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ABSTRACT

Author: Woeppel, Michael, PhD
Institution: Purdue University
Degree Received: August 2020
Title: Essays in Firm-Level Patenting Activity and Financial Outcomes
Major Professors: Huseyin Gulen and M. Deniz Yavuz

In Chapter 1, I construct a new proxy for Tobin’s q that incorporates the replacement

cost of patent capital. This proxy, PI (physical plus intangible) q, explains up to 64% more

variation in investment than other proxies for q. Furthermore, investment is more sensitive

to PI q than to other proxies for q. Although investment is predicted more accurately by,

and is more sensitive to, PI q, controlling for PI q leads to relatively higher, not lower, cash

flow coefficients. All results are stronger in subsamples with more patent capital. Overall,

using PI q strengthens the historically weak investment-q relation.

Chapter 2 includes Noah Stoffman and M. Deniz Yavuz as co-authors, and in this chapter,

we find that small innovators (i.e., small, innovative firms) earn higher returns than small

non-innovators for up to five years. We find no such innovative premium among large firms.

A battery of tests shows that our results are explained by risk, not investor underreaction.

Small innovators are especially risky because they focus more on risky product innovation

and rely more on organization capital that amplifies their systematic risk. In addition, small

innovators contribute significantly to the size premium. Overall, small innovators have a

higher cost of equity, which potentially explains why they rely heavily on internal capital.
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CHAPTER 1. USING PATENT CAPITAL TO ESTIMATE TOBIN’S Q

1.1 Introduction

Tobin’s q, which is the market value of capital divided by the replacement cost of capital,

has been called the most commonly-used regressor in studies of empirical corporate finance

(Erickson and Whited, 2012). Despite the widespread use of q as a proxy for investment op-

portunities, empirically, the investment-q relation is surprisingly weak (Erickson and Whited,

2000). One reason for this weak investment-q relation is that since Tobin’s q is not perfectly

observable, proxies for q likely contain substantial measurement error. Furthermore, in pre-

vious proxies for q, estimates of the market value of capital include both physical capital

and intangible capital, but estimates of the replacement cost of capital usually include only

physical capital.1 This exclusion of the replacement cost of intangible capital adds to mea-

surement error in q (Erickson and Whited, 2006). In an effort to reduce this measurement

error, I construct a new proxy for q that includes patent capital, which has been shown to

be important for firm value but whose replacement cost has been excluded from previous

proxies for q.

The exclusion of the replacement cost of intangible capital in previous proxies for q is

striking, but understandable. Intangible capital is either externally-purchased or internally-

created. However, only externally-purchased intangible capital appears on the balance sheet.

Thus, internally-created intangible capital, which can be quite large for firms in some in-

dustries (e.g., healthcare), is much harder to estimate. One component of internally-created

intangible capital that is important for firm value and has experienced significant growth in

recent decades is patents. For example, Figure 1.1 shows that the estimated annual market

value of patents issued to publicly-traded firms has grown from less than $300 billion in the

early 1990s to over $3 trillion in recent years (Kogan et al., 2017; Stoffman et al., 2020). In

1Recent examples include Alti (2003); Bolton et al. (2011); Chen and Chen (2012); and Erickson and Whited
(2012). One notable exception is Peters and Taylor (2017).
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previous proxies for q, the market value of these patents has been included in the numerator,

but since patents are internally-created, the replacement cost of these patents has been ex-

cluded from the denominator. Therefore, I focus on including the replacement cost of patent

capital when constructing my proxy for q.

Investments associated with the development of patent capital cannot be recorded on

the balance sheet, so I estimate the replacement cost of patent capital as a function of

estimated patent values, which are determined by the market response to newly-granted

patents (Kogan et al., 2017; Stoffman et al., 2020). Specifically, I estimate the replacement

cost of new patents as the market value of new patents divided by the marginal q of new

patents. I apply the perpetual inventory method to the replacement cost of new patents to

obtain the replacement cost of patent capital.

I then use the replacement cost of patent capital to construct my proxy for q, which I

call PI (physical plus intangible) q. The numerator of PI q is the market value of capital.

The denominator of PI q, or the replacement cost of total capital, is physical capital plus

my estimate of intangible capital, which is the replacement cost of patent capital plus on-

balance sheet intangible capital (i.e., externally-purchased intangible capital). Thus, when

estimating intangible capital, I include only components that have been valued by either the

market or the firm.

Given q ’s theoretical role as the sole determinant of new investment, I follow an extensive

literature dating back to at least Ciccolo (1975) and Abel (1980) and empirically test the

q theory of investment by regressing investment on lagged q. I find that PI q explains

significantly more variation in firm-level investment than two commonly-used proxies for q.

Specifically, PI q explains 21% of the variation in physical investment, 36% of the variation

in research and development (R&D) investment, and 42% of the variation in total (physical

plus R&D) investment. These percentages are up to 64% (i.e., 14 percentage points) higher

than those from regressions of investment on physical q (Erickson and Whited, 2012), whose

denominator includes only physical capital, or total q (Peters and Taylor, 2017), whose

denominator includes physical capital and an estimate of intangible capital that excludes

the replacement cost of patent capital.
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Since Tobin’s q is not perfectly observable, any proxy for q contains measurement error

that results in biased coefficient estimates on q when using ordinary least squares (Erickson

and Whited, 2000). To obtain bias-corrected coefficients on q, I use a cumulant estimator

(Erickson et al., 2014). This methodology is important because when regressing investment

on q, the coefficient on q can be interpreted as a determinant of the elasticity of investment

with respect to q (Whited, 1994; Erickson and Whited, 2000), and previous work has found

this coefficient to be lower than expected (Philippon, 2009). However, I find that coefficients

on q, and thus elasticities of investment with respect to q, are almost always higher when

using PI q.

PI q ’s outperformance is driven in part by the inclusion of the replacement cost of patent

capital, so I expect PI q ’s outperformance to be stronger in subsamples with more patent

capital, which is indeed what I find. Specifically, the explanatory power of PI q and coeffi-

cients on PI q are relatively larger when focusing on industries and time periods with more

patent capital. In these subsamples, PI q is less correlated with, and on average, relatively

lower than, physical q and total q. Relatively lower values of PI q are consistent with the

implication that many high estimates of q that include only physical capital are due in part

to missing patent capital in the denominator of q (Griliches, 1981; Cockburn and Griliches,

1988; Megna and Klock, 1993).

Although q ’s theoretical role is as the only determinant of new investment, there exists a

large literature showing that even after controlling for q, investment is positively associated

with cash flow (Hassett and Hubbard, 1997; Caballero, 1999). This positive investment-cash

flow relation has been interpreted as evidence of financing constraints (Fazzari et al., 1988;

Brown et al., 2009), the result of measurement error in q (Erickson and Whited, 2000; Gomes,

2001), and cash flow providing additional information about future investment opportunities

(Gilchrist and Himmelberg, 1995; Alti, 2003). Previous research suggests that controlling for

a better proxy for q should result in lower cash flow coefficients (e.g., Kaplan and Zingales,

1997). However, I find that although PI q is a significantly better proxy for q than both

physical q and total q, controlling for PI q leads to relatively higher, not lower, cash flow

coefficients.
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This initially unexpected result may be due to differences in investment-cash flow cor-

relations when controlling for different proxies for q. Investment-cash flow correlations are

different when controlling for different proxies for q because q theory implies that when re-

gressing investment on q and cash flow, the denominators of all regression variables should

be the same (Hayashi and Inoue, 1991; Erickson and Whited, 2012). Thus, by changing

the denominator of q, I am also changing the denominators of both investment and cash

flow. As a result, when investment, q, and cash flow are all scaled by the denominator of PI

q, investment-cash flow correlations increase relatively more than investment-q correlations.

Consequently, controlling for PI q leads to higher, not lower, cash flow coefficients. This

finding shows that controlling for a better proxy for q does not necessarily result in lower

cash flow coefficients, as previously suggested.

In robustness tests, I show that my main results are (i) insensitive to the depreciation

rate used to estimate the replacement cost of patent capital, (ii) insensitive to the marginal q

used to estimate the replacement cost of new patents, (iii) robust to alternative econometric

specifications, (iv) driven by both the replacement cost of patent capital and on-balance

sheet intangible capital, and (v) strongest when intangible capital is estimated using just

the replacement cost of patent capital and on-balance sheet intangible capital.

This paper contributes to the vast literature associated with Tobin’s q proxy construction

(e.g., Tobin and Brainard, 1977; Fazzari et al., 1988; Lewellen and Badrinath, 1997; Erickson

and Whited, 2006; Philippon, 2009), but it is most closely related to Peters and Taylor

(2017). Peters and Taylor (2017) construct their own proxy for q that also includes an

estimate of the replacement cost of intangible capital, which they estimate as on-balance

sheet intangible capital plus knowledge capital and organization capital. Knowledge capital

and organization capital are estimated by cumulating and depreciating R&D expenses (BEA;

Damodaran, 1999) and 30% of selling, general, and administrative (SG&A) expenses (Eisfeldt

and Papanikolaou, 2013, 2014).

In contrast, I construct a proxy for q that includes the replacement cost of patent capital.

Rather than estimate patent capital by cumulating and depreciating expenses associated with

the development of patents, I estimate patent capital as a function of the market response

to newly-granted patents. I argue that using the market response is a more direct way to
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estimate the replacement cost of patent capital. The results herein show that by estimating

the replacement cost of intangible capital as a function of its market value, I am able to

construct a proxy for q that creates a stronger investment-q relation.

1.2 The q theory of investment

The q theory of investment was developed in the late 1960s (Brainard and Tobin, 1968;

Tobin, 1969), but the main idea behind q theory was not incorporated into the neoclassical

theory of investment (Jorgenson, 1963), which assumes no adjustment costs, until convex

adjustment costs were introduced (Lucas and Prescott, 1971; Mussa, 1977; Abel, 1983). As

shown below, with convex adjustment costs, the optimal level of investment for a manager

who maximizes firm value is a function of only q.

The following model of investment is from Whited (1994). The relative price of cap-

ital goods is normalized to one. Risk-neutral managers in a tax-free environment choose

investment each period to maximize firm value Vit at time t:

Vit = Et

{
∞∑
j=0

bj

[
Π(Ki,t+j)− Ii,t+j −

c1
2

(
Iit
Kit

− c0 − vit
)2

Kit

]}
, (1.1)

s.t.

Ki,t+1 = (1− dit)Kit + Iit, (1.2)

in which i indexes firms, b is the firm’s discount factor, Kit is total capital, and Iit is

investment. Π(Kit) is the profit function; ΠK > 0, ΠKK = 0, Kit is the only quasi-fixed

factor, and variable factors have been maximized out.

The last term in (1) is the investment adjustment cost function, which is positive and

convex in Iit and negative and convex in Kit. c0 and c1 are constants, and c1 > 0 to ensure

concavity of the value function. vit is an exogenous shock, and it is observed by the firm

but not the econometrician at time t. In a time-series context, vit represents a technological

shock. In a cross-sectional context, vit represents random differences among firms. The
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presence of this shock is necessary for the derivation of the error term in a linear investment-

q regression.

In the constraint (1.2), dit is the rate of capital depreciation for firm i. Let q∗it be the

sequence of Lagrange multipliers on the constraint. Maximizing firm value subject to its

constraint yields:

1 + c1

(
Iit
Kit

− c0 − vit
)

= Et(q
∗
it) ≡ qit, (1.3)

in which

q∗it =
∞∑
s=1

bs(1− dit)s−1
[

ΠK(Ki,t+s)−
c1
(
Kit(c0 + vit)

2 − Iit2
)

2Kit
2

]
. (1.4)

Equation (1.3) states that the firm equates marginal adjustment costs of capital with the

expected shadow value of capital, q∗it, which equation (1.4) shows is the present value of

marginal net profits from using the capital. The price of capital is one, so qit is marginal q.

Rearranging equation (1.3) yields:

Iit
Kit

= α + βqit + εit, (1.5)

in which α ≡ c0 −
1

c1
, β ≡ 1

c1
, and εit ≡ vit. Empirical tests of the q theory of investment

are most often tests of equation (1.5) (e.g., Erickson and Whited, 2006; Andrei et al., 2019).

I estimate the same regression using my proxy for q.

1.3 Data

The sample includes all annual Compustat firms between fiscal years 1975 and 2017

except financials (SIC codes 6000-6799), utilities (SIC codes 4900-4999), and public admin-

istration and nonclassified firms (SIC codes 9000-9999).2 Following Peters and Taylor (2017),

2I use Standard Industry Classification Code (sic).
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I exclude firms with non-positive total assets; non-positive sales; and gross property, plant,

and equipment of less than $5 million (1990 dollars). I also exclude singleton observations

and observations with missing values of investment, q, or cash flow. When analyzing R&D

investment and total investment, which is physical investment plus R&D investment, I re-

move firms whose average R&D investment over the entire sample is zero. To mitigate the

impact of outliers, I winsorize all regression variables at the 1% and 99% levels.3

1.3.1 Proxies for q

Tobin’s q is the market value of capital divided by the replacement cost of capital. Previ-

ously, estimates of the market value of capital included both physical capital and intangible

capital, but estimates of the replacement cost of capital mostly included only physical capi-

tal. Excluding the replacement cost of intangible capital results in additional measurement

error in q (Erickson and Whited, 2006). Since the importance of intangible capital has been

growing in recent decades (Corrado and Hulten, 2010), measurement error in q associated

with the exclusion of intangible capital has also been growing.

Most previous proxies for q likely exclude the replacement cost of intangible capital

because it is difficult to measure. Firm-level intangible capital is either externally-purchased

or internally-created. The book value of externally-purchased intangible capital appears on

the balance sheet and includes goodwill and other intangible capital, which includes any

separately identifiable intangible asset. On the other hand, investments associated with

internally-created intangible capital are immediately expensed on the income statement, so

they do not appear on the balance sheet. Thus, the replacement cost of internally-created

intangible capital is much harder to estimate.

An important component of internally-created intangible capital is patents. Not only

has the estimated annual market value of patents issued to publicly-traded firms grown

3In unreported tests, I find that my results are qualitatively similar when winsorizing at the 5% and 95%
levels.
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significantly in the past few decades (Figure 1.1), but firms with more valuable patents earn

higher long-run growth in output, productivity, and profitability (Kogan et al., 2017). Given

the importance of patents to firm value and the exclusion of the replacement cost of patent

capital in previous proxies for q, I construct PI q, which includes the replacement cost of

patent capital:

qPIit =
Vit

Kphy
it +KintPI

it

, (1.6)

in which Vit is the market value of outstanding common equity (csho times prcc f ) plus the

book value of short- and long-term debt (dlc plus dltt) minus the book value of current

assets (act). Kphy
it is physical capital, which is the book value of gross property, plant, and

equipment (ppegt). I estimate intangible capital as follows:

KintPI

it = KP
it +Kon−bs

it , (1.7)

in which KP
it is the replacement cost of patent capital, and Kon−bs

it is on-balance sheet in-

tangible capital. Thus, when estimating the replacement cost of intangible capital, I include

only components that do not require assumptions about how much intangible capital is cre-

ated through associated expenses. The estimation procedure for patent capital is discussed

below, and on-balance sheet intangible capital is from Compustat (intan). I set all missing

values of the replacement cost of patent capital and on-balance sheet intangible to zero.

I use the perpetual inventory method to estimate the replacement cost of patent capital:

KP
it = (1− δP )KP

i,t−1 + Pit, (1.8)

in which δP is an industry-specific depreciation rate, and Pit is the replacement cost of new

patents. R&D is closely related to subsequently-issued patents, so beginning with the earliest
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possible data, I estimate patent capital using depreciation rates for R&D capital from Table

4 of Li (2012).4,5 I cumulate and depreciate patent capital on a monthly basis.6 In robustness

tests, I find that my results are unaffected by alternative depreciation rates.

I estimate the replacement cost of new patents as the market value of new patents di-

vided by the marginal q of new patents. New patent values are a function of the three-day

idiosyncratic return following the announcement of newly-granted patents (Kogan et al.,

2017; Stoffman et al., 2020). I assume new patents have a marginal q of 1.5. Lindenberg

and Ross (1981) argue that capitalized rents across a number of firms with substantial mar-

ket power result in an average of q of 1.5 between 1960 and 1977. Additionally, Philippon

(2009) constructs a macro-level q whose estimates oscillate around 1.5 between 1953 and

2007. In robustness tests, I find that my results are unaffected by alternative estimates for

the marginal q of new patents. In other words, it is the inclusion of the replacement cost of

patent capital that is driving my results, not the marginal q of new patents.

In standard investment-q regressions, I compare the performance of PI q to two commonly-

used proxies for q. The first proxy is from Erickson and Whited (2012), and I will refer to it

as physical q :

qphyit =
Vit

Kphy
it

. (1.9)

The denominator of physical q includes only physical capital.

The second proxy is from Peters and Taylor (2017), and it is called total q :

qtotit =
Vit

Kphy
it +Kinttot

it

. (1.10)

4The data in this paper begin in 1975, but estimated patent values begin in 1926.
5If the industry is not explicitly listed, I follow guidelines set by the Bureau of Economic Analysis (BEA)
and use an annual rate of 15%.
6For example, if the annual accumulation rate is 0.85 (i.e., depreciation rate of 0.15), I use a monthly
accumulation rate of 0.9865, which equals 0.851/12.
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The denominator of total q includes an estimate of intangible capital that excludes patent

capital:

Kinttot

it = Kknow
it +Korg

it +Kon−bs
it , (1.11)

in which Kknow
it is estimated knowledge capital, and Korg

it is estimated organization capital.

Estimates of both are from Wharton Research Data Services. Using the perpetual inven-

tory method, Peters and Taylor (2017) cumulate and depreciate R&D expenses to estimate

knowledge capital and 30% of SG&A expenses to estimate organization capital. Thus, total

q relies on assumptions about how much intangible capital is created through associated

expenses.

1.3.2 Summary statistics

Table 1.1 presents estimates of different proxies for q and estimates of intangible capital

for five different percentiles. Panel A presents estimates of q for all firms. Since not all firms

have patent capital, Panel B presents estimates of q for firms with patent capital at any

point during the sample. Both panels show that the inclusion of intangible capital in PI q

lowers many of the high estimates of physical q.

Panel C presents estimates of intangible capital for all firms, and Panel D presents esti-

mates of intangible capital for firms with patent capital. The first two rows in each panel

show that estimates of intangible capital and patent capital are both positively skewed. The

last two rows in each panel present estimates of patent intensity and intangible intensity.

Patent intensity is patent capital divided by total capital, and intangible intensity is intangi-

ble capital divided by total capital. Importantly, Panel D shows that patent capital is often

a significant portion of total intangible capital for firms that have patent capital.
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Figure 1.2 presents firm-year observation totals and percentages in five Fama-French

industries. Panel A shows that in the full sample, firms in high-tech and healthcare comprise

about 31% of all observations. However, Panel B shows that when focusing on firms with

patent capital, firms in high-tech and healthcare comprise over 41% of the observations.

These are the two industries one might expect a higher proportion of firms to have patent

capital.

Since R&D investment is not as well populated in Compustat as physical investment

(i.e., capital expenditures), Panels C and D of Figure 1.2 present firm-year observation

totals and percentages for firms with R&D investment. Panel C shows that firms in the

same two industries, high-tech and healthcare, comprise 53% of observations with R&D. A

comparison of observation totals in Panels A and C shows that high-tech and healthcare are

the only two industries in which more than half of all observations have R&D investment.

Panel D shows that of all observations with R&D and patent capital at any point during the

sample, 53% of them are in high-tech and healthcare.

Overall, Figure 1.2 shows that there is significant inter-industry variation in the percent-

age of firms with patent capital. As one might expect, firms in high-tech and healthcare are

more likely to have patent capital than firms in other industries. Given this inter-industry

variation, I expect the relative performance of PI q to differ across industries, which I test

for later by estimating regressions after sorting firms by industry.

1.4 Investment-q relation

In this section, I test the q theory of investment by regressing investment on PI q,

physical q, or total q. Since q theory implies that the same divisor be used for all regression

variables, all investment variables are scaled by the denominator of lagged q being regressed

on by investment (Hayashi and Inoue, 1991; Erickson and Whited, 2012). Using different

divisors for investment and q breaks their natural positive correlation, which leads to lower
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coefficient estimates on q and lower R2 estimates (Erickson and Whited, 2012).7 I estimate

physical investment as scaled capital expenditures (capx ), R&D investment as scaled research

and development expenses (xrd), and total investment as physical investment plus R&D

investment.

1.4.1 OLS results

Table 1.2 presents results from ordinary least squares (OLS) regressions of investment on

lagged q. Following the investment-q literature, I also include firm fixed effects and year fixed

effects. Since q is measured with error, the coefficient on q is biased toward zero when using

OLS (Erickson and Whited, 2000). For this reason, the discussion surrounding Table 1.2

focuses on within R2 estimates, which are ordinary R2 estimates from estimating OLS on the

transformed data. ∆R2 estimates are R2 estimates associated with PI q minus R2 estimates

associated with either physical q or total q within each investment type. Measurement error

in q is discussed and addressed in the next subsection.

Panel A of Table 1.2 presents results for all firms. The first three columns focus on

physical investment, the middle three columns focus on R&D investment, and the last three

columns focus on total investment. For all investment types, R2 estimates associated with

PI q are significantly higher than R2 estimates associated with either physical q or total q.

For example, PI q explains 21% of the variation in physical investment, 36% of the variation

in R&D investment, and 42% of the variation in total investment. These R2 estimates

are between 21% and 64% (i.e., four and 14 percentage points) higher than R2 estimates

associated with other proxies for q. Furthermore, differences in R2 estimates are statistically

7Erickson and Whited (2012) state that using different divisors for investment and q implies the identification
assumption that the regression coefficient does not equal zero (i.e., β 6=0) is close to being violated, and no
estimator provides reliable estimates when it is nearly unidentified. For the analysis of a large cross-section,
they advise using the same divisor for all regression variables.
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significant; all ∆R2 estimates are between 14 and 24 times larger than their associated

standard errors.8

Since PI q ’s explanatory power is due in part to the inclusion of the replacement cost of

patent capital, PI q ’s outperformance should be stronger when focusing on firms with patent

capital. To investigate this hypothesis, Panel B of Table 1.2 presents results for firms with

patent capital at any point during the sample period. All R2 estimates associated with PI

q in Panel B are between 4% and 30% larger than corresponding R2 estimates in Panel A.

Furthermore, Panel B shows that R2 estimates associated with PI q are between 34% and

65% (i.e., seven and 15 percentage points) higher than R2 estimates associated with other

proxies for q. ∆R2 estimates show that these differences are again highly significant. The

results in Panel B are consistent with the hypothesis that PI q ’s explanatory power should

be relatively stronger when focusing on firms with patent capital.

Overall, Table 1.2 shows that PI q explains significantly more variation in all investment

types than either physical q or total q. PI q ’s outperformance is stronger when focusing on

firms with patent capital and is strongest when focusing on R&D investment. The latter

result is likely driven by the fact that R&D investment is the investment type most closely

associated with the development of patent capital. Firms that engage in R&D investment

are more likely to have patent capital than firms that do not engage in R&D investment. By

including patent capital in these firms’ estimates of q, I am alleviating a potentially substan-

tial source of measurement error in q for these firms, which leads to a larger improvement

when predicting R&D investment.9

8Within R2 estimates are materially lower than in Peters and Taylor (2017) due to differences in how within
R2 estimates are calculated. In Peters and Taylor (2017), within R2 estimates are estimated within firms
but not within years. I estimate within R2 estimates within firms and years. I thank Ryan Peters for helping
me resolve this inconsistency.
9In addition to physical investment and R&D investment, Peters and Taylor (2017) also analyze intangible
investment, which they define as R&D expenses (set to zero if missing) plus 30% of SG&A expenses, and
physical plus intangible (total investment (PT)). In Table A.1, I show that PI q explains significantly more
variation in intangible investment and total investment (PT) than either physical q or total q. Consistent
with the results in Table 1.2, this outperformance is stronger when focusing on firms with patent capital.
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1.4.2 Bias-corrected results

As discussed above, coefficient estimates on q are biased when using OLS (Erickson and

Whited, 2000). This bias stems from two sources of measurement error. First, Tobin’s q is

not perfectly observable to the econometrician. Second, any estimate of Tobin’s q measures

average q, not marginal q, which should be the true determinant of new investment in q the-

ory. To account for this bias, Erickson and Whited (2000) use a two-step generalized method

of moments (GMM) estimator to obtain bias-corrected coefficient estimates on q (Erickson

and Whited, 2002). While the resulting coefficients are unbiased, Erickson et al. (2014) build

upon the GMM framework and develop a high-order cumulant estimator. Cumulant estima-

tors have closed-form solutions, so the researcher does not have to choose starting values in

the data. This is important because GMM results can be highly sensitive to starting value

choices (Erickson and Whited, 2012). Cumulant estimators provide unbiased estimates of β

in the following errors-in-variables model:

yit = qitβ + uit (1.12)

xit = qit + eit, (1.13)

in which yit is investment, and xit is an observable proxy for the true, unobservable qit. The

error terms, uit and eit, are independent of each other and of qit.

One might wonder why a new proxy for q is necessary if the above procedure accounts

for measurement error. Since investment and q share a denominator, both variables have

measurement error. The two measurement errors are correlated with each other, which

violates the assumption that uit and eit are independent of each other.10 To that end, an

improved proxy for q can still improve the observed relation between investment and q in a

bias-corrected setting.

10For a detailed discussion, please see footnote 10 in Peters and Taylor (2017).
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Table 1.3 presents bias-corrected results from cumulant estimator regressions of invest-

ment on lagged q, firm fixed effects, and year fixed effects. Panel A presents results for all

firms, and Panel B presents results for firms with patent capital.11,12 Obtaining bias-corrected

coefficients on q is important because when regressing investment on q, the coefficient on q

can be interpreted as a determinant of the elasticity of investment with respect to q (Whited,

1994; Erickson and Whited, 2000). Previous work has found coefficients on q, and thus elas-

ticities of investment with respect to q, to be much lower than expected (Philippon, 2009).

However, a comparison of q-slopes within each investment type shows that with only one

exception in each panel, elasticities are higher when using PI q than when using other proxies

for q. Furthermore, differences in coefficient estimates within investment types are generally

larger when concentrating on firms with patent capital. Although all coefficient estimates

on q are smaller than the theorized coefficient of one (Hayashi and Inoue, 1991), coefficients

on PI q are indeed closer to one than coefficients on other proxies for q.

Importantly, the relatively higher investment-PI q sensitivity does not come at the ex-

pense of explanatory power. The cumulant estimator provides two useful statistics for un-

derstanding how well a mismeasured proxy performs. The first is ρ2, which is the within

R2 estimate from the hypothetical regression of investment on marginal q, i.e., the within

R2 estimate from equation (1.12). The second is τ 2, which is the within R2 estimate from

the hypothetical regression of estimated q on marginal q, i.e., the within R2 estimate from

equation (1.13). If hypothetical marginal q perfectly explains investment, ρ2 equals 100%.

Likewise, if any proxy is a perfect one for marginal q, τ 2 equals 100%.

Panel A of Table 1.3 shows that within each investment type, ρ2 and τ 2 estimates associ-

ated with PI q are always larger than those associated with other proxies for q. When using

PI q, marginal q explains 39%, 59%, and 61% of the variation in physical investment, R&D

11All regression variables have been demeaned to account for firm fixed effects and year fixed effects.
12Unless otherwise specified, I use a third-order cumulant estimator, which results in an exactly identified
system. Erickson et al. (2017) suggest that the order cumulant a researcher uses is an empirical choice. All
Sargan-Hansen J statistics (unreported) associated with higher-order cumulants reject the null hypothesis
that the overidentifying restrictions are valid. Robustness tests (Table 1.7) show that PI q comfortably
outperforms alternative proxies for q in specifications that exploit higher-order cumulants.
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investment, and total investment. These ρ2 estimates are between 12% and 36% (i.e., four

and 16 percentage points) higher than those associated with other proxies for q. In addition,

when using PI q to predict physical investment, R&D investment, and total investment, τ 2

estimates are 53%, 62%, and 69%. These percentages are between 9% and 26% (i.e., four

and 11 percentage points) higher than those associated with other proxies for q.

Panel B shows that when focusing on firms with patent capital, PI q ’s relative outperfor-

mance is again stronger than when focusing on all firms. All ρ2 and τ 2 estimates associated

with PI q in Panel B are larger than corresponding estimates in Panel A. Furthermore, Panel

B shows that when comparing ρ2 and τ 2 estimates associated with PI q to those associated

with other proxies for q, differences are generally larger than in Panel A.

The results in Table 1.3 show that bias-corrected coefficients are almost always higher

when using PI q. These results also show that for all investment types, PI q is a better

proxy for marginal q than either physical q or total q. PI q ’s outperformance is again

stronger when focusing on firms with patent capital and is strongest when focusing on R&D

investment. Overall, Table 1.3 shows that even when using this bias-correcting methodology,

results associated with PI q are more consistent with q theory than results associated with

other proxies for q.13

1.4.3 Subsample analysis

Figure 1.3 shows that average firm-level patent intensity varies significantly across indus-

tries and has generally been increasing over time. Consistent with observation totals and

percentages in Figure 1.2, firms in healthcare and high-tech have the highest average levels

of patent intensity. Since PI q ’s outperformance in the full sample is driven in part by the

inclusion of the replacement cost of patent capital, the investment-PI q relation should be

13Table A.2 shows that when examining intangible investment and total investment (PT), bias-corrected
coefficients, ρ2 estimates, and τ2 estimates associated with PI q are always higher than those associated
with other proxies for q. Consistent with the results in Table 1.3, results associated with PI q are relatively
stronger when focusing on firms with patent capital.
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relatively stronger in industries and time periods with more patent capital. To test this

hypothesis, in this subsection, I investigate the investment-q relation within industries and

over time.14

1.4.3.1. Industry-level analysis

Figures 1.4, 1.5, and 1.6 present estimates from regressions of investment on lagged q,

firm fixed effects, and year fixed effects after sorting firms by industry. Industries within

each panel are sorted from lowest (top) to highest (bottom) with respect to their average

firm-level patent intensity.

Figure 1.4 presents results from regressions of physical investment on different proxies for

q. Panels A and B show that differences in R2 and ρ2 estimates are negligible in the three

industries with the lowest levels of patent intensity (i.e., other, consumer, and manufactur-

ing), but in the two industries with the highest levels of patent intensity (i.e., high-tech and

healthcare), R2 and ρ2 estimates associated with PI q are up to 11 percentage points higher

than those associated with other proxies. Panel C shows that PI q is a better proxy for

marginal q than other proxies in all five industries, and differences in τ 2 estimates generally

increase in patent intensity. Panel D shows that β estimates, or bias-corrected coefficient

estimates on q, are highest when using total q and lowest when using physical q. The results

in Panel D are consistent with those in the full sample.

The results associated with PI q in Figure 1.5, which focuses on R&D investment, are

relatively stronger than those in Figure 1.4. Panels A and B once again show that R2 and

ρ2 estimates associated with PI q are highest in the majority of industries, and differences

in R2 and ρ2 estimates are larger in industries with more patent capital. For example,

in high-tech and healthcare, R2 estimates associated with PI q are 13 and 21 percentage

points higher than R2 estimates associated with total q. Panel C shows that differences in

τ 2 estimates are negligible in the three industries with the lowest levels of patent capital.

14All regression variables are winsorized either within industries or time periods. Winsorization over the full
sample could still produce extreme outliers when regressions are estimated within industries or time periods.
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However, τ 2 estimates associated with PI q are at least 10 percentage points higher than τ 2

estimates associated with both physical q and total q in high-tech and are over 20 percentage

points higher than τ 2 estimates associated with total q in healthcare. Panel D shows that β

estimates associated with PI q are highest in all five industries, and differences in β estimates

generally increase in patent intensity.

Lastly, Figure 1.6 presents results from regressions of total investment on different proxies

for q. Panel A shows that differences in R2 estimates are over 10 percentage points in high-

tech and reach nearly 20 percentage points in healthcare. Panels B and C show that ρ2 and

τ 2 estimates associated with PI q are mostly similar to those associated with physical q but

are always much higher than those associated with total q. Panel D shows that once again,

in all five industries, β estimates associated with PI q are higher than β estimates associated

with other proxies. Furthermore, differences in β estimates are generally larger in industries

with more patent capital.

The results in Figures 1.4, 1.5, and 1.6 show that R2, ρ2, τ 2, and β estimates associated

with PI q are almost always higher than those associated with other proxies for q. Im-

portantly, differences in these estimates are larger in industries with higher levels of patent

capital.

1.4.3.2. Time period analysis

As discussed above, intangible capital has become a larger component of total capital

over time. Andrei et al. (2019) show that the explanatory power of both physical q and

total q also increase over time. Given the increase in capital intangibility in recent decades,

I expect the explanatory power of PI q to increase even faster than that of other proxies for

q. I test this expectation by regressing investment on lagged q, firm fixed effects, and year

fixed effects over rolling windows. In an effort to balance a reduction in noise and plot a

sufficient number of estimates, I present results using 20-year rolling windows.15

15In unreported tests, I find that my results are similar when using 15-year or 25-year rolling windows.



19

Figure 1.7 plots estimates from regressions of physical investment on different proxies

for q. Each year in the plot represents the last fiscal year in the rolling window. Panels

A, B, and C show that R2, ρ2, and τ 2 estimates associated with PI q were similar to those

associated with other proxies in the first half of the sample. Over time though, R2, ρ2, and

τ 2 estimates associated with PI q generally increase at a faster rate than those associated

with either physical q or total q. Panel D shows that consistent with the main results,

bias-corrected coefficient estimates on PI q are always higher than those on physical q and

always lower than those on total q. Although all β estimates decline over time, β estimates

on PI q improve relative to those on both physical q and total q. Declining coefficients on q

over time are well-documented and may be the result of changes in market competition and

corporate governance (Gutiérrez and Philippon, 2016, 2017).16

The results in Figure 1.8 show that the growing outperformance of PI q is larger when

analyzing R&D investment. Panels A and C show that differences in R2 and τ 2 estimates

were small in the mid-1990s, but recent R2 and τ 2 estimates associated with PI q are about

10 percentage points higher than those associated with other proxies for q. Panel B shows

that ρ2 estimates associated with PI q are more recently around six and 15 percentage points

higher than those associated with physical q and total q. Panel D shows that differences in

β estimates have also grown over time.

The growing outperformance of PI q over time is also salient in Figure 1.9, which focuses

on total investment. Panel A shows that by the end of the sample, R2 estimates associated

with PI q are 10 and 16 percentage points higher than those associated with physical q and

total q. Panels B and C show that ρ2 and τ 2 estimates associated with PI q also grow at a

faster rate than those associated with other proxies for q. Panel D shows that β estimates

associated with PI q decline over time at a slower rate than β estimates associated with

either physical q or total q.

16See Chen and Chen (2012), Peters and Taylor (2017), and Andrei et al. (2019) for examples of the declining
coefficient estimate on q.
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Figures 1.7, 1.8, and 1.9 show that over 20-year rolling windows and across investment

types, the outperformance of PI q has grown over time along with the importance of patent

capital. This finding is consistent with the implication in Andrei et al. (2019) that as

intangible capital has become more important over time, the explanatory power of different

proxies for q has been determined by their ability to accurately estimate firm-level intangible

capital.

1.5 Investment, q, and cash flow

The q theory of investment states that q should be the sole determinant of new invest-

ment. However, many empirical tests show that when regressing investment on q and cash

flow, there is a positive coefficient on cash flow (Hassett and Hubbard, 1997; Caballero,

1999).

There are three main explanations for this positive cash flow coefficient. The first expla-

nation is that a positive cash flow coefficient reflects the existence of financing constraints

(Fazzari et al., 1988; Brown et al., 2009). If q is a sufficient proxy for investment opportu-

nities, but firms cannot obtain external financing, investment will depend on internal cash

flow. The second explanation is that measurement error in q results in a positive cash flow

coefficient (Erickson and Whited, 2000; Gomes, 2001). If q is not a sufficient proxy for in-

vestment opportunities, we might erroneously obtain a positive cash flow coefficient. The

third explanation is that cash flow provides additional information about future investment

opportunities (Gilchrist and Himmelberg, 1995; Alti, 2003). In all specifications, q is lagged

one period from investment, but since cash flow is concurrent with investment, cash flow

might include information about future investment opportunities not contained in q.

Given the importance of the extensive investment-cash flow literature, in this section, I

investigate how PI q affects the investment-cash flow relation.
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1.5.1 Full sample

Since R&D is expensed before taxes, I adjust cash flow to reflect funds available before

any investment is made:

Cash flowit =
IBit +DPit +R&Dit(1− κ)

Kphy
i,t−1 +KintPI

i,t−1
, (1.14)

in which IB is income before extraordinary items, DP is depreciation and amortization,

R&D is research and development, and (1−κ) is one minus the marginal tax rate. Following

Peters and Taylor (2017), I estimate κ using simulated marginal tax rates from Graham

(1996a,b), and if not available, I use 30%. When regressing investment on other proxies for

q, the denominator of cash flow matches the denominator of those other proxies.

Table 1.4 presents results from regressions of investment on q, cash flow, firm fixed effects,

and year fixed effects. Panel A presents results for all firms. The first three columns show

that although each proxy for q is able to break the physical investment-cash flow relation,

the cash flow coefficient is highest when controlling for PI q. The middle three columns show

that when controlling for any proxy for q, R&D investment is negatively associated with cash

flow, but again, the cash flow coefficient is highest when controlling for PI q. The last three

columns show that when predicting total investment, the cash flow coefficient is highest, and

highly significant, when controlling for PI q. Interestingly, although PI q is a better proxy

for all investment types, cash flow coefficients are always higher, albeit insignificantly, when

controlling for PI q than when controlling for physical q or total q.

Panel B of Table 1.4 shows that when focusing on firms with patent capital, differences

in cash flow coefficients are larger. When predicting physical investment, controlling for PI q

leads to a cash flow coefficient that is nearly twice as high than when controlling for physical

q or total q. The middle three columns show that when regressing R&D investment on q
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and cash flow, the cash flow coefficient is again highest when controlling for PI q. In the last

three columns, total investment is most sensitive to cash flow when controlling for PI q.

Table 1.4 shows that when regressing investment on q and cash flow, controlling for PI

q leads to higher cash flow coefficients than when controlling for other proxies for q. Table

1.4 also shows that differences in cash flow coefficients are larger when focusing on firms

with patent capital. In other words, the results in Table 1.4 show that controlling for a

better proxy for q, which is PI q in this case, does not necessarily lead to smaller cash flow

coefficients, as previously conjectured (e.g., Kaplan and Zingales, 1997).

1.5.2 Why does controlling for PI q increase cash flow coefficients?

If PI q is a better proxy for Tobin’s q, why are cash flow coefficients relatively higher

when controlling for PI q? Recall that when regressing investment on q and cash flow, the

denominators of all regression variables are the same. In other words, not only do investment-

q correlations change when controlling for different proxies for q, but investment-cash flow

correlations also change when controlling for different proxies for q. To understand how

investment-cash flow correlations change when controlling for different proxies for q, Table

1.5 presents correlations between demeaned investment, lagged q, and cash flow variables.

Panel A presents correlations for regression variables associated with physical investment.

The correlation between physical investment and PI q is 0.45, which is between 10% and 19%

higher than correlations between physical investment and other proxies for q (i.e., 0.41 and

0.38). However, correlations between physical investment and cash flow vary much more.

When scaled by the denominator of PI q, the correlation between physical investment and

cash flow is 0.30, which is between 18% and 30% higher than correlations between physical

investment and other cash flow variables (i.e., 0.23 and 0.25). Thus, when scaled by the

denominator of PI q, the physical investment-cash flow correlation increases much more

than the physical investment-q correlation.
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Panels B and C of Table 1.5 show that differences in investment-cash flow correlations are

even larger when focusing on R&D investment and total investment. Correlations between

PI q and both R&D investment and total investment are 0.60 and 0.64, which are between

13% and 28% higher than those when using physical q and total q. However, when scaled

by the denominator of PI q, correlations between cash flow and both R&D investment and

total investment are 0.31 and 0.36, which are between 14% and 56% higher than those when

scaled by the denominator of either physical q or total q.

Panels A through C of Table 1.5 show that by scaling regression variables by the denom-

inator of PI q, investment-cash flow correlations increase relatively more than investment-q

correlations. These increased correlations may be why bias-corrected cash flow coefficients,

which are reproduced in Panel D of Table 1.5, are higher when controlling for PI q than when

controlling for other proxies for q. Developing a deeper understanding for how investment, q,

and cash flow relations change as the denominators of these variables change is an interesting

question for future research.

1.6 Robustness

In this section, I show that my results are robust when using alternative patent deprecia-

tion rates, alternative estimates for the marginal q of new patents, or higher-order cumulants.

I also show that PI q ’s performance is driven by both the replacement cost of patent capital

and on-balance sheet intangible capital. Lastly, I find that PI q performs best when the

replacement cost of intangible capital is estimated using just the replacement cost of patent

capital and on-balance sheet intangible capital.
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1.6.1 Changes to patent capital

When constructing PI q, I make assumptions regarding patent capital depreciation rates

and marginal q estimates of new patents. In this subsection, I modify these assumptions

and show that my results are largely unchanged.

In my main results, I depreciate the replacement cost of patent capital using industry-

specific R&D depreciation rates (Li, 2012). Although R&D investment is closely related to

subsequently-issued patents, the depreciation rates of the two may not be identical. Panel A

of Table 1.6 presents results when using alternative patent capital depreciation rates. The

first row presents the main results. Rows two through five present results when using depre-

ciation rates between 15% and 30%. The sixth row doubles all industry-specific depreciation

rates. The results remain qualitatively unchanged in all rows.

One of the strongest assumptions I make when estimating the replacement cost of patent

capital is a presumed marginal q of new patents of 1.5 across firms and time. Depending

on the efficiency of the firm or the competitiveness of the industry or time period, marginal

q may be either lower or higher than 1.5. Panel B presents results when using alternative

estimates for the marginal q of new patents. The first row presents the main results. In

rows two through five, I change the marginal q of new patents to 1.0, 1.25, 1.75, or 2.0. The

results in the latter four rows are largely unchanged from the main results. Importantly,

these results highlight how different estimates for the marginal q of new patents do not

materially affect the main results.

Overall, Table 1.6 shows that PI q ’s performance is robust to changes in the assumptions

used to estimate the replacement cost of patent capital. Specifically, PI q ’s performance is

essentially unaffected by changes in the depreciation rates of patent capital or changes in the

marginal q of new patents. These results show that the inclusion of the replacement cost of

patent capital is much more important to the performance of PI q than a particular patent

capital depreciation rate or marginal q of new patents.
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1.6.2 Higher-order cumulants

For all prior cumulant estimator results, I use a third-order cumulant, which results in

an exactly identified system of equations. In Table 1.7, I present results from the main

investment specification using higher-order cumulants.

The first row in each panel presents the main results. Panel A presents results associ-

ated with PI q, Panel B presents results associated with physical q, and Panel C presents

results associated with total q. Across panels and within investment types, a comparison of

coefficient estimates, ρ2 estimates, and τ 2 estimates reveal that those associated with PI q

are almost always higher than those associated with either physical q or total q.

In summary, Table 1.7 shows that regardless of the order cumulant used, results associated

with PI q are more consistent with q theory than those associated with other proxies.

1.6.3 Changes to intangible capital

My estimate of intangible capital includes both patent capital and on-balance sheet in-

tangible capital, but since on-balance sheet intangible capital is also included in total q, the

novelty of PI q comes from the inclusion of patent capital. To isolate the effect of each

component of intangible capital on PI q ’s performance, I regress investment on PI q after

excluding either patent capital or on-balance sheet intangible capital.

Panel A of Table 1.8 presents the results. The main results are in the first row. The

results in the second and third rows of Panel A reflect the exclusion of patent capital or on-

balance sheet intangible capital. In both rows, all estimates decline to similar levels. In other

words, patent capital and on-balance sheet intangible capital are about equally important

to PI q ’s performance.

Since the sum of patent capital and on-balance sheet intangible capital is unlikely to per-

fectly measure intangible capital, it is possible that the inclusion of alternative components

of intangible capital improves PI q ’s performance. In Panel B of Table 1.8, I present results
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from regressions of investment on PI q after adding estimates of knowledge capital, organiza-

tion capital, or both from Peters and Taylor (2017) or Ewens et al. (2020) to PI q. The first

row presents the original results from regressions of investment on PI q. The second through

seventh rows present results using alternative estimates of PI q. The inclusion of knowledge

capital worsens the performance of PI q more than the inclusion of organization capital.

When both knowledge capital and organization capital are included, the performance of PI

q declines even further.

Overall, Table 1.8 shows that PI q ’s performance is dependent on both patent capital

and on-balance sheet intangible capital. Importantly, this table shows that PI q performs

best when the replacement cost of intangible capital is estimated using just patent capital

and on-balance sheet intangible capital, both of which do not require assumptions about

how much intangible capital is created through associated expenses.

1.7 Conclusion

In this paper, I construct a new proxy for Tobin’s q, which I call PI q, that includes

the replacement cost of patent capital. The main result is that PI q is a better proxy for q

than two commonly-used proxies for q. Specifically, I show that PI q explains significantly

more variation in firm-level investment and is more closely related to hypothetical marginal q

than other proxies for q. I also show that bias-corrected coefficient estimates on q are almost

always higher when using PI q. These results are stronger when focusing on industries and

time periods with more patent capital.

Although PI q is a better proxy for q than other proxies for q, I show that controlling

for PI q leads to relatively higher, not lower, cash flow coefficients. Not only does this result

show that controlling for a better proxy for q can lead to higher cash flow coefficients, but

this result also shows that when scaled differently, cash flow may be more important for

predicting investment than previously thought.
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In summary, these results imply that including market-based estimates of the replacement

cost of intangible capital is important for constructing a better proxy for Tobin’s q.
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Figure 1.1. Market value of patents issued to publicly-traded firms

This figure presents the estimated annual market value of patents issued to publicly-traded
firms between 1975 and 2017 (Kogan et al., 2017; Stoffman et al., 2020). Since patent data
end on September 12, 2017, the 2017 market value total reflects that truncation.
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Figure 1.2. Observations by industry

This figure presents firm-year observation totals and percentages in five Fama-French indus-
tries. Panel A presents totals and percentages for all firms. Panel B presents totals and
percentages for firms with patent capital at any point during the sample. Panel C presents
totals and percentages for observations with R&D investment. Panel D presents totals and
percentages for observations with R&D investment and patent capital at any point during
the sample.
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Figure 1.3. Patent intensity across industries

This figure presents average firm-level patent intensity across five Fama-French industries
over time. Patent intensity, which is calculated and plotted each fiscal year, is patent cap-
ital divided by total capital. Total capital is the book value of gross property, plant, and
equipment plus patent capital and on-balance sheet intangible capital.
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Figure 1.4. Physical investment-q relation across industries

This figure presents results from regressions of physical investment on lagged q, firm fixed
effects, and year fixed effects after sorting firms into five Fama-French industries. The
numerator of each proxy for q is the market value of common equity plus the book value of
short- and long-term debt minus the book value of current assets. The denominator of each
proxy for q contains physical capital (book value of gross property, plant, and equipment).
The denominator of PI q also includes my estimate of intangible capital (i.e., patent capital
plus on-balance sheet intangible capital). The denominator of total q also includes intangible
capital as estimated by Peters and Taylor (2017). Physical investment is capital expenditures
scaled by the denominator of lagged q being regressed on by investment. Panel A presents
within R2 estimates from OLS regressions, which are ordinary R2 estimates from estimating
OLS on the transformed data. Panel B presents ρ2 estimates, which are within R2 estimates
from hypothetical regressions of physical investment on marginal q. Panel C presents τ 2

estimates, which are within R2 estimates from hypothetical regressions of q on marginal
q. Panel D presents β estimates, which are bias-corrected coefficient estimates on q from
cumulant estimator regressions of physical investment on q. Industries are ranked from
lowest (top) to highest (bottom) with respect to their average firm-level patent intensity.
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Figure 1.5. R&D investment-q relation across industries

This figure presents results from regressions of R&D investment on lagged q, firm fixed
effects, and year fixed effects after sorting firms into five Fama-French industries. The nu-
merator of each proxy for q is the market value of common equity plus the book value of
short- and long-term debt minus the book value of current assets. The denominator of each
proxy for q contains physical capital (book value of gross property, plant, and equipment).
The denominator of PI q also includes my estimate of intangible capital (i.e., patent capital
plus on-balance sheet intangible capital). The denominator of total q also includes intangible
capital as estimated by Peters and Taylor (2017). R&D investment is research and devel-
opment expenses scaled by the denominator of lagged q being regressed on by investment.
Panel A presents within R2 estimates from OLS regressions, which are ordinary R2 estimates
from estimating OLS on the transformed data. Panel B presents ρ2 estimates, which are
within R2 estimates from hypothetical regressions of R&D investment on marginal q. Panel
C presents τ 2 estimates, which are within R2 estimates from hypothetical regressions of q on
marginal q. Panel D presents β estimates, which are bias-corrected coefficient estimates on
q from cumulant estimator regressions of R&D investment on q. Industries are ranked from
lowest (top) to highest (bottom) with respect to their average firm-level patent intensity.
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Figure 1.6. Total investment-q relation across industries

This figure presents results from regressions of total investment on lagged q, firm fixed effects,
and year fixed effects after sorting firms into five Fama-French industries. The numerator
of each proxy for q is the market value of common equity plus the book value of short-
and long-term debt minus the book value of current assets. The denominator of each proxy
for q contains physical capital (book value of gross property, plant, and equipment). The
denominator of PI q also includes my estimate of intangible capital (i.e., patent capital plus
on-balance sheet intangible capital). The denominator of total q also includes intangible
capital as estimated by Peters and Taylor (2017). Total investment is capital expenditures
plus research and development expenses scaled by the denominator of lagged q being re-
gressed on by investment. Panel A presents within R2 estimates from OLS regressions,
which are ordinary R2 estimates from estimating OLS on the transformed data. Panel B
presents ρ2 estimates, which are within R2 estimates from hypothetical regressions of total
investment on marginal q. Panel C presents τ 2 estimates, which are within R2 estimates
from hypothetical regressions of q on marginal q. Panel D presents β estimates, which are
bias-corrected coefficient estimates on q from cumulant estimator regressions of total invest-
ment on q. Industries are ranked from lowest (top) to highest (bottom) with respect to their
average firm-level patent intensity.
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Figure 1.7. Physical investment-q relation over time

This figure presents results from regressions of physical investment on lagged q, firm fixed
effects, and year fixed effects over 20-year rolling windows. The numerator of each proxy
for q is the market value of common equity plus the book value of short- and long-term
debt minus the book value of current assets. The denominator of each proxy for q contains
physical capital (book value of gross property, plant, and equipment). The denominator
of PI q also includes my estimate of intangible capital (i.e., patent capital plus on-balance
sheet intangible capital). The denominator of total q also includes intangible capital as
estimated by Peters and Taylor (2017). Physical investment is capital expenditures scaled
by the denominator of lagged q being regressed on by investment. Panel A presents within
R2 estimates from OLS regressions, which are ordinary R2 estimates from estimating OLS
on the transformed data. Panel B presents ρ2 estimates, which are within R2 estimates
from hypothetical regressions of physical investment on marginal q. Panel C presents τ 2

estimates, which are within R2 estimates from hypothetical regressions of q on marginal
q. Panel D presents β estimates, which are bias-corrected coefficient estimates on q from
cumulant estimator regressions of physical investment on q. Each year represents the last
year in the 20-year window.
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Figure 1.8. R&D investment-q relation over time

This figure presents results from regressions of R&D investment on lagged q, firm fixed
effects, and year fixed effects over 20-year rolling windows. The numerator of each proxy
for q is the market value of common equity plus the book value of short- and long-term
debt minus the book value of current assets. The denominator of each proxy for q contains
physical capital (book value of gross property, plant, and equipment). The denominator
of PI q also includes my estimate of intangible capital (i.e., patent capital plus on-balance
sheet intangible capital). The denominator of total q also includes intangible capital as
estimated by Peters and Taylor (2017). R&D investment is capital expenditures scaled by
the denominator of lagged q being regressed on by investment. Panel A presents within R2

estimates from OLS regressions, which are ordinary R2 estimates from estimating OLS on
the transformed data. Panel B presents ρ2 estimates, which are within R2 estimates from
hypothetical regressions of R&D investment on marginal q. Panel C presents τ 2 estimates,
which are within R2 estimates from hypothetical regressions of q on marginal q. Panel
D presents β estimates, which are bias-corrected coefficient estimates on q from cumulant
estimator regressions of R&D investment on q. Each year represents the last year in the
20-year window.
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Figure 1.9. Total investment-q relation over time

This figure presents results from regressions of total investment on lagged q, firm fixed effects,
and year fixed effects over 20-year rolling windows. The numerator of each proxy for q is
the market value of common equity plus the book value of short- and long-term debt minus
the book value of current assets. The denominator of each proxy for q contains physical
capital (book value of gross property, plant, and equipment). The denominator of PI q also
includes my estimate of intangible capital (i.e., patent capital plus on-balance sheet intangible
capital). The denominator of total q also includes intangible capital as estimated by Peters
and Taylor (2017). Total investment is capital expenditures plus research and development
expenses scaled by the denominator of lagged q being regressed on by investment. Panel A
presents within R2 estimates from OLS regressions, which are ordinary R2 estimates from
estimating OLS on the transformed data. Panel B presents ρ2 estimates, which are within R2

estimates from hypothetical regressions of total investment on marginal q. Panel C presents
τ 2 estimates, which are within R2 estimates from hypothetical regressions of q on marginal
q. Panel D presents β estimates, which are bias-corrected coefficient estimates on q from
cumulant estimator regressions of total investment on q. Each year represents the last year
in the 20-year window.
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Table 1.1. Summary statistics

This table presents estimates of different proxies for q and estimates of intangible capital
for five different percentiles. Panels A and B present estimates of different proxies for q.
The numerator of each proxy for q is the market value of common equity plus the book
value of short- and long-term debt minus the book value of current assets. The denominator
of each proxy for q contains physical capital (i.e., book value of gross property, plant, and
equipment). The denominator of PI q also includes my estimate of intangible capital (i.e.,
patent capital plus on-balance sheet intangible capital). The denominator of total q also
includes intangible capital as estimated by Peters and Taylor (2017). Panels C and D present
estimates of patent capital, intangible capital, patent intensity, and intangible intensity.
Patent capital and intangible capital are in millions of dollars. Patent intensity is patent
capital divided by the sum of total capital, which is physical capital plus intangible capital.
Intangible intensity is my estimate of intangible capital divided by total capital. Panels A
and C present estimates for all firms. Panels B and D present estimates for firms with patent
capital at any point during the sample.

Panel A: Estimates of q, all firms
P10 P25 P50 P75 P90 Observations

PI q -0.11 0.29 0.76 1.67 4.04 155,470
Physical q -0.12 0.34 0.97 2.78 8.05 155,470
Total q -0.06 0.20 0.58 1.22 2.54 155,470

Panel B: Estimates of q, firms with patent capital
P10 P25 P50 P75 P90 Observations

PI q -0.10 0.26 0.73 1.71 4.19 76,297
Physical q -0.12 0.33 1.08 3.42 9.78 76,297
Total q -0.06 0.18 0.55 1.22 2.56 76,297

Panel C: Estimates of intangible capital, all firms
P10 P25 P50 P75 P90 Observations

Patent capital 0 0 0 4 148 155,470
Intangible capital 0 0 6 102 905 155,470
Patent intensity 0% 0% 0% 3% 26% 155,470
Intangible intensity 0% 0% 7% 34% 66% 155,470

Panel D: Estimates of intangible capital, firms with patent capital
P10 P25 P50 P75 P90 Observations

Patent capital 0 0.2 4 75 904 76,297
Intangible capital 0.1 2 22 289 2,201 76,297
Patent intensity 0% 0% 3% 19% 51% 76,297
Intangible intensity 0% 3% 17% 47% 74% 76,297
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Table 1.2. Investment and q : Ordinary least squares

This table presents results from ordinary least squares regressions of investment on lagged
q, firm fixed effects, and year fixed effects. The numerator of each proxy for q is the mar-
ket value of common equity plus the book value of short- and long-term debt minus the
book value of current assets. The denominator of each proxy for q contains physical capital
(book value of gross property, plant, and equipment). The denominator of PI q also in-
cludes my estimate of intangible capital (i.e., patent capital plus on-balance sheet intangible
capital). The denominator of total q also includes intangible capital as estimated by Peters
and Taylor (2017). Physical investment is scaled capital expenditures. R&D investment
is scaled research and development expenses. Total investment is physical investment plus
R&D investment. All investment variables are scaled by the denominator of lagged q being
regressed on by investment. Within R2 estimates are ordinary R2 estimates from estimating
OLS on the transformed data. ∆R2 is the R2 estimate associated with PI q minus the R2

estimate associated with either physical q (columns 2, 5, and 8) or total q (columns 3, 6,
and 9) within each investment type. Panel A presents results for all firms. Panel B presents
results for firms with patent capital at any point during the sample period. Standard errors
in parentheses are clustered by firm. Standard errors below R2 estimates and ∆R2 estimates
are estimated using influence functions. Bolded estimates are significant at the 5% level.

Panel A: All firms
Physical investment R&D investment Total investment

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PI q 0.025 0.029 0.049
(0.0004) (0.0006) (0.0008)

Physical q 0.015 0.020 0.032
(0.0003) (0.0005) (0.0006)

Total q 0.029 0.015 0.034
(0.0005) (0.0003) (0.0006)

Within R2 0.207 0.171 0.147 0.363 0.269 0.222 0.416 0.323 0.287
(0.004) (0.004) (0.003) (0.008) (0.008) (0.006) (0.008) (0.008) (0.006)

∆R2 - 0.036 0.060 - 0.094 0.142 - 0.093 0.129
- (0.003) (0.003) - (0.007) (0.006) - (0.006) (0.006)

Obs. 155,470 155,470 155,470 69,227 69,227 69,227 69,227 69,227 69,227

Panel B: Firms with patent capital
Physical investment R&D investment Total investment

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PI q 0.020 0.033 0.054
(0.0004) (0.0007) (0.0009)

Physical q 0.011 0.022 0.033
(0.0003) (0.0006) (0.0008)

Total q 0.019 0.016 0.034
(0.0004) (0.0004) (0.0007)

Within R2 0.268 0.199 0.176 0.378 0.272 0.229 0.431 0.323 0.292
(0.006) (0.005) (0.004) (0.009) (0.009) (0.007) (0.009) (0.009) (0.006)

∆R2 - 0.069 0.092 - 0.106 0.149 - 0.108 0.139
- (0.005) (0.004) - (0.008) (0.007) - (0.008) (0.007)

Obs. 76,297 76,297 76,297 53,855 53,855 53,855 53,855 53,855 53,855
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Table 1.3. Investment and q : Cumulant estimator

This table presents results from cumulant estimator regressions of investment on lagged q,
firm fixed effects, and year fixed effects. The numerator of each proxy for q is the market
value of common equity plus the book value of short- and long-term debt minus the book
value of current assets. The denominator of each proxy for q contains physical capital (book
value of gross property, plant, and equipment). The denominator of PI q also includes my
estimate of intangible capital (i.e., patent capital plus on-balance sheet intangible capital).
The denominator of total q also includes intangible capital as estimated by Peters and Tay-
lor (2017). Physical investment is scaled capital expenditures. R&D investment is scaled
research and development expenses. Total investment is physical investment plus R&D in-
vestment. All investment variables are scaled by the denominator of lagged q being regressed
on by investment. ρ2 is the within R2 estimate from the hypothetical regression of investment
on marginal q. τ 2 is the within R2 estimate from the hypothetical regression of estimated
q on marginal q. Panel A presents results for all firms. Panel B presents results for firms
with patent capital at any point during the sample period. Standard errors in parentheses
are estimated using influence functions and are clustered by firm. Bolded coefficients are
significant at the 5% level.

Panel A: All firms
Physical investment R&D investment Total investment

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PI q 0.046 0.047 0.072
(0.0005) (0.0008) (0.0010)

Physical q 0.030 0.039 0.053
(0.0004) (0.0010) (0.0110)

Total q 0.068 0.029 0.055
(0.0011) (0.0006) (0.0009)

ρ2 0.387 0.347 0.347 0.585 0.515 0.430 0.607 0.533 0.466
(0.009) (0.010) (0.010) (0.017) (0.020) (0.015) (0.015) (0.017) (0.014)

τ 2 0.534 0.492 0.423 0.621 0.522 0.516 0.686 0.606 0.615
(0.011) (0.012) (0.011) (0.019) (0.022) (0.018) (0.016) (0.020) (0.017)

Obs. 155,470 155,470 155,470 69,227 69,227 69,227 69,227 69,227 69,227

Panel B: Firms with patent capital
Physical investment R&D investment Total investment

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PI q 0.035 0.052 0.078
(0.0005) (0.0010) (0.0011)

Physical q 0.021 0.041 0.054
(0.0004) (0.0014) (0.0014)

Total q 0.040 0.030 0.054
(0.0008) (0.0007) (0.0010)

ρ2 0.456 0.380 0.368 0.593 0.517 0.426 0.622 0.537 0.468
(0.013) (0.014) (0.013) (0.018) (0.023) (0.016) (0.017) (0.021) (0.015)

τ 2 0.589 0.524 0.479 0.637 0.526 0.537 0.693 0.600 0.624
(0.015) (0.016) (0.015) (0.021) (0.026) (0.021) (0.018) (0.023) (0.019)

Obs. 76,297 76,297 76,297 53,855 53,855 53,855 53,855 53,855 53,855
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Table 1.4. Investment, q, and cash flow

This table presents results from cumulant estimator regressions of investment on lagged q,
cash flow, firm fixed effects, and year fixed effects. The numerator of each proxy for q is
the market value of common equity plus the book value of short- and long-term debt minus
the book value of current assets. The denominator of each proxy for q contains physical
capital (book value of gross property, plant, and equipment). The denominator of PI q also
includes my estimate of intangible capital (i.e., patent capital plus on-balance sheet intangible
capital). The denominator of total q also includes intangible capital as estimated by Peters
and Taylor (2017). Physical investment is scaled capital expenditures. R&D investment
is scaled research and development expenses. Total investment is physical investment plus
R&D investment. Cash flow is income before extraordinary items plus depreciation and
amortization plus tax-adjusted R&D expenses. All regression variables are scaled by the
denominator of lagged q being regressed on by investment. ρ2 is the within R2 estimate
from the hypothetical regression of investment on marginal q. τ 2 is the within R2 estimate
from the hypothetical regression of estimated q on marginal q. Panel A presents results for
all firms. Panel B presents results for firms with patent capital at any point during the
sample period. Standard errors in parentheses are estimated using influence functions and
are clustered by firm. Bolded coefficients are significant at the 5% level.

Panel A: All firms
Physical investment R&D investment Total investment

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PI q 0.046 0.048 0.073
(0.0007) (0.0009) (0.0010)

Physical q 0.029 0.039 0.054
(0.0005) (0.0011) (0.0012)

Total q 0.067 0.031 0.056
(0.0013) (0.0007) (0.0010)

Cash flow 0.005 -0.001 -0.007 -0.019 -0.026 -0.030 0.035 0.004 0.023
(0.005) (0.004) (0.007) (0.008) (0.008) (0.005) (0.011) (0.010) (0.009)

ρ2 0.387 0.337 0.343 0.594 0.510 0.435 0.629 0.536 0.488
(0.009) (0.009) (0.009) (0.017) (0.019) (0.015) (0.015) (0.017) (0.014)

τ 2 0.535 0.507 0.428 0.612 0.529 0.516 0.663 0.603 0.589
(0.012) (0.013) (0.012) (0.017) (0.021) (0.016) (0.016) (0.020) (0.016)

Obs. 155,470 155,470 155,470 69,227 69,227 69,227 69,227 69,227 69,227
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Table 1.4. continued

Panel B: Firms with patent capital
Physical investment R&D investment Total investment

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PI q 0.034 0.054 0.079
(0.0006) (0.0010) (0.0012)

Physical q 0.020 0.041 0.054
(0.0004) (0.0013) (0.0014)

Total q 0.040 0.032 0.056
(0.0009) (0.0008) (0.0012)

Cash flow 0.017 0.009 0.008 -0.023 -0.032 -0.033 0.042 0.006 0.030
(0.006) (0.004) (0.007) (0.011) (0.010) (0.007) (0.014) (0.012) (0.011)

ρ2 0.468 0.373 0.373 0.607 0.508 0.435 0.654 0.538 0.497
(0.013) (0.013) (0.012) (0.018) (0.022) (0.017) (0.016) (0.019) (0.015)

τ 2 0.575 0.534 0.472 0.623 0.537 0.532 0.661 0.599 0.588
(0.016) (0.018) (0.016) (0.019) (0.024) (0.019) (0.017) (0.022) (0.018)

Obs. 76,297 76,297 76,297 53,855 53,855 53,855 53,855 53,855 53,855
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Table 1.5. Investment, q, and cash flow: Correlations

This table presents correlations between investment, lagged q, and cash flow. All variables have been demeaned to account
for firm fixed effects and year fixed effects. The numerator of each proxy for q is the market value of common equity plus
the book value of short- and long-term debt minus the book value of current assets. The denominator of each proxy for q
contains physical capital (book value of gross property, plant, and equipment). The denominator of PI q also includes my
estimate of intangible capital (i.e., patent capital plus on-balance sheet intangible capital). The denominator of total q also
includes intangible capital as estimated by Peters and Taylor (2017). Physical investment is scaled capital expenditures. R&D
investment is scaled research and development expenses. Total investment is physical investment plus R&D investment. Cash
flow is income before extraordinary items plus depreciation and amortization plus tax-adjusted R&D expenses. All variables are
scaled by the denominator of q unique to each correlation matrix. Panel A presents correlations for physical investment. Panel
B presents correlations for R&D investment. Panel C presents correlations for total investment. Panel D presents bias-corrected
cash flow coefficients and associated standard errors from Table 1.4. Bolded coefficients are significant at the 5% level.

Panel A: Physical investment
Phys. inv. PI q Phys. inv. Physical q Phys. inv. Total q

PI q 0.45 - Physical q 0.41 - Total q 0.38 -
Cash flow 0.30 0.35 Cash flow 0.23 0.29 Cash flow 0.25 0.29

Panel B: R&D investment
R&D inv. PI q R&D inv. Physical q R&D inv. Total q

PI q 0.60 - Physical q 0.52 - Total q 0.47 -
Cash flow 0.31 0.34 Cash flow 0.20 0.25 Cash flow 0.23 0.32

Panel C: Total investment
Total inv. PI q Total inv. Physical q Total inv. Total q

PI q 0.64 - Physical q 0.57 - Total q 0.54 -
Cash flow 0.36 0.34 Cash flow 0.24 0.25 Cash flow 0.31 0.32

Panel D: Cash flow coefficients
Physical investment R&D investment Total investment

PI q Physical q Total q PI q Physical q Total q PI q Physical q Total q
0.005 -0.001 -0.007 -0.019 -0.026 -0.030 0.035 0.004 0.023

(0.005) (0.004) (0.007) (0.008) (0.008) (0.005) (0.011) (0.010) (0.009)
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Table 1.6. Robustness: Changes to patent capital

This table presents results from regressions of investment on lagged PI q, firm fixed effects, and year fixed effects. The
numerator of PI q is the market value of common equity plus the book value of short- and long-term debt minus the book value
of current assets. The denominator of PI q is physical capital (book value of gross property, plant, and equipment), plus the
replacement cost of patent capital and on-balance sheet intangible capital. Physical investment is scaled capital expenditures.
R&D investment is scaled research and development expenses. Total investment is physical investment plus R&D investment.
All investment variables are scaled by the denominator of PI q. The dependent variable in the first, second, and third sets of
columns is physical investment, R&D investment, and total investment. The first row of each panel presents the main results
from Tables 1.2 and 1.3. The second through sixth rows of Panel A present results after making changes to the patent capital
depreciation rate. The second through fifth rows of Panel B present results after making changes to the marginal q of new
patents. The first column in each set of columns presents the bias-corrected coefficient on PI q. R2 estimates are ordinary
R2 estimates from estimating OLS on the transformed data. ρ2 is the within R2 estimate from the hypothetical regression of
investment on marginal q. τ 2 is the within R2 estimate from the hypothetical regression of PI q on marginal q.

Panel A: Changes to the patent capital depreciation rate
Physical investment R&D investment Total investment

β R2 ρ2 τ 2 β R2 ρ2 τ 2 β R2 ρ2 τ 2

1. Main results (industry-specific δp) 0.046 0.207 0.387 0.534 0.047 0.363 0.585 0.621 0.072 0.416 0.607 0.686
2. δp of 15% 0.046 0.208 0.388 0.536 0.047 0.366 0.588 0.623 0.072 0.419 0.608 0.690
3. δp of 20% 0.046 0.207 0.387 0.534 0.047 0.363 0.585 0.620 0.072 0.416 0.606 0.686
4. δp of 25% 0.046 0.206 0.387 0.532 0.047 0.359 0.581 0.618 0.071 0.412 0.603 0.684
5. δp of 30% 0.046 0.205 0.387 0.529 0.047 0.356 0.577 0.616 0.071 0.409 0.600 0.682
6. Double industry-specific δp 0.046 0.204 0.386 0.528 0.047 0.349 0.572 0.611 0.071 0.404 0.599 0.675

Panel B: Changes to the marginal q of new patents
Physical investment R&D investment Total investment

β R2 ρ2 τ 2 β R2 ρ2 τ 2 β R2 ρ2 τ 2

1. Main results (marginal q of 1.50) 0.046 0.207 0.387 0.534 0.047 0.363 0.585 0.621 0.072 0.416 0.607 0.686
2. Marginal q of 1.00 0.047 0.210 0.389 0.541 0.047 0.375 0.593 0.633 0.072 0.428 0.614 0.697
3. Marginal q of 1.25 0.046 0.209 0.388 0.538 0.047 0.368 0.589 0.625 0.072 0.421 0.611 0.690
4. Marginal q of 1.75 0.046 0.206 0.386 0.532 0.047 0.359 0.582 0.617 0.071 0.412 0.604 0.682
5. Marginal q of 2.00 0.045 0.205 0.386 0.530 0.047 0.356 0.579 0.615 0.071 0.408 0.601 0.680
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Table 1.7. Robustness: Higher-order cumulants

This table presents results from cumulant estimator regressions of investment on lagged q, firm fixed effects, and year fixed effects
using higher-order cumulants. The numerator of each proxy for q is the market value of common equity plus the book value of
short- and long-term debt minus the book value of current assets. The denominator of each proxy for q contains physical capital
(book value of gross property, plant, and equipment). The denominator of PI q also includes my estimate of intangible capital
(i.e., patent capital plus on-balance sheet intangible capital). The denominator of total q also includes intangible capital as
estimated by Peters and Taylor (2017). Physical investment is scaled capital expenditures. R&D investment is scaled research
and development expenses. Total investment is physical investment plus R&D investment. All investment variables are scaled
by the denominator of lagged q being regressed on by investment. The first column in each set of columns presents the bias-
corrected coefficient on q. ρ2 is the within R2 estimate from the hypothetical regression of investment on marginal q. τ 2 is the
within R2 estimate from the hypothetical regression of the proxy for q on marginal q.

Panel A: Investment and PI q
Physical investment R&D investment Total investment
β ρ2 τ 2 β ρ2 τ 2 β ρ2 τ 2

1. Main results (third-order) 0.046 0.387 0.534 0.047 0.585 0.621 0.072 0.607 0.686
2. Fourth-order 0.041 0.345 0.599 0.048 0.594 0.608 0.068 0.574 0.722
3. Fifth-order 0.042 0.350 0.590 0.048 0.596 0.606 0.068 0.572 0.725
4. Sixth-order 0.039 0.332 0.622 0.040 0.489 0.739 0.066 0.552 0.751
5. Seventh-order 0.041 0.347 0.594 0.047 0.579 0.623 0.068 0.569 0.728
6. Eighth-order 0.038 0.318 0.650 0.044 0.539 0.670 0.065 0.546 0.759

Panel B: Investment and physical q
Physical investment R&D investment Total investment
β ρ2 τ 2 β ρ2 τ 2 β ρ2 τ 2

1. Main results (third-order) 0.030 0.347 0.492 0.039 0.515 0.522 0.053 0.533 0.606
2. Fourth-order 0.025 0.287 0.593 0.042 0.556 0.482 0.053 0.525 0.615
3. Fifth-order 0.025 0.290 0.588 0.040 0.526 0.509 0.052 0.521 0.618
4. Sixth-order 0.024 0.273 0.626 0.040 0.536 0.499 0.047 0.471 0.684
5. Seventh-order 0.025 0.289 0.590 0.037 0.492 0.545 0.052 0.522 0.618
6. Eighth-order 0.025 0.287 0.595 0.039 0.519 0.516 0.052 0.514 0.627
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Table 1.7. continued

Panel C: Investment and total q
Physical investment R&D investment Total investment
β ρ2 τ 2 β ρ2 τ 2 β ρ2 τ 2

1. Main results (third-order) 0.068 0.347 0.421 0.029 0.430 0.516 0.055 0.466 0.615
2. Fourth-order 0.083 0.230 0.344 0.030 0.449 0.493 0.051 0.432 0.663
3. Fifth-order 0.083 0.229 0.345 0.030 0.445 0.498 0.052 0.442 0.648
4. Sixth-order 0.183 0.509 0.155 0.028 0.418 0.531 0.047 0.400 0.715
5. Seventh-order 0.070 0.194 0.408 0.029 0.425 0.521 0.052 0.441 0.649
6. Eighth-order 0.160 0.444 0.178 0.026 0.390 0.568 0.056 0.477 0.600
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Table 1.8. Robustness: Changes to intangible capital

This table presents results from regressions of investment on lagged PI q, firm fixed effects, and year fixed effects. The
numerator of PI q is the market value of common equity plus the book value of short- and long-term debt minus the book value
of current assets. The denominator of PI q is physical capital (book value of gross property, plant, and equipment), plus the
replacement cost of patent capital and on-balance sheet intangible capital. Physical investment is scaled capital expenditures.
R&D investment is scaled research and development expenses. Total investment is physical investment plus R&D investment.
All investment variables are scaled by the denominator of PI q. The dependent variable in the first, second, and third sets of
columns is physical investment, R&D investment, and total investment. The first row of each panel presents the main results
from Tables 1.2 and 1.3. The second and third rows of Panel A exclude the replacement cost of patent capital or on-balance
sheet intangible capital. In Panel B, the second, third, and fourth rows add estimates of knowledge capital, organization capital,
and knowledge capital plus organization capital from Peters and Taylor (2017). The fifth, sixth, and seventh rows of Panel B
include estimates of knowledge capital, organization capital, and knowledge capital plus organization capital from Ewens et al.
(2020). The first column in each set of columns presents the bias-corrected coefficient on PI q. R2 estimates are ordinary R2

estimates from estimating OLS on the transformed data (firm and year fixed effects). ρ2 is the within R2 estimate from the
hypothetical regression of investment on marginal q. τ 2 is the within R2 estimate from the hypothetical regression of PI q on
marginal q.

Panel A: Changes to PI q
Physical investment R&D investment Total investment

β R2 ρ2 τ 2 β R2 ρ2 τ 2 β R2 ρ2 τ 2

1. Main results 0.046 0.207 0.387 0.534 0.047 0.363 0.585 0.621 0.072 0.416 0.607 0.686
2. Exclude patent capital 0.037 0.192 0.367 0.523 0.043 0.329 0.553 0.595 0.060 0.379 0.568 0.667
3. Exclude on-bs intangibles 0.037 0.191 0.369 0.518 0.042 0.318 0.551 0.577 0.062 0.374 0.569 0.657

Panel B: Changes to intangible capital
Physical investment R&D investment Total investment

β R2 ρ2 τ 2 β R2 ρ2 τ 2 β R2 ρ2 τ 2

1. Main results 0.046 0.207 0.387 0.534 0.047 0.363 0.585 0.621 0.072 0.416 0.607 0.686
2. Include know. capital (PT) 0.061 0.165 0.352 0.468 0.030 0.254 0.463 0.548 0.060 0.316 0.499 0.633
3. Include org. capital (PT) 0.058 0.175 0.372 0.471 0.051 0.317 0.577 0.550 0.076 0.378 0.594 0.636
4. Include know. plus org. capital (PT) 0.073 0.153 0.355 0.430 0.033 0.238 0.460 0.518 0.062 0.302 0.489 0.618
5. Include know. capital (EPW) 0.059 0.168 0.357 0.471 0.030 0.257 0.463 0.556 0.060 0.320 0.506 0.632
6. Include org. capital (EPW) 0.060 0.171 0.371 0.461 0.052 0.309 0.576 0.536 0.078 0.371 0.592 0.626
7. Include know. plus org. capital (EPW) 0.072 0.152 0.355 0.430 0.034 0.231 0.459 0.504 0.062 0.298 0.487 0.611
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CHAPTER 2. SMALL INNOVATORS: NO RISK, NO REWARD

2.1 Introduction

Small, innovative firms tend to focus on the development of new products (Kraft, 1990;

Cohen and Klepper, 1996; Klepper, 1996) and contribute disproportionately to major in-

novations (Rosen, 1991; Akcigit, 2009; Akcigit and Kerr, 2018). These “small innovators”

have received significant attention for their contribution to creative destruction and eco-

nomic growth (Klette and Kortum, 2004; Kung and Schmid, 2015; Acemoglu et al., 2018),

the financial constraints they face (Himmelberg and Petersen, 1994; Carpenter and Petersen,

2002), and the role public equity plays in funding their growth (Brown et al., 2009; Acharya

and Xu, 2017). However, there is little research that focuses on the cost of public equity

for small innovators. In this paper, we therefore examine the risk and return of investing in

publicly-traded small innovators.

Innovative firms might earn higher returns than non-innovative firms for two reasons.

First, patents, which often protect innovation, are obtained in the early stages of the in-

novation process and have option-like characteristics (Pakes, 1986). Therefore, innovative

firms likely have relatively large investment options, which might lead to higher risk because

options amplify innovative firms’ underlying systematic risk (Dixit and Pindyck, 1994; Berk

et al., 1999). Thus, innovation can lead to return predictability even if investors correctly

anticipate the long-term implications of patent announcements and trade until the associated

information is fully incorporated into stock prices. Second, recently-issued patents may be

difficult for investors to assess, which might lead to investor underreaction and higher future

returns (Hirshleifer et al., 2013; Chemmanur et al., 2019).
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Either explanation is especially applicable to small innovators. First, small innovators

may rely disproportionately on patent assets, which would increase the systematic risk of

firms. Second, the type of patents pursued by small innovators may have a larger effect on

their systematic risk. For example, small innovators focus more on risky product innovation

than on process innovation (Kraft, 1990; Cohen and Klepper, 1996; Klepper, 1996). Third,

small firms rely more on organization capital (i.e., human capital), which increases systematic

risk (Eisfeldt and Papanikolaou, 2013; Israelsen and Yonker, 2017). Since organization capital

is important for both the resolution of real options (Kim and Kogut, 1996; Ziedonis, 2007)

and the innovative process (Cohen and Levinthal, 1990), the effect of organization capital on

systematic risk is likely higher for small innovators. Alternatively, underreaction to patent

announcements might be more concentrated among small firms because analysts and other

market participants produce noisier information about small firms (Brown et al., 1987).

To investigate these possibilities, we start by analyzing the returns of innovative firms,

which we define based on the number of recently-granted patents, after sorting by firm size.

Consistent with the above theories, we find that the return difference between innovative

firms and non-innovative firms—which we call the innovative premium—is highest among

small firms and decreases in firm size. For example, in the six months following portfolio

formation, the equal-weighted innovative premium is 42 basis points per month in the three

smallest NYSE size deciles (t-statistic of 3.72) and 52 basis points per month in the smallest

NYSE size decile (t-statistic of 4.64). We obtain similar premiums across different holding

period lengths and slightly lower, but always highly significant, value-weighted premiums

among small firms. On the other hand, we do not find the innovative premium to be

significant among large firms. The innovative premium among small firms is robust to

adjustments for various risk factors, alternative thresholds for defining firms as innovative,

and cannot be explained by stock characteristics. The premium is also not driven by microcap

stocks, a group for which liquidity or other microstructure issues may be important. We
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obtain similar results using either the portfolio formation approach of Jegadeesh and Titman

(1993, 2001) or the regression approach of Fama and MacBeth (1973).

As expected, innovative activity varies significantly across industries and over time. We

find that the innovative premium among small firms is positive within most industries and

higher within industries with more innovative firms, such as business equipment (i.e. com-

puters, software, and electronic equipment). As a result, the innovative premium remains

robust after adjusting for industry returns. We also find that the innovative premium is

stronger in the latter half of our sample, which coincides with a substantial increase in

patenting activity by small innovators.

To better understand the sources of the innovative premium among small firms, we per-

form a battery of tests that provides overwhelming support for a risk-based explanation.

First, we find that small innovators earn higher returns than small non-innovators for up to

five years. Long-term persistence in the innovative premium is difficult to reconcile with an

underreaction-based explanation. Second, if underreaction is the source of return predictabil-

ity, abnormal stock returns of small innovators should be positive and stable in the short-run

(Bernard and Thomas, 1989). However, we find that the returns and fundamentals of small

innovators are more volatile in both the short-run and long-run. Third, we test whether our

results vary with investor attention, as proxied by IBES analyst coverage (Hirshleifer et al.,

2013). Inconsistent with underreaction, we find that the returns of small innovators increase

in analyst coverage. Finally, we compare the returns of persistent innovators to those of

sporadic innovators. Assuming investors learn from past experiences, investors are less likely

to underreact to patent announcements of persistent innovators. Contrary to underreaction,

we find that persistent innovators earn significantly higher returns than sporadic innovators.

Overall, we do not find any evidence supporting an underreaction-based explanation of our

results.

All of the above findings, however, are consistent with a risk-based explanation. For

example, persistent innovators may earn higher returns because they have more existing
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option-like assets. Indeed, we find that the returns of small innovators increase in the value

of patent assets scaled by market capitalization (i.e., relative patent assets).

Next, we investigate why the innovative premium is present among small firms but not

among large firms. Relative to large innovators, small innovators may have higher relative

patent assets, focus on riskier patents, or rely more on risky organization capital. First, we

find that average relative patent assets for large innovators are higher, not lower, than those

for small innovators. We also find that unlike the returns of small innovators, the returns of

large innovators do not increase in relative patent assets. If large innovators pursue low-risk

innovations, their returns will not vary much with relative patent assets. Hence, it is possible

that large innovators pursue innovations with low risk.

Accordingly, we test whether small innovators concentrate more on product innovation

than on process innovation. Product innovation creates option-like assets that likely increase

firms’ systematic risk, while process innovation increases the value of existing assets through

increased efficiency and productivity. Using data detailing claims types in patent grants

(Bena and Simintzi, 2019), we find that small innovators focus more on product innovation

and less on process innovation. Per granted patent, small innovators have more patent claims

associated with product innovation (12.13 vs. 10.24) and fewer patent claims associated

with process innovation (5.36 vs. 6.20) than large innovators. Furthermore, we find that the

returns of small innovators, but not the returns of large innovators, increase in the number

of product innovation claims.

Lastly, we check whether small innovators rely more on organization capital, which may

amplify the risk of patents. To that end, we find that small innovators have more organization

capital (32% vs. 22% of total assets) than large innovators. We also find that the returns

of small innovators vary significantly with organization capital, but the returns of large

innovators do not. We would not expect organization capital to generate significant variation

in returns of large innovators if the underlying systematic risk of their patents is low.



51

In summary, our results indicate that small innovators are especially risky not because

they have a higher share of relative patent assets than large innovators but because small

innovators focus more on risky product innovation and rely more on organization capital

than do large innovators.

The high returns of small innovators also meaningfully contribute to the size premium

(Banz, 1981; Fama and French, 1992, 1993). We find that the size premium among innovative

firms is 45 basis points per month, which is significantly higher than the size premium among

non-innovative firms of 17 basis points per month. Given that the high returns of small

innovators seem to be explained by the high risk associated with patents, our findings lend

support to theories that explain the size premium through option-like assets (Carlson et al.,

2004; Gârleanu et al., 2012).

Our paper is related to research that documents return predictability due to R&D in-

vestments (Lev and Sougiannis, 1999; Chan et al., 2001; Eberhart et al., 2004; Li, 2011;

Cohen et al., 2013). We differ from this literature by focusing on innovative output (i.e.,

patents) and by studying a much larger sample by not restricting our sample to firms with

non-missing R&D expenses. Among small innovators, R&D expenses are sparsely available.

For example, if we used the innovative efficiency measure of Cohen et al. (2013), which uses

historical R&D expenses as an input, we would lose 60% of our sample of small innovators.

There is also a closely-related literature that investigates return predictability based on

patent citations, patent originality, innovative efficiency, and investor attention (Deng et al.,

1999; Gu, 2005; Hirshleifer et al., 2013, 2017; Chemmanur et al., 2019). This literature

provides evidence of return predictability due to mispricing. In contrast, we focus on a simple

measure of innovation and small innovators, for which their fundamentally risky nature and

the relatively high visibility of patent announcements result in return predictability due to

risk.

Given the importance of innovation for economic growth, there is a large literature that

focuses on the differences in incentives of innovative firms and their characteristics (Acs and
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Audretsch, 1988; Klette and Kortum, 2004).1 We contribute to this literature by providing

direct evidence that investors consider small innovators to be risky, i.e., investors require

higher returns for holding the equity of small innovators. Consequently, small innovators

have a higher cost of equity, which potentially explains why small innovators rely heavily on

internal capital.

2.2 Sample

All stock data are from the CRSP Monthly Stock file and include all ordinary common

shares (share codes 10 through 12) that trade on NYSE, AMEX, NASDAQ, or ARCA. We

exclude financials (SIC codes 6000-6799), utilities (SIC codes 4900-4949), and firms with

missing SIC codes.2 Accounting data are from the CRSP/Compustat Merged annual file.

Due to the expansion of CRSP beginning July 2, 1962 and the robustness of accounting

data in Compustat beginning in 1962, the sample spans July 1962 through December 2017.

We follow Shumway (1997) in accounting for delisting returns. To avoid potential market

microstructure issues, we eliminate observations that have a price of less than one dollar at

the time of portfolio formation.

The patent database used in this paper is an extension of the one developed by Kogan

et al. (2017), which spans 1926 to 2010. We extend the database through September 12, 2017

and add approximately 500,000 new patents during the period between 2010 and 2017. In the

pre-2010 portion of the database, we add about 30,000 additional CRSP-matched patents to

the Kogan et al. (2017) database by manually checking assignee names in almost 1.5 million

patents. This manual check helps resolve issues associated with mergers, acquisitions, asset

sales, spin-offs, and other sources of inconsistency.3

Table 2.1 presents summary statistics for innovative firms and non-innovative firms sep-

arately for small firms, medium firms, and large firms. Small firms are firms in the three

1See He and Tian (2018) for a comprehensive review.
2We use SIC codes (siccd) from CRSP.
3Patent data is publicly available here or through Noah Stoffman’s website.

https://paper.dropbox.com/doc/Patent-CRSP-match-1926-2017--AsucfZpDnJ1uFgGpBmEB7jA8Ag-W3aHAj0Ce4CzKZayqCASj
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smallest NYSE size deciles, medium firms are firms in middle four NYSE size deciles, and

large firms are firms in the largest three NYSE size deciles.4 We define firms as innovative if

they have been issued at least one patent in the preceding twelve months and non-innovative

otherwise.

Market capitalization is price multiplied by shares outstanding (in 1983 dollars, millions).

Book-to-market is book equity divided by market equity (Davis et al., 2000). Profitability

is income before extraordinary items scaled by book equity (Hou et al., 2015). Asset growth

is the percentage change in total assets over the previous two fiscal years (Cooper et al.,

2008). Momentum is the cumulative raw return beginning twelve months ago through the

month before last (Jegadeesh and Titman, 1993, 2001). Short-term reversal is the previous

month’s return (Jegadeesh, 1990; Lehmann, 1990). Illiquidity is the absolute stock return

in the previous month divided by total dollar volume in the same month (Amihud, 2002).

Idiosyncratic volatility is the standard deviation of residuals from a regression of daily stock

returns in excess of the risk-free rate on daily market returns in excess of the risk-free rate

over the previous twelve months (Ang et al., 2006). Skewness is the total skewness of daily

stock returns over the previous twelve months. Stock issuance is the percentage change in

split-adjusted shares outstanding in the previous twelve months (Ikenberry et al., 1995).

Table 2.1 shows that for all size groups, relative to non-innovative firms, innovative firms

almost always have lower averages for all characteristics except for market capitalization.

Return predictability associated with these characteristics does not provide a clear indication

of whether innovative firms should earn higher future returns than non-innovative firms.

Regardless, we keep these differences in mind and later control for firm-specific characteristics

and return factors associated with these characteristics.

As one might expect, innovative activity varies significantly across industries. Figure 2.1

presents the industrial composition of small firms (Panel A), medium firms (Panel B), and

large firms (Panel C). Percentages are presented for all firms within a size group and for

4We obtain NYSE breakpoints from Ken French’s website.
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innovative firms within a size group. Each panel shows that firms in business equipment,

healthcare, and manufacturing are more likely to be innovative than firms in most other

industries. For example, Panel A shows that firms in business equipment, healthcare, and

manufacturing comprise about 47% of all small firms, but the same three industries comprise

about 75% of all small innovators. In subsequent tests, we control for the possibility that any

return differences between industries are driving return differences between small innovators

and small non-innovators.

2.3 Main results

In this section, we investigate whether small innovators earn higher returns than small

non-innovators.

2.3.1 Returns to innovation by size

To test how size affects the returns of innovative firms, we analyze future average monthly

returns after sorting firms by size in Table 2.2. We follow Jegadeesh and Titman (1993, 2001)

in presenting average portfolio returns, and all t-statistics are calculated using Newey and

West (1987) adjusted standard errors using twelve lags.

Panel A, which presents value-weighted returns, shows that average monthly returns of

innovative firms decrease monotonically in size. For example, over a twelve-month holding

period, small, medium, and large innovators earn an average of 135, 121, and 90 basis points

per month. In contrast, regardless of the holding period length, average monthly returns of

non-innovative firms do not decrease monotonically in size.

For each holding period length, the third column in Panel A presents the innovative

premium, which is the average return from a zero-investment portfolio that buys innovative

firms and sells short non-innovative firms. Regardless of the holding period length, the

value-weighted innovative premium among small firms is between 32 and 34 basis points per
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month, highly significant, twice that of medium firms, and between 27 and 29 basis points

higher than that of large firms.

Panel B of Table 2.2 shows that among small firms, the equal-weighted innovative pre-

mium is between 41 and 43 basis points per month. In other words, even within size groups,

smaller innovators outperform smaller non-innovators. Although size matters even within

size groups, in unreported tests, we find that our results are not driven solely by microcap

stocks (i.e., stocks in the smallest NYSE size decile).5 Among small stocks that are not

microcap stocks, the value-weighted and equal-weighted innovative premiums are 28 and 36

basis points per month in the year following portfolio formation.

Of particular interest is the substantially larger size premium among innovative firms

than among non-innovative firms. The difference in size premiums is explained entirely by

the high returns of small innovators. The size premium among innovative firms is 45 basis

points per month in the year following portfolio formation. Conversely, the size premium

among non-innovative firms is only 17 basis points per month. About 30% of all firm-month

observations are defined as innovative, and as a result, the high returns of small innovators

contribute significantly to the overall size premium.6

The results in Table 2.2 confirm that return differences between innovative firms and

non-innovative firms are largest among small firms. Importantly, the innovative premium is

driven in large part by small innovators earning higher returns, whereas small non-innovators

earn returns close to the unconditional average return.7

5In September 2013, the SEC published a note stating that “a typical definition [of microcap stocks] would
be companies with a market capitalization of less than $250 or $300 million.” According to the NYSE
breakpoint information from Ken French’s website, the breakpoint for the smallest size decile in September
2013 is $359.55 million. Thus, we use the smallest NYSE size decile as our microcap cutoff.
6Since we drop financials, utilities, firms with missing SIC codes, and stocks that are priced under one dollar
at the time of portfolio formation, our sample is slightly different from that of Fama and French (1993). In
addition, we look at return differences between small firms and large firms without regard to book-to-market
ratios.
7Table ?? in the internet appendix shows that the size premium among innovative firms is even larger when
focusing on the returns of extreme NYSE size deciles.
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2.3.2 Returns of small innovators: Alternative innovative criteria

In the previous table, we identify firms as innovative if they have received at least one

patent in the past twelve months. Since large firms patent more often than small firms, this

criterion may not be appropriate for large firms.

To mitigate any potential concerns that this choice of criterion is masking the presence

of an innovative premium among larger firms, we present the innovative premium after

using alternative criteria among both small firms and large firms in the internet appendix

(Table B.2). Our alternative criteria include being issued at least one patent in the previous

six months, one patent in the previous eighteen months, two patents in the previous twelve

months, and five patents in the previous twelve months. As the criteria become stricter, the

innovative premium among small firms increases, but the innovative premium among large

firms is almost unchanged. In fact, even when we increase the threshold for large firms to at

least 25 patents or 50 patents in the previous twelve months, we see almost no change in the

innovative premium.8 Thus, our results are robust to using alternative criteria to identify

innovative firms.

2.3.3 Factor model-adjusted returns

Next, we test whether the premium earned by small innovators is due to known risk fac-

tors. Table 2.3 presents the raw innovative premium, the innovative premium after adjusting

for commonly-used risk factors, and factor loadings.

Panel A of Table 2.3 presents returns from value-weighted portfolios. The first row shows

the raw innovative premium among small firms, which reproduces results from the first row

in Panel A of Table 2.2. CAPM alphas, which are average monthly alphas from regressing

the raw returns of the zero-investment portfolio on excess market returns, are between 28

and 30 basis points per month. Average FF3 alphas, which are average monthly alphas from

8We do not increase the criterion to at least 25 patents or 50 patents for small firms because there are not
enough small firms to form portfolios every month using these two criteria.
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regressing the raw returns of the zero-investment portfolio on the Fama and French (1993)

three-factor model, are slightly higher than CAPM alphas. In the next two rows, we add

a momentum factor (Carhart, 1997) or a liquidity factor (Pástor and Stambaugh, 2003) to

the three-factor model, and the resulting alphas are similar to FF3 alphas. Lastly, we add

a profitability factor and an investment factor (Fama and French, 2015) to the three-factor

model, and the resulting FF5 alphas increase to between 42 and 44 basis points per month,

which are higher than alphas associated with any other factor model.

Panel B of Table 2.3 shows that all of our results are slightly higher in equal-weighted

portfolios. Corresponding t-statistics are all well above 3.00, which is the statistical hurdle

suggested by Harvey et al. (2016) to address data mining issues.

In Panel C, we present the factor loadings from regressions of the value-weighted innova-

tive premium on the Fama and French (2015) five-factor model. The factor loading for the

market factor is close to zero and statistically insignificant for each holding period length.

Although both the long and short legs of the zero-investment portfolio are comprised of small

firms, the raw innovative premium still loads positively on the size factor (SMB). Loadings

for the book-to-market (HML) and profitability (RMW) factors are negative, statistically

significant, and consistent with differences in the corresponding characteristics in Table 2.1.

Panel D shows that with the exception of the market factor loading, factor loadings are sim-

ilar for equal-weighted portfolios. The innovative premium loads positively and significantly

on the market factor in equal-weighted returns.

Overall, the results in Table 2.3 show that the innovative premium among small firms is

not explained by known risk factors. In the rest of the paper, we focus on value-weighted

portfolios, for they are relatively easier to invest in and produce a more conservative inno-

vative premium.
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2.3.4 Within-industry and industry-adjusted returns

As discussed above, Figure 2.1 shows that the propensity to innovate differs across indus-

tries. To understand how these differences manifest themselves in the innovative premium

among small firms, we estimate within-industry and industry-adjusted innovative premiums

in Table 2.4.

In Panel A, we present returns of small innovators, returns of small non-innovators, and

the innovative premium among small firms within ten Fama-French industries (as before,

utilities and financials are excluded).9 The innovative premium is significantly positive in

business equipment (i.e., computers, software, electronic equipment), consumer durables,

consumer non-durables, and manufacturing industries. The premium is also positive, albeit

insignificantly so, in chemicals, energy, healthcare, and other industries. Overall, within the

majority of industries, the innovative premium is positive, and differences in the innovative

premium across industries are mostly consistent with our priors. For example, the premium

is largest in business equipment, in which there are many small innovators, but the premium

is insignificant in both shops and telecoms, in which there are few small innovators.

Given that the innovative premium is positive in most industries and higher in industries

with more innovative firms, we do not expect cross-industry differences in returns to explain

our results. Regardless, we test whether the innovative premium survives adjustments for

industry returns in Panel B of Table 2.4. An advantage of this test is that it allows us

to control for cross-industry differences in returns at finer industry classifications without

dropping any time periods. We present industry-adjusted innovative premiums and asso-

ciated five-factor alphas for the Fama-French 12, 30, and 48 (FF12, FF30, FF48) industry

classifications and SIC two-digit and three-digit (SIC2, SIC3) codes. The results in the first

five columns show that regardless of the industry classification, the industry-adjusted inno-

vative premium is between 26 and 34 basis points per month, which is similar to our main

9We require a minimum of five small innovators and five small non-innovators in a given month to form a
portfolio. The small number of industries reduces the time periods with missing observations.
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results. All associated t-statistics are above 3.00. The latter five columns show that our

industry-adjusted results are also robust to controlling for the five-factor model.

The results in Table 2.4 show that the innovative premium among small firms is especially

strong in industries with more small innovators and not driven by return differences across

industries.

2.3.5 Subperiod analysis

In addition to significant inter-industry variation in innovation, there is also significant

time-series variation in innovation. Figure 2.2 shows that patents granted to small firms be-

gan growing significantly around 1990. The time trend in innovative activity (i.e., patenting)

of small firms might be driven by several factors, which include changes to the enforcement

of patents (Hall, 2004) and the availability of public funding for young and innovative firms

(Brown et al., 2009).

We test whether changes in innovative activity over time coincide with changes in the

innovative premium among small firms. We evaluate raw returns and five-factor alphas

over two roughly equal-sized periods and present the results in Table 2.5. Panel A presents

raw returns from holding periods between July 1963 and December 1990. The innovative

premium during this period is between 18 and 19 basis points per month, which is smaller

than the innovative premium in the full sample. Panel B shows that after adjusting for

commonly-used risk factors, the innovative premium during this period declines. Panels C

and D of Table 2.5 present results from holding periods between January 1991 and December

2017. Panel C shows that the raw innovative premium during this period is between 46 and

48 basis points per month, and Panel D shows that average five-factor alphas are between 58

and 60 basis points per month. Similar patterns can also be observed in Figure 2.3, which

plots the innovative premium over time.10 Increases in the innovative premium in the second

10Figure 2.3 shows that average raw returns in the year 2000 are over 4% per month. However, our results
are robust to removing the year 2000 from the sample. When excluding those returns from the 1991 through
2017 period, the average innovative premium is 31 basis points (t-statistic of 2.24) per month.
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half of the sample are driven primarily by the higher returns of small innovators rather than

the lower returns of small non-innovators.

In summary, Figure 2.2 and Table 2.5 show that the increase in patenting by small firms

coincides with a higher premium to small innovators.

2.3.6 Fama-MacBeth regressions

In Table 2.6, we continue to focus on small firms and test whether small innovators earn

higher returns in the cross-section after controlling for standard firm-level characteristics.

The dependent variable in all specifications is future one-month returns. All non-dummy,

independent variables are winsorized at the 1% and 99% levels each month and are standard-

ized to mean zero and unit standard deviation. We present time-series averages of coefficient

estimates from monthly cross-sectional regressions (Fama and MacBeth, 1973). As before,

we calculate t-statistics using Newey and West (1987) adjusted standard errors using twelve

lags.

In the first column of Table 2.6, the coefficient on innovative, which is a dummy that

equals one if the firm has been issued at least one patent in the preceding twelve months

and zero otherwise, is a highly significant 0.44 (t-statistic of 3.68). Thus, we estimate that

small innovators earn 44 more basis points per month than small non-innovators.

We control for firm-level characteristics that are commonly used in factor models (i.e.,

natural log of book-to-market, profitability, asset growth, and momentum) in the second

column. The inclusion of these controls decreases the coefficient on innovative a bit, but the

coefficient is still 0.37 (t-statistic of 3.93), which is highly significant.

The third column includes additional controls known to predict future returns (i.e., short-

term reversal, illiquidity, idiosyncratic volatility, skewness, and stock issuance). After includ-

ing these controls, the coefficient on innovative is 0.34 (t-statistic of 3.54), which is hardly

changed from that in the second column.
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The fourth column includes all of the aforementioned control variables and industry

(FF48) fixed effects. Consistent with our earlier results, the inclusion of industry fixed

effects in the cross-section does not account for small innovators’ relative outperformance.11

Overall, the results in Table 2.6 show that after controlling for a number of firm-level

characteristics, small innovators earn significantly higher future one-month returns than

small non-innovators.

2.4 Risk or underreaction?

In the previous section, we conclude that small innovators earn higher future returns

than small non-innovators. These higher returns are robust to controlling for a number of

variables known to predict returns. In this section, we conduct a battery of tests to ascertain

whether our results are due to risk or underreaction. Each of these tests provides evidence

that the innovative premium among small firms is driven by risk.

2.4.1 Long-run returns

To disentangle risk-based and underreaction-based explanations, we first compare long-

run returns of small innovators to those of small non-innovators. If our results are driven

by underreaction, we do not expect to see differences in long-run returns between the two

groups of firms.

Table 2.7 presents long-run returns up to five years for both small innovators and small

non-innovators. Panel A shows that the raw innovative premium is positive for each of the

first five years after portfolio formation. Panel B shows that after adjusting for commonly-

used risk factors, both innovative premiums and the returns of small innovators are positive

and significant for each of the first five years after portfolio formation. These results show

11In unreported tests, we find that results are similar when using other industry classifications to control for
industry fixed effects.
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that small innovators earn higher returns than small non-innovators in the long-run, which

makes it less likely that our results are explained by underreaction.

2.4.2 Volatilities of returns and fundamentals

Second, we analyze small innovators’ short-run and long-run volatilities of returns and

fundamentals. A risk-based explanation predicts higher volatilities of returns and funda-

mentals in both the short-run and long-run. In contrast, if underreaction is the source of

return predictability, abnormal stock returns of small innovators should be mostly positive

and relatively stable in the short-run (Bernard and Thomas, 1989).

Panels C and D of Table 2.7 present volatilities of raw returns and five-factor alphas in

the five years following portfolio formation. Both panels show that regardless of the horizon,

return volatilities are higher for portfolios of small innovators than they are for portfolios

of small non-innovators. The p-values, which are from F -tests for equality of standard

deviations, indicate that differences in volatilities are highly significant.

The higher return volatilities associated with small innovators are not without reward

though. In unreported tests, we find that the monthly Sharpe ratio over the twelve-month

holding period for the portfolio of small innovators is 0.136, which is 37% higher than the

Sharpe ratio of 0.099 for the portfolio of small non-innovators.

In Table 2.8, we investigate long-term volatilities of firm-level fundamentals, which in-

clude cash flows (Panel A), net income (Panel B), earnings per share (Panel C), return on

assets (Panel D), and return on equity (Panel E). Due to the skewness of these firm-level

volatilities, we present volatilities for five different percentiles rather than just volatility

means or medians.

Results are largely consistent across the five panels of Table 2.8; small innovators ex-

perience higher cash flow, earnings, and profitability volatilities than small non-innovators.

Differences between the volatilities of small innovators and small non-innovators within each

percentile and across risk proxies are consistently positive. In unreported Wilcoxon rank-sum
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and nonparametric equality-of-medians tests, we find that in each panel, volatilities of small

innovators are significantly higher at the 1% level than volatilities of small non-innovators.

To the extent that return, cash flow, earnings, and profitability volatilities are proxies

for risk, the results in the last two panels of Table 2.7 and in all panels of Table 2.8 are

consistent with a risk-based explanation for the higher returns of small innovators.

2.4.3 Investor attention and returns

Third, we test whether the returns of small innovators vary with investor attention.

Investors are more likely to underreact to patent announcements of innovative firms that

have less analyst coverage (Hirshleifer and Teoh, 2003). To test whether returns vary with

analyst coverage, we sort small innovators by the number of IBES earnings estimates over

the previous twelve months and present the results in Table 2.9.

Small innovators without any earnings estimates over the previous twelve months fall

into the no IBES group. Small innovators with at least one earnings estimate in the previous

twelve months are sorted into IBES estimate groups based on breakpoints for the bottom

30% (lowest), middle 40% (mid), and top 30% (highest). Panel A shows that contrary to

the investor inattention hypothesis, small innovators with more, not less, analyst attention

earn higher returns. Return differences between no IBES and highest IBES groups are

between -49 and -57 basis points. Panel B shows that five-factor alphas are also higher for

small innovators with more analyst coverage. Overall, Table 2.9 shows that variation in the

returns of small innovators is not explained by investor inattention.

2.4.4 Innovative persistence and returns

Lastly, we investigate the return difference between small innovators that innovate per-

sistently and those whose patenting activity is more sporadic. Under the simple assumption

that investors learn from past experiences, investors are less likely to underreact to patent
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announcements of firms that have consistently announced patents in the past. If our results

are driven by underreaction, returns should be higher for less persistent innovators. On the

other hand, a risk-based explanation implies that firms with more persistent innovation earn

higher returns either because these firms are likely to have accumulated more option-like as-

sets, which we test directly below, or because investors recognize the option value of future

innovations of persistent innovators (Kung and Schmid, 2015).

We measure innovative persistence by the number of months a firm has been issued at

least one patent between five years ago and one year ago. Small innovators with zero issued

patents during the four-year period are sporadic innovators. Small innovators with at least

one issued patent during the four-year period are sorted into persistence groups based on

breakpoints for the bottom 30% (least), middle 40% (mid), and top 30% (most). We present

the results in Table 2.10.

Panel A presents raw returns. For each holding period length, returns increase monoton-

ically in the level of innovative persistence. Return differences between the most sporadic

innovators and the most persistent innovators are between 39 and 47 basis points per month.

Panel B shows that alphas also increase monotonically in investor persistence. For example,

relative to sporadic innovators, the most persistent innovators earn higher alphas of between

30 and 43 basis points per month.

The results in Table 2.10 show that persistent innovators earn higher returns than

less persistent innovators. These results provide support for a risk-based, rather than an

underreaction-based, explanation of our results.

2.5 Why are small innovators riskier?

Each test in the previous section shows that small innovators earn higher returns than

small non-innovators because small innovators are riskier. However, those tests do not pro-

vide evidence as to why there is an innovative premium among small firms but not among

large firms. We consider three prominent examples. First, small innovators may rely more on
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patent assets. Second, small innovators may pursue riskier patents. Finally, small innovators

may rely more on organization capital, which amplifies their systematic risk.

2.5.1 Relative patent assets and returns

Small innovators might rely disproportionality on patent assets, so obtaining additional

patents, which are option-like in nature (Pakes, 1986), might increase the systematic risk of

small innovators. On the other hand, large innovators may have considerable levels of other

assets, so obtaining additional patents may not significantly change their systematic risk,

if at all. To test these possibilities, we sort small innovators and large innovators by their

relative amount of patent assets.

As in Kogan et al. (2017), we estimate patent values using the market reaction to patent

announcements. However, we modify their methodology slightly to ensure that no future

information is used in the estimation. This is important for our study given that we focus

on return predictability.12 We then estimate patent assets by accumulating estimated patent

values using the perpetual inventory method:

Ai,t = (1− δP )Ai,t−1 + Pi,t, (2.1)

in which i indexes firms, t indexes months, A is patent assets, δP is the industry-specific

depreciation rate, and P is the estimated value of new patents.13 R&D is closely related to

subsequently-granted patents, so we use industry-specific depreciation rates for R&D capital

12Details regarding the estimation of patent values can be found in the Online Appendix
13Although our sample begins in July 1962, we have estimated patent values back to 1926. In other words,
provided that an innovator is granted a patent before our sample begins, patent assets begin accumulating
before July 1962.
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from Table 4 of Li (2012) to depreciate patent assets.14 We accumulate and depreciate patent

values on a monthly basis.

In Table 2.11, we present average future returns after sorting innovators into three relative

patent assets groups based on breakpoints for the bottom 30% (lowest), middle 40% (mid),

and top 30% (highest). We define relative patent assets as patent assets divided by market

capitalization. Panel A shows that small innovators with the highest relative patent assets

earn between 25 and 27 more basis points per month than small innovators with the lowest

relative patent assets. Conversely, the returns of large innovators increase only slightly in

relative patent assets, and return differences between large innovators with the highest and

lowest relative patent assets are insignificant.

Panel B of Table 2.11 presents five-factor alphas. Small innovators in the highest group

earn at least 19 more basis points per month than small innovators in the lowest two groups.

However, among large innovators, alphas are similar across relative patent asset groups.

In unreported tests, we find that average relative patent assets are lower for small inno-

vators than for large innovators. Thus, differences in the innovative premium between small

firms and large firms are not explained by differences in relative patent assets. However,

Table 2.11 shows that among small innovators, future returns increase in relative patent as-

sets. These results suggest that patent assets increase the systematic risk of small innovators

more than that of large innovators. This interpretation is consistent with small innovators

pursuing riskier patents or patents having a larger impact on the systematic risk of small

innovators.

14The average industry-specific depreciation rate is 25% and ranges from 10% (pharmaceuticals) to 40%
(computers and peripheral equipment). If the industry is not explicitly listed, we follow guidelines set by the
Bureau of Economic Analysis (BEA) and use an annual rate of 15%. We find that our results are insensitive
to alternative patent depreciation rates of 15%, 20%, 25%, and 30%.
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2.5.2 Product innovation and returns

Innovation type is known to vary with firm size. As firms grow, they can spread both

the costs and benefits of innovation over larger levels of output, which increases the share

of process innovation relative to risky product innovation (Kraft, 1990; Cohen and Klepper,

1996; Klepper, 1996). Process innovation refers to an improvement in one’s own production

methods, and product innovation refers to new products that are sold to others (Scherer,

1982). While process innovation increases the value of existing assets through increased

efficiency and productivity, process innovation likely does not create the option-like assets

associated with product innovation that increase the systematic risk of the firm.

The returns of small innovators might vary with patent assets because small innovators

focus more on product innovation than large innovators. To test this prediction, we inves-

tigate how future returns vary with product innovation among both small innovators and

large innovators.

We measure product innovation using data from textual analysis of patent claims (Bena

and Simintzi, 2019). Patent claims define the scope of patent protection, and since claims

are written in a legalistic way, they lend themselves to textual analysis. To that end, Bena

and Simintzi (2019) use textual analysis to identify each patent claim as either a process

claim or a non-process (i.e., product) claim. They conduct this analysis on over four million

patents granted between January 1976 and December 2012.15

Table 2.12 presents future average returns after separately sorting small innovators and

large innovators by product innovation. We measure product innovation by the raw number

of product innovation claims in the previous twelve months and again sort groups based on

breakpoints for the bottom 30% (fewest), middle 40% (mid), and top 30% (most). Panel A

shows that there is significant variation in returns among small innovators but not among

large innovators. For example, small innovators with the most product innovation claims

15Complete details of their methodology can be found in Appendix A of Bena and Simintzi (2019). We
thank the authors for sharing their data.
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earn between 30 and 31 more basis points per month than small innovators with the fewest

product innovation claims. However, large innovators with the most product claims earn

similar returns to those with the fewest product innovation claims. Panel B shows that

variation in alphas follow a similar pattern among both small innovators and large innovators.

In unreported tests, we find that per granted patent, small innovators have more patent

claims associated with product innovation and fewer patent claims associated with process

innovation than large innovators. Consistent with our predictions, our unreported tests

reveal that small innovators focus on relatively more product innovation, and the results in

Table 2.12 show that small innovators with more product claims earn higher returns. Thus,

some of the differences in innovative premiums between small firms and large firms seem to

be due to the type of innovation in which these firms engage.

2.5.3 Organization capital and returns

Organization capital often refers to intangible capital embodied in the firm’s key em-

ployees. Since key employees may leave the firm when the value of their outside options

increases, organization capital may affect the firm’s systematic risk. In particular, Eisfeldt

and Papanikolaou (2013) and Israelsen and Yonker (2017) show that organization capital in-

creases the firm’s systematic risk and returns. Organization capital is especially critical for

firms with real options, such as firms with patents (Kim and Kogut, 1996; Ziedonis, 2007).

Therefore, organization capital may further amplify the systematic risk of small innovators.

To test this supposition, we present future average returns after sorting firms by or-

ganization capital in Table 2.13. Organization capital is estimated by cumulating 30% of

firms’ selling, general, and administrative (SG&A) expenses using the perpetual inventory

method (Eisfeldt and Papanikolaou, 2014; Peters and Taylor, 2017). Using breakpoints for

the bottom 30% (lowest), middle 40% (mid), and top 30% (highest), we sort firms based

on their ratio of organization capital to book assets. Since the accounting treatment of
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SG&A expenses varies across industries, we also sort within FF48 industries (Eisfeldt and

Papanikolaou, 2013).

Panel A of Table 2.13 presents raw returns after sorting firms by organization capital.

The first three columns show that the returns of small innovators increase significantly in

organization capital. For example, small innovators in the highest group earn up to 51

more basis points per month than small innovators in the lowest group. The second three

columns show that small non-innovators in the highest group earn up to 33 more basis

points per month than small non-innovators in the lowest group. Consistent with Eisfeldt and

Papanikolaou (2013), the returns of all small firms increase in organization capital. However,

returns vary more among small innovators, which indicates that organization capital is more

important for determining their risk.

Conversely, the third and fourth sets of columns in Panel A show that after sorting by

organization capital, there is almost no variation in the returns of large innovators and large

non-innovators. Among both groups, firms in the highest group earn only slightly more than

firms in the lowest group. Panel B shows that five-factor alphas exhibit mostly the same

patterns of return variation across small firms and large firms.

In unreported tests, we find that small innovators have more organization capital than

large innovators. The results in Table 2.13 show that return variation is largest among small

innovators. Taken together, these results support our argument that patents may increase

the systematic risk of small innovators because small innovators rely more on organization

capital that is important for the resolution of uncertainty associated with patents.

Overall, the results in Section 2.5 indicate that small innovators are riskier than large

innovators because small innovators focus more on risky product innovation and rely more

on organization capital.
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2.6 Conclusion

In this paper, we analyze the risk and return of small, innovative firms. We document that

small innovators earn significantly higher returns than small non-innovators. The innovative

premium among small firms is robust to controlling for well-known stock characteristics,

industry composition, lasts for up to five years, is not explained by investor inattention, and

is driven by firms that are persistently innovative, have relatively more patent assets, focus

more on risky innovation, and depend more on organization capital. Small innovators also

have higher volatilities of returns and fundamentals than small non-innovators. Conversely,

there is no such innovative premium among large firms. Relative to large innovators, small

innovators focus more on product innovation and rely more on organization capital, which in

turn increases the systematic risk of small innovators. Overall, small innovators have higher

returns because they have higher risk.

We contribute to the broader literature on innovative firms by showing that small inno-

vators have a higher cost of equity. Due to their lack of collateral and risky fundamentals,

small innovators have poor access to debt markets (Himmelberg and Petersen, 1994; Car-

penter and Petersen, 2002). Taken together, these results might explain why publicly-traded

small innovators rely heavily on internal capital.
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Panel A: Small firms
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Panel B: Medium firms
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Panel C: Large firms

All firms within group

Innovative firms within group

Figure 2.1. Innovative firms by industry and size

This figure presents the industrial composition of firms across ten Fama-French industries
(financials and utilities excluded) within size groups. Small firms are firms in the three
smallest NYSE size deciles, medium firms are firms in the middle four NYSE size deciles,
and large firms are firms in the largest three NYSE size deciles. We define firms as innovative
if they have been issued at least one patent in the preceding twelve months. Panel A presents
percentages for small firms. Panel B presents percentages for medium firms. Panel C presents
percentages for large firms.
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Figure 2.2. Annual patent totals of small firms

This figure presents the annual sum of patents issued to small firms. Small firms are firms
in the three smallest NYSE size deciles. Since our data end on September 12, 2017, the 2017
patent total reflects that truncation.
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Figure 2.3. Average monthly innovative premium among small firms

This figure presents the average value-weighted innovative premium (twelve-month holding
period) among small firms by year. Small firms are firms in the three smallest NYSE size
deciles. The innovative premium is the return from buying firms with at least one issued
patent in the preceding twelve months and selling short all other firms.
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Table 2.1. Summary statistics

This table presents average firm-level characteristics after sorting firms by size. Averages are time-series averages of cross-
sectional averages. Small firms are firms in the three smallest NYSE size deciles, medium firms are firms in the middle four
NYSE size deciles, and large firms are firms in the largest three NYSE size deciles. We define firms as innovative if they have
been issued at least one patent in the preceding twelve months and non-innovative otherwise. Market capitalization is price
multiplied by shares outstanding (in 1983 dollars, millions). Book-to-market is book equity divided by market capitalization.
Profitability is income before extraordinary items scaled by book equity. Asset growth is the percentage change in total assets
over the last two fiscal years. Momentum is the cumulative raw return beginning twelve months ago through the month
before last. Short-term reversal is the previous month’s raw return. Illiquidity is the absolute stock return in the previous
month divided by total dollar volume in the same month. Idiosyncratic volatility is the standard deviation of residuals from a
regression of daily stock returns in excess of the risk-free rate on daily market returns in excess of the risk-free rate over the
previous twelve months. Skewness is the total skewness of daily stock returns over the previous twelve months. Stock issuance
is the percentage change in split-adjusted shares outstanding in the previous twelve months. Besides market capitalization, all
variables are winsorized at the 1% and 99% levels each month.

Small firms Medium firms Large firms
Innovative Non-innovative Innovative Non-innovative Innovative Non-innovative

Monthly observations 491 1,867 282 467 241 150
Market capitalization 81 62 573 524 8,644 3,710
Book-to-market 0.89 0.99 0.69 0.66 0.56 0.58
Profitability -10.08% -3.82% 6.55% 10.13% 13.99% 13.45%
Asset growth 12.59% 14.78% 16.55% 20.93% 14.47% 19.11%
Momentum 10.61% 12.90% 20.39% 24.05% 18.35% 22.57%
Short-term reversal 1.06% 1.08% 1.81% 2.03% 1.55% 1.86%
Illiquidity 0.30 0.60 0.019 0.036 0.003 0.017
Idiosyncratic volatility 3.51% 3.73% 2.30% 2.35% 1.68% 1.82%
Skewness 0.65 0.74 0.36 0.39 0.20 0.25
Stock issuance 5.31% 5.86% 3.60% 5.02% 2.07% 3.82%
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Table 2.2. Returns to innovation by size

This table presents future average monthly returns of innovative firms and non-innovative firms after sorting firms by size.
Small firms are firms in the three smallest NYSE size deciles, medium firms are firms in the middle four NYSE size deciles,
and large firms are firms in the largest three NYSE size deciles. We define firms as innovative if they have been issued at least
one patent in the preceding twelve months and non-innovative otherwise. The innovative premium is the return from buying
innovative firms and selling short non-innovative firms. Panel A presents results from value-weighted portfolios, and Panel
B presents results from equal-weighted portfolios. Portfolios are formed at the end of every month between June 1963 and
November 2017 and held for either three, six, or twelve months. All t-statistics are calculated using Newey and West (1987)
adjusted standard errors using twelve lags.

Panel A: Value-weighted portfolios
3 months 6 months 12 months

Size group Innovative Non-
innovative

Innovative
premium

t-statistic
(premium)

Innovative Non-
innovative

Innovative
premium

t-statistic
(premium)

Innovative Non-
innovative

Innovative
premium

t-statistic
(premium)

Small 1.31 0.97 0.34 (2.87) 1.32 0.99 0.32 (2.76) 1.35 1.03 0.32 (2.63)
Medium 1.20 1.03 0.17 (2.10) 1.21 1.05 0.16 (1.85) 1.21 1.05 0.16 (1.82)
Large 0.92 0.87 0.04 (0.57) 0.91 0.88 0.04 (0.50) 0.90 0.86 0.05 (0.61)
Small-Large 0.39 0.10 0.29 (2.74) 0.41 0.12 0.29 (2.73) 0.45 0.17 0.27 (2.53)

Panel B: Equal-weighted portfolios
3 months 6 months 12 months

Size group Innovative Non-
innovative

Innovative
premium

t-statistic
(premium)

Innovative Non-
innovative

Innovative
premium

t-statistic
(premium)

Innovative Non-
innovative

Innovative
premium

t-statistic
(premium)

Small 1.45 1.02 0.43 (3.73) 1.47 1.05 0.42 (3.72) 1.5 1.10 0.41 (3.56)
Medium 1.24 1.05 0.18 (2.15) 1.25 1.06 0.19 (2.12) 1.25 1.04 0.21 (2.46)
Large 1.06 0.95 0.11 (1.43) 1.07 0.94 0.13 (1.71) 1.07 0.90 0.18 (2.19)
Small-Large 0.39 0.07 0.32 (3.45) 0.40 0.11 0.28 (3.09) 0.43 0.21 0.23 (2.42)
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Table 2.3. Factor model-adjusted returns

This table presents future average monthly innovative premiums among small firms and
factor loadings from regressions of innovative premiums on the Fama and French (2015) five-
factor model. Small firms are firms in the three smallest NYSE size deciles. The innovative
premium is the return from buying firms with at least one issued patent in the preceding
twelve months and selling short all other firms. Raw returns are returns from the raw
innovative premium. CAPM alphas are average monthly alphas from regressing the returns
of the zero-investment portfolio on market returns in excess of the risk-free rate. FF3 alphas,
Carhart alphas, FF3+liq. alphas, and FF5 alphas are average monthly alphas from regressing
the returns of the zero-investment portfolio on the Fama and French (1993) three-factor
model, the Carhart (1997) four-factor model, Fama and French (1993) three-factor model
augmented by the traded Pástor and Stambaugh (2003) liquidity factor, and the Fama and
French (2015) five-factor model. Rm-Rf is the coefficient on the CRSP value-weighted market
return less the risk-free rate. SMB, HML, RMW, and CMA are coefficients on the size, book-
to-market, profitability, and investment factor-mimicking portfolios. Panels A and C present
results from value-weighted (VW) portfolios, and Panels B and D present results from equal-
weighted (EW) portfolios. Portfolios are formed at the end of every month between June
1963 and November 2017 and held for either three, six, or twelve months. All t-statistics are
in parentheses and calculated using Newey and West (1987) adjusted standard errors using
twelve lags.

Panel A: Innovative premium (VW) Panel B: Innovative premium (EW)
3 months 6 months 12 months 3 months 6 months 12 months

Raw returns 0.34 0.32 0.32 0.43 0.42 0.41
(2.87) (2.76) (2.63) (3.73) (3.72) (3.56)

CAPM alphas 0.30 0.29 0.28 0.37 0.36 0.35
(2.54) (2.44) (2.34) (3.17) (3.13) (3.03)

FF3 alphas 0.33 0.33 0.33 0.40 0.39 0.38
(2.64) (2.53) (2.46) (3.28) (3.25) (3.17)

Carhart alphas 0.36 0.34 0.33 0.41 0.38 0.36
(3.51) (3.32) (3.16) (3.84) (3.74) (3.51)

FF3+liq. alphas 0.35 0.34 0.35 0.43 0.42 0.41
(2.55) (2.46) (2.37) (3.29) (3.30) (3.17)

FF5 alphas 0.42 0.42 0.44 0.46 0.44 0.44
(3.64) (3.46) (3.40) (4.04) (3.89) (3.71)

Panel C: FF5 factor loadings (VW) Panel D: FF5 factor loadings (EW)
3 months 6 months 12 months 3 months 6 months 12 months

Rm-Rf 0.00 0.00 -0.01 0.06 0.06 0.06
(0.17) (-0.09) (-0.36) (2.96) (3.07) (2.85)

SMB 0.10 0.12 0.12 0.10 0.11 0.11
(2.11) (2.13) (2.17) (2.55) (2.61) (2.48)

HML -0.22 -0.24 -0.26 -0.20 -0.21 -0.23
(-3.55) (-3.40) (-3.33) (-3.56) (-3.72) (-3.78)

RMW -0.34 -0.36 -0.39 -0.25 -0.24 -0.24
(-3.62) (-3.56) (-3.87) (-2.78) (-2.59) (-2.57)

CMA 0.17 0.17 0.16 0.14 0.16 0.18
(1.54) (1.57) (1.47) (1.43) (1.57) (1.67)
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Table 2.4. Within-industry and industry-adjusted returns

This table presents future average monthly returns of small innovators and small non-innovators after adjusting for industry-level
returns. Small firms are firms in the three smallest NYSE size deciles. We define firms as innovative if they have been issued
at least one patent in the preceding twelve months and non-innovative otherwise. The innovative premium is the return from
buying innovative firms and selling short non-innovative firms. Panel A presents average monthly returns over a twelve-month
holding period within ten Fama-French industries (financials and utilities are excluded). Monthly portfolios in Panel A require
at least five innovative and five non-innovative observations, otherwise that month is excluded. Observations is the number of
monthly observations that fulfill this criteria. Panel B presents industry-adjusted innovative premiums in the first five columns
and average FF5 alphas of the industry-adjusted innovative premium in the latter five columns. Industry-adjusted returns are
calculated by subtracting the value-weighted industry return from each stock before forming portfolios. We use Fama-French
12, 30, and 48 (FF12, FF30, FF48) industry classifications and SIC two- and three-digit (SIC2, SIC3) codes. FF5 alphas are
average monthly alphas from regressing the returns of the industry-adjusted zero-investment portfolio on the Fama and French
(2015) five-factor model. Portfolios are value-weighted and formed at the end of every month between June 1963 and November
2017 and held for either three, six, or twelve months. All t-statistics are in parentheses and calculated using Newey and West
(1987) adjusted standard errors using twelve lags.

Panel A: Within-industry monthly returns (12 months)
Business

equipment
Chemicals Consumer

durables
Consumer

non-durables
Energy Healthcare Manufac-

turing
Other Shops Telecoms

Innovative 1.47 1.46 1.29 1.20 0.62 1.43 1.30 1.20 1.14 0.00
Non-Innovative 0.99 1.17 0.88 0.97 0.42 1.17 1.08 0.88 1.24 0.35
Innovative premium 0.48 0.29 0.41 0.23 0.20 0.26 0.22 0.32 -0.10 -0.25

(3.55) (1.52) (3.16) (2.26) (0.47) (1.19) (2.55) (1.40) (-0.44) (-0.50)
Observations 643 643 643 643 151 557 643 613 485 144

Panel B: Innovative premium
Industry-adjusted returns Industry-adjusted FF5 alphas

FF12 FF30 FF48 SIC2 SIC3 FF12 FF30 FF48 SIC2 SIC3
3 Months 0.32 0.34 0.32 0.35 0.28 0.38 0.40 0.38 0.37 0.31

(3.34) (3.69) (3.64) (3.83) (3.49) (3.71) (4.00) (4.02) (4.07) (3.72)
6 Months 0.31 0.33 0.31 0.34 0.27 0.38 0.40 0.38 0.37 0.31

(3.25) (3.60) (3.54) (3.78) (3.42) (3.55) (3.83) (3.83) (3.89) (3.51)
12 Months 0.30 0.32 0.30 0.34 0.26 0.39 0.41 0.39 0.39 0.32

(3.04) (3.42) (3.35) (3.58) (3.25) (3.43) (3.73) (3.71) (3.77) (3.43)
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Table 2.5. Subperiod analysis

This table presents future average monthly returns of small innovators and small non-
innovators in different time periods. Small firms are firms in the three smallest NYSE size
deciles. We define firms as innovative if they have been issued at least one patent in the
preceding twelve months and non-innovative otherwise. The innovative premium is the
return from buying innovative firms and selling short non-innovative firms. FF5 alphas
are average monthly alphas from regressing the returns of the zero-investment portfolio
on the Fama and French (2015) five-factor model. Panels A and B contain results from
the 1963-1990 period, which begins July 1963 and ends December 1990. Panels C and D
contain results from the 1991-2017 period, which begins January 1991 and ends December
2017. All portfolios are value-weighted and held for either three, six, or twelve months.
All t-statistics are in parentheses and calculated using Newey and West (1987) adjusted
standard errors using twelve lags.

Panel A: Raw returns (1963-1990) Panel B: FF5 alphas (1963-1990)
3 months 6 months 12 months 3 months 6 months 12 months

Innovative 1.22 1.23 1.27 -0.02 -0.03 0.03
(3.08) (3.10) (3.16) (-0.28) (-0.31) (0.33)

Non-innovative 1.03 1.05 1.09 -0.14 -0.14 -0.10
(2.41) (2.45) (2.52) (-2.80) (-2.87) (-2.05)

Innovative premium 0.19 0.18 0.18 0.12 0.11 0.13
(1.92) (1.79) (1.75) (1.10) (1.05) (1.23)

Panel C: Raw returns (1991-2017) Panel D: FF5 alphas (1991-2017)
3 months 6 months 12 months 3 months 6 months 12 months

Innovative 1.40 1.40 1.44 0.36 0.38 0.44
(3.32) (3.33) (3.39) (2.30) (2.43) (2.58)

Non-innovative 0.92 0.93 0.98 -0.23 -0.21 -0.17
(2.61) (2.67) (2.85) (-2.24) (-2.24) (-2.04)

Innovative premium 0.48 0.47 0.46 0.58 0.59 0.60
(2.31) (2.25) (2.14) (3.19) (3.12) (3.04)
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Table 2.6. Fama-MacBeth regressions

This table presents time-series averages of results from monthly cross-sectional regressions (Fama

and MacBeth, 1973) and includes only small firms. Monthly regressions of future one-month returns

on innovative and controls are estimated between July 1963 through December 2017. Small firms

are firms in the three smallest NYSE size deciles. Innovative equals one if the firm has been issued

at least one patent in the preceding twelve months and zero otherwise. Book-to-market is book

equity divided by market capitalization. Profitability is income before extraordinary items scaled

by book equity. Asset growth is the percentage change in total assets over the last two fiscal years.

Momentum is the cumulative raw return beginning twelve months ago through the month before

last. Short-term reversal is the previous month’s raw return. Illiquidity is the absolute stock return

in the previous month divided by trading volume in the same month. Idiosyncratic volatility is the

standard deviation of residuals from a regression of daily stock returns in excess of the risk-free rate

on daily market returns in excess of the risk-free rate over the previous twelve months. Skewness

is the total skewness of daily stock returns over the previous twelve months. Stock issuance is the

annual percentage growth rate in split-adjusted shares. All non-dummy, independent variables are

winsorized at the 1% and 99% levels each month and standardized to mean zero and unit standard

deviation. Industry fixed effects are at the FF48 level. All t-statistics are in parentheses and

calculated using Newey and West (1987) adjusted standard errors using twelve lags.

(1) (2) (3) (4)
Innovative 0.44*** 0.37*** 0.34*** 0.23***

(3.68) (3.93) (3.54) (3.19)
ln(Book-to-market) 0.26*** 0.29*** 0.38***

(4.10) (4.57) (7.01)
Profitability 0.39*** 0.39*** 0.42***

(3.07) (3.55) (4.23)
Asset growth -0.38*** -0.42*** -0.45***

(-9.53) (-8.41) (-8.71)
Momentum 0.42*** 0.44*** 0.33***

(3.76) (3.93) (3.19)
Short-term reversal -1.02*** -1.14***

(-8.79) (-9.32)
Illiquidity 1.57*** 1.45***

(3.22) (3.28)
Idiosyncratic volatility -0.13 -0.18

(-0.94) (-1.32)
Skewness -0.13*** -0.11***

(-4.16) (-3.37)
Stock issues -0.20*** -0.19***

(-3.13) (-2.77)
Intercept 1.01*** 1.02*** 1.06*** 1.02***

(3.41) (3.67) (3.14) (2.93)
Industry FEs No No No Yes
R2 0.002 0.0258 0.0533 0.1070
Observations 1,542,408 1,110,646 1,041,656 1,041,656
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Table 2.7. Long-run returns and volatilities

This table presents long-run future average monthly returns and volatilities of small innova-
tors and small non-innovators in different holding periods. Small firms are firms in the three
smallest NYSE size deciles. We define firms as innovative if they have been issued at least
one patent in the preceding twelve months and non-innovative otherwise. The innovative
premium is the return from buying innovative firms and selling short non-innovative firms.
Panel A presents average monthly raw returns. Panel B presents average monthly FF5
alphas, which are average monthly alphas from regressing the returns of the zero-investment
portfolio on the Fama and French (2015) five-factor model. Panel C presents standard devi-
ations of monthly raw returns. Panel D presents standard deviations of monthly FF5 alphas.
Each column presents results from the corresponding year over the five-year holding period.
Portfolios are value-weighted and formed at the end of every month between June 1963 and
November 2017 and for five years. All t-statistics in Panels A and B are in parentheses and
calculated using Newey and West (1987) adjusted standard errors using twelve lags. The fi-
nal rows in Panels C and D present p-values from F -tests for equality of standard deviations.

Panel A: Raw returns
First year Second year Third year Fourth year Fifth year

Innovative 1.35 1.35 1.21 1.16 1.13
Non-innovative 1.03 1.10 1.04 1.04 0.97
Innovative premium 0.32 0.25 0.17 0.12 0.16

(2.63) (2.05) (1.34) (0.83) (1.20)

Panel B: FF5 alphas
First year Second year Third year Fourth year Fifth year

Innovative 0.30 0.40 0.34 0.32 0.38
(3.01) (3.55) (3.05) (2.67) (3.11)

Non-innovative -0.14 -0.03 -0.04 -0.02 0.00
(-2.57) (-0.53) (-0.83) (-0.31) (-0.07)

Innovative premium 0.44 0.43 0.38 0.34 0.38
(3.40) (3.46) (2.96) (2.51) (3.14)

Panel C: Volatilities of raw returns
First year Second year Third year Fourth year Fifth year

Innovative 7.22% 7.28% 7.27% 7.24% 7.18%
Non-Innovative 6.46% 6.52% 6.52% 6.42% 6.46%
p-value (0.005) (0.006) (0.007) (0.003) (0.010)

Panel D: Volatilities of FF5 alphas
First year Second year Third year Fourth year Fifth year

Innovative 1.52% 1.61% 1.73% 1.81% 1.78%
Non-innovative 1.09% 1.02% 1.11% 1.12% 1.29%
p-value (0.000) (0.000) (0.000) (0.000) (0.000)
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Table 2.8. Long-run volatilities of fundamentals

This table presents firm-level volatilities of fundamentals of small innovators and small
non-innovators for five different percentiles. Small firms are firms in the three smallest
NYSE size deciles. We define firms as innovative if they have been issued at least one
patent in the preceding twelve months and non-innovative otherwise. Panel A presents
future five-year cash flow (CF) volatilities. Cash flow is income before extraordinary
expenses (net income) plus depreciation and amortization. Panel B presents future five-year
net income (NI) volatilities. Panel C presents future five-year earnings per share (EPS)
volatilities. Earnings per share is net income divided by shares outstanding. Panel D
presents future five-year return on assets (ROA) volatilities. Return on assets is net income
divided by total assets. Panel E presents future five-year return on book equity (ROE)
volatilities. Return on book equity is net income divided by book equity. Due to the ne-
cessity of five years of future data, these panels include observations from 1963 through 2012.

Panel A: Five-year CF volatilities
P10 P25 P50 P75 P90

Innovative 0.59 1.41 3.99 11.0 26.3
Non-innovative 0.41 0.93 2.62 7.65 20.3

Panel B: Five-year NI volatilities
P10 P25 P50 P75 P90

Innovative 0.55 1.33 3.85 10.6 26.1
Non-innovative 0.38 0.86 2.43 7.24 19.5

Panel C: Five-year EPS volatilities
P10 P25 P50 P75 P90

Innovative 0.14 0.25 0.48 0.87 1.49
Non-innovative 0.12 0.22 0.42 0.81 1.49

Panel D: Five-year ROA volatilities
P10 P25 P50 P75 P90

Innovative 1.14% 2.02% 4.33% 10.7% 23.2%
Non-innovative 1.02% 1.84% 3.81% 8.80% 19.2%

Panel E: Five-year ROE volatilities
P10 P25 P50 P75 P90

Innovative 1.89% 3.34% 7.15% 18.0% 44.6%
Non-innovative 1.80% 3.24% 6.88% 16.9% 43.5%
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Table 2.9. Investor attention and returns

This table presents future average monthly returns of small innovators after sorting by
investor attention (i.e., IBES earnings estimates). Small firms are firms in the three smallest
NYSE size deciles. We define firms as innovative if they have been issued at least one
patent in the preceding twelve months. We label firms with no IBES earnings estimates
in the previous twelve months as no IBES. We sort firms with at least one IBES earnings
estimate in the previous twelve months into IBES estimate groups based on breakpoints
for the bottom 30% (lowest), middle 40% (mid), and top 30% (highest). Panel A presents
average monthly raw returns. Panel B provides average monthly FF5 alphas, which are
average monthly alphas from regressing the returns of the zero-investment portfolio on the
Fama and French (2015) five-factor model. Portfolios are value-weighted and formed at the
end of every month between December 1983 and November 2017 and held for either three,
six, or twelve months. All t-statistics are in parentheses and calculated using Newey and
West (1987) adjusted standard errors using twelve lags.

Panel A: Raw returns
3 months 6 months 12 months

No IBES 1.04 1.05 1.11
Lowest 1.36 1.37 1.42
Mid 1.36 1.44 1.45
Highest 1.53 1.56 1.67
No IBES-highest -0.49 -0.51 -0.57

(-2.82) (-3.15) (-3.95)

Panel B: FF5 alphas
3 months 6 months 12 months

No IBES 0.17 0.18 0.24
(1.30) (1.30) (1.55)

Lowest 0.48 0.44 0.52
(3.03) (3.49) (3.09)

Mid 0.40 0.53 0.54
(2.60) (3.10) (3.15)

Highest 0.43 0.43 0.57
(2.02) (2.46) (3.80)

No IBES-highest -0.26 -0.24 -0.33
(-1.09) (-1.14) (-1.83)
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Table 2.10. Innovative persistence and returns

This table presents future average monthly returns of small innovators after sorting by
innovative persistence. Small firms are firms in the three smallest NYSE size deciles. We
define firms as innovative if they have been issued at least one patent in the preceding
twelve months. We define firms as sporadic innovators if they did not receive any patents in
the four years before the preceding twelve months. We sort firms with at least one patent in
the four years before the preceding twelve months into three innovative persistence groups
based on breakpoints for the bottom 30% (least), middle 40% (mid), and top 30% (most).
We define innovative persistence by the number of months during those four years firms
were issued at least one patent. Panel A presents average monthly raw returns. Panel B
provides average monthly FF5 alphas, which are average monthly alphas from regressing
the returns of the zero-investment portfolio on the Fama and French (2015) five-factor
model. Portfolios are value-weighted and formed at the end of every month between June
1967 and November 2017 and held for either three, six, or twelve months. All t-statistics
are in parentheses and calculated using Newey and West (1987) adjusted standard errors
using twelve lags.

Panel A: Raw returns
3 months 6 months 12 months

Sporadic 0.97 1.01 1.03
Least 1.19 1.20 1.19
Mid 1.25 1.25 1.26
Most 1.44 1.43 1.41
Most-sporadic 0.47 0.42 0.39

(3.19) (3.11) (3.17)

Panel B: FF5 alphas
3 months 6 months 12 months

Sporadic 0.00 0.07 0.16
(-0.02) (0.61) (1.45)

Least 0.17 0.18 0.24
(1.44) (1.58) (2.05)

Mid 0.25 0.27 0.35
(2.44) (2.49) (2.88)

Most 0.43 0.42 0.46
(2.92) (2.93) (3.08)

Most-sporadic 0.43 0.35 0.30
(2.37) (2.06) (1.93)
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Table 2.11. Relative patent assets and returns

This table presents future average monthly returns of small innovators and large innovators
after sorting by relative patent assets. Small firms are firms in the three smallest NYSE
size deciles. Large firms are firms in the three largest NYSE size deciles. We define firms
as innovative if they have been issued at least one patent in the preceding twelve months.
We sort firms into three relative patent assets groups based on breakpoints for the bottom
30% (least), middle 40% (mid), and top 30% (most). We define relative patent assets as
patent assets divided by market capitalization. Total patent assets are estimated using
the perpetual inventory method (methodology detailed in Section 2.5.1). Panel A presents
average monthly raw returns. Panel B presents average monthly FF5 alphas, which are
average monthly alphas from regressing the returns of the zero-investment portfolio on the
Fama and French (2015) five-factor model. Portfolios are value-weighted and formed at the
end of every month between June 1963 and November 2017 and held for either three, six,
or twelve months. All t-statistics are in parentheses and calculated using Newey and West
(1987) adjusted standard errors using twelve lags.

Panel A: Raw returns
Small innovators Large innovators

3 months 6 months 12 months 3 months 6 months 12 months
Lowest 1.24 1.26 1.27 0.88 0.88 0.85
Mid 1.22 1.22 1.27 0.91 0.91 0.89
Highest 1.49 1.50 1.54 0.96 0.96 0.96
Highest-lowest 0.25 0.25 0.27 0.08 0.08 0.11

(2.11) (2.06) (2.27) (0.85) (0.78) (1.17)

Panel B: FF5 alphas
Small innovators Large innovators

3 months 6 months 12 months 3 months 6 months 12 months
Lowest 0.20 0.22 0.27 0.15 0.15 0.12

(2.54) (2.61) (2.87) (2.07) (2.03) (1.75)
Mid 0.14 0.15 0.22 0.14 0.15 0.15

(1.55) (1.64) (2.14) (2.33) (2.68) (2.73)
Highest 0.41 0.41 0.46 0.09 0.07 0.07

(2.97) (3.07) (3.29) (1.80) (1.46) (1.59)
Highest-lowest 0.21 0.19 0.20 -0.06 -0.08 -0.05

(1.64) (1.60) (1.84) (-0.59) (-0.81) (-0.53)
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Table 2.12. Product innovation and returns

This table presents future average monthly returns of small innovators and large innovators
after sorting by the number of product innovation claims in the previous twelve months.
Small firms are firms in the three smallest NYSE size deciles. Large firms are firms in the
three largest NYSE size deciles. We define firms as innovative if they have been issued
at least one patent in the preceding twelve months. We sort firms into three product
innovation claims groups based on breakpoints for the bottom 30% (fewest), middle 40%
(mid), and top 30% (most). Panel A presents average monthly raw returns. Panel B
presents average monthly FF5 alphas, which are average monthly alphas from regressing the
returns of the zero-investment portfolio on the Fama and French (2015) five-factor model.
Portfolios are value-weighted and formed at the end of every month between December
1976 and December 2012 and held for either three, six, or twelve months. All t-statistics
are in parentheses and calculated using Newey and West (1987) adjusted standard errors
using twelve lags.

Panel A: Raw returns
Small innovators Large innovators

3 months 6 months 12 months 3 months 6 months 12 months
Fewest 1.19 1.19 1.22 0.94 0.97 0.99
Mid 1.27 1.28 1.30 1.09 1.09 1.11
Most 1.48 1.50 1.53 0.98 0.99 1.00
Most-fewest 0.30 0.30 0.31 0.03 0.02 0.02

(3.14) (3.20) (3.44) (0.34) (0.19) (0.16)

Panel B: FF5 alphas
Small innovators Large innovators

3 months 6 months 12 months 3 months 6 months 12 months
Fewest 0.14 0.14 0.22 0.12 0.14 0.12

(1.23) (1.25) (1.62) (1.53) (1.68) (1.53)
Mid 0.18 0.20 0.24 0.09 0.08 0.08

(1.46) (1.69) (2.10) (1.34) (1.20) (1.26)
Most 0.31 0.34 0.41 0.14 0.14 0.14

(2.12) (2.28) (2.45) (2.19) (2.20) (2.12)
Most-fewest 0.17 0.19 0.19 0.02 0.00 0.01

(1.74) (1.99) (2.09) (0.20) (0.02) (0.12)
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Table 2.13. Organization capital and returns

This table presents future average monthly returns of small innovators, small non-innovators, large innovators, and large
non-innovators after sorting by organization capital. Small firms are firms in the three smallest NYSE size deciles. Large firms
are firms in the three largest NYSE size deciles. We define firms as innovative if they have been issued at least one patent in
the preceding twelve months and non-innovative otherwise. Within each FF48 industry, we sort firms into three groups based
on organization capital (i.e., organization capital divided by total assets) breakpoints for the bottom 30% (lowest), middle 40%
(mid), and top 30% (highest). Panel A presents average monthly raw returns. Panel B provides average monthly FF5 alphas,
which are average monthly alphas from regressing the returns of the zero-investment portfolio on the Fama and French (2015)
five-factor model. Portfolios are value-weighted and formed at the end of every month between June 1963 and November 2017
and held for either three, six, or twelve months. All t-statistics are in parentheses and calculated using Newey and West (1987)
adjusted standard errors using twelve lags.

Panel A: Raw returns
Small innovators Small non-innovators Large innovators Large non-innovators

3 months 6 months 12 months 3 months 6 months 12 months 3 months 6 months 12 months 3 months 6 months 12 months
Lowest 1.03 1.06 1.16 0.84 0.87 0.94 0.90 0.90 0.89 0.77 0.80 0.79
Mid 1.39 1.37 1.40 1.06 1.08 1.10 0.92 0.92 0.91 0.94 0.93 0.90
Highest 1.53 1.52 1.50 1.17 1.18 1.20 0.93 0.94 0.94 0.90 0.91 0.90
Highest-lowest 0.51 0.45 0.34 0.33 0.32 0.27 0.03 0.04 0.05 0.13 0.12 0.11

(4.48) (3.57) (2.56) (4.94) (5.16) (4.64) (0.37) (0.45) (0.64) (1.27) (1.25) (1.15)

Panel B: FF5 alphas
Small innovators Small non-innovators Large innovators Large non-innovators

3 months 6 months 12 months 3 months 6 months 12 months 3 months 6 months 12 months 3 months 6 months 12 months
Lowest 0.02 0.07 0.19 -0.33 -0.32 -0.25 0.11 0.11 0.10 -0.19 -0.17 -0.19

(0.18) (0.60) (1.37) (-3.46) (-3.72) (-3.56) (1.68) (1.75) (1.61) (-1.65) (-1.50) (-1.65)
Mid 0.29 0.26 0.30 -0.14 -0.13 -0.11 0.16 0.16 0.14 0.02 0.00 -0.03

(3.03) (2.67) (2.89) (-1.87) (-2.00) (-1.92) (3.38) (3.25) (3.11) (0.31) (-0.01) (-0.49)
Highest 0.40 0.39 0.40 -0.03 -0.01 0.01 0.07 0.07 0.08 -0.10 -0.08 -0.10

(4.33) (4.28) (4.20) (-0.38) (-0.17) (0.25) (1.50) (1.62) (1.85) (-1.26) (-1.06) (-1.31)
Highest-lowest 0.38 0.31 0.21 0.30 0.32 0.27 -0.04 -0.04 -0.02 0.09 0.09 0.08

(3.77) (2.71) (1.69) (3.70) (4.03) (4.15) (-0.49) (-0.47) (-0.21) (0.96) (1.01) (0.91)
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Table A.1. Investment and q : Ordinary least squares

This table presents results from ordinary least squares regressions of investment on lagged q, firm

fixed effects, and year fixed effects. The numerator of each proxy for q is the market value of

common equity plus the book value of short- and long-term debt minus the book value of current

assets. The denominator of each proxy for q contains physical capital (book value of gross property,

plant, and equipment). The denominator of PI q also includes my estimate of intangible capital (i.e.,

patent capital plus on-balance sheet intangible capital). The denominator of total q also includes

intangible capital as estimated by Peters and Taylor (2017). Intangible investment is scaled R&D

expenses (set to zero if missing) plus 30% of scaled SG&A expenses. Total investment (PT) is

scaled capital expenditures plus intangible investment. All investment variables are scaled by the

denominator of lagged q being regressed on by investment. Within R2 estimates are ordinary R2

estimates from estimating OLS on the transformed data. ∆R2 is the R2 estimate associated with

PI q minus the R2 estimate associated with either physical q (columns 2 and 5) or total q (columns

3 and 6) within each investment type. Standard errors in parentheses are clustered by firm. Panel

A presents results for all firms. Panel B presents results for firms with patent capital at any point

during the sample period. Standard errors below R2 estimates and ∆R2 estimates are estimated

using influence functions. Bolded estimates are significant at the 5% level.

Panel A: All firms
Intangible investment Total investment (PT)

(1) (2) (3) (4) (5) (6)

PI q 0.039 0.067
(0.0006) (0.0008)

Physical q 0.030 0.047
(0.0006) (0.0007)

Total q 0.020 0.051
(0.0003) (0.0007)

Within R2 0.308 0.275 0.205 0.343 0.297 0.243
(0.055) (0.057) (0.004) (0.005) (0.005) (0.004)

∆R2 - 0.033 0.103 - 0.046 0.100
- (0.005) (0.004) - (0.004) (0.004)

Obs. 155,470 155,470 155,470 155,470 155,470 155,470

Panel B: Firms with patent capital
Intangible investment Total investment (PT)

(1) (2) (3) (4) (5) (6)

PI q 0.049 0.070
(0.0009) (0.0011)

Physical q 0.032 0.044
(0.0008) (0.0009)

Total q 0.024 0.044
(0.0005) (0.0008)

Within R2 0.384 0.314 0.253 0.418 0.339 0.293
(0.008) (0.008) (0.006) (0.007) (0.008) (0.005)

∆R2 - 0.070 0.131 - 0.079 0.125
- (0.007) (0.006) - (0.007) (0.006)

Obs. 76,297 76,297 76,297 76,297 76,297 76,297
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Table A.2. Investment and q : Cumulant estimator

This table presents results from cumulant estimator regressions of investment on lagged q,
firm fixed effects, and year fixed effects. The numerator of each proxy for q is the market
value of common equity plus the book value of short- and long-term debt minus the book
value of current assets. The denominator of each proxy for q contains physical capital (book
value of gross property, plant, and equipment). The denominator of PI q also includes my
estimate of intangible capital (i.e., patent capital plus on-balance sheet intangible capital).
The denominator of total q also includes intangible capital as estimated by Peters and
Taylor (2017). Intangible investment is scaled R&D expenses (set to zero if missing) plus
30% of scaled SG&A expenses. Total investment (PT) is scaled capital expenditures plus
intangible investment. All investment variables are scaled by the denominator of lagged
q being regressed on by investment. ρ2 is the within R2 estimate from the hypothetical
regression of investment on marginal q. τ 2 is the within R2 estimate from the hypothetical
regression of estimated q on marginal q. Panel A presents results for all firms. Panel
B presents results for firms with patent capital at any point during the sample period.
Standard errors in parentheses are estimated using influence functions and are clustered by
firm. Bolded coefficients are significant at the 5% level.

Panel A: All firms
Intangible investment Total investment (PT)

(1) (2) (3) (4) (5) (6)

PI q 0.066 0.101
(0.0009) (0.0010)

Physical q 0.054 0.078
(0.0010) (0.0011)

Total q 0.037 0.088
(0.0006) (0.0011)

ρ2 0.512 0.497 0.390 0.515 0.491 0.417
(0.011) (0.014) (0.010) (0.010) (0.012) (0.009)

τ 2 0.602 0.553 0.525 0.665 0.604 0.583
(0.015) (0.016) (0.013) (0.013) (0.014) (0.012)

Obs. 155,470 155,470 155,470 155,470 155,470 155,470

Panel B: Firms with patent capital
Intangible investment Total investment (PT)

(1) (2) (3) (4) (5) (6)

PI q 0.073 0.099
(0.0012) (0.0013)

Physical q 0.054 0.069
(0.0014) (0.0015)

Total q 0.039 0.067
(0.0008) (0.0010)

ρ2 0.574 0.523 0.423 0.587 0.531 0.449
(0.015) (0.019) (0.013) (0.014) (0.018) (0.013)

τ 2 0.669 0.600 0.600 0.712 0.638 0.652
(0.019) (0.023) (0.020) (0.017) (0.021) (0.018)

Obs. 76,297 76,297 76,297 76,297 76,297 76,297
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Table B.1. Returns to innovation by size decile

This table presents future average monthly returns of innovative firms and non-innovative firms after sorting firms into NYSE size deciles.

We define firms as innovative if they have been issued at least one patent in the preceding twelve months and non-innovative otherwise.

The innovative premium is the return from buying innovative firms and selling short non-innovative firms. Panel A presents results from

value-weighted portfolios, and Panel B presents results from equal-weighted portfolios. Portfolios are formed at the end of every month

between June 1963 and November 2017 and held for either three, six, or twelve months. All t-statistics are calculated using Newey and

West (1987) adjusted standard errors using twelve lags.

Panel A: Value-weighted portfolios
3 months 6 months 12 months

Size decile Innovative Non-
innovative

Innovative
premium

t-statistic
(premium)

Innovative Non-
innovative

Innovative
premium

t-statistic
(premium)

Innovative Non-
innovative

Innovative
premium

t-statistic
(premium)

1 1.38 0.92 0.47 (3.85) 1.44 0.97 0.47 (3.88) 1.49 1.03 0.45 (3.40)
2 1.28 0.97 0.31 (2.40) 1.28 1.00 0.28 (2.05) 1.33 1.02 0.31 (2.20)
3 1.30 1.05 0.25 (2.06) 1.29 1.02 0.26 (2.32) 1.31 1.05 0.26 (2.32)
4 1.16 1.04 0.11 (1.17) 1.19 1.07 0.12 (1.19) 1.21 1.09 0.13 (1.24)
5 1.26 1.09 0.18 (1.66) 1.26 1.09 0.17 (1.58) 1.26 1.09 0.17 (1.60)
6 1.24 1.00 0.24 (2.61) 1.21 1.02 0.20 (2.14) 1.22 1.04 0.18 (2.02)
7 1.18 1.02 0.15 (1.71) 1.19 1.04 0.16 (1.70) 1.19 1.03 0.17 (1.82)
8 1.12 1.05 0.07 (0.78) 1.13 1.04 0.10 (1.06) 1.14 1.01 0.14 (1.41)
9 1.11 0.88 0.23 (2.64) 1.11 0.89 0.22 (2.41) 1.11 0.88 0.23 (2.49)
10 0.88 0.80 0.08 (0.96) 0.88 0.81 0.07 (0.88) 0.87 0.79 0.08 (1.01)
1-10 0.50 0.11 0.39 (3.42) 0.56 0.16 0.40 (3.60) 0.63 0.24 0.38 (3.08)

Panel B: Equal-weighted portfolios
3 months 6 months 12 months

Size decile Innovative Non-
innovative

Innovative
premium

t-statistic
(premium)

Innovative Non-
innovative

Innovative
premium

t-statistic
(premium)

Innovative Non-
innovative

Innovative
premium

t-statistic
(premium)

1 1.56 1.03 0.53 (4.61) 1.60 1.08 0.52 (4.64) 1.64 1.15 0.49 (4.18)
2 1.32 0.98 0.34 (2.59) 1.31 1.00 0.32 (2.38) 1.35 0.97 0.38 (2.83)
3 1.34 1.06 0.28 (2.28) 1.34 1.01 0.33 (2.83) 1.35 1.00 0.34 (3.09)
4 1.19 1.06 0.14 (1.39) 1.23 1.07 0.16 (1.57) 1.24 1.05 0.19 (1.99)
5 1.29 1.10 0.19 (1.73) 1.29 1.09 0.20 (1.90) 1.29 1.05 0.24 (2.32)
6 1.27 1.02 0.25 (2.78) 1.25 1.03 0.22 (2.44) 1.25 1.03 0.23 (2.62)
7 1.20 1.02 0.18 (1.93) 1.22 1.02 0.19 (2.05) 1.21 1.00 0.20 (2.36)
8 1.14 1.05 0.09 (0.99) 1.17 1.03 0.13 (1.45) 1.16 0.98 0.19 (2.00)
9 1.13 0.90 0.23 (2.59) 1.14 0.89 0.25 (2.55) 1.14 0.87 0.28 (2.81)
10 0.94 0.82 0.12 (1.49) 0.95 0.81 0.14 (1.71) 0.94 0.76 0.18 (2.31)
1-10 0.62 0.21 0.41 (3.86) 0.65 0.27 0.39 (3.75) 0.70 0.39 0.31 (2.87)
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Table B.2. Returns to innovation by size: Alternative innovative criteria

This table presents future average monthly innovative premiums when using alternative criteria to

identify innovative firms. Small firms are firms in the three smallest NYSE size deciles, and large

firms are firms in the largest three NYSE size deciles. The main results are in the first row of each

panel, in which we define firms as innovative if they have been issued at least one patent in the

preceding twelve months. In the second, third, fourth, and fifth rows of each panel, we define firms

as innovative if they have been issued at least one patent in the previous six months, one patent

in the previous eighteen months, two patents in the previous twelve months, or five patents in the

previous twelve months. In the sixth and seventh rows of Panels C and D, we define large firms as

innovative if they have been issued at least 25 patents in the previous twelve months or 50 patents

in the previous twelve months. For each row, if we do not define firms as innovative, we define them

as non-innovative. The innovative premium is the return from buying innovative firms and selling

short non-innovative firms. Panels A and C present results from value-weighted (VW) portfolios,

and Panels B and D present results from equal-weighted (EW) portfolios. Portfolios are formed

at the end of every month between June 1963 and November 2017 and held for either three, six,

or twelve months. All t-statistics are in parentheses and calculated using Newey and West (1987)

adjusted standard errors using twelve lags.

Panel A: Small innovators (VW) Panel B: Small innovators (EW)
3 months 6 months 12 months 3 months 6 months 12 months

≥1 patent past 12 months 0.34 0.32 0.32 0.43 0.42 0.41
(2.87) (2.76) (2.63) (3.73) (3.72) (3.56)

≥1 patent past 6 months 0.34 0.33 0.33 0.45 0.44 0.43
(2.89) (2.89) (2.73) (3.78) (3.84) (3.70)

≥1 patent past 18 months 0.35 0.33 0.32 0.43 0.42 0.40
(2.98) (2.81) (2.61) (3.85) (3.78) (3.56)

≥2 patents past 12 months 0.38 0.37 0.36 0.48 0.48 0.46
(3.09) (3.05) (2.88) (3.81) (3.83) (3.66)

≥5 patents past 12 months 0.46 0.46 0.48 0.56 0.55 0.57
(3.55) (3.57) (3.64) (4.03) (3.94) (4.03)

Panel C: Large innovators (VW) Panel D: Large innovators (EW)
3 months 6 months 12 months 3 months 6 months 12 months

≥1 patent past 12 months 0.04 0.04 0.05 0.11 0.13 0.18
(0.57) (0.50) (0.61) (1.43) (1.71) (2.19)

≥1 patent past 6 months 0.06 0.05 0.05 0.13 0.14 0.17
(0.79) (0.66) (0.71) (1.78) (1.90) (2.19)

≥1 patent past 18 months 0.05 0.04 0.05 0.13 0.15 0.18
(0.67) (0.54) (0.59) (1.68) (1.88) (2.28)

≥2 patents past 12 months 0.06 0.05 0.06 0.12 0.15 0.18
(0.76) (0.71) (0.81) (1.58) (1.88) (2.26)

≥5 patents past 12 months 0.07 0.06 0.06 0.13 0.15 0.16
(0.99) (0.87) (0.92) (1.76) (1.98) (2.16)

≥25 patents past 12 months 0.10 0.09 0.09 0.18 0.18 0.20
(1.55) (1.35) (1.35) (2.79) (2.81) (2.97)

≥50 patents past 12 months 0.05 0.05 0.05 0.19 0.19 0.21
(0.81) (0.71) (0.82) (2.87) (2.92) (3.14)
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Estimated patent values

This section describes how we estimate patent values and how our methodology differs

from that in Kogan et al. (2017). For complete details of the estimation procedure, please

see Section II.D. of Kogan et al. (2017).

The idiosyncratic stock return R (i.e., firm’s return minus the return on the CRSP value-

weighted portfolio) for a given firm around the time that its patent j is issued is

Rj = vj + εj, (C.1)

in which vj denotes the value of patent j, as a fraction of the firm’s market capitalization,

and εj denotes the component of the firm’s stock return that is unrelated to the patent.

The estimated economic value ξ of patent j is estimated as

ξj = Mj(1− π̄)−1
1

Nj

E[vj|Rj], (C.2)

in which Mj is the market capitalization of the firm that is issued patent j on the day

prior to the announcement of the patent issuance, and π̄ is the unconditional probability of

a successful patent application, which is approximately 56% of all progenitor applications

(i.e., applications unrelated to any previously filed U.S. patent application) filed between

1996 and 2005 and examined before mid-2013 (Carley et al., 2015). If multiple patents Nj

are issued to the same firm on the same day as patent j, each patent is assigned fraction

1/Nj of the total value.
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Since the market value of the patent v is assumed to be a positive random variable, v is

distributed according to a normal distribution truncated at 0, vj ∼ N+(0, σ2
vft). The noise

term is assumed to be normally distributed, εj ∼ N (0, σ2
eft). The filtered value of vj, as a

function of the idiosyncratic stock return R, is equal to

E[vj|Rj] = δftRj +
√
δftσεft

φ

(
−
√
δft

Rj

σεft

)
1− Φ

(
−
√
δft

Rj

σεft

) , (C.3)

in which φ and Φ are the standard normal pdf and cdf, and δ is the signal-to-noise ratio,

δft =
σ2
vft

σ2
vft + σ2

εft

. (C.4)

Up until this point, the estimation procedure used in this paper is the same as that in

Kogan et al. (2017). The parameters σ2
vft and σ2

εft need to be estimated. To do so, Kogan

et al. (2017), specify that the signal-to-noise ratio is constant across firms and time (i.e., δft

= δ). To avoid using future information, we allow the signal-to-noise ratio to vary over time

but remain constant across firms (i.e., δft = δt). To estimate δt, we use γt to estimate the

increase in the volatility of firm returns around patent announcement days from

log(Rfd)
2 = γtIfd + ctZfd + ufdt, (C.5)

in which Rfd is the three-day idiosyncratic return of firm f beginning on day d, and Ifd is

a patent issue-day dummy. In each estimation, the sample is restricted to firms that have

been granted at least one patent through month t, so every month, γt is updated to reflect

all available information through that month. Controls Zfd include day of the week and firm

interacted with calendar month fixed effects (Kogan et al., 2017 use year fixed effects). The

signal-to-noise estimate is recovered from the one-month lagged estimated value of γt,

δ̂t = 1− e−γ̂t−1 . (C.6)
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The last step in estimating equation (3) involves estimating the variance of the mea-

surement error σ2
εft. This estimate is accomplished nonparametrically by using the sum of

squared market-adjusted returns, and while Kogan et al. (2017) allow this estimate to vary

at an annual frequency (Andersen and Teräsvirta, 2009), we do so at a monthly frequency.

Specifically, we use a rolling twelve-month period to provide a monthly update to the estimate

of σ2
εft. To obtain σ2

εft, the realized mean idiosyncratic squared returns, σ2
ft, is estimated

using the squared residual from a rolling twelve-month regression of daily firm returns on

daily CRSP value-weighted returns (i.e., estimated idiosyncratic volatility is updated on

a monthly basis). Since σ2
ft is estimated over both announcement and non-announcement

days, it is comprised of both σ2
vft and σ2

εft. Given the estimate of σ2
ft, the fraction of trading

days that are announcement days, dft, and γ̂t, the variance of the measurement error can be

estimated, but once again, to ensure that we are not using any future information, we use

one-month lagged parameters: σ2
εft = 3σ2

ft−1
(
1 + 3dft−1(e

γ̂t−1 − 1)
)−1

.
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