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ABSTRACT

Cochenour, Brooke R. M.S.E.C.E., Purdue University, August 2020. Predicting Tran-
sit Times For Outbound Logistics. Major Professor: Zina Ben Miled.

On-time delivery of supplies to industry is essential because delays can disrupt

production schedules. The aim of the proposed application is to predict transit times

for outbound logistics thereby allowing suppliers to plan for timely mitigation of

risks during shipment planning. The predictive model consists of a classifier that is

trained for each specific source-destination pair using historical shipment, weather,

and social media data. The model estimates the transit times for future shipments

using Support Vector Machine (SVM). These estimates were validated using four case

study routes of varying distances in the United States. A predictive model is trained

for each route. The results show that the contribution of each input feature to the

predictive ability of the model varies for each route. The mean average error (MAE)

values of the model vary for each route due to the availability of testing and training

historical shipment data as well as the availability of weather and social media data.

In addition, it was found that the inclusion of the historical traffic data provided by

INRIXTM improves the accuracy of the model. Sample INRIXTM data was available

for one of the routes. One of the main limitations of the proposed approach is the

availability of historical shipment data and the quality of social media data. However,

if the data is available, the proposed methodology can be applied to any supplier with

high volume shipments in order to develop a predictive model for outbound transit

time delays over any land route.
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1. INTRODUCTION

In the shipping industry, on-time delivery is essential since the slightest delay can

disrupt the customer’s supply chain and production schedule [1]. Disruption can lead

to a ripple effect, causing brand name erosion and potential loss of market share.

This problem is compounded in mass production manufacturing since even a single

component delay can lead to the halt of the entire production chain [1]. Typically, dif-

ferent customers address delay mitigation from an inbound perspective either through

increased inventory or the ability to source the product from different suppliers. This

thesis investigates supply chain delays from an outbound perspective where the sup-

plier proactively attempts to predict potential delays allowing for preventive rather

than reactive mitigation of risks associated with these delays. In addition to being

preventive, this upstream perspective is more efficient since it also offers more flexible

options for remediation.

Outbound logistics delays can be due to multiple reasons, including manufactur-

ing delays and physical distribution delays. The focus of this thesis is to develop a

model for predicting physical distribution delays in the specific case of land trans-

portation. Predicting transit time delays is being addressed by several commercial

solutions. However, these solutions have three main limitations when predicting de-

lays for supply chain physical distribution. The first is that the available solutions

attempt to provide delay estimates based on travel times that encompass both com-

mercial vehicles and heavy-duty vehicles rather than being specific to freight delays.

The second limitation is that these solutions primarily apply to near future tran-

sit times. Therefore, they are only applicable to shipments that are en-route and

have limited usefulness to shipment planning, especially for lead times that extend

to multiple days before the actual shipment date. The third limitation is that these

solutions do not take into account the specific history and experience of the supplier
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and tend to target transit times across all manufacturing sectors. Predicting physical

distribution delays several days in advance of the actual shipment date for specific

suppliers presents challenges and opportunities.

This thesis proposes a model that predicts delays for future shipments. Applica-

tion administrators train the model for each specific supplier, customer pairs defining

a shipment route. For each model, the prediction horizon can vary from one day to

seven days ahead of the actual shipment date. Factors that can impact physical dis-

tribution delays are taken into consideration to create the proposed machine learning

model. These factors include the shipment history from the same source and des-

tination pair, the weather forecast for the planned shipment date, and social media

reports of traffic and social events.
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2. RELATED WORK

Previous research work related to physical distribution delay prediction is at the

intersection of two main areas: transit experience and machine learning. Transit ex-

perience ranges from freight cost and transit time estimation to shipment tracking.

Several commercial solutions focus on addressing these issues. Both commercial so-

lutions and research work have also successfully used machine learning techniques to

develop various classification and predictive models for predicting the transit time of

vehicles. This chapter includes a review of related commercial solutions and research

applications.

2.1 Commercial Solutions

Several existing applications provide added value to the shipment experience

in general and to the physical distribution experience in particular. For example,

KuebixTM [2] is an end-to-end transit solution that manages all product information

from shipping and transit information to temperature monitoring and expense alloca-

tion. While shipping routes and delays are not the primary focus of this application,

the underlying methodology relies on weather, season, fuel cost, and regulations to

estimate freight costs for different shipping options.

PCMilerTM [3] is an example of a commercial solution that focuses on estimating

transit times derived from real-time traffic and weather updates for different routes.

PCMiler TM extracts estimates for traffic and transit times from INRIXTM [4]. These

estimates are derived from current and historical traffic data for each route by aggre-

gating travel times of the segments that make up the route.

FourKitesTM [5] is a near real-time tracking solution for mixed-mode shipments by

land, sea, air, and rail. It relies on vehicles equipped with electronic logging devices,
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which are pinged for their status every 15 minutes. Notifications can be customized

to alert different stakeholders about the status of each shipment. In addition to GPS

and temperature tracking, the solution also provides functionality for trend analysis

over historical data.

EmicenTM [6] uses Bayesian networks, a machine learning model, to predict delays

based on the customer’s historical data. This solution targets inbound logistics rather

than outbound logistics. Customer historical data is transformed into a knowledge

map that captures the conditional probability of delays for each product. This infor-

mation allows customers to adjust order and inventory margins in order to mitigate

risks for products associated with high delay probabilities.

The model proposed in this thesis is different from the above mentioned commer-

cial solutions because the objective is to predict shipment delay during the planning

phase rather than during the shipment execution phase. Most commercial solutions,

except for EmicenTM, focus on real-time predictions. EmicenTM predicts delays in

future inbound shipments based on the distribution of the historical data. Compared

to EmicenTM, the focus of this thesis is on predicting delays in future outbound

shipments. Moreover, while EmicenTM relies only on shipment data, the proposed

approach in this thesis uses both internal shipment data as well as external data such

as weather and social media data.

2.2 Research Applications

Several transportation machine learning models have been proposed in the liter-

ature. Most of these models focus on general (public or individual) as opposed to

freight transportation.

In 2002, an artificial neural network (ANN) model for predicting bus arrival time

was proposed in [7]. The model uses two different types of data: link-based and stop-

based data. The ANN is first trained on link-based data. Adding travel times on

links between pairs of stops provides the arrival time at specific stops. A second ANN
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handles stop-based data between a pair of stops. An enhanced model combines the

two methods: link-based and stop-based. The results show that the enhanced model

can accommodate single and multiple stops. The stop-based model has improved

performance when stops have multiple intersections between them, and the link-based

model is more suitable for pairs of stops with limited number of intersections.

More than a decade ago, a survey [8] of different general transit time predictive

models highlighted the impact of data quality and availability on the predictive accu-

racy of the models. This survey indicated that the performance of transit time models

is poor when there is traffic congestion. Transit time models for both private and

public transportation evolved considerably since this survey, and several are currently

widely used.

We review two examples of earlier commuter transit models. The industry com-

monly uses these earlier models today. A Kalman filter model for short-term travel

time prediction on freeways was introduced in [9]. The parameters of the model are

updated in real-time based on the speed of probe vehicles in a two-step process. The

first step collects new observation data and updates the traffic estimates. The second

step uses traffic estimates to predict travel time.

A second commuter transit model was introduced in [10]. This model uses histor-

ical and real-time GPS vehicle location data to estimate the time of arrival. It takes

into consideration average speed and stops. The model also relies on both historical

and real-time data. A first-order-linear model is used to represent historical data.

The output of the historical data model is then adjusted according to variations in

the observed data and real-time position data collected from an advanced vehicle loca-

tion (AVL) system. The AVL system determines and transmits the absolute position

coordinates of a vehicle using a GPS. This position is used to estimate the average

speed and calculate the arrival time of the vehicle.

For public transportation, research effort is ongoing. A model that predicts the

next bus arrival time based on the distance between the vehicle of the commuter

and the bus stop, and the average vehicle speed is proposed in [11]. In this study,
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travel time is defined as the running time on route sections and does not take into

consideration additional delays due to other sources such as traffic signals, time for

passengers getting on and off each bus stop, and stop time. This information has to

be accounted for separately by keeping track of the total delay time. The bus arrival

time results from summing all delays on the way to the designated bus stop and the

travel time.

Two predictive models for bus transit time that enhance the above model are

proposed in [12, 13]. As in the case of this thesis, the first model uses a SVM.

This application creates a multi-index evaluation model and uses GPS coverage to

predict arrival time when the GPS location cannot be determined. GPS coverage is

a triangulation based on the position of the buses equipped with GPS. Each bus stop

has a different traffic pattern, and error tolerance is subject to the actual time spent at

the stop. GPS coverage and release rate accuracy are used as evaluation indices in the

model. The release rate is the percentage of the number of buses that have released

prediction information to the number of buses that have GPS onboard. The accuracy

rate is the main performance evaluation index for the model. It represents the relative

error between the actual time spent traveling and the predicted travel time. The SVM

machine learning technique is used in this application to develop the bus prediction

models. The features of the model are the GPS coverage, release rate, and accuracy

rate. Evaluation results are classified into five grades: excellent, good, average, poor,

and failing. Grades are in descending order, with excellent being the best grade and

failing being the worst grade. When coverage is at 100%, GPS coverage is considered

excellent. Every 10% decrease indicates a drop in grade. A failing grade is assigned

when the release and accuracy rates are 60% or below. Similarly, every 10% increase

indicates a grade upgrade. Once a GPS based prediction model for bus arrival time

model has been trained and evaluated using the three performance indexes; each of

the three indexes are assigned a grade. This model then uses these grades to rate the

data used during training.
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The second model [13] is a linear model that relies on both GPS location and real-

time traffic flow. It uses traffic conditions specific to each driving segment on the bus

route. An impact factor that results from a linear equation is used to represent the

traffic condition. The traffic condition enhances the GPS location, and the enhanced

calibration position information becomes an input to the model.

More recently, a real-time model for tracking bus locations was introduced in [14].

The model uses traffic information, weather condition, real-time tracking, and bus

riders’ experiences. Each route is divided into links. Links represent segments between

bus stops on different routes. The input to the model includes the transit time for

the link from the previous bus stop to the current stop and the link from the current

stop to the next stop. In addition to the link information, the model input also

includes weather conditions such as cloudy, clear, or rainy. In [14], two machine

learning techniques are used: Simple Moving Average Model (SMA) and Artificial

neural networks (ANN).

The results show that different stops result in different ANN models with vary-

ing weights because of the difference in the distribution of the data associated with

different bus stops.

The MAE and RMSE for a hybrid model based on SMA and ANN were reported

to be less than one minute. As in the case of the model proposed in this thesis, 1)

weather was determined to be a primary factor that affects bus arrival times, and 2)

the predictive contribution of each input feature differs for each model-specific route.

Research into freight transit time prediction is emerging. This effort increased

with the availability of new data collected from electronic logging devices onboard of

trucks (e.g., FourKitesTM [5]) as well as shipment data from different stakeholders in

the supply chain. The added complexity in developing models for freight transit time

is due to the limited amount of data as well as to the heterogeneity of the modes

of transportation, which can include sea, land, and rail. Few recent representative
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studies that explore the use of machine learning for freight management are described

next. These studies fall under three main categories: freight volume prediction, freight

type classification, and freight transit time.

Several current studies [15–17] focus on modeling freight volume. In [15], the

authors investigate road freight volume including Winter’s seasonal method, harmonic

analysis, and artificial immune system aiding the harmonic analysis.

Winter’s seasonal method [15] is a set of formulas used for forecasting. In [15],

five formulas are used to mimic a multiplicative version of Winter’s seasonal method.

The equations are obtained from [15]. Equation 2.1 forecasts for future periods when

t > n or t < n where t is the time period, and n is the number of observations.

y∗t =

 (Fn + (t− n) · Sn) · Ct−r if t > n

(Ft−1 + St−1) · Ct−r if t < n
(2.1)

In the above equations, Ft represents the smoothed evaluation for t’s average value

level, St represents a smoothed trend growth value for t, and Ct is the seasonality

index for t evaluated. These two equations together forecast future periods for freight

volume.

Harmonic analysis [15] is done by creating a sum of harmonics as illustrated by

Equation 2.2 where f(t) is the trend function, n is the month, i is the count of

harmonics, t is the time period, and αi and βi are coefficients

yt = f(t) +

n
2∑

i=1

(αi · sin(
2 · π
n
· i · t) + βi · cos(

2 · π
n
· i · t)). (2.2)

Harmonic analysis aided by the artificial immune system [15] is an altered version

of the harmonic function which is shown in Equation 2.3 where αi is a coefficient, n

is the month, i is the number of harmonic, t is the time period, and m is number of

elements in the time series

yt = α0 + α1 + t+
m∑
i=1

(α2i · sin(
2 · π · i
n

· t) + βi · cos(
2 · π · i
n

· t)). (2.3)
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Root mean square error (RMSE) and mean absolute percentage error (MAPE)

are used to evaluate the effectiveness of the above prediction methods. The harmonic

analysis aided by the artificial immune system reported the smallest error values with

a MAPE value of 4.14%. More recently, the same authors published a more accurate

model [17]. The new model is a variation of the Holt-Winters method [15] and is

defined by Equations 2.4, 2.5, 2.6, and 2.7. In these equations, t represents the index

of the time series, Ft is the variable forecasted at time t smoothed, St is the smoothed

value of growth of the trend at a specific moment t, n is the number of the month, yt

represents the freight volume for a given year t, α is a data smoothing factor between

zero and one, and β is a trend smoothing factor between zero and one. The optimized

values for α and β were determined using the average square error.

F1 = y1 (2.4)

s1 = y2 − y1 (2.5)

Ft−1 = α · yt−1 + (1− α) · (Ft−2 + St−2) (2.6)

St−1 = β · (Ft−1 − Ft−2) + (1− β) · St−2 (2.7)

Equation 2.8 determines the forecasted freight volume where t represents the time

period and n is the number of observations. The variable y∗t represents the forecasted

freight volume for a given time t.

y∗t =

 Ft−1 + St−1 if t ≤ n

Fn + (t− n) · Sn otherwise
(2.8)

When the immune system variant is used, the model assumes that both F1 and

S1 are independent variables. The MAPE for the model [17] was 2.5% compared to

4.14% for the earlier model [15].

The model proposed in [17] was compared to a Bayesian network. The Bayesian

network took into account the historical freight volume data as well as other met-



10

rics indicative of the overall state of the national economy. The forecasting quality

was significantly improved when the national economy metrics were included in the

Bayesian network.

The focus of the study in [16] is freight type classification. That is the freight type

moving between a source and destination location. Several classification techniques

were evaluated and those that have higher accuracy were reported. These techniques

include k-nearest neighbors and LogitBoost. The k-nearest neighbors classifier gathers

predictions from neighbors and weights them according to their distance to a test

record [16]. The dataset used to develop and test the model [16] consists of four

attributes: source, destination, freight weight, and freight type. The waybill typically

contains these attributes. An imputation algorithm was used to replace missing

values by observing values around the missing instance. The ten folds cross-validation

provided a performance evaluation of the sensitivity of the models to the training data.

The ten folds cross-validation partitions a dataset into ten sets of equal sizes and then

trains on nine datasets and tests on a single dataset. This validation method repeats

ten times, and then the mean accuracy of these ten tests is calculated and used as

a performance evaluation index for the models [16]. The results of the comparative

study showed that the k-nearest neighbors algorithm performed the best with an

accuracy rate of 82.72%.

The focus of the next three studies is on estimating freight transit time. In [18],

a bimodal Gaussian mixture model (GMM) and a long short-term memory (LTSM)

model were used to characterize driving speed. The input variables to the models

were the horizontal curvature, vertical curvature, horizontal curve length, vertical

curve length, cross slope, cross-section width, and 3D available sight distance from a

3D road map. Multiple Gaussian probability functions are applied by the GMM to

estimate speed distribution. The model output variables were used in the GMM to

show the speed distribution. The study shows that the LTSTM model had the best

performance.
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In [19], a Gradient Boosting Regression Tree (GBRT) model for the prediction of

the travel time of freight vehicles is proposed. The model uses a training set consisting

of a D-dimensional input vector x and a one-dimensional target vector y. The goal of

GBRT is to find a latent function f that maps x to y while minimizing the expected

value of a loss function over a joint distribution between x and y. It does this through

gradient boosting. Boosting algorithms are iterative approaches to finding a simple

regression function while minimizing error [16]. The study defines base learners as

simple function and expansion coefficients [19]. The functions expand iteratively

to higher levels up to a specified value. The model considers base learners solved

when they fit with pseudo-residuals that meet a pre-defined loss criteria. Training

and testing data cover three routes. The basic features of the model consist of the

departure time, day of the week, month, day in the month, day in the year, weekday,

workday, and public holiday in addition to historical travel times and mean speed

sequence where each mean speed in the sequence is estimated using trajectory data.

A fifteen-minute observation window constructs a trip. Trips are defined as a tuple.

The tuple contains three groups of features: basic, historical travel time, and mean

speed sequence. The study examines feature importance for the GBRT models by

measuring the frequency of occurrences of each feature in all splits of the decision trees.

The feature analysis showed that historical interval mean travel time and departure

time were critical features in the model. The study presented a reduced feature model.

This reduced model consisted of all features except for weekday, month, and workday.

The model proposed in the above-mentioned study is a real-time model that uses

real-time data to supplement historical data. This model differs from the model

presented in this thesis, which allows for a prediction horizon of seven days.

In [20], containership arrival for seaborne trade is predicted using a fuzzy rule-

based Bayesian network. Several factors were determined to impact the prediction

accuracy, including port-channel conditions, terminal conditions, port administration

process, and inland corridors. Results show prediction errors range between 4.2% and

6.6%, a margin that was considered adequate.
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The model proposed in this thesis differs from the above-mentioned applications

as it aims to estimate transit time for future road shipments during the shipment

planning phase. Moreover, the proposed model relies on an expanded feature set

that uses the carrier and loading point of the shipment. It also extends to external

factors that could affect the shipment travel time, such as weather and social media

information. These factors provide a more comprehensive set of inputs for predicting

the transit time of a shipment.
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3. METHODS

Predictive modeling can benefit supply chain in several phases from production to

distribution. In this thesis, we focus on developing a predictive model for estimating

transit time during physical distribution. Moreover, the model supports an extended

prediction horizon because the goal is to use the estimates generated by the model

during shipment planning, which can occur days before shipment execution.

This chapter describes the dataset, the data processing steps, and the predictive

transit time model.

3.1 Dataset

Four routes of varying distances and geographical locations were chosen from an

operational shipment database of a supplier. Shipments associated with these routes

develop and validate the proposed model. The other sources of data are TwitterTM

[21] and weather [22,23]. The data extracted from these sources collectively make-up

the input feature space of the proposed model, as shown in Table 3.1. The next

section describes each component.

3.1.1 Supplier Shipment Data

Table 3.2 shows an example shipment. Except for the shipment date, all the

supplier features are categorical. These features include:

• Shipment Number (ShipNum) which consists of a unique key that identifies

each shipment.

• Shipment type (ShipType) which indicates whether the shipment is a full truck-

load, partial truckload, tank truck, etc.
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Table 3.1.: Model Input Features.

Feature Definition

Supplier

Sdate Shipment date

ShipType Shipment type (e.g., full truckload, partial truckload, ... )

DelivPriority Delivery priority

DelivItem Delivery item

Carrier Carrier identification

DangGood Dangerous good indicator (Yes/No)

LoadingPoint Loading point for the shipment

TwitterTM

road, event, ac-

cident, traffic

Count of tweets for each keyword.

Weather

Tmax, Tmin Maximum and minimum temperature in tenth of Celsius

Rmax, Rmin Maximum and minimum rain in Millimeters

Smax, Smin Maximum and minimum snow in Millimeters

• Carrier (Carrier) which represents the carrier assigned to the shipment.

• Delivery Item (DelivItem) which represents the product being delivered.

• Delivery priority (DelivPriority) is the priority assigned to the shipment. The

priority is included in the model because in can impact the transit time of the

shipment.

• Dangerous good (DangGood) indicates whether or not the shipment consists

of dangerous goods. This factor can affect transit time since some roads have

hazardous material restrictions.

• Loading Point (LoadingPoint) at the source facility assigned to the shipment.
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Table 3.2.: Example Shipment.

Field Name Description Example

ShipNum Unique ID of the Shipment 1

Source Five digits source zip code 46220

Dest Five digits destination zip code 46143

Sdate Date the shipment left the source facility 10/31/2019

ShipType Shipment Type 1

Carrier Carrier assigned to the shipment Carrier A

DelivItem Type of item being delivered 100

DelivPriority Delivery priority of the shipment 1

DangGood Dangerous Goods Indicator 0

LoadingPoint The loading station at the source zip code 1

3.1.2 Route Information

Route information is collected for each (source, destination) pair. The five-digit

zip codes are used to represent the source and destination. Five-digit zip codes are

used in this project, instead of the ten-digit zip codes, because several applications

only support restricted zip codes in the United States. The route information consists

of geofences along the route from the source to the destination. This information is

used to collect relevant TwitterTM and weather data. The process consists of three

steps, as illustrated in Figure 3.1.

The first step consists of converting the source and destination zip codes into

geocodes. This process is known as forward geocoding and is performed using the

Geocode.CATMAPI [24], as shown in Figure 3.2.

During the second step, the OSRMTM API [25] takes the geocoded source and

destination and generates random nodes along the route between the source and

destination zip codes, as shown in Figure 3.3. A temporary file stores the nodes

returned by the OSRMTM.
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Fig. 3.1.: Route Information Collection Process.

# key = au then t i c a t i on key f o r API

# address = z i p code f o r forward geocode

URL=”https : // geocoder . ca /? l o c a t e=”+address+”&json=1&auth=”+key

Fig. 3.2.: API Request URL Format for geocode.ca.

# l a t s = l a t i t u d e source

# l on g t s = l ong i t ude source

# l a t d = l a t i t u d e d e s t i na t i on

# long td = long i t ud e d e s t i na t i on

URL = ”http :// route r . p ro j e c t−osrm . org / route /v1/ d r i v i ng /” +

long t s + ” , ” + l a t s + ” ; ” + longtd + ” , ” + la td + ”?

a l t e r n a t i v e s=f a l s e&annotat ions=nodes ”

Fig. 3.3.: Example OSRMTM API [25] URL Request.

In the third step, the nodes along the route are converted to geocodes using the

OverpassTM API [26]. They are retrieved from the temporary file created in the

previous step and submitted to the OverpassTM API, as shown in Figure 3.4. The

API returns a JSON object that consists of a sequence of (latitude, longitude) pairs.



17

# node = a node from OSRM API

URL = ”https : //www. overpass−api . de/ api / i n t e r p r e t e r ? data=[out :

j son ] ; node ( ” + node + ” ) ; ( . ;%3E ; ) ; out ; ”

Fig. 3.4.: Example OverpassTM API [26] URL Request.

3.1.3 TwitterTM Information

TwitterTM data is extracted using a set of query keywords, the shipment date,

and geofences created from the route nodes (longitude, latitude) described above.

A five-mile radius surrounding every nth (latitude, longitude) pair defines the

geofence, where n is determined using the length of the route. The ratio of route

length to the number of nodes varies per route. For example, route A is 69 miles long

and has 1030 nodes, while route D is 288 miles and has 3021 nodes. Route A has

a mile to node ratio of 14.9, while route D has a mile to node ratio of 10.5. Table

3.3 illustrates the variations in the node ratios. The number of nodes for each route

can be extensive and a method is needed to sub-sample the nodes along each route.

Initially, a node was selected every 5 miles. However, this approach was not efficient

because it did not differentiate between long and short routes. It also led to gaps that

ignored relevant tweets.

Table 3.3.: Route Mile To Node Ratios.

Route Mile To Node Ratio

A 14.9

B 20.9

C 13.2

D 10.5

In order to reduce the number of nodes, Equations 3.1 and 3.2 are used to de-

termine the number of nodes needed per route to extract the TwitterTM data. In

Equation 3.1, d represents the length of the route in miles. Five is used as the divisor
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because the radius selected was five miles. This equation gives an estimate of the

number of nodes that should be in the route fence for each route.

est =
dmi

5
(3.1)

Nodes, when gathered, are non-uniform and can vary. N determines the number

of nodes collected. Every nth node is skipped when parsing the route fence in an

attempt to limit the number of nodes to one node every five miles. Equation 3.2 is

used to calculate the value of N .

N =
nodetotal
est

(3.2)

In this equation, nodetotal represents the total number of nodes that comprise a

given route. Once N has been calculated using Equation 3.2, when making API calls,

the geofence disregards every nth node while constructing the route fence. Table 3.4

shows the before and after node sub-sampling counts.

Table 3.4.: Route Lengths and Nodes

Route Distance (km) Distance (mi) nodes prior nodes after

A 111 69 1029 15

B 193 120 2508 26

D 463 288 3021 93

G 309 192 2535 63

The Twitter TM API call [27] searches each geofence along the route for all tweets

containing the keywords: event, accident, road, and traffic on a given date. These

query keywords were selected based on an examination of several tweets across the

routes. For instance, contexts such as “road congestion” and “road construction” are

aggregated under the keyword “road” because of the co-occurrence of the underlying

terms.
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3.1.4 Weather Information

A weather station list is constructed for each route. Weather stations cannot

be identified from NOAATM [22] using latitude and longitude. They are identified

manually along each route based on their proximity to the centers of the geofences

using the NOAATM find station tool. The source and destination zip codes filter the

search, and weather stations within the proximity of the route nodes are selected and

added to the station list.

There are two types of weather data: 1) historical data, used to train the predictive

transit model, and 2) forecast data, used to generate transit time estimates for future

shipments. The NOAATM yearly archive files provide the historical weather data, and

the date and station list filter the data. For any given day, the application calculates

the maximum and minimum temperature, rain, and snow across all of the weather

stations in the station list for a given route. These values are used as an input to the

model as shown in Table 3.1.

The weather.govTM forecasting API [23] is used to retrieve weather forecasting

data. The API returns raw data in JSON format. This API supports a seven-day

forecasting window. Figure 3.5 shows the corresponding API call using the future

shipment date for each (latitude, longitude) node in the route. As in the case of the

historical weather data, the return values are aggregated into maximum and minimum

temperature, rain, and snow along the route.

” https : // g raph i c a l . weather . gov/xml/ sample products / b r ow s e r i n t e r f a c e /

ndfdXMLclient . php? l a t ”+l a t i t u d e+”&lon=”+long i tude+”&product=time−

s e r i e s \&begin=”+dayStart+”&end=”+day +”&maxt=maxt&mint=mint&qpf=qpf&

snow=snow”

Fig. 3.5.: Weather.govTM API [23] Call Format.
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3.2 Database

The data retrieved from all the sources is consolidated into a database consisting

of five groups of tables:

• Dictionary tables which are used to encode the shipment data,

• Route tables which include the route information,

• Stat table which maintains the statistics corresponding to each transit model,

• Historical shipment table which includes the shipment information used to train

the model, and

• Future shipment data table.

Figure 3.6 shows the ERD of the entire database, and the five groups of tables are

described below.

The dictionary tables convert different string attributes into an encoded integer

value. This group includes the followings tables: dangerousGoods, DeliveryPriority,

carrier, lateDelv and LoadingPoint. Each table maintains the string-to-integer map-

ping for a given attribute. The lateDelv table is used to code the lateDelv parameter.

The dictionary tables must be reviewed regularly since the supplier may add a new

carrier or a loading point.

The route table includes a record for each route where a record consists of the

route number, the source and destination zip codes of the route. The routefence

table stores the sequence of latitude and longitude pairs for each route. Similarly, the

stationlist table holds the list of NOAATM weather stations along each route. These

tables are generated once for each route and are used by the model to extract weather

and TwitterTM data.

The history tables are organized by source zip code. That is, all routes that start

from the same source are associated with a single history source table. A single table

is shown in Figure 3.6 to represent the history tables. The attributes in this table

consist of a combination of the parameters in Tables 3.2 and 3.5
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Table 3.5.: Attributes of History Source Tables in the Database.

Attribute Description

ShipNum Unique ID of the Shipment

ShipType Represents whether shipment is a full truck-load, partial truck-

load, tank truck, etc...

Dest Five digit destination zip code

Sdate Date the shipment left the source facility

Day Day of month shipment leaves source facility

Month Month shipment leaves source facility

Year Year shipment leaves source facility

Carrier Carrier assigned to the shipment

DelivItem Type of item being delivered

DelivPriority Delivery priority of the shipment

DangGood Dangerous Goods Indicator

LoadingPoint The loading station at the source zip code

Tmax Maximum temperature on the date the shipment left source fa-

cility

Tmin Minimum temperature on the date the shipment left source fa-

cility

Rmax Maximum rain on the date the shipment left source facility

Rmin Minimum rain on the date the shipment left source facility

Smax Maximum snow on the date the shipment left source facility

Smin Minimum snow on the date the shipment left source facility

road Count of Tweets with keyword road the date the shipment left

source facility

event Count of Tweets with keyword event on the date the shipment

left source facility

accident Count of Tweets with keyword accident on the date the shipment

left source facility

traffic Count of Tweets with keyword traffic on the date the shipment

left source facility

transit time transit time of the shipment
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The newshipments table stores the shipments that are currently being planned.

The table has similar attributes to those of the history tables. This table is used by the

predictive transit model to estimate the transit time for future shipments. Most of the

Table 3.5 attributes are present in the newshipments table. The newshipments table

does not have the lateDelv and transit time attributes. Instead, it has an attribute

called transit time prediction, which holds the transit time value predicted by the

model for each future shipment. The road, event, accident, and traffic fields contain

the most up-to-date TwitterTM data for the route. The Tmax, Tmin, RMax, Rmin,

Smax, and Smin fields contain forecasted weather information. This information is

updated when the TwitterTM data is updated. It is recommended to update this

information on a daily basis to get the most accurate predictions possible.
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Fig. 3.6.: Database ERD.
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3.3 Transit Time Models

A machine learning model is developed for each route. Each model is an ensemble

of multiple classifiers that are trained using a set of shipments and tested using a

different set of shipments. An SVM with a radial basis function kernel (RBF) is the

basis of each classifier. The shipment data ranges from 01/01/2017 to 6/30/2019.

The training shipment range covers two-years (i.e., from 01/01/2017 to 12/31/2018).

The model uses the remaining shipments (i.e., from 01/01/2019 to 6/31/2019) for

testing. Using this data range split corresponds to the recommended 80/20 split

between training and testing as well as aligns with the aim of the model of using

historical shipment data to estimate the transit time for future shipments.

Transit time for historical shipment varies for each route. The transit time range

determines the number of classifiers used in the model for each route. Transit time

measurements are in the number of days. For example, when the transit time equals

0 days, the shipment is delivered on the same day. Similarly, a transit time of 1 day

indicates a next day delivery.

The minimum transit time of all the shipments on the target route represents the

minimum value of transit time. The average transit time plus two standard deviations

defines the maximum transit time for a route. Data entry errors often create outliers

in the dataset. For example, a route with an average transit time of one day can

include a historical shipment with a transit time equal to 30 days because of an error

in an entry in the month of the shipment. The threshold imposed on the maximum

transit time reduces these outliers and limits the number of classifiers needed for each

route.

The transit time range for each route as defined above will have multiple days.

For each of these days a classifier is developed. For example, a range of 1-3 days has

a classifier that trains using one day as the target, a classifier that uses two days as a

target, and a classifier that uses three days as its target. Each classifier trains using the
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one-versus-all approach [28]. For example, the one-day classifier considers shipments

with a transit time of one day as positive and all other shipments as negative.

The prediction from all classifiers is combined to generate an estimate for the

transit time of the shipment. Each classifier is a binary classifier that returns either

a true or a false depending on the test shipment. This indicates whether the test

shipment is estimated to have a transit time equal to the classifier or not. For example,

let a given model route model have three classifiers corresponding to transit times

of 1 day, 2 days, and 3 days. Each test shipment on this route submits to all three

classifiers. If the results indicate true for a single classifier, then that classifier delay is

assigned as an estimate of the test shipment transit time. If more than one classifier

returns true, then the transit time of the shipment is estimated as the average of the

delays of these classifiers. If all three classifiers return false, then the estimate transit

time is set to the mean of the maximum and minimum transit times for the model.

The accuracy of the ensemble model is evaluated using the MAE and RMSE as

defined in Equations 3.3 and 3.4 respectively. In these equations, i represents the

number of shipments in the test dataset.

MAE =
1

i

i∑
1

|predicted transit time− actual transit time| (3.3)

RMSE =

√√√√1

i

i∑
1

(predicted transit time− actual transit time)2 (3.4)

Each classifier is built using SVM. Equations 3.5 [29], 3.6 [30], 3.7, 3.8 [31], and

3.9 [31] are associated with the RBF SVM used in this thesis. In Equation 3.5, −→x

represents the input feature vector of the model and −→y represents the target label

vector. Gamma is calculated using Equation 3.7 where j represents the number of

inputs to the model. Multipliers are solutions to the quadratic optimization problem

solved using a quadratic solver that minimizes Equation 3.8 and maximizes Equation

3.9 [31]. In these equations, P is the matrix of solver parameters, x and s are the
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primal variables, y and z are the dual variables, and matrices A and b contain equality

constraints where A is a sparse matrix and
−→
b is a single-column dense matrix [31].

x and y represent a single element from −→x and −→y respectively. Solutions are repre-

sented in
−→
b . The SVM algorithm searches for optimal solutions that will solve the

hyperplane that follow the following constraints for Equations 3.8 and 3.9. Equation

3.8 has two constraints to abide by: (1) Gx ≤ h and (2) Ax = b. Equation 3.9 also

has two constraints: (1) q +GT z + ATy ∈ range(P ) and (2) z ≥ 0.

kernel = exp(−||X − Y ||2 ∗ (γ)) (3.5)

||X|| =
√

(
∑
i,j

|(xi,j|2) (3.6)

γ =
1

j
(3.7)

There are several parameters associated with the model and these parameters

need to be calibrated for each specific application. A tolerance level of 1× 10−5 was

used in this application. A range between 0 and 1× 10−8 was tested. The tolerance

level that produced the least amount of error was then selected.

The model did not use C, a constraint in the constrained optimization formulation

of the SVM. C is used to calculate G and h when assigned a value.Tests were con-

ducted with negative and positive C values ranging from 1× 10−5 to 1× 101. This

parameter did not improve the performance of the model. Due to this reason, C is

set to none. When the C value is set to none, the quadratic solver excludes C from

the calculation of G and h. In this thesis, G is the diagonal of a 1xn matrix filled

with negative ones, and h is a 1xn matrix of ones where n represents the number of

training data. The quadratic optimization Equations (3.8 and 3.9) use the matrices

G and h in the calculations.

(
1

2
)xTPx+ Px+ qT (3.8)
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−(
1

2
)(q +GT z + ATy)P t(q +GT z + ATy)− hT z − bTy (3.9)

According to [32], SVMs are considered the most robust and accurate classification

techniques. SVMs have a single optimal solution for a problem [33, 34]. Learning

problems are reduced into optimization problems by SVMs [34]. SVMs operate by

maximizing margins and creating the largest possible distances between a separating

hyperplane and the instances on either side [32]. The models in this thesis uses an

RBF kernel. A kernel is used to transform the input space into a higher dimensional

space where classification can be performed.

The SVM has several limitations; among these are feature selection and parameter

selection [34]. Standard SVMs cannot select important features. To overcome this

limitation, SVMs are typically complemented with feature selection strategies such

as the wrapper-type method used in this thesis [34]. Other approaches for choosing

an SVM parameter also exist. An effective approach, outlined in [34], consists of

estimating the generalization error and then searching for parameters that minimize

the estimator.
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4. RESULTS

In this chapter we present the results of applying the predictive transit model to the

four routes selected from the supplier database. We also show the application that

was developed to facilitate the training and testing of the model in production.

4.1 Model Validation

Table 4.1 shows the four routes used to validate the accuracy of the models. These

routes are labeled A through D. They have varying distances, headings, and average

transit times. Some of these routes share the same source zip code, but all travel to

different destination zip codes. Routes A and B have the same source. Routes C and

D have a unique source each.

Table 4.1.: Characteristics of the Routes.

Route Distance

(km)

Heading Average transit

time (days)

Transit time Stan-

dard Deviation

A 111 NE-north 0.7 0.7

B 193 NE-south 0.8 0.7

C 309 SE-west 1.6 7.0

D 463 SE-west 2.0 15.2

Some of the routes cover a longer distance than other routes. These routes tend

to have higher average transit times. Also, as illustrated in Table 4.1, the standard

deviation of the transit time of the routes varies considerably.

For example, Route C has an average transit time of 1.6 days with a standard

deviation of 7.0 days, while route A has an average transit time of 0.7 and a standard
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deviation of 0.7. The transit time for route D is high because of four outliers in the

dataset, three of which mark the transit time to be 365 days and more. These outliers

could be due to human error when entering the Sdate field information. With these

four outliers excluded, the transit time standard deviation for route D is 1.0.

Table 4.2.: Number of Shipment Records, MAE, and RMSE for each Route Model.

Route Number of training

shipments

Number of testing

shipments

MAE RMSE

A 1923 346 0.56 0.75

B 989 142 0.47 0.66

C 1267 254 0.74 1.07

D 1403 364 0.85 1.08

Table 4.2 depicts the number of training and testing shipments used for each

model, along with the MAE for each route. The models in this table use all of

the input features shown in Table 3.1. The MAE, calculated using Equation 3.3,

represents the difference between the predicted and actual transit times. Lower MAE

values indicate more accurate models. Most of the models train with more than

1,000 shipments. Table 4.2 shows that the MAE values for each route are less than

the standard deviation of the transit time for all the routes. The RMSE is calculated

using Equation 3.4 and represents a higher weighted difference between the predicted

and actual transit times. The RMSE is less than the standard deviation of the transit

time for routes B and D, but greater than the deviation for routes A and C.

Moreover, the table shows that models for longer routes are more accurate than

shorter routes. Table 4.3 shows the coefficient of variation (CV) values for each

route. The CV values represent the relative standard deviation. These value show

that the deviation in the predictions between shorter routes and longer routes cannot

be directly compared. Due to this evaluation, T value confidence intervals were

constructed with a significance level of 0.05 and a T value of 1.96 for each route. Table
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4.4 shows the confidence intervals (CI) for each route. When taking into account the

CV and CI for each route, longer routes appear to be more accurate than shorter

routes. For example, the longest route has an MAE of 0.85 days and RMSE of 1.08

days, with a standard deviation of 15.2 and an average transit time of 2 days, while

the shortest route has a MAE of 0.56 days and RMSE of 0.75 days with a standard

deviation of 0.7 days and an average transit time of 0.7 days. Also, the longest route

has a CI of 1.29 to 2.71 and the shortest route has a CI of 0.67 to 0.73. This variation

is due to the number of training shipments and the distance of each route. The model

obtains higher accuracy when training with more shipments. Longer routes also have

an extended transit time range, and therefore their ensemble model includes more

classifiers.

Table 4.3.: Coefficient of Variation for Each Route.

Route CV

A 100.00%

B 87.50%

C 435.5%

D 760%

Table 4.4.: Confidence Intervals for Each Route.

Route Confidence Interval

A (0.67, 0.73)

B (0.76, 0.84)

C (1.25, 1.95)

D (1.29, 2.71)

For further comparison, z-score values were calculated and p-values were calcu-

lated. These values are displayed in Table 4.5. One-tailed tests were conducted to
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test the confidence in the resulting MAE values. A significance level of 0.05 was used.

The p values for routes A, B, and C are not significant, instilling confidence that

the MAE values are equivalent to their current values. The p value for route D is

significant. This significance indicates that the MAE for route D may be less than

0.85.

Table 4.5.: Z-Score and p Value for Each Route.

Route Z-Score p Value

A -0.20 0.42

B -0.47 0.32

C -0.12 0.45

D -7.18 < 0.00001

Each route has a different number of classifiers that train and test the data. Table

4.6 shows the number of classifiers created for each route. Routes A and B use three

classifiers and routes C and D use five. Table 4.7 depicts the number of classifiers

rows marked as true for each test case.

Table 4.6.: Number of Classifiers Created for Each Route.

Route Number of Classifiers

A 3

B 3

C 5

D 5
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Table 4.7.: Number of Classifiers Marked True for All Test Shipments on Each

Route.

Route 0 1 2 3 4 5

A 35 172 94 20

B 38 76 28 0

C 51 120 70 11 2 0

D 11 102 167 71 13 0

4.1.1 Feature Engineering

The feature representation and selection are essential design characteristics of the

model. For instance, we explored the different representations of the shipment date

Sdate, namely, day of the week, day of the month, and day of the year. The day of

the month representation resulted in the lowest MAE values as shown in Table 4.8.

Table 4.8.: MAE for the Different Date Tests.

Route Day of Week Day Of Month Day Of Year

A 0.57 0.56 0.60

B 0.57 0.47 0.49

C 1.02 0.74 0.88

D 1.13 0.85 0.94

To analyze each feature’s impact on the model’s performance, a wrapper-based

reduction approach, similar to the one presented in [35], was used. This method is an

iterative approach that removes an input feature on each iteration. After eliminating

the feature, the model is re-run with the remaining features. Next, the application

compares the MAE from the previous iteration to the new MAE. The model retains

a feature if the new MAE is higher than the previous MAE. Otherwise, the feature

is eliminated. Table 4.9 illustrates this approach for route A. A one indicates that
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the parameter is present, and a zero indicates that the parameter is omitted from the

model. Limitations include predictions converging to only the average transit time

when the model has only a single input. When a single input is used, the model

cannot accurately predict transit time. Due to this, more of the classifiers predict

false for the test data. When there are no true entries for a classifier, the average

transit time is used as the prediction. This prediction method causes the model to

converge towards the average transit time when a single parameter is used.

Additional tests are conducted using the important features found using the

wrapper-based reduction approach to overcome this limitation. These tests consist

of the essential features with and without the road and event parameters because

these appear at the end of the wrapper-based approach. When the MAE is higher

without the feature, the feature is classified as important and included in the reduced

model. Table 4.9 indicates that for route A, DelivPriority, DelvItem, DangGood,

Sdate, Tmax, Tmin, and event are potential important features; However, after addi-

tional tests are conducted, the reduced model for A without the road feature results

in an MAE of 0.39. When adding the road parameter to the model, the MAE in-

creases to 0.41, indicating that road is not an important feature for the model. The

reduced model of A with the event feature results in a MAE of 0.50, while excluding

the event feature results in a MAE of 0.39. Therefore, the final reduced model of A

does not include the features event and road.

The above approach helped identify a minimal model for each route. Table 4.10

shows the retained features for all the routes. The MAE values in Table 4.10 are

lower than those of the full model shown in Table 4.2, with an exception for route G

where the MAE is 0.3 higher than the MAE of the full model. The RMSE for routes

A and D are less than the RMSE of the full model. Routes B and C have a RMSE

greater than those of the full model by 0.07 and 0.18, respectively.
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Table 4.9.: Wrapper-Based Reduction Approach on Route A.
MAE Ship

Type

Deliv

Priority

Delv

Item

carrier Dang

Good

Loading

Point

Tmax Tmin Rmin Rmax SMax SMin Sdate traffic accident event road

0.56 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.56 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0.61 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.53 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.56 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0.55 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0.60 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0.57 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0.55 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0.57 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0.59 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0.53 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0.56 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0.57 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0.48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 4.10.: Reduced Model Results.

Route Twitter Weather Supplier Reduced

MAE

Reduced

RMSE

Full

MAE

Full

RMSE

A Rmin, Rmax,

Smin

Sdate, DelivPriority,

Carrier, LoadingPoint

0.39 0.64 0.56 0.75

B traffic,

event

Tmin, Rmin,

Smax, Smin

ShipType, DelivItem,

Carrier, LoadingPoint

0.43 0.73 0.47 0.66

C accident,

event

Tmax, Rmin,

Rmax, Smax

ShipType, Carrier,

LoadingPoint, Sdate

1.04 1.25 0.74 1.07

D accident,

road

Tmax, Tmin,

Rmin, Rmax

Sdate, DelivPriority,

DelvItem, Carrier,

DangGood

0.78 1.05 0.85 1.08

The heuristic used to eliminate the feature is not optimal in all cases. For example,

the eliminated features for routes A, B, and D were appropriated; However, the

features for route C may not have been since the reduced model has a higher MAE

than the full model. Table 4.10 shows that the TwitterTM features are not significant
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for route A and that the supplier and weather features are significant. For routes B,

C, and D, features from the three different data categories are significant.

The three sources of features (TwitterTM, weather, and supplier) suffer from miss-

ing and noisy data. TwitterTM data is very sparse for shorter routes and some geo-

graphical regions. The majority of tweets were posted by a limited number of users

that focus on monitoring traffic in their geographical location. Table 4.11 illustrates

the number of tweets for each route on 10/16/2018. Route A and B both have a low

number of Tweets. This similarity could be due to the fact that routes A and B start

at the same source and follow similar paths. Route C has an even smaller number of

Tweets. Route D, one of the longer routes, as expected, has the highest number of

Tweets.

Table 4.11.: Twitter Counts on 10/16/2018.

Route Accident Event Traffic Road

A 4 13 15 3

B 37 21 26 23

C 35 17 0 0

D 279 79 358 41

Weather information for individual stations along routes can also be missing when

stations do not report information for a given day. The distribution of missing data

cannot be calculated because NOAA TM represents missing data as zeroes. Differen-

tiation between zero values that are real zeroes and zero values that are missing data

is not possible; Tables 4.12 AND 4.13 display the number of rows that contain 0 for

training and testing files for each route.

Finally, supplier data can also include entry errors. Moreover, since a model is

developed for each route, there may be little variation for some of the features. For

example, DelivItem and DangGood are all constant for route A, and these features

were not retained in the model (Table 4.10).
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Table 4.12.: Training Data Rows that Contain 0 for at Least 1 Weather Parameter.

Route Tmin Tmax Rmin Rmax Smin Smax Total Rows

A 0 0 648 648 1786 1786 1788

B 0 0 379 379 936 936 936

C 15 0 689 689 1259 1259 1259

D 0 0 158 158 1143 1143 1143

Table 4.13.: Testing Data Rows that Contain 0 for at Least 1 Weather Parameter.

Route Tmin Tmax Rmin Rmax Smin Smax Total Rows

A 0 0 142 142 296 296 296

B 0 0 53 53 127 127 127

C 12 0 123 123 254 254 254

D 0 0 44 44 255 255 264

4.1.2 Prediction Horizon

The proposed model has a prediction horizon of 1 to 7 days as a result of the

limitations on the weather forecasting horizon. That said, weather information can

be forecasted up to fifteen days out from other weather sources such as AccuWeather

[36]. Moreover, traffic data from TwitterTM posts daily and thus may or may not

be relevant for future dates. In fact, social media data may become less applicable

for extended prediction horizons. Because of these reasons, transit time estimates

should improve in accuracy as the shipment execution date approaches. Therefore,

the model should be applied to future shipments during the planning phase daily until

the shipment execution date. The weather forecasting information is not archived in

NOAATM and actual weather data of 1 to 7 days prior to the shipment date is not

an adequate replacement. Thus, the prediction horizon does not include changing

weather data.
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Table 4.14.: MAE of Models with Extended Prediction Horizon.

Horizon A B B reduced

0 0.56 0.47 0.43

1 0.57 0.42 0.42

2 0.59 0.49 0.46

3 0.53 0.48 0.46

4 0.57 0.44 0.45

5 0.55 0.46 0.49

6 0.59 0.47 0.44

7 0.59 0.43 0.48

The full models for route A and route B and the reduced model for B ran us-

ing Twitter TM for data from 1 to 7 days prior to the shipment date was used to

demonstrate the performance of the model over an extended horizon prediction. The

reduced model for A was not included because it does not have any TwitterTM inputs

as shown in Table 4.10.

The MAE values for the prediction horizon tests ranged between 0.53 to 0.59 for

route A, and 0.42 to 0.49 for route B. Table 4.10 shows that for route A Twitter TM

features are not relevant, while for route B traffic and event are essential features.

The MAE for the prediction models do not consistently follow a trend. Therefore,

the results are inconclusive and require future investigation.

The reduced model of route B has an increase MAE for all prediction horizon days

with an exception for day one. The values range between 0.42 and 0.49. This model

performs as expected. The performance degradation of routes A and B is likely due

to the extended prediction horizon and availability of some of the relevant Twitter

TM data.
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4.1.3 Enhanced Model

An enhanced model for route D using historical traffic data from INRIXTM [4] was

developed. Historical INRIXTM data was available for 2018 and 2019 and includes

the fields shown in Table 4.15.

Table 4.15.: INRIXTM Parameters.

Field Description Example

Severity Incident Severity 4

Incident obstruct Total number of incidents involving an ob-

structed roadway

9

Incident construct Total number of incidents involving construc-

tion

5

Incident accident Total number of accidents along the route 7

Speed Average historical speed for a route on a given

day

64

Table 4.16.: Shipment Record Counts for Models with INRIXTM Features.

Number of training

shipments

Number of testing

shipments

With Speed 165 38

Without Speed 781 364

Average historical speed was not available for a portion of the date range. Table

4.16 shows the number of training and testing cases with and without speed. Due to

the lack of training and testing speed data, the speed model was not attempted. In

order to compare the INRIX enhanced models with the baseline models, the range of

training data for all models was limited to 2018 and the testing data was limited to

2019.
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Table 4.17 shows the MAE values for the models over this reduced date range.

This table shows that the enhanced INRIXTM models have higher performance. For

the baseline full feature model the MAE decreases by 0.07 and the RMSE decreases by

0.03. For the reduced feature model MAE decreases by 0.14 and the RMSE decreases

by 0.07.

Feature reduction was performed on the new enhanced model after the addition

of the INRIX data using the same methodology described in Section 4.1.1.Table 4.10

shows that the features of the reduced models with and without INRIX data are

different. The MAE and RMSE for the new INRIX reduced feature model are less

than the MAE and RMSE for the original reduced feature model for route D. The new

reduced feature model has the same MAE as the baseline reduced feature model, but

the RMSE is 0.11 less than the the RMSE of the original reduced feature model. This

indicates that the new reduced feature model outperforms both the original reduced

feature models with and without INRIX data.

Table 4.17.: MAE of the Models With and Without INRIXTM Data.

Model MAE RMSE

Baseline Feature Model 0.88 1.15

Baseline + INRIXTM 0.81 1.12

Baseline Reduced Feature Model 0.94 1.14

Baseline Reduced Feature Model + INRIXTM 0.80 1.07
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Table 4.18.: Reduced Feature Models With and Without INRIXTM Data.

Route Twitter Weather Supplier INRIX MAE RMSE

Baseline

Reduced

Feature

Model

accident,

road

Tmax,

Tmin,

Rmin,

Rmax

Sdate,

DelivPriority,

DelvItem,

Carrier,

DangGood

0.94 1.14

Baseline

Reduced

Feature

Model +

INRIXTM

event Rmin,

Smax

Sdate,

DelvItem,

Carrier,

LoadingPoint

Incident construct,

Incident accident

0.80 0.96
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5. APPLICATION

An application that facilitate the development and use of the predictive transit model

in production was developed. The application consists of two components: User

Application and Administrator Application.

5.1 User Application

The user application provides the shipment planner with easy access to estimated

transit times. The estimate is specific to each shipment and includes additional

information such as source, destination, day of the month, product type, as shown

in Figure 5.1. The accuracy of the information entered by the shipment planner has

a significant impact on the accuracy of the estimated transit time. Moreover, the

accuracy of the estimate improves as the shipment date approaches.

The user application view shows all of the shipments that are currently being

scheduled. This application has two main functionalities. The first displays the

current transit time estimates for planned shipments and those that were recently

uploaded. The second allows the user to upload a new set of shipments and calculates

the corresponding transit time estimates. The interface in Figure 5.1 shows the unique

identification number of the shipment and the 5-digit zip codes of the source and

destination of the shipment. Other parameters for a given shipment can be viewed

by expanding the view option, as shown in the example in Figure 5.2.



42

Fig. 5.1.: User Application Interface.



43

Fig. 5.2.: Detail Shipment View in User Application.
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To upload new shipments, the shipment planner prepares a shipment file, as shown

in Figure 5.3. The attributes of the shipment file are shipNum, Source, Dest, Sdate,

ShipType, Carrier, DelivItem, DelivPriority, DangGood, and LoadingPoint. Table 3.2

includes the definitions of these parameters. Once uploaded, the model corresponding

to the route associated with each shipment is invoked, and the model calculates the

estimated transit time.

Fig. 5.3.: Example New Shipments.

5.2 Administrator Application

The administrator application allows for the training/testing of models, historical

data upload, and the addition of a new route. For the user application to generate

transit time estimates for new shipments, an administrator must train the correspond-

ing route model. Figure 5.4 shows the user interface of the administrator applications,

which facilitates this process.

Fig. 5.4.: Administrator Application User Interface.
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To add a route to the database, the administrator enters the source and destination

zip codes in the first two fields and the weather station list into the third field and

then selects the add route button.

Similarly, to develop a model for a target route, the administrator enters the source

and destination of the route into the first two fields in Figure 5.4. The administrator

must provide the training and testing ranges. Clicking on the ”Run Model” invokes

the SVM classifier to train the model using the shipments in the specified training

range. Once training completes, the model is then applied to the shipments in the

specified test range, as illustrated in Figure 5.4.

Historical data can be uploaded into the database by having an administrator

choose a file and selecting upload (Figure 5.4). A list of the routes associated with

the shipments in the uploaded file that exist in the route table is displayed, enabling

the administrator to select the target routes. Historical shipments over the selected

routes are then uploaded into the database.
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6. CONCLUSION

Many commercial solutions exist for tracking shipments. However, this thesis expands

supply chain capabilities by proposing a method for planning and predicting shipping

delay with a one to seven-day prediction horizon. The existing commercial solutions,

except for Emicen [6], rely on real-time data. Emicen [6] predicts delays in future

inbound shipments based on the distribution of historical data. This thesis focuses

in on predicting transit delays for future outbound shipments.

The proposed approach was applied to four different routes located in the United

States. A database holds the historical information related to the four selected routes,

including Twitter, weather, and shipment data. A model was developed and ran for

each route. Each route is associated with a varying number of classifiers where each

classifier predicts a specific transit time in number of days. Longer routes were more

accurate than shorter routes when taking into consideration the standard deviation,

average transit time, CV, and CI.

Reduced feature models were also developed in order to gain a better under-

standing of the contribution of each feature towards transit time prediction. Feature

selection is iterative. A single feature is removed, and a new model is developed after

each iteration. If the MAE increases, then the feature is important in the model. If

it decreases, the feature is excluded from the reduced model. The impact of features

on different models varies.

The prediction horizon for the models was varied from 1 to 7 days. The results

were inconclusive and require additional investigation.

An enhanced model was developed for route D using historical traffic data from

INRIXTM. The MAE and RMSE of the the baseline INRIXTM model outperformed

the baseline feature model by 0.7 and 0.03, respectively. The MAE of the baseline
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reduced feature INRIXTM model outperformed the baseline reduced feature model by

0.14. The baseline reduced feature INRIX model RMSE outperformed the baseline

reduced feature model by 0.07.

User and administrator applications were developed to provide an interface for

shipment planners to use the model and analyze the resulting data. The user ap-

plication is for future shipment planning and provides estimated transit times. The

administrator application allows users to add additional routes to the database. It

also provides a way to upload historical data. The administrator application is used

to train and test new models.

There are several directions for future work. First, transforming data from social

media platforms into more accurate traffic predictors can help improve the accuracy

of the proposed transit model. An enhanced extraction approach that relies on a

semantic classifier that can more accurately evaluate the relevance of each tweet to

the transit time for a given route is needed. Including data from multiple social media

platforms can help improve the predictors for short routes.
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