
STATISTICAL INFERENCE OF TIME-DEPENDENT DATA

A Thesis

Submitted to the Faculty

of

Purdue University

by

Suhas Gundimeda

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Christopher J. Quinn, Chair

School of Industrial Engineering

Dr. Mario Ventresca

School of Industrial Engineering

Dr. Joaqúın Goñi

School of Industrial Engineering

Approved by:

Dr. Abhijit Deshmukh

Head of the School Industrial Engineering

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

SYMBOLS . viii

ABBREVIATIONS . ix

NOMENCLATURE . x

ABSTRACT . xi

1 Introduction . 1
1.0.1 Our Contribution . 2
1.0.2 Section Overview . 3

1.1 Related work . 3
1.1.1 Graphical model selection . 3
1.1.2 Learning mixtures of trees . 4
1.1.3 Markovian hidden state models 5

2 Mixtures of trees for time-series data . 7
2.1 Introduction . 7
2.2 Background: product, tree and mixture distributions for i.i.d data . . . 7
2.3 Background: Product and tree distributions for time series data 10

2.3.1 Product distributions for time series data 10
2.3.2 Time dependent tree distributions 13
2.3.3 Learning of time-dependent tree distributions 13

2.4 Mixtures of time-dependent trees . 17
2.5 Learning of mixtures of time-dependent trees 19

2.5.1 Computational complexity . 25
2.5.2 Choosing the number of mixture components 25

2.6 Evaluation and experiments . 25
2.6.1 Environment . 26
2.6.2 Artificial dataset: Mixture of random directed rooted tree topology26
2.6.3 Sample complexity . 27
2.6.4 Classification . 28
2.6.5 Clustering . 31
2.6.6 Runtime scaling . 31
2.6.7 Trade-offs with changing tolerance 32

iv

Page

3 Mixtures of trees with state estimation . 36
3.1 Introduction . 36
3.2 Hidden Markov models . 36
3.3 Modified Baum-Welch algorithm for HMMs 38
3.4 Emission probabilities update for time dependent tree distributions as

observables . 44
3.4.1 Computational complexity . 45

3.5 Evaluation . 46
3.5.1 Environment . 46
3.5.2 Artificial data: Random state distribution, random TD tree

distribution . 46
3.5.3 Sample complexity . 47
3.5.4 Clustering . 47
3.5.5 Classification . 49
3.5.6 Runtime scaling . 51
3.5.7 Changing number of components 51
3.5.8 Trade-offs with changing tolerance 55

4 Summary . 58
4.1 Future work . 58

REFERENCES . 59

v

LIST OF TABLES

Table Page

2.1 Clustering of a dataset into the most likely component for each datapoint.
This is measured with (chance) adjusted Rand Index, 0 is same perfor-
mance as a random clustering, and 1 is perfect. The same dataset and
generative model is used, with the EM seed model being the only variable
across trials. 32

2.2 Runtime scaling with number of time series, samples, threshold, number
of mixture components. All times are expressed in seconds. When not
varying, the parameters are kept constant at 10 time-series, 2 components,
10000 samples. 33

3.1 Clustering of a dataset into the most likely component for each datapoint.
This is measured with (chance) adjusted Rand Index, 0 is chance, 1 is
perfect. The normality test is satisfied. 49

3.2 Run-time scaling with number of time series, samples, threshold, number
of mixture components. The constant values are 10000 samples, 10 time
series, 2 components. 52

vi

LIST OF FIGURES

Figure Page

2.1 An graphical model of an example i.i.d product distribution. A connec-
tion implies conditional dependence, as in a “Markov random field”. This
graph conveys that the distribution could be decomposed as P (X5)P (X4

∣∣X5)P (X3

∣∣X4)P (X1

∣∣X3)P (X2|X1, X3) 8

2.2 An illustration of a time dependent product distribution. Each arrow
represents a dependence. This graph conveys that the distribution is
P (V (t)|V (t− 1) = P (V1(t)

∣∣V1(t− 1)V2(t− 1))×P (V2(t)
∣∣V2(t)V3(t− 1))×

P (V3(t)
∣∣V3(t)V1(t−1))×P (V4(t)

∣∣V4(t−1)V3(t−1))×P (V5(t)
∣∣V5(t−1)V4(t−

1)). The directed cycle indicates feedback. 12

2.3 Two representations of the same TD-tree, with the left figure being unrav-
eled over time, and the right one being the compact representation. Each
arrow represents a dependence. Self-dependency always exists. Equiva-
lently, V1 → V2, which implies the distribution P (V2) = P (V2(t)

∣∣V2(t −
1), V1(t− 1)) for time series V1, V2. Also, V1, V2 form a Markov chain. . . . 13

2.4 An illustration of how i.i.d hidden states affect the dependencies of vari-
ables. Note that even if the graph edges remain the same, but the dis-
tribution describing the dependence between two nodes (say) changes, we
must still consider the changed entity as a new, different tree distribution. 18

2.5 Testing the divergence to the true model (comparing likelihood over the
same large testing dataset of 26.4k samples) vs. increasing number of
samples given to learn. Learning of the model is performed over a smaller
number of samples (x-axis) and the y-axis is the log likelihood ratio evalu-
ated over an unseen larger test dataset. The bottom figure is a zoomed-in
snapshot of the top figure. 29

2.6 Classification as compared to the generative model. The generative dis-
tribution performs at the same level as the learned model. The learned
model AUC failed normality test, the mean alone is shown. 30

2.7 Learning time in seconds plotted against changing tolerance fraction. . . . 34

2.8 Divergence to generating distribution over testing dataset, plotted against
tolerance. 35

3.1 An illustration of how hidden states affect the dependencies of variables,
and how the states are time-dependent Markov chains themselves. 37

vii

Figure Page

3.2 Testing the divergence to the true model (likelihood ratio over 26.4k sam-
ples) vs. increasing number of samples given to estimate. The grey lines
represent each of the 24 trials, each with the same generative distribution
and dataset. The blue line is the mean, with the blue region being 95%
confidence regions. 48

3.3 ROC and raw area under curve values for classification using Markov state
TD-trees, each label is one TD-tree . 50

3.4 Learning time in seconds plotted with increasing number of time-series.
The model had 2 components and used a 1000-long training dataset. . . . 53

3.5 Divergence to a generative 2 component mixture vs. increasing number
of learning components. The likelihoods are computed on 26.4k samples,
and the model is trained on 1k samples. 54

3.6 Divergence to generating distribution over testing dataset (of 26.4k sam-
ples), plotted against varying tolerance, using 1000 training samples and
2 components. 56

3.7 Learning time in seconds plotted against changing tolerance, using 1000
training samples and 2 components. 57

viii

SYMBOLS

Z State random variable

z State variable realization

Vi A scalar time series

V Set of time series processes

Xi A particular sequence of random variables

X Set of random variables

m The number of (hidden) states

n The number of time-series

T The time horizon

ix

ABBREVIATIONS

TD-tree/tdTree Time-dependent tree distribution

dist. distribution

loglik. Log likelihood

i.i.d Independent and identically distributed

TS time series

WLOG Without loss of generality

x

NOMENCLATURE

Random variables are capitalized, while realizations are lower case.

Sets are also uppercase letters, meaning should be clear form the context.

P(.) is used as the generic notation for probability distribution,

without referring to any specific parametrization of said distribution.

xi

ABSTRACT

Gundimeda, Suhas M.S., Purdue University, May 2020. Statistical inference of time-
dependent data. Major Professor: Christopher J. Quinn.

Probabilistic graphical modeling is a framework which can be used to succinctly

represent multivariate probability distributions of time series in terms of each time

series’s dependence on others. In general, it is computationally prohibitive to sta-

tistically infer an arbitrary model from data. However, if we constrain the model to

have a tree topology, the corresponding learning algorithms become tractable. The

expressive power of tree-structured distributions are low, since only n− 1 dependen-

cies are explicitly encoded for an n node tree. One way to improve the expressive

power of tree models is to combine many of them in a mixture model. This work

presents and uses simulations to validate extensions of the standard mixtures of trees

model for i.i.d data to the setting of time series data. We also consider the setting

where the tree mixture itself forms a hidden Markov chain, which could be better

suited for approximating time-varying seasonal data in the real world. Both of these

are evaluated on artificial data sets.

1

1. INTRODUCTION

Many real-world complex systems can be modeled as inter-dependent random pro-

cesses, such as the stock market, weather, online social networks, and the human

brain. Imagine the time series of an industry leader’s stock price influencing other

stocks in the sector. Loss in confidence in a blue chip index might influence even

a strong individual performer’s shares. For the weather, time-series of wind, pre-

cipitation, and temperature have spatial correlations and some phenomena, such as

hurricanes, propagate spatially in time, leading to dependencies in such time series.

The brain’s functional state during an activity could be the result of a particular set

of brain regions activating together. The brain while reading a philosophical book

might be a juxtaposition of a comprehension network and a reflective, diffuse mode

network. Reading a fantasy book might correspond to a cross between comprehension

and visualization networks. For many of such complex systems, scientists desire to

identify and model inter-dependencies between the time-series. We can observe some

of these processes, using stock exchange application programming interfaces (APIs),

recording rain gauge measurements and measuring fMRI data while performing dif-

ferent activities, respectively. We might now ask several useful questions about these

scenarios, we can try to build a better hedging algorithm for investors. We could pre-

dict rainy days and areas to aid in crop planning. We could try and understand the

factors determining the networks of the brain across effective and ineffective habits.

Probabilistic graphical models are a classical answer to representing and extracting

meaning from such data. They encode statistical relationships among a given set of

variables or time-series using a graph structure.

Even with data, identifying which probabilistic graphical model best fits the data

is challenging. The number of topologies the probabilistic graphical model could

2

correspond to are exponential in the number of time-series. Learning the exact model

that explains these systems thus might not be computationally tractable, or we might

not have the quantity of data that would enable us to do it. We may then seek to

approximate these datasets with models that compress the data a lot, but are still

expressive enough to explain and predict.

There are two major lines of research of how to restrict the class of probabilistic

graphical models to make structure learning computationally tractable. The first is

to restrict the families of distributions being considered. For instance, multivariate

linear auto-regressive time-series are comparatively easy to work with and there are

well-developed, computationally efficient regularization techniques analogous to the

LASSO for i.i.d. data, such as [1–5]. While some of these methods apply to non-linear

autoregressive time-series, they nonetheless make assumptions about the parametric

family or about the spectral properties of the distributions.

The second line of research involves making assumptions about the topology of

the graphical models. For instance, learning a probabilistic graphical model for time-

series where the dependencies form a tree structure is a known tractable task [6].

But tree distributions are not deemed expressive enough for the arbitrary strands of

influence in the real world, because of the restricted number of dependencies.

We propose to use an ensemble of models, where each component model is easy

to learn - for example, a tree structure of dependencies - and having the whole model

be a convex combination of these trees, a mixture of trees, potentially providing a

large amount of expressive power. For i.i.d data, it is known that mixtures of trees

are both efficient to learn and infer from, while offering good expressive power [7].

1.0.1 Our Contribution

Our current work describes mixtures of time-dependent trees, for application on

time series data. We provide a learning algorithm for mixtures of time-dependent

trees, extending work on mixtures of trees for i.i.d data [7]. We attempt to characterize

3

empirical performance on artificial datasets. Finally, we extend the framework to

hidden Markov models with time-dependent tree observables, and characterize its

performance. Unlike [8], which extends mixtures of trees beyond i.i.d. data with a

tree on the underlying dynamic Bayesian network, our proposal does not penalize

self-dependence and does not allow for unrealistic instantaneous dependencies.

1.0.2 Section Overview

In Chapter 2 we describe the model and algorithms for approximating observed

multivariate data as mixtures of time-dependent trees. Also, the primary notation

and formulation is introduced. Chapter 3 deals with the case where the distribution

of the data itself changes over time, modeled as a Markov process, drawing on the

hidden Markov model (HMM) literature. This extends the mixture of time-dependent

trees model to HMMs where the emission distribution is a time-dependent tree. The

evaluation of these models is presented towards the end of each chapter.

1.1 Related work

1.1.1 Graphical model selection

Bayesian networks or Markov random fields are arguably the two most popular

probabilistic graphical models for i.i.d. random variables, as described in Chapter 8

of [9]. Learning of the best graphical models given data is a well studied topic, and

algorithms exist for many families of parametric distributions, such as Gaussian and

Ising models [10], as well as for non-parametric distributions. See Chapter 26 of [11]

for more detail.

We are specifically looking for approximations whose topology is sparse, like tree

structures. For learning tree distributions, that is graphical models whose topol-

ogy is a spanning tree, seminal work by Chow and Liu showed that the maximum-

likelihood tree approximation (second order product distribution) for i.i.d data is

4

given by the maximum weight spanning tree (MSWT) algorithm, with mutual infor-

mation as weights [12,13]. This was more recently extended to time-dependent data,

for minimum-cost arborescences and directed mutual information as weights in [6,14],

which is crucial to this work.

There are also recent works on high dimensional loopy model selection, which

can be classified into convex optimization based approaches and non convex local

approaches ([15], [16], [17], [18]). There is also variable selection using the Lasso [19].

None are directly applicable to learning mixtures of graphical models, however.

A new approach is based on rank tests, a generalization of conditional indepen-

dence tests, for estimating the graph structure [20]. This approach is efficient with

sparse graphs, such as tree and bounded degree approximations. This can also be

used for learning mixtures of trees.

1.1.2 Learning mixtures of trees

Meila and Jordan proposed a procedure to learn mixtures of spanning trees for

i.i.d. data, based on the Expectation-Maximization algorithm [7]. Our work primarily

builds on this, extending it to time-dependent data, and then to non-i.i.d Markovian

hidden states. [8] proposed mixtures of trees for dynamic Bayesian networks, although

as we later discuss, this prohibits self-dependence for all the time-series (without re-

quiring them to be independent) and also results in instantaneous dependencies. Our

work looks for trees not on the dynamic Bayesian network, but instead on a network

where each node is a time-series. [21] proposes a Gaussian mixture of trees to model

multi-modal time series data. Anandkumar et al (2012) propose an alternative to

the classical EM approach to learning mixtures of trees distributions, and seminally,

one that has provable convergence guarantees [20]. Roughly, their procedure involves

a generalization of conditional independence tests to efficiently estimate a union (of

mixture components) graph structure. This is used to obtain a series of mixtures of

product distributions. Spectral decompositions are used to obtain the corresponding

5

pairwise marginals, upon which Chow-Liu [12] is applied to get the final tree ap-

proximations. Some restrictions of a minimum number of samples and a full rank

probability matrix exist.

1.1.3 Markovian hidden state models

The aforementioned mixture model can be viewed as randomly picking a compo-

nent distribution to draw samples from using the mixture coefficients as probabilities.

From this perspective, which component distribution is selected is an i.i.d. process.

Hidden Markov models have an unobserved Markovian state process evolving with

time, which influences the distribution of observed variables. For mixture models, the

component distribution selection can be extended from i.i.d. process to a (hidden)

Markov process.

A pedagogical review of the traditional formulation and techniques in hidden

Markov models is provided in chapter 13.2 of [9]. Our derivation in Section 3.3 runs

parallel to this. Rabiner (1989) provides a tutorial on HMMs of various types [22].

[23] provides a treatment of statistical inference from data of hidden Markov models

with autoregressive (linear dependence across time) observed time series using the

Expectation-Maximization algorithm, in the context of speech recognition. In our

work, the emission distribution instead has the form of time-dependent trees.

Another interesting approach [8] to model time series processes is using Hidden

Markov Models (HMMs) with Chow-Liu structures as emissions. The state variable

is used for modeling temporal structure of data and Chow-Liu trees for simultane-

ous interdependencies (HMM-CL). The work goes on to describe conditional Chow

Liu (HMM-CCL) structures to model dependencies across time (and simultaneous

dependencies) in time series processes. This is related to Chapter 3 of this work. One

important difference is that HMM-CCL models include instantaneous correlations

and do not naturally account for each time series self-dependence.

6

There are several recent works on mixtures of Markov chains, each of which pro-

pose specific constraints to learn the best approximation. One approach used mixtures

of low dimensional Markov chains to avoid the curse of dimensionality, and proposed

a Bayesian approximate estimator [24]. Another dealt with the problem of recon-

structing Markov chain mixtures from given observation trails, proposing a spectral

method which outperforms EM and is faster in some regimes [25]. Yet another work

on learning mixtures of Markov chains from data proposed structural constraints to

make the problem tractable, and a constrained least-squared method to learn the

model [26].

7

2. MIXTURES OF TREES FOR TIME-SERIES DATA

2.1 Introduction

Our goal is to develop sparse models of interdependencies between time series and

to develop algorithms to learn those models from observational data. Specifically,

we present mixtures of time-dependent trees models for self-dependent and inter-

dependent time series data. Instead of learning a single, sparse topology, which may

yield poor models, we will learn mixtures of sparse topologies, specifically mixtures

of directed, rooted, trees. We next describe the model class in terms of joint distri-

butions. For clarity we first review the i.i.d. random variable case, then expand to

the time-series process case.

2.2 Background: product, tree and mixture distributions for i.i.d data

Let X = (X1, X2, X3, . . . Xn) denote n random variables with a joint distribution

P (X). We can re-write the distribution as a product of conditional distributions

using the chain rule,

P (X) =
n∏
i=1

P (Xi|X1, X2, . . . Xi−1).

Further, Xi may not have a strong dependence on all of the variables X1, X2, . . . Xi−1.

We can consider approximating P (X) using only up to second-order dependencies,

such as

P̂ (X) = P (X1)P (X2

∣∣X1)P (X3

∣∣X1)P (X4

∣∣X2, X1) . . .

We can visualize these dependencies between variables graphically with nodes depict-

ing variables and edges depicting dependencies, as shown in Figure 2.1. Let G(X,E)

denote this graph with vertex set X and edge set E,

8

31

2 5

4

Figure 2.1. An graphical model of an example i.i.d product distribution.
A connection implies conditional dependence, as in a “Markov random
field”. This graph conveys that the distribution could be decomposed as
P (X5)P (X4

∣∣X5)P (X3

∣∣X4)P (X1

∣∣X3)P (X2|X1, X3)

.

9

Now, consider the case where for a certain variable ordering, every variable is

(approximated to be) conditionally dependent on a maximum of one other variable

and the graphical model is connected (e.g. the graph is a spanning tree). For a vari-

able Xi, let pa(Xi) ∈ {Xi−1Xi−2 . . . X1} denote the variable that Xi is conditionally

dependent on. Let T (X) denote the tree distribution for a distribution P (X).

P (X) =
n∏
i=1

P (Xi|Xi−1Xi−2 . . . X1)

T (X) = P (X1)
n∏
i=2

P (Xi|pa(Xi))

We assume without loss of generality1 that X1 is the root node, and pa(Xi) denotes

the parents of Xi. Succinctly, we call such distributions “tree distributions”. Given

observational data, learning the full distribution may be prohibitive for computational

and statistical reasons. Instead, we may seek to learn a simple, sparse model such

as a tree distribution. The goal is then to learn the best possible tree distribution

(approximation), in the maximum-likelihood sense.

Chow and Liu [12] proposed an algorithm to identify the best tree distribution.

We first estimate the mutual information (MI) between each pair of variables. For

variables Xi and Xj, the mutual information is the expected log-likelihood ratio

between the pairwise distribution P (Xi, Xj) and the product of the marginals,

I(Xi;Xj) = EP (Xi,Xj)

[
log

P (Xi, Xj)

P (Xi)P (Xj)

]
.

The mutual information can be thought of as a non-parametric generalization of linear

correlation. It is zero iff Xi and Xj are (marginally) independent. After computing

the mutual information for each pair of variables, we next construct a complete graph

among all variables with edge weights being the MIs. Chow and Liu [12] showed that

for i.i.d data, the maximum weight spanning tree that can be obtained from such a

complete graph, maximizes the likelihood over all possible tree distributions.

Tree distributions are relatively easy to learn (compared to learning the full dis-

tribution) since they only require pairwise distributions. However, that also limits

1We can relabel the variables with the root node to be node 1.

10

their expressiveness. To better approximate data, Meila et al [7] proposed using mix-

tures of these trees, leading to a convex combination of several tree distributions. Let

Tk(X) denote the kth tree distribution in the mixture and let λk denote its mixture

coefficient. Let m denote the number of tree distributions in the mixture. Then the

mixture distribution, denoted as Q(X), can be expressed as

Q(X) =
m∑
k=1

λkTk(X). (2.1)

We can also express the mixture as having a hidden state random variable Z that

can take m values (one for each tree distirbution), with λk = P (Z = k).

Meila et al [7] proposed an Expectation-Maximization (EM) algorithm to learn the

best mixture of trees. It is analogous to EM algorithms for learning other mixtures,

like mixtures of jointly Gaussian distributions. We will now move onto an analogous

description of models for time-series data, in which we will address each step in more

detail.

2.3 Background: Product and tree distributions for time series data

We will propose an algorithm to learn mixture of time-dependent tree models.

This uses the algorithm for learning of a single time-dependent tree model as as a

subroutine. This section describes this background.

2.3.1 Product distributions for time series data

Consider n time-series, i.e. random processes V = {V1, V2, . . . Vn} which are de-

scribed by the joint distribution P (V).

We can apply the chain rule both over time and over space. First, we factorize

over time

P (V) =
T∏
t=1

P (V (t)|V (1), . . . V (t− 1))

11

In many real-world systems, when there are no confounding factors, the future may

only depend on the recent past.

Assumption 1 The joint distribution P (V) is a first-order Markov chain,

P (V) =
T∏
t=1

P (V (t)|V (t− 1)).

Remark 1 All of our work can be easily extended to higher Markov orders, though

the computational and possibly sample complexities will increase.

We can next apply the chain rule over space for each time t,

P (V) =
T∏
t=1

n∏
i=1

P (Vi(t)|V (t− 1), V1(t), . . . , Vi−1(t)).

Notice that the conditioning is on the whole system’s past V (t − 1) and other pro-

cesses at time t. We further assume that with a high-enough sampling rate and no

confounding factors, the time series at time t are conditionally independent given the

previous system state V (t− 1).

Assumption 2 The joint distribution P (V) factorizes as

P (V) =
T∏
t=1

n∏
i=1

P (Vi(t)|V (t− 1)).

In general, each of the terms in the product may further simplify. For instance,

if process i only depends on it’s own past and the past of process j, that means that

for all time t,

P (Vi(t)|V (t− 1)) = P (Vi(t)|Vi(t− 1), Vj(t− 1)).

A generic case is illustrated in Figure 2.2. Also, a “time-unraveled” visualization

with explicit strictly causal time dependence is illustrated in Figure 2.3. We omit

self-loops (for representing self dependence over time) in the compact representation.

We will explore approximations where we only allow each time-series to depend

on its own past and the past of at most one other time-series.

12

31

2 5

4

Figure 2.2. An illustration of a time dependent product distribution. Each
arrow represents a dependence. This graph conveys that the distribution
is P (V (t)|V (t − 1) = P (V1(t)

∣∣V1(t − 1)V2(t − 1)) × P (V2(t)
∣∣V2(t)V3(t −

1))×P (V3(t)
∣∣V3(t)V1(t−1))×P (V4(t)

∣∣V4(t−1)V3(t−1))×P (V5(t)
∣∣V5(t−

1)V4(t− 1)). The directed cycle indicates feedback.

13

2.3.2 Time dependent tree distributions

We now look at product distributions over time series where the interdependencies

form a tree topology. Specifically, the topology is a directed, rooted tree where all

edges point away from the root (also known as an arborescence or a branching).

v_2(t)v_2t-1)

v_1(t-1)
V_1

V_2

Time-unraveled Compact

v_2(t-2)

v_1(t-2) v_1(t)

Figure 2.3. Two representations of the same TD-tree, with the left
figure being unraveled over time, and the right one being the compact
representation. Each arrow represents a dependence. Self-dependency
always exists. Equivalently, V1 → V2, which implies the distribution
P (V2) = P (V2(t)

∣∣V2(t − 1), V1(t − 1)) for time series V1, V2. Also, V1, V2

form a Markov chain.

Let pa(Vi) denote the parent process of Vi in the topology. A time-dependent tree

distribution T is then defined as the product distribution

T (V) :=
T∏
t=1

n∏
i=1

P (Vi(t)|Vi(t− 1), pa(Vi)(t− 1)). (2.2)

An example of the product distribution and the corresponding arborescence is il-

lustrated in different forms in Figure 2.3. Two more examples of arborescences in

compact form are illustrated in Figure 2.4.

We next discuss how such a model can be learned from data. The expressiveness

of this model is described in Section 2.6.

2.3.3 Learning of time-dependent tree distributions

We are given a dataset of n random time series processes V = {V1, V2, . . . Vn}

across T time steps Vi = Vi(1), Vi(2), . . . Vi(T), a Vn×T realization matrix. Let V (t)

14

denote the set of all processes at time t . The goal of this section is to describe an

algorithm that learns the rooted directed tree with all edges directed away from root

(an arborescence) topology and corresponding distribution that best approximates

the data. Let T denote the set of all distributions over V . We quantify “best” as the

tree distribution with the maximum likelihood (ML) of generating the data, which is

equivalent to the maximum log likelihood model because of the monotonicity of log

function. This ideal tree distribution T ∗ can be written as:

T ∗ = arg max
T∈T

log T (V) (2.3)

An algorithm to solve Equation 2.3 was proposed by Quinn et al [6] and is summa-

rized in Algorithm 1. We will later use it as a subroutine. It is analogous to algo-

rithm Chow-Liu for i.i.d data. For time-dependent data, with directed information

(a time-series analog of mutual information) as weights, the maximum weight span-

ning arborescence (also called optimum branching) maximizes the likelihood among

all possible directed rooted trees [6].

Consider a complete graph Gc(V,Ec) that has directed edges between all possible

pairs of vertices, each with a real weight equal to the the directed information along

that edge. Learning the optimal spanning arborescence given real weights for edges

is described by Edmonds-Chu (or Edmonds’) algorithm [14, 27], which fills the role

that MWST does in the i.i.d data case.

The runtime of the standard Edmonds’ algorithm is O(V E). This has been

optimized, bringing down runtime to O(E log V) for sparse and O(V 2) for dense

graphs [28] with a later work producing a O(E + log V) algorithm [29].

To compute the directed information, we first compute the empirical distributions

P (Vi
∣∣pa(Vi)), P (pa(Vi)). For implementation ease, we assume discrete time series

taking values from ΩV . We decompose the required conditional empirical estimators

into more flexible joint distributions:

P (Vi(t)
∣∣Vj(t− 1)Vi(t− 1)) =

P (Vi(t), Vi(t− 1), Vj(t− 1))

P (Vi(t− 1), Vj(t− 1))
Where Vj is a parent of Vi

P (Vi(t)
∣∣Vi(t− 1)) =

P (Vi(t), Vi(t− 1))

P (Vi(t− 1))
Where Vi is a root node.

15

Here we consider Markov order 1 with self-dependence and one parent. Massey [30]

defined directed information for communication channels with synchronized channel

outputs and inputs:

I(Vj → Vi) :=
T∑
t=1

I(Vj;Vi(t)|Vi(t− 1)) For time series Vj → Vi

We modify this to compute strictly causal directed information between each pair of

time series, with Markov order 1:

I(Vj → Vi) = I(Vj(t− 1);Vi(t)|Vi(t− 1))

=
∑

(a,b,c)∈Ω3
V

P (Vi(t) = a, Vi(t− 1) = b, Vj(t− 1) = c)

× log
P (Vi(t) = a, Vi(t− 1) = b, Vj(t− 1) = c)P (Vi(t− 1) = b)

P (Vj(t− 1) = c, Vi(t− 1) = b)P (Vi(t) = a, Vi(t− 1) = b)

Here Vi(t), Vi(t − 1), Vj(t − 1) take on all the possible values in their sample space.

Thus this step scales asO(Ω3
V). We could also iterate over just the realizations present

in data, as the rest would contribute 0 to the sum. Then, this step scales as O(T).

The same measure exists for continuous distributions of processes, with a description

in [6]. We can now compute the best topology of the graph (optimal arborescence).

The full algorithm to learn time dependent tree distributions from data is Algo-

rithm 1. Given a dataset of n discrete time series processes over T time steps, we

hope to return a model where each node’s stationary distribution across time specifies

self-dependence as well as dependence on one other node (except for the root) i.e. a

tree product distribution for time series that is the best structure and parameters in

the maximum likelihood sense.

Computational complexity

Computing all of empirical marginal distributions required for directed informa-

tion takes O(n2T) steps total. The total number of steps to compute all the directed

information calculations is O(n2
∣∣Ω∣∣3). Finding the optimal spanning arborescence

16

Algorithm 1: ChowLiuTS: Algorithm for learning a time dependent tree dis-

tribution from time series data
Input : Dataset V of n variables varying across T time steps.

Edmonds’ algorithm

Result: Graph structure and distribution corresponding to the best directed

graph that describes the data

1 Compute/Estimate distributions P (Vi(t), Vi(t− 1), Vj(t− 1) for all

i, j ∈ {1, . . . , n} using any estimator, for example, empirical.

2 Compute directed information between each ordered pair of nodes from given

distributions of data.

3 G ← Edmonds(complete graph with directed information edge weights)

4 Return G and corresponding subset of the distributions

P (Vi(t)
∣∣Vi(t− 1), pa(Vi)(t− 1))

17

(Edmonds’ algorithm), for the best implementation, is O(n2 + log n). Thus learn-

ing of time dependent tree distributions comes out to be O(n2(T +
∣∣Ω∣∣3)). Another

method of computing directed information is using asymptotic equipartition theorem

(AEP; see Ch. 3 of [31]), iterating over the realized samples (observations) rather

than the entire sample space. With such an implementation, the computation scales

linearly with T , bringing the total to O(n2T).

2.4 Mixtures of time-dependent trees

Consider the example of rainfall prediction from the introduction, where we want

to predict rainfall at multiple locations. We can imagine that multiple consistent

wind patterns, such as the polar and pacific jetstreams, El Nino, and others each

have an effect on how weather is affected across the north American landmass. Tree

distributions alone would be insufficient to model such a system. We now bring in a

hidden state variable that “mixes” multiple such tree distributions together, so that

we may describe the result of different weather systems and patterns of rainfall using

a convex combination of many time-dependent tree distributions.

Mixtures of time-dependent trees are potentially much more expressive than tree

models, as they have many more parameters available to approximate a distribution.

We define mixture models for time-series analogous to mixtures in the i.i.d. vari-

able setting (2.1). Like the i.i.d. setting, we can view the mixture distribution as

characterized by a latent, i.i.d. process Z(t), that chooses between the m “mixture

components” at each time step. Then the mixture coefficients {λk}mk=1 correspond to

the probabilities

P (Z(t) = k) = λk.

See Figure 2.4 for a diagram of the graphical model, with each time step having

dependencies based on the corresponding tree distribution Tk(Z). While this view of

mixture models (as time-varying sparse conditional distributions) is not necessary, it

is helpful for explaining the model.

18

State ~

 t = 0

State 1

 t = 1

State 2

 t = 2

t = 0 t = 1 t = 2

T1 T2

1

2

3

4

2

1

3

4

1

2

3

4

1

2

3

4

Figure 2.4. An illustration of how i.i.d hidden states affect the depen-
dencies of variables. Note that even if the graph edges remain the same,
but the distribution describing the dependence between two nodes (say)
changes, we must still consider the changed entity as a new, different tree
distribution.

19

Thus the product distribution of our model can be written as

Q(V, Z) = Q(Z)Q(V |Z)

=
T∏
t=1

λZ(t)TZ(t)(V (t), V (t− 1))

=
T∏
t=1

λZ(t)

n∏
i=1

P (Vi(t)|Vi(t− 1), paTZ(t)(Vi)(t− 1)), (2.4)

where TZ(t) is a time dependent tree distribution from subsection 2.3.2 and paTZ(t)(Vi)

denotes time series i’s parent in the tree distribution TZ(t).

We can marginalize over the i.i.d. sequence Z to get

Q(V) =
∑

z∈{1,...,m}T
Q(z, V)

=
∑

z∈{1,...,m}T

T∏
t=1

λz(t)Tz(t)(V (t), Vi(t− 1)), (2.5)

=
T∏
t=1

m∑
k=1

λkTk(V (t), Vi(t− 1))

=
T∏
t=1

m∑
k=1

λk

n∏
i=1

P (Vi(t)|Vi(t− 1), paTk(Vi)(t− 1)). (2.6)

2.5 Learning of mixtures of time-dependent trees

Learning the best-fitting mixture of trees is more challenging than learning a single

tree distribution model. Viewing the mixture model as having a hidden variable Z,

to learn the model we need to estimate the the best tree distributions for each of

subset of data that were drawn from the same component while estimating the best

partitioning of the data into such subsets. The classical method for solving this for

i.i.d data, as proposed by Meila and Jordan [7], used the expectation-maximization

(EM) algorithm. This is an iterative algorithm, which at each step improves upon

the expected log likelihood of the current model, with respect to random data, and

20

converges to a local maxima of log likelihood [32]. We propose a similar strategy for

learning of mixtures of time-dependent trees from time-series data.

We are given a dataset of n discrete time processes V = {V1, V2 . . . Vn} across T

time steps {V (1), V (2) . . . V (T)}, where V (t) represents the vector of values of all

time series at time t. We propose an algorithm that learns the mixtures of trees

model that best approximates the data V , in terms of maximum likelihood. This

best model can be mathematically expressed as:

Q∗(V) = arg max
{λk,Tk}mk=1

T∏
t=1

m∑
k=1

λkTk(V (t)|V (t− 1))

= arg max
{λk,Tk}mk=1

T∏
t=1

m∑
k=1

λk

n∏
i=1

P (Vi(t)|Vi(t− 1), paTk(Vi)(t− 1)). (2.7)

However, this can be intractable to solve directly. Instead, following the standard

outline of EM methods, if we assume that the hidden process Z(t) could be observed,

and using Equation 2.4 and an indicator function 1Z(t)=k indicating whether the

hidden process Z(t) is state k,we can express the “complete” log likelihood. Using

(2.4)

lcomplete(V, Z
∣∣Q(V, Z)) := logQ(V, Z)

= log
T∏
t=1

λZ(t)TZ(t)(V (t), V (t− 1))

=
T∑
t=1

log λZ(t)TZ(t)(V (t), V (t− 1))

=
T∑
t=1

log λZ(t) + log TZ(t)(V (t), V (t− 1))

=
T∑
t=1

m∑
k=1

1Z(t)=k(log λk + log Tk(V (t), V (t− 1))). (2.8)

where (2.8) uses the indicator function.

The EM algorithm uses this complete log likelihood as a proxy for the incomplete

likelihood Equation 2.7, as it is generally easier to maximize w.r.t changing model in

the maximization (M) step. The computation of the expected value of this expression

21

given the data and with respect to unobserved data is part of the expectation (E)

step. This gives us a measure of fitness, the quantity we want to maximize over the

course of the algorithm. In the process of this, we also get the proportion of each

mixture component at every time point. These proportions are values with which we

can (soft) partition the dataset into multiple datasets each generated by a mixture

component, in other words, a “clustering” of data into each mixture component.

This is then used in the M-step, where each partition is used to learn each mixture

component separately.

Since we observe the time-series V but not the latent i.i.d. state sequence Z, we

will work with the expected value of Equation 2.8 under the conditional distribution

Q(Z|V),

EQ(Z|V)

[
lcomplete(V, Z

∣∣ Q(V, Z))

∣∣∣∣V]
= EQ(Z|V)

[
T∑
t=1

m∑
k=1

1Z(t)=k(log λk + log Tk(V (t), V (t− 1)))

∣∣∣∣V
]

(2.9)

=
T∑
t=1

m∑
k=1

EQ(Z|V)

[
1Z(t)=k

∣∣V] (log λk + log Tk(V (t), V (t− 1))) (2.10)

where (2.9) follows from linearity of expectation.

22

Using Bayes’ rule, the expectation of the delta function conditioned on data V

can be expressed as

EQ(Z|V)

[
1Z(t)=k

∣∣V] = Pr(Z(t) = k
∣∣V)

= Pr
(
Z(t) = k

∣∣V (t), V (t− 1)
)

=
Pr
(
Z(t) = k, V (t)|V (t− 1)

)
Pr
(
V (t)|V (t− 1)

)
=
Pr
(
Z(t) = k

∣∣V (t− 1)
)
× Pr

(
V (t)

∣∣Z(t) = k, V (t− 1)
)

Pr
(
V (t)|V (t− 1)

)
=
Pr
(
Z(t) = k

)
× Tk(V (t), V (t− 1))

Pr
(
V (t)|V (t− 1)

)
=

λkTk(V (t), V (t− 1))∑m
k′=1 Pr

(
Z(t) = k′, V (t)|V (t− 1)

)
=

λkTk(V (t), V (t− 1))∑m
k′=1 λk′Tk′(V (t), V (t− 1))

.

This last quantity is the posterior probability of the hidden state being k given

the time-dependent data at time t and t − 1. We next define several quantities to

parameterize the above:

γk(t) :=
λkTk(V (t), V (t− 1))∑m

k′=1 λk′Tk′(V (t), V (t− 1))
(2.11)

Γk :=
T∑
t=1

γk(t) (2.12)

Pk(t) :=
γk(t)

Γk
(2.13)

γk(t) is the posterior probability Pr(Z(t) = k
∣∣V (t), V (t − 1)) of time step t being

from mixture component k; its formula follows from Bayes’ rule. The sum Γk can

be interpreted as the total number of data points generated from tree distribution

Tk. Pk(t) is the normalized soft partitioning of data point t, it gives the posterior

probability that it was generated by tree distribution k per datapoint generated by

mixture component k.

In the E-step of the EM algorithm, we compute EQ(Z|V)

[
1Z(t)=k

∣∣V] = γk(t) using

(2.11) with fixed model parameters {λk, Tk}mk=1.

23

Rewriting Equation 2.10 in terms of γ, Γ, Pk(t), and using linearity of expectation

E(lcomplete) =
T∑
t=1

m∑
k=1

EQ(Z|V)

[
1Z(t)=k

∣∣V] (log λk + log Tk(V (t), V (t− 1)))

=
T∑
t=1

m∑
k=1

γk(t) (log λk + log Tk(V (t), V (t− 1)))

=
m∑
k=1

(
T∑
t=1

γk(t)

)
log λk +

T∑
t=1

m∑
k=1

γk(t) log Tk(V (t), V (t− 1))

=
m∑
k=1

Γk log λk +
T∑
t=1

m∑
k=1

γk(t) log Tk(V (t), V (t− 1))

=
m∑
k=1

Γk log λk +
m∑
k=1

Γk

T∑
t=1

Pk(t) log Tk(V (t), V (t− 1)) (2.14)

The M-step involves optimizing (2.14) with respect to the parameters {λk, Tk}mk=1

for fixed posterior probabilities EQ(Z|V)

[
1Z(t)=k

∣∣V] = γk(t). Following standard anal-

ysis for EM, we form the Lagrangian of (2.10) by including a term −ν(
∑m

k=1 λk − 1)

for the constraint that the λk’s must sum to 1, and differentiating with respect to λk′

and setting it equal to 0, we obtain

λk′ =
Γk′

ν
.

Setting the derivative of the Lagrangian with respect to ν equal to 0, we get back

the constraint
∑m

k=1 λk = 1. These two equations then lead to the following update

equation:

λk =
Γk
T

∀k ∈ {1, 2, ...m}. (2.15)

The optimal values for λk are independent of the distribution models {Tk}mk=1.

Considering the information we have now (Pk(t)) regarding the normalized posterior

probability of a time point t being drawn from the tree distribution corresponding to

state k, we can use this to “weigh” each data point to obtain a new dataset. This

is not a hard clustering, as the same sample can contribute to multiple components.

For example, with the empirical estimator:

Tk
(
Vp(t) = a, Vq(t− 1) = b, Vr(t− 1) = c

)
=

T∑
t=1

Pk(t)1Vp(t)=a1Vq(t−1)=b1Vr(t−1)=c

24

Thus, given the pairwise marginals for each time series for each component, we can

use the same Chow-Liu-TS Algorithm 1 to separately learn each mixture component.

With m runs of the Chow-Liu-TS algorithm, one for each mixture component, we

obtain all m topologies and parameters of the mixture components. This completes

the M-step, and we now have a different model to go through the E-step with. We

repeat this until convergence or some stopping criteria is reached. Here, we use the

minimal fractional change in log-likelihood across iterations as the stopping criteria.

The effect of changing this threshold is shown in Figure 2.8.

The EM algorithm to learn mixtures of time-dependent trees is summarized in

algorithm 2.

Algorithm 2: Learning of mixtures of trees with time series data

Data: V : n time-series across time T

Initial model Q0 = m,Tk, λk, k = 1, 2...m

Algorithm 1 ChowLiuTS

Result: Mixture of tree distributions model: Optimal topology and

distribution of each mixture component, distribution of state variable

and soft partition of each data point.

1 while Not converged until tolerance do

2 E-step: Compute γk(t), Γk∀ k and ∀ t

3 Compute Pk(t) and ∀ t

4 M-step: for k ∈ 1..m do

5 Compute λk = Γk

N

6 Compute tree distribution Tk = CHOW-LIU-TS(Pk(t), V)

7 end

8 end

9 return Model Q = {m,Tk, λk ∀ k ∈ [1..m]}

25

2.5.1 Computational complexity

The computational complexity of finding the probability of a certain data point

from a time-dependent tree distribution is O(n), as given in Section 4. We do this

once for each tree and data point for each E-step, a total of O(mnT). Computation of

the aggregate downstream variables like γ is the same complexity as well. The M-step

involves learning m time dependent tree distributions. This isO(n2T) per component,

as explored in Section 4. Per iteration, the total would be O(mn2T+mnT). There are

no convergence results on EM when used with mixtures of time dependent trees, and

thus we cannot estimate the number of iterations to converge to a solution. However,

the convergence criteria is a parameter we control, and in our experiments, we found

that convergence is reached on the order of 10 iterations.

2.5.2 Choosing the number of mixture components

Given a dataset with unobserved choice variable, running algorithm 2 gives us

a soft partitioning at every iteration. At the end of the algorithm, we get the best

labeling of the data into m clusters, where m is the number of mixture components.

This is how one can use this for unsupervised learning. We can also vary m to set the

number of desired clusters, and use a metric like BIC or MDL to decide the optimal

number of clusters. We leave investigating this for future work.

2.6 Evaluation and experiments

This section describes the experiments we ran to validate and evaluate our im-

plementation of both the time-dependent tree distribution and the mixture of time

dependent tree distributions models.2

2Source code of the implementation, and for generating all the results presented herein, will be
available at
https://github.com/snugghash/mixtrees-for-time-series

after peer reviewed publication.

https://github.com/snugghash/mixtrees-for-time-series

26

Unless specified otherwise, training algorithms are initialized with newly generated

tree distributions for each trial.

All algorithms are run until convergence, which we defined to be a change of less

than 0.1% log-likelihood over an iteration. The experiments are repeated 24 times for

statistical confidence. This was chosen because the cluster we ran on had 24 nodes.

We use log2 based metrics (like average log-likelihood ratios between the generating

and estimated distributions) unless otherwise noted.

In the graphs, mean values are generally represented in solid blue, with grey lines

for each trial and transparent light blue areas for 95% confidence intervals. The

normality tests for these areas have both skew and kurtosis components, and use a

p-value threshold of 0.001. In case of p < 0.001, we plot each of trials and their mean,

without the light blue area. The dots represent sampled datapoints and the lines

in-between the dots represent interpolation.

2.6.1 Environment

All experiments are run with Python 3.6, on an x86 GNU/Linux machines in 24

core nodes with Intel Xeon Gold ”Sky Lake” processors and 96 GB of memory. All

the trials are run in parallel. The baseline tolerance for EM iteration stopping is 10−3.

2.6.2 Artificial dataset: Mixture of random directed rooted tree topology

We use mixtures of tree distributions as the data generating (or “true”) distri-

butions. We generate these models by first generating a valid directed rooted tree

topology for each component (for a given number of components), then generating

mixing coefficients for each component, and then generating the data using a condi-

tional distribution for each time-series.

For each mixture component, we first generate a so-called random minimum span-

ning tree topology. A matrix of random numbers ∈ (0, 1) is generated, which is set to

be an adjacency matrix. We note that this construction does not generate a uniform

27

distribution among all spanning trees, though every spanning tree has positive proba-

bility of being selected. Then, Edmonds-Chu is run on the complete graph described

by this matrix, obtaining a maximum-weight directed rooted tree.

For the proportion of each mixture component in the model, we randomly choose

lambdas (mixing proportions of the components) with a minimum of 0.1 and a max-

imum of 0.9 (or the amount left, whichever is smaller).

For our experiments, we use binary time-series. The t = 0 data point is gener-

ated with a uniform probability distribution. All later data points are generated by

selecting a component according to the λk parameters.

For each conditional distribution to be generated, coefficients of dependence are

selected at random. For root nodes, the only dependence is on their own past. Thus,

one coefficient of dependence is selected ci ∈ [2, 4]. The Pr(V (t) = 1) = 1
5
ciVi(t−1)+

0.1. For non-root nodes dependent on one more node, two coefficients are selected

∈ [1, 2]. For them, Pr(V (t) = 1) = 1
5
ci1Vi(t − 1) + 1

5
ci2Vj(t − 1) + 0.1. Thus, we see

that the final Pr(V (t) = 1)s are ∈ [0.1, 0.9], with the lower bound of ci dictating how

certain the distribution is dependent.

2.6.3 Sample complexity

We first want to measure how many samples are required to learn an effective

model with all parameters, and then how quickly the model converges to the generat-

ing model with increasing samples to learn from. The distance metric to measure this

convergence is the empirical log likelihood evaluated over a large (here 26.4k samples)

dataset unseen during training. This can be represented as

lim
t→∞

1

t
log

Pgen(V test)

P̂ (V test)

where P̂ is the log-likelihood of data V test using the mixture model distribution in-

ferred on the training data V train. This average log likelihood ratio’s expected value

and its empirical limit is the Kullback-Liebler divergence (Ch 3 of [31]). We refer

to this quantity as “Testing Error.” We expect this quantity should be positive (the

28

statistical mean, namely the Kullback Liebler divergence, is non-negative, though it

is possible for the empirical mean to be negative).

We explore how the testing error varies as the number of training samples T train

increases. Results are depicted in Figure 2.5. The grey lines depict each of the 24

trials, and the blue line depicts the mean and one standard deviation above and below

the mean. There is a large drop in error initially, and then the error stabilizes. The

figure suggests that although the divergence does not go to zero in the range shown

in the figure, that by T train the improvement in using up to triple that amount is

marginal.

2.6.4 Classification

We now seek to investigate how well components of the mixture distributions can

be learned. We conduct a classification experiment with using a generative mixture

of trees distribution. The task is to correctly predict which component a particular

datapoint came from, within the generative mixture distribution. We test the abil-

ities of the learning algorithm against the best-in-class distribution, the generating

distribution itself. We keep the number of components to two. The training and

test datasets are separate 1000-length datasets. Since the two distributions are of

the same class, we expect that the learned model should perform just as well as the

generating distribution with enough training data, and the area under curve should

be approximately the same. We expect the size of this ”large” dataset where the two

converge to be a few hundred datapoints, from Figure 2.5.

The resulting ROC curve is shown in Figure 2.6. As expected, the generative

model does a better job of classifying which component individual test data points

came from, though the fact that the area under the curve is far from 1 indicates the

intrinsic challenge of this task.

Remark 2 The two tree components of the generative model had randomly selected

topologies and conditional dependencies. We conjecture that in the limit that both

29

Figure 2.5. Testing the divergence to the true model (comparing likeli-
hood over the same large testing dataset of 26.4k samples) vs. increasing
number of samples given to learn. Learning of the model is performed over
a smaller number of samples (x-axis) and the y-axis is the log likelihood
ratio evaluated over an unseen larger test dataset. The bottom figure is a
zoomed-in snapshot of the top figure.

30

components are almost identical (such as in Kullback Liebler divergence or in total

variation), then even the generative model would perform the same as random guess-

ing. Likewise, we anticipate that example mixture of trees generative distributions

could be constructed with the underlying components quite distinct (large divergence)

enabling the generative distribution and the learned distribution to easily distinguish.

Figure 2.6. Classification as compared to the generative model. The
generative distribution performs at the same level as the learned model.
The learned model AUC failed normality test, the mean alone is shown.

31

2.6.5 Clustering

Given a dataset, we can train a mixture of time-dependent trees model on it,

giving us soft partitioning at every step (with weights γk(t) for time-point V (t) coming

from component k). If we quantize the soft partitioning to a hard partitioning, this

is effectively clustering of the dataset into m clusters where m is the number of

components. We want to measure performance of this implementation at clustering

data generated from its own class. We use the metric of adjusted Rand Index (aRI)

to do this, which if perfect will be 1, and will be 0 when the model performs the same

as a uniform random clustering.

A generative model was randomly selected, and 24 trials of learning on the same

dataset with different seed are performed. An expectation step is performed with each

of the learned models and the one generative model, giving us a soft partitioning for

each. Along with the true labels, we can now compute the aRI. We expect our results

to be close to that from the generative distribution, except for convergence issues.

The number of components is 2. Amount of data used is 10000 samples. Note that

the training and testing dataset is the same for this experiment.

We observe that the generative distribution performs poorly itself, showing that

this task is intrinsically hard. The learned model performs significantly worse, with

high variation among trials. This is surprising, considering the results from classifi-

cation. The variance is only from the randomized seed models for EM, which shows

a large number of trials getting stuck in local optima, as expected. Also as expected,

these are all still significantly better than randomness (which is aRI=0).

2.6.6 Runtime scaling

Characterizing the runtime scaling of this model is performed over varying training

samples, number of time series, and number of components. The baseline hyperpa-

rameters are 10000 training datapoints, 10 time series, and 2 components. The CPU

time within each thread is measured in seconds, thus giving us comparable results

32

Table 2.1.
Clustering of a dataset into the most likely component for each datapoint.
This is measured with (chance) adjusted Rand Index, 0 is same perfor-
mance as a random clustering, and 1 is perfect. The same dataset and
generative model is used, with the EM seed model being the only variable
across trials.

Learned model aRI Generating model aRI

(0.16, 0.23) 0.24

across trials. The parallelism with distributed memory ensured no caching takes

place, which might speed up later trials.

Building on the computational complexity calculations in subsection 2.5.1, we

expect the complexity with respect to the number of time-series n to be quadratic,

linear with samples T .

Table 2.2 illustrates the results, with normal statistics. We see slightly above-

quadratic scaling with time-series from the data, consistent with expectations. We

expect linear scaling with number of samples T , and we see it only in the higher

sample range - this is consistent with a significant static overhead, that becomes less

of a contributor with more samples. Finally, we expect polynomial scaling with low

number of mixture components, and the results are consistent with that interpreta-

tion, although we need to test this with high number of components to be certain.

2.6.7 Trade-offs with changing tolerance

The criteria we use for stopping EM is a percentage change in the log-likelihood

over the training data, which is a hyperparameter that we can tune. These results

should be domain-specific, since different estimators can give different convergence

characteristics. The baseline parameters are 10 time-series, 2 components, 1k samples

for training and 26.4k samples for testing.

33

Table 2.2.
Runtime scaling with number of time series, samples, threshold, number
of mixture components. All times are expressed in seconds. When not
varying, the parameters are kept constant at 10 time-series, 2 components,
10000 samples.

Number of time series Runtime (95% over 24 trials)

5 (29, 56)

10 (91, 131)

20 (586, 946)

40 (2092, 3299)

Samples Runtime (95% over 24 trials)

100 (10.1, 11.1)

400 (13.9, 17.3)

1000 (21.0, 27.4)

2500 (39.3, 63.7)

5000 (69.4, 113.3)

10000 (105.2, 182.0)

Components Runtime (95% over 24 trials)

1 (19.4, 19.6)

2 (227, 300)

3 (283, 477)

4 (725, 1182)

5 (1443, 2440)

34

Figure 2.7. Learning time in seconds plotted against changing tolerance
fraction.

In Figure 2.7, we plot the run-time as a function of the tolerance for iteration

stopping in EM. We expect polynomial or worse scaling with increasing tolerance,

since we expect diminishing returns with more iterations of EM. We notice a steep

decrease until 10−3, and then a flattening out. This is suggestive of a large number

of iterations EM being required for gains of 10−3 in log-likelihood. It also shows us

that a good tolerance level for this environment is at 10−3.

We also investigate the divergence between the generative model and the learned

model as a function of the EM iteration tolerance. This is computed as in subsec-

tion 2.6.3, with 26.4k samples serving as the large testing dataset. We generally

anticipate that a smaller tolerance will lead to solutions for the model parameters

closer to a locally optimal solution. In the large training sample limit, smaller toler-

ances consequently should have smaller divergence.

35

Figure 2.8. Divergence to generating distribution over testing dataset,
plotted against tolerance.

From the results in Figure 2.8 we observe that there is indeed lower divergence

(better learned model) with the lower tolerances, and a trend of increasing divergence

as the tolerance increases. However, there is a drop and spike in divergence close to

a tolerance of 0.075; we are unsure of the source of this.

36

3. MIXTURES OF TREES WITH STATE ESTIMATION

3.1 Introduction

Consider the rainfall prediction task from the last chapter. The dependencies

across the region of weather stations might change in a predictable way, across the

seasons, the day-night cycle. We consider the case where this change of distribution

can be modeled (or approximated) as a hidden Markov model.

Our goal in this chapter is to develop formulation and learning algorithms for

hidden Markov models with autoregressive observables with tree dependencies. Put

another way, these are mixtures of time-dependent trees models where the latent

state or hidden choice variable follows a Markov process. An illustration of how

evolving state might influence the dependencies in variables is Figure 3.1. Note that

if the states were i.i.d, we would have the situation in the last chapter, described in

Section 2.4.

We begin with a description of the classical hidden Markov model in Section 3.2,

and formulate the relevant learning algorithm, one based on the Baum-Welch Sec-

tion 3.3 [9]. We then extend this to work with time-dependent tree dependencies

among observed variables Section 3.4.

3.2 Hidden Markov models

Hidden Markov models (HMMs) are characterized by a set of observed variables

whose probability distributions are dependent on a hidden state variable at that time

step, Z(t), which itself is a random variable following a Markov process. Let the

37

State ~

 t = 0

State 1

 t = 1

State 2

 t = 2

t = 0 t = 1 t = 2

T1 T2

1

2

3

4

2

1

3

4

1

2

3

4

1

2

3

4

Figure 3.1. An illustration of how hidden states affect the dependen-
cies of variables, and how the states are time-dependent Markov chains
themselves.

38

states of Z be from the set Ωz = {1, 2, 3 . . .m}. Denote the time-homogeneous state

transition matrix of Z with S:

S :=

S1,1 S1,2 . . .

S2,1 S2,2 . . .
...

...
. . .

 (3.1)

so

Si,j = P (Z(t) = j
∣∣ Z(t− 1) = i),

the probability that the hidden Markov process in state i transitions to state j in the

next time step. Let π denote the intial distribution of the hidden state,

πk := P (Z(1) = k).

As in the i.i.d. case, the observed variables are modeled as coming from a mixture of

trees distribution, denoting the kth mixture component distribution as

Tk(V (t), V (t− 1)) = P (V (t)|V (t− 1), Z(t) = k).

Note that the dependence of V (t) on V (t − 1) given the hidden state Z(t) is in

contrast to the standard hidden Markov model assumptions, for which the Baum-

Welch algorithm was proposed.

3.3 Modified Baum-Welch algorithm for HMMs

We will use an iterative EM approach for this setting analogous to that for the

i.i.d. setting described in Section 2.5. The derivations are similar here, with the main

difference being that the hidden state depends on its own past. We will present the

derivations of the E and M steps more concisely than in Section 2.5, highlighting

the differences with the i.i.d. setting. We will see in particular that the E-step is

more challenging, and we need to use a forward-backward procedure to calculate

the posterior. In the literature for HMMs with i.i.d observables, this variant of EM

is called the Baum-Welch algorithm [33]. Given an initial model, we recursively

39

compute the most likely sequence of states (using dynamic programming to make

this tractable) until we get a soft partitioning i.e. the probability of each data point

coming from each state. This is called the expectation (E) step. We then update

our model to maximize expected likelihood with respect to data this new partitioned

data, thus getting a model with better likelihood estimate than we started with. In

contrast to the standard Baum-Welch algorithm for hidden Markov models, here the

emitted variables, namely {V (t)}, are not conditionally independent given the hidden

states. This case was investigated in [23] and a modified version of the Baum-Welch

was proposed for linear auto-regressive time-series. Our derivation is largely the same

as [23], except that here the emission distributions are mixtures of tree distributions

and our approach is not restricted to the linear setting.

We can express the complete log likelihood as

lcomplete(V, Z
∣∣Q(V, Z))

= logQ(V, Z)

= log
T∏
t=1

Q(V (t), Z(t)|V (t− 1), Z(t− 1), . . .)

=
T∑
t=1

logQ(V (t), Z(t)|V (t− 1), Z(t− 1))

=
T∑
t=1

logQ(Z(t)|V (t− 1), Z(t− 1))Q(V (t)|V (t− 1), Z(t− 1), Z(t))

=
T∑
t=1

logQ(Z(t)|Z(t− 1))Q(V (t)|V (t− 1), Z(t))

=
T∑
t=1

logQ(Z(t)|Z(t− 1)) + logQ(V (t)|V (t− 1), Z(t))

=
T∑
t=1

logSZ(t−1),Z(t) + log TZ(t)(V (t), V (t− 1))

=
T∑
t=1

m∑
i=1

m∑
j=1

δi,Z(t−1)δj,Z(t) (logSi,j + log Tj(V (t), V (t− 1))) (3.2)

40

We will again take the expectation of this complete log likelihood with respect to

the conditional distribution Q(Z|V),

EQ(Z|V)

[
lcomplete(V, Z

∣∣ Q(V, Z))

∣∣∣∣V]
=

T∑
t=1

m∑
i=1

m∑
j=1

EQ(Z|V)

[
δi,Z(t−1)δj,Z(t)

∣∣V] (logSi,j + log Tj(V (t), V (t− 1))) . (3.3)

In the M-step, this function will be maximized over distributional parameters. The

E-step will calculate

EQ(Z|V)

[
δi,Z(t−1)δj,Z(t)

∣∣V]
= P

(
Z(t− 1) = i, Z(t) = j

∣∣V)
=
P
(
Z(t− 1) = i, Z(t) = j, V

)
P
(
V
)

=
Pr
(
Z(t− 1) = i, Z(t) = j

)
P
(
V |Z(t− 1) = i, Z(t) = j

)
P
(
V
)

=
P (Z(t) = j

∣∣ Z(t− 1) = i)P (Z(t− 1) = i)

P (V)

× P (V (1), V (2) . . . V (t− 1)
∣∣ Z(t− 1) = i)

× P (V (t)
∣∣Z(t) = j, V (t− 1))

× P (V (t+ 1) . . . V (T)
∣∣Z(t) = j, V (t))

We next introduce notation to simplify the above expressions and facilitate calculating

the above expression. Define the two parts of the numerator:

αk(t) = P (V (1), V (2), ...V (t), Z(t) = k) (3.4)

βk(t) = P (V (t+ 1), V (t+ 2), ...V (T)
∣∣Z(t) = k, V (t)) (3.5)

The quantity α(T) represents the joint probability of observing all of the given

data up to time T and having a final hidden state Z(T).

41

We can use these parameters in evaluating the conditional expectation of the log

likelihood,

EQ(Z|V)

[
δi,Z(t−1)δj,Z(t)

∣∣V]
=
P (Z(t) = j

∣∣ Z(t− 1) = i)P (Z(t− 1) = i)

P (V)

× P (V (1), V (2) . . . V (t− 1)
∣∣ Z(t− 1) = i)

× P (V (t)
∣∣Z(t) = j, V (t− 1))

× P (V (t+ 1) . . . V (T)
∣∣Z(t) = j, V (t))

=
Si,j × αi(t− 1)× Tj(V (t), V (t− 1))× βj(t)

P (V)
. (3.6)

We now derive recursion relations for computing α and β efficiently, in order to

calculate (3.6).

αk(t) = P (V (1), V (2), . . . V (t), Z(t)) (3.7)

=
m∑
i=1

P (V (1), V (2), . . . V (t− 1), Z(t− 1) = i, V (t), Z(t)) (3.8)

=
m∑
i=1

P (V (1), V (2), . . . V (t− 1), Z(t− 1) = i)

× P (V (t), Z(t)
∣∣ V (1), V (2) . . . V (t− 1), Z(t− 1) = i) (3.9)

=
m∑
i=1

αi(t− 1)P (Z(t)
∣∣ V (1), V (2) . . . V (t− 1), Z(t− 1) = i)

× P (V (t)
∣∣ V (1) . . . V (t− 1), Z(t− 1) = i, Z(t)) (3.10)

=
m∑
i=1

αi(t− 1)× Si,Z(t) × TZ(t)(V (t), V (t− 1)). (3.11)

α will converge to 0 for large t. To mitigate this, we will compute normalized α’s,

α̂k(t− 1) =
αk(t− 1)∑
k αk(t− 1)

(3.12)

Starting from an initial estimate of α at time 0, using the known transition proba-

bilities S and emission probabilities Tk
m
k=1, we can compute α for all time. This is the

“forward step” for calculating P
(
Z(t − 1) = i, Z(t) = j

∣∣V). Considering that we’re

42

evaluating α(t) for all K components (one for each possible state), the computational

cost of each time step scales as O(m2). Next, we identify a recursion relation for the

β terms,

βk(t) = P (V (t+ 1), V (t+ 2), ...V (T) | Z(t), V (t)) (3.13)

=
m∑
i=1

P (V (t+ 1), V (t+ 2), ...V (T), Z(t+ 1) = i
∣∣ Z(t), V (t)) (3.14)

=
m∑
i=1

P (V (t+ 1), V (t+ 2), ...V (T)
∣∣ Z(t+ 1) = i, Z(t), V (t)) (3.15)

× P (Z(t+ 1) = i
∣∣Z(t), V (t)) (3.16)

=
m∑
i=1

P (V (t+ 1), V (t+ 2), ...V (T)
∣∣ Z(t+ 1) = i, V (t)) (3.17)

× P (Z(t+ 1) = i
∣∣Z(t)) (3.18)

=
m∑
i=1

P (V (t+ 1)
∣∣ Z(t+ 1) = i, V (t))

× P (V (t+ 2), V (t+ 3), ...V (T)
∣∣ Z(t+ 1) = i, V (t), V (t+ 1)) (3.19)

× P (Z(t+ 1) = i
∣∣Z(t)) (3.20)

=
m∑
i=1

Ti(V (t), V (t+ 1))× βi(t+ 1)× SZ(t),i (3.21)

This is the “backward” procedure, with a computational complexity of O(m2) per

time step. This starts at t = T and recursively computes β back through time. We

initialize βk(T) = 1. As with α, we normalize β terms to avoid numerical issues.

43

Note that using these parameters, the the likelihood function P (V) has a simple

expression. For any t,

P (V) =
m∑
k=1

P (V, Z(t) = k)

=
m∑
k=1

P (V (1), . . . , V (t), Z(t) = k)P (V (t+ 1), . . . , V (T)|V (t), Z(t) = k)

=
m∑
k=1

αk(t)βk(t) (3.22)

=
∑
k

αk(T) (3.23)

As at t = T, β is a vector of 1s.

Now, computing the posterior probability γ (also known as smoothing step in the

literature):

γi(t) = P (Z(t) = i
∣∣V) =

P (Z(t) = i, V)

P (V
∣∣θ) =

αi(t)βi(t)∑m
j=1 αj(t)βj(t)

(3.24)

ηij(t) = P (Z(t− 1) = i, Z(t) = j
∣∣ V) (3.25)

=
Si,jαi(t− 1)Tj

(
V (t), V (t− 1)

)
βj(t)

P (V)
. (3.26)

Where P(V) is from Equation 3.23.

Next, we re-write the conditional expectation of the complete log likelihood (3.3),

EQ(Z|V)

[
lcomplete(V, Z

∣∣ Q(V, Z))

∣∣∣∣V]
=

T∑
t=1

m∑
i=1

m∑
j=1

EQ(Z|V)

[
δi,Z(t−1)δj,Z(t)

∣∣V] (logSi,j + log Tj(V (t), V (t− 1)))

=
T∑
t=1

m∑
i=1

m∑
j=1

ηi,j(t) (logSi,j + log Tj(V (t), V (t− 1))) (3.27)

The E-step is about efficiently computing γ and η. This is done in terms of α

and β. This E-step gives us two things - the lcomplete which is the fitness, and the

probability that each time point was generated by a given state P (Z(t) = z|V). This

is considered to be a soft partitioning of the data. Next, in the M-step, we treat γ

44

and η as constants to maximize the likelihood by changing θ, the parameters of the

model, fitting it to the partitioned data, each partition describing one state’s emission

distribution. The analytical solution relies on Lagrange multipliers, yielding updates

to the initial state distribution and state transition probabilities:

πk =
γk(1)∑m
j=1 γj(1)

(3.28)

Si,j =

∑T
t=2 ηi,j(t)∑T

t=2

∑m
l=1 ηi,l(t)

. (3.29)

3.4 Emission probabilities update for time dependent tree distributions

as observables

In the M-step, we update on the distributions {Tk} by obtaining new estimates of

each of the probability distributions above, and then running the Chow-Liu directed

algorithm to obtain the best time-dependent tree distribution.

Now, γk(t) is defined as the likelihood of data at time t being generated from

hidden state k. In the M-step, this provides a soft partitioning of the data. When

updating (learning) the corresponding time-dependent tree distribution corresponding

to state k, each datapoint in time can be viewed as being weighted by this probability.

Using this modified dataset as the basis, we can use our estimator for each P (our

implementation uses an empirical distribution) to obtain the new time-dependent tree

distribution, as described in subsection 2.3.3.

In summary, the EM algorithm also described in algorithm 3 requires us to make an

initial selection of parameters θ ≡ (π, S,E). The S and E distributions can be either

uniform or random (if the landscape is such that it often gets stuck in local maxima,

we are better off using multiple trials of random initialization). Given the dataset

V , we run the forward and backward steps to compute α and β and consequently

compute γ, η the complete log likelihood. This is the E-step. We now use these

results to change the parameters of our model to θnew. We continue to alternate E

45

and M steps until we reach a convergence criteria, typically one of small change in

likelihood computed in the E-step.

Algorithm 3: Baum Welch with autoregressive tree dependencies in observables

Data: n variables across time T

Initial model Q0 = π, S, Tk

Algorithm 1 Learn-timeSeries-tree

Result: Hidden Markov model with time dependent tree distributions:

Optimal structure and parameters of each states’ emission

distribution, state transition distribution, and soft partitioning of

each data point

1 while Not converged until tolerance do

2 E-step: Compute γk(t), Pk(t) η(k,j)(t), likelihood ∀ k ∈ m and ∀ t ∈ [1..T]

3 M-step: for k ∈ 1..m do

4 Compute πk

5 for j ∈ 1..m do

6 Compute Sj,k∀ states j, k

7 end

8 Tk ← ChowLiuTS(Pk(t), data)

9 end

10 end

11 return Model Q = {m,Tk, S(k,j), πk ∀ k ∈ [1..m]} and final partitioning

γk(t)∀t ∈ [1..T]

3.4.1 Computational complexity

The forward step of the forward-backward algorithm involves two passes over all

the states, and one pass over all the dependencies (for computing likelihoods) for every

time point, thus is of order O(m2nT) steps. The backward step requires the same

46

number of passes over each of the hyperparameters, bringing the total of the E-step to

O(m2nT). From Chapter 2, Section 4, learning of time dependent tree distributions

comes out to be O(n2(T +
∣∣Ω∣∣3)) or O(n2T), based on implementation. Then, the

M-step, learning m different emission distributions is O(mn2(T +
∣∣Ω∣∣3)) or O(mn2T).

Finally, the full algorithm is of O(mn2(T +
∣∣Ω∣∣3) + m2nT) or O(mn2T + m2nT),

assuming a constant number of iterations of EM is required to converge.

3.5 Evaluation

3.5.1 Environment

We will use the same computational setup as in the i.i.d. hidden state case (sub-

section 2.6.1).

All the trials are run in parallel. The default parameters are 10 time-series, 1000

training samples, and 26.4k samples for computing log-likelihood on a large dataset

(testing error or divergence). The baseline tolerance for EM iteration stopping is

10−3.

3.5.2 Artificial data: Random state distribution, random TD tree distri-

bution

We use Markov hidden state with time dependent tree emission distributions as

the data generating distribution.

Generation of the emission distribution (the time-dependent trees) is done with

the same process as in Chapter 2, subsection 2.6.2. Instead of generating valid mixing

coefficients that sum to 1, we now generate a state transition matrix. We uniformly

choose entries in the matrix with the same limits of (0.1, 0.9) to prevent stable attrac-

tors in the hidden Markov state. Then, we generate a time-series for the hidden-state,

with the initial distribution being uniformly random.

47

For our experiments, we use binary-alphabet time-series. The t = 0 data point

is generated with a uniform probability distribution. Based on the state variable

governing the relationship between the observable time-series, each future time-point

is generated with the corresponding emission conditional distribution as in the i.i.d

state scenario.

3.5.3 Sample complexity

The first experimental metric we want to measure is how many samples are re-

quired to learn an effective model with all parameters, and then how quickly the

model converges to the generating model with increasing samples to learn from. The

metric to measure this convergence is the empirical log likelihood evaluated over a

large (here 26.4k samples) dataset unseen during training, same as the i.i.d state case

subsection 2.6.3. Analogously, we also expect this error to be positive, since genera-

tive model will be better than the learned model over an unseen dataset. We expect

it to decrease with increasing training samples, asymptotically going to 0, as more of

the parameters converge to those the generating model. To get better comparisons,

we use the same seed model across all the sizes of training samples, since different

EM starting seeds can converge to different local optima, skewing the results.

The results are shown in Figure 3.2. There is a large error when using very low

samples. This is consistent with there being not enough samples to adequately learn

the model parameters in that regime. We also notice a fairly flat regime beyond 1000

samples, where the marginal improvement from more data gets smaller and smaller.

This is also consistent with the expectation of asymptotic convergence to generating

model.

3.5.4 Clustering

We now use the soft-partitioning from the EM algorithm to label each training

data point, clustering it into one of the components. Similar to the i.i.d state case

48

Figure 3.2. Testing the divergence to the true model (likelihood ratio over
26.4k samples) vs. increasing number of samples given to estimate. The
grey lines represent each of the 24 trials, each with the same generative
distribution and dataset. The blue line is the mean, with the blue region
being 95% confidence regions.

49

in subsection 2.6.5, we hope to evaluate the unsupervised learning capabilities of the

model. We use the adjusted (for chance) Rand Index metric, which is 0 for a model

performing same as chance and 1 for the perfect clustering. We choose 1000 training

samples, 2 components, and 10 times series. To be able to gather insights, we keep

the generative model and the dataset same across trials, since the generative aRI

changes significantly across trials.

Analogous to the i.i.d state case, we expect the generative model to be mediocre,

and the learned model to be somewhat worse. The results are shown in Table 3.1. As

expected, both the generative and learned model aren’t too great, with the learned

model being significantly worse than chance. We note that clustering of the training

samples might be a particularly hard task, but we are unsure of the root cause for why

the learned model performs so much closer to the generative model on the similarly

set-up classification task.

Table 3.1.
Clustering of a dataset into the most likely component for each datapoint.

This is measured with (chance) adjusted Rand Index, 0 is chance, 1 is
perfect. The normality test is satisfied.

Learned model aRI Generating model aRI

(0.11, 0.22) 0.34

3.5.5 Classification

We conduct a classification experiment with using a generative HMM model with

time-dependent tree emission distribution, to investigate how well the components

are being learned. The task is to correctly predict which component a particular

unseen test datapoint came from, within the generative mixture distribution. The

learning model is the same class as the generating model, both with two components.

The training and test datasets are separate 1000-length datasets. Analogous to the

50

i.i.d case, we expect that the learned model should perform as well as the generative

model with enough training data, and the area under curve should be approximately

the same. We expect the good ”enough” training dataset to be of size 1000, from

Figure 3.2.

The resulting ROC curve is shown in Figure 3.3. As expected, the task is hard,

with the generative model being far from perfect. The learned model is very close to

the generative model in terms of area under the ROC curve. This leads us to conclude

that the learning algorithm is successfully learning to distinguish the components from

the given amount of data.

Figure 3.3. ROC and raw area under curve values for classification using
Markov state TD-trees, each label is one TD-tree

51

3.5.6 Runtime scaling

The runtime scaling of this model is verified by learning over varying training

samples, number of time series, and number of components. The baseline hyperpa-

rameters are 10000 training datapoints, 10 time series, and 2 components. From the

computational complexity calculations in subsection 3.4.1, we expect the time-series

complexity to be quadratic, polynomial scaling with number of mixture components,

and linear in number of samples.

Table 3.2 illustrates the results, with normal confidence intervals, trained a on

10000 sample baseline. We also plot training time for 1000-samples over varying

number of time-series in Figure 3.4. The learning times are linear with time-series at

high number of time-series, and we conjecture that this is likely because of static over-

head dominating the learning times at low number of time-series. The samples also

show similar overhead behaviour, with the scaling from 5000 to 10000 samples being

close to linear unlike the smaller sample regime. Learning time scales polynomially

with components, also as we expect.

Remark 3 Since the worst scaling is seen to be with increasing number of compo-

nents, increasing to arbitrary components leads to intractably large runtimes.

3.5.7 Changing number of components

Expressive power of markov state tree observables with varying number of com-

ponents is an interesting metric to measure, since we can then choose the number of

components parsimoniously. We select a generative model and use varying amount

of components to learn from the generated dataset. Then, these models are evalu-

ated on testing error as in subsection 2.6.3 over a large dataset generated from that

generative model.

The generative distribution has 2 components. 1000 training samples were given,

with a 26.4k-length unseen testing dataset over which the generating and learning

52

Table 3.2.
Run-time scaling with number of time series, samples, threshold, number
of mixture components. The constant values are 10000 samples, 10 time
series, 2 components.

Number of time-series Runtime (95% over 24 trials)

5 (19.4, 20.6)

10 (197, 301)

20 (378, 717)

40 (782, 1074)

Samples Runtime (95% over 24 trials)

100 (15, 18)

400 (20, 27)

1000 (35, 49)

2500 (64, 84)

5000 (130, 228)

10000 (222, 381)

Components Runtime (95% over 24 trials)

1 Mean=50, normal test failed

2 (230, 293)

3 (555, 736)

4 (976, 1230)

5 (1700, 2120)

53

Figure 3.4. Learning time in seconds plotted with increasing number of
time-series. The model had 2 components and used a 1000-long training
dataset.

54

model are evaluated. We expect the best results for 2 component learning model,

with all other components being worse. 1 component models will not have enough

parameters to adequately learn the features of the dataset, and 3 and 4 component

models might overfit their parameters to the training data, and thus perform much

worse on the test dataset.

The results are shown in Figure 3.5. As expected, the ”elbow” in the graph occurs

at 2 components. We expected 3 and 4 component models to be worse, but they are

surprisingly worse than the single component case as well.

Remark 4 This also allows us to compare the model against one of the alternatives

before this work, the best single-tree approximation (for which x-axis value is 1). We

observe that the model performs better (in terms of testing error) at the generative

number of components, as an improved HHM model with time-dependent emission

distributions.

Figure 3.5. Divergence to a generative 2 component mixture vs. in-
creasing number of learning components. The likelihoods are computed
on 26.4k samples, and the model is trained on 1k samples.

55

3.5.8 Trade-offs with changing tolerance

Another tunable hyperparameter is the fractional change in log-likelihood at which

we stop the EM iterations. We do not want to have this too low, in which case the

EM would take too long to converge. At the same time, a too high tolerance would

end the iteration before most of the learning is done. This tradeoff would likely be

domain specific.

We measure testing error as defined in subsection 2.6.3, with a 26.4k-long testing

dataset. We expect a smooth decrease as we tighten (lower) tolerance. Unexpectedly,

the divergence over tolerance isn’t smooth, but this is analogous to the i.i.d case at

Figure 2.8. Also similarly, we observe a spike at tolerance of 0.075. We conjecture

that this could be a combination of parameters that leads to the log-likelihood being

trimmed particularly early.

We also measure learning times with varying tolerance, by measuring CPU time

in seconds, while accounting for concurrency. We expect learning times to explode as

tolerance is tightened, and for EM to never converge at some low value. The results

are in Figure 3.7, and while we don’t see a massive explosion in learning times, we

do see an increase of about 4 times.

Remark 5 These results also justify the baseline we use for all other experiments,

of 10−3.

56

Figure 3.6. Divergence to generating distribution over testing dataset
(of 26.4k samples), plotted against varying tolerance, using 1000 training
samples and 2 components.

57

Figure 3.7. Learning time in seconds plotted against changing tolerance,
using 1000 training samples and 2 components.

58

4. SUMMARY

4.1 Future work

There are several directions of future work that could build off of the modeling we

have discussed. In this thesis, we have focused on the discrete alphabet setting, the

framework should extend naturally to real-valued data, though there may be impor-

tant implementation challenges. In this work, we focused on discrete valued data. In

principle, the framework applies directly to continous valued data but there could be

implementation challenges related to estimating mutual information (for the directed

spanning tree sub-routine) or in other EM steps. Alternatively, continuous valued

data could be discretized and our method could be applied, though that will increase

loss. Another direction is for larger Markov orders. For simplicity we focused on

Markov order 1 for both the hidden state and the observed data. In principle, our

method can be extended in a straightforward manner for any Markov order. However,

there will be a combinatorial explosion in parameters, so it would be impractical for

large Markov orders. Lastly, one possible direction of future work is to present the-

oretical convergence guarantees for time-dependent (and otherwise) mixture models,

and then hidden Markov state models with time-dependent observables. An analysis

of the global convergence properties of the EM algorithm is provided for i.i.d data

that fall out of mixtures of Gaussians [34]. Another more general characterization of

the basin of convergence in finite-sample and population cases is explored in [35].

REFERENCES

59

REFERENCES

[1] Nan-Jung Hsu, Hung-Lin Hung, and Ya-Mei Chang. Subset selection for vector
autoregressive processes using lasso. Computational Statistics & Data Analysis,
52(7):3645–3657, 2008.

[2] Ali Shojaie and George Michailidis. Discovering graphical granger causality using
the truncating lasso penalty. Bioinformatics, 26(18):i517–i523, 2010.

[3] Yuval Nardi and Alessandro Rinaldo. Autoregressive process modeling via the
lasso procedure. Journal of Multivariate Analysis, 102(3):528–549, 2011.

[4] Andrew Bolstad, Barry D Van Veen, and Robert Nowak. Causal network in-
ference via group sparse regularization. IEEE transactions on signal processing,
59(6):2628–2641, 2011.

[5] Alexander Jung, Gabor Hannak, and Norbert Goertz. Graphical lasso based
model selection for time series. IEEE Signal Processing Letters, 22(10):1781–
1785, 2015.

[6] Christopher J. Quinn, Negar Kiyavash, and Todd P. Coleman. Efficient Meth-
ods to Compute Optimal Tree Approximations of Directed Information Graphs.
IEEE Transactions on Signal Processing, 61(12):3173–3182, June 2013.

[7] Marina Meila and Michael I. Jordan. Learning with mixtures of trees. Journal
of Machine Learning Research, 1(Oct):1–48, 2000.

[8] Sergey Kirshner, Padhraic Smyth, and Andrew W. Robertson. Conditional
Chow-Liu tree structures for modeling discrete-valued vector time series. In
Proceedings of the 20th conference on Uncertainty in artificial intelligence, pages
317–324. AUAI Press, 2004.

[9] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[10] Jason K. Johnson, Diane Oyen, Michael Chertkov, and Praneeth Netrapalli.
Learning planar Ising models. The Journal of Machine Learning Research,
17(1):7539–7564, 2016.

[11] Kevin P. Murphy. Machine learning: a probabilistic perspective. Cambridge, MA,
2012.

[12] C. Chow and C. Liu. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14(3):462–467,
May 1968.

[13] Leiserson Cormen and CE Leiserson andR. Rivest. Introduction to algorithms,
2, 1990.

60

[14] Jack Edmonds. Optimum branchings. Mathematics and the Decision Sciences,
Part, 1(335-345):26, 1968.

[15] Andrey Y. Lokhov, Marc Vuffray, Sidhant Misra, and Michael Chertkov. Op-
timal structure and parameter learning of Ising models. Science Advances,
4(3):e1700791, March 2018.

[16] Guy Bresler, Elchanan Mossel, and Allan Sly. Reconstruction of Markov Random
Fields from Samples: Some Easy Observations and Algorithms. arXiv:0712.1402
[cs], December 2007. arXiv: 0712.1402.

[17] Ali Jalali, Christopher C. Johnson, and Pradeep K. Ravikumar. On learning dis-
crete graphical models using greedy methods. In Advances in Neural Information
Processing Systems, pages 1935–1943, 2011.

[18] Animashree Anandkumar, Vincent Y. F. Tan, Furong Huang, and Alan S. Will-
sky. High-dimensional structure estimation in Ising models: Local separation
criterion. The Annals of Statistics, 40(3):1346–1375, June 2012.

[19] Nicolai Meinshausen and Peter Bhlmann. High-dimensional graphs and variable
selection with the Lasso. The Annals of Statistics, 34(3):1436–1462, June 2006.

[20] Anima Anandkumar, Daniel J. Hsu, Furong Huang, and Sham M. Kakade.
Learning mixtures of tree graphical models. In Advances in Neural Informa-
tion Processing Systems, pages 1052–1060, 2012.

[21] H. Cao, V. Y. F. Tan, and J. Z. F. Pang. A Parsimonious Mixture of Gaus-
sian Trees Model for Oversampling in Imbalanced and Multimodal Time-Series
Classification. IEEE Transactions on Neural Networks and Learning Systems,
25(12):2226–2239, December 2014.

[22] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, February 1989.

[23] Y. Ephraim, D. Malah, and B. Juang. On the application of hidden Markov
models for enhancing noisy speech. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 37(12):1846–1856, December 1989.

[24] Miroslav Krn. Recursive estimation of high-order Markov chains: Approximation
by finite mixtures. Information Sciences, 326:188–201, January 2016.

[25] Rishi Gupta, Ravi Kumar, and Sergei Vassilvitskii. On mixtures of Markov
chains. In Advances in neural information processing systems, pages 3441–3449,
2016.

[26] D. Luo, H. Xu, Y. Zhen, B. Dilkina, H. Zha, X. Yang, and W. Zhang. Learning
Mixtures of Markov Chains from Aggregate Data with Structural Constraints.
IEEE Transactions on Knowledge and Data Engineering, 28(6):1518–1531, June
2016.

[27] Y. CHU. On the shortest arborescence of a directed graph. Scientia Sinica,
14:1396–1400, 1965.

[28] R. E. Tarjan. Finding optimum branchings. Networks, 7(1):25–35, March 1977.

61

[29] Harold N. Gabow, Zvi Galil, Thomas Spencer, and Robert E. Tarjan. Efficient al-
gorithms for finding minimum spanning trees in undirected and directed graphs.
Combinatorica, 6(2):109–122, June 1986.

[30] James Massey. Causality, feedback and directed information. In Proc. Int. Symp.
Inf. Theory Applic.(ISITA-90), pages 303–305. Citeseer, 1990.

[31] Thomas M Cover and Joy A Thomas. Elements of information theory. John
Wiley & Sons, 2012.

[32] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1–38, 1977.

[33] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A Maximiza-
tion Technique Occurring in the Statistical Analysis of Probabilistic Functions of
Markov Chains. The Annals of Mathematical Statistics, 41(1):164–171, February
1970.

[34] Ji Xu, Daniel Hsu, and Arian Maleki. Global analysis of Expectation Maximiza-
tion for mixtures of two Gaussians. arXiv:1608.07630 [cs, math, stat], August
2016. arXiv: 1608.07630.

[35] Sivaraman Balakrishnan, Martin J. Wainwright, and Bin Yu. Statistical guar-
antees for the EM algorithm: From population to sample-based analysis. The
Annals of Statistics, 45(1):77–120, 2017.

	LIST OF TABLES
	LIST OF FIGURES
	SYMBOLS
	ABBREVIATIONS
	NOMENCLATURE
	ABSTRACT
	Introduction
	Our Contribution
	Section Overview

	Related work
	Graphical model selection
	Learning mixtures of trees
	Markovian hidden state models

	Mixtures of trees for time-series data
	Introduction
	Background: product, tree and mixture distributions for i.i.d data
	Background: Product and tree distributions for time series data
	Product distributions for time series data
	Time dependent tree distributions
	Learning of time-dependent tree distributions

	Mixtures of time-dependent trees
	Learning of mixtures of time-dependent trees
	Computational complexity
	Choosing the number of mixture components

	Evaluation and experiments
	Environment
	Artificial dataset: Mixture of random directed rooted tree topology
	Sample complexity
	Classification
	Clustering
	Runtime scaling
	Trade-offs with changing tolerance

	Mixtures of trees with state estimation
	Introduction
	Hidden Markov models
	Modified Baum-Welch algorithm for HMMs
	Emission probabilities update for time dependent tree distributions as observables
	Computational complexity

	Evaluation
	Environment
	Artificial data: Random state distribution, random TD tree distribution
	Sample complexity
	Clustering
	Classification
	Runtime scaling
	Changing number of components
	Trade-offs with changing tolerance

	Summary
	Future work

	REFERENCES

