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1.2 Quantum hall effect. (a) Typical measurement circuit for the quan-
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(b) A typical GaAs sample used for bulk quantum Hall measurements.
Despite the haphazard shape and arrangement of indium contacts, such
samples typically exhibit exact quantization of Rxy as well as zeros in Rxx

at numerous integer and some fractional filling factors. (c) Typical integer
quantum Hall data, showing pronounced plateaus in Rxy with Rxy = 1
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and corresponding zeros in Rxx for integer i fully filled Landau levels. . . . 6

1.3 Composite fermion states. Cartoon showing the flux attachment pro-
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Because anyon braiding in the fractional quantum Hall regime is topolog-
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1.5 Different types of quantum Hall interferometers. (a) Schematic of
an antidot interferometer. The source contact S and drain D are labeled;
metal gates to define the interference path are shown in yellow. The chiral
edge states are shown with red lines; the dashed red lines represent the
backscattered paths from the two QPCs. (b) Schematic of a Mach-Zehnder
interferometer. (c) Schematic of a Fabry-Perot interferometer. . . . . . . . 11

1.6 Screening well heterostructure. (a) Layer stack showing the GaAs/Al-
GaAs heterostructure design using screening wells. In addition to the pri-
mary 20nm GaAs quantum wells, electrons also populate auxiliary 12nm
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effects in the interferometer. (b) Simulation of the conduction band mini-
mum (shown in red) and electron density (shown in blue) along the growth
direction for the structure in (a). (c) Pajama plot showing AB interfer-
ence for a small interferometer with effective area ≈ 0.9µm2. The negative
slope of the constant phase lines indicates that the screening wells have
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2.1 Heterostructure design and device layout. (a) Layer stack of the
GaAs/AlGaAs heterostructure along the growth direction, showing the
positions of the GaAs quantum well and screening wells (blue), AlGaAs
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and electron density (blue) versus growth direction (z-axis) calculated us-
ing a self-consistent Schrodinger-Poisson method. The sheet density in
each well is indicated. (c) Schematic showing the layout of the mesa (blue),
Ohmic contacts (green), surface gates used to isolate the top screening well
from the contacts (orange), and the backgate used to isolate the contacts
from the bottom screening well (red). The surface gates used to define
the interference path are shown in yellow. Additionally, there is a global
backgate underneath the mesa (red). A four-terminal measurement circuit
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dicular Hall voltage is measured; when the interferometer gates are biased
to define the interference path, the measured resistance is referred to as
the diagonal resistance, RD. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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2.2 Scanning Electron Microscope image of interferometer. False color
SEM image of the interferometer, located in the center of the Hall bar
shown schematically in Fig. 1c. The device consists of two quantum
point contacts to backscatter current and a pair of side gates to define
the interference path (yellow); when these gates are negatively biased, the
2DES underneath is depleted, which defines the interference path. In the
measurements, the gate voltage Vgate applied to both side gates is varied in
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2.3 Bulk magnetotransport and Coulomb blockade. (a) Bulk Hall con-
ductance Rxy with the top and bottom gates around the contacts grounded
(black trace), with -0.29V on the top gate to disconnect the top screening
well from the contacts (blue), and with -0.29V on the top gate and -150V
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T = 13mK, and the blue and black traces are taken at T = 300mK. (b)
Coulomb blockade measurement at zero magnetic field measured in a di-
lution refrigerator at base temperature T = 13mK showing the differential
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versus gate voltage and source-drain voltage VSD for the

device at zero field showing Coulomb blockade diamonds with charging
energy e2
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∼ 17µeV. δVgate is relative to -1.8V. . . . . . . . . . . . . . . . . 25

2.4 Coulomb-dominated measurements in devices without screening
wells. (a) Differential conductance measurements from a device with-
out screening wells. The device has a radius of 800nm, making it com-
parable in size to the device presented in the main text, but it has a
Coulomb charging energy (extracted with the height of the diamond pat-
tern) e2/2C ∼ 200µV, an order of magnitude larger than the device with
screening wells. (b) Resistance oscillations from another device made on a
wafer without screening wells in the quantum Hall regime at filling factor
νbulk = 2. The positive slope of the constant-phase lines is a signature of
Coulomb-dominated behavior which is pervasive in devices without screen-
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2.5 Simulation of the electron sheet density at the edge of the gate.
Electron sheet density is plotted versus lateral distance x from the gate at
zero magnetic field (black line) and at νbulk = 3 (blue line). The edge of
the gate is located at x = 0. For the simulation the gate bias is set at -1.8V
to match the experimental side gate bias. The simulation indicates that
the 2DES is depleted in a region extending approximately 150nm from the
edge of the gate, which is consistent with the experimental finding that
the effective area extracted from Aharonov-Bohm oscillations is smaller
than the lithographic area. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Interference measurements at ν = 1. (a) Schematic showing the inter-
ference path defined by the interferometer gates at ν = 1. (b) Resistance
oscillations as a function of magnetic field B and side gate voltage δVgate
(relative to -1.4V) showing clear Aharonov-Bohm interference. For this
measurement the QPCs are biased to achieved approximately 25% reflec-
tion. (c) Oscillations in conductance through the device, δG, divided by
the QPC backscattering amplitude, r2, at 13mK (red), 105mK (blue), and
220mK (black). For these measurements each QPC is tuned to approxi-
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(d) Coherence factor η versus temperature; η shows an approximately ex-
ponential dependence on temperature with a characteristic decay scale of
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2.7 Period-halving phenomenon in in the Fabry-Perot interferome-
ter. Gate voltage period ∆Vgate versus bulk filling factor νbulk for the
N = 0 Landau level spin-up (black squares) and spin-down (red squares)
edge states. The red line indicates a linear fit through zero of spin-up
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dashed line has a slope of 2.57 mV, which is consistent with N = 0 spin-up
LL edge state exhibiting a halved period Aharonov-Bohm behavior when
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in Refs. [61,62]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



xiv

Figure Page

2.8 Edge mode velocity measurements. (a) Schematic showing an in-
terference path with multiple edge states in which the outermost mode
is fully transmitted, the innermost mode is fully backscattered by both
QPCs, and the middle mode is partially transmitted by both QPCs; in
this configuration only the middle mode is interfered. (b) Conductance
versus gate voltage for one QPC at B = 1.64T and νbulk = 3 with other in-
terferometer gates grounded. The blue, red, and black circles indicate the
operating point for interference of the modes associated with ν = 3, ν = 2,
and ν = 1 respectively. (c) Differential conductance at νbulk = 1 interfer-
ing the ν = 1 mode and (d) at νbulk = 3 interfering the innermost ν = 3
mode as a function of side gate voltage and source drain voltage. δVgate
is relative to -1.4V. (e) Edge state velocity extracted from the differential
conductance oscillations for different edge modes as a function of bulk fill-
ing factor. At magnetic fields below approximately 1.2T (bulk filling factor
ν = 4) conductance through the QPCs is no longer spin-resolved, so only
a single line is displayed for each Landau level. Experimental uncertainty
is estimated at ±13%. (e) Numerically calculated edge state velocities for
the N = 0, 1, and 2 Landau levels. . . . . . . . . . . . . . . . . . . . . . . 34

2.9 Side gate and magnetic field oscillation periods for integer and
fractional states. (a) Side gate oscillation period ∆Vgate versus inverse
magnetic field at integer quantum Hall states (red circles) and fractional
quantum Hall states (blue circles). The dashed red line indicates a linear
fit through zero of the integer gate periods, yielding a lever arm ∂AI

∂Vgate
=

1.78× 10−13m2V −1. The blue dashed line indicates a line with 3× larger
slope, which would correspond to a quasiparticle charge e∗ = e/3. The gate
period at νbulk = 1/3 falls close to the blue line, consistent with fractional
charge e∗ = e/3, whereas the period at νbulk = 2/3 is close to the red line,
suggesting integral interfering charge. The integer gate periods used are
for the N = 0 LL; for νbulk ≥ 2 the periods for the spin-down edge state
are used to avoid influence of the period-halving phenomenon discussed in
the text. (b) Magnetic field periods ∆B at different quantum Hall states.
The red dashed line represents the average integer period of 5.7mT, while
the blue dashed lines three times the average integer period, which would
be expected for the ν = 1/3 state assuming constant area in both regimes. 35

2.10 Interference of fractional quantum Hall states. (a) Aharonov-Bohm
conductance oscillations at ν = 1/3. The QPCs are biased to approxi-
mately 22% reflection. (b) Aharonov-Bohm conductance oscillations at
ν = 2/3. The QPCs are biased to approximately 20% reflection. In both
cases, δVgate is relative to -1.4V. . . . . . . . . . . . . . . . . . . . . . . . . 39
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3.1 Quasiparticle braiding experiment. a) Schematic representation of
quasiparticle exchange; quasiparticles are represented by red vortices, and
trajectories are shown in dashed lines. Two quasiparticle exchanges (left)
which bring the particles back to their original position are topologically
equivalent to one quasiparticle executing a closed loop around the the
other, and in each case the system gains a quantum mechanical phase
θanyon due to the quasiparticle’s anyonic braiding statistics. b) False-color
SEM image of interferometer. Blue regions indicate the GaAs where the
2DES resides, and metal gates under which the 2DES is depleted are high-
lighted in yellow. Red arrows indicate the edge currents, and dotted arrows
indicate the backscattered paths which may interfere. Quasiparticles may
be localized inside the chamber of the interferometer, as represented by
the red vortices, and the backscattered paths enclose a loop around these
quasiparticles, making the interferometer sensitive to θanyon. The litho-
graphic area is 1.0µm × 1.0µm. The device used in the experiments also
has a metal gate covering the top of the interferometer not shown in b),
which is kept at ground potential and does not affect the 2DES density
underneath. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Layer stack of the GaAs/AlGaAs heterostructure used for the
experiments. This structure utilizes three GaAs quantum wells: a pri-
mary 30nm well flanked by two 13nm screening wells to reduce the bulk-
edge interaction in the interferometer. There are 25nm AlGaAs barriers
between the main well and screening wells, and the total center-to-center
setback of the screening wells from the main well is 48nm. . . . . . . . . . 47

3.3 Conductance oscillations versus B and δV g in the central region.
The predominant behavior is negatively sloped Aharonov-Bohm interfer-
ence, but a small number of discrete phase jumps are visible. Dashed
lines are guides to the eye for these features. Least-squares fits of δG =
δG0 cos (2πAB

Φ0
+ θ0) are shown with highlighted stripes, and the extracted

change in phase ∆θ
2π

are indicated for each discrete jump. Increasing mag-
netic field is expected to reduce the number of localized quasiparticles;
therefore the change in phase across each jump is predicted to be −θanyon. 48

3.4 Repeatability of discrete phase jumps. a)First scan measurement
of conductance versus B and δVg. This is the same data in Fig. 3.3.
b) Second scan across the same range of magnetic field using the same
QPC gate voltages. As can be seen from the data, the same pattern of
discrete jumps appear in the second scan. The second scan was taken
approximately one hour after the first scan. Values of ∆θ

2π
extracted from

least squares fits are shown for both scans, and show similar values for
each phase jump in both scans. . . . . . . . . . . . . . . . . . . . . . . . . 49



xvi

Figure Page

3.5 Interference across the ν = 1/3 quantum Hall plateau. a) Bulk
magnetransport showing longitudinal resistance Rxx and Hall resistance
Rxy across the ν = 1/3 state. b) Conductance oscillations δG versus
magnetic field B and side gate voltage δVg (this side gate voltage variation
is relative to -0.8V). The dashed lines indicate the approximate range
over which the device appears to exhibit conventional Aharonov-Bohm
interference with minimal influence of the anyonic phase contribution. The
region over which this occurs is near the center of the plateau, and is
highlighted in the bulk transport data in a). . . . . . . . . . . . . . . . . . 50

3.6 Measurement of the energy gap for the ν = 1/3 fractional quan-
tum Hall state. The inset shows longitudinal resistance Rxx measured
in a bulk region away from the interferometer at different temperatures.
A linear fit of the data to the form Rxx = R0e

−∆
2kT yields a gap of ∆ =5.5K.

This is consistent with values measured in previous experiments at similar
magnetic field [87]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Measurements of interference at ν = 1. a) Bulk quantum Hall trans-
port showing the zero in Rxx and plateau in Rxy corresponding to the
ν = 1 integer quantum Hall state. For this integer state, the bulk excita-
tions and edge state current carrying particles are simply electrons, which
obey fermionic statistics. b) Conductance oscillations versus magnetic
field, showing an oscillation period ∆B =11mT. From this period the ef-
fective area AI of the interferometer can be extracted: AI = Φ0

∆B
In c), d),

and e) we show conductance versus B and δVg across the interferometer in
the low field region of the plateau, near the center of the plateau, and on
the high-field side of the plateau; the region on the plateau corresponding
to each pajama plot is shown in a). In each of these regions the device ex-
hibits negatively sloped Aharonov-Bohm oscillations. This contrasts with
the data shown in Fig. 3.5 for the ν = 1/3 state where lines of constant
phase flatten out at high and low fields. This is consistent with the fact
that electrons, which carry current and form localized states at ν = 1,
are fermions who obey trivial braiding statistics, θfermion = 2π, making
braiding unobservable and leading to no change in interference behavior. . 55
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3.8 Conductance oscillations at different magnetic fields. a) Conduc-
tance oscillations δG versus side gate voltage δVg in the low-field region
at B = 8.4T (blue), in the central region at B = 8.85T (black), and in
the high-field region at B = 9.3T (red). The side gate oscillation period
∆Vsidegates is significantly smaller in the low field and high field regions
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90% transmission. b) Conductance G versus side gate voltage at zero
magnetic field with the device operated in the Coulomb blockade regime.
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QPCs are tuned weak tunneling, G << e2

h
. The Coulomb blockade oscil-
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3.11 Measurements of interference for a second device, taken from a
different chip fabricated on the same wafer. a) Conductance across
the interferometer versus magnetic field B and side gate voltage δVg; δVg
is relative to -1.0V. Behavior is similar to that observed in the device
described for the first device: in a finite region with width ≈ 430mT,
the device exhibits negatively sloped Aharonov-Bohm oscillations, which
flatten out at higher and lower magnetic fields, consistent with the creation
of quasipaticles and quasiholes. b) Bulk magnetotransport showing Rxx
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state where the negatively sloped Aharonov-Bohm oscillations occur is
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anyonic phase θanyon = 2π × 0.32, consistent with theory. . . . . . . . . . . 65
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ABSTRACT

Nakamura, James R. Ph.D., Purdue University, August 2020. Electronic Fabry-Perot
Interferometry of Quantum Hall Edge States. Major Professor: Michael J. Manfra.

Two-dimensional electron systems in GaAs/AlGaAs heterostructures have pro-

vided a platform for investigating numerous phenomena in condensed matter physics.

The quantum Hall effect is a particularly remarkable phenomenon due to its topolog-

ical properties, including chiral edge states with quantized conductance. This report

describes progress made in interference measurements of these edge states in electronic

Fabry-Perot interferometers. Previous interference experiments in the quantum Hall

regime have been stymied by Coulomb charging effects and poor quantum coherence.

These Coulomb charging effects have been dramatically suppressed by the implemen-

tation of a novel GaAs/AlGaAs heterostructure which utilizes auxiliary screening

wells in addition to the primary GaAs quantum well. Using this heterostructure,

Aharonov-Bohm interference is measured in very small devices which have greatly

improved coherence. Robust Aharonov-Bohm interference is reported at fractional

quantum Hall states ν = 1/3 and ν = 2/3. Discrete jumps in phase at ν = 1/3 con-

sistent with anyonic braiding statistics are observed. The report concludes with pro-

posed future experiments, including extending these results to possible non-Abelian

quantum Hall states.
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1. INTRODUCTION

1.1 Two-dimensional Electron Systems

To a layman, a “Two-Dimensional Electron System” (2DES) may sound like a

hopelessly exotic and esoteric thing to study which could not possibly have any rele-

vance for everyday life. Nothing could be further from the truth given the huge impact

that semiconductor technology and in particular CMOS have had on technology and

our lives. In my area of research we study two-dimensional electron systems in semi-

conductors (which are not too different from some of the transistors you find in your

computer or phone) and subject them to exotic conditions: very low temperature

and very high magnetic field. Under these conditions the 2DES may form a variety

of fascinating phases determined by the electrons’ quantum mechanical behavior and

by the Coulomb interaction between the electrons.

1.2 Gallium Arsenide Heterostructures

The material system I have been studying is the GaAs/AlGaAs heterostructure [1]

grown by Molecular Beam Epitaxy (MBE). The beauty of this III-V semiconductor

system is that GaAs is nearly exactly lattice matched to AlAs (as well as to interme-

diate AlGaAs alloys), which makes it possible to grow complicated structures layer

by layer without producing strain induced defects. This enables growth of extremely

high quality GaAs 2DESs [1–3]. Such high quality, low disorder samples are necessary

for observation of fragile correlated electron quantum states, such as the fractional

quantum Hall states, which are easily destroyed by disorder.

The layer stack for a simple GaAs/AlGaAs heterostructure is shown in Fig. 1.1a,

and a simulation of the band structure and electron density for this heterostructure
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produced using the nextnano software package [4] is shown in Fig. 1.1b. The energy of

the conduction band is higher in the AlGaAs than in the GaAs, so there is effectively a

potential minimum in the GaAs at the interface which confines electrons; the Gamma-

band energy plotted in red in Fig. 1.1b can be though of as this confining potential.

This confining potential is in the z-direction (along which the structure is grown); in

the x and y directions which form the plane of the 2DES, the electrons are unconfined

except by the edges of the sample, or in some devices by the potentials applied by

metal gates. It is important to note that undoped GaAs is an insulator, with the

Fermi level pinned in the middle of the band gap at the surface. Therefore, in order

to supply electrons to the 2DES, the structure is doped with silicon, which acts as a

donor of electrons.

An important considerations is the fact that, once ionized, the Si donors form a

random electrostatic potential that causes scattering of electrons in the 2DES, and

it is necessary to minimize this source of disorder in order to observe the fragile

fractional quantum Hall states. Therefore, the heterostructures are designed using

the technique of modulation doping [5], in which the Si donors are separated from

the 2DES by an undoped AlGaAs spacer. Because the conduction band minimum of

GaAs is well below that of AlGa0.36As0.64, electrons will transfer to the GaAs region

rather than remaining in the doped region. In general a larger setback of the 2DES

from the donors will result in lower disorder and a cleaner 2DES, but lower electron

density.

MBE growth of high-quality material is both a science and an art form. High-

mobility GaAs capable of supporting fragile quantum states requires ultra-high vac-

uum (∼ 10−12 mbar), extremely high purity source material, and atomically precise

control of the growth process [1–3,6]. Over the last several decades, improvements in

MBE growth technology have resulted in dramatically higher electron mobilities and

enabled the study of numerous fragile electronic phases of matter [2,5,7–10]. I cannot

take credit for any part of the growth process myself, so I consider myself extremely

fortunate to be part of a group with the best MBE growth capabilities in the world.
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Fig. 1.1. GaAs/AlGaAs heterostructures. (a) Layer stack show-
ing the sequence of GaAs and AlGaAs along the MBE growth di-
rection, starting from the GaAs substrate. The structure depicted
is a simple single interface design, in which charge transfers from the
doped AlGaAs region to the GaAs, resulting in a 2DES in the GaAs at
the interface. (b) Numerical simulation of the band structure show-
ing the energy of the conduction band minimum and the electron
density along the growth direction. The gamma-band energy (red)
acts as the effective confining potential, with a potential minimum
at the GaAs/AlGaAs interface which confines electrons. The struc-
ture is designed so that only the first subband is occupied, making
the structure effectively two-dimensional despite the finite extent of
the wave function (blue). The simulation was performed using the
self-consistent Schrodinger-Poisson method using nextnano [4]

1.3 Quantum Hall Effect

A clean 2DES (such as the one depicted in Fig. 1.1) cooled to low temperatures

and subjected to a perpendicular magnetic field B exhibits a remarkable phenomenon:

the quantum Hall effect. The quantum Hall effect was discovered by von Klitzing in

1980 [11, 12], and has been the subject of intense study in the decades since. The

quantum Hall effect is characterized by zero longitudinal resistance Rxx (measured
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parallel to the flow of current) and quantized Hall resistance Rxy (measured perpen-

dicular to the flow of current). The measurement setup for observing the quantum

Hall effect is illustrated in Fig. 1.2.

Understanding the quantum Hall effect requires solving the problem of an electron

in a uniform magnetic field. The Hamiltonian (neglecting spin for now) is written in

Eqn. 1.1:

H =
1

2m∗
(~p+ e ~A)2 (1.1)

Where m∗ is the electron’s effective mass, ~p is the momentum, and ~A is the

magnetic vector potential. Common choices of the gauge potential to use are the

Landau gauge and the symmetric gauge, but regardless of the choice of gauge the

energy spectrum is the same: the eigenstates have energy EN = (N + 1/2)h̄ωc, where

N = 0, 1, 2... is the Landau level index and ωc ≡ eB
m∗ is the cyclotron frequency.

Landau quantization results in a flat band structure with an energy gap of h̄ωc

between Landau levels. When the Fermi energy lies between Landau levels (in other

words, when an integer number of Landau levels is fully filled), there will be zero

density of states (DOS) available for conduction in the bulk, making the bulk an

insulator. Each Landau level has a fixed degeneracy per unit area equal to eB
h

. A

parameter called the filling factor, ν, is used to keep track of the number of filled

Landau levels, and is defined as ν ≡ nh
eB

, where n is the electron sheet density in the

2DES. At the edges of the sample, on the other hand, the confining potential causes

the Landau level energies to bend upward, and the Fermi energy will cross each

occupied Landau level. This results in edge states that carry current with chirality

set by the direction of the magnetic field.

In real samples the Landau level DOS will be broadened by finite disorder, so the

bulk will never truly have zero DOS. However, charge tends to be localized in the hills

and valleys of the disorder potential, which leads to an insulating bulk despite finite

DOS over a finite range of filling factor [13]. At low temperatures and high magnetic

fields the conduction of localized states in the bulk drops exponentially, leading to
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the observed quantized Hall conductance (due to the edge states) and vanishing bulk

conductance. This is usually probed by measuring a four-terminal resistance (rather

than conductance) to avoid the effect of contact and electrical lead resistance. In a

typical quantum Hall experiment a fixed AC current I is driven through the sample

and the longitudinal voltage Vxx and perpendicular voltage Vxy are measured with

lock-in amplifiers. The longitudinal resistance Rxx ≡ Vxx/I and the Hall resistance

Rxy ≡ Vxy/I are then calculated. This typical measurement circuit is shown in Fig.

1.2a.

Since electron density is usually fixed (unless deliberately changed via a gate),

there will be only one point in magnetic field where the filling factor ν ≡ nh
eB

is an

integer, and an exact amount of Landau levels is fully filled and the rest fully empty.

This makes it surprising that the quantum Hall plateaus persist over a finite (and

fairly wide) range of magnetic field. This phenomenon is actually explained by the

inevitable presence of disorder: when a Landau level is only slightly filled, the few

electrons in it (or few holes, if it is instead only slightly emptied) become localized in

the hills and valleys of the disorder potential [13, 14]. Because these excess electrons

are localized and thus don’t contribute to conduction, Rxy remains quantized and Rxx

remains zero because the system behaves as if an exact integer number of Landau

levels were fully filled.

The quantum Hall effect is an amazingly robust phenomenon - the measured longi-

tudinal and Hall resistances are independent of sample size or shape and even against

moderate amounts of disorder. One testament to the robustness of the quantum Hall

effect is the crude samples we frequently use to probe it - to measure bulk quantum

Hall we typically cleave so-called Van der Pauw squares measured by eye to be roughly

4mm, and for contacts we make scratches at the edges and attach wires with blobs of

indium. Despite the messy and inexact nature of these samples, the Hall conductance

is exactly quantized to Rxy = 1
i
h
e2

[12], with i being an integer which corresponds to

the number of fully filled Landau levels. For some applications we fabricate Hall bars
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Fig. 1.2. Quantum hall effect. (a) Typical measurement circuit for
the quantum Hall effect in a bulk semiconductor sample. A current
is sourced from source contact S to drain contact D. The longitudinal
voltage Vxx and Hall voltage Vxy are measured and used to calculate
Rxx and Rxy. (b) A typical GaAs sample used for bulk quantum Hall
measurements. Despite the haphazard shape and arrangement of in-
dium contacts, such samples typically exhibit exact quantization of
Rxy as well as zeros in Rxx at numerous integer and some fractional
filling factors. (c) Typical integer quantum Hall data, showing pro-
nounced plateaus in Rxy with Rxy = 1

i
h
e2

and corresponding zeros in
Rxx for integer i fully filled Landau levels.

with tightly controlled dimensions, but in the quantum Hall regime these give exactly

the same result as the haphazard Van der Pauw squares.

1.4 Topology

The observation of quantized conductance under a variety of sample parameters

strongly suggests that the quantum Hall effect has a connection to topology, the
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branch of mathematics which studies properties of systems which do not change

when system parameters are changed continuously. Laughlin gave an explanation

for the quantization through arguments of gauge invariance [15]. A more complete

explanation was provided by Thouless and coworkeres, who elegantly demonstrated

the application of topology to the quantum Hall effect, and found that the Hall

conductance is a topological invariant [16,17]. This explains the robust quantization

of the Hall conductance for different systems with different geometries and levels

of disorder. While disorder and other sample details modify the energies and wave

functions of electron states, as long as the disorder is not great enough to close the

energy gap Thouless’s arguments hold and the Hall conductance remains quantized.

1.5 Fractional Quantum Hall Effect

Quantum Hall states occurring at integer filling factors are readily understood in

terms of the non-interacting picture described previously. However, in 1982 a surpris-

ing phenomenon was observed: a plateau in Rxy and minimum in Rxx at a fractional

filling factor, ν = 1/3, with the plateau in Rxy also corresponding to fractionally

quantized conductance, Rxy = 3 h
e2

[18–20]. Explanation of this fractional quantum

Hall state required a theory which takes into account the Coulomb interaction be-

tween electrons. A first theory was provided by Laughlin [21], who provided a wave

function for a gapped state at filling factor ν = 1/3 (which generalizes to other frac-

tional fillings of the form ν = 1
2p+1

, with p an integer). However, as the quality of

GaAs heterostructures improved over time, numerous other fractional quantum Hall

states were observed [22–26] which did not fit into the Laughlin sequence.

A more general theory of the fractional quantum Hall effect was provided by

Jain’s composite fermion theory [27–29]. Composite fermion theory starts with a

core premise: an even integer number of flux quanta (taken from the overall applied

magnetic field) attach to each electron, thus forming the composite fermion quasipar-

ticles; a cartoon of this process is shown in Fig 1.3. Then, the leftover magnetic flux
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causes the composite fermions to exhibit the integer quantum Hall effect at effective

integer filling factors ν∗. The real filling factor for these composite fermion quantum

Hall states is ν = ν∗

2pν∗±1
, with p and ν∗ both integers. Remarkably, the fractional

quantum Hall states observed in the lowest (N = 0) Landau level exactly follow this

sequence, making Jain’s theory highly successful at explaining experiments.

Flux Attachment

Fig. 1.3. Composite fermion states. Cartoon showing the flux
attachment process by which electrons are transformed into composite
fermions. In the cartoon there are three flux quanta per electron,
two of which attach and form the composite fermion; this situation
corresponds to the ν = 1/3 fractional quantum Hall state.

The composite fermion wave function is shown in Eqn. 1.2. The factor
∏

j<k(zj−

zk)
2p achieves flux attachment (making each electron see 2p flux quantua on each

other electron) and transforming them into composite fermions; here zi ≡ xi + iyi is

the complex coordinate of electron i in the 2DES. The term Φν∗ places the composite

fermions in Landau levels filled up to ν∗, and PLLL projects the resulting wave function

into the lowest Landau level. The case of ν∗ = 1 yields the Laughlin wavefunction

(for which the lowest Landau level projection is not needed).

It is the flux attachment term which makes the composite fermion wave function

effective at minimizing the energy of the system. The
∏

j<k(zj − zk)2p term keeps the

electrons far apart from one another by making the amplitude of the wave function

small when they draw too close, thus reducing the electrostatic energy of the system.



9

Ψν= ν∗
2pν∗+1

= PLLLΦν∗

∏
j<k

(zj − zk)2p (1.2)

It is important to emphasize that neither the Laughlin nor the composite fermion

wave functions are exact solutions to the Schrodinger equation. Furthermore, flux

attachment does not literally occur; the real magnetic field is uniform. However,

the theory qualitatively matches experimental observation of gapped quantum Hall

states at exactly the predicted filling factors, and exact diagonalization studies have

found good overlap between the composite fermion wave functions and the exact

ground states [29]. Thus, despite not being an exact analytical solution, composite

fermion theory is a very good approximation for reality and has proved very useful for

understanding behavior in the fractional quantum Hall regime. That said, it is worth

mentioning that a few even-denominator fractional quantum Hall states, such as the

famous ν = 5/2 state, have been observed, and drawn considerable interest [25,30,31].

The ν = 5/2 state does not easily fit into the composite fermion picture, but may be

a paired state of composite fermions [29,32,33].

1.6 Fractional Quasiparticles

Despite their close relationship to the integer quantum Hall effect of non-interacting

particles, fractional quantum Hall states are predicted to have interesting properties

which differ from their integer counterparts. Fractional quantum Hall states are pre-

dicted to host quasiparticle excitations which carry a rational fraction of the electron’s

charge [21, 29, 34]. For a state ν = ν∗

2pν∗±1
fitting into the composite fermion picture

the predicted quasiparticle charge is e∗ = e
2pν∗±1

[29, 35,36].

Even more remarkably, these quasiparticles are predicted to abey anyonic braiding

statistics. When the positions of two fermions are exchanged, the system acquires a

phase of π, while when two bosons are exchanged the phase is 2π; however, these

quasiparticles are neither fermions nor bosons, but anyons for which a phase equal

to a fraction of π is obtained when positions are exchanged [34,37]. A braiding oper-
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ation, in which one quasiparticle encircles another, is equivalent to two quasiparticle

exchanges. For a Laughlin state the anyonic phase accumulated in a braiding oper-

ation is predicted to be θanyon = 2π × 1
2p+1

for a state ν = 1
2p+1

[34]. For composite

fermion states with ν = ν∗

2pν∗+1
, this generalizes to θanyon = 2π p

2ν∗p+1
[29, 36]. In the

case of ν∗ = 1, this result is consistent with the value for the value derived for a

Laughlin state modulo 2π. Quasiparticle braiding can be seen as another manifesta-

tion of topology in the quantum Hall effect because the anyonic phase is independent

of the details of the path taken, as depicted in Fig. 1.4.

𝜃𝑎𝑛𝑦𝑜𝑛 = 2𝜋
1

2𝑝 + 1
𝜃𝑎𝑛𝑦𝑜𝑛 = 2𝜋

1

2𝑝 + 1

Fig. 1.4. Cartoon showing two paths for one quasiparticle
around another. Because anyon braiding in the fractional quantum
Hall regime is topological phenomenon, the two paths result in the
same phase θanyon

1.7 Interferometry

While bulk semiconductor samples such as the one shown in Fig. 1.2b can be

used to observe quantization of the Hall resistance, much smaller, mesoscopic devices

are required to detect the exotic properties of quasiparticles. Electronic Aharonov-

Bohm interferometry has been proposed as a method to probe quantum Hall edge

states [36,38–40]. Three distinct geometries have been proposed: antidot interferome-
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ters (shown in Fig. 1.5a), Mach-Zehnder interferometers (Fig. 1.5b), and Fabry-Perot

interferometers (Fig. 1.5c). All three varieties of interferometers share similar fea-

tures. Interferometers take advantage of the fact that in the quantum Hall regime,

current is carried by chiral edge states, making it straightforward to define an in-

terference path. They all utilize two quantum point contacts (QPCs) to partially

backscatter incident edge states (analogous to beamsplitters used in optical interfer-

ometers). In typical devices, the QPCs and interference path are defined using metal

gates patterned on the semiconductor surface; when the gates are negatively biased

the electrons underneath the gate are depleted, causing the edge states to be directed

in the desired path. For electrons the phase difference between the two paths is given

by the Aharonov-Bohm phase, which is proportional to the encircled magnetic flux:

θ = 2πAIB
Φ0

. Here, AI is the area of the interference path, B is the magnetic field, and

Φ0 ≡ h
e

is the magnetic flux quantum.

a) b) c)

Antidot Mach-Zehnder Fabry-Perot

Fig. 1.5. Different types of quantum Hall interferometers.
(a) Schematic of an antidot interferometer. The source contact S
and drain D are labeled; metal gates to define the interference path
are shown in yellow. The chiral edge states are shown with red
lines; the dashed red lines represent the backscattered paths from
the two QPCs. (b) Schematic of a Mach-Zehnder interferometer. (c)
Schematic of a Fabry-Perot interferometer.
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While antidot devices have been investigated in a few previous experiments [41,42],

Mach-Zehnder and Fabry-Perot devices have drawn more theoretical and experimen-

tal interest due to their potential to measure the fractional charge and anyonic braid-

ing statistics of quasiparticles in fractional quantum Hall states. Mach-Zehnder de-

vices are more difficult to fabricate and in previous experiments [43, 44], they have

failed to yield any interference at fractional quantum Hall states. For these reasons,

I have decided to work with Fabry-Perot type interferometers.

For Fabry-Perot interference of a fractional state with quasiparticles bearing charge

e∗ and statistical phase θanyon, the interference phase θ is modified [36]:

θ = 2π
e∗

e

AIB

Φ0

+NLθanyon (1.3)

In Eqn. 1.3 NL is the number of quasiparticles localized inside the interference

path. From this equation, it is clear that both the fractional charge and fractional

braiding statistics can be accessed (at least in principle) from Fabry-Perot interfer-

ence.

1.8 Operation of Fabry-Perot Interferometers

When the gates of a Fabry-Perot electronic interferometer are negatively biased

and edge states are partially reflected by the two quantum point contacts, as shown

schematically in Fig. 1.5c, quantum interference will occur between the two backscat-

tered paths. The interference will modulate the current through the device, and thus

can be probed by measuring the conductance or resistance across the device. For in-

teger quantum Hall states the phase is simply the electronic Aharonov-Bohm phase,

θ = 2πAIB
Φ0

. There are two ways of operating such a device; the area AI can be

changed by changing the voltage Vgate on the side gates (more negative voltage will

reduce the area and thus reduce the magnetic flux), or the magnetic field B can be

changed by controlling the current through a superconducting magnet.
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Since the phase is proportional to both AI and to B, if one does the experiment

of measuring conductance as a function of both magnetic field and gate voltage the

naively expected behavior is that the lines of constant phase should have negative

slope as a function of Vgate and B. Furthermore, since the area AI is not expected to

depend significantly on B, it is expected magnetic field oscillation period ∆B should

be constant and equal to Φ0

AI
; on the other hand, the change of phase when changing AI

is proportional to B, so the gate voltage period ∆Vgate should be inversely proportional

to B (it will also depend on the lever arm ∂AI
∂Vgate

that relates a change in gate voltage

to a change in area, and is assumed to be nearly independent of magnetic field).

Early experiments with Fabry-Perot devices, however, showed exactly the opposite

of the expected behavior. When sweeping the magnetic field and gate voltage, lines of

constant phase/constant conductance were found to have positive slope rather than

the expected negative slope [45–47]. The oscillation periods ∆B and ∆Vgate were also

inconsistent with the expected behavior; rather than being a constant, the magnetic

field period ∆B was found to be proportional to 1
B

, and the gate voltage period

∆Vgate was found to be nearly constant - once again, exactly the opposite of expected

behavior!

Theoretical works explained this unexpected behavior as being due to Coulomb

charging effects in the device [36, 40]. When the magnetic field is increased, the

degeneracy of each Landau level also increases, leading to an increase in electron

sheet density for each fully occupied Landau level, and thus an increase in the charge

in the bulk of the device δqbulk = eνAδB
Φ0

(here A is the average area to which small

changes δAI are made and B is the starting magnetic field to which small changes δB

are made). However, for a small device there is a large electrostatic energy cost for

increasing charge in the device, so the area of the interfering Landau level decreases

to compensate; this results in a change in charge at the edge δqedge = eδAIB
Φ0

. Strong

Coulomb charging effects will force the total charge to be zero so δqbulk + δqedge = 0.

This gives a change in area of the interference path δAI = −νAδB
B

.
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The change in flux, δΦ, will be a combination of the change in area and the change

in magnetic field: δΦ = AδB+BδA = AδB− νAδB = (1− ν)AδB. Since for integer

quantum Hall states ν ≥ 1, this implies that the flux through the interference path

actually decreases if the magnetic field is increased (and vice versa)! This explains

the positive slope of constant phase lines observed in experiments. Devices which

exhibit this positive slope (or zero slope in the case of ν = 1) due to Coulomb effects

are referred to as “Coulomb-dominated.”

These Coulomb charging effects extend to the fractional quantum Hall regime as

well, but there is an additional problem: it has been shown that in the Coulomb

dominated regime, the anyonic braiding phase is unobservable [36]. This is because

the anyonic phase depends on braiding the edge quasiparticles around the fractional

charge of the quasiparticles localized in the interference path; however, in a Coulomb

dominated device the enclosed charge is fixed, so no discrete phase jumps can occur

(what will happen is that the area of the device will vary in just such a way that

the anyonic phase is cancelled by the Aharonov-Bohm phase, making the anyonic

contribution unobservable). Due to this problem, it is necessary to reduce Coulomb

charging effects to prevent Coulomb dominated behavior and enable devices to operate

in the “Aharonov-Bohm (AB) regime”, where conventional Aharonov-Bohm behavior

may be observed.

It turns out that the Aharonov-Bohm regime is difficult to achieve; if one jumps

into these types of experiments, it is very likely that devices will be Coulomb domi-

nated (at least at first). This is exactly what happened to me. On the other hand,

in previous experiments it was demonstrated that it is possible to recover Aharonov-

Bohm behavior. This was achieved by making device dimensions very large, ≈ 20µm2

(which makes the Coulomb interaction between electrons in the bulk and electrons

at the edge weaker), and by adding a metal gate over the middle of the device; this

metal gate is kept at ground potential and acts to screen Coulomb effects in the

device [45, 46]. The major problem with these types of devices is that due to their

large size, coherence is very weak, making the interference signal small. Most impor-
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tantly, interference was only able to measured at integer quantum hall states, and no

interference was able to be measured at any fractional quantum Hall states. From

these experiments, it was clear that more effective screening was needed to achieve

Aharonov-Bohm behavior in much smaller devices.

Another technique for suppressing Coulomb charging was presented in [48], in

which an annealed Ni/Au/Ge Ohmic contact was placed in the center of the interfer-

ometer. Since this contact provides a conduction path in the middle, the bulk of the

device does not accumulate charge as magnetic field is varied, enabling it to operate

in the Aharonov-Bohm regime despite a much smaller size (≈ 2.6µm2). However, no

interference at fractional quantum Hall states was reported in this type of device. A

possible problem with this scheme is that annealed Ni/Au/Ge contacts are believed

to work by spiking metal into the semiconductor to create contact; putting such a

contact right in the middle of a device is likely to create a tremendous amount of dis-

order which would destroy the relatively fragile fractional states, making fractional

interference impossible.

1.9 Screening Well Heterostructure

When I started working on quantum Hall interferometers, it was clear that inter-

ferometer coherence needed to be significantly improved for progress to be made in

the field, since previous experiments showed poor coherence at integer quantum Hall

states and no interferene at fractional states. Assuming that the system has a finite

coherence time limited by thermal smearing or thermal noise, there are three ways one

could envision improving the situation: 1)Reduce the electron temperature so that

coherence time is longer 2)Increase the edge state velocity to reduce time spent in the

interferometer relative to the coherence time 3)Reduce the interferometer size so that

time spent traversing the interference path is shorter. Since we already operate a dilu-

tion refrigerator with a base temperature of around 10mK, option 1) seemed unlikely

to yield large returns since refrigerators with significantly lower temperatures are not
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readily available (although it is possible that in our samples the electron temperature

may be higher than the fridge temperature, in which case there would be gains to be

made by improving coupling of the electrons to the fridge). Option 2) seemed like

a more promising avenue. Since edge currents are driven by the electric field at the

edge of the sample, edge velocity can (in principle) be increased by increasing the

sharpness of the confining potential in the device. I initially tried to make devices

with a “helper” gate which would be positively biased in order to make the confining

potential sharper, but this scheme utterly failed to improve interference. So, I had to

come up with something else.

Because I have had the good fortune of working in a group with amazing capabili-

ties in the field of GaAs MBE growth, I decided to approach the problem of quantum

Hall interferometry from the perspective of heterostructure engineering. From this

line of thinking I came up with the idea of the “screening well” heterostructure. The

idea of this structure is that while a typical GaAs/AlGaAs heterostructure has a

single 2DES located in a GaAs quantum well or at an interface, the screening well

structure would utilize one or two extra quantum wells with their own 2DESs. These

auxilliary wells would conduct and play the same role as the metal gates used to screen

Coulomb effects in previous experiments, but the screening effect can be greatly im-

proved because, due to being grown as a part of the structure, the screening wells

can be located much closer to the 2DES than the metal gate could be, and if two

screening wells are used, the screening can be done from both sides. One might ask

“couldn’t we simply grow a structure where the 2DES is located very close to the

surface, and then get improved screening from a metal top gate?”, but it turns out

that if the 2DES is shallow, disorder from the surface will make it very low quality

and it will not support fractional quantum Hall states.

However, there is a major problem with this screening well idea. The problem

is that if there are electrons in the screening wells available to screen, they will also

be an additional source of conduction parallel to the main quantum well. Parallel

conduction is a huge problem for samples used for quantum Hall experiments because



17

the parallel conduction obscures the states in the primary quantum well that we want

to observe in electronic transport measurements. Sometimes, when growing conven-

tional GaAs heterostructures, a little bit of parallel conduction arises unintentionally,

and this causes us to fret about what might have gone wrong in the growth, but here

we are intentionally inducing a large amount of parallel conduction! This is not a

problem that can easily be swept under the rug.

One way to deal with this issue is to keep the electron density low. If the density

is very low, then the electrons in the screening well can have low enough conductivity

that parallel conduction through them does not appear in transport measurements;

sometimes there is parallel conduction at low field, but it freezes out at high field

(possibly due to the very low filling factor causing Wigner crystallization of electrons

in the screening wells). The hope was that the electrons would be conductive enough

to cause screening (on the long time scale of the measurement) but not mobile enough

to cause observable parallel conduction. So, we grew a double screening well struc-

ture with an estimated density of ≈ 4 × 1010cm−2 in each screening well. As we

hoped, there was no parallel conduction. However, there was also no screening effect;

interferometers made with this wafer all turned out to be Coulomb dominated. My

conclusion is that parallel conduction is a necessary evil if we want screening to really

work.

Things only began to work once we designed and grew a structure with much

higher density in the screening wells such that there was significant parallel conduc-

tion. The layer stack for this structure is shown in Fig. 1.6a, and the simulated band

structure is shown in 1.6b [4]. This structure has density in the screening wells com-

parable to that in the main quantum well, making parallel conduction unavoidable.

But this did the trick: we were able to measure Aharonov-Bohm regime interference

in a very small device with area ≈ 0.9µm2, an order of magnitude smaller than is

possible with only screening by a metal top gate. Due to the small size of the device,

the interference amplitude was very large and easy to measure. While this was a good

proof of principle, the problem of parallel conduction remained; in fact, it was never
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clear whether we were measuring interference of electrons in the main quantum well

or of electrons in one of the screening wells. In order to get a convincing and pub-

lishable result, we had to eliminate parallel conduction through the screening wells

while still maintaining their ability to screen; our scheme for doing this is detailed in

the Chapter 2.

10nm GaAs Cap

50nm Al0.36Ga.64As 15x1011 cm-2

δ-doping

12nm GaAs Screening Well
2nm AlAs

2nm AlAs

0.5x1011 cm-2

δ-doping

1nm Al0.36Ga.64As

79nm Al0.36Ga.64As

25nm Al0.36Ga.64As

25nm Al0.36Ga.64As

12nm GaAs Screening Well
2nm AlAs

2nm AlAs
1nm Al0.36Ga.64As

99nm Al0.36Ga.64As
3x1011 cm-2

δ-doping

0.5x1011 cm-2

δ-doping

Smoothing layers & 
Substrate

0 100 200 300 400

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

z(nm)

G
a
m

m
a
 b

a
n
d
 e

d
g
e
 (

e
V

)

0.00

0.05

0.10

0.15

0.20

0.25

 e
le

c
tr

o
n
 d

e
n
s
it
y
(c

m
-3
)

0.9x1011cm-21.0x1011cm-21.1x1011cm-2

3.725 3.730 3.735 3.740

-1.515

-1.510

-1.505

B (T)

V
g
a
te

 (
V

)

-640

-376

-112

152

416

680

dRD (W)

(a)

(b)

(c)

20nm GaAs Quantum Well

Fig. 1.6. Screening well heterostructure. (a) Layer stack show-
ing the GaAs/AlGaAs heterostructure design using screening wells.
In addition to the primary 20nm GaAs quantum wells, electrons
also populate auxiliary 12nm screening wells which flank the quan-
tum wells and serve to screen Coulomb effects in the interferometer.
(b) Simulation of the conduction band minimum (shown in red) and
electron density (shown in blue) along the growth direction for the
structure in (a). (c) Pajama plot showing AB interference for a small
interferometer with effective area ≈ 0.9µm2. The negative slope of the
constant phase lines indicates that the screening wells have succeeded
at suppressing Coulomb charging effects in the device.
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2. AHARONOV-BOHM INTERFERENCE OF

FRACTIONAL QUANTUM HALL EDGE STATES

A version of this chapter was previously published by Nature Physics [49].

2.1 Abstract

We demonstrate operation of a small Fabry-Perot interferometer in which highly

coherent Aharonov-Bohm oscillations are observed in the integer and fractional quan-

tum Hall regimes. Using a novel heterostructure design, Coulomb effects are drasti-

cally suppressed. Coherency of edge mode interference is characterized by the energy

scale for thermal damping, T0 = 206mK at ν = 1. Selective backscattering of edge

modes originating in the N = 0, 1, 2 Landau levels allows for independent determina-

tion of inner and outer edge mode velocities. Clear Aharonov-Bohm oscillations are

observed at fractional filling factors ν = 2/3 and ν = 1/3. Our device architecture

provides a platform for measurement of anyonic braiding statistics.

2.2 Background

Integer and fractional quantum Hall states are archetypal topological phases of a

two-dimensional electron system (2DES) subjected to a strong perpendicular mag-

netic field [29]. Electronic Fabry-Perot interferometry has been proposed as a means

to probe the properties of integer and fractional quantum Hall edge states [38,39,50,

51]; most intriguingly, interferometry may be used to directly observe anyonic braid-

ing statistics [37] of fractional quantum Hall quasiparticles. Interference visibility in

real devices is limited by finite phase coherence, a particularly acute problem in the

fractional quantum Hall regime. Visibility may be improved by decreasing the size



20

of the interferometer so that the path traveled by interfering excitations is shorter.

However, attempts to measure interference in small devices have yielded results in-

consistent with simple Aharonov-Bohm interference; specifically, the magnetic field

oscillation period is found to change with filling factor, and constant phase lines in

the gate voltage-magnetic field plane have positive slope rather than the expected

negative slope [45, 46, 52, 53]. This behavior is attributed to Coulomb charging ef-

fects [40, 40], which cause the area of the interferometer to change as the magnetic

field is varied. This “Coulomb-dominated” behavior masks the Aharonov-Bohm phase

and makes braiding statistics unobservable [40]. The effects of intermediate Coulomb

coupling have also been investigated theoretically [54]. The challenge for measuring

robust interference and observing fractional braiding statistics is to create a device

small enough to maintain phase coherence, while reducing Coulomb effects so that

the device may operate in the Aharonov-Bohm regime. We report fabrication and

operation of an interferometer that overcomes these challenges.

2.3 Screening Well Structure

The GaAs/AlGaAs heterostructure was grown by molecular beam epitaxy [1, 3]

and is shown in Fig. 2.1a. While typical structures utilize a single GaAs quantum

well in which the 2DES resides, our structure contains three GaAs wells: a primary

quantum well 30nm wide and two additional 12nm wells located on either side of

the primary well separated by 25nm Al0.36Ga0.64As spacers. The 2DES under study

is located inside the primary GaAs quantum well, while the ancillary wells screen

Coulomb effects so that the interferometer may operate in the Aharonov-Bohm regime

[36,40]. The structure is modulation doped with silicon above the top screening well

and below the bottom screening well. In Fig. 2.1b we show the position of the Γ-band

edge (red) and electron density (blue) calculated by the self-consistent Schrodinger-

Poisson method [55]; the confinement energy in each screening well is tuned to match

the experimentally measured densities. This structure is designed to have significantly
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Fig. 2.1. Heterostructure design and device layout. (a)
Layer stack of the GaAs/AlGaAs heterostructure along the growth
direction, showing the positions of the GaAs quantum well and
screening wells (blue), AlGaAs spacers (green), and AlAs barriers
(red). (b) Conduction band edge (red) and electron density (blue)
versus growth direction (z-axis) calculated using a self-consistent
Schrodinger-Poisson method. The sheet density in each well is in-
dicated. (c) Schematic showing the layout of the mesa (blue), Ohmic
contacts (green), surface gates used to isolate the top screening well
from the contacts (orange), and the backgate used to isolate the con-
tacts from the bottom screening well (red). The surface gates used to
define the interference path are shown in yellow. Additionally, there is
a global backgate underneath the mesa (red). A four-terminal mea-
surement circuit is indicated in which current is injected into the
Hallbar and the perpendicular Hall voltage is measured; when the
interferometer gates are biased to define the interference path, the
measured resistance is referred to as the diagonal resistance, RD.

higher density in the screening wells than in the primary well in order to facilitate

strong screening.

In Fig. 2.2 we show a scanning electron microscopy (SEM) image of the interfer-

ometer gates. The device consists of two quantum point contacts (QPCs) that form

narrow constrictions and a pair of side gates that define the interference path. The
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gates shown in yellow are negatively biased to deplete electrons from the quantum

well and define the interference path; the central top gate (green) is grounded and

does not alter the 2DES density.

Interferometer operation requires transport measurements through the primary

quantum well unobscured by parallel conduction through the screening wells. Our

device includes narrow gates on the top surface and on the back side of the chip

that partially overlay the arms connecting each Ohmic contact to the mesa; this is

shown schematically in Fig. 2.1c. The surface gates over the Ohmics are negatively

biased at -0.29V; this bias is sufficient to deplete the electrons from the top screening

well without depleting either the primary quantum well or the bottom screening well.

Similarly, the back side gate over the Ohmics is biased at -150V in order to deplete the

bottom screening well, but not the primary quantum well. This eliminates electrical

conduction through both screening wells so that only the primary quantum well is

probed in measurements. Because these gates are well separated from the gates that

define the mesoscopic interference path, the screening wells are still populated in the

interferometer and thus available to screen. In Fig 2.3a we show the evolution of the

Hall resistance Rxy with current allowed to flow through all three wells (black trace),

with the top screening well disconnected from the contacts (blue trace), and with

both screening wells disconnected such that current passes only through the primary

quantum well (red trace); in the final case Rxy exhibits a much steeper slope and

shows clear quantum Hall plateaus and concomitant zeroes in longitudinal resistance

(not shown), demonstrating that parallel conduction through the screening wells has

been eliminated. This selective depletion technique was pioneered to isolate transport

in bulk bilayer systems [56]. Here we have demonstrated the technique has utility for

mesoscale electronic devices as well.

The presence of the screening wells acts to reduce the Coulomb charging energy,

characterized by measuring Coulomb blockade through the device at zero magnetic

field [57]. Coulomb blockade diamonds (obtained by measuring the differential con-

ductance ∂I
∂V

versus side gate voltage Vgate and source drain voltage VSD), shown in
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500nm

Fig. 2.2. Scanning Electron Microscope image of interferom-
eter. False color SEM image of the interferometer, located in the
center of the Hall bar shown schematically in Fig. 1c. The device
consists of two quantum point contacts to backscatter current and a
pair of side gates to define the interference path (yellow); when these
gates are negatively biased, the 2DES underneath is depleted, which
defines the interference path. In the measurements, the gate voltage
Vgate applied to both side gates is varied in order to change the area
of the interference path. An additional gate over the top of the area
of the device (green) is grounded for these experiments.
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Fig 2.3b, yield a charging energy e2

2C
≈ 17µeV. The Coulomb blockade charging en-

ergy characterizes the incremental increase of electrostatic energy when an electron is

added in the presence all of the other electrons localized in the interior of the device;

therefore, this energy may be loosely identified with the bulk-edge coupling constant

KIL in Ref. [36], which determines whether the device is in the Coulomb-dominated

or Aharonov-Bohm regime. A similarly sized device without screening wells would

have charging energy e2

2C
∼ e2

εr
≈ 200µeV (where r is the radius of the dot), indicating

that the screening wells are very effective at reducing Coulomb effects in the inter-

ferometer (Coulomb blockade from a device without screening wells is shown in Fig.

2.4). It is important to note that although Coulomb effects are screened on the scale

of the mesoscopic device, the presence of several fractional quantum Hall plateaus

visible in Fig. 2.3a indicates that the Coulomb interaction on the microscopic length

scales relevant for the fractional quantum Hall effect is not significantly reduced.

2.4 ν = 1 interference

Next, we operate the device at filling factor ν = 1 in the integer quantum Hall

regime, where the bulk of the 2DES is insulating and current is carried by a chiral edge

state. The interference path is shown schematically in Fig. 2.6a. Electrons incident

from the source contact are backscattered by the two quantum point contacts to the

opposite edge, and the two backscattered paths interfere; this is shown schematically

in Fig. 2.6a. The quantum mechanical phase difference between the two interfering

paths is given by the Aharonov-Bohm phase: θ = 2πAIB
Φ0

, where AI is the area of the

interference path, B is the magnetic field, and Φ0 ≡ h
e

is the magnetic flux quantum.

The device may be operated by changing the magnetic field B, or by changing the

voltage on the side gates to change AI . the nee At ν = 1 the interferometer exhibits

strong conductance oscillations, probed by measuring the diagonal resistance RD

across the device. RD as a function of gate voltage and magnetic field is plotted

in Fig. 2.6b; the lines of constant phase exhibit negative slope, consistent with the
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(a) (b)

Fig. 2.3. Bulk magnetotransport and Coulomb blockade. (a)
Bulk Hall conductance Rxy with the top and bottom gates around
the contacts grounded (black trace), with -0.29V on the top gate
to disconnect the top screening well from the contacts (blue), and
with -0.29V on the top gate and -150V on the back gate around the
contacts in order to disconnect both screening wells from the contacts
so that transport is only measured through the primary quantum
well (red). The red trace is taken at temperature T = 13mK, and the
blue and black traces are taken at T = 300mK. (b) Coulomb blockade
measurement at zero magnetic field measured in a dilution refrigerator
at base temperature T = 13mK showing the differential conductance
∂I
∂V

versus gate voltage and source-drain voltage VSD for the device at
zero field showing Coulomb blockade diamonds with charging energy
e2

2C
∼ 17µeV. δVgate is relative to -1.8V.
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Fig. 2.4. Coulomb-dominated measurements in devices with-
out screening wells. (a) Differential conductance measurements
from a device without screening wells. The device has a radius of
800nm, making it comparable in size to the device presented in the
main text, but it has a Coulomb charging energy (extracted with the
height of the diamond pattern) e2/2C ∼ 200µV, an order of mag-
nitude larger than the device with screening wells. (b) Resistance
oscillations from another device made on a wafer without screening
wells in the quantum Hall regime at filling factor νbulk = 2. The
positive slope of the constant-phase lines is a signature of Coulomb-
dominated behavior which is pervasive in devices without screening
wells.
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device being in the Aharonov-Bohm regime despite its small size. The magnetic

field oscillation period ∆B = 5.7mT, which gives an area of the interference path

AI = Φ0

∆B
≈ 0.73µm2. This area is smaller than the lithographic area of the device,

indicating that the 2DES is depleted in a region approximately 180nm wide around the

gates; this agrees with simulations of the 2DES density at the edge of the gate (see Fig.

2.5). Additionally, we find that ∆B does not vary significantly with filling factor in

the range 1 ≤ ν ≤ 12, consistent with Aharonov-Bohm behavior and in contrast to the

Coulomb-dominated regime in which ∆B is proportional to 1
ν

[36,40,45,46]. Previous

Fabry-Perot interferometry experiments utilizing conventional heterostructures have

required a device area of 20µm2 in order for Coulomb effects to be small enough for

the device to be in the Aharonov-Bohm regime [45, 46]; unambiguous observation of

the Aharonov-Bohm regime in a much smaller device demonstrates the effectiveness

of the device design employed here.

For weak backscattering by symmetrically tuned QPCs, conductance oscillations

due to interference obey G/G0 = 1− 2r2[1 + η cos(2πAB
Φ0

)], where G = 1
RD

is the con-

ductance across the device, G0 ≡ e2

h
is the conductance quantum, r2 is the reflection

probability of the QPCs, and η is the coherence factor. We characterize coherence of

the interference at ν = 1 by measuring conductance oscillations at different cryostat

temperatures, plotted in Fig. 2.6c; we normalize by dividing by the conductance os-

cillations δG by the reflection amplitude r2, with each QPC tuned to approximately

97% transmission and 3% reflection. The coherence factor η (defined as the ampli-

tude of δG
2G0r2 ) decays with temperature following an approximately exponential trend,

shown in Fig. 2.6d, with a characteristic temperature T0 = 206mK. For comparison,

in measurements of a Fabry-Perot interferometer in [58] T0 was found to be < 20mK

for magnetic fields exceeding 1.5T; in measurements of Mach-Zehnder interferometers

the largest T0 measured was 40mK [59], with larger devices exhibiting smaller T0.

The significantly larger T0 observed in our experiment indicates that the smaller size

achieved in our device is beneficial to achieving quantum coherence.
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Fig. 2.5. Simulation of the electron sheet density at the edge
of the gate. Electron sheet density is plotted versus lateral distance x
from the gate at zero magnetic field (black line) and at νbulk = 3 (blue
line). The edge of the gate is located at x = 0. For the simulation the
gate bias is set at -1.8V to match the experimental side gate bias. The
simulation indicates that the 2DES is depleted in a region extending
approximately 150nm from the edge of the gate, which is consistent
with the experimental finding that the effective area extracted from
Aharonov-Bohm oscillations is smaller than the lithographic area.

2.5 Edge mode velocity

When the device is operated at lower magnetic field (higher filling factor), multiple

integer edge modes are present. In our device it is possible to selectively interfere

a particular edge mode by tuning the QPC voltages to partially backscatter that



29

(a) (b)

(d)

(c)

0 50 100 150 200 250
20

30

40

50

60

70

80

h
 (

%
)

T (mK)

T0 = 206mK

-30 -25 -20 -15 -10 -5 0

0.0

0.5

1.0

1.5

2.0

d
G

/2
G

0
r2

dVgate (mV)

 T = 13mK

 T = 105mK

 T = 220mK

4.485 4.490 4.495 4.500
-20

-15

-10

-5

B (T)

d
V

g
a
te

 (
m

V
)

35

39

43

48

52

56

RD (kW)

Δ𝐵 = 5.7 mT Δ𝑉𝑔𝑎𝑡𝑒 = 5.8 mV

𝜈𝑏𝑢𝑙𝑘 = 1

Fig. 2.6. Interference measurements at ν = 1. (a) Schematic
showing the interference path defined by the interferometer gates at
ν = 1. (b) Resistance oscillations as a function of magnetic field B and
side gate voltage δVgate (relative to -1.4V) showing clear Aharonov-
Bohm interference. For this measurement the QPCs are biased to
achieved approximately 25% reflection. (c) Oscillations in conduc-
tance through the device, δG, divided by the QPC backscattering
amplitude, r2, at 13mK (red), 105mK (blue), and 220mK (black).
For these measurements each QPC is tuned to approximately 97%
transmission and 3% reflection (r2 = 0.03). The amplitude of the
oscillations clearly decreases as cryostat temperature is increased. (d)
Coherence factor η versus temperature; η shows an approximately
exponential dependence on temperature with a characteristic decay
scale of 206mK.

edge, while fully transmitting the outer edges so that only the partially backscattered

edge interferes; this is shown schematically in Fig. 2.8a for the case of bulk filling

factor νbulk = 3, and a corresponding trace of the QPC conductance versus gate

voltage is shown in Fig. 2.8b with the operating points corresponding to the selective

interference of each edge mode indicated with colored circles.

The interference phase may be additionally modulated by changing the energy ε

of injected electrons, which changes the wave-vector k. This introduces a phase shift

δθ = δε∂k
∂ε
L = δεL

h̄vedge
, where L is the path length around the interference loop and
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vedge ≡ 1
h̄
∂ε
∂k

is the velocity of the edge mode [38]. ε may be modulated by applying a

finite source-drain bias VSD across the device; this results in oscillations in differential

conductance as a function of both VSD and flux: δG ∝ cos(2πAB
Φ0

) cos( eVSDL
2h̄vedge

) [60].

This results in nodes in a “checkerboard” pattern when δG is measured in the VSD -

Vgate plane (plotted at νbulk = 1 in Fig. 2.8c and for the inner N = 1 mode at νbulk = 3

in Fig. 2.8d), with nodes in the interference pattern occurring at VSD = ±πh̄vedge
eL

.

The velocity may thus be extracted: vedge = eL∆VSD
2πh̄

[44, 60], where ∆VSD is the

spacing between nodes, and we estimate L from the interference area, L ≈ 4
√
AI .

The extracted velocity likely represents the average velocity of the edge mode in the

interferometer since there may be local variations in the confining potential and thus

velocity.

In Ref. [60] this method was used to measure edge velocity versus filling factor,

but without controlling which edge mode was being interfered; in [44] edge velocity

for only the N = 0 Landau Level (LL) was reported (where N = 0, 1, 2... is the

LL index). To our knowledge, measurement of edge velocity for different LLs as a

function of filling factor has not been demonstrated previously. In Fig. 2.8e we plot

the edge state velocity for the N = 0, N = 1, and N = 2 LL edge modes versus bulk

filling factor νbulk. The inner, higher index Landau levels generally have lower velocity

and correspondingly lower coherence. At magnetic fields below approximately 1.2T

(νbulk = 4), the QPCs show spin-degenerate conductance plateaus, even though the

bulk transport exhibits spin-split quantum Hall states down to 0.2T. This suggests

that although distinct edge states exist, below 1.2T they are too close to one another

to be interfered independently; therefore at filling factors vbulk > 4 we show a single

velocity measurement for each Landau level, while at lower fillings we show both spins

when resolved. We also mention that we observe the same period-halving phenomenon

in our device that was reported in previous interferometry experiments [61–63]; see

Fig. 2.7.

Much of the magnetic field dependence in Fig. 2.8e can be understood from

the fact that edge currents in the quantum Hall regime are generated by Hall drift:
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Fig. 2.7. Period-halving phenomenon in in the Fabry-Perot
interferometer. Gate voltage period ∆Vgate versus bulk filling factor
νbulk for the N = 0 Landau level spin-up (black squares) and spin-down
(red squares) edge states. The red line indicates a linear fit through
zero of spin-up data points for νbulk ≤ 1.8 as well as all the spin-down
data points. The black dashed line indicates a linear fit through the
spin-up data points for ν > 1.8. The red dashed line has a slope of
5.12 mV, while the black dashed line has a slope of 2.57 mV, which
is consistent with N = 0 spin-up LL edge state exhibiting a halved
period Aharonov-Bohm behavior when the spin-down edge state is
present, consistent with the behavior discussed in Refs. [61,62].

~vHall =
~E× ~B
B2 , where ~E is the in-plane electric field at the edge due to the confining

potential and ~B is the perpendicular magnetic field. This implies that the edge

velocity should increase with decreasing magnetic field (increasing filling factor), and



32

this is indeed the predominant trend observed at filling factors 9 < νbulk < 2. On the

other hand, it must also be considered that the electric field experienced by each edge

state also depends on both magnetic field and Landau level index. It can be seen

from Fig. 2.8e that the outer, lower index Landau levels generally have higher edge

velocity than the inner, higher index ones. This behavior can be understood from the

works of Chklovskii et al. [64, 65], who found that the confining potential is steepest

at the outer edge, resulting in a higher electric field and thus higher velocity for the

outer Landau level edge modes and a smaller electric field and lower velocity for the

inner ones.

Numerical simulations of edge transport in the integer quantum Hall regime for

the heterostructure used in these experiments have been performed, and are plotted

in Fig. 2.8f; see Ref. [55] for an in-depth review. In these simulations, the spa-

tially varying in-plane electric field is self-consistently evaluated for the Landau level

density of states, considering the electrostatic effects of the heterostructure, doping,

surface states and gates. The velocity is obtained by solving quantum transport

(non-equilibrium Green’s function) equations at the Fermi level.

The simulations show good qualitative and quantitative agreement with the ex-

perimental results over the range of filling factor 2 < νbulk < 10. At lower filling

νbulk < 2, the edge velocity exhibits non-monotonic behavior, which may be due

to the impact of electron-electron interactions which become increasingly important

at high magnetic field. Non-monotonic behavior at low filling was also reported in

Ref. [44]. Our simulations employ a mean-field Hartree approximation that does not

capture many-body effects.

Additionally, the edge velocities also exhibit non-monotonic behavior at high filling

νbulk > 10. A possible explanation for this is that at low fields when the magnetic

length becomes comparable to the length scale of the confining potential at the edge,

charge transport may occur via skipping orbits, resulting in different behavior than

observed at higher fields [60, 66]. It is reasonable for this to occur at νbulk = 10;

here the magnetic length is ∼39nm, and simulations indicate that the length scale
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of the confining potential is approximately 40nm (see Fig. 2.5). This effect is not

captured in the simulations as the magnetic length approaches the Debye length. An

alternative possibility is that at high filling where the cyclotron gap is smaller, there

may be partial equilibration between the edge modes facilitated by the applied VSD,

which would make our assumption of interfering a single edge mode invalid.

2.6 Fractional quantum Hall regime

We turn now to results in the fractional quantum Hall regime. In previous ex-

periments with small Fabry-Perot devices Coulomb-dominated or Coulomb blockade

oscillations have been observed in fractional states [45,67–69]. Willet et al. [70,71] re-

ported oscillations at ν = 5/2 consistent with Aharonov-Bohm interference of charge

e/4 and e/2 excitations. However, oscillations with negatively sloped lines of con-

stant phase in the gate voltage-magnetic field plane (a sine qua non of Aharonov-

Bohm regime interference) have not been previously reported. Edge modes in the

fractional quantum Hall regime are predicted to have remarkably different properties

from those in the integer states; in particular, the current-carrying quasiparticles may

carry fractional charge. In the fractional case, the Aharanov-Bohm interference phase

is modified [36]:

θ = 2π
e∗

e

AIB

Φ0

(2.1)

As long as the QPCs are not pinched off, the edge modes and the electrons forming

the fractional quantum Hall condensate are not localized within the interferometer, so

the area AI should change continuously as the gate voltage is varied. Equation (2.1)

indicates that quasiparticle charge may be extracted from gate voltage oscillation

periods according to the relationship e∗

e
= Φ0

B∆Vgate
∂AI
∂Vgate

, where ∆Vgate is the gate

voltage oscillation period and ∂AI
∂Vgate

is the lever arm relating change in gate voltage to

the change in interference path area. ∂AI
∂Vgate

may be determined from the gate voltage

period at integer states, where the interfering charge is simply e; a linear fit of ∆Vgate
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Fig. 2.8. Edge mode velocity measurements. (a) Schematic
showing an interference path with multiple edge states in which the
outermost mode is fully transmitted, the innermost mode is fully
backscattered by both QPCs, and the middle mode is partially trans-
mitted by both QPCs; in this configuration only the middle mode
is interfered. (b) Conductance versus gate voltage for one QPC at
B = 1.64T and νbulk = 3 with other interferometer gates grounded.
The blue, red, and black circles indicate the operating point for in-
terference of the modes associated with ν = 3, ν = 2, and ν = 1
respectively. (c) Differential conductance at νbulk = 1 interfering the
ν = 1 mode and (d) at νbulk = 3 interfering the innermost ν = 3 mode
as a function of side gate voltage and source drain voltage. δVgate is
relative to -1.4V. (e) Edge state velocity extracted from the differ-
ential conductance oscillations for different edge modes as a function
of bulk filling factor. At magnetic fields below approximately 1.2T
(bulk filling factor ν = 4) conductance through the QPCs is no longer
spin-resolved, so only a single line is displayed for each Landau level.
Experimental uncertainty is estimated at ±13%. (e) Numerically cal-
culated edge state velocities for the N = 0, 1, and 2 Landau levels.

versus 1/B yields ∂AI
∂Vgate

= 1.8 × 10−13m2V−1. Gate voltage oscillation periods for

both integer and fractional quantum Hall states are shown in Fig. 2.9a.

In both the Laughlin [21] and composite fermion [27, 29] theories the ν = 1/3

FQHE state is predicted to support quasiparticles with charge e∗ = e/3. At ν = 1/3
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Fig. 2.9. Side gate and magnetic field oscillation periods for in-
teger and fractional states. (a) Side gate oscillation period ∆Vgate
versus inverse magnetic field at integer quantum Hall states (red cir-
cles) and fractional quantum Hall states (blue circles). The dashed
red line indicates a linear fit through zero of the integer gate periods,
yielding a lever arm ∂AI

∂Vgate
= 1.78 × 10−13m2V −1. The blue dashed

line indicates a line with 3× larger slope, which would correspond
to a quasiparticle charge e∗ = e/3. The gate period at νbulk = 1/3
falls close to the blue line, consistent with fractional charge e∗ = e/3,
whereas the period at νbulk = 2/3 is close to the red line, suggesting
integral interfering charge. The integer gate periods used are for the
N = 0 LL; for νbulk ≥ 2 the periods for the spin-down edge state are
used to avoid influence of the period-halving phenomenon discussed
in the text. (b) Magnetic field periods ∆B at different quantum Hall
states. The red dashed line represents the average integer period of
5.7mT, while the blue dashed lines three times the average integer
period, which would be expected for the ν = 1/3 state assuming con-
stant area in both regimes.

(B = 13T ), we observe conductance oscillations as a function of gate voltage and mag-

netic field similar to those at integer states; the oscillations have gate voltage period
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∆Vgate = 6.1mV; this yields an interfering quasiparticle charge e∗ = e Φ0

B∆Vgate
∂AI
∂Vgate

=

0.29e, in good agreement with the theoretical predictions. This supports previous

experimental results utilizing shot noise [72], resonant tunneling [41], and Coulomb

blockade [67]. We mention that interference at νbulk = 1/3 was found to be repro-

ducible using a range of different gate voltages as well as after thermal cycling the

device to room temperature.

Next we discuss the ν = 2/3 FQHE state, which is the hole-conjugate state to

ν = 1/3 [73]. Several edge structures have been proposed for the ν = 2/3 state.

Motivated by a picture in which the ν = 2/3 consists of a ν = 1/3 hole state imposed

upon a ν = 1 background, MacDonald proposed that the ν = 2/3 edge should consist

of an inner edge mode of charge e∗ = −e/3 and an outer edge with e∗ = e [74].

Chang [75] and Beenakker [76] constructed models consisting of two e∗ = e/3 edge

modes; a later work indicated that a transition from the MacDonald edge structure

to the Chang-Beenakker edge structure should occur as the confining potential is

tuned from sharp confinement to soft confinement [77]. Yet another edge model was

proposed by Kane, Fisher, and Polchinski in which the presence of disorder leads to

a single e∗ = 2e/3 charged edge mode and a counterpropogating neutral mode [78].

We measure conductance oscillations at ν = 2/3 (B = 6.8T) with ∆Vgate = 3.7mV,

yielding a quasiparticle charge e∗ = e Φ0

B∆Vgate
∂AI
∂Vgate

= 0.93e, which suggests interference

of an integrally charged edge mode. These oscillations have notably lower amplitude

than those at both integer states and at ν = 1/3. Presence of an integrally charged

mode suggests that the Macdonald edge structure holds in our device. However,

we do not find evidence for interference of a fractionally charged e∗ = −e/3 mode

at ν = 2/3, even if the QPC bias is tuned to reduce backscattering. A possible

explanation for this is that e∗ = −e/3 should have a significantly smaller velocity due

to being an inner mode; therefore, it will have lower phase coherence, making it very

difficult to observe. Smaller device size or lower experimental temperatures might

make measurement of the −e/3 mode possible.
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It is noteworthy that our observation of an integrally charged mode differs from

previous experimental findings, in which shot noise and Coulomb blockade measure-

ments suggested a different edge structure consisting of two e∗ = e/3 charge modes

and two neutral modes [79,80], with no integrally charged mode observed. A possible

explanation for this discrepancy is that our sample may have a sharper confining

potential due to the short setback of the screening wells, resulting in our device sup-

porting the edge structure described in Ref. [74]. Our work provides evidence that

experimental details such as the confining potential affect which of the candidate

edge structures is formed at ν = 2/3. We mention that a sharp confining potential

may also be beneficial for measuring interference at the ν = 1/3 state by preventing

edge reconstruction and the proliferation of neutral edge modes [81–83] which may

cause dephasing [84,85]; neutral modes have been detected at ν = 1/3 and numerous

other fractional quantum Hall states in standard GaAs structures without screening

wells [86].

2.7 Magnetic field oscillation periods

The magnetic field oscillation periods for integer fillings ν = 1, 2, 3, and 4 as

well as ν = 2/3 and ν = 1/3 are shown in Fig. 2.9b. The Aharonov-Bohm phase

is predicted by equation (1), reproduced here: θ = 2π e
∗

e
AIB
Φ0

. If the area of the

interferometer AI does not vary with filling factor, then this would yield a magnetic

field period ∆B that is constant for all integer states, and inversely proportional to e∗

for fractional states. We observe that ∆B is indeed nearly constant (approximately

5.7 mT) for integer states (with the exception of the period-halving phenomenon

discussed previously, which has been omitted from Fig. 2.9); this average value

is indicated by the red dashed line in the figure. ∆B at 2/3 is very close to the

integer period, consistent with the gate voltage oscillation period which also implied

interference of an integer charge. The magnetic field period at ν = 1/3 is 22.2mT,

much larger than the integer period. Under the assumption that the fractional mode
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has the same interfering area as the integer modes, the e∗ can be calculated from

equation (1) as e∗/e = ∆Binteger/∆B1/3 ≈ 0.26. This is in reasonable agreement with

the theoretical value e∗ = e/3, although the moderate discrepancy suggests that the

assumption of constant area may be somewhat inaccurate (the dashed blue line in

Fig. 2.9b shows the predicted ∆B for constant area and e∗ = e/3).

If the true interfering charge is assumed to be exactly e/3, the 22.2mT period gives

an area of 3Φ0/∆B ≈ 0.56µm2, about 23% smaller than the area for integer modes.

Experiments of resonant tunneling in similarly sized mesoscopic devices have found

similarly smaller areas for fractional edge modes compared to integer modes [42,67].

Finally, we remark that although we have observed Aharonov-Bohm interference

of fractionally charged quasiparticles at the ν = 1/3 fractional quantum Hall state, we

have not observed the fractional braiding statistics predicted for these quasiparticles

[29,37]. It has been suggested that increasing the flux through the interferometer by

one flux quantum should result in the addition of one quasiparticle into the area of the

device in order to keep the system charge neutral; this should result in an interference

phase jump ∆θanyon = 4π/3 at the ν = 1/3 state [36,38]. We appear to measure only

the Aharonov-Bohm phase when magnetic field is varied, suggesting that adding flux

does not introduce quasiparticles in our device. Critically, the ν = 1/3 state has a

large energy gap for the creation of quasiparticles measured to be∼ 700µeV in a 2DES

of similar density [87]. This energy is more than an order of magnitude larger than

the measured charging energy in our device ( e
2

2C
∼ 17µV), which suggests that when

magnetic field is varied it may be energetically favorable for the primary quantum

well to remain at fixed filling factor (without creating quasiparticles) rather than

fixed sheet density, with the energy cost of the variations in quantum well density

reduced by the screening wells. When the experiment is performed at fixed filling

factor it is expected that only the Aharonov-Bohm phase of the quasiparticles will be

observed when magnetic field and side gate voltage are varied [38,39], consistent with

our observations. An alternative method to introduce quasiparticles and measure
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Fig. 2.10. Interference of fractional quantum Hall states. (a)
Aharonov-Bohm conductance oscillations at ν = 1/3. The QPCs are
biased to approximately 22% reflection. (b) Aharonov-Bohm conduc-
tance oscillations at ν = 2/3. The QPCs are biased to approximately
20% reflection. In both cases, δVgate is relative to -1.4V.

braiding statistics would be to directly manipulate the electrostatic potential with a

gate in the center of the interferometer [38,39].

Methods

The primary quantum well was measured to have bulk electron density n = 1.05×

1011cm−2 and mobility µ = 7× 106cm2V−1s−1 measured after full device fabrication

and in the dark.
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The device was fabricated by: (1) optical lithography and wet etching to define

the mesa; (2) deposition of In/Sn Ohmic contacts; (3) electron beam lithography and

electron beam evaporation (10nm Ti/15nm Au) to define the interferometer gates; (4)

optical lithography and electron beam evaporation (20nm Ti/150nm Au) to define the

bondpads and the surface gates around the Ohmic contacts; (5) mechanical polishing

to thin the GaAs substrate; (6) optical lithography and electron beam evaporation

(200nm Ti/150nm Au) to define the backgates.

The device was measured in a dilution refrigerator with base mixing chamber

temperature T = 13mK. Extensive heat sinking and filtering are used to achieve

low electron temperatures and bring the electron temperature close to the cryostat

temperature. Standard low-frequency (f = 13Hz) 4-terminal and 2-terminal lock-

in amplifier techniques were used to probe the diagonal resistance and conductance

across the device. Typically a 200pA excitation current was used for measurements

of integer states and 100pA excitation was used when measuring fractional states. A

+400mV bias cool was applied to the QPC and side gates while the device was cooled

from room temperature; this bias-cool technique results in an approximately 400mV

built-in bias on these gates, which improves device stability.
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3. DIRECT OBSERVATION OF ANYONIC BRAIDING

STATISTICS AT THE ν = 1/3 FRACTIONAL QUANTUM

HALL STATE

A version of this chapter has been submitted for publication.

3.1 Abstract

Utilizing an electronic Fabry-Perot interferometer in which Coulomb charging ef-

fects are suppressed, we report experimental observation of anyonic braiding statistics

for the ν = 1/3 fractional quantum Hall state. Strong Aharonov-Bohm interference

of the ν = 1/3 edge mode is punctuated by discrete phase slips consistent with an

anyonic phase of θanyon = 2π
3

. Our results are consistent with a recent theory of a

Fabry-Perot interferometer operated in a regime in which device charging energy is

small compared the energy of formation of charged quasiparticles [88]. Close cor-

respondence between device operation and theoretical prediction substantiates our

claim of observation of anyonic braiding.

3.2 Background

Quantum theory requires that all fundamental particles must be fermions or

bosons, which has profound implications for particles’ statistical behavior. However,

theoretical works have shown that in two dimensions it is possible for particles to vio-

late this principle and obey so-called anyonic statistics, in which exchange of particle

position results in a quantum mechanical phase change that is not π or 2π (as for

fermions or bosons), but a rational fraction of π [89, 90]. While anyons cannot exist
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as fundamental particles in nature, certain condensed matter systems are predicted

to host exotic quasiparticles which obey a certain form of anyonic statistics.

The quantum Hall effect is a remarkable example of a topological phase of matter

occurring when a two-dimensional electron system (2DES) is cooled to low temper-

ature and placed in a strong magnetic field. In the quantum Hall regime the bulk

forms an insulator, and charge flows in edge currents which are topologically pro-

tected from backscattering and exhibit quantized conductance. The elementary ex-

citations of fractional quantum Hall states [18] are not simply electrons, which obey

fermionic statistics, but instead are emergent quasiparticles which are predicted to

have highly exotic properties including fractional charge and anyonic statistics [21].

In two dimensions, two exchanges of particle positions are topologically equivalent

to one quasiparticle encircling the other in a closed path [91], referred to as a braid;

this is illustrated in Fig. 3.1a. The anyonic character of these quasiparticles is re-

flected in the fractional phase the system obtains from braiding; thus they are said

to obey anyonic braiding statistics. The statistics of fractional quantum Hall states

have been studied in theoretical [34,37] and numerical [29,92–95] works. The anyonic

phase does not depend on the trajectory taken but only on the number of quasipar-

ticles encircled, making braiding another manifestation of topology in quantum Hall

physics; this topological robustness has motivated aggressive pursuit of fault-tolerant

quantum computation based on braiding operations in various condensed matter sys-

tems [50, 91, 96, 97]. In a recent experimental work anyonic statistics were inferred

from noise correlation measurements [98]; however, direct observation of the anyonic

phase in braiding experiments will further our understanding of the exotic behav-

ior of quantum Hall quasiparticles and is a necessary step to towards quasiparticle

manipulation.

Electronic interferometry has been used to study edge physics in previous theoret-

ical [36,38,40,54,84,88,99–101] and experimental [43–46,48,52,53,59–62,80,102–109]

works, and has been proposed as an experimental means to observe anyonic braid-

ing statistics [36,38,51,110] including the highly exotic non-Abelian form of anyonic
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statistics [39, 70, 71, 111–115]. An electronic Fabry-Perot interferometer consists of

a confined 2DES using quantum point contacts (QPCs) to partition edge currents,

as shown in Fig. 3.1b. Quasiparticles backscattered by the QPCs will braid around

quasiparticles localized inside the interferometer; therefore changes inNqp, the number

of quasiparticles localized inside the interferometer, will result in a shift in the interfer-

ence phase due to the anyonic contribution θanyon [36, 38,51, 110], with θanyon = 2π
2p+1

for a Laughlin fractional quantum Hall state ν = 1
2p+1

[34, 37]. The interferome-

ter phase difference θ is a combination of the Aharonov-Bohm phase scaled by the

quasiparticle charge e∗ and the anyonic contribution, written in Eqn. 3.1 [36,38,110]:

θ = 2π
e∗

e

AIB

Φ0

+Nqpθanyon (3.1)

The total current backscatterd by the interferometer will depend on cos (θ), so

interference phase can be probed by measuring the conductance G across the device

[49].

A major obstacle towards the observation of anyonic phases through interferom-

etry has been been the Coulomb interaction of the interfering edge state with charge

located in the bulk of the interferometer [40]. A strong bulk-edge interaction causes

the area AI of the interferometer to change when charge in the bulk changes [36,40].

As a consequence, for so-called Coulomb-dominated devices with strong bulk-edge

interaction, the change in Aharonov-Bohm phase due to the change in AI when Nqp

is changed cancels out the anyonic phase θanyon, making quasiparticle braiding statis-

tics unobservable [36]. While novel physics has been explored in Coulomb-dominated

devices [42, 45–47, 67, 109], this bulk-edge interaction must be reduced to make any-

onic braiding observable. Various techniques have been implemented to reduce this

Coulomb bulk-edge interaction, including the use of metal screening gates [45, 46],

low-temperature illumination to enhance screening by the doping layer [70, 71, 115],

addition of an Ohmic contact inside the interferometer [48], and incorporation of

auxilliary screening layers inside the semiconductor heterostructure [49]. The screen-

ing layer technique has enabled the use of small highly coherent interferometers that
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exhibit robust Aharonov-Bohm interference, including at fractional quantum Hall

states [49].

3.3 Device Design

The device used for these experiments utilizes a unique high-mobility GaAs/Al-

GaAs heterostructure [1,3] with screening layers to minimize the bulk-edge interaction

(see the layer stack in Fig/ 3.2) [49]. The interferometer is defined using metal sur-

face gates which are negatively biased to deplete the 2DES underneath. Two narrow

constrictions define QPCs to backscatter edge currents, and wider side gates define

the rest of the interference path. An SEM image of the device is shown in Fig. 3.1b;

the device has a nominal area of 1.0µm × 1.0 µm, and measurements suggest that lat-

eral depletion of the 2DES makes the interferometer area smaller by approximately

200nm on each side, similar to the experimental and numerical results in [49] (see

also [55]). Note that the length scale of the interferometer is much greater than the

magnetic length lB ≡
√

hc
eB

in the regime investigated, with lB ≈9nm at ν = 1/3,

so the condition that the interfering quasiparticles be well separated from the lo-

calized quasiparticles inside the interferometer which they may braid around should

hold [95,116]. Compared to the device used in [49], the device used in this work has

a lower electron density n, which improves device stability because smaller gate volt-

ages can be used. The device also has a somewhat smaller area, which may increase

coherence and visibility of interference. Experiments are performed in a dilution re-

frigerator with a base mixing chamber temperature of T≈10mK; Coulomb blockade

measurements of different quantum dot devices suggest a somewhat higher electron

temperature of T ≈ 22mK. Negative voltages of ≈-1V are applied to the QPC gates

and ≈-0.8V on the side gates; conductance is measured as a function of the side gate

voltage variation δVg, which is relative to -0.8V and applied to both side gates. An

additional metal gate in the center of the device (not shown in Fig. 3.1b for clarity) is

held at ground potential, so it does not affect the 2DES density; this gate is intended
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to make the confining potential from the gates sharper. Measurements are performed

using standard 4-terminal and 2-terminal lock-in amplifier techniques.

3.4 Discrete Phase Slips

We operated the device at high magnetic field B at the filling factor ν = 1/3

quantum Hall state. In Fig. 3.3 we show the conductance variation δG measured

across the interferometer versus B and δVg near the center of the ν = 1/3 conductance

plateau. The QPCs remain in the regime of weak backscattering across this region

region with approximately 90% transmission, and a smooth background conductance

is subtracted so that the interference oscillations can be seen clearly. As can be seen

in the figure, the predominant behavior observed is conductance oscillations with

negatively-sloped lines of constant phase; however, quite conspicuously there are also

a small number of discrete phase jumps in the data; dotted lines are guides to the

eye for these features. The jumps in phase were found to be repeatable in subsequent

scans; see Fig. 3.4.

Eqn. 3.1 provides a straightforward explanation for our observations. The contin-

uous phase evolution with negatively-sloped lines of constant phase can be associated

with the Aharonov-Bohm phase accumulated by the interfering quasiparticles, the

first term in Eqn. 3.1, which has been observed in previous experiments in the in-

teger [43, 45, 46] and fractional [49] quantum Hall regimes. The second term in Eqn.

3.1 predicts a discrete change in phase when the number of localized quasiparticles

changes; therefore, it is natural to associate the discrete phase jumps with the anyonic

phase contribution θanyon. It is noteworthy that the discrete jumps in phase occur

across lines with positive slope in the B-Vg plane. This can be understood from the

fact that increasing B is expected to remove quasiparticles from the bulk (or create

quasiholes) [21, 38], while increasing gate voltage would make it electrostatically fa-

vorable to increase the number of localized quasiparticles. Thus, the magnetic field

at which it becomes favorable to remove a quasiparticle should increase when gate
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=

Fig. 3.1. Quasiparticle braiding experiment. a) Schematic rep-
resentation of quasiparticle exchange; quasiparticles are represented
by red vortices, and trajectories are shown in dashed lines. Two
quasiparticle exchanges (left) which bring the particles back to their
original position are topologically equivalent to one quasiparticle exe-
cuting a closed loop around the the other, and in each case the system
gains a quantum mechanical phase θanyon due to the quasiparticle’s
anyonic braiding statistics. b) False-color SEM image of interferom-
eter. Blue regions indicate the GaAs where the 2DES resides, and
metal gates under which the 2DES is depleted are highlighted in yel-
low. Red arrows indicate the edge currents, and dotted arrows in-
dicate the backscattered paths which may interfere. Quasiparticles
may be localized inside the chamber of the interferometer, as rep-
resented by the red vortices, and the backscattered paths enclose a
loop around these quasiparticles, making the interferometer sensitive
to θanyon. The lithographic area is 1.0µm × 1.0µm. The device used
in the experiments also has a metal gate covering the top of the in-
terferometer not shown in b), which is kept at ground potential and
does not affect the 2DES density underneath.
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10nm GaAs 

65nm Al0.36Ga.64As

45nm Al0.36Ga.64As

30nm GaAs

25nm Al0.36Ga.64As

25nm Al0.36Ga.64As

Substrate

13nm GaAs

2nm AlAs

45nm Al0.36Ga.64As

2nm AlAs

13nm GaAs

2nm AlAs

2nm AlAs

Si 𝛿 -doping

Si 𝛿 -doping

Bottom Screening Well

Top Screening Well

Primary Well

Fig. 3.2. Layer stack of the GaAs/AlGaAs heterostructure
used for the experiments. This structure utilizes three GaAs quan-
tum wells: a primary 30nm well flanked by two 13nm screening wells
to reduce the bulk-edge interaction in the interferometer. There are
25nm AlGaAs barriers between the main well and screening wells, and
the total center-to-center setback of the screening wells from the main
well is 48nm.

voltage is increased, and a positive slope to the quasiparticle transitions is expected,

as observed in resonant tunneling experiments [42, 47, 67, 80, 117]. The fact that we

do indeed observe a positive slope strongly suggests that these discrete phase jumps

are associated with changes in localized quasiparticle number, and the magnitude of

the slope is also consistent with this. Furthermore, a central principle of quantum

Hall theory is that quasiparticles are localized in the hills and valleys of the disor-

der potential [118], and the fact that the discrete phase jumps are irregularly spaced

indicates that their positions are in fact determined by disorder as expected.

To determine the value of the change in phase associated with each phase jump

in the data, we performed a least-squares fit in the regions between the phase jumps,

fitting the conductance data to the form δG = δG0cos(2π
1
3
AIB
Φ0

+ θ0), with the fitting
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Fig. 3.3. Conductance oscillations versus B and δV g in the
central region. The predominant behavior is negatively sloped
Aharonov-Bohm interference, but a small number of discrete phase
jumps are visible. Dashed lines are guides to the eye for these fea-
tures. Least-squares fits of δG = δG0 cos (2πAB

Φ0
+ θ0) are shown with

highlighted stripes, and the extracted change in phase ∆θ
2π

are indi-
cated for each discrete jump. Increasing magnetic field is expected to
reduce the number of localized quasiparticles; therefore the change in
phase across each jump is predicted to be −θanyon.

parameter being θ0. This expression for the conductance assumes that between the

discrete phase jumps, the phase evolves only by the change in Aharonov-Bohm phase

with changing B and changing AI (via the change in Vg), and θ0 is the excess phase

which cannot be attributed to the Aharonov-Bohm effect. We determine the value of

the phase jump by computing ∆θ, the difference in the fitted values of θ0 in adjacent

regions. The fitted data are shown highlighted in Fig. 3.3, and the extracted values of

∆θ
2π

are shown above each jump. Taking an average and assuming that each phase jump

corresponds to the removal of a quasiparticle (or equivalently addition of a quasihole),

we obtain θanyon = 2π × (0.31 ± 0.04); this is consistent with the theoretical value

of θanyon = 2π
3

for the ν = 1/3 state [34, 37]. Our work thus provides experimental
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Fig. 3.4. Repeatability of discrete phase jumps. a)First scan
measurement of conductance versus B and δVg. This is the same data
in Fig. 3.3. b) Second scan across the same range of magnetic field
using the same QPC gate voltages. As can be seen from the data, the
same pattern of discrete jumps appear in the second scan. The second
scan was taken approximately one hour after the first scan. Values
of ∆θ

2π
extracted from least squares fits are shown for both scans, and

show similar values for each phase jump in both scans.

confirmation for the prediction of fractional braiding statistics at the ν = 1/3 quantum

Hall state.
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Fig. 3.5. Interference across the ν = 1/3 quantum Hall plateau.
a) Bulk magnetransport showing longitudinal resistance Rxx and Hall
resistance Rxy across the ν = 1/3 state. b) Conductance oscilla-
tions δG versus magnetic field B and side gate voltage δVg (this side
gate voltage variation is relative to -0.8V). The dashed lines indicate
the approximate range over which the device appears to exhibit con-
ventional Aharonov-Bohm interference with minimal influence of the
anyonic phase contribution. The region over which this occurs is near
the center of the plateau, and is highlighted in the bulk transport
data in a).

3.5 Transition from constant filling to constant density

A recent theoretical work analyzed the case of a Fabry-Perot interferometer op-

erated at the ν = 1/3 state in which strong screening is utilized to reduce the char-

acteristic Coulomb charging energy and thus suppress the bulk-edge interaction [88].

A key prediction is that the device will transition from constant filling factor to con-

stant density when the magnetic field is varied away from the center of the state.

The authors find that over a wide range of magnetic field the bulk 2DES stays at

fixed ν = 1/3 filling. In this regime of constant ν the predominant contributor to the

phase will be the Aharonov-Bohm phase, but a small number of well-separated quasi-

particle transitions should occur from which θanyon may be extracted, consistent with
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our results described above. Once the magnetic field is varied away from the center,

the authors predict that the electrostatic energy cost of varying density to maintain

fixed ν will cause a transition from constant filling factor to constant density. In

the regimes of constant density, many quasiparticles (at low field) or quasiholes (at

high magnetic field) will be created inside the interferometer to keep the total charge

fixed, with one quasiparticle or quasihole created when the flux is changed by one

flux quantum Φ0, resulting in significant changes in interference behavior mediated

by the anyonic phase.

Motivated by these predictions, we operated the interferometer in a wide range

of magnetic field across the ν = 1/3 fractional quantum Hall state. Bulk magne-

totransport at ν = 1/3 with vanishing longitudinal resistance Rxx and a quantized

plateau in the Hall resistance Rxy is shown in Fig. 3.5a, showing the range of magnetic

field over which the ν = 1/3 state occurs in our sample. The conductance measured

across the device across the ν = 1/3 state is shown in Fig. 3.5b; this is the same

measurement as shown in Fig. 3.3, but extended to higher and lower magnetic field.

As discussed previously, near the center of the ν = 1/3 plateau the predominantly

observed behavior in the conductance is lines of constant phase with negative slope

consistent with Aharonov-Bohm interference [36, 38, 40, 49] with a small number of

discrete jumps attributed to quasiparticle transitions. The gate voltage and magnetic

field oscillation periods are approximately three times larger than the integer periods

measured at ν = 1, consistent with interference of e/3 fractionally charged quasipar-

ticles, as is expected for the ν = 1/3 state and consistent with previous experimental

observations of fractional charge [41, 45, 49, 72, 119]. On either side of this central

region, however, the behavior changes significantly. The lines of constant phase lose

their negative slope; although there is still weak magnetic field dependence to the pat-

tern, the magnetic field scale over which the phase varies is much larger than in the

central region, making the lines of constant phase nearly flat; the oscillations depend

primarily only on the side gate voltage. It is noteworthy that, despite this conspicu-

ous change, the lines of constant phase are continuous across the transition from the
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central Aharonov-Bohm region to the upper and lower regions, which indicates that

the oscillations are still due to interference of the edge state.

Our experimental observation that negatively-sloped Aharonov-Bohm interference

occurs only in a finite range of magnetic field agrees with the predictions of [88].

At first blush the behavior observed above and below this central region seems to

conflict with predictions: we observe an interference pattern that becomes nearly

independent of magnetic field, while [88] predicts that the magnetic field period will

decrease from 3Φ0 in the central region to Φ0 in the upper and lower regions because

quasiparticles will be created with period Φ0. However, an additional key prediction

in [88] is that the Φ0 oscillations will be extremely susceptible to thermal smearing,

with the authors estimating a temperature scale T0 ≈ 2mK (because our device is

smaller than the one considered in [88] this predicted temperature scale would be

T0 ≈ 4mK for our device, still much smaller than our estimated electron temperature

of 22mK). This thermal smearing can be understood from the fact that the regime

of constant density corresponds to the chemical potential being at a position of high

density of states (DOS), and thus small energy spacing between states, leading to

thermal smearing. Therefore, the absence of Φ0 oscillations at T≈ 22mK is in fact in

agreement with [88].

The fact that the lines of constant phase flatten out and become independent

of magnetic field can be understood based on the combined contribution of the

Aharonov-Bohm phase and anyonic phase (Eqn. 3.1). For the ν = 1/3 state, quasi-

particles are predicted to carry fractional charge e∗ = e/3 and fractional braiding

statistics θanyon = 2π/3 [34]. Changing the magnetic field to add one flux quan-

tum to the device will change the Aharonov-Bohm phase by 2π
3

. Additionally, in the

lower field regimes one quasiparticle will be removed, and in the high field regime

one quasihole will be added, resulting in a phase shift of −2π
3

and leaving the total

interference phase unchanged in both regimes. The Aharonov-Bohm phase varies

continuously, while (in the limit of zero temperature) the quasiparticle number will

change discretely, leading to the predicted Φ0 oscillations [38,88]; however, when the
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quasiparticle number is thermally smeared, the average number of localized quasi-

particles will vary nearly continuously, leading to a smooth variation of the anyonic

phase; in this case the smoothly varying thermally-averaged anyonic phase cancels the

Aharonov-Bohm phase, leading to no change in θ as B is varied, consistent with our

experimental observations. Because each quasiparticle at the 1/3 state is a vortex,

this can also be understood based on the result from [34] that the Berry phase of a

vortex encircling a closed path is equal to 2π〈qenc〉 where qenc is the charge enclosed in

the path, and the high and low field regions the electrostatics force density to remain

fixed, and thus 〈qenc〉 remains nearly constant.

The approximate range over which the negatively-sloped Aharonov-Bohm oscilla-

tions occur is marked with dashed lines in Fig. 3.5a, and has a span of approximately

450mT. To make a quantitative comparison to theory, we compute the predicted

width of the fixed ν region from [88]: ∆Bconstant−ν =
∆1/3Φ0CSW

νe2e∗
. In this expression

∆1/3 is the excitation gap of the ν = 1/3 state which we measure to be ≈ 5.5K (see

Fig. 3.6), consistent with previous measurements of the ν = 1/3 gap [87]. CSW

is the capacitance per unit area of the screening layers to the quantum well which

we calculate as CSW = 2ε
d

, with the factor of two accounting for the fact that there

are two screening layers and d = 48nm the setback of the screening layers from the

quantum well. Using the experimental values from the device gives a predicted value

for ∆Bfixed−ν ≈ 530mT, in good agreement with the experimentally observed range

of Aharonov-Bohm interference of ≈ 450mT , which suggests that the experimentally

observed transition in interference behavior can indeed be explained by the model

of [88].

The arguments in [88] of a transition from a regime of constant ν to regimes

of constant n when moving away from the center of the state also apply to integer

quantum Hall states. In Fig. 3.7 we show measurements of interference as a function

of B and Vg across the integer state ν = 1; in contrast to the fractional ν = 1/3 case,

the device exhibits no change in behavior and displays negatively-sloped Aharonov-

Bohm interference at the high and low field extremes of the plateau. This is consistent
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Fig. 3.6. Measurement of the energy gap for the ν = 1/3 frac-
tional quantum Hall state. The inset shows longitudinal resistance
Rxx measured in a bulk region away from the interferometer at differ-
ent temperatures. A linear fit of the data to the form Rxx = R0e

−∆
2kT

yields a gap of ∆ =5.5K. This is consistent with values measured in
previous experiments at similar magnetic field [87].

with the fact that the charge carriers and excited states are electrons which obey

fermionic statistics, making their braiding unobservable; θfermion = 2π.

3.6 Period Analysis

Additionally, there is a moderate change in the side gate voltage oscillation period

in the high and low field regions compared to the central region; here we analyze this

shift in period and find that it consistent with a weak coupling of the side gates to

the bulk 2DES inside the interferometer.

We discuss the change in interference behavior from the central region, where

the device exhibits primarily Aharonov-Bohm interference behavior with a few phase

jumps, to the high and low field regions, where the lines of constant phase flatten out.
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Fig. 3.7. Measurements of interference at ν = 1. a) Bulk quan-
tum Hall transport showing the zero in Rxx and plateau in Rxy cor-
responding to the ν = 1 integer quantum Hall state. For this integer
state, the bulk excitations and edge state current carrying particles
are simply electrons, which obey fermionic statistics. b) Conduc-
tance oscillations versus magnetic field, showing an oscillation period
∆B =11mT. From this period the effective area AI of the interferom-
eter can be extracted: AI = Φ0

∆B
In c), d), and e) we show conductance

versus B and δVg across the interferometer in the low field region of
the plateau, near the center of the plateau, and on the high-field side of
the plateau; the region on the plateau corresponding to each pajama
plot is shown in a). In each of these regions the device exhibits neg-
atively sloped Aharonov-Bohm oscillations. This contrasts with the
data shown in Fig. 3.5 for the ν = 1/3 state where lines of constant
phase flatten out at high and low fields. This is consistent with the
fact that electrons, which carry current and form localized states at
ν = 1, are fermions who obey trivial braiding statistics, θfermion = 2π,
making braiding unobservable and leading to no change in interference
behavior.

Interestingly, despite the lines of constant phase remaining continuous, the side gate

oscillation period becomes smaller in the high and low field regions relative to the

central region, with periods of 5.8mV at 8.4T, 8.5mV at 8.85T, and 5.4mV at 9.3T.

In Fig. 3.8a line cuts of conductance versus gate voltage are shown at these magnetic

fields illustrating the change in period. On the other hand, the model of [88] suggests
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that the side gate oscillation period will be the same in the central region as in the

upper and lower field regions, because the authors assume that the side gate couples

only to the edge of the interferometer; under this assumption the side gate voltage

will only affect the Aharonov-Bohm phase, making the variation of θ with Vg the

same in each region. However, in a real device the gates do not affect just area; they

also have some effect on the charge in the bulk of the interferometer. In the high and

low field regions this will lead to an additional change in phase with gate voltage due

to changes in localized quasiparticle number. To analyze the effect this will have on

the side gate oscillation period, in Eqn. 3.2 we take the derivative of θ (from Eqn.

3.1) with respect to side gate voltage:

∂θ

∂Vg
= 2π

e∗

e

B

Φ0

∂AI
∂Vg

+ θa
∂〈NL〉
∂Vg

(3.2)

Here with 〈NL〉 we take the thermally averaged number of quasiparticles to ac-

count for the fact that in the high and low field regimes significant thermal smearing

is expected, and 〈NL〉 will not necesarily be an integer [88].

In order to determine whether change in localized quasiparticle number with gate

voltage can explain the observed change in period, we determine the parameter αbulk ≡
∂qbulk
∂Vg

which paramaterizes how the bulk charge inside the interferometer qbulk changes

with Vg. To determine αbulk we have operated the device at zero magnetic field

in the Coulomb blockade regime [57] with the QPCs tuned to weak tunneling; in

this regime there is one conductance peak each time the number of electrons in the

device changes by one. Inverting the Coulomb blockade oscillation period gives the

total lever arm coupling the side gates to the interferometer, αtotal = 1
∆VCB

= ∂qtotal
∂Vg

.

Zero-field Coulomb blockade oscillations are plotted in 3.8b; the 5.4mV period yields

αtotal =0.19mV−1. However, qtotal is a combination of charge at the edge and charge

in the bulk, qtotal = qedge+ qbulk, so to determine αbulk we must also determine αedge ≡
∂qedge
∂Vg

. To extract αedge we operate the device as an Aharonov-Bohm interferometer at

the integer quantum Hall state ν = 1; in this regime the interference phase and thus

the oscillation period depends only on change in interference area and not on changes
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Fig. 3.8. Conductance oscillations at different magnetic fields.
a) Conductance oscillations δG versus side gate voltage δVg in the low-
field region at B = 8.4T (blue), in the central region at B = 8.85T
(black), and in the high-field region at B = 9.3T (red). The side gate
oscillation period ∆Vsidegates is significantly smaller in the low field and
high field regions than in the central region, with ∆Vg = 5.8mV at
8.4T, ∆Vg = 8.5mV at 8.85T, and ∆Vg = 5.4mV at 9.3T. The QPCs
are tuned to approximately 90% transmission. b) Conductance G ver-
sus side gate voltage at zero magnetic field with the device operated
in the Coulomb blockade regime. Unlike other data presented in this
work, the oscillations shown here are due to resonant tunneling of
electrons rather than interference, and the QPCs are tuned weak tun-
neling, G << e2

h
. The Coulomb blockade oscillations have a period of

5.3mV, which is used to obtain the total lever arm αtotal of the gates
to the interferometer. c) Aharonov-Bohm interference oscillations at
ν = 1. The oscillations period of 8.0mV is used to obtain the lever
arm αedge of the gates to the edge.

in charges localized in the bulk [36]. Since for an integer state each oscillation period

corresponds to changing the enclosed flux by one, αedge = n∂AI
∂Vg

= nΦ0

B
1

∆Vν=1
with n the

electron density (we assume that the electrostatics which determine the coupling of

the gate to the edge and to the bulk do not change significantly with magnetic field).

AB interference oscillations for the integer state ν = 1 at B = 3.1T are show in Fig.

3.8c; the period of 8.0 mV gives ∂A
∂Vg

= 0.167µm2V−1 and αedge = 0.12mV−1. Finally,
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we calculate αbulk = αtotal − αedge =0.19mV−1−0.12mV−1 =0.07mV−1. The fact that

αedge is significantly larger than αbulk indicates that, as expected, the primary action

of the side gates is to change the area of the interferometer, and the change in bulk

charge is comparatively small.

We calculate the expected periods in each regime at ν = 1/3 by ∆Vg = 2π( ∂θ
∂Vg

)−1.

In the central region quasiparticles are unlikely to be created because the energy gap,

so only the first term on the right-hand side of Eqn. 3.2 contributes, whereas in the

low-field/high-field regions quasiparticles/quasiholes will be created and contribute

to the phase, so both terms will contribute. For the central region then the predicted

period is ∆Vg = Φ0

B
e
e∗

(∂AI
∂Vg

)−1 ≈ 8.4mV, in good agreement with the measured value

of 8.5mV. This agreement with the model suggests that interference in the central

region can indeed be understood as the Aharononv-Bohm effect at constant ν of e/3

quasiparticles, consistent with theoretical predictions of fractional charge [21] as well

as previous experiments in interferometry [45,49] and other experimental observations

of fractional charge [41,72,119]. At 8.4T and 9.3T, taking into account the creation of

quasiparticles, we calculate ∆Vg = 1
B
Φ0

e∗
e

∂AI
∂Vg

+ θa
2π

∂NL
∂Vg

= 1
B

3Φ0

∂AI
∂Vg

+αbulk
; here we have used

e∗

e
= 1

3
, θa = 2π

3
, and ∂NL

∂Vg
= e

e∗
αbulk. This equation yields a predicted δVg of ≈ 5.5mV

at 8.4T and ≈ 5.1mV at 9.3T, in good agreement with the experimental values of

5.8mV and 5.4mV. This agreement between predicted and observed oscillation periods

in each region is strong support for the picture in [88] of a region of constant n and

a quasiparticle population at low field, a region of constant ν near the center of the

state, and a region of constant n and a quasihole population at high field.

Additionally, these extracted lever arms can be used analyze quantitatively the

slope of the quasiparticle transition lines in Fig. 3.3. These transitions will occur

when it becomes energetically favorable for a quasiparticle to be created at a certain

place in the device, therefore the transition lines will correspond to lines of constant

electrostatic energy associated with charge on the device. This electrostatic energy

comes from accumulating charge on the device due to changes in the condensate

charge density with magnetic field, which may be compensated for by the creation
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of quasiparticles. The charge on the 2DES is thus a combination of the condensate

charge density and the charge associated with each localized quasiparticle:

q2DES =
eνAIB

Φ0

+ e∗Nqp (3.3)

Furthermore, we must consider the net charge, qnet, the difference between the

charge in the 2DES (from Eqn. 3.3) and the background charge:

qnet = q2DES − qback =
eνAB

Φ0

+ e∗Nqp − qdonor − eαbulkδVg (3.4)

Here the background charge is a combination of the charge from the donors, qdonor,

and the effect of the gate voltage. We follow [36] in treating the gates as creating

some effective additional background charge eαbulkδVg. Since the changes in localized

quasiparticle number occur when the electrostatic energy cost exceeds the energy cost

to create a quasiparticle, Eqn. 3.4 implies that the localized quasiparticle transitions

will occur across lines with a slope dVg
dB

= νA
Φ0αbulk

. Using ν = 1/3, αbulk = 0.07mV−1

(discussed above), and area extracted from the AB oscillations at ν = 1 A = Φ0

∆Bν=1
≈

0.38µm2 (Fig. 3.7b), we obtain dVg
dB
≈ 0.44mV/mT. Experimentally, the observed

phase jumps occur with a slope of approximately 0.5 mV/mT, in good agreement

with the predicted value. This is strong evidence that the discrete phase jumps do

indeed correspond to changes in the number of localized quasiparticles inside the

interferometer.

3.7 Temperature dependence

An additional observation is that the oscillation amplitudes decay with temper-

ature much more sharply in the high-field and low-field regions than in the central

region. We measured the amplitude of the oscillations in each region versus tem-

perature; the oscillations decay approximately exponentially with T as temperature

increases, and we can characterize each region by the temperature decay scale T0

assuming that the oscillation amplitude varies as e
−T
T0 [38, 83, 112, 113]. We extract
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T0 through a linear fit of the natural log of the oscillation amplitude as a function of

temperature; this data is shown in Fig. 3.9. For the low-field region at 8.4T (blue)

T0 = 31mK, for the central region at 8.85T (black) T0 = 94mK, and for the high-field

region at 9.3T (red) T0 = 32mK. Interestingly, T0 is nearly 3 times smaller in the high

and low field regions compared to the central region, suggesting enhanced thermal de-

phasing in these regions. The fact that this increased dephasing occurs in the regions

where a large number of quasiparticles and quasiholes populate the interferometer,

but not in the central region, suggests that it may be explained by the topological

dephasing proposed in [85], in which thermal fluctuations in localized quasiparticle

number reduce interference visibility in Fabry-Perot interferometers. This affirms

the expectation that the regimes of constant density correspond to high quasiparti-

cle DOS [88]. This dephasing is a remarkable example of the non-local influence of

anyonic statistics: despite the fact that the edge quasiparticles are well separated by

many magnetic lengths from quasiparticles inside the bulk of the interferometer such

that there is minimal direct interaction, thermal fluctuations in Nqp nevertheless lead

to rapid thermal dephasing of the interference signal.

3.8 Velocity Measurements

We have discussed the observation that the temperature decay scale is much

smaller in the high and low field regions than in the central region at ν = 1/3,

which suggests that topological dephasing due to thermal smearing of the localized

quasiparticle number inside the interferometer may contribute in the high and low

field regions. However, another possible explanation for the change in T0 is that the

edge velocity might be much larger at the center, and decrease in the high and low

field regions; if this were the case, T0 would decrease simply due to the additional

thermal smearing of the edge state (that said, such a large and non-monotonic change

in the velocity over such a relatively small range of B would be rather surprising). In

order to determine if the change in T0 can be explained by changes in the edge ve-
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Fig. 3.9. Dependence of oscillation amplitude on temperature.
The natural log of the oscillation amplitude δG at 8.4T, 8.85T, and
9.3T is plotted versus temperature. Data points are normalized to
the amplitude at the lowest temperature and offset for clarity. The
oscillation amplitudes show an approximately exponential decay with
increasing temperature. Dashed lines indicate linear fits from which
the temperature decay scale T0 is extracted at each magnetic field.
T0 is much larger in the central region than in the low and high field
regions, suggesting that there is an additional dephasing mechanism
in these regions. This may be explained by topological dephasing due
to thermal smearing of the quasiparticle number. The QPCs are tuned
to approximately 90% transmission at each temperature to maintain
constant backscattering.

locity vedge, we have performed differential conductance measurements in each region

from which vedge can be extracted [38]; this has been performed previously for integer

quantum Hall states in Aharonov-Bohm interferometers [44,49,60]. We consider first

the case of an integer charge edge state. When a finite source drain voltage bias is

applied, the energy of the injected edge electrons changes, and this leads to a shift in

the phase from the edge dispersion, δθ = δε∂k
∂ε
L = δεL

h̄vedge
. This leads to an additional
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Fig. 3.10. Differential conductance measurements at ν = 1/3.
a) Differential conductance ∂I

∂Vsd
as a function of side gate voltage δVg

and source-drain bias Vsd at B = 8.4T in the low-field region. b)
Conductance oscillation amplitude from a FFT of the conductance
versus side gate voltage data as a function of Vsd. The oscillation
amplitude shows a node pattern as a function of Vsd from which the
edge velocity may be extracted, yielding vedge = 8.3 × 103m/s. c)
Differential conductance and d) oscillation amplitude versus Vsd at
8.85T giving vedge = 9.7× 103m/s. e) Differential conductance and f)
oscillation amplitude versus Vsd at 9.3T giving vedge = 9.3 × 103m/s.
Evidently, the edge velocity does not change significantly across the
ν = 1/3 quantum Hall plateau.

interference pattern that occurs as a function of source-drain bias Vsd which can be

observed in the differential conductance measurement, resulting in a checkerboard

pattern in the measured differential conductance as a function of Vsd and δVg. Thus

nodes in the conductance oscillations which occur as a function of δVg occur at cer-

tain values of Vsd, and the spacing between nodes can be used to extract the edge

velocity [38,44,49,102]:
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vedge =
e∗L∆Vsd

2πh̄
(3.5)

Here L is the perimeter of the interferometer, estimated based on the area ex-

tracted from Aharonov-Bohm interference measurents L = 4
√
AI ≈ 2.5µm. Differ-

ential conductance measurements are shown at ν = 1/3 in Fig. 3.10. Also plotted is

the oscillation amplitude (extracted from a Fourier transform of the data) versus Vsd,

which enables convenient extract of ∆Vsd [44]. This is shown for the low-field region

in a) and b), for the central region in c) and d), and for the high-field region in e)

and f). Using Eqn. 3.5 yields edge velocities of 8.3 × 103m/s in the low-field region

at B = 8.4T, 9.7 × 103m/s in the central region at B = 8.85T, and 9.3 × 103m/s in

the low-field region at B = 9.3T The fact that the velocity does not change signif-

icantly with magnetic field indicates that a change in edge velocity cannot account

for large change in temperature decay scale T0 between regions. The expected T0 can

be calculated as T0 = h
2πkBτ

1
g

[38, 113] where g is the scaling exponent of the edge

state, g = 1
3

for ν = 1/3 [38], and τ = L
vedge

is the time for the edge state to traverse

the interferometer. This yields predicted T0 based on thermal smearing of the edge

state of 76mK at B = 8.4T, 89mK at 8.85T, and 85mK at 9.3T. The predicted value

of 89mK in the central region at 8.85T is close to the experimentally observed T0

of 94mK, indicating that the decay of amplitude in the region where the device is

nearly free of quasiparticles can be attributed to thermal smearing of the edge. We

have observed similar agreement between predicted and observed T0 at the integer

quantum Hall state ν = 1 [49]. However, the experimentally observed T0 of 31mK in

the low-field region and 32mK in the high field region at ν = 1/3 are much smaller

than the values predicted for thermal smearing of the edge, indicating that another

dephasing mechanism must be at play. This provides further support for the the-

ory that topological dephasing due to thermally smearing of localized quasiparticles

contributes to dephasing in these regions.
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3.9 Additional Device

The behavior of the device described here were reproduced in a second device,

including the change in interference behavior from negatively-sloped Aharonov-Bohm

interference to flat lines of constant phase, the suppression of T0 outside the central

region, and the observation of discrete phase jumps consistent with the predicted

anyonic phase at ν = 1/3; see Fig. 3.11.

3.10 Possible Bulk-edge interaction effects

We discuss another possible explanation for some of the experimental observations.

It is worth mentioning that there is another mechanism which can cause discrete

changes in phase in quantum Hall interferometers, even for integer quantum Hall

states. In devices which are intermediate between the Aharonov-Bohm and Coulomb-

dominated regimes, creation of a localized charge inside the interferometer causes the

area of the interferometer to change due to finite bulk-edge coupling, resulting in a

reduction in the Aharonov-Bohm phase visible discrete changes in the interference

phase. This mechanism does not depend on exotic braiding statistics [36]. However,

increasing the magnetic field should tend to remove particle-like quasiparticles or

create hole-like quasiparticles; in either case each excitation will lead to an an increase

in phase when magnetic field is increased, because the decrease in Nqp would be

accompanied by compensatory increase in AI . However, this is inconsistent with our

observation of negative changes in phase across each discrete phase jump, and also

inconsistent with the fact that these discrete phase jumps occur in the region where

the Aharonov-Bohm phase shows clear negative slope, indicating minimal bulk-edge

interaction. Nevertheless it is possible that some residual bulk-edge interaction may

have a small effect on the observed phase jumps. In [36] it was found that the observed

jumps in phase when changing quasiparticle number should be ∆θ = θanyon×(1−KIL
KI

),

where KIL
KI

is the ratio of the bulk-edge interaction strength KI to the characteristic

energy cost for charging the edge KI . Thus, residual bulk-edge interaction would
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Fig. 3.11. Measurements of interference for a second device,
taken from a different chip fabricated on the same wafer.
a) Conductance across the interferometer versus magnetic field B
and side gate voltage δVg; δVg is relative to -1.0V. Behavior is sim-
ilar to that observed in the device described for the first device: in
a finite region with width ≈ 430mT, the device exhibits negatively
sloped Aharonov-Bohm oscillations, which flatten out at higher and
lower magnetic fields, consistent with the creation of quasipaticles
and quasiholes. b) Bulk magnetotransport showing Rxx (red) and
Rxy (blue) for device B. The region near the center of the ν = 1/3
state where the negatively sloped Aharonov-Bohm oscillations occur
is highlighted. c) zoomed-in view of a clear phase jump in the data
(this jump is also visible in b), but the data in c) is a different scan
intended to improve signal to noise). Least-squares fits of the conduc-
tance on either side of the phase jump yields an extracted phase jump
∆θ
2π

= −0.32, yielding an anyonic phase θanyon = 2π × 0.32, consistent
with theory.

result in a slightly smaller observed change in phase. This might account for the fact

that the majority of the observed phase jumps are slightly smaller than 2π
3

.
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Fig. 3.12. Simulations of interferometer behavior at ν = 1/3.
Conductance values are computed as a function of magnetic field B
and side gate voltages Vg, taking into account both the Aharonov-
Bohm phase and the contribution θanyon from braiding around local-
ized quasiparticles inside the bulk of the interferometer. Simulations
are performed at different ratios of the temperature kBT interferome-
ter charging energy Ec = e2

2C
a) 0.002 b) 0.02 and c) 0.1. d) Plot of the

thermal expectation value of the number of localized quasiparticles in-
side the interferometer for different ratios of kBT/Ec; in this context
a negative quasiparticle number indicates a population of quasiholes.
In each case in the middle of the state there are no quasiparticles, re-
sulting in conventional Aharonov-Bohm interference with 3Φ0 period,
while at higher fields quasiholes form and at lower fields quasiparti-
cles form, resulting in phase slips with Φ0 period. As temperature is
elevated, the quasiparticle number is thermally smeared, making the
Φ0 period phase slips unobservable and reducing the amplitude of the
oscillations that occur as a function of Vg. e) Qualitative plot of the
density of states versus energy.

3.11 Simulations

To further validate application of the model of [88] to our experimental results,

we have performed simulations of interferometer behavior to model the conductance

versus gate voltage Vg and magnetic field B. The starting point for this is the equation
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for the interference phase difference which determines conductance oscillations, Eqn.

3.1.

The conductance for an interferometer varies as δG = a0cos(θ), with a0 an am-

plitude that depends on the backscattering of the QPCs. In our system thermal

fluctuations in Nqp may be important, so we need to calculate a thermal average

(because we use low-frequency measurement techniques, this thermal average should

correspond to the experimentally measured conductance). Following [36], we compute

the thermal expectation value 〈δG〉:

〈δG〉 =
1

Z

+∞∑
Nqp=−∞

e
−E(Nqp)

kBT cos (2π
e∗

e

AIB

Φ0

+Nqpθanyon) (3.6)

Z =
+∞∑

Nqp=−∞

e
−E(Nqp)

kBT (3.7)

Here E is the energy of the device as a function of Nqp. As described previously,

a negative quasiparticle number here corresponds to a population of quasiholes. We

define an energy similar to that in [88], but for the interferometer rather than the

bulk energy per unit area:

E = E0 +
e2

2C
q2
net + ∆qp|Nqp| (3.8)

E0 is an offset accounting for the energy of the condensate which does not depend

on the number of quasiparticles, so it is left out of the simulation. The absolute value

of Nqp is multiplied by ∆qp to account for the fact that quasiholes (corresponding to

negativeNqp) also cost energy ∆qp, and for simplicity we set the energy associated with

creating a quasiparticle ∆qp to be half of the full gap, ∆qp = ∆
2

. This is a simplification

which assumes that the energy cost for creating quasiparticles is the same as for

quasiholes, although numerical results have indicated that quasiparticles have a higher

energy cost than quasiholes [120]. Nevertheless, the width of the constant ν region

over which no quasiparticles or quasiholes are created is determined by the full gap

which is a sum of the quasiparticle and quasihole gaps, ∆ = ∆qp + ∆qh, and this full
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gap is the value measured in transport. So, asymmetry in the energies of quasiparticles

and quasiholes do not affect quantitative comparison between the theory of [88] and

our experimental results.

As discussed in the Period Analysis section, qnet is difference between the charge

in the 2DES and the compensating background charge (including that created by

the side gate), and is written in Eqn. 3.4. The term e2

2C
δq2
net in Eqn. 3.8 gives

the energy cost associated with building up excess charge on the device. In the

presence of screening layers separated from the main well by distance d, we estimate

the characteristic capacitance to be C = 2εAI
d

.

Simulations of conductance versus magnetic field and side gate voltage are per-

formed by numerically evaluating Eqn. 3.6 and Eqn. 3.7 at each value of B and

δVg. The area AI is computed as AI = A0 + ∂A
∂Vg

δVg. Rather than performing an

infinite sum, we sum over Nqp from -20 to +20 to make the computation possible;

this is justified because states with large numbers of quasiparticles are exponentially

suppressed. Simulations are performed for the ν = 1/3 state, so based on theoretical

expectations we set θanyon = 2π
3

and e∗ = e/3. The value of 5.5K for ∆ extracted from

the bulk transport gap measurement in Fig. 3.6 was used, giving a value of 2.75K for

∆qp. A 2DES of 0.7× 1011cm−2 is assumed, which sets the background charge qdonor.

In Fig. 3.12a, b, and c we show the results of the simulations at different temper-

atures. The energy scale which primarily determines the thermal smearing effect of

temperature is e2

2C
, so we set the ratio of kT to e2

2C
at 0.002, 0.02, and 0.1 in a, b, and

c. In order to make the behavior in the simulations easier to see in the plots, these

simulations are performed with a device with smaller area than the real device; we

set A0=0.1µm2, whereas for the real device A0 ≈ 0.38µm2 based on the Aharonov-

Bohm periods. We first focus on the low-temperature simulation in a). Qualitative

features of the simulation match the experiment: negatively-sloped Aharonov-Bohm

oscillations of period 3Φ0 occur near the center, and this behavior is confined to a

530mT region (consistent with the value calculated from the model in [88] and close

to the experimentally observed value of ≈ 450mT). Above and below this region, the
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simulation in a) shows sharply defined discrete jumps in phase occurring with period

Φ0, consistent with the findings of [88]. As temperature is increased in b) and c), the

transitions in these phase jumps become thermally smeared together, such that at the

highest value of temperature simulated the transitions in phase are nearly completely

smeared out, and the simulation shows nearly flat lines of constant conductance. This

is in good qualitative agreement with the experimental results.

An additional subtle feature in the simulations is that the transition from the

central Aharonov-Bohm region to quasiparticle and quasihole regions occurs across

a line with positive slope in the Vg − B plane, due to the coupling of the side gate

to the bulk included in the simulation, αbulk. This behavior is in fact observed in

the experimental data in the transition to the high-field region. In the low-field

transition this behavior is less clear because the transition appears to occur more

smoothly rather than abruptly, but a positive slope is still observable.

In Fig. 3.12d, line cuts of the thermally averaged quasiparticle number 〈Nqp〉 are

plotted versus B from the simulations at each temperature. At low temperatures

this forms a staircase-like function with very sharp transitions when it becomes ener-

getically favorable to change the number of localized quasiparticles, whereas at high

temperatures these transitions become thermally smeared such that the evolution be-

comes quite smooth. While our simplified model and simulations likely do not capture

all of the physics of the device, we believe that this picture of the average quasipar-

ticle number becoming at high temperature smeared should hold. Additionally, it is

possible that other mechanisms, such as charge noise, may result in smearing of 〈Nqp〉

on the measurement time scale.

3.12 Conclusions

We have measured conductance oscillations in Fabry-Perot interferometer across a

wide range of magnetic field at the ν = 1/3 quantum Hall state. Near the center of the

state, we observe discrete jumps in the interference phase consistent with the anyonic
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braiding statistics of localized quasiparticles, and we obtain θanyon = 2π×(0.31±0.04),

which agrees with the theoretically predicted value of θanyon = 2π
3

. When the magnetic

field is moved away from the center, we observe a change in interference behavior

from predominantly negatively sloped lines of constant phase to a phase that is nearly

independent of B. This observation suggests that the 2DES transitions from a regime

of constant filling factor at the center to regimes of constant density leading to a

thermally smeared population of quasiparticles (at low field) and quasiholes (at high

field), as predicted in a recent theoretical work [88]. In the low and high field regimes

we observe a dramatic increase in thermal dephasing evidenced by the suppression the

temperature decay scale T0, which indicates that despite their large spatial separation

from the interfering edge state, localized quasiparticles have a profound impact on

interference behavior through their braiding statistics.

3.13 Methods

The device used was fabricated using the following steps: (1) optical lithogra-

phy and wet etching to define the mesa; (2) deposition and annealing of Ni/Au/Ge

Ohmic contacts; (3) electron beam lithography and electron beam evaporation (5nm

Ti/10nm Au) to define the interferometer gates; (4) optical lithography and electron

beam evaporation (20nm Ti/150nm Au) to define bondpads and surface gates around

the Ohmic contacts; (5) mechanical polishing to thin the GaAs substrate; (6) opti-

cal lithography and electron beam evaporation (200nm Ti/150nm Au) to define the

backgates used to deplete the bottom SW around the Ohmic contacts so that only

the primary quantum well is probed.

Standard low-frequency (f = 13Hz) 4-terminal and 2-terminal lock-in amplifier

techniques were used to probe the diagonal resistance and conductance across the

device. Typically a 50pA excitation current was used for measurements. A +600mV

bias was applied to the QPC and side gates while the device was cooled from room
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temperature; this bias-cool technique results in an approximately 600mV built-in bias

on these gates, which was found to improve device stability.
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4. CONCLUSIONS

4.1 Summary of Progress

A significant breakthrough we achieved in this work is a dramatic improvement

in the coherence of quantum Hall Fabry-Perot interferometers. The screening well

heterostructure enables devices which are an order of magnitude smaller and can still

operate in the Aharonov-Bohm regime. I suspect that the screening well structure’s

ability to increase the sharpness of the confining potential is also critical, but this

is hard to quantify and compare to previous results since data from devices without

screening wells is already quite limited.

This great improvement has enabled a few interesting results in the quantum Hall

regime. The first is mapping the edge state velocity of different Landau level edge

states versus filling factor, which previously was not possible for inner edge states

due to poor coherence. This was an interesting result on its own, but an additional

consequence was that it allowed us to validate the numerical results developed by our

collaborators [55]. The numerical simulations showed surprisingly good agreement

with the experiment; I find this an impressive demonstration of the predictive value

of numerical work (it’s worth emphasizing that most of the simulations were done

before any experimental data was available, so no “tweaking” was done to improve

the simulation after the fact).

The second result is Aharonov-Bohm interference at the fractional quantum Hall

states ν = 1/3 and ν = 2/3, which was not possible in large devices without screening

wells. This was the first clear demonstration (including negatively-sloped pajama plot

stripes) of AB interference at a fractional state despite significant past experimental

efforts. Occasionally the question comes up “Are quasiparticles real particles”, and

the typical answer is “What do you mean by ‘real’?”. Now we can say that the fra-
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cional quantum Hall quasiparticles are real enough to exhibit a fundamental quantum

mechanical phenomenon, the Aharonov-Bohm effect.

The final major result is direct evidence for quasiparticle braiding statistics de-

scribed in the previous chapter. Nearly all of the results in this chapter were antici-

pated in the theoretical work by Rosenow and Stern [88], including both the discrete

jumps near the center of the ν = 1/3 plateau and the transition in behavior away

from the center. In this work we see evidence for quasiparticle braiding both in the

limit of a sparse quasiparticle population, where individual phase jumps can be seen,

and in the limit of a large number of thermally smeared quasiparticles or quasiholes

at low and high field. The screening well structure was necessary in multiple aspects

of this experiment. It enabled the use of small devices with good coherence of AB

interference at the ν = 1/3 state, which wasn’t possible with previous non-SW ex-

periments. Second, it improves the sharpness of the confining potential, which might

be critical to avoid decoherence. Finally, the screening creates the region near the

center of the state where individual phase jumps can be observed.

4.2 Antidot gate devices

My original proposal for creating quasiparticles and measuring the anyonic phase

was to modify the device design by including an additional “antidot” gate in the

middle of the device to electrostatically generate quasiparticles inside the interference

path. A preliminary CAD design for such a device is shown in Fig. 4.1. This design

would utilize two separate electron beam lithography steps to define the primary

interference path and the antidot gate in the middle, and the two gate layers would

be separated by a dielectric. Although I did fabricate such devices, for some reason

they ended up being too noisy to work correctly. This was strange, since the noise

occurs when the QPC gates are biased, but devices in the same round of processing

that had the same QPCs but didn’t get the dielectric or overlaid antidot gate were

much less noisy. So, somehow the dielectric deposition or additional gate addition
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made the underlying QPC gates very noisy. My suspicion is that the overlay electron

beam lithography somehow causes some damage that induces noise, but a simpler

explanation would be that the dielectric causes some problems - it’s been suggested

that we should de a plasma descum before the dielectric ALD depisition to ensure

the surface is free of photoresist contamination.

Since these antidot gates didn’t work, it was fortunate that it turned out to be

possible to create quasiparticles with magnetic field/side gate voltage for braiding.

However, it is still desirable to have better control of quasiparticle creation with

an antidot gate, which might be especially important for the ν = 5/2 state where

quasiparticles need to be kept away from the interfering edge to avoid decoherence

by Majorana hopping. Therefore, in the future it will be useful to optimize device

fabrication in order to eliminate the excess noise in these antidot-gated devices.

4.3 Exploring limits to device size

It is noteworthy that, although we have measured AB interference in a much

smaller device than has been previously reported using the screening well heterostruc-

ture design, we have not yet fully explored the limits of how small a device it is

possible to make before the interferometer becomes Coulomb dominated. Smaller

devices would be desirable to further improve coherence (which may be important

for observing interference in some of the more fragile fractional Hall states). Inter-

esting behavior is predicted in the intermediate regime between Aharonov-Bohm and

Coulomb dominated behavior [36], and this itself is worth exploring. Therefore, a

future project will be to fabricate a series of interferometers with the screening well

structure and determine the minimum device size for which AB regime interference

may be measured, and map out the transition from AB to Coulomb-dominated be-

havior as device size is decreased further.

I have done some of this work already. In 0.8µm×0.8µm and 0.7µm×0.7µm devices

I have observed intermediate regime behavior at ν = 1. Unfortunately these devices
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Fig. 4.1. CAD design for an interferometer with an “antidot”
gate in the middle to create quasiparticles. The gates that
define the interference path are shown in yellow, in addition to a center
grounded gate, similar to to the interferometer design used in the
previous chapter. An additional gate which extends into the middle
of the device is included and shown in red. When negatively biased,
this red gate will deplete charge in the middle of the interferometer,
leading to the creation of quasiparticles, which should result in a shift
in the interference path due to the anyonic phase. The center yellow
gate has a round hole in the middle to allow the red gate to deplete
charge in the interferometer. The two gate layers will be separated
by a dielectric.
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were zapped and damaged, so new devices will need to be fabricated. It would be

interesting to test these sorts of devices at ν = 1/3 and see the effect of intermediate

regime behavior on braiding.

4.4 ν = 5/2: Possible non-Abelian quantum Hall state

An intriguing possibility is that some special quantum Hall states beyond those

described in the composite fermion picture may host so-called “non-Abelian anyon”

quasiparticles. These quasiparticles are even more exotic than the (Abelian) anyons of

the composite fermion states. For Abelian anyons, braiding results in simply a phase

factor, which we have experimentally measured. For non-Abelian states, however,

the ground state of the system is degenerate, and braiding may result in a transition

from one ground state to another. This has been proposed as a means to build a

topological quantum computer, and furthermore Fabry-Perot interferometry has been

proposed as a way to probe the potentially non-Abelian properties of quasiparticles

[39, 50]. Therefore, it is a major goal to extend interferometry to the potentially

non-Abelian states, which are most likely to exist in the second Landau level. Even

more intriguingly, a double-interferometer structure has been proposed as a means

to realize a topologically protected qubit [50]. The most promising state is ν = 5/2,

which has drawn considerable experimental and theoretical work.

While there is significant incentive to perform interference at ν = 5/2, there are

also major challenges. The first is that ν = 5/2 is an extremely fragile state, and

requires specially designed heterostructures with extremely low disorder and high

electron density to be observed; the screening well structure will require significant

modification to be compatible with these requirements. An additional difficulty is that

the ν = 5/2 edge mode is an inner mode and thus may have low edge velocity and

poor coherence; furthermore a theoretical work has shown that ν = 5/2 is extremely

susceptible to decoherence when the confining potential is too shallow [83]. For these

reasons I suspect it will be very difficult to get interference to work at ν = 5/2.
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Fig. 4.2. Possible heterostructure for ν = 5/2 interference ex-
periments. a) Layer stack, with wide AlAs layers in the SWs in
which the electrons will sit. b) Nextnano simulation of this structure.

Nevertheless, it is worth trying, and the first step will be do design a screening well

heterostructure with low enough disorder and high enough electron density to support

the state.

Also noteworthy is that the non-Abelian quasiparticles at ν = 5/2 are predicted

to have charge e∗ = e/4, so the characteristic charging energy e∗2

2C
will be even smaller,

making it difficult to maintain fixed quasiparticle number at experimental tempera-

tures. One way to deal with this would be to reduce screening to reduce C, which

might be possible by making the screening wells worse at screening somehow. How-

ever, increasing the SW setback isn’t a good way to do this because then the confining

potential will be less sharp and you will get edge reconstruction. It might be possible

to make the 2DES in the SWs highly disordered so that they don’t conduct well. Of

course, a tradeoff is that disorder that affects the SW may also reduce the quality of
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the QW, and then you won’t get a good 5/2 state. An additional necessity is high

electron density in the main QW, because a high density (to get high characteristic

Coulomb energy) is needed to get a decent 5/2 gap as well.

A possible heterostructure design is shown in Fig. 4.2a, with a nextnano simula-

tion shown in Fig. 4.2b. This structure screening wells with wide outer AlAs barrier

and narrow GaAs wells so that the electrons will sit in the outer AlAs in the X-band.

Also, AlAs has higher mass than GaAs, so the mobility will be lower and hopefully

they won’t screen as well. The donors are also a shorter setback from the SWs which

will make the SWs more disordered; hopefully this won’t affect the QW too much,

but that remains to be seen. Because of the relatively high offset of the GaAs band

minimum from AlAs, this will give a higher electron density. For this structure I

also reduced the setback of the SWs from the QW to hopefully achieve a sharper

confining potential and higher QW density. Numerical results have suggested that a

very sharp confining potential is needed to get interference of the non-Abelian edge

quasiparticles [83].

You might wonder whether reducing the screening of the screening wells is accept-

able. For the Abelian states such as ν = 1/3, the screening wells must be good at

screening because bulk-edge interaction reduces the visibility of the braiding phase

shift θanyon [36]. However, at ν = 5/2 the non-Abelian nature of the quasiparticles

means that the effect of braiding is not simply a phase shift. Instead the prediction is

that we will see the even-odd effect where interference disappears for an odd number

of quasiparticles, because braiding has effectively changed the state and the different

backscattered paths are orthogonal, and re-appears when an even number of quasi-

particles are inside the device [39,50,111–113]. Since this isn’t just a phase, it should

be fine the have strong bulk-edge interaction since you will still be able to tell whether

or not oscillations occur as a function of B or Vg. The periodicities in the case of AB,

intermediate, and CD regime devices have been analyzed theoretically in [54], and

most it was found that bulk-edge coupling does not affect the side-gate oscillation pe-
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riod. So, unlike Abelian braiding, non-Abelian effects should be observable through

interference even in the case of a Coulomb-dominated device.
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A. INTERFEROMETER FABRICATION PROCESS

The majority of the fabrication process I have used is quite standard, and closely

follows that described in John Watson’s thesis. The main point where things diverge

is the backgating process; this was a part of the process I had to develop on my own.

The primary steps of surface processing are shown in Fig. A.1, while the steps of

backgate processing are shown in Fig. A.2.

A.1 Gallium Stripping

1. Start with a full wafer, or cleave into a quarter or half wafer to work with. Blow

off any dust bunnies from the surface before starting.

2. Spin a layer of AZ1518 resist at 4000 RPM for 40s.

3. Bake the resist for 2min at 100C.

4. Put a cleanwipe on hotplate and set to 50C. Put wafer face down (gallium side

up) onto the cleanwipe.

5. Wipe off gallium with qtips. Keep wiping until all the shiny stuff is gone.

6. Spin and bake another layer of AZ1518 (4000 RPM 40s and bake 100C 2min).

7. Etch 2 min in full strength HCl. Quench etch by transferring to DI water.

8. Rinse well in DI water. Blow dry.

9. Squirt down with Acetone to strip resist from surface.

10. Sonicate 3min each in Toluene, Acetone, and IPA. Rinse with methanol and

blow dry between each solvent. Spray down with DI water and blow dry.
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A.2 Mesa Etch

1. Cleave wafer into a piece that fits the number of chips you want to fab.

2. Spin and Bake AZ1518 (4000 RPM 40s and bake 100C 2min).

3. Use MJB3 mask aligner. Align one corner of the pattern to the corner of the

chip, and do your best to align the crystal axes with the axes of the mask (this

is important for backgating).

4. Expose 20s with power 10mW/cm2. If the power is different from this for some

reason, adjust the time to get the same energy.

5. Prepare three beakers: two with MF-26A developer and one with DI water.

Develop 20s in the 1st beaker and 10s in the beaker, then quench development

in the DI water. Rinse with flowing DI water and blow dry. If you have multiple

chips, throw out the developer and replace with fresh developer for each chip.

6. Load into Branson Asher on a glass slide. Once tool is pumped down, set flow

rates to 130 for Argon and 13/6 for O2. Etch 90s with 100W power. Make

sure there is no reflected power.

7. The etch solution is a 50:5:1 H2O:H3PO4:H2O2 mixture. Go to an acid hood

and mix this together by starting with a 500mL beaker filled with 500mL of

water, add 50mL of H3PO4 with a glass pippette, then add 10mL of H2O2

with the pipette. Mix together a bit then let sit for 20min to let it reach room

temperature.

8. The etch rate for GaAs/AlGaAs structures will be ∼1.8nm/s. If you want to

be really precise, etch a test piece first and measure it with a profilometer, then

calculate the etch rate and scale for exactly how deep you want to etch. Etch

your real sample for the desired length of time, then transfer to DI water, then

rinse with DI water and blow dry.

9. Squirt with acetone to strip resist.
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10. Sonicate in toluene, acetone, and IPA 3min each. Spray down with DI water

and blow dry.

You should do the Ohmic contact deposition the same day as the mesa etch to

avoid allowing the sidewalls to oxidize. At least, this is what I’ve always been told

and what I’ve always done.

A.3 Ohmic Contacts

1. Spin and Bake AZ1518 (4000 RPM 40s and bake 100C 2min).

2. Align Ohmic contact pattern on mask to mesa pattern on chip.

3. Expose 20s with power 10mW/cm2. If the power is different from this for some

reason, adjust the time to get the same energy.

4. Soak 20min in chlorobenzene. This hardens the surface of the resist to create an

undercut pattern in development, which aids the metal liftoff.

5. Use two baths of MF-26A developer. Develop 70s in 1st bath and 20s in 2nd.

Quench etch in DI water; rinse with DI water and blow dry.

6. Load into Branson Asher on a glass slide. Once tool is pumped down, set flow

rates to 130 for Argon and 13/6 for O2. Etch 15s with 100W power. Make

sure there is no reflected power.

7. Get evaporator ready to quickly load sample. I’ve used the CHA and it usually

works, but it’s better to use our group’s PVD if possible. For the CHA you

should vent the chamber on have our sample holder ready; for the PVD vent the

load lock and have the sample hold out and ready to mount, with the sample

clips you want to use in place.

8. Take sample to acid hood. Etch 20s in HCl. Quench in DI water, rinse with DI

water and blow dry.
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9. As quickly as possible get the sample to the evaporator and under vacuum to

avoid oxidtation after the HCl etch. You should aim to have the sample under

vacuum within about 5 min.

10. Evaporate 8nm Ni/80nm Ge/160nm Au/36nm Ni. Use rates of 1.5 A/s for the

initial Ni layer and 2 A/s for the rest. I’ve always used this metal stack for

everything and it’s always worked, although it may not be optimal for every

structure.

11. Soak in acetone to liftoff. Blast with air brush filled with Acetone to blow off

flakes.

12. Soak in some clean acetone. Rinse acetone off with IPA then DI water and blow

dry.

13. Load into Jipelec RTA. Anneal in forming gas 2min at 435C (using John Wat-

son’s recipe).

At this point I like to cleave off one of the chips and bring to Physics to test the

contacts. Sometimes contacts don’t work for whatever reason (I tend to blame the

CHA and haven’t had this problem with the PVD, but who knows...), and you don’t

want to proceed with all the work just to be heartbroken when you find that contacts

don’t work. The chip you test will be sacrificial, though, so let it be one that’s on the

edge of the wafer and not really usable. You can’t easily wirebond to the annealed

metal, so I use indium soldering.

A.4 Electron Beam Lithography

1. Spin PMMA. I’ve had good success with 950 PMMA A2 (although if you use the

Raith and use 25kV, there’s some past experience that shows it lower mobility).

Spin at 4000RPM for 40s and bake 8min at 180C on hotplate.

2. Load into EBL system and expose pattern. I’ve had good success using both the

Raith at 3kV accelerating voltae and using the Elionix at 100kV; using the Raith
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at 25kV hasn’t worked so well and seems to cause damage. With the Raith at

3kV I’ve gotten good results with a dose of 36µC/cm2, and in the Elionix around

900µC/cm2. This will depend on the exact pattern, though, so it’s reccomended

to do a dose test with any new pattern.

3. Develop in 1:3 MIBK:IPA. For PMMA A2 I develop 30s, while for PMMA A4 I

develop for 60s.

4. Load into evaporator. I’ve gotten good results evaporating 5nm Ti/10nm Au

each at 1.5 A/s.

5. Soak in acetone to liftoff. Sonicate 30s in acetone to finish liftoff. Soak a few

min in clean acetone then squirt down with IPA and DI water. Blow dry.

A.5 Bondpads

1. Spin and Bake AZ1518 (4000 RPM 40s and bake 100C 2min).

2. Align Bondpad pattern to Ohmic contact pattern in mask aligner.

3. Expose 20s with power 10mW/cm2. If the power is different from this for some

reason, adjust the time to get the same energy.

4. Soak 20min in chlorobenzene. This hardens the surface of the resist to create an

undercut pattern in development, which aids the metal liftoff.

5. Use two baths of MF-26A developer. Develop 70s in 1st bath and 20s in 2nd.

Quench etch in DI water; rinse with DI water and blow dry.

6. Load sample into evaporator. I’ve succesfully used the CHA, Leybold, and PVD.

7. Evaporate 20nm Ti/150nm Au at 2 A/s for both layeres.

8. Soak in acetone to liftoff. Blast with air brush filled with Acetone to blow off

flakes.

9. Soak in some clean acetone. Rinse acetone off with IPA then DI water and blow

dry.
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Bare Wafer Etch mesa

Ni/Au/Ge Ohmics Interferometer Gates

Bondpads

a) b)

c) d)

e)

Fig. A.1. Schematic of surface processing. a) Bare screening
well structure. b) Wet etch down through all GaAs wells and doping
layers. c) Evaporated and annealed Ni/Au/Ge Ohmic contacts. d)
Deposition of fine gates to define interferometer. e) Deposition of
bondpads and surface gates around Ohmic contacts.

At this point if your sample is not going to back-gated and you have a single EBL

layer, you are done. Otherwise continue on with backgating.

The back-gating process is something I had to develop. There are two difficulties

to overcome. First, the GaAs substrates we use are 500µm thick, which is too thick

to gate through without using thousands of volts, and that’s too thick to have the
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gate only affect part of the 2DEG (since we want to deplete the area around the

Ohmic but not not under the interferometer). Second, it’s tricky to align a pattern

on the backside of the wafer to the features on the front side of the wafer. So, I

needed to figure out a way to thin the substrate (without breaking the chip!) and

align the backgates to the mesa defined on the surface. The Eisenstein developed

a procedure for this in which they etched using bromine to thin the substrate, and

used a mask aligner with an IR microscope (with GaAs being transparent to IR) to

align the backside pattern [121]. Then, they soldered to the surface pads and used

epoxy to glue wires to the backside, and mounted the samples via the gold wires to

sample headers, with the chips being suspended in the air by the gold wires like little

spiders. First of all, we don’t have an IR mask aligner, so I had to find a different way

to do alignment. Bromine in very dangerous and reactive, so I opted for mechanical

polishing to thin the substrate rather than etching. Finally, I need to wirebond

because interferometers have many bondpads, so just soldering isn’t good enough, so

I needed to find a way to avoid breaking the thinned chips with the wirebonder.

The general procedure I came up with is to finish surface processing, then cleave

out my chips into individual chips. I then take a picture of the bottom left corner

of the chip, which has the cleaved corner and a set of alignment marks; from this

picture you can see how far the pattern is from the two edges. Then, mount the chip

on a carrier chip (I used cleaved Si pieces for this) with Crystalbond, which protects

the chip while you polish, and polish down the substrate to 50µm using SiC lapping

films. This leaves a fairly rough surface, but this turned out not to be a problem.

Then, take back to the cleanroom and, using the picture I took of the surface to

judge where the surface pattern is relative to the bottom right corner (since it’s now

flipped), align the backgate pattern to the chip.

The backgates can just be wired up with gold wires and silver epoxy. In or-

der to make the chips robust enough to wirebond to the surface, I embed them in

epoxy (Stycast 2850). Originally, to avoid ever having to handle the thinned chips,

I mounted the chips on PCB headers with the epoxy before removing the Si carrier
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Spin PMMA and mount to carrier Polish substrate to 50𝜇m

Deposit backgates

Remove carrier chip

a) b)

c) d)

e)

Glue wires to backgate pads

Mount to buffer chipf)

Fig. A.2. Schematic of backgate processing. a) Spin PMMA
on surface to protect the surface, then glue to carrier Si chip. b)
Mechanically polish to 50 µm. c) Deposit backgates. d) Glue gold
wires to backgate pads with silver epoxy. e) Soak in acetone to remove
chip from carrier chip. f) Mount to buffer GaAs chip with Stycast
epoxy.

chip, then soaked in Acetone to remove the carrier chip. However, this caused 2

problems. First, I found that chips often broke after removing them from the fridges.

Originally I thought this might be due to thermal cycling, but it was actually due to

flexing of the PCB board due to handling the PCB and pulling it out of the sockets;
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a) b)

Fig. A.3. Handling chips for backgate processing. a)Gluing
GaAs chip with surface processing finished to carrier chip before pol-
ishing. b) Handling chip after in cleanroom after polishing. You
should be careful to grab with tweezers by the carrier chip and not
let the chip land facedown to avoid breaking it. It’s also a good idea
to have nice soft carrying vehicle made of cleanwipes and foil to carry
your samples around in.

this flexing transferred through the epoxy to the thinned chips, causing them to crack.

To prevent this, I started mounting the chips with the epoxy to a GaAs ’buffer chip

rather than directly to the PCB, and this greatly reduced chip breakage.

Second, the acetone to remove the carrier chip seems to soak into the epoxy and

make it expand a little bit, and this caused the edges of the chip to break where the

acetone was causing the epoxy to swell. To prevent this I started removing from the
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c)b)a)

Fig. A.4. Chips at various stages. a) Chip after polishing but
before depositing backgate. b) Chip after patterning and depositing
backgates and lifting off. Getting all the metal off is a hassle. c) Chip
after glueing gold wires to backgate pads.

carrier chips first by soaking in acetone (but still after gluing on the gold wires) so

that the epoxy doesn’t get soaked in acetone. Then I mount the chip to the buffer

chip with epoxy. At this point you obviously have to be careful because you are

handling a very thin chip. If you handle by the gold wires rather than grabbing the

chip directly, however, I’ve found that the chips almost never break as long as you

are careful.

With the chips thus secured with epoxy to a buffer chip, you can then mount

the assembly on a header with rubber cement, and the epoxy makes it so you can

wirebond to the chip without breaking it. On very rare occasions I’ve seen that

the wirebonder will create cracks in the chip, but this is rare. Another thing that

frequently happens is that the epoxy delaminates from the buffer chip after thermal

cycling; however, this has turned out not to be a problem because the epoxy on its

own provides a stable enough base to do further wireboning to the chip. It can be a

little bit tricky though because the chip is now suspended by the gold wires, so it can
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Fig. A.5. Chip mounted in fridge. Polished chip has been mounted
to carrier chip and header and wirebonded. It is mounted in the
Kelvinox on the end of the tail and ready to cool down.

get pushed down a little bit by the wirebonding tip, making it a bit more difficult to

bond.

A.6 Backgate

1. Spin and Bake a layer of 950 PMMA A4 on the surface. This is to protect the

surface during the backgate processing.

2. If you have multiple chips in a piece, it into individual chips.
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3. Take pictures of the bottom left corner of each chip under the miscroscope; you

will later use these pictures to align the backgate pattern to the surface.

4. Take chips from Birck to Physics.

5. Cleave out carrier chips from a blank GaAs or Si wafer. The carrier chip should

be roughly 2mm wider then the real chip. Put a scratch in one corner of the

carrier chip to mark where the bottom left corner of the real chip will go.

6. Heat the carrier chip up on a hotplate to 180C.

7. Add some Crystalbond 509 to the carrier chip.

8. Use tweezers to place the real chip face down on the carrier chip, aligning the

bottom left corner with the scratch you made. Press firmly down to get it flat.

9. Use calipers to make sure the chip is flat. Do this by measuring the thickness

along all the edges of the sample to ensure that no part is sticking up more than

another. If it is not flat, re-heat it and try to get it flat.

10. Polish by hand using 30um and 12um SiC lapping films (Ted pella part numbers

815-372 and 815-374). Get the film wet with water, then use your finger to rub

it on the film in circular motions. Your target thickness is around 50µm. Use

calipers to measure how much you’ve taken off and to make sure you’re keeping

it flat. Once you’ve removed 350 µm, switch to the 12 µm film.

11. Once you’re finished polishing, rinse with water and wipe down with qtips to

get the debris off. The polished chips are fragile so be careful, although as long

as they’re glued down they’re not likely to break.

12. Bring chips back to cleanroom.

13. Squirt down with acetone then soak in acetone for about 1 minute to remove

excess Crystalbond from the surface. You don’t want to soak for too long though

because acetone dissolves Crystalbond 509 you don’t want to risk the chip coming

off the carrier chip at this point.

14. Soak for a few minutes in IPA and DI water.
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15. Spin and Bake a layer of AZ1518 photoresist.

16. Align the marked corner of the chip with the backgate pattern. Refer to the

pictures you took under the microscope to identify where the surface pattern

is relative to this corner. Remember that things are mirrored since you flipped

the chip over, so you’re aligning the bottom right corner of the backgate to the

bottom right corner of the flipped chip (which corresponds to the bottom left

corner of the surface pattern).

17. Expose 20s at 10mW/cm2.

18. I’ve found that for some reason using chlorobenzene messes up the development

at this point, so don’t use it. Just develop in MF-26A (30s in 1st bath and 20s

in 2nd bath), quench in DI water, rinse in DI water, and blow dry.

19. Check pattern under microscope and make sure it’s consisten with the picture

you took of the surface relative to the corner.

20. Load into evaporator. Evaporate 100nm Ti/150nm Au.

21. Soak in acetone to lift off. Because you didn’t use chlorobenzene this liftoff is

hard. Try not to soak for too long in acetone because you don’t want the chip

to come off the carrier yet. Use steel tweezers to make little perforations in the

resist and metal so that the acetone can dissolve the resist. Obviously be very

careful that you don’t damage the chip when you do this. Use the air brush

to blast off the metal, but fill it with DI water instead of acetone so you don’t

accidentally blast the chip off the carrier and break it into a billion pieces. You

may need to go through several cycles of making little perforations with tweezers,

soaking for a short time in acetone, then blasting with DI water.

A.7 Mounting to header

1. Take chips back over to Physics.
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2. Use silver epoxy (EPO-TEK EJ2189-LV) to attach gold wires (2mil thickness)

to the backgate pads. Do this while the chip is still attached to the carrier.

3. Bake for around 10min at 120C to cure the epoxy. Make sure the wires are

firmly attached.

4. Soak the chip in acetone in a petri dish to left the chip off the carrier. Put

cleanwipe at the bottom of the dish so there’s something soft there rather than

hard glass.

5. It may take several hours for the chip to lift off of the carrier, but it should do

so eventually. Once it does you need to be extremely careful; handle only by

the gold wires, and don’t grab the chip itself at this point. Transfer from the

acetone to a petri dish full of IPA, then take it out and gently blow dry with a

hair dry from a good distance.

6. Cleave a blank GaAs chip slightly larger than your chip. Mix Stycast 2850 and

apply a little bit to the blank chip and a little bit to the backside of the real chip,

and glue down your chip to the blank chip, making sure gold wires are sticking

out. Use the gold wires to manipulatet the chip and get it relatively flat, but it

should embedded in the epoxy rather than than flux against the blank chip.

7. Let epoxy cure overnight.

8. Glue the carrier chip down to a PCB header with rubber cement.

9. Indium bond the gold wires to the header and wirebond the contacts on the

chip.

At this point the device is finished and you are ready to measure!
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B. SIMULATION CODE

This is the Matlab code I used to generate the simulation data in Fig. 3.12; the

temperature was selected to give a ratio of the T to e2

2C
of 0.002. The output of this

is shown in Fig. B.1.

1 %Input Parameters

2 A0=0.1; %Area in umˆ2

3 v=1/3; %f i l l i n g f a c t o r o f s t a t e

4 thetaAnyon =1/3; %phase when b ra i d in g one q u a s i p a r t i c l e around

another . 1/3 f o r 1/3 s t a t e

5 e s t a r =1/3; %qu a s i p a r t i c l e charge

6 maxQP=30; %number o f QPs to inc l ude in range

7 SWsetback = 48 ; %se t back o f SWs from main QW in nm

8 n e l e c t r o n = 0 . 7 ; %e l e c t r on den s i t y in un i t s o f 10ˆ11 /cmˆ2

9 T = 0 . 1 ; %temeprature in un i t s o f K

10 Delta =5.5/2; %Energy gap in un i t s o f K. The t r an spo r t gap i s

d i v i d ed by 2 because i t c r e a t e s a QP−QH pair , whereas here

we use Del ta to c r ea t e one QP or one QH

11 Vsgleverarm =.12; %l e v e r arm fo r change in area , dA/dVg ( in um

ˆ2/V)

12 Vsgbulkleverarm =0.02∗1000; %l e v e r arm fo r change in bu l k

charge wi th gate , d q bu l k /dVg ( in e l e c t r o n s /V) ;

13

14 %Constants

15 e p s i l o n = 12∗8.854 e−12; %pe rm i t t i v i t y o f semiconductor

16 phi0 =4.14; %magnetic f l u x quantum in umˆ2mT
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Fig. B.1. Output plot from Matlab for simulation of conduc-
tance versus gate voltage δVg and magentic field B. The central
region exhibits Aharonov-Bohm interference where no quasiparticles
are created, while at high field quasiholes are added and low field
quasiparticles are added resulting in discrete phase jumps, consistent
with the results of [88]. The temperature is set to give a ratio of T
to e2

2C
of 0.002, resulting in very sharp jumps in phase due to minimal

thermal smearing.

17

18 %Calcu la t ed parameters

19 C = A0∗1e−12∗2∗ e p s i l o n /SWsetback/1e−9 %ca l c u l a t i o n o f

c h a r a c t e r i s t i c geometr ic capac i tance

20 ec = 1.602 e−19/2/C∗1 e6 %Charging energy in un i t s o f eV ,

c a l c u l a t e d as eˆ2/2C

21 k1=ec ∗1e−6/8.62e−5 %Charging energy conver ted in t o un i t s o f

temperature (K)

22 B0=n e l e c t r o n ∗4.14/ v ; %Center magnetic f i e l d o f exac t s t a t e

f i l l i n g

23

24



105

25

26 %Simulat ion parameters

27 dB=0.001; %Magnetic f i e l d r e s o u l t i o n

28 dVg = . 0 0 0 3 ; %Gate v o l t a g e r e s o l u t i o n

29 numx=1000; %Number o f po in t s in x−ax i s ( magnetic f i e l d )

30 numy=100; %number o f po in t s in y−ax i s (Vg)

31 numxBoffset = 550 ; %Point to cen te r the magnetic f i e l d

32

33 %Arrays con ta in ing s imu la ted data

34 R= [ ] ; %Array con ta in ing the conductance o s c i l l a t i o n s

35 expQP = [ ] ; %Array con ta in ing the c a l c u l a t e d thermal

e xp e c t a t i on va l u e s

36 A= [ ] ; %Array con ta in ing area at each B and Vg

37 B= [ ] ; %Array contaning magnetic f i e l d

38 Vsg = [ ] ; %Array con ta in ing s i d e ga te v o l t a g e at each po in t

39

40

41 %These l oops i t e r a t e through each va lue o f magnetic f i e l d and

ga te v o l t a g e

42 %in the s imu la t i on . n i s the index f o r the magnetic f i e l d

point , m i s the

43 %index f o r ga te v o l t a g e po in t . At each po in t the conductance

o s c i l l a t i o n i s

44 %ca l c u l a t e d .

45 for n=1:numx

46

47 for m=1:numy

48 Vsg (n ,m)=(m−numy)∗dVg ; %Gate v o l t a g e at each po in t
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49 B(n ,m)=B0+dB∗(n−numxBoffset ) ; %Magnetic f i e l d a t each

po in t

50 deltaB=B(n , m)−B0 ; %Magnetic f i e l d r e l a t i v e to exac t

f i l l i n g

51 A(n , m)=A0+Vsg (n ,m)∗Vsgleverarm ; %Ca l cu l a t e area based

on ga te v o l t a g e and l e v e r arm

52 phi=A(n ,m)∗B(n ,m) ∗1000/ phi0 ; %Number o f f l u x quanta

53 dphi=A(n ,m) ∗(B(n ,m)−B0) ∗1000/ phi0 ;

54

55

56 Z = 0 ; %Par t i t i on func t i on

57 a=0;

58 expQP(n ,m) =0; %Expec ta t ion va lue o f q u a s i p a r t i c l e

number , to be c a l c u l a t e d

59 Energy0=0; %minimum va lue o f the energy in the

summation . This needs to be here because i f the

energy g e t s too nega t i v e then Matlab c a l c u l a t e s the

e xponen t i a l o f i t as j u s t zero , which messes up the

s imu la t i on .

60

61 Energ i e s = [ ] ; %Array con ta in ing energy at each va lue

o f the q u a s i p a r t i c l e number

62

63 %This loop c a l c u l a t e s the energy at each a l l owed va lue

f o r the number

64 %of q u a s i p a r t i c l e s . q i s the q u a s i p a r t i c l e number (

nega t i v e q means

65 %qua s i h o l e s ) .

66 for q = −maxQP:maxQP
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67 de l taQtota l=v∗deltaB ∗1000/ phi0∗A(n ,m)−Vsg (n ,m)∗

Vsgbulkleverarm+q∗ e s t a r ; %amount o f charge away

from i d e a l va lue , in un i t s o f e

68

69 i f q==−maxQP

70 Energy0 = k1∗ de l taQtota l ˆ2+abs ( q )∗Delta ∗(1+0∗

abs ( q ) ) ;

71 end

72

73 Energy = k1∗ de l taQtota l ˆ2+abs ( q )∗Delta ; %Energy

c a l c u l a t e d as combination o f chargning energy

and energy co s t f o r c r ea t i n g the number o f

q u a s i p a r t i c l e s

74 i f Energy<Energy0

75 Energy0 = Energy ; %t h i s s ee s i f the current

energy va lue i s the sma l l e s t one yet , and i f

so s e t s Energy0 equa l to t ha t

76 end

77 Energ i e s ( q+maxQP+1)=Energy ;

78 end

79

80 %This loop c a l c u l a t e s the e xpe c t a t i on va lue o f the

conductance

81 %o s c i l l a t i o n . The v a r i a b l e a i s the sum of a l l the

va l u e s o f

82 %cos ( t h e t a )∗eˆ(−E/kT) . Z i s p a r t i t i o n func t i on .

83 for q = −maxQP:maxQP

84 Z = Z+exp(−( Energ i e s ( q+maxQP+1)−Energy0 ) /T) ; %add

each term in the summation to ge t Z
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85 expQP(n ,m) = expQP(n ,m)+q∗exp(−( Energ i e s ( q+maxQP+1)

−Energy0 ) /T) ; %add up con t r i b u t i on to the

e xp e c t a t i on va lue o f qp number

86 t=2∗pi ∗(q∗ thetaAnyon+A(n ,m)∗B(n ,m) ∗1000/ phi0∗ e s t a r )

; %phase at po in t in the summation

87 a = a+exp(−( Energ i e s ( q+maxQP+1)−Energy0 ) /T)∗cos ( t ) ;

%conductance at each po in t in the summation

t imes the thermal f a c t o r

88 end

89

90 expQP(n ,m) = expQP(n , m) /Z ; %ca l c u l a t e the normal ized

thermal e xp e c t a t i on

91 R(n , m)=a/Z ; %ca l c u l a t e the normal ized conductance

92 end

93 end

94

95 %P lo t t i n g

96 surf (B’ , 1000∗Vsg ’ , R’ , ’ edgeco l o r ’ , ’ none ’ ) %Creates

colormap p l o t o f conductance

97 axis ( [B(1 , 1 ) , B(numx , 1) , 1000∗Vsg (1 , 1 ) , 1000∗Vsg (1 ,numy) ] )

98 xlabel ( ’B (T) ’ , ’ f o n t s i z e ’ , 18) ;

99 ylabel ( ’\ de l t a V {g} (mV) ’ , ’ f o n t s i z e ’ , 18) ;

100

101 %Put data in a nice array to expor t to o r i g i n

102 exportdata=zeros(1+numy , 1+numx) ;

103 B=B ’ ;

104 Vsg=Vsg ’ ;

105 R=R;

106 exportdata (1 , 1 ) =0;
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107 exportdata (1 , 2 : ( numx+1) )=B(1 , : ) ;

108 exportdata ( 2 : ( numy+1) , 1)=Vsg ( : , 1) ;

109 exportdataCrossSect ion = [B(1 , : ) ’ , R( : , 1) ] ;

110 for n = 1 :numy

111 exportdata (n+1, 2 : ( numx+1) )=R( : , n ) ;

112 end
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C. LIST OF SAMPLES MEASURED
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Table C.1.
List of samples measured

Sample Structure Density

(×1011

cm−2

Device Results

Willett

device

Doping

Well

3.5 1.2µm×1.2µm with no

screening gate

CD interference at integers states and ν = 5/3

12-18-15.1

J1a

SHJ 0.66 2µm×2µm; no screening

gate

Mostly CD. Weak AB and intermediate regime at low

field.

8-10-16.2

J1c

Shifted

SHJ

1.6 3µm×3µm with etched

trench gates and screening

gate

Very disordered QPCs. Weak AB at 3T but not much

else

3-30-16.2

J1d

Shifted

SHJ

1.6 3µm×3µm with screening

gate, dielectric, and helper

gate

Very disordered, probably caused by 20kV EBL used

in overlay layer

3-30-16.2

J2c

Shifted

SHJ

1.6 3µm×3µm with screening

gate, dielectric, and helper

gate. 3kV EBL.

Good clean QPC behavior. Weak AB interference at

low field. Trying to tune helper gate didn’t improve

coherence at all.

11-28-17.1

J1a

Double

SW (low

density

SWs)

1.7 3µm×3µm and

1.6µm×1.6µm with

screening gate

Some AB at low field in 3.0µm device. CD only in

1.6µm device. Screening wells don’t conduct at low

temperature because they are too low density.

11-21-17.1

J1a

Double

SW

0.9 1.2µm×1.2µm With some positive bias on top screening gate, get

strong AB oscillations. Now way to isolate transport

in main QW, though, so the oscillations could be in

any of the wells. Proof of concept for SW design.

2-1-18.2

J2a

Single SW 0.92 1.2µm×1.2µm with top

screening gate and top

Ohmic gate to isolate

transport in QW

AB oscillations up to ν = 1, then transition to CD

2-1-18.1

J3a

Double

SW

1.05 1.2µm×1.2µm with top

screening gate and top

and bottom Ohmic gate to

isolate transport in QW.

Measured right side device

on chip.

Results presented in Chapter 2. Strong AB at integer

states and ν = 1/3 and ν = 2/3.

2-1-18.1

J4c

Double

SW

1.3 1.2µm×1.2µm with top

screening gate and top and

bottom Ohmic gate to iso-

late transport in QW

Density too high to get to ν = 1/3 (n = 1.3 ×

1011cm−2).

5-14-18.1

J1a

Double

SW

0.42 1.2µm×1.2µm with top

screening gate and top and

bottom Ohmic gate to iso-

late transport in QW

Contacts stop working at high field, probably because

density too low.

7-18-18.1

J1a and b

Double

SW

0.72 1.2µm×1.2µm interferom-

eter with dielectric and an-

tidot gate

Very noisy device, too noisy to get any sensible results

at ν = 1/3.

6-27-18.1

J1c

Double

SW

0.63 Interferometer with etched

antidot

Device seems pathological with very asymmetric

QPCs, probably due to etched antidot

6-28-18.1

J1c

Double

SW

0.6 Standard interferometer

1.2µm×1.2µm without

antidot

Good AB interference at integers and ν = 1/3

9-18-18.1

J2b

Double

SW

0.7 1.2µm×1.2µm Interferom-

eter with gated antidot

and Al2O3 dielectric

Noisy device. Can still get some interference at ν =

1 and ν = 1/3. Antidot gate results in noisy, but

seemingly continuous phase evolution.
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Table C.2.
List of samples measured Cont.

Sample Structure Density

(×1011

cm−2

Device Results

3-30-16.1

J2a

SHJ 1.2 500nm and 800nm quan-

tum dots

Measure Coulomb blockade. Get 50mK electron tem-

perature without RC filters. With 10kOhm/100nF

RC filters get 20mK.

9-18-18.1

J3a

Double

SW

0.7 0.8µm×0.8µm interferom-

eter with no antidots

Device shows no interference; seems pathological.

Very asymmetric QPCs.

9-18-18.1

J3b

Double

SW

0.7 1.0µm×1.0µm interferom-

eter with no antidots

Measured interference at integer states and ν = 1/3.

Get T0 = 130mK at ν = 1 and T0 = 63mK at ν =

1/3.

9-18-18.1

J3c

Double

SW

0.7 0.8µm×0.8µm and

0.7µm×0.7µm interferom-

eters with no antidots

Intermediate regime behavior in 700nm and 800nm

devices at ν = 1. 800nm device showed stronger AB

behavior at ν = 2 and ν = 3 of outer mode. Also

some AB behavior at ν = 1/3.

9-18-18.1

J3e

Double

SW

0.7 1.0µm×1.0µm and

0.8µm×0.8µm inter-

ferometers with Al2O3

and antidot gates

Devices were extremely noisy and give complete junk

data.

9-18-18.1

J4b

Double

SW

0.7 Standard interferometer

1.2µm×1.2µm. Measured

top right device on chip.

Second device in Chapter 3. Good AB interference

at ν = 1 and ν = 1/3. Single discrete phase jump

visible.

9-18-18.1

J4c

Double

SW

0.7 Standard interferometer

1.0µm×1.0µm. Measured

top left device on chip.

Primary device in Chapter 3. Good AB interference

at ν = 1 and ν = 1/3, shows transition from nega-

tive slope to flat lines of constant phase with discrete

phase jumps in cetner.

9-18-18.1

J4d

Double

SW

0.65 Standard interferometer

1.0µm×1.0µm. Measured

top left device on chip.

Shows transition from AB interference at center to

flat lines of constant phase at high and field consistent

with samples J4c and J4b and the results in Chapter

3. Discrete phase jumps consistent with those de-

scribed in Chapter 3 are also visible, although the

data is significantly noisier such that the jumps can-

not be resolved as well.


