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ABSTRACT

Mallya, Ganeshchandra Ph.D., Purdue University, August 2020. Drought Character-
ization using Probabilistic Models. Major Professor: Rao S. Govindaraju.

Droughts are complex natural disasters caused due to deficit in water availabil-

ity over a region. Water availability is strongly linked to precipitation in many

parts of the world that rely on monsoonal rains. Recent studies indicate that the

choice of precipitation datasets and drought indices could influence drought analysis.

Therefore, drought characteristics for the Indian monsoon region were reassessed for

the period 1901-2004 using two different datasets and standard precipitation index

(SPI), standardized precipitation-evapotranspiration index (SPEI), Gaussian mixture

model-based drought index (GMM-DI), and hidden Markov model-based drought in-

dex (HMM-DI). Drought trends and variability were analyzed for three epochs: 1901-

1935, 1936-1970 and 1971-2004. Irrespective of the dataset and methodology used,

the results indicate an increasing trend in drought severity and frequency during the

recent decades (1971-2004). Droughts are becoming more regional and are showing a

general shift to the agriculturally important coastal south-India, central Maharash-

tra, and IndoGangetic plains indicating food security challenges and socioeconomic

vulnerability in the region.

Drought severities are commonly reported using drought classes obtained by as-

signing pre-defined thresholds on drought indices. Current drought classification

methods ignore modeling uncertainties and provide discrete drought classification.

However, the users of drought classification are often interested in knowing inherent

uncertainties in classification so that they can make informed decisions. A proba-

bilistic Gamma mixture model (Gamma-MM)-based drought index is proposed as

an alternative to deterministic classification by SPI. The Bayesian framework of the
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proposed model avoids over-specification and overfitting by choosing the optimum

number of mixture components required to model the data − a problem that is often

encountered in other probabilistic drought indices (e.g., HMM-DI). When sufficient

number of components are used in Gamma-MM, it can provide a good approxima-

tion to any continuous distribution in the range (0,∞), thus addressing the problem

of choosing an appropriate distribution for SPI analysis. The Gamma-MM propa-

gates model uncertainties to drought classification. The method is tested on rainfall

data over India. A comparison of the results with standard SPI shows significant

differences, particularly when SPI assumptions on data distribution are violated.

Finding regions with similar drought characteristics is useful for policy-makers and

water resources planners in the optimal allocation of resources, developing drought

management plans, and taking timely actions to mitigate the negative impacts during

droughts. Drought characteristics such as intensity, frequency, and duration, along

with land-use and geographic information, were used as input features for cluster-

ing algorithms. Three methods, namely, (i) a Bayesian graph cuts algorithm that

combines the Gaussian mixture model (GMM) and Markov random fields (MRF),

(ii) k -means, and (iii) hierarchical agglomerative clustering algorithm were used to

find homogeneous drought regions that are spatially contiguous and possess similar

drought characteristics. The number of homogeneous clusters and their shape was

found to be sensitive to the choice of the drought index, the time window of drought,

period of analysis, dimensionality of input datasets, clustering method, and model

parameters of clustering algorithms. Regionalization for different epochs provided

useful insight into the space-time evolution of homogeneous drought regions over the

study area. Strategies to combine the results from multiple clustering methods were

presented. These results can help policy-makers and water resources planners in the

optimal allocation of resources, developing drought management plans, and taking

timely actions to mitigate the negative impacts during droughts.
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1. INTRODUCTION

Droughts rank first among natural disasters or hazards in terms of the number of

people directly affected and also in terms of accompanying socio-economic costs. Ac-

cording to Federal Emergency Management Agency (1995), the cost of droughts in

the United States is estimated to be between $6 - 8 billion annually. Droughts occur

when there is a precipitation (or other water sources) deficit compared to their long-

term mean. Unlike other natural hazards such as floods or earthquakes, droughts are

characterized by slow onset - often making it challenging to identify when a drought

event begins. Also, droughts persist for longer durations, and their spatial extents

are often large (Wang et al., 2011). The negative impacts of droughts over a region

can be felt for an extended period, even after they have ended.

Droughts are classified into different categories based on their severity and are

published regularly as bulletins in most countries. Water resources planners then use

these drought classification bulletins to identify regions affected by drought, assess

the amount of aid that these regions should receive based on the severity of drought,

and also decide on drought mitigation strategies (Svoboda et al., 2002; Heim, 2002).

Drought readiness schemes are also based on drought classification. While real-time

drought monitoring is necessary for the timely allocation of required resources to

mitigate the immediate negative impacts caused by droughts, decision-makers are

interested in estimates of uncertainty in drought classification for developing informed

remedial strategies. Although many sources of uncertainty exist, experts believe that

allocation of resources and response capabilities of communities will benefit from

the use of a drought index that provides estimates of model uncertainty through a

probabilistic drought classification (Hayes et al., 2004; Song, 2011).

Global drought climatology has been assessed by different research groups to pro-

vide a baseline for future climate studies (Sheffield et al., 2012; Dai, 2013). The
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primary inputs for any drought study are the measures of departures from long-term

mean of variables governing water supply such as precipitation, soil moisture, runoff

and streamflow. These inputs are available in several forms: i) point measurements

at stations, ii) gridded datasets, often at different resolutions (e.g. 0.5◦, 1◦, etc.), ob-

tained after interpolating point measurements from a single source or multiple sources

that may include satellite based measurements, and iii) model outputs on a regular

grid. These inputs are generally prone to measurement errors and model uncertain-

ties that should be accounted for when used in further analyses. The next step is

the choice of an indicator to measure the severity of droughts. The most popular

drought indicators like Palmer drought severity index (PDSI) (Palmer, 1965) and

standardized precipitation index (SPI) (McKee et al., 1993) do not account for model

uncertainties and provide discrete drought classification. However, as noted in recent

global drought climatology studies (Dai, 2013; Sheffield et al., 2012; Trenberth et al.,

2014), the choice of input and other forcing datasets - in addition to the choice of

model parameterizations used in drought indices - can lead to contrasting conclusions.

Droughts are also known to have a large spatial footprint. Thus, in addition to

considering the time evolution of droughts, it is also important to consider their spa-

tial characteristics. A multi-site analysis can characterize droughts over a region. A

multi-site analysis implies that relevant input data (or drought characteristics) from

neighboring stations or grids located within a region are pooled. The choice of neigh-

boring stations (or grids) often tends to be subjective. Identifying drought-prone

regions and regions with similar drought characteristics in an objective manner is im-

portant for drought management purposes. If a region is prone to frequent droughts,

sufficient resources need to be allocated, and appropriate remedial measures need to

be implemented by drought managers to improve the region’s resilience to droughts.

However, if such measures are not implemented in a timely fashion, it may lead to

costly environmental degradation and eventually result in desertification. Thus, it is

important to identify drought hotspots from the perspective of developing drought

readiness schemes. The use of homogeneous regions in terms of overall climatol-
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ogy (Karl and Koss, 1984; Bharath and Srinivas, 2015), or monsoon precipitation

(Parthasarathy et al., 1993) are common in climate research. Several studies (Stahl

and Demuth, 1999; Trnka et al., 2009; Vicente-Serrano, 2006a) have also focused on

identifying homogeneous drought regions, i.e. regions with similar drought clima-

tology. Dracup et al. (1980), suggested that stations within homogeneous drought

regions should not only be similar in terms of climate but also be geographically con-

tiguous and have similar geomorphology. Homogeneous drought regions provide an

objective way to pool hydro-meteorological data for performing regional and multi-

year drought analysis. The inter-relationships between homogeneous drought regions

may be used to develop early drought warning systems.

The study objectives are as follows:

1. To perform retrospective drought analysis for evaluating trends and variability

of drought events over the Indian monsoon region (IMR).

2. To develop a probabilistic drought index by accounting model and parameter

uncertainties.

3. To develop a Bayesian framework that uses concepts of Gaussian mixture model

(GMM) and Markov random fields (MRFs) for finding homogeneous drought

regions that are spatially contiguous and have similar drought characteristics.

The thesis is structured as follows: in Chapter 2, a retrospective drought analysis

over IMR using multiple data sources and methods will be presented. In Chapter 3, a

probabilistic drought index that engages model uncertainty by providing probabilistic

drought classes will be introduced. In Chapter 4, several data-driven unsupervised

clustering methods will be used to identify regions with similar drought character-

istics. Finally, in Chapter 5, the summary and conclusions of this study will be

presented.
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2. TRENDS AND VARIABILITY OF DROUGHTS OVER
INDIAN MONSOON REGION

This article has been previously published in Weather and Climate Extremes June 2016.

2.1 Introduction

Droughts in the monsoon dominated regions have gained greater importance in

the recent past, as monsoons not only define the unique features of the climate, but

also affect the socioeconomic well-being of more than two-thirds of global population

(Niranjan Kumar et al., 2013; Rajeevan et al., 2008). Recent changes in Indian mon-

soon precipitation have received wide attention (Kripalani et al., 2003; Mishra et al.,

2012; Rupa Kumar et al., 2006) with some plausible uncertainty on whether trends

associated with summer monsoon precipitation are related to global warming or re-

gional changes (Chung and Ramanathan, 2006; Kishtawal et al., 2010; Niyogi et al.,

2010). A number of studies (Kumar et al., 1992; Rajeevan et al., 2008; Stephenson,

2001) have indicated that the mean precipitation during the monsoon season may

be unaltered over the Indian Monsoon Region (IMR), but the extreme precipitation

events have shown statistically significant increasing trends in last five decades result-

ing in modification of drought characteristics over IMR (Goswami et al., 2006; Mishra

et al., 2012). Trends associated with the Indian summer monsoon rainfall (ISMR)

have also shown a great regional variability where some parts of India have seen an

increase in precipitation while others show a reduction in precipitation during the

monsoon season (Guhathakurta and Rajeevan, 2008; Niyogi et al., 2010; Roxy et al.,

2015). Significant interannual, decadal and long term trends have been observed in

the monsoon drought time series over IMR influenced by El Nino Southern Oscilla-

tion (ENSO) and global warming (Niranjan Kumar et al., 2013).
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Recently, contrasting conclusions were drawn about global drought climatology by

two synthesis studies (Sheffield et al., 2012; Dai, 2013). While Sheffield et al. (2012)

showed that there was little change in drought climatology in recent years, the study

by Dai (2013) concluded that droughts were intensifying as a result of a warming cli-

mate. Subsequently, Trenberth et al. (2014) summarized that the choice of precipita-

tion dataset and other forcing datasets could influence drought analysis in addition to

the choice of model parameterizations being used in deriving the drought indices [e.g.

potential evapotranspiration calculations while estimating Palmer Drought Severity

Index (PDSI) as reported in Sheffield et al. (2012)]. These studies highlight the need

for using multiple drought indices and datasets for drought climatology, and form the

basis for reassessing droughts over IMR.

Evaluation of trends and variability associated with retrospective drought events

provides a basis to understand regional patterns of severity, duration, and areal ex-

tent of droughts. It also enables an understanding of the nature of possible future

droughts and potential vulnerabilities. Building off the findings of drought assess-

ments over IMR in recent years and the recommendations cited in Trenberth et al.

(2014), the aims of this work are (i) to study retrospectively, the droughts and as-

sociated trends over IMR using different precipitation datasets and drought indices,

and (ii) to identify regions in IMR that are vulnerable to droughts.

2.2 Data and Methods

Gridded daily precipitation data from the India Meteorological Department (IMD)

(Rajeevan, 2006) available for the period 1901− 2004 at 1◦ spatial resolution (Figure

2.1) were used. The daily precipitation data obtained from IMD were then aggregated

over monthly time scale. The second dataset used in this study was monthly precipi-

tation data from University of Delaware (UD) available for the period of 1900− 2004

(UDel AirT Precip data provided by the NOAA/OAR/ESRL PSD, Boulder, Col-

orado, USA, from their website at http://www.esrl.noaa.gov/psd/ ) at 0.5◦ spatial
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resolution (Figure 2.1). The precipitation data from high-mountainous regions in

northern and northeastern parts of the country were not used in the study as the

number of rain gauges in these regions are sparse.

Figure 2.1. Study domain showing 1◦ grid cell locations for IMD precipita-
tion dataset as cross-hairs, and 0.5◦ grid cell locations for UD precipitation
dataset as dots.

Despite the differences in the spatial resolution, the precipitation datasets show

similar patterns in the spatial distribution and variance of precipitation over the study
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region. Figures 2.2a-b show the distribution of mean monthly precipitation over the

study region, and Figures 2.2c-d compare the standard deviation in monthly mean

precipitation between the two datasets. While the overall patterns are similar, the

effects of resolution on the magnitudes are evident. For instance, the UD dataset

provides more detail in the spatial distribution of precipitation statistics.

A comparison of monthly mean precipitation time series (Figure 2.3) between the

two datasets shows that while the overall monthly time series pattern are similar, the

precipitation magnitude for IMD grids are lower compared to UD grids during the

months June to September, and relatively identical for the remaining months.

Standardized precipitation index (SPI) (McKee et al., 1993), standardized precip-

itation evapotranspiration index (SPEI) (Vicente-Serrano et al., 2010; Niranjan Ku-

mar et al., 2013), Gaussian mixture model-based drought index (GMM-DI) (Mallya,

2011), and Hidden Markov model-based drought index (HMM-DI) (Mallya, 2011;

Mallya et al., 2013) were calculated for drought characterization at multiple time

scales ending in September (i.e. for 1-month, 4-month, and 12-month moving time-

window) and December (i.e. for 7-month moving time-window). The results for

12-month moving time window accounts for precipitation events occurring over both

the monsoon and the non-monsoon months and 7-month time-window ending in De-

cember accounts for summer monsoon (JJAS) and winter monsoon (OND) months

over the study area and are discussed here in detail. These indices differ in their

mathematical formulation and the drought classification technique. While SPI re-

lies on fixed thresholds for drought classification, GMM-DI and HMM-DI employ

a probabilistic data-driven approach. SPEI uses temperature (UDel AirT Precip,

http://www.esrl.noaa.gov/psd/) for calculating evapotranspiration, thus accounting

for any temperature rise in the study area during recent decades. The mathematical

formulations of the drought indices are summarized at the end of this section (refer

to subsections 2.2.1 to 2.2.4).

The maximum drought time window considered in this study was 12-months. For

longer time windows, non-overlapping data available at any grid point over the study
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Figure 2.2. Comparison of IMD and UD monthly precipitation statistics
over each grid in the study region. Mean of monthly precipitation (in mm)
over (a) IMD grids, and (b) UD grids. Standard deviation of monthly
precipitation (in mm) over (c) IMD grids, and (d) UD grids.

region would become limited. For analyzing multi-year droughts, data can be pooled

from stations with similar drought characteristics. Most statistical models used to

compute drought indices assume the data to be independent. Autocorrelation in

drought time series can be computed for different time windows of interest to validate

the assumption of independence. Figure 2.4 shows the auto-correlation in the SPI
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Figure 2.3. Comparison of monthly mean precipitation between IMD and
UD datasets for all months of a year (January to December), (a) averaged
over all grids in the study region, (b) IMD grid 18 and UD grid 208 over
Western Ghats, (c) IMD grid 275 and UD grid 430 over Punjab, and (d)
IMD grid 140 and UD grid 1005 over West Bengal. Location of IMD grids
are shown in Figure 2.1. UD grids are located adjacent to IMD grids.

time series at different grids over the study region. Autocorrelation values close to zero

indicate that the data are independent, while those closer to one indicate dependence.

For a 12-month time window ending in May, Figures 2.4a-d show the auto-correlation

at lags 1 to 4 months, respectively. Except for few grids over Jammu, Kashmir,

northeastern states, and the Western Ghats along the west coast of India, the values

of autocorrelation are close to zero starting at lag-1 and show a further decrease for

higher lags. Similarly, observation in auto-correlation values may be made for 4-month
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window ending in September (Figures 2.4e-h). The magnitude of auto-correlation

was smaller across all lags in the 4-month time window, compared to the 12-month

time window over grids in the study region. When the independence assumption is

violated, a drought index like HMM-DI can be used to model the underlying data’s

dependence structure through its hidden states and revealed through the transition

matrix.

Figure 2.4. Autocorrelation in SPI time series. Top panel corresponds to
a 12-month window ending in May (water year) for the study period 1901-
2004 (P4) for (a) 1-month (b) 2-months (c) 3-months and (d) 4-months
lag. Similarly, the bottom panel corresponds to a 4-month window ending
in September.

The drought index values obtained were analyzed further to extract drought char-

acteristics such as severity, duration, areal extent, and frequency. The drought impact

index was then computed for each year, by normalizing the product of mean severity

and the areal extent of drought.

The study period was divided into three segments (1901- 1935, 1936 -1970, and

1971 -2004) to understand the trends and variability associated with retrospective

droughts. This was done because droughts have a multiyear influence, and the three

periods chosen, approximately correspond to periods where IMR experienced signifi-

cant droughts (e.g. 1918, 1965, 1972, 1979, 1987, and 2002; see Figure 2.5). Dividing
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the entire 104 years (1901-2004) of data into three periods (35, 35, and 34 years) was

expected to provide a sufficient length of time series to estimate trends and other

statistical values.

Figure 2.5. SPI corresponding to water year (June to May) over the Indian
monsoon region

A modified Mann-Kendall trend test that accounts for autocorrelation in time-

series (Kulkarni and von Storch, 1995; Hamed and Ramachandra Rao, 1998) was used

to detect trends in the annual SPI, SPEI, GMM-DI, and HMM-DI values. Trends

were estimated on the annual time series for the entire period and for each of the

sub-periods (i.e. 1901-1935, 1936-1970, and 1971-2004) using a 5% significance test.

The effect of spatial correlations in the data (Burn and Elnur, 2002; Yue and Wang,

2002) on the trend results was accounted for by using false discovery rate (FDR)

(Benjamini and Hochberg, 1995; Ventura et al., 2004).

The mathematical formulations of the drought indices are briefly described below:
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2.2.1 Standardized precipitation index (SPI)

The SPI measures the deficit in observed precipitation (McKee et al., 1993)

and has been used widely to identify meteorological, agricultural, and hydrological

droughts (Mishra and Singh, 2010; Mo, 2008). Precipitation time-series for each grid

cell over IMR, at any desired time-scale, was first used to fit a probability distribution

function, and then normalized using a standard inverse Gaussian function to obtain

SPI values. Drought severity was identified using the SPI ranges as described by

Charusombat and Niyogi (2011). A drought event was classified as moderate if SPI

was between -1.0 to -1.49, severe if SPI was between -1.5 to -2.0, and extreme if SPI

was less than -2.0.

2.2.2 Standardized precipitation evapotranspiration index (SPEI)

SPEI (Vicente-Serrano et al., 2010) first requires the computation of potential

evapotranspiration (PET). Thornthwaite's equation (Thornthwaite, 1948) was used

for computing PET, but other popular approaches may also be used (Penman, 1948;

Priestley and Taylor, 1972; Allen et al., 1998). After subtracting the PET from

precipitation, SPEI may be computed using similar approach as SPI (McKee et al.,

1993).

2.2.3 Gaussian mixture model-based drought index (GMM-DI)

A GMM is a probabilistic model where the parametric density function is repre-

sented as a weighted sum of the Gaussian component densities (Reynolds and Rose,

1995). GMMs have been successfully used in recent studies involving estimation of

weather parameters using remotely sensed radar data (Li and Zhang, 2011), and

hydrologic forecasting studies (Liang et al., 2011). In this study, each individual

Gaussian component is assumed to represent the underlying distribution of the hid-

den drought (or wet) classes with a mean µ, and a covariance matrix Σ. Such a
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GMM model closely represents a hidden Markov model (HMM) with equal transition

probabilities amongst all hidden states. The mathematical formulation of the GMM

used in this study is described below.

Let the precipitation at time t be denoted by xt, t = 1 . . . N, {xt ∈ R and

X = [x1, . . . , xN ]T = x1:N}. If the total number of components of the GMM, M ,

are known a priori, then the weighted sum of M component GMM is given by the

equation,

p(x|λ) =
M∑
i=1

wig(x|µi,Σi) (2.1)

where wi are the mixture weights, and g(x|µi,Σi) are the component Gaussian den-

sities of the form,

g(x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

{
1

2
(x− µi)′Σ−1i (x− µi)

}
(2.2)

with mean µi and covariance matrix Σi. In this study, since only precipitation data

are used, the number of dimensions, D = 1. Further, the mixture weights satisfy the

constraint
∑M

i=1wi = 1. The parameter set can be represented by the notation shown

below.

λ = {wi, µi,Σi} , i = 1, . . . ,M (2.3)

Expectation-maximization (EM) algorithm (Dempster et al., 1977; McLachlan and

Krishnan, 1997) was used to estimate the parameters of the GMM using a maximum

likelihood approach. The a posteriori probability for component i was given by

p(i|xt, λ) =
wip(xt|µi,Σi)∑M
k=1wkp(xt|µk,Σk)

(2.4)

To compare the results of GMM-DI with SPI, the number of mixture components,

M , was set to 7 (3 drought states + 1 normal state + 3 wet states).
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2.2.4 Hidden Markov model-based drought index (HMM-DI)

The mathematical formulation of the Hidden Markov model-based drought in-

dex (HMM-DI) is described in detail in Mallya (2011). Again, let precipitation at

time t be denoted by xt, t = 1 . . . N, {xt ∈ R and X = [x1, . . . , xN ]T = x1:N}.

In a HMM, the precipitation xt is assumed to depend only on the state variable

zt,
{
Z = [z1, . . . , zN ]T

}
that denotes a drought or wet state, is hidden (not observed),

and follows the first order Markov property. The state variable zt is a K-dimensional

binary random variable. If the number of states, K, are known a priori, the standard

HMM can be parameterized using the following three distributions

i The conditional distribution of precipitation given the drought state, p(xt|zt),

referred to as the emission distribution;

ii The conditional distribution of the present drought state given the previous state

i.e. p(zt|zt−1). Because zt is a K dimensional binary variable, the conditional

distribution is given by a K×K transition matrix A whose element Ajk = p(ztk =

1|zt−1,j = 1);

iii The marginal distribution of the drought state at the first time step, p(z1), is

given by a K dimensional vector Π whose element πk = p(z1k = 1).

The precipitation data at the desired time-scale was transformed to represent

percentage deviation from their long term mean. The HMM model was then applied

to this transformed data. The probability density function of the emission distribution

was selected to be a Gaussian distribution of the form

p(xt|zt) =
K∏
k=1

N
(
xt|µk, σ2

k

)ztk (2.5)

where µk and σ2
k are the mean and the variance of a Gaussian distribution, respec-

tively. The µk's and σk's were considered to be free parameters and were estimated
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along with other parameters of HMM. Since the results of HMM-DI are to be com-

pared with SPI and GMM-DI, the number of states (components in the Gaussian

mixture) K was set to 7 (3 drought states + 1 normal state + 3 wet states).

The underlying emission distributions are not known before hand and were as-

sumed to be Gaussian. This was done for mathematical convenience, and also be-

cause many processes combine to create droughts, and one may expect that their

combined influence expressed through deviations from the mean could be Gaussian.

Additionally, if there is no temporal dependence, the HMM automatically collapses

to a Gaussian mixture for which the theories are well developed.

Both GMM-DI and HMM-DI provide probabilities of belonging to each drought

class. To obtain drought intensity values, the intensity factors (e.g. assumed intensity

factors for Extreme drought = -3.0, Severe drought = -2.0, Moderate drought = -1.0

and so on) were multiplied with corresponding probability measures.

2.3 Results and discussion

2.3.1 Drought characterization

The drought indices were able to capture (Figure 2.6, Figure 2.7a and 1◦×1◦ IMD

dataset) the major documented drought events over IMR (De et al., 2005). For the

study period, the six most notable moderate-droughts occurred in 1905, 1946, 1965,

1974, 1979, and 1984. In the figures, moderate drought refers to SPI values between

-1.0 and -1.49 (Charusombat and Niyogi, 2011). Three of the most severe historic

droughts occurred during the recent period of 1971-2004. The drought characteristics

showed an increasing trend during the same period. Modified Mann-Kendall trend

test was performed to test the statistical significance of the trends in these average

drought statistics. For example, SPI analyses (Figure 2.6a) showed an increasing

trend in the mean severity of moderate droughts (-0.04/decade, trend is towards neg-

ative SPI values, p-value > 0.05) during the period 1971-2004. During the same

period, the areal extent and drought impact index of moderate droughts also showed
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increasing trends. Similar trends were observed for SPEI, GMM-DI and HMM-DI

analyses (Figure 2.7a, Figure 2.6b-2.6c). These trends are consistent with the pre-

cipitation trends documented in other studies (Guhathakurta and Rajeevan, 2008;

Kripalani et al., 2003; Rupa Kumar et al., 2006).

The trends were reanalyzed in the 0.5◦ resolution UD precipitation data, thus

providing means to compute and validate trends in drought characteristics at a rela-

tively finer spatial resolution over IMR. As in the case of IMD dataset, SPI, SPEI,

GMM-DI and HMM-DI were computed. Drought characteristics such as mean sever-

ity, areal extent, and drought impact index were computed for each drought index.

Again the drought indices were able to capture (Figure 2.8, Figure 2.7b) the major

drought events documented over IMR (De et al., 2005) during the period of 1901-2004

and agree well with IMD dataset results (Figure 2.6, Figure 2.7a). There are broad

similarities and also specific differences in the characteristics revealed by the choice

of index and data. For example, the SPI and SPEI yields a relatively smaller drought

impact index as compared to GMM-DI and HMM-DI.
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Figure 2.6. Drought characteristics over IMR computed for IMD dataset
using (a) SPI, (b) GMM-DI, and (c) HMM-DI for 12-month time window
ending in September. In each figure the top-panel shows time-series plot of
moderate drought severity averaged over all grids. Middle-panel shows the
bar-plot of areal extent of moderate droughts represented as percentage of
total area in the IMR. Bottom-panel shows the bar-plot of drought impact
index for moderate droughts. Solid line represents the median value and
dotted line represents slope during the sub-periods 1902-35, 1936-70 and
1971-2004 respectively.
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Figure 2.7. Same as Figure 2.6, but for SPEI using (a) IMD and (b) UD
datasets, respectively.
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Figure 2.8. Same as Figure 2.6, but using 0.5◦ UD dataset
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2.3.2 Spatial and temporal variability in drought characteristics

To study the spatiotemporal variability in droughts, average drought character-

istics based on SPI, SPEI, GMM-DI, and HMM-DI values were obtained for each

epoch over all grids in IMR by computing the mean number, severity and dura-

tion of droughts (e.g. 1901-1935; 1936-1970 and 1971-2004). For the IMD dataset

and 12-month time window, during the period 1901-35 there were many widespread

droughts (Figures 2.9-2.11) mainly in the northern, central and the Deccan Plateau

regions of IMR. While more drought events were observed in the Deccan region (Fig-

ure 2.9), the drought duration (Figure 2.11) and intensity (Figure 2.10) were higher

in northern and central regions of IMR. During the epoch of 1936-1970, droughts

were more active in the western region and parts of Deccan Plateau of IMR. Com-

pared to 1901-35, droughts were less frequent during this epoch (1936-1970). During

1971-2004, the number of drought events and their duration increased in the cen-

tral and eastern Indo-Gangetic plain (IGP) (20◦N-28◦N), and southern parts of IMR.

High drought intensities were recorded in central and eastern IGP, south-India, and

parts of western-India (that include states of Maharashtra, Gujarat, and Rajasthan).

Drought patterns were mostly similar for all four drought indices in each epoch - while

GMM-DI showed more widespread droughts; SPI, SPEI, and HMM-DI were better

able to distinguish the drought hotspots.

Results for the UD dataset were similar to those obtained for IMD dataset. There

were many widespread droughts in the western and central parts of IMR during 1901-

1935 (Figures 2.12-2.14). During 1936-1970, except for some parts of western, central

and southern India, most of the IMR was wet and droughts were infrequent. As

in case of IMD dataset (Figures 2.9-2.11), the number of droughts and duration of

droughts increased in the central and eastern IGP (20◦N-28◦N), and southern parts

of India during 1971-2004. The drought intensities were higher in interior parts of

south-India, western parts of India (Maharashtra, Gujarat, and Rajasthan) and IGP.

The drought indices - SPI, SPEI, GMM-DI and HMM-DI - were able to consistently
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Figure 2.9. Epochal variation in number of drought events over IMR using
IMD dataset. In each sub-plot top panel represents SPI, followed by SPEI,
GMM-DI, and HMM-DI.

capture the space and time evolution of drought characteristics over the IMR during

the entire study period. A notable west to east migration in the drought severity and

extent over the last century is observed from Figures 2.9 to 2.14.

Similar comparison of epochal drought characteristics over IMR for 7-month time

window using IMD (Figure 2.15) and UD (Figure 2.16) datasets showed that dur-

ing 1901-1935 droughts were more intense and frequent in parts of Deccan Plateau,
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Figure 2.10. Same as Figure 2.9, but for drought intensity.

western and northern parts of India. Droughts were comparatively less frequent dur-

ing the epoch 1936-1970 according to SPI and SPEI, however GMM-DI and HMM-DI

analysis shows that droughts continue to be intense and frequent in western India and

parts of Deccan Plateau. During 1971-2004 central-India, eastern IGP, and parts of

south-India emerge as drought hotspots - along with high intensity but short-term

droughts in western-India.

A decadal comparison of 12-month time window drought characteristics over

IMR using IMD dataset (Figure 2.17-2.19) shows higher level of drought activity
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Figure 2.11. Same as Figure 2.9, but for drought duration (in months).

in northern-India, western-India and Deccan Plateau during the 1901-10, 1911-20,

with more intensification during 1921-30. The subsequent two decades (1931-40 and

1941-50) were amongst the wettest in the past century. Droughts started to emerge in

the eastern-IGP during late 1951-60 and intensified in IGP and parts of western-India

during 1961-70. During 1971-80 droughts continued to persist over eastern IGP, and

in the following decade (1981-90) additional hotspots emerged in south-India and

parts of western-India. During 1991-2000 and onwards, eastern-IGP and parts of

central-India continue to be drought hotspots. Similar patterns in drought charac-
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Figure 2.12. Epochal variation in number of drought events over IMR
using UD dataset. In each sub-plot top panel represents SPI, followed by
SPEI, GMM-DI, and HMM-DI.

teristics were observed in our analysis when using UD dataset, and for different time

windows.
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Figure 2.13. Same as Figure 2.12, but for drought intensity.
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Figure 2.14. Same as Figure 2.12, but for drought duration (in months).
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2.3.3 Trends

Figure 2.20 and Figure 2.21 show the trends in drought intensity computed using

modified Mann-Kendall trend test, for SPI, SPEI, GMM-DI, and HMM-DI analy-

sis for the IMD and UD datasets respectively, for 12-month time window ending in

September. In the IMD dataset, for SPI analysis, during the epoch 1936-1970 (Figure

2.20a) drought intensity increased (trend is towards negative SPI values as its mag-

nitude is negative) in the eastern IGP and parts of south-India. During the recent

epoch 1971-2004, additional grids showed an increase in drought intensity in south-

India (parts of coastal Tamilnadu and coastal Karnataka) and western-Rajasthan.

These results are consistent with Niyogi et al. (2010) who have shown using empirical

orthogonal functions and genetic algorithm-based analyses that anthropogenic land

use modifications due to agricultural intensification may have resulted in significant

decline in precipitation in north/northwest India and increasing patterns over east

central India. Similar conclusions could be drawn from SPEI analysis (Figure 2.20b),

GMM-DI analysis (Figure 2.20c) and HMM-DI analysis (Figure 2.20d). Thus parts

of eastern IGP, western-Rajasthan, and parts of coastal south-India emerge as the

current hotspots for droughts.

For the finer-resolution UD dataset (Figure 2.21), using a 12-month time window

ending in September, each of the four drought indices shows an increasing trend in

drought intensity during the period 1936-70 over the eastern IGP. However, during

1971-2004, trends in drought intensity also show an increase in south-India (parts

of coastal Tamilnadu, coastal Karnataka, and central Maharashtra) and western-

Rajasthan, in addition to central and eastern IGP. Thus as in case of IMD dataset,

we can conclude that parts of eastern IGP, and parts of coastal south-India are

emergent vulnerable regions to droughts.

At shorter time scales (e.g. 7-months ending in December) it was found that

in addition to central- and eastern IGP and coastal south-India, interior parts of
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Figure 2.20. Mann-Kendall trend slope for 12-month drought intensity
ending in September over IMR during the periods 1901-2004, 1902-1935,
1936-1970, and 1971-2004. Results correspond to the IMD dataset using
(a) SPI, (b) SPEI, (c) GMM-DI, and (d) HMM-DI.

Maharashtra and central India were emerging as vulnerable regions to droughts for

both IMD (Figure 2.22) and UD datasets (Figure 2.23).
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Figure 2.21. Same as Figure 2.20, but for UD.
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Figure 2.22. Same as Figure 2.20, but for 7-month time window ending
in December.
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Figure 2.23. Same as Figure 2.20, but for 7-month time window ending
in December using UD dataset.
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2.3.4 Drought frequency

Hypothesis tests were carried out to investigate whether the number of droughts

had significantly increased during the recent epoch 1971-2004, when considering 12-

month droughts ending in September. A right tailed t-test with significance level

of 5% was used. Figure 2.24-b show the results of the hypothesis test at each grid

of the IMD and UD datasets for SPI, SPEI, GMM-DI, and HMM-DI, respectively.

The results indicate that the hypothesis test was significant, or in other words the

number of droughts had shown a statistically significant increase at several grids in

the study region. To account for the bias induced in the hypothesis test due to

spatial correlation in the gridded meteorological data, an FDR test (Ventura et al.,

2004; Wilks, 2006) was performed. The FDR test provides a control for the number of

falsely rejected hypothesis out of all rejected (i.e., statistically significant) hypothesis

(Ventura et al., 2004). The FDR test further confirmed that the number of droughts

showed a statistically significant increase in the Indo-Gangetic plains, coastal south-

India, and central Maharashtra during the recent period 1971-2004.

Similarly, for 7-month time window ending in December, it was found that the

number of droughts showed a statistically significant increase in the central and east-

ern IGP and interior parts of Maharashtra during the recent epoch (1971-2004) for

both IMD (Figure 2.25a) and UD datasets (Figure 2.25b).
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Figure 2.24. Hypothesis test to see if the number of droughts (moder-
ate, severe and extreme) of 12-month time window ending in September
have increased during the period 1971-2004 in comparison to 1936-1970
for (a) IMD and, (b) UD precipitation datasets according to SPI, SPEI,
GMM-DI, and HMM-DI. Grids where the number of droughts show a
statistically significant increase at α = 0.05 are displayed.
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Figure 2.25. Same as 2.24, but for 7-month time window June to Decem-
ber.
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2.3.5 Drought vulnerability

Figures 2.26a-b show the regions over IMR that were vulnerable to droughts (de-

fined as SPI < −1.0) using IMD and UD precipitation datasets for the three study pe-

riods, considering a 12-month time window. Using the gridded population estimates

available (Center for International Earth Science Information Network - CIESIN -

Columbia University et al., 2005), an estimate of the population affected by droughts

for the three periods was obtained. According to SPI, during the recent period of

1971-2004 approximately 405 million people were in the drought affected region. This

is equivalent to a GDP of USD 208 billion. The population and GDP estimates are

calculated after defining a threshold for drought intensity below which a drought is

considered to have negative impact on the economy and society. The values in the

bar plot (see inset in Figure 2.26a-b) correspond to an intensity threshold of -1.0 for

SPI. Similar computations using SPEI, GMM-DI and HMM-DI resulted in consis-

tently higher estimates compared to SPI for each of the three periods. This may be

due to the choice of threshold and the differences in the methodology used in their

computation.
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Figure 2.26. The estimate of population and GDP affected, and the
drought hotspots during the sub-periods 1901-1935, 1936-1970, and 1971-
2004 according to SPI< −1.0 for (a) IMD precipitation dataset and (b)
UD precipitation dataset.
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2.4 Summary and concluding remarks

Recent studies have highlighted that IMR has a steady increase in the drought

patterns. Motivated by the cautionary conclusions of Trenberth et al. (2014), a

reassessment of the drought patterns using multiple data sources and methods was

conducted. Accordingly, long-term retrospective drought variability over the IMR

was examined using two gridded precipitation datasets that differ in their primary

data source and spatial resolution. Moreover, several drought characteristics (severity,

duration, areal extent, and frequency) were compared using SPI, SPEI, GMM-DI, and

HMM-DI to assess the variability in the results.

SPI, SPEI, GMM-DI, and HMM-DI were analyzed for three periods 1901-1935,

1936-1970, and 1971-2004 to examine epochal and decadal variation in drought char-

acteristics over the IMR. Consistent with the findings from recent studies that in-

dicate monsoon precipitation is becoming extreme and regionally varied, significant

change in the drought climatology over the IMR was noted. Results indicated that

droughts were becoming much more regional in recent decades and showing a gen-

eral migration from west to east in the Indo-Gangetic plain. An increased duration,

severity, and spatial extent in recent decades were observed, and the Indo-Gangetic

plain, parts of coastal south-India and central Maharashtra were identified as vulner-

able regions for recent droughts. Despite some differences in results for the choice

of drought indices, the time window chosen for analysis, and/or the precipitation

dataset (resolution) used, overall the results and conclusions are consistent.

It is beyond the scope of present study to assess the causal mechanism of droughts,

and to investigate if the observed trends are related to other phenomena such as

changes observed in the monsoon break (active - dry spell) periods (Singh et al.,

2014). There are a number of possible mechanisms - aerosols, landuse change, SST

changes, global changes, thermodynamic feedback due to heating rates (Roxy et al.,

2015); as a result, diagnosis and discussion of potential mechanisms will have to

be a part of follow up study. The results from this study provide the baseline for
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future climate change studies, and yield the robust conclusion that irrespective of the

datasets and methodology used, the IMR has high potential for droughts, and that

droughts appear to be migrating to the agriculturally important regions including

Indo Gangetic plains.
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3. PROBABILISTIC DROUGHT CLASSIFICATION
WITH STANDARDIZED PRECIPITATION INDEX

This article has been previously published in Journal of Hydrology July 2015.

3.1 Introduction

Drought classification schemes classify a drought based on its severity or inten-

sity. Water resources planners rely on drought classification to decide on drought

mitigation strategies and hence weather agencies throughout the world routinely is-

sue drought classification bulletins. For example, the US Drought Monitor releases

a weekly update of drought status in USA by classifying droughts into five classes -

D0 to D4 with the latter representing an exceptional drought. India Meteorological

Department (IMD) issues drought bulletins classifying droughts into three categories,

namely, mild, moderate, and severe.

The most common quantitative drought classification schemes work in two steps:

first, by defining a drought index using hydro-meteorological observations and next, by

categorizing droughts based on pre-defined thresholds on the index value. Examples

include IMD classification that uses departure of rainfall from its long-term average

as a drought index, and US Drought Monitor classification that, along with other

indices, uses Standardized Precipitation Index (SPI) as a drought index. Mallya

et al. (2013) proposed an alternative method that does not require pre-specification

of thresholds. Their method provides a probabilistic drought classification by learning

thresholds from the data. Both the approaches have drawbacks arising either from

the limitations of the drought index or shortcomings in the procedure for defining

thresholds. The following paragraphs briefly describe some of those limitations that

have been addressed in this work.
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Drought classification schemes employ drought indices that measure the degree

of departure of hydro-meteorological variables, such as precipitation and stream-

flow, from their long-term averages. Drought indices have been used for identifying

droughts and their triggers (Steinemann, 2003), assessing drought status (Kao and

Govindaraju, 2010), forecasting droughts (AghaKouchak, 2014), performing drought

risk analysis (Hayes et al., 2004) and studying relationships of droughts with local-

scale regional hydrological variables like water quality (Sprague, 2005) and large-scale

climate patterns like El Niño-Southern Oscillation (Cole and Cook, 1998; Liu and Ju-

rez, 2001; Ryu et al., 2010). Among several drought indices proposed in the literature

(Dai, 2011; Heim, 2002; Mishra and Singh, 2010), the SPI (McKee et al., 1993) is

very popular because of its computational simplicity and versatility in comparing

different hydro-meteorological variables at different time scales. In SPI, historical

observations are used to compute the probability distribution of the monthly and

seasonal (4-months, 6-months, and 12-months) precipitation totals. The fitted prob-

ability distributions are then normalized using the standard inverse Gaussian function

to calculate SPI values. A negative value of SPI indicates precipitation less than the

median rainfall, and the magnitude of departure from zero represents the severity of

a drought based on how drought classes are defined. As many drought classification

schemes in the literature use SPI, they inherit its weaknesses.

Standard SPI-based drought classification schemes ignore uncertainties arising

from data errors, model assumptions, and parameter estimates providing discrete

classification. Thus, users are not aware of inherent uncertainties in drought classifi-

cation often required for making informed decisions. Further, in the context of SPI,

there is an ongoing debate on the selection of the parametric distribution for fitting

the data. McKee et al. (1995) in their original paper on SPI recommend the gamma

distribution. Lloyd-Huges and Saunders (2002) found the gamma distribution to be

an appropriate model for Europe. Guttman (1999) suggested Pearson-III distribu-

tion as the best universal model for SPI because it provides more flexibility than

the gamma distribution. Rossi and Cancelliere (2003) found normal, lognormal, and
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gamma distributions to be suitable for different datasets in their study. Loukas and

Vasiliades (2004) investigated different theoretical distributions using Kolmogorov-

Smirnov (K-S) test and Chi-squared test, and found Extreme Value-I distribution to

be most suitable for studying drought over Thessaly, Greece. Mishra et al. (2007)

argue that different distributions may be appropriate for different drought durations

(window size), and recommend K-S test for choosing an appropriate distribution.

Bonaccorso et al. (2013) used Lilliefors test to choose among normal, lognormal, and

gamma distributions while Russo et al. (2013) used the three parameter generalized

extreme value (GEV) distribution for SPI analysis. Thus, there is no consensus on

the choice of distribution for SPI analysis.

Mallya et al. (2013) used hidden Markov model (HMM) for drought classification

by conceptualizing hidden states in the model to represent drought states. Their

model avoided the need for specifying thresholds for drought classification and pro-

vided probabilistic drought classification by accounting for model uncertainties; how-

ever, the number of hidden states (drought classes) was pre-specified. To facilitate

comparison of HMM-based drought classification with standard methods, they spec-

ified 11 hidden states. Since the number of states is imposed on the model, it is

possible that for datasets with short record length the model suffers from the over-

specification problem, i.e. the model structure is more complicated than can be

supported by the dataset. Specifically, in the HMM context, over-specification im-

plies that the number of specified hidden states are more than that needed to model

the data. Over-specification can result in parameter identification problems leading

to unreliable results.

The main objective of this chapter is to propose an alternate method for proba-

bilistic drought classification. The proposed method adapts SPI drought classifica-

tion methodology by employing gamma mixture model (Gamma-MM) in a Bayesian

framework. The method alleviates the problem of selecting suitable distribution for

SPI analysis, quantifies modeling uncertainties, and propagates them for probabilis-
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tic drought classification. Further, it avoids over-specification problem by using a

Bayesian approach for optimally selecting the number of hidden states in the model.

The remainder of the chapter is structured as follows. First, the study area and

data used are briefly described. Next, the proposed methodology for drought classi-

fication is described, and the results obtained are presented and discussed. Finally,

summary and conclusions drawn from the study are presented in the last section.

3.2 Study area and data used

The study area, India, receives 80% of its annual precipitation during four-month

long southwest summer monsoon (Bagla, 2006; Parathasarathy et al., 1994). The

monsoon precipitation makes landfall around the 1st week of June near Kerala in

southern India, and moves northeast towards the Himalayas. By the first week of July,

almost the entire country typically receives some precipitation that continues until

the end of September (Burroughs, 1999). Though the Indian monsoon is believed to

be one of the most stable monsoon systems (Houghton et al., 2001), it has large inter-

and intra-seasonal variability that can sometimes result in weak monsoon or droughts

over India (Krishnamurthy and Shukla, 2000). Since, the country’s gross domestic

product (GDP), particularly food and power production, is closely linked to monsoon

rains, various strategies have been developed over the years to mitigate the effects of

droughts [e.g., Drought Prone Areas Programme (DPAP), and Desert Development

Programme (DDP)]. Effective implementation of these strategies requires real-time

reliable classification of droughts.

Daily rainfall data at a spatial resolution of 1◦ for both latitude and longitude were

obtained from India Meteorological Department (IMD) and are based on a total 1803

stations distributed over India that have at least 90% availability for the period 1901-

2004 (Rajeevan, 2006). The gridded data consisting of 357 grid points have been

obtained by interpolating raingage data. The IMD datasets are standard datasets

widely used in monsoon-related studies over India (Goswami et al., 2006). Figure
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3.1 shows the study area along with the grid locations for which rainfall data were

available.

Figure 3.1. Map showing the study area along with the location of grids
for which rainfall data were provided by IMD.

3.3 Methodology

The proposed methodology is an adaptation of the standard SPI methodology. It

classifies droughts as follows:

1. Decide a drought duration (time-window) and estimate cumulative rainfall dur-

ing that period. For example, to estimate drought during a monsoon season,

estimate cumulative rainfall during four months of the monsoon season (JJAS)

for each year. This will yield an annual time-series of cumulative rainfall.
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2. Fit a gamma mixture model (Gamma-MM) to the annual series using the pro-

cedure described in the next section. This will yield posterior distribution of

model parameters.

3. For a given rainfall event, determine the cumulative distribution function (CDF)

and its credible interval using the fitted Gamma-MM. Unlike SPI, the CDF from

Gamma-MM is a random variable with a distribution uniquely determined by

the parameters of the fitted model.

4. Using pre-specified thresholds on the CDF, determine the drought class. As

the CDF for a given rainfall event is a distribution, it may spread over more

than one drought class. Estimate the mass of the CDF distribution in each

drought class which will be the probability of the given rainfall event to be in

that drought class.

Since the posterior distribution of the Gamma-MM parameters does not have a closed

form, the integration for estimating mass of CDF in each drought class is performed

numerically. Thresholds on the CDF function should be decided based on the appli-

cation of the drought classification scheme. To draw parallels with the US Drought

Monitor, the same thresholds as used by them for SPI have been adopted for drought

classification (Table 3.1).
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Table 3.1.
US Drought Monitor classification scheme. SPI ranges are prescribed for
the inverse of the Normal distribution. Corresponding thresholds on CDF
are given in the last column

Category Description SPI Range Threshold on CDF

D0 Abnormally Dry -0.5 to -0.8 0.212 to 0.309

D1 Moderate Drought -0.8 to -1.3 0.097 to 0.212

D2 Severe Drought -1.3 to -1.6 0.055 to 0.097

D3 Extreme Drought -1.6 to -1.9 0.023 to 0.055

D4 Exceptional Drought -2.0 or less 0.023 or less

3.4 Gamma mixture model

As discussed in the Introduction section (3.1), there is an ongoing debate on the

choice of a suitable distribution for fitting data in SPI analysis. This problem is ad-

dressed by using the gamma mixture model (Gamma-MM). Given sufficient number

of components in the mixture, the Gamma-MM is proven to provide arbitrarily close

approximation to any general continuous distribution in the range (0,∞) [see, DeVore

and Lorentz (1993)].

The use of Gamma-MM is not new in hydrology. To model data with multi-

ple modes and different types of skewness, Evin et al. (2011) proposed the use of

Gamma-MM for strictly positive hydrological data. In the assessment of hydrological

droughts for Yellow River in China, Shiau et al. (2007) first fitted mixtures of exponen-

tial and gamma distributions to drought duration and drought severity, respectively,

and then used the copula method to construct a bivariate drought distribution. In the

following, a brief description of the Gamma-MM is provided. Readers are referred to

Wiper et al. (2001) and Richardson and Green (1997) for details on mixture models.
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Let the cumulative precipitation at time t be denoted by xt, t = 1, . . . , N, {xt ∈ R

and X = [x1, . . . , xN ]T}. If the total number of components of Gamma-MM, M , is

known a priori, then the weighted sum of M mixtures of gamma is given by the

equation,

p(xt|λ) =
M∑
i=1

wiG

(
xt|νi,

νi
µi

)
(3.1)

where wi are the mixture weights or mixing ratios, and G
(
xt|νi, νiµi

)
are the compo-

nents of Gamma densities of the form,

G

(
xt|νi,

νi
µi

)
=

(
νi
µi

)νi
Γ(νi)

x
(νi−1)
t exp

(
− νi
µi
xt

)
(3.2)

with mean µi and shape parameter νi. Further, the mixture weights satisfy the

constraint
M∑
i=1

wi = 1. The parameter set is represented as, λ = {w, µ, ν}, where

w = [w1, w2, . . . , wM ]T , µ = [µ1, µ2, . . . , µM ]T and ν = [ν1, ν2, . . . , νM ]T .

In the Bayesian framework, the model parameters are obtained by specifying prior

distributions to model parameters. The parameter estimation can be simplified by

introducing a latent variable Z = [z1, z2, . . . , zN ]T for each time step. The variable

zt is an M -dimensional binary random variable, zt = [zt1, zt2, . . . , ztM ]T , in which a

particular element is equal to 1 and all other elements are zero, i.e.
M∑
i=1

zti = 1 and

zti ∈ {0, 1}. The variable zt denotes the component to which the data xt belongs,

and hence it is also called an indicator variable. The conditional distribution of xt

given zt is

p(xt|zti = 1) ∼ G

(
xt|νi,

νi
µi

)
(3.3)

The posterior probability of the model parameters and latent variable are obtained

by applying Bayes’ Rule as

p(λ|X) ∝ p(X|λ)p(λ) (3.4)
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where the parameter set λ includes the latent variable as well. The likelihood function

given the latent variable is

p(X|λ) = p(X|Z, µ, ν) =
N∏
t=1

M∏
i=1

(
G

(
xt|νi,

νi
µi

))zti
Following Wiper et al. (2001), the prior distribution over the model parameter is

given as

p(λ) = p(Z|w)p(w)p(µ)p(ν) with

p(Z|w) =
N∏
t=1

M∏
i=1

wztii ,

p(w) = Dir(w|Φ) = C(Φ)
M∏
i=1

wφi−1i , Φ = [φ1, . . . , φM ]T ,

p(ν) = Exp(ν|θ) =
M∏
i=1

1

θi
exp(−θiνi), θ = [θ1, . . . , θM ]T , and

p(µ) = GI(µ|α, β) =
M∏
i=1

βαi
i

Γ(αi)
µ−αi−1
i exp(−βi

µi
), α = [α1, . . . , αM ]T and β = [β1, . . . ,

βM ]T where Dir,Exp, and GI represent Dirichlet, Exponential, and Inverted Gamma

distributions respectively, and C(Φ) is a normalizing constant. The prior distribution

is made non-informative by assigning following values to the hyper-parameters:

φi = 1; θi = 0.01; αi = βi = 1 for i = 1, . . . ,M .

The posterior distribution p(λ|X) does not have a closed form and has to be esti-

mated by either deterministic approximation (variational Bayes methods) or stochas-

tic approximation (MCMC or Markov chain Monte Carlo methods). In this study

the posterior distribution is estimated using stochastic approximation by sampling

the posterior distribution with Gibbs sampler, an MCMC algorithm (Geman and

Geman, 1984) as described in Section 3.4.1.

In the above formulation of Gamma-MM, it is assumed that the number of mix-

ture components, M , is known. However, in a general context, M is not known and

should be estimated from data. One approach for estimating M is to consider it as

a model parameter, assign prior distribution to it and estimate posterior distribu-

tion by MCMC method. Since changing M will result in a different model structure,

usual MCMC algorithms such as Gibbs sampler cannot be applied. Instead reversible
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jump MCMC [RJMCMC; Green (1995) and Richardson and Green (1997)] may be

used. This study employs RJMCMC for Gamma-MM as described by Richardson

and Green (1997) and Wiper et al. (2001). The results suggested that RJMCMC al-

gorithm requires significantly higher number of iterations for convergence compared

to a model where M is specified. An alternative approach is to start with a model

having sufficiently large number of components, M , the Bayesian algorithm auto-

matically prunes the components that are not relevant for modeling by making the

mixing ratio (w) very small, thereby determining optimum number of components.

The latter approach is recommended for hydrological applications where the number

of components is usually limited to 2 or 3.

In the Bayesian framework, mixture models frequently suffer from an identifia-

bility problem i.e., a M component mixture model will have a total of M ! equiva-

lent solutions. The problem can be avoided by introducing asymmetry in the like-

lihood function. For example, in the context of Gamma-MM, Wiper et al. (2001)

recommended the following restriction on the means of the mixture components,

µ1 < µ2 < . . . < µM . However, for finding a good density model, as required in the

present application, the problem of identifiability is not relevant because any of the

equivalent solutions is as good as another (Bishop, 2006).

3.4.1 Gibbs sampling algorithm

The Gibbs sampling algorithm samples posterior distribution of the parameters

by sequentially sampling from the conditional distribution of a parameter given all

other parameters. The sampling starts with an initial value and proceeds as follows:

1. Set iteration number j = 0, and parameters to their initial value λ(0) = [w(0), µ(0),

ν(0)]. The initial value is obtained by randomly sampling from the prior distri-

bution of the parameters.



54

2. Sample from p
(
zj+1
t |X,w(j), µ(j), ν(j)

)
∼ Multinomial(zt|rt)

where rt = [rt1, . . . , rtM ]T , rti =
Sti∑M
i=1 Sti

and sti = wiG
(
xt|νi, νiµi

)
and

Multinomial represents multinomial distribution.

3. Sample from p
(
w(j+1)|X,Z(j+1), µ(j), ν(j)

)
∼ Dir(w|Φ)

where Φ̂ = [φi + ni, . . . , φM + nM ]T and ni =
N∑
t=1

zti.

4. Sample from p
(
µ(j+1)|X,Z(j+1), w(j+1), ν(j)

)
∼ GI(µ|α̂, β̂)

where α̂ = [αi + niνi, . . . , αM + nMνM ]T and

β̂ =

[
βi + νi

N∑
t=1

xtzti, . . . , βM + νM

N∑
t=1

xtztM

]T
.

5. Sample from p
(
ν(j+1)|X,Z(j+1), w(j+1), µ(j+1)

)
. This conditional distribution

does not have a closed form. Hence samples are generated using Metropolis-

Hasting algorithm. In the Metropolis-Hasting algorithm, a sample is generated

from a proposal distribution p(ν̃i|νi) ∼ G(h, h|νi) and is accepted with a prob-

ability min
{

1, f(ν̃i)p(νi|ν̃i)
f(νi)p(ν̃i|νi)

}
where f(νi) ∝

νniνi
i

Γ(νi)ni
exp

(
−νi

(
θi +

∑
t xtzti
µi

+ nilogµi − log

(
N∏

t=1;zti=1

xt

)))
If the new sample ν̃i is rejected, the current value of νi is retained. The above

procedure is repeated to sample νi for all components i = 1, . . . ,M . In this

study the parameter of the proposal distribution, h, is set to 2.

6. Set j = j + 1 and go to Step 2 until convergence. In this study, 15000 samples

were generated after ignoring an initial 500 samples (burn-in period). Trace

plots of the samples were monitored for convergence.

To keep the notations uncluttered, the iteration number is omitted from the param-

eters of the conditional distributions.
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3.5 Results and discussion

The proposed approach is applied to study 4-month and 12-month droughts that

correspond to a monsoon season (June to September) and water-year (June to May)

drought in India, respectively. Following the procedure described in the Methodology

section (Section 3.3), first, an annual time-series of cumulative rainfall during the

monsoon season and water-year is computed. Next, the droughts are classified ap-

plying the traditional SPI and the proposed approach. Both approaches assume that

cumulative time-series are stationary, and consist of independent and identically dis-

tributed samples. In the following paragraphs, results are presented for three selected

grid-points (shown in Figure 3.1) that reveal similarities and differences between the

two drought classification approaches. As more than 80% of the rainfall in the study

area is received during the monsoon season, the water-year and monsoon droughts

exhibit similar characteristics. Hence, for brevity, the results are presented only at the

three selected grid-points for water-year droughts, and at only one grid point for the

monsoon season. Results and discussion comparing the proposed probabilistic SPI

with HMM-based probabilistic drought classification at one grid point in the study

area are also included below.

3.5.1 Grid 125 (21◦30′ N and 82◦30′ E):

The grid point is located in the state of Chhattisgarh and belongs to the core-

monsoon region of India. Figure 3.2 shows the empirical cumulative distribution

function (CDF) obtained by using Weibull plotting position formula (Chow et al.,

1988) along with CDFs of fitted gamma distribution (fitted using maximum likelihood

approach) and gamma mixture model (Gamma-MM) for water-year rainfall. The

CDF of Gamma-MM is closer to empirical CDF than the CDF of gamma distribution,

particularly for the smaller rainfall values [F (X) < 0.25], which are critical for drought

classification. The Gamma-MM owes its better fit to the large number of tuning
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parameters (3M − 1, where M is number of components in Gamma-MM) compared

to the two-parameter gamma distribution.

Figure 3.2. Empirical CDF along with CDFs obtained by fitting gamma
distribution (Gamma CDF) and gamma mixture model (Gamma-MM
CDF) to the cumulative rainfall in a water-year at Grid 125. The grey
band shows 5th and 95th percentile of the Gamma-MM CDF and the green
dotted line shows the width of its credible interval.

Increasing the number of mixture components (M) ensures that the model pro-

vides better fit to the data. However, it may also result in over-fitting. The proposed

approach addresses this problem by using a Bayesian framework that avoids overfit-

ting by marginalizing over the model parameters instead of making point estimates.

Figure 3.3 shows the mixing ratio of a 5-component Gamma-MM fitted to cumulative

water-year rainfall at Grid 125. The model identifies that three of the five compo-

nents have negligible contribution and are effectively pruned from the model. Thus,

the Bayesian framework identifies optimal number of mixture components needed to

fit the data.
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Figure 3.3. Mixing ratios of the components of a Bayesian Gamma-MM.
Two components are identified to be significant for characterizing water-
year drought at Grid 125.

The Bayesian framework also allows quantification of model uncertainties and

their propagation to model estimates. In the context of Gamma-MM, the posterior

distribution of model parameters is estimated and the CDF is obtained. Unlike the

maximum likelihood approach that yields a point estimate of CDF, the Bayesian

approach treats the CDF as a random variable and yields the distribution of CDFs

for a given value of rainfall. The grey shaded band in Figure 3.2 represents 90%

credible interval (5th and 95th percentile). The credible interval’s width represents the

uncertainties in estimated parameters based on available data and therefore represents

epistemic uncertainty. The width of the credible interval is not constant but varies
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with the magnitude of rainfall. It has a maximum value of 0.16 near the median

rainfall (1260 mm), a plateau near the intersection of two components ( 900 mm;

Figure 3.5), and a monotonic decreasing trend on either side of the median. Figure

3.5 shows that the CDF curve becomes almost horizontal, meaning a small change

in the value of the CDF yields a large variation in rainfall values. Further, the

credible interval is smaller for extreme rainfall events than wider intervals for mid-

range rainfall events. However, when the credible interval is normalized with respect

to the PDF (see Figure 3.4), the uncertainty associated with extreme rainfall events is

revealed. Typically, if more data (longer records) were available, the credible interval

in the middle portion of the CDF would reduce compared to the extreme region as

there are only a smaller number of extreme events.

Figure 3.4. Normalized credible interval for Gamma-MM model at Grid
125 shown in Figure 3.2.

The width of the credible interval is large even for smaller values of CDFs that de-

cide drought classes in SPI methodology. This study used credible interval of CDF for

drought classification. Figure 3.6(b) shows the drought classification using standard

SPI method. The empirical CDF along with the fitted CDF and drought classifi-

cation thresholds are shown in the figure. The SPI drought classification uses fixed
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Figure 3.5. Relative frequency of the cumulative rainfall amounts in
a water-year at Grid 125, and probability density functions of the fit-
ted gamma distribution (Gamma PDF) and gamma mixture model
(Gamma-MM PDF). The grey band shows 90% credible interval (5th

and 95th percentile) of the Gamma-MM PDF.

thresholds, hence the boundaries separating two drought classes are vertical lines on

the panel. The top panel of Figure 3.6 shows probabilistic drought classification by

using Gamma-MM. The classification uses the same thresholds on CDF as SPI but

engages uncertainty in the estimate of CDF resulting in probabilistic drought clas-

sification. Unlike the standard SPI, the demarcating boundaries in the probabilistic

SPI are curves denoting varying classification probabilities.

The probabilities associated with drought classification represent uncertainties

in determining drought classes. For example, the D4 category drought represents

drought conditions where non-exceedance probability of the cumulative rainfall is

less than 0.023 [F (X) < 0.023; Table 3.1], i.e. the magnitude of rainfall during

a D4 drought event is less than the amount of rainfall having the non-exceedance
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Figure 3.6. Drought classification using rainfall at Grid 125 by the prob-
abilistic SPI (top panel) and standard SPI (bottom panel). The colored
patches represent drought classes, the light horizontal lines denote thresh-
olds on CDF specified by US Drought Monitor, and the solid curves rep-
resent empirical and fitted CDFs.

probability of 2.3%. The probabilistic drought classification acknowledges that, given

limited data and model assumptions, such a threshold cannot be determined uniquely

but can be estimated probabilistically. The method honors model uncertainty and

provides results in a format that could be useful for drought managers.

Figure 3.7 shows historical drought classes at Grid 125 using standard SPI, prob-

abilistic SPI, and HMM-based drought classification (HMM-DI). The droughts clas-

sified by probabilistic SPI (Figure 3.7a) and standard SPI methods (Figure 3.7c)

are similar, however, the advantages of probabilistic classification are evident in some

years. For example, in 1998, 1999 and 2000 the cumulative rainfall values were 69 cm,

73 cm, and 66 cm, respectively. Considering that the difference in cumulative rainfall

among these years is less than 3% of their standard deviation (30 cm), we would
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not have expected them to belong to two different drought classes as categorised by

SPI (1998 and 2000 in D4, and 1999 in D3). The probabilistic SPI classifies 1998,

1999 and 2000 to D3 class with probability 55%, 60% and 25%, and to D4 class with

probabilities 40%, 5% and 75%, respectively (the remaining probabilities being given

to other drought classes). The historical drought classes at Grid 125 using HMM-DI

are shown in Figure 3.7b. Compared to the probabilistic SPI results (Figure 3.7a),

drought classes obtained using HMM are more conservative. This is evident for the

years 1920, 1924, 1998 and 2000 where droughts are classified with higher probabil-

ities, or in a more severe category by HMM-DI compared to drought classification

using probabilistic SPI. An HMM with 11 hidden states may suffer from an over-

specification problem.

Figure 3.7. Classification of historical droughts during a water-year at
Grid 125 using probabilistic SPI, HMM-DI, and standard SPI approaches.
The solid blue line represents cumulative rainfall during a water-year, a
colored bar denotes drought classes and its length represents probability
of drought state.
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Figure 3.8 shows the relative frequency of the rainfall during the monsoon months,

JJAS, at Grid 125. As in the case of water-year rainfall (Figure 3.5), the mon-

soon rainfall also exhibits two distinct modes that are captured by the 2-component

Gamma-MM but missed by the gamma distribution. Figure 3.9 shows the empirical

CDF of the monsoon rainfall along with CDFs of the fitted gamma distribution, and

Gamma-MM model with its 90% credible interval. The width of the credible interval

is widest (0.17) near the median rainfall (1140 mm), a plateau at the intersection of

two components of the Gamma-MM ( 800 mm, Figure 3.8) and a monotonic decreas-

ing trend away from the median, similar in nature to Figure 3.5. Figure 3.10 presents

the demarcating boundaries for the drought classes determined by the two meth-

ods. As in the case of water-year droughts (Figure 3.6), the demarcating boundaries

for probabilistic SPI are S-shaped curves. The classification of historical monsoon

droughts by standard SPI and, probabilistic SPI are similar except for some subtle

differences (Figure 3.11). In 1901, 1902 and 1924, the monsoon rainfall at Grid 125

were 90 cm, 85 cm and 88 cm, respectively. Standard SPI classifies 1901 in D0 class,

but 1902 and 1924 in D1 class even though their differences from 1901 rainfall are

not significant (5cm and 2cm, respectively). Probabilistic SPI classifies all the three

years in D0 and D1 classes with probabilities 60% & 39%, 19% & 81%, and 37% &

63%, respectively.
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Figure 3.8. Relative frequency of the cumulative rainfall amounts during
the south-west summer monsoon months (JJAS) at Grid 125, and prob-
ability density functions of the fitted gamma distribution (Gamma PDF)
and gamma mixture model (Gamma-MM PDF). The grey band shows
90% credible interval (5th and 95th percentile) of the Gamma-MM PDF.
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Figure 3.9. Empirical CDF along with CDFs obtained by fitting gamma
distribution (Gamma CDF) and gamma mixture model (Gamma-MM
CDF) to the cumulative rainfall during the south-west summer monsoon
months (JJAS) at Grid 125. The grey band shows 5th and 95th percentile
of the Gamma-MM CDF and the green dotted line shows width of its
credible interval.
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Figure 3.10. Drought classification using rainfall during the south-west
summer monsoon months (JJAS) at Grid 125 by the probabilistic SPI
(top panel) and standard SPI (bottom panel). The colored patches repre-
sent drought classes, the light horizontal lines denote thresholds on CDF
specified by US Drought Monitor, and the solid curves represent empirical
and fitted CDFs.
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Figure 3.11. Classification of historical droughts during the south-west
summer monsoon months (JJAS) at Grid 125 using probabilistic and stan-
dard SPI approaches. The solid blue line represents cumulative rainfall
during a water-year, a colored bar denotes drought classes and its length
represents probability of drought state.
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3.5.2 Grid 251 (26◦30′ N and 95◦30′ E):

This grid point is located in North-East India, which is among the highest rainfall

receiving regions of the world. Figure 3.12 shows the relative frequency of the rainfall

received during a water year. The data exhibits two distinct modes that are captured

by the 2-component Gamma-MM but completely missed by the gamma distribution.

Figure 3.13 shows the empirical CDF of the cumulative rainfall along with CDFs of

the fitted gamma distribution, and Gamma-MM model with its 90% credible inter-

val. The credible interval is widest near the intersection of two components of the

Gamma-MM (Figure 3.12). Figure 3.14 presents the demarcating boundaries for the

drought classes determined by the two methods. A notable feature in the figure is

a relatively diffuse boundary separating D0 category drought from the normal state

in probabilistic SPI which can be attributed to a relatively wide credible interval in

that range (2500 mm to 3500 mm, Figure 3.13). The drought classification of the

historical data is given in Figure 3.15. Compared to standard SPI, the probabilistic

SPI is more conservative in assigning D4 category drought. For example, 1953, 1954

and 1955 are the lowest rainfall years in the record with cumulative rainfall of 98 cm,

124 cm and 125 cm, respectively. Standard SPI classifies only 1953 in D4 class while

probabilistic SPI classifies all the three years in D4 class with probabilities 99%, 74%

and 71%, respectively.
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Figure 3.12. Relative frequency of the cumulative rainfall amounts in a
water-year at Grid 251 in NE India, and probability density functions of
the fitted gamma distribution (Gamma PDF) and gamma mixture model
(Gamma-MM PDF). The grey band shows 90% credible interval (5th and
95th percentile) of the Gamma-MM PDF.
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Figure 3.13. Empirical CDF along with CDFs obtained by fitting gamma
distribution (Gamma CDF) and gamma mixture model (Gamma-MM
CDF) to the cumulative rainfall in a water-year at Grid 251 located in NE
India. The grey band shows 5th and 95th percentile of the Gamma-MM
CDF and the green dotted line shows width of its credible interval.
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Figure 3.14. Drought classification using rainfall at Grid 251 in NE India
by the probabilistic SPI (top panel) and standard SPI (bottom panel).
The colored patches represent drought classes, the light horizontal lines
denote thresholds on CDF specified by US Drought Monitor, and the solid
curves represent empirical and fitted CDFs.

Figure 3.15. Classification of historical droughts during a water-year at
Grid 251 in NE India using probabilistic and standard SPI approaches.
The solid blue line represents cumulative rainfall during a water-year, a
colored bar denotes drought classes and its length represents probability
of drought state.
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3.5.3 Grid 278 (28◦30′ N and 70◦30′ E):

This grid point belongs to the Thar Desert in western India where the annual

rainfall is much smaller than rest of the country. Figure 3.16 shows the relative

frequency of the cumulative rainfall during a water year along with PDFs of gamma

distribution and Gamma-MM. The Gamma-MM selects only one component and

yields a distribution that is very similar to that of gamma distribution (Figures 3.16

and 3.17). The 90% credible interval shows a peak near 100 cm which lies in the

tail of the rainfall distribution and has implications on drought classification. Figure

3.18 illustrates drought classification by the standard SPI and probabilistic SPI. The

two methods provide similar drought classification except for a few minor differences.

The cumulative rainfall of 100 cm represents normal state according to standard SPI

classification, however owing to a wide credible interval, the rainfall is assigned to

D0 drought category by probabilistic SPI, albeit with a small probability (1.5%).

The classifications of the historical droughts by the two methods are very similar

(Figure 3.19). Thus, for the scenarios where data support the gamma distribution

assumption of SPI, the results of Gamma-MM based probabilistic SPI and standard

SPI are similar.
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Figure 3.16. Same as Figure 3.12 but for Grid 278 in the Thar Desert of
Western India.

Figure 3.17. Same as Figure 3.13 but for Grid 278 in the Thar Desert of
Western India.
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Figure 3.18. Same as Figure 3.14 but for Grid 278 in the Thar Desert of
Western India.

Figure 3.19. Same as Figure 3.15 but for Grid 278 in the Thar Desert of
Western India.
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3.6 Summary and concluding remarks

1. A probabilistic drought classification method is proposed as an alternative to (i)

deterministic classification by standard SPI, and (ii) probabilistic classification

by HMM.

2. The proposed method alleviates the problem of choosing a suitable distribution

for SPI analysis by modeling the data with a mixture of gamma distributions.

Given sufficient components in the mixture, the Gamma-MM can give arbitrar-

ily close approximation to any general continuous distribution in the range.

3. The problem of overfitting the data is avoided by using Bayesian framework

that determines optimum number of components needed by the model.

4. The proposed method propagates model uncertainties to drought classification

by providing probabilistic drought classes.

5. The method was tested on rainfall data over India. Specifically, droughts dur-

ing the water year (June-May) and the south-west monsoon season (JJAS) were

studied in detail using the proposed method. The results suggest that drought

classification by the proposed method is similar to standard SPI classification

where the data satisfy SPI assumptions. However, the results of the new method

are markedly different and more intuitive than SPI results for situations where

the data violate SPI assumptions. The drought classifications obtained using

the proposed method were less conservative compared to the probabilistic clas-

sifications by HMM with 11 hidden states as the proposed method avoids the

problem of over-specification.

The proposed Gamma-MM method for probabilistic drought classification has a

slightly more involved algorithm than standard SPI, but the former quantifies un-

certainty in drought classification, a critical input for hydrological decision-making

(Pappenberger and Beven, 2006). Recent studies have highlighted the need of proba-

bilistic analysis for characterizing droughts (Mishra et al., 2009), forecasting droughts
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(Madadgar and Moradkhani, 2013; AghaKouchak, 2014), performing drought risk

analysis (Hayes et al., 2004), determining drought recovery (Pan et al., 2013), and

managing droughts (Song, 2011). The proposed approach, owing to its probabilistic

framework and relatively simple algorithm compared to the HMM-DI, can be a viable

tool for these analyses.

In this chapter, a probabilistic SPI was applied to rainfall data. However, the

proposed method can be easily extended to classifying droughts using other hydro-

meteorological variables such as streamflow, runoff, groundwater, and soil moisture

for which SPI-like indices have been proposed in the literature. Many of these hydro-

meteorological variables have large measurement uncertainties, which are ignored

in standard SPI type analysis, but can be easily engaged in the proposed method.

Further, probabilistic drought classification was being carried out using previously

observed precipitation data. However, the Gamma mixture model with known pa-

rameters can be used to model future precipitation sequences. The uncertainties

associated in the CDF of these precipitation sequences would be referred to as predic-

tion intervals. Note that the prediction intervals will be wider than credible intervals

because they account for both the model uncertainty and the noise in precipitation

data. Using the framework presented in this chapter, the prediction intervals can

then be engaged to obtain probabilistic drought classification for the selected future

time period of analysis.
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4. IDENTIFICATION OF HOMOGENEOUS DROUGHT
REGIONS

This article will be submitted to a suitable journal for publication.

4.1 Introduction

Droughts are complex natural phenomena that are primarily caused due to deficit

in precipitation over a region. Due to the ever-increasing water demand for human

consumption, agricultural activities, and industries, a lack of water availability dur-

ing droughts can have devastating effects on all living beings, deteriorate the water

quality, as well as hurt the economy (Wilhite, 2000). Also, regions that are most vul-

nerable to droughts are subject to continual environmental degradation and, when

neglected, can lead to desertification (Glantz and Orlovsky, 1983).

Historic droughts are ranked and classified based on drought characteristics such

as severity, timing, duration, and spatial extent. Whenever droughts manifest, they

last for an extended period and affect large geographic regions, as opposed to the

relatively local nature of hydrologic processes such as precipitation and streamflow.

Thus the areal extent of droughts is an essential factor for drought management

purposes.

It is also not uncommon for a region to be arid while a neighboring region ex-

periences above-normal precipitation. Such a scenario is frequently a result of the

presence of geographic features such as mountains, complex atmospheric circulation

patterns, and local hydrological processes over the affected area (Bravar and Kavvas,

1991). Therefore, it is a challenge to find areas with similar drought characteristics,

especially over a country as large and geographically and climatologically diverse as

India. According to Dracup et al. (1980), any process of finding homogeneous drought

regions should consider the homogeneity of both climate and geomorphology. Once
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contiguous areas having similar drought characteristics are identified, they provide

means to pool the hydrometeorological data over the area (Dracup et al., 1980) and

analyze the spatial and temporal properties of droughts on a regional scale, leading

to efficient drought management (Wilhite and Svoboda, 2000).

There are several regionalization studies for hydrometeorological variables such as

precipitation, temperature, etc. For example, Gadgil and Joshi (1983) used princi-

pal component analysis on monthly precipitation and temperature series over several

stations in India. Puvaneswaran (1990) used factor and cluster analysis on monthly

and seasonal meteorological series to find homogeneous regions over Queensland, Aus-

tralia. Stooksbury and Michaels (1991) used average linkage clustering on daily tem-

perature and precipitation series and other statistics to find homogeneous clusters

over the southeastern United States. Leber et al. (1995) used factor analysis and

Ward’s clustering on monthly and seasonal meteorological data over Tibet. Wards

clustering and k -means on several monthly precipitation and temperature indices were

used over the northeastern United States by Degaetano (1996). Ahmed (1997) used

factor analysis, and Alijani et al. (2008) used Ward’s linkage clustering for region-

alization of meteorologic data over Saudi Arabia and Iran, respectively. Sahin and

Cigizoglu (2012) and Iyigun et al. (2013) used monthly precipitation, temperature,

relative humidity, and climate indices to find homogeneous regions over Turkey using

neuro fuzzy-based clustering and Ward’s clustering. Bharath and Srinivas (2015) used

wavelet-based fuzzy c-means cluster analysis for the delineation of similar hydromete-

orological regions over India and also highlighted the need to have long records when

using principal components as predictors within any clustering algorithm. Their study

used monthly time series of precipitation, minimum temperature, and maximum tem-

perature at 0.5◦ spatial resolution to identify 29 homogeneous hydrometeorological re-

gions. Over each hydrometeorological region, regional drought analysis was performed

using standardized precipitation evapotranspiration index (SPEI). Principal compo-

nent analysis on hydrometeorological variables was used by Aldrian and Dwi Susanto

(2003) and Abatzoglou et al. (2009) for regionalization in Indonesia and California,
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respectively, and in combination with an artificial neural network by Malmgren and

Winter (1999) over Puerto Rico. Clustering is also used in other hydro-meteorological

applications such as optimization of networks of weather stations (DeGaetano, 2001),

identification of homogeneous regions for regional frequency analysis of precipitation

extremes (Kyselỳ et al., 2007), regional flood frequency analysis (Srinivas et al., 2008)

and locating climatologically homogeneous regions (Matulla et al., 2003; Unal et al.,

2003).

Several studies have used clustering methods to obtain homogeneous drought

regions (Stahl and Demuth, 1999; Alvarez and Estrela, 2003; Lana et al., 2001).

Vicente-Serrano (2006a) analyzed spatial patterns of droughts using principal com-

ponent analysis and found that these patterns changed with the time-scale of analysis

and reported finding incoherent clusters for 24- and 36-month time-scales. Vicente-

Serrano (2006b) used a hierarchical clustering algorithm to find homogeneous drought

regions over the Iberian Peninsula. Zhang (2004) used the fuzzy clustering technique

to sub-divide maize growing areas based on their vulnerability to droughts. Trnka

et al. (2009) used hierarchical clustering to group stations with similar drought char-

acteristics. The usefulness of identifying homogeneous regions was demonstrated in

the study by Hisdal and Tallaksen (2003), where severity-area-frequency curves were

developed, that allowed the estimation of the return period of drought events. Han-

naford et al. (2011) used spatial coherence of droughts between homogeneous regions

within Europe to facilitate an early warning system of droughts in a target region, us-

ing information about droughts developing elsewhere. Some studies have also looked

at the identification of homogeneous drought regions over parts of India. For exam-

ple, Ghosh and Srinivasan (2016) analyzed spatio-temporal characteristics of droughts

over southern peninsular India using k -means, while Goyal and Sharma (2016) used

fuzzy c-means approach for finding homogeneous meteorological drought regions over

western India. The drought clusters identified in these studies provide useful insights

into homogeneous clusters over sub-regions in India.
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A challenge encountered in clustering studies is that every algorithm has its

strengths and weaknesses (Duda et al., 2012; Fred and Jain, 2005; Kuncheva and

Hadjitodorov, 2004). Depending on the choice of the clustering algorithm, the di-

mensionality of the input dataset and model parameters, cluster assignments can

differ. Several cluster ensemble techniques are proposed in the literature where out-

puts from multiple clustering algorithms, or various parameter settings (e.g., number

of clusters K in k -means) of the same algorithm, are combined to obtain final cluster

assignments. Among them are (a) feature-based methods where clustering results ob-

tained from several base clustering algorithms are used as inputs to another model,

thereby turning it to a problem of clustering of cluster labels (Nguyen and Caruana,

2007) (b) graph partition methods (Strehl and Ghosh, 2002), and (c) pairwise simi-

larity approach (Fred and Jain, 2005; Monti et al., 2003). Studies have shown that

irrespective of the approaches listed above, the final cluster assignments were robust

when diverse base clustering models were used within the ensemble (Law et al., 2004;

Kuncheva and Vetrov, 2006; Monti et al., 2003; Ayad and Kamel, 2003). The link-

based similarity method harnesses the simplicity offered by the pairwise similarity

method of utilizing similarity between data points, but also extracting the underlying

information due to the association between different clusters in the ensemble. The

clustering of clusters has been applied in several domains, such as gene expression

analysis (Monti et al., 2003), satellite image analysis (Kyrgyzov et al., 2007), social

network analysis (Klink et al., 2006), but not in hydrologic or meteorologic studies.

In this study, homogeneous drought regions over India are identified using multi-

ple drought indices and clustering algorithms at different times scales. Two methods

of combining the results from different clustering algorithms are presented. Drought

characteristics obtained from standardized precipitation index (SPI), standardized

precipitation evapotranspiration index (SPEI), and probabilistic SPI (pSPI) are used

in this study. Unsupervised clustering methods, namely Markov random field-based

graph cuts algorithm, k -means, and hierarchical agglomerative clustering, are used to

obtain an initial set of homogeneous drought regions. The homogeneous drought re-
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gions from each clustering method are compared in terms of their number and spatial

extent. The stability of these clusters for different combinations of inputs (drought

characteristics, land-use, geographic information, etc.) and time-scale of analysis (4-

month, 12-month, etc.) is examined. The evolution of homogeneous drought regions

over time is studied by performing clustering for different epochs. Finally, the cluster-

ing of homogeneous drought clusters obtained from different base clustering methods

is presented using (i) similarity matrix and (ii) connected triple-based similarity ap-

proaches. Regional drought characteristics are studied by appropriately pooling the

data from resulting homogeneous drought clusters, and products such as intensity-

duration-frequency curves and intensity-area-frequency curves are developed for each

region. The results reported in this study are expected to help policy-makers and

water resources managers in developing effective water management and drought

mitigation plan for each region.

4.2 Study area and data used

The geographical region chosen for this study is India (Figure 4.1). The study

area comprises of the following broad climate regimes: arid (northwest India), semi-

arid (Indo-Gangetic plains, central, and interior peninsular India), humid (coastal

areas, southern peninsula and northeastern India) and alpine (Himalayan ranges in

the north) regions. Although in varying amounts, the majority of India receives pre-

cipitation during the southwest monsoon (June to September), while some of the

southeastern states receive precipitation during the northeast monsoon season (Octo-

ber to December). When considering temperature across India, winter months typ-

ically span between December to February, with northern India experiencing lower

temperatures compared to southern India. Summer months typically span between

March to May, with the highest temperatures recorded in northern and western parts

of India. Based on monsoon precipitation data collected over 306 representative sta-

tions, the Indian Institute of Tropical Meteorology (IITM) divides the study area into
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five homogeneous monsoon regions (Mooley et al., 1981; Kothawale and Rajeevan,

2017). Figure 4.2 shows the average annual precipitation totals (June to May) for

the water years 1902 to 2004 over the study area. The precipitation total during

the water year 1902 is computed by summing monthly precipitation total between

June 1901 to May 1902, and so on. The mean, maximum, minimum, and standard

deviation of these precipitation totals are 1085.5 mm, 1333.6 mm (during 1918 water

year), 831.4 mm (during 2003 water year), 101.8 mm, respectively. The histogram

of water year precipitation totals for the five homogeneous monsoon regions of the

entire study area are shown in Figure 4.3. During the period 1901-2004, northwestern

India receives the least precipitation with a mean annual total of 539.5 mm and a

standard deviation of 142 mm (Figure 4.3a). Similarly, northeastern India receives

the highest precipitation with a mean annual precipitation total of 2068 mm and a

standard deviation of 174 mm (Figure 4.3b).

Gridded daily precipitation data from the India Meteorological Department (IMD)

(Rajeevan, 2006) available over 355 grids for the period 1901 to 2004 at 1◦×1◦ spatial

resolution (Figure 4.1) were used in this study. The daily precipitation series at

each grid were aggregated to obtain monthly precipitation data. A higher resolution

precipitation dataset from IMD (Pai et al., 2014) available at 4913 grids over India

at a resolution of 0.25◦ × 0.25◦ from 1901 to 2019 was used to test the sensitivity of

regionalization results to the spatial resolution of the inputs provided to clustering

algorithms. Drought characteristics at multiple time scales (4-month and 12-month

time windows) using SPI (McKee et al., 1993), SPEI (Vicente-Serrano et al., 2010),

and pSPI (Mallya et al., 2013) were computed. Other datasets used for this study

include: 0.5◦ × 0.5◦ gridded temperature data for SPEI analysis (UDelAirTPrecip,

http://www.esrl.noaa.gov/psd/), and land cover data was obtained from Roy et al.

(2016) (https://tinyurl.com/vp6txe5). The land use and land cover data (LULC)

over India with a spatial resolution of 100m is shown in Figure 4.4 and corresponds

to the year 2005. The data corresponding to only the year 2005 was used in the study.

According to this LULC dataset, the following are the top 5 land use classes over the
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Figure 4.1. Study area with 1◦ × 1◦ India Meteorological Department
(IMD) precipitation grids shown as green circular markers. Homogeneous
monsoon regions (IITM) over India are shown in the background.

study area: Corp land (48%), Deciduous broadleaf forests (9%), Fallow land (14%),

Evergreen broadleaf forests (12%), and Shrubland (11%). A detailed legend for LULC

classes shown in Figure 4.4 is given in Table 4.1. The percentage of each land use class

within 1◦ × 1◦ grid over India was computed using geographic information software

(GIS).
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Figure 4.2. Average water year precipitation time series over India.

Table 4.1.
Land Use and Land Cover classes across India

No. Description No. Description

1 Deciduous Broadleaf Forest 11 Aquaculture

2 Crop land 12 Mangrove Forest

3 Built-up Land 13 Salt Pan

4 Mixed Forests 14 Grassland

5 Shrubland 15 Evergreen Broadleaf Forest

6 Barren land 16 Deciduous Needleleaf Forest

7 Fallow land 17 Permanent wetland

8 Wasteland 18 Snow and Ice

9 Water bodies 19 Evergreen Needle forest

10 Plantations
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Figure 4.4. Land Use and Land Cover classification over India during
2005.
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4.3 Methodology

4.3.1 Clustering using k -means

The k -means is a clustering algorithm that groups data available at G grids or

stations over the study area into K groups of equal variance by minimizing the within-

cluster sum of squared deviations about the centroid. The number of clusters, K, for

k -means algorithm has to be pre-specified. The objective function may be written as:

argmin
S

K∑
i=1

∑
x∈Si

||x− µi||2 (4.1)

where x1, . . . ,xG are observations over G grids, and each observation can be a d-

dimensional real vector. The observations x1, . . . ,xG are divided into K sets S =

{S1, . . . , SK}, with µi representing the mean of data belonging to set Si.

The k -means algorithm works as follows:

1. Pre-specify the number of clusters K in the model.

2. Randomly select K data points as the centroids.

3. Calculate the distance of each data point x to each of the K centroids, and

assign the data point to the cluster whose centroid is the closest.

4. Calculate the position of the centroid based on the cluster assignments obtained

in step 3.

5. Repeat steps 3 and 4 until there is no change in cluster assignment or maximum

iterations has reached. Typical value of maximum iterations is 100.

In many real-world applications, like the one discussed in this chapter, the number

of clusters is not known before hand. Therefore, k -means clustering is repeated for

several values of K, and in each case model performance statistics such as Davis-

Bouldin (DB) index, Silhouette coefficient, and Bayesian information criteria (BIC)

score are computed.
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The Davies-Bouldin (DB) index is defined as follows (Davies and Bouldin, 1979):

DB =
1

k

k∑
i=1

max
i 6=j

Rij (4.2)

where Rij is a similarity metric defined such that it provides trade off between (a)

the average distance (si) between each point of cluster i and its centroid (i.e. scatter

within cluster i), and (b) the distance (dij) between cluster centroids i and j. This

similarity metric is calculated as follows:

Rij =
si + sj
dij

(4.3)

The Silhouette coefficient (Rousseeuw, 1987) provides a measure of how similar

a data point is to other members of its own clusters compared to members of other

neighboring clusters and is calculated as follows:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, if |Ki| > 1 (4.4)

where s(i) is the silhouette value of data point i belonging to cluster Ki and |Ki| is

the number of data points assigned to that cluster. Also a(i) is the mean distance of

the data point i to all other data in Ki and is given as:

a(i) =
1

|Ki| − 1

∑
j∈Ki,i 6=j

d(i, j) (4.5)

where d(i, j) is the distance between data points i and j within cluster Ki. Similarly,

b(i) in equation 4.4 is the smallest distance between data point i and all points in

any other cluster to which i is not assigned.

b(i) = min
m6=i

1

|Km|
∑
j∈Km

d(i, j) (4.6)

The BIC (Schwarz, 1978) is defined as follows:

BIC = G ln
RSS

G
+K ln(G) (4.7)
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where G is the total number of grids used for regionalization, K is the number of

homogeneous regions, and RSS is the residual sum of squares of the regionalization

model with K regions. The best model is the one with the smallest BIC value.

Therefore, the k -means model with the least DB index or the least BIC value or

the highest Silhoutte coefficient is chosen as the optimal model, and the optimal K

is noted.

4.3.2 Clustering using Markov Random Fields

The aim of regionalization is to find groupings (or clusters) of grid points such

that drought characteristics of grid points within a group are similar. To achieve this

aim, a metric is required that can quantify the similarity between the grid points

based on drought characteristics. Spatial contiguity of the clusters is also desired in

regionalization as droughts tend to be continuous in space. These two factors, simi-

larity metric and spatial contiguity, are addressed through a regionalization algorithm

developed in a Bayesian framework by using the concepts of Gaussian mixture model

(GMM) and Markov random fields (MRF), and is described below.

Let the drought state at grid l be given by Zl, l = 1, . . . , G (Zl = {z1, . . . , zM}

and Z = {Z1, . . . ,ZG}) where G is the total number of grid points and M is the

dimensionality of the input dataset. Let C be the number of clusters or regions, and

f = [f1, . . . , fG]T , fl ∈ 1, . . . , C be the cluster labels. The posterior distribution of the

cluster labels is obtained by using Bayes’ rule as:

P (f|Z) =
P (Z|f)P (f)

P (Z)
(4.8)

where P (f) is the prior probability of the cluster labels and P (Z|f) is the likelihood

function estimated as given by Tripathi and Govindaraju (2009):

P (Z|f) =
G∏
l=1

P (Zl|fl) =
G∏
l=1

C∏
c=1

N(Zl|µZc
,ΣZc)

Ilc (4.9)
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In Equation 4.9 Ilc is an indicator variable taking a value of one if fl = c, and zero

otherwise, and µZc
and ΣZc are the mean and covariance of the drought (or wet) state

in cluster c. The probability N(Zl|µZc
,ΣZc) will be large if the duration, magnitude,

and timing of the drought states in grid l are similar to those of the region c, and

small otherwise, thus providing the desired similarity metric.

To encode the preference for spatial contiguity in the clusters, the prior proba-

bility P (f) in Equation 4.8 is chosen to be a Markov random field (MRF). A MRF,

also known as a Markov network, is commonly used to model the joint distribu-

tion between spatially dependent variables. Using the Hammersley-Clifford theorem

(Clifford, 1990), P (f) is expressed as:

P (f) =
1

Ξ
exp

[
−
∑
l,m∈N

E (fl, fm)

]
(4.10)

where Ξ is a normalizing constant, E is an energy function in the space of clusters,

and N is a neighborhood set for the grid points. The prior distribution encodes

the belief that the grid points in the neighborhood set are more likely to have same

cluster labels - the degree of belief being controlled by the energy function. The

energy function was selected as:

E (fl, fm) =

0, if fl = fm,∀ l,m ∈ N

α, if fl 6= fm,∀ l,m ∈ N
(4.11)

A value of α = 0 corresponds to a uniform distribution in the space of clusters, i.e.

no preference for spatial contiguity is implied and P (f) is non-informative. Higher

values of α forces neighbors to be in the same clusters. It was observed that the choice

of prior distribution, P (f), essentially affects the cluster assignment of primarily those

grid points that are either on the fringes of a region or are outliers.

The posterior probability with an MRF prior cannot be estimated analytically.

In this study, for simplicity, the posterior distribution was approximated by a delta

function at its mode P (f|Z) : δ
(
f ȧ
)

by maximizing the logarithm of the posterior

distribution:
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f ȧ = argmax
f

G∑
l=1

C∑
c=1

lnP (Zl|fl,µZc
,ΣZc)−

∑
l,m∈N

E (fl, fm) (4.12)

The maximization is performed iteratively following the graph cuts algorithm

(Boykov et al., 2001) that guarantees the solution to lie within a constant factor from

the global maximum. The steps involved in maximizing the objective function are

described in detail in (Tripathi and Govindaraju, 2009). As in the case of k -means,

the clusters formed are evaluated using Davies-Bouldin (DB) index or Silhouette

coefficient or Bayesian information criterion (BIC).

4.3.3 Hierarchical clustering

Hierarchical clustering builds nested clusters by merging and splitting them it-

eratively until some prespecified criterion is satisfied. The hierarchy of clusters is

represented as a tree (or dendrogram). The root of the tree denotes a single clus-

ter with all samples. The leaves of the tree represent clusters with a single sample.

Agglomerative clustering (Gowda and Krishna, 1978) is a type of hierarchical clus-

tering where each sample initially represents a cluster. The clusters are then merged

together according to the linkage criteria. Different linkage criteria may be adopted,

such as:

1. Ward: minimizes the sum of squared differences within clusters, thus minimizing

the variance. This objective function is similar to k -means but clustering is

performed in a hierarchical manner.

2. Maximum linkage: minimizes the maximum distance between observations of

pairs of clusters.

3. Average linkage: minimizes average of distance of all observations between pairs

of clusters.
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4.3.4 Pairwise similarity matrix

Each of the three methods described above is likely to provide a unique set of

clusters, leading to the next challenge of combining the unique clustering results into

a meaningful single output. This problem is referred to as clustering of clusters.

To address this problem, a pairwise similarity matrix is constructed for each of the

M base clusters following Fred and Jain (2005). Given a dataset x = x1, . . . , xN ,

we obtain M base clustering results Π = {π1, . . . , πM}. Following this, a N × N

similarity matrix Sm, m = 1, . . . ,M is constructed for each base clustering method

πm. When two data points are assigned to the same cluster, the corresponding entry

in the similarity matrix will be equal to one, and zero otherwise.

Sm(xi, xj) =

1, if C(xi) = C(xj)

0, otherwise.

(4.13)

Next, the M similarity matrices are combined to form a consensus matrix (Q)

(Monti et al., 2003), such that each element within this matrix represents the degree

of similarity between any two data points xi and xj ∈ x.

Q(xi, xj) =
1

M

M∑
m=1

Sm(xi, xj) (4.14)

Finally, this consensus matrix is used as an input to hierarchical algorithm to

obtain the final clustering (Fred and Jain, 2005).

4.3.5 Connected-triple-based similarity matrix

Another approach used for clustering of clusters is the use of connected triple-

based similarity (CTS) matrix proposed by Klink et al. (2006) and Iam-on et al.

(2010). Using this approach, it is possible to combine clusters obtained from each base

clustering algorithm such as k -means, graph cuts, agglomerative clustering, etc. In

Figure 4.5, the cluster ensemble Π consists of results from m base clustering methods,
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πm,m = 1, . . . , 3 when applied to data points x = {xi, . . . , xN}, where N is the total

number of data points. The square nodes in Figure 4.5 denote the clusters produced

by each base clustering method. For example, {C1
1 , C

1
2 , C

1
3 , C

1
4 , C

1
5} represents five

clusters formed when π1 is used as the based clustering algorithm to data x. There

exists an edge between data point xi and clusterCm
j if xi belongs to cluster Cm

j for base

clustering πm. From the illustration, x1 and x2 are similar according to base clustering

methods π2 and π3 because both these data points are assigned to the same clusters

(i.e. x1 and x2 ∈ C2
1 and x1 and x2 ∈ C3

1). However, if we only consider the cluster

assignments in base clustering method π1, it appears that data points x1 and x2 are

dissimilar, as they are assigned to clusters C1
1 and C1

2 , respectively. However, because

C1
1 and C1

2 possess two connected triples with C2
1 and C3

1 as the triple centres, we can

show that there is indeed some similarity between x1 and x2.

Figure 4.5. A graphical illustration of a cluster ensemble Π =
{π1, π2, π3}, where π1={C1

1 , C
1
2 , C

1
3 , C

1
4 , C

1
5}, π2={C2

1 , C
2
2 , C

2
3 , C

2
4 , C

2
5 , C

2
6},

and π3={C3
1 , C

3
2 , C

3
3}
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In this study, the weighted connected triple (WCT) algorithm implemented by

Iam-on et al. (2010) was used to compute the similarity matrix. According to WCT

algorithm, given a set of data points x and cluster ensemble Π, a weighted graph

G = (V,W ) can be constructed, where V is a set of vertices representing clusters in Π

and W is the weighted edges between clusters. The similarity SimWCT (i, j) between

clusters Ci and Cj is given as:

SimWCT (i, j) =
WCTij
WCTmax

(4.15)

where WCTmax is the maximum WCT value between any two clusters in the cluster

ensemble Π, and WCTij is the WCT value between clusters Ci and Cj ∈ V and is

calculated as:

WCTij =

q∑
k=1

WCT kij (4.16)

where WCT kij is the number of connected triples between Ci and Cj whose common

neighbor is cluster Ck ∈ V and we count all q (1 ≤ q < ∞) triples between Ci and

Cj. The number of connected triples WCT kij can be computed as:

WCT kij = min(wik, wjk) (4.17)

where wjk is the weight of the edge connecting cluster Cj and Ck ∈ V and is given

as of number of data points that are assigned to both clusters to the total number of

data points assigned to each cluster.

wjk =
|xCj
∩ xCk

|
|xCj
∪ xCk

|
(4.18)

Therefore, for any ensemble member or base clustering approach πm ∈ Π, m =

1, . . . ,M , the similarity between data points xi and xj ∈ x is given by:

Sm(xi, xj) =

1, if C(xi) = C(xj)

SimWCT (C(xi), C(xj))×DC, otherwise.

(4.19)
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where DC ∈ (0, 1] is a constant decay factor, and denotes the confidence level of

acceptance of two non-identical objects as being similar. In this study the decay

factor was fixed to 0.6.

4.3.6 Drought Indices

4.3.6.1 Standardized Precipitation Index (SPI)

The SPI is a commonly used drought index to quantify deficit in precipitation

(McKee et al., 1993). Depending on the end use, SPI can be calculated for mul-

tiple time windows. Typically, SPI at shorter time windows, for example 1-month

SPI to 4-month SPI, are useful for identifying and characterizing meteorological and

agricultural droughts (Guttman, 1998). Similarly, SPI at longer time windows, for ex-

ample 6-month SPI, 12-month SPI, etc. are useful for analyzing hydrological droughts

(Mishra and Singh, 2010; Mo, 2008). If monthly precipitation time series at a grid is

available, in order to compute 4-month SPI a new cumulative precipitation time series

is constructed by summing the monthly precipitation amounts for first four months,

then summing monthly precipitation for months 2 to 5, and then for months 3 to 6,

and so on. Now for each ending month, say 4-month time window ending in Septem-

ber, the 4-month cumulative precipitation time-series ending is September was used

to fit a probability distribution function, and then normalized using a standard in-

verse Gaussian function to obtain SPI values. Moderate, severe, and extreme drought

classes were identified using the SPI thresholds specified in Table 4.2. Negative values

of SPI indicates drought or deficit in precipitation and positive value indicates above

median precipitation or non-drought conditions.

4.3.6.2 Standardized Precipitation Evapotranspiration Index (SPEI)

SPEI (Vicente-Serrano et al., 2010) first requires the computation of potential

evapotranspiration (PET). Thornthwaite's equation (Thornthwaite, 1948) was used



95

Table 4.2.
Drought classification scheme. SPI ranges are prescribed for the inverse
of the Normal distribution. Corresponding thresholds on CDF are given
in the last column

Description SPI Range Threshold on CDF

Moderate Drought -1.0 to -1.49 0.07 to 0.16

Severe Drought -1.5 to -1.99 0.023 to 0.07

Extreme Drought -2.0 to less 0.023 or less

for computing PET, but other popular approaches may also be used (Penman, 1948;

Priestley and Taylor, 1972; Allen et al., 1998). After subtracting the PET from

precipitation, SPEI may be computed using similar approach as SPI. (McKee et al.,

1993).

4.3.6.3 Probabilistic Standardized Precipitation Index (pSPI)

As discussed in Chapter 3 and Mallya et al. (2015), the problem of choosing

an appropriate distribution for SPI analysis can be addressed by using the gamma

mixture model (Gamma-MM). Given sufficient number of components in the mixture,

the Gamma-MM is proven to provide arbitrarily close approximation to any general

continuous distribution in the range (0,∞) (DeVore and Lorentz, 1993). Mallya et al.

(2015) provide the mathematical details of probabilistic SPI (pSPI) using Gamma-

MM. In brief, if the number of components of the Gamma mixture, M , are known a

priori, then the weighted sum of M mixtures is given as follows:

p(xt|λ) =
M∑
i=1

wiG

(
xt|νi,

νi
µi

)
(4.20)
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where xt, t = 1, . . . , N, {xt ∈ R and X = [x1, . . . , xN ]T} is the cumulative rainfall

at time t, wi are the mixture weights or mixing ratios, and G
(
xt|νi, νiµi

)
are the

components of Gamma densities of the form,

G

(
xt|νi,

νi
µi

)
=

(
νi
µi

)νi
Γ(νi)

x
(νi−1)
t exp

(
− νi
µi
xt

)
(4.21)

with mean µi, shape parameter νi, and Gamma function Γ(νi). Further, the mix-

ture weights satisfy the constraint
M∑
i=1

wi = 1. The parameter set is represented

as, λ = {w, µ, ν}, where w = [w1, w2, . . . , wM ]T , µ = [µ1, µ2, . . . , µM ]T and ν =

[ν1, ν2, . . . , νM ]T . The Gibbs sampler (Geman and Geman, 1984), a Markov-chain

Monte Carlo (MCMC) algorithm is used to sample the posterior distribution of the

parameters.

4.3.7 Drought characteristics

Drought characteristics are computed on monthly time series of drought intensity

values obtained from different drought indices using run theory (Yevjevich, 1967). A

run is defined as the period of time during which the drought intensity values remain

below or above a selected threshold. When the drought intensity values are above

the threshold (xt, say SPI > −1.0), they are denoted as non-drought events and

when they are below the threshold they are denoted as drought events (Figure 4.6).

A drought event is said to have begun when the drought intensity value falls below

the threshold for the first time, and is said to have ended when it goes above the

threshold. In Figure 4.6, there are two drought events, d1 and d2. Drought duration

(D) is defined as the time period over which a drought event persists. For example,

in Figure 4.6 the duration of the first drought event (d1) is D1. The average drought

intensity (I) is computed as the mean of drought intensity values during a drought

event. These drought characteristics can be computed for each station (or grid) or

for an entire region by pooling data available across stations within the region.
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Figure 4.6. Drought characteristics according to run theory.

4.3.8 Regional Intensity-Duration-Frequency analysis

For any selected region, drought events of same duration (for example 3-month

long drought event) were identified over all stations within the region. Next, annual

minimum series of average drought intensity for the selected duration was determined

for the region for frequency analyses. As SPI values during drought events are neg-

ative, the minimum value (i.e., highest intensity droughts) is equivalent to maxima

values that are used during frequency analyses of precipitation or streamflow. Several

candidate distributions such as Gumbel, Generalized Extreme Value (GEV), and t-

location-scale were tested for goodness of fit using Chi-square test with a significance

level (α) of 1%. The GEV distribution was found to provide the best overall fit. The

parameters of the distribution were then used to obtain values of drought intensity

for different return periods.
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4.3.9 Regional Intensity-Area-Frequency analysis

The spatial and temporal characteristics of droughts over different regions in India

were analyzed using drought intensity values recorded at different grids within the

region. For a pre-specified drought index and time window (e.g. SPI - 12 month

window) the areal extents of drought and spatially averaged drought intensity values

were tabulated for all years using GIS over each homogeneous drought region in India

(Loukas and Vasiliades, 2004). Frequency analyses was then performed to develop

Intensity-Area-Frequency curves for different return periods of interest over the region.

4.4 Results and discussion

The goal of this study was to identify regions over India that have similar drought

characteristics. Therefore, drought characteristics over each 1◦ × 1◦ grid over India

were computed using three drought indices, namely, standardized precipitation index

(SPI), standardized precipitation evapotranspiration index (SPEI), and probabilistic

SPI (pSPI). Drought characteristics were computed for a 12-month time window end-

ing in May (i.e., water year in India) and 4-month time window ending in September

(southwest monsoon season). In addition to using drought characteristics at each

grid, their latitude and longitude, as well as land use characteristics, were used as

predictors for clustering algorithms.

In this section, homogeneous drought regions obtained from three base cluster-

ing algorithms are first presented. Each clustering algorithm produces a unique set

of clusters due to the inherent assumptions within the algorithms. Also, a single

clustering algorithm, for example, k -means, can produce different clusters when it is

provided with data that differ in record length, number of dimensions (number of pre-

dictors), or initial conditions (e.g., starting centroid location). After discussing some

of the similarities and differences in results produced by the three base clustering

algorithms, methods to combine these clustering results are presented.
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4.4.1 Clustering using k -means

The k -means algorithm is a commonly used clustering technique, where the goal

is to identify subgroups within the data such that the data points belonging to a

subgroup are similar to each other when compared to data points belonging to other

subgroups. The Euclidean distance is used to determine the similarity of data points.

The k -means algorithm was described in section 4.3.1.

Figure 4.7 shows the homogeneous drought regions obtained when considering 12-

month droughts ending in May using SPI. The period of analysis was 1901-2004. The

three panels in Figure 4.7 correspond to the following

(a) SPI: Only 12-month SPI drought characteristics were used as the predictor set.

Therefore, the initial dimensionality was 104, corresponding to the number of years of

record. The dimensionality was reduced using principal component analysis (PCA),

and only 47 principal components (PC) that explained at least 90 percent of the

variance were used as input to the k -means algorithm. As k -means does not au-

tomatically provide the optimal number of clusters, the algorithm was tested with

K values ranging from 2 to 12. For each K value, several similarity statistics such

as the Davies-Bouldin index (DB), Silhouette coefficient, and BIC were calculated.

The optimal number of clusters for the given input data can be decided using any

of these similarity metrics. In most cases, these indices report the same number for

optimal clusters; however, sometimes, they were found to differ slightly. For this

study, optimal number of clusters were reported according to the Davies-Bouldin in-

dex. Accordingly, k -means with K = 9 was found to be optimal with a DB value of

1.91.

(b) SPI-LL: In addition to 104 years of 12-month SPI drought characteristics ending

in May, latitude and longitude information for each grid point were also included as

predictors. The values of predictors were normalized before clustering. A total of 10

Homogeneous clusters were obtained with a DB value of 1.87.
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(c) SPI-LL-LU: Finally, the percentage of land use under 19 land use classes listed in

Table 4.1 were calculated over 1◦ × 1◦ grids, the values were normalized and used as

additional predictors to the k -means algorithm. Ten clusters with a DB value of 1.92

were found to be optimal.

The number of homogeneous clusters and their shape was found to vary slightly

depending on the number of predictors used as input to the k -means algorithm.

Therefore, even though the same drought index was used (SPI), the cluster assignment

was found to vary significantly when additional information was incorporated in the

form of new predictors (e.g., geographic information and land use). However, the

cluster shapes formed were found to be mostly similar (92 percent of the grids), when

comparing only Fig. 4.7b and Fig. 4.7c, indicating that land use information provided

very little additional information to the k -means algorithm.

Figure 4.7. Homogeneous drought regions corresponding to 12-month time
window ending in May for the study period 1901-2004 (P4) using k -means
and the following predictors (a) SPI, (b) SPI-LL, and (c) SPI-LL-LU.

Figure 4.8 shows the homogeneous drought regions over India, using k -means

algorithm on SPI time series computed at high spatial resolution (0.25◦ × 0.25◦).

The time window of analysis was 12-months, and the entire period of record of high-

resolution data (1901-2019) was used in the analysis. When using only SPI values

as the input, nine clusters with a DB value of 2.4 were found to be optimal (see

Figure 4.8a). When SPI values and geographic data were used together as inputs,
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nine clusters with a DB value of 2.38 were optimal (Figure 4.8b; SPI-LL). Similarly,

Figure 4.8c shows eight homogenous drought regions when SPI values in combination

with geographic information and land use characteristics (i.e., SPI-LL-LU) were used

as inputs to the k -means algorithm. Results indicate that the shape of the clusters was

significantly different compared to those obtained using lower resolution (1◦×1◦) data

(see Figure 4.7). Further, when using high resolution data, geographic information

added little information as the regions in Figures 4.8a and 4.8b are similar. Also, the

study found that the number of clusters and their shapes was similar when the period

of analysis was 104 years (i.e., 1901-2004) instead of 119 years (i.e., 1901-2019).The

choice of data resolution used in regionalization can thus lead to different conclusions.

The scale-dependence indicates that the spatial resolution of input datasets have to be

improved until the results do not change. Higher-resolution datasets may be useful

for certain applications where getting precise boundaries is important, and studies

over smaller regions.

Figure 4.8. Homogeneous drought regions corresponding to a 12-month
time window ending in May using k -means and the following predictors
(a) SPI, (b) SPI-LL, and (c) SPI-LL-LU. The SPI values were computed
using 0.25◦ × 0.25◦ IMD precipitation dataset. The study period was
1901-2019.

Figure 4.9 shows the homogeneous drought clusters over India, when using the

same clustering algorithm (k -means), period of analysis (1901 to 2004), geographic

information and land use characteristics, but different drought indices. Specifically,
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ten clusters with a DB value of 1.92 were found to be optimal when using SPI as the

drought index (Figure 4.9a; SPI-LL-LU). Similarly, nine clusters were found to be

optimal with a DB value of 1.74 for SPEI (Figure 4.9b; SPEI-LL-LU), seven clusters

with a DB value of 2.44 were optimal for probabilistic SPI (Figure 4.9c; pSPI-LL-LU),

and eleven clusters with DB value of 1.84 were optimal when drought characteristics

pooled from SPI, SPEI, and pSPI, along with geographic and land use information

were used as inputs to k -means algorithm (Figure 4.9d; Combined-LL-LU).

The number of optimal clusters formed was found to change with the choice of

drought index. However, it should be noted that the choice of drought index also

changes the dimensionality of the predictor set. For example, when using probabilistic

SPI, the number of predictors before dimensionality reduction is 333, as it includes

the probability of droughts to be in extreme, severe, and moderate drought category

for 104 years, two geographic indicators, and 19 land use indicators. Similarly, when

combining drought characteristics from the three drought indices, the dimensionality

of the predictor set before PCA is 541. Therefore, the chosen drought index and

the resulting increase (or decrease) in the dimensionality of predictors can lead to a

significantly different number and shape of homogeneous drought clusters.

Figure 4.9. Homogeneous drought regions corresponding to 12-month time
window ending in May for the study period 1901-2004 (P4) using k -means
and the following predictors (a) SPI-LL-LU, (b) SPEI-LL-LU, (c) pSPI-
LL-LU, and (d) Combined-LL-LU.

The sensitivity of drought clusters to the size of the study domain was analyzed.

IMD grids over Jammu, Kashmir, and northeastern states were excluded from the
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analysis, and only those belonging to the core-monsoon region of India were used as

inputs. Figure 4.10 shows the homogenous clusters identified over the core-monsoon

region using k -means algorithm and SPI-LL-LU, SPEI-LL-LU, pSPI-LL-LU, and SPI-

LL-LU datasets as the inputs. In the case of SPI-LL-LU, ten clusters with a DB value

of 2.09 was found to be optimal (Figure 4.10a). Similarly, nine clusters with a DB

value of 1.91 for SPEI (SPEI-LL-LU; Figure 4.10b), eight clusters with a DB value

of 2.87 for probabilistic SPI (pSPI-LL-LU; Figure 4.10c), and ten clusters with a DB

value of 1.94 were found to be optimal when drought characteristics from all three

indices were combined as inputs to the k-means clustering algorithm (Combined-LL-

LU; Figure 4.10d). The number of optimal clusters, and their shape were found to

be different compared to clusters obtained using data over the entire study domain

(see Figure 4.9). Figure 4.11 shows the sub-optimal solutions for SPI-LL-LU (k =

7), SPEI-LL-LU (k = 7), pSPI-LL-LU (k = 6). The shape of these clusters were

similar, except for minor differences, to the optimal clusters obtained for the full

domain (Figure 4.9). The similarity between clusters in Figures 4.9a-c and Figures

4.11a-c were quantified using the adjusted Rand index (Hubert and Arabie, 1985).

The adjusted Rand index for SPI-LL-LU, SPEI-LL-LU, and pSPI-LL-LU were 0.95,

0.86, and 0.64, respectively, indicating high similarity as these values are closer to one.

However, similar conclusions could not be drawn when using Combined-LL-LU inputs.

The highest adjusted Rand index was 0.3 (i.e., closer to zero, indicating dissimilar

clusters) when the number of sub-optimal clusters was six. The high-dimensionality

of input datasets and inclusion of relatively less reliable precipitation and land use

data over Jammu, Kashmir, and northeastern states may have resulted in spatially

less-compact clusters (Figure 4.9d), compared to Figure 4.10d, leading to the overall

dissimilarity in results for Combined-LL-LU.

Next, the sensitivity of homogeneous clusters to the choice of period of analysis

was investigated. A total of four different record lengths were used as inputs. The full

data record of 104 years, 1901-2004 (P4), was further divided into three sub-periods

1901-1935 (P1), 1936-1970 (P2), and 1971-2004 (P3) similar to Chapter 2 (Mallya
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Figure 4.10. Homogeneous drought clusters over core-monsoon region
of India. Results correspond to 12-month time window droughts ending
in May during the study period 1901-2004 (P4) using k -means and the
following predictors (a) SPI-LL-LU, (b) SPEI-LL-LU, (c) pSPI-LL-LU,
and (d) Combined-LL-LU.

Figure 4.11. Sub-optimal homogeneous drought clusters over core-
monsoon region of India. Results correspond to 12-month time window
droughts ending in May during the study period 1901-2004 (P4) using
k -means and the following predictors (a) SPI-LL-LU, (b) SPEI-LL-LU,
and (c) pSPI-LL-LU.

et al., 2016). For brevity, results presented below are for drought characteristics

obtained from SPI and includes geographic and land use information (SPI-LL-LU).

For the period 1901-1935 (P1), the number of homogeneous clusters according to the

k -means algorithm was 9 with a DB value of 1.83 (Figure 4.12a). For the period

1936-1970 (P2), nine clusters with DB value of 1.98 were found to be optimal (Figure

4.12b). Though the number of clusters for periods P1 and P2 were similar, the shape

and cluster assignments were different. Note that the record length for these two
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periods is the same (35 years), and the only difference is the drought characteristics.

Therefore, the choice of period of analysis plays an important role in determining the

size and location of homogeneous drought regions. For the period of 1970-2004 (P3)

eight clusters with a DB value of 2.0 was found to be optimal (Figure 4.12c). Figure

4.12d corresponds to the full record period of 1901-2004 (P4), and has 10 clusters

with a DB value of 1.92. The changes in the cluster size and shape were prominent in

the Central Northeast region that includes the Indo-Gangetic plain - an agriculturally

intensive region over India. Thus, from a policy-making and management perspective,

it is important to continuously update the homogeneous drought clusters for effective

planning and mitigation of droughts.

Figure 4.12. Homogeneous drought regions corresponding to 12-month
time window ending in May using k -means and SPI-LL-LU predictor set
for the periods (a) 1901-1935 (P1), (b) 1936-1970 (P2), (c) 1971-2004
(P3), and (d) 1901-2004 (P4).

Figure 4.13 shows the sensitivity of homogeneous drought clusters to the choice

of threshold during dimensionality reduction in PCA. The dimensionality reduction

is based on a user-defined threshold, percentage of variance explained, and was found

to play a role in the eventual formation of clusters. Here, the initial predictor set

was kept consistent (119 dimensions), i.e., SPI drought characteristics for a 12-month

time window ending in May for the period 1901-2004, latitude, longitude, and land

use characteristics. The only variable was the user-defined threshold during dimen-

sionality reduction using PCA. Figure 4.13a shows that the number of clusters formed

was 9, with a DB value of 1.55 when the variance-explained threshold was set to 70
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percent. With this threshold, the dimensionality of the input dataset was reduced to

22. Figure 4.13b corresponds to a user-defined threshold of 80 percent for variance-

explained while choosing principal components following PCA - resulting in reducing

the number of dimensions to 34. This resulted in the formation of 10 clusters with

a DB value of 1.74. Figure 4.13c shows the cluster formation when the variance-

explained threshold was set to 90 percent during PCA, leading to 10 clusters with

DB value of 1.92. While the choice of the threshold had an effect on the number of

clusters for variance-explained values of 70 percent and 80 percent, there was minimal

difference when comparing results for threshold choice of 80 percent and 90 percent.

Figure 4.13. Homogeneous drought regions corresponding to 12-month
time window ending in May for the study period 1901-2004 (P4) using k -
means and SPI-LL-LU but with following number of principal components
as predictors (a) 22 (70 percent variance-explained threshold), (b) 34 (80
percent), and (c) 54 (90 percent).

The sensitivity of drought cluster to the choice of time-window of analysis was

investigated. For this purpose, SPI drought characteristics for a 4-month time window

ending in September (corresponding to the southwest monsoon months over India)

were used along with latitude, longitude, and land use information as input variables.

After dimensionality reduction using PCA, the k -means algorithm was used to obtain

homogeneous drought clusters for different periods. Figures 4.14a and b compare the

drought clusters for the period 1901-1935 (P1) and 1936-1970 (P2). These two periods

have the same record length, but due to unique drought characteristics during each of
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these periods, the resulting drought clusters are markedly different. The number of

clusters formed during the periods P1 and P2 was 11 (DB value is 1.76) and 10 (DB

value is 1.9), respectively. In addition to some clusters (grids in the southern-most

part of India) being not geographically contiguous, the shape and size of clusters are

different for both these periods. This indicates that for these two periods (P1 and

P2), the 4-month drought characteristics ending in September were different, as well

as the inability of the algorithm to find geographically contiguous clusters. The lack

of geographic contiguity may be due to (a) lack of significant difference in drought

characteristics for several grids at 4-month time scale and (b) shorter record length

(∼35 years).

A total of 8 drought clusters (DB value of 2.05) was found to be optimum for 4-

month droughts ending in September during the period 1971 to 2004 (P3, see Figure

4.14c). Due to the smaller number of clusters, the homogeneous regions are relatively

contiguous for this period. Figure 4.14d shows the drought clusters formed for 4-

month time window droughts ending in September when considering full record length

of 104 years (1901-2004, P4). The total number of clusters was 12, with a DB value

of 1.96. The formed clusters were compact, except for a few grids. The cluster shapes

and sizes were markedly different when compared to shorter period lengths. The

number of clusters and their shapes were also found to be different when compared

to those obtained from 12-month time window droughts (Figure 4.12). This indicates

that the choice of the time window of droughts can have a significant influence on

the formed regions, and therefore has to be accounted for by drought managers when

planning adaptation measures for short-term droughts.
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Figure 4.14. Homogeneous drought regions corresponding to 4-month time
window ending in September using k -means and SPI-LL-LU predictor set
for the periods (a) 1901-1935 (P1), (b) 1936-1970 (P2), (c) 1971-2004
(P3), and (d) 1901-2004 (P4).

4.4.2 Clustering using graph cuts

Next, the graph cuts algorithm (Boykov et al., 2001) described in Section 4.3.2

was used to find homogeneous drought regions over India (Figure 4.15). Drought

characteristics for a 12-month time window ending in May using SPI, SPEI, pSPI,

and combination of these three indices, geographic information, and land use classes

were used as predictor variables. The period of analysis was set to 1901-2004 (P4).

Figure 4.15a-c shows that the clusters formed in the peninsular region is similar for

SPI, SPEI, and pSPI. Further, graph cuts method produced seven drought clusters

with a DB value of 2.24 for SPI, nine clusters with DB value of 2.33 for SPEI, and nine

clusters with DB value of 2.33 for pSPI. Eleven clusters with DB value of 1.89 were

obtained when drought characteristics from all three drought indices were used as

inputs to the model (Figure 4.15d; Combined-LL-LU). However, the clusters formed

using the Combined-LL-LU predictor set were not compact over some regions - for

example, south India, Orissa, and hilly regions over India (i.e., Jammu & Kashmir

and NE states). The number and shape of the clusters obtained from graph cuts

were different when compared to k -means clustering (Figure 4.9a-c-d) for SPI-LL-

LU, pSPI-LL-LU, and Combined-LL-LU. However, the clusters are almost identical
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in the case of SPEI-LL-LU. Thus, the choice of clustering algorithm also plays an

important role in identifying homogeneous drought regions.

Figure 4.15. Homogeneous drought regions corresponding to 12-month
time window ending in May for the study period 1901-2004 (P4) using
graph cuts and the following predictors (a) SPI-LL-LU, (b) SPEI-LL-LU,
(c) pSPI-LL-LU, and (d) Combined-LL-LU.

4.4.3 Agglomerative clustering

Agglomerative clustering is a hierarchical grouping technique where each grid

point initially belongs to its own cluster. Pairs of grids are then merged together

based on user-defined linkage criteria and a distance metric that decides how the

final clusters are formed. The complete (or maximum) linkage criteria with Euclidean

distance were chosen for this study. Figure 4.16a-d shows the homogeneous drought

regions obtained from agglomerative clustering using four predictor sets SPI-LL-LU,

SPEI-LL-LU, pSPI-LL-LU, and Combined-LL-LU, respectively. The time-window of

12-months ending in May and the period between 1901-2004 were chosen for this

analysis. The number and shape of homogeneous clusters formed using this method

were found to be different when compared to k -means clustering (Figure 4.9) and

graph cuts clustering (Figure 4.15) methods. Using agglomerative clustering, eight

clusters with a DB value of 2.17 were formed for SPI-LL-LU (Figure 4.16a). Similarly,

nine clusters with a DB value of 1.98 were obtained for SPEI-LL-LU. Eight clusters

with a DB value of 2.67 for pSPI-LL-LU and nine clusters with a DB value of 2.19
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were formed for Combined-LL-LU. By using a tree-based or hierarchical clustering

technique, the optimal cluster number and shapes were found to be different compared

to algorithms that are based on cuts or partition of vertices in a graph (graph cuts)

or to algorithms that assume the variance of the distribution of each attribute is

spherical (k -means).

Figure 4.16. Homogeneous drought regions corresponding to 12-month
time window ending in May for the study period 1901-2004 (P4) using
agglomerative clustering and the following predictors (a) SPI-LL-LU, (b)
SPEI-LL-LU, (b) pSPI-LL-LU, and (c) Combined-LL-LU.

4.4.4 Clustering of clusters

The number and shape of homogeneous drought clusters obtained using three

different base clustering algorithms were presented in the preceding sections. The

resulting clusters were found to be sensitive to multiple factors such as choice of the

clustering algorithm, drought index, time window of drought, period of analysis, num-

ber of predictors in the input dataset, and model parameters of clustering algorithms.

This can pose a challenge to water resources managers and policy-makers as no ob-

jective methodology exists or is used in practice to combine results of regionalization,

especially in the context of droughts.

Figure 4.17 shows the results of combining clustering results obtained from base

algorithms, namely, k -means, graph cuts, and agglomerative clustering. A pairwise

similarity matrix is first constructed between pairs of the base clustering algorithms to
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achieve the objective of combining base clustering results. These similarity matrices

are then combined to get a consensus matrix using equation 4.14 (Monti et al., 2003).

Finally, the consensus matrix is used as an input to a hierarchical algorithm with

complete linkage criteria to obtain the final clustering. The final clusters are based on

the similarity of cluster shapes and structure obtained from base clustering methods.

Figure 4.17a shows the clustering of clusters for SPI-LL-LU dataset, and has nine

homogeneous clusters with a DB value of 2.34. The base clusters were obtained

considering drought characteristics for a 12-month time window corresponding to the

period 1901 to 2004. Similarly, Figure 4.17b-c-d shows nine clusters each for SPEI-

LL-LU, pSPI-LL-LU, and Combined-LL-LU predictor sets with DB values of 1.8,

2.22, and 1.99, respectively. The shape and size of the clusters vary significantly for

the four drought indices and therefore highlights the importance of choice of drought

index for regionalization. However, it is possible to extend the methodology to obtain

one unique final clustering result by combining results from twelve individual base

clustering results discussed in the earlier sections (Figures 4.9, 4.15, and 4.16).

Figure 4.17. Clustering of homogeneous drought clusters using similarity
matrix and complete linkage criteria for (a) SPI-LL-LU, (b) SPEI-LL-LU,
(c) pSPI-LL-LU, and (d) Combined-LL-LU predictor sets. The base clus-
ters from k -means, graph cuts, and agglomerative clustering with optimal
Davies-Bouldin scores were chosen.

In figure 4.18, the combined clusters obtained using connected triple-based simi-

larity matrix and complete linkage criteria (CTS-CL) is presented. The base clusters

were obtained using k -means, graph cuts, and agglomerative algorithms and corre-
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spond to a 12-month drought time window over the period 1901 to 2004. In this

approach, weighted graphs are constructed by comparing cluster assignments of in-

put data according to multiple base clustering algorithms. These weighted similarity

matrices are then used to obtain the final clustering using a hierarchical method

with complete linkage criteria. Figures 4.18a-b, corresponding to SPI-LL-LU and

SPEI-LL-LU datasets, show that the combined clusters have more similarity in their

geographical extent than differences. The combined clusters for both datasets have

nine homogeneous regions with DB values of 1.85 and 1.64.

The clustering of base clusters produced six homogeneous regions when consider-

ing pSPI-LL-LU dataset with DB value of 2.58 (Figure 4.18c). Similarly, nine clusters

were obtained when considering Combined-LL-LU with DB value of 1.86. The shape

and size of the homogeneous regions vary significantly when comparing results for

SPI-LL-LU and SPEI-LL-LU (Figure 4.18a-b) with pSPI-LL-LU and Combined-LL-

LU (Figure 4.18c-d). This, once again, highlights the important role that the choice

of drought index plays in regionalization.

Figure 4.18. Clustering of homogeneous drought clusters using CTS-CL
for (a) SPI-LL-LU, (b) SPEI-LL-LU, (c) pSPI-LL-LU, and (d) Combined-
LL-LU predictor sets. The clusters formed correspond to a drought time
window of 12-months ending in May and for the period 1901-2004. k -
means, graph cuts, and agglomerative algorithms were used to obtain the
base clusters.
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4.4.5 Regional Drought Characteristics

As described in Section 4.3.7, for a given drought index (e.g., SPI-4, SPI-12, SPEI-

4, etc.) the drought characteristics such as the number of drought events, duration of

each drought event, and average intensity of droughts during each drought event were

calculated using run theory at each grid over the study area. The results presented

below correspond to the SPI-12 drought index over the period 1901-2004. The drought

characteristics were aggregated over homogeneous drought clusters (Figure 4.18a),

and their box plots were analyzed. For different durations, average drought intensity

values were aggregated to obtain an annual minimum series. Probability distributions

that provide the best fit according to Chi-square goodness of fit test were identified.

The GEV distribution was found to provide the best fit. Frequency analysis was then

performed to obtain average drought intensity values for different return periods.

The areal extent of droughts and the average drought intensity over drought-affected

grids were analyzed over different homogeneous drought regions during the period

1901-2004. Frequency analysis was performed to obtain drought intensity values for

different return periods and areal extent of droughts. Finally, over each homogeneous

drought region, the available precipitation data were pooled from all grids over a

region to obtain a representative time series. The representative series was later

used to analyze historic droughts and their spatial extent from a regional drought-

management perspective.

4.4.5.1 Characteristics of drought events

Drought characteristics such as average drought intensity during a drought event,

the duration of drought event in months, and the number of drought events were com-

puted for SPI-12 series during the period 1901-2004 using moving 12-month windows

(i.e., SPI-12 values for 1248 months) at all grids over the study area. These drought

characteristics are compared over homogeneous drought regions (refer to Figure 4.21

for geographic context) using box plots (Figure 4.19). Figure 4.19a indicates that the
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median value of average intensity of SPI-12 drought events is between -1.0 and -1.5

across regions. The width of the box plot varies across different regions, indicating a

wide range of possible average drought intensity values. Figure 4.19b shows the box

plots of the duration of SPI-12 drought events recorded at IMD grids over different

regions. The median drought duration is between 3 to 9 months. The width of the

box plot is more or less uniform across regions (8 out of 9). Several outliers indicate

that some grids across regions experienced significantly long duration SPI-12 droughts

(30 to 60 months) during the study period 1901-2004. Figure 4.19c shows the number

of SPI-12 drought events recorded over IMD grids during the period 1901-2004 over

different homogeneous regions. The median number of drought events for SPI-12 is

between 40 to 55 (7 out of nine regions). The width of the box plots (along the y-axis)

varies across all regions, indicating the differences in drought characteristics among

the regions.

Figure 4.19. Variation of (a) average drought intensity during drought
events, (b) duration of drought events, and (c) number of drought events
across grids belonging to nine homogeneous regions over India considering
SPI-12 drought series for the period 1901-2004. For geographic context of
homogeneous regions see Figures 4.18a and 4.21.

For each grid over a homogeneous region and for moving 4-month window SPI

series during the period 1901-2004, drought characteristics such as average drought

intensity during a drought event, the duration of drought event in months, and the

number of drought events over a grid were analyzed. The results for these drought

characteristics are presented as box plots (Figure 4.20) for each homogeneous region
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(refer to Figure 4.22 for geographic context). Figure 4.20a indicates that the median

value of the average intensity of 4-month SPI drought events is between -1.0 and

-1.5 across regions. The width of the box plot, indicating the distribution of average

drought intensity values are similar across the regions. Also, the smaller width of the

box plots indicates less variation of average drought intensity values during drought

events across all grids over a given region. Figure 4.20b shows the box plots of the

duration of SPI-4 drought events recorded at IMD grids over different regions. The

median drought duration is two months. The width of the box plot is uniform for the

majority of the regions (8 out of 9). However, it is important to note the presence of

outliers, indicating that several grids across all regions experienced significantly long

duration SPI-4 droughts (10 to 50 months) during the study period 1901-2004. Figure

4.20c shows the number of SPI-4 drought events recorded over IMD grids between

1901 and 2004 (total of 1248 months) over different homogeneous regions. The median

number of drought events for 4-month SPI is above 130 (7 out of nine regions). The

width of the box plots varies across all regions, indicating the differences in drought

characteristics among the regions.

Figure 4.20. Variation of (a) average drought intensity during drought
events, (b) duration of drought events, and (c) number of drought events
across grids belonging to nine homogeneous regions over India considering
SPI-4 drought series for the period 1901-2004. For geographic context of
homogeneous regions see Figure 4.22.
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4.4.5.2 Intensity-Duration-Frequency analysis

For each homogeneous region, SPI-12 drought events of the same duration were

identified at all grids. For example, for homogeneous region-1 over Gujarat in western

India (see inset in Figure 4.21a), the average SPI-12 drought intensities of droughts

with 3-month duration were tabulated at all grids. Then, using previously tabulated

values, for each year during the study period (1901-2004), the minimum value of the

average SPI-12 drought intensities was recorded. Frequency analyses were carried out

on this annual minimum series of average SPI-12 drought intensities. Among several

distributions (Gumbel, GEV, t-location-scale, logistic, etc.), the GEV distribution

provided the best fit according to the Chi-square goodness of fit test with a significance

level (α) of 1%. Using the parameters of the best-fit distribution average SPI-12

intensities for drought events with a 3-month duration were estimated for 2, 5, 10,

25, 50, and 100 year return periods. This process was repeated for other durations of

interest and for all homogeneous drought regions. In addition to providing insights

into drought characteristics over an area, IDF plots are also useful in estimating

return periods of any drought event. For example, if the average SPI-12 intensity of

the 2002-2003 drought event of a 6-month duration is -2.5, then the return period

can be estimated as 25 years (Figure 4.21a). In general, the average SPI-12 intensity

of drought events with a duration of 6-months or higher is more severe compared to

drought events of length less than 6-months. Also, for peninsular and northeastern

parts of India (Figure 4.21e-f-i), that are among the highest rainfall receiving regions,

rare drought events (T = 50 or 100 years) of longer duration (> 6 months) tend to

be severe compared to other regions.

Figure 4.22 shows the IDF curves developed for nine homogeneous regions of SPI-

4. The geographic extents of the homogeneous clusters are shown in the inset of each

subplot. As described above, over each region, frequency analyses were carried out

on annual minimum series of average SPI-4 drought intensities of a selected duration

event. The GEV distribution provided the best fit for the annual series according
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Figure 4.21. Intensity-Duration-Frequency curves of SPI-12 drought series
over nine homogeneous regions (a) - (i) over India. The geographic extent
of each homogeneous region is shown as an inset within the subplots. Each
curve represents a return period of interest.
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to the Chi-square goodness of fit test with a significance level (α) of 1%. Using

the parameters of the best-fit distribution, average SPI-4 intensities for the selected

duration were estimated for 2, 5, 10, 25, 50, and 100 year return periods. From Figure

4.22, it may be noted that the average SPI-4 intensity during drought events with a

duration of 6-months or higher is more severe compared to shorter duration events.

Also, over peninsular and western parts of India (Figure 4.22a-b-c), that receive

majority of their precipitation during southwest monsoon season, less-frequent and

rare drought events (T = 10, 25, 50 or 100 years) of longer duration (> 6 months)

tend to be severe compared to other regions.

Figure 4.22. Intensity-Duration-Frequency curves of SPI-4 drought series
over nine homogeneous regions (a) - (i) over India. The geographic extent
of each homogeneous region is shown as an inset within the subplots. Each
curve represents a return period of interest.
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4.4.5.3 Areal extent of drought and average drought intensity

The homogeneous drought regions obtained after clustering of clusters (e.g., CTS-

CL, Figure 4.18) were used to study the overall drought characteristics. The drought

characteristics presented below correspond to SPI for a pre-selected time window

(12-months, 4-months, etc.) for 1901-2004 and are for all months during the study

period (i.e., using 12-months and 4-months moving window). For every month, the

percentage of grids having SPI ≤ −1.0 was calculated to get the areal extent of

drought over each region.

Figure 4.23a shows the box plot of areal extent of SPI-12 droughts over nine

homogeneous regions over India (Figure 4.21). In each box plot, the central red line

denotes the median value of the areal extent for a given region. The bottom and

top edges of the box plot denote the 25th and 75th percentiles of the areal extent of

droughts for a region, respectively. The whiskers of the box plot denote the range

of values of the areal extent of droughts that were not considered outliers, and those

that were outliers are shown using ’+’ symbol. According to Figure 4.23a, for the

chosen threshold of SPI-12 ≤ −1.0, the median value of areal extent droughts lies

between 10 to 15% for all regions except regions 7 and 8. The median areal extent of

droughts in regions 7 and 8 (Jammu & Kashmir and northeastern states) is 26% and

100%, respectively. However, the width of the box plots indicates that during the

study period, there were occasions when none or 50% and more grids belonging to all

regions except region 8 were in a drought. Results over regions 7 and 8 that comprise

of grids over Jammu & Kashmir and northeastern part of India (Figure 4.21g-h)

are less reliable because the gridded IMD precipitation data over these regions were

computed using sparse high-altitude rain gauge stations.

Figure 4.23b shows the distribution of the average intensity of SPI-12 droughts

over drought-affected grids in each region. For each region, the average drought

intensity was computed for each month of the study period considering only grids

under drought (SPI-12 ≤ −1.0). The median SPI-12 drought intensity values were
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around -1.35 for all regions. The spread of the whiskers of each box plot, ranging

between -1.0 and -2.5, denotes the distribution of average SPI-12 intensity values

over each region. The variation of the width of these box plots, and the number and

magnitude of outliers indicates the difference in drought characteristics between the

regions. Box plot for region 7, belonging to Jammu and Kashmir (Figure 4.21g), is

the widest indicating a large range of average SPI-12 intensities compared to other

regions. Also, box plots for regions 3, 5, 6, and 7 (see Figure 4.22c,e,f,i) show that

they experienced extreme droughts (SPI-12 ≤ −3.0) on several occasions during the

period 1901-2004.

Figure 4.23. Comparison of (a) areal extent of droughts (%) and (b)
average intensity of droughts across nine homogeneous drought regions
using SPI-12 over 1248 months of the study period (1901-2004). For
geographic context of homogeneous drought regions with respect to SPI-
12-LL-LU see Figures 4.18a and 4.21.

Figure 4.24a shows the box plot of areal extent of SPI-4 droughts over nine ho-

mogeneous regions over India (see Figure 4.22 for geographic extent of each region).

According to Figure 4.24a, the areal extent of droughts varies across regions. The

lower limit is 0%, and the upper limit is 47% or more. The range of areal extent values

indicates that during the study period, there were occasions when none to over 47%

of grids belonging to different homogeneous regions experienced droughts based on
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the chosen threshold (SPI-4 ≤ −1.0). The median areal extent was between 8 to 30

percent for all regions except region 5, which has a median value of 100%. Note that

region five comprises of thirteen grids and is located in the northeastern part of India

(Figure 4.22e). The median value of 100% for areal extent of SPI-4 droughts indicates

that during more than half of the 1248 months of the study period (1901-2004), all

grids over region 5 experienced SPI-4 ≤ −1.0.

Figure 4.24b shows the distribution of the average intensity of SPI-4 droughts over

drought-affected grids in each region. The average drought intensity over a region was

computed as described previously (SPI-4 ≤ −1.0 was chosen as the threshold). The

median SPI-4 drought intensity values were around -1.4 for all regions. The spread of

the whiskers (-1.0 to -2.2) of each box plot, denotes the distribution of average SPI-4

intensity values over each region. The variation of the width of box plots, as well as the

number and magnitude of outliers indicates the difference in drought characteristics

between the regions. Box plot for regions 1, 5, and 7, belonging to the western-coast,

northeastern states, and Jammu & Kashmir region of India (Figure 4.22a,e,g), have

wide widths indicating a large range of average SPI-4 intensities compared to other

regions. Also, regions 2 and 6 (see Figure 4.22b,f) experienced extreme droughts

(SPI-4 ≤ −4.0) on eight occasions during the period 1901-2004.

4.4.5.4 Intensity-Area-Frequency analysis

The spatial and temporal drought characteristics were used to develop Intensity-

Area-Frequency (IAF) curves for each homogeneous drought region over India. For

a pre-specified drought index and time window (e.g., SPI-12, SPI-4, etc.), the areal

extent of drought over a region was tabulated for different drought intensity values

using GIS (Loukas and Vasiliades, 2004). Frequency analysis was then performed

by fitting a probability distribution to average drought intensities prevalent over a

specific areal extent (say 10%). The parameters of the fitted distribution were then

used to estimate average drought intensity values for several return periods of interest.
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Figure 4.24. Comparison of (a) areal extent of droughts (%) and (b) aver-
age intensity of droughts across nine homogeneous drought regions using
SPI-4 over 1248 months of the study period (1901-2004). For geographic
context of homogeneous drought regions with respect to SPI-4-LL-LU see
Figure 4.22.

Figure 4.25 shows the IAF curves at nine homogeneous drought regions over India,

considering the SPI-12 drought index. The IAF curves are useful in determining the

return period of drought events over an area if the areal extent and the average

drought intensity values are known. For example, if the areal extent of drought over

region 5 (Figure 4.25e, southern peninsular India) is 10%, and the average intensity

of SPI-12 is -2.6, then it is a 10-year return period drought. Similarly, if the average

SPI-12 is -2.6, and the areal extent is 40%, then the return period of drought is over

25 years, and so on. In general, one may conclude that for a fixed return period (say

10-years), the average SPI-12 intensity decreases with an increase in the areal extent.

Tightly bound IAF curves indicate that even a slight increase or decrease in average

SPI-12 intensity can lead to different conclusions about return periods (see Figure

4.25d).

Figure 4.26 shows the IAF curves at nine homogeneous drought regions over India,

considering the SPI-4 drought index. As described before, the IAF curves are useful

in determining the return period of drought events over a region. For example, if the
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Figure 4.25. Intensity-Area-Frequency curves of SPI-12 drought series
over nine homogeneous regions (a) - (i) over India. The geographic extent
of each homogeneous region is shown as an inset within the subplots. Each
curve represents a return period of interest.

areal extent of drought over region 1 (Figure 4.26a, western coast of India) is 10%,

and the average intensity of SPI-4 is -2.4, then it is a 5-year return period drought.

Now, if the areal extent increases to 30%, but the SPI-4 intensity remains unchanged,

then such an event has a return period of 10 years, and so on. The general inverse

relationship between drought intensity and areal extent for any fixed-return period

holds true across all homogeneous drought regions for SPI-4. The IAF curves for

SPI-4 were found to be tightly bound for larger return period events for most regions

(e.g., Figure 4.26b,d,etc.).
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Figure 4.26. Intensity-Area-Frequency curves of SPI-4 drought series over
nine homogeneous regions (a) - (i) over India. The geographic extent of
each homogeneous region is shown as an inset within the subplots. Each
curve represents a return period of interest.

4.4.5.5 Drought analysis by pooling data over homogeneous regions

The utility of identifying homogeneous drought regions over an area (e.g., Figure

4.18a) by providing a framework for regional drought analysis is presented below.

First, a representative monthly precipitation time series was computed for each ho-

mogeneous drought region by pooling monthly precipitation data available at each

grid within the region and then taking their averages. Then, the representative pre-

cipitation time series for each region was used to obtain SPI intensities for different

time windows.
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Figure 4.27 shows the SPI-12 intensities for ending month of May over the period

1902 to 2004 computed over nine SPI-12 homogeneous drought regions over India

and shown as bar plots. The geographic extent of each region is shown as an inset

within each sub-plot. Negative SPI values indicate drought conditions. For example,

region 5 or southern peninsular India (Figure 4.27e) experienced extreme droughts

during the years 1952, 2003, and 2004 with SPI-12 intensities of -2.09, -3.75, and

-2.41, respectively. For the same years, while other regions also experienced drought

conditions, their intensities differed. Also, for the year 2004, drought recovery was

seen in most regions expect region 5. This regional drought perspective is useful for

water resources planners in formulating region-specific water management plans.

Figure 4.27. SPI-12 drought intensity ending in May for 1901-2004 com-
puted after pooling precipitation data over nine homogeneous regions (a)
- (i) over India. The geographic extent of each homogeneous region is
shown as an inset within the subplots.

Figure 4.28 shows the areal extent of SPI-12 droughts ending in May at each of

the nine SPI-12 homogeneous drought regions over India during the period 1902 to

2004. The geographic extent of each region is shown as an inset within each sub-
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plot and the areal extent values (in percentage) are shown as bars. For any region,

the areal extent values represent the percentage of grids in the region experiencing

droughts (SPI ≤ −1.0) during May. For example, the areal extent of SPI-12 droughts

in region 5 or southern peninsular India (Figure 4.28e) during the years 1952, 2003,

and 2004 was 57.6%, 78.8%, and 54.5% respectively. Panels a, b, c, and f within

Figures 4.27 and 4.28 show that western and northern-peninsular India experienced

more severe and widespread droughts during the period 1902-1935 as compared to

other regions. This again highlights the differences in drought characteristics between

regions. Regional accounting of drought intensity and areal extent is therefore useful

for decision-makers in determining the impact of past and current droughts over each

region and taking both short-term and long-term policy decisions.

Figure 4.28. Areal extent of SPI-12 droughts ending in May for 1901-
2004 over nine homogeneous regions (a) - (i) over India. SPI-12 intensities
were computed after pooling precipitation data over homogeneous drought
regions. The geographic extent of each homogeneous region is shown as
an inset within the subplots.
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Figure 4.29 shows bar plots of SPI-4 intensities for September ending months

during the period 1902 to 2004 at nine SPI-4 homogeneous drought regions over

India. The geographic extent of each region is shown as an inset within the sub-

plots. This figure is useful for identifying major drought events of a 4-month time

window across different regions in India. For example, region 1 or the western coast

of India (Figure 4.29a) experienced extreme droughts during the years 1918, 1987,

and 2002 with SPI-4 intensities of -3.46, -2.27, and -2.64, respectively. Similarly,

the neighbouring region 2 or peninsular India (Figure 4.29b) experienced extreme

droughts during the years 1918, 1920, 1952, and 1972 with SPI-4 intensities of -2.97,

-2.60, -2.0, and -2.08, respectively. In contrast to region 1, it experienced moderate

droughts during 1987 and 2002 of SPI-4 intensities -1.0 and -1.67, respectively.

Figure 4.29. SPI-4 drought intensity ending in September for 1901-2004
computed after pooling precipitation data over nine homogeneous drought
regions (a) - (i) over India. The geographic extent of each homogeneous
region is shown as an inset within the subplots.

Figure 4.30 shows bar plots of the areal extent (in percentage) of SPI-4 droughts

ending in September at each of the nine SPI-4 homogeneous drought regions over
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India during the period 1902 to 2004. The geographic extent of each region is shown

as an inset within each sub-plot. Figure 4.30a shows that the areal extent of SPI-4

droughts of extreme category in region 1 or western coast of India was 92.9%, 78.6%,

and 85.7% during the September months of 1918, 1987, and 2002, respectively. Panels

c, d, and h within Figures 4.29 and 4.30 show that western India and northern parts of

the Indo-Gangetic plains experienced more number of severe to extreme, widespread

droughts during the period 1902-1935 compared to other regions.

Figure 4.30. Areal extent of SPI-4 droughts ending in September for 1901-
2004 over nine homogeneous regions (a) - (i) over India. SPI-4 compu-
tation was carried out after pooling precipitation data over homogeneous
drought regions. The geographic extent of each homogeneous region is
shown as an inset within the subplots.

The vulnerability of a region to droughts depends on several factors such as the

total population (i.e., maintaining a reliable supply of drinking water), land use activi-

ties (i.e., agriculture), presence of critical infrastructure (e.g., power plants, reservoirs,

etc.), inland navigation needs, industries (e.g., explicit or implicit need of water), etc.

Figure 4.31 shows bar charts of total population and percentage of land use belonging
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to six broad classes within each homogenous drought cluster. The geographic extent

of each region is shown as an inset within each sub-plot [labeled (a) - (i) in Figure

4.28, instead of (1) - (9)] of Figure 4.28. According to Figure 4.31a, Region 9 belong-

ing to parts of West Bengal, Jharkhand, Bihar, and northeastern states of Assam,

Meghalaya, Tripura, and Mizoram - is the most populated with a total population

greater than 350 million. Similarly, Region 7 and 8, belonging to Jammu & Kashmir

and parts of some northeastern states such as Assam, Arunachal Pradesh, Nagaland,

and Manipur, respectively, are sparsely populated (approximately 50 million people)

compared to rest of India. Each of the remaining six homogeneous drought regions

has a population greater than 140 million. Figure 4.31b shows the percentage of land

use class within each homogeneous region. The six broad classes are listed in the cap-

tion of Figure 4.31. Agriculture is the dominant land use (greater than 40%) in all

regions except regions 7 and 8. Forests are a dominant land cover in region 8 (64%),

with significant coverage also in regions 9 (34%) and 4 (32%). Grasslands are domi-

nant in regions 7 (21%) and 1 (11%), respectively. Snow and ice caps are dominant

in region 3 (9 %), region 7 (31%), and region 8 (13%), respectively. By combining

drought characteristics, total population, and land use distribution within each re-

gion, decision-makers may be able to identify most vulnerable regions to droughts

(Schwarz et al., 2020). For example, regions 2, 6, and 9 are the most vulnerable

regions based on population and agricultural land use information.
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Figure 4.31. Identifying regions over India that are vulnerable to droughts
using (a) total population and (b) broad land use and land cover classes.
Legend description for land use and land cover classes: (a) Agricultural,
(b) Forests, (c) Grassland, (d) Urban, (e) Barren, and (f) Others (e.g.,
water bodies, ice caps and snow, salt pans, etc.)

4.5 Summary and concluding remarks

In this study, homogeneous drought regions over India were identified using (i)

multiple clustering methods, (ii) multiple drought indices, and (iii) for two time-

windows of analysis. Three clustering algorithms - k -means, graph cuts, and ag-

glomerative technique - that differ in their mathematical formulation were used. The

following drought indices (i) SPI, (ii) SPEI, (iii) probabilistic SPI (pSPI), and (iv)

combination of the three drought indices were used to describe drought characteristics

at different grids over India. In addition to drought intensity values, geographic infor-

mation of the grids in the form of latitude and longitude were used. Land use and land

cover data were also used as inputs to the clustering algorithms. The Davis-Bouldin

index was used to evaluate the compactness and the optimal number of clusters. Both

short-term (4-month time window) and long term droughts (12-month time window)

were considered when identifying homogeneous drought regions.
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The study found that each algorithm produced different numbers of clusters, and

their geographic extent varied significantly based on the choice of drought index. It

was also observed that for any drought index, the homogeneous drought clusters dif-

fered depending on the choice of the clustering algorithm. The study also revealed

that clustering results were sensitive to the length of the input dataset and was tested

by generating results for different study periods - (i) 1901 to 1935, (ii) 1935 to 1970,

(iii) 1971 to 2004, and (iv) 1901 to 2004. The sensitivity to the dimensionality of input

datasets was presented for the following predictor sets (i) drought index (e.g., SPI)

(ii) drought index and geographical information combined, and (iii) drought index,

geographic information, and land use data. The clustering results were also sensitive

to the choice of model parameters (such as energy constant value in graph cuts al-

gorithm, initialization technique in k -means, or selection of linkage criteria used in

the agglomerative method), cluster evaluation metric, spatial resolution of inputs (1◦,

0.25◦ grids, etc.), and the spatial extent of the study domain (core-monsoon region).

Among the three clustering algorithms, graph cuts provide a framework of implicitly

imposing geographic contiguity through its MRF prior. When geographic informa-

tion are provided as inputs, geographic contiguity is imposed explicitly. However,

when high spatial resolution data were used (e.g., 0.25◦ grids), geographic informa-

tion turned out to be a weak input for deciding cluster assignments.

Next, an application of clustering of clusters using two different methodologies:

(i) Similarity matrix and (ii) Connected-triple-based similarity were presented for

the first time in the case of homogeneous drought regionalization. A framework

for combining clustering results is particularly useful when the resulting clusters are

sensitive to user inputs, as shown in this study. Geographic contiguity is not imposed

explicitly during the clustering of clusters. However, they may be implicitly imposed

through the choice of base clustering algorithms (e.g., graph cuts) or input datasets

used during base clustering (e.g., geographic data such as latitude, longitude, etc.).

The clustering of clusters is not guaranteed to give globally optimal solution, as it

depends on whether the individual base clustering methods cover the whole space
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of solutions (i.e., the completeness assumption). Unlike supervised classification or

clustering methods where ground truth labels may be used to compute homogeneity

and completeness statistics (Rosenberg and Hirschberg, 2007), such an evaluation is

not possible for unsupervised clustering methods. The clustering of clusters is similar

to an ensemble model where outputs from individual base models are weighted to

produce the final output. The accuracy of clustering of clusters is dependent on how

well each base clustering model performs and how different each base models are in

their modeling approach (Ghosh and Acharya, 2014; Kuncheva and Hadjitodorov,

2004).

The final regions obtained from an ensemble of base clusters were then used

to analyze regional drought characteristics. Intensity-duration-frequency curves and

Intensity-area-frequency curves were developed for each homogeneous area that allows

water resources planners to assess the return periods of current and past droughts

using features such as intensity, duration, and areal extent. Other regional drought

characteristics such as average intensity during drought events, the length of drought

events, and the number of drought events at each grid over homogeneous regions were

presented in the form of box plots. Such box plots are useful in highlighting the gen-

eral distribution of drought characteristics over an area. Regionalization also provides

a framework for pooling data over for drought or other hydrometeorological analysis.

In this study, a representative precipitation time series was first obtained by pooling

precipitation data at all grids within a region. The representative precipitation data

was later used to identify significant historic droughts and their characteristics such as

intensity and areal extent over each homogeneous drought region in India and assess

how these have evolved over the study period.

To conclude, methods to identify homogeneous drought regions at a national scale

(over India) were presented using multiple clustering methods and datasets. The

study found that homogeneous drought regions were sensitive to the choice of (i)

clustering algorithm (k -means, graph cuts, hierarchical, etc.), (ii) drought index (SPI,

SPEI, etc.), (iii) time windows (SPI-4, SPI-12, etc.), (iv) period of analysis (1936-1970
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vs. 1971-2004, etc.), (v) predictor set (drought characteristics, land use, geographic

information, etc.), (vi) input data resolution (1◦ versus 0.25◦ grids), and (vii) spatial

domain of analysis (e.g. core-monsoon region). It is therefore recommended that

homogeneous drought regions should be analyzed from both short-term (4-month

window) and long-term (12-month window) planning objective. For each objective,

homogeneous regions should be developed using multiple drought indices and base

clustering methods. Then using either pair-wise similarity matrix or connected triple-

based similarity matrix approach the unique clusters obtained from base clustering

methods may be combined to get final clusters. The final drought clusters denoting

areas with similar drought characteristics are expected to help policy-makers and

water resources planners in the optimal allocation of resources, developing drought

management plans and taking timely actions to mitigate the negative impacts during

droughts.

The methodology presented in this study captures homogeneity mainly in terms

of drought intensities, duration of drought events, and timing of droughts (i.e., on-

set and termination). Geographic information and land use data also play a role

in final cluster formation. While the quality of homogeneity is difficult to assess in

the absence of ground truth labels, the drought characteristics within each region

were compared in the study using box plots for this purpose. The validation of ho-

mogeneity would provide confidence to combine data over an area for other studies,

e.g., multi-year drought analysis. The clustering results presented in this study show

discrete cluster assignments. However, clustering algorithms such as graph cuts are

capable of providing probabilistic cluster assignments, similar to those achieved using

the fuzzy c-means algorithm. The knowledge about uncertainty in cluster assign-

ment can be useful during (a) policy making (e.g., demarcating regional boundaries,

etc.), (b) pooling data for regional analysis (i.e., exclusion of grids), etc. The mo-

tivation for conducting regionalization at a larger regional or national scale is that

droughts themselves may extend across several state lines. Though significant policy

decisions and allocation of resources are made at the regional level, the authority to
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implement drought management and mitigation measures may lie with the states and

local authorities (MacDonald, 2007; Wilhite, 2012). Drought response actions may

thus require decision-makers from different states, counties, villages, etc., to eval-

uate what would be a good plan for each of their jurisdictions. Regional drought

characteristics can also help in designing local and regional infrastructure design. For

example, drought characteristics over a region can be used in the sizing and operation

of reservoirs based on the probability of occurrence of a design drought (Hudson and

Roberts, 1955; Shih and ReVelle, 1994), farm ponds (Panigrahi and Panda, 2003),

and maintaining stream ecosystem services (Atkinson et al., 2014).

Regionalization studies, when used in conjunction with crop models, can help in

estimating the impact of droughts on crop yield. Crop models use weather data (pre-

cipitation, soil moisture, temperature, sunlight, etc.), soil data, and crop management

data to simulate the agricultural plant growth patterns over a study domain, such as

field, village, or a county. The output from crop models provides useful insight into

the relationship between drought characteristics - such as intensity, duration, and

timing during a growing season, and reduced crop yield. This knowledge can then

be used to estimate crop yields over a broader region with similar drought charac-

teristics. Policy-makers can use this information to prescribe best farming practices

over the area during drought events, and shape watershed and regional policy devel-

opment (Motha, 2011). If drought forecasts are available at the regional scale, they

may be used as inputs to the crop models to obtain modified irrigation schedules to

compensate moisture deficits depending on the crop and its growth stage. Long-term

regional drought characteristics can be used as inputs to crop models to estimate the

risk in reduction of crop yield over the region for different drought scenarios, e.g.,

severe drought (Leng and Hall, 2019).

The following limitations of this study may be addressed as part of future work:

1. All input datasets such as precipitation time series, drought characteristics, and

land use data were assumed to be stationary irrespective of the chosen period

of analysis (35 year epochs or entire study period). The climate community has
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generally accepted 30-year periods as the length of time over which stationary

assumption can be made (Arguez et al., 2012). A more rigorous approach would

be to conduct a change-point analysis to identify periods over which stationary

assumptions are valid (Aminikhanghahi and Cook, 2017), and then obtain ho-

mogeneous clusters over these periods. However, this can be challenging when

considering multiple datasets because each dataset may have different change

points.

2. Only 4-month and 12-month drought time windows were considered for iden-

tifying homogeneous drought regions. When considering multi-year droughts,

if overlapping datasets are used then the assumption of independence will be

violated. On the other hand, the data available for clustering would be thinned

down significantly when non-overlapping inputs are used.

3. Additional datasets such as soil moisture and streamflow data may be used for

clustering.

4. Only a limited number of base clustering algorithms and drought indices were

used in the study.
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5. SUMMARY

Droughts are natural disasters caused due to water deficit expressed through hydrom-

eteorological variables such as precipitation, soil moisture, streamflow, etc. It is often

challenging to characterize droughts promptly as they manifest gradually and are

already a daunting event by the time their presence is recognized. Several drought

indices such as SPI, SPEI, etc. are used to monitor drought characteristics such as

intensity and duration. These indices are also used to classify droughts into differ-

ent categories, such as moderate, severe, and extreme. These drought classes are

then used to trigger responses from decision-makers to mitigate the negative impacts

of droughts. However, experts believe that the allocation of resources and response

capabilities of communities will benefit from the use of drought indices that pro-

vide estimates of model uncertainty while classifying droughts. Characterization of

droughts using probabilistic models that account for model uncertainties is presented

in this thesis. The main findings of the study are summarized below.

1. Based on the recommendation by Trenberth et al. (2014), long-term retrospec-

tive drought variability was examined over the Indian Monsoon Region (IMR)

using multiple datasets and methods. While some specific differences in results

were observed based on the choice of datasets and methods, the overall conclu-

sions were consistent. Results indicate droughts over IMR are becoming more

regional in recent decades. The Indo-Gangetic plain, parts of coastal south-

India, and central Maharashtra were identified as vulnerable regions for recent

droughts.

2. A probabilistic Gamma mixture model-based drought index was presented as an

alternative to (a) deterministic classification by SPI, and (b) probabilistic clas-

sification by HMM-DI. The Bayesian framework of the proposed model avoids
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over-specification and overfitting by choosing the optimum number of mixture

components required to model the data − a problem that is often encountered in

other probabilistic drought indices (e.g., HMM-DI). When a sufficient number

of components are used in Gamma-MM, it can provide a good approximation

to any continuous distribution in the range (0,∞), thus addressing the prob-

lem of choosing an appropriate distribution for SPI analysis. The Gamma-MM

propagates model uncertainties to drought classification.

3. Finding regions over a study area that have similar drought characteristics is

useful for drought preparedness and management purposes, resource allocation,

thereby improving the overall resilience of different regions to droughts. The

regionalization framework proposed in this study identified grids that exhibit ho-

mogeneity with respect to drought intensity values, duration of drought events,

and their timing (onset and termination of drought events). Drought charac-

teristics such as intensity, frequency, and duration, along with land-use and

geographic information, were used as input features for clustering algorithms.

Three methods, namely, (i) a Bayesian graph cuts algorithm that combines

the Gaussian mixture model (GMM) and Markov random fields (MRF), (ii)

k -means, and (iii) hierarchical agglomerative clustering algorithm were used to

find homogeneous drought regions that are spatially contiguous and have sim-

ilar drought characteristics. The number of homogeneous clusters and their

shape were found to be sensitive to the choice of the drought index, time win-

dow of drought, period of analysis, dimensionality of input datasets, clustering

method, spatial resolution of input datasets, spatial extent of the study domain,

and model parameters of clustering algorithms. Regionalization for different

epochs provided useful insights into the space-time evolution of homogenous

drought regions over the study area. Strategies to combine the results from

multiple clustering methods were presented. The accuracy of clustering of clus-

ters, which is similar to ensemble modeling or averaging in machine learning,

depends on how each clustering model performs and the uniqueness in their
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modeling approach. The combination of multiple weak models will likely lead

to a robust model. However, since ground truth labels are unavailable, it is

not possible to confidently determine if the clusters are valid or if the globally

optimal solution was reached. The nature of drought characteristics, intensity-

duration-frequency curves, and intensity-area-frequency curves were developed

over each homogenous drought region. These results can help policy-makers

and water resources planners in the optimal allocation of resources, developing

drought management plans, and taking timely actions to mitigate the negative

impacts during droughts.

Assessing the causal mechanism of droughts, and relating trends in drought char-

acteristics to phenomena such as changes observed in the monsoon break (active - dry

spell) periods (Singh et al., 2014), aerosols, land use, SST, thermodynamic feedback

due to heating rates (Roxy et al., 2015) were not considered in this study. Also, the

precipitation and temperature time series, drought characteristics, and land use data

were assumed to be stationary. The results presented in this study were only for

4-month, 7-month, and 12-month drought time windows - while some users may be

interested in drought characteristics for shorter (1-month, 2-month, etc.) or longer

time windows (24-month, 36-month, etc.). Data available for analyzing longer time

window droughts is significantly limited when analysis is performed on a station-by-

station basis. However, as long term droughts have large spatial extents, identifying

homogeneous regions over a study area allows users to pool the data from multiple

stations within a region that have similar drought characteristics and conduct robust

studies. The spatial evolution of drought characteristics and clusters were analyzed

for only three 35-year epochs. While the choice of epoch-length is subjective (chosen

here based on climate normals, i.e., 30 years or more), stationarity was assumed to

be valid over this time-frame. Alternatively, methods such as change-point detection

may be used to select the length of epochs. Droughts due to deficit in water expressed

through other hydrometeorological variables such as soil moisture and streamflow data
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were not considered. The homogeneous drought clusters obtained in this study could

not be validated with ground truth labels - as these do not exist.

Future work will address some of the above limitations. Probabilistic drought

indices that account for non-stationarity and auto-correlation in hydrometeorological

data will be developed. Methods to relate changes observed in drought characteristics

over India to anthropogenic factors such as greenhouse gas emissions and aerosol

concentrations, land use changes, etc. will be explored. Future studies should also

consider including soil moisture and streamflow deficits for characterizing agricultural

and hydrologic droughts. Regionalization methods that account for non-stationarity

in hydrometeorological and land use data, engage stakeholder feedback and features

such as administrative boundaries will be explored.
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Wilhite, D. (2009). Developing a regional drought climatology for the Czech Re-

public. International Journal of Climatology: A Journal of the Royal Meteorological

Society, 29(6):863–883.



156

Unal, Y., Kindap, T., and Karaca, M. (2003). Redefining the climate zones of Turkey

using cluster analysis. International Journal of Climatology: A Journal of the Royal

Meteorological Society, 23(9):1045–1055.

Ventura, V., Paciorek, C. J., and Risbey, J. S. (2004). Controlling the proportion

of falsely rejected hypotheses when conducting multiple tests with climatological

data. Journal of Climate, 17(22):4343–4356.

Vicente-Serrano, S. M. (2006a). Differences in spatial patterns of drought on different

time scales: an analysis of the Iberian peninsula. Water resources management,

20(1):37–60.

Vicente-Serrano, S. M. (2006b). Spatial and temporal analysis of droughts in the

Iberian peninsula (1910–2000). Hydrological Sciences Journal, 51(1):83–97.

Vicente-Serrano, S. M., Beguera, S., and Lpez-Moreno, J. I. (2010). A multiscalar

drought index sensitive to global warming: the standardized precipitation evapo-

transpiration index. Journal of Climate, 23(7):1696–1718.

Wang, A., Lettenmaier, D. P., and Sheffield, J. (2011). Soil moisture drought in

China, 1950–2006. Journal of Climate, 24(13):3257–3271.

Wilhite, D. A. (2000). Drought as a natural hazard: concepts and definitions. In

Wilhite, D. A., editor, Drought: A Global Assessment, volume I, chapter 1, pages

3–18. London: Routledge.

Wilhite, D. A. (2012). Drought assessment, management, and planning: theory and

case studies: theory and case studies, volume 2. Springer Science & Business Media.

Wilhite, D. A. and Svoboda, M. D. (2000). Drought early warning systems in the

context of drought preparedness and mitigation. Early warning systems for drought

preparedness and drought management, pages 1–21.

Wilks, D. S. (2006). On field significance and the false discovery rate. Journal of

Applied Meteorology and Climatology, 45(9):1181–1189.



157

Wiper, M., Insua, D. R., and Ruggeri, F. (2001). Mixtures of gamma distributions

with applications. Journal of Computational and Graphical Statistics, 10(3):440–

454.

Yevjevich, V. M. (1967). An bjective approach to definitions and investigations of

continental hydrologic droughts. Hydrology papers (Colorado State University); no.

23.

Yue, S. and Wang, C. Y. (2002). Applicability of prewhitening to eliminate the

influence of serial correlation on the Mann-Kendall test. Water Resources Research,

38(6):1068.

Zhang, J. (2004). Risk assessment of drought disaster in the maize-growing region of

Songliao Plain, China. Agriculture, ecosystems & environment, 102(2):133–153.



158

A. COPYRIGHT AND CO-AUTHOR PERMISSIONS

Figure A.1. Copyright permission for Chapter 2



159

 
Requesting permission to reproduce WACE 2016 paper 
 

 
Ganeshchandra Mallya <gmallya@purdue.edu> Fri, Mar 27, 2020 at 3:14 PM
To: Vimal mishra <vmishra@iitgn.ac.in>, Shivam <shiva@iitk.ac.in>, "Niyogi, Dev" <dniyogi@purdue.edu>, 
"Govindaraju, Rao S" <govind@purdue.edu> 

Dear Co-authors: 
I am including our paper titled Trends and variability of droughts over the Indian monsoon region in my thesis. 
Can you kindly respond to this email permitting me to use this paper? 
Thanks, 
Ganesh 
 
Citation: 
Mallya, G., Mishra, V., Niyogi, D., Tripathi, S., and Govindaraju, R. S. (2016). Trends and variability of droughts 
over the Indian monsoon region. Weather and 
Climate Extremes, 12:43-68. 

 

 

Govindaraju, Rao S <govind@purdue.edu> Fri, Mar 27, 2020 at 3:15 
PM

To: Ganeshchandra Mallya <gmallya@purdue.edu>, Vimal mishra <vmishra@iitgn.ac.in>, Shivam 
<shiva@iitk.ac.in>, "Niyogi, Dev" <dniyogi@purdue.edu> 

Ganesh: Fine by me. 

Best. 

RSG 
 

 
Niyogi, Dev <dniyogi@purdue.edu> Fri, Mar 27, 2020 at 3:32 PM
To: Ganeshchandra Mallya <gmallya@purdue.edu>, Vimal mishra <vmishra@iitgn.ac.in>, Shivam 
<shiva@iitk.ac.in>, "Govindaraju, Rao S" <govind@purdue.edu> 

Yes please use it 
 

 
Vimal mishra <vmishra@iitgn.ac.in> Fri, Mar 27, 2020 at 5:48 PM
To: "Niyogi, Dev" <dniyogi@purdue.edu> 
Cc: Ganeshchandra Mallya <gmallya@purdue.edu>, "Govindaraju, Rao S" <govind@purdue.edu>, Shivam 
<shiva@iitk.ac.in> 

Please go ahead and use them 
 

 
Shivam <shiva@iitk.ac.in> Fri, Mar 27, 2020 at 9:57 PM
To: Ganeshchandra Mallya <gmallya@purdue.edu> 
Cc: "Govindaraju, Rao S" <govind@purdue.edu>, "Niyogi, Dev" <dniyogi@purdue.edu>, Vimal mishra 
<vmishra@iitgn.ac.in> 

Dear Ganesh: 

Fine with me too. 

Thanks, 

Shivam 

 

 

Figure A.2. Co-author permission for Chapter 2



160

Figure A.3. Copyright permission for Chapter 3



161

 
Requesting permission to reproduce JoH (2015) paper 
3 messages 

 
Ganeshchandra Mallya <gmallya@purdue.edu> Fri, Mar 27, 2020 at 3:19 PM
To: Shivam <shiva@iitk.ac.in>, "Govindaraju, Rao S" <govind@purdue.edu> 

Dear Co-authors: 
 
I am including our paper titled Probabilistic drought classification using gamma mixture models in my 
thesis. Can you kindly respond to this email permitting me to use this paper? 
 
Thanks, 
Ganesh 
 
Citation: 
Mallya, G., Tripathi, S., and Govindaraju, R. S. (2015). Probabilistic drought classification using 
gamma mixture models. Journal of Hydrology, 526:116-126. 

 

 
Govindaraju, Rao S <govind@purdue.edu> Fri, Mar 27, 2020 at 3:21 PM
To: Ganeshchandra Mallya <gmallya@purdue.edu>, Shivam <shiva@iitk.ac.in> 

Ganesh: 

That will be fine. 

Best. 

RSG 

[Quoted text hidden] 
 

 
Shivam <shiva@iitk.ac.in> Fri, Mar 27, 2020 at 9:59 PM
To: Ganeshchandra Mallya <gmallya@purdue.edu>, "Govindaraju, Rao S" <govind@purdue.edu> 

Dear Ganesh: 

Please use the paper. 

Thanks, 

Shivam 
[Quoted text hidden] 

 

 

Figure A.4. Co-author permission for Chapter 3



162

VITA

Ganeshchandra Mallya hails from Mangalore (Karnataka), India. He received his

undergraduate degree in Civil Engineering from National Institute of Technology

Karnataka (NITK), Surathkal, India. He then went on to work as a Systems Engineer

in Tata Consultancy Services, Ltd. He received his M. S. in Civil Engineering from

Purdue University, and then continued on for a Ph. D. degree.


	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Trends and Variability of Droughts over Indian Monsoon Region
	Introduction
	Data and Methods
	Standardized precipitation index (SPI)
	Standardized precipitation evapotranspiration index (SPEI)
	Gaussian mixture model-based drought index (GMM-DI)
	Hidden Markov model-based drought index (HMM-DI)

	Results and discussion
	Drought characterization
	Spatial and temporal variability in drought characteristics
	Trends
	Drought frequency
	Drought vulnerability

	Summary and concluding remarks

	Probabilistic Drought Classification with Standardized Precipitation Index
	Introduction
	Study area and data used
	Methodology
	Gamma mixture model
	Gibbs sampling algorithm

	Results and discussion
	Grid 125 (2130' N and 8230' E):
	Grid 251 (2630' N and 9530' E):
	Grid 278 (2830' N and 7030' E):

	Summary and concluding remarks

	Identification of Homogeneous Drought Regions
	Introduction
	Study area and data used
	Methodology
	Clustering using k-means
	Clustering using Markov Random Fields
	Hierarchical clustering
	Pairwise similarity matrix
	Connected-triple-based similarity matrix
	Drought Indices
	Standardized Precipitation Index (SPI)
	Standardized Precipitation Evapotranspiration Index (SPEI)
	Probabilistic Standardized Precipitation Index (pSPI)

	Drought characteristics
	Regional Intensity-Duration-Frequency analysis
	Regional Intensity-Area-Frequency analysis

	Results and discussion
	Clustering using k-means
	Clustering using graph cuts
	Agglomerative clustering
	Clustering of clusters
	Regional Drought Characteristics
	Characteristics of drought events
	Intensity-Duration-Frequency analysis
	Areal extent of drought and average drought intensity
	Intensity-Area-Frequency analysis
	Drought analysis by pooling data over homogeneous regions


	Summary and concluding remarks

	Summary
	Copyright and co-author permissions 
	VITA

