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ABSTRACT

Jang, Christopher Y. M.S., Purdue University, August 2020. Modeling and Detecting
Orbit Observation Errors Using Statistical Methods. Major Professor: Dr. Carolin
Frueh.

In the globally collaborative effort of maintaining an accurate space catalog, it is of

utmost importance for ground tracking stations to provide observations which can be

used to update and improve the catalog. However, each tracking station is responsible

for viewing thousands of objects in a limited window of time. Limitations in sensor

capabilities, human error, and other circumstances inevitably result in erroneous, or

unusable, data, but when receiving information from a tracking station, it may be

difficult for the end-user to determine a data set’s usability. Variables in equipment,

environment, and processing create uncertainties when computing the positions and

orbits of the satellites. Firstly, this research provides a reference frame for what de-

grees of errors or biases in equipment translate to different levels of orbital errors

after a least squares orbit determination. Secondly, using just an incoming data set’s

angle error distribution compared to the newly determined orbit, statistical distribu-

tion testing is used to determine the validity and usability of the newly received data

set. In the context of orbit position uncertainty, users are then able to communicate

and relay the uncertainties in the data they share while assessing incoming data for

potential sources of error.
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1. INTRODUCTION

The first human-made satellite was launched into orbit in October of 1957, and since,

society has relied on satellites in Near-Earth space for various tasks, including weather

observations, telecommunications, global positioning and navigation, space-to-ground

observations, as well as space-based space observations. Near-Earth space, in general,

is divided into three major regions: Low-Earth Orbit (LEO) includes the space under

2,000 km altitude above the Earth’s surface; Medium-Earth Orbit (MEO) includes

the space between 2,000 and 35,586 km altitude; Geosynchronous Earth Orbit (GEO)

includes the space between 35,586 and 35,986 km altitude.

There are also various specialty orbits, such as the Highly Elliptical Orbit (HEO),

which takes advantage of the long dwell times satellites experience when they reach

their highest altitudes. An example of this include the Molniya Orbit, named after

early Russian communications satellites. The GEO Transfer Orbit (GTO), is a sub-

class of HEO used to transport vehicles or payloads from LEO to GEO. In GEO, a

circular orbit with zero inclination relative to the Earth’s equator is called Geosta-

tionary. Its orbital period matches the rotation of the Earth, which causes satellites

to appear fixed in the sky. It is one of the most desirable orbits for communication

satellites. The Sun-Synchronous Orbit (SSO) is a subclass of LEO and uses a high in-

clination (nearly polar) so that a satellite and its solar panels can remain in constant

sunlight, which is good for weather and imaging satellites [1].

The advantages for a government or private organization to have satellites in Near-

Earth Space are clear. As a result, the space environment has become increasingly

congested in recent years. There is ongoing research by organizations researching

the validity and application of space-based space situational awareness (SSA) via

cubesat constellations [2], which presents a new platform for detecting and tracking

objects in Near-Earth space. This promises improvements in coverage of objects
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otherwise undetectable from the surface of the Earth, and removes sources of error

from atmosphere and weather.

In addition to more human-made objects being launched into orbit, major satellite

collisions, break-ups, and explosions in the last two decades have contributed greatly

to the increase in number of near-Earth space objects. China’s anti-satellite (ASAT)

missile demonstration in 2007 destroyed Chinese weather satellite, Fengyun 1C, which

created an estimated 150,000 pieces of debris, of which approximately 3,000 were

large enough to track [3]. In 2009, American satellite Iridium 33 and Russian satellite

Cosmos 2251 collided, and approximately 2,000 pieces of debris have been tracked

since [4]. These pieces of debris pose serious threats to the usability of the Near-

Earth Space environment, and proper tracking can help prevent future collisions,

whether it is satellite to satellite or satellite with debris.

United States Strategic Command (USSTRATCOM) maintains a publicly avail-

able catalog of satellites in orbit larger than 10 cm and larger than 1 m in GEO. Even

within these criteria, not all objects are well tracked due to various uncertainties such

as attitude, reflective properties, area-to-mass ratios, etc. Currently, USSTRATCOM

tracks nearly 20,000 objects, and approximately 80% of these objects are contained

in just the LEO region. There is a collaborative effort across many organizations

to maintain an accurate catalog, but this is often difficult because of limited re-

sources and equipment [5]. Most notably, the largest obstacle for SSA collaboration

is political: political motives outweigh and limit organizations’ willingness to share in-

formation. In the early stages of space operations, government organizations tracked

objects and kept that information to themselves in the interest of national security.

In aerospace industry operations (private and government), the most common

methods for dealing with recreating error or sources of error involve using large arrays

of tabulated information, which are comprised of historical, empirical data, or using

computationally expensive or labor intensive error models. Tabulated data relies on

historical information and requires potentially large amounts of on-board storage.

On the other hand, complex error models must be updated frequently to match the
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constantly changing Earth environment, which can lead to inefficiencies especially

when urgent orbit updates are needed [6]. Because orbits must be updated in a

timely fashion, only 1.5% of observational measurement data get the approval from

Air Force Space Command (AFSPC) to use higher order models. These cases often

require the use of human orbital analysts, who check observational data for timing

errors, uncoordinated maneuvers, or other sources of error [7].

Because of the high volume of information related to tracked objects in Near-Earth

space, many error models and propagation models use simplified designs for the sake

of computational efficiency. This provides an interesting challenge when computing

precise orbits [8]: highly precise and accurate tracking of objects comes at the price

of computational efficiency. Instead of using complex propagators, simple models are

used with updated observations to provide improvements to orbits. The updates to

the orbits can compensate for the models’ simplicities; however, this places a great

importance on a tracking station’s ability to take and record usable observations [9].

In addition to the AFSPC catalog, there are other operational agencies across

the world, private and government, dedicated to tracking and reporting space objects

and debris. Analytic Graphics, Inc. (AGI) is using its expertise in orbit modeling

and debris tracking software in Commercial Space Operations Center. AGI works

very closely with AFSPC and provides software support for its space operations [10].

There exists a Russian space catalog as well, the Vimpel Catalogue, and likewise,

ESA, NASA, and other government-affiliated agencies have taken measures to improve

SSA [11]. Commercial companies with assets in space each have their motives for

maintaining or providing SSA, and now, a number of companies are interested in the

removal of space debris. For example, Astroscale, a Japanese company, is planning a

debris removal demonstration within the next 12 months [12]. However, organizations

have their own methods and procedure for recording observations, and although they

may share information, they do not specifically share what assumptions are made in

the process or how computations were made. This creates the need to investigate
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and research the different error sources and how to detect them in a data stream of

known objects by observing patterns and trends.

It is clear that there are many stakeholders in the space domain, each with their

different methods of observing and tracking space objects. This information is not

often shared on a public domains, and when data is shared, only fully computed orbits

are provided, as orbital elements or the position and velocity state. The technical

methods used to compute these values are left unstated. In these cases, raw data is

rarely shared if ever, and the end-user, with very little information, needs to decide if

a calculated orbit is accurate and to what level of confidence. To complicate matters

further, observation stations use different methods and equipment for making satellite

observations, each of which have their strengths and weaknesses and various levels

of precision and sources of error. The most common satellite observation equipment

is the optical telescope. Other common methods include radar and laser ranging;

however, optical sensor types will be the focus of this thesis.

An optical telescope observes the reflection of a light source (the sun) off the sur-

face of a tracked object. The light travels from the satellite to the ground station

and loses energy at each stage, and thus, optical equipment ideally must be able to

detect very faint signals of light as well as very bright signals in order detect a wide

range of objects. The light received by the optics excites the elements in a charge

coupled device (CCD), which in essence converts and records the light as a digital

signal on a computer. The quality of the extracted pixel position depends on the

tracking ability of the station, the optics of the telescope, and the processing ability

of the computer [13]. The object’s location in space is determined using star catalogs,

which provide the information needed to convert pixel coordinates to astronomical

coordinates [14]. Modifying the existing filtering and processing methods aims to in-

crease the validity of the observations and computed orbits, especially when tracking

multiple unknown objects. Lubey, et al [15] have applied Thrust-Fourier-Coefficients

to the classical Orbit Determination method and demonstrated real-world improve-

ments in detecting object maneuvers. Delande, et al [16] presents the distinguishable
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and independent stochastic populations filter, a multi-object tracking algorithm that

exploits the Bayesian Filtering framework in the context of wide-area SSA.

One observation of the satellite returns only two angles, and three complete ob-

servations must be made for Initial Orbit Determination (IOD), which returns a first

guess for an object’s six-element orbit. Additional observations of the object can be

added at a later time to improve the IOD solution by using a filtering method [17].

These techniques and methods will be explained in further detail in Chapter 2. These

methods combined with accurate observations can provide very usable tracking in-

formation, but the computed orbits can only be as accurate and reliable as the ob-

servations themselves. Statistical methods can be used to determine the reliability of

observation datasets.

Unfortunately, optical telescopes have many shortcomings: received signals may

be faint and are subject to many factors once it enters the Earth’s atmosphere. Ul-

timately, the quality of optical observations depends on the strength of illumination

source (typically the sun), reflective properties of the satellite (material, shape, ori-

entation), sensitivity of the sensor, and various losses of energy along the path of the

light signal (attenuation, free path loss, etc.) [18]. Different operational procedures

and equipment from station to station and variables in weather and atmosphere may

also cause problems, such as scintillation (twinkling effect) or refraction (bending

light). Because they contribute to known sources of error, these factors, both of the

equipment and of the environment, must be considered when using observations from

another site.

Statistical methods may be used to assess measurement quality and to filter noisy

data in astrodynamics and space applications. Since there is such a large amount

of data and information in tracking thousands of objects, research for improved SSA

focuses heavily on studying applied statistical methods, particularly in the field of

outlier detection. Outlier detection is heavily dependent on what quantities are known

or unknown in a data set. This helps when deciding what quantities will be modeled

as random variables. Statistical methods and neural networking are computationally
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efficient methods that require users to know information such as error covariances a

priori [19].

Often, in astronautics, a rough estimate or assumption is used for these methods.

Testing and comparing variances within a data set can provide more information

about the data set’s usability. Variance tests, such as Levene’s test, the Anderson-

Darling test, and the Welch test [20] can test for the normality and linearity of a data

set. This incidentally detects outliers as well. With a new data set of observations,

performing initial orbit determination provides the necessary information to begin

statistical methods, such as the Shapiro-Wilk test, which conducts robust distribution

testing [21].

Since much of orbit determination and orbit improvement computations depend

on assumptions on random variables, this thesis focuses on studying the effects of

error distributions after adding nonlinear errors. Performing distribution tests can

be particularly useful, especially since common filtering methods are not effective

at detecting outliers. Using a robust statistical distribution test can confirm the

goodness-of-fit of using Gaussian assumptions prior to moving forward with the po-

tentially bad data. Significant deviations from a Gaussian distribution must then be

considered an unreliable data set. The framework of this research is to provide meth-

ods to detect sources of errors within a provided data set. This requires repeatable

methods for modeling error when given the conditions of a specific night. This thesis

will focus on modeling errors and performing statistical distributions tests.

1.1 Research Goals

The first goal of this research is to model various errors associated with optical

sensors using random variables. These errors include satellite timing error, ground

station timing error, light refraction, and lens distortion. These all contribute to the

uncertainty of an orbiting object’s position. This research provides a reference of how

different types of error at varying degrees translate to an object’s position uncertainty.
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Operators and users can share and receive data and use it more appropriately if they

are more aware of observation uncertainties.

The second goal of the research is to provide a method for determining an incom-

ing dataset’s validity or usability without using additional information. Testing error

distributions with statistical methods such as the Shapiro-Wilk test can reveal the

presence of errors in a dataset or if the data should be used to update or improve

existing orbits. This paper will focus on angles-only optical observations made from

the ground.

1.2 Chapter Outline

Chapter 2: This chapter discusses and reviews the foundation and technical back-

ground necessary for understanding and simulating an object in orbit around the

Earth. Here coordinate systems and reference frames for optical measurements and

the two-body orbit problem are presented. Further, Gauss’s initial orbit determi-

nation method is introduced as well as the Gauss least squares filtering method for

batch orbit improvement.

Chapter 3: This chapter briefly introduces probability theory and how random vari-

ables can be used to express uncertainties in dynamical systems. Commonly used

distribution shapes are described, and distribution tests are introduced, such as the

Anderson-Darling test and the Shapiro-Wilk test.

Chapter 4: This chapter summarizes what methods and assumptions are made in

modeling the various potential errors associated with optical observations, which re-

volve around timing, the processing and filtering of data, and equipment limitations.

This consists of but is not limited to random and biased timing errors, opening and

closing of the shutter, aberration, radial distortion, refraction error, centroid bias,

etc. Once modeled, measurements can be shown with and without errors to begin
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identifying trends and patterns.

Chapter 5: After modeling the errors, formal statistical methods from chatper 3 are

applied to illustrate the effect of each error on a data set. Primarily, distribution

testing will test for normality of the residuals in determine the validity or usability of

a data set. Positive test results on the distribution testing may indicate a data set as

unusable and that it should not be used for orbit update or improvement. However,

the optical measurements with errors will be used in orbit determination and least

squares filtering in order to demonstrate the errors’ effects on orbit computation. This

will highlight the strengths and limitations of the methods currently being used and

ultimately stress the importance of understanding the errors associated with optical

observations.

Chapter 6: Conclusions and recommendations are made.
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2. REVIEW OF ASTRODYNAMICS

The detection of sources of observational errors in a data set requires a fundamental

understanding of orbital motion, coordinate systems, and orbit determination meth-

ods. For this paper, assumptions and simplifications will be made about gravity and

other perturbations as to highlight the effects of the optical error models, which will

be presented in Chapter 4. This chapter discusses and reviews basic astrodynamics

concepts that will be used in following chapters.

2.1 The Two-Body Problem

Objects in space are subject to the primary force of Earth’s gravity, which keeps

the objects in orbit. Of course, there are other forces, such as third-body effects

(sun and moon), solar radiation pressure, atmospheric drag, Earth’s oblateness, etc.

Firstly, it is assumed in the two-body motion force model that the Earth is spherically

symmetric and is perceived as a point mass. The space objects are also considered as

point masses in the gravitational force model, but their masses are negligibly small

compared to the mass of the Earth. This allows Newton’s gravity inverse square law

to be written as

:̄r “ ´
GMC

r2
r̄

r
. (2.1)

This represents the resultant acceleration of a space object due to gravity in Near-

Earth Space as a vector, :̄r. r̄ is the vector from the geocenter to the space object,

and thus r̄{r is the unit vector pointing from the geocenter to the satellite. G and

MC are the universal gravitational constant and the mass of the Earth, respectively.

It is common to use a gravitational parameter, µC “ GMC. The gravity equation

can then be written as

:̄r “ ´
µC

r2
r̄

r
. (2.2)
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The value used for the Earth gravitational parameter, µC, is 398600.440 km3{s2. The

above equations dictate the motion of an object in Earth’s gravity in the two-body

orbit problem [17]. The basic two-body gravity model can be expanded further with

third-body perturbations. This is represented as a summation of the gravitational

forces of the jth body acting on the primary body, Earth. For this, the point mass

assumption and negligible object mass assumption still apply. Any number of third

bodies can be used, but for Earth applications, it is most common to include the

effects of the Sun and Moon.

:̄r “ ´
µC

r2
r̄

r
´

n
ÿ

j“1

µj

ˆ

r̄ ´ r̄j
|r̄ ´ r̄j|3

`
r̄j
r3j

˙

(2.3)

From here, other perturbations, such as drag and solar radiation pressure (SRP)

can be added to the force model, shown below. Drag is most applicable to satellites in

LEO and is dependent on the drag coefficient, cD, density of the air, ρ, the Area-to-

Mass ratio (AMR), A
m

, and it acts in the direction opposite of relative velocity vr. SRP

is more applicable for satellites in MEO or GEO, where smaller force have greater

overall effect on an object’s motion. It is dependent on the Sun-Earth distance, (AU

for Astronomical Unit), the average SRP at 1 AU (P@ « 4.56 ¨10´6Nm´2), the AMR,

A
m

, the SRP coefficient, CR, and the Sun-Earth vector,r̄@ More information on these

equations can be found in Montenbruck’s Satellite Orbits.

ādrag “ ´
1

2
cD
A

m
ρ v2r

v̄r
vr

(2.4)

āSRP “ ´P@CR
A

m

r̄@

r3@
AU2 (2.5)

Unknown attitude or lack of information on object orientation, frontal area, mass,

etc. can cause drag and SRP to be difficult to model and predict. Often the objects

are modeled as spheres, but false assumptions in the force model lead to greater

deviations from the truth when propagating
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2.2 Coordinate Systems

In addition to the motion of the object(s) determined by the force model, a inertial

reference frame is needed to correctly position the object in space and time. Then

a coordinate system must be determined to describe the object’s position within the

decided reference frame. For coordinate systems, this research works primarily in the

geocentric equatorial system, the topocentric equatorial system, and the local horizon

equatorial system. The coordinate system used determines which angles are recorded

during optical observations.

2.2.1 Earth Centered Inertial

For inertial reference, the Earth Centered Inertial (ECI) frame is used, which

assumes the center of the Earth to be fixed inertially in space, In reality, it is slowly

moving over time in relation to the sun and distant stars. However, if the focus

of an object’s dynamics is in Near-Earth Space, the ECI is often most appropriate.

Propagation of Near-Earth objects is typically done in an ECI frame. Standardizing

epoch and reference systems has proven useful, especially in sharing information.

Currently, the use of the International Celestial Reference Plane (ICRF or J2000.0)

is agreed upon. Here, the ECI reference plane is the Earth’s equatorial plane, with

the origin of the frame in the center of the Earth. The x̂-axis points toward the mean

vernal equinox, P, the ẑ-axis is normal to the reference plane and points through the

Earth’s axis of rotation, and the ŷ-axis completes the right-handed system as seen in

Figure 2.1 [1].
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Fig. 2.1. The Equatorial Coordinate System with right ascension and
declination labeled [1]

2.2.2 Geocentric Equatorial System

In the ECI frame, the position of a satellite can be described using the geocentric

angles right ascension, α, and declination, δ, and the geocentric distance, r. α is the

in-plane angle on the equatorial plane from x̂ to the satellite (measured from 0˝ to

360˝). δ is the angle above or below the equatorial plane (measured from ´90˝ to

90˝). This relationship between Cartesian components and the geocentric angles is

described below in matrix form [18].

r̄ “

»

—

—

—

–

x

y

z

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

cos δ cosα

cos δ sinα

sinα

fi

ffi

ffi

ffi

fl

(2.6)



13

2.2.3 Earth-Centered Earth-Fixed

Ground-based observers use a rotating reference frame, Earth-Centered and Earth-

Fixed (ECEF) to describe their positions, where the primary direction is through

Greenwich Meridian, the secondary direction is through 90˝, and the normal direction

is through the Earth’s rotation axis. Rotating a position vector from the ECEF frame

to ECI is achieved by rotating about the Earth’s Rotation axis, R3. The angle used

is Greenwich Mean Sidereal Time (GMST, or Θ), which is the angle of rotation past

the x̂-axis.

R̄ECI “ R3pΘqR̄ECEF (2.7)

In the ECEF frame, there are Topocentric Equatorial System and Topocentric Local

Horizon System, which are both commonly used to describe a satellite’s position in

the sky from a ground-based sensor.

2.2.4 Topocentric Equatorial System

The Topocentric Equatorial System is a right-handed system with its origin at

the topocenter, the position of the observer on the surface of the Earth at a specific

time. The fundamental reference plane is parallel to the Earth’s equator at a fixed

equinox, and its reference direction is the vernal equinox at a fixed equinox. This

illustration can be see in Figure 2.2. The angles used are topocentric right ascension,

α1, and topocentric declination, δ1. Use of the Topocentric Equatorial System also

requires sidereal time, θ, which is the right of ascension of the zenith at the specified

time t. The difference between sidereal time and geocentric right ascension provides

the local hour angle, τ . In addition to the angles, the range, ρ, from topocenter to

satellite, must be included to describe the position of the satellite.

τ “ θ ´ α1 (2.8)
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Fig. 2.2. The Topocentric Equatorial System with topocentric right
ascension and topocentric declination labeled [18].

The observer’s location must also be known and is defined using the geographic lati-

tude (φ1) of the observer and the average radius of the Earth R1 “ 6, 378km. These

values are used to make corrections which account for the non-spherical shape of the

Earth.

φ “ φ1 ´ 0.1924˝ sin 2φ1 (2.9)

R « R1 ´ 21.38km sin2 φ1 (2.10)

Then, the position of the topocenter can be converted to ECI using the corrected

latitude and sidereal time:

Rtopo “

»

—

—

—

–

R cosφ cos θ

R cosφ sin θ

R sinφ

fi

ffi

ffi

ffi

fl

, (2.11)

and the topocentric vector is written as:
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ρ̄ “

»

—

—

—

–

ρ cos δ1 cosα1

ρ cos δ1 sinα1

ρ sin δ1

fi

ffi

ffi

ffi

fl

. (2.12)

Using vector addition, r̄ “ ρ ` Rtopo, the full transformation for topocentric vectors

to geocentric ECI can be expressed as:

»

—

—

—

–

cos δ cosα

cos δ sinα

sinα

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

ρ cos δ1 cosα1

ρ cos δ1 sinα1

ρ sin δ1

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

R cosφ cos θ

R cosφ sin θ

R sinφ

fi

ffi

ffi

ffi

fl

(2.13)

2.2.5 Topocentric Local Horizon System

The Topocentric Local Horizon System allows observers to make observations

without requiring any computations since the origin and reference plane are local. It

is a left-handed system, and the reference direction is South with the origin at the

topocenter. The angles used are azimuth, Az, and elevation, h. Azimuth (measured

from 0˝ to 360˝) is the in-plane angle between the South reference direction and the

satellite. Elevation (measured from 0˝ to 90˝) is the angle above the local horizon.

This is illustrated in Fig. 2.3.
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Fig. 2.3. The Topocentric Local Horizon System with Azimuth and
Elevation labeled [18].

The azimuth and elevation can be computed using many of the values from above. The

expression below uses corrected latitude, hour angle, topocentric right ascension,and

topocentric declination.

»

—

—

—

–

cosh cosAz

cosh sinAz

sinh

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

sinφ cos δ1 cos τ ´ cosφ sin δ1

cos δ1 sin τ

sinφ sin δ1 ` cosφ cos δ1 cos τ

fi

ffi

ffi

ffi

fl

(2.14)

It is important to note here, that the Topocentric Local Horizon frame does not

require using distances, only angles.

2.2.6 Radial, Along-Track, Cross-Track Reference Frame

At times, it may be useful to study the relative motion of satellites. If the true

orbit of an object is known, its position can be used as the origin of a dynamic

reference system. The direction opposite to the center of the Earth is the Radial
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direction, R̂. The along-track direction, Ŝ, points in the direction of motion and is

orthogonal to R̂. The cross-track direction, Ŵ , completes the right-handed system.

Fig. 2.4. The RSW Reference Frame [17].

From here, users can visualize the error in the context relative to the motion of the

original object. The RSW reference frame is most commonly used to display orbit

errors as well as proximity operations [17].

2.3 Classical Orbital Elements

Johannes Kepler, a 17th century astronomer, used six orbital parameters to de-

scribe the orientation, size, and shape of an orbit. These parameters are now known

as Keplerian orbital elements or Classical Orbital Elements (COEs). Using the or-

bital element space can be helpful in understanding how the perturbations affect the

orbit’s overall size, shape, or orientation. Often, it can be easier for users to visualize

and interpret any changes and differences in orbital elements, but generally speaking,
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a full orbit must be known to compute the orbital elements. However, the aforemen-

tioned coordinate frames and reference systems allow observers to record information

without knowing the full orbit. Orbit determination methods, which are discussed

in the following section, use the observation space and returns a six-element state,

position and velocity. The six components can then be used to compute the six COEs

at a given time.

Fig. 2.5. The Classical Orbital Elements first used by Johannes Kepler [18].

a - The semi-major axis describes the size of the orbit. Specifically, it is half the sum

of the periapsis and apoapsis distances: a “ prp ` raq{2.

e - The eccentricity describes the shape of the orbit. 0 indicates a circular orbit.

Between 0 and 1, the orbit is elliptical. For Earth-orbiting objects, 0 ď e ă 1.

i - The inclination is the angle between the orbital plane and the fundamental plane.

It is measured between ´90˝ and 90˝. It defines the tilt of the orbit relative to the

reference plane.
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Ω - The Right Ascension of the Ascending node is the angle between the x̂ and the

point on the orbit at which the satellite crosses the equator from south to north. It

defines the orientation of the orbital plane relative to the reference frame.

ω - The argument of periapsis is the angle in the orbital plane between the ascending

node and periapsis. It defines the orientation of the orbit ellipse in the orbital plane.

ν - True anomaly describes the position of the orbiting object at a given time. It is

the angle between periapsis and the position of the satellite in the orbital plane [1].

2.4 Orbit Determination

Once observations for an object are taken, the full orbit must be calculated. This

requires knowing the observer’s position as well as the time of the observations [18].

Since the orbit has six degrees of freedom, there must be six quantities taken from the

observations. Generally, three observations are required to compute an orbit. This

can provide good orbit estimates when observations are error-free, but using more

observations to improve the initial solution ensures that the estimate is closer to the

true orbit. Further observations are added via filtering methods, such as the Least

Squares Method or the Extended Kalman Filter [17].

2.4.1 Initial Orbit Determination: Gauss’s Method

Initial Orbit Determination (IOD) is the method of determining the full state of a

object in orbit, using only observations. This work uses Gauss’s IOD method, which

uses three angles-only observations to determine the six-element state vector for the

object and does not require any distance measurements. This method assumes the

object’s motion is planar and projects the solution onto the second observation [18].

To begin, there must be three observations in the topocentric frame, each with the



20

time of observation:
»

—

—

—

–

t1, α1, δ1

t2, α2, δ2

t3, α3, δ3

fi

ffi

ffi

ffi

fl

The observations are used to create the pointing direction, L̂i, at each time:

L̂i “

»

—

—

—

–

cosαi cos δi

cosαi sin δi

sin δi

fi

ffi

ffi

ffi

fl

(2.15)

Combined with the observers position at each in the ECI frame, there is enough

information to determine the orbit. The observer position is recorded in matrix form:

Ri “ Robserver,ECI (2.16)

The position of the observed object can be expressed as:

ri “ Ri ` ρi ¨ L̂i, (2.17)

and the only unknowns are the slant ranges for each observation, ρi.

Below are the equations and procedure needed to complete Gauss’s Method. The

method uses the available quantities and geometric restrictions (planar conic section)

to solve for the missing ranges algebraically. More information on the derivations

of the formulas can be found in Vallado’s text, Fundamentals of Astrodynamics and

Applications.

• Time Intervals Between Observations
»

—

—

—

–

τ1 “ t1 ´ t2

τ3 “ t3 ´ t2

τ13 “ τ3 ´ τ1

fi

ffi

ffi

ffi

fl

(2.18)



21

• Triple Products:

»

—

—

—

—

—

—

–

D0 “ L̂1 ¨ pL̂2 ˆ L̂3q

D11 “ R1 ¨ pL̂2 ˆ L̂3q; D21 “ R2 ¨ pL̂2 ˆ L̂3q; D31 “ R3 ¨ pL̂2 ˆ L̂3q

D12 “ R1 ¨ pL̂1 ˆ L̂3q; D22 “ R2 ¨ pL̂1 ˆ L̂3q; D32 “ R3 ¨ pL̂1 ˆ L̂3q

D13 “ R1 ¨ pL̂1 ˆ L̂2q; D23 “ R2 ¨ pL̂1 ˆ L̂2q; D33 “ R3 ¨ pL̂1 ˆ L̂3q

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.19)

• A and B coefficients:

A “
1

D0

„

´
τ3
τ13

D12 `D22 `
τ1
τ13

D32



(2.20)

B “
1

6D0

„

´pτ 213 ´ τ
2
3 q
τ3
τ13

D12 ` pτ
2
13 ´ τ

2
1 qq

τ1
τ13

D32



(2.21)

• a, b, c coefficients:

a “ ´A2
´ 2ApL̂2 ¨R2q ´ ||R2||

2 (2.22)

b “ ´2µBpA` pL̂2 ¨R2qq (2.23)

c “ ´µ2B2 (2.24)

• Solve for the real root, ||r2||:

0 “ ||r2||
8
` a||r2||

6
` b||r2||

3
` c (2.25)

• use ||r2|| to determine the slant ranges:

ρ1 “
1

D0

«

6pD31
τ1
τ3
`D21

τ13
τ3
q||r2||

3 ` µD31pτ
2
13 ´ τ

2
1 q

τ1
τ3

6||r2||3 ` µpτ 213 ´ τ
2
3 q

´D11

ff

(2.26)

ρ2 “ A` µB||r2||
´3 (2.27)

ρ1 “
1

D0

«

6pD13
τ3
τ1
`D23

τ13
τ1
q||r2||

3 ` µD13pτ
2
13 ´ τ

2
3 q

τ3
τ1

6||r2||3 ` µpτ 213 ´ τ
2
1 q

´D33

ff

(2.28)
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• Using Lagrange Coefficients, the position and velocity at the second observation

can be determined:

f1 “ 1´
1

2

µ

||r2||3
τ 21 (2.29)

f3 “ 1´
1

2

µ

||r2||3
τ 23 (2.30)

g1 “ τ1 ´
1

6

µ

||r2||3
τ 31 (2.31)

g3 “ τ3 ´
1

6

µ

||r2||3
τ 33 (2.32)

r̄i “ Ri ` ρiL̂i (2.33)

v̄2 “
1

f1 g3 ´ f3 g1
rf1r3 ´ f3r1s (2.34)

Once the position and velocity are determined, the equations of motion can be used

to propagate the object forwards or backwards to a desired time [18].

2.4.2 Orbit Improvement: Least Squares Method

For real-world applications, the IOD provides only a rough estimate for an object’s

orbit and should be treated as an incomplete solution. For higher precision, a filtering

method using more observations is necessary. In cases where observations are used

singly, or as they are recorded, a sequential filter, like the Extended Kalman Filter, is

most approriate. More information on the Kalman Filter can be found in Vallado’s

Fundamentals of Astrodynamics and Applications. However, for data sharing, it would

be most common to receive a full set of observations from a ground station, so in this

study, the orbit improvement of choice is the classical batch filter, or the Least Squares

Estimator [18].



23

Linear Least Squares

The Least Squares method begins with defining the state, x. For an object in the

orbit problem, the state is a six-element vector of the position and velocity compo-

nents:

xT
“

”

rx, ry, rz, vx, vy, vz

ı

(2.35)

Once the state vector is defined, the model, gi is expressed as a linear combination

of the state and a measurement matrix, Hi.

gi “ Hix (2.36)

For system with known dynamics, a state transition matrix, Φptk,t0q, is used to propa-

gate the initial state to time, tk, of measurement observation. The first time derivative

of the state transition matrix, 9Φpt,tiq must also be known. If the system dynamics are

known to follow

9xptq “ F ptqxptq, xpt0q “ x0, (2.37)

then,

9Φpt,tiq “ F ptqΦpt,tiq (2.38)

The measurement matrix, H model would then be expressed as:

Hk “ H̃kΦptk,t0q, (2.39)

where H̃k is a measurement mapping matrix. The driving factor of the method is

the minimization the variance in the residuals between the real observations and the

estimates generated by the model. The residuals are recorded as:

εi “ zi ´Hix, (2.40)

where zi is the matrix of true observations. The method minimizes a performance

index, J , which is the sum of squares. This can also be called the weight, hence the

name, Weighted Least Squares. In matrix form, it is expressed as:

J “ ´2 rz ´HxsT rz ´Hxs (2.41)
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To find the minimum of J , the first derivative is taken with respect to x:

BJ

Bx
“ ´2 rz ´HxsTH , (2.42)

which is set to equal 0.

rz ´HxsTH “ 0T Ñ zTH ´ xTHTH “ 0T (2.43)

Rearranging the terms provides:

HTHx “ HTz (2.44)

Solving for the state yields the final equation for x̂:

x̂ “ rHTHs´1HTz (2.45)

To ensure the Least Squares method provides an estimate that is unbiased with

minimum variance, measurement error must be introduced. Each observation is as-

sumed to have some measurement error, νi, of which the mean is 0 and the expected

value of the covariance, Rij is known.

zi “ H̃ixi ` νi (2.46)

Etνiu “ 0 (2.47)

Etνiν
T
j u “ Rij (2.48)

In summary, the estimated state is assumed to be a linear combination of the measure-

ment data and the known error and covariance. This also assumes that the estimated

state is random even though the true state of the system is not random [18]. The

covariance matrix, Pk, is also updated.

x̂k “ rH
TR´1Hs´1HTR´1z (2.49)

Pk “ rH
TR´1Hs´1 (2.50)

The full derivation for Eq.2.47 and Eq. 2.48 can be found in Chapter 7, section 2 of

Frueh’s AAE 590 script.
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Nonlinear Least Squares

Unfortunately, the above method does not work when the dynamics of a system,

like that of the orbit problem, are nonlinear. Here, the dynamics must be linearized

for use in the Least Squares method. The mapping matrices and the state transition

matrix use Taylor Series expansion with negligible higher order terms. The matrices

needed for the two-body orbit problem can be found in Appendix D of Vallado’s

Fundamentals of Astrodynamics and Applications.

Because of the linearizations, the measurements and estimated state are assumed

to have deviations from the truth. The deviations can be expressed with δ, where

δ xptq “ xptq ´ x˚ptq, (2.51)

and x˚ is a reference state. Likewise, the deviations in the measurements can be

expressed as

δzi “ zi ´ z
˚

i , (2.52)

and differentiating once with respect to time gives

δ 9xptq “ xptq ´ x˚ptq (2.53)

and

δzi “ hpxiq ´ hpx
˚
q ` νi. (2.54)

Linearizing with a first-order Taylor series expansion and removing like terms gives

δ 9xptq “ F px˚ptqqδxptq (2.55)

and

δzi “ H̃px
˚

i qδxi ` νi. (2.56)

.

New terms, λ and Λ, are defined using the available terms:

λ “ P̄´1
k δx̄k `H

TR´1δz (2.57)
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Λ “ P̄´1
k `HTR´1 (2.58)

Now the solution can be found with

Λδx̂k “ λ, (2.59)

and the state estimate, x̂k can be expressed as

δx̂k “ Λ´1λ (2.60)

The covariance is returned as

Pk “ Λ´1 (2.61)

The state estimate and covariance estimate, which contain both position and velocity,

are reset and reused in the next iteration of the least squares estimator. Iterations can

be run until a desired convergence is reached. Ultimately, the method remains largely

similar, and only a few modifications must be made for nonlinear system dynamics.

This is an abridged summary of the nonlinear least squares method. The solution for

the nonlinear system is abbreviated as NLUMVE, or Nonlinear Unbiased, Minimum

Variance Estimate. The full derivation can be found in Chapter 7, section 3 of Frueh’s

AAE 590 script.
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3. PROBABILITY AND STATISTICAL METHODS

The foundation of error modeling and analysis relies on an understanding of random

variables and probability distributions. Random variables capture uncertainties that

may be present in observations or in the orbit model. Random variables allows users

to represent uncertainties mathematically [22]. This chapter introduces and discusses

probability distributions and the random variables, which can be used in statistical

methods, which are covered later in Chapter 5.

3.1 Basic Probability and Random Variables

A random variable can be described as a possible set of values for given conditions.

From the possible set of values, the outcome of the random variable follows a random

probability distribution. For continuous random variables, the probability density

function, ppxq, expresses the relative likelihoods for which values within the possible

set the random variable may take. The expected value of a random variable, x,

when continuous, can be expressed explicitly when the probability density function

is known. It is the sum of all possible random outcomes represented by an integral

and is equal to the mean, µ, or the average value of all outcomes:

Etxu “

ż 8

´8

xppxqdx “ µ (3.1)

Moments in statistics are useful parameters that describe the shapes of distributions.

The nth moment of x is defined using expected values: Etxnu, shown in Eq. 3.1. It

can be seen then that the first moment (n “ 1) is equal to the mean. The second

moment, which describes the variance of a distribution, can be calculated using the

second moment [22].

V artxu “ Etx2u ´ Etxu2 (3.2)
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In a case with two random variables, x and y for example, the joint variance, or

covariance, can be expressed as

V artxyu “ Etxyu ´ EtxuEtyu (3.3)

Some probability distributions require two or moments to describe the full shape of

the distribution. Examples are discussed below.

3.1.1 Normal Distribution

The Normal Distribution, or Gaussian Distribution, is a bell-shaped, continuous

distribution symmetric about the mean (see figure 3.1) and can be described in full

using the first moment, µ and the second moment, σ2. The probability density

function is expressed as

fpxq “
1

?
2πσ2

exp

ˆ

px´ µq2

2σ2

˙

(3.4)

Fig. 3.1. The Normal Distribution Curve [22].

This distribution is widely used in statistics in conjunction with the Central Limit

Theorem, which postulates that, for a given sample of size n, the random variables,



29

sample mean X̄ and sample sum ΣX, both follow normal distributions when n is

sufficiently large:

X̄ „ Npµ,
σ2

n
q (3.5)

ΣX „ Npnµ, nσ2
q (3.6)

This holds true even when the population distribution does not follow a normal

distribution. This is particularly useful when modeling uncertainties in a dynamical

system. The distributions of the uncertainties may be unknown, but in a large enough

sample, they can be assumed to be normal [22].

3.1.2 Poisson Distribution

In astrodynamics, photons arriving at the optics of a telescope are known to follow

a specific random distribution, the Poisson distribution. The Poisson distribution

gives the probability of an event occurring in a fixed interval of time. It is important

to note that this is a discrete probability function, meaning it can only take the value

of positive counting numbers (see figure 3.2). If the average rate, λ, is known, the

probability function of a random variable can be expressed as

P pxq “
λx expp´λq

x!
(3.7)

The Poisson distribution is an example of a distribution that can be described using

only the first moment since both the mean and variance are equal to λ.
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Fig. 3.2. This illustrates the effect of λ on the shape of the distribution.

Users and analysts must determine if applying nonlinear transformations to ran-

dom variables is appropriate. For example, the normal distribution retains its normal-

ity in a linear transformation, but applying a nonlinear transformation may change

the overall shape of the distribution. Hence, the transformations themselves may be

linearized or approximated for appropriate application. On the similar note, since the

Poisson distribution is discrete, transformations may lead to non-Poisson distribution

of the random variable. In this case, the Poisson distribution can be approximated

using a normal distribution, and then linear transformations would be preserve the

distribution [22].

3.2 Distribution Testing

When observations or sets of data are received from a ground station, distribution

testing can be performed to validate the measurements’ usability. The errors are

assumed to follow the distributions of the random variables modeled in chapter 4,
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and incoming error distributions can be tested for outliers or irregularities using the

knowledge of expected error distribution. This is especially applicable when informa-

tion sharing and statistical parameters for the data sets are unknown. Information

sharing networks may have measurements ranging from amateur to state-of-the-art,

and the appropriate assumptions can be made based on the models in chapter 4.

3.2.1 Anderson-Darling Test

The Anderson-Darling test is a formal statistical method that is used to determine

if the empirical distribution of a data set follows another known distribution. This is

a simple way of checking a distribution for normality and can also work for identifying

outliers if the sample size n is small. The test begins with random variable X, which

is assumed to follow a normal distribution with known mean, µ, and variance, σ2.

The normal distribution follow FXpx; θq, where θ is a known parameter, or set of

parameters, that define the distribution. For a 1-dimensional problem, θ “ pµ, σ2).

The sample from X of size n follows the distribution Fnpxq. The Anderson-Darling

test statistic, A2, is given by a weighted sum of the squares of the differences in

standard deviations:

A2
“

1

n
p

n
ÿ

i“1

pFXpx; pµ, σ2
qq ´ Fnpxqq

2 (3.8)

The A2 test statistic is a random variable that follows an asymptotic distribution.

A user-defined significance level, α, determines the threshold p-value that triggers a

positive test result. This research focuses on normal distributions, but the Anderson-

Darling test has a wide-range of applicability as the distributions are defined by the

user, including poisson, exponential, logistic, gamma distribution etc. It is a simple

yet effective test for testing for normality and outliers [23].
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3.2.2 Shapiro-Wilk Test

Similar to the Anderson-Darling test but more robust, the Shapiro-Wilk distribu-

tion test was founded by Samuel Shapiro and Martin Wilk in 1965. It is a goodness-

of-fit test that tests for the deviation of an empirical distribution from another known,

user-specified distribution. Most commonly, it is used to test for normality in a data

set. As before, the test begins with a random variable, X, which is assumed to fol-

low a normal distribution with mean, µ, and variance, σ2. The test statistic, W , is

computed:

W “
p
řn
i“1 aixpiqq

2

řn
i“1pxi ´ x̄q

2
(3.9)

Here, xpiq is the ith order statistic, and xi is from the sample. x̄ is the sample mean.

The coefficients ai are given by pa1, ..., anq “
mTV ´1

C
, where C “‖ V ´1m ‖. The

vector m “ pm1, ...,mnq is made of the expected values of the order statistics of

independently and identically distributed random variables, and V is the covariance

matrix of those random variables.

The Shapiro-Wilk test then is a correlation test between the data and expected

normal scores using the empirical variances and the expected variances. The test

statistic W is a ratio of how closely the distribution follows normal. For example, a

perfectly normal distribution has a test statistic ofW “ 1, and deviations from normal

drive the value down. The Shapiro-Wilk test is well-known for its robustness and

applicability. Like the Anderson-Darling test, the user can specify any distribution

with known order statistics [21]. Though the Shapiro-Wilk test is known to be more

robust than the Anderson-Darling test, it is more difficult to implement and requires

more information in the order statistics. For this paper, the Shapiro-Wilk test is used

as it is known to be more robust.
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4. SOURCES OF ERROR

Orbit tracking and propagation are not exact: between the physical equipment and

environment, processing and filtering, and propagation modeling, there are many

sources of error and uncertainties. As assumptions and simplifications are made in

these processes, a modeled object’s state and its true state will differ. In other words,

only the probability density function of the object’s state can be determined, and

wrong assumptions can result in deviations from the true assumptions. The errors

studied in this research include optical errors, timing errors, and other potential errors

relevant to the operation of ground-based optical observations. Some of these errors

can be modeled as random variables using the fundamentals of astrodynamics and

statistical probability reviewed in the previous chapters. The nonlinearity of the

orbital dynamics causes the uncertainties to change with time and drives the need to

make frequent updates with new observations. This chapter discusses stochastic and

systematic errors. Stochastic errors are random and cause fluctuations about the true

value, whereas systematic errors result in predictable and consistent biases from the

truth often as a result of poorly calibrated equipment. Identifying and understanding

both stochastic and systematic errors are critical to accurately representing an object

state’s uncertainty.

4.1 Optical and Equipment Errors

Each observation consists of three basic parts: the observer position, the time

of observation, and the pointing direction from sensor to object. Optical errors are

directly associated with the angles in this pointing direction. These angles are subject

to deviations, or errors, which can be minimized with careful operational procedures

and processing, but they cannot be eliminated. Measurement errors are an inherent
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part of the observation process.As a reminder, the pointing direction can be expressed

as

L̂i “

»

—

—

—

–

cosαi cos δi

cosαi sin δi

sin δi

fi

ffi

ffi

ffi

fl

,

where αi and δi are topocentric right ascension and declination, respectively. This

pointing direction is measured from the center of a camera’s field of view (FOV). For

the observation of near-Earth objects, FOV ranges from 0.5x0.5 degree to 8.0x8.0

degree pixel grids, and pixel scales vary between 0.5 arcseconds to several arcseconds

per pixel [18]. The resultant angle measurements for an object are computed using

the pixel grid and telescope pointing direction. For example, if the center of an object

is determined to be in pixel px, yq, then the corresponding pixel scales, δx and δy, are

used to adjust αi and δi:

αadj “ αi ` x ¨ δx (4.1)

δadj “ δi ` y ¨ δy (4.2)

4.1.1 Pixel Position Uncertainty

Depending on the size and intensity of the light, the received signal can be spread

across many pixels, and determining the true centroid of an image can be very difficult

due to limited pixel resolution and background noise. An example of an object shown

as a faint streak of light is shown in Fig. 4.1.

The quality of the equipment and image processing can improve the signal-to-noise-

ratio (SNR), which results in a crisper image; however, determining the exact centroid

of a bright signal is still difficult. In this context, pixel position uncertainty using the

parameters of a two-dimensional Gaussian model:

f “ A exp

„

´
1

2
pc1px´ x0q

2
` 2c3px´ x0qpy ´ y0q ` c2py ´ y0q

2
q



(4.3)
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Fig. 4.1. Uncertainties in determining the centroid of a faint signal
will cause observation angle errors. On the right is the same object
with an improved SNR [18].

Here, A defines the amplitude of the Gaussian fit, c1 and c2 define the size of the

Gaussian fit in the x, y directions, c3 orients the fit with respect to the xy-plane, and

x0, y0 locate the center of the Gaussian in the image. Once these parameters are

estimated, the inverse of the Fisher Information Matrix, which quantifies the lower

bound of the pixel position uncertainty, can be determined:

Kx0,y0 “
δxδy

pSNRq2
?
Dπ3

˚

˚

»

–

2c2p
?
π ` 2

b

D
c2
ada ` 2

b

D
c1
ρ2bdbq, ´2c3p

?
π ` 2

b

D
c2
ada ` 2

b

D
c1
ρ2bdbq

´2c3p
?
π ` 2

b

D
c2
ada ` 2

b

D
c1
ρ2bdbq, 2c1p

?
π ` 2

b

D
c1
bdb ` 2

b

D
c2
ρ2adaq

fi

fl

(4.4)

Eq. 4.2 does require the parameters of the CCD and signal truncation. δx, δy are the

pixel scales in the respective x and y directions. SNR = Aδxδy
σ

, and σ is the standard

deviation of the background subtracted signal. D is the determinant pD “ c1c2´ c
2
3q.

ρ “ ´ ´c3?
c1c2

is a correlation factor between the x, y axes. a and b are image truncation

parameters in the x and y directions. da “ exp´Da2

c2
D and db “ exp´Db2

c1
D. More

information on this equation and its derivation can be found in papers by Sanson and

Frueh [24] [25]. Fig. 4.2 demonstrates the strong inverse relationship between pixel

uncertainty and SNR.



36

Fig. 4.2. Uncertainty is scaled to demonstrate the impact the effect of SNR.

4.1.2 Lens Distortion

Other equipment-related problems can be found in the physical optics in sensors.

Due to the spherical nature of lenses and mirrors, light passing through the optics

is bent or distorted in a radial fashion. Different paths of the signal are bent in

varying degrees and do not arrive at the same point simultaneously unless physically

corrected. Examples of distorted images can be seen in Fig. 4.3.

This radial distortion must be corrected in the processing stage. The distortion can

be modeled as a radial function using the x and y coordinates of the pixel grid [26]:

rupxu, yuq “ rdpxd, ydqp1` krdpxd, ydq
2
q, (4.5)

where the subscripts d and u denote distorted and undistorted values, and k is the

distortion parameter. This relationship is then used to find an expression for the

distortion correction. Each lens and application will have its own parameters and
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Fig. 4.3. Pincushion distortion is shown on the left, and barrel dis-
tortion is shown on the right [26].

distortion models. Here is simplified example of what radial distortion corrections

may look like:

x distortion “ xpkx2 ` ky2 ` 1q (4.6)

y distortion “ ypkx2 ` ky2 ` 1q (4.7)

A positive k is used to correct pincushion distortion, and a negative k is used to

correct barrel distortion. Eq. 4.4 and Eq. 4.5 were used to create the plots in Fig.

4.3 using k “ 0.1 and k “ ´0.1.

Fig. 4.4. Pincushion correction is shown on the left, and barrel cor-
rection is shown on the right [26].
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These examples of distortion are exaggerated. High quality sensors will have radial

distortion values of approximately 0.1 arcseconds of biased error. If the object of

interest is not in the exact center of a telescope’s field of view, the pixel position is

introduced to more needed correction or calibration, which contributes to changes in

uncertainty [18].

As stated before, in the case of information sharing between organizations, these

uncertainties are usually not shared, and when they are shared, it is still good practice

to assume that these uncertainties exist. Random variables can be inserted into Eq.

4.1 and Eq. 4.2. For example, general measurement error, ∆, for an observation

angle can be modeled as mean random variable with zero mean following a normal

distribution with a standard deviation of 1 arcsecond:

∆α, ∆δ „ Np0, 12
qrarcsecondss (4.8)

If the sensor has a known bias, β, such as radial distortion, the random variable can

be shown as:

∆α, ∆δ „ Npβ, 12
qrarcsecondss (4.9)

Measurement variance near 1-2 arcseconds can be found at state-of-the-art ground

stations [18]. Amateur or lower-end equipment may have standard deviations around

10 arcsecond or higher. In Eq.4.8 and Eq. 4.9, the standard deviations can be adjusted

to the appropriate level of uncertainty for individual users, who should consult their

operations manuals.

4.1.3 Satellite Timing Error

Another uncertainty from limitations of the equipment is the observation timing

error. When a ground station records angle measurements, the time of observation

must also be recorded using time servers. This is typically achieved using local net-

works and GPS-precise timing. Again, the operations manual of the equipment speci-

fies the uncertainty. For example, the Time Machines TM2000A, which is used at the
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Purdue Optical Ground Station (POGS), records time with 3-σ bounds of 1 millisec-

ond [27]. Then the satellite timing error, ∆t of the observation can be recorded using

a random variable with zero mean following a normal distribution with a standard

deviation of 1{3 millisecond:

∆tPOGS „ Np0, p.001{3q2qrsecondss (4.10)

According to the operations manual, the timing error follows a normal distribution,

but because the two-body problem is nonlinear, the errors for the object’s true posi-

tion are not expected to follow a normal distribution after computing orbit determi-

nation or orbit propagation. The best time servers can have 3-σ bounds for error as

low as 10 microseconds, and amateurs can expect greater than 10 milliseconds [13]:

∆tbest „ Np0, p.000010{3q2qrsecondss (4.11)

∆tamateur „ Np0, p.010{3q2qrsecondss (4.12)

4.1.4 Ground Station Timing Error

When observations are recorded, the position of the ground station is also recorded

with the local sidereal time. Similar to the satellite observation timing error, there is

uncertainty associated with the time at the ground station’s local sidereal time. The

TM2000A operations manual specifies a 3-σ sidereal timing error of 10 microseconds.

Then, the ground station timing error, ∆θ, can be expressed as a random variable

with zero mean following a normal distribution with a standard deviation of 10{3

microsecond:

∆θPOGS „ Np0, p.00001{3q2qrsecondss (4.13)

However, it is common practice to record sidereal time angularly as it is a measure of

the Earth’s rotation. Then the timing must be converted using the Earth’s rotation

rate, ω “ 15˝{hr. As with the satellite timing error, this normally distributed random

variable experiences nonlinear transformations as orbit determination and propaga-

tion are performed, and the resultant uncertainties in the object’s position are not
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expected to follow a normal distribution. A low-quality time server with intermittent

GPS synchronization, such as a cell phone, can experience standard deviations as

high as a tenth of a second [13]:

∆θcellphone „ Np0, p.10{3q2qrsecondss (4.14)

Depending on the orbit region, both of the above timing errors have varying effects

on an object’s position uncertainty: the effect is proportional to the velocity of the

object. Since objects in LEO are traveling at higher velocities, the position errors

are greater than compared to a slower-moving object in GEO. Likewise, for elliptical

orbits, depending on where the object is in relation to apogee or perigee.

4.1.5 Timing Bias

Due to some limitations in the equipment, it is possible to have a biased timing

error. Users who are very familiar with their equipment may already know that their

recordings have timing bias, β. In this case, Eq. 4.2 can be used but with the zero

mean replaced with the known bias.

∆t „ Npβ, p.001{3q2qrsecondss (4.15)

Because time servers and processors are not instantaneous, some timing bias is not

uncommon, but some time servers simply subtract the known bias from the recorded

time [27]. If the equipment has any lag in its operation, the resultant image would

be recorded later than expected. For example, the POGS telescope uses an electronic

shutter, which records light in the pixel grid one row at a time. This results in a

cascading, time-delayed capture of the light signals. The time-delay may take as long

as a tenth of a second depending on the exposure settings and where in the pixel

grid the signal is recorded. These kinds of biases must be considered when recording

measurements, and they should be removed before any computations are made.
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4.1.6 Time and Light Aberration

In addition to the limitations of the equipment at the ground station, another

source of time bias results from the light signal from the object taking time to travel

to the surface of the Earth. In that time, the object continues to move, and this

phenomenon is known as light aberration, shown in Figure 4.3. How to compute light

aberration can be found in section 6.2.2. of Montenbruck’s Satellite Orbits [1]. The

Fig. 4.5. The effect of aberration on a Near-Earth Object [1]

aberration effect on angle measurements is approximately 0.6 arcseconds for LEO

objects and 0.3 arcseconds for GEO objects [1].
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Stellar Aberration Correction

In order to account for the Earth’s movement relative to distant bodies in the star

catalogs, well-documented, empirical data is used to calculate aberration correction.

This allows users to position the night sky accurately using a stellar background

as a reference. However, star catalogs typically use yearly aberration corrections

[18], which may not be the most appropriate for tracking a near-Earth object. In

Fundamentals of Astronomy, Kovalevsky computes an example of stellar aberration

to be approximately 20 arcseconds [26]. Using known variances from the star catalog

[13], a random variable for the biased stellar aberration, φ, can be represented before

correction:

∆φuncorrected „ Np20, 0.0012
q rarcsecondss (4.16)

As Eq. 4.16 shows, uncorrected aberration has a much larger effect on distant objects

than on near objects. When corrected, the random variable assumes zero mean and

can be written as

∆φcorrected „ Np0, 0.0012
q rarcsecondss (4.17)

Though there is correction, there is still an uncertainty associated with every mea-

surement. Unfortunately, in sharing information, this type of procedural information

is not included, which further adds to observation uncertainties.

4.2 Refraction

A signal from space experiences refraction as it passes through the dense Earth

atmosphere. Refraction is the bending of light that results from the slowing of light

as it passes through denser mediums. The resultant passing angle follows Snell’s Law

(Eq. 4.2) [1], which relates the velocity of the signal v, the passing angle θ, and the

refractive index n of the medium. Here, c is the speed of light, 3.0 ¨ 108 m{s, and n
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is the refractive index, which can be found with n “ c{v. Figure 4.3 shows a simple

example of how a light signal refracts as it passes through different mediums.

n1 sin θ1 “ n2 sin θ2 (4.18)

sin θ1
v1

“
sin θ2
v2

(4.19)

Fig. 4.6. Visual Example of Snell’s Law and light passing through
arbitrary mediums. For reference, nvacuum “ 1.000, nair “ 1.000277.
[1]
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For astrodynamic applications, refraction is measured as the difference between

true elevation, h and observed elevation h1, and the refractive index, R, is expressed

as R “ h1 ´ h, which is shown visually in figure 4.5 below.

Fig. 4.7. Refraction of a light signal [18]

Computing atmospheric density using an analytic method is very difficult as the

composition and distribution of the atmosphere is constantly changing. Montenbruck

presents a simplified empirical formula for refraction in his Satellite Orbits :

R “
p

T
r3.430289pz1 ´ sin´1 p0.998647 sin p0.996714z1qq ´ 0.01115929z1s, (4.20)

where z’ is the observed zenith angle (90˝´h1q. Eq. 4.12 only considers total pressure,

p, and temperature, T , which limits the applicability. Instead, this thesis uses a

refraction model which combines various empirically derived formulas using ambient

temperature, dry air pressure, and water vapor pressure. This refraction model uses

elements of Stone’s paper on computing atmospheric refraction [28] as a reference.

The formulation begins with an integral seen from Smart (1965) and Green (1985),

which approximates refraction as a function of wavelength:

Rpλq “ ronosinzo

ż no

1

dn

n
a

r2n2 ´ r2on
2
osin

2zo
(4.21)

This model assumes a spherically symmetric model for the atmosphere and requires

information from the observation site as well as an arbitrary point (for integrating),
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such as geocentric distance r, air refractive index n, and observed zenith angle z. The

air index is expressed using air densities according to the Gladstone-Dale Law [28]:

n “ 1` pno ´ 1q
ρ

ρo
(4.22)

This is substituted into Eq. 4.6 and then expanded into a power series, of which the

first two terms are used:

Rpλq “ γp1´ βq tan zo ´ γpβ ´ γ{2q tan zo
3
` h.o.t. (4.23)

where γ “ no ´ 1, β “ Ho

ro
, and k = 1 (spherically symmetric). Ho is defined as

”the height of an equivalent homogeneous atmosphere” [28] and is expressed as the

integral:

Ho “
1

ρo

ż 8

0

ρ dh (4.24)

With the spherical assumption, density can be expressed as ρ “ ρo e
´h{ho , which

simplifies the β to

β “ 0.001254p
T

273.15
q (4.25)

At this point, the only remaining undertermined value is the air refractive index at

the observation site. Ambient air temperature T , dry air pressure Ps, and water vapor

pressure Pw are used for the computation below. These equation are derived using

empirical approximations given by Owens (1967) [28]:

pn´ 1q108
“ r2371.34`

683939.7

p130´ σ2q
`

4547.3

p38.9´ σ2q
sDs ` ...

` p6487.31` 58.058σ2
´ 0.71150σ4

` 0.08851σ6
qDw

(4.26)

Ds “ r1` Psp57.90x10´8 ´
9.3250x10´4

T
`

0.25844

T 2
s
Ps
T

(4.27)

Dw “ r1` Pwp1` 3.7x10´4Pwqp´2.37321x10´3 ` ...

`
2.23366

T
´

710.792

T 2
`

7.75141x104

T 3
qs
Pw
T

(4.28)
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The first step for this model is to select the desired wavelength to find the wave

number, σ “ 104

λ
. This thesis uses monochromatic light with a wavelength of λ “

5000 Angstrom. Then the local atmosphere information is used to compute the Ds

and Dw terms in Eq. 4.18 and Eq. 4.19.

Eq. 4.17 returns the air index of refraction. This air index approximates the air

index of refraction at the ground station. For this application, refraction index is used

Fig. 4.8. Refraction Index as a function of Zenith Angle

as a function of zenith angle, pressures, and temperature. As seen in Fig. 4.7, The

refraction index increases considerably with higher zenith angles. The model shows

values of refraction index ranging from 0 to over 300 arcseconds, but this method

for computing refraction is only recommended when zenith angles are less than 75

degrees. This is an acceptable restriction since in practice, observations are not

taken with such high zenith angles in an effort to minimize atmospheric effects [28].
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Preferred measurements occur under 50 degrees zenith, where the refraction index

curve is mostly linearly. This refraction model allows for users to input local am-

bient temperature and pressures without having to reference cumbersome tabulated

information.
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5. DISTRIBUTION TESTING AND RESULTS

In this chapter, orbit simulations are made in four different orbit regions: GEO, HEO,

MEO, and LEO. For each orbit region, one satellite is first propagated for one full

orbital period to capture the truth orbit. Truth information for all objects in this

chapter are obtained from the space-track.org TLE catalog from 01 September 2019.

Propagation is done using the two-body equations of motion (Eq. 2.2) outlined in

section 2.1. Second, perfect, error-free optical observations are simulated during a

window of 50 minutes with measurements taken every 60 seconds for a total of 51

observations. However, for the LEO scenario, the observation window is reduced to 5

minutes with measurements taken every 6 seconds in order to account for the much

short orbital periods in LEO. The simulated observer location is at Purdue Univer-

sity in West Lafayette, Indiana at 0 meters altitude. Each observation contains both

topocentric right ascension and declination angle measurements using the topocentric

equatorial coordinate system from section 2.2.4. The Gauss IOD method from section

2.4.1 is completed using the first, middle, and last observations, and the IOD solution

is improved with all 51 observations using the least squares method from section 2.4.2.

The least squares solution is then compared to the original truth orbit in RSW refer-

ence frame from section 2.2.6 using the truth as the reference. These differences are

the baseline for orbital errors generated solely from the orbit determination process.

In order to study the varying effects of the errors modeled in chapter 4, they are

applied in this chapter to the different orbit regions. For each orbital region, the

same base scenario is simulated but with the inclusion of a modeled error. After orbit

determination, the angle measurements are extracted from the least squares estimate

for the same 50-minute observation window. The least squares angles are then com-

pared to the simulated observation angles. The differences in these angles are then

used to compile the angle error samples. This angle error samples in both right as-
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cension and declination are tested for normality using the Shapiro-Wilk distribution

test discussed in section 3.2.2. The distribution test results reveal the usability and

validity of the dataset used for orbit determination. The least squares solution is

used in the steps leading to the distribution testing in order to simulate a real-world

situation where the truth orbit is not known for a newly detected object. The result-

ing least squares solution is compared to the truth orbit, and the orbital errors are

captured in the RSW frame using the original truth orbit as reference. The RSW

errors are compared to the baseline RSW errors. These comparisons to the baseline

errors serve to capture the impact and magnitude of the errors in question. For each

scenario, unless otherwise stated, only one type of error is modeled in order to isolate

and capture its sole effect on the particular orbit. The procedure for modeling the

error and testing the error distribution are described in detail for the first scenario.

All other scenarios follow the same procedure unless otherwise stated.

5.1 Geosynchronous Orbit: INTELSAT 902

The geosynchronous communications satellite, INTELSAT 902 is propagated to a

full orbit using two-body motion, which is shown in Fig. 5.1. This orbit has a semi-

major axis of 42,165 km, an eccentricity of 0.0003, an inclination of 0.0075˝, a RAAN

of 158.1469˝, an argument of perigee of 1.7019˝, and a true anomaly of 62.5649˝.

Orbital Elements are extracted from the state at the beginning of the observation

window. For reference the true, error-free angle measurements for the 50-minute ob-

servation window are shown in Fig. 5.1 in degrees. Both angle measurements increase

at a nearly linear fashion due to the geosynchronous and circular characteristics of

the orbit. The black X’s in Fig. 5.1 indicate from where in the orbit the observation

are extracted. The method of introducing errors in the GEO scenarios are repeated

for the scenarios in each orbital region.
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Fig. 5.1. INTELSAT 902: Full truth orbit

With perfect measurements, the least squares method has maximum errors value of

7.1 mm in the radial direction, 34.9 mm in the along-track direction, and 0.3 mm in

the cross-track direction. This is in agreement with a error-free scenario serves as a

baseline in GEO strictly from the least squares method. Fig. 5.3 shows the trends for

these errors over the whole orbit. It can be seen that both the radial and cross-track

components experience periodic errors due to the circular nature of the orbit. This

is expected because the least squares solution estimates an initial state for the orbit

and is most accurate at the initial time used in the orbit determination. The orbital

errors in general are largest when far from the initial state estimate. However, in the

along-track component, the NLUMVE orbit falls increasingly behind the truth and
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Fig. 5.2. INTELSAT 902: True, error-free angle measurements

does not improve after one period. If the starting position of an orbit is incorrect,

then the along-track error component can only increase over many revolutions. This

stresses the importance of frequently updating object tracking with new observation.

As various levels of timing and measurement errors from chapter 4 are introduced

into the scenario, these orbital error values are expected to increase.
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Fig. 5.3. INTELSAT 902: RSW orbital errors, NLUMVE vs truth
with no modeled errors

5.1.1 GEO Timing Error

Timing error is introduced in the GEO scenario in order to demonstrate the impact

of poor timing in relation to optical measurements as outlined in section 4.1.3 on

satellite timing error. The GEO scenario is run using a range of values for the 3σt

timing error, 0.001 s to 1.000 s.

∆terror „ Np0, σ2
t qrsecondss (5.1)

The simulated observations angles have errors computed using the timing error ran-

dom variable. The erroneous measurements are then compared to the angles extracted
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from the least squares estimated orbit solution. The result is an error distribution

that contains information about how the simulated observations deviate from the

measurements extracted from the least squares estimate.

In Fig. 5.4, it can be seen that the error distribution for the declination measure-

ments is experiencing a nonlinear transformation, which is detected by the Shapiro-

Wilk Test. Although the declination errors are small at less than 1 arcsecond for the

largest timing error, the tests are still able to indicate that the measurements are not

following a normal distribution and would be able to notify users in a GEO scenario

that observations may contain errors. The RSW errors in Fig. 5.5 are computed

using the least squares estimate orbit propagated to one full orbit compared with the

full truth orbit. Table 5.1 displays the Shapiro-Wilk test results. Both test statistic

and p-values are shown for both right ascension and declination error distributions.

Also displayed are the maximum errors in each of the RSW components.

Increasing the timing error inflates any orbital errors that existed in the base

scenario. The right ascension error distribution has relatively large errors for the

scenario with largest timing error with some errors exceeding 10 arcseconds, but the

distribution does not indicate any violations in normality or unequal variance as seen

in Table 5.1. It is important to note however, that the test only identifies if a data set

has an unusual distribution. The Shapiro-Wilk Test, or any statistical distribution

test, only provides information about the error distribution itself Table 5.1 shows

that 3 of 4 of the GEO timing error scenario would test positive for the Shapiro-Wilk

test at a significance value of 0.05, but the p-value here does not necessarily correlate

to higher or lower orbital errors. This method still requires an orbital analyst to

determine the problem in the dataset.
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Fig. 5.4. INTELSAT 902: Observation vs NLUMVE angle error dis-
tributions for unbiased timing error
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Fig. 5.5. INTELSAT 902: RSW orbital errors, NLUMVE with mod-
eled unbiased timing error vs truth



56

Table 5.1.
INTELSAT 902: Shapiro-Wilk test results with RSW orbital errors
for unbiased timing error scenarios

5.1.2 GEO Timing Bias

Timing bias is introduced in the GEO scenario in order to demonstrate the impact

of poor timing in relation to optical measurements. The GEO scenario is run using a

range of values for the βt timing bias, 0.001 s to 1.000 s, and a small 3σ timing error

of 0.001 s.

∆terror „ Npβt, p.001{3q2qrsecondss (5.2)

It can be seen in Fig. 5.6 that the error distribution for the declination measurements

is still experiencing a nonlinear transformations detected by the Shapiro-Wilk Test,

and right ascension measurement errors appear random. Fig. 5.7 and Table 5.2 show

that for the first case, the primary source of error is from the small 3σ timing error,

not the bias, but as the bias increases, the orbital errors increase as well. However,

the increases occur more linearly, hinting that fixed timing bias does not cause a

change in the distribution of the error. It only shifts it in relation to time. As seen in

Table 5.2, the test results for the Shapiro-Wilk test do not change compared to the

scenarios in Table 5.1.
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Fig. 5.6. INTELSAT 902: Observation vs NLUMVE angle error dis-
tributions for biased timing error
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Fig. 5.7. INTELSAT 902: RSW orbital errors, NLUMVE with mod-
eled biased timing error vs truth
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Table 5.2.
INTELSAT 902: Shapiro-Wilk test results with RSW orbital errors
for biased timing error scenarios

5.1.3 GEO Sidereal Timing Error

Sidereal timing error is introduced in the GEO scenario in order to demonstrate

the impact of poor ground station timing as outlined in section 4.1.4. This simulates

ground station location uncertainty as a result of poor timing. The GEO scenario is

run using a range of values for the 3σt sidereal timing error, 0.001 s to 1.000 s:

∆terror „ Np0, σ2
t qrsecondss (5.3)

In Fig. 5.8, the angle error distributions seem random, but in Table 5.3, the

distribution testing reveals relatively low p-values under 0.15 despite the declination

errors being smaller, less than 0.2 arcsecond. The RSW errors in Fig. 5.9 show larger

error values when compared to the truth orbit and emphasize the importance of

minimizing Ground station uncertainties when performing orbit determination. The

trends for RSW errors over the orbit period are also different. Some of the errors and

peaks of the curves have shifted as a result of the sidereal timing error.
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Fig. 5.8. INTELSAT 902: Observation vs NLUMVE angle error dis-
tributions for unbiased sidereal timing error
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Fig. 5.9. INTELSAT 902: RSW orbital errors, NLUMVE with mod-
eled unbiased sidereal timing error vs truth



62

Table 5.3.
INTELSAT 902: Shapiro-Wilk test results with RSW orbital errors
for unbiased sidereal timing error scenarios

5.1.4 GEO Sidereal Timing Bias

Sidereal timing bias is introduced in the GEO scenario in order to demonstrate

the impact of poorly calibrated equipment relation to ground station measurements.

The GEO scenario is run using a range of values for the βt timing bias, 0.001 s to

1.000 s, and a small 3σ timing error of 0.001 s.

∆terror „ Npβt, p.001{3q2qrsecondss (5.4)

It can be seen in Fig. 5.10 that the angle error distributions seem random again, and

Fig. 5.11 and Table 5.4 show that for the first case, the primary source of error is from

the small 3σ timing error, not the bias. As expected, increasing the bias exaggerates

the error trends and shifts the initial state more. The increases seem to occur more

linearly, hinting that fixed timing bias does not cause a change in the distribution of

the error. It only shifts it in relation to time. As seen in Table 5.4, the test results

for the Shapiro-Wilk test do not change compared to the scenarios in Table 5.3.
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Fig. 5.10. INTELSAT 902: Observation vs NLUMVE angle error
distributions for biased sidereal timing error
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Fig. 5.11. INTELSAT 902: RSW orbital errors, NLUMVE with mod-
eled biased sidereal timing error vs truth
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Table 5.4.
INTELSAT 902: Shapiro-Wilk test results with RSW orbital errors
for biased sidereal timing error scenarios
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5.1.5 GEO Angle Measurement Error

Angle Measurement error is introduced in the GEO scenario in order to demon-

strate the impact of poor ground station timing as outlined in section 4.1.1. This can

simulate an unbiased pixel position uncertainty. The GEO scenario is run using a

range of values for the 3σang angle measurement error, 0.1 arcseconds to 100.0 arcsecs

for both right ascension and declination:

∆angerror „ Np0, σ2
angqrarcsecondss (5.5)

In Fig. 5.12, the angle error distributions show normally distributed errors, which

is expected since the inclusion of measurement error does not occur before any trans-

formation through the two-body problem. The results in Table 5.5 confirms that for

most of the data sets, there are no unusual patterns in the error distributions. Only

the 1.0 arcsec case tests positive for the right ascension observations. The RSW errors

in Fig. 5.13 show the largest error values thus far when compared to the truth orbit

and suggest that it is most important that angle errors be minimized when performing

orbit determination. Here, it is not recommended that distribution testing be used

for detecting unbiased measurement error.
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Fig. 5.12. INTELSAT 902: Observation vs NLUMVE angle error
distributions for unbiased angle measurement error
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Fig. 5.13. INTELSAT 902: RSW orbital errors, NLUMVE with mod-
eled unbiased angle measurement error vs truth



69

Table 5.5.
INTELSAT 902: Shapiro-Wilk test results with RSW orbital errors
for unbiased angle measurement error scenarios

5.1.6 GEO Angle Measurement Bias

Angle measurement bias is introduced in the GEO scenario in order to demonstrate

the impact of poorly calibrated equipment relation to optical measurements. This can

simulate the errors mentioned in section 4.1.2 on lens distortion. This GEO scenario

is run using a range of values for the βang angle bias, 0.1 arcsecs to 100.0 arcsecs, and

a small 3σ angle error of 0.1 arcsecs.

∆angerror „ Npβang, p.001{3q2qrarcsecondss (5.6)

It can be seen in Fig. 5.14 that the angle error distributions appear random for

all scenarios. Fig. 5.15 and Table 5.6 show again that the distribution testing does

not effectively detect angle measurement error. Since the bias does not affect the

distribution shape itself, the results are largely similar to the unbiased angle error

case. The results indicate that it is not recommended that distribution tests be used

for detecting biased angle measurement error.



70

Fig. 5.14. INTELSAT 902: Observation vs NLUMVE angle error
distributions for biased angle measurement error
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Fig. 5.15. INTELSAT 902: RSW orbital errors, NLUMVE with mod-
eled biased angle measurement error vs truth
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Table 5.6.
INTELSAT 902: Shapiro-Wilk test results with RSW orbital errors
for biased angle measurement error scenarios
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5.2 Highly Elliptical Orbit: MOLNIYA 3-24

For the HEO scenario, the Russian communications satellite, MOLNIYA 3-24 is

used. Its full orbit and the observations used are shown in Fig. 5.16 and has a semi-

major axis of 22,592 km, an eccentricity of 0.6463, an inclination of 63.9277˝, a RAAN

of 250.7600˝, an argument of perigee of 254.9454˝, and a true anomaly of 181.9454˝.

Orbital Elements are extracted from the state at the beginning of the observation

window. For reference, Fig. 5.17 shows right ascension increasing in a near linear

fashion and declination increasing at a slowing rate as it approaches apogee in its

elliptical orbit in the 50-minute observation window.

Fig. 5.16. MOLNIYA 3-24: Full truth orbit
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Fig. 5.17. MOLNIYA 3-24: True, error-free angle measurements

Fig. 5.18 shows the RSW orbital errors with the truth as reference. With perfect

measurements, the least squares method has maximum errors value of 4.8 mm in the

radial direction, 12.6 mm in the along-track direction, and 0.4 mm in the cross-track

direction. These values are lower than the errors from the GEO scenario, which is ex-

pected, since the magnitude of velocity of MOLNIYA 3-24 at apogee is approximately

1.9528 km/s, and INTELSAT 902 travels at approximately 3.0751 km/s. These errors

values serve as a baseline level for RSW errors for this HEO satellite strictly from

the least squares method. As errors from chapter 4 are introduced into the scenario,

these error values are expected to increase.
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Fig. 5.18. MOLNIYA 3-24: RSW orbital errors, NLUMVE vs truth
with no modeled errors

5.2.1 HEO Timing Error

Timing error is introduced in the HEO scenario in order to demonstrate the impact

of poor timing in relation to optical measurements. The HEO scenario is run using a

range of values for the 3σt timing error, 0.001 s to 1.000 s.

∆terror „ Np0, σ2
t qrsecondss (5.7)
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Fig. 5.19. MOLNIYA 3-24: Observation vs NLUMVE angle error
distributions for unbiased timing error
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Fig. 5.20. MOLNIYA 3-24: RSW orbital errors, NLUMVE with mod-
eled unbiased timing error vs truth



78

It is difficult to tell visually in Fig. 5.19 that the error distributions in the angle

measurement are experiencing any non-normality. Yet, the Shapiro-Wilk Test still

tests positive for the 0.001s HEO scenario, and the p-values for the other scenarios

are relatively low. Across the scenarios, the maximum error values are lower than

in the GPS timing scenarios due to the lower relative velocity of MOLNIYA 3-24 at

apogee. However, the RSW plots in Fig. 5.20 show that the argument of perigee,

when the satellite is moving fast, shifts to earlier in the orbit. Because this orbit in

not circular, the orientation of the orbit has a large impact on the RSW errors. A

shift in either the argument of perigee or the right ascension of the ascending node

could serve as an indicator for HEO satellites that a data set of observations has poor

timing. Table 5.7 shows the results for the unbiaesd timing error scenarios.

Table 5.7.
MOLNIYA 3-24: Shapiro-Wilk test results with RSW orbital errors
for unbiased timing error scenarios

5.2.2 HEO Timing Bias

Timing bias is introduced in the HEO scenario in order to demonstrate the impact

of poor timing in relation to optical measurements. The HEO scenario is run using a

range of values for the βt timing bias, 0.001 s to 1.000 s, and a small 3σ timing error

of 0.001 s.

∆terror „ Npβt, p.001{3q2qrsecondss (5.8)

Fig. 5.21 shows more random distributions for the angle errors, but the cases with

larger cases still test positive for non-normality. As seen in Fig. 5.22, for the first
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Fig. 5.21. MOLNIYA 3-24: Observation vs NLUMVE angle error
distributions for biased timing error

case, the primary source of error is still from the small 3σ timing error, but the effect

of bias is more prominent in this HEO scenario due to the elliptical shape since the

magnitude of velocity changes along the orbit path. Poor timing can result in the

wrong velocity at the initial state estimation. The effect is similar to section 5.1.2

where the argument of perigee and right ascension of the ascending node experience

shifts, causing a misalignment in the orbit orientation. As timing bias increases,

this shift in orientation will increase proportionally. Like the GEO scenario, the test

results for the Shapiro-Wilk test on the angle errors do not change, which can be seen

in Table 5.8.
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Fig. 5.22. MOLNIYA 3-24: RSW orbital errors, NLUMVE with bi-
ased timing error vs truth

Table 5.8.
MOLNIYA 3-24: Shapiro-Wilk test results with RSW orbital errors
for biased timing error scenarios

5.2.3 HEO Sidereal Timing Error

Sidereal timing error is introduced in the HEO scenario, which is run using a range

of values for the 3σt sidereal timing error, 0.001 s to 1.000 s:

∆terror „ Np0, σ2
t qrsecondss (5.9)
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In Fig. 5.23, the declination error distribution undergoes a nonlinear transfor-

mation as the initial state estimate from the least squares method does not align

with the measurements. This can be explained by the object velocity retarding as it

approaching apogee. Table 5.9 shows that the distribution testing detected problems

with all declination observation sets. The RSW errors in Fig. 5.24 show emphasized

curves for the larger error values. The peaks occur when the object is moving fastest

in its orbit, which is at perigee. It can also be seen in the along-track component plot,

that the error values do not return to a minimum and that the orbit needs additional

observations in order to return to the initial state.

Fig. 5.23. MOLNIYA 3-24: Observation vs NLUMVE angle error
distributions for unbiased sidereal timing error
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Fig. 5.24. MOLNIYA 3-24: RSW orbital errors, NLUMVE with mod-
eled unbiased sidereal timing error vs truth
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Table 5.9.
MOLNIYA 3-24: Shapiro-Wilk test results with RSW orbital errors
for unbiased sidereal timing error scenarios

5.2.4 HEO Sidereal Timing Bias

Sidereal timing bias is introduced in the HEO scenario. It is run using a range of

values for the βt timing bias, 0.001 s to 1.000 s, and a small 3σ timing error of 0.001

s.

∆terror „ Npβt, p.001{3q2qrsecondss (5.10)

Fig. 5.25 shows that the angle error distributions from the unbiased scenarios are

emphasized in this biased scenario. Fig. 5.26 and Table 5.10 similar results where all

declination observation sets test positive with the Shapiro-Wilk Test. The bias has a

great effect on the least squares method’s ability to estimate the intiail state. With

errors in the initial state, orbit RSW errors cannot return to a lower error state; it

can only become worse.
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Fig. 5.25. MOLNIYA 3-24: Observation vs NLUMVE angle error
distributions for biased sidereal timing error

Table 5.10.
MOLNIYA 3-24: Shapiro-Wilk test results with RSW orbital errors
for biased sidereal timing error scenarios
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Fig. 5.26. MOLNIYA 3-24: RSW orbital errors, NLUMVE with mod-
eled biased sidereal timing error vs truth

5.2.5 HEO Angle Measurement Error

Angle Measurement error is introduced in the HEO scenario and is run using a

range of values for the 3σang angle measurement error, 0.1 arcseconds to 100.0 arcsecs

for both right ascension and declination:

∆angerror „ Np0, σ2
angqrarcsecondss (5.11)

In Fig. 5.27, the angle error distributions show normally distributed errors, which

is agreement with the results of the GEO scenarios. The results in Table 5.11 confirms

that for most of the data sets, there are no unusual patterns in the error distributions.
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Not one of the cases tests positive for the right ascension or declination observations.

The RSW errors in Fig. 5.28 show the most severe error values thus far for the HEO

scenarios exceeding 1,000 km in the along-track component at perigee. Again, this

shows the importance of angle error correction before performing orbit determination.

Again, it is not recommended that distribution testing be used for detecting unbiased

measurement error.

Fig. 5.27. MOLNIYA 3-24: Observation vs NLUMVE angle error
distributions for unbiased angle measurement error



87

Fig. 5.28. MOLNIYA 3-24: RSW orbital errors, NLUMVE with mod-
eled unbiased angle measurement error vs truth
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Table 5.11.
MOLNIYA 3-24: Shapiro-Wilk test results with RSW orbital errors
for unbiased angle measurement error scenarios

5.2.6 HEO Angle Measurement Bias

Angle measurement bias is introduced in the HEO scenario and is run using a

range of values for the βang angle bias, 0.1 arcsecs to 100.0 arcsecs, and a small 3σ

angle error of 0.1 arcsecs.

∆angerror „ Npβang, p.001{3q2qrarcsecondss (5.12)

It can be seen in Fig. 5.29 that the angle error distributions appear random for

all scenarios. Fig. 5.30 and Table 5.12 show again that the distribution testing

does not effectively detect angle measurement error. Since the bias does not affect

the distribution shape itself, the distribution test results the scenarios with unbiased

angle error. It is not recommended that distribution tests be used for detecting biased

angle measurement error.
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Fig. 5.29. MOLNIYA 3-24: Observation vs NLUMVE angle error
distributions for biased angle measurement error
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Fig. 5.30. MOLNIYA 3-24: RSW orbital errors, NLUMVE with mod-
eled biased angle measurement error vs truth
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Table 5.12.
MOLNIYA 3-24: Shapiro-Wilk test results with RSW orbital errors
for biased angle measurement error scenarios
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5.3 Medium Earth Orbit: NAVSTAR 39 (USA 128)

For the MEO scenario, the American GPS satellite, NAVSTAR 39 is used, and

its full circular orbit is shown in Fig. 5.31. It has a semi-major axis of 27,881

km, an eccentricity of 0.0027, an inclination of 55.5572˝, a RAAN of 322.8298˝, an

argument of perigee of 162.3140˝, and a true anomaly of 19.3067˝. Orbital Elements

are extracted from the state at the beginning of the observation window. For reference

Fig. 5.32 shows right ascension increasing and declination decreasing nearly linearly

during the 50-minute observation window.

Fig. 5.31. NAVSTAR 39 (USA 128): Full truth orbit
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Fig. 5.32. NAVSTAR 39 (USA 128): True, error-free angle measurements

In Fig. 5.33, the least squares solution compared to the truth shows maximum errors

value of 17.38 cm in the radial direction, 91.34 cm in the along-track direction, and

2.2 mm in the cross-track direction. This serves as a baseline level for RSW errors

in MEO strictly from the least squares method. As expected, these values are much

larger than the two previous orbit regions since the velocity of the satellite is higher,

at approximately 3.7906 km/s. The trends during the whole orbit are similar to

the previous scenarios where the orbital errors increase as the orbit is farthest from

the initial state estimate and decrease with the orbit period for both the radial and

cross-track components. The along-track component errors most resemble the GEO

circular orbit in section 5.1: the estimate orbit trails farther behind after one orbit
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Fig. 5.33. NAVSTAR 39 (USA 128): RSW orbital errors, NLUMVE
vs truth with no modeled errors

and does not improve cyclically. As errors from chapter 4 are introduced into the

scenario, the orbital errors are expected to increase and become more pronounced

due to the higher velocity.

5.3.1 MEO Timing Error

Timing error is introduced in the MEO scenario in order to demonstrate the

impact of poor timing in relation to optical measurements. The MEO scenario is run

using a range of values for the 3σt timing error, 0.001 s to 1.000 s.

∆terror „ Np0, σ2
t qrsecondss (5.13)
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Fig. 5.34. NAVSTAR 39 (USA 128): Observation vs NLUMVE angle
error distributions for unbiased timing error

Although the base error values for the MEO scenario were higher, the largest

orbital error values of the 1.000s timing error scenario are not as high as the GEO

scenario. Since the angle errors shown in Fig. 5.34 are computed using the least

squares estimate, it is possible the test results are less informative. As errors be-

come larger, the least squares estimate becomes less accurate when compared to the

truth. Fig. 5.35 shows much larger values in RSW errors than previous scenarios.

The combined effect presents difficulties in identifying the true errors of the angles.

Though this is not favorable, testing was complete in this fashion to simulate lack of

information in an operational environment. The results in Table 5.13 show that even

still, the Shapiro-Wilk test is able to detect at least one scenario with a non-normal



96

Fig. 5.35. NAVSTAR 39 (USA 128): RSW orbital errors, NLUMVE
with unbiased timing error vs truth

distribution. The 0.001s and the 1.000s still have relatively low p-values under 0.25

and should prompt an orbit analyst to examine the observations closely, especially in

the early stages of orbit determination. Performing the Shapiro-Wilk test, even with

very little prior information can still be useful when sharing observation data.
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Table 5.13.
NAVSTAR 39 (USA 128): Shapiro-Wilk test results with RSW orbital
errors unbiased timing error scenarios

5.3.2 MEO Timing Bias

Timing bias is introduced in the MEO scenario in order to demonstrate the impact

of poor timing in relation to optical measurements. The MEO scenario is run using a

range of values for the βt timing bias, 0.001 s to 1.000 s, and a small 3σ timing error

of 0.001 s.

∆terror „ Npβt, p.001{3q2qrsecondss (5.14)

Because the GPS satellite orbit is circular, timing bias does not have as large of

effect as the HEO scenario. The resultant effect on the orbit RSW errors is similar to

the GEO scenario, and like the GEO scenario, the test results for the Shapiro-Wilk

test on the angle errors do not change. The simplest way to determine if there is a

timing bias is to note the periodical changes in the RSW errors. For example, Fig.

5.37 shows that after one period, the radial and cross-track errors return to the same

point, but the along-track component only gets larger. The delay in timing causes

the estimate to trail behind the true orbit unless further corrections are made with

more measurements.



98

Fig. 5.36. NAVSTAR 39 (USA 128): Observation vs NLUMVE angle
error distributions for biased timing error
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Fig. 5.37. NAVSTAR 39 (USA 128): RSW orbital errors, NLUMVE
with biased timing error vs truth
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Table 5.14.
NAVSTAR 39 (USA 128): Shapiro-Wilk test results with RSW orbital
errors for biased timing error scenarios

5.3.3 MEO Sidereal Timing Error

Sidereal timing error is introduced in the MEO scenario, which is run using a

range of values for the 3σt sidereal timing error, 0.001 s to 1.000 s:

∆terror „ Np0, σ2
t qrsecondss (5.15)

In Fig. 5.38, there are no apparent abnormalities in the angle error distributions.

Table 5.15 confirms that for the scenarios, the distributions were not significantly

non-normal. The 0.010 s and 1.000 s cases are marked with low p-values for their

declination distributions. The RSW errors in Fig. 5.39 show large error values again,

which is expected because the GPS satellite is moving at a higher velocity. The peaks

occur when the object is farthest from its initial state estimate from the least squares

method. It can also be seen in the along-track component plot, that the error values

do not return to a minimum and that the orbit needs additional observations in order

to return to the initial state. For closer orbit regions, the distribution testing is less

effective, but was still able to detect the worst-case scenario here in MEO.
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Fig. 5.38. NAVSTAR 39 (USA 128): Observation vs NLUMVE angle
error distributions for unbiased sidereal timing error
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Fig. 5.39. NAVSTAR 39 (USA 128): RSW orbital errors, NLUMVE
with modeled unbiased sidereal timing error vs truth
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Table 5.15.
NAVSTAR 39 (USA 128): Shapiro-Wilk test results with RSW orbital
errors for unbiased sidereal timing error scenarios

5.3.4 MEO Sidereal Timing Bias

Sidereal timing bias is introduced in the MEO scenario. It is run using a range of

values for the βt timing bias, 0.001 s to 1.000 s, and a small 3σ timing error of 0.001

s.

∆terror „ Npβt, p.001{3q2qrsecondss (5.16)

Fig. 5.40 shows that for the most extreme case, both the right ascension and declina-

tion error distribution experience very pronounced nonlinear transformations. Table

5.16 confirms that the distribution testing is able to detect medium to high levels of

sidereal timing bias. Fig. 5.41 shows that the bias here has shifted the initial state

from the least squares method and causes large errors over the whole orbital period.
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Fig. 5.40. NAVSTAR 39 (USA 128): Observation vs NLUMVE angle
error distributions for biased sidereal timing error
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Fig. 5.41. NAVSTAR 39 (USA 128): RSW orbital errors, NLUMVE
with modeled biased sidereal timing error vs truth
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Table 5.16.
NAVSTAR 39 (USA 128): Shapiro-Wilk test results with RSW orbital
errors for biased sidereal timing error scenarios

5.3.5 MEO Angle Measurement Error

Angle Measurement error is introduced in the MEO scenario and is run using a

range of values for the 3σang angle measurement error, 0.1 arcseconds to 100.0 arcsecs

for both right ascension and declination:

∆angerror „ Np0, σ2
angqrarcsecondss (5.17)

In Fig. 5.42, the angle error distributions show normally distributed errors, which

is agreement with the results of the GEO and HEO scenarios. The results in Table

5.17 confirms that for most of the data sets. Only one of the cases tests positive for

the declination observations; however, depending on the significance level of the test

used, this may go unnoticed with p value of 0.0835. The RSW errors in Fig. 5.43

show the most severe error values thus far for the MEO scenarios exceeding 4,000 km

in the along-track component at perigee. This is extremely large considering the truth

orbit has a semi-major axis of 27,881 km. The distribution was unable to detect these

egregious errors. This shows the importance of angle error correction before perform-

ing orbit determination. Again, it is not recommended that distribution testing be

used for detecting unbiased measurement error.
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Fig. 5.42. NAVSTAR 39 (USA 128): Observation vs NLUMVE angle
error distributions for unbiased angle measurement error
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Fig. 5.43. NAVSTAR 39 (USA 128): RSW orbital errors, NLUMVE
with modeled unbiased angle measurement error vs truth
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Table 5.17.
NAVSTAR 39 (USA 128): Shapiro-Wilk test results with RSW orbital
errors for unbiased angle measurement error scenarios

5.3.6 MEO Angle Measurement Bias

Angle measurement bias is introduced in the MEO scenario and is run using a

range of values for the βang angle bias, 0.1 arcsecs to 100.0 arcsecs, and a small 3σ

angle error of 0.1 arcsecs.

∆angerror „ Npβang, p.001{3q2qrarcsecondss (5.18)

It can be seen in Fig. 5.44 that the angle error distributions appear random for all

scenarios. Fig. 5.45 and Table 5.18 show that some of the shifts in the errors allow

the distribution testing to be more effective in detecting angle measurement error

bias. At this nearer orbit region, the distribution testing marked all of the cases with

relatively low p-values under 0.200. These results indicate that it is possible that

distribution tests can detect biased angle measurement error.
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Fig. 5.44. NAVSTAR 39 (USA 128): Observation vs NLUMVE angle
error distributions for biased angle measurement error
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Fig. 5.45. NAVSTAR 39 (USA 128): RSW orbital errors, NLUMVE
with modeled biased angle measurement error vs truth
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Table 5.18.
NAVSTAR 39 (USA 128): Shapiro-Wilk test results with RSW orbital
errors for biased angle measurement error scenarios

5.4 Low Earth Orbit: IRIDIUM 96

For LEO, the communications satellite, IRIDIUM 96 is selected, shown in Fig.

5.46. It has a semi-major axis of 6,775 km, an eccentricity of 0.0168, an inclination

of 86.3664˝, a RAAN of 295.2318˝, an argument of perigee of 312.9567˝, and a true

anomaly of 83.2615˝. Orbital Elements are extracted from the state at the beginning

of the observation window. The same observation window as the previous satellites is

not viable because of the shorter orbitals periods of LEO (approximately 80-130 min-

utes). Instead, observations are extracted for a 5-minute window at 6-second intervals.

Observer conditions are the same at Purdue University, West Lafayette, Indiana. This

simulation ensures the same sample size as before, n “ 51. As before, these obser-

vations have perfect, error-free angle measurements, topocentric right ascension and

declination. For reference, the true angle measurements for the observation window

are shown in Fig. 5.47 in degrees. Both right ascension and declination are increasing

nearly linear for the duration of the observation window. The same method for orbit

determination is used as before.
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Fig. 5.46. IRIDIUM 96: Full truth orbit

Fig. 5.48 shows the RSW errors for the error-free least squares solution compare to

the truth orbit. With perfect measurements, the least squares method has maximum

errors value of 6.5 mm in the radial direction, 31.4 mm in the along-track direction,

and 0.3 mm in the cross-track direction. This serves as a baseline level for RSW errors

in LEO strictly from the least squares method. The trends indicate that the least

squares solution has a smaller orbital radius and as a result, the NLUMVE remains

ahead of the truth orbit seen in the along-track component of the Fig. 5.48. Although

the velocity of this LEO satellite is much higher than before, at approximately 7.6874

km/s, these error values are lower than even the MEO and GEO examples because

the observations are made in a smaller window with higher frequency. However, as
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Fig. 5.47. IRIDIUM 96: True, error-free angle measurements

errors from chapter 4 are introduced into the scenario, these error values are expected

to increase in a more exaggerated fashion due to the high velocity.
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Fig. 5.48. IRIDIUM 96: RSW orbital errors, NLUMVE vs truth with
no modeled errors
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5.4.1 LEO Timing Error

Timing error is introduced in the LEO scenario in order to demonstrate the impact

of poor timing in relation to optical measurements. The LEO scenario is run using a

range of values for the 3σt timing error, 0.001 s to 1.000 s.

∆terror „ Np0, σ2
t qrsecondss (5.19)

Fig. 5.49. IRIDIUM 96: Observation vs NLUMVE angle error distri-
butions for unbiased timing error

Even with very small timing error introduced, the resultant RSW errors for the

LEO scenario increase dramatically, considering the smaller size of the orbit. However,
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Fig. 5.50. IRIDIUM 96: RSW orbital errors for timing error

Fig. 5.49 shows randomly distributed angle errors, and only 2 of the 4 scenarios have

relatively low p-values, seen in Table 5.19. It can be concluded that Shapiro-Wilk test

not be recommended for LEO and small data sets of approximately 50 observations or

less. The least squares method does not converge well when erroneous measurements

are used to attempt orbit improvement. This is acceptable, noting that optical sensors

are not typically tasked to track LEO objects since radar is more apt for the lower

orbital regions.
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Table 5.19.
IRIDIUM 96: Shapiro-Wilk test results with RSW orbital errors for
unbiased timing error scenarios

5.4.2 LEO Timing Bias

Timing bias is introduced in the LEO scenario in order to demonstrate the impact

of poor timing in relation to optical measurements. The LEO scenario is run using a

range of values for the βt timing bias, 0.001 s to 1.000 s, and a small 3σ timing error

of 0.001 s.

∆terror „ Npβt, p.001{3q2qrsecondss (5.20)
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Fig. 5.51. IRIDIUM 96: Observation vs NLUMVE angle error distri-
butions for biased timing error

The angles in Fig. 5.51 show similar random trends as the unbiased case but

with smaller magnitudes, which is in agreement with the smaller 3σ timing error of

0.001 s. Since this LEO scenario has a shorter observation window, the least squares

method does a relatively good job of maintaining the correct plane of motion, but

the radial and along-track component errors remain quite large, seen in Fig. 5.52.In

these examples, the effect of timing bias on a higher velocity satellite in LEO is not

as predictable as the other scenarios with timing bias. Timing bias of 1.000 second

has lower error values than the 0.001 second timing bias scenario.
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Fig. 5.52. IRIDIUM 96: RSW orbital errors, NLUMVE with biased
timing error vs truth

Table 5.20.
IRIDIUM 96: Shapiro-Wilk test results with RSW orbital errors for
biased timing error scenarios

5.4.3 LEO Sidereal Timing Error

Sidereal timing error is introduced in the LEO scenario, which is run using a range

of values for the 3σt sidereal timing error, 0.001 s to 1.000 s:

∆terror „ Np0, σ2
t qrsecondss (5.21)



121

In Fig. 5.53, there are some apparent problems in the declination error distribu-

tions. Table 5.21 confirms that for these scenarios, that the declination distributions

are non-normal with p-values less than 0.15. However, for the worst case scenario,

the distribution testing is unable to detect any problem. This is likely due to the high

levels of error resulting from using erroneous measurements during the least squares

method. Fig. 5.54 shows large error values again, which is expected because the LEO

satellite is moving at a much higher velocity. As states before, for closer orbit regions,

the Shapiro-Wilk test is less effective, but is still able to detect poor observations sets

with medium levels of error in LEO.

Fig. 5.53. IRIDIUM 96: Observation vs NLUMVE angle error distri-
butions for unbiased sidereal timing error



122

Fig. 5.54. IRIDIUM 96: RSW orbital errors, NLUMVE with modeled
unbiased sidereal timing error vs truth
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Table 5.21.
IRIDIUM 96: Shapiro-Wilk test results with RSW orbital errors for
unbiased sidereal timing error scenarios

5.4.4 LEO Sidereal Timing Bias

Sidereal timing bias is introduced in the LEO scenario. It is run using a range of

values for the βt timing bias, 0.001 s to 1.000 s, and a small 3σ timing error of 0.001

s.

∆terror „ Npβt, p.001{3q2qrsecondss (5.22)

Fig. 5.55 shows that for the worst-case scenario, the declination error distribution

experiences very pronounced nonlinear transformation. However, in Table 5.22 the

distribution testing only marks that scenario with a p-value of 0.2065. It is important

to note the limitations of distribution testing. It does not factor in the relationship

to time. It only looks at the distribution as a whole. For time related testing, a

parametric regression or parametric distribution test is required. Both require much

more extensive setup and a priori information. Then, it can be concluded again that

distribution tests not be recommended for LEO.
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Fig. 5.55. IRIDIUM 96: Observation vs NLUMVE angle error distri-
butions for biased sidereal timing error
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Fig. 5.56. IRIDIUM 96: RSW orbital errors, NLUMVE with modeled
biased sidereal timing error vs truth
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Table 5.22.
IRIDIUM 96: Shapiro-Wilk test results with RSW orbital errors for
biased sidereal timing error scenarios

5.4.5 LEO Angle Measurement Error

Angle Measurement error is introduced in the LEO scenario and is run using a

range of values for the 3σang angle measurement error, 0.1 arcseconds to 100.0 arcsecs

for both right ascension and declination:

∆angerror „ Np0, σ2
angqrarcsecondss (5.23)

In Fig. 5.57, the angle error distributions show normally distributed errors, which

is similar with the results of the GEO, HEO, LEO scenarios. The results in Table 5.23

confirms that for most of the data sets. No cases tests positive for the right ascension

or declination observations. The RSW errors in Fig. 5.58 show the error values as

high as 257 km, which is extreme for a LEO object with semi-major axis of 6,775

km. The distribution was unable to detect these egregious errors. Again, it is not

recommended that distribution testing be used for detecting unbiased measurement

error especially in LEO.
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Fig. 5.57. IRIDIUM 96: Observation vs NLUMVE angle error distri-
butions for unbiased angle measurement error
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Fig. 5.58. IRIDIUM 96: RSW orbital errors, NLUMVE with modeled
unbiased angle measurement error vs truth
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Table 5.23.
IRIDIUM 96: Shapiro-Wilk test results with RSW orbital errors for
unbiased angle measurement error scenarios

5.4.6 LEO Angle Measurement Bias

Angle measurement bias is introduced in the LEO scenario and is run using a

range of values for the βang angle bias, 0.1 arcsecs to 100.0 arcsecs, and a small 3σ

angle error of 0.1 arcsecs.

∆angerror „ Npβang, p.001{3q2qrarcsecondss (5.24)

It can be seen in Fig. 5.59 that the angle error distributions appear random for

all scenarios even with large errors exceeding 5 km in the RSW plots in Fig. 5.60.

Table 5.24 shows that no cases test positive using a significance level of 0.05. These

results indicate that distribution testing is not effective at detecting biased angle

measurement error in LEO.
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Fig. 5.59. IRIDIUM 96: Observation vs NLUMVE angle error distri-
butions for biased angle measurement error
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Fig. 5.60. IRIDIUM 96: RSW orbital errors, NLUMVE with modeled
biased angle measurement error vs truth
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Table 5.24.
IRIDIUM 96: Shapiro-Wilk test results with RSW orbital errors for
biased angle measurement error scenarios

5.5 Summary and Evaluation

Sections 5.1 through 5.4 simulated several scenarios with modeled errors. To

summarize some of the resultant effects of the modeled errors, Table 5.25, Table 5.26,

and Table 5.27 compile the results from the smallest error cases from each orbital

region for comparison’s sake. The upper left portions of the tables, outlined in red,

show the GEO cases. The lower left portions of the tables, outlined in blue, show the

HEO cases. The upper right portions of the tables, outlined in green, show the MEO

cases. The lower right portions of the tables, outlined in purple, show the LEO cases.
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5.5.1 Satellite Timing Error Comparison

Table 5.25.
Comparison of small satellite timing errors in each orbital region

Table 5.25 shows three cases for each of the orbital regions: error-free (baseline),

unbiased error with a 3σ bound of 1 millisecond, and 1 millisecond biased error with

a 3σ bound of 1 millisecond. In all orbit regions, the along-track error in the RSW

frame is the largest error since that is the primary direction of motion. For LEO,

since the uncertainty is modeled using a zero-mean random variable, it is equally

likely that the timing is too early or too late. At relative velocities of 7 to 8 km/s, 1

millisecond error can result in 7 to 8 meters of error for each observation. As a result,

the least squares method has difficulty using the residuals to come to a solution. Yet

when comparing GEO, HEO, and MEO, the larger resultant errors from the inclusion

of satellite timing error are in GEO. Because of the farther distances for an object

in GEO, small angle errors result in large arcs of the orbit. For this reason, GEO

has the largest errors along-track due to satellite timing error, followed by HEO, then

MEO. It is important for users and operators to realize this and prioritize minimizing

satellite timing error and properly calibrating equipment when tracking objects that

are far away.
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5.5.2 Sidereal Timing Error Comparison

Table 5.26.
Comparison of small sidereal timing errors in each orbital region

Following the outline in section 5.5.1, table 5.26 shows three different cases for

each of the orbital regions: error-free (baseline), unbiased error with a 3σ bound of

1 millisecond, and 1 millisecond biased error with a 3σ bound of 1 millisecond. For

the cases with sidereal timing error, again, the largest errors occur in the along-track

orbital errors. However, the lowest errors seen in the table occur in the LEO regions.

This is most likely a result of the 5-minute observation window in LEO covering a

larger arc of the whole orbital period compared to the 50-minute window for the other

regions. Still, this suggests that when tracking closer objects over longer arcs of their

orbits, ground station timing error is not as critical as satellite timing error. For

GEO, HEO, and MEO, the largest errors occur in MEO, where for smaller arcs, the

closer objects experience larger orbital errors in the context of sidereal timing errors.

In HEO, the errors are smaller due to the decelerating of the object as it approaches

it slowest point of the orbit, apogee. Users and operators tracking objects in MEO

should prioritize minimizing ground station timing errors over satellite timing error.
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5.5.3 Angle Measurement Error Comparison

Table 5.27.
Comparison of small angle measurement errors in each orbital region

Comparing the errors from Table 5.25 and Table 5.26 to the Angle Measurement

errors in Table 5.27, it is apparent that angle measurement errors result in the high-

est orbital errors after orbit determination. The table shows three cases: error-free

(baseline), unbiased error with a 3σ bound of 0.1 arcsecond, and 0.1 arcsecond biased

error with a 3σ bound of 0.1 arcsecond. In all orbital regions, it is most important to

minimize errors associated with the angle measurements. In these cases, even with

small errors of 0.1 arcsecond, which is better than currently available equipment, the

errors are very high. For GEO, the highest error is near 19 km, which is unacceptable

for collision avoidance. This emphasizes that the most important factor in minimizing

object state uncertainty is in the angle measurements. Users and operators should

prioritize angle measurements as the most important source of potential error in all

orbital regions.
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5.6 Combined Error Scenarios

For more real-world applicability, the models used previously are combined to

varying degrees to mimic low quality, good quality, and best quality sensors available

now. An ideal, error-free sensor is included for reference. The scenarios use the

GPS satellite from the MEO simulations from section 5.3, and the observer location

remains at Purdue University. The sensors used are outlined with their respective

error levels in Table 5.28. For these scenarios, the 50-minute observation window is

reused, but measurements are recorded every 2 seconds for a total of 1501 observations

of right ascension and declination. More observations are included to study how the

distribution testing performs with larger datasets.

Table 5.28.
Description of error levels for sensors used in the combined error scenarios
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Fig. 5.61. Observation vs NLUMVE angle error distribution for all
sensors used in the combined error scenarios

Fig. 5.62. RSW orbital errors, NLUMVE with combined error scenarios vs truth
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Fig. 5.61 and Fig. 5.62 show that the low quality sensor has the largest errors

in both the angle measurements as well as the RSW orbital errors. This agrees with

the result in Table 5.29. The Shapiro-Wilk test is able to detect the one low quality

sensor, even though many observations are used. This is very applicable as the test

can determine if a sensor is of low quality with only an observation data set and no

outside information.

Table 5.29.
Shapiro-Wilk test results and RSW Orbital errors for sensors used in
the combined error scenarios

5.7 Two-Sensor Scenario

As an additional scenario, a two-sensor application is simulated in order to study

the effects on orbit determination when using measurements from one good sensor

and one bad sensor. In the context of sharing observation data, this is a realistic

scenario, where amateur measurements may be used to update or improve an existing

orbit computation. This setup uses the same geosynchronous INTELSAT 902 from

section 5.1 with an observer at Purdue University, West Lafayette, IN, just as before.

However, this scenario will include observations taken at the Purdue Optical Ground

Station (POGS) in New Mexico. Measurements are first taken every 30 seconds at

Purdue during a 50-minute observation window, and then tracking responsibilities

are handed off to POGS, where measurements are recorded every 30 seconds for

an additional 50-minute window. This results in 101 observations of topocentric

right ascension and declination at each location, for a total of 202 observations. All

observations are used in the least squares orbit determination method. To study the
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effects of using one good sensor and one bad sensor, the observer at Purdue University,

will have fixed timing, sidereal timing, and measurement error, and POGS will vary

its error levels from low to high for four separate cases, outlined in Table 5.30.

Table 5.30.
Description of error levels in cases used for two-sensor scenario

Fig. 5.63. Case 0: Observation vs NLUMVE angle error distributions
for the two-sensor scenario
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Fig. 5.64. Case 1: Observation vs NLUMVE angle error distributions
for the two-sensor scenario

Fig. 5.65. Case 2: Observation vs NLUMVE angle error distributions
for the two-sensor scenario
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Fig. 5.66. Case 3: Observation vs NLUMVE angle error distributions
for the two-sensor scenario
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Table 5.31.
Shapiro-Wilk Test results and R and V errors for the two-sensor scenarios

The unbiased timing and sidereal errors are mostly contained in right ascension

errors. This is visibly apparent for cases 2 and 3. For case 1, it is difficult to tell

there is much difference between the distributions. However, the Shapiro-Wilk test

identifies problems in the error distributions of cases 1, 2, and 3. Case 0 uses the

same distribution shape for both the West Lafayette and POGS locations. Table 5.31

shows the test results as well as the error in R and V magnitudes.

When combining the measurements of the same object using two sensors of varying

quality, distribution testing is able to detect problems with incoming observation

data using only observations already on hand. This is extremely useful for real-world

application as it does require any outside information. The testing reveals whether

or not an operator should include or exclude new observations.
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5.8 Full Satellite Catalog Scenario

Fig. 5.67. Full Satellite Catalog Propagated for 15 minutes with un-
biased timing error and unbiased sidereal timing error

To demonstrate the ease of use and wide applicability of the distribution testing,

the entire satellite catalog from 01 September 2019 from space-track.org is propagated

for 15 minutes, with observations of both right ascension and declination recorded

every 9 seconds, all including small levels of unbiased timing error and unbiased side-

real timing error. No angle measurement error is included as it is evident from the

previous sections that the distribution testing is largely ineffective in detecting mea-

surement angle errors. Fig. 5.67 shows the 15-minute orbit arcs for 18,155 objects.

The propagated orbit arcs are used to extract the erroneous right ascension and dec-

lination measurements, and for each object, orbit determination is completed just as

before. The least squares estimate is compared to the erroneous angle measurements

to create the angle error distributions, and each of these distributions are tested using
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the Shapiro-Wilk test with a significance level of 0.05. The results of the distribution

testing is shown in Table 5.32. The distribution testing detected 15,371 individual

objects of 18,155 total objects propagated with timing and sidereal timing errors.

A successful detection rate of 84.67% shows there is potential in using distribution

testing as a filtering method when sharing observation data.

Table 5.32.
Shapiro-Wilk Test results for the full satellite catalog propagation
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6. SUMMARY

With rising interests in improved space situational awareness in commercial, private,

and military contexts, the benefits of sharing observations around world are clear.

More observations can help track objects and maintain the safe use of near-Earth

space. Unfortunately, there is no set protocol for describing error uncertainties for

observation datasets, and it can difficult without a priori knowledge to determine the

quality or validity of an incoming dataset. Variability in environment, equipment, and

operational procedures all contribute to some degree of uncertainty in measurements.

Likewise, when these measurements are used for orbit determination, the computed

orbit also has uncertainties in the position and velocity state.

One of the goals of this thesis is to model errors associated with optical observa-

tions in a simple yet effective manner in order to determine the ultimate effect they

may have on orbit computations. The second goal is to use statistical distribution

tests to determine if data sets with poorly made observations can be detected using

only the incoming dataset. The first goal gives users and operators a reference guide

of how different levels of errors affect object position uncertainty and which errors

contribute to the largest deviations from an object’s true position. The second goal

provides users and operators with an additional tool to determine if an incoming data

set should be used to update an object’s orbit. This second goal is especially impor-

tant if there is to be a collaborative effort in maintaining the safe use of near-Earth

space.

6.1 Conclusions

This research achieves its first goal by modeling potential errors as random vari-

ables. By studying and modeling varying degrees of satellite timing error, ground
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station timing error, and angle measurement errors from chapter 4 and simulating

them in chapter 5, this research collected information on how different errors affect

orbit determination compared to the truth orbit. Unbiased satellite timing errors can

be modeled with a zero-mean normal distribution, the standard deviation of which

can be obtained from user manual equipment. Biased timing errors, such as shut-

ter bias or calibration issues, can be modeled using a non-zero mean. These errors

relate to any uncertainties associated with exact time of observation and result in

object position uncertainty. Ground station timing error, or sidereal timing error,

can be modeled in the same fashion using a normal distribution with zero-mean non-

zero-mean for unbiased and biased cases respectively. This simulates any uncertainty

associated with ground station location accuracy, which also results in object posi-

tion accuracy. This can simulate uncertainties in GPS timing at the ground station

or potentially poor calibration. Angle measurement errors can also be modeled as a

random variable from a normal distribution. Angle errors may be a result of light

refraction, lens distortion, or pixel position uncertainty.

In Geosynchronous Earth Orbits (GEO) or Highly Elliptical Orbits (HEO), satel-

lite timing errors had a more apparent effect on position error than ground station

timing error of the same degree. However, in Medium-Earth Orbits (MEO), ground

station timing error had a larger effect. In the Low-Earth Orbit (LEO) cases, satel-

lite timing had the largest effect and angle measurement followed closely in the same

order of magnitude. For the unbiased cases at the (3σ) level of 0.001s for satellite

timing error, GEO, HEO, MEO, and LEO have maximum orbit errors of 280.10 m,

89.82 m, 38.65 m, and 863.87 m, respectively. For the same unbiased cases for sidereal

timing error at the (3σ) level of 0.001s, GEO, HEO, MEO, and LEO have maximum

orbit errors of 108.17 m, 48.02 m, 191.06 m, and 24.30 m, respectively. Typically,

angle measurement errors result in the higher levels of orbit error from truth. With

a (3σ) level of just 0.1 arcsec, GEO, HEO, MEO, and LEO have maximum errors of

17.03 km, 3.99 km, 14.03 km, and 668.78 m respectively. It is most important for

all sensor operators to minimize angle measurement error uncertainties or relay this
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uncertainty when sharing data. Satellite timing then take priority in GEO, HEO,

and LEO, and ground station timing takes priority in MEO.

The second research goal is achieved through use of the Shapiro-Wilk test, which

was used to detect the errors modeled from the first objective. Since standard filter-

ing methods such as the least squares method and Kalman filtering have decreased

performance when using noisy data with unknown or highly varying noise levels, the

distribution testing can be helpful in first determining whether or not a dataset is

usable or can aid in the exlusion of singla data points. The distribution testing was

able to detect 24 out of 32 satellite timing error scenarios and 26 out of 32 satellite

ground station timing error scenarios. However, only 10 out of 32 angle measurement

error scenarios were detected to have errors. Since the linear addition of the angle

measurement error causes little change to the shape of the angle error distribution, the

Shapiro-Wilk test results are inconclusive. For the cases of timing error and ground

station timing error, the Shapiro-Wilk distribution testing at least provides users and

operators with additional information extracted from just the dataset. Most impor-

tantly, no outside information is necessary to perform the distribution testing. In the

context of data sharing, these results suggest that distribution tests be considered

as a tool to determine the validity and usability of an incoming data set. It is not

recommended that distribution testing be used to detect angle measurement errors.

6.2 Recommendations

The error modeling and application of distribution testing provide useful tools

for orbit analysts and operators to improve their understanding of the uncertainty

associated an object’s position. Error modeling with random variables allows users to

compute their own observation and measurement uncertainties, which they can relay

to other sites when sharing data. The distribution testing produced consistent results

for the timing and sidereal timing errors. It is recommended that this distribution

testing be used to assess any suspicions of timing error or sidereal timing in shared
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observation data sets for GEO, HEO, MEO, or LEO. It is not recommended however

that the distribution testing be used to assess angle measurement errors in any of the

orbital regions. Since there are limitations to statistical methods, machine learning

is an appropriate next step for further investigation of how to detect errors in a data

set.
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