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ABSTRACT 

As buildings have almost come to a saturation point in most developed countries, the 

management and maintenance of existing buildings have become the major problem of the 

field. Building Information Modeling (BIM) is the underlying technology to solve this 

problem. It is a 3D semantic representation of building construction and facilities that 

contributes to not only the design phase but also the construction and maintenance phases, 

such as life-cycle management and building energy performance measurement. This study 

aims at the processes of creating as-built BIM models, which are constructed after the design 

phase. Point cloud, a set of points in 3D space, is an intermediate product of as-built BIM 

models that is often acquired by 3D laser scanning and photogrammetry. A raw point cloud 

typically requires further procedures, e.g. registration, segmentation, classification, etc. In 

terms of segmentation and classification, machine learning methodologies are trending due 

to the enhanced speed of computation. However, supervised machine learning methodologies 

require labelling the training point clouds in advance, which is time-consuming and often 

leads to inevitable errors. And due to the complexity and uncertainty of real-world 

environments, the attributes of one point vary from the attributes of others. These situations 

make it difficult to analyze how one single attribute contributes to the result of segmentation 

and classification. This study developed a method of producing point clouds from a fast-

generating 3D virtual indoor environment using procedural modeling. This research focused 

on two attributes of simulated point clouds, point density and the level of random errors. 

According to Silverman (1986), point density is associated with the point features around 

each output raster cell. The number of points within a neighborhood divided the area of the 

neighborhood is the point density. However, in this study, there was a little different. The 

point density was defined as the number of points on a surface divided by the surface area. 

And the unit is points per square meters (pts/m2). This research compared the performances 

of a machine learning segmentation and classification algorithm on ten different point cloud 

datasets. The mean loss and accuracy of segmentation and classification were analyzed and 

evaluated to show how the point density and level of random errors affect the performance of 

the segmentation and classification models. Moreover, the real-world point cloud data were 

used as additional data to evaluate the applicability of produced models. 
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1. INTRODUCTION 

Building Information Modeling (BIM) is developing at a high speed. Not only does it 

benefit building design and construction, but also life-cycle management, building energy 

performance measurement, and historic architecture maintenance and renovation. As Eastman 

et.al. (2011) and Pătrăucean et.al. (2015) described, a BIM model is a virtual representation of 

building constructions and facilities. It records all information during products' life cycle which 

includes digital designs, schedules, material, costs, and etc. In the case of historic and old 

buildings where blueprints and technologies such as CAD (Computer Aided Design) are non-

existent, generating a BIM model for these buildings is not a straightforward process. According 

to a study in UK (Valero et.al., 2018), due to rapid climate change, historic reservations have the 

tendency to erode at an unwanted higher speed. Therefore, acquiring virtual representations is 

especially required for this kind of situation. 3D reconstruction is a general way of transferring 

real-world objects into virtual environments where they can be preserved. It is often used in the 

construction and maintenance phases for monitoring and progress surveillance. In general, 3D 

laser scanning and photogrammetry present a possible solution to this problem. 

“Photogrammetry is the technology of deriving 3D data from 2D images by mono-plotting 

(single-ray back projection), by stereo-imagery interpretation or by multi-image block 

adjustment” (Zhu, 2015, p.1). Despite its robustness and generalization, photogrammetry 

requires more data processing which takes a rather long time (Barazzetti, 2018). “Due to its 

accuracy, laser scanning is becoming an increasingly applied data acquisition method” (Rebolj 

et.al., 2017, p.324). However, the data acquisition method depends on the situation. A Light 

Detection and Ranging (LiDAR) method integrated with photogrammetry often brings better 

results in terms of accuracy and precision. Laser scanning (LS) is a unit that collect 3D point 

locations by shooting beams in certain directions. The location is calculated and recorded 

according to the beam angles and time difference between the emitted light and the reflected 

light. “LS is also referred to as LIDAR because it uses a laser to illuminate Earth's surface and a 

photodiode to register the backscatter radiation” (Zhu, 2015, p.1). The problem remains that laser 

scanners are still very expensive and “it is unlikely that they will become significantly more 

affordable in the foreseeable future” (Bechtold & Höfle, 2016, p.161). 
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LiDAR can be categorized by what equipment it is mounted on, e.g., tripod, ground 

vehicle, airplane, satellite. Airborne LiDAR has been frequently used in remote sensing and 

surveying. In terms of indoor environment measurement, especially Mechanical, Electrical & 

Plumbing (MEP) system inspection and configuration, stationary 3D scanners are the most 

common. Compared to LiDAR, photogrammetry has not been used that much for indoor 

implementations. The static terrestrial laser scanner is typically used for, e.g., industrial sites 

modeling, crack detection, site monitoring, historic cultural heritage documentation, and 3D city 

modeling. For laser scanning, two prevalent scanning techniques are referred to as "Scan-to-

BIM" and "Scan-vs-BIM" (Bueno et.al., 2018). Scan-vs-BIM is the technology that compares the 

as-built environment and designed BIM models. Scan-to-BIM is known for using 3D scans to 

generate BIM models from existing buildings and facilities. The main implementations include 

controlling construction progress, quality, and life-cycle management (Bueno et.al., 2018). There 

are two kinds of BIM technologies, as-built BIM and as-designed BIM. The BIM-created in the 

design stage of a facility is called as-designed BIM, and the BIM that reflects a facility in its as-

built condition is called as-built BIM (Pătrăucean et.al., 2015; Bosche et.al., 2015; Dore et.al., 

2014). As-built BIMs are often generated when the facilities are built differently from the design 

(Pătrăucean et.al., 2015). Operation and maintenance of existing buildings, quality control, 

defect detection, and others are efficient benefits as-built BIM has brought to the industry 

(Carbonari et.al., 2014; Liu et.al., 2015). The technology of converting real-world objects to 3D 

models in a virtual environment not only benefits BIM technology but also the entertainment 

fields such as animation, film, and gaming. And it has been gaining popularity in industrial, 

consumer, healthcare, education, and governmental applications (Zhu, 2015).  

Nevertheless, creating as-built BIM models is a difficult and time-consuming non-

straightforward procedure. “As-built BIM creation of building interiors using scanned point 

clouds incurs critical difficulties: the complex design of indoor structures, not to mention 

obstacles, necessitates time-consuming manual operation and resultantly huge data sizes, which 

often leads to system slow-down or failure” (Jung et.al., 2014, p.68). As-built BIM can be error-

prone due to anomalies, destructions, and mistakes made by workers during both constructions 

and after (Barazzetti, 2016). They are often the final products of point cloud processing. The 

process starts with data acquisition, which is the acquiring of point cloud data by LiDAR and 

photogrammetry. Before further processing, multiple scans of overlapping areas need 
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registration. During registration, points are shifted and rotated according to the defined mapping 

coordinate. Automatic registration of point clouds remains a challenge due to the incompletion 

and similarity of buildings and other structures (Bueno et.al., 2018). After registration, point 

cloud data are further processed by procedures such as down sampling and noise removal. A 

point cloud sometimes contains millions of points, so it requires huge storage and heavy 

computation to display and process. According to the requirement of the project, the point clouds 

are down sampled to a smaller size to save storage and computation. For example, a point cloud 

with a point density of 10000 pts/m2 can be down sampled to a point cloud with a point density 

of 500 pts/m2 so that the new file size is approximately 1/20 of the original file size. Noises are 

the points introduced by unexpected and unwanted materials and objects in the scanned scene, 

e.g. mirror, glass, moving objects, etc. Noise removal partially eliminates points that do not 

contribute to the shape of the objects. The next processing step is the segmentation and 

classification, which is the most crucial step for semantic modeling. During the segmentation, 

points are grouped into different segments such as different planes and objects. During the 

classification, points are labelled according to rules. For instance, points can be labelled as the 

floor, the ceiling, the wall, the window, the door, and etc. In semantic modeling, models are 

associated with additional information other than geometric information. Segmentation and 

classification are interesting areas of point cloud processing and they are often associated with 

each other. Although the field has a trend of full automation, BIM engineers still need manual 

field measurement to ensure quality (Jung et.al., 2014). Machine learning segmentation and 

classification methods are developing fast with the progress of computation power and various 

algorithms. As a subset of artificial intelligence, machine learning algorithms use implicit rules 

and build mathematical models based on the training data. The training data are specified by 

users according to how they want the product of algorithms to be. In the training phase, the 

labelling of points is required for the algorithms to learn from. However, the labelling has been 

done manually and semi-automatically with human intervening. This is time-consuming and it is 

nearly impossible for human beings to avoid making mistakes. Although there have been a few 

automatic labelling methods, they can be error prone. Moreover, the clusters are decided and 

fixed after the labelling is done. Therefore, if operators need to add or change the clusters due to 

the project requirements, the labelling process needs to be revised again. Since the algorithm 

operates based on the implicit rules of the training data, the performance of the algorithm 
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depends on the quality and quantity of the training data. A lot of researchers have addressed the 

importance of point cloud quality (Biswas et.al., 2015; Rebolj et.al., 2017; Zhang et.al., 2018). 

Nevertheless, due to the complexity and uncertainty of real-world environments, it is difficult to 

decouple the influence of each attributes of points, e.g., point density, level of random error, 

point cloud size, point distribution, etc. 

The objective of this study focused on the segmentation and classification processes of 

as-built model generation. As-built models enable management and maintenance of construction 

and facilities. Moreover, it only requires the operator to do on-site data collection and engineers 

can access and analyze the data in the office. With the help of automation and enhanced 

computation power, as-built model becomes a cost-efficient and time-saving technology. 

Segmentation and classification are the most essential steps of as-built model generation because 

they are the fundaments of semantic modeling. Automatic segmentation and classification 

accelerate the whole process, but the result of as-built model depends on the accuracy of the 

classification. Therefore, it is important to develop segmentation and classification 

methodologies with higher accuracy. 

In the following sections, the problem and the purpose of this study are explained in 

further detail. 

1.1 Problem Statement 

Point cloud processing, including data acquisition, registration, configuration, 

segmentation, classification, reconstruction, is time-consuming and expensive (Dimitrov & 

Golparvar-Fard, 2015). Inevitable errors exist within these tasks because of necessary human 

interference. The need for fast, low-cost, and reliable point cloud processing is in high demand. 

At fast changing construction sites, manual methods often fail to keep up with the requirements 

for monitoring and management (Dimitrov & Golparvar-Fard, 2015). Automation accelerates the 

process and helps users to match the required speed. Machine learning is one of the most 

dominant approaches in point cloud processing automation. However, the performance of a 

machine learning algorithm depends highly on the quality and quantity of the training data. 

Researchers have concluded that point cloud data quality is more important than the quantity 

(Weinmann et.al., 2015). The optimization of point cloud data can play a significant role in 

providing good segmentation and classification results. Segmentation and classification are 



 

19 

crucial steps of semantic modeling, which is the most iconic feature in BIM. Although there have 

been a few existing applications that help with segmentation, e.g. Autodesk Recap Pro, the 

process of point cloud, especially point cloud segmentation and classification, is still mainly 

semi-auto with human interference. 

Machine learning segmentation and classification methods are developing fast and have 

become the most common use of segmentation and classification methods in the field. Generally, 

machine learning methods are divided into two categories, supervised and unsupervised learning 

methods. "Supervised methods are the majority with a training phase mandatory and 

fundamental to guide the successive machine learning classification solution” (Grilli et.al., 2018, 

p. 339). Supervised learning relies on a set of provided training examples for the machine to 

learn how to deliver a correct result. Therefore, the result of the segmentation and classification 

done by algorithms associates with the provided human-labelled learning examples. The results 

are influenced by the quality of the training data and the density of the point cloud data (Grilli 

et.al., 2018). In researches like this, the semantic results are highly dependent on the abstract 

model trained using grammars on a 3D reconstructed model. Unfortunately, semi-auto and 

manual labelling by human operators often are associated with inevitable errors, which lead to 

vital consequences for the outcome of machine learning methods. Despite software helping the 

segmentation and classification with some level of automation, the task of labelling every point 

correctly in the dataset is rather challenging due to the variety of object types and spatial 

permutation of objects (Yousefhussien et.al., 2018). Different machine learning algorithms 

define clusters differently according to their own interests. Clusters are defined before the 

segmentation and classification process, which means once the model is trained, the clusters are 

final. If any projects require specific labelling other than the original ones, the labelling of 

training dataset needs to be revised. This repeating task is time-consuming but can be assisted by 

automatic labelling. 

To study how point cloud attributes affect the performance of the segmentation and 

classification models, one must provide different sets of point cloud data with specially designed 

parameters. Real-world point cloud data acquisition takes a rather long time and it is difficult to 

control the scanning environment, hence it is difficult to develop control and experiment groups 

with respect to different attributes. For instance, the point density is not uniform through the 

scene due to the operation principles of LiDAR and photogrammetry. In LiDAR, the point 
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density is affected by the distance from laser scanner to the hit point. The closer the scanned area 

is to the laser unit, the denser the point cloud is. In photogrammetry, feature extraction identifies 

the object’s point in multiple images for 3D reconstruction. First of all, a point can be 

reconstructed if it appears in two different images. Secondly, a point can be reconstructed if it is 

extracted successfully in more than one images. Therefore, the point density depends on the 

distribution of extracted features that are visible in more than one data acquisition location. All 

these factors that affect the point density make it difficult to analyze its influence on the 

performance of the machine learning models. 

Random errors are inevitable and associate with system measurements. In LiDAR, random 

errors of the point cloud are associated with the range error of the laser scanner, e.g., a FARO 

Focus 3D X 330 has a range error of ±2 mm. In photogrammetry, random errors are often caused 

by different distortion parameters along different images of the same objects, e.g. radial lens 

distortion, de-centering lens distortion, atmospheric refraction, etc. Therefore, the level of 

random errors changes through the whole point cloud, which makes it difficult to analyze its 

effect on the performance of the machine learning models. And in the real world, it is impossible 

to avoid random errors, hence the errors will always affect the segmentation and classification. 

However, it is simple to control the positional error in virtual simulation, which might help the 

related processing for real-world data. 

1.2 Purpose Statement 

Creating as-built models from point clouds brings benefits in the industrial business. 

Firstly, the number of buildings in developed cities have already reached their saturation. 

Constructing new buildings and facilities is not as important as reconstructing existing, 

problematic buildings. As-built models help engineers and architects to easily identify and 

diagnose problems, but the procedure of acquiring the as-built BIM models of existing buildings 

is not proficient and straightforward. Semantic information is the most important attribute of as-

built models. The semantic process is done by segmentation and classification of point clouds. 

The result of machine learning segmentation and classification highly relies on the training 

dataset. Therefore, it is important to find the relation between the attributes of point cloud and 

the results of segmentation and classification.  
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The purpose of this project is to find out how point density and the level of error in 

simulated point cloud affects the machine learning segmentation and classification results. 

Currently, the main use of simulate point cloud data is the test of segmentation and classification 

methodologies. For instance, Lari (2014) introduced simulated laser scanning data to evaluate the 

proposed segmentation approach and managed to provide a more accurate model with higher 

speed. This project explored the potential in simulated data for enhancing segmentation and 

classification accuracy and robustness for future implementation of real-world data. Moreover, 

the study revealed the relation between point cloud attributes and the machine learning 

segmentation and classification results by designing groups of data with different point density 

and with or without a level of error. The point density is non-uniform in a point cloud and 

depends on various aspects, e.g., the distribution of extracted features and hit points. This 

variation of point density in point clouds makes it difficult to analyze its effect on the 

segmentation and classification. However, this study proposed a point cloud simulation method 

called scattering. The points were simulated evenly and randomly with a same point density 

throughout the entire point cloud. This method decoupled point density from the point density 

variation which can be difficult for real-world scenarios and other simulation methods. The 

distribution of random error changes through the whole point cloud. This variation makes it 

difficult to analyze its effect on the segmentation and classification results. In real-world 

situations, the errors always affect the segmentation and classification. The proposed simulation 

method controlled the level of random errors, and it was evenly and randomly distributed 

throughout the whole point cloud. By doing this, the proposed method decoupled random errors 

from the random error variation, which is difficult for real-world scenarios. The level of error is 

described as ϵ which was defined as the average of the random error in the point cloud. Previous 

works in the field have not made their preparation of data rather transparent, instead, they 

intended to only show the best results. However, this study showed the direct relation between 

point cloud training data and segmentation results, which provided references for future works.  

The significance of this research can be described in four aspects. Firstly, virtual 

simulations bring better accuracy and efficiency to the labelling part of point cloud processing. 

Efficiency is the key requirement in the monitoring and management of fast changing 

construction sites (Dimitrov & Golparvar-Fard, 2015). Generally, the first step of a machine 

learning segmentation is the labelling of the training point cloud datasets and the datasets for 
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testing. Currently, this process is mostly semi-auto with some interference of human operators. 

This leads to all sorts of problems, e.g., wrongly labelled points, missing points, etc. However, 

the proposed method used a virtual computer-aided labelling method. A model was initially 

assigned with a label. Then the point cloud generated from the model was assigned with the 

same label automatically. Therefore, when a point cloud was generated, it was already a labelled 

point cloud data, which was directly used as the training and testing data for the segmentation 

and classification algorithm. Preparation for training and testing data became easier with the 

proposed simulation method. Therefore, it brought efficiency and robustness to multiple aspects 

of point clouds processing. Secondly, the proposed machine learning segmentation and 

classification models have the potential to be applied on real-world projects. The point cloud 

simulations were done as realistic as possible, only some aspects were configured in order to get 

better performance. The data structure of simulated point clouds was similar to that of real-world 

point clouds. Therefore, the proposed method can be applied on real-world point clouds, and vice 

versa. Thirdly, the proposed method decoupled point density from the point density variation, 

and random error from the random error variation. Although this is unlikely to be done in the 

near future for real-world projects, it is still important to evaluate how each attribute contributes 

to the results of the point cloud processing. Fourthly, LiDAR and photogrammetry are both 

qualified approaches to collect point cloud data. Photogrammetry is a transparent model, which 

means users have access to each step from original imagery to the final 3D reconstructed model. 

However, LiDAR is a non-transparent model. All the measuring and processing units are hidden 

in a black box. Users can only access the 3D coordinates and other output from the unit without 

knowing if there is something wrong with the data acquisition phase. This makes the quality 

control and quality assurance vital important for LiDAR system. In terms of acquisition, LiDAR 

directly records the 3D coordinates of points and the procedure can be done during the day or the 

night. Photogrammetry needs further computation from raw collection, which is complicated, 

and sometimes the matching procedure can be unreliable. Photogrammetry is a passive system, 

which means it requires sunlight for data acquisition, so it can only be done during the daytime. 

In terms of accuracy in the product, LiDAR provides better vertical accuracy and 

photogrammetry provides better planimetric accuracy. Moreover, photogrammetry provides 

higher redundancy so that users can check and determine how good the reconstruction is, while 

there is no inherent redundancy in LiDAR making it hard to check the reconstruction quality. 
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Photogrammetry provides semantic information based on 2D feature extraction on the original 

imagery, but it is difficult for LiDAR to derive semantic information because it only records 

positional and intensity data of points. Researchers have divided into two categories according to 

different data acquisition methods. The findings of LiDAR cannot be fully applied to 

photogrammetry, and the findings of photogrammetry cannot be fully applied to LiDAR. In this 

study, the point clouds were simulated using scattering. Points were randomly placed on the 

objects’ surfaces to imitate the outcome of down sampling and other point cloud configurations. 

Therefore, the study released a more general finding, not specific to either of the two data 

acquisition methods. 

By comparing the testing results of each point cloud datasets, including the mean loss and 

accuracy, this study revealed the direct relation between point density and the classification 

performance, and between the level of error and the classification performance.  

1.3 Research Questions 

This study focused on computer-simulated point cloud data. The research questions 

regarding how the point attributes affect the training and the outcome of the segmentation and 

classification method are listed as follows. 

1. How does the level of random errors of simulated point clouds affect the performance 

of a machine learning segmentation and classification model in terms of the overall 

accuracy? 

2. How does the point density of simulated point clouds affect the performance of a 

machine learning segmentation and classification model in terms of the overall 

accuracy? 

1.4 Assumptions, Delimitations & Limitations 

1.4.1 Assumptions 

The proposed study used a point cloud simulation method based on point scattering 

algorithm. The labelling of points that are at the intersection of two planes and two objects is 

often vaguely defined because it can be assigned to either section. The scattering algorithm took 
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a 3D polygon mesh as an input and was designed to output a point set scattering evenly and 

randomly on the surface of the mesh. An assumption was made that there was no point generated 

on the intersection line of two planes.  

1.4.2 Delimitations 

This study only focused on finding the relation between the attributes of the simulated 

point clouds and the performance of the models. The main testing results contained 10 different 

models trained and tested by simulated point clouds. Although real-world point cloud data were 

used to see how the final models perform on real-world point clouds, this study was not targeted 

to generate a better segmentation and classification model for real-world point clouds. 

This study discussed how the attributes of simulated point cloud data affect the 

segmentation and classification result. Only two attributes were tested,  the point density and the 

level of random errors. Other attributes were not within the scope of this study. 

The study used an existing machine learning model to conduct the test. All models were 

trained using the same algorithm. The segmentation and classification results depend on two 

things, the machine learning algorithm and the point cloud data. However, the optimization of 

the algorithm was not within the scope of this study.  

1.4.3 Limitations 

Firstly, the approach of simulating point clouds in a virtual 3D scene was different from 

the approach of LiDAR and photogrammetry in real-world. The point cloud simulation method 

used in this study did not imitate the scanning structure of real scanners. Therefore, the 

experiment results only showed the effects of simulated data. The findings cannot be directly 

applied to real-world point cloud data. 

Secondly, point cloud processing and implementation, including this study, are project-

oriented. The trained segmentation and classification models cannot perform as expected on any 

point cloud projects. Therefore, the results of this study might differ from the results of other 

experiments.  

 Thirdly, the segmentation and classification model trained by simulated data cannot 

promise a better model than existing models, in terms of the accuracy when applied on real-



 

25 

world projects. Existing segmentation and classification methods often use real-world data for 

the training of models and then apply to real-world projects. There have been few studies that 

use simulated data for the training and application to real-world projects. The differences 

between simulated data and real-world data, e.g., point distribution, data structure, produce huge 

differences in the training and implementation phase, which leads to huge mean loss and low 

accuracy. The proposed models’ performance on real-world point clouds was not expected to 

exceed the original model trained by real-world point clouds. Nevertheless, the proposed study 

was an exploration study to find the potential in simulated point cloud data to be a more 

significant role in real-world point cloud processing. 

Fourthly, the clusters were designed by original methods, so the clusters cannot be added 

or changed after models are trained and generated. This study used existing machine learning 

segmentation and classification algorithms. The labelled parts, such as ceilings, floors, walls, 

were designed by the original method. Therefore, some of parts in the scene were labelled as 

clutter. If one needs to add or change the clusters, a new labelling process needs to be applied 

before the training session. This study did not create a different cluster set from the original 

method in order to compare some of the results with the original method. 

Finally, the study used the overall accuracy of the classification as the criterion for 

evaluating the performance of the machine learning models. The overall accuracy was defined as 

the number of correctly labelled points divided by the number of all the points. This criterion has 

been used widely in the field, e.g. the original method of Charles et.al. (2017), Boulch et.al. 

(2018), etc. However, they also used measurements such as intersection over union (IoU) and per 

class accuracy. IoU is a statistic measurement used for evaluating the similarity and diversity of 

sample sets. According to Boulch et.al. (2018), 𝐼𝑜𝑈 =
1

|𝐶|
∑ 𝐼𝑜𝑈𝑐𝑐∈𝐶 , where IoUC is the IoU per 

class. 𝐼𝑜𝑈𝑐 =
𝑇𝐶

|𝜌𝐶∪𝑃𝐶|
 where TC is the number of correctly labelling points of class, 𝜌𝐶 is the 

group of points with true label c, and 𝑃𝐶 is the group of points estimated as class c. They are 

different measurements for the performance of the models but they all can show how well the 

models work on the point clouds. This study did not use accuracy per class for every point cloud 

because the study focused on the overall performance of the models affected by the point density 

and the level of random errors. 
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2. LITERATURE REVIEW 

 Lots of research has been done in the point cloud processing areas, e.g., segmentation and 

classification, automatic registration, 3D reconstruction, 3D city modeling, and etc. In the 

following sections, point cloud related studies are reviewed in detail. 

 2.1 General Scan-to-BIM 

“However, as-built BIM creation of building interiors using scanned point clouds incurs 

critical difficulties: the complex design of indoor structures, not to mention obstacles, 

necessitates time-consuming manual operation and resultantly huge data sizes, which often leads 

to system slow-down or failure” (Jung et.al., 2014, p.68). This summary by researchers 

introduces the major problems in point cloud implementation. 

The point cloud implementation usually aims at converting point cloud data to as-built 

BIM models. The point cloud implementation usually starts with data acquisition using 

photogrammetry or LiDAR. Then the output from data acquisition requires further processing, 

e.g., registration, down sampling, noise removal, segmentation and classification, and model 

generation. Automatic registration of point clouds remains a challenge due to the incompletion 

and similarity of buildings and other structures (Bueno et.al., 2018). Thirdly, in general, point 

cloud data are segmented and classified to each cluster. For instance, there are clusters such as 

floor, ceiling, wall, window, door, etc. This process is the necessary anterior task to semantic 

modeling. In semantic modeling, models are built with labels, which provides information for 

Building Information Modeling related implementation.  

Segmentation and classification are interesting areas of point cloud implementation, and 

they are often associated with one another. Although the field has a trend of full automation, the 

truth is, BIM engineers still need manual field measurement to ensure quality (Jung et.al., 2014). 

As-built BIM created by existing drawings can cause some errors due to anomalies, destructions, 

and mistakes made by workers during both constructions and after (Barazzetti, 2016). Moreover, 

machine learning segmentation and classification methods are developing fast with the progress 

of computation power and algorithms. However, in the training and testing phase, manual 

labelling of point cloud data is required for the algorithms to learn from. The problems with this 
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process are as follows: Manual labelling is time-consuming, troublesome, and often brings errors 

in labelling. The clusters are decided and fixed after the labelling is done. Therefore, if operators 

need to add or change the clusters due to project requirements, the labelling process need to be 

manually revised again. 

During the past decade, there have been plenty of studies related to Scan-to-BIM, despite 

their focusing points. Especially Luigi Barazzetti (2018), who has many remarkable works about 

this. He presented a machine learning algorithm that aims at solving point cloud occlusion for 

surfaces based on neural networks, which is a very common dilemma the field is facing. Existing 

technology about occlusion detection and filling were designed to solve mesh surfaces problems 

based on neighborhood points, topology, change of local curvature, and distribution of hole 

texture (Barazzetti, 2018). Earlier, he presented a semi-automated method to generate 3D 

parametric as-built models from point clouds based on NURBS (Nom-Uniform Rational B-

Splines) curves and surfaces (Barazzetti, 2016). Automated reconstruction can be done by planar 

modeling as well as volumetric modeling. Bueno et.al. (2018) presented a novel 4-plane 

congruent algorithm for automatic rough point cloud registration. Jung et.al. (2014) presented a 

semi-automatic methodology to improve the productivity of generating as-built complex indoor 

objects. Their operation has three steps: segmentation, refinement of downsized data, and 

boundary tracing. 

Detection of important building components is crucial but challenging. Quintanaa et.al. 

(2018) came out with a 6D-space approach that detects doors at any condition based on 3D laser 

scanned data of the indoor environment. 6D-space means that the data not only contains XYZ 

coordinates but also, RGB or HSV. Repair and maintenance of historic buildings is so far one of 

the most important fields that Scan-to-BIM has contributed. Because natural environments do 

severe damage to building fabric all the time, especially ancient buildings, Valero et.al. (2018) 

presented an algorithm based on the 2D Continuous Wavelet Transform (CWT) to automatically 

segment rubble masonry walls. Luigi Barazzetti et.al. (2015) managed to convert historic BIM 

into a finite element model for structural simulation using Cloud-to-BIM-to-FEM (Finite 

Element Model) methodology, since historic buildings’ characterization lacks efficient 

procedures. 

There are indeed lots of papers about structural components such as walls, ceilings, and 

doors, as listed previously. However, there are only a few studies carrying out related to 
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secondary components. Antonio Adána, Blanca Quintanaa, Samuel A. Prietoa, Frédéric Bosché 

presented a 6D-based approach to detect smaller objects on the wall using dense colored 3D 

point clouds, such as sockets, switches, signs, and others. Semantically-rich 3D models were 

generated by the original consensus procedure after being segmented and detected in the color 

and geometric spaces (Adán et.al., 2018). One of the most important indoor secondary 

component areas, MEP, which stands for Mechanical, Electrical and Plumbing components, 

benefits a lot from early identification of differences between as-design and as-built (Bosché 

et.al., 2015).  

 2.2 Point cloud data acquisition and quality 

There are two major approaches of acquiring point cloud data, LiDAR (Light Detection 

and Ranging) and photogrammetry. In general, LiDAR is more expensive to acquire and operate, 

but straight-forward in post-production. Photogrammetry is easy to access but takes a lot more 

computational power during the generation of point cloud data. Some of the researches based on 

LiDAR and photogrammetry are summarized in the following sections: 

2.2.1 LiDAR related applications and techniques 

2.2.1.1 Terrestrial laser scanning 

 For many years, Terrestrial laser scanning (TLS) has been used for flatness quality 

assessment (FQA). “However, existing TLS assisted FQA methods are all designed particularly 

for a certain type of surfaces, like construction surfaces and component surfaces” (Li et.al., 

2020).  

FQA is one of the tasks that photogrammetry and other image processing technologies 

have trouble with. According to researchers (Li et.al., 2020), “However, these methods cannot be 

applied to the FQA, because the deviations in elevation of the concrete surface cannot be 

accurately estimated based on image measurement.” Automatic photogrammetry often relies on 

feature extraction of stereo images to reconstruct 3D models. Due to the flatness and colorless or 

concrete surfaces, it is hard for feature extractions. However, the laser scanning techniques are 

not constrained here. In the study, RANSAC algorithm was conducted for point cloud data 

processing. Then, the distances between points and the fitted plane created by those points were 
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calculated as deviations in elevation of the plane. The fitted plane was calculated by 80% of the 

total points on the surface, and it was fitted n times to find the best one according to the residual. 

The normal vector of the plane was different according to whether or not  it was a flat surface or 

a convex / concave one. A colored deviation map was created to show the flatness. Distance 

from the fitted plane was associated with a color. The color varied from negative distance to 

positive distance, which was determined by the direction of the normal. The approach started 

with the data preparation. During this phase, point cloud data were registered and were selected 

based on the type of the data, either construction surface data or component surface data. The 

FQA of component surface was aided by as-design BIM models. The as-designed models were 

first presented as polygon meshes. Secondly, the models were discretized into many dense points 

(Bosché, 2008 & Bosché, 2010), and these points were used to create the standard plane.  

In general, “due to the limitations of the data collection processes as well as the complexity 

of as-built scenes, automated 3D modeling still presents many challenges” (Dimitrov & 

Golparvar-Fard, 2015, p.32). The general problems of point cloud data acquisition are as 

follows:  

Point cloud density: “Point clouds exhibit locally variable densities based on surface 

orientation and distance from the capture device” (Dimitrov & Golparvar-Fard, 2015, p.33). Due 

to the physics behind the scanning technology, lots of aspects affect the point cloud density. For 

instance, a surface relatively closer to the scanner would have a higher point cloud density 

compared to the one that is further. Even for the same plane, there is density variation along with 

the distance between the scanned area and the scanner. Moreover, the definition of point cloud 

density is often for a whole set of point cloud data where there is density variation inside of it. 

And different densities lead to different segmentation results. 

Point cloud data size:  Numerous point-model distance and intersection calculations are 

such a burden that a discretization of surfaces’ field and filtration of data are truly required. 

Some of the works applied raw data elimination before analyzing to increase the processing 

speed (Wang et.al., 2015). The raw point cloud often brings problems to registration. Therefore, 

a major topic is the downsizing, down sampling of point cloud data. But the data downsizing is 

often realized by replacing voxels with estimated points (Wang et.al., 2015), which lead to errors 

and incompletion, caused sometimes by occlusion. The decimation of points is always important 
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because the computational cost can be high. Also, after decimation, points should be able to 

provide enough information.  

Surface material: “A given scene can contain a wide range of surface roughness, no priors 

about noise levels can be reliably used” (Dimitrov & Golparvar-Fard, 2015, p.33). And there are 

some extreme situations where mirrors and glasses are involved because their optical features 

make the scanner difficult, even impossible to capture them. These kinds of material often bring 

in noises and unexpected point cloud data. 3D scan data with color often comes with the lighting 

problem because material is associated with the lighting. Some of the studies used a camera flash 

to reduce color variations caused by non-homogeneous illumination at different locations 

(Quintana et.al., 2018).  

Noise and Clutter: “A scene can contain small objects represented by very few points, 

moving objects (as the building occupants), and multiple objects in close proximity, making 

feature detection difficult” (Dimitrov & Golparvar-Fard, 2015, p.33). Multiple registrations also 

bring noises, since each registration often happens at different times, one after another. 

Occlusion: “A scene can contain objects of significant size that occlude objects behind 

them. This produces incomplete and disjointed descriptions of the background surfaces” 

(Dimitrov & Golparvar-Fard, 2015, p.33). Problems with multiple hidden layer occlusion remain 

unsolved and challenging (Barazzetti, 2018). Occlusion often comes with a nonregular room 

structure. Nonregular indoor components are always difficult for as-built model registration due 

to lack of information in the dataset, such as non-rectangular doors (Quintana et.al., 2018), and 

so on. Point clouds occlusion recovery is one of the most important steps in as-built BIM.  

Scale: “To be value-adding, automated modeling is required to efficiently fit within a 

greater engineering task. As point cloud sets get larger, segmentation methods need to be 

scalable in terms of time and memory complexity. Special attention needs to be paid to off-line 

processes—that can be run overnight without user supervision—and on-line responsive 

processes that leverage user interaction” (Dimitrov & Golparvar-Fard, 2015, p.33). Moreover, 

rotation is always a big obstruction for automatic detection and registration (Adán et.al., 2018). 

The algorithm must be adjusted and improved to adapt to this non-orthoimage.  

Operation and maintenance of existing buildings, quality control, defect detection, and 

others are efficient benefits as-built BIM has brought to the industry (Carbonari et.al, 2015; Liu 

et.al, 2012). “However, as-built BIM creation of building interiors using scanned point clouds 
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incurs critical difficulties: the complex design of indoor structures, not to mention obstacles, 

necessitates time-consuming manual operation and resultantly huge data sizes, which often leads 

to system slow-down or failure” (Jung et.al, 2014, p.68). Also, In the commercial area, the level 

of automation still has limitations for TLS (Terrestrial Laser Scanning) (Bosché et.al, 2015). 

That is why it is important to have a system that can provide a more accurate model with a 

higher speed. 

Studies have been done to assess the importance of point cloud quality. However, the 

relation between the levels of point cloud quality and the success of Scan-vs-BIM is still not 

solved. Rebolj et.al. (2017) focused on the difference between point cloud quality and scanning 

methodologies, such as photogrammetry, videogrammetry, and range camera. But in photo and 

videogrammetry, only the density criterion has been verified since there is no direct correlation 

between camera resolution and the number of frames per second. The quality of point cloud will 

be determined in density and error (point position shift). Rebolj et.al (2017) provided standard 

criteria for point cloud quality in automated construction progress monitoring according to the 

successful identification of building elements of the four size classes described in construction 

phases. The four size classes are defined as large elements (L): Size ≥5m2, Medium elements 

(M): 1 m2 ≤ Size < 5 m2, Small elements (S): 0.25 m2 ≤ Size < 1 m2, Very small elements (XS): 

Size < 0.25 m2. Sizes are defined as the sum of the surface areas that an element projects onto 

three orthogonal planes of the element's local coordinate system. They also presented the 

relationship between the criteria and scanning methodology parameters. Compared to the 

traditional qualitative manner, the paper assessed the data in a quantitative manner. 

2.2.1.2 Airborne laser scanning 

LiDAR data based city modeling has proven itself to have promising results 

(Rottensteiner et.al., 2014). Generally, the automatic city-scale model generation is achieved by 

steps described as follows. Firstly, primitive geometric elements are extracted from point clouds 

as modeling cues. Secondly, these modeling cues are transferred into topological elements, they 

can both represent 3D rooftop models. CityGML is an open-source and XML-based application 

for generating virtual models. “In CityGML, 3D rooftop models can be differently represented 

according to the level-of-detail (LoD). A prismatic model of rooftop that is a height extrusion of 
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a building footprint is defined as LoD1 in CityGML, while LoD2 requires a detailed 

representation of the primitive geometric and topological elements in a 3D rooftop model” (Jung 

et.al., 2017, p.2). 

“A critical problem to hinder the automation of 3D rooftop model generation is that many 

portions of the object (rooftop) are unknown, and recovered with errors caused by the following 

reasons: Irregular point distribution, occlusion, and unreliable data analysis” (Jung et.al., 2017, 

p.2). Irregular point distribution is caused by the characteristics of laser scanners. The beam 

footprint and the space between each point are determined by multiple aspects, e.g., flight height, 

ground elevation, scanning frequency, and the angles between beam and objects’ surfaces. 

Therefore, these system variables produce an irregular distribution to the outcome of point 

clouds, and as a result, errors in modeling cues. Occlusions are made due to multiple layers of 

objects on the line of the beam. Despite it being plausible for the laser to penetrate certain types 

of objects, the final receiving pulse energy depends on various things. In addition, due to limited 

flight lines especially for urban areas, it is impossible to avoid buildings blocked by other 

buildings and objects. In order to realize automation, a lot of algorithms are applied to raw point 

clouds to fulfill certain goals, e.g., object detection, segmentation and classification, feature 

extraction, etc. Therefore, errors in the raw data due to data size, occlusion, and noise result in 

the partial failure in the performance of these algorithms, and eventually, the failure in the 

modeling. 

The inherent characteristic is one of the most distinguishable features of LiDAR 

compared to photogrammetry. But the inherent characteristic of LiDAR data associates with 

errors in modeling. There are three major types of modeling error using LiDAR data: shape 

deformation, boundary displacement, and orientation error (Jung & Sohn, 2019). Firstly, shape 

deformation is the difference between generated models and the reference models. The main 

reason for shape deformation is the inconsistency of point clouds from LiDAR. The physics 

principle of laser scanners creates gaps between points. Relatively, the further the scanner is to 

the scanned surface, the bigger the gap is. “Shape deformation can be caused by various reasons, 

such as scene complexity, data characteristics (resolution, signal-to-noise ratio, occlusion, and 

incomplete cue extraction), and characteristics of the rooftop modeling algorithms used (model-

driven approach or data-driven approach)” (Jung & Sohn, 2019, p.158). The second modeling 

error is the boundary displacement. It is also caused by the discrete point distribution of LiDAR. 
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The LiDAR is not able to guarantee the exact capture of objects’ boundaries. Therefore, the 

reconstructed geometry would be slightly smaller than the real object if the actual boundary is in 

the middle of two rows of scanned points. However, this kind of error often does not affect the 

overall shape of the reconstructed model (Jung & Sohn, 2019). The third main error is called the 

orientation error. “The building orientation is determined by analyzing angle distributions of 

initial rooftop boundaries which are generated by tracking irregularly distributed boundary 

points. Unlike optical imagery, building orientation errors caused by LiDAR data are not 

uniform across buildings but are subject to a relative angle between the scanner’s flying direction 

and the orientation of a building of interest” (Jung & Sohn, 2019, p.158). This modeling error 

can be partially solved when integrated with photogrammetry. 

Modeling constraints are functional as one of the approaches to addressing the 

aforementioned issues. “These constraints are used as prior knowledge on targeted rooftop 

structures: (1) for constructing the modeling cues to conform to Gestalt law (i.e., parallelism, 

symmetry, and orthogonality), and linking fragmented modeling cues in the frame of perceptual 

grouping; and (2) by determining optimal parametric rooftop model fit into part of rooftop 

objects through a trial-and-error of model section from a given primitive model database” (Jung 

et.al., 2017, p.3). These constraints were described as “explicit regularity” by Jung et.al. (2017) 

because they are fully defined. They introduced an “implicit regularity” to help constraint the 

modeling cue generation without fully expressing the relation between input and output. “This 

implicit regularity is used as a constraint for changing the geometric properties of the modeling 

cues and topological relations among adjacent modeling cues to conform to a regular pattern 

found in the given data” (Jung et.al., 2017, p.3).  

Fast urbanization has demanded more from 3D city modeling for supporting a lot of 

applications, e.g., urban planning, flood simulation, emergency crowd simulation, and location-

based services. Research has been vastly conducted to fully enable automated city-scaled 3D 

modeling. “One the most challenging task for 3D building model reconstruction is to regularize 

the noises introduced in the boundary of building object retrieved from a raw data with lack of 

knowledge on its true shape” (Jung et.al., 2017, p.1). They introduced a data-driven modeling 

approach to reconstruct city-scale models based on airborne laser scanning data. Firstly, the 

original rooftop objects were grouped into homogeneous point clouds according to their height 
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and plane similarity. From there, modeling cues were extracted, e.g., line and plane primitives. 

Secondly, by using the Binary Space Partitioning (BSP) technique, the topological elements were 

recovered by iteratively partitioning and merging. Thirdly, by removing erroneous vertices or 

rectifying the geometric properties, implicit regularity was achieved with the deduction of errors 

in the modeling cues and topological elements. Given noisy information of the building 

boundary in a progressive manner, the proposed method was able to implicitly derive the shape 

regularity of the rooftops. 

Updating 3D city models is more crucial than generating detailed city models that are out 

of date because analyses based on 3D city models requires current information about cities to 

conduct proper experiments and provide more accurate results. Thus, a few studies have been 

conducted to generate a progressive city modeling method, e.g., “by integrating the information 

retrieved from the existing model with new modeling cues extracted from single airborne 

imagery” (Jung & Sohn, 2019, p.158). Rapid development and changes in modern cities have 

brought extra dilemmas to the time-consuming and error-prone process of 3D city modeling. 

Most researches and applications have managed to reconstruct city models using various 

algorithms. “However, cities are dynamic systems that continuously change over time. 

Accordingly, their virtual representations need to be regularly updated in a timely manner to 

allow for accurate analysis” (Jung & Sohn, 2019). They proposed a fusion method to refine 

building rooftop by integrating optical imagery with previous models based on LiDAR. In the 

proposed study, a LIDAR-driven model (L-Model) by Jung et.al (2017) was used as a base 

model and was later refined by integrating it with airborne image features of the MCMC 

(Markov Chain Monte Carlo) framework. Images of rooftops were fed into two algorithms to 

extract features. “The shape of building rooftops can be well described by lines and corners” 

(Jung, J., & Sohn, G., 2019, p.160), therefore Kovesi’s algorithm (Kovesi, 2011) was used to 

detect straight lines and an algorithm by Chabat et.al (1999) was used to detect corners. Then the 

extracted lines and corners were used as modeling cues for the refinement of models. After 

extracted, the 2D features needed to be transformed into 3D object spaces to match with the 

LiDAR-driven models. A concept of topological lines was generated between the L-Model and 

imagery. However, a transformation from 2D to 3D requires stereo images or multiple images, 

according to the collinearity equation. The study was limited to a single image, therefore, 
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researchers back-projected the L-Model into the 2D image plane to establish the relation between 

I-Lines (I-Corner) and L-Model. Then, by using the height information of L-Model, the 3D 

coordinates of I-Lines and I-Corners were determined. In the end, an optimal model was selected 

after balancing model closeness and complexity. 

Elevation data is crucial to the reconstruction of 3D objects, especially 3D city modeling. 

Biljecki et.al. (2017) introduced an approach of predicting the height of buildings using machine 

learning algorithms. The results satisfied the accuracy recommendations for the needs of some 

GIS analyses in terms of mean absolute error. One of the disadvantages of the approach is that 

the outcome of the proposed method of Biljecki et.al. (2017) would not be as accurate as those 

projects that have elevation data, but the researchers argued that their approach provided useful 

spatial analyses such as fast updating of newer constructions before the acquisition of elevation 

data. Their approach used supervised learning models based on predictors which are the 

attributes of buildings to estimate the height of the building in order to create 3D city models. 

Different predictive models were associated with the availability of the building attributes. They 

used a supervised learning method for classification and regression called Random Forests 

(Breiman, 2001). “It works by creating a number of decision trees on random subsets of data and 

uses averaging to improve the predictive accuracy and control over-fitting” (Biljecki et.al., 

2017). An advantage of this method is its ability to assess the importance of different predictors, 

which works as a weight assigned to different predictors according to different situations. The 

attributes of this study included were building use, year of construction, number of stories above 

ground, the net internal area (sum of floor area in all units in a building), footprint area, shape 

complexity, number of neighboring objects, population density, average household size, and 

average income. Nevertheless, not all attributes were available for certain buildings. Then, after 

training the data, they used a point cloud of the City of Rotterdam as a benchmark (ground truth 

heights of buildings) to validate the results. They studied real-world cases of how building 

attributes affect the building heights to optimize their predictors in the model. The most 

associated predictors were stories, building age, net internal area, and population density. 

However, there were always outliers. In conclusion, they have shown the results that “several 

attributes available solely from 2D data can hint at a building’s height. The achieved accuracy is 

comparable to many other instances used in research and practice. The experiments and the 
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discussion show that these models could be useful in a number of spatial analyses” (Biljecki 

et.al., 2017). 

 2.3 Point cloud simulation 

Due to the price and complexity of laser scanners, related studies often result in wasting a 

rather long time in the point cloud data acquisition phase. Although data acquisition is very 

crucial to project-oriented works, some studies that focus on other aspects such as point cloud 

data quality analysis do not need point cloud data of any specific environments. Researchers 

(Lari, 2014; Bechtold & Höfle, 2016) have been using simulated 3D scans for the acquisition of 

point cloud data. Bechtold & Höfle (2016) mentioned several possible cases for a laser scanning 

simulator, e.g., research and planning of scanning strategies, laser scanning teaching, and 

training, generation of artificial scan data for algorithm development, or sensor development and 

evaluation. 

Despite the idea of laser scanning simulation, it is not new (Bechtold & Höfle, 2016). 

More and more simulated data have been brought into the system for testing. Lohani & Mishra 

(2007) developed a “2.5D” elevation map airborne laser scanning (ALS) simulator for education 

and general research which cannot be used to simulate terrestrial laser scanning (TLS) with 

realistic high-detail scenes. In terms of ALS simulator, Kukko and Hyypp ä (2009) also created a 

laser scanning simulator that is capable of modeling beam divergence and full-waveform signal 

recording. Wang et. al (2013) created a system that interacts with a RIEGL VZ-1000 TLS system 

and a Tilia tree. The purpose of their work is to investigate how different scanning positions 

affect the derivation of plant characters, such as leaf area index. Lari (2014) generated simulated 

laser scanning data for his research using the Unity 3D game engine, however, this kind of 

method generates the point clouds without considering random errors in the laser scanning 

system measurements. Therefore, a forced erroring was applied after the simulation. The 

simulated data then was used for testing the segmentation outcome. Lari (2014) generated 

simulated laser scanning data for his research using the Unity 3D game engine. “Ray casting is 

one of the most important physical functions which are supported by this game engine” (Lari, 

2014, p.147). Ray casting has been used frequently in Computer Graphics. Bechtold & Höfle 

(2016) developed a laser scanning simulation system name Heidelberg LiDAR Operations 

Simulator (HELIOS). As described, “HELIOS is implemented as a Java library and split up into 
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a core component and multiple extension modules. And the objectives of the framework are 

teaching and training of laser scanning, development of new scanner hardware and scanning 

methods, or generation of artificial scan data sets to support the development of point cloud 

processing and analysis algorithms” (Bechtold & Höfle, 2016, p.161). In terms of platform 

classes, the HELIOS system has four of them: “1. Four-wheel ground vehicle with one steerable 

axle. 2. Helicopter/Multicopter. 3. Simple linearly interpolated movement along straight lines. 4. 

‘Dummy’ platform without movement code (base class of all other platform classes, can be used 

to simulate stationary scanners)” (Bechtold & Höfle, 2016, p.163). There are two main parts that 

define a platform: The logic of simulation of platform type, e.g., airborne, vehicle, stationary, 

and the actual parameters of the platform, e.g., position, maximum speed, the height of the 

scanner (Bechtold & Höfle, 2016).  

The distance calculation between simulated and real-world data is different. When using a 

3D scanner, the range (distance) is calculated by the time of the pulse between the initial one and 

the reflected one. On the contrary, the computer records the hit point information and then 

calculates the Euclidean coordinates. 

Another approach simulates point cloud by taking representative points directly from 

surfaces without casting any rays. Points are generated from the surface in order to maintain a 

fixed density. Occlusion is one of the biggest problems in point cloud implementation. By 

directly sampling from surface, occlusion can be avoided. Although the proposed approach is 

highly different from how a laser scanner works, the potential of an occlusion-free point cloud 

dataset may benefit the segmentation and classification method. In a study of Li et.al. (2020), 

they managed to carry out a method of assessing the flatness quality of construction surfaces and 

component surfaces. In their study, they generated the point cloud of as-design component 

models by discretization (Bosché, 2008 & Bosché, 2010). Then the dense points were used to 

create a standard surface for the calculation of the deviation of the scanned point cloud. 

 2.4 Point cloud segmentation and classification 

Point cloud acquisition, modeling, and data analysis is a time-consuming, expensive, and 

problematic task, and it is often done by human operators in current industry (Dimitrov & 

Golparvar-Fard, 2015). The need for low-cost, reliable, and fast automated point cloud data 

implementation is in high demand because in fast changing construction sites, manual methods 
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often fail to keep up with the requirement for monitoring and management (Dimitrov & 

Golparvar-Fard, 2015).  

The process of segmentation is not straightforward. “Starting with a point cloud of a 

scene—generated using laser scanners or image-based reconstruction methods—the user must 

first identify collections of points that belong to individual surfaces, and then, fit surfaces and 

solid geometry objects appropriate for the analysis” (Dimitrov & Golparvar-Fard, 2015, p.32). 

This process is also often done by human operators, which can be time-consuming and 

troublesome. 

Common segmentation methods include edge-based segmentation, region growing, model 

fitting, hybrid method, and machine learning algorithm (Grilli et.al., 2017).  

Edge-based segmentation algorithms normally have two steps, as described by Rabbani 

et.al. (2006): (1) edge detection to outlines the borders of different regions and (2) grouping of 

points inside the boundaries to deliver the final segments. Edges in a given depth map are 

defined by the points where changes in the local surface properties exceed a given threshold. 

Region growing segmentation often starts from seed points and the model grows around 

with the seeds and find points with similar characteristics (Rabbani et.al., 2006; Jagannathan and 

Miller, 2007). Dimitrov & Golparvar-Fard (2015) proposed a region growing method for robust 

context-free segmentation of raw point cloud data based on geometrical continuities. Their 

method of segmentation starts with multi-scale feature detection, describing surface roughness 

and curvature around each 3D point, then seed finding and region growing steps are applied. 

(Dimitrov & Golparvar-Fard, 2015) 

A model fitting segmentation method depends on the decomposition from man-made 

objects into geometric primitives. “Therefore, primitive shapes are fitted onto point cloud data 

and the points that conform to the mathematical representation of the primitive shape are labelled 

as one segment” (Grilli et.al., 2017, p. 340). A hybrid segmentation method is a method that 

combines more than one segmentation method. 

Generally, machine learning methods are divided into two categories, supervised learning 

methods and unsupervised ones. “Supervised methods are the majority with a training phase 

mandatory and fundamental to guide the successive machine learning classification solution” 

(Grilli et.al., 2018, p. 339). Supervised learning relies on a set of provided training examples for 

the machine to learn how to deliver a correct result that it is designed to execute. Therefore, the 
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result of the segmentation and classification done by algorithms associates with the provided 

human-labelled learning examples. And the results are always influenced by the quality of the 

training data and the density of the point cloud data (Grilli et.al., 2018). In such studies (Boulch 

et.al., 2014), the semantic result was highly dependent on the abstract model, trained using 

grammars on a 3D reconstructed model. Unfortunately, manual labelling cannot avoid errors due 

to human nature, which might lead to vital consequences for the machine learning methods. The 

task of labelling every point in the dataset is rather challenging due to the variety of object types, 

and spatial permutation of objects (Yousefhussien et.al., 2018).  

Different machine learning algorithms define clusters differently according to their own 

interests. Even a single machine learning algorithm can have different sets of clusters. Clusters 

are defined before and during the labelling process, which means once the model is trained, the 

clusters are final. If any projects require specific labelling, the labelling of training dataset needs 

to be revised. 

 “A machine learning segmentation method is a scientific discipline concerned with the 

design and development of Artificial Intelligence algorithms that allow computers to take 

decisions based on empirical and training data” (Grilli et.al., 2017, p. 341). A noticeable relation 

must be built between the data and the observed variables. A feature with higher quality often 

also provides a better machine learning model. In general, there is supervised learning and 

unsupervised learning. “In machine learning, unsupervised learning is a class of problems in 

which one seeks to determine how the data are organized. It is distinguished from supervised 

learning (and reinforcement learning) as they rely on a set of provided training examples 

(features) to learn how to correctly perform a task” (Grilli et.al., 2017, p. 341). Since training a 

machine learning model takes a long time due to the computation load, researchers (Weinmann 

et.al., 2015) have noticed that the quality of data plays a much more significant role than the 

quantity of data. K-means clustering is one of the machine learning segmentation methods. “It is 

a method based on an algorithm able to classify or to group set of (3D) points into K groups 

using attributes /features. The grouping is done by minimizing the sum of squares of distances 

between point and the corresponding cluster centroid” (Grilli et.al., 2017, p. 341). On the 

contrary, hierarchical clustering methods compute features for every single point in the dataset 

based on geometrical characteristics. “They usually create a hierarchical decomposition of a 

dataset by iteratively splitting the dataset into smaller subsets until each subset consists of only 
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one object” (Ng and Han, 1994, p. 123). Boulch et.al. (2017) presented a 2D deep segmentation 

network that took multiple snapshots of the point cloud for a pixel-wise labelling of each pair of 

them using fully convolutional networks. Then, back-projection was applied to deliver the 

labelling of 2D pixels to 3D points using efficient buffering. The interesting part of that research 

is the transformation from 3D points to 2D pixels and the back-projection. Since the 2D image 

space segmentation networks have been introduced a long time ago and proved to be rather 

efficient, the results can be perceived as trustworthy and time-saving. According to researchers, 

“Generally, such features – usually derived from the 3D-covariance matrix – are computed using 

the surrounding neighborhood of points. While these features capture local information, the 

process is usually time-consuming and requires the application at multiple scales combined with 

contextual methods in order to adequately describe the diversity of objects within a scene” 

(Yousefhussien et.al., 2018, p191). Hence, they introduced a 1D – fully convolutional network 

that consumes terrain-normalized points to perform labelling by implicitly learning from points’ 

contextual features. This method allowed semantic labelling on unordered point sets with 

varying densities. 

2.5 Machine learning point cloud processing 

Machine learning methods have been used frequently in point cloud processing, e.g., 3D 

city modeling, semantic modeling, etc.  

3D city models have contributed to a wide range of fields, e.g., 3D mapping, building 

construction, flood simulation, urban planning, disaster management, and other large-scale 

analyses. LiDAR and photogrammetry provide various approaches to create 3D city models. 

“Traditionally, 3D rooftop models are derived through interaction with a user using 

photogrammetric workstations (e.g., multiple-view plotting or mono-plotting technology). This 

labor-intensive model generation process is tedious and time-consuming, which is not suitable 

for reconstructing rooftop models at city-scale” (Jung et.al., 2017, p.2). Recently, LiDAR has 

become a rather popular data acquisition tool due to its high density and accuracy. Computer 

Vision and LiDAR have made full automation possible and functional in the industry. “The 

automatic reconstruction of 3D geometric models of building rooftops has, for more than two 
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decades, been considered a central research topic in the photogrammetry and computer vision 

fields, due to their prominence in virtual city models” (Jung & Sohn, 2019, p.157). 

Biljecki et.al. (2017) introduced a supervised machine learning approach of predicting the 

height of buildings. The algorithm differentiated the building rooftop points and clutters, e.g., 

“tree canopy, tree branch, chimney, spike, miscellaneous objects on the roof, and the façade of 

contiguous buildings” (Park & Guildmann, 2019), so that the height of the building was only 

associated with the rooftop points. 

Using footprints to estimate the height of the building often results in potential errors due 

to irrelevant objects that are assumed to be the rooftop. Researchers (Park & Guildmann, 2019) 

proposed a machine learning LiDAR point classification method to detect only the rooftop to be 

the estimation of the building height. Random Forest (RF) algorithm was used to classify points 

into four categories, e.g., rooftop, wall, ground, and high outlier. High outliers are the points that 

are higher than a user-defined height than the rooftop, which are often introduced by vegetation. 

And the outcome of this approach produced outcomes that were much closer to the ground truth. 

The proposed methodology consists of six main steps. First, LiDAR point clouds outside of the 

building footprint were eliminated from the original point clouds so that only the building point 

clouds were taken into consideration and each point only belonged to a single building. There 

were four classes of points: rooftop, wall, ground, and high outliers. Only rooftop points would 

be considered as predictors of building heights because others would underestimate or 

overestimate the building heights. Second, training and testing datasets were prepared according 

to high resolution 2D and 3D imagery. Third, buildings were grouped into different types of 

buildings and trained according to that. Fourth, the attributes that controlled the prediction were 

computed. Fifth, the Random Forest was selected to produce the final results. RF (Random 

Forest) classifier was trained using 11 features by growing decision trees. An advantage of RF is 

that it provides rankings for the predictors so that the features change according to the 

classification, and as a result it provides a more accurate performance. Finally, classification 

accuracies were analyzed. “The classification results are evaluated with four accuracy measures: 

overall accuracy (OA), producer's accuracy (PA), user's accuracy (UA), and Cohen's coefficient 

of agreement (Kappa). PA and UA are computed for each class. PA indicates the percentage of 

correctly classified samples within a ground-truth class. UA indicates the percentage of correctly 

classified samples within an assigned class. Kappa indicates a measure of classification 
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reliability” (Park & Guildmann, 2019, p.79). The results of this study showed a mean overall 

accuracy (OA) of 96.5%. The overall classification accuracy increased after training separate 

classifiers for different types of buildings, e.g., residential buildings, commercial buildings. The 

OA of different types of buildings also differed from each other. 60.6% of the buildings had 

changes in building heights after the point clouds were classified. “The developed methodology 

differs from previous studies in that it utilizes open-source datasets, including LiDAR of low 

sampling resolution (less than 1 pts/m2), lower complexity algorithm, and fewer predictors, but 

attains high classification accuracy (96.5%)” (Park & Guildmann, 2019). 
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3. RESEARCH DESIGN AND METHODOLOGY 

3.1 Point cloud acquisition 

 In the point cloud data acquisition phase, both real-world and virtual simulated point 

cloud data were collected. The source and process of data collection are described in detail in the 

following sections. 

3.1.1 Real-world point cloud data acquisition 

In order to compare with the original method PointNet (Charles et.al., 2017), this study 

used the same real-world point clouds as the ones of the original method. In the original method, 

there were 6 areas of scanned indoor environments. Each area had multiple rooms, e.g. 

conference Room_1, hallway_1, office_1, etc. Each room had two datasets. The first dataset was 

called the Annotation, which contained each single point cloud of a single labelled object. The 

second dataset contained all the points in the room. For example, in the copyRoom_1, there was 

a dataset that contained all the points that belonged to the copyRoom_1. There was another 

dataset that divided the points into different point clouds of different labelled objects, e.g. 

beam_1, beam_2, column_1, wall_1, ceiling_1, table_1, chair_1, clutter_1, and etc. All points 

first stored in TXT files and modified to NPY (NumPy array) and H5 (Hierarchical Data Format) 

files for further processing. In each TXT file, 6 parameters were stored, including 3 positional 

parameters and RGB (red, green, and blue) parameters. However, this study only used positional 

parameters to train the models instead of all the 6 parameters. 0 weight was assigned to RGB 

parameters during the training and testing. 

3.1.2 Simulated point cloud acquisition 

 The simulated point clouds were generated to train and test the segmentation and 

classification machine-learning models. The simulation process was described in detail in the 

following sections. 
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3.1.2.1 The mesh generation of labelled objects 

The PointNet (Charles et.al., 2017) algorithm defines the clusters in 13 different labels, 

including “ceiling”, “floor”. “wall”, “beam”, “column”, “window”, “door”, “table”, “chair”, 

“sofa”, “bookcase”, “board”, and “clutter”. All the labelled objects except “clutter” were created 

in this step. Each kind of labelled model was created according to its characteristics under 3D 

laser scanning and photogrammetry. For example, room structure models such as “ceiling”, 

“floor”, “wall”, “beam”, and “column” were created using grid geometry, a simple layer 

primitive. The laser scanner and photogrammetry can only capture the inside structure of the 

room, and as a result, the point cloud of a wall was just a set of coplanar points. Other objects 

including “window”, “door”, “table”, “chair”, “sofa”, “bookcase”, “board” were imported into 

the scene as modified OBJ files. These OBJ files were created in advance according to real-

world objects and modified based on their characteristics under LiDAR and photogrammetry. 

Each label had multiple types of objects and each created model had its own randomized position 

and size. For instance, there were 7 different models of doors, and each type of door was 

randomly chosen by a randomization algorithm to be put into the indoor environment. There 

were 5 different models of windows, 3 different models of bookcases, 3 different models of 

tables, and 6 different models of chairs. Models’ sizes were normalized to standard sizes 

according to the Architectural Graphic Standards, 12th Edition, (Hall & Giglio, 2016) then the 

generated models were given random shifts and rotations, as well as other random sizes. 

Models were located in the indoor environments according to the Architectural Graphic 

Standard, 12th Edition (Hall & Giglio, 2016). Doors were fixed and located at one side of the 

walls, but the location within the wall was randomly selected. Other models changed locations 

according to the door. The as-designed models were imported as modified OBJ files as the 

representatives of the 3D objects. There were 3 different types of rooms, including small, 

medium, and large rooms. Each type of room had its own structural design and number of 

objects and facilities. For instance, small rooms had 1 door, 1 window, 1 bookcase, 1 table, 1 

chair, 1 sofa, and other clutter. A table and a chair were located in the center area of the small 

room, while a sofa was located off the center. The size of the small rooms is defined as follows: 

The length and width is 4 meters to 6 meters and the height was 2.5 meters to 3.5 meters. The 

medium rooms had 1 door, 1 window, 1 bookcase, 4 tables, 4 chairs, and other clutter. The size 

of the medium rooms is defined as follows: The length and width is 6 meters to 8 meters and the 
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height is 2.5 meters to 3.5 meters. The large rooms were designed to imitate classrooms. There 

was 1 door, 2 windows, 1 board, and multiple tables and chairs. The size of the large rooms is 

defined as follows: The length and width is 9 meters to 11 meters and the height is 2.5 meters to 

4.0 meters. The randomization in locations, rotations, and sizes provided a variability of the 

training dataset so that the trained segmentation and classification models can apply to a wide 

range of different projects. 

Despite the fact that this simulation method was different from the real-world scanning 

methods, there were some aspects that had to be taken care of in order to be further applied to 

real-world point clouds. As shown in Fig. 1, this was the backside of a bookcase which was 

placed against the wall. The cyan surface which had an RGB color of (0, 255, 255) was a side of 

the walls. The part where it intersected with the bookcase was deleted, and so was the 

intersection part of the bookcase. This procedure was to imitate how real-world scanning 

methods work, including LiDAR and photogrammetry, because the backside of an object cannot 

be captured. 

 

 

 

Figure 1. This shows the backside and frontside of a bookcase in the modeled environment. 

The part where it intersected with the bookcase was deleted, and so was the intersection part 

of the bookcase. 
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3.1.2.2 The simulation of clutter objects 

There was one cluster, called clutter. The clutter included all the objects that were not 

given a label. The amount of clutter depended on the definition of the algorithm. Before the 

labelling of training and testing point clouds, users can change the number of clusters so that the 

number of clutters is changed. However, for this study, in order to be compared with the original 

method, the clusters were defined as the same as the original algorithm including 13 clusters. 

There were multiple models belonging to the clutters, e.g. the PC (personal computer), the 

laptop, the book, the cup, the keyboard, the mouse, the light, etc. The occlusion by these clutters 

was taken into consideration. For instance, the pc and the laptop were associated with the table, 

which was one of the labelled clutters in the algorithm. The mentioned clutter objects were only 

generated on the upside surface of the tables instead of anywhere in the indoor environments. 

Moreover, by following the rules of LiDAR and photogrammetry, only the visible parts of the 

objects were generated, as shown in Figure 2. The downside of the laptop collided with the 

upside surface of the table. Therefore, the intersection part was deleted, and so was the part on 

the table. The process of defining the modeling of a laptop is described as follows. First, the 

bounding box of the table was extracted to be the original location of the laptop. Second, a 

random shift and rotation were applied to the table, as well as a scale change. Third, the parts of 

the table where the laptop intersected with were deleted. Each simulation of indoor environments 

Figure 2. This shows a laptop mesh. The downside of the laptop 

was deleted, because it was placed on the table. 
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resulted in different locations and a different number of items on the table, which added to the 

variety of the point cloud dataset. Other clutter objects were generated in the similar way. 

Model modifications were applied before and while the models were imported into the 

virtual environment. During the model modifications, the structures of original models were 

adjusted to imitate a scanning situation of the object according to how they would be captured 

and behave in real-world situation. 

3.1.2.3 The generation of point clouds 

After the meshes were generated, the scattering algorithm was applied to all the meshes. 

The scattering of points meant that the surfaces were discretized into many dense points (Bosché, 

2008 & 2010). The point density was defined as the number of points on a surface divided by the 

area of the surface. Therefore, the number of points was the multiplication of the summation of 

the surface areas and the user-defined point density. The points were evenly and randomly 

scattered around the surfaces of the objects. Figure 3 shows the point cloud of a small room with 

a point density of 500 pts/m2 (points/m2) and no random error. Each simulated point cloud 

dataset contained 4 areas of simulated environments. Area_1, area_2, and area_3 were the point 

clouds for training. Area_4 was the point clouds for testing. Area_1 had 40 small rooms, area_2 

had 40 medium rooms, and area_3 had 40 large rooms. Area_4 had 10 small rooms, 10 medium 

Figure 3. This shows the point cloud of a small room with a 

point density of 500 pts/m2 (points/m2) and no random 

error. 
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rooms, and 10 large rooms. There were 10 simulated point cloud datasets, including 50 pts/m2 

without random error, 100 pts/m2 without random error, 500 pts/m2 without random error, 1000 

pts/m2 without random error, and 5000 pts/m2 without random error; 50 pts/m2 with 5 mm ϵ, 100 

pts/m2 with 5 mm ϵ, 500 pts/m2 with 5 mm ϵ, 1000 pts/m2 with 5 mm ϵ, and 5000 pts/m2 with 5 

mm ϵ. The ϵ was defined as the average of the random error in the point clouds. Figure 4 shows 

an example of the point cloud of a medium room with a point density of 50 pts/m2 without 

random error. Figure 5 shows an example of the point cloud of a medium room with a point 

density of 100 pts/m2 without random error. Figure 6 shows an example of the point cloud of a 

medium room with a point density of 500 pts/m2 without random error. Figure 7 shows an 

example of the point cloud of a medium room with a point density of 1000 pts/m2 without 

random error. Figure 8 shows an example of the point cloud of a medium room with a point 

density of 5000 pts/m2 without random error. Figure 9 shows an example of the point cloud of a 

large room with a point density of 50 pts/m2 without random error. Figure 10 shows an example 

of the point cloud of a large room with a point density of 100 pts/m2 without random error. 

Figure 11 shows an example of the point cloud of a large room with a point density of 500 pts/m2 

Figure 4. This is an example of the point cloud of a medium room with a point 

density of 50 pts/m2 without random error. 
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without random error. Figure 12 shows an example of the point cloud of a large room with a 

point density of 1000 pts/m2 without random error. Figure 13 shows an example of the point 

cloud of a large room with a point density of 5000 pts/m2 without random error. 

Figure 6. This is an example of the point cloud of a medium room with a point 

density of 500 pts/m2 without random error. 

Figure 5. This is an example of the point cloud of a medium room with a point 

density of 100 pts/m2 without random error. 
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Figure 7. This is an example of the point cloud of a medium room with a 

point density of 5000 pts/m2 without random error. 

Figure 8. This is an example of the point cloud of a medium room with a point 

density of 1000 pts/m2 without random error. 
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Figure 9. This is an example of the point cloud of a large room with a point 

density of 50 pts/m2 without random error. 

Figure 10. This is an example of the point cloud of a large room with a point 

density of 100 pts/m2 without random error. 
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Figure 11. This is an example of the point cloud of a large room with a point 

density of 500 pts/m2 without random error. 

Figure 12. This is an example of the point cloud of a large room with a point 

density of 1000 pts/m2 without random error. 
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3.1.2.4 Output the point clouds files 

This study only discussed how points' positional parameters affect the semantic 

segmentation results. A PTS file is one typical formats of the point cloud file. It provides 7 

parameters for each point, which are XYZ, intensity and RGB values. Not all laser scanners can 

get RGB data of scanner points and the essence of point cloud data is in the positional 

parameters. And photogrammetry method does not provide an intensity parameter. The intensity 

depends on the objects’ reflection of the beam, which provides additional information about the 

objects. However, in order to ensure the generality and testability, this study only trained the 

models by position data, setting the weight of color to 0 without any intensity data. 

Figure 13. This is an example of the point cloud of a large room with a point 

density of 5000 pts/m2 without random error. 
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The data structure of the point cloud data was a 6-D-parameter that consisted of point 

coordinates and RGB colors (which were set to (0, 0, 0)). The data files were output as TXT 

files. Every row consisted of 6 numbers and the number of rows is the number of points. An 

example data structure is listed in Figure 14. 

3.1.3 Point cloud data training preparation 

The TXT files contained 3D Cartesian coordinates and an RGB array. According to the 

original algorithm, the TXT files needed to be transformed to another file format called an NPY 

(NumPy array) file as an intermediate file format for further transformation. The NPY did not 

only serve as an intermediate file format but was used for testing. Then the NPY file needed to 

be transformed to the H5 (Hierarchical Data Format) file, which was the input for the 

segmentation and classification algorithm. 

3.2 Segmentation and classification method 

In this study, a machine learning algorithm, introduced by PointNet (Charles et.al., 2017), 

was used to perform the segmentation and classification. The algorithm was not adjusted or 

optimized for this study. There were 10 point cloud dataset for training and testing. Each point 

 

Figure 14. An example of 

point cloud file data structure. 
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cloud dataset had 4 areas. Area_1, Area_2, and Area_3 were used as training data. They were 

input into the algorithm as H5 files. Area_4 was used as the testing data and input as NPY files. 

3.2.1 Deep learning segmentation and classification framework 

The PointNet (Charles et.al., 2017) is a deep learning framework that treats raw point 

cloud data. The algorithm performs the semantic segmentation of a 3D environment. The model 

outputs n x m scores for each of the n points and each of the m semantic subcategories (Charles 

et.al., 2017). The algorithm (Charles et.al., 2017) defines the input as a subset of Euclidean space 

points that have three main properties; unordered, interaction among points, and invariance under 

transformation. The input point sets are unordered unlike pixel matrix and voxel matrix, 

therefore, the permutation of point sets should remain the same during input. Secondly, points 

are not isolated but rather capable of capturing local structures from nearby points. Thirdly, 

points set should not be modified during any transformation and rotation (Charles et.al., 2017). 

“The network has three key modules: the max pooling layer as a symmetric function to aggregate 

information from all the points, a local and global information combination structure, and two 

joint alignment networks that align both input points and point features” (Charles et.al., 2017, 

p.3). “The classification network takes n points as input, applies input and feature 

transformations, and then aggregates point features by max pooling” (Charles et.al., 2017, p.3). 

The max pooling method is a down sampling process. It takes representatives of groups of 

objects, reducing the dimensionality of the regions. “The output is classification scores for k 

classes. The segmentation network is an extension to the classification net. It concatenates global 

and local features and outputs per point scores” (Charles et.al., 2017, p.3). According to PointNet 

(Charles et.al., 2017), rooms were sampled into blocks with an area of 1m by 1m. The trained 

segmentation method predicted per-point class in each block. “Each point is represented by a 9-

dim vector of XYZ, RGB and normalized location as to the room (from 0 to 1)” (Charles et.al., 

2017, p.7). In the original work, the researchers sampled 4096 points in each block in a rush 

during training time. And at test time, all points were tested. A K-fold strategy (Armeni et.al., 

2016) was used for train and test. 
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3.3 Experiment design and evaluation metrics 

The steps of the experiment and evaluation metrics are described in detail as follows. 

In total, 10 models were trained in no particular order. The mean loss and accuracy were 

outputted during the training and the evaluated mean loss and the evaluated accuracy were 

outputted during the testing. 

The first segmentation and classification model was trained by the point cloud dataset 

(Point density: 50 pts / m2; Random error: None). Area_1, Area_2, and Area_3 were used as the 

training point clouds. The mean loss and the accuracy of the trained model were calculated, 

tested by Area_1, Area_2, and Area 3. Area_4 was used as the testing point cloud. The evaluated 

mean loss and the evaluated accuracy of the trained model were calculated 

The second segmentation and classification model was trained by the point cloud dataset 

(Point density: 100 pts / m2; Random error: None). Area_1, Area_2, and Area_3 were used as the 

training point clouds. The mean loss and the accuracy of the trained model were calculated, 

tested by Area_1, Area_2, and Area 3. Area_4 was used as the testing point cloud. The evaluated 

mean loss and the evaluated accuracy of the trained model were also calculated by implementing 

the model on Area_4. 

The third segmentation and classification model was trained by the point cloud dataset 

(Point density: 500 pts / m2; Random error: None). Area_1, Area_2, and Area_3 were used as the 

training point clouds. The mean loss and the accuracy of the trained model were calculated, 

tested by Area_1, Area_2, and Area 3. Area_4 was used as the testing point cloud. The evaluated 

mean loss and the evaluated accuracy of the trained model were also calculated by implementing 

the model on Area_4. 

The fourth segmentation and classification model was trained by the point cloud dataset 

(Point density: 1000 pts / m2; Random error: None). Area_1, Area_2, and Area_3 were used as 

the training point clouds. The mean loss and the accuracy of the trained model were calculated, 

tested by Area_1, Area_2, and Area 3. Area_4 was used as the testing point cloud. The evaluated 

mean loss and the evaluated accuracy of the trained model were also calculated by implementing 

the model on Area_4. 

The fifth segmentation and classification model was trained by the point cloud dataset 

(Point density: 5000 pts / m2; Random error: None). Area_1, Area_2, and Area_3 were used as 

the training point clouds. The mean loss and the accuracy of the trained model were calculated, 
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tested by Area_1, Area_2, and Area 3. Area_4 was used as the testing point cloud. The evaluated 

mean loss and the evaluated accuracy of the trained model were also calculated by implementing 

the model on Area_4. 

The sixth segmentation and classification model was trained by the point cloud dataset 

(Point density: 50 pts / m2; Random error: 5 mm ϵ). Area_1, Area_2, and Area_3 were used as 

the training point clouds. The mean loss and the accuracy of the trained model were calculated, 

tested by Area_1, Area_2, and Area 3. Area_4 was used as the testing point cloud. The evaluated 

mean loss and the evaluated accuracy of the trained model were also calculated by implementing 

the model on Area_4. 

The seventh segmentation and classification model was trained by the point cloud dataset 

(Point density: 100 pts / m2; Random error: 5 mm ϵ). Area_1, Area_2, and Area_3 were used as 

the training point clouds. The mean loss and the accuracy of the trained model were calculated, 

tested by Area_1, Area_2, and Area 3. Area_4 was used as the testing point cloud. The evaluated 

mean loss and the evaluated accuracy of the trained model were also calculated by implementing 

the model on Area_4. 

The eighth segmentation and classification model was trained by the point cloud dataset 

(Point density: 500 pts / m2; Random error: 5 mm ϵ). Area_1, Area_2, and Area_3 were used as 

the training point clouds. The mean loss and the accuracy of the trained model were calculated, 

tested by Area_1, Area_2, and Area 3. Area_4 was used as the testing point cloud. The evaluated 

mean loss and the evaluated accuracy of the trained model were also calculated by implementing 

the model on Area_4. 

The ninth segmentation and classification model was trained by the point cloud dataset 

(Point density: 1000 pts / m2; Random error: 5 mm ϵ). Area_1, Area_2, and Area_3 were used as 

the training point clouds. The mean loss and the accuracy of the trained model were calculated, 

tested by Area_1, Area_2, and Area 3. Area_4 was used as the testing point cloud. The evaluated 

mean loss and the evaluated accuracy of the trained model were also calculated by implementing 

the model on Area_4. 

The tenth segmentation and classification model was trained by the point cloud dataset 

(Point density: 5000 pts / m2; Random error: 5 mm ϵ). Area_1, Area_2, and Area_3 were used as 

the training point clouds. The mean loss and the accuracy of the trained model were calculated, 

tested by Area_1, Area_2, and Area 3. Area_4 was used as the testing point cloud. The evaluated 
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mean loss and the evaluated accuracy of the trained model were also calculated by implementing 

the model on Area_4. 

After all the models were trained. Each model was also tested by other datasets in order to 

find the relation between the results and two point cloud attributes: point density and random 

error (with or without).  

The first segmentation and classification model was trained by the point cloud dataset 

(Point density: 50 pts / m2; Random error: None). Firstly, it was tested by Area_4 of 4 other point 

cloud datasets: 1. Point density: 100 pts / m2; Random error: None. 2. Point density: 500 pts / m2; 

Random error: None. 3. Point density: 1000 pts / m2; Random error: None. 4. Point density: 5000 

pts / m2; Random error: None. The evaluated mean loss and the evaluated accuracy of the trained 

model were considered output and compared to find out the relation between the results and 

point density. Secondly, the trained model was tested by Area_4 of another point cloud dataset: 

Point density: 50 pts / m2; Random error: 5 mm ϵ. The evaluated mean loss and the evaluated 

accuracy of the trained model were output and compared to find out the relation between the 

results and the level of random error. 

The second segmentation and classification model was trained by the point cloud dataset 

(Point density: 100 pts / m2; Random error: None). Firstly, it was tested by Area_4 of 4 other 

point cloud datasets: 1. Point density: 50 pts / m2; Random error: None. 2. Point density: 500 pts 

/ m2; Random error: None. 3. Point density: 1000 pts / m2; Random error: None. 4. Point density: 

5000 pts / m2; Random error: None. The evaluated mean loss and the evaluated accuracy of the 

trained model were considered output and compared to find out the relation between the results 

and point density. Secondly, the trained model was tested by Area_4 of another point cloud 

dataset: Point density: 100 pts / m2; Random error: 5 mm ϵ. The evaluated mean loss and the 

evaluated accuracy of the trained model were output and compared to find out the relation 

between the results and the level of random error. 

The third segmentation and classification model was trained by the point cloud dataset 

(Point density: 500 pts / m2; Random error: None). Firstly, it was tested by Area_4 of 4 other 

point cloud datasets: 1. Point density: 50 pts / m2; Random error: None. 2. Point density: 100 pts 

/ m2; Random error: None. 3. Point density: 1000 pts / m2; Random error: None. 4. Point density: 

5000 pts / m2; Random error: None. The evaluated mean loss and the evaluated accuracy of the 

trained model were considered output and compared to find out the relation between the results 



 

59 

and point density. Secondly, the trained model was tested by Area_4 of another point cloud 

dataset: Point density: 500 pts / m2; Random error: 5 mm ϵ. The evaluated mean loss and the 

evaluated accuracy of the trained model were output and compared to find out the relation 

between the results and the level of random error. 

The fourth segmentation and classification model was trained by the point cloud dataset 

(Point density: 1000 pts / m2; Random error: None). Firstly, it was tested by Area_4 of 4 other 

point cloud datasets: 1. Point density: 50 pts / m2; Random error: None. 2. Point density: 100 pts 

/ m2; Random error: None. 3. Point density: 500 pts / m2; Random error: None. 4. Point density: 

5000 pts / m2; Random error: None. The evaluated mean loss and the evaluated accuracy of the 

trained model were considered output and compared to find out the relation between the results 

and point density. Secondly, the trained model was tested by Area_4 of another point cloud 

dataset: Point density: 1000 pts / m2; Random error: 5 mm ϵ. The evaluated mean loss and the 

evaluated accuracy of the trained model were output and compared to find out the relation 

between the results and the level of random error. 

The fifth segmentation and classification model was trained by the point cloud dataset 

(Point density: 5000 pts / m2; Random error: None). Firstly, it was tested by Area_4 of 4 other 

point cloud datasets: 1. Point density: 50 pts / m2; Random error: None. 2. Point density: 100 pts 

/ m2; Random error: None. 3. Point density: 500 pts / m2; Random error: None. 4. Point density: 

1000 pts / m2; Random error: None. The evaluated mean loss and the evaluated accuracy of the 

trained model were considered output and compared to find out the relation between the results 

and point density. Secondly, the trained model was tested by Area_4 of another point cloud 

dataset: Point density: 5000 pts / m2; Random error: 5 mm ϵ. The evaluated mean loss and the 

evaluated accuracy of the trained model were output and compared to find out the relation 

between the results and the level of random error. 

The sixth segmentation and classification model was trained by the point cloud dataset 

(Point density: 50 pts / m2; Random error: 5 mm ϵ). Firstly, it was tested by Area_4 of 4 other 

point cloud datasets: 1. Point density: 100 pts / m2; Random error: 5 mm ϵ. 2. Point density: 500 

pts / m2; Random error: 5 mm ϵ. 3. Point density: 1000 pts / m2; Random error: 5 mm ϵ. 4. Point 

density: 5000 pts / m2; Random error: 5 mm ϵ. The evaluated mean loss and the evaluated 

accuracy of the trained model were considered output and compared to find out the relation 

between the results and point density. Secondly, the trained model was tested by Area_4 of 
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another point cloud dataset: Point density: 50 pts / m2; Random error: None. The evaluated mean 

loss and the evaluated accuracy of the trained model were output and compared to find out the 

relation between the results and the level of random error. 

The seventh segmentation and classification model was trained by the point cloud dataset 

(Point density: 100 pts / m2; Random error: 5 mm ϵ). Firstly, it was tested by Area_4 of 4 other 

point cloud datasets: 1. Point density: 50 pts / m2; Random error: 5 mm ϵ. 2. Point density: 500 

pts / m2; Random error: 5 mm ϵ. 3. Point density: 1000 pts / m2; Random error: 5 mm ϵ. 4. Point 

density: 5000 pts / m2; Random error: 5 mm ϵ. The evaluated mean loss and the evaluated 

accuracy of the trained model were considered output and compared to find out the relation 

between the results and point density. Secondly, the trained model was tested by Area_4 of 

another point cloud dataset: Point density: 100 pts / m2; Random error: None. The evaluated 

mean loss and the evaluated accuracy of the trained model were output and compared to find out 

the relation between the results and the level of random error. 

The eighth segmentation and classification model was trained by the point cloud dataset 

(Point density: 500 pts / m2; Random error: 5 mm ϵ). Firstly, it was tested by Area_4 of 4 other 

point cloud datasets: 1. Point density: 50 pts / m2; Random error: 5 mm ϵ. 2. Point density: 100 

pts / m2; Random error: 5 mm ϵ. 3. Point density: 1000 pts / m2; Random error: 5 mm ϵ. 4. Point 

density: 5000 pts / m2; Random error: 5 mm ϵ. The evaluated mean loss and the evaluated 

accuracy of the trained model were considered output and compared to find out the relation 

between the results and point density. Secondly, the trained model was tested by Area_4 of 

another point cloud dataset: Point density: 500 pts / m2; Random error: None. The evaluated 

mean loss and the evaluated accuracy of the trained model were output and compared to find out 

the relation between the results and the level of random error. 

The ninth segmentation and classification model was trained by the point cloud dataset 

(Point density: 1000 pts / m2; Random error: 5 mm ϵ). Firstly, it was tested by Area_4 of 4 other 

point cloud datasets: 1. Point density: 50 pts / m2; Random error: 5 mm ϵ. 2. Point density: 100 

pts / m2; Random error: 5 mm ϵ. 3. Point density: 500 pts / m2; Random error: 5 mm ϵ. 4. Point 

density: 5000 pts / m2; Random error: 5 mm ϵ. The evaluated mean loss and the evaluated 

accuracy of the trained model were considered output and compared to find out the relation 

between the results and point density. Secondly, the trained model was tested by Area_4 of 

another point cloud dataset: Point density: 1000 pts / m2; Random error: None. The evaluated 
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mean loss and the evaluated accuracy of the trained model were output and compared to find out 

the relation between the results and the level of random error. 

The tenth segmentation and classification model was trained by the point cloud dataset 

(Point density: 5000 pts / m2; Random error: 5 mm ϵ). Firstly, it was tested by Area_4 of 4 other 

point cloud datasets: 1. Point density: 50 pts / m2; Random error: 5 mm ϵ. 2. Point density: 100 

pts / m2; Random error: 5 mm ϵ. 3. Point density: 500 pts / m2; Random error: 5 mm ϵ. 4. Point 

density: 1000 pts / m2; Random error: 5 mm ϵ. The evaluated mean loss and the evaluated 

accuracy of the trained model were considered output and compared to find out the relation 

between the results and point density. Secondly, the trained model was tested by Area_4 of 

another point cloud dataset: Point density: 5000 pts / m2; Random error: None. The evaluated 

mean loss and the evaluated accuracy of the trained model were output and compared to find out 

the relation between the results and the level of random error. 

Figure 15. The figures above show the visualizations of one office and one 

conference room of the original data from Charles et.al (2017). Different colored 

points represent different clusters. 
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Table 1. The table above shows that there are 13 clusters and the colors for their representations. 

The names of the colors according to the RGB values are subjective and they are only for 

visualization purpose. 

 

Both quantitative and qualitative results were carried out through the study. The qualitative 

results were in the form of visual semantic representations as shown in Figure 15. The color of 

the points indicates the labels of the points. As shown in Table 1, each label was represented by 

an RGB array. The corresponding real-world colors were listed at the right side of the RGB 

values. The quantitative results were conducted based on the mean loss and the accuracy. A loss 

is a number indicating how bad the model's prediction is on one example. A mean loss indicates 

how bad the model’s prediction is on the whole dataset in average. Unlike accuracy, it is a sum 

of the errors made for each example in training or testing sets. An accuracy is used to measure 

the algorithm’s performance. It is the measure of how accurate the model's prediction is 

compared to the true data. If the model's prediction is perfect, the loss is zero; otherwise, the loss 

is greater. The goal of training a model is to find a set of weights and biases that have low loss on 

average, across all examples. Higher loss is worse (bad prediction) for any model. The mean loss 

and the accuracy were calculated based on the above-mentioned quality indicators for the 

evaluation of segmentation results. A low accuracy and huge loss mean that there are huge errors 

on a lot of the points. Low accuracy and low loss mean that there is little error on a lot of the 

points. A great accuracy with low mean loss that there are low errors on some data, which is the 

best case. The mean loss and accuracy were calculated in the experiment by the equations below: 

number label RGB Color 

1 'ceiling' [0,255,0] Green 

2 'floor' [0,0,255] Blue 

3 'wall' [0,255,255] Cyan 

4 'beam' [255,255,0] Yellow 

5 'column' [255,0,255] Magenta 

6 'window' [100,100,255] Medium slate blue 

7 'door' [200,200,100] Dark khaki 

8 'table' [170,120,200] Medium Orchid 

9 'chair' [255,0,0] Red 

10 'sofa' [200,100,100] Indian red 

11 'bookcase’ [10,200,100] Medium sea green 

12 'board' [200,200,200] Silver 

13 'clutter' [50,50,50] Dim gray 
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𝑀𝑒𝑎𝑛 𝑙𝑜𝑠𝑠 =
loss sum

the number of batches
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
total correct

total seen
 

 “Loss sum” is the summation of all losses in all the batches in a point cloud. “Total seen” 

means the labelled points in the point cloud, and “total correct” means the correctly labelled 

points in the point cloud. 

 The testing results of the experiments are listed in section 4. 
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4. EXPERIMENT RESULTS 

The final results of different sets of segmentation and classification models were 

compared between models and within themselves. The final comparison results included the 

evaluated mean loss and the evaluated accuracy between models with different point density. 

Every model was tested by point cloud data with the same point density as the training dataset. 

Additionally, every model was tested by various point cloud data with different point density and 

different level of random errors. For example, the machine learning model trained by a point 

cloud dataset with the point density of 1000 pts/m2 was tested not only by a point cloud dataset 

with the point density of 1000 pts/m2, but also other point cloud datasets with different point 

density, e.g., 50 pts/m2, 100 pts/m2, 500 pts/m2, 5000 pts/m2. 

The testing results of the machine learning models trained by different point cloud data 

were compared and evaluated in the following sections. In the evaluation section, in terms of 

point cloud density, there are two main blocks. The first block consists of the evaluation results 

of each trained segmentation and classification model tested by the point cloud data with the 

same point density as the related training point cloud data. The second block consists of the 

evaluation results of each trained segmentation and classification model tested by different point 

cloud data with the point density of 50 pts/m2, 100 pts/m2, 500 pts/m2, 1000 pts/m2, 5000 pts/m2. 

The evaluation of the level of error also has two main blocks. The first block consists of the 

evaluation results of the segmentation and classification model trained by errorless (without 

adding a ϵ) point cloud data. This was tested by both the errorless point cloud data and the point 

cloud data with adding a 5 mm ϵ. The second block consists of the evaluation results of the 

segmentation and classification model trained by the point cloud data with a 5 mm ϵ. It was also 

tested by both the errorless point cloud data and the point cloud data with adding a 5 mm ϵ. 

4.1 Test results 

There were two main sections of results, the first one being the mean loss and accuracy 

results output while training the models. They included the mean loss and accuracy tested by the 

training data from Area_1, Area_2 and Area_3. The second main section are the evaluated mean 

loss and the evaluated accuracy, tested by the testing data from Area_4. The mean loss and 
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accuracy were the evaluation for the training dataset and the evaluated mean loss and evaluated 

accuracy were the evaluation for the testing dataset. The mean loss, accuracy, evaluated mean 

loss, and evaluated accuracy were displayed and recorded after each epoch. 

The significant number of digits of the direct output mean loss and accuracy of the testing 

results was firstly set as 6 to make sure there was no rounding-up problem. Then the significant 

number of digits was chosen to be 4 because an accuracy difference less than 0.01% was ignored 

in this study. And according to a number of studies (Rottensteiner et.al., 2014; Charles et.al., 

2017) regarding the accuracy of classification and object detection, the significant number of 

digits was often set below 4. 

Table 2 shows the mean loss, accuracy, the evaluated mean loss, and accuracy after each 

epoch of 10 trained models. Table 2 shows the mean loss, accuracy and the evaluated mean loss 

and accuracy after each epoch of 4 point cloud datasets with different point density including: 50 

pts/m2, 50 pts/m2 with a 5 mm ϵ, 100 pts/m2 , 100 pts/m2 with a 5 mm ϵ. Table 3 shows the mean 

loss, accuracy and the evaluated mean loss and accuracy after each epoch of 4 point cloud 

datasets with different point density, including 500 pts/m2, 500 pts/m2 with a 5 mm ϵ, 1000 

pts/m2 , 1000 pts/m2 with a 5 mm ϵ. Table 4 shows the mean loss, accuracy and the evaluated 

mean loss and accuracy after each epoch of 2 point cloud datasets with different point density, 

including 5000 pts/m2, 5000 pts/m2 with a 5 mm ϵ. The max epoch was set to 20 after a few test 

trainings. The evaluated accuracy reached almost the maximum at the 20th epoch, and the models 

encountered overfitting problems when continuing training after the 20th epoch. The row 

indicates each epoch and the column indicates different training dataset, e.g. different point 

density: 50 pts/m2, 100 pts/m2, 500 pts/m2, 1000 pts/m2, 5000 pts/m2 and with or without a level 

of error. 
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Table 2. The mean loss and accuracy and the evaluated mean loss and accuracy after each epoch 

of 4 point cloud datasets with different point density, including 50 pts/m2, 50 pts/m2 with a 5 mm 

ϵ, 100 pts/m2 , 100 pts/m2 with a 5 mm ϵ. 

Epoch Output results 50 pts/m2  50 pts/m2 + 5 mm ϵ 100 pts/m2  
100 pts/m2 + 5 mm 

ϵ 

1 

Mean Loss 0.353421 0.351447 0.322527 0.318329 

Accuracy 0.883021 0.883121 0.89353 0.895664 

Evaluated Mean Loss 0.247315 0.306197 0.213028 0.214336 

Evaluated Accuracy 0.918296 0.900873 0.926838 0.930647 

2 

Mean Loss 0.230158 0.232009 0.205491 0.205674 

Accuracy 0.920276 0.918816 0.929793 0.929973 

Evaluated Mean Loss 0.189294 0.234032 0.155536 0.169215 

Evaluated Accuracy 0.929138 0.915078 0.94389 0.936886 

3 

Mean Loss 0.177794 0.180044 0.154271 0.153984 

Accuracy 0.935933 0.934947 0.945277 0.944527 

Evaluated Mean Loss 0.155587 0.15518 0.14624 0.121257 

Evaluated Accuracy 0.946072 0.94154 0.947472 0.958715 

4 

Mean Loss 0.151212 0.152259 0.127718 0.130696 

Accuracy 0.945373 0.944866 0.954633 0.953296 

Evaluated Mean Loss 0.153832 0.149322 0.112793 0.111294 

Evaluated Accuracy 0.9442 0.946953 0.958999 0.958979 

5 

Mean Loss 0.139666 0.135508 0.117515 0.113883 

Accuracy 0.949258 0.950409 0.958244 0.959203 

Evaluated Mean Loss 0.129746 0.132832 0.10007 0.107652 

Evaluated Accuracy 0.953081 0.953698 0.964247 0.960649 

6 

Mean Loss 0.129794 0.127802 0.108363 0.103931 

Accuracy 0.952503 0.95338 0.961308 0.962603 

Evaluated Mean Loss 0.123052 0.117849 0.114584 0.097472 

Evaluated Accuracy 0.95576 0.955819 0.958108 0.963151 

7 

Mean Loss 0.116004 0.117317 0.099861 0.101498 

Accuracy 0.957051 0.956778 0.964086 0.963206 

Evaluated Mean Loss 0.124417 0.112198 0.080958 0.084177 

Evaluated Accuracy 0.955611 0.957806 0.971411 0.967069 

8 

Mean Loss 0.111863 0.111683 0.091879 0.092293 

Accuracy 0.958662 0.958514 0.966342 0.966023 

Evaluated Mean Loss 0.117916 0.132865 0.08766 0.103311 

Evaluated Accuracy 0.958231 0.954333 0.96823 0.960821 

9 

Mean Loss 0.10844 0.103638 0.085603 0.084884 

Accuracy 0.959373 0.961038 0.968653 0.96884 

Evaluated Mean Loss 0.10793 0.089097 0.07681 0.075172 

Evaluated Accuracy 0.961222 0.96538 0.971158 0.973208 

10 

Mean Loss 0.102084 0.100311 0.084488 0.084456 

Accuracy 0.961469 0.962328 0.969053 0.968694 

Evaluated Mean Loss 0.11477 0.101631 0.074044 0.083601 

Evaluated Accuracy 0.957926 0.962232 0.971688 0.970065 

11 
Mean Loss 0.097816 0.095114 0.08042 0.077869 

Accuracy 0.962868 0.963992 0.970287 0.970953 
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Table 2 continued 

 Evaluated Mean Loss 0.093181 0.089985 0.069682 0.077972 

Evaluated Accuracy 0.965304 0.967054 0.973995 0.971252 

12 

Mean Loss 0.092095 0.091487 0.063458 0.065321 

Accuracy 0.964932 0.964986 0.976208 0.9754 

Evaluated Mean Loss 0.087163 0.113405 0.070034 0.058057 

Evaluated Accuracy 0.967019 0.956953 0.971925 0.977335 

13 

Mean Loss 0.084699 0.079027 0.059953 0.059397 

Accuracy 0.967745 0.969595 0.97727 0.977399 

Evaluated Mean Loss 0.072922 0.069767 0.082149 0.056318 

Evaluated Accuracy 0.972268 0.972772 0.967552 0.977644 

14 

Mean Loss 0.071268 0.071761 0.057933 0.05699 

Accuracy 0.972325 0.971974 0.977832 0.978156 

Evaluated Mean Loss 0.084506 0.073257 0.068777 0.059953 

Evaluated Accuracy 0.965127 0.971301 0.972128 0.976957 

15 

Mean Loss 0.070647 0.069794 0.056697 0.057823 

Accuracy 0.972401 0.972657 0.97842 0.977929 

Evaluated Mean Loss 0.065307 0.067228 0.054594 0.056667 

Evaluated Accuracy 0.974773 0.972742 0.978989 0.979073 

16 

Mean Loss 0.069319 0.067953 0.055921 0.055845 

Accuracy 0.972943 0.973159 0.978425 0.978748 

Evaluated Mean Loss 0.066397 0.072759 0.056957 0.050605 

Evaluated Accuracy 0.973948 0.971896 0.9784 0.980879 

17 

Mean Loss 0.068161 0.066731 0.052686 0.053446 

Accuracy 0.97319 0.973596 0.979661 0.97931 

Evaluated Mean Loss 0.064598 0.074008 0.055509 0.049538 

Evaluated Accuracy 0.974523 0.972008 0.978034 0.980496 

18 

Mean Loss 0.06584 0.064968 0.05312 0.052224 

Accuracy 0.974026 0.974252 0.979579 0.979812 

Evaluated Mean Loss 0.073284 0.083867 0.051588 0.049362 

Evaluated Accuracy 0.972696 0.967046 0.980624 0.981041 

19 

Mean Loss 0.064988 0.065183 0.052211 0.052063 

Accuracy 0.974232 0.974056 0.979726 0.979884 

Evaluated Mean Loss 0.069003 0.064316 0.048689 0.055883 

Evaluated Accuracy 0.971253 0.974045 0.980635 0.978931 

20 

Mean Loss 0.063948 0.062526 0.051328 0.051014 

Accuracy 0.974649 0.975102 0.979938 0.980132 

Evaluated Mean Loss 0.062197 0.064441 0.056112 0.059853 

Evaluated Accuracy 0.974567 0.974841 0.977507 0.977121 
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Table 3. The mean loss and accuracy and the evaluated mean loss and accuracy after each epoch 

of 4 point cloud datasets with different point density, including 500 pts/m2, 500 pts/m2 with a 5 

mm ϵ, 1000 pts/m2, 1000 pts/m2 with a 5 mm ϵ. 

Epoch Output results 500 pts/m2  
500 pts/m2 + 5 mm 

ϵ 
1000 pts/m2  

1000 pts/m2 + 5 mm 
ϵ 

1 

Mean Loss 0.297174 0.303645 0.297578 0.301577 

Accuracy 0.900685 0.899548 0.902515 0.900537 

Evaluated Mean Loss 0.194418 0.268461 0.197965 0.276726 

Evaluated Accuracy 0.931482 0.916452 0.934131 0.907685 

2 

Mean Loss 0.168584 0.182759 0.17457 0.171347 

Accuracy 0.941285 0.936711 0.939125 0.9401 

Evaluated Mean Loss 0.1186 0.127619 0.132449 0.139708 

Evaluated Accuracy 0.959136 0.954162 0.951584 0.94996 

3 

Mean Loss 0.127361 0.128535 0.125747 0.125688 

Accuracy 0.956043 0.955551 0.956224 0.956903 

Evaluated Mean Loss 0.111535 0.139232 0.106608 0.214224 

Evaluated Accuracy 0.960473 0.949231 0.964799 0.929882 

4 

Mean Loss 0.109523 0.111471 0.110453 0.107712 

Accuracy 0.962109 0.961666 0.961973 0.963676 

Evaluated Mean Loss 0.099124 0.105201 0.089203 0.133182 

Evaluated Accuracy 0.965788 0.962129 0.968528 0.958725 

5 

Mean Loss 0.096141 0.096614 0.09743 0.096246 

Accuracy 0.966515 0.966902 0.966505 0.966993 

Evaluated Mean Loss 0.089089 0.080304 0.083741 0.087072 

Evaluated Accuracy 0.968669 0.97175 0.971362 0.968962 

6 

Mean Loss 0.089295 0.092075 0.090533 0.087021 

Accuracy 0.969024 0.968351 0.968867 0.97015 

Evaluated Mean Loss 0.083337 0.091896 0.077138 0.07777 

Evaluated Accuracy 0.971589 0.966539 0.971524 0.97189 

7 

Mean Loss 0.081917 0.082339 0.081026 0.083026 

Accuracy 0.971416 0.971346 0.971832 0.971547 

Evaluated Mean Loss 0.075724 0.08883 0.076394 0.092806 

Evaluated Accuracy 0.971444 0.968368 0.972035 0.970118 

8 

Mean Loss 0.079046 0.080439 0.079766 0.077114 

Accuracy 0.972356 0.972104 0.972389 0.973387 

Evaluated Mean Loss 0.068929 0.071842 0.095179 0.089052 

Evaluated Accuracy 0.974354 0.973464 0.964935 0.9705 

9 

Mean Loss 0.075709 0.073839 0.07424 0.071748 

Accuracy 0.973541 0.974303 0.974069 0.975323 

Evaluated Mean Loss 0.061322 0.071473 0.06944 0.064339 

Evaluated Accuracy 0.97819 0.974701 0.975518 0.976885 
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Table 3 continued 

10 

Mean Loss 0.071788 0.068061 0.069007 0.068636 

Accuracy 0.974842 0.975738 0.975716 0.97622 

Evaluated Mean Loss 0.0622 0.071444 0.075539 0.075116 

Evaluated Accuracy 0.977936 0.97677 0.973274 0.971991 

11 

Mean Loss 0.066244 0.067653 0.064316 0.068538 

Accuracy 0.976476 0.976178 0.977233 0.976283 

Evaluated Mean Loss 0.064792 0.065311 0.060886 0.058117 

Evaluated Accuracy 0.975537 0.975419 0.977743 0.978361 

12 

Mean Loss 0.051989 0.052615 0.051723 0.050885 

Accuracy 0.981325 0.981188 0.981675 0.98211 

Evaluated Mean Loss 0.052723 0.048964 0.046934 0.07427 

Evaluated Accuracy 0.981111 0.98221 0.982803 0.975589 

13 

Mean Loss 0.051436 0.050624 0.049614 0.048451 

Accuracy 0.98154 0.982005 0.982389 0.98294 

Evaluated Mean Loss 0.049166 0.055845 0.046155 0.046692 

Evaluated Accuracy 0.982335 0.979288 0.983009 0.983478 

14 

Mean Loss 0.048291 0.04742 0.046998 0.046034 

Accuracy 0.982625 0.983076 0.983374 0.983698 

Evaluated Mean Loss 0.05251 0.052028 0.044787 0.048849 

Evaluated Accuracy 0.981211 0.981516 0.983717 0.9825 

15 

Mean Loss 0.047606 0.046691 0.045391 0.044337 

Accuracy 0.982872 0.98326 0.983767 0.984409 

Evaluated Mean Loss 0.049546 0.043595 0.04299 0.041847 

Evaluated Accuracy 0.983073 0.98421 0.983956 0.985165 

16 

Mean Loss 0.046771 0.045752 0.045356 0.044769 

Accuracy 0.983093 0.983638 0.98388 0.984248 

Evaluated Mean Loss 0.061442 0.045723 0.038632 0.040321 

Evaluated Accuracy 0.97635 0.983325 0.986034 0.985141 

17 

Mean Loss 0.044676 0.043237 0.042998 0.041975 

Accuracy 0.983807 0.984343 0.984658 0.985132 

Evaluated Mean Loss 0.039383 0.04155 0.038394 0.03958 

Evaluated Accuracy 0.985937 0.98517 0.986481 0.985327 

18 

Mean Loss 0.043496 0.043701 0.042218 0.042434 

Accuracy 0.984163 0.984243 0.9848 0.984949 

Evaluated Mean Loss 0.042463 0.042805 0.043643 0.046702 

Evaluated Accuracy 0.984672 0.984297 0.984083 0.983064 

19 

Mean Loss 0.041323 0.043912 0.039527 0.040293 

Accuracy 0.984975 0.984016 0.985887 0.985739 

Evaluated Mean Loss 0.043284 0.040643 0.038502 0.053898 

Evaluated Accuracy 0.984341 0.985182 0.985861 0.980961 



 

70 

Table 3 continued 

20 

Mean Loss 0.041898 0.041915 0.040292 0.040039 

Accuracy 0.984685 0.984896 0.98561 0.985871 

Evaluated Mean Loss 0.04046 0.039649 0.038686 0.041403 

Evaluated Accuracy 0.985244 0.98564 0.985451 0.985603 

 

Table 4. The mean loss and accuracy and the evaluated mean loss and accuracy after each epoch 

of 2 point cloud datasets with different point density, including 5000 pts/m2, 5000 pts/m2 with a 

5 mm ϵ. 

Epoch Output results 5000 pts/m2  5000 pts/m2 + 5 mm ϵ 

1 

Mean Loss 0.292543 0.298256 

Accuracy 0.903753 0.901926 

Evaluated Mean Loss 0.171619 0.177342 

Evaluated Accuracy 0.938807 0.937808 

2 

Mean Loss 0.161389 0.166703 

Accuracy 0.943256 0.941365 

Evaluated Mean Loss 0.132767 0.114456 

Evaluated Accuracy 0.951304 0.95862 

3 

Mean Loss 0.120138 0.122044 

Accuracy 0.959023 0.957856 

Evaluated Mean Loss 0.137915 0.089014 

Evaluated Accuracy 0.952152 0.969447 

4 

Mean Loss 0.103122 0.105161 

Accuracy 0.964851 0.963862 

Evaluated Mean Loss 0.097819 0.094388 

Evaluated Accuracy 0.966996 0.967649 

5 

Mean Loss 0.090989 0.093293 

Accuracy 0.968882 0.968024 

Evaluated Mean Loss 0.094929 0.110131 

Evaluated Accuracy 0.966466 0.959791 

6 

Mean Loss 0.082333 0.081687 

Accuracy 0.971783 0.972059 

Evaluated Mean Loss 0.080264 0.083923 

Evaluated Accuracy 0.971981 0.971254 

7 

Mean Loss 0.076931 0.075969 

Accuracy 0.973694 0.974 

Evaluated Mean Loss 0.071581 0.077376 

Evaluated Accuracy 0.974826 0.971384 
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Table 4 continued 

8 

Mean Loss 0.072282 0.070137 

Accuracy 0.975416 0.975723 

Evaluated Mean Loss 0.059724 0.066408 

Evaluated Accuracy 0.978911 0.975398 

9 

Mean Loss 0.066541 0.070066 

Accuracy 0.976991 0.976014 

Evaluated Mean Loss 0.055188 0.066955 

Evaluated Accuracy 0.980927 0.974398 

10 

Mean Loss 0.062587 0.064531 

Accuracy 0.978427 0.977407 

Evaluated Mean Loss 0.161899 0.062519 

Evaluated Accuracy 0.954057 0.978164 

11 

Mean Loss 0.059561 0.062548 

Accuracy 0.979635 0.978513 

Evaluated Mean Loss 0.058576 0.060378 

Evaluated Accuracy 0.979366 0.978056 

12 

Mean Loss 0.046365 0.046363 

Accuracy 0.983959 0.984094 

Evaluated Mean Loss 0.046569 0.04339 

Evaluated Accuracy 0.981454 0.984404 

13 

Mean Loss 0.044048 0.044153 

Accuracy 0.984665 0.984631 

Evaluated Mean Loss 0.044907 0.049328 

Evaluated Accuracy 0.98306 0.982964 

14 

Mean Loss 0.042003 0.042403 

Accuracy 0.985436 0.985399 

Evaluated Mean Loss 0.036292 0.037274 

Evaluated Accuracy 0.987435 0.986649 

15 

Mean Loss 0.039826 0.039719 

Accuracy 0.986144 0.986312 

Evaluated Mean Loss 0.038393 0.035577 

Evaluated Accuracy 0.985941 0.987498 

16 

Mean Loss 0.039102 0.038933 

Accuracy 0.986485 0.986481 

Evaluated Mean Loss 0.037033 0.045101 

Evaluated Accuracy 0.985637 0.985833 

17 

Mean Loss 0.037525 0.037731 

Accuracy 0.987009 0.986952 

Evaluated Mean Loss 0.035665 0.033036 

Evaluated Accuracy 0.987236 0.988014 
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Table 4 continued 

18 

Mean Loss 0.037904 0.036682 

Accuracy 0.986881 0.987241 

Evaluated Mean Loss 0.037622 0.037177 

Evaluated Accuracy 0.986627 0.986765 

19 

Mean Loss 0.036929 0.035995 

Accuracy 0.987192 0.987483 

Evaluated Mean Loss 0.03382 0.039089 

Evaluated Accuracy 0.988071 0.986409 

20 

Mean Loss 0.034655 0.034986 

Accuracy 0.987951 0.987823 

Evaluated Mean Loss 0.030144 0.038553 

Evaluated Accuracy 0.989452 0.986497 

 

Table 5 shows the evaluated mean loss and accuracy of each model (without random 

error) tested by different point density datasets. For example, the third column shows the 

evaluated mean loss and accuracy of the model trained by a 50 pts/m2 point density point cloud 

without error, tested by other 4 different point densities (without random error) datasets. 

 

Table 5. The evaluated mean loss and accuracy of each model (without random error) tested by 

different point density datasets. 

Testing 
Dataset 

Output results 50 pts/m2  100 pts/m2  500 pts/m2  1000 pts/m2  5000 pts/m2  

50 
pts/m2  

Evaluated mean loss 0.062197 0.435696 0.336238 0.540385 0.448696 

Evaluated accuracy 0.974567 0.900721 0.910607 0.892106 0.890980 

100 
pts/m2  

Evaluated mean loss 0.206970 0.056112 0.250923 0.432514 0.366324 

Evaluated accuracy 0.931166 0.977507 0.929784 0.912553 0.909621 

500 
pts/m2  

Evaluated mean loss 0.211475 0.372242 0.040460 0.391709 0.346514 

Evaluated accuracy 0.931920 0.919755 0.985244 0.921949 0.917268 

1000 
pts/m2  

Evaluated mean loss 0.214208 0.371572 0.217392 0.038686 0.334647 

Evaluated accuracy 0.931725 0.920620 0.940598 0.985451 0.918455 

5000 
pts/m2  

Evaluated mean loss 0.208316 0.369093 0.212643 0.379705 0.030144 

Evaluated accuracy 0.933770 0.922644 0.942198 0.925458 0.989452 
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Table 6 shows the evaluated mean loss and accuracy of each model (with 5 mm ϵ) tested 

by different point density datasets (with 5 mm ϵ). The ϵ was introduced by adding random shift 

to each point, which resulted in 5 mm ϵ for the whole point cloud dataset. For example, one 

cross-section shows the evaluated mean loss and accuracy of the model trained by a 50 pts/m2 

point density point cloud with a 5 mm ϵ, tested by other 4 different point densities (with a 5 mm 

ϵ). 

 

Table 6. The evaluated mean loss and accuracy of each model (with 5 mm ϵ) tested by different 

point density datasets (with 5 mm ϵ). 

Testing 
Dataset 

Output 
results 

50 pts/m2 
with 5 mm ϵ 

100 pts/m2 
with 5 mm ϵ 

500 pts/m2 
with 5 mm ϵ 

1000 pts/m2 
with 5 mm ϵ 

5000 pts/m2 
with 5 mm ϵ 

50 pts/m2 
with 5 mm ϵ 

Evaluated 
mean loss 

0.064441 0.390551 0.319484 0.301836 0.322617 

Evaluated 
accuracy 

0.974841 0.896887 0.902084 0.903745 0.909698 

100 pts/m2 
with 5 mm ϵ 

Evaluated 
mean loss 

0.204180 0.059853 0.252670 0.241096 0.251216 

Evaluated 
accuracy 

0.939751 0.977121 0.919383 0.919286 0.927504 

500 pts/m2 
with 5 mm ϵ 

Evaluated 
mean loss 

0.198494 0.335963 0.039649 0.222498 0.224136 

Evaluated 
accuracy 

0.943256 0.911242 0.985640 0.926883 0.936294 

1000 pts/m2 
with 5 mm ϵ 

Evaluated 
mean loss 

0.197642 0.336379 0.212713 0.041403 0.217927 

Evaluated 
accuracy 

0.943995 0.911218 0.931097 0.985603 0.938086 

5000 pts/m2 
with 5 mm ϵ 

Evaluated 
mean loss 

0.195393 0.335256 0.207605 0.212298 0.0385530 

Evaluated 
accuracy 

0.945306 0.912575 0.932562 0.929686 0.986497 

 

Table 7~11 show the comparison between 5 paired models. In the paired models, one of 

the models was trained by a point cloud dataset without error, and the other one was trained by a 

point cloud dataset with a 5 mm ϵ. Each model was tested by two datasets, one of them was the 

same point density and the same level of error (no random error or a 5 mm ϵ), and the other one 

was the same point density but a different level of error. Table 7 shows the evaluated mean loss 

and the evaluated accuracy of point clouds with point densities of 50 pts/m2 and 50 pts/m2 + 5 

mm ϵ, tested by point clouds with point densities of 50 pts/m2 + 5 mm ϵ and 50 pts/m2. Table 8 

shows the evaluated mean loss and the evaluated accuracy of point clouds with point densities of 

100 pts/m2 and 100 pts/m2 + 5 mm ϵ, tested by point clouds with point densities of 100 pts/m2 + 
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5 mm ϵ and 100 pts/m2. Table 9 shows the evaluated mean loss and the evaluated accuracy of 

point clouds with point densities of 500 pts/m2 and 500 pts/m2 + 5 mm ϵ, tested by point clouds 

with point densities of 500 pts/m2 + 5 mm ϵ and 500 pts/m2. Table 10 shows the evaluated mean 

loss and the evaluated accuracy of point clouds with point densities of 1000 pts/m2 and 1000 

pts/m2 + 5 mm ϵ, tested by point clouds with point densities of 1000 pts/m2 + 5 mm ϵ and 1000 

pts/m2. Table  shows the evaluated mean loss and the evaluated accuracy of point clouds with 

point densities of 5000 pts/m2 and 5000 pts/m2 + 5 mm ϵ, tested by point clouds with point 

densities of 5000 pts/m2 + 5 mm ϵ and 5000 pts/m2. 

 

Table 7. The evaluated mean loss and the evaluated accuracy of point clouds with point densities 

of 50 pts/m2 and 50 pts/m2 + 5 mm ϵ, tested by point clouds with point densities of 50 pts/m2 + 5 

mm ϵ and 50 pts/m2. 

Testing Dataset Output results 50 pts/m2  50 pts/m2 + 5 mm ϵ 

50 pts/m2  
Evaluated mean loss 0.0621970 0.231289 

Evaluated accuracy 0.974567 0.930419 

50 pts/m2 + 5 mm ϵ 
Evaluated mean loss 0.226524 0.0644410 

Evaluated accuracy 0.924967 0.974841 

 

Table 8. The evaluated mean loss and the evaluated accuracy of point clouds with point densities 

of 100 pts/m2 and 100 pts/m2 + 5 mm ϵ, tested by point clouds with point densities of 100 pts/m2 

+ 5 mm ϵ and 100 pts/m2. 

Testing dataset Output results 100 pts/m2  100 pts/m2 + 5 mm ϵ 

100 pts/m2  
Evaluated mean loss 0.0561120 0.335085 

Evaluated accuracy 0.977507 0.909702 

100 pts/m2 + 5 mm ϵ 
Evaluated mean loss 0.376403 0.0598530 

Evaluated accuracy 0.915965 0.977121 

 

Table 9. The evaluated mean loss and the evaluated accuracy of point clouds with point densities 

of 500 pts/m2 and 500 pts/m2 + 5 mm ϵ, tested by point clouds with point densities of 500 pts/m2 

+ 5 mm ϵ and 500 pts/m2. 

Testing dataset Output results 500 pts/m2  500 pts/m2 + 5 mm ϵ 

500 pts/m2  
Evaluated mean loss 0.0404600 0.215862 

Evaluated accuracy 0.985244 0.929615 

500 pts/m2 + 5 mm ϵ 
Evaluated mean loss 0.229342 0.039649 

Evaluated accuracy 0.939018 0.985640 
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Table 10. The evaluated mean loss and the evaluated accuracy of point clouds with point 

densities of 1000 pts/m2 and 1000 pts/m2 + 5 mm ϵ, tested by point clouds with point densities of 

1000 pts/m2 + 5 mm ϵ and 1000 pts/m2. 

Testing dataset Output results 1000 pts/m2  1000 pts/m2 + 5 mm ϵ 

1000 pts/m2  
Evaluated mean loss 0.0386860 0.219362 

Evaluated accuracy 0.985451 0.927673 

1000 pts/m2 + 5 mm ϵ 
Evaluated mean loss 0.383003 0.0414030 

Evaluated accuracy 0.923896 0.985603 

 

Table 11. The evaluated mean loss and the evaluated accuracy of point clouds with point 

densities of 5000 pts/m2 and 5000 pts/m2 + 5 mm ϵ, tested by point clouds with point densities of 

5000 pts/m2 + 5 mm ϵ and 5000 pts/m2. 

Testing dataset Output results 5000 pts/m2  5000 pts/m2 + 5 mm ϵ 

5000 pts/m2  
Evaluated mean loss 0.0301440 0.212809 

Evaluated accuracy 0.989452 0.939539 

5000 pts/m2 + 5 mm ϵ 
Evaluated mean loss 0.328395 0.0385530 

Evaluated accuracy 0.920347 0.986497 
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4.2 Results analyses 

 Quantitative analyses were applied on the test results as well as qualitative analyses thru 

visualization. Analyses were conducted in two sections, including the relation between the 

results and point density, and the relation between the results and the level of random error. The 

model stored itself every 10 iterations. This was a pre-test to determine the fixed iteration for all 

the models, as shown in figure 16. The maximum iteration time was set at 20 iteration for every 

model, because this study aimed at the accuracy of the models at a certain iteration time (before 

overfitting) to eliminate the effect of the training time on the performance. There is no need for 

10 more iteration once the model reached 20 iterations. Because the increase of the accuracy was 

not worth of adding 10 more iteration which took much longer time (depending on the 

computation power the computer has).  

Figure 17, Figure 18, Figure 19, Figure 20, Figure 21 display the evaluated accuracy of 

the point cloud with the point density of 50 pts/m2, 100 pts/m2, 500 pts/m2, 1000 pts/m2, 5000 
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Figure 16. This figure shows the evaluated accuracy of the model after different iteration: 1. 1st 

iteration, 2. 5th iteration, 3. 10th iteration, 4. 20th iteration, 5. 30th iteration, 6. 40th iteration, 7. 50th 

iteration. 
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pts/m2 (all point clouds with no random error) after each epoch. Figure 22, Figure 23, Figure 24, 

Figure 25, Figure 26 display the evaluated accuracy of the point cloud with the point density of 

50 pts/m2, 100 pts/m2, 500 pts/m2, 1000 pts/m2, 5000 pts/m2 (all point clouds with a 5 mm ϵ) 

after each epoch. Figure 27, Figure 28, Figure 29, Figure 30, Figure 31 display the evaluated 
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Figure 17. This shows the evaluated accuracy of the point cloud with a 

point density of 50 pts/m2 (no random error) after each epoch. 
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Figure 18. This shows the evaluated accuracy of the point cloud with a 

point density of 100 pts/m2 (no random error) after each epoch. 

 



 

78 

mean loss of the point cloud with the point density of 50 pts/m2, 100 pts/m2, 500 pts/m2, 1000 

pts/m2, 5000 pts/m2 (all point clouds with no random error) after each epoch. Figure 32, Figure 

33, Figure 34, Figure 35, Figure 36 display the evaluated mean loss of the point cloud with the 
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Figure 19. This shows the evaluated accuracy of the point cloud with a 

point density of 500 pts/m2 (no random error) after each epoch. 
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Figure 20. This shows the evaluated accuracy of the point cloud with a 

point density of 1000 pts/m2 (no random error) after each epoch. 

 



 

79 

point density of 50 pts/m2, 100 pts/m2, 500 pts/m2, 1000 pts/m2, 5000 pts/m2 (all point clouds 

with a 5 mm ϵ) after each epoch. 
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Figure 21. This shows the evaluated accuracy of the point cloud with a 

point density of 5000 pts/m2 (no random error) after each epoch. 
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Figure 22. This shows the evaluated accuracy of the point cloud with a 

point density of 50 pts/m2 (5 mm ϵ) after each epoch. 
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Figure 23. This shows the evaluated accuracy of the point cloud with a 

point density of 100 pts/m2 (5 mm ϵ) after each epoch. 
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Figure 24. This shows the evaluated accuracy of the point cloud with a 

point density of 500 pts/m2 (5 mm ϵ) after each epoch. 
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 From the figures above indicating the changes of the accuracies of the predictions after 

each epoch. It shows that the accuracies of the models were gradually increasing from epoch 1 to 

around epoch 15 and stayed steady from around 15 to epoch 20, despite some drops in the 
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Figure 25. This shows the evaluated accuracy of the point cloud with a 

point density of 1000 pts/m2 (5 mm ϵ) after each epoch. 
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Figure 26. This shows the evaluated accuracy of the point cloud with a 

point density of 5000 pts/m2 (5 mm ϵ) after each epoch. 
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middle. The final models of each training point clouds were chosen to be the models at epoch 20. 

The final models were then utilized for testing different simulated point clouds and the real-

world point clouds. The evaluated mean losses of the machine learning models were to evaluate 

the predictions made by the models. The changes of the evaluated mean loss were displayed in 

the following figures. It shows that the evaluated mean losses of the models were gradually 

decreasing from epoch 1 to around epoch 15 and stayed steady from around 15 to epoch 20, 

despite some rises in the middle. 
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Figure 27. This shows the evaluated mean loss of the point cloud with a 

point density of 50 pts/m2 (no random error) after each epoch. 
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Figure 28. This shows the evaluated mean loss of the point cloud with a 

point density of 100 pts/m2 (no random error) after each epoch. 
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Figure 29. This shows the evaluated mean loss of the point cloud with a 

point density of 500 pts/m2 (no random error) after each epoch. 
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Figure 30. This shows the evaluated mean loss of the point cloud with a 

point density of 1000 pts/m2 (no random error) after each epoch. 
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Figure 31. This shows the evaluated mean loss of the point cloud with a 

point density of 5000 pts/m2 (no random error) after each epoch. 
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Figure 32. This shows the evaluated mean loss of the point cloud with a 

point density of 50 pts/m2 (5 mm ϵ) after each epoch. 
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Figure 33. This shows the evaluated mean loss of the point cloud with a 

point density of 100 pts/m2 (5 mm ϵ) after each epoch. 
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Figure 34. This shows the evaluated mean loss of the point cloud with a 

point density of 500 pts/m2 (5 mm ϵ) after each epoch. 
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Figure 35. This shows the evaluated mean loss of the point cloud with a 

point density of 1000 pts/m2 (5 mm sigma) after each epoch. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ev
al

u
at

ed
 m

ea
n

 lo
ss

Evaluated accuracy of 5000 pts/m2 (5 mm sigma) after each epoch 

Figure 36. This shows the evaluated mean loss of the point cloud with a 

point density of 5000 pts/m2 (5 mm sigma) after each epoch. 
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4.2.1 Point density  

4.2.1.1 Point density without random error 

In the field of point cloud processing, most of the works (Rabbani et.al., 2006; 

Jagannathan and Miller, 2007; Rottensteiner et.al., 2014; Weinmann et.al., 2015; Charles et.al., 

2017) regarding the accuracy have been analyzed practically, instead of statistically. Normally, 

there are over thousands of sample points in a typical point cloud. It is inappropriate to use 

statistical models for the analyses. 

This section analyzes how point density affects the results in the point clouds without 

random error. In Figure 37, the evaluated mean loss of the models was displayed in an order of 

50 pts/m2 (no random error), 100 pts/m2 (no random error), 500 pts/m2 (no random error), 1000 

pts/m2 (no random error), and 5000 pts/m2 (no random error). These point clouds were simulated 

by scattering points on the objects’ surfaces without adding random shifts in order to decouple 

point density from random error. From Figure 37, it clearly shows that with the increasing of 

point density, the evaluated mean loss of the models decreased. Similarly, the evaluated mean 

loss of 50-point density (pts/m2) point cloud was approximately twice the evaluated mean loss 

the 5000-point density point cloud. This indicates that the machine learning model makes fewer 
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Figure 37. This shows the evaluated mean loss of the point cloud with the 

point density of 50 pts/m2, 100 pts/m2, 500 pts/m2, 1000 pts/m2, 5000 

pts/m2 (no random error). 
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mistakes in classifying simulated points of higher point density. However, this argument is based 

on the condition that the testing point clouds’ point density is the same as the training point 

clouds’ point density. 

From Figure 38, it clearly shows that with the increasing of point density, the evaluated 

accuracy of the models increased. However, this was true under the condition that the testing 

point clouds’ point density was the same as the training point clouds’ point density. Therefore, 

later in the experiment, the trained machine learning models were tested by other point clouds 

with different point clouds’ point density. This figure indicates that, when applied on the point 

clouds with the same point density, the higher point density it is, the higher the accuracy the 

model provides. But the difference of the accuracies between the point cloud (50 pts/m2, no 

random error) and the point cloud (5000 pts/m2, no random error) was only about 1.5%. 

However, the data size of the point cloud (5000 pts/m2, no random error) was nearly 1000 times 

bigger than the data size of the point cloud (50 pts/m2, no random error). Moreover, the baking 

time of these points during the point cloud simulation was displayed in Table 12. It took the 

system (CPU: Intel i7-8700K 3.70 GHz, RAM: 32 GB, GPU: GTX1070) about 5 minutes to 

generate 374131 points for the point cloud (50 pts/m2, no random error), while it took the system 

about 133 minutes to generate 37414252 points for the point cloud (5000 pts/m2, no random 
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Figure 38. This shows the evaluated accuracy of the point cloud with the 

point density of 50 pts/m2, 100 pts/m2, 500 pts/m2, 1000 pts/m2, 5000 

pts/m2 (no random error). 
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error). Therefore, in this study, it is not worth of spending a lot more time and computation 

resources for a 1.5% accuracy gain. 

 

Table 12. The number of points in each testing dataset (Area 4). 

Point density (pts/m2) Number of points Generation time (minute) 

50 374131 5 

100 748100 8 

500 3741416 20 

1000 7482860 36 

5000 37414252 133 

 

Table 13. The data size of each testing dataset (Area 4). The TXT file is the original format of 

the point cloud data and the NPY is the file format for testing and implementation. 

File type 
50 100 500 1000 5000 

pts/m2, no ϵ pts/m2, no ϵ pts/m2, no ϵ pts/m2, no ϵ pts/m2, no ϵ 

TXT 0.113 GB 0.227 GB 1.130 GB 2.170 GB 11.300 GB 

NPY 0.019 GB 0.039 GB 0.194 GB 0.391 GB 1.950 GB 
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Figure 39. This shows the evaluated mean loss of the point cloud with the 

point density of 50 pts/m2 (no random error), tested by 5 different point 

clouds (no random error): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 

1000 pts/m2, 5. 5000 pts/m2. 
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Figure 39 shows the evaluated mean loss of the point cloud with the point density of 50 

pts/m2 (no random error), tested by 5 different point clouds (no random error): 1. 50 pts/m2, 2. 

100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated mean loss 

of the model was smaller when implemented on the testing data with point density of 50 pts/m2 

than the other testing data with different point densities. 50 pts/m2 is also the point density of the 

training data. This indicates that the machine learning model makes fewer mistakes in classifying 

simulated points in the situation that the trained model is implemented on the point clouds with 

the same point cloud’s density as the training point cloud. There was not much difference 

between the evaluated mean loss for the point clouds’ point densities other than 50 pts/m2. For 

instance, the least evaluated mean loss difference between the testing data with a point density of 

50 pts/m2 and other testing data with different point densities was 0.1447. The largest evaluated 

mean loss difference between other testing data with different point densities was 0.0072, which 

was approximately 0.05 times the least difference between the testing data with a point density of 

50 pts/m2 and other testing data with different point densities.  

Figure 40 shows the evaluated accuracy of the point cloud with the point density of 50 

pts/m2 (no random error), tested by 5 different point clouds (no random error): 1. 50 pts/m2, 2. 

100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated accuracy 
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Figure 40. This shows the evaluated mean accuracy of the point cloud 

with the point density of 50 pts/m2 (no random error), tested by 5 different 

point clouds (no random error): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 

4. 1000 pts/m2, 5. 5000 pts/m2. 
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of the model was higher when implemented on the testing data with the same point density of 50 

pts/m2 than the other testing data with different point densities. This indicates that the machine 

learning model performs better in classifying simulated points in the situation that the trained 

model is implemented on the point clouds with the same point density as the training point cloud. 

There was not much difference between the evaluated accuracy for the point clouds’ point 

densities other than 50 pts/m2. For instance, the least evaluated accuracy difference between the 

testing data with the point density of 50 pts/m2 and other testing data with different point 

densities was 4.08%. The largest evaluated mean loss difference between other point density 

testing data was 0.26%, which was approximately 0.05 times the least difference between the 

testing data with the point density of 50 pts/m2 and other testing data with different point 

densities.  

Figure 41 shows the evaluated mean loss of the point cloud with the point density of 100 

pts/m2 (no random error), tested by 5 different point clouds (no random error): 1. 50 pts/m2, 2. 

100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated mean loss 

of the model was smaller when implemented on the testing data with the same point density than 

the other testing data with different point densities. This indicates that a machine learning model 

performs better when it was implemented on the point clouds with the same point clouds’ density 
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Figure 41. This shows the evaluated mean loss of the point cloud with the 

point density of 100 pts/m2 (no random error), tested by 5 different point 

clouds (no random error): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 

1000 pts/m2, 5. 5000 pts/m2. 
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as the training point clouds. There was not much difference between the evaluated mean loss for 

the point clouds’ point densities larger than 100 pts/m2. For instance, the least evaluated mean 

loss difference between the testing data with a point density of 100 pts/m2 and other testing data 

with larger point densities was 0.31299. The largest evaluated mean loss difference between 

other point density testing data with larger point densities was 0.0031, which was approximately 

0.01 times the least difference between the testing data with a point density of 100 pts/m2 and 

other testing data with larger point densities than 100 pts/m2. However, the evaluated mean loss 

of the model for the testing point cloud with a point density of 50 pts/m2 was noticeably larger 

than the evaluated mean loss of the model for the testing point clouds with point densities that 

were larger than 100 pts/m2. The least evaluated mean loss difference between the testing data 

with a point density of 50 pts/m2 and other testing data with larger point densities that were 

larger than 100 pts/m2 was 0.0635, which was approximately 20 times the largest evaluated mean 

loss difference between the testing point clouds with point densities that were larger than 100 

pts/m2. This indicates that, if the testing point clouds’ point density is different from the training 

point clouds’ point density, the machine learning model makes fewer mistakes in classifying 

simulated point clouds with larger point density. Nevertheless, when the testing point clouds’ 

point density was larger than the training point cloud’s point density, there was not much 

difference in the evaluated mean loss. 
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Figure 42 shows the evaluated accuracy of the point cloud with the point density of 100 

pts/m2 (no random error), tested by 5 different point clouds (no random error): 1. 50 pts/m2, 2. 

100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated accuracy 

of the model was higher when implemented on the testing data with the same point density than 

it was with the other testing data with different point densities. This indicates that a machine 

learning model performs better when implemented on the point clouds with the same point 

clouds’ density as the training point clouds. There was not much difference between the 

evaluated accuracy for the point clouds’ point densities larger than 100 pts/m2. For instance, the 

least evaluated accuracy difference between the testing data with a point density of 100 pts/m2 

and other testing data with larger point densities was 5.49%. The largest evaluated accuracy 

difference between other point density testing data with larger point densities was 0.28%, which 

was approximately 0.05 times the least accuracy difference between the testing data with a point 

density of 100 pts/m2 and other point density testing data with larger point densities than 100 

pts/m2. However, the evaluated accuracy of the model for the testing point cloud with a point 

density of 50 pts/m2 was noticeably lower than the evaluated accuracy of the model for the 

testing point clouds with point densities that were larger than 100 pts/m2. The least evaluated 
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Evaluated accuracy of 100 pts/m2 without ϵ Model 

Figure 42. This shows the evaluated accuracy of the point cloud with the 

point density of 100 pts/m2 (no random error), tested by 5 different point 

clouds (no random error): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 

1000 pts/m2, 5. 5000 pts/m2. 
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accuracy difference between the testing data with a point density of 50 pts/m2 and other testing 

data with larger point densities that were larger than 100 pts/m2 was 1.91%, which was 

approximately 6.6 times the largest evaluated accuracy difference between the testing point 

clouds with point densities that were larger than 100 pts/m2. This indicates that, if the testing 

point clouds’ point density is different from the training point clouds’ point density, the machine 

learning model performs better in classifying simulated point clouds with larger point density 

than simulated point clouds with smaller point density. Nevertheless, when the testing point 

clouds’ point density was larger than the training point cloud’s point density, there was not much 

difference in the evaluated accuracy. 

Figure 43 shows the evaluated mean loss of the point cloud with the point density of 500 

pts/m2 (no random error), tested by 5 different point clouds (no random error): 1. 50 pts/m2, 2. 

100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated mean loss 

of the model was smaller when implemented on the testing data with the same point density than 

the other testing data with different point densities. This indicates that a machine learning model 

performs better when implemented on the point clouds with the same point clouds’ density as the 

training point clouds. There was not much difference between the evaluated mean loss for the 

point clouds’ point densities larger than 500 pts/m2. However, the evaluated mean loss of the 
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Evaluated mean loss of 500 pts/m2 without ϵ Model 

Figure 43. This shows the evaluated mean loss of the point cloud with the 

point density of 500 pts/m2 (no random error), tested by 5 different point 

clouds (no random error): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 

1000 pts/m2, 5. 5000 pts/m2. 
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model for the testing point cloud with a point density of 50 pts/m2 was noticeably larger than the 

evaluated mean loss of the model for the testing point clouds with point densities that were larger 

than 500 pts/m2. Moreover, the evaluated mean loss of the model for the testing point cloud with 

a point density of 100 pts/m2 was also larger than the evaluated mean loss of the model for the 

testing point clouds with point densities that were larger than 500 pts/m2. This indicates that, if 

the testing point cloud’s point density is different from the training point clouds’ point density, 

the machine learning model makes fewer mistakes in classifying simulated point clouds with 

larger point density than simulated point clouds with smaller point density. Moreover, if the 

testing point clouds’ point density is smaller than the training point clouds’ point density, the 

smaller it is, the more mistakes the model is going to make. Finally, the evaluated mean loss for 

the testing point cloud with a point density of 5000 pts/m2 was slightly smaller than the evaluated 

mean loss for the testing point cloud with a point density of 1000 pts/m2. This indicates that, if 

the testing point clouds’ point density is larger than the training point clouds’ point density, the 

larger it is, the fewer mistakes the model is going to make. 

Figure 44 shows the evaluated accuracy of the point cloud with the point density of 500 

pts/m2 (no random error), tested by 5 different point clouds (no random error): 1. 50 pts/m2, 2. 

100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated accuracy 
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Figure 44. This shows the evaluated accuracy of the point cloud with the 

point density of 500 pts/m2 (no random error), tested by 5 different point 

clouds (no random error): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 

1000 pts/m2, 5. 5000 pts/m2. 
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of the model was higher when implemented on the testing data with the same point density than 

the other testing point clouds with different point densities. This indicates that a machine 

learning model performs better when implemented on the point clouds with the same point 

clouds’ density as the training point clouds. There was not much difference between the 

evaluated accuracy for the point clouds’ point densities larger than 500 pts/m2. However, the 

evaluated accuracies of the model for the testing point clouds with a point density of 50 pts/m2 

and a point density of 100 pts/m2 were noticeably lower than the evaluated accuracies of the 

model for the testing point clouds with point densities that were larger than 500 pts/m2. 

Moreover, the evaluated accuracy of the model for the testing point cloud with a point density of 

100 pts/m2 was also lower than the evaluated accuracy of the model for the testing point clouds 

with point densities that were larger than 500 pts/m2. This indicates that, if the testing point 

cloud’s point density is different from the training point cloud, the machine learning model 

performs better in classifying simulated point clouds with larger point density than simulated 

point clouds with smaller point density. If the testing point clouds’ point density is smaller than 

the training point clouds’ point density, the smaller it is, the worse the performance of the model 

is going to provide. Finally, the evaluated accuracy for the testing point cloud with a point 

density of 5000 pts/m2 was slightly higher than the evaluated accuracy for the testing point cloud 

with a point density of 1000 pts/m2. This indicates that, if the testing point clouds’ point density 

is larger than the training point clouds’ point density, the larger it is, the better performance the 

model is going to provide. 
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Figure 45 shows the evaluated mean loss of the point cloud with the point density of 1000 

pts/m2 (no random error), tested by 5 different point clouds (no random error): 1. 50 pts/m2, 2. 

100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated mean loss 

of the model was smaller when implemented on the testing data with the same point density than 

the other testing data with different point densities. This indicates that a machine learning model 

performs better when implemented on the point clouds with the same point clouds’ density as the 

training point clouds. And the evaluated mean loss of the model for the testing point cloud with a 

point density of 50 pts/m2 was noticeably larger than the evaluated mean loss of the model for 

the testing point clouds with point densities that were larger than 50 pts/m2. And with the 

increasing of point density, the evaluated mean loss decreased. This indicates that, if the testing 

point cloud’s point density is different from the training point cloud, the machine learning model 

makes fewer mistakes in classifying simulated point clouds with larger point density than 

simulated point clouds with smaller point density. The evaluated mean loss difference between 

the testing data with a point density of 50 pts/m2 and the testing data with a point density of 500 

pts/m2 was 0.1487. The evaluated mean loss difference between the testing data with a point 

density of 500 pts/m2 and the testing data with a point density of 5000 pts/m2 was 0.0120. In the 

first pair, including the point clouds with point densities 50 pts/m2 and 500 pts/m2, and the 
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Evaluated mean loss of 1000 pts/m2 without ϵ Model 

Figure 45. This shows the evaluated mean loss of the point cloud with the 

point density of 1000 pts/m2 (no random error), tested by 5 different point 

clouds (no random error): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 

1000 pts/m2, 5. 5000 pts/m2. 
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second pair, including the point clouds with point densities 500 pts/m2 and 5000 pts/m2, the 

larger point clouds’ densities were both 10 times the smaller ones. However, the evaluated mean 

loss difference of the first pair was about 12.4 times the one of the second pair. This indicates 

that, if the testing point cloud’s point density is different from the training point clouds’ point 

density, with the increasing of point density, the difference of the mistakes that the machine 

learning model makes in classifying simulated point clouds decreases.  

Figure 46 shows the evaluated accuracy of the point cloud with the point density of 1000 

pts/m2 (no random error), tested by 5 different point clouds (no random error): 1. 50 pts/m2, 2. 

100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated accuracy 

of the model was higher when implemented on the testing data with the same point density than 

the other testing point clouds with different point densities. This indicates that a machine 

learning model performs better when implemented on the point clouds with the same point 

clouds’ density as the training point clouds. And with the increasing of point density, the 

evaluated accuracy also increased. This indicates that, if the testing point cloud’s point density is 

different from the training point cloud, the machine learning model performs better in classifying 

simulated point clouds with larger point density than simulated point clouds with smaller point 
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Evaluated accuracy of 1000 pts/m2 without ϵ Model 

Figure 46. This shows the evaluated accuracy of the point cloud with the 

point density of 1000 pts/m2 (no random error), tested by 5 different point 

clouds (no random error): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 

1000 pts/m2, 5. 5000 pts/m2. 
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density. Moreover, as described in the analysis of the evaluated mean loss, if the testing point 

cloud’s point density is different from the training point clouds’ point density, with the 

increasing of point density, the difference of the accuracies of the machine learning models 

decreases. 

Figure 47 shows the evaluated mean loss of the point cloud with the point density of 5000 

pts/m2 (no random error), tested by 5 different point clouds (no random error): 1. 50 pts/m2, 2. 

100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated mean loss 

of the model was smaller when implemented on the testing data with the same point density than 

the other testing data with different point densities. This indicates that a machine learning model 

performs better when implemented on the point clouds with the same point clouds’ density as the 

training point clouds. And the evaluated mean loss of the model for the testing point cloud with a 

point density of 50 pts/m2 was noticeably larger than the evaluated mean loss of the model for 

the testing point clouds with point densities that were larger than 50 pts/m2. And with the 

increasing of point density, the evaluated mean loss decreased. This indicates that, if the testing 

point cloud’s point density is different from the training point cloud, the machine learning model 

makes fewer mistakes in classifying simulated point clouds with larger point density than 
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Evaluated mean loss of 5000 pts/m2 without ϵ Model 

Figure 47. This shows the evaluated mean loss of the point cloud with the 

point density of 5000 pts/m2 (no random error), tested by 5 different point 

clouds (no random error): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 

1000 pts/m2, 5. 5000 pts/m2. 
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simulated point clouds with smaller point density. Similar to the result of the model trained by 

the point cloud with a point density of 1000 pts/m2, if the testing point cloud’s point density is 

different from the training point clouds’ point density, with the increasing of point density, the 

difference of the mistakes that the machine learning model makes in classifying simulated point 

clouds decreases.  

Figure 48 shows the evaluated accuracy of the point cloud with the point density of 5000 

pts/m2 (no random error), tested by 5 different point clouds (no random error): 1. 50 pts/m2, 2. 

100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated accuracy 

of the model was higher when implemented on the testing data with the same point density than 

the other testing data with different point densities. This indicates that a machine learning model 

performs better when implemented on the point clouds with the same point clouds’ density as the 

training point clouds. And the evaluated accuracy of the model for the testing point cloud with a 

point density of 50 pts/m2 was noticeably lower than the evaluated accuracy of the model for the 

testing point clouds with point densities that were larger than 50 pts/m2. And with the increasing 

of point density, the evaluated accuracy also increased. This indicates that, if the testing point 

cloud’s point density is different from the training point cloud, the machine learning model 
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Evaluated accuracy of 5000 pts/m2 without ϵ Model 

Figure 48. This shows the evaluated accuracy of the point cloud with the 

point density of 5000 pts/m2 (no random error), tested by 5 different point 

clouds (no random error): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 

1000 pts/m2, 5. 5000 pts/m2. 
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performs better in classifying simulated point clouds with larger point density than simulated 

point clouds with smaller point density. Similar to the result of the model trained by the point 

cloud with a point density of 1000 pts/m2, if the testing point cloud’s point density is different 

from the training point clouds’ point density, with the increasing of point density, the difference 

of the accuracy of the machine learning model decreases. 
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4.2.1.2 Point cloud with 5 mm ϵ 

This section analyzes how point density affect the results in the point clouds with random 

error (5 mm ϵ). In Figure 49, the evaluated mean loss of models were displayed in an order of 50 

pts/m2 (5 mm ϵ), 100 pts/m2 (5 mm ϵ), 500 pts/m2 (5 mm ϵ), 1000 pts/m2 (5 mm ϵ), and 5000 

pts/m2 (5 mm ϵ). These point clouds were simulated by scattering points on the objects’ surfaces 

with adding random shifts while keeping the overall ϵ the same, in order to decouple point 

density from random error. From Figure 49, it shows that with the increasing of point density, 

overall, the evaluated mean loss of the models decreased. However, the evaluated mean loss of 

1000 point density (pts/m2) point cloud was larger than the evaluated mean loss of the point 

cloud with a point density of 500 pts/m2. Moreover, the difference of the evaluated mean losses 

when point density was larger than 500 pts/m2 was small. This is different from the point clouds 

without random errors. This indicates that, in general, the machine learning model makes fewer 

mistakes in classifying simulated points of higher point density, but the difference is minor when 

the point density is relatively large (500 pts/m2 in this experiment). This argument is based on the 
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Evaluated mean loss of models with different point density
(with 5 mm ϵ)

Figure 49. This shows the evaluated mean loss of the point cloud with the 

point density (5 mm ϵ) of 50 pts/m2, 100 pts/m2, 500 pts/m2, 1000 pts/m2, 

5000 pts/m2. 
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condition that the testing point clouds’ point density is the same as the training point clouds’ 

point density. 

From Figure 50, it shows that with the increasing of point density, the evaluated accuracy 

of the models increased overall, despite the evaluated accuracy of the point cloud with a point 

density of 1000 pts/m2 dropped. This also indicates that the machine learning model performs 

better in classifying simulated points with higher point density, but the difference is minor when 

the point density is relatively large (500 pts/m2 in this experiment). This argument is based on the 

condition that the testing point clouds’ point density is the same as the training point clouds’ 

point density. Therefore, later in the experiment, the trained machine learning models were tested 

by other point clouds with different point clouds’ point density. 
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Evaluated accuracy of models with different point density 
(with 5 mm ϵ)

Figure 50. This shows the evaluated accuracy of the point cloud with the 

point density (5 mm ϵ) of 50 pts/m2, 100 pts/m2, 500 pts/m2, 1000 pts/m2, 

5000 pts/m2. 
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Figure 51 shows the evaluated mean loss of the point cloud with the a point density of 50 

pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 

pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated mean loss of the model was 

smaller when implemented on the testing data with point density of 50 pts/m2 than the other 

testing data with different point densities. 50 pts/m2 is also the point density of the training data. 

This indicates that the machine learning model performs better in classifying simulated points in 

the situation that the trained model is implemented on the point clouds with the same point 

cloud’s density as the training point cloud. There was not much difference between the evaluated 

mean loss for the point clouds’ point densities other than 50 pts/m2. Despite the minor altitudes, 

the evaluated mean loss of the point clouds decreased when the point densities increased, which 

was different from the tests of point clouds without random errors.  

Figure 52 shows the evaluated accuracy of the point cloud with a point density of 50 

pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 

pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated accuracy of the model was 

higher when implemented on the testing data with the same point density of 50 pts/m2 than the 

other testing data with different point densities. This indicates that the machine learning model 

performs better in classifying simulated points in the situation that the trained model is 
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Evaluated mean loss of 50 pts/m2 (5 mm ϵ) Model 

Figure 51. This shows the evaluated mean loss of the point cloud with the 

point density of 50 pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 

mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 

pts/m2. 
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implemented on the point clouds with the same point cloud’s density as the training point cloud. 

And there was not much of a difference between the evaluated accuracy for the point clouds’ 

point densities other than 50 pts/m2. Despite the minor altitudes, the evaluated accuracy of the 

point clouds increased when the point densities increased, which was different from the tests of 

point clouds without random errors. 

Figure 53 shows the evaluated mean loss of the point cloud with a point density of 100 

pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 

pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated mean loss of the model was 

smaller when implemented on the testing data with the same point density than the other testing 

data with different point densities. This indicates that a machine learning model performs the 

better when implemented on the point clouds with the same point clouds’ density as the training 

point clouds. And there was not much of a difference between the evaluated mean loss for the 

point clouds’ point densities larger than 100 pts/m2. However, the evaluated mean loss of the 

model for the testing point cloud with a point density of 50 pts/m2 was noticeably larger than the 

evaluated mean loss of the model for the testing point clouds with point densities that were larger 

than 100 pts/m2. This indicates that, if the testing point clouds’ point density is different from the 
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Evaluated accuracy of 50 pts/m2 (5 mm ϵ) Model 

Figure 52. This shows the evaluated accuracy of the point cloud with the 

point density of 50 pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 

mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 

pts/m2. 
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training point clouds’ point density, the machine learning model makes fewer mistakes in 

classifying simulated point clouds with larger point density than simulated point clouds with 

smaller point density, with respect to the point density of the training point cloud. Nevertheless, 

when the testing point clouds’ point density was larger than the training point cloud’s point 

density, there was not much of a difference in the evaluated mean loss. 

Figure 54 shows the evaluated accuracy of the point cloud with a point density of 100 

pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 

pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated accuracy of the model was 

higher when implemented on the testing data with the same point density than the other testing 

data with different point densities. This indicates that a machine learning model performs better 

when implemented on the point clouds with the same point clouds’ density as the training point 

clouds. And there was not much of a difference between the evaluated accuracy for the point 

clouds’ point densities larger than 100 pts/m2. However, the evaluated accuracy of the model for 

the testing point cloud with a point density of 50 pts/m2 was noticeably lower than the evaluated 

accuracy of the model for the testing point clouds with point densities that were larger than 100 

pts/m2. This indicates that, if the testing point clouds’ point density is different from the training 
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Evaluated mean loss of 100 pts/m2 (5 mm ϵ) Model 

Figure 53. This shows the evaluated mean loss of the point cloud with the 

point density of 100 pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 

mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 

pts/m2. 
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point clouds’ point density, the machine learning model performs better in classifying simulated 

point clouds with larger point density than simulated point clouds with smaller point density with 

respect to the point density of the training point cloud. Nevertheless, when the testing point 

clouds’ point density was larger than the training point cloud’s point density, there was not much 

of a difference in the evaluated accuracy. 

Figure 55 shows the evaluated mean loss of the point cloud with a point density of 500 

pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 

pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated mean loss of the model was 

smaller when implemented on the testing data with the same point density than the other testing 

data with different point densities. This indicates that a machine learning model performs better 

when implemented on the point clouds with the same point clouds’ density as the training point 

clouds. And there was not much of a difference between the evaluated mean loss for the point 

clouds’ point densities larger than 500 pts/m2. However, the evaluated mean loss of the model 

for the testing point cloud with a point density of 50 pts/m2 was noticeably larger than the 

evaluated mean loss of the model for the testing point clouds with point densities that were larger 

than 500 pts/m2. Moreover, the evaluated mean loss of the model for the testing point cloud with 
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Evaluated accuracy of 100 pts/m2 (5 mm ϵ) Model 

Figure 54. This shows the evaluated mean loss of the point cloud with the 

point density of 100 pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 

mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 

pts/m2. 
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a point density of 100 pts/m2 was also larger than the evaluated mean loss of the model for the 

testing point clouds with point densities that were larger than 500 pts/m2. This indicates that, if 

the testing point cloud’s point density is different from the training point cloud, the machine 

learning model makes fewer mistakes in classifying simulated point clouds with larger point 

density than simulated point clouds with smaller point density with respect to the point density of 

the training point cloud. Furthermore, if the testing point clouds’ point density is smaller than the 

training point clouds’ point density, the smaller it is, the more mistakes the model is going to 

make. Finally, the evaluated mean loss for the testing point cloud with a point density of 5000 

pts/m2 was slightly smaller than the evaluated mean loss for the testing point cloud with a point 

density of 1000 pts/m2. This indicates that, if the testing point clouds’ point density is larger than 
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Figure 55. This shows the evaluated mean loss of the point cloud with the 

point density of 500 pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 

mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 

pts/m2. 
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the training point clouds’ point density, the larger it is, the fewer mistakes the model is going to 

make. Nevertheless, there was not much difference in the evaluated mean loss. 

Figure 56 shows the evaluated accuracy of the point cloud with the point density of 500 

pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 

pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated accuracy of the model was 

higher when implemented on the testing data with the same point density than the other testing 

point clouds with different point densities. This indicates that a machine learning model performs 

better when implemented on the point clouds with the same point clouds’ density as the training 

point clouds. There was not much difference between the evaluated accuracy for the point 

clouds’ point densities larger than 500 pts/m2. However, the evaluated accuracies of the model 

for the testing point clouds with a point density of 50 pts/m2 and a point density of 100 pts/m2 

were noticeably lower than the evaluated accuracies of the model for the testing point clouds 

with point densities that were larger than 500 pts/m2. This indicates that, if the testing point 

cloud’s point density is different from the training point cloud, the machine learning model 

performs better in classifying simulated point clouds with larger point density than simulated 

point clouds with smaller point density with respect to the point density of the training point 
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Figure 56. This shows the evaluated accuracy of the point cloud with the 

point density of 500 pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 

mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 

pts/m2. 
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cloud. And, if the testing point clouds’ point density is smaller than the training point clouds’ 

point density, the smaller it is, the worse the performance of the model is going to provide. 

Finally, the evaluated accuracy for the testing point cloud with a point density of 5000 pts/m2 

was slightly higher than the evaluated accuracy for the testing point cloud with a point density of 

1000 pts/m2. This indicates that, if the testing point clouds’ point density is larger than the 

training point clouds’ point density, the larger it is, the better performance the model is going to 

provide. Nevertheless, there was not much difference in the evaluated accuracy. 

Figure 57 shows the evaluated mean loss of the point cloud with the point density of 1000 

pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 

pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated mean loss of the model was 

smaller when implemented on the testing data with the same point density than the other testing 

data with different point densities. This indicates that a machine learning model performs better 

when implemented on the point clouds with the same point clouds’ density as the training point 

clouds. The evaluated mean loss of the model for the testing point cloud with a point density of 

50 pts/m2 was noticeably larger than the evaluated mean loss of the model for the testing point 

clouds with point densities larger than 50 pts/m2. And with the increasing of point density, the 
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Figure 57. This shows the evaluated mean loss of the point cloud with the 

point density of 1000 pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 

mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 

pts/m2. 
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evaluated mean loss decreased. This indicates that, if the testing point cloud’s point density is 

different from the training point cloud, the machine learning model makes fewer mistakes in 

classifying simulated point clouds with larger point density than simulated point clouds with 

smaller point density. Moreover, if the testing point cloud’s point density is different from the 

training point clouds’ point density, with the increasing of point density, the difference of the 

mistakes that the machine learning model makes in classifying simulated point clouds decreases. 

Figure 58 shows the evaluated accuracy of the point cloud with a point density of 1000 

pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 

pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated accuracy of the model was 

higher when implemented on the testing data with the same point density than the other testing 

point clouds with different point densities. This indicates that a machine learning model performs 

better when implemented on the point clouds with the same point clouds’ density as the training 

point clouds. And with the increasing of point density, the evaluated accuracy is also increasing. 

This indicates that, if the testing point cloud’s point density is different from the training point 

cloud, the machine learning model performs better in classifying simulated point clouds with 

larger point density than simulated point clouds with smaller point density. Moreover, if the 
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Figure 58. This shows the evaluated accuracy of the point cloud with the 

point density of 1000 pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 

mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 

pts/m2. 
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testing point cloud’s point density is different from the training point clouds’ point density, with 

the increasing of point density, the difference of the accuracies of the machine learning models 

decreases. 

Figure 59 shows the evaluated mean loss of the point cloud with a point density of 5000 

pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 

pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated mean loss of the model was 

smaller when implemented on the testing data with the same point density than the other testing 

data with different point densities. This indicates that a machine learning model performs better 

when implemented on the point clouds with the same point clouds’ density as the training point 

clouds. The evaluated mean loss of the model for the testing point cloud with a point density of 

50 pts/m2 was noticeably larger than the evaluated mean loss of the model for the testing point 

clouds with point densities larger than 50 pts/m2. And with the increasing of point density, the 

evaluated mean loss decreased. This indicates that, if the testing point cloud’s point density is 

different from the training point cloud, the machine learning model will make fewer mistakes in 

classifying simulated point clouds with larger point density than simulated point clouds with 

smaller point density. Moreover, if the testing point cloud’s point density is different from the 
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Figure 59. This shows the evaluated mean loss of the point cloud with the 

point density of 5000 pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 

mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 

pts/m2. 
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training point clouds’ point density, with the increasing of point density, the difference of the 

mistakes that the machine learning model makes in classifying simulated point clouds decreases.  

Figure 60 shows the evaluated accuracy of the point cloud with a point density of 5000 

pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 

pts/m2, 4. 1000 pts/m2, 5. 5000 pts/m2. It is clear that the evaluated accuracy of the model was 

higher when implemented on the testing data with the same point density than the other testing 

data with different point densities. This indicates that a machine learning model performs better 

when implemented on the point clouds with the same point clouds’ density as the training point 

clouds. The evaluated accuracy of the model for the testing point cloud with a point density of 50 

pts/m2 was noticeably lower than the evaluated accuracy of the model for the testing point clouds 

with point densities that were larger than 50 pts/m2. And with the increasing of point density, the 

evaluated accuracy also increased. This indicates that, if the testing point cloud’s point density is 

different from the training point cloud, the machine learning model performs better in classifying 

simulated point clouds with larger point density than simulated point clouds with smaller point 

density. Moreover, if the testing point cloud’s point density is different from the training point 
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Figure 60. This shows the evaluated accuracy of the point cloud with the 

point density of 5000 pts/m2 (5 mm ϵ), tested by 5 different point clouds (5 

mm ϵ): 1. 50 pts/m2, 2. 100 pts/m2, 3. 500 pts/m2, 4. 1000 pts/m2, 5. 5000 

pts/m2. 
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clouds’ point density, with the increasing of point density, the difference of the accuracy of the 

machine learning model decreases. 

4.1.2.2 The level of random error 

This section analyzes how random error affects the segmentation and classification 

performance of the point clouds. In the following paragraphs, 5 pairs of point clouds were 

compared. In each pair, the point clouds had the same point density but different levels of 

random error. One of them was generated without random errors and the other one was added 

with random shifts to the point cloud with a ϵ of 5 mm.  

Figure 61 shows the evaluated mean loss of two point clouds with a point density of 50 

pts/m2 (no random error) and 50 pts/m2 (5 mm ϵ), tested by 2 point clouds: 50 pts/m2 (no random 

error) 2. 50 pts/m2 (5 mm ϵ). It is clear that the machine learning models made fewer mistakes 

when implemented on the testing point clouds with the same level of random error. And when 

the point density was 50 pts/m2, the two models, the one with random errors and the other one 

without random errors, made almost the same altitude of mistakes in each situation.  
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Figure 61. This shows the evaluated mean loss of two point clouds with 

the point density of 50 pts/m2 (no random error) and 50 pts/m2 (5 mm ϵ), 

tested by 2 point clouds: 1. 50 pts/m2 (no random error) 2. 50 pts/m2 (5 

mm ϵ) 
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Figure 62 shows the evaluated accuracy of two point clouds with a point density of 50 

pts/m2 (no random error) and 50 pts/m2 (5 mm ϵ), tested by 2 point clouds: 1. 50 pts/m2 (no 
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Figure 62. This shows the evaluated mean loss of two point clouds with 

the point density of 100 pts/m2 (no random error) and 100 pts/m2 (5 mm ϵ), 

tested by 2 point clouds: 1. 100 pts/m2 (no random error) 2. 100 pts/m2 (5 

mm ϵ) 
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Figure 63. This shows the evaluated mean loss of two point clouds with 

the point density of 50 pts/m2 (no random error) and 50 pts/m2 (5 mm ϵ), 

tested by 2 point clouds: 1. 50 pts/m2 (no random error) 2. 50 pts/m2 (5 

mm ϵ) 
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random error) 2. 50 pts/m2 (5 mm ϵ). It is clear that the evaluated accuracy of the machine 

learning models was higher when implemented on the testing point clouds with the same level of 

random error. This indicates that a machine learning model performs better when implemented 

on the point clouds with the same level of random error as the training point clouds. And when 

the point density was 50 pts/m2, the point cloud with random errors performed a little bit better.  

Figure 63 shows the evaluated mean loss of two point clouds with a point density of 100 

pts/m2 (no random error) and 100 pts/m2 (5 mm ϵ), tested by 2 point clouds: 1. 100 pts/m2 (no 

random error) 2. 100 pts/m2 (5 mm ϵ). It is clear that the machine learning models made fewer 

mistakes when implemented on the testing point clouds with the same level of random error. And 

when the point density was 100 pts/m2, the evaluated mean losses were almost the same when 

implemented on the point clouds with the same level of error as the training point cloud. 

However, when implemented on the point cloud with different level of random error, the model 

trained by the point cloud with a 5 mm ϵ made fewer mistakes than the model trained by 

errorless point cloud. 

Figure 64 shows the evaluated accuracy of two point clouds with a point density of 100 

pts/m2 (no random error) and 100 pts/m2 (5 mm ϵ), tested by 2 point clouds: 1. 100 pts/m2 (no 

random error) 2. 100 pts/m2 (5 mm ϵ). It is clear that the evaluated accuracy of the machine 
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Figure 64. This shows the evaluated accuracy of two point clouds with the 

point density of 100 pts/m2 (no random error) and 100 pts/m2 (5 mm ϵ), 

tested by 2 point clouds: 1. 100 pts/m2 (no random error) 2. 100 pts/m2 (5 

mm ϵ) 
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learning models was higher when implemented on the testing point clouds with the same level of 

random error. This indicates that a machine learning model performs better when implemented 

on the point clouds with the same level of random error as the training point clouds. And when 

the point density was 100 pts/m2, the point cloud with random errors performed a little bit better 

when implemented on the point cloud with the same level of error, although the difference was 

very small. However, when implemented on the point cloud with a different level of error, the 

figure indicates that the model trained by the point cloud without random errors performs better 

than the model trained by the point clouds with the same point density but with a 5 mm ϵ. 

Figure 65 shows the evaluated mean loss of two point clouds with a point density of 500 

pts/m2 (no random error) and 500 pts/m2 (5 mm ϵ), tested by 2 point clouds: 1. 500 pts/m2 (no 

random error) 2. 500 pts/m2 (5 mm ϵ). It is clear that the machine learning models made fewer 

mistakes when implemented on the testing point clouds with the same level of random error. And 

when the point density was 500 pts/m2, the evaluated mean losses were almost the same when 

implemented on the point clouds with the same level of error as the training point cloud. 

However, when implemented on the point cloud with different level of random error, the model 
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Figure 65. This shows the evaluated mean loss of two point clouds with 

the point density of 500 pts/m2 (no random error) and 500 pts/m2 (5 mm ϵ), 

tested by 2 point clouds: 1. 500 pts/m2 (no random error) 2. 500 pts/m2 (5 

mm ϵ) 
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trained by the point cloud with a 5 mm ϵ made fewer mistakes than the model trained by the 

errorless point cloud. 

Figure 66 shows the evaluated accuracy of two point clouds with a point density of 500 

pts/m2 (no random error) and 500 pts/m2 (5 mm ϵ), tested by 2 point clouds: 1. 500 pts/m2 (no 

random error) 2. 500 pts/m2 (5 mm ϵ). It is clear that the evaluated accuracy of the machine 

learning models was higher when implemented on the testing point clouds with the same level of 

random error. This indicates that a machine learning model performs better when implemented 

on the point clouds with the same level of random error as the training point clouds. And when 

the point density was 500 pts/m2, the point cloud with random errors performed a little bit better 

when implemented on the point clouds with the same level of random error as the training point 

clouds. However, when implemented on the point cloud with a different level of random error, 

the model trained by the point cloud with a 5 mm ϵ made fewer mistakes than the model trained 

by the errorless point cloud. This indicates that a model trained by point cloud with a 5 mm ϵ 

performs better than a model trained by point clouds with the same point density but no random 

error when they are both implemented on the point cloud with a different level of random error. 
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Figure 66. This shows the evaluated accuracy of two point clouds with the 

point density of 500 pts/m2 (no random error) and 500 pts/m2 (5 mm ϵ), 

tested by 2 point clouds: 1. 500 pts/m2 (no random error) 2. 500 pts/m2 (5 

mm ϵ) 
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Figure 67 shows the evaluated mean loss of two point clouds with a point density of 1000 

pts/m2 (no random error) and 1000 pts/m2 (5 mm ϵ), tested by 2 point clouds: 1. 1000 pts/m2 (no 

random error) 2. 1000 pts/m2 (5 mm ϵ). It is clear that the machine learning models made fewer 

mistakes when implemented on the testing point clouds with the same level of random error. And 

when the point density was 1000 pts/m2, the evaluated mean losses were almost the same when 

implemented on the point clouds with the same level of error as the training point cloud. 

However, when implemented on the point cloud with different level of random error, the model 

trained by the point cloud with a 5 mm ϵ made fewer mistakes than the model trained by the 

errorless point cloud. And the difference of the evaluated mean losses was larger than the 

difference when the point density was 50 pts/m2, 100 pts/m2, and 500 pts/m2. 
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Figure 67. This shows the evaluated mean loss of two point clouds with 

the point density of 1000 pts/m2 (no random error) and 1000 pts/m2 (5 mm 

ϵ), tested by 2 point clouds: 1. 1000 pts/m2 (no random error) 2. 1000 

pts/m2 (5 mm ϵ) 
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Figure 68 shows the evaluated accuracy of two point clouds with a point density of 1000 

pts/m2 (no random error) and 1000 pts/m2 (5 mm ϵ), tested by 2 point clouds: 1. 1000 pts/m2 (no 

random error) 2. 1000 pts/m2 (5 mm ϵ). It is clear that the evaluated accuracy of the machine 

learning models was higher when implemented on the testing point clouds with the same level of 

random error. This indicates that a machine learning model performs better when implemented 

on the point clouds with the same level of random error as the training point clouds. And when 

the point density was 1000 pts/m2, the two models, the one with random errors and the other one 

without random errors, the point cloud with random errors performed a little bit better when 

implemented on the point clouds with the same level of random error as the training point 

clouds. However, when implemented on the point cloud with different levels of random error, 

the model trained by the point cloud without random errors had higher accuracy than the model 

trained by the point cloud with a 5 mm ϵ. This indicates that a model trained by the point cloud 

with a 5 mm ϵ performs better than a model trained by the point clouds with the same point 

density but no random error when implemented on the point cloud with different levels of 
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Figure 68. This shows the evaluated accuracy of two point clouds with the 

point density of 1000 pts/m2 (no random error) and 1000 pts/m2 (5 mm ϵ), 

tested by 2 point clouds: 1. 1000 pts/m2 (no random error) 2. 1000 pts/m2 

(5 mm ϵ) 
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random error. This result is different from the results of point clouds with a point density of 100 

pts/m2 or 500 pts/m2, but the same as the results of point clouds with a point density of 50 pts/m2. 

Figure 69 shows the evaluated mean loss of two point clouds with a point density of 5000 

pts/m2 (no random error) and 5000 pts/m2 (5 mm ϵ), tested by 2 point clouds: 1. 5000 pts/m2 (no 

random error) 2. 5000 pts/m2 (5 mm ϵ). It is clear that the machine learning models made fewer 

mistakes when implemented on the testing point clouds with the same level of random error. And 

when the point density was 5000 pts/m2, the evaluated mean losses were almost the same when 

implemented on the point clouds with the same level of error as the training point cloud. 

However, when implemented on the point cloud with different levels of random error, the model 

trained by the point cloud with a 5 mm ϵ made fewer mistakes than the model trained by the 

errorless point cloud. And the difference of the evaluated mean losses was larger than the 

difference when the point densities were 50 pts/m2, 100 pts/m2, and 500 pts/m2, but smaller than 

the difference when the point density was 1000 pts/m2. 
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Figure 69. This shows the evaluated mean loss of two point clouds with 

the point density of 5000 pts/m2 (no random error) and 5000 pts/m2 (5 mm 

ϵ), tested by 2 point clouds: 1. 5000 pts/m2 (no random error) 2. 5000 

pts/m2 (5 mm ϵ) 

 



 

122 

Figure 70 shows the evaluated accuracy of two point clouds with a point density of 5000 

pts/m2 (no random error) and 5000 pts/m2 (5 mm ϵ), tested by 2 point clouds: 1. 5000 pts/m2 (no 

random error) 2. 5000 pts/m2 (5 mm ϵ). It is clear that the evaluated accuracy of the machine 

learning models was higher when implemented on the testing point clouds with the same level of 

random error. This indicates that a machine learning model performs better when implemented 

on the point clouds with the same level of random error as the training point clouds. And when 

the point density was 5000 pts/m2, the two models, the one with random errors and the other one 

without random errors, the point cloud without random errors performed a little bit better when 

implemented on the point clouds with the same level of random error as the training point 

clouds. However, when implemented on the point cloud with different levels of random error, 

the model trained by the point cloud with a 5 mm ϵ had higher accuracy than the model trained 

by the point cloud without random errors. This indicates that a model trained by the point cloud 

with a 5 mm ϵ performs better than a model trained by the point clouds with the same point 

density but no random error when implemented on the point cloud with different levels of 

random error. This result is different from the result of point clouds with a point density of 100 

pts/m2 or 500 pts/m2, but the same with the result of point clouds with a point density of 50 

pts/m2. 
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Figure 70. This shows the evaluated accuracy of two point clouds with the 

point density of 5000 pts/m2 (no random error) and 5000 pts/m2 (5 mm ϵ), 

tested by 2 point clouds: 1. 5000 pts/m2 (no random error) 2. 5000 pts/m2 

(5 mm ϵ) 
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After 5 sets of paired experiments, it is clear that the machine learning models performed 

better when the models were implemented on the testing point clouds with the same level of 

random errors. Despite that there were differences in the evaluated accuracies, there was no 

pattern that revealed which models were better because the differences were too small and 

random. For example, when the models were implemented on the testing point clouds with the 

same level of random errors, the models without random errors performed a little bit better when 

the point densities were 100 pts/m2, 5000 pts/m2. When the models were implemented on the 

testing point clouds with the different level of random errors, the models without random errors 

performed a little bit better when the point densities were 100 pts/m2, 500 pts/m2.  
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4.2.3 Segmentation and classification visualization 

Qualitative analyses were conducted in the way of visualization. The color coding of the 

points was based on Table.1. Some of the classification results are displayed in the figures 

below.  

Figure 71 and Figure 72 visually and directly show the performance of two models 

trained by different training data. The two models both did a great job on classifying tables and 

chairs. However, it was difficult for the model trained by the 5000 pts/m2 density point cloud to 

identify planar objects, e.g. board. Thus, the evaluated accuracy of the results in Figure 71 was 

93.38% while the evaluated accuracy of the results in Figure 72 was 89.10%.  This visualization 

is representative of the difference in evaluated accuracy of these two models.  

Figure 73 and Figure 74 are the visualizations of models with different levels of random 

error. In Figure 73, the right side of the figure is the visualization of the classification results of 

the machine learning model trained by a point cloud with a point density of 500 pts/m2 (without 

random error), implemented on a point cloud with a point density of 500 pts/m2 (5 mm ϵ). The 

Figure 71. The visualization of the classification results of the machine 

learning model trained by a point cloud with a point density of 50 pts/m2 

(without random error), implemented on a point cloud with a point density of 

5000 pts/m2 (without random error). 
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left side of the figure is the ground truth. This also indicates that the model performs poorly on 

planar objects, e.g. the door, the wall with a door. In Figure 74, the right side of the figure is the 

Figure 72. The visualization of the classification results of the machine 

learning model trained by a point cloud with a point density of 5000 

pts/m2 (without random error), implemented on a point cloud with a point 

density of 50 pts/m2 (without random error). 

 

Figure 73. The right side of the figure is the visualization of the classification 

results of the machine learning model trained by a point cloud with a point 

density of 500 pts/m2 (without random error), implemented on a point cloud 

with a point density of 500 pts/m2 (5 mm sigma). The left side of the figure is 

the ground truth. 
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visualization of the classification results of the machine learning model trained by a point cloud 

with a point density of 500 pts/m2 (without random error), implemented on a point cloud with a 

point density of 500 pts/m2 (5 mm ϵ). The left side is the visualization of the classification results 

of the machine learning model trained by a point cloud with a point density of 500 pts/m2 (5 mm 

ϵ), implemented on a point cloud with a point density of 500 pts/m2 (without random error). The 

figure infers that the two models perform equally poor on planes. 

  

Figure 74. The right side of the figure is the visualization of the classification 

results of the machine learning model trained by a point cloud with a point 

density of 500 pts/m2 (without random error), implemented on a point cloud 

with a point density of 500 pts/m2 (5 mm sigma). The left side is the 

opposite. 
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4.3 Summary 

The mean loss of the model is used for measuring how poor the predictions are, but 

accuracy is the essential measurement of the performance of a model. The performance of 

different models and how point cloud attributes affect these different models are summarized as 

follows. 

Firstly, all of the 10 models’ performances were gradually getting better before over-

fitting. The evaluated accuracies of the models became steady after 15 to 20 epochs. All the 

comparisons were based on the final models, which were at epoch 20. 

Secondly, the models performed well overall except for thin, planar objects, e.g., walls, 

doors, boards, and windows. 

Thirdly, all the models performed the best when the testing point clouds’ point density 

was the same as the training point clouds’ point density. And the larger the point density was, the 

better performance the model provided. However, when the storage and computation 

consumption were taken into consideration, it is not worth of spending a lot more time and 

computation resources for a little bit higher accuracy, with respect to this study. When the 

models were implemented on other point clouds with different point densities, the accuracy 

dropped. When the models were implemented on point clouds with larger point density, the 

accuracy did not vary a lot in testing data. The testing point cloud with larger point density had 

only a slightly higher accuracy, but when the models were implemented on point clouds with 

smaller point density, the difference in accuracies were relatively big. The smaller the point 

density was, the larger the drop was in accuracy. Nevertheless it seemed that, when a model 

trained with smaller point density performed on a point cloud with a relatively larger point 

density, and a model trained with the same larger point density performed on a point cloud with 

the same smaller point density, the former performed better than the latter. But further 

experiments need to be conducted with smaller point density difference between testing groups. 

Fourth, all the models performed the best when the testing point clouds’ level of random 

error was the same as the training point clouds’ level of error. The random error did affect the 

performance of the machine learning models, but there was not a direct relation between them. 

Some of the models with random error performed better, but some of them did not. The values of 

random errors were only set to 2, so this experiment only indicates that adding a 5 mm sigma to 
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the point clouds does not increase nor decrease the accuracy of the classification. Therefore, 

more values and intervals are needed to be set for further research. 

 Finally, the results of simulated models on real-world data and real-world models on 

simulated data were displayed. Figure 75 displays the evaluated accuracies of the original model 

trained by real-world data with a point density of about 11067 pts/m2 (non-uniform through the 

point clouds, with random errors), implemented on the 10 simulated point clouds. For the testing 

point clouds, the larger the point density was, the higher accuracy the model had. But the 

difference was small when the point density was over 500 pts/m2. As shown in the paired point 

clouds (with or without random errors), random errors in testing data did not significantly affect 

the performance. Figure 76 displays the evaluated accuracies of the 10 models trained by 

simulated point clouds, implemented on the real-world point clouds. The evaluated accuracies 

varied from one model to another one. For this experiment, the point density and the level of 

random error did not affect the models’ performance on real-world point clouds, and the 

accuracies were relatively low compared to the evaluated accuracies of the model trained by the 

real-world data, as shown in Figure 75. 
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5. CONCLUSIONS 

Semantic building reconstruction is an essential element for building maintenance and 

management in current society. LiDAR and photogrammetry are two main techniques to acquire 

information from existing buildings. However, the outcome of these techniques is raw without 

semantic information. Therefore, further point cloud processing is as important as the 

acquisition. Segmentation and classification are two key steps in semantic building modeling 

using point clouds. But these two procedures have been mostly done manually and semi-

automatically. Rapid construction requires automation in the field, and researchers have 

produced a lot of automatic segmentation and classification approaches in the latest decade. Most 

of these approaches were machine learning approaches. The performance of machine learning 

segmentation and classification methods depend on many aspects, including the algorithm and 

point cloud attributes, e.g. point density, the level of random error, point distribution, dataset 

size, etc. Nevertheless, in real-world environments, it is difficult and almost impossible to 

control all of the aspects when acquiring the point cloud data. Therefore, it is difficult to 

decouple all the point cloud attributes that affect the performance of the segmentation and 

classification methods. This study proposed a method of simulating point clouds in virtual 

environments using a scattering algorithm in Houdini. 10 different point clouds were generated 

to find out the relation between the point cloud attributes, including point density and the level of 

random errors, and the performance of a machine learning segmentation and classification 

method, PointNet (Charles et.al., 2017).  

Two measurements were used in the experiment. The mean loss was used to evaluate 

how poor the prediction was during each epoch, and the accuracy was used as the measurement 

for evaluating the performance of the models. The study found that all the models were better for 

non-planar objects, e.g., chairs, tables, lights, etc. But the models had a hard time distinguishing 

between planar objects, e.g., a door, a window, from other planar objects that were intersecting 

with it, e.g., a wall. In terms of point density, the machine learning model performed better when 

the point density of the testing point clouds was the same as the point density of the training 

point clouds. Therefore, it is important to know the project’s point clouds point density before 

the training of the model and to adjust the point density of the training point clouds to match with 

the target point clouds that need semantic processing. The larger the point density is, the better 
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the model will perform. However, when the storage and computation consumption are taken into 

consideration, it is maybe not worth of spending a lot more time and computation resources for a 

little bit higher accuracy. Therefore, all factors need to be considered in order to produce a cost-

effective model. When the models were not applied to point clouds with the same density, the 

performance was affected negatively. And based on the limited number of tests, it is better to 

apply a model trained by point clouds with smaller point density on the target point clouds with 

larger point density rather than the opposite. But more experiments need to be conducted to make 

a solid conclusion regarding this. If the point density of the target point cloud is larger than the 

point density of the training point cloud, the increase of the point density does not significantly 

affect the performance. But if the point density of the target point cloud is smaller than the point 

density of the training point cloud, the decrease of the point density negatively affects the 

performance substantially. In terms of the level of random errors, all the models performed the 

best when the level of random errors of the testing point clouds were the same as the training 

point clouds. This finding indicates that, in real-world environments, the point cloud acquisition 

tool for training data should be the same acquisition tool for the target point cloud data, because 

different tools produce different levels of random error. Based on the limited number of tests, 

there was no direct relation found between the level of random error and the performance of the 

model.  

 The performance of the models by simulated data was relatively poor when applied to 

real-world data. Future works will be conducted to refine the machine learning algorithm and the 

simulated point clouds, in order to provide better performance for real-world environments. 

Specially, other than optimizing the original algorithm, more machine learning algorithms will 

be tested in future works. In terms of the simulated points, this study only used positional values 

of the points. Future works will add weights to RGB values of the points. More intervals need to 

be added to the studies point cloud attributes to convey a more general conclusion, and more 

point cloud attributes need to be taken into consideration. The simulated indoor environments 

need more complexity and variety, e.g., the logic of the generation, the structure of the room, the 

types of the room, the sizes of the room, the number of objects, etc. The ideal product of this 

study is a system that creates segmentation and classification models based on simulated point 

clouds that adjust automatically according to the point cloud attributes of the target real-world 
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point clouds in order to provide better performance than models derived from real-world point 

cloud.   
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