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ABSTRACT

Batistich, Mary Kate Ph.D., Purdue University, August 2020. Essays in Labor Eco-
nomics. Major Professor: Timothy N. Bond.

My dissertation consists of three independent chapters in the field of labor eco-

nomics. The first chapter studies the economic forces underlying employment declines

and skill upgrading in the U.S. manufacturing sector around the turn of the 21st cen-

tury. The second chapter assesses the role of Japanese import competition in explain-

ing stalled racial progress in the U.S. during the 1970s and 1980s. The third chapter

explores end-of-life medical spending for dogs who have been diagnosed with cancer.

In the first chapter, I propose a new method to decompose employment changes

by skill type into changes caused by output, labor supply, production task concentra-

tion, and labor-augmenting technology, using market equilibrium conditions within a

constant elasticity of substitution production framework. I apply this method to man-

ufacturing industries between 1990 and 2007, a period of steep employment declines

for non-college workers. I find that labor-augmenting technology, by reducing labor

per unit of output, is the leading source of displacement overall. However, a shift

toward high-skill tasks is even more important in displacing non-college workers, who

represent a majority of employment. In contrast, output changes have little influence

on upskilling or aggregate job loss. In applications, I explore the impacts of import

penetration from China and susceptibility to automation and offshoring. Of these,

only offshoring is associated with some task upgrading, suggesting these mechanisms

are not the primary drivers of this source of employment loss.

The second chapter is written with Timothy N. Bond. We assess the impact of the

rapid rise in imports from Japan in the 1970s and 1980s on domestic labor markets.

We use commuting zone level variation in exposure and stratify our outcomes by



xiv

racial groups. We find it decreased black manufacturing employment, labor force par-

ticipation, and median earnings, and increased public assistance recipiency. However

these manufacturing losses for blacks were offset by increased white manufacturing

employment. This compositional shift appears to have been caused by skill upgrad-

ing in the manufacturing sector. Losses were concentrated among black high school

dropouts and gains among college educated whites. We also see a shifting of manufac-

turing employment towards professionals, engineers, and college educated production

workers. We find no evidence the heterogeneous effects of import competition can be

explained by unionization, prejudice, or changes in spatial mismatch. Our results can

explain 66-86% of the relative decrease in black manufacturing employment, 17-23%

of the relative rise in black non-labor force participation, and 34-44% of the relative

decline in black median male earnings from 1970-1990.

The third chapter, written with Kevin Mumford, contributes to the literature on

the causal effect of end-of-life medical spending by focusing on the pet health care

industry. Using administrative records and an identification strategy based on the

timing of pet health insurance benefit renewal, we create an environment in which ar-

rival of insurance benefits is quasi-random. We focus on how the availability of health

insurance reimbursement funds affects spending, veterinary visits, and mortality over

a two-year period after a serious cancer diagnosis. Increases in the generosity of health

insurance reimbursement causes increases in both spending and veterinary visits, but

we do not find evidence of a causal effect on mortality.



1

1. SKILL-BIASED TECHNICAL CHANGE AND

EMPLOYMENT IN U.S. MANUFACTURING

1.1 Introduction

Following its postwar peak, U.S. manufacturing employment remained flat for

decades and then dropped by about one fifth between 1990 and 2007 (Figure 1.7).

Non-college workers, who had dominated the sector and for whom manufacturing

had been a key employment source, bore these job losses. It is broadly accepted

that this decline had economy-wide consequences such as increased income inequality

and labor market polarization.1 However, a debate persists on its exact causes, with

attention focused on the roles of globalization and computerization which both surged

around the turn of the century.2 Despite robust evidence on the importance of Chinese

import penetration (Autor et al., 2013; Pierce and Schott, 2016) and industrial robot

adoption (Acemoglu and Restrepo, 2020), we lack a unified framework to quantify

the relative importance of these and other factors.3

I address this shortcoming by developing a flexible new method to decompose

manufacturing employment loss into its broad underlying forces. In doing so, I show

that changes to production technology, rather than decreased output, are most im-

portant in explaining job loss. In particular, there has been a broad shift in the mix

of production tasks toward those in which high-skill workers have a comparative ad-

vantage. The development of workplace tasks in response to process improvements

has been analyzed within plants and firms for select industries (e.g., Bartel et al.,

2003, 2007) but has never been studied comprehensively nor has it been considered

as a source of employment loss. In this paper I document the importance of changes

1See, e.g., Ebenstein et al. (2014) for evidence on the wage premium in manufacturing, and Charles
et al. (2019) for evidence on the broad labor market impacts of declining manufacturing employment.
See Autor et al. (2003) and related papers which document polarization in the U.S. and Goos and
Manning (2007) and Goos et al. (2014) which define and document polarization in the United
Kingdom and throughout Europe.
2See Fort et al. (2018) for a review.
3Theory developed in Acemoglu (2003) and elsewhere demonstrates that trade shocks may cause
technological change, creating an additional challenge in cleanly identifying the relative contribution
of these two forces. Batistich and Bond (2019) show that the Japanese import shock of the 1970s
and 1980s led to employment changes through technical change.
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in task mix for job loss, not only of low-skill jobs to the benefit of high-skill, but for

the overall job count due to the lower labor requirements of high-skill tasks.

To conduct this analysis, I employ the canonical skill-biased technical change

(“SBTC”) model. I use the first order conditions to write equilibrium low- and high-

skill labor in terms of output, concentration between low- and high-skill tasks, labor-

augmenting technology, and relative labor supply. I then identify theoretical equilibria

by changing one variable at a time. For example, I solve for the equilibrium labor levels

implied by keeping tasks, technology, and labor supply fixed but changing the value

of output to that from an earlier time period. The difference between this theoretical

equilibrium and the original tells me the change in labor had only output changed

over time. In this manner I trace out the effect of every channel, so that the four

effects sum to the total observed change as an identity.

Imposing the structure of the SBTC model, I distinguish between technology

that directly augments labor productivity (the “productivity channel”) and technol-

ogy that transfers tasks between low- and high-skill labor (the “task channel”). The

productivity channel may cause employment loss by augmenting labor productivity

within a task, reducing the labor required to meet product demand. The task channel

may cause low-skill employment loss if tasks are transferred to high-skill production,

and may cause overall employment loss due to the imperfect substitutability between

processes as well as their differences in labor intensity. To separately identify task

shifts, I extract information from the different production materials and intermedi-

ates used by industries over time. This strategy and the decomposition framework

are the two main methodological contributions of this paper.

I implement these methods using industry level data for the manufacturing sector

between 1990 and 2007. The results show that the productivity channel has the largest

total impact, displacing over 3.7 million workers. Such effects would be expected for

example from widespread adoption of industrial robots and other computer-assisted

technologies which augment labor productivity. I later confirm this association be-

tween automation and productivity channel displacement for both skill types in an

application of my decomposition. The productivity channel’s strong impact is in line

with the evidence and widely held perspective that manufacturing tasks are routine

and codifiable, making them especially vulnerable to automation (Autor and Dorn,

2013; Frey and Osborne, 2017; Akst, 2013).

Along with these productivity improvements is a sweeping transition toward high-

skill production tasks, reducing low-skill employment by over 4 million, while adding
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nearly 1.5 million high-skill jobs. For low-skill workers, task shifts have the strongest

impact among the four channels, causing nearly twice as much job loss as the produc-

tivity channel. Because high-skill production is inherently less labor intensive, this

channel is also responsible for about 40 percent of overall employment loss.

In contrast to these technology channels, the scale channel (governed by output

changes) had a strong and positive impact on employment for both skill types. Scale

increased employment by over 22 percent, relative to an overall observed decrease

of 17.3 percent. This result means that jobs lost through output decreases–such as

those associated with import competition–are more than offset by gains from other

means, like increased product demand. Scale changes are also not responsible for a

large degree of upskilling, which would occur if high-skill industries grew faster than

low-skill.

The fourth channel is labor supply, captured by relative market wages which

represent the outside option (non-manufacturing employment) for each skill type.

The rising economy-wide skill premium directly reduced high-skill labor and increased

low-skill labor for most manufacturing industries. This channel somewhat offsets the

effects of task upgrading, but magnitudes are small relative to other channels.

In sum, this decomposition tells the story of a sector that has restructured rather

than disappeared. Improvements in the productivity of labor paired with a shift to-

ward high-skill tasks explain the majority of employment declines. This latter evidence

for a substantial task upgrading draws attention to an understudied cause of job loss.

Recent literature has focused on the importance of task allocation in shaping labor

demand (e.g., Autor and Dorn, 2013). However, this literature generally emphasizes

the reallocation of tasks away from manufacturing and toward other sectors such as

services. The results here instead emphasize the reallocation of tasks within manufac-

turing, providing a new perspective on the sector’s role in labor market polarization.

This evidence is consistent with, and provides explanation for, two key trends

noted in the literature. First, manufacturing value added has continued to grow

despite drops in employment, roughly keeping pace with non-manufacturing value

added. Second, the educational attainment of manufacturing workers has been on the

rise.4 The share of workers with a college degree has grown from 7.7% in 1962 to

over 30% in 2018.5 My approach is the first to identify the underlying sources of this

4See Appendix A.2.1 for figures of these trends. Similar trends for value added are documented in
Fort et al. (2018). See Charles et al. (2019) for a discussion of upskilling.
5Author’s calculations from the Current Population Survey. See figure footnotes in Appendix A.2.1
for details.
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upskilling and quantify the importance of task upgrading in explaining overall job

loss.

My framework allows me to assess the impact of particular events, such as import

competition or the arrival of a new technology. In theory these events affect employ-

ment through different market forces, which we can test empirically. To do this, I

combine my decomposition with current approaches to assess the employment im-

pacts of three recent economic shocks: Chinese import penetration (Acemoglu et al.,

2016), automation, and offshoring (Autor and Dorn, 2013). For the import shock, I

find that employment losses were triggered primarily through scale, consistent with

the theoretical implication of price competition in the product market. Absent this

import competition, employment gains through scale would have been even greater. I

also find a lack of task upgrading, consistent with recent studies finding a lack of new

capital investments and other signs of innovation in trade-exposed industries (Pierce

and Schott, 2018; Autor et al., 2016).6

Automation susceptibility leads to job loss for both skill types by the productivity

channel, paired with possibly slower shifts toward high-skill tasks. This suggests that

task upgrading may be an alternative to automation, rather than a symptom of it.

Finally, offshoring propensity is associated with sharp scale declines especially for

low-skill workers. It also plays a role in task upgrading, but in smaller magnitudes.

Such task shifts imply parts of the production process are moving offshore, especially

those associated with low-skill tasks, while domestic production increases its focus on

high-skill tasks.

These applications provide new insight into the channels through which recent

structural shocks have affected the manufacturing sector. They also call attention

to the substantial variation across industries in terms of which channels are most

important. For instance, scale does not explain aggregate employment loss but was

important for certain industries. About 35 percent experienced negative scale impacts

between 1990 and 2007, and 47 percent between 2000 and 2007.7 Many of these in-

dustries were subject to Chinese trade exposure, and others experienced declines in

demand. These examples demonstrate that worker displacement has varied in under-

lying economic cause, which may shape the way we consider potential remedies.

6For different conclusions regarding innovation responses to trade in an analysis of European markets,
see Bloom et al. (2016).
7When including the recession years, a decomposition between 2000 and 2010 shows aggregate
decreases due to the scale channel, although magnitudes are small relative to the other channels.
The results from a 2000-2010 decomposition are available upon request.
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This paper builds on the long tradition in economics of using accounting exercises

to deepen our understanding of structural changes (e.g., Berman et al., 1994; Juhn

et al., 1991, 1993; Firpo et al., 2011). In my approach, I observe equilibrium labor

levels in two different time periods and use theory to deconstruct the differences

into underlying economic channels. A large literature focuses on a related question

of the causes of the economy-wide skill premium, or the wedge between high- and

low-skill wages. Originating with Katz and Murphy (1992), both reduced form and

structural anlayses of skill-biased technical change have been developed (see, e.g.,

Feenstra and Hanson, 1999; Burstein et al., 2019; Krusell et al., 2000; Lindquist,

2005).8 My framework departs from this literature in two important ways. First, I

am focused on one particular sector rather than the aggregate labor market. Second,

I am primarily interested in explaining employment loss rather than wage changes.

While I focus here on manufacturing industries, this intuition could be applied in a

variety of competitive settings using a broad class of production technologies.

The rest of the paper proceeds as follows. In Section 1.2, I describe my theoretical

framework. In Section 1.3, I describe my data sources and treatment. In Section 1.4, I

explain my estimation procedure for production parameters and derive each channel

of the decomposition. In Section 1.5, I apply my framework to describe national

trends between 1990 and 2007, and explore industry-level heterogeneity. In Section

1.6, I use my framework in applications to assess the importance of each channel

in explaining employment declines from the China imports shock of the 1990s and

2000s, and automation and offshoring as predicted by the initial occupational mix of

each industry. I conclude in Section 1.7.

1.2 Deriving Equilibrium Labor Levels From Firm Optimization Condi-

tions

Each industry produces a single consumption good Yi,t by combining low- and

high-skill processes through a constant elasticity of substitution (“CES”) production

function.9 For industry i and time t, output is

8For a review and historical context of the relationship between technological change and the skill
premium, see Acemoglu (2002).
9Alternatively one might consider a representative firm in the industry.
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Yi,t = [αi,t (ai,tLi,t)
ρ + [1− αi,t] (bi,tHi,t)

ρ]
1
ρ (1.1)

where Li,t is low-skill (non-college) labor, Hi,t is high-skill (college) labor, and ρ < 1

governs the elasticity of substitution σ between low- and high-skill processes (σ =
1

1−ρ).10 This production technology is widely used in the skill-biased technical change

literature assessing the roles of supply and demand forces in explaining growth in

the skill premium (see, e.g., Katz and Autor, 1999; Card and DiNardo, 2002; Autor

et al., 2008). Parameters ai,t and bi,t represent unskilled and skilled labor augmenting

technology, respectively, while αi,t represents the allocation of tasks between low- and

high-skill processes.11

Skill-neutral technological change occurs as ai,t and bi,t grow together.12 Skill-

biased technological change occurs through shifts in ai,t/bi,t or αi,t. Shifts in ai,t/bi,t

can be thought of as “intensive” skill bias because it stems directly from unequal

progression in the marginal productivity of labor (Johnson and Stafford, 1998; Katz

and Autor, 1999). Changes in αi,t in contrast can be thought of as “extensive” skill

bias because it relates to shifts in concentration between low- and high-skill produc-

tion tasks.13 A newly adopted technology might influence Hi,t/Li,t by increasing the

relative marginal productivity of Hi,t but also by increasing the industry’s emphasis

on high-skill tasks.

I proceed by writing the equilibrium levels of Li,t and Hi,t in terms of output,

relative wages, and intensive and extensive technology parameters, so that changes in

Li,t and Hi,t can be interpreted as the combined effect of changes in these variables.

Assuming a perfectly competitive market in which workers are paid the value of their

marginal product, Equation 1.1 can be used to solve for the equilibrium ratio of high-

10This flexible framework could be adapted to analyze other worker categories, such as routine and
non-routine, or those with and without high school degrees. Likewise it could be extended to consider
more than two worker types. Capital could be included in a general way, such as Cobb-Douglas, which
would not affect the results.
11Note that as ρ→ 0, the function approaches Cobb-Douglas where αi,t is the share parameter. The
canonical SBTC model can be nested as a special case of the task assignment model developed by
Acemoglu and Autor (2011). I derive one case in Appendix A.3. See also Autor (2013).
12Alternative representations of this framework will pull out a common term and re-cast ai,t and
bi,t to sum to one. Equation 1.1 is mathematically equivalent to Yi,t = Ai,t(αi,t(ωi,tLi,t)

ρ + (1 −
αi,t)((1−ωi,t)Hi,t)

ρ)1/ρ where Ai,t ≡ (ai,t+bi,t) and ωi,t ≡ ai,t/(ai,t+bi,t). I utilize this equivalence
to estimate ai,t and bi,t in Section 1.4.1.
13Goldin and Katz (1998) for example document the shift in production tasks from low- to high-skill
workers in the manufacturing sector between 1909 and 1929.
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to low-skill labor:

wL,i,t
wH,i,t

=
αi,t

1− αi,t

(
ai,t
bi,t

)ρ(H∗i,t
L∗i,t

)1−ρ

(1.2)

where wS,i,t is the market wage for skill S.14 Given this equilibrium, Equation 1.2 can

be rearranged to express H∗i,t in terms of L∗i,t and substituted into Equation 1.1. Now

L∗i,t is a function of output, relative wages, and technology parameters. Specifically,

L∗i,t = Y ∗i,t

(
αi,ta

ρ
i,t + (1− αi,t)

[
bi,t

(
1− αi,t
αi,t

) 1
1−ρ
(
bi,t
ai,t

) ρ
1−ρ
(
wL,i,t
wH,i,t

) 1
1−ρ
]ρ)− 1

ρ

(1.3)

where Y ∗i,t is equilibrium output. Likewise, equilibrium high-skill labor can be ex-

pressed as:

H∗i,t = Y ∗i,t

(
αi,t

[
ai,t

(
αi,t

1− αi,t

) 1
1−ρ
(
ai,t
bi,t

) ρ
1−ρ
(
wH,i,t
wL,i,t

) 1
1−ρ
]ρ

+ (1− αi,t)bρi,t

)− 1
ρ

(1.4)

This can be thought of in a cost minimization setting in which firms choose

(L∗i,t,H
∗
i,t) to meet target output Y ∗i,t given relative market wages, as depicted in Fig-

ure 1.7. A change over time from (L∗i,t, H
∗
i,t) to (L∗i,t+1, H

∗
i,t+1) must therefore be due

to a finite set of causes. First is changes in Yi,t, or movements to a new isoquant,

as depicted in Figure 1.7. Second and third are changes in intensive and extensive

technology through ai,t, bi,t, and αi,t. This corresponds to movements in the location

and curvature of the isoquant, as depicted in Figure 1.7. Fourth is changes in relative

wages, or a movement along the isoquant to a new optimal bundle of (Li,t, Hi,t), as

depicted in Figure 1.7. This set lends itself to four economically relevant channels.

The first channel is changes to output Yi,t, such as in response to consumer demand

shifts. I call this the scale channel. This channel will capture the extent that declining

production is responsible for employment changes, whether from declining demand

for manufactured goods, or because production has moved offshore. The scale channel

14In line with the data, these wages may vary by industry.
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affects low- and high-skill workers equally within an industry, because it does not alter

the technology of the firm. However there can be skill bias in the scale channel to the

extent that skilled workers are concentrated in different industries.

The second channel is shifts between low and high-skill processes, represented by

αi,t, such as in response to firms increasingly concentrating their resources on high-

skill tasks. I call this the task channel. By construction, this channel will increase one

type of employment while decreasing the other, with the overall effect on employment

dependent on the magnitude of the shift, the labor intensity of each process, and the

substitutability between processes.

The third channel comes from changes to the marginal productivity of labor within

each process, represented by ai,t and bi,t, such as in response to a new technology that

impacts one or both types of workers. I call this the productivity channel. Unlike the

task channel, the productivity channel might force equilibrium low- and high-skill

labor in the same direction. However it may be biased to the extent that ai,t and bi,t

grow at different rates.

The productivity and task channels identify distinct elements of technical change.

The concept is captured in Bartel et al. (2007) who analyze the effects of new informa-

tion technologies in the valve manufacturing industry. They find the new technologies

increased the efficiency of existing processes while also causing a change in business

practices to a different mix of processes, including increased production of customized

valves. This change in process mix was associated with an increase in worker skill re-

quirements.

Finally, there may be changes in relative wages wH,i,t/wL,i,t, such as increased

relative high-skill wages in response to reduced supply. I call this the labor supply

channel. Reduced supply to a manufacturing industry of a particular skill type may

be in response to an increase in demand for that worker skill type in another sector.

If for example there was an increase in demand for high-skill workers in health care

and education, this would increase the market wage for this type of worker and

reduce their supply to the manufacturing sector. Similar to the task channel, the

labor supply channel will work in opposite directions for low- and high-skill labor

within an industry.

My goal is to quantify the role of each of the four channels in explaining observed

employment changes for each skill type. I do so in two broad steps. First, I develop and

implement methods for estimating ρ, αi,t, ai,t, and bi,t by industry and time period.

Then, I use these estimates to calculate theoretical equilibria under different combi-
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nations of these parameters. For example, I can calculate the theoretical equilibrium

implied by holding all parameters fixed in time t, but modifying the task parame-

ter to equal that from time t + 1. This tells me how much low- and high-skill labor

would change if only task shifts had occurred, while output, productivity, and wages

remained constant. A series of these theoretical exercises enables me to quantify the

impact of each channel. I explain these exercises in more detail in Section 1.4.

1.3 Data

1.3.1 Industry Employment, Output, and Material Use

I use employment counts, the value of output, and spending on production ma-

terials and supplies by industry from the Census of Manufactures (“CoM”), which

is published every 5 years for years ending in 2 or 7. The CoM is a component of

the Economic Census and covers all establishments with one paid employee or more

primarily engaged in manufacturing. It collects and reports a variety of statistics at

various geographic levels, including number of establishments, employment, payroll,

value added by manufacture, cost of materials consumed, capital expenditures, and

product shipments. I take data beginning in 1987, the first year in which 1987 SIC

codes are used, up through 2012.15

Total employment and output (for which I use value of shipments) are available

for all industries in all years. Materials use comes from the “Materials Consumed

by Kind” tables available by industry at the national level. These materials include

all materials, ingredients, containers, and supplies used in production. They do not

include any capital expenditures, such as rental payments or spending on new machin-

ery, equipment, or computers.16 I follow this definition of materials, which includes

both raw materials and semifinished goods, throughout. I use these data to estimate

the share of production belonging to low-skill and high-skill processes as described

in Section 1.4.1. Details on treatment of output and materials data can be found in

Appendix Section A.1.1.

While employment counts are available by industry in the CoM, total work hours

and the share of work hours belonging to high-skill labor are not.17 I calculate labor

15From the 1992 CoM, I take the years 1987 and 1992. From the 2002 CoM, I take the years 1997
and 2002. These are available at https://www2.census.gov. The years 2007 and 2012 are available
separately, and I downloaded these from the American Fact Finder at https://factfinder.census.gov.
16They also do not include include resales, fuels, purchased electricity, or contract work.
17The CoM does provide an employment breakdown between production and non-production work-
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hours and hourly wages by skill type by multiplying the total employment counts

reported in the CoM by mean hours and wages by skill type and SIC industry as

described in Section 1.3.2. In order to link these data, in the CoM I average 1987 and

1992 and call this 1990, average 1997 and 2002 and call this 2000, and average 2007

and 2012 and call this 2010.

1.3.2 Labor and Wages by Skill Type and Industry

To determine the skilled share of labor at the national level by SIC industry, I

exploit geographic overlap at the commuting zone (“CZ”) level between employment

shares by SIC industry from the the County Business Patterns (“CBP”) and skilled

employment shares by Census industry from the Census of the Population (or Amer-

ican Community Survey, “ACS”, for years after 2000).18 In this procedure, I first

calculate employment by SIC industry and CZ in the relevant year (1980, 1990, 2000,

2007, and 2010) from the CBP. I then connect these to calculations of the high-skill

share of workers by Census industry and CZ in the same year.19 I assume that, within

a CZ and year, the skill share of Census industries is constant across all the SIC in-

dustries it maps to. The national level share of high-skill workers by SIC industry i

in time t is calculated as follows:

ηi,t =
∑
m

Em,i,t
Enat,i,t

ηm,n,t

where Em,i,t is the total employment in commuting zone m and SIC industry i in time

t, Enat,i,t is the industry’s national employment in time t, and ηm,n,t is the high-skill

share in commuting zone m of Census industry n in time t, where Census industry

n maps to SIC industry i. With these high-skill employment shares, I then calculate

the number of high-skill workers as the total employment count reported in the CoM

ers. However this is an unsatisfactory proxy for the share of workers who are are high-skill, which I
define as workers with at least four years of college education. For example, according to the 1992
CoM, cafeteria personnel and highway truckdrivers and their helpers are considered non-production
workers. Further, production workers have become more educated over time.
18I use the 5 percent Census samples for 1980, 1990, and 2000. I use the 2005-2007 ACS for the
year 2007 and the 2008-2012 ACS for 2010. I provide more details on how I define my Census/ACS
samples and data treatment in Appendix Section A.1.2. Details on data handling of the CBP series
can be found in Appendix Section A.1.2.
19This is a many-to-one mapping as multiple SIC industries may connect to the same Census indus-
try.
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multiplied by ηi,t, while the number of low-skill workers is total employment multiplied

by (1− ηi,t).
I also use these high-skill employment shares to determine the mean annual hours

worked for high-skill workers in industry i in year t by

µi,t =
∑
m

Em,i,t
Enat,i,t

ηm,n,t
ηi,t

µm,n,t

where µm,n,t is the mean annual hours worked for high-skill workers employed in

Census industry n commuting zone m and time t, where again Census industry n

maps to SIC industry i. In the same fashion I calculate mean annual hours worked

for low-skill (non-college) workers, and mean hourly wages for each skill type. This

requires the assumption that, within a CZ and year, the annual hours and wages of

workers in a given Census industry are constant across all the SIC industries their

Census industry maps to. Total annual labor hours by skill type, L∗i,t and H∗i,t, are

calculated as total employment of the skill type multiplied by mean annual hours of

the skill type.

1.4 Empirical Methods

1.4.1 Estimating Production Parameters

Estimation of αi,t

An important component of my analysis is to separately identify αi,t, which rep-

resents the allocation of tasks between low- and high-skill processes, from ai,t and

bi,t, which represent the marginal productivity of low- and high-skill labor. To this

end, I exploit the detailed information on materials, ingredients, containers, and sup-

plies use by industry available in the CoM.20 These data signal information about

the underlying production processes of the firm. Certain materials, such as diagnostic

substances (SIC product 2835) and other biological products (SIC product 2836) are

predictive of a high share of skilled labor. Other materials, such as logging and lumber

products (produced by SIC industries 2411 and 2421) are predictive of a low share

of skilled labor. I interpret this to mean that given currently available technology, di-

20I give details on the CoM in Section 1.3.1 and on data treatment in Appendix Section A.1.1.
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agnostic substances and other biological products are typically handled by high-skill

workers in high-skill tasks while logging and lumber products are typically handled

by low-skill workers in low-skill tasks.

Once I know the degree to which each material is associated with each process, I

calculate αi,t as the share of total materials spending on the low-skill process, assuming

the share of materials spending is proportional to the share of tasks. This is consistent

for example with any production function in which, in equilibrium, materials are

distributed uniformly across tasks.21 In my data, I need to systematically allocate

production materials between the low- and high-skill processes. I do so by estimating

the impact of each material on the share of labor hours that are low-skill. For each

material j, I estimate the linear regression

Li,t
Hi,t + Li,t

= λj,t × 1

[
zj,i,t
ztot,i,t

> 0.01

]
+ εj,i,t (1.5)

where the left-hand side variable is the share of labor hours that are low-skill in

industry i and time t, zj,i,t is industry i’s spending on material j in time t, ztot,i,t is

industry i’s total resources spending in time t, 1[·] is an indicator function equal to

one when the spending share is greater than one percent, and εj,i,t is an idiosyncratic

error term.22 I collect the coefficients λ̂j,t.

Equation 1.5 is useful for materials used across many industries. For less commonly

used materials, some of which may only appear in one or two industries in a given

year, measurement error may be a concern. To address this, I exploit the empirical

relationship between a material’s prediction of skill share and its complexity, defined

here as the skilled labor share in the SIC industry that is the primary producer of

the material. I develop a “complexity index” for materials based on this definition,

which I hold fixed across time.23

21See Acemoglu and Autor (2011) and Autor (2013) which describe how the canonical SBTC model
can be derived as a special case of the task assignment model they develop. I derive one case
in Appendix A.3. See Rosen (1978) for more details on the microfoundations of CES production
functions.
22I use a low threshold of one percent rather than zero to avoid trace amounts of materials spending
that appear as a result of imputations and bridging industry codes across classification systems.
23For manufacturing industries, I calculate skill share by industry as described in Subsection 1.3.2.
For materials produced by non-manufacturing industries, I connect SIC products to Census indus-
tries according to Census Bureau Technical Paper #65, and use national level skill shares according
to the 1980 Census of the Population.
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A material’s complexity score is highly correlated with its prediction of skill

share.24 I fit this relationship using a localized linear regression method with obser-

vations of above-median most commonly used materials in the relevant year.25 This

exercise reduces measurement error and allows for out-of-sample predictions for the

less commonly used materials. For out-of-range predictions at the low and high end

of the complexity index, I assign the maximum and minimum value from the within-

sample predictions, respectively. The predicted values (in essence the predicted λ̂j,t)

represent the proportion of the material that is associated with the low-skill process.

I call this proportion λ̃j,t. For each material j, I allocate the total amount an indus-

try uses into the low-skill process according to λ̃j,t, while 1 − λ̃j,t is allocated to the

high-skill process.

It is quite possible that materials shift processes over time, especially if new tech-

nologies require materials to be increasingly handled in high-skill tasks. For this rea-

son I repeat the estimation separately for each year in the data. In Appendix Section

A.2.2, I provide a figure showing the estimated values for λ̃j,t for 1990 and 2007. A

level shift toward the high-skill process is apparent, but there is no dramatic change

in curvature.

Maintaining my assumption on the relationship between materials and tasks, I

estimate αi,t as

α̂i,t =
N∑
j=1

zj,i,tλ̃j,t
ztot,i,t

where zj,i,t is industry i’s spending on material j in time t for j ∈ (1, ..., N), and ztot,i,t

is industry i’s total materials spending in time t. In Figure 1.7, I plot the distribution

of α̂i,t across my industry sample in 1990, 2000, and 2007. A clear shift leftward of

the distribution reflects a transition away from low-skill tasks over time.

Estimation of ρ, ai,t and bi,t

I can now include my estimates for α̂i,t into Equation 1.2, take logs, and rearrange

the parameters for an estimating equation. Specifically, I seek to estimate

24See Appendix A.2.2 for figures.
25Specifically I use the “lowess” command in Stata.
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ln

(
wL,i,t/α̂i,t

wH,i,t/(1− α̂i,t)

)
= ρln

(
ai,t
bi,t

)
+ (1− ρ)ln

(
H∗i,t
L∗i,t

)
I do so by estimating the regression

ln

(
wL,i,t/α̂i,t

wH,i,t/(1− α̂i,t)

)
= β0 + β1ln

(
H∗i,t
L∗i,t

)
+ εi,t

using all industries and time periods (379 industries by 4 years yielding 1,516 ob-

servations). The coefficient β1 provides an estimate of 1 − ρ̂. The industry and time

specific estimates of ai,t/bi,t are exactly identified and come from adding the constant

and the error term, so that

âi,t

b̂i,t
= e(β0+εi,t)/ρ̂

Table 1.1 displays my estimates for ρ̂ and the elasticity of substitution σ̂. The

estimate for ρ̂ is 0.651, implying an elasticity of substitution of 2.86 between low- and

high-skill processes. For multiple reasons, this figure is somewhat high relative to those

in the SBTC literature, which typically estimate a substitution elasticity between non-

college and college workers around 1.5 or 2 (see, e.g., Katz and Murphy, 1992; Katz

and Autor, 1999; Autor et al., 2008). First, my elasticity is within the manufacturing

sector. Since manufacturing is understood to be a mid-skill sector, it is likely that the

non-college workers in manufacturing are higher skilled than in the economy overall,

while college workers in manufacturing might be lower skilled than college workers in

the economy overall. Removing the tails of the skill distribution is likely to increase

the substitutability between the two skill groups. Second, my unit of observation is an

industry while typical estimates look across industries, using experience groups as the

unit of observation. Within-industry estimates will be trivially higher where industry-

specific capital more easily flows between low- and high-skill processes. However, to

ensure that my results are not sensitive to my elasticity estimate, I estimate my

decomposition using alternative elasticities of 1.5 and 2.0. The results, reported in

Appendix Section A.2.4, are qualitatively similar to my main estimates.

The distribution of my estimates for the ratio of labor-augmenting technology pa-
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rameters âi,t/b̂i,t are shown in Figure 1.7. This ratio is always less than one throughout

my sample, meaning high-skill labor is relatively more productive within its pro-

cess.There is an apparent shift upward over time, implying faster growth in low-skill

labor-augmenting technology relative to high-skill. I need one final step to separately

identify ai,t and bi,t using my estimates of âi,t/b̂i,t. For this I combine these estimates

with observations of equilibrium output. Equation 1.1 can be written as

Yi,t = (ai,t + bi,t)

[
αi,t

(
ai,t/bi,t

1 + ai,t/bi,t
Li,t

)ρ
+ (1− αi,t)

(
1

1 + ai,t/bi,t
Hi,t

)ρ]1/ρ

where I have simply pulled out a common term (ai,t+bi,t) to the front of the equation.

Now I can calculate an estimate of (âi,t + b̂i,t) by

âi,t + b̂i,t =
Y ∗i,t[

α̂i,t

(
âi,t/b̂i,t

1+âi,t/b̂i,t
L∗i,t

)ρ̂
+ (1− α̂i,t)

(
1

1+âi,t/b̂i,t
H∗i,t

)ρ̂]1/ρ̂

Combining these estimates of (âi,t+ b̂i,t) with my estimates of âi,t/b̂i,t allows me to

separately identify âi,t and b̂i,t. I report figures of the distributions of these parameters

by year in Appendix Section A.2.3.

1.4.2 Calculating Decomposition Components

Using my parameter estimates and Equations 1.3 and 1.4, I can calculate the

theoretical equilibrium low- and high-skill labor under any combination of parameters.

I begin by considering a set of five equilibrium levels of low-skill labor, where I have

temporarily dropped the industry subscripts. Equations 1.6 through 1.10 trace out

the change in L from its equilibrium in time t + 1 back to its initial value in time t.

First I consider:

L∗t+1 = Y ∗t+1

(
αt+1a

ρ
t+1 + (1− αt+1)

[
bt+1

(
1− αt+1

αt+1

) 1
1−ρ
(
bt+1

at+1

) ρ
1−ρ
(
wL,t+1

wH,t+1

) 1
1−ρ
]ρ)− 1

ρ

(1.6)
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I now replace output with output from time t:

L∗scale = Y ∗t

(
αt+1a

ρ
t+1 + (1− αt+1)

[
bt+1

(
1− αt+1

αt+1

) 1
1−ρ
(
bt+1

at+1

) ρ
1−ρ
(
wL,t+1

wH,t+1

) 1
1−ρ
]ρ)− 1

ρ

(1.7)

Equation 1.7 represents the theoretical equilibrium low-skill labor implied by produc-

ing the original output with new technology and relative wages. Given the production

structure, this is equivalent to a movement along the expansion path as depicted in

Figure 1.7.26 The difference between L∗t+1 and L∗scale represents the scale effect. From

Equation 1.7, I modify the task parameter to that from time t:

L∗task = Y ∗t

(
αta

ρ
t+1 + (1− αt)

[
bt+1

(
1− αt
αt

) 1
1−ρ
(
bt+1

at+1

) ρ
1−ρ
(
wL,t+1

wH,t+1

) 1
1−ρ
]ρ)− 1

ρ

(1.8)

The difference between L∗scale and L∗task represents the task effect. Output and relative

wages have remained the same, but the shape of the isoquant has changed. Next I

modify the productivity parameters a and b:

L∗productivity = Y ∗t

(
αta

ρ
t + (1− αt)

[
bt

(
1− αt
αt

) 1
1−ρ
(
bt
at

) ρ
1−ρ
(
wL,t+1

wH,t+1

) 1
1−ρ
]ρ)− 1

ρ

(1.9)

Equation 1.9 represents the equilibrium labor implied by time t output and tech-

nology, with time t + 1 relative wages. The difference between L∗task and L∗productivity
represents the productivity effect. Finally, I adjust relative wages:

L∗supply = Y ∗t

(
αta

ρ
t + (1− αt)

[
bt

(
1− αt
αt

) 1
1−ρ
(
bt
at

) ρ
1−ρ
(
wL,t
wH,t

) 1
1−ρ
]ρ)− 1

ρ

(1.10)

26Note that the illustrative Figures 1.7 through 1.7 represent the movement from time t to t + 1
while here I decompose from time t+ 1 to time t.
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Equation 1.10 differs from Equation 1.9 only in the wage ratio, which is now from

time t. This represents a movement along the isoquant to its tangency point with

the time t relative wages. The difference between L∗productivity and L∗supply is the labor

change caused by the supply channel.

Now all parameters have been replaced with the initial values, so that L∗supply
equals L∗t . The entire change in labor is thus decomposed as an identity:

Li,t+1 − Li,t = Li,t+1 − Li,scale
+ Li,scale − Li,task
+ Li,task − Li,productivity
+ Li,productivity − Li,t

(1.11)

where each line represents the scale, task, productivity, and supply channels, respec-

tively. Common to decompositions in general, magnitudes may be sensitive to the

ordering of the theoretical equilibria.27 To address this, I calculate the effects under

all 24 possible arrangements, and take the mean as my estimate. The identity still

holds. I conduct a parallel decomposition for high-skill labor.

1.5 National Trends

1.5.1 Aggregating the Decomposition

The decomposition procedure described in Section 1.4.2 provides me with esti-

mates of the effect of each channel by industry and skill type between any two time

periods. I first use this to describe changes in the manufacturing sector between 1990

and 2007. To evaluate the overall effect of each channel, I simply sum up the industry-

level effects as follows:

∆S2007,1990,c =
∑
i

∆S2007,1990,c,i (1.12)

where S represents labor hours for skill type S ∈ L,H, and ∆S2007,1990,c,j represents

the change in labor hours caused by channel c for skill type S in industry i between

27As one example from consumer theory, Eugen Slutsky and John Hicks each propose a method to
decompose price change responses into income and substitution effects. Their methods differ based
on which effect you calculate first.



18

2007 and 1990. To interpret the changes in terms of job counts, I divide the labor

hours by the mean annual hours observed for each skill type for manufacturing work-

ers in the 1980 Census.28 In Section 1.5.2, I describe the overall results and then break

down the analysis by ten broad industry groups. Appreciable advancement in com-

puter technology during this time frame is associated with dramatic restructuring for

computer producing industries.29 While the results for these industries follow similar

trends to the other industries, the impacts of each channel are of high magnitudes.

For ease of interpreting the results, I omit computer industries from the main analysis

but report them separately in Appendix Section A.2.5.30

1.5.2 Results

National Landscape

I show the decomposition results in Table 1.2.31 Panel A displays overall em-

ployment changes by skill type. Total employment between 1990 and 2007 decreased

from 15.00 million to 12.41 million, a loss of 2.6 million job equivalents. These losses

were driven entirely by low-skill work, while the number of high-skill jobs increased

by nearly 11 percent. This evidence of job growth for college workers simultaneous

to steep job declines for non-college workers hints at the importance of skill-biased

change in the restructuring of this sector. In Column (4) I report the share of em-

ployment belonging to high-skill workers, which increased by 4.9 percentage points,

over one-third of its initial skill share.

Panel B breaks the observed employment changes into each channel, both in terms

of levels and percent changes. Because the decomposition is based on an identity, each

channel in terms of levels and percent changes will sum up to the overall changes

reported in Panel A.32 Beneath each level estimate, I report the 95 percent confidence

28These annual hours are 2141.77 for low-skill workers and 2224.04 for high-skill workers. Because
average hours have increased since 1980, overall magnitudes are somewhat muted.
29See Houseman (2018) for an analysis of productivity improvements in computer industries relative
to other manufacturing industries.
30Also omitted throughout are the few industries for which consistent materials use data is not
available. I provide more details, including a list of omitted industries, in Appendix Section A.1.1.
31For a figure of these results, see Appendix Section A.2.5. For results using alternative elasticity
estimates, see Appendix Section A.2.4.
32The implied percentage point change in skill-share reported in Column (4) does not necessarily
sum to the overall percent change in skill-share.
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interval based on 1000 bootstrapped industry samples. For each bootstrapped sample,

I repeat the entire estimation as described in Section 1.4.

It is immediately apparent that scale forces have had a strong and positive impact

on employment for both types of workers, adding nearly as many jobs as the overall

observed loss for low-skill workers, and well over twice the total observed increase for

high-skill workers. This is evidence that declining domestic production is not the key

driver behind employment loss, and that these losses must be coming through other

channels. The scale channel is also not especially important for upskilling, contribut-

ing only slightly to the increase in skill share. This implies that low- and high-skill

industries had roughly even production growth overall.

The strong positive forces from scale are more than offset by job displacement

from the two technology channels, in terms of overall employment. Together these

two channels displaced over 6 million workers. For low-skill workers, the task channel

is the most important contributor, costing 4.13 million jobs. Shifts toward high-skill

production in turn created high-skill jobs. High-skill tasks are inherently less labor-

intensive, so that each low-skill job lost translates to less than one high-skill job

gained. The task channel is also a major contributor to sector-wide upskilling, with

an implied increase in the skill share doubling the initial share in 1990.

The productivity channel, in contrast, displaced high-skill workers at a faster rate

than low-skill workers, somewhat offsetting the skill-biased effect of the task channel.

The productivity channel was also the largest source of job loss overall, leading to

a decline of 3.77 million jobs. Larger losses in percent terms for high-skill workers

are the result of heterogeneous growth in labor-augmenting technology and imperfect

substitutability between low- and high-skill processes.33

Finally, the labor supply channel reflects changes due to relative wages facing the

firm. These effects are small in light of the other channels. We see an increase in low-

skill employment by 7.2 percent. This implies a general flattening of low-skill wages

relative to high-skill caused firms to increase their share of low-skill workers. These

changes lead to a lowering of the skill-share by 3.3 percent. A possible explanation

for these results is that there was an increase in demand for high-skill workers in

non-manufacturing industries, raising their market wage and reducing their residual

supply to manufacturing firms.

33This is in spite of the fact that ai,t/bi,t generally increased during this time frame, as shown in
Figure 1.7.
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Taken together, these results indicate that reduced domestic production, for ex-

ample as firms move production offshore, or in response to consumers shifting from

domestic to foreign-sourced goods, is not the driving force behind employment loss

in manufacturing or its widespread upskilling. Instead, production increased dur-

ing this time period, driving up employment for all workers. These gains are more

than offset by investment in technology and shifting production processes away from

labor-intensive low-skill processes. Task upgrading, an understudied factor driving

employment loss, explains 64 percent of low-skill job loss and 41 percent of overall

job loss. I explore heterogeneity in these trends by broad industry group in Section

1.5.2.

Breakdown by Broad Industry Groups

Figure 1.7 shows the decomposition by low- and high-skill employment for each

of ten broad industry groups.34 In each bar of the histogram, the effects of all four

channels on employment (in terms of thousands of job equivalents) are stacked, so that

overall employment change for the skill group is the sum of the above-zero changes

net of the below-zero changes. A few interesting findings emerge.

First, there is simultaneously employment growth due to some channels and em-

ployment loss due to other channels within each industry group and skill type. These

changes point to a significant restructuring, even in cases where the net employment

effects are small. The largest evidence of restructuring in terms of levels is in Metal

Products, Machinery and Equipment, and Transportation, which are also the three

largest industry groups. Steep employment loss from productivity for both skill types

is consistent with investments in automation as firms continue to increase produc-

tion. In percentage terms, perhaps the most interesting evidence of restructuring is

Chemicals and Petroleum, which was initially the highest skill group yet still saw the

largest percent increase in skill share, from 28.6 percent in 1990 to 38.6 percent in

2007. This change is driven by an upskilling of production tasks paired with scale

increases.

There are also several fairly consistent trends across all industry groups. For high-

skill employment, the magnitude of job gains due to task shifts is similar to the

magnitude of job losses due to the productivity channel. This correlation implies that

34I follow the industry groupings in Autor et al. (2014). See Appendix Figure A.2.5 for the same
figure with an additional column for the omitted computer industry group.
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as industries shift toward higher skill production processes, workers are becoming

more productive within their process. This may be due to increased investment in

high-skill augmenting technology. For low-skill workers, the relationship between task

and productivity is not as strong. On the one hand, industries may lay off their

lowest productivity workers as they task upgrade, which can appear as additional

losses through the productivity channel. Industry groups such as Textiles and Apparel

and Metal Products exhibit large job losses due to task upgrading paired with large

job losses due to the productivity channel. On the other hand, industries that task

upgrade may also reduce their investment in low-skill technology, so that productivity

effects are smaller than in other industries that do not upgrade. Food and Tobacco,

Paper and Printing, and Chemicals and Petroleum all exhibit large task shifts with

relatively small effects from the productivity channel.

Another common trend is that supply shifts tend to transfer jobs from high-skill

to low-skill workers, as high-skill workers have become more expensive to these in-

dustries. About 90 percent of the industry sample experiences a low-skill bias due to

the supply channel. These effects are consistently small relative to the other channels.

Finally, the scale channel is consistently positive across these groups. One particular

exception is the Textiles and Apparel group, which experienced a scale-induced de-

cline of over 1.2 million workers, heavily concentrated on low-skill jobs. One possible

explanation is that much of this production has moved offshore: This group is known

to have experienced a large influx of imports from China.35

While Textiles and Apparel is the only group with scale losses overall, select in-

dustries in the other groups also showed scale losses. In percentage terms, two of the

highest are tobacco stemming and redrying (SIC code 2141) and manifold business

forms (SIC code 2761), neither of which experienced competition from China.36 Ab-

sent import competition, institutional or demand forces may have played a role in

these declines. I explore the tobacco industries in more detail in Appendix Section

A.2.6.

35Of the 351 industries, Textiles and Apparel industries make up over a third of the top 10 percent
in terms of import penetration between 1990 and 2007. For details on my calculation of import
penetration, see Section 1.6.1.
36Both industries fall in the bottom 10 percent in terms of import penetration between 1990 and
2007. See Section 1.6.1 for details on my calculation of import penetration.
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1.6 Applications

1.6.1 China Shock Decomposition

Section 1.5 shows substantial evidence that scale was not the leading force be-

hind employment declines between 1990 and 2007, nor was it an important driver of

upskilling in manufacturing. Still, many industries, especially low-skill industries in

Textiles and Apparel, experienced job losses predominantly through the scale channel.

A likely cause is China’s export-oriented economic expansion in the 1990s and

2000s, which lead to unprecedented import penetration into the U.S. and other devel-

oped countries. The significant role of this shock in spurring the decline of manufac-

turing employment is well-documented (see Autor et al., 2013; Acemoglu et al., 2016;

Pierce and Schott, 2016). In theory, this price competition should lead to job loss

through scale decreases rather than technology changes. Indeed, the literature has

found little evidence that trade-exposed industries responded by increasing capital

investments or patent grants (Pierce and Schott, 2018; Autor et al., 2016), and while

low-wage workers experienced greater earnings losses and lower ability to transition

out of manufacturing, all worker skill types suffered employment loss (Autor et al.,

2013, 2014).

In this section I explore the impact of the Chinese imports shock using established

methods with my decomposed employment change variables. This way I can quantify

the extent to which employment changes operated through scale or other channels.

Empirical Strategy

I generally follow the empirical approach described in Acemoglu et al. (2016). I

provide details on data sources and treatment in Appendix Section A.2.7 and con-

struction of the import exposure measure and its instrument in Appendix Section

A.2.7. My main specification is

∆lnSi,t = αt + β1∆IPi,t + ei,t (1.13)

where ∆lnSi,t is the change in log annual labor hours for skill type S ∈ L,H, whether

overall or through a particular channel, αt is an indicator for time period, ∆IPi,t is
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import penetration for industry i, instrumented, and ei,t is an error term.37 Regres-

sions are weighted by start-of-period employment, and standard errors are clustered

at the 3-digit SIC industry. I focus my analysis on the rise in imports from 1991-2007.

In the main estimates I use stacked first differences in outcomes from 1990-2000 and

2000-2007, stopping in 2007 to avoid idiosyncracies resulting from the recession years.

These specifications exhibit a strong first stage.

I show descriptive statistics for low-skill and high-skill samples in Appendix Sec-

tion A.2.7. Import penetration variables have been annualized so that they are inter-

preted as 100 times the annual change in import penetration, following the literature.

The outcome variables have likewise been annualized so that they can be interpreted

as 100 times the annual change in log labor hours (in thousands). Import penetration

variables will differ between low- and high-skill workers only to the extent that they

are initially concentrated in different industries.

Results

I report the main estimates in Table 1.3.38 Panels A and B show results from

separate regressions on low-skill and high-skill employment, respectively. Column (1)

displays the impact of import penetration on overall employment, and is generally

comparable to the results in Column (4) in Table 2 of Acemoglu et al. (2016).39

The results in this column indicate that for every 1 percentage point increase in

import penetration, there is a 1.4 log point decrease in low-skill employment and a

0.63 log point decrease in high-skill employment. Even though both skill types suffer

losses, the marginal impact is much higher for low-skill workers. There are several

possible explanations for this. It could be that industries in which high-skill workers

are concentrated are better able to absorb imports shocks, so that fewer workers are

laid off overall. It could instead be that industries are responding by shifting pro-

duction toward high-skill processes, shielding high-skill workers from displacement.

It could also be due to uneven labor-augmenting technology advancements, such as

37For this analysis, I modify the decomposition expressed in Equation 1.11 by using a multiplicative
identity rather than additive. This way, log changes from each channel will sum to the total log
change in employment. Details are in Appendix Section A.2.7.
38Estimates for alternative time horizons can be found in Appendix Section A.2.7.
39My results differ because I omit computer industries and because I split the sample by skill
type. I also use data from the Census of Manufactures and Census of the Population to create my
employment variables, while Acemoglu et al. (2016) uses County Business Patterns. Finally, my
outcome variables are in terms of thousands of annual labor hours rather than job counts.



24

adoption of industrial robots that replace low-skill workers. To explore the possibil-

ities, in Columns (2) through (5) I replace the total effect with the effect of each

channel. The coefficients in Columns (2) through (5) sum to the total effect in Col-

umn (1), so that the decomposed elements explain the entire observed change as an

identity.

Starting with Column (2), about 66 percent of low-skill employment loss comes

through scale. For high-skill workers, the magnitude of scale is nearly the same as the

overall observed impact. This reinforces the notion that reductions in the manufac-

turing workforce caused by Chinese import penetration have occurred through output

declines. Since log scale effects for low-skill workers closely track that for high-skill

workers within an industry, the difference in marginal effects suggests that industries

in which high-skill workers were concentrated were better able to absorb the imports

shock. These coefficients however are not statistically different at conventional levels,

suggesting that any contribution of import penetration to upskilling on this margin

are minor.40

Likewise, there was no impact of import penetration on the allocation of tasks

within the industry, shown in Column (3). This is consistent with recent literature

finding that Chinese import competition reduced spending on research and develop-

ment spending and patent adoption (Autor et al., 2016).

There is however some evidence of job displacement due to productivity gains for

both skill types in Column (4). These changes may be in part due to firms laying

off their least productive workers, raising the average productivity of the remaining

labor. The effect may also be related to the availability of capital. Analyses on the

impacts of Chinese imports exposure during this time period have not found signif-

icant decreases in industry-level capital stock, despite decreased capital investment

(Pierce and Schott, 2016, 2018). Given the employment losses, capital per worker still

increases.41 The relative sluggishness of capital may contribute to increased produc-

tivity for the remaining workers. In light of the evidence in other research of declining

capital investments in exposed industries, automation is not a likely explanation for

these productivity channel effects.

40A fully interacted stacked IV regression comparing the effect of low- and high-skill employment
through the scale channel has a p-value of 0.104.
41Pierce and Schott (2016) finds increases in capital per worker at the industry and plant level.
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Back-of-the-Envelope Job Losses

Using the coefficients from Table 1.3, I calculate back-of-the-envelope estimates

for the effect of Chinese import penetration on employment losses by channel. Given

the mean imports exposure for 1990-2000 and 2000-2007 shown in Appendix A.2.7,

and a partial R-squared from the first stage regression 0.429 for low-skill and 0.498

for high-skill, I follow equation (4) of Acemoglu et al. (2016) by writing the difference

between actual and counterfactual manufacturing employment in time t+ 1 as

∆Scounterfactualt+1,t =
∑
i

Si,t+1(1− e−β̂c∆ĨP i,t+1,t/100∗years) (1.14)

where ∆ĨP i,t is the increase in import penetration from China that can be attributed

to China’s improving competitive position during the time period, meaning it is the

observed change import penetration multiplied by the predictive power of the first

stage. This number is then divided by 100 and multiplied by the number of years

between t and t + 1 to convert the annualized percentage point changes into overall

effects. I then convert these effects from annual hours into job equivalents by dividing

the effects by the mean annual hours of a manufacturing worker by skill type in 1980,

as described in Section 1.5.

These estimates indicate that, between 1990 and 2007, Chinese import penetration

cost a job loss of about 561,000 jobs, of which 386,000 were due to scale.42 These

results provide evidence that industries under pressure from Chinese competition did

not respond primarily by adopting a more capital-intensive production method or

otherwise innovating, but rather by scaling down production.

1.6.2 The Roles of Automation and Offshoring

Two additional mechanisms credited with the decline in production jobs are the

falling costs of automation technologies and the movement of production activities

offshore to countries with cheaper labor. Automation is understood to replace workers

who carry out routine, codifiable tasks that can be programmed and accomplished

by machines (Autor et al., 2003). Offshoring transfers tasks from domestic workers to

42This may be compared to the estimate in Acemoglu et al. (2016) which reports 853,000 jobs lost
between 1990 and 2007. Given the smaller levels of manufacturing employment I observe in my
industry sample, this smaller estimate is unsurprising.
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workers abroad, meaning tasks which do not require physical proximity to customers

or specific worksites are likely most susceptible (Autor and Dorn, 2013). While dis-

tinct, the occupations concentrated in offshorable tasks and automatable tasks are

largely overlapping. I therefore consider both mechanisms together.

Data and Specification

I determine each industry’s potential for automation and offshoring based on its

mix of occupations in 1980. The variable I use to rate each occupation’s potential for

automation is based on its routine task share according to the 1977 Dictionary of Oc-

cupational Titles. For offshoring potential, I use a variable based on the occupation’s

requirements for face-to-face contact and physical presence on the job site, according

to O*NET data. Both these variables are made available at the Census occupation

level by Autor and Dorn (2013), and more details on their construction can be found

in their paper.

To calculate the intensity of routine and offshorable tasks at the SIC industry

level, I follow a procedure analogous to my calculations of SIC-level hours and wages

by skill type described in Section 1.3.2. That is, I exploit the geographic overlap in

1980 between SIC industry locations in the CBP and workers’ occupations by Census

industry in the Census of the Population. Because these variables are correlated, I

consider both together in one estimation. Specifically, I estimate

∆lnSi,2007,1990 = β0 + β1routinei,1980 + β2offshorei,1980 + γXi + ei (1.15)

where ∆lnSi,2007,1990 is the annual log change in thousands of labor hours between

1990 and 2007 for skill type S in industry i, whether overall or through a particular

channel. The coefficients on routine and offshore are the effects of interest, and Xi

is the high-skill share of employment in 1990 which acts as a control. Therefore the

comparison is between industries with the same initial share of high-skill employ-

ment, but which differ in their propensity to move parts of production offshore or to

automate certain production tasks. Within each regression sample, I standardize the

routine and offshore variables to be mean zero with a standard deviation of one. As in

the China shock application, I weight the regressions by start-of-period labor hours

of the relevant skill group, and use robust standard errors clustered at the 3-digit SIC
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level.

Results

I report my results by skill type in Table 1.4. Exposure to automation based on

routine task share is associated with productivity-induced job losses for both low-

and high-skill workers, paired with a downgrading of production tasks, to some ben-

efit for low-skill work. This means industries which are initially concentrated in more

automatable tasks subsequently adopt more labor-augmenting technologies which re-

duce employment, and also are slower to transition toward high-skill production tasks.

While precisely estimated, the magnitudes are small, so that the overall effect on em-

ployment is muted.

Offshorability, in contrast, is associated with job loss overall for both types of

workers, though the marginal impact is stronger for low-skill. The decomposition

demonstrates that these job losses are predominantly through the scale channel, as

production is moved offshore. There is also some evidence of task upgrading in these

industries. This suggests that within an industry, low-skill tasks are offshored, and

domestic activity shifts toward high-skill tasks. These skill biases are consistent with

Hummels et al. (2014) who, looking at another high-income country during this time

period, find that offshoring causes firms to reduce their workforce primarily through

a reduction in low-skill workers. Interestingly, there is no impact on productivity, in

contrast to automation and Chinese import competition.

Unlike the China shock application in which exposure is determined by volumes

of imports, exposure to automation and offshoring is determined here by relative con-

centration of particular occupational tasks. Quantifying the impact in terms of job

counts therefore comes from evaluating the effect of moving along the distribution of

industries. For example, in Panel A of Table 1.4 we see that a one standard deviation

increase in routine share leads to a 0.634 log point annual decrease in low-skill em-

ployment through the productivity channel. We can use this estimate to calculate the

impact of moving from the 10th to 90th percentile among manufacturing industries in

concentration of routine tasks, an increase of about 2.56 standard deviations.43 This

implies an annual log point decrease of 1.62, equivalent to about 40 jobs over the 17

43This is based on a z-score movement from -1.28 to 1.28, or the 10.03 percentile to the 89.97
percentile. I multiply the marginal effect by 2.56 to capture the annual effect of a movement from
the 10th to 90th percentile.
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year period. This number can be compared to a movement along the distribution of

the low-skill productivity job loss from the 10th to the 90th percentile, which implies

a 3.65 log point annual decrease, or 305 jobs over 17 years.44 By this comparison,

automation explains about 13 percent of the total low-skill job loss from the produc-

tivity channel. For high-skill workers, who experienced sharper job losses through the

productivity channel, this estimate is just over 3 percent.

I likewise calculate back-of-the-envelope estimates for the impacts of offshoring.

These estimates suggest a movement from the 10th to the 90th percent of the offshora-

bility distribution is associated with a scale-induced low-skill job loss that is about

1,070 jobs, or 23 percent of the magnitude of the scale channel job loss associated with

a movement from the 10th to the 90th percentile of the scale channel distribution.

For high-skill workers, it is about 5 percent. With respect to task shifts, this same

comparison is nearly 27 percent of task channel job losses for low-skill workers and

about 13 percent of task channel job increases for high-skill.

Because of this relative interpretation, it is important to note that these effects

are possibly attenuated in that they do not capture the average impact of offshoring

and automation on manufacturing. Instead they capture cross-industry differences.

1.7 Conclusion

U.S. manufacturing employment dropped sharply during the 1990s and 2000s. At

the same time, the use of technology such as computers and electronic networks in-

creased dramatically, and volumes of imports into the U.S., especially from China,

reached unprecedented levels. These simultaneous and in some ways intertwined

events make it a challenge to separate the causes underlying the steep employment

declines we observe.

This paper offers a new approach to understanding employment loss, by reinter-

preting observed employment changes as the net effect of four distinct, and often

opposing, forces. Combining market equilibrium conditions with equilibrium output,

I separate employment changes by skill type into what is explained by scale (output),

the mix of production tasks, labor productivity within those tasks, and labor supply.

While applied here to manufacturing, this decomposition could be used in a vari-

ety of competitive settings using a broad class of production technologies. Adopting

44As in the corresponding regressions, I weight this distribution by 1990 low-skill hours in the
industry when taking the 10th and 90th percentile.
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this particular model, originally developed in Katz and Murphy (1992), I distinguish

task shifts from labor productivity changes using the share of production materials

allocated to each skill type.

The results indicate that a sweeping shift toward high-skill tasks explains 64 per-

cent of employment loss for low-skill workers. Because low-skill workers predominate

the manufacturing workforce, and high-skill tasks are inherently less labor-intensive,

these task shifts are also responsible for 41 percent of overall employment loss. This

evidence is surprising given the prevailing view that employment loss has been caused

by some combination of jobs moving to low-income countries and jobs being replaced

by machines. Instead, the results show that scale has worked to increase employment

for both skill types, overcoming downward pressure from foreign competition and

reflecting continued production in the U.S. Labor-augmenting technology, associated

with automation, does cause displacement, but it is not nearly as important as task

shifts in explaining low-skill job loss. In an application I find that automation is if

anything associated with a slower transition to high-skill tasks, suggesting that this

task upgrading is an alternative to automation, rather than a symptom of it.

This leaves open the question of what factors have led to the widespread task

upgrading in manufacturing that I document. Consumer demand may have driven in-

dustries toward products that require more high-skill tasks to produce (Xiang, 2005).

Another possibility is that increased government oversight raised the demand for high-

skill tasks such as quality control and supervision. Changing management practices

and other process improvements distinct from automation could also have given high-

skill workers a comparative advantage (Bender et al., 2018). I leave further exploration

of these and other factors for future research.

Irrespective of cause, these results point to a new era of manufacturing production,

characterized by high-skill, high-productivity tasks. This insight informs our thinking

about the future of work in manufacturing, as we consider ways to improve education

and vocational training. While new trade policies and evolving consumer preferences

will continue to drive the ebb and flow of demand for manufacturing workers, the

evidence herein shows that the nature of the jobs at hand will be remarkably different

from those of the past. Given the importance of manufacturing in the broader labor

market, this knowledge can also further our understanding of recent economy-wide

trends, for example in inequality. It likewise raises the question of whether these

patterns exist in other sectors, where they would be harder to measure.
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Figure 1.1.: U.S. Manufacturing Employment, Millions

Notes - Author’s calculations from the CPS ASEC annual surveys 1962-2018. Sample is employed wage and salary

workers ages 16-64, exclusive of self-employed, unpaid family workers, and military workers. Prior to 1992, individuals

reporting at least 4 years of college are considered bachelor’s degree holders.

Source - Flood et al. (2018)
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Figure 1.2.: Total Equilibrium Change: A → D

Notes - This figure illustrates the change in employment between time t and t+ 1 for industry i, where A and D are

the equilibrium employment levels in times t and t+ 1, respectively, for low-skill labor L and high-skill labor H. See

Section 1.2 for details.
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Notes - This figure illustrates the change in employment between time t and t + 1 for industry i due to the scale

channel. See Section 1.2 for details.
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Figure 1.6.: Distribution of Task Parameter (αi,t) by Time Period

Notes - This figure shows the distribution of the task share parameter αi,t across my industry sample for the years

1990, 2000, and 2007. A leftward shift of the distribution over time indicates a shift away from low-skill production

tasks. See Section 1.4.1 for details.
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Figure 1.7.: Distribution of Ratio of Skill-Augmenting Productivity Parameters (
ai,t
bi,t

)
by Time Period

Notes - This figure shows the distribution of the ratio of low- to high-skill productivity parameters across my

industry sample for the years 1990, 2000, and 2007. See Section 1.4.1 for details. For figures of the distributions of

each parameter separately, see Appendix A.2.3.
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Figure 1.8.: Decomposition of Manufacturing Employment Changes, 1990-2007, by
Industry Group, in Thousands of Job Equivalents

Notes - This figure shows the main decomposition results aggregated to 10 industry groups. See Section 1.5.2 for

details.
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Table 1.1.: Estimates of ρ and σ (Elasticity of Substitution)

estimate standard error
(1) (2)

ρ 0.651 0.010

σ 2.863 0.086

Notes - This table reports the estimates of the elasticity of substitution between low- and high-skill production

processes. See Section 1.4.1 for details.
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Table 1.2.: Decomposition of Manufacturing Employment Changes 1990-2007 Into
Four Channels

Jobs (Millions)

High-Skill
Low-Skill High-Skill Total Share

(1) (2) (3) (4)

Panel A. Overall Change
1990 12.83 2.17 15.00 14.5%
2007 10.00 2.41 12.41 19.4%

∆ −2.84 +0.24 −2.60 +4.9pp
%∆ −22.1% +10.9% −17.3%

Panel B. Decomposition
Scale +2.68 +0.66 +3.34 +0.9pp

(1.75, 3.69) (0.46, 0.84) (2.21, 4.53)
+20.9% +30.2% +22.2%

Task −4.13 +1.48 −2.65 +15.1pp
(−5.02,−3.21) (1.11, 1.88) (−3.91,−1.33)
−32.2% +68.2% −17.7%

Productivity −2.31 −1.46 −3.77 −8.1pp
(−3.37,−1.54) (−1.81,−1.09) (−5.18,−2.63)
−18.0% −67.2% −25.1%

Supply +0.92 −0.44 +0.48 −3.3pp
(0.71, 1.20) (−0.58,−0.34) (0.13, 0.86)

+7.2% −20.3% +3.2%

Notes - Decomposition is calculated for 351 manufacturing industries and then summed to national totals. Decom-

posed changes in Columns (1) through (3) may not exactly sum to total due to rounding. Employment results are

converted from annual hours to millions of estimated jobs based on mean annual hours of employed manufacturing

workers of the same skill type in the 1980 Census. In each cell of Columns (1) through (3), I report the level estimate,

a 95 percent confidence interval based on 1000 bootstrapped samples, and the estimate in percentage terms. Column

(4) reports the implied change in high-skill share of employment.
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Table 1.3.: Effects of Direct Exposure to Chinese Imports on Employment 1990-2007:
2SLS Estimates

Total Scale Task Productivity Supply

(1) (2) (3) (4) (5)

Panel A: Low-Skill Employment
100× annual ∆ Chinese -1.443** -0.949** 0.008 -0.411** -0.092*
import penetration (0.591) (0.420) (0.099) (0.194) (0.049)

Panel B: High-Skill Employment
100× annual ∆ Chinese -0.629** -0.604** 0.185 -0.330* 0.120
import penetration (0.304) (0.266) (0.119) (0.184) (0.092)

Observations 702 702 702 702 702

Notes - Regressions are weighted by start-of-period labor hours of the relevant skill group. Also included is an

indicator for time period. Robust standard errors are clustered at the 3-digit SIC. * p< .1, ** p< .05, *** p< .01

Table 1.4.: Effects of Industry Routine Task Intensity and Offshorability on Employ-
ment 1990-2007

Total Scale Task Productivity Supply

(1) (2) (3) (4) (5)

Panel A: Low-Skill Employment
Routine Task Share -0.499 0.050 0.116** -0.634*** -0.031

(0.339) (0.299) (0.050) (0.134) (0.048)

Offshorability -1.995*** -1.915*** -0.371*** 0.302 -0.011
(0.307) (0.377) (0.054) (0.240) (0.034)

Panel B: High-Skill Employment
Routine Task Share -0.474 -0.089 0.064 -0.432** -0.016

(0.294) (0.232) (0.094) (0.180) (0.110)

Offshorability -0.851*** -1.153*** 0.131* 0.057 0.113
(0.275) (0.223) (0.076) (0.244) (0.087)

Observations 351 351 351 351 351

Notes - Routine Task Share and Offshorability are calculated by industry based on the occupations of its workers

in the 1980 Census. Data for these variables at the Census Occupation level are made available by Autor and Dorn

(2013). Both variables are standardized within each regression sample to have mean zero and standard deviation of

one. Also included as a control is 1990 skill share of industry. Robust standard errors are clustered at the 3-digit SIC.

* p< .1, ** p< .05, *** p< .01
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2. STALLED RACIAL PROGRESS AND JAPANESE
TRADE IN THE 1970S AND 1980S

with Timothy N. Bond

2.1 Introduction

The mid-1970s through the mid-1980s saw a striking reversal of the economic

gains made by black men in the Civil Rights era. From 1962 to 1976, the black/white

median earnings ratio rose from 52% to 70%.1 By 1984, it had fallen to 61%, roughly

the same level as it was in 1968 (Figure 2.5). There was a similar erosion in labor force

participation and employment (Figure 2.5). Blacks were hit especially hard in areas

that experienced manufacturing declines (Gould, 2018), after having made rapid gains

in this sector during the 1960s, even surpassing whites (as a fraction of employment;

Figure 2.5). These losses are even more surprising given that the black workforce

was gaining ground in both quality and quantity of education in this time period

(e.g, Card and Krueger, 1992; Neal, 2006). While some important racial inequality

indicators would stabilize in the late 1980s, these economic losses continue to be felt

today.2 The causes of this change in fortune remain an open question.

Also during this time period the United States experienced an unprecedented

increase in import competition from a rapidly growing East Asian economy: Japan.3

From 1975 to 1986 American imports of Japanese manufactured goods would grow

by an average of $8.5 billion dollars per year, representing an increase from 1.1% to

1These figures are constructed from the Current Population Survey (CPS). See Appendix B.1.1 for
details of data construction. Note that unlike with our main empirical analysis, these figures include
Hispanic whites, as the CPS does not track Hispanic ethnicity in the earlier years. For a more
comprehensive review of trends in racial differences in this era, see Smith and Welch (1989), Bound
and Freeman (1992), and Lang and Lehmann (2012).
2For example, after taking into account the continued declines in labor force participation, the racial
gap in median earnings today is at 1950 levels, substantially larger than it was in 1970 (Bayer and
Charles, 2018).
3Japanese GDP grew by 240% during the 1960s as part of the “Japanese Economic Miracle.” It
would grow by another 50% during the 1970s due to both capital accumulation and improvements
in technology (Boskin and Lau, 1990). This growth was contemporaneous with declining barriers
to trade, and a strong U.S. dollar which made U.S. industries particularly vulnerable to rising
international competition. See Irwin (2017) for a comprehensive review of U.S. trade in this era.
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3.5% of total U.S. spending in this sector (Figure 2.5). This surge in imports would

cease in the late 1980s in part due to U.S. trade restraints, a devaluation of the dollar,

and a shift of Japanese firms towards foreign direct investment in the United States

(Irwin, 2017).

In this paper, we assess the extent to which the Japanese trade boom can ex-

plain the deterioration of black economic well-being. We use geographic variation in

imports exposure, following the identification and instrumental variable approach in-

troduced in the “China shock” literature by Autor et al. (2013), to look at differences

in changes in racial disparities across local labor markets. We find a substantial neg-

ative impact of this import competition on black employment outcomes. A $1,000

increase in Japanese imports per worker led to a 0.59 percentage point decrease in a

commuting zone’s black manufacturing employment rate. However, we find no impact

on manufacturing employment in the aggregate. Instead, we find higher manufacturing

employment for whites, offsetting the effect on blacks.

Our results suggest that this disparate impact was a consequence of trade-induced

skill upgrading in the manufacturing sector. Job losses were concentrated among

black high school dropouts, who found at most limited re-employment in non-

manufacturing, while gains in manufacturing employment centered on the primarily

white college educated. Likewise, we find a growth in professional occupations within

manufacturing, particularly for engineers, and a shift to higher-educated production

workers.

Black manufacturing workers in this time period were particularly vulnerable to

changes in the relative demand for skill. In 1970, 60% of black manufacturing workers

had less than a high school degree compared to 38% of whites, and blacks occupied

15% of manufacturing jobs for those with less than a high school degree (compared

to 10% of manufacturing jobs overall).4 Further these education figures will under-

state true skill differences given racial disparities in school quality (Smith and Welch,

1989; Card and Krueger, 1992; Neal and Johnson, 1996). 84% of black manufacturing

workers were working in production jobs, compared to 66% of whites, and among pro-

duction workers blacks had on average .5 years less formal education. In the North,

where the manufacturing sector was largest, more than half of black workers were

recent migrants who were educated in segregated schools during the Jim Crow Era

South.5 In fact, we see the strongest negative effects for Southern-born blacks, who

4Unless otherwise noted, all figures in this paragraph are authors’ calculations from the CPS.
5Figure from authors’ calculations from U.S. Census Integrated Public Use Microdata Series samples.
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had the lowest quality of education.

This cross-race redistribution of jobs had important consequences for labor market

disparities. Nearly all black workers displaced by trade left the labor force altogether

rather than finding reemployment, leading to a 0.54 percentage point increase in the

labor force non-participation gap for every $1,000 increase in import competition. This

same increase led to a 3.6 log point widening of the median male earnings gap, 2.6

log point widening of the household income gap, and 0.6 percentage point widening

of the welfare recipiency gap. Given that the average black worker faced a $1,413

increase in exposure to Japanese imports, these effects are substantial, accounting for

17-23% of the decline in relative labor force participation and 34-44% of the decline

in relative earnings during this time period.

We explore several alternative mechanisms for this disparate impact. While we

find evidence that Japanese trade hastened the “white flight” of residents from central

cities, we find no evidence for a suburbanization of manufacturing jobs themselves.

We also find little evidence that unionization or racial prejudice can explain the

differing impact of trade on employment outcomes. Further, black workers neither

lived in areas that were more exposed to imports than whites, nor worked in industries

that received a higher degree of import competition.6 The evidence we present is for

disparate responses to exposure, not disparate exposure itself.

A large literature has focused on the negative impacts of the recent growth in Chi-

nese import competition on the American manufacturing sector. The “China shock”,

an average annual increase of $14.6 billion imports per year from 1991-2007, nega-

tively impacted employment, unemployment, earnings, and job growth; and spurred

the decline in manufacturing (Autor et al., 2013; Acemoglu et al., 2016; Pierce and

Schott, 2016).7 However, we know little about whether the American economy’s re-

sponse to China is typical or atypical of trade shocks. Previous studies of trade in the

1980s have focused on the role of exchange rates and trade deficits generally (e.g.,

Katz and Revenga, 1989; Revenga, 1992), which were influenced by Japan as well

as traditional Western trading partners and developing countries such as the Asian

This was a consequence of the 1940-1970 “Great Migration” which saw 4 million blacks move from
the rural South to the industrial North. See, for example, Boustan (2009) for a comprehensive review.
6The average black worker in 1970 lived in a CZ which experienced an increase in imports per
worker of $1,413 and worked in an industry that experienced a .020 increase in the Japanese import
penetration ratio. This compares to $1,601 and .024 for whites. Note, however, these industry figures
can only be calculated at fairly aggregated level compared to the data we use for CZ-level exposure.
See the discussion in section 2.3.1.
7Figures are in 1999$ and taken from the U.S. Census Bureau.
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tigers; or been limited to specific industries (e.g., Grossman, 1986). We are the first

to provide a comprehensive look at the impact of Japan’s rapid export expansion on

U.S. labor markets.

Our findings suggest the economic consequences of Japanese imports on black

Americans were similar to the consequences China has had on the overall labor mar-

ket. Yet, there are several important differences worth highlighting between both

our results and the nature of the trade shock. First, Japan was already a highly de-

veloped country when the import expansion began, trailing only the United States

and the Soviet Union in GDP in 1972. Second, while China’s story has focused on

its abundance of cheap labor, much of Japan’s success was attributed to innovative

management practices. Many would later be copied to mixed success by American

firms (Powell, 1995; Ichniowski and Shaw, 1999). Finally, our evidence suggests that

Japanese competition led to a change in the skill composition of manufacturing; for

China the negative effects have been felt at all skill levels (Autor et al., 2013).

Our identification strategy is based on Autor et al. (2013), which uses variation

in import exposure across local labor markets due to differences in the product com-

position of their manufacturing industries. We account for the endogeneity of trade

by instrumenting with the exposure predicted by historical local industry shares and

the products exported by Japan to six other highly developed countries. While there

has been a recent debate about the validity of such approaches (e.g., Goldmsith-

Pinkham et al., 2018; Borusyak et al., 2018), we show that our instrument performs

well with respect to several different robustness and validation exercises proposed in

the literature.

What caused the reversal of black economic progress is still not well understood.

Wilson (1987) and other supporters of “demand-side” explanations proposed this

was a symptom of the de-industrializing economy, trade being one of its causes.8 In

support of this theory, several empirical studies have found black workers were dis-

proportionately negatively affected by decreases in labor demand (proxied by changes

in national employment by industry) in the 1970s and 80s (e.g, Acs and Danziger,

1993; Bound and Holzer, 1993, 2000). However such studies are unable to disentangle

demand decreases caused by foreign competition from other important factors of the

time period, such as skill-biased technical change.9 Murphy and Welch (1991) exam-

8See also Kasarda (1989). This was in contrast to “supply-side” explanations, advanced by, among
others, Mead (1986), that centered around a decreased willingness of black workers to accept low
wage work.
9For example, Reardon (1997) finds that blacks were more affected by within-industry skill compo-
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ine the susceptibility of various race, gender, and skill groups to trade deficits based

on their distribution of employment across four broadly defined industry categories.

From this they calculate that the 1980s trade deficits should have increased the black-

white wage gap, but their projection is much smaller than the actualized growth, and

their model does not allow for differential effects within industry or account for the

endogeneity of trade exposure. We provide the first direct evidence, using credible ex-

ogenous geographic variation, that increased foreign competition was responsible for

a large portion of the decreased labor demand for and subsequent economic malaise

of black workers.

The 1980s especially was a time of broad manufacturing declines and increased

economic hardship for low-skill workers, and previous work has found some evidence

that import competition played a role in these changes (Borjas et al., 1992; Borjas and

Ramey, 1995). However, the consensus view is that these structural shifts were pri-

marily driven by other factors, especially skill-biased technical change (e.g., Berman

et al., 1994; Feenstra and Hanson, 1999; Katz and Autor, 1999; Autor et al., 2008).

Our results are consistent with this view. While we find large aggregate decreases in

manufacturing in commuting zones whose pre-existing industrial composition made

them vulnerable to Japanese competition, all of this effect can be explained by dif-

ferences in workforce composition, particularly worker education levels, and the size

and occupation mix of the manufacturing sector. Further, because blacks made up a

small portion of the labor force, and because black high school dropouts especially

were overwhelmingly located at the lowest tail of the skill distribution, any aggregate

changes in inequality were small.

Theoretical models of trade generally predict the most disruptive labor market

effects occur when import increases come from low wage countries (Krugman, 2000,

2008). While Japan had lower wages than the United States throughout this time

period, it was already an OECD member by 1970. Still, several recent theoretical

papers have demonstrated that trade can lead to increases in inequality even when

both partners are similarly developed. For example, trade can trigger technological

advancement within firms as they preempt competitive threats through skill-biased

innovations (e.g., Neary, 2002; Thoenig and Verdier, 2003). Alternatively, trade can

cause factors to reallocate across firms toward those of higher productivity and skill

sition changes in the 1980s than cross-industry changes in demand, and concludes that technological
change is responsible for widening racial disparities. However trade can also cause changes in the
relative demand for skilled workers, as domestic firms adopt more competitive practices and close
unproductive factories (Bernard et al., 2006).
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intensity (Monte, 2011; Burstein and Vogel, 2017). Epifani and Gancia (2008) develop

a model where the increased market size caused by reductions in trade barriers can

increase demand for skilled workers because of stronger returns to scale in the skill-

intensive sector. Our results lend support to these theories. More generally, it is by

now well recognized that trade has winners and losers. In this instance, it appears

the losses were concentrated on black workers.

The remainder of this paper is organized as follows: Section 2 describes our data

sources and treatment; Section 3 explains our identification strategy; Section 4 dis-

cusses our results; and Section 5 concludes and conjectures on the significance of our

results for the persistence of economic and racial inequalities.

2.2 Data

2.2.1 Labor Market Data

Our primary sources for labor market data are the 1960 5%, 1970 1% form 1 and

form 2 metro, and 1990 5% Integrated Public Use Microdata Series (IPUMS) samples

of the United States Decennial Census (Ruggles et al., 2015). We also use the 1980 5%

state sample in a robustness exercise. As in Autor et al. (2013), we define local labor

markets by commuting zones (CZs) using the definitions created by Tolbert and Sizer

(1996). We match workers to CZs using Public Use Micro Areas (PUMAs) in 1990

and 1960, and Census County Groups in 1980 and 1970 following crosswalks provided

in Autor and Dorn (2013) and Rose (2018). Unless otherwise stated, we restrict our

attention throughout to working age males due to concerns about changes in female

labor force participation across time. This is particularly important given the racial

differences in selection of women into the labor market (Neal, 2004). To ensure an

adequate sample for calculating race-specific statistics, we restrict attention to CZs

in the continental U.S. which had a black male working age population of at least 500

in both 1970 and 1990. This restriction primarily affects rural Western commuting

zones (see Appendix B.2.4) and results in a sample of 358 CZs. We winsorize all

CZ-level control and outcome variables by race/year to the 2nd and 98th percentiles

to further account for measurement error due to sample size. See Appendix B.1.2 for

more details on data construction.

We present descriptive statistics for our sample in Table 3.4.10 Perhaps most im-

10In this table and throughout, we weight by the race-specific 1970 commuting zone working age
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mediately striking is the 6.8 percentage point relative decrease in black employment in

non-manufacturing, a sector that cannot be directly affected by foreign competition.

However, as we show in Appendix B.2.3, this appears to be drive by a continuation

of pre-existing trends in the agricultural sector.11 In the 1960s such workers were

likely absorbed into the manufacturing sector as discussed before. The 1970-1990 pe-

riod instead saw a relative decline in black manufacturing employment, paired with

relative increases in black unemployment (3.9 percentage points) and labor force non-

participation rate (3.6 percentage points). While blacks saw small gains among those

with positive earnings, once including non-earners the median earnings gap for work-

ing age males widened by 23 log points. We also see a relative decrease in household

income and increase in welfare recipiency.

2.2.2 Import Competition

To calculate industry-level exposure to Japanese imports, we begin with bilateral

trade data in SITC Revision 1 from UN Comtrade.12 Autor et al. (2013) provide a

crosswalk from 1992 Harmonized System (HS) product-level codes to SIC 87 industry

codes. However, the HS system was not introduced until 1988 and is not consistently

available for our countries of interest until the early 1990s. We therefore constructed a

new crosswalk from SITC Revision 1 to HS, which we describe in Appendix B.1.3. We

then utilize the Autor et al. (2013) crosswalk to bridge our trade data to industries.

Following Autor et al. (2013), we measure import competition through changes in

imports per worker (IPW).13 For each CZ i we calculate

∆IPWuit =
∑
j

Lijt
Lujt

∆Mujt

Lit
(2.1)

where Lijt is the number of workers in commuting zone i in industry j at the beginning

male population.
11These factors including improvements in education, mechanization of Southern agriculture, agri-
cultural mechanization advancements and industrialization in the South, and continued urbanization
of the black population. See, for example, Cogan (1982) and Smith and Welch (1989).
12These data are available at https://comtrade.un.org.
13We prefer this measure as it has been used by the vast majority of research studying the impact
of import competition on local labor markets (e.g., Greenland and Lopresti, 2016; Feler and Sense,
2017). It thus allows us to easily compare our estimates with those found in the China Shock
literature. Our results are largely robust to instead using the import penetration ratio as is more
common in papers studying industry-level effects (e.g., Acemoglu et al., 2016) as well as the recent
study of local marriage markets by Autor et al. (2018). See Appendix B.2.2.
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of period t, Lujt is that same value for the United States, Lit is the total number of

workers in these industries in commuting zone i at the beginning of period t, and

∆Mujt is the change in imports in that industry’s product space (in $1000s) during the

time period. As in Autor et al. (2013), we restrict IPW to include only manufacturing

imports. We explore the geographic dispersion of IPW in more depth in Appendix

B.2.4. In general, we find that the most exposed areas were in the Midwest and

Northeast, and the least were the inland West and South.

We calculate 1970 CZ-level industry employment using the County Business Pat-

terns (CBP). The CBP is an annual series that provides county-level economic data

by industry, including the number of establishments, employment during the week of

March 12, and payroll information extracted from the U.S. Census Bureau’s Business

Register. The 1970 series is reported in SIC 1967 codes, which we convert to SIC 1987

codes.14 The CBP suppresses the employment counts for some counties to avoid iden-

tifying individual employers. As detailed in Appendix B.1.4, we impute employment

in these instances based on establishment counts following Autor and Dorn (2013).

As nationwide CBP data is not available prior to 1970, for our instrument we

calculate CZ-level industry employment using the 1960 5% IPUMS sample from the

Decennial Census. We disaggregate the 1960 Census industry codes into SIC 1987

according to each CZ’s industry composition in the 1970 CBP.15 See Appendix B.1.5

for more details.

2.2.3 Geographic Outcomes

We also explore the impact of import competition on the distribution of workers

and jobs between cities and suburbs. Here, we utilize the 1970 Census definition of

central cities, under which 167 commuting zones include a central city.16 We calcu-

late residential populations from place- and county-level tabulations of the 1970 and

1990 Census of the Population available from IPUMS National Historical Geographic

14We use an employment-based weighted crosswalk from the NBER-CES Manufacturing Industry
Database to convert SIC 1972 to SIC 1987, and construct a parallel crosswalk using the 1972 Census
of Manufactures to convert SIC 1967 to SIC 1972.
15Our findings are broadly robust to using an instrument constructed directly from Census industry
codes, or an instrument based only on the 1970 CBP. These results are available upon request.
16We omit four cities (and their associated CZs) which consolidated with their county between 1970
and 1990: Lexington, KY; Indianapolis, IN; Jacksonville, FL; and Columbus, GA. This is to avoid
conflating changes in population and employment with the substantial geographical changes they
experienced.
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Information System (NHGIS; Manson et al., 2017).

For the location of jobs, we use tabulations from the 1972 and 1987 Census of

Manufactures (CoM).17 These data include counts of manufacturing establishments

and employees by state, county, and place. Occasionally, employee counts are sup-

pressed. For counties, we impute missing observations by utilizing the state-level

counts of establishments and employees net of the counts in non-suppressed counties.

This generates a residual employment count that we distribute to the suppressed

counties according to their number of establishments, which is always available. For

suppressed cities an analogous calculation is not possible, as the CoM provides in-

formation only for places with at least 450 manufacturing employees. We therefore

impute missing employment counts by multiplying the number of establishments in

the city by the average establishment size in the state.

2.3 Empirical Strategy

2.3.1 Specification

We adopt a similar approach to Autor et al. (2013). In our preferred specification,

for outcome Y of race k ∈ {w, b} in commuting zone i we estimate

∆(Yik,1990−1970) = αk + βk∆IPWui,1990−1970 + γkXi,1960 + εik, (2.2)

whereXi,1960 is a vector of commuting zone characteristics measured in 1960. In words,

we estimate a fully-interacted regression that allows for local labor market conditions

to affect blacks and whites in different ways. Our main interest is the disparate impact

of import exposure on blacks, βb−βw, which is most easily displayed as the coefficient

on the interaction between ∆IPWui,1990−1970 and a black indicator.

We prefer using the long difference approach over stacked first differences including

1980 data for several reasons. First, 1980 was a recession year, while 1970 and 1990

were relatively normal economic times.18 The recession was caused in large part by

sudden, steep increases in interest rates by the Federal Reserve, and was thus felt

almost exclusively by consumer durables typically purchased on credit, especially

17The CoM is part of the Economic Census, and is conducted in regular five year intervals during
off-years of the Census of the Population.
18According to the NBER, the United States entered recession in June of 1990. However, the 1990
census was taken April 1st, and the income data reflect 1989 outcomes.
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automobiles (Westcott and Bednarzik, 1981). Because Japanese import competition

was also highest in these industries, we are concerned about conflating the effects

of trade with the peculiarities of this recession. Second, as illustrated in Figure 2.5,

Japanese imports peaked in 1986 before receding in the latter half of the 1980s. We

are thus concerned that the 1990-1980 difference may not accurately reflect the effects

of Japanese import competition since all of the change in this decade came four years

before the measurement of the economic outcomes. The long difference will be less

sensitive to this issue, since it encompasses the totality of the Japanese trade influx.19

In Appendix B.2.5 we provide estimates for each decade separately, and using a

stacked first differences approach as in Autor et al. (2013). We find stronger evidence

for negative effects on black employment in the 1970s, and positive effects on white

employment in the 1980s, but it is unclear if this is due to the patterns of trade

adjustment, or the reasons discussed above. We also perform a validation exercise

for our IV by estimating a placebo regression of 1970-1990 import increases on the

1960-1970 change in manufacturing employment, and find no evidence of any effects.

An alternative approach would be to exploit variation in exposure by industry

of employment, such as in Acemoglu et al. (2016). Using geographic variation offers

several advantages for our context. First, we can measure whether job losses led to

re-employment or changes in labor force participation, the latter of which saw very

important changes for black men in this era. Second, the industry-based approach

would not allow us to measure indirect effects that could be particularly important

for understanding racial differences. For example, whites who experience job losses in

a trade-affected manufacturing industry may displace black workers in an industry

which received little exposure (due to prejudice or otherwise). Finally, industry of

employment variation requires information on industrial employment counts by race,

while our strategy requires only (non race-specific) geographic employment counts

and race-specific population counts. The latter is readily found in publicly available

data sets, while the former is available only for a highly aggregated set of industries.20

19This also partially addresses concerns recently raised by Jaeger et al. (2018) that shift-share
instruments can conflate the short- and long-run effects of economic shocks when these shocks are
ongoing and correlated across time.
20Our import exposure is based on 380 different SIC87 manufacturing industries as reported by the
CBP. The only publicly available race-specific employment data come from the CPS or the Census,
which have just 59 manufacturing industries in 1960. Census/CPS data also include a non-trivial
number of workers who are simply classified as working in manufacturing without a specific industry
to which we can map trade. While we do find evidence of reduced employment when implementing
the Acemoglu et al. (2016) approach on these limited data, the estimates are much too imprecise to
identify whether these effects differed by race. These results are available upon request.
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2.3.2 Instrumental Variable and Identification

Because Japanese imports may be driven by domestic changes in American in-

dustries, we adopt the strategy implemented by Autor et al. (2013) for China, and

instrument with the observed change in Japanese import penetration in other highly

developed economies.21 Specifically, our instrument is defined as

∆IPWoi,1990−1970 =
∑
j

Lij1960

Luj,1960

∆Moj,1990−1970

Li1960

, (2.3)

where the subscript o indicates the sum across these other countries.22 In words, our

instrument is the change in import exposure faced by the average worker that would

have been predicted from (1) the commuting zone’s industrial composition in 1960

(i.e., before Japanese import competition began), and (2) the ability of Japan to

penetrate these industries in other countries during our time period. The variation

in the exposure each CZ receives can be further subdivided into two avenues: the

manufacturing share of the local economy and the composition of products they

manufacture. Our preferred specification will control for initial manufacturing share,

and thus isolate the latter variation.

Our instrument is a “shift-share” instrument that combines local industry em-

ployment shares and national industry-level “shifts” (trade shocks). There has been

a recent debate on the sources of identification for such instruments (e.g., Goldmsith-

Pinkham et al., 2018). Borusyak et al. (2018) develop a quasi-experimental frame-

work that views the trade shocks (i.e., the industry-level exports from Japan to other

countries) as “as-if” randomly assigned across industries. They then prove shift-share

estimators are consistent under two conditions: (1) industry trade shocks are orthog-

onal to the unobservable factors in the CZs in which they are located, and (2) shocks

across industries are sufficiently independent.23

21Hummels et al. (2014) use a similar instrument to predict the offshoring and export behavior of
Danish firms.
22We use a similar set of countries as Autor et al. (2013): Australia, Denmark, Finland, New Zealand,
Spain, and Switzerland. Unlike them, we exclude Germany because of complications arising with
reunification, and Japan for obvious reasons.
23Goldmsith-Pinkham et al. (2018) argue instead that shift-share estimators are consistent only if
the industry employment shares in each CZ are orthogonal to the CZ-level unobservables. The key
difference between their result and Borusyak et al. (2018) is that the latter relies on large sample
asymptotics for both CZs and industries, while the former assumes only a large sample of CZs. In
our setting, we have 358 CZs and 380 industries, with little correlation in shocks across industries
outside of 135 3-digit industry codes. See Appendix B.2.7.
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Our instrument will satisfy the orthogonality condition provided that exports that

are common across countries are driven by changes within Japan (e.g. productivity

shocks) rather than forces in the United States. Specifically, we assume that any

demand increases or negative productivity shocks for U.S. industries are uncorrelated

with similar changes in our IV countries, and that changes in other countries’ Japanese

imports are not driven by negative productivity shocks to U.S. exporting industries.

These assumptions are similar to those outlined in Autor et al. (2013).

The most obvious concerns for these assumptions center around the computer and

automobile industries. Advances in computer technology during this era may represent

a worldwide positive demand shock. In general, this should bias us away from finding

negative impacts of trade, because U.S. firms also experienced this shock, but how

this would bias the effect on racial disparities is unclear. Likewise any bias caused by

the automobile industry, which faced the largest increase in import competition in

absolute terms, is also uncertain. While much of this growth was due to improvements

in Japanese manufacturing technology, the 1970s oil shocks caused a worldwide shift

in demand from large cars (a specialty of American firms) to the smaller, more fuel

efficient cars already preferred in Japan (Crandall, 1984; Ohta and Griliches, 1986).24

Note that none of the countries we use in constructing our instrument were major

importers of U.S. automobiles in our time period, which should minimize the impact

of any global drop in demand for these products on our estimates.25

In Appendix B.2.6 we perform a numerically equivalent transformation of our

main specification developed by Borusyak et al. (2018) that isolates variation caused

by each industry, and show that our results are robust to excluding automobiles and

computers. We also perform a series of additional robustness checks recommended by

Borusyak et al. (2018). These include excluding industries with outlying instrument

exposure, including 1-digit and 2-digit CZ-level industrial classification employment

shares (thus allowing that the expected trade shock from Japan may have varied at

these levels), and using the individual highly developed countries’ imports as separate

instruments. Our results are robust to all of these exercises, and only the 2-digit

industry employment shares meaningfully reduce the magnitudes of our estimates.

24Further complicating this industry is the Voluntary Export Restraint (VER) Japan implemented
under U.S. pressure which led to a strategic shift by Japanese manufacturers to higher quality
automobile exports in the 1980s (Feenstra, 1984, 1988).
25In 1970, Switzerland, the largest importer of U.S. automobiles in our set of other developed
countries, accounted for just over 1% of American automobile exports. The largest customer, Canada,
accounted for almost 75%.
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Further, we fail to reject the overidentifying restrictions in the multiple instruments

case.

We also provide a test for the second condition (dispersion) in Appendix B.2.7.

Following Borusyak et al. (2018), we exploit the hierarchical design of the SIC system,

and estimate intraclass correlation coefficients for clusters of similar industries. We

find little correlation in the trade shock within two- and one-digit industry clusters,

consistent with a high level of independence in the distribution of shocks.

We show the time variation in imports from Japan for the United States and our

six other developed countries in Table 2.2. From 1970 to 1990, U.S. imports from

Japan rose by $94.5 billion (in 1999$), a 374% increase. In the same time period,

the six other countries saw an even larger increase in percentage terms of 389%. The

United States also saw an increase in exports to Japan, but not nearly at the same

rate, resulting in a trade deficit of $57.8 billion by 1990. We also see in column (3)

that this period was one of a general increase in globalization. But, the pace of import

increases from Japan outstripped that from the rest of the world, both in the United

States and the other developed countries we study.

In Table 2.3 we estimate our first-stage regression. Unsurprisingly our instrument

is very strong, with an F -statistic over 80.

2.4 Results

2.4.1 The Impact of Japanese Trade on Employment Disparities

In Table 2.4 we perform the 2SLS estimation of equation (2.2) on the manufactur-

ing employment share of the male working age population.26 All percentage variables

are scaled in percentage points. Column (1) is the standard regression in the literature

that does not allow for racially heterogeneous effects. Without any additional con-

trols, we find a large, negative and statistically significant effect of Japanese imports

on commuting zone manufacturing share, with a point estimate nearly double that

found by Autor et al. (2013). However, once accounting for the pre-existing size of

the manufacturing sector in column (2), and characteristics of the CZ’s workforce in

column (3) any potential effects are reduced to 0. Instead, we find strong evidence for

26Standard errors are clustered at the state level. Borusyak et al. (2018) derive an alternative set
of standard errors which are asymptotically equivalent to those derived by Adão et al. (2018) and
allow for correlations within similar industries across CZs. We find in practice that these standard
errors are smaller than the state-clustered errors. See Appendix B.2.8.
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a secular decline in manufacturing. Also of importance appear to be the pre-existing

stock of college educated workers and the occupational mix of the local manufactur-

ing sector.27 This is consistent with evidence presented in, for example, Autor et al.

(2003) and Autor et al. (2008), that skill-biased technical change was the dominant

driver of changes in the wage structure during this time period.

This specification, however, masks substantial heterogeneity by race. In columns

(4) and (5) we estimate equation (2.2) separately for whites and blacks, respectively.

The results are striking. While a $1,000 increase in Japanese import competition led

to a .59 percentage point decline in black manufacturing share, it also led to a .19

percentage point increase in white manufacturing share. In other words, columns (3)-

(5) suggest that, rather than eliminating manufacturing jobs, Japanese competition

led to a shifting of employment from blacks to whites.

For our remaining results, we use the full set of CZ-level controls and estimate

the fully-interacted version of (2.2), reporting βb − βw as the interaction between

∆IPWui,1990−1970 and a black indicator.28 Column (1) of Table 2.5 repeats the esti-

mates from columns (4) and (5) of Table 2.4 using this approach. Columns (2)-(4)

provide the same estimation for non-manufacturing employment share, the unem-

ployment rate, and non-labor force participation rate, respectively.29 For whites, we

see evidence of a movement of workers from the non-manufacturing sector and from

out of the labor force into manufacturing, although neither of these effects is statis-

tically significant. In contrast, we find at best weak evidence that black workers who

moved out of manufacturing found re-employment in non-manufacturing. We also

see no increase in black unemployment. Instead the vast majority of displaced black

manufacturing workers drop out of the labor force. We estimate a $1,000 increase in

Japanese import competition led to a .45 percentage point increase in the black labor

force non-participation rate, or a .54 percentage point widening of the racial labor

force non-participation gap.

We provide a series of robustness checks of our main results on manufacturing

employment in Table 2.6. In column (1) we replace our CZ-level controls with race-

27Given that many of the information technology advancements that enabled certain types of jobs
to be offshored were yet to occur, the offshorability index is best viewed as an additional measure,
beyond routine-intensity, of manufacturing task composition. See Appendix B.1.6 for details on the
construction of these indices.
28We now add our instrument interacted with a black indicator to the first stage.
29While by definition all individuals must at any given time be either employed in manufacturing,
employed in non-manufacturing, unemployed, or out of the labor force, our coefficients do not add
up exactly to 0 because of winsorization.
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specific CZ workforce characteristics. That is, we define the college educated per-

centage of the population as the fraction of white working age males with a college

education, and similarly for blacks.30 While this provides the benefit of, for example,

better measuring how one racial subgroup may have been more vulnerable to skill-

biased technical change, it provides a drawback in that it implicitly assumes that

when these factors impact the white labor force there are no spillovers onto the black.

Making this change has a negligible impact on our point estimates. In column (2),

we include 10 1-digit manufacturing sector employment shares and their interactions

with race, following the classification system in Autor et al. (2014). This allows us to

better account for secular trends within manufacturing that may be correlated across

similar industries. However it also reduces some good variation given that similar

industries tend to co-locate, and measurement error in our mapping from products

to industries will likely misclassify trade within these large sectors.31 These controls

slightly reduce the point estimate of our interaction term, but the magnitude remains

large and statistically significant.

In column (3) we re-estimate column (1) of Table 2.5 using OLS. Similar to Au-

tor et al. (2013), we find that OLS biases our estimates of trade on manufacturing

employment upwards for both black and white workers. In column (4), we estimate

the OLS specification measuring exposure as net imports rather than imports, and

our results are essentially unchanged. In column (5), we adopt a 2SLS strategy for

net imports. Following Autor et al. (2013) our first stage in this specification includes

an analogous second instrument reflecting the change in exports to Japan from the

same set of high-income countries. An important caveat is that our exports instru-

ment is not statistically significant in the first stage once controlling for our main

imports instrument. Nonetheless, our results are virtually unchanged from column

(1) of Table 2.5. In column (6), we again follow Autor et al. (2013) and construct

a measure of imports that isolates final goods from intermediates, exploiting 1972

input-ouput data from the Bureau of Economic Analysis (BEA; see Appendix B.1.7

for more details). If anything here we find a stronger effect on disparities.

30Note that we are unable to compute a race-specific ∆IPWui,1990−1970 as we lack a sufficient sample
of black manufacturing workers in 1960, or any race-specific employment data in the CBP. However,
the argument against using a race-specific measure in this case is particularly strong. It rules out,
for instance, that white workers who are displaced by trade do not in turn displace black workers in
unaffected industries.
31This is especially a concern given the imputation method used in constructing the 1960 CZ-level
industry distribution.
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2.4.2 Understanding the Mechanisms of the Disparate Impact

Skill Upgrading in Manufacturing

The previous subsection established that Japanese trade caused an influx of white

workers into manufacturing, replacing black workers who dropped out of the labor

force. We now analyze the mechanisms that caused this disparate impact.

We first explore heterogeneous effects by skill group in Table 2.7. We divide our

sample by race and education: high school dropouts, high school graduates, and

college educated.32 Due to the small number of college educated black workers, par-

ticularly in 1970, we are unable to explore effects for this subgroup. We then estimate

equation (2.2) separately for each group.

First, in Panel A we find high school dropouts moved out of manufacturing and

into non-manufacturing employment. However, underlying this is substantial hetero-

geneity. Black high school dropouts saw a large decrease in manufacturing employ-

ment, roughly half of which manifests itself in higher non-labor force participation.

The drop in manufacturing employment for white non-manufacturing workers is sta-

tistically insignificant. Instead, they see large gains in non-manufacturing employment

fueled by higher labor force participation.

We see little effect of Japanese import competition on the labor market outcomes

of high school graduates in Panel B. Black workers saw decreases in labor force par-

ticipation, but it is unclear to what extent this was due to lower manufacturing

employment or a shifting of the unemployed out of the labor force, both of which

have non-trivial but imprecisely estimated effects. White high school graduates saw

a small, though statistically significant increase in unemployment, but no substantial

effects on any other outcome. In Panel C, we see that all of the gains in manufac-

turing employment came from college educated workers, particularly among whites.

This was fueled by a corresponding drop in non-manufacturing employment.

The results in Table 2.7 are strongly suggestive of blacks being disparately affected

by a change in the demand for skill within manufacturing. While we cannot directly

rule out all other factors for the racial differences in outcomes among high school

dropouts, we note the substantial differences in skills within the same quantity of

education because of historical differences in school quality.33 We find only mild evi-

32High school graduates have exactly 12 years of education, while we define college educated as those
with more than 12.
33For example, in the National Longitudinal Survey of Youth 1979 cohort, which due to their later



55

dence for negative effects on higher skill blacks, and the positive employment effects

accrued entirely to our highest measurable skill group, college educated whites.

While quality of education data is not itself readily available in the Census, the

“Great Migration” presents the opportunity to look for heterogeneous effects within

black workers who plausibly differed in schooling quality. From 1940 to 1970, 4 million

blacks moved out of the rural South. Due to both differences in resources and as a

consequence of segregation, we would expect these workers to have lower quality

formal education than their Northern born counterparts.34 To explore how the effect

of Japanese trade differed among blacks born in and outside of the South, we restrict

attention to CZs which had a substantial population of Southern and non-Southern

born blacks.35 We then calculate employment outcomes in each CZ separately for

these groups, and estimate an analogous set of regressions to Table 2.5.

There are some important caveats to this exercise. First, the skill levels of Southern

born blacks in 1990 will look much different than in 1970. Even before desegregation

in the 1960s, black Southern schools were seeing improvements on many measurable

dimensions (Card and Krueger, 1992). Further, given that the Migration ended by

1970, many Southern born blacks in the North will be children of migrants that

were educated primarily in higher quality Northern schools. Our census division fixed

effects (and their interactions with the Southern born indicator) should alleviate some

of these concerns. It is not obvious why import exposure (or our instrument) would

be correlated with changes in the relative skill-level of Southern born blacks beyond

these regional differences, though it cannot be ruled out.

We display the results of this exercise in Table 2.8. Remarkably, within this sample

of CZs we see only mild evidence for negative effects for black workers born outside

of the South, concentrated on labor force participation. In contrast, we see strong

evidence for negative impacts on Southern born black employment outcomes.

birth year would be a cohort with a lower school quality gap than the majority of the black working
age population in both 1970 and 1990, white high school drop outs actually scored in higher per-
centiles of the Armed Forces Qualifying Test than black high school graduates. See also Lang and
Manove (2011), who show that blacks are incentivized to receive higher levels of formal education
relative to their skill level in the presence of statistical discrimination.
34For example, in 1940 Southern blacks attended schools which with 25% higher pupil-teacher ratios
and 10 percent shorter terms than Southern whites (Card and Krueger, 1992). Northern black
newspapers expressed concern that these new Southern migrants would hurt the reputation of the
local black workforce (Grossman, 1991). See Boustan (2009) for more discussion of skill differences
between Great Migrants and Northern-born blacks.
35We make a similar restriction to that in our main results, requiring at least 500 working age
Southern and non-Southern born black males in both 1970 and 1990. This restriction leaves us with
a sample of 185 CZs.
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In Table 2.9 we look for direct evidence of skill upgrading in manufacturing. The

first two columns look at the education composition of manufacturing jobs. We find a

$1,000 increase in Japanese import competition led to .89 percentage point increase

in the share of manufacturing jobs held by college educated workers. We also estimate

a decrease in the share held by high school dropouts, though this is not statistically

significant. The final four columns look at the occupation composition of manufac-

turing. We find that a $1,000 import increase led to a .14 percentage point increase

in the share of manufacturing employment held by managers and professionals (col-

umn 3), all of which is accounted for by an increase in engineers (a subcategory of

professionals, column 4). In contrast, we see no change in the share of employment

to production workers (column 5). However, in column (6) we see an increase in the

skill level of production workers. The share of manufacturing employment belonging

to college educated production workers rose by .65 percentage points for every $1,000

increase in Japanese imports.

Japanese Trade and the Geography of Employment

In Table 2.10 we explore the impact of trade on the distribution of workers and

jobs across geographies using Census population tabulations from the NHGIS. In

column (1) we first look at changes in CZ population in response to Japanese import

competition. The empirical treatment of CZs as separate labor markets relies in part

on the idea that workers are slow to migrate across CZs in response to changes in

economic conditions. Consistent with several previous studies (e.g., Bound and Holzer,

2000; Autor and Dorn, 2013), and despite the long time horizon we look at, we do not

find any evidence of aggregate out-migration from CZs in response to Japanese trade.

However, when we instead look at the share of the commuting zone population that is

black in column (2), we find that imports exposure caused CZs to become blacker.36

In other words, despite blacks bearing the negative economic effects of trade, CZs

which faced a high degree of import competition experienced increases in the black

population, offsetting any out-migration from whites or non-black minority groups.

While surprising on its face, this is consistent with work by Glaeser and Gyourko

(2005) that shows that weak labor demand causes increases in the population of

low-skill workers who are attracted by the now lower prices of housing.

36Consistent with this, we also find a positive effect of Japanese import competition in a regression
on log black population. These results are available upon request.
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In columns (3) and (4) we instead look at the distribution of workers within

a CZ between the central city and the suburbs.37 While we find little evidence that

central city populations declined, we find strong evidence that the black share of their

population increased; a $1,000 increase in Japanese import competition increased

the black share of the central city population by 1.6 percentage points. Thus, white

residents left the inner cities in response to trade, and were replaced by an inflow of

new black residents, which is again consistent with the work of Glaeser and Gyourko

(2005).

A popular explanation for black-white employment differences is the “spatial-

mismatch” hypothesis originally advanced by Kain (1968). That is, jobs are located

in areas where black workers do not live and are difficult for them to reach. The

previous set of results are suggestive of this mechanism if jobs followed white workers

to the suburbs. In column (5) of Table 2.10 we find little evidence that manufacturing

jobs shifted from residents of central cities to residents of suburbs. In column (6) we

use data from the 1987 and 1972 CoM to look at the location of jobs themselves, and

likewise find no evidence they moved out of central cities.38

Other Explanations: Prejudice and Unions

Unionization in the United States remained relatively high in 1970, particularly

for manufacturing workers. Another hypothesis is that whites were insulated from this

trade shock due to better union protections. This seems unlikely given that blacks

actually had higher unionization rates than whites throughout the 70s and 80s (Farber

et al., 2018). Further, testing this hypothesis is difficult, given that unionization data

for this time period is notoriously poor. For example, the CPS does not begin tracking

unionization rates until 1973, and even these are only available at the level of often

arbitrary state groupings. Nonetheless, we followed recent work by Farber et al. (2018)

and constructed state-level estimates of unionization rates for the 1967-1972 time

period using data from Gallup surveys. As unionization rates are largely driven by

industrial composition, we took the residual of this variable from a regression on state-

37We remind the reader that we have a reduced sample size here as only 167 CZs have a Census-
defined central city in 1970. All of our main results from Section 2.4.1 are robust to using just these
167 CZs (results available upon request).
38As discussed before, the CoM is not conducted simultaneously with the Census, but instead
at a different set of five year intervals. Consistent with Table 2.4, we find no effect on CZ-level
manufacturing employment from trade in the 1972-1987 period. However the CoM does not track
employment by race, so we cannot replicate our main results using these data.
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level manufacturing share, and then matched it to the state of the largest city in each

CZ. Column (1) of Table 2.11 includes this variable along with its interaction with

CZ-level import competition in our main manufacturing specification, while column

(2) adds interactions with race.39 While our results suggest that unionization may

have shielded manufacturing jobs from import competition, we find no evidence that

whites received greater protections.

Another alternative explanation for our findings is that, when forced to lay off

workers due to increased Japanese competition, managers chose to only lay off blacks

due to racial prejudice. If this were the case, it is not clear how such managers were

then able to gather resources to hire high-skill whites. That notwithstanding, we

tested this hypothesis using county-level voting data from the Atlas of U.S. Presi-

dential Elections for the 1968 presidential election, which included George Wallace, a

serious pro-segregation third party candidate.40 In column (3) of Table 2.11 we include

an indicator for whether the CZ was at or above the national median in Wallace vote

share, along with its interactions with race and import penetration.41 If anything,

blacks appear to have seen less negative effects from trade in highly prejudiced areas.

Column (4) instead includes an indicator for whether the CZ was at or above the

median of its census division, with similar results.

2.4.3 The Impact of Japanese Trade on Earnings

In the previous sections we established that Japanese trade led to a displacement

of the relatively low-skill black population from manufacturing and a replacement

with the relatively higher-skill white population. We now explore how these structural

changes influenced black financial outcomes.

In the first three columns of Table 2.12, we estimate the impact of Japanese

competition on median male wages and earnings.42 These results must be taken with

39We see a small reduction in sample size here as not all states were surveyed by Gallup.
40Wallace received 13.5% of the popular vote and won five states. Since 1948, Wallace is the only
third party candidate to have won a state, and only H. Ross Perot in 1992 received a higher vote
share.
41We exclude CZs in Louisiana, as parish-level voting data is not available.
42We prefer working with medians for several reasons. First, earnings data is topcoded, and the
topcode varies across censuses. Second, medians will be less sensitive to outliers, which is relevant
particularly for smaller CZs that contain few black workers. Finally, we cannot calculate a mean
log earnings inclusive of non-earnings as in column (3) of Table 2.12 as the log of 0 is undefined. In
Appendix B.2.9, we report results using means and generally find results which are less negative but
consistent with those reported here.
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caution because of the effect of Japanese import competition on the composition

of employment. While we saw in Table 2.7 trade caused a movement of high-skill

whites into manufacturing, these workers were primarily drawn from employment in

non-manufacturing. The strongest net employment effects were an increase in the

labor force participation of the lowest skill whites and a decrease in the labor force

participation of the lowest skill blacks. It is therefore not surprising that we see no

disparate impact on weekly wages of those with earnings in column (1). In column

(2), we find a negative, but statistically insignificant effect on the black-white annual

earnings gap for these workers.

However, as is well-known in the literature (e.g., Butler and Heckman, 1977;

Brown, 1984; Chandra, 2003) and can be seen in Table 2.5, estimates of changes

in the earnings gap in this time period can understate the true magnitude of the

changes in relative black financial circumstances due to the large decrease in labor

force participation by black men. In column (3), we estimate the impact on median

male earnings inclusive of individuals who report zero income.43 Once we allow for

non-earners we see a large and statistically significant negative impact of trade on

black workers, with little impact on whites. Our estimate suggests a $1,000 increase

in Japanese import competition led to a 3.6 log point increase in the black-white

median earnings gap.

The final three columns of Table 2.12 look at household finances.44 The impact

of reduced black male employment may have been partially offset if other household

members, including black women, found employment opportunities in response. The

ability to do so is hampered by the fact that black women’s labor force participation

has historically been higher than whites’ (Neal, 2004). We see this was not the case

for earnings in column (4). While the economic standing of white families did not

change in response to import competition, the median black-white family earnings

gap rose by 2.6 log points for every $1,000 of exposure. We see a smaller effect when

we look at household income rather than earnings in column (5), which appears to

be due to a relative increase in welfare recipiency (column 6).

Interestingly, we also find increased welfare recipiency for white families. Because

43While the log of 0 is undefined, this does not cause problems for calculating median earnings as
we simply assume these earnings are below median. After performing the winsorization, there is no
commuting zone in which the median worker of any race reported 0 earnings.
44We calculate the sum of all income of individuals in the household ages 16-64 and divide by the
total number of 16-64 year olds in the household. The race of the household is determined by the
race of the household head.
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welfare is an outcome that specifically measures the economic health of those near

the bottom of the income distribution, this further suggests the importance of the

demand for skill. While white high school dropouts do not appear to be affected on

the aggregate, perhaps due to historical differences in school quality, within the left

tail of this group should be a set of workers more comparable in skill to black high

school dropouts. Those workers should reasonably have felt similar impacts of trade

as low-skill blacks. The evidence of increased welfare recipiency supports this story.45

2.4.4 Quantifying the Impact of Japanese Trade

Our previous results have shown that Japanese import competition exacerbated

racial differences in employment, earnings, and the financial standing of households. In

Table 2.13 we perform two back of the envelope calculations to quantify these impacts.

First in column (1) we calculate the national change in the racial gap from 1970-1990

across several economic variables using the full IPUMS samples of the respective

Decennial Censuses. Note that this includes geographies excluded from our regression

analysis due to the small number of black workers living in these communities. We

show descriptive statistics for this sample in Appendix B.2.10. In general, we see that

blacks appear to perform slightly better in the national sample relative to what we

see in our regression sample in Table 3.4, though the trends are similar.46

The average black worker lived in a commuting zone which was exposed to $1,413

(in 1999 dollars) worth of new Japanese imports, while the average white worker

was exposed to $1,601. In column (2) we use these values, as well as our estimates

from Tables 2.5 and 2.12 to estimate the change in national disparities were Japanese

imports to have remained at 1970 levels for both white and black workers. This

will overstate the explanatory power of trade if part of the import increase was due

to domestic demand increases, and demand-induced imports have a smaller impact

on racial disparities than imports induced by exogenous factors. In column (3), we

45As an additional test of this hypothesis, we calculated what percentile in each CZ the median
black earner would have been in the 1970 white distribution. Similar to Bayer and Charles (2018),
we then compared the change in black median male earnings to the earnings of this percentile white
in response to Japanese trade. When we considered only those with positive earnings, we found a
strong negative impact on whites near the median of the black distribution, despite no negative
impact on median black earnings. However, once including those without earnings, we found a large
negative impact on median blacks and no evidence of negative effects on comparable whites, similar
to those reported in Table 2.12. These results are available upon request.
46This is possibly due to the CZs outside of our regression sample being exposed to less Japanese
trade, which we have shown negatively impacted black workers.



61

follow Autor et al. (2013) and Acemoglu et al. (2016) and obtain a more conservative

estimate using just the exogenous increase in imports determined by our instrument.

We first multiply the realized per worker import increases by the partial R2 from the

first stage regression (.764), and then compute our counterfactuals as before using

these values.

There are some important caveats to this exercise. Because our identification is

entirely from cross-commuting zone exposure, these estimates are best viewed as

accounting for only the direct effects of foreign competition. They will not take into

account, for example, a common national effect on racial disparities caused by access

to lower prices, higher quality, or increased variety of consumer goods. They will

also not take into account changes caused by movements of capital out of highly

affected CZs and redistributed in a way orthogonal to trade exposure.47 Nonetheless,

we believe these estimates are informative on the importance of trade in explaining

changes in disparities.

The impact is substantial. We can explain 66-86% of the relative decrease in black

manufacturing employment, and 17-23% of the relative rise in black non-labor force

participation due to Japanese import competition. In the absence of this trade influx,

the median earnings gap for working age males would have seen a 34-44% slower

divergence, while household earnings would have converged at 1.7-2.0 times the rate.

Welfare recipiency would have grown by 37-48% less.

2.5 Conclusion

Much of the popular press has focused on the effects of Chinese import competition

on white working class communities. But many of the identified impacts, including

declines in manufacturing employment, labor force participation, and earnings, are

reminiscent of the economic hardships experienced by black communities in the 1970s

and 1980s. Using modern methods, we find strong evidence that import competition

in this time period from Japan played a sizable role in these hardships. Every $1,000

increase in imports exposure per worker resulted in a decrease in black manufacturing

47For example, these calculations may overstate the overall negative impact of Japanese trade if it
caused a relocation of manufacturing firms from the North to the South, and these new Southern
factories employed blacks at high rates. While our primary identification strategy is not able to
account for such changes, in unreported results we found, using cross-industry differences in Japanese
import exposure, that trade competition had no impact on the propensity of industries to increase
Southern employment.
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employment by .59 percentage points, a rise in labor force non-participation of .46

points, and a decline in median household earnings by 2.8 log points.

However, we do not see evidence for aggregate losses for the American manufac-

turing sector. Instead we find a shifting of employment, particularly from low-skill

blacks to high-skill whites. Thus the net effect of this period of globalization was a

redistribution of welfare from a disadvantaged community to an advantaged one. Our

results suggest that the costs of foreign competition in the 1970s-1980s were obscured

by disproportionately loading onto black Americans. They also provide a wealth of

evidence that increased import exposure was instrumental in the stalling of black

economic progress during this time period, mirroring the effects widely acknowledged

for white working class communities in the 2000s.

To the extent that these disparities were caused by changes in the demand for

low-skill manufacturing workers, one natural question is to ask whether this reversal

was inevitable. The subsequent national declines in American manufacturing have

been accompanied by changes in technology which have made the remaining sector

more high-skill (Charles et al., 2018). However, the timing of the Japanese trade

shock may have made it particularly damaging. Black workers had only recently

made advances in manufacturing. The inability to sustain this success may have

played a role in the failure to close gaps for longer-term progress markers, such as the

home ownership (Collins and Margo, 2001). It likewise conceivable that this economic

disruption reduced the ability of parents to invest in human capital for the next

generation. Indeed, progress on education and test gaps would begin to stall and

reverse at the end of the 1980s, concurrent with a rise in youth incarceration and

drug violence (Neal, 2006; Evans et al., 2016). Had blacks continued to make economic

progress during these decades, they may have been less vulnerable to skilled biased

technical change and mechanization during the 1990s and 2000s.
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Figure 2.1.: Ratio of Median Earnings for Working Age Population: Black
Men/White Men, 1962-1999

Notes -

Source - Current Population Survey (1962-1999).
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Figure 2.2.: Ratio of Employment Rates for Working Age Population: Black
Men/White Men, 1962-1999

Notes - Yearly scatterplot data smoothed using LOWESS with bandwidth=0.15

Source - Current Population Survey (1962-1999).
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Figure 2.3.: Fraction of Employment in Manufacturing: Working Age Men, 1962-1999

Notes - Yearly scatterplot data smoothed using LOWESS with bandwidth=0.15

Source - Current Population Survey (1962-1999).
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Figure 2.4.: U.S. Import Penetration Ratio in Manufactured Goods for Japan, 1968-
1992

Source - Authors’ calculations using trade data from UN Comtrade and domestic output data from the BEA.
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Table 2.1.: Descriptive Statistics: Regression Sample

Black White ∆Gap

1970 1990 1970 1990
(1) (2) (3) (4) (5)

Percentage of population 19.432 13.372 23.620 18.147 -0.587
employed in manufacturing (8.68) (6.27) (8.73) (6.29)

Percentage of population 51.588 48.695 59.078 62.997 -6.811
employed in non-manufacturing (10.18) (9.69) (8.34) (7.20)

Unemployed share 4.380 9.808 2.748 4.311 3.866
of population (1.85) (2.83) (0.99) (1.14)

Labor force 24.531 28.084 14.530 14.447 3.637
non-participation rate (5.16) (6.27) (2.99) (3.02)

Median log weekly wage, 613.088 613.290 652.737 650.471 2.467
male earners (27.25) (18.38) (14.86) (16.06)

Median log annual earned 996.847 995.625 1043.513 1040.489 1.803
income, male earners (29.87) (20.49) (16.15) (17.19)

Median log annual earned 977.015 948.890 1035.449 1030.179 -22.855
income, all working-age males (37.81) (34.56) (18.09) (21.93)

Median log HH 933.542 947.747 989.553 1003.265 0.493
earned income (37.27) (30.98) (16.15) (21.18) (0.00)

Median log HH 939.089 958.054 990.343 1010.350 -1.041
total income (35.47) (26.96) (15.93) (19.35) (0.00)

HH welfare rate 14.142 18.064 2.842 4.374 2.389
(4.55) (5.55) (1.23) (1.78) (0.00)

Observations 358 358 358 358

Notes - Standard deviations in parentheses. Percentage and rate variables are scaled in percentage points, while

earnings and income variables are scaled in log points.

Source - 1970 form 1 and 2 1% metro and 1990 5% IPUMS samples of the United States Decennial Census.
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Table 2.2.: Value of Trade with Japan for the U.S. and Other Selected High-Income
Countries and Value of Imports from all Other Source Countries, 1970-1990

Imports from Exports to Imports from
Japan Japan rest of world

(1) (2) (3)

Panel A: United States
1970 25.2 19.8 146.3

1990 119.7 61.9 538.6

Growth 1970-1990 374% 213% 268%

Panel B: Six other developed countries
1970 4.8 6.8 97.9

1990 23.7 20.1 311.8

Growth 1970-1990 389% 194% 219%

Notes - Values are in billions of 1999 U.S. Dollars.

Source - UN Comtrade

Table 2.3.: Japanese imports to the U.S. and to Other Countries: First Stage Esti-
mates

(∆Imports to US)/worker

(1) (2)

(∆ Imports from Japan 4.694*** 4.949***
to OTH)/worker (0.395) (0.537)

Controls No Yes
Observations 358 358
R2 0.764 0.786

Notes - Robust standard errors clustered by state in parentheses. Models are weighted by 1970 population. Regres-

sion in column (2) includes census division fixed effects and commuting zone-level controls for black percentage of

population, foreign-born percentage of population, percentage of employment in manufacturing, college percentage of

the population, average offshorability index of occupations, and percentage of employment in routine occupations in

1960; ∗p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01
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Table 2.4.: Japanese Imports on Change in Manufacturing Employment/ Working
Age Population in CZs, 1990-1970 Long Difference: 2SLS Estimates

All White Black

(1) (2) (3) (4) (5)

(∆ Imports from Japan -1.264*** -0.096 0.034 0.193* -0.592***
to US)/worker (0.427) (0.199) (0.111) (0.117) (0.137)

Percentage of employment -0.295*** -0.222*** -0.238*** -0.187**
in manufacturing1960 (0.032) (0.044) (0.046) (0.078)

Black percentage of -0.053** -0.050** -0.054
population1960 (0.025) (0.025) (0.039)

College percentage -0.204*** -0.220*** -0.272***
of population1960 (0.067) (0.067) (0.093)

Foreign-born percentage 0.003 0.017 0.039
of population1960 (0.048) (0.045) (0.081)

Average offshorability 0.079** 0.062 0.194***
index of occupations1960 (0.035) (0.038) (0.053)

Percentage of employment -0.108 -0.087 -0.163*
in routine occupations1960 (0.067) (0.072) (0.098)

Census Division FE No No Yes Yes Yes
Observations 358 358 358 358 358

Notes - Robust standard errors clustered at the state-level in parentheses. Models are weighted by 1970 population.

∗p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01

Table 2.5.: Japanese Imports and Change in Racial Employment Status Gap, 1990-
1970 Long Difference: 2SLS Estimates

Mfg Non-mfg Unemp NILF
emp emp

(1) (2) (3) (4)

(∆ Imports from Japan 0.193* -0.097 -0.010 -0.086
to US)/worker (0.117) (0.096) (0.034) (0.054)

(∆ Imports from Japan -0.785*** 0.228 -0.071 0.542***
to US)/worker× Black (0.173) (0.217) (0.127) (0.121)

Observations 716 716 716 716

Notes - Robust standard errors clustered at the state-level in parentheses. Models are weighted by race-specific

1970 population. Each regression includes census division fixed effects; commuting zone-level controls for percentage

of employment in manufacturing, college percentage of the population, average offshorability index of occupations,

percentage of employment in routine occupations, black percentage of population, and foreign-born percentage of

population in 1960; a black indicator; and interactions of the black indicator with all of these variables. p ≤ 0.10, ∗∗p ≤
0.05, ∗ ∗ ∗p ≤ 0.01
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Table 2.6.: Japanese Imports on Change in Manufacturing Employment/ Working
Age Population in CZs, 1990-1970 Long Difference: Robustness Exercises

Race- 1-dig Gross Net imports Final
specific shares imports goods

2SLS 2SLS OLS OLS 2SLS 2SLS
(1) (2) (3) (4) (5) (6)

(∆Imports from Japan 0.187 0.268 0.211** 0.166* 0.213* 0.227
to US)/worker (0.157) (0.189) (0.122) (0.139) (0.109) (0.146)

(∆Imports from Japan -0.638*** -0.509** -0.595*** -0.564*** -0.830*** -1.035***
to US)/worker× Black (0.159) (0.211) (0.135) (0.140) (0.187) (0.233)

Observations 716 716 716 716 716 716

Notes - Robust standard errors clustered at the state-level in parentheses. Models are weighted by race-specific

1970 population. Each regression includes census division fixed effects; commuting zone-level controls for percentage

of employment in manufacturing, college percentage of the population, average offshorability index of occupations,

percentage of employment in routine occupations, black percentage of population, and foreign-born percentage of

population in 1960; a black indicator; and interactions of the black indicator with all of these variables. p ≤ 0.10, ∗∗p ≤
0.05, ∗ ∗ ∗p ≤ 0.01
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Table 2.7.: Japanese Imports and Change in Employment Status by Race and Skill
Group, 1990-1970 Long Difference: 2SLS Estimates

Mfg Non-mfg Unemp NILF
emp emp

(1) (2) (3) (4)

Panel A: HS Dropouts
All Workers
(∆ Imports from Japan to US)/worker -0.271** 0.353*** 0.044 -0.123

(0.109) (0.089) (0.058) (0.116)

Black Workers
(∆ Imports from Japan to US)/worker -0.877*** 0.295 0.112 0.406*

(0.109) (0.204) (0.120) (0.216)

White Workers
(∆ Imports from Japan to US)/worker -0.090 0.402*** 0.050 -0.345***

(0.119) (0.089) (0.045) (0.129)

Panel B: HS Grads
All Workers
(∆ Imports from Japan to US)/worker -0.202 0.105 0.059 0.036

(0.155) (0.112) (0.042) (0.049)

Black Workers
(∆ Imports from Japan to US)/worker -0.263 0.012 -0.228 0.350*

(0.283) (0.344) (0.168) (0.193)

White Workers
(∆ Imports from Japan to US)/worker -0.079 0.043 0.092** -0.035

(0.160) (0.129) (0.038) (0.057)

Panel C: College Educated
All Workers
(∆ Imports from Japan to US)/worker 0.264* -0.321** 0.044 0.016

(0.158) (0.126) (0.029) (0.090)

White Workers
(∆ Imports from Japan to US)/worker 0.300** -0.312** 0.038 -0.028

(0.150) (0.121) (0.029) (0.090)

Observations 358 358 358 358

Notes - Robust standard errors clustered at the state-level in parentheses. Models for all workers are weighted by

1970 population. Models for racial subgroups are weighted by race-specific 1970 population. Each entry represents a

separate regression for that race and/or skill group. Each regression includes census division fixed effects; commuting

zone-level controls for percentage of employment in manufacturing, college percentage of the population, average

offshorability index of occupations, percentage of employment in routine occupations, black percentage of population,

and foreign-born percentage of population in 1960. ∗p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01
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Table 2.8.: Japanese Imports and Change in Employment Status for Southern versus
Non-Southern Born Blacks, 1990-1970 Long Difference: 2SLS Estimates

Mfg Non-mfg Unemp NILF
emp emp

(1) (2) (3) (4)

(∆ Imports from Japan to 0.016 -0.028 -0.244* 0.237*
US)/worker (0.181) (0.284) (0.130) (0.132)

(∆ Imports from Japan to -0.586* -0.084 0.323*** 0.264
US)/worker× Southern Born (0.347) (0.476) (0.073) (0.193)

Observations 370 370 370 370

Notes - Robust standard errors clustered at the state-level in parentheses. Models are weighted by group-specific

1970 population. Each regression includes census division fixed effects; commuting zone-level controls for percentage

of employment in manufacturing, college percentage of the population, average offshorability index of occupations,

percentage of employment in routine occupations, black percentage of population, and foreign-born percentage of

population in 1960; a Southern-born indicator; and interactions of the Southern-born indicator with all of these

variables. The sample includes CZs with a population of at least 500 Southern born and 500 non-Southern born

working age black males in 1970 and 1990. p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01

Table 2.9.: Japanese Imports and Change in Skill Composition of Manufacturing,
1990-1970 Long Difference: 2SLS Estimates

Share of Manufacturing Employment

College HS Prof Eng Prd College
dropout wrk prd wrk

(1) (2) (3) (4) (5) (6)

(∆ Imports from Japan 0.892*** -0.248 0.143* 0.154*** -0.056 0.648***
to US)/worker (0.221) (0.204) (0.087) (0.035) (0.103) (0.123)

Observations 358 358 358 358 358 358
1970 mean of DV 19.7 43.2 13.0 3.5 65.9 5.0

Notes - Robust standard errors clustered at the state-level in parentheses. Models are weighted by 1970 population.

Left-hand side variable in column (1) is the share of manufacturing employment belonging to college educated workers.

Left-hand side variable in column (2) is the share of manufacturing employment with less than a high school degree.

Left-hand side variable in column (3) is the share of manufacturing employment in management and professional

occupations. Left-hand side variable in column (4) is the share of manufacturing employment in engineering occu-

pations. Left-hand side variable in column (5) is the share of manufacturing employment in production occupations.

Left-hand side variable in column (6) is the share of manufacturing employment belonging to college educated workers

in production occupations. Each regression includes census division fixed effects; and commuting zone-level controls

for black percentage of population, foreign-born percentage of population, percentage of employment in manufactur-

ing, college percentage of the population, average offshorability index of occupations, and percentage of employment

in routine occupations in 1960. p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01
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Table 2.10.: Japanese Imports and Changes in the Geography of Employment, 1990-
1970 Long Difference: 2SLS Estimates

CZ Population Central City Central City
Population Man Share

Log Share Log Share Share Share
pop black pop black reside jobs
(1) (2) (3) (4) (5) (6)

(∆ Imports from Japan 0.982 0.183*** -0.176 1.552*** -0.415 0.479
to US)/worker (0.894) (0.059) (0.235) (0.235) (0.320) (0.538)

Observations 358 358 167 167 167 167
1970 mean of DV 1386.6 12.3 38.9 21.2 37.5 45.6

Notes - Robust standard errors clustered at the state-level in parentheses. Left-hand side variable in column (1)

is the change in log population of the commuting zone. Left-hand side variable in column (2) is the change in the

share of population that is black in the commuting zone. Left-hand side variable in column (3) is the change in

log population of the central cities within the commuting zone. Left-hand side variable in column (4) is the change

in the share of population that is black in the central cities within the commuting zone. Left-hand side variable in

column (5) is the change in the share of manufacturing workers living in central cities within the commuting zone.

Left-hand side variable in column (6) is the change in the share of manufacturing jobs located in central cities within

the commuting zone. Long difference in columns (1)-(5) is 1990-1970. Long difference in column (6) is 1987-1972.

Each regression includes census division fixed effects; commuting zone-level controls for percentage of employment

in manufacturing, college percentage of the population, average offshorability index of occupations, percentage of

employment in routine occupations, black percentage of population, and foreign-born percentage of population in

1960. ∗p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01
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Table 2.11.: Heterogeneous Effect of Japanese Imports on Change in Manufacturing
Employment/ Working Age Population in CZs by Unionization and Prejudice, 1990-
1970 Long Difference: 2SLS Estimates

Unionization Prejudice

Resid Resid Nat Div
(1) (2) (3) (4)

(∆ Imports from Japan to -0.299 -0.228 0.367** 0.617***
US)/worker (0.395) (0.416) (0.152) (0.238)

(∆ Imports from Japan to -0.764*** -0.838 -1.407*** -1.646***
US)/worker× Black (0.178) (0.666) (0.255) (0.495)

(∆ Imports from Japan to 0.055** 0.044
US)/worker× Union Residual (0.027) (0.027)

(∆ Imports from Japan to 0.017
US)/worker× Union Res.× Black (0.049)

(∆Imports from Japan to -0.258 -0.467**
US)/worker×Wallace (0.177) (0.219)

(∆ Imports from Japan to 0.773*** 0.879**
US)/worker×Wallace× Black (0.297) (0.447)

Observations 708 708 688 688

Notes - Robust standard errors clustered at the state-level in parentheses. Models are weighted by race-specific

1970 population. Each regression includes census division fixed effects; and commuting zone-level controls for black

percentage of population, foreign-born percentage of population, percentage of employment in manufacturing, college

percentage of the population, average offshorability index of occupations, and percentage of employment in routine

occupations in 1960. Columns (1) and (2) include the residual of a regression of 1967-1972 state-level unionization rates

on 1970 state manufacturing share. Wallace indicator in column (3) equals one if the CZ was at or above the national

median in Wallace vote share in 1968 presidential election. Wallace indicator in column (4) equals one if the CZ was at

or above census division median in Wallace vote share in 1968 presidential election. p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table 2.12.: Japanese Imports and Changes in Financial Well-being, 1990-1970 Long
Difference: 2SLS Estimates

Log Log Annual Earnings Log %
Weekly Ann Welf
Wage Inc Recp

Earners Earners All HH HH HH
(1) (2) (3) (4) (5) (6)

(∆ Imports from Japan 0.265 0.517 -0.108 -0.242 -0.121 0.137**
to US)/worker (0.415) (0.340) (0.520) (0.348) (0.307) (0.064)

(∆ Imports from Japan -0.067 -0.305 -3.570*** -2.607*** -1.861*** 0.609***
to US)/worker× Black (0.263) (0.431) (0.830) (0.491) (0.394) (0.106)

Observations 716 716 716 716 716 716

Notes - Robust standard errors clustered at the state-level in parentheses. Models are weighted by race-specific

1970 population. Wage, earnings and income variables are measured as CZ medians. Each regression includes census

division fixed effects; commuting zone-level controls for percentage of employment in manufacturing, college percentage

of the population, average offshorability index of occupations, percentage of employment in routine occupations, black

percentage of population, and foreign-born percentage of population in 1960; a black indicator; and interactions of

the black indicator with all of these variables. p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01

Table 2.13.: Japanese Imports and Change in Racial Disparities, 1990-1970: Back of
the Envelope Calculations

Realized Counterfactual
Change Change

All Exog
(1) (2) (3)

Panel A: Males, 16-64
Manufacturing Employment -1.34 -0.19 -0.46

NILF Rate 3.50 2.71 2.90

Log Median Earnings, All Males -11.38 -6.36 -7.54

Panel B: Households
Log Median Earnings 3.71 7.35 6.49

Welfare Recipiency Rate 1.73 0.90 1.09

Notes - Realized changes calculated from 1970 1% form 1 and form 2 metro and 1990 5% IPUMS samples of the United

States Decennial Censuses, and include individuals living in commuting zones that were not used in regression analysis

due to the sample size of black workers. Counterfactual change calculations in column (2) based on regressions results

from Tables 2.5 and 2.12, given that from 1970-1990, the average black worker was exposed to a $1,413 increase in

Japanese trade competition, while the average white worker was exposed to a $1,601 increase. Counterfactual change

calculations in column (3) instead use vales of $1079.53 and $1,223.16, which reflects the exogenous trade increase

per worker based on a partial R2 of 0.764 in the first-stage regression.
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3. END-OF-LIFE MEDICAL SPENDING: EVIDENCE
FROM PET INSURANCE

3.1 Introduction

In the United States, a large fraction of health spending happens in the last year

of life.1 The important question for policy makers is to what extent does increased

medical care spending cause an increase in health for patients diagnosed with a high-

mortality-rate illness. In both the RAND Health Insurance Experiment (Newhouse,

1993) and the Oregon Experiment (Finkelstein et al. 2012), there was no clear im-

provement in health as a result of the increase in health spending. Long lifespans

make death rates a noisy outcome when working with small samples or short time

periods. One problem is that both studies focused on health in general, rather than

on increased health spending for those at an elevated risk of dying.

Unfortunately, the literature does not have a clear answer to the question, even

when focused on those with an elevated risk of dying. Identifying a causal effect

of additional health care spending is difficult because health insurance benefits are

generally not random. In the United States, people with better jobs tend to have

better health insurance. Using quasi-experimental methods has not produced con-

sistent results. For example, using geographic variation in health care spending for

serious illnesses, Skinner et al. (2005) find no decrease in the mortality rate. How-

ever, using differences in hospital quality for patients with a life-threatening illness

who were randomly allocated between hospitals, Joseph J. Doyle (2011) finds that

increased spending was associated with lower mortality. Melberg (2018) provides a

helpful review of this literature.

In this paper we contribute to this literature by focusing on the pet health care

industry. Using a creative identification strategy based on the timing of benefit re-

newal, we create an environment in which arrival of benefits is quasi-random. And

because pet lifespan is much shorter, we are able to explore death rates as a reliable

measure of health outcomes.

1Aldridge and Kelley (2015) estimate that 13 percent of health care costs in the United States was
for care in the last year of life.
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While pets are not people, we believe there is much to be learned from the pet

health care industry. Researchers have noted striking similarities between human

and pet health care spending patterns. Using a small extract of billing data from a

pet hospital in California, Einav et al. (2017) document a large end-of-life spike in

spending for dogs diagnosed with lymphoma. They compare this spending spike to a

similar increase for Medicare patients diagnosed with lymphoma. They also note that

“most dogs die cheaply” because there is no sharp increase at the end of life for the

median dog, as opposed to the median Medicare patient. Instead, a smaller group of

dogs drive the sharp end-of-life spending increase. As noted by these authors, the pet

owners’ financial status is likely an important component of pet health care decisions

and ultimate outcomes.

In this paper we focus specifically on how the availability of health insurance

reimbursement funds affects pet health after a serious cancer diagnosis. We analyze

a sample of dogs who have been diagnosed with very serious cancer, and who have a

health insurance plan. We ask whether the availability of insurance benefits affects the

amount of treatment the dog undergoes. Availability of benefits varies exogenously

by the point in time during the policy term that the dog is diagnosed. A policyholder

whose dog is diagnosed late in the policy term will have the option to “double up”

on benefits, by using the benefits available to them this term now, and the benefits

available to them next term in the near future. Policyholders whose dogs are diagnosed

early in the term, in contrast, will have to wait nearly a year for their benefits to renew.

We ask whether this difference in timing has any effect on the policyholder’s pet care

decisions.

Our analysis is guided by a two-period model in which pet owners make cancer

treatment decisions by responding to current and future benefit availability, the cost

of treatment, and the probability that the treatment will be successful. Given that the

treatment is expensive enough to prohibit at least some pet owners from treating, the

decision to treat is increasing in the probability that the treatment will be successful.

We demonstrate that the probability of successful treatment is conditional on the age

of pet, where older dogs are less likely to survive the initial months of treatment.

Because of this, pet owners tend to spend less on older dogs with the same diagnosis.

In the next stage of analysis, we hold the success probability fixed by analyzing each

age group separately, and including additional age controls.

We then turn to the impact of availability of insurance benefits on health care

decisions and outcomes. The model predicts that a pet owner whose benefits will
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renew in the next period will be more likely to treat. We find that the availability

of insurance benefits does affect spending behavior. Young dogs, ages 2 to 5, receive

nearly one extra vet visit on average over the next 6 months if they are diagnosed

late in their policy term. They also receive more medical care as indicated by higher

spending over the next year, concentrated in the first 3 months. These differences are

apparent only for young dogs, however. Old dogs, ages 6 to 9, do not experience any

spending boost from a late-in-term diagnosis. Very old dogs, ages 10 to 12, actually

experience a dip in spending over subsequent months if they are diagnosed late in the

policy term.

This finding tells us that pet health care decisions are largely dependent on the

age of the dog. Pet owners are more likely to ramp up spending if their dog is still

young. We attribute this difference to the likelihood that treatment will be successful,

since older dogs have higher death rates even conditional on amount of treatment.

While we see effects on health care decisions, these effects do not translate to different

outcomes for the pet in any age group. We find no significant difference in death rates

for any age group in the months following diagnosis.

Finally, we explore heterogeneous effects by cost of treatment for young dogs. The

model predicts that more expensive treatments will have stronger effects. Consistent

with this prediction, we find that the effect of a late diagnosis on spending is increasing

in cost of treatment. The effect of a late diagnosis on pet death in the next 12 and 24

months is decreasing in the cost of treatment. This suggests that while we do not find

an impact of a late diagnosis on pet outcomes overall, the most expensive treatments

are indeed sensitive to the timing of benefits.

Apart from any extrapolation made between the results here and human health

care, these pet health care results are interesting for what we learn about pets. About

half of all US households (64 million) have at least one pet.2 Dogs are the most com-

mon pet in the U.S. with an estimated 77 million dogs in total.3 Given the importance

of dogs in the modern lifestyle, our investments in their health care are likely of in-

terest to many.

2The U.S. Census Bureau’s American Housing Survey (2017) of 30,000 randomly selected households
implies that 49 percent of households have at least one pet. The Simmons National Consumer Study
(2018) survey of 25,000 randomly selected households suggests that 53 percent of households have
a pet. Results from this survey are not released publicly, but the pet data was reported on by the
Washington Post (Jan 31, 2019).
3Both the Simmons National Consumer Study (2018) and the American Veterinary Medical Asso-
ciation Survey (2016) estimate that 38 percent of U.S. households have one or more dogs.
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3.2 Model

We propose a simple model of the behavior of pet owners who own a dog who

becomes ill with cancer in period 1. The pet owners in our model each have a pet

health insurance policy which will pay up to benefit level B of the cost of cancer

treatment. Each pet owners’ utility is H in periods in which the dog is healthy, −C
in periods in which the dog is sick, and 0 after the dog dies. The pet owner has three

choices: (1) veterinary treatment which, with probability p, will result in the dog

being healthy, (2) euthanization which will result in a utility level of 0 for the current

and all future periods, and (3) do nothing. All dogs in our model, who have not been

euthanized, die at the end of period 2.

The cancer treatment costs B in each period in which it is provided. The full

amount of treatment is covered by the pet health insurance, but this is the maximum

amount that insurance will cover until the term ends and the new term begins. For

type 1 pet owners, the term began in period 1 and the new B in benefits will not be

available until after period 2. For type 2 pet owners, a new B in benefits becomes

available at the beginning of period 2. Clearly, it is better to be a type 2 pet owner

because insurance will cover B cost of cancer treatment in period 1 and B cost of

cancer treatment in period 2 if needed. For the type 1 pet owners, pet insurance will

cover B cost of cancer treatment in either period 1 or period 2, not both. The timing

of the new term is the only difference between type 1 and type 2 pet owners and we

indicate this by i = 1 or i = 2. We denote the expected continuation utility as Ui and

assume that the pet owners do not discount.

To solve the model, we start in period 2. If the dog was successfully treated in

period 1, the continuation utility is H. If the dog was euthanized in period 1, the

continuation utility is 0. If the dog was either not treated in period 1 or the treatment

was unsuccessful, then the pet owner will need to choose between euthanization or

treatment in period 2. We can rule out doing nothing as a choice because this would

guarantee a period 2 continuation utility of −C which is less than zero. The expected

continuation utility depends on if the pet owner has insurance benefits B available.

If the owner has insurance benefits, expected utility is given by:

E [Ui] =

0 if euthanize

pH + (1− p)(−C) if treat

If the owner has no insurance benefits available (the policy began in period 1 and
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the owner exhausted the benefits due to an unsuccessful treatment in period 1), the

expected utility is given by:

E [Ui] =

0 if euthanize

pH + (1− p)(−C)−B if treat

If the owner has insurance benefits B available, the owner will choose to treat the

pet as long as the probability p of successful treatment is greater than C
H+C

, where C

and H are both positive. If the owner has no insurance benefits available, p must be

greater than C+B
H+C

for the owner to choose treatment. The interesting case is when p

takes an intermediate value:

C

H + C
< p <

C +B

H + C
.

which implies that the owner will only choose the treatment in period 2 if there are

insurance benefits available.

Now consider the owner’s choice in period 1. All pets in this period have cancer

and all owners have insurance benefits B available. Owners of type 1 could choose

to do nothing in period 1, saving their insurance benefits for treatment in period 2,

but this provides lower expected utility than treating in period 1 because there is no

advantage to waiting to treat. If we are in the interesting case where p takes on an

intermediate value as described above, owners of type 1 would choose to euthanize in

period 2 if the treatment is not successful, so we can derive that they will choose to

treat in period 1 only if p > C
2H+C

.

Pet owners of type 2 can use their insurance benefits to pay for treatment in period

1 and after the policy term ends, they will have an additional B in benefits to pay

for treatment in period 2 if needed. We can show that type 2 pet owners will always

choose treatment in period 1 if p is greater than the cutoff for treatment in period

2.4 If p is greater than C
2H+C

, but less than C
H+C

the type 2 pet owners will choose to

treat in period 1 and euthanize in period 2. If p is greater than C
H+C

then type 2 pet

owners will choose to treat in period 1 and if that treatment is unsuccessful, they will

choose to treat again in period 2.

To summarize, if p is greater than C+B
H+C

, both types will choose to treat in period

4Type 2 pet owners will choose to treat in period 1 if p > 3C+3H+
√
C2+10CH+9H2

2(C+H) . For H > 0 and

C > 0, C
H+C > 3C+3H+

√
C2+10CH+9H2

2(C+H) > 0.
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1 and both types would choose treat in period 2 if the treatment in period 1 is

unsuccessful. If p is less than C+B
H+C

but greater than C
H+C

, both types will choose to

treat in period 1, but only type 2 pet owners would choose to treat in period 2.5 If p

is less than C
H+C

but greater than C
2H+C

then both types will choose to treat in period

1, but neither will choose to treat in period 2. Finally, if p is less than C
2H+C

neither

type will choose to treat in period 1.

The implication of this model is that the timing of the pet health insurance term

can have an important impact on the treatment decision. Those who have a pet

diagnosed with a serious, but treatable, disease a short time before the end of the

insurance term can “double up” by having B of veterinary expenses covered in the

current term and another B covered in the next term. However, those who have a pet

diagnosed with a serious disease soon after the beginning of the insurance term, will

only be able to receive B of covered veterinary expenses in total.

3.3 Data

We use claims-level administrative data from Nationwide Pet Insurance, the

largest provider of pet health insurance policies in the United State.6 It is impor-

tant to note that only a small share of dogs in the U.S., about 2 percent in 2018, have

a health insurance plan.7 We observe claims from January 2009 through December

2019 for the universe of pet policy holders. For each claim we observe the date of treat-

ment, a description of each treatment provided, the cost of the treatment as indicated

on the veterinary bill, and the amount reimbursed by the insurance company.

For this study, we select a sample of dogs who were diagnosed with serious cancers

between January 1, 2009 and July 31, 2017, so that we can observe a full 24-month

period from date of diagnosis. We define serious cancers as cancers which are associ-

ated with a death rate 12 months after diagnosis that is greater than 70 percent.8 We

5A larger B implies a greater range of p over which type 2 owners will choose to treat in period 2
but type 1 owners will not.
6Nationwide’s market share is 35 percent. Pet health insurance does not include insurance policies
that cover livestock, horses, or other farm animals. Market share is the percentage of gross written
premiums as reported by the North American Pet Health Insurance Association State of the Industry
Report (2018).
7North American Pet Health Insurance Association State of the Industry Report (2018) reports
1,538,000 active health insurance policies for dogs.
8These include: heart/pericardium neoplasia; thorax neoplasia; metastatic or infiltrative neoplasia;
brain or spinal cord neoplasia; peritoneal neoplasia; osteogenic sarcoma; stomach neoplasia; hepatic
neoplasia; lymphosarcoma; urethral neoplasia; small intestine neoplasia; peripheral vessels neoplasia;
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remove dogs who were diagnosed with a less serious cancer within the 2 years leading

up to their serious cancer diagnosis, since these dogs were already sick. We further

restrict the sample to dogs who are at least 2 years of age but no older than 12 at

the time of diagnosis, and who have had an insurance policy for at least 1 year. This

leaves us with a sample of 33,899 dogs.

We identify the date of diagnosis as the first treatment date in which a cancer-

related medical claim was made. Determining if and when a dog dies from administra-

tive insurance data involves some imputation. If there is a medical claim identifying

pet death (i.e. claim description mentions death, euthanasia, and/or remains care),

we use the date of this claim. If there is a cancellation of the policy, we use the date

of cancellation, assuming that a cancellation when the pet has a serious medical con-

dition indicates medical care ceased and the pet died. Likewise, if the policy is not

renewed after the end of the policy term, and the policy term expired July 31, 2019 or

earlier, we use the date that the term expired. Finally, if there is a denial of benefits

that indicates pet death, we use the date of the medical claim associated with that

denial.

Some imputations are also required for the cost of veterinary treatments. Claims

where the cost of treatment is recorded as $0 are replaced with the median value by

claim code and breed size.9 We also replace cost of treatment values below the 10th

percentile with the 10th percentile and values above the 90th percentile with the 90th

percentile.

We also observe a variety of characteristics of the dog and the policy which we use

as controls. These include indicators for female, 10 breed size categories (mixed and

pure; great, large, medium, small, and toy), age at diagnosis, Census region, and plan

type (including 26 different base plans, 10 wellness riders, and a cancer rider). We also

use as controls total spending in the 12 months leading up to diagnosis, and month

and year of diagnosis indicators. We show summary statistics for our full sample in

Table 3.1.

spleen neoplasia; leukemia; prostate neoplasia; and islet cell tumor.
9For a small number of cases where that claim code and breed size cell is empty, we replace it with
the median value for the claim code.
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End-of-Life Spending

In the human health care system, an important debate is the extent to which

end-of-life spending is a large and growing share of overall medical spending (Mel-

berg, 2018). Among other trends, researchers have noted that end-of-life medical care

declines with age (e.g., Lubitz et al., 1995; Kwok et al., 2011).

We report patterns in end-of-life spending for our sample in Figures 3.6 and 3.6.10

Of the 33,899 in our sample, 31,484 die before the end of the sample period, so we

consider end-of-life spending for these decedents. Overall, nearly $4, 000 or about 40

percent of lifetime medical spending takes place in the last 12 months of life. Pet

owners spend less during the last 12 months of life if their pet is older, and spend less

upon diagnosis for their older pets.

End-of-life spending also increases over time in our sample, from under $3, 300 in

2009 to over $4, 500 in 2017. While this may be connected to an overall increase in

the cost of medical care, this spending as a share of lifetime spending also increases

from 36 to 42 percent during these years.

The Role of Age in Probability of Successful Treatment

In the model, given that the treatment is expensive enough to prohibit at least

some pet owners from treating, the decision to treat is increasing in the probability

that the treatment will be successful. We first demonstrate that the probability of

successful treatment is conditional on age. We estimate the following:

Deathi,t = α0 + α1Oldi + α2V eryOldi + α3Spendingi,t + γXi + εi (3.1)

where Deathi,t is an indicator for death of dog i during time horizon t. Dogs are

divided into three age groups: Young (ages 2-5), Old (ages 6-9), and Very Old (ages

10-12). We control for a variety of factors in the matrix Xi, including plan type, breed

type and size, Census region, cumulative spending in the 12 months before diagnosis,

month and year of diagnosis, and term week of diagnosis. The effect of treatment is

captured by the coefficient on log spending, α3.

We show the results in Table 3.2. While higher spending is associated with a

higher death rate in the very short term (Column 1), for most time horizons higher

10For tables showing these trends, see Section C.1.
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spending is associated with lower death rates. In Column 2, we see that a 100 percent

increase in spending in the first 3 months is associated with a 7.5 percentage point

reduced likelihood of death in those months.

However, even conditional on treatment amount, the age group of the dog plays

an important role in the likelihood of survival. In Column 2, we see that old dogs have

a 9 percentage point higher death rate in the first 3 months, and very old dogs have

a 13.2 percentage point higher death rate. This result establishes that age affects the

probability of successful treatment.

Next, we show that pet owners respond by treating older dogs less. We estimate

the following:

Spendingi,t = α0 + α1Oldi + α2V eryOldi + γXi + εi (3.2)

where Spendingi,t is log spending for dog i during time horizon t. We show the results

in Table 3.3. In Column 4, we see that in the 12 months following diagnosis, old dogs

receive 12.1 percent less medical treatment than young dogs, and very old dogs receive

26.8 percent less.

The conclusion from this analysis is that (1) age affects the probability that treat-

ment will be successful, and (2) the probability of success plays a role in the decision

to treat the pet. For the remainder of the analysis, where we explore the impact of

the timing of benefit renewal, we hold this probability fixed by analyzing each age

group separately. Given the importance of age, we add indicators for age within each

age group, and age by breed size category interaction terms as controls.

3.4 Estimation Strategy

All policies in our sample have a term length of 12 months. Unlike human health

care policies, which are highly seasonal, the Nationwide pet policies have start dates

throughout the calendar year.11

We rely on the assumption that cancer is a random shock that arrives indepen-

dently of the month of term. Some dogs will be diagnosed toward the beginning of

their policy term, so that there are many months until their benefits renew. Other

11A small group of policyholders sign up through a group program, indicated as “group program
payroll” in the “origination” variable. This group, representing about 20 percent of the policy-term
observations, is disproportionately more likely to have policy start dates in December and January
and are removed from the data.
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dogs will be diagnosed toward the end of their policy term, giving their owners the

option to spend their cancer benefits for the current term now, and the benefits for the

next term in the near future. This means dogs diagnosed toward the end of the term

have the possibility of “doubling-up” on benefits over the course of a few months.

We compare dogs who are diagnosed in weeks 5-16 (months 2-4) of their policy

term compared to those who are diagnosed in weeks 41-53 (months 10-12) of their

policy term. We do not include dogs diagnosed in month 1 of their policy term because

the high numbers of vet visits during this month may be associated with a biased

sample of diagnoses uncovered during routine checkups. As shown previously, pet

owners make health care decisions differently depending on pet age therefore we

stratify our analysis to different age groups. Descriptive statistics for this sample of

early-term and late-term diagnosis dogs are reported in Table 3.4.

We are interested in the effect of a late diagnosis on spending, number of vet visits,

and pet death over the subsequent months. Specifically, we estimate the following:

Yi = β0 + β1LateDiagnosisi + γXi + εi (3.3)

where Yi refers to outcome Y for pet i, β0 is a constant, γ is a vector of coefficients on

control matrix Xi, and εi is an error term. β1 is the coefficient of interest, representing

the causal impact of a late term diagnosis on outcome Y .

3.5 Results: Effects of Benefit Renewal

Young Dogs

We report the main set of results for young dogs in Table 3.5. In each regression,

we include the full set of controls. Each column shows the effect of a late diagnosis

on the outcome over a different time horizon, ranging from 1 to 24 months. Starting

with Panel A, we see that dogs diagnosed late in the term do experience an increase

in spending over subsequent months. This suggests that owners are “doubling-up” on

benefits by spending both current and next term benefits. In Panel B, we also see

an increase in the number of vet visits by nearly one third of a visit during the first

month, and nearly a full extra visit over the next six months. Consistent with the

model, this is evidence that the presence of future benefits results in greater health

care spending.

Despite evidence for increased medical care for these pets, we do not find any
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evidence that these pets are better off in terms of mortality. In Panel C, we see that

later diagnosed pets are not less likely to die in the subsequent months. This result is

reminiscent of findings elsewhere that the very high spending on human health care

in the U.S. is not associated with better health outcomes.

Old Dogs

In Table 3.6, we repeat the analysis on older dogs, ages 6 through 9 at time of

diagnosis. Here we see that these pets do not benefit from increased medical spending

by their owner when they are diagnosed late in the policy term. This is consistent

with the model predicting that pet owners will not be sensitive to benefit renewal if

the likelihood of success is too low.

Curiously, late diagnosed dogs in this age group are less likely to die during the 12

and 24 month time horizons, despite no evidence of changes to medical care responses

by the owner.

Very Old Dogs

For very old dogs, ages 10 to 12 at time of diagnosis, we actually find that late

in term diagnoses are associated with less spending over the subsequent months. We

report these results in Panel A of Table 3.7. It is possible that these pet owners are

discouraged by the diagnosis and choose not to renew their policies, resulting in less

spending in subsequent months. This is not associated with fewer vet visits, however,

or any differences in ultimate outcomes, shown in Panels B and C of Table 3.7. It is

possible that there is a divide between pet owners who have zero visits because they

do not renew their policies and those who increase their number of visits, and these

opposing effects cancel each other out.

Common across all three age groups is that later diagnosed pets do not have any

differences in the likelihood of death. This is evidence that increased medical spending

is not associated with a longer lifespan for the dog.

Expensive Treatments

Another prediction from the model is that more expensive treatments will have

larger effects. In this final section, we interact the effect of a late diagnosis with the
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average cost of treatment.12 We focus on young dogs since this group is associated

with the strongest responses by pet owners, as shown above.

We report the results in Tables 3.8 through 3.10. Treatment cost is normalized

to mean 0 with a standard deviation of 1. In Table 3.8, we see that more expensive

treatment is unsurprisingly associated with higher spending across all time horizons.

We also see that spending is even higher if the dog is diagnosed late in the policy

term. In Column 4, we see that a 1 standard deviation increase in treatment cost

is associated with a 16.7 percent increase in spending over the 12 months following

diagnosis for dogs diagnosed early in the term, but a 20.9 percent increase in spending

for late diagnosed dogs. Likewise, in Table 3.9, we see that cost of treatment is also

associated with more vet visits for late diagnosed dogs.

Finally, in Table 3.10, we explore the impact of treatment cost on death. While

more expensive treatments are associated with lower initial death rates (Column 1),

these treatments are associated with higher likelihood of death over the next year.

These effects are attenuated, however, if the dog is diagnosed late in the policy term.

Treatment cost is less prohibitive in cases where the dog is diagnosed late, since the

pet owner is able to double-up on the benefits from the following term. As a result,

these dogs are more likely to survive.

3.6 Discussion and Conclusion

This paper provides evidence that pet owners are sensitive to changes in insurance

benefits when making health care decisions for their pets. Furthermore, pet owners

take into account the age of the pet when responding to a serious cancer diagnosis.

Owners spend less on older dogs with the same cancer diagnosis, as these dogs are less

likely to survive. Finally, we do not find any evidence that these health care decisions

have a significant impact on the longevity of the pet. The exception to this is for the

most expensive cancer treatments, where the marginal impact of treatment cost on

death is attenuated in the 12 and 24 month time horizons when dogs are diagnosed

late in their policy term.

While there are many differences between pet health insurance and human health

insurance, there is something to be learned from pet health trends.

12We calculate average cost of treatment by diagnosis as median spending during the 12 months
following diagnosis.



88

Figures and Tables

Figure 3.1.: End-of-Life and Post-Diagnosis Spending by Age at Diagnosis

Notes - Last 12 Months Spending is mean end-of-life spending for the 31,484 dogs in our sample who died during the

sample period. Spending at Diagnosis is mean spending during 12 months following diagnosis for the 33,899 dogs in

our sample. Y-axis is US Dollars.
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Figure 3.2.: End-of-Life and Post-Diagnosis Spending by Year of Diagnosis

Notes - Last 12 Months Spending is mean end-of-life spending for the 31,484 dogs in our sample who died during the

sample period. Spending at Diagnosis is mean spending during 12 months following diagnosis for the 33,899 dogs in

our sample. Y-axis is US Dollars.
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Table 3.1.: Descriptive Statistics, Full Sample

Mean St. Dev. Min. Max.
(1) (2) (3) (4)

Early Diagnosis Share 0.23 0.42 0.00 1.00
Late Diagnosis Share 0.22 0.41 0.00 1.00
Mean Log Spending Next 3 Months 7.58 0.81 3.69 10.60
Mean Total Visits Next 3 Months 3.32 2.97 1.00 26.00
Death Rate Next 3 Months 0.56 0.50 0.00 1.00
Mean Age at Diagnosis 8.69 2.29 2.00 12.00
Share Female 0.45 0.50 0.00 1.00
Mean Total Spending 12 Months Prior to Diagnosis 1013.37 1382.90 0.00 38974.34
Mean Year of Diagnosis 2013.14 2.39 2009.00 2017.00
Mean Month of Diagnosis 6.40 3.43 1.00 12.00

Observations 33,899 33,899 33,899 33,899
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Table 3.2.: Death Rates by Age Group, Conditional on Treatment

(1) (2) (3) (4) (5)
1 Month 3 Months 6 Months 12 Months 24 Months

Old Dogs (Ages 6-9) 0.095*** 0.093*** 0.078*** 0.042*** 0.041***
(0.009) (0.009) (0.009) (0.008) (0.007)

Very Old Dogs (Ages 10-12) 0.149*** 0.132*** 0.111*** 0.075*** 0.085***
(0.010) (0.010) (0.009) (0.008) (0.007)

Log 1-Month Spending 0.017***
(0.003)

Log 3-Month Spending -0.075***
(0.003)

Log 6-Month Spending -0.113***
(0.003)

Log 12-Month Spending -0.110***
(0.003)

Log 24-Month Spending -0.088***
(0.002)

Observations 33,899 33,899 33,899 33,899 33,899

Notes - Each column refers to 1, 3, 6, 12, and 24 month time horizons from date of diagnosis. Omitted Category

is Young Dogs, Ages 2-5. Controls include 26 plan indicators, 10 wellness rider indicators, a cancer rider indicator,

10 breed size category indicators (pure and mixed; great, large, medium, small, and toy), 4 Census region indicators,

cumulative spending during 12 months prior to diagnosis, calendar year of diagnosis indicators, calendar month of

diagnosis indicators, and a term week of diagnosis control. ∗p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01

Table 3.3.: Effect of Age on Spending Behavior After Cancer Diagnosis

(1) (2) (3) (4) (5)
1 Month 3 Months 6 Months 12 Months 24 Months

Old Dogs (Ages 6-9) -0.000 -0.058*** -0.097*** -0.121*** -0.131***
(0.016) (0.015) (0.015) (0.016) (0.017)

Very Old Dogs (Ages 10-12) -0.096*** -0.196*** -0.241*** -0.268*** -0.294***
(0.016) (0.016) (0.016) (0.017) (0.018)

Observations 33,899 33,899 33,899 33,899 33,899

Notes - Each column refers to 1, 3, 6, 12, and 24 month time horizons from date of diagnosis. Omitted category is

Young Dogs, Ages 2-5. Controls include 26 plan indicators, 10 wellness rider indicators, a cancer rider indicator, 10

breed size category indicators (pure and mixed; great, large, medium, small, and toy), 4 Census region indicators,

cumulative spending during 12 months prior to diagnosis, calendar year of diagnosis indicators, calendar month of

diagnosis indicators, and a term week of diagnosis control. ∗p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01
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Table 3.4.: Descriptive Statistics, Regression Sample

Young (2-5 yrs) Old (6-9 yrs) Very Old (10-12 yrs)
(1) (2) (3)

Late Diagnosis Share 0.525 0.510 0.435
(0.50) (0.50) (0.50)

Mean Log Spending Next 3 Months 7.721 7.640 7.501
(0.85) (0.80) (0.79)

Mean Total Visits Next 3 Months 4.383 3.419 3.034
(3.79) (3.03) (2.72)

Death Rate Next 3 Months 0.453 0.565 0.596
(0.50) (0.50) (0.49)

Mean Age at Diagnosis 4.156 7.802 10.847
(0.95) (1.06) (0.80)

Share Female 0.415 0.437 0.484
(0.49) (0.50) (0.50)

Mean Total Spending 12 Months 862.731 974.703 1113.827
Prior to Diagnosis, USD (1259.27) (1322.47) (1427.75)

Mean Year of Diagnosis 2012.868 2013.163 2013.385
(2.34) (2.37) (2.34)

Mean Month of Diagnosis 6.427 6.345 6.423
(3.43) (3.41) (3.42)

Observations 1,524 7,618 6,171
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Table 3.5.: Effect of Late-in-Term Cancer Diagnosis on Spending, Vet Visits, and
Likelihood of Death, Young Dogs (Ages 2-5)

(1) (2) (3) (4) (5)
1 Month 3 Months 6 Months 12 Months 24 Months

Panel A. Spending
Late Diagnosis 0.080* 0.124*** 0.127*** 0.092* 0.057

(0.047) (0.047) (0.049) (0.048) (0.049)

Panel B. Vet Visits
Late Diagnosis 0.314*** 0.631*** 0.945*** 0.914** 0.779

(0.099) (0.211) (0.320) (0.414) (0.539)

Panel C. Death
Late Diagnosis 0.016 0.032 0.027 0.015 0.028

(0.026) (0.027) (0.027) (0.025) (0.023)

Observations 1,524 1,524 1,524 1,524 1,524

Notes - Each column refers to 1, 3, 6, 12, and 24 month time horizons from date of diagnosis. Controls include 26

plan indicators, 10 wellness rider indicators, a cancer rider indicator, pet age at diagnosis indicators, 10 breed size

category indicators (pure and mixed; great, large, medium, small, and toy), pet age by breed size category interaction

terms, 4 Census region indicators, cumulative spending during 12 months prior to diagnosis, calendar year of diagnosis

indicators, and calendar month of diagnosis indicators. ∗p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01



94

Table 3.6.: Effect of Late-in-Term Cancer Diagnosis on Spending, Vet Visits, and
Likelihood of Death, Old Dogs (Ages 6-9)

(1) (2) (3) (4) (5)
1 Month 3 Months 6 Months 12 Months 24 Months

Panel A. Spending
Late Diagnosis 0.017 0.004 -0.002 -0.015 -0.018

(0.019) (0.019) (0.019) (0.020) (0.021)

Panel B. Vet Visits
Late Diagnosis 0.030 0.018 0.058 -0.078 -0.104

(0.036) (0.071) (0.103) (0.140) (0.196)

Panel C. Death
Late Diagnosis -0.001 0.001 -0.008 -0.028*** -0.024***

(0.012) (0.012) (0.011) (0.010) (0.009)

Observations 7,618 7,618 7,618 7,618 7,618

Notes - Each column refers to 1, 3, 6, 12, and 24 month time horizons from date of diagnosis. Controls include 26

plan indicators, 10 wellness rider indicators, a cancer rider indicator, pet age at diagnosis indicators, 10 breed size

category indicators (pure and mixed; great, large, medium, small, and toy), pet age by breed size category interaction

terms, 4 Census region indicators, cumulative spending during 12 months prior to diagnosis, calendar year of diagnosis

indicators, and calendar month of diagnosis indicators. ∗p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01

Table 3.7.: Effect of Late-in-Term Cancer Diagnosis on Spending, Vet Visits, and
Likelihood of Death, Very Old Dogs (Ages 10-12)

(1) (2) (3) (4) (5)
1 Month 3 Months 6 Months 12 Months 24 Months

Panel A. Spending
Late Diagnosis -0.029 -0.035* -0.033 -0.047** -0.058**

(0.021) (0.020) (0.021) (0.021) (0.023)

Panel B. Vet Visits
Late Diagnosis 0.060 0.092 0.146 0.045 -0.083

(0.037) (0.070) (0.104) (0.146) (0.202)

Panel C. Death
Late Diagnosis -0.010 0.007 0.013 -0.002 0.000

(0.013) (0.013) (0.012) (0.011) (0.009)

Observations 6,171 6,171 6,171 6,171 6,171

Notes - Each column refers to 1, 3, 6, 12, and 24 month time horizons from date of diagnosis. Controls include 26

plan indicators, 10 wellness rider indicators, a cancer rider indicator, pet age at diagnosis indicators, 10 breed size

category indicators (pure and mixed; great, large, medium, small, and toy), pet age by breed size category interaction

terms, 4 Census region indicators, cumulative spending during 12 months prior to diagnosis, calendar year of diagnosis

indicators, and calendar month of diagnosis indicators. ∗p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01
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Table 3.8.: Effect of Late-in-Term Cancer Diagnosis on Spending, Young Dogs (Ages
2-5), Heterogeneous Effects by Cost of Treatment

(1) (2) (3) (4) (5)
1 Month 3 Months 6 Months 12 Months 24 Months

Late Diagnosis 0.083* 0.128*** 0.132*** 0.097** 0.062
(0.047) (0.046) (0.048) (0.047) (0.048)

Treatment Cost 0.087*** 0.147*** 0.173*** 0.167*** 0.155***
(0.032) (0.032) (0.033) (0.033) (0.033)

Late Diagnosis 0.011 0.022 0.030 0.042 0.052
× Treatment Cost (0.045) (0.044) (0.045) (0.045) (0.045)

Observations 1,524 1,524 1,524 1,524 1,524

Notes - Each column refers to 1, 3, 6, 12, and 24 month time horizons from date of diagnosis. Interaction term is

median 12 month spending on treatment for cancer diagnosis, normalized to mean 0 standard deviation 1. Controls

include 26 plan indicators, 10 wellness rider indicators, a cancer rider indicator, pet age at diagnosis indicators, 10

breed size category indicators (pure and mixed; great, large, medium, small, and toy), pet age by breed size category

interaction terms, 4 Census region indicators, cumulative spending during 12 months prior to diagnosis, calendar year

of diagnosis indicators, and calendar month of diagnosis indicators. ∗p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01

Table 3.9.: Effect of Late-in-Term Cancer Diagnosis on Vet Visits, Young Dogs (Ages
2-5), Heterogeneous Effects by Cost of Treatment

(1) (2) (3) (4) (5)
1 Month 3 Months 6 Months 12 Months 24 Months

Late Diagnosis 0.323*** 0.654*** 0.977*** 0.951** 0.817
(0.097) (0.206) (0.313) (0.406) (0.532)

Treatment Cost 0.333*** 0.822*** 1.133*** 1.301*** 1.296***
(0.067) (0.143) (0.217) (0.282) (0.369)

Late Diagnosis -0.017 0.041 0.205 0.363 0.561
× Treatment Cost (0.092) (0.197) (0.299) (0.387) (0.508)

Observations 1,524 1,524 1,524 1,524 1,524

Notes - Each column refers to 1, 3, 6, 12, and 24 month time horizons from date of diagnosis. Interaction term is

median 12 month spending on treatment for cancer diagnosis, normalized to mean 0 standard deviation 1. Controls

include 26 plan indicators, 10 wellness rider indicators, a cancer rider indicator, pet age at diagnosis indicators, 10

breed size category indicators (pure and mixed; great, large, medium, small, and toy), pet age by breed size category

interaction terms, 4 Census region indicators, cumulative spending during 12 months prior to diagnosis, calendar year

of diagnosis indicators, and calendar month of diagnosis indicators. ∗p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01
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Table 3.10.: Effect of Late-in-Term Cancer Diagnosis on Death, Young Dogs (Ages
2-5), Heterogeneous Effects by Treatment Cost

(1) (2) (3) (4) (5)
1 Month 3 Months 6 Months 12 Months 24 Months

Late Diagnosis 0.015 0.032 0.027 0.016 0.029
(0.026) (0.027) (0.027) (0.025) (0.023)

Treatment Cost -0.046*** 0.006 0.022 0.047*** 0.055***
(0.018) (0.019) (0.019) (0.018) (0.016)

Late Diagnosis 0.006 -0.051* -0.062** -0.042* -0.037*
× Treatment Cost (0.024) (0.026) (0.026) (0.024) (0.022)

Observations 1,524 1,524 1,524 1,524 1,524

Notes - Each column refers to 1, 3, 6, 12, and 24 month time horizons from date of diagnosis. Interaction term is

median 12 month spending on treatment for cancer diagnosis, normalized to mean 0 standard deviation 1. Controls

include 26 plan indicators, 10 wellness rider indicators, a cancer rider indicator, pet age at diagnosis indicators, 10

breed size category indicators (pure and mixed; great, large, medium, small, and toy), pet age by breed size category

interaction terms, 4 Census region indicators, cumulative spending during 12 months prior to diagnosis, calendar year

of diagnosis indicators, and calendar month of diagnosis indicators. ∗p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01
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A. APPENDIX FOR: SKILL-BIASED TECHNICAL
CHANGE AND EMPLOYMENT IN U.S.

MANUFACTURING

A.1 Data Appendix

A.1.1 Census of Manufactures

Consistent Industry Sample

Data are reported by SIC 1987 codes for 1987 and 1992 and by NAICS codes

beginning in 1997. I convert data to 1987 SIC codes as follows. First, I convert from

NAICS 2012 to NAICS 2007 to NAICS 2002 to NAICS 1997 to SIC 1987 as necessary,

using weights based on value of shipments for output and materials, and based on

employment for employment, from Census Bridge publications.

The sample of SIC industries is determined by industries which have consistently

available data on material use. The industries that need to be dropped because of this

restriction are 2097, 2813, 3295, 3398, 2371, 2395, 2397, 2999, and 3399. Together

these industries represent less than 0.5 percent of manufacturing employment in 1987.

I also drop the six industries that exit manufacturing upon transition into the NAICS

system, and adjust output, employment, and material use data for partially exiting

industry 3732 by multiplying 1997 and later values by 1/(1-0.127) following Becker

et al. (2013).

The sample of SIC industries is then slightly aggregated according to the indus-

try aggregations in Autor et al. (2013). This is to facilitate analysis of the China

shock in Section 1.6.1. In addition to these aggregations, I also combine 2067 with

2064 (chewing gum with other confectionery products), and 3292 with 3299 (asbestos

products with nonmetallic mineral products, not elsewhere classified), as the Census

of Manufactures does not separately report these industries beginning in the 1990s.

The resulting sample of industries is 379. When computer-producing industries are

dropped, the final sample is 351. In this paper I define computer industries following

Acemoglu et al. (2016), which generally captures industries associated with NAICS

code 334.
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Consistent Materials Sample

SIC materials are aggregated following the same scheme as the industries, de-

scribed in Appendix Section A.1.1, with the exception that adjustments are not made

for exiting industries because both manufacturing and non-manufacturing materials

may be used in production. Some materials, with codes starting with “19”, do not di-

rectly map to industries and were hand-matched to SIC codes by product description.1

My final sample of materials includes 415 unique product codes. After converting both

industries and their materials use information, the resulting data set is a panel of SIC

manufacturing industries and their expenditures on SIC products, which are largely

manufacturing but also include agriculture, forestry, and other industry products.

Output

I interpret value of shipments as output. Output is deflated to real values us-

ing industry-specific deflators from the NBER-CES Manufacturing Database (Becker

et al., 2013). As this database only goes through 2011, I estimate 2012 prices as the

2007 price plus 1.25 times the difference between 2011 and 2007 prices.

Materials Use Imputations

According to the 1992 CoM, information was collected from surveyed establish-

ments for those materials which were important parts of the cost of production in

a particular industry and for which cost information was available from manufac-

turers’ records. Material expenditures are reported by detailed industry code (SIC

based prior to 1997 and NAICS based for 1997 and later years), for those materials

which reporting establishments consumed at or above a specialized threshold, usually

$25, 000. For expenditures falling below that threshold, the materials are not sepa-

rately classified. Also, the cost of materials for certain small establishments are not

separately specified by product. For these reasons, and due to occasional grouping

together of material expenditures to avoid disclosure of information on particular

companies, some imputations are required. I describe these imputations here.

1These matches are available on request. Likewise, a small number of products are reported in very
general 2-digit codes. I also hand-matched these to more detailed industries according to product
description. A list of these assignments is also available upon request.
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I use data from the 1992 CoM, which includes materials use for 1987 and 1992; the

2002 CoM, which includes materials use for 1997 and 2002; and the 2007 and 2012

CoM series. I begin by preserving the detailed industry codes as reported, combining

some codes that only appear once or a few times and for which the expenditure value

is hidden.2 If the cost for a particular material is reported for one year but not the

other, between 1987 and 1992, or between 1997 and 2002, I impute the missing value as

the share of total materials expenditure reported in the non-missing year multiplied

by the materials expenditure of the missing year.3 If this exercise leaves only one

missing value for a particular industry, I can now impute that missing value as the

residual of the industry’s total materials expenditure in that year. Next, I impute the

remaining missing values by assigning the value of the average expenditure share of

that material by the other industries in that year multiplied by the industry’s total

materials expenditure. Finally, I readjust imputed values so that the total cost of the

materials sum to the reported total.

The imputed data still generally includes two non-specified categories, 970099 and

971000, representing materials that did not meet the minimum expenditure threshold

or materials from small establishments not reporting this data. After converting both

the industries and the materials into time-consistent SIC sample, described in Ap-

pendix Sections A.1.1 and A.1.1, I distribute the values in the non-specified categories

across the specified materials, assuming the same distribution of expenditures within

the industry.

A.1.2 Labor Hours and Wages By Skill Type

Employment, Hours, and Wages by CZ and Census Industry

In Section 1.3.2 I describe my procedure for calculating high- and low-skill hours

by industry, and mean wages by skill type by industry. This procedure requires mea-

sures of skilled share of employment by Census industry by commuting zone, and

mean hours and hourly wages by skill type by Census industry by commuting zone.

I describe these measures here.

I use the 5 percent Census samples for 1980, 1990, and 2000. I use the 2005-2007

ACS for the year 2007 and the 2008-2012 ACS for 2010. I connect these to commuting

2These aggregations are available on request.
3As 2007 and 2012 are reported separately, and there are some changes to industry codes between
these series, I cannot cross-impute in this way, so I skip this step.
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zones by Census County Groups for 1980 and 1990 following Autor and Dorn (2013)

and using Census Public Use Micro Areas for 2000 and the ACS samples following

Autor and Dorn (2013) and Autor et al. (2018). Following these papers, I omit Hawaii

and Alaska, leaving 722 CZs which comprehensively cover the continuous 48 states.

I slightly aggregate 1990 Census industry codes so that they are a balanced panel

across all years of data.4

For each commuting zone and Census industry code, I determine high-skill share of

employment, mean hours worked by skill type, and mean hourly wages by skill type.5

My sample includes employed private wage and salary workers (class of worker codes

22 and 23) ages 16 to 64 who report working at least 50 weeks in the previous year and

who report non-zero usual hours worked per week. I replace topcoded annual wage

and salary income with 1.5 times the topcoded value. I define high-skill as workers

with at least four years of college education.

Annual hours are defined as weeks worked last year multiplied by usual hours

worked per week. Since weeks worked last year are only available in interval categories

for the 2007-2012 ACS, I impute weeks worked as the mean weeks worked for the

same Census industry and skill type observed in the 2005-2007 ACS. Hourly wages

are defined as annual wage and salary income divided by the product of weeks worked

last year and usual hours worked per week. For both annual hours and hourly wages,

I replace values falling below the first percentile in that year with the value at the

first percentile in that year, and values falling above the ninety-ninth percentile in

that year with the value at the ninety-ninth percentile in that year.

In the event that, in a CZ, the CBP reports presence of an industry but the Census

does not, I substitute state or region level variables as needed.

Employment by CZ and SIC Industry

I calculate employment shares by CZ and SIC industry in the 1980, 1990, 2000,

2007, and 2010 CBP. The CBP is an annual series that provides county-level economic

data by industry, including the number of establishments, employment during the

week of March 12, and payroll information extracted from the U.S. Census Bureau’s

Business Register. The 1980 series is reported in SIC 1972 codes, which I convert to

SIC 1987 codes using an employment-based weighted crosswalk from the NBER-CES

4These aggregations are available upon request.
5Means by CZ are weighted by Census sample weights multiplied by commuting zone weights.
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Manufacturing Industry Database. The CBP suppresses the employment counts for

some counties to avoid identifying individual employers. I impute employment in these

instances based on establishment counts following Autor et al. (2013), since estab-

lishment counts are always available even when employment counts are suppressed.

In this procedure I multiply the number of establishments in each bracket by the

average firm size in that bracket that can be observed in the CBP.
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A.2 Empirical Appendix

A.2.1 Related Manufacturing Trends

Figure B.1.: Share of Employment in Manufacturing and All Other Sectors

Notes - Author’s calculations from the CPS ASEC annual surveys 1962-2018. Non-manufacturing sectors begin in

1968 when time-consistent industry codes are introduced. Sample is employed wage and salary workers ages 16-64,

exclusive of self-employed, unpaid family workers, and military workers.

Source - Flood et al. (2018)
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Figure B.2.: Real Value Added in Manufacturing and Non-Manufacturing

Notes - Annual manufacturing real value added is from the NBER-CES Manufacturing Industry Database for the

years 1962-2011. I deflate value added by the variable PISHIP and then convert it to 2018 dollars following the PCE

index (a divisor of .746225). Annual real GDP data are from the U.S. Bureau of Economic Analysis in 2012 dollars

which I convert to 2018 dollars also following the PCE index (a divisor of .9257773). Non-manufacturing value added

is real GDP less manufacturing real value added. Scale is log USD.

Source - U.S. Bureau of Economic Analysis; NBER CES Manufacturing Database (Becker et al., 2013)



116

Figure B.3.: Log Real Value Added Per Worker in Manufacturing

Notes - Annual manufacturing real value added and manufacturing employment are from the NBER-CES Manufac-

turing Industry Database for the years 1962-2011. I deflate value added by the variable PISHIP and then convert it

to 2018 dollars following the PCE index (a divisor of .746225). Annual real GDP data are from the U.S. Bureau of

Economic Analysis in 2012 dollars which I convert to 2018 dollars also following the PCE index (a divisor of .9257773).

Non-manufacturing value added is real GDP less manufacturing real value added. Scale is log USD per worker.

Source - U.S. Bureau of Economic Analysis; NBER CES Manufacturing Database (Becker et al., 2013)
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Figure B.4.: Share of Employment with College Degree

Notes - Author’s calculations from the CPS ASEC annual surveys 1962-2018. Sample is employed wage and salary

workers ages 16-64, exclusive of self-employed, unpaid family workers, and military workers. Prior to 1992, individuals

reporting at least 4 years of college are considered bachelor’s degree holders. While this figure shows share of workers

with college degrees, similar trends are seen for workers with any college education or with post-graduate education.

In all cases the manufacturing workforce is becoming more highly skilled, and these trends closely track the remainder

of the workforce.
Source - Flood et al. (2018)
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A.2.2 Assigning Production Materials to Low- and High-Skill Processes

Figure B.5.: Relationship Between Resource Complexity Score and Material Use
Prediction of Industry Low-Skill Share in 1990 (λ̂j,1990)

Notes - I use spending on production resources to estimate the task share parameter αi,t according to each material’s

prediction of skilled labor share. This figure shows a negative correlation between a resource’s complexity and the

share of low-skill workers in the industries that use it. See Section 1.4.1 for details.
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Figure B.6.: Relationship Between Material Complexity Score and Material Use Pre-
diction of Industry Low-Skill Share in 2000 (λ̂j,2000)

Notes - I use spending on production materials to estimate task share parameter αi,t according to each material’s

prediction of skilled labor share. See Section 1.4.1 for details.
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Figure B.7.: Relationship Between Material Complexity Score and Material Use Pre-
diction of Industry Low-Skill Share in 2007 (λ̂j,2007)

Notes - I use spending on production materials to estimate task share parameter αi,t according to each material’s

prediction of skilled labor share. See Section 1.4.1 for details.
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Figure B.8.: Relationship Between Material Complexity Score and Material Use Pre-
diction of Industry Low-Skill Share in 2010(λ̂j,2010)

Notes - I use spending on production materials to estimate task share parameter αi,t according to each material’s

prediction of skilled labor share. See Section 1.4.1 for details.
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Figure B.9.: Material Complexity Score and Share Allocated to Low-Skill Process
(λ̃j,t), 1990 and 2007

Notes - I use spending on production materials to estimate task share parameter αi,t according to each material’s

prediction of skilled labor share. See Section 1.4.1 for details.
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A.2.3 Distributions of Labor-Augmenting Technology Parameters âi,t and

b̂i,t by Year

Figure B.10.: Kernel Density Distribution of Log(âi,t)
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Figure B.11.: Kernel Density Distribution of Log(âi,t), Omitting Computer Industries

Figure B.12.: Kernel Density Distribution of Log(̂bi,t)
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Figure B.13.: Kernel Density Distribution of Log(̂bi,t), Omitting Computer Industries
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A.2.4 Decomposition Using Alternative Elasticity Estimates

Table B.1.: Decomposition of Manufacturing Employment Changes 1990-2007 Into
Four Channels, Using Elasticity of 2.0

Jobs (Millions)

High-Skill
Low-Skill High-Skill Total Share

(1) (2) (3) (4)

Panel A. Overall Change
1990 12.83 2.17 15.00 14.5%
2007 10.00 2.41 12.41 19.4%

∆ −2.84 +0.24 −2.60 +4.9pp
%∆ −22.1% +10.9% −17.3%

Panel B. Decomposition
Scale +2.74 +0.62 +3.36 +0.7pp

+21.3% +28.7% +22.4%

Task −3.33 +0.93 −2.40 +10.1pp
−25.9% +42.7% −16.0%

Productivity −2.90 −1.01 −3.91 −4.0pp
−22.6% −46.4% −26.1%

Supply +0.66 −0.31 +0.35 −2.3pp
+5.1% −14.1% +2.3%

Notes - Decomposition is calculated for 351 manufacturing industries and then summed to national totals. Decom-

posed changes in Columns (1) through (3) may not exactly sum to total due to rounding. Employment results are

converted from annual hours to millions of estimated jobs based on mean annual hours of employed manufacturing

workers of the same skill type in the 1980 Census.
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Table B.2.: Decomposition of Manufacturing Employment Changes 1990-2007 Into
Four Channels, Using Elasticity of 1.5

Jobs (Millions)

High-Skill
Low-Skill High-Skill Total Share

(1) (2) (3) (4)

Panel A. Overall Change
1990 12.83 2.17 15.00 14.5%
2007 10.00 2.41 12.41 19.4%

∆ −2.84 +0.24 −2.60 +4.9pp
%∆ −22.1% +10.9% −17.3%

Panel B. Decomposition
Scale +2.76 +0.60 +3.36 +0.6pp

+21.5% +27.6% +22.4%

Task −3.15 +0.49 −2.66 +7.1pp
−24.5% +22.3% −17.7%

Productivity −2.95 −0.62 −3.57 −0.9pp
−23.0% −28.7% −23.8%

Supply +0.50 −0.22 +0.27 −1.7pp
+3.9% −10.3% +1.8%

Notes - Decomposition is calculated for 351 manufacturing industries and then summed to national totals. Decom-

posed changes in Columns (1) through (3) may not exactly sum to total due to rounding. Employment results are

converted from annual hours to millions of estimated jobs based on mean annual hours of employed manufacturing

workers of the same skill type in the 1980 Census.
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A.2.5 Decomposition Figures

Figure B.14.: Decomposition of Manufacturing Employment Changes, 1990-2007, in
Thousands of Job Equivalents

Notes - This figure shows the main decomposition results aggregated over all industries, and corresponds to Table

1.2. See Section 1.5.2 for details.
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Figure B.15.: Decomposition of Industry Manufacturing Employment Changes in
Thousands of Jobs, 1990-2007, by Industry Group, with Computer Industries as
Separate Group

Notes - This figure shows the main decomposition results aggregated to 10 industry groups, with the computer

industries included as a separate category. Because of the dramatic changes in the price and quality of computers

during the 1990s and 2000s, computer industries are omitted from most of the analysis. I define computer industries

following Acemoglu et al. (2016). See Section 1.5.2 for an analysis of the main results.
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A.2.6 Tobacco Industries

Substantial heterogeneity among the tobacco industries makes them an interesting

case study. Although these industries do not represent a large share of employment, a

closer look at individual industries sheds light on the mechanics of the decomposition.

Figure A.2.6 shows the decomposition for the four industries in this subgroup. First

to note are the scale-induced employment losses in both cigarette manufacturing and

in tobacco stemming and redrying, an upstream industry that separates the tobacco

leaf from its stem in preparation for further processing. These industries experienced

little to no imports from China during this time period, making import competition

an unlikely cause of the scale losses. The phenomenon may instead be demand driven

as output declines coincide with a downward trend in cigarette consumption in the

U.S. and other developed countries (Drope and Schluger, 2018; US Department of

Health and Human Services, 2014). The 1990s was a time of many law suits against

the cigarette industry for its hitherto denial that nicotine was addictive (Scott, 1999).

It was also a time of aggressive public health campaigns against smoking, and the

onset of a series of federal regulations on the sales, advertising, and manufacturing

of cigarettes.6 Scale losses may also link to supply factors as a federal price support

and quota program for tobacco farming ended in 2004.7

While both cigarettes and tobacco stemming and redrying exhibit scale declines,

only the cigarette industry shows additional displacement from the productivity chan-

nel. Technology continued to advance during the 1990s and 2000s, and cigarette rolling

and packaging has become highly automated.8 Cigarette rolling machines doubled in

efficiency between 1988 and 2006, from 10,000 to 20,000 cigarettes per minute (Cross

et al., 2014). The low-skill loss from the productivity channel is consistent with this

automation. Finally, this industry also exhibits task shifts. These shifts are consistent

with increased need for high-skill workers for supervision and quality control, possibly

in response to heightened scrutiny by federal agencies.

6In 1992, Congressional action prompted all states to increase their minimum legal age for smoking
to at least 18 years by the following year (Apollonio and Glantz, 2016). In 1996, the Food and Drug
Administration established its authority to regulate the industry (Federal Register, 1996), provoking
subsequent litigation by the tobacco industry (Meier, 1998). The American Legacy Foundation (later
renamed the Truth Initiative) was established in 1999 and began a nationwide campaign targeting
teen smoking. See www.truthinitiave.org.
7This is the Fair and Equitable Tobacco Reform Act of 2004, also known as the Tobacco Buyout.
8Philip Morris International describes its cigarette production process on its website at
https://www.pmi.com/our-business/about-us/products/how-cigarettes-are-made.
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Figure B.16.: Decomposition of Employment Changes in Tobacco Manufacturing
Industries, 1990-2007, in Thousands of Job Equivalents

Notes - This figure shows the main decomposition results for the four tobacco manufacturing industries. See Section

A.2.6 for details.
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In the tobacco stemming and redrying industry there is likewise some task shifting,

but a notable lack of advancement in labor-augmenting technology. Tobacco stem-

ming, in which the leaf is separated from the stem before it is aged, flavored, and

rolled into cigarettes, is a notoriously labor-intensive process. Despite ongoing efforts

to mechanize, it is largely done by hand even today (Wilhoit et al., 2013; Sperry

et al., 2013).

An interesting contrast to both these industries is the scale increases in the cigar

industry. U.S. cigar consumption had been on a downward trend for decades, like

cigarettes, until 1993 when it suddenly pivoted upward (US Department of Health

and Human Services, 2014).9 This has been attributed in part to marketing including

the use of cigars by celebrities (US Department of Health and Human Services, 1998;

Delnevo, 2006).10 The difference in excise taxes between cigars and cigarettes may

also have lead to substitution as cigarette consumption continued to decline (Delnevo,

2006; US Department of Health and Human Services, 2014). Scale gains for low-skill

workers are offset by productivity displacement, consistent with automation.

9According to this report, cigar consumption tripled over the next two decades.
10The popular magazine Cigar Aficionado, often featuring celebrities with cigars, began publishing
in September 1992.
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A.2.7 Applications

China Shock Application Data

In this application I use bilateral trade data from the UN Comtrade Database for

the years 1991, 2000, and 2007 for my import penetration variables described in Sec-

tion 1.6.1.11 From this database I use imports from China as reported by the U.S. For

the associated instrumental variable I use imports from China as reported by Aus-

tralia, Denmark, Finland, Germany, Japan, New Zealand, Spain, and Switzerland,

following Autor et al. (2013). These data are converted from the Harmonized System

to the slightly aggregated SIC industries used in Autor et al. (2013) with the modi-

fications described in Appendix Section A.1.1. For U.S. consumption by industry in

1988 and 1991, which are also components of the import penetration variables, I use

U.S. total imports and exports by SIC made available by Peter K. Schott (Schott,

2008), and value of shipments from NBER-CES Manufacturing Database (Becker

et al., 2013). These data are brought to 2018 USD using the PCE index.

China Shock Application: Import Penetration and Its Instrument

To determine an industry’s exposure to Chinese import competition, I follow Ace-

moglu et al. (2016) to define import penetration in industry i in time t as

∆IPi,t =
∆MUC

i,t

Yi,91 +Mi,91 − Ei,91

(A.1)

where ∆MUC
i,t is the change in the value of imports from China to the U.S. The

denominator is U.S. consumption of industry j, which is output plus imports less

exports, calculated in base year 1991. I bring all values to 2018 USD using the PCE

index.

As rising imports are endogenous domestic productivity shocks, instrumentation

for import penetration is essential. Again following Acemoglu et al. (2016), I instru-

ment for ∆IPi,t by

11I use 1991 because that is the first year in which the Harmonized System is consistently available
for all countries in the sample. In alternative specifications I also include 2010 data.
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∆OIPi,t =
∆MOC

i,t

Yi,88 +Mi,88 − Ei,88

(A.2)

where ∆MOC
i,t is the change in imports from China to a group of eight other high-

income countries. The denominator is U.S. consumption in industry i, lagged to 1988

to avoid any prediction by firms of China’s impending export boom. This instrumental

variable approach isolates imports into the U.S. that can be predicted by China’s

domestic productivity increase.
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China Shock Application: Summary Statistics

Table B.3.: Descriptive Statistics for Chinese Import Penetration Application, Low
Skill

1990-2007 1990-2000 2000-2007

(1) (2) (3)

∆ IP 0.502 0.248 0.767
(0.95) (0.68) (1.46)

∆ OIP 0.279 0.194 0.360
(0.52) (0.50) (0.62)

Annual ∆ Log Employment,

Total -2.258 -1.003 -3.263
(3.51) (3.04) (4.29)

Scale 0.747 1.660 0.147
(3.16) (2.57) (4.33)

Task -2.279 -2.072 -2.199
(1.29) (1.01) (1.66)

Productivity -1.229 -0.723 -2.269
(1.58) (1.73) (2.41)

Supply 0.503 0.132 1.058
(0.50) (0.56) (1.06)

Observations 351 351 351

Notes - ∆ IP is 100× the annual change in Chinese import penetration in the U.S. as defined by Equation A.1. ∆

OIP is 100× the annual change in Chinese import penetration in IV countries as defined by Equation A.2. Annual ∆

Log Employment is multiplied by 100 for interpretation as log points.
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Table B.4.: Descriptive Statistics for Chinese Import Penetration Application, High
Skill

1990-2007 1990-2000 2000-2007

(1) (2) (3)

∆ IP 0.396 0.214 0.642
(0.86) (0.62) (1.37)

∆ OIP 0.217 0.134 0.328
(0.45) (0.38) (0.63)

Annual ∆ Log Employment,

Total -0.009 0.693 -0.759
(2.89) (3.52) (3.85)

Scale 1.173 1.568 0.858
(2.50) (2.63) (3.64)

Task 3.987 4.213 3.739
(1.33) (1.60) (1.63)

Productivity -4.012 -4.750 -3.051
(2.13) (2.80) (3.63)

Supply -1.157 -0.338 -2.304
(0.94) (1.43) (2.02)

Observations 351 351 351

Notes - ∆ IP is 100× the annual change in Chinese import penetration in the U.S. as defined by Equation A.1. ∆

OIP is 100× the annual change in Chinese import penetration in IV countries as defined by Equation A.2. Annual ∆

Log Employment is multiplied by 100 for interpretation as log points.
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Decomposition Approach

In Section 1.6, I apply my framework to assess the channels through which Chi-

nese import competition, automation, and offshoring led to employment loss. To

operationalize my decomposition in terms of logs rather than levels, I use a modified

identity in place of the standard identity expressed in Equation 1.11. This modified

identity is

Li,t+1

Li,t
=

Li,t+1

Li,scale,1
× Li,scale,1
Li,task,1

× Li,task,1
Li,productivity,1

Li,productivity,1
Li,t

(A.3)

I then take logs so that the log total change in employment is the sum of log

changes due to each channel:

ln
(Li,t+1

Li,t

)
= ln

( Li,t+1

Li,scale,1

)
+ ln

(Li,scale,1
Li,task,1

)
+ ln

( Li,task,1
Li,productivity,1

)
+ ln

(Li,productivity,1
Li,t

)
(A.4)

where the right hand side is the sum of effects due to scale, task, productivity, and

supply, respectively. Just as described in Section 1.4.2, I calculate Equation A.4 for all

24 possible combinations. I then take the mean of these 24 combinations as my esti-

mate. As these estimates are in terms of log changes, I do not make any adjustments

to convert the interpretation from annual hours to effective job counts. Therefore

the interpretation of the outcome variables in the applications in Section 1.6 is log

thousands of annual hours.
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Alternative Time Horizons

Tables B.5 and B.6 report the results for the impact of Chinese import penetration

on employment for different time horizons. These are supplemental to the main results

reported in Section 1.6.1.

Table B.5.: Effects of Direct Exposure to Chinese Imports on Low-Skill Employment:
2SLS Estimates, Alternative Time Horizons

Total Scale Task Productivity Supply

(1) (2) (3) (4) (5)

Panel A: 1990-2007 Long Different (N=351)
100× annual ∆ Chinese -2.126*** -1.644** 0.042 -0.405* -0.120**
import penetration (0.761) (0.670) (0.124) (0.207) (0.051)

Panel B: 1990-2000 Difference (N=351)
100× annual ∆ Chinese -4.736** -2.766** -0.003 -1.610* -0.357*
import penetration (2.247) (1.392) (0.226) (0.849) (0.195)

Panel C: 2000-2010 Difference (N=351)
100× annual ∆ Chinese -1.389*** -1.254*** -0.014 -0.082 -0.039
import penetration (0.466) (0.453) (0.103) (0.173) (0.068)

Panel D: 1990-2010 Stacked First Differences (N=702)
100× annual ∆ Chinese -2.160*** -1.602*** -0.012 -0.434* -0.113
import penetration (0.769) (0.592) (0.117) (0.234) (0.072)

Notes - Regressions are weighted by start-of-period labor hours of the relevant skill group. Also included is an

indicator for time period. Robust standard errors are clustered at the 3-digit SIC. * p< .1, ** p< .05, *** p< .01
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Table B.6.: Effects of Direct Exposure to Chinese Imports on High-Skill Employment:
2SLS Estimates, Alternative Time Horizons

Total Scale Task Productivity Supply

(1) (2) (3) (4) (5)

Panel A: 1990-2007 Long Different (N=351)
100× annual ∆ Chinese -0.826* -0.749* 0.268 -0.499* 0.154**
import penetration (0.456) (0.384) (0.165) (0.257) (0.073)

Panel B: 1990-2000 Difference (N=351)
100× annual ∆ Chinese -0.579 -0.729 0.795 -1.226* 0.581*
import penetration (0.914) (0.759) (0.490) (0.703) (0.320)

Panel C: 2000-2010 Difference (N=351)
100× annual ∆ Chinese -0.652** -1.099*** 0.081 0.279 0.087
import penetration (0.299) (0.395) (0.107) (0.187) (0.119)

Panel D: 1990-2010 Stacked First Differences (N=702)
100× annual ∆ Chinese -0.638** -1.027*** 0.220 -0.013 0.183
import penetration (0.302) (0.376) (0.148) (0.157) (0.118)

Notes - Regressions are weighted by start-of-period labor hours of the relevant skill group. Also included is an

indicator for time period. Robust standard errors are clustered at the 3-digit SIC. * p< .1, ** p< .05, *** p< .01
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A.3 Theory Appendix

The canonical SBTC model can be nested in the task allocation framework de-

veloped by Acemoglu and Autor (2011) in various ways. I present one way here. For

more background on the theoretical links between the two models, see Acemoglu and

Autor (2011) and Autor (2013).

Suppose output for industry i and time t is produced by

Yi,t =

(
1

N

N∑
n=1

τn,i,t

) 1
ρ

where τn,i,t is the output of task n and ρ governs the constant elasticity of substitution

between tasks. Task n is carried out by the skill type that has comparative advantage

in that task, determined by

max {[(an,i,tLi,t)ρ − wL,i,tLi,t] , [(bn,i,tHi,t)
ρ − wH,i,tHi,t]}

where Li,t is low-skill labor, Hi,t is high-skill labor, and an,i,t and bn,i,t are their

respective relative productivities in task n. Wages are represented by wL,i,t and wH,i,t.

Assume high-skill comparative advantage is increasing in n, so that there is some

threshold task ñ above which it is optimal to employ high-skill labor, and below

which it is optimal to employ low-skill labor. Then output can be written

Yi,t =

 1

N

ñi,t∑
n=1

(an,i,tLi,t)
ρ +

1

N

N∑
n=ñi,t

(bn,i,tHi,t)
ρ

 1
ρ

= [αi,t (ai,tLi,t)
ρ + (1− αi,t) (bi,tHi,t)

ρ]
1
ρ

where αi,t ≡ ñi,t/N , and ai,t and bi,t are the mean productivity of low- and high-skill

labor within their set of tasks.
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B. APPENDIX FOR: STALLED RACIAL PROGRESS
AND JAPANESE TRADE IN THE 1970S AND 1980S

B.1 Data Appendix

B.1.1 Current Population Survey

We use the 1962-1999 Annual Social and Economic Supplement (ASEC) of the

Current Population Survey (CPS). To focus on black-white differences, we exclude

non-white, non-black individuals. To be consistent across years, we include Hispanic

whites, as the CPS did not ask for Hispanic ethnicity until the 1971 survey. We further

restrict the sample to non-military men ages 16-64 who were not living in group

quarters and were not full time students. We define full time, full year employment

as having worked more than 48 weeks in the previous year, and at least 35 hours in

the previous week.

Topcoding of income varies through the duration of the CPS. In real terms, the

lowest top code is in 1981, at $101,100 1999 Dollars. Across all years, we replace every

individual with a reported real income above $101,100 1999 Dollars with 1.5 times

that amount ($151,650).

From 1968-1999, we classify workers as being in manufacturing based on 1990

Census occupation codes provided by the CPS. Prior to 1968, industry codes are only

available in a small number of general categories. For 1963-1967 we classify codes 5-21

as manufacturing, and for 1962 we use codes 4-20.

B.1.2 Labor Market Variables

We omit individuals living in institutions and unpaid family workers throughout.

Following Autor et al. (2013), we impute weeks worked last year for those who report

wage income but not weeks. The imputed value is set equal to the mean value for

those we observe with the same years of education and 1990 Census occupation code;

if that value is not available, the imputed value is set equal to the mean value for

those we observe with the same years of education. As the 1970 sample only provides



142

intervalled weeks worked last year, we replace those intervals with the averages of

weeks worked within those intervals in the 1980 sample.

To compute weekly wages, we first account for topcoding by replacing values of

annual wage income above the 98th percentile to 1.5 times the 98th percentile value.

We then divided by the number of weeks worked in the previous year. We replace any

values that exceed 150 percent of the topcoded value of annual wage income divided

by 50 to this value, and convert to 1999 Dollars using the CPI deflator.

We define annual earned income as the sum of wage income, business income, and

farm income. Here we face the challenge that topcoding is both inconsistent across

years and income categories. Prior to summing these three sources, we replace values

above the 95th percentile of each by year with 1.5 times the 95th percentile value.

For business and farm income, which can take on negative values, we replace values

below the 3rd percentile of each year with 1.5 times the 3rd percentile value. We then

adjust these values to reflect 1999 USD using the CPI deflator.

We define a household as in the 1970 Census, and the race of the household by the

race of the household head. Earned household income is calculated analogously to in-

dividual level earned income. Total household income includes all income sources, for

which we address topcoding by replacing (for each component) values above the 95th

percentile of each by year with 1.5 times the 95th percentile value. All household-level

income variables are averaged over the number of adults ages 16-64 in the household.

B.1.3 SITC to HS Crosswalk

We constructed a new, country-specific crosswalk from SITC to HS product codes

in order to utilize the crosswalk provided in Autor et al. (2013) which maps HS

product codes to SIC industries. We describe that crosswalk here.

We utilize Comtrade imports data for years in which both HS codes and SITC

codes are available and connected them using the correspondence tables available

from the UN (https://unstats.un.org/unsd/trade/classifications/correspondence-

tables.asp). Since SITC Rev. 2 codes were not available for 1970, we use SITC Rev.

1 codes. We calculated the shares of Japanese import values of each detailed SITC

code (5-digit when consistently available) that mapped to its corresponding 6-digit

HS codes for each importer for each year from 1991 through 1994.

For each importer we then averaged the SITC-to-HS value of imports shares across

these years. If an SITC code had positive Japanese imports values between 1970 and
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1990, but did not have positive values for at least one of the years between 1991 and

1994, we instead calculated the shares from the importer’s global imports from 1991

to 1994. The resulting shares are used as origin-destination specific weights to convert

imports data between 1970 and 1990 from SITC to HS codes. An analagous crosswalk

was made for exports for the net imports robustness exercise in Table 2.6.

B.1.4 CBP Imputation Procedure

In each county-industry cell, the CBP reports the total number of employees as

well as a count of establishments by brackets of employment totals. As a precaution

to avoid disclosing the operations of any individual employer, the CBP suppresses

some total employment counts in some county-industry cells, while it always reports

the number of establishments by firm size bracket. For these cases, we impute employ-

ment following a procedure analogous to that described in Autor et al. (2013), which

multiplies the number of establishments in each bracket by the average firm size in

that bracket that can be observed in the CBP. A minor difference between the 1970

CBP and the later series used by Autor et al. (2013) is that suppressed employment

totals are also bracketed in the later series, while there is no additional information

provided in 1970. In the 1970 CBP, 12 Kansas counties were omitted from the data.

These counties are in three of our regression sample CZs. Robustness checks omitting

these three CZs are available upon request.

B.1.5 1960 Census Industry Disaggregation

To construct our 1960 instrument, we rely on CZ industry composition calculated

from the 1960 5% Census sample, since CBP data for 1960 does not exist. In order

to utilize the Census data, we needed to disaggregate the fairly coarse 1960 Census

industry codes into the SIC industries we use for the rest of our variables. To do this,

we developed the following procedure.

We took the employed population in the 1960 5% Census sample and calculated

each CZ industry composition based on 1990 Census industry codes. We connected

this in a one-to-many mapping to CZ-level SIC-based industry employment data from

the 1970 CBP, using the crosswalk available in Census Bureau Technical Paper #65.

Because we use a slight aggregation of SIC industries, we had to combine two Census

codes, 140 and 142, giving us 61 Census codes. 58 of these are trade exposed since
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the remaining 3 are “not specified” industries that do not connect to SIC codes in

the Census crosswalk (122, 332, 392). This resulting mapping of 58 Census industry

codes to 380 SIC codes allows us to calculate CZ-specific employment shares of each

SIC code within each Census code.

This disaggregation relies on the assumption that within each Census code, a

CZ’s SIC-based employment composition is constant between 1960 and 1970. If the

associated SIC industries were not present in the 1970 data for a particular CZ-Census

industry cell, we use state-level (or, as a last resort, national-level) employment shares.

B.1.6 Routine- and Offshorability- Indices

We include as controls the share of employment in routine-intensive occupations

and the average offshorability index of occupations in a CZ in 1970. Both of these

measures use task data from Autor and Dorn (2013). To identify routine-intensive

occupations, we follow Autor and Dorn (2013) to create a routine-intensive index for

each occupation: log(routine score) - log(manual score) - log(abstract score). As they

do, we recode the bottom 5 percent of the population in the base year for manual and

abstract to be the 5th percentile. After ranking occupations by the routine-intensive

index, those which take the top third of employment in the base year are classified as

routine-intensive.

The offshorability index is derived from the variables face-to-face contact and

on-site job by occupation in O*NET data; more details on its construction can be

found in Autor and Dorn (2013). Our control is the mean index in the CZ according

to its composition of occupations in 1970. In the regression sample, the CZ mean

offshorability index is standardized to have a mean of 0 and standard deviation of 10

in 1970.

B.1.7 Import Competition in Final Goods

In column (6) of Table 2.6, we report the result for an alternative measure of

import exposure that seeks to isolate the effect of final goods imports, rather than

intermediates to be used as inputs by firms. In order to remove the share of imports

that are used as intermediates, we follow the approach of Autor et al. (2013) by

exploiting the 1972 input-output data provided by the BEA. We convert the codes

used in the BEA’s IO Data files to SIC 1972 via their crosswalk and then to the
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slightly aggregated set of SIC 1987 codes that are used in the rest of the analysis.

Since these are not one-to-one mappings, we incorporate weights based on the NBER-

CES Manufacturing Industry Database concordance.

Assuming that make and use values in domestic production also reflect the nature

of imports, we use these tables to construct shares of each industry’s make value that

is then used as inputs in other manufacturing industries, and deduct this share from

the change in imports value when constructing IPW. We likewise construct a modified

instrument.
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B.2 Empirical Appendix

In this appendix we provide additional descriptive statistics and supplemental

results to those presented in the main text.

B.2.1 Product Composition of Japanese Imports

Table B.1 shows the growth in imports for the SITC product categories that

received the ten largest increases from 1970-1990. Values are listed in millions of 1999

U.S. Dollars.

B.2.2 Import Penetration Ratio

In our main analysis we measure exposure to Japanese imports by change imports

per worker, following Autor et al. (2013) and related papers, so that we can readily

compare our results with theirs. Here we use an alternative measure of exposure

to import competition: import penetration ratio (IPR), similar to Acemoglu et al.

(2016). IPR is the change in imports from Japan by industry as a share of initial

domestic consumption of that industry. For each CZ, we construct a variable that is

a weighted average of IPR based on its 1960 industry composition. Specifically, for

each CZ i we calculate

∆IPRuit =
∑
j

Lijt
Lujt

∆Mujt

Yit +Mit −Xit

(B.1)

where Lijt is the number of workers in commuting zone i in industry j at the beginning

of period t; Lujt is that same value for the United States; Yit, Mit, and Xi,t are output

(shipments), imports, and exports, respectively, of industry i in time period t; and

∆Mujt is the change in imports from Japan in the industry’s product space (in $1000s)

during the time period. Analogous to our main measure, we construct an instrument

based on 1960 industry composition and Japanese imports by other countries. Our

output, imports, and exports data used to calculate consumption by industry are

from Feenstra (1996) and Feenstra (1997). These data are in 1972-basis SIC codes

which we convert to our slightly aggregated set of 4-digit SIC industries.

We report our employment results using IPR in Table B.2. Generally our findings

are similar to our main findings, although our result finding an increase in white
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manufacturing employment loses statistical significance.

B.2.3 Agricultural Employment Trends

In Table 3.4 we saw that the changes in the racial gap in non-manufacturing

employment actually grew at a faster pace than the gap in manufacturing employment

during our period of interest. One concern then is that our focus on manufacturing

is misplaced, and the large effects we find on earnings through this channel must

be spurious. These trends however, appear to be driven by a continuation of the

long-term secular decline of black agricultural employment, as well as the growth in

black non-employment. In Figure B.2.10, we show that especially in the 1960s and

1970s there is a sharp decline in black employment in agriculture relative to whites.

In contrast, in Figure B.2.10, we see that, as a share of employment, black growth in

non-manufacturing kept pace with whites outside of agriculture.

B.2.4 Geographic Dispersion of Japanese Trade

In Figures B.2.10 and B.3 we show heat maps for the geographic dispersion of trade

for all CZs in the continental United States and our regression sample, respectively.

We see that the largest trade increases took place across the northern “Rust Belt”

region, as well as into New England and southern California. In contrast, the heavily

black regions of the Deep South were less exposed. Most of the regions we exclude due

to sample size of black working age males are sparsely populated Western commuting

zones. In general, these CZs were less exposed than those in our regression sample.

In Table B.3 we list the ten most and least affected commuting zones among the 40

largest CZs in our sample. The hardest hit areas were large Midwestern manufacturing

cities like Detroit and Buffalo, though San Jose, California also makes the list. The

smallest growth areas were primarily in the Sun Belt and West Coast; Pittsburgh,

Pennsylvania is one notable exception.

B.2.5 Alternative Time Horizons

Due to concerns about the timing of the 1980 Census and the receding of Japanese

trade in the late-1980s, we used the 1990-1970 long difference approach throughout

the main text. In Table B.4 we explore different time horizons for our main results
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on manufacturing share. Column (1) repeats column (1) of Table 2.5. Column (2)

and (3) look just at 1980-1970 and 1990-1980, respectively. From 1980-1970 we see a

strong negative effect on black manufacturing employment without any evidence for

the positive effect on white outcomes that we saw in our main results. In contrast

from 1990-1980 we see strong positive effects on manufacturing employment overall,

with little evidence for a differential effect. One interpretation of these results is

that the initial influx of import competition in the late 1970s led to large layoffs of

black manufacturing workers, and that it was not until the 1980s that firms adjusted

and began re-employing (higher skill, white) workers. But, as we state in the main

text, the 1990-1980 difference may be unreliable due to the 1980 recession and the

decline in Japanese imports at the end of the 1980s. Column (4) presents the preferred

specification from Autor et al. (2013), which stacks the 1980-1970 and 1990-1980

differences. These results are consistent with those from our preferred specification,

but with less precision.

In column (5) we estimate a placebo regression of the increase in Japanese imports

from 1970-1990 on the change in manufacturing employment from 1960-1970. Here

we include as controls the 1960 CZ manufacturing share and census division fixed

effects, as well as their interactions with the black indicator. We find little evidence

of an effect of future imports on past manufacturing changes, providing support for

the validity of our instrumental variable strategy. If anything, the pre-trends were

towards black growth in manufacturing in areas that would receive higher Japanese

import competition.

In column (6) we present an alternative specification of our preferred long differ-

ences strategy where we use as our left-hand side variable the change in the black-

white manufacturing employment gap. The coefficient on our import exposure vari-

able is thus analogous to the coefficient on the black interaction in the fully-interacted

specification. The result is very similar.

B.2.6 Instrumental Variable Robustness Exercises

Denote Xj as the industry average of some CZ-level variable Xi weighted based

on industry j’s employment distribution across CZs. That is,

Xj =

∑
i sijXi∑
i sij

(B.2)
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where sij is the share of CZ i’s employment belonging to industry j. To provide

conditions for the consistency of “shift-share” IV estimators, Borusyak et al. (2018)

show that the CZ-level regression in the main text is equivalent to estimating the

two-stage least squares regression

∆Y
⊥
jk,1990−1970 = αk + βk∆IPW

⊥
uj,1990−1970 + ε⊥jk (B.3)

instrumented by
∆Moj,1990−1970

Li1960
, where k is race, and the superscript ⊥ represents a

variable that has been residualized over the set of controls. In other words, the CZ-

level regressions we report in the main text are equivalent to a set of industry-level

regressions where the variables are exposure-weighted averages of CZ characteristics

and outcomes.

The industry-level approach provides several benefits, including an alternative set

of standard errors (see Appendix B.2.8) and more transparency of how industries

influence identification. We first plot the relationship between industry-level import

exposure (as measured by our instrument) and changes in CZ-manufacturing share

by race in Figure B.2.10. Industries are binned based on their percentile of import

exposure, excluding automobiles and computers, which we highlight in red and green,

respectively.1 As we discussed in Section 2.3.2 these industries present unique concerns

for identification.

The “as-if” random assignment framework of Borusyak et al. (2018) requires that,

from the hypothetical distribution of shocks that led to the Japanese export boom,

each industry was expected to receive the same shock. Consistent with the concerns

raised in the main text, Figure B.2.10 shows that both automobiles and computers

are far to the right of the shock distribution, suggesting the possibility their realized

trade values were the result of a different underlying process. We also see an additional

set of outlying industries that raise concerns.

In Table B.5 we use the industry-level approach to relax the assumption of mean

independence of the shock distribution for these industries. First, column (1) repeats

column (1) of Table 2.5 and verifies the approaches yield identical point estimates.

Columns (2) and (3) exclude the computer and automobile industries, respectively.

We also include industry-level controls for the exposure to these industries. While with

1We follow Acemoglu et al. (2016) and classify computer industries as SIC87dd 3571, 3572, 3577,
3578, 3651, 3652, 3661, 3663, 3669, 3671, 3672, 3674, 3675, 3676, 3677, 3678, 3679, 3695, 3812,
3822, 3823, 3824, 3825, 3826, 3829, 3844, 3845, and 3873. For automobiles, we use SIC87dd 3-digit
grouping 371.



150

automobiles in particular, we lose substantial precision, the estimates are consistent

with our main results. In column (4) we exclude any outlying industries whose import

exposure (as measured by the instrument) was more than $30,000 per worker (roughly

three standard deviations above the mean), and include controls for exposure to each

of these outlying industries.2 Our results are essentially unchanged.

In columns (5) and (6), we include controls for exposure to 1- and 2-digit manu-

facturing clusters, respectively, which allows the mean of the shock generating process

to differ at these levels.3 The 2-digit cluster controls are especially demanding given

that 1960 manufacturing sector data is imputed based on broader industry classifi-

cations (see Appendix B.1.5). Thus it is not surprising that their inclusion leads to

a noticeably smaller coefficient on the black interaction term. Nonetheless, the result

remains negative and statistically significant across both specifications.

In Table B.6 we implement an additional set of robustness exercises recommended

by Borusyak et al. (2018) within this industry-level framework. We use each individual

developed country’s imports as a separate instrument, which allows us to perform a

test of overidentifying restrictions. We use three different estimation methods: two-

stage least squares, limited information maximum likelihood, and generalized method

of moments. The method chosen has little impact on our results and we fail to reject

the overidentifying restrictions (p = .62).

B.2.7 Intraclass Correlations

As discussed in the Section 2.3.2, Borusyak et al. (2018) show that shift-share in-

struments are consistent provided the industry-level shocks are orthogonal to CZ-level

unobservables, and are sufficiently dispersed across industries. They further show that

the latter condition can be relaxed to allow for correlation within industry clusters,

and to be conditional on observables. We test this assumption here.

Following the approach in Borusyak et al. (2018), we estimate the hierarchical

random effects model

ĝn = a1,n + b2,n + c3,n + en (B.4)

where ĝn is, for industry n, the residual of a regression of Japanese exports to other

2This affects four SIC87dd industries: 3751 (motorcycles, bicycles, and parts); 3827 (optical instru-
ments and lenses); 3844 (X-ray apparatus and tubes); and 3845 (Electromedical equipment)
3Note that column (5) is equivalent to column (2) of Table 2.6.
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countries on a set of industry-level controls; and a, b, and c are random effects specific

to industry n’s 1-digit, 2-digit, and 3-digit classification, respectively.4 Note that the

residual en represents variation at the 4-digit industry level, the level at which the

instrument is computed. For 1-digit classifications, we follow the system used by Autor

et al. (2014); for 2- and 3-digit classifications, we follow the SIC system. To avoid

distorting our estimates with variation caused by large outliers, we winsorize all values

of ĝ above $30,000 per worker to be $30,000 (roughly three standard deviations above

the mean).5 Following convention, we impose a normal distribution for the random

effects, and estimate the model using maximum likelihood.

Table B.7 reports intraclass correlation coefficients from this exercise. We find a

moderate amount of clustering at the 3-digit level, but given the large number of

3-digit industries in our data (135), this presents less of a concern for consistency.

When estimating industry-level regressions in Appendices B.2.6 and B.2.8, we cluster

our standard errors at the 3-digit level to account for this correlation. At the higher

2-digit and 1-digit levels, though larger than what Borusyak et al. (2018) find for

China, the correlation is much more mild. This is consistent with similar industries

receiving different levels of shock exposure, and the dispersion assumption necessary

for the consistency of the IV.

B.2.8 Borusyak-Hull-Jaravel Standard Errors

In the main text, we report standard errors that are clustered at the state level

to account for correlations within proximate geographies. As the identification from

“shift-share” instruments is driven by shocks at the industry-level, Adão et al. (2018)

note that correlated errors within industries across different geographies may be a

larger concern, and derive an alternative set of standard errors to account for this.

Borusyak et al. (2018) show that the standard errors produced by the industry-

level regressions discussed in Appendix B.2.6 are asymptotically equivalent to those

constructed by Adão et al. (2018). In Table B.8 we reproduce Table 2.5 using the

industry-level approach, clustering at the 3-digit SIC-level, which is the level of clus-

4For controls, we follow our main specification and use industry-level exposure to CZ-level percentage
of employment in manufacturing, college percentage of population, average offshorability index of
occupations, percentage of employment in routine occupations, black percentage of population, and
census divisions. See Appendix B.2.6 for more details of the industry-level approach.
5Because large outliers increase the variation within clusters, the winsorization produces larger and
more conservative estimates of the amount of within cluster correlation.
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tering suggested by our intraclass correlation exercises in Appendix B.2.7. We find

this approach produces universally smaller standard errors than state level clustering.

B.2.9 Mean Earnings

As we discuss in the main text, we prefer working with median income and earnings

rather than means due to concerns about topcoding and the susceptibility to outliers

in small samples. In Table B.9 we estimate the effects of import competition on

disparities in mean log income and earnings for males and households. Note that we

are unable to compute an analogue of the median log earnings of all working age

males, since we cannot take the log of 0.

Just as in medians, we find little evidence for change in the wage or earnings gap

among those with positive earnings. However, we do find negative and statistically

significant effects on the household earnings gap, albeit smaller than that estimated in

Table 2.12. We also find a smaller but non-trivial impact on the household income gap,

although it is not statistically significant at conventional levels. Note that unlike for

our mean male earnings regressions, mean household earnings is sensitive to changes

in non-labor force participation for working age males.

B.2.10 Nationally Representative Descriptive Statistics

In section 2.4.4 we used nationally representative statistics for performing back of

the envelope calculations. Table B.10 provides a full set of descriptive statistics for

this sample.
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Figure B.1.: Change in Import Exposure Intensity, 1990-1970: All CZs

Notes - Change in IPW from 1970 to 1990 for each commuting zone in the continental United States.

Figure B.2.: Change in Import Exposure Intensity, 1990-1970: Regression Sample

Notes - Change in IPW from 1970 to 1990 for commuting zones in the regression sample.
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Figure B.3.: Fraction of Employment in Agriculture: Working Age Men, 1962-1999

Notes - Yearly scatterplot data smoothed using LOWESS with bandwidth=0.15

Source - Current Population Survey (1962-1999).
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Figure B.4.: Fraction of Employment in Non-Agricultural Non-Manufacturing: Work-
ing Age Men, 1962-1999

Notes - Yearly scatterplot data smoothed using LOWESS with bandwidth=0.15

Source - Current Population Survey (1962-1999).
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(a) White

(b) Black

Figure B.5.: Industry-level Japanese Import Exposure and Average Residualized
Change in Manufacturing Employment by Race, 1990-1970

Notes - Each non-automobile, non-computer industry bin represents 2% of industries. Y-axis is (for each bin) the

average CZ-level change in manufacturing employment. Yellow line is weighted least squares best fit.
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Table B.1.: Growth of Japanese Imports to U.S. by Product, 1970-1990: Ten Largest

SITC 1970 1990 Growth

(1) (2) (3) (4)

Passenger motor cars 7321 2,123.13 26,644.29 24,521.17
(excluding buses)

Statistical machines cards or tapes 7143 5.98 7,718.19 7,712.21

Bodies & parts of motor vehicles 7328 142.37 7,431.99 7,289.62
(excluding motorcycles)

Thermionic valves and tubes, 7293 132.73 4,868.01 4,735.28
transistors, etc.

Other telecommunications 72499 265.63 4,074.20 3,808.57
equipment

Parts of office machinery, n.e.s. 71492 56.96 3,647.93 3,590.96

Internal combustion engines, 7115 168.42 3,350.47 3,182.05
not for aircraft

Equipment for indoor games 89424 29.93 2,977.28 2,947.36

Phonographs, tape & other 8911 1,437.22 4,295.48 2,858.26
sound recorders etc.

Lorries and trucks, including 7222 134.92 1,960.21 1,825.29
ambulances, etc.

Notes - In millions of 1999 U.S. Dollars

Source - UN Comtrade
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Table B.2.: Japanese Import Penetration Ratio and Change in Racial Employment
Status Gap, 1990-1970 Long Difference: 2SLS Estimates

Mfg Non-mfg Unemp NILF
emp emp

(1) (2) (3) (4)

(∆Japanese import 0.408 -0.178 -0.036 -0.187
penetration) (0.327) (0.321) (0.089) (0.156)

(∆ Japanese import -2.564*** 0.904 -0.197 1.519***
penetration)× Black (0.500) (0.853) (0.369) (0.550)

Observations 716 716 716 716

Notes - Robust standard errors clustered at the state-level in parentheses. Models are weighted by race-specific

1970 population. Each regression includes census division fixed effects; commuting zone-level controls for percentage

of employment in manufacturing, college percentage of the population, average offshorability index of occupations,

percentage of employment in routine occupations, black percentage of population, and foreign-born percentage of

population in 1960; a black indicator; and interactions of the black indicator with all of these variables. p ≤ 0.10, ∗∗p ≤
0.05, ∗ ∗ ∗p ≤ 0.01

Table B.3.: Growth of Imports Exposure Per Worker Across CZs, 1990-1970: 40
Largest CZs (Regression Sample)

Ten Largest Increases Ten Smallest Increases

Detroit, MI 9.292 New Orleans, LA 0.097

San Jose, CA 5.952 Sacramento, CA 0.124

Buffalo, NY 5.692 San Antonio, TX 0.311

Minneapolis, MN 3.362 Tampa, FL 0.362

Cleveland, OH 3.203 Arlington, VA 0.397

Cincinnati, OH 2.829 Seattle, WA 0.412

Dayton, OH 2.516 Houston, TX 0.458

Syracuse, NY 2.308 Pittsburgh, PA 0.466

Indianapolis, IN 2.221 New York, NY 0.647

Boston, MA 2.197 Denver, CO 0.889
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Table B.4.: Japanese Imports on Change in Manufacturing Employment/ Working
Age Population in CZs, Alternative Time Horizons: 2SLS Estimates

Change in Manufacturing Employment Chng in
Man Gap

1990- 1980- 1990- 1990- 1970- 1990-
1970 1970 1980 1970 1960 1970
LD FD FD Stacked LD LD
(1) (2) (3) (4) (5) (6)

(∆ Imports from Japan 0.193* -0.152 0.598*** 0.310 0.110 -0.813***
to US)/worker (0.117) (0.173) (0.167) (0.211) (0.155) (0.223)

(∆ Imports from Japan -0.785*** -1.605*** 0.151 -0.554** 0.331
to US)/worker× Black (0.173) (0.226) (0.218) (0.237) (0.216)

Observations 716 716 716 1432 716 358

Notes - Robust standard errors clustered at the state-level in parentheses. Columns (1)-(5) are weighted by race-

specific 1970 population, while column (6) is weighted by 1970 population. Each regression includes census division

fixed effects and commuting zone-level controls for percentage of employment in manufacturing. Columns (1)-(4) and

(6) include additional controls for college percentage of the population, average offshorability index of occupations,

percentage of employment in routine occupations, black percentage of population, and foreign-born percentage of

population in 1960. Columns (1)-(5) include a black indicator and interactions of the black indicator with all of

control variables. p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01

Table B.5.: Japanese Imports and Change in Manufacturing Employment / Working
Population in CZs, Industry-Level Regressions, 1990-1970 Long Difference: 2SLS
Estimates

All No No No 1-dig 2-dig
Comp Autos Out Shares Shares

(1) (2) (3) (4) (5) (6)

(∆ Imports from Japan 0.193** 0.225** 0.283 0.189** 0.268** 0.234*
to US)/worker (0.081) (0.108) (0.461) (0.083) (0.128) (0.127)

(∆ Imports from Japan -0.785*** -0.841*** -1.311* -0.754*** -0.509*** -0.227**
to US)/worker× Black (0.104) (0.135) (0.757) (0.073) (0.140) (0.106)

Observations 762 706 756 754 762 762

Notes - Robust standard errors clustered at the 3-digit SIC-level in parentheses. Models are weighted by race-specific

CZ industry exposure. Each regression includes controls for census division exposure; exposure to commuting zone-

level percentage of employment in manufacturing, college percentage of the population, average offshorability index

of occupations, percentage of employment in routine occupations, black percentage of population, and foreign-born

percentage of population in 1960; a black indicator; and interactions of the black indicator with all of these variables.

Column (2) excludes computer industries and includes a control for CZ-level exposure to computer industries and

its interaction with a black indicator. Column (3) excludes automobile industries and includes a control for CZ-level

exposure to automobile industries and its interaction with a black indicator. Column (4) excludes industries with

outlying trade IV and includes controls for CZ-level exposure to each of these industries and their interactions with a

black indicator. Column (5) includes controls for CZ-level exposure to 1-digit manufacturing industries. Column (6)

includes controls for CZ-level exposure to 2-digit SIC manufacturing industries. p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01
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Table B.6.: Japanese Imports and Change in Manufacturing Employment / Working
Population in CZs, Industry-Level Regressions, 1990-1970 Long Difference: Overi-
dentification Tests

2SLS LIML GMM

(1) (2) (3)

(∆ Imports from Japan 0.115* 0.113 0.128**
to US)/worker (0.068) (0.071) (0.058)

(∆ Imports from Japan -0.759*** -0.758*** -0.718***
to US)/worker× Black (0.064) (0.064) (0.048)

Observations 762 762 762
J-statistic 8.057 8.051 8.057
p-value on J-test 0.623 0.624 0.623

Notes - Robust standard errors clustered at the 3-digit SIC-level in parentheses. Models are weighted by race-specific

CZ industry exposure. Each regression includes controls for census division exposure; exposure to commuting zone-

level percentage of employment in manufacturing, college percentage of the population, average offshorability index

of occupations, percentage of employment in routine occupations, black percentage of population, and foreign-born

percentage of population in 1960; a black indicator; and interactions of the black indicator with all of these variables.

J-statistics are from Hansen test of instrument overidentifying restrictions.

Table B.7.: Intraclass Correlations of Residualized Japanese Trade Shock

ICC SE
(1) (2)

1-digit 0.044 (0.026)

2-digit 0.065 (0.041)

3-digit 0.160 (0.049)

4-digit Industries 380 380

Notes - Robust standard errors in parentheses. Intraclass correlation coefficients from hierarchical random effects

model. Japanese trade shock residual computed from regression of industry-level exports to six other highly developed

countries on industry-level exposure to CZ-level percentage of employment in manufacturing, college percentage

of population, average offshorability index of occupations, percentage of employment in routine occupations, black

percentage of population, and census divisions. 1-digit industry classifications follow system from ?. 2- and 3-digit

industry classifications are SIC87.
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Table B.8.: Japanese Imports and Change in Racial Employment Status Gap,
Industry-Level Regressions, 1990-1970 Long Difference: 2SLS Estimates

Mfg Non-mfg Unemp NILF
emp emp

(1) (2) (3) (4)

(∆ Imports from Japan 0.193** -0.097 -0.010 -0.086**
to US)/worker (0.081) (0.080) (0.028) (0.036)

(∆ Imports from Japan -0.785*** 0.228** -0.071 0.542***
to US)/worker× Black (0.104) (0.108) (0.081) (0.078)

Observations 762 762 762 762

Notes - Robust standard errors clustered at the 3-digit SIC-level in parentheses. Models are weighted by race-specific

CZ industry exposure. Each regression includes controls for census division exposure; exposure to commuting zone-

level percentage of employment in manufacturing, college percentage of the population, average offshorability index

of occupations, percentage of employment in routine occupations, black percentage of population, and foreign-born

percentage of population in 1960; a black indicator; and interactions of the black indicator with all of these variables

Table B.9.: Japanese Imports and Changes in Mean Log Earnings, 1990-1970 Long
Difference: 2SLS Estimates

Working Age Households
Males

Weekly Annual Annual Annual
Wage Earnings Earnings Income
(1) (2) (3) (4)

(∆ Imports from Japan -0.039 -0.104 -0.308 -0.074
to US)/worker (0.405) (0.397) (0.333) (0.307)

(∆ Imports from Japan 0.204 0.024 -1.128** -0.956
to US)/worker× Black (0.310) (0.510) (0.556) (0.597)

Observations 716 716 716 716

Notes - Robust standard errors clustered at the state-level in parentheses. Models are weighted by race-specific

1970 population. Each regression includes census division fixed effects; commuting zone-level controls for percentage

of employment in manufacturing, college percentage of the population, average offshorability index of occupations,

percentage of employment in routine occupations, black percentage of population, and foreign-born percentage of

population in 1960; a black indicator; and interactions of the black indicator with all of these variables. p ≤ 0.10, ∗∗p ≤
0.05, ∗ ∗ ∗p ≤ 0.01
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Table B.10.: Descriptive Statistics: Nationally Representative Sample

Black White ∆Gap

1970 1990 1970 1990
(1) (2) (3) (4) (5)

Percentage of population 19.412 12.857 22.970 17.756 -1.341
employed in manufacturing (39.552) (33.472) (42.064) (38.214)

Percentage of population 51.607 49.588 59.396 63.242 -5.866
employed in non-manufacturing (49.974) (49.998) (49.109) (48.215)

Unemployed share 4.379 9.575 2.858 4.351 3.703
of population (20.464) (29.425) (16.663) (20.400)

Labor force 24.602 27.981 14.776 14.651 3.504
non-participation rate (43.069) (44.890) (35.486) (35.361)

Median log weekly wage, 612.317 614.253 654.631 647.104 9.464
male earners (82.554) (83.535) (79.295) (84.943)

Median log annual earned 999.966 995.961 1044.223 1038.146 2.072
income, male earners (104.302) (120.389) (105.975) (113.675)

Median log annual earned 979.440 955.478 1037.371 1024.793 -11.384
income, all working-age males (381.748) (424.266) (303.740) (324.687)

Median log HH 935.678 950.599 989.468 1000.677 3.713
earned income (330.072) (362.998) (268.972) (284.588)

Median log HH 941.393 960.638 990.371 1008.681 0.934
total income (205.765) (198.622) (181.279) (153.246)

HH welfare rate 14.351 17.682 2.892 4.491 1.732
(35.059) (38.152) (16.758) (20.711)

Notes - Standard deviations in parentheses.
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Table B.11.: Japanese Imports and Change in Employment/Working Age Population
in Non-Manufacturing Sectors by Race and Skill Group, 1990-1970 Long Difference:
2SLS Estimates

Ag/ Trans- Whlsle Serv- Pub-
mining/ port & retl ice lic/

const trade othr

(1) (2) (3) (4) (6)

Panel A: HS Dropouts
All Workers
(∆ Imports from Japan -0.091 0.081 0.197*** -0.053 0.076
to US)/worker (0.092) (0.051) (0.058) (0.034) (0.082)

Black Workers
(∆ Imports from Japan -0.142 0.190*** 0.220*** -0.125 0.175*
to US)/worker (0.126) (0.061) (0.092) (0.082) (0.098)

White Workers
(∆ Imports from Japan -0.166 0.093** 0.220*** -0.009 0.052
to US)/worker (0.112) (0.044) (0.070) (0.040) (0.073)

Panel B: HS Grads
All Workers
(∆ Imports from Japan 0.154** -0.078 0.216*** -0.109** -0.101
to US)/worker (0.073) (0.064) (0.101) (0.051) (0.109)

Black Workers
(∆ Imports from Japan -0.109 0.298*** 0.288** -0.179 -0.276
to US)/worker (0.071) (0.076) (0.142) (0.117) (0.253)

White Workers
(∆ Imports from Japan 0.073 -0.125 0.188* -0.105** -0.085
to US)/worker (0.085) (0.077) (0.104) (0.052) (0.110)

Panel C: College Educated
All Workers
(∆ Imports from Japan 0.010 -0.107** 0.027 -0.115 0.034
to US)/worker (0.040) (0.043) (0.069) (0.130) (0.083)

White Workers
(∆ Imports from Japan 0.015 -0.083** 0.052 -0.095 -0.005
to US)/worker (0.044) (0.039) (0.074) (0.131) (0.087)

Observations 358 358 358 358 358

Notes - Robust standard errors clustered at the state-level in parentheses. Models are weighted by race-specific 1970

population. Each entry represents a separate regression for that race and/or skill group. Each regression includes census

division fixed effects; commuting zone-level controls for percentage of employment in manufacturing, college percentage

of the population, average offshorability index of occupations, percentage of employment in routine occupations, black

percentage of population, and foreign-born percentage of population in 1960; a black indicator; and interactions of

the black indicator with all of these variables. ∗p ≤ 0.10, ∗ ∗ p ≤ 0.05, ∗ ∗ ∗p ≤ 0.01
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C. APPENDIX FOR: END-OF-LIFE MEDICAL
SPENDING: EVIDENCE FROM PET INSURANCE

C.1 End-of-Life Spending Patterns by Age and Year

In Tables B.1 and B.2 we report some statistics on end-of-life spending by age and

year for dogs in our sample.

Table B.1.: Spending Patterns by Age at Diagnosis

Last 12 Months Last 12 Months First 12 First 12 Months
Spending Spending, Share Spending Spending, Full Sample

mean st. dev. mean st. dev. mean st. dev. mean st. dev.
(1) (2) (3) (4) (5) (6) (7) (8)

2 4486.63 3871.09 0.63 0.28 4103.92 3728.30 3970.47 3693.59
3 4788.84 4047.29 0.60 0.27 4554.25 4129.64 4455.73 4006.89
4 4649.80 4072.49 0.55 0.24 4211.44 3625.88 4195.07 3678.86
5 4446.72 3728.47 0.52 0.24 4095.77 3683.28 4073.91 3615.21
6 4241.56 3696.45 0.47 0.21 3708.26 3349.09 3751.74 3403.71
7 4123.94 3619.04 0.44 0.21 3755.84 3500.51 3813.82 3501.81
8 4129.50 3647.24 0.41 0.19 3673.98 3529.48 3691.58 3501.87
9 3918.54 3422.73 0.39 0.18 3426.75 3280.63 3463.77 3290.27
10 3825.47 3434.50 0.36 0.17 3273.93 3266.11 3325.98 3277.99
11 3671.68 3091.46 0.33 0.16 3149.56 3002.78 3205.65 3035.13
12 3727.19 3513.39 0.31 0.15 3048.74 3111.44 3072.47 3108.58

Total 3983.01 3520.05 0.40 0.20 3484.40 3350.51 3525.44 3357.05

Obs. 31,484 31,484 31,484 33,899

Notes - Columns show mean and standard deviation of each variable. Last 12 Months Spending is spending during

the last 12 months of life. Last 12 Months Spending, Share is this end-of-life spending as a share of total lifetime

spending on the pet’s health care. First 12 Months Spending is spending during the first 12 months upon diagnosis.

Share of lifetime spending in Columns (3) and (4) uses some imputed annual spending for cases where the dog does

not have insurance for every year of life. To impute, we use median annual claims for pre-diagnosis dogs within the

same breed size/breed category/gender/age cell as the annual claim for any missing dog/year observation.
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Table B.2.: Spending Patterns by Year of Diagnosis

Last 12 Months Last 12 Months First 12 Months First 12 Months
Spending Spending, Share Spending Spending, Full Sample

mean st. dev. mean st. dev. mean st. dev. mean st. dev.
(1) (2) (3) (4) (5) (6) (7) (8)

2009 3298.74 3048.75 0.36 0.19 3124.00 2782.78 3118.08 2776.60
2010 3594.35 3204.45 0.39 0.19 3229.24 2981.29 3213.86 2958.61
2011 3709.64 3185.78 0.39 0.19 3301.91 3066.80 3303.17 3058.99
2012 3891.07 3283.37 0.39 0.19 3405.94 3168.81 3400.92 3159.73
2013 3933.16 3412.79 0.39 0.20 3449.91 3252.07 3467.48 3278.68
2014 4107.77 3482.87 0.40 0.20 3593.28 3389.95 3592.60 3371.41
2015 4197.53 3780.65 0.41 0.21 3577.89 3606.52 3609.81 3547.78
2016 4489.28 4045.94 0.42 0.22 3844.71 3861.90 3937.31 3842.97
2017 4524.03 3916.74 0.42 0.22 3775.23 3759.60 3992.00 3805.47

Total 3983.01 3520.05 0.40 0.20 3484.40 3350.51 3525.44 3357.05

Obs. 31,484 31,484 31,484 33,899

Notes - Columns show mean and standard deviation of each variable. Last 12 Months Spending is spending during

the last 12 months of life. Last 12 Months Spending, Share is this end-of-life spending as a share of total lifetime

spending on the pet’s health care. First 12 Months Spending is spending during the first 12 months upon diagnosis.

Share of lifetime spending in Columns (3) and (4) uses some imputed annual spending for cases where the dog does

not have insurance for every year of life. To impute, we use median annual claims for pre-diagnosis dogs within the

same breed size/breed category/gender/age cell as the annual claim for any missing dog/year observation.
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