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ABSTRACT 

Intracellular motions are important signatures of living tissues, and intracellular dynamics reflect 

overall cell function and health. Traditional microscopy methods can track 2D cellular motions 

but do not provide an ensemble evaluation of intracellular activity. Biodynamic imaging (BDI) is 

a unique 3D imaging technique based on the phase shifts of dynamic light scattering and is highly 

sensitive to intracellular dynamics in living cells and their changes. This makes BDI a versatile 

tool to evaluate many different types of samples under various scenarios, and BDI has the potential 

to improve patient diagnosis and to provide valuable information for health care research. This 

may include evaluating sample activity, profiling patient chemotherapy response, and studying 

drug mechanisms. This thesis discusses the theory and modeling of BDI, the construction of BDI 

systems, sample heterogeneity analysis (TDSI), and the use of BDI to study cytoskeletal drug 

mechanisms, improve embryo selection and select therapies in pre-clinical trials. 
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 INTRODUCTION 

Biodynamic imaging is an optical imaging technology related to en face OCT [1], with enhanced 

partially-coherent speckle generated by broad-area illumination with coherence detection using 

digital holography [2-4]. Biodynamic imaging penetrates up to 1 mm into living tissue and returns 

high-content information in the form of dynamic light scattering across a broad spectral range [5, 

6]. The fluctuation frequencies relate to Doppler frequency shifts caused by light scattering from 

subcellular constituents that are in motion, creating beats among all of the multiple partial waves. 

The speeds of intracellular dynamics range across four orders of magnitude from tens of 

nanometers per second (cell membrane) [7-10] to tens of microns per second (organelles, vesicles) 

[11-14]. This chapter gives an overview of the basic principles and the data analysis method of 

biodynamic imaging. 

1.1 Imaging Techniques for Scattering Medium and Biomedical Targets 

1.1.1 Imaging Through Opaque Scattering Layers 

Biological tissues induce light scattering, having a diffusive effect on light beams and create 

speckle patterns, which reduces image resolution. Advances in imaging through scattering layers 

include introducing adaptive optics [15], using speckle memory effect and correlation analysis 

(correlography) with ensemble averages and ergodic-like properties of speckle [16-19], retrieving 

complex fields with holography [20], and phase-space measurement using the Wigner distribution 

function and iterative reconstruction [21, 22]. 

1.1.2 Diffuse Correlation Spectroscopy (DCS), Diffuse Reflectance Spectroscopy (DRS) 

and Diffuse Optical Tomography (DOT) 

Diffuse correlation spectroscopy (DCS) is widely used for cerebral blood flow monitoring. 

Temporal autocorrelation functions of speckle or light electric fields are measured, analyzed, and 

then compared against certain types of motion, e.g. Brownian motion. Autocorrelation functions 

for molecular Brownian motion are usually measured in the time range of 10-5 to 10-2 seconds [23]. 
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Diffuse reflectance spectroscopy (DRS) uses a spectrometer to analyze the diffuse reflectance of 

a tissue illuminated by a broadband light source, and is therefore useful for quantifying optical and 

physiological properties of tissues [24].  

Intracellular, extracellular fluids, subcellular components and tissue density variances have 

different refractive indexes, which leads to differences in scattering coefficient s  and g-factors 

that can be determined from optical measurements. This is the basic principle of diffuse optical 

tomography (DOT). The technique emits picosecond diode laser pulses, analyses the broadened 

and attenuated signal from tissue layers and constructs images of tissues [25].  

1.1.3 Optical Coherence Tomography (OCT) 

Optical Coherence Tomography uses coherent light to capture 2D or 3D micrometer-resolution 

images from scattering media. Since the development of OCT in 1990s, it has found wide 

applications in medicine, including ophthalmology, dermatology and dentistry etc. OCT has the 

advantage of being safe, inexpensive and having high depth and transverse resolution. Two basic 

types of OCT are time-domain OCT in Figure 1-1a) and Fourier-domain OCT in Figure 1-1b). 

 

Figure 1-1. a) Time-domain reflectometer b) Fourier domain OCT [26] 

Many extensions and improvements to OCT systems have been developed in the last two decades. 

Notable ones include polarization-sensitive OCT (PS-OCT), Doppler OCT (D-OCT) and full-field 

OCT (FF-OCT). PS-OCT utilizes the polarization properties of light and the fact that some 

biological structures alter the polarization state of the light, which gives contrast and quantitative 
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information in images [27, 28]. D-OCT combines OCT and the Doppler effect and is sensitive to 

blood flow [29]. FFOCT eliminates scanning and records 2D slices from a combination of 

interferometric images [30]. 

1.2 Fundamentals of Biodynamic Imaging 

1.2.1 Optical Coherence 

Two sources are perfectly coherent if they keep a constant phase difference. Temporal coherence 

describes a strong correlation of light at one location between two different times, while spatial 

coherence describes a strong correlation of light at the same time between two locations. In 

interferometry, a certain level of optical coherence is desired, and coherence length is especially 

important in coherence gated imaging systems. 

1.2.2 Speckle Phenomenon 

Speckle is a result of spatial coherence, when waves with amplitudes and phases are added together 

to create a randomly varying intensity pattern. The creation of speckles is a random-walk process 

in phase space. Speckle degrades image quality, and various methods have been proposed to 

reduce speckle [31-33], while in other applications autocorrelation information can be extracted 

from speckle and used to reconstruct object information [18, 20]. Speckle size is a second-order 

statistical property and is calculated as 

 
sp

f
a

D


=   (1.2) 

where   is the wavelength of the light, f  the distance of free space propagation and D  is the 

smaller of aperture size or object size [34]. 

1.2.3 Coherence Length 

The coherence length of a Gaussian light source is described by equation [26] 

 
22ln 2

L
n



 
=


  (1.3) 
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where   is the central wavelength of the source,   is the FWHM bandwidth of the source, and 

n  is the refractive index of the medium. A desired coherence length can be achieved by selecting 

proper  and   values. In a backscattering configuration, only the part of the backscattered light 

that has an optical path length (OPL) that matches the OPL of the reference arm within the 

coherence length will interfere. Therefore, different depths of a sample can be imaged as the OPL 

of the reference arm changes, achieving coherence gating. This is the fundamental of “flythroughs”, 

i.e. depth scans of a sample.  

1.2.4 Holography 

The first hologram was recorded by Dennis Gabor in 1948. A hologram is an interference pattern 

constructed by an illumination beam and a reference beam. With the development of coherent 

sources like lasers, this imaging technique quickly improved, and in 1971 Gabor was awarded the 

Nobel Prize for his invention [35]. 

The two steps of holography are recording and reconstructing both the amplitude and phase of an 

optical wave arriving from a coherently illuminated object. If the field of the signal arm which is 

to be reconstructed is 

 ( ) ( ) ( ), , exp ,u x y u x y i x y= −     (1.4) 

and a plane wave reference arm is 

 ( ) ( )1 2, expv x y A i k x k y= − +     (1.5) 

then the intensity is given by 

 
( )

( ) ( ) ( )

2

2 2

1 2

,

, 2 , cos ,

I x y u v

u x y A A u x y k x k y x y

= +

= + + + −  

  (1.6) 

on a recording medium. The amplitude and phase of the signal have been recorded as amplitude 

and phase modulation with a spatial carrier frequency ( )1 2,k k . Both amplitude and phase 

distributions can be reconstructed from the hologram. 
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1.2.5 Digital Holography 

Instead of holographic films, digital holography uses a CMOS or CCD camera to record holograms 

and a computer to reconstruct images. A digital camera allows fast acquisition of hologram images, 

usually tens to hundreds of fps at VGA resolution. A high frame rate captures high-frequency 

fluctuations. According to Eq (1.6), when a CCD camera is placed on the Fourier domain of an 

imaging system, a 2D FFT of the hologram image will reveal two conjugate images, at 

1 2

1 1
,

k k

 
− − 
 

 and 
1 2

1 1
,

k k

 
 
 

 in the x -space, respectively. 

1.2.6 Dynamic Light Scattering (DLS) 

A scattering target that is in motion causes dynamic light scattering. In living tissues, uniform, 

random or active motions happen persistently, which leads to phase drift and intensity fluctuations 

in the detection device in an interferometric imaging system. 

The light-scattering configuration for dynamic light scattering from a moving particle is shown in 

Figure 1-2.  The incident light has an initial k-vector 1k  that is scattered by a small particle into a 

final k-vector 2k . The momentum transfer in the scattering process is -= 2 1q k k , where the 

magnitude of the transferred momentum is 

 
( )

( )

2 1 cos

2 sin / 2

k

k





= −

=

q
  (1.7) 

at the scattering angle  .  The Doppler frequency shift from the central frequency of the incident 

photon is given by  

 cos cosDqv    =  = =q v   (1.8) 

where 

 D qv =   (1.9) 

is the maximum (or co-linear) Doppler angular frequency shift, v  is the velocity of the particle, 

and   is the angle between the particle velocity and the momentum transfer vector.  For forward 
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scattering, 0 = , and the Doppler frequency shift is identically zero. For backward scattering, the 

momentum transfer 04 /q n =   is a maximum, and the Doppler frequency shift depends only on 

the particle velocity through D qv = .   

 

Figure 1-2 Doppler scattering geometry for the incident and scattered k-vector, q-vector and particle 

velocity.  The scattering angle of the light is θ, and the angle between the q-vector and the particle velocity 

is v.   

1.3 Living Tissue 

1.3.1 Intracellular Transport 

Motions inside living cells, and motion of the cells themselves, are ubiquitous signatures of the 

active processes involved in the maintenance of cellular function and health. Many aspects of 

cellular function involve active movement driven by energetic processes. Conversely, thermal 

motions, though participating in subcellular processes such as molecular diffusion and membrane 

flicker, are physical processes that continue after the death of the cell. Therefore, driven motion is 

a defining characteristic of living matter. Quantifying the many aspects of active cellular motions 
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provides a measure of cellular health or a measure of deviation from normal behavior caused by 

disease or by applied xenobiotics. Cellular dynamics become surrogates that can be used as real-

time endogenous reporters in place of nonendogenous fluorophores or end-point measurements 

[36, 37] when studying how tissues respond to changing environments or to applied therapies.  

1.3.2 Size-speed Relation 

For cells and subcellular components, a general trend is that the bigger the component is, the slower 

it moves for most active transport processes (Figure 1-3a). Their corresponding Doppler frequency 

shifts range from 0.01 Hz to 100 Hz (Figure 1-3b). The rule of thumb is that for wavelength 

840 nm = , motion at 1 μm/s corresponds to a Doppler frequency shift of 3 Hz. 

 

Figure 1-3 a) cellular size – speed relation [38, 39] b) Doppler frequency – cellular speed relation, for 

wavelength 840 nm = .  

1.4 Biodynamic Imaging 

1.4.1 Optical Coherence Imaging (OCI) 

Biodynamic imaging is capable of measuring objects that have diverse features, from a cell-line 

tumor spheroid to a USAF test chart and a mouse eye (Figure 1-4). 
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Figure 1-4 a) a DLD-1 tumor spheroid b) USAF test chart c) mouse eye [40] 

Biodynamic imaging can do a 3D reconstruction of a sample, and Figure 1-5a) shows the slices of 

a bone marrow sample every 50 μm, and Figure 1-5b) is a 3D reconstruction of a tumor spheroid. 

 

Figure 1-5 a) Slices from the “flythrough” of a bone marrow sample. This sample has a relatively irregular 

shape and has structures that show up as bright spots in the image. b) 3D reconstruction of a tumor spheroid 

sample. [40] 

1.4.2 Motility Contrast Imaging (MCI) 

Motility contrast imaging creates a map of the normalized standard deviation (NSD) for each pixel. 

NSD is defined as 
I

I


 for each pixel, where I  is the standard deviation and I  is the averaged 

intensity over time. Figure 1-6 gives an example of how an MCI map of a DLD-1 tumor spheroid 

changes in response to FCCP, an ionophore that disrupts ATP synthesis [41]. 
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Figure 1-6 a) A change in MCI of a DLD-1 tumor spheroid after FCCP is added. Baseline (“healthy”) 

measurements show an overall NSD > 0.8, and this value gradually decreases over time b) Decrease in 

overall (i.e. sample averaged) NSD of the DLD-1 tumor spheroid after the FCCP drug, compared with 

control medium. FCCP, a mitochondrial uncoupling drug that disrupts ATP synthesis, slows down the 

cellular activity in the DLD-1 spheroid [41]. 

Heterogeneity in motility is found in some samples and reveals structural information, as shown 

in Figure 1-7. This also shows the potential of TDSI to be discussed in CHAPTER 6. 

 

Figure 1-7 MCI maps of a tumor with a 680 μm diameter, with a) 2D slices and b) 3D reconstruction. This 

sample shows a necrotic core with low activity and a healthy, active shell. [42, 43] 

1.4.3 Tissue Dynamics Spectroscopy (TDS) 

Frequency-domain decomposition of the light fluctuations using tissue dynamics spectroscopy 

(TDS) produces broad-band fluctuation spectra that encompass the wide variety of subcellular 

motions [44, 45]. When pharmaceutical compounds are applied to the tissue, dynamic cellular 
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processes are perturbed, and these modifications appear as changes in the fluctuation spectra.  By 

applying reference compounds with known mechanisms of action, a library of drug-response 

spectrograms can be generated against which drug screens may be compared, providing 

information about the effect of the compound on cellular processes such as necrosis and apoptosis.  

This type of phenomenological assay is known as a phenotypic profile.  Phenotypic profiling has 

seen a resurgence in recent years as a more systems-based approach to drug discovery and 

development that captures the complex interplay of cellular processes affected by the drug 

candidate[46]. 

The power spectrum of a pixel is calculated as 

 ( ) ( )( )
2

2

, ; FFT , ;S x y u x y t =   (1.10) 

And the power spectrum of an entire sample is the average over all the spectra of the entire sample. 

By comparing the power spectrum of a sample after a perturbation relative to the baseline power 

spectrum of the sample, the time-dependent response of the sample to the perturbation can be 

determined. A differential spectrogram is defined as 

 ( ) ( ) ( )based , log , logS t S t S  = −         (1.11) 

where ( )baseS   is the baseline spectrum averaged from the last few loops of the baseline 

measurement. An example of the power spectrum and differential spectrogram is shown in Figure 

1-8. 
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Figure 1-8 Spectra and spectrogram for a DLD-1 tumor spheroid responding to 25μM paclitaxel. a) Spectra 

of a baseline and drug-treated measurement. The knee of the sample has shifted to a lower frequency. b) 

Differential spectrogram of the biopsy, showing enhancement in low frequency and suppression in mid-

high frequency. Drug was added at t=0. 

1.4.4 BDI Biomarkers 

Biomarkers are created to condense the vast amount of information from OCI, MCI images and 

TDS spectrograms, and represent them as numerical values. Feature values give characteristic 

features of sample conditions or responses, and several types of biomarkers are used. The current 

format contains 40 biomarkers, 4 of which are from OCI, 2 are from MCI, 33 are related to TDS, 

and one that evaluates data quality. The biomarkers can also be categorized into 4 groups:  

• Preconditions, i.e. biomarkers that characterize “basic sample status” in the baseline 

measurement, including backscatter brightness (BB), overall NSD and knee frequency 

and Nyquist floor of the spectrum 

• Change of precondition biomarkers 

• Time-frequency decomposition extracted from spectroscopic response 

• Data quality 

A vector of 40 numerical biomarker values allows a comprehensive overview of sample conditions 

and responses. The feature vector is easy and convenient to use when studying sample 

heterogeneity and drug profiling. A detailed definition of the biomarkers is given in appendix 

chapter C.1. 
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 DOPPLER FLUCTUATION SPECTROSCOPY OF 

INTRACELLULAR DYNAMICS IN LIVING TISSUE 

Intracellular dynamics in living tissue are dominated by active transport driven by bioenergetic 

processes far from thermal equilibrium. This chapter discusses the “persistent walk” model of 

intracellular constituents, and analytically derives the dynamic light scattering from transport in 

the ballistic, diffusive or the cross-over regimes. The theory is validated through Monte Carlo 

simulations. Experimental evidence for the Doppler edge in 3D living tissue is obtained using 

BDI.1 

2.1 Introduction 

Motions in two-dimensional cell culture are easily observed under a microscope as physical 

displacements. Adaptive optics combined with light sheet microscopy and lattice light sheet 

microscopy can achieve 3D in vivo aberration-free imaging of subcellular processes [1, 2]. 

However, dynamic light scattering (DLS) and Doppler fluctuation spectroscopy are better suited 

for ensemble measurements of a broad range of intracellular motions across a wide field of view.  

These ensemble techniques are sensitive to motion changes and can be used to monitor cellular 

health, disease progression and drug response. Spatial localization in DLS in tissue can be achieved 

with low coherence [3-5], including dynamic signals observed in OCT and OCI.  

This chapter focuses on lifetime-broadened Doppler scattering from persistent walks. We present 

evidence that shows Doppler fluctuation spectra from midsections of 3D cultured tissues as the 

sum of active intracellular processes with long persistence distances, i.e. in the ballistic regime, 

which is consistent with findings from motion tracking within 2D tissues.  The model is based on 

random walks with a simple exponential distribution of free path lengths, where a particle walks 

at a constant velocity along a mean-free path.  This “piecewise continuous random walk” model 

leads to a temporal cross-over from ballistic transport at short time scales to diffusive transport at 

long time scales.  The approach is fully statistical, without resolving individual scattering objects, 

by restricting the analysis to ensembles of actively transporting subcellular constituents. The 

 

1 Content from this chapter has been published in Z Li, H Sun, J Turek, S Jalal, M Childress, and DD Nolte, Doppler 

fluctuation spectroscopy of intracellular dynamics in living tissue, J. Opt. Soc. Am. A 36, 665 (2019). 
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theory of light scattering from random walks is developed for field-based heterodyne detection.  

Transport in the ballistic, diffusive and cross-over regime is described analytically, including the 

derivation of autocorrelation functions in the two limits and an effective driven damped harmonic 

oscillator model for persistent walks in the cross-over regime. The theory is validated by Monte 

Carlo simulations. Experimental measurements of Doppler fluctuation spectra, obtained using 

tissue dynamics spectroscopy on living tissue culture and living cancer biopsies are presented, 

followed by a general discussion of the potential applicability of Doppler fluctuation spectroscopy 

for drug screening. 

2.2 Models 

2.2.1 Persistent Walk 

Many biological applications proceed via active persistent walks that have persistent motions of 

relatively uniform speed 0v  travelling a mean-free length (also known as the persistence length) 

pL  in a mean-free time pt  (also known as the persistence time) before changing direction or speed. 

Persistent walks have two opposite limiting behaviors. When the persistence time is much longer 

than an observation time, then the transport can be viewed as an ensemble of ballistically 

transported objects. This is the ballistic limit. When the persistence time is much shorter than an 

observation time, then the transport approaches a Wiener process. The Wiener process has a path 

that is nowhere differentiable [6]. This is the diffusion limit, although, in the case of active media, 

it is active diffusion that significantly exceeds thermal Brownian motion. The ballistic limit and 

the diffusion limit have well-recognized properties in terms of dynamic light scattering. However, 

many biological transport processes occur in the cross-over regime between these extremes. 

The key parameters characterizing the walks are the mean-squared speed during the free runs and 

the mean-free time between changes in speed or direction. A model that describes this process of 

free runs with mean persistence times is called the Ornstein-Uhlenbeck process [6] given by  

 
tdv vdt dW= − +   (2.1) 
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for one-dimensional transport, where 1/ pt =  is the persistence time,   is the amplitude of the 

fluctuations, and tdW  is a Wiener process of unit variance. Setting ( )0 0x = , the associated 

position process is described by 

 ( ) ( ) ( ) ( )0

0 0
1 exp d exp d exp

t t

t

v
x t t t t W t  






  = − − + −       (2.2) 

The mean-squared displacement (MSD) for quasi-ballistic transport in 1D is 

 ( ) ( ) ( ) ( )
22 2

22 0

2 2 3
1 exp 3 4exp exp 2

2

v
x t t t t t  

  

 
= + − − − − − + −         (2.3) 

where 0v  is the molecular motor speed.  In the long-time limit, this is 

 ( )
2

2 2

02
2 2px t t v t t Dt




= = =   (2.4) 

where the effective diffusion coefficient is 2

0 pD v t=   related to the speed and the persistence time, 

but unrelated to temperature or thermal processes.  The relationship in Eq. (2.4) establishes the 

fluctuation-dissipation theorem for active transport 

 
2 2

02pt v =   (2.5) 

that relates the persistence time and speed to the magnitude of the fluctuations. Based on this 

relation, the MSD in Eq. (2.3) is expressed in terms of the mean-free path length 0p pL v t=   as 

 ( )2 2 22 2 1 expp p

p p

t t
x t L L

t t

  
= − − −   

   

  (2.6) 

The MSD is plotted in Figure 2-1 for several values of mean-free path.  At short times, the MSD 

grows as the square of time, which is representative of ballistic transport, while for time 2 pt t  

the MSD grows linearly in time, which is representative of diffusive transport. Therefore, the MSD 

displays a temporal transition from ballistic to diffusive transport depending on the observation 

time relative to persistence time. 
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Figure 2-1 Average mean-squared displacement as a function of time for an Ornstein-Uhlenbeck process 

for a family of Lp values with a fixed speed of 100 nanometers per second.  The transition from the ballistic 

to the diffusion regime occurs at t = 2tp along the dashed line. 

2.2.2 Doppler Number 

The co-linear Doppler frequency shift D  and the persistence time pt  (and equivalently the 

momentum transfer q  and the mean free path pL ) from dynamic light scattering (1.2.6) set a 

dimensionless scaling parameter that divides the ballistic transport regime from the diffusive 

regime.  The dimensionless parameter is called the Doppler number, or 
DN  , given by 

 D D p pN t qL= =   (2.7) 

The characteristic scale is set when  

 
red

1
p

D

L
N


= =   (2.8) 

which is defined in terms of the reduced wavelength as 
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for a refractive index 1.35n   and a free-space wavelength 0 840 nm = .  Therefore, the dividing 

line between diffusive transport and ballistic transport occurs when the mean-free path is greater 

than approximately 50 nm.  The conditions on the ND for the different regimes are 
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  (2.10) 

although the division is not sharp. Doppler effects dominate when ND > 3, and diffusion effects 

dominate when ND < 0.3.  Most active transport processes in cells have mean-free paths larger than 

the reduced wavelength, placing most active subcellular processes in the Doppler regime (see next 

section).   

2.2.3 Processive Motion in Biological Processes 

Active intracellular transport is processive, meaning that motion persists for multiple cycles of 

ATP or GTP hydrolysis [7]. For molecular motors, the step length is fixed at ATP   per hydrolysis 

(e.g. for kinesin ATP 8 nm =  [8]), with a mean value of n  steps before the motor detaches.  The 

mean-free path for the persistent motion is then ATPn = . Likewise, for cytoskeletal 

restructuring, periods of protrusion are interspersed with periods of retraction, with characteristic 

mean-free lengths.  Examples of intracellular dynamics, speeds and lengths are given in Table 2-1 

for a variety of motions under a variety of conditions [8-19].  For these processes, the Doppler 

frequency depends on the observation wavelength and observation direction. The Doppler 

frequencies in Table 2-1 are calculated for a backscattering configuration using a free-space 

wavelength of 0 840 nm = .  Speeds range from several microns per second (organelles or vesicles 

carried by molecular motors) to several nanometers per second (cell membranes driven by 

cytoskeletal processes).  The corresponding Doppler frequencies (maximum frequencies in a 

backscatter configuration) are tens of Hz to tens of mHz. The mean Doppler frequency (averaged 

over many cellular volumes in living tissue) is zero because transport is isotropically averaged 

over all directions.  For processive motions associated with kinesin, dynein, myosin V, 

cytoskeleton restructuring, and filopodia and lamellipodia, the Doppler numbers in Table 2-1 are 

greater than unity and can range into the hundreds. Therefore, processive motors and cytoskeletal 

restructuring are in the Doppler regime. An interesting case is for kinesin/dynein complexes, which 

are engaged in a tug-of-war transporting vesicles in alternating directions on the microtubules. The  

ND is smallest for this case in Table 2-1 and is in the cross-over regime. 
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Table 2-1 Speeds, Doppler Frequencies and Mean Free Path Lengths 

Motor or 

polymerization 

Speed Doppler Frequency 

Shift 

Distance or Time ωDtp or qLp Ref 

Kinesin 2 μm/sec 6 Hz   [9] 

Kinesin 1 μm/s 3 Hz  15 [8] 

Kinesin 800 nm/s 2.7 Hz   [10, 11] 

Kinesin 1 μm/s 3 Hz 10 sec 200 [12] 

Kinesin   1 micron 20 [13] 

Kinesin 1 μm/s 3 Hz 600 nm 10 [14] 

Kinesin/Dynein 800 nm/s 2.7 Hz 100 nm - 300 nm 2 - 6 [15] 

Dynein/Dynactin 700 nm/sec 2.1 Hz 1 20 [20] 

Myosin V 300 nm/s 1 Hz 1.6 microns 30 [16] 

ParA/ParB 100 nm/s 0.3 Hz 2 microns 40 [17] 

Actin network 

polymerization 

5 nm/s 0.02 Hz   [18] 

Tubulin 

polymerization 

20 nm/s – 300 nm/s 0.07 – 1 Hz 300 sec 15-100 [19] 

Filopodia 

extending 

40 nm/s 0.12 Hz 130 sec 100 [21] 

Filopodia 

retracting 

10 nm/s 0.03 Hz 100 sec 20 [21] 

2.2.4 Light Scattering from Persistent Walks 

The transport of vesicles and organelles provide the simplest example of dynamic light scattering 

from persistent walks.  Vesicles and most organelles are much smaller than a wavelength of light 

and hence represent point scattering objects in motion.  In addition, the transport of vesicles and 

organelles is driven actively.  In this section, we describe two ideal models of organelle transport.  

The first model is constrained and consists of organelles moving on one-dimensional filaments or 

microtubules.  The orientation of these one-dimensional tracks is distributed uniformly in three 

dimensions.  The second model assumes a persistent walk in 3D that is unconstrained.  An 

interesting result of these two models is their non-equivalence: isotropic 3D walks produce 

different Doppler fluctuation spectra than isotropically distributed 1D walks.  These two models 

can be evaluated in both the extreme limit of very short persistence time (diffusion limit) and the 
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limit of very long persistence time (ballistic limit).  The intermediate regime can be approximated 

by a distribution of lifetime-broadened Doppler spectra to be discussed in the following section. 

In dynamic light scattering, coherent speckle is a superposition of the individual partial waves 

from the individual scattering sources that are in motion.  The statistical fluctuations in the speckle 

intensity are captured by a field autocorrelation function that is obtained as a stochastic sum 

evaluated using an integral over a probability distribution [22] 
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where 0E  is the reference field magnitude, and the field autocorrelation is proportional to the 

Fourier transform of the probability functional [23].  Eq. (2.11) is the field-based autocorrelation 

that would be equivalent to phase-sensitive detection in a dynamic light scattering experiment.  

There is also an intensity-based autocorrelation function given by 

 

( ) *

2
2 2 2 2

(0) ( )

( ) exp( i )d

I

s s

A t I I t

N I N I P x x

=

= +  −   q Δx
  (2.12) 

Field-based autocorrelation is linear in multiple underlying dynamical processes that contribute to 

the field fluctuations, making interpretations of underlying processes simpler compared with 

intensity-based autocorrelation.  However, the most stable form of fluctuation spectroscopy 

performed experimentally is with intensity-based detection, because it is less sensitive to 

mechanical disturbance than the field-based detection (phase-sensitive detection).  In the 

discussion below, field-based descriptions will be used when treating multiple dynamical 

processes.  Intensity-based descriptions will be used for experimental studies and for pure 

theoretical cases with simple limiting behavior when persistent walks along isotropically-oriented 

filaments or microtubules are driven by molecular motors that run at approximately constant 

speeds but with a distribution of persistence times. There are three limiting cases: (1) diffusive 

motion in 1D, (2) diffusive motion in 3D, and (3) ballistic motion.  In all three cases, the motion 

is averaged isotropically over all angles. 
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1D Isotropically-averaged Diffusion Limit 

One-dimensional isotropic transport is a model for which particles are confined in one direction, 

with both positive and negative excursions along a line, while the direction is distributed 

isotropically in 3D.  The distribution function for one-dimensional motion is [6] 
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The isotropic intensity autocorrelation function can be written as 
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The autocorrelation function behaves as the error function with the characteristic time 21/ q D . 

3D Diffusion Limit 

Three-dimensional isotropic transport is the model for which particles are free in 3 dimensions. 

The distribution function of the three-dimensional isotropic motion is 
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The intensity autocorrelation function is 
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The autocorrelation function is an exponential equation, and the characteristic time is 21/ q D  that 

is the same as for the one-dimensional isotropic model. The spectral density, calculated using the 

Wiener-Khinchin theorem, is 
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The second term in the spectral density is a typical Lorentzian function. In the low- and high-

frequency limits, these are 
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1D and 3D Isotropic Ballistic Limit 

In the ballistic limit of long persistence time, the three-dimensional ballistic transport model is 

identical to isotropically distributed 1D transport, so they share the same limit.  The displacement 

is r vt =  , and the distribution function for this type of motion is 

 ( ) ( )P r r vt =  −   (2.19) 

The intensity autocorrelation function is 
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where the oscillatory sinc function arises from the ballistic Doppler frequency. The spectral density 

is  
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I sS FT A t N I

qv qv


    

  
= = +     

  
  (2.21) 

where ( )tri x  is the triangular function. 



 

 

38 

Information contained within the autocorrelation function is contained equivalently within the 

spectral power density, but when there are many subensembles contributing to the dynamic light 

scattering, and the characteristic time scales are widely separated across several orders of 

magnitude, the fluctuation spectrum is a more “natural” representation than the autocorrelation by 

separating processes according to their respective characteristic frequencies.  For instance, when 

the subcellular transport is quasi-ballistic, the fluctuation frequencies of the fluctuation spectra are 

closely related to the Doppler frequencies of the moving scatterers.  Doppler fluctuation power 

spectra, even in the homogeneous case, have no spectral peak, but are fluctuation spectra with zero 

mean frequency and characteristic “edge” or “knee” frequencies, as shown in Figure 2-2(a) for the 

three limiting cases: ballistic, 3D diffusion, and isotropic 1D diffusion.  On a logarithmic frequency 

scale, the diffusive fluctuation spectra show a characteristic “roll-off” of a Lorentzian lineshape of 

zero mean frequency, while the ballistic spectrum displays a “Doppler edge” above which the 

fluctuation spectral power density drops rapidly.   

Intermediate Cross-Over Regime 

Between the diffusive and the ballistic limits is the cross-over regime when 1DN  , with the mean 

free path pL  in the range of 50 nm for a wavelength at 840 nm in the infrared using a backscattering 

optical configuration.  The cross-over regime, with significant deviations from the ideal limits, is 

relatively wide, with the mean free path spanning from approximately 20 nanometers to a fifth of 

a micrometer. 

An ensemble of N  particles executing persistent walks with an exponential distribution of 

persistence time pt , inclined at angle  , and with no discontinuous phase jumps between walk 

segments, produce a characteristic damped-harmonic oscillator power spectrum with a lineshape 

given by 
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where the damping factor is inversely related to the mean persistence time pt  through 1pt = .  In 

an isotropic tissue, the colinearity angles are distributed as 
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 ( )d sin dP    =   (2.23) 

For a distribution of Doppler frequencies   caused by the distribution of angles, the increment to 

the fluctuation power spectrum is 
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For the frequency distribution from an isotropic tissue, the total power spectrum is integrated over 

all Doppler frequencies as 
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  (2.25) 

Examples of isotropically-averaged 1D motion are shown in Figure 2-2(b) for Doppler numbers  

ND = 0.1, 1, and 10. The dashed curves are for unidirectional 1D motion, showing a clear Doppler 

peak at 1 HzDf =  for 10D pt = . In the 0.1D pt =  case, there is a diffusion knee at 

2 2

0 / 2 0.1 Hzdf q v  =  . The cross-over regime is captured when 1D pt = . The isotropic 

averaging produces a fluctuation spectrum that has no peak at the Doppler frequency, even in the 

case of large ND, although there is a distinct edge at the Doppler frequency for this case.  When 

the Doppler number is small, a diffusive knee structure emerges at lower frequencies. 
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Figure 2-2 (a) Fluctuation spectra for three limiting cases: Isotropic 1D diffusion, 3D diffusion and the 

ballistic case averaged isotropically over all angles.  A diffusion coefficient is used for the first two cases, 

and a uniform velocity is applied to the last case. (b) Comparison of unidirectional (dashed) versus 

isotropically averaged 1D (solid) power spectra when the ND = 0.1, 1, and 10. 

The cross-over behavior from the Doppler regime to the diffusion regime is described in terms of 

a knee frequency, which is a function of diffusion and ballistic frequencies and persistence time  
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For long persistence times pt , the knee frequency is a Doppler edge that is associated with a slope 

< -2, while for short persistence times, the knee frequency is the diffusive roll-off frequency 

2

diffusion q D = .  The knee frequency is shown in Figure 2-3 as a function of the mean intracellular 

speed for a range of persistence times, assuming no correlation between mean speed and mean 

persistence time.  However, most biological processes display correlations between speeds and 

persistence times. The simplest scaling for such a correlation is p pvt L= , as discussed in section 

2.2.2. 

 

Figure 2-3 Knee frequency versus the mean intracellular speed for persistence times ranging from 0.1 

seconds to 10 seconds. The markers are knee frequencies extracted from zero points of d3(logS)/d(logf)3 

which are related to change in curvature, and lines are plots of Eqn. (2.27). The values of S are numerical 

calculations from Eqn. (2.25). The region labeled “knee transition zone” is when more than one knee 

appears in the 0.01 to 12.5 Hz range.  The knee frequencies of living tissue range from 0.01 Hz to 1 Hz, 

corresponding to speeds from 3 nm/sec (cellular shape changes) to 300 nm/sec (nuclear and membrane 

motions).  

2.2.5 Dynamic Spectroscopy of Living Tissue 

Fluctuation frequencies relate to Doppler frequency shifts caused by light scattering from the 

subcellular constituents that are in motion, creating beats among all the multiple partial waves. 

The speeds of intracellular dynamics range across three orders of magnitude from tens of 

nanometers per second (cell membrane) [24-27] to tens of microns per second (organelles, 

vesicles) [28-31].  For near-infrared backscattering geometry, these speeds correspond to Doppler 

frequencies from 0.01 Hz to 10 Hz. Because of the wide variety of intracellular processes and the 
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wide range of speeds, the fluctuation spectra obtained from dynamic light scattering of living tissue 

contain a continuous distribution of Doppler-broadened spectra.  The experimentally-measured 

field-based fluctuation spectrum is 

 ( ) ( ) ( )
0

,E D E D DS S d     


 =    (2.28) 

where ( ),E DS    is the fluctuation spectrum of each individual process and ( )D   is a normalized 

distribution function that captures the range of intracellular Doppler processes.  The combined 

power spectral density of Eq. (2.28) produces an envelope that contains the individual Doppler 

spectra of the underlying processes.  For this reason, the power spectral density from most living 

tissue samples has a broad frequency dependence without a distinct Doppler edge.  However, it is 

sometimes possible to observe from experiments either sharpening or broadening of an underlying 

Doppler edge. 

2.3 Monte Carlo Simulation of Transport and Light Scattering 

The theoretical predictions were compared to Monte Carlo DLS simulations to validate the 

theoretical model for isotropically-averaged one-dimensional transport processes. A calibration 

simulation was performed first on transport in the diffusion limit to test the three-dimensional 

diffusion case in contrast to the isotropically-averaged one-dimensional diffusion case.  The Monte 

Carlo simulations were performed with 5000 particle walkers that contribute coherent scattered 

waves to the far field where the net complex field is sampled at a chosen sampling rate and 

transformed to the frequency domain through a fast Fourier transform.  The resulting complex-

valued fluctuation spectrum is taken modulus-squared and averaged over an ensemble of 50 

simulations.  The fluctuation spectral power density, in this case, is in the “heterodyne” mode to 

be compared with theoretical calculations.  The walkers were simulated with a diffusion coefficient 

of 20.002 μm /s  using a probe wavelength of 0.84 μm .  The sampling frame rate was 25 frame/s, and 

the capture is assumed to be instantaneous (infinitesimal exposure time). The total capture time is 

either 100 sec or 200 sec.  

Figure 2-4 (a) shows the theoretical calculation and simulation of the Wiener process in one-

dimensional isotropic and three-dimensional isotropic transport. Numerical calculations are 
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derived from the autocorrelation function via the Wiener-Khinchin theorem from Eq. (2.14) and 

Eq.(2.17), respectively. Figure 2-4(b) shows three cases: the two limits with persistence times 

0pt → , pt → , and for a moderate persistence time 0.5 spt =  in the cross-over regime, with 

persistence times distributed according to an exponential probability. 

 

Figure 2-4 (a) Theoretical calculations (solid curves) and Monte Carlo simulations (markers) of three-

dimensional isotropic transport versus one-dimensional isotropically-averaged transport. The theoretical 

calculation is from the Fourier transform of the autocorrelation function. The three-dimensional isotropic 

transport has a higher knee (0.8 Hz) than the one-dimensional isotropic transport (0.05 Hz). The 

autocorrelation functions are an exponential and an error function, respectively. In the 3D case, the low-

frequency limit is flat and the high frequency has a -2 slope, which agrees with limits in Eq. (2.18). The 

high-frequency discrepancy in the calculated curve is a numerical artifact originating from the finite 

sampling of the autocorrelation function. (b) Monte Carlo simulation of 1D isotropic persistent walk in 

three regimes and theoretical results in the ballistic regime from the autocorrelation function.  (c) – (d) 

Monte Carlo simulation and numerical calculation of persistent walks in the intermediate regime: (c) with 

fixed Doppler frequency fD. (d) with fixed Doppler number ND=1.   

Similar Monte Carlo simulations in the cross-over regime were carried out that match closely with 

the analytical result from Eq. (2.25)[Figure 2-4 (c)-(d)], although the high-frequency side of the 

spectrum has a Nyquist floor. The simulations were done for conditions similar to experimental 

measurements (discussed in the next section), and the finite-time sampling means that walk events 

that are long compared to the persistence time may end outside the observation timeframe, being 
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recorded as an event with a shorter time. As a result, the spectrum starts to flatten above the 

frequency around 1/ 2 /p D Dt f N= , and the effect is more visible in processes with a longer mean 

persistence time (lower Df  or larger DN ), because of the exponential distribution of persistence 

times. 

2.4 Experimental Setup and Sample Preparation 

Spectroscopic responses of several types of biological samples were measured and analyzed using 

the “Alpha Prime” system shown in the appendix chapter A.1. A Q-Imaging EMC2 camera 

captures 500 frames at 25 fps and 50 frames at 0.5 fps, and a stitching algorithm is used to construct 

a continuous spectrum ranging from 0.01 Hz to 12.5 Hz [32].  

Two types of tumor tissue were examined experimentally and analyzed for Doppler features in 

this chapter: tumor spheroids and tumor biopsies.  Multicellular tumor spheroids (MCTS) are small 

clusters of cancer cells grown in vitro.  The three-dimensional growth of the spheroids captures 

many of the microenvironmental features of naturally occurring tumor tissues, including 

extracellular matrix and cell-to-cell contacts [33]. Tumor biopsies are even more biologically and 

physiologically relevant than 3D tissue culture and are obtained from living patients (animal or 

human with approved IRB) either through surgical resection or by needle core biopsies. 

For the tumor spheroids, cell lines were obtained from American Type Culture Collection (ATCC), 

Manassas, Virginia, and cultured at 37°C in a humidified CO2 incubator. HT-29 cells were cultured 

in McCoy's 5a Medium and the MIA-PACA2 were cultured in Dulbecco's Modified Eagle's 

Medium.  All media contained 10% fetal calf serum (Atlanta Biologicals), penicillin (100 IU), and 

streptomycin (100 μg/mL).  Tumor spheroids were created by seeding a 50 mL rotating bioreactor 

and growing the cells for 7-14 days until 400-600 µM diameter spheroids were formed.  Spheroids 

were immobilized in a thin layer of 1% low gel temperature agarose (Sigma-Aldrich Chemical Co) 

made up with the basal medium in 96-well tissue culture plates. DLD-1 samples were grown as 

3D tumor spheroids using Corning U-bottom spheroid plates. Cells are incubated in a 96-well plate 

and immobilized with low gel-temperature agarose. Esophageal tumor biopsies were collected and 

transported in chilled RPMI-1640 medium supplemented with HEPES (Gibco). Within 2 hours of 

collection, small pieces 1 mm or less were cut from the biopsy and immobilized in low gel 
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temperature agarose in basal medium similar to the tumor spheroids. Canine B-cell lymphoma 

biopsies were handled with the same procedures [34]. 

2.5 Experiment 

Figure 2-5 shows examples of tumor spheroid spectra and their spectral responses to drugs 

measured with the BDI system. Most spectra have a Lorentzian-like shape, with a knee at low 

frequency, a power-law roll-off in the mid frequency and a floor near the Nyquist frequency.  

Figure 2-5(a) compares the spectrum of a PaCa2-derived spheroid to an HT29-derived spheroid, 

showing a higher Doppler knee frequency in the case of the more loosely aggregated PaCa2 

spheroid.  In Figure 2-5(b) paclitaxel is applied to a DLD-1 spheroid.  The cytoskeletal drug 

stabilizes polymerization of tubulin, lowers the rates of microtubule dynamic instability in human 

tumor cells [35] and causes cell death [36, 37].  The Doppler knee shifts to lower frequency caused 

by the increased stiffness of the cell.  This represents a “red shift” in frequency content.  In Figure 

2-5 (c) valinomycin, a mitochondrial ionophore, facilitates K+ charge movement and triggers loss 

of mitochondrial membrane potential, DNA fragmentation and death [38, 39]. The spectrogram 

pattern observed in this case is correlated with apoptosis [40]. In Figure 2-5(d) the relative change 

in spectral content for valinomycin is displayed as a relative spectrogram with frequency along the 

horizontal axis and time along the vertical axis.  The spectral change is relative to the average 

baseline spectrum (average of spectra prior to the application of the drug at 0t = ) .  The 

spectrogram displays a suppression of the Doppler edge while enhancing high-frequency and low-

frequency content.  
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Figure 2-5 Examples of fluctuation power spectra. Markers are experimental data and solid curves are 

guiding lines. Knee and slope values are approximate numbers from curve fitting. (a) PaCa2-derived 

spheroids form a loose aggregate of cells and display a higher Doppler knee frequency than HT29-derived 

spheroids that form compact spheroids with tight and dense cellular adhesions.  (b) DLD-1 spheroid 

responding to 50 μM paclitaxel. (c) The effect of valinomycin, a mitochondrial drug, on a DLD-1 spheroid.  

The baseline (pre-drug) spectrum shows a strong Doppler knee that is suppressed under the application of 

50 μM valinomycin. (d) The relative change in spectral content in a spectrogram (time-frequency) format 

for the case of valinomycin.  The drug is applied at t = 0, suppressing the Doppler knee. 

Compared with cell-line spheroids, tumor biopsies show more heterogeneity among samples and 

more diverse responses to treatment. The biopsy samples obtained from resected tissue or needle 

cores were carefully dissected by hand to avoid connective tissues or fat, which have relatively 

low activity.  Biopsies display spatial heterogeneity in the dynamics, including motility, spectrum 

and spectral responses. In a study on a standard-of-care chemotherapy treatment 

(cyclophosphamide, doxorubicin, prednisolone and vincristine) of dogs with B cell lymphoma, 

lymph node biopsies were treated with the combination treatment as well as by the single-agent 

compounds.  The averaged spectral response of canine biopsy tissue resistant to vincristine is 

shown in Figure 2-6 (a) and (b) [34].  Vincristine is a vinca alkaloid that prevents polymerization 

of tubulin and induces depolymerization of microtubules, blocking mitosis during metaphase by 
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arresting the cell cycle, and causing cell death by apoptosis.  The spectrogram displays an enhanced 

mid-frequency in response to the drug which may be a marker for drug resistance.  The spectra in 

Figure 2-6 (c) are biopsies from two different esophageal cancer patients.  Patient-1 has low 

activity with no discernible Doppler edge.  However, the biopsy from Patient-2 displays a distinct 

Doppler edge near 0.2 Hz that becomes sharper after the addition of carboplatin, a DNA drug that 

leads to apoptosis.  The power spectrum has an almost flat power density at low frequencies, with 

a distinct Doppler edge and a large negative slope of s = -2.4.  The associated spectrogram for 

Patient-2 is shown in Figure 2-6(d).  The sharpening of the Doppler edge appears as a dark red 

strip in the mid-frequency range. These data are consistent with the existence of a Doppler edge in 

these patient samples. As pointed out in Eq. (2.28), an experimental spectrum is an envelope of 

Doppler broadened spectra of processes with different ND’s and fD’s. As a result, sharp Doppler 

edges or knees of individual processes are washed out, and there is not a well-defined single ND or 

fD value for an experimental spectrum. However, a spectrum with a Doppler edge and a steep slope 

is strongly indicative of processes with high ND and fD values and highly ballistic motions. 
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Figure 2-6 Examples of spectral responses for living biopsy samples treated with anti-cancer drugs. (a) 

Canine B-cell lymphoma biopsies responding to 60 nM vincristine from dogs that are resistant to 

chemotherapy.  The final spectrum is 10 hours after application of the drug compared against baseline. (b) 

A time-frequency spectrogram response associated with (a) shows enhancement in mid frequency.  The 

spectrogram displays the net effect compared against the control medium DMSO. (c) Effect of 25 μM 

carboplatin drug on two ex vivo biopsy samples for esophageal cancer from different patients, plus the 

baseline spectrum of a third sample. The spectral shape for sample-1 is almost linear at low-mid frequency, 

while sample-2 and -3 have a spectrum with a sharp Doppler edge.  (d) Time-frequency spectrogram of 

sample-2 from (c) showing the emergence of a sharper Doppler edge. 

2.6 Discussion 

Fluctuation power spectra from living tissue display characteristic spectral shapes that are 

reminiscent of the common diffusive power spectra obtained from dynamic light scattering 

measurements of diffusing particles.  This has led to conventional interpretations that consider 

intracellular transport to be primarily in the diffusive regime without a strong ballistic character.  

However, this tentative conclusion from dynamic light scattering contradicts a vast literature from 

two-dimensional cell culture that directly tracks motions with long persistence lengths that places 

most active intracellular processes in the ballistic regime.  The resolution of this contradiction is 

simply the superposition of many ballistic processes in living tissue with a wide range of 

characteristic frequencies.   
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This chapter investigated the fluctuation spectra of transport modeled by persistent walks in the 

dynamic light scattering setting. The Doppler number defined as 
D pN qvt=  is a dimensionless 

scaling parameter that determines the regime of the motion and the spectrum shape. Many 

intracellular motions, including the processes associated with kinesin, dynein, and filopodia, have 

a long persistence length, leading to Doppler numbers greater than 1, placing the motions in the 

Doppler regime. In the intermediate regime, the power spectrum of a damped harmonic oscillator 

averaged over all angles yields the Doppler spectrum while in the ballistic and diffusive regimes, 

the power spectra are obtained through Fourier transforms of autocorrelation functions of 

intensities. 

The model builds a framework for interpreting fluctuation spectra. A sample spectrum can be 

understood as a sum of processes with different Doppler frequency shifts (or velocities) and 

Doppler numbers (or persistence lengths).  The slopes of spectra at high frequency for the ballistic 

and diffusion limits are -∞ and -2, respectively, indicating that a slope steeper than -2 is 

characteristic of persistent walks. In spheroid and biopsy spectra, the greater the (absolute) slope, 

the further the motions deviate from diffusive behavior, with walks having longer persistence 

lengths. It is interesting to note that many metabolically-active tumor spheroids and biopsies show 

a typical spectral slope parameter of s = -1.7.  If the typical Doppler number for active processes 

is assumed to be ND > 3 (with a sharp Doppler edge), then the probability density function needed 

to yield a slope parameter of -1.7 would have (1/f)k character with approximately k ≈ 0.6. 

Therefore, the spectral contributions to the fluctuation spectra increase at lower frequencies, 

consistent with stronger light scattering from membranes and cell-scale optical heterogeneities.  

Experimental evidence for the Doppler edge is obtained using biodynamic imaging (BDI).  BDI is 

a coherent imaging technique that records the field information from backscattering and generates 

Doppler fluctuation spectra. For a given sample, the spectrum change caused by the addition of an 

anti-cancer drug can be understood as the speed up or slow-down of certain processes. A 10-hour 

time-lapse measurement of drug response captures the change of the velocities over time. These 

shifts may eventually be correlated to specific drug mechanisms, providing insights for treatment 

and drug development. 

Active transport processes in cells often are described by variations on the random walk.  For 

instance, a Lévy flight is a random walk where the lengths of individual jumps are distributed with 
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a probability density function ( )
1

P x x
− −

   when x is large [41]. Levy and Cauchy flights 

produce anomalous diffusion because they have “heavy tail” distributions with no finite variance 

[42]. Conversely, in the continuous-time random walk (CTRW) model [43] a particle waits 

between jumps for times set by a distribution function that also may have heavy tails, producing 

anomalous subdiffusion.  Combining waiting-time with jump-length models produces anomalous 

diffusion tunable continuously from subdiffusive to superdiffusive behavior.  Future work will 

investigate this anomalous regime. 

While the samples used in this paper are tumor biopsies and spheroids, the light scattering analysis 

can be extended to other forms of life. Swimming bacteria have transport known as “run and 

tumble”. Given that the velocity of a bacterium is 2 μm/sec to 200 μm/sec [44], the motion is 

firmly in the Doppler regime, and a sharp edge is expected in the spectrum, which would be 

suppressed if the bacteria slow down. In addition, cell divisions in gametocytes and zygotes may 

be slow processes that take place over a few hours, but they are firmly in the Doppler regime, 

because of long persistence lengths. Furthermore, fluctuation spectra of biased random walks, 

Levy walks, Cauchy walks, etc. can be studied, producing characteristic shapes and features that 

can help understand experimental observations. Therefore, biodynamic imaging and intracellular 

Doppler spectroscopy are poised to provide new insight into tissue dynamics and potentially 

important new screens of drug mechanisms. 
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 DESIGN OF COMMON-PATH IMAGING SYSTEMS 

Biodynamic imaging has traditionally used a Mach-Zehnder configuration with a signal arm and 

a reference arm that travels through OPL-controlled paths (such as both the “Alpha Prime” and 

BDM systems in APPENDIX A). However, the digital holograms recorded by such systems are 

susceptible to mechanical vibrations and disturbances. By adopting a common-path configuration, 

the two arms travel through the same optical path, and the hologram can remain stable under 

environmental disturbances and is useful for many applications [1-4]. This report explores new 

common-path optical system designs for biodynamic imaging, using off-axis Fresnel- or Fourier-

domain BDI system designs. 

3.1 System Designs and Experimental Results 

Three common-path system designs are considered here: 1) Image-domain system with specularly 

reflected reference; 2) Fresnel-domain system with specularly reflected reference; and 3) Fourier-

domain system with a reference star. The hologram is recorded using off-axis holography.  The 

off-axis reference is generated either through specular reflection from the sample plate, or by a 

localized reflector adjacent to the sample. 

3.1.1 Analysis of Coherent Optical System with Operator Notation 

In Fourier Optics, the field distribution on a plane can be analytically obtained by applying Fourier 

analysis and scalar diffraction theory. Under the assumption of a paraxial condition and 

monochromatic illumination, operator notations can be used to analyze complex systems that 

involve many lenses [5]. Basic operators include: 

Multiplication by a quadratic-phase exponential: 

   ( )  ( )
21

2
j kcx

c U x e U x=   (3.1) 

where 
2

k



= . 

Scaling by a constant: 
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   ( )  ( )
1

2b U x b U bx=   (3.2) 

Fourier transformation: 

 ( )  ( ) 2j fxU x U x e dx


−

−
=    (3.3) 

And free-space propagation: 

   ( )  ( )
( )

2
2 1

2
1 1 1

1
k

j x x
dd U x U x e dx

j d

−

−
=    (3.4) 

These four operators are sufficient for analyzing many optical systems. Complicated chains of 

operators can be reduced/simplified based on only a few relations or properties. As an example, in 

an optical system with two lenses separated by their focal lengths f  , the output field is 

 ( ) ( )0

1
k

j xu
f

fU u U x e dx
f

−

−
=    (3.5) 

from Fourier optics, which is equivalent to the notation 

 
1

f

 
=  

 
  (3.6) 

The phase transformation of a lens is 

 ( ) ( )2 2, exp
2

l

k
t x y j x y

f

 
= − + 

 
  (3.7) 

Therefore, its operator notation is
1

f

 
− 
 

. This operator notation approach will be used in the 

analyses of responses recorded at the camera in the following sections. 
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3.1.2 Image-domain System with Specularly Reflected Reference 

 

Figure 3-1 Design of the image-domain common-path system. The configuration contains one beamsplitter 

and two lenses, separated by their focal lengths. A mask containing two apertures is in front of the second 

lens. The upper aperture has a 500 μm diameter, is covered with an ND with 2.5OD, and is used to reduce 

the intensity of the reference arm, while the lower one has a diameter of about 1mm and is used in the signal 

arm to control speckle size. 

The image domain configuration is shown in Figure 3-1. Responses at the CCD can be written as 

the product of a series of operators 

      2 1 1

2 1

1 1
f f f

f f

   
=    

   
  (3.8) 

which can be simplified as  

 2

2 1

1 f

f f

   
= −   

   
  (3.9) 

Therefore, the CCD captures an inverted and magnified image of the object with an additional 

quadratic phase. The quadratic phase introduces a spherical wavefront on the hologram, but in the 

hologram, the additional phase is canceled out by the same phase in the reference arm. 
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In digital holography, an empirical rule for good reconstruction resolution is the “rule-of-9 

principle”, which means that in the hologram, there should be three pixels per fringe, and three 

fringes per speckle. With 1 5cmf = , 
2 20cmf = , the field of view of this system is given by 

 1

2 2

1

FV 1.85 mmc
c

D f
D

f f

f

= = =   (3.10) 

and the resolution is 

 
FV

16.6 μm
c

sp

D

a

=   (3.11) 

where the speckle size spa  is determined by the rule-of-9 principle 

 
2 9 66.6 μmsp pix

ap

f
a a

a


= = =   (3.12) 

where 7.4 mmcD =  is the size of the chip of the camera, apa  is aperture size, 650 nm = , and 

7.4 μmpixa =  is the pixel size of the camera. The aperture size is then 2 1.95 mm
9

ap

pix

f
a

a


= = . 

A DLD spheroid sample was used as the target object, placed in a well of a 96-well plate, measured 

at room temperature. A 650 nm wavelength semiconductor laser was used as the light source. In 

this case, the bottom of the well gives specular reflection that serves as the reference. The results 

are shown in Figure 3-2 with basic BDI maps.  
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Figure 3-2 DLD images from the image-domain common-path system. a) raw hologram, b) sample, c) 

fringes, d) OCI; the stripes are caused by self-interference of the long coherence source, e) MCI. 

A DLD-1 tumor spheroid was treated with 10 μm nocodazole under room temperature with this 

image-domain common-path system. The spectrogram shows a red-blue-red pattern, which agrees 

with Figure 5-1, with differences in the zero-crossing frequency, probably caused by the fact that 

the sample was not maintained at the physiological temperature during this experiment. 

 

Figure 3-3 Spectroscopic response to 10 μM nocodazole of a DLD-1 tumor spheroid. a) Spectra of baseline 

and response, b) Differential spectrogram with the response of control medium DMSO subtracted 

To test the stability of the system, a small piece of white paper was used as the target, and the 

optical table on which the system was built was hit by hand repeatedly at about 0.5 fps. 100 

holograms were taken continuously at about 6 fps. Hologram washout is small enough to be 
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imperceptible by the human eye. By taking the intensities of along a line (Figure 3-4a) across all 

frames, the average relative fluctuations were only about 5% (Figure 3-4b and c). 

 

Figure 3-4 a) Raw hologram and the line where the intensities were taken b) Scatter plot of all intensities 

along the line across 100 frames. c) Relative fluctuations of these pixels, defined as 
I

I


 for each pixel. 

3.1.3 Fresnel-domain System with Specular Reflection as Reference 

The image domain system requires an extra step for reconstruction, and the photon efficiency is 

low (discussed in section 3.2). A system that is more similar to the current “alpha” systems is 

desired. The design of the Fresnel-domain system is shown in Figure 3-5. With a sample mounted 

on a glass slide, the scattering from the sample serves as the signal while the specular reflection 

from the slide serves as the reference arm. The beamsplitter reflects the incoming beam, 

determining the angle of the specular reflection. The crossing angle between the reference beam 

and the signal beam can be changed by tuning the orientation of the beamsplitter and the plate. A 

mask is placed in front of the second lens (same as in Figure 3-1) to control the speckle size of the 

signal arm and reduce the intensity of the reference. The CCD is placed on the focal plane of the 

third lens.  
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Figure 3-5 Design of the Fresnel-domain common-path configuration using specular reflection from the 

bottom of the plate as the reference. The system consists of one beamsplitter and three lenses that are spaced 

by their focal lengths. 

The field at the camera of this coherent optical system is analyzed using the operator approach. In 

Figure 3-5, from left to right, the wave propagates through (1) a free space of distance 1 5 cmf = , 

(2) a positive lens with focal length 1f , (3) a free space of distance 1f , (4) a positive lens with 

focal length 
2  = 15 cmf , (5) a free space of distance 2f , (6) a positive lens with focal length

3 15 cmf = , and (7) free space of distance 3f .  The response at the camera can be written as  

        3 2 1 1

3 2 1

1 1 1
f f f f

f f f

     
=      

    
  (3.13) 

which is simplified as  

   2
3

2 3 1

1 1 f
f

f f f

   
= − −   

  
  (3.14) 

When 
2 3f f= , then   2

2

1

f
f

f

 
= − 

 
, and the signal on the camera is the free-space 

propagation over distance 2f   of an inverted, magnified object. In this configuration, on the CCD 

the signal is in neither image domain nor Fourier domain, but instead is in a Fresnel regime.  

Reconstruction of an image by using an FFT does not produce a faithful image but does produce 

speckle fields that are useful for biodynamic imaging. 

The field of view (FOV) is given by the minimum of either the object size a  or aperture size apa . 

To satisfy the rule-of-9 principle of digital holography, the focal length of the third lens, the size 
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of the lower aperture and the distance between the centers of the two apertures of the mask should 

be chosen so that 

 3 9sp pix

f
a a

FV


= =   (3.15) 

 
2

3
sin /

spa
d f

 


 = = =   (3.16) 

where  spa  is the speckle size on the camera plane,  7.2 μmpixa =   is the pixel size of the camera, 

and d is the distance between the centers of the apertures. Similar to Eq. (3.11), the resolution is 

 
FV

22.2 μm
c

sp

D

a

=   (3.17) 

and the Fresnel number of this system is 

 

2

1.64 1
a

F
L

= =   (3.18) 

where sample 400 μma a= = , 3 15 cmL f= = and 650 nm = . Therefore, the diffraction is in the 

Fresnel regime. 

Numerical simulation was used to illustrate the system performance of the Fresnel system. A 

simulation of the signal arm at different positions is shown in Figure 3-6, in which the capital letter 

“A” is used as the object. Position C is the Fourier transform of the object, and position D shows 

an inverted image, which agrees with the coherent optical system analysis. Figure 3-6 (f) shows 

that an FFT operation does not give a clear reconstruction of the object, although some features of 

the object can still be identified. The letter “A” here is ambiguous and other components appear in 

the hologram, which decreases the quality of the reconstruction. 
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Figure 3-6 Numerical simulation of the system. a-e: signal arm at positions A-E of Figure 3-5 when a capital 

letter “A” is used as the object. b and d are zoomed-in images. F: FFT Reconstruction of the signal on the 

“camera” (position E). 

In an experimental study, a small triangular clip of paper was used as the target object, a 650 nm 

semiconductor laser was used as the light source, and the hologram and reconstruction are shown 

in Figure 3-7. There are first-order images in the reconstruction from the signal of the target, but 

they do not display the actual shape of the target. Because the camera is in the Fresnel domain, 

precise optical alignment and more complicated numerical reconstruction are required if an 

aberration-free object image is desired. 

 

Figure 3-7 Experimental results of the Fresnel design. a. Part of a hologram of captured in the Fourier 

Domain System, with a triangle paper clip as the object b. Reconstruction of (a) using FFT 

3.1.4 Fourier-domain System with a “Reference Star”2 

One of the critical problems in the design of a common-path imaging system is to properly 

introduce the reference arm beam. Considerations include: 

1) To allow a simple reconstruction process and avoid complicated engineering including 

precise alignment, it is preferred that the reference is a plane wave at the CCD 

 

2 Presented at 2017 SPIE Photonics West: Zhe Li, John Turek, David D. Nolte, "Common-path biodynamic imaging 

for dynamic fluctuation spectroscopy of 3D living tissue," Proc. SPIE 10063, Dynamics and Fluctuations in 

Biomedical Photonics XIV, 100631G (3 March 2017) 
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2) The intensity of the reference arm at the CCD should be comparable to that of the signal 

arm, in order to create maximum fringe contrast 

3) The angle between the signal arm and the reference arm at the CCD can be adjusted to the 

desired value (rule-of-9) 

4) Ability to modify the OPL of the reference arm is needed for coherence gating 

Therefore, to introduce the reference before the lens in a Fourier domain system and satisfy (1), a 

point source is required. A metal pinhead can be a good candidate, because of its small size, 

spherical shape and moderate reflectivity, which helps to achieve (1) and (2). Moving the pinhead 

transversely satisfies (3) to happen, while by moving it axially parallel to the OA the OPL can be 

changed, meeting the requirement (4). The pinhead is the “reference star” in the system. 

The design of this Fourier-domain common-path system is shown in Figure 3-8. The CCD is 

located at the Fourier plane while the pinhead adjacent to the sample serves as a point source. The 

spherical wave from the pinhead becomes rays of equal inclination after the lens, thereby providing 

a plane-wave reference for the holographic recording. The fringe spacing is determined by the 

inclination of the plane wave, which is related to the distance between the pinhead and optical axis 

by 

 
sin /d f

 


 = =   (3.19) 

where f  is the focal length of the lens and d  is the distance between the pin and the optical axis. 

 

Figure 3-8. Design of a Fourier-domain common-path configuration using the pinhead as a reference star. 

150 mmf = . 

Because the CCD is on the Fourier plane of the system, the field distribution at the CCD is simply 
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 =   (3.20) 

Numerical simulation for this design used the letter “A” as the target, as in Figure 3-6(a), while a 

two-dimensional delta function ( )0 0,x x y y − −  simulates the pinhead, where ( )0 0,x y is the 

position of the pinhead. The numerical simulation performs the numerical implementation of the 

Fourier Transform (3.20) [6, 7]. The fringes in the hologram are very clear and the reconstruction 

gives a reasonable result (Figure 3-9). The parameters used for the simulation are given in Table 

3-1. 

 

Figure 3-9. Numerical simulation of the reference star design. a) recorded hologram b) Fringes in a section 

of the hologram c) Reconstruction of the hologram d) zoomed-in image of the box in (c). 

Table 3-1 Parameters for the simple pinhead simulation (shown in Figure 3-9). 

Sampling interval 
Light 

wavelength 
Target size 

Pinhead position 

from the optical axis 

Focal length of 

the lens 

8 μm 840 nm 640 μm 3 mm 5 cm 

 

This design is called a “reference star method” because the function of the pinhead is similar to a 

reference star in astronomy. However, a pinhead comes with certain dimensions, which means that 

it is not an ideal point source. Some modifications to the simulation were used to illustrate the case. 

Instead of a delta function, the pinhead is simulated by a small matrix of complex values of norm 

1 and random phases uniformly distributed from 0 to 2  . The size of the matrix is dependent on 

the size of the pinhead while the random phases come from the variations in the optical path length 

caused by the small curvature of the pinhead. The results are given in Figure 3-10 and the 

parameters are listed in Table 3-2. The quality of the reconstruction is degraded, but a triangular 

outline of “A” can still be vaguely recognized.  
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Figure 3-10 Numerical simulation with a non-ideal pinhead. a) recorded hologram, b) fringes of the 

hologram, c) first-order reconstruction image 

Table 3-2 Parameters for the nonideal pinhead simulation shown in Figure 3-10 

Sampling 

interval 

Light 

wavelength 
Target size Pinhead size 

Pinhead position 

from the optical axis 

Focal length 

of the lens 

8 μm 840 nm 640 μm 320 μm 3 mm 5 cm 

 

A simple and quick test was used to quantify the quality of the reconstructed images (Figure 3-9d 

and Figure 3-10c): a linear correlation between an image of target “A” (Figure 3-11) and the 

reconstruction is calculated. The correlation is 0.41 for the ideal case and 0.25 for the nonideal 

case. This shows that the nonideal reconstruction result is worse than the ideal case in terms of 

similarity to the original target. 

 

Figure 3-11 80 px × 80 px image of target “A” 

A DLD spheroid was used as the target object and the hologram and reconstruction are shown in 

Figure 3-12. The pinhead introduced fringes to the hologram, as discussed above, and the 

reconstruction did reveal a nearly circular object. 
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Figure 3-12. Experimental results of the reference star design with a DLD spheroid as the target. a) recorded 

hologram b) zoomed-in image of the fringes c) reconstruction d) zoomed-in image of the spheroid in (c) 

Biological properties of the spheroid were analyzed and the drug response to 10 μM nocodazole 

at room temperature was studied. The MCI is shown in Figure 3-13(a). Nocodazole was added at 

time t=0 and the response can be understood by looking at the spectrum [Figure 3-13(b)] and 

spectrogram [Figure 3-13(c)]. The spectrum has a dynamic range as high as 3 orders of magnitude 

and it can be seen that after 6 hours, there are noticeable increases in the low and high frequencies 

and decreases in the mid frequency, which echoes Figure 5-1b and Figure 3-3. 

 

Figure 3-13. Biological information of the DLD spheroid and drug response to nocodazole. a) MCI map of 

the spheroid b) spectra of the spheroid before and 10 hours after adding nocodazole. c) spectrogram of the 

control medium DMSO d) spectrogram of the spheroid treated with nocodazole e) c) subtracted by d) i.e. 

the “net” response of nocodazole 

The spectrograms in Figure 3-13 are not as “clean” as in Figure 5-1, with spikes and other features. 

The main reason is mechanical disturbance. The DLD-1 tumor spheroid was usually immobilized 
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with agarose, but the gel was not as effective with the introduction of the “reference star” pinhead, 

and in some cases, the sample does move during the experiment. The motion of the pinhead itself 

may also be an issue, but since the pinhead was mechanically fixed, it was relatively reliable. 

Fringe contrast is evaluated by calculating the ratio of the sum of the intensity of zero-order and 

first-order components, as in Figure 3-14. The zero-order components contain information from 

photons that are not coherence gated, which may be from other parts of the sample or noise. The 

fringe contrast is 0.09, compared with 0.08 from the “Alpha Prime” system image shown in 

Appendix Figure 2, and 0.39 from the image-domain system in Figure 3-2. Therefore, the fringe 

contrast is comparable to that of the “Alpha Prime” system. However, the fringe contrast is heavily 

dependent on the position of the pinhead. When the pinhead is close to the center of the light source, 

more light is reflected, increasing the intensity of the reference arm, therefore reducing the fringe 

contrast. 

 

Figure 3-14 Zero-order components (center) and first-order image (left, and its conjugate image on the right) 

in the image domain after the Fourier transform. 

A Signal/background spectrum comparison, which evaluates the signal-to-noise ratio (SNR) of the 

image, is shown in Figure 3-15. The signal, i.e. the sample, has a smooth spectrum with a dynamic 

range of about 3 orders of magnitude, while the spectrum of the background has a noisy tail and a 

dynamic range of only 1 order of magnitude. Since the sample spectrum has a large dynamic range 

and is at least 2 orders of magnitude greater than the noise spectrum at high frequencies, this 

imaging method gives a satisfactory SNR. 
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Figure 3-15 Signal-to-background spectrum test. a) Illustration of “signal” area vs “background”/ “noise” 

area. b) Spectra of signal and background signal, without normalization. 

3.2 Comparison of Photon Efficiency of Systems 

Tumor spheroids have a relatively small s  of around 1140 mm− [8, 9]. Therefore, to improve 

SNR and capture intracellular dynamics with the best sensitivity, an optical imaging system should 

strive to achieve the maximum photon efficiency. In experimental systems, several factors lead to 

a loss in the utilization of photons, including reflection and limited aperture of optical components 

like lenses, apertures/windows and unused reflected light at a beamsplitter, etc. This section 

discusses the factors that determine the photon efficiency of a general Fourier-domain imaging 

system and a general image-domain imaging system. 

Assume that reflection from the sample has ideal Lambertian reflectance, in which the radiant 

intensity is described by Lambert's cosine law 

 0

0 0

I d dA
I

d dA


=


  (3.21) 

where 
0 0d dA  is the total solid angle. 
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Figure 3-16: A generalized image-domain imaging system. FP: Fourier plane, IP: image plane, 
tD : size of 

the target, 
lD : diameter of the lens, cD : size of the CCD/CMOS chip, or the shorter of length and width if 

the chip is rectangular 

In an image-domain system (Figure 3-16), the rule-of-9 principle is given by 

 2 9 pix

a

f
a

D


=   (3.22) 

where pixa  is the pixel size of the camera. Light is restricted by the size of the aperture, where   

satisfies 
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Photon efficiency is given by 
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For comparison, a general Fourier domain system (Figure 3-17) is 
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Figure 3-17: A generalized Fourier domain imaging system.  

The light is restricted by the size of the chip cD , and 
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Therefore, photon efficiency is given by 
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The ratio of photon efficiencies is given by  

 2 2
1 2

1 1

c
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Df f

f f D
 
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=  =


  (3.27) 

In the “Alpha Prime” system used in routine tumor spheroid and biopsy sample experiments,

1 2 15cmf f = = ,
3 5cmf  = , 8 mmcD  , and 500 μmtD   . 

The photon efficiency of the Fourier domain system is greater than the image domain system by a 

factor of 16. Therefore, for the image-domain common path system to achieve the same efficiency 

as the “Alpha Prime”, the 2

1

f

f
 ratio which is also the magnification in the image-domain system 

should be 16. However, this is difficult to manage, because: 

1) For a tumor spheroid with a 600 μm diameter, a magnification of 16 will lead to loss in 

field of view because the chip size of the CCD is about 8 mm; 
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2) A large 2

1

f

f
 leads to a large 2f  value, which is not practical in an optical system. In an 

actual setup, where there are additional optical components like beamsplitters and where 

physical dimensions of the lenses, posts, holders and pedestals need to be taken into 

consideration, 1f  usually needs to be at least 50 mm, resulting in a 800 mm 2f , which will 

lead to additional difficulties with alignment and other engineering issues. 

Therefore, for image-domain systems, it is difficult to achieve the same photon efficiency in an 

actual setup, and compromises have to be made. The magnification needs to be lower, which leads 

to a loss in photon efficiency. 

3.3 Discussion 

The image-domain design has a relatively low photon efficiency and requires an extra step in the 

numerical reconstruction. Therefore, it is not preferred as a common-path system design. 

In the Fresnel-domain system using specular reflection, a Fourier transform of the hologram does 

not give a direct image, because the camera is neither on the Fourier plane nor an image plane. 

When the hologram is properly reconstructed, i.e. done by using a Fresnel reconstruction, a good 

image might be obtained, but more precise optical alignment and a more complicated numerical 

reconstruction algorithm would be needed. On the other hand, if a high-quality image is not desired, 

the dynamical information from the reconstruction with a Fourier transform, including amplitude, 

motility and spectra of the first-order image, may yield meaningful information about the target. 

The design of the Fourier system with the reference star is very simple, but the control of the 

position of the sample and the pinhead is critical. The sample needs to be placed in the center of 

the Gaussian beam to give maximum backscattering signal, while the pinhead must be placed in 

the periphery of the beam, but not too close to the sample that the reflected light from the pinhead 

is too strong and saturates the camera, or too far that the reflected light is too weak, or that the 

fringe spacing, described in (3.19), is too small and violates the rule-of-9 principle 

 3 9sp pixa a = =   (3.28) 
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Here 8 μmpixa = , ideally 1 mmd = , and in the experiments the placement of the pin needs to be 

accurate on the level of 100 μm. 
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 BIODYNAMIC IMAGING IN REPRODUCTIVE CELLS 

4.1 Introduction 

Reproductive health is an important topic in health care, and infertility is a concern for many 

families. In the US, 6.1% of married women aged 15-44 are infertile, and in vitro fertilization (IVF) 

technology is growing about 5% per year in terms of IVF cycles [1]. The IVF birth rate over all 

ages of women was 30% in 2015 [2]. In vitro fertilization (IVF) success rates are connected to the 

viability of the blastocyst, and it has been shown that blastocyst quality is related to implantation 

and pregnancy [3]. Clinics have been transferring two or three embryos at the same time to increase 

the birth rate. However, this can lead to multi-pregnancy and can increase the risk of adverse health 

conditions in both the mother and the offspring. The best practice is to transfer only the best 

embryo at a time.  

Morphological grading, using different grading systems, is used to evaluate sample quality, but it 

is a subjective process [4]. Other non-invasive methods include analysis of spent culture media, 

metabolomics, and most recently, time-lapse monitoring of embryo development [5]. However, 

currently there is no solid evidence from randomized controlled trials (RCT) that show these non-

invasive techniques are effective in improving the birth rate [6, 7]. Invasive methods usually 

involve biopsy and manipulation of blastocysts [8] and may be detrimental to later development 

of samples [9]. 

Therefore, there is an urgent need for a technology that can serve as the standard of embryo 

selection. This project aims to create a set of biodynamic imaging biomarkers that is representative 

of embryo viability and eventually to use it to select good embryos to transfer. This chapter 

includes several approaches to connect BDI measurements (or their surrogates) with embryo 

developmental potential and describes experiments related to the development of reproductive 

cells3. 

 

3 Content from this chapter has been published in Z Li, N Ehmke, IM Lorenzo, Z Machaty, DD Nolte, Biodynamic 

optical assay for embryo viability, J. Biomed. Opt. 24, 1 (2019). 
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4.2 Methods 

4.2.1 Porcine Developmental Biology 

In female meiosis, oogenesis consists of three parts: oocytogenesis and ootidogenesis. 

Oocytogenesis starts the process of developing primary oocytes and is completed before or shortly 

after birth. Ootidogenesis follows oocytogenesis when a primary oocyte develops into an ootid by 

meiosis, which leads to 3 polar bodies and 1 ootid. Folliculogenesis occurs at the same time as 

ootidogenesis, as it refers to the cellular development of the follicle containing an oocyte. This 

cellular development of the follicle is critical for creating a network with the oocyte to induce and 

encourage the maturation brought on by ootidogenesis.  

In males, spermatocytogenesis is defined as the first and second meiotic division of the male germ 

cell into primary spermatocytes which form four spermatids. After a series of morphological 

changes known as spermiogenesis, these round spermatids become spermatozoa. 

Fertilization is a series of processes, including spermatozoa penetrating corona radiata, 

spermatozoa attaching and penetrating zona pellucida and binding and gamete fusion. When the 

process of fertilization completes, the fertilized egg is called a zygote. Cleavage is the next stage 

of the embryo. For the first two days, the embryo develops at approximately one cleavage division 

per blastomere (embryo cell) per day. The embryo is called a morula when it consists of around 

16 cells. The zygote then grows into a blastocyst after a phase called compaction, when it consists 

of two types of cells, trophoblast and inner cell mass. Six to eight days after fertilization in porcine 

and primate species, the embryo implants into the wall of the uterus. 

IVF is the process when fertilization occurs in vitro. It also includes co-incubation of the sperm 

and the egg, and embryo culture, during which embryo selection can be performed. This process 

takes place during the blastocyst stage of embryonic development in this project. 

4.2.2 Sample Preparation 

Ovaries were collected from slaughtered pigs, and follicular contents were aspirated from 

individual follicles in the lab using a hypodermic needle attached to a 10-mL syringe. The oocytes 

with attached cumulus cells (COCs) were collected from the follicular fluid by means of a 

stereomicroscope, washed in TL-Hepes medium, and good-quality oocytes were selected for in 
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vitro maturation in the appropriate medium. Matured COCs were placed in 0.1% hyaluronidase, 

vortexed until denuded and washed in TL-Hepes medium. 

Denuded oocytes either undergo parthenogenetic development, or they are incubated with sperm 

to become IVF embryos. To develop parthenogenetic embryos, oocytes were placed in 

electroporation medium in a chamber containing two stainless steel electrodes 0.5 mm apart. 

Parthenogenetic development was induced via electroporation with two direct-current pulses one 

second apart of 1.2 kV/cm, 60 µs each via a CF-150/B Cell Fusion Instrument. After electric 

stimulation, prospective embryos were rinsed in TL-Hepes medium and placed into 20 µL droplets 

of PZM-3 medium. In a negative control group, the medium contained the metabolic inhibitor 

sodium azide (NaN3). Each droplet contained 10 embryos, the droplets were covered with light 

mineral oil to prevent evaporation, and culture dishes containing the droplets were placed in a CO2 

incubator. Both groups were allowed to culture in their prospective medium up to 96 hours, at 39 

°C, under 5% CO2 in air. For in vitro fertilization, semen was collected from a boar and diluted 

with an extender that facilitates prolonged chilled storage. Before fertilization of the oocytes, 600 

µL of this extended semen was added to a medium and the sperm cells were washed by 

centrifugation. The sperm pellet was then resuspended in the fertilization medium. The matured 

oocytes were agitated in the presence of hyaluronidase to remove the surrounding cumulus cells. 

The denuded oocytes were co-incubated with sperm at a 106/mL concentration in fertilization 

medium for 5 hours. Fertilized oocytes were then removed from the fertilization medium, washed, 

and placed in the culture medium the same as before.  

After the culture period, the embryos that had reached the early morula stage were selected for 

assessment. For BDI measurements, each sample was washed in each of the dishes and plated in 

50 µL PVA-free TL-Hepes droplet and covered with mineral oil. The plate was heated with the 

temperature maintained at a physiological 39 °C. A complete BDI dataset for a sample contains 

100 background frames and 2500 holograms, captured at 25 fps with an exposure time of 20 ms. 

The coherence gate was placed approximately at the middle of the sample at a depth of about 100 

µm from the embryo surface. The BDI measurement finishes in a short time (1-2 minutes of sample 

preparation and 2 minutes of data acquisition), putting samples within a safe light exposure range 

and a non-CO2 controlled environment. 
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As mentioned above, when placing samples in culture dishes, they are usually put in groups of 10 

in a droplet to achieve better development [10-12]. However, doing so loses the ability to label 

each sample, which is required in experiments where the correlation between a sample’s 

development and its BDI signatures is studied. A solution is this problem is to use the “well-in-

well” method, i.e. using needles to drill small wells in the petri dishes, label them, and place the 

samples in these wells. This allows samples to share the same droplet environment while 

maintaining sample identification. This method is illustrated in Figure 4-1.  Potential issues with 

the method include access to oxygen, the lack of which can lead to sample deaths. 

 

Figure 4-1 Illustration of the “well-in-well” method. a) layout of the smaller wells (sizes are exaggerated). 

b) microscopy image of the smaller wells. 

4.2.3 Morphological Grading 

For day 6/7 blastocysts, the Gardner grading system [13] is applied. It scores a blastocyst using 

three categories: the blastocyst developmental stage, the inner cell mass quality, and the 

trophectoderm quality. The developmental stage is scored from 1 to 4, with 1 being given to a 

blastocyst with a small blastocoelic cavity and a 4 being given to a fully expanded and hatched 

blastocyst. Inner cell mass quality is scored from A to C, with A being given to an embryo with 

many cells in the inner cell mass that are tightly compacted, and a C being given to an embryo 

with few cells in the inner cell mass that are loosely packed. Trophectoderm quality was assessed 

in a manner similar to inner cell mass quality, scored from A to C. A was given to samples with 

many cells in a cohesive trophectoderm layer, whereas C is given to embryos with large and few 

cells in the trophectoderm layer. The alphanumeric scores are converted to scores ranging from 3-
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18 using the conversion in Table 4-1.  The numerical score is the sum of the scores from three 

categories. As an example, a sample with grading “3AB” would have a score of 15.  

Table 4-1 Conversion from blastocyst morphological grading to numerical values. 

Categories Developmental stage Inner cell mass quality Trophectoderm quality 

Grading 4 3 2 1 A B C A B C 

Score 6 5 2 1 6 4 1 6 4 1 

 

Four-day parthenotes and in vitro fertilized embryos are graded on a scale of 1 to 5. Examples are 

given in Table 4-2. 
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Table 4-2 Grading of 16-cell embryos, examples and descriptions. 

Grade Image Description 

1 

 

Non-spherical overall structure, fragmentation, unequal size of blastomeres 

2 

 

Unsynchronized cellular division and unequal size of blastomeres 

3 

 

Unequal size of blastomeres 

4 

 

16-cell stage, unequal size of blastomeres 

5 

 

Synchronized cellular division, 16-cell stage and equal size of blastomeres 

 

4.2.4 BDI Measurement and Processing 

The microscope images and BDI measurements in this study were taken on the biodynamic 

microscope (BDM; ADI, Indianapolis, IN), which is a dual-mode imaging system modified from 

an Olympus IX-73 microscope. The microscope is capable of switching between a conventional 

transillumination microscope and a BDI system. The BDI mode operates in a similar way to the 

“Alpha Prime” system, and details of the microscope are given in appendix chapter A.2. 

Samples were assessed using the BDM by evaluating speckle fluctuation properties. A BDI dataset 

includes 100 background and 2500 hologram frames of the sample, captured at 25 fps, with an 

exposure time of 20 ms. Each sample was characterized by OCI as shown in Figure 4-2(b), MCI 
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as shown in Figure 4-2(c) and the Doppler power spectrum as shown in Figure 4-2(d) and (e). 

Sample spectra span a range of 0.01 – 2 Hz and are fit with a “stretched” Lorentzian lineshape 

 ( )
0

ys s

A
S N

 
= +

+
  (4.1) 

where 0  is the knee frequency (the “roll-over” frequency of the spectrum, i.e. where the curvature 

is at its maximum), s  is the slope in the mid-frequency range, and yN  is the Nyquist floor. These 

parameters are potential biomarkers of embryo viability. Typically, an azide–treated spectrum 

displays a lower knee frequency, which is correlated with slower intracellular activities. Azide-

treated spectra also have a greater dynamic range and a steeper mid-frequency slope on a log-log 

power spectrum graph. In addition, the spectrum is characterized by slope and 2R  values from 

linear fittings on the log scale (i.e. a power-law fitting model ( ) bS a −=  ), both “globally” on 

the entire spectrum and “locally” in 3 frequency ranges: 0.01 – 0.08 Hz, 0.08 – 0.4 Hz and 0.4 – 

2Hz.  Values of b and R2 are used to describe the spectrum shape (values for the three ranges use 

the notations 1b , 2b , 3b , 1r , 2r  and 3r ). Typical values for these parameters across a range of 

parthenotes are listed in Table 4-3. 

Table 4-3 Typical values for biodynamic biomarkers 

Quantity A 0  s yN
 r 1b

 1r  2b
 2r  3b

 3r  

Value 0.04 0.012 Hz 1.86 1.01 0.97 0.97 0.93 1.54 0.98 1.09 0.97 
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Figure 4-2 (a) Microscope image of a parthenote sample captured in transillumination. (b) OCI of the 

sample. The color map is on the log scale. (c) MCI of the same sample. The value of each pixel is NSD 

(scale bar = 100 µm in a,b and c) (d) Averaged fluctuation spectra (smoothed) of control samples and NaN3-

treated samples plated in PVA-free TL-Hepes droplets, with different knee frequencies, slopes, Nyquist 

floors and dynamic ranges (“DR”) on the log-log scale. Standard errors are used as values of error bars. (e) 

An example of 3-segment linear fitting for spectra. (Markers are a subset of data points with even intervals) 

4.2.5 TUNEL Assay 

Blastocysts were fixed in a dish containing 3.7% paraformaldehyde. They were then washed in 

phosphate-buffered saline (PBS) and permeabilized in 0.2% Triton X-100. The sample was again 

washed in PBS, and then stained for apoptosis using the Promega Tunel Apoptotic Detection Kit. 

The blastocyst was covered in reaction stain mix and incubated for 60 mins at 37°C, after which 

the reaction was halted using the stop solution of the kit. The blastocyst was then washed in PBS 

and stained with Hoechst 33342 to determine the number of nuclei. Finally, the sample was rinsed 

at room temperature, mounted on a microscope slide and examined using a fluorescence 

microscope. 

4.2.6 ATP Measurement 

ATP measurements were performed using Molecular Probes™ ATP Determination Kit on a 

Spark™ 10M multimode microplate reader. A standard curve was obtained based on 

bioluminescence from the reactions of standard solutions with known ATP amount. 

Bioluminescence of each sample was measured and compared against the standard curve and 

converted to the respective ATP amount of substance. 
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4.2.7 Timeline 

The timeline for the experiments in this project is shown in Figure 4-3.  

 

Figure 4-3 Timeline for developmental stages of reproductive cells and their related measurements and tests. 

Squares denote sample type and circles denote measurements and tests. Green circles are successful 

experiments, while yellow circles are experiments that are not finished or did not lead to conclusive results. 
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4.3 Embryo Viability Evaluations 

4.3.1 Blastocyst Development 

Whether an embryo develops to blastocyst stage, and eventually develop to term in vivo, is the 

“ground truth” for embryo viability by definition. This section discusses the correlation between 

BDI signatures and blastocyst development. A basic experiment is to evaluate the biodynamic 

signature of embryos at an early stage (e.g. parthenotes or IVF embryos developed to 16 cells), 

and check whether they develop to full blastocyst at day 6/7. However, the labeling of each sample 

is an important technical issue, and a “well-in-well” method would be used for sample labeling.  

This approach has yet to lead to a conclusion due to low sample numbers related to sample 

development issues. 

4.3.2 Morphology 

While morphology is a subjective metric, it is fast and has proven to be successful in predicting 

embryo viability [3], and has been used as a biological proxy for sample development potential 

when selecting embryos in clinical settings. A straightforward test is to record the morphological 

grading of samples, run BDI measurement and analysis, and correlate the results from the two 

studies. 

Morphology is not found to be highly related to BDI metrics. Among 16-cell IVF embryos shown 

in Figure 4-4 (N=64), samples with higher grading do not have a statistically significant difference 

in the mean of NSD in two-sample t-tests, except grade 1 and grade 5 samples (p=0.02). In the 

scatter plot, there is also no evident separation among samples with different grades. 
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Figure 4-4 a) boxplot of sample NSD, grouped by their grades. b) Scatter plot of sample “b1” and “NSD” 

biomarkers, grouped by their grades. 

4.3.3 Apoptosis and TUNEL Assay 

Embryo quality is related to apoptotic cells in the developing embryo [10]. Apoptosis is believed 

to be a mechanism that helps to remove cells with chromosomal abnormalities or inappropriate 

developmental potentials, but it may also be an indication of the embryo responding to adverse 

developmental environment [11]. If apoptosis surpasses a certain threshold, embryonic 

development is compromised and may cause embryo death.  In this study, results from TUNEL 

assay, a staining method of cell apoptosis, is used as a surrogate for embryo quality.  The study 

was not successful mainly due to sample immobilization issues (discussed in appendix chapter 

D.3). There is a low correlation between TUNEL apoptosis number and morphological grading, 

as shown in Figure 4-5. 
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Figure 4-5 Scatter plot of morphological grading vs the number of apoptotic cells from TUNEL assay, and 

grading vs apoptotic cell percentage. 

4.3.4 ATP 

Mitochondrial ATP production of the embryo is related to its ability to develop into a healthy 

blastocyst[14, 15]. In this study, ATP measurements of parthenogenetic embryos are correlated 

with their BDI feature values, and a machine learning algorithm is used to construct a classifier. 

There are two phases in this study. The first phase investigates whether parthenotes incubated with 

sodium azide (NaN3) can be separated from normally-developed samples with BDI signatures. The 

second phase imitates the actual embryo transfer, removes the external stressor (NaN3) and 

determines if samples can be separated into a high viability group and a low viability group. 

In the first phase, a total of 133 embryo samples measured on 12 separate days were used in the 

analysis, consisting of 85 control samples and 48 NaN3-treated samples. The BDI data for the 

samples with different immobilization methods are normalized and combined in the analysis.  

When an embryo is cultured with dilute NaN3 at the 1-cell stage, the azide ion (
-

3N ) inhibits the 

electron transport in the mitochondrial membrane and decreases oxidative phosphorylation. 

Mitochondrial ATP production of the embryo is thus inhibited, and its ability to develop into a 

healthy blastocyst is significantly reduced. 
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Analysis of the sample ATP content shows that the control-group parthenotes have significantly 

more ATP than NaN3-treated samples (shown in Figure 4-6(a) with a p-value
310p − ) which 

signifies that the control-group of parthenotes are metabolically more active.  Therefore, a test was 

run to determine if sample treatment is predictive of sample ATP content with the control-group 

labeled as condition positive, and ATP content is used as the score. ATP content greater than a 

threshold value was predicted positive, and ATP content less than that value was predicted 

negative. A true positive rate (TPR) and a false positive rate (FPR) are calculated for each 

threshold, and a ROC curve with the threshold as the varying parameter is shown in Figure 4-6(b). 

This classifier achieves an 89.7% accuracy at an ATP threshold of 5 nmol.  

 

Figure 4-6 (a) Box plot of ATP content in “natural” parthenotes and NaN3-treated parthenotes. (b) ROC 

curve of the sample ATP biochemical assay (c) ROC curves and averages from 10 runs of the 5-fold cross-

validated SVM classifier on the biodynamic feature vector. The blue curve is the average of true positive 

rates for each false positive rate, while the grey area is the ±1 standard deviation of the true positive rates. 

In this correlative study, biomarkers were used to build sample classifications and estimate the 

predictive ability of the BDM assay to select embryos with high metabolic activity. A feature 

vector contains the key biodynamic biomarkers that represent sample properties with 13 elements 

(BB, NSD, knee, mid-frequency slope, R2 value of spectrum, floor, DR, and b and R2 values from 

3 frequency ranges). Principal component analysis (PCA) was used for dimensionality reduction, 

and 9 principal components accounted for 95% of variances, after which a quadratic-kernel support 

vector machine (SVM) was used to predict the sample group (using MATLAB® Statistics and 

Machine Learning Toolbox™). In this analysis, the “control” group was defined as condition 

positive, while the NaN3–treated samples were defined as condition negative. A 5-fold cross-

validation was used to characterize the performance of the SVM classifier, where a classification 

score, indicating a signed distance from the observation to the decision boundary, was assigned to 

each sample. Choosing a 5-fold cross-validation ensures that the test groups are large enough (with 
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n ~ 26 in each group) and that the bias is low. The 5-fold cross-validation was run 10 times, and 

in each run TPR and FPR values were calculated with varying score thresholds, creating the ROC 

curves plotted in Figure 4-6. The SVM classifier performed with an AUC of 0.812 and an accuracy 

of 79.3%, as shown in Figure 4-6c). 

The second phase of the study is to create a binary classifier to predict “natural” samples (i.e. not 

disturbed by external stressor) as high-viability or low-viability. Samples with higher (than 

median) ATP consistently have higher Nyquist floor and b1 values (Figure 4-7), but the separation 

from the lower ATP samples is not good enough to achieve high accuracy with classifiers. This 

can be attributed to a number of factors, including the accuracy of ATP measurement, sample 

handling and variability in sample condition. 

 

Figure 4-7 Nyquist floor – b1 slope scatter plot for two datasets. Most of the higher ATP samples appear in 

the upper right corner. Dataset 1 includes data from naturally developed parthenotes measured in 2018 that 

were immobilized with Cell-Tak, and dataset 2 includes data from naturally developed parthenotes 

measured in 2019 that were immobilized with PVA-free TL-Hepes. 

The current strategy for embryo transfer is to select embryos with relative high Nyquist floor and 

b1 values, as shown in Figure 4-8. While these untreated samples span a large area, most of the 

samples that have the highest ATP samples are in the solid red circle on the upper right corner. 

Embryo selection will use samples that are roughly located in the region denoted by the dashed 

line. 
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Figure 4-8 Existing sample marked by their Nyquist floor and b1 values, and the proposed criteria for 

embryo selection. The ellipse of “high ATP” is one standard deviation from the average of the Nyquist 

floor and b1 value of samples with the highest ATP content. 

In conclusion, biodynamic imaging of intracellular activity has been demonstrated on early-stage 

parthenotes as biologically-relevant models of natural embryos.  The biodynamic assay performs 

as a surrogate for destructive ATP assays and can distinguish parthenotes that have high metabolic 

activity from parthenotes that have compromised metabolism.  This assay is non-invasive and can 

be performed longitudinally to track embryo health while preserving embryo viability.  This 

optical technique has the potential to improve IVF success rates. The next step is a prospective 

preclinical trial during which porcine embryos will be evaluated with BDI and then transferred in 

utero in sows to establish pregnancy rates for BDI-selected transfer relative to conventional 

selection. 
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 INTRACELLULAR DYNAMICS FOR CYTOSKELETAL 

DRUGS 

5.1 Introduction 

Anti-cancer drug development has high expenses and low yield. The overall clinical success for 

oncology products in clinical development is 10%, costing over one billion dollars to bring a new 

drug to market [1]. To reduce the cost, especially to minimize failure in clinical trials, it is 

important to dismiss compounds that are ineffective or too toxic as early as possible in the drug 

development pipeline by using physiologically-relevant cell culture.  In cancer drug development, 

3D tissue cultures are replacing conventional 2D cultures. Although 2D cell models have been 

used widely for compound selection, they do not mimic in vivo conditions.  For instance, 2D cells 

adhere to a substrate as a monolayer and are only in contact with peripheral cells.  Many cellular 

microenvironmental features are missing, including oxygen and nutrient gradients and cell polarity 

[2].  Gene expression and growth characteristics are altered due to deficiency in cell-cell and cell-

matrix interactions [3]. Therefore, 2D cell culture does not model the organization and architecture 

of an in vivo physiological environment, and preclinical studies based on conventional 2D cell 

lines often fail to predict drug efficacy in human trials, illustrating the limitation of 2D cell culture 

[4]. 

In 3D tissues, on the other hand, cells have physiological cell-cell and cell-matrix interactions that 

enable complex transport dynamics for nutrients and cells.  3D tissues are closer to the real 

microenvironment compared to 2D layers in many aspects, including viability, morphology, 

adhesion, migration, gene expression, drug metabolism and response to stimuli [2, 5]. In vitro 3D 

cultures are believed to fill the gap between 2D in vitro testing and animal models and are 

recommended in drug screening programs[2, 6-8].  Multicellular tumor spheroids (MCTS) are one 

of the 3D tumor models [9, 10]. The growth of spheroids mimics the growth of naturally occurring 

in vivo tumors and mirror their 3D cellular context. Four common approaches to spheroid culture 

are: ultra-low attachment plates, hanging drop, bioreactor and micropatterned surface [7].  The 

advantages of the three-dimensional cell culture for drug screening is partially negated by the 

difficulty of imaging into deep tissue using conventional microscopy.  However, coherence-based 

laser ranging approaches similar to optical coherence tomography (OCT) can penetrate up to 1 
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mm inside tissues.  Of particular relevance for deep three-dimensional drug screening is a 

modification of OCT known as biodynamic imaging (BDI). 

Biodynamic imaging is sensitive to intracellular transport and has been successfully used to profile 

drug effects in 3-D cell culture.  BDI has been used to classify drugs based on UMR-106 cell 

responses [11], to separate core and shell responses with apoptotic index [11] and to match 

resistant/sensitive responses to platinum of tumor xenografts with clinical results using a logistic 

predictor [12]. BDI is a label-free and non-invasive technology that is a potential tool in early anti-

cancer drug screening. It has been used previously to study the effects of cytoskeletal drugs on 

intracellular dynamics [13, 14]. 

The cytoskeleton is a system of filaments that is important in many cell functions, including giving 

the cell shape and making it robust. It also has dynamic functions such as rearranging internal 

components, cellular shape changing, and migration [15, 16]. Most animal cells have three types 

of cytoskeletal elements: intermediate filaments, microtubules, and actin filaments. Cytoskeletal 

filaments are dynamic and adaptable. For instance, intermediate filaments form a protective cage 

for DNA and provide protection for organs against metabolic, oxidative, and chemical stresses.  

Actin filaments provide strength and shape to the thin lipid bilayer of animal cells and form many 

types of cell-surface projections. Their functions also include muscle contraction, cell movement 

and intracellular transport.  Microtubules rearrange themselves to form a bipolar mitotic spindle 

during cell division, form cilia and flagella on the surface of the cell, and work as tracks for the 

transport of materials in intracellular transport. 

Microtubules and the actin cytoskeleton of cancer cells are successful targets for anticancer therapy 

[17, 18]. Microtubule-targeting drugs can suppress microtubule dynamics without changing 

microtubule mass, which leads to mitotic block and apoptosis [18]. Actin drugs such as 

latrunculins and the cytochalasins inhibit actin polymerization and disrupt the function of the actin 

cytoskeleton [19], whereas jasplakinolide stabilizes actin filaments in vitro while it disrupts actin 

filaments in vivo and induces polymerization of monomeric actin into amorphous masses [20].  

In this chapter, biodynamic imaging is used to provide phenotypic profiles of several cytoskeletal 

drugs that have a wide range of mechanisms of action (MoA).  These profiles serve as 

“fingerprints” of the drug MoA and can be stored in a library of fingerprints that can be queried 

by machine-learning clustering algorithms when classifying the activity of new or unknown 
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compounds.  In this study, seven cytoskeletal drugs are used, listed in Table 5-1 with their 

mechanism of action.  The cytochalasin and latrunculin inhibit the polymerization of actin, while 

jasplakinolide enhances actin polymerization.  The drugs colchicine and nocodazole inhibit 

microtubule polymerization, while the taxanes stabilize microtubules. In contrast, blebbistatin is a 

molecular motor inhibitor that inhibits ATPase activity. These 7 drugs represent 5 different 

molecular mechanisms of action.  All are anti-mitotic drugs, inhibiting cell division by perturbing 

cytoskeletal functions.  Because biodynamic imaging is sensitive to subtle changes in intracellular 

motion, drugs that affect the cytoskeleton are particularly strong inducers of biodynamic 

fingerprints. 

5.2 Methods 

5.2.1 Drugs 

A list of drugs used in the study, their MOA, and the concentrations in the paper are listed in Table 

5-1. 

Table 5-1 Cytoskeletal drugs used in the study 

Drug 
Target cytoskeletal 

component 
Mechanism of action (MoA) Concentration Reference 

jasplakinolide 

actin 

enhances polymerization 40-60 nM [20] 

cytochalasin 

D 

inhibits polymerization, induces 

depolymerization 
160-200 nM [21] 

latrunculin A 
prevent polymerization, enhance 

depolymerization 
200 μM [22] 

paclitaxel 

microtubule 

stabilizes microtubules and 

therefore prevents mitosis 
10 μM [23] 

colchicine 

prevents polymerization 

4 μM [24] 

nocodazole 10 μM [25] 

blebbistatin molecular motor inhibits myosin ATPase activity 60 μM [26] 
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DLD-1 samples were grown as 3D tumor spheroids using Corning U-bottom spheroid plates. Cells 

are divided and incubated in a 96-well plate immobilized with low gel-temperature agarose. Wells 

are filled with growth medium RPMI. 

5.2.2 Experiment Setup 

The “Alpha Prime” system described in appendix chapter A.1 was used for the experiments. Each 

experiment consists of measurements of 16 tumor spheroids placed in a 96-well plate. In each plate, 

there are 4 control wells treated with DMSO and 12 experimental wells treated with 3 different 

concentrations of a cytoskeletal drug. 

There were two segments in each experiment, 4 hours of baseline measurement and 10 hours of 

drug response measurement. In each loop, spheroids in the 16 wells were imaged in sequence, and 

each measurement contained 500 frames of a sample at 25 fps and 50 frames at 0.5 fps, and a 

continuous spectrum ranging from 0.01 Hz to 12.5 Hz is constructed by stitching the spectra in the 

two frequency ranges [27]. 

5.2.3 Drug Response Space 

BDI evaluates the dynamics of a biological sample with sample averaged NSD [13] and the 

fluctuation power spectrum. Cytoskeletal drugs added to the sample perturb the motions of 

intracellular components and lead to changes in speckle fluctuations. Such changes are correlated 

with the targeted components and the drug mechanism and can be used as signatures for the drug. 

For instance, NSD evaluates dynamics for the entire sample, as motions at all frequencies 

contribute, while the power spectrum provides more detailed information that is related to motions 

at certain speeds. Features like the knee frequency and the dynamic range can be extracted for each 

spectrum by curve fitting. Changes in the knee shape and frequency, according to the Doppler light 

scattering theory, are directly related to the change in persistence length of the random walk. The 

time-lapse evolution of spectra amplitude produces a differential spectrogram [28, 29] which can 

be mapped to linear masks (defined in appendix chapter C.1.2) to generate values that characterize 

certain features of the spectrogram, creating a series of linear biomarkers. Therefore, the result 

from a 10-hour experiment can be represented as a vector in a high dimensional space, where 

spectrogram-related values form a subspace with an inner product. With proper averaging, the 
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effect of a drug at a given concentration is a point in this high-dimensional “drug response” space. 

Amplitudes and signs reveal information about drug mechanism. 

5.3 Results 

5.3.1 Spectrograms 

The time-lapse differential spectrograms of the 7 drugs explored in this study are shown in Figure 

5-1. Jasplakinolide shows a rapid binary response, with suppression in the 0.01 – 0.6 Hz band and 

enhancement in the 0.6 – 12.5 Hz band. Jasplakinolide augments the rate of actin filament 

nucleation [30], which can be correlated with the enhancement in the activities with Doppler 

frequency shift > 10 Hz in the spectrogram. Cytochalasin D inhibits actin polymerization, prevents 

filaments from growing, leads to disassembly of actin fibers and may cause apoptosis, resulting in 

a weak mid-frequency enhancement in the spectrogram. It has a very long response time, and the 

enhancement does not saturate until near the end of our observation (~8 hours after the drug is 

applied) [28]. Latrunculin A also inhibits polymerization but binds to actin monomer, prevents it 

from incorporating into polymer, and shows a different pattern from cytochalasin. Its spectrogram 

drift is the weakest among the seven drugs with a slight enhancement in the low-frequency bands 

and suppression in the high-frequency bands.  

Cytoskeletal drugs that target microtubules consistently show an increase in the low-frequency 

band between 0.01 Hz to 0.08 Hz. Paclitaxel stabilizes microtubules, and the spectrogram has a 

typical “redshift” pattern that is the opposite of jasplakinolide, indicating a shift to slower average 

speeds. The response time is relatively long, and the high-frequency band saturates after about 6 

hours. Nocodazole and colchicine have much stronger responses than the other drugs and similar 

response patterns, with a slight difference in response time (6 hours to saturation vs 7 hours) and 

response strength. 
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Figure 5-1 Spectrograms of DLD-1 samples treated with the seven drugs listed. Spectrograms are smoothed 

by interpolation (for visualization only). 

Blebbistatin targets myosin II, and its response has a broad enhancement in the high-frequency 

band. The critical frequency is around 0.017 Hz and 0.56 Hz, corresponding to a decorrelation 

time of 60 and 2 seconds respectively, which is consistent with a previous report [31] where 

activity in the 1 – 2 Hz range increases and activity in the 0.1 – 0.3 Hz decreases. 

5.3.2 Drugs in Biomarker Space 

According to Figure 5-1, the DLDs generally have a monotonic response after drugs are applied 

at t=0. Therefore, the basic “vector” version of the spectral feature masks is applied to averaged 

differential spectra from the last 2 hours of measurements. The bases  1 2 3, ,M M M  forms a 3  

subspace that can be intuitively visualized in a 3D plot. However, 
1M  and 

2M  values alone 

contain mechanistic information, and a 2D plot is presented in Figure 5-2a. Jasplakinolide has a 

high negative 
1M  value and a low 

2M  value, which matches the strong blueshift pattern. The late 
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mid-frequency enhancement shown in cytochalasin agrees with its 
2M  value, although the pattern 

being off-center makes it slightly similar to the blueshift pattern and leads to a -0.26 
1M  value. 

The weak response of latrunculin A places it close to origin. While paclitaxel has an obvious 

redshift pattern and has an 
1M  value of 0.81, it shows a large

2M  because the low-mid frequency 

bands match that of the 
2M  pattern. Nocodazole and colchicine both have large 

1M  values that 

match their strong responses. 

 

Figure 5-2 a) M1 and M2 feature values of the drugs presented in a 2D space (with equal axis unit); b) M0, 

M1 and M2 subspace projected to a 2D plane. The blue filled circle is the midpoint of cytochalasin and 

latrunculin, while the red filled circle is the midpoint of colchicine and nocodazole c) illustration of the 

axes and associated mechanisms and cytoskeletal components in a). 

There is an evident mechanism-based separation of drugs, and the coordinates are closely 

connected to their mechanisms. By including the 
0M  feature, we can find a 2D plane in this 

subspace where the coordinates, i.e. the projection on the plane, best illustrate this idea. The plot 

is shown in Figure 5-2b. The jasplakinolide is on the negative 
1M   axis. The midpoint of 

cytochalasin and latrunculin (two actin destabilizing drugs) is on the negative 
2M   axis, while the 

midpoint of two microtubule destabilizing drugs is on the other end of this axis. Since this is a 

linear projection, 
1M   and 

2M   are still orthogonal to each other. This way, we can directly relate 

the axes with cytoskeletal drug mechanisms which is shown in Figure 5-2c. The horizontal axis 

represents stabilizing mechanisms, where the negative value is associated with actin-targeted drugs 
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while the positive is with microtubule-target drugs. The vertical axis represents the destabilizing 

mechanism. 

Alternative methods also separate actin/microtubule and stabilizing/destabilizing drugs. In Figure 

5-3a, positive LOF and negative MID0 biomarkers are related to microtubule drugs, while the 

opposite is related to actin drugs. In Figure 5-3b which features two non-linear biomarkers, actin 

drugs lead to much lower NSD changes than microtubule drugs. 

 

Figure 5-3 drugs represented on two other pairs of biomarkers: a) low frequency (“LOF”) vs mid frequency 

(“MIDF”), and b) change in NSD (“ΔNSD”) and change in dynamic range (“ΔDR”) 

5.4 Discussion 

This chapter shows that the complex and diverse drug action of cytoskeletal drugs can be 

characterized and differentiated by Doppler fluctuation spectroscopy of cell-line tumor spheroids. 

Feature values obtained from broad-band spectrograms and other dynamic metrics map the drug 

responses to high-dimensional Euclidean spaces where the dimensions are related to targeting 

components and mechanisms of drugs. This effectively abstracts each drug as a point that can be 

located in a coordinate system, with coordinates representing drug strength and drug mechanisms 

and distances among drugs indicating similarity. This provides a high perspective for 

understanding cytoskeletal drugs. 

A limitation of this method is that the feature values from BDI reflect the cell-line samples’ 

responses to cytoskeletal drugs in vitro, but samples may respond to drugs differently in vivo. For 
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example, jasplakinolide, a drug used in this study, stabilizes actin filaments in vitro but disrupts 

actin filaments in vivo. The dose-response relationship also can complicate the drug representation 

in the biomarker space, as the off-target effects, especially at high concentrations, can modify the 

feature values from a drug’s primary mechanism. 

In this chapter, 7 drugs in 3 categories are featured, but the dataset can be expanded by measuring 

drug responses from a variety of other cytoskeletal drugs in the same way. The tissue samples in 

this study are DLD-1 tumor spheroids grown in flat-bottom cell-culture plates, which can be 

substituted with other cell lines and other 3D growth methods. One can reasonably expect to see 

differences in the drug response, but the same methodology could be applied. This builds a library 

of drug mechanisms that enables intuitive interpretation of the relationship among drugs and will 

help drug screening in expensive anti-cancer drug research. 
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 INVESTIGATION OF HETEROGENEOUS DRUG 

RESPONSE 

Dynamic intracellular motions provide the endogenous image contrast for three-dimensional 

optical imaging of spatial heterogeneity in tumor biopsies.  Biodynamic imaging is a full-field 

optical coherence imaging approach based on digital holography that captures dynamic contrast 

through the response of living tissue to applied therapeutics.  By performing Doppler spectroscopy 

on a voxel basis, and extracting biodynamic biomarkers, functional images are obtained of the 

heterogeneous spatial response of tumor tissue to anticancer drugs.  This technique, called tissue 

dynamics spectroscopic imaging (TDSI) is applied to tumor spheroids grown from cell lines and 

to ex vivo esophageal biopsies. Spatial maps of biodynamic biomarkers are created using a 

bivariate color merge to represent the spatial distribution of pairs of signed drug-response 

biomarkers.  Spatial variability of the drug response within biopsies is mapped using TDSI to 

quantify intra-tumor spatial heterogeneity as well as patient-to-patient variability. 

6.1 Introduction 

Tumor heterogeneity presents a challenge for the successful treatment of cancer using 

chemotherapeutics[1-5].  For instance, genetic variability in tumors caused by clonal outgrowth of 

selected genotypes within a tumor may cause subsets of cells with genetic variations to be resistant 

even while the majority of the tumor responds to treatment.  Selective pressure and genetic drift 

of the cancer cell population during treatment often leads to patient relapse and the emergence of 

broad chemoresistance and refractory disease [6-8].  In addition to genetic heterogeneity, there is 

also spatial heterogeneity in tumor tissue arising from varying tissue constituents as well as varying 

microenvironments, including differences in extracellular matrix and connective tissues.  The 

tumor microenvironment [9, 10] and epigenetic variations [9, 11-13] pose significant challenges 

to the selection of treatment based on genetic profiles.  This has led, as an alternative, to phenotypic 

profiling [14-16] of cancer tissue that captures the systemic response of cancer tissue to applied 

therapy.  The challenge for phenotypic profiling of cancer tissue is the need to image intact 

microenvironments deep inside tissue, far from surface damage caused by surgical resection, and 
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deep inside transport-limited regions that experience hypoxia, nutrient depletion and metabolite 

build-up. 

Optical coherence imaging (OCI) [17, 18] is a deep-tissue coherence-domain imaging approach 

based on digital holography [19-21] that is a form of full-frame optical coherence tomography 

(FF-OCT) [22, 23].  Dynamic speckle in OCI images caused by dynamic light scattering from 

intracellular motions enables biodynamic imaging (BDI) [24] to use intracellular dynamics as a 

unique form of image contrast.  The changes in intracellular motions caused by applied 

therapeutics have been studied using tissue dynamics spectroscopy (TDS) [25] to separate the 

effects of drugs across broad spectral bands and to capture specific signatures from different 

classes of drugs with different mechanisms of action [26]. Preclinical trials of therapy responsivity 

assessment have been completed using TDS in spontaneous canine B-cell lymphoma and in 

ovarian xenografts [27, 28]. In a substantially different setting, assisted reproductive technology 

(ART) correlates the viability of cumulus-oocyte complexes with parameters from sample 

fluctuation power spectra [29]. 

The methodology of TDS is usually applied to entire samples that can be as large as 1 mm3 in 

volume (e.g. biopsies).  However, intra-sample variability in the TDS signatures poses a challenge 

for the prediction of patient response to therapy. While previous work has identified and 

characterized the different baseline conditions and drug responses in the “shell” and “core” areas 

of the samples [26, 29, 30], in that analysis, the boundary between the shell and core was arbitrarily 

defined. Some samples have a more complicated drug response structure than a simple “shell” and 

“core” model, as shown in Figure 6-1, where the sample shows variation in both strength and 

pattern in its drug response in the two areas. To address this problem, we introduce a functional 

imaging method called tissue dynamics spectroscopic imaging (TDSI) that evaluates sample 

response on a pixel level. In addition to a full-duration response map, the response can be 

segmented along the time axis to derive the time-lapse evolution of drug response, which can 

reveal the different rates at which a drug acts on each area. This methodology offers a quick, 

intuitive visualization of sample heterogeneity and drug effects. Sample heterogeneity is verified 

with high-resolution 3D images obtained from inverted selective plane illumination microscopy 

(iSPIM). 
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Figure 6-1 a) an OCI image of an esophageal biopsy and differential spectrograms for the two circled areas. 

At time t=0 (black line), the sample was refreshed with nutrients in the DMSO medium. The two regions 

have significantly different responses: Region 1 shows enhancement in low frequency and suppression in 

high frequency (“redshift”), while region 2 has a mid-frequency enhancement and low- and high-frequency 

suppression.  b) The terminal spectrum of regions 1 and 2, respectively, compared to the average sample 

baseline spectrum. 

6.2 Materials and Methods 

6.2.1 Sample Preparation 

Biological samples used in this project include tumor spheroids grown from the DLD-1 intestinal 

adenocarcinoma cell line (ATTC, Manassas, VA) and human esophageal tumor biopsies. The 

multicellular DLD-1 spheroids are the same as in chapter 2.4. Tumor biopsies were collected and 

transported in chilled RPMI-1640 medium with HEPES buffer, and cut into small pieces of 1 mm 

size or less. Both types of samples were immobilized in 1% low-gel temperature agarose in the 

RPMI-1640 basal medium.  Immobilized samples were overlaid with RPMI-1640 containing 10% 

heat-inactivated fetal calf serum (Atlanta Biologicals), penicillin (100 IU), and streptomycin (100 

μg/mL). 

To prepare samples for iSPIM imaging, 10% neutral buffered formalin (NBF) was injected into 

each well to fix the tissues. After being washed with PBS, the samples were stained with 50 μM 

DRAQ5 overnight, then 2 mg/mL 80% ethanol-based Eosin Y for 30 minutes. The samples were 



 

 

103 

then washed with DI water three times and PBS once, and immersed in X-CLARITY mounting 

solution for 15 minutes. Finally, the samples were fixed in the imaging chamber with silicone glue 

and immersed in X-CLARITY mounting solution for iSPIM imaging. After imaging, the samples 

were processed for traditional H&E through the Tulane Medical School Histology Department. 

Four micrometer-thickness sections were cut and stained until each tissue was exhausted. 

6.2.2 Data Processing 

Two data acquisition formats are used for data presented in this chapter: A format containing 2048 

frames captured at 25 fps, and an (older) format with 500 frames at 25 fps and 50 frames at 0.5 fps 

that are stitched to a single spectrum. These two formats are proved to be equivalent with a 

negligible difference with a specially designed experiment. Standard spectrogram calculations are 

used to evaluate time-lapse changes [Eq. (1.11)]. Condensed data format (CDF) described in 

appendix chapter C.2.2 is applied to the dataset to generate microspectrograms. 

6.2.3 Biodynamic Biomarkers and TDS Visualization 

This chapter focuses mainly on the drug response and feature values from spectrograms (Appendix 

chapter C.1.2). 

Despite the differences in drug responses related to sample baseline conditions and drug 

mechanisms, a BDI drug spectrogram usually has one of a limited number of patterns. 

Spectroscopic masks (filters) are designed to match the characteristics of the spectrograms, a few 

of which are shown in Figure 6-2a. (These masks are similar to the ones introduced in appendix 

chapter C.1.2, and only used in this chapter for legacy reasons.) The top 3 patterns form a set of 

“orthonormal” masks that are related to the broadband (in the sense of frequency components) 

pattern of a spectrogram, while the bottom 3 patterns form another set of masks related to local 

response patterns. These frequency bands can be related to changes in intracellular motions and 

their associated speeds [27, 31]. For each mask, a feature value is obtained by calculating the inner 

products of the spectrogram and the mask, i.e. projecting the spectrogram onto the mask [26], and 

the features of a spectrogram are represented by a vector of feature values. 

After CDF files are generated, a (differential) spectrogram for each TDSI pixel (referred to as 

“microspectrogram”) is calculated as 
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where the average baseline spectrum of the entire sample is used instead of the TDSI pixel’s “own” 

baseline. For a given mask, a feature value discussed above can be calculated for each pixel, and 

the feature values of an entire sample produce a 2D image called a TDS image. Two TDS images 

under the “G1” mask and “G2” mask are shown in Figure 6-2b. For the “G1” TDS image, the area 

in the blue circle has negative values, indicating the inverse of the “G1” mask (i.e. the “blue-red” 

pattern spectral response shown in Figure 6-2a), which matches the differential spectrogram of the 

circled area of the same sample as shown in Figure 6-1a. Similarly, the “blue-red-blue” spectral 

response in the red circle area agrees with the positive values in the same area in the “G2” TDS 

image. 

As discussed above, this sample has a large variation in drug response in terms of strength and 

spectral patterns, displayed by the distribution of values in the TDS images (TDSI) of Figure 6-2b. 

Both “G1” and “G2” images show a change in magnitude and sign from bottom left to top right 

(corresponding to changes in the strength of drug response, referred to as “intramask 

heterogeneity”), and the “G1” image has a different pattern than “G2”, where “G1” has strong 

positive values on the top right while “G2” has strong negative values in the bottom left 

(corresponding to changes in pattern, referred to “intermask heterogeneity”). In order to better 

visualize the variation, bivariate images are introduced to produce a single visualization that 

captures drug response distribution over the entire sample, where each “variable” is a feature value 

of a mask. Feature values from two masks are a convenient way to illustrate drug response 

heterogeneity within a sample, and the following discussion will focus on bivariate representations 

of drug response. 

Bivariate color maps are used in cartography [32, 33] and medical imaging [34], and many studies 

have addressed how to choose proper color maps for bivariate data visualization [35-37]. Here the 

“Teuling3” color map is used for the following visualizations, which is generated by linearly 

interpolating four colors at the four corners in the sRGB space plus a “whitening” core in the center 

[35, 38]. This color map has good color saturation, relatively equal visual impact, and a zero value 

appears as white, which is consistent with the diverging “blue-red” 1D color map used in our 

spectrograms and univariate TDS maps. (A detailed discussion of 2D color maps is given in 
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Appendix chapter C.3.2) Figure 6-2c shows a bivariate image of the esophageal sample “merged” 

from the two univariate TDS images in Figure 6-2b. 

 

Figure 6-2 a) A subset of the spectrogram masks used in the color merge. b) Two maps of drug response of 

an esophageal sample “170726-1” (same as in Figure 6-1) under masks G1 and G2.  c) A “merged” bivariate 

image with its 2D color map. 

When a full sample has areas with spectrograms that are inverse to each other, they cancel each 

other out, resulting in a mild spectrogram and near-zero feature values. In this case, the average 

response belies the strong change in the intracellular dynamics and the fluctuation spectra and can 

lead to the misinterpretation that the sample does not respond to the drug. To address this problem, 

two new biomarkers that evaluate sample heterogeneity are added to the “traditional” average 

spectrogram-based biomarkers. The two biomarkers evaluate the “intramask” and “intermask” 

heterogeneity respectively. To achieve a high signal-to-noise ratio, TDS images are first 

(re)generated with an 8 × 8 pixel averaging (instead of the standard 2 × 2 px). The feature values 

are bounded to a range  th th,A A−  and then assigned “scores” ranging from 0 to 1 for both 

heterogeneity evaluations, calculated using the following steps: 

1. Select a set of n masks and create n TDS images 

2. For each mask u, calculate ua  and ( )sgn ua 
    

3. For each mask pair u-v, calculate ( ),u va a  and ( ) ( )sgn ,sgnu va a  
   

4. The first biomarker denoting overall intra-mask heterogeneity is calculated as 
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5. And the second biomarker representing overall inter-mask heterogeneity is calculated as 
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where ( ) ,u ua a i j=  are values of the TDS image of mask u, ( )sgn ua  is a map of signs of ua , 

ua  is the standard deviation of ua , ( ),u va a  is the correlation coefficient of ua  and va , and m1 

and m2 are normalization factors 
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based on Popoviciu’s inequality on variances [39]. We use Ath = 0.3 and n = 3, and the masks FL, 

FM and FL are used for heterogeneity scores. 

Based on these definitions, the extreme values are achieved under these cases: h1=0 when n TDS 

images are completely uniform (totally homogeneity), and h1=1 when TDS images have only two 

values of opposite signs in an equal number of pixels. When the TDS images are completely non-

linearly correlated to each other, then h2=0, in the opposite case when all values are completely 

correlated then h2=1. Some examples will be provided in the next section to illustrate these two 

heterogeneity benchmarks. 

6.2.4 Time-lapse Drug Response Visualization 

After a drug is added to a biopsy sample, the change in its intracellular dynamics is usually not 

immediate and depends on the drug mechanism of action, especially for drugs targeting DNA. 

Also, some parts of the sample may respond to a drug faster than the entire sample. TDSI allows 

us to study the spatial delay and non-uniformity in drug action, which is called time-lapse TDSI. 

Instead of extracting feature values from full-length spectrograms, time-lapse TDSI uses responses 
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within a small moving time “window” of the spectrogram. Examples are included in the next 

section. 

6.2.5 Inverted Selective Plane Illumination Microscopy (iSPIM) and Data Processing 

The iSPIM system has been described in previous publications [40, 41]. In brief, two orthogonally-

placed objectives are mounted above the sample, each at 45° angle from the norm. They 

alternatively act as illumination and detection for dual-view imaging, but only single-view was 

adopted for the application in this paper. Volumetric images were obtained by moving the sample 

with respect to the objectives, with multiple y strips acquired with about 20% overlap between two 

adjacent strips. After imaging is completed, the images were shifted with custom MATLAB code 

to recover its 45° angle, multiple y paths were stitched with Fiji plugin [42], and the red and blue 

channels were remapped to RGB colors. Finally, 3D reconstruction was obtained from the alpha 

blending mode of the 3D viewer of Vaa3D [43, 44]. 

6.3 TDSI Results 

A large number of esophageal biopsies have shown heterogeneous responses to drugs. In Figure 

6-3a, two biopsy samples that have large intra-mask heterogeneity are presented in univariate and 

bivariate forms. Sample “151208-6” has a weak response in the whole-sample averaged 

spectrogram (Figure 6-3b “global”), while the local areas (area “1” and “2”) have strong but 

opposite responses that tend to cancel in the sample average. 
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Figure 6-3 a) Bivariate representation of drug responses from 2 samples treated with different drugs, 

showing two univariate maps and a “merged” bivariate map. The drugs are 5fu (25 μM fluorouracil) and 

cisp (25 μM cisplatin) where “+” denotes a combination of the two drugs. b) Global and regional 

spectrograms of sample “151208-6” from a). The global spectrogram has a relatively weak response 

(max<10%), while the two circled areas have 30%-60% enhancement or suppression. Drugs were added at 

t=0 (black line). 

Additional bivariate TDS images are shown in Figure 6-4. Some samples (e.g. 150603-12) have 

more uniform color in the “merged” map, indicating smaller variation in the biomarker values, 

while others (e.g. 170620-14) have a rainbow-like smooth transition across the sample, which is 

related to high heterogeneity in the drug response. 

 

Figure 6-4 More examples of bivariate TDS images showing sample-to-sample variability in drug responses. 

Mask pairs used in the collage are from G0, G1 and G2. Drug abbreviations are the same as in Figure 6-3 
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There are roughly three types of heterogeneity, shown in Figure 6-5 along with their h1 and h2 

scores: (i) Type I are samples that have almost uniform responses under all masks. These 

featureless biopsies may be connective tissues that do not respond to drugs or are from patients 

that are resistant to treatment. (ii) Type II samples have spatial variability but show similar patterns 

across different masks. (iii) Type III samples have TDS images with non-overlapping strongly 

responding areas. Types I and III are the most common. 

 

Figure 6-5 Three types of samples that have different levels of same-mask heterogeneity and cross-mask 

heterogeneity, with scores on the right.  

Time-lapse images offer an additional layer of understanding of the spatial evolution of drug 

effects. In Figure 6-6 for sample “170317-9” treated with nocodazole, the blue response pattern 

(mid-frequency suppression and low- and high-frequency enhancement) grows stronger over time 

before saturation, which indicates that nocodazole’s suppression of microtubule polymerization 

begins at the outer periphery and slowly penetrates the core of the sample. As another example, 

the red area in the TDS image of sample “170606-15” becomes stronger until around 9 hours, 

when the sample displays an overall suppression across the entire sample, which can be associated 

with sample apoptosis. 
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Figure 6-6 Time-lapse TDS image of samples responding to drugs. Sample “170317-9”: Response of a 

DLD spheroid sample treated with 10 μM nocodazole with the G2 mask, showing a silent core shortly after 

drug was added, which was “invaded” by the drug and later achieved a spatially homogeneous response. 

Sample “170606-15”: Response of an esophageal biopsy sample in the control medium, also under the G2 

mask. 

6.4 Comparison with Selective-Plane Illumination Microscopy 

Given that BDI is a 3D imaging technology that uses low-coherence light, the different drug 

response phenotypes revealed by TDSI can be related to different types of tissues in a certain area 

of a sample. A contrasting technique is SPIM that produces microscopic images of 3D slices with 

high lateral and axial resolutions, which allows us to distinguish features in the images. Therefore, 

by comparing TDS and SPIM images side by side, we can verify whether the heterogeneity related 

to drug response variability from TDSI is also present in microscopic images, i.e. link dynamic 

information from functional imaging with the anatomy of biological tissues. 

As an example, TDSI images for sample 190801-15 are compared against its iSPIM images and 

H&E histology images in Figure 6-7. In the TDSI image, the center shows a strong enhancement 

while the right side has a pattern of suppression. Meanwhile, the left half of the iSPIM and lower 

part of the histology image contains a large concentration of DNA, and the right half of the iSPIM 

image is cytoplasm or unstained tissues, matching the lack of nuclei in the upper part of the 

histology image, which potentially indicates collagenous connective tissues. Both images 

demonstrate heterogeneity in the tissue, which is consistent with the spectral signatures found in 

the TDS image. 
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Figure 6-7 TDS image of biomarker G2, iSPIM image and H&E histology image for an esophageal biopsy 

sample. All scale bars are 100 μm. a) TDS image, b) the iSPIM image with DRAQ 5 (blue) and Eosin (pink) 

for the same sample in a), and c) Histology image. The orientations of the samples are not registered. 

6.5 Discussion 

Biodynamic imaging is a tool that is sensitive to intracellular dynamics and has been applied 

successfully to phenotypic profiling and patient outcome predictions. For instance, sample motility 

and dynamic biomarkers have been shown to be consistent and reliable indicators of 

pharmacodynamics effects. However, these biomarkers are usually calculated as whole-sample 

averages when used in classification and similarity analyses, overlooking intra-sample 

heterogeneity. The introduction of TDSI provides a solution to this issue by evaluating the 

responses of subregions of the sample to reveal new information on the complex spatial structures 

in sample drug response, which is supported by evidence from other imaging techniques like SPIM 

and histology. Visualization of sample heterogeneity is facilitated with a bivariate color 

representation and quantitatively characterized by h1 and h2 scores. This imaging method is 

further extended to generate whole-sample time-lapse TDS images, providing a novel method to 

monitor drug mechanisms.  

In addition to visualizing sample heterogeneity, TDSI maps can provide additional information 

and improve classification accuracy when evaluating anti-cancer drug effectiveness on a patient 

level. For samples with regions of opposite responses, the whole-sample average spectrogram and 

its feature values may demonstrate a mild response to the drug, making the sample and the patient 

appear to be less sensitive to the treatment. The proposed solution here is to introduce additional 

biomarkers that characterize regional drug responses. As an example, the sample shown in Fig. 3b 

can be split into two regions based on the sign of G1 biomarker values (which can be related to 
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the sample’s heterogeneous structure), and the feature values of these two regions can be calculated. 

The set of feature values that capture both sample average response, as well as regional response, 

would provide a more comprehensive assessment of drug response. 

TDSI can be extended for further imaging and analysis applications. Since BDI is a 3D imaging 

technique and achieves depth selection with coherence gating, a volumetric TDS image can be 

generated by scanning different slices of a sample. Also, time-lapse TDS analysis is a quantitative 

approach to visualize drug action time dependence. Features like delay and distribution can be 

obtained from time-lapse images to provide insight into processes like dose-response relationships. 

Challenges to TDSI include sample immobilization and multiple light scattering. TDSI evaluates 

drug spectral response on the pixel level and requires that the same part of the sample is imaged 

throughout the experiment. This requires the sample to maintain the same lateral and axial 

positions. In addition, multiple light scattering induces aberrations of the image and reduces the 

signal-to-noise ratio, which makes TDSI most effective at shallower depths. 

TDSI is an important extension to the current BDI analysis (OCI, MCI, TDS). MCI maps are 

simple and intuitive functional images that visualize sample motility and have revealed the contrast 

between a viable shell and a necrotic core for rat tumor spheroids (Figure 1-7). TDSI, by 

comparison, generates a set of more detailed functional maps that complement MCI. The critical 

frequencies in spectral masks used in TDSI are related to specific types of intracellular components 

and motions that are affected, offering a comprehensive view of changes occurring in the sample. 

TDSI is a versatile functional imaging method that could provide new information for drug 

response profiling and has the potential for improving predictions of response to therapy and drug 

screening. 
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APPENDIX A. BDI SYSTEM CHARACTERIZATION 

A.1 Alpha Prime system 

A.1.1 Overview 

The optical layout of the “Alpha Prime” system is shown in Appendix Figure 1. A Superlum S840-

B-I-20 superluminescent diode (SLD), with a center wavelength at 836.2 nm and full power output 

of 22.9 mW, was used as the light source. The SLD has a short coherence length of approximately 

10 microns, enabling the formation of low-coherence holograms in a Mach-Zehnder 

interferometric configuration with a CCD camera as the detector at the Fourier plane. 

Holograms are written by scattered photons that share the same optical path length (OPL) as the 

reference arm.  By adjusting the delay stage, light scattered from different depths inside the sample 

can be selected, setting the “coherence gate” for the detection. The coherence gate is typically set 

at about 200 to 500 microns inside the sample. The transport length of light in many types of tissue 

samples is approximately 100 microns.  Therefore, the light selected by the coherence gate in our 

experiments is multiply scattered with between 4 to 10 high-angle scattering events.  Multiple 

scattering compounds the Doppler shifts and broadens the fluctuation spectra.  The digital 

holograms are reconstructed numerically using a 2D FFT to generate optical sections 

approximately 400 microns inside the tissue.  A reconstructed image and its conjugate are shown 

in Appendix Figure 2(c) with a close-up in Appendix Figure 2(d). 
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Appendix Figure 1 Biodynamic imaging system in a Mach-Zehnder configuration. The camera is located 

on the Fourier domain of the sample. A translation stage is used to select the coherence gate and to form 

images at different depths inside the sample. 
1 2 15 cmf f= = , 3 5 cmf =  

 

Appendix Figure 2 An example of reconstruction of holograms captured by the BDI system. (a) Raw 

hologram image, (b) fringes, (c) FFT of the hologram and (d) sample image in the first order 

A.1.2 Marginal Ray 

The marginal ray of the system is determined by the size of the chip, or the actual detection area 

if it is smaller, as illustrated in Appendix Figure 3 and Appendix Figure 4. 
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Appendix Figure 3 Ray tracing for marginal ray in the “alpha prime” system. The marginal ray is limited 

by the size of the chip. 

 

 

Appendix Figure 4 a) Illustration of the size comparison of image and the camera detection area (when the 

system is perfectly aligned). Both QImaging EMC2 and Basler AcA 1920-155um cameras are drawn. b) an 

actual image captured by the EMC2, and the dark part in the corners are equivalent to the corners shown in 

a). 

The beam that illuminates the sample has a Gaussian intensity profile with a full width at half 

maximum (FWHM) of 460 μm. 
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Appendix Figure 5 Beam profile before the sample in the Alpha Prime system. 

A.1.3 Sample Flythrough 

A “flythrough”, i.e. depth step scan of an entire sample, is done on the Alpha Prime system and 

shown in Appendix Figure 6. 

 

Appendix Figure 6 The flythrough of a DLD sample without background removal (i.e. “masking”). 
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During the flythrough, the sample averaged BSB increases and then decreases, while the NSD 

values follow the reverse trend (Appendix Figure 7a). Under the standard “onekey” normalization 

(i.e. divide the power spectrum by the sum of all components in the spectrum), the dynamic range 

increases with depth before it decreases after a certain point. Also, as the depth increases, low-

frequency bands get enhanced, the mid-frequency slope increases (in its absolute value), and the 

Nyquist floor decreases at first, and then these trends are reversed (Appendix Figure 7b). Spectra 

appear at different positions under different normalization methods, but the general trend is 

consistent. In Appendix Figure 7c, the “raw” spectra do not intersect with each other, although the 

change of spectral amplitude large follows the trend of low frequency in Appendix Figure 7b). 

When using the alternative normalization method where the spectrum is divided by the square of 

BSB (Appendix Figure 7d), the trend is similar to that in the standard normalization. 

 

Appendix Figure 7 a) BB and NSD values across the sample b) power spectra at 4 different depths using 

standard onekey normalization c) “raw” power spectra without normalization d) power spectra divided by 

the square of BB 
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A.2 Biodynamic Microscope (BDM) 

The biodynamic microscope is a stand-alone module manufactured by Animated Dynamics, Inc. 

that inserts into a conventional Olympus IX-73 inverted microscope, allowing a user to switch 

between conventional transillumination microscopy and a BDI mode (Appendix Figure 8a-b).  The 

BDM interferometry system is a Mach-Zehnder configuration (Appendix Figure 8c). A Superlum 

superluminescent diode centered at 841.2 nm with a 28.9 nm bandwidth and 20.9 mW output 

power is used as the light source that is incident on the sample at a 45° angle relative to the optic 

axis of the collection objective lens (Appendix Figure 8c-d). The translation stage controls the 

coherence gate based on optical path length (OPL).  In conventional backscatter coherence-gated 

holography, the optical section plane is perpendicular to the optic axis.  However, the 45° 

illumination, combined with three-dimensional volumetric scattering, creates a coherence plane 

that is tilted at 22.5° (half of the illumination angle), and the sample “flythrough” occurs at this 

oblique angle when translating the reference mirrors.  The advantages of this novel BDM design 

are the reduction of specular background reflections, and the elimination of the conventional 

beamsplitter normally used in the backscatter configuration to improve optical brightness of dim 

translucent samples. The oblique coherence plane needs minor additional digital post-processing 

after holographic reconstruction to regain a balanced aspect ratio of the volumetric target.  The 

transilluminational microscopy mode of the BDM uses an Olympus UPLFLN 4x objective lens 

with 0.13 numerical aperture, 17 mm working distance and 45 mm parfocal distance. The BDI 

mode has a 0.05 numerical aperture, up to 1 mm field of view (determined by the illumination 

beam size) and a pixel size of 8 µm. The BDM is placed on a vibration isolation platform to 

minimize mechanical disturbance. 
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Appendix Figure 8 System setup of the BDM. a) picture of the entire BDM. b) the BDI module inserted 

into the BDM. c) 3D layout of the optical design of the BDI system. L1: Fourier transform lens, L2: imaging 

lens, and L3: phase compensation lens d) illustration of the 45-degree illumination e) hologram, fringe, 

Fourier transform and the cropped image for a COC sample 

The marginal ray of the system is determined by the chip size, or actual detection area if only part 

of the chip is used for detection, as shown in Appendix Figure 9. 

 

Appendix Figure 9 ray tracing for the marginal ray in the BDI module of the BDM. The marginal ray is 

also determined by the chip size. 

A “flythrough” of a DLD-1 sample on the BDM is shown in Appendix Figure 10.  
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Appendix Figure 10 flythrough of a DLD-1 sample on the BDM. 

The performance of the BDM is shown in Appendix Figure 11 with the power spectra of several 

types of biological samples. Many biological samples have near three orders of magnitude in 

spectral amplitude. Healthy DLD spheroid and parthenotes span 102 – 10-1 Hz, while NaN3 treated 

parthenogenetic embryos that have low viability have a lower Nyquist floor and a lower knee 

frequency than normally developed samples. When parthenote samples are crosslinked with 

glutaraldehyde, there is an overall suppression over all frequencies, meaning that intracellular 

activities are shut down in the sample. A paper and a tape are also measured with the BDI, showing 

a spectrum with much lower activity over all frequencies than biological samples, with a flat 

Nyquist floor > 1 Hz, indicating the true Nyquist floor of the system. 
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Appendix Figure 11 Several types of biological samples imaged from the BDI module of the BDM. “NaN3”: 

samples incubated with culture medium containing NaN3 (see chapter 4.2.6). “gt”: samples cross-linked 

with glutaraldehyde. 

A.3 Specifications   

Some parameters of the BDI systems are shown in Appendix Table 1. Camera speckle size and 

image pixel size are obtained from theoretical calculations, while speckle sizes are from 

autocorrelation of images. 
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Appendix Table 1 Specification of the BDI systems 

 BDM 

Basler piA 1600-35gm 

Alpha Prime 

Rolera 

EMC2 

Basler AcA 

1920-155um 

Wavelength   841.2 nm 836.2 nm 

lens focal length f  100 mm, 60 mm 150 mm, 50 mm 

Distance d  
100 mm, 100 mm, 160 mm, 

95.4 mm 

150 mm, 150 mm, 150 mm, 

150 mm, 50 mm, 50 mm 

Camera chip type CCD EMCCD CMOS 

pixel size (camera) pix-cama  7.4 μm 8 μm 5.76 μm 

speckle size (camera) spa  125 μm 105 μm (400 μm aperture) 

pixel size (image) pix-imga  8.44 μm 6.56 μm 

fringe spacing   2.25px 
variable 

crossing angle   2.89° 

speckle size (px; exp) spa  1.53, 1.45 1.67, 1.58 

aperture size apa  0.6 in = 15.2 mm variable 

speckle size (reconstruction 

image) 
12.66 μm 10.5 μm 
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APPENDIX B. DEVELOPMENT OF BIODYNAMIC DATA 

ACQUISITION SOFTWARE 

B.1 Introduction 

A majority of biodynamic data acquisition programs written before the year of 2016 are based on 

LabVIEW, which employs labels and textboxes in the “front panel” as the user interface and blocks 

and wires in the block diagram as the logic. An example is given in Appendix Figure 12. While 

these programs are capable of controlling motion controllers and taking data, they are not written 

with the best software development principles. This appendix chapter discusses the issues with the 

existing software and improvements. 
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Appendix Figure 12 Example of LabVIEW programs. a) the “front panel” of a program for standard 16-

sample preclinical trial experiments b) the “block”, or the logic for motion controller movement c) another 

program for data acquisition with a Basler GigE camera 
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B.2 Issues 

B.2.1 Lack of Real-time Sample Image Previewing 

The first part of a multiplexed BDI experiment is to locate the x, y coordinates and coherence gate 

(i.e. depth) of each sample. Finding the coherence gate finding has been based on the identification 

of fringes in hologram images. However, this method is not reliable, as fringes can be very dim 

and difficult to observe (Appendix Figure 13), especially for embryos where the sample is mostly 

transparent. Also, sometimes fringes may come from specular reflections rather than a biological 

sample, but they cannot be distinguished from fringes alone. 

 

Appendix Figure 13 a) a background frame for an esophageal biopsy sample when the coherence gate is 

out of the sample b) a hologram frame with high fringe contrast for the same sample in a) c) a background 

frame for a different biopsy sample d) a hologram where fringes are barely visible 

B.2.2 Lack of Error Handling 

The LABVIEW programs are “barebone” tools that accomplish the basic job of controlling 

instruments and taking data, which are good for fast, ad hoc exploratory work, but too simple for 

long time experiments with well-established protocols like biopsy samples enrolled in pre-clinical 

trials. Over the years, various problems have happened during experiments, including solid-state 

drive (SSD) performance issues causing frame drops, SSD running out of storage, motion 

controller getting stuck, cable connection issues, and unreachable coordinates being given to 

motion controllers. These errors either lead to complete termination of data collection or corruption 

of part of the dataset, which can go unnoticed until the second day of the experiment or not even 

until data analysis. This often means time and resources are wasted. However, such issues can be 

detected by computer programs before an experiment starts, or can be reported as “exceptions” by 

the programs and handled appropriately. If the experiment operator can be notified in time of any 
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issues, there is a good chance that underlying software/hardware issues can be quickly resolved so 

that the experiment can resume without major damage to the data quality. 

B.2.3 Lack of Automatic Logging 

Lab notes are important parts of research, and they can play an important role in understanding 

results (especially erratic results). The same idea applies to the automatic data acquisition process. 

Information like camera exposure time, time of motion controller movement, can provide 

additional information for troubleshooting when there is an irregularity in the data collected. 

B.2.4 Difficulty in Adaptation and Migration 

The current programs are difficult to be modified for different measurement routines or require a 

lot of re-programming for new systems or new instruments. Take the LabVIEW program in 

Appendix Figure 12 as an example: The program is capable of measuring 16 wells, and it requires 

a lot of front end and back end change if the experiment uses 8 or 20 wells instead, which involves 

a lot of manual and repetitive work (like adding numerical textboxes and wiring them to the correct 

controllers). If the same experiment needs to be run on a different system, because of the different 

cameras and different motion controllers used, a large part of the program also needs to be 

rewritten. 

B.2.5 LabVIEW Program Limitations 

LabVIEW is good for fast prototyping of lab experiments, as it provides an easy way to connect 

GUI components with data and logic and supports a large number of scientific instruments ranging 

from GPIB devices, oscilloscopes to cameras from many different vendors. However, as 

measurement tasks get larger and more complicated, the drawbacks of LabVIEW programming 

quickly surface, which includes 

1) Lack of real-time analysis capabilities. LabVIEW is mainly used for instrument controlling 

and data recording, but real-time analysis can be very helpful and LabVIEW is very limited 

in terms of data analysis. 
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2) As a visual programming language, the logic of LabVIEW, i.e. block diagrams, can be 

difficult to understand and make. Wires are often unorganized, icons look similar to each 

other and are confusing, and finding the correct ports and connecting wires to them are 

often time-consuming and unintuitive. 

3) Poor version control. LabVIEW programs are saved as binary files, rather than text-based 

source codes, making it difficult to use popular version control software like Git to track 

changes. 

4) Generic tasks in programming, including string manipulation, type converting, and basic 

arithmetic, are almost all done with blocks and wires, which appears very complicated and 

is time-consuming to do with mice. 

In other words, the “visual programming” method can be quickly out of control in complex 

programs. Therefore, an alternative solution to data acquisition is desired.  

B.3 Solutions 

B.3.1 Transition to a Different Programming Language 

The solution to a number of the aforementioned issues starts with substituting LabVIEW with a 

text-based and more generic programming language. The replacement to LabVIEW should have 

good support for instrument control and data analysis, and good for basic programming tasks. 

MATLAB and Python stand out in these aspects. 

MATLAB is a numerical computing software and programming language widely used in scientific 

research and engineering. Combined with its many toolboxes, the software suite provides very 

powerful capabilities in signal processing, image processing, instrument control and many other 

areas. It also has relatively good support for daily tasks like string manipulation. Python, on the 

other hand, is a well-designed generic programming language widely used for open-source projects 

and has seen a lot of popularity in the scientific research community in recent years. Companies 

like Basler AG are providing first-party Python support for their instruments. With NumPy, 

matplotlib and a few other modules, python programs can practically achieve data acquisition and 

analysis tasks equally well as MATLAB. 
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For GUI programming, MATLAB introduced an “App Designer” in version R2016a, and has 

become a relatively complete GUI toolkit that supports common controls and has most 2D and 3D 

plotting capabilities. In Python, PyQt or PySide, which are “bindings” of C++ version of Qt, is a 

popular solution for GUI programming. It provides full GUI functionality and is well documented. 

MATLAB and Python are both particularly good for instrument control programming, as the 

interactive mode allows the developer to easily interact with hardware, like sending commands 

and receiving responses. This allows a user to easily debug instrument-related programs. 

Compared with MATLAB and Python, the C++ language is a low-level language, has more 

complex syntax, and is a compiled language, which leads to a lower developing efficiency. 

Therefore, it is not very suitable for lab experiment software. 

B.3.2 Abstraction and Object-oriented Programming 

The LabVIEW program in Appendix Figure 12, which moves three motion controllers to given 

coordinates and uses the camera to take a certain number of images, would look like Appendix 

Figure 14 if translated to Python code 
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# omitting import statements for simplicity 

 

# moving Thorlabs motion controllers 

 

MOTION_CONTROLLER_X_SN = '83854669' 
MOTION_CONTROLLER_Y_SN = '27502878' 
CAMERA_SN = '23060909' 
 

DeviceManagerCLI.BuildDeviceList() 
motion_controller_x = TCubeDCServo.CreateTCubeDCServo(MOTION_CONTROLLER_X_SN) 
motion_controller_x.Connect(MOTION_CONTROLLER_X_SN) 
 

if not motion_controller_x.IsSettingsInitialized(): 
    motion_controller_x.WaitForSettingsInitialized(2000) 
     

motion_controller_x.StartPolling(250) 
time.sleep(0.1) 
motion_controller_x.EnableDevice() 
time.sleep(0.1) 
 

motion_controller_x.LoadMotorConfiguration(MOTION_CONTROLLER_X_SN) 
 

motion_controller_x.MoveTo(Decimal(15), 0) 
 

motion_controller_y = TCubeDCServo.CreateTCubeDCServo(MOTION_CONTROLLER_Y_SN) 
motion_controller_y.Connect(MOTION_CONTROLLER_Y_SN) 
 

if not motion_controller_y.IsSettingsInitialized(): 
    motion_controller_y.WaitForSettingsInitialized(2000) 
     

motion_controller_y.StartPolling(250) 
time.sleep(0.1) 
motion_controller_y.EnableDevice() 
time.sleep(0.1) 
 

motion_controller_y.LoadMotorConfiguration(MOTION_CONTROLLER_Y_SN) 
 

motion_controller.MoveTo(Decimal(9), 0) 
 

# capture a frame and save it to file 'D:\1.tiff' 
 

camera_info = pylon.CDeviceInfo() 
camera_info.SetSerialNumber(CAMERA_SN) 
camera = pylon.InstantCamera(pylon.TlFactory.GetInstance().CreateFirstDevice(cam-

era_info)) 
camera.Open() 
 

grab_result = camera.GrabOne(2000) 
 

image = pylon.PylonImage() 
image.AttachGrabResultBuffer(grab_result) 
image.Save(pylon.ImageFileFormat_Tiff, r'D:\1.tiff') 
 

image.Release() 
grab_result.Release() 
 

motion_controller_x.Disconnect() 
motion_controller_y.Disconnect() 
camera.Close()  

Appendix Figure 14 A “low-level” Python code for controlling motion controller and capturing images. 
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It can be easily seen that there is a lot of repetitions in the code, and involves a lot of device-level 

details, making the code hard to read and debug. The initializations for the two motion controllers 

are essentially the same but are repeated. It also lacks logging and error handling. A way to 

improve the code is to use object-oriented programming (OOP) principles, abstract the instruments, 

and make them objects. Use a specific camera, Basler AcA 1920-155um as an example. The basic 

functionality of the camera is to acquire images. It should be able to set the exposure time, gain, 

acquisition framerate among many other functionalities. Therefore, the camera can be abstracted 

as an object, with functions like grab_one(), set_exposure_time(exposure_time) etc. Motion 

controllers can be abstracted similarly and given functions like move_absolute(position). This 

way, Appendix Figure 14 can be simplified below 

from basler_camera import BaslerAcA1920155um 

from thorlabs.kinesis import TCubeDCServo, KCubeDCServo 

 

MOTION_CONTROLLER_X_SN = '83854669' 

MOTION_CONTROLLER_Y_SN = '27502878' 

CAMERA_SN = '23060909' 

 

motion_controller_x = TCubeDCServo(MOTION_CONTROLLER_X_SN) 

motion_controller_y = KCubeDCServo(MOTION_CONTROLLER_Y_SN) 

camera = BaslerAcA1920155um(CAMERA_SN) 

 

motion_controller_x.connect() 

motion_controller_y.connect() 

camera.connect() 

 

motion_controller_x.move_absolute(15) 

motion_controller_y.move_absolute(9) 

image = camera.grab_one_save(r'D:\1.tiff') 

 

motion_controller_x.disconnect() 

motion_controller_y.disconnect() 

camera.disconnect()  

Appendix Figure 15 An equivalent code snippet for Appendix Figure 14, after using OOP and writing 

classes for instruments. 

This is much simpler and easier to read and is very close to plain English. 

The code can be abstracted even further. This particular model Basler camera is also a Basler 

camera, meaning some functions like set_exposure_time() could be “shared” with other models 

of Basler cameras. The Basler cameras are essentially cameras, and all cameras should be able to 

take pictures. (This uses the “inheritance” concept in OOP.) On the other hand, cameras are also 

scientific instruments, which all need to be connected before being used and disconnected after an 

experiment finishes, which is the same for motion controllers. And this behavior is the same in all 
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experiments. Therefore, connecting and disconnecting of instruments, plus many other 

functionalities of instruments, can be automatically handled in an “experiment”. With the factory 

method pattern, the previous code snippet can be simplified to Appendix Figure 16. 

from model import ExperimentModel 
 

class BasicExperiment(ExperimentModel): 
 

    instruments = {'motion_controller_x': ('Thorlabs T-Cube', '83854669'), 
                   'motion_controller_y': ('Thorlabs K-Cube', '27502878'), 
                   'camera': ('Basler AcA 1920-155um', '23060909') 
    } 
     

    job = [('motion_controller_x', 'move_absolute', {'position': 15}), 
           ('motion_controller_y', 'move_absolute', {'position': 9}), 
           ('camera', 'grab_one_save', {'filename': r'D:\1.tiff'}), 
    ] 
 

 

if __name__ == '__main__': 
    experiment = BasicExperiment() 
    experiment.run()  

Appendix Figure 16 An equivalent code snippet for Appendix Figure 15, after another level of abstraction. 

This is the highest level of abstraction. The code is very concise and only contains essential 

information. It allows very easy modification of instruments and the tasks in the experiment. The 

“BDI experiment framework” aims to be able to allow all measurement programs to be written in 

such a way. 

B.3.3 Real-time Analysis 

A basic but important improvement is to include real-time previews of sample images, which 

allows the experiment operator to see the real-time reconstruction and determine if the correct 

coherence gate is achieved by evaluating the shape and intensity of the image and the depth of the 

coherence gate. This real-time reconstruction reads image data directly from the camera, runs FFT 

and displays the reconstructed image, all of which takes place in the memory only (without the file 

I/O exchange) to achieve the maximum framerate. 
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B.3.4 Testing and Validation 

Software testing is an important procedure in professional software development. Testing helps 

discover bugs in the code and ensures that the software is good for use. In the lab setting, testing 

also helps detect instrument errors before an actual experiment is run. 

Instrument-related tests that can be run before the experiment include: verifying if a motion 

controller can move to a given position, verifying if a camera can capture images at the desired 

framerate, and confirming the light source is “ON” after switching power. For other experiment-

related environment, validations include whether there is enough disk space and whether the 

expected number of frames are saved to hard disk. If an issue is found, it can be reported on the 

screen or notified via email, and the issue may be resolved as early as possible. 

B.3.5 Logging, Error Handling and Error Reporting 

In Python, logging can be done with the built-in logging module, which offers a lot of 

customization options enough for daily tasks. 

Errors thrown by instruments should be properly handled, which includes logging and email 

notification. 

B.4 Result 

The current BDM experiments use a measurement program that uses many of these improvements. 

The system is capable of switching the power of the light source, switching between conventional 

microscopy mode and BDI mode, capturing images, running real-time BDI reconstruction, 

controlling motion controller, running experiment sequence, notifying user, and using MATLAB 

to run onekey analysis immediately after data acquisition is finished, all in the same program. 

The user interface for the program is shown in Appendix Figure 17. This program uses Python, 

with PyQt5 for the graphical user interface (GUI) and multithreading, PySerial for controlling 

Superlum light source power, official Basler pylon package adapted for Python for camera image 

acquisition, official Thorlabs control for motion controller movement, Scipy and NumPy for data 

analysis including hologram image reconstruction, and matplotlib for displaying images. 
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Appendix Figure 17 The all-in-one measurement program for the BDM. 1) mode switch, 2) 

microscopy/OCI preview area, 3) image statistics, 4) preview options 5) image saving area 6) motion 

controller 7) experiment sequence execution and instrument power switches 

The program greatly reduces the time and hassle in switching between different programs and 

manually running analyses. This workflow measures a sample and returns BDI analysis results 

within 4 minutes (from mounting a sample to seeing results) and allows the experiment to proceed 

in quick succession. The real-time preview helps evaluate sample imaging quality and 

immobilization quality, the fast turnaround time reduces samples’ exposure to non-CO2 controlled 

environment and preserves samples’ quality, and the immediate feedback allows predictive IVF 

experiments to be done.
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APPENDIX C. FORMALIZING BIODYNAMIC DATA PROCESSING 

C.1 BDI Biomarkers 

C.1.1 Precondition Biomarkers and Changes 

Precondition biomarkers indicate the sample condition before any perturbation is applied. Such 

biomarkers include intensity biomarker backscatter brightness (“BSB”), general motility 

biomarker normalized standard deviation (“NSD”), image pixel count (“NCNT”), and 

spectroscopy biomarkers like knee frequency (“KNEE”), dynamic range (“DR”), Nyquist floor 

(“NY”), mid-frequency slope (“S”) and half-width at half maximum (“HW”).  

On a pixel basis, BSB is the average intensity over 500 frames, and NSD is defined as /I I , 

i.e. the standard deviation for the pixel divided by the average intensity or BSB. These biomarkers 

are usually averaged over an entire sample to denote the general brightness and motility of the 

sample. 

A Doppler fluctuation spectrum is shown in Appendix Figure 18a. Spectrum-related precondition 

biomarkers like knee frequency, mid-frequency slope and dynamic range are from curve fitting of 

a Lorentzian function. 

 

Appendix Figure 18 An example of sample baseline and terminal spectra, and the differential spectrogram. 

a) baseline spectrum and final spectrum after the sample is treated with 10 μM paclitaxel. b) time-lapse 

differential spectrogram. 
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The changes in these precondition values form another set of biomarkers, and they are related to 

variation in Doppler frequency shift and persistence time caused by drug effects, and their 

interpretations are given in CHAPTER 2. 

C.1.2 Time-frequency Spectroscopic Biomarkers 

Time-lapse differential spectrograms usually fall into a few of the following patterns: overall 

suppression, low-frequency suppression and high-frequency enhancement (blueshift), low-

frequency enhancement and high-frequency suppression (redshift, as in Appendix Figure 18b), 

and  mid-frequency enhancement and suppression at other frequencies. The critical frequencies, 

i.e. zeros of the spectrograms, also vary across different drugs. 

To quantitatively characterize features in the drug spectrograms, these time-lapse spectral 

responses are first processed as t fN N  matrices (
tN  being the number of measurement loops, 

and fN  being the number of sampling frequencies). Fluctuation spectra usually have a dynamic 

range of 3 orders of magnitude, and they span the frequency range of 0.01 Hz – 12.5 Hz which 

also covers 3 orders of magnitude. While the original frequency axis of the spectra is on the linear 

scale (or as an arithmetic sequence), according to the Fourier transform it is resampled to fN  

frequencies on the logarithmic scale (or as a geometric sequence) based on a binning method (see 

appendix chapter C.2.2). 

Drug response spectrograms can be projected to spectrogram masks defined below. A set of 

“global” masks that describe general spectrogram pattern is constructed with univariate time-

domain and frequency-domain vectors shown as below 
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where 
kl   is the Kronecker delta. The “global” spectrogram masks are outer products of the two 

vectors, i.e. 

 
kl k l= M T F   (C.4) 

A drug spectrogram R , represented as a matrix of size t fN N , can be mapped to spectrogram 

masks by calculating their Frobenius inner products, i.e. 
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i.e. klv  is the ( )1, 1k l− − -th order feature value for the drug spectrogram R , and they can form a 

“feature value matrix” ( )klv=V . (Matrix element subscripts starts from 1, which corresponds to 

the 0th order.)  

It can be shown that the spectrogram masks are orthonormal to each other, i.e. ,kl k l

kk ll 
 

 =M M  

under the Frobenius inner product, and they form a set of orthonormal and complete bases for the 

spectrogram of size ( ),t fN N , and thus form a t fN N   dimensional space. While ( ),k l  can be 

arbitrarily large in this generalized theory, the spectrograms observed in 10-hour post-drug 

measurements are selected to have up to the 2rd order in frequency and time, due to the broadband 

nature of the BDI. 
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Alternatively, a set of “local” biomarkers that filter the low/mid/high-frequency responses can be 

constructed. Similar to “global” masks, they are orthogonal in the response space, and the time-

dependent matrices are also orthogonal. (But the global masks are not orthogonal to the local ones.) 

The first few “global” and “local” spectral feature masks are shown in Appendix Figure 19. 

 

Appendix Figure 19 The spectral masks with 0th and 1st orders in time and 0th, 1st and 2nd orders in frequency, 

plus “local” biomarkers with 0th and 1st order in time. 

While the previous discussion on orthonormal masks has a strong mathematical basis and offers 

an intuitive interpretation of feature values, it can be restrictive in actual BDI analysis. The 

orthonormality only works well for spectrograms of the same size, but the research group has used 

various measurement formats in experiments, including 9 baseline loops, 27 baseline loops with 

each loop of 24 minutes (denoted as “9+27/24”), 15+6/48 and 15+6/40. As a result, spectrogram 

feature values from experiments with different data formats cannot be directly compared, which 

means that old but important data are unusable. A simple example is that when a spectrogram 

matrix ,f tN NJ=R  is mapped to mask 00

,

1
f tN N

f t

J
N N

=M  ( ,m nJ  denotes an all-ones matrix of 

size m n ), the feature value is 00, f tN N=R M  which is dependent on the format, although 

the drug response itself is not directly related to how many loops or how many frequency 

components are used. There are two ways to solve this problem. 
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When the time-lapse drift in the spectrogram is negligible, a “basic” version of the feature values 

can be obtained by mapping time-averaged differential spectrogram R  to a frequency-domain 

vector F  that are masks compressed along the time axis 

 ,v = R F   (C.6) 

which forms a feature vector ( )lv=V . Since the frequency format is consistent (130 components 

in the current analysis), it is irrelevant. This method gives up temporal information but works for 

a majority of responses observed. 

The second method is to revise the calculation used in (C.5) by adding a coefficient 
1

t fN N
, i.e. 
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This is the current normalization method used in programs like “dbread”, but different from a 

previous publication [1]. The sum and multiplication properties remain under this linear scaling, 

and mathematically this is the optimal solution to dealing with different formats of data. 

C.1.3 Relation between spectrogram masks and DFT 

The “global” part of the feature vector defined in Eq. (C.6) is closely related to DFT (or FFT), as 
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for 0l   ( 0l =  case is trivial and can be merged with the 0l   case). This is very similar to the 

definition of DFT. If one constructs a signal  qr 
  of length 4 fN   that consists of 0’s interleaved 

with  ir  followed by 2 fN  of 0’s, i.e. 
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Eq. (C.8) becomes 
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By comparing this with the definition of DFT 
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obvious that the feature vector is the first fN  components of the real part of the DFT of the signal 

   ( )DFTi iR r =  with a normalization factor, i.e. 
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The feature matrix from projection onto bases in Eq. (C.5) is also related to the DFT of the response 

(for 0k  , 0l  ) 
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Therefore, if two matrices of size 4 4t fN N  are prepared, A  with 0’s interleaved and padded, 

similar in the 1D case, and the other B  that is similarly constructed but with time axis reversed, 

i.e 
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Despite the relation, Eqs. (C.11) and (C.12) do not offer computational benefits for calculating the 

feature values in real situations, as the orders of the spectrogram masks are very low ( , 2k l  ). 

C.2 Condensed Data Format (CDF) 

C.2.1 Overview 

In CHAPTER 2 - CHAPTER 5, the Doppler fluctuation spectrograms are calculated based on 

sample-averaged fluctuation spectra, which is the standard routine of onekey analysis. The onekey 

program determines the boundary of the sample and removes the background (i.e. “masking”) 

based on a histogram approach, and calculates the dynamics within this region. However, there are 

some problems with this approach: (1) The mask can be unreliable in certain cases, either choosing 

a very small region of the sample or including irrelevant content as part of the sample (2) This 

method ignores the variability within the sample, as discussed in CHAPTER 6. If one wants to 

analyze the dynamics of a certain region other than the default masked area, one can always do so 

by reanalyzing raw data, but it is costly to do such a re-analysis in terms of retrieval time and 

computation time. The situation is similar for phase histograms that use complex field information 

from sample images. Therefore, the condensed data format (CDF) is introduced as an intermediate 

data format for quick spectrum and phase histogram reconstruction. This format calculates the 

fluctuation spectrum and phase transition information (intermediate processing) in 2px × 2px 

squares (subsampling), allowing reconstruction without losing information. 

C.2.2 Power Spectrum Subsampling 

The fluctuation power spectrum for one pixel at position (i, j) in the sample is calculated as the 

square of the FFT of the intensity time series: 
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The average spectrum of a region σ is calculated as 
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where σ is a spatial mask segmenting the entire sample. The “raw” spectrum is normalized based 

on Parseval’s theorem [2]: 
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Spatial down-sampling enables the analysis of spectral features with low noise at good spatial 

resolution. The spectrum of a single sample can be too noisy to extract spectral features by methods 

like curve fitting. Therefore, each sample is divided into 2 × 2 pixel squares (referred to as “TDSI 

pixels” below) as the basic unit for spectral averaging. Because biodynamic imaging is an 

interferometric technique using short coherence, each image is reconstructed from backscattered 

light from a selected depth in the sample. Therefore, each TDSI pixel represents a voxel of the 

sample. As a nominal choice that balances spatial resolution and spectral resolution, the spectrum 

of each TDSI pixel is the average over the 4 pixels,  

 ( ) ( )
( ) ( )

raw raw

, ,

1
, ; , ;

4 i j i j

S i j f S i j f


=    (C.16) 

where ( ),i j  is the area    2 1,2 2 1,2i i j j−  −  in the original image, and ( ),i j  are the 

coordinates in the sub-sampled image. 

Frequency down-sampling reduces the frequency components stored while still allowing high-

precision reconstruction. Our data acquisition format generates spectra of 1024 frequency 

components evenly spaced on the linear scale. However, most TDS analysis is based on the spectra 

on the log-log scale, which have sparse points in the low frequencies and dense points in high 

frequencies. Our frequency down-sampling method remaps the 1024 components to 130 that are 

evenly spaced on the log scale. The low-frequency part is up-sampled with interpolation, while the 

high frequency uses a binning method and preserves the average. The original normalization factor  

( ) ( )raw, , ;
f

M i j S i j f=  [the denominator in Eq. (C.15)] is stored to maintain the same 

normalization. In our data analysis, the order of averaging is not relevant 

 ( )
( )

( )
( ), ,

, ; , ;
f fi j i j
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  

=      (C.17) 
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and the normalized spectrum is reconstructed by 
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 (C.18) 

Eq. (C.18) shows that once the TDSI pixel-wise down-sampled spectra ( ), ;S i j f  and 

normalization factors ( ),M i j  are obtained, the normalized spectrum of any given region σ can 

be reconstructed. 

On log-log plots, the difference between spectrograms reconstructed from CDF files and those 

reconstructed from original pixels is negligible. The comparisons are presented in Appendix Figure 

20c and d. 
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Appendix Figure 20 Demonstration of the condensed data format (CDF). The sample used in this figure is 

a DLD-1 spheroid treated with 10 μM nocodazole. a) Spatial down-sampling, with a 10 x 10 pixel region 

enlarged. b) Frequency down-sampling, with the spectrum of a single pixel in the 2 x 2 px area [labeled in 

a) with heavy border lines], the average spectrum of 4 pixels in the area, and down-sampled spectrum with 

130 components evenly spaced on the log frequency axis. c) Comparison of a sample average spectrum 

reconstructed from raw data and from the CDF. d) Whole sample full-length spectrogram reconstructed 

from raw data and from a CDF file. The relative difference is <0.5%. Nocodazole was added at t=0. 

The data format and disk spaces used in raw images, analyzed data and CDF are shown in 

Appendix Table 2. 
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Appendix Table 2 Comparison of three levels of data formats for speckle dynamics fluctuation spectrum 

reconstruction 

Type Format Disk Space Notes 

Raw Images 2048 x 800 x 800 x 16bit uint16 2.44 GB 16-bit TIFF files 

Analyzed Data 2048 x 256 x 256 x 64bit double 1 GB All reconstructed frames 

Condensed Data format 
130 x 128 x 128 x 64bit double + 

1 x 128 x 128 x 64bit double 
16 MB 

Homodyne only, down-

sampled spectrum and 

normalization factor 

 

Both homodyne spectrum (i.e. FFT of the intensity of pixels) and heterodyne spectrum (i.e. FFT 

of the complex image field) are processed this way. The discussion is based on the “new” 2048 

frame format, which requires no stitching in constructing a spectrum. When dealing with legacy 

500/50 frame data, CDF can still be defined with slight modifications. In the stitching program, 

both the low-frequency part (0.5Hz, 50 frames, resulting in 0.01 Hz – 0.25Hz) and the high-

frequency part (25Hz, 500 frames, resulting in 0.05 Hz – 12.5 Hz) are resampled to 101 frequencies 

before being stitched together. Therefore, the legacy-format-specific CDF retains the 25 low-

frequency components and resamples the high-frequency part to 101 frequencies, which allows 

the same stitching method to be used while saving the smallest amount of data. 

C.2.3 Phase Histogram Subsampling 

In phase-sensitive BDI analysis, for a datacube of N frames of size 
y xN N  in each loop, N-1 

matrices of size 
y xN N  are calculated as one frame divided by the previous frame. The 

background is removed and only sample-related pixels are kept. The complex values are converted 

to four-quadrant inverse tangent (or “2-argument arctangent”) ranging between −  and  , 

creating N-1 new matrices. All the elements in these N-1 matrices are put into 630 interval bins [-

3.15, 3.14), [-3.14, 3.13), … [3.14, 3.15), creating a “phase histogram”. In other words, suppose 

the measurement starts at 
0t , 

1

FPS
t =  is the capture interval, and ( )0 1t k t+ +   M is the k-th 

image, we have 
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 ( ) ( ) ( )  0

0 0 01
i t k t

t k t t k t e t k t
+ 

+ +  = +  +   
P

M A M   (C.19) 

where ( )0t k t+ A  is the amplitude transition matrix and ( )0t k t+ P  is the phase transition 

matrix, and ( ) ( )  0 ,klt k t p  +  =  −P . The phase histogram is the histogram of values in 

matrices ( ) 0 0,1, , 1k N
t k t

= −
+ P . 

The phase information can be subsampled in a similar way as spectrum subsampling. ( )0t k t+ P  

matrices are calculated for each 2 px × 2px areas (instead of an entire image), and all the four-

quadrant inverse arctangent values are put into the aforementioned bins. This results in a data 

matrix of dimension 630
2 2

y x
N N

  . To reconstruct a histogram of an entire sample, simply add 

all the counts in individual subsampled pixels within the region, as histograms with the same bins 

can be added to create a new histogram. 

C.3 Choosing Color Maps 

C.3.1 1D Color Maps 

Previous publications from our group have used “jet” color maps in the publications [1, 3, 4], but 

it is not the optimal choice for visualizing 2D data. The “jet” color map, one type of “rainbow” 

color maps, while having vibrant colors, is not “perceptually linear” and can introduce false details 

in the data because of the human eye’s non-uniform sensitivity to different colors. A few 

publications have addressed this issue [5, 6], and an example using the group’s own data is given 

in Appendix Figure 21. The differences in value between areas 1 and 2 are about 0.9, which is 

roughly the same as between the areas 3 and 4. However, in the spectrogram with “jet” color map, 

area 1 appears to be yellow and area 2 is red-ish, while areas 3 and 4 both appear as blue with 

slight differences. One might be led to think that area 2 shows a real feature, while it is not present. 

Such an artifact does not exist in the spectrograms with other color maps in the figure. These color 

maps are smoother in the perception. 
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Appendix Figure 21 Comparison of different color maps on a drug spectrogram for a canine lymphoma 

biopsy treated with CHOP. All the color maps in this section use 256 levels of colors to ensure a smooth 

presentation. 

Appendix Figure 21 shows two types of color maps: the ones in the top row are “sequential color 

maps”, and the ones in the bottom row are “diverging color maps” which is suitable for data that 

are centered around a certain value. “parula” is the default color map for MATLAB since R2014b 

version, and the “viridis” is the default color map for the Python plot package matplotlib since 

version 2.0. Both parula and viridis are more perceptually linear than jet. 

The diverging color maps shown in Appendix Figure 21 all use red and blue colors as contrasting 

colors, although there are many more choices. “BuRd” and “heated” both have a white center, 

while the “coolwarm” is slightly grey in the middle. The white color can help identify BDI 

spectrogram features, as zero values indicate zero net responses. 

The perceptual uniformness of the color maps can be evaluated by the lightness (L*) of the color 

in the CIELAB (L*a*b*) color space, which is designed to approximate human vision. The 

lightness component is very close to the human perception of lightness. The lightness values for 
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the 6 color maps are shown in Appendix Figure 22. The colors of the lines are the actual colors of 

the color maps. “viridis” has a perfectly linear lightness vs index, “parula” is not strictly linear but 

smooth enough to allow good contrast, while the “jet” is very unsmooth, and the slope near the 

cyan and yellow colors dramatically changes, which partly explains the false details found in 

images using this color map. 

 

Appendix Figure 22 Color lightness in the CIELAB space vs the color’s index within the color map for 

sequential and diverging color maps. 

For the three diverging color maps used in Appendix Figure 21, the lightness values are all 

relatively linear. The lightness value curve of the “heated” color map becomes very flat at both the 

blue and red color ends, which explains why the contrast reduces at the two extremes. This low 

contrast can be seen in the green circle in Appendix Figure 21, where the late, low-frequency 

response appears to saturate in the “heated” color map, which is not the case and is better visualized 

in the other color maps. 

Considering perceptual accuracy and visual appeal, the current “onekey” programs use “parula” 

for sequential color maps used in OCI and MCI images, and “BuRd” for diverging color maps 

used in spectrograms. 

C.3.2 2D Color Maps 

Bivariate data visualization has been used in a number of disciplines like cartography and medical 

imaging. A suitable color map for these visualization tasks is as important as in the 1D case, and 

the idea of perceptual uniformity also applies. Several studies have been done on the subject [7-
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11].  The TDSI work discussed in CHAPTER 6 of this dissertation extensively uses bivariate data 

visualization to illustrate the variability within biological samples. A few 2D color map candidates 

are shown in Appendix Figure 23 for esophageal biopsy samples. 

 

Appendix Figure 23 TDSI images of 4 esophageal biopsy samples using 6 different 2D color maps. [7-11] 

The descriptions of these color maps and assessments are given in Appendix Table 3. Some of the 

assessments come from [7]. 
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Appendix Table 3 A list of the 2D color maps and their assessments. 

Name Description Color space 
Perceptual 

uniformity 
Color 

Teuling3 
Linear combination of 3 color 

planes in the sRGB space 

sRGB 

high 

high 

Cube 

2D interpolation of a square 

with red, yellow, blue and cyan 

in the four corners 

low 

Bremm 
An area in the L*=55 plane in 

the CIELAB space 

CIELAB high low 

Mittelstadt 

2D interpolation of a square 

with four chosen colors in the 

corners 

Ramirez 

A radial map with the radius as 

saturation (S) and angle as hue 

(H). Center is white 

HSV low high 

Nolte 

A radial map with the radius as 

value (V) and angle as hue (H). 

Center is black 

 

Considering the assessments and to make the “zero” value point appear as white (for the same 

reason in the appendix chapter C.3.1), “teuling3” color map is chosen for TDSI visualizations. 

 

References 

[1] D. D. Nolte, R. An, J. Turek, and K. Jeong, "Tissue dynamics spectroscopy for phenotypic 

profiling of drug effects in three-dimensional culture," Biomed. Opt. Express 3, 2825-2841 

(2012). 

[2] H. Sun, "Dynamic Holography in Semiconductors and Biomedical Optics," (Purdue 

University, 2016). 

[3] H. Choi, Z. Li, H. Sun, D. Merrill, J. Turek, M. Childress, and D. Nolte, "Biodynamic digital 

holography of chemoresistance in a pre-clinical trial of canine B-cell lymphoma," Biomed 

Opt Express 9, 2214-2228 (2018). 

[4] H. Sun, D. Merrill, R. An, J. Turek, D. Matei, and D. D. Nolte, "Biodynamic imaging for 

phenotypic profiling of three-dimensional tissue culture," J Biomed Opt 22, 16007 (2017). 

[5] S. Eddins, "Rainbow Color Map Critiques: An Overview and Annotated Bibliography," 

(2014). 

[6] K. Moreland, "Diverging Color Maps for Scientific Visualization," (Springer Berlin 

Heidelberg, Berlin, Heidelberg, 2009), pp. 92-103. 



 

 

155 

[7] J. Bernard, M. Steiger, S. Mittelstädt, S. Thum, D. Keim, and J. Kohlhammer, "A survey and 

task-based quality assessment of static 2D colormaps," SPIE/IS&T Electronic Imaging 9397 

(2015). 

[8] S. Mittelstädt, J. Bernard, T. Schreck, M. Steiger, J. Kohlhammer, and D. A. Keim, 

"Revisiting Perceptually Optimized Color Mapping for High-Dimensional Data Analysis,"  

(2014). 

[9] M. Steiger, J. Bernard, S. Mittelstädt, H. Lücke-Tieke, D. Keim, T. May, and J. Kohlhammer, 

"Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks," 

Computer Graphics Forum 33, 401-410 (2014). 

[10] S. Bremm, T. von Landesberger, J. Bernard, and T. Schreck, "Assisted Descriptor Selection 

Based on Visual Comparative Data Analysis," Computer Graphics Forum 30, 891-900 (2011). 

[11] A. J. Teuling, R. Stöckli, and S. I. Seneviratne, "Bivariate colour maps for visualizing climate 

data," International Journal of Climatology 31, 1408-1412 (2011). 

 



 

 

156 

APPENDIX D. NOTES ON SAMPLE IMMOBILIZATION 

D.1 Introduction 

Sample immobilization is an important, if not the most important, factor of successful BDI 

measurements. Bad immobilization severely affects both “baseline condition” and “drug response” 

biomarker values. Among baseline condition biomarkers that may be affected, an obvious example 

is NSD value. A sample that is vibrating in the dish/well will have a higher NSD value than when 

it is firmly attached to the bottom. Intracellular dynamics also vary a lot at different layers (as 

shown in Appendix Figure 7), and the power spectra at different layers can have large differences. 

A drift in the sample “z” position changes the coherence gating and may lead to a spectrogram 

with a redshift/blueshift pattern that is not caused by slowdown/speedup of the intracellular 

dynamics.  

D.2 Immobilization of Cell Line and Biopsy Samples 

D.2.1 Overview 

Cell line and biopsy samples have been immobilized with agar or by being grown and plated in 

poly-lysine coated plates. Cell line samples have a relatively large amount of variability in 

immobilization across wells and dishes. 

D.2.2 Quantitative Evaluation of Sample Movement 

Appendix Figure 24 shows the raw OCI images (“raw” means before background masking) and 

backscatter brightness (“BSB”) of selected samples in the baseline measurement over time. 

Samples No. 2 and 6 had low relative fluctuations in their OCI images and BSB values, while 

sample No. 4 shows fluctuations and the BSB of sample No. 7 decreased over time and dropped 

to 33% of the initial value in the final loop. It is worth noting that (1) the possibility of sample 

movement introduced by pipetting during drug addition is not present in this case, since this is a 

baseline measurement (2) there is no evidence that the motion controller is malfunctioning and not 

moving to given positions, as OCI images are either very consistent or inconsistent. However, 

pipetting does introduce unwanted perturbation to samples and reduces the sample’s adhesion, and 
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when consecutive samples show significant changes in their OCI images in the same loop, there 

is a high possibility that the motion controller is not working as expected (which has been recorded 

in the past) and should be serviced or replaced as soon as possible. 

 

Appendix Figure 24 a) raw OCI images for baseline measurements of DLD-1 samples 2, 4, 6, and 7 in a 

96-well plate on 5/4/2017. The color scale is consistent for the same sample across multiple loops (but vary 

from sample to sample) b) the sample averaged BSB values for these samples 

D.2.3 Improvement to Experiment and Analysis 

While sample immobilization cannot be changed after a dish is prepared, there are a few ways to 

minimize the impact and improve the success of overall BDI measurement and analysis. A possible 

improvement during an experiment is to identify samples that have bad immobilization as early as 

possible, and (re)allocate the drugs so that there will be at least a few samples under each treatment. 

This can be done by running a program named “diagnose baseline” just after the baseline 

measurement finishes. This program generates a figure similar to Appendix Figure 24a), which 

allows the experiment operator to review the sample raw OCI images and gives the operator a 

chance to evaluate sample immobilization quality. 

During the data analysis, the “data quality” program produces a number that evaluates the quality 

of a sample dataset based on BDI biomarkers (see Appendix chapter C.1), many of which are based 

on BSB fluctuations. Therefore, a sample with large BSB fluctuations or a significant decline in 
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BSB value is likely to be rated as low quality (which also works as a weighting factor) or even 

vetoed. 

D.3 Immobilization of COCs, Oocytes and Zygotes 

D.3.1 Overview 

Vibration of small samples like oocytes is an important issue. It leads to high NSD values that are 

not biologically related, which misrepresents the motility and viability of embryos. As NSD is an 

important biomarker, in classification analysis, the accuracy of a classifier can be significantly 

reduced when there are many ill-immobilized samples. 

The first immobilization attempt was done with Cell-Tak coating. Cell-Tak is a protein solution 

used as a coating on a substrate to immobilize cells or tissues and is commonly used in in vitro cell 

culture. This method is relatively expensive and has not worked as effectively as expected. 

The other less expensive and easier way is to remove the PVA protein in the TL-Hepes medium. 

This method proves to be very successful in immobilizing samples. 

D.3.2 Quantitative Evaluation of Sample Movement 

Various methods can help determine the immobilization quality of reproductive cells. Since 

reproductive cells are measured on the BDM, conventional microscopy images can be captured 

with a camera, which can be used to monitor sample movement. A basic study is to evaluate how 

the sample position changes in response to externally (i.e. external to the dish) introduced 

vibrations. A well- and an ill-immobilized sample are placed in two dishes separately, and the 

BDM is disturbed by gently tapping the mechanical stage or pounding the table on which the 

microscope stands. The center (calculated as the center of mass) of the inner cell mass is obtained 

from microscopy images, and the x component over time is shown in Appendix Figure 25. For a 

sample with good immobilization, gentle tapping introduces <1 pixel (7.4 μm) of displacement, 

and pounding on the table only introduces about 2 pixels of vibration in amplitude, while a sample 

with bad immobilization experiences significant movement under these conditions. 
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Appendix Figure 25 a) An example of the center of inner cell mass used for tracking sample position b) the 

x coordinate of the center of two samples under three different vibration conditions. The bad sample is 

sample #2 and the good sample is #3 in Appendix Figure 26 and Appendix Figure 27. 

Sample immobilization quality is also related to a few BDI biomarkers. Replaying sample OCI 

movies helps determine if a sample has mainly fluctuations or mechanical movements that may 

appear as either flashing or “wobbling”. Line plots of OCI stack images along the x-axis is a way 

to present sample movement in a static form. In an example shown in Appendix Figure 26, 6 

samples are used, where samples #1 and #5 have very good immobilization, sample #2 has 

moderate immobilization, and samples #3 shows “wobbling”, #4 shows highly irregular 

movements, and #6 drifts from right to left during the measurement. The drift in sample #6 can be 

seen in Appendix Figure 26b, and samples #3, #4 and #6 all have hologram washouts in the OCI 

image stacks, as shown in Appendix Figure 26c and Appendix Figure 26d. 
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Appendix Figure 26 OCI intensity line plots for 6 samples. a) examples of horizontal and vertical lines used 

in the following figures. b) maximum value plots, where the x-axis is the x coordinate, while the y-axis is 

the frame number. Each value is the maximum intensity of a vertical line for a given x value [e.g. dashed 

line in a)]. Dashed lines are vertical. The plots use 500 frames. c) the same maximum value plots similar to 

b) but use 30 frames. d) value plots, where the x-axis is the x coordinate, and the y-axis is the frame number. 

Each value if the intensity of a horizontal line that crosses the center of the samples [e.g. dashed line in a)]. 

The motion from bad immobilization is consistently correlated with spikes in the sample power 

spectrum around 5 Hz, as in Appendix Figure 27a), and this method has been used to automatically 

filter out samples with major immobilization issues in the analysis of BDI data in CHAPTER 4. 

Sample movement can also be evaluated by the center of mass and BB fluctuations, but these 

metrics alone are not consistent enough to identify sample immobilization quality. 
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Appendix Figure 27 a) power spectra of 6 samples b) center of mass displacement for 6 samples across 500 

frames compared with their initial positions for x component c)-d) average backscatter brightness for 6 

samples after masking 

A comparison of the effectiveness of both immobilization methods is given in Appendix Figure 

28. Samples immobilized with TL-Hepes have much lower high-frequency spike values than Cell-

Tak adhesive, and can be part of the reason many experiments using Cell-Tak did not turn out 

successful. 
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Appendix Figure 28 comparison of the effectiveness of Cell-Tak coating and PVA-removed TL-Hepes 

methods. “max_h” is the amplitude of spikes found in the 2 Hz -12.5 Hz range of power spectra. 

D.3.3 Improvement to Experiment and Analysis 

When a sample is prepared in the dish and ready for BDI measurement, the tapping method can 

be used to quickly determine the quality of immobilization. A low-quality sample should either be 

re-plated (if possible) or discarded. During the analysis, samples with large vibrations should be 

discarded, and such samples can be filtered using the high-frequency spike values. 
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APPENDIX E. OPTICAL DOPPLER PHENOTYPES OF 

CHEMOSENSITIVITY IN HUMAN EPITHELIAL OVARIAN CANCER 

The development of an assay to predict response to chemotherapy has remained an elusive goal in 

cancer research. Chemoresponse assays have traditionally relied on isolated cancer cells that are 

cultured and exposed to various treatments in vitro, or more recently, as patient-derived xenografts.  

These techniques destroy the local microenvironment of the complex disease state and have had 

only marginal success in predicting patient response to therapy. This chapter reports a study using 

a new chemosensitivity assay based on intact living three-dimensional tumor tissue challenged ex 

vivo with chemotherapy agents. The response of the tissue to chemotherapy treatment in vitro was 

measured using Doppler spectroscopy of infrared light scattered from intracellular motions in the 

living tissue. Doppler fluctuation spectra were obtained through digital holography and phase-

sensitive detection.  Frequencies in the range from 10 mHz to 10 Hz were considered to be sensitive 

to changes in intracellular dynamics caused by applied therapeutics. The study analyzed 

biospecimens from 20 patients with ovarian cancer. For a small subset of patients, matched 

primary and metastatic tumor tissue were collected.  Shifts in spectral density of the biospecimen 

following in vitro drug treatment were correlated with clinical outcomes to platinum-based 

chemotherapy regimens. Metastatic tumor samples were more likely to display a phenotype that 

was resistant to drug treatment in the in vitro chemosensitivity assay. 

E.1 Introduction 

The tumor microenvironment in cancer plays an essential role in the complex biological and 

molecular communication between cancer cells and the host, determining both tumor progression 

and response to therapy. The microenvironmental influence on the cancer state is associated with 

mechano-transduction [1, 2] and paracrine signaling, as well as immune cell infiltration and 

endocrine signaling. Conventional chemosensitivity assays destroy these influences by 

disaggregating cells from tumor biopsies and growing them in two-dimensional cell culture or as 

xenografts implanted in host animals.  The growth in the alien environment of the unnatural 

geometry of the cell culture plate or the animal host changes the cellular phenotype, which may 

no longer represent the phenotype of the intact tumor.  In consequence, chemosensitivity assays 
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[3, 4] have limited ability to test cancer cells from clinical specimens, they lack predictive power 

for subsequent clinical applications [5-7] and they rely exclusively on epithelial tumor 

components. 

A Doppler fluctuation spectroscopy approach to chemosensitivity testing, called biodynamic 

imaging (BDI), is the first imaging technology to use intracellular motion as functional image 

contrast [8]. The technology uses principles of coherent laser radar with digital holography and 

represents an innovative and highly sensitive assay that can quantify the dynamic response of 

tumors to treatment [9]. Cellular motions are unusual but specific biomarkers of cellular health 

and response to treatment. By penetrating volumetrically into tissue up to 1 mm deep, BDI maps 

out heterogeneous tissue layers. BDI has previously been applied to drug screening [10-12], 

phenotypic profiling [12, 13], and preclinical chemosensitivity testing [9, 14, 15].  Light scattering 

of near-infrared light from living ex vivo tissue biopsies displays Doppler frequency shifts caused 

by intracellular motion [16].  Chemotherapy agents applied to the living biopsies in vitro modify 

the intracellular dynamics and the associated Doppler frequencies. The Doppler frequency shifts 

and their changes are interpretable through the speeds of intracellular motions affected by anti-

cancer drugs. This information can be correlated with a patient’s sensitivity to chemotherapy 

treatment in the clinic. Biodynamic imaging was used in a pilot study of chemosensitivity testing 

for canine B-cell lymphoma in which patients with long progression-free survival (PFS) displayed 

a different phenotypic signature of Doppler frequencies than patients with short PFS [9].  In 

addition, a preclinical trial of biodynamic imaging for human disease studied ovarian xenografts 

in mice using ovarian cancer cell lines with platinum resistance [17].  The results presented here 

are the first application of BDI to human patient samples. 

E.2 Methods 

E.2.1 Patients 

Patients eligible for study inclusion were age ≥ 18 years, planning to undergo surgery or biopsy as 

a standard-of-care treatment for suspected ovarian cancer, with subsequent histologic confirmation 

of ovarian, fallopian or primary peritoneal cancer. All histological types and stages were eligible 

for enrollment. The study was approved by the Northwestern University Institutional Review 
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Board (protocol # STU00202733), and all patients provided written informed consent. Tissue was 

deidentified before processing. Enrolled patients underwent cytoreductive surgery followed by a 

platinum-based chemotherapy regimen, as indicated by the treating physician, per standard of care. 

Patients were followed for up to 18 months for clinical outcomes. Given that most patients 

underwent surgery with removal of tumor bulk, response to treatment (i.e., platinum sensitivity 

versus resistance) was determined based on time to progression (i.e., calculated from the platinum-

free interval), using standard criteria. Platinum-sensitive tumors were defined as those tumors that 

did not recur for ≥ 6 months, while platinum-resistant tumors were those that progressed within < 

6 months after completion of platinum-based therapy.  

Forty-eight patients enrolled in the study between June 2016 and November 2018. Twenty-eight 

patients were withdrawn, and twenty evaluable patients were included in the final analysis. The 

most common reason for withdrawal was the inability to collect sufficient tumor tissue for research 

at the time of surgery. A total of twenty-three biospecimens were collected and used for analysis. 

Of these, sixteen were primary tumors and seven were metastatic tumors. Three of the metastatic 

implants were collected from patients who also had primary tumors collected, allowing a direct 

comparison of the response of primary versus metastatic lesions to chemotherapy treatment in the 

chemosensitivity assay. A table of enrolled patients is given in Appendix Table 4. 
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Appendix Table 4 Enrolled patients 

Pat. 

No. 
Cancer Type Pathology Response Cell Tissue Immob. 

1 ovarian papillary serous carcinoma S hov5 ov 

agar 

2 ovarian clear cell carcinoma S hov7 ov 

3 
recurrent platinum-

sensitive ovarian 
serous carcinoma R 

hov8 ov 

4 hov8b bowel 

5 ovarian serous carcinoma S hov9 peritoneum 

6 ovarian serous carcinoma S hov10 ov 

7 fallopian tube serous carcinoma S hov11 peritoneum 

8 ovarian serous adenocarcinoma S hov12 met 

9 ovarian serous carcinoma S hov13 ov 

poly 

10 ovarian clear cell adenocarcinoma R hov14 ov 

11 fallopian tube serous adenocarcinoma S hov15 ov 

12 
recurrent platinum-

sensitive ovarian 
carcinosarcoma R hov16 ov 

13 ovarian serous carcinoma R hov17 ov 

14 

ovarian serous carcinoma S 

hov18a ov 

15 hov18b met 

16 

ovarian serous carcinoma S 

hov20a ov 

17 hov20b met 

18 ovarian serous carcinoma S hov22 ov 

19 ovarian serous carcinoma S hov23 ov 

20 ovarian 
endometrioid 

adenocarcinoma 
S hov25 ov 

21 primary peritoneal serous adenocarcinoma S hov26 met 

22 ovarian serous carcinoma S hov30 ov 

23 ovarian serous carcinoma S hov31 ov 
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E.2.2 Sample Preparation 

Living biopsy materials from the patients were shipped in cold-packs overnight to the 

measurement facilities where the samples were dissected into approximately 72 samples of 

approximately 1 mm3 volume and immobilized in wells of a 96-well plate. Two different 

immobilization methods were used to keep the samples fixed during measurements. Samples from 

5 patients (hov5, hov7, hov8, hov8b, hov9, and hov10) were placed in a layer of agarose covered 

with culture medium, while samples of the other 15 patients were immobilized on poly-lysine 

coated plates. Poly-lysine is more effective than agar at attaching a sample to the bottom of the 

plate. Each sample received one of the four treatments: carboplatin, paclitaxel, 

carboplatin+paclitaxel, and the carrier dimethyl sulfoxide (DMSO) as a negative control. 

E.2.3 BDI Measurement and Drug Treatment 

Sample imaging was carried out on the biodynamic platform (BDP; Animated Dynamics Inc, 

Indianapolis; not included in the appendix). A schematic of the optical core of the biodynamic 

imaging system is shown in Appendix Figure 29. The imaging system is placed on a motorized 

optical platform that moves on the horizontal plane, while the plate is on a fixed mount keeping it 

stationary during the entire measurement. The BDI system is an interferometer in a Mach-Zehnder 

configuration.  A delay stage is placed in the reference arm to modify the optical path length of 

the arm to achieve depth-selective coherence gating of the sample. The light source is a low-

coherence superluminescent diode that illuminates the sample at an oblique angle. The scattered 

light is collected through a Fourier imaging system that projects the Fourier transform of the tissue 

speckle onto the camera plane. Image acquisition and reconstruction procedures are the same as 

the “alpha prime” system and the BDM introduced in APPENDIX A. 
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Appendix Figure 29 A schematic of the biodynamic platform (BDP). The imaging system (including the 

light source, lenses, beam splitters and the CCD in the dashed rectangle) is placed on an optical platform 

mounted on a motorized stage that can travel freely on the horizontal plane. 

Each measurement includes 4 loops of baseline, drug injection, and 9 loops of drug response 

recording, where each loop is 82 minutes long. BDI measures a sample at 25 fps for 2000 frames 

in each loop. The baseline is the six-hour period of tissue stabilization prior to the application of 

the drug.  The six-hour stabilization has been established as an effective time for the biopsy to 

equilibrate, although biopsies never become static. Treatments of carboplatin, paclitaxel or 

carboplatin+paclitaxel were applied to individual wells and were monitored using the biodynamic 

imaging system for up to 12 hours. Samples were imaged in two groups of 36 samples for a total 

of 72 measurements. The replicate numbers were 18 dmso (negative controls), 18 paclitaxel, 18 

carboplatin, and 18 carboplatin+paclitaxel.  The Taxol dose was 5 μM and the carboplatin dose 

was 25 μM. Once the drug is applied, intracellular dynamics are altered and are captured in the 

relative change in the spectral content over a period of 12 hours. 

During the data analysis, feature values from samples immobilized with agar were shifted in such 

a way that their average and standard deviation equal the average and standard deviation of 

samples immobilized with poly-lysine. 
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E.3 Results 

E.3.1 Biodynamic Spectra Predict Response to Chemotherapy 

Examples of average spectrograms are shown in Appendix Figure 30 for samples that were isolated 

from platinum-resistant and -sensitive patients. Frequency is along the horizontal axis spanning 

from 10 mHz to 10 Hz. Time is along the vertical axis spanning 18 hours. The baseline is used for 

reference, and the treatment is applied at the time of the horizontal blue line. The shifts in the 

spectral content caused by the drug action are captured in color in the figure, blue representing 

inhibition and red representing enhanced spectral content. The drug response spectrograms for the 

taxane treatments are similar between samples isolated from platinum- resistant and -sensitive 

samples.  However, there is a notable difference for the single-agent treatments.  The differences 

of the resistant minus the sensitive spectrograms are shown in Appendix Figure 30b. Single-agent 

treatments show a much more suppressed response in the low-frequency region of sensitive cohort 

than the resistant cohort. The high-frequency region corresponds to the organelle transport band, 

indicating that the resistant cohort has activated organelle transport in response to the applied 

therapy in vitro. The low-frequency region is the cell-shape-change band representing slow 

membrane rearrangement and possible cell motility. 
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Appendix Figure 30 Drug-response spectrograms for treatment with carboplatin (25 μM), paclitaxel (5 μM) 

and carboplatin + paclitaxel (25 μM + 5 μM).  a) The average spectrograms (dmso-subtracted) for resistant 

and sensitive phenotypes  b) The difference of the resistant spectrograms minus the sensitive.  The resistant 

phenotype is characterized by enhancement of low-frequencies relative to the sensitive phenotype.   

The biomarkers used for the study are discussed in Appendix chapter C.1. Two of the spectrogram-

based biomarkers having the largest signal-to-noise ratios that differentiate the resistant/sensitive 

groups are M00 (“ALLF”) and M01 (“SDIP”) on samples treated with paclitaxel. The selected 

feature vectors in Appendix Figure 31a) are the central data structure for all downstream machine 

learning algorithms. The goal is to identify which patients share similarities with each other, and 

with the sensitive/resistant phenotypes. For instance, the feature vectors are used to construct the 

similarity matrix in Appendix Figure 31b).  The order of the specimens was preselected according 

to their clinical outcomes, separated into resistant/primary, metastatic, and sensitive/primary 

groups. Metastatic specimens are placed in the primary groups to which they are highly correlated 

despite their clinical outcomes, as the assumption here is that the drug response of metastatic 

specimens may deviate from the phenotype of their primary counterparts. The similarity matrix 

distance measure is the vector contrast values. Identical vectors have vector contrast near unity 

(red), opposite vectors have vector contrast near negative unity (blue), and independent vectors 

have vector contrast near-zero (white).  The similarity matrix has an approximately block-diagonal 

structure. The resistant block of specimens shares strong similarities with each other, and strong 

dissimilarity with the sensitive block of patients. 
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Appendix Figure 31 a) feature values of all specimens, which are divided into resistant/primary, metastatic 

and sensitive/primary groups  b) similarity matrix of the samples constructed through the inner product of 

the two refined biomarkers. 

Linear separability analysis is a primary analysis technique for separating groups into binary 

classes. By combining the resistant and “resistant-like” metastatic into a “resistant” group, and the 

“sensitive-like” metastatic and sensitive patients into a “sensitive” group, several linear 

separability algorithms were applied to classify individual specimens into these groups.  

Conventional one-hold-out cross-validation was used in all cases to train the algorithm with a 

training set of all other specimens, and then applying the trained algorithm to classify the held-out 

specimen. The linear separability algorithms used were a single-neuron perceptron, a high-

dimensional vector bisector, log-likelihood and binary network analysis. This ensemble of 

approaches is combined into an ensemble average that is correlated against clinical outcomes. 

As an example of the analysis, network theory provides analysis techniques for identifying 

relationships among a set of feature vectors.  A similarity network for this clinical study is shown 

in Appendix Figure 32. Links in the network are assigned according to a linkage assignment 

threshold that yields the strongest clustering coefficient among the two cohorts. 
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Appendix Figure 32  A similarity network relating patient samples to clinical outcomes and biodynamic 

signatures. Dark blue dots have resistant clinical outcomes, dark red dots have sensitive clinical outcomes. 

The colors of metastatic specimens follow the primary groups they belong to like in Appendix Figure 31b). 

The only metastatic specimen that has a BDI phenotype different from its clinical outcome is hov11 which 

is sensitive to treatment. 

Using primary specimens, 10 out of 14 patients have BDI phenotype consistent with their clinical 

outcome. (The misclassified patients are hov15, hov16, hov20a and hov23.) And when taking 

metastatic samples into account, the correspondence is 75% (15 out of 20, with hov11, hov15, 

hov16, hov20a and hov23 misclassified). 

E.4 Discussion 

The work presented in this chapter is the first application of biodynamic imaging to human tissue 

samples.  This study included 23 specimens prospectively collected from 20 patients with ovarian 

cancer.  Among the specimens tested here, 5 samples were found to be resistant to carboplatin and 

paclitaxel chemotherapy and 18 specimens were sensitive. Seven specimens were derived from 

metastatic tumors and sixteen were from primary tumors. There were three patients from which 

matched metastatic implant and primary tumor were collected and analyzed. Two strong 

biodynamic phenotypes emerged from the analysis.  The drug-response spectrograms, capturing 

changes in intracellular motions caused by the applied therapies, are generally able to discriminate 

between two phenotypes that correlate with patients who were resistant or sensitive to platinum-
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based chemotherapy.  Our findings support that BDI has the potential to predict chemotherapy 

outcomes and warrants future testing.  In ovarian cancer patients, new predictive biomarkers, such 

as BDI profiles, could be particularly helpful for selecting second and later lines of treatment. 

Interestingly, four metastatic specimens displayed a resistant phenotype via BDI technology, even 

though the patients themselves were clinically sensitive to platinum. It is possible that some 

metastatic implants may display resistant behavior, but this possibility must be studied with a 

larger trial size. 
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APPENDIX F. MONTE CARLO SIMULATION FOR BIODYNAMIC 

IMAGING 

Monte Carlo model of steady-state light transport in multi-layered tissues (MCML) is a common 

way to simulate photon transport. A number of tissue models are proposed, and the model has been 

used for studying forward problems like fluorescence for a given tissue model, or inverse problems 

like estimating optical properties or distribution of oxygen. MCML is also used to simulate OCT 

signals and images [1, 2]. 

An important goal of biodynamic imaging experiments is to understand how external disturbance 

(e.g. drugs) introduces changes in the intracellular dynamics of samples, and how it can be 

correlated with NSD, spectrograms and biomarkers. Because the resolution of BDI systems is not 

high enough to resolve cytoskeletal components, OCI and MCI images do not provide a one-to-

one direct comparison of BDI signatures to visualization. Therefore, MCML can provide an 

approach to understand what contributes to the BDI signals.  

F.1 Methods 

There are two parts of the simulation, both using the Monte Carlo method. The first part is mostly 

MCML, i.e. to simulate a light source and tissue and generate backscattered photons. The second 

part is to simulate intracellular dynamics, interaction with light, and low-coherence digital 

holography. The photons generated in the first step are a reservoir and can be used in digital 

holography simulations. 

The MCML simulation generates a number of photons that satisfy a number of exit requirements 

(so that they can be detected on the “camera”). Non-qualifying photons are discarded, and the 

simulation repeats until a certain number of photons pass the cut (“constant N” mode). 

Alternatively, when the property of the light source, or the incident condition like incident angle, 

is the subject of study, a more realistic approach is to run the simulation a fixed number of times, 

which equals “constant power” of a light source, and keep the photons that qualify (“constant 

power” mode). 

A flow chart of the MCML simulation is shown in Appendix Figure 33. 
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Appendix Figure 33 Flow chart of the photon generation in the “constant N” mode.  



 

 

177 

The light source can be configured as a circularly uniform distribution, or as a Gaussian source 

that is similar to typical laser and SLD source in the lab (Appendix chapter A.1.1). The incident 

beam can be normal to the detection area, or at an angle. The sources are shown in Appendix 

Figure 34. 

In each scattering event, the scattering length follows an exponential law, and the scattering angle 

is given by a distribution related to a “hard-backscattering” coefficient and Henyey-Greenstein 

phase function [3]. The azimuthal angle follows the distribution of ( ) 21
sinP  


=  which is 

related to the polarization and angular dependence of light scattering. The new position of the 

photon is calculated in each iteration, and the program determines if the photon is still inside the 

sample. If true, the next iteration of scattering starts, otherwise a few checks will be made to 

determine if the photon qualifies and should be retained. 

 

Appendix Figure 34 a) a uniform light source, b) a Gaussian light source, c) the “infinite half-plane slab” 

model, and d) the spheroid model with an incident angle of 45 degrees. 

In the low coherence digital holography simulation, an imaginary interferometer in the Mach-

Zehnder configuration is used. The signal arm comes from the phase information from the 

intracellular dynamics in the tissue based on Fourier optics, and the light fluctuation is from the 

output of the previous photon simulation. The reference arm is an artificial collimated beam, and 

the coherence gating is achieved in the signal arm by selecting photons whose OPL is inside a 

certain range. The detection plane is located on the Fourier plane of the image. 

The intracellular dynamics follow the “persistent walk” model discussed in chapter 2.2.1, and the 

momentum transfer for each Doppler scattering event is calculated. The simulation of the 
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persistent walk is done with the Monte Carlo method, and the persistence time is distributed 

according to an exponential function. The point spread function (PSF) calculates the signal arm of 

the complex light field on the detection plane derived from the scattering events. The detection 

device (“camera”) captures the holograms at a frame rate similar to that in real BDI experiments. 

These holograms are effectively the same as the images captured in real systems with CCD or 

CMOS cameras. The standard onekey analysis is run on the images, which calculates the OCI, 

MCI and power spectrum of the sample. Appendix Figure 35 is an example of an OCI flythrough 

from the simulation. 

 

Appendix Figure 35 A “flythrough” of a spheroid model sample, with incident beam normal to the detection 

plane. 
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F.2 Tests 

F.2.1 Parametric Studies 

Velocity, Persistence Time, Coherence Gate and NSD  

The first parametric study is a basic study that looks at how backscatter brightness and NSD change 

with regard to depth (coherence gate) in the simple “slab” model. The parameters are given in 

Appendix Table 5, and the results are shown in Appendix Figure 36. The BB decreases 

exponentially with depth but is not related to persistence time (Appendix Figure 36a), while NSD 

increases linearly with depth (Appendix Figure 36b). The backscatter brightness is likely 

determined by the number of photons within the coherence gate, since there is a clear linear 

dependence (Appendix Figure 36c). 

Appendix Table 5 Parameters used in the basic flythrough test 

Test number Persistence time (s) Velocity (mm/s) Detection interval (s) frame 

1 0.04 

0.05 

0.04 2000 

2 0.08 0.02 1000 

3 0.02 0.04 2000 

4 0.01 0.04 2000 

 

 

Appendix Figure 36 Result from the basic parametric study. a) BB vs depth. Depth is calculated as half of 

the OPL. b) NSD vs depth c) number of photons within the coherence gate vs BB 
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The monotonic trends of BB and NSD do not match those of DLD and tumor biopsies observed in 

experimental systems (Appendix Figure 7), which shows that this model, where the number of 

photons decreases monotonically with the increase of depth, is too simplified. 

A follow-up study is needed to understand the origin of NSD’s linear dependence on the coherence 

gate. Also, velocity and persistence time could be functions of depth, which mimics “necrotic” 

regions within a sample, and simulations could study how BDI signatures change in these regions. 

Incident Angle and Sample Imaging Plane 

This study explores how the incident angle changes the coherence gate plane for a spheroid sample 

in both 0-degree and 45-degree incident cases. The imaging plane should be parallel to the 

detection plane for a 0-degree incident angle, or at 22.5 degrees to the detection plane for a 45-

degree angle which can be derived from basic geometry (as shown in Appendix Figure 8). This is 

based on the single scattering assumption, and multiple scattering can change the actual coherence 

gate. In Appendix Figure 37, the locations of the “deepest” scattering events of 50 random photons 

are shown as points, along with the assumed coherence gate. (“deepest” is defined as having the 

largest z coordinate for the 0-degree incident angle case, and having the largest x+z value for the 

45-degree case.). For the right-angle incidence, the envelope of the dots roughly matches the 

assumed coherence gate when the depth is low, while above 600 µm, there is an obvious “gap” 

between the dots and the dashed line, and there is not a pronounced envelope anymore. This is 

similar for the 45-degree incident angle situation. Therefore, the 22.5° coherence gate angle is 

verified with the simulation. The gap and the disappearance of the envelope can be explained by 

multiple scattering, and a follow-up study defines an “effective depth” and explores how it is 

related to coherence gating. 
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Appendix Figure 37 Visualization of the locations of the “deepest” scattering events in the sample at both 

right angle and 45-degree incidence. The horizontal line marks the “expected” or “assumed” coherence gate 

plane. The aspect ratio is 1:1 for the axes. 

Hard Backscattering, Anisotropy factor (g), Incident Angle, and Backscatter Brightness 

In the MCML simulation, the scattering angle is related to a “hard” backscattering coefficient (i.e. 

the probability of having a scattering angle of π) and the Henyey-Greenstein phase function. The 

phase function is dependent on the anisotropy factor g, a value that characterizes the degree of 

forward scattering and is an important parameter in understanding light propagation in tissues. In 

addition, the angle between the light source and the detection plane changes the intensity 

distribution, which is particularly important for the BDM and can help understand if the 45-degree 

incident angle leads to some photon loss (although such a design can also increase photon 

efficiency by avoiding using a beamsplitter). This study explores how these parameters change the 

backscatter brightness. 

A series of simulations are run with the spheroid model using different values of the 

aforementioned parameters, the digital holography simulation is run, and the backscatter 

brightness when the coherence gate is placed in 200 µm – 300 µm is obtained for each MCML 

simulation.  
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As shown in Appendix Figure 38, hard backscattering significantly increases the backscatter 

brightness in the low-angle incidence scenarios, although at higher angles the difference 

diminished. A simple explanation would be that at high angles, hard-backscattered photons are 

more likely to be “lost” i.e. not hitting the “camera” or the detection area, and in this regime, most 

of the photons are not hard-backscattered in both cases. 

In the no hard-backscattering scenario, the lower g factor increases the backscatter brightness, 

which is expected behavior. When g = 0.93, the backscatter brightness begins to steadily decline 

after about 10 degrees, which does not happen for the g = 0.85 case until after the 30-degree 

incident angle. 

 

Appendix Figure 38 backscatter brightness—incident angle under different backscattering parameters and 

models. 

This result is again directly related to the number of photons in the coherence gate. Appendix 

Figure 39 shows how the total number of photons and those in the coherence gate change with the 

angle for g = 0.93, no hard-backscattering case. While the number of total photons declines 

monotonically, the gated photon population does not change until the incident angle is around 15 

degrees. At 45 degrees, the number of coherence-gated photons is only about a quarter of the 

photon number in the 90-degree angle incidence case. The trend of the backscatter brightness curve 

in the Appendix Figure 38 basically follows the “gated photon” curve here. 



 

 

183 

 

Appendix Figure 39 the relationship between the number of photons and incident angle. 

A follow-up study is to fit the curves in Appendix Figure 39 and relate the curves to intensity 

derived from light scattering theories. [3] 

Spheroid Flythrough 

A “flythrough” is run on a spheroid sample under the “no hard-backscattering” assumption. The 

backscatter brightness and NSD vs gate depth is shown in Appendix Figure 40. 
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Appendix Figure 40 Backscatter brightness and NSD vs depth for a simulated spheroid sample. 

The spheroid model is more accurate than the infinite half-plane slab model, and the “increase-

then-decrease” nonmonotonic trend of backscatter brightness found in real samples (e.g. Appendix 

Figure 7) is captured here. The figure could be further improved by running repetitions of the tests 

to smooth the curves. The trend of the NSD, which is supposed to be opposite to that of the 

backscatter brightness, is not yet present in this case. The NSD trend may be related to additional 

light scattering properties of the samples and sample dynamics not used in the model. Being able 

to simulate the NSD trend would be very helpful in understanding sample intracellular dynamics 

and optical properties of biological tissues. 

F.2.2 Other studies 

“Effective” Depth vs Incident Position 

Multiple scattering in biological tissues affects focus, reduces resolution in images, and 

participates in many advancements in biomedical imaging technologies like confocal microscopy 

and adaptive optics. This effect is illustrated in the photon Monte Carlo simulations by introducing 

the “effective” imaging depth and studying how multiple scattering affects this quantity. 
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Since 2 2cosq = −  , a simple weighting factor w that is related to hard-backscattering is 

defined as  
1 cos

0,1
2 2
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w

−
= =  , and the “effective” depth is defined as 
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When a “hard-backscattering” event occurs, as in the first case, the photon carries all the 

information from depth 1z = , and the effective depth is 1. However, if there are two scattering 

events, one at 1z =  and another at 0.5z = , with a 
3


 scattering angle, the photon carries 

information of the blend of the two depths, giving an effective z of 0.83. The more scattering events 

there are, the smaller the scattering angles, the more “mixed” the signal is. Four such scenarios are 

shown in Appendix Figure 41. 

 

Appendix Figure 41 Four scattering scenarios with their scattering angles, w values and effective depths. 

The median of the effective depths is studied at different coherence gate depths for photons that 

have initial incident x coordinates within a certain region. As shown in Appendix Figure 42b), the 

effective depth first increases quickly with coherence gate depth with a slope close to 1, before 

quickly slows down and increases with a slope around 0.5. 
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Appendix Figure 42 a) illustration of the x  incident position b) effective depth vs “coherence gate depth” 

(i.e. half of the OPL) for three incident ranges of x c) a 3D surface of effective depth vs x  and 

coherence gate depth. The translucent surface is the “z = coherence gate depth” plane. 

The effective depth has a small dependence on the x coordinate of the incident position, as shown 

in  Appendix Figure 42. The effective depth is larger with higher x , potentially due to the fact 

that these photons have a longer free travel distance and have high z values when they hit the target. 

The next step is to use the “effective depth” as an intermediate variable and help understand how 

the BDI signatures, especially power spectra, are related to effective depths. 
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