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ABSTRACT

Wei, Ruiwen MSME, Purdue University, May 2020. Analysis of Computed Torque
Control Applied with Command Shaping to Minimize Residual Vibration in a Flexible-
Joint Robot. Major Professor: Peter H. Meckl, School of Mechanical Engineering.

During fast point-to-point motion, the inherent joint flexibility could be detrimen-

tal in terms of residual vibration. Aiming to minimize the vibration, the command

shaping method has been developed so as to remove critical energy from the input

profile at resonant frequencies. Since this method requires information of a physical

model in order to find the target frequencies, the quality of the shaped command

profile relies on the accuracy of the model parameter estimation. Therefore, in this

work, a system identification method using Instrumental Variables is applied from

the literature. Compared with the classic Ordinary Least Square method, the IV ap-

proach has successfully improved the estimation of parameters, based on simulation

results. The accuracy of parameter estimation influences the command profile, as

does the feedback controller. In this work, starting from a mathematical derivation

with a mismatch model due to a feedback controller called Computed Torque Con-

trol, insight for the closed-loop system is given with regard to the interaction between

control gains and the actual resonant frequencies. It is found that the control gain

is able to modify the actual resonant frequency curve, and push it into or out of the

shaping bounds which are generated from the command shaping method. Further

analysis based on the simulation results shows that the overlap area between the

shaping bounds and the actual frequencies affects the level of residual vibration. In

light of this fact, an optimal control gain exists and is found when the estimation

error is in a certain range. At the end, recommendations for choosing the control

gains are provided.
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1. INTRODUCTION

1.1 Motivation

As average cost of robots has declined over the years and more models appear

on the market, a robotic arm has become a popular choice not only in research labs

but also in traditional industry. As a type of mechanical system, a robotic arm is

designed to be programmable and universal so that it could work on different kinds

of jobs such as painting for automobiles, welding, assembling, and so on. The reason

for being versatile is mainly because a robotic arm can increase its number of degrees

of freedom by successively adding extra links onto its body. However, bringing more

joints onto the robot does not necessarily improve its efficiency. On the contrary,

severe end-point vibration may be observed, degrading overall performance. Among

possible reasons causing this issue, joint flexibility is of interest in this study.

Joint flexibility is an inherent property of mechanical systems, and most of the

time comes from gear set, belt drive, and rotational spring. Influence due to joint

flexibility could be beneficial in some cases so as to protect humans from collisions

with the robot. This characteristic, in many other examples, may not be desired.

After operating fast point-to-point motion, a robot with joint flexibility would suffer

from long-lasting vibration. As many applications require precise control of the end

effector that is attached on the robotic arm, it is necessary to wait for a long time until

most of the energy dissipates. Only after that could the next operation command be

executed.

To preserve the efficiency, a solution called “Command shaping” has been applied

to minimize residual vibration by taking energy out of resonant frequencies. This

technique allows the reference signal to contain less energy at selected frequencies

when it is sent to the system. Thus, the robot is able to settle down faster as
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less residual vibration is induced. In the case of an open-loop system, the input

command shaping method is sufficient to avoid long-lasting vibration. In reality, to

ensure robustness and to reject disturbances, a closed-loop controller is desired.

Therefore, the general objective of this thesis is to analyze interaction between

closed-loop controller and input command shaping method. A classic control law

named “Computed torque control” is used throughout this research work. After

analyzing the influence from the closed-loop controller on the input command shaping,

a design procedure is proposed to synthesize the controller design and trajectory

shaping process.

1.2 Literature Review

A considerable amount of effort has been put into robotics research, aiming to

minimize vibration and to shorten time spent between motions. In general, three

major categories has received most of the attention. Researchers in [1–3] give a good

review and background for each of them.

The first category is known as command shaping. It aims to carefully construct

the reference input to the robot in order to minimize end-point vibration while en-

suring accomplishment of motion within a reasonable time frame. The mathematical

proof given in [4] shows that taking energy out of a system at the resonant frequencies

sufficiently reduces residual vibration at the end of motion. Bhat and Miu [5] showed

that, for a system without damping, residual vibration could be eliminated by form-

ing an input signal whose spectrum has no energy at system natural frequencies. For

a damped system, however, residual vibration would still exist. Another approach

in command shaping called Posicast control [6] is able to work with underdamped

systems. The general idea behind it is to apply wave cancellation through a delayed

input signal at the end of motion. However, its performance highly relies on an accu-

rate system model; it is sensitive to system parameter errors and precise calculation

of the resonant frequencies. Singer and Seering [7] explored the application of Finite
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Impulse Response (FIR) Filter in a technique now called Input Shaping. Efforts in

this work had been restricted to particular frequencies of interest, and later to design

the FIR filter such that it removes as much energy around desired frequencies as pos-

sible to address system uncertainty. Other types of filters such as low-pass filter and

band-stop filter have also been investigated by Mohamed and Tokhi [8]. Requiring

minimum knowledge of the system, these filters are able to minimize residual vibra-

tion but at the cost of longer move time. Meckl [4, 9] introduced a new approach

that uses harmonics of selected functions such as Ramped Sinusoid and Segmented

Versine. This method makes the command shaping process more flexible to meet

design requirements and constraints of application. Tokhi and Azad [10] compared

different command shaping methods and discussed the experimental results obtained.

Beazel [11] discusses the robustness of command shaping methods when modeling er-

rors exist. It also confirms that this technique is effective for systems with multi

modes. In [12, 13], researchers showed that for time-varying systems and systems

with configuration-dependent natural frequencies, the command shaping technique

can effectively reduce residual vibration. On the basis of this technique, Agrawal [14]

extended this approach to numerical optimization and suggested Least Absolute De-

viation (LAD) as a new cost function in order to avoid the Gibbs phenomenon, which

is a common issue experienced in numerical optimization. Furthermore, Wu [15] pre-

sented a way to constrain the peak acceleration instead of actuation time because, in

practice, actuators have limited power that has to be considered during the shaping

process. Wu [16] combined the constraint on peak acceleration with the numerical

optimization strategy to attenuate energy at system natural frequencies for Ramped

Sinusoid inputs. Patil [17] later applied the peak acceleration constraint and numer-

ical optimization to the Versine inputs.

In addition to command shaping, system identification has attracted many re-

searchers over the years. Since most control methods and techniques are model-based,

their qualities in application depend both on an accurate system model and parame-

ter estimation. Many studies used a rigid body to model the robotic arm when they
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either tried to develop shaped inputs or advanced controllers. Assuming a rigid-body

model greatly simplifies derivations but could potentially end up with worse response.

Futami and other researchers [18,19] showed that neglecting flexibility in each joint of

the robot could degrade final results. Without including the effect of joint flexibility,

estimating parameters based on such model would yield bias during the system iden-

tification stage. To avoid this issue, Sweet and Good [19] derived an analytical model

for a compliant drive system, and [20, 21] used a sequential identification procedure

for a robotic arm. These two methods had been adopted by Scheel [22] for a two-link

flexible-joint robot arm. Besides the error due to unaccounted joint flexibility, in

reality, measurement noise also greatly affects estimates. To improve accuracy, work

in [23–26] had been focused on modifying the estimation method based on classic Or-

dinary Least Square (OLS) to minimize bias but it assumes that measurement noise

is normally distributed. However, as mentioned in [27–29], when error is not normally

distributed, which is the case for most apparatus, final estimates would have bias.

The last topic falls into feedback control strategy. It is helpful to ensure global

asymptotic stability, robustness, and ability to reject disturbances. In general, con-

troller design could be divided into feedforward and feedback approaches. With

knowledge of the system model, inverse compensation, one method in feedforward

control, would determine the reference input first and directly calculate input torques

or forces by using the inverse of system dynamics, as shown in [30]. Nevertheless, for

a non-minimum phase system, its inverse would result in system instability. Among

those feedback controllers, Tomei [31] showed that a simple Proportional-Derivative

(PD) control can achieve stability for a three-joint elastic robot by assuming no energy

is added from these flexible joints. As extension, researchers have explored controller

design with feedback linearization [32,33]. De Luca [34] successfully applied dynamic

feedback linearization to linearize and decouple the nonlinear dynamics. Recently,

computed torque control has obtained substantial interest not only for typical robot

models but also for robots with flexibility. As a type of feedback controller, its main

structure combines the idea of feedback linearization and a PD controller [35]. Lin-
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earization technique serves as a model-based portion that tries to decouple the system

while the PD controller provides servo-based control to accomplish tasks, such as fol-

lowing a trajectory.

1.3 Overview of Thesis

This research studies the interaction between command shaping method and com-

puted torque controller when they are applied to a two-link flexible joint robot at the

same time. Although previous work in the shaping process has taken out energy at

a selected frequency range for the closed-loop system, it is not clear how to choose

controller parameters to further minimize energy being injected back into the system

without affecting the overall quality of command shaping. To address this ques-

tion, the closed-loop system due to the computed torque controller is derived first.

Instead of using the compact model format of a motor-drive robotic arm, the link

and motor subsystems are decoupled. Further analysis is provided when estimation

error is present during the decoupling process. Simulations of different controller

settings are run to see the influence on residual vibration. More simulation results

for mismatched-model cases are shown. At the end, recommendations for choosing

control gain are provided.

Introducing the background and theory of command shaping, Chapter 2 also de-

scribes the physical set up of the robotic arm and its mathematical model deriva-

tion. Application of command shaping on the robotic arm is provided. In Chapter

3, a system identification method known as Instrumental Variable (IV) is applied

from literature. Comparison between IV estimation and the Recursive Least Square

method is made. Chapter 4 shows application of the computed torque controller on

the robotic arm. Stability is discussed first, followed by eigenvalue analysis. Com-

parison and discussion on simulation results are shown in order to outline controller

design procedures. Finally, Chapter 5 summarizes all results from this research work,

and gives suggestions on potential future work.
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2. COMMAND SHAPING AND ROBOT MODEL

2.1 Background and Theory of Command Shaping

Typically, to achieve fast point-to-point motion, a Bang-Bang acceleration profile

is desired. Under the command of this profile, actuators would switch instantaneously

between the peak acceleration and peak deceleration, generating a jump in its time

function. However, for a mechanical assembly that has several flexible modes, such

type of command profile tends to generate excessive amount of vibration on the

mechanical system even when the command profile has ended. As a result, longer

time is spent before executing the next motion command.

Such vibration could be linked to the amount of energy being injected at system

natural frequencies. To mathematically find the correlation between residual vibra-

tion amplitude and the system natural frequency, a classic linear two-mass single-

mode system shown in Figure 2.1 is used. While keeping important dynamic prop-

erties, this linear model serves as a good starting point to analyze a two-link robot

arm which will be discussed later. In this system, M1 denotes the inertia of the mo-

tor, M2 is the endpoint inertia, and k represents the transmission structural stiffness.

Through input force f , energy is injected to the two-mass system, causing displace-

ment of Ym and Ye, respectively. Based on the two-mass model, Meckl [4] derived

an analytical relationship between the amplitude of residual vibration and the mag-

nitude of the spectrum of the forcing function evaluated at the flexible mode. The

mathematical relationship is given by

A∗ = ωnTf |F ∗(ωnTf )|, (2.1)

where A∗ denotes the dimensionless amplitude of residual vibration, ωn is the natural

frequency of the system, and Tf stands for the end of actuation time. In this equa-
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Figure 2.1. Linear Two-Mass System.

tion, the dimensionless magnitude of the Fourier Transform of the forcing function,

|F ∗(ωnTf )| is defined as

|F ∗(ωnTf )| =
|F (ωn)|
FmaxTf

(2.2)

where |F (ωn)| is evaluated at ω = ωn and obtained from the following equations,

F (ω) =

∫ Tf

0

f(t)e−jωtδt = [FR(ω) + jFI(ω)]e−j
ωTf
2 (2.3)

|F (ω)| =
√
F 2
R(ω) + F 2

I (ω) . (2.4)

In general, Equation 2.3 is the Fourier Transform of forcing function f(t) evaluated

from time zero to time Tf while Equation 2.4 calculates its spectral magnitude at ω

based on the real part FR and the imaginary part FI . Moreover, Fmax in Equation 2.2

is the peak value of the forcing function f(t). More specifically, the forcing function

is defined as

f(t) =
L∑

l=1

BlΦ
∗
l (t) , (2.5)

where Bl is the coefficient of lth harmonic, Φ∗
l is the lth harmonic of a basis function,

and L is the total number of terms that form the forcing function. Two distinct

basis functions are covered in Section 2.1.1 and 2.1.2. Accordingly, the dimensionless

version of the forcing function is defined as

f(t)∗ =
L∑

l=1

B∗
l Φ

∗
l (t) , (2.6)
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where B∗
l is the normalized dimensionless coefficient.

To reduce residual vibration and shorten total time to finish one motion command,

the command shaping method comes into play. In general, there are two aspects

influencing the shaping process. From a time-domain perspective, the Bang-Bang

profile is the time-optimal solution for a rigid body. Because with constrained peak

acceleration and a given actuation time, it injects the most energy to the system,

generating a fast point-to-point motion. In light of this fact, to minimize move time,

an optimal profile needs to mimic the Bang-Bang profile in order to maximize energy

input. Meanwhile, Equation 2.1 indicates that, for any forcing function, its spectral

magnitude at the system natural frequency greatly affects residual vibration; thus,

the optimal profile should also avoid injecting energy around the system natural

frequencies. As such, an objective function J capturing these two essential concepts

could be formulated by the following equation

J =
1

Tf

∫ Tf

0

[f ∗
BangBang(t)− f ∗(t)]2δt+ ρ

11Nmode∑

i=1

(ωiTf )
2|F ∗(ωiTf )|2 , (2.7)

where ρ is the weighting factor, Nmode is the total number of mode frequencies to be

shaped. As for f ∗
BangBang(t) profile, it is defined as

f ∗
BangBang(t) =





0 t < 0

1 0 ≤ t <
Tf
2

−1
Tf
2
≤ t < Tf

0 Tf ≤ t

(2.8)

In the objective function, the first part, from a time-domain perspective, mainly

enforces the penalty due to the difference between the forcing function and the Bang-

Bang profile. The second part, from a frequency-domain point of view, explicitly

imposes a penalty due to the squared magnitude of the spectrum of the correspond-

ing forcing function evaluated at the system natural frequencies. In this part, 11

frequencies surrounding each natural frequency are chosen. From the standpoint of

robustness, this ensures small magnitude throughout the selected frequency band
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while avoiding having to integrate all frequencies over the spectrum. For a ±10%

frequency range, bounds of ωi are 0.9ωn ≤ ωn ≤ 1.1ωn. Note that for a two-link

flexible-joint robot, Nmode = 2. The coefficient B∗
l , as a design parameter of the forc-

ing function, could be found by differentiating the objective function J with respect

to B∗
l and setting the result to zero:

∂J

∂B∗
l

= 0, (l = 1, 2, ..., L) (2.9)

To proceed, two basis functions named Ramped Sinusoid and Versine are selected as

the forcing functions. Each of them is covered in Sections 2.1.1 and 2.1.2, respectively.

2.1.1 Ramped Sinusoid

By definition, the Ramped Sinusoid is described by the following mathematical

representation

Φ∗
l (t) =

1

αl
(
1

2
− τ) +

1

α2
l

sin(αlτ)− 1

2αl
cos(αlτ) (2.10)

where τ is the dimensionless time defined by

τ =
t

Tf
(2.11)

and Tf , same as before, denotes the total actuation time of the input profile. αl is

the characteristic number associated with the lth harmonic. To achieve smoothness

and avoid discontinuity, zero magnitude and slope at the beginning and the end of

motion are imposed on the Ramped Sinusoid function by the following constraint

αl sin(αl) + 2 cos(αl)− 2 = 0, (αl 6= nπ) , (2.12)

where n is an even integer. The first ten characteristic numbers for the harmonics of

the Ramped Sinusoid and its first five harmonics are given in Table 2.1 and Figure

2.2, respectively. Note that from the given Ramped Sinusoid basis function, it is

possible to approximate a full cycle of the Bang-Bang profile. Plugging the forcing

function Ramped Sinusoid into the objective function defined in Equation 2.7, the
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Table 2.1. Characteristic Numbers for First Ten Harmonics of Ramped Sinusoid

lth Harmonic Value

α1 8.9688

α2 15.4505

α3 21.8082

α4 28.1324

α5 34.4415

α6 40.7426

α7 47.0389

α8 53.3321

α9 59.6232

α10 65.9128

Figure 2.2. First Five Harmonics of Normalized Ramped Sinusoid Function

analytical solution is given in [4]. Since Tf and B∗
l are both unknown before one of

them is determined, an iteration process has been incorporated into the solution. As
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an alternative to the analytical solution, a numerical optimization approach, shown

in Figure 2.3, was proposed by Agrawal [14] to obtain the forcing function.

Figure 2.3. Flowchart of the Numerical Optimization Approach [14]

2.1.2 Segmented Versine

In addition to the Ramped Sinusoid, the Versine is another candidate for approx-

imating the Bang-Bang profile. By definition, it is given by the following equation

Φ∗
l (t) = 1− cos(2πlτ), (l = 1, 2, ..., L) , (2.13)

where l denotes the lth harmonic, and τ is the dimensionless time defined by

τ =
t

Tp,i
(2.14)
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where Tp,i is the actuation time of the ith segment. Since a full command profile may

consist of acceleration, constant-velocity motion, and deceleration, the total actuation

time would be the sum of actuation times from each of them, and could be written

as

Tf =

Nsegment+1∑

i=1

Tp,i (2.15)

where Nsegment + 1 is the number of segments making up one full input profile plus

the constant velocity segment. Figure 2.4 shows the first three harmonics of the

Versine profile. Unlike the Ramped Sinusoid, which approximates a full cycle of the

Figure 2.4. First Three Harmonics of Normalized Versine Function

Bang-Bang profile, the Versine mimics either the positive or negative square pulse

of the Bang-Bang profile. Beazel in [11] proposed dividing the command shaping

method into multiple segments. This is useful because for a mechanical system with

configuration-dependent natural frequency, each segment has the flexibility to choose

a different frequency band based on position. With precisely tailored and adjusted

segments, more critical energy associated with the residual vibration could be re-

moved. As a result, the ability of the Versine to approximate the Bang-Bang profile



13

with multiple segments allows the targeted frequency to change over time, and to

minimize the spectrum energy only relevant to that segment. After carefully design-

ing each segment, the command shaping method combines all segments together with

respect to time, and yields the full command profile for the system. What’s more, for

a mechanical system that has a velocity limit, the segmented Versine profile is able

to incorporate this constraint during the shaping process. With known peak velocity,

one segment drives the system to achieve the limit velocity, maintains that constant

velocity for some time, and then the second segment decelerates the system to zero

velocity at the end. To ensure reaching the final position, command shaping can

also enforce a constraint on the integration of velocity with respect to time. Such an

advantage makes the segmented Versine relatively more desirable over the Ramped

Sinusoid which cannot enforce peak velocity as both acceleration and deceleration are

shaped simultaneously. Again, the analytical solution of incorporating the Versine

function into the objective function defined in Equation 2.7 is given in [4]. A similar

numerical optimization solution can obtained by using the method proposed in [14]

2.2 Two-Link Flexible-Joint Robot

For research purposes, a two-link robot with joint flexibility in the Ruth and Joel

Spira Laboratory for Electromechanical Systems in the School of Mechanical Engi-

neering at Purdue University is used in this work. With carefully built-in flexibility,

it represents the testbed for the command shaping method. To minimize the effect

due to gravity, both joints are designed and assembled in a way that the robot can

only move in the horizontal plane. Figure 2.5 [16] shows details of the hardware that

is set up on an experiment platform. As seen, the robotic arm consists of two links,

referred to as link one and link two, or shoulder link and elbow link. Through the

belt drive, each link is driven by a DC motor, namely motor one or motor two. More

specifically, motor one is mounted on a fixed stand that is attached on the platform

so that minimum energy could be transfered from the platform to the robot, and vice
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versa. Motor 2, as shown, is mounted on the first link. To complete, there are two

sets of torsional springs and sprockets on each link. As a result, each link is indirectly

driven by its motor with a gear ratio of five. With this hardware setup, the robot

is able to achieve a horizontal sweeping motion with typical flexibility. In addition,

from the standpoint of feedback control, there are a total of four encoders and two

accelerometers taking measurements from the robot. Two of the four encoders are

directly attached to the motors so that actual displacement from each motor can be

recorded. The other two encoders are placed on top of the end of each belt drive,

recording the relative displacement between the motor angle and link angle. Two

accelerometers are attached at the end of each link. Note that the built-in flexibility

is realized by the torsional spring between each link and each sprocket. The spring

coefficient ranges from 103 to 105 Nm/rad [16], which is much smaller than the typical

joint stiffness of a robotic arm.

The controller was implemented firstly by Chatlatanagulchai [36] in LabVIEW

(Version 8.5.1). Other than the robotic arm, the experimental apparatus includes a

desktop PC, a National Instruments (NI) PXI-7831R field programmable gate array

(FPGA), and two motor drives. The FPGA comes with 16 analog I/O ports and

96 digital channels with Virtex-II M gate so that it is capable of handling large

amounts of data transmission. The FPGA is able to operate up to 200kHz to sample

measurements. But for control purposes, both feedback signals and control outputs

are received and transmitted at 2kHz. Encoder measurement and other essential

input signals are connected to the FPGA through two National Instruments SCB-68

Shielded I/O Connector Blocks, respectively. The DC motor used by the shoulder

link is a version of Electro Craft DPP242, providing torque constant of 0.118 Nm/A

and maximum torque of 2.47 Nm. The second motor, Inland T-3108-A, drives the

elbow link with a constant torque of 0.61 Nm/A and maximum torque of 1.35 Nm.

Two motor drives called Advanced Motion Control pulse-width-modulated (PWM)

transconductance servo amplifiers are able to convert the voltage command from the

FPGA to a current source for the motor, respectively. Encoders from Renco Encoders
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Figure 2.5. Physical Set up of the Robotic Arm [16]

are used. All of them have the same resolution of 4000 counts per revolution. The

only difference is the model used for the shoulder and elbow links. R80 encoder is

mounted on the first link while RM21 for the second link. Lastly, the accelerometers

that are installed at the end of each link are both model 8315A from Kistler. They

measure single-axis linear acceleration with a range of ± 2g, sensitivity of 2 V/g at

frequency band of 0 to 250Hz, and a resolution of 0.35mg.
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2.3 Robot Mathematical Model

To derive the mathematical model for the two-link flexible-joint robotic arm, the

schematic is shown in Figure 2.6, given by Nho [37]. In this schematic, physical

parameters are labeled and will be used in Section 2.3.1, which provides the complete

Lagrangian Model developed by Nho [37]. Section 2.3.2 provides the reduced model

introduced by Spong [38].

Figure 2.6. Schematic of the Two-Link Robotic Arm with Joint Flexibility [37]
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As seen from the schematic of the robotic arm, θ1 and θ2 measure the angular

position of link one and link two, respectively, while θ3 and θ4 measure motor one and

motor two angular position, respectively. Note that both θ1 and θ3 take measurements

with respect to the inertia frame but θ2 and θ4 take measurements with respect to the

link one coordinate frame. The numerical values of the robot dimensions are listed

in Table 2.2 from [16]. The expression of p1 is defined in Equation 3.21.

Table 2.2. Physical Parameter Values of the Robotic Arm [16]

Parameter Value Parameter Value

p1 0.140 (kgm2

rad
) c5 0.005 (Nms

rad
)

m2a
2
2 + J2 0.0196 (kgm2

rad
) c6 8.128×10−5 (Nms

rad
)

l1m2a2 0.0234 (kgm2

rad
) k5 2.848 (Nm

rad
)

J3 4.157×10−5 (kgm2

rad
) k6 2.848 (Nm

rad
)

J4 7.543×10−4 (kgm2

rad
) d1 0.0199 (Nm)

J5 0.025 (kgm2

rad
) d2 0.0323 (Nm)

J6 0.025 (kgm2

rad
) d3 0.005 (Nm)

c1 0.04 (Nms
rad

) d4 0.0271 (Nm)

c2 0.0214 (Nms
rad

) b1* 0.064 (m)

c3 1.894×10−4 (Nms
rad

) l1* 0.318 (m)

c4 1.497×10−3 (Nms
rad

) l2* 0.291 (m)

* These parameters are directly measured from the robot.

2.3.1 Lagrangian Model

The complete Lagrangian Model was derived by Nho [37]. In this work, payload

is set to zero; therefore, the end effector has minimum effect on the robot dynamics.
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Starting from the Lagrangian Model, a general equation of motion for the robotic

arm can be derived and written as

M(θ)θ̈ + V(θ, θ̇) + Cθ̇ + D(θ) + Kθ = T , (2.16)

where θ is a 4 by 1 column vector consisting of link one, link two, motor one, and

motor two angles. Each element of θ is denoted by θi with i = 1, 2, 3, 4 to represent

a specific generalized angle, as shown in Figure 2.6. In this work, the derivative of

θ with respective to time is denoted as θ̇, namely the angular velocity. Similarly,

angular acceleration uses the symbol of θ̈. In Equation 2.16, M(θ), as a function of

θ, represents the inertia matrix for the robot and is given as

M(θ) =


 M1 M2

M2
T M3


 (2.17)

where

M1 =







m1a
2
1 +m2(l21 + a2

2)

+m4b
2
1 +m6l

2
1 + J1 + J2

+J4 + J6 +mp(l
2
1 + l22)

+2l1(m2a2 +mpl2) cos(θ2)







m2a
2
2 + J2

+mpl
2
2 + l1(m2a2

+mpl2) cos(θ2)





 m2a

2
2 + J2 +mpl

2
2

+l1(m2a2 +mpl2) cos(θ2)




(
m2a

2
2 + J2 +mpl

2
2

)




(2.18)

M2 =


0 (J4 + J6

r
)

0 0


 (2.19)

and

M3 =


(J3 + J5

r2
) 0

0 (J4 + J6
r2

)


 . (2.20)

Note that M2
T is the transpose of matrix M2. In the M1 matrix, mi denotes the

lumped mass, li represents the length of the link, Ji is the moment of inertia, and ai

is the distance between the center of gravity of link i and joint i. bi is the distance
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between joint i and motor i + 1. Gear ratio for the sprocket/chain transmission is

denoted by r, and equal to five in this work. As mentioned before, no payload would

be put onto the robot, so that mp = 0 applies to all equations.

As for V(θ, θ̇), this matrix consists of elements due to Coriolis and Centrifugal

forces, and is written as

V(θ, θ̇) =




−l1(m2a2 +mpl2)(2θ̇1θ̇2 + θ̇2
2) sin(θ2)

l1(m2a2 +mpk2)θ̇2
1 sin(θ2)

0

0




=


 Vlink(θ, θ̇)

Vmotor(θ, θ̇)


 . (2.21)

The system viscous damping matrix C consisting of damping coefficients is given

by

C =




c1 + c5 0 − c5
r

0

0 c2 + c6 0 − c6
r

− c5
r

0 c3 + c5
r2

0

0 − c6
r

0 c4 + c5
r2




=


C1 C2

C2 C3


 =


 Clink

Cmotor


 . (2.22)

where ci denotes the damping coefficient shown in Figure 2.6, and Clink and Cmotor

are 2×4 matrices.

Coulumb friction is shown in the column vector D and is given by

D(θ̇) =




d1sign(θ̇1)

d2sign(θ̇2)

d3sign(θ̇3)

d4sign(θ̇4)




=


 Dlink(θ̇)

Dmotor(θ̇)


 , (2.23)

where sign is an operation defined as

sign(x) =





1 if x > 0

0 if x = 0

−1 if x < 0

. (2.24)
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The system stiffness matrix K is given by

K =




k5 0 −k5
r

0

0 k6 0 −k6
r

−k5
r

0 k5
r2

0

0 −k6
r

0 k6
r2




=


K1 K2

K2 K3


 =


 Klink

Kmotor


 , (2.25)

where ki denotes specific stiffness due to the torsional spring, and Klink and Kmotor

are 2×4 matrices.

Lastly, the input Torque is denoted by the column vector T, and is defined as

T =




0

0

T1

T2




=


 0

Tmotor


 , (2.26)

where T1 is the driving torque generated by motor one while T2 by motor two.

Note that the matrices M(θ), C, and K are all symmetric. Immediately, it can

be seen that coupling exists between links and motors; thus, none of these matrices

is diagonal. In general, the dimension of Equation 2.16 is different from that of a

typical two-link robotic arm. This is because, in this work, actuators are included in

the model, so that the flexibility between links and motors can be captured. Including

flexibility is important as it serves as the foundation for the command shaping method,

which requires a flexible model representation of the system.

2.3.2 Reduced Model

In [38] Spong provided a simplified model based on the full Lagrangian Model.

The reduced model, in general, removes coupling elements between links and motors.

There are two assumptions to achieve the simplified model. The first assumption

states that the majority of the kinetic energy of each motor is due to its own rotation.

This assumption requires the gear ratio between each link and its motor to be greater

than 1 so that the motor has greater angular velocity than that of the link. Thus,
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the inertia matrix M(θ) drops coupling terms due to each set of link and motor.

The second assumption is to assume viscous damping coefficients c5 and c6 of the

torsional springs are negligible because they are small enough when compared to

other viscous damping coefficients. This assumption drops coupling terms between

links and motors in matrix C and results in Creduced. These simplifications greatly

reduce the complexity of the system, and yet preserve essential dynamics of the robot.

By definition, Mreduced(θ) is written as

Mreduced(θ) =


M1 0

0 M3


 (2.27)

where M1 and M3 are defined in Equations 2.18 and 2.20, respectively.

As for Creduced, it is defined as

Creduced =




c1 0 0 0

0 c2 0 0

0 0 c3 0

0 0 0 c4



, (2.28)

which can be separated into two damping matrices corresponding to links and motor.

They are written as

Clink =


c1 0

0 c2


 , Cmotor =


c3 0

0 c4


 . (2.29)

As a result, the general equation of motion for the robot expressed in Equation 2.16

becomes

Mreduced(θ)θ̈ + V(θ, θ̇) + Creducedθ̇ + D(θ̇) + Kθ = T (2.30)

which can be rearranged and divided into link subsystem and motor subsystem with

the following equations:

M1(θlink)θ̈link + Vlink(θlink, θ̇link) + Clinkθ̇link + Dlink(θ̇link) + KS(θlink−
θmotor
r

) = 0

(2.31)
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and

M3θ̈motor + Cmotorθ̇motor + Dmotor(θ̇motor) + KS(
θmotor
r2

− θlink
r

) = Tmotor , (2.32)

where θlink and θmotor are obtained from

θ =


 θlink
θmotor


 (2.33)

and KS is defined as

KS =


k5 0

0 k6


 . (2.34)

2.4 Robot Kinematics

To quantitatively compare the effectiveness of the command shaping method on

the two-link robotic arm, a performance metric needs to be defined. Since this work

focuses on residual vibration, the performance metric has to include relevant features.

In general, both acceleration vibration amplitude and settling time are of interest.

Unlike a linear single-mode mechanical system that has a closed-form analytical ex-

pression for the settling time and the amplitude of vibration, the robot model pre-

sented in this work is a nonlinear multi-mode system. Therefore, the standard metrics

introduced in [14] are adopted in this work. This method, based on robot kinematics,

provides measurement of residual vibration at the end effector. With perfect design,

there should be no vibration when the input profile ends. Therefore, any observed

vibration after the command profile has ended is undesired and could be used to

calculate the system performance. The coordinate frame shown in Figure 2.7 [16]

serves as a starting point to derive the robot kinematics, followed by calculation of

the residual vibration.

As seen, X0Y0Z0 is the fixed frame attached at the origin, XiYiZi is the coordinate

frame attached at the end of link i, and UiViWi is the coordinate frame attached on

joint Ji. Note that gravity is pointing into the page. Since the robot moves only in

the XY plane, there is no translation along axes Z and W , or rotations about axes
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Figure 2.7. Coordinate Frame of the Robotic Arm [16]

X, Y , U , and V . The rotation and the linear translation matrices for the robot, thus,

can be written as

φi =




cos(θi) − sin(θi) 0 0

sin(θi) cos(θi) 0 0

0 0 1 0

0 0 0 1




(2.35)

and

Ttrans,i =




1 0 0 li

0 1 0 0

0 0 1 0

0 0 0 1



, (2.36)
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where φi is the rotation matrix, Ttrans,i is the linear translation matrix, and i = 1, 2,

for this robot. Therefore, the overall homogeneous transformation matrix for the

manipulator is obtained by the following equation

Tm = φ1Ttrans,1φ2Ttrans,2 (2.37)

and written as

Tm =




C(θ1)C(θ2)− S(θ1)S(θ2) −S(θ1)C(θ2)− C(θ1)S(θ2) 0 Px

S(θ1)C(θ2) + C(θ1)S(θ2) C(θ1)C(θ2)− S(θ1)S(θ2) 0 Py

0 0 1 0

0 0 0 1



, (2.38)

where C(θi) and S(θi) are shorthand notation for cos(θi) and sin(θi), respectively. As

for Px and Py, they are defined as

Px = l1C(θ1) + l2C(θ1)C(θ2)− l2S(θ1)S(θ2) (2.39)

Py = l1S(θ1) + l2S(θ1)C(θ2) + l2C(θ1)S(θ2) . (2.40)

To further simplify, Equation 2.38 can be written as

Tm =




cos(θ1 + θ2) − sin(θ1 + θ2) 0 Px

sin(θ1 + θ2) cos(θ1 + θ2) 0 Py

0 0 1 0

0 0 0 1




(2.41)

and Equations 2.39 and 2.40 become

Px = l1 cos(θ1) + l2 cos(θ1 + θ2) (2.42)

Py = l1 sin(θ1) + l2 sin(θ1 + θ2) . (2.43)

The velocity can be obtained by differentiating Equation 2.37, assuming all links are

rigid with
∂Ttrans,i

∂t
= 0, and can be written as

∂Tm
∂t

=
∂φ1

∂t
Ttrans,1φ2Ttrans,2 + φ1Ttrans,1

∂φ2

∂t
Ttrans,2 =

θ̇1QRφ1Ttrans,1φ2Ttrans,2 + θ̇2φ1Ttrans,1QRφ2Ttrans,2 ,

(2.44)
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where QR denotes the derivative of the homogeneous conversion of φi with respect to

time. QR is defined as

QR =




0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0



. (2.45)

The translational velocity, as a result, can be obtained from Equation 2.44 and can

be written as

Ṗx = −l1θ̇1 sin(θ1)− l2(θ̇1 + θ̇2) sin(θ1 + θ2) (2.46)

Ṗx = l1θ̇1 cos(θ1) + l2(θ̇1 + θ̇2) cos(θ1 + θ2) . (2.47)

Similarly, the linear acceleration for the end effector can be obtained from differenti-

ating Equation 2.44 with respect to time, and the result can be written as

∂2Tm
∂t2

= θ̈1QRφ1Ttrans,1φ2Ttrans,2 + θ̇2
1Q

2
Rφ1Ttrans,1φ2Ttrans,2

+2θ̇1θ̇2QRφ1Ttrans,1φ2Ttrans,2 + θ̇2
2φ1Ttrans,1Q

2
Rφ2Ttrans,2 + θ̈2φ1Ttrans,1QRφ2Ttrans,2 .

(2.48)

Thus, the linear accelerations with respect to the fixed frame P̈x and P̈y can be written

as

P̈x = −l1θ̈1 sin(θ1)− l1θ̇2
1 cos(θ1)− l2(θ̇2

1 + 2θ̇1θ̇2 + θ̇2
2) cos(θ1 + θ2)

−l2(θ̈1 + θ̈2) sin(θ1 + θ2)
(2.49)

and

P̈y = l1θ̈1 cos(θ1)− l1θ̇2
1 sin(θ1)− l2(θ̇2

1 + 2θ̇1θ̇2 + θ̇2
2) sin(θ1 + θ2)

+l2(θ̈1 + θ̈2) cos(θ1 + θ2) .
(2.50)

Note that the same results as Equations 2.49 and 2.50 can be directly derived from

Equations 2.46 and 2.47. Getting Equation 2.48 first provides information of relative

rotational speed of the end effector with respect to the fixed frame.
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2.5 Performance Metrics

As mentioned before, to apply the command shaping method which aims to mini-

mize residual vibration at the end point, namely the end effector, standardized perfor-

mance metrics are required so as to compare the shaping effectiveness over different

sets of parameters. Since measuring the end-point vibration amplitude is able to

quantify the effectiveness, the linear accelerations, determined by Equations 2.49 and

2.50, are used. The magnitude of residual vibration is given by the following equation

P̈xy(t) =
√
P̈ 2
x (t) + P̈ 2

y (t) (2.51)

so that P̈xy(t) is able to capture the residual vibration magnitude regardless of its

direction, and t is the time interval for settling, defined as

Tf ≤ t ≤ Tend , (2.52)

where Tf , mentioned before, is the final time of the input profile, and Tend is the time

when P̈xy(t) is smaller than a predefined threshold value. In this work, the threshold

value is 0.2 (m/s2). Based on this, the maximum linear residual vibration is defined

as

arv = max(P̈xy(t)) . (2.53)

Figure 2.8 from Wu [16] gives an example to demonstrate the definition of the residual

vibration and settling time.

2.6 Application of Command Shaping to the Robot

For the purpose of demonstrating the effectiveness of the command shaping method,

this subsection presents selected experimental results before and after applying the

shaping method. Again, the idea of command shaping is to approximate the Bang-

Bang profile to approximate the time-optimal solution while removing energy content

at the associated resonant frequencies. For the two-link robotic arm, the first two nat-

ural frequencies are determined to be 3.709(rad/s) and 15.7338(rad/s). Thus the red
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Figure 2.8. Command profile with labeled settling time [16]

dotted lines in Figure 2.9 indicate the energy at which frequencies should be taken

away when approximating the Bang-Bang profile. Note that the natural frequencies

are determined from the closed-loop system, which is covered in Chapter 4. Figure

2.10 from [17] shows the robot response due to the Bang-Bang profile. The first row of

Figure 2.10, from left to right, presents the Bang-Bang profile and its corresponding

frequency spectrum. The second row shows the torque inputs for the system gener-

ated by motor one and motor two, respectively. The third row gives actual angular

position responses of the shoulder link and the elbow link, respectively. The fourth

row is angular positions of motor one and motor two, respectively. The last row

shows the actual angular accelerations of link one and link two, respectively. Note

that dotted lines in each subplot represent the desired response. As seen, after the

input has ended at t = 3(s), the system shows non-zero residual vibration measured
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Figure 2.9. Spectrum of the Bang-Bang Profile [16]

by Equation 2.51, and the peak vibration is 1.2376(m/s2) while settling time is about

2.248 seconds. To compare, a shaped profile using the numerical approach for the

Segmented Versine is chosen, and the experimental results are given in Figure 2.11

from [17]. As seen, after shaping the profile, energy in the corresponding resonant

frequencies has been decreased and the resulting peak residual vibration becomes

0.211(m/s2), and the settling time is about 0 seconds. In a nutshell, the command

shaping method has demonstrated its effectiveness in removing energy content asso-

ciated with resonant frequencies, and thus minimizing both residual vibration and

the settling time.
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Figure 2.10. Experimental Results for the Bang-Bang Profile [17]
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Figure 2.11. Experimental Response for Segmented Versine with
Numerical Approach with Constraint Peak Acceleration amax = 40,
and Weighting Factor ρ = 8750 [17]
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3. SYSTEM IDENTIFICATION

With the framework of the command shaping method and robot modeling discussed

in Chapter 2, this chapter focuses on system identification of the two-link robotic arm

with joint-flexibility. Since both the command shaping method and computed torque

control, which is covered in Chapter 4.1, depends on models, it is necessary to precisely

estimate each set of parameters that are essential in the shaping and control processes.

Previous work in system identification done by Nho [37] used the classic Ordinary

Least Squares regression approach. This open-loop approach estimates all parameters

simultaneously. The OLS method, in general, leads to bias when its assumption does

not hold in practice. Later, Lee [20] presented the framework for a new system

identification method called nonlinear autoregressive moving average with exogenous

inputs, or NARMAX. Better estimation was obtained based on this method but still

limited to a range of torque inputs and working region for the robot. Scheel [22]

used a new method to perform system identification on the robot. This approach has

been widely called sequential system identification (ID) [21]. Instead of estimating

all parameters at the same time, sequential system ID separates the process into

several sequential stages and each of them depends on the results from the previous

stage. In this way, parameters could be isolated and estimated separately so that

minimum bias is produced. However, this approach relied on the classical ordinary

least squares (OLS) method during the estimation. One strong assumption that OLS

requires to avoid bias estimation is that noise in the measurement signals be normally

distributed. In our case, the position signal is measured by an incremental encoder.

Uncertainty between pulses that generate the position measurement is not necessarily

normally distributed. Thus, the work in this Chapter presents an alternate approach

that is applied from literature. It is called Instrumental Variable (IV) method.
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3.1 Introduction of the IV approach

After applying the OLS method, a potential improvement in estimation can be

obtained because a precise mathematical representation of the robot is known. There-

fore, the IV approach utilizes this information and simulates the system response

based on the estimated parameters from the OLS. Comparing the simulated response

with the “real” system response, a new and improved set of estimates is produced by

the IV approach. Usually the IV algorithm can be improved by iterating its process

with previous estimated parameters but literature has shown that two to five iter-

ations are enough for convergence. Figure 3.1 shows the process of integrating the

IV algorithm with the classic OLS method. Note that the RLS is used in this work,

which stands for recursive least squares. It is equivalent to the OLS method but it

speeds up the estimation process.

Figure 3.1. Integration of IV Approach and RLS Algorithm
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3.2 Sequential Identification Process and Regression Model Formulation

As mentioned, the identification process involves sequential stages. Scheel [22]

divided the entire estimation into three stages. The first stage would be purely

identifying each motor’s inertia and damping ratio. The second stage, with estimated

parameters from stage one, requires fixing the shoulder link so that only the elbow

is excited. Since only link two is movable, the robot dynamics, based on Equation

2.16, would be simplified. In the last stage, with estimates from both stage one and

two, the entire robot would be excited, so that those dynamic properties from the

elbow link could be estimated. Regression models are provided in Sections 3.2.1,

3.2.2, and 3.2.3, respectively, so as to initiate the RLS algorithm. The general form

of the regression model can be written as

WSj(θ, θ̇, θ̈)PSj = YSj , (3.1)

where WSj denotes regressor matrix, PSj is the column vector of parameters to be

estimated, and YSj represents the regressand vector. Notation of Sj stands for jth

stage with j = 1, 2, 3 in this work. Simulation as well as experiment results from RLS

and IV methods are given at the end of this Chapter. Appendix D provides more

details and results.

3.2.1 Stage One: Motor Model

In stage one, only the motors are excited to estimate their dynamic properties.

The current dynamics are assumed to be so fast as to be ignored. A simple model of

a DC motor is given by the following equation

Jiθ̈i + ciθ̇i = Tj . (3.2)

After rearranging the above equation, and converting it into the regression form, it

becomes

WS1(θ, θ̇, θ̈)PS1 =
[
θ̈i θ̇i

]

Ji
ci


 = YS1 = Tj (3.3)
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where i = 3, 4 denote the dynamic properties of motor one and motor two, respec-

tively. To be consistent with the overall robot model, j = 1, 2 for torque input due to

motor one and motor two, respectively. Again, notation of the generalized variable

θi is consistent with the robot model. It is important to note that, during the exper-

iment, measurements for motor one and motor two need to be conducted separately

in order to isolate any unnecessary interference.

3.2.2 Stage Two: Elbow Link Model

As mentioned, with identified parameters from stage one, stage two needs to fix

the shoulder link, that is, set the acceleration of the shoulder link to zero and motor

one would not be included in the robot dynamics. As a result, based on Equation

2.16, a simplified equation of motion is given as

MS2θ̈S2 + CS2θ̇S2 + KS2θS2 = TS2 , (3.4)

where

θS2 =


θ2

θ4


 , (3.5)

the inertia matrix is

MS2 =


m2a

2
2 0

0 J4 + J6
r2


 , (3.6)

the damping matrix is

CS2 =


c2 + c6 − c6

r

− c6
r

c4 + c6
r2


 , (3.7)

the stiffness matrix becomes

KS2 =


 k6 −k6

r

−k6
r

k6
r2


 , (3.8)

and the torque input is

TS2 =


 0

T2


 . (3.9)
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Note that J3, J4, c3 and c4 are treated as known variables because they have been

identified in stage one. Rearranging Equation 3.4 and putting it into the regression

form, one can obtain the following equation

WS2(θ, θ̇, θ̈)PS2 = YS2 , (3.10)

where the regressor matrix is given by

WS2 =


θ̈2 0 θ̇2 θ̇2 − θ̇4

r
θ2 − θ4

r

0 θ̈4
r2

0 θ̇4
r2
− θ̇2

r
θ4
r2
− θ2

r


 , (3.11)

the regressand is

YS2 =


 0

T2 − J4θ̈4 − c4θ̇


 , (3.12)

and the parameter matrix to be estimated is

PS2 =




m2a
2
2 + J2

J6

c2

c6

k6




. (3.13)

It is worth pointing out that, even though the robot model is inherently nonlinear,

the system model is linear in the parameters. That is to say, the general approach

of ordinary least squares is applicable here. In addition, not all of the individual

parameters can be isolated and determined. Instead, some elements in matrix PSj,

for example, m2a
2
2 + J2, consist of more than one independent mechanical properties.

In this case, the quantity of the combined parameter m2a
2
2 + J2 is estimated rather

than obtaining an individual numerical value for each parameter in m2a
2
2 + J2.

3.2.3 Stage Three: Full Robot Model

In the last stage, with parameters estimated from stages one and two, the entire

robot is actuated and excited to perform identification for the remaining parameters.
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At this time, Equation 2.16 is converted into its equivalent regression form and written

as

WS3(θ, θ̇, θ̈)PS3 = YS3 , (3.14)

where the regression is

WS3 =




θ̈1 w12 θ̇1 θ̇1 − θ̇3
r

θ1 − θ1
r

0

0 w22 0 0 0 0

0 0 0 θ̇3
r2
− θ̇1

r
θ3
r2
− θ1

r
θ̈3
r2


 , (3.15)

in which

w12 = cos(θ2)θ̈2 − (2θ̇1θ̇2 + θ̇2
2) sin(θ2) + 2 cos(θ2)θ̈1 (3.16)

w22 = cos(θ2)θ̈1 + sin(θ2)θ̇2
1 . (3.17)

The corresponding regressand vector is defined as

YS3 =




−(m2a
2
2 + J2)(θ̈1 + θ̈2)− (J4 + J6

r
)θ̈4

rL1

T1 − c3θ̇3 − J3θ̈3


 , (3.18)

where

rL1 = −(m2a
2
2 + J2)(θ̈1 + θ̈2)− (c2 + c6)θ̇2

+
c6

r
θ̇4 − k6θ2 +

k6

r
θ4 ,

(3.19)

and the parameter vector is defined as

PS3 =




p1

l1m2a2

c1

c5

k5

J5




, (3.20)

where

p1 = m1a
2
1 +m2l

2
1 +m4b

2
1 +m6l

2
1 + J1 + J4 + J6 . (3.21)
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As seen, the first two elements of parameter vector PS3 are composed of several

mechanical properties rather than a single parameter. Therefore, the overall quantity

of each of these two combined parameters is estimated.

3.3 Recursive Least Squares Method

With a defined regression model for each stage, recursive least squares estimation

can be applied to obtain the numerical estimation for parameter vectors PSj. To

implement, the following recursive equations are used

P̂Sj,RLS(k) = P̂Sj,RLS(k − 1) + KRLS(k)[YSj(k)−WSj(k)P̂Sj,RLS(k − 1)], (3.22)

KRLS(k) = PV ar(k − 1)WT
Sj(k)[λΛ + WSj(k)PV ar(k − 1)WT

Sj(k)]−1 (3.23)

and

PV ar(k) =
1

λ
[Im×m −KRLS(k)WSj(k)]PV ar(k − 1) , (3.24)

where the dimension of regression matrix WSj is n by m, the estimated parameter

vector P̂Sj,RLS is m by 1, the regressand vector YSj is n by 1, the correcting matrix

KRLS is m by n, and the variance matrix PV ar is m by m. Λ is the weighting matrix

and is set as the identity matrix with size n in this work. λ is the forgetting factor

that is always used for a time-varying system. However, in this work, λ = 1 because

the system parameters remain unchanged during the identification process. Subscript

“RLS” of P̂Sj,RLS indicates that the parameter vector is estimated by using the RLS

algorithm. Since this algorithm is a recursive process, the time stamp is denoted by

k = 1, 2, .... To initialize the algorithm, PV ar(0) = 106Im×m, and P̂Sj,RLS(0) = 0.

3.4 Instrumental Variable Method

Because the structure of noise and its probability distribution are unknown, the

RLS method yields biased estimates [28, p. 382]. To overcome this issue, a solution,
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called Instrumental Variable (IV), is applied from [29, p. 486]. The IV approach is

defined by the following equations

P̂Sj,IV = (ΓT
SjΠSj)

−1ΓT
SjΨSj , (3.25)

where

ΓSj =
[
ZT
Sj(k = 1), ...,ZT

Sj(k = N∆T )
]T
, (3.26)

ΠSj =
[
WT

Sj(k = 1), ...,WT
Sj(k = N∆T )

]T
, (3.27)

and

ΨSj =
[
YT
Sj(k = 1), ...,YT

Sj(k = N∆T )
]T

, (3.28)

where N∆T denotes the last time stamp, and the subscript “IV” of P̂Sj,IV indicates

that the parameter vector is estimated by the IV approach. As seen in Equation 3.25,

system parameters at each stage are now estimated with the help of instrumental

matrix ΓSj whose columns are called instrumental variables. To have optimized

estimation, it is essential to construct the matrix ΓSj such that it is highly correlated

with the stacked regression matrix ΠSj and uncorrelated with the estimation residual

from the RLS algorithm [29, p. 486]. To fulfill these requirements, in this work, the

ΓSj matrix is constructed by using uncorrupted signals simulated based on estimates

P̂Sj,RLS for the first iteration and based on the previous P̂Sj,IV for the rest of the

iterations. To initiate the IV method at first iteration, it is important to have stable

estimates so that matrix ΠSj does not contain unstable system responses. Experience

and literature shows that convergence occurs very fast and usually 2 to 5 iterations

are enough. Figure 3.1 shows the overall estimation process after integrating the RLS

algorithm with the IV method.

While WSj and YSj have been defined previously in each stage, the simulated

regression matrix ZSj at each stage is written as

ZS1 =
[
θ̈sim,i θ̇sim,i

]
, (3.29)
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where i = 3 for the first motor and i = 4 for the second motor,

ZS2 =


θ̈sim,2 0 θ̇sim,2 θ̇sim,2 − θ̇sim,4

r
θsim,2 − θsim,4

r

0
θ̈sim,4

r2
0

θ̇sim,4

r2
− θ̇sim,2

r

θsim,4

r2
− θsim,2

r


 (3.30)

ZS3 =




θ̈1 zsim,12 θ̇sim,1 θ̇sim,1 − θ̇sim,3

r
θsim,1 − θsim,1

r
0

0 zsim,22 0 0 0 0

0 0 0
θ̇sim,3

r2
− θ̇sim,1

r

θsim,3

r2
− θsim,1

r

θ̈sim,3

r2


 , (3.31)

where

zsim,12 = cos(θsim,2)θ̈sim,2 − (2θ̇sim,1θ̇sim,2

+θ̇2
sim,2) sin(θsim,2) + 2 cos(θsim,2)θ̈sim,1

(3.32)

zsim,22 = cos(θsim,2)θ̈sim,1 + sin(θsim,2)θ̇2
sim,1 . (3.33)

The subscript “sim” emphasizes that the generalized variable θsim,i is obtained by

simulating the system response based on the corresponding mechanical model at each

stage. Strictly speaking, Equations 3.2, 3.4, and 2.16 are used to simulate θsim,i for

stages one, two, and three, respectively.

3.5 Simulation Results

Selected simulation results are presented in this Section. It is worth pointing out

that the noise is introduced when obtaining the angular velocity and acceleration

signals, which are calculated by the finite difference method. By definition, this

numerical method can be written as

θ̇1,2,3,4(k∆T ) =
δθ1,2,3,4

δt
|t=k∆T ≈

θ1,2,3,4(k∆T )− θ1,2,3,4((k − 1)∆T )

∆T
, (3.34)

where k = 1, 2, 3, ... denotes the discrete time stamp, and ∆T is the sampling period.

Similarly, the angular acceleration can be obtained by using the following equation:

θ̈1,2,3,4(k∆T ) =
δθ̇1,2,3,4

δt
|t=k∆T ≈

θ̇1,2,3,4(k∆T )− θ̇1,2,3,4((k − 1)∆T )

∆T
. (3.35)

Noise due to limited resolution of encoders and quantization from ADC and DAC

units is also included in this simulation program. Figure 3.2 gives the excitation
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profiles for motor one and motor two, respectively. For simplicity, excitation profiles

are the same over the three stages. In general, the profiles are generated by using the

following equation

Tsine,1 = Tsine,2 = Tmax

Nsine∑

k=1

sin(2πfkt) , (3.36)

where Nsine = 9 is the number of frequency components used, Tmax = 0.13(Nm) is the

scaling factor to limit torque output from each motor, and fk(Hz) ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}
with fi = fj iff i = j.

Figure 3.2. Excitation Signal Profiles for Motor One (left) and Motor Two (right)

With the defined excitation profiles, the simulated system responses from Stages

One to Three are shown in Figures 3.3 to 3.5, respectively.
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Figure 3.3. System Response at Stage One

Figure 3.4. System Response at Stage Two

After applying the RLS algorithm and the IV approach, the estimated parameters

are obtained. Figures 3.6 to 3.8 and Table 3.1 show the summarized results by
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Figure 3.5. System Response at Stage Three

comparing the error percentage of estimated parameters. The error percentage is

defined by the following equation

Error Percentage =
pdef − pest

pdef
100% , (3.37)

where pdef is the defined parameter value used in the simulation and listed as a title on

each subplot from Figures 3.6 to 3.8, and pest is the estimated parameter value either

based on the RLS algorithm or the IV approach. In this work, five iterations have

been run for the IV approach. Each title of the subplots defines the corresponding

numerical value of a parameter that is used in the simulation program. Note that 0th

iteration in these figures represents error percentage due to the classic RLS algorithm,

which is used to initiate the IV approach.
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Figure 3.6. Error Percentages of Estimated Parameters for Stage One

It can be seen that convergence occurs after about five iterations, which confirms

comments in the literature. In general, estimation quality has been improved signif-

icantly by the IV approach. Based on the simulated results, if RLS yields large-bias

estimation, the IV approach gains relatively large momentum to correct the bias and

P̂Sj,IV is able to jump into a relatively small error bound. Estimation errors for

parameters c5 and c6 from Table 3.1 are relatively larger than for other parameter

estimates. This is possibly due to their relatively small numerical values defined in

the simulation. It is worth pointing out that to initiate the IV approach, it is neces-

sary to have stable signals which form the simulated regression matrix ZSj. Besides,

both RLS and the IV are sensitive to data preprocessing. For example, to reduce the
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Figure 3.7. Error Percentages of Estimated Parameters for Stage Two

noise level contained in the signals, a common practice is to include filters during the

data preprocessing. In this work, low-pass filters have been adopted in handling both

angular velocity and acceleration signals that are obtained directly from the encoder

signals. It is found that different cut-off frequencies used by the low-pass filter can

greatly affect overall estimation accuracy. Again, more comparisons can be seen in

Appendix D.
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Figure 3.8. Error Percentages of Estimated Parameters for Stage Three

3.6 Experimental Results

In this Section, experimental results from Stage One are provided. Figure 3.9

shows the experimental excitation profiles for motor one and motor two, respectively.

After applying the RLS algorithm and the IV approach, the estimated parameter

values are shown in Figure 3.10. In this figure, similar to Figure 3.6, the 0th iteration

denotes the estimated parameter from the RLS algorithm which is used to initiate the

IV approach. Since convergence in the IV approach is observed, only five iterations are

used to obtain the final estimated parameter for the IV approach. The corresponding

parameter values are listed in Table 3.2.
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Table 3.1. Error Percentages of Estimated Parameters from Simulation

Stage Parameters RLS IV method

Stage

One

J3 4.459% 3.828%

c3 52.27% -3.498%

J4 −5754% 1.958%

c4 -3857% -4.745%

Stage

Two

m2a
2
2 + J2 -100% 0.4911%

J6 -139.6% 0.4951%

c2 -108.1% 2.186%

c6 2487% -6535%

k6 -98.81% 0.5742%

Stage

Three

p1 -20.31% -0.6837%

l1m2a2 -54% -2.894%

c1 -306.1% -31.56%

c5 1013% -534.7%

k5 -28.64% -0.4043%

J5 −2034% 25.94%

Table 3.2. Estimated Parameter Values from Experiment

Stage Parameters RLS IV method

Stage

One

J3 (kgm2

rad ) 3.78× 10−5 4.68× 10−5

c3 (Nms
rad ) 16.84× 10−5 17.95× 10−5

J4 (kgm2

rad ) 72.03× 10−5 81.14× 10−5

c4 (Nms
rad ) 129.26× 10−5 139.09× 10−5

To validate the estimated parameters for each motor, based on their values, the

simulated responses as well as the experimental responses are shown in Figures 3.11

and 3.12. In these figures, the solid line represents the experimental responses of each
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Figure 3.9. Experimental Excitation Torque Profiles for Motor One
(left) and Motor Two(right)

motor while the dashed line denotes the simulated responses using the estimated

parameters from the RLS algorithm or the IV approach.

To quantify the difference between the experimental response and the simulated

response, the dimensionless trajectory error equation is used, defined as

e∗ =
1

N

N∑

i=0

|θexp(i)− θest(i)|
amp(θexp)

100% , (3.38)

where θexp is the time history of the angular position measured from the experiments,

θest is the simulated trajectory response based on the estimated parameters by using

the RLS or the IV method, and N is the sample size. In this equation, the operation

amp(·) = max(·)−min(·), which essentially takes the peak-to-peak value of a signal

over time. Table 3.3 summarizes the dimensionless error. From this table, it can be

seen that the IV method results in a smaller magnitude of the dimensionless trajectory
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Figure 3.10. Estimated Parameter Values from Experiment for Motor
One and Motor Two

Figure 3.11. Experimental and Simulated Responses for Motor One
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Figure 3.12. Experimental and Simulated Responses for Motor Two

Table 3.3. Dimensionless Trajectory Errors for RLS and IV methods

Stage Dimensionless Errors RLS IV method

Stage

One

e∗θ3 5.24% 4.28%

e∗θ4 8.36% 3.13%

error for both motors. That is to say, the simulated response based on the IV method

is relatively better in terms of reconstructing the motor signal. As a result, the IV

approach improves the estimated parameters from the RLS algorithm.

In conclusion, simulation results have shown that integrating the IV approach

with the classic RLS could improve overall estimation accuracy when the noise in

measurement signals has unknown distribution. Validation based on experimental

results of Stage One is provided and also shows that a considerable improvement has

been achieved by using the IV method.
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4. SYNTHESIS OF COMPUTED TORQUE CONTROLLER WITH COMMAND

SHAPING

Feedback control has been widely used in robotics applications for its ability to ensure

tracking accuracy, robustness, and to reject disturbance. Computed Torque Control

is one of the popular controllers for robots and is used throughout this work. When

it is combined with the command shaping method, it is of interest to understand the

interaction between this controller and the quality of minimizing residual vibration

using the command shaping method.

In this Chapter, Sections 4.1 and 4.2 provide the control scheme and the closed-

loop stability analysis, respectively. Section 4.3 analyzes the closed-loop resonant

frequency for the perfectly-decoupled system. Section 4.4 provides the calculation of

the closed-loop resonant frequency when estimation error exists in the model-based

compensator. At the end, simulation results are presented in Section 4.5 for both the

decoupled system and the mismatched model. Summary and recommendations for

choosing control gains are in Section 4.6.

4.1 Computed Torque Control

Essentially, the Computed Torque control consists of a model-based compensator

and a servo-based controller. The model-based compensator removes the coupling

effect between the robot links and motors based on the estimated parameters. The

servo-based part, on the other hand, uses Proportional-Derivative (PD) controllers to

ensure asymptotic stability and tracking accuracy. Figure 4.1 shows a block diagram

when this controller is integrated with the robot system. As seen, the control law is

written as

Tmotor = Tmb + Tsb , (4.1)
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Figure 4.1. Block Diagram of the Computed Torque Controller Inte-
grated with the Robotic Arm

where Tmotor, defined in Equation 2.26, is a column vector consisting of torque outputs

from motor one and motor two, respectively. Tmb denotes the calculated torque

amount from the model-based compensator and Tsb is the control torque from the

servo-based part. By definition, model-based control torque Tmb is obtained from the

following equation

Tmb = M̂mb
ˆ̈
θlink + Ĉmb

ˆ̇
θ + K̂mbθ̂ + V̂mb(θ̂,

ˆ̇
θ) + Dmb(θ̂) . (4.2)

Since Vmotor = 0 from Equation 2.21, the estimation of V̂mb becomes zero. Moreover,

the Coulomb friction Dmb is assumed to be zero and hence the model-based control

can be further simplified and written as

Tmb = M̂mb
ˆ̈θlink + Ĉmb

ˆ̇θ + K̂mbθ̂ (4.3)

where

M̂mb = MT
2 − M̃mb

Ĉmb = Cmb − C̃mb

K̂mb = Kmb − K̃mb

(4.4)

and

Cmb =


−

c5
r

0 c3 + c5
r2

0

0 − c6
r

0 c4 + c5
r2


 , (4.5)
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Kmb =


−

k5
r

0 k5
r2

0

0 −k6
r

0 k6
r2


 . (4.6)

For convenience, the estimated system property and estimated signals are denoted

with the symbol “ˆ” while the error between the estimated and actual system is de-

noted by the symbol “˜”. When estimation error vanishes, the estimated parameters

are exactly the same as those of the actual system so that Equation 4.3 becomes

Tmb = MT
2

ˆ̈θlink + Cmb
ˆ̇
θ + Kmbθ̂ . (4.7)

As for the servo-based part, Tsb is defined in the following equation

Tsb = M̂3

(
θ̈motor,d + Kv(θ̇motor,d − ˆ̇θmotor) + Kp(θmotor,d − θ̂motor)

)
, (4.8)

with Kp and Kv being 2×2 diagonal matrices that contain proportional and derivative

gains, respectively. Similarly M̂3 is defined as

M̂3 = M3 − M̃3 . (4.9)

When there is no estimation error, that is M̃3 = 0, the servo-based control becomes

Tsb = M3

(
θ̈motor,d + Kv(θ̇motor,d − ˆ̇

θmotor) + Kp(θmotor,d − θ̂motor)
)
, (4.10)

where the subscript “d” in θmotor,d denotes the desired trajectory profile for the mo-

tors.

4.2 Closed-Loop Stability Analysis

Evaluating the stability of the closed-loop system under the proposed computed

torque control is important as it sheds light on the first step of choosing control gains

in both the proportional gain matrix Kp and derivative gain matrix Kv. Under the

assumption of no estimation error in system parameters, Equations 4.1, 4.7 and 4.10

are used to obtain the closed-loop system dynamics with the governing Equation 2.16.

The simplified closed-loop system is then obtained and can be written as

[
M1 M2

]
θ̈ + Vlink(θlink, θ̇link) + Clinkθ̇ + Klinkθ + Dlink(θ̇) = 0 (4.11)
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and

0 = M3

(
(θ̈motor,d − θ̈motor) + Kv(θ̇motor,d − θ̇motor) + Kp(θmotor,d − θmotor)

)

(4.12)

As seen, the closed-loop system, under the assumption of zero estimation error of

system parameters, becomes two separate subsystems described by Equation 4.11 for

the link subsystem and by Equation 4.12 for the motor subsystem. Furthermore,

defining the motor error as

emotor = θmotor,d − θ , (4.13)

Equation 4.12 now becomes

0 = M3(ëmotor + Kvėmotor + Kpemotor) . (4.14)

To achieve asymptotic stability, Equation 4.14, namely the error dynamics equation,

needs to fulfill the Hurwitz criterion [16]. In this way, the computed torque controller

guarantees asymptotic tracking and stability for the internal dynamics of the link

subsystem as well.

4.3 Closed-Loop Resonance

From the standpoint of designing command profiles, the resonant frequencies of

the closed-loop system need to be determined first. Finding resonant frequencies is

essentially looking for the eigenvalues of the closed-loop system. However, the closed-

loop system is nonlinear so that its natural frequencies are not unique and change

based on the robot configuration. To deal with the nonlinearity, a typical approach

is to linearize the system around an equilibrium point. In this work, the closed-

loop system is linearized as a function of θ2 by using the Taylor series expansion.

By doing so, only the first-order term is preserved while the angular velocity and

acceleration are set to zero. As a result, terms due to the Coriolis and Centrifugal

forces are dropped. The Coulomb friction is gone as well for zero angular velocity
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around the equilibrium point. Therefore, the linearized closed-loop system derived

from Equations 4.11 and 4.12 can be written as

MCLθ̈ + CCLθ̇ + KCLθ = 0 , (4.15)

where MCL is defined as

MCL(θe) =


M1 M2

0 M3


 (4.16)

and is evaluated at the equilibrium point θ2 = θe. In this work, the robot starts from

θe = 0 (rad) and stops at θe = 1.2 (rad). The closed-loop damping matrix is obtained

as

CCL =


C1 C2

0 M3Kv


 (4.17)

and the closed-loop stiffness matrix is

KCL =


K1 K2

0 M3Kp


 . (4.18)

With the linearized closed-loop system, a general approach described in [39] is followed

to find the natural frequencies from the eigenvalues of the so-called A matrix, which

is defined as

A =


 0 I4×4

−M−1
CLKCL −M−1

CLCCL


 . (4.19)

All numerical results presented in this Chapter are based on the physical parameter

values shown in Table 2.2. For a lightly damped robot system, the resonant frequency

ωr is approximated by the damped natural frequency ωd in this work.

4.3.1 Link-Property-Based and Control-Gain-Based Eigenvalues

Thanks to the computed torque controller, its model-based compensator Tmb de-

fined in Equation 4.7 is able to decouple the link subsystem from the motors. That

is to say, the eigenvalues of matrix A, denoted as λ(A), is a set of eigenvalues due to
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the link subsystem and the motor subsystem, respectively. This can be easily seen by

rearranging Equations 4.11 and 4.12 to obtain the“input-output” format, shown as

M1θ̈link + C1θ̇link + K1θlink = −(M2θ̈motor + C2θ̇motor + K2θmotor) (4.20)

and

M3(θ̈motor + Kvθ̇motor + Kpθmotor) = M3(θ̈motor,d + Kvθ̇motor,d + Kpθmotor,d)

(4.21)

with the right-hand sides being the inputs of both subsystems. With the assistance of

computed torque control, the coupling effect between links and motors is transformed

into a sequential “input-output” relationship. The desired motor profile is the input

of the motor subsystem while the actual motor response is the output. For the link

subsystem, the actual motor response serves as subsystem input while the actual link

response is the link subsystem output.

As a result, the eigenvalues of the link subsystem, λ(Alink), can be obtained from

the matrix Alink defined as

Alink =


 0 I2×2

−M−1
1 K1 −M−1

1 C1


 . (4.22)

To better analyze the closed-loop eigenvalues due to the motor subsystem, the

controller damping ratio matrix ζctrl and the controller natural frequency matrix

ωn,ctrl are introduced to obtain the following relationships,

Kv = 2ζctrlωn,ctrl (4.23)

and

Kp = ωn,ctrlωn,ctrl . (4.24)

For simplicity, both ζctrl and ωn,ctrl are diagonal matrices that can be written as

ζctrl =


ζ3,ctrl 0

0 ζ4,ctrl


 ωn,ctrl =


ω3,ctrl 0

0 ω4,ctrl


 (4.25)
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so that ζ3,ctrl and ω3,ctrl together determine the controller for motor one and ζ4,ctrl

and ω4,ctrl for motor two. Thus, the control-gain-based eigenvalues are found by

λ3,ctrl = −ζ3,ctrl ω3,ctrl ± i ω3,ctrl

√
1− ζ2

3,ctrl

λ4,ctrl = −ζ4,ctrl ω4,ctrl ± i ω4,ctrl

√
1− ζ2

4,ctrl ,
(4.26)

where i is the imaginary number, and both ζ3,ctrl and ζ4,ctrl are not larger than 1.

Simply put, even though controller gains are presented in matrix A, once the

system is decoupled, the resonant frequencies are purely a function of θ2, which is

illustrated in Figure 4.2. In this figure, the upper subplot shows the first mode of

the closed-loop system, and the lower subplot shows the second mode. It can be seen

that as θ2 changes, the resonant frequencies change as well. This figure shows results

when the controller parameters ζ3/4,ctrl = 1 and ω3/4,ctrl = 40. To demonstrate that

the resonant frequencies are independent of the values of control gains, more numerical

results obtained from different values of control gains are provided in Appendix A.

Note that numerical results are calculated based on the robot parameter values listed

in Table 2.2.

4.3.2 Link-Property-Based Command Shaping

With the framework of the separation of link-based eigenvalues and control-gain-

based eigenvalues, the command shaping method can shape the profile purely based on

the resonant frequencies found from the link subsystem because controller parameters

do not affect the closed-loop system resonant frequencies. As mentioned in Section

2.1.2, the basis function formed by the segmented Versine profile is able to contain

different target frequencies in each segment so as to remove more relevant energy that

aggravates residual vibration. For robustness purposes, each segment adds a set of

shaping bounds so that energy can be removed from a specific range of frequencies.

Figure 4.3, based on Figure 4.2, adds two sets of ±5% shaping bounds for each mode

separately. In each mode, the first set of bounds removes energy in the acceleration

segment based on half of the final configuration, which is θ2 = 0.6(rad). The second
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Figure 4.2. Resonant Frequencies of the Robotic Arm with Controller
Parameters ζ3,ctrl = ζ4,ctrl = 1 and ω3,ctrl = ω4,ctrl = 40

set of bounds is added in the deceleration segment based on the final configuration

which is θ2 = 1.2(rad). As a result, for the first mode, the first set of bounds is

added between 3.5262(rad/s) and 3.8974(rad/s), and the second set is added between

3.7597(rad/s) and 4.1555(rad/s). For the second mode, the first set of bounds is added

between 14.9015(rad/s) and 16.4801(rad/s) while the second set is added between

13.1816(rad/s) and 14.5692(rad/s). Simulation results that incorporate the shaping

bounds of ±5% with different control gain values are shown in Section 4.5.1.

Since the width of shaping bounds, from the standpoint of the command shaping

method, is used for robustness as well as for covering more resonant frequencies

during the point-to-point motion, this method is able to change the width of the

shaping bounds to achieve optimized results. Figure 4.4 indicates the ±10% shaping

bounds. Comparing with Figure 4.3, which uses the ±5% shaping bounds, Figure 4.4
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Figure 4.3. ±5% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 40

shows more region could be covered in the second mode frequency. Simulation results

comparing the effectiveness of different sets of shaping bounds are given in Figure

4.11 in Section 4.5.1.

4.4 Mismatched Closed-Loop System

In reality, estimation error exists so that the model-based compensator in com-

puted torque control can not decouple the robot system perfectly. To mathematically

capture this, the closed-loop system given in Equation 4.15 needs to change so that
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Figure 4.4. ±10% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 40

the influence owing to the mismatched model can appear in the equations. As a

result, the closed-loop equation is written as

MCL,misθ̈ + CCL,misθ̇ + KCL,misθ = 0 , (4.27)

where MCL,mis is defined as

MCL,mis(θe) =


 M1 M2

M̃mb M3


 (4.28)

and evaluated at the equilibrium point θ2 = θe. The closed-loop damping matrix is

obtained as

CCL,mis =


C1 C2

C̃2 M3Kv


 (4.29)
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and the closed-loop stiffness matrix is

KCL,mis =


K1 K2

K̃2 M3Kp


 . (4.30)

It is essential to know in the presence of estimation error, the closed-loop system is

no longer decoupled such that all matrices in Equations 4.28 to 4.30 no longer have

zero terms at their lower-left corner, respectively. As before, resonant frequencies for

the mismatch-model closed-loop system are obtained from the eigenvalues of matrix

Amis

Amis =


 0 I4×4

−M−1
CL,misKCL,mis −M−1

CL,misCCL,mis


 . (4.31)

Since the system is no longer decoupled, resonant frequencies become a function of

both robot configuration and control gains. This can be seen from Figures 4.5 to 4.8,

each having different control gain values. In these figures, a dashed line indicates the

actual frequency of the mismatch-model closed-loop system while a solid line stands

for the frequency of the nominal system, which has been perfectly decoupled. Same

as those in Section 4.3.2, the shaping bounds are obtained based on the nominal

frequencies at different configurations. Note that numerical results due to estimation

errors are obtained by setting the “actual robot” with higher stiffness values, so that

estimated stiffness is 95% of the“actual robot” stiffness. For convenience, it is labeled

as MFK = 95%, where “MF” denotes mismatch factor, and the subscript K stands

for stiffness.

As seen, the actual frequencies change when control gain changes. The mismatch-

model simulation results that use the nominal frequencies and the corresponding

shaping bounds in segmented Versine command profiles are presented in Section 4.5.2.

4.5 Simulation Analysis

In this Section, simulation results are presented. Section 4.5.1 shows results based

on a perfectly decoupled system, that is to say, no estimation error exists for the
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Figure 4.5. ±5% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 25, and Mismatch factor MFK = 95%

closed-loop system. Based on results and observations from the decoupled system,

focus narrows to a smaller set of control gains for which all controller damping ratios

are set to 1. Section 4.5.2 provides results for the mismatch-model closed-loop system

with estimation error.

4.5.1 Influence of Control Gains

This subsection focuses on the servo-based PD controller, which is one of the

essential building blocks for the computed torque controller. For simplicity, controller

parameters for motor one and motor two are set to the same values in the simulation

such that ζ3,ctrl = ζ4,ctrl and ω3,ctrl = ω4,ctrl. Figure 4.9 shows the influence on peak-
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Figure 4.6. ±5% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 30, and Mismatch factor MFK = 95%

to-peak value of the residual vibration defined by Equation 2.51, when control gains

in the servo-based PD controllers change. In this figure, the X − Y plane denotes

controller pole location with X axis being the real part for the pole location and Y

axis the imaginary part. The eigenvalues of the controller are determined by using

Equation 4.26. For the Z axis, it is used to indicate the amplitude of the peak-

to-peak value of the residual vibration. For each set of control gains there is one

corresponding value of the vibration amplitude. For example, when ζ3,ctrl = ζ4,ctrl = 1

and ω3,ctrl = ω4,ctrl = 20, the corresponding peak-to-peak P̈xy is 0.2248(m/s2). For this

set of control gains, the repeated pole locations are −20± i0; therefore, in this figure,

the simulation result is plotted at the point (-20, 0, 0.2248). When the control gains



63

Figure 4.7. ±5% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 100, and Mismatch factor MFK = 95%

are set to have complex eigenvalues, the peak-to-peak residual vibration is plotted on

the eigenvalue with positive imaginary part. For example, when ζ3,ctrl = ζ4,ctrl = 0

and ω3,ctrl = ω4,ctrl = 3, the corresponding peak-to-peak P̈xy is 0.6046(m/s2). Since

this set of control gains has complex eigenvalues of 0 ± i3, the simulation result is

plotted only at (0, 3, 0.6046). A re-scaled figure of Figure 4.9 is shown in Figure 4.10

in order to better demonstrate the impact of control gains.

As seen, in general, residual vibration amplitude decreases when both controllers

have larger values of ω3/4,ctrl. Relatively large residual vibration is observed around the

pole location of 0± i4 and peaks at 0± i4 with peak-to-peak P̈xy value of 2.274(m/s2).

It is worth noting that such pole location is close to the first mode of resonant fre-
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Figure 4.8. ±5% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 500, and Mismatch factor MFK = 95%

quency, which is about 3.9576(rad/s). This phenomenon, in general, could be ex-

plained by the frequency response of a second-order system. Since the motor control

behaves as a second-order system, when the controller damping ratio is less than

0.707, its frequency response is greater than 0(dB) at its natural frequency. As a re-

sult, more energy is injected into the robot system when the controller’s eigenvalues

are closer to those of the link subsystem.

Even though resonant frequencies are independent of control gain values for the

perfectly decoupled system, results covering a large number of different control gain

values indicate that residual vibration is still affected by the controller. This can be

possibly explained by using a simple input/output transfer function. The response of
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Figure 4.9. Peak-to-Peak Residual Vibration over the Locations of
Controller Eigenvalues for Perfectly Decoupled Robotic Arm

the system is not only characterized by the system poles but are also affected by the

system zeros. If the control gains affect the numerator, it indicates that the controller

still influences the residual vibration.

Instead of merely looking at the influence of different control gains, it is worth-

while to evaluate the effectiveness of shaping bounds in minimizing residual vibration.

When the system is perfectly-decoupled, Figure 4.11 shows the effectiveness of min-

imizing residual vibration with the built-in shaping bounds. It can be seen that as

the width of the shaping bounds increases, residual vibration amplitude gets smaller.

This can be explained by the range of resonant frequencies being covered, which is

shown in Figure 4.3 for a ±5% shaping bounds and in Figure 4.4 for ±10%. Since the
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Figure 4.10. Rescaled Plot of Peak-to-Peak Residual Vibration
over the Locations of Controller Eigenvalues for Perfectly Decoupled
Robotic Arm

second mode frequency is completely covered by the ±10% shaping bounds while this

is not the case for the ±5% shaping bounds, more critical energy that is relevant to

residual vibration has been removed during the shaping process. Thus, less vibration

is observed for each set of control gains. A case for shaping bounds of 0% width is

included to better illustrate this idea.

Based on these sets of simulation results, when choosing the controller gains, it

is better to avoid placing control poles around the system resonant frequencies, and

also to have control gains as large as possible. Moreover, at this stage, the controller
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Figure 4.11. Influence of the Width of Shaping Bounds on Peak-
to-Peak Residual Vibration with ζ3,ctrl = ζ4,ctrl = 1 for the Perfectly
Decoupled Robotic Arm

works quite independent of the width of shaping bounds so that choosing a large

control gain does not degrade the command profile.

4.5.2 Impact of Model Mismatch

With the information and numerical observations from the perfectly-decoupled

system response, focus in this subsection shifts to results generated by setting the

controller damping ratios to 1. By doing so, each motor in the robot system introduces

two repeated poles on the real axis so that they are not close to those lightly-damped

poles for the link dynamics. Figure 4.12 shows the quality of shaping bounds when
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the system is not perfectly decoupled. In this figure, the solid line denotes results for

a perfectly-decoupled system, and the dashed line for a system with estimation error

of MFK = 95%. It can be seen that, with wider shaping bounds, residual vibration

Figure 4.12. Influence of the Width of Shaping Bounds on Peak-
to-Peak Residual Vibration with Solid Line for Perfectly-Decoupled
System and Dash Line for Mismatch Model of MFK = 95%

tends to decrease. This confirms the idea of robustness when the model is not perfectly

decoupled. Compared with the decoupled system, the mismatched model yields lower

vibration as control gain increases. This is mainly because the resonant frequency, in

mismatched cases, is not simply a function of robot configuration. It depends on both

robot configuration and the control gains. This has been demonstrated in Figures

4.5 to 4.8. As the control gain increases, the curve of actual resonant frequency is
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gradually being pushed into the region bounded by the shaping bounds, and this

curve finally stays in a certain region regardless of the control gain magnitude.

Results in Figures 4.13 to 4.20 present the impact on residual vibration when MFK

decreases from 95% to 50%, meaning that the actual system has higher and higher

stiffness relative to the model. Figure 4.21 summarizes the results in one plot.

Figure 4.13. Peak-to-Peak Residual Vibration with ζ3,ctrl = ζ4,ctrl = 1
and MFK = 90% under ±5% Shaping Bounds.

Based on the results, it can be seen that each set of results peaks around ω3/4,ctrl =

13(rad/s) before vibration starts decreasing. This is mainly because, when estimation

error exists in the model-based compensator, performance in tracking the command

profile degrades. When the control gain becomes sufficiently large, it is able to better

track the command profile, and starts lowering the vibration. After that, optimal

control gain occurs for cases of MFK < 90%, indicating a local minimum of residual

vibration has been reached. Comparing different values of MFK, optimal control

gain increases when MFK gets closer to 100%. Besides, at each optimal control gain,

higher residual vibration is seen when MFK goes down. Table 4.1 provides residual

vibration amplitude at each optimal control gain for different values of MFK. It is
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Figure 4.14. Peak-to-Peak Residual Vibration with ζ3,ctrl = ζ4,ctrl = 1
and MFK = 85% under ±5% Shaping Bounds.

Figure 4.15. Peak-to-Peak Residual Vibration with ζ3,ctrl = ζ4,ctrl = 1
and MFK = 80% under ±5% Shaping Bounds.
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Figure 4.16. Peak-to-Peak Residual Vibration with ζ3,ctrl = ζ4,ctrl = 1
and MFK = 75% under ±5% Shaping Bounds.

Figure 4.17. Peak-to-Peak Residual Vibration with ζ3,ctrl = ζ4,ctrl = 1
and MFK = 70% under ±5% Shaping Bounds.
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Figure 4.18. Peak-to-Peak Residual Vibration with ζ3,ctrl = ζ4,ctrl = 1
and MFK = 65% under ±5% Shaping Bounds.

Figure 4.19. Peak-to-Peak Residual Vibration with ζ3,ctrl = ζ4,ctrl = 1
and MFK = 60% under ±5% Shaping Bounds.
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Figure 4.20. Peak-to-Peak Residual Vibration with ζ3,ctrl = ζ4,ctrl = 1
and MFK = 50% under ±5% Shaping Bounds.

interesting to investigate the corresponding actual resonant frequency so as to build

the connections between the shaping bounds, control gain, and mismatch factor.

Appendix B shows the actual resonant frequencies for MFK = 70% cases. It is found

that whenever the actual resonant frequency curve pushed by the control gain enters

the shaping bounds, less residual vibration is observed. However, for cases that have

large estimation error, the controller could “over-push” the curve, and as a result,

the curve could go outside the shaping bounds, resulting in stronger vibration. To

better demonstrate this idea, an animation with MFK = 70% is provided and shown

in Animation 4.22. In this animation, the actual closed-loop resonant frequencies are

shown in the left subplots while the amplitude of residual vibration is plotted on the

right subplot. As the controller parameter ω3/4,ctrl increases, it can be seen that both

resonant frequency curves and residual vibration amplitudes change correspondingly.

More animations with different estimation errors are shown in Appendix C.

Efforts were also made in evaluating the cases having estimation error in the vis-

cous damping matrix instead of the stiffness matrix. For convenience, MFC denotes
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Figure 4.21. Peak-to-Peak Residual Vibration with ζ3,ctrl = ζ4,ctrl = 1
and different MFK values under ±5% Shaping Bounds.

Table 4.1. Optimal Control Gain for Mismatch Model

MFK Optimal ω3/4,ctrl (rad/s) P̈xy(m/s
2)

85% 65 0.07

80% 60 0.09

75% 50 0.13

70% 50 0.21

65% 45 0.36

60% 40 0.60

50% 40 1.08

the mismatch percentage of estimated damping coefficients compared to that of the

actual robot system. For example, MFC = 95% says that the estimated viscous
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Animation 4.22. Actual Closed-loop Resonant Frequencies with
±5% Shaping Bounds(left) and Residual Vibration of the Robotic
Arm(right) with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and vari-
able ω3,ctrl = ω4,ctrl, and Mismatch Factor of Stiffness MFK = 70%

damping matrix is 95% of the actual system. Figures 4.23 to 4.25 show simulation re-

sults under various values of MFC. Figure 4.26 summarizes the results in one plot.

As seen, vibration peaks at relatively small control gain, as mentioned before, because

the controller can not perfectly track the command profile when there is estimation

error in the model-based portion of computed torque control. However, as the con-

trol gain goes up, vibration stays around 0.219(m/s2) regardless of the control gain

magnitude or the value of MFC. This can also be explained by the actual resonant

frequencies presented in Appendix B. The controller pushes the curve of resonant

frequency into the shaping bounds designed based on the nominal system. Unlike

cases that have estimation error in the stiffness matrix, these cases show that the
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Figure 4.23. Peak-to-Peak Residual Vibration with ζ3,ctrl = ζ4,ctrl = 1
and MFC = 95% under ±5% Shaping Bounds.

Figure 4.24. Peak-to-Peak Residual Vibration with ζ3,ctrl = ζ4,ctrl = 1
and MFC = 90% under ±5% Shaping Bounds.
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Figure 4.25. Peak-to-Peak Residual Vibration with ζ3,ctrl = ζ4,ctrl = 1
and MFC = 65% under ±5% Shaping Bounds.

Figure 4.26. Peak-to-Peak Residual Vibration with ζ3,ctrl = ζ4,ctrl = 1
and MFC = 65% to 100% under ±5% Shaping Bounds.
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curve approaches the nominal frequency curve as control gain increases, and becomes

insensitive to the controller.

4.6 Recommendations for Control Gain Selection

At this stage, some basic interactions between the shaping bounds from the com-

mand shaping method and the control gains from computed torque control have been

observed, and can be summarized as follows:

1. For a perfectly-decoupled system, control gain and command shaping work quite

independently except for cases in which the controller places its poles around

the link-property-based pole location, injecting critical energy back to the robot

system.

2. When model estimation error exists in the computed torque control, control

gains induce a deviation of the actual resonant frequency curve from the nominal

resonant frequency curve that is used to generate the shaping bounds in the

command shaping method.

3. The amount of overlap area between the actual resonant frequency curve and

the shaping bounds greatly affects the residual vibration in the sense that more

critical energy which contributes to the residual vibration can be removed with

larger overlap area.

In light of these observations, it is recommended to firstly choose critically-damped

controller poles in order to avoid injecting energy into the robot system. Therefore,

ζ3/4,ctrl = 1. Besides, it is important for tracking the command profile. From the

standpoint of the command shaping method, it is better to accurately remove crit-

ical energy that is associated with the residual vibration. Therefore, two different

approaches can be adopted to achieve this goal by the computed torque controller.

One is to correct the model-based compensator such that it has less estimation error.

With that, higher control gain is able to “push” the resonant frequency curve into
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the shaping bounds. It is important to know that, based on eigenvalue analysis, it is

better to underestimate the system than to overestimate it for the sake of stability in

the presence of estimation error. That is to say the nominal values of both viscous

matrix Cmb and stiffness matrix Kmb are better to be smaller than those of the actual

system. Another approach is to tune the control gains ω3/4,ctrl inside the servo-based

PD controller, since, in the presence of estimation error, control gain is able to “push”

the actual resonant frequency curve. When the curve enters into the shaping bounds

region, the quality of the command profile is improved, since, for a particular range

of estimation error due to the stiffness, an optimal control gain exists such that the

resonant frequency curve is inside the shaping bounds, and more critical energy is

removed.
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5. CONCLUSIONS AND FUTURE WORK

5.1 Summary and Conclusion

In this work, a system identification algorithm called Instrumented Variable (IV)

is applied from the literature to improve the estimation of mechanical parameters.

Based on suggestions from previous work, a sequential identification process is adopted

in order to minimize estimation error because of its flexibility in estimating param-

eters stage by stage instead of acquiring all at once. On top of this procedure, the

IV approach is applied. The IV approach, based on knowledge of the robot model,

essentially compares the corrupted actual signal against the simulated noise-free data

so as to improve the estimation quality. Unlike the classic Ordinary Least Square

method that assumes normally-distributed noise in order to avoid estimation bias,

the IV algorithm is able to relax this assumption. This is important in practice

as the uncertainty between encoder pulses, which are usually used to take position

measurement, is not necessarily normally distributed. From the simulation results,

the IV approach has successfully demonstrated its ability to improve the estimation

accuracy.

In addition to the accuracy of parameter estimation, the controller used in the

robotic arm may affect the quality of the command profile. In the previous work, a

feedback controller called Computed Torque Control has been implemented to track

the command profile, and to reject disturbances. However, it remains uncertain if

this controller can potentially inject energy which has been taken out by the com-

mand profile back into the system. To analyze, a simulation starts from a perfectly-

decoupled closed-loop system. From the results, it is found that residual vibration

peaks when the controller places poles around the resonant frequency. This is mainly

due to the frequency response of a second-order controller that leaks energy around
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its natural frequency. Since, from the mathematical derivation, the coupling effect is

transformed into the input/output relation between the link subsystem and the motor

subsystem, energy that goes into the motor subsystem at its natural frequency will

also enter the link subsystem. As a result, when controller poles are near the system

resonant frequencies, strong residual vibration is observed. Therefore, it is suggested

to have critically-damped PD controllers in the servo-based part of the computed

torque control to avoid injecting energy back to the robot system.

In practice, estimation error exists; thus, the impact from a mismatched model

has been analyzed. In the command shaping method, shaping bounds are generated

based on the nominal model and aim to incorporate the robustness into the command

profile. On the other hand, in the presence of estimation error, the closed-loop dy-

namic is different. Based on the mathematical derivation, it is found that the actual

resonant frequency is not only a function of robot configuration but also a function

of control gains. Affected by the control gains, the resonant frequency curve enters or

leaves the shaping bounds. This result becomes interesting as it indicates that, for a

certain range of model estimation error, there exists a set of optimal gains so that the

actual resonant frequency stays inside the shaping bounds, and the command shaping

method can remove most of the critical energy.

To conclude, simulation results show that the IV algorithm is able to improve

the accuracy of parameter estimation. Based on the simulation results from the

perfectly-decoupled system as well as observations from the mismatched model, rec-

ommendations are provided at the end of Chapter 4 to choose control gains.

5.2 Contributions

This work has several unique contributions. A system identification approach

called Instrumental Variable is applied from the literature. A framework for combin-

ing the Ordinary Least Square approach with the IV method is provided. Simulation

results have shown significant improvement in the accuracy of parameter estimation.
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Flexibility in terms of data preprocessing is also built into the IV approach to achieve

better results. In general, this part of the work not only validates the model-based

system ID approach but also provides the command shaping method a more accurate

model when developing the command profile.

In a two-link robot system, the resonant frequencies are configuration-dependent.

Thus, another contribution herein lies in the analysis of combining the computed

torque control with the command shaping method when estimation error exists.

Based on numerical observations, eigenvalues due to the controller interact with those

coming from the link subsystem. As a result, the closed-loop resonant frequency de-

pends on both the control gains as well as the robot configuration. Simulation results

have shown that, for a certain range of estimation error, the connection between the

shaping bounds and the controller leads to an optimal control gain that minimizes

residual vibration. In light of all observations, recommendations for choosing control

gains are given.

The MATLAB code that uses the IV approach to perform system identification has

been generated based on the robot model so that it can be used for experimental data.

The lookup table of the resonant frequency has been replaced with a new function

called “find freq.m” which incorporates the controller information and estimation

error to find the closed-loop resonant frequency.

5.3 Future Work

There are some areas of research that could be examined in the future. Since

results from the new system identification approach are based on simulation, and

experiment of Stage One, it would be worthwhile to collect experimental data of Stage

Two and Stage Three. A comparison could be made between the OLS method and

the IV approach, in order to validate its improvement. Since the IV approach in this

work is “off-line”, its “on-line” version would be appealing because it could potentially
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improve the model-based controller. That is to say, the computed torque controller

could incorporate the on-line IV approach into its model-based compensator.

Estimation improvement could also be achieved at different stages. Thanks to

the flexibility of the sequential identification procedure, it is possible to include a

more detailed motor model during the identification process. With the help of this

“upgraded” motor model, precise estimation of the motor inertia and damping ratio

could be obtained and used at the second stage.

As mentioned, when estimation error exists, the width of shaping bounds and the

control gain simultaneously affect the residual vibration. Therefore, it is possible to

find an optimal set of gains so that more critical energy associated with the vibration

could be taken out by using the command shaping method. Moreover, even when the

system is perfectly-decoupled, the coupling effect still exists between the robot links;

therefore, it implies that the controller implemented on one link is able to affect the

rest of the link system. In this work, simulation results used a controller with damping

ratio ζ3/4,ctrl = 1 and the same ω3/4,ctrl for both motors. Thus, it would be important

to study the influence due to various sets of control gains. It is also found that the

shaping bounds that are based on different robot configurations can affect the residual

vibration. Thus, a methodology to locate the shaping bounds is attractive. Based

on the idea that the controller could push actual closed-loop resonant frequency into

the shaping bounds region, when applying other types of controllers rather than the

computed torque control, similar analysis could be conducted in order to limit the

impact on the command profile.
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A. RESONANT FREQUENCY FOR PERFECTLY DECOUPLED ROBOTIC

ARM

Figure A.1. Resonant Frequencies of the Robotic Arm with Controller
Parameters ζ3,ctrl = ζ4,ctrl = 1 and ω3,ctrl = ω4,ctrl = 1

Figure A.2. Resonant Frequencies of the Robotic Arm with Controller
Parameters ζ3,ctrl = ζ4,ctrl = 1 and ω3,ctrl = ω4,ctrl = 10
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Figure A.3. Resonant Frequencies of the Robotic Arm with Controller
Parameters ζ3,ctrl = ζ4,ctrl = 1 and ω3,ctrl = ω4,ctrl = 50

Figure A.4. Resonant Frequencies of the Robotic Arm with Controller
Parameters ζ3,ctrl = ζ4,ctrl = 1 and ω3,ctrl = ω4,ctrl = 100
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B. RESONANT FREQUENCY OF ROBOTIC ARM WITH MISMATCH MODEL

Figure B.1. ±5% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 35, and Mismatch Factor of Stiffness MFK = 75%
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Figure B.2. ±5% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 40, and Mismatch Factor of Stiffness MFK = 75%
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Figure B.3. ±5% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 60, and Mismatch Factor of Stiffness MFK = 75%
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Figure B.4. ±5% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 80, and Mismatch Factor of Stiffness MFK = 75%
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Figure B.5. ±5% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 100, and Mismatch Factor of Stiffness MFK = 75%
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Figure B.6. ±5% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 1000, and Mismatch Factor of Stiffness MFK = 75%
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Figure B.7. ±5% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 6, and Mismatch Factor of Stiffness MFC = 65%
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Figure B.8. ±5% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 8, and Mismatch Factor of Stiffness MFC = 65%
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Figure B.9. ±5% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 10, and Mismatch Factor of Stiffness MFC = 65%
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Figure B.10. ±5% Shaping Bounds of Resonant Frequencies for the
Robotic Arm with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and
ω3,ctrl = ω4,ctrl = 1000, and Mismatch Factor of Stiffness MFC = 65%
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C. ANIMATION

Animation C.1. Actual Closed-loop Resonant Frequencies with
±5% Shaping Bounds(left) and Residual Vibration of the Robotic
Arm(right) with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and vari-
able ω3,ctrl = ω4,ctrl, and Mismatch Factor of Stiffness MFK = 95%
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Animation C.2. Actual Closed-loop Resonant Frequencies with
±5% Shaping Bounds(left) and Residual Vibration of the Robotic
Arm(right) with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and vari-
able ω3,ctrl = ω4,ctrl, and Mismatch Factor of Stiffness MFK = 75%
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Animation C.3. Actual Closed-loop Resonant Frequencies with
±5% Shaping Bounds(left) and Residual Vibration of the Robotic
Arm(right) with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and vari-
able ω3,ctrl = ω4,ctrl, and Mismatch Factor of Stiffness MFK = 50%
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Animation C.4. Actual Closed-loop Resonant Frequencies with
±5% Shaping Bounds(left) and Residual Vibration of the Robotic
Arm(right) with Controller Parameters ζ3,ctrl = ζ4,ctrl = 1 and vari-
able ω3,ctrl = ω4,ctrl, and Mismatch Factor of Stiffness MFC = 65%
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ABSTRACT
A robotic arm has become a popular choice not only in re-

search labs but also in traditional industry, more research has fo-
cused in this area these days. Unlike a rigid-body robot, a robot
with joint flexibility could introduce more vibration at its end
point. Many strategies have been proposed to solve this issue but
most of them require an accurate estimation of model parame-
ters. In this paper, an innovative system identification method,
called Instrumental Variable, is applied from literature to im-
prove the estimation obtained from the classic method-Ordinary
Least Square. Simulation results that are based on a two-link
joint-flexible robotic arm model are provided at the end, and
show that the IV algorithm is able to obtain better estimation.

INTRODUCTION
Robotic arm has been widely used in modern mass pro-

duction line because, with high programmability and mobility,
robotic arm is able to perform various kinds of work at lower
cost comparing to traditional machine. Therefore, industry such
as automation manufacturing utilizes high-precision robotic arms
to perform welding, assembly, and so on with different end effec-
tors. Depending on specific types used, robotic arm can has two
to six links on its body, providing corresponding degrees of free-
dom in terms of mobility in space. While higher degrees of free-
dom means more sophisticate trajectories that can be achieved,
it also brings more parameter uncertainty from each link into the
system, limiting overall performance in terms of motion accu-
racy and settling time from the control perspective.

To identify the system parameter, different approaches for
robots have been reviewed by Jun Wu [1], pointing out that
among physical experiments, computer aided design, and in-

put/output identification methods, the last one gives more ac-
curate estimation as well as simpler experiment. Furthermore,
[2–5] provides modified estimation methods based on the classic
Ordinary Lease Square (OLS), either improving or simplifying
the identification process. However, these work assume normal-
distributed noise presenting in the measurement data, which the-
oretically leads to bias estimation if this assumption is violated in
practice [6–8]. Therefore, it is of interest to investigate and find
a practical approach that theoretically improves and even avoids
bias estimation.

A method called Instrumental Variable (IV) is re-discovered
in [8], and found that it requires no prior knowledge on noise
structure during the estimation process. This concept was first
derived by Philip Wright and Sewall Wright in 1920s, target-
ing statistics estimation problems. P. Young later applied this
method in solving engineering estimation problems [9, 10]. Re-
cently, Alexandre [11] and Mathieu [12] applied the IV approach
to estimate parameters of rigid-body-model robots. However, as-
suming rigid-body model without joint flexibility for robots dur-
ing the identification process may results in bias estimation due
to model mismatch, and limits the model-based controller per-
formance as flexibility could introduce residual vibration onto
the end effector in fast point-to-point motion [13].

This paper applies the Instrumental Variable method in order
to optimize the accuracy of parameters estimated by the classic
OLS approach. To simplify, a custom-built two-link robot with
joint flexibility at Ruth and Joel Spira Laboratory for Electrome-
chanical Systems in the School of Mechanical Engineering at
Purdue University is used. To focus more on effects brought by
the joint flexibility, the robot is operated in a horizontal plane
where gravity influence is minimized. [14, 15] provide different
procedures to perform system identification. One idea among

1



them is to identify each link and motor stage by stage. This se-
quential identification procedure is adopted as it is able to cap-
ture essential dynamic behavior in each stage while minimizing
the coupled effect brought by different mechanical parts.

The rest of the paper is organized as follows. Modeling sec-
tion provides mathematical model to represent the robotic arm
being simulated, and sets up corresponding estimation model for
identification at each stage. Simulation Design section shows
necessary setups for the entire simulation process and performs
mode validation. Estimation Optimization section first uses the
classic OLS method for estimation and then combines the IV ap-
proach for improvement, followed by the Results section show-
ing analysis from different perspectives.

MODELING
In order to understand the system dynamic response, a

model of the two-link, flexible-joint manipulator is provided in
this section. Detailed schematic is shown in Figure 1[ADD
REF?]. To derive the equation of motion of this system, La-
grange method is applied and derived by Nho [16]. The govern-

FIGURE 1. Schematic of two link, flexible-joint manipulator

ing equation is given by Equation (1) below. According to the
Lagrange method, independent generalized coordinates are se-
lected so that the whole system could be represented in terms of
kinetic energy (K), potential energy (P), dissipative power (D),
and the generalized force (Qi). In this system, θ1 and θ2 are

generalized coordinates for link 1 and link 2 respectively while
θ3 and θ4 are generalized coordinates of motors. Note that θ5
and θ6 are not independent as they are related to the generalized
motor coordinates by the gear ratio r.

d
dt
(

δK
δ θ̇i

)− δK
δθi

+
δP
δθi

+
δD
δ θ̇i

= Qi (i = 1,2,3,4) (1)

The kinetic energy of the robotic arm is given in Equation (2).

K =
1
2
(m1a2

1 +m2l2
1 +m4b2

1 +m6l2
1 +mpl2

1 + J1)θ̇ 2
1

+
1
2
(J3 +

J5

r2 )θ̇
2
3 +

1
2
(m2a2

2 + J2 +mpl2
2)(θ̇1 + θ̇2)

2

+
1
2

J4(θ̇1 + θ̇4)
2 +

1
2

J6(
θ̇4

r
+ θ̇1)

2

+l1(m2a2 +mpl2)θ̇1(θ̇1 + θ̇2)cos(θ2)

(2)

The potential energy of the robotic arm is given in Equation (3).

P =
1
2

k5(
θ3

r
−θ1)

2 +
1
2

k6(
θ4

r
−θ2)

2 (3)

In this equation, ki represents coefficient of torsional spring. The
dissipative energy of the robotic arm is given in Equation (4).

D =
1
2

c3θ̇ 2
3 +

1
2

c1θ̇ 2
1 +

1
2

c5(
θ̇3

r
− θ̇2)

2

+
1
2

c4θ̇ 2
4 +

1
2

c2θ̇ 2
2 +

1
2

c3(
θ̇4

r
− θ̇2)

2
(4)

In this equation, ci represents coefficient of friction that exists in
connections. The generalized force of the robotic arm are given
in Equation (5).

Q1 =−d1sign(θ̇1)

Q2 =−d2sign(θ̇2)

Q3 = T1−d3sign(θ̇3)

Q4 = T2−d4sign(θ̇4)

(5)

In this equation, di represents coefficient of Coulomb fric-
tion, and ”sign” for the Coulomb friction function.

Matrix form
After substituting Equations (2) to (5) into Equation (1), the

result can be represented in a matrix form shown in Equation (6).

M(θ)θ̈ +V(θ , θ̇)+Cθ̇ +D(θ)+Kθ = T (6)

2

104



where

M =

[
M1 M2
MT

2 M3

]
(7)

M1 =







m1a2
1 +m2(l2

1 +a2
2)

+m4b2
1 +m6l2

1 + J1 + J2
+J4 + J6 +mp(l2

1 + l2
2)

+2l1(m2a2 +mpl2)cos(θ2)







m2a2
2 + J2

+mpl2
2 + l1(m2a2

+mpl2)cos(θ2)




(
m2a2

2 + J2 +mpl2
2

+l1(m2a2 +mpl2)cos(θ2)

) (
m2a2

2 + J2 +mpl2
2
)




(8)

M2 =

[
0 (J4 +

J6
r )

0 0

]
(9)

and

M3 =

[
(J3 +

J5
r2 ) 0

0 (J4 +
J6
r2 )

]
(10)

V(θ , θ̇) =




−l1(m2a2 +mpl2)(2θ̇1θ̇2 + θ̇ 2
2 )sin(θ2)

l1(m2a2 +mpk2)θ̇ 2
1 sin(θ2)

0
0


 (11)

C =




c1 + c5 0 − c5
r 0

0 c2 + c6 0 − c6
r

− c5
r 0 c3 +

c5
r2 0

0 − c6
r 0 c4 +

c5
r2


 (12)

D(θ̇) =




d1sign(θ̇1)
d2sign(θ̇2)
d3sign(θ̇3)
d4sign(θ̇4)


 (13)

K =




k5 0 − k5
r 0

0 k6 0 − k6
r

− k5
r 0 k5

r2 0
0 − k6

r 0 k6
r2


 (14)

T =




0
0
T1
T2


 (15)

Regression Model
In general, identification for the two-link robot system could

be divided into three stages [17]. The first stage is to identify pa-
rameters of motors. Carrying estimated parameters from stage
one, the second stage is only to estimate parameters on the sec-
ond link while fixing the first link. The remaining stage would
then be estimating parameters of the first link with the existence
of coupling due to the second link. At this stage, estimated pa-
rameters from previous stages are treated as known variables. Or-
dinary least squares(OLS) regression method is used for system
identification because the system is linear in parameter. To apply
this method, rearrangement of Equation (6) is made and has the
form as Equation (16). Note that the influence coming from dis-
sipative energy of robotic arm is negligible so that the matrix D is
dropped. To implement the estimation, standard RLS algorithm
shown by Equation (17) to (19), the recursive version of OLS, is
used instead, given that RLS consumes less computational power
than OLS method.

WS j(θ , θ̇ , θ̈)∗PS j = YS j; (16)

where WS j is the regressor matrix, PS j the matrix of parameters
to be estimated, and YS j the regressands matrix for stage one,
two and three respectively when S j = S1,S2,S3.

P̂S j,RLS(k)= P̂S j,RLS(k−1)+KRLS(k)[Y(k)−W(k)P̂S j,RLS(k−1)]
(17)

KRLS(k) =
PVar(k−1)W(k)

λ +W(k)T PVar(k−1)W(k)
(18)

PVar(k) =
1
λ
[I−KRLS(k)W(k)T ]PVar(k−1) (19)

where Equation (18) and (19) are used to calculate updates
for next estimation iteration. k is the time stamp. The forget-
ting factor, λ is set to 1 given that the mechanical system could
be considered as a deterministic system during the identification
process. In general, PVar(0) is set to 106 ∗ I(identity matrix) and
P̂RLS(0) to 0 for all parameters to initiate the recursive calcula-
tion.
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Stage One: Identification of motors
The dynamic response of motor 1 and motor 2 is governing

by the following equations respectively

J3θ̈3 + c3θ̇3 = T1

J4θ̈4 + c4θ̇4 = T2
(20)

After rearranging the above equations, they could be written as

WS1(θ , θ̇ , θ̈)∗PS1 =
[
θ̈i θ̇i

][Ji
Ci

]
= YS1 = Tj (21)

where i=3, 4 and j=1, 2 respectively.

Stage Two: Identification of the second link
The equation of motion for the second link is given in Equa-

tion (22) by fixing the first link.

ML2θ̈L2 +CL2θ̇L2 +KL2θL2 = TL2 (22)

where

θL2 =

[
θ2
θ4

]
(23)

ML2 =

[
m2a2

2 0
0 J4 +

J6
r2

]
(24)

CL2 =

[
c2 + c6 − c6

r
− c6

r c4 +
c6
r2

]
(25)

KL2 =

[
k6 − k6

r
− k6

r
k6
r2

]
(26)

TL2 =

[
0
T2

]
(27)

Since J4 and c4 are estimated from identification on motors,
they are taken cared by putting into the regressand matrix. The
completely rearranged equation is given by

WS2(θ , θ̇ , θ̈)∗PS2 = YS2 (28)

where the regressor matrix is given by

WS2 =

[
θ̈2 0 θ̇2 θ̇2− θ̇4

r θ2− θ4
r

0 θ̈4
r2 0 θ̇4

r2 − θ̇2
r

θ4
r2 − θ2

r

]
(29)

the regressand is

YS2 =

[
0

T2− J4θ̈4− c4θ̇

]
(30)

and the parameter matrix to be estimated is

PS2 =




m2a2
2 + J2
J6
c2
c6
k6




(31)

Stage Three: Identification of the first link
Since parameters estimated from previous two sections

would be used directly in this section, they would be treated as
given numbers and placed into the regressor matrix and the out-
put vector accordingly. Following are the equations of regression
form for the first link system.

WS3(θ , θ̇ , θ̈)∗PS3 = YS3 (32)

WS3 =




θ̈1 ω12 θ̇1 θ̇1− θ̇3
r θ1− θ1

r 0
0 ω22 0 0 0 0
0 0 0 θ̇3

r2 − θ̇1
r

θ3
r2 − θ1

r
θ̈3
r2


 (33)

where

ω12 = cos(θ2)θ̈2− (2θ̇1θ̇2 + θ̇ 2
2 )sin(θ2)+2cos(θ2)θ̈1

ω22 = cos(θ2)θ̈1 + sin(θ2)θ̇ 2
1

(34)

For the regressand vector, it is defined as

YS3 =



−(m2a2

2 + J2)(θ̈1 + θ̈2)− (J4 +
J6
r )θ̈4

rL1
T1− c3θ̇3− J3θ̈3


 (35)
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where

rL1 =−(m2a2
2 + J2)(θ̈1 + θ̈2)− (c2 + c6)θ̇2+

c6

r
θ̇4− k6θ2 +

k6

r
θ4

(36)

PS3 =




p1
l1m2a2

c1
c5
k5
J5




(37)

where

p1 = m1a2
1 +m2l2

1 +m4b2
1 +m6l2

1 + J1 + J4 + J6 (38)

SIMULATION DESIGN
Excitation signal profile

To have unbiased parameter estimation, the system should
be persistently excited [7, p.250]; thus it is essential to select
the input signals. In this paper, different sets of input signal
US j = [T1,T2]

T , consisting of torques of the first and second mo-
tor respectively are used to excite the system. Chirp signal profile
from 0.2 Hz to 4 Hz over 60 seconds with time step of 0.001 sec-
onds was used to excite the system at first as recommend in [17].
However, due to nonlinearity in the robot dynamics, chirp sig-
nal may lead to under excitation at certain frequency region, de-
pending on the robot configuration. Moreover, when noise is
included, such as limited encoder resolution, low Signal to Noise
Ratio (SNR) tends to appear in the high-frequency region, lead-
ing to worse angular speed and acceleration estimation, and so
are the parameter estimates. Instead of chirp signal, integrated
sinusoid signals with different frequencies are used. More specif-
ically, integrated sinusoid signals Tsine,1 and Tsine,2 are defined by
Equation (39) and shown in Figure 2

Tsine,1 = Tsine,2 = Tmax ∗
Nsine

∑
k=1

sin(2π fkt)
(39)

where Nsine = 9 is the number of frequency components used,
Tmax = 0.13(Nm) the scaling factor to limit torque output from
each motor, fk(Hz) ∈ {1,2,3,4,5,6,7,8,9} and fi = f j iff i = j.

FIGURE 2. Excitation signal profiles

Data Preprocessing
In the experiment setup, only four encoders data could be

obtained; thus it would be necessary to include the encoder reso-
lution effect on angular position measurement in the simulation.
Note that each encoder has same resolution of 0.00157[rad].
To obtain both angular speed and angular acceleration, numer-
ical approximation is made so that they are derived from angu-
lar position measurement by applying the backward difference
method, as shown in Equation (40) and (41).

θ̇1,2,3,4(k) =
δθ1,2,3,4

δ t
|t=k ≈

θ1,2,3,4(k)−θ1,2,3,4(k−1)
∆T

(40)

θ̈1,2,3,4(k) =
δ θ̇1,2,3,4

δ t
|t=k ≈

θ̇1,2,3,4(k)− θ̇1,2,3,4(k−1)
∆T

(41)

where k = 1 ∗ ∆T,2 ∗ ∆T,3 ∗ ∆T... represents for discrete time
stamp, and ∆T (second) for sampling period.

Estimating angular speed and acceleration by using numer-
ical approximation, however, contain high-frequency noise that
corrupts the signals; therefore, Butterworth low pass filters that
are designed to filter out the high-frequency noise and Kalman
Filter that provides best angular position, speed and accelera-
tion estimation are used separately. To be consistent, all the But-
terworth low pass filters are set to be order of three throughout
the simulation. In terms of the Kalman Filter, the All-Integrator
Model stated in [18] is used. To have a comprehensive investiga-
tion, within each stage, there are six simulation cases that each
has different cut-off frequency, fc f (Hz) for the low pass filter
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TABLE 1. Simulation Cases
Stage Case

number
Excitation profile fc f Q

Stage
One

1 US1 = [Tsine,1,Tsine,2]
T 50 N/A

2 US1 = [Tsine,1,Tsine,2]
T 100 N/A

3 US1 = [Tsine,1,Tsine,2]
T 150 N/A

4 US1 = [Tsine,1,Tsine,2]
T 200 N/A

5 US1 = [Tsine,1,Tsine,2]
T 250 N/A

6 US1 = [Tsine,1,Tsine,2]
T 300 N/A

Stage
Two

1 US2 = [0,Tsine,2]
T 50 20

2 US2 = [0,Tsine,2]
T 100 50

3 US2 = [0,Tsine,2]
T 150 100

4 US2 = [0,Tsine,2]
T 200 150

5 US2 = [0,Tsine,2]
T 250 160

6 US2 = [0,Tsine,2]
T 300 170

Stage
Three

1 US3 = [Tsine,1,Tsine,2]
T 15 20

2 US3 = [Tsine,1,Tsine,2]
T 20 50

3 US3 = [Tsine,1,Tsine,2]
T 25 100

4 US3 = [Tsine,1,Tsine,2]
T 30 150

5 US3 = [Tsine,1,Tsine,2]
T 35 160

6 US3 = [Tsine,1,Tsine,2]
T 40 170

and different variance of process noise, Q(rad/s2)2 applied in
the Kalman Filter. Case detail is shown in Table 1.

Model Validation
To validate both the models and the RLS algorithm, it is nec-

essary to check the convergence and consistency of estimates by
performing simulation first before conducting experiments. For
convergence, estimates should behave stable and show the abil-
ity to stay in a bounded region as sample size increases. To have
consistent estimates is to have unbiased estimation, and estimates
are able to converge to their true valued defined in the simulation
as sample size becomes infinitely large. For the sake of model
and algorithm validation, it is assumed that physical-noise-free
signals including angular speed and acceleration are accessible,
such that only computational noise is presented in the data and it
is assumed to be normal distributed. This assumption is relaxed
after validation. A tabulated estimation result showing consis-
tency is shown at Table 2. Figure 3 to 5 show the convergency of
the estimation process, validating the models used in the simula-
tion and RLS algorithm for parameter estimation.

FIGURE 3. Convergence of stage one estimates

FIGURE 4. Convergence of stage two estimates

ESTIMATION OPTIMIZATION
RLS Estimation

Upon satisfying both conditions, the simulation is extended
to include noise coming from angular speed and acceleration
estimation due to encoder resolution, numerical approximation
and sampling rate issues. Figure 6 to 8 show estimation results
of case 6 by using the extended model with low pass filter and
Kalman Filter. For simplicity, in stage one, only low pass filter is
used in data preprocessing.

As seen, even if low pass filters and Kalman filter are used
to get rid of high-frequency noise, parameter estimation are not
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FIGURE 5. Convergence of stage three estimates

TABLE 2. Parameter Estimations for models and algorithm validation

Stage Parameters Definition Estimation Unit

Stage
One

J3 5.25∗10−4 5.9034∗10−4 [Kg∗m2/rad]

c3 0.020000 0.0201 [N ∗m∗ s/rad]

J4 5.25∗10−4 5.6762∗10−4 [Kg∗m2/rad]

c4 0.010000 0.0100 [N ∗m∗ s/rad]

Stage
Two

m2a2
2 + J2 0.0196 0.0194 [Kg∗m2/rad]

J6 0.025 0.0249 [Kg∗m2/rad]

c2 0.0214 0.0214 [N ∗m∗ s/rad]

c6 0.08128 0.00801 [N ∗m∗ s/rad]

k6 2.848 2.8186 [N ∗m/rad]

Stage
Three

p1 0.14023 0.1402 [Kg∗m2/rad]

l1m2a2 0.023385 0.0234 [Kg∗m2/rad]

c1 0.04 0.0406 [N ∗m∗ s/rad]

c5 0.005 0.0051 [N ∗m∗ s/rad]

k5 2.848 2.8428 [N ∗m/rad]

J5 5∗10−5 4.4453∗10−5 [Kg∗m2/rad]

accurate enough. This mainly results from non-Gaussian dis-
tributed noise that appears in position measurement. To over-
come this issue, prior knowledge of noise is essential, and a typ-
ical approach would be identifying the form filter of noise struc-
ture, which characterized the noise mathematically [19]. How-
ever, practically speaking, it would be very hard to identify the

FIGURE 6. Error percentage of stage one estimates based on RLS
algorithm

FIGURE 7. Error percentage of stage two estimates based on RLS
algorithm

noise structure, and any types of assumption on its structure
would potentially produce biased estimates ultimately.

IV Approach
Because of unknown noise structure and its probability dis-

tribution, RLS method yields biased estimates. [7, p.382] To
overcome such an issue, an innovative solution, called Instru-
mental Variable (IV), is re-discovered in [8, p.486]. As seen
in Equation (42), system parameters at each stage are now es-
timated with the help of matrix ΓΓΓS j whose columns are called
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FIGURE 8. Error percentage of stage three estimates based on RLS
algorithm

instrumental variables. To have optimized estimation, it is essen-
tial to construct the matrix ΓΓΓS j such that it is highly correlated
with the regression matrix ΠΠΠS j and uncorrelated with the esti-
mation residual from RLS algorithm. [8, p.486] To fulfill these
requirements, in this work, the ΓΓΓS j matrix is constructed by using
uncorrupt signals simulated based on estimates P̂S j,RLS at the first
iteration and P̂S j,IV for the rest of iterations. To initiate the IV
method at first iteration, it is important to have stable estimates
so that matrix ΠΠΠS j does not contain unstable system responses.
Experience and literature showed that convergency occurs very
fast and usually 2 to 5 iterations are enough. Figure.9 shows
overall estimation process after integrating RLS algorithm with
the IV method.

P̂S j,IV = (ΓΓΓT
S jΠΠΠS j)

−1ΓΓΓT
S jΨΨΨS j

ΓΓΓS j =
[
ZT

S j(k = ∆T ), ...,ZT
S j(k = N ∗∆T )

]T

ΠΠΠS j =
[
WT

S j(k = ∆T ), ...,WT
S j(k = N ∗∆T )

]T

ΨΨΨS j =
[
YT

S j(k = ∆T ), ...,YT
S j(k = N ∗∆T )

]T

(42)

Equation (43) to (45) define matrix ZS j at each time step that
is used from stage one to stage three respectively.

ZS1 =
[
θ̈sim,i θ̇sim,i

]
(43)

where i=3 for the first motor and i=4 for the second motor.

FIGURE 9. Overall estimation process with aid from Instrumental
Variable method

ZS2 =

[
θ̈sim,2 0 θ̇sim,2 θ̇sim,2− θ̇sim,4

r θsim,2− θsim,4
r

0 θ̈sim,4
r2 0 θ̇sim,4

r2 −
θ̇sim,2

r
θsim,4

r2 −
θsim,2

r

]
(44)

ZS3 =




θ̈1 ωsim,12 θ̇sim,1 θ̇sim,1− θ̇sim,3
r θsim,1− θsim,1

r 0
0 ωsim,22 0 0 0 0

0 0 0 θ̇sim,3
r2 −

θ̇sim,1
r

θsim,3
r2 −

θsim,1
r

θ̈sim,3
r2




(45)
where

ωsim,12 = cos(θsim,2)θ̈sim,2− (2θ̇sim,1θ̇sim,2

+θ̇ 2
sim,2)sin(θsim,2)+2cos(θsim,2)θ̈sim,1

(46)

ωsim,22 = cos(θsim,2)θ̈sim,1 + sin(θsim,2)θ̇ 2
sim,1 (47)

RESULT
As mentioned previously, Butterworth low pass filters and

Kalman filter are used separately to handle collected encoder
data so as to get low-noise angular speed and angular acceler-
ation. In addition, Kalman Filter provides best estimation on an-
gular position. Since in each stage, the robot dynamic model is
inherently different than each other; therefore, by following the
guideline that would be provided later in this paper, both cut-off
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FIGURE 10. Error percentage of case 6 at stage one estimates after
applying the IV method

FIGURE 11. Error percentage of case 6 at stage two estimates after
applying the IV method

frequency and the variance of process noise are tuned to achieve
accurate parameter estimation. Figures 10 to 12 show the esti-
mated parameters after employing the IV method while Table 3
makes a comparison between RLS algorithm and IV method on
estimation accuracy for case 6 that is processed by low pass fil-
ter. It is interesting to point out that even though Kalman Filter
is able to provide better estimation on angular position, velocity
and acceleration, it does not yield as accurate results as “low pass
filter case” dose after integrating the RLS algorithm with the IV
method. Thus, analysis hereafter wold focus on low pass cases
only.

FIGURE 12. Error percentage of case 6 at stage three estimates after
applying the IV method

TABLE 3. Error percentage of parameter estimation of case 6

Stage Parameters RLS IV method

Stage
One

J3 4.459% 3.828%

c3 52.27% -3.498%

J4 −5754% 1.958%

c4 -3857% -4.745%

Stage
Two

m2a2
2 + J2 -100% 0.4911%

J6 -139.6% 0.4951%

c2 -108.1% 2.186%

c6 2487% -6535%

k6 -98.81% 0.5742%

Stage
Three

p1 -20.31% -0.6837%

l1m2a2 -54% -2.894%

c1 -306.1% -31.56%

c5 1013% -534.7%

k5 -28.64% -0.4043%

J5 −2034% 25.94%

In addition to simply comparing the estimates error percent-
age, it would be important to see how do all of the estimates per-
form in terms of simulating the robot dynamic. Since this paper
values angular acceleration more than angular position or veloc-
ity, for simplicity, analysis hereafter would focus more on the ac-
celeration. From the error plot of angular acceleration, shown in
Figure 13, the IV method outweighs the classic RLS algorithm.
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FIGURE 13. Error plot of robot angular acceleration simulated by
parameters estimated by low pass filter for case 6

FIGURE 14. A different set of input profiles for checking estimates
performance

To further compare both methods, a different set of input profiles
shown in Figure 14, is generated to excite the full robot system,
yielding results shown in Figure 15. As seen, acceleration error
drops after employing the IV method, qualitatively maintaining
its performance in terms of robot trajectory simulation. Note that
effort have been made to check simulated angular position and
velocity and similarly qualitative performance is observed.

In addition to comparing the method-wide performance,
within each method, Table 1 gives details of 6 different cases
that are simulated and studied. A dimensionless trajectory accel-
eration error is defined by Equation (48) for further anlysis.

FIGURE 15. Error plot of robot angular acceleration simulated by
parameters estimated by low pass filter for case 6 with different input
profiles

e∗ =
N

∑
i=0

|θ̈de f ined(i)− θ̈est(i)|
amp(θ̈de f ined)

∗ 1
N

amp(·) = max(·)−min(·)

(48)

where θ̈de f ined is the time history of robot angular acceleration
simulated by the defined values, and θ̈est by the estimates; N is
the sample size.

As seen from Figure 16, as the cut-off frequency of low pass
filter increases, the dimensionless trajectory error shrinks. Simi-
lar trend of dimensionless error, shown in Figure 17 is obtained
in the event of using a different set of input profiles. Note that, in
Figure 16 and 17, the blue-solid curve of “Perfect signal” repre-
sents estimation cases that use system response without measure-
ment noise nor numerical approximation on joint velocity and
acceleration; therefore, this curve intuitively denotes the “best”
results that one could possibly obtain out of the simulation when
all noise-free states of the system are accessible.

Therefore, results above, to some extend, shed light on the
guideline of applying the IV method for obtaining high accuracy
estimates. To initiate the IV method for its first iteration, it is
important to construct the matrix ΓΓΓS j such that all of its elements
are stable signals. Secondly, if low pass filters are chosen for
data preprocessing, it is recommended to have larger cut-off fre-
quency whenever possible.
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FIGURE 16. Dimensionless trajectory error before and after applying
the IV method by using low pass filters

FIGURE 17. Dimensionless trajectory error before and after applying
the IV method by using low pass filters with different input profiles
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