
ROOM CATEGORIZATION USING SIMULTANEOUS LOCALIZATION 

AND MAPPING AND CONVOLUTIONAL NEURAL NETWORK 
by 

Iman Yazdansepas 

 

A Thesis 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Master of Science in Electrical and Computer Engineering 

 

 
 

Department of Electrical and Computer Engineering 

Hammond, Indiana 

August 2020 

  



 
 

2 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Nasser Houshangi, Chair 

School of Engineering 

Dr. David Kozel 

School of Engineering 

Dr. Donald Gray 

School of Engineering 

 

Approved by: 

Dr.  Xiaoli Yang  

 

 



 
 

3 

Dedicated to my lovely wife and my parents.  

 



 

4 

ACKNOWLEDGMENTS 

I wish to thank my advisor, Dr. Nasser Houshangi, for his scientific insights and guidance 

in this research. Besides teaching technical expertise within me, he also took every opportunity to 

make me a well- rounded researcher. I have always marveled at his scientific and engineering 

knowledge across various fields. I have learned work ethic, focus, and dedication from the best. 

His passion for research and scientific truth will always inspire me.  

I would also like to thank my other committee members, Dr. David Kozel and Dr. Donald 

Gray, for their patience, inputs, and feedback. I would like to thank the peers in my research group, 

for all the ideas and brainstorming with them. 

  



 

5 

TABLE OF CONTENTS 

LIST OF TABLES .......................................................................................................................... 7 

LIST OF FIGURES ........................................................................................................................ 8 

ABSTRACT .................................................................................................................................. 10 

 INTRODUCTION ................................................................................................................. 11 

1.1 Motivation and Objective ................................................................................................. 12 

1.2 Literature Search ............................................................................................................... 12 

1.2.1 Simultaneous Localization And Mapping (SLAM) .................................................. 12 

1.2.2 Room Categorization with LiDAR ............................................................................ 13 

1.3 Thesis Overview ............................................................................................................... 16 

 SIMULTANEOUS LOCALIZATION AND MAPPING WITH LIDAR ............................ 17 

2.1 Gmapping .......................................................................................................................... 20 

2.1.1 LiDAR ....................................................................................................................... 20 

2.1.2 Occupancy Grid Mapping .......................................................................................... 22 

2.1.3 Grid-Based SLAM with Rao-Blackwellized Particle Filter ...................................... 24 

 ROOM CATEGORIZATION ............................................................................................... 28 

3.1 Deep Learning ................................................................................................................... 28 

3.1.1 Biological Neural Network ........................................................................................ 28 

3.1.2 Artificial Neural Network .......................................................................................... 29 

3.2 Convolutional Neural Network ......................................................................................... 36 

3.3 Room Categorization with Convolutional Neural Network ............................................. 45 

 SLAM IMPLEMENTATION ............................................................................................... 46 

4.1 Simulations ....................................................................................................................... 46 

4.2 Experimentations .............................................................................................................. 51 

4.2.1 Hardware Setup ......................................................................................................... 51 

4.2.2 Software Setup ........................................................................................................... 53 

4.2.3 Robot Navigated in a Research Lab .......................................................................... 53 

4.2.4 Robot Navigated in an Empty Room ......................................................................... 54 

4.2.5 Navigation in an Apartment ....................................................................................... 57 

  



 

6 

 ROOM CATEGORIZATION SIMULATIONS ................................................................... 58 

5.1 Simulation Setup ............................................................................................................... 60 

5.2 Training the Network ........................................................................................................ 62 

5.3 Simulation Results ............................................................................................................ 63 

 CONCLUSIONS AND FUTURE WORK ............................................................................ 67 

APPENDIX A. ROBOT SPECIFICATIONS .............................................................................. 68 

APPENDIX B. ROBOTIC OPERATING SYSTEM SOFTWARE PACKAGES AND 

SOFTWARE TOOLS USED ........................................................................................................ 71 

APPENDIX C. MATLAB SIMULATION PROGRAMS ........................................................... 74 

REFERENCES ............................................................................................................................. 80 

  



 

7 

LIST OF TABLES 

Table 3.1 Results of SoftMax function for the 4 different number .............................................. 36 

Table 4.1 Comparison between the actual and estimated dimensions derived from the map 
constructed using Gmapping......................................................................................................... 49 

Table 4.2 Comparison between the actual and estimated length .................................................. 56 

Table 5.1 Dataset of the raw odometry and LiDAR used[26]. ..................................................... 59 

Table 5.2 Accuracy for each room classification.......................................................................... 64 

Table 5.3 Comparision between the results of our work with [21] .............................................. 65 

Table 5.4 Confusion matrix for the apartment rooms that obtained in section 4.2.5. ................... 65 

 

 

  



 

8 

LIST OF FIGURES 

Figure 2.1 Robot trajectory (a) without SLAM and (b) with SLAM ............................................ 17 

Figure 2.2 Actual position of the robot versus estimated. ............................................................ 18 

Figure 2.3 Thickness of the red lines become thicker, while the robot is moving around in the 
environment, showing the stronger correlation applied each time new observation occurred. .... 19 

Figure 2.4 LiDAR working concept illustration. .......................................................................... 21 

Figure 2.5 LiDAR SICK LMS111 reading angle. ........................................................................ 22 

Figure 2.6 2D examples of an occupancy grid map...................................................................... 23 

Figure 2.7 Robot range finder (LiDAR) is seeing the occupied part of the environment. ........... 23 

Figure 2.8 Motion model for odometry and scan estimation. ....................................................... 25 

Figure 2.9 Particle filter distribution for grid mapping. (a) in an open area, the odometry data used 
for particle filter. (b) In this situation, the laser data only available for the sides of the corridor. 
Because of the uncertainty for the end of the corridor, the odometry data used for distribution. (c) 
all the sides and the end of the corridor is distinguishable with LiDAR. ..................................... 26 

Figure 3.1 (a) Left Neuron and myelinated axon, with signal flow from inputs at dendrites to 
outputs at axon terminals. (b) Right anatomy of a multipolar neuron and how synaptic terminal 
connect. ......................................................................................................................................... 28 

Figure 3.2  Simple Perceptron ...................................................................................................... 29 

Figure 3.3 Perceptron workflow diagram. A simple example of how one single neuron works in 
Artificial Neural Network (ANN). ................................................................................................ 30 

Figure 3.4 List of the activation functions used in perceptron ..................................................... 31 

Figure 3.5 Simple perceptron with one hidden layer between input and output. ......................... 32 

Figure 3.6 Sigmoid function output for value in the range of (-10,10) ........................................ 35 

Figure 3.7 Sigmoid graphs with three different bias..................................................................... 35 

Figure 3.8 The interpretation of the character "X" in binary format. (a) is the pixels of the captured 
image and (b) is the construcrted matrix in computer memory. ................................................... 37 

Figure 3.9 Three different images for the character ‘X’ ............................................................... 37 

Figure 3.10 Different features in the X character image .............................................................. 38 

Figure 3.11 Filtering process with one of the features.................................................................. 38 

Figure 3.12 Results of the filtering for the left diagonal arm of the X ......................................... 39 

Figure 3.13 Convolutional operation illustration .......................................................................... 40 



 

9 

Figure 3.14 Rectified linear unit graph ......................................................................................... 41 

Figure 3.15 (a) Convoluted matrix, (b)  ReLu function applied to the convoluted matrix. .......... 41 

Figure 3.16 MaxPolling the left arm of X character ..................................................................... 42 

Figure 3.17 All three features passed to one simple hidden layer ................................................ 42 

Figure 3.18 Connecting few hidden layers. .................................................................................. 43 

Figure 3.19 Fully connected layer ................................................................................................ 43 

Figure 3.20 Fully connected layer feeds the input of simple ANN .............................................. 44 

Figure 4.1 Gazebo simulation of rectangle rooms, yellow color shows the trajectory of the robot 
(a) simple room (b). corridor-like room ........................................................................................ 46 

Figure 4.2 (a) Simple room in RVIZ and (c) results of Gmapping in the PGM file. (b) corridor-like 
room in RVIZ and (d)  results of Gmapping in PGM file. ........................................................... 47 

Figure 4.3 YAML content............................................................................................................. 48 

Figure 4.4 A  magnified image of the left side of a corridor-like room that shows the tiny pixels
....................................................................................................................................................... 50 

Figure 4.5 Map errors vs. actual dimensions ................................................................................ 50 

Figure 4.6 Jackal  Robot. (a) inside the robot equipped with a microcontroller board for driving 
motors and sensor drivers and the battery. (b) shows the antenna for WiFi and also GPS antenna. 
(c) the second robot inside the processor and the CPU of the robot. (d) Joystick for moving the 
robot. (e) LiDAR and camera sensors. .......................................................................................... 52 

Figure 4.7 Potter 104 maps generated by Gmapping .................................................................... 53 

Figure 4.8 Potter 315 maps generated by Gmapping, (a – d) in each stage that map constructed by 
Gmapping ROS package, RVIZ visualization shown. (e) the PGM file that created by the end of 
the Gmapping process ................................................................................................................... 54 

Figure 4.9 Potter 315 with actual and estimated dimensions. Blue color is Estimated size from 
Gmapping, and orange color indicates the actual length .............................................................. 55 

Figure 4.10 Dimension’s error in the generated map ................................................................... 56 

Figure 4.11 (a) two beds, two baths apartment layout shown in separate parts. (b) actual layout (c) 
estimated map ............................................................................................................................... 57 

Figure 5.1 Group (a & c) are the  [26] output and (b & d) are the output map of our MATLAB 58 

Figure 5.2 Layers construction. .................................................................................................... 62 

Figure 5.3 Number of different rooms and sample of each room ................................................. 63 

Figure 5.4 Classification results for the bedroom. ........................................................................ 64 

  



 

10 

ABSTRACT 

Robotic industries are growing faster than in any other era with the demand and rise of in 

home robots or assisted robots. Such a robot should be able to navigate between different rooms 

in the house autonomously. For autonomous navigation, the robot needs to build a map of the 

surrounding unknown environment and localize itself within the map. For home robots, 

distinguishing between different rooms improves the functionality of the robot. In this research, 

Simultaneously Localization And Mapping (SLAM) utilizing a LiDAR sensor is used to construct 

the environment map. LiDAR is more accurate and not sensitive to light intensity compared to 

vision. The SLAM method used is Gmapping to create a map of the environment. Gmapping is 

one of the robust and user-friendly packages in the Robotic Operating System (ROS), which 

creates a more accurate map, and requires less computational power. The constructed map is then 

used for room categorization using Convolutional Neural Network (CNN). Since CNN is one of 

the powerful techniques to classify the rooms based on the generated 2D map images. To 

demonstrate the applicability of the approach, simulations and experiments are designed and 

performed on campus and an apartment environment. The results indicate the Gmapping provides 

an accurate map. Each room used in the experimental design, undergoes training by using the 

Convolutional Neural Network with a data set of different apartment maps, to classify the room 

that was mapped using Gmapping. The room categorization results are compared with other 

approaches in the literature using the same data set to indicate the performance. The classification 

results show the applicability of using CNN for room categorization for applications such as 

assisted robots. 

  



 

11 

 INTRODUCTION 

Nowadays, robots are part of the everyday life of humans more than any other eras. The 

technological advancement in computers, improving computational power, provides the robotic 

industry to develop many systems such as assisted robots or autonomous robots. Mobile robots are 

an important part of the robotic industries to perform challenging tasks such as autonomous 

navigation in known and unknown environments without any human supervision. For achieving 

this goal, many Simultaneously Localization And Mapping (SLAM) algorithms were developed. 

Simultaneous Localization and Mapping (SLAM) is the process by a mobile robot to build 

or update a map of an unknown environment and simultaneously use the map to localize itself in 

the unknown environment. SLAM estimates the robot’s trajectory and landmarks position in real-

time without any prior knowledge of the environment. SLAM can be performed using different 

sensors. One of the sensors used in mobile robots is LiDAR. LiDAR can measure the distance 

between the robot and any environment’s landmark. The output of the SLAM with LiDAR is the 

2D or 3D layout map of the environment based on the LiDAR configuration. In this research, 2D 

LiDAR was used, and the 2D map of the environment is generated. Another useful sensor utilized 

in the SLAM algorithm is the Inertia Measurement Unit (IMU), providing the orientation, velocity, 

and position of the robot. These two sensors provide the key information to the SLAM algorithm 

for localization and mapping. Many researchers have used data from the camera in their SLAM 

algorithms. The reason for selecting a LiDAR as the main sensor is because it can function and 

detect accurate dimensions even in dark environments, unlike the camera. The second part of this 

research discusses classifying the home’s room types  (Bedroom, Bathroom, Kitchen, etc.) by 

using the generated 2D map from SALM and Convolutional Neural Network (CNN). CNN 

techniques are used in many different applications in today’s life and are one of the branches of 

Artificial Intelligent (AI). CNN uses an artificial neural network, which is inspired by the human 

brain, to detect and distinguish between different object’s images as applied to many real-time 

applications like voice recognition or automatic real-time translation. 

  



 

12 

1.1 Motivation and Objective 

As mentioned before, building the map of an unknown environment and localization within 

the environment is one of the critical issues that need to be resolved for mobile robots in many 

applications. There are many different approaches to solving the SLAM problem. This research 

uses Grid Mapping (Gmapping) technique because it has better performance and accuracy 

compared to others. Gmapping is also implementable under the Robotic Operating System (ROS). 

The second part of this research, as stated before, uses CNN because it has good accuracy in 

detecting and classifying images. The convolution neural network can distinguish between 

different rooms in an apartment or houses performing room categorization.     

1.2 Literature Search  

SLAM problem is one of the oldest issues in the robotic field, and scientists have been 

doing research for the last two decades, and there are many papers published from different 

scientists around the world. Artificial neural network and convolutional neural network approaches 

are not new, but research on CNN rose up significantly for the last few years. As stated before, the 

reason is the advancement of the CPU and computer computation power. In this section, the 

corresponding literatures are reviewed, as one section covering SLAM, and the other discussing  

CNN.    

1.2.1 Simultaneous Localization And Mapping (SLAM)  

One of the basic and fundamental tasks for home service robots is building a map of 

unknown dynamic environments. A primitive work in SLAM had been done by RC. Smith and P. 

Cheeseman, titled “On the Representation and Estimation of Spatial Uncertainty” in 1986[1]. This 

research describes the general approach for estimating the location of the mobile robots using its 

sensors. The research explained how a Kalman filter is used to reduce the uncertainty of the robot’s 

location by estimating the future location of the robot. Another work in this area was  Leonard, 

J.J., and  Durrant-Whyte, H.F in 1991, which presented the research titled "Simultaneous Map 

Building and Localization for an Autonomous Mobile robot"[2]. As was discussed, the problem 

of the mobile robot to simultaneously making the map and also localize itself within the map 

without any prior data about the environment.  



 

13 

Durrant-Whyte, H.F et al., in 2000, published the paper[3], which is shown the approach 

of how deleting some of the landmarks from the map is not increased the error of the SLAM but 

it can reduce the computational power requirement. Around the same time, Ayache and Faugeras 

[4] using visual information and Laumond and Chatila [5] and Crowley [6] by using an ultrasonic 

sensor, implemented the SLAM based on Kalman filter. These researches show when the robot is 

moving in an unknown environment and observing the location of the landmarks, the estimates of 

these landmarks locations are highly correlated since all of them have a similar error at the time of 

observation.  

Although the Kalman filter was used more to solve the SLAM problem in the earlier 

research, the FastSLAM introduced by Montemerlo et al. [7] was proposed later deal with 

uncertainty. The researchers that used the Kalman filter focused on improving the performance of 

Kalman Filter SLAM, assuming linear Gaussian Distribution. FastSLAM, on the other hand, uses 

particle filter, which is based on non- linear process and non-Gaussian distribution. FastSLAM 

inspired by probabilistic mapping by Thrun [8] and Murphy [9]. Later on, Doucet and et al.[10] 

introduced Rao-Blackwellized particle filters, which are followed by Montemerlo et al. [7] 

research. One of the biggest problem with Rao-Balackwellized particle filter is the number of 

particle required for build a map. This issue increases the number of computations significantly.  

Reducing the number of particles is one of the significant challenges in the Rao-

Blackwellized particle filter. Giorgio Grisetti and Cyrill Stachniss [11] have introduced an 

approach that increases the performance of the Rao-Balackwellized particle filter to address the 

SLAM problem by using the grid map and reducing the number of particles. They were adapted 

the resampling method to make the map accurately by less number of particles. Giorgio Grisetti 

and et al. developing the Robotic Operating System (ROS) software package called Gmapping[12] 

which is the impilimintation of their research [11].  

In this research Gmapping used to construct the map, since Gmapping is one of the robust 

approaches which is implemented in ROS Platform for making map of enviroment. Gmapping will 

be discussed in chapter 2.    

1.2.2 Room Categorization with LiDAR 

 SLAM can be used in many different applications, from home service robots to 

driverless cars or even underwater robots. In all applications, the very first and major goal is to get 



 

14 

an accurate map  and localize the robot precisely within that map. Constructing an accurate map 

is essential because the other mobile robot applications will utilize the information.  

Another crucial primary task for a service robot is the ability to distinguish between 

different spaces. Recently, many groups of scientists shown interest in a topic called room 

categorization. Room categorization or room classification is the name of the method that the robot 

can distinguish and classifies the room by observing a specific object or signature of the spatial 

model of a place. At the end of the scanning and mapping of the environment, the robot should be 

able to recognize and label the rooms. Room labeling or room categorization capability of the robot 

can improve the capability of the assistance robot.  

There are number of research performed for the representation of the space. Albert Elfes 

in 1990 [13] introduced the Occupancy Grids map, which uses the sensor data to make the 

geometry of space. The Occupancy Grid is a 2D or 3D map that estimates the occupancy state of 

each part of the spatial environment.  H. Choset and et al. [14] uses graphs to represent the spatial 

model of the environment. Both approaches have some strengths and weaknesses. The [13] 

approach requires accurate determination of the robot’s position, which in some cases, is very 

difficult to obtain such accuracy at the beginning of the map building. Although [14] approach, 

not requires the accurate determination of the robot position, it has difficulty constructing the map 

in a larger-scale environment. S. Thrun and et al. [15] uses both methods to make a more accurate 

map by covering the downside of each method with the other one. All the mentioned works [12-

14] using different techniques to solve the SLAM problem by maintaining the spatial model of the 

environment.  

Having an accurate map is very important in the work of the room categorization for service 

robots since the accurate labeling of the spatial model relies on a precise map of the environment. 

O.M Mozos and et al. [16] uses AdaBoost [17] method to extract the features of the spatial model 

from LiDAR sensor data. In [18] the AdaBoost method is used to extract the spatial features to 

distinguish between Corridor, Room, and Doorway. In [19], A. Swadzba and et al. used 3D LiDAR 

data to distinguish between office or meeting room by focusing on the object extracted from the 

3D LiDAR data. Although approaches discussed in [16] and [19] are very useful for some 

applications, they can not classify all rooms category like kitchen, bedroom, etc.  

Wu J, Christensen, and et al. [20] introduced the method which uses a Visual Place 

Categorization (VPC) utilizing the information from the camera to predict the room category.  



 

15 

Despite the Visual SLAM and Visual categorization benefits such as ease of use in an 

outdoor environment in terms of building the map and by utilizing the visual feature extraction 

gives better results for room categorization, it has some downsides as well. The biggest problem 

with visual SLAM and visual categorization are the dependencies to the light intensity and the 

accuracy in comparison to the LiDAR sensor. Assumes the home service robot wants to do the 

task at night when all the rooms are dark. The camera wouldn’t be the best option in this situation, 

and LiDAR is the best choice. Because of the mentioned advantages, many works either utilize  

LiDAR alone[21] or in combination with other sensors [16].  

In [22] [23], LiDAR is used for visual odometry by taking the large data sets of the LiDAR 

data and compute the motion of the LiDAR between two consecutive sweeps. In [24], LiDAR data 

is used for computation and implementation of the loop – closure algorithm. The loop-closure is 

the name of the algorithm that detects the previously visited location in a constructed map by 

recognition of distinctive regions of the map from sensor data. In [25], LiDAR data is used with 

Convolution Neural Network (CNN) to make the robot able to learn semantic place labels. Peter 

Ursic and et al. [26] utilizing LiDAR data and adapt the hierarchical compositional models to 

detect the spatial feature of the environment for classifying the room categories.  

The algorithm used in[26] is the extended version of Learning the Hierarchy of 

Parts(LHoP) from [20] call it Spatial the Hierarchy of Parts(sHoP). While [26] using the 

Hierarchical Spatial Model for categorizing rooms, the other work trying to implement semantic 

place labels by using a Convolutional Neural Network (CNN) [25].   

As stated before [27] and [25],  it can just classify the doorway, corridor, and rooms. These 

works use the environmental structure for detecting the shape of the space from semantic 

information. For instance, the corridor is the long narrow open space which door appears as short 

gape. In this work, the LiDAR and odometry data collected in [26] used to train the CNN for 

categorizing the rooms. Unlike the [27] and [25], the goal of this research is not to detecting only 

doorway or corridor, but like [26], it aims to classify the rooms between Bedroom, Bathroom, 

Kitchen, etc. categories.  

 

 



 

16 

1.3 Thesis Overview 

The goal of this research is to show the applicability of using a Convolutional Neural 

Network to solve the room categorization problem. The purpose of this work is to train the 

Convolutional Neural Network to distinguish and to label the rooms for home service assistance 

robots. This research is divided into two major parts. First, the method is discussed for making the 

2D map of the environment using the Gmapping SLAM approach. The second part explains the 

training of a convolutional neural network with the generated maps from the first part and the maps 

collected in [26]for room categorization. 

Chapter 2 describes the Grid mapping (Gmapping) Simultaneous Localization And 

Mapping (SLAM) approach. The approach uses particle filters for constructing the map and to 

localize the robot within the map. Chapter 3 describes the convolutional neural network method in 

detail. It shows how the layers are working in neural networks and how the method is utilized in 

this research. Chapter 4 describes the experimental results on using Grid mapping (Gmapping) 

both in simulation and real environments. The results are analyzed to indicate the performance of 

the approach. Chapter 5 shows the simulation results of the room categorization Using CNN 

Followed by Chapter 6, presenting the conclusions and suggest future works. 

  



17 

SIMULTANEOUS LOCALIZATION AND MAPPING WITH LIDAR 

For making the map of the environment, the robot must be able to take the observation of 

several unknown landmarks using its sensors and process those observation data to make the map 

and localize itself. These sensors can be one or a combination of sensors like Light Detection and 

Ranging (LiDAR), sonar, and camera. The robot also must be equipped with the odometry system. 

The odometry system can consist of Inertia Measurement Unit(IMU), shaft encoder, 

accelerometer, etc. With the odometry system, the robot can determine its position and orientation. 

The robot should scan the environment, and find the landmarks during motion. After a small 

movement, the robot should be able to scan the environment again and update the estimated 

location of the robot. Also, the estimated positions of the landmarks are determined. Ideally,  the 

robot can be programmed to follow a trajectory moving from point A to point B. Since even the 

most accurate motors and sensors have small errors, in the real world, these errors accumulate 

during the robot movement, and the robot will never arrive at the final destination following the 

desired trajectory. The robot should be able to update its map every time new observation occurred 

to avoid error accumulation and trajectory failure. Such a robot usually observation occurred to 

avoid error accumulation and trajectory failure. Such a robot usually requires a high-performance 

computer and accurate sensors. 

Figure 2.1 Robot trajectory (a) without SLAM and (b) with SLAM. 



18 

The most popular sensors that used in robots to capture environments are sonar, LiDAR, 

and camera. Each of them has its advantage and disadvantage. Figure 2.1 shows the trajectory of 

the robot with and without the error correction. In figure 2.1 (a), the robot doesn’t correct its 

movement error during motion, which in figure 2.1 (b) shows the robot’s trajectory while 

performing Simultaneously Localization and Mapping(SLAM). SLAM is one of the methods 

which builds the map, and within that map, localize itself to correct the estimated position through 

the trajectory. 

Figure 2.2 Actual position of the robot versus estimated. 

Figure 2.2 [28] illustrates a moving robot in the environment which observes the landmarks 

with its sensors. At time instance k the following parameters are defined:  

• 𝑥𝑥𝑘𝑘: location and orientation of the robot

• 𝑢𝑢𝑘𝑘: control vector, applied at time k-1 to drive the robot to state 𝑋𝑋𝑘𝑘 at time k

• 𝑚𝑚𝑖𝑖: location of the ith landmark whose exact location is assumed time-invariant

• 𝑧𝑧𝑖𝑖𝑖𝑖 : an observation is taken from the robot of the location of the ith landmark at time k

 𝑋𝑋0:𝐾𝐾 = {𝑥𝑥0, 𝑥𝑥1, . . . . . . . . . . . . 𝑥𝑥𝑘𝑘} = {𝑋𝑋0:𝐾𝐾−1,𝑥𝑥𝑘𝑘}  indicates robot positions history

 𝑈𝑈0:𝐾𝐾 = {𝑢𝑢0,𝑢𝑢1, . . . . . . . . . . . .𝑢𝑢𝑘𝑘} = {𝑈𝑈0:𝐾𝐾−1,𝑢𝑢𝑘𝑘}  control inputs history

 𝑚𝑚 = {𝑚𝑚1,𝑚𝑚2, . . . . . . . . . . . .𝑚𝑚𝑛𝑛}  includes all landmarks



19 

 𝑍𝑍0:𝐾𝐾 = {𝑧𝑧1, 𝑧𝑧2, . . . . . . . . . . . . 𝑧𝑧𝑘𝑘} = {𝑍𝑍0:𝐾𝐾−1,𝑧𝑧𝑘𝑘}  the set of all landmark’s observations

Figure 2.2 shows the estimated and actual positions of the robot and landmarks. As stated 

before, the errors in sensors and actuators cause uncertainty in the estimated positions of the robot 

and the observed landmarks. The observation errors are almost similar for all landmarks. It means 

the estimated locations of landmarks are correlated. It can be concluded that the relative position 

of the landmarks 𝑚𝑚𝑖𝑖 and 𝑚𝑚𝑗𝑗 can be determined with good accuracy even without knowing the true 

location of the 𝑚𝑚𝑖𝑖 and 𝑚𝑚𝑗𝑗. The reason is the source of all errors are robots itself, and therefore, 

those errors cancel each other. This is a crucial fact that in the SLAM algorithms, when the number 

of landmarks observation increases, the correlation between landmarks increases as well. As a 

result, the relative locations of the landmarks will improve, and it never diverges without any 

dependency on robot movements.  For understanding this fact better, refer to figure 2.2 again. 

Assume the robot in location 𝑥𝑥𝑘𝑘  and observing 𝑚𝑚𝑖𝑖  and 𝑚𝑚𝑗𝑗 . As the robot moves to 𝑥𝑥𝑘𝑘+1  and 

observe 𝑚𝑚𝑗𝑗 and the other landmarks, it still can be update 𝑚𝑚𝑖𝑖 even the landmark is not observed in 

the new position. This is because the two landmarks location is highly correlated and by knowing 

the position of the 𝑚𝑚𝑗𝑗 the position of the 𝑚𝑚𝑖𝑖 can also estimated. In the other hand when the robot 

is in location 𝑥𝑥𝑘𝑘+1 it observes the other landmarks as well, which this result to update the position 

of 𝑚𝑚𝑖𝑖. 

Figure 2.3 Thickness of the red lines become thicker, while the robot is moving around in the 
environment, showing the stronger correlation applied each time new observation occurred. 



 

20 

Figure 2.3 [28]  illustrated the above elaboration. While the robot is moving and observing 

new landmarks, the correlation of the previously observed landmarks gets stronger. The thickness 

of the red lines between the landmarks illustrated the correlation between them. 

For solving the probabilistic SLAM problem, an appropriate representation of the motion 

and observation model should be found. There are too many different approaches to solving such 

a problem. Three most common approaches are: 

• Filter-based method, which estimates and updates the map recursively. In this approach, 

the map of the environment and the estimation of the robot location are updated as a 

probability density function. Kalman filter (EKF, UKF, SEIF, etc.) and particle filter are 

usually used for estimation under this category.  

• Another approach is based on storing some keyframes in the environment to estimate the 

movement. These approaches are mostly used in visual SLAM like ORB-SLAM or 

Google’s cartographer. 

• The use of the Convolutional Neural Network to perform SLAM is another approach. 

RatSLAM is categorized under this approach. 

In this research, the approach used is a Grid mapping(Gmapping), which is utilized Rao-

Blackwellized particle filter [11] to construct the grid maps from 2D LiDAR data. 

2.1  Gmapping  

Gmapping is a highly efficient Rao-Blackwellized Particle Filter (RBPF) to learn grid maps 

from laser range data. In the next sections, LiDAR, occupancy grid map, and at the end, the Rao-

Blackwellized particle filter will be discussed as all are utilized in the Gmapping approach for 

SLAM.   

2.1.1 LiDAR 

Light Detection and Ranging(LiDAR) is a sensor that uses light speed to measure the 

distance. LiDAR can be used in different applications, from highway traffic control to mobile 

robots and autonomous vehicles. As mentioned in the previous section, the mobile robot should 

collect environmental data. For finding the distance between the mobile robot and landmarks, there 



 

21 

are two different far sensing sensors, sonar and LiDAR. Both of them have their advantage and 

disadvantage, which limits their capability in different applications.  

Sonar sensors are very cheap, useable in underwater applications, and able to detect glass. 

Although, due to a wide reading angle (more than 30 degrees), has low accuracy. LiDAR has good 

accuracy and a small reading angle (less than 0.5 degrees), but LiDAR is not a perfect candidate 

in environments that has mirrors or glasses. However, a number of researchers have worked on 

this problem, but this is still one of the challenging issues when LiDAR is used in mobile robots 

and SLAM applications. Despite the problem with mirrors and glasses, one of the biggest 

advantages is the independence of the light, making LiDAR more effective to perform scanning in 

dark environments.  

In this research, the LiDAR sensor SICK LMS111 was used for performing SLAM. 

Detailed technical specifications of SICK LMS111 are discussed in Appendix A. Figure 2.4 

illustrates the basic concept of the laser sensors. As shown in figure 2.4, the sensor has a light 

emitter and receiver and a motor. The sensor also has a processor to control all the components. 

When LiDAR emits the beam’s light and hits an obstacle, the beam’s lights reflect back from the 

surface of the obstacle to the LiDAR sensor receiver. The processor in the sensor measures the 

time of light travel between emitter and receiver. Since the speed of light is a constant, the distance 

can calculate by  

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑡𝑡)/2 (2.1) 
 

 

Figure 2.4 LiDAR working concept illustration. 
 



 

22 

The motor inside the sensor changes the orientation of the LiDAR beam to measure the 

distance from different angles. The spatial shape of the environment will be constructed by 

recording the length of each orientation.  

Each LiDAR sensor has a different reading angle. For instance, the LiDAR sensor, that 

used in this work, has 270 degrees of reading angle. It also has the stride, about 0.5 degrees. 

Another parameter is the scanning frequency, which defines how many scans per second from 0 

to 270-degree sensors can perform. The LiDAR used in this research has a 50 Hz scanning 

frequency. Figure 2.5  shows the LiDAR reading angle. If a LiDAR doesn’t see any object or 

landmark, it returns the null or any other character that is an indication of not seeing any objects 

in its range. Each different LiDAR has a limited range. For instance, the LiDAR that is used in this 

work has a range of 20 meters. The LiDAR sensor is one of the sensors used to collect the 

environment information. This information, later on, used to construct the map of the environment. 

In the next section, the use of the LiDAR sensor to perform grid mapping is discussed.    

 

 

Figure 2.5 LiDAR SICK LMS111 reading angle. 
 

2.1.2 Occupancy Grid Mapping 

Occupancy Grid mapping is one of the methods for constructing the map of the 

environment by dividing the environment into the grid map. Then, estimating the occupancy of 

each cell of the grid map by reading the scan data. Figure 2.6 illustrating the 16 cell grid map. Each 

time the laser scan has reading, it estimates the probability of the cell to be occupied or not. The 



 

23 

terms occupancy is defined as the random variable between 0 and 1. Zero indicates the cell is free, 

and one indicates occupied  as shown below. 

 

𝑚𝑚𝑥𝑥,𝑦𝑦: {𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖} = {0,1} (2.2) 
 

Figure 2.6 shows the 2D example of Occupancy Grid Map. In the figure, the whole 

environment map, divided into the small cells in which it has shown only 16 of them in this figure.   

 

 

Figure 2.6 2D examples of an occupancy grid map. 
 

The Bayesian filtering recursively updates 𝑃𝑃�𝑚𝑚𝑥𝑥,𝑦𝑦� each cell. For updating the recursive 

Bayesian filter, range measurement data needed from the environment. The range measurement 

data comes from a LiDAR sensor.  

Figure 2.7 illustrated the way the robot observes the environment. By reading the LiDAR 

measurement for every part of the environment, the robot can find if that particular range is 

occupied or not. In other words, every time LiDAR can read the distance, it means in that distance, 

there is an occupied area. Since the LiDAR sensor scanning by rotating, the map can be 

constructed. Without robot movements, the robot can only make the map within the scanning range 

of LIDAR. 

 

 

Figure 2.7 Robot range finder (LiDAR) is seeing the occupied part of the environment. 



 

24 

This short overview of the occupancy grid map just gives a brief understanding of how the 

grid map works. For a real robot to construct a complete map of the environment, the robots need 

to move around and utilize the odometry data within the algorithm to perform the complete 

validation for different locations of the environment.   

2.1.3 Grid-Based SLAM with Rao-Blackwellized Particle Filter 

Murphy, in [29], shows that the Rao-Blackwellized particle filter (RBPF) is based on the 

idea of estimating the joint posterior 𝑝𝑝(𝑥𝑥1:𝑡𝑡 ,𝑚𝑚 | 𝑧𝑧1:𝑡𝑡 ,𝑢𝑢1:𝑡𝑡−1)  where 𝑚𝑚 is the map, and 𝑥𝑥1:𝑡𝑡 is the 

trajectory of the robot given the observation  𝑧𝑧1:𝑡𝑡 and the odometry mesurments of 𝑢𝑢1:𝑡𝑡−1 from 

robots sensors. The joint posterior probability density function can be expanded as follows: 

 

𝑝𝑝(𝑥𝑥1:𝑡𝑡 ,𝑚𝑚 | 𝑧𝑧1:𝑡𝑡 ,𝑢𝑢1:𝑡𝑡−1) = 𝑝𝑝( 𝑚𝑚 | 𝑥𝑥1:𝑡𝑡 , 𝑧𝑧1:𝑡𝑡) * 𝑝𝑝(𝑥𝑥1:𝑡𝑡 | 𝑧𝑧1:𝑡𝑡 ,𝑢𝑢1:𝑡𝑡−1)   (2.3) 
 

As it shows in equation 2.3, it consists of two parts. 𝑝𝑝(𝑥𝑥1:𝑡𝑡 | 𝑧𝑧1:𝑡𝑡 ,𝑢𝑢1:𝑡𝑡−1)  can estimate the 

trajectory of the robot, given observation, and the odometry measurement of the robot. Then, the 

trajectory of the robot will use in 𝑝𝑝( 𝑚𝑚 | 𝑥𝑥1:𝑡𝑡 , 𝑧𝑧1:𝑡𝑡) to obtain the map. This approach, referred to as 

a Rao-Blackwellized particle filter, gives a very efficient computation algorithm since the map of 

the environment highly correlates to the pose estimate of the robot.  

A particle filter is the name of a method that uses a set of particles to represent the posterior 

distribution. Particle filter method used in the models that are not normally distributed. For 

instance, consider posterior distribution 𝑝𝑝(𝑥𝑥1:𝑡𝑡 | 𝑧𝑧1:𝑡𝑡 ,𝑢𝑢1:𝑡𝑡−1), for modeling the probability of the 

robot trajectory, the Gaussian function cannot use since the trajectory of the robot is not normally 

distributed.  

 



 

25 

 

Figure 2.8 Motion model for odometry and scan estimation.  
 

Figure 2.8[30] illustrated the simple actual robot trajectory versus the estimation of the 

trajectory base on raw odometry and scan. The red dots in figure 2.8 are the particle distribution 

for the location of the robot based on the odometry, and the blue dots are the estimation based on 

the scan matching. Scan matching is the method to find the relative pose (or transform) between 

the two robot positions where the scans were taken. The scans can be aligned based on the shapes 

of their overlapping features. In figure 2.8, the red and blue dots are the distribution of the particles, 

and they represent the location of the robot. As it shows in figure 2.8, the red dots get divergent 

while the robot is moving ahead. The reason is the error of the odometry error, which is 

accumulated, and therefore the uncertainty of the robot location increase. The blue particle in 

figure 2.8 shows the uncertainty is much smaller because the observation took into account as well 

as odometry information and causing optimization of the pose of the robot.  

For mapping, a similar process in terms of the particle distribution performs. Figure 2.9 

[30] shows the particle distribution in 3 different circumstances. From section 2.1.2, the grid map 

is construct based on the existence of the obstacle. In Figure 2.9, the red lines are representing the 

LiDAR beam.  



 

26 

 

Figure 2.9 Particle filter distribution for grid mapping. (a) in an open area, the odometry data 
used for particle filter. (b) In this situation, the laser data only available for the sides of the 
corridor. Because of the uncertainty for the end of the corridor, the odometry data used for 

distribution. (c) all the sides and the end of the corridor is distinguishable with LiDAR.   
 

Figure 2.9 (a) shows the situation that the robot is moving in a free area, and there is no 

object to reflect the laser beams a causing zero observation information. In this case, the odometry 

particle becomes the distribution automatically. The black dot in figure 2.9 (a) shows the particle 

filter distribution base on the odometry. In figure 2.9 (b), the robot moving inside the corridor, 

which the robot cannot see the end of the corridor. Therefore, the robot utilizes its observation to 

align itself to left and right since it obtains the accurate distance to the sides walls. Although the 

sides are aligned very well, it has high uncertainty to the end of the corridor since there is no 

observation information for the end of the corridor. Therefore the particle distribution aligned in 

the line as it shows in figure 2.9 (b). Figure 2.9 (c) shows the case that the robot observes the end 

of the corridor and the particle distribution concentrated in a very small area as it shows in the 

figure. It is obvious that constructing the map in Figure 2.9 (a) is not possible, but in figure 2.9 (b) 

and (c), the map can be constructed by having the observation data and the trajectory data. 

Gmapping is the name of an improved Rao-Blackwellized particle filter algorithm [11]. The 

improvement performs by using the less particle to get the same and even better results. Using less 

particle important since it will reduce computational power.   



 

27 

In this research, the Gmapping is used under the Robotic Operating System(ROS) platform. 

Besides the less computational requirement, other reasons for using Gmapping is the accuracy of 

the generated map and easy implementation in the ROS. The generated map and the results in 

terms of the accuracy obtained by the Gmapping approach are discussed in detail in chapter 4. 

  



 

28 

 ROOM CATEGORIZATION 

Room categorization is an important phenomenon for real-time applications such as 

assisted robots to distinguishes between different room categories, providing an ability to perform 

tasks better in the home environment. In this research, six different room categories are used, such 

as a bedroom, bathroom, kitchen, Livingroom, toilet, and corridor. Categorizing with the 2D Lidar 

and IMU data is challenging since the environmental map has a 2D layout. This challenge comes 

from the 2D layout, which is, in many cases, is difficult to distinguish the differences between 

rooms even with human eyes. In this research, the Jackal robot equipped with a SICK LM100 laser 

sensor is used. The room categorization approach taken is one of the deep learning methods called 

Convolutional Neural Network (CNN).  Deep learning and CNN approaches are discussed in the 

next sections. 

3.1 Deep Learning 

3.1.1 Biological Neural Network 

Deep learning or Artificial Neural Network (ANN) is a method inspired by brain neurons. 

Although, Neural networks theory introduced by Warren McCulloch and Walter Pitts [31] in 1943, 

the method was not applied to any real-time applications until 2011 because of the lack of 

processing and computational power. Figure 3.1[32] shows the neurons in our brains.  In the figure, 

the neuron receives the signals from the input.  

 

 

Figure 3.1 (a) Left Neuron and myelinated axon, with signal flow from inputs at dendrites to 
outputs at axon terminals. (b) Right anatomy of a multipolar neuron and how synaptic terminal 

connect. 



 

29 

This input can be any human sense data such as smell, vision, etc. and process them through 

the cell body and send them out throughout the axon to another cell input. In figure 3.1(a), the 

𝑥𝑥1 to 𝑥𝑥𝑛𝑛 are the inputs, with raw values like 0 or 1. 

3.1.2 Artificial Neural Network 

Artificial Neural Network (ANN) is based on a simple model of the brain neural 

connections called a perceptron. Frank Rosenblatt, developed perceptron inspired by earlier work 

by Warren McCulloch and Walter Pitts. Frank Rosenblatt,  created the machine called “Mark I 

Perceptron”[33] back in 1957 base on the idea that the weights of the artificial connections between 

neurons could change through a supervised process to minimize the error between actual and 

expected output. This supervised process keeps comparing the expected output with the actual one 

and base on the misfit between them, improving the learning performance. Figure 3.2 shows the 

simple perceptron with three inputs and one output. A perceptron takes several inputs (in this case, 

just three inputs) and each input, weighted and summed. If the result more than a defined threshold, 

the output is one; otherwise, it’s zero[34].      

 

 

Figure 3.2  Simple Perceptron 
 

Equation 3.1 shows the above description in the form of the algebraic term.  

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =

⎩
⎪
⎨

⎪
⎧0, �𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗

3

𝑗𝑗=1

< 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

1, �𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗

3

𝑗𝑗=1

≥ 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

 (3.1) 



 

30 

Assume the output of the perceptron is pre-known as one. If in the first iteration, the output of the 

sum term is less than the threshold, the output of the perceptron gives zero, which is different than the actual 

output, which is one. In the process of finding the best weights, all three weights should be changed until 

the sum term of equation 3.1 becomes greater than the threshold.  After the output reaches the threshold, 

all the weights are stored and remain fixed, and the network considered trained. When the neural network 

model trained by all the known inputs (𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3) the model can use for predicting the unknown 

inputs. Figure 3.3 shows the complete perceptron workflow. Equation 3.1, in this figure, illustrated 

as an activation function.    
 

 

Figure 3.3 Perceptron workflow diagram. A simple example of how one single neuron works in 
Artificial Neural Network (ANN). 

 

For simplicity, equation 3.1 is written as 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = �0, 𝑤𝑤. 𝑥𝑥 + 𝑏𝑏 < 0
1, 𝑤𝑤. 𝑥𝑥 + 𝑏𝑏 ≥ 0 (3.2) 

 
where 𝑤𝑤 and 𝑥𝑥  are vectors whose components are the weight and inputs, respectively. Other 

change is to move the threshold to the other side of the inequality and to replace it by what’s known 

as the perceptron’s bias, b ≡  threshold. The bias can be a measure of how easy it is to get the one 

on perceptron output. For a perceptron with tremendous bias, it’s straightforward for the 



31 

perceptron to output one. But if the bias is very negative, then it’s difficult for the perceptron to 

output one. The activation function that is used within the perceptron can be changed according to 

the various applications. The above example uses unit step activation function.  

Linear and the unit step is not practical for most applications as will be discussed later. 

Two of the popular activation functions are sigmoid, and the other is a Rectified Linear Unit 

(ReLU). ReLU is the activation function that is used in the convolutional neural network. Figure 

3.4[35] shows more activations functions with their equations.  

Figure 3.4 List of the activation functions used in perceptron. 

The simple perceptron described above shows the basic functionality of the single artificial 

neural network. Although the single perceptron can solve some simple problems, this research 

required more complex ANN for image processing. The complex ANN consists of three important 

layers. 

• An input layer, this layer gets the direct inputs from the data. In our case, each pixel of the

image is received as an input in this layer.

• Hidden layer(s), this layer or layers consist of all summation and multiplication and

activation functions. The input of this layer(s) is the input layer.



 

32 

• Output layers, this layer usually has a classifier or regression function to make the decision. 

The neural network can have as many hidden layers as required. Having a more hidden layer 

requires more powerful computational systems. For simplicity of describing the hidden layers 

figure, 3.5 shows a simple perceptron with just one hidden layer between input and output. Each 

circular node represents one single artificial neuron, and each arrow represents a connection from 

the output of one node to the input of another. Each neuron connection has carried a different 

weigh (𝑤𝑤𝑘𝑘) for the next nodes. In layer 𝐿𝐿1 three nodes in the input layer and four nodes in the 

hidden layer 𝐿𝐿2. 

 

 

Figure 3.5 Simple perceptron with one hidden layer between input and output. 
 

From equation 3.2, the output of layer 2 calculated as 

 

A =  𝑊𝑊1 ∗ X +  B  (3.3) 

 

where A is the output of a hidden layer with a dimension of 4 x 1,𝑊𝑊1 is the 4 x 3 weight matrix 

between layer one and layer 2,  𝑋𝑋 is 3 x 1  input matrix, and B is the 4 x1 bias matrix. The output 

of layer three is calculated by 



 

33 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =  𝜑𝜑 (𝑊𝑊2 ∗ A + 𝐵𝐵 
2) (3.4) 

  

where 𝑊𝑊2 is the1 x 4 weight matrix between layer 2 and layer 3,  𝜑𝜑 is the activation function,  

and 𝐵𝐵 
2 is the scalar bias of the last layer threshold. 

The dimension of the weight matrix of each layer is achieved by a number of the second 

layers' node, time to the number of the first layer. For instance, if the network has “n” nodes, in 

layer j and “m” nodes in layer j+1 the 𝑊𝑊𝑗𝑗  has 𝑚𝑚 × n, which is, in our case, is 4 × 3 for 𝑊𝑊1. 

Components of  𝑊𝑊1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑊𝑊2 are 

 

𝑊𝑊1 =

⎣
⎢
⎢
⎢
⎡𝑤𝑤11

1 𝑤𝑤21
1 𝑤𝑤31

1

𝑤𝑤121 𝑤𝑤22
1 𝑤𝑤32

1

𝑤𝑤131 𝑤𝑤23
1 𝑤𝑤33

1

𝑤𝑤141 𝑤𝑤24
1 𝑤𝑤34

1 ⎦
⎥
⎥
⎥
⎤
   𝑊𝑊2 = [𝑤𝑤12 𝑤𝑤2

2 𝑤𝑤3
2 𝑤𝑤42]  (3.5) 

 

Therefore, equation 3.3can be expanded as  

 

𝐴𝐴 = �

𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
𝑎𝑎4

� =

⎣
⎢
⎢
⎢
⎡𝑤𝑤11

1 𝑤𝑤21
1 𝑤𝑤31

1

𝑤𝑤121 𝑤𝑤22
1 𝑤𝑤32

1

𝑤𝑤131 𝑤𝑤23
1 𝑤𝑤33

1

𝑤𝑤141 𝑤𝑤24
1 𝑤𝑤34

1 ⎦
⎥
⎥
⎥
⎤
∗  �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� + �

𝑏𝑏1
𝑏𝑏2
𝑏𝑏3
𝑏𝑏4

� (3.6) 

 

𝑎𝑎1 = (𝑤𝑤111 𝑥𝑥1 +  𝑤𝑤21
1 𝑥𝑥2 +  𝑤𝑤31

1 𝑥𝑥3) + 𝑏𝑏1  

𝑎𝑎2 = (𝑤𝑤121 𝑥𝑥1 +  𝑤𝑤22
1 𝑥𝑥2 +  𝑤𝑤32

1 𝑥𝑥3) + 𝑏𝑏2 

𝑎𝑎3 = (𝑤𝑤131 𝑥𝑥1 +  𝑤𝑤23
1 𝑥𝑥2 +  𝑤𝑤33

1 𝑥𝑥3) + 𝑏𝑏3 

𝑎𝑎4 = (𝑤𝑤141 𝑥𝑥1 +  𝑤𝑤24
1 𝑥𝑥2 +  𝑤𝑤34

1 𝑥𝑥3) + 𝑏𝑏4 

(3.7) 

 

Substituting the result of equation 3.6 to equation 3.4 follows 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝜑𝜑 (𝑊𝑊2 = [𝑤𝑤12 𝑤𝑤2
2 𝑤𝑤3

2 𝑤𝑤42] ∗  𝐴𝐴 = �

𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
𝑎𝑎4

� +  𝐵𝐵 
2) (3.8) 

  



 

34 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝜑𝜑(𝑤𝑤12𝑎𝑎1 +  𝑤𝑤22𝑎𝑎2 + 𝑤𝑤32𝑎𝑎3 + 𝑤𝑤42𝑎𝑎4 + 𝐵𝐵 
2) (3.9) 

  

For avoiding the complexity of equation 3.9, 𝑎𝑎1 , 𝑎𝑎2 , 𝑎𝑎3 didn’t substitute with the values 

from equation 3.7.  From equation 3.2, the network output can be described as 

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = �
0, 𝑤𝑤12𝑎𝑎1 + 𝑤𝑤22𝑎𝑎2 + 𝑤𝑤32𝑎𝑎3 + 𝑤𝑤42𝑎𝑎4 +  𝐵𝐵 

2
 < 0

1, 𝑤𝑤12𝑎𝑎1 + 𝑤𝑤22𝑎𝑎2 + 𝑤𝑤32𝑎𝑎3 + 𝑤𝑤42𝑎𝑎4 +  𝐵𝐵 
2

 ≥ 0
 (3.10) 

 

As described earlier, for training the network, the output of equation 3.10 compares with 

the actual value, and if the mismatch happened, all the weights and biases change in order to get 

the correct output. The activation function in a neural network identifies if the output of the 

weighted sum value is above the defined threshold or not. For instance, if the unit step is chosen 

as an activation function, the output of the activation layer is either 0 or 1, causing a problem for 

classifying multiple outputs. This is one of the drawbacks of using the unit step as an activation 

function. The linear function also is not a good candidate because the outcome of each layer would 

be linear, and when it goes to the next layer, it will remain linear as well. Causing the nonlinear 

data to never map to this kind of function.  

The sigmoid function is one of the most popular activation functions that use in many 

applications, as shown below. 

 

 
𝑠𝑠(𝑥𝑥) =

1
1 + 𝑒𝑒−𝑥𝑥

=  
𝑒𝑒𝑥𝑥

1 + 𝑒𝑒𝑥𝑥
 (3.11) 

 

The sigmoid function has a lot of properties that make it perfect for many applications [36]. 

• Non-linear function  

• Output values range between (0,1) make it perfect for probabilistic problems  

• Has a vast input range can be any large number or any small negative number  

As shown in figure 3.6, the function output is between 0 and 1, make it useful for 

applications that have a probabilistic nature. 



35 

Figure 3.6 Sigmoid function output for value in the range of (-10,10). 

Another essential part of the ANN is the bias node.  A bias value allows the activation 

function to move left and right. Having good flexibility to shift the activation function left and 

right helps the data of the model fit better. The function usually used in the last layer of the ANN 

for making probabilities of the prediction. For instance, to recognize the picture of the car or 

airplane, this function can tell us the probability of an airplane or car. This function is useful for 

binary classification, since, in our case of room categorization, the classification is between 6 

different rooms, the generalized version of the sigmoid function, which is called SoftMax function 

is used.      

Figure 3.7 Sigmoid graphs with three different bias. 



 

36 

SoftMax function can handle multi classes, as described in equation 3.12. The SoftMax 

function is useful for some applications that need to identify the probability of more than two 

events. The output of the function is always between [0, 1] make it perfect for probability problems. 

Assume there are 4 data values of [-1, 0, 3, 5][37]. The probability of each data value is shown in 

table 3.1. These four numbers could be any values like the output of the hidden layer of the neural 

network for distinguishing four different objects. And the result in table 3.1 shows the probability 

of correctness of identifying the objects. 

 

 
𝑠𝑠(𝑥𝑥𝑖𝑖) =

𝑒𝑒𝑥𝑥𝑖𝑖
∑ 𝑒𝑒𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1

 (3.12) 

 

Table 3.1 Results of SoftMax function for the 4 different number 

𝑥𝑥 Numerator (𝑒𝑒𝑥𝑥) Probability( 𝑒𝑒𝑥𝑥𝑖𝑖
169.87

) 
-1 0.368 0.002 
0 1 0.006 
3 20.09 0.118 
5 148.41 0.874 

 

In this research, a 2D map constructed from LiDAR is used to classify the rooms. After 

discussing the basics of the neural network, the Convolutional Neural Network, or in short CNN, 

is explained in section 3.2. 

3.2 Convolutional Neural Network 

Convolutional Neural Network (CNN) is used in many applications. From unlocking your 

phone with face recognition to autonomous cars, all such applications use the CNN algorithm. One 

of the popular usages of CNN is image processing and recognition. Before discussing CNN, let's 

look at an image. In figure 3.8, the image of the character “X” taken by a camera is represented by 

8 x 8 pixels in monocular. Monocular means 1 represents black, and -1 interpreted as white. Figure 

3.8 (a) shows the image with its matrix representation, as shown in figure 3.8 (b). Recognizing this 

character is easy.  

 



37 

Figure 3.8 The interpretation of the character "X" in binary format. (a) is the pixels of the 
captured image and (b) is the construcrted matrix in computer memory. 

This task can be done by reading each member of the eight by eight matrix as an input and 

compare them with the matrix for known characters, and if all members value in the input matrix 

match with the known character ‘X,’ then the character X is detected. The problem with this 

approach is it can only detect the input character that exactly looks like the X. For instance, if the 

X character shape looks different, as shown in figure 3.9, the algorithm is no longer detect the 

character ‘X.’  

Figure 3.9 Three different images for the character ‘X’. 

As a result, a more complicated algorithm is needed to identify the desired character or 

object. In this case, instead of looking to match the entire image, start to match small pieces of the 

image. In the example presented, the X character can consist of three different features, which are 

shown in figure 3.10. Each feature framed with a different color for more clarity. The yellow and 

green frame shows the arms of the X, and the red one shows the core of the X. These features can 

match with the different pieces of the image.  



38 

Figure 3.10 Different features in the X character image. 

Convolutional filtering is used to match features piece by a piece. Figure 3.11 illustrates 

the convolutional filtering process for the left arm of the character “X.” The yellow frame in figure 

3.11(a) is the feature frame in figure 3.11(b).  

Figure 3.11 Filtering process with one of the features. 

The yellow frame sweeps into the entire picture and multiplies the values in the yellow 

frame in the image cells by corresponding feature cells and divided by the number Of cells, as 

shown below. 

(−1 ∗ 1) + (−1 ∗ −1) + (−1 ∗ −1) + ⋯+ (−1 ∗ 1)
9

=
−1
9

= −0.11 (3.13) 



39 

The green frame sweep all over the pictures, and each time it generates a number based on 

the algorithm mentioned. These numbers are illustrated in figure 3.12. This process function called 

convolution since the actual image somehow convoluted with the feature image and called filtering 

because, as in figure 3.12, the left diagonal arms of the X character filtered in figure 3.12 in dark 

green color. The result in figure 3.12 shows which cell of the image has the highest probability 

estimation to matched with the selected feature.   

Figure 3.12 Results of the filtering for the left diagonal arm of the X. 

Figure 3.13 shows the above process applied to the image for all three features. The “©” 

icon represents the convolutional operator. Figure 3.13 (b), showing the filtered pattern of each 

feature. This is what the convolutional layers do. It takes the set of features, three features in our 

case, and then returns a set of filtered images.     



40 

Figure 3.13 Convolutional operation illustration. 

The data in each cell should normalize by changing negative ones to zeros to making 

network training an easier optimization problem. One of the activation functions mentioned in 

figure 3.4 is called Rectified Linear Unit or “ReLU.”  The main advantage of using the ReLU 

function over other activation functions is that it does not activate all the neurons at the same time. 

This means that the neurons will only be activated if the output of the linear transformation is more 

than 0.   Equation 3.14 shows the function equation, and figure 3.14 shows the corresponding 

graphs.   



41 

𝑓𝑓(𝑥𝑥) = �0, 𝑥𝑥 < 0
𝑥𝑥, 𝑥𝑥 ≥ 0 (3.14) 

Figure 3.14 Rectified linear unit graph. 

The output of the image after applying the ReLu function is shown in figure 3.15 (b) which 

all the negative vlues became zero.  

Figure 3.15 (a) Convoluted matrix, (b)  ReLu function applied to the convoluted matrix. 

The next operation called the MaxPolling. MaxPolling shrinks the size of the image matrix 

without losing its essential information. For MaxPolling operation, a window size (usually 2 x 2 

or 3 x 3) and the step size (usually 2) will be selected to sweep across the convoluted images. Each 



42 

iteration should return the maximum value within the 2 x2 frames. Figure 3.16 illustrates the 

convoluted image of the left arm of the X character. The first red window is taking the first four-

member of filtered images and put the maximum value. 

Figure 3.16 MaxPolling the left arm of X character. 

Figure 3.17 shows all layers, convoluted, ReLu(ed), and MaxPool(ed) image for each 

different feature. These layers together called hidden layers. Figure 3.5 shows the perceptron with 

only one hidden layer. Although the hidden layer in figure 3.5 is slightly different than the one in 

figure 3.16, in terms of the functionality, in deep learning any layer between input and output 

layers called hidden layers. In hidden layers, artificial neurons take in a set of weighted inputs and 

produce an output through an activation function. In hidden layers of CNN, each matrix element 

in the convolution filter is the weight that is being trained.  

Figure 3.17 All three features passed to one simple hidden layer. 



43 

The neural network could have one or more hidden layers depending on the application. 

Each hidden layer can have a different arrangement in terms of the Convolutional filter, 

MaxPooling, or ReLU layers. Figure 3.18 shows two different arrangement of different modules 

in the hidden layer.     

Figure 3.18 Connecting few hidden layers. 

After these steps, all the output from hidden layers matrices expands to one linear layer 

called a fully connected layer. Figure 3-19 shows the fully connected layers constructed by the 

output of hidden layers shown in figure 3.18.  

Figure 3.19 Fully connected layer. 



44 

Figure 3.20 shows the fully connected layer obtained from figure 3.19, feed as the input to 

simple ANN shown in figure 3.3.  

Figure 3.20 Fully connected layer feeds the input of simple ANN. 

Since the character is classified by this layer, it called classification layers. As stated in the 

previous section, the data in an input layer multiplied by an arbitrary weight and summed. Then 

the Sigmod function applied to the summed value. The output of the Sigmoid function compares 

to the highest possible value, which is one. After that, all the weights change, and multiplication 

and summation repeat. In each iteration, the error calculated by subtracting the output of the 

Sigmoid function from the expected value.  This process repeated until optimal error achieved. 

When the minimum error achieved, all the weights are stored. For the simplicity of this chapter, 

three features of the only one kind of font picture were chosen. For having the network to able 

detect any X character with any font, more X character images with different font should feed to 

the network. These different X characters called dataset. The bigger dataset means a better training 

process, and a better training process means a more accurate network.     



45 

3.3 Room Categorization with Convolutional Neural Network 

Section 3.2 explained how Convolutional Neural Network train to detect the simple X 

character out of other alphabet characters. As stated before, the data set is used to train a Neural 

Network. For instance, if the Convolutional Neural Network supposes to detect the apple image 

out of other fruits, the data set of all fruits, including apple images, should be used to train the 

network. In this research, CNN will use to detect a room category out of 6 different room categories. 

The data set used in this research is obtained from work done in  [26] MATLAB’s Deep Learning 

toolbox is utilized for training and classifying the room categories. After training the network with 

the dataset, the images of the maps obtained by Gmapping, as implemented in chapter 4, are 

classified using CNN to indicate the applicability of the approach for room categorization. The 

implementation of the CNN algorithm mentioned in Section 3.2 handled by MATLAB Deep 

Learning toolbox.  In the next two chapters, the Gmapping implementation and result will be 

discussed, followed by chapter 5, which elaborates on the simulation for room categorization result. 



46 

SLAM IMPLEMENTATION 

Gmapping is the ROS package that implements SLAM using a Rao-Blackwellized particle 

filters algorithm. In this chapter, the performance of the Gmapping approach solving the SLAM 

problem is evaluated by simulation and experimentation. For simulation, Gazebo is used to 

construct the environment and navigate the robot within that simulated environment. Gmapping is 

used to generate the map using LiDAR information. Afterward, the estimated map and the actual 

map are compared to evaluate performance. The second part of this chapter implements the 

Gmapping approach in the real environment with an actual robot. In the experiment performed, a 

Jackal robot is moved in two different campus’s rooms to map the environments. Another 

environment mapped is an apartment with furniture. In both the simulation and experimentation, 

RVIZ is used to visualize the environments.  

4.1 Simulations 

The Gazebo is a 3D simulator software that has the ability to simulate the robot in indoor 

and outdoor environments. The Gazebo has a precise physic simulator similar to game engines.  In 

Gazebo, any desired environment or robot can construct in the simulator with any features and 

abilities. For instance, the environment can be designed to have different gravity than earth gravity. 

The details on how to construct the environment and the robot are not provided here. More details 

can be found in Appendix B. Two different environments are considered, as shown in figure 4.1. 

Figure 4.1 Gazebo simulation of rectangle rooms, yellow color shows the trajectory of the robot 
(a) simple room (b). corridor-like room. 



 

47 

The first environment is a rectangular shaped room with a dimension of 270 x 370 

centimeters, and the other one is the simple corridor shape environment with dimensions of 80 x 

180 x 280 x 380 x 80 x 180 x 280 x 380. The reason for choosing two different environments is to 

show the robustness of the approach. In this simulation Jackal, robot features, and all its capability, 

simulated and defined in the XML file called Jackal description. This file content of all the physics 

laws and mechanical laws of the robot, speed, weight, LiDAR specification, etc. The second step 

is to make the desired environments by defining the dimensions and materials or even the obstacle 

inside the environments. The environment constructed in Gazebo called the world. For simplicity 

of this simulation, the world constructed in Gazebo does not have any obstacle or any shape 

complexity, as shown in figure 4.1. After constructing the desired world, in a Linux terminal, the 

gazebo engine calls the world and robot within it, as shown in figure 4.1. 

 

 

Figure 4.2 (a) Simple room in RVIZ and (c) results of Gmapping in the PGM file. (b) corridor-
like room in RVIZ and (d)  results of Gmapping in PGM file. 



 

48 

In another Linux terminal, the Gmapping ROS package should be run. For visualization 

and also moving the robot in the Gazebo world, the RVIZ can be run in the third Linux terminal. 

The Gmapping ROS package reads the information from the simulated Jackal robot and uses it to 

build a map. These data include laser scanning data and odometry data, which obtained from 

simulated Jackal in the simulated Gazebo world. RVIZ is used to navigate the robot and visualizing 

the constructed map. Figure 4.2 (a,b) shows the graphical presentation of the simulated world in 

Figure 4.1 (a,b), and 4.2 (c,d) shows the map build from figure 4.1(a,b). The blue wheel around 

the robot in 4.2 (a,b)  is the tool used for moving the robot around. The Red and pink colors in 

figure 4.2(a,b) are the LiDAR beam representation and the gray color area, representing the portion 

of the map that already built. As shown in figure 4.2(a,b), the map is not built completely, because 

the robot is not visited the entire environment. As described in chapter 2, the Gmapping makes the 

map based on grid mapping. When the LiDAR sees the obstacle, it makes the black color on a gray 

background, and when the LiDAR doesn’t see any obstacle, it generates the white color.  

Gmapping creates two files as an output. One file is consists of the graphical information in PGM 

format, shown in figure 4.2(c,d), and the other one is consists of the image information in YAML 

format, which is some information in human-readable form as shown in figure 4.3. A PGM file 

format, which stands for Portable Gray Map, is a grayscale image file that Gmapping created. 

 

 

Figure 4.3 YAML content 
 

As shown in Figure 4.3, the YAML file contains the following information provided by 

the Gmapping software package. 

o Image: path to the image file mymap2.PGM containing the occupancy data. 

o Resolution: resolution of the map in meters/pixel 



 

49 

o Origin: 2-D pose of the lower-left pixel in the map, as (x, y, yaw), with yaw as 

counterclockwise rotation (yaw=0 means no rotation).  

o Negate: whether the white/black free/occupied semantics should be reversed 

(interpretation of thresholds is unaffected) 

o Occupied_thresh: pixels with occupancy probability greater than this threshold 

are considered completely occupied. This parameter pre-defined by the Gmapping 

package. 

o Free_thresh: pixels with occupancy probability less than this threshold are 

considered entirely free. This parameter pre-defined by the Gmapping package. 

As shown in figure 4.3, the resolution of the map is 2 cm /pixel. Table 4.1 shows the actual 

versus the estimated dimensions. The first column in table 4.1 indicates the actual dimensions of 

each room, which is defined at the time of constructing the environment in Gazebo. The second 

column is the value extracted from PGM images by counting the pixels for each side of the image. 

For instance, in figure 4.4, one of the room sides magnified to shows the tiny pixels of the images. 

Those pixels are counted to obtain the dimensions of the corresponding side.  

 

Table 4.1 Comparison between the actual and estimated dimensions derived from the map 
constructed using Gmapping 

 
 

For As an example, in figure 4.4, there are 46 pixels. According to the YAML file, each 

pixel represents 2 cm, which results in an estimated dimension of 92 cm. The third and fourth 

columns show the conversion between the pixels and the estimated dimension in centimeters. The 

errors between the actual measurement and estimated dimensions are shown in the last column. 

All the dimensions are extracted from the  Gmapping.   

 Actual 
Output

PGM 
Output

Estimated dimensions from the map with 2 
cm/pixel resolution

Gmapping 
Error %

270 cm 123 pixel 123 X 2 cm =246 cm 15
370 cm 175 pixel 175 X 2 cm= 350 cm 11
380 cm 198 pixel 198 X 2 cm = 396 cm 8
280 cm 151 pixel 151 X 2 cm = 302 cm 7
180 cm 100 pixel 100 X 2 cm = 200 cm 5
80 cm 46 pixel 46 X 2 cm = 92 cm 4

Simple Rectangle room

corridor like room 



50 

Figure 4.4 A  magnified image of the left side of a corridor-like room that shows the tiny pixels. 

The percentage of errors versus dimensions are shown in Figure 4.5. As shown, the 

accuracy of the map is acceptable.  

Figure 4.5 Map errors vs. actual dimensions. 

0
2
4
6
8

10
12
14
16

0 100 200 300 400

ER
RO

R 
IN

 %

DIMENSION IN CM

Map error via gmapping



51 

4.2 Experimentations 

For implementing the Gmapping algorithm to perform SLAM, the Jackal robot equipped 

with the LiDAR and IMU sensor is used. Jackal robot specifications are provided in Appendix A. 

The robot operating system(ROS) provides the software platform as explained in Appendix B. The 

Kinetic version of ROS is installed in the robot processor. The environments considered are three 

different rooms in different buildings. Two rooms are on Purdue Northwest campus, and the other 

one is an apartment. One of the rooms (Potter 104) is a very messy environment since the room is 

used for different purposes, but the other room (Potter 315) was empty at the time of this 

experiment. Potter 315 is good for easily measuring the actual dimensions of the room and 

comparing it to the estimated values derived from the SLAM algorithm to determine the accuracy 

of the approach. Another environment used is a room with furniture. The map for this environment 

is later used in the room categorization algorithm in chapter 5. The approach of Gmapping used 

for SLAM is based on Blackwellized Particle Filters, as was explained in chapter 2. In this section, 

the approach is implemented by performing a number of experiments. The experimental hardware 

and software platforms are discussed next, followed by SLAM results for different environments. 

4.2.1 Hardware Setup 

As was mentioned, the Jackal robot specification and capabilities are explained in appendix 

A. The robot is equipped with a LiDAR sensor that provides the distances between the robot and 

the obstacles as described in chapter 2. Jackal has the IMU sensor, which provides information 

about the movements of the robot.  Jackal can be commanded to move around with a joystick. 

Figure 4.6 shows different parts of the Jackal robot. Figure 4.6 (a) and (c) show the inside of the 

robot. In figure 4.6 (a), the microcontroller drives motors, IMU, and other parts that need the low-

level software driver, and in figure 4.6 (c), the Jackal computer which is used for all the 

computational process is shown. Figure 4.6 (b) shows the outside of the robot with WIFI and GPS 

antennas. WiFi is used for communication between the Robot and the host computer. In this 

research, GPS was not used. Figure 4.6(e) shows the LiDAR and stereo camera. In this research, 

only the LiDAR sensor used. Figure 4.6(d) shows the joystick that uses for moving the Jackal 

robot around utilizing a PS4 controller with Bluetooth capability installed on the Jackal computer.   

.    



52 

Figure 4.6 Jackal  Robot. (a) inside the robot equipped with a microcontroller board for driving 
motors and sensor drivers and the battery. (b) shows the antenna for WiFi and also GPS antenna. 
(c) the second robot inside the processor and the CPU of the robot. (d) Joystick for moving the 

robot. (e) LiDAR and camera sensors.  



53 

4.2.2 Software Setup 

Robotic Operating System or ROS is the robotic middleware designed on the Linux 

platform to handle specifically for developing robotic applications. ROS provides services such as 

motor and sensor drivers, intercommunication messaging, and etc.[38]. More details in ROS can 

be found in Appendix B. RVIZ is the graphical user interface in ROS for visualizing the robot data 

such as sensor output, odometry information, etc. RVIZ can be configured to a specific sensor or 

actuator. In this research, RVIZ is set up to show the LiDAR measurements and visualize the map 

generated by the Gmapping approach in SLAM. In order to run the SLAM, two different programs 

are needed, one is the Gmapping app, and the other one is the RVIZ for visualization of the 

estimated map from Gmapping. The constructed map using Gmapping is explained in the next 

section.  

4.2.3 Robot Navigated in a Research Lab 

In this experiment, the objective is to map a labratory room, Potter 104 using Gmapping. 

Figure 4.7 shows the map generated. The lab is so messy due to equipment for many projects. 

Because of this issue, it’s very hard to find the dimension of the room since some of the places in 

the room are unreachable. But still, the experiment give us some information about the capability 

of Gmapping in making a map. For example, the red circle in figure 4.7, shows the door while it’s 

open, or the orange circle shows three big trash bins in the corridor behind the lab. The robot 

trajectory is shown with a blue color.  

Figure 4.7 Potter 104 maps generated by Gmapping. 



54 

The yellow rectangular indicates the starting position of the robot, and the Green cross 

marked the end position. The robot movement controlled by a human operator using the joystick. 

At the same time, the host computer established a connection via wifi with the Jackal computer. 

The Gmapping algorithm is executed by a robot computer and, at the same time, the RVIZ is used 

to visualize the map constructed with Gmapping in the host computer. After the robot reaches the 

end position, the map constructed by Gmapping and  visualized by RVIZ is saved as shown in 

figure 4.7. For evaluating the accuracy of the map, the next experiment uses an empty room as 

dimensions can easily be measured. 

4.2.4 Robot Navigated in an Empty Room 

As mentioned before, an empty room on campus with a known dimension is used in this 

experiment. The map generated by the Gmapping and visualizing with RVIZ, shown in Figure 4.8. 

Figure 4.8 Potter 315 maps generated by Gmapping, (a – d) in each stage that map constructed 
by Gmapping ROS package, RVIZ visualization shown. (e) the PGM file that created by the 

end of the Gmapping process. 



55 

Figure 4.8 shows steps that the robot took to complete the map.  In figure 4.8-(a), the robot 

started from the right corner of the room. When the Gmapping ROS package executed, the location 

of the robot is considered the origin point of the map. The trajectory of the robot in the current 

constructed map is shown with yellow color. Figure 4.8 (b), (c), and (d) show different stages of 

constructing the map in RVIZ using Gmapping. In this experiment, the robot connects to the host 

computer via wifi. The RVIZ runs in a host computer, and the Gmapping ROS package runs on a 

Jackal computer. Each piece of the map constructed by Gmapping sends via wifi to RVIZ for 

visualization in the host computer.  When all the environment mapped, figure 4.8 (d), the map is 

saved in the host computer by calling the ROS node “map_server” which explained in Appendix 

B. The estimated dimensions are calculated by counting the pixels in the map image like the 

process described in Section 4.1. The actual room dimensions measured by the ruler for 

comparison. Figure 4.9 shows the map with the actual and estimated measurements.  

Figure 4.9 Potter 315 with actual and estimated dimensions. Blue color is Estimated size 
from Gmapping, and orange color indicates the actual length. 



56 

Table 4.2 Comparison between the actual and estimated length 

Table 4.2 shows the map error between the actual dimension and the estimated one.  The 

errors are graphed in figure 4.10. As shown, errors are reduced for larger dimensions. This is 

similar result as was obtained from simulation.  

DIMENSION IN METER

Figure 4.10 Dimension’s error in the generated map. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 100 200 300 400 500

ER
RO

R 
IN

 %

Map error via gmapping



57 

4.2.5 Navigation in an Apartment 

So far, two different environments have been considered. In Potter 104, the approach 

distinguishes between the lab and the corridor behind it. In Potter 315, the accuracy of the approach 

was evaluated. Both environments considered do not have any furniture. Since the objective is to 

categorize the rooms in an apartment or a house, in this experiment, an environment with some 

furniture is considered. The experimental objective is to map a 2-bedroom 2-bathroom apartment 

with the furniture using the Jackal robot with LiDAR. Figure 4.11(a) shows the layout of the two 

beds, two baths apartment with each different room shown separately. Figure 4.11(b) and 4.12(c) 

show both the layout of the apartment and also the generated PGM file for comparison between 

the actual and estimated map. As shown in figure 4.11(c), the estimated map is pretty accurate in 

terms of shape in comparison to actual layout 4.11(b). Red lines in figure 4.11(b) and (c) indicate 

the boundary of each room. The map constructed in this experiment is used for room categorization, 

as explained in the next chapter. 

Figure 4.11 (a) two beds, two baths apartment layout shown in separate parts. (b) actual layout 
(c) estimated map. 



58 

ROOM CATEGORIZATION SIMULATIONS 

The objective of this research is to utilize the map generated by the Gmapping SLAM 

algorithm using LiDAR for room categorization. The approach used for room categorization is 

Convolutional Neural Network explained in detail in chapter 3. To evaluate the applicability of the 

approach, simulations are performed in this chapter. From chapter 4, the 2d map for different 

rooms was constructed in an experiment performed using Jackal with a LiDAR. The SLAM 

algorithm is to make the 2D map in the PGM format and use this 2D map to train and classify the 

room category with CNN. The PGM format is converted to jpeg since the program that performs 

the CNN can only read the jpeg format. In addition, to improve training, another dataset that was 

obtained from another research [26] is used in this simulation and our results are compared with 

the approach in [25] using the same dataset. These datasets collected from 24 different homes, 

including apartments and houses obtained by a P3-DX robot equipped with Hokuyo URG laser 

rangefinder. In Table 5.1, the IMU and laser scan data used in [26] to build the map are shown. 

These data are used to make an image from these raw data with the “MapBuilder_Dataset.m” 

MATLAB program. Figure 5.1 shows the map created with “MapBuilder_Dataset.m” alongside 

the map created in [26]. The “MapBuilder_Dataset.m” code is provided in Appendix C.1. 

Figure 5.1 Group (a & c) are the  [26] output and (b & d) are the output map of our MATLAB. 



 

Ta
bl

e 
5.

1 
D

at
as

et
 o

f t
he

 ra
w

 o
do

m
et

ry
 a

nd
 L

iD
A

R
 u

se
d[

26
]. 

59



 

60 

5.1 Simulation Setup 

 For simulating the room categorization, MATLAB, with “Deep Learning” toolbox is used. 

Deep Learning Toolbox™ (formerly Neural Network Toolbox™) provides a framework for 

designing and implementing deep neural networks with algorithms, pre-trained models, and apps. 

The convolutional neural networks (ConvNets, CNNs) is used to perform classification and 

regression on image, time-series, and text data.  In chapter 3, the roles of different parameters in 

the neural network were discussed. Below are the settings that configure the simulation parameters. 

As is described in chapter 3, CNN has different layers. Figure 5.2 shows the sequence of the layers 

used. There are three hidden layers followed by Softmax and classification layer.  The descriptions 

of each layer is given below 

• Input layer: This is the layer that read all the images, the size of all images which feed into 

the CNN should be normalized and be the same. The image size normalization, performed 

in the same program which performs CNN. In this research, 227 x 227-pixel size was 

chosen since it is one of the standard sizes for the CNN process in MATLAB. Selecting 

the mentioned image size is not too big to cause memory overflow, and it’s not too small 

to lose features of the image due to low resolution. 

•  Hidden layers consist of three different layers 

o The convolutional layer, three parameters, needs to define for this layer. 

  Filter size, as is discussed in chapter 3, is the width and height of the filters 

that the training function uses while scanning along with the images. In this 

research, the filter size is 3-by-3. The reason to chose the 3 by 3 is that the 

single neuron can be left, right, upper, down, upper left, upper right, lower 

left, lower right, as a total of 8 neighbor information, and usually it is the 

smallest filter size. 

 The number of features map: This parameter defines the number of features, 

32 features selected for this experiment. Each feature map is being trained 

to capture a particular aspect of the input. The number of feature maps is a 

function of how many different features need to be captured and understood 

by CNN to produce the desired output. This parameter of the CNN, tested 

by 8, 16, 32, and 64. The best result obtained when the number of features 

map is 32.   



 

61 

 Stride number: This is the number of steps, each time the filter frame should 

move while sweeping the image. The stride number is one.  

o Normalization layer: as discussed in chapter 3, the normalization layer is just used 

for normalizing the negative numbers to speed up the training process.  

o MaxPooling layer: As stated in chapter 3, MaxPooling reduced the image size of 

the feature image by omitting the redundant spatial information to reduce the 

computational cost. 

 The size of the MaxPooling frame is 2 by 2  

 The stride of the MaxPooling frame is 1 

• Fully connected layers: Max-pooling layers are followed by one or more fully connected 

layers. As described in chapter 3, the fully connected layer is the flattened version of the 

output of the hidden layer. This layer combines all the features learned by the previous 

layers across the image to identify the larger patterns. The last fully-connected layer 

combines the features to classify the images. Therefore, the output size parameter in the 

last fully connected layer is equal to the number of classes in the target data. In this example, 

the output size is six, corresponding to the six classes.  

• Softmax Layer; The softmax activation function normalizes the output of the fully 

connected layer. The output of the layer consists of positive numbers that sum to one, which 

can then be used as classification probabilities by the classification layer. 

• Classification Layer: The final layer is the classification layer. This layer uses the 

probabilities returned by the softmax activation function for each input to assign to one of 

the mutually exclusive classes. 

The next section describes the training process and how to prepare the data set for this 

training.  

 



 

62 

 

Figure 5.2 Layers construction. 
 

5.2 Training the Network 

Train the network using the CNN architecture defined by layers and the training data. For 

this training, the program uses a GPU if one is available. Otherwise, it uses a CPU. The parameters 

discussed in the previous section, prepare the MATLAB program which implementing the 

program that performs CNN. The program in MATLAB called “RoomCategorization.m” can be 

found in Appendix C.2. As stated before, the raw data from [26] is used to make the 2D image of 

the map and normalize it into the 227 x 227-pixel images. The different rooms in each category 

and a few samples of images in each category built are shown in figure 5.3.  

  



63 

Figure 5.3 Number of different rooms and sample of each room. 

These images, plus the images obtained in section 4.2.5 mapping an apartment, are feed to 

the “RoomCategorization.m” MATLAB program for the training the CNN. As discussed in 

chapter 3, each pixel of the images feeds into the neuron, followed by convoluting layers. The 

features at the beginning of the training selected randomly, and they will change during the training. 

ReLU and MaxPooling layers will follow the output of the convoluted layer.     

After the neural network trained by these images, the validation process is started.  The 

validation and the result of it will be discussed in the next section. 

5.3 Simulation Results 

The goal of the validation process is to find the probability of each image classification in 

the correct category. For instance, at the end of the training, the “RoomCategorization.m” 

MATLAB program reads every image in different categories and labels them to different classes. 

As shown in figure 5.4, the “RoomCategorization.m” MATLAB program listed all the room's 

image in the bedroom category. Then each of them classified by the trained network, and the output 

is labeled bellow each image. In a perfect circumstance in which the network trained ideally, all 

of the images in figure 5.4 should be labeled as a bedroom. One of the reasons that the network is 

not trained ideally is the number of datasets. With the bigger data set, it can train a better neural 

network.  



 

64 

 

Figure 5.4 Classification results for the bedroom. 
 

Figure 5.4 shows each one of the images in the bedroom category classified with the trained 

network, and the result shows out of 28 rooms, only 11 of them classified correctly, which means 

39% accuracy. The same process had been done, and the probability rate obtained for each. Table 

5.2 shows the results for each category.  

 

Table 5.2 Accuracy for each room classification 

 
 

As shown in Table 5.2, the corridor has the highest accuracy, and the kitchen has the lowest. 

The reason could come from the corridor's spatial shape, which is the long rectangular room, and 

it can be detected easier.  The results of this work are compared to Peter Ursic's work [20], and the 

comparison is shown in table 5.3 using the same dataset. Peter Ursic, in [20][25][38], uses the 

Hierarchical spatial model approach to classify the rooms.  

 

  



 

65 

Table 5.3 Comparision between the results of our work with [21] 

 
 

As it shows in table 5.3, our approach has a better performance in all rooms, excluding 

Kitchen. The comparison in table 5.3 shows our approach with CNN is slightly better than the [21]. 

One of the downsides of the [21] approaches, is the complexity to implement the approach.  

Another validation that has been done in this research was to classifies each of the rooms 

that maps were obtained experimentally in chapter 4. The results are shown in the form of a matrix 

[40] in table 5.4. The matrix in Table 5.4 shows that the network can only not classify the toilet 

correctly.   

 

Table 5.4 Confusion matrix for the apartment rooms that obtained in section 4.2.5. 

 
 

As discussed in chapter 3, the best neural network is the one that trained with a large 

amount of data set. For instance, there is a pre-trained network called Alexnet [41], which trained 

by 1.2 million images for classifying 1000 different objects. It means there are 1200 images per 

object on average. But in our work, the total of the training data set is about 130. One of the 



 

66 

problems of having such a short data set is the difficulty of collecting data. For instance, Peter 

Ursic [21] collected his data set from 24 different apartments.  

One approach for solving this problem will be discussed in the next chapter in the 

conclusion and future work. 

  



 

67 

 CONCLUSIONS AND FUTURE WORK 

The goal of this research was to show the ability of the convolutional neural network to 

classify the room with the map of the environment obtained by SLAM (gmapping algorithm). In 

chapter four, simulations and experiments validated the map accuracy using Gmapping, and in 

chapter 5, simulations showed all the layout obtained from the apartment mapped in chapter 4 was 

classified correctly, excluding the toilet using CNN. One of the applications for developing a room 

categorization algorithm is for assisted robots to distinguish between different rooms for better 

service.  

Since one of the big challenges in this work was the dataset, the future work should focus 

on increasing the amount of training dataset. Since collecting, scanning of the data from home to 

home is a challenging task, one of the approaches to obtain such a data set is to make a data set in 

a simulation environment. In chapter 4, simulating the environment in Gazebo is described briefly, 

and more data sets can be obtained by designing a different layout in Gazebo and add the map 

inside that simulated environment to the dataset.  

Another suggestion is to implement CNN inside the Jackal computer. All the work in 

chapter 5 had been done on a host computer using MATLAB. In order to have a robot that moved 

around and classify the rooms during motion, the robot should be able to perform the steps 

described in chapters 4 and 5. This means; first, the robot should be able to make the map of the 

environment and localize itself, and then it should detect when the map of the environment is 

completed (loop closing in SLAM). Afterward, the CNN is trained inside the robot computer and 

feed the obtained map to the CNN for room categorization in real-time. The room categorization 

information is then utilized to perform tasks in the home environment by an assisted robot. 

  



 

A
PP

EN
D

IX
 A

. R
O

B
O

T
 S

PE
C

IF
IC

A
TI

O
N

S 

Th
is

 a
pp

en
di

x 
pr

ov
id

es
 th

e 
Ja

ck
al

 R
ob

ot
 sp

ec
ifi

ca
tio

n 
an

d 
th

e 
se

ns
or

s u
se

d.
 

•
M

ec
ha

ni
ca

l SI
ZE

 A
N

D
 W

EI
G

H
T 

EX
TE

RN
A

L 
D

IM
EN

SI
O

N
S 

(L
 x

 W
 x

 H
) 

50
8 

x 
43

0 
x 

25
0 

m
m

 (2
0 

x 
17

 x
 1

0 
in

) 

IN
TE

RN
A

L 
ST

O
RA

G
E 

D
IM

EN
SI

O
N

S 
25

0 
x 

10
0 

x 
85

 m
m

 (1
0 

x 
4 

x 
3 

in
) 

W
EI

G
H

T 
17

 k
g 

(3
7 

lb
s)

 

G
RO

U
N

D
 C

LE
A

RA
N

CE
 

65
 m

m
 (2

.6
 in

) 

SP
EE

D
 A

N
D

 P
ER

FO
RM

A
N

CE
 

M
A

X.
 P

A
YL

O
A

D
 

20
 k

g 
(4

4 
lb

s)
 

A
LL

-T
ER

RA
IN

 P
A

YL
O

A
D

 
10

 k
g 

(2
2 

lb
s)

 

M
A

X.
 S

PE
ED

 
2.

0 
m

/s
 (6

.6
 ft

/s
) 

D
RI

VE
 P

O
W

ER
 

50
0 

W
 

68



 

•
El

ec
tri

ca
l

BA
TT

ER
Y 

A
N

D
 P

O
W

ER
 S

YS
TE

M
 

BA
TT

ER
Y 

CH
EM

IS
TR

Y 
Lit

hi
um

-I
on

 

CA
PA

CI
TY

 
27

0 
W

at
t-h

ou
rs

 

CH
A

RG
E 

TI
M

E 
4 

ho
ur

s 

RU
N

 T
IM

E 
He

av
y 

us
ag

e:
 2

 h
ou

rs
 B

as
ic 

Us
ag

e:
 8

 h
ou

rs
 

•
In

te
rfa

ce
 a

nd
 c

om
m

un
ic

at
io

n

IN
TE

RF
A

CI
N

G
 A

N
D

 C
O

M
M

U
N

IC
A

TI
O

N
 

CO
N

TR
O

L 
M

O
D

ES
 

Ki
ne

m
at

ic 
Co

m
m

an
ds

 —
 v

el
oc

ity
, a

ng
ul

ar
 v

el
oc

ity
 O

pe
n 

Lo
op

 M
ot

or
 

Dr
ive

r C
om

m
an

ds
 —

 v
ol

ta
ge

 W
he

el
 V

el
oc

ity
 C

om
m

an
ds

 

FE
ED

BA
CK

 
Ba

tte
ry

 a
nd

 m
ot

or
 c

ur
re

nt
 In

te
gr

at
ed

 G
PS

 re
ce

ive
r 

W
he

el
 v

el
oc

ity
 a

nd
 tr

av
el

 In
te

gr
at

ed
 g

yr
os

co
pe

 a
nd

 a
cc

el
er

om
et

er
 

CO
M

M
U

N
IC

A
TI

O
N

 
Et

he
rn

et
, U

SB
 3

.0
, R

S2
32

. (
IE

EE
 1

39
4 

av
ai

la
bl

e)
 

D
RI

VE
RS

 A
N

D
 A

PI
s 

Pa
ck

ag
ed

 w
ith

 R
OS

 In
di

go
 

IN
TE

G
RA

TE
D

 A
CC

ES
SO

RI
ES

 (
in

cl
ud

ed
) 

W
ire

le
ss

 G
am

e 
co

nt
ro

lle
r, 

GP
S,

 IM
U,

 O
n-

Bo
ar

d 
Co

m
pu

te
r, 

W
IF

I 
Ad

ap
te

r, 
Ac

ce
ss

or
y 

M
ou

nt
in

g 
Pl

at
es

 

69



 

•
C

om
pu

te
r

CO
M

PU
TE

R 

C
PU

 
Ce

le
ro

n 
J1

80
0 

W
IF

I A
da

pt
er

 D
ua

l-c
or

e,
 2

.4
GH

z 

H
D

D
 

32
 G

B 
Ha

rd
 D

riv
e 

R
A

M
 

2 
GB

 R
AM

 

In
te

rfa
ce

 
US

B 
3.

0,
 R

S2
32

. (
IE

EE
 1

39
4 

av
ai

la
bl

e)
 

•
Li

D
A

R
 S

en
so

r

Li
D

A
R 

LM
S1

11
 

Sc
an

 A
ng

le
 

27
0°

 

Sc
an

ni
ng

 fr
eq

ue
nc

y 
25

 H
z 

~ 
50

 H
z 

A
ng

ul
ar

 re
so

lu
tio

n 
0.

25
 ~

 0
.5

 

D
is

ta
nc

e 
m

ea
su

rin
g 

ra
ng

e 
(o

pe
ra

tin
g 

ra
ng

e)
 

0.
5 

m
 ~

 2
0 

m
 

La
se

r c
la

ss
  

La
se

r c
la

ss
 1

 a
cc

or
di

ng
 to

 IE
C 

60
 8

25
1:

20
14

 

H
ei

gh
t 

16
2 

m
m

 

W
id

th
 

10
2 

m
m

 

D
ep

th
 

10
6 

m
m

 

Po
w

er
 su

pp
ly

 
10

.8
 V

 ~
 3

0 
V 

Po
w

er
 c

on
su

m
pt

io
n 

Se
ns

or
 

8 
W

 ~
 1

0 
W

 

70



71 

APPENDIX B. ROBOTIC OPERATING SYSTEM SOFTWARE 
PACKAGES AND SOFTWARE TOOLS USED 

1. ROS [42]: The Robot Operating System (ROS) is an open-source framework for developing

robot software. It is consisting of tools, libraries, and conventions that aim to simplify the task

of creating complex and robust robot behavior across a wide variety of robotic platforms. Some

of the tools used for this research are RVIZ and Gazebo. Gmapping is one of the libraries for

performing SLAM on the ROS platform. The ROS platform has different versions. The version

used in this research is Kinetic. ROS is installed on Linux operating system. The Linux version

used in this research is Ubuntu 16.04. For installing ROS Kinetic in Ubuntu 16.04, refer to

[43].

2. Gazebo is a 3D simulator, while ROS serves as the interface for the robot. Combining both

provides a powerful robot simulator environment. With Gazebo, you are able to create a 3D

environment with robots, obstacles, and many other objects. The gazebo also uses a physical

engine for illumination, gravity, inertia, etc. for making the world in Gazebo, following steps

are performed.

2.1. Install all the requires tools and library for Jackal Robot

Sudo apt-get install ros-kinetic-jackal-simulator ros-kinetic-jackal-de
sktop ros-kinetic-jackal-navigation 

2.2.  load the gazebo and build the floor plan in the layout builder. 

roslaunch gazebo gazebo 

2.3. Download the 3d model from 3dwherhouse.com and save the model in the below folder. 

Make sure the folder content has <filename.sdf> and <model.config>. If the sdf file is not 

the same name as the folder, change it and also go to model.config and change the name 

in line <sdf version=”1.6”>filename.sdf</sdf> 

~/catkin_ws/src/two_wheels_gazebo/models 

2.4. copy the file in ~/.gazebo/models 

cp -r ~/catkin_ws/src/two_wheels_gazebo/models/<filename> ~/.gazebo/mod
els 



72 

2.5. go to to the “world” file. The “world” file has all the component which appears in the 

enviroment 

  gedit  ~/catkin_ws/src/two_wheels_gazebo//worlds/room.world 

2.6. and add this 

<include> 

<uri>model://<the name of the model></uri> 

  <pose>0 0 0 0 -0 0</pose> 

 </include> 

3. Jackal Description file can be found in [44], which is the GitHub file that contains all the files

and parameter needs for making the Jackal model in the simulation. All required files will be

uploaded into the system from section 2.1, at the time of installing the Jackal library. More

information on how to simulate Jackal can be found in [45].

4. RVIZ is one of the powerful software tools uses on the ROS platform for 3D and 2D

visualization the mobile robot information, such as log sensor information from robot’s sensors.

RVIZ is a tool that can visualize how the robot is seeing the environment and how it’s

performing. RVIZ can be used for debugging the robot application software.

5. Gmapping is the software library implemented in C++ on the ROS platform to perform SLAM.

Gmapping is very user friendly and can interact with different ROS tools such as RVIZ and

Gazebo. The Gmapping package software also downloads at the time of step 2.1.

6. In this thesis, the environment in Gazebo constructed in step 2. The robot model also obtained

from the software package that installs in step 2.1. Two different rooms shape used in this

research. For making the environment in figure 4.1(a), the filename in step 2.6 should be

“Sqaure 3x4” and for constructing the figure, 4.1(b) should be “lcoridor”

6.1. For navigating the robot in a constructed environment in simulation, these steps should be

performed.  

6.1.1. Launch the gazebo with the constructed world 



73 

roslaunch my_jackal_gazebo jackal_world.launch config:=front_laser 

6.1.2. Launch Gmapping package 

roslaunch my_jackal_tools gmapping.launch 

6.1.3. Launch the RVIZ for visualizing the Robot sensors. Use the navigation wheel 

around the robot to move around the robot in the Gazebo environment and make the 

map.  

roslaunch jackal_viz view_robot.launch config:=gmapping 

6.2. For navigating the robot in the real world, these steps should be performed. 

6.2.1. Turn on the robot and connect the jackal computer to the Host computer. For 

connecting to the jackal computer, refer to the Jackal manual provided by Clearpath. 

6.2.2. Launch the Gmapping package on the Jackal computer.  

roslaunch my_jackal_tools gmapping.launch 

6.2.3. Launch the RVIZ for visualizing the Robot sensors in the Host computer. 

roslaunch jackal_viz view_robot.launch config:=gmapping 

6.2.4.  

6.3. After the desire map obtained, this command should be performed to save the map in the 

PGM file format. The filename mymap can be any desired name. 

rosrun map_server map_saver -f mymap 



74 

APPENDIX C. MATLAB SIMULATION PROGRAMS 

For this research, two MATLAB programs were developed. One program for making the 2D map 

from the raw data, and the other one to perform the CNN. 

C.1 Making the 2D map from raw data 
MapBuilder_Dataset.m 
%% Initialazation 
% Clear all the variable before start the program 
for icnt=131:132 
clear A Angel_Steps Angels data fileID i Lidar_Start_Angel numScans Pos 
Ranges Room_Category Scan_test sizeA; 
%% Reading the file from dataset folder 
% the data set should copy in the location like below. (Inside the matlab 
% workspace or chang the address to the desire location. becarful that dont 
% use spce in middle of the address names like "My Project")  
STR_Root='/Users/imanyazdansepas/Desktop/MyStuff/Learning/university/SLAM_The
sis/Jackal_Private_PNW/Data_collected/DataColected/Room_Categorization/drdata
set/'; 
%STR_Root='/Users/imanyazdansepas/Desktop/MyStuff/Learning/university/SLAM_Th
esis/Jackal_Private_PNW/Data_collected/DataColected/Room_Categorization/myIma
ges'; 

%% Choos the folder 
% chose one of the category from the below list: 

%STR_IMG_FolderName='bedrooms_Img'; 
%STR_FolderName='bedrooms'; 

%STR_IMG_FolderName='bathrooms_Img'; 
%STR_FolderName='bathrooms' 

%STR_IMG_FolderName='corridors_Img'; 
%STR_FolderName='corridors' 

%STR_IMG_FolderName='kitchens_Img'; 
%STR_FolderName='kitchens' 

%STR_IMG_FolderName='livingRooms_Img'; 
%STR_FolderName='livingRooms' 

STR_IMG_FolderName='toilets_Img'; 
STR_Raw_FolderName='toilets' 

%% Choos the file 
% chose the name of the dataset 
%STR_FileName='laserScansAndOdom134.txt'; 
NumberFile= int2str(icnt); 
STR_FileName='laserScansAndOdom'; 
strf=strcat(STR_FileName,NumberFile,'.txt') 



75 

strf_IMG=strcat(STR_FileName,NumberFile,'.jpg'); 
%% Pluging data 
% in this section the folder and the file is plug in to matlab commands. 
% folder variable read the directory. 
% filename construct the path of the file and 
% fopen syntax open and read the data inside the files. 
% and the Look_table construct to hold each category  
folder=dir(STR_Root); 

filename=[STR_Root '/' STR_Raw_FolderName '/' strf]; 
IMG_folder=[STR_Root '/' STR_IMG_FolderName];  
fileID = fopen(filename,'r'); 
formatSpec = '%f'; 
Lookup_table=["Living","Coridoor","Bath","Kitchen","","BedRoom","Toilet"]; 
%% Construct the matrices 
 % make the matrices from whole text file 
 % Row: the number of the scans and pose in each single position each data 
 % set has adiffrent rows number 
 % Column: 692= 682(number of the scans)+ room type+odometryx+Odometryy+...  
 % after that it transpose the matrices and retrive start angel, steps, 
pos,... 
sizeA = [692 Inf];      
A = fscanf(fileID,formatSpec,sizeA); 
data=A'; 
Lidar_start_Angel=data(2,6);  
Angel_Steps=data(2,7); 
Pos=data(1:end,3:5); 
Angels=zeros(682,1); 
Room_category=data(1,2); 
numScans = numel(data(:,1))+1 
%% make the Lidar cells   
% construct the angle steps matrices 
for i=1:682 
Angels(i,:)=Lidar_start_Angel+Angel_Steps*i; 
end 
% construct the Lidar scan cells 
for i=2:numScans 
    Ranges=data(i-1,11:end); 
sacn_room=lidarScan(Ranges,Angels); 
Scan_test(1,i-1)={sacn_room}; 
end 
%% make the map and generate the jpg file of the map  
occGrid = buildMap(Scan_test,Pos,100,2); 
mat = occupancyMatrix(occGrid); 
%mat(mat == 128) = 255; 
imwrite(mat, fullfile(IMG_folder, strf_IMG));  
origsize=imread([IMG_folder '/' strf_IMG]); 
im = imresize(origsize,[227 227]); 
imwrite(im, fullfile(IMG_folder, strf_IMG));  
%delete ([IMG_folder '/'  strf_IMG]) 
% figure 
% show(occGrid) 
% title('Occupancy Map of '+Lookup_table(Room_category+1)+':'+STR_FileName) 
% hold on 
end 



76 

C.2 Room Categorization Program using CNN 
RoomCategorization.m 
% Copyright 2017 The MathWorks, Inc. 
%% Load and Explore 2D layout Data 
%TrainFolder='/Users/imanyazdansepas/Desktop/MyStuff/Learning/university/SLAM
_Thesis/Jackal_Private_PNW/Data_collected/DataColected/Room_Categorization/my
Images_Extended3'; 
TrainFolder='/Users/imanyazdansepas/Desktop/MyStuff/Learning/university/SLAM_
Thesis/Jackal_Private_PNW/Data_collected/DataColected/Room_Categorization/myI
mages5/'; % for Windows 
%TrainFolder='/Users/imanyazdansepas/Desktop/MyStuff/Learning/university/SLAM
_Thesis/Jackal_Private_PNW/Data_collected/DataColected/Room_Categorization/my
Images_Rotated'; 
TestFolder='/Users/imanyazdansepas/Desktop/MyStuff/Learning/university/SLAM_T
hesis/Jackal_Private_PNW/Data_collected/DataColected/Room_Categorization/myIm
ages'; %for mac 

%TestFolder='C:\Users\imany\OneDrive\Desktop\Jackal_Private_PNW\Data_collecte
d\DataColected\Room_Categorization\myImages'; %for windows 
%% Choose the category 
% testSubFolder='living'; 
% testSubFolder='kitchen'; 
 testSubFolder='corrid'; 
% testSubFolder='bath'; 
% testSubFolder='bed'; 
% testSubFolder='toilets'; 
allImages = imageDatastore(TrainFolder, 'IncludeSubfolders', true, 
'LabelSource', 'foldernames'); 
%% for tessting. it usfule during developing 
labelCount = countEachLabel(allImages) 
img = readimage(allImages,1); 
size(img); 
%% Specify Training and Validation Sets 
% Divide the data into training and validation data sets, so that each 
% category in the training set contains 180 images, and the validation 
% set contains the remaining images from each label. splitEachLabel splits 
% the datastore digitData into two new datastores, trainDigitData and 
% valDigitData. 
%numTrainFiles = 180; 
numTrainFiles = 30; 
[imdsTrain,imdsValidation] = 
splitEachLabel(allImages,numTrainFiles,'randomize'); 
%% Define the convolutional neural network architecture. 
% Image Input Layer An imageInputLayer is where you specify the image size, 
% which, in this case, is 28-by-28-by-1. These numbers correspond to the 
% height, width, and the channel size. The digit data consists of grayscale 
% images, so the channel size (color channel) is 1. For a color image, 
% the channel size is 3, corresponding to the RGB values. You do not need 
% to shuffle the data because trainNetwork, by default, shuffles the data 
% at the beginning of training. trainNetwork can also automatically shuffle 
% the data at the beginning of every epoch during training. 
layers = [ 
    imageInputLayer([227 227 1]); 
    % Convolutional Layer In the convolutional layer, the first argument is 
filterSize, which is the height and width of the filters the training 



77 

function uses while scanning along the images. In this example, the number 3 
indicates that the filter size is 3-by-3. You can specify different sizes for 
the height and width of the filter. The second argument is the number of 
filters, numFilters, which is the number of neurons that connect to the same 
region of the input. This parameter determines the number of feature maps. 
Use the 'Padding' name-value pair to add padding to the input feature map. 
For a convolutional layer with a default stride of 1, 'same' padding ensures 
that the spatial output size is the same as the input size. You can also 
define the stride and learning rates for this layer using name-value pair 
arguments of convolution2dLayer. 
    % Batch Normalization Layer Batch normalization layers normalize the 
activations and gradients propagating through a network, making network 
training an easier optimization problem. Use batch normalization layers 
between convolutional layers and nonlinearities, such as ReLU layers, to 
speed up network training and reduce the sensitivity to network 
initialization. Use batchNormalizationLayer to create a batch normalization 
layer. 
    % ReLU Layer The batch normalization layer is followed by a nonlinear 
activation function. The most common activation function is the rectified 
linear unit (ReLU). Use reluLayer to create a ReLU layer. 

    convolution2dLayer(3,16,'Padding','same') 
    batchNormalizationLayer 
    reluLayer 
    % Max Pooling Layer Convolutional layers (with activation functions) are 
sometimes followed by a down-sampling operation that reduces the spatial size 
of the feature map and removes redundant spatial information. Down-sampling 
makes it possible to increase the number of filters in deeper convolutional 
layers without increasing the required amount of computation per layer. One 
way of down-sampling is using a max pooling, which you create using 
maxPooling2dLayer. The max pooling layer returns the maximum values of 
rectangular regions of inputs, specified by the first argument, poolSize. In 
this example, the size of the rectangular region is [2,2]. The 'Stride' name-
value pair argument specifies the step size that the training function takes 
as it scans along the input. 

    maxPooling2dLayer(2,'Stride',2) 

    convolution2dLayer(3,32,'Padding','same') 
    batchNormalizationLayer 
    reluLayer 

    maxPooling2dLayer(2,'Stride',2) 

    convolution2dLayer(3,64,'Padding','same') 
    batchNormalizationLayer 
    reluLayer 
    % Fully Connected Layer The convolutional and down-sampling layers are 
followed by one or more fully connected layers. As its name suggests, a fully 
connected layer is a layer in which the neurons connect to all the neurons in 
the preceding layer. This layer combines all the features learned by the 
previous layers across the image to identify the larger patterns. The last 
fully connected layer combines the features to classify the images. 
Therefore, the OutputSize parameter in the last fully connected layer is 
equal to the number of classes in the target data. In this example, the 



78 

output size is 10, corresponding to the 10 classes. Use fullyConnectedLayer 
to create a fully connected layer. 
    % Softmax Layer The softmax activation function normalizes the output of 
the fully connected layer. The output of the softmax layer consists of 
positive numbers that sum to one, which can then be used as classification 
probabilities by the classification layer. Create a softmax layer using the 
softmaxLayer function after the last fully connected layer. 
    % Classification Layer The final layer is the classification layer. This 
layer uses the probabilities returned by the softmax activation function for 
each input to assign the input to one of the mutually exclusive classes and 
compute the loss. To create a classification layer, use classificationLayer. 

    fullyConnectedLayer(5) 
    softmaxLayer 
    classificationLayer]; 
%% Specify Training Options 
% After defining the network structure, specify the training options. 
% Train the network using stochastic gradient descent with momentum (SGDM) 
% with an initial learning rate of 0.01. Set the maximum number of epochs 
% to 4. An epoch is a full training cycle on the entire training data set. 
% Monitor the network accuracy during training by specifying validation 
% data and validation frequency. Shuffle the data every epoch. The software 
% trains the network on the training data and calculates the accuracy on 
% the validation data at regular intervals during training. 
% The validation data is not used to update the network weights. 
% Turn on the training progress plot, and turn off the command window output. 
options = trainingOptions('sgdm', ... 
    'InitialLearnRate',0.01, ... 
    'MaxEpochs',20, ... 
    'Shuffle','every-epoch', ... 
    'ValidationData',imdsValidation, ... 
    'ValidationFrequency',30, ... 
    'Verbose',false, ... 
    'Plots','training-progress'); 
%% Train Network Using Training Data 
net = trainNetwork(imdsTrain,layers,options); 
%% validating the network 
CntPerc=0; 
LoopCnt=0; 
% for icnt=1:22 %for Living room 
% for icnt=62:83 %for Kitchen 
 for icnt=20:27 %for corridor 
% for icnt=27:62 %for bath 
% for icnt=101:130 %for bed 
% for icnt=130:142 %for toilet 
    NumberFile= int2str(icnt); 
    STR_FileName='laserScansAndOdom'; 
    strf_IMG=strcat(STR_FileName,NumberFile,'.jpg'); 
    imgs = imageDatastore([TestFolder '/' testSubFolder '/' strf_IMG], 
'IncludeSubfolders', true, 'LabelSource', 'foldernames'); 
    [pred,scores] = classify(net,imgs); 
    % i=icnt;%for livingroom 
    % i=icnt-61;%for Kitchen 
     i=icnt-19;%for corridor 
    % i=icnt-26;%for bath 
    % i=icnt-100;%for bed 
    % i=icnt-129; % for toilet 



79 

    subplot(6,7,i); 
    LoopCnt=LoopCnt+1; 
    %% showing the bar graph of each category 
    %  highscores = scores > 0.01 
    %  bar(scores(highscores)) 
    %  categorynames = net.Layers(end).ClassNames; 
    %  xticklabels(categorynames(highscores)) 
    %% showing the picture with the category that estimated 
    [M,I] = max(scores); 
    categorynames = net.Layers(end).ClassNames; 
    k=categorynames(I); 
    imshow(imgs.Files{1}); 
    title(k); 

    if strcmp(k,testSubFolder)==1 
        CntPerc=CntPerc+1; 
    end 
end 
strsubplot=strcat(int2str(CntPerc),' ', testSubFolder , ' ' ,'correct case 
over',' ', int2str(LoopCnt),' ', ' our accuracy is= ',' ', 
int2str((CntPerc/LoopCnt)*100), '%'); 
sgtitle(strsubplot); 



80 

REFERENCES 

[1] R. C. Smith and P. Cheeseman, “On the Representation and Estimation of Spatial 

Uncertainty,” Int. J. Rob. Res., vol. 5, no. 4, pp. 56–68, 1986, doi: 

10.1177/027836498600500404. 

[2] U. of O. J.J. Leonard (NEC Research Institue), H.F. Durrant-Whyte (Department of 

Engineering Science, “Simultaneous Map Building and Localization for Mobile Robots :,” 

International Workshop on Intelligent Robots and Systems IROS, vol. 3, no. November. pp. 

1442–1447, 1991. 

[3] G. Dissanayake, S. B. Williams, H. Durrant-Whyte, and T. Bailey, “Map management for 

efficient simultaneous localization and mapping (SLAM),” Auton. Robots, 2002, doi: 

10.1023/A:1015217631658. 

[4] N. Ayache and O. D. Faugeras, “Building, Registrating, and Fusing Noisy Visual Maps,” 

Int. J. Rob. Res., 1988, doi: 10.1177/027836498800700605. 

[5] R. Chatila and J. P. Laumond, “Position referencing and consistent world modeling for 

mobile robots,” in Proceedings - IEEE International Conference on Robotics and 

Automation, 1985, doi: 10.1109/ROBOT.1985.1087373. 

[6] J. L. Crowley, “World modeling and position estimation for a mobile robot using ultrasonic 

ranging,” 1989, doi: 10.1109/robot.1989.100062. 

[7] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A factored solution to 

the simultaneous localization and mapping problem,” in Proceedings of the National 

Conference on Artificial Intelligence, 2002. 

[8] S. Thrun, W. Burgard, and D. Fox, “Real-time algorithm for mobile robot mapping with 

applications to multi-robot and 3D mapping,” in Proceedings - IEEE International 

Conference on Robotics and Automation, 2000, doi: 10.1109/robot.2000.844077. 

[9] K. P. Murphy, “Bayesian map learning in dynamic environments,” Adv. Neural Inf. Process. 

Syst., pp. 1015–1021, 2000. 

[10] A. Doucett, N. Freitas, K. P. Murphy, and S. Russent, “Rao-Blackwellised particle filter 

based track-before-detect algorithm,” IET Signal Process., vol. 2, no. 2, pp. 169–176, 2008, 

doi: 10.1049/iet-spr:20070075. 



81 

[11] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with 

Rao-Blackwellized particle filters,” IEEE Trans. Robot., 2007, doi: 

10.1109/TRO.2006.889486. 

[12] “OpenSLAM.org.” https://openslam-org.github.io/gmapping.html (accessed Apr. 05, 2020). 

[13] A. Elfes, “Occupancy Grids: A Stochastic Spatial Representation for Active Robot 

Perception,” 2013, [Online]. Available: http://arxiv.org/abs/1304.1098. 

[14] H. Choset and K. Nagatani, “Topological simultaneous localization and mapping (SLAM): 

Toward exact localization without explicit localization,” IEEE Trans. Robot. Autom., vol. 

17, no. 2, pp. 125–137, 2001, doi: 10.1109/70.928558. 

[15] S. Thrun, “Learning metric-topological maps for indoor mobile robot navigation,” Artif. 

Intell., vol. 99, no. 1, pp. 21–71, 1998, doi: 10.1016/S0004-3702(97)00078-7. 

[16] Ó. Martínez Mozos, R. Triebel, P. Jensfelt, A. Rottmann, and W. Burgard, “Supervised 

semantic labeling of places using information extracted from sensor data,” Rob. Auton. Syst., 

vol. 55, no. 5, pp. 391–402, 2007, doi: 10.1016/j.robot.2006.12.003. 

[17] “AdaBoost -Wikipedia.” 

https://en.wikipedia.org/w/index.php?title=AdaBoost&oldid=934066286 (accessed Apr. 

05, 2020). 

[18] Ó. Martínez Mozos, R. Triebel, P. Jensfelt, A. Rottmann, and W. Burgard, “Supervised 

semantic labeling of places using information extracted from sensor data,” Rob. Auton. Syst., 

2007, doi: 10.1016/j.robot.2006.12.003. 

[19] A. Swadzba and S. Wachsmuth, “Categorizing perceptions of indoor rooms using 3D 

features,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics), vol. 5342 LNCS, pp. 734–744, 2008, doi: 10.1007/978-3-540-89689-0_77. 

[20] J. Wu, H. I. Christensen, and J. M. Rehg, “Visual place categorization: Problem, dataset, 

and algorithm,” 2009 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS 2009, pp. 4763–4770, 

2009, doi: 10.1109/IROS.2009.5354164. 

[21] P. Ursic, A. Leonardis, D. Skocaj, and M. Kristan, “Hierarchical spatial model for 2D range 

data based room categorization,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2016-June, pp. 

4514–4521, 2016, doi: 10.1109/ICRA.2016.7487650. 



82 

[22] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: Low-drift, robust, and fast,” 

in Proceedings - IEEE International Conference on Robotics and Automation, 2015, doi: 

10.1109/ICRA.2015.7139486. 

[23] M. Velas, M. Spanel, and A. Herout, “Collar Line Segments for fast odometry estimation 

from Velodyne point clouds,” in Proceedings - IEEE International Conference on Robotics 

and Automation, 2016, doi: 10.1109/ICRA.2016.7487648. 

[24] F. Kallasi and D. L. Rizzini, “Efficient loop closure based on FALKO lidar features for 

online robot localization and mapping,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2016-

Novem, pp. 1206–1213, 2016, doi: 10.1109/IROS.2016.7759202. 

[25] R. Goeddel and E. Olson, “Learning semantic place labels from occupancy grids using 

CNNs,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2016-Novem, pp. 3999–4004, 2016, doi: 

10.1109/IROS.2016.7759589. 

[26] P. Uršič, D. Tabernik, M. Boben, D. Skočaj, A. Leonardis, and M. Kristan, “Room 

categorization based on a hierarchical representation of space,” Int. J. Adv. Robot. Syst., vol. 

10, 2013, doi: 10.5772/55534. 

[27] R. Goeddel and E. Olson, “Learning semantic place labels from occupancy grids using 

CNNs,” in IEEE International Conference on Intelligent Robots and Systems, 2016, doi: 

10.1109/IROS.2016.7759589. 

[28] G. Dissanayake, H. Durrant-whyte, and T. Bailey, “A (slam),” no. April 2000, 2006. 

[29] K. P. Murphy, “Bayesian map learning in dynamic environments,” in Advances in Neural 

Information Processing Systems, 2000. 

[30] “PPT - Probabilistic Robotics PowerPoint Presentation, free download - ID:3360074.” 

https://www.slideserve.com/cira/probabilistic-robotics (accessed May 03, 2020). 

[31] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous 

activity,” Bull. Math. Biophys., 1943, doi: 10.1007/BF02478259. 

[32] “Artificial neural network - Wikipedia.” 

https://en.wikipedia.org/wiki/Artificial_neural_network (accessed Apr. 05, 2020). 

[33] F. ROSENBLATT, “Simulation Experiments,” Encycl. Meas. Stat., 1960, doi: 

10.4135/9781412952644.n411. 

[34]  michael A. Nielsen, “Neural Networks and Deep Learning,” in Machine Learning, 2015. 



83 

[35] “What is Perceptron | Simplilearn.” https://www.simplilearn.com/what-is-perceptron-

tutorial (accessed Apr. 05, 2020). 

[36] “Everything you need to know about Neural Networks and Backpropagation — Machine 

Learning Easy and Fun.” https://towardsdatascience.com/everything-you-need-to-know-

about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a 

(accessed Apr. 05, 2020). 

[37] “A Simple Explanation of the Softmax Function - victorzhou.com.” 

https://victorzhou.com/blog/softmax/ (accessed Apr. 06, 2020). 

[38] “Robot Operating System - Wikipedia.” 

https://en.wikipedia.org/wiki/Robot_Operating_System (accessed Apr. 12, 2020). 

[39] P. Uršič, M. Kristan, D. Skocaj, and A. Leonardis, “Room classification using a hierarchical 

representation of space,” IEEE Int. Conf. Intell. Robot. Syst., pp. 1371–1378, 2012, doi: 

10.1109/IROS.2012.6385546. 

[40] “Confusion matrix - Wikipedia.” https://en.wikipedia.org/wiki/Confusion_matrix (accessed 

Apr. 17, 2020). 

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep 

convolutional neural networks,” Commun. ACM, 2017, doi: 10.1145/3065386. 

[42] “ROS.org | About ROS.” https://www.ros.org/about-ros/ (accessed Apr. 25, 2020). 

[43] “kinetic/Installation/Ubuntu - ROS Wiki.” http://wiki.ros.org/kinetic/Installation/Ubuntu 

(accessed Apr. 25, 2020). 

[44] “jackal/jackal.urdf.xacro at melodic-devel · jackal/jackal.”

https://github.com/jackal/jackal/blob/melodic-

devel/jackal_description/urdf/jackal.urdf.xacro (accessed Apr. 25, 2020). 

[45] “urdf/Tutorials/Using Xacro to Clean Up a URDF File - ROS Wiki.” 

http://wiki.ros.org/urdf/Tutorials/Using Xacro to Clean Up a URDF File (accessed Apr. 25, 

2020). 


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1. INTRODUCTION
	1.1 Motivation and Objective
	1.2 Literature Search
	1.2.1 Simultaneous Localization And Mapping (SLAM)
	1.2.2 Room Categorization with LiDAR

	1.3 Thesis Overview

	2. SIMULTANEOUS LOCALIZATION AND MAPPING WITH LIDAR
	2.1  Gmapping
	2.1.1 LiDAR
	2.1.2 Occupancy Grid Mapping
	2.1.3 Grid-Based SLAM with Rao-Blackwellized Particle Filter


	3. ROOM CATEGORIZATION
	3.1 Deep Learning
	3.1.1 Biological Neural Network
	3.1.2 Artificial Neural Network

	3.2 Convolutional Neural Network
	3.3 Room Categorization with Convolutional Neural Network

	4. SLAM IMPLEMENTATION
	4.1 Simulations
	4.2 Experimentations
	4.2.1 Hardware Setup
	4.2.2 Software Setup
	4.2.3 Robot Navigated in a Research Lab
	4.2.4 Robot Navigated in an Empty Room
	4.2.5 Navigation in an Apartment


	5. ROOM CATEGORIZATION SIMULATIONS
	5.1 Simulation Setup
	5.2 Training the Network
	5.3 Simulation Results

	6. CONCLUSIONS AND FUTURE WORK
	APPENDIX A. ROBOT SPECIFICATIONS
	APPENDIX B. ROBOTIC OPERATING SYSTEM SOFTWARE PACKAGES AND SOFTWARE TOOLS USED
	APPENDIX C. MATLAB SIMULATION PROGRAMS
	C.1 Making the 2D map from raw data
	C.2 Room Categorization Program using CNN

	REFERENCES



