
CHRONIC STRESS AND SEX AS MEDIATORS OF THE 

BASOLATERAL-CENTROMEDIAL AMYGDALA CIRCUIT AND ITS 

RESPONSE TO ACUTE ETHANOL 
by 

Sean Gainey 

 

A Thesis 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Master of Science 

 
 

Department of Psychology at IUPUI 

Indianapolis, Indiana 

May 2020 

  



 
 

2 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Marian L. Logrip, Chair 

Department of Psychology 

Dr. Christopher C. Lapish  

Department of Psychology 

Dr. Anthony J. Baucum II 

Department of Biology 

 

Approved by: 

Dr.  Jesse C. Stewart 

 

 



 

3 

ACKNOWLEDGMENTS 

I would first like to thank my thesis advisor, Dr. Marian Logrip of the Department of 

Psychology at Indiana University-Purdue University Indianapolis. No issue was too big or too 

small for Dr. Logrip to address, and there was never too little time to explain the theory behind a 

solution. She was invaluable as a source of information and encouragement through the setup of 

the electrophysiology equipment that made this work possible. 

I would also like to thank Dr. Christopher Lapish of the Department of Psychology and 

Dr. A.J. Baucum of the Department of Biology. I am grateful for the contextual knowledge of 

Dr. Lapish, the technical advice of Dr. Baucum, and the commentary of both professors on the 

writing of this thesis. 



 

4 

TABLE OF CONTENTS 

List of Tables .................................................................................................................................. 6 

LIST OF FIGURES ........................................................................................................................ 7 

ABSTRACT .................................................................................................................................... 9 

INTRODUCTION ........................................................................................................................ 10 

MATERIALS AND METHODS .................................................................................................. 15 

General Design........................................................................................................................... 15 

Subjects ...................................................................................................................................... 15 

Apparatus ................................................................................................................................... 15 

Stress History Model.................................................................................................................. 16 

Estrous Cycle Synchronization .................................................................................................. 17 

Slice Preparation ........................................................................................................................ 17 

Experiment 1 .............................................................................................................................. 18 

Experiment 2 .............................................................................................................................. 20 

Data Analysis ............................................................................................................................. 21 

RESULTS ..................................................................................................................................... 25 

Experiment 1: Electrophysiological Recordings in the CeM .................................................... 25 

Evoked Responses During Baseline and Ethanol Phases ...................................................... 27 

Reduction in Evoked Responses in the Presence of 36 mM Ethanol .................................... 28 

Experiment 2: AMPA Receptor Expression and Posttranslational Modification in the CeM ... 31 

Total GluA1 AMPA Receptor Subunit Expression ............................................................... 31 

Phosphorylated S831 on GluA1 Receptor Subunits .............................................................. 32 

Proportional Phosphorylation of S831................................................................................... 34 

Phosphorylated S845 on GluA1 AMPA Receptor Subunits ................................................. 34 

DISCUSSION ............................................................................................................................... 36 

Overall Discussion ..................................................................................................................... 36 

Sex Differences in the Effects of Stress and Ethanol on CeM Responsivity............................. 36 

Lack of Contribution from Differences in Synaptic GluA1 ...................................................... 37 

Implications for Sex Differences in Chronic Stress and Alcohol Interactions .......................... 38 

GABAergic Circuitry ................................................................................................................. 39 



 

5 

Alternative Sources of Changes in Excitability ......................................................................... 39 

Conclusions ................................................................................................................................ 40 

REFERENCES ............................................................................................................................. 42 

  



 

6 

LIST OF TABLES 

Table 1. Counts of non-negative fluorescence results for synaptic pS845 GluA1. Phosphorylation 
of GluA1 subunits at the S845 site was quantified at extremely low levels. Many samples 
returned lower fluorescence values compared to background fluorescence of the membrane. The 
number of positive results, shown above, was too low for meaningful statistical analysis. ......... 35 

 

 

  



 

7 

LIST OF FIGURES 

Figure 1. Simplified circuitry in BLA-CeM stimulated recordings. A bipolar electrode (left side) 
stimulates the BLA, as would the excitatory inputs it receives from external regions. Stimulated 
BLA glutamatergic neurons (green) project into the CeM. A ...................................................... 19 

Figure 2. Recording session timeline and eEPSC quantification. A. Timeline of a typical 
recording session for one cell. After characterizing the cell and determining the optimal 
stimulation intensity for subthreshold EPSCs, the timeline for the session began (0 minutes). 3 
stimulations were administered per minute for the next 26 minutes. During the first 10 minutes, 
the bath included only aCSF and GABA receptor blockers.  The bath was switched to aCSF with 
blockers and 36 mM ethanol and allowed 6 minutes to wash onto and through the slice while 
recording continued. Recording continued for another 10 minutes. The last 5 minutes of aCSF 
were used to quantify the cell’s baseline response, and the first 5 minutes of aCSF + 36 mM 
ethanol were used to quantify the cell’s response in the presence of ethanol. B. Diagram of a 
single stimulation and response and its quantification. The mean current in pA before the 
stimulation artifact was used as the cell’s baseline current flow while clamped at -70 mV. EPSC 
magnitude was taken as the difference between the current induced by BLA stimulation and the 
baseline current flow, which was calculated as the different between the lowest deflection point 
and the 5 ms baseline period. ........................................................................................................ 23 

Figure 3. Placement diagram for whole cell recordings.The location of each recording in the 
CeM was saved and plotted (indicated by red dots). .................................................................... 25 

Figure 4. BLA-evoked subthreshold EPSCs in representative CeM neurons. A. Representative 
traces for a single neuron from a Male, Control History rat during the baseline aCSF phase and 
during the 36 mM Ethanol phase. Evoked EPSCs were quantified as the difference .................. 26 

Figure 5. Verification of evoked EPSCs as AMPA receptor-mediated. Following several stable 
recordings, NMDA receptor antagonist AP5 was washed onto the slice to verify that the 
immediate responses had negligible NMDA receptor contribution. AMPA receptor antagonist 
NBQX was then washed on, blocking all responses and verifying that observed EPSCs were 
primarily AMPA receptor-mediated. Values are means +/- SEM. ............................................... 27 

Figure 6. BLA-evoked CeM responses in the presence of aCSF. Male rats showed no significant 
difference in BLA-evoked CeM EPSCs between those with a control history and those with a 
stress history. Female rats had a non-significant trend toward a higher response magnitude for 
those with a stress history compared to controls (p = 0.061). There was a significant 2-way 
interaction between sex and history during the baseline period (p = 0.018) with female control 
responses reduced compared to male controls (p = 0.021). Error bars indicate SEM. * p < 0.05.28 

Figure 7. BLA-CeM eEPSCs during ethanol exposure relative to baseline. A. Time course of 
responses for males during the ethanol phase, shown as a percentage of the average baseline 
response. Male controls had a significant reduction in eEPSC magnitude during the ethanol 
phase (p = 0.010). B Time course of responses for females during the ethanol phase shown as a 
percentage of the average baseline response. Error bars indicate SEM. * p < 0.05. .................... 30 



 

8 

Figure 8. Ethanol-induced reductions in eEPSCs by sex and stress history. Males showed a 
significant reduction during the ethanol phase (p = 0.005), but females did not. Animals with a 
control history showed a significant reduction during the ethanol phase (p = 0.002), but animals 
with a stress history did not. Error bars indicate SEM. * p < 0.05. .............................................. 31 

Figure 9. Total synaptic GluA1 expression in the CeA. A. A 3-way ANOVA revealed no 
significant main effects or interactions on total synaptic GluA1 subunit expression in response to 
chronic stress or acute ethanol exposure. Error bars indicate SEM. B. Representative image for 
GluA1 quantification. ................................................................................................................... 32 

Figure 10. Phosphorylation of synaptic GluA1 at S831 in the CeA. A. A 3-way ANOVA 
indicated no main effects or interactions between chronic stress or acute ethanol exposure on 
phosphorylation of synaptic GluA1 subunits at the S831 phosphorylation site. Error bars indicate 
SEM. B. Representative image for pS831 quantification. ............................................................ 33 

Figure 11. Percentage of total synaptic GluA1 phosphorylated at S831 in the CeA. S831-
phosphorylation of GluA1 subunits as a percentage of total synaptic GluA1 expression was 
assessed by a 3-way ANOVA, which indicated no significant interactions or main effects of 
chronic stress history or acute ethanol exposure. Error bars indicate SEM. ................................. 34 

 

 

 

  



 

9 

ABSTRACT 

Anxiety disorders are the most common class of mental disorders in the United States, 

and they both promote and exacerbate disorders of substance abuse. Mounting evidence of sex 

differences in the relationship between anxiety disorders and alcoholism supports the potential 

existence of an anxiety-dependent vulnerability to alcohol abuse in women compared with men. 

One potential point of overlap in the physiological systems involved in anxiety response and 

reward processing is the amygdala. Here, a model of chronic stress in rodents was employed to 

probe changes in the electrophysiological and biochemical properties of the amygdala at a post-

stress baseline and during a post-stress first exposure to alcohol. Electrophysiological data 

revealed that neurons in the centromedial amygdala were more responsive to stimulation in the 

basolateral amygdala in females compared with males, but a history of chronic stress altered the 

female response to match that of males with or without a history of chronic stress. Protein 

analysis of postsynaptic glutamatergic receptor expression and phosphorylation in the amygdala 

did not indicate any differences based on sex or exposure to stress or alcohol. These data 

demonstrate a sex difference in stress-induced alterations in amygdala circuitry and indicate a 

potential role for this circuitry in the comorbidity of anxiety disorders and alcoholism. 
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INTRODUCTION 

Anxiety disorders are more common in the U.S. than any other class of mental disorders. 

The lifetime prevalence rate is 31.6% of the total population above age 13, including 37.3% of 

women compared to 25.6% of men  (Kessler et al., 2012; Kessler et al., 2002). Terminology in 

the literature is mixed in part because of reorganization of disorder classification in the most 

recent revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM), but these 

statistics regarding the general group of disorders including post-traumatic stress disorder 

(PTSD), specific phobia, generalized anxiety disorder, separation anxiety disorder, panic 

disorder, and agoraphobia have remained consistently high over time. The higher prevalence of 

diagnosis of anxiety disorders in women compared to men is well-documented. Furthermore, 

women with an anxiety disorder have a higher likelihood to be diagnosed with a second disorder 

than men and experience a greater illness burden from anxiety disorders (McLean et al., 2011). It 

may be the case that women have higher vulnerability for pathological responses to stress in 

general. For example, women exposed to trauma meeting criteria for PTSD are diagnosed at a 

rate of 20.4%, while only 8.2% of men exposed to trauma are diagnosed (Kessler et al., 1995), 

although the contribution of differences in help-seeking to this discrepancy remains unclear. 

Alcoholism also has high lifetime prevalence rates with 12.5% for dependence according 

to DSM-IV criteria and 29.1% for alcohol use disorder (AUD) according to DSM5 criteria 

(Grant et al., 2015; Hasin, Stinson, Ogburn, & Grant, 2007). Terminology in the anxiety-alcohol 

literature varies on terms of alcohol misuse as well, and terms are presented here as they appear 

in their primary sources. Regardless of classification and terminology, comorbidity between 

anxiety disorders and alcoholism exceeds even what would be predicted based on their high 

individual prevalence rates: PTSD alone is found in 26.2% of women and 10.3% of men with 

AUDs but is diagnosed in only 7.8% of the general population (Sonne et al., 2003). Traumatic or 

chronic stress also lead to higher rates of chronic anxiety and depression in alcoholics than the 

general population (Mons & Beracochea, 2016).  

Alcohol abusers are at higher risk for the development of an anxiety disorder, but the 

reverse is also common. A prominent example is combat-exposed veterans diagnosed with 

PTSD. This group exhibits higher rates of multiple measures of alcohol misuse compared to 

combat veterans without a diagnosis (Jacobson et al., 2008). The shared stress exposure with 
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differing PTSD and alcohol abuse outcomes could indicate an underlying vulnerability to both 

conditions exacerbated by traumatic stress. Sex differences in directionality are seen here as 

well, as women more often report PTSD predating alcohol abuse than men (Sonne et al., 2003). 

Women diagnosed with both PTSD and AUD report drinking to cope with stress more than men, 

and heavy-drinking women generally report greater stress-induced cravings for alcohol than men 

(Lehavot et al., 2014; Hartwell and Yar, 2013). Differences in stress responsivity related to 

alcohol affect long-term outcomes for alcoholics, as stress is a major risk factor for relapse 

(Sinha, 2012). Comorbidity between behavioral outcomes of anxiety and alcoholism implicate 

some underlying neurocircuitry that produces vulnerability to both conditions. However, while 

current pharmacological treatments have improved the duration of abstinence for some patients, 

they have not improved long-term relapse rates (Schuckit, 2009).  

The amygdala presents a potential point of pathological overlap between anxiety and 

alcoholism due to its critical roles in consolidation of fear, expression of anxiety, and processing 

of reward (Janak & Tye, 2015). The amygdala is divided into several nuclei including the 

basolateral amygdala (BLA) and central amygdala (CeA). Much of the input to the amygdala 

flows into the BLA, is processed through circuitry within and between the subdivisions of the 

amygdala and flows out from the CeA (Duvarci & Pare, 2014). The BLA receives sensory input 

from the sensory cortical regions and further stimulus information from thalamus and 

hippocampus. The CeA sends output processed within the amygdala to the bed nucleus of the 

stria terminalis, hypothalamus, pons, and medulla (Sah et al., 2003). Part of processing circuitry 

within the amygdala includes excitatory glutamatergic projections from the BLA to the primarily 

GABAergic neurons of the lateral (CeL) and medial (CeM) subdivisions of the CeA (Shackman 

et al., 2016). Excitement of the CeL inhibits the CeM, where most of the GABAergic projection 

neurons that carry amygdala output are located, so overall output is largely a result of the balance 

between the strength of BLA-CeL and BLA-CeM connections (Tye et al., 2015, Calhoon & Tye, 

2015).  

This circuitry plays roles in processing both positive and negative external stimulus 

information. The amygdala as a whole and the CeA in particular have long been studied as 

mediators of acquisition and expression of conditioned fear (Davis, 1992, LeDoux et al., 1988). 

Fear acquisition is associated with a functional CeL, and fear responses are primarily associated 

with the CeM (Ciocchi et al., 2010). The role of the amygdala in reward processing has been 
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examined more recently, and appetitive behaviors have been shown to be mediated by distinct 

populations of BLA projections to the CeA (Kim et al., 2017). Because the amygdala plays roles 

in both positive and negative stimulus learning and response, the role of the amygdala can be 

considered processing of valence, thereby encoding the intensity with which a positive or 

negative stimulus should be sought or avoided (O’Neill et al., 2018). The overlapping roles of 

the amygdala in appetitive and aversive behaviors suggest its potential to contribute to disorders 

involving addiction and anxiety (Gilpin, Herman, & Roberto, 2015).  

Differences in amygdala processing can be innate or induced by life experience with 

positive and negative stimuli. Induction of alcohol dependence in rats increases GABA release in 

the CeA, and acute exposure to ethanol decreases excitability of CeA neurons more in alcohol-

dependent rats than in naïve rats (Roberto et al., 2004; Roberto et al., 2004). Electrophysiological 

recordings in slices from naïve rats show a blunting of alcohol’s effects on BLA-CeM 

excitability in female rats, compared to males (Logrip, Oleata, & Roberto, 2016). Forced 

abstinence reverses some chronic ethanol-induced neuroadaptations, but some persist long after 

ethanol exposure ends, suggesting a possible contribution to persistent alcohol use disorders 

(Roberto et al., 2006). 

CeM output may be regulated by more than intra-amygdala circuitry, however. The CeA 

receives direct inhibitory and excitatory input from multiple cortical regions (Janak & Tye, 2015; 

McDonald et al., 2006). An increase in CeM output, therefore, could be the result of changes in 

sensitivity to external inputs, intra-amygdala inputs, or both. Stress has been shown to promote 

lasting hippocampal changes through adaptations in α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptor trafficking (Krugers, Hoogenraad, & Groc, 2010). 

AMPA and N-methyl-D-aspartate (NMDA) receptors are both glutamate receptors spread 

throughout the brain. AMPA receptors mediate fast excitatory responses, while NMDA receptors 

facilitate longer term changes in excitability related to synaptic plasticity (Pin and Duvoisin, 

1995). In these experiments, I investigated whether life experiences were altering amygdala 

processing through changes in AMPA-mediated excitability of the CeM to determine whether 

excitability was altered in the long term regardless of the state NMDA receptor-mediate 

plasticity.  

AMPA receptors are composed of four subunits of four different subunit types, GluA1, 

GluA2, GluA3, and GluA4. A dimer of GluA2 is present in in most AMPA receptors with a 
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dimer of any of the other 3 types, the most common of which is GluA1 (Nakanishi, 1992). 

Phosphorylation of the GluA1 subunit is one of the most common posttranslational modifications 

regulating excitability of AMPA receptors. Phosphorylation of the serine 845 site on the GluA1 

subunit of AMPA receptors (pS845) is believed to increase trafficking of AMPA receptors to the 

synapse (Mao, Diaz, Fibuch, & Wang, 2013). Phosphorylation of the serine 831 site on the 

GluA1 subunit (pS831) is associated with increased probability of opening and increased open 

duration (Lee et al., 2013). These two phosphorylation sites provide two possible mechanisms by 

which CeM output may be elevated in response to input from all excitatory projections, which 

could produce inappropriately large stress responses to general sources of stress.  

Many different animal models of stress have been developed for a variety of research 

purposes. Application of the stress hormone corticosterone to tissue is a valuable tool in 

electrophysiological experiments for investigating acute stress response in circuits such as the 

BLA-CeM pathway. In vivo models, however, have the advantage of including the full 

endogenous stress response. The hypothalamic-pituitary-adrenal (HPA) axis, for example, 

increases circulating levels of multiple hormones, any one or combination of which might 

promote lasting neuroadaptations. Corticosterone in rodents, or primarily cortisol in humans, is 

elevated by HPA axis activity in response to stress, and CeA circuitry involving corticotropin-

releasing factor has been shown to play a role in fear learning in mice Sanford et al., 2017). In 

vivo stress models ensure that natural stress-induced adaptations are present regardless of which 

stress response components are responsible. Moderate repeated footshocks in rodents have been 

used acutely to measure conditioned fear associated with anxiety and chronically to model 

anxiety and symptoms of depression and PTSD (Bali & Jaggi, 2015; Whitaker, Gilpin, & 

Edwards, 2015).  

Use of a chronic, in vivo model of stress to probe amygdala circuitry with molecular tools 

such as slice electrophysiology is a powerful but underutilized combination due to the labor 

demand of chronic behavioral preparation of individual subjects staggered over time. Use of this 

combination has produced valuable findings, including that alcohol and corticosterone exposure 

increase BLA excitability in slice recordings (Karst et al., 2010; Läck et al., 2007) and that 

repeated sessions of cued footshocks can model the lasting effects of stress exposure on 

behavioral measures of alcohol consumption (Logrip & Zorrilla, 2012). Further exploration of 

the electrophysiological consequences of chronic stress would be a significant addition to 
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research on anxiety and alcoholism and could better inform models such as direct application of 

stress hormones and ethanol for research of human conditions. Here I use a chronic footshock 

model of stress to measure changes in electrophysiological properties of the direct BLA-CeM 

pathway and changes in general CeA excitability as measured by AMPA receptor expression and 

modification. A simplified diagram of this circuitry overlaid on images captured during 

electrophysiological recording can be seen in Figure 1. Animals are shipped in adulthood to 

minimize early-life stress, such as that of shipping and acclimating to new facilities, as early-life 

stress can produce lasting effects that might obscure the effects of stress during adulthood 

(Gutman and Nemeroff, 2003). These adult, alcohol-naïve animals are subjected to a model of 

chronic stress that includes repeated daily sessions of cued, unpredictable footshocks in an 

inescapable environment. This models humans with trauma exposure in adulthood that precedes 

alcohol abuse, as is often the case in combat veterans. 

I hypothesize that this model of chronic stress will produce physiological changes that 

establish vulnerability to future alcohol abuse, and that these changes will be greater in females 

compared to males. Specifically, I hypothesize that this will be shown by an increase in the 

magnitude of BLA-induced CeM excitation that is sensitive to a reduction during alcohol 

exposure. The proposed mechanism for this change in sensitivity is an increase in synaptic 

AMPA receptor expression in the CeM and an increase in phosphorylation-promoted trafficking 

and phosphorylation of AMPA receptors that is greater in females relative to males.  
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MATERIALS AND METHODS 

General Design 

Both experiments utilized a modified chronic stress model previously used to investigate 

the long-term behavioral effects of stress on alcohol self-administration (Logrip and Zorrilla, 

2012). In this model, adult, alcohol-naïve animals are singly housed and subjected to 3 

consecutive days of unpredictable, inescapable, light-cued footshock sessions before further 

testing. Experiment 1 probed the effects of this stress history on glutamatergic BLA-CeM 

projections by recording single CeM neuron responses to evoked BLA activity at a basal level 

and in the presence of ethanol. Experiment 2 investigated postsynaptic properties of CeA 

neurons by using Western blots to measure postsynaptic AMPA receptor expression and 

phosphorylation and the effect of acute ethanol exposure on those measures. 

Subjects 

A total of 72 adult Wistar rats (Envigo, Indianapolis, IN) were used with 24 (12 male) used 

in Experiment 1 and the remaining 48 (24 male) used in Experiment 2. Rats were received at 8-9 

weeks of age and allowed a minimum of one week to acclimate to the temperature- and 

humidity-controlled vivarium on a 12-hour light cycle (lights on at 8 am). All rats were pair 

housed on arrival and split into single housing 24 hours before stress exposure. Rats were housed 

in standard transparent plastic rat cages with pine sawdust bedding, wire lids, and standard rat 

chow and water available ad libitum.  All experiments were approved by the Institutional Animal 

Care and Use Committee at Indiana University-Purdue University Indianapolis according to the 

National Institutes of Health Guide for Care and Use of Laboratory Animals. 

Apparatus 

Footshock administration sessions were controlled and recorded with custom software and 

performed in 16 standard rat operant chambers enclosed in sound-attenuating boxes (Med 

Associates, St. Albans, VT).  Chambers were equipped with a house light, stainless steel side 

walls, transparent Plexiglas front and back walls and ceiling, and a bedding tray under metal bar 

flooring connected to a shock delivery box. An infrared camera (Swann Communications, Santa 
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Fe Springs, CA) was affixed to the ceiling of the sound-attenuating box outside the operant 

chamber. Separate chambers in separate rooms were used for male and female footshock 

administration.  

All brains were sliced with a VT1200S vibratome (Leica Biosystems, Inc., Buffalo Grove, 

IL). Electrophysiological data were collected using a custom setup with a CV-7B head stage, a 

Multiclamp 700B microelectrode amplifier, and an Axon Digidata 1550A digitizer (Molecular 

Devices, San Jose, CA). Recordings were collected using Clampex version 10.7.03 (Axon 

Instruments, San Jose, CA). Stimulation was produced by a DS3 isolated current stimulator 

(Digitimer, Ft Lauderdale, FL). Electrode micropipettes were made from 1.5 mm outer diameter, 

1.12 mm inner diameter borosilicate capillary tubes with filaments and were pulled on a P-1000 

micropipette puller (Sutter Instrument, Novato, CA). Slices were visualized with 4x and 40x 

magnification through a DIC infrared filter on a microscope connected to imaging software on 

the recording computer (Nikon, Melville, NY). Synaptic protein was isolated via centrifuge 

(Thermo Fisher, Waltham, MA). Western blots were run on Bio-Rad TGX gels and transferred 

to PVDF membrane (Bio-Rad, Hercules, CA). Membranes were quantified with a fluorescence 

scanner and Image Studio software (Li-Cor Biosciences, Lincoln, NE). 

Stress History Model 

Experiments 1 and 2 each used the same stress history model. Rats were split into single 

housing and handled for several minutes to establish familiarity with the experimenter. Rats were 

randomly assigned to either a stress history group or a control history group. Stress history 

sessions began at least 24 hours after handling and were administered in the first half of the light 

cycle. During each session, 60 footshocks were delivered on a variable interval between 11 and 

50 seconds for a total session time of approximately 30 minutes. Each footshock was cued by a 5 

second illumination of the house light. After 4.5 seconds of house light illumination, a 0.5 

second, 0.4 mA footshock was delivered through the metal bar floor and co-terminated with the 

house light cue. The session ended after delivery of the 60th footshock, and the rat was returned 

to its home cage and transferred back to the vivarium. 

A history was established for each animal with one session per day for three consecutive 

days. Animals in the stress history group for each experiment would receive footshocks as 

described above. Animals in the control group would go through the same sessions, but power 
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was disconnected from the shock delivery box. Infrared cameras recorded the sessions to verify 

effective footshock delivery. After each use the bedding tray was cleaned and refilled and the 

chamber walls, ceiling, and floor were cleaned with quatricide cleaning wipes (PDI Healthcare, 

Orangeburg, NY). In cases where animals with a control history had sessions on the same day as 

animals with a stress history, the control sessions were conducted separately and prior to stress 

sessions in addition to using sound-attenuating boxes and cleaning the chambers between uses to 

further avoid confounds from sounds or smells produced by animals receiving footshocks. 

Estrous Cycle Synchronization 

Estrous cycles of female rats were synchronized to reduce variability from fluctuations in 

circulating hormones. 10 µg/mL luteinizing hormone-releasing hormone (LHRH) was dissolved 

in a vehicle of 0.5 µg/µL 0.1 N acetic acid in phosphate buffered saline. Synchronization 

required two separate 200 µL subcutaneous injections of LNRH at 3 and 8 hours into the light 

cycle of female rats on the day of the first footshock session to mimic proestrus, which should 

time the diestrus phase for the day of sacrifice (Oglivie & Rivier, 1997). Males were similarly 

injected with the vehicle to control for the stress of subcutaneous injections. 

Slice Preparation 

Approximately 24 hours after final footshock session, rats were removed from the 

vivarium and lightly anesthetized with 5% isoflurane and 95% air delivered through a large 

nosecone inside a hood. The rat was rapidly decapitated, and its brain was dissected and dropped 

into an oxygenated (95% O2, 5% CO2), ice-cold slurry of cutting solution containing, in mM: 

206 sucrose, 2.5 KCl, 1.2 NaH2PO4, 26 NaHCO3, 5 glucose, 5 HEPES, 0.5 CaCl2, and 7 

MgCl2. The process from the beginning of anesthesia to putting the brain in cutting solution 

typically took less than 2 minutes. Coronal slices were prepared at a thickness of 300 µm while 

submerged in oxygenated, ice-cold cutting solution using a vibratome. Slices containing both 

BLA and CeA were trimmed to size and placed onto a wire mesh suspended in a small beaker of 

oxygenated (95% O2, 5% CO2) artificial cerebrospinal fluid (aCSF) containing, in mM: 130 

NaCl, 3.5 KCl, 2.0 CaCl2, 1.5 MgSO4, 1.25 NaH2PO4, 24 NaHCO3, and 10 glucose.  
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Experiment 1 

Rats were assigned to the stress history group or control history group and received the 

appropriate stress exposure as described above. Slices were prepared as described above and 

allowed to recover for 30 minutes with the beaker maintained at 32°C via warming bath, 

followed by 30 minutes at room temperature. The beaker was continuously oxygenated 

throughout the experiment after slice preparation was complete. Slices were individually 

transferred to a tissue slice chamber (Warner Instruments, Hamden, CT) mounted under a 

microscope with room temperature oxygenated aCSF continuously gravity-perfused across the 

slice at approximately 2 mL per minute and removed by a vacuum line. The slice rested on a 

wire mesh with the top and bottom exposed to aCSF and was held down with a small piece of 

platinum wire.  

A bipolar electrode was positioned in the BLA with a motorized manipulator arm while 

viewing the slice at 4x magnification (Figure 1). A 2-6 MOhm resistance micropipette was filled 

with internal solution containing 1 mg/mL biocytin and, in mM: 145 potassium-gluconate, 10 

HEPES, 1 EGTA, 2 Mg2+-ATP, 0.3 Na2+-GTP, and 2 MgCl2. The micropipette was inserted 

into the recording head stage with the attached AgCl2-coated silver wire extending into the 

internal solution. It was then lowered into the bath using a second motorized manipulator arm 

while under slight positive pressure applied via syringe. Potential cells in the CeM were 

identified visually at 40x magnification. The recording pipette was moved into contact with a 

target cell until a stable gigaohm seal was achieved, and the membrane was ruptured to achieve a 

stable patch using light syringe suction. Patches were considered suitable for recording if they 

maintained a stable access resistance below 25 MOhm. 
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Figure 1. Simplified circuitry in BLA-CeM stimulated recordings. A bipolar electrode (left side) 
stimulates the BLA, as would the excitatory inputs it receives from external regions. Stimulated 

BLA glutamatergic neurons (green) project into the CeM. A 

Cells were held in a voltage clamp configuration at -70 mV to nearly mimic resting 

membrane potential. Because the clamp should approximate resting membrane potential, a 

current of greater than 60 pA was considered an indicator a poor patch or an unhealthy cell, so 

recordings were limited to cells with less than 60 pA of current while clamped at -70 mV. 

Glutamatergic currents were pharmacologically isolated by including 30 µM GABAA receptor 

blocker bicuculline (Tocris Biosciences, Bristol, UK) and 1 µM GABAB receptor blocker CGP 

55845 (Sigma Aldrich, St. Louis, MO) in the aCSF. Voltage response and input/output curves 

were produced to confirm the patch and determine an appropriate stimulation to consistently 

produce a sub-threshold excitatory postsynaptic current (EPSC) (Logrip, Oleata, & Roberto, 

2017). The appropriate intensity was determined by finding the minimal stimulation to generate a 

response in the patched cell and the maximal stimulation before producing an action potential 

and choosing the median intensity between the two. Custom programming initiated a 3 ms 

stimulation at the determine intensity in the BLA once every 20 seconds while recording current 

in the patched CeM cell. After 10 minutes of recording baseline responses, 2.14 µL/mL 95% 
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ethanol was added to the aCSF for a concentration of 36 mM ethanol. After allowing 6 minutes 

of wash onto the slice and perfusion through it, the recording continued for another 10 minutes. 

The last 5 minutes of recording before application of alcohol was used as the baseline period, 

and the first 5 minutes after alcohol wash-on was used for the alcohol period. These periods were 

chosen based on the number of patches that did not remain stable through the entire 10 minutes 

of alcohol recording and choosing a baseline period of equal length. A validation recording was 

performed to confirm that the responses were primarily produced by glutamatergic AMPA 

receptor activation by adding NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid 

(AP5) at 40 µM to rule out NMDA contribution to observed responses followed by AMPA 

receptor antagonist 6-Nitro-2,3-dioxo-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide 

(NBQX) at 50 µM to confirm the contribution of glutamatergic AMPA receptor activation (AP5 

and NBQX from Tocris Biosciences, Bristol, UK). 

Experiment 2 

Separate rats from Experiment 1 were assigned to the stress history group or control 

history group and received the appropriate stress exposure as described above. Half of the 

subjects from each sex and stress history group were selected randomly for an acute ethanol 

exposure group, and the remaining subjects were assigned to a control group. Slices were 

prepared as described above and incubated in a warming bath at 32°C for 60 minutes with the 

aCSF oxygenated (95% O2, 5% CO2) for the full duration. For slices in the acute ethanol group, 

2.14 µL/mL 95% ethanol was added to the beaker to achieve a 36 mM concentration for the final 

10 minutes of the 60-minute incubation. No addition was made to the aCSF of slices in the 

control group. 

At the end of the incubation period, slices were removed from the beakers, and tissue 

punches containing the CeM were removed and frozen at -80° C. Postsynaptic AMPA receptors 

make up a relatively small portion of the total mass of a neuron. Tissue punches from all slices 

from each animal were pooled into a single sample to produce protein for quantification. A 

previously-described fractionation procedure was used to take advantage of AMPA receptor 

location in the postsynaptic density to enrich the samples with postsynaptic membrane (Hallet, 

Collins, Standaert, & Dunah, 2008). Synaptic enrichment also differentiates between functional 

synaptic receptors and typically inactivated perisynaptic receptors waiting to be trafficked in for 
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use in the synapse. In brief, the tissue was homogenized and lysed in the presence of protease 

and phosphatase inhibitors (Roche) in a lysis buffer containing, in mM: 320 sucrose, 10 Tris 

base, 5 NaF, 1 Na3VO4, 1 EDTA, and 1 EGTA. The homogenized lysate was separated via 

centrifuge at previously determined speeds to separate components of the tissue with greater 

mass than postsynaptic membrane-containing vesicles. Pellets underwent hypoosmotic lysis in a 

buffer containing, in mM: 35.6 sucrose, 10 Tris base, 5 NaF, 1 Na3VO4, 1 EDTA, and 1 EGTA, 

and protease and phosphatase inhibitors. The final high-speed spin of 20 minutes at 25,000 x G 

produced a pellet enriched with postsynaptic membrane separated from the lower density 

components in the supernatant. The pellet was used as the sample material for Western blot 

analysis.  

While fractionation enriched samples with postsynaptic membrane, the final yield was still 

low enough to require Western blot gels with high capacity (30 µL) wells. 10 lane, 8-16% 

gradient TG gels (Bio-Rad, Hercules, CA) were used with 5 µg protein per sample. Bio-Rad 

Protein Assay kits were used to determine protein concentration in each sample for matching 

protein loads. Samples were distributed across gels such that 1 sample per group ran on each gel 

to minimize the impact of differences between runs. Samples were run through gradient gels in 

Invitrogen running boxes at 200 V for 1 hour and transferred to PVDF membrane in Bio-Rad 

transfer boxes at 35 V for 22 hours. The running buffer contained 25 mM Tris base, 192 mM 

glycine, and 0.1% SDS, and the transfer buffer contained 12.5 mM Tris base, 96 mM glycine, 

and 1% methanol Primary antibodies for pS831, pS845 (Cell Signaling Technology, Danvers, 

MA), and total GluA1 expression (Millipore Sigma, Burlington, MA) were incubated on separate 

membranes. Fluorescent secondary antibodies were quantified on a fluorescence scanner, and 

total protein load was assayed with coomassie staining. 

Data Analysis 

 All data were analyzed using SPSS v25.0.0.2 (IBM, Armonk, NY) and graphed with 

GraphPad Prism v8.0.2 (GraphPad Software, Inc., La Jolla, CA). Significance was set at an α-

value of 0.05. Outliers were identified by mean +/- 3 standard deviations, and assumptions of 

normality and homogeneity of variance for analysis of variance (ANOVA) tests were conducted 

with residuals using the Shapiro-Wilk’s normality test and Levene’s test, respectively. Data were 

found to be normally distributed (p > 0.05) and satisfied homogeneity of variance (p > 0.05) 
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unless otherwise stated. Significant interactions in the ANOVA were followed up with pairwise 

comparisons, and α-values were Bonferroni corrected as appropriate. Because of a priori 

hypotheses about the effects of sex and history, non-significant interactions were followed up 

with pairwise comparisons where indicated. 

Electrophysiological data were quantified using Clampfit v10.7.0.3 (Axon Instruments, 

San Jose, CA). Stimulated responses were manually quantified individually without any 

processing and binned by minute (3 stimulations per minute). To quantify a response, baseline 

current was determined using the mean current flow in the 5 ms period prior to the stimulation 

artifact (see Figure 2). Individual stimulated responses were identified as the lowest downward 

deflection of the first drop in current following the stimulation artifact and subtracting the 

baseline current as determined by the mean of the 5 ms period before the stimulation artifact (see 

Figure 2). Evoked responses were binned by minute (3 stimulations per minute). Data from the 

last 5 minutes of the 10-minute initial baseline period were used to calculate the cell’s baseline 

response, and the first 5 minutes after ethanol wash-on were used to calculate the cell’s response 

in the presence of ethanol. A repeated measures ANOVA was conducted using sex and history 

(stress or control) as between-subjects measures and phase (baseline or 36 mM ethanol) as the 

within-subjects measure. To test for group differences in evoked baseline response, a two-way 

ANOVA was conducted with sex and history as the between-subjects factors. To test for group 

differences in the effects of ethanol on evoked responses, a two-way ANOVA was conducted on 

the average ethanol response as a percentage of the average baseline response, again using sex 

and history as the between-subjects factors. Independent-samples t-tests were run to determine 

whether ethanol phase responses as a percentage of baseline responses were significantly 

different from baseline. 
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Figure 2. Recording session timeline and eEPSC quantification. A. Timeline of a typical 
recording session for one cell. After characterizing the cell and determining the optimal 

stimulation intensity for subthreshold EPSCs, the timeline for the session began (0 minutes). 3 
stimulations were administered per minute for the next 26 minutes. During the first 10 minutes, 

the bath included only aCSF and GABA receptor blockers.  The bath was switched to aCSF with 
blockers and 36 mM ethanol and allowed 6 minutes to wash onto and through the slice while 
recording continued. Recording continued for another 10 minutes. The last 5 minutes of aCSF 
were used to quantify the cell’s baseline response, and the first 5 minutes of aCSF + 36 mM 
ethanol were used to quantify the cell’s response in the presence of ethanol. B. Diagram of a 

single stimulation and response and its quantification. The mean current in pA before the 
stimulation artifact was used as the cell’s baseline current flow while clamped at -70 mV. EPSC 
magnitude was taken as the difference between the current induced by BLA stimulation and the 
baseline current flow, which was calculated as the different between the lowest deflection point 

and the 5 ms baseline period. 

Western blot membrane scans were quantified with Image Studio Lite v5.2.5 (Li-Cor 

Biosciences, Lincoln, NE) and normalized to total protein load based on coomassie staining 

A.

20 ms

100 pA

B.

Bath Contents:

Recording Period:

Time (min): 0 10 20 30

Baseline

Ethanol
Wash-on

Ethanol

aCSF

5 ms baseline

Lowest deflection point

Stimulation artifact

Difference between
baseline and deflection

aCSF +
36 mM Ethanol



 

24 

quantified with ImageJ v1.5j9 (National Institutes of Health, USA). The male, control history rat 

with acute aCSF (no ethanol) treatment was considered the control sample. Graphs used values 

that were normalized to this control sample on each gel for comparison between gels. Group 

differences in protein expression were analyzed with three-way ANOVAs using non-normalized 

values with sex, history, and acute aCSF or 36 mM ethanol treatment as between-subjects factors 

and the male, control history, aCSF treatment sample on each gel as a covariate. Follow-up 

comparisons were conducted as indicated. 
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RESULTS 

Experiment 1: Electrophysiological Recordings in the CeM 

 Cells from 6 different animals from each sex and stress history group were recorded. 

Cells in 4 recordings died before the ethanol wash on period was completed and were excluded 

from analysis. Placements for all recordings can be seen in Figure 3, and representative traces 

can be seen in Figure 4. One recording from a female stress rat was identified as an outlier in 

responses during baseline and ethanol exposure based on residuals testing of a repeated measures 

ANOVA. Inspecting the raw data from this recording further indicated that the cell had an 

unstable access resistance and may have partially resealed during the experiment. This recording 

was removed from the dataset. After its removal, several recordings that had previously been 

identified as outliers no longer met that criteria. All analyses were performed with and without 

the outlier, and its removal did not change whether any measures were found to be significant; 

the corrected p-value was 0.028.  After concluding the recording for experimental data for 

several cells, AP5 and NBQX were added to the aCSF to verify that the responses observed 

during the recording were primarily produced by glutamatergic activity at AMPA receptors 

(Figure 5). 

 
Figure 3. Placement diagram for whole cell recordings.The location of each recording in the 

CeM was saved and plotted (indicated by red dots). 
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Figure 4. BLA-evoked subthreshold EPSCs in representative CeM neurons. A. Representative 
traces for a single neuron from a Male, Control History rat during the baseline aCSF phase and 

during the 36 mM Ethanol phase. Evoked EPSCs were quantified as the difference 
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Figure 5. Verification of evoked EPSCs as AMPA receptor-mediated. Following several stable 

recordings, NMDA receptor antagonist AP5 was washed onto the slice to verify that the 
immediate responses had negligible NMDA receptor contribution. AMPA receptor antagonist 
NBQX was then washed on, blocking all responses and verifying that observed EPSCs were 

primarily AMPA receptor-mediated. Values are means +/- SEM. 

Evoked Responses During Baseline and Ethanol Phases 

 A repeated measures ANOVA was conducted for BLA- evoked CeM EPSCs using sex 

and history (stress or control) as between subjects factors and phase (baseline time period or 36 

mM ethanol time period) as the within subjects factor. Residuals were found to be normally 

distributed and data satisfied homogeneity of variance (p > 0.05). The ANOVA indicated no 

significant 3-way interaction between sex, history, and phase and no significant 2-way 

interactions between sex and phase or history and phase (p > 0.05). A significant 2-way 

interaction between sex and history was indicated, F(1, 31) = 5.346, p = 0.028, η2 = 0.147 

(Figure 6). This is the interaction that was supported by removal of the outlier, reducing its p-

value from 0.050 to 0.028. No main effects of sex or history were found, but phase was 

significantly different between baseline and ethanol time periods, indicating that ethanol did 

reduce EPSC magnitude overall, F(1, 31) = 7.631, p = 0.010, η2 = 0.198. 
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Figure 6. BLA-evoked CeM responses in the presence of aCSF. Male rats showed no significant 

difference in BLA-evoked CeM EPSCs between those with a control history and those with a 
stress history. Female rats had a non-significant trend toward a higher response magnitude for 

those with a stress history compared to controls (p = 0.061). There was a significant 2-way 
interaction between sex and history during the baseline period (p = 0.018) with female control 
responses reduced compared to male controls (p = 0.021). Error bars indicate SEM. * p < 0.05. 

 A 2-way interaction between sex and history indicated that baseline eEPSC magnitude 

decreased in males but increased in females (Figure 6). Pairwise comparisons for the 2-way 

interaction between sex and history revealed that the reduction in males was not statistically 

significant, F(1, 31) = 1.661, p = 0.207, nor was the increase in females, F(1, 31) = 3.775, p = 

0.061. Pairwise comparisons for history revealed that males with a control history had a 

significantly different response from females with a control history, F(1, 31) = 20.185, p = 0.018, 

primarily driven by males having a greater EPSC magnitude compared to females during the 

baseline period, a mean difference of 53.791 pA, CI 95% [8.736, 98.846], p = 0.021 (Figure 6).  

Reduction in Evoked Responses in the Presence of 36 mM Ethanol 

A two-way ANOVA was conducted with group means for evoked response in the presence 

of ethanol as a percentage of baseline response. No outliers were identified, and residuals were 

found to be normally distributed using Shapiro-Wilk’s normality test (p > 0.05), and there was 

homogeneity of variances according to Levene’s test (p = 0.625). There was no significant 

interaction between sex and history, F(1, 32) = 0.040, p = 0.843. Due to a priori hypotheses, 

pairwise comparisons were conducted for sex and history. There were no significant differences 
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between males and females with a control history, F(1, 32) < 0.001, p = 0.991, or a stress history, 

F(1, 32) = 0.076, p = 0.785, and there were no significant differences between males with a 

control history vs a stress history, F(1, 32) = 1.347, p = 0.254, or between the means of females 

with a control history vs a stress history, F(1, 32) = 0.589, p = 0.448. There were no significant 

main effects of sex, F(1, 32) = 0.034, p = 0.855, or history, F(1, 32) = 1.810, p = 0.188. 

Independent-samples t-tests indicated no significant reduction during the ethanol phase for male 

stress, t(8) = 0.551, p = 0.597, female control, t(6) = 2.016, p = 0.090, or female stress groups, 

t(7) = 0.751, p = 0.477, but there was a significant reduction for the male control group, t(10) = 

3.184, p = 0.010 (Figure 7). Independent-samples t-tests indicated a significant reduction during 

the ethanol phase overall for males, t(19) = 3.211, p = 0.005, but not for females, t(14) = 1.761, p 

= 0.100, and overall for subjects with a control history, t(17) = 3.686, p = 0.002, but not for 

subjects with a stress history t(16) = 1.277, p = 0.220 (Figure 8). 
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Figure 7. BLA-CeM eEPSCs during ethanol exposure relative to baseline. A. Time course of 
responses for males during the ethanol phase, shown as a percentage of the average baseline 
response. Male controls had a significant reduction in eEPSC magnitude during the ethanol 

phase (p = 0.010). B Time course of responses for females during the ethanol phase shown as a 
percentage of the average baseline response. Error bars indicate SEM. * p < 0.05. 
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Figure 8. Ethanol-induced reductions in eEPSCs by sex and stress history. Males showed a 

significant reduction during the ethanol phase (p = 0.005), but females did not. Animals with a 
control history showed a significant reduction during the ethanol phase (p = 0.002), but animals 

with a stress history did not. Error bars indicate SEM. * p < 0.05. 

Experiment 2: AMPA Receptor Expression and Posttranslational Modification in the CeM 

 6 samples were excluded from total GluA1 analysis; 3 samples returned negative 

fluorescence values, and 3 were identified as outliers. No samples were excluded from pS831 

analysis, but 6 samples could not be calculated as a ratio of phosphorylated to total GluA1 

because of the excluded GluA1 samples. 24 samples returned negative fluorescence values for 

pS845 and could not be interpreted; a full explanation is detailed in section 3.2.4. 

Total GluA1 AMPA Receptor Subunit Expression 

A three-way ANOVA was conducted to determine the effects of sex, stress history, and 

acute alcohol treatment on total GluA1 expression, using the value for the male, control history, 

aCSF treatment sample on each gel as a covariate. There was no significant three-way interaction 

between sex, history, and treatment, F(1, 33) = 0.492, p = 0.488, or two-way interactions 

between sex and history, F(1, 33) = 0.025, p = 0.875, between sex and treatment, F(1, 33) = 

0.594, p = 0.446, or between history and treatment, F(1, 33) = 0.001, p = 0.978 (Figure 9). There 

were no significant main effects of sex, F(1, 33) = 0.589, p = 0.448, history, F(1, 33) = 0.112, p = 

0.740, or treatment, F(1, 33) = 0.483, p = 0.492. This indicates that total GluA1 expression was 
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not dependent on the sex of the animal, the exposure to a history of chronic stress, or the effects 

of acute ethanol exposure. 

 
Figure 9. Total synaptic GluA1 expression in the CeA. A. A 3-way ANOVA revealed no 

significant main effects or interactions on total synaptic GluA1 subunit expression in response to 
chronic stress or acute ethanol exposure. Error bars indicate SEM. B. Representative image for 

GluA1 quantification. 
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treatment, F(1, 39) = 3.768, p = 0.059. There were no significant two-way interactions between 

sex and history, F(1, 39) = 0.824, p = 0.370, between sex and treatment, F(1, 39) = 0.068, p = 

0.795, or between history and treatment, F(1, 39) = 0.370, p = 0.581 (Figure 10). There were no 

significant main effects of sex, F(1, 39) = 0.314, p = 0.578, history, F(1, 39) = 2.017, p = 0.164, 

or treatment, F(1, 39) = 0.248, p = 0.621. This indicates that the concentration of GluA1 AMPA 

receptor subunits phosphorylated at S831 was not dependent on sex, chronic stress, or acute 

ethanol exposure, but there was a trend toward an interaction between all three factors. 

 
Figure 10. Phosphorylation of synaptic GluA1 at S831 in the CeA. A. A 3-way ANOVA 

indicated no main effects or interactions between chronic stress or acute ethanol exposure on 
phosphorylation of synaptic GluA1 subunits at the S831 phosphorylation site. Error bars indicate 

SEM. B. Representative image for pS831 quantification. 
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Proportional Phosphorylation of S831 

Because the ratio of phosphorylated protein to total protein can also indicate molecular 

adaptations, another three-way ANOVA was conducted to examine group differences in the ratio 

of pS831 to total GluA1 expression, again using the control sample as a covariate. There was no 

significant three-way interaction between sex, history, and treatment, F(1, 33) = 1.542, p = 

0.223, or two-way interactions between sex and history, F(1, 33) = 1.243, p = 0.273, between sex 

and treatment, F(1, 33) = 2.666, p = 0.112, or between history and treatment, F(1, 33) = 0.116, p 

= 0.603 (Figure 11). There were no significant main effects of sex, F(1, 33) < 0.001, p = 0.993, 

history, F(1, 33) = 1.977, p = 0.169, or treatment, F(1, 33) = 0.267, p = 0.609. This indicates that 

the proportion of GluA1 receptor subunits phosphorylated at S831 was not dependent on sex, 

chronic stress, or acute ethanol exposure. 

 
Figure 11. Percentage of total synaptic GluA1 phosphorylated at S831 in the CeA. S831-

phosphorylation of GluA1 subunits as a percentage of total synaptic GluA1 expression was 
assessed by a 3-way ANOVA, which indicated no significant interactions or main effects of 

chronic stress history or acute ethanol exposure. Error bars indicate SEM. 
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of the scan. Because the background fluorescence is taken as zero, any findings resulting from an 

attempt at normalization would likely be unreliable, so all 24 negative values were excluded. 

This resulted in too few samples per group for meaningful statistical analysis. Total sample sizes 

can be seen in Table 1. Statistical analysis for pS845 is not included beyond this table. 

Table 1. Counts of non-negative fluorescence results for synaptic pS845 GluA1. Phosphorylation 
of GluA1 subunits at the S845 site was quantified at extremely low levels. Many samples 

returned lower fluorescence values compared to background fluorescence of the membrane. The 
number of positive results, shown above, was too low for meaningful statistical analysis. 
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DISCUSSION 

Overall Discussion 

 These experiments explored a gap in stress and alcohol abuse literature regarding the 

effects of chronic stress on glutamatergic input to the CeM and how that input responds to acute 

ethanol. Previous experiments established postsynaptic sex differences in activation by direct 

glutamatergic afferents from the BLA and how they respond to acute corticosterone and alcohol 

interaction (Logrip, Oleata, & Roberto, 2017). These experiments and their prior findings 

indicated a contribution of alcohol to postsynaptic IPSCs but did not indicate that the 

contribution was presynaptic based on a lack of change in paired-pulse facilitation (Roberto et 

al., 2005). Experiments here expanded on those findings by replacing acute stress hormone 

application with native responses from chronic in vivo stress exposure comparable to what has 

been used in behavioral research. Direct input from the BLA was assessed using whole-cell 

electrophysiology, while responsivity of the CeM to any source of glutamatergic input was 

assessed by quantification of AMPA receptor expression and phosphorylation. 

Electrophysiological data implied that exposure to a stress history erases a difference between 

males and females in CeM responsivity to direct BLA afferents. Protein analysis of the CeA 

indicated that this change is not likely due to changes in AMPA receptor expression or 

phosphorylation. 

Sex Differences in the Effects of Stress and Ethanol on CeM Responsivity 

 Electrophysiological data indicated that direct BLA-CeM projections differ at baseline 

between males and females such that BLA-evoked EPSCs in the CeM have greater magnitude in 

males with a control history compared to females. However, an interaction between sex and 

stress history indicated that exposure to chronic stress reduced responsivity in males while 

increasing it in females, effectively equalizing the responsivity of the direct glutamatergic BLA-

CeA projection (Figure 6). This is a pattern consistent with the idea that in the human literature it 

appears that prior trauma appears in most alcoholism cases in women while having no 

correlation for alcoholism in men.  
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Sensitivity of this circuitry to ethanol-induced reduction of EPSCs was also found to differ 

by sex. Control males showed a statistically significant reduction in response magnitude during 

ethanol exposure, but females did not. Neither sex with a history of chronic stress showed this 

reduction. When collapsed across sex and stress history, it was revealed that males overall 

showed a reduction during ethanol exposure regardless of stress history, as did animals with a 

control history regardless of sex (Figure 8). This demonstrated that not only is the sex difference 

in baseline responsivity lost in response to stress, but also that female sensitivity of this circuitry 

to the effects of acute ethanol differs from males in a manner that resembles the difference 

between animals with and without a history of chronic stress. 

Lack of Contribution from Differences in Synaptic GluA1 

 Synaptic GluA1 subunit-containing AMPA receptors were not found to differ by sex, 

stress history, or ethanol exposure in overall expression or phosphorylation, nor were there any 

observed interactions between these factors. Tissue punches contained some non-CeM tissue, so 

changes specific to the CeM could be masked by concentrations elsewhere. The presence of 

GluA1 subunits in the synapse was directly analyzed with this protocol, but neither the total 

expression of GluA1 nor the expression of non-GluA1 subunit-containing AMPA receptors were 

assessed. Altered responsivity of synaptic AMPA receptors could be the result of changes in 

expression of AMPA receptor subunits other than GluA1, which would not be detected by this 

experiment. Total synaptic GluA2 subunit quantification could reveal whether the concentration 

of AMPA receptors at the synapse was elevated, as most AMPA receptors contain a GluA2 

subunit dimer (Traynelis et al., 2010).   

It could be the case that the quantity of GluA1 subunit-containing AMPA receptors did 

differ by sex or chronic stress history, but that those receptors were not present in the 

postsynaptic membrane and were concentrated in the intracellular scaffold of the postsynaptic 

density, which may have been lost during the fractionation process. Phosphorylation at the S831 

site is associated with receptor activity and not trafficking (Lee et al., 2013), so the lack of 

difference in S831 phosphorylation does not provide any information about GluA1 subunits 

outside of the synaptic membrane.  Receptors near to but not inserted in the synaptic membrane 

can contribute during long-term potentiation but are not present for immediate activity (Yang et 

al., 2008), and thus would not be captured by this design. 
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If it were the case that AMPA receptor expression were altered outside of the postsynaptic 

density, phosphorylation at the S845 site of GluA1 receptors would be of greater interest, as 

S845 phosphorylation is associated with GluA1 subunit-containing AMPA receptor trafficking to 

the synapse (Mao, Diaz, Fibuch, & Wang, 2013), but it was unable to be quantified with the 

methods utilized here. One potential explanation is phosphatase activity during the 60-minute 

experimental period. While care was taken to minimize cell death and maintain supportive 

conditions, tissue slices inevitably differ from their natural environment, and phosphatase 

activity may overcome phosphorylation. Phosphatase inhibitors in the aCSF could potentially 

help with this problem, but this is complicated by necessarily interrupting the balance of 

phosphatases with kinases. It could also be the case that poor quantification was due to 

experimental design. Western blot conditions for multiple antibodies commonly used in the lab 

have been refined since the experiment, some of which may affect detection of phosphorylated 

proteins. Taken at face value, these data indicate that changes in AMPA receptor-dependent 

EPSCs in the CeM are not the result of postsynaptic GluA1 subunit modifications. The observed 

differences in electrophysiological data could be the result of different AMPA receptor subunit 

composition or of presynaptic changes, although previous research has not indicated presynaptic 

contribution based on paired-pulse experiments (Roberto et al., 2005, Logrip, Oleata, & Roberto, 

2017). These possibilities also apply to adaptations involving extra-amygdalar inputs to the CeM. 

Implications for Sex Differences in Chronic Stress and Alcohol Interactions 

 The differences in baseline BLA-CeM connectivity have implications for the timeline of 

stress-induced neuroadaptations. Stress-related disorders are known to have time-dependent 

differences in expression of anxiety. For example, anxiety-like symptoms 2-4 weeks following 

trauma have been shown to be good indicators of future PTSD diagnosis (Shalev et al., 1997, 

Murray et al., 2002), but the same symptoms measured 1 week or less after trauma are not good 

indicators of long-term outcomes (Shalev, 1992; Murray et al., 2002). While some evidence 

suggests that men are generally more likely to self-medicate anxiety with alcohol abuse (Vesga-

López et al., 2014), women diagnosed with both PTSD and AUD are more likely to use alcohol 

to cope with stress than men with the same diagnoses (Lehavot et al., 2014). These data, when 

taken with observed trends in trauma preceding alcohol abuse in women more than in men, may 

indicate that the time course of neuroadaptations may be a meaningful determinant of sex 



 

39 

differences in vulnerability. The electrophysiological observations from Experiment 1 

demonstrate sex-dependent alterations in intra-amygdalar circuitry only 24 hours following 

cessation of chronic stress exposure, as well as stress-induced reduction in acute alcohol 

sensitivity within those circuits. These measures may change over time and could even reverse in 

effect if they are connected to the differential anxiety symptoms over time during the 

development of PTSD following trauma. Longer in vivo manipulation is needed to address these 

questions. Alternate stress models may also be important to pursue, as different types of trauma 

lead to different sex-dependent rates of PTSD development (Kessler et al., 1995). This model has 

been used for research on trauma such as combat exposure. Restraint may be more relevant to 

natural stress exposure, and observer stress models may be more relevant toward many 

occupational forms of trauma for jobs such as EMTs and first responders. 

GABAergic Circuitry 

 The study of direct glutamatergic BLA-CeM connectivity necessitated a silencing of 

GABAergic activity. However, the high proportion of GABAergic interneurons in the amygdala 

implicate them as another potential source of relevant stress and reward-related 

neuroadaptations. Recent work focuses on differential cell types within GABAergic populations 

in the CeA and their relevance toward modulating amygdala output. Neurons containing protein 

kinase C-delta (PKCδ) in the CeL have been referred to as CeAON neurons, with PKCδ-negative 

neurons referred to as CeAOFF, due to their connection to promoting anxiety-like behaviors 

when activated (Janak & Tye, 2015; Amanda et al., 2012). Modifications to this circuitry may 

hold further relevance to the interaction of anxiety with alcohol due to the activation of GABA 

receptors by ethanol. Alterations in this circuitry would have been masked in these experiments 

due to the use of excitation from glutamatergic inputs, which required the silencing of GABA 

activity through GABA receptor blockade. 

Alternative Sources of Changes in Excitability 

 Excitability can be mediated through AMPA receptors by means other than 

phosphorylation and without altering total AMPA receptor content. In the case of Q/R editing, 

GluA2 receptor subunits tetramerize based on their Q/R editing status such that only Q subunits 
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are tetramerized and trafficked to synapses (Greger et al., 2003). Difference in Q/R editing could, 

therefore, alter excitability by changing subunit composition (shifting it toward more or less 

GluA2 subunit inclusion) or by changing the number of trafficked subunits without altering the 

total number produced.  

 Any changes to subunit composition of AMPA receptors can affect excitability. AMPA 

receptors lacking GluA2 subunits are calcium-permeable, resulting in the potential for them to 

modulate plasticity by permitting a constant flow of calcium into the cell (Man, 2011). Although 

GluA2-containing AMPA receptors still leak calcium prior to editing at the Q/R site, GluA2 

subunits are typically Q/R-edited in the human brain and therefore almost completely calcium-

impermeable (Burnashev et al., 1992; Pachernegg et al., 2015). Calcium influx through GluA2-

lacking receptors can lead to enhanced calcium influx through NMDA receptors, the 

combination of which may produce a complex system of elevated calcium levels in the cell 

(Man, 2011; Swanson et al., 1997). This suggests one potential mechanism by which subunit 

composition changes can alter excitability without changing the receptor’s interaction with its 

ligand. Alternatively, all AMPA receptor subunits are spliced at the flip/flop site into one of two 

variants, of which the flip variant is more responsive to glutamatergic activation, and the 

different functional properties of these variants  

have already been linked to changes in excitability directly in response to glutamate in the 

hippocampus (Sommer et al., 1990). The effects of alcohol on this circuitry may not be limited to 

induction of changes in receptor expression and trafficking. Ethanol itself increases membrane 

permeability and promotes passive depolarization of neurons, and its chemical interactions with 

exposed site or posttranslational modifications can alter or remove them (Babu et al., 1994).  

Conclusions 

 Electrophysiological data reveal sex differences in glutamatergic circuitry within the 

amygdala that has direct implications for amygdala output to other brain regions. The data 

indicate that CeM responsivity to glutamatergic BLA input differs between males and females, 

but that this difference is erased by an exposure to chronic stress. This may have implications for 

why the human literature shows no strong correlation in chronicity for men with anxiety 

disorders and alcoholism, but an apparent vulnerability toward alcohol abuse in women 

following trauma. One potential explanation is that differences in amygdala circuitry could serve 
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as protective factors for women against development of alcoholism, and that those differences 

can be lost as a result of traumatic stress.  

Protein analyses in these experiments did not implicate a source for these differences in 

connectivity, and future work could benefit from identifying subpopulations of BLA and CeM 

neurons, similar to research into subpopulations of CeL neurons responsible for inhibiting or 

disinhibiting CeM activity. These data illustrate specific chronic stress-dependent differences in 

amygdala circuitry and its sensitivity to alcohol related to chronic stress and indicate that sex 

differences in chronicity of anxiety and alcohol-related disorders may be mediated in part by 

differences in BLA-CeM connectivity. 
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