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ABSTRACT

Shaik, Vaseem A. Ph.D., Purdue University, August 2020. The Motion of Drops
and Swimming Microorganisms: Mysterious Influences of Surfactants, Hydrodynamic
Interactions, and Background Stratification. Major Professor: Arezoo M. Ardekani,
School of Mechanical Engineering.

Microorganisms and drops are ubiquitous in nature: while drops can be found

in sneezes, sprays, ink-jet printers, oceans etc, microorganisms are present in our

stomach, intestine, soil, oceans etc. In most situations they are present in complex

conditions: drop spreading on a rigid or soft substrate, drop covered with impuri-

ties that act as surfactants, marine microbe approaching a surfactant laden drop in

density stratified oceanic waters in the event of an oil spill etc. In this thesis, we

extract the physics underlying the influence of two such complicated effects (surfac-

tant redistribution and density-stratification) on the motion of drops and swimming

microorganisms when they are in isolation or in the vicinity of each other. This thesis

is relevant in understanding the bioremediation of oil spill by marine microbes.

We divide this thesis into two themes. In the first theme, we analyze the motion

of motile microorganisms near a surfactant-laden interface in homogeneous fluids.

We begin by calculating the translational and angular velocities of a swimming mi-

croorganism outside a surfactant-laden drop by assuming the surfactant is insoluble,

incompressible, and non-diffusing, as such system is relevant in the context of biore-

mediation of oil spill. We then study the motion of swimming microorganism lying

inside a surfactant-laden drop by assuming the surfactant is insoluble, compressible,

and has large surface diffusivity. This system is ideal for exploring the nonlinearities

associated with the surfactant trasport phenomena and is relevant in the context of

targeted drug delivery systems wherein one uses synthetic swimmers to transport

the drops containing drug. We then analyze the motion of a swimming organism
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in a liquid film covered with surfactant without making any assumptions about the

surfactant and this system is relevant in the case of free-standing films containing

swimming organisms as well as in the initial stages of the biofilm formation. In the

second theme, we consider a density-stratified background fluid without any surfac-

tants. In this theme, we examine separately a towed drop and a swimming organism,

and find the drag acting on the drop, drop deformation, and the drift volume induced

by the drop as well as the motility of the swimming organism.
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1. INTRODUCTION

The transport of drops and swimming organisms through density-stratified fluids is

important not only from the fundamental fluid mechanics perspective which improves

upon our understanding based on classical microhydrodynamics [1–3] but also from

the applied standpoint. For example, consider the situation of oil spill during which

the spilled oil rose in the form of droplets through the stratified oceanic waters. These

drops were usually covered with surfactant which was added (after the spill) with the

purpose of breaking down the heavier oil components into lighter ones. It was found

that the effect of oil spill on the marine life is not as devastating as expected [4].

This is because most of the spilled oil was consumed by the marine microbes as

the oil served as nutrient sources for these microbes. Hence, a proper accounting of

the surfactant effects on the oil-microbe interactions (see Chapter 2) as well as the

stratification effects on the droplet motion (see Chapter 5) unravel the simultaneous

influence of stratification and surfactant redistribution on the bioremediation of oil

spill.

Stratification was found to alter the drag experienced by a towed particle or drop

and the motility of swimming organisms as small as milimiter size [5,6]. For example,

stratification enhances the drag acting on a towed particle or drop while it hinders the

motility of organisms such as copepods, dinoflagellates, cyanobacteria, etc, leading to

the formation of algal blooms at sharp density changes, which could have significant

human health risks due to the toxins released by these organisms. A towed particle

or drop or a freely swimming organism drags a certain volume of fluid with itself

(the so called “drift volume”) which is infinitely large compared to particle, drop

or organism’s volume at zero or finite inertia. This drift volume is directly related

to the mixing caused by the sedimenting organic matter (like marine snow) and the

marine organisms. As expected stratification significantly modifies the drift volume
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in turn altering the biogenic contributions to the mixing. Despite the huge literature

on the motion of particles, drops or swimming organisms through stratified fluids (see

Refs. [5,6]), no analytical expressions for the drag acting on the drop, motility of the

organisms and the drift volume induced by them were ever reported (see Chapters 5

and 6).

In microfluidic experiments, in free-standing films and during the initial stages of

biofilm formation on water surface in aquatic environments, the stratification effects

are negligible but not the surfactant effects. For example, synthetic swimmers can be

used to transport the contents within the drop or the drop itself in a microfluidic chan-

nel and this has applications in the targeted drug delivery systems [7]. The intracicies

of this transport process depends on the impurities, which act as surfactants, that are

inevitably present on the droplet surface (see Chapter 3). Surfactant redistribution

has been found to alter the swimming dynamics near a plane and spherical interfaces

under various limits of surfactant transport phenomenon [8–10]. It is necessary to

extend these theories to locomotion in films as a first step towards understanding the

formation of biofilms (see Chapter 4).

Due to the small length and velocity scales, the motion of the drops and organisms

inherently occur at low Reynolds number, where the Reynolds number is the ratio

of the inertial forces to the viscous forces. Under the Boussinesq approximation (see

Chapter 6 for details), the fluid motion is governed by the Navier-Stokes equations

and the incompressibility condition while the density transport is governed by the

advection-diffusion equation

ρ∞

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + ρg, ∇ · v = 0,

∂ρ

∂t
+ v · ∇ρ = κ∇2ρ,

(1.1)

where ρ∞, ρ, µ, κ, v, and p denote respectively, reference density, density, dynamic

viscosity of the fluid, diffusivity of the stratifying agent, velocity, and pressure fields.

At negligible inertia and stratification, these equations become linear and independent

of time. Hence, any organism that exhibits the time-reversal symmetry—the organ-
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ism’s gait does not change when viewed forward as well as backward in time—do not

swim on an average. This statement is essentially the Purcell’s scallop theorem [11].

Due to this reason, biological microswimmers adopt time irreversible stratigies to

propel at low Reynolds number. These include but not limited to the propagating

waves along their surface or rotating their helical flagella [12]. Along the similar lines,

artifical microswimmers are designed to get away from the constraints of the scallop

theorem [7].

In this thesis, we model the swimming organism in one of the three ways: (i)

Taylor’s swimming sheet [13], (ii) force-dipole or monopole depending on whether

the organism is force-free or not [2], and (iii) spherical squirmer [14, 15]. In the

first model, we represent the organism as an infinitely long 2D waving sheet of zero

thickness and this model is good representation of organisms such as the tail of human

spermatazoon, Caenorhabditis elegans etc. The second model is used to study the

hydrodynamic interaction of the organism with the drop and this model represents all

the organisms as we are not explicitly resolving the surface of the organism. However,

this model is inaccurate when the organism is close to the drop surface. In the third

model, we represent the organism as a sphere with prescribed slip on its surface and

this model is a good representation of ciliated organisms such as Paramecium, Opalina

as well as the colonies of green alga Volvox. Both the squirmer model and the far-field

representation (force-dipole model) can be used to analyze the swimming dynamics of

three well studied types of swimmers: pusher, puller and neutral swimmer. A puller

(resp. pusher) swimmer propels by drawing fluid along its axis (resp. sides) and

ejecting fluid along its sides (resp. axis). The flow field far from a neutral swimmer

can be represented by a force quadrapole (instead of a dipole) placed at its center.

Escherichia coli, Chlamydomonas and Volvox are three typical examples of pusher,

puller and neutral swimmers, respectively.

We divide this thesis into two parts. In the first part, we analyze the locomotion

near a surfactant-laden interface in a homogeneous fluid.
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• In Chapter 2, we derive the mobility matrix for two drops of arbitrary sizes covered

with an incompressible and non-diffusing surfactant. We also calculate the

velocity of a swimming microorganism (modeled as a force-dipole) outside a

drop covered with a similar surfactant. We use the latter results to find the

swimming dynamics outside a surfactant-laden drop in an effort to ascertain

the surfactant effects on the bioremediation of an oil spill (see Ref. [16, 17]).

• In Chapter 3, we investigate the dynamics of a spherical squirmer inside a spherical

surfactant laden drop by assuming the surface diffusion of the surfactant is large.

We find that the advection of the surfactant on the drop surface leads to a time-

averaged propulsion of the drop and the time-reversible swimmer that it engulfs,

thereby causing them to escape from the constraints of the scallop theorem.

• In Chapter 4, we analyze the motion of a swimming sheet located symmetrically

in a film covered with surfactant. We find that the surfactant-gradient induced

alterations in the swimming speed are intricately related to the corresponding

alterations in the interface slip.

The second part is focused on the motion of a clean drop or swimming organism

through a linearly density-stratified fluid.

• In Chapter 5, we consider a towed drop in a stratified fluid and calculate the

drag acting on the drop, the flow fields inside and outside the drop, the drop

deformation, and the drift volume induced by the drop. We find that the

stratification enhances the drag, does not deform the drop and reduces the drift

volume making it finite.

• In Chapter 6, we study the motion of a spherical squirmer in a density-stratified

fluid. We find that stratification can enhance or reduce the swimming speed

of the organism depending on its gait and its location relative to the neutrally

buoyant position.
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2. POINT FORCE SINGULARITIES OUTSIDE A DROP COVERED WITH AN

INCOMPRESSIBLE SURFACTANT: IMAGE SYSTEMS AND THEIR

APPLICATIONS

2.1 Introduction

Point force singularity solutions are commonly used to represent the disturbance

flow field due to particles, drops and microorganisms in a low Reynolds number

regime [2,18,19], where the inertial forces are negligible. For instance, the disturbance

flow field due to particles of simple shape (e.g., sphere, spheroid or ellipsoid) in simple

ambient flows (e.g., uniform flow, linear flow) or that due to particles of slender

geometry can be represented by an internal distribution of point force singularities

(and the higher order singularities) [2, 20]. More importantly, the far-field behavior

of the disturbance flow field can be captured by a Stokeslet (flow field due to a point

force) or a rotlet (flow field due to a point torque) or a stresslet (flow field due to a

symmetric part of a force dipole), if the force, torque and the stresslet experienced

by the particle are known [2]. This far-field behavior can be used to understand the

interaction of particles, drops or microorganisms with interfaces [8, 21–24].

In this work, we derive the image flow field due to the point force singularities

placed outside a drop covered with an insoluble, non-diffusing and an incompressible

surfactant, with allowance for the interfacial viscosity of the drop. This solution can

be used to understand the pair hydrodynamic interaction of bubbles and drops in

the presence of surfactants in bubbly flows and emulsion flows, respectively. It can

also be used to investigate bacterial dynamics in the vicinity of oil drops; an analysis

that is essential in order to understand the mechanism of bioremediation of insoluble

This chapter has been reprinted with permission from the article “Point force singularities outside
a drop covered with an incompressible surfactant: Image systems and their applications”, by V. A.
Shaik and A. M. Ardekani, Physical Review Fluids, 2(11):113606, 2017 (DOI: 10.1103/PhysRevFlu-
ids.2.113606). Copyright (2017) of The American Physical Society.
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hydrocarbons released in an oil spill. In the event of an oil spill, surfactants are often

used to break down the ‘heavier’ oil components into tiny drops (O (100− 1000)µm),

which act as a carbon source for marine bacteria [4]. Therefore, it is important to un-

derstand the hydrodynamic interactions between bacteria and surfactant-laden drops,

as a first step towards answering vital questions related to the process of bioreme-

diation in oil spills. Also, the distribution of bacteria near bubbles is important in

marine environments or in food cleaning procedures when cavitation bubbles are used

to clean infectious bacteria from surface of food products [25].

Non-uniform distribution of surfactant (which leads to the non-uniform interfacial

tension), caused by fluid flow near an insoluble surfactant laden interface, significantly

alters the physics, e.g., the velocity of a force-free drop or the drag experienced by

a drop. This fluid flow can be due to (i) externally applied force (e.g., gravity), (ii)

externally imposed flow field, or (iii) hydrodynamic interactions with other particles.

Among these, the buoyancy (gravity) driven motion of drops covered with surfactants

in an unbounded quiescent fluid is well understood [18,26]. There is a recent attrac-

tion to the motion of force-free, surfactant-laden-drops in an unbounded externally

imposed flow field. One interesting observation is the cross-stream migration of a

non-deforming surfactant laden spherical drop (towards the centerline of the flow) in

an unbounded plane/cylindrical Poisuelle flow. Hanna and Vlahovska’s work [27] was

the first to observe this and they focused on the limits of large Marangoni number,

Ma (ratio of Marangoni forces to the viscous forces) or large viscosity ratio of the

drops, neglecting any surface diffusivity of the surfactant. Schwalbe et al. [28] studied

the influence of the interfacial viscosity of the drops, where the interface is assumed to

be Newtonian and the Boussinesq-Scriven constitutive law is used for the interfacial

stress tensor. Pak et al. [29] studied the effect of surface diffusivity of the surfactant

in the limit of large diffusivity (surface Péclet number, PeS � 1, where PeS is the

ratio of surface advection of the surfactant to its surface diffusion).

A lot of work has been done on the interaction of particles/drops with surfactant-

laden-interfaces. Depending on the shape of the interface, one can classify these works
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into two categories. The first category deals with the motion of particles near a plane

interface covered with a surfactant. For instance, Blawzdziewicz et al. [30] developed a

method to find the image of an arbitrary flow field from a plane interface covered with

an incompressible, insoluble and non-diffusing surfactant. They used this method to

find the image of a Stokeslet, which was further utilized in deriving the mobility of a

rigid sphere near a surfactant-laden interface. Recently, Lopez and Lauga [8] studied

the dynamics of swimming microorganisms near a plane interface covered with an

incompressible surfactant. Modeling the microorganisms with a force dipole or a

rotlet dipole, they explained the attraction/repulsion of microorganisms and their

swimming in circles near such complex interfaces. These two studies included the

effects of interfacial viscosity. The second category deals with the interaction of two or

more spherical surfactant-laden-drops. For instance, Blawzdziewicz et al. [31] derived

the general solution of creeping flow equations surrounding a spherical drop covered

with an insoluble and incompressible surfactant (Ma→∞). This solution was then

used to derive the pairwise mobility functions which were further utilized to determine

the collision efficiencies of two equal-sized bubbles covered with a surfactant in linear

flows. In the same limit of Ma, Ramirez et al. [32] studied the effect of buoyancy

on the interaction of neutrally buoyant rigid spheres (located outside the drop) with

surfactant-covered bubbles, in the context of microflotation. Following the procedure

of Ramirez et al. [32], Rother and Davis [33] studied the buoyancy induced coalescence

of two drops (of arbitrary size) covered with an incompressible surfactant. These three

works considered the additional influence of Brownian motions and van der Walls

attraction on the hydrodynamic interactions. Furthermore, Blawzdziewicz et al. [34]

studied the rheology of a dilute suspension of spherical drops covered with surfactants,

subjected to linear flows. They focused on the limit where the redistribution of

surfactant on the drop is significant Ma ∼ O (1). They observed that the presence

of surfactant can give rise to shear-thinning behavior with non-zero values of first

and second normal stress differences. Extension of this work to time-dependent flows

was carried out by Vlahovska et al. [35]. In the same limit of Ma, Cristini et al. [36]
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studied the near contact motion of surfactant covered spherical drops using lubrication

theory. Also, Zinchenko et al. [37] studied the gravity induced collision efficiencies of

two spherical drops covered with compressible surfactants (valid for arbitrary Ma and

PeS). An intriguing result of this work is that the surfactant enhances the coalescence

of drops of equal size. These works consider a linear relationship between interfacial

tension and surfactant concentration and they neglect the influence of interfacial

viscosity.

Mechanisms other than fluid flows can cause the non-uniform distribution of sur-

factants which thereby lead to the self-propulsion of particles in quiescent fluids. For

instance, either during initial stages of micelle adsorption on the surface of a clean

drop or by using a non-uniform mixture of two surfactants, one can observe the gra-

dients in the surfactant concentration and consequently the interfacial tension on the

surface of the drop and this propels the drop [38]. A second example is the Marangoni

propulsion [39] of interface bound particles due to the release of an insoluble surface

active agent. For a simple shape of these particles residing on a flat interface, such

as a thin disc, Lauga and Davis derived analytical expressions for the translational

velocity due to the release of surfactants [40]. Later, Masoud and Stone derived such

expressions for oblate and prolate spheroidal particles using the Lorentz reciprocal

theorem [41].

A traditional approach to derive the mobility of particles near a plane interface

is (i) to derive the image systems of point force singularities near a plane interface

[42–44] and then (ii) to apply the Faxén’s law to a suitable combination of the images

of these point force singularities. This approach is general since, once we know the

images of point force singularities, we can readily derive the mobility of a rigid sphere,

drop or even a swimming microorganism near a plane interface [8, 24]. Kim and

Karilla [2] used this approach to derive the mobility functions for two rigid spheres

of arbitrary sizes while Fuentes et al. [45, 46] derived the mobility functions for two

spherical drops with clean interfaces. Following this analogy, we derive the image

systems for point force singularities and higher order singularities placed outside a
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drop covered with an incompressible surfactant, including the effects of interfacial

viscosity, in Sections II and III, respectively. We thereafter, illustrate the use of the

images of point force singularities by providing two examples in Sections IV and V.

The first example concerns the mobility functions for two spherical drops (of arbitrary

sizes) covered with an incompressible surfactant. For this purpose, we require the

Faxén’s laws for a spherical drop covered with an incompressible surfactant, which

are derived in Appendix 2.8. In the second example, we derive the velocity of a

swimming microorganism outside a stationary drop covered with an incompressible

surfactant. A brief discussion on the incompressible surfactant film is provided in

Appendix 2.7.

2.2 Point force outside a drop covered with an incompressible surfactant

In this section, we derive the image flow field due to a point force outside a sta-

tionary spherical drop covered with an insoluble, non-diffusing and incompressible

surfactant. Assuming the interface to be Newtonian, we use the Boussinesq-Scriven

constitutive law [47, 48] for modeling the interfacial viscous stresses. For deriving

the image flow field, we use the multipole representation of the Lamb’s general solu-

tion [49]. Kim and Karrila [2] used this method to derive the image of point force

singularities near a rigid sphere while Fuentes et al. [45, 46] used it to derive the im-

ages outside a drop with a clean interface, without any interfacial viscosity. Recently,

Daddi-Moussa-Ider and Gekle [50] used this method to derive the images of a point

force outside a spherical elastic membrane for axisymmetric configurations.

Consider a point force F located at x2 outside a drop, whose center is at x1 (see

figure 2.1). Scaling the distances by the radius of the drop, the flow fields inside and

outside the drop are governed by Stokes equations and incompressibility conditions

−∇p(e) + µe∇2v(e) = −Fδ (x− x2) , ∇ · v(e) = 0, for r1 = |x− x1| > 1, (2.1)

µi∇2v(i) = ∇p(i), ∇ · v(i) = 0, for |x− x1| < 1, (2.2)
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R

x2

F
i

µ

e
µ

d

e

x1

Figure 2.1. : Point force outside a surfactant covered drop and the associated coordi-

nate system

where δ is the dirac-delta function. Here v(k) and p(k) denote the velocity and pressure

fields, while µk denote the dynamic viscosity of the fluid. Also, k = i, e correspond

to the interior and exterior of the drop, respectively. The solution of these equations

should satisfy the boundary conditions on the surface of the drop given by

v(e)
r = v(i)

r = 0, (2.3)

vS = ∆ · v(e) = ∆ · v(i), (2.4)

∇S · vS = 0, (2.5)

er ·
(
T(i) −T(e)

)
·∆ = ∇Sσ + µS

(
2vS
r2

1

+ eθ
1

r1 sin (θ)

∂$

∂φ
− eφ

1

r1

∂$

∂θ

)
, (2.6)

where ∆ = I− erer, I is the identity tensor, (er, eθ, eφ) and (vr, vθ, vφ) are the unit

vectors and the components of the velocity vector in the radial, polar and azimuthal

directions with the origin at the center of the drop. T(i) and T(e) represent the stress

tensors in the inner and outer fluids, σ denotes the interfacial tension, and µS denotes

the interfacial shear viscosity. ∇S is the surface gradient operator given by ∇S =

∆ ·∇ and $ = 1
r1 sin(θ)

(
∂vθ
∂φ
− ∂

∂θ
(sin (θ) vφ)

)
. As the drop is not deforming, equation

(2.3) states that the radial velocity is zero at the drop surface. Also, equation (2.4)
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states that the tangential velocity (vS) is continous across the interface of the drop.

The surface transport equation [51] of an insoluble, non-diffusing, incompressible

surfactant reduces to equation (2.5) [8, 30] (see Appendix 2.7 for details). Using the

Boussenisq-Scriven constitutive law along with equation (2.5) for the surface viscous

stresses τS, the surface divergence of surface viscous stress ∇S · τS for a spherical

interface reduces to that given on the right hand side of equation (2.6).

Since equations (2.1)-(2.6) are linear, we just need to solve for two orientations

of the point force to derive the flow field for all possible orientations of the point

force. One such orientation of the point force corresponds to an axisymmetric con-

figuration, i.e. point force is oriented along the line joining x1 and x2 or F ‖ d,

where d = (x1 − x2) / |x1 − x2|. The other configuration corresponds to a transverse

or asymmetric configuration, where F⊥d. For axisymmetric configuration, equation

(2.5) implies vS = 0. Hence the image flow field due to an axisymmetric Stokeslet

outside a drop covered with an incompressible surfactant is the same as that due to an

axisymmetric Stokeslet outside a rigid sphere. Such a similarity between the images

of an axisymmetric Stokeslet near a plane interface covered with an incompressible

surfactant and that near a rigid wall was already noted by Blawzdziewicz et al. [30].

Kim and Karrila have derived the images due to a Stokeslet outside a rigid sphere [2].

Hence, we do not repeat this calculation but simply use their results in the next few

sections of this work. In this section, we therefore focus on deriving the image due to

a transverse Stokeslet. Utilizing the linearity of the problem, we write the flow field

outside the drop as a sum of the Stokeslet and its image (v∗)

v(e) = F⊥ · [G (x− x2) /8πµe] + v∗, (2.7)

where G is the free space Green’s function of the Stokes equations, the point force in

the transverse problem is denoted by F⊥, F⊥ = F⊥e and e is perpendicular to d.

We hereby derive the solution of this problem, following these four steps [45, 46]:

1. We write the Stokeslet in terms of harmonics based at x2, which are then

transformed to the harmonics based at x1 using a Taylor series expansion about
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x1 (or more generally using an addition theorem). Using the properties of

spherical harmonics, one can arrive at the following expression for the Stokeslet

F⊥ · G (x− x2) =
∞∑
n=0

[
(1− n)R−(n+1)r2n+1

1 +
(2n+ 1) (n+ 1)

(2n+ 3)Rn+3
r2n+3

1

]
F⊥

(d · ∇)n

n!

1

r1

+
∞∑
n=0

[
R−(n+3)

(2n+ 3)
r2n+5

1 − R−(n+5)

(2n+ 7)
r2n+7

1

]
∇
(
F⊥ · ∇

) (d · ∇)n

n!

1

r1

−
∞∑
n=0

[
R−(n+2)r2n+3

1 − (2n+ 3)

(2n+ 5)
R−(n+4)r2n+5

1

]
(t×∇)

(d · ∇)n

n!

1

r1

,

(2.8)

where R = |x1 − x2| and t = F⊥ × d.

2. We then write the image flow field in terms of the multipole expansion about

x1 as given in equation (2.9) which is eventually written in terms of harmonics

based at x1 as given in equation (2.10)

v∗ =F⊥ ·
∞∑
n=0

(
A⊥n

(d · ∇)n

n!

G (x− x1)

8πµe
+B⊥n

(d · ∇)n

n!
∇2G (x− x1)

8πµe

)
+

n=∞∑
n=0

(
C⊥n

(d · ∇)n

n!

(t×∇)

8πµe

1

r1

)
−
(
C⊥0 − A⊥1

)(t×∇)

8πµe

1

r1

.

(2.9)

v∗ =
∞∑
n=0

A⊥n

[
1− n+

(2n+ 1) (n+ 1)

(2n+ 3)

]
F⊥

(d · ∇)n

n!

1

8πµer1

+
∞∑
n=0

[
A⊥n r

2
1

2n+ 3
−

A⊥n+2

2n+ 7
− 2B⊥n

]
∇
(
F⊥ · ∇

) (d · ∇)n

n!

1

8πµer1

+
∞∑
n=1

(
C⊥n − A⊥n+1

)
(t×∇)

(d · ∇)n

n!

1

8πµer1

+
∞∑
n=0

(2n+ 3)

(2n+ 5)
A⊥n+1 (t×∇)

(d · ∇)n

n!

1

8πµer1

,

(2.10)

where A⊥n , B⊥n , C⊥n are the unknown constants determining the image flow field.

3. We thereafter write the flow field interior to the drop using Lamb’s general

solution. The connection between the Lamb’s general solution and the multipole
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expansion is then used to write this flow field in terms of harmonics based at

x1 as

v(i) =
∞∑
n=1



c⊥n

(
r2n−1

1 (t×∇) (d·∇)n−1

(n−1)!
1
r1

+ (2n− 1) r2n−3
1 (t× (x− x1)) (d·∇)n−1

(n−1)!
1
r1

)
+b⊥n

(
r2n+1

1 ∇ (F · ∇) (d·∇)n−1

n!
1
r1

+ (2n+ 1) r2n−1
1 (x− x1) (F · ∇) (d·∇)n−1

n!
1
r1

)
+a⊥n

 (n+3)
2
r2n+3

1 ∇ (F · ∇) (d·∇)n−1

n!
1
r1

+ (n+1)(2n+3)
2

r2n+1
1 (x− x1) (F · ∇)× (d·∇)n−1

n!
1
r1




,

(2.11)

where a⊥n , b⊥n , c⊥n are the unknown constants determining the flow field inside

the drop.

4. As a final step in this method, we apply the boundary conditions to determine

the unknown coefficients A⊥n , B
⊥
n , C

⊥
n , a

⊥
n , b

⊥
n and c⊥n . Using equation (2.3) of

the vanishing radial velocity on the surface of the drop, we obtain the following

two equations
(n+ 1)

2
a⊥n + b⊥n − c⊥n+1 = 0, (2.12)

(n+ 3)

(2n+ 3)
A⊥n+1−

(n+ 1)

(2n− 1)
A⊥n−1+2 (n+ 1)B⊥n−1−C⊥n =

n

(2n+ 3)

1

Rn+2
− (n− 2)

(2n− 1)

1

Rn
.

(2.13)

After applying equation (2.4) to satisfy the continuity of tangential velocity

across the interface, we obtain the following two conditions

−(n+ 3)

2n
a⊥n −

1

n
b⊥n +

1

n
c⊥n+1 −

c⊥n+3

(n+ 2)
−

nA⊥n+1

(2n+ 3) (n+ 2)

+
(n− 2)

(2n− 1)n
A⊥n−1 − 2B⊥n−1 = − (n− 2)

(2n− 1)n

1

Rn
+

n

(2n+ 3) (n+ 2)

1

Rn+2
,

(2.14)

(n+ 1)

(n+ 2)
c⊥n+3 −

2

(n+ 2)
A⊥n+1 + C⊥n =

2

(n+ 2)

1

Rn+2
. (2.15)

The surface divergence of the surface flow field is zero, thus equation (2.5)

applied to the flow field interior to the drop gives the following condition(
n+ 3

2

)
a⊥n + b⊥n − c⊥n+1 = 0. (2.16)
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Lastly, in order to satisfy the tangential stress boundary condition (equation

(2.6)), one should expand the interfacial tension in terms of surface spherical

harmonics and derive two equations from equation (2.6). Noting that er · ∇ ×

∇Sσ = 0, we operate er ·∇× on equation (2.6) and derive the following equation

(
c⊥n+3λ− C⊥n

)
n2 +

(
c⊥n+3λ− 2R−n−2 − 5C⊥n + 2A⊥n+1

)
n

−6C⊥n + 6A⊥n+1 = −βnc⊥n+3 (n+ 3) (n+ 1) ,
(2.17)

where β = µS/ (µea) and λ = µi/µe. Now, we can solve equations (2.12)-(2.17)

to directly determine the image flow field and the flow inside the drop. By using

these flow fields, one can determine the interfacial tension satisfying equation

(2.6). Note that we use the general approach of expanding the interfacial tension

in terms of surface spherical harmonics in Appendix 2.8 to derive Faxén’s laws

for a drop covered with an incompressible surfactant.

Solving equations (2.12)-(2.17), we derive the explicit expressions for the unknown

coefficients A⊥n , B⊥n , C⊥n , a⊥n , b⊥n , and c⊥n as follows

a⊥n = 0, (2.18)

b⊥n = c⊥n+1, (2.19)

c⊥n =
(4n− 6)

(n− 2) [βn2 + (−3β + λ+ 1)n− 3λ]

1

Rn−1
, (2.20)

A⊥n =
(−2n2 − 3n− 1)R−n−3 + (2n2 + n− 3)R−n−1

2n+ 4
, (2.21)
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B⊥n =


(n+ 3) (n+ 2) (n+ 1) (βn2 + (5β + λ+ 1)n+ 4β + λ+ 4)R−n−5

−2

 βn4 + (10β + λ+ 1)n3 + (32β + 6λ+ 9)n2

+ (29β + 8λ+ 27)n− 12β − 3λ+ 28

 (n+ 1)R−n−3

+ (n+ 4) (n− 1) (n+ 3) (βn2 + (5β + λ+ 1)n+ 4β + λ+ 4)R−n−1


4 (n+ 4) (n+ 3) (n+ 2) (βn2 + (5β + λ+ 1)n+ 4β + λ+ 4)

,

(2.22)

C⊥n = −

 (βn2 + 3 + (3β + λ+ 1)n) (n+ 2)R−n−4

− (βn2 + (5β + λ+ 1)n+ 6β + 2λ+ 3)nR−n−2

 (2n+ 3)

(n+ 3) (βn2 + 3 + (3β + λ+ 1)n) (n+ 2)
. (2.23)

From the multipole representation of the image flow field, equation (2.9), we know

that the hydrodynamic force and the stresslet experienced by the drop are given by

−A⊥0 F⊥ and A⊥1
(
F⊥d + d F⊥

)
/2, respectively. But from equation (2.21) and [2], we

can show that

A⊥n
∣∣

point force outside a drop covered
with an incompressible surfactant

= A⊥n
∣∣

point force outside
a rigidsphere

. (2.24)

Hence, we conclude that a point force outside a drop covered with an incompressible

surfactant exerts a force and stresslet on the drop which are the same as those exerted

on a rigid sphere in a similar configuration. This conclusion holds for all separations

between the point force and the drop. This conclusion is more general since it is valid

for situations such as a translating surfactant-laden-drop in an arbitrary flow field

as shown in Appendix 2.8, where we also provide the physical reasons behind such

behavior of a surfactant-laden-drop. Since the slowest decaying terms (and hence

dominant in the far-field) in the multipole expansion of the image flow field are those

due to the force and stresslet experienced by the drop, we expect that the flow field

far away from the surfactant-laden-drop to be same as that outside a rigid sphere

in the similar configuration. This observation is merely a consequence of the earlier

observation - a surfactant-laden-drop experiencing the same force and stresslet as
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that of a rigid sphere due to a point force outside it. For the flow field close to a

surfactant-laden-drop, the higher order terms in the multipole expansion of the image

flow field (which depend on the viscosity ratio and the interfacial viscosity) become

important due to which, this flow field is different from that near a rigid sphere in

a similar configuration. Note that for the limiting values, λ or β → ∞, all of these

expressions for A⊥n , B⊥n , C⊥n , a⊥n , b⊥n and c⊥n approach the corresponding expressions

for a rigid sphere as expected.

2.3 Higher Order singularities outside a drop covered with an incom-

pressible surfactant

In this section, we summarize the approach used for deriving the images of higher

order singularities such as a Stokes dipole and a degenerate quadrupole from a drop

covered with an incompressible surfactant.

2.3.1 Image of a Stokes dipole

We derive the images of a Stokes dipole by operating∇2 on the images of Stokeslet

outside a drop covered with an incompressible surfactant, where ∇2 denotes the gra-

dient with respect to the location of the singularity. We hereby summarize the neces-

sary operations required for obtaining the images of few Stokes dipoles in equations

(2.25). As these Stokes dipoles are the only singularities required for deriving either

the mobility of two drops covered with a surfactant or the velocity of a swimming

microorganism near a drop covered with a surfactant, we do not report the images

of other Stokes dipoles. Note that, here Im {d · G (x− x2)} denotes the image of an

axisymmetric Stokeslet while Im {e · G (x− x2)} denotes the image of a transverse

Stokeslet.

Im {(d · ∇) d · G (x− x2)} = − (d · ∇2) Im {d · G (x− x2)} (2.25a)
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Im {(e · ∇) d · G (x− x2)} = − (e · ∇2) Im {d · G (x− x2)} − 1

R
Im {e · G (x− x2)}

(2.25b)

Im {(d · ∇) e · G (x− x2)} = − (d · ∇2) Im {e · G (x− x2)} (2.25c)

Im {(e · ∇) e · G (x− x2)} = − (e · ∇2) Im {e · G (x− x2)}+
1

R
Im {d · G (x− x2)}

(2.25d)

2.3.2 Image of a degenerate quadrupole

Starting with the representation of the flow field as a sum of degenerate quadrupole

and its image described in equation (2.26), we use the solution methodology analogous

to Section II to derive the unknown coefficients in the image flow and the flow field

interior to the drop. We denote the coefficients which appear in the image flow field

of an axisymmetric and transverse degenerate quadrupole as
(
A
‖Q
n , B

‖Q
n , C

‖Q
n

)
and(

A⊥Qn , B⊥Qn , C⊥Qn
)
, respectively. As these coefficients are the same as those of a rigid

sphere, we note that the flow fields both inside and outside of a drop covered with an

incompressible surfactant due to a degenerate quadrupole located outside the drop

are same as those of flow fields due to a degenerate quadrupole outside a rigid sphere.

v = F ·
[
∇2G (x− x2) /8πµe

]
+ v∗ (2.26)

The image flow field from a surfactant-laden-drop can be written as a combination

of surface irrotational flow (which is the same as that due to a rigid sphere) and a

surface solenoidal flow (see Appendix 2.8). The image of a degenerate quadrupole

from a surfactant-laden-drop is surface irrotational (i.e., the surface solenoidal part

of the image flow field is zero), and the entire image flow field from the surfactant-

laden-drop is the same as that from a rigid sphere.
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2.4 Mobility functions for two drops covered with an incompressible sur-

factant

2.4.1 A small drop near a large drop

As a first application of the image flow fields of point force singularities outside

a drop covered with an incompressible surfactant, we derive the mobility matrix for

hydrodynamic interactions between a large drop (radius a) and a small drop (radius

b) accurate to O (δ5), where δ = b/a � 1. As this matrix for axisymmetric configu-

rations is the same as that for two rigid spheres [2], we only focus on the transverse

configuration (the velocity of the drops is perpendicular to the line joining their cen-

ters). For this purpose, we use a procedure similar to the method of reflections, where

we consider the entire multipole expansion when the images are taken with respect

to the large drop. However, we truncate this multipole expansion to a prescribed

order in b/R when taking images with respect to a small drop. We require Faxén’s

laws for a drop covered with a surfactant along with singularity representation of the

flow field due to a translating drop covered with a surfactant to be able to use the

method of reflections. From the derivation of Faxén’s laws presented in Appendix 2.8,

we conclude that the Faxén’s laws for the force and stresslet experienced by a drop

covered with an incompressible surfactant are the same as those of a rigid sphere. On

the other hand, the Faxén’s laws for the torque experienced by a drop covered with a

surfactant is the same as that of a drop with a clean interface and without any inter-

facial viscosity, namely the drop experiences zero hydrodynamic torque. Also, since

the flow field due to a translating drop covered with a surfactant is axisymmetric, it

behaves as a rigid sphere (namely fluid inside the drop with respect to itself is sta-

tionary) and hence the singularity representation of the flow field due to a translating

drop covered with a surfactant is the same as that of a translating rigid sphere. The
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mobility functions, which relate the velocities of the drops with the forces acting on

them, are written as [2] U1

U2

 =
1

µe

 ya11 ya12

ya21 ya22

 Fe
1

Fe
2

 . (2.27)

Mobility functions ya12 and ya22

a

b
R

2

e
F

1i
µ

2i
µd

e
1

x
2

x

e
µ

Figure 2.2. : Schematic used for deriving the mobility functions (ya12, y
a
22) for the

transverse motion of the drops. Here, an external force, Fe
2 is acting on the small

drop while no external force is applied on the large drop.

For deriving the mobility functions ya12 and ya22, we apply a force Fe
2 on drop 2 and

zero force on drop 1 (see figure 2.2). At zeroth reflection, the velocity of drop 2 and

the flow field due to its translation are given by

6πµebU
(0)
2 = Fe

2, (2.28)

v2 = Fe
2 ·
(

1 +
b2∇2

6

)
G (x− x2)

8πµe
. (2.29)

At the first reflection, the velocity of the drop 1 is obtained by applying the Faxén’s

law for force (same as that of a rigid sphere) given by equation (2.30) which reduces

to equation (2.31)

U
(1)
1 =

(
1 +

a2∇2

6

)
v2|x=x1

, (2.30)

6πµebU
(1)
1 = Fe

2

[
3

4

(
b

R

)
+

1

4

(
b

R

)( a
R

)2

+
1

4

(
b

R

)2
]
. (2.31)
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Up to this reflection, the velocities of drops covered with surfactants are the same as

those of rigid spheres. For finding the flow field reflected from drop 1, v21, we need

the images of a Stokeslet of strength Fe
2 and a degenerate quadrupole of strength

b2

6
Fe

2 located at x2 (center of drop 2) from a force-free drop located at x1. The images

from a force-free drop can be obtained by first deriving the force exerted by the flow

fields of a Stokeslet and degenerate quadrupole on a stationary drop (−Fe
2A0) and

then adding the flow field due to a translating drop, acted upon by an external force

(−Fe
2A0), to the images of the aforementioned point force singularities with respect

to a stationary drop (derived in Sections II and III). Hence the flow field reflected

from a force-free drop 1 is given by

v21 = Fe
2 ·

∞∑
n=0

(
An

(d·∇)n

n!
G(x−x∈)

8πµe
+Bn

(d·∇)n

n!
∇2 G(x−x∈)

8πµe

)
+
∞∑
n=0

Cn (t×∇) (d·∇)n

n!
1

8πµer1
− (C0 − A1) (t×∇) 1

8πµer1

−Fe
2A0 ·

(
1 +

a2∇2

6

)
G (x− x∈)

8πµe︸ ︷︷ ︸
Flow added to satisfy the force−free condition for the drop

,

(2.32)

where An = A⊥n + b2

6
A⊥Qn , Bn = B⊥n + b2

6
B⊥Qn and Cn = C⊥n + b2

6
C⊥Qn . At the second

reflection, drop 2 is force free. Hence its velocity is obtained by applying the Faxén’s

law for the force

U
(2)
2 =

(
1 +

b2

6
∇2

)
v21|x=x2

. (2.33)

Using the properties of spherical harmonics, we obtain

6πµebU
(2)
2 = Fe

2


(
b
R

)(
x5

16
− 9

8

∞∑
n=1

1+β1n2+
(

3β1+λ1−
1
3

)
n

3+β1n2+(3β1+λ1+1)n
x2n+3

)
+1

8

(
b
R

)3
∞∑
n=1

(4n2 + 6n− 1)x2n+3

− 1
48

(
b
R

)5
∞∑
n=1

(2n+ 1) (2n+ 3) (n+ 1)2x2n+1

 , (2.34)

where x = a/R. At this reflection, one can also derive the stresslet experienced by

the drop covered with a surfactant using the Faxén’s laws for a stresslet (same as that

of a rigid sphere)

S
(2)
2 =

20

3
πµeb

3 E21|x=x2
+O

[
(b/a)5] = S(2)

2 (Fe
2d + dFe

2) . (2.35)
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Here, we only include the Stokeslet component of v21 in evaluating the rate of strain

field E21. The flow field reflected from drop 2 is given by the flow field due to a

stresslet

v212 =
(
S

(2)
2 · ∇

)
· G (x− x2)

8πµe
, (2.36)

where this solution is accurate to (b/R)4. At the third reflection, drop 1 is also force

free. Hence, we determine its velocity by applying the Faxén’s law for the force given

by equation (2.37) which simplifies to equation (2.38)

U
(3)
1 =

(
1 +

a2

6
∇2

)
v212|x=x1

, (2.37)

6πµebU
(3)
1 =

15

16

(
b

R

)4

Fe
2

(
−x

7

3
+
∞∑
n=1

(2n+ 3)
1 + β1n

2 +
(
3β1 + λ1 + 1

3

)
n

3 + β1n2 + (3β1 + λ1 + 1)n
x2n+5

)
.

(2.38)

Using the images of a Stokes dipole from a drop covered with a surfactant which was

described in Section III, we find the flow field reflected from drop 1, v2121. Applying

the Faxén’s law for the force to drop 2, U
(4)
2 = v2121|x=x2

, we find

6πµebU
(4)
2 = −45

64

(
b

R

)4

Fe
2

(
x5

3
−
∞∑
n=1

(2n+ 3)
1 + β1n

2 +
(
3β1 + λ1 + 1

3

)
n

3 + β1n2 + (3β1 + λ1 + 1)n
x2n+3

)2

.

(2.39)

Equations for the droplet velocities at various reflections, equations (2.28), (2.31),

(2.34), (2.38), and (2.39) can be used to find the mobility functions accurate to

O
[
(b/a)5] as given below

6πbya12 =δ

(
3

4
x+

1

4
x3

)
+ δ3

(
1

4
x3

)
+ δ4

[
15

16

(
−x

11

3
+
∞∑
n=1

(2n+ 3)
1 + β1n

2 +
(
3β1 + λ1 + 1

3

)
n

3 + β1n2 + (3β1 + λ1 + 1)n
x2n+9

)]
+O

(
δ6
)
,

(2.40)
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6πbya22 =1 + δ

(
x6

16
− 9

8

∞∑
n=1

1 + β1n
2 +

(
3β1 + λ1 − 1

3

)
n

3 + β1n2 + (3β1 + λ1 + 1)n
x2n+4

)
+ δ3

(
1

8

x8 (x4 − 9)

(x− 1)3(x+ 1)3

)

− δ4

45

64

(
x7

3
−
∞∑
n=1

(2n+ 3)
1 + β1n

2 +
(
3β1 + λ1 + 1

3

)
n

3 + β1n2 + (3β1 + λ1 + 1)n
x2n+5

)2


+ δ5

[
1

16

x8 (x8 − 5x6 + 11x4 + 5x2 + 20)

(x− 1)5(x+ 1)5

]
+O

(
δ6
)
.

(2.41)

Mobility functions ya21 and ya11

For deriving the mobility functions ya21 and ya11, we apply an external force Fe
1 on

drop 1 and carry out the procedure outlined in the previous subsection. Doing so,

we notice that ya21 = ya12 which means the mobility matrix is symmetric for drops

covered with an incompressible surfactant. Also, to an order of approximation of

O (δ5), only U
(0)
1 and U

(2)
1 contribute to ya11. Here, U

(2)
1 can be easily derived by

swapping (1, 2) and (a, b) in the equation for U
(2)
2 , equation (2.34) and truncating the

resulting expression to (b/R)5. Hence, the mobility function ya11 is given by

6πaya11 = 1− δ3

(
5

4
x8

)
+ δ5

[
3

8

(
1

6
− 2 + 12β2 + 3λ2

4 + 4β2 + λ2

)
x6 +

9

8
x8 − 105

16
x10

]
+O

(
δ6
)
.

(2.42)

All of these mobility functions approach the corresponding mobility functions for rigid

spheres when either (β1, β2)→∞ or (λ1, λ2)→∞.

From equations (2.40), (2.41), and (2.42), we see that the mobility functions,

ya12 (= ya21) and ya11 of two surfactant-laden-drops are identical to the corresponding

mobility functions of two rigid spheres, upto an approximation of δ3. However, the

mobility function, ya22 of two surfactant-laden-drops is different from that of two rigid

spheres. Also, we note that ya22 does not depend on the viscosity ratio (λ2) and the

interfacial viscosity (β2) of the small drop. So, as long as the interface of the small

drop is incompressible, ya22 does not depend on the identity of the small drop. To

study the dependence of ya22 on the viscosity ratio (λ1) and the interfacial viscosity
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Figure 2.3. : Variation of (6πbya22 − 1) /(6πbya22 − 1)|R with the viscosity ratio (λ1)

and the interfacial viscosity (β1) of the large drop. Here ? (∗) denotes the situation

of a small rigid sphere outside a large clean drop without any interfacial viscosity

(rigid sphere). The other symbols denote the situation of two surfactant-laden-drops

of disparate sizes. Also, x = a/R = 0.8, δ = b/a = 0.1 and Λ2 = λ2/ (1 + λ2)

(β1) of the large drop, we plot in figure 2.3, the correction in ya22 due to the presence of

a large surfactant-laden-drop (6πbya22 − 1), normalized with the correction due to the

presence of a large rigid sphere (6πbya22 − 1)|R for various values of λ1 and β1. As ya22

denotes the velocity of a small drop, we see from figure 2.3 that the velocity of a small

drop near a large drop (with or without surfactants) is always less than that near a

rigid sphere. Also, the velocity of small drop near a large clean drop is minimum and

its velocity near a large surfactant-laden-drop increases with the interfacial viscosity.

A similar trend is observed for the variation of the mobility of a particle near a plane

interface covered with an incompressible surfactant [30].
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2.4.2 Drops of similar sizes

In this section, we comment on the mobility functions of two drops covered with

an incompressible surfactant, if the drops sizes are of the same order of magnitude.

Noting that (i) the flow field due to an isolated translating drop covered with an

incompressible surfactant (axisymmetric problem) is the same as that of an isolated

translating rigid sphere and (ii) the Faxén laws for a drop covered with an incompress-

ible surfactant are the same as those of a torque-free rigid sphere, we conclude that the

far-field mobility functions of two similar sized drops covered with an incompressible

surfactant are the same as those of two similar sized torque-free rigid spheres. Since

the mobility functions for two torque-free rigid spheres were already derived in [2]

(see chapter 8), we do not pursue this calculation further. As the flow field close to a

translating surfactant-laden-drop, in an arbitrary ambient flow, is different from that

near a translating torque-free rigid sphere, we expect the near-field mobility functions

of two similar sized surfactant-laden-drops to be completely different from those of

two similar sized torque-free rigid spheres.

Blawzdziewicz et al. [31] derived the mobility functions of two equal sized bub-

bles covered with an incompressible, insoluble and diffusing surfactant without ac-

counting for the interfacial viscosity. For zero surfactant diffusivity, they report

that their far-field mobility functions are the same as those of two torque-free rigid

spheres. Our analysis, on the far-field mobility functions, not only agrees with that

of Blawzdziewicz et al. [31] for zero viscosity ratio, interfacial viscosity and surfactant

diffusivity but also generalizes the result − the far-field mobility functions of two sim-

ilar sized surfactant-laden-drops is the same as those of two similar sized torque-free

rigid spheres − to arbitrary values of viscosity ratio and interfacial viscosity.
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Figure 2.4. : Schematic of a spheroidal swimmer of aspect ratio γ = b/c outside a

stationary spherical drop of radius a. The drop has a viscosity of µi while the viscosity

of the surrounding fluid is µe. The swimmer is oriented along f. The distance between

the center of the drop and the swimmer is denoted by R. The position vectors of the

center of the drop and the swimmer are denoted by x1 and x2, respectively. The

origin of the coordinate system is located at the center of the drop.

2.5 Swimming microorganism outside a stationary drop covered with an

incompressible surfactant

As a second application of image flow fields, we derive the velocity of a spheroidal

microorganism swimming outside the drop covered with an incompressible surfactant

(see figure 2.4). We also provide the expression for the velocity of the same mi-

croorganism swimming outside a drop with a clean interface, without any interfacial

viscosity using the image flow fields provided in [45,46]. Flow field far away from the

microorganism in an unbounded medium is represented by a parallel Stokes dipole

(force and force gradient are parallel/anti-parallel to each other). Therefore, when

R − a � b, the leading order velocity of the swimmer near the drop is obtained by
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applying Faxén’s laws to the image of a Stokes dipole. So, the flow field outside a

drop is written as sum of a Stokes dipole and its image

v = −P (f · ∇) f · G (x− x2)

8πµe
+ v∗, (2.43)

where P is the dipole strength of the swimmer [23], f is the orientation of the swimmer

and v∗ is the image flow field. Here P > 0 means the swimmer is a pusher while

P < 0 means the swimmer is a puller. We use the images of a Stokes dipole given

in Section III to derive the image flow field v∗. The translational velocity of the

swimmer given by U = v∗|x=x2
+O

[
(b/R)2] can be simplified to

U = sin2 (θ) U1 − sin (θ) cos (θ) U2 + cos2 (θ) U3, (2.44)

where U1, U2 and U3 for a drop covered with an incompressible surfactant are given

by

U1 = − P

8πµeR2

3x

(−1 + x)2(x+ 1)2 d, (2.45a)

U2 = − P

8πµeR2

∞∑
n=0

3 (2n+ 3)
[
1 + βn2 +

(
3β + λ+ 1

3

)
n
]
x2n+3

6 + 2βn2 + (6β + 2λ+ 2)n
e, (2.45b)

U3 =
3P

16πµeR2

x

(−1 + x)2(x+ 1)2 d. (2.45c)

The expressions for U1, U2 and U3 for a drop with a clean interface, without any

interfacial viscosity are given by

U1 = − P

8πµeR2

(Λ + 2) x

(−1 + x)2(x+ 1)2 d, (2.46a)

U2 = − P

8πµeR2

∞∑
n=0

3Λ (n− Λ + 1) (2n+ 3)

2n+ 6− 6Λ
x2n+3e, (2.46b)

U3 =
P

16πµeR2

(Λ + 2) x

(−1 + x)2(1 + x)2 d, (2.46c)

where Λ = λ/ (1 + λ). Also, the angular velocity of the swimmer is given by

ω =
1

2
∇× v∗

∣∣∣∣
x=x2

+ Γ f × E∗|x=x2
· f +O

[
(b/R)3] , (2.47)
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where Γ = (1− γ2) / (1 + γ2), γ is the aspect ratio of the swimmer which is 1 for

a spherical swimmer and tends to infinity for a rod shaped swimmer and E∗ =

1
2

[
∇v∗ + (∇v∗)T

]
is the rate of strain tensor of the image flow field. This expression

for the angular velocity, ω = ω (e× d) can be simplified to

ω = ω(1) + Γω(2), (2.48)

where ω(1), ω(2) for a drop covered with an incompressible surfactant are given by

ω(1) =
3P sin (2θ)

32πµeR3

∞∑
n=0

n (n+ 2)
[
βn2 +

(
β + λ+ 5

3

)
n− 2β − λ+ 7

3

]
βn2 + (β + λ+ 1)n− 2β − λ+ 2

x2n+1, (2.49a)

ω(2) = −P sin (2θ)

16πµeR3

(
ω̃cos2 (θ) + ω̂

)
, (2.49b)

where

ω̃ =
9

8

(6β + 3λ− 2)

(2β + λ− 2)
x

+
3

4

∞∑
n=0

n3β +
(

5
2
β + λ+ 3

)
n2 +

(
−1

2
β + 1

2
λ+ 17

2

)
n− 3β − 3

2
λ+ 5

βn2 + (β + λ+ 1)n− 2β − λ+ 2
(n+ 3)x2n+1,

ω̂ =− 1

2

(6β + 3λ− 2)

(2β + λ− 2)
x

− 3

2

∞∑
n=0

n3β +
(
2β + λ+ 5

3

)
n2 +

(
−β + 14

3

)
n− 2β − λ+ 8

3

βn2 + (β + λ+ 1)n− 2β − λ+ 2
(n+ 2)x2n+1.

The expressions for ω(1) and ω(2) for a drop with a clean interface, without any

interfacial viscosity are given by

ω(1) =
3

4

P sin (2θ)

8πµeR3

∞∑
n=0

n (n+ 2) (−2Λ2 + n+ 1)

n+ 2− 3Λ
x2n+1, (2.50a)

ω(2) = −P sin (2θ)

16πµeR3

(
ω̃cos2 (θ) + ω̂

)
, (2.50b)

where

ω̃ =
27

8

Λ2x

(−2 + 3Λ)

− 3

4

∞∑
n=0

(Λ− 2)n2 +
(
3Λ2 + 5

2
Λ− 6

)
n+ 3

2
Λ2 + 4Λ− 4

(n+ 2− 3Λ)
(n+ 3)x2n+1,

ω̂ =− 3

2

Λ2x

(−2 + 3Λ)
− 3

2

∞∑
n=0

n2 + (−2Λ2 − Λ + 3)n− Λ2 − 2Λ + 2

(n+ 2− 3Λ)
(n+ 2)x2n+1.
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In the limit λ→∞ (Λ→ 1) or β →∞, these expressions for the swimmer velocity
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Figure 2.5. : Variation of (a) the dimensionless velocity of the swimmer that is normal

to the line of centers and (b) dimensionless angular velocity of the spherical swimmer

with the viscosity ratio (λ) and dimensionless interfacial viscosity (β). Here ? (∗)

denotes the situation of the swimmer lying outside a clean drop without any interfacial

viscosity (rigid sphere). The other symbols denote the situation of swimmer moving

outside the surfactant-laden-drop.

outside a drop reduce to those outside a rigid sphere [52]. From equations (2.44),

(2.45a), and (2.45c), we see that the component of the swimmer’s velocity along the

line of centers (U · d), outside a surfactant-laden-drop, is the same as the correspond-

ing velocity outside a rigid sphere. The viscosity ratio of the drop and its interfacial

viscosity only affect the component of the velocity that is normal to the line of centers

(U2). To understand this, we plot in figure 2.5a, the dimensionless counter part of U2

for various values of λ and β. This figure shows that, in the limit λ or β → ∞, the

velocity of the swimmer outside a drop approach its velocity outside a rigid sphere.

From equation (2.46b) and also from figure 2.5a, we see that a swimmer outside a

bubble (λ = 0 or Λ = 0) cannot move normal ot the line of centers. So, irrespective

of its orientation and the angular velocity, a puller (pusher) outside a bubble always
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moves towards (away from) the bubble along the line of centers. We can also see from

figure 2.5a that the presence of an interface reduces the velocity normal to the line

of centers when compared to this velocity outside a rigid sphere. The velocity of the

swimmer (normal to the line of centers) outside a clean drop is minimum while that

outside a surfactant-laden-drop increases with the interfacial viscosity. Similar to fig-

ure 2.5a, we plot in figure 2.5b, the variation of the angular velocity of the swimmer

with the viscosity ratio and the interfacial viscosity. From figure 2.5b, we see that the

angular velocity of the swimmer outside a surfactant-laden-drop decreases with the

interfacial viscosity and it is always larger than that outside a rigid sphere. Also, the

angular velocity of the swimmer outside a clean drop can be larger or smaller than

that outside a rigid sphere, depending on the viscosity ratio of the drop.

2.6 Conclusions

Using the multipole representation of the Lamb’s general solution, we derived the

image systems for point force singularities located outside a stationary drop covered

with an insoluble, non-diffusing and incompressible surfactant. Our derivation in-

cludes the role of the interfacial viscosity of the drop by assuming the interface to be

Newtonian and using the Boussenisq-Scriven constitutive law for the interfacial stress

tensor. We demonstrate the significance of these image systems by providing two ex-

amples. In the first example, we derive the mobility functions of two surfactant-laden

drops of disparate sizes, using the method of reflections. We unveil the role of the

viscosity ratio and the interfacial viscosity of the large surfactant-laden-drop on the

mobility of the small surfactant-laden-drop. In the second example, we derive the

velocity of the swimming microorganism (modeled as a Stokes dipole) outside (i) a

surfactant-laden-drop and (ii) a clean drop without any interfacial viscosity.

Here, we summarize the range of separations between the drops or drop and

singularity where the solutions presented in the manuscript are accurate. The image

system of a point force or higher order singularity outside a drop is accurate for all
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separations between the drop and the singularity except for the singularity touching

the drop. The mobility functions of two drops of disparate sizes, derived in Section

IV A, is accurate for all the separations between the drops whereas the mobility

functions of two drops of similar sizes, discussed in Section IV B, is accurate only

for the large separations between the drops. Hence, one can use twin multipole

expansions along with the addition theorem to derive the mobility functions of two

similar sized drops for arbitrary separations between them. Since the flow field far

away from a microorganism (swimmer) can be represented by the flow due to a force

dipole placed at the center of the swimmer, the velocity of such a swimmer outside

a drop, derived in Section V where the swimmer is replaced by a force dipole, is

accurate for large separations between the swimmer and the drop.

We emphasize that our derivations can be used to study the trapping characteris-

tics [52] of bacteria near oil drops and air bubbles, in applications like bioremediation

and food cleansing, respectively. One can proceed to determine the following quan-

tities (a) critical trapping radius of the drop/bubble: minimum drop radius beyond

which a bacteria near a drop/bubble gets trapped, (b) basin of attraction: space

around the drop/bubble, with radius larger than the critical trapping radius, within

which if a bacteria is present, gets trapped and (c) probability density function of

mean trapping time: time during which a bacterium orbits around the surface of the

drop/bubble before escaping. This analysis can then be used to understand the hy-

drodynamics induced trapping of bacteria near drops/bubbles and also the (possible)

usefulness of surfactant in this trapping process.

2.7 Appendix A: Incompressible surfactant film

In this section, we derive the incompressible surfactant film condition, equation

(2.5), which holds in one of the two limits − (a) large values of the Marangoni number

(Ma, the ratio of tangential stresses generated at the surface by surface tension

gradients to tangential stresses applied to the surface by bulk viscous forces) [30,31,53]
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or (b) large values of the interfacial dilatational viscosity [28, 54]. Our derivation is

focused on large Ma limit and it is similar to the derivation presented in [30, 31].

In addition to the incompressibility of the surfactant, we assume it to be insoluble,

both inside and outside the drops and non-diffusing (the interfacial diffusivity of the

surfactant is zero or the surface Péclet number is infinity). Since the interfacial tension

is a function of the surfactant concentration, we can expand the former as follows

δσ = (σ − σ0) =

(
dσ

dΓ

)
Γ=Γ0

(Γ− Γ0) =

(
dσ

dΓ

)
Γ=Γ0

δΓ, (2.51)

where Γ0 and σ0 = σ (Γ0) are the reference surfactant concentration and the interfacial

tension, respectively. The above equation can be rewritten as

δΓ

Γ0

= −Ma−1 δσ

τa
, (2.52)

where the Marangoni number (Ma) is the ratio of the surfactant elasticity (E) and

the capillary number (Ca)

Ma =
E

Ca
; E = −Γ0

σ0

(
dσ

dΓ

)
Γ=Γ0

; Ca =
τa

σ0

. (2.53)

Here, τ denotes the characteristic bulk viscous stresses while a is the characteristic

length scale of the problem. From the tangential stress boundary condition, equation

(2.6), we deduce that
δσ

τa
∼ O (1) . (2.54)

From this equation and equation (2.52), we conclude that

δΓ

Γ0

∼ O
(
Ma−1

)
. (2.55)

In the limit of very large Ma, finite changes in the interfacial tension are caused

by the infinitesimal changes in the surfactant concentration, and this is how the

Marangoni stresses develop at the interface [30,31]. Hence, it is reasonable to assume

that the surfactant is uniformly distributed over the interface, i.e., Γ = Γ0. Using

this condition, the transport equation for an insoluble, non-diffusing and incompress-

ible surfactant over the surface of a stationary and non-deforming drop reduces to
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equation (2.5). Since the typical value of the surfactant elasticity is E ∼ O (1), from

equation (2.53), we conclude that the small values of Capillary number (Ca� 1)

correspond to the large values of Marangoni number (Ma� 1) or the incompressible

surfactant limit. This limit for the small molecular weight surfactants results from

their large Marangoni numbers since the dilatational viscosity of these surfactants is

not large. But, this limit for the large molecular weight surfactants is due to their

large dilatational viscosity.

2.8 Appendix B: Faxén’s Laws for a drop covered with an incompressible

surfactant

In this section, we derive the Faxén’s laws for a drop covered with an incompress-

ible surfactant. For this purpose, one can use the Lorentz reciprocal theorem for

Stokes flows with a suitable choice of the auxiliary problem [29, 55–58]. However, in

this work, we use the Lamb’s general solution to derive Faxén’s laws for a spherical

surfactant-laden-drop. This approach is used earlier to derive the Faxén’s laws for

drops with a clean interface [59] and for drops covered with a surfactant, without any

interfacial viscosity [60]. Accordingly, we consider a drop covered with an incompress-

ible surfactant, translating with velocity U in an arbitrary ambient flow field V∞.

In a frame of reference fixed at the center of the drop, the flow fields inside and out-

side of the drop should satisfy the Stokes equations along with an incompressibility

condition

µe∇2v(e) = ∇p(e), ∇ · v(e) = 0, (2.56)

µi∇2v(i) = ∇p(i), ∇ · v(i) = 0. (2.57)

The flow field far away from the drop should approach the ambient flow field

v(e) = v∞ = V∞ −U, as r →∞. (2.58)
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These flow fields should satisfy the boundary conditions at the interface given by

[59,60]

v(e)∗ = v(i)∗, (2.59a)

v(e)∗
r = v(i)∗

r = 0, (2.59b)

∇S · v∗S = 0, (2.59c)

T
(i)∗
(r) −T

(e)∗
(r) = [∇Sσ]∗ + µSw∗S + f (σ,v) er, (2.59d)

where T
(k)
(r) = er·T(k), wS = 2vS

r2
+eθ

1
r sin(θ)

∂$
∂φ
−eφ

1
r
∂$
∂θ

and$ = 1
r sin(θ)

(
∂vθ
∂φ
− ∂

∂θ
(sin (θ) vφ)

)
.

Also, ( )∗ denotes that the variables are evaluated at the interface and f (σ,v) de-

notes the terms which contribute to the normal stress balance at the interface. Since,

we assume the drop to be spherical, our solution does not satisfy the normal stress

boundary condition, instead this condition can be used to determine the leading order

interface deformation. As the governing equations and boundary conditions are lin-

ear, we initially write the exterior flow field as v(e) = v∞+V (similarly p(e) = p+p∞).

Assuming that the ambient flow field satisfies the Stokes equations, we see that the

disturbance flow field also satisfies the Stokes equations. Using the Lamb’s general

solution, we write the disturbance flow field as

V =
∞∑
n=1

[
∇× (rχ−n−1) +∇Φ−n−1 −

(n− 2)

2n (2n− 1)µe
r2∇p−n−1 +

n+ 1

n (2n− 1)µe
rp−n−1

]
,

(2.60a)

and

p =
∞∑
n=0

pn. (2.60b)

As the flow field interior to the drop also satisfies the Stokes equations, we have

v(i) =
∞∑
n=0

[
∇× (rχn) +∇Φn +

n+ 3

2 (n+ 1) (2n+ 3)µi
r2∇pn −

n

(n+ 1) (2n+ 3)µi
rpn

]
,

(2.61a)
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and

p(i) =
∞∑
n=0

pn. (2.61b)

Similarly, we can write the ambient flow field as

v∞ =
n=∞∑
n=−∞

[
∇× (rχ∞n ) +∇Φ∞n +

n+ 3

2 (n+ 1) (2n+ 3)µe
r2∇p∞n −

n

(n+ 1) (2n+ 3)µe
rp∞n

]
,

(2.62a)

and

p∞ =
n=∞∑
n=−∞

p∞n , (2.62b)

where (χ−n−1,Φ−n−1, p−n−1) and (χn,Φn, pn, χ
∞
n ,Φ

∞
n , p

∞
n ) are the solid spherical har-

monics of degree −n− 1 and n, respectively. We hereby rewrite the boundary condi-

tions at the interface, equation (2.59) as

v(i)∗ · er = 0, (2.63a)

V∗ · er + v∗∞ · er = 0, (2.63b)

[
r
∂v

(i)
r

∂r

]∗
= 0, (2.63c)

−
[
r
∂Vr
∂r

]∗
=

[
r
∂v∞r
∂r

]∗
, (2.63d)

[
r · ∇ × v(i)

]∗ − [r · ∇ ×V]∗ = [r · ∇ × v∞]∗, (2.63e)

[
r · ∇ ×T

(i)
(r)

]∗
−
[
r · ∇ × π(r)

]∗
= µS[r · ∇ ×wS]∗ +

[
r · ∇ × π∞(r)

]∗
, (2.63f)

[
r · ∇ ×

(
r×T

(i)
(r)

)]∗
−
[
r · ∇ ×

(
r× π(r)

)]∗
= [r · ∇ × (r×∇Sσ)]∗ + µS[r · ∇ × (r×wS)]∗ +

[
r · ∇ ×

(
r× π∞(r)

)]∗
.

(2.63g)
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Substituting equations (2.60)-(2.62) into equations (2.63), we obtain a set of seven

equations. From equation (2.63a), we obtain

∞∑
n=1

{
na

2 (2n+ 3)µi
p∗n +

n

a
Φ∗n

}
= 0. (2.64a)

From equation (2.63b), we obtain

∞∑
n=1

{
(n+ 1) a

2 (2n− 1)µe
p∗−n−1 −

(n+ 1)

a
Φ∗−n−1

}
= −

∞∑
n=∞

{
na

2 (2n+ 3)µe
p∞∗n +

n

a
Φ∞∗n

}
.

(2.64b)

From equation (2.63c), we obtain

∞∑
n=1

[
n (n+ 1) a

2 (2n+ 3)µi
p∗n +

n (n− 1)

a
Φ∗n

]
= 0. (2.64c)

From equation (2.63d), we obtain

∞∑
n=1

[
n (n+ 1) a

2 (2n− 1)µe
p∗−n−1 −

(n+ 1) (n+ 2)

a
Φ∗−n−1

]
=

∞∑
n=−∞

[
n (n+ 1) a

2 (2n+ 3)µe
p∞∗n +

n (n− 1)

a
Φ∞∗n

]
.

(2.64d)

From equation (2.63e), we obtain

∞∑
n=1

{
n (n+ 1)

[
χ∗n − χ∗−n−1

]}
=

n=∞∑
n=−∞

n (n+ 1)χ∞∗n . (2.64e)

From equation (2.63f), we obtain

∞∑
n=1

{
n (n+ 1)

[
λ (n− 1)χ∗n + (n+ 2)χ∗−n−1

]}
+
∞∑
n=1

βn (n+ 2) (n2 − 1)χ∗n

=
∞∑

n=−∞
(n− 1)n (n+ 1)χ∞∗n .

(2.64f)

From equation (2.63g), we obtain

∞∑
n=1

{
2n (n+ 1) (n+ 2)

a
Φ∗−n−1 −

(n+ 1)2 (n− 1) a

(2n− 1)µe
p∗−n−1

}

+
∞∑
n=1

{
2λ

a
(n− 1)n (n+ 1) Φ∗n +

n2 (n+ 2) aλ

(2n+ 3)µi
p∗n

}
+
∞∑
n=1

{
−β (n+ 3)na

(2n+ 3)µi
p∗n −

2n (n+ 1) β

a
Φ∗n

}
+

[r · ∇ × (r×∇Sσ)]∗

µe

=
n=∞∑
n=−∞

{
2

a
(n− 1)n (n+ 1) Φ∞∗n +

n2 (n+ 2) a

(2n+ 3)µe
p∞∗n

}
.

(2.64g)
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The solid spherical harmonics are defined as [59,60]

pn = Anµia
−n−1rnSn (θ, φ) , (2.65a)

p−n−1 = A−n−1µea
nr−n−1Sn (θ, φ) , (2.65b)

Φn = Bna
−n+1rnSn (θ, φ) , (2.65c)

Φ−n−1 = B−n−1a
n+2r−n−1Sn (θ, φ) , (2.65d)

χn = Cna
−nrnSn (θ, φ) , (2.65e)

χ−n−1 = C−n−1a
n+1r−n−1Sn (θ, φ) , (2.65f)

p∞n =
2 (2n+ 3)

n
αnµea

−n−1rnSn (θ, φ) , (2.65g)

Φ∞n =
1

n
βna

−n+1rnSn (θ, φ) , (2.65h)

χ∞n =
1

n (n+ 1)
γna

−nrnSn (θ, φ) . (2.65i)

Furthermore, we expand the interfacial tension in terms of surface spherical harmon-

ics as

σ =
∞∑
n=0

σnSn (θ, φ). (2.66)

Note that, we used a shorthand notation for terms of the form AnSn (θ, φ) to represent

a sum of 2n+ 1 terms as given below

AnSn (θ, φ) =
n∑

m=0

(
Amn cos (mφ) + Âmn sin (mφ)

)
Pm
n (cos (θ)), (2.67)
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where Pm
n (cos (θ)) is the associated Legendre polynomial of order m and degree n.

We substitute equations (2.65) and (2.66) into equation (2.64) and solve for the un-

known constants Amn , Bm
n , Cm

n , Am−n−1, Bm
−n−1, Cm

−n−1 and σmn (and the corresponding

variables with carat over them) in terms of the constants αmn , βmn and γmn . The result

of this procedure is the following equations

Amn = 0, (2.68a)

Bm
n = 0, (2.68b)

Cm
n =

2nγmn + γmn
n (n+ 1) [βn2 + (β + λ+ 1)n− 2β − λ+ 2]

, (2.68c)

Am−n−1 = −
2 (2n− 1)

[
n (αmn + βmn ) + 1

2
βmn + 3

2
αmn + αm−n−1

]
n+ 1

, (2.68d)

Bm
−n−1 =

(−2βmn − 2αmn )n+ βmn − αmn + 2βm−n−1

2n+ 2
, (2.68e)

Cm
−n−1 =

 −β
(
γm−n−1 + γmn

)
n2 +

[(
−γm−n−1 − γmn

)
β + (−λ− 1) γm−n−1 − γmn (λ− 1)

]
n

+
(
2γmn + 2γm−n−1

)
β + (λ− 2) γm−n−1 + (λ− 1) γmn


n (n+ 1) [βn2 + (β + λ+ 1)n− 2β − λ+ 2]

,

(2.68f)

σmn = −
2 (2n+ 1)

[
(αmn + βmn )n− 1

2
βmn + 3

2
αmn
]
µe

n (n+ 1)
. (2.68g)

From equation (2.68), we can make few deductions. Noting that γm−2 = 0, we find

that Cm
−2 = −1

2
γm−2 = 0. As the torque experienced by the drop is given by T =

−8πµe∇ (r3χ−2) = 0, we find that the drop covered with an incompressible surfactant

does not experience any hydrodynamic torque. Furthermore, we note the following

equation holds

Am−n−1

∣∣
drop covered with an
incompressible surfactant

= Am−n−1

∣∣
rigid sphere

(2.69)
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Using the equations for force and stresslet experienced by a drop, F = −4π∇ (r3p−2),

S = −2π
3
∇∇ (r5p−3) and equation (2.65b), we conclude that the force and stresslet

experienced by a translating drop covered with an incompressible surfactant are the

same as those experienced by a translating rigid sphere. In summary, we hereby

provide the Faxén’s laws for a drop of radius a covered with an insoluble, non-diffusing

and incompressible surfactant as

F = 6πµea

(
1 +

a2∇2

6

)
V∞|O − 6πµeaU, (2.70a)

T = 0, (2.70b)

S =
20

3
πµea

3

(
1 +

a2∇2

10

)
E∞|O, (2.70c)

where the subscript O denotes that the quantities are evaluated at the center of the

drop and E∞ denotes the rate of strain field of the ambient flow field.

For zero surface viscosity, we would like to compare this flow field due to an

isolated translating drop covered with an incompressible, insoluble, and non-diffusing

surfactant in an arbitrary ambient flow field with that reported in the literature [31].

For this purpose, we note that{
Amn , B

m
n , A

m
−n−1, B

m
−n−1

}∣∣
drop covered with an
incompressible surfactant

=
{
Amn , B

m
n , A

m
−n−1, B

m
−n−1

}∣∣
rigid sphere

,{
Cm
n , C

m
−n−1

}∣∣
drop covered with an incompressible
surfactant and β=0

=
{
Cm
n , C

m
−n−1

}∣∣
clean drop

.

(2.71)

Also, note that the flow field using Lamb’s general solution, equations (2.60a), (2.61a),

and (2.62a) can be written as a sum of the surface solenoidal and the surface irrota-

tional flow fields on the family of concentric spherical surfaces

v = vSol + vIrr, (2.72)
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where

vSol =
∞∑

n=−∞

∇× (rχn),

vIrr =
∞∑

n=−∞

[
∇Φn +

n+ 3

2 (n+ 1) (2n+ 3)µ
r2∇pn −

n

(n+ 1) (2n+ 3)µ
r pn

]
.

Here vSol and vIrr satisfy the conditions

ir ·
(
∇S × vIrr

)
= 0,

∇S · vSol = 0; ir · vSol = 0.
(2.73)

In lieu of equations (2.65), (2.71), and (2.72), we conclude that the surface solenoidal

flow field due to a surfactant-laden-drop with zero surface viscosity is the same as that

due to a clean drop. Similarly, the surface irrotational flow field due to a surfactant-

laden-drop is the same as that due to a rigid sphere. These results agree with the

general solution due to a drop covered with incompressible, insoluble and non-diffusing

surfactant with zero surface viscosity, as derived by Blawzdziewicz et al [31].

One can understand the peculiar behavior of the translating surfactant-laden-

drops, in an arbitrary ambient flow, experiencing the same force and stresslet as that

of rigid spheres in a similar configuration as follows. As shown earlier, any flow past

a particle, irrespective of the boundary conditions on the particle (i.e., the particle

can be a rigid particle, a drop or a surfactant-laden-drop), can be decomposed into

a surface solenoidal flow field and a surface irrotational flow field on the family of

concentric spherical surfaces. The surface irrotational flow field is torque-free and

it exerts a force and a stresslet on the particle whereas the surface solenoidal flow

field is force-free and stresslet-free and it exerts a torque on the particle. For a drop

(both clean and surfactant laden), the surface solenoidal flow field is torque-free too.

For a drop covered with an incompressible surfactant with zero surfactant diffusivity,

the surface irrotational flow field due to a surfactant-laden-drop is the same as that

due to a rigid sphere. Due to this reason, the force and the stresslet experienced

by a surfactant-laden-drop are independent of the viscosity ratio and the interfacial
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viscosity; also this force and stresslet are the same as those experienced by a rigid

sphere.
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3. LOCOMOTION INSIDE A SURFACTANT LADEN DROP AT LOW

SURFACE PÉCLET NUMBERS

3.1 Introduction

Locomotion of motile microorganisms near a wall/interface is ubiquitous in na-

ture, due to which there has been a large body of literature to explain the available

experimental observations (see sections on swimming near surfaces in [19, 61]). The

presence of a non-deforming wall/interface can influence the dynamics of a swimming

microorganism near it in a few ways. First, it can modify the speed of a microor-

ganism. For instance, a Taylor’s swimming sheet, with a fixed waveform, is found to

swim faster near a wall than that in bulk [62,63]. Second, it can modify the trajectory

of a microorganism. For instance, microorganisms such as Escherichia coli (E. coli),

which swim in straight lines in the bulk, are found to swim in circles near a plane

interface [64, 65]. The direction of rotation (clockwise or anticlockwise) depends on

any slip on the plane wall, viscosity ratio of the plane interface and the advection

of the impurities (if any) on the plane interface [8]. Third, the wall/interface causes

the reorientation and attraction of microorganisms towards it. For instance, pusher

swimmers (e.g., E. coli) reorient parallel to a plane wall and move towards the wall.

On the other hand, puller swimmers (e.g., Chlamydomonas) reorient normal to a

plane wall and collide with it. One can explain the reorientation and attraction to

the wall using either (a) the hydrodynamic interactions between the swimmer and the

wall [8,23,24] or (b) the self-propulsion and Brownian motion of the swimmer [66,67].

Among the works on the motion of a motile microorganism near an interface,

some have focused on the influence of (a) interface deformation [9, 68–70], (b) non-

This chapter has been reproduced with permission from the article “Locomotion inside a surfactant
laden drop at low surface Péclet numbers”, by V. A. Shaik, V. Vasani and A. M. Ardekani, Journal
of Fluid Mechanics, 851:187-230, 2018 (DOI: 10.1017/jfm.2018.491).
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Newtonian fluid behavior [71, 72] and (c) the surfactant advection [8, 16, 73] on the

dynamics of the swimmer. It was found that the attraction and reorientation behavior

of a pusher swimmer near a plane surfactant laden interface is similar to that near a

plane wall, but the surfactant redistribution can cause the microorganism to circle the

interface in an opposite direction as compared to its circling near a clean interface

[8]. Later, it was observed that the swimming microorganism gets trapped onto

a spherical surfactant laden drop similar to its trapping onto a rigid sphere, but

the trapping due to a surfactant laden drop is stronger than that due to a rigid

sphere [16, 73]. These works on the locomotion of swimming microorganisms near a

plane/spherical surfactant laden interface modeled the surfactant as incompressible

[74–77] with zero surface diffusivity (surface Péclet number, Pes, ratio of the surface

advection to the surface diffusion of the surfactant, tends to infinity) accounting for

the interfacial viscosity. We analyze the locomotion of swimming microorganism near

a surfactant covered interface in the other limit of surface Péclet number i.e., low

surface Péclet number at which the surface diffusion of the surfactant dominates its

surface advection.

An artificial/biological micro-swimmer must break the time-reversal symmetry

(getting around the constraints of the scallop theorem) in order to swim at low

Reynolds number [11]. It can escape from the constraints of the scallop theorem

through one of the following ways [12] (a) by passing waves along its flagella or

the whole body, (b) by rotating the flexible flagella, (c) through the finite inertia of

the fluid or the swimmer, (d) through the hydrodynamic interactions with a flexible

membrane/interface, (e) due to the non-Newtonian behavior of the suspending fluid.

In other words, the scallop theorem is not valid if there are any time-derivative terms

or nonlinear terms in the governing equations and the boundary conditions.

Particles and drops, on the other hand, exhibit several interesting phenomena due

to such nonlinearities [78]. For instance, either due to inertia, non-Newtonian sus-

pending fluid or the deformation of the particle/drop, (a) a spherical particle placed in

a unidirectional shear/Poiseuille flow field migrates in a transverse direction to a fixed
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position that is independent of its initial position, (b) a sedimenting axisymmetric

particle in an unbounded quiescent fluid achieves an orientation that is independent

of its initial orientation and (c) a freely rotating axisymmetric particle placed in a

simple shear flow achieves a final orbit that is independent of its initial orientation.

Recent works [27–29]showed that the transverse migration of the drop, in an un-

bounded Poiseuille flow, to a fixed position is also possible due to the nonlinearities

in the advection of the surfactant on the surface of the drop.

In summary, nonlinearities in the flow can enable a particle to achieve a fixed

position/orientation independent of its initial configuration while they can also make a

swimming microorganism to display a net motion. Since such breakdown of kinematic

reversibility is recently shown in the context of surfactant laden drop achieving a fixed

position (nonlinearities due to the surfactant redistribution), we would like to know

if a time-reversible swimmer near a surfactant laden interface can have a net motion.

In this work, we study the locomotion of a spherical microswimmer inside a sur-

factant laden drop for axisymmetric configurations by taking a perturbation in Pes.

A similar work, but on the locomotion inside a clean drop, was carried out by Reigh

et al. [79]. One of the applications of our work is to understand the physics underlying

the recent experiments on using the artificial bacterial flagella (ABF) to transport a

surfactant-laden-drop [7]. According to Ding et al. [7], ABFs placed inside a station-

ary drop (since the size of the drop is larger than the microfluidic channel in which

it resides, the drop is stationary) can transport the contents within the drop through

the application of magnetic field. As mentioned by Reigh et al. [79], if the radius of

the drop is smaller than the characteristic size of the microfluidic channel and the

drops affinity to the wall is negligible, an ABF placed inside a drop can propel the

drop, similar to the system studied in this paper.

The governing equations (Stokes) and boundary conditions concerning the loco-

motion of a spherical swimmer inside a surfactant covered drop are provided in Sec.

3.2. For the concentric configuration, the procedure for solving the Stokes equations

using the Lamb’s general solution is given in Sec. 3.3.1. For the eccentric configura-
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tions, the methodology for solving the dynamic equation for the stream function in

the bipolar coordinates is given in Sec. 3.3.2. We present the results of the concentric

and the eccentric configurations in Sec. 3.4.1 and Sec. 3.4.2, providing reasons for

the results in Sec. 3.4.2 using the drag and thrust analogy in Sec. 3.4.3. We then

discuss how a time-reversible swimmer inside a surfactant laden drop escapes from

the constraints of the scallop theorem in Sec. 3.4.4 and provide the main conclu-

sions in Sec. 6.6. The technical details of several derivations, expressions for the flow

field, conversion between different coordinate systems and the validation of bipolar

coordinate system results are given in the Appendices.

3.2 Mathematical Model

Consider the motion of a swimming microorganism inside a surfactant laden drop,

with the orientation of the swimmer along the line joining the centers of the swimmer

and the drop. Assuming the Capillary number (ratio of the bulk viscous stress to the

capillary stresses), Ca � 1, we neglect the deformation of the drop and regard the

shape of the drop and the swimmer as sphere. The swimmer propels and through

the hydrodynamic interactions, it causes the drop to move. We hereby formulate this

problem in the frame of reference of the drop. The flow fields inside (phase 1) and

outside the drop (phase 2) are governed by the creeping motion equations and an

incompressibility condition since the inertia of the fluid can be neglected. Using the

characteristic scales for the length, velocity and the stresses as the radius of the drop

‘a’, characteristic velocity of the swimmer in an unbounded fluid Usq and µ(k)Usq/a,

where µ(k) is the dynamic viscosity of the k-th phase, the dimensionless governing

equations are given by

∇p(k) = ∇2v(k); ∇ · v(k) = 0, where k = 1, 2. (3.1)
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Here, p(k) and v(k) denote the pressure and the velocity of the k-th phase. The fluid

inside the drop should satisfy the no-slip and no-penetration boundary conditions on

the surface of the swimmer

On the swimmer : v(1) = US −UD + us, (3.2)

where US = US iz and UD = UD iz are the velocities of the swimmer and the drop,

respectively, us denotes the slip velocity on the surface of the swimmer and iz is

the unit vector along the z-axis. The swimmer and the drop are assumed to be

neutrally buoyant. Since the external force acting on the drop and the swimmer is

zero, the hydrodynamic force acting on each of them ( FS: hydrodynamic force on

the swimmer, and FD: hydrodynamic force on the drop ) should be zero

FS =

∫
S

n · T (1)dS = 0, (3.3)

FD =

∫
D

n · T (2)dS = 0, (3.4)

where n is the normal vector on the surface of the swimmer (drop) pointing into the

suspending fluid, T (k) is the stress tensor for the k-th phase, dS is an infinitesimal sur-

face area on the surface of the swimmer (drop) and the integration is performed on the

surface of the swimmer (drop). Using the Newtonian constitutive equation, the stress

tensor for the k-th phase can be expressed as T (k) = −p(k)I +
[
∇v(k) +

(
∇v(k)

)T]
where I is the identity tensor and the superscript T stands for the transpose. In the

frame of reference of the drop, the flow field far away from the drop should approach

the negative of the drop velocity

Far away from the drop : v(2) = −UD. (3.5)

At the surface of the drop, the flow field in both the phases should satisfy the kine-

matic, dynamic and the stress balance conditions. Since the drop is non-deforming

and stationary, the kinematic and dynamic conditions are given as

On the drop : v(1) · n = v(2) · n = 0, (3.6)



46

On the drop : v(1) ·∆ = v(2) ·∆, where ∆ = I − nn. (3.7)

Similarly, the dimensional tangential stress balance condition is given as

On the drop : n ·
(
T (2) − T (1)

)
·∆ = −∇sγ,

where γ is the interfacial tension and the surface gradient operator is ∇s = ∆ ·

∇. In general, the interfacial tension depends on the surfactant concentration (Γ).

Assuming the local surfactant cocentration (Γ) is much smaller than the maximum

possible surfactant concentration on the interface (Γ∞), i.e., Γ/Γ∞ � 1, we use

a linear constitutive relationship between the interfacial tension and the surfactant

concentration, which, in its dimensional form is given as γ = γs − ΓRT . Here γs

is the interfacial tension of the clean interface, R is the ideal gas constant and T is

the absolute temperature. Enforcing this relation in the stress balance equation and

non-dimensionalizing it using Γref = Γeq (equilibrium concentration of surfactant),

we derive the dimensionless tangential stress balance condition as

On the drop : n ·
(
T (2) − λT (1)

)
·∆ = Ma∇sΓ. (3.8)

Here, λ = µ(1)/µ(2) is the viscosity ratio and Ma = RTΓeq/
(
µ(2)Usq

)
is the Marangoni

number which is the ratio of the Marangoni forces to the viscous forces.

Finally, the surfactant transport equation [18,51] governs the distribution of sur-

factant on the drop surface. We simplify the surfactant transport equation in the lim-

its of insoluble surfactant and quasi-steady state conditions [27,29,80]. In the insoluble

limit, bulk surfactant does not influence the surfactant distribution on the interface.

This limit is valid when c∞a/
(
ΓeqPe

(1)
)
� O (1) and c∞a/

(
ΓeqPe

(2)
)
� O (1) or

Bi = α(2)a/Usq � O (1). Here c∞ is a reference bulk concentration of the surfac-

tant, Pe(k) is the Péclet number defined as the ratio of the bulk advection of the

surfactant to its bulk diffusion in the k-th fluid, Bi is the Biot number characterizing

the strength of kinetic desorption relative to the interfacial convection and α(2) is
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the desoprtion rate constant. In these limits, the dimensionless surfactant transport

equation is given as

Pes∇s · (Γ vs) = ∇2
sΓ. (3.9)

Here, Pes = Usqa/Ds is the surface or interface Péclet number, Ds is the surface or

interface diffusivity and vs is the tangential velocity of the fluid on the surface of the

drop, i.e., vs = ∆ · v(1)
∣∣
Drop

= ∆ · v(2)
∣∣
Drop

.

The problem governed by equations (3.1)-(3.9) is essentially nonlinear, so we need

to make an assumption to analytically solve these equations. We assume Pes � 1

and expand all the variables as a regular perturbation in Pes.{
v(k), p(k), T (k),Γ,US,UD

}
=
∞∑
j=0

Pejs

{
v

(k)
j , p

(k)
j , T

(k)
j ,Γj,Uj,S,Uj,D

}
. (3.10)

Substituting this expansion in equations (3.1)-(3.9) and collecting terms at various

orders of Pes, we derive the governing equations and boundary conditions at several

orders of Pes which are summarized in the following subsection.

3.2.1 Governing equations and boundary conditions at various orders of

Pes

The flow field at each order of Pes satisfies the creeping flow equations and an

incompressibility condition

∇p(k)
j = ∇2v

(k)
j ; ∇ · v(k)

j = 0, where k = 1, 2. (3.11)

Assuming the slip velocity us is O (1), the flow field should satisfy the following

boundary condition on the swimmer

On the swimmer : v
(1)
j = Uj,S −Uj,D + δj,0us, (3.12)

where δj,0 is the Kronecker delta. The force-free conditions on the swimmer and the

drop are given as

Fj,S =

∫
S

n · T (1)
j dS = 0, (3.13)
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Fj,D =

∫
D

n · T (2)
j dS = 0. (3.14)

Far away from the drop, the flow field should approach the negative of the drop

velocity at various orders of Pes

Far away from the drop : v
(2)
j = −Uj,D. (3.15)

On the surface of the drop, the kinematic, dynamic and the shear-stress balance

conditions are given as

On the drop : v
(1)
j · n = v

(2)
j · n = 0, (3.16)

On the drop : v
(1)
j ·∆ = v

(2)
j ·∆, (3.17)

On the drop : n ·
(
T

(2)
j − λT

(1)
j

)
·∆ = Ma∇sΓj. (3.18)

The perturbed surfactant transport equations at different orders of Pes are given as

At O (1) : ∇2
sΓ0 = 0⇒ Γ0 = 1, (3.19)

At O (Pes) : ∇s · (Γ0v0,s) = ∇2
sΓ1, (3.20)

At O
(
Pe2

s

)
: ∇s · (Γ0v1,s + Γ1v0,s) = ∇2

sΓ2, (3.21)

where vj,s is the tangential velocity of the fluid at O (Pejs) evaluated on the surface

of the drop, i.e., vj,s = ∆ · v(1)
j

∣∣∣
Drop

= ∆ · v(2)
j

∣∣∣
Drop

.

3.3 Solution Methodology

In this section, we describe the techniques used to solve the above mentioned

perturbed equations for axisymmetric configurations. For all non-zero values of ec-

centricities, we use the bipolar coordinates approach to solve for the stream function.
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For the concentric configuration, since the bipolar coordinate solution is singular, we

use the Lamb’s general solution to solve for the flow field. Solving for the concentric

configuration is especially important, as the expressions for the flow field are simple

and hence they can be used to describe the underlying physics.

When the perturbation is taken in Pes [29], the key idea is to first find the surfac-

tant concentration at O (Pejs) (Γj) by solving the surfactant transport equation at the

same order in Pes. This equation can be solved to determine Γj because it contains

only the flow field and surfactant concentrations at lower orders of Pes, which are

known quantities (see equations (3.19)-(3.21) for instance). Once Γj is found, one

can use it to solve the Stokes equations at O (Pejs) so as to find the swimmer and

drop velocities at O (Pejs). Instead, one can avoid the process of solving for O (Pejs)

flow field and use an integral theorem to directly find the O (Pejs) swimmer and drop

velocities from the knowledge of O (Pejs) surfactant concentration and the solution of

two auxiliary problems. We direct the reader to Appendix 3.8 for a detailed deriva-

tion of this integral theorem, equations (3.90)-(3.91) and a demonstration of the use

of this integral theorem in calculating the swimmer and drop velocities. We, however,

do not use this integral theorem and use the former approach of solving the Stokes

equations at any order of Pes to find the swimmer and drop velocities at that order

in Pes.

We further note that the surfactant concentration at O (1) is uniform (Γ0 = 1)

and hence the Marangoni term, proportional to the gradient of the surfactant con-

centration, is zero. Therefore, the flow field and the dynamics of the swimmer and the

drop at O (1) are the same as those for the motion of a swimmer inside a clean drop.

Reigh et al. [79] studied the motion of a swimmer inside a clean drop for concentric

and eccentric configurations using the Lamb’s general solution and the boundary el-

ement method, respectively. Analytical results given in the present study recovers

their results in the limit of zero Pes or Ma, corresponding to a clean drop.
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3.3.1 Concentric configuration

In this section, we provide the methodology to derive the surfactant concentration,

flow field, swimmer and drop velocities at O (Pejs) when the swimmer is located at the

center of the drop. We hereby place the origin at the center of the drop and choose

a spherical coordinate system (see figure 3.1 for the schematic), the most suitable

coordinate system for the concentric configuration. In this coordinate system, the

surface of the drop is located at r = 1, while the surface of the swimmer is at r = χ.

The most general form for the surfactant transport equation at O (Pejs), where

j ≥ 1, is given as

∇2
sΓj = f (Γ0,Γ1, ...Γj−1,v0,s,v1,s, ...vj−1,s) . (3.22)

We expand the surfactant concentration Γj in terms of the Legendre polynomials

[29,60,80]

Γj =
∞∑
n=1

Γj,n Pn (cos θ),

where Γj,n is a constant and θ is the polar angle. We then substitute this expansion

in the left hand side of the surfactant transport equation (equation (3.22)) and use

the orthogonality of the Legendre polynomials to determine Γj,n.

Using the Lamb’s general solution [1] for the axisymmetric configuration, we write

the flow field in the k-th phase as

v
(k)
j =

∞∑
n=−∞

[
∇φ(k)

j,n +
n+ 3

2 (n+ 1) (2n+ 3)
r2∇p(k)

j,n −
n

(n+ 1) (2n+ 3)
rp

(k)
j,n

]
, (3.23)

where φ
(k)
j,n and p

(k)
j,n are the solid spherical harmonics, r = r ir and ir is the unit vector

in the radial direction. For axisymmetric flows, we can write these harmonics in terms

of the Legendre polynomials as

p
(k)
j,n = p̃

(k)
j,n r

nPn (cos θ) , φ
(k)
j,n = φ̃

(k)
j,n r

nPn (cos θ) ,

where p̃
(k)
j,n and φ̃

(k)
j,n are arbitrary constants. Following Reigh et al. [79], we modify

these constants as follows

p̄
(k)
j,n =

n

2 (2n+ 3)
p̃

(k)
j,n; φ̄

(k)
j,n = nφ̃

(k)
j,n,
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Figure 3.1. : A schematic showing the geometric configuration of a swimmer located

at the center of the drop. A vector from the swimmer’s center to the red circle

gives the orientation of the swimmer. The origin O is coincident with the center of

the swimmer and the drop. (x, y, z) and (r, θ, φ) denote the cartesian and spherical

coordinate variables, respectively. r = 1 and r = χ denote the surface of the drop and

the swimmer, respectively. We denote the fluid inside and outside the drop as phase

1 and phase 2, respectively. In the drop frame of reference, the drop is stationary and

it is placed in a uniform streaming flow, −UD iz.
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where p̄
(k)
j,n and φ̄

(k)
j,n are again arbitrary constants. Hence, the radial and tangential

components of flow field at O (Pejs) and in the k-th phase are given as

v
(k)
j,r =

∞∑
n=0

[
p̄

(k)
j,n r

n+1 + φ̄
(k)
j,n r

n−1 + p̄
(k)
j,−n−1 r

−n + φ̄
(k)
j,−n−1 r

−n−2
]
Pn (cos θ), (3.24)

v
(k)
j,θ =

∞∑
n=1

 −
(n+ 3)

2
p̄

(k)
j,n r

n+1 − (n+ 1)

2
φ̄

(k)
j,n r

n−1

+
(n− 2)

2
p̄

(k)
j,−n−1 r

−n +
n

2
φ̄

(k)
j,−n−1 r

−n−2

Vn (cos θ), (3.25)

where dPn(cos θ)
dθ

= −n(n+1)
2

Vn (cos θ) = −P 1
n (cos θ) and P 1

n is the associated Legendre

polynomial of the first order. Substituting these expressions for the velocity compo-

nents into the expression for the stress tensor on the surface of a sphere, given in

Happel & Brenner [1], we derive an expression for the tangential stress, T
(k)
j,rθ as

T
(k)
j,rθ =

∞∑
n=1

−1

r

 (n2 − 1
)
rn−1φ̄

(k)
j,n + n (n+ 2) rn+1p̄

(k)
j,n

+ n (n+ 2) r−n−2φ̄
(k)
j,−n−1 +

(
n2 − 1

)
r−np̄

(k)
j,−n−1

Vn (cos θ). (3.26)

We substitute the expressions for the flow field, shear stress and the surfactant

concentration in the boundary conditions (equations (3.12)-(3.18)) and use the or-

thogonality of the Legendre polynomials to derive a system of linear equations in the

unknowns − p̄
(1)
j,n, p̄

(1)
j,−n−1, p̄

(2)
j,n, p̄

(2)
j,−n−1, φ̄

(1)
j,n, φ̄

(1)
j,−n−1, φ̄

(2)
j,n, φ̄

(2)
j,−n−1, Uj,S and Uj,D. We

then solve this system of linear algebraic equations to determine the flow field, swim-

mer and drop velocities at this order in Pes. We summarize the algebraic equations

obtained in satisfying the boundary conditions (equations (3.12)-(3.18)) in Appendix

3.6. For a squirmer with both radial and tangential modes located at the center of the

drop, we provide the expressions for the surfactant concentration, flow field, swimmer

and drop velocities at O (1), O (Pes) and O (Pe2
s) in Appendix 3.7.

3.3.2 Eccentric configurations

In this section, we provide a method to evaluate the swimmer and drop velocities

for an eccentrically located swimmer inside a drop. To simplify the calculation, we
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derive these velocities accurate to O (Pes). For this purpose, we solve the dynamic

equation for stream function in the bipolar coordinates. A useful relation between the

cylindrical coordinate variables (ρ, z, φ) and the bipolar coordinate variables (ξ, η, φ)

is given as

z =
c sinh ξ

cosh ξ − cos η
, ρ =

c sin η

cosh ξ − cos η
, (3.27)

where c is a constant that depends on the specific geometric configuration (the radii

of the swimmer and the drop and the separation between them). In the bipolar

coordinates, the surfaces generated by ξ = constant are eccentric non-intersecting

spheres. We therefore denote the surface of the swimmer as ξ = ξS and that of drop

as ξ = ξD. There are two possibilities for eccentric configurations namely swimmer

lying above or below the drop. For swimmer above (below) the drop, we place the

origin of the coordinate system above (below) the drop, corresponding to ξS and

ξD < 0 (ξS and ξD > 0) (see figure 3.2 for the schematic of the problem). Explicit

expressions for ξS, ξD and c are given as

ξS = ∓cosh−1

(
1− χ2 − d2

2dχ

)
; ξD = ∓cosh−1

(
1− χ2 + d2

2d

)
; c = |sinh ξD| (3.28)

where d = |e| and e = zS − zD. Here zS and zD denote the z-coordinate of the center

of the swimmer and the drop, respectively. Also the minus (plus) sign should be used

for a swimmer located above (below) the drop.

In the bipolar coordinates, the velocity components are related to the stream

function via

v
(k)
j,ξ =

h

ρ

∂ψ
(k)
j

∂η
; v

(k)
j,η = −h

ρ

∂ψ
(k)
j

∂ξ
, (3.29)

where h = (cosh ξ − cos η) /c is one of the metrical coefficient of the bipolar coordi-

nates . We enforce these relations in the creeping flow equations to derive the dynamic

equation for the stream function, given as E4ψ
(k)
j = 0, where

E2 = ρh2

[
∂

∂ξ

(
1

ρ

∂

∂ξ

)
+

∂

∂η

(
1

ρ

∂

∂η

)]
(3.30)

Similarly, one can express the boundary conditions given by equations (3.12) and

(3.16)-(3.18) in terms of velocity components in bipolar coordinates which can be

eventually written in terms of stream function using equation (3.29).
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ρ

z
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ξ
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ξ
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S
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S D

ξ ξ< <

D
U

(b)

O

Figure 3.2. : A schematic showing the geometric configuration and its associated

coordinate system for (a) swimmer located below the drop and (b) swimmer located

above the drop. Here (z, ρ) and (ξ, η) denote the coordinate variables of the cylindrical

and the bipolar coordinate systems, respectively. O is the origin of the coordinate

systems and it is located below (above) the drop for a swimmer located below (above)

the drop. ξ = ξS and ξD denote the surface of the swimmer and the drop. ξ = 0

denote the plane z = 0. η = 0 and η = π denote the lines |z| ≥ c and |z| ≤ c,

respectively. In the frame of reference of the drop, it is stationary and is placed in a

uniform streaming flow, −UD iz.
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On the swimmer:

v
(1)
j,ξ =

(
Uj,S − Uj,D

)
iz · iξ + δj,0 u

s
ξ

v
(1)
j,η =

(
Uj,S − Uj,D

)
iz · iη + δj,0u

s
η

(3.31)

On the drop:

v
(1)
j,ξ = v

(2)
j,ξ = 0

v
(1)
j,η = v

(2)
j,η

−sgn (ξD)
(
T

(2)
j,ξη − λT

(1)
j,ξη

)
= Mah

dΓj
dη

(3.32)

where

T
(k)
j,ξη = h

(
∂v

(k)
j,ξ

∂η
+
∂v

(k)
j,η

∂ξ

)
− h2

(
v

(k)
j,ξ

∂

∂η

(
1

h

)
+ v

(k)
j,η

∂

∂ξ

(
1

h

))
(3.33)

Here, iξ and iη are the unit vectors in the increasing direction of ξ and η, respectively.

Also usξ and usη are the components of the swimmer’s surface velocity in the bipolar

coordinates while δj,0 is the Kronecker delta. We outline the steps used for converting

the swimmer’s surface velocity from the spherical coordinate system to the bipolar

coordinate system in Appendix 3.9. The far-field condition (equation (3.15)) gives

the following condition for the stream function [1]

As ξ, η → 0, ψ
(2)
j →

1

2
ρ2Uj,D (3.34)

Stimson & Jeffery [81] derived a general solution of E4ψ
(k)
j = 0, when E2 is

expressed in bipolar coordinates and it is given as

ψ
(k)
j = (cosh ξ − cos η)−3/2

∞∑
n=0

W
(k)
j,n (ξ) C

−1/2
n+1 (cos η) (3.35)

where

W
(k)
j,n = A

(k)
j,n cosh

(
n− 1

2

)
ξ+B

(k)
j,n sinh

(
n− 1

2

)
ξ+C

(k)
j,n cosh

(
n+ 3

2

)
ξ+D

(k)
j,n sinh

(
n+ 3

2

)
ξ

Here C
−1/2
n+1 (cos η) is a Gegenbauer polynomial [82] of order n + 1 and degree −1/2

while A
(k)
j,n, B

(k)
j,n , C

(k)
j,n and D

(k)
j,n are the unknown constants. We substitute equation
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(3.35) in the boundary conditions and the far-field condition, written in terms of the

stream function, to derive 8 linear algebraic equations in the unknowns − A
(1)
j,n, B

(1)
j,n ,

C
(1)
j,n , D

(1)
j,n, A

(2)
j,n, B

(2)
j,n , C

(2)
j,n and D

(2)
j,n − at each order in Pes and for each n. These

equations are summarized in Appendix 3.10. We then solve these equations to derive

the explicit expressions for the unknowns.

As outlined in the solution methodology for concentric configuration, we first need

to solve for the surfactant concentration before solving for the flow field at any order

in Pes. The surfactant concentration at O (1) is uniform and hence it is a known

quantity. Since, we are solving the flow field up to O (Pes), we need to find the

surfactant concentration at O (Pes) by solving the corresponding surfactant transport

equation, equation (3.20). Using the definition of surface gradient operator in bipolar

coordinates, ∇s = iη h
∂
∂η

+ iφ
1
ρ
∂
∂φ

, we simplify the surfactant transport equation at

O (Pes) as follows

d

dη

(
h
dΓ1

dη

)
=
d v

(1)
0,η (ξ = ξD)

dη
=
d v

(2)
0,η (ξ = ξD)

dη
(3.36)

This equation can be easily integrated with respect to η to obtain hdΓ1

dη
= v

(1)
0,η (ξ = ξD) =

v
(2)
0,η (ξ = ξD). Since, only the gradient of the surfactant concentration affects the flow

field, through the shear-stress boundary condition, equation (3.18), we use the above

equation to rewrite the shear-stress boundary condition at O (Pes) as follows.

−sgn (ξD)
(
T

(2)
1,ξη − λT

(1)
1,ξη

)
= Mav

(1)
0,η (ξ = ξD) = Mav

(2)
0,η (ξ = ξD) (3.37)

Therefore, once the flow field at O (1) is known, we can directly evaluate the flow

field at O (Pes) without finding the surfactant concentration at O (Pes). Mandal et

al. [80] provided a similar procedure for finding the flow field due to weakly deforming,

surfactant laden compound drops. We used this method to derive the linear algebraic

equations in the unknown coefficients provided in Appendix 3.10.

The solution of the linear algebraic equations provided in the Appendix 3.10 fur-

nishes the explicit expressions for the unknown coefficients in W
(k)
j,n . These coefficients
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are linear in the swimmer and drop velocities at any order in Pes. For instance, the

coefficient A
(k)
j,n is given as

A
(k)
j,n = Q

(k)
j,n (λ, χ,Ma) Uj,S +R

(k)
j,n (λ, χ,Ma) Uj,D + S

(k)
j,n (λ, χ,Ma) (3.38)

where Q
(k)
j,n, R

(k)
j,n and S

(k)
j,n are the functions of χ, λ and Ma. We then impose the

force-free conditions for the swimmer and the drop given as [1, 81,83,84]

∞∑
n=1

[
A

(1)
j,n + C

(1)
j,n + sgn (ξS)

(
B

(1)
j,n +D

(1)
j,n

)]
= 0 (3.39)

∞∑
n=1

[
A

(2)
j,n + C

(2)
j,n + sgn (ξD)

(
B

(2)
j,n +D

(2)
j,n

)]
= 0 (3.40)

We solve these two equations to find the swimmer and drop velocities at any order in

Pes. Since, these two equations contain an infinite number of coefficients, we truncate

this sum to a finite number N such that the error in the evaluation of the swimmer

and drop velocities is less than 10−6.

3.4 Results and Discussion

We note that the formulation provided in the previous two sections is entirely

general as long as the swimmer’s surface velocity us is axisymmetric. To perform

further analysis, we need to choose a specific functional form for us. For this pur-

pose, we model the swimmer as ‘squirmer’ having both radial and tangential modes.

Such model is used to describe the ciliated microorganisms which propel through the

metachronal beating of flexible cilia on their surface. According to this model [14,15],

one does not worry about the individual cilia but instead apply a boundary condition

for the velocity on a spherical surface that encompasses the cilia. Hence, the slip

velocity on the squirmer’s surface, us is given as

us =
∞∑
n=0

An Pn (cos θ) ir +
∞∑
n=1

Bn Vn (cos θ) iθ (3.41)

where ir and iθ are the unit vectors in the radial and the polar directions with the

origin located at the center of the squirmer while An and Bn are known constants, the
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so called modes of a squirmer. We, however, do not consider the A0 mode since there

is no solution of the governing equations satisfying all the boundary conditions when

such a swimmer (squirmer having only A0 mode) is located inside a drop. A squirmer,

possessing only the tangential squirming modes, moves with a speed of Usq = 2B1/3

in an unbounded quiescent fluid and we can represent the flow field far away from it by

placing a force dipole at its center, the strength of which depends on B2 mode. Since

the swimming velocity and the far-field hydrodynamics are dictated by only B1 and

B2 modes, we can discard all other modes and study the hydrodynamics of this two-

mode squirmer whose flow field is characterized by a single parameter, β = B2/B1.

The swimmers possessing β < 0 are called the pushers and they swim by repelling

fluid along their axis while drawing the fluid along the sides. The swimmers having

β > 0 are called the pullers and they swim by repelling fluid along their sides while

drawing the fluid along their axis. The swimmers having β = 0 are called neutral

swimmers and their flow field is represented by a degenerate quadrupole placed at the

center of the squirmer. Due to its mathematical simplicity, the two-mode squirmer

model was used vastly in the literature to study several physical processes involving

microswimmers [9,85–87]. Due to this reason, we present most of our results for this

two-mode squirmer. The analyses in Secs. 3.4.1, 3.4.2, 3.4.3 and 3.4.4 are carried out

for a two-mode squirmer while the analysis in subsection (Coswimming) is valid for a

three-mode squirmer possessing A1, B1, and B2 modes. For a swimmer at the center

of the drop, since the velocity of the swimmer and the drop depend only on A1 and

B1 modes, we note that the results and discussion provided in Sec. 3.4.1 (Sec. 3.4.1)

are valid for a swimmer with more general boundary conditions - a swimmer with ‘n’

tangential squirming modes (a swimmer with both tangential and radial squirming

modes as long as A1 mode is chosen according to equation (3.55)).

Recall the perturbation scheme, v = v0 + Pesv1 + O (Pe2
s). Since v1 ∝ Ma, we

can write v1 = Ma
_
v1, hence v = v0 + PesMa

_
v1. In our case,

_
v1 is at most O (0.1)

(for instance, see figure 3.5b for the O (Pes) flow field due to a pusher swimmer at
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the center of drop at Ma = 1). So, for small Pes analysis to be valid, Ma can be at

most O (10).

We give a justification for the range of parameter values used in this paper. We

assume that water droplets are immersed in oil and take the viscosity of oil to lie in

the range 0.1µwater to 10µwater, where µwater is the dynamic viscosity of the water. So,

λ lies in between 0.1 to 10. This assumption of water in oil drops is in accordance

with the experiments of Ding et al. [7], where µoil = 4.6µwater (for FC-40) also lies

in the range of oil viscosities used in this manuscript. We take the size ratio, χ,

to lie in the range 0 to 1, where χ � 1 means the size of the swimmer is much

smaller than the drop size (this is similar to the experiments [7]). On the other

hand, χ → 1 means that the swimmer and the drop are approximately of the same

size. We note that the speed of an E. coli or an ABF in an unbounded fluid is

Usq ≈ 10µm/s [7, 19]. Since the size of an E. coli or an ABF is [7, 19] 1− 10µm, we

take the size of the drop to lie in the range, a ≈ 1 − 100µm. Also, we choose the

equilibrium surfactant concentration and the surface diffusivity of the surfactant to

lie in the range [88], Γeq ≈ 10−13−10−10 mol/cm2 and Ds ≈ 10−6−10−5 cm2/s. Using

these parameter values, we determine the surface Péclet number and the Marangoni

number to lie in the range, Pes ≈ O
(
10−2 − 10

)
and Ma ≈ O

(
10− 106

)
. Noting

that Γeq = 0 or Ma = 0 for a clean drop, we extend the range of Marangoni number

to Ma ≈ 0 − O
(
106
)

so as to include the scenarios of a clean drop or very small

surfactant concentrations. As a small surface Péclet calculation is done in this paper,

we choose Pes ≈ O
(
10−2 − 10−1

)
and Ma ≈ 0−O (10).

3.4.1 Concentric configuration

Swimmer and drop velocities

The swimmer and drop velocities accurate to O (Pes) are given as (noting that

US = US iz; Uj,S = Uj,S iz; UD = UD iz; Uj,D = Uj,D iz)

US = U0,S + Pes U1,S; UD = U0,D + Pes U1,D. (3.42)
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When the drop and the swimmer are in a concentric configuration, the expressions

for U0,S, U1,S, U0,D, and U1,D for a general n-mode squirmer inside a drop are given

as (see equations (3.68)-(3.71))

U0,S =
−12 (λ− 1) (A1 +B1/2)χ5 + 10χ3 (A1 +B1) (λ− 1)− 3 (A1 − 2B1) (λ+ 2/3)

(6λ− 6)χ5 + 9λ+ 6
,

(3.43)

U0,D = 10
χ3λ (A1 +B1)

(6λ− 6)χ5 + 9λ+ 6
, (3.44)

U1,S = −25Maχ3λ (1− χ) (χ+ 1) (A1 +B1)

12((λ− 1)χ5 + 3/2λ+ 1)2 , (3.45)

U1,D = −5

6

Maλ (A1 +B1)χ3 (1− χ5)

((λ− 1)χ5 + 3/2λ+ 1)2 . (3.46)

Our expressions for U0,S and U0,D match with the corresponding expressions derived

for the motion of a swimmer inside a clean drop [79]. We note that the swimmer and

drop velocities at O (1) and at O (Pes) depend only on A1 and B1 modes. Also since

0 < χ < 1, it can be clearly seen that for positive values of A1 and B1, U1,S ≤ 0

and U1,D ≤ 0. We plot in figure 3.3, the swimmer and drop velocities accurate to

O (Pes) for various values of size ratio χ, viscosity ratio λ and Marangoni number

Ma. Even though the expressions for the swimmer and drop velocities accurate

to O (Pes) are valid for n-mode squirmer, we plot these velocities for a two mode

squirmer inside a drop in figure 3.3. In this case, the swimmer and drop velocities

are always positive if the drop is clean. Since U1,S, U1,D ≤ 0 while U0,S, U0,D ≥ 0 for

a two mode squirmer inside a drop, the leading order effect of the surfactant is to

reduce the swimmer and drop velocities. This can be seen from figure 3.3 where the

swimmer and drop velocities for a surfactant-laden-drop (symbols) are less than the

corresponding velocities for a clean drop (lines).

We hereby compare the swimmer and drop velocities for a surfactant covered drop

with those of a clean drop. But first, we make the following observations that hold

irrespective of the presence of the surfactant on the drop surface. The swimmer and
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Figure 3.3. : Velocity of (a) a two mode squirmer, US and (b) drop, UD as a function

of the size ratio χ for various values of viscosity ratio λ and Ma. The variation of

UD/US with size ratio, χ and Marangoni number is plotted in figure (c) for λ = 1.

Lines denote these velocities evaluated for a clean drop while the open and filled

symbols denote the velocities evaluated for a surfactant laden drop with Ma = 0.1

and 10, respectively. The surface Péclet number, Pes is chosen as 0.1 in all these

calculations. All the velocities are non-dimensionalized using Usq = 2B1/3.
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drop velocities decrease with the decreasing viscosity ratio, λ. Also, the drop velocity

decreases with the decreasing size ratio, χ. When the size of the swimmer is much

less than the size of the drop (χ� 1) or if it is approximately the same as the drop

size (χ ≈ 1), the swimmer velocity is equal to its velocity in an unbounded medium.

Similarly, the drop velocity is zero when χ � 1 and it is equal to the velocity of

the swimmer in unbounded medium when χ ≈ 1. The surfactant does not affect the

swimmer and drop velocities in the limits of χ� 1 or χ ≈ 1 because U1,S = U1,D = 0

in these limits. The swimmer velocity exhibits a maximum (minimum) for those

viscosity ratios at which it moves faster (slower) than that in an unbounded fluid.

One feature that distinguishes the swimmer velocity in a clean drop with that

inside a surfactant laden drop is the viscosity ratio at which the swimmer velocity

equals to its velocity in an unbounded medium for all size ratios. For instance,

consider the swimmer inside a clean drop. It moves with its velocity in an unbounded

medium when λ = 1(viscosity of the drop is the same as that of the suspended fluid),

whereas it propels with a speed smaller (larger) than its unbounded swimming speed,

when λ < 1 (λ > 1). Notably, λ = 1 demarcates the US > 1 region (faster swimming

region) from the US < 1 region (slower swimming region). Now consider the swimmer

inside a surfactant laden drop. Here λ = λapp > 1 demarcates the faster swimming

region from the slower swimming region. This is because even for λ = 1, the swimmer

moves with a velocity smaller than its velocity in an unbounded medium, so there

exists a viscosity of the drop, λ = λapp > 1 at which the swimmer moves with a

velocity equal to its unbounded swimming velocity. Also, for the viscosities of the

drop larger than this apparent viscosity (for instance λ = 10), the swimmer moves

with a velocity larger than its unbounded swimming velocity.

In figure 3.3c, we plot the variation of the ratio UD/US with the size ratio and

the Marangoni number. We see that the reduction in the drop velocity is more than

the reduction in the swimmer velocity due to the surfactant redistribution. Also, this

ratio is always less than 1 irrespective of the presence of the surfactant. This means
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that a two-mode squirmer located at the center of a drop is faster than the drop and

hence the concentric configuration is not a steady state configuration.

To understand the variation of the swimmer and drop velocities accurate to

O (Pes) with λ, χ and Ma, we need to understand the dependence of swimmer and

drop velocities at various orders of Pes on the aforementioned parameters. For in-

stance, we would like to understand − why does the swimmer and drop velocities for

a surfactant laden drop show large deviations as compared to those of clean interface

velocities when χ ≈ 0.8 − 0.9.We already plotted in figure 3.3 the swimmer and the

drop velocities for a clean drop which are the same as the O (1) velocities for a sur-

factant laden drop. Hence, we plot in figure 3.4, the variation of swimmer velocity at

O (Pes) with χ, λ and Ma. From equation (3.45), we see that U1,S depends linearly

on the Marangoni number, Ma. A similar trend can also be observed from figure 3.4a

where we plotted U1,S for various χ and Ma. It can be seen from equation (3.45) that

U1,S vanishes for either χ ≈ 1 or χ → 0, for all values of λ and Ma. But since U1,S

is non-zero for intermediate values of χ and it cannot be positive, it should exhibit a

local minimum at some intermediate value of χ. This trend is readily observed from

figure 3.4b. Similarly, we see that U1,S becomes zero when λ → 0 or λ → ∞ for all

values of χ and Ma. Since U1,S is non-zero for any finite value of λ and it cannot be

positive, it should display a local minimum at some intermediate value of λ. We again

see such trend in figure 3.4b or in its inset. Such non-monotonic variation of U1,S with

λ and χ explains the non-monotonic variation of the deviation between the swimmer

velocity accurate to O (Pes) and the swimmer velocity at O (1) as seen in figure 3.3.

The dependence of the drop velocity at O (Pes), U1,D, on the aforementioned param-

eters is qualitatively the same as the dependence of the swimmer velocity at O (Pes),

U1,S, so we do not report the variation of U1,D.
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Figure 3.4. : The variation of a two-mode squirmer velocity at O (Pes), U1,S, with the

size ratio χ for several values of (a) Ma with λ = 1 and (b) λ with Ma = 1. Inset in

the subfigure (b) shows the non-monotonic variation of U1,S with the viscosity ratio

λ for χ = 0.5. All the velocities are non-dimensionalized using Usq = 2B1/3.
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Far-field representation

In this section, we analyze how the advection of the surfactant modifies the far-field

representation of the flow field due to drop enclosing a swimmer at its center. Far-

field representation is useful in understanding the interaction of a particle (or a drop

or a swimming microorganism) with an interface or other particles. Even though the

concentric configuration is unstable, simple expressions of flow field associated with

this configuration enable us to evaluate several quantities of interest.

In the lab frame, the radial component of the velocity far away from a two-mode

swimmer in an unbounded fluid is given as [15]

ūr|leading = −B2P2 (cos θ)
χ2

r2
, (3.47)

where variables with overbar indicate that they are written in the lab frame of refer-

ence. The radius of the drop is still used for non-dimensionalizing the length in the

problem of swimmer in an unbounded fluid and this justifies the appearance of χ in

equation (3.47). Similarly, the radial component of velocity outside a drop enclosing

a swimmer and far away from the drop is given as

v̄(2)
r

∣∣
leading

= v̄
(2)
0,r

∣∣∣
leading

+ Pes v̄
(2)
1,r

∣∣∣
leading

+O
(
Pe2

s

)
, (3.48)

where

v̄
(2)
j,r

∣∣∣
leading

=
[
φ̄

(2)
j,−1 + p̄

(2)
j,−3P2 (cos θ)

] 1

r2
.

Using the expressions provided in the Appendix 3.7, we derive the following two ratios

v̄
(2)
0,r

∣∣∣
leading

ūr|leading

= − 6Λ (χ4 + 3χ3 + 11/3χ2 + 3χ+ 1) 4 + (8Λ− 4)χ7 + (24Λ− 12)χ6 + (48Λ− 24)χ5

+ (45Λ− 15)χ4 + (15Λ + 15)χ3 + 24χ2 + 12χ

 < 0, (3.49)
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Figure 3.5. : The (a) O (1) and (b) O (Pes) flow fields outside a surfactant laden

drop containing a pusher swimmer at its center in the lab frame of reference. The

background color and the unit vectors denote the magnitude and the direction of

the velocity. The red dashed lines denote the surfaces of the swimmer and the drop.

Here, β = B2/B1 = −5, Ma = 1, χ = 0.5 and λ = 1. All the velocities are non-

dimensionalized using Usq = 2B1/3.
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v̄
(2)
1,r

∣∣∣
leading

ūr|leading

=

 (24 − 24χ) (1− Λ) ΛMa (χ4 + 3χ3 + 11/3χ2 + 3χ+ 1)×

(χ6 + 4χ5 + 10χ4 + 55/4χ3 + 10χ2 + 4χ+ 1)


5

 8Λχ7 + 24Λχ6 − 4χ7 + 48Λχ5 − 12χ6 + 45Λχ4

−24χ5 + 15Λχ3 − 15χ4 + 15χ3 + 24χ2 + 12χ+ 4

2 > 0,

(3.50)

where Λ = λ/ (λ+ 1). From equation (3.49), we deduce that the far-field represen-

tation of an O (1) flow field due to a pusher (puller) inside a drop is that of a puller

(pusher) for all values of viscosity ratio and size ratio. Reigh et al. [79] derived a

similar far-field representation of the flow field due to a clean drop encompassing a

swimmer. On the other hand, the far-field representation of the O (Pes) flow field

due to a pusher (puller) inside a drop is that of a pusher (puller), see equation (3.50).

This far-field behavior of a surfactant covered drop containing a swimmer at its center

can be understood by plotting the O (1) and O (Pes) flow fields in the lab frame of

reference. We plot these flow fields for a pusher swimmer at the center of the surfac-

tant laden drop for the viscosity ratio and the size ratio of 1 and 0.5, respectively, in

figure 3.5. A pusher swimmer in an unbounded fluid sucks fluid normal to its axis

and ejects the fluid along its axis while a puller swimmer draws fluid along its axis

and ejects the fluid normal to its axis. As per the O (1) flow field outside a drop, we

see that a drop containing a pusher sucks fluid along its axis while ejecting normal

to its axis; this flow field being the characteristic of a puller swimmer. Hence, the

far-field representation of a clean drop containing a pusher swimmer at its center is

that of a puller swimmer. Similarly based on the O (Pes) flow field outside a drop,

we see that a drop containing a pusher draws fluid normal to its axis while ejecting

along its axis. As this flow is the characteristic of a pusher swimmer, it can be said

that the far-field representation of O (Pes) flow field due to a surfactant laden drop

containing a pusher swimmer at its center is that of a pusher swimmer.Any deviation

in the flow field outside the drop from this far-field behavior is due to the contri-

bution of the near-field flow. Since the O (Pes) flow field is an order of magnitude
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smaller than the O (1) flow field and it is opposite to the O (1) flow in the far-field, we

conclude that the surfactant covered drop containing a pusher swimmer at its center

behaves as a puller, the strength of the far-field flow is reduced due to the surfactant

redistribution.

Surfactant concentration

In this section, we will provide physical reasons for the decrease in the drop and

swimmer velocities due to the surfactant redistribution when the swimmer is at the

center of the drop. For this purpose, we will utilize the justification provided to

explain a similar decrease in the rise velocity of a drop (without any swimmer inside)

due to the surfactant advection on its surface [18]. The key idea is to analyze the

surfactant concentration and the surface velocity of a drop containing a two-mode

squirmer at its center. Analytical expression for the surfactant concentration accurate

to O (Pes) is given as

Γ = Γ0 + Pes Γ1 +O
(
Pe2

s

)
, (3.51)

where Γ0 = 1 and Γ1 = Γ1,1 P1 (cos θ) + Γ1,2 P2 (cos θ). Here, Γ1,1 and Γ1,2 are given

as

Γ1,1 = −3

2

5χ3λ

(2λ− 2)χ5 + 3λ+ 2
,

Γ1,2 =
3

2

6 (χ4 + 3χ3 + 11/3χ2 + 3χ+ 1) β χ2λ (12λ− 12)χ7 + (36λ− 36)χ6 + (72λ− 72)χ5 + (90λ− 45)χ4

+ (90λ+ 45)χ3 + (72λ+ 72)χ2 + (36λ+ 36)χ+ 12λ+ 12

 .

(3.52)

Similarly, the expression for the surface velocity of the drop accurate to O (Pes) is

given as

vθ|r=1 = v0,θ|r=1 + Pesv1,θ|r=1 +O
(
Pe2

s

)
, (3.53)
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Figure 3.6. : The surface velocity of a clean drop containing (a) pusher (β = −5), (b)

puller (β = 5) and (c) a neutral swimmer (β = 0) at its center, plotted as a function

of the polar angle for various viscosity ratios. Here, the size ratio χ is taken as 0.5.

All the velocities are non-dimensionalized using Usq = 2B1/3.

where

v0,θ|r=1 =
5χ3B1λ sin (θ)

2χ5λ− 2χ5 + 3λ+ 2

− 6 cos (θ)B2λ sin (θ)χ2 (χ4 + 3χ3 + 11/3χ2 + 3χ+ 1) (4λ− 4)χ7 + (12λ− 12)χ6 + (24λ− 24)χ5 + (30λ− 15)χ4

+ (30λ+ 15)χ3 + (24λ+ 24)χ2 + (12λ+ 12)χ+ 4λ+ 4

 ,

v1,θ|r=1 =
5Ma χ3λB1 (χ5 − 1) sin (θ)

(2χ5λ− 2χ5 + 3λ+ 2)2

− 3

10

 (χ− 1) cos (θ)χ2λ (χ4 + 3χ3 + 11/3χ2 + 3χ+ 1) sin (θ)

×Ma B2

(
χ6 + 4χ5 + 10χ4 + 55χ3

4
+ 10χ2 + 4χ+ 1

) 
 (λ− 1)χ7 + (3λ− 3)χ6 + (6λ− 6)χ5 +

(
15/2λ− 15

4

)
χ4

+
(
15/2λ+ 15

4

)
χ3 + (6λ+ 6)χ2 + (3λ+ 3)χ+ λ+ 1

 .

(3.54)

For a clean interface, the swimmer velocity, the drop velocity and the drop surface

velocity decrease as the viscosity ratio λ decreases (see figures 3.3a, 3.3b and 3.6). A

similar decrease in the velocity of a swimming microorganism, modeled as a Stokes

dipole, near a plane clean interface was already reported [8]; the reason is the decrease
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in the strength of the image flow field with a decrease in λ. Now, for a swimmer inside

a clean drop, we attribute the decrease in the swimmer velocity, drop velocity and

the drop surface velocity to a corresponding decrease in the strength of the image

flow field with a decrease in λ

We plot in figure 3.7, variation of the surface velocity of the drop and the surfactant

concentration with the polar angle (θ) for various values of Marangoni number, Ma

and β. We note that vθ should be zero at the front and at the back of the drop

due to the axisymmetric condition. Analyzing the results for a neutral swimmer

(β = 0), we see that the surface velocity at O (1) is always positive which leads to a

monotonically increasing surfactant concentration as shown in figure 3.7d. This give

rise to a maximum (minimum) interfacial tension at the front (back) of the drop.

This inhomogeneous interfacial tension generates a tensile stress imbalance which

pulls the drop surface elements from the back to the front, thereby reducing the drop

surface velocity. The fluid in the vicinity of the drop also gets pulled from the back

to the front of the drop and since this direction of pull is opposite to the free-stream

velocity, the drop velocity reduces due to the surfactant redistribution. Similarly, for

a pusher inside a drop, since the drop surface velocity (at O (1)) is positive near the

front and negative near the back, it brings the surfactant from both the front and

back to the center of the drop as shown in figure 3.7d. This gives rise to a minimum

(maximum) interfacial tension at the center (the front and the back) of the drop.

Again, such inhomogeneous interfacial tension pulls the drop surface elements from

the center towards the front (the back) in the upper (lower) half of the drop thereby

reducing the drop surface velocity. This Marangoni induced drop surface flow pulls

the fluid nearby in the same direction. Since this induced flow near the upper (lower)

half of the drop is opposite to (along) the free-stream flow and the flow near the

upper half is dominant due to γ|top− γ|center > γ|bottom− γ|center, we expect the drop

velocity to be reduced due to the surfactant redistribution. One can use a similar

reasoning to understand the Marangoni induced decrease in the drop velocity and

the drop surface velocity for a puller swimmer at the center of a drop. In conclusion,
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Figure 3.7. : The variation of the surface velocity of the drop with the polar angle

for (a) a pusher (β = −5), (b) a puller (β = 5) and (c) a neutral swimmer (β = 0) at

the center of a drop. Solid lines indicate the results obtained for a clean drop while

the dashed lines denote the results of a surfactant laden drop with Ma = 10 and

Pes = 0.1. (d) Variation of the surfactant concentration with the polar angle. Here

the solid, dashed and dash-dotted lines denote the results obtained for a pusher, a

puller and a neutral swimmer inside the drop, respectively. The size ratio, χ, and

the viscosity ratio, λ, are taken as 0.5 and 1, respectively. All the velocities are

non-dimensionalized using Usq = 2B1/3.
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for any two-mode swimmer at the center of the drop, the surfactant redistribution

on the drop surface reduces the drop velocity and the drop surface velocity. We

recall that the drop surface velocity also decreases due to a decrease in λ for a clean

drop containing a swimmer at its center. So, for a swimmer at the center of the

drop, one can understand the influence of surfactant redistribution on the swimmer

or the drop velocity by assuming that the surfactant advection solely decreases the

apparent viscosity ratio (apparent because the actual viscosity ratio is not affected

by the surfactant redistribution). Since the swimmer and the drop velocities reduce

due to a decrease in λ for a clean drop containing a swimmer at its center, we expect

a similar decrease in the swimmer and the drop velocities due to the advection of the

surfactant on the drop surface.

Co-swimming

As mentioned earlier, a two-mode swimmer located at the center of the drop always

has a velocity larger than that of the drop, thereby making the concentric configura-

tion unsteady. Due to the recent advancement in the artificial micro-swimmers, one

can make a swimmer such that it transports the drop by lying at the center of the

drop for all times. Since the swimmer and drop velocities accurate to O (Pes) depend

only on A1 and B1 modes, we can choose A1 mode such that US = UD. Using the

equations (3.43)-(3.46), we derive the dimensionless A1 mode as

αco =
A1

B1

=

 −12 (χ− 1)
(
(λ− 1)χ4 + (λ− 1)χ3 +

(
λ+ 2

3

)
χ2 +

(
λ+ 2

3

)
χ+ λ+ 2

3

)
×
(
(λ− 1)χ5 + 3

2
λ+ 1

)
− 5MaPesχ

3λ (2χ5 − 5χ2 + 3)


 (2χ5λ− 2χ5 + 3λ+ 2) (12χ5λ− 12χ5 + 10χ3 + 3λ+ 2)

+5MaPes χ
3λ (2χ5 − 5χ2 + 3)


(3.55)

We plot the variation of the co-swimming speed, USD, with the viscosity ratio, size

ratio and Ma in figure 3.8. We note that the results of this section are valid for any

general squirmer inside a drop except that A1 is chosen according to equation (3.55).
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Figure 3.8. : The variation of the co-swimming speed, USD, with the size ratio for

various values of the viscosity ratio and the Marangoni number. The lines indicate

the results obtained for a clean drop while the symbols denote the results obtained

for a surfactant laden drop with Ma = 10 and Pes = 0.1. Here Usq = 2B1/3 is used

to non-dimensionalize the co-swimming speed.
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Analysis of the two-mode squirmer at the center of the drop revealed that the swimmer

and drop velocities approach unity when the size of the swimmer approaches the size

of the drop, i.e., χ → 1. Due to this reason, as χ → 1, αco should approach zero

while the co-swimming speed should approach unity for all values of viscosity ratio

and Ma as shown in figure 3.8. Furthermore, for large values of the drop viscosities

(for instance, for λ = 10), the co-swimming microswimmer and drop have speeds

larger than the speed of the swimmer in an unbounded fluid. Similar to the results of

two-mode swimmer inside a drop, we see that the advection of surfactant also reduces

the co-swimming speed as shown in figure 3.8.

3.4.2 Eccentric configurations

In this section, we study the variation of the swimmer and drop velocities with

the eccentricity. Using this analysis, we answer the following questions: Does a two-

mode squirmer inside a clean drop achieve a configuration where it will swim with

the drop (US = UD)? If such a configuration exists and it is stable, what is the effect

of the advection of the surfactant on this configuration? How does the surfactant

redistribution affect the swimmer and drop velocities for eccentric configurations?

Prior to the analysis, we validate the velocities of the swimmer and drop for small

eccentricities (obtained using bipolar coordinate method) with the velocities for a

concentric configuration (obtained using Lamb’s general solution) and these results

are plotted in figures 14 and 15 in appendix 3.11.

In the top row of figure 3.9, we plot the swimmer and drop velocities at O (1) (this

corresponds to the swimmer inside a clean drop) as a function of the eccentricity.

Since the dependence of these velocities on the eccentricity is qualitatively the same

for various values of the size ratio (χ) and the viscosity ratio (λ), we report these

plots for a single representative value of χ and λ, namely χ = 0.5 and λ = 1. In the

bottom row of figure 3.9, we plot the time evolution of the position of the swimmer

for various initial positions of the swimmer inside a drop. Here the first, second and
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Figure 3.9. : For a two-mode swimmer inside a clean drop, velocity of the swimmer

(U0,S) (blue lines) and the drop (U0,D) (red lines) are plotted as a function of the

eccentricity (e) in (a), (b) and (c). Time evolution of the center of the swimmer

when released from different positions inside a clean drop are plotted in (d), (e) and

(f). Subfigures (a), (d) denote the results of a pusher (β = −5) while (b), (e) denote

those of a neutral swimmer (β = 0) and (c), (f) denote those of a puller (β = 5).

Here e > 0 (e < 0) indicates that the center of the swimmer is above (below) the

center of the drop. The size ratio, χ and the viscosity ratio λ were taken as 0.5 and

1, respectively. All the velocities are non-dimensionalized using Usq = 2B1/3. The

dashed lines indicate the positions at which the swimmer touches the drop.
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third columns present the results for a pusher (β = −5), a neutral swimmer (β = 0)

and a puller (β = 5) inside a drop, respectively. From figure 3.9b, we observe that a

neutral swimmer inside a drop has a velocity larger than that of a drop for all values of

eccentricities. Hence a neutral swimmer inside a clean drop moves towards the front

of the drop as shown by the time evolution of its position in figure 3.9e. From figure

3.9c, we see that a puller inside a clean drop has a fixed point (at which e < 0), in the

sense that the swimmer and drop velocities are the same at this fixed point. But this

fixed point is globally unstable. This is because a swimmer located above (below)

the fixed point has a positive (negative) velocity with respect to the drop because

of which it moves away from the fixed point, towards the top (bottom) surface of

the drop as shown by the time evolution of its position in figure 3.9f. Finally, from

figure 3.9a, we notice that a pusher inside a clean drop has a globally stable fixed

point (at which e > 0). This is because a swimmer located above (below) the fixed

point has a negative (positive) velocity with respect to the drop, due to which it

moves towards the fixed point as shown by the time evolution of its position in figure

3.9d. To generalize these observations, we note that for a two-mode swimmer inside

a clean drop, there exists a value of β = βc, where βc < 0 is a function of viscosity

ratio and the size ratio, such that a swimmer with |β| < −βc behaves as a neutral

swimmer. Such a swimmer does not have any fixed points inside the drop and since it

is faster than the drop, it moves to the top surface of the drop. On the other hand, a

two-mode swimmer with β < βc has a stable fixed point because of which it achieves

an eccentrically stable configuration irrespective of its initial position. Furthermore,

a two-mode swimmer with β > −βc has an unstable fixed point because of which it

moves either to the top or the bottom of the drop depending on its initial position

being above or below the fixed point. We note that Reigh et al. [79] carried out

a similar analysis for a three mode (A1, B1 and B2) co-swimming squirmer inside a

clean drop using the boundary element method.

Earlier, we showed that the redistribution of the surfactant decreases the velocity

of a swimmer and a drop when the swimmer is located at the center of the drop. To
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Figure 3.10. : The signs of the ratios U0,S/U1,S and U0,D/U1,D plotted as a function

of eccentricity e for (a) a pusher (β = −5), (b) a neutral swimmer (β = 0) and (c)

a puller (β = 5) inside a surfactant laden drop. The size ratio, χ and the viscosity

ratio λ were taken as 0.5 and 1, respectively.
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understand the influence of the surfactant redistribution on the swimmer and drop

velocities for an eccentrically located swimmer inside a drop, we plot in figure 3.10

the ratios sgn (U0,S/U1,S) and sgn (U0,D/U1,D) as a function of the eccentricity. Here

sgn( ) denotes the sign function. Since U1,S and U1,D are proportional to Ma and

Ma > 0, these plots are valid for all finite values of Ma at which the perturbation in

Pes is valid. A positive (negative) value of the ratio U0,S/U1,S means that the sur-

factant redistribution increases (decreases) the magnitude of swimmer velocity. One

can similarly deduce the relation between the sign of the ratio U0,D/U1,D and the

effect of the surfactant redistribution on the magnitude of drop velocity. From figure

3.10, we see that the advection of the surfactant reduces the magnitude of swim-

mer and drop velocities for a swimmer located at the center of the drop, consistent

with the concentric calculations. Even though this trend of surfactant redistribution

decreasing the magnitude of swimmer and the drop velocities holds for most of the

values of eccentricities, we see that there exist some values of eccentricities at which

the surfactant redistribution increases the magnitude of swimmer or drop velocity.

Also, at an eccentrically stable position corresponding to a clean drop, the surfactant

redistribution decreases the magnitude of swimmer and drop velocities. We note that

for eccentric configurations, the drop surface velocity decreases due to the surfac-

tant redistribution and also the drop surface velocity, swimmer and drop velocities

decrease with a decrease in λ for a clean drop containing a swimmer. Due to this

reason, the observations in figure 3.10 cannot be explained by studying the influence

of the surfactant advection on the drop surface velocity, as was done for the concentric

configuration. Motivated by the physical reasoning provided to explain the change in

the velocity of a swimmer in a shear-thinning fluid [89, 90] (as compared to that in

a Newtonian fluid), we analyze the drag and thrust problems separately in the next

section to explain the effect of surfactant redistribution on the swimmer and drop

velocities, as shown in figure 3.10.

At an eccentrically stable position corresponding to a clean drop, since the surfac-

tant redistribution reduces the magnitude of swimmer and drop velocities by unequal
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Figure 3.11. : (a) The velocity of a pusher swimmer with respect to drop at O (1) (red

dash-dotted line) and that at O (Pes) (blue solid line) as a function of eccentricity.

The axis for the O (Pes) relative velocity is on the left while that for an O (1) relative

velocity is on the right. Here Ma = 1. The dashed lines are just for reference.

(b) Time evolution of the center of a pusher swimmer when released from different

positions. Here red lines denote the results for clean drop while blue lines denote the

results for a surfactant laden drop with Ma = 20 and Pes = 0.2, respectively. The

inset shows the shift in the location of an eccentrically stable position induced by the

advection of the surfactant. The size ratio, χ and the viscosity ratio λ are taken as

0.5 and 1, respectively. All the velocities are non-dimensionalized using Usq = 2B1/3.

The dashed lines indicate the positions at which the swimmer touches the drop.
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amounts, this stable position shifts due to the surfactant advection. To understand

this shift, we plot in figure 3.11a, the relative velocity of a pusher swimmer at O (1)

(U0,S − U0,D) and that at O (Pes) (U1,S − U1,D) for various eccentricities. The axis for

the O (Pes) relative velocity is on the left while that for an O (1) relative velocity is on

the right. As seen from this figure, at an eccentrically stable position corresponding

to a clean drop, the O (1) relative velocity is zero while the O (Pes) relative velocity

is positive. So, the eccentrically stable position shifts towards the top surface of the

drop due to the surfactant redistribution, as shown in figure 3.11b. This figure shows

the time evolution of the center of a pusher swimmer when released from different

positions inside a drop. As seen from the inset of this figure, the time taken by the

swimmer to reach an eccentrically stable position depends on its initial position and

the presence of the surfactant on the drop. This time scales as t ∼ d0/ |US − UD|,

where d0 is the distance between the initial swimmers position and its eccentrically

stable position. Hence, the swimmer takes a long (short) time to reach the stable

position if it is initially far away from (close enough to) this position; compare solid

and dash-dotted lines of same color in the inset of figure 3.11b. Also, for most of

the swimmer positions inside the drop, the surfactant redistribution decreases the

magnitude of relative velocity of the swimmer |US − UD| (see figure 3.11a). Hence,

for a given initial position, a swimmer inside a surfactant-laden-drop takes a longer

time than that inside a clean drop to reach its eccentrically stable position; compare

the blue and red colored lines which are of the same style.

3.4.3 Drag and Thrust

In this section, we analyze the thrust and drag forces on the swimmer and the

drop separately to explain the observations in figure 3.10. As the influence of the

surfactant redistribution on the swimmer and the drop velocities for a pusher inside

a drop at some eccentricity e = e1 > 0 is the same as that for a puller inside a drop
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at the eccentricity e = −e1, we would only analyze the results for a neutral swimmer

and a puller i.e., figures 3.10b and 3.10c.

We define the thrust and drag problems for the swimmer as follows: the thrust

problem consists of a fixed swimmer, with a slip velocity on its surface, inside a

force-free surfactant-laden-drop whereas the drag problem consists of a translating

rigid sphere with a velocity U0,S inside a force-free surfactant-laden-drop. We call

the hydrodynamic force experienced by the swimmer in the thrust (drag) problem as

the thrust force (drag force) and denote this force at O (Pejs) by Fj,TS iz (Fj,DS iz).

Similarly, we define the thrust and the drag problems for the drop as follows: the

thrust problem consists of a stationary surfactant covered drop encapsulating a swim-

mer whereas the drag problem consists of surfactant-laden-drop engulfing a force-free

rigid sphere, the drop itself is translating with a velocity U0,D. Again, we denote the

thrust force and the drag force acting on the drop at O (Pejs) by Fj,TD iz and Fj,DD iz,

respectively. If the drag problem for the swimmer were to consist of a rigid sphere

translating with a velocity U0,S + Pes U1,S inside a force-free surfactant-laden-drop,

then the sum of the thrust and drag problems for the swimmer give the original

problem of swimmer inside a force-free surfactant-laden-drop accurate to O (Pes).

One can think along the similar lines regarding the thrust and drag problems for the

drop. Since we would like to estimate the sign of U1,S (U1,D), we did not include it

in the drag problem of the swimmer (drop). As the sum of O (1) thrust and drag

problems for either the swimmer or the drop give the O (1) original problem (swim-

mer inside a clean drop where both swimmer and drop are force-free), we expect

F0,TS + F0,DS = 0 and F0,TD + F0,DD = 0. So, only one of the O (1) thrust and drag

forces is an independent quantity.

To understand how the surfactant redistribution affects the swimmer velocity for

eccentric configuration, we plot the O (1) thrust, O (Pes) thrust and (negative of the)

O (Pes) drag on the swimmer as a function of eccentricity in figure 3.12. Figure 3.12a

is for a neutral swimmer while figure 3.12b is for a puller inside a surfactant-laden-

drop. The axis for the O (Pes) (O (1)) forces is on the left (right).
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Figure 3.12. : The variation of the thrust and drag forces acting on the swimmer

at various order of Pes with the eccentricity for (a) neutral swimmer (β = 0) and

(b) puller (β = 5) inside a surfactant covered drop. The blue solid line, blue dotted

line and red dash-dotted line denote the O (Pes) thrust, O (Pes) (negative) drag and

O (1) thrust forces, respectively. The axis for the O (Pes) forces is on the left while

that for an O (1) force is on the right.
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On analyzing the thrust and drag for a neutral swimmer inside a drop, we see

from figure 3.12a that the O (1) thrust, O (Pes) thrust and (negative of the) O (Pes)

drag are all positive i.e., F0,TS > 0, F1,TS > 0, and −F1,DS > 0. Noting that the

(negative of the) O (1) drag is positive i.e., −F0,DS = F0,TS > 0, we conclude that the

surfactant redistribution increases the magnitude of both the thrust and the drag for

a neutral swimmer inside a drop. But since the increase in the magnitude of the drag

is more than the increase in the thrust i.e., −F1,DS > F1,TS for most of the eccentric-

ities, the magnitude of the swimmer velocity should decrease due to the surfactant

redistribution for most of the eccentricities i.e., sgn (U0,S/U1,S) = −1. However, at

e = ±0.48, as the increase in the thrust is more than the increase in the magnitude

of the drag i.e., F1,TS > −F1,DS as shown in the inset of figure 3.12a, the magni-

tude of the swimmer velocity should increase due to the surfactant redistribution i.e.,

sgn (U0,S/U1,S) = +1. This behavior predicted for the sgn (U0,S/U1,S) from the drag

and thrust analysis matches exactly with that reported in figure 3.10b.

On analyzing the thrust and drag for a puller inside a drop, we see from figure

3.12b that for eccentricities in regions II and III, the O (1) thrust force, the O (Pes)

thrust and (negative of the) O (Pes) drag are positive i.e., F0,TS > 0, F1,TS > 0, and

−F1,DS > 0. Since −F0,DS = F0,TS > 0, (negative of the) O (1) drag is positive for

the aforementioned eccentricities. So, for these values of eccentricities, the surfactant

redistribution increases the magnitude of both the thrust and drag. For eccentricities

in region III (II), since −F1,DS > F1,TS (−F1,DS < F1,TS), the increase in the mag-

nitude of drag is more (less) than the increase in the thrust, hence the magnitude

of the swimmer velocity should decrease (increase) due to the surfactant redistribu-

tion i.e., sgn (U0,S/U1,S) = −1 (sgn (U0,S/U1,S) = +1). For eccentricities in region I,

the O (1) thrust is negative, so (negative of the) O (1) drag is negative whereas the

O (Pes) thrust is positive and (negative of the) O (Pes) drag is negative i.e., F0,TS < 0,

−F0,DS < 0, F1,TS > 0, and −F1,DS < 0. Hence, for these eccentricities, the surfactant

redistribution increases the magnitude of drag but decreases the magnitude of thrust.

This means that for eccentricities in region I, the magnitude of the swimmer velocity
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should decrease due to the surfactant redistribution i.e., sgn (U0,S/U1,S) = −1. Again,

the behavior predicted for the variation of sgn (U0,S/U1,S) with the eccentricity from

the drag and thrust analysis matches exactly with that reported in figure 3.10c.

A similar analysis can be carried out to understand the influence of surfactant

redistribution on the drop velocity (instead of swimmer velocity) for eccentric con-

figurations. For this purpose, we plot in figure 3.13, the O (1) thrust, the O (Pes)

thrust, and (negative of the) O (Pes) drag on the drop for various eccentricities.

Again, figure 3.13a is for a neutral swimmer and figure 3.13b is for a puller inside a

surfactant-laden-drop.

We analyze the thrust and drag forces acting on a drop containing a neutral

swimmer, as plotted in figure 3.13a. For |e| < 0.466, we see from this figure that the

O (1) thrust is positive, so (negative of the) O (1) drag is also positive i.e., −F0,DD =

F0,TD > 0. Also, for these eccentricities, the O (Pes) thrust is negative and (negative

of the) O (Pes) drag is positive i.e., F1,TD < 0, −F1,DD > 0. Hence, for |e| < 0.466,

the surfactant redistribution decreases the thrust but increases the magnitude of drag,

so the drop velocity should decrease i.e., sgn (U0,D/U1,D) = −1 (compare with figure

3.10b). For |e| ∈ (0.466, 0.47), there exist some eccentricities (see inset of figure

3.13a) at which the O (1) thrust, (negative of the) O (1) drag, O (Pes) thrust, and

(negative of the) O (Pes) drag are all negative i.e., −F0,DD = F0,TD < 0, F1,TD < 0,

−F1,DD < 0. So, the surfactant redistribution increases the magnitude of both thrust

and drag. But since the increase in the magnitude of thrust is more than the increase

in the magnitude of drag for some |e| ∈ (0.466, 0.47) i.e., |F1,TD| > |F1,DD|, the drop

velocity should increase i.e., sgn (U0,D/U1,D) = +1. This behavior predicted for the

sgn (U0,D/U1,D) from the drag and thrust analysis matches with that reported in figure

3.10b.

We finally analyze the thrust and drag forces acting on a drop containing a puller

swimmer, as plotted in figure 3.13b. For e > −0.1, the O (1) thrust, (negative of

the) O (1) drag, and negative of the O (Pes) drag are positive while O (Pes) thrust

is negative i.e., −F0,DD = F0,TD > 0, −F1,DD > 0, F1,TD < 0. Also, for e < −0.12,
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Figure 3.13. : Variation of the thrust and drag forces acting on the drop at various

order of Pes with the eccentricity for (a) neutral swimmer (β = 0) and (b) puller

(β = 5) inside a surfactant covered drop. The blue solid line, blue dotted line and red

dash-dotted line denote the O (Pes) thrust, O (Pes) (negative) drag and O (1) thrust

forces, respectively. The axis for the O (Pes) forces is on the left while that for an

O (1) force is on the right.
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the O (1) thrust, (negative of the) O (1) drag, and (negative of the) O (Pes) drag are

negative while the O (Pes) thrust is positive i.e., −F0,DD = F0,TD < 0, −F1,DD < 0,

F1,TD > 0. Hence, for e < −0.12 or e > −0.1, the surfactant redistribution decreases

the magnitude of the thrust but increases the magnitude of drag, so the drop velocity

should decrease i.e., sgn (U0,D/U1,D) = −1 (compare with figure 3.10c). For e ∈

(−0.12,−0.1), there exist some eccentricities at which the O (1) thrust, (negative of

the) O (1) drag, O (Pes) thrust, and (negative of the) O (Pes) drag are all negative.

So, the surfactant redistribution increases the magnitude of both thrust and drag.

Also, for some e ∈ (−0.12,−0.1), as the increase in the magnitude of thrust is more

than the increase in the magnitude of drag i.e., |F1,TD| > |F1,DD|, the drop velocity

increases due to surfactant redistribution i.e., sgn (U0,D/U1,D) = +1. Again, the

behavior predicted for the variation of sgn (U0,D/U1,D) with the eccentricity from the

drag and thrust analysis matches with that reported in figure 3.10c.

3.4.4 Can a time-reversible swimmer inside a surfactant-laden-drop have

a net motion?

We see that the only non-linearity in the governing equations and the boundary

conditions occurs in the surfactant transport equation (3.9). But this non-linearity

does not appear in the perturbed surfactant transport equations until the equation

at O (Pe2
s), equation (3.21). Hence, the governing equations and the boundary condi-

tions at O (1) and O (Pes) are linear in the squirming modes, but not those at O (Pe2
s).

Due to this reason, the swimmer and drop velocities at O (1) and O (Pes) should be

linear in the swimming modes B1, B2... but these velocities at O (Pe2
s) should be

non-linear. So, if these swimming modes are time-periodic with zero time-average

(such a swimmer is called time-reversible swimmer), the leading order contribution

to the time-averaged swimmer and drop velocities should come from the O (Pe2
s)

problem. Therefore, it seems that the swimmer and drop might propel with non-zero

time-averaged velocities even if the swimmer is time-reversible due to the advection
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of the surfactant on the surface of the drop. This is a remarkable result since it

provides a method to escape from the constraints of the scallop theorem which can

have potential applications in the motion of synthetic swimmers near interfaces as

the interfaces are inevitably covered with some impurities.

We illustrate the physical reasoning provided earlier by deriving the time-averaged

swimmer and drop velocities of a two-mode time-reversible swimmer, initially located

at the center of the surfactant-laden-drop. Since US > UD for the concentric con-

figuration, the swimmer never stays at the center of the drop. However, if the time

period of the swimming modes is much smaller than the time taken by the swimmer

or the drop to traverse a drop radius i.e., T = 2π/ω � a/Usq (T and ω are the time

period and the angular frequency of the swimming modes), then eccentricity changes

negligibly during one time period. In this case, we can calculate the time-averaged

swimmer and drop velocities by fixing the eccentricity at its initial value. Hence, the

time-averaged swimmer and drop velocities

〈US〉 =
1

T

T∫
0

US (e (t) ; t) dt; 〈UD〉 =
1

T

T∫
0

UD (e (t) ; t) dt

can be simplified as

〈US〉 =
1

T

T∫
0

US (e (0) ; t) dt; 〈UD〉 =
1

T

T∫
0

UD (e (0) ; t) dt

Since the swimmer is at the center of the drop at t = 0 i.e., e (0) = 0, we have

〈US〉 =
1

T

T∫
0

US (0; t) dt; 〈UD〉 =
1

T

T∫
0

UD (0; t) dt

Here, we denoted the swimmer and drop velocities by US (e (t) ; t) and UD (e (t) ; t),

respectively. This is because as the time progresses, the eccentricity changes which in

turn modifies the swimmer and drop velocities. Also, for a fixed eccentricity US and
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UD can change with time since the swimming modes are time-dependent. Denoting

1
T

T∫
0

U (0; t) dt by 〈U |e=0〉, we have

〈US〉 = 〈US|e=0〉 =
〈
U0,S|e=0

〉
+ Pes

〈
U1,S|e=0

〉
+ Pe2

s

〈
U2,S|e=0

〉
+O

(
Pe3

s

)
〈UD〉 = 〈UD|e=0〉 =

〈
U0,D|e=0

〉
+ Pes

〈
U1,D|e=0

〉
+ Pe2

s

〈
U2,D|e=0

〉
+O

(
Pe3

s

) (3.56)

Here ( )|e=0 denotes the quantity when the swimmer is at the center of the drop and

hence the expressions for U0,S|e=0, U0,D|e=0, U1,S|e=0, U1,D|e=0, U2,S|e=0, and U2,D|e=0

are given by equations (3.43)-(3.46), (3.72)-(3.73). From the equations (3.43)-(3.46),

we see that U0,S|e=0, U0,D|e=0, U1,S|e=0, and U1,D|e=0 are linear in the swimming

modes. Also since the swimming modes are time periodic with zero time-average i.e.,

〈An〉 = 〈Bn〉 = 0, we deduce that〈
U0,S|e=0

〉
=
〈
U0,D|e=0

〉
=
〈
U1,S|e=0

〉
=
〈
U1,D|e=0

〉
= 0 (3.57)

Hence the equations for the time-averaged swimmer and drop velocities simplify to

〈US〉 =Pe2
s

〈
U2,S|e=0

〉
+O

(
Pe3

s

)
〈UD〉 =Pe2

s

〈
U2,D|e=0

〉
+O

(
Pe3

s

) (3.58)

Using the equations (3.72)-(3.73) along with the time-reversibility of the swimming

modes, we derive

〈US〉 =Pe2
s J1 〈B1B2〉+O

(
Pe3

s

)
〈UD〉 =Pe2

sK1 〈B1B2〉+O
(
Pe3

s

) (3.59)

where

K1 =
2

5

(χ4 + χ3 + χ2 + χ+ 1)

(χ+ 1)
J1

J1 =
(15χ4 + 45χ3 + 55χ2 + 45χ+ 15)χ5λ2Ma (χ2 − 1)

36((λ− 1)χ5 + 3/2λ+ 1)2

 (λ− 1)χ7 + (3λ− 3)χ6 + (6λ− 6)χ5 +
(

15
2
λ− 15

4

)
χ4

+
(

15
2
λ+ 15

4

)
χ3 + (6λ+ 6)χ2 + (3λ+ 3)χ+ λ+ 1


As 〈B1B2〉 is non-zero for non-orthogonal time periodic functions with zero time-

average B1 (t) and B2 (t), we see from equations (3.59) that the time-averaged swim-

mer and drop velocities of a time-reversible swimmer inside a drop are non-zero at
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O (Pe2
s). Therefore, the surfactant advection on the drop surface enables a drop con-

taining a time-reversible swimmer to evade the scallop theorem, thereby leading to a

time-averaged proplusion of the swimmer and the drop.

3.5 Conclusions

We studied the motion of a spherical swimmer inside a surfactant laden drop for

axisymmetric configurations by expanding the variables in terms of surface Péclet

number (Pes), under the assumption of zero Reynolds number. This small surface

Péclet analysis is valid when small drops (of size 1−100µm), covered with small sized

surfactants [91, 92], contain small microswimmers (of size 1 − 10µm) whose speed

in an unbounded fluid is small (≈ 1− 100µm/s). Thermal noise in experiments

may change the orientation of the swimmer from the axisymmetric configuration.

Numerical studies, not in the scope of this manuscript, are needed to investigate the

stability of this configuration.

For a two-mode squirmer inside a drop, the surfactant redistribution can either

increase or decrease the magnitude of swimmer and drop velocities, depending on the

value of eccentricity. This was explained using the drag and thrust decomposition

for the swimmer and the drop separately. Due to the surfactant redistribution, the

magnitude of the drag on the swimmer or the drop increases at all eccentricities, but

the magnitude of thrust increases for some eccentricities while decreasing at other

eccentricities. When the increase in the magnitude of thrust is more than the increase

in the magnitude of drag, the magnitude of swimmer or drop velocity increases due

to the surfactant redistribution. If the increase in the magnitude of thrust is less than

the increase in the magnitude of drag or if the magnitude of thrust decreases due to

the surfactant redistribution, the magnitude of swimmer or drop velocity decrease.

The far-field representation of a clean drop engulfing a pusher swimmer at its

center is a puller; the strength of this far-field is reduced if the drop is covered

with a surfactant. Due to the advection of the surfactant on the drop surface, a
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time-reversible swimmer and the drop, within which the swimmer is engulfed, propel

in a time-averaged sense by escaping from the constraints of the scallop theorem.

Hence, one can use simple time-reversible swimmers [93] instead of sophisticated

helical swimmers such as artificial bacterial flagella [7] (which are not time-reversible)

to transport either the contents of the drop or the drop itself.

Inside a clean drop, a two-mode squirmer with β < βc (β is the ratio of the

squirming modes) achieves an eccentrically stable configuration (where the velocity

of the swimmer is equal to the velocity of the drop), while squirmers with β > βc

move to the top or bottom surface of the drop. Here, βc is negative and depends on

the viscosity ratio and the size ratio. The effect of surfactant redistribution is to shift

the eccentrically stable position, achieved by swimmers with β < βc, towards the top

surface of the drop, albeit this shift is very small.

3.6 Appendix A: Linear equations obtained while satisfying equations

(3.12)-(3.18) for the concentric configuration

Enforcing the boundary condition on the surface of the swimmer, equation (3.12),

we obtain

p̄
(1)
j,n χ

n+1 + φ̄
(1)
j,n χ

n−1 + p̄
(1)
j,−n−1 χ

−n+ φ̄
(1)
j,−n−1 χ

−n−2 =
2n+ 1

2

∫ 1

−1

v
(1)
j,r (r = χ)Pn (µ) dµ,

(3.60)

−
(n+ 3)

2
p̄

(1)
j,n χ

n+1 − (n+ 1)

2
φ̄

(1)
j,n χ

n−1

+
(n− 2)

2
p̄

(1)
j,−n−1 χ

−n +
n

2
φ̄

(1)
j,−n−1 χ

−n−2

 =
2n+ 1

4

∫ 1

−1

v
(1)
j,θ (r = χ)P 1

n (µ) dµ

=
n (n+ 1) (2n+ 1)

8

∫ 1

−1

v
(1)
j,θ (r = χ)Vn (µ) dµ.

(3.61)

For the swimmer and drop to be force-free, we derive respectively,

p
(1)
j,−2 = 0, (3.62)
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p
(2)
j,−2 = 0. (3.63)

For the flow field far away from the drop to approach the negative of the velocity of

the drop, we obtain

φ̄
(2)
j,n = 0, for n ≥ 2,

p̄
(2)
j,n = 0, for n ≥ −1,

φ̄
(2)
j,1 = −Uj,D.

(3.64)

In order to satisfy the boundary conditions on the surface of the drop, equations

(3.16)-(3.18), we obtain respectively

p̄
(k)
j,n + φ̄

(k)
j,n + p̄

(k)
j,−n−1 + φ̄

(k)
j,−n−1 = 0, where k = 1, 2, (3.65)

− (n+ 3)

2

(
p̄

(1)
j,n − p̄

(2)
j,n

)
− (n+ 1)

2

(
φ̄

(1)
j,n − φ̄

(2)
j,n

)
+

(n− 2)

2

(
p̄

(1)
j,−n−1 − p̄

(2)
j,−n−1

)
+
n

2

(
φ̄

(1)
j,−n−1 − φ̄

(2)
j,−n−1

)
= 0,

(3.66)

(
n2 − 1

) (
−φ̄(2)

j,n + λφ̄
(1)
j,n

)
+ n (n+ 2)

(
−p̄(2)

j,n + λp̄
(1)
j,n

)
+ n (n+ 2)

(
−φ̄(2)

j,−n−1 + λφ̄
(1)
j,−n−1

)
+
(
n2 − 1

) (
−p̄(2)

j,−n−1 + λp̄
(1)
j,−n−1

)
= −Ma× n (n+ 1)

2
Γj,n.

(3.67)

These equations for n = 0 and 1 are first solved to determine the swimmer and drop

velocities along with some unknown constants in the flow fields. These equations for

n ≥ 2 are then solved to determine the remaining constants and hence the flow fields

in both phases.

3.7 Appendix B: Flow field due to a ‘squirmer’ at the center of a drop

at various orders of Pes

In this section, we provide the expressions for the constants encountered in the

velocity components along with the swimmer and drop velocities at O (1), O (Pes)
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and O (Pe2
s). We note that the flow field, swimmer and the drop velocities at O (1)

and O (Pes) are derived for a general n mode squirmer. At O (Pe2
s), we derived the

swimmer and drop velocities for a squirmer having few modes, namely A1, A2, A3,

B1, B2 and B3.

3.7.1 Flow field at O (1)

For n = 0, 1, we have

p̄
(2)
0,−1 = p̄

(2)
0,−2 = p̄

(2)
0,1 = p̄

(1)
0,−1 = p̄

(1)
0,−2 = φ̄

(2)
0,−1 = φ̄

(1)
0,−1 = 0,

φ̄
(2)
0,1 = −10

χ3λ (A1 +B1)

(6λ− 6)χ5 + 9λ+ 6
,

p̄
(1)
0,1 = −2

χ3 (A1 +B1) (λ− 1)

(2λ− 2)χ5 + 3λ+ 2
,

φ̄
(1)
0,1 = −10

χ3 (A1 +B1)

(6λ− 6)χ5 + 9λ+ 6
,

φ̄
(2)
0,−2 = 10

χ3λ (A1 +B1)

(6λ− 6)χ5 + 9λ+ 6
,

φ̄
(1)
0,−2 = 6

(A1 +B1) (λ+ 2/3)χ3

6χ5λ− 6χ5 + 9λ+ 6
.

For n ≥ 2, we have

p̄
(2)
0,−n−1 = 2

 − (n+ 3/2) (Ann+ An + 2Bn)χ3n−1 + (n− 1/2) (Ann+ 3An + 2Bn)χ3n+1

+ (n− 1/2) (Ann− 2Bn)χn−2 − (Ann− 2An − 2Bn)χn (n+ 3/2)

χ3λ

 4 (n+ 1/2) (n− λ+ 1/2)χ4+2n +
(
−8n2 − 8n+ 6

)
χ2+2n

+ (4λ− 4)χ4n+3 + 4 (n+ 1/2) (n+ λ+ 1/2)χ2n − 4χ (λ+ 1)


,

p̄
(1)
0,−n−1 = −2

χ3

 − (Ann+ 3An + 2Bn) (n− λ+ 1/2)χ3n+1

+ (n+ 3/2) (Ann+ An + 2Bn)χ3n−1 + χn−2 (λ+ 1) (Ann− 2Bn)


 4 (n+ 1/2) (n− λ+ 1/2)χ4+2n +

(
−8n2 − 8n+ 6

)
χ2+2n

+ (4λ− 4)χ4n+3 + 4 (n+ 1/2) (n+ λ+ 1/2)χ2n − 4χ (λ+ 1)


,
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p̄
(1)
0,n = −2

χ3

 (λ− 1) (Ann+ An + 2Bn)χ3n−1 + (n− 1/2) (Ann− 2Bn)χn−2

− (Ann− 2An − 2Bn)χn (n− λ+ 1/2)


 4 (n+ 1/2) (n− λ+ 1/2)χ4+2n +

(
−8n2 − 8n+ 6

)
χ2+2n

+ (4λ− 4)χ4n+3 + 4 (n+ 1/2) (n+ λ+ 1/2)χ2n − 4χ (λ+ 1)


,

φ̄
(1)
0,n = 2

χ3

 (λ− 1) (Ann+ 3An + 2Bn)χ3n+1 + (n+ λ+ 1/2) (Ann− 2Bn)χn−2

− (Ann− 2An − 2Bn)χn (n+ 3/2)


 4 (n+ 1/2) (n− λ+ 1/2)χ4+2n +

(
−8n2 − 8n+ 6

)
χ2+2n

+ (4λ− 4)χ4n+3 + 4 (n+ 1/2) (n+ λ+ 1/2)χ2n − 4χ (λ+ 1)


,

φ̄
(2)
0,−n−1 = −

2χ3λ

 − (n+ 3
2

)
((n+ 1)An + 2Bn)χ3n−1 +

(
n− 1

2

)
((n+ 3)An + 2Bn)χ3n+1

+
(
n− 1

2

)
(Ann− 2Bn)χn−2 − ((n− 2)An − 2Bn)χn

(
n+ 3

2

)


 4
(
n+ 1

2

) (
n− λ+ 1

2

)
χ4+2n + (−8n2 − 8n+ 6)χ2+2n

+ (4λ− 4)χ4n+3 + 4
(
n+ 1

2

) (
n+ λ+ 1

2

)
χ2n − 4χ (λ+ 1)

 ,

φ̄
(1)
0,−n−1 = 2

χ3

 (n+ λ+ 1/2) (Ann+ An + 2Bn)χ3n−1 − (n− 1/2) (Ann+ 3An + 2Bn)χ3n+1

+ χn (λ+ 1) (Ann− 2An − 2Bn)


 4 (n+ 1/2) (n− λ+ 1/2)χ4+2n +

(
−8n2 − 8n+ 6

)
χ2+2n + (4λ− 4)χ4n+3

+ 4 (n+ 1/2) (n+ λ+ 1/2)χ2n − 4χ (λ+ 1)


.

3.7.2 Swimmer and drop velocities at O (1)

U0,S =
−12 (λ− 1) (A1 +B1/2)χ5 + 10χ3 (A1 +B1) (λ− 1)− 3 (A1 − 2B1) (λ+ 2/3)

(6λ− 6)χ5 + 9λ+ 6
,

(3.68)

U0,D = 10
χ3λ (A1 +B1)

(6λ− 6)χ5 + 9λ+ 6
. (3.69)
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3.7.3 Surfactant concentration at O (Pes)

Noting that the flow field on the surface of the drop at O (1) can be written as

v0,θ|Drop =
∞∑
n=1

u0,n Vn (cos θ), the surfactant concentration atO (Pes), Γ1 =
∞∑
n=1

Γ1,n Pn (cos θ)

is evaluated using

Γ1,n = − 2u0,n

n (n+ 1)
.

3.7.4 Flow field at O (Pes)

For n = 0, 1, we have

p̄
(2)
1,−1 = p̄

(2)
1,−2 = p̄

(2)
1,1 = p̄

(1)
1,−1 = p̄

(1)
1,−2 = φ̄

(2)
1,−1 = φ̄

(1)
1,−1 = 0,

φ̄
(2)
1,1 = −10

3

Maλ (A1 +B1)χ3 (χ5 − 1)

4χ10λ2 − 8χ10λ+ 4χ10 + 12χ5λ2 − 4χ5λ− 8χ5 + 9λ2 + 12λ+ 4
,

p̄
(1)
1,1 =

5Maλ (A1 +B1)χ3

(2χ5λ− 2χ5 + 3λ+ 2)2 ,

φ̄
(1)
1,1 = −5

6

(A1 +B1)Ma (χ5 + 3/2)λχ3

((λ− 1)χ5 + 3/2λ+ 1)2 ,

φ̄
(2)
1,−2 =

5

6

Maλ (A1 +B1)χ3 (χ5 − 1)

((λ− 1)χ5 + 3/2λ+ 1)2 ,

φ̄
(1)
1,−2 =

5

6

Maλ (A1 +B1)χ8

((λ− 1)χ5 + 3/2λ+ 1)2 .

For n ≥ 2, we have

p̄
(2)
1,−n−1 =

Ma

2

 − 1/2(n+ 1/2)2χ2n−1 +
(
n2 + n− 3/4

)
χ2n+1

− 1/2(n+ 1/2)2χ2n+3 + 1/2χ4n+2 + 1/2

 n (n+ 1) Γ1,nχ

(n+ 1/2)

 (n+ 1/2) (n− λ+ 1/2)χ4+2n +
(
−2n2 − 2n+ 3/2

)
χ2+2n

+ (λ− 1)χ4n+3 + (n+ 1/2) (n+ λ+ 1/2)χ2n − χ (λ+ 1)


,

p̄
(1)
1,−n−1 =

Ma

8

n (n+ 1) Γ1,nχ
3 (2χ2n−3n− 2χ2n−1n+ 2χ4n + χ2n−3 − 3χ2n−1)

(n+ 1/2)

 (n+ 1/2) (n− λ+ 1/2)χ4+2n +
(
−2n2 − 2n+ 3/2

)
χ2+2n

+ (λ− 1)χ4n+3 + (n+ 1/2) (n+ λ+ 1/2)χ2n − χ (λ+ 1)


,
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p̄
(1)
1,n =

Ma

8

n (n+ 1) Γ1,nχ (2χ2n+1n− 2χ2n−1n− χ2n+1 − χ2n−1 + 2)

(n+ 1/2)

 (n+ 1/2) (n− λ+ 1/2)χ4+2n +
(
−2n2 − 2n+ 3/2

)
χ2+2n

+ (λ− 1)χ4n+3 + (n+ 1/2) (n+ λ+ 1/2)χ2n − χ (λ+ 1)


,

φ̄
(1)
1,n = −Ma

8

n (n+ 1) Γ1,nχ (2χ2n+3n− 2χ2n+1n+ χ2n+3 + 2− 3χ2n+1)

(n+ 1/2)

 (n+ 1/2) (n− λ+ 1/2)χ4+2n +
(
−2n2 − 2n+ 3/2

)
χ2+2n

+ (λ− 1)χ4n+3 + (n+ 1/2) (n+ λ+ 1/2)χ2n − χ (λ+ 1)


,

φ̄
(2)
1,−n−1 = −Ma

2

 − 1/2(n+ 1/2)2χ2n−1 +
(
n2 + n− 3/4

)
χ2n+1

− 1/2(n+ 1/2)2χ2n+3 + 1/2χ4n+2 + 1/2

 n (n+ 1) Γ1,nχ

(n+ 1/2)

 (n+ 1/2) (n− λ+ 1/2)χ4+2n +
(
−2n2 − 2n+ 3/2

)
χ2+2n

+ (λ− 1)χ4n+3 + (n+ 1/2) (n+ λ+ 1/2)χ2n − χ (λ+ 1)


,

φ̄
(1)
1,−n−1 = −Ma

4

((n− 1/2)χ2n−1 + (−n− 1/2)χ2n+1 + χ4n)n (n+ 1) Γ1,nχ
3

(n+ 1/2)

 (n+ 1/2) (n− λ+ 1/2)χ4+2n +
(
−2n2 − 2n+ 3/2

)
χ2+2n

+ (λ− 1)χ4n+3 + (n+ 1/2) (n+ λ+ 1/2)χ2n − χ (λ+ 1)


.

3.7.5 Swimmer and drop velocities at O (Pes)

U1,S = −25Maχ3λ (1− χ) (χ+ 1) (A1 +B1)

12((λ− 1)χ5 + 3/2λ+ 1)2 , (3.70)

U1,D = −5

6

Maλ (A1 +B1)χ3 (1− χ5)

((λ− 1)χ5 + 3/2λ+ 1)2 . (3.71)

3.7.6 Surfactant concentration at O (Pe2
s)

Since the O (Pe2
s) problem is nonlinear in the squirming modes, for simplicity, we

only consider few modes, namely A1, A2, A3, B1, B2 and B3. Noting that the flow field

on the surface of the drop at O (Pes) can be written as v1,θ|Drop =
∞∑
n=1

u1,n Vn (cos θ),

the component of surfactant concentration at O (Pe2
s) useful for evaluating the swim-

mer and drop velocities at O (Pe2
s) is given as

Γ2,1 =
2

15
u0,1u0,2 +

1

70
u0,2u0,3 − u1,1.
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3.7.7 Swimmer and drop velocities at O (Pe2
s)

U2,S =
5 (1− χ2)MaΓ2,1

(6λ− 6)χ5 + 9λ+ 6
, (3.72)

U2,D =
2 (1− χ5)MaΓ2,1

(6λ− 6)χ5 + 9λ+ 6
. (3.73)

3.8 Appendix C: Integral theorem

In this appendix, we derive an integral theorem for the locomotion of a swimmer

inside a surfactant covered drop. A version of this theorem was derived earlier in

the context of the motion of compound drops [94]. Using this theorem, one can find

the swimmer and drop velocities at O (Pejs) using only the knowledge of surfactant

concentration at O (Pejs) and the solution of two auxiliary problems. Notably, one

does not need to determine the flow field at O (Pejs) to find the swimmer and drop

velocities at O (Pejs). Also since the auxiliary problems are the same at each order of

Pes, they have to be solved only once and their solution can be used in the integral

theorems at any order of Pes. Even though this theorem is valid for axisymmetric

configurations, we illustrate its use in finding the swimmer and drop velocities for

concentric configuration.

We consider a uniform flow past a stationary clean drop containing a stationary

rigid sphere as the first auxiliary problem. We denote the variables of this problem

with a caret over them. A translating rigid sphere embedded in a stationary clean

drop, the drop itself suspended in a quiescent fluid is considered as the second auxiliary

problem. We denote the variables of this problem with a tilde over them. We note

that the geometric configuration of the auxiliary problems is the same as that of the

original problem i.e., the position of a rigid sphere inside a clean drop, in the auxiliary

problem, is the same as that of the swimmer inside a surfactant-laden-drop, in the

original problem. Since the flow field of the auxiliary problem satisfies the Stokes

equations along with the incompressibility condition, we proceed to specify the non-
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dimensionalized boundary conditions. Here, the non-dimensionalization is carried out

in the same fashion as that of the original problem. The boundary conditions on the

drop surface are the same for both auxiliary problems. These conditions for the first

auxiliary problem are given as

On the drop :

v̂(1) · n = v̂(2) · n = 0

v̂(1) ·∆ = v̂(2) ·∆

n ·
(
T̂ (2) − λT̂ (1)

)
·∆ = 0

(3.74)

These conditions for the second auxiliary problem can be derived by replacing the

variables of the first auxiliary problem with those of second auxiliary problem in

equation (3.74). The remaining boundary conditions for the auxiliary problems are

given as

For the first auxiliary problem

On the sphere : v̂(1) = 0

Far− away from the drop : v̂(2) = Û

(3.75)

For the second auxiliary problem

On the sphere : ṽ(1) = Ũ

Far− away from the drop : ṽ(2) → 0

(3.76)

where Û and Ũ represent the uniform stream far-away from the drop and the trans-

lational velocity of the rigid sphere in the first and second auxiliary problems, respec-

tively. We also denote the hydrodynamic force experienced by the rigid sphere and

the drop in the first auxiliary problem (second auxiliary problem) by F̂Sp and F̂D(
F̃Sp and F̃D

)
, respectively.

We start with the reciprocal theorem between two flow fields
(
v̄, T̄

)
and (v, T )

given as

∇ ·
(
T · v̄ − T̄ · v

)
= 0 (3.77)
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We apply this relation to the flows
(
v

(2)
j , T

(2)
j

)
and

(
v̂(2), T̂ (2)

)
, integrate over the

domain D2 and use the Gauss-Divergence theorem to get∫
∞

n ·
(
T

(2)
j · v̂(2) − T̂ (2) · v(2)

j

)
dS =

∫
D

n ·
(
T

(2)
j · v̂(2) − T̂ (2) · v(2)

j

)
dS (3.78)

Here D2 denotes the volume of fluid contained in the annulus bounded by the drop

surface and a spherical surface far away from the drop (S∞). The surface integral over

this spherical surface (S∞) is denoted as
∫
∞ and n points out of the spherical sur-

faces. We similarly apply the relation (3.77) to the flows
(
T

(1)
j ,v

(1)
j

)
and

(
T̂ (1), v̂(1)

)
,

integrate over the domain D1 and use the Gauss-Divergence theorem to get∫
S

n ·
(
T

(1)
j · v̂(1) − T̂ (1) · v(1)

j

)
dS =

∫
D

n ·
(
T

(1)
j · v̂(1) − T̂ (1) · v(1)

j

)
dS (3.79)

Here D1 denotes the volume of fluid bounded by the drop surface and the rigid sphere.

We then multiply equation (3.79) with λ, subtract it from equation (3.78) and use

the boundary conditions on the drop surface to arrive at∫
∞

n ·
(
T

(2)
j · v̂(2) − T̂ (2) · v(2)

j

)
dS = λ

∫
S

n ·
(
T

(1)
j · v̂(1) − T̂ (1) · v(1)

j

)
dS+Ma

∫
D

v̂ · ∇sΓj dS

(3.80)

As equation (3.80) was derived by applying a reciprocal theorem to the original prob-

lem and the first auxiliary problem, we can derive an equation similar to equation

(3.80) by applying the reciprocal theorem to the original problem and the second

auxiliary problem. This equation can be written by simply replacing the variables

of the first auxiliary problem in equation (3.80) with those of the second auxiliary

problem. This is because of using only the boundary conditions on the drop surface

in deriving equation (3.80) and these boundary conditions being the same for both

auxiliary problems.∫
∞

n ·
(
T

(2)
j · ṽ(2) − T̃ (2) · v(2)

j

)
dS = λ

∫
S

n ·
(
T

(1)
j · ṽ(1) − T̃ (1) · v(1)

j

)
dS+Ma

∫
D

ṽ · ∇sΓj dS

(3.81)

v̂ and ṽ appearing in the second integral on the right hand side of equations (3.80)

and (3.81), respectively, are given by v̂|Drop = v̂(1)
∣∣
Drop

= v̂(2)
∣∣
Drop

and ṽ|Drop =

ṽ(1)
∣∣
Drop

= ṽ(2)
∣∣
Drop

.
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We are now left with simplifying the integrals appearing in equations (3.80)-(3.81)

to derive the integral theorem required for finding the swimmer and drop velocities

at any order in Pes. As the flow field far-away from the drop approaches Û in the

first auxiliary problem and the drop is force-free in the original problem, we can show

that ∫
∞

n · T (2)
j · v̂(2)dS =

(∫
∞

n · T (2)
j dS

)
· Û =

(∫
D

n · T (2)
j dS

)
· Û = 0 (3.82)

As r →∞, we note that ṽ(2) goes to 0 at least as fast as 1/r, T
(2)
j goes to 0 at least

as fast as 1/r2 and dS grows as r2, hence the product n · T (2)
j · ṽ(2)dS decays to 0 at

least as fast as 1/r and we arrive at the result∫
∞

n · T (2)
j · ṽ(2)dS = 0 (3.83)

Since the flow field far-away from the drop approaches −Uj,D in the original prob-

lem and the drop experiences a hydrodynamic force F̂D

(
F̃D

)
in the first (second)

auxiliary problem, we derive the following results∫
∞

n · T̂ (2) · v(2)
j dS = −F̂D ·Uj,D (3.84)

∫
∞

n · T̃ (2) · v(2)
j dS = −F̃D ·Uj,D (3.85)

Using v̂(1)
∣∣
Sphere

= 0, we arrive at∫
S

n · T (1)
j · v̂(1)dS = 0 (3.86)

Using ṽ(1)
∣∣
Sphere

= Ũ and the force-free condition on the swimmer in the original

problem, we arrive at∫
S

n · T (1)
j · ṽ(1)dS =

(∫
S

n · T (1)
j dS

)
· Ũ = 0 (3.87)

Using v
(1)
j

∣∣∣
Swimmer

= Uj,S − Uj,D + δj,0 us and the condition that the rigid sphere

experiences a hydrodynamic force F̂Sp

(
F̃Sp

)
in the first (second) auxiliary problem,

we derive the following results∫
S

n · T̂ (1) · v(1)
j dS = F̂Sp · (Uj,S −Uj,D) + δj,0

∫
S

n · T̂ (1) · usdS (3.88)
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∫
S

n · T̃ (1) · v(1)
j dS = F̃Sp · (Uj,S −Uj,D) + δj,0

∫
S

n · T̃ (1) · usdS (3.89)

Enforcing the equations (3.82)-(3.89) in the equations (3.80)-(3.81), we arrive at the

integral theorem given by the following two equations

F̂D·Uj,D+λF̂Sp·(Uj,S −Uj,D) = −λ δj,0
∫
S

n · T̂ (1) · usdS+Ma

∫
D

v̂ · ∇sΓjdS (3.90)

F̃D·Uj,D+λF̃Sp·(Uj,S −Uj,D) = −λ δj,0
∫
S

n · T̃ (1) · usdS+Ma

∫
D

ṽ · ∇sΓjdS (3.91)

We note that this integral theorem is valid for axisymmetric configurations.

Now, we explain how to use this theorem to derive the swimmer and drop velocities

at O (1) and O (Pes) for the concentric configuration. At O (1), as Γ0 = 1, the integral

theorem simplifies to

F̂D ·U0,D + λF̂Sp · (U0,S −U0,D) = −λ
∫
S

n · T̂ (1) · usdS (3.92)

F̃D ·U0,D + λF̃Sp · (U0,S −U0,D) = −λ
∫
S

n · T̃ (1) · usdS (3.93)

For the concentric scenario, we use the Lamb’s general solution to solve both auxiliary

problems thereby finding F̂D, F̂Sp,
(
n · T̂ (1)

)∣∣∣
Sphere

, F̃D, F̃Sp, and
(
n · T̃ (1)

)∣∣∣
Sphere

F̂D =
4π (6χ3λ− 4χ3 + 9χ2λ− 3χ2 + 9χλ+ 3χ+ 6λ+ 4)

(4λ− 4)χ3 + (6λ− 3)χ2 + (3 + 6λ)χ+ 4λ+ 4
Û (3.94)

F̂Sp =
8 (χ3 + 2χ2 + 3χ+ 3/2)χπ

4χ4λ− 4χ4 + 2χ3λ+ χ3 + 6χ2 − 2χλ+ χ− 4λ− 4
Û (3.95)

(
n · T̂ (1)

)∣∣∣
Sphere

=
3 cos (θ) Û (4χ3 + 8χ2 + 2χ+ 1)

χ (4χ4λ− 4χ4 + 2χ3λ+ χ3 + 6χ2 − 2χλ+ χ− 4λ− 4)
ir

+
3 (χ2 + 3χ+ 1) sin (θ) Û

(4λ− 4)χ4 + (6λ− 3)χ3 + (3 + 6λ)χ2 + (4λ+ 4)χ
iθ

(3.96)
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F̃D = − 4π (2χ3 + 4χ2 + 6χ+ 3)λχ

4χ4λ− 4χ4 + 2χ3λ+ χ3 + 6χ2 − 2χλ+ χ− 4λ− 4
Ũ (3.97)

F̃Sp =
8πχ (2χ5λ− 3χ5 + 3λ+ 3)

(4λ− 4)χ6 + (−6λ+ 9)χ5 − 10χ3 + (6λ+ 9)χ− 4λ− 4
Ũ (3.98)

(
n · T̃ (1)

)∣∣∣
Sphere

=
6 (4χ5λ− 6χ5 + 5χ3 + λ+ 1) cos (θ) Ũ

χ (4χ6λ− 4χ6 − 6χ5λ+ 9χ5 − 10χ3 + 6χλ+ 9χ− 4λ− 4)
ir

+
6 ((λ− 3/2)χ4 + (λ− 3/2)χ3 + (λ+ 1)χ2 + (λ+ 1)χ+ λ+ 1) sin (θ) Ũ

(4χ3λ− 4χ3 + 6χ2λ− 3χ2 + 6χλ+ 3χ+ 4λ+ 4)χ(χ− 1)2 iθ

(3.99)

Noting that
(
n · T̂ (1)

)∣∣∣
Sphere

= T̂
(1)
rr ir + T̂

(1)
rθ iθ where T̂

(1)
rr and T̂

(1)
rθ are of the form

T̂
(1)
rr = ÂÛ P1 (cos θ), T̂

(1)
rθ = B̂Û V1 (cos θ), we can simplify the integral

∫
S

n · T̂ (1) · usdS

as follows∫
S

n · T̂ (1) · usdS =2πχ2

π∫
0

(
T̂ (1)
rr u

s
r + T̂

(1)
rθ u

s
θ

)
sin θ dθ

=2πχ2

ÂÛ 1∫
−1

usrP1 (ζ) dζ + B̂Û

1∫
−1

usθ V1 (ζ) dζ

 (3.100)

where ζ = cosθ. Using the orthogonality of the Legendre polynomials Pn (ζ) and that

of Vn (ζ) (see equation (3.101)), it can be seen from the above equation that only A1

and B1 modes contribute to the non-zero value of the integral
∫
S

n · T̂ (1) · usdS and

hence to the swimmer and drop velocities at O (1). Enforcing the expressions in the

equations (3.92)-(3.93), we solve the linear system of equations to find the swimmer

and drop velocities at O (1)

1∫
−1

Pn (ζ)Pm (ζ) dζ =
2

2n+ 1
δmn

1∫
−1

Vn (ζ)Vm (ζ) dζ =
8

n (n+ 1) (2n+ 1)
δmn

(3.101)



102

At O (Pes), the integral theorem simplifies to

F̂D ·U1,D + λF̂Sp · (U1,S −U1,D) = Ma

∫
D

v̂ · ∇sΓ1dS (3.102)

F̃D ·U1,D + λF̃Sp · (U1,S −U1,D) = Ma

∫
D

ṽ · ∇sΓ1dS (3.103)

The expressions for v̂ and ṽ on the drop surface are given as

v̂|Drop =
(χ− 1) Û (4χ2 + 7χ+ 4) sin (θ)

(8λ− 8)χ3 + (12λ− 6)χ2 + (12λ+ 6)χ+ 8λ+ 8
iθ (3.104)

ṽ|Drop = − (2χ3 + 4χ2 + 6χ+ 3)λŨχ sin (θ)

4χ4λ− 4χ4 + 2χ3λ+ χ3 + 6χ2 − 2χλ+ χ− 4λ− 4
iθ (3.105)

Once again, noting that v̂ is of the form v̂ = ĈÛ V1 (cos θ) iθ and Γ1 =
∞∑
n=1

Γ1,n Pn (cos θ),

we can simplify the right hand side of equation (3.102) as

∫
D

v̂ · ∇sΓ1 dS = −ĈÛ
∞∑
n=1

n (n+ 1)

2
Γ1,n

1∫
−1

V1 (ζ) Vn (ζ) dζ (3.106)

Using the orthogonality of Vn (ζ), we see that only Γ1,1 contributes to the above

integral and hence to the swimmer and drop velocities at O (Pes). Substituting the

expressions (3.104)-(3.105) into the equations (3.102)-(3.103) and solving the resulting

linear system of equations, we determine the swimmer and drop velocities O (Pes).

We note that the swimmer and drop velocities at O (1) and at O (Pes) derived using

the reciprocal theorem are the same as those obtained by solving the full Stokes

equations

3.9 Appendix D: Expressing the slip velocity on the surface of the swim-

mer in bipolar coordinates

In general, the slip velocity on the swimmer is specified in spherical coordinates,

us = usr ir + usθ iθ. (3.107)
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For calculations in bipolar coordinates, it is easy to handle the velocity components

in bipolar coordinates, expressed in terms of the corresponding coordinate variables

(ξ, η). For this purpose, we first write the slip velocity in cylindrical coordinates,

us = usρ iρ + usz iz where usρ = usr sin θ+ usθ cos θ and usz = usr cos θ− usθ sin θ. We then

express this velocity in bipolar coordinates us = usξ iξ + usη iη, where

usη = h

(
usρ
∂ρ

∂η
+ usz

∂z

∂η

)
; usξ = h

(
usρ
∂ρ

∂ξ
+ usz

∂z

∂ξ

)
,

sin θ = sgn (ξS)

(
sin η sinh ξS

cosh ξS − cos η

)
; cos θ = sgn (ξS)

(
cosh ξS cos η − 1

cosh ξS − cos η

)
.

For instance, for a swimmer having only three modes (A1, B1, B2), the boundary

condition on its surface is written as

v
(1)
0,ξ

∣∣∣
ξ=ξS

= (A1 + U0,S − U0,D) cosh ξS −
(A1 + U0,S − U0,D) sinh2ξS

cosh ξS − cos η
,

v
(1)
0,η

∣∣∣
ξ=ξS

=
(−B2 cosh ξS sgn (ξS) +B1 − U0,S + U0,D)

cosh ξS − cos η
sin η sinh ξS +

B2 sgn (ξS) sinh3ξS sin η

(cosh ξS − cos η)3 ,

(3.108)

where, we have used

iz = iη h
∂z

∂η
+ iξ h

∂z

∂ξ
.

3.10 Appendix E: Linear equations obtained while satisfying (3.31)-(3.34)

Using the boundary conditions on the surface of the drop, equation (3.32), we get

W
(1)
j,n (ξD) = 0; W

(2)
j,n (ξD) = 0, (3.109)

dW
(1)
j,n

dξ

∣∣∣∣∣
ξ=ξD

=
dW

(2)
j,n

dξ

∣∣∣∣∣
ξ=ξD

, (3.110)
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sgn (ξD)

(
d2W

(2)
j,n

dξ2
− λ

d2W
(1)
j,n

dξ2

)
ξ=ξD

= −δj,1
n (n+ 1) (2n+ 1)

2
Ma× c

∞∑
m=0

dW
(2)
0,m

dξ

∣∣∣∣∣
ξ=ξD

1∫
−1

C
−1/2
n+1 (µ)C

−1/2
m+1 (µ)

(cosh ξD − µ) (1− µ2)
dµ.

(3.111)

Using the far-field condition, equation (3.34), we obtain

A
(2)
j,n − sgn (ξD)B

(2)
j,n

2
=
c2Uj,D

2
√

2

n (n+ 1)(
n− 1

2

) , (3.112)

C
(2)
j,n − sgn (ξD)D

(2)
j,n

2
= −

c2Uj,D

2
√

2

n (n+ 1)(
n+ 3

2

) . (3.113)

Using the boundary conditions on the surface of the swimmer, equation (3.31), we

get

∞∑
n=0

W
(1)
j,n (ξS) C

−1/2
n+1 (cos η) = (cosh ξS − cos η)3/2

η∫
0

c2 sin η′

(cosh ξS − cos η′)2 v
(1)
j,ξ

∣∣∣
ξ=ξS

dη′,

(3.114)

∞∑
n=0

dW
(1)
j,n

dξ

∣∣∣∣∣
ξ=ξS

C
−1/2
n+1 (cos η) =

3

2
(cosh ξS − cos η)1/2 sinh ξS

η∫
0

c2 sin η′

(cosh ξS − cos η′)2 v
(1)
j,ξ

∣∣∣
ξ=ξS

dη′

− c2 sin η

(cosh ξS − cos η)1/2
v

(1)
j,η

∣∣∣
ξ=ξS

.

(3.115)

We then use the following identity, the identities derived from differentiating it with

respect to ξ along with the orthogonality of Gegenbauer polynomials to simplify

equations (3.114) and (3.115)

sin2η

(cosh ξ − cos η)1/2
=
√

2
∞∑
n=1

n (n+ 1)

e−(n−1
2

)
|ξ|

(2n− 1)
− e

−
(
n+

3
2

)
|ξ|

(2n+ 3)

C−1/2
n+1 (cos η).

(3.116)
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Figure 3.14. : The velocities of (a) a two-mode squirmer (U0,S) and (b) a drop (U0,D)

at O (1) plotted as a function of the size ratio for various values of viscosity ratio.

The lines denote the results obtained for concentric configuration while the symbols

indicate the results of an eccentric configuration with an eccentricity e = 0.002.

The symbols ©, 5 and 4 are used to denote the results of a neutral swimmer

(β = 0), pusher (β = −2) and puller (β = 2), respectively. All the velocities are non-

dimensionalized using Usq = 2B1/3.

3.11 Appendix F: Validation of bipolar coordinate results

In this section, we validate the solution for the eccentric configurations by com-

paring the swimmer and drop velocities for small eccentricity (e = 0.002) with the

corresponding velocities for the concentric configuration.
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Figure 3.15. : The velocities of (a) a two-mode squirmer (U1,S) and (b) a drop (U1,D) at

O (Pes) plotted as a function of the size ratio for various values of viscosity ratio. Here

we choose Ma = 1. The lines denote the results obtained for concentric configuration

while the symbols indicate the results of an eccentric configuration with an eccentricity

e = 0.002. The symbols ©, 5 and 4 are used to denote the results of a neutral

swimmer (β = 0), pusher (β = −2) and puller (β = 2), respectively. All the velocities

are non-dimensionalized using Usq = 2B1/3.
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4. SWIMMING SHEET NEAR A PLANE SURFACTANT LADEN INTERFACE

4.1 Introduction

Our world is filled with motile microorganisms—Helicobacter pylori in stomach,

Escherichia coli in intestines, Chlamydomonas in oceans and snow, Paramecium in

stagnant basins and ponds etc. Understanding the motion of these organisms in com-

plex flow conditions is essential for addressing several biophysical questions [10]. One

such complex bacterial motion is concerned with its locomotion near an interface

which has applications in the biofilm formation and bioremediation of an oil spill.

Researchers working on this topic have successfully explained (i) how the swimming

speed of an organism gets altered near an interface [62, 63, 95, 96], (ii) why these or-

ganisms move in circles near a plane interface [64,65] and (iii) why they reorient and

get attracted towards an interface [8,16,23,73]. Recent works have also analyzed the

change in the bacterial dynamics near an interface due to the (i) interface deforma-

tion [9, 69, 70], (ii) finite inertia of the swimmer or fluid [97, 98], (iii) non-Newtonian

suspending fluid [72,99,100], and (iv) presence of surfactants [8, 16,73].

We briefly review the works on locomotion near a surfactant covered interface.

Near a plane surfactant laden interface, the attraction and reorientation of a swim-

ming microorganism is similar to its behavior near a plane wall but its circling direc-

tion can be opposite to the one near a clean interface [8]. Considering the trapping

of marine microbes onto drops, it was reported that the trapping dynamics outside

drops is similar to that outside a rigid sphere, but the surfactant laden drops have

better trapping characteristics than a rigid sphere or a clean drop [16]. This is non-

intuitive as a surfactant laden drop usually has characteristics that are intermediate

This chapter has been reprinted with permission from the article “Swimming sheet near a plane
surfactant laden interface”, by V. A. Shaik and A. M. Ardekani, Physical Review E, 99(3):033101,
2019 (DOI: 10.1103/PhysRevE.99.033101). Copyright (2019) of The American Physical Society.
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between a rigid sphere and a clean drop. Analogous to the interface deformations,

finite inertia of the fluid or the organism and the non-Newtonian rheology of the fluid,

the surfactant redistribution can enable a time-reversible swimming microorganism

near an interface to achieve a net motion [101].

These works on the locomotion near a surfactant laden interface assumed the

surfactant to be either incompressible (valid at large Marangoni numbers Ma, ratio

of Marangoni stresses to the bulk viscous stresses) [74–76] or compressible [77] but

its surface advection being negligible compared to its surface diffusion (valid at small

surface Péclet numbers Pes, ratio of surface advection to the surface diffusion of the

surfactant). The objective of this work is to analyze the locomotion near a surfactant

laden interface for all values of surface Péclet and Marangoni numbers.

To model the surfactant as generally as possible without losing the analytical

tractability, we use a simple model microorganism. Hence, we model the organism

as a 2D infinitely long swimming sheet that propels by propagating waves along its

surface. This model was first proposed by Taylor [13] who considered a sheet passing

transverse waves to represent the monoflagellated organism such as spermatozoon.

It was later extended by Blake [102] who allowed the passage of both longitudinal

and transverse waves along the sheet to represent the almost flat ciliated organisms

such as Paramecium or Opalina. Due to the mathematical simplicity associated with

this model, it has been used to study the locomotion (i) in a complex fluid [103–110],

(ii) in a gel [111, 112], (iii) in a liquid crystal [113], (iv) in a porous media [114],

(v) under confinement [62, 63, 95, 115–121], (vi) at finite inertia of the fluid or the

organism [62, 122–124] and (vii) under transient effects [125]. The research on the

locomotion under confinement has been restricted to the confinements caused by

a rigid or soft wall [62, 63, 115–118, 121], a plane clean interface [95], a deforming

membrane [119] or a gel [120] with a Newtonian or a non-Newtonian suspending

fluid.

Noting that any interface is inevitably covered with impurities that act as surfac-

tants, it is essential to generalize the theory of locomotion near a clean interface to
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accommodate the effects of surfactant redistribution. Even though the locomotion

under confinement depends on the swimmer’s shape, most of the earlier research on

the sheet’s motion under confinement is devoted to a sheet passing transverse waves

along its surface (or a Taylor’s swimming sheet [13]). To emphasize the influence of

the swimmer’s shape on locomotion and also to generalize the results associated with

the sheet passing transverse waves, we analyze the motion of a sheet passing both

longitudinal and transverse waves near a surfactant laden interface.

This paper is organized as follows. We provide the governing equations and bound-

ary conditions associated with the motion of a sheet near a plane surfactant laden

interface and present the perturbation technique and the solution methodology in Sec.

4.2. We provide simple expressions for the swimming velocity under various limiting

conditions in Sec. 4.3. We then analyze the influence of surfactant redistribution on

the swimming velocity of a sheet passing only transverse wave and that passing both

longitudinal and transverse waves in Secs. 4.4.1 and 4.4.2 respectively. We finally

provide several concluding remarks in Sec. 4.5 and present the expressions for the

flow field, sheet’s velocity, and validate our results in appendices.

4.2 Mathematical Model

Consider a 2D infinitely long sheet near a surfactant laden interface (see figure

4.1 for schematic). We formulate this problem in a frame of reference moving with

the swimming velocity of the sheet. The sheet deforms in such a manner that point

(x, 0) on its undeformed surface is located at (x0, y0) at time t, where x0 and y0 are

given by

x0 =x+ a cos k (x+ ct) + d sin k (x+ ct) ,

y0 =b sin k (x+ ct) .
(4.1)

Here a, d (b) are the amplitudes of longitudinal (transverse) waves while c and k are

the wave speed and wave number, respectively.
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For analytical tractability, we make the following assumptions. We assume the

interface is plane and non-deforming; such a non-deforming interface assumption

is valid at small Capillary numbers (ratio of bulk viscous stresses to the capillary

stresses). We assume the sheet is located symmetrically between two surfactant laden

interfaces which can occur for locomotion in a film [126–128]. Hence, we only solve

for the fluid flow above the sheet. We assume the amplitude of sheet’s deformation

is much smaller than the wavelength, i.e., ak � 1, bk � 1, and dk � 1. Hence,

we can write ak = εã, bk = εb̃, and dk = εd̃, where ε � 1 while the magnitudes of

ã, b̃, and d̃ can be at most O (1). We denote the distance between the mid plane

of the sheet and the interface by h, which is at least as large as the wavelength

i.e., hk ≥ O (1). The surfactant is insoluble and we neglect any kind of interfacial

rheology imparted by the surfactant to the interface. Insoluble surfactant limit is

valid when the interfacial transport of the surfactant is much faster than the bulk

transport and the adsorption-desorption between the bulk fluid and the interface.

Hence in this limit, the bulk surfactant does not influence the interfacial surfactant

transport. Also, assuming the local surfactant concentration on the interface (Γ) is

much smaller than the maximum possible surfactant concentration on the interface

(Γ∞), we use a linear constitutive equation to relate the interfacial tension (γ) to the

surfactant concentration [129] i.e., γ = γs − ΓRT . Here γs is the interfacial tension

of the clean interface, R is the ideal gas constant and T is the absolute temperature.

We use the following characteristic parameters to scale all variables to dimension-

less variables: a reference length lref = 1/k, reference velocity uref = c, reference

time tref = 1/ (ck), reference pressure
(
p

(j)
ref

)
and stress

(
T

(j)
ref

)
in the j-th fluid

p
(j)
ref = T

(j)
ref = µjck, where µj is the dynamic viscosity of the j-th fluid. As the

problem is two dimensional, we use the stream function (ψ) to solve it. We non-

dimensionalize the stream function and surfactant concentration via ψref = c/k and

Γref = Γeq respectively, where Γeq is the equilibrium surfactant concentration. We

hereby formulate the problem of sheet near a surfactant laden interface in dimension-

less variables.
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x

yh

Fluid 2

Fluid 1

U

Figure 4.1. : A schematic showing a swimming sheet located near a plane surfactant

laden interface. The sheet propels by passing waves along its surface. The distance

between the midplane of the sheet and the interface is h. We denote the fluid in which

the swimmer is suspended as ‘Fluid 1’ while the fluid above the interface as ‘Fluid 2’.

In the frame moving with the swimming velocity of the sheet, a uniform streaming

flow exists in fluid 2 far away from the sheet with the velocity that is negative of

the sheet’s swimming velocity. The origin of the coordinate system is located at the

midplane of the sheet.
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As the inertia of the flow due to the swimming microorganism is typically neg-

ligible, the flow field is governed by the Stokes equations and the incompressibility

condition. Using the relation between velocity components and the stream function,

equation (4.2), the governing equations are simply the biharmonic equations for the

stream functions, equation (4.3)

u(j) =
∂ψ(j)

∂y
; v(j) = −∂ψ

(j)

∂x
, where j = 1, 2, (4.2)

∇4ψ(j) = 0, (4.3)

where u(j) and v(j) indicate the x and y components of the velocity of j-th fluid

while ψ(j) denotes the stream function concerning the j-th fluid. Point (x, 0) on the

undeformed sheet is located at (x0, y0) on the sheet’s surface at time t, where (x0, y0)

is given by

x0 =x+ ε
[
ã cos (x+ t) + d̃ sin (x+ t)

]
,

y0 =εb̃ sin (x+ t) .
(4.4)

As the flow field in phase 1 should satisfy the no-slip and no-penetration boundary

conditions on the sheet, we have

∂ψ(1)

∂y

∣∣∣∣
(x0,y0)

=
∂x0

∂t
= ε

[
−ã sin (x+ t) + d̃ cos (x+ t)

]
,

∂ψ(1)

∂x

∣∣∣∣
(x0,y0)

=− ∂y0

∂t
= −εb̃ cos (x+ t) .

(4.5)

Either neglecting gravity or by assuming the density of the sheet is the same as the

density of the fluid in which it is suspended, we find that the external force on the sheet

is zero. Consequently, due to negligible inertia of the sheet, the net hydrodynamic

force on the sheet must be zero i.e.,
∫

Sheet
n · T(1)

∣∣
Sheet

dS = 0 which simplifies to

2π∫
0

{
−εb̃ cos (x+ t) i +

[
1− εã sin (x+ t) + εd̃ cos (x+ t)

]
j
}
· T(1)

∣∣
(x0,y0)

dx = 0,

(4.6)
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where i and j denote the unit vectors along x and y directions, respectively. Also,

n is the normal to the sheet pointing into fluid 1 while T(j) is the stress tensor for

j-th fluid. Using the Newtonian fluid constitutive equation, T(j) can be written in

terms of pressure
(
p(j)
)

and velocity fields
(
v(j)
)

of the j-th fluid as T(j) = −p(j)I +[
∇v(j) +

(
∇v(j)

)†]
, where † stands for the transpose and I is an identity tensor. Far

away from the sheet, the velocity of fluid 2 should approach the negative of sheet’s

swimming velocity (U = U i). In terms of stream function, this condition simplifies

to

as y →∞, ψ(2) ∼ −Uy. (4.7)

Since the interface is non-deforming, the fluid velocity (in both phases) at the interface

but normal to the interface must be zero,

at y = h :
∂ψ(1)

∂x
= 0;

∂ψ(2)

∂x
= 0. (4.8)

The fluid velocity at the interface but tangential to the interface must be continuous

across the interface

at y = h :
∂ψ(1)

∂y
=
∂ψ(2)

∂y
. (4.9)

Also, the jump in the tangential stresses across the interface should be balanced by

the Marangoni stresses which using the relationship between interfacial tension and

the surfactant concentration simplifies to

at y = h : λT (2)
yx − T (1)

yx = Ma
∂Γ

∂x
; Ma =

RTΓeq
µ1c

, (4.10)

where T
(j)
yx denotes the yx component of stress tensor in the j-th fluid and the viscosity

ratio λ = µ2/µ1. Finally, the transport of an insoluble surfactant on a non-deforming

interface is governed by

Pes

[
∂Γ

∂t
+

∂

∂x

(
Γu|y=h

)]
=
∂2Γ

∂x2
; Pes =

c

kDs

, (4.11)

where Ds is the surface or interface diffusivity of the surfactant and the slip of an

interface is written as u|y=h = ∂ψ(1)

∂y

∣∣∣
y=h

= ∂ψ(2)

∂y

∣∣∣
y=h

.
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We compare our formulation with those of Taylor [13] and Katz [63], where Tay-

lor considered a sheet in an unbounded fluid while Katz analyzed the motion of

sheet located asymmetrically between two walls. In these two works, the inertia

of the flow was negligible due to which the stream function was governed by the

biharmonic equation. The shape of sheet in Katz’s work is same as that consid-

ered by us but Taylor’s sheet passes only transverse waves along positive x-direction[
x0 = x, y0 = ε b̃ sin (x− t)

]
. Katz worked in a frame moving with velocity (U − 1) i

unlike the frame moving with the velocity U i considered by us and Taylor. Due

to the different sheet’s shape (respectively, frame of reference) considered by Tay-

lor (respectively, by Katz), the boundary condition on the sheet given in these two

works is different from that reported here [equation (4.5)]. The force-free condition is

identically satisfied for the Taylor’s sheet in an unbounded fluid. As Katz considered

a sheet asymmetrically located between two walls, the sum of hydrodynamic forces

acting on the top and bottom surfaces of the sheet must be zero and this force-free

condition of Katz reduces to equation (4.6) for a sheet symmetrically located between

two walls. A far-field condition similar to equation (4.7) exists for a fluid in which the

sheet is immersed in Taylor’s work, but no such condition exists for a sheet bounded

by walls as considered by Katz. To ensure the fluid does not penetrate the walls, Katz

applied a condition similar to equation (4.8) at the walls. Instead of the continuous

tangential velocity condition [equation (4.9)], shear stress balance condition [equation

(4.10)], and the surfactant transport equation [equation (4.11)] at the interface, there

is a no-slip boundary condition at the wall in Katz’s work.

We need to solve equations (4.3)-(4.11) to determine the swimming velocity of the

sheet, U i. As the surfactant transport equation is nonlinear, it is not possible to solve

these equations analytically for an arbitrary value of ε. However, for ε � 1, we can

use the following traditional technique to find the leading order approximation of the

sheet’s swimming velocity: (i) express the boundary condition on the sheet’s surface

as a series of boundary conditions applied at the mid plane of the sheet by doing a
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Taylor series expansion of any function f (x0, y0) about (x, 0) and (ii) expand all the

variables as a power series in ε{
v(j),T(j), p(j), U, ψ(j), u|y=h

}
=
∞∑
n=1

εn
{

v(j)
n ,T(j)

n , p(j)
n , Un, ψ

(j)
n , un|y=h

}
Γ =1 +

∞∑
n=1

εnΓn

(4.12)

The resulting perturbed equations are linear and have the following general solution

for the stream function and the surfactant concentration at O (εn)

ψ(1)
n =

∞∑
m=1


[(
A

(1)
n,m + E

(1)
n,my

)
cosm (x+ t) +

(
B

(1)
n,m + F

(1)
n,my

)
sinm (x+ t)

]
coshmy

+
[(
C

(1)
n,m +G

(1)
n,my

)
cosm (x+ t) +

(
D

(1)
n,m +H

(1)
n,my

)
sinm (x+ t)

]
sinhmy


+αny + βny

2 + γny
3

(4.13)

ψ(2)
n = −Uny+

∞∑
m=1

[(
A(2)
n,m + E(2)

n,my
)

cosm (x+ t) +
(
B(2)
n,m + F (2)

n,my
)

sinm (x+ t)
]
e−my,

(4.14)

Γn =
∞∑
m=1

[Jn,m cosm (x+ t) + Ln,m sinm (x+ t)], (4.15)

where A
(1)
n,m, B

(1)
n,m, C

(1)
n,m, D

(1)
n,m, E

(1)
n,m, F

(1)
n,m, G

(1)
n,m, H

(1)
n,m, A

(2)
n,m, B

(2)
n,m, E

(2)
n,m, F

(2)
n,m, αn,

βn, γn, Jn,m, and Ln,m are unknown constants that need to be determined while

satisfying the perturbed boundary conditions. The expressions of the constants that

determine theO (ε) andO (ε2) flow fields along with the expression of the leading order

swimming velocity U2 are provided in Appendix 4.6. We also verify our calculation

by comparing the leading order swimming velocity of the sheet U2 with that reported

in the literature in various limits. This validation is presented in Appendix 4.7.

4.3 Limiting cases

We note that the swimming velocity depends in a complex fashion on Ma and Pes

as can be seen in equation (4.37) derived for a sheet passing transverse waves near
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an air-water interface. So, to understand the surfactants influence on the swimming

velocity U , we need to numerically evaluate U for various Ma and Pes. Before doing

this, in this section we report some simple expressions for the swimming velocity in

the limits of small or large Ma or Pes. Through such expressions, one can easily

find out how the surfactant redistribution affects the swimming velocity. We report

these limiting forms for a sheet near an air-water interface (λ = 0) by noting that the

leading order swimming occurs at O (ε2) i.e., U = ε2U2 +O (ε4).

At small Ma, we get

U2 = U2,clean +
PesMa

(Pe2
s + 1) (sinh (2h)− 2h)2


 h2 cosh (2h)− 2h sinh (2h)

+h2 + cosh (2h)− 1

 b̃
(
ã− Pesd̃

)
+ (h sinh (2h)− cosh (2h) + 1) b̃2h


+ O

(
Ma2

)
(4.16)

Here U2,clean is the swimming velocity near a plane clean interface whose expression for

ã = d̃ = 0 is given in equation (4.40). We see that the correction due to surfactant re-

distribution depends nonlinearly on Pes. As long as d̃ = 0, we see that the surfactant

redistribution increases the sheet’s velocity because (h sinh (2h)− cosh (2h) + 1) > 0

and (h2 cosh (2h)− 2h sinh (2h) + h2 + cosh (2h)− 1) > 0 for all h. When ã = 0, the

surfactant redistribution can increase or even decrease the sheet’s velocity depending

on whether the following ratio is respectively great than or less than 1.

(h sinh (2h)− cosh (2h) + 1)h

(h2 cosh (2h)− 2h sinh (2h) + h2 + cosh (2h)− 1)Pes

b̃

d̃
(4.17)

In the more general case when ã 6= 0, d̃ 6= 0, and b̃ 6= 0, the surfactant redistribution

can increase or decrease the swimmer’s velocity depending on Pes, h and relative

order of magnitude of the wave amplitudes.

At small Pes, we get

U2 = U2,clean +
PesMa× b̃

(sinh (2h)− 2h)2

 ã (h2 cosh (2h)− 2h sinh (2h) + h2 + cosh (2h)− 1)

+b̃h (h sinh (2h)− cosh (2h) + 1)


+ O

(
Pe2

s

)
(4.18)
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From this expression, we see that the swimming velocity does not depend on ‘d’ modes.

Also as (h2 cosh (2h)− 2h sinh (2h) + h2 + cosh (2h)− 1) > 0 and (h sinh (2h)− cosh (2h) + 1) >

0, we see that the surfactant redistribution always increases the swimming velocity

at small Pes. This is in contrast with the observation that the surfactant redistribu-

tion can increase or even decrease the velocity of a swimming microorganism inside a

surfactant laden drop at small Pes [101]. These different influences of the surfactant

on the swimming velocity, reported in Ref. [101] and this work, is due to different

shapes of the swimmer and the interface used in these two works.

At large Ma, we get

U2 = U2,wall −
4b̃

P esMa(2h2 − cosh (2h) + 1)2


 h2 cosh (2h)− 2h sinh (2h)

+h2 + cosh (2h)− 1

(ã+ d̃× Pes
)

+ (h sinh (2h)− cosh (2h) + 1) b̃h


+ O

(
Ma−2

)
(4.19)

Here U2,wall is the swimming velocity near a plane wall whose expression is given in

equation (4.39). Again as (h2 cosh (2h)− 2h sinh (2h) + h2 + cosh (2h)− 1) > 0 and

(h sinh (2h)− cosh (2h) + 1) > 0, we see that the swimming velocity near a surfactant

laden interface at large Ma is always less than that near a plane wall.

4.4 Results

In this section, we examine the influence of surfactant redistribution on the swim-

ming velocity of the sheet near a surfactant laden interface.

It was reported that the swimming velocity of a sheet, propagating longitudinal

waves, near a plane wall is the same as its velocity in an unbounded fluid [63] i.e.,

U = − ε2

2

(
ã2 + d̃2

)
+O (ε4). Our analysis suggests the presence of a surfactant laden

interface instead of a wall near such a sheet, does not modify its velocity, i.e., velocity

of a sheet propagating longitudinal waves near a plane surfactant laden interface is

the same as its velocity in an unbounded fluid.
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Figure 4.2. : The variation of the swimming velocity with the distance between the

interface and (the mid plane of) the sheet for a sheet passing only transverse waves

(blue solid line) and that passing both longitudinal and transverse waves (red dashed

line). Here the swimming velocity is normalized with the swimming velocity of a

sheet passing only transverse waves in an unbounded fluid (U2T∞). The viscosity

ratio λ = 0, Marangoni number Ma = 1 and the surface Péclet number Pes = 1.

As we have analyzed the velocity of a sheet propagating longitudinal waves near

a plane surfactant laden interface, we then proceed to examine the velocity of a sheet

(near a surfactant laden interface) passing only transverse waves and that passing

both longitudinal and transverse waves in the following two subsections. Even though

the expressions for the leading order swimming velocity are derived for any arbitrary

viscosity ratio λ, we only report the influence of surfactant redistribution on this

velocity for an air-water interface (λ = 0) as experiments on locomotion in films are

mainly performed for an air-water interface [126–128].

For a fixed Ma and Pes, we found that the swimming velocity increases as h de-

creases (see figure 4.2). Similar trend with decreasing h was reported for confinements

caused by a rigid plane wall [63], a plane clean interface [95] or a gel [120]. Also, the

variation of the swimming velocity with Ma and Pes is qualitatively the same for any
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fixed value of h. For this reason, we report and analyze this variation with Ma and

Pes for a typical value of h = 1.

We report here the typical values of Ma and Pes. For the tail of a sperma-

tozoon [130], the wave speed c ∼ (200− 1200) × 10−6 m/s and the wave number

k ∼ (1.14− 4.18)× 105 m−1. The maximum possible surfactant concentration at an

air-water interface [131, 132] Γ∞ ∼ 10−6 − 10−4 mol/m2. Assuming that the equilib-

rium surfactant concentration Γeq ∼
(
10−3 − 10−1

)
Γ∞, we get Γeq ∼

(
10−9 − 10−5

)
mol/m2. The surface diffusivity of the surfactant [133] Ds ∼ (1− 10) × 10−9 m2/s.

Using the definitions of Ma, Pes along with the viscosity of water (µ1) and the

temperature of T = 298 K, we get Ma ∼ O (1)−O
(
105
)

and Pes ∼ 0.05−O (10).

4.4.1 Sheet passing only transverse wave along its surface
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Figure 4.3. : For a sheet passing transverse waves near a plane surfactant laden

interface, the variation of the leading order swimming velocity with (a) Ma for Pes =

1 and (b) Pes for Ma = 1, 10, and 100. Here the swimming velocity is normalized

with the swimming velocity of the same sheet in an unbounded fluid (U2T∞). The

distance between the midplane of the sheet and the interface is h = 1, the viscosity

ratio λ = 0, and the amplitudes of the longitudinal waves a = d = 0.
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When a sheet passing only transverse waves is located near a plane surfactant

laden interface, the dependence of its swimming velocity on Ma (for a fixed Pes) and

on Pes (for a fixed Ma) is given in figure 4.3. We observe the following from this

figure. As the minimum velocity occurs at Ma = 0 or Pes → 0 and since Ma = 0 or

Pes → 0 represents a clean interface, we conclude that the swimming velocity near a

plane surfactant laden interface is always more than that near a plane clean interface.

Near a plane surfactant laden interface, (a) the swimming velocity increases with an

increase in Ma for any fixed Pes, (b) it increases with an increase in Pes for any fixed

but large Ma i.e., Ma ≥ O (10), and (c) it initially increases and then decreases with

an increase in Pes for any fixed but small Ma i.e., Ma ≤ O (1).

4.4.2 Sheet passing both longitudinal and transverse waves along its sur-

face

In this section, we discuss how the effect of surfactant redistribution on the swim-

ming velocity gets modified, in comparison to this effect presented in the earlier

section, if a sheet is passing both longitudinal and transverse waves along its surface.

For this purpose, we plot the variation of the swimming velocity with Ma (for a fixed

Pes) and Pes (for a fixed Ma) in figure 4.4. From this figure, we observe the following.

The swimming velocity for a sheet near a plane surfactant laden interface can be more

or even less than that for a sheet near a plane clean interface (Ma→ 0 or Pes → 0).

Unlike the case of a sheet passing only transverse waves, the swimming velocity near

a surfactant laden interface might not lie in between the swimming velocity near a

plane clean interface and that near a plane wall. Desai et al. [16] reported a similar

observation by noting that the critical trapping radius of a surfactant-laden drop is

less than those of a clean drop and a rigid sphere where a particle or a drop would trap

a nearby swimming microorganism if their radius is more than the critical trapping

radius. When a sheet is in the vicinity of a surfactant laden interface, (a) the swim-

ming velocity increases with an increase in Ma for a fixed but small Pes (≤ O (1)),



121

10
-1

10
0

10
1

10
2

-1

-0.5

0

0.5

1

1.5

2

2.5(a)

10
-2

10
-1

10
0

10
1

10
2

-1

-0.5

0

0.5

1

1.5

2

2.5(b)

Figure 4.4. : For a sheet passing both longitudinal and transverse waves near a

plane surfactant laden interface, the variation of the leading order swimming velocity

with (a) Ma for Pes = 0.1, 1, 10, 100 and with (b) Pes for Ma = 1, 10, 100. Here

the swimming velocity is normalized with the swimming velocity of a sheet passing

transverse waves in an unbounded fluid (U2T∞). The distance between the midplane

of the sheet and the interface is h = 1, the viscosity ratio λ = 0, and the amplitudes

of the waves a = 0, and d/b = 2.

(b) it initially decreases and then increases with an increase in Ma for a fixed but

large Pes (≥ O (10)), (c) it increases with an increase in Pes for a fixed yet large Ma

(≥ O (10)), (d) it initially increases and then decreases with an increase in Pes for a

fixed but small Ma (≤ O (1)).

It seems non-intuitive for the swimming velocity near a surfactant laden interface

to lie outside the range corresponding to the one near a clean interface and a rigid

wall. If we had a rigid particle moving near a surfactant laden interface due to some

fixed force acting on it, its velocity always lies in between its velocities near a clean

interface and a plane wall [30]. So, the motion of organisms is defying the intuition

built on the basis of particle motion. This is not the first time that such phenomenon

is reported. Considering the motion of particles or organisms in complex fluids, we
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find that the particle experiencing a fixed force moves faster in a shear-thinning fluid

than that in a Newtonian fluid but the velocity of a swimming microorganism in a

shear-thinning fluid can be more or even less than that in a Newtonian fluid [90].

Similar observation has been made for the velocity of a swimming microorganism in

a viscoelastic fluid [109].

Even though most of the observations in figures 4.3-4.4 can be qualitatively ex-

plained by analyzing the influence of surfactant redistribution on the amplitude of

leading order interface slip (see Appendix 4.8), such reasoning is not useful to un-

derstand the swimming velocity near a surfactant laden interface if this velocity lies

outside the range bounded by the velocities near a clean interface and a plane wall.

Consequently, the amplitude of leading order interface slip is not determinative of

the swimming velocity changes. Hence to get a proper understanding of the variation

of the swimming velocity with all values of Ma and Pes, we need to correlate the

surfactant induced changes in either (i) the amplitude and phase of the leading order

slip (not just the amplitude) or (ii) the second order slip (instead of first order slip)

with the swimming velocity which are not done in this work.

4.4.3 Apparent viscosity ratio

As the expression for the swimming velocity of a sheet near a surfactant laden in-

terface is quite lengthy, we represent the surfactant laden interface as a clean interface

with a modified or apparent viscosity ratio (λapp) to convey the effects of surfactant

redistribution in a succinct manner. The expression for λapp is simpler than the ex-

pression for the swimming velocity. Using this expression for λapp and the dependence

of sheet’s velocity on the viscosity ratio for a sheet near a clean interface [95], we can

evaluate the sheet’s velocity at this apparent viscosity ratio to find its velocity near

a surfactant laden interface. To determine the apparent viscosity ratio, we simply

equate the sheet’s velocity near a surfactant laden interface with zero viscosity ratio

to its velocity near a clean interface with a viscosity ratio that is equal to the apparent
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viscosity ratio. We then solve this equation for the apparent viscosity ratio to obtain

λapp =

MaPes



((
−MaPes ã− 2 b̃

)
h− 2 d̃P es + 2 ã

)
(cosh (h))3

−2
(((

1/2Mab̃− d̃
)
Pes + ã

)
h− 1/2MaPes ã

)
sinh (h) (cosh (h))2

+

 MaPes ãh
3 +

(
−2 d̃P es + 2 ã

)
h2

+
(
MaPes ã+ 2 b̃

)
h+ 2 d̃P es − 2 ã

 cosh (h)

−

 −MaPes b̃h
3 +

(
MaPes ã− 2 b̃

)
h2

+
((
−Mab̃− 2 d̃

)
Pes + 2 ã

)
h+MaPes ã

 sinh (h)




(((
−2Mad̃− 4 b̃

)
Pe2

s − 2MaPes ã− 4 b̃
)
h+ 4Pe2

sã+ 4 ã
)

(cosh (h))3

−4
((
Pe2

sã+ 1/2 b̃MaPes + ã
)
h− 1/2MaPes

(
d̃P es + ã

))
sinh (h) (cosh (h))2

+

 2MaPes

(
d̃P es + ã

)
h3 + (4Pe2

sã+ 4 ã)h2

+
((

2Mad̃+ 4 b̃
)
Pe2

s + 2MaPes ã+ 4 b̃
)
h− 4Pe2

sã− 4 ã

 cosh (h)

−2

 −MaPes b̃h
3 +

((
Mad̃− 2 b̃

)
Pe2

s +MaPes ã− 2 b̃
)
h2

+
(
−b̃MaPes + 2Pe2

sã+ 2 ã
)
h+MaPes

(
d̃P es + ã

)
 sinh (h)


(4.20)

which simplifies for a sheet passing only transverse waves to

lim
ã→0,d̃→0

λapp =
2MaPes (− sinh (2h)− 1/2MaPes cosh (2h) +Ma (h2 + 1/2)Pes + 2h)

(−4Pe2
s − 4) sinh (2h)− 2MaPes cosh (2h) + 8Pe2

sh+ (4h2 + 2)MaPes + 8h
(4.21)

In the limit Ma→ 0 or Pes → 0, the surfactant laden interface behaves like a clean

interface due to which λapp approaches the actual viscosity ratio that is zero. Hence,

λapp → 0 as Ma → 0 or Pes → 0. In the limit Ma → ∞, the surfactant becomes

incompressible [30,73] and the surfactant laden interface behaves like a rigid wall (see

Appendix 4.7 for discussion on the incompressible surfactant). Hence, λapp → ∞ as

Ma→∞. As Pes →∞, λapp approaches a constant value given by

lim
Pes→∞,ã→0,d̃→0

λapp =
Ma2

(
(cosh (h))2 − h2 − 1

)
4 sinh (h) cosh (h)− 4h

, (4.22)

for a sheet passing only transverse waves.

For a sheet passing transverse wave near a surfactant laden interface, typical vari-

ation of λapp with Pes for various Ma is shown in figure 4.5. From this figure, we



124

observe that λapp increases with an increase in Pes at large Ma (≥ O (10)) while it

initially increases and then decreases with an increase in Pes at small Ma (≤ O (1)).

Combining this dependence of λapp on Ma, Pes with the dependence of U2 on λ for a

sheet near a clean interface (figure 4.6b), we expect the velocity of a sheet near a sur-

factant laden interface to increase monotonically (resp. vary non-monotonically) with

an increase in Pes at large Ma (resp. at small Ma), consistent with the observations

of figure 4.3b.
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Figure 4.5. : The variation of apparent viscosity ratio with Pes at Ma = 1 (blue

solid line), 10 (red dashed line) and 100 (yellow dash-dotted line). Here, the sheet

is passing only transverse waves, hence a = d = 0. The actual viscosity ratio of the

surfactant laden interface λ = 0 while h = 1.

4.5 Conclusions

We aimed to understand the dependence of a microorganism’s swimming velocity

on the Marangoni number (Ma) and the surface Péclet number (Pes) when it is near

a surfactant covered interface. For this purpose, we derived the velocity of a 2D in-

finitely long swimming sheet near a surfactant laden interface under the assumptions
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of zero Reynolds number, zero interface deformation and small sheet’s deformation.

We observed that the swimming velocity near a surfactant laden interface can be more

or even less than that near a clean interface and this velocity varies non-monotonically

with Ma and Pes, these observations being highly sensitive to the type of wave pass-

ing through the sheet. Unlike the rigid particles near a surfactant laden interface, we

found that the swimming microorganisms near such an interface can have a velocity

that does not lie in between their velocities near a clean interface and a rigid wall.

To succinctly express the effects of surfactant redistribution, we represented the sur-

factant laden interface as a clean interface with a viscosity ratio equal to apparent

viscosity ratio whose expression is found by equating the swimming velocities near a

clean and surfactant laden interface.

4.6 Appendix A: Expressions for constants that appear in stream func-

tion and surfactant concentration

In this section, we provide expressions for the constants appearing in equations

(4.13)-(4.15) that enable us to determine the stream function and the surfactant

concentration at various orders of ε. Even though we derived these expressions for

any arbitrary viscosity ratio λ and for non-zero wave amplitudes ã 6= 0, b̃ 6= 0, and

d̃ 6= 0, as these expressions are lengthy, we provide these expressions only for the

special case of an air-water interface (λ = 0) and sheet passing only transverse waves(
ã = 0, d̃ = 0

)
.

4.6.1 Expressions for constants appearing in O (ε) stream function and

surfactant concentration

Here, we present the expressions for constants appearing in ψ
(1)
1 , ψ

(2)
1 and Γ1.

A
(1)
1,1 = 0, (4.23)
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B
(1)
1,1 = −b̃, (4.24)

−C(1)
1,1 = E

(1)
1,1 =

2(sinh (h))2Pe2
sMab̃h2

D
, (4.25)

−D(1)
1,1 = F

(1)
1,1 =


−4Ma(cosh (h))4Pes − ((Ma2 + 4)Pe2

s + 4) sinh (h) (cosh (h))3

+ ((−Ma2h+ 4h)Pe2
s + (2h2 + 4)MaPes + 4h) (cosh (h))2

+Ma2Pe2
s sinh (h) (h2 + 1) cosh (h) + hPesMa (Ma (h2 + 1)Pes + 2h)

 b̃

D
,

(4.26)

G
(1)
1,1 =

−2Pe2
shMab̃ sinh (h) (cosh (h)h− sinh (h))

D
, (4.27)

H
(1)
1,1 =

− sinh (h) b̃


−4MaPes(cosh (h))3 − ((Ma2 + 4)Pe2

s + 4) sinh (h) (cosh (h))2

+ (4Pe2
sh+ (2h2 + 4)MaPes + 4h) cosh (h)

+Pes sinh (h)Ma (Ma (h2 + 1)Pes + 2h)


D

,

(4.28)

A
(2)
1,1 = −

2h2ehMa sinh (h)Pe2
s b̃
(
(cosh (h))2 − h2 − 1

)
D

, (4.29)

B
(2)
1,1 =

2h2b̃

 −Ma(cosh (h))2Pes + (−2Pe2
s − 2) sinh (h) cosh (h)

+2Pe2
sh+Ma (h2 + 1)Pes + 2h

 sinh (h) eh

D
,

(4.30)

E
(2)
1,1 =

2ehMa sinh (h)Pe2
s b̃h
(
(cosh (h))2 − h2 − 1

)
D

, (4.31)
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F
(2)
1,1 =

−2hb̃

 −Ma(cosh (h))2Pes + (−2Pe2
s − 2) sinh (h) cosh (h)

+2Pe2
sh+Ma (h2 + 1)Pes + 2h

 sinh (h) eh

D
,

(4.32)

J1,1 =
2hPes sinh (h) b̃

(
−Ma(cosh (h))2Pes − 2 cosh (h) sinh (h) +Ma (h2 + 1)Pes + 2h

)
D

,

(4.33)

L1,1 =
4Pe2

s b̃h sinh (h) (− cosh (h) sinh (h) + h)

D
, (4.34)

where

D = ((Ma2 + 4)Pe2
s + 4) (cosh (h))4 + 4Ma(cosh (h))3 sinh (h)Pes

+ (−4 + (−4 + (−2h2 − 2)Ma2)Pe2
s − 4MaPesh) (cosh (h))2

−4 (2Pe2
sh+Ma (h2 + 1)Pes + 2h) sinh (h) cosh (h)

+
(

(h2 + 1)
2
Ma2 + 4h2

)
Pe2

s + 4hMa (h2 + 1)Pes + 4h2,

U1 = α1 = β1 = γ1 = 0. (4.35)

4.6.2 Expressions for constants appearing in O (ε2) stream function

Here, we present the expressions for constants appearing in ψ
(1)
2 and ψ

(2)
2 .

β2 = γ2 = 0, (4.36)
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U2 = −α2 =

−


(−4 + (−Ma2 − 4)Pe2

s) (cosh (h))4 − 4 sinh (h) (cosh (h))3MaPes

+ (4 + (2Ma2 + 4)Pe2
s) (cosh (h))2 + 4 sinh (h) cosh (h)MaPes

+ ((h4 − 1)Ma2 + 4h2)Pe2
s + 4MaPes h

3 + 4h2

 b̃2


((2Ma2 + 8)Pe2

s + 8) (cosh (h))4 + 8 sinh (h) (cosh (h))3MaPes

+ (−8 + (−8 + (−4h2 − 4)Ma2)Pe2
s − 8MaPes h) (cosh (h))2

−8 (2Pe2
sh+Ma (h2 + 1)Pes + 2h) sinh (h) cosh (h)

+
(

2 (h2 + 1)
2
Ma2 + 8h2

)
Pe2

s + 8hMa (h2 + 1)Pes + 8h2



.

(4.37)

4.7 Appendix B: Validation of results

In this section, we verify the expression for the velocity of a sheet near a surfactant

laden interface by comparing it with similar expressions derived in the literature for

several special cases. For instance, when a sheet is far away from the interface, its

velocity should be the same as the sheet’s velocity in an unbounded fluid [102]

lim
h→∞

U2 =
1

2

(
−ã2 − d̃2 + b̃2 + 2ãb̃

)
(4.38)

As λ→∞ or Ma→∞, the sheet’s velocity should approach the velocity of a sheet

placed symmetrically between two plane walls [63].

lim
λ→∞

U2 = lim
Ma→∞

U2 =

 (
ã2 − b̃2 + d̃2

)
(cosh (h))2 − 2 cosh (h) sinh (h) ãb̃

+ (−h2 − 1) ã2 + 2ãb̃h+ (−h2 + 1) b̃2 − d̃2 (h2 + 1)


2h2 − 2(cosh (h))2 + 2

(4.39)

It is obvious that a surfactant laden interface behaves as a rigid wall in the limit λ→

∞ but such a behavior in the limitMa→∞ requires some explanation. AsMa→∞,

the surfactant becomes incompressible [30,73], i.e., O (1) changes in interfacial tension

are caused by infinitesimal changes in the surfactant concentration. So, treating Γ

as constant, the surfactant transport equation simplifies to ∂
∂x

(
u|y=h

)
= 0. The

only solution of this equation that enables the velocity of fluid 2 to approach the
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negative of sheet’s velocity, far away from the interface, is u|y=h = −U . The sheet

near an interface with such interface boundary conditions
(
u|y=h = −U, v|y=h = 0

)
is essentially equivalent to a sheet near a plane wall.

In the limit Ma→ 0 or Pes → 0, the sheet’s velocity should approach its velocity

near a plane clean interface. This velocity was derived for a sheet passing transverse

waves in the positive x-direction (Taylor’s sheet) [95]. As we considered the sheet

passing transverse waves in the negative x-direction, its velocity near a plane surfac-

tant laden interface in the limits Ma → 0 or Pes → 0 should approach the negative

of Taylor’s swimming sheet velocity near a plane clean interface.

lim
Ma,ã,d̃→0

U2 = lim
Pes,ã,d̃→0

U2 =
b̃2

2
− b̃2h (hλ+ 1)

h2λ− (cosh (h))2λ− sinh (h) cosh (h) + h+ λ
(4.40)

4.8 Appendix C: Effect of surfactant redistribution on the interface slip

In this section, we analyze the influence of surfactant redistribution on the leading

order interface slip when a sheet passing transverse waves is located near an interface.

Let us first discuss how the viscosity ratio of an interface affects the interface slip and

the swimming velocity for a sheet near a plane clean interface. We plot these features

for a sheet passing transverse waves near a plane clean interface in figure 4.6. We

observe that the interface slip decreases while the swimming velocity increases with

an increase in the viscosity ratio of a clean interface. As an increase in the viscosity

ratio corresponds to an increase in the viscosity of fluid above the interface (for a fixed

viscosity of fluid below the interface), such high viscosity fluid above the interface

hinders the interface slip.

When a sheet is near a clean interface, the interface slip varies in a sinusoidal

fashion with the x-coordinate, i.e., u1|y=h = A sin (x+ t+ φ), where A, and φ are the

amplitude and phase of the slip, respectively (see blue solid line in figure 4.7; vector

field of the interface slip is shown by blue (upper) arrows in this figure). When we

compare slip (such as slip of clean and surfactant laden interface or slip of a surfactant
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Figure 4.6. : For a sheet passing transverse waves near a plane clean interface, the

variation of the (a) leading order interface slip and (b) leading order swimming ve-

locity with the viscosity ratio λ. Here the swimming velocity is normalized with the

swimming velocity of the same sheet in an unbounded fluid (U2T∞). The values of

other parameters h, a, and d are kept the same as those of figure 4.3.

laden interface at various values of Ma or Pes), we are essentially comparing the

amplitude of the sinusoidal functions. Now, if a sheet is near a surfactant laden

interface, the surfactant concentration varies non-monotonically with the position,

as shown by red dash-dotted lines in figure 4.7. As the interfacial tension decreases

with an increase in the surfactant concentration, this non-homogeneous surfactant

concentration gives rise to a non-homogeneous interfacial tension which in turn causes

the tensile stress imbalance on the interface, pulling the fluid from the regions of

maximum Γ towards the regions of minimum Γ. This Marangoni induced slip velocity

is shown by red (lower) arrows in figure 4.7. The slip of a surfactant laden interface

is the sum of the slip of a clean interface and the Marangoni induced slip. As this

Marangoni induced slip is directed oppositely to the clean interface’s slip at most of

the locations, the slip of a surfactant laden interface is less than the slip of a clean

interface (see blue dotted line in figure 4.7 for the slip of a surfactant laden interface).
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Figure 4.7. : Comparison of interface slip of a clean interface (blue solid line) with

that of a surfactant laden interface (blue dotted line). Also plotted is the surfactant

concentration on the surfactant laden interface (red dash-dotted line). The vertical

dashed lines are just for reference. The blue (upper) and red (lower) arrows denote,

respectively, the vector field of clean interface slip and the direction of Marangoni

induced slip. The axis for the interface slip is on the left while that for surfactant

concentration is on the right. Here, Ma = 10 and Pes = 1 for the surfactant laden

interface. Also, ε = 0.1 is used to calculate Γ while the values of the other parameters

h, λ, a, and d are kept the same as those of figure 4.3.
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Figure 4.8. : The variation of (a) the Marangoni stress and (b) the leading order

interface slip with the Marangoni number Ma for a fixed surface Péclet number

Pes = 1. Here ε = 0.1 is used to calculate the Marangoni stresses while the values of

other parameters λ, h, a, and d are kept the same as those of figure 4.3.

With an increase in Ma, the Marangoni stresses increase (see figure 4.8a) which

in turn reduce the slip of an interface (see figure 4.8b). At large Ma like Ma = 100,

with an increase in Pes the advective transport of surfactant increases in comparison

to its diffusive transport; this increases the gradients in the surfactant concentration

(see figure 4.9a) or Marangoni stresses which in turn reduce the interface slip (see

figure 4.9b). For these values of Ma and Pes at which the interface slip decreases

with an increase in Ma for a fixed Pes (or with an increase in Pes for a fixed Ma),

the swimming velocity increases with the corresponding variation of Ma or Pes (see

figure 4.3).

We note that the Marangoni stresses increase with an increase in Pes at any fixed

Ma, not just at large Ma. But at small Ma, with an increase in Pes, the increasing

Marangoni stresses reduce the interface slip during the initial increase of Pes (see

figure 4.10a) while they increase the interface slip during the latter increase of Pes (see

figure 4.10b). This is expected because during the initial (respectively, latter) increase
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Figure 4.9. : The variation of (a) the surfactant concentration and (b) the leading

order interface slip with the surface Péclet number Pes for a fixed Marangoni number

Ma = 100. Here ε = 0.1 is used to calculate surfactant concentration while the values

of other parameters λ, h, a, and d are kept the same as those of figure 4.3.

in Pes, the Marangoni induced slip is directed opposite to (respectively, along) the

slip of a relatively clean interface at most of the interface locations. Compare the red

(lower) arrows with blue (upper) arrows in figure 4.10 to understand this observation.

Here relatively clean interface is an interface with lower Pes. At this value of Ma

at which the interface slip varies non-monotonically with an increase in Pes, the

swimming velocity also varies non-monotonically with an increase in Pes (see figure

4.3b).
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Figure 4.10. : Comparison of the interface slip of surfactant laden interfaces with

different Pes but with a fixed Ma = 1. In each plot, the interface slip at low and

high Pes are denoted, respectively, by blue solid and blue dotted lines. Also plotted

is the change in the surfactant concentration at high Pes in comparison to that at

low Pes (red dash-dotted line). The dashed lines are just for reference. In subfigure

(a) the low and high Pes are 0.1 and 1 while in subfigure (b) they are 1 and 10,

respectively. The blue (upper) and red (lower) arrows denote, respectively, the vector

field of surfactant laden interface’s slip at low Pes and the direction of Marangoni

induced slip as Pes is increased from its low to high value. The axis for the interface

slip is on the left while that for the change in the surfactant concentration is on the

right. The values of the other parameters h, λ, a, and d are kept the same as those

of figure 4.3.
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5. DRAG, DEFORMATION, AND DRIFT VOLUME ASSOCIATED WITH A

DROP RISING IN A DENSITY-STRATIFIED FLUID

5.1 Introduction

In lakes, ponds or oceans, the variation of temperature or salt concentration with

height causes density stratification. Drops in stratified fluids are encountered when

one uses bubble plumes for destratification to get rid of the harmful effects associated

with the stratification [134] or during an oil spill as oil drops rise through stratified

water in the ocean [135]. It is then necessary to find the forces acting on a drop

rising in a stratified fluid to estimate the efficiency of destratification process or to

understand the consequences of an oil spill [5, 6].

There was a tremendous effort to understand the settling motion of spheres in a

stratified fluid for different values of Re, Fr, Pr where Re, Fr, Pr are the Reynolds,

Froude, and Prandtl numbers, respectively [136–144]. These works used two types

of stratification – linearly stratified fluid or two homogeneous miscible fluids of dif-

ferent densities separated by a density stratified interface of finite or zero thickness

(call this step stratification). All these works reported a drag enhancement due to

stratification, the physics behind this drag enhancement being dependent on the type

of stratification, Re, and Fr.

For a sphere settling through a step stratification at 1.5 <Re< 15, it was found

that its velocity changes nonmonotonically from its terminal velocity in upper fluid

to its terminal velocity in the lower fluid displaying a minimum somewhere in the

interface due to the stratification enhanced drag [136]. A similar nonmonotonic

variation of the settling velocity with time was also found for a sphere crossing

This chapter has been reprinted with permission from the article “Drag, deformation, and drift vol-
ume associated with a drop rising in a density-stratified fluid”, by V. A. Shaik and A. M. Ardekani,
Physical Review Fluids, 5(1):013604, 2020 (DOI: 10.1103/PhysRevFluids.5.013604). Copyright
(2020) of The American Physical Society.
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an interface separating two homogeneous fluids (with zero interface thickness) even

at zero Re [138, 139]. Again considering the settling through step stratification at

20 <Re< 450, it was found that the sphere decelerates so much due to enhanced

drag that it levitates (comes to rest in a fluid that is lighter than it) and reverses its

direction of motion for sometime before continuing to fall down [137]. In these works,

the sphere leaving the upper homogeneous fluid (by entering the stratified interface

or lower homogeneous fluid), drags this low density fluid with it and the buoyancy

of this low density fluid manifests as an enhanced drag on the sphere. As long as

the low density fluid is attached to the sphere, it decelerates achieving a minimum

velocity, at which point the entire low density fluid is detached from the sphere due

to which it begins to accelerate. This leads to the nonmonotonic variation of velocity

with time.

When a sphere is settling through a linearly stratified fluid at moderate Re

(10 <Re< 1000), it was observed that a standing vortex which typically occurs in

homogeneous fluids is suppressed by stratification in turn giving rise to strong vertical

jet behind the sphere [140–142]. A mechanism for the appearance of this jet is given

as follows. As the sphere settles it drags a low density fluid which initially is located

near the front of the sphere in the density boundary layer. Due to the buoyancy,

this low density fluid rises to the back of the sphere in an attempt to return to its

original position in turn generating a vertical jet. This jet is similar to the caudal

fluid dragged from upper homogeneous layer when a sphere is settling in a step strat-

ification. The buoyancy of the low density fluid in the jet and the generated internal

waves as low density fluid returns to its initial density level are responsible for the

increased drag due to stratification [143].

The physics associated with a particle settling in a linearly stratified fluid at

moderate Re is interesting yet quite complex to understand as in this case after the

particle reaches its peak velocity, other than monotonic deceleration, the particle

can levitate momentarily, reverse its direction of motion and even oscillate with a fre-

quency proportional to the Brunt-Väisälä frequency [143]. The wake structure behind
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such settling particle is also complicated and can be one of the seven types depending

on Re and Fr [145]. On the other hand, settling at low Re is well understood. In

this case, the buoyancy of a light fluid immediately adjacent to the sphere manifests

as the enhanced drag which was shown to be proportional to Ri0.51 where Ri is the

viscous Richardson number [146].

Most of the previous works attributed the stratification enhanced drag to the

buoyancy of the dragged lighter fluid. In an attempt to identify the origin of this

stratification enhanced drag, a recent work [147] divided the contributions of the

stratification to the drag into two parts—the first one coming from the buoyancy

of the lighter fluid and the second one arising from the baroclinic torque induced

modifications in the vorticity field around the settling particle. For most values of

Re, Fr, Pr, the force due to the change in vorticity dominates and is responsible for

the observed stratification enhanced drag.

A few theoretical works were also carried out to derive the stratification enhanced

drag acting on a particle settling in a linearly stratified fluid [148–150]. Due to

the coupling between the equations governing the fluid flow and density transport,

such calculation was only done for weak stratifications, in turn enabling one to take

perturbations in terms of small stratification parameter. It was shown that such

perturbation is singular similar to the perturbation in Re [151] as the matching zone

where the viscous forces balance the buoyancy forces occurs far away from the particle.

The exact location of the matching zone depends on whether advection of density

transport dominates the diffusion or vice-versa. Neglecting inertia, Zvirin & Chadwick

[148] calculated this stratification enhanced drag assuming the advection is more

important while Candelier’s work [149] is valid if diffusion is more important. It was

recently shown in Ref. [150] that Zvirin & Chadwick’s calculation holds not only in

the limits of dominant advection or dominant diffusion but also uniformly between

these two limits. The main focus of Ref. [150] was to estimate the inertial effects

on the stratification enhanced drag for a settling rigid particle. We use a similar

perturbation scheme to find the influence of inertia on the stratification enhanced
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drag acting on a rising drop. We extend the scope of the work by evaluating the drop

deformation and the drift volume induced by the drop as well.

There are few numerical works that analyzed the settling or rising dynamics of

a drop in a stratified fluid. In this case, either the stratification or the presence

of surfactants can cause the spatial inhomogeneties in the interfacial tension that

complicates the rising dynamics [152,153]. Analyzing the settling motion of a drop in

a step stratification, it was found that the slip boundary condition on the drop causes

it to entrain less amount of low density fluid than that of a rigid sphere which manifests

as a smaller stratification enhanced drag [152]. Similar to a settling particle, a drop

rising in a linearly stratified fluid at moderate Re can levitate, reverse its direction

of motion and even oscillate about certain fluid density level [154]. In a linearly

stratified fluid, two drops rising in tandem or in side by side configuration were found

to retain their configuration during interaction [155]. This observation for drops in

tandem motion in a stratified fluid holds for stronger stratifications and is in contrast

to their motion in a homogeneous fluid. After the drops approach their neutrally

buoyant density level, they oscillate, and eventually the trailing drop rotates around

the leading one, forming a side-by-side configuration. For a swarm of drops rising in

a linearly stratified fluid, it was reported that the stratification hinders the vertical

rise velocity of the swarm but increases the probability of cluster formation [156].

A drop rising in a homogeneous or stratified fluid drags a certain volume of fluid

with it, the so called drift volume. An estimate of drift volume induced by a rising

drop would answer if the drop mixes its surrounding environment. It was Darwin [157]

who introduced the drift volume and he found that the drift volume induced by a

translating sphere in an inviscid fluid is equal to the added mass divided by the

fluid density. In a viscous fluid, at Re = 0, Eames et al calculated the drift volume

induced by a rising drop and found that a slow 1/r velocity decay causes the drift

volume to become infinite [158]. They also evaluated the drift volume induced by a

drop translating normal to a wall and found that a faster 1/r3 velocity decay makes

the drift volume finite but much large compared to drop’s volume. Here r is the
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distance measured from the center of the drop. At finite Re, the ever increasing

extent of wake behind a towed particle and a slow 1/r decay of velocity in the wake

produces an infinite drift volume [159]. Such infinite drift volume induced by towing

particles at zero or finite Re prompted the drift based explanations in support of

biogenic mixing contributions to oceanic circulation [160, 161]. But effects such as

density stratification [143,162], background turbulence [163] and force-free nature of

swimming organisms [164,165] reduce the drift volume and make it finite.

Despite several studies on the subject, a theoretical investigation of drop transport

in a stratified fluid and the induced drift volume is missing, which is the focus of the

present work. This paper is organized as follows. We present the dimensionless

governing equations and boundary conditions in Sec. 5.2. We then derive the drag,

first order flow fields, drop deformation, and the induced drift volume in Secs. 5.3,

5.4, 5.5, and 5.6 respectively. We finally provide some concluding remarks in Sec. 5.7.

5.2 Problem Formulation

In this section, we present the dimensionless governing equations and boundary

conditions for the fluid flow and density disturbance when a drop is rising in a strat-

ified fluid (see figure 6.1 for schematic). We work in a frame moving with the drop.

In this frame the drop is stationary and the fluid velocity w far away from the drop

approaches the negative of the drop velocity u, i.e., w ∼ −u as r = |r| → ∞. In

this far-field region, the fluid density ρ is equal to the ambient density ρ0 that varies

linearly with the vertical position x3, i.e., ρ ∼ ρ0 = ρ∞ − γx3 as r → ∞. Here r, x

are the position vectors with respect to the drop center and a fixed point in the lab

frame, so x = r + xd, where xd gives drop’s position in the lab frame. Also ρ∞ is the

reference density while γ > 0 is the density gradient. The pressure p in the far-field is

equal to p0 that is governed by −∇p0 + ρ0g = 0, where g = −g e3 is a gravity vector

whose magnitude is equal to the acceleration due to gravity g and e3 is a unit vector

pointing vertically upwards.
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Figure 5.1. : A schematic showing a drop of constant density and uniform interfacial

tension rising through a stratified fluid whose ambient density ρ0 = ρ∞−γx3 decreases

with the height. Also shown is a unit vector e3 pointing vertically upwards and a

gravity vector g = −ge3.
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We define the disturbance velocity, pressure and density fields outside the drop as

w′ = w + u, p′ = p − p0, ρ′ = ρ − ρ0. Here we use the Boussinesq approximation.

The disturbance pressure, velocity and density outside the drop are governed by the

continuity, Navier-Stokes and the advection-diffusion equations

∇ ·w′ = 0, (5.1)

ρ∞

[
∂w′

∂t
+ (w′ · ∇) w′ − (u · ∇) w′

]
= −∇p′ + ρ∞ ν∇2w′ + ρ′g, (5.2)

∂ρ′

∂t
+ w′ · ∇ρ′ − u · ∇ρ′ − γ (w′ · e3) = κ∇2ρ′. (5.3)

Here ν is the kinematic viscosity of the fluid outside the drop and κ is the diffusivity.

In general, the variations in density are caused by the variations in temperature or

salt concentration. For small changes in temperature or salt concentrations, these

changes are linearly proportional to the changes in density and in this case we can

directly write an advection-diffusion equation for density with κ being the diffusion

coefficient of the associated transport phenomenon (thermal or salt transport).

We assume the density of the fluid inside the drop ρd to be constant. Writing the

pressure inside the drop pd as pd = p′d− ρdgx3, we find that the fluid flow wd and the

pressure field inside the drop are governed by

∇ ·wd = 0, (5.4)

ρd

[
∂wd

∂t
+ (wd · ∇) wd

]
= −∇p′d + ρdνd∇2wd − ρd

du

dt
, (5.5)

where νd is the kinematic viscosity of the fluid inside the drop.

We use the undeformed drop radius a, time scale tc and the drop speed in a

homogeneous fluid of reference density uc to non-dimensionalize the length, time and

velocity. We non-dimensionalize the density by γa while the pressure or stress field

outside (resp. inside) the drop is non-dimensionalized by ρ∞νuc/a (resp. ρdνduc/a).
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We find that the dimensionless governing equations and the boundary conditions are

characterised by six dimensionless parameters - the Reynolds number Re which is the

ratio of inertia forces to the viscous forces, the Péclet number Pe that is the ratio

of the advective transport rate of density to its diffusive transport rate, the viscous

Richardson number Ri which is the ratio of buoyancy forces to the viscous forces,

the Strouhal number Sl that is the ratio of advective time scale to the characteristic

time scale tc, the dynamic viscosity ratio λ and the kinematic viscosity ratio χ. Their

expressions are given as

Re =
auc
ν
,Pe =

auc
κ
,Ri =

γa3g

ρ∞νuc
, Sl =

a

uctc
, λ =

ρdνd
ρ∞ν

, χ =
νd
ν
. (5.6)

We carry out a quasi-steady analysis in which we neglect the unsteady terms pro-

portional to ReSl or PeSl or ReSl/χ. This analysis is valid for Re � 1,Ri � 1 and

χ ≥ 1 as in this case we can estimate the time scale of velocity variations tc and

show that Sl ∼ Ri [150] which makes the unsteady terms smaller than the rest of

the terms in any governing equation. We rewrite Re, Pe, Ri in terms of ε = a/ls,

ls/lo and Pr [149]. Here ls = (νκ/N2)
1/4

is the stratification length scale [166], the

distance from the drop at which the buoyancy forces become as important as the

viscous forces when Pe � 1, where N =
√
gγ/ρ∞ is the Brunt-Väisälä frequency,

the typical frequency at which a displaced fluid parcel in a stratified fluid oscillates.

Also lo = a/Re is the Oseen length scale, the distance from the drop at which the

inertia forces balance the viscous forces and Pr = ν/κ is the Prandtl number. Hence,

the dimensionless governing equations for the disturbance flow and the disturbance

density outside the drop after rescaling the density as ρ̃ = ρ′

Pe
= ρ′

ε ls
lo

Pr
are

∇ ·w′ = 0, (5.7)

ε
ls
lo

[(w′ · ∇) w′ − (u · ∇) w′] = −∇p′ +∇2w′ − ε4ρ̃ e3, (5.8)

−w′ · e3 + ε
ls
lo

Pr [w′ · ∇ρ̃− u · ∇ρ̃] = ∇2ρ̃. (5.9)
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Similarly, the flow field inside the drop is governed by

∇ ·wd = 0, (5.10)

ε

χ

ls
lo

(wd · ∇) wd = −∇p′d +∇2wd. (5.11)

Far away from the drop, the disturbance velocity and the disturbance density decay

to zero

w′ = 0 and ρ̃ = 0 as r →∞. (5.12)

At the drop surface, the flow field normal to the drop must be zero

n ·wd = n · (w′ − u) = 0 on the drop. (5.13)

The flow field tangential to the drop must be continuous across the drop surface

(I− nn) ·wd = (I− nn) · (w′ − u) on the drop. (5.14)

The shear stress must be continuous across the drop surface

n · (T′ − λTd) · (I− nn) = 0 on the drop. (5.15)

Here n is the vector normal to the drop pointing into the suspending fluid, I is the

identity tensor, T′ (resp. Td) is the stress tensor associated with the disturbance flow

outside the drop w′ (resp. the flow inside the drop wd), which using the Newtonian

constitutive relation can be written as T′ = −p′I +
[
∇w′ + (∇w′)†

]
, † represents the

transpose. We impose the no flux condition on the drop surface for the density field

which is equivalent to ensuring that the drop surface is adiabatic (resp. impermeable)

for the stratification caused by thermal transport (resp. salt transport)

∂ρ̃

∂r
=

cos θ

Pe
=

cos θ

ε ls
lo

Pr
on the drop, (5.16)

where cos θ = r·e3

r
= r3

r
.

We solve equations (5.7)-(5.16) to find the drag and deformation of a drop along

with the flow field in the limit

ε� 1,
ls
lo
� ε−1, χ ≥ 1, Pr, λ arbitrary but fixed. (5.17)
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5.3 Drag

We expand the field variables inside the drop and in the inner zone close to the

drop as follows

{w′, p′, ρ̃,wd, p
′
d} =

{
w′0, p

′
0, ρ̃0,w0,d, p

′
0,d

}
+ ε
{
w′1, p

′
1, ρ̃1,w1,d, p

′
1,d

}
+ o (ε) .

(5.18)

We find that the leading order flow variables
(
w′0, p

′
0,w0,d, p

′
0,d

)
satisfy the Stokes

equations for a homogeneous fluid whose solution is well known [3]. The leading

order drag experienced by the drop is F0 = −2πRu where R = (2 + 3λ) / (1 + λ)

and it varies from 2 (for a bubble) to 3 (for a rigid sphere). It was already reported

that the drop does not deform due to this leading order flow (see Sec. 5.5 for more

details) [18, 167]. So we can consider a spherical drop for solving the first order

problem.

We now use the leading order inner flow w′0 to estimate the order of magnitude of

various terms in the Navier-Stokes and density transport equations in the matching

zone that occurs at r � 1. As w′0 ∼ 1/r for r � 1, we see that w′ · ∇w′ ∼ 1/r3

while u · ∇w′ ∼ 1/r2 for r � 1. Hence we neglect w′ · ∇w′ as compared to u · ∇w′

for r � 1. Similarly we notice that w′ · ∇ρ̃ ∼ ρ̃/r2 and u · ∇ρ̃ ∼ ρ̃/r for r � 1

due to which we neglect w′ · ∇ρ̃ in comparison to u · ∇ρ̃ in the matching zone. So

the equations governing the leading order flow disturbance and density disturbance

in the matching or outer zone at r � 1 are

∇ ·w′ = 0, (5.19)

−ε ls
lo

(u · ∇w′) = −∇p′ +∇2w′ − ε4ρ̃ e3 + 2πRuδ (r) , (5.20)

−w′ · e3 − ε
ls
lo

Pr (u · ∇) ρ̃ = ∇2ρ̃. (5.21)

In the far-field, we represent the drop by a point force equal to the negative of drag

acting on the drop [168, 169] which justifies the source term −F0 δ (r) = 2πRu δ (r)
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appearing in equation (5.20). The no-flux boundary condition for density on the drop

surface precludes such source terms in the density transport equation.

As equations (5.19)-(5.21) are linear, we solve them by taking the Fourier trans-

form where the Fourier and inverse Fourier transforms are defined as

ŵ′ (k) =

∫
dr w′ (r) e−ik·r and w′ (r) =

1

8π3

∫
dk ŵ′ (k) eik·r, (5.22)

where i =
√
−1. In the Fourier space, the disturbance flow in the outer zone is given

by

ŵ′ = 2πR
[
A− ε4B + ε4D

]−1
Eu, where (5.23)

A =

[
k2 − iε ls

lo
(u · k)

]
I, B =

k3

k2
[
k2 − iε ls

lo
Pr (u · k)

]ke3,

D =
e3e3[

k2 − iε ls
lo

Pr (u · k)
] , and E =

(
I− kk

k2

)
.

We represented the second order tensors as matrices while the vectors as column

vectors in equation (5.23). We interpret ŵ′ as a generalized function and for ε � 1,

we perform a Taylor series expansion of it about ε = 0 to get

ŵ′ = T̂ ′0 + εT̂ ′1 + ....+ εnT̂ ′n, where T̂ ′n = lim
ε→0

1

n!

dnŵ′

dεn
. (5.24)

We find that T̂ ′0 is the Fourier transform of the Stokeslet flow field wS that is governed

by

∇ ·wS = 0, −∇pS +∇2wS + 2πRu δ (r) = 0. (5.25)

It can be shown that in the matching zone, the inverse Fourier transform of T̂ ′0 matches

with the Stokeslet part of the leading order inner flow w′0.

We write T̂ ′1 as

T̂ ′1 = lim
ε→0

1

ε

[
ŵ′ (k)− T̂ ′0 (k)

]
= lim

ε→0

1

ε
[ŵ′ (k)− ŵS (k)]

= lim
ε→0

1

ε3

[
ŵ′
(

k

ε

)
− ŵS

(
k

ε

)]
= δ (k)

∫
dk′
[
ŵ′
(

k′

ε

)
− ŵS

(
k′

ε

)]
ε=1

= δ (k)

∫
dk′ [ŵ′|ε=1 (k′)− ŵS (k′)],

(5.26)
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where ŵS is the Fourier transform of wS, δ (k) is the delta function and we used the

properties of generalized functions to evaluate the limit [170, 171]. We find that the

inverse Fourier transform of T̂ ′1 is given by

T ′1 =
1

8π3

∫
dk′ [ŵ′|ε=1 (k′)− ŵS (k′)]. (5.27)

This is a uniform flow and it should match with the uniform flow part of w′1 in the

matching zone.

We only need the knowledge of the flow field in the outer zone to determine the

first order force acting on the drop. This force is given by [172]

F1 = 2πRT ′1. (5.28)

Using u = u3e3 we find that T ′1 = −M33,dropu3e3 and the drag acting on the drop is

F = F3e3 where

F3 = −2πRu3 (1 + εM33,drop) , M33,drop =
R
3
M33,rgsp, and (5.29)

M33,rgsp = − 3

2π

∫ ∞
0

dk

∫ π

0

dθ

sin3θ

{
1−

[
Pr
(
ls
lo

)2

u2
3k

2 + 1

]
cos2θ − i cos θ ls

lo
u3k

3

}
[
Pr
(
ls
lo

)2

u2
3k

2 + 1

]
cos2θ + i ls

lo
u3k3 (Pr +1) cos θ − k4 − 1

.

(5.30)

The expression for M33,rgsp|u3=1 is the same as that reported by Mehaddi et al. (see

equation 5.3b in Ref. [150]) for falling rigid sphere in a stratified fluid except there

is a missing negative sign in their expression which might be a typo. From equation

(5.29), we see that the stratification enhanced drag acting on a drop is equal to

(R/3)2 times the enhanced drag on a rigid sphere. As the governing equations and

the boundary conditions associated with the leading order and the first order flows in

the inner zone and inside the drop derived in our work are the same as those reported

for a drop moving in a shear flow of a homogeneous fluid (in the limit of zero shear

rate), we can use the physical arguments reported in the latter case [167] to find the

scaling of stratification enhanced drag with R. This way, we can deduce the form
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Figure 5.2. : The variation of the stratification enhanced drag acting on a bubble,

8πM33,rgsp/3, with ls/lo and Pr. The blue solid, red dashed and black dash-dotted

lines denote the data for Pr = 0.7, 7 (temperature stratified water) and 700 (salt

stratified water), respectively. This variation of drag acting on a bubble with ls/lo

and Pr is similar to that reported for a rigid sphere [150].

of drag force, equation (5.29) without finding any of the flow fields. According to

these arguments, one relates the drag force with the strength of vorticity on the drop

surface. It is evident from equation (5.20) that the disturbance flow in the outer zone

is proportional to R and hence the uniform flow T ′1 ∝ R. To satisfy this uniform flow

boundary condition at infinity, a vorticity of strength proportional to RT ′1 is induced

on the drop surface which justifies why F1 ∝ R2. We plot the stratification enhanced

drag acting on a bubble for various ls/lo and Pr in figure 5.2.

We can simplify the expression for drag in some limiting cases. For ls/lo � Pr−1,

the buoyancy forces balance the viscous forces in the matching zone and the density

transport is governed by diffusion. When Pr−1 � ls/lo � Pr−1/4, again the buoyancy

forces balance the viscous forces in the matching zone but the density transport is

governed by advection. And for ls/lo � Pr−1/4, the inertia forces balance the viscous
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forces in the matching zone. In these three regimes, for u3 = 1, the drag simplifies to

F3 = −2πR


1 + 0.2207R ε for ls/lo � Pr−1

1 + 0.3533RRi1/3 for Pr−1 � ls/lo � Pr−1/4

1 + (R/8) Re for ls/lo � Pr−1/4

(5.31)

This relationship recovers the result reported for a rigid sphere [150] when λ→∞

(equivalently R = 3). We can rewrite the correction to drag in terms of Re, Fr, Pr

using Ri = Re
Fr2

. We multiply the resulting expression with Re−1 to find the drag

correction non-dimensionalized by ρ∞u
2
ca

2. We find that drag correction scales as

(ReFr)−1/2Pr1/4 in the diffusive regime and as (ReFr)−2/3 in the advective regime.

Numerical results of Ref. [147] have also captured these force scales. For Fr > Re−1,

it was noted in Ref. [147] the existence of another scaling regime in which the drag

correction scales as (ReFr)−1. For these Fr and for any Pr of interest (i.e., Pr ≤ 700),

our calculation holds but we do not see such a scaling regime perhaps due to some

inaccuracy in their numerical results. Our results also provide the flow field around a

settling rigid sphere in a stratified fluid when λ→∞. This solution was not provided

in Refs. [149,150].

5.4 Flow field

In this section, we derive the first order flow fields inside the drop and in the inner

zone outside the drop which will be used in the next section to determine the drop

deformation. These flows can be combined with the leading order flows in both zones

to determine a uniform approximation to the flow field. Generally, we need the entire

leading order flow in the outer zone to determine the required first order flows. But

in this problem, we see that only the uniform part of the leading order flow in the

outer zone T ′1 is sufficient to determine the required flows.

After substituting the expansion (5.18) in equations (5.7),(5.8),(5.10),(5.11), col-

lecting the terms of order ε and expressing the velocity fields in terms of stream

functions (equation (5.32)), we find that at first order, the stream function inside the
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drop ψ1,d and that in the inner zone outside the drop ψ′1 are governed by equations

(5.33)-(5.34).

w′1,r = − 1

r2

∂ψ′1
∂η

, w′1,θ
√

1− η2 = −1

r

∂ψ′1
∂r

, where η = cos θ, (5.32)

E4ψ1,d = 0, (5.33)

E4ψ′1 = 3Ru2
3

ls
lo

{
1

r2
− 1

2r3

(
3λ+ 2

λ+ 1

)
+

1

2r5

λ

λ+ 1

}
Q2 (η) . (5.34)

Here E2 = ∂2

∂r2
+

(1−η2)
r2

∂2

∂η2
, Qn (η) =

∫ η
−1
Pn (ξ) dξ and Pn is the Legendre polynomial

of degree n. The conditions of zero normal velocity on the drop surface, continuity of

tangential velocity and shear stress across the drop surface and the axisymmetricity

of velocity fields can be expressed in terms of stream functions as follows

ψ′1|r=1 = ψ1,d|r=1 = 0, (5.35)

∂ψ′1
∂r

∣∣∣∣
r=1

=
∂ψ1,d

∂r

∣∣∣∣
r=1

, (5.36)

∂

∂r

(
1

r2

∂ψ′1
∂r

)∣∣∣∣
r=1

= λ
∂

∂r

(
1

r2

∂ψ1,d

∂r

)∣∣∣∣
r=1

, (5.37)

ψ′1 =0 along η = ±1 and r ≥ 1,

ψ1,d =0 along η = ±1 and r ≤ 1.
(5.38)

The general solution of equation (5.34) that satisfies the zero stream function on

the drop surface and along the axis of symmetry is

ψ′1 =u2
3

ls
lo

R
8

{
r2 − r

2

(
3λ+ 2

λ+ 1

)
+

λ

λ+ 1
− 1

2r

(
λ

λ+ 1

)}
Q2 (η)

+
∞∑
n=1

{
An
(
rn+3 − r−n

)
+Bn

(
rn+1 − r−n

)
+ Cn

(
r2−n − r−n

)}
Qn (η).

(5.39)
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Using a relation similar to equation (5.32) between the leading order stream function

in the inner zone ψ′0 and the flow field w′0, we find that ψ′0 is given by

ψ′0 = −u3

2

[
Rr −

(
λ

λ+ 1

)
1

r

]
Q1 (η) . (5.40)

In the matching zone r � 1, we have

ψ′0 + εψ′1 =− R
2
u3rQ1 (η) + ε

ls
lo
u2

3

R
8
r2Q2 (η)

+ε
∞∑
n=1

{
Anr

n+3 +Bnr
n+1
}
Qn (η) +O (εr)

(5.41)

Again using a relation similar to equation (5.32), we connect the flow fields in the

outer zone T ′0, T ′1 to the stream functions Ψ′0, Ψ′1, in turn deriving the following

expressions for the stream functions

Ψ′0 = −R
2
u3rQ1 (η) ,Ψ′1 =

R
3
M33,rgspu3r

2Q1 (η) , (5.42)

⇒ Ψ′0 + εΨ′1 =

(
−R

2
u3r + ε

R
3
M33,rgspu3r

2

)
Q1 (η) . (5.43)

We now match equation (5.41) with equation (5.43) in the matching zone r � 1. For

this purpose, we require that ψ′1 does not grow faster than r2 and that the coefficient

of r2Q1 (η) is the same in these two equations. These conditions are satisfied provided

An = 0 for n ≥ 1, Bn = 0 for n ≥ 2, and B1 =
R
3
M33,rgspu3. (5.44)

We cannot match the term ε ls
lo
u2

3
R
8
r2Q2 (η) in ψ′0 + εψ′1 with any of the terms in

Ψ′0 + εΨ′1. This is expected as the term ls
lo
u2

3
R
8
r2Q2 (η) in ψ′1 represents a non-uniform

flow which cannot be matched with the (only found) uniform flow part of the leading

order flow (minus the Stokeslet) in the outer zone.

The solution of equation (5.33) that ensures the stream function to be zero on the

drop surface and along the axis of symmetry and which gives finite velocities at the

drop center is

ψ1,d =
∞∑
n=1

An,d
(
rn+3 − rn+1

)
Qn (η). (5.45)
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We now enforce the conditions (5.36), (5.37) on ψ′1, ψ1,d to determine the remaining

unknown constants Cn, An,d whose expressions are given as

C1 = −R
2u3

6
M33,rgsp, C2 = − ls

lo

u2
3

80

Rλ (5λ+ 6)

(λ+ 1)2 ,

A1,d =
Ru3

6

M33,rgsp

(λ+ 1)
, A2,d =

ls
lo

u2
3

80

R (4λ+ 5)

(λ+ 1)2 ,

Cn = An,d = 0 for n ≥ 3.

(5.46)

As the first order drag acting on the drop is given by [18] 4πC1 e3 = −2π
3
R2u3M33,rgsp e3,

this validates the drag determined in the previous section without calculating the flow

field. Using equations (5.44), (5.46), the expressions for the first order stream func-

tions inside the drop and in the inner zone outside the drop are given as

ψ1,d = − R
2 (λ+ 1)

{
M33,rgspu3

3

(
r2 − r4

)
Q1 (η) +

ls
lo

(4λ+ 5)

40 (λ+ 1)
u2

3

(
r3 − r5

)
Q2 (η)

}
,

(5.47)

ψ′1 =
R
3
M33,rgspu3

{
r2 − R

2
r +

1

2r

(
λ

λ+ 1

)}
Q1 (η)

+
R
8

ls
lo
u2

3

{
r2 − R

2
r +

1

10

λ (5λ+ 4)

(λ+ 1)2 −
1

2r

(
λ

λ+ 1

)
+

1

10

λ (5λ+ 6)

(λ+ 1)2

1

r2

}
Q2 (η) .

(5.48)

From these calculations, we notice that the stratification modifies the flow field

close to the drop at O (ε), so the flow field close to the drop in a stratified fluid

should be approximately same as that in a homogeneous fluid. We also infer that

the stratification should alter the flow field far away from the drop in a significant

manner because unlike the inner zone the influence of stratification is felt at leading

order in the outer zone. By looking at the equations governing flow field in the

outer zone equations (5.19)-(5.21), we see that this flow is essentially the flow due

to a point force singularity placed in a stratified fluid which was already analyzed

by Ardekani & Stocker [166] in the limit Pe � ε or ls/lo � Pr−1. Hence, the flow

field far away from the drop in a stratified fluid should be a Stratlet. Most of these

deductions are consistent with figure 5.3 where we plotted the streamlines associated
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Figure 5.3. : In the lab frame of reference, we compare the streamlines in a homoge-

neous fluid (red lines) with those in a stratified fluid (blue lines) both near the drop

(a) and far away from it (b). The streamlines in a stratified fluid are determined

from the composite expansion of flow field accurate to O (ε) at Pe � ε, λ = 1 and

ε = 0.1. For finding this composite expansion, we combined the flow fields in the

inner zone and the outer zone in the usual manner [173] where the flow in the outer

zone is determined by doing an inverse Fourier transform of equation (5.23) using the

FFT package of MATLAB [174].

with the composite expansion of flow field accurate to O (ε) for Pe � ε, λ = 1 and

ε = 0.1. From figure 5.3b, we see that the flow field far away from the drop in a

stratified fluid is not Stratlet. This is because, at these distances from the drop, the

Stokeslet contribution of the first order inner flow field is significant enough to alter

the expected Stratlet flow field. We expect to recover the Stratlet flow at even farther

distances from the drop.

5.5 Drop Deformation

In this section, we determine the leading order deformation of a drop rising in

a stratified fluid. For this purpose, we consider the normal stress balance condition
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on the drop surface and solve for the deformation knowing the flow field inside and

outside but close to the drop. The dimensionless normal stress boundary condition

is given by
[
λp′d − p′ + 2

∂w′r
∂r
− 2λ

∂wd,r
∂r

]
r=1

+
ga2η

νuc

(
1− γa

ρ∞
xd,3 − α

)
− ε3

2 ls
lo

Pr
η2

 =
1

Ca
(∇ · n) =

1

Ca

{
2− 2ζ − d

dη

[(
1− η2

) dζ
dη

]}
.

(5.49)

As the term ε3

2
ls
lo

Pr
η2 is much smaller than the remaining terms on the left-hand side of

equation (5.49) and also since we are only interested in finding the leading order drop

deformation, we neglect this term. Here xd,3 = xd ·e3, Ca = ρ∞νuc/σ is the Capillary

number which is the ratio of bulk viscous forces to the capillary forces, α = ρd
ρ∞

= λ
χ

is the density ratio and we assumed the drop’s shape to be r = 1 + ζ (η), max |ζ| � 1

in evaluating the curvature term.

We first evaluate the normal stress boundary condition accurate to O (1) to find

the drop deformation accurate to O (Ca). For this purpose, we simply substitute the

leading order pressure fields inside the drop and in the inner zone outside the drop

(see equation (5.50)), the corresponding radial derivative of flow fields (see equation

(5.51)) into equation (5.49) and simplify it to obtain equation (5.52)

p′0,d
∣∣
r=1

= − 5

(λ+ 1)
u3η + c0,d, p

′
0|r=1 =

1

2

(
3λ+ 2

λ+ 1

)
u3η + c0, (5.50)

∂w0,d,r

∂r

∣∣∣∣
r=1

=
∂w′0,r
∂r

∣∣∣∣
r=1

= − u3η

(λ+ 1)
, (5.51)

η

[
ga2

νuc

(
1− γa

ρ∞
xd,3 − α

)
− 3Ru3

2

]
+ Π0 =

1

Ca

{
2− 2ζ − d

dη

[(
1− η2

) dζ
dη

]}
.

(5.52)

Here c0, c0,d, and Π0 = λc0,d − c0 are constants.

As the drop is undergoing quasi-steady motion, the net force acting on it should

be zero. The drop experiences three kinds of forces – buoyancy, drag and its own
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weight. The buoyancy can be found by integrating the hydrostatic pressure acting

on the drop i.e., −
∫
r=1

p0ndS =
(

1− γa
ρ∞
xd,3

)
ga2

νuc

∫
r=1

r3ndS − ε3

2
ls
lo

Pr

∫
r=1

r2
3ndS =

4π
3

(
1− γa

ρ∞
xd,3

)
ga2

νuc
e3, where the last simplification is done using

∫
r=1

r3ndS = 4π
3

e3

and
∫
r=1

r2
3ndS = 0. Using this expression for buoyancy, equation (5.29) for drag and

usual expression for drop’s weight, the force balance condition simplifies to

ga2

νuc

(
1− γa

ρ∞
xd,3 − α

)
− 3Ru3

2
=
εR2

2
M33,rgspu3. (5.53)

This condition is accurate to O (ε) and we can simply set the right-hand side to zero

to find the force balance condition at O (1).

We now simplify the leading order normal stress boundary condition, equation

(5.52) using the force balance condition at O (1) to obtain

Π0 =
1

Ca

{
2− 2ζ − d

dη

[(
1− η2

) dζ
dη

]}
. (5.54)

Enforcing the constraints that the drop’s volume does not change
∫ 1

−1
ζ (η) dη = 0 and

its center of mass remains fixed
∫ 1

−1
ηζ (η) dη = 0 during the process of deformation,

we find that the deformation is zero i.e., ζ = 0 while Π0 = 2/Ca. This is not surprising

because at O (1), the stratification and inertia do not affect the flow and we have a

drop rising in a homogeneous fluid at zero Re which was shown to not deform [18,167].

To determine the effect of inertia and stratification on drop deformation, we eval-

uate the normal stress boundary condition accurate to O (ε). To do so, we substitute

equations (5.50), (5.51), (5.55)-(5.57) in equation (5.49) and simplify it to obtain

equation (5.58)

p′1,d
∣∣
r=1

=
ls
lo

αu3
2

24(λ+ 1)2λ
+ c1,d −

5 (3λ+ 2)M33,rgsp u3

3(λ+ 1)2 P1 (η)

+
ls
lo

u3
2 (−252λ3 + 20λα− 483λ2 + 20α− 210λ)

240λ(λ+ 1)3 P2 (η) ,

(5.55)

p′1|r=1 =− ls
lo

(
λ2 + 2λ+ 4

3

)
u3

2

16(λ+ 1)2 + c1 +
(3λ+ 2)2M33,rgspu3

6(λ+ 1)2 P1 (η)

+
ls
lo

u3
2 (135λ3 + 333λ2 + 272λ+ 80)

240(λ+ 1)3 P2 (η) ,

(5.56)
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∂w1,d,r

∂r

∣∣∣∣
r=1

=
∂w′1,r
∂r

∣∣∣∣
r=1

= −(3λ+ 2)M33,rgsp u3

3(λ+ 1)2 P1 (η)− ls
lo

(3λ+ 2) (4λ+ 5)u3
2

40(λ+ 1)3 P2 (η) ,

(5.57)



η

[
ga2

νuc

(
1− γa

ρ∞
xd,3 − α

)
− 3Ru3

2
− εR2

2
M33,rgspu3

]
+ Π0 + ε

[
Π1 +

ls
lo

u2
3

48

(3λ2 + 2α + 6λ+ 4)

(λ+ 1)2

]

+ ε
ls
lo

u2
3

240

 −243λ3 + 20αλ− 684λ2

+20α− 638λ− 200


(λ+ 1)3 P2 (η)


=

1

Ca

{
2− 2ζ − d

dη

[(
1− η2

) dζ
dη

]}
.

(5.58)

Here c1, c1,d, and Π1 = λc1,d−c1 are constants. We note that only the first term on the

left-hand side of equation (5.58) that is proportional to η contains the information of

stratification through this term’s dependence on M33,rgsp. But this term is identically

zero due to the force balance condition accurate to O (ε), equation (5.53), making

the drop deformation independent of stratification. Using Π0 = 2/Ca and the force

balance condition accurate to O (ε), equation (5.58) simplifies to

ε

[
Π1 +

ls
lo

u2
3

48

(3λ2 + 2α + 6λ+ 4)

(λ+ 1)2

]

+ ε
ls
lo

u2
3

240

 −243λ3 + 20αλ− 684λ2

+20α− 638λ− 200


(λ+ 1)3 P2 (η)


= − 1

Ca

{
2ζ +

d

dη

[(
1− η2

) dζ
dη

]}
.

(5.59)

We solve this equation for the drop deformation by making sure the drop’s volume

and its center of mass remain fixed during the process of deformation to obtain

ζ (η) =
Weu2

3

960

(−243λ3 + 20αλ− 684λ2 + 20α− 638λ− 200)

(λ+ 1)3 P2 (η) , (5.60)

where the Weber number We = Re Ca. We note that this is exactly the deformation

of a drop rising in a homogeneous fluid at small Re [18,167], in which case, the drop
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deforms into an oblate spheroid. Hence, the stratification does not affect the drop’s

deformation to this order of approximation. To understand this observation, let us

see how inertia or stratification modifies the flow field in the inner zone. Let us first

consider the case of zero inertia. The effect of stratification is to induce a uniform

flow far away from drop, due to which at O (ε), we have a stationary drop placed in a

homogeneous fluid that is undergoing uniform streaming flow far away from the drop.

As this problem is same as the drop moving in a homogeneous quiescent fluid at zero

Re, with change of reference frames, we expect the drop to not deform. Now, if we

include inertia, it has two effects. It modifies the strength of uniform flow far away

from the drop which again does not cause any drop deformation. It also induces a

non-uniform flow everywhere in the domain due to the particular integral of equation

(5.34) and this is the sole cause of drop deformation.

The leading order effect of deformation on the drag can be found by simply con-

sidering the deformed drop in a creeping flow of a homogeneous fluid [167]. As

the stratification does not cause any deformation of the drop, this deformation in-

duced change in the drag is same as that found for a drop motion in a homogeneous

fluid at small Re [167]. Briefly, this modification in the drag is O (We) and since

We =
(
ρ∞ν2

aσ

)
Re2 ∼ O (ε2), we conclude that the deformation affects the drag at

O (ε2). But we do not include this deformation induced drag in equation (5.29) be-

cause for consistent asymptotic expansion of drag accurate to O (ε2), we also need to

find O (ε2 ln ε) drag whose calculation is beyond the scope of this work. We expect

a non-zero drag at O (ε2 ln ε) based on the calculations for the motion of a drop in a

homogeneous fluid at small Re [167,175]

5.6 Drift Volume

In this section, we calculate the partial drift volume induced by a drop rising in a

stratified fluid. Drift volume is the volume enclosed between an initially marked plane

of fluid of infinite extent and the deformed plane as the drop travels normal to the
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Figure 5.4. : Schematic showing the definition of the partial drift volume Dp and

the coordinate systems involved. In the drop frame, at time t = 0, the marked fluid

disk (shown by blue straight line) is located at a distance −xd,3 from the drop. At

time t, the marked fluid plane deforms (shown by blue curved line) as it crosses the

drop. The area enclosed between the deformed and undeformed marked fluid planes

(multiplied by π) gives the partial drift volume Dp at time t (shown by light blue

region).

initial plane of fluid starting far ahead to far beyond the plane of fluid. When both

the extent of marked plane of fluid and the distance travelled by the drop relative

to the plane of fluid are finite, the volume encapsulated between the initial and the

deformed planes of fluid is referred to as the partial drift volume Dp [159] (see figure

5.4 for a schematic).

To make our notation consistent with earlier works on drift volume, we non-

dimensionalize velocity using |u3|, time using a/ |u3| and assume u3 > 0. All the
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variables that appear in this section are non-dimensionalized in this manner. In the

present notation, any field variable can be found by simply setting u3 = 1 in the

expression of that field variable derived in the previous sections. The marked plane

of fluid is a disk of finite radius and zero thickness. In the lab frame, we choose the

center of disk as the origin and denote the cylindrical coordinate variables about this

origin by X, x3. In the frame moving with the drop, we choose the center of drop

as the origin and denote the cylindrical coordinate variables about this origin by R,

r3. At time t = 0, the marked disk of fluid is located at a distance −xd,3 upstream of

the drop. Hence, r3 = x3 − (xd,3 + t) and R = X. As far as the flow field outside the

drop is concerned, the disturbance flow in the drop frame and the flow field in the

lab frame are the same. We used ψ′ to denote the stream function associated with

this flow. We denote the stream function associated with the flow field in the drop

frame by ψ. Note that ψ approaches −R2/2 far from the drop and ψ′ = ψ+ X2

2
. The

intersection of the streamline ψ = −h2/2 with the plane x3 = 0 gives the extent of

marked fluid disk. We denote the point of intersection by (x3, X) = (0, X∗ (t)) and

the stream function at this point by ψ′∗ (t).

In the lab frame, we apply the conservation of mass to the control volume (CV )

OABCD
∂

∂t

∫
CV

ρ dV +

∫
CS

ρw′ · n dS = 0, (5.61)

where CS denotes the control surface bounding the CV . We choose the surfaces

AB, BC, and CD as the material surfaces and since OA is a streamsurface, w′ · n is

non-zero only along the surface OD. Hence, the conservation of mass simplifies to

∂

∂t

∫
CV

ρ dV +

∫
OD

ρw′ · n dS = 0. (5.62)

In the context of Boussinesq approximation, ρ can be treated as constant in the con-

servation of mass. So, after integration with respect to time and expressing velocity

in terms of stream function, we have

Dp = 2π

t∫
0

ψ′∗ (t′) dt′ − [Vb (t)− Vb (0)] . (5.63)
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This expression for Dp is the same as that found in a homogeneous fluid [159] and it

says that the partial drift volume at time t is equal to the volume of fluid that has

passed through the plane x3 = 0 bounded by the streamline ψ = −h2/2 by time t.

Here Vb (t) denotes the volume of drop that has crossed the plane x3 = 0 by time t.

Assuming the extent of marked fluid disk is large compared to the drop, we neglect

the deflection of streamlines and set X∗ = h, hence ψ′∗ (t) = ψ′ (x3 = 0, X = h, t) =

ψ′ (r3 = − (xd,3 + t) , R = h, t). Defining τ = (xd,3 + t) /h and τ0 = xd,3/h, we obtain

Dp = 2πh

τ∫
τ0

ψ′∗ (τ ′) dτ ′ − [Vb (τ)− Vb (τ0)] . (5.64)

As Dp is at least O (h), we neglect the O (1) terms in the brackets. Also, as the partial

drift volume depends on the stream function far from the drop ψ′∗ (t), we simply use

the stream function in the outer zone to evaluate Dp. We can show that Dp is O (h2)

and the error in using the flow field in the outer zone to evaluate Dp is O (h) and

hence negligible compared to Dp.

Other than τ and τ0, Dp/ (Rh2) depends only on ξh = ξh for the values of ls/lo

given below

ξ =


ε for ls/lo � Pr−1

Ri1/3 for Pr−1 � ls/lo � Pr−1/4

Re for ls/lo � Pr−1/4.

(5.65)

Reh = Reh is the ratio of marked disk radius (h) to the distance from the sphere

at which inertia forces balance viscous forces. On the other hand, εh = εh (resp.

Rih
1/3 = Ri1/3h) is the ratio of marked disk radius to the distance from the sphere at

which buoyancy forces balance the viscous forces for low values of Pe (resp. for high

values of Pe).

To simplify equation (5.64) for the partial drift volume, we restrict our attention

to one of the regimes mentioned in equation (5.65). In this case, we can rescale the

variables in the outer zone as r̄ = ξr, w′ = ξw̄′, p′ = ξ2p̄′, ψ̄′ = ξψ′ and solve the

equations (5.19)-(5.21) in Fourier space. Unlike the Fourier and inverse Fourier trans-



160

forms mentioned in Sec. 5.3, in this section, the Fourier transforms involve rescaled

coordinate variables, i.e.,

ˆ̄ψ′ (k) =

∫
dr̄ ψ̄′ (r̄) e−ik·̄r and ψ̄′ (r̄) =

1

8π3

∫
dk ˆ̄ψ′ (k) eik·̄r. (5.66)

After finding the Fourier transform of w̄′, namely ˆ̄w
′
, we can calculate ˆ̄ψ′ using

ˆ̄ψ′ (k) = − 1

k3

(
∂ ˆ̄w
′
1

∂k1

+
∂ ˆ̄w
′
2

∂k2

)
. (5.67)

Rewriting the inverse Fourier transform in cylindrical coordinates and integrating

along the azimuthal direction, we obtain

ψ′∗ (t) =ψ′ (r3 = − (xd,3 + t) , R = h, t)

=
1

4π2ξ

∞∫
−∞

dk3

∞∫
0

dkr
ˆ̄ψ′ (kr, k3) e−ik3ξ(xd,3+t) krJ0 (ξhkr) dkrdk3.

(5.68)

Here, kr =
√
k1

2 + k2
2, J0 is the Bessel function of first kind and zeroth order, and

a factor of 1/ξ appears due to the relation ψ′ = ψ̄′/ξ. Rewriting equation (5.68) in

terms of τ , substituting for ψ′∗ (τ ′) in equation (5.64), changing the order of integration

and integrating first with respect to τ ′, we obtain the expression for Dp as

Dp = − ih2

2πξ2
h

∞∫
−∞

dk3

∞∫
0

dkr
ˆ̄ψ′ (kr, k3) J0 (ξhkr)

(
e−iξhk3τ0 − e−iξhk3τ

)
k3

. (5.69)

We can compute this double integral using integral2 command in MATLAB.

The partial drift volume formula (equation (5.69)) is valid in any of the three

regimes mentioned in equation (5.65). The drift volume for the inertia dominant

regime
(
ls/lo � Pr−1/4

)
was calculated in Ref. [159]. As the flow field characteristics

in the diffusion dominant regime
(
ls/lo � Pr−1

)
were already reported by Ardekani

& Stocker [166], we restrict the drift volume calculation to this regime only. In this

case ˆ̄ψ′ (kr, k3) is given by

ˆ̄ψ′ =
4πR (k8

3 + 2k6
3k

2
r − 2k2

3k
6
r − k8

r + k4
r)

(k6
3 + 3k4

3k
2
r + 3k2

3k
4
r + k6

r + k2
r)

2 . (5.70)
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Figure 5.5. : (a) The variation of Dp/ (Rh2) with τ for τ0 = −10 and 2εh = 0, 0.1, 1,

8. (b) In the limit τ0 → −∞ and τ → ∞, the variation of Dp/ (Rh2) with εh. Also

shown is a fit to the data for εh ≤ 1.

We plot the variation of Dp with τ and εh at τ0 = −10 in figure 5.5a. For a fixed

value of h, an increase in εh is equivalent to an increase in ε or the stratification. This

increases the tendency of the perturbed isopycnals (due to the passage of drop) to re-

turn to their unperturbed level which reduces the drift volume. As ˆ̄ψ′ (kr, k3) is even in

k3, the flow field is fore-aft symmetric. Due to this, the upstream drift volume is equal

to the downstream drift volume, i.e., Dp (τ, τ0 = 0, h) = −Dp (τ = −τ, τ0 = 0, h). The

fore-aft symmetry of the flow can also be seen from the flow field plots (see figure 5.3

here and figure 1b in Ref. [166]). Also, as Dp is O (h2) or at least O (h)� 1, the drop

drags a huge volume of fluid in comparison to its own volume as it rises in a stratified

fluid.

We note that the flow field due to a point force (far-feild representation of a

drop) in a stratified fluid is qualitatively similar to the flow due to a point force in

a homogeneous fluid but bounded by walls [166]. As the drift volume induced by a

sphere moving in a homogeneous fluid near the wall is reported to achieve a constant

value [158], we expect the drift volume induced by a drop rising in a stratified fluid to

also achieve a constant value that is function of εh. We plot the drift volume or the
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asymptotic value of Dp in the limit τ0 → −∞ and τ →∞ in figure 5.5b as a function

of εh. Here, we see that for εh ≤ 1, the drift volume is proportional to ln (εh).

The time partial drift volume takes to attain the constant asymptotic value is

inversely proportional to εh. In the limit εh → 0, the partial drift volume takes

infinite time to achieve this asymptotic value or such constant drift volume is never

achieved. This makes sense, as in this limit, the inner region approaches infinity, so

the entire fluid is homogeneous in which case the partial drift volume diverges with

time. We note that in the limit εh → 0, we can treat the fluid in the inner zone as

homogeneous as far as the partial drift volume calculation is concerned because the

first order flow in inner zone does not contribute to the leading order partial drift

volume.

5.7 Conclusions

For a drop rising in a linearly density stratified fluid, we calculated the drag,

deformation and drift volume induced by the drop, and the flow field surrounding the

drop. We assumed the drop has a constant density and uniform interfacial tension.

Our calculation of drag, deformation and flow field are valid when the inertia and

stratification effects are small (but not negligible), the kinematic viscosity ratio χ ≥ 1,

and for arbitrary values of the Prandtl number Pr and the dynamic viscosity ratio λ.

For the Reynolds number Re ≈ 0.1, this corresponds to the Froude number Fr� 0.08

for the temperature stratified air, Fr� 0.26 for the temperature stratified water and

Fr � 2.64 for the salt stratified water. The drift volume calculation, on the other

hand, is valid for small stratification and advective transport rate of density, and

negligible inertia.

The combined influence of stratification and inertia is to increase the drag and

this drag enhancement on the drop is equal to
(

3λ+2
3(λ+1)

)2

times the drag enhancement

on a rigid sphere. The leading order effect of stratification is to induce a uniform flow

far away from the drop which does not cause any drop deformation. This leading
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order effect of stratification holds even for a sedimenting particle of arbitrary shape

due to which the stratification does not generate any hydrodynamic torque on a

non-skew particle [176]. In a stratified fluid, the return of perturbed isopycnals to

their unperturbed level causes a reflux of fluid, which reduces the partial drift volume

induced by the drop. This in turn makes the drop to induce a finite drift volume (yet

large compared to drop’s volume) in a stratified fluid unlike an infinite drift volume

induced in a homogeneous fluid. Our study is the first theoretical calculation of drift

volume induced by objects (drop or rigid sphere) in a density stratified fluid and

this calculation is valuable in the context of the ongoing debate in the literature on

biogenic mixing in the oceans.

Prior to our calculation, it was known that a rising drop in a homogeneous fluid at

zero inertia is the only situation in which the drop does not exhibit any deformation

[18]. In all other problems concerned with drop motion, the drop deforms. Through

our calculation, we discovered an additional scenario in which the drop does not

deform–a rising drop in a density stratified fluid at zero inertia. It is then interesting

to find out if a drop of arbitrary shape would evolve to a spherical shape after long

time. This problem is essentially identifying the stability of spherical shape, for a

drop rising in a density stratified fluid at zero inertia, for both infinitesimal [177] and

finite [178] perturbations from the sphere.

In the event of oil spill, surfactants are usually added to breakdown the heavier oil

components into small drops. These drops are always surrounded by marine microbes

as they serve as nutrient sources to the microbes. To understand the bioremediation

of oil spill by marine microbes, in an earlier work, we have solved this problem without

considering the effects of density stratification by modeling the microbe as a force-

dipole and using the method of images to study the hydrodynamic interaction between

drops and nearby microbes [16, 17, 73, 179]. We can now borrow the ideas from the

present work to understand how density stratification modifies interaction of microbes

with drops rising in density stratified oceans.
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6. SQUIRMING IN DENSITY-STRATIFIED FLUIDS

6.1 Introduction

The water in oceans, ponds or lakes is density-stratified due to the variations

in the temperature or the salt concentration with height. This stratification affects

the motility of organisms that live in these environments [87]. For example, some

species of copepods cannot cross the thermoclines [180] whereas the haloclines act as

barriers to some species of dinoflagellates [181]. Stratification was also shown to be a

necessary condition for the formation of cyanobacteria blooms in the Maude Weir pool

which could have significant human health risks due to the toxins released by these

bacteria [182]. The stratification also alters the contribution of marine organisms

to mixing [161, 183]. This contribution could be drift-based (volume dragged by

the motion of particle, drop or organism) or energy-based (a part of the work done

by the organism is lost in mixing the surrounding fluid). Hence, the study of an

organism in a density-stratified fluid would unravel the impact of stratification on

the motility and flow characteristics which are important from the fundamental fluid

mechanics perspective. And these findings would serve as a first step in determining

the stratification effects on the algal bloom formation and on the biogenic mixing.

There are several works analyzing the enhanced drag acting on a towed particle in a

density-stratified fluid [5,6]. On the theoretical side, such calculation was performed

for small stratification strengths and negligible inertia by taking a perturbation in

terms of the stratification strength. Such a perturbation turns out to be singular

with the boundary layer occurring far from the particle, the exact location of the

boundary layer depends on whether advective or diffusive transport rate of density is

dominant [148, 149, 184]. This boundary layer separates the region near the particle

This chapter, with few modifications, is submitted for publication in Physical Review Fluids.
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where buoyancy effects are negligible from the region far from the particle where

buoyancy effects are as important as the viscous effects. This problem of a towed

particle in a quiescent stratified fluid is similar to the problem of a towed particle

in a homogeneous fluid undergoing linear flow at small inertia [168,169] and because

of this, the techniques developed for the latter case were used to solve the problems

associated with the former case. At negligible inertia, the stratification induces a

uniform flow far from the particle. Due to this uniform flow, a towed spherical particle

experiences lift and enhanced drag forces [148,149,184], a towed drop does not deform

[185] and a towed non-skew particle does not experience any hydrodynamic torque

[176]. Recent efforts on this topic focused on studying the simultaneous influence

of inertia and stratification on the drag experienced by a towed particle [150] or a

drop [185].

Despite the ecological significance of swimming at pycnoclines, very few works

analyzed this situation. The first work in this field reported the flow due to a point

force and a force-dipole placed in a stratified fluid at zero inertia, weak stratification

and small advective transport rate of density [166]. This work also found that organ-

isms larger than O (100 µm) are affected by stratification despite the length scale over

which density varies ∼ O (1 km) is much larger than the organism’s size. A squirmer

in a stratified fluid was found to exhibit smaller detection volume but only at the

cost of reduced nutrient uptake per unit energy expended [87]. Modeling the organ-

ism as a force-dipole placed in a stratified fluid, it was found that the contribution of

small organisms to the oceanic circulation is negligible [186]. Similarly, a simulation

of dilute suspension of squirmers in a stratified fluid revealed that even intermediate

sized organisms do not contribute to the oceanic energy budget although they pro-

duce an enhanced local mixing [162]. The speed and power expenditure of a Taylor’s

swimming sheet in a stratified fluid was found to exhibit non-trivial dependencies on

the inertia, stratification, and diffusivity of the stratifying agent [187].

Unlike the works on particles in stratified fluids, the works on swimming organisms

in stratified fluids made an assumption on the density of the organisms: organism’s
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density is equal to the ambient fluid density evaluated at the organism’s center [87]

or organism regulates its density to stay neutrally buoyant [187]. Even though there

are organisms that use certain mechanisms to change their density (see Guasto et

al. [188]) and hence possibly become neutrally buoyant, net buoyancy of the organ-

ism was found to be one of the causes of diel vertical migration [189]. It seems

appropriate to assume the density of the organism is constant, as a first step towards

understanding the consequences of the net buoyancy on the motility of the organism.

Such calculation will be general enough that in some limit, the organism is like a

swimmer whose density is equal to the ambient fluid density evaluated at the swim-

mer’s position, and in this limit, we would have results similar to those reported by

Doostmohammadi et al. [87].

Even though Ardekani & Stocker [166] found the flow due to a point force or

force-dipole placed in a stratified fluid, it is not obvious how this flow is related to

the flow due to a towed particle or swimming organism in a stratified fluid. Once this

relationship is established, one can use the point force singularity solution to find the

hydrodynamic interactions [2] as well as the drift volume induced by the particles or

organisms [159, 165, 185]. It is apparent from Candelier et al. [149] calculation that

the far-field flow due to a towed spherical particle in a stratified fluid at negligible

advective transport rate of density is the same as the flow due to a point force placed

in a stratified fluid [166]. Similar connection between the flow due to a finite sized

swimming organism and point force singularity solutions in a stratified fluid should

be made.

To overcome the shortcomings of the previous works, here we anlayze the motion

of a swimming organism of finite size and constant density through a linearly density-

stratified fluid. We quantify how stratification affects the motility of the organism

and the flow close to and far from the organism. We also relate the far-field flow to

the point force singularity solution in a stratified fluid. As mentioned earlier, while

the far-field flow is useful in finding the hydrodynamic interactions and the induced

drift volume, the near-field flow is useful in finding the power expenditure and the
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swimming efficiency, and the complete flow is useful in finding the nutrient uptake.

Depending on the position of the swimmer relative to its neutrally buoyant position

(NBP), we observe two different physics. Here, NBP is the position in the fluid where

ambient fluid density equals the swimmer’s density. Far from NBP, the swimmer is

like a settling sphere, the stratification induced modifications to its motility can be

predicted from the enhanced drag acting on a towed sphere, and the far-field flow is

the same as that due to a point force placed in a stratified fluid. Close to NBP, the

swimmer is like a force-free swimmer, the modifications in the motility depend on the

stresslet exerted by the swimmer, and the far-field flow is the same as that due to a

force-dipole placed in a stratified fluid.

We organize this paper as follows. We present the dimensionless governing equa-

tions and boundary conditions associated with the flow and density disturbances

caused by a squirmer in a stratified fluid in Sec. 6.2. By taking a perturbation in

terms of stratification strength, we solve these governing equations for a swimmer far

from and close to its neutrally buoyant position in Secs. 6.3.1, 6.3.2, respectively. We

then analyze the swimming velocity by deriving the scaling laws in Sec. 6.4, visual-

ize the flow field surrounding the swimmer in Sec. 6.5 and provide some concluding

remarks in Sec. 6.6.

6.2 Problem Formulation

In this section, we present the dimensionless governing equations and boundary

conditions for the flow and density disturbances caused by the motion of a swimming

microorganism in a density stratified fluid (see figure 6.1 for schematic). These equa-

tions are similar to those reported for a settling sphere in a stratified fluid [149,150].

We work in a frame of reference translating with the swimmer. In this frame, far

away from the swimmer, the flow field asymptotes to the negative of the unknown

swimming velocity U i.e., as r = |r| → ∞, w ∼ −U. The density approaches the

ambient density which decreases linearly with an increase in height, i.e., as r → ∞,
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Figure 6.1. : A schematic showing a spherical model swimming microorganism in

a density-stratified fluid, the ambient density of which decreases linearly with an

increase in height. The organism is oriented vertically upwards as shown by the red

arrow.
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ρ ∼ ρ0 = ρ∞ − γz. The pressure asymptotes to an ambient pressure p0, which

satisfies the hydrostatic equation −∇p0 +ρ0g = 0. Here, x = (x, y, z), r = (r1, r2, r3),

respectively, are the position vectors with respect to an origin in lab frame and the

center of the swimmer. These two are related by x = r+xs, where xs gives the position

of swimmer in the lab frame. Also, ρ∞ is the reference density, γ > 0 is a density

gradient and g = −ge3 is a gravity vector, where g is the gravitational acceleration

and e3 is a unit vector that points vertically upwards. Usually, the variation in

temperature or salt concentration with position causes the variation in density. When

the changes in temperature or salt concentration are small, the changes in density

are linearly proportional to the changes in temperature or salt concentration and one

can directly write down an advection-diffusion equation for density instead of such an

equation for temperature or salt concentration. We use the Boussinesq approximation.

According to this approximation, the density can be treated as constant (= ρ∞) in

all the terms of the equations governing the flow except the buoyancy term, all other

properties can be treated as constant while neglecting the viscous dissipation term

in the density transport equation. The conditions required for the validity of the

Boussinesq approximation in natural convection problems can be found in Ref. [190]

while these conditions for the flow induced by a settling motion of a particle in

a density-stratified fluid can be found in Ref. [149]. Hence, the continuity and the

Navier-Stokes equations governing the flow field, and the advection-diffusion equation

governing the density transport are given as follows

∇ ·w = 0, (6.1)

ρ∞

(
∂w

∂t
+ (w · ∇) w

)
= −∇p+ ρ∞ν∇2w + ρg − ρ∞

dU

dt
, (6.2)

∂ρ

∂t
+ w · ∇ρ = κ∇2ρ. (6.3)

Here, ν, κ, respectively, are the kinematic viscosity of the fluid and the diffusion

coefficient for the density transport. The choice of a moving frame of reference to
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write the governing equations leads to the occurrence of term ρ∞
dU
dt

in the Navier-

Stokes equations.

Following Candelier et al. [149] and Mehaddi et al. [150], we rewrite the governing

equations and boundary conditions in terms of disturbance variables. The flow, den-

sity and pressure disturbance are defined as w′ = w +U, ρ′ = ρ−ρ0, and p′ = p−p0.

Hence, the governing equations concerning the disturbance variables are

∇ ·w′ = 0, (6.4)

ρ∞

[
∂w′

∂t
+ (w′ · ∇) w′ − (U · ∇) w′

]
= −∇p′ + ρ∞ν∇2w′ + ρ′g, (6.5)

∂ρ′

∂t
+ w′ · ∇ρ′ −U · ∇ρ′ − γ (w′ · e3) = κ∇2ρ′. (6.6)

We non-dimensionalize these equations. For this purpose, we use the characteristic

length scale of the swimmer denoted by ‘a’, velocity scale uc = max {USed, USwim} and

a pressure or stress scale, pc = ρ∞νuc/a, to non-dimensionalize the length, velocity

and pressure, respectively. Here USwim is the swimmer’s speed in a homogeneous fluid

of density equal to the swimmer’s density while USed is the sedimenting speed of a

sphere of radius ‘a’ and density ρs in a homogeneous fluid of density equal to the

ambient density (ρ0) evaluated at swimmer’s position. Clearly, USwim depends on the

model used to represent the swimming microorganism while USed is given by

USed =
2

9

a2g

ν

∣∣∣∣1− γa

ρ∞
xs3 − α

∣∣∣∣ . (6.7)

Here, xs3 = xs · e3, α = ρs/ρ∞, ρs is the (constant) density of the swimmer and xs3

is dimensionless. Assuming the quasi-steady conditions to prevail and denoting the

dimensionless variables using the letters that were used to denote the dimensional

variables, the dimensionless governing equations are

∇ ·w′ = 0, (6.8)

Re [w′ · ∇w′ −U · ∇w′] = −∇p′ +∇2w′ −Riρ′e3, (6.9)
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Pe [w′ · ∇ρ′ −U · ∇ρ′ −w′ · e3] = ∇2ρ′. (6.10)

Here Re, Ri, Pe are the Reynolds number, the viscous Richardson number and the

Peclet number. Re is the ratio of inertia forces to the viscous forces, Ri is the ratio

of buoyancy forces to the viscous forces while Pe is the ratio of advective transport

rate of density to its diffusive transport rate. Their precise expressions are given by

Re =
auc
ν
, Ri =

γga3

ρ∞νuc
, P e =

auc
κ
. (6.11)

As expected, far away from the swimmer, all the disturbance quantities decay to zero.

w′ = 0, ρ′ = 0 as r →∞. (6.12)

We now model the swimming microorganism as a spherical squirmer of radius ‘a’

with only two tangential squirming modes [14, 15]. We assume the squirmer has a

constant density ρs and is oriented either vertically upwards or downwards. Because

of the latter assumption, the problem becomes axisymmetric simplifying the resulting

calculations. We then apply a no-slip and no-penetration boundary conditions for the

flow field on the swimmer’s surface

w′ = U + us at r = 1, us = (b1 sin θs + b2 sin θs cos θs) eθs , (6.13)

where θs is an angle measured from the swimming direction and eθs is a unit vector in

the increasing direction of θs. Also bn = Bn/uc, Bn is the nth squirming mode and n =

1, 2. For this model microorganism, USwim = 2
3
B1. For an upward oriented swimmer,

θs, eθs are same as the polar angle θ = cos−1 (r · e3/r) and the unit vector in the polar

direction eθ due to which the slip us = (b1 sin θ + b2 sin θ cos θ) eθ. For a downward

oriented swimmer, θs = π − θ, eθs = −eθ, hence us = (−b1 sin θ + b2 sin θ cos θ) eθ.

We do the calculation for an upward oriented swimmer and substitute −b1 for b1

in the results of an upward oriented swimmer to obtain the results of a downward
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9/
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NBP

Figure 6.2. : Schematic showing the range of swimmer positions with respect to the

neutrally buoyant position (NBP) xs3 = xnbs3 = ρ∞
γa

(1− α) where it is termed non-

neutrally buoyant
(∣∣xs3 − xnbs3∣∣ ≥ O

(
9

2RiUSwim

)
⇒ USed

USwim
≥ O (1)

)
or neutrally buoy-

ant
(∣∣xs3 − xnbs3∣∣� O

(
9

2RiUSwim

)
⇒ USed

USwim
� O (1)

)
swimmer. Here RiUSwim is the

viscous Richardson number based on USwim given by RiUSwim = 3γga3

2ρ∞νB1
.

oriented swimmer. We also impose the no-flux boundary condition for density on the

swimmer’s surface which in terms of disturbance density is

∂ρ′

∂r
= cos θ at r = 1. (6.14)

For salt stratification, this corresponds to a swimmer that is impermeable to the salt

while for temperature stratification, this means that the swimmer surface is adiabatic.

Neglecting the inertia of the swimmer, the net force acting on it should be zero.

The swimmer experiences three forces—its own weight, buoyancy and drag (FD).

Denoting the sum of weight and buoyancy by Fe e3, the force balance condition is

Fe e3 + FD = 0, Fe =
4π

3

a2g

νuc

(
1− γa

ρ∞
xs3 − α

)
. (6.15)

Depending on the location of the swimmer relative to its neutrally buoyant posi-

tion (NBP) xs3 = xnbs3 = ρ∞
γa

(1− α), the ratio USed/USwim can be much larger than or

even much smaller than 1 (see figure 6.2). When the swimmer is far from its NBP,

USed/USwim ≥ O (1) and we call such swimmer a non-neutrally buoyant swimmer.
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On the other hand, when the swimmer is close to its NBP, USed/USwim � 1, and we

call such swimmer a neutrally-buoyant swimmer. Naturally, uc = USed for the former

swimmer while uc = USwim for the latter swimmer. As the far-field representation of

these two swimmers is different (Stokeslet vs Stokes-dipole or quadrupole), the ap-

proach to solve the governing equations is also different. We describe the method to

solve the governing equations for small Ri, Pe and negligible inertia in the following

section. We also explain why the calculation of swimming velocity is valid for any

Peclet number.

6.3 Solution Methodology

6.3.1 Non-neutrally buoyant swimmer

As the dimensionless governing equations, boundary conditions and the far-field

representation for this squirmer are similar to those of a settling sphere, the solution

procedure is also similar to that of a settling sphere [149, 150]. However, unlike the

sphere towed at a constant velocity, the squirmer has a slip on its surface and its

swimming velocity is unknown.

We attempt a regular perturbation in Ri assuming Re � 1 to see if the solu-

tion to this problem can be obtained using a regular perturbation expansion. We

denote the leading order variables in Ri as w′0, p′0, ρ′0 and U0. Referring to equations

(6.8), (6.9), we see that the leading order flow is governed by the Stokes equations.

Importantly, the buoyancy terms are negligible throughout the entire domain when

regular perturbation expansion is used. When the swimmer is far from its NBP, we

expect it to experience a O (1) external force (weight + buoyancy). Hence, the flow

field far from the swimmer should be a Stokeslet, i.e., for r � 1, w′0 ∼ 1/r. As w′0

is O (1) on the swimmer’s surface (see equation (6.13)), we expect w′0 ∼ O (1) for

r ∼ O (1). Analysis of the exact expression of w′0 (see equations (6.22)-(6.24)) also
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reveals the same scales both close to and far from the swimmer. The leading order

density disturbance ρ′0 is governed by the following advection-diffusion equation

Pe (w′0 · ∇ρ′0 −U0 · ∇ρ′0 −w′0 · e3) = ∇2ρ′0. (6.16)

As it is not possible to solve this equation analytically for any Pe, we do a small Pe

expansion to find that (see Appendix 6.7 for this calculation)

ρ′0 ∼ max

(
1

r2
, P er

)
for r < Pe−1. (6.17)

Hence, for r ∼ O (1), ρ′0 ∼ O (1) while for Pe−1 > r � Pe−1/3, ρ′0 ∼ Per. We now

estimate the order of magnitude of viscous and buoyancy terms both close to and

far away from the swimmer to see if the buoyancy terms are negligible compared to

the viscous terms throughout the entire domain. This way, we can verify the validity

of the regular perturbation expansion in Ri. Close to the swimmer r ∼ O (1), the

viscous terms ∇2w′0 ∼ O (1) while the buoyancy terms Riρ′0 ∼ Ri � O (1). Hence,

close to the swimmer, the buoyancy terms can be neglected. Far away from the

swimmer Pe−1 > r � Pe−1/3, the viscous terms ∇2w′0 ∼ 1/r3 while the buoyancy

terms Riρ′0 ∼ RiPer. Hence at r ∼ 1
ε
� 1, ε = (RiPe)1/4, the buoyancy terms are

not negligible and are in fact as important as the viscous terms, contrary to the notion

of regular perturbation analysis. This makes the regular perturbation expansion in Ri

incorrect and one should do the singular perturbation expansion inRi (or ε), analyzing

separately the regions close to (inner region) and far away from (outer region) the

swimmer. In the inner region (1 ≤ r ≤ O (1/ε)) the buoyancy effects are negligible

while in the outer region (r ≥ O (1/ε)) the buoyancy effects are as important as the

viscous effects. As the density scale ρ′0 ∼ Pe r valid for Pe−1 < r � Pe−1/3 is used in

determining the matching zone (or boundary layer) location r ∼ 1/ε, we expect the

singular perturbation analysis to hold for Pe−1 < 1
ε
� Pe−1/3 or ε3 � Pe < ε.

We split the range of swimmer positions at which it is non-neutrally buoyant

USed
USwim

≥ O (1) into three regimes—(a) USed
USwim

∼ O (1), (b) USed
USwim

∼ 1
ε
� 1 and (c)

USed
USwim

� 1
ε

(see figure 6.3). The idea behind such splitting process is given as fol-

lows: as the swimmer moves away from its NBP, its sedimentation speed increases
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Figure 6.3. : A region in which the swimmer is termed non-neutrally buoyant∣∣xs3 − xnbs3∣∣ ≥ O
(

9
2RiUSwim

)
(blue region in figure 6.2) is divided into three subre-

gions for the ease of analysis: (a)
∣∣xs3 − xnbs3∣∣ ∼ O

(
9

2RiUSwim

)
, (b)

∣∣xs3 − xnbs3∣∣ ∼
O
(

9
2εRiUSwim

)
, and (c)

∣∣xs3 − xnbs3∣∣ � 9
2εRiUSwim

. In these three regions, respectively,

USed
USwim

∼ O (1), USed
USwim

∼ O
(

1
ε

)
, and USed

USwim
� 1

ε
.
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while the slip velocity (∝ B1, B2) stays the same. Hence the slip velocity relative

to the sedimentation speed (∝ b1, b2) decreases from O (1)
(

USed
USwim

∼ O (1)
)

to O (ε)(
USed
USwim

∼ 1
ε

)
and to � ε

(
USed
USwim

� 1
ε

)
. So, it is appropriate to analyze the three

cases separately. For USed
USwim

∼ O (1), the dimensionless slip is O (1) and it affects the

flow and the swimming velocity at both leading order and first order. For USed
USwim

∼ 1
ε
,

the dimensionless slip is O (ε) and it only affects the first order flow field while for

USed
USwim

� 1
ε
, the dimensionless slip is � ε and it does not affect the flow or swimming

velocity accurate to O (ε). Here, we restrict the Reynolds number and the swimmer’s

position limiting the validity of singular perturbation calculation to

ε� 1, ε3 � Pe < ε, Re� ε,
USed
USwim

∼ O (1) . (6.18)

The third condition ensures that inertia effects are negligible everywhere while the

fourth condition restricts the swimmer’s position to
∣∣xs3 − xnbs3∣∣ ∼ O

(
9

2RiUSwim

)
(see

figure 6.3). One should not worry about the restrictions imposed by these limits as

we will show later that the flow field and the swimming velocity found are valid for

broader range of swimmer positions USed
USwim

≥ O (1) or
∣∣xs3 − xnbs3∣∣ ≥ O

(
9

2RiUSwim

)
.We

will also show that the flow field found is valid at both small and large Pe while the

swimming velocity derived is valid for all Pe. We finally note that we can express ε

in terms of the fundamental length scale associated with stratification ls =
(
νκ
N2

)1/4

via ε = a/ls, where N =
√
− g
ρ∞

dρ0
dz

is the Brunt-Vaisala frequency.

Inner zone

In this zone, all the variables can be expanded as follows

{w′, p′,U} = {w′0, p′0,U0}+ ε {w′1, p′1,U1}+ o (ε) ,

ρ′ =ρ′0 + o (1) .
(6.19)

The gauge function at leading order is determined from the boundary conditions on

the swimmer surface: w′0 ∼ O (1), ρ′0 ∼ O (1) at r = 1, hence we expect the leading

order gauge function is 1. The gauge function at first order ε = (RiPe)1/4 is found
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by matching the flow field in the inner zone with that in the outer zone. Clearly this

gauge function depends on the non-integer power of Ri and this is not surprising in

the singular perturbation analysis, where the gauge functions usually are fractional

powers of small parameter. Equation (6.19) suggests the following expansion for the

drag acting on the swimmer

FD = F0,D + εF1,D + o (ε) , (6.20)

where F0,D, F1,D using equation (6.15) are given by

F0,D = −Fee3, F1,D = 0. (6.21)

At leading order, the disturbance flow satisfies the Stokes equations with the

boundary condition w′0|r=1 = U0 + us, and the swimmer experiences an external

force Fee3. Given the linearity of the problem, the leading order disturbance flow

w′0 is simply the sum of the flow due to a settling sphere of radius a, density ρs in

a homogeneous fluid of density ρ∞ − γxs3 [3, 18] and the flow due to a squirmer in

a homogeneous fluid of density ρs [15, 85]. Similarly, the leading order swimming

velocity U0 is equal to the sum of the sedimentation velocity of a sphere of radius a,

density ρs in a homogeneous fluid of density ρ∞− γxs3 and the swimming velocity of

a squirmer in a homogeneous fluid of density ρs. The corresponding speeds are USed

and USwim.

w′0 = w′0rer + w′0θeθ, U0 = U0e3, (6.22)

w′0r =
b2 (1− r2) (3cos2θ − 1)− 2r cos θ

((
b1 − 3U0

2

)
r2 − b1 + U0

2

)
2r4

,

w′0θ =
sin θ

(
2b2 cos θ + r

{(
b1 − 3U0

2

)
r2 + b1 − U0

2

})
2r4

,

(6.23)

U0 =
2

9

a2g

νuc

(
1− γa

ρ∞
xs3 − α

)
+

2b1

3
. (6.24)

At first order, the disturbance flow w′1 still satisfies the Stokes equations with the

boundary condition w′1|r=1 = U1, and the swimmer does not experience any external

force or F1,D = 0. The boundary condition far away from the swimmer is determined

by matching the flow in the inner zone with the flow in the outer zone.
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Outer zone

In this zone, we represent the swimmer by a point force and add a term −F0,Dδ (r)

on the right hand side of the Navier-Stokes equations as the swimmer exerts the

force −F0,D on the fluid [168, 169]. Similar such term in the advection-diffusion

equation and the higher order force singularities in the Navier-Stokes equations can

be neglected as far as the calculation of leading order disturbance variables in the

outer zone is concerned. Far away from the swimmer, as w′ ∼ 1/r � U, we neglect

w′ ·∇ρ′ in comparison to U·∇ρ′. We rescale the length, velocity, pressure and density

as r̃ = εr, w′ = εw̃′, p′ = ε2p̃′, and ρ′ = Peρ̃′/ε. In terms of these rescaled variables,

the leading order disturbance flow and density in the outer zone are governed by

∇̃ · w̃′ = 0, (6.25)

−∇̃p̃′ + ∇̃2w̃′ − ρ̃′e3 − F0,Dδ (r̃) = 0, (6.26)

−Pe
(
U0 · ∇̃ρ̃′

)
− ε (w̃′ · e3) = ε ∇̃2ρ̃′. (6.27)

As these equations are linear, we solve them in the Fourier space. Denoting the Fourier

transform of w̃′ (r̃) by ŵ′ (k), we define the Fourier and inverse Fourier transforms as

ŵ′ (k) =

∫
w̃′ (r̃) e−ik·̃rdr̃, w̃′ (r̃) =

1

8π3

∫
ŵ′ (k) eik·̃rdk, (6.28)

where i =
√
−1. Hence, in Fourier space, the leading order disturbance flow in outer

zone is given by

ŵ′ =
[
k2I + A−B

]−1
EFee3, (6.29)

where k =
√

k · k, I is an identity tensor and the tensors A, B, E are given by

A =
εe3e3

(εk2 − iPe (U0 · k))
, B =

εk3ke3

k2 (εk2 − iPe (U0 · k))
, E =

(
I− kk

k2

)
. (6.30)

In equation (6.29), we represented the tensors as matrices and vectors as column

matrices.
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Matching Condition

As r � 1 and r̃ � 1 represent the same region in the physical space, the inner

solution w′0 (r) + εw′1 (r) should have the same functional form as the outer solution

εw̃′ (r̃) in this region of space

lim
r�1

[w′0 (r) + εw′1 (r)]⇔ lim
r̃�1

εw̃′ (r̃) . (6.31)

This is the matching condition. Here the notation A ⇔ B means that A has the same

functional form as B [18]. At leading order, as the swimmer experiences an external

force Fee3 = −F0,D, far away from the swimmer, the leading order flow w′0 (r) should

be the same as the Stokeslet flow wS (r) i.e., for r � 1, w′0 (r) ∼ wS (r), where wS (r)

is governed by

∇ ·wS = 0, −∇pS +∇2wS − F0,Dδ (r) = 0. (6.32)

Hence, the matching condition simplifies to

wS (r) + lim
r�1

εw′1 (r)⇔ lim
r̃�1

εw̃′ (r̃) . (6.33)

Setting r = r̃/ε in wS (r), we get wS (r) = εwS (r̃). As wS (r̃) is a homogeneous

function in r̃, we have

wS (r̃) = lim
r̃�1

wS (r̃) . (6.34)

Using these, the matching condition becomes

lim
r�1

εw′1 (r)⇔ lim
r̃→0

ε [w̃′ (r̃)−wS (r̃)]

⇔ lim
r̃→0

ε

8π3

∫
[ŵ′ (k)− ŵS (k)] eik·̃rdk.

(6.35)

We rescale the length in equation (6.32), use wS (r) = εwS (r̃) and solve the resulting

equation in Fourier space to find the Fourier transform of wS (r̃) namely ŵS (k)

ŵS =
Fe
k2

E · e3. (6.36)

We now simplify the integral in the matching condition. Following Zvirin & Chadwick

[148], we divide the region of integration into two parts—one region in which k ≤ r̃−σ
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and the other region in which k > r̃−σ, where 0 < σ < 1. We can show that the

integral over latter region is much less than O (ε) and hence it does not contribute

to the matching condition while the integral over former region is O (ε) and it is a

uniform flow (see Appendix 6.8 for this calculation). Hence, the matching condition

simplifies to

lim
r�1

w′1 (r)⇔ 1

8π3

∫
[ŵ′ (k)− ŵS (k)] dk, (6.37)

where the right hand side of the matching condition is a uniform flow.

Recall that the first order disturbance flow in the inner zone w′1 satisfies the

Stokes equations along with the conditions w′1|r=1 = U1, the matching condition

(6.37) and the force-free constraint F1,D = 0. A simple guess w′1 = U1 = uniform

flow on the right hand side of the matching condition satisfies all the constraints.

After simplifying the integral in this uniform flow, we obtain

w′1 = U1 = U1e3, U1 = U1S =
Fe
4π2

∫ ∞
k=0

dk

∫ π

θ=0

dθ
sin5θ

cos2θ − k4 − 1 + iPe
ε

cos θk3U0

.

(6.38a, b)

For a vertically towed rigid sphere, U = Ue3 is constant, Fe = 6πU , and the expres-

sion for the far-field uniform flow when U = 1

3

2π

∫ ∞
k=0

dk

∫ π

θ=0

dθ
sin5θ

cos2θ − k4 − 1 + iPe
ε

cos θk3

matches with that reported by Mehaddi et al. [150] (take the limit ls/lo → 0 at fixed

lsPr/lo in equation (5.3b) of Ref. [150], where the Oseen length scale, lo = a/Re is

the distance from the sphere at which the inertia forces become as important as the

viscous forces).

We now provide the expressions for the flow field and the swimming velocity for the

swimmer positions at which USed
USwim

∼ 1
ε

and USed
USwim

� 1
ε

by relegating the derivations to

Appendix 6.9. For these positions, as the swimmer still experiences a O (1) external

force, the flow field in the outer zone is the same as that given in equation (6.29).

But the flow field in the inner zone and the swimming velocity are different from
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those derived for the case USed
USwim

∼ O (1). When the swimmer position is such that

USed
USwim

∼ 1
ε
, the flow field in the inner zone and the swimming velocity are given as

w′ = w′0 + εw′1|b1=0, (6.39)

U = Ue3, U = U0 + εU1|b1=0, (6.40)

where w′0, U0, w′1 and U1 are given by equations (6.22)-(6.24), (6.38). These expres-

sions make sense because b1 is O (ε) in this case, so terms of the form εb1 can be

neglected as we are seeking corrections accurate to O (ε). Similarly, for the swimmer

positions at which USed
USwim

� 1
ε
, the flow field in the inner zone and the swimming

velocity are

w′ = (w′0 + εw′1)|b1=b2=0, (6.41)

U = Ue3, U = (U0 + εU1)|b1=0, (6.42)

where again w′0, U0, w′1 and U1 are given by equations (6.22)-(6.24), (6.38). Again

these expressions seem logical because b1 � ε, b2 = βb1 � ε, β = B2/B1, so their

contribution to flow field and swimming velocity at both leading order and first order

can be neglected. In summary, we see that we can derive the solution w′, U for

USed
USwim

� 1 by neglecting the higher order terms in the solution derived for USed
USwim

∼

O (1). For this reason, we expect the solution given in equations (6.22)-(6.24), (6.38)

to be valid for a broader range USed
USwim

≥ O (1) which corresponds to the swimmer’s

position relative to its neutrally buoyant position
∣∣xs3 − xnbs3∣∣ ≥ O

(
9

2RiUSwim

)
.

6.3.2 Neutrally buoyant pusher or puller

In this case, the far-field representation of the swimmer is a Stresslet which is

different from the far-field representation of a towed sphere. Hence, the solution

procedure for this case is different from that reported for a towed sphere.
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We again try a regular perturbation in Ri assuming Re� 1. We call the leading

order variables in Ri as w′0, p′0, ρ′0 and U0. Going back to equations (6.8), (6.9),

we see that the buoyancy terms are negligible in the entire domain at the leading

order when regular perturbation expansion is used and hence the flow at this order is

governed by the Stokes equations. When the swimmer is close to its NBP, we expect

it to experience a negligible external force (weight + buoyancy) and a O (1) Stresslet.

Hence, the flow field far from the swimmer should be a Stresslet, i.e., for r � 1,

w′0 ∼ 1/r2. As w′0 is O (1) on the swimmer’s surface (see equation (6.13)), we expect

w′0 ∼ O (1) for r ∼ O (1). We find same scalings for w′0, both close to and far from the

swimmer, by analyzing the exact expressions for w′0 given in equations (6.47)-(6.49).

Again, the leading order density disturbance ρ′0 is governed by the advection-diffusion

equation

Pe (w′0 · ∇ρ′0 −U0 · ∇ρ′0 −w′0 · e3) = ∇2ρ′0,

where w′0, U0 are now given by equations (6.47)-(6.49). To solve this equation, we

carry out a small Pe expansion to find that (see Appendix 6.10 for this calculation)

ρ′0 ∼ max

(
1

r2
, P e

)
for r < Pe−1. (6.43)

Hence, for r ∼ O (1), ρ′0 ∼ O (1) and for Pe−1 > r � Pe−1/2, ρ′0 ∼ Pe. To check if

the buoyancy terms are negligible compared to viscous terms in the entire domain and

hence to examine the validity of regular perturbation expansion in Ri, we estimate

the order of magnitude of viscous and buoyancy terms both close to and far from

the swimmer. Close to the swimmer r ∼ O (1), the viscous terms ∇2w′0 ∼ O (1)

and the buoyancy terms Riρ′0 ∼ Ri � O (1). Hence, close to the swimmer, the

buoyancy terms are negligible. Far away from the swimmer Pe−1 > r � Pe−1/2,

the viscous terms ∇2w′0 ∼ 1/r4 while the buoyancy terms Riρ′0 ∼ RiPe. Hence,

at r ∼ 1
ε
� 1, the buoyancy terms are not negligible and are as important as the

viscous terms. As this violates the notion of regular perturbation expansion (in Ri)

according to which the buoyancy terms are negligible in the entire domain at leading

order, we should do a singular perturbation expansion in Ri (or ε). As mentioned
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Figure 6.4. : A region in which the swimmer is termed neutrally buoyant
∣∣xs3 − xnbs3∣∣�

9
2RiUSwim

(green region in figure 6.2) is divided into three subregions for the ease of

analysis: (a)
∣∣xs3 − xnbs3∣∣ ∼ O

(
9ε

2RiUSwim

)
, (b)

∣∣xs3 − xnbs3∣∣ ∼ O
(

9ε2

2RiUSwim

)
, and (c)∣∣xs3 − xnbs3∣∣ � 9ε2

2RiUSwim
. In these three regions, respectively, USed

USwim
∼ O (ε), USed

USwim
∼

O (ε2), and USed
USwim

� ε2.

in the previous section, in a singular perturbation expansion, we analyze separately

the region close to and far away from the swimmer ensuring the solution in these two

regions matches in the common domain of validity. We call the region close to the

swimmer (1 ≤ r ≤ O (1/ε)) the inner region and in this region, the buoyancy effects

are negligible. Similarly, we call the region far away from the swimmer (r > O (1/ε))

the outer region and in this region the buoyancy effects are as important as the

viscous effects. As the density scale ρ′0 ∼ Pe valid for Pe−1 < r � Pe−1/2 is used in

determining the boundary layer location r ∼ 1/ε, we expect the singular perturbation

analysis to hold for Pe−1 < 1
ε
� Pe−1/2 or ε2 � Pe < ε. With respect to perturbation

in ε, we see that the boundary layer structure for a neutrally buoyant squirmer is the

same as that found for a non-neutrally buoyant squirmer.

We again split the range of swimmer positions at which it is neutrally buoyant

USed
USwim

� 1 into three regimes—(a) USed
USwim

∼ ε, (b) USed
USwim

∼ ε2 and (c) USed
USwim

� ε2 (see

figure 6.4). The idea behind such splitting process is given as follows: as the swimmer

moves towards its NBP, the dimensionless slip stays the same but the external force
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(weight + buoyancy) acting on the swimmer decreases from O (ε)
(

USed
USwim

∼ ε
)

to

O (ε2)
(

USed
USwim

∼ ε2
)

and to � ε2
(

USed
USwim

� ε2
)

. So, it is appropriate to analyze the

three cases separately. For simplicity, we do not examine the first regime. When

USed
USwim

∼ ε2, the external force being O (ε2) it only affects the first order flow field and

the swimming velocity while for USed
USwim

� ε2, the external force � ε2 and hence it

does not affect the flow and swimming velocity accurate to O (ε2). Here, we restrict

the Reynolds number and the swimmer’s position limiting the validity of singular

perturbation calculation to

ε� 1, ε2 � Pe < ε, Re� ε2,
USed
USwim

∼ ε2. (6.44)

The limit on Re ensures the inertia effects are negligible everywhere while the last con-

dition restricts the swimmer positions to
∣∣xs3 − xnbs3∣∣ ∼ O

(
9ε2

2RiUSwim

)
. We will again

show later how our calculation is valid in a broader context than the restrictions im-

posed by these limits. Specifically, we will show that the flow field and the swimming

velocity found are valid for a broader range of swimmer positions USed
USwim

≤ O (ε2) or∣∣xs3 − xnbs3∣∣ ≤ O
(

9ε2

2RiUSwim

)
. We will also show that the flow field found is valid at

both small and large Pe while the swimming velocity derived is valid for all Pe.

Inner zone

In this zone, all the variables can be expanded as follows

{w′, p′,U} = {w′0, p′0,U0}+ ε2 {w′1, p′1,U1}+ o
(
ε2
)
,

ρ′ = ρ′0 + o (1) .
(6.45)

As USed
USwim

∼ ε2, the external force acting on the swimmer is O (ε2). Hence, the swimmer

experiences a non-zero drag at O (ε2) while the drag at O (1) is zero. So, the expansion

for drag looks like

FD = ε2F1,D + o
(
ε2
)
, (6.46)

where F1,D using (6.15) is F1,D = −Fee3/ε
2.
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Similar to the non-neutrally buoyant squirmer, the leading order disturbance flow

satisfies the Stokes equations with the boundary condition w′0|r=1 = U0 + us. But

unlike a non-neutrally buoyant squirmer, a neutrally buoyant squirmer does not ex-

perience any drag at this order. Hence, the leading order disturbance flow w′0 is

simply the flow due to a squirmer in a homogeneous fluid of density ρs [15, 85] while

the leading order swimming velocity U0 is equal to the velocity of a squirmer in a

homogeneous fluid of density ρs

w′0 = w′0rer + w′0θeθ, U0 = U0e3, (6.47)

w′0r =
(−9r2 + 9) b2cos2θ + 4b1r cos θ + (3r2 − 3) b2

6r4
,

w′0θ =
sin θ (3 cos θb2 + b1r)

3r4
,

(6.48)

U0 =
2b1

3
. (6.49)

The first order flow also satisfies the Stokes equations with the boundary condi-

tion w′1|r=1 = U1. The swimmer experiences a non-zero drag at this order F1,D =

−Fee3/ε
2. Again, the boundary condition far from the swimmer is determined by

matching the flows in the inner and outer zones.

Outer zone

In this zone, we represent the swimmer by a force dipole and add a term S ·

∇δ (r) on the right hand side of the Navier-Stokes equations [191] as the swimmer

exerts the Stresslet S = 4π
3
b2 (3e3e3 − I) on the fluid [85]. Here the Stresslet is non-

dimensionalized by ρ∞νa
2uc. Far away from the swimmer, as w′ ∼ 1/r2 � U, we

neglect w′ · ∇ρ′ in comparison to U · ∇ρ′. We rescale the length, velocity, pressure

and density as r̃ = εr, w′ = ε2w̃′, p′ = ε3p̃′ and ρ′ = Peρ̃′. In terms of these

rescaled variables, the leading order disturbance flow and density in the outer zone

are governed by

∇̃ · w̃′ = 0, (6.50)
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−∇̃p̃′ + ∇̃2w̃′ − ρ̃′e3 + S · ∇̃δ (r̃) = 0, (6.51)

−Pe
(
U0 · ∇̃ρ̃′

)
− ε (w̃′ · e3) = ε ∇̃2ρ̃′. (6.52)

Again, as these equations are linear, we solve them in Fourier space, where the defini-

tion of Fourier and inverse Fourier transforms is given in equation (6.28). In Fourier

space, the flow is

ŵ′ (k) = i
[
k2I + A−B

]−1
ESk, (6.53)

where the expression for the tensors A, B, and E are given in equation (6.30). Again,

we represented the tensors as matrices while vectors as column matrices in the above

equation.

Matching Condition

Enforcing the flow in the inner zone and the outer zone to have the same functional

form in the matching zone (r � 1 or r̃ � 1), the matching condition is

lim
r�1

[
w′0 (r) + ε2w′1 (r)

]
⇔ lim

r̃�1
ε2w̃′ (r̃) . (6.54)

At leading order, as the swimmer experiences a Stresslet S, far away from the swim-

mer, the leading order flow w′0 (r) should be the same as the Stresslet flow wSS (r)

i.e., for r � 1, w′0 (r) ∼ wSS (r), where wSS (r) is governed by

∇ ·wSS = 0, −∇pSS +∇2wSS + S · ∇δ (r) = 0. (6.55)

Hence, the matching condition reduces to

wSS (r) + lim
r�1

ε2w′1 (r)⇔ lim
r̃�1

ε2w̃′ (r̃) . (6.56)

Setting r = r̃/ε in wSS (r), we get wSS (r) = ε2wSS (r̃). Using the fact that wSS (r̃) is

a homogeneous function in r̃ (see equation (6.34)), the matching condition becomes

lim
r�1

ε2w′1 (r)⇔ lim
r̃→0

ε2 [w̃′ (r̃)−wSS (r̃)]

⇔ lim
r̃→0

ε2

8π3

∫
[ŵ′ (k)− ŵSS (k)] eik·̃rdk.

(6.57)
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As usual, we rescale the length in equation (6.55), use wSS (r) = ε2wSS (r̃) and solve

the resulting equation in Fourier space to find the Fourier transform of wSS (r̃) namely

ŵSS (k)

ŵSS =
i

k2
E · (S · k) . (6.58)

Following the arguments of Zvirin & Chadwick [148], we simplify the integral appear-

ing in the matching condition to find that it is a uniform flow (see Appendix 6.11 for

this calculation). Hence, the matching condition becomes

lim
r�1

w′1 (r)⇔ 1

8π3

∫
[ŵ′ (k)− ŵSS (k)] dk, (6.59)

where the right hand side of the matching condition is a uniform flow.

Recall that the first order disturbance flow in the inner zone w′1 satisfies the Stokes

equations along with the condition w′1|r=1 = U1, the matching condition (6.59), and

the constraint on the drag F1,D = −Fee3/ε
2. Given the linearity of the problem, w′1

is simply the sum of flow due to a sphere experiencing an external force Fee3/ε
2 in

a homogeneous quiescent ambient fluid (denote this flow by w′1e) and the uniform

flow given on the right hand side of the matching condition (denote this flow by

U1SSe3). Similarly, the swimming velocity U1 is the sum of sedimentation velocity

of a sphere experiencing an external force Fee3/ε
2 and the uniform flow given on

the right hand side of the matching condition. After simplifying the integral in the

matching condition, we have

w′1 = w′1e + U1SSe3, U1 = U1e3, U1 =
2

9

a2g

ε2νuc

(
1− γa

ρ∞
xs3 − α

)
+ U1SS, (6.60)

U1SS =
ib2

π

∫ ∞
k=0

dk

∫ π

θ=0

dθ
ksin5θ cos θ

cos2θ − k4 − 1 + iPe
ε

cos θk3U0

, (6.61)

When USed
USwim

� ε2, w′1e and 2
9
a2g
ε2νuc

(
1− γa

ρ∞
xs3 − α

)
become negligible compared

to U1SS because the external force Fe � ε2 at these swimmer positions. Hence, even

though we assumed USed
USwim

∼ O (ε2) while deriving the flow field and the swimming

velocity, we expect this solution to be valid for a broader range USed
USwim

≤ O (ε2) as

long as we neglect terms much smaller than O (ε2).
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Note that the assumption on Pe is used only in finding the gauge functions in

the inner zone and the rescalings in the outer zone. Importantly, it is never used in

neglecting any terms in the equations governing the outer variables. This makes the

outer solution to be valid for any Pe or Pr. Since the stratification induced swimming

velocity depends only on the outer solution, we expect the swimming velocity found

in Secs. 6.3.1, 6.3.2 to be valid for any Pe or Pr. The origins of this logic can be

traced back to the works of Zvirin & Chadwick [148] and Mehaddi et al. [150] whose

focus was on finding the drag acting on a towed spherical particle in a stratified fluid.

The method used by Zvirin & Chadwick [148] is similar to ours except the assumption

of large Pe while Mehaddi et al. [150] work is valid for small Pe but arbitrary Pr.

In the limit of negligible inertia, the drag found by both these works is the same

which makes Zvirin & Chadwick’s [148] calculation to hold for any Pe or Pr. Given

several similarities between the towed particle in a stratified fluid and the swimming

microorganism in a stratified fluid, we expect using Zvirin & Chadwick’s method [148]

either at small or large Pe, as we did, should generate swimming velocity that is valid

for any Pe or Pr.

As the outer solution is valid for all Pe while the gauge functions in the inner

zone are valid at small Pe, we expect the inner solution to be valid at small Pe. But

since, the boundary conditions on the swimmer surface do not depend on Pe, the

matching condition is of the similar form at both small and large Pe, and the flow

field in the inner zone at both leading and first order satisfy the Stokes equations

for both small and large values of Pe (see Zvirin & Chadwick [148] for large Pe

calculation associated with a towed particle in a stratified fluid), the inner solution

becomes valid at both small and large Pe. At large Pe, w′1 ∼ O
(
Ri1/3/ε

)
instead of

O (1) for non-neutrally buoyant swimmer while w′1 ∼ O
(
Ri2/3/ε2

)
instead of O (1)

for a neutrally buoyant swimmer.

For thermal stratification ls ≈ 500 µm − 40 mm and for salt stratification ls ≈

100 µm − 10 mm [186]. Hence, organisms of size 50 µm − 4 mm in temperature

stratified water and those of size 10 µm − 1 mm in salt stratified water experience
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weak stratification. Organisms should also be small enough to have negligible inertia.

Most bacteria and plankton in the ocean (size range 1 µm − 100 µm) satisfy both

constraints of negligible inertia and weak stratification and our analysis can be applied

to study their motion in density-stratified water.

6.4 Swimming velocity

6.4.1 Non-neutrally buoyant squirmer

For simplicity, we consider the situation USed
USwim

� 1
ε
, then using uc = USed, the

swimming velocity becomes

U = Ue3, U = ±

1 +
3ε

2π

∫ ∞
k=0

dk

∫ π

θ=0

dθ
sin5θ (cos2θ − k4 − 1)

(cos2θ − k4 − 1)2 +
(
Pe
ε

cos θk3
)2︸ ︷︷ ︸

<0

 .
(6.62)

Here, “ − ” (resp. “ + ”) should be used for a squirmer located above (resp. below)

its neutrally buoyant position. For USed
USwim

� 1
ε
, the gait of the swimmer does not

affect the swimming velocity accurate to O (ε) and because of this, the swimming

velocity (as given in equation (6.62)) does not depend on the squirming modes and

the swimmer’s orientation. In this case, the swimmer is like a settling sphere due to

which the resemblance of the expressions for the swimming velocity (equation (6.62))

to the drag acting on a towed sphere (equation (5.3b) in Ref. [150]) is not surprising.

It was reported that stratification enhances the drag acting on a rigid sphere towed

at a fixed velocity [148–150]. At a fixed position, the external force (weight + buoy-

ancy) acting on the swimmer is fixed, so the enhanced drag should be counteracted

by the reduced swimming velocity to maintain the fixed external force. This explains

why stratification reduces the swimming (settling) speed of the swimmer.

Following Mehaddi et al. [150], we analyze the variation of the stratification in-

duced swimming velocity with ls/lo and Pr in figure 6.5a. For ls
lo
� Pr−1, in the outer

zone, the buoyancy forces balance the viscous forces and the density transport is gov-
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erned by the diffusion. In this case, the stratification induced velocity is constant as

given by the first term on the right hand side of equation (6.63) and also as shown

by the black horizontal line in figure 6.5a. With an increase in ls/lo, the contribution

of the advective transport of density increases. When ls
lo
∼ Pr−1, the advection of

density is significant enough to deviate the stratification induced velocity from the

constant scaling law found for the lowest values of ls/lo. This deviation can be seen

in the curves reported for Pr = 7 and Pr = 700. For Pr−1 � ls
lo
� Pr−1/4, in the

outer zone, the buoyancy forces still balance the viscous forces but now the density

transport is governed by advection. In this case, the stratification induced velocity

scales as Ri1/3 as given by the second term on the right hand side of equation (6.63)

and also as shown by the black solid line at large values of ls/lo in figure 6.5a. With

a further increase in ls/lo, the inertia effects increase. When ls
lo
∼ Pr−1/4, the inertia

effects become as important as the buoyancy and viscous effects in the outer zone

and our analysis breaks down [150]. For ls
lo
� Pr−1/4, in the outer zone, the inertia

forces balance the viscous forces while the buoyancy forces are negligible. In this case,

the correction to the swimming velocity scales as Re and this can be deduced from

the calculation of the drag acting on a towed sphere in a homogeneous fluid at small

Re [151].

U =



±
[
1− 5ε

14
Ek

(
1√
2

)]
for

ls
lo
� Pr−1

±
[
1− 4π2

15{Γ (2/3)}3Ri
1/3

]
for Pr−1 � ls

lo
� Pr−1/4

±
[
1− 3

8
Re

]
for

ls
lo
� Pr−1/4

(6.63)

Here, Ek is the complete elliptic integral of the first kind while Γ is the gamma

function.
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Figure 6.5. : (Colour online) The variation of the stratification induced velocity of

(a) non-neutrally buoyant squirmer
(

USed
USwim

� 1
ε

)
and (b) neutrally buoyuant pusher

or puller
(

USed
USwim

� ε2
)

with ls/lo and Pr. The black solid lines in figures (a), (b)

represent the scaling laws mentioned in equations (6.63), (6.65), respectively. Here

Pr = 0.7, 7, 700 are the Prandtl number values of a temperature stratified air, tem-

perature stratified water and salt stratified water, respectively. The swimmer is above

its neutrally buoyant position in (a) whereas it is oriented vertically upwards in (b).
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6.4.2 Neutrally buoyant pusher or puller

For simplicity, we consider the situation USed
USwim

� ε2, then using uc = USwim, the

swimming velocity becomes

U = Ue3, U = ±

1 +
3βε2

2π

∫ ∞
k=0

dk

∫ π

θ=0

dθ
Pe
ε
k4sin5θcos2θ

(cos2θ − k4 − 1)2 +
(
Pe
ε

cos θk3
)2︸ ︷︷ ︸

>0

 .
(6.64)

Here, “−” (resp. “+”) should be used for a squirmer oriented along (resp. opposite

to) the gravity direction and β = B2/B1. As the stratification induced swimming

velocity depends only on the Stresslet exerted by the swimmer in a homogeneous

fluid, which itself does not depend on the swimmers orientation (note the upwards as

well as the downwards oriented swimmers exert the same Stresslet in a homogeneous

fluid), we expect the swimmer to experience the same speed modifications due to

stratification irrespective of whether it is swimming up or down the density gradients.

This means if a swimmer experiences a speed reduction when moving towards high

densities, it experiences an exactly same speed reduction even if moving towards low

densities. When USed
USwim

� ε2, the swimmer is so close to its neutrally buoyant position(∣∣xnbs3 − xs3∣∣� 9ε2

2RiUSwim

)
that the sum of the swimmer’s weight and buoyancy is much

less than O (ε2) and because of this the stratification induced swimming velocity does

not depend on the separation of the swimmer from its neutrally buoyant position.

The stratification increases the swimming speed of a puller swimmer (β > 0) while

it reduces the speed of a pusher swimmer (β < 0) by the same amount. This obser-

vation is consistent with the DNS results reported for Pr = 700, Re = 0.05 and small

Ri [87]. In their simulations, Doostmohammadi et al. [87] considered a two-mode

squirmer with density ρs = ρ∞− γxs3 (ambient density evaluated at swimmer’s posi-

tion) and this swimmer is same as the neutrally buoyant squirmer considered here for

the swimmer positions USed
USwim

� ε2. Furthermore, the effect of stratification is exactly

opposite to the effect of inertia, which reduces (resp. increases) the swimming speed

of a puller (resp. pusher) swimmer [97].
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As swimmer propels upwards, it traps heavier fluid and disturbs the isopycnals

from their stable stratification situation (see figure 2 and the associated discussion in

Ref. [87]). A pusher swimmer traps the heavier fluid infront of it. The buoyancy of this

trapped fluid and the isopycnal retreat direction is opposite to the propulsive direction

of the swimmer and hence the stratification reduces the speed of the pusher swimmer.

A puller swimmer traps the heavier fluid behind it. Even though the buoyancy of this

trapped fluid points opposite to the swimming direction, the isopycnals retreat along

the swimming direction and since the forces associated with the latter dominate those

of the former, the stratification increases the speed of a puller swimmer.

Again, we analyze the variation of the stratification induced swimming velocity

with ls/lo and Pr in figure 6.5b. Similar to a non-neutrally buoyant swimmer, for

ls
lo
� Pr−1, the buoyancy governed by diffusion balances the viscous forces in the

outer zone, for Pr−1 � ls
lo
� Pr−1/4, the buoyancy governed by advection balances

the viscous forces in the outer zone and for ls
lo
� Pr−1/4, the inertia forces balance the

viscous forces in the outer zone. But the scalings of stratification induced swimming

velocity with Ri, Pe for a neutrally buoyant swimmer are different from those of a

non-neutrally buoyant swimmer. In the diffusion (resp. advection) dominant regime,

the stratification induced swimming velocity scales as Peε (resp. Ri2/3). The diffusive

(resp. advective) scaling is given by the first (resp. the second) term on the right hand

side of equation (6.65) and also shown by the black solid line for low (resp. high)

values of ls/lo in figure 6.5b. Similar to a non-neutrally buoyant swimmer, when

ls
lo
∼ Pr−1/4, the inertia forces become important and our analysis breaks down. For

ls
lo
� Pr−1/4, the buoyancy forces become negligible compared to the inertia forces

and the correction to the swimming velocity scales as Re as given by the third term
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on the right hand side of equation (6.65). This correction was derived by considering

a two-mode spherical squirmer in a homogeneous fluid at small Re [97, 192].

U =



±
[
1 +

5β

308
Ek

(
1√
2

)
εPe

]
for

ls
lo
� Pr−1

±

[
1 +

15
√

3β

56π
{Γ (2/3)}3Ri2/3

]
for Pr−1 � ls

lo
� Pr−1/4

±
[
1− 3β

20
Re

]
for

ls
lo
� Pr−1/4

(6.65)

6.5 Flow field

In this section, we visualize the flow surrounding a two-mode squirmer at small

Pe
(
Pe� ε or ls

lo
� Pr−1

)
in the lab frame of reference. For this purpose, we plot

the flow around a non-neutrally buoyant squirmer
(

USed
USwim

� 1
ε

)
as well as a neutrally

buoyant puller
(

USed
USwim

� ε2, β = 1
)

both close to and far from the squirmer in fig-

ure 6.6. In this figure, we also compare the flow in a stratified fluid to that in a

homogeneous fluid.

As expected in a singular perturbation analysis, the flow close to a swimmer in

a stratified fluid is same as that in a homogeneous fluid. But the flow far from the

swimmer in a stratified fluid is significantly different from that in a homogeneous

fluid. In this far-field region, the flow around a non-neutrally buoyant squirmer (resp.

neutrally buoyant squirmer) in a stratified fluid is same as the flow due to a point force

(resp. a force dipole) in a stratified fluid. And this flow due to point force or higher

order singularities in a stratified fluid at small Pe was already reported by Ardekani

& Stocker [166]. We note that such simple flow picture does not exist around a towed

spherical particle or a drop in a stratified fluid due to the non-negligible contributions

of the Stokeslet part of the first order inner zone flow field [185].
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Figure 6.6. : (Colour online) In the lab frame of reference, flow due to a two-mode

squirmer close to the swimmer (a, c) and far away from it (b, d). The top row shows

the flow due to a non-neutrally buoyant squirmer
(

USed
USwim

� 1
ε

)
located above its

neutrally buoyant position while the bottom row shows the flow due to a vertically

upward oriented neutrally buoyant puller
(

USed
USwim

� ε2, β = 1
)

. In each figure, the left

and right halves show the flow in a homogeneous and stratified fluid
(
ls
lo
� Pr−1

)
,

respectively. The flow in a stratified fluid is found by forming a composite expansion of

the inner zone and the outer zone flow fields [173] where the inverse Fourier transform

required for finding the outer zone flow is performed using the IFFT function in

MATLAB [174].
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6.6 Conclusions

For a two-mode squirmer in a linearly density-stratified fluid, we have derived the

swimming velocity as well as the flow field surrounding the swimmer by considering

separately the situations of swimmer close to and far from its neutrally buoyant

position. We called the swimmer in the former (resp. latter) situation as the neutrally

(resp. non-neutrally) buoyant swimmer.

We found that the stratification reduces the speed of a non-neutrally buoyant

swimmer while it enhances (resp. reduces) the speed of neutrally buoyant puller

(resp. pusher) swimmer. The scaling of the stratification induced swimming velocity

of a non-neutrally buoyant swimmer with viscous Richardson number (∼ buoyancy

forces/viscous forces) and Peclet number is similar to the scaling of stratification

enhanced drag acting on a towed rigid sphere and is different from the scaling of

the swimming velocity of a neutrally buoyant swimmer. Close to the swimmer, the

stratification does not modify the flow field appreciably. Far from the swimmer, the

stratification alters the flow in such a way that this flow is same as the flow due to

a point force or force-dipole placed in a stratified fluid. This explains how the point

force singularity solution derived in a stratified fluid at small Peclet number [166] gives

the far-field flow due to a finite sized microorganisms, still preserving the intuition

based on homogeneous fluids.

Our calculation is valid provided the quasi-steady conditions prevail, inertia is

negligible, stratification is weak, Boussinesq approximation is applicable, swimmer

has a constant density and it is oriented either vertically upwards or downwards. The

calculation of swimming velocity holds for any Peclet number while the calculation

of flow field is valid at both small and large Peclet numbers. Despite the constant

swimmer’s density assumption, the motility of organisms that use certain mechanisms

to stay neutrally buoyant (see Ref. [188]) can be found by resorting to our neutrally

buoyant swimmer calculations. Future works can be directed towards overcoming

some assumptions of our work.
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The simple formula for swimming velocity developed here can be used in the

continuum description of a suspension of swimming organisms to understand why

stratification suppresses the bioconvection, in turn causing the aggregation of bottom

heavy organism Heterosigma akashiwo near haloclines [193]. An extension of our

theory to sharp stratifications can also be pursued to understand the reasons behind

the accumulation of most of the planktonic organisms near density discontinuities

[194,195].

6.7 Appendix A

In this appendix, we derive the leading order density field ρ′0 when a regular

perturbation is taken in terms of Ri for swimmer positions at which USed
USwim

∼ O (1).

This density field is governed by the advection-diffusion equation

Pe (w′0 · ∇ρ′0 −U0 · ∇ρ′0 −w′0 · e3) = ∇2ρ′0, (6.66)

where the expressions for w′0, U0 are given in equations (6.22)-(6.24). Also ρ′0 satisfies

the conditions
∂ρ′0
∂r

∣∣∣∣
r=1

= cos θ, ρ′0 = 0 as r →∞. (6.67a, b)

We solve for ρ′0 by doing a singular perturbation expansion in Pe. A small Pe

expansion of advection-diffusion equation for heat transfer from a sphere placed in an

uniform streaming flow is well studied and it was shown to be singular (see Chapter

9 in Ref. [18]). Similar logic can be used to show that a small Pe expansion in our

case is also singular. There are two boundary layers: one at r ∼ Pe−1/3 and the other

at r ∼ Pe−1. We call the region lying between the swimmer and r < O
(
Pe−1/3

)
as

the inner zone and the region lying between r > O
(
Pe−1/3

)
and r < O (Pe−1) as the

intermediate zone, and finally the region r > O (Pe−1) as the outer zone.
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In the inner zone, we denote the density field by ρ̆. At leading order, it is appro-

priate to neglect the entire advective term. Hence, the leading order density field in

the inner zone ρ̆0 is governed by the following equations

∇2ρ̆0 = 0,
∂ρ̆0

∂r

∣∣∣∣
r=1

= cos θ. (6.68)

The solution of these equations that decays spatially so as to conserve flux on any

surface enclosing the swimmer is [18]

ρ̆0 = −cos θ

2r2
. (6.69)

Using this density field, we estimate the order of magnitude of advective and diffusive

terms far away from the swimmer. As Pe (w′0 · ∇ρ′0) ∼ Pe/r4, Pe (U0 · ∇ρ′0) ∼ Pe/r3

and Pe (w′0 · e3) ∼ Pe/r, the dominant advective term Pe (w′0 · e3) ∼ Pe/r while

the diffusive term ∇2ρ′0 ∼ 1/r4. At r ∼ Pe−1/3, the advective term Pe (w′0 · e3)

is as important as the diffusive term and this justifies the existence of a boundary

layer at r ∼ Pe−1/3 separating the inner zone where diffusion is prominent from the

intermediate zone where both advection (due to Pe (w′0 · e3)) and diffusion are equally

important.

In the intermediate zone, we rescale the variables as r̄ = Pe1/3r, ρ′0 = Pe2/3ρ̄.

Retaining only the Stokeslet part of w′0, the leading order density field in this zone

ρ̄0 is governed by the following equation

∇2
r̄ ρ̄0 =

(2b1 − 3U0)

3r̄

(
P0 (cos θ) +

1

2
P2 (cos θ)

)
(6.70)

along with the matching condition with the inner zone

lim
r̄�1

ρ̄0 ⇔ −
cos θ

2r̄2
. (6.71)

Here ∇2
r̄ is the Laplacian written in terms of r̄ while Pn (cos θ) is the Legendre polyno-

mial of degree n. The solution of these equations that also matches with the density

field in the outer zone is

ρ̄0 = A0 + r̄

[
A1P1 (cos θ) +

(2b1 − 3U0)

6

(
1− 1

4
P2 (cos θ)

)]
+
A2

r̄
− cos θ

2r̄2
, (6.72)



199

where A0, A1, and A2 are constants which can be found by matching with the higher

order density fields in the inner zone or the leading order density field in the outer

zone.

At r̄ � 1 or r � Pe−1/3 � 1, we again estimate the order of magnitude of

advective and diffusive terms. At these distances, ρ̄0 ∼ r̄, hence ρ′0 ∼ Pe2/3r̄ ∼

Per. As the advective terms Pe (w′0 · ∇ρ′0) ∼ Pe2/r, Pe (U0 · ∇ρ′0) ∼ Pe2, and

Pe (w′0 · e3) ∼ Pe/r while the diffusive term ∇2ρ′0 ∼ Pe/r, the dominant advective

term Pe (U0 · ∇ρ′0 + w′0 · e3) balances the diffusive term at r ∼ Pe−1 � Pe−1/3. This

justifies the existence of a boundary layer at r ∼ Pe−1 separating the intermediate

zone where advection due to Pew′0 · e3 and diffusion are important from the outer

zone where advection due to Pe (U0 · ∇ρ′0 + w′0 · e3) and diffusion are important.

To find the higher order density fields in the inner zone, we substitute the expan-

sion ρ̆ = ρ̆0 + Pe1/3ρ̆1 + Pe2/3ρ̆2 + O (Pe) in equations (6.66), (6.67a), collect terms

at various orders of Pe, and solve the resulting equations by enforcing matching with

the intermediate solution (6.72). Doing so, we find that

ρ̆1 = ρ̆2 = A0 = A2 = 0. (6.73)

Hence, the density fields in the inner and the intermediate zones are, respectively,

ρ̆ = −cos θ

2r2
+O (Pe) ,

ρ̄ = r̄

[
A1P1 (cos θ) +

(2b1 − 3U0)

6

(
1− 1

4
P2 (cos θ)

)]
− cos θ

2r̄2
+O

(
Pe1/3

)
.

(6.74)

We now write down the composite expansion of density field that is accurate to

O
(
Pe2/3

)
and is uniformly valid up to r < O (Pe−1). For this purpose, we add

the density field in the inner zone to the density field in the intermediate zone and

subtract the density field in the first matching zone
(
r ∼ Pe−1/3

)
. As the density field



200

in this matching zone is − cos θ/2r2, writing everything in terms of inner variables,

we get

ρ′0 = ρ̆0 + Pe2/3ρ̄0 +
cos θ

2r2
+O (Pe)

= −cos θ

2r2
+ Per

[
A1P1 (cos θ) +

(
b1

3
− U0

2

)(
1− 1

4
P2 (cos θ)

)]
+O (Pe) .

(6.75)

Hence, for r < O (Pe−1), the density field obeys

ρ′0 ∼ max

(
1

r2
, P er

)
. (6.76)

Since we did not use the boundary condition far from the swimmer, equation (6.67b),

we expect the density field and the scaling, equations (6.75), (6.76) to hold even if

the perturbation in Ri is singular.

6.8 Appendix B

In this appendix, we simplify the integral appearing in the matching condition

(6.35)

lim
r̃→0

ε

8π3

∫
[ŵ′ (k)− ŵS (k)] eik·̃rdk. (6.77)

For this purpose, we divide the domain of integration into two parts—k ≤ r̃−σ and

k > r̃−σ, where 0 < σ < 1.

ε

8π3

lim
r̃→0

∫
k≤r̃−σ

[ŵ′ (k)− ŵS (k)] eik·̃rdk + lim
r̃→0

∫
k>r̃−σ

[ŵ′ (k)− ŵS (k)] eik·̃rdk

 .

(6.78)

As k is finite in the first integral, we evaluate the limit by directly substituting r̃ = 0

to obtain

ε

8π3

∫
[ŵ′ (k)− ŵS (k)] dk +

ε

8π3
lim
r̃→0

∫
k>r̃−σ

[ŵ′ (k)− ŵS (k)] eik·̃rdk. (6.79)

Here the first term being a constant vector represents an uniform flow field. In the

second term, k � 1 and hence ŵ′ − ŵS simplifies for fixed Pe/ε to

(k2 − k2
3)Fe

k10

(
k1k3e1 + k2k3e2 −

(
k2 − k2

3

)
e3

)
. (6.80)
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Here, we see that ŵ′− ŵS ∼ O (k−6), so (ŵ′ − ŵS) dk ∼ O (k−3). Hence the integral

∫
k>r̃−σ

[ŵ′ (k)− ŵS (k)] eik·̃rdk ∼ O
(
r̃3σ
)

(6.81)

and it becomes negligible compared to the first term in equation (6.79) as r̃ → 0.

6.9 Appendix C

In this appendix, we derive the flow field in the inner zone and the swimming

velocity for the swimmer positions at which USed
USwim

∼ 1
ε

and USed
USwim

� 1
ε
. Recall that

in the inner zone, the flow field follows the expansion given in equation (6.19), with

the leading order and the first order flow fields satisfying the Stokes equations. The

boundary condition on the swimmer surface at various order of ε changes as the

swimmer moves away from its NBP.

6.9.1 USed
USwim

∼ 1
ε

In this case, the slip velocity b1 (sin θ + β sin θ cos θ) is O (ε) because b1 = B1

USed
=

3
2
USwim
USed

∼ O (ε). Hence, the slip velocity affects the first order flow field. At leading

order, the absence of slip simplifies the problem to a settling sphere of radius a,

density ρs in a homogeneous fluid of density ρ∞−γxs3. Hence, the leading order flow

field and the swimming velocity are

w′0 = w′0rer + w′0θeθ, U0 = U0e3, (6.82)

w′0r =
U0 (3r2 − 1) cos θ

2r3
,

w′0θ = −U0 (3r2 + 1) sin θ

4r3
,

(6.83)

U0 =
2

9

a2g

νuc

(
1− γa

ρ∞
xs3 − α

)
(6.84)
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At first order, the flow field satisfies the force-free constraint F1,D = 0 and the

conditions

w′1|r=1 = U1 +
b1

ε
(sin θ + β sin θ cos θ) eθ, lim

r�1
w′1 = U1Se3, (6.85)

where U1S is given by equation (6.38b)

U1S =
Fe
4π2

∫ ∞
k=0

dk

∫ π

θ=0

dθ
sin5θ

cos2θ − k4 − 1 + iPe
ε

cos θk3U0

with the expression for U0 occurring in U1S being given by equation (6.84). Due

to the linearity of the problem, we split it into two parts {w′1,u1} = {w′1a,U1a} +

{w′1b,U1b}, where the flow field in both parts satisfy the Stokes equations and force-

free constraints with the boundary conditions

w′1a|r=1 = U1a +
b1

ε
(sin θ + β sin θ cos θ) eθ, lim

r�1
w′1a = 0 (6.86)

w′1b|r=1 = U1b, lim
r�1

w′1b = U1Se3 (6.87)

It is obvious that the subproblem (a) corresponds to a squirmer placed in a homo-

geneous fluid of density ρs while subproblem (b) corresponds to a neutrally buoyant

sphere placed in a homogeneous fluid undergoing uniform flow U1Se3. Hence, we have

w′1 = w′1rer + w′1θeθ, U1 = U1e3, (6.88)

εw′1r =
(−9r2 + 9) b2cos2θ + 4b1r cos θ + (3r2 − 3) b2

6r4
+ εU1S cos θ,

εw′1θ =
sin θ (3 cos θb2 + b1r)

3r4
− εU1S sin θ,

(6.89)

εU1 =
2b1

3
+ εU1S. (6.90)

To summarize, w′ = w′0+εw′1 = flow due to a settling sphere of radius a, density ρs in

a homogeneous fluid of density ρ∞−γxs3 + flow due to a squirmer in a homogeneous

fluid of density ρs + εU1Se3. Similarly U = U0 + εU1 = sedimenting velocity of a
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sphere of radius a, density ρs in a homogeneous fluid of density ρ∞− γxs3 + velocity

of a squirmer in a homogeneous fluid of density ρs + εU1S. As U0 does not depend

on b1, U1S also does not depend on b1. Hence, we can express the flow field and

swimming velocity derived for the case USed
USwim

∼ 1
ε

in terms of those derived for the

case USed
USwim

∼ O (1) as follows

w′ = w′0 + εw′1|b1=0, (6.91)

U = Ue3, U = U0 + εU1|b1=0, (6.92)

where w′0, U0, w′1, and U1 are given by equations (6.22)-(6.24), (6.38).

6.9.2 USed
USwim

� 1
ε

In this case, the slip b1 (sin θ + β sin θ cos θ) � ε because b1 = 3
2
USwim
USed

� ε. So,

the slip velocity does not affect the flow field and the swimming velocity at both the

leading order and the first order. Hence, we can derive the flow field for this case

from that found for the case USed
USwim

∼ O (1) by setting b1 = b2 = 0 i.e.,

w′ = (w′0 + εw1)|b1=b2=0. (6.93)

Similarly, we can derive the swimming velocity for this case from that found for the

case USed
USwim

∼ O (1) by setting b1 = 0 i.e.,

U = Ue3, U = (U0 + εU1)|b1=0. (6.94)

In the expression for the swimming velocity, we do not need to set b2 = 0 because

the swimming velocity for a non-neutrally buoyant swimmer does not depend on b2

mode. Here, again w′0, U0, w′1, and U1 are given by equations (6.22)-(6.24), (6.38).
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6.10 Appendix D

In this appendix, we derive the leading order density field ρ′0 when a regular

perturbation is taken in terms of Ri for swimmer positions at which USed
USwim

∼ ε2. This

density field is governed by the advection-diffusion equation

Pe (w′0 · ∇ρ′0 −U0 · ∇ρ′0 −w′0 · e3) = ∇2ρ′0, (6.95)

where the expressions for w′0, U0 are given in equations (6.47)-(6.49). Also ρ′0 satisfies

the conditions
∂ρ′0
∂r

∣∣∣∣
r=1

= cos θ, ρ′0 = 0 as r →∞. (6.96a, b)

We solve for ρ′0 by doing a singular perturbation expansion in Pe. There are two

boundary layers: one at r ∼ Pe−1/2 and the other at r ∼ Pe−1. We again call the

region lying between the swimmer and r < O
(
Pe−1/2

)
as the inner zone and the

region lying between r > O
(
Pe−1/2

)
and r < O (Pe−1) as the intermediate zone, and

finally the region r > O (Pe−1) as the outer zone.

In the inner zone, we denote the density field by ρ̆. At leading order, it is appro-

priate to neglect the entire advective term. Hence, the leading order density field in

the inner zone ρ̆0 is governed by the following equations

∇2ρ̆0 = 0,
∂ρ̆0

∂r

∣∣∣∣
r=1

= cos θ. (6.97)

The solution of these equations that decays spatially so as to conserve flux on any

surface enclosing the swimmer is

ρ̆0 = −cos θ

2r2
. (6.98)

Using this density field, we estimate the order of magnitude of advective and diffusive

terms far away from the swimmer. As Pe (w′0 · ∇ρ′0) ∼ Pe/r5, Pe (U0 · ∇ρ′0) ∼ Pe/r3

and Pe (w′0 · e3) ∼ Pe/r2, the dominant advective term Pe (w′0 · e3) ∼ Pe/r2 while

the diffusive term ∇2ρ′0 ∼ 1/r4. At r ∼ Pe−1/2, the advective term Pe (w′0 · e3)

is as important as the diffusive term and this justifies the existence of a boundary

layer at r ∼ Pe−1/2 separating the inner zone where diffusion is prominent from the
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intermediate zone where both advection (due to Pe (w′0 · e3)) and diffusion are equally

important.

In the intermediate zone, we rescale the variables as r̄ = Pe1/2r, ρ′0 = Peρ̄.

Retaining only the Stresslet part of w′0, the leading order density field in this zone ρ̄0

is governed by the following equation

∇2
r̄ ρ̄0 =

2b2

5r̄2

(
P1 (cos θ) +

3

2
P3 (cos θ)

)
(6.99)

along with the matching condition with the inner zone

lim
r̄�1

ρ̄0 ⇔ −
cos θ

2r̄2
. (6.100)

The solution of these equations that also matches with the density field in the outer

zone is

ρ̄0 = A0 −
b2

5

(
P1 (cos θ) +

1

4
P3 (cos θ)

)
+
A1

r̄
− cos θ

2r̄2
, (6.101)

where A0 and A1 are constants which can be found by matching with the higher order

density fields in the inner zone or the leading order density field in the outer zone.

At r̄ � 1 or r � Pe−1/2 � 1, we again estimate the order of magnitude of advec-

tive and diffusive terms. At these distances, ρ̄0 ∼ O (1), hence ρ′0 ∼ Pe. As the advec-

tive terms Pe (w′0 · ∇ρ′0) ∼ Pe2/r3, Pe (U0 · ∇ρ′0) ∼ Pe2/r, and Pe (w′0 · e3) ∼ Pe/r2

while the diffusive term∇2ρ′0 ∼ Pe/r2, the dominant advective term Pe (U0 · ∇ρ′0 + w′0 · e3)

balances the diffusive term at r ∼ Pe−1 � Pe−1/2. This justifies the existence of a

boundary layer at r ∼ Pe−1 separating the intermediate zone where advection due

to Pew′0 · e3 and diffusion are important from the outer zone where advection due to

Pe (U0 · ∇ρ′0 + w′0 · e3) and diffusion are important.

To find the higher order density fields in the inner zone, we substitute the expan-

sion ρ̆ = ρ̆0 + Pe1/2ρ̆1 + Peρ̆2 + O
(
Pe3/2

)
in equations (6.95), (6.96a), collect terms

at various orders of Pe, and solve the resulting equations by enforcing matching with

the intermediate solution (6.101). Doing so, we find that

ρ̆1 = A1 = 0, (6.102)
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ρ̆2 =A0 −
b1

9r
+

b1

36r4
+

(
−1

5
+

1

15r2
− 1

10r3
+

1

30r5

)
b2P1 (cos θ)

+

(
2

9r
− 4

27r3
+

1

18r4

)
b1P2 (cos θ)

+

(
− 1

20
+

1

10r2
+

1

10r3
− 3

16r4
+

1

20r5

)
b2P3 (cos θ) .

(6.103)

We now write down the composite expansion of density field that is accurate

to O (Pe) and is uniformly valid up to r < O (Pe−1). For this purpose, we add

the density field in the inner zone to the density field in the intermediate zone and

subtract the density field in the first matching zone
(
r ∼ Pe−1/2

)
. As the density

field in this matching zone is Peρ̄0, writing everything in terms of inner variables, we

get

ρ′0 = ρ̆0 + Peρ̆2 + Peρ̄0 − Peρ̄0 +O
(
Pe3/2

)
= −cos θ

2r2
+ Peρ̆2 +O

(
Pe3/2

)
. (6.104)

Noting that ρ̆2 ∼ O (1), we find that the density field obeys for r < O (Pe−1)

ρ′0 ∼ max

(
1

r2
, P e

)
. (6.105)

Since we did not use the boundary condition far from the swimmer, equation (6.96b),

we expect the density field and the scaling, equations (6.104), (6.105) to hold even if

the perturbation in Ri is singular.

6.11 Appendix E

In this appendix, we simplify the integral appearing in the matching condition

(6.57)

lim
r̃→0

ε2

8π3

∫
[ŵ′ (k)− ŵSS (k)] eik·̃rdk. (6.106)

We again divide the domain of integration into two parts—k ≤ r̃−σ and k > r̃−σ,

where 0 < σ < 1.

ε2

8π3

lim
r̃→0

∫
k≤r̃−σ

[ŵ′ (k)− ŵSS (k)] eik·̃rdk + lim
r̃→0

∫
k>r̃−σ

[ŵ′ (k)− ŵSS (k)] eik·̃rdk


(6.107)
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As k is finite in the first integral, we evaluate the limit by directly substituting r̃ = 0

to obtain

ε2

8π3

∫
[ŵ′ (k)− ŵSS (k)] dk +

ε2

8π3
lim
r̃→0

∫
k>r̃−σ

[ŵ′ (k)− ŵSS (k)] eik·̃rdk. (6.108)

Here the first term being a constant vector represents an uniform flow field. In the

second term, k � 1 and hence ŵ′ − ŵSS simplifies for fixed Pe/ε to

4iπb2k3 (2k2 + k2
1 + k2

2 − 2k2
3)

3k10

(
k3k1e1 + k3k2e2 +

(
k2

3 − k2
)

e3

)
. (6.109)

Here, we see that ŵ′ − ŵSS ∼ O (k−5), so (ŵ′ − ŵSS) dk ∼ O (k−2). Hence the

integral ∫
k>r̃−σ

[ŵ′ (k)− ŵSS (k)] eik·̃rdk ∼ O
(
r̃2σ
)

(6.110)

and it becomes negligible compared to the first term in equation (6.108) as r̃ → 0.
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7. SUMMARY AND FUTURE WORKS

7.1 Summary

In this thesis, we unveiled the impact of surfactant redistribution and density-

stratification on the motion of drops and swimming microorganisms. For this purpose,

we grouped the thesis under two themes. In the first theme, we studied the motion

of swimming microorganism near a surfactant-laden interface neglecting the stratifi-

cation effects in the suspending fluid whereas in the second theme, we analyzed sepa-

rately the motion of a drop and a swimming organism in a linearly density-stratified

fluid without any surfactants.

In the first theme, we began by analyzing the locomotion outside a surfactant-

laden drop (see Chapter 2). For this purpose, we assumed the surfactant is insoluble,

incompressible, and non-diffusing, and used the Boussinesq-Scriven constitutive law

for the interfacial stress tensor to derive the image flow fields for the point force

and higher order singularities placed outside a surfactant-laden drop. We used these

image flow fields to calculate the velocity of a swimming microorganism (modeled

as a force-dipole) outside a surfactant-laden drop which was later used to study the

trapping characteristics of bacteria near oil drops [16]. Using these image systems, we

also derived the mobility matrix of two surfactant-laden drops of arbitrary sizes and

this mobility matrix can be used to understand the pair hydrodynamic interaction of

bubbles and drops in bubbly flows and emulsion flows, respectively.

Inline with the first theme of this thesis, we then studied the motion of a swimming

microorganism (modeled as a spherical squirmer) inside a surfactant-laden drop where

the surfactant is now assumed to be insoluble, compressible, and have large surface

diffusivity (see Chapter 3). This system is ideal in exploring the nonlinearities in

the surfactant transport phenomena and it can also be used to transport the drops
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containing drugs as in the targeted drug delivery systems [7]. We found that the

surfactant redistribution can increase or even decrease the swimmer and drop speeds

depending on the value of the eccentricity. This can be understood by analyzing the

surfactant effects on the thrust and drag forces acting on the swimmer and the drop.

The far-field representation of a clean drop encompassing a pusher swimmer at its

center is a puller. The presence of a redistributed surfactant on the drop surface

maintains this far-field representation but reduces its strength. The nonlinearities

associated with the surfactant advection on the drop surface breaks the kinematic

reversibility constraints causing a time-averaged propulsion of the drop and the time-

reversible swimmer that it engulfs.

Consistent with the first theme of this thesis, we then analyzed the motion of

a swimming microorganism (modeled as a swimming sheet) in a film covered with

surfactant (see Chapter 4). This system is relevant in the context of free-standing

films containing swimming organisms or during the initial stages of biofilm formation.

We found that the surfactant redistribution affects the motility of the organism in a

non-trivial manner and this can be understood by analyzing the surfactant’s effect

on the interface slip.

In the second theme, we started by analyzing a towed drop in a linearly density-

stratified fluid at small inertia and stratification (see Chapter 5). We found that

stratification or inertia or both increase the drag and this drag acting on a drop is

equal to
(

3λ+2
3(λ+1)

)2

times the drag acting on a rigid sphere, where λ is the viscosity

ratio. But stratification does not deform the drop. In contrast to an infinite drift

volume in a homogeneous fluid, the drift volume in a stratified fluid, at zero inertia

and small advective transport rate of density, is finite but large compared to the

drop’s volume.

Inline with the second theme, we then studied the motion of a swimming organism

(modeled as a spherical squirmer) in a linearly density-stratified fluid at negligible

inertia and weak stratification (see Chapter 6). Depending on the position of the

swimmer relative to the neutrally buoyant position (NBP), the swimmer behaves ei-
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ther as a settling particle (far from NBP) or as a force-free particle (close to NBP).

Here, NBP is a position in the fluid where the ambient fluid density equals the swim-

mer’s density. While the motility of the swimmer far from NBP can be deduced from

the drag acting on a towed sphere in a stratified fluid, the motility close to NBP is

interesting and is in agreement with the previously reported numerical results.

7.2 Future works

The resistance matrix of a rigid sphere moving near a plane surfactant covered

interface was derived previously [30]. Along the similar lines, the velocity of a mi-

croswimmer (modeled as a force-dipole) near a plane surfactant laden interface was

also calculated [8]. These two analyses neglected the surface diffusivity of the sur-

factant and assumed it to be incompressible. It would be interesting to analyze the

motion of a rigid sphere or a microswimmer near a plane surfactant covered interface

in the limit of large surface diffusivity.

Most of the organisms that live in Bathypelagic zone (1000 m to 4000 m from

the sea surface) survive by feeding on the marine snow particles falling from the

water above this zone. These marine snow particles were found to aggregate at the

pycnoclines [196–198], in turn increasing the biological activity at these pycnoclines.

To understand this observation, one has to account for the porosity of the marine

snow particles [199]. Recent numerics [200] and reduced order theory [201] found the

reasons for this aggregation to be diffusion limited transport of salt or temperature

into the marine snow as well as the buoyancy of the entrained lighter fluid. But these

previous works considered sharp stratifications. To have a complete understanding

of the physical processes occurring in the oceans, one then have to also analyse the

settling of a marine snow particle through a linearly stratified fluid by extending the

theory developed in Chapters 5 and 6 of this thesis.

A fraction of marine snow particles as well as the planktonic organisms such as

Opalina, Paramecium are slender. Since the motion of spherical particles or organisms
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through stratified fluids is well understood [148–150,185,202], it is then interesting to

develop a theory for the motion of slender particles or organisms through stratified

fluids by extending the slender body theory developed in homogeneous fluids [26,

203,204] to stratified fluids. This theory can be validated with the numerical results

reported on the settling motion of a prolate spheroid through a stratified fluid [205].
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[140] Carlos R. Torres, José Ochoa, JoséE. Castillo, and Hideshi Hanazaki. Numerical
simulation of flow past a sphere in vertical motion within a stratified fluid.
Journal of Computational and Applied Mathematics, 103(1):67–76, mar 1999.

[141] C. R. Torres, H. Hanazaki, J. Ochoa, J. Castillo, and M. Van Woert. Flow
past a sphere moving vertically in a stratified diffusive fluid. Journal of Fluid
Mechanics, 417:211–236, aug 2000.

[142] H. Hanazaki, K. Konishi, and T. Okamura. Schmidt-number effects on the flow
past a sphere moving vertically in a stratified diffusive fluid. Physics of Fluids,
21(2):026602, feb 2009.

[143] A. Doostmohammadi, S. Dabiri, and A. M. Ardekani. A numerical study of
the dynamics of a particle settling at moderate Reynolds numbers in a linearly
stratified fluid. Journal of Fluid Mechanics, 750:5–32, jul 2014.

[144] A. Doostmohammadi and A. M. Ardekani. Suspension of solid particles in a
density stratified fluid. Physics of Fluids, 27(2):023302, feb 2015.

[145] H. Hanazaki, K. Kashimoto, and T. Okamura. Jets generated by a sphere
moving vertically in a stratified fluid. Journal of Fluid Mechanics, 638:173–197,
nov 2009.

[146] King Yeung Yick, Carlos R. Torres, Thomas Peacock, and Roman Stocker. En-
hanced drag of a sphere settling in a stratified fluid at small Reynolds numbers.
Journal of Fluid Mechanics, 632:49–68, aug 2009.

[147] Jie Zhang, Matthieu J. Mercier, and Jacques Magnaudet. Core mechanisms
of drag enhancement on bodies settling in a stratified fluid. Journal of Fluid
Mechanics, 875:622–656, sep 2019.

[148] Y. Zvirin and R.S. Chadwick. Settling of an axially symmetric body in a viscous
stratified fluid. International Journal of Multiphase Flow, 1(6):743–752, apr
1975.

[149] Fabien Candelier, Rabah Mehaddi, and Olivier Vauquelin. The history force
on a small particle in a linearly stratified fluid. Journal of Fluid Mechanics,
749:184–200, jun 2014.

[150] R. Mehaddi, F. Candelier, and B. Mehlig. Inertial drag on a sphere settling in
a stratified fluid. Journal of Fluid Mechanics, 855:1074–1087, nov 2018.

[151] Ian Proudman and J. R. A. Pearson. Expansions at small Reynolds numbers
for the flow past a sphere and a circular cylinder. Journal of Fluid Mechanics,
2(3):237–262, may 1957.



222

[152] François Blanchette and Avi M. Shapiro. Drops settling in sharp stratification
with and without Marangoni effects. Physics of Fluids, 24(4):042104, apr 2012.

[153] David W. Martin and François Blanchette. Simulations of surfactant-laden
drops rising in a density-stratified medium. Physical Review Fluids, 2(2):023602,
feb 2017.

[154] M. Bayareh, A. Doostmohammadi, S. Dabiri, and A. M. Ardekani. On the
rising motion of a drop in stratified fluids. Physics of Fluids, 25(10):103302, oct
2013.

[155] M. Bayareh, S. Dabiri, and A.M. Ardekani. Interaction between two drops as-
cending in a linearly stratified fluid. European Journal of Mechanics - B/Fluids,
60:127–136, nov 2016.

[156] S. Dabiri, A. Doostmohammadi, M. Bayareh, and A.M. Ardekani. Rising mo-
tion of a swarm of drops in a linearly stratified fluid. International Journal of
Multiphase Flow, 69:8–17, mar 2015.

[157] Charles Darwin. Note on hydrodynamics. Mathematical Proceedings of the
Cambridge Philosophical Society, 49(2):342–354, apr 1953.

[158] I. Eames, D. Gobby, and S. B. Dalziel. Fluid displacement by Stokes flow past
a spherical droplet. Journal of Fluid Mechanics, 485:S0022112003004361, may
2003.

[159] Nicholas G. Chisholm and Aditya S. Khair. Drift volume in viscous flows.
Physical Review Fluids, 2(6):064101, jun 2017.

[160] Kakani Katija and John O. Dabiri. A viscosity-enhanced mechanism for biogenic
ocean mixing. Nature, 460(7255):624–626, jul 2009.

[161] Kakani Katija. Biogenic inputs to ocean mixing. Journal of Experimental
Biology, 215(6):1040–1049, mar 2012.

[162] Shiyan Wang and Arezoo M. Ardekani. Biogenic mixing induced by inter-
mediate Reynolds number swimming in stratified fluids. Scientific Reports,
5(1):17448, dec 2015.

[163] A. M. Leshansky and L. M. Pismen. Do small swimmers mix the ocean? Phys-
ical Review E, 82(2):025301, aug 2010.

[164] Ganesh Subramanian. Viscosity-enhanced bio-mixing of the oceans. Current
Science, 98:1103–1108, 2010.

[165] Nicholas G. Chisholm and Aditya S. Khair. Partial drift volume due to a self-
propelled swimmer. Physical Review Fluids, 3(1):014501, jan 2018.

[166] A. M. Ardekani and R. Stocker. Stratlets: Low Reynolds Number Point-Force
Solutions in a Stratified Fluid. Physical Review Letters, 105(8):084502, aug
2010.

[167] T. D. Taylor and Andreas Acrivos. On the deformation and drag of a falling
viscous drop at low Reynolds number. Journal of Fluid Mechanics, 18(03):466,
mar 1964.



223

[168] Stephen Childress. The slow motion of a sphere in a rotating, viscous fluid.
Journal of Fluid Mechanics, 20(2):305–314, oct 1964.

[169] P. G. Saffman. The lift on a small sphere in a slow shear flow. Journal of Fluid
Mechanics, 22(2):385–400, jun 1965.

[170] M. J. Lighthill. An Introduction to Fourier Analysis and Generalised Functions.
Cambridge University Press, jan 1958.

[171] Fabien Candelier, Rabah Mehaddi, and Olivier Vauquelin. Note on the method
of matched-asymptotic expansions for determining the force acting on a particle.
jul 2013.

[172] Dominique Legendre and Jacques Magnaudet. A note on the lift force on a
spherical bubble or drop in a low-Reynolds-number shear flow. Physics of Fluids,
9(11):3572–3574, nov 1997.

[173] A. H. Nayfeh. Introduction to Perturbation Techniques. Wiley, 1993.

[174] D. G. Voelz. Computational Fourier Optics: A MATLAB Tutorial. SPIE, jan
2011.

[175] H. Brenner and R. G. Cox. The resistance to a particle of arbitrary shape in
translational motion at small Reynolds numbers. Journal of Fluid Mechanics,
17(4):561–595, dec 1963.

[176] Rajat Dandekar, Vaseem A. Shaik, and Arezoo M. Ardekani. Motion of an arbi-
trarily shaped particle in a density stratified fluid. Journal of Fluid Mechanics,
890:A16, may 2020.

[177] Masami Kojima, E. J. Hinch, and Andreas Acrivos. The formation and expan-
sion of a toroidal drop moving in a viscous fluid. Physics of Fluids, 27(1):19,
1984.

[178] C. J. Koh and L. G. Leal. The stability of drop shapes for translation at
zero Reynolds number through a quiescent fluid. Physics of Fluids A: Fluid
Dynamics, 1(8):1309–1313, aug 1989.

[179] Nikhil Desai and Arezoo M. Ardekani. Combined influence of hydrodynamics
and chemotaxis in the distribution of microorganisms around spherical nutrient
sources. Physical Review E, 98(1):012419, jul 2018.
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