian 

probability density with  = 2 (green solid lines). Levy distributions show similar heavy tails of 

experimentally obtained PDFs’.  The power-law tails of Levy probability densities are numerically 

obtained and fitted with the smallest residual squares. To quantify the slopes of the power-law tails, 

the maximum likelihoods of PDFs are shifted at  = 0 to plot symmetrically. 
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5.6.2 Bacteria and Host-cell Selection and Preparation 

Foodborne pathogens have various infection mechanisms. For instance, L. monocytogenes target 

epithelial cells and infiltrate host-cells by physically penetrating cell walls. After internalization, 

L. monocytogenes synthesizes actin tails by using host-cell resources to gain a propulsion force 

toward neighboring host-cells [20, 21]. The spreading infection goes beyond diffusion [21], and 

the spreading speed may be governed by the rare-outliers which is a key characteristic of Levy 

flights. On the other hand, Listeria innocua (L. innocua) are from the same Listeria genus, but L. 

innocua do not have an effective infection mechanism [22]. The interaction of L. innocua with 

host-cell is passive and opportunistic compared to L. monocytogenes  [23].  

 

L. monocytogenes and L. innocua were cultured in an LB medium for 24 and 48 hours, respectively, 

at 37 degrees Celsius to reach 108 CFU/ml. For host-cell preparation, DLD-1 (Epithelial 

adenocarcinoma cell line) was selected which has 3-dimensional tissue characteristics and loose 

cellular structure for observing rapidly spreading infection. The seed cells (Americal Type Culture 

Collection) were cultured in RPMI-1640 medium with 25 M HEPES buffer (Gibco), 10% fetal 

bovine serum (Atlanta Biologicals) and antibiotics (100 U/ml Penicillin and 100mg/ml 

streptomycin) for 4~5 days. When DLD-1 forms the multicellular spheroids structure, they were 

transferred to a 96-well BioCoat plate (Corning) with an antibiotic-free RPMI-1640 medium (300 

ml/well). After DLD-1 transfer, the media were refreshed with RPMI-1640 without antibiotics. 

5.6.3 Infection Assay 

The infection assay using DLD-1 spheroids was analyzed using Levy alpha spectroscopy of the 

PDF. Interaction between bacteria and DLD-1 should change the statistical characteristics of 

scattering elements due to the inoculated bacterial dynamics. Also, the different strategic behaviors 

of L. monocytogenes related to L. innocua are expected to produce different PDF shapeshifts where 

L. monocytogenes actively interact with DLD-1 host-cells and show more ballistic behaviors. 

Before applying bacteria to DLD-1, 3 baselines were measured for 90 minutes. After the baselines 

were established, 107 CFU of L. monocytogenes or L. innocua were inoculated for the infection 

cohort and growth medium for the control cohort, respectively. The dynamic speckle of the two 

cohorts were measured for 6 hours. The PDF of each DLD-1 was obtained to compare the Levy 
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alpha values of baselines and infection measurements. The initial Levy alpha values can vary due 

to DLD-1 characteristics, and 3 Levy alpha values of baseline measurements were averaged. After 

inoculation, the shifts of Levy alpha values were obtained.  The group inoculated by L. 

monocytogenes showed significantly decreased alpha values (more outliers), while L. innocua 

showed only a small change. The PDF of DLD-1 before and after infection are compared in Figure 

5.7(a) and (b). Decreased alpha value suggests that the mechanical behavior of random processes 

become more Cauchy-like (ballistic) than Gaussian-like (diffusive) after bacterial inoculation.  

 

Figure 5.8 Levy Alpha spectroscopy infection assays. Two bacterial strains with the same genus 

with different pathogenicities were inoculated into DLD-1. (a) Examples of PDF and Levy 

distribution comparison. Listeria innocua (L. innocua) induces a slight change in the Levy alpha 

while Listeria monocytogenes (L. monocytogenes) significantly decreased the Levy alpha. (b) 

Statistical analysis of the Levy alpha value change () of 12 replicates. Bacteria were inoculated 

at 60 min (Red-dashed line) and PDFs were measured for 6 hours. The Levy alpha changes of the 

control and the L. innocua infection group showed comparable variations, while L. monocytogenes 

showed a significant decrease in the alpha. (c) The histogram of Levy alpha value spectroscopy, 

collected from Figure 8(b). Invasive L. monocytogenes induces Levy-alpha shifts while passive L. 

innocua shows only a minor shift on the average Levy-alpha value. Control and baselines showed 

almost identical statistical behaviors. Lines are fitted Gaussian distributions. 

 

The statistical separations of Levy apha shifts are shown in Figure 5.8(c). Baselines of all cohorts 

showed a stable distribution and the variance of Levy alpha values shows almost identical overlap 

with the control. Inoculation by L. monocytogenes and L. innocua showed negative shifts due to 

bacterial dynamics. The average Levy alpha shifts are shown in Table 5.2.  
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Table 5.2 Levy Alpha Spectroscopy of Bacterial Infections. 

 Baseline Control L. innocua L. monocytogenes 

  0.005 0.006   0.01 0.01   0.03 0.02   0.11 0.07   

 

The baselines were measured for 90 minutes. The control also showed a stable distribution over a 

6-hour measurement. L. monocytogenes has the largest variance due to the characteristics of the 

infection. The scanned area of DLD-1 may have fully infected regions, partially infected regions 

or may be isolated from infection. Therefore, the structural heterogeneity may produce larger 

variations. L. monocytogenes potentially can generate larger shifts of Levy alpha compared to L. 

innocua whose interaction with epithelial cells is known to be more passive.  

5.7 Conclusions 

Statistical analysis of the phase-sensitive detection method of Doppler shifts by DLS has been 

demonstrated. Comparisons between the calibration experiments and the phase-sensitive detection 

method showed good agreement and improved stability compared to the conventional heterodyne 

detection method. By introducing statistical averaging on the time-delayed phase displacement, 

the random phase noise could be canceled while the net Doppler shift by ballistic motions remains 

detectable which improves the detection sensitivity. Furthermore, the probabilistic analysis of the 

phase displacement showed an anomalous ballistic distribution which is close to the Levy 

distribution. The Levy alpha values of PDFs were obtained numerically, and shifts of the Levy 

alpha values by bacterial infection were measured. Invasive bacterial infection of DLD-1 showed 

significantly decreased Levy alpha values while the control group and the group inoculated by 

non-pathogenic bacteria showed only a slight change in the alpha. The PDF drift induced by 

pathogenic bacteria inoculation showed more Cauchy-like (ballistic) statistics than Gaussian-like 

(diffusive) statistics. PDF shapeshifts caused by invasive bacterial infection may provide a 

statistical representation of infection[24]. 
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APPENDIX A. DOPPLER LIGHT SCATTERING FROM 

INTRACELLULAR DYNAMICS OF SINGLE-CELL DERIVED 

SPHEROIDS 

A.1 Cancer Metastasis and Circulating Tumor Cells (CTC) 

Circulating tumor cells (CTC) are single cancer cells circulating in the bloodstream derived from 

a primary cancer tumor of a cancer patient. Extravasation of a CTC is the first step to metastasis, 

and investigation of the CTC mobility provides an early-stage diagnosis. Collecting CTCs from 

the bloodstream of a patient and measuring the chemosensitivity of CTCs to cytotoxic or targeted 

chemotherapeutics is one method to prescribe a personalized chemotherapy with higher efficacy 

for metastasis disease. To study the characteristics of CTCs in a metastic stage, it would be 

advantageous to grow a multi-cellular three-dimensional tissue culture from a single CTC. In this 

study, small tumor spheroids were prepared by placing a single breast cancer cell (MCF7) on a 

collagen-I substrate in an RPMI-1640 growth medium. The CTC spheroids take about 2 weeks to 

grow up to a diameter of approximately 300 m and 200 m thickness.  

 

A.2 BDI phenotype measurement of CTC-derived Spheroids 

BDI illuminates the cancer spheroids with a low-coherence light source and collects backscattered 

light. A reconstructed optical section at a specified depth (200 m) is shown in Figure A.1(a). 

Optical coherence image (OCI) and the corresponding motility contrast image (MCI) shows the 

characteristics of the dynamic speckle of a CTC spheroid. The geometry of the CTC spheroid is a 

two-layered system with a collagen substrate layer and a CTC spheroid layer which is shown in 

Figure A.1(b). The coherence-gate scans from the bottom up through the collagen layer and 

collects signals from the CTC spheroid. The collected signal carries Doppler shifts and the spectral 

density of the signal represents intracellular dynamics. Two chemotherapeutic agents 

(Doxorubicin and Taxol) were applied on CTC spheroids and changes in the Doppler spectra were 

measured. Doxorubicin inhibits DNA synthesis and causes apoptosis. Taxol inhibits microtubule 

synthesis which suppresses organelle transports and results apoptosis.  Spectral densities before 

and after treatment are compared in Figure A.1(c).  
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Figure A.1 (a) Digitally reconstructed OCI and MCI of a CTC spheroid. (b) Diagram of a CTC 

spheroid on the top of the collagen type-I layer. Incident light comes from beneath and 

backscattered light was collected. (c) Spectral density measured from a CTC spheroid on a poly-

d-lysin plate. 

 

 

 

 

A.3 Measurement of 3D Tissue on Collagen 

To compare the intracellular dynamics of CTC spheroids with and without collagen, CTC 

spheroids were deployed on 500 m thickness collagen layer and immobilized on poly-d-lysin 

plate. The spheroids were covered in the RPMI-1640 medium and maintained at 37 degrees Celsius. 

To measure the intracellular dynamic responses of CTC spheroid on the poly-d-lysin plate, 3 

baselines and 15 post-dose responses were measured. After the baseline measurement, 100 L of 

the RPMI-1640 medium was subtracted and 100 L of RPMI-1640 medium with taxol (10 M) 

or doxorubicin (20 M) dissolved by 0.2% DMSO were applied to the well. The drug response 

spectrograms are shown in Figure A.2. The control group was treated by 0.2% DMSO for 

comparison.  
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Figure A.2 drug response-spectrograms of 3D CTC spheroids grown from a single cell. Spheroids 

were deployed on a 96-well plate coated with poly-d-lysin for immobilization. The control and 

other groups treated by taxol or doxorubicin showed different spectral shifts. The group treated by 

taxol shows suppression of the mid-frequency compared to the control. The doxorubicin treatment 

shows a minor suppression at the low-frequency and high-frequency.  

 

At the beginning of metastasis, a single CTC may become implanted in a receptive stromal 

microenvironment. To mimic such an environment, a 500 m type-I collagen layer was used and 

a small breast cancer cell line (MCF7) spheroid was deployed on top of the collagen layer. Figure 

A.3 shows flythrough scanning images of OCT and MCI of a spheroid with 50 m thickness on 

the collagen layer.  
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Figure A.3 (a) Diagram of the collagen layer and a spheroid structure and coherence-gating along 

the CTC spheroid. (b) microscopic image of the CTC spheroid. (c) OCI and MCI images of at 

successive depth scanning with a  15 m scanning step.  The collagen layer shows low speckle 

fluctuation.  

 

The 3 dimensional CTC spheroid on the collagen layer showed different speckle properties at 

different depths. The backscatter brightness and motilities are compared in Figure A.4. Scanning 

through the collagen layer induces a strong background signal which makes the measurement 

challenging. The collagen layer scatters light 10 times more than the CTC spheroid. However, 

because of the advantage of the low-coherence light interferometry, a distinct difference in the 

motility is shown. The signal collected from the collagen layer has a motility lower than 0.5 and 

the motility gradually increased when the coherence-gate scanned through the CTC spheroid.  
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Figure A.4 BDI measurement of two CTC spheroids on a collagen layer. Speckle motility and 

backscatter brightness as a function of the depth of the coherence-gate. The segment with 

decreasing speckle motility shows an increasing backscatter brightness. The estimated CTC 

spheroid thickness is about 50 m and the collagen layer scatters about 10 times more light than 

the CTC spheroid.  

 

Figure A.5 Power spectral densities of two samples at different depths. Sample #1 shows spectral 

densities at a depth between 135 m to 195 m showing increased Nyquist floor which is expected 

when scanning the CTC spheroid. When a depth becomes deeper than 210 m  the Nyquist floor 

is suppressed. Scanning of Sample #2 shows the consistent behavior of decreasing the Nyquist 

floor when the coherence-gate scanned the collagen layer. Scanning of the void region did not 

show a spectral density. The spectral densities are intensity normalized. 
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Power spectral densities of single cell-derived spheroids on a collagen layer were measured. 

Because the collagen layer scattered significantly more light than the spheroids,  the spectral 

densities shown in Figure A.5 has narrow dynamic ranges. Yet, the Nyquist floor characteristics 

show a consistent behavior that the spheroids have more high-frequency Doppler power spectral 

density. Scanning on a void region shows a flat and 1/f featured spectral density.   

 

 

A.4 Discussion 

This work demonstrates the possibility of measuring drug response phenotypes of living 3D CTC 

spheroids grown from a single cell. BDI scans through deep regions of biological samples by 

coherence-gated optical sectioning and measures intracellular dynamics. The intracellular 

dynamics are represented in terms of Doppler power spectral densities, and applying different 

reagents causes different spectral shifts. Applied chemotherapeutic agents taxol and doxorubicin 

induce different mechanisms of actions and also the Doppler power spectral responses.  

 A potential challenge for using BDI for this application is the use of the thick type-I 

collagen layer which scatters light 10 times more light than CTC spheroids which attenuate signals 

from the CTC spheroids. Living tissues tend to be translucent with weak backscatter brightness. 

Therefore, the high brightness and strong attenuation of the thick collagen layer combined with 

the thin living tissue layer with low backscatter could have precluded the use of BDI for the 

application. The experimental results presented here demonstrate that the living tissue dynamics 

are detectable despite the challenges posed by the growth structure.  

 The dynamic character of the signal from the living CTC-spheroids relative to the static 

collagen layers demonstrates a successful BDI profile of the CTC-spheroids response to applied 

chemotherapeutic agents. The Doppler shifts acquired by scattering in the CTC spheroids are 

carried through multiple scattering events in the collagen to the detector plane where the temporal 

fluctuations arise almost exclusively from the CTC spheroid layer despite the low signal levels. 

This trait is a key advantage of the application of BDI that enables tissue grown on the optically 

turbid collagen substrate to be characterized by the fluctuation spectroscopy.  

 The drug response spectrograms obtained through the application of taxol and 

doxorubicin are typical of these treatments that are observed in larger multicellular CTC spheroids. 

The control spectrum, where no therapeutic is applied, does show a drift of spectral weight to lower 
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frequencies, possibly caused by the change in environment on the sample stage. However, this 

background drift is substantially different than the drug responses to taxol and doxorubicin. Both 

drugs induce a mid-frequency (approximately 0.1 Hz) inhibition that has been correlated with an 

early apoptotic response. Therefore, this work has demonstrated the feasibility of performing 

optically-based phenotypic profiling of 3D tissue culture grown from single cells.  
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