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ABSTRACT 

The motivation for this research stems from the promise of coupling multi-sensory systems 

and advanced data analytics to enhance holistic situational awareness and thus prevent fatal 

accidents in the construction industry. The construction industry is one of the most dangerous 

industries in the U.S. and worldwide. Occupational Safety and Health Administration (OSHA) 

reports that the construction sector employs only 5% of the U.S. workforce, but accounts for 21.1% 

(1,008 deaths) of the total worker fatalities in 2018. The struck-by accident is one of the leading 

causes and it alone led to 804 fatalities between 2011 and 2015. A critical contributing factor to 

struck-by accidents is the lack of holistic situational awareness, attributed to the complex and 

dynamic nature of the construction environment. In the context of construction site safety, 

situational awareness consists of three progressive levels: perception – to perceive the status of 

construction entities on the jobsites, comprehension – to understand the ongoing construction 

activities and interactions among entities, and projection – to predict the future status of entities 

on the dynamic jobsites. In this dissertation, holistic situational awareness refers to the 

achievement at all three levels. It is critical because with the absence of holistic situational 

awareness, construction workers may not be able to correctly recognize the potential hazards and 

predict the severe consequences, either of which will pose workers in great danger and may result 

in construction accidents. While existing studies have been successful, at least partially, in 

improving the perception of real-time states on construction sites such as locations and movements 

of jobsite entities, they overlook the capability of understanding the jobsite context and predicting 

entity behavior (i.e., movement) to develop the holistic situational awareness. This presents a 

missed opportunity to eliminate construction accidents and save hundreds of lives every year. 

Therefore, there is a critical need for developing holistic situational awareness of the complex and 

dynamic construction sites by accurately perceiving states of individual entities, understanding the 

jobsite contexts, and predicting entity movements. 

The overarching goal of this research is to minimize the risk of struck-by accidents on 

construction jobsite by enhancing the holistic situational awareness of the unstructured and 

dynamic construction environment through a novel data-driven approach. The research rationale 

is such that with enhanced holistic situational awareness, the site dynamics can be accurately 

perceived, the jobsite contexts in terms of working groups and ongoing activities can be correctly 
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understood, and future states can be reliably predicted. These capabilities will enable the proactive 

detection of the potential collision hazards, based on which early warnings and instructions can be 

provided to involved entities for them to take proactive actions to prevent struck-by accidents. 

Towards that end, three fundamental knowledge gaps/challenges have been identified and each of 

them is addressed in a specific objective in this research. 

The first knowledge gap is the lack of methods in fusing heterogeneous data from multimodal 

sensors to accurately perceive the dynamic states of construction entities. The congested and 

dynamic nature of construction sites has posed great challenges such as signal interference and 

line of sight occlusion to a single mode of sensor that is bounded by its own limitation in perceiving 

the site dynamics. The research hypothesis is that combining data of multimodal sensors that serve 

as mutual complementation achieves improved accuracy in perceiving dynamic states of 

construction entities. This research proposes a hybrid framework that leverages vision-based 

localization and radio-based identification for robust 3D tracking of multiple construction workers. 

It treats vision-based tracking as the main source to obtain object trajectory and radio-based 

tracking as a supplementary source for reliable identity information. It was found that fusing visual 

and radio data increases the overall accuracy from 88% and 87% to 95% and 90% in two 

experiments respectively for 3D tracking of multiple construction workers, and is more robust with 

the capability to recover the same entity ID after fragmentation compared to using vision-based 

approach alone. 

The second knowledge gap is the missing link between entity interaction patterns and diverse 

activities on the jobsite. With multiple construction workers and equipment co-exist and interact 

on the jobsite to conduct various activities, it is extremely difficult to automatically recognize 

ongoing activities only considering the spatial relationship between entities using pre-defined rules, 

as what has been done in most existing studies. The research hypothesis is that incorporating 

additional features such as attentional cues better represents entity interactions and advanced deep 

learning techniques automates the learning of the complex interaction patterns underlying diverse 

activities. This research proposes a two-step long short-term memory (LSTM) approach to 

integrate the positional and attentional cues to identify working groups and recognize 

corresponding group activities. A series of positional and attentional cues are modeled to represent 

the interactions among entities, and the LSTM network is designed to (1) classify whether two 

entities belong to the same group, and (2) recognize the activities they are involved in. It was found 
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that by leveraging both positional and attentional cues, the accuracy increases from 85% to 95% 

compared with cases using positional cues alone. Moreover, dividing the group activity 

recognition task into a two-step cascading process improves the precision and recall rates of 

specific activities by about 3%-12% compared to simply conducting a one-step activity recognition. 

The third knowledge gap is the non-determining role of jobsite context on entity movements. 

Worker behavior on a construction site is goal-based and purposeful, motivated and influenced by 

the jobsite context including their involved activities and the status of other entities. Construction 

workers constantly adjust their movements in the unstructured and dynamic workspace, making it 

challenging to reliably predict worker trajectory only considering their previous movement 

patterns. The research hypothesis is that combining the movement patterns of the target entity with 

the jobsite context more accurately predicts the trajectory of the entity. This research proposes a 

context-augmented LSTM method, which incorporates both individual movement and workplace 

contextual information, for better trajectory prediction. Contextual information regarding 

movements of neighboring entities, working group information, and potential destination 

information is concatenated with movements of the target entity and fed into an LSTM network 

with an encoder-decoder architecture to predict trajectory over multiple time steps. It was found 

that integrating contextual information with target movement information can result in a smaller 

final displacement error compared to that obtained only considering the previous movement, 

especially when the length of prediction is longer than the length of observation. Insights are also 

provided on the selection of appropriate methods. 

The resulting holistic situational awareness of the dynamic construction site consists of the 

following information.  

• The positional states of construction entities are continuously perceived by fusing 

heterogeneous data.  

• Jobsite context including working groups and ongoing group activities are recognized by 

exploiting the entity interaction patterns over a period of observations.  

• The trajectories of entities are predicted given their current states as well as the jobsite context. 

The results and findings of this dissertation will augment the holistic situational awareness 

of site entities in an automatic way and enable them to have a better understanding of the ongoing 

jobsite context and a more accurate prediction of future states, which in turn allows the proactive 

detection of any potential collisions. This augmented capability can be implemented to a system 
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approach for struck-by prevention, where vision and radio systems can be used to collect data on 

entity states. The sensory data will be transmitted to a central server to perform analysis using 

algorithms developed in this dissertation, including state perception, jobsite context 

comprehension, and trajectory prediction. Based on the resulting holistic situational awareness, a 

proactive and context-aware struck-by prevention mechanism can be devised to provide early 

warnings when collision risk is high as well as plan optimal path for site entities to actively adjust 

their behavior to avoid potential collision. Such information and guidance can be communicated 

to field crews in different formats through mobile devices. By doing these, the jobsite entities are 

augmented with holistic and ubiquitous situational awareness to prevent struck-by accidents. 

This newly enhanced capacity of holistic situational awareness is possible to be extended to 

prevent other types of accidents, such as fall accidents and electrocutions. Besides, it has the great 

potential to contribute to automatic construction progress monitoring and control. By integrating 

holistic situational awareness and construction plans and representations such as building 

information models (BIMs), one can easily tell whether construction entities are at the right place 

doing the right tasks with the right partners, which in turn facilitates the active control of 

construction operation to ensure productivity. Furthermore, on future construction jobsites where 

human workers and robots are expected to collaborate ubiquitously, the methods created in this 

dissertation research are promising to be adopted in human-robot collaboration and empower the 

robots with automatic situational awareness to adaptively adjust their behavior to effectively and 

efficiently collaborate with human workers. 
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 INTRODUCTION 

The construction industry is one of the most dangerous industries. In 2018, the construction 

sector employed only 5% of the US workforce (U.S.Bureau of Labor Statistics, 2018), but it 

accounted for 21.1% (1008 deaths) of the total worker fatalities (OSHA, 2018). The struck-by 

hazard is one of the leading causes and it alone led to 1017 fatalities from 2012 to 2018 

(U.S.Bureau of Labor Statistics, 2018). A critical contributing factor to struck-by accidents is the 

lack of holistic situational awareness due to the complex and dynamic nature of the construction 

environment. This long-standing and pressing problem requires an effective solution to enhance 

the holistic situational awareness of the construction site to proactively prevent struck-by accidents 

and save hundreds of lives every year. This chapter provides an overview of this research. 

1.1 Background 

The construction site is dynamic and complex in nature. Various activities are performed 

simultaneously with numerous resources (e.g., equipment, workers, and materials) in shared 

working spaces (D. Fang & Wu, 2013). The unstructured and dynamic site conditions make it 

extremely difficult for jobsite entities to sufficiently perceive their surroundings, which is an 

immediate cause for many struck-by accidents. Between 1990 and 2007, 659 fatalities in the U.S. 

construction industry were caused by failures in perceiving the site dynamics when people are 

occluded by obstructions or blind spots (Hinze & Teizer, 2011). From 2003 to 2010, on average 

53% of fatal accidents were struck-by-vehicle or equipment overturns and collisions (U.S.Bureau 

of Labor Statistics, 2013). In addition, during the construction process, workers are routinely 

challenged to make their own decisions when confronted with new problems and situations (D. 

Fang & Wu, 2013; Li et al., 2015). They may expose themselves to a potential hazard due to 

insufficient safety knowledge and inadequate prediction of consequences even though they have 

perceived the current status (Bohm & Harris, 2010; Rundmo, 2001). In such a case, situational 

awareness, which includes the perception, comprehension, and prediction of jobsite status, is 

essential for effective decision-making to ensure construction safety. 

A widely adopted model of situational awareness was developed by Endsley (1995), who 

defined situational awareness as “the perception of elements in the environment within a volume 
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of time and space, the comprehension of their meaning, and the projection of their status in the 

near future”. Such a definition includes three hierarchical levels: perception – to perceive the status, 

attributes, and dynamics of relevant elements in the environment, comprehension – to synthesize 

the states and understand the functionality of each element, and projection – to predict the future 

behavior of the elements in the environment. In this research, holistic situational awareness refers 

to the achievement at all three levels. 

In the current practice, safety training and site monitoring are the two major measures to 

improve situational awareness. Before conducting construction tasks, workers are trained to learn 

the proper working procedures, identify potential hazards, and use safety devices. The training is 

effective and necessary in enhancing worker safety knowledge and correcting their safety attitude 

such that the worker is equipped with the ability to correctly perceive and recognize potential 

hazards. However, workers may not follow the safe practice on the site because of fatigue, 

distraction, and schedule pressures. On the other hand, site spotters are assigned to monitor the 

ongoing construction operations, especially for those involving interactions between workers and 

heavy machines. Workers and machine operators are alerted by site spotters regarding their 

surroundings when they are focusing on construction tasks without sufficient situational awareness. 

Nevertheless, the site monitoring is labor-intensive and error-prone as one spotter can only monitor 

a limited number of entities within a small range of areas with the performance heavily relying on 

experience and skills as well as the viewing point. Alternatively, with the advances in sensing 

technology and data analytics, both practitioners and researchers have acknowledged the potential 

and shown increasing interest in coupling multimodal sensors with advanced data analytics to 

automatically enhance worker situational awareness in order to ensure construction site safety (T. 

Cheng & Teizer, 2012; Hwang, 2012). 

1.2 Problem Statement 

Achieving holistic situational awareness of the construction site requires 1) accurate 

perception of the states of individual entities, 2) correct understanding/interpretation of the jobsite 

context, and 3) reliable prediction of entity movements in the near future. While existing studies 

have been successful, at least partially, in enhancing the perception of site dynamics regarding 

real-time states of entities such as locations, they overlooked pursuing the capabilities of 

understanding the jobsite context and of predicting the behavior (i.e., movement) of the entities to 
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realize holistic situational awareness, a missed opportunity to eliminate construction accidents and 

save hundreds of lives every year. 

Construction sites are typically complex and unstructured, consisting of numerous 

construction resources involved in various activities (as shown in Figure 1.1), making it extremely 

difficult to achieve holistic situational awareness. Three main problems and challenges that hinder 

the achievement of holistic situational awareness have been identified as follows. 

 

 

Figure 1.1 Examples of complex and unstructured construction sites 

1. Lack of method in fusing heterogeneous data from multimodal sensors to accurately perceive 

the dynamic states of construction entities. The congested and dynamic nature of construction 

sites has posed great challenges such as signal interference and line of sight occlusion to state 

perception. It is difficult to accurately perceive site dynamics using a single mode of sensor. 

For instance, the visual sensor requires line-of-sight and is highly sensitive to illumination and 

occlusion. The radio-based sensor is significantly influenced by signal interference caused by 

obstacles on the jobsite. Therefore, multisensory data in varying formats and levels of accuracy 

must be integrated as mutual complementation to achieve improved accuracy in perceiving 

entities’ states. 

2. The link between entity interaction patterns and diverse activities on the jobsite is missing. 

Construction entities interact with each other to accomplish assigned tasks, formulating several 

working groups. It is difficult to interpret the jobsite context only from the states of individual 

entities, and thus, their interactions must be fully exploited and incorporated to comprehend 

the diverse activities on the jobsite. 

3. Lack of scientific understanding of construction entities’ behavior within the jobsite context. 

Worker behavior on a construction site is goal-based and purposeful, motivated and influenced 

by the jobsite context including their involved activities and the status of other entities. 

Workers constantly adjust their movements in the unstructured and dynamic workspace, 
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making it extremely challenging to reliably predict worker trajectory only considering their 

previous movement patterns. Therefore, the jobsite context must be integrated with the 

movement patterns of the target in order to more accurately predict the entity trajectory. 

1.3 Review of Related Studies and Knowledge Gaps 

Many research studies have attempted to develop and enhance the situational awareness of 

construction workers in order to improve site safety performance. This section reviews the related 

studies and highlights the knowledge gaps. 

1.3.1 Knowledge gap in state perception of construction entities 

Various sensing technologies and corresponding algorithms have been developed to enhance 

perception - the first level of situational awareness - by automatically monitoring and perceiving 

the states (e.g., location and motion) of site entities. For instance, imaging sensors (e.g., video 

cameras, depth cameras) are used to detect and localize construction workers and equipment 

(Memarzadeh et al., 2013; M. W. Park & Brilakis, 2016; Zhu et al., 2016b) as well as identify their 

postures (Ding et al., 2018; Y. Yu et al., 2017; H. Zhang et al., 2018). Radio-based sensors (e.g., 

radio-frequency identification (RFID), ultra-wideband (UWB), Bluetooth low energy (BLE) 

beacons) are applied for proximity detection (J. W. Park et al., 2017; Teizer et al., 2010) and 3D 

localization (H.-S. Lee et al., 2011; Topak et al., 2018). Inertial sensors can be used to estimate 

both posture (Valero et al., 2017; Yan et al., 2017) and location of construction entities (M. Ibrahim 

& Moselhi, 2016). 

Most studies only leverage a single mode of sensor that is bounded by its own limitations. 

For instance, visual sensors may capture rich contextual information and they do not require 

attachment to the entities, but they are highly sensitive to illumination and occlusion. Radio-based 

sensors do not require line of sight, but their accuracy is significantly influenced by the obstacles 

on the construction site. Inertial sensors are relatively accurate in the short term, but subject to 

noise and drift errors. It is well acknowledged that a data fusion approach that integrates 

heterogeneous data obtained from different sensors has the attribute of mutual complementation 

and can improve the accuracy and confidence of the monitoring results. For instance, Chen et al. 

(2018) proposed a multisource fusion framework that combines indoor localization results 
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obtained from BLE beacons and inertial measurement unit (IMU). Papaioannou et al. (2017) 

created a novel framework that fuses radio-, inertial-, and vision-based sensors to track 

construction workers on the jobsite. However, their method used a single camera and cannot 

provide reliable 3D location information in a large area. 

Despite these pilot studies (Chen et al., 2018; Papaioannou et al., 2017), more research 

efforts are needed in fusing heterogeneous data obtained from different sensors to complement 

each other and obtain more accurate trajectories. For instance, vision-based and radio-based 

localization have their own advantages and limitations and has great potential to be combined to 

improve the accuracy and reliability of localization for both indoor and outdoor applications. 

Vision-based localization is accurate, but its performance will significantly decrease when it fails 

in detecting the target; radio-based localization is less accurate but reliable in object detection and 

identification. Novel methods are needed to integrate the strengths of these two approaches to 

realize long-term and robust tracking of construction entities. This knowledge gap will be 

addressed in this study by developing novel data fusion methods to integrate visual and radio-

based sensors for accurate perception of positional states of construction entities. 

1.3.2 Knowledge gap in construction activity and context recognition 

Many studies have been dedicated to automating the interpretation of construction activity 

and jobsite context using information extracted from sensory data. There are typically two types 

of features used to infer the site context. The first type is the features extracted or computed from 

raw sensory data, such as spatial-temporal features of visual data (Golparvar-Fard et al., 2013; 

Gong et al., 2011; J. Y. Kim & Caldas, 2017; H. Luo et al., 2018), and time- or frequency- domain 

features of IMU data (Akhavian & Behzadan, 2015, 2016; Hyunsoo Kim et al., 2018). These 

features usually serve as inputs of machine learning classifiers to recognize activities of 

construction entities (i.e., workers and equipment). The other type of features is at a higher level, 

computed from the perceived entities’ states, such as the location and proximity information 

obtained from the visual detection and tracking results (H. H. Kim et al., 2018; J. Kim et al., 2018; 

J. Yang et al., 2011). These features are typically used in a rule-based activity/context reasoning 

algorithm, which analyzes the construction operation based on the spatial-temporal relationship of 

entities. 
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Most existing studies (Ding et al., 2018; Golparvar-Fard et al., 2013; Gong et al., 2011) focus 

on the activity or action recognition of individual entities, such as traveling and working of workers, 

and moving and dumping of machines. These studies rely on features of individual entities, but 

neglect the dynamic interaction and collaboration among different entities. For the few studies on 

entity interactions (H. H. Kim et al., 2018; J. Kim et al., 2018), they mainly rely on the spatial-

temporal relationship between entities through hand-crafted rules. Moreover, construction 

images/videos were simplified to only contain entities involved in a single activity, excluding all 

irrelevant entities (X. Luo et al., 2018). In reality, however, many workers and machines co-exist 

and collaborate to accomplish different tasks. For those entities that are spatially close, not all of 

them are collaborating on a single activity. Similarly, some entities interact and collaborate on a 

specific task even though they are not physically next to each other.  

In such cases, worker’s attentional information (e.g., the head direction) can serve as 

additional features to facilitate the interpretation of jobsite context. To address this knowledge gap, 

this research leverages both the positional and attentional relationships of multiple entities to 

represent their dynamic interaction and devises LSTM networks to automatically learn the linking 

between dynamic interaction patterns and diverse construction activities. 

1.3.3 Knowledge gap in trajectory prediction of construction entities 

To realize holistic situational awareness and further achieve proactive prevention of struck-

by hazards, a critical step is the accurate prediction of entities’ behavior, especially the prediction 

of trajectory. Conventionally, tracking filters are used to predict the future steps in a trajectory 

(Hermes et al., 2009; T. Liu et al., 1998; Prévost et al., 2007). For instance, the Kalman filter is 

applied to predict the trajectory using a Gaussian distribution with accumulated uncertainty. 

However, this approach often results in physically impossible locations (e.g., behind walls, within 

obstacles). Particle filters incorporate more sophisticated constraints and non-Gaussian 

distributions, but it degrades into random walks of feasible motion over large time horizons 

(Ziebart et al., 2009). Some researches (Karasev et al., 2016; Kitani et al., 2012; Rudenko et al., 

2018; Ziebart et al., 2009) adopted planning-based approaches, where entities are treated as 

intelligent agents who actively plan their path to achieve a goal. The problem is formulated as a 

path planning or optimal control task, such as the Markov decision process (MDP). One main 

drawback is that the planning-based approach relies heavily on prior knowledge, and it still uses 
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hand-crafted features to model states and reward functions that are specific to particular settings. 

Recently, data-driven approaches have been increasingly used given that they do not require 

explicitly modeling movement dynamics and their ability to be generalized to various scenarios. 

Long short-term memory (LSTM) network is the most widely used deep learning model for human 

trajectory prediction (Alahi et al., 2016; Saleh et al., 2018; Syed & Morris, 2019; Xue et al., 2018). 

In the construction domain, Zhu et al. (2016a) proposed a novel Kalman filter to predict the 

movements of workers and mobile equipment using positions obtained from multiple video 

cameras. Although the methods achieved a submeter accuracy when predicting the next-step 

movement in 0.03s, the accuracy decreases to about 1.5m when predicting movement in 1.5s. 

Instead of using conventional tracking filters, Dong et al. (2018) and Rashid et al. (2018) modeled 

worker movements as a Markov process to predict their trajectories based on historical records. 

More recently, Kim et al. (2019) and Tang et al. (2019) attempted to predict the construction entity 

trajectory through a data-driven approach given the advances in deep learning techniques.  

Most existing studies only consider individual movements while predicting a worker’s 

trajectory, which is insufficient to capture worker behavior under different scenarios. In reality, 

multiple entities co-exist on the construction site, forming various working groups to accomplish 

different activities. Workers’ behavior will be influenced by each other and the specific activities 

they are involved in. Jobsite contextual information such as entity interactions and ongoing 

activities must be incorporated in order to better predict entity movements, which, however, has 

been overlooked by existing studies in the construction domain. To address this knowledge gap, 

this research incorporates jobsite contextual information regarding entity interactions and involved 

activities to create a context-augmented deep learning model for worker trajectory prediction on 

dynamic and unstructured construction sites. 

1.4 Research Goal and Objectives 

The overarching goal of this research is to minimize the risk of struck-by accidents on 

construction jobsites by enhancing the holistic situational awareness of the unstructured and 

dynamic construction environment through a novel data-driven approach. The research rationale 

is such that with enhanced holistic situational awareness, the site dynamics can be accurately 

perceived, the ongoing activities can be correctly understood, and future states can be reliably 

predicted. These capabilities will enable the proactive detection of the potential collision hazards, 
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based on which early warnings and instructions can be provided to involved entities for them to 

take proactive actions to prevent struck-by accidents. Three specific objectives are formulated to 

achieve the goal. Figure 1.2 illustrates the overview of the research. Entities’ 3D positional states 

are first obtained by fusing vision- and radio-based sensing data. Second, positional and attentional 

cues are integrated to comprehend the jobsite context regarding working group and group activity. 

Finally, states of individual entities and the jobsite contextual information are integrated to predict 

entity trajectory. It is noted that in the first objective, the 3D trajectory of construction workers in 

world coordinate system is obtained using a hybrid stereo vision system and radio-based system. 

In the second and third objectives, due to the constraint of data availability, 2D construction videos 

are used to train and test the proposed deep learning models, where the positional and attentional 

cues are represented in 2D, and the worker trajectory is predicted on 2D image plane. The overview 

of the technical approaches for the three objectives is introduced as follows. 

 

 

Figure 1.2 Research overview and technical approaches for three objectives: (a) 3D tracking of 

multiple construction workers, (b) working group identification and group activity recognition, 

(c) context-aware trajectory prediction. 

• The first objective is to develop a novel framework that integrates imaging data and radio data 

to achieve robust 3D tracking of multiple construction entities (see Figure 1.2 (a)). The 

hypothesis is that integrating heterogeneous data from multi-modal sensors perceives the 

positional states of construction entities with improved accuracy and robustness. The research 
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questions here are twofold: what sensors to use to obtain the positional information of the 

construction entities and how to combine heterogeneous information to improve the accuracy 

and robustness? In this objective, a hybrid system comprising a stereo-camera system and a 

radio-based system is used to track multiple construction workers. Vision-based tracking is 

treated as the main source to extract the object trajectory. Radio-based identification and 

localization results are used as a supplementary source to augment anonymous visual tracks 

with identity information and to correct errors (e.g., false positives) in vision-based object 

detection, resulting in ID-linked 3D trajectories. In addition, a searching algorithm is created 

to recover possible missed detections in one camera view from the corresponding observations 

in a second camera view. Two indoor experiments were conducted to validate the proposed 

method, where a stereo vision system and a radio-based (i.e., BLE beacon) system were used 

to obtain 3D trajectories of workers in the 3D world coordinate system. The accomplishment 

of this objective will achieve the accurate and robust perception of positional states of 

construction entities. 

• The second objective is to identify construction working groups and recognize corresponding 

group activities by exploiting the interactions among entities leveraging positional and 

attentional cues (see Figure 1.2 (b)). The hypothesis is that integrating position- and attention-

based cues facilitate the jobsite context reasoning. The two research questions posed here are: 

1) what features are critical to reason out the context information and 2) what are the entity 

interaction patterns presented in the typical activity? In this objective, the spatial and 

attentional states of individual entities are represented numerically. Mathematical models are 

created to compute the spatial and attentional cues between two entities. Finally, a two-step 

long short-term memory (LSTM) network is devised to identify working groups and recognize 

group activities. Two sets of construction videos—one hospital construction project on the 

publicly-available website and one teaching building project taken by the author on Purdue 

campus, are used to validate the newly created method. Manual annotations regarding the 2D 

spatial and attentional states are used to compute the 2D positional and attentional cues 

proposed in this study. The group/non-group information and the corresponding construction 

activities for each pair of construction entities are manually labeled to provide ground truth 

labels for supervised learning when train and test the proposed two-step LSTM model. The 
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accomplishment of this objective will enable the comprehension of jobsite context under 

general construction scenarios. 

• The third objective is to create context-aware algorithms to predict the trajectories of entities 

(see Figure 1.2 (c)). The hypothesis is that the movement of construction entities is better 

predicted by integrating their previous states and jobsite contextual information. The twofold 

research question posited here is: 1) what contextual features are critical to worker trajectory 

prediction and 2) what is the connection between worker movements and jobsite contexts with 

their future trajectory? In this objective, an LSTM model augmented by the context 

information is proposed, which incorporates both individual movement and workplace 

contextual information. Contextual information regarding movements of neighboring entities, 

working group information, and potential destination information will be concatenated with 

movements of the target entity and fed into an LSTM network with an encoder-decoder 

architecture to enable the sequence-to-sequence prediction. The method is validated using 

videos collected on three construction sites—one hospital construction project and two 

teaching building construction sites. Visual data were pre-processed to extract entity positions 

and contextual features, which are then used as inputs to train and test the proposed method. 

The trajectory prediction is performed on the 2D image plane. The accomplishment of this 

objective will enable a more accurate trajectory prediction of construction workers on the 

unstructured and dynamic jobsites. 

 

The expected outcomes are novel methods and new knowledge to enhance the holistic 

situational awareness in terms of three aspects, detailed as follows. 

• A new algorithm that fuses vision-based tracking and radio-based identification to enable 

accurate and robust perception of positional states of construction workers. Workers’ location 

information is augmented with identity information, which can be used to recover missed 

detection and avoid ambiguity in the dynamic and unstructured construction site. Moreover, 

the integration of multi-modal sensors that serve as mutual complementation can overcome the 

limitation of each type of sensor. 

• Identified critical features that capture the interactions among entities, and the corresponding 

deep learning model for jobsite context comprehension. By representing the entity interactions 

with generic features identified in this dissertation, the jobsite context including both 
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construction working groups and ongoing group activities, under general construction 

scenarios, can be effectively recognized. 

• Identified critical contextual features and corresponding context-augmented deep learning 

model for accurate trajectory prediction of construction workers. The newly created method 

allows the consideration of contextual information in predicting future states on construction 

sites. Insights are also provided on the selection of appropriate methods for effective and 

efficient trajectory prediction of construction entities.  

 

The above three objectives are interrelated and each of them corresponds to one level of 

situational awareness. They together formulate the framework to enhance holistic situational 

awareness on the construction jobsite, as shown in Figure 1.2. This dissertation starts with state 

perception – entities’ states are perceived from multimodal sensors, which becomes the input for 

Objective 2. Jobsite context is interpreted with working groups identified and corresponding 

activities recognized based on perceived states from individual entities. Finally, Objectives 1 and 

2 serve as the foundation of Objective 3, where worker’s trajectory is predicted by incorporating 

both worker movements and contextual information including relationships with neighboring 

entities and involved activities. This newly developed capacity in enhancing the holistic situational 

awareness of dynamic construction jobsites can be further leveraged to develop pro-active, 

context-aware control systems for struck-by prevention. In the system, the risk of potential 

collision can be estimated based on the predicted trajectory of construction entities, and early 

warnings can be provided to involved entities to avoid struck-by accidents. 

1.5 Research Contributions 

This novel and original research is expected to establish a roadmap towards realizing holistic 

situational awareness of the construction site through a data-driven approach. By integrating 

artificial intelligence with construction domain knowledge, the knowledge underlying 

heterogeneous data that reflect various aspects of construction entities is better exploited, which 

enables the true understanding of construction scenarios in an automatic way. Specifically, this 

research identified critical features that are unique in the construction domain to capture entity 

interactions and created a generic model to represent them numerically. By establishing the 

relationship between entity interaction patterns with construction working groups and group 
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activities, this research enables the comprehension of complex jobsite context on dynamic and 

unstructured workspaces. This research also identified critical contextual features that will 

influence worker movements and innovatively incorporate contextual information into the 

prediction of future worker states. It has great potential to contribute not only to improved site 

safety performance by avoiding struck-by accidents, but also to automatic progress monitoring and 

control to ensure productivity, as well as to safe and efficient human-robot collaboration on future 

construction scenarios. 

In addition, in each objective, new algorithms or methods are created to overcome the 

technical challenges, with specific contributions listed below. 

1. This study creates a hybrid framework that leverages vision-based localization and radio-based 

identification for robust 3D tracking of multiple construction workers. Instead of directly 

fusing locations extracted from two approaches, the proposed framework strategically 

integrates these two methods, using vision-based tracking as the main source to obtain object 

trajectory and radio-based tracking as a supplementary source for reliable identity information. 

The newly created method significantly improves the overall accuracy for 3D tracking of 

multiple construction workers compared with the vision-based systems alone. 

2. This study pioneers in incorporating attentional cues into the understanding of construction 

jobsite context and proposes a two-step long short-term memory (LSTM) approach that 

integrates the positional and attentional cues to identify working groups and recognize 

corresponding group activities. The proposed two-step process, i.e., working group 

identification followed by the activity recognition, allows the differentiation of group-relevant 

and non-relevant entities, making it capable of addressing complex group activities under 

general construction scenarios, where multiple entities co-exist on the job site. 

3. This study creates a context-augmented deep learning model for worker trajectory. It not only 

considers spatial interaction between the target and neighboring entities, but also innovatively 

incorporates the semantic relationship between entities (i.e., whether or not within a working 

group) and the long-term goal of the target (i.e., the potential destination). The context-

augmented method outperforms the position-based prediction with less final displacement 

error, especially for long-term prediction when prediction time is no less than observation time. 
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1.6 Research Significance 

The results and findings of this dissertation will augment the holistic situational awareness 

of site entities in an automatic way and enable them to have a better understanding of the ongoing 

jobsite context and a more accurate prediction of future states to avoid potential accidents. It can 

be implemented as a key element in order to prevent struck-by accidents. Vision and radio systems 

can be used to collect data on entity states, which will be transmitted to a central server to perform 

analysis using algorithms developed in this dissertation, including state perception, jobsite context 

comprehension, and trajectory prediction. This holistic situational awareness can be leveraged to 

develop a proactive and context-aware control system, such as an adaptive path planning 

mechanism based on the predicted trajectory of jobsite entities. Then such information and 

guidance can be communicated to field crews in different formats through mobile devices. For 

instance, in addition to early warnings in sounds and vibration, for operators in equipment, one 

can visualize the site condition including the movements of their surrounding entities, and also see 

the planned trajectories for them. Workers can be provided tailored information on their nearby 

hazards through voice and visualization using mobile devices or augmented reality devices. By 

these assistive systems, jobsite entities are augmented with holistic and ubiquitous situational 

awareness to prevent struck-by accidents.  

It is possible to extend this newly enhanced capacity of holistic situational awareness to 

prevent other types of accidents, such as falls and electrocutions. For instance, 291 workers fell to 

a lower level during construction in 2013, accounting for 35% of the total deaths in that year 

(OSHA, 2015). Electrocution is also among the “fatal four” of the industry that cause most of the 

fatalities. Such tragedies could be avoided if workers were early informed and possessed adequate 

situational awareness when they were close to or stepping into the hazard areas. Besides, this 

capability has the great potential to contribute to automatic construction progress monitoring and 

control. By integrating holistic situational awareness and construction plans and representations 

such as building information models (BIMs), one can easily tell whether construction entities are 

at the right place doing the right tasks with the right partners, which in turn facilitate the active 

control of construction operations to ensure productivity. Furthermore, given the fact that 

construction robots and autonomous machines have been increasingly introduced in construction 

projects, human workers and robots are expected to collaborate ubiquitously in the future 

construction jobsite. The automatic situational awareness developed in this research is promising 
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to be adopted in human-robot collaboration on construction sites and to empower robots to 

adaptively adjust their behavior to effectively and efficiently collaborate with human workers. 

1.7 Dissertation Organization 

This dissertation is organized into five chapters and follows the “multiple publications” 

formats. Each of the Chapters 2, 3, and 4 has its own introduction, literature review, methodology, 

implementation and results, and conclusion sections. Significant portions of these chapters have 

been published or submitted for review and publication in peer reviewed journals. Chapter 1 

introduces the background, highlights the problem statement and limitations in related studies, and 

discusses the research objectives, contributions, and significance.  

Chapter 2 presents a hybrid framework for 3D tracking of multiple construction workers by 

combining vision-based localization and radio-based identification. This work was previously 

published by ASCE Journal of Computing in Civil Engineering, 2020, Jiannan Cai and Hubo 

Cai, “Robust Hybrid Approach of Vision-Based Tracking and Radio-Based Identification and 

Localization for 3D Tracking of Multiple Construction Workers” (J. Cai & Cai, 2020). This is 

the pre-production version, with permission from American Society of Civil Engineers (ASCE).” 

This material may be found at [DOI = 10.1061/(ASCE)CP.1943-5487.0000901]. Table titles and 

figure captions have been modified to maintain the form of the dissertation. 

Chapter 3 presents a two-step LSTM method for identifying construction working groups 

and corresponding activities by integrating both positional and attentional cues. This work was 

previously published in Automation in Construction (J. Cai et al., 2019). This chapter is re-

printed with permission from Vol 104, Jiannan Cai, Yuxi Zhang, and Hubo Cai, “Two-step long 

short-term memory method for identifying construction activities through positional and 

attentional cues”, 102886, Copyright Elsevier (2019). Table titles and figure captions have been 

modified to maintain the form of the dissertation. 

Chapter 4 presents a deep learning model augmented by construction contextual information 

for worker trajectory prediction. This work is under review in Advanced Engineering Informatics, 

2020, Jiannan Cai, Yuxi Zhang, Liu Yang, Hubo Cai, and Shuai Li. “A Context-Augmented 

Deep Learning Approach for Worker Trajectory Prediction on Unstructured and Dynamic 

Construction Sites”. Table titles and figure captions have been modified to maintain the form 

of the dissertation. 
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Finally, Chapter 5 concludes the dissertation by summarizing the findings and discussing 

the directions and visions for future work. 
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 ROBUST HYBRID APPROACH OF VISION-BASED TRACKING AND 

RADIO-BASED IDENTIFICATION AND LOCALIZATION FOR 3D 

TRACKING OF MULTIPLE CONSTRUCTION WORKERS 

In this chapter, a hybrid framework that fuses results obtained from vision-based tracking and 

radio-based identification and localization is proposed for 3D tracking of multiple construction 

workers. The proposed method treats vision-based tracking as the main source to extract the object 

trajectory. Radio-based identification and localization results are used as a supplementary source 

to augment anonymous visual tracks with identity information and correct errors (e.g., false 

positives) in vision-based object detection, resulting in ID-linked 3D trajectories. In addition, a 

searching algorithm is introduced to recover possible missed detections in one camera view from 

the corresponding observations in the other view by applying a sliding window to search for 

regions with the most similar appearance along the epipolar line. Two indoor experiments were 

conducted to validate the newly created method, where a stereo vision system and a radio-based 

(i.e., BLE beacon) system were used to obtain 3D trajectories of workers in the 3D world 

coordinate system. The results show that the new approach for fusing vision- and radio-based 

results increases the overall accuracy from 88% and 87% to 95% and 90%, compared to using the 

vision-based approach alone. The integration of radio-based identification is much more robust 

than using the vision system alone as it allows the recovery of the same entity ID after the trajectory 

is fragmented and results in fewer fragmentations that last longer than 0.2s. 

This work was previously published by ASCE Journal of Computing in Civil Engineering, 

2020, Jiannan Cai and Hubo Cai, “Robust Hybrid Approach of Vision-Based Tracking and Radio-

Based Identification and Localization for 3D Tracking of Multiple Construction Workers” (J. Cai 

& Cai, 2020). This is the pre-production version, with permission from American Society of Civil 

Engineers (ASCE).” This material may be found at [DOI = 10.1061/(ASCE)CP.1943-

5487.0000901]. Table titles and figure captions have been modified to maintain the form of the 

dissertation. 
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2.1 Introduction 

Information regarding construction entity identity and real-time location reveals where 

specific construction resources are at any given time and thus, is a critical prerequisite to the 

context-aware jobsite safety management. It enables the identification of unauthorized personnel 

in restricted hazardous zones (Q. Fang et al., 2018a) and the communication of personalized and 

dynamic information (D. Liu et al., 2018, 2016; Papaioannou et al., 2017), e.g., informing workers 

of the type and location of hazards around them as they move on the jobsite. Reliable and 

continuous location information facilitates the analysis of spatial-temporal relationships among 

entities, the generation of dynamic workspaces (X. Luo et al., 2019), and the identification of 

abnormities such as the proximity to potential hazard (Jeelani et al., 2019) and collisions between 

workers and heavy equipment (Liang et al., 2019). It is also an important component of positional 

cues that can be used to exploit the interaction patterns among entities and recognize the 

corresponding activities on the jobsite. Therefore, there is a critical need to achieve continuous 

and robust tracking of construction entities with reliable identity information. 

Existing studies on automatically tracking real-time locations of workers and equipment on 

the construction site fall into two major categories: sensor-based approach and vision-based 

approach. In the sensor-based approach, the global positioning system (GPS) is widely used for 

outdoor tracking and is currently embedded in most construction equipment. However, GPS is not 

reliable in the indoor environment or in crowded urban areas (Chen et al., 2018; Su et al., 2014). 

Radio-based technologies, such as UWB and RFID, are suitable for both indoor and outdoor 

tracking (Li et al., 2016) and they provide reliable identity information. However, radio-based 

technologies require attaching tags on objects and are complicated for deployment. Besides, their 

localization accuracy in complex and dynamic spaces is low due to the multipath error. Recently, 

Bluetooth low energy (BLE) technology has emerged as an alternative radio-based localization 

method because of its low energy consumption and low cost—inexpensive beacons are attached 

at fixed locations and smartphones carried by workers are leveraged as signal receivers (J. W. Park 

et al., 2017). Nevertheless, it still suffers from relatively large localization errors. 

With the advancement in computer vision and the availability of construction surveillance 

videos, vision-based tracking has gained increasing attention in safety and productivity 

management tasks. Earlier studies (M. W. Park & Brilakis, 2016; Zhu et al., 2016b, 2017) focused 

on extracting two dimensional (2D) pixel coordinates of construction entities by integrating object 
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detection models and tracking algorithms. A recent focus is on acquiring object trajectories in three 

dimensional (3D) world coordinates. Konstantinou and Brilakis (2018) and Lee and Park (2019) 

matched entities across multiple camera views to obtain 3D coordinate, while Yong et al. (2019) 

created a tracking method using online learning from an RGB-D camera. Vision-based tracking 

can achieve high localization accuracy, but it heavily depends on the performance of object 

detection which is significantly affected by environmental conditions such as occlusion and 

illumination. Furthermore, most vision-based tracking is anonymous and, therefore, subject to 

identity (ID) switch and fragmentation errors when multiple workers are in close proximity or 

occluded. As a result, long-term and robust vision-based tracking of multiple workers remains a 

challenge. 

To overcome the above challenges and achieve more robust 3D tracking of multiple 

construction workers, this study proposes a hybrid framework that integrates vision-based tracking 

and radio-based identification and localization. Instead of directly fusing locations extracted from 

these two approaches, the newly created method treats vision-based tracking as the main source to 

obtain the object trajectory. In addition to 3D location, stereo vision provides complementary 

views to recover possible missed detections due to occlusions in individual views. Radio-based 

identification and localization is used as a supplementary source to provide reliable identity 

information to exclude false detections when the vision-based approach fails to correctly detect 

objects. 

2.2 Review of Related Studies 

Related studies in vision-based, radio-based, and multisource fusion-based tracking have 

been reviewed and are summarized as follows. 

2.2.1 Vision-based tracking 

A few methods have been developed to track construction workers and equipment through 

vision-based approaches due to its ease of deployment, low cost, and non-intrusiveness. Vision-

based tracking can be grouped into two categories: 2D tracking that obtains object trajectory in 

terms of 2D coordinates on an image plane and 3D tracking that extracts object trajectory in the 

3D world coordinate system. 
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In 2D tracking, a monocular camera is used, and the target objects are represented by 2D 

pixel coordinates in the image plane. Yang et al. (2010) proposed a tracking scheme based on 

machine learning which used a pre-trained appearance model to detect construction workers and a 

parameterized appearance feature function to uniquely estimate each worker such that multiple 

workers are tracked at the same time. Zhu et al. (2016b) presented a method to track mobile entities 

on a construction site using particle filters. However, it only tracks one object and requires manual 

initialization. Park and Brilakis (2016) and Zhu et al. (2017) developed hybrid methods that 

integrated detection and tracking processes to maintain both high recall and precision in tracking 

multiple workers and equipment. More recently, Roberts and Golparvar-Fard (2019) proposed a 

deep learning-based method for object detection and tracking based on Convolutional Neural 

Networks (CNNs). A common drawback for 2D vision-based tracking is that the output is limited 

to the 2D pixel coordinate system and the depth information is lost. However, in construction 

safety management, 3D location in the world coordinate system is needed to effectively avoid 

collisions. 

3D vision-based tracking approaches use two or more cameras to reconstruct the 3D 

trajectories. Earlier works (Brilakis et al., 2011; M.-W. Park et al., 2011; Yuan et al., 2016; Zhu et 

al., 2016a) first obtained object locations on individual camera views and then recovered the 3D 

location through triangulation using the calibration information of the stereo vision system. One 

limitation of these studies is that the same entity across two camera views is matched based on 

epipolar geometry alone, leading to errors when multiple objects are along the same epipolar line. 

To overcome this limitation, recent studies (Konstantinou & Brilakis, 2018; Y. J. Lee & Park, 

2019; B. Zhang et al., 2018) have developed more sophisticated models that leverage multiple cues 

such as epipolar geometry, appearance model, moving direction, motion patterns, and SIFT point 

features, to match entities across camera views for 3D tracking of construction resources. However, 

these approaches rely on reliable 2D vision-based tracking that eventually depends on the 

performance of object detection on individual camera views. Once the vision-based detection fails, 

there is no supplementary information to reconstruct the accurate 3D trajectories. 

Recently, monocular cameras have been used to recover 3D location information. For 

instance, the simultaneous localization and mapping (SLAM) technique has been used to localize 

mobile targets while mapping the environment in real-time (Asadi et al., 2019; Jeelani et al., 2019). 

However, it typically requires mounting cameras on each mobile target with initial location and is 
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subject to drift errors. In addition, Son et al., (2019b) developed a 2D vision-based system to 

estimate the 3D distance between the heavy machine and construction worker based on perspective 

transformation. Yan et al., (2019) created a novel method to estimate the 3D distance between 

workers based on view-invariant relative 3D joint point (R3DJP) and joint angle features (H. 

Zhang et al., 2018) and trained classifiers using a single 2D camera. However, these studies are 

mainly focused on proximity analysis instead of continuous tracking of multiple workers. 

2.2.2 Radio-based tracking 

Radio-based technologies such as RFID and BLE represent another type of sensors for 

tracking construction resources. The tracking of construction resources is mainly based on the 

radio signals transmitting between tags and receivers. Cai et al. (2014) proposed a novel algorithm 

that combines the boundary condition method and trilateration concept to estimate 3D locations of 

construction resources using RFID and achieved an average accuracy of 2.48m. Su et al. (2014) 

proposed an enhanced boundary condition algorithm that incorporates the RFID tag-reader angle 

and the reader geometric configuration and increased the accuracy to 1.54m. Costin and Teizer 

(2015) leveraged the contextual information in BIM to increase the accuracy of indoor location 

obtained based on multilateralization techniques using passive RFID and achieved an accuracy of 

1.66m. Park et al. (2016) tracked worker location using a set of static BLE beacons distributed in 

known locations. Topak et al. (2018) assessed the feasibility of using BLE technology for indoor 

localization and achieved an accuracy of 70% at a precision of 1.8m using a fingerprinting method. 

Zhao et al. (2019) applied BLE technology for real-time tracking of workers and evaluated the 

accuracy influence from the deployment of BLE beacons, but their approach can only estimate 

worker presence within a rough area without exact 3D locations. 

The main drawback of the radio-based approach is the relatively low localization accuracy 

(over 1m for RFID and BLE technology) compared with the vision-based approach (submeter 

level), which hinders the adoption of radio systems alone for applications that require high 

localization accuracy such as site safety management. However, as radio-based technologies are 

combined with tags or mobile devices on the targets, they provide perfect identity information 

through unique IDs which is critical for context-aware site safety management. 
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2.2.3 Multisource fusion-based tracking 

It is well recognized that a data fusion approach that integrates heterogeneous data obtained 

from different sensors can improve the accuracy and confidence of tracking results. Table 2.1 lists 

related studies on object tracking using the multisource fusion approach, with fusion method and 

limitation discussed for each study. In general, most studies that include vision-based tracking are 

in 2D and cannot provide reliable 3D location information, and for those tracking in 3D, the radio-

based approach is mainly used for localization, resulting in relatively large errors. Moreover, most 

existing studies treat different data sources equally and directly rely on noisy radio measurements 

(received signal strength or estimated location) for matching without effective methods to 

compensate for the possible errors in the radio-based approach in order to improve robustness. 

Table 2.1 Related studies on object tracking via multisource fusion approach 

Study 
Application 

Domain 
Sensor Fusion Method Limitation 

Mohebbi et 

al. (2017) 

3D indoor 

multi-object 

tracking 

(MOT) 

(general) 

Passive infrared 

motion sensors 

+ radio sensors 

(i.e., BLE 

beacons) 

Each type of sensor data is 

processed separately and 

generates sensor-specific 

confidence maps, which 

are then merged into a 

single set of maps for 

location estimation for 

each target 

The average localization 

accuracy is only 1.8 m due to 

directly leveraging locations 

estimated from two sensors 

with relatively low accuracy. 

Jung et al. 

(2010) 

2D indoor 

MOT 

(general) 

Single 2D 

camera + 

accelerometer 

sensors 

Matches anonymous visual 

tracks with entity ID 

obtained from wearable 

sensors by comparing 

velocity from the vision-

based approach and 

accelerometers from the 

sensor via a correlation 

metric 

The method may fail when 

objects have similar velocities, 

which are very common on 

construction sites. It cannot 

provide 3D location 

information. 

Mandelic et 

al., (2013) 

2D indoor 

MOT 

(general) 

Multiple 2D 

cameras + radio 

sensors (i.e., 

UWB) 

Matches anonymous visual 

tracks with radio-based 

identifications by 

minimizing the overall 

distance 

Only distance is considered in 

the matching procedure, subject 

to errors and fluctuations since 

radio-based localization is time-

step independent and does not 

consider movement continuity 

across time steps. The vision-

based localization is based on 

occupancy map, which only 

considers ground plane and 

cannot estimate 3D location. 
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Table 2.1 continued 

Yu and 

Ganz (2010) 

2D outdoor 

MOT 

(general) 

Single 2D 

camera + radio 

sensors (i.e., 

RFID) 

Matches generated visual 

tracklets with radio 

measurement by 

calculating the likelihood 

of received signal strength 

given the distance between 

tracklet and RFID readers 

The fusion of vision and radio 

is based on generated tracklets 

from a window of observations 

rather than a frame-by-frame 

manner.  

Papaioannou 

et al., (2015) 

2D indoor 

MOT 

(domain) 

single camera + 

radio sensors 

(i.e., Wi-Fi) 

Matches generated visual 

tracklets with footprint of 

received radio signals to 

augment anonymous tracks 

with ID 

Chen et al. 

(2018) 

3D indoor 

localization 

(construction) 

Inertial 

measurement 

unit (IMU) and 

radio sensors 

(i.e., BLE 

beacons) 

Combines indoor 

localization results 

obtained from BLE 

beacons and IMU using 

the Kalman filter as the 

fusion core 

The main focus is to improve 

the localization accuracy of a 

single entity and not applicable 

to MOT 

Papaioannou 

et al., (2017) 

2D outdoor 

MOT 

(construction) 

Single 2D 

camera + radio 

sensors (i.e., 

Wi-Fi and BLE 

beacons) + 

IMU 

Mathes visual tracks with 

radio-based identification 

based on received signal 

strength (i.e., for specific 

visual detection, its 

received radio signal 

should match the predicted 

radio measurements at the 

same location), and uses 

IMU to update the state of 

visual tracks. 

Once a visual track is assigned 

to an entity ID, it can only be 

updated with the measurement 

of the same ID, which is 

sensitive to errors from radio 

measurements, i.e., if the track 

is assigned to an incorrect ID, it 

cannot be corrected. It cannot 

provide reliable 3D location 

using a single camera approach. 

 

In fact, vision-based and radio-based technologies both have advantages and limitations and 

should be strategically integrated into mutual complementation to further improve the accuracy 

and reliability of tracking for both indoor and outdoor applications. Vision-based localization is 

accurate, but the tracking performance significantly decreases when failing in detecting the target. 

On the other hand, radio-based technology is less accurate but reliable in object detection and 

identification. This study aims to solve the above limitations by integrating radio-based 

identification with vision-based localization such that reliable identification provides 

supplementary information when the vision-based approach fails to correctly detect the targets 

without decreasing the localization accuracy. 

2.3 Problem Formulation 

In this study, we track multiple workers using a stereo camera system and radio-based system. 

Two stationary cameras are located in the environment with an overlapping field of view (FOV). 
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Each worker carries a mobile device (i.e., smartphone) to receive radio signals transmitted by a set 

of BLE beacons attached to fixed locations, as illustrated in Figure 2.1. 

 

 

Figure 2.1 Vision-radio system set up 

At each time step t, the system receives a collection of camera observations, denoted as 

( ) 1( ) 2( ) ( ){ , ,..., ,...}k k k i k

t t t tO o o o= , where ( )i k

to  represents the bounding box of the i-th detected object 

in the k-th camera view (k = 1,2). Note that as the object detection is not perfect, it is possible that 

not all observations are real workers (referred to as false positive). Similarly, there may be some 

workers not detected (referred to as false negatives). 

Meanwhile, mobile devices receive signals from BLE beacons, the measurement of which 

is denoted as 1 2{ , ,..., ,...}j

t t t tR r r r= , where (1) (2) ( )( , ,..., )j j j j M

t t t tr RSSI RSSI RSSI=  represents the 

received signal strength of the j-th device (i.e., j-th worker) from each beacon, and M is the number 

of beacons. Given tR , the 3D world coordinates of workers can be estimated using radio-based 

localization algorithms, resulting in 1 2{ , ,..., ,...}radio j

t t t tL l l l= , where ( ) ( ) ( )( , , , )j j radio j radio j radio

t t t tl x y z j=

is the ID-linked coordinates in 3D world space for the j-th worker. For the radio system, although 

the localization accuracy is typically lower than the vision-based system, the ID linked with each 

measurement is very reliable, which is the motivation of this study in fusing vision-based 

localization and radio-based identification to track multiple workers. 
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As a result, the problem is as follows: given time-series anonymous camera detections in 

both camera views ( )

1:

k

tO  (k=1, 2) and ID-linked locations from the radio-based system 
1:

radio

tL  (the 

subscript, 1:t, indicates the time-series coordinates from time step 1 to t), estimate the trajectories 

(
1:tL ) of all workers in the 3D world coordinate system. 

2.4 Methodology 

Figure 2.2 illustrates the overall framework for 3D tracking of multiple construction workers. 

The main processes with novel contributions are highlighted with the gray background color. The 

proposed framework consists of two modules—2D tracking by detection and identification and 

3D tracking by entity matching and identification. The first module outputs ID-linked 2D tracks 

on each camera view by matching 2D vision-based tracking with radio-based localization 

(projected onto the image plane), where a 2D track stores the time-series pixel coordinates for the 

same object. The second module takes the output of the 2D tracking module and outputs the ID-

linked 3D tracks by matching vision-based location obtained from entity matching and 

triangulation with radio-based localization, where a 3D track stores the time-series world 

coordinates for the same object. The 2D pixel coordinates of workers detected frame-by-frame 

from both camera views, and the 3D world coordinates with entity IDs obtained using radio-based 

localization serve as inputs. The stereo camera system is calibrated at the beginning. Note that 2D 

vision-based object detection, radio-based localization, and camera calibration are outside the 

scope of this study, and are performed using existing methods, which will be briefly introduced in 

this section for clarity. 

 

 

Figure 2.2 Hybrid framework for 3D tracking of multiple workers 
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2.4.1 System inputs 

In this study, the tracking process is initialized and updated through frame-by-frame worker 

detection. The 2D pixel coordinates of detected workers, the 3D world coordinates for each worker 

obtained from radio-based localization, and the calibrated stereo camera system parameters are 

independent of the proposed tracking framework, and thus, are treated as system inputs. 

2D vision-based worker detection 

The 2D vision-based worker detection takes a 2D image as input and outputs a set of 

bounding boxes of workers, the central coordinates of which represent the 2D pixel coordinates of 

workers. This study applied a state-of-the-art object detection framework—faster R-CNN (Ren et 

al., 2017), and used a pre-trained ResNet-50 network (He et al., 2016) on a COCO dataset for 

human detection. Note that the proposed tracking framework is still valid for other object detection 

methods (e.g., Memarzadeh et al., 2013; M. W. Park & Brilakis, 2012). 

Radio-based localization 

This study uses BLE beacons for radio-based localization. The working principle is that a 

set of BLE beacons are attached to fixed locations with known coordinates, transmitting radio 

signals, and smartphones are carried on moving workers, receiving signals from these beacons. 

The location of the moving worker (i.e., the smartphone) is estimated using known locations of 

beacons and the distances between the smartphone and different beacons estimated based on the 

received signal strength indication (RSSI). 

Distance estimation 

In general, the received strength of a radio signal attenuates as the distance between 

transmitter (i.e., BLE beacons) and receiver (i.e., smartphones) increases. Their relationship is 

typically modeled using a log-distance path loss model (Zhuang et al., 2016), formulated in 

Equation 2.1 

0 10

0

( ) ( ) 10 log ( )
d

RSSI d RSSI d X
d

= − +        (2.1) 
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where RSSI(d) represents the RSSI at the distance d between transmitter and receiver; 0( )RSSI d  

represents the RSSI at the reference distance 0d , where 
0 1md =  is commonly used; γ is the path-

loss index; and X  is Gaussian random noise with zero mean. In Equation 2.1, RSSI(d) is the 

observation, while 0( )RSSI d  and γ are system parameters that may vary with environmental 

conditions and the type and configuration of transmitters and receivers, and can be calibrated using 

a series of known distances and RSSIs. As a result, the distance d can be derived from Equation 

2.1. 

Location estimation 

This study adopted a weighted path loss algorithm developed by Zou et al. (2014) to estimate 

the target location given its distance between different beacons. The target coordinates are 

calculated as the weighted average of known coordinates of beacons, with the weight of each 

beacon inversely proportional to the estimated distance between the target and the beacon, 

formulated in Equation 2.2 and 2.3 

1

1 1
/

N

i i
i i

w
d d=

 
=  

 
           (2.2) 

( )target target 1
, ( , )

N

i i ii
x y w x y

=
=         (2.3) 

where id  is the distance between the target and the i-th beacon obtained through Equation 2.1, 

( , )i ix y are known coordinates of the i-th beacon, and ( )target target,x y  are estimated coordinates of 

the target. As the radio-based localization is independent of the proposed tracking framework, 

other localization algorithms (e.g., Thaljaoui et al., 2015; Zhuang et al., 2016) can also be used. 

It is noted that this study only considers x and y coordinates when matching location obtained 

from radio-based and vision-based approaches and assumes all workers are on the same ground 

level since the absolute z-value in radio-based localization is less accurate than x and y values and 

incorporating it will decrease the accuracy of the matching process. This simplification is 

reasonable because (1) on construction sites, we usually track entities on the same vertical level to 

identify potential collisions; (2) in most radio-based localization studies (e.g., Costin & Teizer, 

2015; Topak et al., 2018; Zhuang et al., 2016), only x and y coordinates are estimated, and z is 

described by the corresponding floor/ground level; (3) for applications that involve multiple floor 
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levels, the floor level where the target is located can be estimated via the gateways installed on 

each floor level (Jianyu Zhao et al., 2019). 

Stereo camera calibration 

A stereo camera system is adopted to fuse with the radio-based system and determine the 

3D location of the object, which needs to be carefully calibrated so that the image coordinate 

system can be correlated to the world coordinate system. Two cameras are first calibrated 

separately, which outputs three matrices (and vectors): (1) intrinsic matrix (K) that defines the 

camera coordinate system, (2) rotation matrix (R), and (3) translation vector (T) that define the 

position and orientation of the camera with respect to the world coordinate systems, as illustrated 

in Figure 2.3(a). 

 

 

Figure 2.3 Camera calibration: (a) single camera calibration, (b) epipolar geometry of stereo 

camera 

The calibration is based on the pinhole camera model (Z. Zhang, 2000), represented as 

     1    1
R

w x y X Y Z K
T

 
=  

 
, where    1x y  is the homogeneous image point,     1X Y Z  is the 

homogeneous 3D object point, w is a scale factor, K is the intrinsic matrix, and 
R

T

 
 
 

 is the extrinsic 

rotation and translation with respect to a 3D coordinate system. In this study, the Matlab computer 

vision toolbox (MathWorks, 2019) is first used to solve for K, R, and T. Note that in this process, 

R and T refer to a local 3D coordinate system defined by a chessboard that is used in camera 

calibration, different from the world coordinate system. To estimate the camera pose (R and T) 
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with respect to the world coordinate system, the same model described above is used except that 

    1X Y Z , R, and T are all in the world coordinate system and K is known matrix. The model is 

solved using the perspective-three-point algorithm described by Gao et al. (2003). After calibration 

of individual cameras, the image (or pixel) coordinates of an object point with known world 

coordinates can be acquired, which are used to match 2D vision-based location and 3D radio-based 

location on the 2D image plane. 

The stereo camera is calibrated to establish the epipolar geometry, which outputs a 

fundamental matrix F that correlates corresponding points in stereo images by satisfying 

' 0TX FX = , where X  is the homogenous image coordinates for points in one image, and 'X  is 

the homogenous image coordinates for corresponding points in the other image, as shown in Figure 

2.3(b). Given 2D image coordinates in both camera views for the same object point, its 3D world 

coordinates can be recovered through triangulation. 

To obtain the extrinsic parameters (R and T) of a camera, theoretically, a minimum of three 

non-collinear ground control points (GCPs) with known world coordinates are needed. To compute 

the fundamental matrix in stereo camera calibration, typically eight corresponding points across 

camera views are used based on the normalized eight-point algorithm (Hartley & Zisserman, 2003). 

Increasing the number of GCPs will improve the calibration accuracy due to the increased 

redundancy. For instance, Lee and Park (2019) used 30 GCPs for a 30 × 35m construction site. 

2.4.2 Module 1 – 2D tracking by detection and identification 

In Module 1, 2D visual tracks for individual camera views are first obtained by associating 

vision-based detections across frames, resulting in anonymous visual tracks. Then, the visual 

tracks are matched with radio-based locations projected onto the 2D image plane, resulting in ID-

linked 2D visual tracks for each camera view. 

2D vision-based tracking by detection 

In this study, the 2D tracks in each camera view are initialized with detection results, i.e., 

( ) ( )

1 1

k kTr O= . Besides, each track is associated with a Kalman filter using the constant velocity 

model to predict its possible location in the next time step. At each time step t (t>1), the potential 

locations of the objects are predicted from the tracks at the previous step as well as detected by the 
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object detector at the current time. Theoretically, the predicted location and detected location for 

the same target should be very close considering the continuity of movement. 

The current track for each entity can be updated by associating detections with predicted 

tracks, which is formulated as a linear assignment problem, illustrated as follows, 

1,2,...,
1,2,...,

1,2,...,

1,2,...,

min  

subject to 1 for 1,2,..., ,

                1 for 1,2,..., ,

                   0,1 for 1,2,..., ; 1,2,...,

ij ij

i I
j J

ij

j J

ij

i I

ij

c m

m i I

m j J

m i I j J

=
=

=

=

= =

= =

= = =







 

where 
ijm  refers to the assignment between track i and detection j. If 1ijm = , detection j is assigned 

to track i; if 0ijm = , detection j is not assigned to track i. 
ijc  refers to the cost of assigning detection 

j to track i. 

The objective is to find the optimal assignment between tracks and detections with the 

minimum total cost, subject to the constraints that each track can only be assigned with at most 

one detection and each detection can only be assigned to at most one track. In this study, given a 

pair of predicted track and detection, i.e., 
( ) ( )

( )( , )i k j k

t predict ttr o , their assignment cost is the combination 

of their distance on the image plane and the dissimilarity of their appearance model (color 

histogram of the target bounding box in this study), denoted as 

( ) ( )( ) ( ) ( ) ( )

( ) ( ), ,i k j k i k j k

ij t predict t color color t predict tc dis tr o w dis tr o= + . Mahalanobis distance (Mahalanobis, 1936) 

is used to calculate the distance between the detected location and predicted location which 

incorporates the uncertainty of the Kalman filter. The Bhattacharyya distance (Battacharyya, 1943) 

is used to compute the dissimilarity of two histograms. colorw  indicates the weight of two distances 

and is set experimentally ( 1.4colorw =  in this study). The assignment problem is solved using the 

Munkres algorithm (Munkres, 1957). 

After the above detection-to-track assignment, the locations of 2D tracks are updated by 

assigned detected locations with its associated Kalman filter updated by the new observations. For 

unassigned detections, new tracks are created at the detected locations. For unassigned tracks, a 

conventional approach is to reserve the tracks for a certain number of frames by updating the 
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location using the Kalman filter with its status changed to “invisible”. After a track is invisible for 

a long period, it is terminated. This approach works well for linear movement but is not reliable 

when objects make sudden changes in direction if the termination threshold is relatively large. In 

this study, the unassigned tracks are updated with the predicted location for only a small number 

of frames (e.g., 3 in this study), then the location remains unchanged. The rationale is that in the 

proposed method, 2D tracks are linked with device IDs (the linking procedure will be discussed in 

the next section), increasing the confidence that the tracks refer to real targets present in the scene 

instead of being false positives. Therefore, it is reasonable to maintain their locations for a 

relatively long time (20 frames in this study) until their detections are recovered. Alternatively, if 

the radio-based system is accurate in localization, the locations of these tracks can also be updated 

using the radio-based localization result alone (Mandeljc et al., 2013). 

Match radio-based identifications to 2D tracks on image plane 

As vision-based 2D tracks are mainly updated by the frame-by-frame detections, possible 

false positives may cause the incorrect link between the tracks and detections, which will propagate 

over time and eventually cause the tracking to fail. Such errors can be corrected by introducing 

ID-linked radio localization results. The rationale is that although the radio-based localization 

accuracy of the individual target might be relatively low, the overall spatial configuration of 

multiple targets should be similar to that obtained in visual-based detection since they are localized 

in the same environment at the same time (Mandeljc et al., 2013). Therefore, it is reasonable to 

assign unique IDs to 2D tracks based on the overall spatial configuration—the optimal 

combination of radio-based and vision-based locations are determined by minimizing the total 

distance (or cost) instead of minimizing that for a specific pair, which is formulated as a linear 

assignment problem. In the matching process, each radio-based location can only be matched to at 

most one vision-based location, and vice versa, as illustrated in Figure 2.4. As a result, for the 

cases where the vision-based approach incorrectly detects workers (i.e., false positives) or fails to 

detect workers (i.e., false negatives), the matching process results in unassigned visual location 

(Figure 2.4(b)) or unassigned radio location (Figure 2.4(c)). The optimal assignment is determined 

via Munkres algorithm (Munkres, 1957). 
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Figure 2.4 Matching between radio-based and vision-based locations: (a) one-to-one 

correspondence, (b) false positive of visual approach, (c) false negative of visual approach. 

In this study, the assignment cost between radio-based identification and 2D tracks is 

computed as ( )( ) ( ),i k j k id pred

ij t t id t pred tc dis tr l w Penalty w Penalty= + + , consisting of three components: 

(1) ( )( ) ( ),i k j k

t tdis tr l  is the pixel distances between tracks and radio-based localization results. The 

radio-based localization results are projected onto the 2D image plane using the calibrated camera 

parameters. And the mid-bottom point of the bounding box is used to calculate the distance as it 

is assumed to be on the same ground plane with radio-based locations. (2) id

id tw Penalty  is the 

penalty on assigning a different ID from the previous ID to the 2D tracks. At time step t, if the 

assigned ID is different from that assigned in time t-1, 1id

tPenalty = , otherwise, 0id

tPenalty = . 

The magnitude of the penalty is reflected by the weight idw  that is determined experimentally 

( 1idw =  in this study). Inherently, the track tends to maintain the same ID given the continuity of 

the movement. As the radio-based localization may fluctuate due to the dynamic environment, it 

is not reliable to use the distance alone to determine the assignment. Therefore, this penalty is 

introduced to ensure stable and continuous tracks and mitigate the negative impact of the 

inaccurate radio-based localization. (3) 
pred

pred tw Penalty  is the penalty for assigning an ID to 

invisible tracks. At time step t, if the ID is assigned to an invisible track, 1pred

tPenalty = , otherwise, 

0pred

tPenalty = . And the magnitude is reflected by the weight, predw , which is determined 

experimentally ( 1predw =  in this study). As discussed in the previous section, if a track is not 

associated with detection results, it will be reserved for a period of time with status changed to 

invisible. A track that has corresponding detections is more reliable to be the real track compared 

to the invisible one. Therefore, when assigning IDs, a penalty is introduced to the invisible tracks. 
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After the assignment, the track IDs are updated with the assigned device (i.e., entity) IDs. 

The ID for an unassigned track is denoted as “0”. A 2D track is terminated when its ID equals 0, 

indicating that it does not refer to a real target. In addition, a track is also terminated if it is 

continuously invisible for too long (20 frames in this study), even if it is assigned with a device 

ID. In this way, the false positives in 2D visual tracking can be effectively reduced. For the 

unassigned radio-based location, it will be kept and addressed in Module 2. The rationale is that 

since the localization accuracy of the radio-based approach is not high, projecting the 3D location 

onto the 2D image plane will increase the error. Therefore, it is not reliable to correct the false 

negative in 2D visual tracking (i.e., unassigned radio-based location) directly using the projected 

radio-based location. Instead, the false negatives will be addressed in Module 2 by (1) recovering 

the false negative using the supplementary camera view, and (2) creating new tracks for the 

unassigned 3D location after matching vision and radio results in 3D. 

2.4.3 Module 2 – 3D tracking by entity matching and identification 

Module 1 outputs 2D visual tracks associated with entity IDs for both camera views, serving 

as the inputs of Module 2. In Module 2, 2D visual tracks in two camera views that correspond to 

the same entity are first matched in order to extract 3D vision-based location. Then, the vision-

based location is matched with radio-based identification in the 3D world coordinate system, 

resulting in ID-linked 3D location. It is noted that the entity IDs obtained in Module 1 are not 

directly used for entity matching due to the possible error when projecting 3D radio-based location 

onto the 2D image plane. The main purpose of “Match radio-based identification to 2D tracks” in 

Module 1 is to exclude the false positives in visual tracking and provide more reliable inputs for 

Module 2. As a result, the final 3D location and corresponding ID are determined in Module 2. 

Entity matching across camera views 

To obtain the 3D locations of moving workers, the 2D tracks that correspond to the same 

person need to be matched across camera views. Previous studies (Konstantinou & Brilakis, 2018; 

Y. J. Lee & Park, 2019) have created methods for entity matching based on multiple cues, such as 

epipolar geometry, movement patterns, and appearance models of two entities. Despite the 

achievement, they match the individual entity using the best candidate according to the criteria 
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rather than achieving a globally optimal solution. Moreover, the previous methods focus on 

matching entities that have already been detected without explicitly dealing with the case when 

the entity is occluded and undetected in one view but successfully detected in the other view. 

To overcome these limitations, this study finds the global optimal solution for the entity 

matching through linear assignment, where the assignment cost is the combination of distance 

between the bounding box center and the epipolar line and the dissimilarity between the color 

histograms of two bounding boxes. Moreover, this study proposes a searching procedure to recover 

the missed detection in one view based on the detection in the other view, illustrated in Figure 2.5. 

In Figure 2.5, green bounding boxes refer to the matched entities in two camera views, and the red 

bounding box refers to the entity that is detected in one view but missed in the other view. For the 

unmatched entities (i.e., the red rectangle Figure 2.5(a)), a sliding window is applied along its 

corresponding epipolar line on the other camera view to find the area which has the most similar 

appearance to the target entity. The size of the sliding window is set to be equal to the bounding 

box of the target entity. By doing this, the possible error caused by the false negative in one camera 

view can be corrected. Then the 3D world coordinates of all matched entities are estimated via 

triangulation. 

 

 

Figure 2.5 Search for missed detections across camera views: (a) left camera view, (b) right 

camera view. 

Match radio-based identifications to 3D tracks 

In each time step t, the obtained 3D vision-based locations are matched with radio-based 

locations by minimizing the total distance, resulting in 3D locations augmented with device IDs. 

Due to the uniqueness of the device ID, it is used to update the 3D tracks, i.e., the location of the 
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3D track is updated using the location with the same ID. For ID-linked 3D locations that do not 

have a corresponding 3D track, a new one will be created at current locations. For tracks that do 

not have corresponding ID-linked locations, they are reserved for a period of time before being 

terminated. The resulting time-sequential ID-linked 3D tracks are the output of the system. Each 

3D track is associated with two 2D tracks that are assigned with the same ID and are further used 

to determine the penalty on assigning different IDs at the next time step. In this way, the proposed 

method works as a recursive system that at each time step, the tracks are updated not only based 

on the current vision-based detections and radio-based identifications but also considering the 

assigned ID transferred from the previous time step to avoid ID switches or losses due to the 

inaccurate detection and to ensure the robustness of the tracking process. 

2.5 Implementation and Results 

The proposed tracking framework is implemented in two indoor experiments. The tracking 

performance is compared to those obtained using other three tracking methods to demonstrate the 

advantages of the proposed method. The experiments and evaluation metrics are described, and 

the results are analyzed in this section. 

2.5.1 Experimental setting 

To evaluate the performance of the proposed framework, experiments were conducted in a 

laboratory that contains metal structures and equipment with three workers moving around 

simultaneously. Figure 2.6 illustrates the layout of the laboratory, where two cameras and six BLE 

beacons are installed about 2m above the ground. This setting presents a challenging environment 

as the metal materials will interfere with the radio signals and the confined space will cause 

occlusions as workers move around. Two cameras record videos at 24fps with a resolution of 1920 

x 1080. Six BLE beacons transmit signals at 10Hz. Before the experiments, all mobile devices (i.e., 

smartphones) are automatically synchronized with network time, and the cameras are manually 

synchronized, which ensures all devices are synchronized before collecting data. The evaluation 

of the proposed framework was conducted in an offline manner, with videos and received radio 

signals preprocessed and manually synchronized using timesteps generated during data collection, 
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similar to the method in Mandelic et al., (2013). Specifically, radio signals were interpolated to be 

synchronized with videos. 

 

 

Figure 2.6 Testbed layout 

The intrinsic parameters of each camera were calibrated using a 10 x 7 chessboard with 

97mm square size. Twelve ground control points (GCPs) were used to correlate the camera to the 

world coordinate system and obtain the fundamental matrix between two cameras. The coordinates 

of GCPs were manually measured using a laser ranger with respect to a pre-defined 3D world 

coordinate system. The localization accuracy for the stereo vision system is considered as the 

distance between the estimated point location via triangulation and the measured point location, 

the average of which for the 12 GCPs is 0.04m. In practice, the land survey results can also be 

used to generate control points for camera calibration. For the radio system, each mobile device 

was calibrated separately to compute the parameters in Equation 2.1 by measuring the RSSIs with 

varying distances between the mobile device and BLE beacon based on the method described in 

Thaljaoui et al. (2015). The localization accuracy for the radio-based system is considered as the 

discrepancy between the estimated distance (from beacon to device) and the actual distance, which 

for the three mobile devices are 0.67m, 0.80m, 0.92m. The difference in localization accuracy 

further proves the advantage in localization by the stereo vision system. 
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Two experiments were performed. In the first experiment, three workers moved along pre-

defined routes in the middle of the space for about 1.5 min, and this experiment is used to determine 

the optimal parameters (e.g., colorw , IDw ) in the proposed tracking algorithm. The second 

experiment lasts for 4 min, where three workers simulated construction operations with two of 

them compacting the ground in the middle region of the space and the other one transporting 

materials from one corner of the room to its diagonal corner. In this study, the ground truth of the 

trajectories was obtained following the method described in Mandeljc et al. (2013). Specifically, 

the helmet centers of workers were manually annotated frame by frame and their 3D coordinates 

were reconstructed using calibration information, the resulting trajectories are shown in Figure 2.7, 

where the red line represents worker 1, the blue line represents for worker 2, and the green line 

represents worker 3. 

 

 

Figure 2.7 Ground truth trajectories in two experiments: (a) Experiment 1, (b) Experiment 2. 

2.5.2 Evaluation Metrics 

This study performs a systematic evaluation of the proposed framework. The evaluation 

metrics include false positive (FP), false negative (FN), identity switch (IDSW), fragmentation 

(FM), multiple object tracking accuracy (MOTA), and multiple object tracking precision (MOTP). 

These metrics are selected based on the benchmarking of the multi-object tracking problem (Milan 

et al., 2016) as defined in the computer vision community. 
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FP and FN are two common indicators to quantify the performance of the tracker-to-target 

assignment. Given a frame, if the output track does not correspond to an actual target, it is counted 

as an FP; if an actual target is missed by any output track, it is counted as an FN. In the evaluation 

phase, the output tracks are assigned to ground-truth targets by minimizing the global distance 

with a threshold of the maximum distance to be assigned (1 m in this study). The threshold was 

set empirically. A larger threshold will lead to less FNs but more FPs, while a smaller threshold 

will lead to more FNs but less FPs. Readers are referred to Milan et al. (2016) and Mandelic et al. 

(2013) for details. Ideally, a good tracking algorithm should result in as few FPs and FNs as 

possible. 

IDSW and FM are another two important indicators to quantify the quality of the tracker. As 

multiple object tracking is a temporal problem, it is expected that a track corresponds to the same 

target all the time. Hence, an IDSW is counted when a ground truth target i is matched to track j 

at time t but it was not matched to the same track at time t-1. An FM is counted when a ground 

truth trajectory changes its status from tracked to untracked and then resumes to be tracked at a 

later point. Ideally, the number of IDSWs and FMs is expected to be as few as possible. In addition 

to these classic definitions, this study also measures the length of each IDSW and FM, and 

evaluates the number of IDSWs and FMs that last for more than 5 frames (about 0.2s) since such 

scenarios reflect more severe defects of the tracks compared to those lasting for a very short period. 

The numbers of IDSWs and FMs that last for more than 0.2s are used to evaluate the robustness 

of the tracking method. The smaller the number is, the more robust the method is because it 

indicates the capability of the tracking method to recover after experiencing possible errors. For 

FM, we also count the number of FMs that resume the same ID after the tracker is recovered. 

MOTA is the most widely used metric that measures the overall accuracy and is treated as a 

primary index to evaluate the tracking performance in this study. It integrates three error sources, 

i.e., FN, FP, and IDSM, and is computed as ( )1 /t t t tt t
MOTA FN FP IDSW GT= − + +  , where 

t is the frame index and GT is the number of ground truth targets. The MOTA varies from 0 to 1, 

and the score increases as the performance improves. MOTP measures the overall localization 

precision, denoted as 
,,

/t i tt i t
MOTP d c=  , where tc  refers to the number of matches in frame 

t and ,t id  refers to the distance between track i with its assigned ground truth object at frame t. 
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2.5.3 Results 

The proposed tracking framework consists of three parts with major contribution that 

differentiates the newly created method from other tracking methods: (1) the integration of radio-

based identification in 2D tracking, (2) the searching for missed detections across camera views, 

and (3) the integration of radio-based identification in 3D tracking, as highlighted in Figure 2.2. 

This section compares the performance of tracking methods with and without the above processes 

to demonstrate the advantage of the proposed method. 

The performance of four tracking approaches was compared and Table 2.2 lists the detailed 

characteristics of each tracking method. In Table 2.2, Approach 1 is the proposed tracking 

approach and Approach 4 is the conventional 3D tracking method based on entity matching across 

camera views. Approach 2 integrates the radio-based identification both in 2D and 3D, while 

Approach 3 only integrates the radio-based identification in 3D. Figure 2.8 shows the top-down 

view of tracking results for Approach 1 and 4 in both case studies, where solid lines represent the 

ground truth (GT) trajectories and dots represent the tracking results. From Figure 2.8(a), (c), 

despite some outliers, the results obtained from the proposed method align well with the GT, with 

each trajectory distinguished by entity ID. In contrast, although the results obtained from the 

vision-based approach generally align with GT, the tracking results cannot be separated into 

individual people due to the anonymous nature. Actually, once the tracks are lost for a while in 

Approach 4, a new track ID will be assigned after the tracking is recovered, making it difficult to 

track a specific person for the long term. It is noted that the top-down views for Approach 2 and 3 

are similar to those of Approach 1 as all of them integrate vision and radio-based approaches. 

Table 2.2 Tracking scenarios 

Approach 
Integration of 

radio in 2D 

Integration of radio 

in 3D 

Search for missed detections 

across camera views 

1 Yes Yes Yes 

2 Yes Yes No 

3 No Yes No 

4 No No No 
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Figure 2.8 Top-down view of tracking results: (a) Case Study 1-Approach 1, (b) Case Study 1-

Approach 4, (c) Case Study 2-Approach 1, (d) Case Study 2-Approach 4 

Table 2.3 and Table 2.4 list the tracking performance of each approach for two cases, where 

the fusion approach leads to higher MOTA in both cases compared to the vision-based tracking 

approach. The detailed performance of each method is discussed and compared in the following 

sections. 

Table 2.3 Tracking performance for Case 1 (~1.5 min, 2088 frames) 

Approach MOTA FN FP FM 
FM 

(>5) 

FM 

(resumed) 
IDSW 

IDSW

(>5) 

MOTP 

(m) 

1 0.9483 124 124 53 5 50 76 43 0.166 

2 0.9483 139 111 54 6 52 74 41 0.164 

3 0.94 138 138 62 6 56 100 52 0.166 

4 0.8811 151 543 24 8 1 51 41 0.161 

Table 2.4 Tracking performance for Case 2 (~4 min, 5044 frames) 

Approach MOTA FN FP FM 
FM 

(>5) 

FM 

(resumed) 
IDSW 

IDSW 

(>5) 

MOTP 

(m) 

1 0.8953 356 1184 75 21 63 170 78 0.2 

2 0.9141 505 753 75 16 65 145 65 0.194 

3 0.8827 503 1203 100 11 82 210 103 0.209 

4 0.8704 598 1406 75 20 23 112 92 0.188 
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Evaluation of the overall proposed framework 

Conventionally, vision-based 3D trajectories of multiple objects are obtained through 

triangulation of matched entities across camera views. The newly created method is a holistic 

framework that integrates radio-based identification in both 2D and 3D tracking. The comparison 

of the performance (Approach 1 vs. Approach 4) clearly shows the advantage of the proposed 

method. As shown in Table 2.3 and Table 2.4, integrating radio-based identification with vision-

based localization significantly increases the overall tracking accuracy compared to using vision-

based localization alone for both cases, the improvement of which can also be explained by other 

metrics. The proposed method substantially reduces the number of FNs and FPs as the 

incorporation of radio-based detection provides reliable identification information that can 

effectively correct vision-based detections. Figure 2.9 illustrates an example of the correction of 

FPs using the proposed method. When two people are approaching, vision-based tracking 

(Approach 4) results in false positives (highlighted in red boxes) due to failure in correctly 

detecting workers, which are eliminated in the proposed method because the tracks that are not 

matched with radio-based identifications are excluded. The correction of FNs will be discussed in 

the next section. 

 

 

Figure 2.9 Example for the correction of false positives: (a) FP in Approach 4 (left view vs. right 

view), (b) corrected FP in Approach 1 (left view vs. right view). 
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Although the number of FMs in Approach 1 is larger than that in Approach 4 in Case 1, very 

few of them last for longer than 5 frames (0.2s). In other words, most FMs in the proposed method 

are recovered in a very short time period, which can be regarded as slight fluctuations. In such a 

sense, the proposed method is more robust. Furthermore, almost all FMs in Approach 1 are 

resumed with same ID (50 out of 53 and 63 out of 75), compared with Approach 4 (1 out of 24 

and 23 out of 75), presenting a distinct advantage of the proposed method: due to the unique 

identification information provided by the radio system, the trajectory of the same target can be 

recovered even after it is untracked for a while, leading to more stable and robust trackers. 

Although the total number of IDSW is slightly larger in Approach 1, the number of those lasting 

for over 5 frames is compatible in the two approaches in Case 1 and is much fewer for Approach 

1 in Case 2. For MOTP, as the proposed method does not directly leverage the localization result 

of the radio system, the average distance between tracking results and ground truth trajectories is 

almost the same in the two scenarios. 

It is noted the overall accuracy is lower in Case 2 than in Case 1. It is because the second 

case presents a more challenging yet common scenario on construction sites: different groups of 

workers share the workspace and they have to adjust their movements to collaborate with co-

workers as well to avoid conflicts with other entities. As a result, it is more likely to have 

occlusions in the congested area and workers can move in and outside the field of view from time 

to time. Furthermore, the parameters are fine-tuned to optimize the performance of Case 1, which 

may not be the optimal parameters for Case 2. In this way, we further proved that the proposed 

method leads to higher accuracy in different datasets. 

Evaluation of the searching for missed detections 

The comparison between Approach 1 and 2 evaluates the performance of the searching 

procedure for recovering missed detections across camera views. Figure 2.10 illustrates an 

example of recovering a false negative caused by occlusion using the proposed searching 

procedure across the camera view. For Case 1, the metrics in these two approaches are almost the 

same, except for the FPs and FNs. The proposed searching procedure successfully reduces the 

number of FNs despite some more FPs. However, it is argued that a smaller FN is favorable in 

construction application especially for safety management as it is more likely to cause collisions 

when we fail to track some entities on the site. Besides, as the state-of-the-art detection model used 
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in this study is very accurate with over 0.95 precision and recall rates, it detects most of the targets 

in both camera views, resulting in less significant improvement of the proposed searching 

procedure. For Case 2, however, the searching procedure slightly lowers the tracking accuracy. 

The possible reason is that it uses the color histogram as the only cue in matching candidates with 

the target objects, which may lead to mismatches when the target is severely occluded. Future 

study will consider multiple cues to improve the robustness of the searching algorithm. 

 

 

Figure 2.10 Example of recovered false negative: (a) FN in Approach 2 (left view vs. right 

view), (b) recovered FN in Approach 1 (left view vs. right view). 

Evaluation of the integration of radio-based identification in 2D 

In the proposed method, the radio system is integrated both in 2D and 3D tracking, and the 

comparison between Approach 2 and 3 illustrates the necessity in incorporating the radio system 

in 2D. In both cases, the incorporation of radio system in 2D almost improves performance in all 

aspects. It is because the tracking starts with 2D and by correcting FPs caused by vision-based 

detection errors with radio-based identification in individual camera views, the resulting 2D tracks 

are more accurate, which improves the accuracy of the downstream entity matching, leading to 

more accurate 3D tracks. 
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2.6 Contributions 

The contribution of this research is in three aspects. First, this study strategically fuses two 

modes of sensing systems (i.e., vision and radio) by leveraging the advantages in two systems as 

a mutual complement and mitigating the limitations in the individual systems. Specifically, by 

augmenting visual tracks with entity IDs obtained in radio-based identification, the major 

drawbacks in the visual tracking system, fragmentation and ID switch caused by object detection 

error, are effectively corrected. For instance, in Case 1, only 9% of fragmentation in the proposed 

method lasts for more than 0.2s, compared to 33% in vision-based approach; and 56.6% of ID 

switch in the proposed method lasts for more than 0.2s, compared to 80.4% in vision-based 

approach. Meanwhile, as the location is updated primarily using vision-based results, the negative 

impact from the low-accurate radio-based localization is minimized: the resulting localization 

precision is in the sub-meter level, compatible with the vision-based approach, much higher than 

the radio-based approach (meter level). 

Second, the proposed method integrates 2D and 3D tracking into a holistic framework. By 

incorporating radio-based identification in both 2D and 3D tracking processes, anonymous 2D and 

3D visual tracks in each time step are associated via unique IDs, which are further carried to next 

time steps while updated by new observations. In this way, the possible detection and matching 

errors in each time step are mitigated and the continuity of the tracks is ensured. As a result, the 

proposed method increased the overall tracking accuracy by 8% and 3% for two case studies 

compared to the vision-based approach. 

Third, the proposed searching procedure in entity matching across camera views allows for 

the recovery of missed detections in individual views due to occlusion, which reduced false 

negatives by 10.8% and 29.5% for two case studies compared to the method without the searching 

procedure. It can be extended to multiple cameras with even larger redundancy, resulting in more 

accurate and robust 3D tracking. 

2.7 Conclusions and Discussion 

This chapter presents a new hybrid framework that fuses vision-based tracking and radio-

based identification and localization results for accurate and robust 3D tracking of multiple 

construction workers. Vision-based tracking is treated as the main source to extract the trajectory. 
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Radio-based identification and localization results used as a supplementary source, which are first 

matched with anonymous trackers obtained in single-camera views to provide identity information 

and correct false detections, and then associated with 3D locations in the world coordinate system 

obtained from stereo vision, resulting in ID-linked 3D trajectories. In addition, a searching 

algorithm is introduced to recover possible missed detections in one camera view from the 

corresponding observations in the other view by applying a sliding window to search for regions 

with the most similar appearance along the epipolar line. 

The newly created method has been validated using two indoor experiments. The results show 

that the proposed method significantly improves the overall multiple object tracking accuracy. The 

proposed method resulted in a MOTA of 0.95 and 0.9 for two cases, compared to 0.88 and 0.87 

obtained using conventional vision-based 3D tracking. In two cases, the proposed method reduced 

false negatives by 20% and 40%, and false positives by 77% and 15.8% respectively. The result 

suggests a more substantial improvement for Case 1, a relatively simple setting where all workers 

move within the field of view along pre-defined routes. Its efficacy is also validated in Case 2, a 

more challenging setting where workers simulate construction operations in different groups 

interacting with each other in a common workspace while moving in and out of view constantly. 

Moreover, the integration of radio-based identification allows the recovery of the same entity ID 

after the trajectory is fragmented—about 95% and 84% of fragmented trajectories are resumed 

with the same ID. It also ensures the tracking robustness—only 9% and 28% of fragmentations 

last for more than 0.2s.  

The processing time for faster-RCNN-based visual detection is about 0.1s/frame using an 

NVIDIA GeForce GTX1060 6GB GPU. The processing time for the hybrid tracking is about 

0.26s/frame using an Intel Core i7 CPU. Therefore, the processing time for current implementation 

is about 3fps, slightly faster than that (2.1fps) of a stereo vision-based tracking proposed in Lee 

and Park (2019). Although not achieving real-time, the processing time can be further reduced by 

code optimization, using a faster object detection framework (e.g., YOLO and SSD), and using 

more powerful processors. Moreover, it is argued that given the relatively slow speed of worker 

movement and the far-field construction videos, it is not necessary to track workers at a high frame 

rate (e.g., 24fps) since the difference in position between two frames will be small. Therefore, after 

appropriate optimization, the proposed method can be used for tracking construction workers. 
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As a demonstration of the proposed multi-worker tracking method, this study uses two fixed 

cameras in indoor experiments to provide the full coverage of the area of interest. In practice, when 

monitoring construction operations on the complex jobsites, more cameras are needed to ensure 

the desired coverage. To determine the optimal camera placement, one needs to simultaneously 

maximize camera coverage and minimize the total cost while satisfying various constraints, which 

has been an active research area and explored by many studies (Ahn et al., 2016; Altahir et al., 

2017; Jian Zhao et al., 2013). In the construction domain, Yang et al., (2018) created an 

optimization method to find the optimal camera placement on construction sites. Kim et al. (2019) 

have created a novel framework to determine the optimal number, types, locations, and 

orientations of fixed cameras that maximize visible coverage and minimize total costs considering 

unique conditions of construction jobsites, such as power accessibility, facilities and occlusions, 

and work zones. In their case study, the optimal camera number of a 70 x 30m construction site is 

three. However, this number is site-specific depending on many factors discussed above. 

In the proposed method, manual survey is needed to determine the locations of GCPs for 

camera system calibration. Although the land survey results can be used to generate control points, 

the dynamic changes of layout on construction sites pose great challenges in determining the 

locations for GCPs. To reduce manual work and ensure the practical feasibility, three possible 

solutions are recommended. First, when selecting GCPs, point locations that do not change 

frequently (e.g., on floor plane or other permanent structures) are preferred. Second, the designed 

site layout or building information models (BIM models), especially 4D models, can be leveraged 

to extract component locations and guide the dynamic deployment of GCPs to adapt to site changes. 

Third, as stereo vision mainly requires matching points cross camera views to establish epipolar 

geometry, visual feature descriptors can be used to automatically generate matching feature points, 

which will significantly reduce manual work. For instance, scale-invariant feature transform (SIFT) 

can be used to generate feature points in multiple camera views in order to establish epipolar 

geometry, as described in Lee and Park (2019). 

When deploying the BLE beacon system, the number of beacons can be estimated considering 

the signal range of beacons (depending on the transmitting power) and the possible signal 

attenuations (Topak et al., 2018). For instance, for the beacons used in this study, its maximum 

range is about 40m with the power of -4 dBm, 15m with the power of -12 dBm, and can be at most 

200m with the power of 10 dBm. The minimum coverage of beacons should be within the 
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maximum signal range. In this study, the transmitting power of -4 dBm was selected to provide a 

maximum range of 40m considering the signal attenuation in the testbed. Park et al., (2017) also 

used a similar density (12 beacons for 240 m2) in a construction safety monitoring application. 

Increasing the density of beacons will improve the localization accuracy. For instance, Chen et al., 

(2018) tested different numbers of beacons in an area of 274 m2 and found 37 beacons results in 

the highest accuracy compared with 12 beacons and 8 beacons. Therefore, the optimal number of 

beacons should be determined considering signal range, signal attenuations, and desired accuracy. 

There remain some limitations that deserve further research efforts. First, as a demonstration, 

only six BLE beacons are used in the indoor experiments and the mobile devices are of different 

quality levels, resulting in about 2m accuracy in the radio system, which may affect the tracking 

performance when integrating with a vision system. To further improve the tracking performance, 

more beacons can be deployed to improve the radio-based localization accuracy. Second, as the 

searching algorithm uses the color histogram as the only cue to recover missed detections, it may 

not work well when a target is completed colluded by other entities. In such a case, one can remove 

this process from the tracking framework and only implement the remaining parts (integrating 

radio-based identification in both 2D and 3D) to avoid errors caused by the mismatch of entities. 

Third, since the main purpose and scope of this study is the creation and evaluation of the hybrid 

tracking algorithm, the tracking process was performed in an off-line manner and the time-

synchronization was manually conducted. In the future, the algorithm will be further optimized 

and a real-time tracking system will be devised based on the newly created hybrid tracking 

framework with all devices automatically synchronized via a Network Time Protocol server. 
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 TWO-STEP LONG SHORT-TERM MEMORY METHOD FOR 

IDENTIFYING CONSTRUCTION ACTIVITIES THROUGH 

POSITIONAL AND ATTENTIONAL CUES 

This chapter presents a two-step classification approach – working group identification 

followed by activity recognition, leveraging both positional and attentional cues, to recognize 

complex interactions and their involved entities from videos that contain different activities with 

multiple entities. The spatial and attentional states of individual entities on 2D images are 

represented numerically, and the corresponding 2D positional and attentional cues between two 

entities are computed. Long short-term memory (LSTM) networks are designed to (1) classify 

whether two entities belong to the same group, and (2) recognize the activities they are involved 

in. Two sets of construction videos—one hospital construction project on the publicly-available 

website and one teaching building project taken by the author on Purdue campus, are used to 

validate the newly created method. Manual annotations regarding the spatial and attentional states 

are used to compute the positional and attentional cues proposed in this study. The group/non-

group information and the corresponding construction activities for each pair of construction 

entities are manually labeled to provide ground truth labels for supervised learning when training 

and testing the proposed two-step LSTM model. It was found that by leveraging both positional 

and attentional cues, the accuracy increases from 85% to 95% compared with cases using 

positional cues alone. Moreover, identifying working groups before recognizing ongoing activities 

enables the exclusion of group-irrelevant entities and thus, improves the performance. 

This work was previously published in Automation in Construction (J. Cai et al., 2019). This 

chapter is re-printed with permission from Vol 104, Jiannan Cai, Yuxi Zhang, and Hubo Cai, 

“Two-step long short-term memory method for identifying construction activities through 

positional and attentional cues”, 102886, Copyright Elsevier (2019). Table titles and figure 

captions have been modified to maintain the form of the dissertation. 

3.1 Introduction 

Construction entities (including both workers and equipment) interact with each other, 

constituting working groups to accomplish assigned tasks. Recognizing ongoing activities and 

involved working groups is important as it enables the comprehension of jobsite context, which in 
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turn allows the interpretation of workers’ intentions, the prediction of their movements, and the 

detection of inappropriate interactions that are counterproductive and may cause disastrous 

consequences such as struck-by accidents. This type of accident has led to 804 fatalities from 2011 

to 2015 (X. S. Dong et al., 2017). Since construction activities are goal-orientated and they 

determine the movement patterns of involved entities, information on construction activities and 

their working groups enables context-aware movement prediction that is expected to be accurate 

and reliable. Consequently, improper interactions and potential conflicts are detected in advance 

to prevent struck-by accidents. 

A number of methods have been developed to automatically recognize the actions of 

individual entities from images/videos (Golparvar-Fard et al., 2013; Khosrowpour et al., 2014; H. 

Luo et al., 2018), but little attention has been paid on the interactions between two entities over 

time (H. H. Kim et al., 2018; J. Kim et al., 2018). The few studies on entity interactions relied on 

the spatial-temporal relationship between entities through hand-crafted rules. Moreover, 

construction images/videos were simplified to only contain entities involved in a single activity, 

excluding all irrelevant entities (X. Luo et al., 2018). In reality, however, many workers and 

machines co-exist and collaborate to accomplish different tasks. For those entities that are spatially 

close, not all of them are collaborating on a single activity. Therefore, there is a critical knowledge 

gap – methods are needed to identify working groups and recognize corresponding activities using 

images/videos that contain many entities collaborating on various tasks. 

Aiming at accurately identifying working groups and recognizing corresponding activities 

with a specific focus on those involving human workers, this chapter presents a two-step long 

short-term memory (LSTM) approach that integrates the positional and attentional cues to first 

identify working groups and then recognize activities. The positional cues refer to the spatial 

relationship between entities, such as the distance and relative direction. The attentional cues are 

the features that model an entity’s visual attention (e.g., the head pose) and the attentional exchange 

between two entities (e.g., the gaze exchange between two entities). 

3.2 Review of Related Studies 

This section reviews studies related to vision-based construction object detection and 

tracking, construction activity recognition, as well as the studies on attention-based group activity 

analysis in the computer vision community, and discusses the knowledge gaps. 
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3.2.1 Vision-based construction object detection and tracking 

Vision-based object detection and tracking have been an active research area in the 

construction domain during the past 10 years. Table 3.1 lists related studies on vision-based object 

detection. Among these studies, earlier works (Memarzadeh et al., 2013; M. W. Park & Brilakis, 

2012; Rezazadeh Azar & McCabe, 2011, 2012) used visual features such as histogram of 

orientated gradients (HOG) to describe objects and applied traditional machine learning algorithms 

such as support vector machine (SVM) to detect target objects. Recently, the deep learning-based 

approach has been increasingly adopted to detect workers and equipment with various appearances 

and postures (W. Fang et al., 2018b, 2018c; Son et al., 2019a). Table 3.2 lists related studies on 

vision-based object tracking, grouped into two types: 2D tracking that obtains object trajectory in 

terms of 2D coordinates on the image plane; and 3D tracking that extracts object location in the 

3D world coordinate system. These studies have proven the great potential of extracting real-time 

states of construction objects from images and videos and formed the technical premise of this 

study. 

Table 3.1 Related studies on vision-based object detection 

Target object(s)  Features Detection method Literature 

Workers, excavators, 

and trucks 

HOG and color 

histogram 
SVM, kNN 

(Memarzadeh et al., 2013; M. W. 

Park & Brilakis, 2012) 

Trucks Haar-HOG, Blob-HOG SVM (Rezazadeh Azar & McCabe, 2011) 

Excavators HOG 
Part-based object 

recognition model 
(Rezazadeh Azar & McCabe, 2012) 

Workers and 

excavators 
Deep CNN models Faster R-CNN 

(W. Fang et al., 2018b, 2018c; Son 

et al., 2019a) 

Table 3.2 Related studies on vision-based object tracking 

Type Tracking method Literature 

2D 

Particle filter-based tracking with manually initialized objects (Zhu et al., 2016b) 

Integrating detection with tracking to address occlusion challenge 
(M. W. Park & Brilakis, 2016; Zhu 

et al., 2017) 

Machine learning-based tracking by comparing the target with 

pretrained appearance model 
(J. Yang et al., 2010) 

3D 

Integrating 2D tracking using triangulation based on stereo vision 
(Brilakis et al., 2011; M.-W. Park 

et al., 2011; Zhu et al., 2016a) 

Matching entities cross camera views based on various criteria (e.g., 

epipolar constraints, appearance model, moving direction) 

(Konstantinou & Brilakis, 2018; 

Y. J. Lee & Park, 2019) 

Tracking and detecting excavators based on kinematic shape and key 

node features using stereo cameras 
(Yuan et al., 2016) 
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3.2.2 Construction activity recognition 

Aggarwal and Ryoo (2011) categorized human activity into four levels based on the 

complexity: gestures, actions, interactions, and group activities. This categorization can be applied 

to the construction context. For instance, “raising arm” of a worker and “swinging” of an excavator 

are gestures; “laying bricks” and “excavating” are actions; “an excavator is loading dirt onto a 

dump truck” is an interaction; and “a fleet of excavators and trucks are moving the dirt” is a group 

activity. In this study, group activities and interactions, as defined by Aggarwal and Ryoo (2011), 

are the focus and refer to a construction activity that involves multiple entities working with each 

other.  

Table 3.3 summarizes related studies on construction activity recognition. The studies are 

divided into three major groups: motion-based, audio-based, and vision-based approaches, among 

which a vision-based approach is the focus of this study as visual data provide rich contextual 

information and can be used to exploit interactions among multiple entities without attaching any 

sensors on the objects. From Table 3.3, most existing studies focused on the first two levels of 

activities, i.e., gesture and action recognition for individual entities, while the analysis of 

interactions and group activities among multiple entities remains a challenge (H. Luo et al., 2018). 

Few studies (H. H. Kim et al., 2018; J. Kim et al., 2018) have exploited the interaction between 

excavators and dump trucks in the earthmoving operations. A common limitation in this stream of 

studies is the simplification of the videos by cleaning them to contain only one activity and its 

involved entities, excluding all irrelevant entities. This simplification is far from reality—the co-

existence of multiple working groups collaborating on several activities on a typical construction 

site. 
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Table 3.3 Related studies on construction activity recognition 

Type Sensors Activity type Features Recognition method Literature 

Motion

-based 

Accelero-

meter 

Actions (laying 

brick, filling joints) 
Time-domain 

and frequency-

domain features 

Naïve Bayes, decision 

tree (DT), artificial 

neural network (ANN) 

(Joshua & 

Varghese, 2010) 

Accelero-

meter, 

gyroscope, 

GPS 

Actions (excavator's 

dumping, scooping; 

worker's sewing, 

hammering, etc.) 

ANN, DT, kNN, SVM 

(Akhavian & 

Behzadan, 2015, 

2018) 

Audio-

based 

Audio 

recorders 

Actions (Major and 

minor actions of 

heavy machines 

Time-frequency 

features 
SVM 

(C.-F. Cheng et al., 

2019; C. F. Cheng 

et al., 2017) 

Vision

-based 
Cameras 

Posture for 

excavator 

Locations of 

visual markers 

attached on 

excavator 

Calculating angles 

between different 

components of 

excavator 

(Feng et al., 2018; 

Lundeen et al., 

2016) 

Actions (excavator's 

swing, excavating; 

worker's 

transporting, 

bending, etc.) 

Bag-of-video-

feature-words 

model 

Bayesian network model (Gong et al., 2011) 

Actions (excavator's 

digging, dumping, 

and hauling; truck's 

filling, moving, 

dumping.) 

Spatial-

temporal 

features, HOG 

SVM 
(Golparvar-Fard et 

al., 2013) 

Actions (walking, 

transporting, actions 

on the ladder) 

Deep learning-based methods (CNN, LSTM 

networks) 

(Ding et al., 2018; 

H. Luo et al., 2018) 

Interactions 

between excavators 

and dump trucks 

spatial-temporal 

relationship 

between 

equipment 

pre-defined rules 

(H. H. Kim et al., 

2018; J. Kim et al., 

2018) 

Group activity 

(Leveling land, 

placing concrete, 

etc.) 

object locations 

and classes 

Semantic and spatial 

relevance network 

(X. Luo et al., 

2018) 

 

Luo et al. (2018) attempted to overcome this limitation via a two-step method to first detect 

construction objects and then recognize diverse construction activities using a predefined semantic 

and spatial relevance network. While it works with a diverse group of construction activities, its 

precision and recall rates are relatively low, possibly because 1) the use of still images causes the 

loss of temporal information, leading to the difficulty in detecting prolonged activities and 

transitive states, 2) the manually defined relevance networks and corresponding activity patterns 

are inadequate for dynamic construction job sites, and 3) the neglect of important cues (e.g., 

attentional cues) other than spatial proximity limited the capability of fully exploiting the 

interactions among entities. 
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3.2.3 Attention-based group activity analysis 

Group activity analysis has been an active research area in the computer vision community 

for many applications such as video surveillance, human detection, and path prediction. Many 

studies have found that attention-based cues are critical to understanding the interactions within 

and the context of a group. These studies typically use a human’s head pose as the approximation 

of their visual attention due to its visibility in the low-resolution videos. For instance, Ba and 

Odobez (2011) inferred visual focus of attention and interaction with others from the head pose 

information obtained from videos of meetings. Chamveha et al. (2014) incorporated attention-

based cues, such as the gaze exchange and joint attention of pedestrians, and position-based cues, 

including the displacement and difference in velocity, to discover the social groups among 

pedestrians. Pereira et al. (2017) used position- and attention-based cues to classify individual 

behaviors of “exploring, interested, distracted, and disorientated” as well as group behaviors of 

“equally interested, balanced interests, unbalanced interests, and chatting”. Qin and Shelton (2016) 

proved that the social grouping information, multi-target tracking, and head pose estimation can 

be coupled together to gain better performance in multi-target tracking and head pose estimation. 

These studies prove the great potential in leveraging attentional cues to capture interactions among 

multiple people and recognize group activities, which motivates the study presented in this paper—

incorporating attentional cues to better identify construction working groups and recognize 

corresponding group activities. 

3.2.4 Knowledge gaps 

The review of related studies reveals three knowledge gaps in construction group activity 

analysis. First, lack of methods have been created to identify construction working group. In the 

congested and dynamic construction scene, not all co-existing entities are interacting with each 

other and collaborating on the same activities. The existence of irrelevant entities will hinder the 

accurate recognition of an ongoing activity. Therefore, it is critical to identify the working groups 

and involved entities so that the ongoing activities can be recognized only considering the relevant 

entities. Second, attention-based cues presented in the interactions among entities are neglected. 

Most studies analyze the interactions relying on position-based cues such as the distance and 

relative movement between two entities, which is inadequate as not all entities that are spatially 
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close are in the same working group. The attention-based cues are a missing opportunity to enhance 

the identification of construction working groups and the understanding of ongoing activities. 

Third, interaction patterns among multiple entities are not sufficiently learned. Most approaches 

use hand-crafted rules to determine the interactions based on the spatial-temporal relationship 

between two entities, which might be effective for simple interactions with repeated cycles but is 

inadequate for complex group activities with spatial-temporal patterns that are difficult to pre-

design.  

To overcome these gaps, this study aims at (1) identifying both attentional and positional 

cues among workers and/or equipment, (2) computing and representing them as numerical features, 

and (3) deploying an LSTM-based machine learning model to learn the temporal dependency of 

the features in order to better identify working groups and corresponding group activities. 

3.3 Methodology 

A new two-step LSTM-based method has been developed to identify working groups and 

recognize the corresponding group activities on construction sites using positional and attentional 

cues as features. Figure 3.1 illustrates the overall framework. Step 1 focuses on working group 

identification. The spatial and attentional states of individual entities are represented numerically 

and the corresponding positional and attentional cues between two entities are computed. The 

computed cues are constructed into time-sequential features and fed into an LSTM-based, binary 

classification model to determine whether two entities belong to the same working group. Step 2 

involves an LSTM-based, multi-classification model to recognize specific activities. Note this 

method is built on the premise that the real-time states of entities (e.g., location, velocity, head 

pose, etc.) can be acquired from visual data, as proven in many references (e.g., (Konstantinou & 

Brilakis, 2018; Memarzadeh et al., 2013; M. W. Park & Brilakis, 2016; Raza et al., 2018; Zhu et 

al., 2017)). 
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Figure 3.1 Two-step LSTM-based method for activity recognition 

The main departing point of this method is the use of LSTM networks for learning the 

patterns of positional and attentional cues presented in the interactions among multiple objects, 

rather than using predefined, hand-crafted rules and patterns. This design captures the temporal 

dependency among features undergoing complex interactions. This newly developed method is 

the first of its kind in incorporating attentional cues into the construction domain as the 

supplementary of positional cues to more accurately interpret visual construction data for working 

group identification and activity recognition. 

3.3.1 Spatial and attentional states 

Both spatial and attentional states are used to describe entities. An entity’s spatial state refers 

to its real-time position, typically measured by the central coordinates of its bounding box for 2D 

images; an entity’s attentional state refers to the direction of its visual attention, captured by head 

pose, body orientation, and body pose.  

Figure 3.2 illustrates the use of yaw, pitch, and roll to model the head pose for workers and 

equipment (noting that the main cab of the equipment is regarded as the “head”). Traditionally, 

the head yaw alone is regarded as an approximation of the visual attention in the horizontal 

direction (Chamveha et al., 2014; Qin & Shelton, 2016; Raza et al., 2018). However, on 

construction sites, the visual attention in the vertical direction, captured by head pitch, is also 

critical to infer working groups and activities. For instance, workers tend to watch horizontally 
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when transporting materials and look down to the ground when paving roads or pouring concrete. 

Therefore, both head yaw and pitch are considered in this study. 

 

 

Figure 3.2 Illustration for head pose. 

In addition to head pose, body orientation and body pose are included to describe attentional 

states. For workers, although body orientation is usually consistent with the head yaw, the 

inconsistent cases provide strong cues on visual attention. When the head yaw is different from 

body orientation, it is most likely that the entity is directly interacting or focusing on the objects 

in the direction of head yaw (Ozturk et al., 2011). The body pose (i.e., bend or standing) also 

affects the worker’s attention because when workers bend, they are looking at the ground and their 

head pose points to the entities with which they are directly interacting. For equipment, it is treated 

as rigid objects and therefore, the body orientation is considered to be identical to the head yaw. 

Given spatial and attentional states at time step t, an entity i is represented as 

{ , , , }i i i i i

t t t t tS P H bo bp= , where min min max max=( , , , )i i i i i

t t t t tP x y x y  is the boundary 2D coordinates of the 

bounding box, with which the 2D location of the entity is derived as min max( ) / 2i i i

t t tx x x= +  and 

min max( ) / 2i i i

t t ty y y= + ; ( , )i i i

t t tH yaw pitch=  represents the head yaw and pitch; 
i

tbo  represents the 

body orientation; and 
i

tbp  represents the body pose categorized in three classes: standing – 1, 

bending – 2, and not applicable (for equipment) – 3.  

The head pose and body orientation are categorized further and each category is represented 

with a numerical value. Specifically, the worker’s head yaw and body orientation are categorized 

into eight bins: north (N) – 1, south (S) – 2, east (E) – 3, west (W) – 4, northeast (NE) – 5, northwest 

(NW) – 6, southeast (SE) – 7, and southwest (SW) – 8, as shown in Figure 3.3(a) and (b). The 
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head pitch is categorized into three bins: looking up (U) – 2, looking horizontally (H) – 1, and 

looking down (D) – 0, as shown in Figure 3.3(c). For equipment (considered as rigid objects), the 

body orientation is identical to the head yaw (Figure 3.3d) and the head pitch always remains 

horizontal (Figure 3.3e). The numerical values assigned to the orientation bins imply the similarity 

among the orientations. Such a design incorporates the uncertainty in the estimated orientation and 

is suitable for processing low-resolution videos of dynamic, complex, and often congested 

construction sites. 

 

 

Figure 3.3 Head pose and body orientation 

Figure 3.4 illustrates an example image of the cooperation of a worker and a bulldozer at 

time t. The spatial and attentional state of worker i at time t is denoted by 

{(37,116,128,372), (1,1),1,1}i

tS = , indicating the worker is located at (82.5, 244) (82.5 = 

(37+128)/2; 244 = (116+372)/2) with head and body facing east, looking horizontally and standing 

still. The state of equipment j at time t is denoted by {(436,10,830,372),(6,1),6,0}j

tS = , indicating 

it is located at (633,191) and facing southwest. 
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Figure 3.4 Spatial and attentional states of individual entities 

3.3.2 Modeling positional and attentional cues 

The positional and attentional cues refer to the positional and attentional relationship 

between two entities, computed using the spatial and attentional states of individual entities. These 

cues are regarded as critical features for working group identification and construction activity 

recognition. 

Positional cues 

The positional cues are measured considering both distance and direction between two 

entities based on their locations. The distance relationship between two entities is modeled 

topologically. The directional relationship is represented using a project-based model (Isli, 2003) 

that divides relative direction into eight zones: east, northeast, north, northwest, west, southwest, 

south, and southeast. Taking time steps into consideration, differences in moving direction and 

speed between two entities and the difference between the moving direction (of one entity) and the 

relative direction (between two entities) are computed as the additional measures for the positional 

cues. The resulting five measures, namely, distance relationship, directional relationship, 

difference in speed, difference in moving direction, and difference between moving direction and 

relative direction, are described in detail as follows. 

Distance relationship 

Distance relationship is modeled as topological relationship between bounding boxes of two 

entities, measuring the proximity between two entities. It is represented as ,

1

i jP , where i and j refer 
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to two entities and subscript 1 indicates it is the first positional cue measurement. The 9-

Intersection model (Egenhofer & Herring, 1992) is adopted to describe the topological relationship. 

Figure 3.5 illustrates eight common topological relationships: “disjoint,” “meet,” “overlap,” 

“covers,” “covered by,” “contains,” “inside,” and “equal.” “Disjoint” is for two entities that are 

relatively far away, and it is further labeled as very close, close, medium, far, or very far; “meet” 

is for two entities that are next to or touch each other; “overlap” means that two entities are spatially 

close, indicating it is likely that they belong to the same group, and “cover/covered by,” “equal,” 

and “contain/inside” are special cases. Topological relationships connected by a solid line are 

topological neighbors – they can be converted directly to each other through spatial transformation. 

The change in the topological relationship between two entities over time reveals the change of 

their distance relationship as time progresses. 

 

 

Figure 3.5 Topological relationships 

The five categories of “disjoint” describe the degree of proximity, based on the ratio of the 

distance between two entities to the average size of the entities. The degree of disjoint relation is 

determined using Equation 3.1, where 
,i jw  represents the average size of the two entities, 

computed as 
, /2i j i jw w w= +（ ）  (where 

iw  is the width of the bounding box of entity i), and 
,i jd  

is the distance between the bounding box centers of the two entities i and j, computed as 

, 2 2( ) ( )i j i j i jd x x y y= − + −  (where 
ix  and iy  are the center coordinates for entity i). 
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The topological distance refers to the number of links in the shortest path between 

topological relationships in the neighborhood graph (Nabil et al., 1996) (shown in Figure 3.5). For 

instance, there is only one step for “meet” and “overlap” to be converted to each other, and thus, 

their topological distance is 1. For “cover” to be transformed to “disjoint”, the shortest path is 

“cover” – “overlap” – “meet” – “disjoint”, hence, the distance between them is 3. Table 3.4 

illustrates the topological distance matrix for all topological relationships. The topological distance 

captures the similarity between topological relationships - a smaller value indicates a stronger 

similarity. It forms the basis to numerically represent the topological relationships. 

Table 3.4 Topological distance matrix (Nabil et al., 1996) 

Distance disjoint meet overlap cover contain covered by inside equal 

disjoint 0 1 2 3 4 3 4 3 

meet 1 0 1 2 3 2 3 2 

overlap 2 1 0 1 2 1 2 1 

cover 3 2 1 0 1 2 2 1 

contain 4 3 2 1 0 2 2 1 

covered by 3 2 1 2 2 0 1 1 

inside 4 3 2 2 2 1 0 1 

equal 3 2 1 1 1 1 1 0 

 

As Table 3.5 illustrates for this study, the topological relationships of “contain”, “inside”, 

and “equal” are treated as the baseline and assigned with a value of 0 as they are the closest distance 

relationships between two entities. For other relationships, their topological distances to the closest 

baseline topological relationship are used as the numerical values. For instance, the distance 

between “cover” and “contain” is 1, and thus, the numerical representation of “cover” is 1. 

Similarly, “overlay” is represented by 2 and “meet” by 3. For the five subcategories in “disjoint”, 

“very close” is assigned a value of 4, “close” 5, “medium” 6, “far” 7, and “very far” 8. Table 3.5 

tabulates these numerical value assignments to the eight topological relationships and the five 

subcategories under “disjoint”. 
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Table 3.5 Numerical representation of distance relationship ( ,

1

i jP ) 

Relation Numerical value Relation Numerical value 

Disjoint (very far) 8 Overlap 2 

Disjoint (far) 7 Cover 1 

Disjoint (medium) 6 Contain 0 

Disjoint (close) 5 Covered by 1 

Disjoint (very close) 4 Inside 0 

Meet  3 Equal 0 

 

Directional relationship 

The directional relationship between entity i and j ( ,

2

i jP ) measures the relative direction of 

entity j with respect to entity i on a 2D plane. Figure 3.6 illustrates the numerical representation of 

,

2

i jP , where a 2D plane is divided into eight regions, centered at the position of entity i, and the 

region in which entity j locates indicates the directional relation between i and j. Each region is 

one relative direction that is represented using discrete values: east (E) – 1, northeast (NE) – 2, 

north (N) – 3, northwest (NW) – 4, west (W) – 5, southwest (SW) – 6, south (S) – 7, and southeast 

(SE) – 8. Using regions rather than the directional vector directly affords a reasonable tolerance to 

noises and uncertainties—the directional relationship is still correct even when the perceived 

position is slightly inaccurate. 

 

 

Figure 3.6 Representation of directional relationship ( ,

2

i jP ) 
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Difference in speed and difference in moving direction 

The differences in speed ( ,

3

i jP ) and in moving direction ( ,

4

i jP ) together measure the relative 

movement between two entities. The difference in speed (normalized to range [0, 1]) is computed 

using Equation 3.2, where i

tv  is the speed of entity i and calculated based on the positions at 

consecutive time steps, i.e., ( ) ( )
2 2

1 1

i i i i i

t t t t tv x x y y+ += − + − . 

,

3 ( ) / ( , )i j i j

t t t

i

t

jP abs v v max v v−=         (3.2) 

The difference in the moving direction is computed as Equation 3.3, where 
i  is the moving 

direction of entity i, represented as the numerical values in Figure 3.6. The difference between two 

directions refers to the shortest path between them. Therefore, when ( )i jabs  −  is greater than 

4, the shortest distance is computed clockwise as 8 ( )i jabs  − − ; when ( )i jabs  −  is less than 

or equal to 4, the shortest distance is computed counterclockwise as ( )i jabs  − . For instance, 

the shortest path from “E” to “N” is “E” (1) – “NE” (2) – “N” (3) and the difference is calculated 

as 3 – 1 = 2; the shortest path from “E” to “S” is “E” (1) – “SE” (8) – “S” (7) and the difference is 

calculated as 8 – abs(1-7) = 2. 

,

4 min{ ( ),8 ( )}i j i j i jP abs abs   = − − −        (3.3) 

Difference between moving direction and relative direction 

The difference between the moving direction of entity i, 
i , and the relative direction of 

entity i and j, 
,i j , measures the degree of i moving towards j. It is computed using Equation 3.3, 

with the orientation in the equation replaced by 
i  and 

,i j , where 
i  and 

,i j  are numerical 

values as illustrated in Figure 3.6. 

Attentional cues 

In this study, attentional cues are measured by difference between head yaw and relative 

direction, difference in head yaw, difference between head yaw and moving direction, difference 

between head yaw and body orientation, head pitch, and head pose, described in detail as follows. 

All measures are applicable to both workers and equipment. 
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Difference between head yaw and relative direction 

The difference between the head yaw of entity i, iyaw , and the relative direction of entity j 

with respect to i, 
,i j , measures the gaze exchange between two entities and is computed using 

Equation 3.3 with the orientations replaced by 
iyaw  and 

,i j . This cue captures the degree of 

entity i looking at entity j. It can also be used to infer the intention of construction workers. For 

instance, if the difference between head pose and relative direction is very small, the entity i is 

more likely to interact with entity j. 

Difference in head yaw 

The difference in head yaw measures the joint attention of entity i and j, computed using 

Equation 3.3, with the directions in the equation being 
iyaw  and 

jyaw . In many construction 

activities, entities are collaborating to operate on a common object, resulting in a small difference 

in head yaw. 

Differences between head yaw and moving direction and difference between head yaw and body 

orientation 

For one entity, the difference between its head yaw and body orientation, and difference 

between its head yaw and moving direction are strong cues inferring the change of its visual 

attention (Ozturk et al., 2011). For instance, if a worker is standing to the north with his head facing 

east, it is more likely that he is interacting with entities in the east direction. These two measures 

are computed as the difference between 
iyaw  and 

ibo , and 
iyaw  and 

i  using Equation 3.3. 

Head pitch and body pose 

The head pitch and body pose of one entity also reflect its visual attention, which are special 

cues on construction job sites, as discussed in Section 3.3.1. In this study, these two measures are 

denoted by 
5

i iA pitch=  and 
6

i iA bp= . 
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3.3.3 LSTM-based classification 

Neural networks are the base of deep learning techniques, which consist of two most 

commonly used variants, CNN and recurrent neural network (RNN). CNN enables the automatic 

extraction of features over the spatial domain via a multi-layer architecture, and widely used in 

computer vision tasks such as object detection (Ding et al., 2018). However, it treats each input 

independently and overlooks the temporal dependency among time-series data, and may not be 

sufficient for sequential problems such as activity recognition. On the other hand, RNN is designed 

to address sequential problems such as speech recognition. It performs the same operation for each 

element of a sequence, with the output of each element depending on the computations in previous 

elements. However, it is subject to the vanishing gradient problem in long-term dynamics 

(Donahue et al., 2017).  

To address the vanishing gradient problem in classic RNNs, LSTM network was first created 

by Hochreiter and Schmidhuber (1997), which is capable of modeling temporal dependency 

among sequential features. LSTM networks have been applied to many sequential problems in 

computer vision such as activity recognition. They achieve better accuracy compared to traditional 

machine learning algorithms (Donahue et al., 2017; M. S. Ibrahim et al., 2016). In this study, 

LSTM networks were designed to capture the temporal dependency of positional and attentional 

cues between two entities, to determine whether they belong to the same group and recognize their 

involved activities. 

To construct the input, time-sequential feature, the positional and attentional cues are 

concatenated into a 17-dimensional feature vector, denoted by 

, , , , , , , , , ,

1 2 3 4 5 5 1 1 2 3 3 4 4 5 5 6 6, , , , , , , , , , , , , , , ,i j i j i j i j i j i j j i i j j i i j i j i j i j i j

t t t t t t t t t t t t t t t t t tf P P P P P P A A A A A A A A A A A =   . This feature 

vector describes the relationship between them at any given time. The time-sequential feature is 

constructed by chaining a series of time-variant feature vectors over a time period and denoted by 

, , , ,

2{ , , ,..., }i j i j i j i j

t t t t t t Tf f f f+ +  + , where t is the starting time, t  is the sampling frequency and T is the 

time duration of observation. The temporal resolution t  depends on the sampling frequency of 

the data used to extract the spatial and attentional states, such as the frame rate of construction 

videos. This time-sequential feature captures the dynamic interactions and temporal relationship 

between entities using both positional and attentional cues, and serves as the input to the LSTM 

models. 
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Figure 3.7 illustrates the LSTM network, which is composed of a number of LSTM cells 

ordered sequentially. The network takes the time-sequential feature 
, , , ,

2{ , , ,..., }i j i j i j i j

t t t t t t Tf f f f+ +  + , 

simplified as 
1 2{ , ,..., }( / 1)nx x x n T t=  + , as input. Each feature vector is fed into its 

corresponding LSTM cell. All LSTM cells have the same structure that contains three gates—

input gate, forget gate, and output gate—to control the flow of and modify the information in and 

out of the cell. At time step t, the feature vector tx  (the tth element within the time-sequential 

feature) is the input to the tth LSTM cell, and the cell state is updated through Equation 3.4. 
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        (3.4) 

  is the sigmoid function, ( ) 1/ 1+expx x = （ (- )）, where tx  is the input, th is the hidden 

state with N hidden units (N=17 in this study) and is also the output of this cell, tc  is the cell state, 

, ,t t ti f o  are input gate, forget gate, and output gate at time t respectively. tg  is the input 

modulation that adds information to cell state.   represents element-wise multiplication. Wxi, Wxf, 

Wxo, Wxc, Vhi, Vhf, Vho, Whc, bi, bf, bo, bc, are the learnable parameters for each LSTM cell that 

control the level of information transferred from previous time steps as well as the level of 

information taken from the current time step. 
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Figure 3.7 Typical architecture of LSTM network and LSTM cell 

After feeding each feature vector to its corresponding LSTM cell and updating the cell states 

following Equation 3.4, the output of the last LSTM cell, an N-dimensional vector nh , is then fed 

into a fully connected layer with the number of nodes equals to the number of class, cn  (e.g., 

2cn =  for working group identification). Finally, a softmax layer takes the output of the fully 

connected layer as input and computes the probability of being any particular class using a softmax 

function. 

The network is trained by minimizing the cross-entropy loss function using Adam optimizer 

(Kingma & Ba, 2014). For working group identification, the problem is a binary classification: “1” 

means that the two entities are in one group, and “0” means that the two entities are not in one 

group. For group activity recognition, the problem is a multi-class classification: the number of 

classes equals the number of activities of interest. 

3.4 Implementation 

To validate the proposed framework, construction videos are used to extract the state 

information of individual entities, including the location, body orientation, head pose, and body 

pose of each entity. The positional and attentional cues are then computed from the extracted state 

information and used to train and test the LSTM networks. The proposed method is implemented 
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on a workstation with 2.6GHz Intel Xeon CPU, 128GB RAM, and NVIDIA GeForce GTX 1060 

6GB GPU. 

3.4.1 Data description 

The experiment consists of 14 videos from two sources: public-available website – YouTube 

(YouTube, 2019) and videos captured by the authors from construction jobsite on Purdue campus. 

The details of the video are illustrated in Table 3.6. The column of “included activity” in Table 3.6 

indicates the activities to recognize in this study and will be discussed in Section 3.4.4. To evaluate 

the proposed method in general construction jobsites, the selected videos were taken from different 

construction scenarios with varying construction entities, working groups, and activities, and from 

different viewpoints with varying distances from objects ranging from 30m to 100m. Videos with 

two different resolutions are included, i.e., 1920x1080 and 1280x720. The average worker size in 

the dataset is 63x124, and average equipment size is 456x359. Since some of the videos were 

surveillance videos with low frame rate, all videos were downsampled to 2fps in this study. Figure 

3.8 shows some sample images from the dataset. 

Table 3.6 Data description 

Data source Video  Duration (s) # of entity # of groups 
Average group 

size 
Included activity 

YouTube 

(2019) 

1 210 11 4 2.25 spotting, road paving, others 

2 120 12 4 2.5 others 

3 30 3 1 2 others 

4 85 16 3 3.33 road paving, others 

5 45 6 2 3 road paving, others 

6 80 2 1 2 spotting 

7 75 4 2 2 spotting, others 

8 22 2 1 2 spotting 

9 65 4 1 4 spotting 

10 35 2 1 2 spotting 

11 110 2 1 2 spotting 

12 75 2 1 2 spotting 

Total 952 66 22 2.5 
spotting, road paving, 

others 

Taken by 

authors 

13 52 2 1 2 spotting 

14 65 7 3 2 others 

Total 117 9 4 2 spotting, others  
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Figure 3.8 Sample images (a-b from hospital project, c-d from teaching building project). 

3.4.2 Data preprocessing 

To obtain the positional and attentional cues presented in the construction videos, the 

relevant states of each entity including position, orientation, head pose, and body pose, need to be 

extracted. Since the focus of this study is to analyze the group activity using higher-level 

information, i.e., the features computed based on extracted states, manually annotated state 

information is used to compute the cues in order to exclude the impact from state detection. In this 

study, the states are manually annotated using image annotation tool, LabelImg. Specifically, in 

each frame, the bounding boxes were drawn around the entities and the pixel coordinates of the 

four corner points were extracted automatically by the annotation tool. The head pose, body 

orientation, and body pose were determined manually based on the representation illustrated in 

Figure 3.3 and annotated frame by frame. The annotation is based on the representation of spatial 

and attentional states described in Section 3.3.1, and performed by two researchers in the 

construction domain including the author. Part of the annotated data was double-checked by the 

author to ensure the consistency between different annotators and the annotation quality. In future 

study, crowdsourcing can be adopted to annotate a large amount of data and voting techniques 

(e.g., majority vote) can be used to ensure quality. If the annotation is domain-specific, domain 

experts can also be consulted to ensure the correctness. 

Several studies in the computer vision domain have proven the feasibility of identifying 

attentional states from low-resolution images. For instance, Raza et al. (2018) have devised a 

CNN-based deep learning approach to identify head pose and body orientation of pedestrians. 

They tested their method on videos with a resolution of 640x480, and the input object size of their 

network is 64x64. Saleh et al. (2017) developed a multi-task learning network to recognize head 

pose and body posture of pedestrians with input image resolution being 227x227. 



 

 

86 

3.4.3 Working group identification 

For working group identification, two entities are considered belonging to one working 

group if they are interacting with each other during the construction. Due to the dynamics of the 

construction site, the grouping results may vary with time. Therefore, the entire videos are 

carefully analyzed by the authors so that the working groups are accurately annotated as ground 

truth. Figure 3.9 shows an example of a working group and its changes over time. At time t1, entity 

1 – 4 were in the same group with the visual attention of the three workers on the excavator and 

the excavator moving to the workers to transport the materials. At time t2, entity 1-3 were still in 

the same group and transporting the material, while entity 4 exits the group. As an example, in 

Figure 3.9, 2,4

1 1tG = , and 2,4

2 0tG = , where , 0,1i j

tG =  represents the group information between 

entity i and j at time t with 0 indicating “not a group” and 1 indicating “is a group”. In this way, 

the proposed method is able to detect the start and finish time of the working group through 

continuous observation. 

 

 

Figure 3.9 Change in working group (entities 1-4 belong to the same group at Time t1, while 

entity 4 exits the group at Time t2). 

3.4.4 Group activity recognition 

This study involves grouping entities that collaborate on one activity and recognizing the 

activity. Regardless of the type of activities, collaborating entities are always grouped. Whereas in 

activity recognition, construction activities are selected to be differentiated and explicitly classified 

based on the following two criteria. First, this study focuses on group activities that are 

cooperatively performed by workers and equipment as they typically involve complex and 
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dynamic interactions. Second, as our motivation is to analyze the interactions in the group 

activities in order to prevent struck-by accidents, activities where workers are exposed to struck-

by hazard are selected. In the dataset, the two activities that meet these two criteria are spotting 

and road paving (as shown in Figure 3.10), and therefore, these two activities are explicitly labeled 

and remaining group activities are labeled as “others”. 

 

 

Figure 3.10 Two group activities classified in this study: (a) road paving, (b) spotting. 

3.4.5 Training and test procedure 

The proposed framework involves a two-step classification, i.e., for any pair of construction 

entities, they are first determined whether belonging to the same working group, and if so, their 

participated activity is further recognized. The two classifiers, referred to as group classifier and 

activity classifier, were first trained and evaluated separately, and then the entire process was tested 

using the trained classifiers. In the experiments, 5s (i.e., 10 frames) of observations were used to 

construct the time-sequential features described in Section 3.3.3. This time duration was then 

changed to assess the influence of available observations. The group/non-group information and 

the corresponding construction activities for each pair of construction entities were manually 

labeled to provide ground truth labels for supervised learning when training and testing the 

proposed two-step LSTM model. The annotation is based on the criteria described in Section 3.4.3 

and 3.4.4. The training and test procedure are detailed as follows. 

1. All videos in the dataset described in Figure 3.6 were trimmed into video clips with fixed 

length (e.g., 5s) that can start from an arbitrary frame of the original video. The sequential 

feature computed from one pair of entities in one video clip was considered as one data sample. 

From all available data obtained from video clips, 8,000 were randomly selected to train the 
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group classifier, which was then evaluated using another 2000 data that were randomly 

selected from the remaining dataset. 

2. For the activity classifier, only data representing entities within the same group were used for 

training and evaluation. 8000 and 2000 data were randomly selected from all eligible data and 

used to train and evaluate the activity classifier. It is noted that in the experiments, the activity 

classifier can classify 3 types of group activities, i.e., road paving, spotting, and others. 

3. After training the two classifiers, 2000 data were randomly selected to test the entire process. 

They were first fit to the group classifier and assigned the label “not a group” or “is a group”, 

and those with “is a group” label further went through the activity classifier with their group 

activities identified to be either road paving, spotting, or other group activities. The final 

performance was evaluated against the ground truth annotation. 

3.4.6 Evaluation metrics 

The performance of separate classifications, as well as the entire process, were evaluated 

quantitatively in terms of accuracy, precision, and recall, where accuracy represents the proportion 

of correctly classified instances among all instances; precision represents the proportion of true 

positive instances among all classified positive instances; recall represents the proportion of 

positive instances that have been correctly identified. The evaluation metrics are computed using 

Equation 3.5-3.7. 

( ) / ( )Accuracy TP TN TP TN FP FN= + + + +       (3.5) 

/ ( )Precision TP TP FP= +          (3.6) 

/ ( )Recall TP TP FN= +          (3.7) 

For working group identification, TP represents true positive, indicating that two entities that 

are within one group are correctly identified as one group. TN represents true negative, indicating 

that entities that are not within one group are correctly identified as not a group. FP represents 

false positive, indicating entities that do not belong to one group are wrongly identified as one 

group. FN represents false negative, indicating that entities within one group are wrongly identified 

as not a group. Correspondingly, accuracy measures the overall correctness in classifying two 

classes. Precision measures the proportion of predicted working groups being true working groups. 

Recall measures the proportion of true working groups being correctly recognized. Note that since 
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group activity recognition and the entire process involve more than two classes, the precision and 

recall are calculated for each individual class, while accuracy is calculated for the overall 

performance. 

3.5 Results 

This section analyzes the results of group identification and activity recognition using the 

proposed method and compares the results with those obtained using positional cues alone. 

Moreover, the importance of working group identification and the influence of available 

observations are discussed. Finally, two additional construction videos were used to verify the 

efficacy of the method. 

3.5.1 Performance of LSTM-based classification 

Figure 3.11 demonstrates an example result of the proposed method, where blue solid boxes 

indicate the entities, and red dash boxes indicate the group activity recognition result. After 

performing the two-step LSTM-based classification, the entity pair 3 and 7 are labeled as class 2, 

indicating they are in the same group and performing road paving activity; the entity pair 1 and 2 

are labeled as class 4, indicating they are in the same group and performing other activities (having 

a conversation in this case); and all other pairs of entities are classified as class 1, i.e., “not a group”. 

 

 

Figure 3.11 Example result of work group identification and activity recognition 
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Figure 3.12 illustrates the comparison of results with and without attentional cues. To 

perform experiments without attentional cues, an additional LSTM-based model was trained with 

only positional cues incorporated as inputs such that the difference between two experimental 

results reflects the influence of attentional cues. The ground truth is that none of the entities are 

working as a group. In the snapshot illustrated in Figure 3.12, the truck is very close to the 

excavator, but they are not interacting with each other to perform earth loading. Instead, the truck 

is passing through: it enters the scene from the left side, moves towards the right side, and directly 

leaves the scene without stopping. The ground truth is correctly identified by incorporating 

attentional cues (see Figure 3.12 (a)). However, in the case without attentional cues (see Figure 

3.12 (b)), the entity pairs 2 and 5, and 3 and 6 were wrongly classified as working groups. This is 

because these two pairs are spatially closed and moving in similar directions. However, attentional 

cues indicate that they are not interacting with each other and therefore, when incorporated, the 

result aligns with the ground truth. This comparison scenario clearly demonstrates the value of 

using time-sequential features to exploit the evolution of entity interactions to better recognize 

construction activities. 

 

 

Figure 3.12 Comparison of results with and without attentional cues 

Table 3.7 lists the quantitative performance of each individual task (i.e., group identification 

and activity recognition) as well as the integrated process. Results obtained using only positional 

cues were also listed as a comparison to illustrate the advantage of incorporating attentional cues. 

In general, the proposed method achieves over 95% accuracy in all tasks. For group identification 

alone, the recall is relatively low, indicating that about 91% of working groups can be correctly 

identified. 
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Table 3.7 Performance of LSTM-based classification 

Task Feature type Class Accuracy Precision Recall 

Group identification 

positional+ 

attentional 
is a group 0.965 0.947 0.909 

positional is a group 0.874 0.818 0.628 

Activity recognition 

positional+ 

attentional 

road paving 

0.996 

1.000 0.992 

spotting 0.986 1.000 

others 0.997 0.997 

positional 

road paving 

0.891 

0.951 0.951 

spotting 0.807 0.807 

others 0.884 0.884 

Group identification 

+ Activity 

recognition 

positional+ 

attentional 

not a group 

0.963 

0.971 0.983 

road paving 0.927 0.885 

spotting 0.948 0.892 

others 0.940 0.912 

positional 

not a group 

0.854 

0.887 0.954 

road paving 0.725 0.446 

spotting 0.644 0.461 

others 0.729 0.631 

 

It is found that the cases that fail to identify the groups mainly occur in road paving as well 

as when entities are entering or leaving a working group. Compared to spotting, the interactions in 

road paving are more complex and dynamic as they involve more entities with much larger span 

both spatially and temporally. For instance, as road paving requires the entity to move back and 

forth, it may result in the machine and worker moving in the opposite direction with their attention 

paid to the spot they are working on instead of their partners. As a result, if the observation period 

is short, it may classify the entities as not a group by mistake. Moreover, when an entity is entering 

or leaving a group as illustrated in Figure 3.9, it is very difficult to distinguish whether two entities 

belong to one group with limited period of observation, even for human experts. It is argued that 

the performance in both scenarios can be improved by incorporating longer previous observations, 

which is validated and discussed in Section 3.5.3. 

For activity recognition alone, the proposed method achieves almost perfect results. There 

are two reasons for the very high accuracy, precision, and recall rates: (1) as a demonstration, the 

two activities selected in this study are relatively easy to distinguish, as they all involve one worker 

and one machine, with worker’s attention significantly different in each activity – the worker is 

visually focusing on the machine in the “spotting” activity, while the worker is primarily focusing 
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on the ground and only occasionally on the machine in the “road paving” activity; (2) the activity 

recognition is trained and tested only on entities that are within one group. In other words, entities 

that are not performing the target group activity have already been filtered out in the group 

identification. Such result proves the importance of working group identification in group activity 

analysis, and it will be further analyzed in Section 3.5.2. 

The integrated process (i.e., group identification + activity recognition) illustrates the 

performance of the proposed two-step classification. According to the analysis of two individual 

classifications, the performance of the integrated process mainly relies on the performance of 

working group identification. Since the recall rate for the working group is only 91%, the recall 

rates for the road paving and spotting activities are lower than other metrics. 

Moreover, in all tasks, the performance of integrating positional and attentional cues is much 

higher than those only using positional cues in terms of accuracy, precision, and recall. Such results 

prove that attentional cues are critical in group activity analysis on the construction site and should 

not be ignored. 

3.5.2 Influence of working group identification on activity recognition 

Due to the complex and dynamic nature of the construction site, multiple entities may co-

exist and conduct different activities simultaneously. Dividing multiple entities into different 

working groups prior to activity recognition is expected to improve the performance of activity 

recognition. Table 3.8 compares the performance of activity recognition with and without working 

group identification. Although the accuracy of activity recognition is compatible, the precision and 

recall for the specific activities are much higher if the working group is first identified. This is 

because for single activity recognition without working group identification, most entities fall into 

the class of “others” no matter whether they are doing group activities or simply not interacting 

with each other. As a result, two target activities are not effectively recognized with the existence 

of so many “negative examples”. Hence, it is necessary and crucial to divide entities into several 

working groups in order to better analyze the working scenarios on the construction site. 
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Table 3.8 Comparison of activity recognition with and without group identification 

Task Class Accuracy Precision Recall 

Group 

identification 

+ Activity 

recognition 

not a group 

0.963 

0.971 0.983 

road paving 0.927 0.885 

spotting 0.948 0.892 

others 0.940 0.912 

Activity 

recognition 

road paving 

0.971 

0.925 0.854 

spotting 0.820 0.804 

others (including entities not within a 

group) 
0.982 0.989 

 

3.5.3 Influence of available observations 

As the interaction between entities evolves with time, the longer previous observations are 

available, the better the pattern of their interaction can be revealed, and in turn, the better the 

working groups and corresponding group activity can be identified. This study assessed the 

performance of the integrated process with available observation varying from 1s to 9s, shown in 

Figure 3.13. Specifically, Figure 3.13 (a) illustrates the overall accuracy in correctly identifying 

working groups and corresponding group activities. Figure 3.13 (b)-(c) illustrate the precision and 

recall rates for each individual class. 

 

 

Figure 3.13 Performance (accuracy, precision, and recall) with respect to available observations 

From Figure 3.13, the overall accuracy and the precision and recall for all classes increase 

as the length of available observations increases. It is reasonable because the longer previous 

observations are available, the better the dynamic interactions among entities can be revealed, 

leading to both higher precision and recall. However, on the construction site, longer previous 
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observations require more accurate and reliable detection of individual entities’ real-time states, 

which are not always available. Therefore, the duration of previous observation should be carefully 

selected by considering both target accuracy and the available sensing technologies. 

3.5.4 Verification on additional scenarios 

Two additional scenarios in building construction were used to verify the efficacy of the 

proposed method. The first scenario involves site work, as shown in Figure 3.14 (a), where worker 

1, 2, and 3 are checking the manhole collaboratively, and worker 4 and 5 are spotting bulldozer 6 

to unload the earth. The method successfully identified the group formed by 1, 2, and 3 and 

classified the activity as class 4 (“others”). Regarding the second group, the interactions between 

4 and 6, and 5 and 6 were correctly identified and classified as class 3 (“spotting”), where 4 and 5 

were determined as not in a group. This is because the proposed method is based on pairwise 

relationship, and 4 and 5 do not interact with each other directly, although both of them interact 

with 6. 

The second scenario involves formwork and rebars, as shown in Figure 3.14(b), where 

worker 3 and 4 are tying rebars in one group, while 1 and 2 are setting formworks and 5 is tying 

rebars separately. This method successfully identified that worker 1 and 2 were working alone, 

and 3 and 4 were in the same group doing “other” activity. However, the system incorrectly 

classified 3 and 5 into one group. A possible reason is that worker 3 is facing worker 5 and they 

were spatially close in the 2D image plane, while their distance in the third dimension—the 

direction perpendicular to the image plan is ignored by using 2D cues. Such error could be 

mitigated by introducing 3D information in future research. 

 

 

Figure 3.14 Construction activity recognition in sample phases of building construction 
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3.6 Contributions 

This study pioneers in incorporating attentional cues into the understanding of the 

construction jobsite context. It has three main contributions. First, a novel method has been created 

to numerically represent the states of individual entities and mathematically compute the positional 

and attentional cues that are regarded as critical features to recognize construction working groups 

and ongoing group activities. While videos were the single data format in this study, the identified 

features are at a higher level and not constrained to visual data. For instance, the positional cues 

can be extracted using real-time locating systems (RTLS) such as GPS and ultra-wideband (UWB), 

and the attentional cues can be inferred using inertial measurement unit (IMU) and eye-tracking 

technologies. Second, the proposed two-step process, i.e., working group identification followed 

by the activity recognition, allows the differentiation of group-relevant and non-relevant entities, 

making it capable of addressing complex group activities under general construction scenarios, 

where multiple entities co-exist on the job site. Third, this study adopts LSTM networks to model 

the temporal dependency among features, which allows the capture of complex and dynamic 

patterns of interactions on the construction site. 

3.7 Conclusions 

Construction sites involve multiple workers and equipment interacting with each other and 

conducting different activities simultaneously, making automatically recognizing diverse ongoing 

activities extremely challenging. This study proposes a two-step framework that decomposes the 

activity recognition into two cascading tasks – working group identification and group activity 

recognition. Novel methods are created to mathematically represent the spatial and attentional 

states of individual entities and compute the positional and attentional cues based on the pairwise 

relationship between two entities, which are further constructed as time-sequential features to 

identify working groups and corresponding activities. Given any pair of entities, LSTM networks 

are used to (1) classify whether they belong to the same groups, and (2) recognize the 

corresponding activity they are performing. Experiments were conducted using videos from a 

hospital construction project that are available online and videos from an ongoing teaching 

building project taken by the authors on campus. The results show the proposed framework 

achieves over 95% accuracy in correctly identifying the working groups and recognizing the 
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activities. The performance obtained by integrating positional and attentional cues is much higher 

than that obtained using positional cues alone. Moreover, dividing the group activity recognition 

task into a two-step cascading process obtained better performance than simply conducting a one-

step activity recognition. The newly created method was also tested on two additional construction 

scenarios, which further verified the efficacy of the method. 

There remain some limitations that deserve further research efforts. First, the positional and 

attentional cues are computed based on manually annotated states of individual entities. Future 

study will focus on automating the entire process of state detection, group identification, and 

activity recognition. Second, due to data availability, the state information and corresponding cues 

are represented in 2D images, which may be sensitive to camera viewpoints. However, it is argued 

that by using the cues computed from pairs of entities that are observed from the same viewpoints, 

this impact is effectively mitigated. Besides, the incorporation of videos from different viewpoints 

also ensures the diversity and representativeness of the dataset, which in turn improves the 

generalizability of the proposed approach. Future research will extend the positional and 

attentional states and corresponding cues into 3D to further improve the robustness of the method. 

Third, this study only explicitly labels road paving and spotting while making all other group 

activities as “others”. Future study will extend this method to more settings as more construction 

videos are collected. 
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 A CONTEXT-AUGMENTED DEEP LEARNING APPROACH FOR 

WORKER TRAJECTORY PREDICTION ON UNSTRUCTURED AND 

DYNAMIC CONSTRUCTION SITES 

In this chapter, an LSTM model augmented by the context information is proposed, which 

incorporates both individual movement and workplace contextual information. Contextual 

information regarding movements of neighboring entities, working group information, and 

potential destination information is concatenated with movements of the target entity and fed into 

an LSTM network with an encoder-decoder architecture to enable the sequence-to-sequence 

prediction, i.e., a sequence of estimated positions is generated from a sequence of observations. 

The method is validated using videos collected on three construction sites—one hospital 

construction project and two teaching building construction sites. Visual data are pre-processed to 

extract entity positions and contextual features, which are then used as inputs to train and test the 

proposed method. The trajectory prediction is performed on the 2D image plane. The accuracy of 

prediction achieved by this method is 8.51 pixels in terms of final displacement error, with an 

observation time of 3s and prediction time of 5s. It was found that integrating contextual 

information with target movement information can result in a smaller final displacement error, 

especially when the length of prediction is longer than the length of observation. Compared with 

the conventional method that predicts position only one step ahead, the proposed method predicts 

trajectories over multiple steps following a sequence-to-sequence architecture and consequently, 

eliminates the error accumulation issue. 

This work is under review in Advanced Engineering Informatics, 2020, Jiannan Cai, Yuxi 

Zhang, Liu Yang, Hubo Cai, and Shuai Li. “A Context-Augmented Deep Learning Approach for 

Worker Trajectory Prediction on Unstructured and Dynamic Construction Sites”. Table titles and 

figure captions have been modified to maintain the form of the dissertation. 

4.1 Introduction 

The construction industry is one of the most dangerous industries: it employs only 5% of the 

US workforce (U.S.Bureau of Labor Statistics, 2018) but accounts for 21.1% (1008 deaths) of the 

total worker fatalities in 2018 (OSHA, 2018). The struck-by accident is a major cause, leading to 

804 worker fatalities (18%) in construction from 2011 to 2015 (X. S. Dong et al., 2017). It is also 



 

 

98 

a single leading cause for non-fatal injuries, accounting for 34% of cases of injuries from 2011 to 

2015 (US Department of Labor, 2016). To prevent struck-by accidents, previous studies (Marks 

& Teizer, 2013; Teizer et al., 2010; Teizer & Cheng, 2015) focused on determining the proximity 

between workers and equipment using sensing technologies and comparing the proximity to 

predefined thresholds to detect struck-by hazards. Low detection accuracy and reliability are the 

main challenges attributed to the difficulty in predicting the future movements of jobsite entities 

while considering the uncertainties of their movements on the unstructured and dynamic 

construction sites. For instance, warning systems can raise 59% false alarms due to the uncertainty 

in proximity analysis (Ruff, 2006). As a result, workers may lose confidence in and ignore the 

alarms, which hinders the efficacy of struck-by prevention systems. According to Luo et al. (2017), 

the estimated response rate of proximity warning systems for generic hazards is about 0.528. Under 

such a situation, accurate prediction of worker trajectory provides additional information and is 

critical to achieving a proactive and informative struck-by prevention system. 

Existing studies have created a few methods to predict trajectories of construction resources. 

Zhu et al. (2016a) proposed a novel Kalman filter to predict the movements of workers and mobile 

equipment using positions obtained from multiple video cameras. Dong et al. (2018) and Rashid 

et al. (2018) modeled the worker movements as a Markov process to predict their trajectories based 

on historical records. However, one main challenge in trajectory prediction of construction entities 

is the low accuracy over large time horizons because of two interrelated reasons. First, it is 

insufficient to only consider the previous movements of individual entities when predicting their 

future trajectories. Since multiple entities co-exist on the construction site, forming various 

working groups to accomplish different activities, their behavior will be influenced by each other 

and the specific activities they are involved in. To accurately predict worker trajectory, such 

contextual information must be incorporated. Second, due to the complex and dynamic jobsite 

context, it is not adequate to capture the worker movement using a pre-defined model with hand-

crafted features that may only fit particular scenarios. 

A few recent studies (D. Kim et al., 2019; Tang et al., 2019) attempted to predict the 

construction entity trajectory through a data-driven approach given the advances in deep learning 

techniques. Despite the promise of deep learning, the rich contextual information regarding 

working groups and involved activities on construction jobsites have not been fully exploited to 

better predict worker’s trajectory under various construction scenarios. Towards that end, this 
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study proposes a long short-term memory (LSTM)-based, context-augmented deep learning model 

that integrates both individual movement information and contextual information, including 

movements of neighboring entities, working group information, and potential destination 

information. In addition, the proposed method adopts a sequence-to-sequence (seq2seq) neural 

network architecture that allows the elimination of error accumulation in prediction trajectories 

over multiple time steps. 

4.2 Review of Related Studies 

In this section, related studies on proximity-based struck-by prevention and trajectory 

prediction are reviewed and their limitations are outlined. 

4.2.1 Related studies on proximity-based struck-by prevention 

Struck-by accident is one of the leading causes of construction fatalities and has attracted 

increasing research interest. Many studies developed prevention mechanisms to provide alerts 

when workers and equipment are too close to each other. Most of them compare the proximity 

information detected via various real-time locating systems (RTLS) with a pre-defined threshold 

and provide early warnings when the distance is less than the threshold (Marks & Teizer, 2013; 

Teizer et al., 2010; Teizer & Cheng, 2015). To adapt to different working states of equipment, 

Vahdatikhaki and Hammad (2015) proposed a method that generates the smart working zone of 

equipment to prevent the struck-by accident considering pose, geometry, and speed of the 

equipment. In addition to the analysis of the pairwise relationship, Wang and Razavi (2018) 

assessed the struck-by risk at a network level and integrated the proximity, blind spot information, 

and velocity into the decision on risk level.  

A major limitation of these studies is that the decisions are made, and early warnings are 

provided from a deterministic perspective. Due to the sensing errors and the subjectivity in 

determining the threshold, such approaches will generate numerous false alarms, resulting in less 

confidence of the site personnel in the warnings. To reduce the false alarm, Kim et al. (2015) 

leveraged a fuzzy inference approach considering the proximity and crowdedness (i.e., number of 

entities). Wang and Razavi (2016a, 2016b) developed different rules for different working 

scenarios given proximity, direction, and speed information. Edrei and Isaac (2017) integrated the 
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inaccuracy of the tracking system and created statistical zones based on the probability of struck-

by hazards. Despite the great research efforts, current approaches detect struck-by hazards and 

take actions “just” before potential accidents might happen with limited prediction ability, which 

has a large chance of interrupting normal operation and making incorrect warnings. Therefore, 

there is a critical need for accurate prediction of worker trajectory, which paves the way for a 

proactive and informative struck-by prevention mechanism. 

4.2.2 Related studies on trajectory prediction 

Different approaches in trajectory/intention prediction 

Trajectory/intention prediction is an essential yet challenging task in the computer vision 

community and has been increasingly studied in applications such as pedestrian behavior analysis 

due to the emergence of autonomous vehicles. There are typically three types of approaches in 

trajectory/intention prediction, i.e., model-based, planning-based, and data-driven approaches. 

Model-based approaches explicitly model the movement dynamics as mathematical models. 

Conventionally, tracking filters are used to predict the future steps in a trajectory (Hermes et al., 

2009; T. Liu et al., 1998; Prévost et al., 2007). For instance, the Kalman filter is applied to predict 

the trajectory using a Gaussian distribution with accumulated uncertainty. However, this approach 

often results in physically impossible locations (e.g., behind walls, within obstacles). Koojj et al. 

(2019) modeled pedestrian movement as a Switching Linear Dynamical System which considers 

different motion states, e.g., moving and stop. The Kalman filter is applied for prediction in the 

moving state, and the position remains unchanged in the stop state. 

Most studies on trajectory prediction in the construction domain fall in this category. For 

instance, Dong et al. (2018) and Rashid et al. (2018) modeled the worker movements using a 

hidden Markov Model and predict their trajectories based on historical records. Zhu et al. (2016a) 

adopted the Kalman filter to predict the movements of workers and mobile equipment from 

positions obtained from stereo cameras. One main drawback is that the model-based approach 

relies on simplified dynamics models and hand-crafted states with parameters estimated from 

historical records/observations, which may only fit particular scenarios and simple movements. 

Moreover, it treats entities as objects and only considers movement patterns, which works well in 



 

 

101 

the short-term prediction, but may degrade into random walks over large horizons (Ziebart et al., 

2009). 

Planning-based approaches treat entities as intelligent agents who actively plan their 

motion/path to achieve a goal. The problem is formulated as a path planning or optimal control 

task, such as the Markov decision process (MDP). The optimal policy is determined by 

maximizing some inherent reward functions. For instance, Ziebart et al. (2009) and Kitani et al. 

(2012) modeled the goal-directed human trajectories using a maximum entropy inverse optimal 

control method and incorporated environment features in the cost function to determine the optimal 

path an entity will select. Karasev et al. (2016) modeled pedestrian behavior as a jump-Markov 

process and the goal as a hidden variable. The reward function is formulated from the semantic 

map of the environment. Then, the trajectory is predicted by obtaining the optimal strategy that 

maps the goal to actions. Rudenko et al. (2018) integrate the MDP and social force model, where 

MDP is used for long-term prediction and social force is used to update the short-term states. One 

main drawback is that the planning-based approach relies heavily on prior knowledge, and it still 

uses hand-crafted features to model states and reward functions that are specific to particular 

settings. 

Recently, with the advances in deep learning techniques, the data-driven approach has been 

increasingly used given that it does not require explicitly modeling movement dynamics and that 

it can be generalized to various scenarios. The problem is usually formulated as a time-series 

classification or regression problem. For instance, Völz et al. (2016) predicted pedestrian intention 

of crossing or not crossing the crosswalks using three data-driven models, i.e., deep neural network, 

LSTM, and Support Vector Machine (SVM). Saleh et al. (Saleh et al., 2018) predicted lateral 

positions of pedestrians using three stacked layers of LSTM networks. 

Context-aware prediction 

Traditionally, only past movements of individual entities are used as inputs to predict future 

trajectory, which is insufficient to capture human behavior under different scenarios, especially 

when human behavior is influenced by the environment. Recent studies in the computer vision 

community have recognized the significance of context information and considered various 

contextual features to predict pedestrian trajectory and intention on the road. For instance, Kooij 

et al. (2019) found that incorporating pedestrian situational awareness, situation criticality, and 
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spatial layout of the environment increases the prediction accuracy. Alahi et al. (2016) created a 

social-LSTM model and proved that the pedestrian trajectory can be better predicted by 

incorporating the interaction among multiple pedestrians. Xue et al. (2018) and Syed and Morris 

(2019) incorporate the occupancy map and scene features in the trajectory prediction.  

Very few studies have incorporated the contextual information in trajectory prediction in the 

construction domain. Kim et al. (2019) applied a hyper-parameter tuned Social Generative 

Adversarial Network to predict trajectories of construction entities in 5s. Tang et al. (2019) 

developed an LSTM network that integrates entity type (i.e., worker and equipment) and 

occupancy maps of the construction site to prediction entity trajectory in up to 2s. Despite these 

pilot studies, the trajectory is predicted only in one specific job setting with entities conducting a 

specific activity. There remains a critical need to exploit the contextual cues that are effective to 

predict the entity trajectory under general construction jobsite scenarios. To close this gap, this 

study proposes an LSTM-based, context-augmented model that integrates both individual 

movement information and contextual information, including movements of neighboring entities, 

relationship with neighboring entities (i.e., within one group or not in one group), and potential 

destination, to accurately predict trajectory of construction workers. 

4.3 Methodology 

In this study, a context-aware LSTM-based method has been designed to accurately predict 

worker trajectories using visual data that contain rich contextual information. Entity movement 

and contextual information are incorporated in the LSTM-based seq2seq neural network for 

trajectory prediction. Figure 4.1 illustrates the overall framework. This method consists of two 

major steps: Step 1—contextual information formulation and Step 2—LSTM-based seq2seq 

trajectory prediction.  

In the first step, contextual information regarding the interaction between the entity and its 

nearest neighbor, and the involved construction activity is considered. Specifically, the contextual 

information is represented by three features, the neighbor position, the relationship with the 

neighbor (i.e., group/not a group), and the distance from potential estimation. In Chapter 3, it was 

found that the interactions among construction entities can be modeled using positional and 

attentional cues and further used to reason about the construction working group and 

corresponding group activity. This forms the technical foundations to formulate the contextual 
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features in this study. In the second step, the above features are concatenated and fed into an LSTM 

encoder that encodes the information regarding both entity movements and jobsite context during 

the observation time. The encoded information is then fed into an LSTM decoder that generates a 

sequence of estimated positions during the prediction period. In this way, the proposed method 

takes into account the construction job contextual information and avoids the error accumulation 

when predicting trajectory over multiple time steps. 

 

 

Figure 4.1 Context-aware LSTM method for construction worker trajectory prediction 

4.3.1 Problem formulation 

In this study, the entity position is captured by the mid-bottom point of its bounding box on 

the 2D image plane. As a result, at any time step t, the ith entity on the jobsite is represented by its 

pixel coordinates on the image plane, i.e., ( ),i i

t tx y , where the superscript refers to the ith entity, 

subscript refers to the time step t, and x and y represent the 2D pixel coordinates. The objective is 

to predict the entity positions from time step 
1obsT +
 to 

obs predT +
 based on the observation of site 

dynamics, including both the positions of all entities and the jobsite contexts from time step 1 to 

time step obsT . Different from previous studies (Alahi et al., 2016; Tang et al., 2019) which only 

observe entity positions and implicitly incorporate the interactions among entities using hidden 

states learned from deep neural networks, this study explicitly models the contextual information 

(including entity interaction and involved activity) on the jobsite based on the methods developed 

in Chapter 3. Note that it is assumed the visual data are first preprocessed to obtain entity positions 

and contextual features, consistent with most of the related studies (Alahi et al., 2016; D. Kim et 

al., 2019; Tang et al., 2019; Xue et al., 2018). 
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4.3.2 Contextual information formulation 

Construction entities (including both workers and equipment) interact with each other, 

constituting working groups to accomplish assigned tasks. It is expected that the worker’s behavior 

will be influenced by other entities as well as the involved construction activity. The rationale is 

that construction workers tend to avoid obstacles to prevent potential collisions, while staying 

close to their co-workers or group members to conduct the activity collaboratively. Meanwhile, 

worker’s movement is typically within the workspace specified by their involved activity, which 

indicates their potential destination. The specific contextual features considered in this study 

include neighbor position, group relationship with neighbor, and distance to potential destination. 

Neighbor position 

It is not uncommon that the positions of other entities in the scene are incorporated to reflect 

their interactions with the target entity when predicting its trajectory. A conventional approach is 

to construct an occupancy map of the scene or within a certain area of the target entity to represent 

the existence of other entities (Alahi et al., 2016; Tang et al., 2019). A main drawback is that if the 

grid size is large, resulting in coarse occupancy map, the dynamic changes of entity positions 

cannot be effectively reflected, especially when entity movement is not substantial across 

consecutive time steps, such as on construction sites; if the grid size is small, resulting in fine 

occupancy map, only a few grids will be occupied by entities, which leads to very sparse 

occupancy map, i.e., most values are zero. 

In contrast, this study directly uses neighbor position information as one contextual feature. 

Note that, only the position of entity’s nearest neighbor is considered in order to ensure the same 

dimensional features in different scenarios. It is reasonable as an entity is more likely to be affected 

by others who are spatially closer to them. Because position information of all entities (from 1 to 

N) are observed at each time step, the position of the nearest neighbor for entity i can be easily 

denoted as ( ) ( ), , arg min , , 1... ,j j i k i k

t t t t t tx y j x x y y k N k i= − −   . 

Group relationship with neighbor 

In addition to the neighbor position, the relationship between an entity and its neighbor in 

terms of whether or not they belong to the same working group also influences entity movement. 
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For instance, workers tend to avoid entities that are not in the same group to prevent potential 

conflict, while they tend to have similar movement patterns with their co-workers. However, such 

scenarios are not differentiated, and the group information has been overlooked in current studies.  

The group relationship between an entity and its nearest neighbor is considered as a second 

contextual feature: if they belong to the same working group, the feature value is 1, otherwise, it 

is 0. The group information can be obtained using the method created in Chapter 3, as illustrated 

in Figure 4.2. 

 

 

Figure 4.2 Construction working group identification 

In Chapter 3, an LSTM-based method for working group identification was created by 

integrating positional and attentional cues between construction entities. First, spatial and 

attentional states of construction entities from construction videos are represented as numerical 

values. The spatial state refers to an entity’s real-time position on the image plane and the 

attentional state refers to the direction of an entity’s visual attention, captured by head pose, body 

orientation, and body pose. Then, positional and attentional cues are computed from the spatial 

and attentional states of two entities to model their interaction. Five positional cues (i.e., distance 

relationship, directional relationship, difference in speed, difference in moving direction, and 

difference between moving direction and relative direction), and six attentional cues (i.e., 

difference between head yaw and relative direction, difference in head yaw, difference between 

moving direction, difference between head yaw and body orientation, head pitch, and body pose) 

are modeled as critical features. Finally, LSTM-based classification is performed to determine 

whether two entities belong to the same working group based on the time-series positional and 

attentional cues. 
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Distance to potential destination 

On construction sites, worker behavior is goal-based and purposeful, motivated by their 

involved activities. It is expected that the worker will inherently move towards the potential 

destination, and thus, distance between worker’s current position and the potential destination is 

treated as a third contextual feature, denoted as ( ) ( ), ,i i i dest i dest

t t t tx y x x y y  = − − . Note that it is 

assumed the destination is time-invariant during a short period of time, and the distance to the 

destination is used as a contextual feature to incorporate the temporal dynamics. This study 

simplifies the destination as prior knowledge to examine its influence on worker trajectory 

prediction. In practice, the potential destination can be inferred from the involved activity and the 

corresponding workspace, where ongoing activity can be automatically learned from visual data 

and workspace can be acquired from site layout or a building information model. 

4.3.3 LSTM-based sequence-to-sequence (seq2seq) trajectory prediction 

LSTM network (Hochreiter & Schmidhuber, 1997) is a typical recurrent neural network 

(RNN) and can be used to model temporal dependency among sequential features. It has been 

successfully applied to many sequential problems such as natural language translation and activity 

recognition. Figure 4.3 illustrates a typical LSTM network that takes time-series features 

1 2{ , ,..., }nx x x  as input. The LSTM network consists of several cells ordered sequentially, each of 

which has the same structure with three gates, i.e., input gate, forget gate, and output gate, to 

control the information flow within the cell. At time step t, the cell state is determined by both the 

input of the current time step and the output from the previous time step, updated using Equation 

4.1. 

 

 

Figure 4.3 Typical structure of LSTM network 
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Where tx  is the input, , ,t t ti f o  are input gate, forget gate, and output gate at time t 

respectively. th is the hidden state with N hidden units (N=25 in this study) and is also the output 

of this cell, and 
tc  is the cell state. tg  is the input modulation that adds information to cell state. 

  is the sigmoid function and   represents element-wise multiplication. Wxi, Wxf, Wxo, Wxc, Vhi, 

Vhf, Vho, Whc, bi, bf, bo, bc, are the learnable parameters for each LSTM cell that control the level of 

information transferred from previous time steps as well as the level of information taken from the 

current time step. 

Recently, LSTM network has been widely used in data-driven trajectory prediction. A 

conventional approach (Alahi et al., 2016; Saleh et al., 2018) is that the observations from time 

step 1 to Tobs are fed into the LSTM network (as shown in Figure 4.3) and the position in the next 

time step Tobs+1 is estimated using the output of the last LSTM cell. Then, the estimated position 

at time Tobs+1 is used as input along with observations from time 2 to Tobs, to predict for time Tobs+2, 

which happens recursively till Tobs+pred. Under such a case, the model only predicts one step each 

time and the predicted result is used as inputs recursively in order to generate a sequence of 

positions over multiple time steps. This practice leads to large error accumulation. 

To solve this problem, this study adopts the LSTM encoder-decoder architecture, which 

allows the generation of a sequence with arbitrary length from a given sequence and was first 

introduced in machine translation tasks (Sutskever et al., 2014). Figure 4.4 illustrates the proposed 

model. In the method, the entity position during observation time and the corresponding contextual 

features (discussed in Section 4.3.2) are concatenated into time-series feature vectors and fed in 

LSTM encoder. The encoder outputs an encoded vector (i.e., the hidden state of the final encoder 

LSTM cell) that encapsulates the information from the observed movements and jobsite context. 

The encoded vector is used to initialize the states in LSTM decoder which allows the integration 

of previous information for better prediction of future trajectory. The hidden state of each LSTM 
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cell in the decoder is considered as the output of the corresponding time step, which is further fed 

into a dense layer with two nodes. The dense layer essentially performs a linear regression, 

resulting in estimated positions from time Tobs+1 to Tobs+pred. 

 

 

Figure 4.4 Context-aware LSTM-based seq2seq model 

Similar to Saleh et al. (2018), the network is trained by minimizing one of the most 

commonly used loss functions, i.e., mean squared error (MSE) loss function (T. Lee, 2007), using 

Adam optimizer (Kingma & Ba, 2014). The MSE is computed as ( )
2

1

1 ˆ
N

i i

i

MSE Y Y
N =

= − , where N 

is the size of training data, ˆ
iY  and iY  are the predicted and actual ith trajectory. 

4.4 Experiments 

The dataset used to test the proposed method is introduced and the implementation details 

are described. Two evaluation metrics are also explained to assess the prediction performance. 

4.4.1 Data description 

To demonstrate the proposed method, ten construction videos were collected from three 

projects: a hospital construction project from the publicly-available website YouTube (YouTube, 
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2019) and two teaching building projects taken by authors on the campus of Purdue University 

and the University of Tennessee, Knoxville (UTK), respectively. The videos consist of a total of 

84 workers in different construction scenarios, conducting various activities in different working 

groups. All videos were down-sampled to 2fps, considering the various frame rates of videos in 

the dataset, which is also compatible to other studies (Alahi et al., 2016; Xue et al., 2018) on 

pedestrian trajectory prediction using surveillance video. Note that choosing a low frame rate (e.g., 

2 fps) will improve the processing time but lose some information compared to a high frame rate 

(e.g., 30 fps). It is reasonable to select a relatively low frame rate when the speed of the entity is 

not very fast, such as on construction sites. Figure 4.5 illustrates some images from the dataset. 

 

 

Figure 4.5 Sample images ((a)-(b) from hospital project, (c) from teaching building project on 

Purdue campus, (d) from teaching building project on UTK campus) 

4.4.2 Data preparation 

Visual data were pre-processed to extract entity positions and contextual features, which are 

then used as inputs to train and test the proposed method. First, all entities (workers and equipment) 

are manually annotated using bounding boxes with pixel coordinates of the mid-bottom points 

representing their positions on the images. The image annotation tool, LabelImg, was used to 

annotate entities on frames. Second, the nearest neighbor of each worker is identified by computing 

the distances between any two entities. It is noted that only workers are considered as target entities 

for trajectory prediction, however, the neighboring entity may include both workers and equipment. 

Third, two entities are considered belonging to one working group if they are interacting during 

the construction, and are labeled as “1”. Otherwise, they are considered working independently, 

labeled as “0”. As explained in Section 4.3.2, this information can be automatically obtained from 

positional and attentional cues using the method created in Chapter 3. However, to validate the 

influence of group information on trajectory prediction, the annotated group information is used. 

Finally, the potential destination of workers is determined as their final position in the scene, based 
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on which the dynamic distance from worker to the potential destination is computed in both x and 

y directions. As the purpose of this study is to examine the influence of contextual information on 

trajectory prediction, the potential destination is simplified as prior knowledge. 

As a result, a total of 241 trajectories with various lengths were obtained for 84 workers. The 

length of observation was set as 3s (i.e., 6 frames) and prediction length as 5s (i.e., 10 frames), 

consistent with relevant studies (Alahi et al., 2016; Xue et al., 2018) on pedestrian trajectory 

prediction. Correspondingly, the 241 trajectories were trimmed into tracks using a sliding window 

with a fixed length of 8s (i.e., 16 frames). To augment the dataset, the sliding window starts from 

every other frame of the original trajectory, resulting in 3640 tracks (tracks that are less than 16 

frames were excluded). 

4.4.3 Implementation details 

The proposed method is implemented using Keras library on top of Tensorflow platform, on 

a desktop with 3.6GHz Intel i9-9900K CPU, 32GB, and NVIDIA GeForce GTX 2080 Ti GPU. 

The dataset is randomly split into training set (80%), evaluation set (10%), and testing set (10%). 

The network is trained with Adam optimizer, with a learning rate of 0.001, batch size of 20, and 

dropout of 0.5. To further prevent overfit, early stopping criterion is used. Specifically, the network 

is trained on the training set, and if the accuracy on the evaluation set does not increase for 100 

epochs, the model will be terminated and the checkpoint that leads to the highest accuracy on the 

evaluation set will be saved. The trained model will then be tested on the testing set to evaluate 

the performance. 

4.4.4 Evaluation metrics 

The model is evaluated using two metrics: 

(a) Average final displacement error (FDE): The MSE between the final predicted location and 

the final actual location of all testing data, computed as 1
ˆ

N i i

T Ti
y y

FDE
N

=
−

=


, where N is data 

size, ˆ i

Ty  is the final predicted location for ith data, and i

Ty  is the final actual location for ith data. 

(b) Average displacement error (ADE): The MSE over all locations of predicted trajectories and 
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the actual trajectories, computed as 1 0
ˆ

N t T i i

t ti t

pred

y y
ADE

N T

=

= =
−

=


 
, where 

predT  is the prediction 

duration. 

4.5 Results 

4.5.1 Quantitative prediction results 

The result of the proposed method is compared with that obtained using two other data-

driven models: (1) a baseline model that recursively predicts trajectory based on object positions; 

and (2) a seq2seq model that predicts trajectory over multiple time steps simultaneously based on 

object positions. Figure 4.6 illustrates two example results of trajectory prediction. The proposed 

method results in the predicted trajectory (blue line) closest to the ground truth (red line). The 

position-based seq2seq model (yellow line) leads to a trajectory with a slightly larger discrepancy 

compared to the proposed method. In contrast, the position-based recursive model (green line) has 

the largest discrepancy from ground truth trajectory due to the error accumulation. 

 

 

Figure 4.6 Example results of trajectory prediction 

Table 4.1 lists the quantitative results from the three models. The recursive approach leads 

to much larger errors in both final displacement error (FDE) and average displacement error (ADE) 

compared to the seq2seq approach, which proves that the seq2seq model is an effective way to 

avoid error accumulation when predicting trajectory over multiple time steps. The context-

augmented model results in smaller FDE but a slightly larger ADE compared to the position-based 
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model. This is because by incorporating contextual information, especially the potential 

destination information, the model is inherently trained to adapt more to the long-term goal, rather 

than accurate prediction of each step. It is reasonable because the final displacement is more critical 

in predicting the struck-by hazard in safety management. 

Table 4.1 Quantitative results from three models 

Model FDE (pixel) ADE (pixel) 

Position (recursive) 28.32 15.41 

Position (seq2seq) 9.00 8.95 

Position +Context (seq2seq) 8.51 9.00 

 

4.5.2 Qualitative analysis 

The results from two seq2seq models, i.e., position-based seq2seq model and context-

augmented seq2seq model, are analyzed qualitatively to evaluate the impact of contextual 

information and identify the scenarios, under which integrating contextual information leads to 

better performance. 

It was found that when workers walk continuously and are not involved in specific 

collaborating activities, contextual information does not have a significant influence and both 

models result in relatively accurate prediction, as shown in Figure 4.7. On the other hand, if the 

target is collaborating with others or involved in activities within an area, incorporating contextual 

information leads to better prediction (see Figure 4.8). In Figure 4.8(a), the target intends to move 

towards his co-worker, who is working in the left-bottom corn of the image. With contextual 

information, especially the position and the relationship with the nearest neighbor, the context-

aware model accurately predicts the behavior of the target moving towards his neighbor, resulting 

in a path closer to the actual trajectory. In contrast, the position-based model only considers 

individual movement patterns and is more likely to end up with a near-linear trajectory, which is 

farther from the actual trajectory. In Figure 4.8(b), the target is conducting road paving activity 

with a roller and other co-workers. Although there remains some discrepancy with the actual 

trajectory, the context-aware model accurately predicts the trend of worker movement, whereas 

the position-based model predicts the movement in the opposite direction. 
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Figure 4.7 Two seq2seq models lead to similar results under moving scenarios 

 

 

Figure 4.8 Context-augmented model leads to better prediction 
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In some cases, however, the proposed method may fail, see Figure 4.9. When the status of 

target significantly changes during prediction time (e.g., from stationary to moving and vice versa), 

the movement cannot be accurately predicted, see Figure 4.9 (a). In addition, it is also very 

challenging when workers are conducting activities within a limited area without substantial 

movement, as shown in Figure 4.9 (b). 

 

 

Figure 4.9 Examples when context-augmented model fails 

4.5.3 Influence of prediction time 

To evaluate the influence of prediction time on different methods, this study examines the 

prediction performance with respect to various ratios of prediction to observation length within the 

8-s track prepared in the dataset. Specifically, the partition of observation time and prediction time 

varies as 7s/1s, 6s/2s, 5s/3s, 4s/4s, 3s/5s (used in the previous experiment), and 2s/6s. The results 

are illustrated in Figure 4.10. It is not surprising that both FDE and ADE increase as the ratio of 

prediction to observation increases for all three prediction models, which further proves the 

challenge in long-term trajectory prediction (i.e., when prediction time is no less than observation 

time). From Figure 4.10(c), the discrepancy between FDE and ADE for the position-based 

recursive model becomes much larger as the increase of the ratio, compared to those in two seq2seq 
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models (Figure 4.10(a) and (b)). It proves the advantage of seq2seq architecture in mitigating the 

error accumulation for long-term trajectory prediction. In the comparison of position-based and 

context-aware seq2seq models, the FDEs for both models are compatible in short-term prediction 

(i.e., when the ratio is less than 1). However, the context-aware method leads to lower FDE in 

long-term prediction. 

 

 

Figure 4.10 Influence of prediction time on different models 

4.6 Contributions 

This study contributes to the body of knowledge in three aspects. First, the proposed context-

augmented deep learning method for construction worker trajectory prediction not only considers 

spatial interaction between the target and neighboring entities, but also innovatively incorporates 

the semantic relationship between entities (i.e., whether or not within a working group) and the 

long-term goal of the target (i.e., the potential destination). The results show that integrating the 

above contextual information outperforms the position-based prediction, especially for long-term 

prediction when prediction time is no less than observation time. Second, an LSTM encoder-

decoder architecture is adopted to form a sequence-to-sequence model, which eliminates the error 

accumulation in predicting trajectory over multiple time steps, compared to conventional 

prediction model that only predicts position one-step ahead each time. Third, an extensive 

qualitative analysis is conducted to identify the scenarios where incorporating contextual 

information is more worthwhile. It is found that context-aware model leads to better performance 

when workers are conducting collaborative activities. When workers move continuously with 

limited interactions with other entities, integrating contextual information does not have a 

significant impact, and both context-augmented and position-based seq2seq methods achieve 
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relatively accurate prediction results. These findings provide valuable insights on the selection of 

appropriate methods for effective and efficient trajectory prediction of construction entities. 

4.7 Summary and Conclusions 

Predicting workers’ trajectories on unstructured and dynamic construction sites has great 

potential to improve workplace safety. It provides rich information and is critical to pro-actively 

prevent struck-by accidents, which has been a major cause of construction fatalities and a single 

leading cause for non-fatal injuries. This study proposed an LSTM model augmented by jobsite 

contextual information for construction worker trajectory prediction considering both individual 

movement information and jobsite contextual information. The contextual information is 

represented as movements of neighboring entities, working group information, and potential 

destination information. Experiments were conducted using videos collected from three different 

construction projects. The results show that the newly created method leads to a smaller final 

displacement error than the model relying solely on target movements, especially in long-term 

prediction when the length of prediction is no less than that of observation. The adopted sequence-

to-sequence network architecture also significantly improves the performance in both final 

displacement error and average displacement error by eliminating error accumulation over 

multiple time steps. 

In addition, qualitative analysis was conducted to identify scenarios when incorporating 

contextual information is worthwhile. It was found that when workers are conducting collaborative 

activities within an area, incorporating contextual information leads to better results. The context-

aware prediction model should be selected when the construction scenario involves multiple 

entities collaborating on group activities. Both context-aware and position-based methods lead to 

relatively accurate predicted trajectories when workers move continuously and are not involved in 

collaborating activities. However, in such case, the position-based method is favorable. Although 

in this study, the training time for two models is almost the same (about 3s per epoch), with more 

data in the future, the position-based method is expected to be less computational expensive 

considering the fewer features involved in training the model. Moreover, extracting contextual 

information involves much more complex computing process and may introduce additional errors. 

Both models may fail when entity states change significantly. In such case, it is not reliable to 
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directly predict worker’s trajectory and more information (e.g., activity type, entity posture) may 

be needed.  

This study can be extended towards several directions in future research. First, besides 

contextual information that reflects dynamic interactions among construction entities, static scene 

contexts such as site layout can also be incorporated for further improvement. Semantic scene 

segmentation networks such as SegNet (Badrinarayanan et al., 2017) can be leveraged for semantic 

scene features (Syed & Morris, 2019). Second, more activity-related information (e.g., worker 

poses) can be added to differentiate various states of workers whose states change significantly or 

who are involved in multiple working activities in a limited area without substantial movement. 

Third, because the available construction dataset is very limited and data annotation is time-

consuming and labor-intensive, transfer learning can be explored by leveraging the public datasets 

in other domain (e.g., crowds datasets (Lerner et al., 2007; Pellegrini et al., 2009)) to overcome 

the limitation in available annotated construction datasets. Fourth, the bivariate Gaussian 

distribution can be used to represent the trajectory to incorporate the uncertainty associated with 

the predicted trajectory. 
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 SUMMARY 

This chapter summarizes the entire dissertation and discusses directions for future work. 

5.1 Summary and Conclusions 

Construction sites are unstructured and dynamic, with numerous resources (e.g., workers, 

equipment, and materials) co-existing and interacting constantly. Having a holistic situational 

awareness of the site dynamics is essential to improve construction site safety performance, such 

as prevention of struck-by accidents that have been a major cause of construction fatalities and 

non-fatal injuries. This dissertation presents a novel data-driven approach to enhancing holistic 

situational awareness—perception, comprehension, and prediction—of the jobsite for minimizing 

the risk of potential struck-by hazards. Three specific problems have been addressed in this 

dissertation, including 1) accurate perception of positional states of construction workers – a 

hybrid frame that fuses vision-based tracking and radio-based identification for multi-worker 

tracking, 2) jobsite context comprehension in terms of working groups and activities – a two-step 

LSTM method integrating positional and attentional cues, and 3) construction worker trajectory 

prediction – a context-augmented LSTM method incorporating both worker movements and 

contextual information. Chapters 2 to 4 are dedicated to these three problems respectively. 

Chapter 2 presents a hybrid framework that fuses results obtained from vision-based tracking 

and radio-based identification and localization for 3D tracking of multiple construction workers. 

Compared to traditional fusion approaches that directly fuse locations extracted from these two 

approaches, the proposed method treats vision-based tracking as the main source to extract the 

object trajectory. Radio-based identification and localization results are used as a supplementary 

source to augment anonymous visual tracks with identity information and correct errors (e.g., false 

positives) in vision-based object detection. The newly created method has been validated using 

two indoor experiments. Results show that the new approach for fusing vision- and radio-based 

results increases the overall accuracy from 88% and 87% to 95% and 90%, compared to using the 

vision-based approach alone. The integration of radio-based identification is much more robust 

than using vision system alone as it allows the recovery of the same entity ID after the trajectory 

is fragmented and results in fewer fragmentations that last longer than 0.2s. 
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Chapter 3 presents a two-step classification approach—working group identification 

followed by activity recognition, leveraging both positional and attentional cues, to recognize 

complex interactions and their involved entities from videos that contain different activities with 

multiple entities. The spatial and attentional states of individual entities are represented 

numerically, and the corresponding positional and attentional cues between two entities are 

computed. LSTM networks are designed to (1) classify whether two entities belong to the same 

group, and (2) recognize the activities they are involved in. The newly created method is validated 

using two sets of construction videos. Identifying working groups before recognizing ongoing 

activities enables the exclusion of group-irrelevant entities and thus, improves the performance. 

Moreover, by leveraging both positional and attentional cues, the accuracy increases from 85% to 

95% compared with cases using positional cues alone. 

Chapter 4 presents an LSTM model augmented by the context information, which 

incorporates both individual movement and workplace contextual information. Contextual 

information regarding movements of neighboring entities, working group information, and 

potential destination information is concatenated with movements of the target entity and fed into 

an LSTM network with an encoder-decoder architecture to enable the sequence-to-sequence 

prediction, i.e., a sequence of estimated positions is generated from a sequence of observations. 

The method is validated using videos collected on construction sites. The accuracy of prediction 

achieved by this method is 8.51 pixels in terms of final displacement error, with an observation 

time of 3s and prediction time of 5s. It was found that integrating contextual information with 

target movement information can result in a smaller final displacement error, especially when the 

length of prediction is longer than the length of observation. Compared with the conventional 

method that predicts position only one step ahead, the proposed method predicts trajectories over 

multiple steps following a sequence-to-sequence architecture and consequently, eliminates the 

error accumulation issue. 

This dissertation research enhances the holistic situational awareness of the construction site 

through a data-driven approach. This research identified critical features that are unique in the 

construction domain to capture entity interactions and created generic models to represent them 

numerically. By establishing the relationship between entity interaction patterns with construction 

working groups and group activities, this research enables the comprehension of complex jobsite 

contexts on dynamic and unstructured workspaces. This research also identified critical contextual 
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features that will influence worker movements and innovatively incorporates contextual 

information into the prediction of future worker states.  

The resulting holistic situational awareness of dynamic construction jobsites can be further 

leveraged to develop pro-active, context-aware control systems for struck-by prevention. In the 

system, the risk of potential collision can be estimated based on the predicted trajectory of 

construction entities, and early warnings can be provided to involved entities to avoid struck-by 

accidents. This newly enhanced capacity is possible to be extended to prevent other types of 

accidents, such as fall accidents and electrocutions. It has great potential to contribute not only to 

improve site safety performance by avoiding struck-by accidents, but also to automatic progress 

monitoring and control to ensure productivity, as well as to safe and efficient human-robot 

collaboration on future construction scenarios. 

5.2 Future Work – Roadmap towards Harmonious Human-Robot Collaboration in 

Future Smart Construction 

The achievement of this dissertation can be implemented to a system approach in order to 

prevent struck-by accidents, illustrated in Figure 5.1. Vision and radio systems can be used to 

collect data on entity states, which will be transmitted to a central server to perform analysis using 

algorithms developed in this dissertation, including state perception, jobsite context 

comprehension, and trajectory prediction. This holistic situational awareness can be leveraged to 

develop a proactive and context-aware control system, such as an adaptive path planning 

mechanism based on the predicted trajectory of jobsite entities. Then such information and 

guidance can be communicated to field crews in different formats through mobile devices. For 

instance, in addition to early warnings in sounds and vibration, for operators in equipment, we can 

visualize the site condition including the movements of their surrounding entities, and show the 

planned trajectory for them. For workers, we can provide tailored information on their nearby 

hazards through voice and visualization using mobile devices or augmented reality devices. By 

doing these, the jobsite entities are augmented with holistic and ubiquitous situational awareness 

to prevent struck-by accidents. 
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Figure 5.1 Future system implementation for struck-by prevention based on holistic situational 

awareness 

This dissertation also establishes the roadmap towards harmonious human-robot 

collaboration in future smart construction. With the emergence of automation and robotics, 

autonomous robots have been increasingly introduced to construction projects to relieve human 

workers from demanding and hazardous tasks (Daeho Kim et al., 2019). Examples include mobile 

robots for bridge inspection (Sutter et al., 2018) and robotic excavator (ASI, 2019). It is predicted 

that the robot market revenue will increase from $22.7 million in 2018 to $226 million by 2025, 

with more than 7,000 construction robots deployed on construction sites and most being robot 

assistants (Sanders & Kaul, 2019). The rapid advances in construction robots and the co-existence 

of and interaction among workers and construction robots will bring in more challenges to the 

already unstructured and dynamic site, such as the difficulty in mutual understanding and 

harmonious collaboration between workers and robots.  

Figure 5.2 illustrates the vision of future smart construction and how this research can 

contribute to that. With multimodal sensors throughout the jobsites including cameras, robotic 

systems such as unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV), wearable 

on the workers (e.g., motion sensors and biosensors), and embedded on the machines, the jobsite 

is monitored continuously in all aspects in real-time. Having the heterogeneous data, we can do 

predictive analysis to gain holistic situational awareness on the jobsite to facilitate the real-time 

decision and control, and the gained knowledge is also visualized to facilitate the collaboration 

and decision making. More importantly, humans and robots will gain shared and enhanced 
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situational awareness, which will allow for their mutual understanding and effective collaboration 

on complex construction tasks. 

 

Figure 5.2 Vision on future smart construction 
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