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ABSTRACT

Khayat, Mosab A. PhD, Purdue University, August 2020. Evaluation of Visual Analytics
With Application to Social Spambot Labeling. Major Professor: Arif Ghafoor.

Visual analytics (VA) solutions emerged in the past decade and tackled many problems

in a variety of domains. The power of combining the abilities of human and machine

creates fertile ground for new solutions to grow. However, the rise of these hybrid solutions

complicates the process of evaluation. Unlike automated solutions, VA solutions behavior

depends on the user who operates them. This creates a dimension of variability in measured

performance. The existence of a human, on the other hand, allows researchers to borrow

evaluation methods from domains, such as sociology. The challenge in these methods,

however, lies in gathering and analyzing qualitative data to build valid evidence of usefulness.

This thesis tackles the challenge of evaluating the usefulness of VA solutions. We

survey existing evaluation methods that have been used to assess VA solutions. We then

analyze these methods in terms of validity and generalizability of their findings, as well as

the feasibility of using them. Subsequently, we propose an evaluation framework which

suggests evaluating VA solutions based on judgment analysis theory. The analysis provided

by our framework is capable of quantitatively assessing the performance of a solution while

providing a reason for the captured performance.

We have conducted multiple case studies in social spambot labeling domain to apply our

theoretical discussion. We have developed a VA solution that tackles social spambot labeling

problem, then use this solution to apply existing evaluation methods and showcase some of

their limitations. Furthermore, we have used our solution to show the benefit yielded by our

proposed evaluation framework.
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1. INTRODUCTION

Visual analytics (VA) is an emerging problem-solving approach that combines the power

of humans and machines to gain a deeper understanding of complex problems to reach

optimal solutions that are not achievable by humans or machines working independently.

This intertwined environment is created by designing interactive tools that employ automatic

data analysis and visualization techniques to improve the awareness of expert users and

support their decisions in their domains. The visual analytics approach has been utilized

in many areas to solve concrete domain problems including, healthcare [1], finance [2],

weather forecasting [3], cybersecurity [4] and many others. Visual analytics solutions have

also been tackling abstract problems that serve multiple different fields such as anomaly

detection [5], event analysis [6], and data clustering problems [7].

Researchers in the visual analytics community acknowledge the importance and complex-

ity of evaluating VA solutions. To clarify the difficulty of evaluation in VA, it is important to

understand what VA is and what makes it special. We start this dissertation by providing

necessary background information about visual analytics in Chapter 2. The chapter also

provides a survey of the work related to the problems tackled by this dissertation.

The first problem we tackle in this dissertation is to determine which evaluation

method should a researcher use to evaluate a VA solution. Because of the diverse

evaluation contexts in the field of visual analytics, many researchers start to confuse the

applicability of different evaluation methods in different evaluation contexts. This calls

for a systematic methodology to analyze current evaluation methods to provide an abstract

prescription, which assists researchers in choosing the right evaluation method and improve

the validity of evaluation studies in general.

Multiple challenges face researchers who desire to propose a prescription of evaluation

methods. Identifying the superiority of one method over another requires an accurate abstract

description of the process of evaluation in these methods. This description needs to show
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the effect of different evaluation activities on the validity of the findings of the evaluation.

Furthermore, the description must permit comparing the process of evaluation across all

the methods used in the VA field. Developing this description of evaluation methods is

challenging because of the diversity of evaluation goals, which are typically mixed up with

each other. Moreover, missing metrics capable of quantifying the validity of study findings

create yet another challenge for prescribing evaluation methods. The final challenge to

tackle when prescribing evaluation methods is to make the prescription flexible to adapt to

different evaluation instances in VA.

Considering the summative evaluation context, in which a researcher is trying to judge

and prove the usefulness of a developed solution, we find eight different categories of

evaluation methods that have been used with summative intention despite the suitability

of methods only for formative or exploratory assessment and not summative. To explain

differences among summative evaluation methods in terms of their quality of proving

usefulness, we analyze the validity and the generalizability (external validity) of the evidence

of usefulness the eight categories generate. Our analysis utilizes a taxonomy, which we

build to represent the activities employed in each category of evaluation. By focusing on

the activities of the methods, we highlight risk factors that could affect the validity and

generalizability of the generated evidence. We also analyze the feasibility of applying a

method, which is also affected by the method’s activities. Then, we propose quantitative

metrics that measure the summative quality of evaluation methods and the feasibility of

using them. We use these metrics to analyze current evaluation methods. From our analysis,

we propose a ranking of the eight categories of evaluation in terms of their quality of proving

usefulness as well as the feasibility of using them. Chapter 3 present more details on the

problem of prescribing summative evaluation method for different evaluation instances and

how we tackle this problem.

The second problem we are tackling in this dissertation is to minimize the validity

risk in existing evaluation methods. The prescription we propose in Chapter 3 can increase

the validity of evaluation studies in the field as it guides practitioners in selecting an

evaluation method with the least validity risks. However, our prescription point to some
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risk factors in every current evaluation methods. These risk factors are inherent limitations

in current methods that ought to be overcome to increase the validity of studies findings.

A challenge needed to be considered while solving this problem is to maintain feasibility,

which reversely relates to validity.

Our solution to the problem of minimizing validity risks in current evaluation methods

starts from selecting methods that balance validity and feasibility. We examined the risk

factors in these methods and search for a systematic way to minimize validity risks in

them while maintaining an acceptable level of feasibility. Two of the evaluation methods

that well-balancing validity and feasibility are the performance-based and insight-based

frameworks, which are assessing VA solutions in different ways. In the performance-based

framework, VA solutions are evaluated using their capabilities to tackle certain decision

problems. The insight-based framework, on the other hand, evaluates the support provided

by a VA solution to generate new knowledge about analyzed data. The support is assessed

using the number of insights reached while interacting with the VA solution.

To reduce the validity risks we find in performance-based, and insight-based frameworks,

we propose a new evaluation framework based on judgment analysis (JA) theory [8]. Based

on statistics and information theory, our framework improves the validity of the insight-based

framework by providing a mechanism and a metric that measures the significance of insights

to replace traditional insight-count metric used to justify the usefulness. Furthermore, our JA

framework identifies clusters in the population of potential users, which are systematically

different, thus need to be studied independently. Following this methodology improves

the validity of the traditional performance-based framework, which always treats the user

population as a whole. More details about our integration of visual analytics evaluation and

judgment analysis theory to tackle the problem of minimizing validity risk are discussed in

Chapter 4.

The previous two theoretical problems tackled by this dissertation need to be demon-

strated practically. To achieve this, we choose to apply our contributions in multiple

case studies in the domain of social spambots labeling. A social spambot is a computer

algorithm that automatically produces content and interacts with humans on social media,
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trying to emulate and possibly alter their behavior [9]. These types of bots have been used

to propagate harmful content, such as spreading radicalism [10]. Many automated solutions

have been designed to detect spambot accounts. However, the nature of the problem requires

the continuous tracking of the performance of these models. As in many cybersecurity

topics, malicious actors dynamically change and evade existing solutions. This change in

the behavior of the attackers creates a challenge to automated solutions that needs to adapt

to unknown new behavior. Meanwhile, the scale of the problem creates a challenge for

analyzing and labeling social media accounts manually.

To tackle the problem of social spambot labeling, we present VASSL, a visual analytics

system that expedites and facilitates the process of spambot labeling. VASSL leverages

multiple integrated computational and visual features to support human annotators in inspect-

ing accounts from different angles and at different aggregation levels. Notably, it enables

behavior analysis of multiple accounts as groups, instead of analyzing accounts individually,

enabling the detection of spammers using multiple accounts, as well as providing users with

insights into the collective and dynamic behavior of spambots. VASSL also allows users to

conduct analyses at a lower resolution, using views that reveal detailed information about a

selected account.

We apply our theoretical contributions of Chapters 3 and 4 to improve the validity

of evaluating the visual analytics approach of labeling social spambots. Following the

prescription proposed in Chapter 3, we evaluate VASSL using the quantitative user testing

method to assess its usefulness objectively. The guidelines in Chapter 3 guide us to apply

the quantitative user opinion method as a secondary evaluation to increase the validity

of the study findings. The results indicate a statistically significant improvement in the

performance of human annotators when they use VASSL.

Our judgment analysis evaluation framework proposed in Chapter 4 is feasible in the so-

cial spambot labeling context. We conducted a second case study to apply our framework to

show the advantages of using the proposed evaluation framework over traditional evaluation

frameworks. In this case study, we evaluate a version of VASSL, which utilizes three of the

five views of VASSL. We compare this version to the traditional manual labeling approach
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when analyzing one social media account at a time. The results highlight differences be-

tween groups of tested subjects in terms of performance and analytical support when using

the two evaluated approaches. In the context of this case study (i.e., analyzing one twitter

account at a time), some subjects favor the VA approach while most of them do not benefit

much from the added visualizations and show no improvements compared to the traditional

manual labeling approach.

Chapter 5 provides more discussion about the problem of labeling social spambots. It

gives detailed information about VASSL and the two empirical experiments we perform to

demonstrate our theoretical arguments made in Chapters 3 and 4.

After presenting our contributions to increase the validity of evaluation studies in VA,

we conclude the dissertation with a summary of its content. The summary provides a brief

descriptions of our solutions to the problem of prescribing evaluation methods (Chapter 3),

the problem of minimizing risk validity in evaluation method (Chapter 4), and the application

of the theoretical contributions to the problem of labeling social spambots (Chapter 5).
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2. RELATED WORK

In this chapter, we present background materials about the field of visual analytics. The

information provided in this chapter is essential to understand different aspect of VA systems,

which is will be relied on in the chapters to follow. We also present a literature survey for a

set of work related to this dissertation.

Thomas and Cook [11] give the most well-known definition of visual analytics as “the

science of analytical reasoning facilitated by interactive visual interfaces”. This definition

clearly states the role of both human and machine in VA. Human consumes the information

provided by the machine and make sense of it using humans’ analytical reasoning capabilities.

The machine, on the other hand, communicates a large volume of information to the human

by utilizing automated analytical procedures and information visualization techniques.

VA has been seen as a process that transforms raw data into units of knowledge which

are commonly called insights. This process has been described by Sacha et al. [12] in their

Knowledge Generation Model “KGM” (Figure 2.1). The process starts with a set of raw data.

VA solutions transform this data into interactive visualizations to enable users to absorb

as much information from it as possible. The data is also modeled or summarized using

automated procedures such as data mining methods, to generate more pieces of information

from the data. The human part includes the set of mental processes that transform observable

information into findings, make sense of the findings to reach a set of insights, generate new

hypotheses from reached insights or from previous knowledge, search for more findings and

evidence through interaction with the VA solution, confirm or reject generated hypothesis

and eventually generate new knowledge.

From the description of the VA process, one can observe the nature of VA as a research

area that integrates multiple disciplines. This includes information visualization, data

management and cleaning, statistics and data analysis (including data mining and machine

learning), Human-computer interaction “HCI”, human perception, and cognition science.
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Fig. 2.1.: The Knowledge generation model proposed in [12]. The model describes the
process of generating knowledge which is considered the conceptual output of VA

The multidiscipline nature of VA introduces many challenges for researchers to tackle.

A set of challenges has been highlighted in multiple studies in the fields [11, 13]. One of

these challenges is the challenge of evaluating this complicated system which incorporates

automated processes and human-dependent processes.

In this section, we provide a literature survey of the work related to this dissertation. This

survey can be broadly be categorized into: a) surveys of evaluation practices, b) analysis of

evaluation methodologies, c) prescription of evaluation methods, d) judgment analysis and

its applications, and e) Social Spambot detection solutions.

2.1 Surveys of Evaluation Practices

Multiple studies have surveyed existing evaluation practices. Lam et al. [14] suggest

that it is reasonable to generate a taxonomy of evaluation studies by defining scenarios of

evaluation practices that are common in the literature. Their extensive survey is unique and

provides many insights for researchers. Specifically, seven scenarios of evaluation practices
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are discussed along with the goals of each, with examplar studies and methods used in

each scenario. Isenberg et al. [15] continue this effort by extending the number of surveyed

studies and introducing an eighth scenario of evaluation practices. These studies helped us

build the backbone of our taxonomy as explained in Section 3.3.1. The initial code to group

evaluation methods in our survey was derived from Lam et al. and Isenberg et al.. We then

gradually modified the coding of evaluation methods according to the studies we surveyed.

In contrast to the grouping approach according to common evaluation practices taken by

previous surveys, we focus on grouping evaluation methods based on the similarities in each

method’s (sub)activities, with the ultimate goal of analyzing the potential risks associated

with them, rather than simply describing the existing evaluation practices.

2.1.1 Evaluating Knowledge-building in VA

The research and development agenda for visual analytics presented by Thomas and

Cook [11] highlights the necessity of developing evaluation methods suitable for assessing

VA solutions as knowledge-building tools. VA solutions are developed to facilitate the

analytical reasoning of users, a process that generates knowledge from the analyzed data.

An evaluation method designed to assess such solutions needs to consider users knowledge

as an abstract objective. Many VA researchers formulate the definition of the knowledge

resulted from VA process [16–18]. In chapter 4, we select the description chosen by Chen

et al. [19], which defines knowledge in the perceptual and cognitive space as the ability to

use available data and information to answer explanation questions (e.g., how to distinguish

spammer accounts in social media).

Several contributions have been devoted to tackling the challenge of evaluating the

knowledge-building support provided by VA solutions. A common name for this group

of evaluation methods is “Evaluating Visual Data Analysis and Reasoning (VDAR)” as

suggested by [20, 21]. We found five different types of related work that belong to VDAR.

The first type is the value-driven type, which aims at explaining how to identify the

value of VA or visualization solutions. The work in this type acknowledge the limitation of
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oversimplifying real world tasks in traditional performance-based evaluation, and propose

alternative ways to measure the value of VA solutions. An early study that belongs to

this type is conducted by Van Wijk [22] who propose an economic model to measure the

value of visualization. The model is build based on an iterative process of interacting

with visualization and change in user knowledge over time. Stasko [23] proposes another

value-driven evaluation of visualization. His work defines the value in terms of four

capabilities: minimizing the time to answer diverse questions, spurring the generation of

insights, conveying the essence of the data, and generating confidence and knowledge

about the data’s domain and context. These works contribute valuable conceptual models

to understand the importance of knowledge-building to determine the value of VA and

visualization solutions. However, these works are not intended to be practical evaluation

frameworks as they have not identify how to assess the knowledge-building practically.

The second type of VDAR evaluation methods is qualitative case studies. In this

type, evaluators try to identify the amount of knowledge-building support provided by a

VA solution by interacting with the users. A well-known framework of this type is the

Multi-dimensional In-depth Long-term Case studies (MILC) proposed by Shneiderman and

Plaisant [24]. In this framework, evaluators get involved with domain expert users in their

work environment for an extended period and try to understand the value of visualization or

VA solutions from various collected qualitative data. Another framework of this type is the

pair analytics method proposed by Hernandez et al. [25]. In this method, the evaluators work

in close collaboration with the expert users on an actual analysis problem while trying to

understand how the evaluated tool support the analysis. These methods have high ecological

validity as they tend to assess a solution in situ. However, the ethnographic, qualitative

nature of these methods could limit their precision and generalizability.

Another related work to VDAR is the Knowledge Task-based framework proposed by

Amar and Stasko [26]. The authors commence their contribution by defining analytical

gaps: a group of issues that distance users of a visualization system from understanding

a phenomenon explained by the system. After breaking down the analytic gaps into two

groups, i.e., the rationale gap and the worldview gap, the authors suggest a set of heuristics



10

to bridge the gaps. Then, they propose the use of these heuristics to evaluate a visualization

system, following heuristic evaluation methodology [27]. Analyzing the roadblocks in the

knowledge-building process is unique in this framework. However, the usage of heuristic

evaluation requires an exhaustive list of finer heuristics to assess knowledge-building accu-

rately. Building such a list is challenging for VA solutions, which are problem-dependent

and tackle different analysis problem at different abstraction levels. An effort in building a

heuristics list for evaluating VA solutions has been made by Scholtz [28], who emphasize

the need for more work in this area to have a reliable list of heuristics.

The fourth type of VDAR evaluation is the work conducted by Chang et al. who

propose a learning-based evaluation framework. This framework seeks to quantitatively

evaluate the capability of VA solutions in supporting the knowledge-building process. The

pipeline proposed by the authors suggests post-testing of users after they explore data with a

VA solution. Testing is recommended to be performed using some analytical tasks and a

semantic questionnaire to measure the amount of knowledge gained from studying the data

with a VA solution. The quantitative approach taken by this framework is useful to build

generalizable evidence of usefulness for the tested VA solutions. However, a certain level of

domain expertise is required to perform the testing with an acceptable level of ecological

validity.

The last type of VDAR evaluation work, which is the closest to our work, is the insight-

based evaluation framework proposed by Saraiya et al. [29]. Insight is defined as “an

individual observation about the data by the participant, a unit of discovery” [30], which

distinguish the term from the definition of insight in cognitive science [31]. The insight-

based framework measures the amount of knowledge-building by asking users to report, in

a qualitative manner, any insight they reached. Subsequantly, the reported insights allow the

evaluators to define quantitative metrics representing the amount of knowledge gained. The

mixed-methodology employed in this framework is unique and well-balancing precision,

generalizability, and realism.

There are concerns regarding the validity of the quantitative metrics used in the insight-

based framework. Traditionally, insight-based studies rely on insight count to measure the
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amount of support provided by a solution in terms of knowledge-building. In a previous

study [32], we explain that the usage of such a metric introduces risk to the validity of the

framework since it is likely for insights to be of varying significance. This observation

has been reported in multiple studies in the literature, including Sumc [33] who define

three levels of insight significance according to the Skill-rule-knowledge loop developed by

Rasmussen [34]. Another study conducted by Tan and Chan [35] suggests different insight

significance based on Endlsly’s levels of situation awareness [36]. Similar to these studies,

we argue that it is essential to acknowledge differences in insight significance when using

the insight-based framework. Our work, however, suggests an objective quantitative way to

measure insights significance according to their contribution to the decision-making process.

2.2 Analysis of Evaluation Methodologies

The next set of related work focuses on explaining and analyzing evaluation methodolo-

gies. Evaluation research in visualization and VA can be divided into two types from the

perspective of human-involvement: human-dependent evaluation and human-independent

evaluation. The methodology of the first type draws on behavioral and social science

methodologies to study the effect of visual artifacts on the human operator. One of the

most well-known taxonomies for classifying behavioral and social science methodologies

that has been ported to the Human-Computer Interaction (HCI) community is proposed by

McGrath [37]. This taxonomy was built based on the three main dimensions that any behav-

ioral study seeks to maximize, which are a) generalizability, b) realism, and c) precision.

Generalizability of a study determines the extent of applicability of the study findings to any

observable cases in general. It is related to the concept of external validity of results. Real-

ism is the representativeness of studied cases to situations that can be observed in the real

world; i.e., it determines the level of ecological validity of the findings. Finally, the precision

of a study measures the level of reliability and internal validity of the findings. McGrath

argues that these dimensions cannot be maximized simultaneously, since increasing one

adversely affects the others. He then reviews common methodologies in behavioral science
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and assigns them to a position in the space defined by the three dimensions. Our analysis of

evaluation methods relies on many of the arguments made by McGrath. A key difference

between our work and that of McGrath lies in the intention of targeted studies. Our work

focuses on studies that have a summative intention of proving usefulness. Unlike the general

view of McGrath’s work, summative evaluation studies have unique characteristics that

permit ranking according to the quality of proving usefulness, as we explain in Section 3.4.

An early study that introduces McGrath’s work to the information visualization evalua-

tion context is done by Carpendale [38], who provides a summary of different quantitative,

qualitative and mixed methodologies along with a discussion about their limitations and

challenges. A more recent work by Crisan and Elliott [39] revisits quantitative, qualitative

and mixed methodologies and provides guidance on when and how to correctly apply them.

Instead of taking a general view of behavioral methodologies, we use a unified lens to

identify limitations in evaluation methods used to prove usefulness, which may follow

different methodologies, but are indeed used with summative intentions. Similar to Crisan

and Elliott, we use validity and generalizability as our analysis criteria and add the feasibility

criterion to the analysis to determine the level of applicability of the methods.

The second type of evaluation in visualization and VA is human-independent. In this

type of evaluation, researchers follow a quantitative methodology to assess visualization

or VA systems without considering the human element. This includes computer science

methods of evaluating automated algorithms [40] and statistical methods for assessing

machine learning models (e.g. [41]). A unique quantitative methodology that has been

used to evaluate visualization and VA solutions is the information theoretic framework

proposed by Chen and Heike [42]. This framework treats the pipeline of generating and

consuming visual artifacts as a communication channel that communicates information from

raw data, as the sender, to human perception as the receiver. Information theory framework

has been used to define objective metrics such as the cost-benefit ratio [43], which has been

recently used to build an ontological framework that supports the design and evaluation of

VA systems [44]. We include human-independent methods in our analysis because they are

summative by nature.
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2.3 Prescription of Evaluation Methods

The next set of related work focuses on the prescription of evaluation methods by pro-

viding guidelines on what evaluation methods are suitable for different evaluation instances.

Andrews [45] proposes four evaluation stages during the development cycle of a system:

a) before the design, b) before the implementation, c) during implementation, and d) after

implementation. Andrews suggests that the purpose, as well as the method of evaluation, is

defined by the stage. For example, evaluation studies conducted after the implementation are

summative in purpose and usually use methods such as formal experiments or guideline scor-

ing. A more sophisticated prescription of evaluation methods is proposed by Munzner [46],

who defines four nested levels, each having a set of unique problems and tasks. During

the design stage, developers face multiple problems on their way to the inner level, which

requires validation of the design choices. After implementation, a sequence of validation

must be performed at each level to validate the implementation on the way out of the nest.

Munzner then prescribes different evaluation methods to be used in each validation step.

Meyer et al. [47] expand this model by focusing on each of the nested levels and proposing

the concepts of blocks and guidelines. Blocks describe the outcomes of design studies at

each level, and guidelines explain the relationship between blocks at the same level or across

adjacent levels in the nest. Another extension to Munzner’s work is Mckenna et al. [48] who

link the nested model to a general design activity framework. The framework breaks down

the process of developing a visualization into four activities of understand, ideate, make and

deploy.

One argument made by Munzner [46] was the necessity of summative evaluation during

each stage of design studies to evaluate the outcome of that individual stage. Sedlmair

et al. [49] and Mckenna et al. [48] made similar arguments while describing the process

of design studies. They make the case for considering non-quantitative methods, such as

heuristic evaluation, for summative purposes. While the Munzner’s nested model [46]

essentially prescribes evaluation methods based on the development stage, we focus our

analysis and prescription based on the activities performed during evaluation, and judge the



14

quality of evaluation findings (evidence of usefulness) based on the amount of risk introduced

by the involved activities. Further, our approach adapts to different evaluation instances and

prescribes relatively smaller number of potential evaluation methods, compared to [46].

Another form of prescription studies is the study of correctly adopting existing eval-

uation methods in the context of VA. Most evaluation methods that have been applied in

visualization and VA have been borrowed from the field of human-computer interaction

(HCI). Scholtz [50] explains the main factors that need to be added or modified in existing

HCI methods to increase their utility in VA research. In addition, she prescribes potential

evaluation metrics that have been successfully applied to assessing VA solutions. Still, the

necessity of searching for suitable evaluation metrics for visual analytics persists [50–53].

2.4 Judgment Analysis and Its Applications

Judgment analysis (JA) is a theory developed to evaluate individuals’ decision policies.

The core of the theory was proposed in the mid-20th century by Brunswik [54], who empha-

sized the importance of understanding variability in individuals’ behavior. To generalize

findings about a human sample to the population (e.g., weather forecasting accuracy of a

group of meteorologists), Brunswik argues that it is essential to initially capture behavior

differences among them using multiple instances of the studied decision task. These in-

stances should represent the natural variability in the task (formally called the environment

in JA) for accurately studying the behavior of each individual human in that task [55].

For example, testing meteorologists’ forecasting skills requires forecasting the weather for

multiple days representing the variability of environmental factors such as radiation level,

sea surface temperature, and cloud pattern in satellite imagery. Brunswik also points out

that it is suitable to use correlational statistics to analyze the variability in human’s behavior

and environmental factors over the tested instances. This idea was then applied to social

judgment studies and eventually given the name judgment analysis [8].

A conceptual model that expresses Brunswik ideas and explains the different components

in judgment analysis studies is the Lens Model (see the evaluation part of figure 4.1). This
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model describes the relationships among the three main components in judgment analysis

studies: (1) human judgments, (2) an environment criterion, and (3) a set of cues utilized to

make the judgments. An example of these three components when studying the skills of a

meteorologist is the meteorologist predictions of the days’ conditions (judgment), the actual

observed conditions of these days (criterion), and the parameters used by the meteorologist

to make the predictions (cues). A key concept in judgment analysis studies is to acknowledge

the probabilistic nature of the relationship among the three components, and thus, utilize

random sampling for all three components to represent the studied cases accurately.

The relationship between human judgment and a criterion represents the performance of

that individual human subject in the tackled environment. Collecting n observations of the

subject’s judgment and the environment criterion results in two n-dimensional vectors Ys

and Ye, respectively. In the weather forecasting example, Ys represents the meteorologist’s

predictions of n days, whilst Ye represents the actual conditions in these n days. Measuring

the correlation between these two vectors is an example of a commonly used performance

metric [56]. Another performance metric commonly used in meteorology is the Skill Score

(SS) [57], which is defined based on the distance between Ys and Ye instead of the correlation.

In judgment analysis studies, the set of cues X is used as a way to capture differences

among individuals’ decision behaviors. Cues are the factors observed by an individual when

making decisions, thus they are used as parameters to model individuals’ judgment policies.

For example, meteorologist rely on cues such as sea surface temperature and cloud pattern

in satellite imagery to forecast the conditions of future days. Unlike studies such as [58],

which provide a user with knobs to adjust a decision policy explicitly, JA studies seek to

infer the decision policy from the relationship between an individual’s decision vector Ys

and the set of cues X collected over multiple instances. This relationship can explain the

significance of each cue to that individual. Moreover, JA studies rely on the relationship

between the cues and the environment criterion vector Ye to validate the significance of each

cue in the targeted environment.

Many researchers have advanced the judgment analysis field to analyze the performance

of individuals [8]. One of these advances is the Lens Model Equation (LME), which
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decomposes the correlation between Ys and Ye to describe the correlation in terms of modeled

behaviors [59, 60]. A similar decomposition for the Skill Score metric has been proposed

in [57, 61]. These decompositions add tools and measures to analyze the performance of

individuals by connecting the performance to captured policies defined in terms of the

set of cues X . In Chapter 4, we adopt these measurements and formulas to quantify the

significance of insights generated through the VA process.

For a smooth adaptation of JA in VA evaluation, it is essential to illustrate the core

difference between JA’s representative design and the commonly-used systematic designs

[55]. The dispute appears in the way of building a generalizable knowledge about the

studied human population. The representative design (of JA) seeks to discover behavior

differences among human subjects tested in a realistic environment without controlling

environment variables. The rationale of this design stresses the importance of not creating

any general conclusion about a group of individuals without ensuring similarity in their

behaviors. Representative design claims that each individual has a behavior model that

needs to be found to decide if an individual can be grouped with other individuals or not,

according to the similarities in their behavior models. This logic differs from the traditional

systematic design, which does not consider differences among individuals, i.e., considering

all human subjects as a homogeneous group with one behavior model that has some variance.

Behavioral models in this context refer to the cognitive processes that generate decisions

(i.e., the decision policies), which are identified in a given problem environment. Adapting

the representative design to evaluate the analytical support of VA solutions is needed since

several researchers have shown systematic behavior differences among VA users [62,63].

Moreover, generalizing performance to the problem domains rather than the users domain

is desired in many VA systems such as those designed to serve particular, relatively small

potential users. Such generalization is achievable by the representative design, which

primarily focuses on studying the general behavior of individuals in the tested problem

environment.

JA theory has been applied to evaluate different factors that concern VA, including the

level of situation awareness (SA). According to Scholtz [64], evaluators need to consider
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the level of SA as an essential metric to assess the usefulness of VA solutions. There are

many ways proposed in the literature to evaluate SA level. A unique quantitative framework

is proposed in [65, 66], which utilizes JA theory to assess the level of SA. Unlike this

framework, which assumes the availability of the set of cues prior to human testing, our

work proposes extracting cues during the testing session in the form of findings and insights,

as we explain in Section 4.3.

Another application of JA theory to visualization evaluation is proposed by Miller et

al. [67] who validate the usefulness of visual-aid in judgment problems. Unlike their

contribution, which validates the value of visualization in reducing decision bias with the

help of JA formulation, our work applies JA theory to understand the value of insights

reached with the help of VA solutions, which allows us to define a knowledge-based metric

more suitable for VA evaluation.

2.5 Social Spambot Detection Solutions

The problem of detecting spambots in social media applications such as Twitter is an

active area of research [68]. Researchers have proposed automatic algorithms to tackle this

problem. These studies mainly differ in a) the process of generating labeled data which is

used in training or testing, b) the features that are extracted and engineered to distinguish

spambots from genuine accounts, and c) the models that are used for the detection process.

Ground-truth, annotated (labeled) data to experiment is essential for designing and

evaluating spambot detection methods. For this purpose, researchers use different methods

to generate labeled data. As in many machine learning contexts, researchers can manually

tag social media accounts by carefully inspecting the information available about them [69].

This method is not scalable, which may force researchers to rely on crowdsourcing solutions

to generate the ground truth [70]. However, achieving an acceptable level of reliability

through crowdsourcing can be costly [9], especially if the annotation tools are not efficient.

Another method is to rely on sites’ suspension mechanisms and crawl accounts that have

been suspended by the sites’ administrators [71]. This method may not be accurate since it
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is possible for site administrators to ban accounts that are not spambots, e.g. for violating

the site’s rules. The last common method for building labeled data is by using what is known

as a social honey-pot [72, 73]. In this method, researchers create inactive accounts, the

honey-pots, which do not interact with social media users or initiate any attractive posts.

These characteristics reduce the probability of attracting genuine users and allow researchers

to inspect accounts that interact with the honey-pots and possibly tag them as spambots.

Studies that propose automatic detection solutions commonly start with feature extraction

and engineering. In this step, researchers define a set of features that allow automated

detection models to separate genuine users from spambots. A rich set of features has been

suggested in the literature and shown to be useful for the detection tasks. These features can

be extracted from accounts’ metadata, accounts’ social networks, tweets’ content, activity in

time, sentiment, etc. [70, 71, 74].

After extracting this set of features, researchers propose different models that automate

the detection of spambots. Most of these models are developed according to machine

learning approaches, which can be categorized into supervised and unsupervised models.

Supervised solutions utilize a set of labeled data to learn a discriminant function defined

in the feature space. This function defines a boundary between spambots and genuine

accounts, which is used afterwards to classify accounts according to their place in the

defined feature space [75, 76]. On the other hand, unsupervised solutions build boundaries

in the feature space according to similarities among accounts without utilizing predefined

account labels [77, 78]. These boundaries define clusters of accounts that are considered

similar, thus helping separate spambots from genuine accounts. Unsupervised models

need additional human efforts to accurately label members of clusters. This requires an

understanding of the characteristics of clusters produced by exploring their members, which

may not be intuitive. Our visual analytics approach differs from these solutions, as it

incorporates a human into the process of generating the initial clusters.

The most relevant work to ours was conducted by Cao et. al. [79], who proposed

TargetVue, a visual analytics solution for detecting and analyzing anomalous user behavior

in social media. The computation module in TargetVue utilizes the Time-adaptive Local
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Outlier Factor “TLOF” model to rank accounts according to their abnormal behavior.

These accounts are visualized using multiple interactive views that allow the exploration

of accounts and facilitate manual labeling. One shortcoming of this work appears in the

process of identifying the new type of spambot, which propagates malicious content using

multiple accounts serving a single actor, rather than the older individual spambot accounts.

In such cases, anomaly detection models working on the account-level, such as TLOF, are

less effective in identifying spambots, as they could potentially create a rare category [80].

Our work emphasizes visualizing algorithmically derived information that helps in grouping

accounts, enabling users to search for visual patterns that highlight malicious clusters rather

than individual malicious accounts.
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3. ANALYSIS OF SUMMATIVE EVALUATION METHODS IN VA

Many evaluation methods have been used to assess the usefulness of Visual Analytics (VA)

solutions. These methods stem from a variety of origins with different assumptions and goals,

which cause confusion about their proofing capabilities. Moreover, the lack of discussion

about the evaluation processes may limit our potential to develop new evaluation methods

specialized for VA. In this chapter, we present an analysis of evaluation methods that have

been used to summatively evaluate VA solutions. We provide a survey and taxonomy of

the evaluation methods that have appeared in the VAST literature in the past two years. We

then analyze these methods in terms of validity and generalizability of their findings, as

well as the feasibility of using them. We propose a new metric called summative quality

to compare evaluation methods according to their ability to prove usefulness, and make

recommendations for selecting evaluation methods based on their summative quality in the

VA domain.

3.1 Introduction

Visual analytics (VA) solutions emerged in the past decade and tackled many problems

in a variety of domains. The power of combining the abilities of human and machine

creates fertile ground for new solutions to grow. However, the rise of these hybrid solutions

complicates the process of evaluation. Unlike automated algorithmic solutions, the behavior

of visual analytics solutions depends on the user who operates them. This creates a new

dimension of variability in the performance of the solutions that needs to be accounted for

in evaluation. The existence of a human in the loop; however, allows researchers to borrow

evaluation methods from other domains, such as sociology [81], to extract information with

the help of the user. Such evaluation methods allow developers to assess their solutions
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even when a formal summative evaluation is not feasible. The challenge in these methods,

however, lies in gathering and analyzing qualitative data to build valid evidence.

Many methods have been used to evaluate VA solutions, each originally developed

to answer different questions with different evaluation intentions, including formative,

summative and exploratory [45]. Nevertheless, many of these methods have been extensively

applied in summative evaluation despite the fact that some are only suitable for formative or

exploratory assessment, not summative evaluation.

In this chapter, we survey and analyze the evaluation methods commonly used with

summative intentions in VA research. Specifically, we survey the papers presented at VAST

2017 and 2018, resulting in a seven-category taxonomy of evaluation methods. We identify

the activities typically performed within each category, focusing on the activities that could

introduce risks to the validity and the generalizability of the methods’ findings, and we use

both of these factors to define summative quality. We also define feasibility based on the

identified activities and the limitations in applying evaluation methods in various scenarios.

Finally, we use summative quality and feasibility to compare summative evaluation methods.

Unlike existing problem-driven prescriptions [46], we analyze the risks to the validity,

generalizability, and feasibility of each evaluation method by focusing on the activities

employed in each method. We then provide a prescription of evaluation methods based on

(a) their ability to prove usefulness and (b) their feasibility.

The contributions of this chapter can be summarized as follows:

• A survey, taxonomy and risk-based breakdown and analysis of evaluation methods

used in summative evaluation of VA solutions.

• A summative quality metric to assess the summative quality of evaluation methods

based on the potential risks to the validity and the generalizability of the methods’

findings.

• An analysis and prescription of summative evaluation methods in terms of their

summative quality and feasibility.
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This chapter is organized as follows: In Section 3.2, we provide important definitions.

In Section 3.3, we present our taxonomy of evaluation methods used for summative assess-

ment. We analyze these methods in Section 3.4, followed by a set of recommendations for

practitioners in Section 3.5. Finally, we conclude the chapter in Section 3.6.

3.2 Usefulness and Summative Evaluation Definitions

The term “summative assessment” has roots in the field of education, which distinguishes

it from formative assessment [82]. The former assesses students objectively at the end of a

study period using standardized exams, while the latter focuses on the learning process and

the students’ progress in meeting standards. In visualization and VA literature, summative

evaluation has been traditionally referred to as the type of studies that measures the quality

of a developed system using methods such as formal lab experiments [46]. This is in contrast

with formative assessment, which seeks to inform the design and development processes by

applying techniques such as expert feedback [83].

There have been some suggestions in the literature that evaluation intention should be

unlinked from evaluation methods. Ellis and Dix [84] argue that a formal lab experiment

of a completely developed system can be conducted with formative intentions to suggest

improvement. On the other hand, Munzner [46] argues that formative methods such as

expert feedback can be used with summative intentions to validate the outcome of different

design stages. We agree with these arguments and believe that it is essential to give a formal

definition of summative evaluation as an intention rather than an evaluation stage.

From the discussions in [82], we define summative evaluation as a systematic process

which generates evidence about the degree of accomplishment of the given objectives

(standards) for an assessed object (a solution) at a point in time. We use the term“solution”

throughout this dissertation to refer to different approaches for tackling a problem. VA

research covers different types of solutions ranging from algorithms, to visualizations,

to the integration of these in a holistic system (See [85] for design study contributions).

“Standards” refer to benchmarks that are used to distinguish useful solutions from non-useful
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ones. These are commonly determined during the requirement elicitation stage, e.g. by

conducting qualitative inquiries with domain experts.

Summative evaluation is used to determine the usefulness (i.e. the value) of a solution.

From a technology point of view, usefulness is based on two main factors: effectiveness

and efficiency [86]. The former can be defined as the ability of a solution to accomplish the

desired goals (i.e. doing the right things). The latter concerns the ability of a solution to

optimize resources, such as time or cost, while performing its tasks (i.e. doing things right).

Most existing summative evaluations assess one or both of these two factors.

Effectiveness and efficiency could be assessed differently according to the nature of

the evaluated solution and the problem it tackles. Some solutions can be assessed in a

straightforward manner because of the availability of explicit objectives they seek to achieve.

An example of such solutions is a classification algorithm, which can be evaluated by

objective metrics such as accuracy. On the other hand, some solutions require extra effort

to define valid objectives that can be used to assess their usefulness. Such effort can be

seen in previous work targeted at finding valid objectives to determine the value of holistic

visualization and visual analytics systems [86–88].

Usefulness of human-in-the-loop solutions can also be assessed by utility and usability

objectives. A Useful system has the needed functionalities (utility) designed in a manner

that allows users to use them correctly (usability) [89]. The question of whether to prioritize

utility or usability has been discussed in previous work [90]. We focus on the objectives

used in utility and usability evaluation and view them with a broader lens as ways to assess

effectiveness and efficiency.

We consider effectiveness and efficiency as generic objectives of summative evaluation.

This permits us to put all the methods used to assess these two factors in the same plate

and compare them in terms of the quality of their evidence and the feasibility of generating

them.
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3.3 Survey of Summative Evaluation Methods

In this section, we present our survey and taxonomy of methods used by other researchers

for the summative evaluation of VA solutions. Our goal in developing a taxonomy is to

identify their limitations in terms of their validity, generalizability, and feasibility. Because

of our objective of analyzing evaluation methods themselves, it is important to note that

we abstract the evaluated solutions and the problems they solve. For example, we do not

distinguish between a study that reports a holistic evaluation of a complete VA system and

another study that evaluate a part of the system, as long as they both use the same evaluation

method. This abstraction is discussed in Section 3.4.

We focused our survey on papers that were published in VAST-17 and VAST-18. The

initial number of papers we considered was 97 papers (52 papers from VAST17 and 45

papers from VAST18). We excluded papers that only included usage scenarios or did

not report any evaluation at all. Usage scenarios are excluded since they only exemplify

the utilization of solutions rather than systematically examining their usefulness. They

differ from case studies and inspection methods, which have been used to systematically

determining the usefulness of a solution as we explain next. The final number of papers

we include in our taxonomy is 82. Some of these papers report more than one type of

assessment. The total number of evaluation studies we found in these 82 papers is 182.

The number of included papers are relatively small compared to existing surveys [14, 15].

However, our deductive approach to identify evaluation categories requires a smaller sample

size compared to inductive approaches which develop concepts by grounding them to data.

We built on previous taxonomies [14, 15] to layout ours, and then surveyed recent papers to

guide the grouping, activity breakdown and risk analysis.

3.3.1 Survey Methodology

We followed a deductive approach to build our taxonomy, starting with an initial code

based on the previous surveys [14, 15], and then progressively changing the concepts in
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the code by considering new dimensions that help highlight factors that affect validity,

generalizability, and feasibility of evaluation methods.

Phase 1: Building the initial concepts We based our taxonomy on two extensive surveys

of evaluation practices in visualization and VA literature [14, 15]. The descriptive concepts

developed in these works (i.e. the evaluation scenarios) are built for different objectives

than our diagnostics. However, these works include the set of evaluation methods used in

each scenario, which allowed us to determine our initial code. We consider each reported

evaluation method as a concept in this phase and categorize the studies accordingly.

Phase 2: Selecting grouping dimensions We looked for new dimensions that are key for

diagnosing evaluation methods’ validity, generalizability, and feasibility. By examining

the process of evaluation in each method, we identified four dimensions that are useful

in grouping the evaluation methods to simplify our analysis: epistemology, methodology,

human-dependency, and subjectivity. These dimensions can be seen as titles for each level

of our taxonomy depicted in Figure 3.1 and are explained in more detail in the following

sections.

Phase 3: Redefining concepts We iteratively refined the taxonomy, which resulted in

merging some concepts and splitting others. For example, one of our initial codes was

“Quantitative-objective assessment” which included both “Quantitative User Testing” and

“Quantitative Automation Testing” in our final code. The dimension responsible for splitting

these two concepts is the “Human-dependency” dimension. On the other hand, we decided

to merge “quantitative-subjective assessment test” and “quantitative-subjective comparison

test” concepts into the single concept “Quantitative User Opinion”, because both concepts

are similar in every grouping dimension that we considered.
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Fig. 3.1.: A taxonomy of summative evaluation methods based on surveying 82 papers
published in VAST-17 and 18. The leaves represent categories of evaluation methods
distinguished by the dimensions shown in the left. The percentages show the distribution of
surveyed studies.

3.3.2 Taxonomy

Figure 3.1 summarizes our taxonomy. The dimensions are independent and can be used

separately to classify evaluation methods. Therefore, the order of dimensions in Figure

3.1 is not important. However, we chose to present a breakdown leading to our identified

seven categories. In this section, we explain the dimensions that differentiate the seven

categories of evaluation methods and the distribution of the surveyed papers in each level.

The following section focuses on the analysis of the processes and activities in each method

category.

Epistemology Dimension

Evaluation methods produce evidence that justifies our beliefs about the value of the

evaluated solution. The process of justification in the evaluation methods can be categorized,

according to epistemological views, into two classes: rational and empirical. Rational

evaluation methods use deductive reasoning by relying on logically true premises. For
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Table 3.1.: A summary of our survey of the evaluation studies reported in VAST-2017 and
2018. The table provides a brief description of our seven categories and the distribution of
the surveyed studies within those categories. The total number of categorized studies is 182
reported in 82 papers.

Abb Category Description Frequency % Examples

THEO Theoretical Methods

Rational, objective, quantitative methods which do not rely
on human subjects to generate evidence of usefulness. These
methods rely on deductive reasoning to logically derive evi-
dence.

12 6.59% [91–93]

QUT Quantitative User
Testing

Empirical methods that are objective, quantitative and esti-
mate the performance of human subjects for assessment or
comparison reasons.

14 7.69% [4,94,95]

QUO Quantitative User
Opinion

Similar to the previous category; except, it assesses subjec-
tive aspects instead of measuring objective performance. A
conventional method in this category is structured question-
naires which use measurable scales, e.g. Likert scale [96], to
evaluate user satisfaction and opinion.

17 9.34% [1,97,98]

AUTO Quantitative Automa-
tion Testing

Empirical methods used to quantitatively and objectively as-
sess human-independent solutions such as machine learning
models. This includes evaluation methods such as cross-
validation and hold-out test set to predict the performance of
supervised machine learning models [41].

19 10.44% [99–101]

INST Insight-based

A mixed method which relied on human subjects to qualita-
tively identify a set of insights that can be reached with the
help of a solution. Insight-based methods map identified in-
sights to measurable metrics, e.g. insights count, which are
used for quantitative reasoning [88].

3 1.65% [2, 102,
103]

CASE Case Studies

Qualitative methods which allow researchers to determine ob-
jective values and subjective opinions about the evaluated so-
lution by interacting with human subjects who are typically
domain experts. This category encompasses different vari-
ants of case studies including Pair analytics [104] and Multi-
dimensional In-depth Long-term Case studies “MILC” [105].

67 36.81% [106–
108]

INSP Inspection Methods

Methods which assess objective or subjective potentials of a
solution without testing or recruiting human subjects. Inspec-
tion methods help in checking the satisfaction of predefined
requirements that characterize objective or subjective features
needed in useful solutions [50, 83, 109–111].

50 27.47% [112–
114]

example, the analysis of algorithms complexity as reported in [80, 91] is rational. This

method is used to evaluate the efficiency of an algorithm by determining the time required to

execute its instructions. Another rational method of evaluation is the information-theoretic

framework [42] that is used in [93] to study the cost-benefit of visualization in a virtual

environment. Both of these methods are built on top of a set of basic premises that are

assumed to hold, such as the assumption of unit execution time per the algorithm’s instruction

and the axioms of probability, respectively.
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Empirical evaluation methods, on the other hand, follow inductive reasoning by col-

lecting and using practical evidence to justify the value of the solution. Most categories of

evaluation methods are empirical. An example of an empirical method is the estimation of

automated models’ performance as reported in [99, 100]. Such estimations are performed

empirically by measuring the performance of a solution in a number of test cases.

Our survey shows that 12 out of 182 evaluation studies (6.59%) were conducted using

rational methods. Only one (0.58%) of these 12 studies uses the information-theoretic

framework. The other 11 studies (6.08%) applied the traditional analysis of algorithms.

Empirical evaluation methods are reported as the method of evaluation in the remaining 170

studies (93.41%).

Methodology Dimension

Evaluation methods are categorized, according to the methodology they follow, into

three classes: quantitative, qualitative and mixed methods [38, 39]. Quantitative methods

rely on measurable variables to interpret the evaluated criteria. They collect data in the form

of quantities and analyze it using statistical procedures to generalize their findings. The

evidence generated by these methods has high precision but a narrow scope, i.e. rejection

of a hypothesis by measuring particular metrics. Thus, these methods are preferable for

problems that are well-abstracted to a set of measurable objectives. Controlled experiments

are examples of quantitative methods, used extensively in comparative evaluations such as

the studies reported in [115] and [94]. These studies aim to justify the value of a solution by

comparing it to counterpart solutions.

Qualitative methods, on the other hand, have fewer restrictions on the type of data that

can be collected from a study. They evaluate the usefulness of solutions which tackle less

abstract, concrete problems using data that is less precise but more descriptive, such as

narratives, voice/screen recordings, and interaction logs. Such data can be generated as a

result of observation, or with the active participation of human subjects such as in interviews
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and self-reporting techniques. The case studies reported in [106] and [107] are examples of

qualitative methods used with a summative intention.

Mixed methodology integrates both quantitative and qualitative methods to produce

better comprehensive studies [39]. The most common way of following this methodology

is to perform multiple complementary studies that are independent but serve the same

summative intention (called a convergence mixed method design [116]). For example, the

authors of [117] report a controlled experiment as well as a case study with domain experts

used to evaluate ConceptVector, a VA system that guides users in building lexicons for

custom concepts. The results of both studies can be compared to support each other in

proving the value of ConceptVector. Another way of mixing quantitative and qualitative

methods is to connect the two types of data prior to analysis such as in an insight-based

evaluation method [88]. This method starts by collecting qualitative data in the form of

written or self-reported insights, then transforms this data into quantity, e.g. insight count, for

analysis, such as the evaluation reported in [2]. Since our taxonomy categorizes evaluation

methods at individual resolution, we only categorize methods which follow embedded and

merging designs, e.g. the insight-based method, as mixed methods.

According to our survey, 62 studies (34.07%) out of 182 were conducted using quantita-

tive methods. 117 studies (64.29%) were conducted using qualitative methods, and only

3 studies (1.65%) were conducted using the mixed method. According to this, qualitative

methods constitute the majority of evaluations in VAST-17 and 18. 21 out of 82 (25.61%)

apply the convergence mixed method design.

Human-dependency Dimension

Visual analytics solutions combine both human and automated processes to tackle

problems [13]. Researchers may evaluate different components independently. For example,

researchers may evaluate the efficiency of an automated algorithm [118, 119], or inspect

the requirements of a user interface [120]. Another option is to assess human-related tasks
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such as estimating the performance of the users [121] or gathering expert feedback about

the value of a VA system holistically [122].

The human-dependency dimension in our taxonomy affects all the factors we aim to

analyze (i.e. validity, generalizability, and feasibility); therefore, we include it as a dimension

in the taxonomy.

Our survey shows that 81 (44.51%) out of 182 studies summatively evaluated a solution

without utilizing any human subjects. Among these studies, 31 studies (17.03%) used

quantitative methods and 50 (27.47%) used qualitative methods in the form of inspection.

On the other hand, 101 studies out of 182 (55.49%) used methods that rely on human

subjects. This includes 31, 67, and 3 studies using quantitative, qualitative, and mixed

methods respectively (17.03%, 36.81%, and 1.65% respectively). We remind the reader that

the word solution is an abstract concept, which can represent automated algorithms, user

interfaces or a complete VA system.

Subjectivity Dimension

The usefulness of a solution can be determined by assessing the objective level of

accomplishments. However, the objectives are sometimes defined as abstract ideas that

cannot be directly or independently assessed. For example, VA systems have a general

objective of generating insights about available data [13]. Such an abstract objective may

not always be assessable by defined measures. From another angle, a correlation between

subjective assessment such as user satisfaction in information systems and the usefulness of

these systems has been shown [123]. Therefore, researchers include subjective assessment

methods as ways of determining a solution’s usefulness. Subjective assessment can be

performed quantitatively [1, 97] or qualitatively [124], and can be done with the help of

human subjects [125] or through inspecting the design without relying on human subjects

[126]. Qualitative methods have the flexibility to assess both objective and subjective

aspects.
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There is a clear difference between summative evaluation methods that use objective

versus subjective scopes. Objective methods assess effectiveness and efficiency of a solution

in tackling the targeted problem, whereas subjective methods assess factors that correlate

with that solution’s capabilities (indirect assessment of usefulness). This led us to include

the subjectivity dimension in our taxonomy, to highlight the differences between objective

and subjective categories in terms of validity, generalizability, and feasibility.

Our survey shows that 48 (26.37%) studies out of 182 applied objective evaluation

methods. 17 studies (9.34%) applied subjective evaluation and 117 studies (64.29%) applied

qualitative methods that are not restricted to a narrow scope and can assess both objective

and subjective aspects.

The Seven Categories of Summative Evaluation Methods

Table 3.1 summarizes the surveyed evaluation studies in our seven categories of summa-

tive evaluation. The most reported evaluation category in VAST-17 and 18 is case studies,

followed by the inspection category. These two types are used significantly more than other

evaluation categories. The high feasibility of case studies and inspections could be the

reason for their popularity, as we explain in Section 3.4.2. On the other hand, the least

utilized evaluation category is the insight-based methods. Many of the reported studies that

capture subjects’ insights do not perform the second stage of defining quantitative measures

from captured insights, and thus, end up in the case studies category in our taxonomy.

3.4 An Analysis of Summative Evaluation Methods

We analyze the identified seven evaluation categories in terms of validity, generalizability

and feasibility, in order to compare their capability of proving usefulness, which is the

objective of summative evaluation. Some of these methods are originally designed to address

different evaluation requirements, such as formative or exploratory questions. However, we

include them here, since they have been used by others to prove usefulness. Our focus is to

analyze the process of evaluation itself regardless of the type of solutions they evaluate.
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Table 3.2.: The source of validity, generalizability and feasibility risks encountered when
conducting summative evaluation studies.

Activity Relevant cate-
gories Description of the Risk

Defining the objectives and
the objective metric(s)

THEO, QUT,
AUTO Some tasks do not have a clear objective, e.g. exploratory tasks (feasibility risk).

Abstracting the evaluated
solution by a formal lan-
guage

THEO, AUTO Some solutions cannot be automated with our current knowledge, e.g. human-
dependent solutions. (feasibility risk)

Deductively inferring the
performance of the evalu-
ated solution using a for-
mal system

THEO
Building a new formal system requires extraordinary work and high abstraction
skills. Reusing a formal system requires skills of mapping abstract problems and
performing mathematical deduction. (feasibility risk)

Sampling problem in-
stance(s)

QUT, QUO,
AUTO, INST,
CASE

Relying on unrepresentative problem instances. (validity, generalizability risk)

Sampling human subject(s) QUT, QUO,
INST, CASE Relying on unrepresentative target users. (validity, generalizability risk)

Sampling competing solu-
tion(s)

QUT, QUO,
AUTO, INST,
CASE

Bias in selecting competing solutions included in a comparative evaluation
study.(validity, generalizability risk)

Identifying the ground-
truth QUT, AUTO Unavailable ground-truth for a representative number of problem in-

stances.(feasibility risk)
Organizing studied treat-
ments

QUT, QUO,
INST Fail to eliminate confounders. (validity, generalizability risk)

Statistical testing QUT, QUO,
AUTO, INST

A potential reduction to the risk as a result of testing the statistical significance
of quantitative analysis findings. (validity, generalizability risk reduction)

Qualitatively identifying
insights INST Subjects potential miss-reporting of reached insights / researcher potential miss-

collecting of reached insights. (validity, generalizability risk)
Defining quantity from in-
sights INST Defining a metric that do not reflect the value of solutions. (validity risk)

Collecting and interpreting
qualitative data CASE Missing essential pieces of information / misinterpreting the value of a solution

evaluated using collected information. (validity, generalizability risk)
Identifying the require-
ments / heuristics sources INSP Relying on a source which provides less than needed requirements/heuristics to

distinguish a useful solution from another. (validity, generalizability risk)
Requirements / heuristics
elicitation INSP Mis-eliciting requirements / heuristics from the identified source. (validity, gen-

eralizability risk)
Judging the satisfaction of
the requirements / heuris-
tics

INSP Inspector subjectivity in checking the accomplishment of requirements / heuris-
tics. (validity, generalizability risk)

Indirect inference of use-
fulness

QUO, CASE,
INSP

Inferring the value of a solution from measures or findings that do not directly
test the solution objectively. (validity, generalizability risk)

3.4.1 Analysis Criteria

Validity and generalizability are well-known properties of generated evidence in scien-

tific studies and have been broken down into many types. The primary types influencing our

analysis are internal validity and external validity as defined in experimental quantitative

studies [127], as well as credibility and transferability as defined in qualitative studies

literature [128]. We view validity as the property of correctness of study findings, while
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we see generalizability as the extent to which study findings can be applied to similar but

unstudied (unevaluated) cases.

By examining the findings of each evaluation method, we found four types of summative

evidence which assess effectiveness or efficiency:

a) quantities that represent the objective performance (measured or estimated by a

method from THEO, QUT, AUTO, or INST),

b) quantities that represent subjective satisfaction (estimated by a method from the QUO

category),

c) qualitative information about objective or subjective value of a solution (gathered by

CASE methods),

d) accomplishment of requirements/heuristics (inspected by a method belonging to INSP

category).

Each evaluation method includes a set of activities resulting in one of the aforementioned

four types of evidence. In our analysis, we outline the activities for each method and

highlight risk factors associated with each activity. We rely on the definition of risk found in

the software engineering literature [129], which defines exposure to risk as the probability-

weighted impact of an event on a project (evaluation in our case). The identified risk factors

may affect the validity and generalizability of the outcome of each method. For example,

the generalizability of empirical evidence is affected by the sampling of cases for the study.

Thus, in our analysis, we designate sampling as an activity for empirical evaluation methods

and associate it with potential generalizability risk. On the contrary, some activities may

reduce risks to validity or generalizability. For example, a typical activity to maintain the

validity of quantitative empirical evidence is to apply inferential statistical tests [130]. Such

testing activity is an example of what we call a risk reducer.

Besides validity and generalizability, feasibility is the third criterion we consider in our

analysis. We include this criterion to reason about researchers’ decisions to evaluate solutions

using methods with less summative quality. Table 3.2 describes the potential validity,
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generalizability and feasibility risks we identify for each of the summative evaluation

category, along with the source of these risks.

3.4.2 Evaluation Process Breakdown

We break down the (sub)activities common to the methods in each category of our

taxonomy. Then, we highlight the risks introduced or reduced as a result of performing these

activities. The process of identifying the activities and highlighting their associated risks

was performed based on our personal experience, validated and by the survey we report in

Section 3.3. Figure 3.2 presents a summary of our analysis, along with risks highlighted on

each activity.

Theoretical Methods (THEO)

This category includes complexity Analysis of Algorithms & information-theoretic

framework. These rational methods start by defining an objective metric, e.g time complexity,

which is a useful measurement for assessment or comparison tasks. To measure the metric,

researchers are required to abstract the behavior of the solution using a formal language,

e.g. a programming language (Figure 3.2). This explicitly means full knowledge about

the behavior of the solution. The last activity is to build a formal system, e.g. Turing

machine [131], and use the premises in that system, e.g. unit execution time per instruction,

to deductively measure the defined objective metric. Most rational studies captured in our

survey apply the analysis of algorithm method to measure the time complexity of algorithms

that are abstract by nature, and thus do not require the second activity. Moreover, the Turing

machine is an applicable formal system that can be used to perform the deduction in this

context. Another set of rational studies, which are more sophisticated, rely on information

theory premises [132]. Most remarkably, these works present an abstraction activity for

solutions that are not abstract by nature [44, 93].

The three activities we report for rational methods do not introduce any risk to the

validity and generalizability criteria. They are rigorous activities that always measure what



35

Fig. 3.2.: A summary of our analysis of evaluation methods. We capture the main activities
taken by evaluation methods which could introduce risk to evidence validity, generalizability
and feasibility. We assign 3 risk categories for these criteria per activity, classify each risk
factor to high, normal or reducer class, then compare the methods using their summative
quality (SQ) and feasibility.

they claim to measure. Rational methods also evaluate abstract problems and solutions

with well-defined behavior, and thus are completely generalizable to any untested cases.

For example, finding the worst case time complexity for an algorithm as O(n) means no

observable case of input size n will ever take longer than linear execution time.

The issue of rational methods appears in the feasibility criterion. The first feasibility risk

is introduced by the first activity, which defines an objective metric. In many problems, the

objective metric might not be feasibly defined. For example, the general goal of VA systems
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is to generate insights about data, a goal that may not be easily assessed by measurable

factors. The second activity introduces much more sever risk to the feasibility. Abstracting

the evaluated solution’s behavior using a formal language requires sufficient knowledge

about that solution’s behavior, which may not be possible for some types of solutions. For

example, it is challenging to develop a formal language representation of human analytical

processes, which practically limits the applicability of this type of evaluation on human-in-

the-loop solutions. Since a human in these solutions controls their behavior, and that we

cannot replace a human with a completely automated machine, it is not feasible to describe

the human user’s behavior using a formal language. If the behavior of the solution cannot

be abstracted, the third activity becomes infeasible since it cannot be performed in a formal

manner without an abstract, well-defined solution. Moreover, building a formal system to

deductively infer the performance of a solution is challenging and requires high abstracting

skill.

Quantitative User Testing (QUT)

In these empirical quantitative methods, researchers study human-in-the-loop solutions

by either conducting a formal comparative experiment or measuring the performance of

the solutions independently. The latter can be considered a special case of the former.

These methods start by defining objective metrics, similar to rational methods. However, a

typical activity in all empirical methods is to sample test cases. These cases are determined

by sampling problem instances and human subjects. In comparative evaluation studies,

the sampling of test cases includes the sampling of competing solutions. To objectively

estimate the performance of the solution, researchers need to define ground truth for tested

problem instances, which can be either sampled or synthesized [133]. After sampling the

test cases, researchers organize human subjects into groups (treatments) according to the

study design. Two common designs include the within-subject (repeated measures) and

between-subject (independent measures) designs. After organizing the study according to

the selected design, researchers test human subjects with the sampled problems and collect
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quantitative measures of performance for each subject. These performance measurements

can subsequently be analyzed per treatment using statistical tests (e.g. Analysis Of VAriance

“ANOVA”). For assessment studies, statistics provide a confidence interval of the measured

performance score for the solution. For comparative evaluation, the statistical tests ensure

the significance of the difference between the performance of treatments. Some accuse such

typical hypothesis testing methodology [134]. Nevertheless, Null-hypothesis significance

testing (NHST) remains the most recognized methodology in quantitative scientific work.

The activities in the QUT category introduce risk to every criterion we analyze. A risk

to the validity and generalizability criteria can be introduced as a result of sampling bias

that excludes cases included in the study claim, sampling an insufficient number of cases

to prove the claim, or failing to eliminate confounders when organizing treatments. The

second risk can be reduced by applying a statistical test to show the potential of observing

the findings for represented cases in general. The third risk is not a concern for assessment

methods that do not generate evidence of usefulness as a result of comparing treatments.

The activities of QUT introduce risk to the feasibility criterion as well. Sampling

representative cases can be infeasible because of the unavailability of representative human

subjects or representative problem instances with known ground truth. Moreover, as in

rational methods, it may not always be possible to identify a clear, objective metric that

correctly distinguishes useful solutions from non-useful ones.

Quantitative User Opinion (QUO)

The activities in this category are quite similar to the previous category. However, the

focus here is on assessing subjective aspects instead of the objective performance, and there

is no need to establish ground truth for the test cases.

The difference between subjective and objective methods, in terms of risk can be

illustrated as follows. The risk to the validity is higher in subjective methods, since besides

potential sampling and assignment biases, subjective methods do not assess usefulness

directly. As we have mentioned earlier, the evaluation of usefulness by definition is a way to
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assess solutions objectively. Subjective methods approach achieve this by assessing factors

that are assumed to correlate with usefulness, such as user satisfaction. However, such

correlation may not always be valid. According to Nelson [89], a system with limited utility

could have high usability but would not be useful because of the missing functionalities.

However, subjective methods are more feasible than objective methods. They do not require

knowledge about ground truth nor quantifying objectives, and thus can be applied in more

cases.

Quantitative Automation Testing (AUTO)

These methods apply the same activities as THEO methods. The only difference

between the two categories is the method of measuring the objective metrics for abstract

solutions. In THEO, extensive work is devoted to building the formal system used in

deduction, which is challenging because it requires high abstraction skills and sufficient

knowledge about the problem domain. An alternative approach, taken by methods in the

AUTO category, is to prove usefulness empirically by relying on sampled cases and statistics.

For example, most methods used to evaluate machine learning models rely on estimating

the performance with a set of testing problem instances [41].

The risk to the validity and generalizability of the evidence generated by a method from

the AUTO category is slightly less than the risk associated with the QUT category. The

reason is the reduction in sampling bias in AUTO methods as the result of excluding the

human dimension. On the other hand, the exclusion of the human dimension explicitly

means less feasibility of AUTO methods, since they are only capable of evaluating abstract

solutions described by a formal language.

Insight-based Evaluations (INST)

As an empirical category, sampling activities are typical in INST. A unique activity in

this category is the qualitative data collection of insights. This is done by asking human

subjects to self-report any insights they reach during the analysis by applying techniques
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such as diary [135] or think-aloud protocols [136]. Another unique activity in this category

is the creation of measurable quantities out of collected qualitative data. The typical quantity

to generate is insights count, which gives an indication of the usefulness of analytical support

solutions.

Besides sampling bias, which can introduce risk to both validity and generalizability,

INST’s unique activities may increase the risk to these criteria. For example, collecting

insights as qualitative data introduces the possibility of misreporting some insights or

misunderstanding reported ones. However, INST has a low feasibility risk since it does not

require defining any objective metrics nor developing any tasks that ought to be evaluated

quantitatively. INST also does not require prior knowledge about the ground truth of

sampled problem instances.

Case Studies (CASE)

Instead of measuring the accomplishment of solutions with some predefined metric

(which may not be feasible or known for concrete domain problems), CASE methods study

realistic cases defined by actual real-world problem instances and intended users who are

usually experts. To extract evidence of usefulness, evaluators pay extra attention to any data

that can be captured during the examination. Collecting qualitative data is essential in case

studies for creating a rich source of information, which helps in determining the usefulness

of evaluated solutions. Many techniques can be implemented to generate qualitative data,

including observation, semi-structured interviews, subject feedback, Think-aloud protocol,

video/audio recordings, interaction logs, eye tracking and screen capturing [38]. During data

collection, researchers may assist human subjects to overcome learnability issues. From the

collected qualitative data, researchers can infer the value of evaluated solutions from the

human subjects’ perspective. This hypothesis of evaluated solutions’ value can be used as

evidence of usefulness, given that the human subjects are experts in the problem domain.

The risk to the validity and generalizability criteria for CASE methods can be explained

as follows. Beside possible sampling bias, qualitative methods evaluate usefulness indirectly.



40

The risk resulting from this indirectness can stem from two issues. The first is the potential

misunderstanding of the human subjects when hypothesizing the value of the evaluated

solution, which is typically known as the credibility of study findings. The second risk

is the credibility of the subjects themselves, whose opinions are considered evidence of

usefulness. This validity is affected primarily by how knowledgeable the subjects are about

the problem domain, and secondarily by how much they know about using the evaluated

solution. Another possible source of risk to the validity of case studies comes from the

evaluators. The data collection and analysis in case studies can be profoundly affected by

evaluators’ subjectivity. Inexperienced evaluators may miss relevant information during data

collection or wrongly infer the value of the solution from collected data. The risk introduced

by the evaluators can be minimized by experience and by following guidelines that reduce

subjectivity. There are tremendous existing literature on the correct application of qualitative

studies [137, 138].

The advantage of case studies lies in their feasibility. They do not require specifying

and measuring objective metrics or abstracting the solution. They also do not require

knowledge about ground truth for the problem instances included in the test cases, because

their objective assessment is derived from expert opinion, who are assumed to be capable of

assessing the usefulness while testing the solution. The only feasibility risk to this category

is the availability of expert human subjects, and the sampling of representative realistic

problem instances.

Inspection Methods (INSP)

The first activity of INSP is to identify the factors needed in useful systems through

methods such as conducting a qualitative inquiry with stakeholders to identify require-

ments [113] or surveying the literature to identify known heuristics [83]. Once a set of

requirements/heuristics is identified, researchers start inspecting the evaluated solution and

judge whether it satisfies the identified requirements/heuristics.
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INSP includes the most feasible methods, not requiring human subjects nor testing with

any problem instances. However, these methods prove usefulness marginally and with many

validity and generalizability concerns. The risk to the validity and generalizability of the

findings of INSP include (a) the credibility of the information source, (b) the exhaustiveness

of the elicited requirements/heuristics, and (c) the subjectivity of the inspectors. Inspection

methods have been shown to have significantly less potential for identifying usability issues

compared to formal testing [139]. This finding inherently means high risks to both the

validity and generalizability of INSP’s evidence of usefulness.

3.4.3 A Ranking of the Summative Evaluation Categories

After identifying risk factors to the validity and generalizability, we combine both criteria

into a single metric which we call summative quality (SQ). The term is inspired by applied

medical research for categorizing and ranking the quality of research evidence [140]. We

define SQ as the probability of not falling in any of the potential validity and generalizability

risks introduced by a set of activities, i.e. the probability of an evidence to be valid and

generalizable. Similarly, we consider feasibility as the probability of not falling in any of

the risk factors that threaten feasibility.

SQ can be calculated by Equation 3.1. We assume that the risks introduced by different

activities are independent. Thus, to measure the total quality from subsequent activities,

we take the product of the complement of the probability of risk in each activity. Taking

the product is typical in similar total probability calculations (e.g. [141]). It is worth

mentioning that the granularity of describing evaluation methods should not affect the

total risk calculation. A single activity in a coarse-grained description of a method should

accumulate all risk probabilities of that method when described in a fine-grained manner.

SQ =
n

∏
i=1

(1−P(riski)) (3.1)

Equation 3.1 measures the product of the probabilities of not falling in any of the n

validity and generalizability risks. This model of risk assessment requires estimating the
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Table 3.3.: The ranking of the seven categories of summative evaluation methods based on
the potential risk to their validity, generalizability, and feasibility. We rank the categories
according to their SQ and f easibility.

Abb Category Summative
Quality
Rank

Feasibility
Rank

THEO Theoretical Methods 1 6
QUT Quantitative User Testing 3 4
QUO Quantitative User Opinion 5 2
AUTO Quantitative Automation Testing 2 5
INST Insight-based evaluation 4 2
CASE Case studies 4 3
INSP Inspection methods 4 1

probability of the captured risks, which is a challenging task. To overcome this issue and

to be able to compare evaluation methods, we categorize the risk factors into three groups:

high risk (HR), normal risk (NR) and risk reducers (RR) (Figure 3.2). High risk factors are

introduced by any activities that infer usefulness indirectly (i.e., from evidence that do not

measure objective metrics). Such activity would produce evidence of usefulness that have

more uncertainty due to the high evaluators’ potential subjectivity.

Using the categories of risk, we define SQ to compare evaluation methods In lieu of SQ.

SQ can be defined as a triplet SQ = (#HR,#NR,#RR), with each dimension representing

the number of risk factors in each category. We calculate SQ for all categories then use the

resultant triplets to observe any clear superiority of one category over another (e.g. (2,6,1)

has less SQ given the two high risks compaerd to (0,8,1)). Based on this, we rank evaluation

methods in terms of their SQ (Table 3.3). The table also ranks evaluation methods based

on f easibility, which can be defined as a tuple (#HR,#NR) considering the feasibility risk

factors. In case a clear superiority can not be decided (e.g. (0,10,1) Vs. (2,6,1)), we assign

the same ranking to these methods. We stress that even though some categories rank low for

SQ, they may still be suitable for other purposes such as formative or exploratory.
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3.5 Recommendations

Based on our taxonomy and analysis of summative evaluation methods, we provide the

following recommendations:

1- Always select a feasible method with the highest summative quality. Prescribing

an evaluation method for a given context can be done based on summative quality and

feasibility. It is always encouraged to select the method with the highest summative quality.

However, the feasibility of applying one of the methods in a given evaluation context may

influence the selection. For example, the superiority of rational methods over empirical

methods when testing usefulness; however, researchers may use an empirical method to

evaluate a human-in-the-loop solution because of the infeasibility of abstracting human

behavior using formal language as previously mentioned.

Our approach complements the nested model [46], which prescribes potential evaluation

methods for each level. For instance, four different methods were prescribed to validate a

solution in the encoding level. Complementing such prescriptions by following our approach

can narrow down to a method from the Nested model prescribed methods.

2- Provide reasoning for evaluation method choice. We suggest providing solid rea-

soning when choosing an evaluation method for a summative evaluation. Our framework

may help in this reasoning by considering the summative quality and feasibility as criteria.

We note that it is always possible to use a weaker form of proving usefulness when it is

feasible to generate stronger evidence with another method. For example, one can rely on

subjective methods to assess the usefulness of a solution designed to tackle a problem that

can be evaluated objectively. In such scenarios, evaluators should explain the limitation that

prevents them from using the method that generates stronger evidence of usefulness.

An example from the literature for a study that could have provided such an explanation

is [142]. The authors used the inspection method to evaluate the usefulness of DeepEyes, a

VA system developed to enhance designing deep neural networks. DeepEyes could have

been evaluated using a formal controlled experiment i.e. by measuring training time and the
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classification accuracy of the end architecture (when using DeepEyes vs. traditional trial

and error). Inspection has less summative quality compared to controlled experiments; thus,

choosing the former over the later requires justification.

3- Encouraging insight-based evaluation. A surprising finding from our survey is the

limited application of insight-based evaluation to published work in VA. According to our

analysis, insight-based evaluation is one of the few methods that do not suffer from high

risk factors. It is capable of assessing human analytical processes with realistic problems

while generating quantitative outcomes that can be replicated and generalized. According to

our survey, researchers favor case studies over insight-based methods in evaluation contexts

that are suitable for both. We encourage performing insight quantification and quantitative

analysis instead of case studies to increase their precision and generalization potentials.

4- Apply multiple evaluation methods to minimize risk Our final recommendation

encourages practitioners to apply multiple evaluation methods to prove the usefulness

of their developed solutions. All of the evaluation methods include activities that could

potentially invalidate the evidence they generate. An easy remedy is to compare the level

of usefulness reached by different methods. This recommendation is strongly encouraged

for subjective methods and inspection methods because of their relatively high validity and

generalizability risks. Subjective methods are usually utilized to complement objective

assessment, which is an excellent strategy for measuring usefulness from different angles.

3.6 Summary

We presented our survey of evaluation practices used with summative intentions in VA.

We identified seven categories of evaluation, broke down the activities in each, and analyzed

each category in terms of feasibility as well as the validity and generalizability of their

findings. We proposed summative quality as the primary metric for selecting evaluation

methods for the summative intention of proving usefulness. Based on the summative quality
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metric and the complementary feasibility metric, we proposed a ranking of the categories of

evaluation.

One of the limitations in our analysis is the possible subjectivity in identifying risk factors.

We attempted to minimize it by continuously consulting the literature and conducting a

survey. Assigning risk factors to only two categoris could also be considered a limitation.

However, we favor robustness over precision when analyzing evaluation methods.

Even though we based risk analysis on extensive literature and our survey, our proposed

ranking of evaluation methods might be considered subjective. Regardless, we argue that it

characterizes the risks involved in selecting methods for summative evaluation, and most

importantly, our risk analysis paves the way for future research and community ranking,

similar to many repeated fruitful efforts in medical research [140]. Categorizing risks

associated with activities and even quantifying such risks based on expert-assigned scores

or probabilities is an established practice in system engineering and risk assessment [143],

and our work lays the foundation for such analysis of evaluation methods in VA.

By identifying risk factors and providing a methodology, our work also enables community-

driven prescription of evaluation methods. According to [144], experts have high potential

in judging risk factors and assigning probabilities. This approach can be used to assign

probabilities to our identified risk factors using Equation 3.1. To reduce subjectivity in

judgment, one can deploy a community-driven voting system to increase the accuracy of

estimating the risk probabilities and to build standards to prescribe evaluation methods.
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4. EVALUATING VA SOLUTIONS USING JUDGMENT ANALYSIS
THEORY

Evaluating visual analytics (VA) solutions is a challenge that has existed since the beginning

of VA research. A key challenge that faces VA evaluators is defining objective metrics

to measure performance in solving analytics problems, especially in exploratory settings.

By connecting the analytics and decision-making processes, we propose a new evaluation

framework that utilizes judgment analysis (JA) theory to guide the design of evaluation

experiments. We propose a new objective metric by combining JA theory and the insight-

based evaluation framework [30] to evaluate the analytical support of VA solutions. Our

framework also provides measures to assess the significance of the insights reached through

the VA process. We demonstrate the utilization and superiority of our framework in a case

study in the context of identifying social spambots in Chapter 5.

4.1 Introduction

The visual analytics approach to tackling data analysis problems continues to attract

researchers from many domains. This approach allows making optimal decisions according

to the information embedded in available data, combined with the knowledge gained through

domain expertise. Including humans in the loop of decision-making complements automated

algorithms and improves their effectiveness [145]. However, the existence of human in the

VA approach to problem-solving increases the variability in its output, thus complicating

their evaluation. Another complicating factor for the evaluation of VA solutions is the

serendipitous nature of data exploration. Measuring the support provided by VA solutions to

tackle analytical problems is, therefore, not straightforward and requires carefully defined

objective metrics.
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There are some promising approaches for evaluating the analytical support provided by

VA solutions. Analytical support has been seen as the abstract objective of all VA tools as

it measures the degree of support provided by the tool to confirm and discover facts in the

data by the users [20]. One approach for evaluating analytical support is the insight-based

evaluation framework [29], which has been used extensively in the past decade. However,

one limitation of this framework appears in the validity of its quantitative objective metrics

(insight-count), which does not consider differences in the significance of identified insights.

Another approach for evaluating visual analytics is to evaluate the quality of the decisions

made in light of the produced analytical products. This performance-based approach has

been used for the objective and holistic evaluation of VA systems, which is affected by both

the VA tools and the individuals who operate them. To estimate the performance of the

VA systems, the existing performance-based approaches test a sample of potential users

and infer the performance of the VA systems for the whole population of potential users.

However, two issues can arise in such approach. First, the population of potential users is

assumed to be a homogeneous one that can be statistically described by analyzing them

as a whole, whereas different users may actually belong to finer subgroups that behave

uniquely from one another. The second issue appears in ignoring the potential variability in

the decision tasks by testing the performance of the system with selected problem instances,

which prevents generalizing the performance of the VA systems to the whole problem space

which contains other untested instances.

To address these challenges, we build on Judgment Analysis (JA) theory [8] and propose

a new evaluation framework capable of quantitatively measuring the analytical support

provided by VA tools. The proposed framework evaluates the analytical support of VA tools

by identifying insights reached by the users of the tools, then measuring their significance in

the targeted decision problems using an information-theoretic metric [146]. An appealing ad-

vantage of the proposed framework is its capability for quantitatively validating its findings

through statistical methods such as cross-validation [147]. Moreover, the proposed frame-

work resolves the issues in existing performance-based evaluation methods by representing

the performance of VA systems in the whole problem space. This is done by analyzing
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potential users individually rather than considering them as a single homogeneous group.

This approach enables discovering clusters of users that need to be evaluated independently.

The main contributions of our work can be summarized as follows:

• An evaluation framework and new metrics based on JA theory to evaluate VA solutions

in terms of insight-significance and general objective performance

• A case study demonstrating the successful use of our proposed framework for evaluat-

ing a visual analytics system for spambot labeling. The results prove the superiority

of our framework in measuring the analytical support provided by the VA system.

We organize this chapter as follows: Section 4.2 defines the scope of our Judgment

Analysis for VA (JAVA) framework and the requirements that must be satisfied for applying

it. Section 4.3 explains how to apply our JAVA framework to evaluate VA. We conclude the

chapter in Section 4.4.

4.2 Requirements for Applying JAVA Framework

VA systems consist of two sub systems: an information system (i.e., the VA tool) and

a cognitive system (i.e., the analyst). When seeking to evaluate the usefulness of a VA

approach, we either need to evaluate the holistic VA system or to evaluate the information

system portion. Our JAVA framework can be used for both types of evaluation when the

requirements explained in this section are satisfied.

To understand the applicability of the JAVA framework to evaluate VA systems holisti-

cally, it is important to view these systems as problem-solving approaches. The connection

between visual analytics and decision making has been highlighted since the commencement

of the field [11, 17, 148]). Building on this connection allows viewing visual analytics as a

problem-solving approach, which combines human and machine to derive answers. From a

theoretical point of view, evaluating any problem-solving approach can be done objectively

by assessing the capability of the approach in solving all possible instances of the tackled

problem (i.e., the question desired to be answered by the approach). We argue that this is
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the case for the evaluation of holistic VA systems as well. However, identifying the problem

tackled by a VA system can be challenging, as it requires understanding the utility of the

analytical products produced through the interaction between the information system and the

cognitive system [149]. In some cases, the problems tackled by the VA systems are explicitly

defined, which simplify the job of the evaluators. For example, the VA system proposed

in [150] explicitly tackle the problem of optimizing neural network model selection in terms

of efficiency and effectiveness. At the other extreme, some VA systems (e.g., systems with

exploratory visual analytics tools [151]) tackle too many problems (i.e., help answering an

undetermined number of questions), which makes evaluating these VA systems objectively

impractical. However, it is possible for the evaluators to define a subset of the problems

tackled by exploratory VA systems by narrowing the construct of their evaluation studies.

There are three main requirements to enable the use of JAVA framework to evaluate

VA systems holistically. First, the framework can only be applied to evaluate VA systems

that tackle well-defined problems. JAVA primarily relies on assessing the usefulness of

VA systems by measuring their accomplishment in tackling the defined problems (i.e., the

accuracy of the answers produced by the evaluated system to the question that defines

the problem). Moreover, the framework requires testing individual human subjects with

representative instances of the tackled problem to enable modeling the decision policy

of these individuals. This modeling of individuals in JAVA is needed to generalize the

behavior of the VA system to the whole problem space (i.e., generalize the behavior to the

environment that includes all instances of the tackled problem). Finally, the JAVA framework

also requires the ground-truth for the problem instances used to model decision policies so

that the modeled behavior of the system can be objectively evaluated.

Evaluating the information system part (i.e., the VA tool) rather than the holistic VA

system requires defining different objectives. The abstract objective of VA tools is to support

the analyst in making sense of the analyzed data [17, 18]. Thus, analytical support can be

defined as a metric to evaluate the usefulness of VA tools. A quantitative way of measuring

analytical support is to estimate the number of insights that can be reached with the help

of the VA tool as proposed in the insight-based framework [30]. JAVA framework follows
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a similar approach to estimate analytical support. However, instead of treating insights

equally, JAVA framework measures the significance of the reached insights by linking them

to the decisions made by the VA system as a whole. Insights are formulated in JAVA as

features that parametrize the decision policies of individual analysts. This formulation

allows calculating scores for insights importance using feature importance techniques such

as information gain (i.e., the mutual information between the analysis decisions and the

insights) as we explain in the next Section. Because of the reliance on the decisions made

by the VA systems holistically, the aforementioned three requirements of evaluating VA

systems using JAVA are also required when attempting to evaluate the information system

part only.

Fig. 4.1.: The relationship between the VA process of problem-solving (Top) and the
components of JA theory illustrated through the Lens Model (Bottom). The yellow arrows
represent the evaluation data collected by our JAVA framework during the testing phase.
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4.3 The Procedure of JAVA Framework

After clarifying the requirements of JAVA framework, we describe the procedure of

this framework to evaluate VA based on JA theory. The described mixed-methodology

can be used to achieve both performance and analytical support assessment goals (i.e., to

evaluate VA systems holistically or to evaluate the VA tools alone). During the discussion,

we advise the reader to return to Fig. 4.1 to link JA components to VA components. This

figure merges the knowledge generation model (KGM) of VA [18] with the lens model [8],

illustrating the relationships between the different components in JA studies. We integrate

KGM with Smuc’s categorization of insights according to Rasmussen’s ladder [33, 34] to

reveal the cognitive processing demand during the VA process of problem-solving. This

integration is needed to acknowledge the fact that in some problem-solving instances, a user

could make decisions based on simple direct findings rather than complex, more cognitively

demanding insights or knowledge. Smuc’s categorization comes in handy since it considers

these cognitive products as types of insights, which permit analyzing them similarly using

our JAVA evaluation framework.

The procedure of JAVA consists of seven steps. It starts by (1) defining the problem

tackled by the evaluated VA system, (2) sampling representative instances of it, and (3) iden-

tifying their ground truth. Then, the framework requires (4) collecting decisions about

each of the sampled problem instances from each tested individual, along with a set of

insights reached during analyzing the sampled problem instances. After completing the

data collection phase for all tested individuals, the framework provides mechanism for

(5) modeling the decision policies of the individuals as well as the ground truth. The models

are estimated using the identified set of insights, the captured decisions, and truth for the

sampled problem instances. Given these models, the framework (6) evaluates VA using our

proposed modeled knowledge (G) and Total Analytical Support (TAS) metrics. Finally, the

framework allows (7) clustering individuals with similar decision policies and assigns any

study conclusion at the cluster level. More details about these seven steps are provided in

the remainder of this Section.
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1- Defining the Problem The first step in evaluating a VA system is to identify its purpose,

which can be articulated as a solution to a problem. As we have explained in the previous

Section, problems can be defined and tackled by a VA system explicitly, such as the problem

of labeling Twitter accounts as genuine or spambot tackled by our previous work [152].

Some VA systems, on the other hand, tackle less precise problems such as exploratory VA

systems [151]. Defining the problem tackled by these systems creates an extra task for

the evaluators, which is learning about how analysts use the information gathered from

the evaluated VA tools. Answering this question can be the goal of qualitative inquiries

conducted with domain experts who explore similar data sets for decision making purposes.

When evaluating a VA system, it is important to have a deep understanding of the tackled

problem to be able to define it with a level of abstraction to identify the potential variations

of the problem (i.e., the instances of the tackled problem).

2- Sampling Representative Instances It is usually not feasible to evaluate a VA system

using all possible instances of a problem, which leads to the necessity of relying on a

representative sample of problem instances. Representativeness is vital for inference, i.e.,

developing evaluation conclusions that generalize to the whole problem domain. JA literature

suggests that the minimum number of required problem instances (n) be proportional to the

number of parameters used to model individuals [8].

3- Identifying the Ground Truth In objective evaluation studies, the correct solutions

for the tested problem instances (i.e., the ground truth) must be known for evaluators. There

are several ways to identify the ground truth of problem instances. For some problems, it

is possible to rely on direct observation, such as observing actual events occurring after

weather forecasting [153]. Other problems may need identifying ground truth through

qualitative inquiries of domain experts. An alternative practice to objectively evaluating a

system tackling problems with unknown ground truth is to synthesize a realistic environment.

However, this should be performed carefully to ensure an acceptable level of ecological

validity. Whiting et al. [154] propose a system that assists in generating synthetic, yet realistic

data with known criterion in the context of threat detection such as terrorist activities. Their
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contribution has been used in multiple VAST challenges [155], which are instances of

synthetic, realistic environments with known ground truth. Once the ground truth for n

problem instances are identified, evaluators can organize them in a criterion vector Ye (Fig.

4.1).

4- Collecting Evaluation Data Our JAVA framework requires collecting two kinds of data

from each tested human individual. These data are collected over the n sampled instances of

the problem in a manner similar to longitudinal studies [156]. The first kind is the decisions

for the tested n problem instances. These decisions can be viewed as n samples of a random

variable, which can be organized in a n-dimensional decision vector Ys (Fig. 4.1).

The second kind of data is the insights reached while solving the n instances of the

problem. Similar to the decisions, insights are treated in our framework as random variables

that are sampled while solving the instances. Evaluators need to complete two intertwined

tasks to collect the needed information about insights. First, they need to identify the insights.

Then, they need to measure them for different problem instances. Insights can be extracted

from a cognitive system through various methods. In the original insight-based framework,

evaluators ask human subjects to write down any insights they reach in a diary [29]. This

method needs relatively less processing time, less cognitive resources, and less obtrusion,

which makes it suitable for in-situ longitudinal studies that span multiple days. Another

method is to extract insights from human subjects through self-reporting techniques such as

the think-aloud protocol [30, 157]. This method asks the subjects to verbalize their thinking

process, and then derives insights from the recorded data. The limitation of this method

appears in its potential adverse effect on reasoning and problem-solving processes [158].

While identifying insights, evaluators need to capture variability in their measurements.

The representative design of JA allows evaluators to expose different variations of the same

insights. This variability in insights value, or at least the variability of their existence, allows

measuring the insights with one of Stevens’s scales [159]. A qualitative inquiry in the form

of semi-structured interviews can be conducted to understand the identified insights in a

way that enables measuring them.
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By the end of step 4 of our JAVA framework, evaluators should have collected an n-

dimensional decision vector Ys, an n-dimensional criterion vector Ye, and an n× k insight

matrix I for each tested human individual. Elements of the two vectors represent the

individual’s decision and the ground truth of the n tested problem instances. Meanwhile,

the columns of I represent k different insights identified while solving problem instances,

with rows representing n measurements for those insights as observed in the corresponding

instances.

5- Modeling Decision Policies and Truth After data collection, evaluators can statisti-

cally estimate individuals’ decision policy model which leads to their captured decisions.

Such modeling aims at understanding the decision behavior of individuals given the in-

stances of the tackled problem. Moreover, the collected data permits evaluators to estimate

a model that explains the variation of the problem and the ground truth associated with it.

The estimated models provide evaluators with extra information on top of what they directly

observe.

Identifying the parameters of the models is essential in JA theory. In traditional JA

studies, researchers choose a set of parameters (cues) of interest and attempt to model

individuals and truth using them. In the VA context, however, we are interested in studying

insights generated during the knowledge-building process, which are not known in advance.

By identifying the matrix I, evaluators can use the captured insights as parameters to

model decision policies and ground truth. Using this formulation allows us to give a

practical definition of insights as “features utilized by individuals’ decision policies to solve

problems”.

The validity and the generalizability of the estimated models can be statistically measured

using Cross-validation and Holdout methods [41]. The procedure of using these methods

are identical to the common practices in machine learning context. Evaluators should start

by splitting the data collected over the n tested instances into training and testing sets. The

training set is used to estimate the models whilst the testing set is used to measure the

generalizability of them. During the model estimation, cross-validation is used to validate
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the performance of the model. This method divides the training set into folds and use one of

them to estimate the performance of the models trained with the rest of the folds. This is

performed multiple times until each fold is used for validation. the performance estimate

of each run can then be averaged to measure the overall validity of the model. During

this validation, evaluators can test different modeling techniques and hyper-parameters’

assignments, searching for the best model that fits the collected data. Once that model is

validated, it is possible to test its generalizability using the testing set that is held out of the

process of model selection and training.

The modeled decision policy of an individual and the modeled criterion can be used

to predict the decisions and the ground truth of the tested n instances. The results of these

predictions can be organized in the vectors Ŷs and Ŷe, respectively. These vectors replace

the raw vectors during performance analysis to measure the performance using the models

instead of observations as we explain next.

6- Calculating Modeled Knowledge (G) & Total Analytical Support (TAS) Modeled

knowledge (G in Fig. 4.1) is an objective metric that estimates an individual’s performance.

It is quantified by measuring the correlation or the distance between the vectors Ŷs and Ŷe. in

other words, modeled knowledge represents the part of an individual’s performance which

is captured by the estimated model of the decision policy of that individual and the estimated

model of the truth. Unlike the achievement (i.e., the directly observed performance from

comparing Ys and Ye), modeled knowledge assesses the knowledge of an individual about

the solution of all possible variations of the tackled problem. This knowledge is manifested

in the decision behavior of that individual which seeks to match the behavior of the truth

with respect to the captured insights. We suggest using G instead of the achievement

in performance estimation to benefit from the generalizability scores measured for the

models used to calculate G (i.e., to associate the estimated performance with a measure of

generalizability).

In many cases, it is desirable to evaluate VA tools in terms of the amount of support

they provide for knowledge-building. The traditional insight-based method suggests using
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insight-count as a measure of generated knowledge [30]. As we have mentioned previously,

relying on insight-count raises validity concerns because of the probable varying significance

of insights. Our JAVA framework allows for measuring the significance of each insight. As

we have described, insights in the proposed framework play the role of parameters of the

estimated models of decisions and truth. Following this perspective maps the problem of

measuring insight significance to the realm of feature relevance in statistics and machine

learning [160]. One promising measure of feature relevance is information gain (also known

as mutual information, equation 4.1), which measures the reduction in Shanon entropy for

the distribution of decisions (Ys or Ye in our case) when the feature (any insight Ii in our case)

is known [161]. We propose to use this measure to determine two scores of significance

for each insight; insight utilization validity Ws, and insight ecological validity We (Fig.

4.1). Insight utilization validity is defined as the information gained from an insight when

modeling the individual’s decision policy, which quantifies the importance of the insight in

that policy. On the other hand, ecological validity of an insight is defined as the information

gained from including the insight when modeling the truth, which objectively validates the

significance of the insight in the tested environment. These two scores of significance can

replace the “Domain value” score, which is measured subjectively in traditional insight-

based evaluation framework [30].

In f ormation Gain(Y, I) = entropy(Y )− entropy(Y |I) (4.1)

We propose the Total Analytical Support (TAS) metric (equation 4.2) to define a single

metric that measures analytical reasoning support provided by a VA tool. This metric is

defined as the sum of normalized insights’ significance in an environment (i.e., the ecological

validity We of each insight) minus any error in utilizing the insights. Utilization error is

defined as the absolute difference between the ecological validity of the insights and their

utilization validity, since both validity scores are identical in the perfect case (i.e., because

the decision policy model and the truth model are desired to be identical according to the

same insights used to model them).
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TAS =
k

∑
i=1

norm(Wei)−|norm(Wei)−norm(Wsi)| (4.2)

norm(Wei) =
entropy(Ye)− entropy(Ye|Ii)

min[entropy(Ye),entropy(Ii)]
(4.3)

norm(Wsi) =
entropy(Ys)− entropy(Ys|Ii)

min[entropy(Ys),entropy(Ii)]
(4.4)

TAS fulfills two requirements. The metric favors tools that help in developing insights

with high ecological validity Wes (i.e., high significance in the targeted problem). Moreover,

the metric acknowledges the superiority of tools that convince users to utilize insights in a

way similar to their ecological validity (i.e., low differences between We and corresponding

Ws over all insights). For example, a tool that helps in developing one very relevant

insight will have a higher TAS score than a tool that helps in producing many insignificant

insights. Furthermore, a tool that convinces its users to utilize insights according to their

environmental significance will have a higher score than a tool that does not guide the

utilization of developed insights.

TAS is upper bound by insights-count, which is the case when a VA tool helps the

individual in reaching insights that are significant in relevance to the environment and helps

that individual to utilize generated insights according to their significance. The lower bound

of TAS, on the other hand, is negative insight-count, which occurs when a VA tool leads an

individual to insights that are not significant at all relevant to the environment and convince

that individual to utilize these insignificant insights.

Measuring the validity of G and TAS for an individual depends on the validity of the

estimated decision policy for that individual and the model of the truth. Step 5 explains

how to measure the validity of the models as percentages, which can be represented as

scores between 0 and 1. Calculating the validity of G and TAS requires accumulating

these scores. This accumulation can be performed by multiplying the marginal validity

scores (i.e., the validity scores of the decision model and the truth model calculated in
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step 5). Generalizability of G and TAS can be calculated in the same manner using the

generalizability scores of the decision model and the truth model.

7- Clustering Individuals Up until this step, our framework has guided evaluators to

generate idiographic knowledge about individuals, which enables observing behavioral

differences among them. The followed representative design does not assume or claim

generalizability in the user domain. However, the representative design can be followed by

a clustering step to increase the nomothetic knowledge about sampled human individuals.

The advantage of our framework appears in the precision of generalizing study findings

to specific sections of the user domain (i.e., the potential users population). Instead of

viewing the population of users as a whole and search for a single conclusion that fits the

whole population, the fine-level collected data of our framework allows for controlling the

resolution of the study by identifying subgroups and studying them separately. This leads

to better overall generalizability, as it views the potential user population as multiple, and

potentially independent populations.

Defining clusters within the m sampled individuals is essential in this paradigm. Many

statistical clustering methods [162] can be applied to identify subgroups using the collected

data. The input to these methods is a representation of studied human subjects, which reflect

their decision policies (e.g., their calculated utilization validity vectors). A generalizable

conclusion about insights significance (We and Ws of each insight), modeled knowledge (G),

and Total Analytical Support (TAS) can then be measured and tested per cluster.

4.4 Summary

In this chapter, we bridge the gap between the field of judgment analysis and the

evaluation of VA systems. First, we explain in an abstract way the logic of problem-solving

in VA by proposing RPM model, which explains the formulated representations of problems

during the process of solving them. Modeling the process of problem solving clarify the

difference between the proposed JA evaluation framework and two other objective evaluation

frameworks (performance-based and insight-based). Then, we explain how to evaluate VA
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using JA theory by combining the knowledge generation model [18] and the levels of

insights [33], and link these two VA contributions to the JA components represented by the

lens model [8]. To demonstrate our JA evaluation framework, we conducted a case study in

which we evaluate a VA solution in the context of social spambot labeling. This case study

is discussed in more details in the next chapter.
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5. APPLICATION TO SOCIAL SPAMBOTS LABELING

Social media platforms are filled with social spambots. Detecting these malicious accounts

is essential, yet challenging, as they continually evolve to evade detection techniques. In this

chapter, we present VASSL, a visual analytics system that assists in the process of detecting

and labeling spambots. Our tool enhances the performance and scalability of manual labeling

by providing multiple connected views and utilizing dimensionality reduction, sentiment

analysis and topic modeling, enabling insights for the identification of spambots. The system

allows users to select and analyze groups of accounts in an interactive manner, which enables

the detection of spambots that may not be identified when examined individually.

We use the problem of labeling social spambots as a case study for the proposed

theoritical descussions in previous chapters. First, we explain which evaluation method is

suitable to assess our VASSL by relying on the analysis proposed in Chapter 3. Our next

research would be focused on using VASSL and the problem of labeling social spambots to

apply our judgement analysis evaluation framework proposed in Chapter 4.

5.1 Introduction

A social spambot is a computer algorithm that automatically produces content and

interacts with humans on social media, trying to emulate and possibly alter their behavior [9].

These types of bots have been used to propagate harmful content such as spreading radicalism

[10]. To counter this threat, many automatic solutions have been designed to detect spambot

accounts. However, the nature of the problem requires the continuous tracking of the

performance of these models. As in many cybersecurity topics, malicious actors dynamically

change and evade existing solutions. Researchers report a shift in the behavior of social

spambots, which allows them to evade current solutions [163]. Detecting this new generation

of spambots individually has become more challenging at the account-level since they tend
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to propagate spam through campaigns rather than using single accounts [164]. These

accounts’ behavior may be similar to genuine users in every aspect if monitored at the

individual account-level. It has been shown that detecting this type of spambot with accepted

accuracy is significantly more challenging for both human annotators and machine learning

models [163]; as a result, there is a need for new detection methods that are scalable and

capable of tackling the dynamically changing environment. To address this challenge, new

solutions have emerged to provide analysis of spambots at a group-level [165,166]. Although

it has been shown that these solutions significantly improve detection of the new generation

of spambots in some instances, they are still unable to achieve the desired performance in

general.

To tackle the problem of detecting this new type of spambot, we present VASSL,

a visual analytics system that expedites and facilitates the process of spambot labeling.

VASSL leverages multiple integrated computational and visual features to support human

annotators in inspecting accounts from different angles and at different aggregation levels.

Notably, it enables behaviour analysis of multiple accounts as groups, instead of analyzing

accounts individually, enabling the detection of spammers using multiple accounts, as well

as providing users with insights into the collective and dynamic behavior of spambots.

VASSL also allows users to conduct analyses at a lower resolution, using views that reveal

detailed information about a selected account.

VASSL is designed to work with Twitter accounts; however, the general concepts can be

used with other social media platforms as well. VASSL provides five integrated interactive

views that communicate different information about the accounts to support the process of

labeling and is designed for use by analysts or expert users whose goal is to efficiently and

effectively annotate spambots and/or gain insight about online spambot behavior.

After presenting the design, algorithms, and various components of VASSL, we provide

a use case that demonstrates the utilization of the developed tool to perform a complete

analysis and labeling tasks. The benchmark dataset used in the testing was crawled from

Twitter and prepared by [163], who published the data for research purposes.
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To validate the usefulness of VASSL, we present a formal user study that compares

our tool’s labeling performance against a manual labeling approach. The results indicate

statistically significant improvement in the performance of human annotators when they use

VASSL. VASSL improves the average accuracy of labeling by 14.6% while increasing the

effectiveness of labeling by 0.84 account per minute.

VASSL is publicly available at https://vassl.new-dimension.co. Besides incorporating ex-

isting visualization techniques, we present and integrate two novel interactive visualizations

to communicate patterns of groups in time series data and to communicate the distributions

of groups in multi-dimensional feature space.

This chapter is organized as follows: In Section 5.2, we present an overview of the design

of VASSL and the requirements we seek to satisfy. Section 5.3 describes the functionalities

of the back-end and provides more details about the techniques we use to prepare the data

for the front-end, which is discussed in Section 5.4. We present a use case of VASSL in

Section 5.5. In Section 5.6, we provide two case studies to apply the theoretical proposals of

previous chapters and conclude this chapter in Section 5.7 with directions for future work.

5.2 Design Requirements of VASSL

To derive the initial design of VASSL, we consulted the literature on both social spambot

labeling and social media visual analytics, with specific attention to the representation of

accounts, potential automatic and interactive clustering methods, and visualization of high

dimensional and textual data. After reviewing related literature, we derived the following

set of system requirements:

R1 Show similarities among accounts. This requirement is essential for enabling users

to explore different characteristics to cluster the accounts based on [79, 163, 166].

R2 Represent accounts at different aggregation levels. Most of the features we found

in the spambot detection literature can be considered time-series features. Examining

these features at different temporal aggregation levels reveals different patterns which

could help identify spambots [79].
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Fig. 5.1.: The default layout of the front-end of VASSL: A) the timeline view, B) the
dimensionality reduction view, C) the user/tweet detail views, D) & E) the topics view
(clustering / words), F) the feature explorer view, G) the general control panel, H) the
labeling panel, and I) the control panels for all the views (the opened control panel in the
figure is for topics clustering view).
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R3 Summarize tweets’ content and show details on demand. According to Shnider-

man’s visual information-seeking mantra [167], it is desirable to visualize the content

summary of tweets to the users and show the details of the tweets as interactively

requested.

R4 Allow the user to highlight and analyze groups of accounts. The system should

enable users to highlight and cluster accounts interactively. This interactive clustering

is essential to reveal potential group-based spamming activities [163, 166].

R5 Enhance the efficiency and effectiveness of human workers. The system should

enable cost effective annotation and improve the accuracy of detecting spambots as

well as reducing the time needed to label groups of accounts by human workers [9].

R6 Support different machines and screen sizes. Most of the labeling tasks are per-

formed on the web. A system that is intended to work in this environment should

support workers with different operating systems and limited processing capabilities,

and should adapt to various screen sizes [168].

With these requirements, we designed VASSL as a web-based application. The design

assigns most of the computation intensive processes to the back-end of the system to reduce

the load on the clients’ machines. Moreover, the front-end is designed to have a flexible,

responsive layout that allows the user to control the size of different views interactively. This

feature is useful in focusing users’ attention to particular parts of the information provided

by VASSL. It is also helpful in generating a proper layout for different screen sizes for

different clients. Both of these features were designed to satisfy (R6).

The most influential requirement that guides our system design is (R1). We built the

entire system with the idea of showing similarities among accounts from different angles

to support the interactive, human-guided clustering of accounts (R4). Four of the views

in Figure 5.1 are capable of showing similarities among the accounts. The timeline view,

in particular, is designed to show similarities among accounts using different temporal

aggregation levels to satisfy (R2). Once a potential cluster of accounts is found, different

interactive selection methods of VASSL can be used to highlight groups of accounts (R4),
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examine them in more detail (R3) and simultaneously label them as spambot or genuine.

Such analysis saves human workers significant time (R5) because it allows the examination

and labeling of accounts in parallel (Section 5.6.1), unlike the traditional manual labeling

methods, which sequentially analyze and tag accounts one by one. Furthermore, the

proposed parallel analysis enhances the effectiveness of human workers (R5) by revealing

valuable insights needed to detect the new type of spambot that spreads spam in groups

(Section 5.6.1).

To summarize the content of tweets (R3), we included two techniques in the system

design; word cloud visualization [169] and topic modeling using Latent Dirichlet Allocation

(LDA) [170]. The former is a well-known text visualization technique which reveals words

that frequently appear in accounts tweets. Topic modeling, on the other hand, was chosen to

show similarities among accounts in terms of their posting topics, which are used as a way

to cluster accounts.

5.2.1 Targeted Users

Our system utilizes sophisticated techniques and visualizations that require training and

expertise. Our goal is to provide new functionalities to more effectively and efficiently

identify spambots, to ultimately reduce the time and cost of recruiting expert annotators

and the annotation process (R5). The targeted users are human annotators whose terminal

goal might be generating labelled datasets, or using the tool to understand and characterize

spambot behaviour in a dataset. This guided us through many design choices with a focus

on utility. However, for these functionalities to be useful, the users are required to have a

certain level of expertise.

We made several assumptions about user expertise to operate our system effectively.

The most important was users’ knowledge of tuning machine learning models; specifically,

dimensionality reduction and topic modeling. VASSL is designed to provide experts with

interactive control of these techniques which rely heavily on parameters tuning. Familiarity
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with these tools and experience labeling social spambots will significantly improve users’

experience with VASSL.

5.3 Data Processing and Analysis of VASSL

In this section, we describe the main functionalities of the back-end of VASSL, which

can be summarized as: a) feature extraction, b) dimensionality reduction, c) topic modeling,

and d) data communication.

The first functionality is the extraction of a set of features that represent Twitter accounts.

We built on previous research to check the types of features that are known to be useful in

spambot detection [70, 71, 74]. We identified a set of fifty features, e.g. total tweet count,

average number of links, followers to following ratio, then generated four representations of

these features by aggregating them temporally (R2).

Some of the defined features are derived by applying sentiment analysis to accounts’

tweets, which is calculated offline. These features are useful for identifying spambot

accounts [74] and can also provide overview information about the content of tweets (R3).

We extracted several features that reflect the sentiment of accounts’ tweets such as polarity

and subjectivity scores. These scores are calculated by matching tweet words to corpus

words that have been pre-labeled, e.g. movie review corpus [171]. We tokenize tweets’

text, assign scores to the tokens by matching them with the labeled corpus words, then

calculate the sentiment by taking a weighted sum of the assigned tokens’ scores. Similarly

to other features, the sentiment polarity and subjectivity is aggregated for each account. This

aggregation generates time-independent features (aggregation over all tweets of the account)

and three sets of time-dependent features (aggregation by year, month, or day). Because of

the size of the data, this analysis is conducted offline as a preprocessing step.

The second functionality performed by the back-end is the generation of a two-dimensional

representation of the accounts, appropriate for clustering tweets in a 2D display (R1). This

reduction is useful to communicate similarities between accounts to the user. VASSL

uses the extracted time-independent features for this purpose. We incorporate four dif-
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ferent dimensionality reduction (DR) techniques: Kernel Principle component analysis

(K-PCA) [172], Linear Discriminant Analysis (LDA) [173], Locally Linear Embedding

(LLE) [174], and t-distributed Stochastic Neighbor Embedding (t-SNE) [175]. The four DR

techniques are included in order to increase the effectiveness of the dimensionality reduction

results in different contexts. For example, if the task is to label a set of unlabeled data

without any information about labeled data, supervised DR methods such as LDA may not

produce good results, unlike PCA or LLE, which are unsupervised solutions. However, if a

user has already labeled parts of the data, she may utilize a supervised DR method for better

class separation performance. Another factor that encourages our choice of DR techniques

is the assumption of linearity. We give users multiple options for reducing the dimension of

feature space using linear and non-linear mapping techniques.

VASSL supports two transformation methods which can be incorporated with the afore-

mentioned dimensionality reduction methods: min-max normalization and standardization.

Min-max normalization changes the range of the features and forces it to the range from 0

to 1. Standardization transforms the values to Z-scores. Such transformations are needed

for some of the dimensionality reduction techniques. For example, PCA is known to be

sensitive to differences in features variance and thus may performs badly if applied before

normalization.

The third functionality of the back-end is topic modeling, which is performed by utilizing

the Latent Dirichlet Allocation (LDA) model [170]. We use the generated topics as a way to

cluster accounts (R1, R4), as explained in Section 5.4.4. VASSL employs multiple natural

language processing techniques, such as lemmatization and stemming preprocessing, to

transform the set of tweets for each account to tokens in a form suitable for LDA. The

system then applies LDA to the set of tokens and generates a set of topics that best represent

accounts’ tweets. To increase the accuracy of the latent topics, the system applies LDA to

each temporal aggregation level mentioned above.

One of the challenges we faced during VASSL development was the data scale. To

discover anomalous botnet spammers, analyzing large numbers of accounts simultaneously is

an ideal way to reveal patterns. However, the size of the data handled increases exponentially
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with the number of accounts, because we need to consider multiple representations of each

account. To overcome this issue, the back-end keeps a communication channel open with

connected clients, gradually feeding data. This channel is a querying mechanism between

the front-end and the back-end, which only sends data that is visible in the views of the front-

end and prepares the remaining in the back-end. This reduces the problem of information

overload and creates a better analysis experience for the users.

The communication channel also facilitates modification of the behavior of automatic

data analysis techniques according to users’ input. For example, users are able to change the

parameters of dimensionality reduction and topic modeling techniques from the front-end.

5.4 Visualization and Interaction Design of VASSL

The front-end of VASSL consists of five views along with their control panels (Figure

5.1).

5.4.1 Timeline View

The timeline view visualizes the distribution of time series features that represent Twitter

accounts at three different aggregation levels. Influenced by [176], we choose to use the

box plot for its simplicity yet capability of visualizing complex multivariate data, such

as our time series. The design of the visualization combines a bubble chart and a box

plot to enable the user to select individual accounts, while observing class statistics (R1).

Accounts are visualized in this view as points in temporally sorted facets. Each account has

a representation in each facet to communicate changes in time. The accounts are grouped

in a facet according to assigned labels into genuine, spambot, or unlabeled, which are the

three levels of the x-axis of the facet. These groups are color-coded as green, purple and

blue respectively. The y-axis of the timeline view represents one or more time series such

as the total tweet count and the average number of hashtags in tweets, depending on user

selection. The orange boxes on top of each facet are temporal selectors which can be used

in temporal zooming interaction as explained below.
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VASSL supports three main user interactions with the timeline view. Hovering over

the quartile boxes increases their transparency, which helps users examine the underlying

distribution of accounts underneath the boxes. Users can also zoom in time by moving

the mouse pointer inside a facet and scrolling up and down to zoom in and out. Zooming

functionality changes the aggregation level of the time series to year, month, or day levels

(R2, R3).

The last interaction supported in the timeline view is the account selection. Selected

accounts are highlighted using red color. Users can click on the points representing the

accounts to select and highlight the accounts. Users can also select accounts by brushing on

any facet to select accounts that overlap with the brush. VASSL highlights selected accounts

in every time facet as well as in all other views. Linking time series allows users to examine

trends and anomalies for selected accounts over time. Moreover, linking the views allows

users to examine different information about the selected accounts such as their tweets, their

position in the feature space, etc (R4).

Users can view multiple time series, which divides the visual space of the timeline view

among selected time series (Figure 5.2). This allows simultaneous exploration of multiple

time series features using a small-multiple-like representation [177]. The control panel also

enables users to change the temporal resolution of the view. The visualizations of time series

automatically adjust to match the selected time resolution.

5.4.2 Dimensionality Reduction View

VASSL visualizes the results of the dimensionality reduction (DR) techniques, explained

in Section 5.3, in a 2D scatterplot (Figure 5.1 (B)). The effectiveness of 2D scatterplots

in visualizing DR results, while maintaining cluster separability has been shown in [178].

Our scatterplot allows exploring similarities among accounts (R1), which are color-coded

according to their class. The bubble size represents the tweet count feature of each account.

Similar to the timeline view, users can select accounts by clicking or brushing. Moreover,

the view can be panned and zoomed as needed.
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Fig. 5.2.: The timeline view visualizing three time series features at the year aggregation
level. Blue shows unlabeled accounts, green for genuine accounts, and purple indicates
spambots.

The users can select the specific DR technique to be used in the view from the four

supported DR techniques. Users can also tune the hyperparameters of the techniques.

For example, users can select the kernel function to be used with PCA, the number of

neighbors to be considered in LLE, the perplexity of t-SNE, etc. The control panel also

allows users to select a pre-reduction transformation including min/max normalization and

score standardization, as explained in Section 5.3.

5.4.3 Users/Tweets Details Views

Three tabs are used in the details view: accounts’ cards view, tweets view, and tweets’

word cloud view. The accounts’ cards view shows a list of accounts and other useful

information, including accounts’ names/screen names, profile images, joining date, total

tweets, number of followers and followees, and the number of likes.

Users can select an account by clicking on its card (linked to other views). Once an

account or a set of accounts are selected, users can access the tweets view, which shows

the selected accounts’ tweets in chronological order (R3). Including tweet text during the
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Fig. 5.3.: The three details views. Selecting one or more accounts from the cards view shows
their tweets in the tweets view and a word cloud of all the tweets in the word cloud view.

analysis is essential to utilize the human ability to detect automated text generation (as

explained in Section 5.5. Instead of accessing the entire tweet text, users can use the word

cloud view to visualize selected tweets using the word cloud visualization technique [169].

The word cloud visualization is helpful for revealing repetitions of wording in selected

tweets, which can guide the exploration of tweet text and labeling (R3).

5.4.4 Topic Clustering View

This topic clustering view uses two visualizations, which help analyze the results of

applying Latent Dirichlet Allocation (LDA) to accounts’ tweets. The first visualization

is a bubble chart that represents the generated latent topics in a two-dimensional space

(Figure 5.1 (D)). The axes of this visualization can be chosen from the control panel to be

either unique IDs, topics polarity, or topics subjectivity, which are calculated by applying

sentiment analysis to the topics’ most probable words. The size of the bubble encodes a

score for each topic which represents the sum of probabilities of posting in that topic by

all the accounts (see Equation 5.1). The score of a topic Ti is calculated by summing up
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the probability of that topic in all j documents Dn,∀n ∈
{

1,2, . . . , j
}

. Documents in our

analysis are accounts represented by the concatenation of all their tweets.

TiScore =
j

∑
n=1

P(Ti|Dn) (5.1)

The second visualization in the topic clustering view is a word cloud visualization of

the most frequent words in generated topics. LDA computes probabilities that show the

distribution of these words in each topic. VASSL utilizes these scores to determine the size

of the words in the word cloud. When a user hovers over a topic, the word cloud changes

the size of the words according to their relevance scores, which help the user in exploring

the semantics of the topics.

Users can interact with the topics bubble chart in multiple ways. Beside zooming

and panning, the visualization supports selection and brushing of topics, which allows for

exploration of each topic’s words. When selecting multiple topics, VASSL aggregates words’

probabilities to show their relevance to all selected topics (Figure 5.4).

Selecting a topic results in the selection of all accounts that have posted in that topic,

with probability more than a threshold selected by the user (R1, R4). In other words, we

can consider the topics as clusters where a single user can belong to more than one cluster

(fuzzy clustering). Changing the threshold controls the sensitivity of cluster membership.

Increasing the threshold narrows the results to accounts that post in a topic frequently, while

reducing the threshold includes accounts that may rarely post in a topic.

The control panel for topics clustering view enables users to tune LDA hyperparameters.

This includes the number of latent topics to generate, and the alpha and beta parameters

which control the distribution of documents/topics and topics/words respectively. VASSL

uses symmetric Dirichlet distributions. Assigning low alpha value results in modeling

an account’s tweets with a few numbers of topics and vice versa. Similarly, using low

beta values results in modeling a topic using few words and vice versa. Tuning the three

parameters enables users to control the generated topics to increase the effectiveness of the

LDA.
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Topic modeling of tweets is performed with respect to the selected temporal resolution.

The topic clustering view is linked to the timeline view. When a user zooms into a particular

period using the timeline view, the topics clustering view updates the topics to match the

selected period (R2). This enables users to examine the change of tweets topic in time. The

trade-off of this flexibility lies in the efficiency of topic modeling; because of the massive

size of the documents, the topic modeling procedure is not performed at interaction speed,

producing lag times every time the hyperparameters are changed. However, by keeping

the hyperparameters constant, the topic views are generated and cached in advance of

interaction.

Fig. 5.4.: The topics clustering view with one topic selected. The bubble chart in the bottom
shows the topics with bubble size communicating topics’ scores. The word cloud on the top
shows the topics’ words with word sizes representing words-topics distribution.
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We evaluated the time needed to perform topic modeling of 100 accounts at year

aggregation level (the worst case scenario) on a cloud server with Intel Xeon CPU E5-2650L

v3 @1.80GHz. It took an average of 69.09 seconds (with 1.33 SD) for 15 trials with different

hyperparameters to complete the topic modeling and visualize the results. We observe a

strong correlation between completion time and topic count as anticipated, and we report

the completion time according to a randomly generated number of topics in the range from

1 to 100.

To overcome the time limitation of topic modeling, we implemented two solutions

in VASSL. The first is to generate LDA topics for predefined profiles (pre-determined

assignment of the hyperparameters) during the preprocessing stage. This allows VASSL to

load the topics for these profiles at interaction speed. This method, however, would only

be useful in cases where users do not consider tuning the hyperparameters online. The

second solution is the usage of a spinner wheel that only disables interaction with the topics

clustering view during LDA back-end calculations. This allows the user to interact with all

other views of VASSL while computation is completed.

5.4.5 Feature Explorer View

The Feature Explorer view visualizes the distribution of accounts in selected features

using a new design based on a violin plot (see Figure 5.5). We used a violin plot instead of

a box plot to enable the user to examine multi-modality in any feature [179], which could

indicate a potential cluster (R1, R4). Users can select as many features as needed in the

feature explorer control panel, which contains a list of all features (see Figure 5.6). The

maximum number of features that can be visualized simultaneously depends on screen size

and human perception. Selecting features divides the available visual space among the

features, and thus can reduce the capability of absorbing communicated information.

The feature explorer view shows statistical summaries for each feature independently,

such as median and quartiles of the overall accounts as well as labeled groups. Features are

represented as multiple horizontally adjacent facets, having the same Y-axis range in order
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to correlate the features. The accounts are represented as points in the horizontal center

of each facet. The vertical locations of the accounts in a facet are determined by the value

of the feature for these accounts. To reduce the visual clutter of the feature explorer view,

the accounts point is transparent by default. Hovering over a class distribution increases

the opacity of the accounts that belong to the hovered class. The black solid line in the

horizontal center of each facet represents the 1st and 3rd quartile of all accounts regardless

of their class while the black tick mark represents the median of all accounts. Besides its

job of communicating quartile information of all accounts, the solid black line divides the

facet into two areas. The area on the left of the solid line is used to indicate spambot and

genuine class distributions (purple and green curves respectively) which are approximated

by kernel density estimation (KDE) technique. The right area is used to communicate the

KDE of the unlabeled accounts distribution as well as selected accounts distribution (blue

and red curves respectively). These curves are visualized in each facet in a similar manner

to communicate this statistical information in each feature (R4).

Users can interact with the feature explorer view to examine class statistics in each

feature or to select a set of accounts. Hovering over a distribution curve reveals more

information about the class it represents, including the median, the 1st and 3rd quartiles,

and the accounts belonging to that class. The feature explorer view supports selecting and

brushing, which is linked to all other views. When a user selects a set of accounts, the

feature explorer draws the distribution curves of highlighted accounts in each opened feature

facet. Figure 5.5 shows an example of five selected features as well as an illustration of

the supported interactions. The control panel of the features explorer view allows the user

to transform the features with similar transformations as described in Section 5.4.2, using

min-max normalization or standardization to Z-scores, which is useful for comparison and

outliers detection.
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Fig. 5.5.: The Feature explorer view using a modified violin plot. The lines represent a
kernel density estimation of classes PDFs. The accounts are distributed in the middle of
each facet to facilitate selection. Blue represent unlabeled accounts, green for genuine and
purple for spambots. A) Multiple facets representing a set of selected features. B) The effect
of some user interaction on one of the selected features.

5.4.6 The Control Panels Area

The general control panel contains some functionalities that are applied to all views. It

provides a legend that explains the color code we chose after consulting ColorBrewer [180].

The general control panel also facilitates multiple selection tools and rules that allow the

user to perform complex selection queries by simple button clicks. This includes selecting

all accounts, selecting inverse, selecting none and selecting all accounts of a particular

class type. VASSL supports three selection rules: New, Add and Subtract. Choosing the
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Fig. 5.6.: The control panels. Users can open a control panel of a view by pressing the “C”
button on the keyboard while hovering over the view.

“New” rule unselects previously selected accounts, then selects whatever a user selects.

Choosing the “Add” rule keeps existing selected accounts, and add whatever a user selects

to the selection set. Choosing the “Subtract” rule removes whatever a user selects from any

existing selection.

Beneath the general control panel is the labeling panel, which allows the user to label

selected accounts as spambots or genuine. Labels are automatically saved in a database

managed by the back-end. Figure 5.6 shows the five specific control panels for each view.

5.5 A Use Case Scenario of VASSL

In this section, we demonstrate how to utilize VASSL to support the process of detecting

and labeling spambots. This scenario is supposed to represent labeling tasks that are

traditionally performed manually by recruited human workers who inspect and annotate

a set of Twitter accounts. We take the role of the human workers and present the insights

reached with the help of VASSL while interacting with its views. We note that this analysis
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Fig. 5.7.: 1) Abnormality in tweet count on 2014. Scrolling changes the timeline view to
month-aggregation-level for the 2014 period. 2) Brush on the month of October 2014 to
select a group of accounts with abnormal tweeting frequency. 3) Identify frequent words
in the most frequent topics the selected accounts post in. 4) Open tweet view to examine
selected accounts tweets. 5) Search tweets for the captured most frequent word in outlined
topics. 6) Examine the tweets contain that word which leads to a discovery of automated-like
tweets. 7) Label selected accounts as spambots.

aims to showcase how to use VASSL and what possible insights could be derived with it;

the next section also evaluates the toolkit formally through a user study.

A human worker, called Amy, started her analysis by loading 100 Twitter accounts and

their tweets to VASSL. Her first glance on the timeline view (Figure 5.7 (1)) allowed her

to spot an abnormal posting behavior in the year 2014. She zoomed into that period and

examined the tweet count of the accounts in month-aggregation-level. She noticed that

the unusual posting count happened in September and October where two groups could

be separated based on tweeting frequency (Figure 5.7 (2)). Amy selected the group with

a high posting count, which highlighted their representation in all the views. VASSL also

outlined the topics posted by these accounts and the words that represent these topics. Amy

found that the word with the highest score for the outlined topics was “Oakland” (Figure 5.7

(3)). She then examined the tweet view and searched for the word “Oakland” in selected

accounts’ tweets (Figure 5.7 (4&5&6)). She found that all these accounts propagated the
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same tweet at different times in the months of September, October, and November of 2014.

That tweet contained a link to an external website called “hub pages” that directed to a

page with unfound contents. Examining other tweets posted by selected accounts showed a

propagation of similar tweet content and links, but for other cities. Based on these findings,

Amy to labeled selected accounts as spambots. The insights that led Amy to label these

accounts as spambots were only reached as a result of analyzing multiple accounts as a

group, which is the primary focus of VASSL.

After labeling the first group of accounts, Amy examined the dimensionality reduction

view to find similar accounts. She found suspicious accounts that were not yet labeled and

were very similar to the spambot accounts she had previously labeled. Amy examined the

tweets of these accounts and found another account that propagated the same tweet about

“Oakland”, so she included it with the spambots class.

Amy returned to the year-aggregation-level in timeline view and noticed that all the

accounts that she labeled as spambots were inactive in all periods except in 2014 when they

became abnormally active. All spambots posted more than 3000 tweets in 2014 with a very

small variance among the accounts. By selecting all the accounts that tweeted more than

3000 times in 2014, Amy found one account that was unlabeled and had the same temporal

pattern of posting as the group of spambots. She selected that account and compared it

with the spambot accounts in the multidimensional feature space using the feature explorer

view. She found that this account fitted well in the estimated distribution of spambots in

most of the features, including tweet count, retweet count, reply count, URLs count, etc.

This convinced Amy to label the account as a spambot even though the account tweeted on

different topics than the pre-labeled spambots.

During her analysis, Amy gained a new insight into the sentiment of the topics. The

group of spambots she had labeled usually tweeted about topics mostly constituted of words

with very low subjectivity scores. This insight was derived from visualizing topics’ bubbles

on the sentiment subjectivity axis (Figure 5.7). Moving from this finding, Amy selected all

the topics that had low subjectivity scores, which highlighted the accounts that frequently

tweeted about them. Removing spambots from the selected list showed that the remaining
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accounts tweeted on a variety of low subjective topics, unlike spambots, which commonly

tweeted on the same low subjective topics. After examining the tweets of unlabeled accounts

that tweeted on low subjective topics, Amy could not find any suspicious tweeting behavior.

Moreover, these accounts did not follow the distributions of spambots in the feature explorer

view; as a result, she did not label them as spambots.

In the topics clustering view, Amy found two topics with high tweeting scores, i.e. many

accounts posting in those two topics. Both topics had a high subjectivity score. Examining

topics’ words showed that they consisted of curses and slang, which tend to appear naturally

in humans’ everyday expressions. Selecting those topics highlighted the accounts that posted

in them frequently. Amy noticed from the dimensionality reduction view that the highlighted

accounts were dissimilar to labeled spambots. She confirmed this dissimilarity by examining

the distribution of these accounts in the feature explorer view and found that they could be

separated from the distribution of spambots in many features. After reviewing the tweets

from these accounts, Amy decided to label them as genuine.

Amy noticed that the separation between spambots and genuine accounts was signifi-

cantly affected by the subjectivity of tweet topics. Thus, she decided to select all the topics

that had a subjectivity score of more than 0.5 (subjectivity range = [0,1]) and examined their

words. Most of these topics had the same word-topic distribution if the semantics of the

words were considered. Selecting similar topics with high subjectivity scores highlighted

four unlabeled accounts which clearly belonged to the distributions of genuine accounts.

With these insights, Amy was able to label 85% of the accounts. To label the remaining

accounts, she examined them one by one and checked to see if she could observe similarities

between them and any of the labeled accounts. At this stage, as it became harder to justify

the labeling decision based on similarities only, Amy thoroughly examined each account’s

tweets. She started the exploration of tweets in the word cloud view to get an overview

of the most frequent words that appeared in the accounts’ tweets. A useful view in this

stage was the dimensionality reduction view with linear discriminant analysis (LDA), to

find the best 2-dimensions that separate the classes. Amy also opened ten features that had a

clear distinction between the distribution of spambots and genuine accounts in the feature
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explorer view and kept track of the accounts’ position in the feature space with respect to

class distributions. Considering all the information that is communicated by VASSL, Amy

was able to label all the accounts.

We compared the tags assigned by us (while assuming the role of Amy) to the available

ground truth. We achieved an accuracy of 95% with one false positive and four false

negatives for the spambot class. We labeled all 100 accounts within 15 minutes. This result

was not meant to replace formal user study (the focus of the next section); we only provide

the result to show how the steps taken in this section led to acceptable results. Identifying

relationships among accounts and observing similarities in their behavior was critical to

detecting the new type of social spambots.

5.6 Case Studies

In this section, We provide two case studies to apply the theoretical contributions we

propose in Chapters 3 and 4.

5.6.1 Case Study 1: Choosing and Applying the Best Existing Method to Evaluate

VASSL

To evaluate VASSL, we conducted a within-subjects user study with college students

to evaluate the accuracy of labeling Twitter accounts using VASSL and to compare it with

the typical manual labeling procedure. We also collected subjective opinion from the

participants to capture the perceived usefulness and ease of use of our toolkit.

Participants We recruited 12 college students (11 male and 1 female). The major of most

participants was Electrical and Computer Engineering. We limited the participation pool to

individuals with basic knowledge about Twitter. Our participants were asked to work for

up to 90 minutes and were compensated with $10 for participation, plus $5 as a motivation

bonus when achieving ≥ 85% labeling accuracy.
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Methodology Participants were asked to complete four sessions. In session (A), we asked

the subject to manually tag 100 unlabeled Twitter accounts using a tool that provides typical

information that can be found in Twitter, such as the tweets of the account, joining date,

the total number of tweets, etc. The tool provided a list of accounts that need to be labeled

and allowed the user to select an account from the list, examine its tweets and the account’s

information, and tag it (spambot/genuine). Participants were allowed not to tag an account

at all. We gave the participants 30 minutes to complete that task but allowed them to finish

before the time limit if they chose.

In session (B), we asked the participants to complete a 20-minute training session to learn

about the different views of VASSL. The training started with a 10 minutes tutorial video,

followed by up to 10 minutes in which we allowed the participants to explore VASSL’s

various functionalities.

After completing the training session, participants completed session (C) to test VASSL.

Similarly to session (A), the participants were asked to label 100 unlabeled Twitter accounts

in up to 30 minutes, this time using VASSL. Our study did not consider the learnability factor,

so we allowed subjects to ask us questions during the session if they did not understand the

information communicated by the views.

We controlled the order of taking the sessions to eliminate the confounders that could

appear due to carryover effects across testing sessions. We randomly assigned participants

to one of two groups, to identify who would use which labeling solution first. This element

of the activity is essential for balancing out human factors and ensuring the validity of our

results.

After completing the three sessions above, participants took a 10-minute exit question-

naire to communicate their personal opinions about the tools. The quantitative responses we

collected from the survey follow the seven-point Likert scale proposed by Davis [181] to

evaluate the perceived usefulness and ease of use. We also collected qualitative feedback

from the participants to highlight issues in the current design of VASSL and suggest future

research.



83

Hypothesis The null hypothesis in our objective experiment, which we aim to disprove,

is: “The mean of labeling accuracy for manual labeling procedure is equal to the mean of

labeling accuracy achieved by VASSL”.

Data set During this experiment, we used the benchmark test set #2 by [163]. This data

set contains 928 Twitter accounts (50% spambots and 50% genuine) and 2,628,181 tweets.

The ground truth labels are available for this dataset. We took nine samples, each containing

100 accounts unique to that sample along with all its tweets. Each participant manually

labeled one sample and tagged another sample with VASSL.

Results Figure 5.8 shows the performance of VASSL compared to manual labeling. We

used four different metrics that measured the performance of labeling: precision, recall,

accuracy, and F1 score. We bootstrapped the performance scores obtained from testing our

participants and applied a single factor ANalysis Of VAriance (ANOVA) to test our null

hypothesis for the four objective metrics. We found a significant improvement in the average

accuracy [F(1,22)=9.7484, p=0.0049], average recall [F(1,22)=31.5232, p=0.00001], and

average F1 [F(1,22)=13.6957, p=0.0012]. Adopting a significance level of 0.05, we reject

the Null hypothesis for all these tests. However, we do not reject the Null hypothesis in the

case of average precision [F(1,22)=0.8761, p=0.3594].

Another objective metric we collected to evaluate the effectiveness was the total number

of tagged accounts in a test session. This metric replaced completion time, which could

misrepresent participants who decided to end a session before tagging the entire test sam-

ple. Participants were able to label 76.36 accounts with VASSL on average, compared to

51.07 accounts for the manual labeling approach (with standard deviations of 7.9 and 8.92,

respectively).

The bootstrapped results of the subjective scores we collected from the participants

are presented in Figure 5.9. The figure reflects participants’ opinions about the usefulness

of VASSL, which increases effectiveness as observed in the first five factors. However,

the figure shows significantly lower scores for VASSL in most of the ease of use factors

compared to manual labeling.
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Fig. 5.8.: The objective performance of VASSL compared to manual labeling in terms of the
precision, recall, and F1 score for the spambot class. We also include the overall accuracy
of the labeling, which consider both spambot and genuine classes.

Findings and Implications

In this section, we provide more discussions on our experiment findings.
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Fig. 5.9.: The subjective opinion about VASSL in terms of perceived usefulness and ease of
use. The figure compares VASSL and manual labeling from user perspective.

Subjects are not experts Participants were college students instead of the targeted expert

users due to availability. We acknowledge that the results may not represent an outcome with

our intended users. However, we argue that better results would be observed if the system

was tested by experts familiar with tuning clustering and dimensionality reduction methods

as well as domain knowledge about spambots’ behaviour. Many of the useful functionalities

in VASSL were not utilized by our subjects because they were not familiar with them. For

example, we noticed the common pattern of under-utilizing the tuning capabilities in the

system. Subjects trusted the default values of the hyper-parameters and did not test any

other alternatives that could have potentially improved their labeling performance. One can

argue with confidence that an expert would not always accept the default values and would

likely benefit from the flexibility of VASSL in enabling users to tune these hyper-parameters.

Nevertheless, we acknowledge that testing the system with college students instead of expert

users is a limitation we need to address in the future to gain more insight into other needed

features as well as improvements to current features.

Objective results discussion The results of the conducted user study show an improve-

ment in the performance of labeling spambots when compared to a manual labeling proce-

dure. However, this improvement is not statistically significant for the precision criteria. We
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anticipated this result, because of the way our approach works. In some cases, clustering

the accounts and analyzing them as groups could lead to false positives (genuine accounts

labeled as spambots). For example, most of our participants reached an insight that enabled

clustering many spambots using a single feature, i.e. zero number of likes for all the tweets,

indicating a spambot. However, relying on this hypothesis could include genuine accounts

that are less active on Twitter, or whose tweets are not liked as often. If the size of the

cluster is big, the included genuine accounts may not undergo a detailed analysis, leading to

incorrect labeling. To overcome this issue, we recommend first analyzing small clusters and

carefully expanding them as needed.

Subjective results discussion The subjective scores collected from our participants high-

lighted a limitation of VASSL: although most of the participants found the tool useful, they

thought it was difficult to use. Given the complexity of the system, this is mostly due to

the steep learning curve required to work with the system. Participants worked with the

system for only 30 minutes, after all. This finding can also be extracted from the qualitative

data we have collected. The most common comment that appears in participant responses

when asked about the most negative aspect in the system was “It is not too simple to use the

tool.” Our focus during the design of the implementation was devoted to the utility aspects,

targeting experienced analysts who regularly label Twitter spambots as our audience, so we

included many functionalities that could help in various situations related to expert labeling.

However, this focus on utility creates many usability limitations. One of the subjects stated,

“I liked the multiple features which could have helped me accomplish my tasks, but it was

challenging to learn to use them properly.”

Qualitative results discussion The exit questionnaire contained open-ended questions

such as “What was your policy of labeling accounts as spambots?” and “What fea-

tures/functionalities in VASSL helped you in implementing your policy?” We noticed

from the collected answers that most of the subjects preferred to use one view as a primary

view and confirm information from another view, but they rarely used more than two views.

The DR view was the most utilized view and it was commonly complemented by examining
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selected accounts’ details from the tweets view. Another common pattern was to select

one feature in the feature explorer view, and select and analyze accounts according to pre-

developed hypotheses such as “Low like counts.” We can see from these patterns the variety

of supported analyses in VASSL, which provides tools that supported different workflows.

5.6.2 Case Study 2: Comparing JA Evaluation Framework to Performance-based

and Insight-based Evaluation Frameworks

The goal of this case study is to demonstrate the implementation of the proposed

framework and to compare it to the traditional insight-based evaluation method.

The problem domain we chose to study concerns tagging spambot accounts in Twitter.

Social media analysis is an active research topic in visual analytics [182, 183]. Identifying

malicious accounts in these platforms, in particular, is an essential challenge [10]. Over 40%

of all social media accounts are spambots, and their behavior keeps changing [184, 185].

Therefore, it is essential to generate labeled examples to train automated spam detection

algorithms or to study the behavior of spambots.

The first step in conducting an evaluation study using JAVA framework is to define the

environment. As we describe in Section 4.3, the problem instances perceived and analyzed

are sampled from the set known as the environment, which represents all the variation of the

defined problem. In this experiment, a problem instance is a Twitter account that needs to be

labeled as a spambot or not. Thus, the tackled environment is supposed to include questions

about the label of all accounts on Twitter. Because of the impracticality of studying this

environment due to the unavailability of complete ground truth, we rely on a subset of the

Twitter environment. This subset is defined using a benchmark dataset with known ground

truth. We used the spambot benchmark dataset generated in [185], containing a collection

of actual Twitter accounts manually labeled as spambots or genuine.

We report our evaluation experiment of two solutions used to tag Twitter accounts. The

first solution, named Tool-A, is an interface that shows information commonly available on

Twitter about an account, such as the number of followers and the texts of the tweets. Tool-A
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represents the labeling approach known as manual labeling, which works by examining the

information available on Twitter to annotate an account. In this study, we compare Tool-A

with Tool-B, a visual analytics tool featuring three interactive visualizations. Tool-B includes

a timeline view, a feature explorer view, and an account details view to support human

workers in reaching insights that could influence their labeling decisions. The timeline

view provides interactive visualizations to explore the temporal change in time-dependent

features representing the analyzed account (e.g., number of tweets and replies). The feature

explorer view, on the other hand, visualizes features that represent the overall behavior

of the analyzed account (e.g., followers to following ratio). Finally, the account details

view provides annotators with the same information provided by Tool-A (e.g., the account’s

profile images and tweets.) Screenshots of Tool-A and Tool-B are shown in Fig. 1 and 2 in

the supplementary material.

Our Judgment Analysis evaluation objective is to identify the better approach (i.e., Tool-

A with human annotator Vs. Tool-B with human annotator) in terms of general performance

and analytical support they provide. As we have mentioned, one of the three views of Tool-B

is identical to Tool-A; therefore, we hypothesized that Tool-B should outperform Tool-A

in terms of the provided analytical support given the additional capabilities. To test this

hypothesis, we recruited human subjects to operate the two tools.

Setup We evaluated Tool-A and Tool-B in two independent sessions, following the repre-

sentative design suggested by the JAVA framework (i.e., testing the evaluands with multiple

instances representing the natural variation of the problem). Each session consisted of

16 instances that need to be solved by each subject. An instance asked to label a single

Twitter account in 5 minutes given the information about that account. The first instance

in each session was used as a tutorial to explain different components in the evaluated

interfaces. Without the tutorial, each subject was tested with 15 instances of the labeling

problem while using Tool-A in one session and another 15 instances while using Tool-B

in the another session. The Twitter accounts used in the problem instances were randomly

sampled from the benchmark dataset. After each labeling instance, we conducted a short
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semi-structured interview with the subjects to discuss the insights reached while solving

the instance. Collecting these results allowed us to compare Tool-A and Tool-B using our

proposed Modeled knowledge (G) and Total Analytical Support TAS metrics.

Participants We recruited ten graduate students (eight male and two female) majoring

in Electrical and Computer Engineering. We limited the participation pool to individuals

with basic knowledge about Twitter. Our participants were asked to work for 180 minutes

(2 sessions, 10 minutes tutorials, up to 150 minutes task completion, and 20 minutes post-

labeling interviews). We chose 3 participants to participate in a pilot study, which helped in

deciding on the number of instances that can be tested in the fixed experiment time of 180

minutes. These 3 participants were excluded from participating in the actual experiment,

and we discarded the data collected about them during the pilot study. We assign ids to the

remaining seven participants who are the subjects of the reported experiment.

Data collection We collected two types of data from each human subject for each session,

following our JAVA framework. The first type is the 15-dimensional decision vector (Ys)

which contains the labeling decisions made by the subject for every problem instance tested

in the session (e.g., the first element in the vector represent the assigned label for the Twitter

account tested in the first instance).

We also collected a matrix of insights (I) for each subject, which represents the insights

reached while solving each task. Identifying insights and their variabilities was done through

a think-aloud protocol during the tasks, complemented by the post-labeling semi-structured

interview after each instance. We developed two interfaces that helped us in collecting

reported insights and their variations promptly (Fig. 5 and 6 in the supplementary materials.)

Moreover, we recorded the screen, utilized the recordings during the analysis phase to

establish the insights matrix. At this stage, the collected matrix of insights for the subjects

are not mutually exclusive since multiple subjects can reach the same subset of insights. A

total of 173 insights were identified by all subjects. When a subject reported an insight, we

discussed it with the subject in the interview time to identify a suitable measuring scale for

that insight and capture it’s measurement as seen by the subject. The default measurement
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for any insight is null, which represents the case when that insight is not reported in a tested

instance. After a subject finished a session, we end up with 15 measurements for each

insight reported by that subject during the session (i.e., a measurement for each solved

problem instance in the completed session.)

Data processing We first cleaned the list of captured insights and unified common ones,

resulting in a smaller list of unique insights. Some of the insights were clearly identical,

whilst others needed an understanding of their semantics to group them. For example, we

considered ”consistency of posting about a topic” and ”Randomness of tweet content” to be

identical insights that determine the extent of posting in related topics. To ensure a valid

grouping, we confirmed the insights against the recordings and the observation notes that we

had collected to understand each insight properly. By merging identical insights, we derived

a new list of 65 unique insights (I1 through I65) from processing the original 173 insights.

The next processing step was to define the measuring scale of the 65 unique insights

and to measure them for each subject. The Ii had resulted from grouping and unifying the

original insight matrix members of each subject. Since we had already defined and measured

each one of the original insights in those matrices, we were able to derive the measurements

of the Iis in a straightforward manner. We only paid extra attention when each Ii is created

from merging insights with different measuring scales. In these cases, we define a new scale

for the Ii, which includes all the levels of the original insights that constitute it. For example,

multiple subjects reported the insight ”number of personal topics in tweets,” but they usually

reported it with different scales like [none, exists] or [none, small, a lot]. We thus defined

the new measuring levels for this insight as [none, low, normal, high] and treat the level

”exists” as ”normal.” Moreover, we added a special level to almost all of the insights scales,

namely the ”not reported” level. This level represents an insight measure when a subject

does not report that insight at all in a given instance. This led us to use a nominal scale to

measure all of the insights defined in this experiment.

Analysis After measuring the insights with appropriate scales, we organized the collected

data in a form suitable for analysis. The 65 unique insights and their measures over the
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30 tasks (15 tasks per session for two sessions) were organized into two 15×65 matrices

(I) for each subject (i.e., a total of 14 matrices with same column titles representing the

insights but with different measurements for each subject and for each tool). The first

matrix represents the insights’ measures when using Tool-A, and the second one represents

their measures when using Tool-B. Labels assigned by a subject were also organized into

two 15-dimensional vectors (Ys for Tool-A and Ys for Tool-B). Similarly, ground truth was

organized in two 15-dimensional vectors (Ye for Tool-A and Ye for Tool-B). The bottom part

of Fig. 4.1 shows these components for a single subject after a single session. Thus, the

analysis we propose in JAVA are performed in this experiment 14 times (i.e., two times per

subject for all the seven subjects, with calculations in the Supplementary Material). We

note that the elements of the collected data structures (the measurements of the decision,

ground truth, and the insights per problem instance) are different for different subjects,

including the vectors of ground truth. Subjects were tested independently with test samples

that were independently drawn from the benchmark dataset, resulting in a high likelihood to

test subjects with different problem instances.

Using the data structures described in the previous paragraph, we performed our proposed

judgment analysis for each subject individually. We estimated the decision policies of the

subjects with Tool-A by modeling their respective decision vector Ys using their respective

insight matrix I. To simplify the discussion, we explain the analysis conducted with one

subject and emphasize that a similar analysis was performed on every subject individually.

Many different statistical techniques can be utilized to estimate the models of decision

policy and truth (e.g., logistic regression or decision trees.) To select the best modeling

technique, tuning the estimated model of an individual decision policy, and testing the

model’s internal and external validity, we followed these steps: we started by randomly

choosing 10 instances from the 15 instances tested with Tool-A and use their respective

assigned labels to build a decision model. We used the leave-one-out cross-validation

method [186] to select and tune the model of individual decisions according to the validity

scores obtained for different tested candidate models. As described in step 5 of Section 4.3,

the validity score for a model can be viewed as a measure for its internal validity (i.e., the
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extent to which the estimated model correctly represents the individuals’ decision policy in

the tested 10 instances). The 5 assigned labels of the 15 tested instances, which are held

out of the training process, are used as a test set for quantifying the external validity of the

selected model of the individual’s decision policy.

After selecting the decision policy model, we used it to generate the modeled decision

vector Ŷs (the labels that would be assigned by users if they followed the estimated decision

model exactly). This vector represents the labeling of the model to the same instances tested

in the experiment (i.e., the model prediction of the accounts’ label when representing the

accounts by the rows of the insight matrix.) We subsequently use equation 4.1 to calculate the

mutual information between the columns of I, i.e., the insights, and the resultant vector Ŷs to

measure the utilization validity Ws for each insight (i.e., their significance in determining the

label of Twitter account from the modeled individual’s perspective). As we have mentioned

in section 4.3, decisions and insights are formulated as random variables in JAVA, thus

the collected data constitute sample distributions. To accurately estimating the utilization

validity of insights, we applied bootstrap sampling to the data collected in the tested instances

(sampling with replacement) for 1000 times and used the average of measured utilization as

the best estimate for insights’ utilization validity.

The previous analysis was conducted to estimate the behavior of the user part (the right

side of the Lens Model in Fig. 4.1). The second part of JAVA is to analyze the environment

(the variation of the problem) to enable estimating generalizable performance of the subject.

We followed a similar approach to model the ground truth of the problem instances tackled

by Tool-A, internally and externally validated it using cross-validation and hold-out sets,

and predicted the bootstrapped ecological validity We of each insight, i.e., the importance of

the insight in the studied environment. The only change was the use of the vector of truth Ye

instead of the vector of subject decisions Ys when modeling, which led to the generation of

the modeled criterion vector Ŷe used to calculate the ecological validity of the insights.

Finally, using the bootstrapped utilization validity Ws and the bootstrapped ecological

validity We, we apply formula 4.2 to calculate the Total Analytical Support TAS for the

subject when he/she solve the tasks with Tool-A. This score quantifies the level of analytical
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support Tool-A provided to the individual subject when she\he attempts to label a Twitter

account. We also computed the Modeled Knowledge G by calculating the accuracy of the

individual’s decision model in matching the truth model (i.e., comparing Ŷs and Ŷe.)

To compare Tool-A with Tool-B for the analyzed individual subject, we repeated the

evaluation process for the 15 cases tackled by Tool-B. This includes estimating the decision

model and truth model, measuring insights’ utilization validity and ecological validity,

and calculating G and TAS when the subject used Tool-B. As a reminder, the previous

paragraphs describe the analysis of one individual subject. We repeated the same analysis

for each of our seven subjects independently, following the design of JAVA framework.

After applying the same analysis for all the subjects, we tested if an aggregation of

subjects can be obtained through cluster analysis. As we have described in Section 4.3,

clustering is important to discover potential populations inside the population of potential

users. According to JA theory [8], these subsets of the whole population must be studied

independently to generate finer conclusions compared to treating the population as a homo-

geneous. For example, our experiment seeks to find superiority of one of the tools over the

other (Tool-A vs Tool-B). This superiority must be analyzed for each cluster independently.

The JAVA framework provides multiple ways to define similarities and differences

between subjects to cluster them. Selecting one of these ways is determined based on the

study objective. For example, one can cluster according to the similarity in utilizing insights,

as we choose in this experiment. Another approach could be to cluster based on the degree of

change in policy utilization when using Tool-A and Tool-B, which is useful when studying

the superiority of one tool over the other for the group of users who have persistent decision

policies and those who are flexible to adapting new policies. Once defining the approach

and a suitable representation of subjects, we can apply a clustering technique to identify

the clusters. We prefer using Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) [187] because it does not require pre-determining of the number of clusters,

and for its capability to detect outliers. We were able to identify three clusters (Cluster A,

Cluster B, and Cluster C), two of which have only one subject that are different than all the

other subjects and a one cluster grouping four subjects. We analyzed these clusters in the
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Table 5.1.: The results of the case study. The table compares evaluating performance using
raw data (ra in Fig. 4.1) vs. using the proposed modeled knowledge (G in Fig. 4.1). It also
compares the analytical support metrics of insight count vs. the proposed Total Analytics
Support (TAS). Internal and external validity of G and TAS are also included. The results
are shown for the seven individual subjects (S1 through S7) and for the identified clusters
(Cluster A, B, and C).

Subject
(cluster) Tool-A Tool-B

ra
(accuracy)G

Insight
Count TAS

Internal
Valid-
ity

External
Valid-
ity

ra
(accuracy)G

Insight
Count TAS

Internal
Valid-
ity

External
Valid-
ity

S1
(Cluster
A)

100.00% 80.00% 13 4.82 72.00% 100.00% 93.33% 86.67% 11 3.09 64.00% 80.00%

S2 93.33% 86.67% 19 4.35 90.00% 100.00% 80.00% 80.00% 20 2.87 90.00% 80.00%

S3 66.67% 93.33% 14 -0.76 54.00% 80.00% 86.67% 93.33% 8 2.98 80.00% 80.00%

S4 53.33% 53.33% 23 2.42 81.00% 64.00% 53.33% 100.00% 21 0 63.00% 48.00%

S5
(Cluster
B)

80.00% 93.33% 19 4.78 72.00% 80.00% 86.67% 100.00% 20 6.54 100.00% 64.00%

S6 46.67% 73.33% 19 3.60 20.00% 24.00% 73.33% 60.00% 15 1.40 80.00% 60.00%

S7 86.67% 80.00% 21 2.72 100.00% 80.00% 73.33% 80.00% 12 1.21 72.00% 60.00%

S2, S3,
S4, S7
(Cluster
C)

average:
75.00%
SD:
18.36%

average:
78.33%
SD:
17.53%

average:
20
SD:
4

average:
2.18
SD:
2.14

average:
81.25%
SD:
19.75%

average:
81.00%
SD:
14.74%

average:
73.33%
SD:
14.40%

average:
88.33%
SD:
10.00%

average:
16
SD:
7

average:
1.77
SD:
1.43

average:
76.25%
SD:
11.50%

average:
67.00%
SD:
15.79%

same manner as individual subjects. Next, we discuss the experiment results of individuals

and the clusters.

Findings and Implications Table 5.1 summarizes the results of the experiment. The table

compares the analytical support provided by Tool-A and Tool-B in terms of the traditional

insight count metric as well as our proposed Total Analytical Support (TAS) metric. The

table also shows our proposed modeled knowledge (G) metric that evaluates the performance

of an individual in the tested environment. For TAS and G, the table also lists the internal

and external validity of the measure using the internal and external validity of the developed

models of subject policy and ground truth. Results are reported at both the individual level

and the cluster level.
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We found a marginal difference between Tool-A and Tool-B in terms of the analytical

support they provide to our subjects. Clusters A and B only include one subject each, i.e.,

these users are different than all other subjects. Such limited number of subjects in these

clusters prevented generalizing superiority of one tool over the other for the populations

represented by these two clusters (i.e., we cannot apply any statistical testing to reject the

null hypothesis of equal support for both tools). As for cluster C, the four subjects belonging

to this cluster allowed us to statistically test the superiority of either tool using ANOVA.

The result shows no statistically significant difference between the average TAS of Tool-A

and Tool-B for cluster C [F(1,2) = 0.105, p = 0.757]. This finding aligns with one of our

observations about the utility of Tool-B. Most of our subjects relied primarily on tweets’

text to discover spambots, which explains the similarity in both tools’ analytical support.

One can interpret this finding as the unwillingness of our subjects to adopt new policies that

utilize the extra pieces of information provided by the extra visualizations of Tool-B, which

can in part be caused by the limited training time we provided for them.

There is a divergence in the analytical support metrics we tested. More insights do not

indicate more TAS scores in general. For example, S1 reported a total of 13 unique insights

when he used Tool-A. However, according to the collected evaluation data, Tool-A provided

4.82 on the TAS scale in analytical support. Meanwhile, S4 reported 23 unique insights

when using Tool-A, but his usage yielded a TAS score of 2.42.

One advantage of applying our framework is to increase the trustworthiness of the

reported conclusions. Measuring the internal and external validity enables evaluators to

decide whether to trust and accept the results of their analysis or not. For example, the

evaluation results of subject S6 can be omitted when compiling an evaluation report, because

S6’ decision model suffered from low internal and external validity. The insights he was

reporting were not affecting his observed decision behavior, thus were not sufficient to

model him. Another advantage of reporting the internal and external validity is to be able to

compare and rank the evidence generated from different replicated studies.

The primary objective of this case study is to compare the two ways of measuring

analytical support (i.e., the traditional insight count vs. the proposed TAS). To uncover the
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superiority of one over the other, we correlate subjects’ scores in both metrics with their

achievement (i.e., their overall accuracy in labeling all tested instances). More analytical

support should have more positive effect on the performance of the overall system, thus

a good assessment of the analytical support should reflect this positive correlation. We

found that the Pearson correlation coefficient between TAS and achievement is strong

(r = 0.68, n = 12, p = 0.01). On the other hand, insight count had barely moderately

negative correlation with the achievement (r =−0.42), which in the worst interpretation

could mean that more insights could mislead users and adversely affect the performance.

The reported results, however, cannot proof this claim because we fail to reject the null

hypothesis of r = 0 for insight count (n = 12, p = 0.17). Despite this, the results we report

still indicate the superiority of our proposed TAS metric over the traditional insight count

when evaluating the analytical support of a visual analytics tools.

The reported results validate the benefits of applying our JAVA framework over the

traditional insight-based method. However, it is important to note the feasibility cost of our

framework mainly due to the time and resources required to collect and analyze the data.

With the implementation of custom software libraries for calculating TAS and related scores,

part of this cost can be alleviated, which we leave for future work.

5.7 Summary

In this chapter, we presented VASSL, a visual analytics toolkit that supports the analysis

and labeling of social media accounts, for the specific use of identifying spambots. The

datasets created using VASSL can be used in improved automated approaches for detecting

spambots, whose nature and behavior changes dynamically to escape the current algorithms.

With an effective tool such as VASSL, it is possible to quickly generate large annotated

datasets that reflect the behavior of social spambots. We presented a detailed use case of the

toolkit to perform a complete analysis and labeling task. Next, we evaluated VASSL and

demonstrated the significant improvement in labeling performance. Finally, we conduct a

case study with our JA evaluation framework to show case supperiority of it over traditional
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evaluation techniques in terms of its validity. In this case study, we use a short version of

VASSL and compare it to manual labeling in the context of labeling a single twitter account

at a time.
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6. CONCLUSION

This thesis aims at improving the validity of current practices of evaluating VA solutions.

After providing the necessary background about visual analytics domain and the concept

of evaluation in scientific fields, we tackle two problems related to evaluation. The first

problem is concerned with analyzing the validity, generalizability, and feasibility of current

summative evaluation practices to highlight their limitations and propose a prescription for

practitioners. We tackle this problem by building a taxonomy for the methods used in recent

evaluation studies. Then, we recommend using summative quality and feasibility metrics,

which we define to analyze the methods and reason about their applicability in different

evaluation contexts.

The second problem we tackle in this thesis is to minimize the validity risk for the existing

evaluation methods. To solve this problem, we propose a judgment analysis framework

to improve the validity of performance-based and insight-based evaluation methods. We

explain, in an abstract manner, the logic of problem-solving in VA and illustrate why it is

important to rely on JA theory to evaluate VA systems. Then, we explain how to apply our

proposed JA framework to evaluate VA by following seven steps. We propose to use two

new metrics (the Modeled Knowledge and the Total Analytical Support metrics) to evaluate

the performance and the analytical support of VA solutions.

To confirm the applicability of our theoretical evaluation framework, we select social

spambot labeling as a case study. We implement VASSL, a VA solution that tackles the

labeling problem. By utilizing the metrics proposed in Chapter 3, we show how to reason

about selecting an evaluation method to prove the usefulness of VASSL. We then conduct an

evaluation study using the prescribed method and confirm the usefulness of our VA solution.

In the same context of social spambot labeling, we conduct another evaluation study to apply

our JA framework proposed in Chapter 4. We compare the validity of the findings of our

framework with the findings of traditional performance-based and insight-based methods.
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The results of this study show superiority of our framework compared to the traditional ones

in terms of validity at the cost of feasibility.

There is a set of work that can be explored in the future to expand the research done in

this dissertation. The first is analyzing groupware VA systems designed for problem solving

and decision making with elements of collaboration. In these solutions, multiple cognitive

systems interact with a VA solution, which links their semantic representations of the data to

derive a joint decision policy. Thanks to the conceptual linkage we have provided in Chapter

4 between JA and VA, we can reuse many of JA study designs that can help in assessing the

role of collaboration in VA.

Another promising direction to pursue in the future is to study the activity performed by

VA users to gain insights. Many studies target this problem by linking insight generation to

users interaction [188–190]. Based on this idea, we can examine if an automatic suggestion

system can guide the process of identifying insights. This could reduce the validity risks

associated with the qualitative method used in identifying insights in our JA framework and

systemize the process of identification.

The survey and the analysis we have provided in this dissertation include only the

evaluation methods used in VA literature. An expansion and an enhancement to the proposed

analyses is yet another future direction. We aim to examine methods that have not been

utilized in VA literature and their applicability in the field. An example of these methods is

the formal specification and verification method [191], which can evaluate the effectiveness

of algorithms instead of measuring their efficiency.

As for the problem of social spambot labeling, one futurt work to investigate is extending

VASSL by incorporating more machine learning models to provide suggestions for users.

Similarly, user annotations should progressively improve automatic model suggestions.

Future research can focus on testing the benefit of adding active learning and machine

suggestion to spambot labeling. Furthermore, collaboration modules need to be created that

can enable multiple users to collaborate to generate labels with minimal effort, with the help

of machine-learning models as well as the insight generated by other collaborators.
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[105] B. Shneiderman and C. Plaisant, “Strategies for evaluating information visualization
tools: multi-dimensional in-depth long-term case studies,” in Proceedings of the 2006
AVI workshop on BEyond time and errors: novel evaluation methods for information
visualization. ACM, 2006, pp. 1–7.

[106] M. Stein, H. Janetzko, A. Lamprecht, T. Breitkreutz, P. Zimmermann, B. Goldlücke,
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