
EVALUATING THE EFFECTS OF LEGACY PHOSPHORUS ON 

DISSOLVED REACTIVE PHOSPHORUS LOSSES IN TILE-DRAINED 

SYSTEMS 

by 

Pauline Welikhe 

 

A Dissertation 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Doctor of Philosophy 

 

Department of Agronomy 

West Lafayette, Indiana 

May 2020 

  



 

 

2 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Sylvie Brouder, Chair 

Department of Agronomy 

Dr. Jeffrey Volenec 

Department of Agronomy 

Dr. Ronald Turco 

Department of Agronomy 

Dr. Margaret Gitau 

Department of Agronomy 

 

Approved by: 

Dr. Rich Grant 

 

 



 

 

3 

To Hennig Brandt 

 



 

 

4 

ACKNOWLEDGMENTS 

Since joining Purdue University in the fall of 2016, I have received support and 

encouragement from many people. First, I would like to express gratitude to my major advisor: 

Professor Sylvie Brouder for allowing me to work on this research project, their support, guidance, 

advice, lots of valuable literature, and fruitful discussions. I wish to express my sincere thanks to 

Drs. Jeffrey Volenec, Ronald Turco, and Margaret Gitau for accepting .to be in my committee and 

their constructive discussion and contribution to my work. I am grateful to Dr. Linda Lee for 

admitting me to the Ecological Sciences and Engineering program and following my academic 

journey closely. I would like to thank my colleagues and all the staff in the Agronomy department 

for their help and friendship and for creating a conducive atmosphere that broadened my 

understanding of other cultures. Nicole De Armond gets a special mention for her tireless help 

from day one. Special thanks go to my parents (Mr. & Mrs. Welikhe) and sisters for their love and 

never-ending support. Also, this work was supported by the USDA NIFA NRI Managed 

Ecosystem Program grant (Award Number 2008-35101-19152), US DOE 2009 North Central Sun 

Grant Competitive Grants Program (Award Number DE-FG36-08GO88073), USDA NIFA 

Bioenergy CAP grant (Award Number 2011‐68005‐30411), and the 4R Research Fund of the 

Foundation for Agronomic Research (Project Number 2015-USA-4RN45) with additional support 

from a Purdue University Ecological Sciences and Engineering Lynn Fellowship, Bilsland 

Fellowship, and the Estate of Orpha M. Wickersham. 

 

 



 

 

5 

TABLE OF CONTENTS 

LIST OF TABLES ......................................................................................................................8 

LIST OF FIGURES .................................................................................................................. 11 

ABSTRACT ............................................................................................................................. 14 

1. INTRODUCTION ............................................................................................................. 16 

1.1 Background and current knowledge gap ........................................................................ 16 

1.2 Research Objectives and Organization ........................................................................... 18 

1.3 References ..................................................................................................................... 22 

2 DEVELOPMENT OF PHOSPHORUS SORPTION CAPACITY – BASED 

ENVIRONMENTAL INDICES FOR TILE-DRAINED SYSTEMS ......................................... 28 

2.1 Abstract ......................................................................................................................... 28 

2.2 Introduction ................................................................................................................... 29 

2.3 Materials and Methods .................................................................................................. 32 

2.3.1 Laboratory study ..................................................................................................... 32 

2.3.1.1 Soil selection and analysis ................................................................................. 32 

2.3.1.2 Data Analysis .................................................................................................... 33 

2.3.2 Field study .............................................................................................................. 34 

2.3.2.1 Experimental site, Soil and Water Characterization ............................................ 34 

2.3.2.2 Data analysis...................................................................................................... 35 

2.4 Results and Discussion .................................................................................................. 36 

2.4.1 Laboratory study ..................................................................................................... 36 

2.4.1.1 Soil characteristics ............................................................................................. 36 

2.4.1.2 Relationship among variables ............................................................................ 36 

2.4.1.3 Sorption pedotransfer function (pedoTF) ........................................................... 38 

2.4.1.4 P release from soils ............................................................................................ 38 

2.4.2 Field study .............................................................................................................. 42 

2.4.2.1 Soil characteristics ............................................................................................. 42 

2.4.2.2 Phosphorus loss ................................................................................................. 44 

2.5 Conclusions ................................................................................................................... 45 



 

 

6 

2.6 References ..................................................................................................................... 46 

3 USING ARTIFICIAL NEURAL NETWORKS TO IMPROVE PHOSPHORUS INDICES ..  

 ........................................................................................................................................... 55 

3.1 Abstract ......................................................................................................................... 55 

3.2 Introduction ................................................................................................................... 56 

3.3 Materials and Methods .................................................................................................. 59 

3.3.1 Selection of ANN variables. ................................................................................... 59 

3.3.2 Study site and creation of datasets........................................................................... 59 

3.3.3 Description and development of SP ANN-model .................................................... 65 

3.3.4 Relative importance analysis of input variables ....................................................... 67 

3.3.5 PI performance ....................................................................................................... 68 

3.4 Results and Discussion .................................................................................................. 69 

3.4.1 Performance of ANN .............................................................................................. 69 

3.4.2 Relative importance of input variables on SP losses ................................................ 72 

3.4.3 Comparison of PI performance ............................................................................... 76 

3.5 Conclusion .................................................................................................................... 78 

3.6 References ..................................................................................................................... 80 

4 DYNAMICS OF DISSOLVED REACTIVE PHOSPHORUS LOSS FROM PHOSPHORUS 

SOURCE AND SINK SOILS IN TILE-DRAINED SYSTEMS ................................................ 90 

4.1 Abstract ......................................................................................................................... 90 

4.2 Introduction ................................................................................................................... 90 

4.3 Materials and Methods .................................................................................................. 94 

4.3.1 Site description and nutrient management ............................................................... 94 

4.3.2 Soils data ................................................................................................................ 95 

4.3.3 Flow and DRP concentration data collection ........................................................... 96 

4.3.4 Calculations and statistical analysis ........................................................................ 97 

4.3.5 Determination of C-Q hysteresis loops .................................................................... 98 

4.4 Results ......................................................................................................................... 100 

4.4.1 Annual DRP loads and FDRP concentrations ........................................................ 100 

4.4.2 Discharge events: General description, DRP loads, and FDRP concentrations ...... 102 



 

 

7 

4.4.3 C-Q relationships .................................................................................................. 106 

4.4.4 Hysteresis patterns ................................................................................................ 110 

4.5 Conclusion .................................................................................................................. 115 

4.6 References ................................................................................................................... 116 

5 SYNTHESIS AND FUTURE WORK .............................................................................. 124 

5.1 References ................................................................................................................... 128 

APPENDIX ............................................................................................................................ 129 

PUBLICATION ...................................................................................................................... 176 

  



 

 

8 

LIST OF TABLES 

Table 2.1. Brief descriptions of P measures (indices) examined in this study. ............................ 30 

Table 2.2. Pearson's correlation coefficients of Phosphorus sorption index (PSI) and soil properties 

of 73 archived soils samples used in the P sorption study. ......................................................... 37 

Table 2.3. Mean and standard deviation (Std. dev.) for organic matter (OM), phosphorus (P) and 

aluminum (Al), phosphorus saturation ratio (PSR) and soil phosphorus storage capacity (SPSC) 

for archived soil samples from the 6 experimental sites (n=154ǂ). .............................................. 39 

Table 3.1. Categorical transport variables included in the empirical dataset, including name, brief 

description and rating values used in the study. Categories used were obtained from NASTRAT 

(IN-NRCS, 2013). ..................................................................................................................... 62 

Table 3.2. Range of values for continuous input variables used for generating the theoretical 

dataset. ...................................................................................................................................... 63 

Table 3.3. Equations for multiplicative P index formulations used in the study. ......................... 69 

Table 3.4. Testing and 10 fold-cross validation performance of the MLF ANN with increasing 

number of neurons in the hidden layer. The validation mean RMSE is the mean RMSE of the 10 

folds analyzed during cross-validation. ...................................................................................... 69 

Table 3.5. RMSE values for each fold during cross-validation. .................................................. 72 

Table 3.6. Results of the relative importance analysis for various site characteristics on annual 

flow-weighted mean DRP concentrations in tile effluent. Values in bold and in parenthesis 

represent Lemunyon and Gilbert (1993) weighting factors normalized to sum to 1. ................... 73 

Table 4.1. A brief description of no-till treatments at the Water Quality Field Station (WQFS) 

treatments (abbreviations and year of establishment, previous treatments (cropping systems and N 

rates) dating back to 1997, and P, N, and tillage management.................................................... 95 

Table 4.2. Soil P storage capacity (SPSC) for surface soils (20 cm) reported in Welikhe et al. 

(2020). Negative SPSC and positive SPSC values are associated with P source and P sink soils, 

respectively. 2011, 2012, and 2013 are water years e.g. 2011 water year begins on 1 Oct 2010 and 

ends on 30 Sept 2013. Refer to Table 1 for descripion of treatments. ......................................... 96 

Table 4.3. The number of days with missing flow data for tiles in the study plots. The percentage 

of number of days with missing data per water year is presented parenthetically. ...................... 97 

Table 4.4. Annual (water year) dissolved reactive phosphorus (DRP) loads in tile discharge. Plots 

with negative SPSC values (P source soils) are in bold. Refer to table 1 for description of 

treatments. .............................................................................................................................. 101 

Table 4.5. Annual (water year) flow-weighted dissolved reactive phosphorus (FDRP) in tile 

discharge. Plots with negative SPSC values (P source soils) are in bold. Concentration above which 

eutrophication is accelerated i.e. > 0.02 mg P L-1 (Correll, 1999)) are italicized. Refer to Table 1 

for description of treatments. ................................................................................................... 102 



 

 

9 

Table 4.6. General characteristics, DRP loads and FDRP concentrations, of the selected discharge 

events between October 2010 and September 2013†. FDRP concentrations > 0.02 mg L-1 

(concentration above which eutrophication is accelerated (Correll, 1999)) are italicized and in 

bold. ........................................................................................................................................ 103 

Table 4.7. Pearson correlation matrix between general discharge event characteristics and the ΔR 

(%) and ΔC (%) parameters¶†. ................................................................................................. 110 

Table A.1 Soil classification and type of of phosphorus (P) inputs used at six (6) Purdue 

agricultural research centers (Davies (DPAC), Pinney (PPAC), Northeast (NEPAC), Southeast 

(SEPAC), Throckmorton (TPAC) and, Water Quality Field Station (WQFS)). ........................ 129 

Table A.2. A brief description of current Water Quality Field Station (WQFS) treatments 

(abbreviations and year of establishment), any previous treatment (cropping system and N rates 

applied to maize) dating back to 1997, and P, N and tillage management. An estimate of the 

cumulative P2O5 applied from 1997 – 2013 is shown parenthetically. Current N management 

identifies the N rates applied to perennial crops, sorghum, and continuous and rotated maize. . 132 

Table A.3. Univariate statistics of daily tile discharge (L day-1 plot-1) from 2010 - 2014 for each of 

the 48 tiles in the 12 treatments. Shaded rows represent tiles omitted from the study due to tile 

failure as evidenced by the low number of flow of flow days (< 5 % of total days studied). Italicized 

values represent outer fence values from Tukey’s 1.5 IQR rule used to identify extreme outliers.

 ............................................................................................................................................... 141 

Table A.4 Univariate statistics of orthophosphate (DRP) concentrations (PO4
-3 day-1 plot-1) from 

2010 - 2014 for each of the forty-eight (48) tiles in the (12) treatments.................................... 143 

Table A.5 Selected univariate statistic for the 73 archived soils samples used in the P sorption 

study including the phosphorus sorption index (PSI) and analytical results from routine analyses 

conducted in a commercial soil testing laboratory. .................................................................. 145 

Table A.6 Change point values for the fitted nonlinear relationship between phosphorus saturation 

ratio (PSR) and water-soluble phosphorus (WSP) after removal of a random site’s soils during 

statistical analysis (***significant at P≤ 0.001)........................................................................ 147 

Table A.7 Values for organic matter (OM), phosphorus (P), aluminum (Al), P saturation ratio 

(PSR), and soil P storage capacity (SPSC)for surface soils (20 cm) obtained from the monitored 

plots at the Water Quality Field Station (WQFS) for 2011 -2013 water years (e.g. October 1, 2010 

– September 30, 2011 for 2011 water year). ............................................................................ 148 

Table A.8 Annual tile flow and tile drainage efficiencies (Q/P) for tiles in the study plots. ...... 151 

Table A.9 A brief description of current treatments at the Water Quality Field Station (WQFS) 

(abbreviations and year of establishment), any previous treatment (cropping system and N rates 

applied to maize) dating back to 1997, and P, N and tillage management. An estimate of the 

cumulative P2O5 applied from 1997 – 2013 is shown parenthetically. Current N management 

identifies the N rates applied to perennial crops, sorghum, and continuous and rotated maize. 

(Table obtained from Welikhe et al. (2020)) ............................................................................ 166 

Table A.10 Summary for Organic matter (OM) (%), phosphorus (P) (mg kg-1), Aluminum (Al) 

(mg kg-1), P saturation ratio (PSR) (unitless), Soil P storage capacity (SPSC) (L kg-1), and Annual 



 

 

10 

flow-weighted mean DRP concentrations (fDRP) (mg L-1) obtained from the monitored plots at 

the Water Quality Field Station (WQFS) for 2011 -2013 water years (e.g. Oct 1, 2010 – Sept 30, 

2011 for 2011 water year). Cropping system abbreviation and management histories are provided 

in supplemental table S1. (Table obtained from Welikhe et al. (2020)) .................................... 167 

Table A.11 Field data (empirical dataset) used to generate the theoretical dataset and for the 

calculation of PI values. Treatment (cropping system) abbreviation and management histories are 

provided in supplemental Table S1. Swine manure was applied at rates meant to supply ~ 228 lbs 

N ha-1 yr. ................................................................................................................................. 168 

 

 

  



 

 

11 

LIST OF FIGURES 

Figure 2.1 Relationship between (a) phosphorus saturation ratio (PSR) and water soluble 

phosphorus (WSP) of archived soil samples (< 20 cm depth) obtained from Davies (DPAC), 

Pinney (PPAC), Northeast (NEPAC), Southeast (SEPAC), Throckmorton (TPAC) and, the Water 

Quality Field Station (WQFS) (n=152). Parameter estimates (with standard errors in parentheses) 

and R2 values for the fitted segmented line models (*** significant at the 0.001 probability level), 

(b) phosphorus saturation ratio (PSR) and annual flow weighted mean DRP (fDRP) for soil 

samples (20 cm depth) from the Water Quality Field Station (WQFS) plots (n=119). Parameter 

estimates (with standard errors in parentheses) and R2 values for the fitted segmented line models 

(*** significant at the 0.001 probability level). .......................................................................... 40 

Figure 2.2. Relationship between (a) water soluble phosphorus (WSP) and soil phosphorus storage 

capacity (SPSC) of archived soil samples (< 20 cm depth) obtained from Davies (DPAC), Pinney 

(PPAC), Northeast (NEPAC), Southeast (SEPAC), Throckmorton (TPAC) and, the Water Quality 

Field Station (WQFS) (n=152). Dashed line locates zero SPSC values (proposed threshold), (b) 

annual flow-weighted DRP (fDRP) and soil phosphorus storage capacity (SPSC) for soil samples 

(20 cm depth) from the Water Quality Field Station (WQFS) plots (n=119). Dashed line locates 

zero SPSC values (proposed threshold). .................................................................................... 42 

Figure 3.1. Neural interpretation diagram of the best MLP network structure with 11,7, and 1 

neuron(s) in the input (I), hidden (H) and output (O) layers respectively. B1 and B2 are bias terms 

added to H and O layers. Black and grey lines represent positive and negative connections 

respectively, while line thickness represents the relative magnitude of each connection weight. 

Abbreviations are; STP= soil test P, PSR = P saturation ratio, SPSC = soil P storage capacity, FPR 

= Inorganic P fertilizer rate, FPA = Inorganic P fertilizer application method and timing, OPR = 

Organic P fertilizer rate, OPA = Organic P fertilizer application method and timing, SE = soil 

erosion, SR = surface runoff, SDP = subsurface drainage potential, DTW = distance to water body, 

and fDRP = Annual flow-weighted mean DRP concentrations. ................................................. 70 

Figure 3.2. Selected MLF ANN parity plot for annual flow-weighted dissolved reactive 

phosphorus (fDRP) concentrations in tile discharge. The black line is the 1:1 (y = x) line. ........ 71 

Figure 3.3. Observed annual flow-weighted mean DRP concentrations (fDRP) and predictions of 

SP loss risk calculated with the (a) Unweighted PI (PINO), (b) a PI weighted using Lemunyon and 

Gilbert (1993) weights (LG - weighted PI (PILG)), and (c) a PI weighted using artificial neural 

network generated weights (ANN - weighted PI (PIANN)). ......................................................... 77 

Figure 4.1. Relationship between (a) daily discharge (mm) and daily dissolved reactive phosphorus 

(DRP) flux (kg ha-1) presented on a log-log scale, and (b) event discharge (mm) and event 

dissolved reactive phosphorus (DRP) flux (kg ha-1) presented on a log-log scale. Exponent (b) and 

coefficient (a) values are defined by Equation 2, and R2 values were determined by linear 

regression on log transformed DRP flux and discharge values. Source and sink DRP represent 

DRP fluxes measured from P saturated (source) and unsaturated (sink) soils. .......................... 107 

Figure 4.2. Plot of ΔCnew (%) versus ΔR (%) for the C-Q hysteresis loops of dissolved reactive 

phosphorus (DRP). The i, j, and k terms in the plot labels correspond to ith season (winter (W), 



 

 

12 

spring (Sp), summer (Su), and fall (F)) in a water year (2011 (11), 2012 (12), and 2013 (13), the 

jth plot at the WQFS (10, 11, 12, 26, 30, 32, 43, and 44), and the kth discharge event for the 

specified plot. Table 5 provides detailed information on discharge events. Illustrations of the 

typical C-Q relationships (c, broken blue line; Q, continuous brown line) are presented for each of 

the regions A – D of the ΔCnew (%) versus ΔR plot. A few source DRP events showed clockwise 

hysteresis ................................................................................................................................ 112 

Figure 4.3. A proposed conceptual model illustrating DRP loss in tile drained fields from, (a) P 

source soils, Panel 1, discharge at the start of the event when P rich event water (preferential flow) 

from the surface rapidly flows to tile drains; Panel 2, discharge during the event when P rich event 

water is mixed with P poor water from the soil matrix and shallow ground water, resulting in an 

overall dilution; Panel 3, when the discharge recedes and contributions from soil matrix and 

shallow ground water are absent, event water with high P concentrations continues, (b) P sink 

soils, Panel 1, discharge at the start of the event when P poor event water (preferential flow) from 

the surface rapidly flows to tile drains; Panel 2, discharge during the event when P poor waters 

(preferential, matrix, and shallow groundwater) mix; Panel 3, soil matrix and shallow ground water 

recede, event water with low P concentrations continues. ........................................................ 114 

Figure A.1 A map showing the layout of plots at the Water Quality Field Station. The number at 

the top and bottom of each plot represents the plot and treatment number respectively. This study 

considered the 48 drainage lysimeter plots (plot number 1 - 48) only. Treatments 1 to 12 include; 

Native prairie mixture (Prairie), Miscanthus x giganteus (Mxg), continuous maize with residue 

removal (CM-RR), Switchgrass (Switch), continuous sorghum with residue removal (Sorgh), 

maize-soybean rotation trt#1 with residue return (MS-R1), soybean-maize rotation trt#1 with 

residue return (SM-R1), maize-soybean rotation trt#2 with residue return (MS-R2), soybean-maize 

rotation trt#2 with residue return (SM-R2), continuous maize with residue return and spring 

manure (CM-SpM), continuous maize with residue return and, fall manure (CM-FM) and 

continuous maize with residue return (CM) respectively (more details on previous crop, nutrient 

and  tillage management can be found in Table S2 in the supplemental text). Letters A to H identify 

the instrumentation huts into which collection tiles drain. (Map obtained from; 

https://ag.purdue.edu/agry/WQFS/Pages/map.aspx) ................................................................ 131 

Figure A.2 Missing daily follow data ...................................................................................... 134 

Figure A.3 Unit circle resulting from principle component analysis of the different variables for 

the selected 73 soils. Relative positions of routinely determined soil test data (organic matter (OM), 

phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), log of H+ concentrations (pH), 

cation exchange capacity (CEC), iron (Fe), aluminum (Al)) in the circle indicate the magnitude of 

direct association between these soil properties and phosphorus sorption index (PSI). Percentage 

value in parenthesis is the proportion of the total variance accounted for by each principle axis.

 ............................................................................................................................................... 146 

Figure A.4 Daily tile flow/discharge (m3) from individual plots for the study period (beginning 

Oct 1, 2010 and ending on Sept 30, 2013). Gaps in graphs are a result of missing data either due 

to maintenance, flooding or equipment failure/error ................................................................ 152 

Figure A.5. Boxplots of DRP concentration. Circles represent outliers, whiskers represent the 10th 

and 90th percentiles, the lower and upper edges of the boxes represent the 25th and 75th percentiles, 

and the horizontal line inside the boxes represents the median.  Tile 42, 22, 23, 13, 2, 9, 38 and, 



 

 

13 

41, were omitted from the study due to tile failure. Current treatment abbreviations: Prairie, native 

prairie mixture with residue removed; Mxg, Miscanthus x giganteus established in 2008 ; CM -

RR, continuous maize with residue removal; Switch, Switchgrass established in spring 2007; 

Sorgh, continuous sorghum with residue removal established in 2008; MS – R1,maize-soybean 

rotation trt#1 w/residue return; SM-R1, soybean-maize rotation trt #1 w/residue return; MS – R2, 

maize-soybean rotation trt#2 w/residue return; SM-R2, soybean-maize rotation trt #1 w/residue 

return; CM -SpM, continuous maize with residue return and spring manure applications; CM-FM, 

continuous maize with residue return and fall manure applications; CM, continuous maize with 

residue return. More details on previous crop, nutrient and tillage management can be found in 

Table S3 in the main text. ........................................................................................................ 162 

Figure A.6 Histogram and theoretical densities, Q-Q plot, empirical and theoretical cumulative 

distribution functions and P-P plots for the (a) Mehlich 3 soil test P log-normal (lnorm) 

distribution, (b) P saturation ratio normal (norm) distribution, and (c) Soil P storage capacity 

normal (norm) distribution. ..................................................................................................... 173 

Figure A.7 Density plot showing the distribution of annual flow-weighted mean DRP values. 174 

 

 

  



 

 

14 

ABSTRACT 

Eutrophication due to phosphorus (P) enrichment continues to be a primary water quality 

concern affecting freshwater and marine estuaries around the world. Excessive anthropogenic P 

inputs, driven by the need to meet the rising food and energy demands of a growing and 

increasingly urbanized population, have resulted in the buildup of P creating legacy (historical) P 

pools in agricultural landscapes. There is growing evidence that remobilization of accumulated 

legacy P can interfere with conservation efforts aimed at curbing eutrophication and improving 

water quality. Less is known about the magnitude and effects of these legacy P pools on dissolved 

reactive P (DRP) losses in tile-drained systems. This dissertation consists of three separate 

inquiries into how legacy P may affect DRP losses in tile drains. In the first inquiry, we examined 

the possibility of developing a suitable pedo-transfer function (pedoTF) for estimating P sorption 

capacity (PSC). Subsequent PSC-based indices (Phosphorus Saturation Ratio (PSR) and Soil 

Phosphorus Storage Capacity (SPSC)) were evaluated using daily water quality data from an in-

field laboratory. The pedoTF derived from soil aluminum and organic matter accurately predicted 

PSC (R2 = 0.60). Segmented-line models fit between PSR and soluble P (SP) concentrations in 

both desorption assays (R² = 0.69) and drainflows (R² = 0.66) revealed apparent PSR thresholds 

in close agreement at 0.21 and 0.24, respectively. Linear relationships were observed between 

negative SPSC values and increasing SP concentrations (R² = 0.52 and R2 =0.53 respectively), and 

positive SPSC values were associated with very low SP concentrations in both desorption assays 

and drainflows. Zero SPSC was suggested as a possible environmental threshold. Thus, PSC-based 

indices determined using a pedoTF could estimate the potential for SP loss in tile drains. Also, 

both index thresholds coincided with the critical soil test P level for agronomic P sufficiency (22 

mg kg-1 Mehlich 3 P) suggesting that the agronomic threshold could serve as an environmental P 

threshold. In the second inquiry, PSC- based indices in addition to other site characteristics present 

in a P index (PI), were used as inputs in the development of a multi-layer feed-forward artificial 

neural network (MLF-ANN). The MLF-ANN was trained, tested, and validated to evaluate its 

performance in predicting SP loss in tile drains. Garson’s algorithm was used to determine the 

weight of each site characteristic. To assess the performance of ANN-generated weights, empirical 

data from an in-field laboratory was used to evaluate the performance of an unweighted PI (PINO), 

a PI weighted using Lemunyon and Gilbert weights (PILG), and an ANN-weighted PI (PIANN) in 
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estimating SP losses in tile effluent. The MLF-ANN provided reliable predictions of SP 

concentrations in tile effluent (R2 = 0.99; RMSE = 0.0024). Soil test P, inorganic fertilizer 

application rate (FPR), SPSC, PSR, and organic P fertilizer application rate (OPR), with weights 

of 0.279, 0.233, 0.231, 0.097, and 0.084, respectively, were identified as the top five site 

characteristics with the highest weights explaining SP loss in tile discharge. These results 

highlighted the great contribution of both contemporary and legacy P sources to SP concentrations 

in tile discharge. Also, PIANN was the only PI with a significant exponential relationship with 

measured annual SP concentrations (R2 = 0.60; p < 0.001). These findings demonstrated that MLF-

ANNs coupled with Garson’s algorithm, can accurately quantify weights for individual site 

characteristics and develop PIs with a strong correlation with measured SP in tile discharge. 

Finally, in the third inquiry, we compared DRP loads and flow-weighted mean DRP (FDRP) 

concentrations in P source and P sink soils and evaluated the predominant DRP concentration – 

discharge (C-Q) behavior in these soils on a daily and event scale. At the daily scale, C-Q patterns 

were linked to the soil P status whereby a chemostatic and dilution behavior was observed for P 

source and P sink soils, respectively. At the event scale, C-Q patterns were linked to soil P status, 

flow path connectivity, and mixing of event water, matrix water, and rising shallow groundwater. 

The predominant anti-clockwise rotational pattern observed on P source soils suggested that, as 

the discharge event progressed, contributions from P poor waters including matrix and shallow 

groundwater resulted in lower DRP concentrations on the rising limb compared to the falling limb. 

However, the variable flushing and dilution behavior observed on the rising limb suggested that, 

in addition to discharge and soil P status, rapid exchanges between P pools, the magnitude of 

discharge events (Q), and the relative number of days to discharge peak (Drel) also regulated DRP 

delivery. On the other hand, the predominant non-hysteretic C-Q behavior in P sink soils suggest 

that DRP loss from these soils can be discounted. Our collective results highlight the need for 

nutrient and conservation practices focused on P drawdown, P sequestration, and P supply close 

to the crop needs, which will likely be required to convert P sources to sinks and to avoid the 

conversion of P sinks to sources.  
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1. INTRODUCTION 

1.1 Background and current knowledge gap 

In recent history, water quality success-stories from intensive conservation programs have 

seldom occurred. Freshwater eutrophication that occurs following phosphorus (P) enrichment and 

is characterized by harmful algal blooms, hypoxia, fish kills, and increased turbidity has become 

a common occurrence in may watersheds (Smith et al., 2006; Bennett & Schipanski, 2013). For 

example, despite over 30 years of conservation practices particularly for phosphorus (P) loss 

reduction in Lake Erie basin, Mississippi-Atchafalaya River basin, Chesapeake Bay watershed 

and, inland and coastal waters of Florida, there has been an increase in the magnitude and 

frequency of eutrophication in these waters (Sharpley et al., 2012; Dale et al., 2010; Reckhow et 

al., 2011; USEPA, 2011). Several likely causes for the increased cases of re-eutrophication of 

fresh-waters are being debated and closely scrutinized by the scientific, conservation and industrial 

communities (Smith et al., 2015). One suggested causal factor that has come under scrutiny is 

legacy P (Jarvie et al., 2013; Kleinman et al.,2011a; Sharpley et al., 2011; Mulla et al., 2008). 

Legacy P is P accumulated from past surpluses in anthropogenic P inputs that are stored 

within agricultural soils and sediments and could potentially contribute to P release to the 

atmosphere, surface waters, and biomass (Kleinman et al., 2011; Sharpley et al., 2013; Chen et al., 

2015). The main driver for excessive anthropogenic P inputs is the need to meet the rising food 

and energy demands of a growing and increasingly urbanized population (Chen et al., 2018). 

Indeed over the past several decades, in many watersheds across southern Europe, Midwestern 

United States, and China, inorganic P fertilizer additions is one of the major components of 

anthropogenic P inputs (Goyette et al., 2016; Chen et al., 2015; Hong et al., 2012; Russell et al., 

2008). The heavy dependence on P fertilizers coupled with low crop P use efficiency has 

dramatically disrupted the P cycle (almost doubling P amounts in terrestrial systems) and 

ecosystem fluxes (Townsend & Porder, 2012; Elser & Bennett, 2011; Vitousek et al, 2009). 

Besides excessive inorganic P inputs, other anthropogenic activities have contributed to legacy P 

build up in soils. For example, the adoption of soil conservation measures that control soil erosion 

but inadvertently promote soil stratification, has caused P accumulations to be localized at the soil 

surface (Kleinman et al., 2011; Smith et al., 2015; Sharpley, 2016). Also, the intensification of 
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livestock production has resulted in manure inputs and localized organic P build up and 

imbalances. For example, in the Delmarva Peninsula soil P concentrations have increased to levels 

one order of magnitude greater than crop growth needs (Buda et al., 2010).  

The reactivity of P as an anion results in its extremely high concentration in solid phases 

as compared to solution phases (Jones et al., 1984). Frossard et al. (1995) & Frossard et al. (2000) 

show that P sorption potential of sediments and soils is several orders of magnitude greater 

compared to the concentration of P in solution. Additionally, the major conduit for surplus P 

transfer i.e. riverine export flux, only transports a relatively small fraction of accumulated P (~3%; 

Zhang et al., 2015), which means that > 90% of anthropogenic P inputs are potentially stored in 

terrestrial and aquatic landscapes as built up legacy P pools (Chen et al., 2018; Goyette et al., 2016; 

Chen et al., 2015; Hong et al., 2012; Russell et al., 2008). Therefore, it is not surprising that, at the 

global scale, net P accumulation rates in agricultural soils increased to 8 Tg P year-1 in 2000 from 

1 Tg P year-1in 1950, with cumulative P of approximately 210 Tg P between 1970 and 2010 

(Bouwman et al., 2013; Sattari et al., 2012). Even though these terrestrial, legacy P reserves may 

be the answer to diminishing phosphate reserves (projected to be exhausted in the next 50-100 

years), they could also be responsible for widespread eutrophication (Steen, 1998; Smil, 2000 ; 

Carpenter, 2008). As added P accumulates and the P sorption capacity of a soil decreases, sorbed 

P is increasingly prone to release to soil solution (Sharpley, 1995; Hooda et al., 2000; Nair et al., 

2004). This means that legacy P pools have the potential to be re-mobilized as dissolved reactive 

P (DRP), and act as a major source of P to fresh and coastal waters (Sharpley et al., 2005; Mcdowell 

& Sharpley, 2011).  

Previously, leaching losses of DRP in tile drains was thought to be negligible because of 

the high sorption capacity of subsoils (Logan et al., 1980). However, recent studies show that the 

altered hydrology (i.e. low water tables, reduced surface runoff, increased subsurface drainage) in 

tile-drained systems greatly impacts the transport and fate of nutrients from agricultural soils, 

resulting in leaching losses of DRP especially from fields with long-term P applications (Radcliffe 

et al., 2015; King et al., 2015; Gentry et al., 2007; Kinley et al., 2007; Sims et al., 1998). Also, 

since tile drains act as direct conduits between fields and nearby water bodies, DRP export can be 

from a much larger area of the landscape compared to contributions from surface runoff 

(Heathwaite and Dils, 2000). In the humid and poorly drained regions of the Midwest United States 

(US), the installation of tile drains is a common and necessary practice for successful crop 
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production (Skaggs et al., 1994). Zucker and Brown, (1998) estimated that between 18 and 28 

million ha of cropland in the Midwest US is tile-drained. However, Blann et al. (2009) indicate 

that the area of cropland with subsurface tile drains is likely significantly higher. In Indiana, based 

on the 2012 USDA-NASS Census of Agriculture, 7.5 million acres of the 14.7 million acres of 

farmland has some type of subsurface drainage present (e.g. tiles or ditches) (USDA-NASS, 2014). 

Given attempts to diminish soil P concentrations through phytomining and reduction or cessation 

of P inputs take decades or longer (McCollum, 1991; Schärer et al., 2007; Sharpley & Rekolainen, 

1997), DRP losses in intensely tile-drained systems will persist. For example, in the Western Lake 

Erie Basin, increasing magnitude and frequency of re-eutrophication from the early 1990s has been 

directly linked to increasing inputs of DRP into the major river tributaries (Sandusky, Maumee 

and Raisin), the latter thought to be a consequence of the presence of legacy P and intensified tile 

drainage among other factors (Smith et al., 2015; King et al., 2015; Michalak et al., 2013; Baker 

et al., 2014; Scavia et al., 2014). Incidences such as the 2011 and 2014 record-setting algal blooms 

(Smith et al., 2015; Michalak et al., 2013) led to the governments of the United States and Canada 

to announce a new bi-national P target of 40% reduction in DRP and total P loads in spring (Annex 

4, 2015). More research is needed to understand the impact of legacy P on DRP pollution loads 

and its effective integration into nutrient management measures. This is especially important in 

intensively tile-drained systems with long term histories of P application that are hypothesized to 

be critical source areas for DRP loss. This research will provide insight on how to quantify legacy 

P accumulation and identify P sink and P source soils, the importance of legacy P on eventual 

soluble P (SP) losses, and how legacy P affects DRP dynamics in tile drained systems. Findings 

from this research will help to optimize DRP loss management strategies as well as to control the 

expectations of stakeholders.   

1.2 Research Objectives and Organization 

This dissertation will focus on evaluating the effects of legacy P on DRP losses in tile-

drained systems. The research is designed to analyze the relationship between P sorption capacity 

(PSC)- based environmental indices and DRP loss, the relative importance of a soil’s P status to 

DRP loss compared to other site characteristics, and the effect a soil’s P status has on DRP 

dynamics in tile-drained fields. The general and specific objectives, and hypotheses of each chapter 

are as follows: 
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o Chapter 2 

o Objective: Determine the relationship between P sorption capacity (PSC)-based 

indices (Phosphorus Saturation Ratio (PSR) and Soil Phosphorus Storage Capacity 

(SPSC)) and edge-of-field DRP losses and to recommend environmental thresholds 

for water quality in tile-drained systems. 

o Specific objectives: 

▪ To examine the possibility of developing a suitable pedo-transfer function 

(pedoTF) for estimating PSC using readily available soil test data  

▪ To ultimately evaluate the applicability and accuracy of laboratory 

determined threshold values at the field scale, especially where subsurface 

tile drains may exacerbate leaching losses. 

o Hypothesis: 

▪ There will be a relationship identified between specific routinely 

determined chemical soil characteristics that estimates a soil’s PSC. 

▪ PSC-based environmental thresholds will be identified above/below which 

DRP loss in tile-drained fields increases. 

o Rationale: 

▪ In regions with long histories of fertilizer P addition such as the Midwest 

United States, PSC-based environmental indices can be relevant indicators 

of a soil’s P status, particularly with increasing concern over the 

contribution of legacy P to increased eutrophication. Also, index thresholds 

identified could serve as environmental P thresholds for nutrient 

management. 

o Chapter 3 

o Objective: The study aimed to simulate soluble P concentrations in tile effluent 

using a multi-layer feed-forward artificial neural network (MLF-ANN) trained by 

the backpropagation algorithm and analyze the contribution of each site 

characteristics to eventual DRP loss.  

o Specific objectives: 
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▪ To evaluate ANN model performance for predicting soluble P (SP) 

concentrations in tile effluent with selected site characteristics as predictor 

variables.  

▪ To determine ANN-generated WFs using Garson’s algorithm and compare 

the performance of a PI with no WFs (PINO), a PI with WFs as proposed in 

the original Lemunyon and Gilbert PI (PILG), and a PI with ANN-generated 

WFs (PIANN), at predicting SP loss potential in tile discharge. 

o Hypothesis: 

▪ SP in tile effluent will be accurately predicted by an ANN model trained by 

the backpropagation algorithm 

▪ Site characteristics related to a soil’s P status will have greater contributions 

(weights) to eventual SP loss in tile effluent compared to site characteristics 

related to P movement off a field and P application methods. 

▪ The use of ANNs to determine PI weights is more efficient and ANN-

generated weights will improve the relationship between calculated P index 

values and measured SP concentrations in tile effluent. 

o Rationale: 

▪ To address the need to consider synergistic and antagonistic interactions 

among P index site characteristics when determining input factor weights.  

o Chapter 4 

o Objective: The overall goal of this study was to quantify DRP losses from P source 

and P sink soils to tile drain waters, and assess patterns of loss as a function of 

discharge. 

o Specific objectives: 

▪ To determine DRP loads and flow-weighted mean DRP (FWDRP) 

concentrations from P source and sink soils at an annual and event-based 

time scale. 

▪ To evaluate the predominant concentration – discharge (C-Q) responses of 

DRP from P source and sink soils in tile discharge.  

o Hypothesis: 
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▪ P source and sink soils will differ in the DRP loads and FWDRP 

concentrations lost. 

▪ C-Q relationships in P source and P sink soils will differ. 

o Rationale: 

▪ To elucidate solute pathways and investigate key components driving 

nutrient delivery in tile-drained systems to inform conservation practice and 

nutrient management recommendations in an effort to attain water quality 

goals. 

o Chapter 5 

o Conclusion and future work 

▪ To synthesize and integrate the findings of the research conducted in this 

dissertation on the effects of Legacy P on DRP loss in tile-drained systems, 

highlight key findings and recommendations, and discuss future research 

needs. 
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2 DEVELOPMENT OF PHOSPHORUS SORPTION CAPACITY – 

BASED ENVIRONMENTAL INDICES FOR TILE-DRAINED SYSTEMS 

This chapter was published in the Journal of Environmental Quality. It can be cited as;  

Welikhe, P., Brouder, S. M., Volenec, J. J., Gitau, M., & Turco, R. F. (2020). Development of 

phosphorus sorption capacity – Based environmental indices for Tile‐drained systems. 

Journal of Environmental Quality, (January), 1–14. https://doi.org/10.1002/jeq2.20044 

2.1 Abstract 

The persistent environmental relevance of phosphorus (P) and P sorption capacity (PSC) 

on P loss to surface waters has led to proposals for its inclusion in soil fertility and environmental 

management programs. As fertility and environmental management decisions are made on a 

routine basis, the use of laborious P sorption isotherms to quantify PSC is not feasible. 

Alternatively, pedo-transfer functions (pedoTFs) estimate PSC from routinely assessed soil 

chemical properties. Our objective was to examine the possibility of developing a suitable pedoTF 

for estimating PSC and to evaluate subsequent PSC-based indices (Phosphorus Saturation Ratio 

(PSR) and Soil Phosphorus Storage Capacity (SPSC)) using data from an in-field laboratory where 

tile drain effluent is monitored daily. PSC was well predicted by a pedoTF derived from soil 

aluminum and organic matter (R² = 0.60). Segmented-line relationships between PSR and soluble 

P were observed in both desorption assays (R² = 0.69) and drainflows (R² = 0.66) with apparent 

PSR thresholds in close agreement at 0.21 and 0.24, respectively. Negative SPSC values exhibited 

linear relationships with increasing soluble P concentrations in both desorption assays and 

drainflows (R² = 0.52 and R2 =0.53 respectively) whereas, positive SPSC values were associated 

with low SP concentrations. Therefore, PSC-based indices determined using pedoTFs could 

estimate the potential for subsurface soluble P losses. Also, we determined that both index 

thresholds coincided with the critical soil test P level for agronomic P sufficiency (22 mg kg-1 

Mehlich 3 P) suggesting that the agronomic threshold could serve as an environmental P threshold. 
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2.2 Introduction 

Over the last decade, persistent failure of intensive conservation programs to curb the 

eutrophication of fresh and coastal waters has led to increased debate and scrutiny of possible 

causes. One suggested cause is legacy P i.e., P that is present from past land-use activities or after 

changes in land use and management (Jarvie et al., 2013; Kleinman et al., 2011;  Sharpley et al., 

2013; Mulla et al., 2008). In many watersheds, agricultural land-use is mainly responsible for these 

elevated P levels (Sharpley, 2016). Historically, to increase agricultural production, P fertility 

strategies were centered on the concept of nutrient “Quantity” (soil solid phase) and “Intensity” 

(soil solution phase) and sought to overcome limited diffusion of P in soils through an intentional 

buildup of P quantity (Kleinman, 2017; Frossard et al., 1995; Olsen and Khasawneh, 1980). 

Breeuwsma and Silva (1992) postulated that fertilizer management to increase solid-phase P 

eventually saturated P sorption sites allowing more recently applied P to remain in the soluble P 

(SP) phase increasing its susceptibility to leaching.  

Although P leaching losses from agricultural soils were originally thought to be negligible 

(Logan et al., 1980), recent studies have established leaching (especially in tile-drained fields with 

long-term, repeated P applications) as a significant pathway for P loss to surface waters (Gentry et 

al., 2007; Kinley et al., 2007; Sims et al., 1998). Subsurface tile drainage modifies soil hydrologic 

regimes, increases infiltration but creates direct conduits for transport of soil solutes to surface 

waters (King et al., 2015a). Also, in coarse-textured and cracking clay soils, the presence of 

significant preferential flow pathways exacerbates P loss through tile drains (Radcliffe et al., 2015). 

In consequence, knowing a soil’s P sorption capacity is crucial for the identification of potential, 

major P source areas.  

Several measures of P sorption saturation have been developed (Table 2.1) and include the 

P saturation ratio (PSR) and the soil P storage capacity (SPSC) (Renneson et al., 2015; Nair and 

Harris, 2014; Wang et al., 2012; Nair and Harris, 2004). Unlike soil test phosphorus (STP), PSR 

indicates the potential of a soil to desorb P as it is estimated as the fraction of PSC occupied by 

sorbed P i.e., P/PSC (Beauchemin and Simard, 1999; Breeuwsma and Silva, 1992). Alternately, 

as a metric of remaining PSC before a soil crosses a P saturation threshold, SPSC directly estimates 

the remaining capacity of a soil to retain additional P (sink strength) (Nair and Harris, 2014). 

Information in Table 2.1 provides brief details on P measures/indices. 
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Table 2.1. Brief descriptions of P measures (indices) examined in this study. 

Measure or 
index (abbrev.) 

Intended purpose Details Key reference(s) 

Soil test 
phosphorus 
(STP) 

Assessing soil P fertility for crop 
growth and determining 
fertilizer recommendations 

Routine extractions of labile P approximating 
quantities in soil expected to be available to a 
crop; common extractants are Morgan, Mehlich 
1 and 3, Olsens, Bray, etc. 

Morgan, 1941; 
Mehlich, 1953; 
Mehlich, 1984; 
Olsen et al., 1954; 
Bray and Kurtz, 

1945.  

Dissolved 
reactive P 
(DRP) 

Direct measures of soluble P in 
soil solution and soil leachates 

Direct analysis of a water samples for PO4
3--P - 

following filtration through 0.45 µm filter. 
Pote and Daniel, 
2000. 

Water soluble 
P (WSP) 

 Predicting desorption of P from 
the soil to runoff water. 

Extraction assessing solid-phase P that may 
readily desorb as soil solution P is removed by 
crop uptake, leaching, etc.; distilled water may 

be used as the extracting solution.  

Bortolon et al., 2016; 
Sharpley et al., 2001; 
Davis et al., 2005.  

Phosphorus 
Sorption 
Capacity 
(PSC)  

Soil P fixation potential or total 
quantity of sorbed P in a P 
saturated soil. 

Originally estimated as Qmax (sorption 
maximum) from multi-point P sorption 
isotherm fit with an empirical Langmuir model.  

Olsen and Watanabe, 
1957. 

Phosphorus 
Sorption Index 

(PSI) 

A single point sorption isotherm 
approach to directly estimate 

PSC where a fixed P conc. from 
the upper end of the multi-point 
isotherm is selected.  

Estimated as the ratio of P added to the log of P 
concentration remaining in solution following a 

fixed equilibration period (e.g. 18 h); close 
correlations between Qmax and PSI have been 
observed 

Bache and Williams, 
1971  

Phosphorus 
Saturation 
Ratio (PSR) 

Estimate of P sorption saturation 
intended to reflect a soil’s ability 
to retain newly introduced P 
and/or desorb solid phase P 

Calculated as the fraction of PSC occupied by 
sorbed P (P/PSC); with sorbed P estimated by 
common STP protocols; explored for routine 
use with PSC estimated (PSCEst) from proxy 
variables e.g. when based on Mehlich 1 (M1) 

extraction, PSR= M1P/(M1Al + M1Fe) or 
Mehlich 3 and equation 7 

Nair, 2014.  

Degree of 
Phosphorus 
Saturation 
(DPS) 

Purpose similar to PSR Calculated like PSR but with a scaling factor, 
α, applied to the proxy measures of Al and Fe 
in the determination of PSC. Also, unlike PSR, 
it is expressed as a percentage. 

Beauchemin and 
Simard, 1999; 
Breeuwsma and 
Silva, 1992.  

Soil 

Phosphorus 
Storage 
Capacity 
(SPSC) 

Direct estimate of a soil’s 

capacity to retain additional P 
(soil sink strength)  

Requires identification of a threshold PSR 

value (d0) above which soluble P starts to 
increase rapidly. Estimated as the product of 
PSCEst and the difference between d0 and a 
soil-specific PSR (equation 4) 

Nair and Harris, 

2014.  

 

  To derive these indicators, sorbed P and PSC need to be determined. Numerous studies 

have shown that recommended protocols for agronomic STPs (Mehlich 3-STP, Bray 1-STP, 

Olsen-STP etc.) are well correlated with total sorbed P in soils (Sims et al., 2000). Therefore, 

agronomic STPs have been used as approximations of sorbed P in environmental studies 

(Renneson et al., 2015; Houben et al., 2011; Hooda et al., 2000; Nair et al., 2004). For PSC 

determination, Olsen and Watanabe (1957) suggested that PSC could be estimated as the P sorption 

maximum (Qmax) determined from multi-point P sorption isotherm data fit to an empirical 

Langmuir model. The laborious nature of multipoint isotherms led Bache and Williams (1971) to 
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propose the use of the Phosphorus sorption index (PSI), a single-point sorption isotherm to 

estimate PSC based on its strong correlations with Qmax (r = 0.974). A PSI determination involves 

PSC estimation at one P concentration (corresponding to the upper end of a multi-point isotherm) 

after a fixed equilibration period  (Bache and Williams, 1971). Later studies reported similar, 

strong and significant correlations between Qmax and PSI determined as a single-point measure of 

PSC (Brock et al., 2007; Zhou and Li, 2001; Mozaffari and Sims, 1994). However, since sorption 

isotherms are uneconomical, the proposed alternative is to predict PSC based on its relationships 

with soil physical and chemical properties (Tisdale and Nelson, 1993; Casson et al., 2006). For 

example, previous research has estimated PSC using proxies such as extractions of aluminum (Al) 

and iron (Fe) alone or in combination from neutral and acid (pH<8) soils (van der Zee and van 

Riemsdijk, 1988; Maguire et al., 2001; Kleinman and Sharpley, 2002; Nair et al., 2004; Renneson 

et al., 2015) or of calcium (Ca) either alone or in combination with routine estimates of clay content 

and magnesium (Mg) in alkaline soils (Kleinman and Sharpley, 2002). Börling et al. (2001) and 

Maguire et al. (2001) showed that pedo-transfer functions (pedoTFs) developed by treating the 

PSC proxies as separate variables in linear regressions models better defined their relationship 

with directly measured PSC.  

Regardless of the estimation method used during the determination of PSC-based indices, 

these indices have been used to define threshold values above (or below) which the risk of SP loss 

from soil to water strongly increases (Breeuwsma and Silva, 1992; McDowell and Sharpley, 2001; 

Nair et al., 2004; Nair and Harris, 2014). Yet, few studies have evaluated the field-scale 

performance of pedoTFs estimating PSC using data commonly available from commercial 

laboratories. In intensively drained agricultural regions such as the Midwest US there is a critical 

need for routine, economical indices to assess environmental risks from historic fertilizer regimes 

and legacy P. Our objectives were i) to examine the possibility of developing a suitable pedoTF 

for estimating PSC using readily available soil test data and ii) to evaluate the applicability and 

accuracy of laboratory-determined PSR and SPSC threshold values in fields with subsurface tile 

drains.  
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2.3 Materials and Methods 

2.3.1 Laboratory study 

2.3.1.1 Soil selection and analysis 

Archived soil samples (n = 154) were obtained from Purdue Agricultural Centers (PACs) 

(Davis (DPAC), Pinney (PPAC), Northeast (NEPAC), Southeast (SEPAC), Throckmorton (TPAC) 

and the Water Quality Field Station (WQFS)). The soils included 2016 and 2011 fall samples from 

the WQFS and the PACs, respectively. The distribution of these agricultural centers provides broad 

representation of cropland soil types in Indiana (Supplemental Table S6.1). 

The WQFS samples were obtained in the 0-20 cm layer (increment used for Indiana 

recommendations; Vitosh et al., 1995). Samples from other farms were obtained from both 0-10 

and 10-20 cm layers as part of a nutrient stratification study. Routine chemical characterizations 

of samples were completed by a major commercial soil-testing laboratory (A&L Great Lakes Soil 

Testing Laboratory, Fort Wayne IN, https://algreatlakes.com/ where, phosphorus (P), potassium 

(K), magnesium (Mg), calcium (Ca), aluminum (Al) and iron (Fe) were extracted using the 

Mehlich 3 method (Mehlich 1984) and analyzed by inductively coupled plasma (ICP) 

spectrometry (Chalmers and Handley, 2006), cation exchange capacity (CEC) was determined by 

summation of exchangeable K, Mg, Ca, and neutralizable acidity (Warnecke and Brown, 1998), 

soil pH(water) was determined by the McLean (1982) procedure, and organic carbon (OC) was 

measured by the Walkley – Black procedure (Walkley, 1947; Walkley and Black, 1934) followed 

by percent organic matter (OM) determination (OM% = OC% × 1.72) (Combs and Nathan, 

1998).Given the time-consuming nature of PSI determination, a representative subset of 73 

samples was selected for this analysis. The PSI was determined following the method of Bache  

and Williams (1971) as described by Sims (2009). Filtrate P concentrations were analyzed 

colorimetricaly by the Murphy and Riley (1962) procedure using a SEAL AQ2 auto-analyzer 

method EPA-118-A Rev.5 (equivalent to USEPA method 365.1, Rev.2.0) (Seal Analytical, 2004). 

The PSI was calculated as: 

𝑃𝑆𝐼 (𝐿 𝑘𝑔−1) =  
𝑥

log 𝑐
                                          [Eq. 1] 

where, x is the amount (mg kg-1) of added P adsorbed in the soil sample and c is the P concentration 

(mg L-1) in the filtered equilibrium solution.  

https://algreatlakes.com/
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Water-soluble phosphorus (WSP), a proxy measure of dissolved reactive P (DRP) 

(Bortolon et al., 2016; Sharpley et al., 2001; Davis et al., 2005), was determined in all 154 soils as 

described for PSI and following the method of Self-Davis et al. (2009). 

2.3.1.2 Data Analysis 

In order to estimate PSC (PSCEst) as a function of routinely measured proxy variables, 

principle component analysis (Webster, 2001) was used to evaluate correlations between soil PSI 

(equation 1) and corresponding soil chemical properties (OM, STP, K, Mg, Ca, pH, CEC, Fe and 

Al) of the 73 sample subset. A correlation matrix instead of a covariance matrix was used to 

eliminate the effects of different measurement units (James and McCulloch, 1990). Chemical 

properties strongly correlated with PSI (r > 0.50) were selected as possible predictor variables. 

Subsequently, stepwise regression analysis (forward and backward) was conducted with PSI as the 

dependent variable and the selected chemical properties as independent variables. At each step, 

variables that did not contribute significantly (p > 0.05) to model fit were eliminated. Least squares 

regression was used to build a pedoTF from selected independent variables (Neter et al., 1996). 

The fitness of the pedoTF was measured by the model’s coefficient of determination. Once the 

pedoTF predicting PSCEst was determined, the first of the PSC-based indices, the soil-specific PSR, 

was calculated directly as:    

𝑃𝑆𝑅 =  
𝑆𝑇𝑃

𝑃𝑆𝐶𝐸𝑠𝑡
                                  [Eq. 2] 

 with PSCEst individually calculated for all 154 soils using the pedoTF equation applied to a given 

soil’s chemical properties. Prior to the determination of PSCEst all data were log-transformed to 

conform to normality. 

 Pearson’s correlation coefficient was calculated to analyze the relationship between PSR 

and WSP. To estimate the second PSC-based index, the SPSC, the threshold PSR value or change 

point above which corresponding WSP starts to increase markedly needed to be identified. This 

relationship was modeled by a segmented-line model (equation 3) that describes the relationship 
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between two lines whose slopes on either side of the change point are significantly different (P < 

0.05).     

𝑊𝑆𝑃 =  {
𝑎0 + 𝑏0 𝑃𝑆𝑅, 𝑃𝑆𝑅 ≤ 𝑑0
𝑎1 + 𝑏1 𝑃𝑆𝑅, 𝑃𝑆𝑅 > 𝑑0

                                     [Eq. 3] 

where, a0 and a1 are intercepts and b0 and b1 are slopes for the two segments and d0 is the PSR 

value at the change point. The d0 in the fitted model was directly estimated based on the data 

points while the other parameters (a0, a1, b0 and b1) were estimated using nonlinear least squares. 

The slope to the left of the change point (b0) is estimated as a function of d0 and other model 

parameters (a0, a1 and b1) to ensure that the two lines are joined at d0 (equation 4).  

𝑏0 =  
(𝑎1−𝑎0)+𝑏1𝑑0

𝑑0
                                                 [Eq. 4] 

A soil’s SPSC was then calculated using d0 with soil specific PSCEst and PSR (equation 2) as, 

𝑆𝑃𝑆𝐶 = (𝑑0 −  𝑃𝑆𝑅) ×  𝑃𝑆𝐶𝐸𝑠𝑡                                [Eq. 5] 

and Pearson’s correlation coefficient was calculated to analyze the relationship between SPSC and 

WSP. Soil SPSC values range from positive values (unsaturated P sinks) to negative values 

(saturated P sources). However, unlike positive SPSC values, there exists strong, significant linear 

relationships between negative SPSC values and SP concentrations thus, an SPSC value of zero 

represents a potential threshold value below which SP concentration rapidly increases in soil 

solution (Nair and Harris, 2004). Therefore, to characterize the incremental risk to water quality 

once soils are P saturated, linear regression was used to model the relationship between WSP 

(independent variable) and SPSC (dependent variable) for SPSC ≤ 0.  

During the determination of PSR and SPSC, data were log-transformed to conform to 

normality, and Fisher information matrix was used to estimate standard errors from which 

confidence intervals were constructed. All statistical analyses were performed in R 3.4.0. (R Core 

Team, 2017).  

2.3.2 Field study 

2.3.2.1 Experimental site, Soil and Water Characterization 

Among the sources of archived soils for the laboratory study, the WQFS was the only site 

equipped for direct monitoring of tile-drainage waters creating a unique opportunity to investigate 

SP loss from long-term, artificially-drained agricultural soils that have received either no P or 
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regular additions of inorganic or manure P. At the WQFS, 48 treatments plots are monitored 

continuously with data loggers for drainflow volumes; 24-hr flow-proportional drainage samples 

are collected whenever drainflow occurs. Soil samples (0 – 20 cm) are collected from each plot 

every fall at the start of each hydrologic year. Water samples are filtered and analyzed for DRP, 

the orthophosphate fraction that passes through a 0.45 µm filter (Pote and Daniel, 2000), using the 

Murphy and Riley (1962) method. Chemical characterizations of soil samples are conducted by 

commercial lab as described for the laboratory study. All data are archived in the Purdue University 

Research Repository. A full description of the WQFS facility, equipment, cropping systems, tile 

drainage water sampling and routine analytical protocols is presented in the supplemental material. 

All treatments were considered in this study for the 2011 – 2013 water years (e.g. October 1, 2010 

– September 30, 2011 for water year 2011). (Note, WQFS soils used in the laboratory study were 

from 2016).  

2.3.2.2 Data analysis 

Archived flow and DRP data were reviewed and rectified for drainage tile and data logger 

malfunctions (flow) and values below detection limits (DRP). Outliers were identified and 

removed and occasional missing values were estimated (rectification and gap-filling 

methodologies presented in supplemental materials). Annual flow-weighted mean DRP 

concentrations (fDRP) were calculated as below; 

𝑓𝐷𝑅𝑃 =  
∑ (𝐷𝑅𝑃𝑗 × 𝑉𝑗

365
𝑗=1

∑ 𝑉𝑗
365
𝑗=1

                                             [Eq. 6] 

where, DRPj (j = 1, 2, 3,…, 365 or 366 in a leap year) represents the DRP concentrations of tile 

drainage water collected on days with flow and Vj (j = 1, 2, 3,…, 365 or 366 in a leap year) 

represents the volume of flow recorded on a daily basis. To test the applicability and accuracy of 

the lab-derived pedoTF and PSR threshold the relationship between fDRP and PSR was modelled 

by a segmented-line model as shown below;     

𝑓𝐷𝑅𝑃 =  {
𝑎0𝑓 +  𝑏0𝑓 𝑃𝑆𝑅, 𝑃𝑆𝑅 ≤  𝑑0𝑓

𝑎1𝑓 +  𝑏1𝑓 𝑃𝑆𝑅, 𝑃𝑆𝑅 >  𝑑0𝑓
                           [Eq. 7] 

where; a0f and a1f are intercepts and b0f and b1f are slopes for the two segments and d0f is the PSR 

value at which the linear relationship changes. 
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Linear regression was used to characterize the relationship between fDRP (independent 

variable) and SPSC (dependent variable) when SPSC values ≤ 0 as described above for the 

relationship between WSP and SPSC in the laboratory study. All statistical analyses were done in 

R 3.4.0. (R Core Team, 2017).  

2.4 Results and Discussion 

2.4.1 Laboratory study 

2.4.1.1 Soil characteristics 

The soils selected represented both well-managed and P-deficient cropland soils but also 

soils well in excess of sufficiency. The STP ranged from 1 to 104 mg kg-1 with a mean of 44 mg 

kg-1. Regionally, commercial P fertilizer is not recommended when STP is > 50 mg P kg-1 (Indiana 

NRCS FOTG, 2013; Vitosh et al., 1995) for soils extracted with either Bray P1 or Mehlich 3 and 

P measured colorimetricaly. Our studies measured P with inductively coupled plasma (ICP) 

spectrometry, an analytical method known to produce consistently higher values; the Mehlich 3 

ICP value for the upper threshold for fertilizer applications is approximately 60 mg P kg-1 

(Mallarino, 2003). Therefore, the presence of soils with STP > 60 mg P kg-1 suggests these soils 

provide a suitable range of STP to study both environmental P threshold values and potential risks 

of historic agronomic recommendations that predate current water quality concerns. The soils were 

generally acidic, saturated with basic cations (Ca2+, Mg2+ and K+) and with OM values < 6% as is 

typical of mollisols and alfisols which originally supported grasslands or forests (IDEM, 2007). 

The calculated PSI ranged between 419 and 598 L P kg-1 (full analytical results, Supplemental 

Table S6.5). 

2.4.1.2 Relationship among variables 

Significant correlations with r > 0.5 were observed between PSI and OM, Mg, Ca, CEC 

and Al (Table 2.2), results consistent with other studies (Renneson et al., 2015; Zhang et al., 2005; 

Indiati and Diana, 2004; Nair et al., 2004; Kleinman and Sharpley, 2002; Börling et al., 2001; 

Maguire et al., 2001; Kleinman et al., 1999). 
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Table 2.2. Pearson's correlation coefficients of Phosphorus sorption index (PSI) and soil properties 

of 73 archived soils samples used in the P sorption study. 

Variables§§ PSI OM    P   K Mg Ca pH CEC Fe Al 

PSI 1.00 
         

OM 0.57* 1.00 
        

P -0.17 -0.23* 1.00 
       

K 0.43* 0.77 0.05 1.00 
      

Mg 0.53* 0.89* -0.32* 0.75* 1.00 
     

Ca 0.54* 0.95* -0.33* 0.76* 0.96* 1.00 
    

pH -0.16* -0.03 -0.08 0.08 -0.08 0.01 1.00 
   

CEC 0.59* 0.93* -0.36* 0.75* 0.94* 0.96* -0.04 1.00 
  

Fe -0.19 0.07 0.49* 0.10 0.02 0.05 -0.14* 0.00 1.00 
 

Al 0.60* 0.57* -0.15 0.60* 0.49* 0.51* 0.07* 0.63 -0.28* 1.00 

* Significant relationships at a 0.05 probability level.  
§§ Variable abbreviations and units: PSI, Phosphorus sorption index (L kg-1); OM, Organic matter (%); P, Mehlich 3-

P (mg kg-1); K, Mehlich 3-K (mg kg-1); Mg , Mehlich 3-Mg (mg kg-1); Ca, Mehlich 3-Ca (mg kg-1); CEC, cation 

exchange capacity (cmolc kg-1); Fe,  Mehlich 3-Fe (mg kg-1); Al, Mehlich 3-Al (mg kg-1). 

 

Although we hypothesized that there would be a relationship between PSI and Fe, their 

association was not significant. Some studies have reported similar non- significant results (Brock 

et al., 2007; Sato et al., 2005). These studies postulated that changing P chemistry (shift from acidic 

to alkaline) within soils due to long-term manure ammendments caused the lack of Fe significance 

in P sorption. One possible cause of this P chemistry shift is OM content whose effects on P 

sorption are documented as variable. For example, Bhatti et al. (1998) and Kang et al. (2009) 

reported OM decreases PSC (study OM values: 0.3 – 2.3% and > 4.9% respectively), while Ohno 

et al. (2007) found it  increases PSC (1.8 – 18.1 OM%) and Borggaard et al. (1990) found it had 

no effect on PSC (0.16 – 3.4 OM% ). When it affects PSC, OM outcompetes P for adsorption, 

complexing metal oxides and inhibiting adsorption sites or by forming metal-OM complexes with 

reactive sites for P adsorption (Jiao et al., 2007; Weng et al., 2012; Kang et al., 2009). In our study, 

the OM range was 0.9 to 6.1% and the low Fe concentrations compared to Al concentrations may 

have made adsorption sites on Fe oxides more susceptible to OM inhibition effects (Supplemental 

Table S6.5). The pHwater exhibited a significant negative correlation with PSI (r = -0.16, P < 0.05). 

This suggests that an increase in pH would reduce P sorption capacity of the soils as observed in 
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previous PSC studies in acidic to near-neutral soils (Maguire et al., 2001; Houben et al., 2011). 

Finally, no sigificant relationship existed between Mehlich 3 P and PSI (Table 2.2), which was 

consistent with previous studies (Laboski and Lamb 2004; Wang et al. 2015).This observation is 

understandable considering a soil’s PSC is generally linked to exchangeable Fe, Al, and Ca 

concentrations, OM content, soil pH, clay content, and clay mineralogy (Laboski and Lamb 2004; 

Renneson et al., 2015; Wang et al. 2015). 

2.4.1.3 Sorption pedotransfer function (pedoTF) 

Principle component analysis found PSI plotted close to K, OM, Mg, Ca, CEC and Al 

(Supplemental Figure S6.3) confirming the existence of strong and direct relationships between 

PSI and these variables despite the possible presence of inter-relations among variables. Stepwise 

regression identified OM and Al as important independent variables with a best fit pedoTF model 

that accounted for 60% of PSCEst variation as follows:     

𝑃𝑆𝐶𝐸𝑠𝑡 =  0.1 𝐴𝑙∗∗∗ + 12.5 𝑂𝑀∗∗∗ + 393.8∗∗∗              [Eq. 8] 

with standard errors for Al and OM of 0.03 and 2.87, respectively. Both predictor variables (Al 

and OM) were highly significant (P < 0.001). However, we note that the selection and larger 

weighting of OM during stepwise regression, may be driven by its possible role as a dominant 

factor in CEC levels in the soils studied. Also, most of the treatments included in this study were 

under tilled corn – soybean rotations with residue return which could mean that management is 

the actual driver of PSC and OM is the measured covariable. 

2.4.1.4 P release from soils 

Estimated PSR (equation 2) ranged between 0 and 0.34 with lowest and highest values in 

soils from TPAC and PPAC, respectively (Table 2.3). The SPSC (equation 3) ranged between -85 

to 207 L kg-1; site means averaged -56.79 to 39.41 L kg-1 with the most negative values, indicative 

of exceeded P storage capacity, observed on soils receiving either occasional inorganic fertilizer P 

applications or annual manure applications (treatment specific data not shown). 
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Table 2.3. Mean and standard deviation (Std. dev.) for organic matter (OM), phosphorus (P) and 

aluminum (Al), phosphorus saturation ratio (PSR) and soil phosphorus storage capacity (SPSC) 

for archived soil samples from the 6 experimental sites (n=154ǂ).  

Site¶¶ n Statistics OM P Al  PSR##  SPSC## WSP## 

   % mg kg-1 
 

L kg-1 mg L-1 

DPAC 12 Mean 3.13 42.75 642.42 0.26 -33.2 0.1 

    Std. dev. 0.5 26.8 70.68 0.04 24.24 0.05 

NEPAC 19 Mean 2.22 61.95 723 0.3 -56.79 0.17 

    Std. dev. 0.37 24.2 78.01 0.03 18.73 0.09 

PPAC 17 Mean 1.74 64.47 651.18 0.31 -64.33 0.11 

    Std. dev. 0.21 14.96 33.75 0.02 12.47 0.04 

SEPAC 16 Mean 2.86 29 629.13 0.23 -8.46 0.08 

    Std. dev. 1.4 17.59 236.03 0.09 56.5 0.08 

TPAC 42 Mean 3.16 11.23 843.72 0.15 39.41 0.01 

    Std. dev. 0.99 7.41 180.85 0.06 44.59 0.01 

WQFS 48 Mean 4.76 29.3 787.3 0.22 -5.99 0.05 

    Std. dev. 0.7 21.32 55.57 0.05 31.37 0.06 
ǂ Previously reported OM, P and Al values for the 73 soils used in the P sorption study (Supplemental Table S6.5) are 

included here. 
¶¶ Site abbreviations DPAC, NEPAC, PPAC, SEPAC, TPAC and WQFS are for Davis Purdue Agricultural Center, 

Northeast PAC, Pinney PAC, Southeast PAC, Throckmorton PAC and the Water Quality Field Station, respectively. 
## PSR and SPSC are estimated by equations 2 and 3, respectively; WSP is determined after Self-Davis et al. (2009). 

 

The WSP ranged from 0 to 0.31 mg L-1 and had strong and significant correlations with 

PSR (r = 0.66, P < 0.001) and SPSC (r = -0.67, P < 0.001), similar to observations in other studies 

(Wang et al., 2016; Bortolon et al., 2016; Chakraborty et al., 2012; Nair et al., 2004). Relationship 

thresholds were observed when the PSC-based indices were plotted against WSP values. Once 

solid-phase P saturation has occurred, more SP remains in solution leading to a rapid increase in 

soluble P (Breeuwsma and Silva, 1992) . In this study, the segmented line model (equation 3) 

related desorbed WSP to PSR with an R2 of 0.69 (P < 0.001) (Figure 2.1a). The model identified 

a threshold PSR (d0) of 0.21, below which there was very little P desorption and, above which, 

the concentration of WSP increased 1.3 mg P L-1 for every unit increase in PSR (Figure 2.1a). The 

ratio of the slopes of the two segments of the model (b1/b0) suggests that after d0, solid-phase 

saturation, there is a 16-fold greater risk of solid-phase P release into the soil solution. 
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Figure 2.1 Relationship between (a) phosphorus saturation ratio (PSR) and water soluble 

phosphorus (WSP) of archived soil samples (< 20 cm depth) obtained from Davies (DPAC), 

Pinney (PPAC), Northeast (NEPAC), Southeast (SEPAC), Throckmorton (TPAC) and, the Water 

Quality Field Station (WQFS) (n=152). Parameter estimates (with standard errors in parentheses) 

and R2 values for the fitted segmented line models (*** significant at the 0.001 probability level), 

(b) phosphorus saturation ratio (PSR) and annual flow weighted mean DRP (fDRP) for soil 

samples (20 cm depth) from the Water Quality Field Station (WQFS) plots (n=119). Parameter 

estimates (with standard errors in parentheses) and R2 values for the fitted segmented line models 

(*** significant at the 0.001 probability level). 

 

 

To test the robustness of d0, the segmented line model was iteratively fit to six subsets of 

the data, each with one experimental site removed. The PSR thresholds from analyses of the 

remaining five sites ranged from a d0 of 0.19 to 0.23 (WQFS and PPAC data removed, 

respectively); similar R2 values were observed for all analyses (Supplemental Table S6.6). Thus, 

d0 identified using all sites (0.21; 95% confidence limits: 0.19 - 0.23) appears generally suitable 

for predicting P loss from various surface soils. Findings supporting the use of a single d0 PSR 

across a range of soils were reported by Dari et al., (2018) who observed that based on the 

confidence intervals of the thresholds determined for the soils analyzed (i.e. Alfisols, Entisols, 

Ultisols, Spodosols and Inceptisols), d0 values were essentially similar; therefore a threshold PSR 

of 0.1 was applicable. According to the authors, consistent threshold PSR values were observed 
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because the soils had similar P dynamics (i.e. acidic soils), and a similar soil test extractant (i.e. 

Mehlich 1 or Mehlich 3) was used.  

Previous work by Provin (1996) on similar soils in Indiana reported threshold PSR as 0.23. 

In their laboratory study, P and PSC proxies (Al and Fe) used in PSR determination were extracted 

by the oxalate method (McKeague and Day, 1966). Provin’s threshold is within the 95% 

confidence limit of our d0 value (0.19 - 0.23). However, WSP values corresponding to d0 in the 

two studies vary: 0.10 mg WSP L-1 (Provin, 1996) and 0.21 mg WSP L-1 (current study). 

Koopmans et al. (2002) and Fuhrman et al. (2005) suggest that these differences in WSP 

concentrations may reflect differences in soil: extractant ratios, extraction times and electrolytes 

present. Provin (1996) determined WSP by extracting soil with 0.01 M CaCl2.2H20 (1:25 mixture, 

shaken for 24 hours at 1200 rpm) whereas we extracted soil with distilled water (1:10 w:v ratio; 

6000 rpm for 10 min) (Self-Davis et al., 2009). Nevertheless, both WSP values at d0 exceeded the 

0.05 mg P L-1 guideline established by the USEPA as the upper limit of DRP concentrations 

suggested for protection of streams and lakes (USEPA, 2002). 

Likewise, our analysis of WSP as a function of SPSC was generally in keeping with recent 

work. In previous studies, negative SPSC values were associated with significant increases in 

soluble P release from soils (Oladeji et al., 2007; Chakraborty et al., 2012; Andres and Sims, 2013; 

Nair and Harris, 2014). Similarly, in our study, negative SPSC values were associated with a 

significant linear increase in WSP loss (R2 = 0.52) (Figure 2a).  
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Figure 2.2. Relationship between (a) water soluble phosphorus (WSP) and soil phosphorus storage 

capacity (SPSC) of archived soil samples (< 20 cm depth) obtained from Davies (DPAC), Pinney 

(PPAC), Northeast (NEPAC), Southeast (SEPAC), Throckmorton (TPAC) and, the Water Quality 

Field Station (WQFS) (n=152). Dashed line locates zero SPSC values (proposed threshold), (b) 

annual flow-weighted DRP (fDRP) and soil phosphorus storage capacity (SPSC) for soil samples 

(20 cm depth) from the Water Quality Field Station (WQFS) plots (n=119). Dashed line locates 

zero SPSC values (proposed threshold). 

Sites with no recent history of P management (i.e. TPAC) (Table 2.3)) had positive SPSC 

values with minimum P release to soil solution, a result consistently observed in prior work 

(Oladeji et al., 2007; Andres and Sims, 2013; Nair and Harris, 2014; Nair and Harris, 2004). Due 

to the rapid rate of change between negative SPSC and WSP compared to positive SPSC, zero 

SPSC has been suggested as an environmental threshold (Nair and Harris, 2004); our results 

support using a SPSC threshold value close or equal to zero as no significant linear relationship 

existed between WSP values less than 0.01 and SPSC. 

2.4.2 Field study 

2.4.2.1 Soil characteristics 

The WQFS treatments with their varying P management resulted in a wide range of STP 

values (8 mg kg-1 to 104 mg kg-1) (analytical results by treatment plot, Supplemental Table S6.7). 

There were P-deficient soils where a response to P fertilizer would be expected in many crops 

(STP critical level < 22 mg kg-1), soils with adequate P for crop growth (STP = 22 – 60 mg kg-1) 

and soils with more than adequate P for crop growth (STP > 60 mg kg-1) (values converted from 

colormetric analytical thesholds (Vitosh et al., 1995) to comparable ICP values after Pittman et al., 
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2005). The OM and Al values were 3 - 6 % and 699 - 995 mg kg-1, respectively. These P, Al and, 

OM values resulted in PSR and SPSC values ranging between 0.15 to 0.32 and -77.34 to 41.81 L 

kg-1, respectively, representing both P unsaturated and saturated soils.  

Plots with ICP STP values above 22 mg P kg-1 (equivalent to the 15 mg P kg-1 colorimetric 

value above which crops are not expected to respond to fertilizer P) had PSR and SPSC values 

above and below their respective index thresholds, with a general trend for PSR values to be higher 

and SPSC values to be most negative for continuous maize soils that received spring and fall 

manure applications (Supplemental Table S6.7). Previous studies also reported very high PSR 

values (Nair and Graetz, 2002) and very negative SPSC values (Nair and Harris, 2004) on soils 

with manure histories and very high STP levels . These index values above (for PSR) or below 

(for SPSC) threshold values suggest that soils in these plots are more prone to release DRP to 

drainage waters. Conversely, plots with STP values at or below 22 mg P kg-1 mostly had P 

unsaturated soils (Supplemental Table S6.7). Finally, against expectations, two Prairie soils from 

the WQFS had negative SPSC values with STP values slightly above 22 mg P kg-1 despite a 

complete absence of P application in the preceding 18+ years. 

Our field-scale findings relating PSR and SPSC to STP, suggest that 22 mg kg-1, the critical 

STP level for agronomic P sufficiency, could also serve as an environmental STP threshold with 

DRP loss in subsurface drainage expected to greatly increase once a soil’s STP surpasses 22 mg P 

kg-1. As previously mentioned, current agronomic guides recommend inorganic P fertilizer be 

applied until STP 60 mg kg-1; for organic fertilizers, applications are permitted until STP ≥ 230 

mg kg-1 (Indiana NRCS FOTG, 2013, ICP STP threshold estimated from colorimetric values after 

Pittman et al. (2005)). These recommendations are intended to allow farmers to maintain optimal 

conditions for crop growth and/or permit disposal of manure but may have adverse consequences 

for environmental quality. Indeed, relationships between agronomic critical STP levels and SP 

losses at concentrations greater then USEPA water quality guidelines have previously been 

documented. Duncan et al. (2017) found Ohio soils with STP values above the regionally 

recommended agronomic critical STP (Vitosh et al., 1995)  were more likely to lose DRP at annual 

concentrations above the 0.05 mg P L-1 USEPA mandated threshold (USEPA, 2002). Therefore, 

this study further highlights the urgent need identified by Duncan et al. (2017) to reanalyze the 

agronomic recommendations where the build-up or maintenance approach to fertilizer applications 

may turn soils into P sources, exacerbating DRP losses to surface waters.   
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2.4.2.2 Phosphorus loss 

DRP concentrations in tile discharge ranged from 0.00 to 2.18 mg L-1.  However, in each 

tile, a few concentrations were identified as outliers (supplemental Figure S6.5). Annual flow-

weighted mean DRP (fDRP) concentrations from study plots ranged from 0 to 0.216 mg L-1 similar 

to those observed in other studies in the region (0.08 to 0.16 mg L-1 ; King et al., 2015b). A detailed 

description of precipitation, tile discharge, and tile drain efficiencies during the study period is 

provided in the supplemental materials. 

The segmented line model between PSR and fDRP identified a change point (d0f) at 0.24 

(R2 = 0.66; 95% confidence limits; 0.22 - 0.25) (Figure 2.1b), slightly higher than the d0 of 0.21 

(95% confidence limits; 0.19 - 0.23) identified in the laboratory study (Figure 2.1a). Additionally, 

the ratio of segment slopes (b1f/b0f) was half that in the PSR versus WSP model (b1/b0), 8 and 16, 

respectively. These differences in the models could be due to differences in soil-to-extractant ratios, 

extraction times and electrolytes present considering the field study was in a natural system 

(Koopmans et al., 2002; Fuhrman et al., 2005). Also, Nelson et al. (2005) suggested that absent 

data points at the extremes might affect the slope after the change point. In this respect, our in-

field study lacked data points between 0 and 0.14 PSR (Figure 2.1b). 

The fDRP concentration at d0f was 0.02 mg P L-1 (Figure 2.1b), well below USEPA’s 0.05 

mg P L-1 acceptable limit (USEPA, 2002). However, 0.02 mg P L-1 has been identified as the P 

concentration above which lake water eutrophication is accelerated (Correll, 1999; Sharpley et al., 

2003) . This fDRP concentration was 10 times lower than the proxy WSP concentration observed 

at d0 in the laboratory study (0.21 mg P L-1, Figure 1a). Numerous laboratory studies (Provin, 

1996; Heckrath et al., 1995; Maguire and Sims, 2002; Nair et al., 2004; Hesketh and Brookes, 

2000; McDowell and Condrom, 1999; McDowell and Sharpley, 2001) have also reported WSP 

concentrations at PSR thresholds that were often above the USEPA mandates on acceptable SP 

concentrations. Yet, our study and others (e.g. Hesketh and Brookes, 2000; McDowell and 

Condron, 1999; McDowell and Sharpley, 2001) also consistently show that when P indices are 

modeled with fDRP in drainage water, the DRP concentrations at the PSR thresholds are often 

much lower compared to laboratory desorption assays. Interestingly, results presented in this study 

and elsewhere (Hesketh and Brookes, 2000; McDowell and Condron, 1999; McDowell and 

Sharpley, 2001) show that the laboratory determined PSR thresholds (d0) are in close agreement 

with that identified in the field (d0f). However, for PSR to be an efficient management tool, the SP 
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concentrations associated with d0f and d0 should also be comparable. Therefore, further work is 

required to determine the best laboratory WSP assay that mimics DRP in drainage. We also note 

that other factors - varying rainfall intensities, subsoil interactions, presence of both surface and 

subsurface (matrix and preferential) flows etc. - may affect the eventual P concentrations in 

drainflow. Additionally, cumulative error in water sample handling, analysis and, gap-filling of 

flow and concentration data contribute to overall uncertainty in load and subsequent fDRP 

estimates (Harmel et al., 2006; Harmel and Smith, 2007). 

Like the laboratory study (Figure 2a), soluble P represented by fDRP, increased linearly 

(R2=0.53) with decreasing SPSC values (Figure 2b). However, positive soil SPSC values were 

associated with minimal fDRP release (fDRP ≤ 0.009 mg P L-1). Thus, SPSC of 0 was also 

identified as the threshold SPSC value in the field study. The slope of the regression between SPSC 

and fDRP i.e.  -0.0017 (95% confidence limits: -0.0021 to -0.0013) (Figure 2b), was slightly lower 

than the -0.0021 slope (95% confidence limits: -0.0026 to -0.0016) between SPSC and WSP 

(Figure 2a). These slopes were in close agreement suggesting that SPSC could accurately predict 

soluble P losses in tile drains.  

2.5 Conclusions 

Soil PSC is clearly an important parameter to consider when predicting soluble P 

concentrations in drainage waters. As data used in its estimation are not readily available from soil 

testing laboratories and national databases, its routine use in P loss risk assessment is greatly 

limited. The pedo-transfer approach to estimate PSC using data from routine soil analysis and the 

subsequent determination of PSC-based indices was found suitable for Midwestern USA soils and 

is recommended for a simple and fast risk assessment of soluble P losses from agricultural fields. 

Current P fertility strategies focused on buildup and maintenance of STP provides for the 

conversion of soils into P sources as shown in this study where even soils with STP levels 

considered optimal for crop growth were P saturated.  Implementation of PSC-based indices or the 

suggested environmental STP threshold in soil fertility and environmental management programs 

could help avoid future soil P build up to levels that increase the risk of soluble P losses. Given 

the limited range of values examined, we recommend exploring a wider range of soils to develop 

a robust pedoTF for use in determining regional index thresholds which may be adopted as a dual-

purpose P management tool. 
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3 USING ARTIFICIAL NEURAL NETWORKS TO IMPROVE 

PHOSPHORUS INDICES 

3.1 Abstract 

The phosphorus index (PI) was developed as a field-scale assessment tool used to identify 

critical source areas of phosphorus (P) loss, thus most states have adopted the PI as their strategy 

for targeted management and conservation practices for effective mitigation of P loss from 

agricultural landscapes to surface waters. Recent studies have focused on evaluating and updating 

PI weighting factors (WFs) to ensure agreement between final PI values and measured losses of 

P. Given that the WF of each site characteristic are determined individually without considering 

possible interactions, the goal of this study was to demonstrate how artificial neural networks 

(ANNs) that consider real-world interdependence can be used to determine WFs. Our specific 

objectives were to evaluate ANN performance for predicting soluble P (SP) concentrations in tile 

effluent using site characteristics as predictor variables, and to evaluate whether ANN-generated 

WFs can be used to improve PI performance. Garson’s algorithm was used to determine the 

relative importance of each site characteristic to SP loss. Data from a monitored in-field laboratory 

was used to evaluate the ability of a PI with no WFs (PINO), a PI with WFs as proposed in the 

original Lemunyon and Gilbert PI (PILG), and a PI with ANN-generated WFs (PIANN), to estimate 

SP loss potential in tile discharge. Simulation results showed that the ANN model provided reliable 

estimates of SP in tile effluent (R2 = 0.99; RMSE = 0.0024). The relative importance analysis 

highlighted the importance of prioritizing both contemporary and legacy P sources during P loss 

risk assessments. Unlike the other PIs, PIANN was able to provide reasonable estimates of SP loss 

potential as illustrated with significant exponential relationships (R2 = 0.60; p < 0.001) between 

PIANN values and measured annual SP concentrations. These findings demonstrate that ANNs can 

be used to develop PIs with a strong correlation to measured SP.  
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3.2 Introduction 

Phosphorus (P) enrichment of fresh surface waters is a major water quality concern in many 

watersheds because of its role as the limiting nutrient for harmful and nuisance algal blooms 

(Sharpley et al., 1994). Significant progress has been made towards limiting point source inputs of 

P to P-sensitive waters. However, there has been limited and in most cases elusive success in the 

remediation of non-point P sources; specifically diffuse P losses from agricultural fields 

(Dubrovsky et al., 2010; Kleinman et al., 2011). The coincidence of P source and transport factors 

(critical source areas) control P movement from agricultural fields to surface waters (Sharpley et 

al., 2011). Therefore, the success of mitigation efforts lies in creating a understanding and 

representation of these two factors in P loss risk assessment tools (Sharpley et al., 2012; Gburek 

et al., 2002).  

In 1993, Lemunyon and Gilbert proposed the PI index to encompass source and transport 

factors controlling P movement from a field (Lemunyon and Gilbert, 1993). Initially, the PI served 

as a voluntary, simple, educational, and qualitative screening tool for farmer identification of fields 

with high potential risks of P loss to runoff (Lemunyon and Gilbert, 1993; Gburek et al., 2000). 

However, in response to the increasing water quality concern, the US Department of Agriculture’s 

Natural Resource Conservation Service (NRCS) has added the P index (PI) concept to its National 

Nutrient Management Conservation Practice Standard (Code 590) as one of the options available 

to states for P loss risk assessment (USDA NRCS, 2011). In most of these states, the NRCS-

Nutrient Management Standard (code 590) requires the determination of PI solely or in 

combination with an agronomic or threshold soil test P (STP) value, i.e. a PI determination has to 

be done once the agronomic or threshold STP is exceeded (Sharpley et al., 2003; Sharpley et al., 

2012). The original PI by Lemunyon and Gilbert (1993) was made up of eight site characteristics: 

soil erosion, irrigation erosion, runoff class, STP, application rates and methods of both inorganic 

and organic P sources. Each site characteristics was assigned a weighting factor (WF) in such a 

way to reflect its relative importance in contributing to P loss in runoff, and a rating value i.e. 1 

(low), 2 (medium), 4 (high) or, 8 (very high), to represent increasing risk level (Lemunyon and 

Gilbert, 1993). As an additive index, the final PI value for each site was obtained by multiplying 

each site characteristic’s weight with the corresponding rating value and, summing up the resulting 

weighted characteristics (Lemunyon and Gilbert, 1993). 
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To adapt the PI, many states embarked on revising and evaluating the original PI to 

accommodate local conditions and priorities (Sharpley et al., 2003). These modifications include 

the incorporation of additional site characteristics (e.g. degree of phosphorus saturation, 

connectivity to water bodies, subsurface drainage, best management practices etc.), using 

measured field data to determine WFs, PI calculation (additive, multiplicative or component 

indices), and the interpretation of the final PI values (Sharpley et al., 2003; Osmond et al., 2012; 

Sharpley et al., 2013). This diversity in the PI formulation and interpretation for similar situations 

among states has led to concerted efforts to evaluate and validate existing PI’s (Sharpley et al., 

2013). One key finding from these evaluation studies is the great influence WFs assigned to site 

characteristics have on PI performance (Osmond et al., 2006). In consequence, these WFs have 

come under scrutiny especially given that in many state PIs, WFs were initially assigned based on 

the professional judgement of experts or adapted from pre-existing PIs in neighboring states 

(Bolster et al., 2012; Sharpley et al., 2013; Drewry et al., 2011; Sharpley et al., 2012). Recently, 

more states have used findings from studies investigating the relationships between each site 

characteristic and measured P loss data, to determine WFs leading to improved PI performance. 

For example, updated WFs based on measured P losses in the Kansas (soil erosion and STP WFs; 

Sonmez et al., 2009) and Arkansas (STP and soluble reactive P WFs; DeLaune et al., 2004) PIs, 

led to improved correlations between PI values and measured P losses.  

In every state where WF determination was based on scientific data, the effect of each site 

characteristic on measured P loss was individually investigated (DeLaune et al., 2004; Sonmez et 

al., 2009; Bolster et al., 2012). Thus, the real-world synergistic and antagonistic effects among the 

PI source and transport characteristics were not considered (Gburek and Sharpley, 1998; Sharpley 

et al., 2011). Artificial neural networks (ANNs) together with relevant weight algorithms offers a 

novel approach to unravel and quantify complex nutrient loss dynamics in agricultural fields. An 

ANN is a computer-based system inspired by the learning process present in the vast network of 

neurons in the human brain (Lek and Guegan, 1999). Similar to the neural networks in a human 

brain, an ANN is made up of interconnected processing units (neurons) organized in a pre-

determined topology (Lek and Guegan, 1999). An ANN can handle both qualitative and quantitave 

data, to analyze both linear and non-linear responses, and merge information (Schultz et al., 2000). 

Given this versatility, ANNs have recently received increased attention as potential tools suited to 

modeling input-output relationships in complex agricultural systems for which there is limited 
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understanding (Yang et al., 2018; Liakos et al., 2018). One area in which there is a growing trend 

in the use of ANNs is water quality modeling. Kaluli et al. (1998) successfully simulated nitrate 

leaching from agricultural fields and identified sub-irrigation, covercropping (corn and ryegrass) 

and a threshold nitrogen (N) rate (180 kg N ha-1) as possible ways to greatly reduce nitrate leaching 

from fields. Salehi et al. (2000) used ANNs to predict nitrate losses in drain outflows with their 

results revealing that ANNs accurately predicted nitrate loss using fewer input parameters but that 

the ANN model itself was site-specific (not-transferable to other sites not studied). Kim et al. 

(2012) went further and compared the performance of ANNs with other existing nutrient models 

(Soil and Water Assessment Tool (SWAT) and the Haith’s Generalized Watershed Loading 

Function (GWLF)). Their results revealed that ANNs were as accurate or sometimes much more 

accurate in predicting watershed nutrient loading for various management strategies compared to 

SWAT and GWLF. Results from these studies and others (Sharma et al., 2003; Kim and Gilley, 

2008; Al-Mahallawi et al., 2012; Lallahem and Hani, 2017), suggest that ANNs can be used to 

model non-point source agricultural nutrient loss to surface and ground water. Additionally, 

building an ANN no longer requires advanced programming skills as several user-friendly ANN 

packages exist for use in open-source softwares e.g. NeuralNet (Marcus et al., 2018) and neuralnet 

(Wright et al., 2019) available for use in the R language environment (R Core Team , 2017). 

Despite ANNs being more powerful predictive tools compared to traditional models such 

as linear regressions, multiple regressions, SWAT, GWLF etc., most researchers shy away from 

ANNs due to existing criticism that they are ‘black boxes’ (Olden and Jackson, 2002; Benítez et 

al., 1997). This is because once fitted, an ANN model does not provide insights or details on the 

underlying relationships, relative importance (weights) of each input variable and the structures of 

the covariates (inputs) with the modelled outcomes (Benítez et al., 1997). To overcome this 

weakness, numerous methods including partial derivatives (PaD), the profile and perturb method, 

connection weights approach, Garson’s method, the classical and improved stepwise method can 

be used to interpret the connections and the contribution of ANN input factors (Olden & Jackson, 

2002). 

The study aimed to simulate soluble P (SP) concentrations in tile effluent using a multi-

layer feed forward artificial neural network (MLF-ANN) trained by the backpropagation 

algorithm. The specific objectives of this study were to: (1) evaluate ANN model performance for 

predicting soluble P (SP) concentrations in tile effluent with selected site characteristics as 



 

 

59 

predictor variables and, (2) to determine ANN-generated WFs using Garson’s algorithm and 

compare the performance of a PI with no WFs (PINO), a PI with WFs as proposed in the original 

Lemunyon and Gilbert PI (PILG), and a PI with ANN-generated WFs (PIANN), for predicting SP 

loss potential in tile discharge.  

3.3 Materials and Methods 

3.3.1 Selection of ANN variables. 

The first step of this analysis was to determine the relevant site characteristics (input 

variables) governing soluble P loss (output variable) from tile drained fields. Selected input 

variables were selected to be consistent with the transport and loss potential components in the 

Indiana Nutrient and Sediment Transport Risk Assessment Tool (NASTRAT) (IN-NRCS, 2013). 

They include; one source variable (Bray/Mehlich 3 soil test P (STP) and seven transport variables 

(soil erosion (water) (SE), soil erosion (wind) (SEW), surface runoff class (SR), nitrate leaching 

index (NI), subsurface drainage potential (SDP), flooding frequency (FF), distance to waterbody 

(DTW)). In this study, we confined to the dominant input variables considered in previous P loss 

risk assessment studies (Nelson and Shober, 2011) thereby, eliminating SEW, FF and NI from 

consideration. To meet the minimum criteria for assessment for P loss risk potential established 

by United States Department of Agriculture Natural Resource Conservation Service in its Title 

190 National Instruction, timing, rate and method of P (inorganic and organic) application were 

included in the analysis. The specific source variables were inorganic P fertilizer rate (FPR), 

inorganic P fertilizer application method and timing (FPA), organic P manure rate (OPR), and 

organic P manure application method and timing (OPA). Following the recommendation from 

Kleinman (2017) and Welikhe et al. (2020) to incorporate soil P sorption saturation into P loss risk 

assessment tools, P sorption capacity (PSC) - based environmental indices of P saturation ratio 

(PSR) and soil P storage capacity (SPSC)) were included as additional input variables. The output 

of interest was annual flow weighted mean DRP concentrations (fDRP) (mg L-1).  

3.3.2 Study site and creation of datasets 

Once the ANN variables were identified, the next step was to generate datasets. The 

creation of a robust ANN, requires the use of a big dataset that can be sufficiently divided into 

training, testing and cross-validation subsets (Sinshaw et al., 2019; Berzina et al., 2009). Because 
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a sufficiently large dataset did not exist, this study followed the methods of Bolster et al. (2012) 

and Fiorellino et al. (2017), whereby an empirical dataset (small dataset) was used to generate a 

theoretical dataset (big dataset). These datasets were generated to represent well-managed 

agricultural fields with common cropping systems in Indiana. Here, well-managed agricultural 

fields refer to fields that adhere to state-established conservation practice standards for nutrient 

management and reduction of runoff and erosion processes (Indiana NRCS FOTG, 2013).The 

theoretical dataset with possible representative combinations of input and output variables was 

used to evaluate ANN perfomance for predicting SP losses in tile effluent while the empirical 

dataset consisting of actual (measured) site characteristics, was used to test whether ANN-

generated weights improved PI performance. 

The empirical dataset contained site characteristics, field management practices, soil and 

water quality data collected from tile-drained plots at the Water Quality Field Station (WQFS), 

Purdue University. Together the treatments at the WQFS (supplemental Table S7.1) provide an 

ideal opportunity to investigate P loss in tile effluent from well-managed fields that have received 

either no P or regular additions of either inorganic or organic P, and were either tilled or not tilled. 

Runoff and erosion is not monitored at the site therefore data on measured P loss via these 

pathways was not available. However, it is important to note that the facility has little variation in 

slope. For in-depth details on the WQFS facility, management histories, equipment and routine 

orthophosphate analytical protocols, see Ruark et al. (2009), Hernandez-Ramirez et al. (2011), and 

Welikhe et al. (2020).  

Site characteristics and field management practices collected were those required as input 

into the ANN and PIs. Data were collected from the plots at the WQFS between 2011 – 2013 water 

years (e.g. Oct 1, 2010 – Sept 30, 2011 for water year 2011). In the NASTRAT (IN-NRCS, 2013), 

similar to the Lemunyon and Gilbert, (1993) PI, both P source and transport site characteristics are 

presented as categorical variables with discreet values assigned to each category. In Lemunyon 

and Gilbert, (1993) PI, these categories (low, medium, high, etc.) are further assigned a rating 

value using a base of 2  (low = 20 (1), high = 24 (16); Table 3.1) to represent increasing risk level 

from one category to the next. However, the use of categorical variables limits maximum values 

for P loss factors, and often results in arbitrary breakpoints in calculated index values (Nelson and 

Shober, 2012). Thus, when possible many PIs have resorted to using continuous variables instead 
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of categorical variables (Nelson and Shober, 2012). Therefore, this study chose to use continuous 

values for P source variables (except P application methods (FPA and OPA)).  

Soil samples from WQFS were obtained in the 0 to 20 cm depth and sent to A&L Great 

Lakes Soil Testing Laboratory, Fort Wayne IN (https://algreatlakes.com/) for routine chemical 

characterization. Further details on methods used during chemical characterization can be found 

in Welikhe et al. (2020). A summary of data on P, aluminum (Al), organic matter (OM%), PSR, 

SPSC, and fDRP is presented in supplemental information (Table S7.1). Plots at the WQFS 

received either inorganic or organic P fertilizer applications (supplemental Table S7.1). Plots 

receiving inorganic P fertilizer applications did so at university recommended rates based on STP 

(Vitosh et al., 1995), while manured treatments received yearly additions of swine effluent at rates 

meant to supply 228 ± 21 lbs N ha-1 yr-1. Rates of applied P were obtained from the WQFS field 

logs (supplemental Table S7.3). The P (inorganic and organic) application methods together with 

their assigned rating values include; no P applied (negligible category = 0), P placed with 

planter/injected deeper than 2 inches (5 cm) (very low category = 1), P incorporated immediately 

before crop (low category = 2), P incorporated > 3 months before crop or surface applied < 3 

months before crop (medium category = 4), P surface applied > 3 months before crop (high 

category = 8). Field records show inorganic P (triple super phosphate; 0-45-0) was surface applied 

< 3 months before crop (~1 week or more before crop) and, when organic P was added, it was 

injected deeper than 2 inches (5 cm) therefore, these variables were assigned a value of 4 and 1 

respectively in the dataset. However, on years when starter fertilizer (equal mix of urea ammonium 

nitrate (28-0-0) and liquid ammonium phosphate (10-34-0);19-17-0) was used as only source of 

P, it was placed at planting 2 inches (5 cm) below the soil surface and was therefore assigned a 

value of 1.  

In the empirical dataset, all transport variables were represented as categorical variables 

with each category assigned a rating value using a rating system of base 2 (Table 3.1). Based on 

field observations at the WQFS, soil erosion (SE), surface runoff (SR), subsurface drainage 

potential (SDP), and distance to a water body (DTW) were assigned the following rating values; 

1, 0, 4 , and 1, respectively. These category values reflect a low soil loss risk (< 20 tons acre-1 year-

1), a negligible risk of overland movement of soil solution from the site, a medium risk of SP losses 

through subsurface pathways, and that the plots at the site were > 100 ft (31 m) away from surface 

water, respectively.  

https://algreatlakes.com/
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Table 3.1. Categorical transport variables included in the empirical dataset, including name, brief 

description and rating values used in the study. Categories used were obtained from NASTRAT 

(IN-NRCS, 2013). 

      Rating values ǂ 

Variable♯ Brief description 0 1 2 4 8 16 

Soil erosion (SE) 

(RUSLE 2) 

(tons/acre/year) 

Soil loss estimated by the Revised 

Universal Soil Loss Equation 

(RUSLE2)  

 
Low 

( < 

20) 

 
Medium 

(20 - 37) 

 
High 

(> 

37) 

Surface runoff 

(SR) (unitless) 

It represents the relative risk of 

movement of soil solution from a 

field. It is determined based on the 

interaction of two site 

characteristics; soil permeability and 

percent slope of the predominant 

soil in the field.  

Negligible Very 

low 

Low Medium High   Very 

high 

Subsurface 

drainage 

potential (SDP) 

(unitless) 

It represents the relative risk of 

nutrient loss through subsurface 

pathways. It is determined from a 

matrix created using soil drainage 

class, depth to seasonal high water 

from the dominant soil in the field, 

and whether there are any surface 

tile inlets and artificial subsurface 

drainage. A minimum ranking of 

medium and high are assigned to 

fields with artificial subsurface 

drainage and surface tile inlets 

respectively. 

 
Very 

low 

Low Medium High   Very 

high 

Distance to 

water body 

(DTW) (ft (m)) 

This variable is a measure of the 

nearest field distance to surface 

water (stream, river, pond, lake or 

perennial ditch). 

  Low 

( > 

100 

(31)) 

  Medium 

(31  99 

(9 - 30)) 

  High 

(≤ 30 

(9)) 

ǂ Rating values based on a rating system of base 2 like Lemunyon and Gilbert (1993). 
♯ Detailed variable description and explanation of determination can be found in IN-NRCS (2013).   

Like Bolster et al. (2012) and Fiorellino et al. (2017), the first step during theoretical dataset 

generation was the determination of the most accurate probability distribution function (fpd) for 

each variable based on recorded data in the empirical dataset. The range of each numerical variable 

was defined using the range observed in the empirical dataset to represent values that could 

potentially exist in well-managed fields (Table 3.2).  
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Table 3.2. Range of values for continuous input variables used for generating the theoretical 

dataset. 

Variable Abbreviation Range 

Mehlich 3 soil test P (mg kg-1) STP 0 - 104 

P saturation ratio (unitless) PSR 0 - 0.34 

Soil P storage capacity (L kg-1) SPSC  -85 - 137.76 

Annual flow-weighted mean DRP (mg L-1) fDRP 0 – 0.216 

 

The process of fpd selection and fitting to these observed values was done using different 

functions in the R package fitdistrplus (Delignette-Muller and Dutang, 2015 ; R Core Team , 2017). 

The adequate fit of the selected fpd’s was examined with histograms and theoretical density plots 

(Q-Q plot, empirical and theoretical cumulative distribution functions and P-P plots) (suplemental 

Figure S1) (Delignette-Muller and Dutang, 2015). As there was no clear fit for fDRP, fDRP 

concentrations were generated using the 5th, 10th, 25th, 50th, 75th, 90th, 95th, 98th, and 99th percentiles 

(supplemental Figure S7.2).  

Both inorganic and organic P fertilizers applications were considered in this study. For 

simplicity, this study only considered maize even though most fields in Indiana are under maize-

soybean rotations. The assumption was that due to its higher yield potential and subsequent higher 

crop P removal rates, all P application rates determined using maize as a reference crop would 

encompass possible P application rates to soybean crops. In the state, inorganic fertilizer 

application rates are based on the tri-state fertilizer recommendations (Vitosh et al., 1995). These 

recommendations use observed STP and the potential yield of a selected crop (maize) to determine 

recommended inorganic P application rates for crops. The STP values generated using a log-

normal distribution together with an average maize yield potential of 160 bu acre-1 (10,080 kg ha-

1) were used to determine the corresponding inorganic P rates for the dataset. Dayton et al. (2017) 

used a similar average maize yield goal in their sensitivity analysis of the Ohio PI. Organic P rates 

are based on the organic nutrient guidelines in the Indiana NRCS Conservation Practice Standard 

code 590, which are also dependent on STP levels (Indiana NRCS FOTG, 2013). As per the 

guideline, organic P applications to soils with STP levels ≤ 50 mg kg-1 are based on the current 

crop’s (maize) nitrogen needs. Fields with STP levels between 51 – 100 mg kg-1 and 101 – 200 

mg kg-1
, are assigned organic P application rates that do not exceed 1.5 × crop P2O5 removal rate 

and the crop P2O5 removal rate, respectively (Indiana NRCS FOTG, 2013). To simplify the 
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simulation, the study assumed that all manured fields received swine effluent similar to the WQFS, 

the reference experimental site. Subsequently, an N-based rate of 171 lbs P2O5 acre-1 yr-1 (192 kg 

P2O5 ha-1 yr-1) for swine effluent was determined for fields in the dataset with STP levels ≤ 50 mg 

kg-1 following the steps outlined in Joern and Brichford (2003). Assuming that a corn-soybean 

rotation (with an average yield goal of 160 bu acre-1 (10,080 kg ha-1) for maize and 50 bu acre-1 

(3,350 kg ha-1) for soybean similar to Dayton et al. (2017)) has an average crop removal rate of 50 

lbs P2O5 acre-1
 yr-1 (56 kg P2O5 ha-1 yr-1), fields with STP levels between 51 – 100 mg kg-1 and 101 

– 200 mg kg-1 were assigned organic P rates of 75 lbs P2O5 acre-1 yr-1 (84 kg P2O5 ha-1 yr-1) and 50 

lbs P2O5 acre-1 yr-1 (56 kg P2O5 ha-1 yr-1), respectively. Values for P application method and timing 

(FPA and OPA) were randomly assigned using modified uniform probability distributions. Based 

on the description of the five application methods in the empirical dataset and professional 

knowledge, the study assumed that 99% of fields in Indiana receive inorganic P applications which 

are surface applied < 3 months before crop and that there was an equal probability (0.25 %) of 

inorganic P being applied to a field using one of the remaining four methods. A similar distribution 

was used for organic P applications but since organic P applications represents < 20% of P 

applications in the region (King et al., 2017; Smith et al., 2018), 80% of the fields were assumed 

to receive no manure applications with the remaining fields having an equal probability (5%) of 

organic P being applied using any of the remaining methods. 

Since data were not available for generation of transport variables, decision-making criteria 

based on information obtained from literature and professional knowledge was used to establish a 

distribution of possible values. Subsequently, values for SE, SR, SDP, and DTW, were randomly 

assigned using a modified uniform probability distribution based on assumptions made. According 

to USDA -NRCS (2015), recent estimates of annual soil loss by the Revised Universal Soil Loss 

Equation (RUSLE2) for croplands (both cultivated and uncultivated) in Indiana, is approximately 

2.74 ± 0.16 tons acre-1 year-1 . Therefore, the study assumed that most agricultural fields (99%) 

would be in the low soil loss category identified in the NASTRAT (< 20 tons acre-1 year-1; IN-

NRCS, 2013), with the remaining fields having equal probabilities (0.5%) of being in the medium 

(20 - 37 tons acre-1 year-1) or high (> 37 tons acre-1 year-1) soil loss categories. Surface runoff 

classes (SR) are determined based on the interaction of two site characteristics; soil permeability 

and percent slope of the predominant soil in the field (IN-NRCS, 2013). Assuming that no 

agricultural fields are established on slopes > 10% and that most soils belong to the moderately 
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slow and slow soil permeability class similar to soils at the WQFS (Drummer silty clay loam and 

Raub silt loam), the study assigned equal probabilities (25%) to the negligible, very low, low, and 

medium surface runoff potential categories with zero probabilities of agricultural fields being 

established in areas with high and very high surface runoff potentials. Indiana NASTRAT 

guidelines specify that any fields with artificial subsurface drainage (at any depth) should 

automatically receive a medium drainage potential ranking while fields with surface tile inlets 

should automatically receive a high drainage potential ranking. Since approximately 80% of 

cropland in Indiana has some type of subsurface drainage (Blann et al., 2009), 80% of the fields 

in the dataset were classified as having a medium drainage potential with the rest of the fields 

having an equal probability (5%) of being in any of the remaining categories. Finally, for the 

distance to water body (DTW) variable, it was assumed that 90% of the fields were established at 

≥ 100 feet (31 m) from surface water, with 5% between 31 – 99 feet (9 – 30 m) from surface water 

and the final 5% at ≤ 30 feet (9 m) from surface water.  

Once, the distributions were determined, the dataset was generated by stochastic data 

generation ((n = 10,000) using R 3.4.0. (R Core Team, 2017)), followed by logical selection of 

combination of inputs and outputs to represent possible physical and management conditions in 

well-managed agricultural fields.  

3.3.3 Description and development of SP ANN-model 

To predict SP losses, this study used a multi-layered feed forward (MLF) neural network 

structure. This is a popular network structure used in water resource applications such as the 

prediction of nutrient concentrations from runoff (Kim and Gilley, 2008), prediction of watershed 

nutrient loading (Kim et al., 2012), prediction of nitrate contamination of ground water (Ehteshami 

et al., 2016), and risk assessment of P loss (Berzina et al., 2009). An MLF ANN is typically 

organized in successive layers i.e. an input layer (independent variables), a hidden layer 

(connecting layer), and an output layer (dependent variables). Information flows unidirectionally 

through successive layers via adjustable connection weights (numeric weights) that recognize 

different patterns (Svozil et al., 1997). Most MLF ANNs contain one or more hidden layers but in 

many water quality studies, using one hidden layer is reasonable (Wu et al., 2015; Khalil et al., 

2011). Using the inputs and output generated in the theoretical dataset, our MLF ANN is 

represented by the following equation (Equation 1); 
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𝑓𝐷𝑅𝑃 =  𝐴𝑁𝑁 [𝑆𝑇𝑃, 𝑃𝑆𝑅, 𝑆𝑃𝑆𝐶, 𝐹𝑃𝑅, 𝐹𝑃𝐴, 𝑂𝑃𝑅, 𝑂𝑃𝐴, 𝑆𝐸, 𝑆𝑅, 𝑆𝐷𝑃, 𝐷𝑇𝑊]              [Eq. 9] 

where fDRP is the annual flow weighted mean DRP concentrations from tile effluent; STP is 

Mehlich 3 soil test P (mg kg-1); PSR is P saturation ratio (unitless); SPSC is soil P storage capacity 

(L kg-1); FPR is inorganic P fertilizer rate (lbs P2O5 ha-1); FPA is inorganic P fertilizer application 

method and timing; OPR is organic P manure rate (lbs P2O5 ha-1); OPA is organic P manure 

application method and timing ; SE is soil erosion (ton acre-1 year-1) ; SR is surface runoff ; SDP 

is subsurface drainage potential; and DTW is the distance to a water body (feet). In this study, 

neuralnet function (Wright et al., 2019; R Core Team, 2017), was used to create the MLF ANN 

trained by the backpropagation algorithm.  

Given the inputs and output consisted of variables with different units and ranges, all data 

were scaled between 0 - 1 using the min-max normalization technique (Gopal et al., 2015). The 

datapoints (10,000) were randomly divided into two subsets, training set (60%) and testing set 

(40%). The training set was used to adjust the connection weights, biases, and optimum 

parameters, and the testing set was used to confirm the actual predictive power of the network. To 

train the MLF ANN, the backpropagation algorithm (Hecht-Nielsen, 1989) was used. This 

algorithm utilizes supervised training and compares its resulting outputs against target outputs, and 

propagates errors backwards through the systems to adjust the weights of the neurons in each layer 

and minimize the sum of square errors of the network (Hecht-Nielsen, 1989). In this study, initial 

default MLF ANN parameters included: the sum of squared error as the error function, 0.01 as the 

threshold for convergence (partial derivative of the error function to stop iteration), 100,000 as the 

stepmax (maximum number of steps of the training process), 1 as the number of the neurons in the 

hidden layer, resilient backpropagation (rprop+; the learning algorithm), and logistic function as 

the activation function. For additional details on network parameters, description, default settings 

and available options, see Wright et al. (2019). To ensure optimum network configuration, the 

activation function and number of neurons in the hidden layer were changed. The activation 

function was changed from logistic to softplus which has been shown to significantly improve 

model performance and convergence with fewer training steps compared to other standard 

functions (Zheng et al., 2015). Also, a trial and error approach was used to set the number of 

neurons in the hidden layer by varying them between (2n1/2 + m) and (2n + 1) (Fletcher and Goss, 

1993), where n and m are the number of input and output variables (neurons) respectively, until 

the desired network accuracy was achieved. Finally, 10 fold cross-validation (Olden et al., 2008; 
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Chowdhury et al., 2002) was used to test network robustness across different samples and ensure 

the network was not overfit to a particular set of data. Network robustness has important 

implications particularly when the MLF ANN will be used for prediction purposes. An optimum 

network is the one that is robust across different samples (Olden et al., 2008). Therefore, this cyclic 

process of training (feed forward and error backpropagation), testing, and cross-validation, was 

repeated until the desired network accuracy was achieved.  

During the optimization of the network, the goodness of fit between predicted and 

measured ouputs was evaluated using the coefficient of determination (R2) and the root mean 

square error (RMSE). The R2 value indicates how well the network fits the data and accounts for 

the variability in prediction by the variables specified in the network. R2 values > 0.9, 0.8 to 0.9 

and, 0.6 to 0.8, indicate a very satisfactory model, a fairly good model and an unsatisfactory model 

respectively (Lallahem and Mania, 2003). The RMSE indicates how close the predicted values are 

to the fitting line. The smaller the RMSE value, the closer the predicted value is to the observed 

value. 

3.3.4 Relative importance analysis of input variables 

Relative importance analysis is unique, as it not only quantifies relationships between input 

and output variables similar to common sensitivity analysis but it also considers the potential 

interactions among the input variables (Garson, 1991). Network weights determined from relative 

importance analysis are partially analogous to the coefficients in a linear model. Therefore, the 

combined effects of weights specific to an input variable represent its relative importance (weight) 

as a predictor variable (Garson, 1991). Garson’s algorithm has been used in previous studies to 

determine the relative importance of input variables in an MLF ANN (Zheng et al., 2017; Grahovac 

et al., 2016; Giam and Olden, 2015; Zhou et al., 2015). This study used Garson’s algorithm (garson 

function; package NeuralNetTools; Marcus et al., 2018) to partition the numerous ANN weights, 

and subsequently pool and scale (values ranging from 0 – 1) weights specific to each input variable 

to reflect their respective relative importance (Garson, 1991). All relative importance values were 

given in their absolute values.  
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3.3.5 PI performance 

There is no existing PI in Indiana, therefore the first step in the analysis was to formulate 

a PI. Our study adopted a multiplicative PI formulation similar to the Pennsylvania PI. This 

formulation is a good representation of processes governing P loss from agricultural fields given 

it better represents the concept of critical source areas (Gburek et al., 2000; Sharpley et al., 2003). 

The multiplicative PI has the general form below: 

                                   𝑃𝐼 =  ∑ (𝑇𝑊𝑖 ∙ 𝑇𝑖)
𝑛
𝑖=1 ∙  ∑ (𝑆𝑊𝑗 ∙ 𝑆𝑗)𝑚

𝑗=1                                        [Eq. 10] 

where T represents PI transport factors (soil erosion (SE), surface runoff (SR), subsurface drainage 

potential (SDP), distance to water body (DTW)), TW represents weights for the various transport 

factors, S represents PI sources (soil test P (STP), inorganic P fertilizer rate (FPR), inorganic P 

fertilizer application (FPA), organic P fertilizer rate (OPR), organic P fertilizer application (OPA)), 

SW represents weights for the source terms, n and m represent the number of transport and source 

factors, respectively. Given that relationships between SP and both PSR, SPSC have thresholds 

above/below which P loss increases to soil solution (Welikhe et al., 2020), we propose their 

inclusion into our multiplicative PI as follows; (1) for fields with PSR and SPSC values below and 

above the identified thresholds i.e. 0.21 and 0, respectively, the weighted PSR and SPSC values 

were subtracted from the total sum of source factors to indicate reduced risk of P loss from these 

fields, and (2) for fields with PSR and SPSC values above and below the identified thresholds, 

respectively, the weighted PSR and SPSC values were added to the total sum of source factors to 

indicate increased risk of P loss from these fields. 

To evaluate whether the ANN-generated weights improve PI accuracy, we compared the 

performance of a PI weighted using ANN generated weights (PIANN), a PI weighted using the 

Lemunyon and Gilbert (1993) PI weights (PILG), and an unweighted (no weights) PI (PINO), at 

predicting observed fDRP concentrations in the empirical data set. Equations for the latter PI 

calculations are detailed in Table 3.3.  
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Table 3.3. Equations for multiplicative P index formulations used in the study. 

PI  Equation 

Unweighted PI 
(PI(NO)) (STP + (FPR × FPA) + (OPR × OPA)) × (SE + SR + SDP + DTW) 
LG - weighted PI 

(PI(LG)) 

((STP × 1) + ((FPR × 0.75) × (FPA × 0.5)) + ((OPR × 1) × (OPA × 1))) × ((SE × 1.5) + (SR × 0.5) + 

(SDP × 0.5) + (DTW × 0.5))¥ 

ANN - weighted 
PI (PI(ANN)) 

((STP × W1) + (PSR × W2) + (SPSC × W3) + ((FPR × W4) × (FPA × W5)) + ((OPR × W6) × (OPA × 
W7))) × ((SE × W8) + (SR × W9) + (SDP × W10) + (DTW × W11))‡ 

¥Site characteristics not in the Lemunyon and Gilbert, (1993) PI, i.e. subsurface drainage potential (SDP) and distance 

to water body (DTW), were arbitrarily assigned weights of 0.5.  
‡W1 to W11 represent the ANN generated weights.  

 

All PI’s were calculated using information (site characteristics and field management practices) 

from the empirical dataset. Like Sharpley et al. (2001), fDRP concentrations were subsequently 

regressed (exponential regression) against field PI scores (PIANN, PINO, and PILG). All regressions 

were performed using R 3.4.0. (R Core Team, 2017). 

3.4 Results and Discussion 

3.4.1 Performance of ANN 

Based on Fletcher and Goss (1993) criteria, during network optimization, the number of 

neurons in the hidden layer was varied between 6 and 23. Results showed that an MLF ANN with 

7 neurons in the hidden layer gave the lowest RMSE during both cross-validation and testing 

(Table 3.4).  

Table 3.4. Testing and 10-foldcross validation performance of the MLF ANN with increasing 

number of neurons in the hidden layer. The validation mean RMSE is the mean RMSE of the 10 

folds analyzed during cross-validation. 

No. hidden 
neurons 

Testing      
(R2) 

Testing 
(RMSE) 

Validation 

(mean 
RMSE) 

6 0.96 0.0028 7.2 × 10-6 

7 0.99 0.0024 5.2 × 10-6 

8 0.98 0.0014 4.9 × 10-4 

9 0.96 0.0033 5.3 × 10-4 
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An increase in mean RMSE during cross-validation indicates model overfitting (fitting the noise 

in the training data) (Liu et al., 2007). In this study, as the number of neurons increased from 7, 

cross-validation mean RMSE increased (Table 3.4), indicating a decrease in network performance. 

Thus, the final network structure consisted of 11 neurons in the input layer, 7 neurons in the hidden 

layer, and 1 neuron in the output layer. The selected MLF ANN structure is presented in Figure 

3.1. Given the numerous connection weights among the neurons (Figure 3.1), attempts to trace the 

direction and relative magnitude of weights between neurons were not successful.  

 

Figure 3.1. Neural interpretation diagram of the best MLP network structure with 11,7, and 1 

neuron(s) in the input (I), hidden (H) and output (O) layers respectively. B1 and B2 are bias terms 

added to H and O layers. Black and grey lines represent positive and negative connections 

respectively, while line thickness represents the relative magnitude of each connection weight. 

Abbreviations are; STP= soil test P, PSR = P saturation ratio, SPSC = soil P storage capacity, FPR 

= Inorganic P fertilizer rate, FPA = Inorganic P fertilizer application method and timing, OPR = 

Organic P fertilizer rate, OPA = Organic P fertilizer application method and timing, SE = soil 

erosion, SR = surface runoff, SDP = subsurface drainage potential, DTW = distance to water body, 

and fDRP = Annual flow-weighted mean DRP concentrations. 
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The accurate performance of the selected MLF ANN is illustrated in Figure 3.2, where the 

simulated fDRP values were compared with the predicted fDRP values. The predicted and 

simulated values in the test set were very close to the 1:1 regression line (y = x, predicted fDRP = 

simulated fDRP), except for three data points that were underpredicted by the MLF ANN. An R2 

and RMSE value of 0.99 and 0.0024, respectively, for the test set, demonstrated a good linear fit, 

and confirmed the ability of the trained MLF ANN to predict new data precisely. 

 

Figure 3.2. Selected MLF ANN parity plot for annual flow-weighted dissolved reactive 

phosphorus (fDRP) concentrations in tile discharge. The black line is the 1:1 (y = x) line.  

A small variation in RMSE across folds during cross-validation indicates a robust network (Liu et 

al., 2007). The reasonably small variation in RMSE across folds in this study (Table 3.5) is 

evidence that the selected MLF ANN was quite robust. Much of the variation across fold RMSE 

values is associated with each fold having random initial starting seeds, and random split of the 

dataset into training and testing sets during the cross-validation process (Zhang et al., 1999). 
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Table 3.5. RMSE values for each fold during cross-validation. 

Fold RMSE 

1 4.5 × 10-6 

2 4.8 × 10-6 

3 3.8 × 10-6 

4 7.5 × 10-6 

5 5.7 × 10-6 

6 8.0 × 10-6 

7 3.4 × 10-6 

8 5.4 × 10-6 

9 3.8 × 10-6 

10 4.6 × 10-6 
 

Kim and Gilley (2008) showed that ANNs trained with datasets that adequately represent the 

critical processes involved in nutrient loss to drainage waters achieved higher predictive ability. In 

the present study, the high predictive ability by the MLF ANN resulted from the use of a theoretical 

dataset whose variables were carefully generated and combined to represent conditions that could 

potentially exist in well-managed agricultural fields. This highlights the importance of a good 

dataset (simulated or measured) that accurately represents existing conditions in an area of interest 

during ANN model building. 

3.4.2 Relative importance of input variables on SP losses 

Table 3.6 presents the results of Garson’s relative importance analysis of each site 

characteristic on SP losses in tile effluent. The latter algorithm uses absolute values of the 

connection weights to calculate variable importance; therefore, the values presented here do not 

provide the direction of the relationship between input and output variables (Garson, 1991). 
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Table 3.6. Results of the relative importance analysis for various site characteristics on annual 

flow-weighted mean DRP concentrations in tile effluent. Values in bold and in parenthesis 

represent Lemunyon and Gilbert (1993) weighting factors normalized to sum to 1. 

Input Abbrev. Relative importance 

Source factors   

Mehlich 3 soil test P  STP 0.279 (0.160) 

P saturation ratio  PSR 0.097 

Soil P storage capacity  SPSC 0.231 

Inorganic P fertilizer rate FPR 0.233 (0.120) 

Inorganic P fertilizer application method and timing FPA 0.007 (0.080) 

Organic P fertilizer rate OPR 0.084 (0.160) 

Organic P fertilizer application method and timing OPA 0.004 (0.160) 

Transport factors   

Soil erosion SE 0.043 (0.240) 

Surface runoff SR 0.008 (0.080) 

Subsurface drainage potential SDP 0.007 

Distance to water body DTW 0.006 

 

Input variable contributions ranged from 0.004 to 0.279, with SP losses from well-managed fields 

being strongly governed by source factors (Table 3.6). As an indicator of total sorbed P in soils 

(Sims et al., 2000), STP has strongly been linked to SP losses in both surface runoff (e.g. in Pote 

et al., 1999) and subsurface drainage ( e.g. in Duncan et al., 2017) waters. Our analysis revealed 

that STP had the greatest weight (0.279) on SP loss. This mainly reflects that the amount of bio-

available P strongly influences SP losses in tile drains in well-managed agricultural fields. 

Phosphorus application rates have come under scrutiny as one of the reasons for increased P loss 

in agricultural watersheds (Smith et al., 2015). The MLF ANN identified FPR as the second most 

influential site characteristic with a weight of 0.233 (Table 3.6). The FPR are based on the Tri-

state Fertilizer Recommendations (Vitosh et al., 1995). When these fertilizer recommendations 

were being developed, P fertilizer was relatively cheap in comparison to crop value; and under-
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fertilization with its associated loss in yields was viewed as a higher economic risk than over-

fertilization (Nelson, 1967). Therefore, historic recommendations included a safety factor to 

ensure yield potential would not be decreased across different soil types (Nelson, 1967; Vitosh et 

al., 1995). The result is that on many highly productive soils where Tri-state Fertilizer 

Recommendations are followed, it is very likely that inorganic P is applied at rates greater than 

crop demand which contributes to P enrichment of surface soils and subsequent P losses 

(Nizeyimana et al., 2001; Smith et al., 2015). The SPSC had a weight very close to FPR i.e. 0.231 

and 0.233, respectively (Table 3.6). As an index of a soil’s sink strength, the capacity dimension 

of SPSC takes into account previous P loading and enables the prediction of how much P a soil 

can sorb before becoming an environmental risk (Nair, 2014; Nair et al., 2015). The close 

weighting between FPR and SPSC indicates that in well-managed agricultural fields both 

contemporary (specifically inorganic P additions) and legacy P sources should be prioritized as 

top site characteristics for P loss risk assessment when developing strategies aimed at abating SP 

loss from fields. Compared to SPSC, PSR had a small relative importance of 0.097 to SP loss in 

well-managed fields which are not excessively P rich (maximum STP in the empirical dataset was 

104 mg P kg-1) (Table 3.6). This is consistent with previous work which showed that P sorption 

capacity has a bigger influence on SP loss potential in excessively P-rich soils (Reid et al., 2012; 

Bolinder et al., 2011). Even though not many fields in the region (~ 20%; King et al., 2017; Smith 

et al., 2018) receive organic P as simulated in the theoretical dataset , the relative importance 

analysis identified OPR (weight = 0.084) as the fifth most influential site charateristic (Table 6). 

Indiana soils with STP levels ≤ 50 mg kg-1 receive N-based manure applications (Indiana NRCS 

FOTG, 2013). Research confirms that there is a higher P loss from fields receiving manure 

amendments applied at N-based application rates. These studies show that when manure is applied 

to meet the N requirements of a corn crop (N-based application), it results in the oversupply of P 

to soils because of the low N: P ratio in manures compared to most crops (King et al., 2018; Dodd 

and Sharpley, 2016; Toth et al., 2006). The influence that both organic (OPR) and inorganic P 

(FPR) rates have on SP loss emphasizes the significance of controlling P acumulation (i.e. 

contemporary P sources) in soils in order to control the amount of P that remains in solution and 

is susceptible to leaching once soil P sorption sites are saturated (Breeuwsma and Silva, 1992). 

With regards to P application methods, previous studies show that the potential for SP loss is 

exacerbated when either organic or inorganic P are surface applied, and it is generally reduced 
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when P materials are incorporated by injection, banding or tillage (Smith et al., 2016; Daverede et 

al., 2004). Compared to other source factors, both FPA and OPA were assigned very low weights 

i.e. 0.007 and 0.004, respectively. The low weights were expected given the potential for SP 

movement with either surface or subsurface runoff assigned in the theoretical dataset was not high. 

Also, the low weights assigned may be a reflection of the impact of the duration between the 

surface application of P fertilizers and runoff events. Findings by Smith et al. (2007) show that the 

shorter the duration between P fertilizer applications and runoff events, the greater the risk of P 

losses to surface water. Even though the most common P application method (especially for 

inorganic P) in Indiana is surface application, the timing of applications in these well-managed 

fields is such that runoff events do not occur soon after. This finding demonstrates the importance 

of considering the timing of P applications in addition to application methods in P loss risk 

assessments. 

The transport site characteristics had low relative importance, compared to the source site 

characteristics (Table 3.6). This could be a reflection of the many widely adopted conservation 

practices aimed at reducing P movement from a field through reductions in erosion, runoff and P 

entrapment within fields (Dodd and Sharpley, 2016). Among the four transport variables, SE had 

the highest relative importance of 0.043, with the remaining transport site characteristics (SR, SDP, 

and DTW) all having relatively low impacts on SP losses in tile drains (Table 3.6). The high impact 

of SE may be the result of unintended consequences arising from the adoption of conservation 

practices. The conservation practices (e.g. no till, minimum till, cover cropping etc.) in the region 

have successfully reduced soil erosion, unfortunately this reduction in soil disturbance has 

inadvertently increased P loss (mainly SP loss) in tile drained fields due buildup of labile P in 

surface soils, especially on fields with long-term P applications (Jarvie et al., 2017; Dodd and 

Sharpley, 2016; Duiker and Beegle, 2006). Since 99% of the fields in the theoretical dataset were 

generated to represent fields with minimal annual soil loss, the latter unintended effect of reduced 

soil erosion on SP losses in tile drains, is a possible explanation of why soil erosion is the most 

important transport factor. The SR and SDP had relative importance values that were low, and 

close in magnitude to each other i.e. 0.008 and 0.007, respectively (Table 3.6). This result agrees 

with previously reported observations of SR and SDP contributions to SP losses. In many 

watersheds in the Midwest, there is an approximate 50-50 split between surface runoff and tile 

discharge contributions to stream flow (King et al., 2014). In these watersheds, previous studies 
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show that, in some settings, surface runoff and tile drains exported approximately equal amounts 

of DRP to streams (Ruark et al., 2012; King et al., 2014; Macrae et al., 2007). Finally, DTW was 

last in relative importance (0.006) among the transport factors (Table 3.6). Reid et al. (2018) show 

that the actual risk of SP loss to surface water depends on the distance and landscape characteristics 

between the point of SP release (edge of field) to the surface water, with higher risks being 

associated with shorter distances between these two points. In this study, the MLF ANN assigned 

the least relative importance to DTW since in the theoretical dataset, 90% of the fields were 

established at ≥ 100 feet (31m) from surface water (low risk category).  

Overall, the ANN-generated WFs (WFANN) were different from the WFs assigned to site 

characteristics in the original PI (WFLG) (Table 3.6). Unlike the WFLG which were arbitrarily 

assigned (Lemunyon & Gilbert, 1993), the WFANN were assigned based on relationships identified 

between site characteristics and measured SP loss by the MLF ANN. The difference between 

WFLG and WFANN, further highlight the need identified by the authors of the original PI (Lemunyon 

& Gilbert, 1993) to use field studies to more accurately assign WFs that reflect the contribution 

each site characteristic to P loss in an area of interest.  

3.4.3 Comparison of PI performance 

There was not a significant exponential relationship between index values and measured 

fDRP concentrations for both the PINO and PILG index formulations (Figure 3.3a and 3.3b). This 

indicated that both PINO and PILG poorly represented the risk of SP loss to tile discharge. According 

to the authors of the PILG, the function of input factor weights was to define each input’s relative 

contribution to P loss risk (Lemunyon and Gilbert, 1993). Therefore, the poor performance of PINO 

(Figure 3a) was expected given the absence of weights that, much like coefficients in a linear 

model, describe the relationship between a predictor variable and its response variable (Sharpley 

et al., 2012; Garson, 1991). Lemunyon and Gilbert, (1993) acknowledged that weights in their PI 

were arbitrarily selected which explains the poor performance of PILG (Figure 3.3b). Ideally, to 

better capture P loss risk in a particular region, P index weights should be obtained from measured 

P loss data (Sharpley et al., 2012). This explains the significant exponential relationship observed 

between PIANN and measured fDRP concentrations (Figure 3.3c; R2 = 0.60, p < 0.001). Previous 

studies for example, Eghball and Gilley (2001), DeLaune et al. (2004), and Sonmez et al. (2009), 

also reported improved PI performance when weights were based on measured P losses.  



 

 

77 

Distinct groups of data were observed when P loss data were plotted against both PINO and 

PILG (Figure 3.3a and 3.3b). Fiorellino et al. (2017) showed that the distinct groups of data observed 

when P loss data are plotted against calculated PI values, arise from the use of categorical variables 

which prevent calculated PI values from relating well with measured P loss data. Given that plots 

used in this study had similar values for transport factors, distinct groups of data separated out 

based on P application rates (both organic and inorganic) and their corresponding P application 

method categories.  

 

Figure 3.3. Observed annual flow-weighted mean DRP concentrations (fDRP) and predictions of 

SP loss risk calculated with the (a) Unweighted PI (PINO), (b) a PI weighted using Lemunyon and 

Gilbert (1993) weights (LG - weighted PI (PILG)), and (c) a PI weighted using artificial neural 

network generated weights (ANN - weighted PI (PIANN)). 
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Using the ANN-generated weights appeared to alleviate (to an extent) the distinct groups of data 

observed in the other two PIs (Figure 3.3). This observation highlights the importance of 

considering possible synergistic and antagonistic interactions between site characteristics during 

weight determination. Despite the improved relationship between PIANN and fDRP concentrations, 

there was still a significant amount scatter around the best fit line (Figure 3.3c). When Lemunyon 

and Gilbert (1993) came up with the PI concept, they did not intend for it to be used to 

quantitatively estimate actual P loss from a field but rather it was originally intended to be used as 

a tool to rate a field’s relative risk to P loss based on the site characteristics. The significant amount 

of scattering still observed even with the use of WFsANN, demonstrates the limitation of using a 

simple PI concept to model complex physical processes governing P loss. Yet, evaluating PIANN 

values against measured SP loss data was a reasonable approach for assessing its performance. 

Overall, the significant exponential relationship between PIANN and SP, shows that the proposed 

PIANN for well-managed agricultural fields was directionally and magnitudinally correct as is 

expected of PIs used to assess the risk of P loss (Sharpley et al., 2012). 

3.5 Conclusion 

The MLF ANN with 11-7-1 topology and trained by backpropagation, presented 

satisfactory predictive ability and robust generalization capacity for modeling complex SP loss 

through tile drains. Through analysis of relative importance, Garson’s algorithm showed feasibility 

for evaluating the weights of eleven site characteristics and the results obtained were reasonable 

and consistent with known relationships between site characteristics and SP loss. Results from the 

relative importance analysis highlighted the need to prioritize both contemporary and legacy P 

sources when determining best management practices to minimize P loss from well-managed 

agricultural fields. Further, unlike the PINO and PILG, the PIANN had a significant exponential 

relationship with fDRP and was able to provide reasonable estimates of P loss in tile effluent. 

These findings suggest that modifications to a PI, such as WFsANN, would likely improve the 

predictive ability of the risk assessment tool.  

In the long-term, we propose the use of a wide range of measured field data representative of all 

fields in Indiana, not just well-managed fields, to allow for the identification of P risk categories 

in the final PI. Also, future research efforts should include all P forms (soluble, particulate, and 

total P) and consider P loss from all pathways not just through subsurface drainage. The authors 
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acknowledge that although this approach is rigorous, it is a relatively simple option for developing 

accurately weighted PIs that better reflect complex physical processes governing P loss. They note 

that the reliability of this approach will depend on the accuracy of the MLF ANN on which the 

weights are based and will be valid only over the range of conditions considered in the analysis. 

Also, as is common practice, the stochastic generation of the theoretical dataset from only one 

simulation (realization) raises the question on how representative the dataset is of existing 

conditions in well-managed agricultural fields. Guo et al. (2018) showed that a minimum of 25 

simulations are needed to accurately capture statistical characteristics of climate during stochastic 

weather data generation. To our knowledge, no such study has been carried to identify the number 

of simulations needed to accurately capture statistical characteristics of soils and management data. 

Therefore, this study does not propose the adoption of these weights into an Indiana PI. Rather, 

we propose the use of the methods presented here during the development of a state PI, taking care 

that the MLF ANN used is trained and tested against measured P loss to improve PI accuracy. 
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4 DYNAMICS OF DISSOLVED REACTIVE PHOSPHORUS LOSS 

FROM PHOSPHORUS SOURCE AND SINK SOILS IN TILE-DRAINED 

SYSTEMS 

4.1 Abstract 

Understanding the processes controlling dissolved reactive phosphorus (DRP) loss in tile-

drained systems is essential to better define critical source areas and inform nutrient and 

conservation practice recommendations. Concentration – discharge (C-Q) relationships have been 

used to infer solute sources, reactivity, proximity, and transport mechanisms governing solute 

fluxes. This study examined DRP C-Q relationships in phosphorus (P) source and P sink soils in 

an in-field laboratory where tile discharge from a hydrologically isolated soil volume is monitored 

daily. Our objective was to compare DRP loads and flow-weighted mean DRP (FDRP) 

concentrations in P source and sink soils and evaluate the predominant DRP C-Q behavior in these 

soils. At the daily scale, C-Q patterns were linked to the soil P status whereby, a chemostatic (b = 

1) and dilution (b < 1) behavior was observed for P source and P sink soils, respectively. At the 

event scale, C-Q patterns were linked to soil P status, flow path connectivity, and mixing of event 

water, matrix water, and shallow groundwater. Source DRP events had variable hysteretic behavior 

with 21%, 7%, 6%, 9% and 15% exhibiting anticlockwise with dilution, anticlockwise with 

flushing, clockwise with dilution, clockwise with flushing, and no hysteresis behavior, 

respectively. These variable C-Q responses suggest that, in addition to discharge and soil P status, 

rapid exchanges between P pools, the magnitude of discharge events (Q), and the relative number 

of days to discharge peak (RL), also regulated solute delivery. On the other hand, the predominant 

non-hysteretic C-Q behavior in sink DRP events (67%), suggests that DRP loss from these soils 

can be discounted. Our results highlight the need for nutrient and conservation practices addressing 

P draw down, P sequestration, and P supply according to crop need, which will likely be required 

to convert P sources to sinks and to avoid the conversion of P sinks to sources. 
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4.2 Introduction 

Phosphorus (P) is an essential element required for the growth of all living things, a role 

that has been exploited in crop production over the years. Leaching losses of dissolved reactive P 

(DRP), the biologically active orthophosphate fraction that passes through a 0.45 µm filter (Pote 

and Daniel, 2000), was historically discounted because of its rapid adsorption onto soil surfaces 

(Logan et al., 1980; Madison et al., 2014). However, recent studies have established leaching as a 

significant pathway for DRP losses to surface water especially in tile-drained fields with long-

term, repeated phosphorus (P) applications (Gentry et al., 2007; Kinley et al., 2007; Sims et al., 

1998). In poorly drained soils, tile-drained systems have significantly altered hydrology compared 

to naturally drained systems. Tile-drains lower water tables, reduce surface runoff, increase 

subsurface drainage, and consequently greatly impact the fate and transport of nutrients from 

drained agricultural fields (Radcliffe et al., 2015; King et al., 2015). In many watersheds in the 

Midwest United States and Canada, tile discharge constitutes approximately 50% of the 

streamflow. For example, King et al. (2014) found that tile discharge contributed 47% of annual 

watershed discharge in Ohio, and Macrae et al. (2007) reported that approximately 42% of annual 

watershed discharge in Ontario, Canada, originated from tile discharge. In these watersheds, the 

elevated levels of DRP in surface water links closely to the magnitude of tile discharge (King et 

al., 2014; Macrae et al., 2007). Indeed, studies have found that in some settings, tile drains exported 

equal amounts or more DRP loads as surface runoff. For example, Ruark et al. (2012) reported 

that in Wisconsin tiles supplied 16 to 58% of dissolved P loads. Similar elevated DRP loads from 

tile drains have been reported in other sites across North America and Europe (Gentry et al., 2007; 

Macrae et al., 2007; Gelbrecht et al., 2005).  

These high DRP concentrations are often measured in tile discharge (Welikhe et al., 2020) 

despite the existing high P sorption capacity of subsoils (Djodjic et al., 2006). Phosphorus rich 

surface soils have been identified as the primary source of P to tile drains. For instance, Welikhe 

et al. (2020) showed that after a soil’s P saturation ratio (PSR) exceeds a PSR threshold of 0.24 

(i.e. attains solid phase P saturation), there was an 8-fold greater risk of DRP loss to tile discharge. 

Also, previous work (Uusitalo et al., 2001; Djodjic et al. 1999) using cesium-137 and phosphorus-

33 isotopes, reported that elevated DRP concentrations in tile discharge originated from P-rich 

surface soils. The coincidence between elevated DRP concentrations and peak event water (new 

water) contribution to tile discharge, especially in no-till fields, suggests that the primary pathway 
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for DRP from surface soils to tile drains, is via macropore (preferential) flow pathways (Williams 

et al., 2016; Vidon and Cuadra, 2011; Simard et al., 2000). Further, Williams et al. (2016) 

hypothesized that P source soils could function as labile sources of P much like surface-applied P, 

resulting in DRP loss to tile drains throughout the year. Nevertheless, despite these studies 

highlighting the role of P soil status and macropore flow pathways on DRP export in tile-drained 

systems, no study has quantified DRP losses in tile discharge from P saturated (source) and P 

(unsaturated) sink soils and assessed the dynamics of DRP loss during discharge events. Therefore, 

understanding when and how DRP is being exported at the field scale from soils with different P 

status is critical for efficient decision making. 

As nutrient concentrations exhibit varying responses to changing discharge rates (Godsey 

et al., 2009), previous studies have successfully used concentration (C) – discharge (Q) 

relationships to unravel active solute source areas and transport pathways in watersheds (Rose et 

al., 2018; Duncan et al. 2017; Bowes et al. 2015; Bende-Michl et al., 2013). Pioneer work by 

Johnson et al. (1969) on stream water chemistry, provides the framework for C-Q data analysis 

using power law fits i.e. 𝐿 =  𝑎𝑄𝑏 (where, L = flux/load of solute or sediment, Q = discharge flow 

rate, and b = slope of log (L) – log (Q) linear regression). The authors showed that the C-Q 

relationships can be classified as chemodynamic or chemostatic, depending on whether there is a 

significant or negligible variation in concentration, respectively, relative to discharge variation 

(Godsey et al., 2009; Rose et al., 2018). Large solute reservoirs associated with dissolution of 

geologic materials, and/ or anthropogenic-sourced solutes e.g. legacy stores of nitrate and 

phosphorus, linked to long-term, repeated land applications, are hypothesized to generate 

chemostatic C-Q relationships (Godsey et al. 2009; Basu et al. 2010; Thompson et al. 2011 

Diamond, 2013). On the other hand, flushing C-Q behavior is observed when solute or particulate 

concentrations increase with discharge (b > 1), whereas a dilution C-Q behavior is observed when 

solute or particulate concentrations decrease with increasing discharge (b < 1) (Godsey et al., 2009; 

Bieroza et al., 2018).  

One factor that causes the large dispersion in C-Q plots, is the presence of hysteresis due 

to existing source and transport limitations (Minaudo et al., 2019). These hysteretic patterns have 

been identified through visual inspection of graphical plots or through the use of metrics and 

indices that characterize and quantify hysteretic responses (Butturini et al., 2008; Lawler et al., 

2006; Lloyd et al., 2016a; Lloyd et al., 2016b; Duncan et al. 2017). By classifying these C-Q 
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hysteretic patterns and their succession, studies gained additional information on processes 

controlling solute transport to streams. A study by Williams (1989) on hysteresis patterns of 

suspended sediment, was one of the first studies which outlined the most common shapes for 

hysteresis loops and provided possible explanations for their occurrence. The author classified the 

loops into five classes. The first class was described as a single-valued straight line, suggesting 

that sediment concentrations and discharge were synchronized. This shape could occur when 

sediment concentrations were plentiful. Class two was a clockwise loop, where peak sediment 

concentrations occur on the rising hydrograph limb. This shape suggests exhaustible sediment 

supply. On the other hand, Class three was an anticlockwise loop, where sediment peak 

concentrations lag discharge peak (i.e. solute concentrations are higher on the falling versus the 

rising hydrograph limb). This shape suggests differing transit times of sediment and water. Class 

four, was a mix of classes one and two i.e. a straight-line plus a loop which results from a change 

in C-Q relationship during a storm event possibly due to changes in sediment availability, storage, 

and transport. Class five was also a combination of class two and three resulting in loops with a 

figure-of-eight configuration. This shift in loop shape was also possibly caused by a shift in the 

relationship between discharge and sediment concentrations. Recent studies have further added 

possible explanations for the different loop shapes observed. For example, clockwise hysteresis 

could also suggest rapid mobilization, proximal sources to the stream, whereas anticlockwise 

hysteresis could also suggest transport-limited systems, distal solute sources, or an eventual mix 

of solute contributions from early, low concentration sources, and late, high concentration sources 

(Chanat et al., 2002; Bowes et al. 2005; Bieroza and Heathwaite, 2015; Vaughan et al., 2017). 

In this study, nutrient and tile discharge data (daily resolution) collected over a 3-year 

period from tile-drained experiment plots were analyzed using both the power law and hysteresis 

indices to determine the daily and event scale C-Q behavior of DRP. Only no-till plots were 

considered in this study because tillage has been shown to disrupt macropore flow (Jarvis, 2007), 

which is the major flow pathway for DRP to tile drains especially in fine-textured soils 

(Beauchemin et al.,1998). Soil P storage capacity (SPSC) representing the soil P status determined 

in a previous study on the same study site (Welikhe et al., 2020), was used to designate field plots 

as P sources or P sinks. The overall goal of this study was to quantify DRP losses from P source 

and P sink soils to tile drain waters and assess patterns of loss as a function of discharge. Specific 

objectives include: (i) determination of DRP loads and flow-weighted mean DRP (FWDRP) 
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concentrations from P source and sink soils at an annual and event-based time scale, and (ii) 

evaluate the predominant C-Q responses of DRP from P source and sink soils in tile discharge.  

4.3 Materials and Methods 

4.3.1 Site description and nutrient management 

The study was conducted between 1 Oct 2010 and 30 Sept 2013 (3-water years i.e. water 

year 2011, 2012, and 2013, each beginning on 1 October and ending on 30 September) at the Water 

Quality Field Station (WQFS), Purdue University. The predominant soil series at the site is 

Drummer silty clay loam with a small area (<2%) of Raub silty clay loam. Slopes range from 0 to 

2%. At the WQFS, forty-eight treatments are arranged in a randomized complete-block design, 

with twelve treatments per block. The treatments consist of one native prairie mixture and eleven 

treatments representing common cropping systems in the Midwest United States. Of the twelve 

treatments, three treatments i.e. Miscanthus x giganteus (Mxg), continuous maize with residue 

removal (CM-RR), and switchgrass variety Shawnee (Switch), respectively, were considered in 

this study (Table 4.1). These treatments were not tilled before and during the monitoring period 

and had various P applications over the years. Since 1997, treatment CM-RR received 

approximately 10-gal acre-1 of liquid starter fertilizer (17-17-0 [17% (w/w) N and 17% (w/w) P2O5] 

in 1997 and 19-17-0 [17% (w/w) N and 17% (w/w) P2O5] every year after) supplying 16 kg P2O5 

with all maize plantings. Also, in April 2012, replicates in the treatment received 43 kg P2O5 ha-1 

from a 0-45-0 fertilizer application. Similar liquid starter fertilizer applications were done with all 

maize plantings in treatment Mxg and Switch from 1997 to 2008 and 2007, respectively, before 

the treatment plots were replaced with current treatments of miscanthus and switchgrass (Table 

4.1). We note that at the WQFS, all commercial P fertilizer applications are based on Purdue 

University recommended rates that are dependent on soil test P levels (Vitosh et al., 1995). 
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Table 4.1. A brief description of no-till treatments at the Water Quality Field Station (WQFS) 

treatments (abbreviations and year of establishment, previous treatments (cropping systems and N 

rates) dating back to 1997, and P, N, and tillage management 

Current 

treatment 

(abbrev./yr.est.) Plot 

Previous 

treatment 

(maize N 

rate, kg ha-1 

yr-1 ) 

Current N 

management 

(annual rate, 

kg ha-1 yr-1 ) 

P management 

(Cumulative P2O5  

applied 1997 - 

2013; kg ha-1 ) 

Tillage 

practices 

Miscanthus x 

giganteus 

(Mxg/2008) 

11, 22, 

32, 43 

Annual 

soybean-

maize 

rotation  

(180-P) 

Spring 

broadcast urea 

(56) 

Commercial 

fertilizer based on 

STP (265) + starter 

(272) 

No till 

since 

2008 

Continuous maize 

w/residue removal 

(CM-RR/2008) 

12, 23, 

30, 46 

Continuous 

maize w/ 

residue return 

(202-P) 

Preplant UAN 

(180) + starter 

Commercial 

fertilizer based on 

STP (180) + starter 

(80) 

No till 

since 

2008 

Switchgrass var. 

Shawnee 

(Switch/2007) 

10, 18, 

26, 44 

Annual 
soybean-

maize 

rotation  

(180-P) 

Spring 

broadcast urea 

(56) 

Commercial 

fertilizer based on 

STP (180) + starter 

(80) 

No till 

since 

2007 

 

4.3.2 Soils data 

The values for Soil P storage capacity (SPSC) used in this study were determined (Equation 

1) and reported by Welikhe et al. (2020) as follows;  

𝑆𝑃𝑆𝐶 = (𝑑0 − 𝑃𝑆𝑅)  × 𝑃𝑆𝐶𝐸𝑠𝑡                                                   [Eq. 11] 

where, d0 is a change-point PSR value of 0.21), PSR is an indivual soil’s P saturation ratio, and 

PSCEst is a pedotransfer function used to accurately estimate a soil’s P sorption capacity. Detailed 

descriptions of the determination of d0, PSR, PSCEst, and chemical characterization of samples   

are available in Welikhe et al. (2020). The SPSC values range from negative to positive, where 

negative and positive values are estimates of loosely (easily desorbed) and firmly held legacy P in 

soils, respectively (Nair et al., 2015; Nair and Harris, 2014; Welikhe et al., 2020). Therefore, 

individual replicate SPSC values, were used to identify a soil’s P status. For the purpose of this 

study, plots considered were those which consistently had negative SPSC values (P saturated 

referred to as P source soils in this work) or consistent postive SPSC values (P unsaturated referred 

to as P sink soils in this work) throughout the monitoring period. Therefore, plot 46 and 18 were 

excluded from this analysis because their P status varied throughout the study period. Table 4.2 
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shows the SPSC values determined for the study plots by Welikhe et al. (2020). Based on their 

SPSC values, plot 10, 11, and 12, were classified as P source soils while, plots 26, 30, 32, 43, and 

44, were classified as P sink soils. 

Table 4.2. Soil P storage capacity (SPSC) for surface soils (20 cm) reported in Welikhe et al. 

(2020). Negative SPSC and positive SPSC values are associated with P source and P sink soils, 

respectively. 2011, 2012, and 2013 are water years e.g. 2011 water year begins on 1 Oct 2010 and 

ends on 30 Sept 2013. Refer to Table 1 for descripion of treatments. 

    2011 2012 2013 

Current treatment 

(abbrev./yr.est.) 
Plot SPSC (L kg-1) 

Miscanthus x 

giganteus 
(Mxg/2008) 

11 -10.0 -5.1 -6.6 

32 35.0 41.0 41.8 

43 20.6 23.8 28.4 

Continuous maize 

w/residue removal 
(CM-RR/2008) 

12 -10.9 -18.3 -7.8 

30 30.7 26.9 0.4 

Switchgrass var. 

Shawnee 
(Switch/2007) 

10 -2.6 -1.3 -2.6 

26 12.9 28.0 32.8 

44 11.9 29.5 22.4 

 

4.3.3 Flow and DRP concentration data collection 

In each treatment plot at the WQFS (10.8 × 48 m), an in-ground drainage lysimeter (24 × 

9 m) was constructed as a bottomless clay box to create a hydrologically isolated area from which 

drain-flow would be collected. Lysimeter walls were constructed with Bentonite slurry to a depth 

of 1.5 m. Two, parallel, plastic tiles (collection tile and companion tile), 0.1 m in diameter, were 

installed at a depth of 0.9 m in the longitudinal centers of the plots. The collection tile drains the 

areas within the lysimeter while the companion tile drains the areas outside the lysimeter. The 

companion tile drains into a nearby drainage ditch while the collection tile drains into instrument 

huts where stainless steel tipping buckets are positioned at the end of the drains to measure hourly 

discharge volumes. The tipping buckets are fitted with a magnetic sensor switch to count the 

number of tips that are recorded by data loggers and summarized by the hour. The hourly tip counts 

were converted to discharge volumes using calibration values unique to each tipping bucket. 

Hourly discharge data were aggregated from noon to noon to createdaily discharge data. A 
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statistical protocol and decision rule developed by Trybula (2012), was used to identify and 

eliminate non-functioning tiles from further analysis. Based on these criteria, tile 22 and 23 were 

eliminated from the rest of the study.  

To best correspond with daily discharge volumes, 24-hr flow-proportional discharge water 

quality samples were collected whenever drain discharge occurred. Once retrieved, the water 

samples were immediately transported to the laboratory, filtered (0.45 µm filter), and filtrate DRP 

(orthophosphate) concentrations were analyzed colorimetrically by the Murphy and Riley (1962) 

procedure using a SEAL AQ2 auto-analyzer method EPA-118-A Rev.5 (equivalent to USEPA 

method 365.1, Rev.2.0) (Seal Analytical, 2004). Any samples not analyzed within 24 hours, were 

frozen. All discharge and corresponding DRP concentration data are archived in the Purdue 

University Research Repository (PURR). The data on daily tile discharge and DRP concentrations 

used for this study were retrieved from PURR and rectified by Welikhe et al. (2020). For a detailed 

description of flow processing, gap-filling of missing DRP values, handling of flow and DRP 

outliers, days with flooding, rainfall, and tile drain efficiencies, see Welikhe et al. (2020). In this 

study, missing daily discharge data was not gap filled. A summary of the number of missing days 

is presented in Table 4.3. 

 

Table 4.3. The number of days with missing flow data for tiles in the study plots. The percentage 

of number of days with missing data per water year is presented parenthetically. 
 

Days with missing flow data 

Tile 2011  2012  2013  

10 59 (16) 0 (0) 48 (13) 

11 59 (16) 0 (0) 48 (13) 

12 59 (16) 0 (0) 48 (13) 

26 60 (16) 0 (0) 128 (35) 

30 60 (16) 0 (0) 128 (35) 

32 0 (0) 0 (0) 41 (11) 

43 1 (0.3) 0 (0) 44 (12) 

44 1 (0.3) 0 (0) 44 (12) 

 

4.3.4 Calculations and statistical analysis 

All statistical analysis was performed in R 3.4.0. (R Core Team, 2017). For a given tile, 

DRP loads were determined by multiplying the DRP concentration by the respective daily 
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discharge volume. Daily DRP loads were summed for each tile on an annual (water year) and event 

basis. Flow-weighted DRP concentrations (FDRP) were calculated as the summed loads divided 

by the summed flow volumes on an annual and event basis. For our purposes, an event was defined 

as a composite sample with a total discharge (Q) ≥ 100 liters (0.1 m3) per event. Linear regression 

analysis (lm function) was used to characterize C-Q relationships between drainflow and DRP 

flux. The C-Q relationship was determined across two-time scales: daily and event, for each of the 

surface soil types (P source and P sinks). For each time scale, data were log-transformed 

(logTransform function) before regression analysis to test C-Q relationships for P source and P 

sink soils. The linear regression model was converted into a simplified expression based on the 

log- transformed data: 

𝐿 = 𝑎𝑄𝑏                                [Eq. 12] 

where L is solute flux (daily or event scale), Q the is discharge flow rate (daily or event scale), a 

is the intercept of the linear regression of the non log-transformed values of DRP flux and 

discharge, and b is the slope of the linear relationship between the log-transformed values of DRP 

flux and discharge at daily or event scales. Ninety-five percent confident intervals of b (slope) 

were determined (confint function) to test whether b was significantly different from 1. b values 

less than, equal to, and greater than 1 indicate solute dilution (decrease with discharge), no effect 

(chemostasis), and accretion (increase with discharge) by increasing drainflow rates, respectively.  

4.3.5 Determination of C-Q hysteresis loops 

As previously mentioned, this study used low resolution (daily) data. Therefore, for our 

purpose, the following criteria were used to select discharge events to consider during hysteresis 

analysis: (1) having complete daily C and Q data for the entire discharge event, (2) discharge 

events with ≥ 3 days of c and Q data, (3) discharge events that did not have more than one peak, 

and (4) discharge events with a peak tile discharge rate greater than 1 mm day-1 ha-1. General 

characteristics of drainage events (ED, event duration; Δt, days since the previous event; Q, total 

event discharge; Qmax, peak event discharge; Qave, average event discharge; Drel, relative length 

(days) of the rising limb (Drel = (days of the rising limb of the hydrograph/ days of the entire 

hydrograph) × 100), were determined.  

For each discharge event, the analysis of DRP concentrations (C) versus discharge (Q) 

relationships, was performed with the approach proposed by Butturini et al. (2006) and Butturini 
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et al. (2008). Two simple, semi-quantitative descriptors of solute behavior: ΔC and ΔR, were used 

to describe the shapes, rotational patterns, and trends of DRP hysteretic loops during individual 

discharge events. The ΔC quantifies the relative changes in solute concentrations at the onset of 

discharge and peak flow. The ΔC (%) is calculated as: 

∆𝐶 (%) =
𝐶𝑠  − 𝐶𝑏

𝐶𝑚𝑎𝑥
 × 100                                            [Eq. 13] 

where Cb  and Cs  are DRP concentrations at base flow and at peak discharge, respectively, and 

cmax is the highest DRP concentration observed in the tile during a discharge event. To adapt this 

parameter to tile discharge with no base flow, we replaced Cb with Ci, which is the DRP 

concentration at the beginning of the discharge event. Therefore, the modified ΔC (ΔCnew) was 

calculated as: 

∆𝐶𝑛𝑒𝑤(%) =
𝐶𝑠  − 𝐶𝑖

𝐶𝑚𝑎𝑥
 × 100                                    [Eq. 14] 

ΔC ranges between -100 to 100%, where ΔC < -10%, -10% ≤ ΔC ≥ 10%, and ΔC > 10%, represent, 

solute dilution, neutral, and solute flushing, respectively (Butturini et al., 2008). A flushing solute 

trend is observed when solute concentrations increase with discharge (b > 1), whereas a dilution 

solute trend is observed when solute concentrations decrease with discharge (b < 1) (Godsey et al., 

2009; Maher, 2011; Vaughan et al., 2017; Hoagland et al., 2017). The minimum ΔC i.e. -100%, is 

observed when Cs = 0 and Ci = Cmax while, the maximum ΔC i.e. 100% is observed when Cs = Cmax 

and Ci = 0.  

The ΔR parameter (Equation 5) integrates information about the rotational pattern (R), and 

the area (Ah) of the C-Q loop.  

∆𝑅 (%)  = ( 𝐴ℎ  × 𝑅) × 100                              [Eq. 15] 

The Ah was determined (polyarea function), after standardizing discharge and 

concentrations values to a unity scale. An Ah value closer to zero suggests that the relationship 

pattern is more linear i.e. the concentrations in the rising limb are equal to the concentrations in 

the falling limb for the same discharge. When Ah value is closer to one, the area of the hysteresis 

loop is large and the concentrations in the rising and falling limb are different. R represents the 

rotational pattern of the C-Q hysteresis loop. If the hysteresis loop is clockwise, then R = 1, if 

anticklockwise, R = -1, and if there is no hysteresis or there is an unclear hysteresis (e.g. figure-
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of-eight-shaped loops), R = 0. The ΔR also ranges between -100 to 100% where ΔR < -10%, -10% 

≤ ΔR ≥ 10%, and ΔR > 10%, represent, anticlockwise loop, no loop, and clockwise loop, 

respectively (Butturini et al., 2008). Clockwise hysteresis (i.e. higher solute concentrations on the 

rising versus the falling hydrograph limb), suggests an exhaustible solute supply (source-limited) 

from a proximal source or intense discharge, whereas anticlockwise hysteresis (i.e. solute 

concentrations are higher at the peak or on the falling versus the rising hydrograph limb) suggests 

transport-limited systems, distal solute sources, or sources that are in deeper subsurface zones. The 

relationship between the two hysteresis parameters and the recorded general discharge 

characteristics was analyzed using Pearson correlation analysis, to determine the controlling 

factors that influence DRP hysteresis in tile discharge at the event scale. 

Finally, the variability of the two parameters (ΔCnew (%) and ΔR (%)) was presented in a 

two-dimensional plot of ΔCnew (%) versus ΔR (%), in which four regions can be identified based 

on the solute trend (dilution or flushing) and the hysteresis loop rotation (clockwise or 

anticlockwise). More details on the two-dimensional plot can be found in Butturini et al. (2006) 

and Butturini et al., (2008).  

4.4 Results and discussion 

4.4.1 Annual DRP loads and FDRP concentrations 

Across plots and years, annual DRP loads measured in tile discharge ranged from 0 to 

0.0272 kg ha-1 (Table 4.4). Also, in most instances, annual DRP loads from P source soils (plot 

10, 11, and 12) were an order of magnitude higher than annual DRP loads from P sink soils 

(remaining plots) but, in some years, plot 26 and 43 had DRP loads as high as P source soils (Table 

4.4).  
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Table 4.4. Annual (water year) dissolved reactive phosphorus (DRP) loads in tile discharge. Plots 

with negative SPSC values (P source soils) are in bold. Refer to Table 1 for description of 

treatments. 

    2011 2012 2013 

Current treatment 
(abbrev./yr.est.) 

Plot DRP (kg ha-1) 

Miscanthus x giganteus 

(Mxg/2008) 

11 0.0115 0.0272 0.0250 

32 0.0014 0.0037 0.0016 

43 0.0064 0.0106 0.0071 

Continuous maize 
w/residue removal (CM-

RR/2008) 

12 0.0075 0.0121 0.0125 

30 0.0011 0.0029 0.0024 

Switchgrass var. Shawnee 

(Switch/2007) 

10 0.0079 0.0171 0.0076 

26 0.0104 0.0187 0.0096 

44 0.0070 0.0079 0.0000 

 

In general, these loads were low compared to annual tile loads reported in previous studies in the 

Midwest, USA. For example, Gentry et al. (2007) reported annual DRP loads of 0.05 to 1.01 kg 

ha-1 from similar soils (mollisols) in Illinois. Nevertheless, nutrient loads lost from crop production 

systems are dependent on discharge (Williams et al., 2014), therefore a possible reason for the 

differences in DRP loads are the higher tile drain efficiencies (annual tile discharge to rainfall 

ratio) observed in Gentry et al. (2007).  

Annual FDRP concentrations from the study plots ranged from 0.0015 to 0.0228 mg L-1 

(Table 4.5) These concentrations were also low compared to FDRP concentrations of 0.08 to 0.16 

mg L-1 and 0.058 to 0.231 mg L-1 , reported for corn-soybean rotations on a Bennington silt loam 

and a Pewamo clay loam in Ohio, and on mollisols in Illinois, respectively (King et al., 2015; 

Gentry et al., 2007). In both study sites (Ohio and Illinois), producers applied P fertilizers every 

other year with corn plantings maintain optimum Bray P1/Mehlich 3P soil test levels for crop 

growth (King et al., 2015; Gentry et al., 2007). Welikhe et al. (2020) showed that, P source soils 

were more prone to desorbing P and had a greater risk of losing DRP to the tile drains. However, 

since SPSC and soil test P levels were not reported in King et al. (2015) and Gentry et al. (2007), 

and direct comparisons between P status of soils in these studies versus the present study could 

not be made, it is very likely that the build-up and maintenance approach to P fertilizer 

recommendation turned the soils in the Ohio and Illinois studies into P sources as highlighted in 

Welikhe et al. (2020). Soil type is another possible reason for the differences in FDRP lost to tile 
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discharge. Pewamo clay loam is the major soil (~ 60%) in tile drain contributing areas in the Ohio 

study (King et al., 2015). Soils with high clay content have a greater risk of losing DRP to tile 

drains, due to their high tendency to develop preferential flow pathways (Simard et al., 2000), 

which could explain the higher FDRP losses in those soils. 

Table 4.5. Annual (water year) flow-weighted dissolved reactive phosphorus (FDRP) in tile 

discharge. Plots with negative SPSC values (P source soils) are in bold. Concentration above which 

eutrophication is accelerated i.e. > 0.02 mg P L-1 (Correll, 1999)) are italicized. Refer to Table 1 

for description of treatments. 

    2011 2012 2013 

Current treatment 

(abbrev./yr.est.) 
Plot FDRP (mg L-1) 

Miscanthus x giganteus 
(Mxg/2008) 

11 0.0056 0.0228 0.0219 

32 0.0015 0.0062 0.0028 

43 0.0017 0.0056 0.0043 

Continuous maize 

w/residue removal (CM-

RR/2008) 

12 0.0045 0.0141 0.0178 

30 0.0018 0.0046 0.0056 

Switchgrass var. Shawnee 

(Switch/2007) 

10 0.0033 0.0130 0.0062 

26 0.0028 0.0081 0.0052 

44 0.0027 0.0062 0.0000 

 

As expected, the P source soils in plot 10, 11, and 12, consistently lost higher FDRP concentrations 

throughout the monitoring period (Table 4.5). In the water year 2012 and 2013, FDRP 

concentrations > 0.02 mg L-1were measured in tile discharge from plot 11. Correll, (1999) and 

Sharpley et al. (2003) reported that 0.02 mg P L-1 was the concentration above which 

eutrophication was accelerated. However, all annual FDRP concentrations were below USEPA’s 

0.05 mg P L-1 acceptable water quality limit (USEPA, 2002). 

Accumulated P in soils becomes a water quality concern when there is active hydrology 

that mobilizes soil P and converts it from a crop nutrient resource to an offsite water pollutant 

(Sharpley et al. 2011). Because of the tile drains, all plots in the WQFS may be considered as 

hydrologically active and connected to surface waters. The labile legacy P in P source soils coupled 

with their hydrological connectivity turned these plots to critical source areas that need to be 

targeted during P management.  
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4.4.2 Discharge events: General description, DRP loads, and FDRP concentrations 

Based on our discharge event criteria, a total of 75 events (30 on P source soils (plot 10, 

11, and 12) and 45 on P sink soils (all other plots)) were selected (Table 4.6). Most of the events 

took place during fall (September 22 – 20 December), winter (December 21 – March 19), and 

spring (March 20 – June 20). During summer (June 21 – September 21), there was no discharge in 

most tiles except for tile 30, 43, and 44 in the summer of 2011. This discharge pattern is common 

in the region as a result of the interactions between precipitation, runoff, infiltration, and 

evapotranspiration (Gentry et al. 2007). Event discharge lasted an average of 3 or 4 days across 

tiles. Eight events lasted longer than the average duration (> 4 days per tile). The Q and Qmax varied 

between 145 and 7993 L day-1, and 77 and 4048 L day-1. Across events, Qave ranged between 36 

and 1995 L day-1. Forty eight percent of the discharge events had Drelvalues of 0%, indicating an 

abrupt rising limb. Previous studies in the region reported similar findings where tile discharge 

peaked early and abruptly during storm events (Gentry et al., 2000; Schilling et al., 2008). Table 

4.6 summarises the main characteristics of all selected discharge events. 

Table 4.6. General characteristics, DRP loads and FDRP concentrations, of the selected discharge 

events between October 2010 and September 2013†. FDRP concentrations > 0.02 mg L-1 

(concentration above which eutrophication is accelerated (Correll, 1999)) are italicized and in 

bold. 

Plot  

no. 

Water year 

(Oct 1 to 

Sept 30) 

Event 

no. 
Date 

ED 

(days) 

Δt 

(days) 

Q  

(L event-1) 

Qave 

(L day-1) 

Qmax  

(L day-1) 

Drel 

(%) 

DRP 

(kg ha-1) 

FDRP 

(mg L-1) 

10 2011 1 12/30 - 01/02 4 90 4106 1026 2431 0 0.0003 0.0017 

10 2011 2 02/14 - 02/18 5 42 7086 1417 3030 40 0.0004 0.0012 

10 2011 3 02/20 - 02/22 3 1 2984 995 2553 33 0.0002 0.0013 

10 2011 4 02/27-03/01 3 4 4839 1613 4048 33 0.0004 0.0019 

10 2011 5 03/04 - 03/07 4 2 4442 1111 4048 25 0.0005 0.0025 

10 2011 6 03/09 - 03/11 3 1 3651 1217 3033 0 0.0005 0.0030 

10 2011 7 04/26 - 04/29 4 2 7981 1995 4048 25 0.0025 0.0038 

10 2012 8 12/04 - 12/06 3 2 2167 722 1477 33 0.0018 0.0176 

10 2012 9 12/14 - 12/16 3 7 4991 1664 4048 33 0.0004 0.0002 

10 2013 10 02/26 - 03/01 4 25 5763 1441 4048 0 0.0014 0.0051 

10 2013 11 03/08 - 03/11 4 6 1417 354 724 50 0.0007 0.0102 

Average    4      0.0008 0.0044 
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Table 4.6 continued 

Plot  

no. 

Water year 

(Oct 1 to 

Sept 30) 

Event 

no. 
Date 

ED 

(days) 

Δt 

(days) 

Q  

(L event-

1) 

Qave 

(L day-1) 

Qmax  

(L day-1) 

Drel 

(%) 

DRP 

(kg ha-1) 

FDRP 

(mg L-1) 

11 2011 1 12/30 - 01/01 3 90 1701 567 1503 0 0.0033 0.0420 

11 2011 2 02/20 - 02/22 3 1 2195 732 1991 33 0.0003 0.0024 

11 2011 3 02/27 - 03/01 3 1 3739 1246 3100 33 0.0004 0.0023 

11 2011 4 03/04 - 03/07 4 2 3277 819 3100 25 0.0003 0.0024 

11 2011 5 03/09 - 03/12 4 1 2686 671 2541 0 0.0004 0.0033 

11 2011 6 03/15 - 03/17 3 2 1755 585 1641 0 0.0001 0.0010 

11 2012 7 11/29 - 12/01 4 59 4495 1498 3100 0 0.0003 0.0015 

11 2012 8 12/04 - 12/07 4 2 1625 406 1149 25 0.0028 0.0378 

11 2012 9 12/14 - 12/16 3 6 3877 1292 3100 33 0.0001 0.0004 

11 2012 10 12/30 - 01/01 3 8 753 251 465 0 0.0005 0.0153 

11 2012 11 01/22 - 01/24 3 3 3120 1040 3100 33 0.0060 0.0418 

11 2012 12 01/26 - 01/28 3 1 3249 1083 2607 0 0.0025 0.0168 

11 2012 13 05/06 - 05/08 3 98 4805 1602 3100 33 0.0089 0.0401 

11 2013 14 02/26 - 03/01 4 25 4459 1115 3100 0 0.0048 0.0233 

Average    3      0.0022 0.0164 

12 2011 1 03/15 - 03/17 3 2 1506 502 1052 0 0.0001 0.0014 

12 2012 2 11/27 - 12/01 5 57 4485 897 2308 40 0.0035 0.0169 

12 2012 3 12/04 - 12/06 3 2 638 213 436 33 0.0008 0.0255 

12 2012 4 12/14 - 12/16 3 7 2586 862 2308 33 0.0001 0.0011 

12 2012 5 12/30 - 01/01 3 8 489 163 236 33 0.0001 0.0047 

12 2012 6 01/22 - 01/24 3 3 2415 805 2308 33 0.0019 0.0178 

12 2012 7 01/26 - 01/28 3 1 3532 1177 1936 0 0.0019 0.0117 

12 2012 8 05/06 - 05/08 3 98 1934 645 1867 33 0.0005 0.0051 

Average    3      0.0011 0.0105 

26 2011 1 12/29 - 01/02 5 89 7993 1599 3589 20 0.0005 0.0015 

26 2011 2 03/15 - 03/18 4 2 4354 1089 3149 0 0.0003 0.0013 

26 2011 3 06/20 - 06/22 3 3 2253 751 1207 0 0.0001 0.0014 

26 2012 4 12/14 - 12/18 5 5 5527 1105 3589 20 0.0004 0.0014 

26 2012 5 12/20 - 12/23 4 1 3144 786 1846 0 0.0002 0.0014 

26 2012 6 12/30 - 01/02 4 6 3005 751 1550 0 0.0001 0.0008 

26 2012 7 01/17 - 01/19 3 14 3990 1330 3589 0 0.0023 0.0126 

26 2012 8 05/06 - 05/08 3 97 5043 1681 3589 33 0.0018 0.0075 

26 2013 9 12/20 - 12/23 4 80 4305 1076 3331 0 0.0010 0.0049 

26 2013 10 05/27 - 05/29 3 24 5317 1772 3589 0 0.0004 0.0014 

26 2013 11 06/01 - 06/03 3 2 1039 346 562 33 0.0003 0.0063 

Average    4      0.0007 0.0037 
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Table 4.6 continued 

Plot  

no. 

Water year 

(Oct 1 to 

Sept 30) 

Event 

no. 
Date 

ED 

(days) 

Δt 

(days) 

Q  

(L event-

1) 

Qave 

(L day-1) 

Qmax  

(L day-1) 

Drel 

(%) 

DRP 

(kg ha-1) 

FDRP 

(mg L-

1) 

30 2011 1 12/30 - 01/01 3 90 944 315 917 0 0.0002 0.0047 

30 2011 2 02/16 - 02/18 3 45 512 171 309 33 0.0000 0.0002 

30 2011 3 04/26 - 04/28 3 2 1124 375 574 0 0.0002 0.0029 

30 2011 4 06/20 - 06/22 3 3 2079 693 1449 33 0.0001 0.0014 

30 2012 5 12/30 - 01/02 4 6 145 36 77 0 0.0000 0.0014 

30 2012 6 01/17 - 01/19 3 14 414 138 392 0 0.0000 0.0048 

30 2013 7 12/20 - 12/22 3 80 533 178 505 0 0.0003 0.0104 

30 2013 8 02/26 - 03/05 8 25 1178 147 882 0 0.0004 0.0074 

30 2013 9 05/27 - 05/29 3 24 2308 769 1509 0 0.0002 0.0014 

30 2013 10 06/01 - 06/03 3 2 191 64 160 0 0.0004 0.0450 

Average    4      0.0002 0.0080 

32 2011 1 02/21 - 02/23 3 41 713 238 543 0 0.0001 0.0021 

32 2011 2 02/28 - 03/02 3 4 1641 547 1444 0 0.0002 0.0022 

32 2011 3 03/15 - 03/17 3 2 898 299 723 0 0.0000 0.0006 

32 2012 4 11/28 - 12/01 4 58 2502 625 1444 25 0.0010 0.0090 

32 2012 5 12/04 - 12/06 3 2 306 102 259 33 0.0002 0.0136 

32 2012 6 12/14 - 12/16 3 7 1894 632 1444 33 0.0001 0.0007 

32 2012 7 05/06 - 05/08 3 97 2935 978 1444 33 0.0005 0.0035 

32 2013 8 02/26 - 03/03 6 25 3410 568 1444 0 0.0004 0.0027 

32 2013 9 04/28 - 04/30 3 1 242 81 208 0 0.0000 0.0019 

32 2013 10 05/27 - 05/29 3 26 2127 709 1444 0 0.0001 0.0014 

Average    3      0.0003 0.0038 

43 2011 1 12/30 - 01/03 5 33 4513 903 1825 20 0.0003 0.0014 

43 2011 2 06/20 - 06/22 3 19 948 316 782 33 0.0001 0.0014 

43 2012 3 12/04 - 12/07 4 1 3764 941 1875 25 0.0017 0.0096 

43 2012 4 12/14 - 12/17 4 6 5317 1329 3554 25 0.0003 0.0014 

43 2012 5 12/20 - 12/22 3 2 1593 531 941 0 0.0001 0.0014 

43 2012 6 12/30 - 01/01 3 7 1923 641 972 33 0.0004 0.0041 

43 2012 7 05/06 - 05/08 3 97 4993 1664 3554 0 0.0024 0.0105 

43 2013 8 02/26 - 03/01 4 1 605 151 202 50 0.0001 0.0019 

43 2013 9 03/09 - 03/11 3 7 2914 971 2119 33 0.0017 0.0125 

Average    4      0.0008 0.0049 
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Table 4.6 continued 

Plot  

no. 

Water year 

(Oct 1 to 

Sept 30) 

Event 

no. 
Date 

ED 

(days) 

Δt 

(days) 

Q  

(L event-

1) 

Qave 

(L day-1) 

Qmax  

(L day-1) 

Drel 

(%) 

DRP 

(kg ha-1) 

FDRP 

(mg L-

1) 

44 2011 1 12/30 - 01/04 6 17 5366 894 2072 0 0.0003 0.0012 

44 2011 2 06/20 - 06/22 3 19 2131 710 1561 33 0.0001 0.0014 

44 2011 3 07/02 - 07/04 3 9 662 221 462 33 0.0000 0.0014 

44 2012 4 11/22 - 11/24 3 6 1173 391 850 0 0.0008 0.0145 

44 2012 5 12/30 - 01/02 4 5 1580 395 634 25 0.0001 0.0013 

44 2012 6 01/17 - 01/19 3 14 2497 832 2072 0 0.0008 0.0068 

Average    4      0.0004 0.0044 

†ED, event duration; Δt, days since previous event; Q, total discharge; Qave, average event discharge; Qmax, peak event 

discharge;Drel, relative length (days) of the rising limb; DRP, dissolved reactive phosphorus; FDRP, flow-weighted 

DRP concentrations. 

 

Across all tiles, DRP loads and FDRP concentrations measured during selected discharge 

events ranged between 0 and 0.0089 kg P ha-1 and 0.002 and 0.0401 mg P L-1, respectively (Table 

4.6). There was no distinct trend of loss for both DRP and FDRP in successive events in both P 

source and sink soils. However, when compared to P source soils, P sink soils had very low (some 

0 kg ha-1) event DRP loads (Table 4.6). Also, average FDRP concentrations from P source soils 

(with the exception of plot 10), were an order of magnitude higher than average FDRP 

concentrations from P sink soils (Table 4.6). The event FDRP concentrations were below 

USEPA’s 0.05 mg L-1 acceptable limit (USEPA, 2002), with a few events (7 events) having 

concentrations above the eutrophication acceleration limit 0.02 mg P L-1 (Correll 1999; Sharpley 

et al., 2003).  

4.4.3 C-Q relationships 

 The daily DRP flux from both P source and sink soils had a linear relationship with daily 

discharge when log-transformed (R2 = 0.61 and R2 = 0.73, respectively) (Figure 4.1a). The slope 

(b = 0.93) of the daily DRP – discharge relationship for source soils had a 95% confidence limit 

between 0.84 and 1.01, indicating that b was not significantly different from 1 and that DRP 

concentrations vary little compared to discharge (Figure 4.1a). According to Godsey et al. (2009), 

the observation of chemostasis implies that there is a mechanism at play in the catchment that is 

buffering variations in solute concentrations over a large range of discharge. Previous studies have 

shown that possible mechanisms include continuous weathering of bedrock for solutes such as 

magnesium, sodium, and calcium (Godsey et al. 2009), or the continuous release of legacy 
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nutrients (e.g. nitrates and phosphorus) in agricultural soils (Basu et al., 2010; Basu et al., 2011; 

Thompson et al., 2011). In Menezes-Blackburn et al. (2016), positive correlations (r ≥ 0.5; p ≤ 

0.01) between P desorption rates and re-supply from solid phase with P concentrations in different 

tests (FeO strips, Olsen, oxalate, and NaOH-EDTA), suggested that P status was the main driver 

of P resupply from solid phase P into soil solution, and hence P bioavailability and lability. 

Sharpley et al. (1994) showed that these chronic transfer of DRP in runoff is symptomatic of long-

term, repeated fertilizer and manure applications, which can lead to increases in solid phase P and 

ensuing desorption of solid phase P to runoff water. Thus, it is well-established that accumulated 

P in soils and DRP in surface and subsurface runoff are strongly tied (Vadas et al., 2005; Welikhe 

et al., 2020). In this study, soils classified as P source soils, were those with negative SPSC values. 

According to Nair et al. (2015), the magnitude of negative SPSC values are estimations of the 

loosely held legacy P stock in soils most prone to desorption into soil solution. Therefore, similar 

to other catchments with legacy nutrient stores, our source soils acted as mass stores that 

continually buffered DRP concentrations against changing discharge. The chemostatic behavior in 

P source soils, provides evidence to support Williams et al. (2016) hypothesis that P source soils 

could act as a source of labile P similar to surface-applied fertilizers, resulting in continuous 

delivery of DRP to tile drains throughout the year. 

 

Figure 4.1. Relationship between (a) daily discharge (mm) and daily dissolved reactive phosphorus 

(DRP) flux (kg ha-1) presented on a log-log scale, and (b) event discharge (mm) and event 

dissolved reactive phosphorus (DRP) flux (kg ha-1) presented on a log-log scale. Exponent (b) and 

coefficient (a) values are defined by Equation 2, and R2 values were determined by linear 

regression on log transformed DRP flux and discharge values. Source and sink DRP represent 

DRP fluxes measured from P saturated (source) and unsaturated (sink) soils.  
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The slope (b = 0.92) of the daily DRP – discharge relationship for sink soils had a 95% 

confidence limit between 0.87 and 0.96, indicating that b was significantly < 1, and that lower 

DRP concentrations occurred in conjunction with high discharge totals (Figure 4.1a). However, 

the two slopes i.e. 0.93 and 0.92 of the daily DRP – discharge relationship for source and sink 

soils, respectively, were not significantly different (95% confidence limit between 0.88 and 0.96). 

Such a C-Q relationship suggests solute dilution which has been attributed to source limited or 

reaction rate-limited conditions (Godsey et al., 2009; Bieroza et al., 2018; Duncan et al., 2017). In 

P sink soils, the magnitude of positive SPSC values is an estimate of legacy P held in stable forms 

in these soils (Nair et al., 2015). Since desorption rates are much slower than sorption rates 

(Menezes-Blackburn et al., 2016), the dilution behavior in sink soils is primarily controlled by this 

hysteretic behavior of P between the solid and liquid phase in soils.  

At the event scale, a similar linear relationship between DRP flux from both P source and 

sink soils and discharge when log-transformed was observed (R2 = 0.64 and R2 = 0.78, 

respectively) (Figure 4.1b). However, the slopes (b) of the log-log relationships highlighted a 

different (contrasting) DRP dynamic at the event scale compared to the daily scale. Previous 

authors (Ruark et al., 2009; Duncan et al., 2017), have also reported contrasting C-Q patterns when 

data are analyzed at different time scales e.g. daily, monthly, seasonal, or event time scales. These 

studies showed that the variation of C-Q relationships across different time scales results from the 

different processes influencing C-Q behavior at different temporal scales.  

The slope (b = 0.88) of the event DRP – discharge relationship for source soils had a 95% 

confidence limit between 0.75 and 0.99, indicating that b was significantly < 1 i.e. a dilution effect 

(Figure 1b). On the other hand, the slope (b = 0.94) of the event DRP – discharge relationship for 

sink soils had a 95% confidence limit between 0.86 and 1.01, indicating that b was not significantly 

different from 1; i.e. chemostatsis (Figure 4.1b). Although it is possible that the event-scale 

dilution (b < 1) observed in the P source soils could result from a single contribution of a high-

source P pool that becomes increasingly exhausted throughout the event, the pervasive and 

persistent nature of legacy P in agricultural soils (Kleinman, 2017) make it unlikely that legacy 

stores become depleted on the timescale of an individual discharge event. On the other hand, the 

b < 1 may be the result of a dilution of the DRP-rich water from P-rich surface soils by P-poor 

ground water. Subsurface discharge water is composed of both shallow groundwater and 

precipitation water that has infiltrated through the soil and moved downwards either by matrix or 
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preferential flow (Stamm et al.,2002). Previous studies that used stable water isotopes and tracers 

to monitor movement of water into tile drains (Greve et al., 2012; Williams et al., 2016), showed 

that the initial contributions into tile discharge most likely originated from surface soils and moved 

through active preferential flow paths, but as the event progressed and the soil matrix neared 

saturation, tile discharge transitioned from predominantly event water (preferential flow) to a 

mixture of event, matrix flow and shallow groundwater. Even though water movement and mixing 

was not monitored in this study, the occurrence of lower DRP concentrations in conjunction with 

high discharge, suggests the these concentrations may have been diluted by matrix and shallow 

ground water that are poor in P. This interpretation is supported by Williams et al. (2016), who 

observed that elevated DRP concentrations in tile discharge coincided with peak event water 

contribution from macropore flow pathways before the waters mixed along the flow pathway. 

Additionally, the effect of water table rise and antecedent soil moisture (both not measured in this 

study) on solute and hysteresis patterns was documented by Macrae et al. (2010) and Wagner et 

al. (2008) in their NO3 – N study where, instead of a solute dilution, they observed solute flushing 

(mobilization) because unlike P which is not vertically distributed in soils (Baker et al., 2017), 

rising water tables mobilized NO3 – N that is well-distributed in the soil matrix and is also found 

in high concentrations in shallow groundwater. On the other hand, the chemostatic behavior (b = 

1) observed at the event scale in sink soils, suggests that these surface soils are just as P poor as 

matrix and shallow ground water. Since the stable forms of P in P sink soils are not readily 

desorbed (Nair et al., 2015), water from P sink surface soils would have similar low P 

concentrations as matrix and groundwater.  

Our results from both timescales highlight the importance of P-rich surface soils and 

hydrological connectivity for DRP loss to tile drains. The continuous release of DRP from P source 

soils highlights how legacy P continues to undermine P mitigation efforts. Unfortunately, 

phytomining (growing and harvesting crops without P fertilization) takes decades or longer to 

draw down P (McCollum, 1991; Schärer et al., 2007; Sharpley & Rekolainen, 1997). On the other 

hand, there are a few more timely, and cost-effective materials arising as waste streams from 

various processes, which can be used to sequester P from P-rich soils. These materials include; 

fluidized gas desulfurization (FGD) gypsum, red muds, crushed concrete, and Fe gels etc. 

(Kleinman et al., 2019; Murphy & Stevens, 2010; Egemose et al., 2012; Chardon et al., 2012; 

Weng et al., 2012). Among these amendments, FGD gypsum has gained traction due to its added 
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benefit of acting as a source of sulfur, and because it can be used for the treatment of sea-salt 

impacted soils (Murphy & Stevens, 2010). However cost and possible adverse effects from the use 

of the remaining P amendments has hindered their adoption (Kleinman et al., 2019). Also, since 

macropores are the major pathway through which DRP is transported to tile drains, some studies 

recommend tillage to disrupt macropore flow pathways and decrease hydrological connectivity 

(Williams et al., 2016). Although tillage could potentially reduce DRP losses through tile 

discharge, it could also increase particulate P losses (Verbree et al., 2010), therefore it may not be 

a suitable conservation practice. 

4.4.4 Hysteresis patterns 

Table 4.7 presents the relationships between the discharge event characteristics and the C-

Q hysteresis descriptors. ΔR was positively correlated to Q (p < 0.05) and Drel (p < 0.01), 

suggesting that an increase in Q and Drel would lead to a shift in loop trajectories from 

anticlockwise to clockwise. This observation has been reported in previous studies in which DRP 

anticlockwise loops were mostly associated with low discharge events (Williams et al., 2018; 

Bowes et al., 2005; Chow et al., 2017; Bieroza and Heathwaite, 2015). The ΔCnew was not 

significantly correlated with any of the discharge event characteristics.  

Table 4.7. Pearson correlation matrix between general discharge event characteristics and the ΔR 

(%) and ΔC (%) parameters¶†.  

 ED Δt Q Qave Qmax Drel ΔR (%) ΔCnew (%) 

ED 1.00        

Δt 0.10 1.00       

Q 0.10 0.01 1.00      

Qave 0.08 0.18 -0.10 1.00     

Qmax 0.15 0.12 -0.14 0.93 1.00    

Drel -0.06 -0.08 -0.12 0.11 0.09 1.00   

ΔR (%) -0.06 0.13 0.23 -0.01 -0.15 0.30 1.00  

ΔC (%) 0.00 -0.08 -0.06 -0.04 -0.07 -0.19 -0.23 1.00 
¶Correlation is significant at p < 0.001 level for bold italic numbers, at p < 0.01 for bold numbers, at p < 0.05 for 

bold, italic and underlined numbers. 
†ED, event duration; Δt, days since previous event; Q, total discharge; Qave, average event discharge; Qmax, peak 

event discharge; Drel, relative length (days) of the rising limb; ΔR (%), rotational pattern of hysteresis loops; ΔC 

(%), solute trends (neutral, dilution or flushing). 
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Figure 4.2 shows a plot of ΔCnew (%) and ΔR (%) that summarizes C-Q hysteresis loop types of 

the DRP from sink and source soils during the selected discharge events. Potential nutrient sources 

and delivery pathways to surface water are usually inferred from C-Q hysteresis loops where, 

clockwise hysteresis infers proximal sources with exhaustible solute supply or intense discharge, 

and anticlockwise hysteresis infers distal sources or transport-limited systems (Bowes et al. 2015). 

However, as noted by Williams et al. (2018), interpretation of hysteresis loops in tile-drained 

systems is more complex as even distant sources are directly connected to streams by tile drains.  

The use of low resolution data (daily sampling) did not accurately capture the variation in DRP 

concentrations (ΔCnew (%)). For example, for some events, initial Q was also Qmax in a discharge 

event therefore,  Ci = Cs , resulting in discharge events whose solute trend (flushing or dilution) 

could not be determined given they plotted on the y = 0 line (Figure 4.2). These discharge events 

included 42% (30% anticlockwise, 12% clockwise) and 25% (18% anticklockwise, 7% clockwise) 

of source and sink DRP events, respectively. Of the remaining discharge events, our results show 

that hysteresis behavior of source DRP events was variable with 21%, 7%, 6%, 9% and 15% 

exhibiting anticlockwise with dilution, anticlockwise with flushing, clockwise with dilution, 

clockwise with flushing, and no hysteresis behavior, respectively. According to Williams et al. 

(2018) this variability in hysteresis behavior suggests that multiple flow pathways and transport 

mechanisms are involved in DRP loss to tile drains.  
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Figure 4.2. Plot of ΔCnew (%) versus ΔR (%) for the C-Q hysteresis loops of dissolved reactive 

phosphorus (DRP). The i, j, and k terms in the plot labels correspond to ith season (winter (W), 

spring (Sp), summer (Su), and fall (F)) in a water year (2011 (11), 2012 (12), and 2013 (13), the 

jth plot at the WQFS (10, 11, 12, 26, 30, 32, 43, and 44), and the kth discharge event for the 

specified plot. Table 5 provides detailed information on discharge events. Illustrations of the 

typical C-Q relationships (c, broken blue line; Q, continuous brown line) are presented for each of 

the regions A – D of the ΔCnew (%) versus ΔR plot. A few source DRP events showed clockwise 

hysteresis 

The predominant anticlockwise and dilution pattern of source DRP events (region C of 

Figure 4.2) has two implications. First, tile drains facilitate the rapid transport of DRP from P rich 

surface soils and the contribution of event water to tile discharge (Vidon & Cuadra, 2011; Williams 

et al., 2016). Second, the mixing between event water, matrix water, and shallow groundwater, 

may delay the peak in DRP concentration thus a dilution of high DRP concentrations when waters 

mix results in anticlockwise hysteresis (high DRP concetrations on the falling limb versus the 

rising limb of the hydrograph) (Williams et al., 2018). The majority dilution pattern in source DRP 

events is consistent with our results i.e. b < 1, from the C-Q slope analysis at the event scale (Figure 

4.1b). It reinforces our interpretation of the slopes of the C-Q relationships where the initial, high 
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DRP concentrations in event water progressively mixes with lower DRP concentrations in shallow 

ground water, resulting in a dilution as discharge approaches its peak. The anticlockwise hysteresis 

(illustration in region C of Figure 4.2) further shows that the dilution pattern reverses as discharge 

recedes, with soil matrix water and shallow groundwater progressively becoming disconnected 

from the tile drains, whereas event water from P-rich surface soils remains hydrologically 

connected through preferential pathways. In contrast, during other events, insufficient rise of 

shallow groundwater around tile-drains may prevent the mixing of P-rich and P-poor waters. This 

minimal mixing coupled with rapid transport of DRP and the contribution of event water to tile 

discharge, may result in clockwise hysteresis (high DRP concetrations on the rising limb versus 

the falling limb of the hydrograph) (Williams et al., 2018; Vidon & Cuadra, 2011; Williams et al., 

2016). Also, our correlation results (Table 4.7) show that the shift from anticlockwise to clockwise 

hysteresis may be the result of an increase in Q and Drel. Finally, the variation in DRP response 

could be the result of rapid exchanges between P pools due to sorption/desorption and biological 

processes under varying antecedent conditions (Williams et al., 2018). These variable hysteresis 

behavior and solute trend underscores the challenge of interpreting the contributing mechanisms 

to better manage DRP loss from P source soils in tile drained systems. However, we note that our 

results may be an artefact of low temporal resolution sampling. 

Sink DRP events seemed to generally have no hysteresis or solute trend i.e. 67% of the 

events were plotted at the origin. These results support the chemostatic (b = 1) finding in the event 

C-Q slope analyses of sink soils. Among the remaining events whose solute trends were identified, 

2% and 6% were anticlockwise with flushing and clockwise with dilution, respectively.  

Based on these results, the proposed conceptual models illustrating DRP loss in P source 

and P sink soils are presented in Figure 4.3. 
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Figure 4.3. (a) A proposed conceptual model illustrating DRP loss in tile drained fields from P 

source soils, (i) discharge at the start of the event when P rich event water (preferential flow) from 

the surface rapidly flows to tile drains; (ii) discharge during the event when P rich event water is 

mixed with P poor water from the soil matrix and shallow ground water, resulting in an overall 

dilution; (iii) when the discharge recedes and contributions from soil matrix and shallow ground 

water are absent, event water with high P concentrations continues, (b) A proposed conceptual 

model illustrating DRP loss in tile drained fields from P sink soils, (i) discharge at the start of the 

event when P poor event water (preferential flow) from the surface rapidly flows to tile drains; (ii) 

discharge during the event when P poor waters (preferential, matrix, and shallow groundwater) 

mix; (iii) soil matrix and shallow ground water recede, event water with low P concentrations 

continues. 

Even though tile drains are a major pathway for DRP loss as shown in this study and others 

(Welikhe et al., 2020; Gentry et al., 2007; Macrae et al., 2007; Gelbrecht et al., 2005), our results 

suggest that the water table dynamics during discharge events, soil P status, soil P stratification, 

the amount of discharge, and the number of days it takes to reach peak discharge, also control 

nutrient delivery and hysteresis patterns.  
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4.5 Conclusion 

DRP C-Q relationships were examined within the context of soil P status to elucidate solute 

pathways and investigate key components driving nutrient delivery in tile drained systems. Our 

results showed that dynamics of DRP loss from P source and P sink soils in tile drained systems 

are different. Results from the daily C-Q slopes suggest that the differences in solute behavior and 

export during discharge events was regulated by solute reactivity, availability, and mobilization 

from surface soils. At the event scale, results from both C-Q slopes and hysteresis indices suggest 

that DRP behavior and export was regulated by DRP availability in surface soils, and the degree 

of mixing between event water, matrix water, and rising shallow groundwater. Also, changes in 

discharge event characteristics including Q and Drel influenced DRP hysteresis. Despite the 

complex hysteresis behavior observed, findings suggest that mitigation of DRP loss from P source 

soils in tile-drained systems should involve both nutrient management practices aimed at P draw 

down (e.g. phytomining) and P sequestration. Even though, tillage has been proposed as a way to 

reduce hydrological connectivity between P rich surface soils and tile drains, it has not gained 

traction due to concerns over potential adverse impacts on particulate P loss. To avoid conversion 

of P-sink soils to P-source soils, 4R nutrient management practices with an emphasis on “feeding” 

the crop not the soil, will be needed. Due to low temporal resolution data, the current study only 

focused on single peak events; thus, future research analyzing DRP dynamics in both single and 

multi-peak discharge events is needed to increase understanding of P-loss patterns and inform 

nutrient management recommendations, and ultimately improve water quality. 

 

 

 

 

 

 



 

 

116 

4.6 References  

Baker, D. B., Johnson, L. T., Confesor, R. B., and Crumrine, J. P. (2017). Vertical stratification of 

soil phosphorus as a concern for dissolved phosphorus runoff in the lake erie basin. Journal 

of Environmental Quality, 46(6), 1287–1295. https://doi.org/10.2134/jeq2016.09.0337 

Basu, N. B., Destouni, G., Jawitz, J. W., Thompson, S. E., Loukinova, N. V., Darracq, A., and 

Rao, P. S. C. (2010). Nutrient loads exported from managed catchments reveal emergent 

biogeochemical stationarity. Geophysical Research Letters, 37(23), 1–5. 

https://doi.org/10.1029/2010gl045168 

Basu, N. B., Thompson, S. E., and Rao, P. S. C. (2011). Hydrologic and biogeochemical 

functioning of intensively managed catchments: a synthesis of top-down analyses. Water 

Resources Research, 47 (10), 1–12. https://doi.org/10.1029/2011wr010800 

Beauchemin, S., Simard, R. R., and Cluis, D. (1998). Forms And concentration of phosphorus in 

drainage water of twenty-seven tile-drained soils. Journal Of Environmental Quality, 27 (3), 

721–728. https://doi.org/10.2134/jeq1998.00472425002700030033x 

Bende-Michl, U., Verburg, K., and Cresswell, H. P. (2013). High-frequency nutrient monitoring 

to infer seasonal patterns in catchment source availability, mobilisation and delivery. 

Environmental Monitoring And Assessment, 185(11), 9191–9219. 

https://doi.org/10.1007/s10661-013-3246-8 

Bieroza, M. Z., and Heathwaite, A. L. (2015). Seasonal Variation in phosphorus concentration-

discharge hysteresis inferred from high-frequency in situ monitoring. In Journal Of 

Hydrology (Vol. 524). https://doi.org/10.1016/j.jhydrol.2015.02.036 

Bieroza, M. Z., Heathwaite, A. L., Bechmann, M., Kyllmar, K., and Jordan, P. (2018). The 

concentration-discharge slope as a tool for water quality management. Science Of The Total 

Environment, 630, 738–749. https://doi.org/10.1016/j.scitotenv.2018.02.256 

Bowes, M. J., Jarvie, H. P., Halliday, S. J., Skeffington, R. A., Wade, A. J., Loewenthal, M., and 

Palmer-Felgate, E. J. (2015). Characterising phosphorus and nitrate inputs to a rural river 

using high-frequency concentration-flow relationships. Science Of The Total Environment, 

511, 608–620. https://doi.org/10.1016/j.scitotenv.2014.12.086 

Bowes, Michael J., House, W. A., Hodgkinson, R. A., and Leach, D. V. (2005). Phosphorus-

discharge hysteresis during storm events along a river catchment: The River Swale, UK. 

Water Research, 39 (5), 751–762. https://doi.org/10.1016/j.watres.2004.11.027 



 

 

117 

Butturini, A., Alvarez, M., Bernał, S., Vazquez, E., and Sabater, F. (2008). Diversity and temporal 

sequences of forms of doc and no3- discharge responses in an intermittent stream: predictable 

or random succession? Journal Of Geophysical Research: Biogeosciences, 113(3), 1–10. 

https://doi.org/10.1029/2008jg000721 

Butturini, A., Francesc, G., Jérôme, L., Eusebi, V., and Francesc, S. (2006). Cross-site comparison 

of variability of doc and nitrate c-q hysteresis during the autumn-winter period in three 

mediterranean headwater streams: a synthetic approach. Biogeochemistry, 77(3), 327–349. 

https://doi.org/10.1007/s10533-005-0711-7 

Chardon, W. J., Groenenberg, J. E., Temminghoff, E. J. M., and Koopmans, G. F. (2012). Use of 

reactive materials to bind phosphorus. Journal Of Environmental Quality, 41(3), 636–646. 

https://doi.org/10.2134/jeq2011.0055 

Chow, M. F., Huang, J. C., and Shiah, F. K. (2017). Phosphorus dynamics along river continuum 

during typhoon storm events. Water (Switzerland), 9(7), 1–15. 

Https://Doi.Org/10.3390/W9070537 

Correll, D. L. (1999). Phosphorus: a rate limiting nutrient in surface waters. poultry science, 78(5), 

674–682. https://doi.org/10.1093/ps/78.5.674 

Djodjic, F., Bergström, L., and Ulén, B. (2006). Phosphorus losses from a structured clay soil in 

relation to tillage practices. Soil Use And Management, 18(2), 79–83. 

https://doi.org/10.1111/j.1475-2743.2002.tb00223.x 

Djodjic, Faruk, Bergström, L., Ulén, B., and Shirmohammadi, A. (1999). Mode of transport of 

surface-applied phosphorus-33 through a clay and sandy soil. Journal Of Environmental 

Quality, 28(4), 1273–1282. https://doi.org/10.2134/jeq1999.00472425002800040031x 

Duncan, J. M., Band, L. E., and Groffman, P. M. (2017). variable nitrate concentration–

discharge relationships in a forested watershed. Hydrological Processes, 31(9), 1817–1824. 

https://doi.org/10.1002/hyp.11136 

Duncan, J. M., Welty, C., Kemper, J. T., Groffman, P. M., and Band, L. E. (2017). Dynamics of 

nitrate concentration-discharge patterns in an urban watershed. Water Resources Research, 

53 (8), 7349–7365. https://doi.org/10.1002/2017wr020500 

Egemose, S., Sønderup, M. J., Beinthin, M. V., Reitzel, K., Hoffmann, C. C., and Flindt, M. R. 

(2012). crushed concrete as a phosphate binding material: a potential new management tool. 

Journal Of Environmental Quality, 41(3), 647–653. https://doi.org/10.2134/jeq2011.0134 



 

 

118 

Gelbrecht, J., Lengsfeld, H., Pöthig, R., and Opitz, D. (2005). Temporal and spatial variation of 

phosphorus input, retention and loss in a small catchment of Ne Germany. Journal Of 

Hydrology, 304(1–4), 151–165. https://doi.org/10.1016/j.jhydrol.2004.07.028 

Gentry, L. E., David, M. B., Royer, T. V., Mitchell, C. A., and Starks, K. M. (2007). Phosphorus 

transport pathways to streams in tile-drained agricultural watersheds. Journal Of Environment 

Quality, 36(2), 408. https://doi.org/10.2134/jeq2006.0098 

Gentry, L. E., David, M. B., Smith-Starks, K. M., and Kovacic, D. A. (2000). Nitrogen fertilizer 

and herbicide transport from tile drained fields. Journal Of Environmental Quality, 29 (1), 

232–240. https://doi.org/10.2134/jeq2000.00472425002900010030x 

Godsey, S. E., Kirchner, J. W., and Clow, D. W. (2009). Concentration–discharge relationships 

reflect chemostatic characteristics of US catchments. Hydrol. Process, (23), 1844–1864. 

https://doi.org/10.1002/hyp 

Greve, A. K., Andersen, M. S., and Acworth, R. I. (2012). Monitoring the transition from 

preferential to matrix flow in cracking clay soil through changes in electrical anisotropy. 

Geoderma, 179–180, 46–52. https://doi.org/10.1016/j.geoderma.2012.02.003 

Jarvis, N. J. (2007). A review of non-equilibrium water flow and solute transport in soil 

macropores: principles, controlling factors and consequences for water quality. European 

Journal Of Soil Science, 58(3), 523–546. https://doi.org/10.1111/j.1365-2389.2007.00915.x 

Johnson, N. M., Likens, G. E., Bormann, F. H., Fisher, D. W., and Pierce, R. S. (1969). A 

working model for the variation in stream water chemistry at the hubbard brook 

experimental forest, New Hampshire. Water Resources Research, 5(6), 1353–1363. 

https://doi.org/10.1029/wr005i006p01353 

King, K. W., Fausey, N. R., and Williams, M. R. (2014). Effect of subsurface drainage on 

streamflow in an agricultural headwater watershed. Journal Of Hydrology, 519(Pa), 438–445. 

https://doi.org/10.1016/j.jhydrol.2014.07.035 

King, Kevin W., Williams, M. R., and Fausey, N. R. (2015). Contributions of systematic tile 

drainage to watershed-scale phosphorus transport. Journal Of Environment Quality, 44(2), 

486. https://doi.org/10.2134/jeq2014.04.0149 

Kinley, R. D., Gordon, R. J., Stratton, G. W., Patterson, G. T., and Hoyle, J. (2007). Phosphorus 

losses through agricultural tile drainage in Nova Scotia, Canada. Journal Of Environmental 

Quality, 36 (2), 469–477. https://doi.org/10.2134/jeq2006.0138 



 

 

119 

Kleinman, P. J. A. (2017). The persistent environmental relevance of soil phosphorus sorption 

saturation. Current Pollution Reports, 3 (2), 141–150. https://doi.org/10.1007/s40726-017-

0058-4 

Kleinman, P. J. A., Fanelli, R. M., Hirsch, R. M., Buda, A. R., Easton, Z. M., Wainger, L. A., and 

Shenk, G. W. (2019). Phosphorus and the chesapeake bay: lingering issues and emerging 

concerns for agriculture. Journal Of Environmental Quality, 48 (5), 1191–1203. 

https://doi.org/10.2134/jeq2019.03.0112 

Lawler, D. M., Petts, G. E., Foster, I. D. L., and Harper, S. (2006). Turbidity dynamics during 

spring storm events in an urban headwater river system: The Upper Thame, West Midlands, 

UK. Science Of The Total Environment, 360 (1–3), 109–126. 

https://doi.org/10.1016/j.scitotenv.2005.08.032 

Lloyd, C. E. M., Freer, J. E., Johnes, P. J., and Collins, A. L. (2016a). Technical note: testing an 

improved index for analysing storm discharge-concentration hysteresis. Hydrology And 

Earth System Sciences, 20 (2), 625–632. https://doi.org/10.5194/hess-20-625-2016 

Lloyd, C. E. M., Freer, J. E., Johnes, P. J., and Collins, A. L. (2016b). Using hysteresis analysis of 

high-resolution water quality monitoring data, including uncertainty, to infer controls on 

nutrient and sediment transfer in catchments. Science Of The Total Environment, 543, 388–

404. https://doi.org/10.1016/j.scitotenv.2015.11.028 

Logan, T.J., Randall, G. W., and Timmons, D. R. (1980). Nutrient content of tile drainage from 

cropland in the north central region. North Central Regional Research Publication 268, 

September, 1980. Research Bulletin 1119. Ohio Agricultural Research And Development 

Center, Wooster, Oh. 

Macrae, M. L., English, M. C., Schiff, S. L., and Stone, M. (2007). Intra-annual variability in the 

contribution of tile drains to basin discharge and phosphorus export in a first-order 

agricultural catchment. Agricultural Water Management, 92 (3), 171–182. 

https://doi.org/10.1016/j.agwat.2007.05.015 

Macrae, M. L., English, M. C., Schiff, S. L., and Stone, M. (2010). Influence of antecedent 

hydrologic conditions on patterns of hydrochemical export from a first-order agricultural 

watershed in Southern Ontario, Canada. Journal Of Hydrology, 389 (1–2), 101–110. 

https://doi.org/10.1016/j.jhydrol.2010.05.034 

Madison, A. M., Ruark, M. D., Stuntebeck, T. D., Komiskey, M. J., Good, L. W., Drummy, N., 



 

 

120 

and Cooley, E. T. (2014). Characterizing phosphorus dynamics in tile-drained agricultural 

fields of Eastern Wisconsin. Journal Of Hydrology, 519(Pa), 892–901. 

https://doi.org/10.1016/j.jhydrol.2014.08.016 

Mccollum, R. E. (1991). Buildup and decline in soil phosphorus: 30-year trends on a typic 

umprabuult. Agronomy Journal, 83 (12563), 77–85. 

https://doi.org/10.2134/agronj1991.00021962008300030011x 

Menezes-Blackburn, D., Zhang, H., Stutter, M., Giles, C. D., Darch, T., George, T. S., and 

Haygarth, P. M. (2016). A holistic approach to understanding the desorption of phosphorus 

in soils. Environmental Science And Technology, 50(7), 3371–3381. 

https://doi.org/10.1021/acs.est.5b05395 

Minaudo, C., Dupas, R., Gascuel-Odoux, C., Roubeix, V., Danis, P. A., and Moatar, F. (2019). 

Seasonal and event-based concentration-discharge relationships to identify catchment 

controls on nutrient export regimes. Advances In Water Resources, 131 (July 2018), 103379. 

https://doi.org/10.1016/j.advwatres.2019.103379 

Murphy, J. and Riley, J. P. (1962). A modified single solution method for the determination of 

phosphate in natural waters. Analytical Chemistry Acta, 27, 31–36. 

https://doi.org/10.1016/s0003-2670(00)88444-5 

Murphy, P. N. C., and Stevens, R. J. (2010). Lime and gypsum as source measures to decrease 

phosphorus loss from soils to water. Water, Air, And Soil Pollution, 212 (1–4), 101–111. 

https://doi.org/10.1007/s11270-010-0325-0 

Nair, V. D., Clark, M. W., and Reddy, K. R. (2015). Evaluation of legacy phosphorus storage 

and release from wetland soils. Journal Of Environment Quality, 44 (6), 1956. 

https://doi.org/10.2134/jeq2015.03.0154 

Nair, V. D, and Harris, W. G. (2014). Soil phosphorus storage capacity for environmental risk 

assessment. AAS 2014: 1–10. 

Pote, D. H., and Daniel, T. C. (2000). Analyzing for dissolved reactive phosphorus in water 

samples. In: J. L. Kovar and Pierzynski, G. M., editors, Methods of phosphorus analysis for 

soils, sediments, residuals and waters. Southern Cooperative Series Bulletin, Virginia Tech 

University, Blacksburg. p, 91-93. 

R Core Team. (2017). R: A language and environment for statistical computing. retrieved from 

https://www.r-project.org/ 



 

 

121 

Radcliffe, D. E., Reid, D. K., Blombäck, K., Bolster, C. H., Collick, A. S., Easton, Z. M., and 

Smith, D. R. (2015). Applicability of models to predict phosphorus losses in drained fields: a 

review. Journal Of Environment Quality, 44 (2), 614. 

https://doi.org/10.2134/jeq2014.05.0220 

Rose, Lucy A., Karwan, Diana L., and Godsey, S. E. (2018). Concentration–discharge 

relationships describe solute and sediment mobilization, reaction, and transport at event and 

longer timescales. Hydrological Processes, 32(18), 2829–2844. 

https://doi.org/10.1002/hyp.13235 

Ruark, M. D., Brouder, S. M., And Turco, R. F. (2009). Dissolved organic carbon losses from 

tile drained agroecosystems. Journal Of Environment Quality, 38(3), 1205. 

https://doi.org/10.2134/jeq2008.0121 

Ruark, M., Madison, A., Madison, F., Cooley, E., Frame, D., Stuntebeck, T., and Komiskey, M. 

(2012). Phosphorus loss from tile drains: should we be concerned? University Of Wisconsin, 

21. Retrieved From Http://Fyi.Uwex.Edu/Drainage/Files/2015/09/P-Loss-From-Tile-Drains-

Ppt.Pdf 

Schärer, M., Stamm, C., Vollmer, T., Frossard, E., Oberson, A., Flühler, H., and Sinaj, S. (2007). 

reducing phosphorus losses from over-fertilized grassland soils proves difficult in the short 

term. Soil Use And Management, 23(Suppl. 1), 154–164. https://doi.org/10.1111/j.1475-

2743.2007.00114.x 

Schilling, K.E., and Helmers, M. (2008). Tile drainage as karst: conduit flow and diffuse flow in 

a tile drained watershed. J. Hydrol., 349:291–30. 

https://doi.org/doi:10.1016/j.jhydrol.2007.11.014 

SEAL Analytical. (2004). O-Phosphate – P in drinking, saline and surface waters , and domestic 

and industrial wastes. AQ2 method EPA-118-A Rev. 5, SEAL Analytical, Mequon 

Technology Center 10520-C North Baehr Road Mequon, Wisc. 53092 

Sharpley, A. N. and Rekolainen, S. (1997). Phosphorus in agriculture and its environmental 

implications. In N H. Tunney, O. T. Carton, P. C. Brookes, and A. E. Johnston, Eds. 

Phosphorus Loss From Soil To Water. Cab International, Wallingford, Uk. Sharpley, (Pp. 1–

54). 

Sharpley, Andrew N., Sims, J. T., Reddy, K. R., Chapra, S. C., Daniel, T. C., and Wedepohl, R. 

(1994). Managing agricultural phosphorus for protection of surface waters: issues and 



 

 

122 

options. Journal Of Environment Quality, 23 (3), 437. 

https://doi.org/10.2134/jeq1994.00472425002300030006x 

Sharpley, A.N., Daniel, T., Sims, T., Lemunyon, J., Stevens, R., and Parry, R. (2003). Agricultural 

phosphorus and eutrophication second edition agricultural phosphorus and eutrophication 

Second Edition. U.S. Department Of Agriculture, Agricultural Research Service, (149), 44. 

Sharpley, Andrew N., Kleinman, P. J. A., Flaten, D. N., and Buda, A. R. (2011). Critical source 

area management of agricultural phosphorus: experiences, challenges and opportunities. 

Water Science And Technology, 64 (4), 945–952. https://doi.org/10.2166/wst.2011.712 

Simard, R. R., Beauchemin, S., and Haygarth, P. M. (2000). Potential for preferential pathways 

of phosphorus transport. Journal Of Environmental Quality, 29(1), 97–105. 

https://doi.org/10.2134/jeq2000.00472425002900010012x  

Sims, J. T., Simard, R. R., and Joern, B. C. (1998). Phosphorus loss in agricultural drainage: 

historical perspective and current research. Journal Of Environment Quality, 27 (2), 277. 

https://doi.org/10.2134/jeq1998.00472425002700020006x 

Stamm, C., Sermet, R., Leuenberger, J., Wunderli, H., Wydler, H., Flühler, H., and Gehre, M. 

(2002). Multiple tracing of fast solute transport in a drained grassland soil. Geoderma, 109 

(3–4), 245–268. https://doi.org/10.1016/s0016-7061(02)00178-7 

Thompson, S. E., Basu, N. B., Lascurain, J., Aubeneau, A., and Rao, P. S. C. (2011). Relative 

dominance of hydrologic versus biogeochemical factors on solute export across impact 

gradients. Water Resources Research, 47 (7), 1–20. https://doi.org/10.1029/2010wr009605 

Trybula, E. 2012. Quantifying ecohydrologic impacts of perennial rhizomatous grasses on tile 

discharge: a plot level comparison of continuous corn, upland switchgrass, mixed prairie, and 

Miscanthus X Giganteus.( Order No. 1535171). Available From Dissertations & Theses @ 

Cic Institutions; Proquest Dissertations & Theses Global (1328160945). Retrieved From 

Https://Search.Proquest.Com/Docview/1328160945?Accountid=13360. 

USEPA (2002). EPA water quality standards handbook. (August), 2–3. 

Uusitalo, R., Turtola, E., Kauppila, T., and Lilja, T. (2001). Particulate phosphorus and sediment 

in surface runoff and drainflow from clayey soils. Journal Of Environmental Quality, 30 (2), 

589–595. https://doi.org/10.2134/jeq2001.302589x 

Vadas, P. A., Kleinman, P. J. A., Sharpley, A. N., and Turner, B. L. (2005). Relating soil 

phosphorus to dissolved phosphorus in runoff: a single extraction coefficient for water 



 

 

123 

quality modeling. Journal Of Environmental Quality, 34 (2), 572–580. 

https://doi.org/10.2134/jeq2005.0572 

Verbree, D. A., Duiker, S. W., and Kleinman, P. J. A. (2010). Runoff losses of sediment and 

phosphorus from no-till and cultivated soils receiving dairy manure. Journal Of 

Environmental Quality, 39(5), 1762–1770. https://doi.org/10.2134/jeq2010.0032 

Vidon, P., and Cuadra, P. E. (2011). Phosphorus dynamics in tile-drain flow during storms in the 

US Midwest. Agricultural Water Management, 98 (4), 532–540. 

https://doi.org/10.1016/j.agwat.2010.09.010 

Wagner, L. E., Vidon, P., Tedesco, L. P., and Gray, M. (2008). Stream nitrate and doc dynamics 

during three spring storms across land uses in glaciated landscapes of the Midwest. Journal 

Of Hydrology, 362 (3–4), 177–190. https://doi.org/10.1016/j.jhydrol.2008.08.013 

Welikhe, P., Brouder, S. M., Volenec, J. J., Gitau, M. and Turco, R. F. (2020). Development of 

phosphorus sorption capacity – based environmental indices for tile-drained systems. Journal 

Of Environment Quality, Jeq220044. https:// doi: 10.1002/jeq2.20044 

Weng, L., Van Riemsdijk, W. H., and Hiemstra, T. (2012). Factors controlling phosphate 

interaction with iron oxides. Journal Of Environmental Quality, 41(3), 628–635. 

https://doi.org/10.2134/jeq2011.0250 

Williams, M., King, K., Ford, W. I., Buda, A., and Kennedy, C. (2016). Effect of tillage 

onmacropore flow and phosphorus transport to tile drains. Water Resources Research, 52 (4), 

2868–2882. https://doi.org/10.1002/2015wr017650.received 

Williams, M. R., Buda, A. R., Elliott, H. A., Hamlett, J., Boyer, E. W., and Schmidt, J. P. (2014). 

Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an 

agricultural headwater catchment. Journal Of Hydrology, 511, 870–879. 

Https://Doi.Org/10.1016/J.Jhydrol.2014.02.033 

Williams, M. R., Livingston, S. J., Penn, C. J., Smith, D. R., King, K. W., and Huang, C. (2018). 

controls of event-based nutrient transport within nested headwater agricultural watersheds of 

the Western Lake Erie Basin. Journal Of Hydrology, 559, 749–761. 

https://doi.org/10.1016/j.jhydrol.2018.02.079 

 



 

 

124 

5 SYNTHESIS AND FUTURE WORK 

This dissertation focused on evaluating the effects of legacy (historical) phosphorus (P) on 

dissolved reactive P (DRP) losses in tile-drained systems. For many decades, agricultural 

landscapes in the Midwest USA have heavily depended on anthropogenic P inputs to meet the 

growing demand for food and energy for a growing and increasingly urbanized global population. 

The result has been the buildup of P and subsequent saturation of solid-phase P sorption sites 

leading to subsequent P additions remaining in the soluble P phase, thereby increasing their 

susceptibility to leaching. In order to evaluate the effects of these P accumulations, research was 

needed to develop and evaluate P sorption capacity (PSC) – based environmental indices that could 

be used to identify P sink and source soils and quantify legacy P amounts in surface soils. Also, 

with the P index (PI) continuously being improved and evaluated, research was needed to compare 

the weights of PSC-based indices against other common PI site characteristics, to determine if 

there was indeed a need to incorporate these indices into a risk management tool for P losses. 

Finally, this research also sought to elucidate how a soil’s P status i.e. P sink or P source, affects 

DRP dynamics on a daily and an event scale.  

The pedo-transfer approach proved to be useful in determining a suitable function i.e. pedo-

transfer function (pedoTF), that accurately estimated PSC (R2 = 0.60) in neutral to slightly acidic 

Midwestern USA soils (mollisols and alfisols). These results suggest that PSC and subsequent 

PSC-based indices (P saturation ratio (PSR) and soil P storage capacity (SPSC)) could be 

determined routinely as simple and fast soluble P (SP) risk assessment tools. The coincidence of 

the identified PSR and SPSC thresholds with the critical soil test P (STP) level for agronomic P 

sufficiency (22 mg P kg-1), suggests that the critical STP level for agronomic P sufficiency, could 

also serve as an environmental STP threshold above which DRP loss in subsurface drainage is 

expected to greatly increase. This finding highlights the need to reanalyze the buildup and 

maintenance approach to fertilizer and manure applications.  

The observed, significant relationships between PSC-based indices and SP loss in tile 

drains, gave rise to the question of how important they were to SP loss in tile drains when compared 

to other P source and transport site characteristics considered in a P index. The successful 

prediction of SP loss by a multi-layered feed-forward artificial neural network (MLF-ANN) (R2 = 

0.99 and RMSE = 0.0024) allowed for the determination of the relative importance (weights) of 
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input factors using Garson’s algorithm. Results from the relative importance analysis highlighted 

the importance of P source factors especially STP, inorganic P fertilizer application rate (FPR), 

SPSC, PSR, and organic P fertilizer application rate (OPR) which were the top five highest 

contributors to SP loss in tile drains. These findings highlighted the importance of closely 

monitoring and managing both contemporary and legacy P sources. When included in a 

multiplicative PI i.e. PIANN, the ANN-generated weights improved the performance of the PI in 

predicting SP loss risk potential when compared to PINO and PILG. This demonstrated that well 

trained ANNs coupled with weight algorithms have the potential to accurately weight input factors 

in a PI. There are many agricultural water quality models including, the Soil Water Assessment 

Tool (SWAT), Phosphorus Leaching from Soils to the Environment (PLEASE), Annual P Loss 

Estimator Tool (APLE), Agricultural Policy/ Environmental eXtender (APEX), Environmental 

Policy Integrated Climate (EPIC) (Qi & Qi, 2017). However, review of these models and others 

shows that they do not comprehensively represent either of the following processes; fate and 

transport of P in soils, subsurface drainage, and P transport to tile drains, thus limiting their use in 

simulating P loss in tile-drained systems (Qi & Qi, 2017). We showed in this study that supervised 

training of ANNs allows them to learn and simulate with high accuracy complex P loss dynamics 

in tile-drained fields, making ANNs more efficient water quality models compared to the 

aforementioned models. 

Finally, driven by the need to incorporate PSC-based indices into a PI, this dissertation 

investigated DRP dynamics in P sink and P source soils. On a daily scale, P source and P sink soils 

exhibited chemostatic and dilution C-Q patterns, respectively. The chemostatic behavior in P 

source soils was indicative of a continuous buffering of DRP concentrations by P rich surface soils 

regardless of variations in discharge, while the dilution pattern in P sink soils indicated an 

exhaustible DRP source (low DRP concentrations) in P poor surface soils. At the event scale, 

predominant anti-clockwise rotational pattern in P source soils suggests that there was a mixing 

between P rich water (preferential flow) and P poor water (matrix and shallow groundwater) as the 

discharge event progressed, resulting in lower DRP concentrations on the rising limb compared to 

the falling limb. However, the variable flushing and dilution behavior observed on the rising limb 

suggested that, in addition to discharge and soil P status, rapid exchanges between P pools, the 

magnitude of discharge events (Q), and the relative number of days to discharge peak (Drel), also 
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regulated DRP delivery. On the other hand, the predominant non-hysteretic C-Q behavior in P sink 

soils suggest that DRP loss from these soils will be minimal. 

Overall, this research suggests that legacy P plays a great role in SP loss through tile drains. 

The risk of re-mobilization and release of legacy P increases once a soil’s PSR and SPSC value 

exceeds or drops below identified index thresholds i.e. threshold PSR = 0.21 and threshold SPSC 

= 0, respectively. Also, even though it has been demonstrated that legacy P is one factor that 

contributes to the lack of water quality response to conservation efforts, surplus contemporary P 

sources (inorganic and organic P applications) that result from the current build up and 

maintenance approach to P applications used in university recommendations could be equally 

responsible. Therefore, to mitigate SP loss in tile drains, existing agronomic recommendations 

where the build-up or maintenance approach to fertilizer applications should be reanalyzed to 

avoid the conversion of P sink soils to P source soils. Also, phytomining and P sequestration will 

be needed to draw down P in P source soils. 

This research focused on effects of legacy P on DRP losses in tile discharge only. Future 

research should consider legacy P effects on DRP losses via both surface and subsurface pathways. 

Also, soils with a wider range of chemical properties that represent existing conditions in the region 

should be used. Similarly, big empirical datasets will be needed to develop a robust MLF-ANN 

that could be used to determine the weights of a PI for Indiana. Finally, even though the daily 

water quality data satisfactorily identified DRP – discharge hysteretic rotations, to better 

understand the flushing or dilution patterns of DRP in P source soils, high temporal water quality 

data will be needed. Despite the data limitations (low spatial variability and temporal resolution), 

the WQFS research facility allowed for edge-of-field (EOF) monitoring of DRP which improved 

our understanding of the effects of legacy P on the fate and transport of DRP from tile-drained 

systems. Given the costs associated with the set-up and running of EOF monitoring sites such as 

the WQFS, it would be impractical to call for the establishment of numerous stand-alone sites to 

meet our data needs. A potential solution to the data needs would be regional cross-sectoral 

collaborations between private (land owners) and public organizations (land grant universities and 

research institutions). By extending EOF monitoring sites to real farms and streamlining processes 

such as soil sampling, soil testing, and variables to be monitored, a reliable database could be 

created with field-scale soils, management, and water quality information from a wide range of 

farming systems/management, topography, and hydrology. Such a database would provide 
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credible site-specific baseline information that would allow for the determination of regional 

environmental thresholds and PIs. For these collaborations to work, concerns around data-sharing 

among parties will need to be addressed to enforce mutual trust. Also, incentives to encourage 

participation will be needed.  
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APPENDIX 

SUPPLEMENTAL MATERIALS CHAPTER 2 

Table A.1 Soil classification and type of of phosphorus (P) inputs used at six (6) Purdue 

agricultural research centers (Davies (DPAC), Pinney (PPAC), Northeast (NEPAC), Southeast 

(SEPAC), Throckmorton (TPAC) and, Water Quality Field Station (WQFS)). 

Site 

Soil 

series Texture U.S. Classification P inputs from 2000 - 2012 

DPAC Blount Silt loam Aeric Epiaqualf Inorganic P fertilizer† 

 Pewamo Silt loam Typic Argiaquoll  

NEPAC Rawson 

Fine 

loamy Oxyaquic Hapludalf Inorganic P fertilizer†  

 Haskins 

Fine 

loamy Aeric Epiaqualf  
WQFS Drummer 

Raub 

Fine silty 

Fine silty 

Typic Endoaquoll 

Aquic Argiudoll 

Variable P treatments: No P, Inorganic 

P† and Manure P‡  

TPAC Toronto Fine silty Udollic Epiaqualf No P inputs 

PPAC Sebewa 

Fine 

loamy Typic Argiaquoll Inorganic P fertilizer† 

SEPAC 

Cobbsfor

k Fine silty Udollic Epiaqualf Inorganic P fertilizer† 

† P inputs based on soil test recommendations.  
‡ Manure applications based on crop nitrogen needs with fall or spring applications made 

annually from fall 1998– fall 2012 & spring 2013. 
   

The Water Quality Field Station, Purdue University, West Lafayette, Indiana. 

The WQFS features 48 plots (10.8 m wide × 48 m long) organized in a randomized 

complete-block design with 12 treatments and 4 replicates (Supplemental Figure S1). The soil 

series are Drummer silty clay loam and Raub silt loam with < 2 % slopes; these soils are among 

the major agricultural soils in northwestern Indiana. Since its inception (1992), all treatments 

(Supplemental Table S2) except a native prairie (Prairie), and continuous maize systems receiving 

either spring of fall manure (CM-SpM and CM-FM, respectively; supplemental Table S2) received 

commercial fertilizer P (P2O5) at university recommended rates based on STP (Vitosh et al., 1995). 

From 1998 to 2013, manured treatments received yearly additions of swine effluent at rates based 

on manure N content and a target N application rate of 255 ± 24 kg N ha-1 yr-1. Volume of manure 

applied per application was fairly consistent (63.3 ± 3.3 m3 ha-1 yr-1) but composition was highly 

variable averaging 4.05 and 1.45 g L-1 total N and P2O5, respectively (Hernandez-Ramirez et al., 
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2011). Based on the P2O5 composition of the manure and the number of spring or fall additions 

(16 or 14 respectively), the manured treatments [CM-SpM and CM-FM] received cumulative P2O5 

applications of approximately 1461 kg ha-1 and 1278 kg ha-1, respectively. Also, since 1997, 10-

gal acre-1 of liquid starter fertilizer (17-17-0 [17% (w/w) N and 17% (w/w) P2O5] in 1997 and 19-

17-0 [19% (w/w) N and 17% (w/w) P2O5] every year after) supplying 16 kg P2O5 ha-1 yr-1 was 

applied with all maize plantings. Since its establishment, the Prairie has never received any 

fertilizer or manure additions. In all treatments except the Prairie, K, pH, other fertility attributes, 

weeds, pests and pathogens are managed to optimize productivity following university guides. 

Each of the 48 WQFS treatment plots contains a large in-ground drainage lysimeter (24 x 9 m) 

constructed as bottomless box with bentonite slurry walls extending to glacial till (1.5 m). Two, 

parallel plastic tiles (0.1 diameter) are installed in the longitudinal centers of the plots at 0.9 m 

below the soil surface. A collection tile only drains areas within each lysimeter while a companion 

tile drains plot area outside the lysimeter. Collection tiles drain into instrumentation huts where 

calibrated tipping buckets quantify drain flow volumes for each lysimeter. Data loggers 

automatically record the number of tips per bucket. Flow-proportional water samples were 

retrieved daily during flow events and were immediately transported to the laboratory and frozen 

(-10 °C) if not analyzed within 24 hours. For additional details on the WQFS facility, equipment 

and routine analytical protocols, see Ruark et al. (2009) and Hernandez-Ramirez et al. (2011).  
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Figure A.1 A map showing the layout of plots at the Water Quality Field Station. The number at 

the top and bottom of each plot represents the plot and treatment number respectively. This study 

considered the 48 drainage lysimeter plots (plot number 1 - 48) only. Treatments 1 to 12 include; 

Native prairie mixture (Prairie), Miscanthus x giganteus (Mxg), continuous maize with residue 

removal (CM-RR), Switchgrass (Switch), continuous sorghum with residue removal (Sorgh), 

maize-soybean rotation trt#1 with residue return (MS-R1), soybean-maize rotation trt#1 with 

residue return (SM-R1), maize-soybean rotation trt#2 with residue return (MS-R2), soybean-maize 

rotation trt#2 with residue return (SM-R2), continuous maize with residue return and spring 

manure (CM-SpM), continuous maize with residue return and, fall manure (CM-FM) and 

continuous maize with residue return (CM) respectively (more details on previous crop, nutrient 

and  tillage management can be found in Table S2 in the supplemental text). Letters A to H identify 

the instrumentation huts into which collection tiles drain. (Map obtained from; 

https://ag.purdue.edu/agry/WQFS/Pages/map.aspx) 

  

https://ag.purdue.edu/agry/WQFS/Pages/map.aspx
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Table A.2. A brief description of current Water Quality Field Station (WQFS) treatments 

(abbreviations and year of establishment), any previous treatment (cropping system and N rates 

applied to maize) dating back to 1997, and P, N and tillage management. An estimate of the 

cumulative P2O5 applied from 1997 – 2013 is shown parenthetically. Current N management 

identifies the N rates applied to perennial crops, sorghum, and continuous and rotated maize.  

Current Treatment 
(abbrev./yr. est.)§ 

Previous Treatment 
(maize N rate, kg 
ha-1 yr-1)¶ 

Plots# 
P management 
(cumulative P2O5 applied 
1997-2013; kg ha-1)†† 

Current N 
management (annual 
rate, kg ha-1 yr-1) 

Tillage 

Native prairie mixture 
(Prairie/1993) 

NA 1, 17, 
36,42 

No fert. (0) No fert. (0) 
No till 
since 1993 

Miscanthus x giganteus 
(Mxg/2008) 

Annual soybean-
maize rotation (180-

P) 

11,22,
32,43 

Commercial fertilizer 
based on STP (180) + 

starter (80) 

Spring broadcast 
urea (56) 

No till 
since 2008 

Continuous maize w/ residue 
removal (CM-RR/2008) 

Continuous maize 
w/ residue return 
(202-P) 

12,23,
30,46 

Commercial fertilizer 
based on STP (265) + 
starter (272) 

Preplant UAN (180) 
+ starter 

No till 
since 2008 

Switchgrass var. Shawnee 
(Switch/2007) 

Annual maize-
soybean rotation 
(180-P) 

10,18,
26,44 

Commercial fertilizer  
based on STP (180) + 
starter (80) 

Spring broadcast 
urea (56) 

No till 
since 2007 

Continuous sorghum w/ 
residue removal 
(Sorgh/2008) 

Continuous maize 
w/ residue return 
(157-S) 

6,16, 
29,39 

Commercial fertilizer 
based on STP + starter 
(176) 

Preplant UAN (180) Till 

Maize-soybean rotation trt#1 
w/ residue return (MS-

R1/1997) 
NA 5,13, 

35,40 

Commercial fertilizer 
based on STP (265) + 
starter (144) 

Preplant UAN (157) 
+ starter 

Till 

Soybean-maize rotation trt#1 
w/ residue return (SM-R1) 

NA 8,20, 
27,47 

Commercial fertilizer 
based on STP (265) + 
starter (128) 

Preplant UAN (157) 
+ starter 

Till 

Maize-soybean rotation trt#2 
w/ residue return (MS-

R2/1997) 
NA 2,14, 

33,45 

Commercial fertilizer 
based on STP (265) + 
starter (144) 

Sidedress UAN 
(135) + starter 

Till 

Soybean-maize rotation trt#2 

w/ residue return (SM-

R2/1997) 
NA 9,19, 

34,48 

Commercial fertilizer 

based on STP (265) + 
starter (128) 

Sidedress UAN 
(135) + starter 

Till 

Continuous maize w/ residue 
return & spring manure 
(CM-SpM/1998)  

NA 4,15, 

25,37 

16 yr annual spring 
swine effluent (approx. 
1461) + starter (272) 

Preplant swine 
effluent (avg. 255) + 
starter 

Till 

Continuous maize w/ residue 
return & fall manure (CM-

FM/1998) 

NA 7,24, 
28,38 

14 yr annual fall swine 
effluent (approx. 1278) + 

starter (272) 

Post-harvest swine 
effluent (avg. 255) + 

starter 

Till 

Continuous maize w/ residue 
return (CM/1997) 

NA 3,21, 
31,41 

Commercial fertilizer 
based on STP (265) + 
starter (272) 

Preplant UAN (180) 
+ starter 

Till 

§ Treatments other than the Prairie were variable and not consistently maintained prior to 1997 
¶ N rates are only for the maize year in a rotation with P or S following the rate indicating a preplant or sidedress 

application. Not application (NA) indicates a treatment was maintained from 1997 – 2013.  

# An italicized plot number indicates a tile line that ceased to function, and the plot was therefore eliminated from 

analysis of relationships between soluble P in drainage water and measures of soil P saturation.  

†† Cumulative P2O5 added as commercial fertilizer differs among cropping systems as perennial crops did not receive 

applications. Cumulative starter P2O5 varies reflecting the number of times maize was grown on a specific treatment 

and includes current and previous systems. Cumulative P2O5 applied as manure differs as there were 16 spring 
applications but only 14 fall applications reflecting weather and termination of both manure treatments in fall 2013; 

quantities are based on an estimated amount of 91.3 kg P2O5 ha-1 per application.  
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Flow and Orthophosphate Concentration Data: Cleaning, rectification, and gap filling 

The flow data had been previously converted from hourly tip counts to flow volumes using 

calibration values unique to each tipping bucket and a statistical protocol and criteria were 

developed for identifying and eliminating from further analysis individual tiles suspected of failing 

to function properly (protocol and criteria described in supplemental information). For the 

timeframe of this study, one of the four replicate tiles in all but four treatments (CM-SpM, SM-

R1, Sorgh and Switch retained four replicates, supplemental Table S3) was eliminated from 

analyses of relationships between annual flow-weighted DRP and PSR or SPSC. Outliers in the 

raw data (flow and concentration) were identified and adjusted using Tukey’s 1.5 IQR rule (Seo 

et al., 2006) before their use. 

The 5-year records of flow and orthophosphate concentration were evaluated individually 

for each of the 48 treatment tiles. The number of days with missing flow data for a specific 

treatment tile ranged between 1 – 62, 1 – 39, 1 – 33, 40 – 129 and 2 – 73 days (not necessarily 

consecutive days) in 2010, 2011, 2012, 2013 and, 2014 respectively (Supplemental Figure S6.2). 

These gaps were of two general reasons.  The first reason for data loss was equipment 

failure/malfunction due to flooding damage, leaking tipping buckets, freezing conditions etc. The 

second major reason for loss was the intentional removal of data loggers for maintenance, 

construction etc. mostly during days when little to no flow was anticipated.  Occasionally, 

maintenance and repairs lasted far longer than anticipated and/or weather forecasts for periods of 

dry conditions were inaccurate and, in general, intentional removal of data loggers and not their 

malfunction accounted for a greater proportion of missing data.  
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(a) 

 

Figure A.2 Missing daily follow data 

(a) A bar plot displaying the proportion missing daily flow data in each tile (tile numbers in 

parenthesis) for water year 2010 whereby, a proportion of 0 and 1 represents zero missing daily 

flow data and 365 (366 for leap year) missing daily flow data respectively. 
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Figure A.2 continued 

(b) 

 

Figure S6.2 (b) A bar plot displaying the proportion missing daily flow data in each tile (tile 

numbers in parenthesis) for water year 2011 whereby, a proportion of 0 and 1 represents zero 

missing daily flow data and 365 (366 for leap year) missing daily flow data respectively. 
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Figure A.2 continued 

(c) 

 

Figure S6.2 (c) A bar plot displaying the proportion missing daily flow data in each tile (tile 

numbers in parenthesis) for water year 2012 whereby, a proportion of 0 and 1 represents zero 

missing daily flow data and 365 (366 for leap year) missing daily flow data respectively. 
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Figure A.2 continued 

(d) 

 

 

(d) A bar plot displaying the proportion missing daily flow data in each tile (tile numbers in 

parenthesis) for water year 2013 whereby, a proportion of 0 and 1 represents zero missing daily 

flow data and 365 (366 for leap year) missing daily flow data respectively. 
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Figure A.2 continued 

(e)   

 

 

(e) A bar plot displaying the proportion missing daily flow data in each tile (tile numbers in 

parenthesis) for water year 2014 whereby, a proportion of 0 and 1 represents zero missing daily 

flow data and 365 (366 for leap year) missing daily flow data respectively 

Initial rectification of flow data involved cross-referencing data logger records with daily 

field notes and assigning zero flow when data loggers were inoperable, but field notes indicated a 

specific tile had “no flow (NF) and no sample (NS)” for a specific day. Then, for each treatment 

tile, univariate statistics for the 5-year (1826 days) record of flow data was used to identify specific 
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tiles that may no longer be functioning properly. Among the individual tiles the percent (%) of 

non-zero flow days ranged from 1% to 36% (Supplemental Table S6.3). Apart from corn/soybean 

rotation – switchgrass (Switch), continuous corn-sorghum (Sorgh), soybean/corn rotation 2 (SM-

R2) and continuous corn spring manure (CM-SpM)) treatments, all other treatments had at least 

one of their replicates (plots/tiles) with < 91 days of flow data i.e. < 5% of the total days considered 

in this study. These plots (tiles) were numbers 2, 9, 13, 22, 23, 38, 41 and 42 (supplemental Table 

S6.3). A previous long-term (1997 – 2008) flow data and field log analysis also reported < 5% 

days with flow data for the same tiles and suggested 5% be the criteria for identifying failed tile 

function (Trybula 2012).In consequence, this study omitted data from these plots from further 

analysis.  

For the 40 individual tiles remaining in the study, missing drainflows were accounted for 

as follows: 

1) If missing data were because of a flooding event, Tukey’s 1.5 Interquartile Range 

(IQR) rule ([Q3 (Third quartile) + 1.5] × IQR) (Tukey 1977) applied to the 

univariate statistical results was used as a conservative estimate of tile flow. The 

resulting value of the top whisker (outer fence), which ranged from 809 to 4618 L-

1 day-1 plot-1 (supplemental Table S6.3) was assigned as the daily flow volume 

for each tile during any flooding event (six (6) flooding events; May 22 and June 

22, 2010, April 20, May 31 and June 21, 2011 and, April 19, 2013),  

2)  If the missing period was < 1 day (24 hours), linear interpolation was done to gap 

fill the missing hours of data, and 

3) When the missing period was > 1 day, auto-regressive integrated moving average 

(ARIMA) was used because flow data showed signs of non-stationarity due to the 

presence of seasonality.  

Here we note, ARIMA has been employed in studies modeling seasonal time series data in 

hydrology since it performs preliminary differencing of data to make it stationary (Hyndman, 2014; 

Katimon et al., 2017; Nasir et al., 2017). The AR (auto regressive) and MA (moving averages) 

components of the model tailor it to the data i.e. the AR regresses the variable on its past values 

while MA represents model error as a linear combination of past error terms (Hyndman, Rob and 

Athanasopoulos 2014). The I (integrated) represents differencing a series to make it stationary i.e. 
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subtracting its current values from previous values (Hyndman, Rob and Athanasopoulos 2014). 

The auto.arima function in R was used (Hyndman, Rob and Athanasopoulos 2014). 

Missing daily DRP concentrations and measured concentrations below detection limits 

were accounted for as follows:  

1) For missing concentration not separated by more than 10 days of zero flow from a 

preceding or following recorded value, the recorded was assigned as the missing 

value,  

2) For a missing concentration found between two recorded values (< 10 days before 

and after and separated by days with zero flow) was assigned their average, 

3)  A missing concentration separated by more than 10 days from a measured value 

was assigned the mean annual concentration for that tile, and 

4)  All negative concentrations (concentrations below the limit of detection (LOD, 

0.002 mg P L-1)) were substituted by the LOD divided by the square root of 2 (LOD/√2) 

(Croghan and Egeghy 2003). There were no positive numbers below the limit of 

detection.  

Outliers in the raw data (flow and concentration) were identified using Tukey’s 1.5 IQR 

rule where anything above the outer fence ([Q3 (Third quartile) + 1.5] × IQR) is deemed a possible 

outlier (Seo et al., 2006; Tukey, 1977). This method was selected because of its simplicity and 

because it does not make any distributional assumptions (Loureiro et al. 2016). As the data were 

right-skewed, the lower fence ([Q3 (Third quartile) - 1.5] × IQR) was not considered. Outliers 

were re-adjusted to the value of the outside fence (supplement Table S6.3 & S6.4) for each tile 

before their use in the study. 
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Table A.3. Univariate statistics of daily tile discharge (L day-1 plot-1) from 2010 - 2014 for each of the 48 tiles in the 12 treatments. 

Shaded rows represent tiles omitted from the study due to tile failure as evidenced by the low number of flow of flow days (< 5 % of 

total days studied). Italicized values represent outer fence values from Tukey’s 1.5 IQR rule used to identify extreme outliers. 

Treatment† Plot 

# 

Non-

zero 

flow 

days 

Mean 
Std 

error 

Std. 

Dev 
Min 

10th 

Percentile 

1st 

Quartile 
Median 

3rd 

Quartile 

90th 

Percentile 
Max Skewness Kurtosis 

Tukey’s 

outer 

fence 

   (L day-1 plot-1) 

Prairie 

1 105 335 49 500 1 2 17 71 501 1193 2311 2 2 1228 

17 130 1093 129 1472 1 2 36 466 1591 3198 7168 2 3 3923 

36 191 382 47 648 2 6 19 67 504 1226 3268 2 6 1231 

42 76 169 37 320 1 2 2 24 173 435 1638 3 8 431 

Mxg 

11 151 949 120 1469 1 3 28 242 1257 3168 7502 2 4 3100 

22 56 248 70 523 1 1 3 21 312 629 3449 4 23 776 

32 201 470 52 743 2 4 11 130 584 1487 3495 2 4 1444 

43 225 1053 93 1389 1 5 79 533 1469 2883 8846 2 6 3554 

CM - RR 

12 177 786 98 1304 1 2 19 192 934 2636 6701 2 6 2308 

23 43 132 41 267 1 1 2 6 119 393 1416 3 11 295 

30 243 489 57 891 1 2 9 42 609 1507 6064 3 11 1509 

46 297 375 41 709 1 1 5 66 355 1203 4326 3 8 880 

Switch 

10 157 1281 136 1702 1 6 73 577 1663 3519 9517 2 5 4048 

18 330 405 46 828 1 2 14 75 332 1174 6010 3 11 809 

26 256 1197 108 1733 1 4 56 414 1469 3639 8729 2 4 3589 

44 267 706 67 1099 2 5 51 218 859 2000 7344 3 7 2072 

Sorgh 

6 105 667 90 927 1 6 49 273 925 1827 5109 2 6 2239 

16 150 897 108 1324 1 2 22 253 1149 2732 8176 2 6 2841 
29 102 271 43 439 1 1 6 45 420 738 2495 2 7 1041 

39 362 565 51 976 2 3 10 91 666 1948 4761 2 5 1650 

MS – R1 

5 193 1283 111 1545 1 18 136 664 1723 3375 9054 2 4 4104 

13 23 62 18 87 1 1 3 21 84 203 267 1 0 206 

35 193 351 44 618 2 2 9 47 415 1166 3483 2 6 1024 

40 178 610 71 946 1 5 29 129 920 1951 7223 3 13 2258 

SM – R1 

8 191 226 33 453 1 1 8 42 200 863 3239 3 15 489 

20 124 586 111 1238 1 1 2 32 506 1926 9834 4 24 1261 

27 245 476 50 780 1 1 7 89 609 1522 4252 2 5 1511 

47 395 953 63 1249 1 8 110 489 1241 2537 7152 2 5 2937 

MS – R2 
2 68 566 112 920 1 1 3 207 795 1451 4664 3 8 1982 

14 146 888 96 1157 1 4 29 413 1361 2616 7087 2 5 3360 
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Table A.3 continued 

 33 666 378 26 675 1 6 19 97 395 1108 5736 3 12 959 

45 427 639 47 970 1 3 23 204 858 1983 7609 2 8 2112 

SM – R2 

9 79 492 91 808 1 1 4 144 792 1371 5626 4 18 1974 

19 101 975 139 1394 1 2 68 423 1145 2822 8859 3 9 2760 

34 521 620 46 1054 2 8 38 194 680 1849 7332 3 11 1643 

48 152 850 93 1147 1 2 12 352 1340 2484 5068 2 2 3331 

CM -SpM 

4 137 1095 129 1511 1 2 42 495 1718 3119 9311 2 6 4231 

15 316 1459 117 2082 1 11 103 543 2095 4333 16332 3 9 5084 

25 345 1054 102 1898 1 7 33 201 1198 3536 12605 3 9 2946 

37 155 357 53 661 2 2 3 16 431 1091 3875 3 7 1074 

CM - FM 

7 120 1089 139 1524 1 1 12 405 1832 3143 9919 2 8 4563 

24 95 1191 155 1508 1 17 104 515 1910 3369 8410 2 4 4618 

28 159 601 83 1043 1 1 6 120 796 2018 7346 3 14 1981 

38 78 113 19 164 1 1 1 8 226 383 541 1 0 562 

CM 

3 144 1119 132 1585 1 9 37 430 1775 3221 9061 2 6 4381 

21 122 1119 136 1506 1 5 65 513 1447 3014 8878 3 9 3519 

31 214 728 71 1036 2 2 28 281 1032 2070 4769 2 3 2537 

41 80 206 37 329 1 1 4 31 330 655 1427 2 3 819 
†Current treatment abbreviations: Prairie, native prairie mixture with residue removed; Mxg, Miscanthus x giganteus established in 2008 ; CM -RR, continuous 

maize with residue removal; Switch, Switchgrass established in spring 2007; Sorgh, continuous sorghum with residue removal established in 2008; MS – R1,maize-
soybean rotation trt#1 w/residue return; SM-R1, soybean-maize rotation trt #1 w/residue return; MS – R2, maize-soybean rotation trt#2 w/residue return; SM-R2, 

soybean-maize rotation trt #1 w/residue return; CM -SpM, continuous maize with residue return and spring manure applications; CM-FM, continuous maize with 

residue return and fall manure applications; CM, continuous maize with residue return. More details on previous crop, nutrient and tillage management can be 

found in supplemental Table S6.2. 
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Table A.4 Univariate statistics of orthophosphate (DRP) concentrations (PO4
-3 day-1 plot-1) from 2010 - 2014 for each of the forty-eight 

(48) tiles in the (12) treatments.  

Treatment‡ Plot # 

Days 

with 

conc. 

Days 

with 

no 

conc. 

Mean 
Std 

error 

Std 

Dev 
Min 

1st 

Quartile 
Median 

3rd 

Quartile 
Max Skewness Kurtosis 

Tukey's 

outer 

fence 

     (PO4
-3 L-1 day-1 plot-1)  

Prairie 

1 63 42 0.0123 0.0023 0.0185 0.0000 0.0034 0.0071 0.0138 0.1192 3.6207 15.9739 0.0294 

17 117 13 0.0215 0.0062 0.0670 0.0000 0.0042 0.0071 0.0160 0.6931 8.7478 83.7761 0.0337 

36 148 43 0.0177 0.0052 0.0632 0.0000 0.0040 0.0071 0.0071 0.6588 8.1459 73.9137 0.0118 

42 12 64 0.1068 0.0654 0.2267 0.0030 0.0212 0.0378 0.0656 0.8198 2.5575 5.1665 0.1322 

Mxg 

11 99 52 0.0664 0.0297 0.2953 0.0002 0.0040 0.0071 0.0192 2.1810 6.3655 40.4393 0.0420 

22 17 39 0.0284 0.0119 0.0492 0.0005 0.0070 0.0080 0.0220 0.1851 2.1831 3.7038 0.0445 

32 108 93 0.0120 0.0040 0.0416 0.0000 0.0022 0.0071 0.0071 0.4118 8.4031 76.1442 0.0145 

43 148 77 0.0130 0.0048 0.0585 0.0000 0.0030 0.0071 0.0071 0.6320 9.1629 88.0011 0.0133 

CM -RR 

12 118 59 0.0156 0.0022 0.0240 0.0000 0.0035 0.0071 0.1550 0.1550 3.2056 12.0460 0.3823 

23 8 35 0.0408 0.0116 0.0329 0.0000 0.0164 0.0326 0.0612 0.1010 0.5305 -1.2786 0.1284 

30 157 86 0.0103 0.0016 0.0205 0.0000 0.0049 0.0071 0.0071 0.2278 8.0894 78.6391 0.0104 

46 148 149 0.0175 0.0068 0.0824 0.0000 0.0031 0.0071 0.7590 0.7590 8.1513 66.4956 1.8929 

Switch 

10 106 51 0.0091 0.0011 0.0115 0.0000 0.0020 0.0071 0.0089 0.0601 2.5682 7.0800 0.0193 

18 171 159 0.0097 0.0014 0.0178 0.0000 0.0026 0.0071 0.0071 0.1560 5.5812 36.2600 0.0139 

26 179 77 0.0107 0.0016 0.0215 0.0000 0.0030 0.0071 0.0071 0.1837 5.3259 32.9125 0.0133 

44 198 69 0.0219 0.0104 0.1465 0.0000 0.0022 0.0071 0.0071 1.9040 11.4474 138.4656 0.0145 

Sorgh 

6 86 19 0.0081 0.0012 0.0109 0.0000 0.0020 0.0071 0.0071 0.0662 3.0616 10.5902 0.0148 

16 171 -21§ 0.0094 0.0025 0.0324 0.0000 0.0028 0.0071 0.0071 0.4177 11.7489 144.5102 0.0136 

29 14 88 0.1495 0.0573 0.2145 0.0000 0.0071 0.0106 0.2326 0.6240 1.0680 -0.4351 0.5709 

39 182 180 0.0108 0.0037 0.0494 0.0000 0.0039 0.0071 0.0071 0.6680 12.9284 168.9077 0.0119 

MS – R1 

5 145 48 0.0134 0.0059 0.0705 0.0000 0.0030 0.0071 0.0071 0.8450 11.3243 130.3815 0.0133 

13 1 22 0.0000 _ _ 0.0000 0.0000 0.0000 0.0000 0.0000 _ _ 0.0000 

35 98 95 0.0089 0.0032 0.0314 0.0000 0.0020 0.0071 0.0071 0.3103 9.0734 84.0242 0.0148 

40 116 62 0.0193 0.0064 0.0687 0.0000 0.0050 0.0071 0.0149 0.7326 9.6652 97.0223 0.0298 

SM – R1 

8 80 111 0.0270 0.0084 0.0748 0.0000 0.0047 0.0071 0.0142 0.6224 6.4641 47.4688 0.0285 

20 49 75 0.0281 0.0122 0.0855 0.0007 0.0043 0.0092 0.0200 0.6007 6.1236 37.9947 0.0436 

27 155 90 0.0124 0.0033 0.0410 0.0000 0.0028 0.0071 0.0071 0.4350 8.1122 74.3631 0.0136 

47 248 147 0.0102 0.0028 0.0435 0.0000 0.0040 0.0071 0.0071 0.6793 14.6800 222.1478 0.0118 

MS – R2 

2 32 36 0.0239 0.0071 0.0401 0.0000 0.0019 0.0071 0.0217 0.1583 2.0419 3.2190 0.0514 

14 98 48 0.0087 0.0012 0.0123 0.0000 0.0023 0.0071 0.0071 0.0938 4.2592 23.3419 0.0143 

33 316 350 0.0131 0.0047 0.0828 0.0000 0.0030 0.0071 0.0071 1.4312 16.0769 269.8663 0.0133 
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Table A.4 continued 

 45 230 197 0.0124 0.0036 0.0553 0.0000 0.0020 0.0071 0.0760 0.7844 12.2585 163.7676 0.1870 

SM – R2 

9 38 41 0.0188 0.0055 0.0336 0.0000 0.0053 0.0071 0.0185 0.1810 3.6662 13.5665 0.0383 

19 78 23 0.0195 0.0023 0.0200 0.0000 0.0071 0.0130 0.0240 0.0976 1.8827 3.2711 0.0494 

34 287 234 0.0087 0.0012 0.0210 0.0000 0.0029 0.0071 0.0071 0.2860 9.7302 112.6247 0.0134 

48 85 67 0.0173 0.0085 0.0783 0.0000 0.0040 0.0071 0.0076 0.7231 8.6254 74.7594 0.0130 

CM - SpM 

4 85 52 0.0770 0.0129 0.1189 0.0003 0.0090 0.0297 0.0790 0.6360 2.5144 6.4988 0.1840 

15 206 110 0.0166 0.0018 0.0252 0.0000 0.0057 0.0071 0.0154 0.1601 3.2931 12.2072 0.0300 

25 222 123 0.0236 0.0034 0.0506 0.0000 0.0040 0.0071 0.0158 0.3706 4.1684 19.9547 0.0335 

37 48 107 0.0789 0.0139 0.0965 0.0000 0.0086 0.0410 0.1075 0.4389 1.7738 3.0610 0.2559 

CM - FM 

7 62 58 0.1907 0.0274 0.2154 0.0013 0.0550 0.1287 0.2320 1.0590 2.2549 5.3988 0.4975 

24 77 18 0.0978 0.0136 0.1190 0.0000 0.0231 0.0533 0.1081 0.5990 1.9339 3.7070 0.2356 

28 84 75 0.1052 0.0142 0.1303 0.0000 0.0196 0.0598 0.1404 0.5802 1.9730 3.5699 0.3216 

38 9 69 0.3150 0.1146 0.3439 0.0000 0.1300 0.2207 0.3834 1.1448 1.4082 0.9018 0.7635 

CM 

3 94 50 0.0153 0.0059 0.0573 0.0000 0.0029 0.0071 0.0071 0.5517 8.7189 78.4339 0.0134 

21 83 39 0.0177 0.0033 0.0303 0.0000 0.0055 0.0082 0.0170 0.2430 5.2804 34.5444 0.0343 

31 129 85 0.0131 0.0033 0.0370 0.0000 0.0038 0.0071 0.0071 0.3434 7.2978 56.9091 0.0121 

41 21 59 0.00 0.0361 0.1653 0.0000 0.0071 0.0261 0.0760 0.7635 3.3321 10.9337 0.1794 
†Current treatment abbreviations: Prairie, native prairie mixture with residue removed; Mxg, Miscanthus x giganteus established in 2008 ; CM -RR, continuous 

maize with residue removal; Switch, Switchgrass established in spring 2007; Sorgh, continuous sorghum with residue removal established in 2008; MS – R1,maize-

soybean rotation trt#1 w/residue return; SM-R1, soybean-maize rotation trt #1 w/residue return; MS – R2, maize-soybean rotation trt#2 w/residue return; SM-R2, 

soybean-maize rotation trt #1 w/residue return; CM -SpM, continuous maize with residue return and spring manure applications; CM-FM, continuous maize with 

residue return and fall manure applications; CM, continuous maize with residue return. More details on previous crop, nutrient and tillage management can be 

found in supplemental Table S2§A negative value resulted from there being days with recorded concentrations but missing flow data 
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Table A.5 Selected univariate statistic for the 73 archived soils samples used in the P sorption 

study including the phosphorus sorption index (PSI) and analytical results from routine analyses 

conducted in a commercial soil testing laboratory. 

 Variable‡‡ mean Std. dev median min max Range 

PSI (L kg-1) 509.7 39.9 503.9 419.4 597.6 178.3 

OM (%) 3.1 1.4 2.8 0.9 6.1 5.2 

P (mg kg-1)  44.4 25.6 38.0 1.0 104.0 103.0 

K (mg kg-1)  104.1 45.3 98.0 35.0 213.0 178.0 

Mg (mg kg-1)  443.7 252.7 317.0 144.0 867.0 723.0 

Ca (mg kg-1)  1888.2 971.2 1532.0 611.0 3647.0 3036.0 

pH(water) 6.4 0.5 6.0 4.4 7.2 2.8 

CEC (cmolc kg-1)  16.2 8.1 14.1 5.6 31.0 25.4 

Fe (mg kg-1)  164.3 44.6 159.0 101.0 327.0 226.0 

Al (mg kg-1)  700.1 138.5 719.0 323.0 991.0 668.0 

‡‡ Variable analytical details: PSI is estimated as described by Bache and Williams (1971); soil test P and 

macronutrient cations are from Mechlich 3-ICP analysis, pH was determined in water, OM was determined as 

described by Watson and Brown (2011) after organic carbon determination by the Walkley-Black procedure (Walkley, 

1947; Walkley and Black, 1934), and CEC was estimated by summing the milliequivalent (meq) exchangeable bases 

per 100 g (cmolc kg-1) and the milliequivalent (meq) exchangeable acidity per 100 g (cmolc kg-1).    
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Figure A.3 Unit circle resulting from principle component analysis of the different variables for 

the selected 73 soils. Relative positions of routinely determined soil test data (organic matter (OM), 

phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), log of H+ concentrations (pH), 

cation exchange capacity (CEC), iron (Fe), aluminum (Al)) in the circle indicate the magnitude of 

direct association between these soil properties and phosphorus sorption index (PSI). Percentage 

value in parenthesis is the proportion of the total variance accounted for by each principle axis.  
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Table A.6 Change point values for the fitted nonlinear relationship 

between phosphorus saturation ratio (PSR) and water-soluble 

phosphorus (WSP) after removal of a random site’s soils during 

statistical analysis (***significant at P≤ 0.001) 

Ommitted 

site 

Change 

point R2 

DEPAC 0.21 0.68 

NEPAC 0.21 0.74 

PPAC 0.23 0.77 

SEPAC 0.21 0.66 

TPAC 0.21 0.61 

WQFS 0.19 0.67 
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Table A.7 Values for organic matter (OM), phosphorus (P), aluminum (Al), P saturation ratio (PSR), and soil P storage capacity 

(SPSC)for surface soils (20 cm) obtained from the monitored plots at the Water Quality Field Station (WQFS) for 2011 -2013 water 

years (e.g. October 1, 2010 – September 30, 2011 for 2011 water year).  

      2011 water year   2012 water year   2013 water year 

Current treatment 

(abbrev) 

Plot 

no.   OM P Al PSR SPSC    OM P Al PSR SPSC   OM P Al PSR SPSC  

Native prairie mixture 

(Prairie) 

1  4.8 27 846 0.23 -12.02  5.1 26 860 0.22 -9.46  5.3 29 845 0.23 -14.54 

17  4.7 23 758 0.22 -5.55  4.7 26 821 0.23 -10.68  5.3 24 855 0.22 -5.26 

36  4.9 14 788 0.18 19.06  4.2 11 785 0.17 28.87  5 16 820 0.19 13.31 

Mixcanthus x giganteus 

(Mxg) 

11  4.6 26 900 0.22 -10.04  5 24 922 0.22 -5.10  5.4 25 895 0.22 -6.61 

32  3.3 9 734 0.16 35.01  3.1 8 798 0.15 41.03  3.6 8 753 0.15 41.81 

43  4.2 13 767 0.18 20.63  3.7 12 811 0.17 23.76  4.1 11 770 0.17 28.37 

Continuous maize 

w/residue removal (CM 

– RR) 

12  5.3 27 862 0.23 -10.89  5.2 32 969 0.24 -18.34  5.6 26 932 0.22 -7.79 

30  4.1 11 927 0.17 30.73  4.2 12 934 0.17 26.88  4.5 21 932 0.21 0.44 

46  4.9 22 846 0.21 -1.93  4.3 17 916 0.20 10.03  5.4 25 906 0.22 -6.50 

Switchgrass var. 

Shawnee (Switch) 

10  4.8 22 810 0.21 -2.57  5 22 883 0.21 -1.30  5.4 23 889 0.21 -2.61 

18  5 23 810 0.22 -4.30  4.9 17 838 0.20 10.41  4.9 14 805 0.18 19.31 

26  3.6 15 816 0.19 12.91  3.8 11 801 0.17 28.04  4 10 779 0.16 32.78 

44  4.4 16 816 0.19 11.90  4.2 11 824 0.17 29.47  4.8 13 787 0.18 22.37 

Continuous sorghum 
w/residue removal 

(Sorgh) 

6  3.7 15 843 0.19 13.55  3.9 17 859 0.20 8.31  4.6 32 888 0.24 -20.21 
16  4.2 25 821 0.22 -9.89  4.8 37 806 0.25 -27.60  4.7 36 751 0.25 -27.03 

39  4.6 34 860 0.24 -23.40  4.5 31 916 0.24 -18.62  4.8 28 869 0.23 -13.53 

Maize-soybean rotation 

trt #1 w/residue return 

(MS – R1) 

5  3.8 16 839 0.19 10.69  3.7 16 875 0.19 10.88  4.4 28 944 0.23 -13.64 

35  3.7 12 809 0.17 23.73  3 12 793 0.18 21.35  3.7 16 825 0.19 10.23 

40  5.1 33 888 0.24 -20.74  5.2 33 840 0.24 -21.03  5.1 28 915 0.23 -12.49 

Soybean-maize rotation 

trt#1 w/residue return 

(SM – R1) 

8  4.9 20 882 0.21 3.10  4.8 23 896 0.22 -3.72  5.5 27 934 0.22 -9.79 

20  5.3 31 886 0.23 -17.37  5.7 31 854 0.23 -17.01  6 33 839 0.24 -19.75 

27  3.7 16 831 0.19 10.31  3.4 11 788 0.17 26.68  4 11 760 0.17 27.95 

47  4.1 20 814 0.21 0.47  4.7 15 815 0.19 15.68  4.9 19 883 0.20 5.60 

Maize-soybean rotation 

trt#2 w/residue return 

(MS – R2) 

14  4.8 27 849 0.23 -11.99  4.9 24 856 0.22 -6.02  4.8 32 846 0.24 -20.22 

33  3 10 802 0.16 30.16  3.1 11 761 0.17 25.32  3.3 12 827 0.18 22.82 

45  4.3 25 849 0.22 -9.35  3.9 21 809 0.21 -2.43  4.6 20 794 0.21 1.38 

Soybean-maize rotation 

trt#2 w/residue return 

(SM – R2) 

19  4.9 41 904 0.25 -31.51  4.6 51 922 0.27 -42.53  5.3 52 888 0.27 -42.53 

34  3.3 11 811 0.17 26.73  3 10 756 0.17 29.42  3.5 17 781 0.20 6.19 

48  4.6 26 782 0.23 -11.33  3.6 25 727 0.23 -12.50  5 26 778 0.23 -10.58 

 

  



 

 

149 

Table A.7 continued 

Continuous maize 

w/residue return & 

spring manure (CM -

SpM) 

4  4.3 59 815 0.28 -50.85  4.8 83 811 0.31 -66.38  4.6 92 833 0.31 -71.53 

15  4.6 89 836 0.31 -69.92  4.5 79 769 0.30 -64.76  4.7 104 818 0.32 -77.34 

25  4.1 74 824 0.30 -62.04  4.2 91 763 0.32 -72.07  3.9 73 776 0.30 -62.11 

37  4.3 56 786 0.28 -48.57  3.9 68 774 0.30 -58.74  4.9 64 803 0.29 -53.79 

Continuous maize 

w/residue return & fall 

manure (CM – FM) 

7  5.4 62 849 0.28 -51.20  5.1 88 932 0.31 -68.23  5.5 76 995 0.29 -60.27 

24  4.9 59 836 0.28 -49.64  5.1 73 785 0.30 -59.94  5.5 81 827 0.30 -64.18 

28  3.4 38 819 0.26 -31.95  3.5 41 782 0.26 -35.62  4.1 41 813 0.26 -33.87 

Continuous maize 

w/residue return (CM) 

3  3.8 20 846 0.21 0.09  4.8 26 967 0.22 -8.96  4.4 28 918 0.23 -13.89 

21  5.1 43 888 0.26 -33.60  5 48 906 0.26 -38.99  5.6 50 915 0.27 -39.99 

31   3.7 13 819 0.18 20.06   3.8 13 774 0.18 19.68   4.2 16 822 0.19 11.50 
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Precipitation, discharge, and tile drain efficiencies 

Over the 3 water years examined at the WQFS, average annual precipitation was 836 mm, 

which is slightly lower than the long-term (30-year) average precipitation of 939.8 mm in Northern 

Indiana (Scheeringa 2002). On average, 20%, 12% and, 8% of annual precipitation was discharged 

as tile flow in 2011, 2012 and 2013 with tile drain efficiencies ranging between 0 to 59% (discharge 

(Q)/rainfall (P); Supplemental Table S6.8). These tile drain efficiencies are similar to others 

reported in the Midwest United States (13 % to 37 % at same site; Ruark, 2006 and 11 % to 87 % 

in Ohio; King et al., 2016). Since snowmelt data were unavailable, they were not included in the 

calculations of tile drain efficiency. Therefore, years with significant snowmelt may have resulted 

in overestimation of Q/P values. Tile flow from all plots exhibited a pattern of high flow events 

during winter and spring months compared to summer months (supplemental Figure S6.4). This 

pattern is common in the region and it has been attributed to the interaction among rainfall, 

infiltration, evapotranspiration and runoff (Gentry et al., 2007; Williams et al., 2015). 

In all tiles, standard deviations exceeded the means (Supplemental Table S6.3), signifying 

high flow variability. Tile flows had positively skewed distributions indicating a tendency for low 

daily flow events to outnumber high daily flow events and the strong influence of unusually large 

flow events (extended right tail). This distribution is common in flow data due to a left bound of 

zero (no negative flow) and the presence of high outliers (Pagano and Garen, 2004; Tomer et al., 

2003; Gotway et al., 1994). 
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Table A.8 Annual tile flow and tile drainage efficiencies (Q/P) for tiles in the study plots. 

  Water years 

  2011  2012  2013 

Plot/Tile 

Annual 

tile flow 

(m3) 

Q/P¶ 

(%)   

Annual 

tile 

flow 

(m3) 

Q/P¶ 

(%)   

Annual 

tile 

flow 

(m3) 

Q/P¶ 

(%) 

1 10 5  5 3  6 2 

3 48 23  27 14  19 8 

4 45 21  22 11  27 11 

5 60 29  36 18  29 12 

6 15 7  0 0  13 6 

7 50 24  16 8  11 5 

8 8 4  3 1  3 1 

10 52 25  28 14  27 11 

11 44 21  26 13  25 10 
12 36 17  19 9  15 6 

14 27 13  20 10  17 7 

15 123 59  81 41  58 25 

16 45 22  28 14  20 8 

17 0 0  40 20  27 11 

18 19 9  14 7  12 5 

19 58 28  15 8  19 8 

20 36 17  7 4  4 2 

21 38 18  20 10  16 7 

22 36 17  20 10  25 10 

25 80 39  36 18  38 16 
26 79 38  50 25  40 17 

27 32 15  6 3  7 3 

28 29 14  14 7  12 5 

30 14 6  13 7  9 4 

31 41 20  25 13  19 8 

32 20 9  13 7  12 5 

33 41 20  25 13  26 11 

34 61 29  33 17  31 13 

35 13 6  9 5  6 3 

36 23 11  14 7  13 6 

37 16 7  6 3  5 2 

39 31 15  22 11  14 6 
40 25 12  15 8  11 5 

43 82 39  41 21  35 15 

44 57 27  28 14  0 0 

45 62 30  29 15  33 14 

46 17 8  10 5  11 5 

47 116 56  64 32  44 19 

48 50 24  12 6  40 17 

Avg. 42 20   23 12   20 8 

Q/P = annual discharge to rainfall ratio with rainfall of 209, 197 and, 236 m3 

in 2011, 2012 and 2013 respectively 
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Figure A.4 Daily tile flow/discharge (m3) from individual plots for the study period (beginning 

Oct 1, 2010 and ending on Sept 30, 2013). Gaps in graphs are a result of missing data either due 

to maintenance, flooding or equipment failure/error 
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Figure A.4 continued 
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Figure A.4 continued 
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Figure A.4 continued 
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Figure A.4 continued 
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Figure A.4 continued 
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Figure A.4 continued 
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Figure A.4 continued 
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Figure A.4 continued 
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Figure A.4 continued 
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Figure A.5. Boxplots of DRP concentration. Circles represent outliers, whiskers represent the 10th and 90th percentiles, the lower and 

upper edges of the boxes represent the 25th and 75th percentiles, and the horizontal line inside the boxes represents the median.  Tile 

42, 22, 23, 13, 2, 9, 38 and, 41, were omitted from the study due to tile failure. Current treatment abbreviations: Prairie, native prairie 

mixture with residue removed; Mxg, Miscanthus x giganteus established in 2008 ; CM -RR, continuous maize with residue removal; 

Switch, Switchgrass established in spring 2007; Sorgh, continuous sorghum with residue removal established in 2008; MS – R1,maize-

soybean rotation trt#1 w/residue return; SM-R1, soybean-maize rotation trt #1 w/residue return; MS – R2, maize-soybean rotation trt#2 

w/residue return; SM-R2, soybean-maize rotation trt #1 w/residue return; CM -SpM, continuous maize with residue return and spring 

manure applications; CM-FM, continuous maize with residue return and fall manure applications; CM, continuous maize with residue 

return. More details on previous crop, nutrient and tillage management can be found in Table S3 in the main text. 

 

 



 

 

163 

Supplemental references 

Chalmers, J. M. and A. J. Handley. 2006. Inductively coupled plasma spectrometry and its 

applications analytical chemistry. Steve J. Hill. Blackwell Publishing Ltd, Oxford. 

https://onlinelibrary.wiley.com/doi/book/10.1002/9780470988794. 

Croghan, C. W., and P. P. Egeghy. 2003. Methods of dealing with values below the limit of 

detection using SAS. Southern SAS User Group, 5. 

Gentry, L. E., M. B. David, T. V. Royer, C. A. Mitchell, and K. M. Starks. 2007. Phosphorus 

transport pathways to streams in tile-drained agricultural watersheds. J. Environ. Qual. 36 (2): 

408. https://doi.org/10.2134/jeq2006.0098. 

Gotway, C. A., D. R. Helsel, and R. M. Hirsch. 1994. Statistical methods in water resources. 

TECHNOMETRICS 36 (3): 323. https://doi.org/10.2307/1269385. 

Hernandez-Ramirez, G., S. M. Brouder, D. R. Smith, and G. E. Van Scoyoc. 2011. Nitrogen 

partitioning and utilization in corn cropping systems: rotation, N source, and N timing. Eur. 

J. Agron. 34 (3): 190–95. https://doi.org/10.1016/j.eja.2010.12.002. 

Hyndman, R. and G. Athanasopoulos. 2014. Forecasting: Principles & Practice. 

https://otexts.com/fpp2/ 

Katimon, A., S. Shahid, and M. Mohsenipour. 2017. Modeling Water Quality and Hydrological 

Variables Using ARIMA: A Case Study of Johor River, Malaysia. Sustain. Water Resour. 

Manag. 4, 991 - 998. http://link.springer.com/10.1007/s40899-017-0202-8. 

King, K. W., M. R. Williams, and N. R. Fausey. 2016. Effect of crop type and season on nutrient 

leaching to tile drainage under a corn-soybean rotation. J. SOIL WATER CONSERV. 71 (1): 

56–68. https://doi.org/10.2489/jswc.71.1.56. 

Loureiro, D., C. Amado, A. Martins, D. Vitorino, A. Mamade, and S. T. Coelho. 2016. Water 

distribution systems flow monitoring and anomalous event detection: A practical approach. 

Urban Water J. 13, 242–252. https://doi.org/10.1080/1573062X.2014.988733  

McLean, E. O. 1982. Soil PH and lime requirement. In: A.L. Page et al., editor, Methods of Soil 

Analysis. Part 2. 2nd Ed. Agron. Monogr. 9. ASA and SSSA, Madison, Wis, 199–224. 

Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. 

Soil Sci. Plan. 15 (12): 1409–16. https://doi.org/10.1080/00103628409367568. 

Nasir, N., R. Sansudin, and A. Shabri. 2017. Monthly streamflow forecasting with auto-regressive 

integrated moving average. J. Phys. Conf. Ser. 890, 12141. Olsen, S.R., C.V. Cole, F.S. 

https://otexts.com/fpp2/


 

 

164 

Watanabe, and Dean, L.A. 1954. “Estimation of Available Phosphorus in Soils by Extraction 

with Sodium Bicarbonate.” USDA Circular 939. U.S. Government Printing Office, 

Washington D.C. 

Pagano, Thomas C., and David Garen. 2004. “The Recent Increase in Western US Streamflow 

Variability and Persistence.” Bulletin of the American Meteorological Society: 4785–89. 

Pagano, T. C. and D. Garen. 2004. The recent increase in Western US streamflow variability 

and persistence. Bulletin of the American Meteorological Society, 4785–89. 

https://doi.org/10.1175/JHM410.1. 

Ruark. 2006. The Fate of Dissolved Organic Carbon in Tile Drained Agroecosystems. Ruark. M. 

D. 2006. The fate of dissolved organic carbon in tile drained agroecosystems. (Order No. 

3259974). Available from Agricultural & Environmental Science Collection; Dissertations & 

Theses @ CIC Institutions; ProQuest Dissertations & Theses Global. (305280542). Retrieved 

from https://search.proquest.com/docview/305280542?accountid=13360 

Ruark, M. D., S. M. Brouder, and R. F. Turco. 2009. Dissolved organic carbon losses from tile 

drained agroecosystems. J. Environ. Qual. 38 (3): 1205. https://doi.org/10.2134/jeq2008.0121. 

Scheeringa, K. 2002. About Indiana climate. https://iclimate.org/about-indiana-climate/. 

Seo, S. 2006. A Review and Comparison of Methods for Detecting Outliers in Univariate Data 

Sets. Masters Thesis, University of Pittsburg. http://d-scholarship.pitt.edu/7948/. 

Tomer, M. D., D. W. Meek, D. B. Jaynes, and J. L. Hatfield. 2003. Evaluation of nitrate-nitrogen 

fluxes from a tile-drained watershed in Central Iowa. J. Environ. Qual. 32 (2): 642–53. 

https://doi.org/10.2134/jeq2003.6420. 

Trybula, E. 2012. Quantifying Ecohydrologic Impacts of Perennial Rhizomatous Grasses on Tile 

Discharge: A Plot Level Comparison of Continuous Corn, Upland Switchgrass, Mixed Prairie, 

and Miscanthus x Giganteus. (Order No. 1535171). Available from Dissertations & Theses 

@ CIC Institutions; ProQuest Dissertations & Theses Global. (1328160945). Retrieved from 

https://search.proquest.com/docview/1328160945?accountid=13360. 

Tukey, J.W. 1977. Exploratory Data Analysis. Addison-Wesely. 

Walkley, A. 1947. A critical examination of a rapid method for determining organic carbon in 

soils—effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci., 

no. 63: 251–64. 

Walkley, A., and I. A. Black. 1934. An examination of degtjareff method for determining soil 



 

 

165 

organic matter and a proposed modification of the chromic acid titration method. Soil Sci, no. 

37: 29–37. 

Watson, M. E. and J. R. Brown. 2011. Chemical soil test procedures for the North Central Region. 

Program 221 (221). https://doi.org/10.1007/978-1-4020-6710-5. 

Williams, M. R., K. W. King, and N. R. Fausey. 2015. Drainage water management effects on tile 

discharge and water quality. Agr. Water Manage. 148: 43–51. 

https://doi.org/10.1016/j.agwat.2014.09.017. 



 

 

166 

SUPPLEMENTAL MATERIALS CHAPTER 3 

Table A.9 A brief description of current treatments at the Water Quality Field Station (WQFS) 

(abbreviations and year of establishment), any previous treatment (cropping system and N rates 

applied to maize) dating back to 1997, and P, N and tillage management. An estimate of the 

cumulative P2O5 applied from 1997 – 2013 is shown parenthetically. Current N management 

identifies the N rates applied to perennial crops, sorghum, and continuous and rotated maize. 

(Table obtained from Welikhe et al. (2020)) 

Current Treatment 

(abbrev./yr. est.)§ 

Previous Treatment 
(maize N rate, lbs 
acre-1 yr-1)¶ 

Plots# 
P management (cumulative 
P2O5 applied 1997-2013; 
lbs acre-1)†† 

Current N 
management 

(annual rate, lbs 
acre-1 yr-1) 

Tillage 

Native prairie mixture 

(Prairie/1993) 
NA 1, 17, 

36,42 
No fert. (0) No fert. (0) 

No till 
since 
1993 

Miscanthus x giganteus 
(Mxg/2008) 

Annual soybean-
maize rotation (148-

P) 

11,22,
32,43 

Commercial fertilizer based 
on STP (148) + starter (66) 

Spring broadcast 
urea (46) 

No till 
since 

2008 

Continuous maize w/ residue 
removal (CM-RR/2008) 

Continuous maize 
w/ residue return 
(166-P) 

12,23,
30,46 

Commercial fertilizer based 
on STP (218) + starter 
(224) 

Preplant UAN 
(148) + starter 

No till 
since 
2008 

Switchgrass var. Shawnee 
(Switch/2007) 

Annual maize-
soybean rotation 
(148-P) 

10,18,
26,44 

Commercial fertilizer  
based on STP (148) + 
starter (66) 

Spring broadcast 
urea (46) 

No till 
since 
2007 

Continuous sorghum w/ 
residue removal 
(Sorgh/2008) 

Continuous maize 
w/ residue return 
(129-S) 

6,16, 
29,39 

Commercial fertilizer based 
on STP + starter (145) 

Preplant UAN 
(148) Till 

Maize-soybean rotation trt#1 
w/ residue return (MS-

R1/1997) 
NA 5,13, 

35,40 

Commercial fertilizer based 
on STP (218) + starter 
(118) 

Preplant UAN 
(129) + starter 

Till 

Soybean-maize rotation trt#1 
w/ residue return (SM-R1) 

NA 8,20, 
27,47 

Commercial fertilizer based 
on STP (218) + starter 
(105) 

Preplant UAN 
(129) + starter 

Till 

Maize-soybean rotation trt#2 
w/ residue return (MS-

R2/1997) 
NA 2,14, 

33,45 

Commercial fertilizer based 
on STP (218) + starter 
(118) 

Sidedress UAN 
(111) + starter 

Till 

Soybean-maize rotation trt#2 

w/ residue return (SM-

R2/1997) 
NA 9,19, 

34,48 

Commercial fertilizer based 

on STP (218) + starter 
(105) 

Sidedress UAN 
(111) + starter 

Till 

Continuous maize w/ residue 
return & spring manure 
(CM-SpM/1998)  

NA 4,15, 

25,37 

16 yr annual spring swine 
effluent (approx. 1201) + 
starter (224) 

Preplant swine 
effluent (avg. 210) 
+ starter 

Till 

Continuous maize w/ residue 
return & fall manure (CM-

FM/1998) 

NA 7,24, 
28,38 

14 yr annual fall swine 
effluent (approx. 1050) + 

starter (224) 

Post-harvest swine 
effluent (avg. 210) 

+ starter 

Till 

Continuous maize w/ residue 
return (CM/1997) 

NA 3,21, 
31,41 

Commercial fertilizer based 
on STP (218) + starter 
(224) 

Preplant UAN 
(148) + starter 

Till 

§ Treatments other than the prairie were variable and not consistently maintained prior to 1997 
¶ N rates are only for the maize year in a rotation with P or S following the rate indicating a preplant or sidedress application. Not 
application (NA) indicates a treatment was maintained from 1997 – 2013.  

# An italicized plot number indicates a tile line that ceased to function, and the plot was therefore eliminated from analysis of 
relationships between soluble P in drainage water and measures of soil P saturation.  
†† Cumulative P2O5 added as commercial fertilizer differs among cropping systems as perennial crops did not receive applications. 
Cumulative starter P2O5 varies reflecting the number of times maize was grown on a specific treatment and includes current and 
previous systems. Cumulative P2O5 applied as manure differs as there were 16 spring applications but only 14 fall applications 
reflecting weather and termination of both manure treatments in fall 2013; quantities are based on an estimated amount of 75 lbs 
P2O5 acre-1 per application.    
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Table A.10 Summary for Organic matter (OM) (%), phosphorus (P) (mg kg-1), Aluminum (Al) (mg kg-1), P saturation ratio (PSR) 

(unitless), Soil P storage capacity (SPSC) (L kg-1), and Annual flow-weighted mean DRP concentrations (fDRP) (mg L-1) obtained from 

the monitored plots at the Water Quality Field Station (WQFS) for 2011 -2013 water years (e.g. Oct 1, 2010 – Sept 30, 2011 for 2011 

water year). Cropping system abbreviation and management histories are provided in supplemental table S1. (Table obtained from 

Welikhe et al. (2020)) 

      2011 water year    2012 water year    2013 water year  

Cropping system Plot#   OM P Al PSR SPSC  fDRP   OM P Al PSR SPSC fDRP   OM P Al PSR SPSC  fDRP 

Prairie 

1  4.8 27 846 0.23 -12.02 0.0084  5.1 26 860 0.22 -9.46 0.0055  5.3 29 845 0.23 -14.54 0.0093 

17  4.7 23 758 0.22 -5.55 0.0090  4.7 26 821 0.23 -10.68 0.0299  5.3 24 855 0.22 -5.26 0.0163 

36  4.9 14 788 0.18 19.06 0.0027  4.2 11 785 0.17 28.87 0.0075  5 16 820 0.19 13.31 0.0147 

Mxg 

11  4.6 26 900 0.22 -10.04 0.0599  5 24 922 0.22 -5.10 0.0217  5.4 25 895 0.22 -6.61 0.0701 

32  3.3 9 734 0.16 35.01 0.0017  3.1 8 798 0.15 41.03 0.0058  3.6 8 753 0.15 41.81 0.0052 

43  4.2 13 767 0.18 20.63 0.0018  3.7 12 811 0.17 23.76 0.0013  4.1 11 770 0.17 28.37 0.0062 

CM - RR 

12  5.3 27 862 0.23 -10.89 0.0045  5.2 32 969 0.24 -18.34 0.0162  5.6 26 932 0.22 -7.79 0.0214 

30  4.1 11 927 0.17 30.73 0.0020  4.2 12 934 0.17 26.88 0.0068  4.5 21 932 0.21 0.44 0.0064 

46  4.9 22 846 0.21 -1.93 0.0021  4.3 17 916 0.20 10.03 0.0016  5.4 25 906 0.22 -6.50 0.0129 

Switch 

10  4.8 22 810 0.21 -2.57 0.0036  5 22 883 0.21 -1.30 0.0220  5.4 23 889 0.21 -2.61 0.0031 

18  5 23 810 0.22 -4.30 0.0047  4.9 17 838 0.20 10.41 0.0111  4.9 14 805 0.18 19.31 0.0066 

26  3.6 15 816 0.19 12.91 0.0055  3.8 11 801 0.17 28.04 0.0061  4 10 779 0.16 32.78 0.0086 

44  4.4 16 816 0.19 11.90 0.0043  4.2 11 824 0.17 29.47 0.0017  4.8 13 787 0.18 22.37 0.0000 

Sorgh 

6  3.7 15 843 0.19 13.55 0.0014  3.9 17 859 0.20 8.31 -  4.6 32 888 0.24 -20.21 0.0018 

16  4.2 25 821 0.22 -9.89 0.0019  4.8 37 806 0.25 -27.60 0.0109  4.7 36 751 0.25 -27.03 0.0029 

39  4.6 34 860 0.24 -23.40 0.0021  4.5 31 916 0.24 -18.62 0.1116  4.8 28 869 0.23 -13.53 0.0029 

MS – R1 

5  3.8 16 839 0.19 10.69 0.007  3.7 16 875 0.19 10.88 0.0161  4.4 28 944 0.23 -13.64 0.0033 

35  3.7 12 809 0.17 23.73 0.0017  3 12 793 0.18 21.35 0.0079  3.7 16 825 0.19 10.23 0.0050 

40  5.1 33 888 0.24 -20.74 0.0083  5.2 33 840 0.24 -21.03 0.2683  5.1 28 915 0.23 -12.49 0.0106 

SM – R1 

8  4.9 20 882 0.21 3.10 0.0074  4.8 23 896 0.22 -3.72 0.0131  5.5 27 934 0.22 -9.79 0.0204 

20  5.3 31 886 0.23 -17.37 0.0072  5.7 31 854 0.23 -17.01 0.0274  6 33 839 0.24 -19.75 0.0136 

27  3.7 16 831 0.19 10.31 0.0046  3.4 11 788 0.17 26.68 0.0090  4 11 760 0.17 27.95 0.0028 

47  4.1 20 814 0.21 0.47 0.0023  4.7 15 815 0.19 15.68 0.0054  4.9 19 883 0.20 5.60 0.0030 

MS – R2 

14  4.8 27 849 0.23 -11.99 0.0029  4.9 24 856 0.22 -6.02 0.0180  4.8 32 846 0.24 -20.22 0.0041 

33  3 10 802 0.16 30.16 0.0023  3.1 11 761 0.17 25.32 0.0054  3.3 12 827 0.18 22.82 0.0082 

45  4.3 25 849 0.22 -9.35 0.0020  3.9 21 809 0.21 -2.43 0.0021  4.6 20 794 0.21 1.38 0.0123 

SM – R2 

19  4.9 41 904 0.25 -31.51 0.0100  4.6 51 922 0.27 -42.53 0.0185  5.3 52 888 0.27 -42.53 0.0170 

34  3.3 11 811 0.17 26.73 0.0027  3 10 756 0.17 29.42 0.0054  3.5 17 781 0.20 6.19 0.0080 

48  4.6 26 782 0.23 -11.33 0.0061  3.6 25 727 0.23 -12.50 0.1001  5 26 778 0.23 -10.58 0.0115 

CM -SpM 

4  4.3 59 815 0.28 -50.85 0.1373  4.8 83 811 0.31 -66.38 0.0761  4.6 92 833 0.31 -71.53 0.1368 

15  4.6 89 836 0.31 -69.92 0.1266  4.5 79 769 0.30 -64.76 0.1264  4.7 104 818 0.32 -77.34 0.1617 

25  4.1 74 824 0.30 -62.04 0.1371  4.2 91 763 0.32 -72.07 0.1500  3.9 73 776 0.30 -62.11 0.1251 

37  4.3 56 786 0.28 -48.57 0.0586  3.9 68 774 0.30 -58.74 0.2785  4.9 64 803 0.29 -53.79 0.1718 

CM - FM 

7  5.4 62 849 0.28 -51.20 0.1928  5.1 88 932 0.31 -68.23 0.1087  5.5 76 995 0.29 -60.27 0.3732 

24  4.9 59 836 0.28 -49.64 0.1194  5.1 73 785 0.30 -59.94 0.1055  5.5 81 827 0.30 -64.18 0.2010 

28  3.4 38 819 0.26 -31.95 0.1609  3.5 41 782 0.26 -35.62 0.1080  4.1 41 813 0.26 -33.87 0.2160 

CM 

3  3.8 20 846 0.21 0.09 0.0043  4.8 26 967 0.22 -8.96 0.0085  4.4 28 918 0.23 -13.89 0.0055 

21  5.1 43 888 0.26 -33.60 0.0059  5 48 906 0.26 -38.99 0.0123  5.6 50 915 0.27 -39.99 0.0117 

31   3.7 13 819 0.18 20.06 0.0042   3.8 13 774 0.18 19.68 0.0062   4.2 16 822 0.19 11.50 0.0097 
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Table A.11 Field data (empirical dataset) used to generate the theoretical dataset and for the calculation of PI values. Treatment (cropping 

system) abbreviation and management histories are provided in supplemental Table S1. Swine manure was applied at rates meant to 

supply ~ 228 lbs N ha-1 yr. 

Plot # Treatment Water year 
STP (mg 

kg-1) 
FPR (lbs 

P2O5 A
-1) 

FPA 
(unitless) 

OPR (lbs 

P2O5 A
-1) 

OPA 
(unitless) 

SE 
(unitless) 

SR 
(unitless) 

SDP 
(unitless) 

DTW 
(unitless) 

1 Prairie 2011 27 0 0 0 0 1 0 4 1 

1 Prairie 2012 26 0 0 0 0 1 0 4 1 

1 Prairie 2013 29 0 0 0 0 1 0 4 1 

2 MS-R2 2011 15 18.96 1 0 0 1 0 4 1 

2 MS-R2 2012 17 57.00 4 0 0 1 0 4 1 

2 MS-R2 2013 26 18.96 1 0 0 1 0 4 1 

3 CM 2011 20 18.96 1 0 0 1 0 4 1 

3 CM 2012 26 57.00 4 0 0 1 0 4 1 

3 CM 2013 28 18.96 1 0 0 1 0 4 1 

4 CM-SpM 2011 59 0 0 81 1 1 0 4 1 

4 CM-SpM 2012 83 0 0 81 1 1 0 4 1 

4 CM-SpM 2013 92 0 0 81 1 1 0 4 1 

5 MS-R1 2011 16 18.96 1 0 0 1 0 4 1 

5 MS-R1 2012 16 57.00 4 0 0 1 0 4 1 

5 MS-R1 2013 28 18.96 1 0 0 1 0 4 1 

6 Sorgh 2011 15 0 0 0 0 1 0 4 1 

6 Sorgh 2012 17 57.00 4 0 0 1 0 4 1 

6 Sorgh 2013 32 0 0 0 0 1 0 4 1 

7 CM-FM 2011 62 0 0 81 1 1 0 4 1 

7 CM-FM 2012 88 0 0 81 1 1 0 4 1 

7 CM-FM 2013 76 0 0 81 1 1 0 4 1 

8 SM-R1 2011 20 18.96 1 0 0 1 0 4 1 

8 SM-R1 2012 23 57.00 4 0 0 1 0 4 1 

8 SM-R1 2013 27 0 0 0 0 1 0 4 1 

10 Switch 2011 22 0 0 0 0 1 0 4 1 

10 Switch 2012 22 0 0 0 0 1 0 4 1 
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Table A.11 continued 

Plot # Treatment Water year 
STP (mg 

kg-1) 
FPR (lbs 

P2O5 A
-1) 

FPA 
(unitless) 

OPR (lbs 

P2O5 A
-1) 

OPA 
(unitless) 

SE 
(unitless) 

SR 
(unitless) 

SDP 
(unitless) 

DTW 
(unitless) 

10 Switch 2013 23 0 0 0 0 1 0 4 1 

11 Mxg 2011 26 0 0 0 0 1 0 4 1 

11 Mxg 2012 24 0 0 0 0 1 0 4 1 

11 Mxg 2013 25 0 0 0 0 1 0 4 1 

12 CM-RR 2011 27 18.96 1 0 0 1 0 4 1 

12 CM-RR 2012 32 0 0 0 0 1 0 4 1 

12 CM-RR 2013 26 18.96 1 0 0 1 0 4 1 

14 MS-R2 2011 27 18.96 1 0 0 1 0 4 1 

14 MS-R2 2012 24 57.00 4 0 0 1 0 4 1 

14 MS-R2 2013 32 18.96 1 0 0 1 0 4 1 

15 CM-SpM 2011 89 0 0 81 1 1 0 4 1 

15 CM-SpM 2012 79 0 0 81 1 1 0 4 1 

15 CM-SpM 2013 104 0 0 81 1 1 0 4 1 

16 Sorgh 2011 25 0 0 0 0 1 0 4 1 

16 Sorgh 2012 37 57.00 4 0 0 1 0 4 1 

16 Sorgh 2013 36 0 0 0 0 1 0 4 1 

17 Prairie 2011 23 0 0 0 0 1 0 4 1 

17 Prairie 2012 26 0 0 0 0 1 0 4 1 

17 Prairie 2013 24 0 0 0 0 1 0 4 1 

18 Switch 2011 23 0 0 0 0 1 0 4 1 

18 Switch 2012 17 0 0 0 0 1 0 4 1 

18 Switch 2013 14 0 0 0 0 1 0 4 1 

19 SM-R2 2011 41 18.96 1 0 0 1 0 4 1 

19 SM-R2 2012 51 57.00 4 0 0 1 0 4 1 

19 SM-R2 2013 52 18.96 1 0 0 1 0 4 1 

20 SM-R1 2011 31 18.96 1 0 0 1 0 4 1 

20 SM-R1 2012 31 57.00 4 0 0 1 0 4 1 

20 SM-R1 2013 33 18.96 1 0 0 1 0 4 1 
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Table A.11 continued 

Plot # Treatment Water year 
STP (mg 

kg-1) 
FPR (lbs 

P2O5 A
-1) 

FPA 
(unitless) 

OPR (lbs 

P2O5 A
-1) 

OPA 
(unitless) 

SE 
(unitless) 

SR 
(unitless) 

SDP 
(unitless) 

DTW 
(unitless) 

21 CM 2011 43 18.96 1 0 0 1 0 4 1 

21 CM 2012 48 57.00 4 0 0 1 0 4 1 

21 CM 2013 50 18.96 1 0 0 1 0 4 1 

24 CM-FM 2011 59 0 0 81 1 1 0 4 1 

24 CM-FM 2012 73 0 0 81 1 1 0 4 1 

24 CM-FM 2013 81 0 0 81 1 1 0 4 1 

25 CM-SpM 2011 74 0 0 81 1 1 0 4 1 

25 CM-SpM 2012 91 0 0 81 1 1 0 4 1 

25 CM-SpM 2013 73 0 0 81 1 1 0 4 1 

26 Switch 2011 15 0 0 0 0 1 0 4 1 

26 Switch 2012 11 0 0 0 0 1 0 4 1 

26 Switch 2013 10 0 0 0 0 1 0 4 1 

27 SM-R1 2011 16 18.96 1 0 0 1 0 4 1 

27 SM-R1 2012 11 57.00 4 0 0 1 0 4 1 

27 SM-R1 2013 11 18.96 1 0 0 1 0 4 1 

28 CM-FM 2011 38 0 0 81 1 1 0 4 1 

28 CM-FM 2012 41 0 0 81 1 1 0 4 1 

28 CM-FM 2013 41 18.96 1 81 1 1 0 4 1 

30 CM-RR 2011 11 18.96 1 0 0 1 0 4 1 

30 CM-RR 2012 12 57.00 4 0 0 1 0 4 1 

30 CM-RR 2013 21 18.96 1 0 0 1 0 4 1 

31 CM 2011 13 18.96 1 0 0 1 0 4 1 

31 CM 2012 13 57.00 4 0 0 1 0 4 1 

31 CM 2013 16 18.96 1 0 0 1 0 4 1 

32 Mxg 2011 9 0 0 0 0 1 0 4 1 

32 Mxg 2012 8 0 0 0 0 1 0 4 1 

32 Mxg 2013 8 0 0 0 0 1 0 4 1 

33 MS-R2 2011 10 18.96 1 0 0 1 0 4 1 
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Table A.11 continued 

Plot # Treatment Water year 
STP (mg 

kg-1) 
FPR (lbs 

P2O5 A
-1) 

FPA 
(unitless) 

OPR (lbs 

P2O5 A
-1) 

OPA 
(unitless) 

SE 
(unitless) 

SR 
(unitless) 

SDP 
(unitless) 

DTW 
(unitless) 

33 MS-R2 2012 11 57.00 4 0 0 1 0 4 1 

33 MS-R2 2013 12 18.96 1 0 0 1 0 4 1 

34 SM-R2 2011 11 18.96 1 0 0 1 0 4 1 

34 SM-R2 2012 10 57.00 4 0 0 1 0 4 1 

34 SM-R2 2013 17 18.96 1 0 0 1 0 4 1 

35 MS-R1 2011 12 18.96 1 0 0 1 0 4 1 

35 MS-R1 2012 12 57.00 4 0 0 1 0 4 1 

35 MS-R1 2013 16 18.96 1 0 0 1 0 4 1 

36 Prairie 2011 14 0 0 0 0 1 0 4 1 

36 Prairie 2012 11 0 0 0 0 1 0 4 1 

36 Prairie 2013 16 0 0 0 0 1 0 4 1 

37 CM-SpM 2011 56 0 0 81 1 1 0 4 1 

37 CM-SpM 2012 68 0 0 81 1 1 0 4 1 

37 CM-SpM 2013 64 0 0 81 1 1 0 4 1 

39 Sorgh 2011 34 0 0 0 0 1 0 4 1 

39 Sorgh 2012 31 57.00 4 0 0 1 0 4 1 

39 Sorgh 2013 28 0 0 0 0 1 0 4 1 

40 MS-R1 2011 33 18.96 1 0 0 1 0 4 1 

40 MS-R1 2012 33 57.00 4 0 0 1 0 4 1 

40 MS-R1 2013 28 18.96 1 0 0 1 0 4 1 

43 Mxg 2011 13 0 0 0 0 1 0 4 1 

43 Mxg 2012 12 0 0 0 0 1 0 4 1 

43 Mxg 2013 11 0 0 0 0 1 0 4 1 

44 Switch 2011 16 0 0 0 0 1 0 4 1 

44 Switch 2012 11 0 0 0 0 1 0 4 1 

44 Switch 2013 13 0 0 0 0 1 0 4 1 

45 MS-R2 2011 25 18.96 1 0 0 1 0 4 1 

45 MS-R2 2012 21 57.00 4 0 0 1 0 4 1 
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Table A.11 continued 

Plot # Treatment Water year 
STP (mg 

kg-1) 
FPR (lbs 

P2O5 A
-1) 

FPA 
(unitless) 

OPR (lbs 

P2O5 A
-1) 

OPA 
(unitless) 

SE 
(unitless) 

SR 
(unitless) 

SDP 
(unitless) 

DTW 
(unitless) 

45 MS-R2 2013 20 18.96 1 0 0 1 0 4 1 

46 CM-RR 2011 22 18.96 1 0 0 1 0 4 1 

46 CM-RR 2012 17 57.00 4 0 0 1 0 4 1 

46 CM-RR 2013 25 18.96 1 0 0 1 0 4 1 

47 SM-R1 2011 20 18.96 1 0 0 1 0 4 1 

47 SM-R1 2012 15 57.00 4 0 0 1 0 4 1 

47 SM-R1 2013 19 18.96 1 0 0 1 0 4 1 

48 SM-R2 2011 26 18.96 1 0 0 1 0 4 1 

48 SM-R2 2012 25 57.00 4 0 0 1 0 4 1 

48 SM-R2 2013 26 18.96 1 0 0 1 0 4 1 
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Figure A.6 Histogram and theoretical densities, Q-Q plot, empirical and theoretical cumulative 

distribution functions and P-P plots for the (a) Mehlich 3 soil test P log-normal (lnorm) 

distribution, (b) P saturation ratio normal (norm) distribution, and (c) Soil P storage capacity 

normal (norm) distribution. 
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Figure continued 

 

 

 

 

 

Figure A.7 Density plot showing the distribution of annual flow-weighted mean DRP values. 
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