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ABSTRACT

Barhoumi, Ahmad B. Ph.D., Purdue University, August 2020. Orthogonal Polyno-
mials on S-curves Associated with Genus One Surfaces. Major Professor: Maxim L.
Yattselev.

We consider polynomials Pn(z) satisfying orthogonality relations∫
zkPn(z)ρ(z;N)dµ(z) = 0 for k = 0, 1, ..., n− 1

where the measure µ is, in general, a complex-valued Borel measure supported on

subsets of the complex plane. In our considerations, we will focus on measures of the

form dµ(z) = ρ(z)dz where the function ρ may depend on other auxiliary parameters.

Much of the asymptotic analysis is done via the Riemann-Hilbert problem and the

Deift-Zhou nonlinear steepest descent method, and relies heavily on notions from

logarithmic potential theory.
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1. INTRODUCTION

The story of orthogonal polynomials is an extremely old one, and spans over many

types of orthogonality (classical, Sobolev, non-Hermitian, discrete, etc.) and enjoys

many applications in approximation theory, mathematical physics, and numerical

methods, to name a very few. In this dissertation, we will study orthogonal polyno-

mials satisfying non-Hermitian orthogonality conditions with respect to a variety of

measures supported in the complex plane.

Unlike classical polynomials, the degree of polynomials orthogonal w.r.t a non-

positive weight up to order n may not necessarily be n. This problem comes to the

fore when the support of the measure of orthogonality is a so-called S-contour as-

sociated with a Riemann surface of genus g > 0, and can pose a challenge as far

as asymptotic analysis is concerned. The main objective is to attain large-degree

asymptotic formulas for the first nontrivial appearance of the aforementioned obsta-

cles; polynomials on S-contours associated with genus one Riemann surfaces.

Outline

The rest of this document is organized in the following fashion: in Chapter 2,

we introduce orthogonal polynomials via Padé approximants, and discuss their most

basic properties. Chapter 3 is a very brief survey of results regarding the convergence

Padé approximants in a variety of senses. Chapter 4 is a bird’s-eye-view introduction

to the method we will be heavily relying on to achieve asymptotic results: Riemann-

Hilbert analysis. In Chapter 5, we apply this method of analysis to a specific family

of Jacobi-type orthogonal polynomials whose degrees exhibit a novel mechanism of

degeneration, and state the relevant results. Proofs of these statements are provided

in Chapter 6, and rely on multiple formulas listed in Appendix A. Chapter 7 is devoted
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to a different type of orthogonality, so-called varying orthogonality. The analysis of

these polynomials requires some notions from potential theory in external fields, which

are introduced there. The analysis of the corresponding orthogonal polynomials is

provided in Chapter 8. Finally, we consider polynomials corresponding to a cubic

polynomial potential (compared to a degree 1 in Chapter 7) in Chapter 9, with

analysis deferred to Chapter 10.
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2. PADÉ APPROXIMANTS AND ORTHOGONALITY

Consider the following problem: given a function f(z), the objective is to find a ratio-

nal function with prescribed type that agrees with f “as much as possible.” Roughly

speaking, one can view this as an attempt to analytically continue a function of

form (2.1.1) into a larger domain and via these rational approximants. These objects

have fallen in and out of vogue often; they were first considered by Georg Frobenius,

who derived what are now known as Frobenius identities, connecting approximants

of different orders and offering an effective method for explicit computation. Later

on, Charles Hermite used a certain generalization of these rational functions (so-

called Hermite-Padé approximants) to prove the transcendence of e. His student,

Henri Padé, arranged these approximants, now known as Padé approximants in ta-

bles (Padé tables) and studied structural properties of these tables. Much of this

and more on computation and application of Padé approximants can be found in

Baker and Graves-Morris books [1, 2]. We will be mainly interested in questions of

convergence of Padé approximants.

In this chapter, we introduce the precise formulation of the problem described

above, and connect it with orthogonal polynomials. To move on with our study, we

will need to recall some basic facts about orthogonal polynomials and their various

properties and how they apply to Padé approximation. The theory of orthogonal

polynomials is an old one with deep roots, and so we will confine the discussion to

matters relevant in the forthcoming chapters. For a general reference on orthogonal

polynomials, see the classic book of Szegő [3] and the more recent book by Stahl and

Totik [4]. We then state and prove Markov’s theorem, the first (and one of the few)

results regarding convergence of approximants.
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2.1 Padé Approximants at Infinity

Consider the function

f(z) =
∞∑
i=0

µi
zi+1

. (2.1.1)

We seek polynomials Pn, Qn with degPn ≤ n so that

Rn(z) := (Pnf −Qn)(z) = O
(

1

zn+1

)
. (2.1.2)

Equation (2.1.2) imposes 2n + 1 conditions on 2n variables, and hence always has a

nontrivial solution, and no solution is such that Pn ≡ 0. We let Pn denote the monic

polynomial.

Definition. The nth diagonal Padé approximant

[n/n]f (z) :=
Qn(z)

Pn(z)
(2.1.3)

While the pair (Qn, Pn) that solves (2.1.2) may not be unique (for one, we can

multiple both by constants, but more serious non-uniqueness can arise), the following

still holds

Proposition 2.1.1. The ratio Qn/Pn is unique.

Proof. Suppose there exists two pairs of solutions to (2.1.2), (Qn, Pn) and (Q̃n, P̃n),

then

(Pnf −Qn)(z) =
c

zn+1
+ · · · ,

(P̃nf − Q̃n)(z) =
c̃

zn+1
+ · · · .

where c, c̃ may vanish (this corresponds to approximants over-interpolating at infin-

ity). Eliminating f and noting that degPn, deg P̃n ≤ n yields

QnP̃n − Q̃nPn =
k

z
+ · · ·

but, since the left hand side is polynomial, we conclude that QnP̃n − Q̃nPn ≡ 0 =⇒

Qn/Pn = Q̃n/P̃n
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While we will focus most of our attention on the diagonal Padé approximants

defined above, It is still important to make the following definition:

Definition. Let Pn, Qm be polynomials with degPn ≤ n, degQm ≤ m that satisfy

(Pnf −Qm)(z) = O
(

1

zm+1

)
. (2.1.4)

Then the ratio

[m/n]f (z) :=
Qm(z)

Pn(z)
(2.1.5)

is the Padé approximant of type (m, n).

Much like the diagonal case, equation (2.1.4) imposes n + m + 1 conditions on

n + m variables, and hence always has a nontrivial solution, and no solution is such

that Pn ≡ 0. Arranging all Padé approximants into a table yields the Padé Table.

For more on this and the structure of this table, see [1].

In the special case where {µi}∞i=0 is a sequence of numbers that coincides with the

set of moments of some compactly supported Borel measure µ, i.e.

µi =

∫
xi dµ(x) for i = 0, 1, ...

then we can write

f(z) =

∫
dµ(x)

z − x
(2.1.6)

Properties of polynomials Pn will depend on the nature of this measure µ, with the

most important property (for us) being orthogonality. Suppose (2.1.1) converges in

{|z| > R} for some R > 0 and let Γ ⊂ {|z| > R} be any curve encircling infin-

ity. Then, it follows from (2.1.6), an interchange of integrals, and an application of

Cauchy’s theorem that for k = 0, 1, ..., n− 1

0 =

∫
Γ

xk(Pnf −Qn)(x) dx =

∫
Γ

xk(Pnf)(x) dx =

∫
zk Pn(z) dµ(z). (2.1.7)

Hence, we arrive at non-hermitian orthogonality relations, dubbed so for the

lack of a conjugation,∫
zk Pn(z) dµ(z) = 0 for k = 0, 1, ..., n− 1. (2.1.8)
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2.2 The Case of a Positive Measure on R

The problem of existence of a measure as in (2.1.6) and its uniqueness goes by

many names, but the case of a positive measure supported on R goes by the Ham-

burger moment problem. We will not be concerned with this problem too much,

but for more see [5, Chapter 2 Section 7] or [6, Chapter 2] (amongst many others).

We note the resolution of the existence portion of the Hamburger problem.

Theorem 2.2.1. Given a sequence of real numbers {µi}∞i=1, then a solution to the

Hamburger problem exists if and only if the Hankel matrices [µi+j]
n
i,j=0 are positive

definite for all n ∈ N.

With this in mind, it follows that

Dn := det [µi+j]i,j=0,1,...,n =

∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 · · · µn

µ1 µ2 µ3 · · · µn+1

...
...

...
. . .

...

µn µn µn+1 · · · µ2n

∣∣∣∣∣∣∣∣∣∣∣∣
> 0 (2.2.1)

and we can construct

Pn(x) =
1

Dn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 · · · µn

µ1 µ2 µ3 · · · µn+1

...
...

...
. . .

...

µn−1 µn µn+1 · · · µ2n−1

1 x x2 · · · xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, P0(x) = 1 (2.2.2)

this formula makes orthogonality clear while showing that degPn = n.

Definition. The orthonormal polynomials, denoted with the lowercase pn(x), are

polynomials that satisfy ∫ ∞
−∞

pm(x) pn(x) dµ(x) = δmn (2.2.3)

where δmn = 0 or 1 according to whether m 6= n or m = n, respectively.
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These polynomials are related to the monic polynomials by a normalizing factor

knPn(x) = pn(x). Looking at (2.2.2) and (2.1.8), we see that

kn =

√
Dn−1

Dn

and
1

k2
n

=

∫ ∞
−∞

P 2
n(x) dµ(x). (2.2.4)

In the following subsections, we follow [3] to highlight the main properties of Pn when

µ is a positive measure.

2.2.1 Three-Term Recurrence Relation

A celebrated and well-studied property of orthogonal polynomials is the three-

term recurrence relation

xPn(x) = Pn+1(x) + βnPn(x) + α2
nPn−1(x) (2.2.5)

where

αn =
kn−1

kn
and βn = k2

n ·
∫ ∞
−∞

xPn(x)d µ(x). (2.2.6)

This can be verified by noting that the polynomial xPn(x) can be written as a linear

combination of {Pk(x)}n+1
k=0 , and applying (2.1.8) to solve for the coefficients yields

(2.2.5). In fact, it was shown by Favard in [7] that the converse also holds: given

αn, βn ∈ R, polynomials defined by (2.2.5) and initial conditions P̃−1(x) ≡ 0, P̃0(x) ≡

1 form a family of polynomials orthogonal with respect to some positive measure µ̃.

Applying the above result to the expression pn+1(x)pn(y) − pn(x)pn+1(y) yields

the Christoffel - Darboux formula

n∑
i=0

pi(x)pi(y) =
kn
kn+1

pn+1(x)pn(y)− pn(x)pn+1(y)

x− y
(2.2.7)

where, by considering the limit x→ y, we arrive at a special case

n∑
i=0

p2
i (x) =

kn
kn+1

(
p′n+1(x)pn(x)− p′n(x)pn+1(x)

)
(2.2.8)
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2.2.2 Zeros

Observe that the zeros of Pn(x) all lie in the convex hull of supp(µ). Indeed, from

the orthogonality condition (2.1.8) we have∫
supp(µ)

Pn(x) dµ(x) = 0

which implies that Pn(x) must change signs at least once within the interval. Label

the zeros xl, l = 1, ..., n. Then we have that xl is in the convex hull of supp(µ) for

l ≤ n. Now suppose that l < n, then this contradicts the relation∫
supp(µ)

Pn(x)(x− x1) · · · (x− xl) dµ(x) = 0

since the integrand has constant sign.

In fact, when supp(µ) = [a, b] (i.e. supp(µ) is convex), the zeros of Pn(x), Pn+1(x)

satisfy the following interlacing property:

Theorem 2.2.2. Let a = x0 < x1 < x2 < · · · < xn < xn+1 = b be the the zeros of

Pn(x), then in each interval [xi, xi+1] lies exactly one zero of Pn+1(x).

Proof. Consider two consecutive zeros of pn(x), xi and xi+1, i ∈ [1, n − 1]. Then

P ′n(xi)P
′
n(xi+1) < 0. Furthermore, it follows from (2.2.8) that P ′n(xi)Pn+1(xi) < 0

and P ′n(xi+1)Pn+1(xi+1) < 0. Taking the product of the left hand side of the last

two inequalities yields Pn+1(xi)Pn+1(xi+1) < 0, which implies the existence of an

odd number of zeros of Pn+1 in the interval [xi, xi+1]. Furthermore, observe that

P ′n(xn) > 0 and so, Pn+1(xn) < 0, but since Pn(x) → +∞ as x → +∞, we have

that Pn+1(x) must possess one zero between xn and xn+1. Similar argument yields at

least one zero of Pn+1 in [x0, x1], and since Pn+1(x) has only n + 1 zeros, the result

follows.

2.2.3 Gauss-Jacobi Quadrature Formula

In fact, orthogonality with respect to a positive measure supported on an interval

grants us the following quadrature formula:
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Theorem 2.2.3. Let a < x1 < x2 < · · · < xn < b be the zeros of Pn(x). Then,

∃λi, i = 1, 2, ..., n so that∫ b

a

Q(x) dµ(x) = λ1Q(x1) + · · ·+ λnQ(xn) (2.2.9)

for any polynomials Q with degQ ≤ 2n− 1. In fact, λi are given by

λi =

∫ b

a

(
Pn(x)

P ′n(xi)(x− xi)

)2

dµ(x) > 0 (2.2.10)

and satisfy

λ1 + · · ·+ λn = µ ([a, b]) . (2.2.11)

Proof. We begin by constructing the Lagrange interpolating polynomial L(x) of de-

gree n, which agrees with Q at nodes x1, ..., xn. This can be written explicitly as

L(x) =
n∑
i=1

Q(xi)
Pn(x)

P ′n(xi)(x− xi)
:=

n∑
i=1

Q(xi)li(x).

It follows then that Q−L is divisible by Pn, and hence (Q−L)(x) = (Pn ·r)(x) where

deg r ≤ n− 1. Hence,∫ b

a

Q(x) dµ(x) =

∫ b

a

L(x) dµ(x) +

∫ b

a

Pn(x)r(x) dµ(x)

=

∫ b

a

L(x) dµ(x) =
n∑
i=1

Q(xi)λi

where we write

λi :=

∫ b

a

Pn(x)

P ′n(xi)(x− xi)
dµ(x).

To see (2.2.10), (2.2.11), we simply need to apply (2.2.9) to the polynomials Q(x) =

l2i (x), Q(x) ≡ 1, respectively.

2.2.4 Markov’s Theorem

We now state and prove the first result regarding the convergence of Padé approx-

imants
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Theorem 2.2.4. Let µ be a positive Borel measure with supp(µ) = [a, b] ⊂ R and f

be as in (2.1.6). Then

[n/n]f (z)→ f(z) as n→∞

locally uniformly1 in C \ supp(µ)

Proof. The first and main observation is that we can write

[n/n]f (z) =
n∑
i=1

λi
z − xi

(2.2.12)

where λi’s are as in Theorem 2.2.3. Indeed, we can write for some λ∗i

[n/n]f (z) =
n∑
i=1

λ∗i
z − xi

=⇒
∞∑
i=0

1

zi+1

(
n∑
j=1

λjx
i
j

)
(2.2.13)

Since, by definition,

(f − [n/n]f )(z) = O
(

1

z2n+1

)
we conclude that 

1 1 · · · 1

x1 x2 · · · xn
... · · · . . .

...

xn1 xn2 · · · xnn




λ∗1

λ∗2
...

λ∗n

 =


µ0

µ1

...

µn

 .

However, by Theorem 2.2.3, the same equation holds with λ∗i replaced with λi. Since

the above matrix is a Vandermonde and xi’s are distinct (zeros of Pn are simple, see

Section 2.2.2), it is invertible and we must have λ∗i = λi for i = 1, 2, ..., n.

Let µn :=
∑n

i=1 λn,iδxn,i where we added n to the subscript to emphasize the

dependence on n. WLOG, suppose µ([a, b]) = 1 (otherwise, all ε’s below need to be

adjusted by a factor of 1/µ([a, b])). Then, it follows from the above computation that

[n/n]f (z) =

∫
dµn
z − x

1by “locally uniform convergence” on a domain D we mean uniform convergence on compact subsets
of D.
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and since for z ∈ C \ [a, b] the function
1

z − x
is continuous (in x) on [a, b], showing

convergence of [n/n]f is equivalent to showing µn → µ weakly. The later follows from

the density of polynomials in C([a, b]) (Stone - Weierstrass’ theorem) and the identity∫ b

a

T (x) dµ(x) =

∫ b

a

T (x) dµn(x)

granted to us by Theorem 2.2.3. Uniformity follows by observing that, given any

compact subset K ⊂ C \ [a, b], the family [n/n]f is analytic and uniformly bounded

on K, and hence normal.

2.3 The Case of a Complex-Valued Measure

While orthogonal polynomials on R will be our spiritual guides (and offer a good

source of computable examples), when allowing for complex-valued measures we will

concern ourselves with Borel measures supported on compact subsets of C, not just

R. With the assumption of positivity of the measure dropped, definition (2.2.2) no

longer guarantees as many properties as in the previous case. First and foremost,

we no longer have degPn = n, since the associated Hankel determinants are not

necessarily positive-definite (in fact, the formula that appears in (2.2.2) must now be

considered with extreme care). The best one can say is that degPn ≤ n.

Example (Bad Example). Consider polynomials orthogonal with respect to the mea-

sure dµ(x) = w(x) dx, x ∈ [0,∞) where

w(x) = sin(2π log x) exp
(
− log2(x)

)
.

Using the substitution u = log x− n+ 1

2
, one immediately arrives at the identity∫ ∞

0

xnw(x) dx = 0 for n = 0, 1, 2, ...

In particular, this implies that the function P0 ≡ 1 satisfies (2.1.8) for any n ∈ N,

and so does any polynomial for that matter!
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Proposition 2.3.1. Let µ be a complex-valued Borel measure supported on a subset

of C and for which all moments exist. Then, the minimal-degree monic polynomial

Pn(z) satisfying ∫
zkPn(z) dµ(z) = 0 for k = 0, 1, ..., n− 1 (2.3.1)

is unique. Here and in all that follows, integral is taken over supp(µ) unless it is

stated otherwise.

Proof. Suppose to the contrary that there exists another monic polynomial P̃n(z)

with degPn = deg P̃n that satisfies (2.1.8). Then, the polynomial (Pn − P̃n)(z) also

satisfies (2.1.8), but deg(Pn − P̃n) < degPn, contradicting minimality.

For the rest of this document, we will denote by Pn this minimal degree polynomial.

The loss of positivity costs us all the information we had about zeros, we cannot even

count the number of zeros of Pn. However, Figure 2.1 suggests that zeros do have some

peculiar structure. It is reasonable to think that in the case of algebraic functions,

Fig. 2.1. Zeros of polynomials P150 associated with f1(z) =
√

1− 2
z2 + 9

z4

the structure of the zero-attracting curve depends on the location of branch points,

however, it turns out that this not all, see Figure 3.1 in Chapter 3 for example.

In the next chapter, we will explore questions regarding the location of zeros,

convergence of approximants, and degree of Pn.
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3. CONVERGENCE OF PADÉ APPROXIMANTS

In this chapter, we will briefly mention some of the early results on convergence

of Padé approximants, starting with the earliest result by Robert de Montessus de

Ballore’s theorem [8]

Theorem 3.0.1. Let f(z) be a function meromorphic in the disk |z| ≤ R with n poles

at distinct points z1, z2, ..., zn with

0 < |z1| ≤ |z2| ≤ · · · ≤ |zn| < R.

Let mk be the multiplicity of the pole at zk and M :=
∑n

k=1mk, then

f(z) = lim
L→∞

[L/M ]f (z)

locally uniformly in {z | |z| ≤ R, z 6= zk, k = 0, 1, ..., n}.

For a proof and discussion, see [1]. After this, results focused on weaker notions

of convergence of approximants, with the first result being that of John Nuttall [9],

with later refinements by Jean Zinn-Justin and Christian Pommerenke. To move any

further into the modern theory will require some notions from potential theory, which

we will recall in this chapter as well, with the main references being [10] and [11]. We

use the language of potential theory to introduce the body of work on now commonly

known as Gonchar-Rakhmanov-Stahl (GRS) theory, named after Andrei Gonchar,

Evguenii Rakhmanov, and Herbert Stahl.
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3.1 Convergence in Measure

The first theorem is due to Nuttall.

Theorem 3.1.1 (see [9]). Let f(z) be a function meromorphic in a compact region

D ⊂ C. Then, given any ε, δ > 0 and j ∈ Z, there is N0 so that ∀N > N0,

|[n/n+ j]f (z)− f(z)| < ε

for all z ∈ Dε, where m (D \Dε) < δ.

Here we already begin to see potential theory seeping in, as the original proof

relies on Pólya and Szegő’s work in [12]. Later, Zinn-Justin generalized the result

above to sequences [Lk/Mk]f , k = 1, 2, ... with the property that for any 0 < λ < 1,

λ <
Lk
MK

<
1

λ

The next upgrade of this type came from Pommerenke in [13], who allows for essential

singularities, and refines the size of the exceptional set. To state his result, we will

need some notions from potential theory.

3.2 Convergence in Capacity

Definition. Let µ be a Borel measure with compact support in C, then the loga-

rithmic energy of µ is defined to be

I(µ) := −
∫ ∫

log |z − x| dµ(z)dµ(x) :=

∫
Uµ(z) dµ(x)

where Uµ(z) is the logarithmic potential of µ.

Definition. A set K is said to be polar if for every µ as above supported on K,

I(µ) = −∞.

Definition. The capacity of a set K is

cp(K) = einf I(µ)

where the infimum is taken over all Borel probability measures µ.
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It is clear from this definition that a set is polar if and only if its capacity is

zero, and this notion helps us gauge what sets are “close” to being polar. We say a

property holds quasi-everywhere (q.e.) if it holds off of a polar set. In fact, due

to the inequality (see [10, Theorem 5.3.5] for a proof)

m(K) ≤ π(cp(K))2, (3.2.1)

a property that holds q.e. holds a.e., while the opposite is not true. For example, the

usual Cantor set has positive capacity, but measure zero (see [14, Chapter 5, Section

6.4] for a proof).

We are ready to state Pommerenke’s result:

Theorem 3.2.1 (see [13]). Let K ⊂ C be a compact set with cp(K) = 0 and let f(z)

be (single-valued and) meromorphic in C \K. Then, for ε, δ > 0, r > 1, 0 < λ < 1

there exists m0 such that for m > m0 and λ ≤ m

n
≤ 1

λ
,

|[m/n]f − f(z)| < εm

when |z| ≤ r, z 6∈ Kmn where cp(Kmn) < δ.

Definition. A sequence fn, n = 1, 2, ..., is said to converge to f in capacity in a

domain D if for any ε > 0 and every compact K ⊂ D ∩ C, we have

lim
n→∞

cp ({z ∈ K | |(f − fn)(z)| > ε}) = 0

That is to say, Theorem 3.2.1 implies the convergence in capacity of [m/n]f to f .

The requirement that f be single-values is important here, and given a function f

defined by its series at infinity as in (2.1.1), it is not necessarily clear whether or not

the function is single-valued as we proceed by analytic continuation into the finite

plane. However, we can handle a subclass of such functions.

Definition. A function f is said to belong to the Stahl class, denoted f ∈ S, if

1. f has a continuation along any arc originating at infinity that belongs to some

set C \ Ef ,
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2. cp(Ef ) = 0,

3. there exists points in C \Ef at which f possesses at least two distinct continu-

ations.

Definition. Given f ∈ S, a compact set K ⊂ C is said to be admissible if C \K is

connected and f is meromorphic and single-values there.

The following theorem is due to Herbert Stahl, and summarizes work done in

[15–18]

Theorem 3.2.2. Given f ∈ S, there exists a unique admissible compact ∆f such

that cp(∆f ) ≤ cp(K) for any admissible compact K and ∆f ⊂ K for any admissible

K satisfying cp(K) = cp(∆f ). Furthermore, Padé approximants [n/n]f (z) converge

to f in logarithmic capacity in Df := C \∆f .

The problem of finding a continuum containing a finite set of points, which would

be the problem of finding ∆f when f were algebraic, is also known as Chebotarev’s

Problem. The curves traced out by zeros of the orthogonal polynomials in Figure

2.1 are exactly those minimal capacity branch cuts, and Figure 3.1 below further

shows how the monodromy of the function f dictates the connectedness of the zero-

attracting curve.

3.2.1 Anatomy of ∆f

In fact, Stahl provides many characterizations of this compact set ∆f in his works

cited above.

Theorem 3.2.3. Let ∆f be as in Theorem 3.2.2. Then,

∆f = E0 ∪ E1 ∪
⋃

∆j

where E0 ⊂ Ef , E1 consist of isolated points to which f has continuation from the

point at infinity leading to at least two distinct function elements, and ∆j are open

analytic arcs.
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Fig. 3.1. Zeros of polynomials P150 associated with f2(z) = 4

√
1− 2

z2 + 9
z4

Definition. The Green function of a domain D, denoted gD(z;∞) is defined by

the following properties:

1. gD(z;∞) is non-negative and subharmonic in C\{∞}, and harmonic in D\{∞}

2. gD(z;∞) = log |z|+O(1) as z →∞

3. gD(z;∞) = 0 q.e. on C \D

Definition. The (unique) equilibrium measure of a compact, nonpolar set K is a

Borel measure satisfying

I(µeq) = inf I(ν) (3.2.2)

where the infimum is taken from the set of Borel probability measure on K. It is

a matter of checking and applying Frostman’s Theorem (see [10, Theorem 3.3.4] for

example) to see that for a domain D 3 ∞ we have

gD(z;∞) =

 Uµeq(z)− I(µeq) for z ∈ C

∞ for z =∞

We this in mind, we characterize the set ∆f using the following S-property:
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Theorem 3.2.4. Let ∂/∂n± be the one-sided normal derivatives on
⋃

∆j. Then

∂gDf
∂n+

=
∂gDf
∂n−

on
⋃

∆j (3.2.3)

where the domain Df was defined in Theorem 3.2.2. This is equivalent to

∂Uµ

∂n+
=
∂Uµ

∂n−
on

⋃
∆j (3.2.4)

where µ is the equilibrium measure of ∂Df

Observe that since ∆j are analytic arcs, it follows that all points in ∆j are regular

(in the sense of Ransford, see [10, Theorem 4.2.2]) and so, gDf (z) is identically zero

on
⋃

∆j. In particular, combining this with the S-property implies that gDf (z) can

be harmonically continued across each ∆j using the reflection principle.

The final characterization, and the one we will often resort to, requires the follow-

ing definition.

Definition. Given a function Q(z) meromorphic on a domain D, a trajectory (re-

spectively, orthogonal trajectory) of the quadratic differential Q(z)(dz)2 is a max-

imal arc along which

Q(z(t)) (z′(t))
2
> 0 (respectively, Q(z(t)) (z′(t))

2
< 0)

for any smooth parametrization z(t) : [0, 1] → C. The critical points of the

quadratic differential Q(z)dz2 are the zeros and poles of Q(z). A trajectory is said

to be critical if it is incident with a finite critical point, and said to be short if it is

incident with only finite critical points. Finally, the critical (orthogonal) graph of

the quadratic differential Q(z)dz2 is the union of all critical (orthogonal) trajectories.

Theorem 3.2.5. Let

h∆f
(z) := 2∂zgDf (z),

where 2∂z := ∂x− i∂y. Then, function h2
∆f

is holomorphic in Df , has a zero of order

2 at infinity, and the arcs ∆j are critical trajectories of the quadratic differential

−h2
∆f

(z)dz2.
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Note that if the function f is algebraic, then the set of singularities E0 ∪ E1 is

finite, and so h2
∆f

is rational. In fact, the quadratic differential takes on the form

−
(
V

A

)
(dz)2

where A = (z − a1) · · · (z − ap) where ai’s are some of the branch points of f and V

is a uniquely determined polynomial.

3.3 Stronger Notions of Convergence

We saw that in the real case, Markov’s theorem asserts convergence of [n/n]f

locally uniformly in some region of C, and the natural questions is: does a similar

statement hold true in the general case? The Baker-Gammel-Wills conjecture

asks the following:

Given a function f meromorphic in the unit disk, there exists an infi-

nite sequence of natural numbers Λ(f) such that, along this subsequence,

[n/n]f converge to f locally uniformly on compact subsets of the disk

omitting poles.

Unfortunately, this is not true. Doron Lubinsky observed in [19] that the Roger-

Ramanujan continued fraction with a carefully chosen value of q is a counter-example.

This continued fraction is meromorphic in the unit disk and is not algebraic. Later

on, Viktor Buslaev in [20] found yet another counter-example, this time it was an

algebraic function holomorphic in the unit disk. The main obstacle is the appearance

of what are known in the approximation theory circles as “wandering” or “spurious”

poles, see Figure 3.2. Wandering poles were observed earlier,see [21] for example.

While a general convergence statement may not be attainable, restricting to Markov

fuctions as in (2.1.6) allows us to not only prove convergence in certain cases, but

even quantify the convergence.
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(a) Zeros of P50 (b) Zeros of P100

Fig. 3.2. Poles of approximants to f2(z) = 4

√
1− 2

z2 + 9
z4 . Note the two

zeros that appear to not lie on the zero-attracting curve.

3.4 Quantifying Markov’s Theorem

The first result in this direction is due to Sergi Bernstein and Gabor Szegő.

Theorem 3.4.1. Let q(x) be a positive polynomial on [−1, 1] and

dµ(x) =
1

π

dx

q(x)
√

1− x2
, x ∈ [−1, 1],

then

pn(z) = γn
(
Ψ(0)
n + qΨ(1)

n

)
(z) (3.4.1)

(µ̂− πn) (z) =
2√

z2 − 1

Ψ
(1)
n (z)(

Ψ
(0)
n + qΨ

(1)
n

)
(z)

(3.4.2)

for all n > 1
2

deg q, where pn are the orthonormal polynomials associated with µ and

Sq is the unique holomorphic and non-vanishing function in C \ [−1, 1] such that

|S±q |2 = q on [−1, 1]. Explicitly,

S2
p(z) =

deg q∏
j=1

z − zj
Φ(z)

· 1− Φ(z)Φ(zj)

Φ(z)− Φ(zj)
(3.4.3)

where Φ(z) = z+
√
z2 − 1,

√
z2 − 1 = z+O(1) as z →∞, q(z) =

∏deg q
j=1 (z− zj), and

Ψ
(0)
n (z) := Φn(z)Sq(z),

Ψ
(1)
n (z) :=

1

(ΦnSq)(z)

for z ∈ C \ [−1, 1].



21

Observe that this is an exact formula for polynomials pn, not an asymptotic one.

Later, Nuttall-Singh generalized this. To state their result, we make a definition

motivated by Stahl’s work (see Theorems 3.2.2, 3.2.3, 3.2.4)

Definition. A compact set ∆ with a connected complement is called an algebraic

S-contour if

∆ = E0 ∪ E1 ∪
⋃

∆j

where ∆j’s are open analytic arcs, E0 ∪ E1 is a finite sets, E0 consists of points that

are the endpoint of exactly one ∆j, while E1 consists of points that are endpoints of

at least 3 ∆j’s.

Theorem 3.4.2 (see [22]). Let ∆ be an algebraic S-contour and E∆ ⊂ (E0 ∪ E1) be

the set of points with odd valence. Define

w2
∆(z) :=

∏
e∈E∆

(z − e) where z−g−1w∆ → 1 as z →∞

Furthermore, let q be a non-vanishing polynomial on ∆ and

fq(z) :=
1

πi

∫
∆

1

x− z
dx

q(x)w+
∆(x)

.

Then,

(fq − πn) (z) =
2

w∆(z)

Ψ
(1)
n (z)(

Ψ
(0)
n + qΨ

(1)
n

)
(z)

,

where functions Ψ(j)(z) are known as Baker-Akhiezer functions, and will be defined

in Chapter 4.

Maxim Yattselev replaced 1/q(x) with a holomorphic weight in [23], and later on,

along with Laurent Baratchart in [24] and Alexander Aptekarev in [25] extended the

result in a different direction, replacing w∆ with any algebraic function with branch

points in generic position, i.e. points in E0 ∪ E1 have valence at most 3. The main

difference between these results and Nuttall-Singh is that formulas for the orthogonal

polynomials and error of approximation are not exact, but asymptotic. These are

the so-called strong asymptotics of orthogonal polynomials. In this work we show
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that we can allow for points of valence 4 at the price of considering possibly sparser

subsequences of indices. In the next chapter, we state the precise problem at hand and

introduce a certain Riemann surface R on which functions describing the asymptotics

of polynomials Pn are naturally defined.



23

4. THE RIEMANN-HILBERT PROBLEM

To study the large degree asymptotics of orthogonal polynomials, we will employ

the nonlinear steepest descent analysis of Riemann-Hilbert problems (RHPs). The

following will drive our analysis: suppose we are given a sufficiently smooth contour

∆ with some orientation and a jump matrix J(s, n) defined for s ∈ ∆, where n is a

parameter. By solving a RHP, we mean (roughly speaking) finding a matrix-valued

function M that is analytic on C \∆ satisfying RHP-M

1. M (z, n) = I +O
(

1

z

)
as z →∞,

2. M+(s, n) = M−(s, n)J(s, n) for s ∈ ∆ \ {end points ∪ points with valence ≥

3}

One is immediately faced with the question of existence of a solution. The following

theorem asserts such existence in a specific setting. For a proof, see [26, Corollary

7.108] or [27, Theorem 5.1.5].

Theorem 4.0.1. Let RHP-M be as above, and assume that for some fixed N and

ε > 0 we have

‖J − I‖L2(∆)∩L∞(∆) ≤
C

nε
for n ≥ N. (4.0.1)

Then, for n large enough, RHP-M is uniquely solvable, and

‖M − I‖ ≤ C

nε(1 + |z|1/2)
(4.0.2)

holds locally uniformly on C \∆.
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4.1 Riemann-Hilbert Problem for Orthogonal Polynomials

Henceforth, we will consider polynomials Pn satisfying (2.1.8) with measure dµ =

ρ(z, n)dz, z ∈ ∆ where ∆ is a finite union of smooth arcs and 1 |ρ(z, n)| ∼ |z −

e|αe , αe > −1, where e is an endpoint or cusp of ∆, and are otherwise holomorphic in

a neighborhood of ∆. In this setting, the associated Padé approximants are defined

by the relation (2.1.2) with

f(z) =
1

2πi

∫
∆

ρ(s)ds

s− z
, z ∈ C \∆

Lemma 4.1.1. Let polynomial Pn be as above. Furthermore, suppose Pn and Rn−1

(see (2.1.2)) are such that

deg(Pn) = n and Rn−1(z) ∼ z−n as z →∞. (4.1.1)

Let kn−1 be a constant such that kn−1Rn−1(z) = z−n[1 + o(1)] near infinity. Then the

matrix

Y =

 Pn(z) Rn(z)

kn−1Pn−1(z) kn−1Rn−1(z)

 (4.1.2)

solves the following RHP (denoted RHP-Y ):

(a) Y is analytic in C \∆ and lim
z→∞

Y (z)z−nσ3 = I2;

(b) Y has continuous traces on ∆ that satisfy Y + = Y −

1 ρ(s, n)

0 1

;

1In what follows we write |g1(z)| ∼ |g2(z)| as z → z0 if there exists a constant C > 1 such that
C−1|g1(z)| ≤ |g2(z)| ≤ C|g1(z)| for all z close to z0.

2Hereafter, we set σ3 :=

1 0

0 −1

 and I to be the identity matrix.
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(c) Y behaves like

Y (z) =



O

1 1

1 1

 if αe > 0,

O

1 log |z − e|

1 log |z − e|

 if αe = 0,

O

1 |z − e|αe

1 |z − e|αe

 if − 1 < αe < 0,

as z → e.

Conversely, if RHP-Y is solvable, then its solution necessarily has the form (4.1.2)

and the polynomial Pn and the function Rn−1 satisfy (4.1.1).

Sketch of Proof. In the forward direction, RHP-Y (a) follows from (4.1.1), RHP-Y (b)

follows from the Plemelj-Sokhotski formulas (see [28]), while RHP-Y (c) follows from

the integral representation

Rn(z) =
1

2πi

∫
∆

(ρ · Pn)(x)

x− z
dx (4.1.3)

and properties of Cauchy integrals (see [28, Section 8]). The converse direction follows

from similar considerations and is shown in, for example, [25].

Remark 4.1.2. Observe that the orthogonality relations we have described in Chapter

2, the weight of orthogonality ρ was assumed to be independent of n. However, such

varying orthogonality appears naturally, and will be discussed extensively in Chapter

7.

This while this is not a RHP of the type discussed in the beginning of this chapter,

once the initial RHP is established, the analysis follows a series of transformations to

arrive at a “small norm problem.” The following are the highlights.
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4.2 First Transformation

To begin solving this problem, one normalizes the behavior of Y at infinity in the

following fashion

T (z) := Y (z) · exp (−ng(z)σ3) , (4.2.1)

where the function g, hereafter the g-function is chosen so that T = I + O
(

1

z

)
.

For this to happen, g must

1. be analytic on C \∆,

2. be bounded on ∆,

3. satisfy g(z) ∼ ln z as z →∞.

It follows from RHP-Y (b) that,

T+(s) = T−(s)

e−n(g+−g−)(s) ρ(s, n)en(g++g−)(s)

0 en(g+−g−)(s)

 (4.2.2)

Since the eventual goal is to arrive at a RHP whose jumps is close to I for large n,

(4.2.2) forces the requirements

4. (g+ − g−)(s) ∈ iR for s ∈ ∆

5. There is a constant ` (known as the Robin or modified Robin Constant)

such that ρ(s, n)en(g++g−−`)(s) is bounded as n→∞.

Requirement 4 can be viewed as a compromise: we cannot make both diagonal entries

small simultaneously, and we will settle for oscillatory entries, and enforce requirement

5 to handle the off-diagonal term. Observe that the freedom of introducing ` is allowed

to us by simply modifying the above transformation to T = e(n`σ3/2)Y e(−n(g(z)−`/2)).
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4.3 Opening the Lenses

To take care of the oscillatory diagonal terms, the strategy is to consider contours

encircling each arc of ∆ (see Figure 6.1, for example) and transfer the jump onto

those via factorizations in the spirit ofa · b b

0 b/a

 =

 1 0

1/a 1

 0 b

−b 0

1 0

a 1

 (4.3.1)

One chooses the lenses above judicially so as to guarantee that a is decaying on one

“lip” while 1/a is decaying on the other. This of course heavily relies on the g function

and its properties, and this type of identity will be highlighted in Chapter 8.

4.4 Solving a Riemann-Hilbert Problem

Since the first and last matrices on the right hand side of (4.3.1) are exponentially

small on the lenses (away from ∆), we can focus on solving a global RHP, where only

the jump on ∆ is considered. These can be explicitly solved via the Szegő function

(cf. Section 5.3) and Theta functions.

To arrive at a RHP whose jumps are close to identity, one also needs to exactly

solve (or prove existence of a solution at least) local RHP’s in neighborhoods of

points where the lenses from above intersect ∆. These are often solved with the help

of special functions (cf. Section 6.3.2, for example).

4.5 Extracting Asymptotics

Once at this stage, one can apply Theorem 4.0.1, and reversing all the transfor-

mations above yields an asymptotic expression for Y and in turn Pn(z) as n→∞.

Large n asymptotics of a solution of a RHP were first acheived by Its in [29, 30],

where he reduced the initial RHP to solving a global problem along with “local”

RHPs. This is an interesting feature of this method of analysis: applying the method

yields asymptotics for all z ∈ C, but requires solving RHP in the whole plane as



28

well. The method was generalized and standardized in the work of Deift and Zhou

in [31], and this method (highlighted above) is now known as the nonlinear steepest

descent method, an ode to the integral steepest descent method. In the context

of orthogonal polynomials the early RHP appearances include [32–34], but the first

connection between RHPs and orthogonal polynomials was made in [35,36].

In the next chapter we will return to our original problem of asymptotics of or-

thogonal polynomials and introduce all the key players.
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5. MODEL PROBLEM: ORTHOGONAL POLYNOMIALS

ON A CROSS

A version of this chapter appeared in [37].

To understand the effect of a point of valence 4 in an algebraic S-contour, we

consider the following model problem: the asymptotic behavior of polynomials Pn(z)

satisfying non-Hermitian orthogonality relations∫
∆

xkPn(x)ρ(x)ds = 0, k = 0, . . . , n− 1, (5.0.1)

where ∆ := [−a, a] ∪ [−ib, ib], a, b > 0, and ρ(s) is a Jacobi-type weight. These

polynomials correspond to Padé approximants of

f(z) =
1

2πi

∫
∆

ρ(s)ds

s− z
, z ∈ C \∆ (5.0.2)

where we require the weight ρ(x) belong to the following class.

Definition. Let ` be a positive integer or infinity. We shall say that a function ρ(s)

on ∆ belongs to the class W` if

(i) ρi(s) := ρ|∆i
(s) factors as a product ρi(s) = ρ∗i (s)(s− ai)αi , where the function

ρ∗i (z) is non-vanishing and holomorphic in some neighborhood of ∆i, αi > −1,

and (z − ai)αi is a branch holomorphic across ∆ \ {ai}, i ∈ {1, 2, 3, 4};

(ii) the ratio (ρ1ρ3)(z)/(ρ2ρ4)(z) is constant in some neighborhood of the origin;

(iii) it holds that ρ1(0) + ρ2(0) + ρ3(0) + ρ4(0) = 0;

(iv) the quantities ρ
(l)
i (0)/ρi(0), 0 ≤ l < `, do not depend on i ∈ {1, 2, 3, 4}.

Observe that conditions (ii) and (iii) say that one of the functions ρi(z) is fully

determined by the other three. In particular, it must hold that

ρ4(z) = −(ρ1 + ρ2 + ρ3)(0)(ρ2/ρ1ρ3)(0)(ρ1ρ3/ρ2)(z).
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Notice also thatW`1 ⊂ W`2 whenever `2 < `1 and that ρ(s) ∈ W∞ if and only if there

exists a function F (z), holomorphic in some neighborhood of ∆\{a1, a2, a3, a4}, such

that ρi(s) = ciF|∆i
(s) for some constants ci that add up to zero.

In particular, this class includes functions

4∑
i=1

Ci log(z − ai) and
4∏
i=1

(z − ai)αi ,

where the constants Ci add up to zero and the exponents −1 < αi 6∈ Z add up to

an integer, possess branches holomorphic off ∆ that can be represented by (5.0.2) for

certain weight functions inW∞ (the second function can represented by (5.0.2) up to

an addition of a polynomial of degree
∑4

i=1 αi).

Holomorphy of the weights ρi(z) allows one to deform ∆ in (5.0.1) to any cross-like

contour consisting of four arcs connecting the points ai to the origin (some central

point if the weight add up to zero in a neighborhood of the origin). However, Theorem

3.2.2 suggests that the attracting contour is essentially characterized by having the

smallest logarithmic capacity among all continua containing {a1, a2, a3, a4}. It is also

known from Theorem 3.2.5 (see also [38, 39] for the appearance of the same problem

in the geometric function theory literature) that this contour must consist of the

orthogonal critical trajectories of the quadratic differential

(z − b1)(z − b2)dz2

(z2 − a2)(z2 + b2)
(5.0.3)

for some uniquely determined constants b1, b2. It can be readily verified that ∆ is the

desired contour and b1 = b2 = 0.

The functions describing the asymptotic behavior of the polynomials Pn(z) are

constructed in three steps, carried out in Sections 5.2-5.4, and naturally defined on

a Riemann surface corresponding to ∆ that is introduced in Section 5.1. The main

results are stated in Sections 5.5 and 5.6.
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5.1 Riemann Surface

Let ∆ = ∪4
i=1∆i be as above. Set

w(z) :=
√

(z2 − a2)(z2 + b2), z ∈ C \∆, (5.1.1)

to be the branch normalized so that w(z) = z2 +O(z) as z →∞. Denote by R the

Riemann surface of w(z) realized as a two-sheeted ramified cover of C constructed in

the following manner. Two copies of C are cut along each arc ∆i. These copies are

glued together along the cuts in such a manner that the right (resp. left) side of the

arc ∆i belonging to the first copy, say R(0), is joined with the left (resp. right) side

of the same arc ∆i only belonging to the second copy, R(1).

<
>

<> •a1•a3

•
a2

•
a4

<
π(β)

>
π(α)

•0

•
0

◦
0∗

◦0∗ >

<

<>

>

<

<>

Fig. 5.1. The arcs ∆i together with their orientation (solid lines), a schematic
representation of the arcs ∆i = π−1(∆i) (dashed lines) as viewed from R(0),
and the chosen homology basis {α,β} projected down from R(0).

We denote by π the canonical projection π : R → C and define ∆ := π−1(∆),

∆i := π−1(∆i), i ∈ {1, 2, 3, 4}. Then ∆ is a curve on R that intersects itself exactly

twice (once at each point on top of the origin), see Figures 5.1 and 5.2. We orient

∆ so that R(0) remains on the left when ∆ is traversed in the positive direction.
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We shall denote by z(k), k ∈ {0, 1}, the point on R(k) with canonical projection z

and designate the symbol ·∗ to stand for the conformal involution that sends z(k) into

z(1−k), k ∈ {0, 1}. We use bold lower case letters such as z, t, s to indicate points

on R with canonical projections z, t, s. Since R is elliptic (genus 1), any homology

basis on R consists of only two cycles. In what follows, we choose cycles α,β to

be involution-symmetric and such that π(α), π(β) are rectifiable Jordan arcs joining

a1, a2 and a4, a1, respectively, oriented as on Figures 5.1 and 5.2.

•
a1

•
a1

•
a1

•
a1

•a2 •a2•
a3

•
a4

•
a4

•
0∗

•
0

<∆1

<∆1

<
∆2

<
∆2

<
∆3

<
∆3

<∆4

<∆4

< <
α α

< <
α α

<
<

β

β

<
<

β

β

R(0)

R(1)

Fig. 5.2. Schematic representation of the surface R (shaded region represents
R(1)), which topologically is a torus, the arcs ∆1,∆2,∆3,∆4, and the homol-
ogy basis α,β.

5.2 Geometric Term

The main goal of this subsection is to define the function Φ(z), see (5.2.5), that

will be responsible for the rate of growth of the polynomials Qn(z) and is determined

solely by the contour of orthogonality ∆.

With a slight abuse of notation, let us set

w(z) := (−1)kw(z), z ∈R(k) \∆, k ∈ {0, 1},



33

which we then extend by continuity to ∆. Clearly, w(z) is a meromorphic function

on R with simple zeros at the ramification points of R, double poles at ∞(0) and

∞(1), and otherwise non-vanishing and finite. Thus,

Ω(z) :=

(∮
α

ds

w(s)

)−1
dz

w(z)
(5.2.1)

is the holomorphic differential on R normalized to have unit period on α. In this

case it was shown by Riemann that the constant

B :=

∮
β

Ω (5.2.2)

has positive purely imaginary part. Further, since z/w(z) has simple poles at the

ramification point of R, simple zeros at ∞(0) and ∞(1), and behaves like 1/z around

∞(0), the differential

G(z) :=
zdz

w(z)

is meromorphic on R having two simple poles at ∞(1) and ∞(0) with respective

residues 1 and −1. G(z) is also distinguished by having a purely imaginary period

on any cycle on R. Indeed, it is enough to verify this claim on the cycles of any

homology basis. To this end, define

ω := − 1

2πi

∮
β

G and τ :=
1

2πi

∮
α

G. (5.2.3)

By deforming α (resp. β) into −∆1 −∆4 (resp. ∆1 + ∆2) and using the symmetry

G(z∗) = −G(z), one gets that

ω = τ =
1

4πi

∮
Γ

zdz

w(z)
=

1

2
, (5.2.4)

where Γ is any positively oriented rectifiable Jordan curve encircling ∆, which does

verify the claim about G(z) having purely imaginary periods. Let

Φ(z) := exp

{∫ z

a3

G

}
, z ∈Rα,β \

{
∞(0),∞(1)

}
, (5.2.5)

where Rα,β := R\{α,β} and the path of integration lies entirely in Rα,β\
{
∞(0),∞(1)

}
.

The function Φ(z) is holomorphic and non-vanishing on Rα,β except for a simple pole
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at ∞(0) and a simple zero at ∞(1). Furthermore, it possesses continuous traces on

both sides of each cycle of the canonical basis that satisfy1

Φ+(s) = −Φ−(s), s ∈ α ∪ β, (5.2.6)

by (5.2.3)–(5.2.4). It is not a difficult computation to check that Φ(z)Φ(z∗) ≡ 1 and∣∣Φ(z)
∣∣ = exp

{
(−1)kg∆(z;∞)

}
, z ∈R(k), (5.2.7)

k ∈ {0, 1}, where g∆(z;∞) is the Green function for C \∆ with pole at ∞.2 In fact,

the above properties allow us to verify that

Φ2
(
z(k)
)

=
2

a2 + b2

(
z2 +

b2 − a2

2
+ (−1)kw(z)

)
, (5.2.8)

k ∈ {0, 1}. In particular, this implies that the logarithmic capacity of ∆ is equal to
√
a2 + b2/2 since

Φ
(
z(0)
)

=
−2z√
a2 + b2

+O(1) as z →∞ (5.2.9)

(the sign in (5.2.9) is determined by the fact that Φ(a3) = 1 and Φ(z) is non-vanishing

on π−1((−∞,−a))). Observe also that a calculus level computation tells us that

Φ(0) = Φ(0∗) = exp
{

i arctan
(a
b

)}
, (5.2.10)

where the point 0 and 0∗ are defined as on Figure 5.1.

5.3 Szegő Function

It is known since the work of Szegő that the finer details of the asymptotics of

Qn(z) are captured by the so-called Szegő function, which depends only on the weight

of orthogonality. Below, we construct this function for ρ(s) ∈ W1.

Given i ∈ {1, 2, 3, 4}, fix log ρi(s) to be a branch continuous on ∆i \ {ai}, selected

so that

ν :=
1

2πi

4∑
i=1

(−1)i log ρi(0) satisfies Re(ν) ∈
(
−1

2
,
1

2

]
. (5.3.1)

1Here and in what follows we state jump relations understanding that they hold outside the points
of self-intersection of the considered arcs.
2g∆(z;∞) is equal to zero on ∆, is positive and harmonic in C \∆, and satisfies g(z;∞) = log |z|+
O(1) as z →∞.
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Further, it can be readily verified that we can set

logw+(s) = log |w+(s)|+ (−1)i
πi

2
, s ∈ ∆◦i , (5.3.2)

where, as usual, w+(s) is the trace of (5.1.1) on the positive side of ∆◦i according

to the chosen orientation. We also let log(ρiw+)(s) to stand for log ρi(s) + logw+(s)

with the just selected branches. Put

Sρ(z) := exp

{
− 1

4πi

∮
∆

log(ρw+)(s)Ωz,z∗(s)

}
, (5.3.3)

where Ωz,z∗(s) is the meromorphic differential with two simple poles at z and z∗ with

respective residues 1 and −1 normalized to have zero period on α. When z does not

lie on top of the point at infinity, it can be readily verified that

Ωz,z∗(s) =
w(z)

s− z
ds

w(s)
−
(∮

α

w(z)

t− z
dt

w(t)

)
Ω(s), (5.3.4)

where Ω(s) is the holomorphic differential (5.2.1).

Proposition 5.3.1. Let ρ(s) ∈ W1 and Sρ(z) be given by (5.3.3). Define

cρ :=
1

2πi

∮
∆

log(ρw+)Ω. (5.3.5)

Then Sρ(z) is a holomorphic and non-vanishing function in R \ {∆ ∪ α} with con-

tinuous traces on (∆ ∪ α) \ {a1,a2,a3,a4,0,0
∗} that satisfy

Sρ+(s) = Sρ−(s)


exp

{
2πicρ

}
, s ∈ α,

1/(ρw+)(s), s ∈∆.

(5.3.6)

It also holds that Sρ(z)Sρ(z
∗) ≡ 1 and 3

∣∣Sρ(z(0)
)∣∣ ∼


|z − ai|−(2αi+1)/4 as z → ai,

|z|(−1)jRe(ν) as Qj 3 z → 0,

(5.3.7)

for i, j ∈ {1, 2, 3, 4}, where Qj is the j-th quadrant and ν is given by (5.3.1).

Proposition 5.3.1 is proved in Appendix B.

3In what follows we write |g1(z)| ∼ |g2(z)| as z → z0 if there exists a constant C > 1 such that
C−1|g1(z)| ≤ |g2(z)| ≤ C|g1(z)| for all z close to z0.
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5.4 Theta Function

Let Jac(R) := C/{Z+BZ} be the Jacobi variety of R, where B is given by (5.2.2).

We shall represented elements of Jac(R) as equivalence classes [s] = {s + l + Bm :

l,m ∈ Z}, where s ∈ C. Since R is elliptic, Abel’s map

z ∈R 7→
[∫ z

a3

Ω

]
∈ Jac(R)

is a holomorphic bijection. Hence, given any s ∈ C, there exists a unique z[s] ∈ R

such that
[∫ z[s]

a3
Ω
]

= [s].

Denote by θ(ζ) the Riemann theta function associated to B, i.e.,

θ(ζ) :=
∑
n∈Z

exp
{
πiBn2 + 2πinζ

}
.

As shown by Riemann, θ(ζ) is an entire, even function that satisfies

θ(ζ + l +mB) = θ(ζ) exp{−πim2B− 2πimζ} (5.4.1)

for any integers l,m. Moreover, its zeros are simple and θ (ζ) = 0 if and only if

[ζ] = [(1 + B)/2]. The constant (1 + B)/2, known as the Riemann constant, will

appear often in our computations. So, we choose to abbreviate the representatives of

its “half”-classes by

K+ := (1 + B)/4 and K− := (1− B)/4, (5.4.2)

i.e., [2K+] = [2K−]. The symmetries of Ω(z) (Ω(−z) = −Ω(z) = Ω(z∗)) yield that∫ ∞(0)

∞(1)

Ω =
1

2

∫
δ

Ω = 2K+ ⇒
∫ ∞(k)

a3

= (−1)kK+, (5.4.3)

k ∈ {0, 1}, where δ = π−1
(
(−∞,−a] ∪ [a,∞)

)
is a cycle on R oriented from ∞(1) to

∞(0) (on Figure 5.2, δ would be represented by the anti-diagonal), which is clearly is

homologous to α + β.

With cρ as in Proposition 5.3.1, define

Tk(z) := exp

{
πik

∫ z

a3

Ω

}
θ
( ∫ z

a3
Ω− cρ − (−1)kK+

)
θ
( ∫ z

a3
Ω− K+

) (5.4.4)
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for k ∈ {0, 1} and z ∈Rα,β, where the path of integration lies entirely within Rα,β.

Tk(z) is a meromorphic function that is finite and non-vanishing except for a simple

pole at ∞(1), see (5.4.3), and a simple zero at zk := z[cρ−(−1)kK+], where zk ∈ R is

uniquely characterized by∫ zk

a3

Ω = cρ − (−1)kK+ + lk +mkB, (5.4.5)

k ∈ {0, 1}, for some l0,m0, l1,m1 ∈ Z. Furthermore, it follows from the normalization

in (5.2.1), the definition of B in (5.2.2), and (5.4.1) that

Tk+(s) = Tk−(s)


exp

{
2πi(k/2− cρ)

}
, s ∈ α,

exp
{
πik
}
, s ∈ β.

(5.4.6)

Now we are ready to define the function that will be responsible for the asymptotic

behavior of the polynomials Qn(z). Given ρ(s) ∈ W1, let cρ be defined by (5.3.5).

Set

{0, 1} 3 ı(n) := n mod 2, n ∈ Z,

to be the parity function. Then it follows from (5.2.6), (5.3.6), and (5.4.6) that the

function

Ψn(z) :=
(
ΦnSρTı(n)

)
(z), z ∈R \∆, (5.4.7)

is meromorphic in R \∆ with a pole of order n at ∞(0), a zero of multiplicity n− 1

at ∞(1), a simple zero at zı(n), and otherwise non-vanishing and finite, whose traces

on ∆ satisfy

Ψn+(s) = Ψn−(s)/(ρw+)(s), s ∈∆, (5.4.8)

and whose behavior around the ramification points of R as well as 0∗,0 is governed

by (5.3.7).

5.5 Asymptotics

In this section we formulate the main theorem on the behavior of the polynomials

Qn(z). As was alluded to in the introduction, we do not expect to be able to handle
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all the possible indices n as Qn(s) might have degree smaller than n. One source

of this degeneration already can be seen from (5.4.7) since this function can have a

pole of order n − 1 at ∞(0) when zı(n) = ∞(0). In fact, this is the only reason for

the degeneration in the generic cases described in [25]. However, this is no longer the

case for the considered model.

To restrict the indices we need the following, unfortunately very technical, defini-

tion. Let us set

ςν :=


1, Re(ν) > 0,

−1, Re(ν) < 0,

and o :=


0, Re(ν) > 0,

0∗, Re(ν) < 0.

(5.5.1)

We do not make any choice for ςν and o when Re(ν) = 0. Given ρ(s) ∈ W1 and the

constant cρ from (5.3.5), define

Aρ,n :=


σı(n)A

′
ρ,nΦ(zı(n))Φ

2(n−1)(o), Re(ν) 6= 0,

0, Re(ν) = 0,

(5.5.2)

where σk := (−1)lk+mk+k, k ∈ {0, 1}, see (5.4.5), and

A′ρ,n := Aρe
πiςν(cρ+1/4)

√
a2 + b2

2

Γ(1− ςνν)√
2π

×[
lim

z→0,arg(z)=5π/4
|z|2νS2

ρ

(
z(0)
)]ςν ( ab

2n

)1/2−ςνν

,

and

Aρ := eπiνρ3(0)
(ρ2 + ρ3)(0)

ρ2(0)
or Aρ :=

1

(ab)2

(ρ3 + ρ4)(0)

(ρ3ρ4)(0)

depending on whether Re(ν) > 0 or Re(ν) < 0 (it follows from the last display in

Section B.1, devoted to the proof of Proposition 5.3.1, that the limit in the definition

of the constant A′ρ,n is indeed well defined).

Given the above constants Aρ,n and ε ∈ (0, 1/2), we define subsequences of allow-

able indices n for the weight ρ(s) by

Nρ,ε :=
{
n ∈ N : zı(n) 6=∞(0) and |1− Aρ,n| ≥ ε

}
. (5.5.3)

The following proposition states that such sequences are non-empty.
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Proposition 5.5.1. Let Nρ,ε be given by (5.5.3). If [cρ] = [0] or [cρ] = [(1 + B)/2],

then it holds that

Nρ,ε = Nρ :=


2N when [cρ] = [0],

N \ 2N when [cρ] = [(1 + B)/2].

(5.5.4)

If [cρ] 6= [0] and [cρ] 6= [(1 + B)/2] while Re(ν) ∈ (−1/2, 1/2), it holds that

Nρ,ε = Nρ := N. (5.5.5)

If [cρ] 6= [0] and [cρ] 6= [(1 + B)/2], and Re(ν) = 1/2, then Nρ,ε is an infinite sub-

sequence with gaps of size at most 2 (clearly, this is the only case when Nρ,ε might

depend on ε).

The proof of Proposition 5.5.1 is delegated to Appendix B.

When Re(ν) < 1/2, the sequence Nρ,ε = Nρ is equal to the whole set of the natural

numbers or consists of every other one. This is consistent with the explanation given

at the beginning of the subsection and is supported by the examples in Sections C.1

and C.2 where two weights ρ(s) are provided for which Q2n(z) = Q2n+1(z). As

mentioned before, this is a generic behavior observed in [25]. On the technical level

this degeneration manifests itself as our inability to construct the “global parametrix”,

see Section 6.2, since we are no longer able to properly renormalize Qn(z) by Ψn(z(0))

when zı(n) =∞(0).

When Re(ν) = 1/2, new phenomenon occurs. The sequence Nρ,ε can have gaps of

size 2 depending on the behavior of the constants An,ρ. This suggests that there might

be indices n such that Qn(z) = Qn+1(z) = Qn+2(z). Such a possibility can in fact

occur, see Section C.3 for an example. On the technical level, the second condition

in (5.5.3) appears in an attempt to match the behavior of Qn(z) at the origin, that

is, during the construction of the so-called “local parametrix”, see Sections 6.3.2

and 6.3.2, and manifests itself through the constants Lni, see (5.5.11).

Recall that the weight ρ(s) defines two constants: `, which says how well the

restrictions of ρ(s) to different segments ∆i match each other at the origin, and ν,
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defined in (5.3.1). Our analysis does not allow us to handle all possible combinations

of these constants. In what follows we assume that

|Re(ν)| ∈


[0,
√

7/2− 1) when ` = 1,

[0, 1/2) when ` = 2,

[0, 1/2] when ` > 3.

(5.5.6)

This technical condition appears in the rate of decay of the error, which we quantify

by the following exponent:

dν,` :=


( 1

2
+|Re(ν)|)(`−2|Re(ν)|)

`+1+2|Re(ν)| , ` ≥ 4|Re(ν)|(1+|Re(ν)|)
1−2|Re(ν)| ,

`(3−2|Re(ν)|)−2|Re(ν)|(3+2|Re(ν)|)
2(`+3+2|Re(ν)|) , otherwise,

(5.5.7)

where we understand that dν,∞ = 1/2 + |Re(ν)|. It is a straightforward computation

to check that requiring positivity of the numerator of dν,` in the second line of (5.5.7)

produces restriction (5.5.6). Observe also that d1/2,` = `−2
`+4

.

Theorem 5.5.2. Let ρ(s) ∈ W`, where ` is a positive integer or infinity. Define ν by

(5.3.1) and assume that (5.5.6) is satisfied. Let Ψn(z) be given by (5.4.7) and Nρ,ε be

as in (5.5.3) for some ε ∈ (0, 1/2) fixed. Then it holds for all n ∈ Nρ,ε large enough

that

Qn(z) = γn
(
1 + υn1(z)

)
Ψn

(
z(0)
)

+ γnυn2(z)Ψn−1

(
z(0)
)

(5.5.8)

for z ∈ C \∆, where γn := limz→∞ z
nΨ−1

n

(
z(0)
)

is the normalizing constant;

Qn(s) = γn
(
1 + υn1(s)

) (
Ψ

(0)
n+(s) + Ψ

(0)
n−(s)

)
+

γnυn2(s)
(

Ψ
(0)
n−1+(s) + Ψ

(0)
n−1−(s)

)
(5.5.9)

for s ∈ ∆◦, where Ψ
(0)
n±(s) are the traces of Ψn

(
z(0)
)

on the positive and negative sides

of ∆. The functions υni(z) are such that

υni(∞) = 0 and υni(z) = Ln,iz
−1 +O

(
n−dν,`

)
(5.5.10)

where O(·) holds locally uniformly on C \∆ in (5.5.8) and on ∆◦ in (5.5.9), dν,` was

defined in (5.5.7), and Lni are constants given by

Lni = (−1)ı(n) Aρ,n
1− Aρ,n

(
−

ΦTı(n)

Tı(n−1)

)i−1

(o)
(T0/T1)(o)

(T0/T1)′(o)
(5.5.11)
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when |π(zk)| <∞, i ∈ {1, 2}, where o was defined in (5.5.1) (when |π(zk)| =∞, the

expressions for Lni are even more cumbersome and therefore are omitted here).

Notice that the behavior of the polynomials Qn(z) is qualitatively different for

Re(ν) < 1/2 and Re(ν) = 1/2 as the first summand in (5.5.10) is decaying in the

former case by (B.2.1), but does not decay in the latter.

Recall that the traces of Φ(z) are unimodular on ∆, see (5.2.7). Since Ψn(z) =

(SρTı(n))(z)Φn(z), it is exactly the sum of the terms
(
Φ

(0)
+ (s)

)n
and

(
Φ

(0)
− (s)

)n
that

creates oscillations describing the zeros of Qn(z). Of course, since the traces of

(SρTı(n))
(0)
± (s) are in general complex-valued, the zeros of Qn(z) do not lie exactly

on ∆. However, we do prove that (5.5.9) holds on compact subsets “close” to ∆◦,

where Ψ
(0)
n±(s) are analytically continued from ∆◦ into the complex plane with the

help of (5.4.8).

When ` < ∞, we cannot control the error functions υni(z) around the origin

and therefore cannot describe the polynomials Qn(z) there (however, we can extend

(5.5.9) to hold on a sequence of compact subsets of ∆◦ that are allowed to approach

the origin with a certain speed at the expense of worsening the rate of decay in the

error estimates). When ` = ∞, we can provide an asymptotic formula for Qn(z)

around the origin, but due to its technical nature we placed it at the very end of the

paper in Section 6.6.

Theorem 5.5.2, as well as Theorem 5.6.1 further below, is proved in Chapter 6

with the derivation of some technical identities relegated to Appendix A.

5.6 Padé Approximation

Given ρ̂(z) as in (5.0.2), it follows from the orthogonality relations (5.0.1) that

there exists a polynomial Pn(z) of degree at most n− 1 such that

Rn(z) :=
(
Qnρ̂

)
(z)− Pn(z) = O

(
z−n−1

)
as z →∞. (5.6.1)

The rational function [n/n]ρ̂(z) := Pn(z)/Qn(z) is called the n-th diagonal Padé

approximant to ρ̂(z).
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Theorem 5.6.1. Let ρ̂(z) be given by (5.0.2) and Rn(z) be defined by (5.6.1). In the

setting of Theorem 5.5.2, it holds for all n ∈ Nρ,ε large enough that

(wRn)(z) = γn
(
1 + υn1(z)

)
Ψn

(
z(1)
)

+ γnυn2(z)Ψn−1

(
z(1)
)

(5.6.2)

locally uniformly in C \∆, where υni(z) are the same as in Theorem 5.5.2.
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6. RIEMANN-HILBERT ANALYSIS: CASE OF THE

CROSS

The starting point of the analysis is RHP-Y as stated in Chapter 4 with the weight

ρ ∈ W`

6.1 Opening of the Lenses

Let δ0 > 0 be small enough so that all the functions ρi(z) are holomorphic in

some neighborhood of {|z| ≤ δ0}. Define ∆̃i and ∆̃◦i to be the closed and open

segments connecting the origin and δ0e
(2i−1)πi/4, i ∈ {1, 2, 3, 4}, that are oriented

towards the origin. Further, let Γi−,Γi+ be open smooth arcs that lie within the

<
>

<> •a1•a3

•
a2

•
a4

••

••

Γ1−

Γ1+

Γ2+Γ2−

Γ3+

Γ3−

Γ4−Γ4+

∆̃1∆̃2

∆̃3 ∆̃4

Ω2+Ω2−

Ω4+ Ω4−

Ω1+

Ω1−Ω3+

Ω3−

Fig. 6.1. The arcs ∆i, ∆̃i and Γi±, and domains Ωi±.

domain of holomorphy of ρi(z) and connect ai to δ0e
(2i−1)πi/4, δ0e

(2i−3)πi/4, respectively.
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We orient Γi± away from ai and assume that no open arcs ∆◦i , ∆̃
◦
i ,Γi± intersect, see

Figure 6.1. We denote by Ωi± the domain partially bounded by ∆i and Γi±. Let

X(z) := Y (z)



 1 0

∓1/ρi(z) 1

 , z ∈ Ωi±,

I, z 6∈ Ωi+ ∪ Ωi−.

(6.1.1)

Then X(z) satisfies the following Riemann-Hilbert problem (RHP-X):

(a) X(z) is analytic in C \ ∪i(∆i ∪ ∆̃i ∪ Γi±) and lim
z→∞

X(z)z−nσ3 = I;

(b) X(z) has continuous traces on each ∆◦i , ∆̃◦i , and Γi± that satisfy

X+(s) = X−(s)



 1 0

1/ρi(s) 1

 , s ∈ Γi+ ∪ Γi−,

 0 ρi(s)

−1/ρi(s) 0

 , s ∈ ∆◦i ,

 1 0

1

ρi(s)
+

1

ρi+1(s)
1

 , s ∈ ∆̃◦i ,

where i ∈ {1, 2, 3, 4} and ρ5 := ρ1.

(c) X(z) is bounded around the origin and behaves like

X(z) =



O

1 1

1 1

 if αi > 0,

O

1 log |z − ai|

1 log |z − ai|

 if αi = 0,

O

1 |z − ai|αi

1 |z − ai|αi

 if − 1 < αi < 0,
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as z → ai from outside the lens while from inside the lens,

X(z) =



O

|z − ai|−αi 1

|z − ai|−αi 1

 if αi > 0,

O

1 log |z − ai|

1 log |z − ai|

 if αi = 0,

O

1 |z − ai|αi

1 |z − ai|αi

 if − 1 < αi < 0.

The following observation can be easily checked: RHP-X is solvable if and only

if RHP-Y is solvable. When solutions of RHP-X and RHP-Y exist, they are unique

and connected by (6.1.1).

6.2 Global Parametrix

Let Ψn(z) be given by (5.4.7). For each n ∈ Nρ,ε, define

N (z) :=

γn 0

0 γ∗n−1

 Ψn

(
z(0)
)

Ψn

(
z(1)
)
/w(z)

Ψn−1

(
z(0)
)

Ψn−1

(
z(1)
)
/w(z)

 , (6.2.1)

where the constants γn and γ∗n−1 are defined by the relations

lim
z→∞

γnz
−nΨn

(
z(0)
)

= 1 and lim
z→∞

γ∗n−1z
nΨn−1

(
z(1)
)
/w(z) = 1. (6.2.2)

Such constants do exist, see the explanation after Proposition 5.5.1. The product

γnγ
∗
n−1 assumes only two necessarily finite and non-zero values depending on the

parity of n (when |π(zk)| < ∞, it is equal to X−1
n , see (A.0.6)). The matrix N (z)

solves the following Riemann-Hilbert problem (RHP-N ):

(a) N (z) is analytic in C \∆ and lim
z→∞

N (z)z−nσ3 = I;

(b) N (z) has continuous traces on ∆◦ that satisfy

N+(s) = N−(s)

 0 ρ(s)

−1/ρ(s) 0

 , s ∈ ∆◦;
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(c) N (z) satisfies

N (z) = O

|z − ai|−(2αi+1)/4 |z − ai|(2αi−1)/4

|z − ai|−(2αi+1)/4 |z − ai|(2αi−1)/4

 as z → ai,

i ∈ {1, 2, 3, 4}, and

N (z) = O

|z|(−1)jRe(ν) |z|(−1)j+1Re(ν)

|z|(−1)jRe(ν) |z|(−1)j+1Re(ν)

 as z → 0,

where j ∈ {1, 2, 3, 4} is the number of the quadrant from which z → 0 an ν is

given by (5.3.1).

Indeed, RHP-N (a) holds by construction, while RHP-N (b,c) follow from (5.4.8) and

(5.3.7), respectively (notice that the actual rate of behavior in RHP-N (c) can be

different if the considered point happens to coincide with zı(n) or zı(n−1)). Notice also

that det(N (z)) ≡ 1 since this is an entire function (it clearly has no jumps and it can

have at most square root singularities at the points ai) that converges to 1 at infinity.

For later calculations it will be convenient to set

M ?(z) :=

 (SρTı(n))(z
(0)) (SρTı(n))(z

(1))/w(z)

(SρTı(n−1)/Φ)(z(0)) (SρTı(n−1)/Φ)(z(1))/w(z)

 , (6.2.3)

and M (z) := (I +Lν/z)M ?(z), where Lν is a certain constant matrix with zero

trace and determinant defined further below in (6.3.19). Observe that N (z) =

CM ?(z)D(z), where

C :=

γn 0

0 γ∗n−1

 and D(z) := Φnσ3
(
z(0)
)
. (6.2.4)

When Re(ν) ∈ (−1/2, 1/2), it is possible to take Lν to be the zero matrix, but

this would worsen the error rates in (5.5.8) and (5.6.2). When Re(ν) = 1/2, our

analysis necessitates introduction of Lν . Notice that neither the normalization of

M (z) at infinity not its determinate do not depend on Lν . In fact, it holds that

det(M(z)) = det(M ?(z)) = (γnγ
∗
n−1)−1.
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6.3 Local Analysis

6.3.1 Local Parametrix around ai

Let Ui be a disk around ai of small enough radius so that ρi(z) is holomorphic

around U i, i ∈ {1, 2, 3, 4}. In this section we construct solution of RHP-X locally in

each Ui. More precisely, we seeking a solution of the following local Riemann-Hilbert

problem (RHP-P ai):

(a,b,c) P ai(z) satisfies RHP-X(a,b,c) within Ui;

(d) P ai(s) = M (s)
(
I +O(1/n)

)
D(s) uniformly for s ∈ ∂Ui.

We shall only construct a solution of RHP-P a1 as other constructions are almost

identical.

Model Problem

Below, we always assume that the real line as well as its subintervals are oriented

from left to right. Further, we set

I± :=
{
z : arg(ζ) = ±2π/3

}
,

where the rays I± are oriented towards the origin. Given α > −1, let Ψα(ζ) be a

matrix-valued function such that

(a) Ψα(ζ) is analytic in C \
(
I+ ∪ I− ∪ (−∞, 0]

)
;

(b) Ψα(ζ) has continuous traces on I+ ∪ I− ∪ (−∞, 0) that satisfy

Ψα+ = Ψα−



 0 1

−1 0

 on (−∞, 0),

 1 0

e±πiα 1

 on I±;
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(c) as ζ → 0 it holds that

Ψα(ζ) = O

|ζ|α/2 |ζ|α/2
|ζ|α/2 |ζ|α/2

 and Ψα(ζ) = O

log |ζ| log |ζ|

log |ζ| log |ζ|


when α < 0 and α = 0, respectively, and

Ψα(ζ) = O

|ζ|α/2 |ζ|−α/2
|ζ|α/2 |ζ|−α/2

 and Ψα(ζ) = O

|ζ|−α/2 |ζ|−α/2
|ζ|−α/2 |ζ|−α/2


when α > 0, for | arg(ζ)| < 2π/3 and 2π/3 < | arg(ζ)| < π, respectively;

(d) it holds uniformly in C \
(
I+ ∪ I− ∪ (−∞, 0]

)
that

Ψα(ζ) = S(ζ)
(
I +O

(
ζ−1/2

))
exp

{
2ζ1/2σ3

}
,

where S(ζ) :=
ζ−σ3/4

√
2

1 i

i 1

 and we take the principal branch of ζ1/4.

Explicit construction of this matrix can be found in [40] (it uses modified Bessel and

Hankel functions). Observe that

S+(ζ) = S−(ζ)

 0 1

−1 0

 , (6.3.1)

since the principal branch of ζ1/4 satisfies ζ
1/4
+ = iζ

1/4
− . Also notice that the matrix

σ3Ψα(ζ)σ3 satisfies RHP-Ψα only with the reversed orientation of (−∞, 0] and I±.

Conformal Map

Since w(z) has a square root singularity at a1 and satisfies w+(s) = −w−(s),

s ∈ ∆, the function

ζa1(z) :=

(
1

2

∫ z

a1

sds

w(s)

)2

, z ∈ U1, (6.3.2)

is holomorphic in U1 with a simple zero at a1. Thus, the radius of U1 can be made

small enough so that ζa1(z) is conformal on U1. Observe that sds/w±(s) is purely

imaginary on ∆◦1 and therefore ζa1(z) maps ∆1 ∩U1 into the negative reals. It is also
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rather obvious that ζa1(z) maps the interval (a1,∞)∩U1 into the positive reals. As we

have had some freedom in choosing the arcs Γ1±, we shall choose them within U1 so

that Γ1− is mapped into I+ and Γ1+ is mapped into I−. Notice that the orientation of

the images of ∆1,Γ1+,Γ1− under ζa1(z) are opposite from the ones of (−∞, 0], I−, I+.

In what follows, we understand that ζ
1/2
a1 (z) stands for the branch given by the

expression in the parenthesis in (6.3.2).

Matrix P a1

According to the definition of the class W1, it holds that

ρ(z) = ρ∗1(z)(a1 − z)α1 , z ∈ U1,

where ρ∗1(z) is non-vanishing and holomorphic in U1 and (a1 − z)α1 is the branch

holomorphic in U1 \ [a1,∞) and positive on ∆1. Define

ra1(z) :=
√
ρ∗1(z)(z − a1)α1/2, z ∈ U1 \∆1,

where (z − a1)α1/2 is the principle branch. It clearly holds that

(z − a1)α1 = e±πiα1(a1 − z)α1 , z ∈ U±1 ,

where U±1 := U1 ∩ {±Im(z) > 0}. Then
ra1+(s)ra1−(s) = ρ(s), s ∈ ∆1 ∩ U1,

r2
a1

(z) = ρ(z)e±πiα1 , z ∈ U±1 .

The above relations and RHP-Ψα(a,b,c) imply that

P a1(z) := Ea1(z)σ3Ψα1

(
n2ζa1(z)

)
σ3r

−σ3
a1

(z) (6.3.3)

satisfies RHP-P a1(a,b,c) for any holomorphic matrix Ea1(z).

Matrix Ea1

Now we choose Ea1(z) so that RHP-P a1(d) is fulfilled. To this end, denote by

V1, V2, V3 the sectors within U1 delimited by π(α)∪ π(β), π(β)∪∆1, and ∆1 ∪ π(α),
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respectively, see Figure 5.1. Let γ ⊂ C \ ∆ be a path from a3 to a1 that does not

intersect π(α), π(β). Further, let γ := π−1(γ) be a cycle oriented so that γ(0) :=

γ ∩R(0) proceeds from a3 to a1. Define

Ka1(z) :=


exp

{ ∫
γ(0) G

}
= exp{πi (τ − ω)} = 1, z ∈ V1,

exp
{ ∫

γ(0)−αG
}

= exp{−πi(τ + ω)} = −1, z ∈ V2,

exp
{ ∫

γ(0)−βG
}

= exp{πi(τ + ω)} = −1, z ∈ V3,

where we used the symmetry G(z∗) = −G(z), the fact that γ is homologous to

α + β, see Figure 5.2, and (5.2.3)–(5.2.4). Recalling the definition of Φ(z) in (5.2.5)

(the path of integration must lie in Rα,β), one can see that

Φ
(
z(0)
)

= Ka1(z) exp
{

2ζ1/2
a1

(z)
}
, z ∈ V1 ∪ V2 ∪ V3.

Clearly, |Ka1(z)| = 1. It now follows from RHP-Ψα(d) that

P a1(s) = Ea1(s)σ3S
(
n2ζa1(s)

)
σ3r

−σ3
a1

(s)K−nσ3
a1

(s)
(
I +O(1/n)

)
D(s)

for s ∈ ∂U1. Thus, if the matrix

Ea1(z) := M(z)Knσ3
a1

(z)rσ3
a1

(z)σ3S
−1
(
n2ζa1(z)

)
σ3

is holomorphic in U1, RHP-P a1(d) is clearly fulfilled. The fact that it has no jumps on

∆1, π(α), π(β) follows from RHP-N (b), (6.3.1), (5.2.6), and the definition of Ka1(z).

Thus, it is holomorphic in U1 \ {a1}. Since |ra1(z)| ∼ |z − a1|α1/2, S−1
(
n2ζa1(z)

)
∼

|z − a1|σ3/4, and M(z) satisfies RHP-N (c) around a1, the desired claim follows.

6.3.2 Approximate Local Parametrix around the Origin

Let 0 < δ ≤ δ0, see Section 6.1. We can assume that the closure of Uδ := {|z| < δ}

is disjoint from π(α), π(β). In this section we construct an approximate solution of

RHP-X in Uδ when ` <∞ and an exact solution of RHP-X in Uδ when ` =∞.

To this end, let functions bi(z), i ∈ {1, 2, 3, 4}, be defined in U δ0 by

b1 :=
ρ1 + ρ2

ρ2

, b2 := −ρ2 + ρ3

ρ4

, b3 := −ρ3 + ρ4

ρ2

, and b4 :=
ρ1 + ρ4

ρ4

, (6.3.4)
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which are holomorphic and non-vanishing on U δ. It follows from item (iv) in the

definition of class Wl that

bi(0)

bi(z)
− 1 = O

(
z`
)

as z → 0, i ∈ {1, 2, 3, 4}. (6.3.5)

Notice that bi(z) ≡ bi(0) when ` = ∞. Observe also that b1(0) = b3(0) and b2(0) =

b4(0) by item (ii) in the definition of class Wl. We are seeking a solution of the

following local Riemann-Hilbert problem (RHP-P 0):

(a) P 0(z) satisfies RHP-X(a) within Uδ;

(b) P 0(z) satisfies RHP-X(b) within Uδ, where the jump matrix on each ∆̃◦i needs

to be replaced by  1 0

bi(0)

bi(s)

(
1

ρi(s)
+

1

ρi+1(s)

)
1

 ;

(c) P 0(s) = M (s)
(
I+O

(
(nδ2)−1/2−|Re(ν)|))D(s) uniformly for s ∈ ∂Uδ and δ ≤ δ0.

Model Problem

A construction, similar the one below, has been introduced in [41], see also [42]

and the book [43, Chapter 2], in the context of integrable systems. Unfortunately,

the local problem is not stated in the form and generality we need in any of these

references. Thus, for the convenience of the reader, we provide an explicit expression

for the local parametrix.

Let s1, s2 ∈ C be independent parameters and let ν ∈ C, Re(ν) ∈
(
−1

2
, 1

2

]
be

given by

e−2πiν := 1− s1s2 (6.3.6)

(we slightly abuse the notation here as the parameter ν has already been fixed in

(5.3.1); however, we shall use the construction below with parameters s1, s2 such that

(6.3.6) holds with ν from (5.3.1)). Define constants d1, d2 by

d1 := −s1
Γ(1 + ν)√

2π
and d2 := −s2e

πiν Γ(1− ν)√
2π

, (6.3.7)
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where Γ(z) is the standard Gamma function. It follows from the well-known Gamma

function identities that

d1d2 = iν. (6.3.8)

Denote by Dµ(ζ) the parabolic cylinder function in Whittaker’s notations, see [44,

Section 12.2]. It is an entire function with the asymptotic expansion

Dµ(ζ) ∼ e−ζ
2/4ζµ

∞∑
k=0

(−1)k

Γ(k + 1)

Γ(µ+ 1)

Γ(µ+ 1− 2k)

1

(2ζ2)k
(6.3.9)

valid uniformly in each |arg(ζ)| ≤ 3π/4− ε, ε > 0, see [44, Equation (12.9.1)].

Let the matrix function Ψs1,s2(ζ) be given by Dν(2ζ) d1D−ν−1(−2iζ)

d2Dν−1(2ζ) D−ν(−2iζ)


1 0

0 e−πiν/2

 , arg(ζ) ∈
(
0, π

2

)
,

 Dν(−2ζ) d1D−ν−1(−2iζ)

−d2Dν−1(−2ζ) D−ν(−2iζ)


eπiν 0

0 e−πiν/2

 , arg(ζ) ∈
(
π
2
, π
)
,

 Dν(−2ζ) −d1D−ν−1(2iζ)

−d2Dν−1(−2ζ) D−ν(2iζ)


e−πiν 0

0 eπiν/2

 , arg(ζ) ∈
(
−π

2
,−π

)
,

 Dν(2ζ) −d1D−ν−1(2iζ)

d2Dν−1(2ζ) D−ν(2iζ)


1 0

0 eπiν/2

 , arg(ζ) ∈
(
0,−π

2

)
.

Then, Ψs1,s2(ζ) satisfies the following RH problem (RHP-Ψs1,s2):

(a) Ψs1,s2(ζ) is analytic in C \ (R ∪ iR);

(b) Ψs1,s2(ζ) has continuous traces on R ∪ iR outside of the origin that satisfy the

jump relations shown in Figure 6.2;

(c) Ψs1,s2(ζ) has the following asymptotic expansion as ζ →∞:I +
1

2ζ

 0 id1

d2 0

+
ν(ν − 1)

8ζ2

−1 0

0 1

+O
(

1

ζ3

) (2ζ)νσ3e−ζ
2σ3 ,

which holds uniformly in C.
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<  1 0

s2 1



<

 1 0

e2πiνs2 1


>

1 s1

0 1


>e2πiν s1

0 e−2πiν



Fig. 6.2. Matrices Ψ−1
s1,s2−Ψs1,s2+ on the corresponding rays.

Indeed, RHP-Ψs1,s2(a) follows from the fact that Dν(ζ) is entire, while RHP-Ψs1,s2(c)

is a consequence of (6.3.9). The jump relations RHP-Ψs1,s2(b) can be verified using

the identities Γ(−ν)Γ(1 + ν) = −π/ sin(πν), (6.3.6), and

Dµ(2ξ) = e−µπiDµ(−2ξ) +

√
2π

Γ(−µ)
e−(µ+1)πi/2D−µ−1(2iξ),

suitably applied with parameter values µ = −ν, ν − 1 and ξ = ζ,−ζ, iζ. For later, it

will be important for us to make the following observation. Define

dν :=


d2, Re(ν) > 0,

0, Re(ν) = 0,

id1, Re(ν) < 0

and Aν :=



0 0

1 0

 , Re(ν) ≥ 0,0 1

0 0

 , Re(ν) < 0,

(6.3.10)

Recall that we set ςν = 1, 0,−1 depending on whether Re(ν) > 0, Re(ν) = 0, or

Re(ν) < 0. Observe that

(
I − (2ζ)−1dνAν

)
Ψs1,s2(ζ)

= (2ζ)νσ3
(
I + (2ζ)−1−2ςννd−νA−ν +O

(
ζ−1−|ςν |

))
e−ζ

2σ3 . (6.3.11)
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Conformal Map

Let, as before, Qj stand for the j-th quadrant, j ∈ {1, 2, 3, 4}. Set

ζ0(z) :=

(
(−1)j−1

∫ z

0

sds

w(s)

)1/2

, z ∈ Uδ ∩Qj. (6.3.12)

Since w(z) is bounded at 0 and satisfies w+(s) = −w−(s), s ∈ ∆, the branch of the

square root can be chosen so that the function ζ0(z) is in fact holomorphic in Uδ with

a simple zero at the origin. Without loss of generality we can assume that δ is small

enough for ζ0(z) to be conformal on U δ.

Since the integrand (−1)j−1sds/w(s) becomes negative purely imaginary on ∆1 ∪

∆3, the square root in (6.3.12) can be chosen so that arg
(
ζ0(z)

)
= −π/4, z ∈ ∆◦3. As

we have had some freedom in selecting the arcs ∆̃i, we shall choose them so that ∆̃◦3

and ∆̃◦1 are mapped by ζ0(z) into positive and negative reals, respectively, while ∆̃◦4

and ∆̃◦2 are mapped into positive and negative purely imaginary numbers.

Matrix P 0

Define the function r(z) := rj(z), z ∈ Qj, where we let

r1 := ieπiν√ρ1, r2 := ie−πiν ρ2√
ρ1

, r3 := −ie−πiν ρ4√
ρ1

, r4 := −ie−πiν√ρ1 (6.3.13)

for a fixed determination of
√
ρ1(z). Furthermore, let

J(z) :=



e2πiνσ3 , arg z ∈
(
−π

2
, 0
)
, 0 1

−1 0

 e2πiνσ3 , arg z ∈
(
0, π

4

)
,

 0 1

−1 0

 , arg z ∈
(
π
4
, π

2

)
∪
(
−π

2
,−π

)
,

I, arg z ∈
(
π
2
, π
)
.

(6.3.14)

Finally, recalling (6.3.4), put

s1 := b1(0) = b3(0) and s2 := b2(0) = b4(0). (6.3.15)
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Notice that since (ρ1 + ρ2 + ρ3 + ρ4)(0) = 0, the parameters s1, s2 satisfy (6.3.6) with

ν given by (5.3.1). Then

P 0(z) := E0(z)Ψs1,s2

(
n1/2ζ0(z)

)
J−1(z)r−σ3(z) (6.3.16)

satisfies RHP-P 0(a,b) for any matrix E0(z) holomorphic in Uδ. Indeed, RHP-P 0(a)

is an immediate consequence of RHP-Ψs1,s2(a). It further follows from RHP-Ψs1,s2(b)

that the jumps of P 0(z) are as on Figure 6.3. To verify RHP-P 0(b), it remains to

>

 0 r2r3

−1/r2r3 0

 <

 0 r1r4

−1/r1r4 0


<

 1 0

−s1e
2πiν/r2

1 1



>

 1 0

s1/r
2
3 1



>

 1 0

s2/r
2
2 1



<

 1 0

−s2e
−2πiν/r2

4 1



>

e2πiνσ3

 0 −r3r4

1/r3r4 0



<

 0 −r1r2

1/r1r2 0



Fig. 6.3. The jump matrices of P 0(z).

observe that

r1r4 = ρ1, −r1r2 = ρ2, r2r3 = e−2πiνρ2ρ4/ρ1 = ρ3, −r3r4e
2πiν = ρ4,



56

since e−2πiν = (ρ1ρ3)/(ρ2ρ4), and that

−e2πiν s1

r2
1

=
b1(0)

ρ1

=
b1(0)

b1

(
1

ρ1

+
1

ρ2

)
,

s2

r2
2

= −e2πiνb2(0)
ρ1

ρ2
2

= −b2(0)
ρ4

ρ2ρ3

=
b2(0)

b2

(
1

ρ2

+
1

ρ3

)
,

s1

r2
3

= −e2πiνb3(0)
ρ1

ρ2
4

= −b3(0)
ρ2

ρ3ρ4

=
b3(0)

b3

(
1

ρ3

+
1

ρ4

)
,

−e−2πiν s2

r2
4

=
b4(0)

ρ1

=
b4(0)

b4

(
1

ρ1

+
1

ρ4

)
.

Thus, it remains to choose E0(z) so that RHP-P 0(c) is fulfilled.

Matrix E0

Let γ be the part of ∆3 that proceeds from a3 to 0∗, see Figures 5.1 and 5.2.

Define

K0(z) :=


exp

{
−
∫
γ
G
}

= Φ (0) , z ∈ Q1 ∪Q3,

exp
{ ∫

γ
G
}

= Φ (0∗) , z ∈ Q2 ∪Q4.

(6.3.17)

(5.2.10) immediately yields that |K0(z)| ≡ 1. Define

E?
0(z) := M ?(z)rσ3(z)Knσ3

0 (z)J(z)ζ−νσ3
0 (z), (6.3.18)

see (6.2.3). From RHP-N (b), the definition of J(z), and the fact that ζ0(z) maps ∆̃◦1

into the negative reals, it follows that E?
0(z) is holomorphic in Uδ \{0}. Furthermore,

RHP-N (c) combined with the fact that ζ0(z) possesses a simple zero at z = 0 imply

that E?
0(z) is holomorphic in Uδ. Observe also that the moduli of the entries of E?

0(z)

depend only on the parity of n.

Put for brevity εν,n := (4n)ςνν−1/2, where, as before, ςν is equal to 1, 0,−1 depend-

ing on whether Re(ν) is positive, zero, or negative. Set

Lν :=
dνεν,n
ζ ′0(0)Dn

E?
0(0)AνE

?−1
0 (0), (6.3.19)

where dν ,Aν were defined in (6.3.10) and we assume that

0 6= Dn := 1− dνεν,n
(
ζ ′0(0)

)−1
Eν (6.3.20)
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with

Eν :=


[
E?−1

0 (0)E?′
0 (0)

]
12

if Re(ν) ≥ 0,[
E?−1

0 (0)E?′
0 (0)

]
21

if Re(ν) < 0.

Notice that Lν is the zero matrix when Re(ν) = 0 as dν = 0 by (6.3.10). Let

E0(z) := (I +Lν/z)E?
0(z)(4n)−νσ3/2

(
I − dν

(
2n1/2ζ0(z)

)−1
Aν

)
. (6.3.21)

Let us show that thus defined matrix E0(z) is holomorphic at the origin. Indeed, it

has at most double pole there. It is quite simple to see that the coefficient next to

z−2 is equal to

−dνεν,n(4n)−ςνν/2
(
ζ ′0(0)

)−1
LνE

?
0(0)Aν ,

which is equal to the zero matrix since A2
ν is equal to the zero matrix. Using this

observation we also get that the coefficient next to z−1 is equal to

LνE
?
0(0)(4n)−νσ3/2 − dνεν,n(4n)−ςνν/2

(
ζ ′0(0)

)−1(
E?

0(0) +LνE
?′
0 (0)

)
Aν ,

which simplifies to

dνεν,n(4n)−ςνν/2

ζ ′0(0)Dn

(
1− dνεν,n

ζ ′0(0)
Eν −Dn

)
E?

0(0)Aν ,

that is equal to the zero matrix by the very definition of Dn.

Now, recalling the definition of Φ(z) in (5.2.5) and of ζ0(z) in (6.3.12), one can

see that

exp
{
−ζ2

0 (z)
}

= e−
∫
γ G


Φ
(
z(1)
)
, z ∈ Q1 ∪Q3,

Φ
(
z(0)
)
, z ∈ Q2 ∪Q4.

(6.3.22)

In particular, sinceD(z) = Φnσ3
(
z(0)
)

and Φ
(
z(0)
)
Φ
(
z(1)
)
≡ 1, it follows from (6.3.17)

that

exp
{
−nζ2

0 (z)σ3

}
J−1(z) = J−1(z)K−nσ3

0 (z)D(z).
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For brevity, let H(z) := rσ3(z)Knσ3
0 (z)J(z). Then we get from (6.3.11) and the

previous identity that

E0(s)Ψs1,s2

(
n1/2ζ0(s)

)
J−1(s)r−σ3(s) =

M (s)H(s)
(
I +O

((
nζ2

0 (s)
)−1/2−|Re(ν)|

))
H−1(s)D(s) =

M (s)
(
I +O

((
nδ2
)−1/2−|Re(ν)|

))
D(s).

It remains to show that (6.3.20) holds for all n ∈ Nρ,ε. It follows from (5.5.2) that

it is enough to show that

Aρ,n = dνεν,n
(
ζ ′0(0)

)−1
Eν . (6.3.23)

Existence of Lν

Assume that Re(ν) > 0. It can be readily verified that

Eν = γnγ
∗
n−1

(
[E?′

0 (0)]12[E?
0(0)]22 − [E?′

0 (0)]22[E?
0(0)]12

)
,

where we used the fact that det(E?
0(z)) = det(M ?(z)) = (γnγ

∗
n−1)−1. Notice that

d2 6= 0 by (6.3.8). Using (6.3.18), (6.3.14), and (6.3.17) gives us that [E?
0(z)]i2 is

equal to

ζν0 (z)Φn
(
0
)



e−2πiνr1(z)[M ?(z)]i1, arg(z) ∈ (0, π/4),

r1(z)[M ?(z)]i1, arg(z) ∈ (π/4, π/2),

[M ?(z)]i2/r2(z), arg(z) ∈ (π/2, π),

r3(z)[M ?(z)]i1, arg(z) ∈ (π, 3π/2),

e−2πiν [M ?(z)]i2/r4(z), arg(z) ∈ (3π/2, 2π).
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Define

S(z) := ζν0 (z)



e−2πiνr1(z)Sρ
(
z(0)
)
, arg(z) ∈ (0, π/4),

r1(z)Sρ
(
z(0)
)
, arg(z) ∈ (π/4, π/2),

Sρ
(
z(1)
)
/(r2w)(z), arg(z) ∈ (π/2, π),

r3(z)Sρ
(
z(0)
)
, arg(z) ∈ (π, 3π/2),

e−2πiνSρ
(
z(1)
)
/(r4w)(z), arg(z) ∈ (3π/2, 2π),

which is a holomorphic and non-vanishing function around the origin. Then we obtain

from (6.2.3), (A.0.6), and (A.0.12) that

Eν = S2(0)Φ2n
(
0
)
YnX

−1
n . (6.3.24)

When |π(zk)| =∞, the first condition in the definition of Nρ,ε implies that we are

looking only at those indices n for which zı(n) = ∞(1). In this case Aρ,n = 0 by its

very definition in (5.5.2) and it also follows from Lemma A.0.9 that Yn = 0 in this

case. Hence, (6.3.23) does hold in this case.

Let now |π(zk)| < ∞ and therefore the first condition in the definition of Nρ,ε

is void. It follows from (6.3.12) and (5.1.1) as well as the fact that ζ0(z) maps

{arg(z) = 5π/4} into the positive reals that

1/ζ ′0(0) = e5πi/4
√

2ab. (6.3.25)

Since e−2πiν = (ρ1ρ3)(0)/(ρ2ρ4)(0) by (5.3.1), we get from (6.3.13) that

S2(0) = −
(
ρ3ρ4/ρ2

)
(0)(2ab)−ν lim

z→0, arg(z)=5π/4
|z|2νS2

ρ

(
z(0)
)
. (6.3.26)

Observe also that

d2 = eπiν (ρ2 + ρ3)(0)

ρ4(0)

Γ(1− ν)√
2π

(6.3.27)

by (6.3.7), (6.3.15), and (6.3.4). Then it follows from (A.0.16) and the very definitions

of Aρ,n in (5.5.2) that (6.3.24)–(6.3.27) yield (6.3.23). The proof of (6.3.23) in the

case Re(ν) < 0 is similar.
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Since |π(zk)| <∞, the quantities Yn and Zn in (A.0.12) and (A.0.14) are non-zero

and equal to

W ′
ı(n)(o)

T 2
ı(n−1)(o)

Φ(o)
, Wı(n)(z) :=

Tı(n)(z)

Tı(n−1)(z)
,

where o was defined in (5.5.1). Hence, it follows from (6.3.19), (6.3.23), (6.3.24), and

a computation similar to the one carried out at the beginning of this subsection that

Lν =
Aρ,n

1− Aρ,n
1

W ′
ı(n)(o)

Wı(n)(o) −Φ(o)W 2
ı(n)(o)

1/Φ(o) −Wı(n)(o)

 .

Moreover, since W1(z) = 1/W0(z) we can rewrite the first row of Lν as

(
1 0

)
Lν = (−1)ı(n) Aρ,n

1− Aρ,n
W0(o)

W ′
0(o)

(
1 −Φ(o)Wı(n)(o)

)
. (6.3.28)

6.4 Final Riemann-Hilbert Problem

In what follows, we assume that δ = δn ≤ δ0 in Section 6.3.2 when ` < ∞ and

shall specify the exact dependence on n later on in this section. When ` = ∞, we

simply take δ = δ0. Set U := ∪4
i=1Uai and define

Σn :=
(
∂U ∪ ∂Uδn

)
∪
(
∪4
i=1

(
Γi− ∪ Γi+ ∪ ∆̃i

)
\ U
)
,

see Figure 6.4. We are looking for a solution of the following Riemann-Hilbert problem

(RHP-Z):

(a) Z(z) is analytic in C \ Σn and limz→∞Z(z) = I;

(b) Z(z) has continuous traces outside of non-smooth points of Σn that satisfy

Z+ = Z−



P ai(MD)−1, on ∂Uai ,

P 0(MD)−1, on ∂Uδ,

MD

 1 0

1/ρi 1

 (MD)−1, on
(
Γ◦i+ ∪ Γ◦i−

)
\ U,
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<

•
a2
<

•
a3> •

a1

<

•
a4>

Γ−4Γ+
4

< <
>>

<

<>

>

Fig. 6.4. Contour Σn for RHP-Z (dashed circle represents {|z| = δ0}).

and

Z+ = Z−



MD

 1 0

ρi+ρi+1

ρiρi+1
1

 (MD)−1, on ∆̃◦i \ U δn ,

P 0−

 1 0

ρi+ρi+1

ρiρi+1
1

P−1
0+, on ∆̃◦i ∩ Uδn

(notice that the second set of jumps is not present when ` =∞ as δn = δ0 and

P 0(z) is the exact parametrix).

It follows from RHP-P ai(d) that the jump of Z on ∂Uai can be written as

M(s)
(
I +O(1/n)

)
M−1(s) = I +Oε(1/n)

since the matrix M (z) is invertible (its determinant is equal to the reciprocal of

γnγ
∗
n−1), the matrix M ?(z) depends only on the parity of n, see (6.2.3), and the

matrix Lν has trace and determinant zero as well as bounded entries for all n ∈ Nρ,ε
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and each fixed ε > 0, see (6.3.19). Similarly, we get from RHP-P 0(c) that the jump

of Z on ∂Uδn can be written as

M(s)
(
I +O

((
nδ2

n

)−1/2−|Re(ν)|
))
M−1(s)

= I +
(
I +Lν/s

)
O
((
nδ2

n

)−1/2−|Re(ν)|
) (
I −Lν/s

)
,

where O(·) does not depend on n. Since Lν = Oε

(
n|Re(ν)|−1/2

)
by its very definition

in (6.3.19), we get that the jump of Z on ∂Uδn can further be written as

I +Oε

((
nδ2

n

)−1/2−|Reν|
max

{
1, n2|Re(ν)|/(nδ2

n)
})

.

One can easily check with the help of (6.2.1) and (6.2.3) that the jump of Z on(
Γ◦i+ ∪ Γ◦i−

)
\ U is equal to

I +
γnγ

∗
n−1

(w2ρi)(s)

(
I +Lν/s

)(ΨnΨn−1)
(
s(1)
)

−Ψ2
n

(
s(1)
)

Ψ2
n−1

(
s(1)
)

−(ΨnΨn−1)
(
s(1)
)
(I −Lν/s)

= I +Oε(e
−cn)

for some constant c > 0 by (5.4.7) and since the maximum of |Φ(s(1))| on Γi± \ U is

less than 1. The estimate of the jump of Z on ∆̃◦i \ U δn is analogous and yields

I +Oε

(
e−cnδ

2
n max

{
1, n2|Re(ν)|/(nδ2

n)
})

for an adjusted constant c > 0, where the rate estimate follows from (6.3.22) as∣∣Φ(s(1)
)∣∣ = exp

{
(−1)iRe

(
ζ2

0 (s)
)}

= O
(
e−cδ

2
n
)
, s ∈ ∆̃i \ Uδn ,

since ζ0(z) is real on ∆̃1 ∪ ∆̃3 and is purely imaginary on ∆̃2 ∪ ∆̃4.

Finally, it holds on ∆̃◦i ∩ Uδn that the jump of Z is equal to

I +

(
1− bi(0)

bi(z)

)
(ρi + ρi+1)(s)

(ρiρi+1)(s)
P 0+(s)

0 0

1 0

P−1
0+(s) =

I +O(δ`n)E0(s)

[Ψ+(s)]1j[Ψ+(s)]2j −[Ψ+(s)]21j

[Ψ+(s)]22j −[Ψ+(s)]1j[Ψ+(s)]2j

E−1
0 (s)
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by (6.3.5) and (6.3.16), where j = 1 for s ∈ ∆̃1 ∪ ∆̃3 and j = 2 for s ∈ ∆̃2 ∪ ∆̃4, and

we set for brevity Ψ(z) := Ψs1,s2

(
n1/2ζ0(z)

)
(observe also that det(Ψ(z)) ≡ 1). It

follows from the asymptotic expansion (6.3.9) that Dµ(x) is bounded for x ≥ 0. Thus,

we deduce from the definition of Ψ(z) that the above jump matrix can be estimated

as

I +O(δ`n)E0(s)O(1)E−1
0 (s) = I +Oε

(
n|Re(ν)|δ`n

)
,

where the last equality follows from (6.3.18) and (6.3.21) as E0(z) is equal to a

bounded matrix that depends only on εν,n multiplied by (4n)νσ3/2 on the right.

When ` ≥ 4|Re(ν)|(1 + |Re(ν)|)/(1− 2|Re(ν)|), choose

δn = δ0 exp

{
−1

2

1 + 4|Re(ν)|
`+ 1 + 2|Re(ν)|

lnn

}
. (6.4.1)

Then it holds that n2|Re(ν)|/(nδ2
n) = O(1) and

n|Re(ν)|(δn/δ0)` =
(
n(δn/δ0)2

)−|Re(ν)|−1/2
= n−dν,`

with dν,` defined in (5.5.7). Otherwise, take

δn = δ0 exp

{
−1

2

3

`+ 3 + 2|Re(ν)|
lnn

}
.

In this case n2|Re(ν)|/(nδ2
n)→∞ as n→∞ and

n|Re(ν)|(δn/δ0)` = n2|Re(ν)|(n(δn/δ0)2
)−|Re(ν)|−3/2

= n−dν,` .

Since dν,` < 1, it holds that the jumps of Z on Σn are of order I +Oε(n
−dν,`),

where Oε(·) does not depend on n. Then, by arguing as in [26, Theorem 7.103 and

Corollary 7.108] we obtain that the matrix Z exists for all n ∈ Nρ,ε large enough and

that

‖Z± − I‖2,Σn = Oε
(
n−dν,`

)
.

Since the jumps of Z on Σn are restrictions of holomorphic matrix functions, the

standard deformation of the contour technique and the above estimate yield that

Z = I +Oε

(
n−dν,`

)
(6.4.2)

locally uniformly in C \ {0}.
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6.5 Proofs of Theorems 5.5.2 and 5.6.1

Given Z(z), a solution of RHP-Z, P ai(z) and P 0(z), defined in (6.3.3) and

(6.3.16), respectively, and C(MD)(z) from (6.2.3) and (6.2.4), it can be readily

verified that

X(z) := CZ(z)


P ai(z), z ∈ Ui, i ∈ {1, 2, 3, 4},

P 0(z), z ∈ Uδ,

(MD)(z), otherwise,

(6.5.1)

solves RHP-X. Given a closed set K ⊂ C \ ∆, the contour Σn can always be

adjusted so that K lies in the exterior domain of Σn. Then it follows from (6.1.1)

that Y (z) = X(z) on K. Formulae (5.5.8) and (5.6.2) now follow immediately from

(4.1.2), (6.1.1), (6.2.3), (6.2.4), and (5.4.7) since

wi−1(z)[(ZMD)(z)]1i = (1 + υn1(z))Ψn

(
z(i−1)

)
+ υn2(z)Ψn−1

(
z(i−1)

)
,

where 1+υn1(z), υn2(z) are the first row entries of Z(z)(I+Lν/z). Estimates (5.5.10)

are direct consequence of (6.3.19) and (6.4.2). Relations (5.5.11) follow from (6.3.28).

Similarly, if K is a compact subset of ∆◦, the lens Σn can be arranged so that K does

not intersect U ∪ U δn . As before, we get that

[(ZMD)(z)]11 =
(
(1 + υn1(z))Ψn

(
z(0)
)

+ υn2(z)Ψn−1

(
z(0)
))
±

(ρiw)−1(z)
(
(1 + υn1(z))Ψn

(
z(1)
)

+ υn2(z)Ψn−1

(
z(1)
))

for z ∈ Ωi±\
(
U∪U δn

)
. Formula (5.5.9) now follows by taking the trace of [(ZMD)(z)]11

on ∆i± \
(
U ∪ U δn

)
and using (5.4.8).

6.6 Behavior of Qn(z) around the Origin when ` =∞ and |Re(ν)| < 1/2

Assume that ` = ∞. In this case δ = δn = δ0 in (6.4.1) is independent of n

and P 0(z) is the exact parametrix (that is, the second group of jumps in RHP-Z(b)

is not present). Assume further that |Re(ν)| < 1/2. The definition of the matrix
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function M(z) as (I +Lν/z)M ?(z) is absolutely necessary when |Re(ν)| = 1/2, see

(6.2.3), but can be simplified to M (z) = M ?(z) when |Re(ν)| < 1/2. That is, we can

take Lν to be the zero matrix. In this case the error rate in RHP-P 0(c) will become

O(n|Re(ν)|−1/2) and the matrix E0(z) will simplify to

E0(z) = M(z)Knσ3
0 (z)rσ3(z)J(z)(2ξn)−νσ3 , ξn :=

√
nζ0(z),

see (6.3.18) and (6.3.21). Assume now that z is in the second quadrant, in which case

J = I. It then follows from (6.3.17) and (6.3.22) that Kn
0 (z) = Φn(z(0))eξ

2
n . Thus,

we get from (6.3.16) as well as (6.2.1) and (6.2.4) that

P 0(z) = E0(z)Ψ(ξn)r−σ3
2 (z), E0(z) = C−1N (z)

(
r2(z)eξ

2
n/(2ξn)ν

)σ3

,

where we write Ψ(ζ) for Ψs1,s2(ζ). Now, (4.1.2) and (6.1.1) yield that Qn(z) =

[X(z)]11 + ρ−1
3 (z)[X(z)]12 for z ∈ Ω3+. Therefore, we get from (6.5.1) that

γ−1
n Qn(s) =

(
1 0

)
Z(s)

(
[P 0(s)]1+ + ρ−1

3 (s)[P 0(s)]2+

)
for s ∈ ∆3 ∩ Uδ, where [P 0(z)]i stands for the i-th column of P 0(z). It follows from

the analyticity of E0(z) in Uδ that

γ−1
n Qn(s) =

(
1 0

)
Z(s)E0(s)

(
r−1

2 (s)[Ψ(ξn)]1 + r−1
3 (s)[Ψ(ξn)]2

)
since r2(s)r3(s) = ρ3(s). Using the expression for E0(z) from above as well as (6.2.1)

and (5.4.8) we get that

γ−1
n Qn(s) =

(
1 0

)
Z(s)

 Ψ
(0)
n+(s) Ψ

(0)
n−(s)

Ψ
(0)
n−1+(s) Ψ

(0)
n−1−(s)

(2ξn)−νAρ(ξn)

(2iξn)νBρ(ξn)

 (6.6.1)

for s ∈ ∆3 ∩ Uδ, where, since ζ0(s) has argument −π/4 for s ∈ ∆3, we set
Aρ(ζ) := eζ

2(
Dν(2ζ) + αρD−ν−1(2iζ)

)
Bρ(ζ) := e−ζ

2(
D−ν(2iζ) + βρDν−1(2ζ)

)
with αρ := −eπiν/2d1(r2/r3)(s) = d1(ρ4/ρ2)(s), βρ := −e−πiν/2d2(ρ2/ρ4)(s) and d1, d2

given by (6.3.7), which are constants by the definition ofW∞. Recall that
(

1 0
)
Z(s),
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the first row of Z(s), behaves like
(

1 + o(1) o(1)
)

, where o(1) = O(n|Re(ν)|−1/2), in

the considered case. Therefore, by multiplying (6.6.1) out, we can get an asymptotic

expression for Qn(s) around the origin on ∆3. Clearly, we can get similar expressions

on the remaining arcs ∆1,∆2 and ∆4.

A computation along these lines can be performed in the case Re(ν) = 1/2, but

the resulting formula is even more involved than (6.6.1).

6.7 Concluding Remarks

It is important to note that Jacobi-type functions f ∈ W∞ have been extensively

studied for any number of branch points p in this connection. In the situation p = 2,

Qn’s are, up to a change of variables, the usual Jacobi polynomials whose strong

asymptotics can be found in [3], for example (also, see [40]). Strong asymptotics

of polynomials orthogonal with respect to the weight h(x)(f+ − f−)(x), where h(x)

is holomorphic, non-vanishing on a neighborhood of ∆ and αi = −1/2 for all i =

1, 2, ..., p were studied in [23] for any p ∈ N. If p is arbitrary, but the points at which

arcs of ∆ meet are univalent or trivalent, and no ai is a trivalent point, then strong

asymptotics were obtained in [25]. This work, along with [45], completely resolves

the situation p = 3 (Vanlessen’s work applies for any p when all ai’s are colinear).

However, in the case p = 4, there remain some non-trivial situations, shown in Figure

6.5. With the result above, the final case in need of analysis is the one depicted in

Figure 6.5(d).

•
a1•

a2

•
a3

•
a4

•
a1•

a2

•
a3

•
a4

•
b1

•
b2 ••

•

•

a1

a2

a3

a4

•

•

••

a1

a3

a2 a4

Fig. 6.5. Possible non-colinear arrangements of ai’s
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7. VARYING ORTHOGONALITY

A version of this chapter will appear in [46].

All polynomials considered thus far were orthogonal with respect to a measure

dµ(z) = ρ(z) dz, z ∈ ∆ ⊂ C where the density ρ(z) depended on z alone. However,

polynomials satisfying a varying orthogonality condition:∫
∆

zkPn(z)ρ(z;N) dz = 0 for k = 0, 1, ..., n− 1 (7.0.1)

where N is a parameter, usually depending on n, crop in applications. We highlight

here the so-called “kissing polynomials” that appear in numerical computation of

oscillatory integrals [47–49], and polynomials that appear in connection with random

matrix theory [50,51], see also [52,53].

7.1 Choice of Contour

As was discussed in Chapter 4, one can still form a matrix Y and consider its

associated RHP. However, we need to make the “correct” choice of the contour ∆. In

the non-varying case, existence of ∆ was given to us by Theorem 3.2.2, and charac-

terizations followed in Theorems 3.2.3, 3.2.4, and 3.2.5. Unfortunately, the existence

of an S-contour in the varying case is not so clear, and general results are rare. A gen-

eral method of finding S-contours by way of solving a min-max problem is described

in [54]. In the context of varying orthogonality, one must include a non-trivial exter-

nal field to all potential-theoretic objects and in the definition of the S-property. We

rely on [11] as a general reference on potential theory with external fields.

Definition. A weight function w(z) := exp (−W (z)) on a set K is said to be

admissible if

1. W (z) : K → (−∞,∞] is lower semi-continuous,
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2. W (z) <∞ on a set of positive capacity,

3. If ∞ ∈ K, then lim
|z|→∞
z∈K

(W (z)− log |z|) =∞.

Definition. The weighted logarithmic energy of a measure µ is defined as the

integral

Iw(µ) := −
∫ ∫

log (|z − x|w(z)w(x)) dµ(x)dµ(z)

=

∫ ∫
log

(
1

|z − x|

)
dµ(x)dµ(z) + 2

∫
W (z)dµ(z).

The equilibrium measure of a compact set K associated with weight w is the

unique minimizer of the weighted energy

Iw(µK,w) = inf Iw(ν)

where infimum is taken over all probability Borel measures supported on K.

Moreover, the measure µK,w is also characterized as the unique measure µ satis-

fying the variational condition (see [11] for more on this)

2Uµ(z) +W (z)

 = ` for z ∈ supp(µ),

≥ ` for z ∈ K.
(7.1.1)

Definition. A set K comprised of a finite union of analytic arcs is said to have the

S-property with respect to the external field W if it holds that (compare with

Theorem 3.2.4) for a.e. z ∈ K

∂ (UµK,w +W )

∂n+
(z) =

∂ (UµK,w +W )

∂n−
(z) (7.1.2)

The following is due to Gonchar and Rakhmanov [55]. Although their result is

more general, this version establishes the importance of S-contours

Theorem 7.1.1. Let D be a domain and ∆ ⊂ D be a system of a.e. smooth arcs of

positive capacity. Suppose polynomials Pn satisfy an orthogonality relation∫
∆

zkPn(z)e−nV (z)f(z) dz = 0 for k = 0, 1, ..., n− 1
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where f is holomorphic off ∆, V holomorphic on D. If ∆ has the S-property in

W (z) = ReV (z) and if the complement of the support of equilibrium measure µ∆,w is

connected, then
1

n

n∑
k=1

δxk
∗→ µ∆,w

where 1
n

∑n
k=1 δxk is the probability counting measure of the zeroes of Pn.

Note that this theorem makes no claim regarding the existence of such S-contours,

but simply suggests that the S-property is what we should look for to ever hope to start

our RH analysis of varying orthogonal polynomials. In this chapter we will consider

the external field Vλ(z) = −iλz, λ > 0 to demonstrate some of the difficulties that

arise.

7.2 Kissing Polynomials: One-Cut Case

Consider polynomials P λ
n (z) that satisfy the orthogonality condition∫ 1

−1

zkP λ
n (z)h(z)eiλnz dz = 0, for k = 0, 1, ..., n− 1, (7.2.1)

where

h(x) = (1− x)α(1 + x)βh∗(x) (7.2.2)

and h∗(z) is holomorphic in a neighborhood containing the compact set delimited by

γλ and [−1, 1] (see Theorem 7.2.1 below). Because of the analyticity of the integrand,

one could deform the contour of integration [−1, 1] to any smooth arc connecting

z = −1 to z = 1. Then, the question becomes about finding such an arc γλ that has

the S-property.
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7.2.1 Geometry

In [54], Rakhmanov provides yet another characterization of S-curves as a set of

trajectories of quadratic differentials. For the external field Re(Vλ(z)), one needs to

look for a measure µλ, γλ = supp(µλ), such that Qλ(z) defined by

Qλ(z) =

(∫
dµλ(s)

s− z
+
V ′(z)

2

)2

=

(∫
dµλ(s)

s− z
− λi

2

)2

. (7.2.3)

is a rational function, in which case γλ is a subset of short critical trajectories of

−Qλ(z)(dz)2. Deaño showed in [48] that µλ is such that γλ is a single arc for all

λcr > λ > 0, where λcr is the unique solution of

2 log

(
2 +

√
λ2
cr + 4

λcr

)
−
√
λ2
cr + 4 = 0 (λcr ≈ 1.325...). (7.2.4)

The following Theorem appears in [48].

Theorem 7.2.1. Let Vλ(z) = −iλz and λ ∈ [0, λcr). Then,

1. there exists a smooth curve γλ connecting z = 1 and z = −1 that is a part of

the level set

Re(φ(z)) = 0,

where

φ(z) = 2 logϕ(z) + iλw(z), ϕ(z) := z + w(z), (7.2.5)

and w(z) := (z2 − 1)1/2 = z +O(z) and is analytic outside of γλ;

2. the measure

dµλ(z) = − 1

2πi

2 + iλz

w(z)
dz

is the equilibrium measure on γλ in the external field Re(Vλ(z)).

3. γλ has the S-property in the field Re(Vλ(z)).

Remark 7.2.2. In fact, Deaño’s proof shows that for λ = λcr, γλcr is a union of two

smooth curves that meet at 2i/λcr.
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In fact, Theorem 7.2.1(1) can be equivalently stated as follows: γλ is the unique

short critical trajectory of Qλ(z)(dz)2, where

Qλ(z)(dz)2 =
1

4

(2 + iλz)2

z2 − 1
(dz)2. (7.2.6)

7.2.2 Asymptotics of Orthogonal Polynomials

Let λcr be as in (7.2.4). In the non-critical case (λ < λcr), the situation was

described completely for h(x) ≡ 1 in [48]. To extend this result to h(x) as in (7.2.2),

we need the following Szegő function

Sh(z) := exp

{
w(z)

2πi

∫
γλ

log[(w+h)(x)]

z − x
dx

w+(x)

}
, (7.2.7)

where w is as in (7.2.5) and h∗(z) is analytic in a neighborhood containing the compact

set delimited by γλ ∪ [−1, 1]. Properties of S will be discussed in Section 8.1.

Theorem 7.2.3 (Subcritical Case λ < λcr). Let 0 ≤ λ < λcr and h(z) be as above.

Then for n large enough, polynomials P λ
n have degree exactly n and locally uniformly

for z ∈ C \ γλ

P λ
n (z) =

(
ϕ(z)

2

)n
exp

(
− inλ

2ϕ(z)

)(
Sh(∞)

Sh(z)
+O

(
1

n

))
as n→∞. (7.2.8)

When λ = λcr, the geometry of γλ changes. More precisely, γλcr is no longer an

analytic arc, but rather a union of two analytic arcs meeting at the angle π/2 at the

point 2i/λcr, see [48]. However, by slightly changing the analysis, we may still write

an asymptotic formula for P λ
n .

Theorem 7.2.4 (Critical Case λ = λcr). Let λ = λcr and h(z) be as above. Then

for n large enough, polynomials P λ
n have degree exactly n and locally uniformly for

z ∈ C \ γλ and satisfy

P λcr
n (z) =

(
ϕ(z)

2

)n
exp

(
− inλcr

2ϕ(z)

)(
Sh(∞)

Sh(z)
+O

(
1√
n

))
as n→∞. (7.2.9)
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7.3 Kissing Polynomials: Two-Cut Case

7.3.1 Geometry

When λ > λcr the quadratic differential in (7.2.6) seizes to possess a trajectory

connecting z = −1, z = 1, and we must look for a new differential whose critical

graph is such that [−1, 1] can be deformed to align with trajectories of −Q(z) (dz)2

or pass through regions of “exponential decay,” where Re(
∫ z
Q1/2(z)dz) < 0. This

becomes important for the RH analysis (carries out in Chapter 8). To this end, we

rely on Celsus and Silva’s work [56], where they consider a quadratic differential of

the form

Qλ(z;x) := −λ
2

4

(z − zλ(x))(z + zλ(x))

z2 − 1
, and zλ(x) = x+

2i

λ
. (7.3.1)

The following results appear in their work

Theorem 7.3.1. Let λ > λcr. Then, there exists x∗(λ) ∈ (0, 1) for which

Re

(∫ 1

zλ(x∗)

Qλ(s)ds

)
= 0, Qλ(z) := Qλ(z;x∗) (7.3.2)

and limλ→∞ x∗(λ) = 1. In fact, there exist analytic arcs γ1, γ2 such that γ2 is the

reflection of γ1 across the imaginary axis and

(a) the arc γ1 starts at z = −1, ends at −zλ(x∗), and satisfies

Re

(∫ z

−1

Q
1/2
λ (s)ds

)
= 0 ∀z ∈ γ1; (7.3.3)

(b) the arc γ2, being the reflection of γ1 satisfies

Re

(∫ z

zλ(x∗)

Q
1/2
λ (s)ds

)
= 0 ∀z ∈ γ2.

The equilibrium measure in the external field Re(Vλ(z)) on γ1 ∪ γ2 is given by

dµλ(s) = − 1

πi
Q

1/2
λ (s) ds, s ∈ γ1 ∪ γ2 (7.3.4)

where (similar to the one-cut case) we take the branch of Q
1/2
λ holomorphic off γ1∪γ2

and that satisfies

Q
1/2
λ (z) =

λi

2
+ +O

(
1

z

)
as z →∞. (7.3.5)
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Moreover, Celsus and Silva show that the critical graph of −Qλ(z)(dz)2 is as in

Figure 7.1 below.

•
−1

•
1

•−z∗ • z∗

Fig. 7.1. Schematic representation of critical graph of −Qλ(z) (dz)2 in
the supercritical regime near z = −1, z = 1, with z∗ := zλ(x∗).

7.3.2 Asymptotics of Orthogonal Polynomials

To present the results when λ > λcr, we construct the main term of the asymp-

totics using the approach of [25] relying on Theta functions, instead of the meromor-

phic differential approach taken in [56]. We begin by defining

γ(z) :=

(
z + z∗
z − z∗

z − 1

z + 1

)1/4

, z ∈ C \ (γ1 ∪ γ2), z∗ = zλ(x∗) (7.3.6)

where γ(z) is holomorphic off γ1 ∪ γ2 and the branch is chosen so that γ(∞) = 1.

Further, set

A(z) :=
γ(z) + γ−1(z)

2
and B(z) :=

γ(z)− γ−1(z)

−2i
. (7.3.7)

The functions A(z) and B(z) are holomorphic in C \ (γ1 ∪ γ2) and satisfy

A(∞) = 1, B(∞) = 0, and

A±(s) = ±B∓(s), s ∈ (γ1 ∪ γ2)◦ := (γ1 ∪ γ2) \ {±1, z∗,−z∗}. (7.3.8)

The rest of our functions live on a Riemann surface, denoted Rλ, and so we define it

here.
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Riemann Surface

Let R ≡ Rλ be the Riemann surface associated with the algebraic equation

y2 = Qλ(z), with Qλ as in Theorem 7.3.1. This surface is realized as two copies of

C cut along γ1,2 and glued together in such a way that the right side of γi on R(0),

the first sheet, is connected with the left side of the same arc on the second sheet,

R(1). Furthermore, π : R → C be the natural projection. We will denote points on

the surface with boldface symbols z, t, s and their projections by regular script z, s, t

and F (i)(z), i ∈ {0, 1}, stands for the pull-back under π(z) of a function F (z) from

R(i) into C \ (γ1 ∪ γ2). Note that for a fixed z ∈ C \ {±1, z∗,−z∗}, the set π−1(z)

contains exactly two elements, one on each sheet, and for z ∈ C \ (γ1 ∪ γ2) we denote

z(k) := π−1(z) ∩R(k).

Denote by α a cycle on R that passes through π−1(−z∗) and π−1(z∗) and whose

natural projection is an arc γ̂ that smoothly meets γ1, γ2 at z∗,−z∗ and belongs to

the region delimited by infinite trajectories in Figure 7.1. We assume that π(α) ∩

(γ1 ∪ γ2) = {z∗,−z∗} and orient α towards −z∗ within R(0). Similarly, we define

β = π−1(γ1). We orient β so that α,β form the right pair at π−1(−z∗). Figure 7.2

below is a schematic representation of R.

•

−1

•

−z∗

•

z∗

•

1•
• •

•

R(0)

R(1)

>β
<

>

α

Fig. 7.2. Schematic plot of the Riemann surface R and the cycles α and
β.
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Since this is a surface of genus 1, the linear space of holomorphic differentials is

of dimension 1, and is generated by

H ≡ Hλ(z) =

(∮
α

dz

w(z)

)−1
dz

w(z)
(7.3.9)

where w(z(k)) = (−1)k [(z2 − 1)(z − z∗)(z + z∗)]
1/2

(z) and the branch of the square

root is such that w(z(k)) = (−1)kz2 + O(z) as z → ∞. H is normalized so that∮
α
H = 1, and under this normalization, Riemann showed (see [57, Theorem 2.1], for

example) that

Im(B) > 0, where B :=

∮
β

H(z) (7.3.10)

Given this normalized differential, we can define the Abel Map A(z) as

A(z) :=

∫ z

1

H(s) (7.3.11)

where the path of integration is chosen to lie in Rα,β := R \ {α,β}. This function is

holomorphic on Rα,β that satisfies

(A+ −A−)(z) =

 1, z ∈ β \ π−1(−z∗),

−B, z ∈ α \ π−1(−z∗)
(7.3.12)

Szegő Function

We define a Szegő function entirely analogously to what has been done in Section

5.3. Let

S̃h(z
(k)) := exp

{
1

4πi

∮
π−1(γ1∪γ2)

log(h)Ωz(k),z(1−k)

}
for k = 0, 1 (7.3.13)

where Ωz(k),z(1−k) is the meromorphic differential on R with simple poles at z(k), z(1−k)

with residues 1,−1, respectively, and zero period on α. By identical reasoning to that

employed in Proposition 5.3.1, we have the following

Proposition 7.3.2. Let S̃h be as above and h(z) = h∗(z)(1− z)α(1 + z)β where h∗(z)

is holomorphic, non-vanishing in a neighborhood of γ1∪γ2∪γ̂ and h(z) is holomorphic

in a neighborhood of each point of (γ1 ∪ γ2) \ {±1}. Furthermore, define

ch = ch(λ) :=
1

2πi

∮
π−1(γ1∪γ2)

log(h)H. (7.3.14)
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Then S̃h is holomorphic and non-vanishing on R \ (α ∪ π−1(γ1 ∪ γ2)) and satisfies

the relation S̃h(z
(k)) · S̃h(z(1−k)) ≡ 1. Furthermore, S̃h possesses continuous traces on

(α ∪ π−1(γ1 ∪ γ2)) \ {π−1(±1), π−1(z∗), π
−1(−z∗)} that satisfy

S̃h,+(s) = S̃h,−(s)

 e2πich , s ∈ α \ {π−1(z∗), π
−1(−z∗)},

1/h(s), s ∈ π−1(γ1 ∪ γ2) \ {π−1(±1)}.
(7.3.15)

Furthermore, we have

S̃h(z
(0)) ∼ |z − e|−αe/2, e ∈ {±1, z∗,−z∗}, (7.3.16)

where αe = 0 for e = z∗,−z∗, αe = α when e = 1 and αe = β when e = −1.

Theta Functions

Just as in Chapter 5, we denote by θ(z) the function defined by the sum

θ(u) =
∑
k∈Z

exp
{
πiBk2 + 2πiuk

}
.

For convenience, we remind the reader of its properties here. This function is holo-

morphic in C and satisfies the quasi-periodicity relations

θ(u+ j + Bm) = exp
{
−πiBm2 − 2πium

}
θ(u), j,m ∈ Z. (7.3.17)

It is also known that θ(u) vanishes only at the points of the lattice
[
B+1

2

]
, where we

remind the reader of the notation [s] = {s+l+Bm : l,m ∈ Z}, see 5.4. Furthermore,

let Ã denote the continuation of A onto α,β by A+ and define zn,k by the equation

Ã(zn,k) = Ã
(
p(k)
)

+ ch + n

(
1

2
+ Bτ

)
+ jn,k +mn,kB, jn,k,mn,k ∈ Z (7.3.18)

where p = iIm(z∗)/(1− Re(z∗)) and

τ = τ(λ) := − 1

πi

∫
γ̂

Q
1/2
λ (s)ds. (7.3.19)

Since R is of genus one, A is bijective and equation (7.3.18) defines zn,k uniquely. In

fact, the following holds
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Proposition 7.3.3. Let τ be given by (7.3.19), zn,k = zn,k(λ) as in (7.3.18), and p

as above. Then for any subsequence N∗ the point ∞(0) is a topological limit point of

{zn,1}n∈N∗ if and only if ∞(1) is a topological limit point of {zn,0}n∈N∗.

The proof of this proposition is deferred to Appendix B. Next, we define

Θn,k(z) = exp
{
−2πi

(
mn,k + τn

)
A(z)

} θ (A(z)− Ã(zn,k)− B+1
2

)
θ
(
A(z)− Ã

(
p(k)
)
− B+1

2

) (7.3.20)

and F (i)(z), i ∈ {0, 1}, stands for the pull-back under π(z) of a function F (z) from

R(i) into C \ (γ1 ∪ γ2).

The functions Θn,k(z) are meromorphic on Rα,β with exactly one pole, which is

simple and located at p(k), and exactly one zero, which is also simple and located

at zn,k (observe that the functions Θn,k(z) can be analytically continued as multi-

plicatively multivalued functions on the whole surface R; thus, we can talk about

simplicity of a pole or zero regardless whether it belongs to the cycles of a homology

basis or not). Moreover, according to (7.3.12), (7.3.18), and periodicity properties of

θ, they possess continuous traces on α,β away from π−1(−z∗) that satisfy

Θn,k+(s) = Θn,k−(s)


exp

{
− πi(n+ 2ch)

}
, s ∈ α \ {π−1(−z∗)},

exp
{
− 2πiτn

}
, s ∈ β \ {π−1(−z∗)}.

(7.3.21)

Subsequences N(λ, ε)

It will be important for our analysis (see section 8.3.1) that Θn,1(z), defined in

(7.3.20), does not vanish near ∞(0). Hence, we will consider subsequences N(ε) =

N(λ, ε) defined by

N(λ, ε) ≡ N(ε) :=
{
n ∈ N : zn,1 6∈R(0) ∩ π−1

({
|z| ≥ 1/ε

})}
.

Then there exists a constant c(λ, ε) > 0 such that |Θ(1)
n,1(∞)| ≥ c(λ, ε) for n ∈ N(λ, ε).

Indeed, by its very definition, A(zn,k) is a bounded quantity for all n, and hence

using (7.3.18) and the fact that Im(B) > 0, we conclude that nτ +mn,k is a bounded
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quantity. Consider a sequence of constants c(n;λ, ε) so that |Θ(1)
n,1(∞)| ≥ c(n, λ, ε).

Since Θ
(1)
n,1(∞) 6= 0 whenever zn,1 6= ∞(0), and by definition of N(ε), zn,1 ∈ R \(

R(0) ∩ π−1
({
|z| > 2/ε

}))
, which is compact, we conclude the existence of c(λ, ε)

with c(n, λ, ε) > c(n, λ) > 0.

Note that N(λ, ε) contains either n or n − 1 for all n ≥ Nε for some natural

number Nε. To prove this, suppose to the contrary that for any ε > 0, there exists nε

such that nε, nε − 1 6∈ N(λ, ε). By the very definition of N(λ, ε), it then holds that

znε−1,1, znε,1 →∞(0) as ε→ 0. This implies 1/2 + Bτ = m+ nB for some m,n ∈ Z,

which is false. We are ready to state the asymptotic formula for P λ
n (z).

Theorem 7.3.4 (Supercritical Case (λ > λcr)). Let λ > λcr, Vλ(z) = −iλz, h(z)

as in Proposition 7.3.2, and φ1(z) =
∫ z

1
Q

1/2
λ (s)ds. Then, there exists a constant `∗λ

(defined in (8.3.2)) so that

P λ
n (z) = en(Vλ(z)−`∗λ+φ1(z))

((
AΘ

(0)
n,1S̃

(0)
h

)
(z) +O

(
1

n

))
for n→∞, n ∈ N(λ, ε)

(7.3.22)

locally uniformly for z ∈ C \ γλ.

In the next chapter, we prove Theorems 7.2.3, 7.2.4, and 7.3.4.
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8. RIEMANN-HILBERT ANALYSIS: VARYING

ORTHOGONALITY WITH LINEAR POTENTIAL

A version of this chapter will appear in [46].

Just as discussed in Chapter 4, supposing

degP λ
n = n, C(P λ

nwn(z)) ∼ z−n−1 as z →∞

where we use wn(z) := h(z)einλz, h(z) as in (7.2.1), and

C(f)(z) =
1

2πi

∫
γλ

f(s) ds

s− z
,

then the matrix

Y (z) =

 P λ
n (z) C(P λ

nwn)(z)

kn−1P
λ
n−1(z) kn−1C(P λ

n−1wn)(z)

 (8.0.1)

solves RHP-Y . To proceed with the analysis, we follow the standard sequence of

transformations that appears in [48] and was outlined in Chapter 4.

8.1 Subcritical Case; 0 ≤ λ < λcr

8.1.1 Global Analysis

First Transformation

In this setting, and unlike the analysis carried out in Chapter 6, we start with the

construction of the g-function. Let

g(z) :=

∫
log(z − s)dµλ(s), z ∈ C \ ((−∞,−1) ∪ γλ) (8.1.1)
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where the branch of log(· − s) is holomorphic outside the curve connecting −∞ and

s along (−∞, 1] ∪ γλ and dµλ is given by Theorem 7.2.1. Observe that by its very

definition,

∂zg(z) =

∫
dµλ(s)

z − s
(8.1.2)

and via (7.2.3), we deduce that

g(z) =
Vλ(z)− `

2
+

∫ z

1

Q
1/2
λ (s) ds, (8.1.3)

where Q
1/2
λ (z) = iλ/2 + O (z−1) as z → ∞, integral is taken along a smooth curve

in C \ γλ, and ` is chosen so that g(z) = log z + O (z−1). In fact, since Qλ is fairly

explicit, we can calculate ` = 2 log 2. Using the Plemelj-Sokhotski formulas yields

(g+ − g−)(s) =


±φ±(s) for s ∈ γλ,

2πi for s ∈ (−∞,−1),

(8.1.4)

where we denote φ(z) := 2
∫ z

1
Q

1/2
λ (s) ds. One can compute this integral explicitly to

arrive at (7.2.5) in Theorem 7.2.1. Furthermore,

(g+ + g−)(s) = Vλ(s)− ` for s ∈ γλ. (8.1.5)

We are now ready to make the first transformation: let

T (z) := 2nσ3Y (z)e−n[g(z)+log 2]σ3 . (8.1.6)

Then, T (z) solves the following RH problem (RHP-T ):

(a) T (z) is analytic in C \ γλ and limz→∞ T = I.

(b) T has continuous traces as z → γλ \ {±1} and

T+(s) = T−(s)

e−nφ+(s) h(s)

0 enφ+(s)

 for s ∈ γλ \ {±1}.

(c) T behaves the same way as Y as z → ±1.

Indeed, RHP-T (a), (c) follow from analyticity properties of g while RHP-T (b) follows

by explicit calculation and using (8.1.5).
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Opening the Lenses

Let γ± be arcs within the domain of holomorphy of h(z) as shown in Figure 8.1

and define

•
−1

•
1

>
γλ

>γ+ >

γ−

>

Fig. 8.1. RHP for Kissing Polynomials: Curves γ± and γλ

X(z) =



T (z) z outside the lens

T (z)

 1 0

−e−nφ(z)/h(z) 1

 z on the upper lens

T (z)

 1 0

e−nφ(z)/h(z) 1

 z on the lower lens

. (8.1.7)

Then X(z) solves (RHP-X):

(a) X(z) is analytic in C \ (γλ ∪ γ±) and limz→∞X(z) = I

(b) X has continuous traces on (γλ ∪ γ±) \ {±1} that satisfy

X+(s) = X−(s)



 0 h(s)

−1/h(s) 0

 for s ∈ γλ,

 1 0

e−nφ(s)/h(s) 1

 for s ∈ γ±.
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(c) As z → 1 from outside the lenses,

X(z) =



O

1 |z − 1|α

1 |z − 1|α

 for − 1 < α < 0

O

1 log |z − 1|

1 log |z − 1|

 for α = 0

O

1 1

1 1

 for α > 0

while if z → 1 from inside the lenses,

X(z) =



O

1 |z − 1|α

1 |z − 1|α

 for − 1 < α < 0

O

log |z − 1| log |z − 1|

log |z − 1| log |z − 1|

 for α = 0

O

|z − 1|α 1

|z − 1|α 1

 for α > 0

with similar behavior for z → −1.

Note that Re(2φ(z)) = ` − Re(Vλ(z)) − 2Uµ(z) is a non-constant subharmonic

function that vanishes on γλ (the last claim follows from the variational condition

(7.1.1)). Since critical trajectories are exactly the set where Re(2φ(z)) = 0, we

conclude that the sign of Re(2φ(z)) must be fixed (locally) on either side of γλ. Due

to the S-property (7.1.2), this sign must be the same on either side of γλ. Hence, we

deduce from the maximum principle for subharmonic functions that Re(φ(z)) > 0 in

some neighborhood of γλ. Therefore, the jumps of X on γ± are exponentially small.

Global Parametrix

Since jumps on the lenses γ± are exponentially small, we temporarily ignore them

and focus on solving the resulting RHP:
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(a) N (z) is analytic in C \ γλ and limz→∞N (z) = I,

(b) N has continuous traces as z → γλ \ {±1} and satisfies

N+(s) = N−(s)

 0 h(s)

−1/h(s) 0

 for s ∈ γλ \ {±1}

We can solve this RH problem with the help of the Szegő function (cf. Section (5.3)):

S(z) := exp

{
w(z)

2πi

∫
γλ

log[(w+h)(x)]

z − x
dx

w+(x)

}
, (8.1.8)

where we use the notation w(z) := (z2 − 1)1/2 for the branch holomorphic in C \ γλ
with w(z) = z + O(1) as z → ∞. Observe that S is analytic and non-vanishing in

C \ γλ and satisfies

S+(t)S−(t) = (w+h)(t) for t ∈ γλ \ {±1}, (8.1.9)

where the above follows by application of the Plemelj-Sokhotski formula. Then, one

can check that N (z) can be written down explicitly as

N (z) := (S(∞))σ3

 1 1/w(z)

1/2ϕ(z) ϕ(z)/2w(z)

S−σ3(z), (8.1.10)

where ϕ is as in (7.2.5). Indeed, RHP-N (a) follows from analyticity properties of

S, ϕ, w and the identity

lim
z→∞

ϕ(z)

w(z)
= 2

while RHP-N (b) follows from (8.1.9) and

ϕ+(t)ϕ−(t) = 1 for t ∈ γλ \ {±1}. (8.1.11)

Although we will construct separate local parametrices near z = ±1, we will need

to note the behavior of N (z) as z → ±1, but this can be easily deduced from [28,

equations (8.8) and (8.35)] (cf. proof of Proposition 5.3.1 in Appendix B) and turns

out to be

N (z) = O

|z − 1|−(2α+1)/4 |z − 1|(2α−1)/4

|z − 1|−(2α+1)/4 |z − 1|(2α−1)/4

 as z → 1 (8.1.12)

and the same formula (α replaced by β and 1 by −1) holds for z → −1.
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8.1.2 Local Analysis

Next, we solve the local RHPs at the end points z = ±1. The local parametrices

that are involved are common in the literature, and appear in the already mentioned

[40], for example.

Local Parametrix around z = 1

Let U1 be a disk centered at z = 1 small enough so that h∗(z) (see (7.2.2)) is

holomorphic in U1. We seek a matrix P α(z) to solve the following RH problem

(RHP-P α):

(a, b, c) P α(z) satisfies RHP-X(a, b, c) within U1,

(d) It holds uniformly for z ∈ ∂U1 that N−1(z)P α(z) = I +O
(

1

n

)
.

While this is different from the local problem that appeared at the end points in

Chapter 8, the simple transformation P̃ (z) = P e−nφ(z)σ3/2 reduces it to the same

problem, and hence we will refer the reader to Section 6.3.1 for the model problem

and use the same notation, Ψα(z) for its solution.

Conformal Map

Since w(z) has a square root singularity at z = 1 and satisfies w+(s) = −w−(s),

s ∈ γλ, the function

ζ1(z) :=

(
1

4

∫ z

1

(2 + iλs)ds

w(s)

)2

=
1

16
φ2(z), z ∈ U1, (8.1.13)

is holomorphic in Uδ with a simple zero at 1. Thus, the radius of Uδ can be made

small enough so that ζ1(z) is conformal on U δ. Since γλ is exactly the curve where

Re(φ) = 0, it follows that ζ1 maps γλ into the negative reals. Since we had some

freedom in our choice of γ±, we now define them as the pre-images of I±, respectively,

under ζ1. It is clear in the case λ = 0 that γ± are in the correct half-planes, and by
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continuity of ζ1 w.r.t λ, and since for λ > 0, γλ is the unique arc emanating from

z = 1 with Re(φ(z)) = 0 ∀z ∈ γλ, we see that γ± are in the correct half-plane for all

λ ≥ 0. In what follows, we consider the branch ζ
1/2
1 (z) = 1

4
φ(z).

Matrix P α

Recall that

h(z) = h∗(z)(1− z)α(1 + z)β, z ∈ U1,

where (1 − z)α, (1 + z)β be functions holomorphic in U1 \ [1,∞), U1 \ (−∞,−1],

respectively, and h(z) is holomorphic and non-vanishing in U1. Define

r1(z) :=
√
h∗(z)(1 + z)β · (z − 1)α/2, z ∈ U1 \ γλ,

where (z − 1)α/2 has branch cut along γλ. It holds that

(z − 1)α = e±πiα(1− z)α, z ∈ U±1 ,

where U±1 are the domains within U1 to the left, respectively right, of γλ ∪ [1,∞).

Then 
r1,+(s)r1,−(s) = h(s), s ∈ γλ ∩ U1,

r2
1(z) = h(z)e±πiα, z ∈ U±1 .

(8.1.14)

The above relations and RHP-Ψα imply that

P α(z) := Eα(z)Ψα(n2ζ1(z))r−σ3
1 (z)e−

n
2
φ(z)σ3 (8.1.15)

satisfied RHP-P α(a, b, c) for any Eα(z) holomorphic in U1.

Matrix Eα

We will use the freedom of choosing Eα to satisfy RHP-P α(d). To this end, let

Eα(z) := N (z)rσ3
1 (z)S−1(n2ζ1(z)). (8.1.16)

where S is defined in RHP-Ψα(d). It follows from RHP-N , (8.1.14), and (6.3.1) that

Eα is holomorphic in U1 \ {1}. The fact that S−1(n2ζ1) ∼ |z − 1|−σ3/4, rσ3
1 (z) ∼
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|z − 1|ασ3 , coupled with (8.1.12), imply that z = 1 is a removable singularity of Eα,

which establishes the holomorphy of Eα in U1.

Local Parametrix around z = −1

A similar construction can be carried out in a neighborhood U−1 of z = −1 defined

in a fashion similar to U1 to arrive at the local parametrix

P̃ β(z) := Eβ(z)σ3Ψβ(n2ζ−1(z))σ3r
−σ3
−1 e

−n
2
φ̃(z)σ3 (8.1.17)

where φ̃(z) = φ(z)− 2πi , ζ−1(z) = φ̃2(z)/16

r−1(z) :=
√
h∗(z)(1− z)α(z + 1)β/2, z ∈ U−1 \ γλ, (8.1.18)

where the branch (z + 1)β/2 is taken with cut along γλ. The correct choice of Eβ(z)

turns out to be

Eβ(z) := N (z)rσ3
−1(z)S−1(n2ζ−1(z)). (8.1.19)

8.1.3 Final Riemann-Hilbert Problem

We now define

R(z) := X(z)


N−1(z), z ∈ C \

(
U1 ∪ U−1 ∪ γλ ∪ γ±

)
,

P−1
α (z), z ∈ U1 \ (γλ ∪ γ±),

P̃
−1

β (z), z ∈ U−1 \ (γλ ∪ γ±).

(8.1.20)

where we orient ∂U±1 clockwise. It follows that R(z) is analytic in U1, U−1 and

C \ (U1 ∪ U−1 ∪ γ±) and that, for s ∈ γ± ∪ ∂U1 ∪ ∂U−1

R+(s) = R−(s)


I +O(e−cn) for z ∈ γ± \ U±1

I +O
(

1
n

)
for z ∈ (∂U1 ∪ ∂U−1)

. (8.1.21)

Indeed, for s ∈ γ± ∩ (C \ (U1 ∪ U−1)),

(R−1
− R+)(s) = N (s)

 1 0

e−nφ(s)/h(s) 1

N−1(s) = I+N (s)

 0 0

e−nφ(s)/h(s) 0

N−1(s).
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and since and N is independent of n and Re(φ) > 0 on γ±, see discussion in Section

8.1.1 right after RHP-X, it follows that

‖R−1
− R+ − I‖L∞(γ±∩(C\(U1∪U−1))) = O

(
e−cn

)
.

As for the second equality, for s ∈ ∂U1 (s ∈ ∂U−1 can be handled similarly)

(R−1
− R+)(s) = P α(s)N−1(s) = N (s)

(
I +O

(
1

n

))
N−1(s)

where the last equality is due to RHP-P α(d). Therefore,

‖R−1
− R+ − I‖L∞(∂U1∪∂U−1) = O

(
1

n

)
Since all curves involved are fixed with n and of finite length, all estimates hold in

L2-norm as well. It now follows from [26, Corollary 7.108] that

R(z) = I +O
(

1

n

)
as n→∞, (8.1.22)

uniformly for z ∈ C \ (γ± ∪ ∂U1 ∪ ∂U−1). The asymptotic formula of P λ
n (z) outside

the lenses and away from endpoints follow from the observation

P λ
n (z) = (1 0)Y (z)

1

0

 = eng(z)(1 0)RN (z)

1

0

 (8.1.23)

= eng(z) ([R(z)]11[N (z)]11 + [R(z)]12[N (z)]21) (8.1.24)

= eng(z)
(

[N (z)]11 +O
(

1

n

))
, (8.1.25)

where the last equality follows from (8.1.22). Finally, observing that by (8.1.3),

eng(z) =

(
ϕ(z)

2

)n
exp

(
− inλ

ϕ(z)

)
,

from which (7.2.8) follows.

8.2 Critical Case; λ = λcr

In the case λ = λcr the zero-attracting curve seizes to be smooth, and we must

modify the lenses we consider to the figure shown below.
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•
−1

•
1

•

>
>γλcr

γ+

>

>

γ−

>

Fig. 8.2. RHP for Kissing Polynomials: lenses in the critical case

We will define matrices T ,X, and N in the same way as way done in the sub-

critical case. However, we will need to perform some local analysis at the midpoint

of γλcr , which lies at z∗ = 2i/λcr.

8.2.1 Local Parametrix around z∗ = 2i/λcr

Let Uc be a disk centered at z∗ = 2i/λcr small enough so that h(z) (see (7.2.2))

is holomorphic in U c. We seek a matrix P c(z) to solve the following RH problem

(RHP-P c):

(a) P c(z) satisfies is holomorphic in Uc \ (γλcr ∪ γ+),

(b) P c(z) has continuous traces on γλcr ∪ γ+ that satisfy

P c,+(s) = P c,−(s)



 1 0

−e−nφ(s)/h(s) 1

 , s ∈ γ+ ∩ Uc 0 h(s)

−1/h(s) 0

 , s ∈ γλcr ∩ Uc

(8.2.1)

(c) P c(z) is bounded as z → 2i/λcr. Furthermore, it holds uniformly for z ∈ ∂Uc

that N−1(z)P c(z) = I +O
(
n−1/2

)
.



89

Model Problem

We seek a matrix C(ζ) that solves the following RHP:

(a) C is holomorphic in C \ R

(b) C has continuous traces on R that satisfy

C+(s) = C−(s)

1 1

0 1

 (8.2.2)

(c) C(ζ) is bounded as ζ → 0 and

C(ζ) ∼

I +
∞∑
k=0

0 bk

0 0

 ζ−(2k+1)

 e−ζ
2σ3 (8.2.3)

for some bk 6= 0.

This problem appears in [50] and is solved by the matrix

C(ζ) =

e−ζ2
b(ζ)

0 eζ
2

 , (8.2.4)

where

b(ζ) :=
1

2
eζ

2 ·

 erfc(−i
√

2ζ), Im(ζ) > 0,

erfc(i
√

2ζ), Im(ζ) < 0.
(8.2.5)

With this definition and using [44, Equation (7.12.1)], we see that bk =
i√
2π

Γ(k + 1/2)

2k+1Γ(1/2)
.

Conformal Map

Let

φc(z) =

 φ(z), z ∈ Uc,+,

−φ(z), z ∈ Uc,−,
(8.2.6)

where Uc,+ (resp., Uc,−) is the component of Uc to the left (resp., right) of γλcr . Then,

φc is holomorphic in Uc and since z∗ = 2i/λcr is a simple zero of Q
1/2
λcr

, we have that

|φc(z)− φc(z∗)| ∼ |z − z∗|2 as z → z∗.
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Furthermore, by Theorem 7.2.1, we have that

φ±(s) = ±2πiµλcr([s, 1]) for s ∈ γλcr (8.2.7)

and we can see that φc(z) is purely imaginary and positive on γλcr(−1, z∗) and neg-

ative purely imaginary on γλcr(z∗, 1) where γλcr(z1, z2), z1, z2 ∈ γλcr is the segment

of γλcr that proceeds from z1 to z2. With this in mind, we can define a branch

of (φc(z) − φ(z∗))
1/2 that is holomorphic and, WLOG (up to restricting Uc to a

smaller neighborhood) conformal in Uc and maps γλcr(−1, z∗) ∩ Uc → {z | arg(z) =

π/4}, γλcr(z∗, 1) ∩ Uc → {z | arg(z) = 3π/4}. Using this branch, the map

ζc(z) := −(φc(z)− φc(z∗))1/2 (8.2.8)

is conformal, maps γλcr(−1, z∗) ∩ Uc into {z | arg(z) = 5π/4} and γ+ into R.

Matrix P c

Since h(z) is holomorphic and nonvanishing in Uc, we can define a holomorphic

branch of r(z) :=
√
h(z). Furthermore, let

J(z) :=


0 −1

1 0

 , z ∈ Uc,+,

I, z ∈ Uc,−.

(8.2.9)

Then,

P c(z) = Ec(z)C
(√

n/2 · ζc(z)
)
J−1(z)r−σ3(z)e−nφ(z)σ3/2 (8.2.10)

satisfies RHP-P c(a, b) for any Ec(z) holomorphic in Uc. Furthermore, by the very

definition of C,J , r, it follows that P c is bounded as z → z∗. RHP-P c(d) follows by

letting

Ec(z) := N (z)rσ3(z)J(z) (8.2.11)

and noting the holomorphy of all matrices in Uc, expansion (8.2.3), that φc(z∗) ∈ iR,

and the relation

e−nφ(z)σ3/2

0 −1

1 0

 =

0 −1

1 0

 enφ(z)σ3/2
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yield the desired result.

8.2.2 Final Riemann-Hilbert Problem

The final RHP can now be constructed in a manner completely analogous to

(8.1.20) and yields the asymptotic formula for P λcr
n (z) in Theorem 7.2.4. Note that

the worse error term is due to a worse matching between the local solution at z = z∗

and the global solution N .

8.3 Supercritical Case; λ > λcr

We begin our analysis by deforming [−1, 1] to a curve γλ that goes along γ1,

starting at −1 smoothly proceeds in the sector shown in Figure 7.1 from −z∗ to z∗

along γ̂ and goes along γ2 to 1. The initial RHP is as in RHP-Y with ρ(s;n) :=

h(z)einλz and again we require h(z) to be as in (7.2.2). See Section 7.3.2 for the

definition of the aforementioned curves.

8.3.1 Global Analysis

Because the zero-attracting curve has two connected components, the global anal-

ysis will drastically change, and more complicated functions will appear. Nonetheless,

we still follow the general layout of the steepest descent method.

First Transformation

In the same spirit as the one-cut case, let

g(z) :=

∫
log(z − s)dµλ(s), z ∈ C \ ((−∞,−1) ∪ γλ), (8.3.1)
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where log(·−s) is holomorphic outside the curve connecting−∞ and s along (−∞, 1]∪

γλ. Then it follows from (7.2.3) that there is `∗ ∈ C so that

g(z) =
Vλ(z)− `∗

2
+ φ1(z) and φe(z) := 2

∫ z

e

Q
1/2
λ (s)ds, e ∈ {±1, z∗,−z∗},

(8.3.2)

where the domain of holomorphy for φe is C\((−∞,−1)∪γλ) for e = 1, C\(γλ∪[1,∞))

for e = −1, and C \ (−∞,−1) ∪ γλ(−1,−z∗) ∪ γλ(z∗, 1) ∪ [1,∞)) for e ∈ {z∗,−z∗}.

From Figure 7.1, we immediately deduce that τ ∈ R (see (7.3.19)) and

φ1,±(s) =

 ±2πiµλ([s, 1]), s ∈ γ2,

±2πiµλ([s, 1]) + 2πiτ, s ∈ γ1.
(8.3.3)

Furthermore, using the fact that µλ is a probability measure and definition (7.3.19)

yields

φ1(z) =


φz∗(z)± πi

φ−z∗(z)± πi + 2πiτ

φ−1(z)± 2πi + 2πiτ

, z ∈ C \ ((−∞,−1) ∪ γλ ∪ (1,∞)), (8.3.4)

and + (resp. −) is chosen when z belongs to the left (resp. right) of (−∞,−1)∪γλ∪

(1,∞), oriented from −∞ to ∞, and we use the fact that

1

2
= − 1

πi

∫
γ1

Q
1/2
λ,+(s)ds. (8.3.5)

The later follows from a residue calculation and the reflection symmetry of γ1, γ2,

see [56, Proposition 3.5]. With this, (8.3.3), and (8.3.2) in mind, we can write

(g+ − g−)(s) =



0, s ∈ (1,∞),

±φ1,±(s), s ∈ γ2,

πi, s ∈ γ̂,

±(φ1,± − 2πiτ), s ∈ γ1,

2πi, s ∈ (−∞,−1).

(8.3.6)
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Furthermore,

(g+ + g− − V + `∗)(s) =



φ1(s), s ∈ (1,∞),

0, s ∈ γ2,

φz∗(s), s ∈ γ̂,

2πiτ, s ∈ γ1,

φ−1(s) + 2πiτ, s ∈ (−∞,−1).

(8.3.7)

We are now ready to start with our first transformation (cf. Section 8.1.1)

T (z) := en`
∗σ3Y (z)e−n(g(z)+`∗/2)σ3 . (8.3.8)

Then, T solves

(a) T (z) is holomorphic in C \ γλ and limz→∞ T = I,

(b) T (z) has continuous traces on γλ \ {±1, z∗,−z∗} that satisfy

T+(s) = T−(s)



e−n(φ1,+−2πiτ) h(s)e2nπiτ

0 e−n(φ1,−−2πiτ)

 , s ∈ γ1,enπi h(s)enφz∗ (s)

0 e−nπi

 , s ∈ γ̂e−nφ1,+ h(s)

0 e−nφ1,−

 , s ∈ γ2,

(c) T (z) behaves the same as Y as z → ±1.

Opening the Lenses

Motivated by the factorizatione−n(φ1,+(s)−C) h(z)enC

0 e−n(φ1,−(s)−C)

 =

 1 0

e−nφ1,−(s)/h(s) 1

×
 0 h(z)enC

−e−nC/h(z) 0

 1 0

e−nφ1,+(s)/h(s) 1

 ,
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where C = 2πiτ, 0 on γ1, γ2, respectively, we make the following definitions. Let γi,±

be arcs within the neighborhood of holomorphy of h(z) as shown in Figure 8.3 below.

γ1,± proceed from z = −1 to z = −z∗ while γ2,± proceed from z = z∗ to z = 1.

•
1

•
−1

••γ1,+

γ1,−

γ2,+

γ2,−

γ̂

Fig. 8.3. Opening the lenses: supercritical regime for kissing polynomials

Denote by Ωi,± the open sets delimited by γi,± and γi. Set

X(z) := T (z)



 1 0

∓e−nφ1(z)/h(z) 1

 , z ∈ Ωi± ,

I, otherwise.

(8.3.9)

Then X solves

(a) X(z) is analytic in C \ (γλ ∪ γi,±) and limz→∞X(z) = I,

(b) X(z) has continuous traces on γλ \ {±1,−z∗, z∗} that satisfy RHP-T (b) on γ̂, as

well as

X+(s) = X−(s)



e2nπiτσ3

 0 h(s)

−1/h(s) 0

 , s ∈ γ1,

 0 h(s)

−1/h(s) 0

 , s ∈ γ2,

 1 0

e−nφ1(s)/h(s) 1

 , s ∈ γi,±, i = 1, 2.
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(c) As z → 1 from outside the lenses,

X(z) =



O

1 |z − 1|α

1 |z − 1|α

 for − 1 < α < 0,

O

1 log |z − 1|

1 log |z − 1|

 for α = 0,

O

1 1

1 1

 for α > 0.

Furthermore, if z → 1 from inside the lenses,

X(z) =



O

1 |z − 1|α

1 |z − 1|α

 for − 1 < α < 0,

O

log |z − 1| log |z − 1|

log |z − 1| log |z − 1|

 for α = 0,

O

|z − 1|α 1

|z − 1|α 1

 for α > 0.

with similar behavior for z → −1 where β replaces α.

Global Parametrix

To discuss boundedness properties of Θn,k(z) and for the asymptotic analysis in

the following section it will be convenient to define

Mn,0(z) = Θn,0(z)


B(z), z ∈R(0),

A(z), z ∈R(1),

and Mn,1(z) = Θn,1(z)


A(z), z ∈R(0),

−B(z), z ∈R(1).

(8.3.10)
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These functions are holomorphic on R \ {α ∪ β ∪ π−1(γλ)} since the pole of Θn,k(z)

is canceled by the zero of β(z). Each function Mn,k(z) has exactly two zeros, namely,

zn,k and ∞(k). It follows from (B.3.3) and (7.3.21) that
M

(0)
n,k±(s) = ∓M (1)

n,k∓(s), s ∈ γ2,

M
(0)
n,k±(s) = ∓e−2πiτnM

(1)
n,k∓(s), s ∈ γ1,

M
(i)
n,k±(s) = e(−1)i2πi(nω+ch)M

(i)
n,k∓(s), s ∈ γ̂.

(8.3.11)

By arguing in the same way as we did in the one cut case (see Section 8.1.1,

see also (8.3.3), (7.3.19)), we see that the jumps on γi,± and off diagonal entry in

the jump on γ̂ are exponentially small. Hence, the Riemann-Hilbert problem for the

global parametrix is obtained from RHP-X by removing those quantities. Thus, we

are seeking the solution of RHP-N :

(a) N (z) is analytic in C \ (γλ) and limz→∞N (z) = I;

(b) N (z) has continuous traces on γλ \ {±1,−z∗, z∗} that satisfy

N+(s) = N−(s)



e2nπiτσ3

 0 h(s)

−1/h(s) 0

 , s ∈ γ1,

 0 h(s)

−1/h(s) 0

 , s ∈ γ2,

enπiσ3 , s ∈ γ̂.

We shall solve this problem only for n ∈ N(ε) = N(λ, ε) from Section 7.3.2.

Let the functions Mn,k(z) be given by (8.3.10) and Sh be defined by (7.2.7). With

the notation introduced right after (7.3.20), a solution of RHP-N is given by

N (z) = M−1(∞)M (z), M (z) :=

M (0)
n,1(z) M

(1)
n,1(z)

M
(0)
n,0(z) M

(1)
n,0(z)

 S̃σ3
h (z(0)). (8.3.12)

Indeed, RHP-N (a) follows from holomorphy of S̃h(z) and Mn,k(z) discussed in Propo-

sition 7.3.2 and right after (8.3.10), respectively. Fulfillment of RHP-N (b) can be
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checked by using (7.3.15) and (8.3.11). It will be important for our analysis that N

be invertible, which it is. Indeed, observe that det(N (z)) ≡ 1. Indeed, as the jump

matrices in RHP-N (b) have determinants 1, det(N (z)) is holomorphic through γ1,

γ̂, and γ2. It also has at most square root singularities at {±1, z∗,−z∗} as explained

right after (8.3.11). Thus, it is holomorphic throughout C and therefore is a constant.

The normalization at infinity implies that this constant is 1.

The behavior of N near the end points of γ1, γ2 will be important for the analysis,

and so we note it here. It follows from (7.3.6), (7.3.7) that

|Mn,k(z)| ∼ |z − e|−1/4 as z → e ∈ {π−1(1), π−1(−1), π−1(z∗), π
−1(−z∗)}.

(8.3.13)

Combining this and (7.3.16) yields

N ∼ |z − e|−1/4 · |z − e|αeσ3/2, e ∈ {±1, z∗,−z∗} (8.3.14)

where where αe = 0 for e = z∗,−z∗, αe = α when e = 1 and αe = β when e = −1.

In fact, for n ∈ N(λ, ε) and for z ∈ R \ π−1(∪eUe,δ) where e ∈ {±1, z∗,−z∗} and Ue

is a neighborhood of e of radius δ > 0, we can argue in the same way as was done in

Section 7.3.2 to arrive at constants c(ε), C(δ) > 0 that satisfy

0 < c(ε) < |Mn,k(z)| < C(δ). (8.3.15)

8.3.2 Local Analysis

In this section, we solve local RHP near points z = ±1 and z = z∗,−z∗. These

local parametrices are standard in the literature, and involve Bessel/Hankel functions

(near z = ±1) and Airy functions (near z = z∗,−z∗). In fact, the parametrices near

z = ±1 have already appeared multiple times in this work, see Sections 6.3.1, 8.1.2

for example.
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Local Parametrices at z = −1, 1

The local analysis near z = ±1 is very similar to what had been done in the

one-cut case. Let Ue, e ∈ {±1} be an open disk centered at e with fixed radius ∆

small enough so that it is in the domain of holomorphy of h∗(z) (see the line below

(7.2.1)). We seek a matrix P e, that solves the following RHP-P e:

(a) P e satisfies the same analyticity properties as X within Ue,

(b) P e satisfies the same jump relations as X within Ue,

(c) P e(z) = N (z) (I +O (n−1)) uniformly on ∂Ue as n→∞.

Conformal Map

Let φe be as defined in (8.3.2), and define

ζe(z) :=

(
1

4
φe(z)

)2

, e ∈ {±1} (8.3.16)

Then, since φe ∼ |z − e|1/2, it follows that φ2
e is conformal in a neighborhood of e

(WLOG, we suppose Ue is small enough for this). Furthermore, φ2
e maps γ1, γ2 into

(−∞, 0) (see Figure 7.1), and we choose γi,± to be preimages of I± := {z : arg(ζ) =

±2π/3}.

Matrix P e

For this problem, we will reuse the model RHP that appeared in Section 6.3.1,

and denote Ψ−1(ζ) := σ3Ψα(ζ)σ3 and Ψ1(ζ) := Ψβ(ζ). Furthermore, let

J e =

 I, e = 1,

e−nπiτσ3 , e = −1.
(8.3.17)

Then it follows from RHP-Ψα, definition of re in Section 6.3.1 (defined analogously

to ra1 with ρ replaced by h),(8.3.2), (8.3.2),(8.3.17), and (8.3.4) that

P e(z) = Ee(z)Ψe(n
2ζe(z))r−σ3

e (z)e−nφe(z)σ3/2J e (8.3.18)
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satisfies RHP-P e(a, b). The choice of Ee to ensure RHP-P e(c) holds is made below.

Matrix Ee

Finally, to satisfy the matching condition RHP-P e(c), we simply need to choose

Ee(z) := N (z)J−1
e rσ3

e (z)S−1
e (n2ζe(z)), (8.3.19)

where Se = σ3Sσ3 (see section 6.3.1 for the definition of S) for e = −1 and Se = S

for e = 1. Holomorphy in Ue \ {e} follows from RHP-N (b), definition of S, while the

behavior of N near e ∈ {±1}, see (8.3.14), the behavior of re near e, and the fact

that ζe(z) possesses a simple zero at e yield holomorphy in Ue.

Local Parametrices at z = z∗,−z∗

Let Ue, e ∈ {z∗,−z∗} be an open disk centered at e small enough to be within the

domain of holomorphy of h∗. We seek a matrix P e that solves the following RHP-P e:

(a) P e satisfies the same analyticity properties as X within Ue,

(b) P e satisfies the same jump relations as X within Ue,

(c) P e(z) = N (z) (I +O (n−1)) uniformly on ∂Ue as n→∞.

Model Problem

In this setting, we will yet another well-known model problem. Let I± be as in

the previous section and considee the following RHP - A

(a) A is analytic in C \
(
(−∞,∞) ∪ I− ∪ I+

)
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(b) A possess continuous traces on (−∞,∞) ∪ I± and satisfies

A+(s) = A−(s)



 0 1

−1 0

 , s ∈ (−∞, 0),

1 0

1 1

 , s ∈ L±,

1 1

0 1

 , s ∈ (0,∞),

(c) It holds uniformly in C \
(
(−∞,∞) ∪ I− ∪ I+

)
that

A(ζ)e
2
3
ζ3/2σ3 ∼ ζ−σ3/4

√
2

∞∑
k=0

sk 0

0 tk

 (−1)k i

(−1)ki 1

(2

3
ζ3/2

)−k
,

where s0 = t0 = 1 and sk =
Γ(3k + 1/2)

54kk!Γ(k + 1/2)
, tk = −6k + 1

6k − 1
sk, k ≥ 1.

This problem is solved by the Airy matrix [33, 58]. We will write Ae := A for

e = −z∗ and Ae := σ3Aσ3 for e = z∗. Furthermore, let

J e(z) :=

 e±πinσ3/2, e = z∗,

eπi(±1−2τ)nσ3/2, e = −z∗,
(8.3.20)

where we use + (resp., −) for z to the left (resp. right) of γλ.

Confomral Map

Let φe be as defined in (8.3.2), and define

ζe(z) :=

(
−3

4
φe(z)

)2/3

, e ∈ {z∗,−z∗} (8.3.21)

Then, since φe ∼ |z − e|3/2, it follows that a branch of φ
2/3
e can be chosen so that

ζe is conformal in a neighborhood of e (WLOG, we suppose Ue is small enough for

this). Furthermore, we fix the branch so that φ
2/3
e maps γ1 ∩ γ2 into (−∞, 0) (see

Figure 7.1), and we choose γi,± to be preimages of I± := {z : arg(ζ) = ±2π/3}. In

fact, we had some freedom in choosing γ̂, and we now fix it to (locally) go along the

orthogonal trajectory of −Q(z)(dz)2, so that it is mapped by φe into (0,∞).
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Matrix P e

Let r(z) =
√
h(z) be a branch holomorphic in Ue. It can be readily verified by

using (8.3.4) that

P e(z) := Ee(z)Ae

(
n2/3ζe(z)

)
e−nφeσ3/2r−σ3(z)J e(z), (8.3.22)

satisfies RHP-P e(a, b). The choice of Ee to ensure RHP-P e(c) holds is made below.

Matrix Ee

Let

Ee(z) = N (z)J−1
e rσ3(z)S−1

e (n2/3ζe(z)) (8.3.23)

where we let Se = σ3Sσ3 when e = z∗ and Se = S when z = −z∗ and define (−φe)1/6

to be positive on γ̂. Then, holomorphy of Ee in Ue \ {e} follows from (8.3.20),

definition of Se, r, and RHP-N (b). The behavior of N near z = z∗,−z∗, described

in (8.3.14), and the fact that ζe possesses a simple zero at ζe yields holomorphy in Ue.

8.3.3 Final Riemann-Hilbert Problem

Let Σ := ([(γλ \ (γ1 ∪ γ2)) ∪ γi,±] ∩D) ∪ (∪e∂Ue), where i ∈ {1, 2} and D :=

C \ ∪eU e, and define

R(z) := X(z)

 N−1(z), z ∈ C \ (∪eUe ∪ γλ ∪ γi,±) ,

P−1
e (z), z ∈ Ue \ (γλ ∪ γi,±).

(8.3.24)

where e ∈ {±1, z∗,−z∗} and i = 1 when e ∈ {−1,−z∗}, i = 2 when e ∈ {1, z∗}.

Then, it follows that R solves the following RHP-R:

(a) R(z) is holomorphic in C \ Σ and limC\Σ3z→∞R(z) = I;
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(b) R(z) has continuous traces on Σ◦ that satisfy

R+(s) = R−(s)



P e(s)N
−1(s), s ∈ ∂Ue,

N (s)

 1 0

e−nφb2 (s)/h(s) 1

N−1(s), s ∈ γi,± ∩D,

N−(s)

eπin h(s)enφz∗ (s)

0 e−πin

N−1
+ (s), s ∈ γ̂ ∩D

where ∂Ue is oriented clockwise.

It follows that R(z) is analytic in C\ (γi,±∪ (∪e∂Ue)) and that, for s ∈ γi,±∪ (∪e∂Ue)

and n ∈ N(ε) we have

R+(s) = R−(s)


I +Oε(e−cn) for z ∈ (γi,±) \ Ue,

I +Oε (n−1) for z ∈ ∪e∂Ue.
(8.3.25)

The first equality follows from the fact that Re(φ1) > 0 on Γ±, which follows from

noting that the formula Re(2φ1(z)) = Re(Vλ(z)) − ` − Uµ(z) implies Re(φ1) is a

non-constant subharmonic function that vanishes on γλ (the last claim follows from

the variational condition (7.1.1)). Since critical trajectories are exactly the set where

Re(2φ1(z)) = 0, we conclude that the sign of Re(2φ(z)) must be fixed (locally) on

either side of γ1, γ2. Furthermore, due to the S-property (7.1.2), the sign of Re(2φ1(z))

must be the same (locally) on either side of γ1, γ2. Hence, we deduce from the

maximum principle for subharmonic functions that Re(φ1) > 0 in some neighborhood

of γ1 ∪ γ2. Furthermore, as argued in Section 8.3.1, see (8.3.15), N is bounded as

N(ε) 3 n → ∞. Therefore, the jumps of X on γi,± are exponentially small. The

second equality holds again by boundedness of N with n ∈ N(ε) and construction of

P e , see RHP-P e(c). Since all contours are fixed with n and are of finite length, we

deduce that

‖R−1
− R+ − I‖L∞(Σ)∩L2(Σ) = Oε(n−1),

Finally, from [26, Corollary 7.108] we conclude that

R(z) = I +Oε
(

1

n

)
as n→∞, (8.3.26)
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uniformly for z ∈ C \ (γi,± ∪ (∪e∂Ue)). The asymptotic formula of P λ
n (z) outside the

lenses and away from endpoints follows by undoing the above transformations as was

done in [48].

8.4 Concluding Remarks and Future Work

As we will see in Chapter 9 (see Section 9.3), much of the work of attaining

strong asymptotics of orthogonal polynomials via Riemann-Hilbert analysis relies on

identifying the zero-attracting curve associated to the family of polynomials being

investigated. In the setting of the kissing polynomials we studied here, this work was

done in [48] and [56]. However, introducing an algebraic singularity

ρn(x) = |x|γ(1− x)α(1 + x)βeiωx, ω = λn, λ ≥ 0,

changes the geometry of the attracting curve in a non-trivial way, since now the

curve must pass through z = 0. This was not the case for kissing polynomials

considered above since the weight of orthogonality was required to be analytic in a

region specifically designed to allow us to deform [−1, 1] to γλ. Once the geometry

of this new zero-attracting curve is established, the problem becomes amenable to

Riemann-Hilbert analysis.
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9. VARYING ORTHOGONALITY IN POLYNOMIAL

EXTERNAL FIELDS

A version of this chapter will appear in [59].

In the previous chapter, we discussed varying orthogonality in a polynomial ex-

ternal field of degree 1. In this present chapter, we move up in degree and investigate

some of the complications that arise. Consider polynomials satisfying the orthogo-

nality relation ∫
Γ

Pn(z;N)zke−NV (z) dz = 0 for k = 0, 1, ..., n− 1 (9.0.1)

where V (z) is a polynomial, N is an integer parameter, and Γ is a curve tending to

infinity in both senses in such a way that (9.0.1) converges. Such polynomials appear

in the study of random matrices [50, 51, 60]. While the RHP 4.1.1 is still valid, its

analysis now relies on deforming Γ so as to contain the zero-attracting curve(s) of Pn.

The zeros of polynomials satisfying (9.0.1) asymptotically distribute as the weighted

equilibrium measure on an associated S-contour corresponding to the weight function

V . We consider the class of curves

Definition. We say a curve Γ ∈ T if Γ is an unbounded smooth contour such that

for any parametrization z(s), s ∈ R, of Γ there exists ε ∈ (0, π/6) and s0 > 0 for

which 
| arg(z(s))− π/3| ≤ π/6− ε, s ≥ s0,

| arg(z(s))− π| ≤ π/6− ε, s ≤ −s0,

(9.0.2)

where arg(z(s)) ∈ [0, 2π). The above conditions ensure that integral (9.0.1) is finite

and due to analyticity of the integrand does not depend on a particular Γ satisfying

(9.0.2).
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Of course one can still seek a solution of the energy-minimization introduced in

section 7.1. The equilibrium measure µ = µΓ is characterized by the Euler–Lagrange

variational conditions:

2Uµ(z) + ReV (z)

 = `, z ∈ JΓ,

≥ `, z ∈ Γ \ JΓ,
(9.0.3)

where ` = `Γ is a constant, the Lagrange multiplier, and

Uµ(z) = −
∫

log |z − s|dµ(s)

is the logarithmic potential of µ as before. Any Γ ∈ T can be used to define Pn(z;N)

in (9.0.1), nevertheless, in our tour of the theory of non-Hermitian orthogonal poly-

nomials, starting with the works of Stahl [15–17] and Gonchar and Rakhmanov [55]

that one we saw that one should use the contour whose equilibrium measure has sup-

port with the S-property (7.1.2) in the external field ReV . We shall say that a curve

Γ ∈ T is an S-curve in the field ReV , if JΓ has the S-property in this field.

Much like we saw in Chapter 7, it is also understood that geometrically JΓ is

comprised of critical trajectories of quadratic differentials. Recall that if Q is a mero-

morphic function, a trajectory (resp. orthogonal trajectory) of a quadratic differential

−Q(z)dz2 is a maximal regular arc on which

−Q(z(s))
(
z′(s)

)2
> 0

(
resp. −Q(z(s))

(
z′(s)

)2
< 0
)

for any local uniformizing parameter. A trajectory is called critical if it is incident

with a finite critical point (zero or a simple pole of −Q(z)dz2) and it is called short

if it is incident only with finite critical points. We designate the expression critical

(orthogonal) graph of −Q(z)dz2 for the totality of the critical (orthogonal) trajectories

−Q(z)dz2.

Henceforth, we will specialize consideration to a cubic potential of the form

V (z; t) = −1

3
z3 + tz, t ∈ C (9.0.4)

In this setting, [61, Theorem 2.3], reproduced below, asserts the existence of such

S-contours and characterizes them:
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Theorem 9.0.1. Let V (z; t) be given by (9.0.4).

1. There exists a contour Γt ∈ T such that

IV (Γt) = sup
Γ∈T

IV (Γ). (9.0.5)

2. The equilibrium measure µt := µΓt is the same for every Γt satisfying (9.0.5).

The support Jt of µt has the S-property in the external field ReV (z; t).

3. The function

Q(z; t) =

(
V ′(z; t)

2
−
∫

dµt(s)

z − s

)2

, z ∈ C \ Jt, (9.0.6)

is a polynomial of degree 4.

4. The support Jt consists of some short critical trajectories of the quadratic dif-

ferential −Q(z; t)dz2 and the equation

dµt(z) = − 1

πi
Q

1/2
+ (z; t)dz, z ∈ Jt, (9.0.7)

holds on each such critical trajectory, where Q1/2(z; t) = 1
2
z2 +O(z) as z →∞

(in what follows, Q1/2(z; t) will always stand for such a branch).

Remark 9.0.2. Although the equilibrium measure µΓ is unique, the S-contour Γt is

not. Indeed, we can slightly perturb Γt outside of the support of µΓ while preserving

the equilibrium measure and the min-max property (9.0.5).

Much information on the structure of the critical graphs of a quadratic differential

can be found in the excellent monographs [62–64]. Since deg Q = 4, Jt consists of one

or two arcs, corresponding (respectively) to the cases where Q(z; t) has two simple

zeros and one double zero, and the case where it has four simple zeros. Away from

Jt, one has freedom in choosing Γt. In particular, let

U(z; t) := Re

(∫ z

e

Q1/2(s; t)ds

)
= `t − Re(V (z; t))− Uµt(z), (9.0.8)
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where e ∈ Jt is any and the second equality follows from (9.0.6) (since the constant

`t := `Γt in (9.0.3) is the same for both connected components of Jt and is purely imag-

inary on Jt, the choice of e is indeed not important). Clearly, U(z; t) is a subharmonic

function (harmonic away from Jt) which is equal to zero Jt by (9.0.3). The trajectories

of −Q(z; t)dz2 emanating out of the endpoints Jt belong to the set {z : U(z; t) = 0}

and it follows from the variational condition (9.0.3) that Γt \ Jt ⊂ {z : U(z; t) < 0}.

However, within the region {z : U(z; t) < 0} the set Γt \ Jt can be varied freely. The

geometry of the set {z : U(z; t) < 0} is described further below in Theorems 9.1.1

and 9.1.2.

9.1 Geometry of Γt

The structure of Γt and its dependence on t has been heuristically described

in [65, 66] and rigorously in [50], but only in the one-cut region. Let us quickly

recall the important notions from [50].

Denote by C the critical graph of an auxiliary quadratic differential

− (1 + 1/s)3ds2, (9.1.1)

see Figure 9.1(a). It was shown in [50, Section 5] that C consists of 5 critical tra-

jectories emanating from −1 at the angles 2πk/5, k ∈ {0, 1, 2, 3, 4}, one of them

being (−1, 0), other two forming a loop crossing the real line approximately at 0.635,

and the last two approaching infinity along the imaginary axis without changing the

half-plane (upper or lower). Given C, define

∆ :=
{
x : 2x3 ∈ C

}
.

Further, put Ωone−cut to be the shaded region on Figure 9.1(b) and set

∂Ωone−cut = ∆b
birth ∪

{
− 2−1/3

}
∪∆split ∪

{
eπi/32−1/3

}
∪∆a

birth,
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(a)

0−1

(b)

− 3
√

1/2

∆a
birth

∆split

∆b
birth

Ωone−cut

Fig. 9.1. Schematic representation of (a) the critical graph C; (b) the set ∆
(solid lines) and the domain Ωone−cut (shaded region).

where ∆split connects −2−1/3 and eπi/32−1/3, ∆b
birth extends to infinity in the direction

of the angle 7π/6 while ∆a
birth extends to infinity in the direction of the angle π/6.

Let

t(x) := (x3 − 1)/x

and set 

tcr := 3 · 2−2/3 = t
(
− 2−1/3

)
,

Oone−cut := t(Ωone−cut),

Csplit := t
(
∆split

)
, Cb

birth := t
(
∆b

birth

)
, Ca

birth := t
(
∆a

birth

)
,

S := (tcr,∞), e2πi/3S :=
{
z : e−2πi/3z ∈ S

}
,

(9.1.2)

see Figure 9.2. The function t(x) is holomorphic in Ωone−cut with non-vanishing deriva-

tive there. It maps Ωone−cut onto Oone−cut in a one-to-one fashion. Hence, the inverse

map x(t) exists and is holomorphic.

Below, we adapt the following convention: Γ(z1, z2) (resp. Γ[z1, z2]) stands for

the trajectory or orthogonal trajectory (resp. the closure of) of the differential

−Q(z; t)dz2 connecting z1 and z2, oriented from z1 to z2, and Γ
(
z, eiθ∞

)
(resp.
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tcr

e2πi/3tcr
Cb

birth

Ca
birth

Csplit

S

e2πi/3S

Oone−cut

Fig. 9.2. Domain Oone−cut (shaded region); ∂Oone−cut consisting of the open
bounded arc Csplit, two open semi-unbounded arcs Cabirth and Cbbirth, and two
points tcr and e2πi/3tcr; the semi-unbounded open horizontal rays S and e2πi/3S
(dashed lines).

Γ
(
eiθ∞, z

)
) stands for the orthogonal trajectory ending at z, approaching infinity

at the angle θ, and oriented away from z (resp. oriented towards z).1

The following theorem has been proven in [50, Theorem 3.2] and it describes the

geometry of Γt when t ∈ Oone−cut.

Theorem 9.1.1. Let µt and Q(z; t) be as in Theorem 9.0.1, Jt = supp(µt). When

t ∈ Oone−cut, the polynomial Q(z; t) is of the form

Q(z; t) =
1

4
(z − a(t))(z − b(t))(z − c(t))2. (9.1.3)

with a(t), b(t), and c(t) given by
a(t) := x(t)− i

√
2/
√
x(t),

b(t) := x(t) + i
√

2/
√
x(t),

c(t) := −x(t),

(9.1.4)

where
√
x(t) is the branch holomorphic in Oone−cut satisfying

√
x(0) = eπi/3. The set

Jt consists of a single arc and

(I) if t ∈ Oone−cut, then Jt = Γ[a, b] and an S-curve Γt ∈ T can be chosen as

1This notation is unambiguous as the corresponding trajectories are unique for polynomial differen-
tials as follows from Teichmüller’s lemma.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 9.3. Schematic representation of the critical (solid) and critical orthogonal
(dashed) graphs of −Q(z; t)dz2 when t ∈ Oone−cut. The bold curves represent
the preferred S-curve Γt. Shaded region is the set {U(z; t) < 0}.

(a) Γ
(
eπi∞, a

)
∪ Jt ∪ Γ

(
b, eπi/3∞

)
when t belongs to the connected component

bounded by S ∪ Csplit ∪ e2πi/3S, see Figure 9.3(a–e);

(b) Γ
(
eπi∞, a

)
∪ Jt ∪ Γ(b, c) ∪ Γ

(
c, eπi/3∞

)
when t ∈ S, see Figure 9.3(f);

(c) Γ
(
eπi∞, c

)
∪ Γ(c, a) ∪ Jt ∪ Γ

(
b, eπi/3∞

)
when t ∈ e2πi/3S;

(d) Γ
(
eπi∞, a

)
∪Jt∪Γ

(
b, e−πi/3∞

)
∪Γ
(
e−πi/3∞, c

)
∪Γ
(
c, eπi/3∞

)
when t belongs

to the connected component bounded by S ∪ Cb
birth, see Figure 9.3(g);

(e) Γ
(
eπi∞, c

)
∪Γ
(
c, e−πi/3

)
∪Γ
(
e−πi/3∞, a

)
∪Jt∪Γ

(
b, eπi/3∞

)
when t belongs

to the connected component bounded by e2πi/3S ∪ Ca
birth.

(II) if t = tcr (resp. t = e2πi/3tcr), then Jt = Γ[a, b], c coincides with b (resp. a), and

an S-curve Γt ∈ T can be chosen as in Case I(a), see Figure 9.4(a).

(III) if t ∈ Csplit, then Jt = Γ[a, c] ∪ Γ[c, b] and an S-curve Γt ∈ T can be chosen as

in Case I(a), see Figure 9.4(b).
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(IV) if t ∈ Cb
birth (resp. t ∈ Ca

birth), then Jt = Γ[a, b] and an S-curve Γt ∈ T can be

chosen as in Case I(d) (resp. Case I(e)), see Figure 9.4(c).

(a) (b) (c)

Fig. 9.4. This is a continuation of Figure 9.3 for the case t ∈ ∂Oone−cut.

Now, let Otwo−cut := C \Oone−cut. Then the following theorem holds.

Theorem 9.1.2. Let µt and Q(z; t) be as in Theorem 9.0.1, Jt = supp(µt). When

t ∈ Otwo−cut, the polynomial Q(z; t) is of the form

Q(z; t) =
1

4
(z − a1(t))(z − b1(t))(z − a2(t))(z − b2(t)) (9.1.5)

with a1(t), b1(t), a2(t), and b2(t) all distinct. The real and imaginary parts of

ai(t), bi(t) are real analytic functions of Re(t) and Im(t) when t ∈ Otwo−cut while

the functions ai(t), bi(t) themselves are not analytic functions of t. Moreover, it holds

that

a1(t), b1(t)→ a(t∗), b1(t), a2(t)→ c(t∗), and a2(t), b2(t)→ b(t∗) (9.1.6)

as t→ t∗ with t∗ ∈ Ca
birth ∪

{
e2πi/3tcr}, t∗ ∈ Csplit, and t∗ ∈ Cb

birth ∪
{
tcr}, respectively.

The S-curve Γt can be chosen as

Γ
(
eπi∞, a1(t)

)
∪ Jt,1 ∪ Γ

(
b1(t), e−πi/3∞

)
∪ Γ
(
e−πi/3∞, a2(t)

)
∪ Jt,2 ∪ Γ

(
b2(t), eπi/3∞

)
,

where Jt = Jt,1 ∪ Jt,2 and Jt,i = Γ
[
ai(t)bi(t)

]
, i ∈ {1, 2}, see Figure 9.5 (this also

explains how we choose the labeling of the zeros of Q(z; t) in the considered case).
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Remark 9.1.3. Theorem 9.1.2 is the justification for the notation Otwo−cut: combined

with Theorem 9.0.1 we see that µt is supported on two analytic arcs, which appear

as a special choice of branch cut for Q1/2.

We prove Theorem 9.1.2 in Section 9.3.

Fig. 9.5. The schematic representation of the critical and critical orthogo-
nal graphs of −Q(z; t)dz2 when t ∈ Otwo−cut. The bold curves represent the
preferred S-curve Γt. Shaded region is the set {U(z; t) < 0}.

9.2 Main Results

In this section we assume that t ∈ Otwo−cut and Q(z; t), Γt, and Jt are as in

Theorem 9.1.2. When it comes to the definition of the contour Γt, it will be more

practical for us to change the choice of Γt from the one made in Theorem 9.1.2

by dropping the unbounded trajectories Γ(b1(t),∞e−πi/3) and Γ(e−πiπ/3∞, a2(t)) and

replacing them with a smooth Jordan arc, say It, connecting b1(t) and a2(t) such

that I◦t := It \ Et lies entirely in the set {U(z; t) < 0} in such a way that there

exists s1(t) ∈ Γ(b1(t), e−πi/3∞), s2(t) ∈ Γ(e−πi/3∞, a2(t)) for which Γ(b1(t), s1(t)) ∪

Γ(s2(t), a2(t)) ⊂ I◦t . In what follows we shall write Jt := Jt,1 ∪ Jt,2, J◦t := J◦t,1 ∪ J◦t,2,

and Et := Jt \ J◦t = {a1(t), b1(t), a2(t), b2(t)}, where J◦t,i := Γ
(
ai(t), bi(t)

)
.
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9.2.1 Asymptotics of Pn(z; t, N)

To describe the asymptotics of the orthogonal polynomials themselves, we need

to construct the Szegő function of eV (z;t).

Proposition 9.2.1. Let the constant ς(t) be given by

ς(t) :=
2t

3

(∫
It

ds

Q1/2(s; t)

)−1

, (9.2.1)

where, as usual, we use the branch Q1/2(z; t) = 1
2
z2 + O(z) as z → ∞. Then the

function

D(z; t) := exp

{
1

2
V (z; t) +

1

3

(
z +

∫
It

3ς(t)

s− z
ds

Q1/2(s; t)

)
Q1/2(z; t)

}
(9.2.2)

is holomorphic and non-vanishing in C \ (Jt ∪ It) with continuous traces on J◦t ∪ I◦t
that satisfy 

D+(s; t)D−(s; t) = eV (s;t), s ∈ J◦t ,

D+(s; t) = D−(s; t)e2πiς(t), s ∈ I◦t .
(9.2.3)

We shall also denote by D(z; t) := D(z; t)/D(∞; t) the normalized Szegő function.

We prove Proposition 9.2.1 in Appendix B.

To describe the geometric growth of orthogonal polynomials, let us define

Q(z; t) :=

∫ z

b2(t)

Q1/2(s; t)ds, z ∈ C \ Γt
(
eπi∞, b2(t)

]
. (9.2.4)

Observe that U(z; t) = Re(Q(z; t)) as defined in (9.0.8). This function has the fol-

lowing properties.

Proposition 9.2.2. Let the constants τ(t), ω(t) be given by

τ(t) := − 1

πi

∫
It

Q1/2(s; t)ds and ω(t) := − 1

πi

∫
Jt,1

Q
1/2
+ (s; t)ds. (9.2.5)

These constants are necessarily real (in fact, ω(t) = µt(Jt,1), see (9.0.7)). The func-

tion eQ(z;t) is holomorphic in C \ (Jt ∪ It) and there exists a constant `∗(t) such that

exp

{
V (z; t)− `∗(t)

2
+Q(z; t)

}
= z +O(1) as z →∞. (9.2.6)
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Moreover, Q(z; t) possesses continuous traces on J◦t ∪ I◦t that are purely imaginary

on Jt and satisfy 
eQ+(s;t)+Q−(s;t) = 1, s ∈ J◦t,2,

eQ+(s;t)+Q−(s;t) = e2πiτ(t), s ∈ J◦t,1,

eQ+(s;t) = eQ−(s;t)−2πiω(t), s ∈ I◦t .

(9.2.7)

We prove Proposition 9.2.2 in Section 10.1. Observe that it follows from Theo-

rem 9.1.2 that |eQ(z;t)| is less than 1 when U(z; t) < 0 (the shaded areas of Figure 9.5),

is equal to 1 on critical trajectories (black curves), and otherwise is greater than 1.

Another auxiliary function we need is given by (cf. (7.3.7))

A(z; t) :=
1

2

((
z − b2(t)

z − a2(t)

z − b1(t)

z − a1(t)

)1/4

+

(
z − b2(t)

z − a2(t)

z − b1(t)

z − a1(t)

)−1/4
)

(9.2.8)

for z ∈ C \ Jt, where the branches are chosen so that the summands are holomorphic

in C\Jt and have value 1 at infinity. As explained in Section 10.3.2, this function can

be analytically continued through each side of J◦t and is non-vanishing in the domain

of the definition.

Finally, given a sequence {Nn}n∈N, we define further below in (7.3.20) functions

Θn(z; t), which are certain ratios of Riemann theta functions on the Riemann sur-

face of Q1/2(z; t). To shorten the presentation of the main results, we only discuss

main properties of the functions Θn(z; t) and defer to Section 10.3 for the detailed

construction and description of further properties (cf. Section 7.3.2).

Proposition 9.2.3. Functions Θn(z; t) are holomorphic in C \ Jt ∪ It with at most

one zero there. These functions have continuous traces on J◦t ∪ I◦t that satisfy

Θn+(s; t) = Θn−(s; t)e2πi(nω(t)+(n−Nn)ς(t)).

Assume that there exists a constant N∗ such that |n−Nn| ≤ N∗ for all n ∈ N. Then

for any δ > 0 there exists a constant C(t, δ,N∗) such that

|A(z; t)Θn(z; t)| ≤ C(t, δ,N∗), z ∈ C \ ∪e∈Et
{
|z − e| < δ

}
,
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that is, including the traces on Jt ∪ It. Given ε > 0, let N(t, ε) be a subsequence

of indices n such that Θn(z; t) is non-vanishing in {|z| ≥ 1/ε}. Then there exists a

constant c(t, ε) > 0 such that

|Θn(∞; t)| ≥ c(t, ε), n ∈ N(t, ε).

As in the case of Szegő functions, we denote the renormalized functions by ϑn(z; t) =

Θ(z; t)/Θ(∞; t). Observe that the functions ϑn(z; t)DNn−n(z; t)enQ(z;t) are holomor-

phic in C \ Jt.

Proposition 9.2.3 has substance only if the sets N(t, ε) have infinite cardinality.

To describe when this happens, let us define

B := −

(∫
Jt,1

ds

Q
1/2
+ (s; t)

)
/

(∫
It

ds

Q1/2(s; t)

)
. (9.2.9)

It follows from the general theory of Riemann surfaces, see Section 10.3.1, that

Im(B) > 0. In particular, any s ∈ C can be uniquely written as x + By for some

x, y ∈ R.

Proposition 9.2.4. Given {Nn}n∈N such that |n − Nn| ≤ N∗ for some N∗ ≥ 0, the

subsequence N(t, ε) is infinite for all ε > 0 small enough unless there exist integers

d > 0, k, i1, i2,m1,m2 such that

ς(t) = (i1 + Bi2)/d, ω(t)d = (k − 1)i1 +m1d, and τ(t)d = (k − 1)i2 +m2d,

(9.2.10)

where at least one of the fractions i1/d, i2/d is irreducible, and the sequence {Nn} is

such that every nk −Nn is either divisible by d or d/2 when the latter is an integer.

Write ς(t) = x(t) + By(t), x(t), y(t) ∈ R. If one of the triples ω(t), x(t), 1 or

τ(t), y(t), 1 is rationally independent, then at least one of the integers n, n+ 1 belongs

to N(t, ε) for all 0 < ε ≤ ε(N∗). Furthermore, if there exists an infinite subsequence

{nl} such that Nnl+1−Nnl ∈ {0, 1}, then at least one of the integers nl, nl + 1 belongs

to N(t, ε) for all 0 < ε ≤ ε∗.

We prove Proposition 9.2.4 in Section 10.3.3. With all the functions defined above,

the following theorem holds.
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Theorem 9.2.5. Let t ∈ Otwo−cut and {Nn}∞n=1 be a sequence such that |n−Nn| ≤ N∗

for some N∗ fixed. Let Pn(z; t, N) be the minimal degree polynomial satisfying (9.0.1)

and (9.0.4) and

ψn(z; t) := Pn(z; t, Nn)e−n(V (z;t)−`∗)/2.

Given ε > 0, let N(t, ε) be as in Proposition 9.2.3. Then for all n ∈ N(t, ε) large

enough it holds that

ψn(z; t) =
((
AϑnD

Nn−n
)

(z; t) +Oε
(
n−1
))
enQ(z;t) (9.2.11)

locally uniformly in C \ Jt; moreover,

ψn(s; t) =
(
AϑnD

Nn−n
)

+
(s; t)enQ+(s;t) +

(
AϑnD

Nn−n
)
− (s; t)enQ−(s;t) +Oε

(
n−1
)

(9.2.12)

locally uniformly on J◦t .

Recall that each function ϑn(z) might have a single zero in C \ Jt. If these zeros

accumulate to some point z∗ along some subsequence of N(t, ε), then the polyno-

mials Pn(z; t, Nn) will have a single zero approaching z∗ along this subsequence by

(9.2.11) and Rouche’s theorem. With this exception, it also follows from (9.2.11) that

Pn(z; t, Nn) are eventually zero free on compact subsets C \ Jt.

The proof of Theorem 9.2.5 is carried out in Chapter 10.

9.3 S-curves

In this section we prove Theorem 9.1.2. We do it in several steps. In Section 9.3.1

we gather results about quadratic differentials that will be important to us throughout

the proof. In Section 9.3.2 we show the validity of formula (9.1.5); that is, we prove

that we are indeed in the two-cut case when t ∈ Otwo−cut. In Section 9.3.3 we show

that the critical and critical orthogonal graphs of

$t(z) := −Q(z, t)dz2
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do look like as depicted on Figure 9.5. In Section 9.3.4 we describe the dependence

of the zeros of Q(z; t) on t by showing that the variational condition (9.0.3) and the

S-property (9.0.6) yield that the zeros satisfy a certain system of real equations with

non-zero Jacobian, see (9.3.16) and (9.3.17), and that this system, in fact, is uniquely

solved by them. Finally, in Section 9.3.5 we establish the limits in (9.1.6).

9.3.1 On Quadratic Differentials

To start, let us also recall the following important result, known as Teichmüller’s

lemma, see [64, Theorem 14.1]. Let P be a geodesic polygon of a quadratic differential,

that is, a Jordan curve in C that consists of a finite number of trajectories and

orthogonal trajectories of this differential. Then it holds that∑
z∈P

(
1− θ(z)

2 + ord(z)

2π

)
= 2 +

∑
z∈int(P )

ord(z), (9.3.1)

where ord(z) is the order of z with respect to the considered differential and θ(z) ∈

[0, 2π], z ∈ P , is the interior angle of P at z. Both sums in (9.3.1) are finite since

only critical points of the differential have a non-zero contribution.

Let us briefly recall the main properties of the differential $t(z). The only critical

points of $t(z) are the zeros of Q(z; t) and the point at infinity. Regular points have

order 0, the order of a zero of Q(z; t) is equal to its multiplicity, and infinity is a

critical point of order −8. Through each regular point passes exactly one trajectory

and one orthogonal trajectory of $t(z), which are orthogonal to each other at the

point. Two distinct (orthogonal) trajectories meet only at critical points [64, Theorem

5.5]. As Q(z; t) is a polynomial, no finite union of (orthogonal) trajectories can form

a closed Jordan curve while a trajectory and an orthogonal trajectory can intersect at

most once [63, Lemma 8.3]. Furthermore, (orthogonal) trajectories of $t(z) cannot

be recurrent (dense in two-dimensional regions) [62, Theorem 3.6]. From each critical

point of order m > 0 there emanate m + 2 critical trajectories whose consecutive

tangent lines at the critical point form an angle 2π/(m + 2). Furthermore, since

infinity is a pole of order 8, the critical trajectories can approach infinity only in six
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distinguished directions, namely, asymptotically to the lines L−π/6, Lπ/6, and Lπ/2,

where Lθ = {z : z = reiθ, r ∈ (−∞,∞)}. In fact, there exists a neighborhood of

infinity such that any trajectory entering it necessarily tends to infinity [64, Theorem

7.4]. This discussion also applies to orthogonal trajectories. In particular, they can

approach infinity only asymptotically to the lines L0, Lπ/3, and L2π/3.

Denote by G the critical graph of $t(z), that is, the totality of all the critical

trajectories of $t(z). Then, see [62, Theorem 3.5], the complement of G can be written

as a disjoint union of either half-plane or strip domains. Recall that a half-plane (or

end) domain is swept by trajectories unbounded in both directions that approach

infinity along consecutive critical directions. Its boundary is connected and consists

of a union of two unbounded critical trajectories and a finite number (possibly zero)

of short trajectories of $t(z). The map z 7→
∫ z√−$t maps end domains conformally

onto half planes {z ∈ C | Re(z) > c} for some c ∈ R that depends on the domain, and

extends continuously to the boundary. Similarly, a strip domain is again swept by

trajectories unbounded in both directions, but its boundary consists of two disjoint

$t(z)-paths, each of which is comprised of two unbounded critical trajectories and

a finite number (possibly zero) of short trajectories. The map z 7→
∫ z√−$t maps

strip domains conformally onto vertical strips {w ∈ C | c1 < Re(w) < c2} for some

c1, c2 ∈ R depending on the domain, and extends continuously to their boundaries.

The number c2− c1 is known as the width of a strip domain and can be calculated in

terms of $t(z) as ∣∣∣∣Re

∫ q

p

√
−$

∣∣∣∣ (9.3.2)

where p, q belong to different components of the boundary of the domain.

9.3.2 Two-Cut Region

We now prove expression (9.1.5). Assume to the contrary that we are in one-cut

case. That is, there exists a choice of a, b, and c such that the polynomial Q(z; t)
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from (9.0.6) has the form (9.1.3). It follows from (9.0.6) in conjunction with (9.0.4)

that

Q(z; t) =

(
−z2 + t

2
− 1

z
+O

(
z−2
))2

=
(z2 − t)2

4
+ z + C (9.3.3)

for some constant C. Then, by equating the coefficients in (9.1.3) and (9.3.3), we

obtain a system of equations
a+ b+ 2c = 0,

ab+ c2 + 2(a+ b)c = −2t ,

2abc+ (a+ b)c2 = −4.

(9.3.4)

Setting x := (a + b)/2 and eliminating the product ab from the second and third

equations yields

x3 − tx− 1 = 0, (9.3.5)

which is exactly the equation appearing before (9.1.2). Given any solution of (9.3.5),

say x(t), then a(t), b(t), and c(t) are necessarily expressed via (9.1.4). Theorem 9.0.1

and the variational condition (9.0.3) imply that there must exist a contour Γt ∈ T

(this class of contours was defined right after (9.0.2)) such that

U(z; t) ≤ 0 for all z ∈ Γt, (9.3.6)

see (9.0.8). In what follows, we shall show that no such contour exists in T for any

of the three possible choices of x(t) solving (9.3.5) when t ∈ Otwo−cut and Q(z; t) is

given by (9.1.3) and (9.1.4).

In accordance with the above strategy, observe that the solutions of (9.3.5) can

be written as

xk(t) = uk(t) +
t

3uk(t)
, uk(t) :=

(
1

2
−
√

1

4
− t3

27

)1/3

e2kπi/3, (9.3.7)
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k ∈ {0, 1, 2}, with all branches being principal. It can be readily verified that x1(t)

is analytic in C \ (e2πi/3S, S) (here, · means topological closure), see (9.1.2) for the

definition of the ray S, and
x0(t) = e4πi/3x1

(
te−2πi/3

)
,

x1(t) = e4πi/3x1

(
te2πi/3

)
,

x2(t) = x1

(
t
)
.

(9.3.8)

Furthermore, noting that the function x(t), defined after (9.1.2), maps Ωone−cut onto

Oone−cut, it can be easily checked that x(t) is evaluated as shown on Figure 9.6, where

the dashed lines are the chosen branch cuts of x1(t). In particular, x(t) can be

analytically continued across Csplit, C
a
birth, and Cb

birth, see (9.1.2) and Figure 9.6. In

what follows, we consider what happens in the case of each of these continuations.

x1(t)

x0(t)

x2(t)

Cb
birth

Ca
birth

Csplit

Fig. 9.6. Determination of x(t)

Continue x(t) into Otwo−cut by either x2(t) or x0(t), that is, analytically across

either Cb
birth or Ca

birth, see Figure 9.6. The first and the last symmetries in (9.3.8) then

yield that $t(z) is either equal to

$t(z) or $te−2πi/3

(
ze−4πi/3

)
.

Since the set Otwo−cut is symmetric with respect to the line Lπ/3, its rotation by −2π/3

is equal to its reflection across the real axis. Thus, the critical graph $t(z) when

t ∈ Otwo−cut and x(t) is continued by either x2(t) or x0(t) is equal to the reflection

across the real axis or the rotation by 4π/3 of the critical graph of $t∗(z) for some t∗
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such that t∗ ∈ Otwo−cut. These graphs were studied in [50, Theorems 3.2 and 3.4] and

determined to have the structure as depicted on Figure 9.3(a–c) (or the reflection of

these three panels across the line L2π/3). A direct examination shows that none of

these critical graphs form a curve in T for which (9.3.6) holds (such a curve must

belong to the closure of the gray regions on Figure 9.3).

Suppose now that we continue x(t) by x1(t), that is, analytically across Csplit. For

such a choice of x(t), the critical graph of $t(z) was studied in [67] when t ∈ Lπ/3 (in

which case the critical graph is symmetric with respect to L2π/3). In particular, it was

shown that x(t) ∈ L2π/3, no union of critical trajectories join a and b, and no critical

trajectory of $t(z) crosses the line L2π/3 when t ∈ Lπ/3∩Otwo−cut, see [67, Lemma 3.2].

Since critical trajectories cannot intersect, can approach infinity only asymptotically

to the lines Lπ/6, Lπ/2, and L−π/6, and must obey Teichmüller’s lemma (9.3.1), the

critical graph of $t(z) must be as on Figure 9.7.

Fig. 9.7. The critical graph of $t(z) when x(t) is analytically continued across
Csplit.

Clearly, this critical graph does not yield a curve in T for which (9.3.6) holds.

Thus, to complete the proof, we need to argue that the structure of the critical

trajectories of $t(z) remains the same for all t ∈ Otwo−cut. Observe that it is enough

to show that all the trajectories out of b approach infinity.

Recall that the trajectories emanating out of b are part of the level set {U(z; t) =

0}, see (9.0.8). When t ∈ Lπ/3 ∩ Otwo−cut, these trajectories approach infinity at the

angles −π/6, π/6, and π/2, see Figure 9.7. Since the values of U(z; t) analytically
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depend on t, the same must be true in a neighborhood of each such t. This will remain

so until one of the trajectories hits a critical point different from the one at infinity.

As can be seen from Figure 9.7, this critical point must necessarily be c. That is,

as long as U(−x; t) 6= 0, the trajectories out of b will asymptotically behave as on

Figure 9.7. When x(t) is continued into Otwo−cut by x1(t), its values lie within the

(a) (b)

Fig. 9.8. Shaded regions represent the domains within which 2x3
1(t) (panel a)

and x1(t) (panel b) change when t ∈ Otwo−cut.

gray region on Figure 9.8(b), see also Figure 9.1(b). Respectively, the values 2x3(t)

lie within the gray region on Figure 9.8(a), see also Figure 9.1(a). It was verified

in [50, Section 5.3] that

U(−x; t) = Re

(
2

3

∫ 2x3

−1

(
1 +

1

s

)3/2

ds

)
,

where the path of integration lies within the shaded domain on Figure 9.8(a). Hence,

U(−x; t) = 0 if and only if 2x3 belongs to a trajectory of −(1 + 1/s)3ds2 emanating

from −1. These trajectories are drawn on Figures 9.1 and 9.8(a) (black lines). Thus,

U(−x; t) 6= 0 in the considered case as claimed.

9.3.3 Critical Graph of $t(z)

Let, as usual, Q(z; t) be the polynomial guaranteed by Theorem 9.0.1. According

to what precedes, it has the form (9.1.5) when t ∈ Otwo−cut. Recall the properties
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of the differential $t(z) = −Q(z; t)dz2 described at the beginning of Section 9.3.1.

In particular, it has four critical points of order 1, which, for a moment, we label as

z1(t), z2(t), z3(t), z4(t) (these are the zeros of Q(z; t)), a critical point of order −8 at

infinity, and no other critical points. It follows from Theorem 9.0.1(4) and (9.0.3)

with (9.0.8) that

Re

(∫
Γt[zi(t),zj(t)]

Q
1/2
+ (z; t)dz

)
= 0, (9.3.9)

where Γt[zi(t), zj(t)] is the subarc of Γt with endpoints zi(t), zj(t) and Q
1/2
+ (z; t) is the

trace of Q1/2(z; t) on the positive side of Γt. Equations (9.3.9) imply existence of three

short critical trajectories of $t(z). Indeed, if all three critical trajectories out of a

zero zi(t) approach infinity, then zi(t) must belong to a boundary of at least one strip

domain. Let zj(t) be a different zero of Q(z; t) belonging to the other component of

the boundary of this strip domain. Then it follows from (9.3.2) and (9.3.9) that the

width of this strip domain is 0, which is impossible. Thus, each zero of Q(z; t) must

be coincident with at least one short trajectory. Therefore, either there is a zero,

say z4(t), connected by short trajectories to the remaining three zeros or there are

at least two short trajectories connecting two pairs of zeros. In the latter case, label

these zeros by a1(t), b1(t) and a2(t), b2(t). If the other two trajectories out of both

a1(t) and b1(t) approach infinity, one these zeros again must belong to the boundary

of a strip domain with either a2(t) or b2(t) belonging to the other component of the

boundary. As before, (9.3.9) yields that the width of this strip domain is 0, which,

again, is impossible. Thus, in this case there also exists a third short critical trajectory.

Then we choose a labeling of the zeros so that b1(t) and a2(t) are connected by this

trajectory.

Since short critical trajectories cannot form closed curves, there cannot be any

more of them. That is, the remaining critical trajectories are unbounded. Consider

the two unbounded critical trajectories out of z1(t) in the case where short ones form

a threefold. Since critical trajectories cannot intersect and the remaining zeros are

connected to z1(t) by short critical trajectories, they delimit a half-plane domain and,
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a1

b1

a2

b2

(a)

a1

b1

a2
b2

(b)

z1
z2

z3

z4

(c)

Fig. 9.9. Geometries of the critical graph of $t(z). Shaded regions represent
the open set {U(z; t) < 0}, the white regions represent the open {U(z; t) > 0},
and the red, dashed arcs form Γt \ Jt.

in particular, must approach infinity along consecutive critical directions (those are

given by the angles (2k + 1)π/6, k ∈ {0, . . . , 5}, see Section 9.3.1). Clearly, the same

is true for the unbounded critical trajectories out of z2(t) and z3(t) as well as for the

unbounded critical trajectories out of a1(t), b2(t), and the union of the unbounded

critical trajectory out of b1(t), the short critical trajectory connecting b1(t) to a2(t),

and the unbounded critical trajectory out of a2(t) in the case where short critical

trajectories form a Jordan arc.

Now, let U(z; t) be given by (9.0.8). Clearly, U(z; t) is a subharmonic function

which is equal to zero on Jt, see (9.0.3). Since U(z; t) must have the same sign

on both sides of each subarc of Jt by the S-property (7.1.2), it follows from the

maximum principle for subharmonic functions that it is positive there. Further, since

trajectories of $t(z) cannot form a closed Jordan curve, all the connected components

of the open set {U(z; t) < 0} must necessarily extend to infinity. Since Re(V (z; t)) is
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the dominant term of U(z; t) around infinity, see (9.0.8), for any δ > 0 there exists

R > 0 sufficiently large such that
(
Sπ/3,δ ∪ Sπ,δ ∪ S−π/3,δ

)
∩ {|z| > R} ⊂ {U(z; t) < 0},(

S0,δ ∪ S2π/3,δ ∪ S−2π/3,δ

)
∩ {|z| > R} ⊂ {U(z; t) > 0},

where Sθ,δ := {| arg(z)− θ| < π/6− δ}. Altogether, the critical graph of $t(z) must

look like either on Figure 9.5 or on Figure 9.9.

It remains to show that $t(z) cannot have the critical graph as on any of the

panels of Figure 9.9. To this end, recall that the contour Γt must contain Jt and two

unbounded arcs extending to infinity in the directions π/3 and π (blue unbounded

arcs on Figure 9.9). Let Γ∗ be obtained from Γt by dropping the short trajectory that

is a part of Jt and whose removal keeps Γ∗ connected (this can be done for any of the

panels on Figure 9.9). Observe that Γ∗ also belongs to T . Let µ∗ be the weighted

equilibrium distribution on Γ∗ as defined in Definition 7.1. Since Γ∗ ⊂ Γt, it holds

that µ∗ ∈ M(Γt). Moreover, since µ∗ 6= µt, IV (µ∗) > IV (µt), see Definition (7.1).

However, the last inequality clearly contradicts (9.0.5).

We have shown that the critical graph of $t(z) must look like on Figure 9.5. As

the critical orthogonal and critical trajectories cannot intersect, the structure of the

critical orthogonal graph is uniquely determined by structure of the critical graph.

Now, we can completely fix the labeling of the zeros of Q(z; t) by given the label a1(t)

to one that is incident with the orthogonal critical trajectory extending to infinity

asymptotically to the ray arg(z) = π.

9.3.4 Dependence on t

We start with some general considerations. Let f(z) and g(z) be analytic functions

of z = x+ iy. Consider a determinant of the form

D =

∣∣∣∣∣∣∣∣∣
∂xRe(f) ∂yRe(f) ∗

∂xIm(f) ∂yIm(f) ∗

∂xRe(g) ∂yRe(g) ∗

∣∣∣∣∣∣∣∣∣ ,
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where the entries of the third column are not important for the forthcoming compu-

tation. Due to Cauchy-Riemann relations it holds that f ′ = ∂xRe(f) + i∂xIm(f) =

∂yIm(f)− i∂yRe(f). Therefore,

D =

∣∣∣∣∣∣∣∣∣
Re(f ′) −Im(f ′) ∗

Im(f ′) Re(f ′) ∗

Re(g′) −Im(g′) ∗

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
f ′ if ′ ∗

Im(f ′) Re(f ′) ∗

Re(g′) −Im(g′) ∗

∣∣∣∣∣∣∣∣∣ =
i

2

∣∣∣∣∣∣∣∣∣
f ′ if ′ ∗

f ′ −if ′ ∗

Re(g′) −Im(g′) ∗

∣∣∣∣∣∣∣∣∣
by adding the second row times i to the first one and then multiplying the second

row by −2i and adding the first row to it. It further holds that

D =
i

2

∣∣∣∣∣∣∣∣∣
2f ′ if ′ ∗

0 −if ′ ∗

g′ −Im(g′) ∗

∣∣∣∣∣∣∣∣∣ =
i

2

∣∣∣∣∣∣∣∣∣
2f ′ 0 ∗

0 −if ′ ∗

g′ −ig′/2 ∗

∣∣∣∣∣∣∣∣∣ =
1

2

∣∣∣∣∣∣∣∣∣
f ′ 0 ∗

0 f ′ ∗

g′ g′ ∗

∣∣∣∣∣∣∣∣∣ ,
where we added the second column times −i to the first one, then added the first

column times −i/2 to the second one, and then factored 2 from the first column, −i

from the second one, and 1/2 from the third row.

Now, let fj(z1, z2, z3, z4), j ∈ {1, 2, 3, 4, 5}, be analytic functions in each variable

zi = xi + iyi. We would like to compute the Jacobian of the following system of

real-valued functions of x1, y1, . . . , x4, y4:

Re(f1), Im(f1), Re(f2), Im(f2), Re(f3), Im(f3), Re(f4), Re(f5). (9.3.10)

That is, we are interested in

Jac =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Re(f11) −Im(f11) Re(f12) −Im(f12) Re(f13) −Im(f13) Re(f14) −Im(f14)

Im(f11) Re(f11) Im(f12) Re(f12) Im(f13) Re(f13) Im(f14) Re(f14)

Re(f21) −Im(f21) Re(f22) −Im(f22) Re(f23) −Im(f23) Re(f24) −Im(f24)

Im(f21) Re(f21) Im(f22) Re(f22) Im(f23) Re(f23) Im(f24) Re(f24)

Re(f31) −Im(f31) Re(f32) −Im(f32) Re(f33) −Im(f33) Re(f34) −Im(f34)

Im(f31) Re(f31) Im(f32) Re(f32) Im(f33) Re(f33) Im(f34) Re(f34)

Re(f41) −Im(f41) Re(f42) −Im(f42) Re(f43) −Im(f43) Re(f44) −Im(f44)

Re(f51) −Im(f51) Re(f52) −Im(f52) Re(f53) −Im(f53) Re(f54) −Im(f54)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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where fji := ∂zifj. By performing the same row and column operations as for the

determinant D above, we get that

Jac =
1

2i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f11 0 f12 0 f13 0 f14 0

0 f 11 0 f 12 0 f 13 0 f 14

f21 0 f22 0 f23 0 f24 0

0 f 21 0 f 22 0 f 23 0 f 24

f31 0 f32 0 f33 0 f34 0

0 f 31 0 f 32 0 f 33 0 f 34

f41 f 41 f42 f 42 f43 f 43 f44 f 44

f51 f 51 f52 f 52 f53 f 53 f54 f 54

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Assume further that
f1(z1, z2, z3, z4) = z1 + z2 + z3 + z4,

f2(z1, z2, z3, z4) = z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4,

f3(z1, z2, z3, z4) = z2z3z4 + z1z3z4 + z1z2z4 + z1z2z3.

(9.3.11)

Then, by using the above explicit expressions and subtracting the first (resp. second)

column from the third, fifth, and seventh (resp. fourth, sixth, and eighth), we get

that

Jac = (2i)−1

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

∗ ∗ z1 − z2 0 z1 − z3 0 z1 − z4 0

∗ ∗ 0 z1 − z2 0 z1 − z3 0 z1 − z4

∗ ∗ z1 − z2

(z3 + z4)−1
0

z1 − z3

(z2 + z4)−1
0

z1 − z4

(z2 + z3)−1
0

∗ ∗ 0
z1 − z2

(z3 + z4)−1
0

z1 − z3

(z2 + z4)−1
0

z1 − z4

(z2 + z3)−1

∗ ∗ z1 − z2

g−1
42

z1 − z2

g−1
42

z1 − z3

g−1
43

z1 − z3

g−1
43

z1 − z4

g−1
44

z1 − z4

g−1
44

∗ ∗ z1 − z2

g−1
52

z1 − z2

g−1
52

z1 − z3

g−1
53

z1 − z3

g−1
53

z1 − z4

g−1
54

z1 − z4

g−1
54

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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where gji(z1, z2, z3, z4) := (z1−zi)−1(fji−fj1)(z1, z2, z3, z4), j ∈ {4, 5} and i ∈ {2, 3, 4}.

Hence,

Jac =
|z1 − z2|2|z1 − z3|2|z1 − z4|2

2i

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 1 0

0 1 0 1 0 1

z3 + z4 0 z2 + z4 0 z2 + z3 0

0 z3 + z4 0 z2 + z4 0 z2 + z3

g42 g42 g43 g43 g44 g44

g52 g52 g53 g53 g54 g54

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Absolutely analogous computation now implies that

Jac =
|z1 − z2|2|z1 − z3|2|z1 − z4|2|z2 − z3|2|z2 − z4|2

2i

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0

0 1 0 1

h43 h43 h44 h44

h53 h53 h54 h54

∣∣∣∣∣∣∣∣∣∣∣∣
,

where hji(z1, z2, z3, z4) := (z2− zi)−1(gji− gj2)(z1, z2, z3, z4), j ∈ {4, 5} and i ∈ {3, 4}.

The above expression immediately yields that

Jac =

∏
i<j |zi − zj|2

2i

∣∣∣∣∣∣k4 k4

k5 k5

∣∣∣∣∣∣ =
∏
i<j

|zi − zj|2Im
(
k4k5

)
, (9.3.12)

where kj(z1, z2, z3, z4) := (z3 − z4)−1(gj4 − gj3)(z1, z2, z3, z4), j ∈ {4, 5}. Finally, let

w(z) :=
√

(z − z1)(z − z2)(z − z3)(z − z4)

be a branch such that w(z) = z2 +O(z) as z →∞ with branch cuts γ12 and γ34 that

are bounded, disjoint, and smooth, and where γij connects zi to zj. Further, select a

smooth arc γ32 disjoint (except for the endpoints) from the previous two. Set

f4(z1, z2, z3, z4) := 4

∫
γ12

w(z)dz and f5(z1, z2, z3, z4) := 4

∫
γ32

w(z)dz, (9.3.13)

where we integrate w(z) on the positive side of γ12. Let O ⊂ {zi 6= zj, i 6= j, i, j ∈

{1, 2, 3, 4}} be a domain such that there exist arcs γij(z1, z2, z3, z4) with the above
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properties for each (z1, z2, z3, z4) ∈ O, which, in addition, possess parameteriza-

tions that depend continuously on each variable z1, z2, z3, z4. Then the functions

fj(z1, z2, z3, z4), j ∈ {4, 5}, are analytic in each variable zi for (z1, z2, z3, z4) ∈ O.

Furthermore, it can be readily computed that

gji = 2

∫
w(z)dz

(z − z1)(z − zi)
, hji = −2

∫
w(z)dz

(z − z1)(z − z2)(z − zi)
, kj = 2

∫
dz

w(z)
,

where the integrals are taken over γ12 when j = 4 and γ32 when j = 5. Trivially,

(9.3.12) can be rewritten as

Jac = 4
∏
i<j

|zi − zj|2Im

(∫
γ12

dz

w(z)

∫
γ32

dz

w(z)

)
. (9.3.14)

Now, consider the Riemann surface R :=
{
z := (z, w) : w2 = (z−z1)(z−z2)(z−

z3)(z − z4)
}

. Denote by π : R → C the natural projection π(z) = z and write

w(z) for a rational function on R such that z = (z, w(z)). Let β := π−1(γ12) and

α := π−1(γ32). Orient these cycles so that

2

∫
γ12

dz

w(z)
=

∮
β

dz

w(z)
and 2

∫
γ32

dz

w(z)
=

∮
α

dz

w(z)
.

Observe that the cycles α,β form the right pair at the point of their intersection and

that R \ {α∪β} is simply connected. Hence, the cycles α,β form a homology basis

on R. Since the genus of R is 1, it has a unique (up to multiplication by a constant)

holomorphic differential. It is quite easy to check that this differential is dz/w(z).

Hence, we get from (9.3.14) that

Jac =
∏
i<j

|zi − zj|2Im

(∮
β

dz

w(z)

∮
α

dz

w(z)

)
> 0 (9.3.15)

when (z1, z2, z3, z4) ∈ O, where the last inequality was shown by Rimeann.

Now, let Q(z; t) = 1
4
(z − a1(t))(z − b1(t))(z − a2(t))(z − b2(t)) be the polynomial

from Theorem 9.0.1. It can be easily deduced from (9.0.6) that
f1(a1, b1, a2, b2) = 0,

f2(a1, b1, a2, b2) = −2t,

f3(a1, b1, a2, b2) = −4,

(9.3.16)
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where the functions fi(z1, z2, z3, z4), i ∈ {1, 2, 3}, are given by (9.3.11).

Fix t∗ ∈ Otwo−cut and let δ∗ > 0 be small enough so that all four disks {|z−z∗i | ≤ δ∗}

are disjoint, where z∗1 = a1(t∗), z∗2 = b1(t∗), z∗3 = a2(t∗), and z∗4 = b2(t∗). Let

O := {(z1, z2, z3, z4) : |zi− z∗i | < δ∗}, s∗i be the point of intersection of {|z− z∗i | = δ∗}

and Jt∗ , i ∈ {1, 2, 3, 4}, and u∗i be the point of intersection of {|z − z∗i | = δ∗} and

Γ(b1(t∗), a2(t∗)), i ∈ {2, 3}, where, as usual, Γ(a, b) is the subarc of the trajectories

of $t(z) connecting a and b. Then we can choose γ12 = [z1, s
∗
1] ∪ Γ(s∗1, s

∗
2) ∪ [s∗2, z2],

γ32 = [z3, u
∗
3]∪Γ(u∗3, u

∗
2)∪ [u∗2, z2], and γ34 = [z3, s

∗
3]∪Γ(s∗3, s

∗
4)∪ [s∗4, z4], where [a, b] is

the line segment connecting a and b in C. Clearly, the arcs γij continuously depend

on (z1, z2, z3, z4) ∈ O. Now, the relations (9.3.9) can be rewritten as

Re
(
f4(a1, b1, a2, b2

))
= 0 and Re

(
f5

(
a1, b1, a2, b2

))
= 0 (9.3.17)

with fj(z1, z2, z3, z4), j ∈ {4, 5}, given by (9.3.13), where we set w(z) := Q(z; t).

It follows from (9.3.15) and the implicit function theorem that there exists a

neighborhood of t∗ in which system (9.3.16) and (9.3.17) is uniquely solvable and the

solution, say (a∗1(t), b∗1(t), a∗2(t), b∗2(t)), is such that the real and imaginary parts of

a∗i (t), b
∗
i (t) are real analytic functions of Re(t) and Im(t) for t in this neighborhood.

These solutions are unique only locally around the point (a1(t∗), b1(t∗), a2(t∗), b2(t∗))

and we still need to argue that they do coincide with the zeros ai(t), bi(t) of Q(z; t)

(of course, it holds that a∗i (t
∗) = ai(t

∗) and b∗i (t
∗) = bi(t

∗)).

In what follows, we always assume that t belongs to a disk centered at t∗ of small

enough radius so that the functions a∗i (t), b
∗
i (t) are defined and continuous in this

disk. Let

Q∗(z; t) :=
1

4
(z− a∗1(t))(z− b∗1(t))(z− a∗2(t))(z− b∗2(t)) and $∗t (z) := −Q∗(z; t)dz2.

Further, let U∗(z; t) be defined as in (9.0.8) with Q(z; t) replaced by Q∗(z; t). For the

moment, choose the branch cut for Q∗(z; t)1/2 as in the paragraph between (9.3.16)

and (9.3.17). Each function U∗(z; t) is harmonic off the chosen branch cut and can be

continued harmonically across it by −U∗(z; t). Moreover, it follows immediately from
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their definition that the functions U∗(z; t) are uniformly bounded above and below

on any compact set for all considered values of the parameter t. Thus, they converge

to U(z; t∗) locally uniformly in C \ {a1(t∗), b1(t∗), a2(t∗), b2(t∗)} as t → t∗. Since the

critical graph of $∗t (z) is the zero-level set of U∗(z; t), it converges to the critical

graph of $t∗(z) in any disk {|z| < R}. Due to relations (9.3.17), the argument at

the beginning of Section 9.3.3 also shows that the critical graph of $∗t (z) has three

short critical trajectories, which, due to uniform convergence, necessarily connect

a∗1(t) to b∗1(t), b∗1(t) to a∗2(t), and a∗2(t) to b∗2(t) (the disk around t∗ can be decreased if

necessary). Thus, arguing as in Section 9.3.3 and using uniform convergence, we can

show that Figure 9.5 also schematically represents the critical and critical orthogonal

graphs of $∗t (z). Moreover, let us now take the branch cut for Q∗(z; t)1/2, say J∗t ,

along the short critical trajectories of $∗t (z) connecting a∗i (t) to b∗i (t). Then the

shading on Figure 9.5 corresponds to regions where U∗(z; t) is positive (white) and

negative (gray).

Define Γ∗t to be the union of the critical orthogonal trajectory $∗t (z) that connects

infinity to a∗1(t), its short critical trajectories, and the critical orthogonal trajectory

that connects b∗2(t) to infinity. Orient it so that the positive direction proceeds from

a∗1(t) to b∗2(t). Let the measures µ∗t be given by (9.0.7) with Q(z; t) replaced by Q∗(z; t)

and Jt replaced by J∗t . Clearly, each µ∗t is a positive measure. Moreover, it has a unit

mass by the Cauchy theorem and since Q∗(z; t)1/2 = (z2 − t)/2 + 1/z +O(1/z2) due

to (9.3.16), see also (9.3.3). Thus, it holds that

F ∗(z; t) := Q∗(z; t)1/2 +
V ′(z; t)

2
−
∫

dµ∗t (s)

z − s
= O

(
z−2
)

as z → ∞ and F ∗(z; t) is holomorphic in C \ J∗t . It follows from the well known

behavior of Cauchy integrals of smooth densities, see [28, Section I.8], that the traces
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of F ∗(z; t) on J∗t are bounded. It further follows from the Sokhotski-Plemelj formulae,

see [28, Section I.4], that

F ∗+(s; t)− F ∗−(s; t)

= Q∗+(s; t)1/2 −Q∗−(s; t)1/2 −
(∫

Q∗+(w; t)1/2

w − z
dw

πi

)
+

+

(∫
Q∗+(w; t)1/2

w − z
dw

πi

)
−

= Q∗+(s; t)1/2 −Q∗−(s; t)1/2 − 2Q∗+(s; t)1/2 ≡ 0

for s ∈ J∗t . Hence, F ∗(z; t) is an entire function and therefore is identically zero. This

observation, in particular, yields that

U∗(z; t) := Re

(
2

∫ z

b∗2(t)

Q∗(s; t)1/2ds

)
= `∗t − Re(V (z; t))− 2Uµ∗t (z)

for some constant `∗t , see also (9.0.8). Since U∗(z; t) can be harmonically continued

across J∗t by −U∗(z; t), we get that µ∗t satisfies (7.1.2); that is J∗t has the S-property

in the field Re(V (z; t)). Since Γ∗t ∈ T , it follows from the uniqueness part of Theo-

rem 9.0.1(2) that µ∗t = µt. In particular, a∗i (t) = ai(t) and b∗i (t) = bi(t), i ∈ {1, 2}.

Since any compact subset of Otwo−cut can be covered by finitely many disks where

the above considerations hold, the functions ai(t), bi(t) continuously depend on t ∈

Otwo−cut and, moreover, their real and imaginary parts are real analytic functions of

Re(t) and Im(t).

9.3.5 Degeneration of the Support at the Boundary

Fix a t∗ ∈ ∂Otwo−cut. Then, it follows that all branch points and short trajectories

remain in a compact subset of the z-plane as t → t∗ along any path. Indeed, it

was shown in [53, Theorem 5.11] that for a path t(s) ∈ Otwo−cut, s ∈ [0, 1] functions

a1(t), a2(t), b1(t), b2(t) satisfying (9.3.9) are uniformly bounded for s ∈ [0, 1]. Sup-

pose the points a1(t∗), b1(t∗), a2(t∗), b2(t∗) are distinct. Implicit function theorem and

the calculation resulting in (9.3.15) implies that a1(t), b1(t), a2(t), b2(t) continuously

extend to ∂Otwo−cut. Assuming a1(t∗), b1(t∗), a2(t∗), b2(t∗) are distinct and combining

this with the reasoning of Section 9.3.3 yields the following two possibilities
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(i) degenerates to one of the three critical graphs described in Figure 9.9, or

(ii) maintains the structure described in Figure 9.5.

We start by arguing that option (i) is impossible.

Lemma 9.3.1. Suppose that as t→ t∗ ∈ ∂Otwo−cut the points {a1(t), b1(t), a2(t), b2(t)}

remain separated. Then, subject to all the assumptions of Chapter 9, there exists

a neighborhood U of infinity such that any trajectory entering Ut within a sector

defined by orthogonal critical directions must tend to infinity along this direction. In

particular, short trajectories of $t must remain in a compact subset of the plane as

t→ Otwo−cut.

Proof. Since a1(t), a2(t), b1(t), b2(t) remain in a compact set, there exists a neighbor-

hood U = {z | |z| > 1/ε, ε > 0} such that for z ∈ U , we may define ζ(z) by the

equation ∫ z

Q1/2(s; t)ds = ζ3 + log(ζ) + c

where c is an arbitrary constant. Indeed, it follows from (10.1.2) below that if we

write g(z) = f(z) + log(z), f(z) = a0 +
a1

z
+ · · · as z → ∞. It follows from (8.1.4)

that f(z) is holomorphic outside any compact set containing Γt[a1, b2]. Furthermore,∫ z

b2(t)

Q1/2(s; t)ds =
`∗ − V (z)

2
+ log(z) + f(z).

For a fixed path t(s), s ∈ [0, 1], there is a neighborhood Ut = {z | |z| > R(t), R(t) >

0} such that
`∗ − V (z)

2
+ f(z) is meromorphic, non-vanishing in Ut. Since we need

only ensure the convergence and meromorphy of f(z), it suffices to take R(t) =

2−1 maxi=1,2{|ai(t)|, |bi(t)|}. Since R(t) is bounded above, we may chose an optimal

radius R > 0 and use it to define the neighborhood U = {z | |z| > R}. Hence, one

may find a function ζ ′(z) meromorphic in Ut and with ζ ′(z) = z(b0 + b1z
−1 + · · · )

such that
`∗ − V (z)

2
+ f(z) = (ζ ′(z))3. Finally, the parameter ζ(z) is defined by the

equation

(ζ ′(z))3 = (ζ(z))3 + log(ζ(z)/z)
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for z ∈ U , which implies that ζ(z) is meromorphic in U with ζ(z) = z(c0+c1z
−1+· · · ).

In this variable, the quadratic differential can be represented as

Q1/2(z)dz =

(
3ζ2 +

1

ζ

)
dζ

The study of the trajectory structure of this differential was done in [64, Section 7.4]

and in even more detail in [62, Theorem 3.3] and allows us to make the important

conclusion: a trajectory entering U intersects ∂U once and tends to infinity along a

critical direction.

In fact, it holds that trajectories approaching infinity may not change their asymp-

totic direction as t→ t∗, since they separate domains where U(z; t) changes signs and

since the set {U(z; t) < 0} (respectively, {U(z; t) > 0} ) contain sectors of the form

Sθ,δ ∩{|z| > r} (see Section 9.3.2) where r is independent of t. Finally, note that due

to the specific topology of the critical graph of $t shown in Figure 9.5, short trajec-

tories may not approach branch points since trajectories of polynomials differentials

cannot have loops. Since tangent vectors to trajectories near branch points may not

become parallel nor intersect, we conclude that option (i) is impossible.

Next, we show that option (ii) is impossible. Suppose to the contrary that (ii)

were true. This yields a function Q∗(z; t) and an associated measure µ∗ defined as in

(9.0.7) that satisfy the relation (9.0.6). However, as discussed in Section 9.3.4, these

relations imply the S-property and characterize the equilibrium measure. Since (ii)

produces a measure that is inconsistent with what was shown in [50], we conclude

that option (ii) cannot hold.

From the previous discussion, we conclude that some branch points must coincide

on ∂Otwo−cut, where the corresponding critical graphs are shown in Figure 9.4. Since

all branch points satisfy equations (9.3.16), it follows from the first two equations

and the fact that 0 6∈ Otwo−cut that all four branch points cannot collapse to one

point. Similar considerations of the first and third equation of (9.3.16) yield that

we cannot simultaneously have a1(t∗) = b1(t∗) and a2(t∗) = b2(t∗). Furthermore, the

three branch points coincide only when t = 3 · 2−2/3, t = 3 · 2−2/3e2πi/3 (the only
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solutions accessible from Otwo−cut). To see that the degeneration is of the correct type

(i.e. produces the correct critical graph from Figure 9.4), we allude to the uniqueness

of the S-curves provided in Theorem 9.0.1 and the particular structure of the support

and the differences in the function Q. If t → t∗ ∈ Csplit, the support of µt must be a

union of two analytic arcs. If t∗ ∈ Ca
birth, the support must be a union of two disjoint

analytic arcs and Q(z; t) has a double root. Finally, if t∗ ∈ Csplit ∩Ca
birth, then Q(z; t)

has a single root of order 3.
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10. RIEMANN-HILBERT ANALYSIS: VARYING

ORTHOGONALITY WITH CUBIC POTENTIAL

A version of this chapter will appear in [59].

We start our analysis with the construction of the g-function, whose properties

were discussed in Proposition 9.2.2. Note that this construction is analogous to what

has been carried out in the analysis of kissing polynomials in the supercritical regime,

see Section 8.3

10.1 Proof of Proposition 9.2.2

Since the arc Γ[b1, a2] is homologous to a short critical trajectory of −Q(z)dz2 and

Γ[a1, b1] is such a trajectory, see Figure 9.5, these constants τ, ω are indeed real. Let

g(z) :=

∫
log(z − s)dµ(s), z ∈ C \ Γ

(
eπi∞, b2

]
, (10.1.1)

where we take the principal branch of log(· − s) holomorphic outside of Γ
(
eπi∞, s

]
and µ is the equilibrium measure defined in (9.0.7). It follows directly from definition

(10.1.1) that

∂zg(z) =

∫
dµ(s)

z − s
,

where, as usual, ∂z := (∂x − i∂y)/2. Therefore, it can be deduced from (9.0.3) and

(9.0.6) that

g(z) =
V (z)− `∗

2
+

∫ z

b2

Q1/2(s)ds =
V (z)− `∗

2
+Q(z), (10.1.2)

where, as usual, we take the branch Q1/2(z) = 1
2
z2 +O(z), `∗ is a constant such that

the equality holds that b2 (notice that Re(`∗) = `, see (9.0.3)), and Q(z) is given by
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(9.2.4). Property (9.2.6) clearly follows from (10.1.1) and (10.1.2). In the view of

(10.1.2), let us define

φe(z) := 2

∫ z

e

Q1/2(s)ds, e ∈ {a1, b1, a2, b2}, (10.1.3)

holomorphically in C \Γ(eπi∞, b2] when e = b2, in C \Γ[a1, e
πi/3∞) when e = a1, and

in C \
(
Γ(eπi∞, b1) ∪ Γ(a2, e

πi/3∞)
)

when e ∈ {b1, a2}. Clearly, φb2(z) = 2Q(z). One

can readily check that

φb2(z) =


φa2(z)± 2πi(1− ω),

φb1(z)± 2πi(1− ω) + 2πiτ,

φa1(z)± 2πi + 2πiτ,

z ∈ C \ Γ, (10.1.4)

where the plus sign is used if z lies to the left of Γ and the minus sign if z lies to the

right of it, and

φb2±(s) =


±2πiµ

(
Γ[s, b2]

)
, s ∈ Γ(a2, b2),

±2πiµ
(
Γ[s, b2]

)
+ 2πiτ, s ∈ Γ(a1, b1).

(10.1.5)

The jump relations in (9.2.7) now easily follow from (10.1.4) and (10.1.5).

For future use let us record that (10.1.2), (10.1.4), and (10.1.5) imply that

g+(s)− g−(s) =



0, s ∈ Γ(b2, e
πi/3∞),

±φb2±(s), s ∈ Γ(a2, b2),

2πi(1− ω), s ∈ Γ(b1, a2),

±
(
φb2±(s)− 2πiτ

)
, s ∈ Γ(a1, b1),

2πi, s ∈ Γ(eπi∞, a1),

(10.1.6)
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and that

g+(s) + g−(s)− V (s) + `∗ =



φb2(s), s ∈ Γ(b2, e
πi/3∞),

0, s ∈ Γ(a2, b2),

φa2(s), s ∈ Γ(b1, a2),

2πiτ, s ∈ Γ(a1, b1),

φa1(s) + 2πiτ, s ∈ Γ(eπi∞, a1).

(10.1.7)

10.2 Local Analysis at e ∈ {a1, b1, a2, b2}

Given e ∈ {a1, b1, a2, b2}, let

Ue :=
{
z : |z − e| < δeρ(t)/3

}
, (10.2.1)

where δe ∈ (0, 1] to be adjusted later and we shall specify the function ρ(t) at the end

of this subsection. Set

Je := Ue ∩ J and Ie := Ue ∩ (Γ \ J), (10.2.2)

where the arcs Je and Ie inherit their orientation from Γ and we assume that the

value of ρ(t) is small enough so that these arcs are connected. We shall suppose that

Ie is a subarc of the orthogonal critical trajectory of −Q(z)dz2 emanating from e.

The latter fact and Theorem 9.1.2 yield that

φe(s) < 0, s ∈ Ie, (10.2.3)

see Figure 9.5. In fact, the same reasoning shows that (10.2.3) holds not only on Ie,

but on Γ(eπi∞, a1) when e = a1, on Γ(b2, e
πi/3∞) when e = b2, and, for Re(φe(z)) on

Γ(b1, a2) when e ∈ {b1, a2} (observe that these functions are also monotone on the

respective arcs). Furthermore, each function φe(z) is analytic Ue \ Je and its traces

on Je satisfy

φe±(s) = ±2πiνeµ(Js,e) = 2πe±3πiνe/2µ(Js,e), (10.2.4)
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where Js,e is the subarc of Je with endpoints e and s,

νe :=


1, e ∈ {b1, b2},

−1, e ∈ {a1, a2},
(10.2.5)

and the second equality follows from (9.0.7) and (10.1.3). Since |φe(z)| ∼ |z− e|3/2 as

z → e, it follows from (10.2.3) and (10.2.4) that we can define an analytic branch of

(−φe)2/3(z) in Ue that is positive on Ie and satisfies (−φe)2/3(s) = −
(
2πµΓ(Js,e)

)2/3
,

s ∈ Je. Since (−φe)2/3(z) has a simple zero at e, it is conformal in Ue for all radii

small enough. Altogether, (−φe)2/3(z) maps e into the origin, is conformal in Ue, and

satisfies 
(−φe)2/3(Je) ⊂ (−∞, 0),

(−φe)2/3(Ie) ⊂ (0,∞).

(10.2.6)

Furthermore, if we define (−φe)1/6(z) to be holomorphic in Ue \Je and positive on Ie,

then

(−φe)1/6
+ (s) = νei(−φe)1/6

− (s), s ∈ Je. (10.2.7)

To specify ρ(t), let ρe(t) be the radius of the largest disk around e for which

Je, Ie are connected and in which (−φe)2/3(z) is conformal. Observe that the disk

around e of radius ρe(t) cannot contain other endpoints of J besides e. We set

ρ(t) := mine{ρe(t)}. Then the disks Ue in (10.2.1) are necessarily disjoint. Observe

also that ρ(t) is non-zero for all t ∈ Otwo−cut and continuously depends on t due to

continuous dependence on t of φe(z), which in itself follows from Theorem 9.1.2 and

(10.1.3).

10.3 Functions An(z; t)

In this section we prove Proposition 9.2.3 and discuss some related results. Below,

we denote by R the Riemann surface defined in Section 10.3.1 with Q(z) = Q(z; t).

We further specify that π(β) = Γ[a1, b1], π(α) = Γ[b1, a2], and we consider the

realization of R with respect to ∆ = π−1(J), where, as before, J = Γ[a1, b1]∪Γ[a2, b2].
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10.3.1 Riemann Surface

To describe the dependence of a1(t), b1(t), a2(t), b2(t) on t, it will be convenient

to work on a certain Riemann surface, rather than the plane. Below, we define this

surface.

Let a1, b1, a2, b2 be distinct points in C and Q(z) = 1
4
(z−a1)(z−b1)(z−a2)(z−b2).

Consider

R :=
{
z := (z, w) : w2 = Q(z)

}
. (10.3.1)

We denote by π : R → C the natural projection π(z) = z and by ·∗ a holomorphic

involution on R acting according to the rule z∗ = (z,−w). In general, we use notation

z, s,a for point on R with natural projections z, s, a.

The function w(z) defined by w2(z) = Q(z) is a meromorphic function on R with

simple zeros at the ramification points a1, b1,a2, b2, double poles at the points on top

of infinity, and is otherwise non-vanishing and finite. Fix a branch cut J for Q1/2(z).

Then R can be written as D(0)∪∆∪D(1), where ∆ := π−1(J) and the domains D(k)

project onto C\J with labels chosen so that 2w(z) = (−1)kz2 +O(z) as z approaches

the point on top of infinity within D(k). For z ∈ C \ J we let z(k) stand for a point in

D(k) with a natural projection z.

Denote by α a cycle on R that passes through b1 and a2 and whose natural

projection is an arc connecting b1 and a2. We assume that π(α) ∩ J = {b1, a2} and

orient α towards b1 within D(0). Similarly, we define β to be a cycle on R that passes

through a1 and b1 and whose natural projection is an arc connecting a1 and b1. We

orient β so that α,β form the right pair at b1.

The surface R has genus one. Thus, there exists a unique holomorphic differential

on R normalized to have a unit period on α, say H. In fact, it can be explicitly

expressed as

H(z) =

(∮
α

w−1(z)dz

)−1

w−1(z)dz. (10.3.2)

We denote by B the other period of H and recall (as shown by Riemann) that

Im(B) > 0, B :=

∮
β

H. (10.3.3)
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a1
b1 a2

b2

a1 b1 a2

b2

D(0)

D(1)

β

α

Fig. 10.1. Schematic plot of the Riemann surface R and the cycles α and
β.

Given the normalized holomorphic differential, we can define Abel’s map as

a(z) :=

∫ z

b2

H, (10.3.4)

where we restrict z as well as the path of integration to the simply connected region

Rα,β := R \ {α,β}. It is a holomorphic function in Rα,β with continuous traces on

α,β away from the point of their intersection that satisfy

a+(s)− a−(s) =


−B, s ∈ α \ {b1},

1, s ∈ β \ {b1},
(10.3.5)

by the normalization of H and the definition of B. Moreover, observe that a(z) con-

tinuously extends to ∂Rα,β, the topological boundary of Rα,β. Similarly to (9.2.5),

let us set

τ =
1

2πi

∮
α

w(s)ds and ω = − 1

2πi

∮
β

w(s)ds. (10.3.6)

It readily follows from (10.3.5) and (10.3.6) that∮
∂Rα,β

(wa)(s)ds =

∮
β

w(s)(a+− a−)(s)ds−
∮
α

w(s)(a+− a−)(s)ds = −2πi(ω+Bτ),

where ∂Rα,β is oriented counter-clockwise, that is, Rα,β remains on the left when

∂Rα,β is traversed in the positive direction. On the other hand, the function (wa)(z)

is meromorphic in Rα,β with only two singularities, both polar, at ∞(0) and ∞(1).
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Moreover, since w(z∗) = −w(z) and a(z∗) = −a(z), the residues at those poles

coincide. Therefore, it holds that

ω + Bτ = − 1

2πi

∮
∂Rα,β

(wa)(s)ds = −2resz=∞(0)(wa)(z). (10.3.7)

As we show in the next section, the above residue has a rather explicit expression

when Q(z), which, obviously, defines w(z), satisfies (9.0.6).

10.3.2 Jacobi Inversion Problem

Let B be given by (10.3.3). Denote by Jac(R) := C/{Z + BZ} the Jacobi variety

of R. We shall represent elements of Jac(R) as equivalence classes [s] = {s+j+mB :

j,m ∈ Z}, where s ∈ C. Since R has genus one, Abel’s map

z ∈R 7→
[∫ z

b2

H
]
∈ Jac(R) (10.3.8)

is a holomorphic bijection. Thus, given s ∈ C there exists a unique z[s] ∈ R such

that
[∫ z[s]

b2
H
]

= [s].

Proposition 10.3.1. Let τ, ω be given by (9.2.5) and ς by (9.2.1). Further, let {Nn}

be a sequence as in Theorem 9.2.5. Denote by zn,k = zn,k(t) the unique solution

z[sn,k(t)] of the Jacobi inversion problem with

sn,k(t) :=

∫ p(k)

b2

H + (n−Nn)ς + (ω + Bτ)n, p = p(t) :=
b1b2 − a1a2

(b2 − a2) + (b1 − a1)
,

(10.3.9)

k ∈ {0, 1}. Then for any subsequence N∗ the point ∞(0) is a topological limit point of

{zn,1}n∈N∗ if and only if ∞(1) is a topological limit point of {zn,0}n∈N∗.

To prove the first claim, define

γ(z) :=

(
z − b2

z − a2

z − b1

z − a1

)1/4

, z ∈ C \ J, (10.3.10)

where γ(z) s holomorphic off J and the branch is chosen so that γ(∞) = 1. Further,

set

A(z) =
γ(z) + γ−1(z)

2
and B(z) :=

γ(z)− γ−1(z)

−2i
. (10.3.11)
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Observe that the function A(z) was already defined in (9.2.8). The proof of Proposi-

tion 10.3.1 is exactly the same as the proof Proposition 7.3.3 with the correct formulas

for γ,A,B, see Appendix B. The behavior of the points zn,k with respect to n can be

extremely chaotic. Assuming that n−Nn is constant, it is known that if the numbers

ω and τ are rational, then there exist only finitely many distinct points zn,k; when ω

and τ are irrational, all the points zn,k are distinct, lie on a Jordan curve if 1, ω and

τ are rationally dependent, and are dense on the whole surface R otherwise [68].

10.3.3 Subsequences N(t, ε)

As we shall show further below, the functions Θn(z; t) from Proposition 9.2.3

vanish at zn,1 when it belongs to D(0) and do not vanish at all when zn,1 does not

belong to D(0). Hence, the subsequences N(ε) = N(t, ε) from Proposition 9.2.3 can be

equivalently defined as

N(ε) :=
{
n ∈ N : zn,1 6∈ D(0) ∩ π−1

({
|z| ≥ 1/ε

})}
.

Set K := {k ∈ Z : rk = 0} , where rk := minj,m∈Z
∣∣(1 − k)ς + ω + Bτ + j + Bm

∣∣.
Let k = Nn+1 −Nn. Then it follows from (10.3.9) that

[
a(zn+1,1)− a(zn,1)

]
=
[
(1− k)ς + ω + Bτ

]
. (10.3.12)

If rk = 0, then [(1−k)ς+ω+Bτ ] = [0] and zn+1,1 = zn,1 due to the unique solvability

of the Jacobi inversion problem. Thus, [(1 − k)ς + ω + Bτ ] = [0], means that both

triples ω, x, 1 and τ, y, 1 are rationally dependent, ς = x + By. If rk > 0, choose εk

to be the largest positive number such that Uεk ⊂Rα,β and |a(z)− a(∞(0))| < rk/3,

where Uε := D(0) ∩ π−1
({
|z| > 1/ε

})
. If neither n nor n+ 1 were to belong to N(εk),

then we would have that zn,1, zn+1,1 ∈ Uεk . This, in conjunction with (10.3.12), would

imply that 0 < rk ≤ |a(zn+1,1) − a(zn,1)| ≤ (2/3)rk, which, of course, is impossible.

Altogether, we proved the following.
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Lemma 10.3.2. If K = ∅ and |n − Nn| ≤ N∗, then at least one of the integers

n, n + 1 belongs to N(ε) for all ε ≤ min|k|≤2N∗+1 εk. If one of the triples ω, x, 1 or

τ, y, 1 is rationally independent, then K = ∅.

If there exists an infinite subsequence {nl}l∈N such that Nnl+1−Nl ∈ {0, 1} for all

l ∈ N, then at least one of the integers nl, nl+1 belongs to N(ε) for all ε ≤ min{ε0, ε1}

if we show that r0, r1 > 0. This is true since [ω + Bτ ] 6= [0] and
[
ς + ω + Bτ

]
6=
[
0
]
,

where the first conclusion holds since ω = µt(Jt,1) ∈ (0, 1) by the very definition in

(9.2.5) and the second one holds by (10.3.7) and the unique solvability of the Jacobi

inversion problem.

Assume that k′, k′′ ∈ K, k′ 6= k′′. Then it follows from (10.3.12) that
[
ω + Bτ

]
=[

(k′ − 1)ς
]

and [(k′′ − k′)ς] = [0]. The latter relation implies the first representation

in (9.2.10) while the former gives the other two. It is easy to see in this case that

K = k′ + dZ. That is, if K has at least two elements, then it is an arithmetic

progression, ω, τ are rational numbers, ς has rational coordinates in the basis 1,B,

and the second and third relations of (9.2.10) must be satisfied. Thus, we can claim

the following.

Lemma 10.3.3. If K = {k′} and |n−Nn| ≤ N∗, then there exists an infinite subse-

quence {nl} such that Nnl+1−Nnl 6= k′ (recall that k′ 6= 0). Hence, at least one of the

integers nl, nl + 1 belongs to N(ε) for all ε ≤ min|k|≤2N∗+1,k 6=k′ εk. If not all numbers

ω, τ, x, y are rational or they all rational but the second and third relations of (9.2.10)

do not hold, then either K = ∅ or K = {k′}.

Assume now that all three relations of (9.2.10) take place. That is,
[
ω + Bτ

]
=[

(k − 1)ς
]

and [dς] = [0] for some integers k, d. It follows from (B.3.5) that∫ p(1)

b2

H =
1

2

∫ p(1)

p(0)

H =
1

2

(∫ ∞(0)

∞(1)

H + j + Bm

)
=

∫ ∞(0)

b2

H +
j + Bm

2
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for some j,m ∈ Z, where we use involution-symmetric paths of integration. Notice

that j,m cannot be simultaneously even as this would contradict unique solvability

of the Jacobi inversion problem. Hence,[∫ p(1)

∞(0)

H

]
=

[
κ1 + Bκ2

2

]

for some κ1, κ2 ∈ {0, 1}, κ1 + κ2 > 0. Therefore, adding
∫ b2

∞(0)H to both sides of

(10.3.9) gives us[∫ zn,1

∞(0)

H
]

=

[
κ1 + Bκ2

2
+ (n−Nn)ς + (ω + Bτ)n

]
=

[
κ1 + Bκ2

2
+ (nk −Nn)ς

]
.

(10.3.13)

Since ς has rational coordinates in the basis 1,B with denominator d, the right-hand

side of (10.3.13) has at most d distinct values that depend only on % ∈ {0, . . . , d−1},

the remainder of the division of nk − Nn by d. Let z%, % ∈ {0, . . . , d − 1}, be such

that [∫ z%

∞(0)

H
]

=

[
κ1 + Bκ2

2
+ %ς

]
.

Clearly, {zn,1}n∈N ⊆ {z%}d−1
%=0. Thus, it only remains to investigate when z% = ∞(0),

or equivalently, when [(κ1 + Bκ2)/2 + %ς] = [0]. Trivially, it must hold that % =

d(2lj − κj)/(2ij), j ∈ {1, 2}, for some l1, l2 ∈ Z. Since one of the pairs (ij, d) is

co-prime and % ∈ {0, . . . , d − 1}, this is possible only if % = 0 or % = d/2 (in the

second case, of course, d must be even).

Lemma 10.3.4. If all three relations of (9.2.10) take place, then Jacobi inversion

problem (10.3.9) for zn,1 has only finitely many distinct solutions and ∞(0) is one of

them if and only if nk − Nn is divisible by either d or d/2 (in this case d must be

even).

10.3.4 Theta Functions

In this section we will prove Proposition 9.2.3. Recall that Abel’s map (10.3.8) is

essentially carried out by the function a(z) defined in (10.3.4). We shall consider the
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extension ã(z) of a(z) to the whole surface R defined by setting ã(s) := a+(s) for

s ∈ α and s ∈ β \ {b1}. Given such an extension and (10.3.9), there exist unique

integers jn,k,mn,k such that

ã(zn,k) = ã
(
p(k)
)

+ (n−Nn)ς + (ω + Bτ)n+ jn,k + Bmn,k, k ∈ {0, 1}. (10.3.14)

Denote by θ(u) the theta function of one variable associated with B. That is,

θ(u) =
∑
k∈Z

exp
{
πiBk2 + 2πiuk

}
, u ∈ C.

The function θ(u) is holomorphic in C and enjoys the following periodicity properties:

θ(u+ j + Bm) = exp
{
−πiBm2 − 2πium

}
θ(u), j,m ∈ Z. (10.3.15)

It is also known that θ(u) vanishes only at the points of the lattice
[
B+1

2

]
.

Now, we define Θn(z; t) from Proposition 9.2.3 by Θn(z; t) := Θ
(0)
n,1(z), where

Θn,k(z) = exp
{
−2πi

(
mn,k + τn

)
a(z)

} θ (a(z)− ã(zn,k)− B+1
2

)
θ
(
a(z)− ã

(
p(k)
)
− B+1

2

) (10.3.16)

and F (i)(z), i ∈ {0, 1}, stands for the pull-back under π(z) of a function F (z) from

D(i) into C \ J .

The functions Θn,k(z) are meromorphic on Rα,β with exactly one pole, which is

simple and located at p(k), and exactly one zero, which is also simple and located

at zn,k (observe that the functions Θn,k(z) can be analytically continued as multi-

plicatively multivalued functions on the whole surface R; thus, we can talk about

simplicity of a pole or zero regardless whether it belongs to the cycles of a homology

basis or not). Moreover, according to (10.3.5), (10.3.14), and (10.3.15), they possess

continuous traces on α,β away from b1 that satisfy

Θn,k+(s) = Θn,k−(s)


exp

{
− 2πi(ωn+ (n−Nn)ς)

}
, s ∈ α \ {b1},

exp
{
− 2πiτn

}
, s ∈ β \ {b1}.

(10.3.17)
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To discuss boundedness properties of Θn,k(z) and for the asymptotic analysis in

the following section it will be convenient to define

Mn,0(z) = Θn,0(z)


B(z), z ∈ D(0),

A(z), z ∈ D(1),

and Mn,1(z) = Θn,1(z)


A(z), z ∈ D(0),

−B(z), z ∈ D(1).

(10.3.18)

These functions are holomorphic on R \ {α ∪ β ∪∆} since the pole of Θn,k(z) is

canceled by the zero of β(z). Each function Mn,k(z) has exactly two zeros, namely,

zn,k and ∞(k). It follows from (B.3.3) and (10.3.17) that
M

(0)
n,k±(s) = ∓(−1)kM

(1)
n,k∓(s), s ∈ Γ(a2, b2),

M
(0)
n,k±(s) = ∓(−1)ke−2πiτnM

(1)
n,k∓(s), s ∈ Γ(a1, b1),

M
(i)
n,k±(s) = e(−1)i2πi(nω+(n−Nn)ς)M

(i)
n,k∓(s), s ∈ Γ(b1, a2).

(10.3.19)

It further follows from (B.3.1) and (B.3.2) that |Mn,k(z)| ∼ |z − e|−1/4 as z → e ∈

E = {a1, b1,a2, b2} unless zn,k coincides with e in which case the exponent becomes

1/4. Assume now that there exists N∗ ≥ 0 such that |n − Nn| ≤ N∗ for all n ∈ N.

Then for each δ > 0 there exists C(δ,N∗) independent of n such that

|Mn,k(z)| ≤ C(δ,N∗), z ∈ Oδ := R \ ∪e∈Eπ−1{|z − e| < δ}. (10.3.20)

Indeed, let O
(i)
δ := π−1

(
Oδ

)
∩
(
D(i) \ α

)
, i ∈ {0, 1}. Observe that {log |Mn,k(z)|}

is a family of subharmonic functions in O
(i)
δ (the jump of Mn,k(z) is unimodular on

β). By the maximum principle for subharmonic functions, log |Mn,k(z)| reaches its

maximum on ∂O
(i)
δ , where the maximum is clearly finite. Since the sequence {n−Nn}

is bounded by assumption and the range of ã(z) is bounded by construction, so is

the sequences {mn,k + τn} and {jn,k +ωn}, see (10.3.14) and recall that jn,k +ωn are

real and Im(B) > 0. Thus, any limit point of {log |Mn,k(z)|} is obtained by taking

simultaneous limit points of {n−Nn}, {mn,k + τn}, and {jn,k + ωn}, computing the

corresponding solution zk of the Jacobi inversion problem (10.3.14) and plugging all of

these quantities into the right-hand side of (10.3.16). Hence, all these limit functions
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are also bounded above on the closure of O
(i)
δ , which proves (10.3.20). Finally, it holds

that ∣∣Mn,k

(
∞(1−k)

)∣∣ ≥ cε, n ∈ N(ε), (10.3.21)

for some constant cε > 0 and all ε > 0 small enough by a similar compactness argu-

ment combined with the definition of N(ε) in Proposition 9.2.3, and the observation

that Mn,k(z) is non-zero at ∞(1−k) when ∞(1−k) 6= zn,k.

10.4 Asymptotic Analysis

With Γt as it was defined at the beginning of Section 9.2, we denote by Γ[z1, z2],

where z1, z2 ∈ Γt, the arc of Γt connecting z1, z2. This is a slight abuse of notation since

It is not entirely contained in a union of critical trajectories, but will be convenient

for the discussion ahead.

10.4.1 Initial Riemann-Hilbert Problem

As agreed before, we omit the dependence on t. We remind the reader of the

initial Riemann-Hilbert problems for orthogonal polynomials, RHP-Y (see Chapter

4):

(a) Y (z) is analytic in C \ Γ and limC\Γ3z→∞ Y (z)z−nσ3 = I;

(b) Y (z) has continuous traces on Γ \ {a1, b1, a2, b2} that satisfy

Y +(s) = Y −(s)

1 e−NnV (s)

0 1

 ,

where, as before, V (z) is given by (9.0.4).
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The connection of RHP-Y to orthogonal polynomials was first demonstrated by

Fokas, Its, and Kitaev in [35, 36] and lies in the following. If the solution of RHP-Y

exists, then it is necessarily of the form

Y (z) =

 Pn(z)
(
CPne−NnV

)
(z)

− 2πi
hn−1

Pn−1(z) − 2πi
hn−1

(
CPn−1e

−NnV
)
(z)

 , (10.4.1)

where Pn(z) = Pn(z; t, Nn) are the polynomial satisfying orthogonality relations

(9.0.1), hn = hn(t, Nn) are the constants that appear in the three-term recurrence

relation (cf. Section 2.2.1)

zPn(z; t, N) = Pn+1(z; t, N) + βn(t, N)Pn(z; t, N) + γ2
n(t, N)Pn−1(z; t, N), (10.4.2)

granted all the polynomials in (10.4.2) have prescribed degrees, where
γ2
n(t, N) = hn(t, N)/hn−1(t, N),

hn(t, N) =

∫
Γ

P 2
n(z; t, N)e−NV (z;t)dz.

(10.4.3)

and Cf(z) is the Cauchy transform of a function f given on Γ, i.e.,

(Cf)(z) :=
1

2πi

∫
Γ

f(s)

s− z
ds.

Observe that if Pn(z; t, N) = Pn+1(z; t, N) with both polynomials having degree n,

then hn(t, N) = 0 and hn+1(t, N) = ∞. More generally, it holds that hn(t, N) is a

meromorphic function of t and so is γ2
n(t, N).

Below, we show the solvability of RHP-Y for all n ∈ N(t, ε) large enough following

the framework of the steepest descent analysis introduced by Dieft and Zhou [42]. The

latter lies in a series of transformations which reduce RHP-Y to a problem with jumps

asymptotically close to identity.

10.4.2 Renormalized Riemann-Hilbert Problem

Suppose that Y (z) is a solution of RHP-Y . Put

T (z) := en`∗σ3/2Y (z)e−n(g(z)+`∗/2)σ3 , (10.4.4)
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where the function g(z) is defined by (10.1.1) and `∗ appeared in (10.1.2). Then

T+(s) = T−(s)

e−n(g+(s)−g−(s)) en(g+(s)+g−(s)−V (s)+`∗)+(n−Nn)V (s)

0 e−n(g−(s)−g+(s))

 ,

s ∈ Γ, and therefore we deduce from (9.2.6), (10.1.6), and (10.1.7) that T (z) solves

RHP-T :

(a) T (z) is analytic in C \ Γ and limC\Γ3z→∞ T (z) = I;

(b) T (z) has continuous traces on Γ \ {a1, b1, a2, b2} that satisfy

T+(s) = T−(s)



1 en(2πiτ+φa1 (s))+(n−Nn)V (s)

0 1

 , s ∈ Γ(eiπ∞, a1),

1 enφb2 (s)+(n−Nn)V (s)

0 1

 , s ∈ Γ(b2, e
πi/3∞),

e2πiωn enφa2 (s)+(n−Nn)V (s)

0 e−2πiωn

 , s ∈ Γ(b1, a2),

and

T+(s) = T−(s)



e−nφb2+(s) e(n−Nn)V (s)

0 e−nφb2−(s)

 , s ∈ Γ(a2, b2),

e−n(φb2+(s)−2πiτ) e2πiτn+(n−Nn)V (s)

0 e−n(φb2−(s)−2πiτ)

 , s ∈ Γ(a1, b1).

Clearly, if RHP-T is solvable and T (z) is the solution, then by inverting (10.4.4)

one obtains a matrix Y (z) that solves RHP-Y .
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10.4.3 Lens Opening

As usual in the steepest descent analysis of matrix Riemann-Hilbert problems for

orthogonal polynomials, the next step is based on the identitye−n(φb2+(s)−C) enC+(n−Nn)V (s)

0 e−n(φb2−(s)−C)

 =

 1 0

e−nφb2−(s)−(n−Nn)V (s) 1

×
 0 enC+(n−Nn)V (s)

−e−nC−(n−Nn)V (s) 0

 1 0

e−nφb2+(s)−(n−Nn)V (s) 1


that follows from (10.1.5), where C = 2πiτ when s ∈ Γ(a1, b1) and C = 0 when

s ∈ Γ(a2, b2). To carry it out, we shall introduce two additional system of arcs.

J+

J+

J−

J−

Fig. 10.2. The thick curves represent Γ and thiner black curves represent J±.
The shaded part represents regions where Re(φe(z)) < 0. The dashed lines
represent critical orthogonal trajectories.

Denote by J± smooth homotopic deformations of JΓ within the region Re(φb2(z)) >

0 such that J+ lies to the left and J− to the right of JΓ, see Figure 10.2. We shall

fix the way these arcs emanate from e ∈ {a1, b1, a2, b2}. Namely, let Ue be given by

(10.2.1) and (−φe)2/3(z) be as in (10.2.6). Then we require that

arg
(
(−φe)2/3(z)

)
= ±νe(2π/3), z ∈ Ue ∩ J±, (10.4.5)

where νe is defined by (10.2.5). This requirement always can be fulfilled due to

conformality (−φe)2/3(z) in Ue and the choice of the branch in (10.2.6).
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Denote by O± the open sets delimited by J± and JΓ. Set

S(z) := T (z)



 1 0

∓e−nφb2 (z)−(n−Nn)V (z) 1

 , z ∈ O±,

I, otherwise.

(10.4.6)

Then, if T (z) solves RHP-T , S(z) solves RHP-S:

(a) S(z) is analytic in C \ (Γ ∪ J+ ∪ J−) and limC\Γ3z→∞ S(z) = I;

(b) S(z) has continuous traces on Γ \ {a1, b1, a2, b2} that satisfy RHP-T (b) on

Γ(eπi∞, a1), Γ(b1, a2), and Γ(b2, e
πi/3∞), as well as

S+(s) = S−(s)



 0 e(n−Nn)V (s)

−e−(n−Nn)V (s) 0

 , s ∈ Γ(a2, b2),

 0 e2πiτn+(n−Nn)V (s)

−e−2πiτn−(n−Nn)V (s) 0

 , s ∈ Γ(a1, b1),

 1 0

e−nφb2 (s)−(n−Nn)V (s) 1

 , s ∈ J±.

As before, since transformation (10.4.6) is invertible, a solution of RHP-S yields a

solution of RHP-T .

10.4.4 Global Parametrix

The Riemann-Hilbert problem for the global parametrix is obtained from RHP-

S by removing the quantities that are asymptotically zero from the jump matrices

in RHP-S(b). The latter can be easily identified with the help of (10.1.4) and by

recalling that the constant τ is real. Thus, we are seeking the solution of RHP-N :

(a) N (z) is analytic in C \ Γ[a1, b2] and N (∞) = I;
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(b) N (z) has continuous traces on Γ(a1, b2) \ {b1, a2} that satisfy

N+(s) = N−(s)



 0 e(n−Nn)V (s)

−e−(n−Nn)V (s) 0

 , s ∈ Γ(a2, b2),

 0 e2πiτn+(n−Nn)V (s)

−e−2πiτn−(n−Nn)V (s) 0

 , s ∈ Γ(a1, b1),

e2πiωn 0

0 e−2πiωn

 , s ∈ Γ(b1, a2).

We shall solve this problem only for n ∈ N(ε) = N(t, ε) from Proposition 9.2.3.

Let the functions Mn,k(z) be given by (10.3.18) and D(z) = D(z; t) be defined by

(9.2.2). With the notation introduced right after (10.3.16), a solution of RHP-N is

given by

N (z) = M−1(∞)M(z), M(z) :=

M (0)
n,1(z) M

(1)
n,1(z)

M
(0)
n,0(z) M

(1)
n,0(z)

D(Nn−n)σ3(z). (10.4.7)

Indeed, RHP-N (a) follows from holomorphy of D(z) and Mn,k(z) discussed in Propo-

sition 9.2.1 and right after (10.3.18). Fulfillment of RHP-N (b) can be checked by

using (9.2.3) and (10.3.19). Observe also that det(N (z)) ≡ 1. Indeed, as the jump

matrices in RHP-N (b) have unit determinants, det(N (z)) is holomorphic through

Γ(a1, b1), Γ(b1, a2), and Γ(a2, b2). It also has at most square root singularities at

{a1, b1, a2, b2} as explained right after (10.3.19). Thus, it is holomorphic throughout

C and therefore is a constant. The normalization at infinity implies that this constant

is 1.

10.4.5 Local Parametrices

The jumps discarded in RHP-N are not uniformly close to the identity around the

points e ∈ {a1, b1, a2, b2}. The goal of this section is to solve RHP-S in the disks Ue,

see (10.2.1), with a certain matching condition on the boundary of the disks. More

precisely, we are looking for a matrix functions P e(z) that solves RHP-P a1 :
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(a) P e(z) has the same analyticity properties as S(z) restricted to Ue, see RHP-

S(a);

(b) P e(z) satisfies the same jump relations as S(z) restricted to Ue, see RHP-S(b);

(c) P e(z) = N (z)
(
I +O(n−1)

)
holds uniformly on ∂Ue as n→∞.

Again, we shall solve RHP-P a1 only for n ∈ N(ε).

Let Ue, Je, and Ie, e ∈ {a1, b1, a2, b2}, be as in (10.2.1) and (10.2.2). Further, let

A(ζ) be the Airy matrix [33,58]. That is, it is analytic in C \
(
(−∞,∞)∪L− ∪L+

)
,

L± :=
{
ζ : arg(ζ) = ±2π/3

}
, and satisfies

A+(s) = A−(s)



 0 1

−1 0

 , s ∈ (−∞, 0),

1 0

1 1

 , s ∈ L±,

1 1

0 1

 , s ∈ (0,∞),

where the real line is oriented from −∞ to ∞ and the rays L± are oriented towards

the origin. It is known that A(ζ) has the following asymptotic expansion at infinity:

A(ζ)e
2
3
ζ3/2σ3 ∼ ζ−σ3/4

√
2

∞∑
k=0

sk 0

0 tk

 (−1)k i

(−1)ki 1

(2

3
ζ3/2

)−k
, (10.4.8)

where the expansion holds uniformly in C \
(
(−∞,∞) ∪ L− ∪ L+

)
, and

s0 = t0 = 1, sk =
Γ(3k + 1/2)

54kk!Γ(k + 1/2)
, tk = −6k + 1

6k − 1
sk, k ≥ 1.

Let as write Ae := A if e ∈ {b1, b2} and Ae := σ3Aσ3 if e ∈ {a1, a2}. It can be

easily checked that σ3Aσ3 has the same jumps asA only with the reversed orientation

of the rays. Moreover, one needs to replace i by −i in (10.4.8) when describing the
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behavior of σ3Aσ3 at infinity. Let ζe(z) :=
[
− n(3/4)φe(z)

]2/3
, which is conformal in

Ue, see (10.2.6). Further, put

J e(z) := e(Nn−n)V (z)σ3/2



I, e = b2,

eπi(±ω)nσ3 , e = a2,

eπi(±ω−τ)nσ3 , e = b1,

e−πiτnσ3 , e = a1,

where we use ω if z lies to the left of Γ and use −ω if z lies to the right of Γ. Then

it can be readily verified by using (10.1.4) that

P e(z) := Ee(z)Ae

(
ζe(z)

)
e(2/3)ζ

3/2
e (z)σ3J e(z), (10.4.9)

satisfies RHP-P a1(a,b) for any matrix Ee(z) holomorphic in Ue. It follows immedi-

ately from (10.4.8) and the definition of J e that RHP-P a1(c) will be satisfied if

Ee(z) :=
(
NJ−1

e

)
(z)

 1 −νei

−νei 1

 ζ
σ3/4
e (z)√

2
, (10.4.10)

provided this matrix function is holomorphic in Ue, where νe was defined in (10.2.5).

By using RHP-N (b) and (10.2.7) one can readily check that Ee(z) is holomorphic in

Ue \{e}. Since ζe(z) has a simple zero at e, it also follows from (8.3.12) and the claim

after (8.3.11) that Ee(z) can have at most square root singularity at e and therefore

is in fact holomorphic in the entire disk Ue as needed.

In fact, it follows from (10.4.8)–(10.4.10) that

P e(z) ∼N (z)

(
I +

1

n

∞∑
k=0

P e,k(z)

nk

)
, (10.4.11)

where the expansion inside the parentheses holds uniformly on ∂Ue and locally uni-

formly for t ∈ Otwo−cut, and for k ≥ 1

P e,k−1(z) = J−1
e (z)

 1 −νei

−νei 1

sk 0

0 tk

 (−1)k νei

νe(−1)ki 1

J e(z)

(
−φe(z)

2

)−k
.

(10.4.12)
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10.4.6 RH Problem with Small Jumps

Set Σ :=
([

(Γ \ JΓ) ∪ J+ ∪ J−
]
∩D

)
∪ (∪e∂Ue), D := C \ ∪eU e We shall show

that for all n ∈ N(ε) large enough there exists a matrix function R(z) that solves the

following Riemann-Hilbert problem (RHP-R):

(a) R(z) is holomorphic in C \ Σ and limC\Γ3z→∞R(z) = I;

(b) R(z) has continuous traces on Σ◦ that satisfy

(R−1
− R+)(s) =


P e(s)N

−1(s), s ∈ ∂Ue,

N (s)

 1 0

e−nφb2 (s)−(n−Nn)V (s) 1

N−1(s), s ∈ J± ∩D,

where ∂Ue is oriented clockwise, and

(R−1
− R+)(s) =

N (s)

1 en(2πiτ+φa1 (s))+(n−Nn)V (s)

0 1

N−1(s), s ∈ Γ(eiπ∞, a1) ∩D,

N−(s)

e2πiωn enφa2 (s)+(n−Nn)V (s)

0 e−2πiωn

N−1
+ (s), s ∈ Γ(b1, a2) ∩D,

N (s)

1 enφb2 (s)+(n−Nn)V (s)

0 1

N−1(s), s ∈ Γ(b2, e
πi/3∞) ∩D.

Observe that RHP-R is a well posed problem as det(N (z)) ≡ 1, as explained

after (8.3.12), and therefore the matrix is invertible. Recall also that the entries of

N (z) and N−1(z) are uniformly bounded on Σ for n ∈ N(ε) according to (10.3.20)

and (10.3.21).

To prove solvability of RHP-R, let us show that the jump matrices in RHP-R(b)

are close to the identity. To this end, set

∆(s) := (R−1
− R+)(s)− I, s ∈ Σ. (10.4.13)
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Since the entries ofN (z) are uniformly bounded on each ∂Ue with respect to n ∈ N(ε),

it holds by RHP-P a1(c) and (10.4.11) that

∆(s) ∼ 1

n

∞∑
k=0

(
NP e,kN

−1
)
(s)

nk
, (10.4.14)

where the expansion is valid uniformly on ∂Ue. Thus, it holds that

‖∆‖L∞(∪e∂Ue) = Oε
(
n−1
)
. (10.4.15)

Moreover, it follows from (10.2.3) and the sentence right after that there exists a

constant CD < 1, depending on the radii of the disks Ue, such that |eφb2 (s)| < CD for

s ∈ Γ(b2, e
πi/3∞) ∩D, |eφa1 (s)| < CD for s ∈ Γ(eπi∞, a1) ∩D, and |eφa2 (s)| < CD for

s ∈ Γ(b1, a2) ∩D. Therefore,

∆(s) = N−(s)

0 en(φe(s)+C)+(n−Nn)V (s)

0 0

N−1
+ (s) = O (Cn

D) (10.4.16)

on (Σ∩D) \ (J+ ∪ J−) since C is either zero or purely imaginary, the entries of N (z)

are bounded and so is the sequences n−Nn, where the subscripts ± are needed only

on Γ(b1, a2) ∩D and we used the fact

N−(s)e2πiωnσ3N−1
+ (s) = I, s ∈ Γ(a1, b2),

see RHP-N (b). Similarly, we get that

∆(s) = N (s)

 0 0

e−nφb2 (s)−(n−Nn)V (s) 0

N−1(s) = O (Cn
D) (10.4.17)

on J±∩D for a possibly adjusted constant CD, where we used the fact that Re(φb2(s)) >

0 for s ∈ J± \ E, see Figure 6.1.

Equations (10.4.15), (10.4.16), and (10.4.17) show that ∆(s) is uniformly close to

zero. Since the entries of N (z) are holomorphic at infinity and enφe(s) is geometrically

small as Γ 3 s → ∞, ∆(s) is close to zero in L2-norm as well. Then it follows from

the same analysis as in [26, Corollary 7.108] that R(z) exists for all n ∈ N(ε) and it

holds uniformly in C that

R(z) = I +Oε

(
n−1
)
. (10.4.18)
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10.4.7 Solution of the Initial RHP

Given R(z), N (z), and P e(z), solutions of RHP-R, RHP-N , and RHP-P a1 ,

respectively, it is a trivial verification to check that RHP-S is solved by

S(z) =


(RN )(z) in D \ [(Γ \ JΓ) ∪ J+ ∪ J−],

(RP e)(z) in Ue, e ∈ {a1, b1, a2, b2}.
(10.4.19)

Let K be a compact set in C \ Γ. We can always arrange so that the set K lies

entirely within the unbounded component of the contour Σ. Then it follows from

(10.4.4), (10.4.6), and (10.4.19) that

Y (z) = e−n`
∗σ3/2(RN )(z)en(g(z)+`∗/2)σ3 , z ∈ K. (10.4.20)

Subsequently, by using (10.4.1) and (10.1.2), we see that

Pn(z) = [Y (z)]11 =
(
[R(z)]11[N (z)]11 + [R(z)]12[N (z)]21

)
enQ(z)+n

2
(V (z)−`∗).

Therefore, it follows from (8.3.12) and (10.4.18) that

ψn(z)e−nQ(z) =
(
1 +Oε

(
n−1
))
DNn−n(z)

M
(0)
n,1(z)

M
(0)
n,1(∞)

+Oε
(
n−1
) DNn−n(z)

D2(Nn−n)(z)

M
(0)
n,0(z)

M
(1)
n,0(∞)

.

(10.4.21)

Asymptotic formula (9.2.11) now follows from (10.3.20) and (10.3.21), boundedness

of {Nn − m}, and definitions of Mn,1(z) in (8.3.10), of Θn(z) right before (7.3.20),

and of ϑn(z) right after Proposition 9.2.3.

Now, let K be any compact set in C \ J . Write K = K1 ∪K2, where K1, K2 are

compact, K1 does not intersect Γ and K2 lies entirely within the region {Re(φb2(z)) <

0}, see Figures 9.5 and 6.1. Again, the lens Σ can be adjusted so that K1 lies in the

unbounded component of the complement of Σ. Hence, the estimate (9.2.11) on K1

follows as before. To obtain it on K2, recall that we had a lot of freedom in choosing

Γ away from J . That is, Γ can be deformed into Γ′ that avoids K2 and belongs to

{Re(φb2(z)) < 0} away from J . Then RHP-Y , formulated on Γ′, can be solved exactly

as before since estimates (10.4.16) and (10.4.17) remain the same (with a possibly

modified constant CD), and therefore (9.2.11) can be shown via (10.4.20)–(10.4.21).
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Finally, take K ⊂ J◦. It again follows from (10.4.1), (10.4.4), (10.4.6), and

(10.4.19) that

Pn(s) = [Y (s)]11 =
(
[R(s)]11

(
[N (s)]11+ + [N (s)]12+e

−nφb2+(s)−(n−Nn)V (s)
)

+

[R(s)]12

(
[N (s)]21+ + [N (s)]22+e

−nφb2+(s)−(n−Nn)V (s)
))
eng+(s), s ∈ K.

Now, (10.1.6) and RHP-N (b) yield that

[N (s)]i2+e
−nφb2+(s)−(n−Nn)V (s)+ng+(s) = [N (s)]i1−e

ng−(s)

for s ∈ J◦ and i ∈ {1, 2}. Hence, we get from (10.1.2) and (10.4.18) that

ψn(s) =
(
1 +Oε

(
n−1
)) (

[N (s)]11+e
nQ+(s) + [N (s)]11−e

nQ−(s)
)

+

Oε
(
n−1
) (

[N (s)]21+e
nQ+(s) + [N (s)]21−e

nQ−(s)
)

for s ∈ K. Since the traces Q±(s), s ∈ J , are purely imaginary by (10.1.5), the above

asymptotic formula yields (9.2.12) in the same way (10.4.21) yielded (9.2.11).

10.5 Concluding Remarks

Asymptotics of polynomials satisfying (9.0.1) were considered, in part, to attain

a certain asymptotic expansion, the so-called topological expansion, of the partition

function

ZN(t) :=

∫
Γ

· · ·
∫

Γ

∏
1≤j<k≤N

(zj − zk)2

N∏
k=1

e
−N

(
z3

3
+tz

)
dz1dz2 · · · dzN .

This was an extension of work done in [50] where parameters t associated with mea-

sures µt supported on a single arc were considered. While we have chosen to focus on

strong asymptotics of Pn(z; t, N), much of the physically relevant quantities rely on

attaining asymptotic formulas for recurrence coefficients βn, γ
2
n, which of course can

be done via the formulas
γ2
n(t, N) = hn(t, N)/hn−1(t, N),

βn(t, N) = (Pn)n−1 − (Pn+1)n,

where we write Pn(z; t, N) = zn +
∑n−1

k=0(Pn)kz
k. Such results will appear in [59].
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ciated with a system of arcs,” Journal of Approximation Theory, vol. 21, no. 1,
pp. 1–42, 1977. 21

[23] M. L. Yattselev, “Nuttall’s theorem with analytic weights on algebraic s-
contours,” Journal of Approximation Theory, vol. 190, pp. 73–90, 2015, doi:
http://dx.doi.org/10.1016/j.jat.2014.10.015. 21, 66, 175

[24] L. Baratchart and M. L. Yattselev, “Padé approximants to certain elliptic-type
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ance in quantum gravity,” Communications in Mathematical Physics, vol. 142,
no. 2, pp. 313–344, 1991. 28, 149

[36] A. S. Fokas, A. Its, and A. Kitaev, “The isomonodromy approach to matric
models in 2d quantum gravity,” Communications in Mathematical Physics, vol.
147, no. 2, pp. 395–430, 1992. 28, 149

[37] A. Barhoumi and M. L. Yattselev, “Asymptotics of polynomials orthogonal on a
cross with a jacobi-type weight,” Complex Analysis and Operator Theory, vol. 14,
no. 1, pp. 1–44, 2020. 29
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A. THETA FUNCTION IDENTITIES

In this appendix we state a number of identities used in the analysis carried out in

Chapter 5.

Lemma A.0.1. Recall (5.4.2). It holds that∫ 0

a3

Ω = −K− and

∫ 0∗

a3

Ω = K−, (A.0.1)

where the path of integration lies entirely in Rα,β.

Proof. Exactly as in the case of (5.4.3), the symmetries of Ω(z) imply that

−
∫ 0

a3

Ω =

∫ 0∗

a3

Ω =
1

2

∫
∆3

Ω =
1

4

∫
∆3−∆1

Ω.

The claim now follows from the fact that ∆3 −∆1 is homologous to α− β.

Lemma A.0.2. It holds that

Φ(z) = exp

{
−πi

∫ z

a3

Ω

}
θ
( ∫ z

a3
Ω− K+

)
θ
( ∫ z

a3
Ω + K+

) . (A.0.2)

Proof. It follows from (5.4.3) and (5.4.1) that the right hand side of (A.0.2) is a mero-

morphic functions with a simple pole at ∞(0), a simple zero at ∞(1), and otherwise

non-vanishing and finite that satisfies (5.2.6). As only holomorphic functions on R

are constants, the normalization at a3 yields (A.0.2).

Lemma A.0.3. Let l0, l1,m0,m1 be given by (5.4.5). Then it holds that
Φ(z0) = (−1)l0+m0e−πi(cρ−K+)θ(cρ + 2K−)/θ(cρ),

Φ(z1) = (−1)l1+m1e−πi(cρ+K+)θ(cρ)/θ(cρ + 2K+).

(A.0.3)

In particular, when |π(zk)| <∞, it holds that

Φ(z0)Φ(z1) = −(−1)l0−l1+m0−m1 . (A.0.4)
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Moreover, we have that

Φ
(
0
)

= eπiK−θ(1/2)/θ(B/2). (A.0.5)

Proof. Since −2K+ = 2K− − 1, we get from (A.0.2) that

Φ(z0) = eπi(K+−cρ−l0−m0B) θ(cρ + 2K− +m0B)

θ(cρ +m0B)
.

The first relation in (A.0.3) now follows from (5.4.1). Similarly, we have that

Φ(z1) = eπi(−K+−cρ−l1−m1B) θ(cρ +m1B)

θ(cρ + 2K+ +m1B)
,

which yields the second relation in (A.0.3), again by (5.4.1). To get (A.0.4), observe

that

θ(cρ + 2K−) = θ(cρ + 2K+ − B) = −e2πicρθ(cρ + 2K+)

by (5.4.1). Finally, (A.0.5) follows from (A.0.2) and (A.0.1).

Lemma A.0.4. Let

Xn := lim
z→∞

z−2Ψn

(
z(0)
)
Ψn−1

(
z(1)
)
. (A.0.6)

When |π(zk)| <∞, it holds that

Xn =
4

a2 + b2

θ2(cρ)

θ2(0)

(−1)ı(n)

Φ2ı(n)(z1)
. (A.0.7)

Proof. Since Φ(z)Φ(z∗) ≡ 1 and Sρ(z)Sρ(z
∗) ≡ 1, the desired limit is equal to

4

a2 + b2
Tı(n)

(
∞(0)

)
lim
z→∞

Φ
(
z(1)
)
Tı(n−1)

(
z(1)
)
,

where we also used (5.2.9). Since −2K+ = 2K−−1, it follows from (5.4.4) and (5.4.3)

that

Tı(n)

(
∞(0)

)
= eπiı(n)K+

θ
(
cρ + 2ı(n)K−

)
θ(0)

.

We further deduce from (5.4.4) and (A.0.2) that

(
ΦTı(n−1)

)
(z) = exp

{
−πiı(n)

∫ z

a3

Ω

}
θ
( ∫ z

a3
Ω− cρ + (−1)ı(n)K+

)
θ
( ∫ z

a3
Ω + K+

) .

Therefore, it follows from (5.4.3) that

(
ΦTı(n−1)

)(
∞(1)

)
= eπiı(n)K+

θ
(
cρ + 2ı(n)K+

)
θ(0)

.
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Hence, we get from (A.0.3) that

Xn =
4

a2 + b2

θ2(cρ)

θ2(0)

(
(−1)l0−l1+m0−m1

Φ(z0)

Φ(z1)

)ı(n)

.

The claim of the lemma now follows from (A.0.4).

Lemma A.0.5. It holds that

d

dζ

(
eπiζ θ(ζ + K+)

θ(ζ − K+)

)
= iπθ2(0)eπiζ θ(ζ − K−)θ(ζ + K−)

θ2(ζ − K+)
. (A.0.8)

Proof. See [44, Eq. (20.7.25)] (observe that θ(ζ) = θ3(πζ|B) in the notation of [44,

Chapter 20]).

Lemma A.0.6. It holds that

z = −
√
a2 + b2

2

e−πiK+θ2(0)

θ(1/2)θ(B/2)

θ
( ∫ z

a3
Ω− K−

)
θ
( ∫ z

a3
Ω + K−

)
θ
( ∫ z

a3
Ω− K+

)
θ
( ∫ z

a3
Ω + K+

) . (A.0.9)

Proof. It follows from (5.4.1), (5.4.3), and (A.0.1) that

z = C
θ
( ∫ z

a3
Ω− K−

)
θ
( ∫ z

a3
Ω + K−

)
θ
( ∫ z

a3
Ω− K+

)
θ
( ∫ z

a3
Ω + K+

)
for some normalizing constant C. It further follows from (5.2.9), (A.0.2), and (5.4.3)

that

−
√
a2 + b2

2
= lim

z→∞
zΦ−1

(
z(0)
)

= CeπiK+
θ(1/2)θ(B/2)

θ2(0)
,

which yields the desired result.

Lemma A.0.7. It holds that

eπiB/2 θ
2(1/2)θ2(B/2)

θ4(0)
=
a2 + b2

4ab
. (A.0.10)

Proof. To prove (A.0.10), evaluate (A.0.9) at a3 to get

θ(1/2)θ(B/2)

θ2(0)
=

√
a2 + b2

2a
e−πiK+

θ2(K−)

θ2(K+)
.

Since ∆3 −∆1 is homologous to α − β, one can easily deduce from Figure 5.1 that

it also holds that∫ a2

a3

Ω =

(∫ 0∗

a3

+

∫ a1

0∗
+

∫ a2

a1

)
Ω =

1

2

∫
∆3−∆1+β

Ω =
1

2
,
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where the initial path of integration (except for a2) belongs to Rα,β. Thus, evaluating

(A.0.9) at a2 gives us

θ(1/2)θ(B/2)

θ2(0)
= −
√
a2 + b2

2ib
e−πiK+

θ2(K+)

θ2(K−)
,

where we used (5.4.1). Multiplying two expressions for θ(1/2)θ(B/2)/θ2(0) yields the

desired result.

Lemma A.0.8. It holds that∮
α

ds

w(s)
=

2πi√
a2 + b2

eπiK+θ(1/2)θ(B/2). (A.0.11)

Proof. We can deduce from (A.0.2), (A.0.8), and the evenness of the theta function

that

Φ′(z) = −iπθ2(0)

(∮
α

ds

w(s)

)−1
Φ(z)

w(z)

θ
( ∫ z

a3
Ω + K−

)
θ
( ∫ z

a3
Ω− K−

)
θ
( ∫ z

a3
Ω + K+

)
θ
( ∫ z

a3
Ω− K+

) .
Since Φ′(z) = zΦ(z)/w(z) by (5.2.5), (A.0.11) follows from (A.0.9).

Lemma A.0.9. Let

Yn :=
(
T ′ı(n)Tı(n−1)/Φ− Tı(n)(Tı(n−1)/Φ)′

)(
0
)
. (A.0.12)

When |π(zk)| =∞, it holds that Yn = 0, otherwise, we have that

Yn = (−1)l0+m0+ı(n) 2eπicρ

√
a2 + b2

Φ(z0)

Φ2
(
0
) θ2(cρ)

θ2(0)
, (A.0.13)

where the integers l0,m0 were defined in (5.4.5).

Proof. Since Φ′(z) = zΦ(z)/w(z) by (5.2.5), Φ′
(
0
)

= 0. Therefore,

Yn =
(
T 2
ı(n−1)/Φ

)(
0
)(
Tı(n)/Tı(n−1)

)′(
0
)
.

Assume that |π(zk)| <∞. Then it follows from (5.4.4), (A.0.8), and (A.0.11) that(
Tı(n)

Tı(n−1)

)′
(z) = −(−1)ı(n)

√
a2 + b2

2w(z)

e−πiK+θ2(0)

θ(1/2)θ(B/2)

(
Tı(n)

Tı(n−1)

)
(z)×

×
θ
( ∫ z

a3
Ω− cρ + K−

)
θ
( ∫ z

a3
Ω− cρ − K−

)
θ
( ∫ z

a3
Ω− cρ + K+

)
θ
( ∫ z

a3
Ω− cρ − K+

) .
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We further deduce from (5.4.4), (A.0.1), and (A.0.5) that

(Tı(n−1)Tı(n))
(
0
)

=
1

Φ
(
0
) θ(cρ − B/2)θ(cρ + 1/2)

θ(1/2)θ(B/2)
.

Since w
(
0
)

= iab, we therefore get from (A.0.1) that

Yn =

√
a2 + b2

2ab

i(−1)ı(n)

Φ2
(
0
) e−πiK+θ4(0)

θ2(1/2)θ2(B/2)

θ(cρ)θ(cρ + 2K−)

θ2(0)
.

(A.0.13) now follows from (A.0.10) and the first formula in (A.0.3).

Let now z0 = ∞(1), in which case [cρ] = [0]. Since Φ
(
∞(1)

)
= 0, we get that

Yn = 0. Finally, let z1 = ∞(1). Then we have that −cρ = −(−1)k2K+ + lk + mkB

and therefore

T1(z)

T0(z)
= exp

{
πi

∫ z

a3

Ω

}
θ
( ∫ z

a3
Ω +m1B + 3K+

)
θ
( ∫ z

a3
Ω + (m1 + 1)B− 3K+

)
= exp

{
πi

∫ z

a3

Ω

}
θ
( ∫ z

a3
Ω + (m1 + 1)B− K+

)
θ
( ∫ z

a3
Ω +m1B + K+

)
= e2πi(2m1+1)K−Φ(z)

by (5.4.1) and (A.0.2). As Φ′
(
0
)

= 0, it also holds that Yn = 0.

Lemma A.0.10. Let

Zn :=
(
T ′ı(n)Tı(n−1)/Φ− Tı(n)(Tı(n−1)/Φ)′

)(
0∗
)
. (A.0.14)

When |π(zk)| =∞, it holds that Zn = 0, otherwise, we have that

Zn = (−1)l0+m0+ı(n) 2e−πicρ

√
a2 + b2

Φ(z0)

Φ2
(
0∗
) θ2(cρ)

θ2(0)
. (A.0.15)

Proof. The proof is the same as in the previous lemma.

Lemma A.0.11. Let σ0, σ1 be as in (5.5.2). When |π(zk)| <∞, it holds that

YnX
−1
n = σı(n)e

πicρ

√
a2 + b2

2

Φ
(
zı(n)

)
Φ2
(
0
) (A.0.16)

and

ZnX
−1
n = σı(n)e

−πicρ

√
a2 + b2

2

Φ
(
zı(n)

)
Φ2
(
0∗
) , (A.0.17)

where Xn, Yn, and Zn are given by (A.0.6), (A.0.12), and (A.0.14), respectively.

Proof. The claim follows immediately from (A.0.7), (A.0.13), (A.0.15), and (A.0.4).
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B. PROOFS OF PROPOSITIONS

B.1 Proof of Proposition 5.3.1

It follows from (5.3.4) that Ωz,z∗ = −Ωz∗,z for all z ∈R such that π(z) ∈ C and

therefore Sρ(z)Sρ(z
∗) ≡ 1 for such z. Clearly, this relation extends to the points on

top of infinity by continuity. It is also immediate from (5.3.3) and (5.3.4) that

Sρ
(
z(0)
)

= exp

{
−

4∑
i=1

w(z)

2πi

∫
∆i

log(ρiw+)(s)

s− z
ds

w|∆i+(s)

}
×

× exp
{

2πi(wH)(z)cρ
}
, (B.1.1)

where, for emphasis, we write w|∆i+(s) for w+(s) on s ∈ ∆◦i and

H(z) :=
1

2πi

∫
π(α)

dt

(t− z)w(t)
. (B.1.2)

Relations (5.3.6) now easily follow from (B.1.1), (B.1.2), and Plemelj-Sokhotski for-

mulae [28, equations (4.9)]. As for the behavior near ai, note that by [28, equation

(8.8)], the function (wH)(z) is bounded as z → ai. Furthermore, [28, equations (8.8)

and (8.35)] yield that

−w(z)

2πi

∫
∆i

log(ρiw+)(s)

s− z
ds

w|∆i+(s)
= −1

2
log(z − ai)αi+1/2 +O(1).

Since the above integral is the only one with the singular contribution around ai, the

validity of the top line in (5.3.7) follows. As for the behavior near the origin, note

that limQj∈z→0w(z) = (−1)j−1iab, where, as before, Qj stands for the j-th quadrant.

Recall that each segment ∆i is oriented towards the origin, see Figure 5.1. Hence, it

follows from [28, equation (8.2)] that

− w(z)

2πi

∫
∆i

log(ρiw+)(s)

s− z
ds

w∆i+(s)
= −w(z)

2πi

log(ρiw+)(0)

w|∆i+(0)
log(z) + Fi(z)

=
(−1)j+i

2πi
log(ρiw+)(0) log(z) + Fi(z), z ∈ Qj,
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where Fi(z) is a bounded function around the origin tending to a definite limit as

z → 0. Thus, summing over i yields

−w(z)

2πi

∫
∆

log(ρiw+)(s)

s− z
ds

w+(s)
= (−1)jν log(z) +

4∑
i=1

Fi(z), z ∈ Qj,

where ν was defined in (5.3.1) and we used (5.3.2). Since (wH)(z) is holomorphic

around the origin, the second line in (5.3.7) follows.

B.2 Proof of Proposition 5.5.1

It readily follows from (5.4.5) and (5.4.3) that

[cρ] = [k(1 + B)/2] ⇔ z1 =∞(k) ⇔ z0 =∞(1−k)

for k ∈ {0, 1} (in which case Φ(zı(n)) = Φ
(
∞(1)

)
= 0 = Aρ,n). On the other hand,

because Abel’s map is a bijection, we also get that |π(z1)| <∞⇔ |π(z0)| <∞. This

proves (5.5.4). Observe that

Aρ,n = Bρ,ı(n)Φ(o)2(n−1)nςνν−1/2, (B.2.1)

where Bρ,ı(n) depends only on the parity of n and |Φ(o)| = 1 by (5.2.10). Hence,

Aρ,n → 0 as n→∞ when Re(ν) ∈ (−1/2, 1/2), which proves (5.5.5). In the remaining

situation,

Aρ,n = Bρ,ı(n) exp
{

2(n− 1)i arctan(a/b) + iIm(ν) log n
}

by (5.2.10). If |Bı(n)| 6= 1, then, in fact, Nρ,ε = N. Otherwise, we have that

Aρ,n+2/Aρ,n = exp
{

2i arctan(a/b) + iIm(ν) log(1 + 2/n)
}
.

As arctan(a/b) ∈ (0, π/2) and log(1 + 2/n) = o(1), both constants Aρ,n+2 and Aρ,n

cannot be simultaneously close to 1.

B.3 Proof of Proposition 7.3.3

To prove the first claim, define

γ(z) :=

(
z − 1

z + 1

z + z∗
z − z∗

)1/4

, z ∈ C \ (γ1 ∪ γ2), (B.3.1)



172

where γ(z) s holomorphic off J and the branch is chosen so that γ(∞) = 1. Further,

set

A(z) :=
γ(z) + γ−1(z)

2
and B(z) :=

γ(z)− γ−1(z)

−2i
. (B.3.2)

The functions A(z) and B(z) are holomorphic in C \ (γ1 ∪ γ2) and satisfy

A(∞) = 1, B(∞) = 0, and

A±(s) = ±B∓(s), s ∈ (γ1 ∪ γ2)◦ := (γ1 ∪ γ2) \ {±1, z∗,−z∗}. (B.3.3)

Notice that the equation (AB)(z) = 0 can be rewritten as γ4(z) = 1 and has two

solutions, namely, ∞ and the point p from the line after (7.3.18). In fact, unless

p ∈ (γ1 ∪ γ2)◦, it a zero of B(z). Indeed, it is enough to show that γ(p) = 1 in the

latter case. Let Li := γ4(γi), i ∈ {1, 2}, which are unbounded arcs connecting the

origin to the point at infinity. Let L ⊂ C \ (γ1∪ γ2) be an arc connecting the point at

infinity at p. Then γ4(L) is a closed curve that contains 1 and does not intersect the

arcs Li and therefore does not wind around the origin. Thus, analytic continuation

of the principal branch of the 1/4-root from 1 along γ4(L) leads back to the value 1

at the point 1. However, this continuation is exactly the continuation of γ(z) from

the point at infinity to p along L, which does imply that γ(p) = 1 as claimed.

It follows from (B.3.3) that
(B/A)(z), z ∈R(0),

−(A/B)(z), z ∈R(1),

(B.3.4)

is a rational function on R with two simple zeros ∞(0) and p(0) and two simple poles

∞(1) and p(1) (if it happens that p ∈ (γ1 ∪ γ2)◦, then we choose p(0) ∈ R precisely

in such a way that it is a zero of (B.3.4) and p(1) so it is a pole of (B.3.4); it is, of

course, still true that these points are distinct and π
(
p(k)
)

= p). Therefore, Abel’s

theorem yields that [∫ ∞(1)

p(0)

H

]
=

[∫ ∞(0)

p(1)

H

]
(B.3.5)

while the relations (7.3.18), in particular, imply that[∫ zn,0

p(0)

H
]

=

[∫ zn,1

p(1)

H
]
. (B.3.6)
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Let zk be a topological limit of a subsequence {zni,k}. Holomorphy of the differential

H implies that ∫ zni,k

p(k)

H =

∫ zk

p(k)

H +

∫ zni,k

zk

H →
∫ zk

p(k)

H

as i → ∞, where the integral from zk to zni,k is taken along the path that projects

into a segment joining zk and zni,k. The desired claim now follows from (B.3.5),

(B.3.6), and the unique solvability of the Jacobi inversion problem on R.

B.4 Proof of Proposition 9.2.1

It follows from (9.0.6) and the choice of the branch of Q1/2(z) that

Q1/2(z) =
z2 − t

2
+O

(
1

z

)
as z →∞. It further follows from the choice of the constant ς in (9.2.1) that

z +

∫
Γ(b1,a2)

3ς

s− z
ds

Q1/2(s)
= z − 2t

z
+O

(
1

z2

)
as z →∞. Since the product of the above functions behaves like −3V (z)/2+O(1) as

z →∞, the analyticity properties of D(z) follow. Moreover, since Q
1/2
+ (s) = −Q1/2

− (s)

for s ∈ J , we get the first relation in (9.2.3). The second relation in (9.2.3) follows

from Plemelj-Sokhotski formula(∫
Γ(b1,a2)

ς

s− z
ds

Q1/2(s)

)
+

−
(∫

Γ(b1,a2)

ς

s− z
ds

Q1/2(s)

)
−

=
2πiς

Q1/2(z)

for z ∈ Γ(b1, a2).
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C. EXAMPLES OF JACOBI-TYPE POLYNOMIALS ON

THE CROSS

In this appendix, we illustrate Theorem 5.5.2 by three examples. In them, we shall

not compute Sρ(z) and cρ via their integral representations, (5.3.3) and (5.3.5), but

rather construct a candidate Ŝρ(z) with the desired jump over ∆ and the singular

behavior as in (5.3.7). This construction will also determine a candidate constant ĉρ.

It is simple to argue that

Sρ(z) = Ŝρ(z) exp

{
2πim

∫ z

a3

Ω

}
, cρ = ĉρ −mB,

for some integer m. Using ĉρ in (5.4.4), we then construct T̂ı(n)(z) for which it holds

that

Tı(n)(z) = T̂ı(n)(z) exp

{
−2πim

∫ z

a3

Ω− πim2B + 2πi(−1)ı(n)K+

}
with the same integer m. This means that

(
SρTı(n)

)
(z)/

(
SρTı(n)

)(
∞(0)

)
=
(
ŜρT̂ı(n)

)
(z)/

(
ŜρT̂ı(n)

)(
∞(0)

)
and therefore (5.5.8) and (5.6.2) remain valid with Sρ(z), Tı(n)(z) replaced by Ŝρ(z),

T̂ı(n)(z). Furthermore, the value of Aρ,n in (5.5.2) will not change either as the limit

in the definition of A′ρ,n will be augmented by eπim(1−B), see (A.0.1), that will be offset

by the change in cρ and σk (σ̂k = (−1)mσk). Thus, with a slight abuse of notation,

we shall keep on writing Sρ(z), Tı(n)(z) below.

C.1 Chebyshëv-type case

Let 2ρ̂(z) = 1/w(z), in which case it holds that

ρ(s) = 1/w+(s), s ∈ ∆,
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where ρ̂(z) and w(z) were defined in (5.0.2) and (5.1.1), respectively, and the impli-

cation follows from the Plemelj-Sokhotski formulae and Privalov’s theorem. Using

analytic continuations of w(z) one can easily see that ρ(s) ∈ W∞ and ν = 0. Since

(ρw+)(s) ≡ 1, we get that Sρ(z) ≡ 1 and necessarily cρ = 0. Thus, Nρ,ε = 2N and

z0 = ∞(1) (z1 = ∞(0)). Moreover, we get that T0(z) ≡ 1 and T1(z) = 1/Φ(z), see

(A.0.2). Hence, it follows from (5.2.8) and (5.5.8) that

Q2n(z) =
1 + o(1)

2n

(
z2 +

b2 − a2

2
+ w(z)

)n
,

where it holds that o(1) is geometrically small on closed subsets of C \∆ (see [23] for

the error rate in this case). To show that the above result is in a way best possible,

assume that a = b = 1. Recall that the n-th monic Chebyshëv polynomial of the first

kind is defined by

2nTn(z) =
(
z +
√
z2 − 1

)n
+
(
z −
√
z2 − 1

)n
and is orthogonal to xj, j ∈ {0, . . . , n − 1}, on (−1, 1) with respect to the weight

1/
√

1− x2. Hence,

i

∫
∆

skTn
(
s2
)
ρ(s)ds =(∫ 1

0

−
∫ 0

−1

)
xkTn

(
x2
)
dx

√
1− x4

− ik+1

(∫ 1

0

−
∫ 0

−1

)
xkTn

(
− x2

)
dx

√
1− x4

.

Clearly, the above expression is zero for all even k. Assume now that k = 2j + 1,

j ∈ {0, . . . , n− 1}. Then we can continue the above chain of equalities by∫ 1

0

xjTn(x)dx√
1− x2

− (−1)j+1

∫ 1

0

xjTn(−x)dx√
1− x2

=

∫ 1

−1

xjTn(x)dx√
1− x2

= 0,

where the last equality follows from the orthogonality properties of the Chebyshëv

polynomials. Thus, it holds that

Q2n+1(z) = Q2n(z) = Tn
(
z2
)

in this case, which justifies the exclusion of odd indices from Nρ = Nρ,ε as for such

indices polynomials can and do degenerate.
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C.2 Legendre-type case

Let ρ̂(z) = 1
2πi

(
log(z2 − 1)− log(z2 + 1)

)
, in which case it holds that

ρ(s) = (−1)i, s ∈ ∆i,

i ∈ {1, 2, 3, 4}, where the justification for the implication is the same as before. As

in the previous case, it holds that ν = 0. Let
√
w(z) be the branch holomorphic in

C \∆ such that
√
w(z) = z +O(1) as z →∞. Further, let

Φ∗(z) :=

√
2

a2 + b2

(
z2 +

b2 − a2

2
+ w(z)

)1/2

,

be the branch holomorphic in C \ ∆ such that Φ∗(z) = z + O(1) as z → ∞. It

easily follows from (5.2.6), (5.2.8), and (5.2.9) that Φ∗(z) is an analytic continuation

of −Φ
(
z(0)
)

across π(α) ∪ π(β). It is now straightforward to check that

Sρ
(
z(0)
)

= e−πi/4Φ∗(z)/
√
w(z)

and thus cρ = 0. Hence, as in the previous subsection, Nρ,ε = 2N and T0(z) ≡ 1 while

T1(z) = 1/Φ(z). Therefore, we again deduce from (5.2.8) and (5.5.8) that

Q2n(z) =
1 +O(n−1/2)

2n+1/2
√
w(z)

(
z2 +

b2 − a2

2
+ w(z)

)n+1/2

,

uniformly on closed subsets of C \ ∆. Again, to show that the above result is best

possible, assume that a = b = 1. Then we can check exactly as in the previous

subsection that

Q2n+1(z) = Q2n(z) = Ln
(
z2
)
,

where Ln(x) is the n-th monic Legendre polynomial, that is, degree n polynomial

orthogonal to xj, j ∈ {0, . . . , n− 1}, on (−1, 1) with respect to a constant weight.

C.3 Jacobi-1/4 case

Let
√

2ρ̂(z) = 1/
√
w(z), in which case it holds that

ρ(s) = −i4−i/|
√
w(s)|, s ∈ ∆i, i ∈ {1, 2, 3, 4},
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where
√
w(z) is the branch defined in the previous subsection. Observe that

(ρw+)(s) = ii−1|
√
w(s)|, s ∈ ∆i,

and that ν = 1/2. In particular, the constant Aρ appearing in the definition of Aρ,n

in (5.5.2) is equal to Aρ =
√

2e−πi/4/
√
ab.

To construct a Szegő function of ρ(s), let

Θ2(z) :=
θ
( ∫ z

a3
Ω + K−

)
θ
( ∫ z

a3
Ω− K−

) θ( ∫ za3
Ω− K+

)
θ
( ∫ z

a3
Ω + K+

) , z ∈Rα,β,

where the path of integration lies entirely in Rα,β. It follows from (5.4.3) and (A.0.1)

further below that Θ2(z) is a meromorphic function in Rα,β with two simple poles,

namely, ∞(0),0, and two simple zeros ∞(1),0∗. Moreover, Θ2(z) is continuous across

β and satisfies Θ2
+(s) = Θ2

−(s)e−2πiB on α by (5.4.1) and Θ2(z)Θ2(z∗) ≡ 1 by the

symmetries of θ(ζ) and Ω(z). Since each individual fraction in the definition of Θ2(z)

is injective, we can define a branch Θ(z) such that

Θ+(s) = Θ−(s)


e−πiB, s ∈ α,

−1, s ∈∆3 ∪ π−1((−∞,−a]),

and Θ(z)Θ(z∗) ≡ 1. Further, let w1/4(z) be the branch holomorphic in C \
(
∆ ∪

(−∞, a)
)

that is positive for z > a. Now, one can verify that cρ = −B/2 and

Sρ
(
z(k)
)

= Θ
(
z(k)
)
w

2k−1
4 (z), k ∈ {0, 1}.

Let us now compute A′ρ,n appearing in (5.5.2). Since
√
w(z) → e−3πi/4

√
ab as

Q3 3 z → 0, we get that

lim
z→0,arg(z)=5π/4

|z|S2
ρ

(
z(0)
)

=
e−πi/2

√
ab

lim
Q33z→0

zΘ2
(
z(0)
)

= eπiB/2 2
√
ab√

a2 + b2
Φ(0),

where the second equality follows from (A.0.1), (A.0.5), (A.0.9), and (A.0.10) further

below. Therefore, it holds that A′ρ,n = Φ(0). It is easy to see from (A.0.1) that
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z0 = 0, l0 = 0,m0 = 1, and z1 = 0∗, l1 = m1 = 0. Therefore, σı(n) = −1 and the

condition defining Nρ,ε in Proposition 5.5.1 specializes to∣∣1 + exp
{

2i(n− ı(n)) arctan(a/b)
}∣∣ > ε

by (5.2.10) and since Φ(z1)Φ(z0) = 1, see (A.0.4) further below. As T0(0) = 0 and

respectively Ln1 = 0, we then get that Qn(z), n ∈ Nρ,ε, is equal to

γn
(
SρΦ

n
)(
z(0)
)

(
T0

(
z(0)
)

+Oε(n−1)
)
, n ∈ 2N,(

T1

(
z(0)
)

+ z−1Ln2(T0/Φ)
(
z(0)
)

+Oε(n−1)
)
, n 6∈ 2N,

uniformly on closed subsets of C \∆, where

Ln2 =
−1

(T0/T1)′(0)

Φ2n−1(0)

1 + Φ2(n−1)(0)

for all odd n. When a = b, we further get that Ln2 = −eπi/4/[2(T0/T1)′(0)] for

n ∈ Nρ,ε and

Nρ,ε = {n = 4k, 4k + 1 : k ∈ N}.

Assume further that a = b = 1 and let Pn,1(x) be the n-th degree monic polynomial

orthogonal on [0, 1] to xj, j ∈ {0, . . . , n − 1}, with respect to the weight function

x−3/4(1− x)−1/4. Then∫
∆

skPn,1
(
s4
)
ρ(s)ds =

(
1 + ik

) ∫ 1

−1

ykPn,1
(
y4
) dy

(1− y4)1/4
,

which is equal to zero for all k odd by symmetry and for all k = 4j + 2 due to the

factor 1 + ik. When k = 4j, j ∈ {0, . . . , n − 1}, we can further continue the above

equality by

4

∫ 1

0

y4jPn,1
(
y4
) dy

(1− y4)1/4
=

∫ 1

0

xjPn,1(x)
dx

x3/4(1− x)1/4
= 0,

where the last equality now holds by the very choice of Pn,1(z). Hence, it holds that

Q4n(z) = Pn,1
(
z4
)

and Q4n+1(z) = Q4n+2(z) = Q4n+3(z) = zPn,2
(
z4
)
,

where the second set of relations can be shown similarly with Pn,2(x) being the n-th

degree monic polynomial orthogonal on [0, 1] to xj, j ∈ {0, . . . , n−1}, with respect to
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the weight function x1/4(1−x)−1/4. That is, the restriction to the sequence of indices

{n = 4k, 4k + 1 : k ∈ N} is not superfluous and the main term of the asymptotics of

the polynomials does depend on the parity of n.
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