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ABSTRACT

Kim, Dohyeong PhD, Purdue University, May 2020. Dual Execution And Its Applica-
tions. Major Professor: Xiangyu Zhang.

Execution comparison techniques compare multiple executions from the same

program or highly similar programs to identify state differences including control flow

differences and variable value differences. Execution comparison has been used to

debug sequential, concurrent, and regression failures, by reasoning about the causality

between execution differences and input differences [1], thread scheduling differences [2],

and syntactic differences among program versions [3–5], respectively.

However, execution comparison techniques have several limitations. First, execu-

tions may have benign differences, which are not related to the behavior differences

that the user can observe. Second, huge storage spaces are required to record two

independent executions. Third, the techniques can only compare executions from the

same or similar programs.

In this dissertation, we present an execution comparison technique that (1) removes

benign differences, (2) requires less space, and (3) can compare two different programs

implementing similar algorithms. Also, we present that the execution comparison

technique can be used in identifying and extracting a functional component out of a

binary.

First, we present a dual execution engine that executes multiple executions at the

same time and only introduces the desired differences. Also, the engine compares the

executions on-the-fly and stores the differences only. Second, we present a technique

to compare two programs written by two different programmers. Especially we will

show that this technique can compare the buggy program from a student and the

correct from the instructor and can reason about the errors.
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1 INTRODUCTION

Execution comparison techniques compare multiple executions from the same program

or highly similar programs to identify state differences including control flow differences

and variable value differences. Execution comparison has been used to debug sequential,

concurrent, and regression failures, by reasoning about the causality between execution

differences and input differences [1], thread scheduling differences [2], and syntactic

differences among program versions [3–5], respectively. Execution comparison is also

used in malware behavior analysis [6]. Advanced malware often has logic to decide

whether or not to activate its payload depending on the environment such as the

platform, the running applications on the victim machine, the current date and time,

and the presence of debuggers or virtual machines. To understand the activation

logic and the payload, malware is executed in various environments and the resulting

executions are compared. Software diversification creates executables with different

structures, e.g. different stack layouts [7]. At runtime, multiple such versions are

executed simultaneously. The executions are compared to detect intrusion because an

exploit to one version often crashes others.

However, execution comparison techniques have several limitations. First, there

are benign execution differences that are not related to the different behavior that

users intend. For example, if a program uses a random value that is not related to

a bug, even though the program may behave differently depending on the random

value, but it is not important. Also in programs having interactive user interfaces,

execution may differ depending on when the user presses a key or clicks a button.

Second, there is huge space overhead in execution comparison. To compare

multiple executions, we need to store the entire executions beforehand. In a fine-

grained execution comparison, every data and control dependencies of each executed

instruction instance should be recorded. We need tens of bytes for every instruction
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instance and it may cost a few gigabytes with a few seconds of execution. This also

can cause huge time overhead as well.

Last, traditional execution comparison techniques have limited ability in comparing

executions from different programs. In order to compare executions, we should know

if two locations or two variables in the executions should be aligned with each other.

When comparing executions from the same program, this is not an issue. However,

when comparing executions from different programs, there is no perfect solution.

In this dissertation, we will focus on the issues in traditional execution comparison

techniques. First, we propose a dual execution system that runs multiple executions at

the same time and compares them on-the-fly. Second, we propose an APEX, automated

bug explanation system that can compare executions from different implementations

of the same problem.

1.1 Thesis Statement

Traditional execution comparison can only compare executions from the same have

limitations regarding space overhead and lack of ability to handle executions from

different programs. This dissertation shows that a fine-grained execution comparison

can be performed on the executions from different programs while avoiding huge space

overhead.

1.2 Contributions

The contributions of this dissertation are:

• We propose a dual execution system that runs multiple executions at the same

time while feeding the same input as long as needed. The user can provide

inputs different only for targeted fields. Thus, this system can solve the problem

of unintended differences. Also, this system compares executions on-the-fly and

stores only the differences observed. Therefore it does not cause huge space

overhead.
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• We propose an APEX, automated bug explanation system. This technique

compares executions from different programs with symbolic expressions. We

will show that this technique can be applied to education and can generate

automated feedback for buggy implementations.

1.3 Outlines

This dissertation presents an execution comparison system that can avoid benign

differences and space overhead, and propose a technique to align executions from

different implementations of the same problem with symbolic expressions. The rest of

this dissertation is organized as follows.

• Chapter 3 presents a dual execution engine that runs executions at the same

time and performs a fine-grained execution comparison on-the-fly. We present

details of the system and the evaluation in this chapter.

• Chapter 4 proposes an automated bug explanation system called APEX which

compares executions from different implementations with symbolic expressions.



4

2 DUALSLICING

2.1 Introduction

Developers have long struggled with the desire to reuse previously implemented

features within new code. By reusing an old implementation, developers can avoid

creating new bugs and can create easier to maintain programs [8–11]. Implementation

reuse can also be crucial when a new program must replicate features within a

legacy system, but the specification for the legacy system no longer exists. Driven

by this desire to reuse existing implementations, previous research has delved into

techniques for both locating the implementation of a feature within a body of source

code [11–23] and extracting that source implementation into a conveniently reusable

function [9, 14,24–28].

These techniques generally assume the availability of the original source code, but

in practice the source code itself may no longer be available or may no longer even

exist. Indeed, facing the maintenance of legacy programs without source code, DARPA

recently called for a solution to this exact problem [29]. For example, some components

are provided to developers only in the binary form, and the source of these programs

or libraries may not be available due to intellectual property restrictions [30]. In other

cases, companies may have existing programs that implement de facto specifications,

but both the original source code and any documentation of the specifications have been

lost over time [29]. Finally, when reverse engineering the behavior of a foreign program,

a program from a third party, security researchers sometimes wish to extract certain

features, such as encoding/decoding routines [31] or anti-debugger techniques [32] from

a foreign program in binary form. Reusing these features from foreign binaries allows

the security analysts to gain insight into the behavior of malicious code and potentially

develop defensive techniques [31]. In each of these scenarios, a developer needs to
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locate and extract the existing implementation of a feature that exists only in binary

form within an existing program. Although source code provides rich information

about the behavior and structure of a program, much of this information is stripped

away when the program is compiled to a binary form.Thus, techniques for locating

and extracting features that rely on source code analysis and manipulation no longer

apply.

New solutions must be found for both locating and extracting features. Prior

work on locating a desired feature includes techniques built on statement coverage

information [13] and dynamic slicing techniques [33]. While both of these techniques

apply to both source code and binaries, they may both locate features too coarsely,

including more of the original implementation than is necessary or desirable. Dynamic

slicing techniques compute transitive closures over the dynamic dependence graph of

an execution [34–36]. These closures are known to be large in practice [37]. Statement

coverage techniques contrast the statements performed within an execution that

exhibits a desired feature against those performed in an execution that does not

exhibit the feature. The intuition is that statements executed only, or more frequently,

within the execution exhibiting the feature should implement the feature itself. We

observe and later show that such approaches can be too coarse grained and identify

portions of the original implementation that are unnecessary for implementing the

feature.

Once the functions implementing a feature have been identified, they may be

extracted from the original binary, but extraction alone is insufficient. To reuse the

extracted component, we must provide an interface through which it may be invoked,

but even state of the art binary analysis tools have difficulty reverse engineering

such interfaces. We show that the original interface for a component can also involve

complex heap structures, and the parameters that correspond to a feature of interest

may be deeply embedded within these heap structures and subject to subtle constraints.

Developers should not need to deal with such complexities when reusing an extracted

component.
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In this paper, we propose a novel approach to locating modular functions that

correspond to a desired feature and providing a usable interface for the extracted

component. We describe the desired feature through multiple executions that use the

feature. The user executes the feature twice with different inputs, and our technique

semantically contrasts the executions to discover where the different input values

are used and which part of the code produces the desired output from the input.

Our technique then isolates the feature using concretization to replace the original

parameters of the function with values from a real run. Finally, it wraps the original

interface of the binary with a new and simpler interface for the developer to invoke

and then uses redirection to ensure that the parameters of the new interface are used

consistently throughout the extracted function.

Our main contributions are highlighted as follows.

• We provide a way to precisely represent a desired feature using multiple execu-

tions that exhibit the feature. Providing these executions is intuitive to a user

who knows how to use the existing binary.

• We perform a semantic comparison of the provided executions using dual slic-

ing [38]. This allows us to precisely locate the desired feature within the code.

• We propose a technique called interface casting that uses concretization to isolate

desired parameters for a function. It then wraps an extracted binary feature with

an adapter and exploits redirection to use the parameters of the adapter. This

provides the developer a convenient means of invoking the extracted feature.

• We implement and evaluate a prototype of the approach. We apply our technique

to 8 applications and extract 10 reusable components from the binaries. We show

that even when there are originally no parameters to the extracted functions,

our technique still applies.
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2.2 Motivating Example

Suppose a developer desires to extract and reuse the email sending feature of pine,

an email client. Because pine has many diverse email features, this reuser must first

locate the function that contains the desired feature. To reuse the function, they must

also uncover the function’s interface or prototype. Knowing the interface, they can

provide parameters such as the sender address, recipient, subject, and body for a sent

email. In this section, we show how to locate the desired function by using dual slicing.

We then show how to extract the function into an isolated component with a reusable

interface by using concretization and redirection.

2.2.1 Function Location

Before extraction, we must locate the function responsible for sending an email. To

find the function, we contrast two different executions of pine, each of which sends a

different email. We follow the same steps both times, except that the sender addresses,

recipients, subjects, and bodies of the sent emails differ. Thus, we choose the same

menu items in the same order, and we provide the same sequence of key strokes except

for the four parameters of interest. As a result, the two executions follow the same

paths through the program except for differences related to the differing user input.

Dual slicing is a technique that contrasts two executions and identifies only those

instructions that both behave differently across the two executions and contribute

to their different outputs. Intuitively, the user inputs for the two executions of pine

differ only with respect to the emails sent, so the two executions should mainly differ

in the portion of code that is responsible for processing and sending the different

emails. Thus, the differences identified by the dual slice should be the behaviors of

pine that we wish to extract.

Next, our technique find the function that encloses all of the relevant differences

between the two executions. Fig. 2.1 shows the part of the dynamic call tree containing

the dual slice. Each node represents a function and each arrow represents a caller-callee
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relationship between functions. Shaded nodes represent those functions containing

the relevant instructions within the dual slice. The topmost shaded function is

call_mailer(), and it transitively calls all other shaded functions. Since the shaded

functions are necessary for the mail sending component, we identify call_mailer() and

its callees as the components of pine to extract.

pine_rfc822_header

post_rfc822_output

call_mailer

sstrncpy

compose_mail

smtp_mail

pine_rfc822_output_body

pine_header_line

pine_send

rfc822_output_full

fold

pine_rfc822_output

main

Figure 2.1.: Dual slice of the mail sending feature in pine. Shaded nodes show the

dual slice within the call tree
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2.2.2 Interface Casting

We must next extract call_mailer() and provide it with a usable interface. The

new interface is particularly important because the original interface is complex and

does not match the expectations of reuser.

struct BODY {

PARTTEXT contents; /* body part contents */

union { /* different ways of accessing contents */

PART *part; /* body part list */

MESSAGE *msg; /* body encapsulated message */

} nested;

...

};

struct PART {

BODY body; /* body information for this part */

PART *next; /* next body part */

};

struct MESSAGE {

BODY *body; /* message body */

PARTTEXT text /* body text */

...

};

struct PARTTEXT {

unsigned long offset; /* offset from body origin */

struct {

unsigned char *data; /* text */

unsigned long size; /* size of text in octets */

} text;

}

int

call_mailer(METAENV *header, BODY *body,

char **alt_smtp_servers , int flags,

void (*bigresult_f)(char *, int),

void (*pipecb_f)(PIPE_S *, int, void *))

Figure 2.2.: Interface of call_mailer()

Suppose that we tried to invoke the extracted function directly. Fig. 2.2 presents

the original interface of call_mailer(). The function has 6 parameters. The first and
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the second arguments are pointers to internal data structures, and we would need to

reverse engineer those data structures to reuse the original interface. In particular,

the body of an email is stored in body->contents.text.data and the size of the body

is stored in body->contents.text.size. To specify the body, we would first need to

allocate memory regions for the BODY structure and its child data structures, e.g. PART

and MESSAGE, and specify correct values for both data and size. This also requires

understanding the semantic relationship between data and size. To reuse call_mailer(),

we would further need to correctly initialize the entire data structure and identify the

semantics of each field even if the field is unrelated to the four parameters we want to

provide. In fact, there is even more complexity, as email contents may be specified

in two different ways: one through the contents field of BODY and the other through a

further nested field of BODY. Expecting the reuser to manage this complexity on their

own is unrealistic.

To provide a usable interface for the function, we must simplify away the unnec-

essary parameters and introduce new parameters matching the reuser’s intentions.

We call this process interface casting. To simplify existing parameters, our technique

first statically concretizes those values generated outside call_mailer() and used in-

side call_mailer(). Thus, if call_mailer() is invoked by the reuser, the parameter

bigresult_f does not actually take a variable argument. Instead, we provide it a

concrete value observed in one of the original executions. We concretize not only the

values of all function parameters but any memory values defined outside call_mailer().

By concretizing all of the direct and indirect inputs, we hermetically seal the function

of interest. That is, by providing concrete values for all inputs of a function, we ensure

that it behaves the same way every time.

To provide the parameters desired by the reuser, our technique then relaxes this

seal to allow only the chosen parameters to again affect the function’s behavior. We

redirect accesses of the original inputs to use memory locations for the new parameters

provided by an interface that we construct. Since we already concretize the parameters

and memory values, the location for a parameter is statically fixed. For example, the
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value of the parameter body may be concretized to 0x0408CC00, and the subject of

an email may be concretized to 0x0409DB00. Thus, the program will always read the

email subject from the same location in memory, and we can redirect accesses of that

memory location to use a new memory location that contains a new subject string.

Before we can relax and redirect accesses of inputs, we must first allow the reuser

to determine just which data should be parameters for the extracted function. Once

again, the reuser can use dual slicing to provide this information. Recall that in the

function identification phase we contrasted two executions with all desired parameters

changed to identify the code to extract. In contrast, to identify the instructions that

read each input, we need only change one input at a time. This way the dual slice

between the original execution and the execution with one differing input will capture

only those instructions processing the changed input.

Once we identify all desired parameters of call_mailer() and create a new interface

using concretization and redirection, we can simply extract the function from its

original binary by using binary rewriting tools [39]. The new interface we provide acts

as a wrapper that invokes this binary function, allowing the reuser to call it like any

other library function.

2.3 The Reuse Process

In this section we discuss the details of reusing functions from binary code. We

present algorithms for both locating the function that contains a feature through dual

slicing and for providing a reusable interface through concretization and redirection.

2.3.1 Component Location

We first present background information on dual slicing to clarify details of our

approach for locating components within a binary. We then explore our algorithms

for locating components and why they can localize a component to a more concise

portion of code than existing techniques.
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Dual slicing. Dual slicing is a slicing technique that contrasts two executions and

produces a slice containing only those differences between the two executions that

are responsible for some observably different behavior [38]. Alg. 1 presents the core

algorithm. Given a slice criterion (e1, e2) that identifies some output differences across

the two executions, the algorithm computes a set of dynamic dependencies from both

executions. (e1, e2) denotes that two execution points e1 and e2, in the first and the

second executions respectively, align or correspond across the executions [40]. (e1,⊥)

denotes that there is no execution point in the second execution that aligns with e1 in

the first execution.

The algorithm first ensures that the slice criterion exists in the first execution.

Lines 2-6 process data dependencies at the slice criterion. Here, {(e1, e2) −→ (e ′1, e
′
2)}

denotes that e1 has a data dependence upon e ′1 in the first execution, e2 has a data

dependence upon e ′2 in the second execution, and e ′1 aligns with e ′2. e ′2 can be ⊥ when

e ′1 does not align with any point in the second execution or e2 is not data dependent

on the alignment of e ′1. On line 3, if the data dependence exists only in the first

execution or if the values of two data dependencies differ, the data dependence is

added to the dual slice. The algorithm proceeds to include the dual slice from (e ′1, e
′
2)

recursively, similar to traditional dynamic slicing. Lines 7-10 process the control

dependence of the slice criterion, denoted as =⇒. Similar to the data dependence,

if the control dependence exists only in the first execution or the branch outcomes

differ, the control dependence and the recursive dual slice of the control dependence

are added to the dual slice. So far, the algorithm considers only data dependencies

and control dependencies when e1 is not null. Lines 12-14 compute the dual slice when

e2 is not null.

Component location using dual slicing. To use dual slicing to identify the

component that corresponds to the desired feature, we use two executions that each

exercise the desired feature but that use different inputs. For example, in the pine case

study, we send an email in both executions, but the emails have different recipients,

subjects, and bodies. The resulting dual slice contains only those instructions that
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Algorithm 1 Dual slicing

Input: e1, e2- slice criteria

Output:D- the dual slice, a set of deps in either execution

1: procedure dualSlice(e1, e2)

2: if e1 6= ⊥ then

3: for all data dep dd ← {(e1, e2) −→ (e ′1, e
′
2)} do

4: if e ′2 ≡ ⊥ or values at e ′1 and e ′2 differ then

5: D ← D ∪ dd ∪ dualSlice(e ′1, e ′2)

6: control dep cd ← {(e1, e2) =⇒ (e ′1, e
′
2)}

7: if e ′2 ≡ ⊥ or branch outcomes at e ′1 and e ′2 differ then

8: D ← D ∪ cd ∪ dualSlice(e ′1, e ′2)

9: if e2 6= ⊥ then

10: /* operations symmetric to when e1 6= ⊥ */

11: return D

process the input because all the execution differences originate from the differing

inputs. The slice also includes only instructions that help produce the desired output

because slicing excludes instructions unrelated to the output.

Alg. 2 presents the component identification algorithm. The algorithm requires

two executions, E1 and E2, which exercise the same feature but with different inputs.

Lines 1 and 2 choose the output corresponding to the desired feature as the slice

criterion. In the pine example, we use the network packet containing the composed

email as the slice criterion. Line 3 computes the dual slice, and line 4 trims off a

prefix of the slice that only moves the arguments around without using them for

any computation. Line 5 locates the function that contains this trimmed dual slice.

It chooses the closest common ancestor function in the dynamic call tree of those

functions whose instructions reside in this dual slice. Line 6 further selects this

common ancestor as well as all functions that it transitively called in E1 and E2 as
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targets of extraction. In other words, the identified components comprise nodes of the

dynamic call tree with the identified common ancestor function as their root.

Algorithm 2 Component location
Input : a pair of executions E1 and E2 with both exercising the target functionality

but with different inputs.

1: procedure identification(E1,E2)

2: (O1,O2) = outputs corresponding to the desired feature in E1 and E2, resp.

3: (e1, e2) = execution points that emit O1 and O2, resp.

4: dse = dualSlice(e1, e2)

5: tse = trim(dse)

6: func = the modular function that encloses tse

7: extract = func and all user functions directly/indirectly called by func

8: return extract

Suppose that we wish to identify the function containing the ‘email sending’

functionality of the sample program in Fig. 2.3 that models pine. load_config() first

initializes global variables that will be used in pine_send(). menu() waits for an input

from a user with timer of 1 second. If the timer expires, menu() performs background

tasks. If the user instead selects the send menu option, pine_send() calls editor() to

edit the recipient, subject, and body of an email. Later call_mailer() composes an

email with the information from editor() and sends it to an SMTP server. In this

example, call_mailer() has the email sending functionality since editor() only stores

the user input into a buffer and does not apply any calculation or transformation to

the given inputs.

To get two execution traces for dual slicing, we run the program twice with different

recipients, subjects, and body texts. We run the program in exactly the same way

the second time except for those inputs. Those three parameters are all that we want

our extracted component to require, and we want to use the same values for other

configurations such as the SMTP server address and sender address.
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1 main() {

2 load_config();

3 menu();

4 }

5 load_config() {

6 smtp_server = x.x.x.x;

7 }

8 menu() {

9 t = timer(1);

10 while (true) {

11 c = select(stdin, t);

12 if (c == t) // timer expired

13 do_something();

14 else if (c == stdin) {

15 command = read(stdin);

16 if (command == SEND) {

17 pine_send();

18 log("send mail");

19 }

20 else if (command == CANCEL)

21 continue;

22 }

23 }

24 }

25 pine_send() {

26 ENVELOPE env;

27 BODY body;

28 editor(&env, &body);

29 call_mailer(smtp_server , env, body);

30 }

31 editor(ENVELOPE* env, BODY* body) {

32 env->recipient = read();

33 env->subject = read();

34 body->text = read();

35 }

36 call_mailer(char* server, ENVELOPE* e, BODY* b) {

37 s = connect(server);

38 send_to(s, compose_mail(e->recipient ,

39 e->subject, b->text));

40 }

Figure 2.3.: Simplified program modeling ‘email sending’ in pine
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Fig. 2.4a and Fig. 2.4b present the resulting traces. Line 43 is the slice criterion

because it sends the packet containing the email to the SMTP server. The dual slice

includes that line because the sent packets differ in the two executions. Line 43 further

depends on lines 42, 36, 37, and 38. Line 42 uses the same value of smtp_server in

both executions, so the dual slice excludes it. Because lines 36, 37, and 38 produce

value differences, the dual slice includes them. Also, line 43 is (directly or transitively)

control dependent upon lines 12, 14, 16, and 18, but those lines do not reflect differences

across the two executions, so the dual slice excludes them.

The dual slice shows that lines 36, 37, 38, and 43 are important for the mail sending

functionality. Note, however, that lines 36, 37, and 38 simply copy the input to a

buffer. Because they only move the input around and do not make decisions or perform

computations with it, these lines form an irrelevant prefix of the desired behavior. They

reflect preparatory bookkeeping work rather than behavior of the desired component

itself. We can thus omit them entirely and still locate the functions containing the

behavior we wish to extract. The trim function removes such instructions from the

front of the dual slice up until the first decisions or computations with inputs that

differ across the executions. In practice, this localizes the component to a smaller

portion of code. In our example, the only remaining instruction is line 43, so the

technique identifies that the email sending feature is located within call_mailer().
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Coverage based approaches. Prior work on feature location computed the differ-

ence in statement coverage between two executions: one sending an email and the

other not sending the email [13]. This coverage based comparison can identify more

functions than we desire because the reuser cannot control the program’s behavior at

a fine-grained level. That is, a small behavioral difference to the user may correspond

to many differences in terms of which functions a program executes, only a few of

which may be interesting.

Consider xv, an image viewer that can convert one image format to another.

Suppose our target functionality is converting a BMP format image to JPEG format.

To compute the coverage difference, we load the same file in both executions. We

convert the file into JPEG format in one execution but cancel the conversion in the

other. Fig. 2.5a presents the coverage comparison results. The results show a large

call graph with many functions related to processing the user interface and handling

user input such as mouse clicks in addition to the important function, writeJPEG().

Furthermore, the approach misses the function LoadBMP(), which is responsible for

loading a BMP image. In contrast, dual slicing computes a concise set of functions for

the conversion and identifies LoadBMP() as well. Fig. 2.5b shows the dual slice, which

highlights only the important functions: writeJPEG() and LoadBMP(). We later discuss

pruning the extracted component to contain only these two functions and their callees.

The simple coverage difference includes many non-essential functions because the

reuser cannot control every detail of program behavior by enabling and disabling the

target feature. Hence, in this paper we use dual slicing [38] to focus more concisely on

the interesting differences.

2.3.2 Interface Casting

Once we have located the function the reuser wishes to extract, we must take

the potentially complicated interface of that original function and compose a simpler

alternative interface with only the reuser’s desired parameters. Our approach to this
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Figure 2.5.: Call graph from xv case study
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problem is to first concretizing all of the values that feed into the selected function to

hermetically seal and isolate the function’s behavior. This makes the function behave

the same way every time it executes. Our technique then relaxes this seal for only

the reuser’s desired inputs by redirecting accesses of the original inputs so that they

instead access inputs of a freshly constructed interface.

Alg. 3 presents an overview of the interface casting process. The algorithm takes

three parameters: (1) the code to extract, a result of the component identification

algorithm, (2) an execution E that exercises the desired feature, and (3) one additional

execution for each parameter we wish to specify. In the pine case study, if we wished

to specify the recipient, subject, and body of an email, we would need three additional

executions. One would send an email with the same subject and body as execution E

but with a different recipient. Another would send the email with a different subject.

The last would send the email with a different body. These additional executions

identify those instructions that access each of the different specified parameters.

Line 1 computes the set of instruction instances with external dependencies. If

an instruction reads a value from memory that was written outside the modular

component, it is an external dependence. Since the selected component does not create

values for external dependencies, they must be provided for the component to execute

correctly. Line 2 concretizes all external memory dependencies to seal the behavior of

the function. This replaces values of accesses with those observed in E. Extracting the

function at this point would create a new function with no arguments that behaves as

in E every time it is called. The loop in lines 3-8 considers each parameter specified

by the reuser and identifies all instructions with external dependencies upon each

parameter. The loop redirects those accesses to instead use new memory locations

that hold the values of the parameters within a wrapper function that matches the

reuser’s demands.

Concretization. To seal the function and remove undesired inputs from the interface,

we concretize the values of those inputs by monitoring memory accesses. For example,

in Fig. 2.2, call_mailer() has a variable alt_smtp_servers that holds alternative SMTP
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Algorithm 3 Interface casting
Input: extract denotes the code to extract, which is identified in the previous section;

an execution E exercising the target functionality; a list S of pairs (Ei, Ti) with Ei

the same as E except that Ei has a different value for the ith input (with type Ti)

intended by the user.

1: procedure interfaceCasting(extract,E,S)

2: ext_dep= instruction instances in E that are part of extract and have

external dependencies

3: concretize(extract, ext_dep) . Seal off all external dependencies

4: for each (Ei, Ti) ∈ S do . Patch to allow reuser specified inputs

5: (e, ei)= instruction instances emitting the feature related output in E

and Ei, resp.

6: diff= E’s instruction instances in dualSlice(e, ei)

7: if = instruction instances in diff ∩ ext_dep

8: redirect(extract, if, Ti)

server addresses. We do not want the function we extract to expose this complex

behavior to the reuser. To provide an interface without this parameter, we concretize

the value of the parameter, so alt_smtp_servers always holds the same value in the

extracted version of the function. Note that if the reuser intends the SMTP server to

be an input of the extracted component, he/she could simply provide an additional

execution that differs from the original execution only at the SMTP server address.

Alg. 4 explains the concretization process. Lines 1-5 process the instructions with

external dependencies. By the definition of an external dependence, we can assume that

the instruction i will have the form MOV r2, [r1] because it reads external memory.

Lines 3-4 replace the original instruction with (1) a guard to see if the dynamic

instance of the instruction uses external memory and (2) new MOV instructions to

redirect the memory access to a saved value if so. Lines 6-13 process the instructions
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that write to external memory. In other words, such an instruction writes a value

to some location in memory allocated outside the identified function in the original

execution E, implying that the address is invalid in the extracted binary. Thus, we

first map the observed memory address of the access into the address of a new variable

that we create within the data section of the extracted binary on lines 9-10. Line 12,

similar to the read case, replaces the instruction to use this new mapped address

instead of the original one.

Redirection. In order to redirect parameters, we first identify the parameters using

dual slicing. The approach is similar to the one used for locating the desired function.

For each parameter, we use two inputs that differ only with respect to that parameter.

For example, we may use two inputs that have different recipients to identify the

instructions responsible for the recipient parameter.

After our technique identifies these parameter providing instructions, it redirects

the memory accesses in the instructions to new locations. When an instruction reads

a parameter from memory, it instead redirects the memory access to a new variable or

buffer prepared to hold the parameter.

Alg. 5 presents the redirection algorithm. Line 1 adds a new variable to the

data section of the binary. This new variable will hold the input for the extracted

version of the function, so accesses of the original data must be redirected to this

new variable. We break the inputs down into two different categories during the

process: (1) scalar variables, which are always accessed through their starting address,

and (2) buffer variables, which have many internal addresses that may be accessed

independently. Lines 2-7 process scalar variables. On line 3, the algorithm iterates

over the instructions ifi discovered by dual slicing with two inputs that identify one

parameter. On line 6, it replaces the instruction. If the instruction reads from the

location that we identified as the ith parameter, it is redirected to instead read the

new variable prepared for the ith parameter on line 1. External dependencies through

registers are handled similarly and thus elided. Lines 8-14 process a variable holding a

buffer that may be read from at any consecutive memory locations within the buffer.
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Algorithm 4 Patch the extracted code for external dependencies through concretiza-

tion
Input : extract denotes the code to extract; ext_dep denoting instruction instances in

E that are part of extract and have external dependence

1: procedure concretize(extract, ext_dep)

. concretize reads of external dependencies

2: for all unique instruction i in ext_dep do

3: let i be ’MOV r2,[r1]’

4: let T = {addr 7→ val} be a map from addresses to the values of i’s

external dependencies

5: replace i with the following:
if r1 ∈ T:
MOV r2,T[r1]

else: MOV r2,[r1]

. patch instructions writing through addresses derived from external

dependencies

6: for all instruction i in extract that may write to an address that is

directly/indirectly computed from an external dependence in E do

7: let i be ’MOV [r2],r1’

8: for all external address a that i has written to do

9: add an entry xa to the data section

10: map[a] = xa

11: replace i with the following:
if r2 ∈ map:
MOV [map[r2]],r1

else: MOV [r2],r1
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Many strings provided by the user fall into this category, including the body data

parameter in the pine case study. Similar to scalar variables, the algorithm iterates

over and replaces the discovered instructions. If the instruction reads from a memory

address corresponding to the ith parameter, it is redirected to read from the new

location. Because the instruction reads from a buffer, we must guard the redirection

by checking whether the address lies between the lowest address observed for the ith

parameter and the size of the new parameter.

Next we use the pine example to illustrate concretization and redirection. Fig. 2.6

presents a portion of code from pine that reads the email subject along with the

corresponding binary code and the rewritten binary after concretization and redirection.

On line 3, call_mailer reads header->env, on line 14 smtp_mail reads env->subject, and

on line 23 rfc822_output_...() reads a subject from a buffer where subject is pointing.

To find the instructions that read the email subject in this example, we slice

two executions with different subjects. The resulting dual slice includes only line

23 because that instruction reads the subject, and the value changes when the user

input changes. Although lines 3 and 14 are not in the dual slice, the values they use

come from outside call_mailer(), causing external dependencies. Hence, our technique

automatically concretizes accesses in lines 3 and 14 and redirects the one in line 23, as

shown in lines 5 (for header), 7 (for header->env), 16 (env->subject), and 25 (subject).

The key idea of concretization and redirection is that the concretized values are

used only as keys for redirection and never actually dereferenced. Concretized pointer

values ensure the same original buffer address is accessed and the accesses can simply

be redirected. For example, we concretize the instruction on line 4 that reads the header

parameter. On line 6, pine reads header->env through header. Since the ebx register is

already concretized on line 4, ecx is also concretized on line 6. Note, however, that one

instruction may execute many times, and some instances of the instruction should be

concretized while other instances should not, we ensure that the instruction performs

the original behavior as necessary through the else branch of the instrumentation.
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1 call_mailer(METAENV* header, ...) {

2 ...

3 smtp_mail(..., header->env, ...);

4 /* 633b98: MOV ebx, [ebp + 0x8]

5 → MOV ebx, 0x7ffee00

6 633ba0: MOV ecx, [ebx]

7 → if ebx == 0x7ffee00:

8 MOV ecx, 0x7ffef40

9 else: MOV ecx, [ebx] */

10 ...

11 }

12 smtp_mail(..., ENVELOPE* env, ...) {

13 ...

14 rfc822_output_header_line(..., env->subject);

15 /* 642182: MOV eax, [ecx + 8]

16 → if ecx + 8 == 0x7ffab40:

17 MOV eax, 0x7fff080

18 else: MOV eax, [ecx + 8] */

19 ...

20 }

21 rfc822_output_header_line(..., char * subject) {

22 ...

23 while(n-- > 0 && (**d = *subject++) != '\0')

24 /* 664fc9: MOV eax, [edx]

25 → if 0x7fff080 ≤ edx < 0x7fff080 + 10:

26 MOV eax, nSubject[edx-0x7fff080]

27 else: MOV eax, [edx] */

28 ...

29 }

Figure 2.6.: Source code of pine reading subject from data structure
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Algorithm 5 Redirect instructions related to the ith input.
Input : extract denotes the code to extract; ifi the instructions load the ith input; Ti

the type of the ith input

1: procedure redirect(extract, ifi, Ti)

2: add a global variable vi of type Ti to the data section

3: if Ti is a scalar type then

4: for all unique instruction x in ifi do

5: let x be ‘MOV r2,[r1]’

6: let addr be the address accessed by x in ifi

7: replace x with the following:
if r1 == addr:

r1 = &xi

MOV r2,[r1]

r1 = addr

else: MOV r2,[r1]

8: else if Ti is a buffer type then

9: for all unique buffer access instruction x in ifi do

. x must be an instruction repetitively executed to access a buffer

10: let x be ‘MOV r2,[r1]’

11: let addr be the lowest address accessed by x in ifi

12: replace x with the following:
if addr ≤ r1 < addr + Ti.size:
t = r1

r1 = &xi + (r1 - addr)

MOV r2,[r1]

r1 = t

else: MOV r2,[r1]

2.4 Practical Challenges

Nondeterminism. In the previous section, we claimed that the dual slice presents

only differences originating from input differences. However, when a program is
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non-deterministic, there can also be differences caused by that non-determinism. For

example, Fig. 2.7 shows that two executions of pine that send an email can have

differences as a result of non-determinism within an event handling loop controlled by

a timer. In the first execution, we select the send command of the menu before the

timer expires in iteration A, but in the second execution, we select the send command

after the first timeout in iteration B and before a second timeout in iteration C. Thus,

lines 16-20 in the first execution do not align with any lines in the second execution.

The resulting dual slice includes lines 16-18 because line 19 control depends upon

lines 16 and 18, and line 18 data depends upon line 17. This is not a desired result

because lines 16-18 also execute in iteration C of the second execution, and these lines

show no value differences.

To address this issue, our technique identifies possible non-determinism through a

calibration phase. We execute the program twice with the same input. Differences

between the two executions show that the program has non-deterministic behavior,

and specific differences indicate where non-determinism occurs. When an instruction

has a value difference across the executions, i.e. their occurrences in the two executions

align but have different values, the value difference originates from non-determinism

and the instruction can be ignored during the component location process.

In contrast, control flow differences, i.e. unaligned instruction instances, usually

arise from non-determinism in event handling loops. In our pine example, the send

menu item may be selected in either the first or second iteration of a loop depending

on the timer. Thus, our technique first finds the loop containing the non-deterministic

behavior through calibration. In our example, the while loop starting on line 12 is

identified as the non-deterministic event handling loop.

During component identification, when aligning executions with different inputs,

our technique does not simply align each iteration of a non-deterministic loop in

order, but rather based on edit-distance [41]. The technique finds which alignment

of iterations in both executions yields the fewest misaligned instructions. If multiple
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iterations align equally well, the earliest is selected. In Fig. 2.7, our technique aligns

iterations A of the first execution and C of the second.

.

.

.

12 whi le ( t rue ) {

13 c = s e l e c t ( std in , t ) ;

14 i f ( c == t )

16 e l s e i f ( c == std in )

17 command = read ( s td in ) ;

18 i f (command == SEND) {

19 pine_send ( ) ;

20 log ( "send_mail" ) ;

.

.

.

.

.

.

12 whi le ( t rue ) {

13 c = s e l e c t ( std in , t ) ;

14 i f ( c == t )

15 do_something ( ) ;

12 whi le ( t rue ) {

13 c = s e l e c t ( std in , t ) ;

14 i f ( c == t )

16 e l s e i f ( c == std in )

17 command = read ( s td in ) ;

18 i f (command == SEND) {

19 pine_send ( ) ;

20 log ( "send_mail" ) ;

.

.

.

12 whi le ( t rue ) {

13 c = s e l e c t ( std in , t ) ;

14 i f ( c == t )

16 e l s e i f ( c == std in )

17 command = read ( s td in ) ;

18 i f (command == SEND) {

19 pine_send ( ) ;

20 log ( "send_mail" ) ; 12 whi le ( t rue ) {

13 c = s e l e c t ( std in , t ) ;

14 i f ( c == t )

16 e l s e i f ( c == std in )

17 command = read ( s td in ) ;

18 i f (command == SEND) {

19 pine_send ( ) ;

20 log ( "send_mail" ) ;

12 whi le ( t rue ) {

13 c = s e l e c t ( std in , t ) ;

14 i f ( c == t )

15 do_something ( ) ;

A B

C

Figure 2.7.: Two executions with nondeterminism. Iteration A should align with

iteration C

Locating Multiple Components. In some cases, the component containing the dual

slice includes most of the binary. For these cases, our technique supports identifying

multiple modular functions to extract instead of just one function, in order to reduce

the size of the component. Recall, for example, the xv case in Fig. 2.5b. Locating a

single component will extract everything called by the function mainLoop(), which is

undesirable. Instead, our technique can extract only writeJPEG() and LoadBMP(), which

precisely capture exactly the behavior of interest.

When extracting multiple functions, the data flow between the functions must

be property connected. For example, writeJPEG() must use image data generated by

LoadBMP(). The concretization and redirection process handles this. To simplify our

discussion, assume two functions A and B are extracted with A writing to a chunk of

memory m, which is later read by B. The memory is allocated outside both A and B.

During concretization, instructions writing values to m (in A) are replaced with writes
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to a new and valid memory location. Instructions reading m (in B) are redirected to

the new memory. If data flow between A and B goes through another function C, e.g.

C modifies the values between A and B, C will be included in the dual slice as well,

and thus the aforementioned process still applies.

Concretizing Other Resources. During concretization, accesses to external mem-

ory get replaced with valid accesses to freshly created variables. However, not all

external dependencies may be on memory. For example, the extracted component

may depend upon a file handle that is not affected by the reuser’s chosen parameters.

In such cases, we must identify the external dependencies on other necessary resources

and safely acquire them as well. Pragmatically, our present implementation handles

dependencies on external files and sockets, but it can be extended to other resources

once they have been identified.

2.5 Experiments and results

We have implemented a prototype of our system using Pin [42] for tracing, while the

dual slicing is written in C. We use Bistro [39] for extracting the desired components

as well as for binary rewriting to perform concretization and redirection. Note that

Bistro is a robust binary transformation tool. It can safely extract portions from or

patch arbitrary binaries by correcting internal references in the binary like indirect

jump and call targets. Using our prototype, we were able to extract 10 components of

interest from 7 real world programs into object files. We were further able to link with

and invoke those components from new programs that reused the extracted behavior.

2.5.1 Observations

Table 2.1 presents the 10 components we examined in our study. Although we

used binaries with debugging information to clarify the dual slicing results during

experimentation, our technique does not rely on any debugging symbols or information

and can be applied to stripped binaries.
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We first examine results for locating desired features using the coverage based

approach and our dual slicing based approach. ‘Cov’ is the number of instructions

covered by the execution exhibiting the feature and not covered by the execution not

exhibiting the feature [13]. These locate the feature in the coverage based approach.

Extracting the functions located by this approach yields the extracted component

size ‘Cov F. Size’. In contrast, our approach uses the dual slice to locate the desired

component. ‘DS’ presents the number of instructions in the dual slice. Note that it is

usually orders of magnitude smaller than ‘Cov’. Extracting the functions identified by

the dual slice yields the extracted component size ‘F. Size’. This is also smaller than

the size of components extracted using coverage based techniques. We note that in

some cases, like Murofet, dual slicing can locate the desired component even when

there are no coverage differences. Thus, dual slicing can have greater generality than

a coverage based approach. Also note that existing coverage based approaches do not

inherently support working on binaries or performing function extraction [13].

The ‘Funcs’ column is the number of the modular functions ultimately discovered

with our algorithm. In one half of cases, we identified one function, but in the other

half, we identified two modular functions to extract. These numbers do not include the

callees of the identified functions, which are also extracted. This indicates that many

features require multiple functional components. Extracting such features requires

understanding relationships such as the data flow between components. Our technique

automates this through concretization as presented in the previous section.

The ‘C.Size’ and ‘C.Instrs’ columns list the sizes of concretized memory and the

number of concretized instructions respectively. Observe that the size of the concretized

memory is relatively high compared to the number of concretized instructions. The

pine case study in the first row shows that a concretized instruction reads roughly

32 bytes on average. This indicates that some of the concretized instructions are in

loops, so they execute multiple times to read additional data. Moreover, the size of

the concretized memory indicates that the extracted functions require substantial

data and that extracting functions without considering these data is unlikely to work.
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This concretized information mostly reflects pointers through data structures and

global configuration data, such as the SMTP server in pine example. The smaller

number of concretized instructions further indicates that the size overhead caused by

concretization is low.

The ‘R.Instrs’ column lists the number of redirected instructions. It shows that a

very small number of instructions are responsible for reading the parameters of the

extracted function and must be redirected for the desired interface.

For the centerim and smbc cases, extracting the feature required two components.

For centerim, the login component does not have practical use. However, the send-

message component relies upon the login component. To locate the two centerim

components, we leveraged experience using the program. When sending a message

with centerim, the program requires a password. From this, we infer that we must log

into the message server to send a message. Thus, we use two inputs with different

login credentials to locate the login component, and we use another two inputs with

different messages to locate the send-message component. However, this knowledge is

not always available. For smbc, we use two inputs different both in login information

and directory name. From the resulting callgraph, we can locate both login and

create-directory components.

2.5.2 Case Study: Murofet Worm

Many worms such as Torpig [43], Conficker [44], and Murofet use a technique

called domain flux, which generates a list of domain names at runtime to hinder

analysis of communication between a worm and the attacker. With domain flux,

the defender cannot simply block IP addresses to stop the malicious behavior of the

worm. Extracting the proprietary domain flux algorithm helps defend against the

worm by predicting malicious domain names in advance. To further clarify the use

and practicality of our technique, we have posted a demo of this Murofet case study

online [45].
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When Murofet executes, it generates a domain name and connects to the domain

to check whether another malicious payload exists on the server. If the connection

fails, the worm repeats the process until it finds a valid server.

To apply our technique, we need two executions generating domain names with

different input. Since the worm does not provide a user interface for the domain flux

algorithm, we cannot just change the input values. Moreover, we do not know the

inputs for the domain flux algorithm. From multiple executions, we observe that

the worm produces different domain names each time it executes, so the worm uses

different inputs whenever it executes. With two executions that produce different

domain names, our technique found the function responsible for generating domain

names. We used the generated domain name in the DNS lookup packet as the slice

criterion. From the dual slice, our technique found the modular function corresponding

to the domain flux process and also found that the input for the process came from

the system time by analyzing the data dependencies in the slice.

This case study shows that even when a program has no user interface for providing

parameters, our technique can still identify and extract the target feature. It can

create an interface for parameters as long as the inputs can change across multiple

executions. Once it identifies the modular component, we can also narrow our focus

to that component to ease further manual analysis of the feature.

2.5.3 Case Study: Word97

Example. Consider an example in Fig. 3.7. When the user selects the menu item

write message, the program reads a message and writes it to a file with a name

provided earlier. If the file already exists, the program first makes a backup. Suppose

the user wants to compare two executions with two different file names A and B, and

there is already a file with name B. Fig. 3.8 shows the master and the slave executions.

Note that since the file name is different at 21, the following syscalls at 101, 111, 121,
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and 131 in the slave are executed instead of copied, which correctly exercises the

intended different semantics. In contrast, the syscalls at 51 and 91 are copied.

The dynamic call tree containing the dual slice forks into two main branches. The

first reads and stores the file content into memory. The second then stores this data

in a text file. We thus extracted the common ancestor function within each branch

into a new component that can read a DOC file and write it into a specified text file.

Not only that, but the extracted component is self-contained and works even across

different versions of the Windows platform.

This component also exemplifies the necessity of concretizing additional resources

as noted in Sec. 2.4. Word97 creates many handles that are initialized by the kernel and

that are used by the underlying components that read and write the DOC files. These

external dependencies on kernel objects must be valid for the extracted component

to run, so we extended our resource concretization system to handle these kernel-

level resources as well to create the kernel objects before we execute the extracted

component.

2.5.4 Limitations

Our technique shows that it is feasible in practice to locate and extract complex

binary features into reusable software components. However, dynamic analysis imposes

some limitations. In particular, we only extract a portion of the full semantics of a

function. For example, the accesses observed in the provided executions are used by

the technique to determine what portions of memory to concretize and make available

to the extracted component. The provided executions may not access the full range of

addresses in a global table. In this case, we can only guarantee that we extract the

portion of the table observed in the provided executions, and accesses outside this

range lead to undefined behavior.
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3 DUAL EXECUTION FOR ON THE FLY FINE GRAINED EXECUTION

COMPARISON

Execution comparison can be classified into online and offline techniques. In online

comparison, the executions are compared on-the-fly. The intrusion detection technique

from Salamat in 2009 is one such online approach [7]. However, such comparison is at

the system event level. In particular, the executions of the multiple diversified versions

are driven by the same input event sequence and the output event sequences are then

compared. This technique assumes all executions consume the same input, which

does not hold for debugging, where executions may have different paths and hence

consume different sequence of input events. Most execution comparison techniques

are offline [2, 5, 6, 46]. They first collect traces and compare them offline. A prominent

challenge is hence the space required to store such traces, which can grow to a few GB

within a few milliseconds of execution. Since executions are performed independently,

many execution differences are caused by non-determinism such as input events

being received at different times. These differences are not helpful in understanding

functional differences.

Note that many existing logging and replay techniques [47,48] cannot both preclude

non-determinism and allow for functional differences. Viennot et al. [49] can handle

functional differences but it requires explorations and it cannot be used in online

analysis. For UI applications, comparing their executions also requires repeated

manual effort.

In this chapter, we propose a novel dual execution engine to overcome the afore-

mentioned limitations. It performs on-the-fly instruction level comparison of two

executions and only stores traces for parts of executions that are different.

There are several challenges in on-the-fly execution comparison. The executions

may diverge because of (1) different inputs, (2) different outcomes from interactions
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with the environment, and (3) non-determinism in the program. Our technique allows

the executions to differ and consume different inputs. It suppresses the differences

caused by interactions with the environment and non-determinism.

In particular, it has three execution modes. Initially, the two executions run in

a coupled mode, in which they are synchronized and one of them, the slave, receives

most of its system events from the other, the master, instead of from the environment.

When the user indicates that different inputs should be provided, the two executions

get into the decoupled mode, in which they execute independently. After introducing

the differences, the user indicates the two executions should be coupled again such that

they can share the same future inputs to avoid unnecessary non-determinism. Since

the two executions may be at different points when the coupling signal is received,

in the resynchronization mode, the engine blocks the faster execution until the other

one catches up. After that, the two execute in the coupled mode again. Since the two

executions then have different states, even though they execute in the coupled mode,

their paths and system event sequences may differ, so our engine detects and handles

all these differences.

3.1 Motivation

In this section, we use a real world example to explain why dual execution is

preferable in execution comparison and illustrate some of the technical challenges in

dual execution.

Suppose we want to identify the functional components that change an email

subject and log a sent email in pine, an email client. In pine, a user can get to the

email composition interface through a sequence of menu operations, where he/she

can provide the email body, subject, and recipient. He/she can also choose whether

a copy of the email will be saved in the sent_mail file after it is sent, through the

ctrl-r hot-key. During the whole process, pine periodically pulls incoming emails
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from the server through a timer control. While an email is being sent, pine shows

busy messages on the screen.

To identify the desired components, the user provides two executions. In the first,

he/she composes an email and sends it, and a copy of the email is saved by default.

The second execution is almost identical, except that the user changes the subject

and re-configures pine so that a copy is not saved.

We first use an offline technique similar to that of Kim et al. [46], in which the

two executions run independently, and we collect instruction level traces for offline

comparison. We observe the following problems. First, we must repeat the almost

identical sequence of user interactions. We must be very careful to not introduce any

human error. For example, in the second execution, when we try to type the same

email, suppose we mistype a character and use backspace to fix it. Although the

two emails are identical after the mistake is fixed, the instruction level trace faithfully

records the interaction error, which will be identified as a difference during comparison.

busy_cue() {

if (status_message_remaining()) ...

}

status_message_remaining() {

return display_time - time() + min_time > 0;

}

Figure 3.1.: Non-determinism in pine

Second, even if we manage to avoid introducing human error, there is substantial

low level non-determinism, e.g. from timers, that leads to unnecessary execution dif-

ferences. Fig. 3.1 shows a code snippet from pine that has non-deterministic behavior.

busy_cue() is a function that shows a busy message on the screen. Before showing a mes-

sage it checks whether there already is a message by calling status_message_remaining()

at line 2, which checks whether the current message is shown on screen for at least
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a minimum amount of time (line 5). The program behavior is thus dependent on

execution timing that is non-deterministic. There are additional such timing related

behaviors in pine. We show in Section 3.4 that execution differences caused by

non-determinism can be as large as half of the overall differences.

Third, we observe that the trace for even one of these executions is over 30GB even

though the execution is already very small. It is not surprising given the large number

of instructions executed within a second by a modern CPU. Storing and processing

such huge trace files is a heavy burden even for modern systems. Note that the two

traces are mostly identical.

Next, we use our dual execution engine. Initially, the engine spawns two executions

of pine at the same time. Then, we only interact with one of the executions, called

the master. All the interactions between the master and the environment, including

user interactions, are relayed to the slave. This allows us to avoid repeating the same

error-prone user interactions. In addition, the two executions run exactly the same

way, without any differences caused by non-determinism. Since only differences are

recorded, we also avoid tracing in this phase.

After composing the email, we press a predefined hot-key. Now we can control the

master and the slave separately. We provide different subjects to the two executions and

set the save_to_sent_mail option differently. After that, we couple the two executions

again by pressing another hot-key. Once again we only interact with the master to

confirm sending the email and terminate the program. In this phase, since the engine

aligns the two executions at the instruction level and executes them in lock-steps,

instruction level differences are detected on the fly and recorded. The resulting trace

file is only less than 90MB.

We note several technical challenges. First, our system relays system events in the

master to the slave, but we cannot relay every event. For example, if the slave did not

execute the write() system call but rather simulated it using a relayed result during

coupled execution, it could not show any interface and thus we could not provide
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different inputs when decoupled. The engine must identify the events that can be

relayed.

pico() {

while(...) {

c = GetKey();

if (c == empty || time_to_check())

check_new_mail();

execute (c);

}

}

GetKey() {

if (ReadyForKey(STDIN, timeout))

return read(STDIN);

else

return empty;

}

Figure 3.2.: Input handling loop in pine

Second, when we indicate our intent to re-couple the executions after providing

different inputs, the engine cannot simply resume relaying events because the two

executions may be in different stages due to the different inputs. Fig. 3.2 shows a

code segment in which pine receives user inputs. Lines 2-7 use a loop to handle user

inputs. At line 3, it reads a key from the user. At lines 4-5, if a certain amount of time

has passed, the program checks whether there is a new email. At line 6, the program

processes the keystroke. Therefore, depending on the time we spent providing the

different inputs, the two executions will be in the different instances of the loop upon

re-coupling. They may even be in different child functions of the pico() function. The

engine needs to re-synchronize the two executions at the instruction level.

Third, even though the engine manages to re-couple the two executions, they may

execute differently due to the input differences. Fig. 3.3 shows another code snippet

from pine. At line 1, the program executes pico() to allow the user to compose the

email. It also contains the confirmation menu. Re-coupling happens inside pico().
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pico();

...

call_mailer();

...

if (fcc)

write_fcc(sentmail);

Figure 3.3.: Send-mail function from pine

At line 3, the program calls call_mailer(), which constructs the email packet and

sends it to the SMTP server. After that at line 5, the program checks fcc, which

corresponds to the save_to_sent_mail option. If it is set, pine makes a copy of the

sent mail (line 6). Since we set fcc differently in the two executions, one execution will

execute write_fcc(), but the other will not. Note that write_fcc() relies on several

events such as file open and file write. Therefore in this case, the engine needs to

detect such differences and provide the events appropriately.

3.2 Design

Our discussion follows the order of the three execution modes: the coupled mode in

which the master and the slave share system events; the decoupled mode in which they

execute independently; and the resynchronization mode in which the faster execution

is blocked until the slower one catches up, when the user wants to re-couple the two

executions.

3.2.1 Coupled Execution Mode

The master and slave are in coupled mode when they start and also after different

inputs are provided and the executions are re-synchronized. Note that after differences

are introduced, the two executions may take different paths and have different syscalls,
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even though they are re-synchronized. Thus we focus on detecting and handling such

differences that may prevent the executions from sharing events.

We first present the semantics of the master and slave executions and then discuss

the monitor that coordinates their behavior.

TraceEntry t ::= 〈INSTR, l, v〉

| 〈SY SCALL, l, sid ,P〉

Label l ::= {l1, l2, l3, ...}

V alue v ::= {true, false, 0, 1, 2, ...}

SysCallId sid ::= {1, 2, ...}

SysCallParameters P ::= v

Figure 3.4.: Trace syntax

Master Execution in the Coupled Mode.

In coupled mode, the master tracks each instruction execution and sends a trace

entry to the monitor. It performs all syscalls faithfully and sends syscall parameters

and outcomes to the monitor, who decides if the syscall outcomes need to be relayed to

the slave. The semantics is shown in Table 3.1. We model instructions into two kinds:

system calls and others (or regular instructions). A regular instruction, with opcode

op, takes n operands and produces the result in y. According to rule M-INSTR, the

instruction is first executed, then a trace entry is sent to the monitor.

Trace Entry Syntax. As shown in Fig. 3.4, there are two kinds of trace entries, identified

by the types INSTR (denoting regular instructions) and SY SCALL, respectively.

A regular instruction entry consists of the label (or the program counter) of the

instruction and the left hand side value of the instruction. A syscall entry consists of

the label, the syscall id, and the parameters. �
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Upon a syscall invocation (rule M-SYSCALL), the master first sends the corre-

sponding trace entry containing the syscall id and the parameters to the monitor. It

then executes the syscall and sends the outcome to the monitor.

Slave Execution in the Coupled Mode.

As shown in Fig. 3.2, the slave handles a regular instruction in the same way as

the master. For a syscall, the slave sends the trace entry containing the parameters to

the monitor, which allows the monitor to decide if the slave should copy the syscall

outcome from the master or execute the syscall. After that, the slave receives the

decision from the monitor and acts accordingly. recv_syscall_outcome() is a blocking

call, preventing the situation in which the slave execution is faster than the master

and manages to perform a syscall before the master reaches the corresponding syscall.

Monitor in the Coupled Mode.

The monitor is the most complex component. It is responsible for synchronizing

the two executions, comparing their trace entries on the fly, and instructing the slave

how to handle its syscalls.

ExecIndex I ::= l

update_index : Label × ExecIndex → ExecIndex

update_index(l,nil) = l

update_index(l, Ihead · ltail) =

 Ihead · ltail · l if l control dep. on ltail

update_index(l, Ihead) otherwise

dyn_ipdom : ExecIndex → ExecIndex

dyn_ipdom(Ihead · ltail) = Ihead · l, with l the immediate postdom. of ltail

Figure 3.5.: Execution indexing primitives
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Background: Execution Indexing. Our execution synchronization is built on execution

indexing (EI) [50]. For completeness, we briefly introduce the EI technique. It

computes a unique identifier for an execution point called an execution index, or

index. Execution points across multiple runs align when they have the same index.

The index of an execution point is analogous to the calling context of the point, but

instead of describing the nesting of function calls, the index describes the nesting of

the control dependence regions of the execution point. Note that multiple instances of

an instruction may share the same calling context (and hence calling contexts cannot

be used to distinguish the instances), but they must have different control dependence

region nestings.

Algorithm 6 Monitor algorithm for the coupled mode
Input : a pair of executions em, es

Definition: Im/s denotes the execution index of the current trace entry from mas-

ter/slave;
1: procedure monitor(em, es)

2: while em and es are not finished do

3: tm = recv_trace_entry(em)

4: Ipm = Im
5: Im = update_index(tm.l, Im)

6: ts = recv_trace_entry(es)

7: Ips = Is
8: Is = update_index(ts.l, Is)

9: if tm.type==SYSCALL then

10: ym = recv_syscall_outcome(em)

11: if policy(tm.sid)==COPY && tm.P==ts.P then

12: send_2_slave(ym)

13: else

14: send_2_slave(EXEC)
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15: if tm.l != ts.l then

16: /* Lines 16-21 run parallel with lines 22-27*/

17: while Im != dyn_ipdom(Ipm) do

18: record(tm, nil)

19: tm = recv_trace_entry(em)

20: Im = update_index(tm.l, Im)

21: if tm.type==SYSCALL then

22: ym = recv_syscall_outcome(em)

23: while Is != dyn_ipdom(Ips ) do

24: record(nil , ts)

25: ts = recv_trace_entry(es)

26: Is = update_index(tm.l, Is)

27: if tm.type==SYSCALL then

28: send_2_slave(EXEC)

29: if tm.v != ts.v then

30: record(tm, ts)

The syntax of execution indexing and the primitives to compute indices are

described in Fig. 3.5. Syntactically, an index is a sequence of labels (or PCs). It

is constructed by the update_index() primitive, which takes the label of the current

execution point and the index of the previous point, produces the new index. According

to the rules, if the previous index is nil , the resulting index is the label. If the previous

index is not nil , and if the current label l is control dependent on the tail label ltail of

the previous index, indicating l is nesting in the region of ltail, l is appended to the

previous index. Otherwise, labels at the tail of the previous index are popped one by

one until l finds its control dependence region.

Consider Fig. 3.6. A code snippet is presented in (a) and two executions are

presented in (b) and (c). The two executions differ due to some state differences
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Figure 3.6.: Example for execution indexing and synchronization

introduced earlier. The indices of the execution points are presented in the center

for easy comparison. Lets look at the master execution (b). Initially, the index

of the first instance of statement 1 I(11) = [1] as its previous index is nil ; then

update_index(2, I(11))= update_index(2, [1])= update_index(2, nil)=[2], because 2 is

not control dependent on 1; update_index(5, I(41))= update_index(5, [4])=[4, 5] because

5 is control dependent on 4. Intuitively, it means 5 is nesting in the region of 4, denoted

by the box A○. Similarly, I(52) = [4, 5, 6, 4, 5], denoting 52 is nesting inside regions D○,

C○, B○, and then A○. Note that our system only maintains the index for the current

execution point, similar to maintaining the call stack.

The indices for the slave (c) are similarly computed. By comparing the indices,

only 11, 21, 41, 51, 72, 44, 92 in the master have correspondence in the slave. We can

see the essence of EI is to align the control dependence regions. For example, the

alignment of 51 in both executions indicates the B○ regions align. But inside the

region, different branch outcomes are taken such that there are no further alignments.

�
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Synchronizing Master and Slave Executions. The monitor component continuously

updates the current indices of the master and the slave based on the trace entries

received. The indices allow the monitor to achieve lockstep synchronization of the

two executions. Initially, the two executions follow the same path such that they are

perfectly synchronized, indicated by identical indices. When a predicate is encountered

but its branch outcomes are different in the two runs, the paths start to diverge. As such,

the monitor decouples the two executions, allowing them to proceed independently to

the immediate post-dominator of the predicate. Note that since the predicates in the

two runs share the same immediate post-dominator, they are perfectly synchronized

again.

Details are in Algorithm 6, in which a while loop continuously processes trace

entries until the two executions finish. In the loop, it first receives an entry from

the master and updates the current index for the master (lines 2-4). We use tm.l

to represents the label field of the trace entry. Lines 5-7 do the same thing for the

slave. In normal cases, the two entries from the two respective runs have the identical

labels. But if the previous label is a predicate with different branch outcomes, the

pair of entries will have different labels (line 14). In this case, the monitor processes

trace entries from the two executions in parallel (lines 16-21 and 22-27), until the

dynamic immediate post-dominator (IPDOM) of the previous predicate is encountered

(line 16 and line 22). Note that the trace entries are recorded (line 17 and line 23)

because they denote control flow differences. In contrast, in lines 28-29, if the values

are different, the two entries (with the same label) are also recorded. Note that the

monitor must leverage indices to identify the dynamic IPDOM (lines 16 and 22). It

cannot simply looks for the next occurrence of the static IPDOM, because in the

presence of recursive functions, the next occurrence of the static IPDOM may not

mean the end of the control dependence region. In Fig. 3.5, dyn_ipdom(I) computes

the dynamic IPDOM of I by replacing the tail label, a predicate label, with its static

IPDOM label, demanding the prefixing control dependence regions remain the same.
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Example. Consider the example in Fig. 3.6. The first four pairs of trace entries have

identical labels. Only the entries for 51 are recorded as the branch outcomes are differ-

ent. The monitor detects that the fifth pair have different labels, i.e. 61 from the master

and 71 from the slave. As such, it computes dyn_ipdom(I[51])=dyn_ipdom([4, 5])=[4, 7].

Thus, both executions proceed to index [4, 7], that is, 72 in (b) and 71 in (c). Note

that if the static IPDOM 7 were used, due to the recursive call of gee(), we would

mistakenly consider 71 to be the end of region B○. �

Handling Syscalls. The monitor also needs to handle syscalls because we want the two

executions to share the sequence of external inputs as much as possible to reduce non-

determinism and hence the meaningless differences caused by such non-determinism.

It also reduces error-prone manual efforts. From the earlier discussion, we know both

the master and the slave send their syscall parameters to the monitor. In addition, the

master also sends its syscall outcome. For a syscall that occurs in both executions, the

monitor compares their parameters, e.g. the size of a file read. If they are identical,

the monitor relays the syscall outcome from the master to the slave. In the case that

they are different due to differences introduced earlier, the monitor instructs the slave

to execute the syscall instead of copying from the master.

In Algorithm 6, when the monitor receives a pair of syscall trace entries (line 8), it

first retrieves the syscall outcome from the master (line 9). Then it consults a policy

table that defines the actions for different kinds of syscalls. While the details of the

policy table are discussed in Section 3.3, all we need to know now is that there are two

possible actions for each syscall ID. COPY indicates the slave should copy the result

from the master, and EXEC indicates the slave should execute the syscall. At line 10,

the algorithm checks whether the action is COPY and if the parameters are identical.

If so, it relays the outcome from the master (line 11). Otherwise, it instructs the slave

to execute (line 13). When the two executions take different branches, the monitor

retrieves and discards the syscall outcome from the master (lines 20-21), and instructs

the slave to always execute its syscall (lines 26-27).
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/*different file names are provided*/

filename = read();

...

while (1) {

menu = selectMenu();

if (menu == MENU_QUIT)

quit();

else if (menu == MENU_WRITE_MESSAGE) {

message = read();

if (exists(filename))

rename(filename, filename + ".bak");

fd = open(filename);

write (fd, message);

}

}

Figure 3.7.: Example for syscall handling

Example. Consider an example in Fig. 3.7. When the user selects the menu item

write message, the program reads a message and writes it to a file with a name

provided earlier. If the file already exists, the program first makes a backup. Suppose

the user wants to compare two executions with two different files named A and B,

and there is already a file with a name of B. Fig. 3.8 shows the master and the slave

executions. Note that since the file name is different at 21, the following syscalls at 101,

111, 121, and 131 in the slave are executed instead of copied, which correctly exercises

the intended different semantics. In contrast, the syscalls at 51 and 91 are copied. �

3.2.2 Decoupled Execution Mode

When the user wants to decouple the two executions and provide different inputs,

he/she presses ctrl-c in the master execution, which sends an interrupt to the master.

Note that the user does not interact with the slave execution (in most cases). The

master checks for the interrupt before executing a system call. If it was received, the

master informs the monitor. When the slave is about to execute the corresponding
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Master Slave

21 filename = read() ; 21 filename = read() ; E

41 while (1) 41 while (1)

51 menu = selectMenu() 51 menu = selectMenu() C

61 if (menu == ...) 61 if (menu == ...)

81 else if (menu == ...) 81 else if (menu == ...)

91 message = read(); 91 message = read(); C

101 if ( exists (filename)) 101 if ( exists (filename)) E

- 111 rename(filename, ...) ; E

121 fd = open(filename) ; 121 fd = open(filename) ; E

131 write (fd , message) ; 131 write (fd , message) ; E

Figure 3.8.: Executions of the example in Fig. 3.7. The last column shows if the slave

executes (E) the syscall or copies (C) result. The boxed entries are affected by the

differences from 21.

system call, the monitor notifies the slave to start executing its syscalls. In other

words, the two start to interact with the environment directly. Both continue to send

their trace entries to the monitor to update their indices.

3.2.3 Re-synchronizing Master and Slave Executions

After providing the different inputs, the user presses another hot-key in both the

master and the slave to indicate that he/she wants to re-synchronize the two executions

such that they can share the same input events again to reduce non-determinism and

manual interactions. However, when the interrupts are received, the two executions

may be at different locations. The monitor needs to determine which execution is

faster and block it until the slower one catches up. After the two re-synchronize, they

resume in the coupled mode.
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ahead_of : ExecIndex× ExecIndex → Boolean

ahead_of(l1 · I1, l2 · I2) =


false if l1 6= l2 ∧ there is not a path from l2 to l1;

true if l1 6= l2 ∧ there is a path from l2 to l1;

ahead_of(I1, I2) otherwise i.e., l1 ≡ l2
normalize : ExecIndex× ExecIndex× ExecIndex→ ExecIndex× ExecIndex

normalize(l1 · I1, l2 · I2, nil) =

 〈l1 · I1, l2 · I2〉 if l1 6= l2 [N-INIT-NEQ]

normalize(I1, I2, l1) if l1 ≡ l2 [N-INIT-EQ]
normalize(l1 · I1, l2 · I2, Ip · lp) =

〈Ip · lp · l1 · I1, Ip · lp · l2 · I2〉 if l1 6= l2 ∧ l2 6= lp ∧ l1 6= lp [N-END]

normalize(l1 · I1, I2, Ip · lp) if l1 6= l2 ∧ l2 ≡ lp [N-RM-SECOND]

normalize(I1, l2 · I2, Ip · lp) if l1 6= l2 ∧ l1 ≡ lp [N-RM-FIRST]

normalize(I1, I2, Ip · lp · l1) if l1 ≡ l2 [N-EQ-HEADER]

Figure 3.9.: Re-synchronization primitives

We leverage execution indices to determine which execution is ahead of the other.

Intuitively, an index represents the nesting of control dependence regions. Two indices

sharing some common prefix means that the current execution points in the two runs

are nesting in a common set of control dependence regions, called aligned regions. By

comparing the relative positions of the two points inside the aligned regions, we can

decide which execution is ahead. Consider Fig. 3.6. Point 71 in (c) is ahead of 51 in

(b) because Im(51) = [4, 5] and Is(71) = [4, 7]; they share a prefix [4] and 7 is ahead

of 5 inside the region of 4. Similarly, 72 in (c) is ahead of 52 in (b). In particular,

their indices share the prefix [4]; 72 in (c) is in the region denoted by index [4, 4], i.e.

E○ representing the second iteration of the loop, whereas 52 in (b) is in the region

denoted by [4, 5], i.e. B○ representing the if statement at line 5 in the first iteration

of the loop). E○ is ahead of B○.

The ahead_of() primitive in Fig. 3.9 defines how to decide index order. If the two

indices share the same head label, it recursively checks the order of their tails. If the

head labels l1 and l2 are different, and there is a path from l2 to l1, the first index

is ahead. In Fig. 3.6,
ahead_of(Is(72), Im(52)) = ahead_of([4, 4, 7], [4, 5, 6, 4, 5])

= ahead_of([4, 7], [5, 6, 4, 5]) = true.
There are



53

cases where neither execution is ahead of the other if they are in the different branches

of a predicate. In this case, the monitor will re-synchronize the two executions at the

dynamic IPDOM of the predicate.

Dealing With Event Handling Loops. When the user sends a re-synchronization signal,

the two executions are likely inside some event handling loop, which receives and

handles external events. During the independent executions in decoupled mode, the two

runs may have received different events, e.g. different numbers of key strokes, causing

them to execute a different number of iterations. Index based re-synchronization

recognizes that the execution that iterated more is ahead1. As such, it tries to execute

the other that iterated less, but in fact the other execution cannot make progress

as it has received all the needed external inputs and expects no more. When the

while (1) {

if (select(STDIN, ...) == SUCCESS)

/* process the user input */

s1;

...

}

Figure 3.10.: Event handling loop example

user signals re-synchronization, he/she knows that the two executions have received

the different inputs, and they should start to receive the same inputs again from

then on. Hence, the iteration number differences of the event loop are not important.

We introduce a normalization step to remove the excessive entries (in the indices)

corresponding to unnecessary iteration differences. The primitive is defined in Fig. 3.9.

It takes three indices, with the first two requiring normalization and the third an

auxiliary parameter whose initial value is nil , and it produces two normalized indices.

The auxiliary parameter represents the current common prefix during computation.

According to the rules, it initially compares the two head labels. If different, the
1In indexing, an iteration nests within the region of the previous iteration such that the one iterating
more has a longer index.
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differences are not caused by the event loop, so it returns the two input indices

as normalized (rule N-INIT-NEQ). Rules N-INIT-EQ and N-EQ-HEADER detect

equivalent heads and move it to the tail of the common prefix. In rule N-RM-FIRST,

if the two heads are different but the head of the first index is identical to the tail

of the prefix, indicating repetitive entries, i.e. loop iterations, the head is removed.

Rule N-RM-SECOND is symmetric. Rule N-END states the termination condition, in

which the difference is not caused by repetition. The final normalized indices are the

common prefix concatenated with the two current indices.
Example. Fig. 3.10 shows a very simple event loop. Assume it iterates two times
and stops at line 5 in the master when the user signals re-synchronization, and it
iterates four times and stops at 3 in the slave, yielding the indices Im = [1, 1, 2, 5] and
Is = [1, 1, 1, 2, 4], respectively. Recall that loop iterations produce consecutive entries
in the indices as an iteration directly nests in the region of the previous iteration. We
have the following:

normalize(Im, Is,nil)

= normalize([1, 2, 5], [1, 1, 2, 4], [1]) [N-INIT-EQ]

= normalize([2, 5], [1, 2, 4], [1, 1]) [N-EQ-HEADER]

= normalize([2, 5], [2, 4], [1, 1]) [N-RM-SECOND]

= normalize([5], [4], [1, 1, 2]) [N-EQ-HEADER]

= [1, 1, 2, 5], [1.1, 2, 4]) [N-NED]

The rules applied are presented on the right. Note that at the second step, the heads

of the indices are different, but the second head is the same as the tail of the prefix,

indicating repetition. The head is thus removed. Observe that after normalization,

the two executions are within the same control dependence region, and the master is

ahead.

Overall Re-synchronization Procedure. The procedure is informally described as follows.

Assume Im and Is are the indices when a re-synchronization signal is received. The

monitor first normalizes Im and Is. If one execution is ahead of the other, it is blocked

until the other one catches up. If neither is ahead, meaning they are in the two

branches of some predicate, the monitor allows both to execute independently until

the dynamic IPDOM of the predicate.
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3.3 Handling Practical Challenges

Syscall Policy for Slave Execution in Coupled Mode. In previous discussion,

whether the slave should execute a syscall mainly depended on whether the syscall

corresponded to one in the master and whether they had different parameters. However,

the decision also depends on the type of the syscall. This is reflected by the policy

table look up on line 10 of Algorithm 6. For example, we would like to execute user

interface (UI) related syscalls such that the slave has its own UI.

Table 3.3.: Category of syscalls and the default policy.‘E’ and ‘C’ stand for execute

and copy, respectively.

Category Description Policy

Memory Allocate/free memories (mmap(), munmap(), ...) E

Process Create/kill/block processes (fork(), clone(), ...) E1

Open Open a file descriptor (open(), create(), ...) E

Input Read data from a file/environment (read(), stat(), ...) C

Output Write data to a file (write(), ...) C,E2

GUI Special case of network syscalls with X-Windows server E,C1,3

Utility Non-deterministic library functions (time(), ...) C

1. there is ID translation during execution.

2. outputs to stdout and UI are executed, others copied.

3. requests and replies are executed and events are copied.

We categorize syscalls into 7 groups. Table 3.3 presents the groups and their

policies. There are two possible policies: execute and copy. The former means that

the slave executes the syscall whereas the latter means that the slave copies the result

from the master and does not execute the syscall.

Process management syscalls follow the execute policy. In addition, the slave

and the master both manage a mapping between process IDs. Syscalls creating new

processes such as fork() and clone() return different process IDs in the two executions.

To prevent propagating these different values to other parts of the executions, we
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would like the corresponding processes in the two runs to have the same IDs. In

particular, when clone() is called to create a thread, both runs assign the same logical

thread ID to the newly created thread and map the real thread ID returned by the

syscall to the logical ID. Our wrapper around clone() then returns the logical ID.

Later, when the logical ID is used in other syscalls such as exit(), our wrapper maps

it to the original real ID.

Open syscalls also use an execute policy because the descriptors they return may

be used by other syscalls such as mmap or when the user introduces differences between

the executions. It is possible that the master succeeds in opening a file but the slave

fails to open the same file, for instance, when the master creates a file with the O_EXCL

option first. In this case, the slave opens a new temporary file. Since I/O syscalls in

the slave mostly copy their outcomes from the master, opening a different file will not

affect the slave execution.

Most input/output syscalls follow the copy policy. One exception is that we execute

output syscalls emitting to standard output or user interfaces to allow the slave to

have its interface. In addition, both the master and the slave record the buffer content

of an output syscall and meta information such as the definition point of the buffer,

for further analysis, e.g. slicing.

GUI applications in Linux communicate with the X server through sockets. There

are three types of messages: requests, replies, and events. Requests are sent from

a client to the server to request a service such as creating a window and querying

properties. Upon a request, the server sends the requested information with a reply.

Events are sent by the server without the corresponding requests, denoting user

interactions. Requests/replies are handled in a way similar to process management

syscalls, which use the execute policy and ID translation, to provide the proper user

interface. The master and the slave must map their window IDs to the same logical

ID when the windows correspond to each other. Events have the copy policy, meaning

the slave copies events from the master and ignores its own events.
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The slave also copies signals from the master in coupled mode, ignoring its

own signals except segfaults. We support threads by implementing a deterministic

scheduler [51] that allows one thread to execute at a time. This suppresses non-

determinism caused by different thread schedules.

3.4 Evaluation

We implement a prototype on Pin [42]. It can work on stripped binaries as it can

generate dynamic control flow graphs (for indexing). In our experiments, we first

quantitatively evaluate the space and time savings by our technique in comparison

with offline techniques. We then apply the prototype to three comparative analysis

tasks.

Table 3.4.: Applications in feature identification

Program Feature Description

alpine-1 Send an e-mail

alpine-2 Create a directory in remote imap server

xv Convert two different bitmap images to jpeg images

smbc Create a directory in remote samba server

ncmpc Add a song to playlist

3.4.1 Examined Comparative Tasks

Feature identification. As seen in Sec. 3.1, feature identification involves locating

the portion of a program responsible for a feature [15–19,21–23], and this can be done

by comparing executions of a program over different inputs [46]. Table 3.4 presents

the full set of examined feature identification tasks, which have appeared in published

work [46].
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Table 3.5.: Subjects in comparative debugging and regression understanding. The

regression bugs are tagged with ∗

Program Bug # Description

grep-1 12128 Numeric parameters are incorrectly interpreted

grep-2 16567

-i option does not work with a regular expressiongrep-3 27919

grep-4 27919

grep-5 21199 -w option causes incorrect search results

make-1 25493 Incorrectly handle dependencies in rules

make-2 18622 User-defined rules conflict with default rules

tar-1 508199 Cannot restore files from backup

tar-2 598636 Cannot handle broken symbolic links

tar-3 637085 Cannot handle longer filenames

grep-6∗ Search incorrect if -i, -n options are used together

grep-7∗ 36567
-i does not work with multi-byte characters

grep-8∗

find-1∗ 34976 Fail to save working directory

find-2∗ 29949 -execdir does not change working directory

make-3∗ 31155 Incorrect order in parsing patterns

make-4∗ 39310 Commandline options are applied multiple times

rm∗ -I, –interactive=once does not work same

seq∗ [seq 1 3 1] treated as [seq 1 3]

cp∗ –no-preserve=mode exits 1

cut∗ Incorrect error message

expr∗ Incorrect computation with negative value
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Comparative Debugging. To help developers, we integrate our technique into gdb

and provide a few new gdb primitives that allow developers to modify variables and

compare the execution with changes to an execution without them. Details on the

changes to gdb are presented in a later case study.

Understanding regression. We also apply our technique to executions of an old,

working version of a program and a new, failing version to understand regressions.

All the examined bugs are real world bugs from [3,52]. Table 3.5 describes them

with GNU Savannah bug IDs if any.

3.4.2 Disk Usage and Performance

In this experiment, we examine the impact of dual execution on the running time

and disk usage, when compared with offline techniques. We first collect traces of

the two executions for all the subjects (in the three tasks). We then perform offline

comparison. The results are used as the base line. We then use our prototype to

generate difference traces on the fly and compare the results. We used an Intel Core

i7 machine running Arch Linux 3.15.5 with 16GB RAM.

Table 3.6 presents the trace size comparison. The Traces column shows the size

of full traces. The Diffs (W/O Dual Exec.) column shows the size after offline trace

comparison. The Diffs (W/ Dual Exec.) column shows the size of difference traces

generated online. The % Full column shows the size of the difference traces as a

percentage of the full traces.

Note that we do not use any trace compression technique. However, our technique is

orthogonal to those techniques and users can combine the techniques to achieve smaller

traces. Also many trace compression techniques targets specific trace abstractions

but our technique can be used on a fine-grained trace including data and control

dependencies.

Observe that using dual execution always produces much smaller (difference) traces

than the full traces (5.41% on average). This is because the full traces include every
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Table 3.6.: Trace size comparison

Program
W/O Dual Exec. W/ Dual Exec.

Traces Diffs Diffs % Full

seq 62MB 15MB 15MB 24.19

make-3 1.8GB 409MB 358MB 19.42

make-4 4.6GB 887MB 886MB 18.81

grep-7 4.0GB 978MB 653MB 15.94

find-1 4.2GB 562MB 541MB 12.58

find-2 4.0GB 462MB 447MB 10.91

grep-8 4.0GB 432MB 424MB 10.35

grep-5 12.5GB 2.7GB 1.0GB 8.00

cut 79MB 6.0MB 6.0MB 7.59

grep-4 13GB 438MB 428MB 3.22

rm 3.8GB 117MB 117MB 3.00

xv 14GB 559MB 380MB 2.65

cp 68MB 1.4MB 1.3MB 1.91

tar-1 377MB 17MB 6.8MB 1.80

ncmpc 6GB 120MB 93MB 1.51

tar-2 457MB 6MB 4.0MB 0.88

smbc 55GB 627MB 432MB 0.77

make-1 15.7GB 1.5GB 105.2MB 0.65

expr 58MB 306KB 305KB 0.51

make-2 7.3GB 104.9MB 32.2MB 0.43

alpine-2 57GB 320MB 205MB 0.35

grep-3 14GB 41.2MB 40.7MB 0.28

grep-6 4.0GB 9.1MB 7.7MB 0.19

tar-3 11.4GB 35MB 6.4MB 0.055

grep-1 10.6GB 8.6MB 832KB 0.0074

alpine-1 60GB 344MB 170MB 0.0003

grep-2 14.8GB 3.4KB 1KB 0.000006

Geometric Mean 5.41
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instruction of both executions, while dual execution only records differences. For tasks

comparing executions, there is often substantial similarity between the executions.

There is also a lot of similarity across executions from initialization and configuration

behavior that is irrelevant to the analysis tasks.

Dual execution also consistently produces smaller differences than the differences

by offline comparison. This occurs because many applications have nondeterministic

behaviors that the user cannot control, which introduce additional differences. For

example, alpine reads and uses the system time quite often, causing a lot of non-

deterministic differences. Dual execution eliminates such differences by sharing system

events as much as possible.

Table 3.7 presents the time comparison. The Native column shows the original

native execution time, i.e. sum of the master and the slave. Tracing and Comp present

the time taken for whole execution tracing and offline comparison. Total1 is their

sum. Total2 presents the time for dual execution. The last two columns shows the

comparison. Running times of interactive programs are not comparable against Native,

denoted by ‘*’. Entries in the table are sorted by Tot2/Tot1. A lower number means

that dual execution improved the running time.

Observe that the time spent on dual execution is almost always lower than the

time for full execution tracing and offline comparison, 0.49% on average. The benefits

are more obvious for larger programs and longer runs. These improvements are mostly

due to the smaller traces that are actually recorded when using dual execution. The

slowdown of our system is 2022× relative to native on average. It is more suitable for

inhouse testing and debugging.

3.4.3 Case Studies

Feature Identification

In this case study, we use our prototype to identify 5 functional features from 4

real world applications. We use our prototype to trace and compare executions and



62

Table 3.7.: Execution time comparison

Program Native
W/O Dual Execution W/ Dual Execution

Tracing Comp Total1 Total2 Tot2/Tot1 Tot2/Nat

expr .002s 3s 0.5s 4s 6s 1.50 3000

seq .002s 4s 0.5s 5s 7s 1.40 3500

cut .002s 4s 0.7s 5s 7s 1.40 3500

grep-6 .01s 10s 29s 39s 49s 1.26 4900

cp .01s 4s 0.5s 5s 6s 1.20 600

make-3 .01s 19s 21s 40s 36s 0.90 3600

grep-7 .01s 11s 42s 53s 42s 0.79 4200

find-2 .03s 11s 39s 50s 38s 0.76 1267

find-1 .02s 12s 46s 58s 44s 0.76 2200

ncmpc 14s 1m 12s 1m 3s 2m15s 1m 42s 0.76 *

tar-1 .03s 18s 1s 19s 12s 0.63 400

tar-2 .01s 20s 2s 22s 12s 0.55 1200

grep-5 .05s 1m 16s 1m 45s 3m 1s 1m 32s 0.51 1840

make-4 .01s 42s 38s 80s 40s 0.50 4000

grep-8 .01s 12s 45s 57s 28s 0.49 2800

rm 2s 11s 32s 43s 19s 0.44 *

tar-3 .02s 1m 0s 1m 58s 2m58s 1m 15s 0.42 3750

xv 16s 2m 20s 3m 42s 6m 2s 2m 31s 0.42 *

grep-3 .03s 1m 10s 1m 9s 2m19s 45s 0.32 1500

grep-2 .02s 1m 16s 1m 11s 2m27s 47s 0.32 2350

grep-4 .02s 1m 6s 59s 2m 5s 38s 0.30 1900

make-2 .03s 52s 39s 1m31s 27s 0.30 900

smbc 40s 5m 32s 7m 2s 12m34s 3m 10s 0.25 *

grep-1 .02s 1m 0s 1m 15s 2m15s 26s 0.19 1300

alpine-2 16s 5m 20s 6m 31s 9m51s 1m 47s 0.18 *

alpine-1 12s 6m 42s 8m 59s 15m41s 2m 14s 0.14 *

make-1 .01s 1m 28s 1m 59s 3m27s 20s 0.10 2000

Geometric Mean 0.49 2022
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use an offline technique similar to [46] to identify functions from the trace. For each

case, we compare two executions that exercise the feature with different inputs by

using our prototype, and we identify the relevant differences, which are supposed to

correspond to the features. For example, in alpine-1 case, we compare two executions

sending two different mails. The differences between the executions should be the

feature responsible for sending different emails if there is no nondeterminism that is

not relevant to the input differences. Our prototype suppresses those nondeterminism.

Once we get the changes, we consider the highest function(s) on the call graph that

can cover all the differences to be the functional component for the feature. The

differences generated by our tool allow us to precisely locate the correct functions.

For example, all the differences in xv can be covered by two functions with the names

of LoadBMP() and SaveJPEG(), which clearly indicate they are the intended functions.

For alpine, we have located call_mailer() for email sending and add_new_folder() for

directory creation. For smbc, RcreateDir(). For ncmpc, mpd_async_send_command_v().

All these applications contain event handling loops that behave differently between

two executions because different user input timings or packet arrival timings perturb

the loop behavior, causing undesirable execution differences.

_XReply() {

while (1) {

reply = poll_for_reply();

if (reply->sequence == expected) break;

...

}

poll_for_reply() {

while (poll() == -1) ...;

}

Figure 3.11.: Simplified event handling loop in libX11

For the xv case, from the results in Table 3.6, 559MB-380MB=179MB trace

differences are due to such non-determinism, which largely originates from an event
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handling loop for reply messages from the X server, as shown in Fig. 3.11. In the

de-coupled mode, the different sequences of X messages make the loop at line 2 iterate

different times. As a result, full traces cannot be properly aligned, leading to lots of

undesirable differences during offline comparison. In contrast, the normalization step

in the re-synchronization mode in our technique suppresses such differences.

Comparative Debugging Using GDB

Table 3.8.: New gdb commands supported by dual execution

Command Interface

dslice dslice [instruction address]

[instance]

dset dset [variable] [value1] [value2]

dprint dprint [variable]

We integrated our prototype with gdb and provided new debugging commands

as shown in Table 3.8. dslice generates a dual slice [2] of the given instruction and

instance. The slice contains execution differences causally related to the difference at

the given slicing criterion. dset sets a variable in two executions to different values;

dprint shows two values of a variable side by side. Basic commands such as setting a

breakpoint and continuing the execution are applied to both executions by default.

We then used the enhanced gdb to debug the 10 non-regression failures. Each required

fewer than 15 manual steps to capture the causality of the failure. We also tried to

use the vanilla gdb to achieve the same results for three cases, grep-5, tar-2, and

tar-3, but failed due to the prohibitively tedious manual interactions involved.

Next, we present our experience with the grep-5 bug. The “-w” option in grep

selects lines containing whole word matches. The buggy program prints out only

a substring of a matched line. We launched the buggy program in our enhanced

gdb. Two processes were automatically created and run in coupled mode. We set
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EGexecute( … ):  /* correct execution */

         …  /* len = 7 */  ...

322C  if ((... && !match_words) || (…)) {

323D      len = end - beg;  // len = 12

              ...

371C      goto success_in_len;

           …
409     success_in_len:

410D     *match_size = len; 

EGexecute( … ): /* buggy execution */

         /* len = 7 */

         ...

369C   if (!start_ptr) {

             ...

371C     goto success_in_len;

          …
409     success_in_len:

410D     *match_size = len; 

do_execute( … ): 

        ...

984C  return execute(…, match_size, ...);

        ...

grepbuf( … ): 

           ...

1022C   while ( do_execute(&match_size, … ) ) {

             ...

1031D    endp =  b + match_size; 

1032      prtext ( …, endp, ...);

correct buggy

Figure 3.12.: Slicing results for grep

a breakpoint at prtext(), which printed the incorrect output. Few places in the

immediate source code were affected by the “-w” option; the match_word variable was

one of them. It had value 1 in the buggy run. We wanted to perturb its value and

observe the effect, and more important, the causality. We used dset to set it to 0 and

1 in the two respective runs. At the breakpoint, we observed output differences: the

execution with match_word set to 0 produced the whole line. We then used dslice

to slice from this output difference. Fig. 3.12 presents the resulting dual slice. The

results from the correct run are on the left side and those from the buggy run are

on the right. do_execution() and grepbuf() are common to both executions, though



66

they have different dependencies in EGexecution(). The subscript C and D on line

numbers represent control and data dependencies respectively. The bug manifests

when prtext() prints different results at line 1032 in grepbuf() because of the differences

in the variable endp. The slice result shows that the two executions have different

match_size values, 12 versus 7. It also shows that the control dependencies include

do_execute(), execute(), and EGexecution(). Observe that in the correct run, len is

defined at line 324, which eventually allows printing the whole line, whereas there is

no such definition in the buggy run. Therefore, the root cause is that such a definition

is missing when the option is set, which is confirmed by the bug report.

Next, we show our experience in doing the same comparative debugging with the

vanilla gdb. We started two executions of the buggy program and attached them to

two separate gdb instances. Then we set the match_word variable to 0 and 1 again.

But the challenges lie in monitoring the propagation of the value differences. We first

tried to single-step the two executions. But the definition point of match_word and the

output point are separated by a substantial amount of computation in EGexecute().

Even worse, there were control flow differences due to our perturbations such that

we had to somehow manually align the two executions. The process quickly became

unmanageable. Another attempted option was to identify related variables and set

break-points and watch-points. However, we could not solely use watch-points as

many related variables were stack variables. However, using break points was also

problematic. In particular, when we set a break point at the access to match_size in

do_execute(), we found that the access occurs more than 200 times and only the 150th

instance shows a difference across the two runs. The process is prohibitively tedious

and error-prone. In contrast, our new commands and the underlying dual execution

engine make interactive comparative-debugging feasible.

We also point out that the enhanced gdb is more flexible than a stand-alone slicing

tool as it allows interactively perturbing program state at any point.
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Table 3.9.: Dual slicing regressions

Program # of Instr. in differences # of Instr. in slice Time

grep-6 44K 35K 0.1s

grep-7 15K 7.7K 16s

grep-8 213K 76K 6s

find-1 42K 2.0K 6s

find-2 172K 120K 5s

make-3 888K 127K 4s

make-4 753K 108K 3s

rm 3.4K 214 1.5s

seq 902 516 0.2s

cp 2179 332 0.05s

cut 952 541 0.05s

expr 787 62 0.03s

Understanding Regressions

In this case study, we applied an existing dual slicing [2] tool on the difference

traces generated by the dual execution engine to understand regressions. As mentioned

earlier, dual slicing computes the execution differences related to the difference at

the slicing criterion. In the experiment, we use a text differencing tool to generate

syntactic mappings between statements in the two program versions and propagate

such mappings down to the instruction level to facilitate our engine. The slicing

criteria are output differences. In the case of crashing bugs, they are the pointer

de-references. The results are shown in Table 3.9. The second column shows the total

instructions in the difference traces, which are already a very small portion of the full

traces (Table 3.6). The third column shows the slice size. Observe that the slices are

much smaller than the differences for most cases. We also confirm that all of them

include the root causes. We suspect the slice sizes can be further reduced if we use a

better syntactic mapping algorithm. But that is beyond our scope.
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3.5 Related Work

Execution comparison. Execution comparison is used in debugging [1, 53–55],

concurrency failure understanding [2], vulnerability detection [6], and binary reuse [46].

Comparative causality [3] produces bug explanations by replacing program states

on the fly. Sieve [5] compares traces from program versions to identify the root

causes of regressions. Hoffman et al. proposed a semantic-aware trace analysis [56]

for understanding executions, particularly identifying the cause of regressions. In

comparison to these works, the dual execution engine avoids generating full traces.

Instead, it performs online comparison and only records differences.

Execution Replication and Replay. Execution replication has been widely studied

[57–62]. The premise is similar to n-version programming [63], which runs different

implementations of the same service specification in parallel. Then, voting is used to

produce a common result tolerating occasional faults. Vandiver et al. [64] proposed

a technique that handles Byzantine faults in database transaction processing using

replicated systems. Chun et al. [65] run diversified replicas on multi-core processors

to handle Byzantine faults. There are also many security applications [7, 66–68] of

n-variant execution. McDermott et al. [69] proposed a defense technique based on

logical replication. They re-execute commands on each replicated system and detect

differences among the replicas. TightLip [70] runs a replicated process in parallel to

an original process and analyzes the replica to prevent information leakage. There is

also a large body of works in execution replay [71–76] that aim to faithfully reproduce

an execution. Compared to these works, our technique allows differences in executions

and handles the complex consequences of these differences.

Viennot et al. [49] proposed a technique that replays events from one version of a

program with another version of the program. It hence also allows sharing syscalls

across different executions. However, it requires exploration steps to find the best

replay. In contrast, our technique exploits fine-grained traces and can align executions

on-the-fly.
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Execution Alignment. Alignment techniques identify corresponding points [50, 77,

77, 78] and memory locations [79] across different executions. Xin et al. proposed

Execution Indexing (EI) [50] to precisely locate corresponding points across executions.

Our technique is built on EI. We have overcome many new challenges such as lockstep

synchronization, re-synchronization, and syscall dispatching for our purpose.
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4 Apex: AUTOMATIC PROGRAMMING ASSIGNMENT ERROR

EXPLANATION

In this chapter, we presents Apex, that can automatically generate explanations

for programming assignment bugs, regarding where the bugs are and how the root

causes led to the runtime failures. It works by comparing the passing execution of

a correct implementation (provided by the instructor) and the failing execution of

the buggy implementation (submitted by the student). The technique overcomes a

number of technical challenges caused by syntactic and semantic differences of the

two implementations. It collects the symbolic traces of the executions and matches

assignment statements in the two execution traces by reasoning about symbolic

equivalence. It then matches predicates by aligning the control dependencies of the

matched assignment statements, avoiding direct matching of path conditions which

are usually quite different. Our evaluation shows that Apex is every effective for 205

buggy real world student submissions of 4 programming assignments, and a set of 15

programming assignment type of buggy programs collected from stackoverflow.com,

precisely pinpointing the root causes and capturing the causality for 94.5% of them.

The evaluation on a standard benchmark set with over 700 student bugs shows similar

results. A user study in the classroom shows that Apex has substantially improved

student productivity.

4.1 Introduction

According to a report in 2014 [80], computing related job opportunities are growing

at two times the CS degrees granted in US. The US Bureau of Labor Statistics predicts

there will be one million more jobs than students in just six years. As a result,

CS enrollment surges in recent years for many institutes. With the skyrocketing
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enrollments, the luxury of one-to-one human attention in grading programming

assignments may no longer be afforded. Automating grading is of a pressing need.

In the current practice, automated programming assignments grading is mainly by

running the submissions on a test suite. Failing cases are returned to the students,

who may have to spend a lot of time to debug their implementation if they receive no

hints about where the bug is and how to fix it. While the instructor may manually

inspect the code and provide such feedback, these manual efforts can hardly scale to

large classes.

In a recent notable effort [81], researchers have proposed to use program synthesis

to correct buggy programming assignments. Given a correct version and a set of

correction rules, the technique tries to sketch corrections to the buggy programs

so that their behavior match with the correct version. Despite of the effectiveness

of the technique, the demand of providing the correction rules adds to the burden

of the instructor. Later in [82], a technique was proposed to detect the algorithm

used in a functionally correct student submission and then suggest improvement

accordingly. The onus is on the instructor to prepare the set of possible algorithms

and the corresponding suggestions.

In this chapter, we aim to develop an automatic bug explanation system for

programming assignments. It takes a buggy submission from the student, a correct

implementation from the instructor, and a failing test case, then produces a bug report

that indicates the root cause and explains the failure causality. Since the submission

and the correct implementation are developed by different programmers, they are

usually quite different. Different variable names, control structures, data structures,

and constant values may be used (Section 4.2). Note that the faulty statements

are part of such differences. Recognizing them from the benign differences is highly

challenging.

Debugging by comparing programs and program executions is not new. Equivalence

checking [83, 84] was leveraged in [85] to derive simple and partial fixes to internal

faulty state, guided by a correct execution. However, substantial structural changes
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between versions often make fixing internal state difficult. Weakest pre-conditions

that induce behavioral differences across versions were identified and used to reason

about bugs [86]. This technique relies on SMT solver and focuses on finding root cause

conditions. It hardly explains the causality of failures, which is equally important.

Another kind of techniques is dynamic analysis based. Comparative causality [3],

dual slicing [2], and delta debugging [87] compare a passing run with a failing run

and generate a causal explanation of the failure. However, they often assume the

executions are from the same program to preclude syntactic differences that are difficult

for dynamic analysis.

Apex is built on both symbolic and dynamic analysis, leveraging the former to

handle syntactic differences and using the latter to generate high quality trace matches

and causal explanations. It works by comparing the passing execution from the correct

implementation and the failing execution from the buggy implementation. It collects

both concrete execution traces and symbolic traces. The latter captures the symbolic

expressions for the values occurring during execution. It then uses a novel iterative

algorithm to compute matchings that map a statement instance to some instance(s)

in the other version. The matchings are computed in a way aiming to maximize

the number of equivalent symbolic expressions and respect a set of well-formedness

constraints. A comparative dependence graph is constructed representing the dynamic

dependencies from both executions. It merges all the matched statement instances

and their dependencies to single nodes and edges respectively, and highlights the

differences. A comparative slice is computed starting from the different outputs. A

bug report is derived from the slice to capture the root cause and failure causality.

Our contributions are summarized as follows.

• We formally define the problem and identify a few key constraints in constructing

well-formed matchings. Specifically, we have formulated the main challenge of

generating statement instance matchings as a partial maximum satisfiability

(PMAX-SAT) problem.
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• We develop an iterative algorithm that guarantees well-formedness while approx-

imating maximality.

• We develop a prototype Apex. Our evaluation on 205 buggy real world buggy

student submissions from 4 programming assignments and a set of 15 program-

ming assignment type of programs collected from [88] shows that Apex can

correctly identify the root causes and causality in 94.5% of the cases and generate

very concise bug reports. The evaluation on a standard benchmark set [89] with

over 700 student bugs shows similar results. A user study in the classroom shows

that Apex has substantially improved student productivity.

4.2 Motivation

In our context, the buggy and the correct implementations are developed by

different programmers. As such, they often have substantial differences representing

the various ways to implement the same algorithm. We call them the benign differences.

However, they are mixed with buggy differences. Our tool needs to distinguish the

two. We classify popular benign differences into two categories.

Type I: Syntactic Differences. The two implementations may use different variable

names and different expressions, such as int pivot= low + (high - low) / 2 versus

int pivot= (hi - lo) / 2 . These differences may be eliminated by comparing their

symbolic expressions.

Type II: Semantic Differences. (1) Different conditional statements or loop structures

may be used.

Example. Consider the code snippets in Fig. 4.1. They are part of two programs

collected from stackoverflow.com that compute the sum of even fibonacci numbers.

The initial numbers are N0, N1, and the upper bound is N . Program (b) represents

a correct implementation. The buggy version in (a) leverages that an even fibonacci

number occurs after every two odd numbers. It hence uses a for loop in lines 4-12 to

compute fibonacci numbers in groups of three and add the last one (the even number)
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to the sum. The bug is at line 8. While the predicate should test if the new fibonacci

number exceeds the upper bound, the developer forgot that i1 has been updated

at line 7 and mistakenly used i1+i0 to denote the new number. As a result, the

execution terminates earlier, missing a fibonacci number in the sum. Observe that the

two implementations have different control structures. �

(2) Different values may be used in achieving similar execution control. For

example, in two Dijkstra implementations collected from stackoverflow.com, one uses

a boolean array visited[i] to denote if a node i has been visited whereas the other

uses an integer array perm[i] with values MEMBER and NONMEMBER to denote the same

thing.

(3) Various data structures may be used. These differences, when mixed with

the differences caused by bugs, make it very challenging to meet our goal. Note that

equivalence checking [83] that reasons about the symbolic equivalence of final outputs

is less sensitive to these differences as it does not care about equivalence of internal

states. However in our context, we need to align internal states to generate failure

explanations.

Figure 4.2.: Program differences difficult for sequence alignment. Only the highlighted

entries in (c) and (d) are matched

Limitations of Sequence Alignment. A widely used approach to aligning program

traces is sequence alignment [91] that identifies the longest common subsequence of

two traces. It seems that we could extend the algorithm to match the sequences of

symbolic expressions to identify the parts that are bug-free. However, we found that

such an algorithm did not perform well in our context because the two programs
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are often quite different. Consider Fig. 4.2. In (a), the loop in the left program is

partitioned to two in the right program, which are semantically equivalent to the

original loop. As a result, statements S1 and S2 have different orders in the traces

in (c). The traces cannot be fully matched by sequence alignment although they are

semantically equivalent. Similarly, the statement reordering in (b) also leads to that

trace entries cannot be fully matched in (d). Furthermore, the two versions may use

completely different path conditions (e.g., Fig. 4.1). As such, sequence alignment

cannot match the symbolic expressions of the predicates even though they may serve

the same functionalities.

Illustrative Example. Next, we are going to use the example in Fig. 4.1 to illustrate

the results produced by Apex.

Fig. 4.3 shows part of the traces for the implementations in Fig. 4.1. The first

columns show the dynamic labels (e.g. 52 denotes the second instance of statement 5).

The second column presents the dynamic control dependencies (DCD). For instance,

DCD(41)=E-31 means that 41 is dynamically control dep. on 31, which is further

control dep. on the entry E. The third columns show the executed statements. The

fourth columns present the symbolic expressions with respect to the input variables

(for the assignment statements). The last columns show the values. From the symbolic

traces, our tool will identify the equivalent symbolic expressions leveraging a SMT

solver, as illustrated by the lines in Fig. 4.3. The tool then matches the DCDs of the

matched symbolic expressions. Note that we cannot match DCDs by the symbolic

equivalence of the predicate expressions as they are often different. Instead, we match

them by well-formedness constraints (Section 4.3).

The lines in Fig. 4.1 represent the computed statement matchings. Lines 3, 4 and

8 in (a) are matched with 5 in (b), as they are the loop conditions. Line 5 in (a) is

matched with line 4 in (b), denoting the computation of the new fibonacci number.

Lines 13-14 in (a) are matched with lines 7-8 in (b), both updating the sum. These

statement matchings can be considered as a common sub-program of the two versions.
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Intuitively, we reduce the problem to analyzing the two executions of the common

sub-program.

From the trace matching results, a dynamic comparative dependence graph (DCDG)

is constructed. The graph represents dynamic dependencies in both executions. It

merges statement instances and dependencies that match. In the presence of bugs, a

statement may have some of its instances matched but not the others. These instances

that are supposed to match but do not are called the aligned but unmatched instances.

They are usually bug related. For example in Fig. 4.1, line 8 in (a) has all its instances

matched with line 5 in (b) except the last one, which took the wrong branch outcome

due to the bug. The last one is hence an aligned but unmatched instance. We also

merge such instances in the graph but highlight their different values. Statement

instances that are neither matched nor aligned are represented separately. Note that

in the paper, words “align” and “match” have different meanings.

Fig. 4.4 presents the DCDG for the executions in Fig. 4.3. Plain nodes represent

matched statement instances. Green nodes are instances that are aligned but un-

matched. Each plain/green node contains instances from both runs. Red/yellow nodes

are those only present in the buggy/correct run, each containing only one instance.

Label “a-51” means the first instance of line 5 in version (a). The concrete values are

also presented in the right side of the nodes. Observe that the computations of the

fibonacci numbers 3, 5, 8, 13, 21, and 34 are matched (i.e. a-51 vs. b-41,..., a-56 vs.

b-46). The corresponding loop conditions and the first updates of the sum (i.e. a-141

vs. b-81) are also matched.

The loop conditions a-85:if (i1+i0>n) and b-56:if (n2>n) are aligned but not

matched (i.e. the first green node). Hence the buggy execution exits the loop whereas

the correct execution continues. Consequently, the conditions guarding the updates of

the sum are also aligned but not matched (i.e. the second green node). As such, the

sum was updated in the passing run but not in the failing run.

A comparative slice is computed starting from the two different outputs, denoting

the causal explanation of the differences. A bug report is generated from the slice,
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a-0: Entry
a-31: while(i1 <n && status == 1) : T

b-0:Entry

a-141: eSum += sum : 10
b-81: sum += n2 : 10

a-85: if ((i1 + i0) >n) : T
b-56: if (n2 >n) : F

output-b

a-82: if ((i1 + i0) >n) : F
a-43: for (int cycle=3; cycle>0; cycle–) : T

b-52: if (n2 >n) : F

a-91: status = 0;

a-81: if ((i1 + i0) >n) : F
a-42: for (int cycle=3; cycle >0; cycle–) : T

b-51: if (n2 >n) : F

a-83: if ((i1 + i0) >n) : F
a-45: for (int cycle=3; cycle>0; cycle–) : T

b-54: if (n2 >n) : F

a-84: if ((i1 + i0) >n) : F
a-46: for (int cycle=3; cycle>0; cycle–) : T

b-55: if (n2 >n) : F

a-131: if (status == 1) : T
b-73: if (n2 % 2 == 0) : T

a-52: sum = i0 + i1 : 5
b-42: n2 = n0 + n1 : 5

a-53: sum = i0 + i1 : 8
b-43: n2 = n0 + n1 : 8

a-51: sum = i0 + i1 : 3
b-41: n2 = n0 + n1 : 3

a-54: sum = i0 + i1 : 13
b-44: n2 = n0 + n1 : 13

a-132: if (status == 1) : F
b-76: if (n2 % 2 == 0) : T

a-55: sum = i0 + i1 : 21
b-45: n2 = n0 + n1 : 21

a-56: sum = i0 + i1 : 34
b-46: n2 = n0 + n1 : 34

output-a

b-82: sum += n2 : 44

a-32: while(i1 <n && status == 1) : T
a-44: for (int cycle=3; cycle >0; cycle–) : T

b-53: if (n2 >n) : F

a-41: for (int cycle=3; cycle >0; cycle–) : T
b-0:Entry

matched instructions
aligned but unmatched
instructions only exist
in the buggy implementation.
instructions only exist
in the correct implementation.
slicing criteria.
data dependencies.
control dependencies.
computed slice.

Figure 4.4.: DCDG for the example in Fig. 4.1

explaining (1) what the buggy version has done wrong and (2) what is the correct

thing to do. Since part (2) is usually derived from the correct version invisible to

the student, our tool translates it using the variable names in the buggy version. In

Fig. 4.4, the two output nodes with triangles are the slicing criterion. The dotted

box represents the slice. The root of the slice is exactly the buggy statement and its
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Definitions:

Label `, t LabelInst `i/tj : the i/j-th instance of label `/t

ispred(`i): if `i is a predicate instance

sym_expr(`i) : symbolic expression of `i

DCD(`i) : predicate instances that `i directly/transitively control dep. on

`i  `′k : `′k is directly/transitively dependent on `i

`i ↔ tj : the statement instance at `i matches with that at tj

Well-Formedness Constraints:

[WF-SYM]

`i ↔ tj =⇒ (¬ispred(`i) =⇒ sym_expr(`i) ≡ sym_expr(tj))

[WF-CD]

`i ↔ tj =⇒ (∀`′k ∈ DCD(`i), ∃t′l ∈ DCD(tj) `′k ↔ t′l) ∧

(∀t′l ∈ DCD(tj), ∃`′k ∈ DCD(`i) `′k ↔ t′l)

[WF-X]

`i ↔ tj =⇒ ¬∃`′k, t′l, `′k ↔ t′l ∧ ((`′k  `i ∧ tj  t′l)∨

(`i  `′k ∧ t′l  tj))

Figure 4.5.: Definitions and constraints for instance matching

alignment (a-85 vs. b-56), which have different branch outcomes. The interpretation

of the slice, in the language of the buggy version, is that “Statement 8 if(i1+i0>n)

should have taken the false branch. As a result, statement 9 status=0 should not

have been executed. Consequently, statement 13 if(status==1) should have taken

the true branch, eSum+=sum should have been executed, and eventually eSum should

have been 44 instead of 10”. It precisely catches the root cause and failure causality,

and provides strong hints about the fix. Note that the yellow node b-82:sum+=n2 is

translated to eSum+=sum in the buggy version.
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4.3 Problem Formalization

The key challenge is to generate statement instance matchings. We use labels ` and

t to denote statements in the two respective implementations. Due to implementation

differences, an instance in one execution can match with multiple instances in the

other execution.

1

1

1

1

2

2

3

2

1

1

2

2

3

3

2

3

1

1

1

1

2

2

1

1

2

2

2
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1

1
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1
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Figure 4.6.: Instance matching for the example in Fig. 4.1. The nodes in grey are from

the correct implementation. In (b) and (c), node ‘W1’ stands for the first instance of

the while loop in (a). Similarly, ‘F’, ‘I’, ‘+’ nodes in (b) an (c) stand for the for loop,

if conditions, and the addition operations

Intuitively, if two assignment instances match, their symbolic expressions should be

equivalent. Furthermore, their control dependencies need to match. It does not mean

the corresponding comparison expressions (at the control dependence predicates) need

to be equivalent. In fact they are often different. Hence, we ignore the expressions

in predicates, treating them as place holders. We match the label instances of

these predicates based on the matchings of the assignments control dependent on

the predicates and a set of well-formedness constraints defined in Fig. 4.5. Rule

[WF-SYM] denotes that if the matching is for assignments, the symbolic expressions

must be equivalent. Rule [WF-CD] means that if two instances `i and tj match, a

(transitive) dynamic control dependence of `i/tj must match with a (transitive) control



82

dependence of tj/`i. Rule [WF-X] indicates that if `i and tj match, there must not be

another match `′k and t′l such that `i is dependent on `′k and t′l is dependent on tj, or

vice versa. Otherwise, a cycle of dependence is formed, which is impossible in program

semantics. Note that matching of transitive data dependencies is already implicitly

enforced by the symbolic equivalence in [WF-SYM], because two symbolic expressions

are equivalent means that their computations (i.e., data slices) are equivalent.

Example. Fig. 4.6 shows part of the executions from Fig. 4.3 in their dependence

graph view. The lines across executions denote matches. Figure (a) shows matchings

satisfying the well-formedness constraints. To satisfy a-51 ↔ b-41, their dynamic

control dependencies need to match (Rule [WF-CD]). The only legitimate matchings

are ENTRY ↔ ENTRY , a-31 ↔ ENTRY and a-41 ↔ ENTRY . To satisfy the

second assignment matching a-52 ↔ b-42, the DCDs of a-52, including ENTRY , a-31,

a-41, a-81 and a-42, should match with those of b-42, including ENTRY and b-51.

Figures (b) and (c) show two options. In (b), I1 ↔ E (i.e. a-81 ↔ ENTRY ).

However, this matching and the assignment matching +1 ↔ +1 together violate Rule

[WF-X], because of +1  I1 on the left (line 8 depends on line 7 and then line 5

according to Fig. 4.1(a)) and ENTRY  +1 on the right. Since the match edges are

bi-directional, the four edges in the shaded region form a cycle. Similarly, (c) shows

another ill-formed matching in which F1 ↔ I1 induces a cycle. The only legitimate

matching is the one shown in figure (a), in which a-81 ↔ b-51 and a-42 ↔ b-51. �

Since one execution is buggy, total matching is impossible. Our goal is hence to

maximize the number of matches. We reduce the problem to a partial maximum

satisfiability (PMAX-SAT) problem. Given an UNSAT conjunction of clauses, the

maximum satisfiability (MAX-SAT) problem aims to generate assignments to variables

that maximizes the number of clauses that are satisfied. PMAX-SAT is an extension

of MAX-SAT, which aims to ensure the satisfiability of a subset of clauses while

maximizing the satisfiability of the remaining clauses. In our context, we want to

maximize the number of assignment matchings while assuring the well-formedness

constraints are satisfied. We consider assignments more essential than predicates
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because the symbolic expressions of predicates are often quite different across programs

even when they serve the same purpose. Our problem statement is hence formulated

as follows.

Definition 4.3.1 Given two executions, let `i ↔ tj be a boolean function for each

pair of assignment statement instances denoted by `i and tj, with `i ↔ tj = 1 meaning

they match.

F =
∧

∀¬ispred(`i), ¬ispred(tj)

`i ↔ tj
(1)

∧ CWF-SYM ∧ CWF-CD ∧ CWF-X
(2)

, with CWF-SYM, CWF-CD and CWF-X the instantiations of well-formedness constraints

using the relevant label instances. Our goal is to solve F while ensuring part (2) must

be satisfied and maximizing the satisfiability of part (1).

PMAX-SAT is NP-hard. The formula has quantifiers and is cubic to the execution

length. Solving it is prohibitively expensive.

4.4 Design

The design of Apex consists of three phases and features an approximate solution

to the statement instance matching (PMAX-SAT) problem.

In phase (1), an iterative matching algorithm is applied. In each iteration, sequence

alignment is used to match the symbolic expression traces. Apex then matches the

dynamic control dependencies of the matched expressions and checks well-formedness.

In the following iterations, Apex repeats the same procedure to match the residues,

until no more matches can be identified. This is to handle statement reordering as

exemplified in Fig. 4.2. In particular, in the first round, it matches the S1 sequences.

Then in the second round, it matches the S2 sequences.

In phase (2), the (bug related) residues are further aligned (not matched) based solely

on control structure, without requiring the symbolic expressions to be equivalent.

Particularly, Apex summarizes all the matches identified in the previous phase to
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generate a matching at the statement level (not the instance level). Intuitively, this

statement level matching identifies the common sub-program of the two versions. We

then leverage the statement mapping to identify the entries that are supposed to

match but their symbolic expressions are different. These entries are likely bug related.

Note aligning these entries allows us to not only identify buggy behavior, but also

suggest the corresponding correct behavior.

In phase (3), a dynamic comparative dependence graph is constructed and the com-

parative slice is computed to generate the bug report.

x

y

i

i

j

j

Figure 4.7.: Cycles in matchings. Boxes denote control deps

4.4.1 Phase (1): Iterative Instance Matching

The matching procedure in this phase is iterative. In each round, we first extend

sequence alignment to match the symbolic expression sequences. Two expressions

can be matched if they are equivalent. Apex then traverses the matched expression

pairs in the generated common sub-sequence to match their dynamic control depen-

dencies (DCDs) by the well-formedness constraints (not by the symbolic equivalence

of predicates). Due to Type II differences (e.g. control structure differences), it is

often difficult to match a predicate uniquely to another predicate in the other version.

We hence construct matchings between predicate sequences. Such matchings may be
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coarse-grained at the beginning (e.g. E-31-41 ↔ E-51). They are gradually refined

(e.g. the previous matching becomes E-31 ↔ E and 41 ↔ 51).

LabelInstSeq L, T := `i|tj InstMap := P(LabelInstSeq × LabelInstSeq) SeqAlignment C := 〈`i, tj〉

InstMap I : mappings between dynamic control dep. InstMap V :the resulting instance matchings LabelInstSeq DCD(`i) :

dynamic control dep. of `i

wellformed(L, T, I) determines if L↔ T is a well-formed matching.

wellformed(L, T, I) =



false ∃Lx, Ty, Lx ↔ Ty ∈ I ∧ ((Lx ⊂ L ∧ T ⊂ Ty) ∨ (L ⊂ Lx ∧ Ty ⊂ T ))

false ∃`i, tj¬ispred(`i) ∧ ¬ispred(tj) ∧ `i ↔ tj ∈ V ∧DCD(`i)↔ DCD(tj) ∈ I∧

DCD(`i) ⊂ L ∧ T ⊂ DCD(tj) ∧ `i  last(L)

false ∃`i, tj¬ispred(`i) ∧ ¬ispred(tj) ∧ `i ↔ tj ∈ V ∧DCD(`i)↔ DCD(tj) ∈ I∧

DCD(tj) ⊂ T ∧ L ⊂ DCD(`i) ∧ tj  last(T )

true otherwise

split(V, `i ↔ tj) splits all the statement instance matchings based on the single instance matching `i ↔ tj .

split(L↔ T ∪ V, `i ↔ tj) =



{L↔ T} ∪ split(V, `i ↔ tj) `i /∈ L ∨ tj /∈ T

{L1-`i ↔ T1-tj , L2 ↔ T2} ∪ split(V, `i ↔ tj) L ≡ L1-`i-L2 ∧ T ≡ T1-tj -T2

{L1-`i ↔ T1-tj , L2 ↔ tj} ∪ split(V, `i ↔ tj) L ≡ L1-`i-L2 ∧ T ≡ T1-tj
{L1-`i ↔ T1-tj , `i ↔ T2} ∪ split(V, `i ↔ tj) L ≡ L1-`i ∧ T ≡ T1-tj -T2

maxpref(L1, L, T1, T, I) determines if L1 and T1 are the maximum prefixes of L and T that are also shared by

some previously matched pairs in I.

maxpref(L1, L, T1, T, I) =



true L1 ⊂ L ∧ T1 ⊂ T ∧ ∃L′, T ′, (L′ ↔ T ′ ∈ I ∧ L1 ⊂ L′ ∧ T1 ⊂ T ′) ∧

¬∃Lx, Ty, L
′′, T ′′, (L1 ⊂ Lx ⊆ L ∧ T1 ⊂ Ty ⊆ T ∧ Lx ⊂ L′′

∧ Tx ⊂ T ′′ ∧ L′′ ↔ T ′′ ∈ I)

false otherwise

V⊗I L↔ T : the cross product of the current instance matching V with a new control dep. matching L↔ T ,

which may introduce new matchings.

[C-NEW]

V⊗I L↔ T = V ∪ {L↔ T}, if ¬∃L1 6= nil, T1 6= nil,

maxpref(L1, L, T1, T, I)

[C-DUP]

V⊗I L↔ T = V, if maxpref(L,L, T, T, I)

[C-SPLIT]

V⊗I L1-L2 ↔ T1-T2 = split(V, last(L1)↔ last(T1)) ∪ {L2 ↔ T2}, if maxpref(L1, L1-L2, T1, T1-T2, I)

[C-TAILA]

V⊗I L1-L2 ↔ T = split(V, last(L1)↔ last(T )) ∪ {L2 ↔ last(T )}, if maxpref(L1, L1-L2, T, T, I)

[C-TAILB]

V⊗I L↔ T1-T2 = split(V, last(L)↔ last(T1)) ∪ {last(L)↔ T2}, if maxpref(L,L, T1, T1-T2, I)

[UNMATCHED-EXPR]

¬wellformed(DCD(`i), DCD(tj), I)

〈`i, tj〉 · C, I,V −→ C, I,V

[MATCHED-EXPR]

wellformed(DCD(`i), DCD(tj), I) I′ = I ∪DCD(`i)↔ DCD(tj)

V′ = (V⊗I DCD(`i)↔ DCD(tj)) ∪ `i ↔ tj

〈`i, tj〉 · C, I,V −→ C, I′,V′

Figure 4.8.: Instance matching rules. Symbol ‘-’ in L1-L2 means concatenation

Well-formed Matching of Control Dependencies. Next we focus on explaining

how Apex matches the DCDs and checks well-formedness. The algorithm traverses
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the longest common sub-sequence C produced by sequence alignment, trying to match

the DCDs of each expression pair.

The traversal procedure is described by the two term rewriting rules on the bottom

of Fig. 4.8. The symbols and functions used in the rules are defined on the top.

The configuration of evaluation consists of the common sub-sequence C containing a

sequence of label instance pairs, the DCD mappings I used to facilitate well-formedness

checks, and the instance mappings V.

The traversal is driven by C. Rule [UNMATCHED-EXPR] is to handle a pair

of expressions in C that were matched by sequence alignment but violate the well-

formedness constraints. Function wellformed() determines if matching two label

instance sequences L and T (denoting DCDs) causes any well-formedness violations.

According to its definition in Fig. 4.8, it detects three kinds of violations. In the first

case, if there is already a mapping Lx ↔ Ty admitted to I in the past, and Lx is a

prefix of L and T a prefix of Ty (or vice versa), there must be a cycle similar to Fig. 4.7

(a). The ⊂ operator means prefix here. In Fig. 4.7 (a), there must be some matching

between a statement instance in L	 Lx (i.e., in L but not Lx) and some statement

instance in T (e.g. if(C3) ↔ if(D1)). Similarly, there must be some matching

between an instance in Ty 	 T and some instance in Lx (e.g. if(C1) ↔ if(D3)).

Also because L 	 Lx must be control dependent on Lx (all these are valid control

dependencies) and Ty 	 T control dependent on T . A cycle of dependence is formed,

violating [WF-X] (Section 4.3).

As illustrated in Fig. 4.7 (b), the second case describes that there is an existing

expression matching `i ↔ tj ∈ V (whose DCD matching is hence in I which we will

explain later), and the dynamic control dependence of `i, DCD(`i), is a prefix of L,

and T is a prefix of DCD(tj). If L↔ T , the last entry of L (i.e. if(C2)) must match

with some entry in T (e.g. if(D2)). However, the matching becomes illegal if some

predicate in L 	 DCD(`i) (e.g. if(x)) is dependent on `i (i.e. x=...), because a

cycle `i-if(x)-if(C2)-if(D2)... -tj-`i is formed. The third case is symmetric.
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Rule [MATCHED-EXPR] handles the case that the matching of the DCDs of an

expression pair is well-formed. The control dependence mapping set I is updated by

adding the control dependencies of the matched expressions. The instance mapping set

V is also updated so that some previous matched statement sets can be broken down

to smaller (matched) subsets. Note that smaller matched sets mean finer granularity in

matching. This is done by a cross-product operation between the control dependence

mapping (of the symbolic expressions) and the current instance mapping set. The

expression matching is also added to the result set.

The cross-product operation V⊗I L↔ T may introduce new mappings and split

an existing mapping into multiple mappings. If L and T do not share any common

prefixes with any existing control dependence mapping, L↔ T is added to V (Rule

[C-NEW]). If they do share common prefixes with some existing mappings, which

suggests that the existing mappings are too coarse grained, the existing mappings

are hence refined. The mapping with the maximum common prefixes is identified

through the maxpref() primitive. Assume the maximum common prefixes are L1 and

T1, the existing mappings are split if they include the mapping last(L1)↔ last(T1)

through the split() primitive ([C-SPLIT]). For example, assume a new mapping

E-31-61 ↔ E shares common prefix with an existing mapping E-31-41 ↔ E-51. The

existing mapping is split by the last entries of the common prefixes 31 ↔ E, resulting

in two smaller mappings E-31 ↔ E and 41 ↔ 51. The suffices of L and T are also

added to V as a new mapping. Rules [C-TAILA] and [C-TAILB] handle the corner

cases that the maximum common prefix is one of L and T , in which the non-empty

suffix is matched with the last entry of the prefix. This is the only legal mapping

without introducing cycles.

� Example. Table. 4.1 shows how the algorithm works on the traces in Fig. 4.3.

The sequence alignment generates the initial C that identifies the longest sequence

of equivalent symbolic expression pairs, as shown in the first row. Each row of the

table represents one step of the algorithm that processes and removes a pair from C.

Columns 3 and 4 show the DCD mappings and instance mappings, after the rules
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specified in the last column are applied. At step one, matching the DCDs of 51 and

41 is well-formed. As such, the DCDs are added to both I and V, and 51 ↔ 41 is

added to V. At step two, matching the DCDs of 52 and 42 is also well-formed. Since

DCD(52) = E-31-41-81-42 and DCD(42) = E-51, the cross product of their matching

with V identifies that an existing mapping E-31-41 ↔ E has the maximum common

prefix with the new mapping. Hence the suffix mapping 81-42 ↔ 51 is added. Step

three is similar. At step four, the DCD matching of 141 and 81 is well-formed. The

cross product of their DCD matching E-31-131 ↔ E-51-52-73 with V not only induces

the addition of 131 ↔ 51-52-73 to V, but also splits E-31-41 ↔ E to E-31 ↔ E and

41 ↔ E by the split() primitive. �

To handle implementation differences such as statement reordering (e.g. Fig. 4.2),

Apex applies the aforementioned procedure iteratively until no more matchings can be

found. In particular, after each round, the trace entries corresponding to the matched

symbolic expressions that pass the well-formedness checks (i.e., those admitted by

Rule [MATCHED-EXPR]) are removed from the traces. Note that the predicate

instances representing control dependencies are never removed even they are matched.

This is to support well-formedness checks for the matchings in the following rounds.

The same matching algorithm is then applied to the remaining traces. For example

in Fig. 4.2 (a), all the entries corresponding to S1 are removed after the first round

but the loop predicate instances are retained, which allows us to perform well-formed

matching of S2 entries in the next round. As a result, the loop predicate on the left is

correctly matched with the two loop predicates on the right.

Finally, the results in V denote the matchings between statement instances in the

two versions. They correspond to the common bug-free behavior.

4.4.2 Phase (2): Residue Alignment

There are statement instances that cannot be matched, which are likely bug related.

They may belong to statements unique to an implementation, or statements with some
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but not all their instances matched. For the latter case, it is highly desirable to align

the unmatched instances of those statements such that it becomes clear why they do

not match while they should have. This is very important for bug explanation. Apex

further aligns these unmatched instances. It does so by generating a statement level

mapping M between the two versions, from the matching results in the previous phase.

Particularly, relation M : P(P(Labela)× P(Labelb)) indicates a set of statements in

program a matches with a set of statements in b. It is generated by the following

equation.

〈L, T 〉 ∈ V ∪ I =⇒ 〈set(L), set(T )〉 ∈M

Function set() turns a sequence of label instances to a set of labels (e.g. set(E-31-41) =

{E, 3, 4}).

For the example in Fig. 4.1, M = {〈{3, 4, 8}, {5}〉, 〈{5}, {4}〉, 〈{14}, {8}〉...}. It

essentially denotes a common sub-program of the two as shown in Fig. 4.1.

Then Apex traverses the residue traces that contain the remaining unmatched

symbolic expressions and all the predicate instances, and aligns trace entries based on

the common sub-program M and well-formedness.

The alignment algorithm takes as input the two residue traces Ta and Tb. Each

trace entry is a triple consisting of the label instance, the symbolic expression se and

the concrete value v. It traverses the buggy trace and looks for alignment for each

instance. Basically, two instances are aligned if such alignment is compatible with the

statement mappings M and aligning their dynamic control dependencies is well-formed.

Note that they are aligned but not matched. They have different (symbolic) values.

The green nodes in Fig. 4.4 are such examples.

The rules are presented in Fig. 4.9. In Rule [UNALIGN-PRED], a predicate instance

`i is discarded if there is no alignment. Note that since `i and tj are predicates, they

are concatenated to the dynamic control dependencies (e.g. DCD(`i)) for the well-

formedness check. If multiple well-formed alignments exist, the first one is selected and
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ispred(`i) ¬∃〈tj , se1, v1〉 ∈ Tb, 〈set(DCD(`i)-`i), set(DCD(tj)-tj)〉 ∈ M ∧

wellformed(DCD(`i)-`i, DCD(tj)-tj , I)

〈`i, se, v〉 · Ta,Tb, I,V −→ Ta,Tb, I,V
[UNALIGN-PRED]

ispred(`i) Tb = T′b · 〈tj , se1, v1〉 · T
′′
b 〈set(DCD(`i)-`i), set(DCD(tj)-tj)〉 ∈ M

wellformed(DCD(`i)-`i, DCD(tj)-tj , I)¬∃〈t′k, se2, v2〉 ∈ T′b,

〈set(DCD(`i)-`i), set(DCD(t′k)-t
′
k)〉 ∈ M ∧

wellformed(DCD(`i)-`i, DCD(t′k)-t
′
k, I)

I′ = I ∪DCD(`i)-`i ↔ DCD(tj)-tj V′ = V⊗I DCD(`i)-`i ↔ DCD(tj)-tj

〈`i, se, v〉 · Ta,Tb, I,V −→ Ta,T′′b , I
′,V′

[ALIGN-PRED]

¬ispred(`i) ¬∃〈tj , se1, v1〉 ∈ Tb, 〈`, t〉 ∈ M ∧wellformed(DCD(`i), DCD(tj), I)

〈`i, se, v〉 · Ta,Tb, I,V −→ Ta,Tb, I,V
[UNALIGN-ASSIGN]

¬ispred(`i) Tb = T′b · 〈tj , se1, v1〉 · T
′′
b 〈`, t〉 ∈ M

wellformed(DCD(`i), DCD(tj), I)

¬∃〈t′k, se2, v2〉 ∈ T′b, 〈`, t
′〉 ∈ M ∧wellformed(DCD(`i), DCD(t′k), I)

I′ = I ∪DCD(`i)↔ DCD(tj) V′ = (V⊗I DCD(`i)↔ DCD(tj)) ∪ `i ↔ tj

〈`i, se, v〉 · Ta,Tb, I,V −→ Ta,T′′b , I
′,V′

[ALIGN-ASSIGN]

Figure 4.9.: Residue alignment

I and V are updated accordingly (Rule [ALIGN-PRED]). The alignment of assignment

instances is similar (Rules [UNALIGN-ASSIGN] and [ALIGN-ASSIGN]).

� Example. Table 4.2 presents an example. The first two columns show the residue

traces for the fibonacci executions. In the buggy run, since the value in 85 is incorrect,

91 is incorrectly executed and the loop is terminated. Outside the loop, the false

branch of 132 is taken and the outer loop is also terminated. In the correct run, the

predicate at 56 takes the false branch and one more round of fibonacci computation is

performed until the true branch of 57 is taken and the loop is terminated. The next

two columns show the dynamic control dependencies of the first trace entries.

In the first step, the alignment 85 ↔ 56 is added to V as the statement mapping

〈{E, 3, 4, 8}, {E, 5}〉 ∈M and the alignment of control dependencies is well-formed. It

corresponds to the first green node in Fig. 4.4. Next, no alignment is found for 91 (i.e.

red node in Fig. 4.4). In the third step, 132 and 76 are aligned (despite their different

branch outcomes), corresponding to the second green node. �
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4.4.3 Phase (3): Comparative Dependence Graph Construction, Slicing, and Feedback

Generation

Apex generates the DCDG from the matching and alignment results. Fig. 4.4

represents an example graph. It further computes a comparative slice from the graph.

The slicing criterion consists of the instances that emit the different outputs. The slice

captures the internal differences that caused the output differences. It is computed by

graph traversal, which starts from the criterion, going backward along dependence

edges. If a plain node (for matched instances) is reached, no traversal is beyond the

node. Our tool follows a set of rules to generate the bug report from a slice. For

example, a pair of aligned but unmatched assignment instances `i ↔ tj, is translated

to “the value at `i should have been v(tj) instead of v(`i)”. The report for the fibonacci

bug can be found at the end of Section 4.2. Details are elided.

4.5 Implementation and Evaluation

The tracing component of Apex that collects symbolic and concrete traces is

implemented using LLVM. The SMT solver used is Z3 [92]. The rest is implemented

in Python. The experiments were conducted on an Intel Core i7 machine running

Arch Linux 3.17.1 with 16GB RAM. All the benchmarks, the failure inducing inputs,

and the bug reports by Apex are available on the project site [93].

4.5.1 Experiment with Real Student Submissions

We have acquired 4 programming assignments from a recent programming course

at the authors’ institute: convert turns a number with one radix into another radix;

rpncalc evaluates a postfix expression using a stack; balanced checks if the input

string has a valid nesting of parentheses and brackets; countwords counts the frequency

of words. The number of buggy versions ranges from 33-65 for each submission. The

total number of buggy submissions is 205.
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Figure 4.10.: Student submission results. On each figure, the submissions are sorted

by the Y-axis values.

For each buggy version, we have the failure inducing input and the patched version

(submitted later by the students). For each assignments, we have the instructor’s

solution. We applied Apex to each failing run. The results are presented in Fig. 4.10.

The execution time ranges from 1 to 20 seconds with most finishing in a few seconds.

From Fig. 4.10a, the submission LOC ranges from 60-210. Fig. 4.10b measures

the syntactic differences between the submissions and the instructor’s version (i.e.

edit distance over LOC sum). Observe that they are substantially different. From

Fig. 4.10c, the computed DCDG has 10-1300 nodes. Some have a small DCDG because

of the simplicity of the test case (e.g., testing input validation). From Fig. 4.10d, the

comparative slices have 2-160 nodes. The large slices usually correspond to cases in

which the buggy program has substantially different states from the correct program.

However, as shown in Fig. 4.10e, the bug reports are very small. According to our

experience with students, succinct bug reports without too much low level details

are important for usability. We have a number of methods to reduce bug report size,
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including coalescing the repetitive instances (from loops), and avoiding presenting

detailed causality in large unmatched code regions, which often occur when the correct

program terminates quickly due to invalid inputs but the buggy program goes on as

normal, or vice versa. We cross-checked the root causes reported by Apex with the

patched versions and found that Apex identifies the correct root causes for 195 out of

205 cases. Here, when we say Apex identifies a root cause, we mean that the root

cause is reported as the first entry in the causal explanation just like the example in

Section 4.2.

Fig. 4.10f shows the F-score [94] of execution matching, including both assignment

and predicate matchings. F-score is a weighted average of precision and recall that

reflects the percentage of matching. Here, precision/recall means the percentage of the

statement instances in the failing/passing run that have matches in the other party,

and F-score F = 2 · precision·recall
precision+recall

. Observe that Apex is able to match a lot of

instances for many cases. Some have almost everything matched. These bugs are

usually due to typos in outputs.
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Figure 4.11.: Student bug classifications

Student Bugs. To better demonstrate the effectiveness of Apex in identifying

root causes and matching executions, we further generate a grading report for each

assignment by classifying the bugs based on the root causes. However, the root causes

in the bug reports by Apex only contain artifacts from the buggy programs, which

are very different from each other. It is hence difficult to classify based on bug reports
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directly. Fortunately, Apex has the matchings to the correct version, which is stable

across all bugs. We hence classify bugs based on the projection of the root cause in the

correct version. Intuitively, with Apex we are able to classify by the part that is not

correctly implemented by the student. The results are shown in Fig. 4.11. We have the

following observations. (1) Most bugs fall into a few main categories. For example in

rpncalc, 24% of bugs are due to the incorrect parameter order of the pow() function.

The reason is that parameters are stored in the stack order so that they need to

be flipped before calling pow(). In convert, almost half of the students forgot to

check if an input character is legal for the radix. Such information is very useful

for the instructor as they indicate where to improve. (2) Typos in final outputs are

very common (e.g. printf("String not balanced.\n") versus printf("String

is not balanced.\n") in balanced). For these cases, a simple automatic grading

policy that counts the number of passing runs by comparing outputs would give 0

credit. In contrast, Apex would allow partial credit by execution matching (e.g., the

F-score). In these cases, the students will get almost full credit. (3) Apex missed

the root cause for 10 out of 205 cases. We further inspected these cases. Most of

them are because the buggy run is so wrong that there are very few matched symbolic

expressions to begin with. For example in rpncalc, the instructor and most students

used predicates whereas two students used table look-up to drive execution like in a

compiler frontend. However, the table indexing is wrong. As such, almost the entire

sequence of (symbolic) values are wrong. (4) Although from the reports many bugs

have simple root causes, it does not mean they are easier for Apex as identifying

them requires matching the substantially different program structures. There are also

subtle bugs. But their number is relatively small.

4.5.2 Experiment with stackoverflow.com Programs

To better evaluate applicability, we have collected 15 pairs (buggy vs. correct) of

implementations from stackoverflo- w.com. They were mainly posted in 2014. The
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Table 4.3.: Benchmarks and symbolic expression matching

benchmark url LOC # sym expr time # matches

knapsack-1 [95] 56 / 78 69 / 210 4.65s 401

matrix-mult [96] 53 / 53 421 / 421 9.56s 1534

fibonacci-sum [90] 35 / 29 22 / 28 0.79s 22

kadane [97] 43 / 29 22 / 26 0.25s 34

euclid [98] 23 / 22 17 / 10 0.66s 5

dijkstra [99] 57 / 64 79 / 76 1.85s 219

mergesort [100] 47 / 70 135 / 231 8.66s 150

span-tree [101] 71 / 75 153 / 135 7.60s 1499

floyd [102] 46 / 47 154 / 173 8.51s 1892

dijkstra-2 [103] 61 / 64 121 / 76 2.00s 303

euler [104] 44 / 27 110 / 81 21.74s 167

gt_product [105] 27 / 27 315 / 330 164.05s 866

binarysearch [106] 25 / 27 32 / 37 1.60s 27

euclid-2 [107] 31 / 21 8 / 10 0.52s 5

knapsack-2 [108] 33 / 42 60 / 109 1.29s 41
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benchmarks and their urls are presented in the first two columns of Table 4.3. The

benchmarks are named after the algorithms they implement. Each row represents two

programs. The sizes of each pair are presented in the third column. The programs

are by different programmers. The fourth column presents the size of the symbolic

trace, i.e. the number of symbolic expressions for assignments, excluding all simple

copies and the assignments that are not data dependent on inputs. The time column

shows the time taken to match all symbolic expression pairs. This is to prepare for the

iterative instance matching algorithm. The last column shows the number of equivalent

pairs. Observe that the number of pairs may be much larger than the number of

expressions in the individual versions because one expression may be symbolically

equivalent to many. Also observe that the time taken is not substantial as Apex uses

concrete value comparison to prune the candidate pairs. That is, we only compare

symbolic equivalence when two expressions have the same concrete value.

Table 4.4 shows the instance matching results. The size column shows the number

of LLVM IR statement instances in the execution traces. We have excluded all the copy

operations and short-cut the corresponding dependencies for brevity. The “Matched"

column shows the number of instances that are matched, and the percentage (e.g. for

the knapsack case, 80/221 = 36% whereas 80/417 = 19%). The A&U column shows

those aligned but not matched. The U&U column shows those neither aligned nor

matched. The next two columns show the graph and the slice sizes (in nodes). The

last column shows the root causes reported by Apex. Symbol ‘-’ means that Apex

misses the real root cause. Observe that Apex can align and match roughly half of

the instances. It can also align part of the unmatched instances. Those instances are

usually closely related to bugs. Depending on the semantic differences, the unaligned

and unmatched parts may still be large. For example, 81% of the instances in the

correct version of knapsack cannot be matched or aligned. This is because the correct

execution is much longer. Also observe that most of comparative slices are small, much

smaller than the graph sizes. More importantly, in most cases, the root of the slice

precisely identifies the real root cause as mentioned in the online bug report. Recall
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that the root of a slice is the A&U or U&U instances whose parents are matched.

Benchmark matmult has an exceptionally large slice. That is because the buggy

execution has largely corrupted state. An array index computation is wrong such

that most values are wrong from the beginning. All such faulty values are part of the

slice. Interestingly, Apex can still match and align most of the control structures and

part of the computation and it also precisely pinpoints the root cause. Since these

unmatched instances belong to a few statements (in loops), the bug report is still very

small.

Mergesort is an interesting case. The buggy code compares values l from the

lower half and h from the higher half of an array and directly swaps the values if

h is smaller than l. It uses one loop while the correct code uses four loops. Apex

was able to match the control structures and recognize that the buggy code needs

an additional array instead of direct swapping. In particular, Apex identifies an

unmatched additional array assignment within a matched branch in the correct run.

In dijkstra, the two implementations are substantially different. They use different

values to denote if a node has been visited. Moreover, a loop in the correct version

corresponds to two separate loops in the buggy version. Apex was able to match the

control structures and correctly explain the bug. In dijkstra-2, a nesting loop in

one version corresponds to a few consecutive loops in the other. Details can be found

at [93].

Apex misses the root cause for two cases: span-tree that computes the minimal

spanning tree and knapsack-2. The reason is that the buggy programs used algorithms

different from that used by the correct version. Apex currently does not support

matching across algorithms (e.g., bubble sort vs. merge sort). If different algorithms

are allowed, we plan to follow the same strategy as in [82], which is to let the instructor

provide a set of possible algorithms beforehand. We can also use Apex to match

passing runs. Algorithmic differences will yield poor matchings in passing runs. We

will leave it to future work.
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4.5.3 User Study

We have evaluated Apex with 34 undergraduate students who take the C pro-

gramming course at the authors’ institute. We have partitioned the students into 2

groups, one using Apex and the other not. We requested them to implement convert

in Sec. 4.5.1 in a two-hour lab. Our research questions are: 1. Can Apex help the

overall productivity of the students? 2. Can Apex help understand bugs?

(a) w/ Apex (b) wo/ Apex

Figure 4.12.: Time taken by students to finish the task

We have implemented a script that records the students’ activities, including

each compilation, each test run, each revision, and each invocation of our tool. The

completion time is what a student took to pass all the test cases (11 in total). Fig. 4.12

shows the results of the two groups. In group (a) (with Apex), only 12% of the

students could not finish the task in time. On the other hand, in group (b), 47%

of the students could not finish. This supports that Apex can help the students’

productivity in programming assignments with 99% certainty (following the A/B

significance test). In group (a), 44% finished within an hour while only 18% in group

(a) w/ Apex (b) wo/ Apex

Avg 4417.6s 5742.4s

SD 1670.7 1606

Figure 4.13.: Average and standard deviation of time took by each group in seconds
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(b). We have also inspected the suggestions Apex generated. Most of them have

only 2-3 lines, which imply that Apex did not disclose too much about the correct

version. Fig. 4.13 presents the average and standard deviation of time took by each

group considering timeouts as 2 hours. On average students in group (a) took about

67 minutes and students in group (b) took 74 minutes. On average group (a) can

complete the task about 23% faster than group (b). We also performed the t-test

with our data. The p-value is 0.0316 and with 95% confidence our system can help

students’ productivity.

A. Suggestions are easy to understand.

B. Suggestions are useful to locate error.

C. Suggestions are useful to understand errors.

D. Suggestions are useful to understand correct algorithm.

E. Suggestions are useful to fix errors.

F. Suggestions are useful for overall productivity.

Figure 4.14.: Questions

Question Agree Disagree Neutral

A 56% 6% 38%

B 61% 11% 28%

C 72% 6% 22%

B+C 78% 11% 11%

D 56% 22% 22%

E 83% 0% 17%

D+E 94% 0% 6%

F 78% 0% 22%

Figure 4.15.: Students’ response to the questions

In order to evaluate the quality of our suggestions, we surveyed the participants

in group (a). We asked them 6 questions as in Fig. 4.14. We classify the questions
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into 4 groups. First, question A asks if the suggestions in pseudo code can be easily

apprehended. Second, questions B and C ask if the student can understand their

problems more easily with our system. Third, questions D and E ask whether Apex can

provide hints on how to fix the problems. Last, question F asks the overall effectiveness

of our tool. Fig. 4.15 shows the responses. We have the following observations. First,

while 6% of the students complained about difficulties in understanding the suggestion

pseudo code, the presentation of the suggestions could be improved. More details are

disclosed in Section 4.5.3.

Second, 78% of the students agreed that our tool is useful in either locating or

understanding errors. Oral communication with the students discloses that they seem

to have very diverse understanding about where the root causes are. Third, 94%

of the students agreed that they can get hints on fixing the problems. It was very

much appreciated by the students that Apex can present correction suggestions in

the context of their code (e.g., using their variables). Last, 78% of the students agreed

that our tool can help the overall productivity. This is consistent with the results in

Fig. 4.12.

Limitations

One student had a very interesting comment that although she got her bug fixed by

copying a constant value in the correction suggestion, she did not understand why she

should use the constant. We inspected her case. The buggy code is shown in Fig. 4.16.

This code is for converting an integer digit into an alphanumeric digit: converting 10

into A, 11 into B, and so on. The operation at line 4 should be “digit + ‘A’ - 10”.

Apex precisely reported the root cause and suggested the proper correction. However,

the suggestion is simply a line of pseudo code “digit + 55”. This is because Apex

internally operates on the IR level so that letters are all represented as constant values

which lack semantic meanings and operations on constants are unfolded.
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// Convert an integer digit into a character digit.

if ('A' <= digit && digit <= 'Z')

// SUGGESTIONS

??? digit = digit + 'A'; // (BUGGY)

// Instead,

+++ digit = digit + 55 // (CORRECT)

// The constant 55 means 'A' - 10

Figure 4.16.: Student’s buggy code and the suggestion

We plan to address the problem by adding annotations or textual debugging hints

to the instructor’s version. In the former example, line 3 could be commented with a

debugging hint such as “It is likely that the constant you use to transform a value to a

letter is wrong”. Instead of showing the pseudo code, the instructor can configure the

tool to emit the textual hint. Together with the (faulty) variable values emitted by

Apex, the student should be able to quickly understand the bug. Note that in order

to provide high quality textual hints, internally Apex should capture the precise bug

causality and identify the corresponding correct code.

4.5.4 Comparison with PMaxSat

We have also implemented a version of Apex directly based on the PMaxSat

formulation. We used Z3 as the PMaxSat solver. We compare the performance and

the quality of execution alignment of the two versions. We set the timeout of PMaxSat

to 5 minutes and ran it for the stackoverflow cases and the convert cases. The results

are shown in Table 4.5. In most of the cases, PMaxSat is much slower than Apex.

In 3 out of the 15 stackoverflow cases, PMaxSat could not find the solution in 5

minutes. On average our system can find the alignment in less than 2 seconds, whereas

PMaxSat requires more than 90 seconds. The results for the convert cases (the last
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row) are similar. Note that the high overhead of PMaxSat may not be acceptable for

the students, especially during labs.

In terms of execution alignment, the two versions generate similar results. On

average the precision of the approximate version of Apex is more than 79% and the

recall is more than 74%, compared to the PMaxSat version. This indicates that most

alignments discovered by the approximate version are identical to those by PMaxSat.

The most common cases of alignment differences are constant operations that do not

depend on the inputs such as initializing variables with 0 and increasing loop variables

by 1. In our observation, these operations have very little effect on the generated

suggestions.

We compared the performance with WPM3-2015-in [109], a state-of-art incomplete

partial maxsat solver. The incomplete solvers can find the solution incrementally and

hence they can produce intermediate results as soon as possible. We measured the time

took by the WPM3 solver until it finds a solution that can satisfy the same number of

the clauses as the solution found by Apex. Table 4.6 presents the comparison result.

Though the incomplete solver can reach the similar solution faster than Z3 which is a

complete solver, Apex is more than 10 times faster on average.

4.5.5 Experiment with IntroClass Benchmarks

We have also evaluated Apex with the IntroClass Benchmarks [89]. The benchmark

is designed for evaluation of automated software repair techniques. Out of the 6

projects, we have selected 5 projects with 710 buggy implementations: checksum

computes the checksum of input string; digits prints each digit of the input number;

grade computes a letter grade for the input score; median finds a median number

among the 3 input numbers; syllables counts the frequencies of vowels in the input

string. We did not select smallest because it is too small (usually a few lines).

The results are shown in Fig. 4.17. From Fig. 4.17a, the program sizes are mostly

40-60 LOC. Fig. 4.17b suggests that the programs are very different from the solution
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Table 4.5.: Comparison between Apex and PMaxSat

Program Run time (s) Precison Recall F-score

Apex PMaxSat

binarysearch 1.00 14.19 0.91 0.99 0.95

dijkstra 1.58 30.46 0.77 0.77 0.77

dijkstra-2 1.18 6.64 0.70 0.74 0.72

euclid 0.30 .16 0.80 0.80 0.80

euclid-2 0.25 .14 0.71 0.83 0.77

euler1 0.93 1.34 0.97 0.94 0.95

fibonacci-sum 1.06 1.44 0.96 0.88 0.92

floyd 5.04 > 300 - - -

gt_product 1.72 > 300 - - -

kadane 1.33 4.25 0.60 0.64 0.62

knapsack 1.52 14.28 0.69 0.80 0.74

knapsack-2 1.32 162.58 0.67 0.72 0.69

matmult 0.93 53.75 0.88 1.00 0.93

mergesort 1.48 7.42 0.77 0.91 0.84

span-tree 1.37 > 300 - - -

average 1.40 90.21 0.79 0.84 0.81

Convert (average) 2.30 46.02 0.88 0.74 0.79
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Table 4.6.: Comparison between Apex and incomplete solver

Program Run time (s)

Apex WPM3

binarysearch 1.00 2.54

dijkstra 1.58 5.50

dijkstra-2 1.18 1.77

euclid 0.30 0.14

euclid-2 0.25 0.11

euler1 0.93 0.57

fibonacci-sum 1.06 0.74

floyd 5.04 71.68

gt_product 1.72 103.62

kadane 1.33 2.31

knapsack 1.52 2.09

knapsack-2 1.32 2.26

matmult 0.93 2.62

mergesort 1.48 2.78

span-tree 1.37 19.1

average 1.40 14.52

Convert (average) 2.30 20.63

Rpncalc (average) 1.53 52.86

Balanced (average) 0.88 24.15
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Figure 4.17.: IntroClass benchmark results. On each figure, the submissions are sorted

by the Y-axis values

version syntactically. Fig. 4.17c shows that the DCDGs have 10-150 nodes and some

projects such as median and grade have mostly less than 20 nodes. This is because

these programs have no loop and their executions are very short. Fig. 4.17e presents

that our suggestions are very small.

Regarding the bugs and the quality of suggestions, we have the following obser-

vations. (1) For 57 out of 710 cases, Apex missed the root cause. This happens

mostly in median. The programs in this project have neither loops nor arithmetic

operations. They have at most 6 comparisons. In buggy executions, there are usually

insufficient evidence for Apex to achieve good alignment. (2) Most bugs are due to

missing/incorrect conditions, missing computation, or typos in output messages. For

example, in checksum, 76% of the submissions failed because of missing a modulo

operation. Detailed breakdown for all projects can be found at [93]. Note that such

information is very useful for the instructors.
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4.6 Related Work

In [81], program synthesis was used to automatically correct a buggy program according

to the correct version. The technique requires the instructor to provide a set of

correction rules. In [82], a technique was proposed to detect algorithms used in

functionally correct student submissions by comparing the value sequences. Then

it provides feedback prepared by the instructor for each type of algorithm. It is

complementary to ours as we could use it to detect cases in which the students are

using a different algorithm. Equivalence checking [83, 110] determines if two programs

are equivalent. If not, it generates counter-examples. In [85], equivalence checking is

extended to look for a single value replacement that can partially fix the faulty state.

The value replacement is reported as the root cause. In [86], a technique was proposed

to identify the weakest precondition that triggers the behavioral differences between

two program versions. These techniques do not align/match the intermediate states,

which is critical to understanding failure causality.

There have been works on debugging using the passing and failing executions of

the same program, by mutating states [3, 87, 111] or slicing two executions [2]. In

contrast, Apex assumes different programs. There are also works on comparing traces

from program versions to understand regression bugs [5, 56]. They perform sequence

alignment in traces without using symbolic analysis. There are satisfiability based

techniques that also strive to explain failures within a single program [112–115], and

even fix the bugs through templates [116]. They do not leverage the correct version.

Fault localization [117–119] leverages a large number of passing and failing runs to

identify root causes. In our experience, many buggy student submissions fail on all

inputs. Besides, they usually do not explain causality or provide fix suggestions.

LAURA [120] statically matches the buggy and correct implementations and reports

mismatches. TALUS [121] recognizes the algorithm from the students’ submissions

and projects the correct implementation to the submissions to generate feedback.
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5 ENHANCING APEX WITH BELIEF PROPAGATION

5.1 Introduction

There are many web sites and services to provide self-studies of programming

languages and There have been several techniques to either automatically fix or explain

bugs in students’ codes.

There is a prior work to automatically explain the bug by comparing it with the

golden version. However, the technique utilizes symbolic expressions and there are

difficulties in finding correct alignments and in producing the correct explanation for

programs where statements computing similar values.

In this paper, we will present a new method to find alignments between two

program versions using probabilistic inference. We leverage the alignments from

the previous technique as prior probabilities of alignments. The previous technique

relies on equivalence checking and sequence alignments to compute the alignments.

However, the lack of unique states and reordering of program statements can induce

false alignments. Thus we model both data and control dependence relations with the

prior probabilities. As a result, the false alignments that do not fit to the dependency

relations are discarded. The resulting alignments can be used with the unaligned parts

of the previous technique and improve the quality of the explanations.

Our contributions are:

• We develop a new alignment algorithm with probability.

• Our approach is evaluated with a large number of students’ codes.
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5.2 Motivation

Fig. 5.1 are the two implementations of DISHOWN problem in Codechef. The

implementations simulate competition between chefs. As an input, the number of

chefs and the score of each chef’s dish are provided. Then the program reads Q queries.

There are two types of queries. The one is given as ‘C x y’, where x and y mean the

indexes of dishes. Upon this query, the program should compute the result of the

competition between the two chefs: one who owns the x-th dish and the other who

owns the y-th dish. If the owners are the same the program should print “invalid

query”. Otherwise the program finds who is the winner and let the winner takes all of

the loser’s dishes. The other type of query is given as ‘Q x’, where x is the index of a

dish. The program should find the owner of the x-th dish and print the owner’s index.

Initially x-th dish is owned by x-th chef.

Lines 12 and 14 in the buggy implementation update the owner of the loser’s dishes

to the winner. However they fail to update all of the loser’s dishes, and line 9 cannot

acquire the correct owner for the dish x and y. On the other hand, lines 11 and 12 in

the correct implementation find the correct owner by recursively searching through

the winner-loser relationships.

Fig. 5.2 shows parts of inputs, corresponding outputs and internal states of the

correct implementation. Input #1 specifies the initial scores for each dishes. Upon

reading the input both implementations initialize internal scores with the values.

Initially C1(chef #1) owns D1(dish #1), C2 owns D2 and C3 owns D2. Input #2

competes D1 and D2. D1 has a score of 1 and D2 has a score of 2. Since D1 has

higher score than D1, C2 who is the owner of the D2 wins and C2 owns both D1 and

D2. Input #3 queries the owner of D1. In the previous step, C2 took D2. Hence the

program prints “2” as an output. Input #4 competes D1 and D2. Since both D1 and

D2 are owned by C2, the program prints “invalid query”. Input #5 compares D1 and

D3. D1 is owned by C2 and the maximum score of C2 is 2. D3 is owned by C3 whose

maximum score is 3. Since C3 has a higher score than C2, C3 wins and C3 owns all
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# Input Output State

1 1 2 3 initialize scores

2 C 1 2 C2 wins and now C2

owns D1

3 Q 1 “2” C2 owns D1

4 C 1 2 “Invalid query” C2 owns both D1 and D2

5 C 1 3 C3 wins and now C3

owns D1

6 C 2 3 no error C2 owns D2 and C3 owns

D3

(a) Buggy output

# Input Output State

1 1 2 3 initialize scores

2 C 1 2 C2 wins and now C2

owns D1

3 Q 1 “2” C2 owns D1

4 C 1 2 “invalid query” C2 owns both D1 and D2

5 C 1 3 C3 wins and now C3

owns D1 and D2

6 C 2 3 “invalid query” C3 owns both D2 and D3

(b) Expected output

Figure 5.2.: Feedback generated by Apex and ApexBP
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three dishes: D1, D2 and D3. Input #5 compares D2 and D3. Since C3 owns both

D2 and D3, the program prints “invalid query”.

Fig. 5.2 shows the outputs and internal states of the buggy implementation with

the same inputs. Up to input #4 the buggy program behaves the same way as the

correct program. At input #5, C3 wins and the program changes the owner of D1 to

C3. However it does not update the owner of D2 which is also owned by C2. Hence

at input #6, the program does not know the owner of D2 and D3 are the same and it

does not print “invalid query”.

The existing technique, Apex, can be used to automatically generate explanation

of the bug. Since Apex relies on symbolic equivalences, it performs well on a program

that computes a result through arithmetic operations but it doesn’t perform well on a

program with less arithmetic operations such as the motivating example.

Apex compares two program executions in 3 steps. In the first step, Apex compares

the symbolic expression of every statement in two programs. Then Apex builds the

initial alignment with the sequence alignment algorithm and the previous symbolic

equivalence information. Last using the initial alignments as truth, Apex finds

alignment between remained items.

Fig. 5.3 shows the initial alignments from Apex. Each line in the figure is a

statement instance in the program. The left hand side shows statement instances

from the buggy program and the right hand side shows the correct program. The first

and the fourth column are the labels of statement instances. The second and the fifth

column are values of variables at each statement instance. The bold text represents

the output values which are used in the sequence alignment algorithm to compare.

The gray boxes show the aligned statement instances.

Note that for the simplicity, the concrete values instead of symbolic values are

presented in figure. However Apex compares symbolic values if available. For example,

the concrete values of 2`1 is 1. However in symbolic execution, the value is replaced

with a symbolic variable. Therefore the sequence alignment algorithm align 2`1 with
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21 read(D[i].score) i=1,D[i].score=1 21 chef[i]=i i=1,chef[i]=1

31 D[i].chef=i i=1,D[i].chef=1 22 chef[i]=i i=2,chef[i]=2

22 read(D[i].score) i=2,D[i].score=2 23 chef[i]=i i=3,chef[i]=3

32 D[i].chef=i i=2,D[i].chef=2 51 read(score[i]) i=1,score[i]=1

23 read(D[i].score) i=3,D[i].score=3 52 read(score[i]) i=2,score[i]=2

33 D[i].chef=i i=3,D[i].chef=3 53 read(score[i]) i=3,score[i]=3

61 read(query) query=C 81 read(query) query=C

71 if query==C BR=T 91 if query==C BR=T

81 read(x,y) x=1,y=2 101 read(x,y) x=1,y=2

91 if D[x].chef==D[y].chef D[x]...=1,D[y]...=2,

BR=F

111 a=FindChef(x) a=1

111 else if D[x].score>D[y].score D[x]...=1,D[y]...=2,

BR=F

121 b=FindChef(y) b=2

141 D[x].chef=D[y].chef D[x].chef=2 131 if a==b BR=F

151 if score[a]>score[b] score[a]=1,score[b]=2,

BR=F

181 chef[a]=b chef[a]=2

62 read(query) query=Q 82 read(query) query=Q

72 if query==C BR=F 92 if query==C BR=F

151 if query==Q BR=T 191 if query==Q BR=T

161 read(x) x=1 201 read(x) x=1

171 print(D[x].chef) "2" 211 print(FindChef(x)) "2"

63 read(query) query=C 83 read(query) query=C

73 if query==C BR=T 93 if query==C BR=T

82 read(x,y) x=1,y=2 102 read(x,y) x=1,y=2

92 if D[x].chef==D[y].chef D[x]...=2,D[y]...=2,

BR=T

112 a=FindChef(x) a=2

101 print("invalid query") "invalid query" 122 b=FindChef(y) b=2

132 if a==b BR=T

141 print("invalid query") "invalid query"

64 read(query) query=C 84 read(query) query=C

74 if query==C BR=T 94 if query==C BR=T

83 read(x,y) x=1,y=3 103 read(x,y) x=1,y=3

93 if D[x].chef==D[y].chef D[x]...=2,D[y]...=3,

BR=F

113 a=FindChef(x) a=2

112 else if D[x].score>D[y].score D[x]...=2,D[y]...=3,

BR=F

123 b=FindChef(y) b=3

142 D[x].chef=D[y].chef D[x].chef=3 133 if a==b BR=F

152 if score[a]>score[b] score[a]=2,score[b]=3,

BR=F

182 chef[a]=b chef[a]=3

65 read(query) query=C 85 read(query) query=C

75 if query==C BR=T 95 if query==C BR=T

84 read(x,y) x=2,y=3 104 read(x,y) x=2,y=3

94 if D[x].chef==D[y].chef D[x]...=2,D[y]...=3,

BR=F

114 a=FindChef(x) a=3

113 else if D[x].score>D[y].score D[x]...=2,D[y]...=3,

BR=F

124 b=FindChef(y) b=3

143 D[x].chef=D[y].chef D[x].chef=3 134 if a==b BR=T

142 print("invalid query") "invalid query"

Figure 5.3.: Initial alignment with sequence alignment algorithm
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61 read(query) 81 read(query)

71 if query==C 91 if query==C

81 read(x,y) 101 read(x,y)

91 if D[x].chef==D[y].chef 111 a=FindChef(x)

111 else if D[x].score>D[y].score 121 b=FindChef(y)

141 D[x].chef=D[y].chef 131 if a==b

151 if score[a]>score[b]

181 chef[a]=b

62 read(query) 82 read(query)

72 if query==C 92 if query==C

151 if query==Q 191 if query==Q

161 read(x) 201 read(x)

171 print(D[x].chef) 211 print(FindChef(x))

63 read(query) 83 read(query)

73 if query==C 93 if query==C

82 read(x,y) 102 read(x,y)

92 if D[x].chef==D[y].chef 112 a=FindChef(x)

101 print("invalid query") 122 b=FindChef(y)

132 if a==b

141 print("invalid query")

64 read(query) 84 read(query)

74 if query==C 94 if query==C

83 read(x,y) 103 read(x,y)

93 if D[x].chef==D[y].chef 113 a=FindChef(x)

112 else if D[x].score>D[y].score 123 b=FindChef(y)

142 D[x].chef=D[y].chef 133 if a==b

152 if score[a]>score[b]

182 chef[a]=b

65 read(query) 85 read(query)

75 if query==C 95 if query==C

84 read(x,y) 104 read(x,y)

94 if D[x].chef==D[y].chef 114 a=FindChef(x)

113 else if D[x].score>D[y].score 124 b=FindChef(y)

143 D[x].chef=D[y].chef 134 if a==b

142 print("invalid query")

0.40

0.95

0.002

0.99

0.001

0.99

0.
02

0.89

0.5

0.02

Figure 5.4.: Final alignments generated by ApexBP
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5t1, which also represented with the same symbolic variable, and it does not align 2`1

with 2t1 since its concrete value is the same but its symbolic value is different.

D[i].score and score[i] which represent the score of i-th dish are provided as inputs

and have symbolic values. However D[i].chef and chef[i] which represent the owner of

the i-th dish are initialized in loops iterating from 1 to N. Thus they have concrete

integer values. During the execution both implementations change the value of

D[x].chef and chef[x] using the value of D[y].chef and chef[y] respectively. Therefore

the values of 14`1, 12t1 and 18t1 are the concrete value of 2. Therefore both 12t1 and 18t1

are equal candidates for 14`1 for the sequence alignment algorithm.

Because of the fore-mentioned issue, the previous technique aligned the statement

instance 14`1 with 12t1. However this is not accurate since the 14`1 updates the owner

of x-th dish with the owner of y-th dish, while 12t1 finds the owner of y-th dish. Also

the previous technique uses these alignments as a baseline for branch alignments.

Therefore it cannot detect that the branch 9`1 should be aligned with 13t1 since 14`1

depends on the branch 9`1 but the branch 13t1 depends on 12t1.

Similarly our technique starts from the initial alignment computed by the sequence

alignment algorithm. However we do not consider the initial alignment as the truth,

instead we consider it as probabilities. We use our initial probabilities with the belief

propagation, and we gradually computes the probabilities of other alignments through

control and data dependence relations. Also our initial probabilities can be changed

through the propagation. Hence even though there are errors in our initial belief, our

system can fix the issues.

Fig. 5.4 shows the result of our alignment algorithm. The red line shows the

possible alignments considered in our system and its probabilities. Grey boxes shows

the final alignments. For clarity, we do know present the third and sixth column in

the Fig. 5.3. For 14`1, our system finds 12t1, 18t1 and 12t2 as candidates for alignment.

Among them, 18t1 has the highest probability of 0.95 and our algorithm aligns 14`1 with

18t1. Through the belief propagation, the alignment between 14`1 and 18t1 is propagated

to other pairs such as 11`1 and 15t1.
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14`3 − 12t4

13t4

14t2

9`4

11`3

11t4

18t2

15t2

13t3

14`2 − 12t3

Figure 5.5.: Comparative dependency graphs generated for Apex

14t2

9`4 − 13t4

14`2 − 18t2

12t4 11t4

Figure 5.6.: Comparative dependency graphs generated for ApexBP
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From the discovered alignment Apex automatically generates a feedback by gener-

ating a comparative dependence graph representing the differences in control flow and

data flow. The feedback generation method can be used with our alignment algorithm.

Fig. 5.5 and Fig. 5.6 present the part of the comparative dependence graph using

Apex’s alignment and our alignment respectively. In the graph, each node is either

an unaligned statement instance or a pair of aligned statement instance. An edge

represents a data or control dependence relations between statement instances. In

the graph, a solid line represents a data dependence and a dashed line represents a

control dependence. A red line denotes dependence relations from the buggy program

and a blue line denotes a dependence from the correct program. The gray region in

the graph shows the nodes used to generate a feedback.

Apex starts a traversal of the graph from the print statement instances, which is

14t2 in this example. It follows dependence edges until it reaches an aligned node. In

Fig. 5.5 the feedback generation system first finds 13t4 since 14t2 control depends on

13t4. Apex does not find any alignment for the instance and follows its dependence

edges. By repeating this, the system finds all nodes up to 13t3 and generates feedback

as in Fig. 5.7. The explanation says that some statements are missing in the buggy

program and to fix the problem one should implement FindChef and updating owner

of dishes. However the latter is already implemented in the buggy program and thus

it is redundant.

On the other hand, ApexBP detects the correct alignment between 9`4 and 13t4 and

between 14`2 and 18t2. In Fig. 5.6, the system first finds 13t4 similar to the previous

scenario. Our alignment discovers that the 13t4 should be aligned with 9`4. However

since their branch outcome is different, the system further traverses its dependencies.
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When query == C at 7`4, you should have done

11t3 : a = FindChef(x)

12t3 : b = FindChef(y)

13t3 : if a != b

15t2 : if score[a] > score[b]

18t2 : chef[a] = b

11t4 : a = FindChef(x)

12t4 : b = FindChef(y)

13t4 : if a == b

14t2 : print("invalid query");

Figure 5.7.: Feedback generated by Apex

When query == C at 7`5, you should have done

11t4 : a = FindChef(x);

12t4 : b = FindChef(y)

13t4 : if a == b

14t2 : print("invalid query");

Figure 5.8.: Feedback generated by ApexBP
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5.3 Apex

In this section we briefly describe the algorithm of Apex, an automated feedback

generation system. The algorithm of Apex consists of two parts: sequence alignment

and well-formedness constraints.

First given two execution traces, Apex compare symbolic expressions between

labels of the two programs. Then Apex runs a sequence alignment algorithm and

finds the initial alignment.

Next Apex tries to find more alignments from the initial alignment while pre-

serving the well-formedness constraint, which prohibits cyclic dependencies. The

well-formedness constraint can be summarized as following: if two labels `i and tj are

aligned there cannot be additional alignment between `p and tq where `i depends on

`p and tq depends on tj.

In order to find additional alignments while preserving the well-formedness con-

straint, Apex applies the sequence alignment algorithm iteratively. In the first run,

Apex runs the alignment procedure over the entire execution. Then Apex runs the

procedure again over the remaining sequence of labels by removing ones in the previous

alignment. For each newly discovered alignment Apex checks if the new alignment

violates the constraint or not. If not, Apex add the alignment to the aligned labels

and repeat the process.

From the alignments, Apex generates the comparative dependency graph by

merging the aligned labels in two dependency graph of each version. Then it traverses

the graph from the node where output differences are observed.

The key characteristic of the Apex is that in Apex, all the alignments are assumed

to be true. The initial alignments are always considered as true alignments and Apex

uses them as baseline to find more alignments. This works well in a program where

labels have unique symbolic expressions. For example, in a program implementing

the euclidean algorithm of the GCD, the key statements have a unique symbolic

expressions. Thus if the symbolic expressions are equivalent, it strongly suggests
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read(query)
if (query == 
C)
  read(x, y)
...

Executions
read(query)
if (query == 
C)
  read(x, y)
...

61-81: 0.99
141-121:
           0.7
62-82: 0.99
101-141: 

61-81: 0.99
141-121:
           0.76
62-82: 0.99
101-141: 

Initial
Alignment

Refined
Alignment

114: a=
FindChef()
124: b=
FindChef()
134: if a==b

Feedback

Sequence
Alignment Probabilistic

Inference

Figure 5.9.: System overview

that two labels must be semantically equivalent in two programs. However in a

program where data are copied around like the motivating example, labels have similar

expressions and values. In this program, the initial sequence alignment program does

not work well.

5.4 System Approach

In this section, we present the details of our algorithm. Fig. 5.9 presents the

overview. First the system collects execution traces from two programs. Then the

system computes the initial alignment between two executions using the sequence

alignment algorithm. Next the initial alignment is refined with probabilistic inference.

The refinement process can be repeated with the previous alignments. The refined

alignment is fed to the existing feedback generation algorithm.

Alg. 7 describes the overall process of our feedback generation system. Line 2

computes the initial alignment using the sequence alignment algorithm with two

program execution traces, E1 and E2. Line 3 assigns the probabilities to the initial

alignment. Line 5-7 iteratively refine the alignment and probability gradually. Line 8

generate feedback from the refined alignment.
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Algorithm 7 Probabilistic alignment
1: procedure BP(E1, E2)

2: seqAlign← sequenceAlign(E1, E2)

3: initialAlign← initialProbability(seqAlign)

4: alignment← initialAlign

5: for i = 1 to n do

6: alignment← refine(alignment, i)

7: generateFeedback(alignment)
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5.4.1 Sequence alignment

Algorithm 8 Sequence alignment
1: procedure sequenceAlign(E1, E2)

2: for i1 = 1 to E1.length do

3: for i2 = 1 to E2.length do

4: Align[i1][i2]← max(

5: Align[i1 − 1][i2 − 1] + score(E1[i1], E2[i2]),

6: Align[i1 − 1][i2], Align[i1][i2 − 1])

7: alignments← {}

8: i1 ← E1.length

9: i2 ← E2.length

10: while i1 ≥ 1 ∩ i2 ≥ 1 do

11: if Align[i1][i2] == Align[i1 − 1][i2 − 1] + cost(E1[i1], E2[i2]) then

12: alignments← alignments ∪ (E1[i1], E2[i2])

13: i1 ← i1 − 1

14: i2 ← i2 − 1

15: else if Align[i1][i2] == Align[i1 − 1][i2] then

16: i1 ← i1 − 1

17: else if Align[i1][i2] == Align[i1][i2 − 1] then

18: i2 ← i2 − 1

19: procedure score(`i, tj)

20: if symb(`i) ≡ symb(tj) then

21: return1

22: else

23: return0

Alg. 8 describes the Needleman-Wunsch sequence alignment algorithm used in

our system. We use the score of 1 when two statement instances have the equivalent
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p(I`i,tj) =



0.99 if symb(`i) ≡ symb(tj) ∧

both have symbolic values

0.99 if tjandtjareidenticalprintstatements

0.70 otherwise

Figure 5.10.: Initial probability

symbolic expressions and use the score of 0 otherwise. This algorithm finds the

maximal alignment between two sequences of instances. Note that, all alignments

found by this algorithm always have equivalent symbolic expressions.

Then, we assign probabilities to the alignments according to the following rule.

For each pair of statement instances in the initial alignment, if symbolic expressions

of two instances have symbolic variables, we assign a high probability, 0.99 to the pair.

Otherwise if their symbolic expressions are concrete values, we assign a relatively low

probability of 0.7 to the pair.

Symbolic values in the expressions denotes input values. For example, we assign

a symbolic value I1 for the first input value and so on. Therefore if the value of a

statement instance does not data depend on any input values, its symbolic expression

can be a concrete value. This can happen frequently for loop variables since in many

cases loop variables starts from a concrete value such as 0 and increases by 1.

The intuition is that if two symbolic expressions having symbolic values are

equivalent, it strongly suggests that two instances are indeed semantically equivalent.

However symbolic expressions of concrete values are common. For example loop

variables are likely to have the same sequence of values since they normally starts

from 0 and increases by 1. Therefore we give a lower probability to represent that

this alignment has a possibility of being wrong.
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5.4.2 Refinement

Once the initial alignments are discovered by the sequence alignment algorithm.

We apply probabilistic inference and refine the existing alignments. This process can

be applied multiple times to increase the search space of alignments.

Algorithm 9 Alignment algorithm
1: procedure Refine(oldAlignments, n)

2: bp← Propagate(oldAlignments, n)

3: bpResult← solve(bp)

4: newAlignments← {}

5: for align ∈ bpResult do

6: if align.probability > θ then

7: newAlignments← newAlignments ∪ {align}

8: return newAlignments

Alg. 9 describes the refining process. Line 2 propagates and builds a probabilistic

model with old alignments. Line 3 solves the model and computes the new probabilities.

Among the new probabilities, probabilities higher than a threshold are added to the

new alignments set. This process can be repeated multiple times.

There are 2 reasons to make the process iterative. One is to prioritize the closer

pair. Our propagation rule considers all transitive dependencies of a pair. In our

observation, two statement instances are align, in close distance there are aligned

dependencies of the pair. Since our rule does not consider distance, we start building

our factor graphs by considering only close distance, and then expand the graph

iteratively.

The second reason is to reduce the size of the factor graph. In our factor graph

models, we create a random variable for every pair of statement instances. To limit

the number of random variables, we first considers only a small distance. Once we

can find strong candidates within a small distance, we can start building our graph
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from the pair. With this approach we can reduce the number of candidates and thus

can solve our factor graph faster.

Algorithm 10 Belief propagation
1: procedure Propagate(alignments, n)

2: worklist← alignments

3: while worklist is not empty do

4: I`i,tj , distance← pop(worklist)

5: ApplyRule(I`i,tj)

6: if distance <= threshold then

7: for I`p,tq ∈ dep(`i, n)× dep(tj, n) do

8: worklist← worklist ∪

9: {(I`p,tq , distance+ 1)}

Alg. 10 shows the process of building a probabilistic model from a set of alignments.

This alignments can be either the initial alignments or the refined alignments.

This process uses a worklist algorithm. Line 2 initializes the worklist with the

provided alignments. Line 3-8 repeats until the worklist is empty. Line 4 and 5 pops

an item from the worklist and apply the fore-mentioned propagation rules to the pair.

This function limits the worklist by distance from the previous aligned pair. Line 6-8

add more candidates from the current aligned pair if the current pair is within a certain

distance from the previous aligned pair. Also for the candidates from the current

aligned pair, the algorithm only considers dependencies from the current instance up

to distance up to distance n. This can prevent rapid growth of the probabilities model.

5.4.3 Probabilistic inference

After we acquire the initial alignments and their probabilities, we refine the

alignments with probabilistic inference. First we describe the intuition of our inference

rules and the procedure to build a probabilistic model from execution traces.
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Definitions:

`, t : statement label

`i, tj : the i/j-th instance of label ` and t

I`i,tj : true if `i and tj are aligned

S`,t : true if ` and t are aligned

symb(`i) : symbolic expression of `i

cdep(`i, n) : set of direct control dependencies of `i upto distance n

ddep(`i, n) : set of direct data dependencies of `i upto distance n

Rules:

1. symb(`i) ≡ symb(tj)
p
=⇒ I`i,tj

2. I`i,tj
p
=⇒ ∀`p ∈ cdep(`i, n), ∃tq ∈ cdep(tj, n), I`p,tq

3. I`i,tj
p
=⇒ ∀`p ∈ ddep(`i, n), ∃tq ∈ ddep(tj, n), I`p,tq

4. I`i,tj
p⇐⇒ S`,t

Figure 5.11.: Basic idea
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Fig. 5.11 shows the basic idea of our probabilistic inference. Rule 1 suggests that if

two labels have equivalent symbolic expressions, it is likely that two labels are aligned.

Rule 2 describes that if two labels `i and tj are aligned, dependencies of `i are likely

to be aligned with dependencies of tj. Rule 3 means that if `i and tj are aligned, it is

likely that their corresponding statements ` and t are aligned and vice versa. Due to

an error in different location, two labels that should be aligned may have different

symbolic expressions and system may fail to align them. Rule 3 suggests that once

two statements instances are aligned, it is likely that their other instances are aligned.

Note that the dependencies in rule 2 mean both direct and transitive dependencies.

Due to different implementations, two equivalent dependencies may appear as a direct

dependency in one version and as a transitive one in another version.
mid = (low + high) / 2; diff = high - low;

mid = low + diff / 2;
The above code snippets show two different way to compute the middle point of

low and high. The left hand side code computes the middle point directly from low

and high. The mid in that code directly depends on the variable low and high. On

the other hand, the right hand side code first computes differences between high and

low. Then it computes the mid by adding half of the differences to the low. In this

code, mid directly depends on low but not on high. Instead it transitively depends on

high. Therefore we consider both direct and transitive dependencies.

But we cannot consider all transitive dependencies in rule 2. If we consider, any

pair of instances that originate from the same value can have high probabilities. To

prevent this issue, we limit the distance of dependencies and iteratively increase the

maximum distance. First we search direct dependencies and if we can find the aligned

dependencies, the pair will have a high probability. In the future iteration, we increase

the bound and search for longer distance. Therefor we consider prioritize the closest

dependencies.
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Factor Graph

With the previous basic idea, we build a factor graph from the executions and their

dependence relations. Factor graph is a graphical representation of probabilistic model.

It is a bipartite graph and consists of two types of nodes: factors and random variables.

In factor graph, probability of the entire system is computed from multiplications of

factors. A factor is a probability function on a set of random variables.

p(X) =
n∏

i=1

fi(Xi) ,Xi ⊂ X

In our model, we use two types of binary random variables. The first random

variable, I`i,tj is true if `i and tj are aligned and false otherwise. Another random

variable S`,t is true if ` and t are aligned.

Fig. 5.12 presents the factor functions used in our model. fP (I`i,tj) models rule

1. It assigns high probability if symbolic expressions of `i and tj are equivalent. It

assigns low probability if the values are different. Otherwise it assigns probability

of 0.5 which means there is no preference. fH(I`i,tj , S`,t) models rule 3. It assigns a

high probability if two instances are aligned and two statements are aligned. If two

statements are aligned and two instances are not aligned, it gives a low probability.

fD(I`i,tj , I`d1 ,td1 , · · · , I`dp ,tdq ) models rule 2. It assigns a probability of 0.99 if `i and

tj are aligned and `di , one of the dependencies of `i, and tdj , one of the dependencies

of tj are aligned. Also `di and tdj should be the same type of dependencies, which

means that both `di and tdj are both data dependencies of `i and tj or both control

dependencies of them. Since it is highly unlikely that a data dependency of `i and a

control dependency of tj are aligned, we do not consider them as candidates in the

first place.
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fP (I`i,tj)

=


0.9 if symb(`i) ≡ symb(tj)

0.2 if value(`i) 6= value(tj)

0.5 otherwise

fCD

(
I`i,tj , I`d1 ,td1 , · · · , I`dp ,tdq

)

=


0.99 if I`i,tj ∧

(
I`d1 ,td1 ∪ · · · ∪ I`dp ,tdq

)
∧ (`di , tdi) ∈ cdep(`i)× cdep(tj)

0.01 otherwise

fDD

(
I`i,tj , I`d1 ,td1 , · · · , I`dp ,tdq

)

=


0.99 if I`i,tj ∧

(
I`d1 ,td1 ∪ · · · ∪ I`dp ,tdq

)
∧ (`di , tdi) ∈ ddep(`i)× ddep(tj)

0.01 otherwise

fH(I`i,tj , S`,t)

=


0.1 if ¬I`i,tj ∧ S`,t

0.9 if I`i,tj ∧ S`,t

0.5 otherwise

Figure 5.12.: Factors
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17`1: print D[x].chef 21t1: print chef[a]

14`1 : D[x].chef = D[y].chef 18t1 : chef[a] = b

11`1 : if D[x].score <= D[y].score 15t1 : if score[a] <= score[b]

9`1 : if D[x].chef == D[y].chef 13`1 : if a == b

3`1 : D[i].chef = i 12t1 : b = FindChef(y)

26t1 : return chef[c]

2t1 : chef[i] = i

17`1: print D[x].chef 21t1: print chef[a]

14`1 : D[x].chef = D[y].chef 18t1 : chef[a] = b

11`1 : if D[x].score <= D[y].score 15t1 : if score[a] <= score[b]

9`1 : if D[x].chef == D[y].chef 13`1 : if a == b

3`1 : D[i].chef = i 12t1 : b = FindChef(y)

26t1 : return chef[c]

2t1 : chef[i] = i

control dependency
data dependency

Figure 5.13.: Dependency graph

5.4.4 Example

Fig. 5.3 shows the result of the sequence alignment algorithm in the motivating

example. In this section, we will show that how the refinement process can improve

the initial alignments.

Fig. 5.13 shows the dependency graph of the motivating example. In the figure, red

arrows denote data dependencies and blue dashed arrows denote control dependencies.

A box represents a pair of aligned labels in the initial alignment. A blue box shows

an alignment considered as truth and having a high probability of 0.99. A yellow

box shows an alignment with relatively low probability of 0.7, which means that the

alignment is in the initial alignments but it can be wrong.

In our initial probability rules, we consider that two print statements are aligned

with a high probability if they the same value in the same order. In the motivating

example, both 17`1 and 21t1 are the first print statement in their executions and they

both print the same correct output. Hence the pair is considered as an truth and our

system assign a high probability of 0.99 to the pair.

Fig. 5.14 shows the factors generated from the dependency graph in Fig. 5.13

during the first iteration of refinement process. In the first iteration, we limit the
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fP (I17`1,21t1) = 0.99

fH(I17`1,21t1 , S17`,21t) =



0.99 I17`1,21t1 = T, S17`,21t = T

0.01 I17`1,21t1 = T, S17`,21t = F

0.01 I17`1,21t1 = F, S17`,21t = T

0.99 I17`1,21t1 = F, S17`,21t = F

fDD(I17`1,21t1 , I14`1,18t1) =



0.99 I17`1,21t1 = T, I14`1,18t1 = T

0.01 I17`1,21t1 = T, I14`1,18t1 = F

0.01 I17`1,21t1 = F, I14`1,18t1 = T

0.99 I17`1,21t1 = F, I14`1,18t1 = F

fP (I14`1,18t1) = 0.5

fH(I14`1,18t1 , S14`,18t) = · · ·

fDD(I14`1,18t1 , I3`1,12t1) =



0.99 I14`1,18t1 = T, I3`1,12t1 = T

0.01 I14`1,18t1 = T, I3`1,12t1 = F

0.01 I14`1,18t1 = F, I3`1,12t1 = T

0.99 I14`1,18t1 = F, I3`1,12t1 = F

fCD(I14`1,18t1 , I11`1,15t1) =



0.99 I14`1,18t1 = T, I11`1,15t1 = T

0.01 I14`1,18t1 = T, I11`1,15t1 = F

0.01 I14`1,18t1 = F, I11`1,15t1 = T

0.99 I14`1,18t1 = F, I11`1,15t1 = F

fP (I3`1,12t1) = 0.5

fP (I11`1,15t1) = 0.5

fCD(I11`1,15t1 , I9`1,13t1) = · · ·

Figure 5.14.: Factors generated for Fig. 5.13
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15`1 - 19t1 0.99

7`1 - 9t1 0.76

7`3 - 9t3 0.90

7`5 - 9t5 0.84

9`2 - 13t2 0.90

14`1 - 18t1 0.76
...

Figure 5.15.: Probabilities after the first iteration

length of the dependency chain in generating factors to 1. In other words, we only

consider the direct dependencies of the aligned labels in factors.

From the aligned labels 17`1-21t1, we generate the factors fP (I17`1,21t1), which rep-

resents the initial probability and fH(I17`1,21t1 , S17`,21t), which denotes that two state-

ments are aligned if their instances are aligned. Then we generate the factor

fDD(I17`1,21t1 , I14`1,18t1), which shows the relation between the aligned labels and their

direct dependencies.

Then we add the pair 14`1-18t1 to the worklist and further generates factors from

the pair. Since the symbolic expressions of 14`1 and 18t1 are equivalent but they do not

include any symbolic value, the prior probability of the pair is assigned with 0.5.

Belief propagation algorithms can solve the generated factor graph and find the

probabilities of each random variables such that the probability of the entire system is

maximized. Fig. 5.15 shows the parts of aligned labels and their probabilities. Among

them, if the largest probability exceeds a certain threshold, we treat that as a new

truth. In this case, we use 0.7 as threshold and 14`1-18t1 becomes a truth.

In the next refinement process, we set the probability of 14`1-18t1 with a higher

probability and repeat the process once again. Fig. 5.16 shows the parts of label

pairs and their probabilities of alignment. Note that the pair 14`1-18t1 has a higher

probability than the pair 14`1-12t1, which was in the initial alignment of Apex.
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16`1 - 20t1 0.99

3`3 - 2t3 0.86

3`2 - 2t2 0.79

14`1 - 18t1 0.96

14`1 - 12t1 0.35
...

Figure 5.16.: Probabilities after the second iteration
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5.5 Evaluation

We implement our system with LLVM and Python. We use an LLVM module to

statically instrument the source code of both buggy and correct programs and record

the executions. We record labels, values and dependencies of statement instances

at runtime. We build alignment, refinement and feedback generation modules with

Python. Symbolic expressions of labels are compared with Z3 [92] solver. The factor

graph is constructed and solved with libdai.

We evaluate our system in Arch Linux 5.0.6 with i7 2600k CPU and 16GB

memory. Our system is evaluated with DISHOWN implementations from Codechef

and CoREBench [52].

5.5.1 Codechef DISHOWN case

We evaluate our system with the DISHOWN implementations described in the

motivating example. We compared the result with Apex.

Table 5.1.: Evaluation from Codechef DISHOWN

ID A1 B2 B-A C3 D4 ID A B B-A C D

10645832 8 10 +2 8 23 6022804 38 12 -26 2 24

10915727 7 10 +3 14 72 6022856 38 12 -26 3 25

10915734 7 10 +3 15 76 6066091 10 10 = 14 35

11184971 6 3 -3 11 34 6066125 8 10 +2 14 29

11817758 17 10 -7 9 36 6078133 8 10 +2 14 29

11817839 17 10 -7 8 39 6078171 8 10 +2 13 34

11830415 10 10 = 5 34 6082523 8 10 +2 13 36

11830450 10 10 = 5 35 6381515 4 2 -2 20 72

1Apex
2ApexBP
3Only Apex
4Only ApexBP
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11830534 10 10 = 5 34 6523830 30 5 -25 10 77

11831061 10 10 = 4 23 6523931 27 15 -12 10 79

11898078 10 5 -5 13 48 6523958 27 15 -12 10 79

11898120 10 5 -5 13 48 6525533 30 5 -25 10 77

11898548 44 7 -37 13 47 6525602 27 15 -12 10 79

11987411 3 3 = 8 46 6549951 8 10 +2 13 28

11993995 11 4 -7 13 60 6550441 8 10 +2 13 28

12114817 10 10 = 10 32 6550457 8 10 +2 13 27

12114829 10 10 = 10 32 6551449 10 10 = 3 31

4330122 10 10 = 13 34 6583818 29 13 -16 4 58

4330127 10 10 = 13 34 6613096 10 10 = 8 42

4331036 9 8 -1 10 75 6613182 10 10 = 7 43

4332136 10 10 = 4 26 6778319 8 10 +2 10 38

4332188 8 10 +2 7 26 6940409 3 3 = 10 55

4332462 24 15 -9 5 57 6940568 3 3 = 10 58

4333710 8 8 = 11 33 7010396 10 10 = 4 32

4334609 27 15 -12 12 72 7022503 10 10 = 6 38

4336274 3 3 = 11 25 7032552 9 8 -1 6 6

4336298 3 3 = 11 25 7032556 9 8 -1 6 6

4336333 0 3 +3 11 29 7063317 8 10 +2 4 30

4336341 8 10 +2 11 36 7221510 8 10 +2 12 28

4336369 8 10 +2 11 36 7221525 8 10 +2 12 27

4336380 8 10 +2 11 36 7221560 8 10 +2 12 27

4336384 8 10 +2 11 36 7221579 8 10 +2 12 27

4336582 8 8 = 8 42 7255348 10 10 = 4 36

4337965 7 10 +3 10 25 7255355 3 3 = 10 54

4343567 11 11 = 6 27 7255360 3 3 = 10 55

4343578 10 10 = 6 23 7433673 6 10 +4 11 29

4343645 11 12 +1 8 32 7433751 8 10 +2 15 31
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4343649 26 20 -6 10 30 7596507 3 3 = 6 57

4343890 27 15 -12 6 69 7622659 13 3 -10 5 64

4343909 27 15 -12 6 72 7659042 10 10 = 5 26

4344055 9 10 +1 6 74 7659300 10 10 = 6 26

4345734 27 15 -12 11 49 7717049 26 10 -16 6 51

4362515 3 3 = 13 64 7718862 37 10 -27 4 51

4401847 10 10 = 5 23 7726227 21 15 -6 3 26

4401960 8 10 +2 8 34 7823122 3 3 = 6 22

4469962 10 10 = 8 29 7823243 26 20 -6 9 26

4469983 10 10 = 8 33 7823272 26 20 -6 10 26

4473718 3 3 = 4 29 7828759 10 10 = 7 33

4473737 10 10 = 7 37 7828825 10 10 = 7 36

4473771 8 10 +2 10 37 7828942 10 10 = 6 36

4473783 10 10 = 10 35 7829163 9 10 +1 6 73

4475304 15 11 -4 13 43 7873858 3 3 = 3 85

4475521 6 10 +4 17 41 7873888 3 3 = 11 73

4475537 6 10 +4 17 41 7874037 3 10 +7 9 88

4475618 6 10 +4 17 41 7973881 10 10 = 4 31

4506943 3 3 = 13 68 7973936 10 10 = 4 29

4560878 10 10 = 7 32 7974011 10 10 = 5 29

4567937 18 11 -7 6 37 7974090 10 10 = 4 35

4634792 3 3 = 6 30 7974157 10 10 = 6 32

4634797 3 3 = 6 30 8864668 10 10 = 12 22

4634841 10 10 = 6 28 9011087 10 10 = 6 31

4658289 10 10 = 7 28 9013821 10 10 = 7 26

4698512 8 10 +2 10 27 9086815 8 10 +2 10 34

4698762 8 10 +2 10 34 9087615 8 10 +2 10 34

4998899 18 12 -6 9 38 9087887 8 10 +2 10 39

4999289 17 10 -7 13 54 9088506 26 20 -6 9 69
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5216473 6 10 +4 12 31 9100384 17 8 -9 6 54

5216502 6 10 +4 7 33 9100863 27 15 -12 5 54

5216511 6 10 +4 12 30 9395795 8 11 +3 10 31

5228540 8 10 +2 10 16 9672735 3 3 = 5 60

5228542 10 10 = 8 26 9673184 31 8 -23 13 67

5228543 8 10 +2 8 28 9673205 31 8 -23 13 67

5264689 8 10 +2 7 31 9722378 10 10 = 7 28

5264910 8 10 +2 9 31 9722540 10 10 = 5 26

5269552 6 9 +3 14 44 9722543 10 10 = 5 26

5604706 10 10 = 4 28 9722587 10 10 = 5 26

5604742 10 10 = 4 32 9925702 8 8 = 12 42

5604749 10 10 = 4 32 9925709 8 8 = 12 42

5604768 10 10 = 4 28 9925713 8 8 = 12 42

We collect 214 buggy submissions of DISHOWN problem from Codechef. We

evaluate our system against 158 implementations which are not compile errors nor

crash errors and for which we can find the bug inducing inputs. The evaluation results

with the 158 programs are presented in Table. 5.1.

ID column represents the id of each buggy submission in the Codechef. Apex

column shows the size of the feedback generated by Apex and bp shows the size

of the feedback from our technique. Next column shows the difference between the

size of feedback generated by Apex and our technique. Positive value denotes that

our technique generate longer feedback and negative value means the opposite. =

represents that Apex and our technique generate the same feedback. AA and AB

shows the number of alignments only in Apex and our technique respectively.

In 70 cases Apex and our technique produces the same feedback. In 48 cases, our

technique produces shorter feedback than Apex’s. In 40 cases, Apex produces shorter

feedback.
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5.5.2 CoREBench

Table 5.2.: Size of feedback from CoREBench cases

Bug Id Prog
Execution Size Feedback Size

Buggy Correct Apex ApexBP
Apex

- ApexBP

core.06aeeecb cut 4792 4416 11 5 +6

core.2e636af1 cut 1813 3198 6 5 +1

core.5ee7d8f5 rm 1997 3567 23 23 =

core.6124a384 ls 5270 5131 20 4 +16

core.61de57cd tail 3605 3063 5 5 =

core.62543570 cp 6901 6662 12 5 +7

core.6fc0ccf7 expr 2283 2251 26 2 +24

core.a04ddb8d ls 70156 70134 2 2 =

core.a6a447fc cut 1595 1041 19 19 =

core.a860ca32 seq 1527 1391 3 2 +1

core.be7932e8 cut 3128 4819 23 5 +17

core.f7f398a1 du 6535 7075 21 7 +14

find.091557f6 find 32351 34899 17 18 -1

find.24bf33c0 find 36825 36411 10 7 +3

find.24e2271e find 10157 9876 106 2 +104

find.66c536bb find 40442 41035 2 1 +1

find.93623752 find 4387 4382 19 15 +4

find.b445af98 find 36843 37503 2 2 =

find.dbcb10e9 find 4889 38416 1 3 -2

find.e1d0a991 find 16763 15657 20 10 +10

grep.2be0c659 grep 131953 133407 90 65 +25

grep.3c3bdace grep 32184 49485 5 6 -1

grep.54d55bba grep 61685 67544 11 4 +7
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grep.55cf7b6a grep 15925 17377 18 4 +14

grep.7aa698d3 grep 138313 134045 90 65 +25

grep.8f08d8e2 grep 199452 199008 14 14 =

grep.c1cb19fe grep 81287 350049 8 3 +5

grep.c96b0f2c grep 74345 73403 20 6 +14

average 21.6 11.0

Table. 5.2 shows the evaluation results with CoREBench. CoREBench is a bench-

mark for regression testing. It consists of various versions of coreutils, findtools, grep

and make with regression bugs. We evaluate our system with the real world regression

bugs to show that our technique can be applied to understand the real world regression

bugs as well as programming assignments.

We evaluated with 28 cases from CoREBench. The makefile cases generate huge

amount of execution traces because the makefile performs parsing. Due to the size of

the execution traces, we cannot evaluate our system with makefile. Also a few cases

that uses multi-thread, that does not have obvious difference in outcome, and that

we couldn’t reproduce are excluded. We use the entire execution traces of the target

programs. The size of the execution trace is 42547 statement instances on average.

On average Apex generates feedback with 21.6 statements while our technique does

with 11 statements. We examined the feedback manually and there are no significant

different in the quality of the result.
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