
FINE-GRAINED ANOMALY DETECTION FOR IN DEPTH

DATA PROTECTION

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Shagufta Mehnaz

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Elisa Bertino, Chair

Department of Computer Science

Dr. Mikhail Atallah

Department of Computer Science

Dr. Ninghui Li

Department of Computer Science

Dr. Christopher W. Clifton

Department of Computer Science

Approved by:

Dr. Christopher W. Clifton

Head of the School Graduate Program

iii

This thesis is dedicated to my wonderful parents, Mohammad Majaz Hussain and

Nazmun Nahar, and to my loving husband, Syed Rafiul Hussain.

iv

ACKNOWLEDGMENTS

I sincerely thank my Ph.D. advisor, advisory committee members, and collaborators

for their insightful advising and guidance. I am also grateful to all the faculty and staff of

Purdue Computer Science for their continuous support.

I am forever in debt to my parents who always encouraged me to pursue my dreams

and to my amazing sisters Bushra Naz and Madiha Naz who took care of my parents in

my absence. I am grateful to my lovely family, my aunt Kamrun Nahar, and my uncle

Mohammad Monirul Islam for being there whenever I needed them.

No words can explain how thankful I am to my loving husband, Syed Rafiul Hussain,

for his never-ending inspiration throughout my doctoral study. I want to express my deep-

est gratitude to him for believing in me, for being the greatest support at the toughest times,

and for all his sacrifices. Looking forward to an adventurous journey together and accom-

plishing many more milestones.

Thanks to my teachers and mentors from all the schools I have been fortunate enough

to attend including Motijheel Ideal School, Viqarunnisa Noon College, and Bangladesh

University of Engineering and Technology (BUET).

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 A Real-time Detection System Against Cryptographic Ransomware 2

1.2 A Fine-grained Approach for Anomaly Detection in File System Accesses
with Enhanced Temporal User Profiles . 3

1.3 Data Privacy for Real-time Anomaly Detection 4

1.4 Thesis Statement . 6

2 RWGUARD: A REAL-TIME DETECTION SYSTEM AGAINST CRYPTO-
GRAPHIC RANSOMWARE . 7

2.1 Introduction . 7

2.2 Background . 9

2.2.1 Hybrid Cryptosystem . 9

2.2.2 IRPLogger . 10

2.2.3 CryptoAPI . 10

2.2.4 Microsoft Detours Library . 10

2.3 RWGuard Design . 11

2.3.1 Threat Model . 11

2.3.2 Overview . 11

2.3.3 Decoy Monitoring (DMon) Module 12

2.3.4 Process Monitoring (PMon) Module 13

2.3.5 File Change Monitoring (FCMon) Module 17

2.3.6 File Classification (FCls) Module 19

vi

Page

2.3.7 CryptoAPI Function Hooking (CFHk) Module 20

2.4 RWGuard Implementation . 21

2.4.1 IRPParser . 21

2.4.2 Decoy File Generator . 21

2.4.3 CryptoAPI Function Hooking . 22

2.5 Evaluation . 23

2.5.1 Experiment Dataset . 23

2.5.2 Detection Effectiveness . 23

Detection w/ Decoy Deployment: 23

Detection w/o Decoy Deployment: 25

2.5.3 Size of Encrypted Data . 27

2.5.4 File Recovery . 28

2.5.5 Performance Overhead . 29

2.5.6 Comparison with Existing Approaches 30

2.6 Discussion and Limitations . 30

2.7 Related Work . 32

3 GHOSTBUSTER: A FINE-GRAINED APPROACH FOR ANOMALY DETEC-
TION IN FILE SYSTEM ACCESSES WITH ENHANCED TEMPORAL USER
PROFILES . 34

3.1 Introduction . 34

3.2 Preliminaries . 37

3.2.1 Blktrace Utility . 37

3.2.2 Event Sequences and Episodes 38

3.3 A Taxonomy of Anomalous File Accesses 40

3.4 Profile Creation (PC) Phase . 41

3.4.1 Feature Extraction (FE) . 43

3.4.2 Block Level Profiling (BLP) . 45

3.4.3 Access Cluster Profiling (ACP) 46

Computational Complexity of Automata 50

vii

Page

Addition of New Files . 50

Addition of New Users . 51

Profiling Benign Activity Changes by the Users 52

3.4.4 Frequency Profiling (FP) . 53

Fixed Time Interval Approach . 54

Multi-level Time Granularity Approach 54

3.4.5 User Profiles’ Storage . 56

3.5 Anomaly Detection (AD) Phase . 57

3.5.1 Block Level Monitoring (BLM) 58

3.5.2 Access Cluster Monitoring (ACM) 58

3.5.3 Frequency Monitoring (FM) . 59

3.6 Performance Evaluation . 59

3.6.1 Experiment Setup and Evaluation Metrics 60

3.6.2 Experiment Results . 64

ACM Module For Anomaly Cases 1-3 64

BLM Module For Anomaly Cases 4-5 66

FM Module For Anomaly Case 6 66

3.6.3 Multi-level Temporal Profiles . 67

3.6.4 Comparison with Existing Approaches 68

3.6.5 Overhead Analysis . 69

3.7 Related Work . 69

4 PRIVACY-PRESERVING REAL-TIME ANOMALY DETECTION USING EDGE
COMPUTING . 72

4.1 Introduction . 72

4.2 Preliminaries . 76

4.2.1 Q Function . 76

4.2.2 Windowed Gaussian Anomaly Detector 77

4.3 Lightweight and Aggregation Optimized Encryption (TRIDENT) Scheme . 79

viii

Page

4.3.1 Encryption Scheme . 79

4.3.2 Additive Homomorphism . 80

4.3.3 Aggregation . 81

4.3.4 Security Analysis . 82

4.3.5 Malleability . 83

4.4 Privacy-preserving Anomaly Detection Framework 83

4.4.1 Privacy-preserving Point Anomaly Detection 83

4.4.2 Privacy-preserving Contextual Anomaly Detection 86

4.4.3 Privacy-preserving Collective Anomaly Detection 87

4.4.4 Privacy-preserving Anomaly Detection for More Complicated Sce-
narios . 91

4.5 Evaluation . 92

4.5.1 Experiment Setup . 93

4.5.2 Comparison Between the Trident and Paillier Schemes 93

4.5.3 Performance Analysis . 94

4.5.4 Overhead Analysis . 96

4.5.5 Scalability Analysis . 99

4.5.6 Privacy Analysis . 101

4.6 Related Work . 102

5 CONCLUSION AND FUTURE WORK . 104

REFERENCES . 109

ix

LIST OF TABLES

Table Page

2.1 Fast I/O read and write types . 14

2.2 Metrics for the PMon module . 14

2.3 Performance evaluation for different machine learning techniques 15

2.4 Hooked CryptoAPI functions . 22

2.5 Memory overhead of RWGuard . 28

2.6 Comparison of RWGuard with existing ransomware detection mechanisms . . . 30

3.1 Blktrace event components . 38

3.2 Anomalous file accesses’ taxonomy along with a comparison among access
control mechanism (AC), a file level profiling approach (FLP), e.g., [68], and
our fine-grained profiling approach (FGP) . 39

3.3 Mapping between the anomaly cases and flags 59

4.1 Case study for different scenarios. 74

4.2 Anomaly detection scenarios. 92

x

LIST OF FIGURES

Figure Page

2.1 Design overview of RWGuard . 12

2.2 ROC curves for different classifiers. 16

2.3 CryptoAPI Function Hooking (CFHk) module 20

2.4 Comparison between the cases of with and without decoy deployment in terms
of the number of (a) write, (b) read, (c) open, and (d) close IRPs made by
the ransomware samples until their detection (ransomware name abbrevia-
tions: Lk-Locky, Cr-Cerber, Wc-Wannacry, Jg-Jigsaw, Cl-Cryptolocker, Tc-
Teslacrypt, Cw-Cryptowall, Vp-Vipasana, St-Satana, Rd-Radamant, Rx-Rex). . 24

2.5 Detection time required by RWGuard when there is no decoy deployment. . . . 25

3.1 Event sequence E . 38

3.2 Profile Creation (PC) phase architecture . 42

3.3 Finite state automata Aε for ε = {b, d, c} . 48

3.4 Profiling (a) task A, and (b) task B . 55

3.5 Anomaly Detection (AD) phase architecture 56

3.6 AD phase partition into trusted and untrusted parts 56

3.7 Different ranges of (a) blktrace events, and (b) distinct file accesses by the users 61

3.8 ACM module: mean (a) FPR and FNR, (b) PCS and RCL, (c) ACC and FMR
values with confidence interval of standard deviation 62

3.9 BLM module: mean (a) FPR, and (b) FNR for different δ1, (c) PCS, RCL,
ACC, and FMR for δ1=2 with confidence interval of standard deviation 62

3.10 FM module: mean (a) FPR, and (b) FNR for different δ2, (c) PCS, RCL, ACC,
and FMR for δ2 = 0.15 with confidence interval of standard deviation 63

3.11 Combined (a) FPR, FNR, (b) PCS, RCL, ACC, FMR of our approach, (c)
Comparison with existing techniques . 63

3.12 Concept drift experiments with multiple anomalous activities (previously un-
known) when between 0 and 5 other users perform similar file accesses 65

3.13 Results for Multi-level Temporal Profiles . 67

xi

Figure Page

4.1 (a) Gaussian distribution, (b) RealAdExchange data. 76

4.2 The plots show the original data, encrypted data, and the detected anomalies
using Algorithm 5, respectively. 86

4.3 (a) A complex dataset, (b) Plot of the encrypted data points for the datasetsD1,
D2, D3, D4, and D5 consecutively with independent Gaussian distributions
under unique keys, (c) First plot shows encrypted data without offsetting which
reflects the underlying plaintext data whereas the encrypted data with offsetting
in the second plot removes such underlying pattern. 88

4.4 Latency comparison between Trident and Paillier. 94

4.5 Anomaly detection performance for the cases: (a) flat-middle, (b) jumps-down,
(c) jumps-up, and (d) no-jump. The plots in black color represent the plaintext
data, the plots in red represent the corresponding anomaly scores. 95

4.6 Impact on anomaly detection performance with varying window sizes and
varying sample sizes. 96

4.7 Comparison between TCN and UDH in terms of latency and communication
cost for different sample sizes. 96

4.8 Scalability analysis for UDH in terms of latency and communication cost for
varying data and step sizes. 98

4.9 Comparison between TCN and UDH in terms of latency and communication
cost for varying data and step sizes. 100

xii

ABSTRACT

Mehnaz, Shagufta PhD, Purdue University, August 2020. Fine-Grained Anomaly Detec-
tion for in Depth Data Protection. Major Professor: Elisa Bertino.

Data represent a key resource for all organizations we may think of. Thus, it is not

surprising that data are the main target of a large variety of attacks. Security vulnerabilities

and phishing attacks make it possible for malicious software to steal business or privacy

sensitive data and to undermine data availability such as in recent ransomware attacks.

Apart from external malicious parties, insider attacks also pose serious threats to organiza-

tions with sensitive information, e.g., hospitals with patients’ sensitive information. Access

control mechanisms are not always able to prevent insiders from misusing or stealing data

as they often have data access permissions. Therefore, comprehensive solutions for data

protection require combining access control mechanisms and other security techniques,

such as encryption, with techniques for detecting anomalies in data accesses. In this the-

sis, we develop fine-grained anomaly detection techniques for ensuring in depth protection

of data from malicious software, specifically, ransomware, and from malicious insiders.

While anomaly detection techniques are very useful, in many cases the data that is used for

anomaly detection are very sensitive, e.g., health data being shared with untrusted service

providers for anomaly detection. The owners of such data would not share their sensi-

tive data in plaintext with an untrusted service provider and this predicament undoubtedly

hinders the desire of these individuals/organizations to become more data-driven. In this

thesis, we have also built a privacy-preserving framework for real-time anomaly detection.

1

1. INTRODUCTION

Data stored in a file system can be compromised in many ways, e.g., by ransomware that

encrypts files to breach data availability [1–3], or by employees with malicious intentions

inside an organization. While encryption techniques do not protect data from ransomware,

access control mechanisms are also not always able to prevent insiders from misusing or

stealing data [4]. Therefore, comprehensive solutions for data protection require combin-

ing access control mechanisms and other security techniques, such as encryption, with

techniques for detecting anomalies in data accesses. Apart from detecting malicious data

accesses, anomaly detection is also used as the underlying technique to support efficient and

effective decision making in many safety critical application domains, such as home secu-

rity, patient monitoring, detecting cyber attacks in nuclear power plants, etc. For instance,

identifying an emergency situation of a patient when signals from her health monitoring de-

vices seem anomalous require effective real-time anomaly detection. Internet giants such

as Google, Microsoft, and specialized companies (e.g., Anomaly) are already offering such

anomaly-detection-as-a-service [5–7] for real-time data or for predictive maintenance. Al-

though there exists significant work in the database domain to process queries on encrypted

databases [8–10], the users of such anomaly-detection-as-a-service have to share their data

in plaintext with the service providers to ensure effective anomaly detection. Needless to

say, these services do not satisfy the privacy requirements of many applications that run

analytics on sensitive data. This privacy issue exists despite the presence of Trusted Exe-

cution Environment that is used to secure the execution of the code dealing with sensitive

data to prevent an attacker from stealing sensitive data by exploiting the vulnerabilities in

the rest of the system.

In this dissertation, we, therefore, address the following research questions: (1) how can

we design a robust technique to identify cryptographic ransomware in real-time so that the

damage to the file system can be minimized? (2) how to develop a fine-grained anomaly de-

2

tection technique for ensuring in-depth protection of data from malicious insiders? and (3)

is it possible to build a privacy-preserving framework for effective and real-time anomaly

detection using edge computing where the users only share their encrypted data with the

third-party edge service providers?

1.1 A Real-time Detection System Against Cryptographic Ransomware

Ransomware is a class of malware that has recently become very popular among cyber-

criminals. The goal of these cybercriminals is to obtain financial gain by holding the users’

files hostage- either by encrypting the files or by locking the users’ computers. In this

work, we focus on crypto ransomware which encrypts files and asks users for a ransom in

exchange of decryption keys that can be used to recover the files encrypted by the attacker.

Among the recent ransomware attacks, Petya [1] is the deadliest one; it affected several

pharmaceutical companies, banks, at least one airport and one U.S. hospital. Another mas-

sive ransomware that hit nearly 100 countries around the world is WannaCry [2]. This

attack targeted not only large institutions but also any individual who could be reached.

Systems can be attacked by ransomware in different ways. Most commonly, an organized

crime group sets up multiple seemingly legitimate domains that contain malware to be au-

tomatically downloaded and discreetly/silently installed. Whenever a website in any of

these domains is visited, the malware is downloaded without the user’s knowledge.

Our key observation with most prevalent ransomware families is that the file system

access pattern of the ransomware spawned processes is anomalous when compared to nor-

mal user operations. These processes read a file, encrypt the file contents, and write the

encrypted contents to the file (alternatively, delete the old file and create a new file with en-

crypted contents). In order to identify such anomalous file accesses, we propose a solution

dubbed as RWGUard with a threefold monitoring mechanism - the first one is for monitor-

ing the processes, the second one is for monitoring changes in the file system, and finally,

the last one is for monitoring access requests to decoy (bait) files deployed in the system.

Unlike generic malware, ransomware wreak havoc systems within minutes (or seconds).

3

Therefore, analyzing processes’ file usage patterns and searching for ransomware-like be-

haviors result in delayed detections. To address this challenge, we strategically deploy a

number of decoy files in the system. Since in the normal cases a decoy file should not be

written, whenever a ransomware process writes to such a decoy file, our decoy monitor-

ing technique identifies the ransomware process instantaneously. Though some research

work [11,12] recommends using decoy files for detecting ransomware, such previous work

does not present any analysis on the effectiveness of these decoy files with any real sys-

tem design. To the best of our knowledge, ours is the first work to empirically analyze

the effectiveness of decoy techniques against ransomware. The process monitor checks

the running processes’ I/O Request Packets (IRPs), e.g., IRP write, IRP create, IRP open,

etc. While some existing approaches [13, 14] are signature-based and look for specific

I/O request patterns, we exploit the rapid encryption property of ransomware [15], use a

number of IRP metrics for building baseline profile for each running process, and utilize

these baseline profiles for performing process anomaly detection. The file change moni-

tor checks all changes performed on the files (e.g., create, delete, and write operations) to

determine anomalous file changes. From our experimental observations, we have found

that monitoring only the process activities [13, 14] or only the file changes [13, 16] is not

sufficient for effective detection and results in both high false positives and high false nega-

tives (e.g., we observed that the Cryptolocker ransomware encrypts files very slowly which

sometimes evades process monitoring). Therefore, in this work, we enhance these existing

techniques and combine them with the decoy monitoring module in order to provide an

effective solution for protection against ransomware.

1.2 A Fine-grained Approach for Anomaly Detection in File System Accesses with

Enhanced Temporal User Profiles

In the second contribution presented in this thesis, we aim to defend against insider

attacks. An example of such insider attacks is the breach [17] at Sony Pictures Enter-

tainment where at least one of the six attackers was a former system administrator with

4

extensive technical background and knowledge of Sony’s internal systems. As attempts

to steal data by malicious or compromised insiders are often characterized by unusual ac-

cess patterns [18, 19], anomaly detection for data accesses can be a useful technique that

well complements other security techniques, such as authentication, access control, and

encryption.

The development of access anomaly detection techniques for file systems is challeng-

ing. In contrast to database anomaly detection techniques where SQL queries provide a

structure [20, 21], lack of semantic information about accesses in the case of file systems

makes the task of anomaly detection complex. A large number of false positives, i.e., non-

anomalous accesses classified as anomalies, may slow down the entire system and disrupt

the users’ normal activities. On the other hand, a large number of false negatives, i.e.,

undetected anomalous accesses undermine the security protection. This trade-off between

performance and security is a major challenge [22] in detecting anomalies in file system

accesses. Moreover, a file system anomaly detection technique must add minimal overhead

to the data access times. Therefore, in this work, we propose an effective and practical

approach, dubbed as Ghostbuster, to detect anomalous accesses to the file system by creat-

ing fine-grained user profiles. Our proposed approach comprises of two phases: the Profile

Creation (PC) phase and the Anomaly Detection (AD) phase. In the first phase, we col-

lect detailed information about the file accesses resulting from a user’s normal file system

activities and create the user profile by using a combination of techniques including data

mining. The profiles are later used in the second phase to monitor the file system usage and

to raise alerts upon identifying anomalous activities.

1.3 Data Privacy for Real-time Anomaly Detection

Real-time anomaly detection in streaming data helps us quickly detect and resolve

unanticipated situations, e.g., anomalies in patients’ health monitoring devices, home secu-

rity systems, and industrial IoT sensors. While Google [5], Microsoft [6], and specialized

companies (e.g., Anomaly.io [7]) are already offering such real-time anomaly detection

5

as a service, their approaches do not comply with privacy-sensitive applications, such as

healthcare and finance. The owners of such data would not share their sensitive data in

plaintext with an untrusted service provider and this predicament undoubtedly hinders the

desire of these individuals/organizations to become more data-driven.

In general, when the data is encrypted before off-loading, the edge server is unable

to process the encrypted data efficiently. Most approaches based on Secure Multi-party

Computation (SMC) include complicated techniques, such as Yao’s garbled circuits [23]

and oblivious transfer, that are impractical for real-time analytics. Many existing solu-

tions for outsourced privacy-preserving anomaly detection rely on trusted third parties or

assume the presence of non-colluding third parties, thus introducing weak links in the secu-

rity chain [24], whereas solutions that perturb data for privacy [25] are susceptible to data

reconstruction [26]. Solutions assuming co-operative anomaly detection [27] or crowd-

sourcing [28] using differential privacy do not directly apply to our scenario where there

is a single data owner willing to outsource the anomaly detection task while simultane-

ously preserving the privacy of the data. Moreover, solutions leveraging differential privacy

would require injecting a significant amount of fake data which in turn would reduce the

utility significantly.

Motivated by these simultaneous needs for real-time anomaly detection and data pri-

vacy, we built a framework to enable privacy-preserving real-time anomaly detection on

sensitive, time series, streaming data. This privacy-preserving framework, in combina-

tion with a lightweight and optimized encryption scheme (used to encrypt the data before

off-loading it to the third-party service provider), facilitates efficient anomaly detection

on encrypted data. We evaluated the proposed solution for windowed Gaussian anomaly

detector – the most widely used anomaly detection algorithm [29], in terms of privacy, ac-

curacy, latency, and communication cost. The proposed solution can be easily adapted for

more complicated anomaly detection scenarios, e.g., dynamic (i.e., time-evolving) graph

anomaly detection algorithms that aim to identify anomalous patterns using a moving win-

dow analysis.

6

1.4 Thesis Statement

Data are the main target of a large variety of attacks, e.g., ransomware attacks that

encrypt files to breach data availability, or malicious insider attacks that breach data con-

fidentiality. Existing security techniques such as access control, encryption, and authen-

tication need to be strengthened with anomaly detection techniques in order to achieve

robust security while we also need to make sure that these anomaly detection techniques

are accessible for applications that deal with privacy sensitive data.

7

2. RWGUARD: A REAL-TIME DETECTION SYSTEM AGAINST
CRYPTOGRAPHIC RANSOMWARE

2.1 Introduction

Ransomware is a class of malware that has recently become very popular among cyber-

criminals. The goal of these cybercriminals is to obtain financial gain by holding the users’

files hostage- either by encrypting the files or by locking the users’ computers. In this chap-

ter, we focus on crypto ransomware that asks users for a ransom in exchange of decryption

keys that can be used to recover the files encrypted by the attacker. Such ransomware is

now a significant threat to both individuals and organizations. Among recent ransomware

attacks, Petya [1] is the deadliest one; it affected several pharmaceutical companies, banks,

at least one airport and one U.S. hospital. Another massive ransomware that hit nearly 100

countries around the world is WannaCry [2]. This attack targeted not only large institu-

tions but also any individual who could be reached. While ransomware has maintained

prominence as one of the biggest threats since 2005, the first ransomware attack occurred

in 1989 [30] and targeted the healthcare industry. The healthcare industry, which possesses

very sensitive and critical information, still remains a top target.

Even though several techniques have been proposed for detecting malware, very few

of them are specific to ransomware detection [13–16, 31–33]. Such existing techniques,

however, have at least one of the following limitations: (a) impractically late detection

when several files have already been encrypted [13, 16, 33], (b) failure to distinguish be-

nign file changes from ransomware encryption [13–16,31–33], (c) offline detection system

that is unable to detect ransomware in real-time [13], (d) emphasis only on post-encryption

phase which fails to recover files in most of the cases [32] or conflicts with secure dele-

tion [15, 31], and (e) monitoring applications’ actions only for a limited amount of time

after their installation [33].

8

Problem and scope: In this work, we focus on the most critical requirement for a suc-

cessful ransomware, i.e., making the valuable resources (i.e., files, documents) unavailable

to the user, and design a solution, RWGuard, that protects against ransomware by detect-

ing and stopping the ransomware processes at an early stage. Note that the ransomware

families that lock the user’s machine are out of the scope of this thesis.

Approach: RWGuard employs three monitoring techniques: decoy monitoring, pro-

cess monitoring, and file change monitoring. Unlike generic malware, ransomware wreak

havoc systems within minutes (or seconds). Therefore, analyzing processes’ file usage pat-

terns and searching for ransomware-like behaviors result in delayed detections. To address

this challenge, we strategically deploy a number of decoy files in the system. Since in the

normal cases a decoy file should not be written, whenever a ransomware process writes

to such a decoy file, our decoy monitoring technique identifies the ransomware process

instantaneously. Though some research work [11, 12] recommends using decoy files for

detecting ransomware, such previous work does not present any analysis on the effective-

ness of these decoy files with any real system design. To the best of our knowledge, ours

is the first work to empirically analyze the effectiveness of decoy techniques against ran-

somware. The process monitor checks the running processes’ I/O Request Packets (IRPs),

e.g., IRP write, IRP create, IRP open, etc. While some existing approaches [13, 14] are

signature-based and look for specific I/O request patterns, we exploit the rapid encryption

property of ransomware [15], use a number of IRP metrics for building baseline profile for

each running process, and utilize these baseline profiles for performing process anomaly

detection. The file change monitor checks all changes performed on the files (e.g., create,

delete, and write operations) to determine anomalous file changes. From our experimental

observations, we have found that monitoring only the process activities [13,14] or only the

file changes [13, 16] is not sufficient for effective detection and results in both high false

positives and high false negatives (e.g., we observed that the Cryptolocker ransomware en-

crypts files very slowly which sometimes evades process monitoring). In this chapter, we

enhance these existing techniques and combine them with the decoy monitoring module in

order to provide an effective solution for protection against ransomware.

9

If a potential encryption of a file (not a decoy) is identified, the next step is to determine

whether the file is encrypted by a ransomware (referred to as ransomware encryption) or

by a legitimate user (referred to as benign encryption). Therefore, we also design a file

classification mechanism that depending on the properties of a file, classifies the encryption

as benign or malicious. In order to learn the user’s file encryption behavior, we leverage an

existing encryption utility (that utilizes cryptographic library CryptoAPI, e.g., Kryptel [34])

to be used by end-users and applications. Finally, our approach includes a mechanism that

places hooks and intercepts calls to the functions in CryptoAPI library so as to monitor all

benign file encryption.

Contributions: To summarize, RWGuard makes the following contributions:

1. A decoy based ransomware detection technique that is able to identify ransomware

processes in real-time.

2. A ransomware surveillance system that employs both process and file change moni-

toring (to detect ransomware encrypting files other than decoy).

3. A classification mechanism to distinguish benign file changes from ransomware en-

cryption by hooking relevant CryptoAPI functions and learning the user’s file en-

cryption behaviors.

4. An extensive evaluation of our ransomware detection system on 14 most prevalent

ransomware families to date.

2.2 Background

2.2.1 Hybrid Cryptosystem

A hybrid cryptosystem allows the ransomware to use different symmetric keys for en-

cryption of different files while using a single asymmetric key pair. The attacker generates

the asymmetric public-private key pair on its own command and control infrastructure. The

ransomware code generates a unique symmetric key for each file to be encrypted and then

10

encrypts these symmetric keys with its public key. These encrypted symmetric keys are

then left with the encrypted files. At this point, the user needs to pay the ransom to get the

private key with which it can first retrieve the symmetric keys, and then decrypt the files.

2.2.2 IRPLogger

All the I/O requests by processes that are sent to device drivers are packaged in I/O

request packets (IRPs). These requests are generated for any file system operation, e.g.,

open, close, write, read, etc. IRPLogger leverages a mini-filter driver [35] that intercepts

the I/O requests. An example of IRPLogger entry is:

<Timestamp, PID, IRP/FastIO, Operation (READ/WRITE/OPEN/CLOSE/CREATE)>

2.2.3 CryptoAPI

CryptoAPI is a Microsoft Windows platform specific cryptographic application pro-

gramming interface (API). This API, included with Windows operating systems, provides

services to secure Windows-based applications using cryptography. It includes functionali-

ties for encrypting (CryptEncrypt) and decrypting (CryptDecrypt) data, generating crypto-

graphically secure pseudo-random numbers (CryptGenRandom), authentication using dig-

ital certificates, etc.

2.2.4 Microsoft Detours Library

Detours is a library for instrumenting arbitrary Win32 functions in Windows-compatible

processors. It intercepts Win32 functions by re-writing the in-memory code for target func-

tions. Detours preserves the un-instrumented target function (callable through a trampo-

line) as a subroutine for use by the instrumentation.

11

2.3 RWGuard Design

2.3.1 Threat Model

In our threat model, we consider an adversary that installs crypto-ransomware on victim

machines through seemingly legitimate but malicious domains. We consider the operating

system to be trusted. Ransomware generally targets and encrypts files that the user creates

and cares about, and the user account already has all the privileges to access these files.

However, though the assumption that ransomware executes only with user-level privileges

seems reasonable (as otherwise, it may be able to defeat any existing in-host protection

mechanisms, e.g., anti-malware solutions), this assumption does not apply to all the ran-

somware cases. We have observed some exceptions to this assumption where ransomware

samples affect only a predefined list of system files and if not detected/terminated, gain

root access, shut down the system, and at the next boot up, perform full disk encryption

and ask for a ransom payment. Hence, we also include these ransomware samples in our

threat model. Moreover, a malicious insider in an organization may gain the knowledge

of decoy files and build a customized ransomware to sabotage the organization (installed

as a logical bomb to detonate after the insider leaves the organization). A further discus-

sion on how our RWGuard system handles such situations is given in Section 2.5. Also,

note that, a malware changing file contents with non-random bits (i.e, not an encryption)

and demanding ransom payment is out of the scope of this thesis. In order to maintain

their credibility and ensure their continued stream of income, crypto-ransomware attackers

generally encrypt the files and return the private key once the ransom is paid.

2.3.2 Overview

Figure 2.1 shows the placement and the design overview of RWGuard. Any I/O request

to the file system generated by any user space process first needs to be scheduled by the I/O

scheduler. We leverage IRPLogger to fetch these system-wide file system access requests

and parse those with our IRPParser.

12

I/O Requests

I/O Requests

I/O Requests

I/O Requests

User
space

Kernel
space

P1

P2

Pn

P3

I/O Scheduler

IRPLogger

File System

W
FCMon
Metrics

Computation

PMon IRP
Metrics

Computation

Crypto
Tool

Function
Hooking

Decoy?

Malicious
Encryption?

File
Manager

Process
Profiling

File Types,
Locations

Tuples
<...,…,..>

Flag
Process

Automatic
Decoy

Generator

RWGuard

FCMon

PMon
O,C
R,W
Cr

FCls

CFHk

DMon

I/O Request Queue

IRPParser Decoy File
Information

O- Open
C- Close
R- Read
W- Write
Cr- Create

Figure 2.1.: Design overview of RWGuard

RWGuard consists of five modules: (1) Decoy Monitoring (DMon) module, (2) Process

Monitoring (PMon) module, (3) File Change Monitoring (FCMon) module, (4) File Classi-

fication (FCls) module, and (5) CryptoAPI Function Hooking (CFHk) module. The DMon

module considers only the IRP write requests as input and monitors whether there is any

such request to a decoy file. The PMon and FCMon modules monitor process operations

(IRP open, close, read, write, create) and file changes (IRP write), respectively. These two

modules communicate in order to identify any process(es) making significant anomalous

changes to the files. If such an event is identified, the FCls module checks the properties of

the file and predicts the probability of the file change to be benign. Furthermore, the CFHk

module checks whether a benign encryption (by the user) has been recorded for this file at

the time of the file’s significant change.

2.3.3 Decoy Monitoring (DMon) Module

The DMon module deploys decoy files that allow our system to identify a ransomware

process in real-time. Since the decoy files should not be modified in normal situations,

whenever a (ransomware) process tries to write such files, this module can immediately

identify the process as malicious. Furthermore, the presence of a significant number of

13

decoy files (though of smaller sizes) increases the probability that a ransomware would en-

crypt one of these files even before trying to encrypt an original file. Hence, the advantage

of using decoy files is twofold: (1) it allows the detection system to readily identify a ma-

licious process, and (2) it delays the time when ransomware starts encrypting the original

files and thus gives enough time for anomaly detection to complete its analysis and stop the

malicious processes even before they start encrypting the original files (see Section 2.5.2

for the experimental data about the time required by RWGuard to complete the analysis).

RWGuard decoy files are generated with an automated decoy generator tool that we dis-

cuss in details in Section 2.4.2. Note that, our decoy generator periodically modifies the

decoy files so that even if a ransomware looks at the time when a file is last modified (to

ensure that the file it encrypts is valuable to the user), it would not be able to recognize the

decoy files.

2.3.4 Process Monitoring (PMon) Module

Unlike some existing approaches [13, 14] that look for specific patterns (e.g., read→

encrypt→delete) in the processes’ I/O requests, we exploit the fact that ransomware typi-

cally attempts to encrypt data rapidly [15] (to maximize damage and minimize the chance

of being detected) which leads to anomalous numbers of IRPs. Exploiting this property

results in faster detection since IRPs can be logged well ahead of actual file operations.

Our PMon module monitors the I/O requests made by the processes running on the system.

Though IRP is the default mechanism for requesting I/O operations, many ransomware

perform file operations using fast I/O requests. Fast I/O is specifically designed for rapid

synchronous I/O operations on cached files, bypassing the file system and the storage driver

stack. Therefore, in our design, we monitor both the IRPs and the fast I/O requests. A fast

I/O read/write operation can be any of the types listed in Table 2.1. Given that ransomware

processes encrypt files rapidly, the behavior of such processes has certain characteristics.

Hence, in this module, we train a machine learning model that given a process’s I/O re-

quests, identifies the process as benign or ransomware. Ransomware that encrypt files

14

Table 2.1.: Fast I/O read and write types

READ types

FASTIO READ

FASTIO MDL READ

FASTIO READ COMPRESSED

FASTIO READ COMPLETE COMPRESSED

WRITE types

FASTIO WRITE

FASTIO MDL WRITE

FASTIO MDL WRITE COMPLETE

FASTIO WRITE COMPRESSED

FASTIO MDL WRITE COMPLETE COMPRESSED

Table 2.2.: Metrics for the PMon module

Metric # Metric name

1 Number of IRP WRITE requests

2 Number of FastIO WRITE requests

3 Number of IRP READ requests

4 Number of FastIO READ requests

5 Number of IRP OPEN requests

6 Number of FastIO OPEN requests

7 Number of IRP CREATE requests

8 Number of FastIO CREATE requests

9 Number of IRP CLOSE requests

10 Number of FastIO CLOSE requests

11 Number of temporary file created

slowly may evade this module but are identified by the FCMon module as discussed in

Section 2.3.5.

Process Profiling: In order to train the machine learning model, as a first step, we collect

the IRPs (from this point, the term ‘IRP’ represents both I/O and fast I/O) of both benign

and ransomware processes. Table 2.2 shows the IRP metrics used in this training phase

which also includes the number of temporary files created by a process. The temporary

files (.TMP) are usually created by ransomware to hold the data while copying or removing

the original files. Once the profiles for benign and ransomware processes are built in the

training phase, the Process Profiling component of the PMon module (Figure 2.1) stores

the model parameters to check against the running processes’ parameters in real-time (i.e.,

the test phase). The PMon module re-computes the metrics listed in Table 2.2 for each

running process over a 3 seconds sliding window.

ITraining phase: The data collection and classifier training steps are following:

1. Data collection: For the training set, we collect IRP data of processes from both ran-

somware samples and benign applications. We use nine of the most popular ransomware

families, namely: Wannacry, Cerber, CryptoLocker, Petya, Mamba, TeslaCrypt, Cryp-

toWall, Locky, and Jigsaw for the training phase. We also include benign processes, e.g.,

15

Table 2.3.: Performance evaluation for different machine learning techniques

Classifier Accuracy (%) ROC Area True Positive Rate False Positive Rate Precision Recall

Naive Bayes 80.07 0.69 0.80 0.70 0.75 0.80

Logistic Regression 81.22 0.72 0.81 0.66 0.77 0.81

Decision Tree 89.27 0.87 0.89 0.18 0.89 0.89

Random Forest 96.55 0.94 0.96 0.08 0.96 0.96

Explorer.exe, WmiPrvSE.exe, svchost.exe, FileSpy.exe, vmtoolsd.exe, csrss.exe, System,

SearchFilterHost.exe, SearchProtocolHost.exe, SearchIndexer.exe, chrome.exe, GoogleUp-

date.exe, services.exe, audiodg.exe, WinRAR.exe, taskhost.exe, drpbx.exe, lsass.exe, etc.

It is important to note that most of the ransomware samples spawn multiple malicious

processes during execution. Our final training dataset contains IRPs from 261 processes

including both benign and malicious ones.

2. Classifier training: Using the training data, we train a machine learning classifier

that, given a set of processes, is able to distinguish between ransomware and benign pro-

cesses. In order to identify the best machine learning technique for this classification, we

analyzed different classifiers, namely: Naive Bayes (using estimator classes), Logistic Re-

gression (multinomial logistic regression model with a ridge estimator), Decision Tree [36],

and Random Forest [37] classifiers. We used 10 fold cross validation on the obtained data

set and measured accuracy, precision, recall, true positive rate and false positive rate for

each of the above-mentioned classifiers. Table 2.3 presents a comparison of the classifiers

used in our analysis. Figure 2.2 shows the results for all the classifiers in terms of ROC

curves (which plot true positive rate against false positive rate). The low accuracy (∼80%)

of the naive Bayes classifier can be attributed to its class independence property. From our

observation, ransomware usually employs a combination of read, write, open, and close

requests which are correlated. Therefore, assuming that these parameters are independent

of each other leads to a lower accuracy. The regression classifier works slightly better than

the naive Bayes classifier with an accuracy of ∼81%. A logistic regression model searches

for a single linear decision boundary in the feature space. Hence, the low accuracy can

be attributed to the fact that our data does not have a linear boundary for decisions. The

16

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Tr
ue

 p
os

iti
ve

 r
at

e

False positive rate

Naive Bayes
Logistic Regression
Decision Tree
Random Forest

Figure 2.2.: ROC curves for different classifiers.

reason is that many ransomware make a large number of write/read requests as compared

to the open/close requests. Therefore, the ideal decision boundary for our dataset would be

non-linear.

The tree-based classifiers (random forest and decision tree) perform the best with ac-

curacies of ∼97% and ∼89%, respectively. The reason is that the decision boundary for

our data is non-linear and these classifiers build non-linear decision boundaries. However,

the decision tree classifier is susceptible to over-fitting while random forest classifiers do

not have this issue. Also, in terms of deployment, the random forest classifier is faster and

more scalable compared to other classifiers. Therefore, finally, we use the random forest

classifier in our RWGuard PMon module.

ITest phase: In the test phase, along with the nine families used for training, we add five

more ransomware families in the experiment set: Vipasana, Satana, Radamant, Rex, and

Matsnu. These samples are executed one at a time and depending on the spawned processes

and their activities, the malicious processes are flagged. Details of the test phase results are

given in Section 2.5.

File encryption: In our experiments, we observe that few benign processes, e.g., Chrome,

VMware tools are sometimes classified as malicious by the machine learning model due to

these processes’ I/O request behaviors. Therefore, besides monitoring the process profil-

ing metrics, it is important to monitor whether a particular process is responsible for any

significant file changes. Hence, our PMon module considers file encryption as a significant

17

parameter (communicated by the FCMon module as described in Section 2.3.5) and identi-

fies a process as malicious only if it encrypts files along with indications of anomalous I/O

behaviors.

2.3.5 File Change Monitoring (FCMon) Module

This monitoring module can be configured to target a range of files from a single di-

rectory to the whole file system. It computes and stores the initial properties of the files

(or, dynamically computes the properties when a file is created) and these properties are

updated accordingly in the event of a file change. In real-time, the FCMon module looks

for significant changes in those files after each write operation using the following metrics:

(1) similarity, (2) entropy, (3) file type change, and (4) file size change. While some of

these metrics have been used for ransomware detection in existing work [13, 16], our goal

is to verify the fast detections by the PMon module and thereby minimize the false positive

rates. In what follows, we describe the File Manager component of the FCMon module

and present the details of the above metrics.

File Manager: This component stores the current properties of each file (e.g., file type,

current entropy of a file, file size, last modified time etc.) so that any significant change

in the files’ properties can be detected upon a write operation. If a new file is created, this

component computes the properties of the new file instantly and stores them in the map

(map key: file name and path, key value: computed properties).

Metrics: The metrics of FCMon module are following:

1. Similarity metric: In comparison with a benign file change, e.g., modifying some

of the existing text or adding some text, an encryption would result in data that is very

dissimilar to the original data. Therefore, the similarity between a file’s previous (before

the write operation) and later (after the write operation) versions is an important factor

to understand the characteristics of the file change. In order to compute the similarity

between two versions, we use sdhash, a similarity-preserving hash function proposed by

Roussev et al. [38] for generating the file hashes. The sdhash function outputs a score in

18

the range [0,100]. A score of 0 is obtained when we compute the similarity between two

completely random arrays of data. Conversely, a score of 100 is obtained when we compute

the similarity between two files that are exactly same. Hence, in the case of an encryption,

this function outputs a value close to 0.

2. Entropy metric: Entropy, as it relates to digital information, is the measurement of

randomness in a given set of values (data), i.e., when computed over a file, it provides

information about the randomness of data in the file. Therefore, certainly, a user’s data file

in plaintext form has low entropy whereas its encrypted version would have a high entropy.

Other than encrypted data, compressed data also has high entropy when compared to its

plaintext form. A widely used entropy computation technique is Shannon entropy [39].

The Shannon entropy of an array of N bytes (assuming ASCII characters with values 0 to

255) can be computed as the following:
∑255

i=0 Pilog2
1
Pi

. Here, Pi is the probability that a

randomly chosen byte from the array is i, (i.e., Pi =Fi/N) where Fi is the frequency of byte

value i in the array. This equation returns a value in the range of [0,8]. For an absolutely

even distribution of byte values in the array, the output value is 8. Since encrypted files

have bytes more evenly distributed (when compared to its plaintext version), the Shannon

entropy significantly increases after encryption and results in a value near 8.

3. File type change metric: A file generally does not change its type over the course of

its existence. However, it is common for a number of ransomware families to change the

file type after encryption. Therefore, whenever a file is written, we compare the file types

before and after the write operation.

4. File size change metric: Unlike file type change, file size change is a common event,

e.g., adding a large text to a document. However, this metric along with other metrics can

determine if the file changes are benign or malicious.

Upon detecting a file write operation that results in a file type change or exceeds at least

one of the given thresholds for the metrics, that is, similarity (score< 50), or entropy (value

> 6), and/or significantly changes the file size, the FCMon module shares the recorded

metrics with the PMon, FCls, and CFHk modules for further assessment.

19

2.3.6 File Classification (FCls) Module

After the PMon and FCMon modules collaboratively identify a process responsible for

anomalous I/O behavior and file changes, our detection system classifies whether the file is

encrypted by the ransomware or the change is due to a benign operation. Our FCls module

performs this classification by learning the usage of the crypto-tool (a utility leveraging

CryptoAPI used for user’s sensitive files’ encryption and decryption, e.g., Kryptel [34])

and profiling the user’s encryption behavior. For example, if a file is encrypted which is

from the same directory and has the same type of a previously benignly encrypted file,

this module assigns a higher probability for this file to be benignly encrypted (however,

a ransomware cannot abuse this idea as described in CFHk module in Section 2.3.7). If

the probability for a file is too low to belong to the benignly encrypted class and if the file

gets encrypted, a flag is raised immediately by the FCls module. In order to remove false

negatives (i.e., ransomware encrypts a file which has a high probability of being benignly

encrypted), the encryption information is validated with the CFHk module which intercepts

benign encryptions.

Protecting sensitive files: If at the time of the ransomware attack the sensitive files are

already in encrypted form, the ransomware could further encrypt those files which makes

those files unavailable too. Note that the FCMon module may not be able to flag this

event with high probability. The reason is that the entropy would not change significantly

since both of the file versions (before and after the ransomware encryption) would have

high entropy. To address such issue, we modify the permission settings for encrypted files,

i.e., when a user encrypts a file using the crypto-tool, the only operations that we allow

on that encrypted file are decryption and deletion (each of these operations requires the

symmetric key used for encryption). Since it is impractical that someone would edit/modify

an encrypted file before decryption, this permission setting suffices.

20

2.3.7 CryptoAPI Function Hooking (CFHk) Module

As described in Section 2.3.6, if the FCls module classifies the change to be the result

of a possibly benign encryption, we need to further investigate whether the encryption was

actually performed using the crypto-tool. Hence, the CFHk module places hooks at the

beginning of the CryptoAPI library functions to redirect control of the execution to our

custom-written functions. Figure 2.3 shows an example of hooking the ‘CryptEncrypt’

function included in the CryptoAPI library. Whenever a process calls the CryptEncrypt

function to encrypt some file, the hook placed at the beginning of the CryptEncrypt function

transfers control to a shadow CryptEncrypt function. This shadow CryptEncrypt function

extracts a tuple < key, algo, file, timestamp, process > for that particular call and stores

this information in encrypted form for security purposes so that no other process can get

access to this. The key for this encryption is derived from a secret password set by the user.

Once the tuple is stored, the shadow CryptEncrypt function returns control to the original

procedure, and the process continues its execution as if it had not been interrupted at all.

The implementation details of this hooking procedure are discussed in Section 2.4.3.

Process CryptoAPI
Library

CryptEncrypt(…)
{

………
………

}

<...,…,..>
<...,…,..>
<...,…,..>
<...,…,..>

Tuples
CryptEncrypt(…) JUMP to HOOK

CFH Module

ShadowCryptEncrypt(…)
{

}

Extract parameters
and store tuples

Figure 2.3.: CryptoAPI Function Hooking (CFHk) module

To identify whether a file encryption is performed using the crypto-tool, we simply

search ‘CryptEncrypt’ tuples that are captured by the CFHk module.

• If such a tuple is not found, we terminate the process that resulted in the file change so

that no further encryption can take place.

• If such a tuple is found, the encryption is either benign (no action required) or a ran-

somware using CryptoAPI is responsible for the encryption. In the second case, we can

21

recover all the files by using the key and algo information from the tuples (details in

Section 2.5.4). Since in our system we also store the file information (by associating a

ReadFile call with CryptEncrypt), we do not need to iterate over all the keys for a single

file decryption which is an improvement over existing work [32].

Hence, the advantage of hooking the CryptoAPI library functions is twofold: (1) track-

ing all the benign encryption by the user, (2) recovering the ransomware encrypted files

in the case that the ransomware dynamically links system-provided cryptographic libraries

(i.e., Windows CryptoAPI).

2.4 RWGuard Implementation

2.4.1 IRPParser

While IRPLogger logs the I/O requests, the IRPParser component parses the log entries,

extracts I/O requests, and provides these as input to the DMon, PMon, and FCMon modules

accordingly.

2.4.2 Decoy File Generator

We have designed an automated decoy file generator tool that generates the decoy files

based on the original file system and user preferences. By default, in each directory, it

generates a decoy file with a name that is similar to one of the original files (selected at

random or by the user depending on user preference) in that same directory so that the

decoy files’ names do not seem random to the ransomware. In order to make sure that the

decoy files can be easily identified by the user, the naming options are selected based on the

user’s preferences which also makes the decoy files more unpredictable for the ransomware.

The user is able to set different numbers of decoy files for different directories. In this way,

the more sensitive files can be protected with a larger set of decoy files and also, manually

setting the numbers makes it easier for the user to identify the decoy files during normal

operations. The type extensions of the generated decoy files are: .txt, .doc, .pdf, .ppt, and

22

.xls whereas the contents of the files are generated from the contents of neighboring files.

Although we did not observe selective behavior (e.g., checking file name, file content, etc.

before encryption) in any of the ransomware we experimented with, our decoy design is

resilient to such future advanced ransomware. Note that the sizes of the decoy files in our

system are randomly taken from a range (typically from 1KB to few MBs) based on the

sizes of the files in the original file system while the overall space overhead for decoy files

is limited to 5% of the original file system size.

Table 2.4.: Hooked CryptoAPI functions

Function Details

CryptEncrypt Encrypts data

CryptGenKey Generates a random cryptographic session key or a public/private key pair

CryptDeriveKey Generates cryptographic session keys derived from a base data value

CryptExportKey Exports a cryptographic key/key pair from a CSP

CryptGenRandom Fills a buffer with cryptographically random bytes

2.4.3 CryptoAPI Function Hooking

In our CFHk module, we leverage the Detours library introduced in Section 2.2.4. De-

tours hooks a function by moving a specific number of bytes (generally five bytes) from the

beginning of the original function’s memory address to the newly created hook function.

In this blank space of the original function, an unconditional JMP instruction is added that

would transfer the control to the hook function. The hook function then performs the nec-

essary operations (e.g., safely storing the keys and other parameters passed to the original

function). At the end of these operations, another unconditional JMP instruction is added

to transfer the control back to the original function. The compiled DLL file is placed into

the registry key so that any process invoking the CryptoAPI functions would get hooked

and our CFHk module would store information related to encryption. Table 2.4 lists the

CryptoAPI functions we hook.

23

2.5 Evaluation

2.5.1 Experiment Dataset

While there exists different variants of ransomware, we build a comprehensive dataset

from the most popular ransomware families: Locky, Cerber, Wannacry, Jigsaw, Cryp-

tolocker, Mamba, Teslacrypt, Cryptowall, Petya, Vipasana, Satana, Radamant, Rex, and

Matsnu. The ransomware samples are collected from VirusTotal [40], Open Malware [41],

VXVault [42], Zelster [43], and Malc0de [44].

Note that among these samples, the first 9 families have been used in the training phase

of the PMon module. However, we run each of these 14 ransomware samples (one at a time)

in the detection phase to assess the detection effectivenesses and performance overheads of

RWGuard modules. The reason behind not using the 5 samples for PMon module training

is to measure how well this module performs with previously unseen ransomware samples.

2.5.2 Detection Effectiveness

We evaluate the performance of RWGuard by running the ransomware samples se-

quentially. Every time a ransomware sample is executed, we measure the time required

for flagging each malicious process spawned by the ransomware. Once the ransomware is

detected, we restore the system with a clean OS and execute the next ransomware sample.

Detection w/ Decoy Deployment:

We observe that ransomware detection with decoy deployment is extremely fast and

ensures almost zero data loss. Note that the IRPParser component parses IRP logs collected

in a 1 second cycle. Therefore, with the decoy deployment, our system can identify a

ransomware process right in the next cycle of the process’s decoy file write request.

Figure 2.4 shows the comparison between the cases of with and without decoy deploy-

ment in terms of the number of write, read, open, and close IRPs (along with the average

values for all the ransomware) made by the ransomware samples until their detection (in

24

1

10

100

1000

10000

Lk Cr Wc Jg Cl Tc Cw Vp St Rd Rx

Write w/ decoy # Write w/o decoy
Avg. write w/ decoy # Avg. write w/o decoy

(a)

1

10

100

1000

10000

Lk Cr Wc Jg Cl Tc Cw Vp St Rd Rx

Read w/ decoy # Read w/o decoy
Avg. read w/ decoy # Avg. read w/o decoy

(b)

1

10

100

1000

10000

Lk Cr Wc Jg Cl Tc Cw Vp St Rd Rx

Open w/ decoy # Open w/o decoy
Avg. open w/ decoy # Avg. open w/o decoy

(c)

1

10

100

1000

10000

Lk Cr Wc Jg Cl Tc Cw Vp St Rd Rx

Close w/ decoy # Close w/o decoy
Avg. close w/ decoy # Avg. close w/o decoy

(d)

Figure 2.4.: Comparison between the cases of with and without decoy deployment

in terms of the number of (a) write, (b) read, (c) open, and (d) close IRPs made by

the ransomware samples until their detection (ransomware name abbreviations: Lk-

Locky, Cr-Cerber, Wc-Wannacry, Jg-Jigsaw, Cl-Cryptolocker, Tc-Teslacrypt, Cw-

Cryptowall, Vp-Vipasana, St-Satana, Rd-Radamant, Rx-Rex).

Figure 2.4(a), 2.4(b), 2.4(c), and 2.4(d), respectively). The number of IRPs (for each IRP

type) for each ransomware family is computed by running the samples at least 5 times. We

find that with decoy deployment, for each of these IRP types, there is an improvement of

at least one order of magnitude. Hence, the ransomware processes could be identified as

soon as they start making IRP requests, i.e., in real-time. For ransomware Locky, Jigsaw,

Teslacrypt, Cryptowall, Radamant, and Rex, we observe that the first IRP write requests

they make are for decoy files (see Figure 2.4(a)) and thus are identified immediately. The

Wannacry ransomware could make up to 18 IRP write requests (the highest) before it sends

a write request for a decoy file (note that there can be multiple IRP write requests for a

single file write operation). An IRP write request is sent well ahead of the actual write

operation and hence the actual number of files that can get encrypted before terminating

the process is negligible (which also depends on the file size).

25

0

5000

10000

15000

20000

25000

30000

Ti
m

e (
M

ill
ise

co
nd

s)

Process 1 Process 2 Process 3 Process 4 Process 5 Process 6 Process 7

Figure 2.5.: Detection time required by RWGuard when there is no decoy deployment.

Note that, Figure 2.4 does not show comparisons for the following three ransomware

families: Mamba, Petya, and Matsnu. In our experiments, we have found that samples from

these families affect only a predefined list of system files (and if there is no detection system

activated except the decoy monitoring, this is followed by gaining root access, shutting

down the system, and at the next boot up, performing full disk encryption and asking for a

ransom payment). As a result, our DMon module cannot identify such ransomware families

(however, the PMon and FCMon modules can) and therefore, we omit the comparison for

these three families in this section.

Detection w/o Decoy Deployment:

In order to further evaluate the effectiveness of RWGuard, we also consider an envi-

ronment where there is no decoy file. This environment can be practical for the following

two scenarios:

1. A ransomware encrypts only a predefined list of system files, i.e., even if the decoy

files are deployed, the ransomware does not touch the decoy files (e.g., Mamba,

Petya, and Matsnu ransomware families in our experiment dataset).

2. A malicious insider in an organization with the knowledge of decoy files’ deploy-

ment can use customized ransomware to sabotage the organization and hold the ran-

somware responsible for this. Such an attack can be even launched as a logical bomb

that can detonate after the insider has left the organization.

26

Figure 2.5 shows the time required to detect each of the samples (in milliseconds) while

there is no decoy deployment in the system. The time computation starts when the ran-

somware sample is executed and ends when the corresponding process is flagged. Once

the PMon and FCMon modules identify potential ransomware activity (i.e., malicious IR-

P/FastIO requests, significant file changes or encryption), the FCls and CFHk modules are

communicated. If the file(s) that is (are) changed does (do) not belong to the ‘benignly

encrypted’ class, and if there is (are) no corresponding encryption entry (entries) in the

CFHk module, the process is immediately flagged. The average detection time for the first

malicious processes spawned by all the ransomware is 3.45 seconds. However, we see

that all the ransomware spawn multiple malicious processes which are detected at different

times by our monitoring system. We observe that the average required time for detecting

all the spawned processes is 8.87 seconds. As we can see from Figure 2.5, Locky, and

Cerber spawn the highest number of malicious processes whereas CryptoLocker and Tes-

laCrypt spawn the lowest number of processes. According to our observation, most of the

ransomware try to spawn processes with unique names or try to hide as system processes,

e.g., explorer.exe. We also observe that different ransomware behave differently when the

initially spawned malicious processes are killed by our system. For example, Wannacry

sits idle for some time after the initial few processes are killed, before trying to spawn a

new malicious process. This is the reason for the comparatively higher detection time for

the last process in some of these ransomware.

Detection effectivenesses of different modules are discussed in the following:

• Decoy Monitoring (DMon) module: This module is the fastest to identify a ran-

somware process. Deploying a larger number of decoy files will result in even faster detec-

tion. For example, with a decoy generator that creates a shadow decoy file for each original

file in the system, probabilistically, one out of each two write requests by a ransomware

would belong to a decoy file.

• Process Monitoring (PMon) and File Change Monitoring (FCMon) modules: In

most of the cases, the PMon module responded faster than the FCMon module in terms

27

of flagging a malicious process. Even before the ransomware starts performing encryp-

tion, the PMon module is able to identify the malicious activities by monitoring the IRPs.

In contrast, the FCMon module responds only after a file has been changed significantly.

However, we observe that few benign processes, e.g., Chrome, VMware tools are some-

times misclassified as malicious by the PMon module due to these processes’ I/O request

behaviors. Therefore, it is important to also consider the analysis by the FCMon module to

better understand whether a particular process is responsible for any malicious file changes

and to remove any false positives.

• File Classification (FCls) and CryptoAPI Function Hooking (CFHk) modules: Af-

ter the PMon and FCMon modules’ detection that a process is making significant changes

in the file(s), the information of the file(s) are sent to the FCls module which then com-

putes the probability of these changes being benign. The false negatives of this module

correspond to the cases in which the ransomware encrypts a file which has a high proba-

bility of being encrypted by the user benignly. Such false negatives are, however, detected

by the CFHk module which identifies if the file is actually encrypted using the provided

crypto-tool. With a 100% accuracy, the CFHk module can identify whether an encryption

is performed by a ransomware or is a benign encryption. This module never flags a be-

nign encryption. The only case of false positives (negligible, ∼0.1%) we have observed

in the FCls and CFHk modules is when the user performs file compression in a directory

for the first time. However, a first time benign file encryption in a directory is not flagged

as malicious since the CFHk module can intercept the benign encryption operations. Note

that the FCls and CFHk modules do not flag any process unless that process is identified

as suspicious by one of the monitoring modules.

2.5.3 Size of Encrypted Data

In terms of the number of files, samples from ransomware families Locky, Jigsaw, Tes-

lacrypt, Cryptowall, Radamant, and Rex could not encrypt any file with decoy deployment.

The malicious processes for these families are identified on their first IRP write request.

28

The numbers of IRP write requests made by ransomware families Cerber, Wannacry, Cryp-

tolocker, Vipasana, and Satana before their detection are 2, 18, 12, 6, and 3, respectively,

with decoy deployment. However, since an IRP write request is sent well ahead of the

actual write operation and there can be multiple IRP write requests for a single file write,

with decoy deployment, the average number of files lost is < 1 with only Wannacry and

Cryptolocker being able to encrypt 1 file each before their malicious processes are killed.

The average number of IRP requests made by the ransomware families without any decoy

deployment is ∼538 (with the strong assumption that the ransomware can evade the decoy

deployment which is not the case for most of the families) whereas the average number

of files affected is < 10. Note that the number of files affected before detection depends

not only on the number of IRP requests made but also on the time taken by a ransomware

process to initiate the encryption routines (which is significant), type of encryption, size of

the files, and the number of files the ransomware attempts to encrypt (this is because for

each file the ransomware needs to generate a new key).

2.5.4 File Recovery

The CFHk module could recover all the files encrypted by the ransomware families:

Locky, CryptoWall, and CryptoLocker. The encryption algorithms used by these samples

are AES with CTR mode, AES in CBC mode, and AES, respectively. Note that the CFHk

module in its current version cannot recover files that are encrypted using the ransomware’s

custom-written cryptographic library.

Table 2.5.: Memory overhead of RWGuard

Component Memory consumed (KB)

Main Java module 14296

FCMon Entropy Calculator 7880

FCMon Similarity Index Calculator 5152

IRP Logger 42964

29

2.5.5 Performance Overhead

In the following, we discuss the performance overheads for different modules of RWGuard.

The DMon, FCls, and CFHk modules have negligible overheads. The DMon module gen-

erates a single decoy file in each directory (if not set otherwise by the user) and randomly

chooses the size of the decoy files from the range 1KB-5MBs while limiting the overall

space overhead to 5% of the original file system size. At runtime, this module checks for

decoy file write requests and modifies/regenerates the decoy files once per day at random

times which has only a minimal overhead. The FCls module instantaneously classifies

the files using file type and location information. The overhead for hooking a CryptoAPI

function and computing and storing the corresponding tuple is a few milliseconds (≤10ms)

which is negligible and thus cannot interrupt a user’s normal operations.

There is a main Java module which executes the IRPLogger, collects all the IRPs made

in the system, parses the IRPs with IRPParser, and runs three parallel threads for DMon,

PMon, and FCMon modules. The FCMon module consists of the components for comput-

ing the values of entropy and similarity index which use minimal CPU cycles since these

are called only when there are write operations on the files. The memory usage of these

components along with the main Java module is shown in Table 2.5. The average CPU

usages for this main Java module and IRPLogger are 0.85% and 1.02%, respectively.

Overheads for different workloads. The performance overheads discussed above are

recorded while running a web browser process and an integrated development environment

(IDE) process along with regular operating system processes. However, in order to mea-

sure RWGuard detection performance and overheads for a heavy workload OS, we add

several processes: two browsers (Chrome and Internet Explorer), two IDEs (Eclipse and

PyChar), Windows Media Player, Skype, and other regular operating system processes.

According to our experiments, this heavy workload does not significantly affect the time

required by RWGuard for identifying ransomware processes while we have observed that

IRPLogger and the Java module incur higher memory overhead (244456 KB and 45436

KB, respectively) due to this heavy workload. The detection time remaining unaffected by

30

the heavy workload can be attributed to the fact that RWGuard fetches IRPLogger entries

every 2 seconds which does not depend on the number of entries logged (the number of

log entries is much higher for the heavy workload case). Since parsing the IRP logs is not

an expensive operation, for the heavy workload case, the detection time is not significantly

changed. Also, the memory overheads for the FCMon metrics’ calculation remain similar.

2.5.6 Comparison with Existing Approaches

Table 2.6 presents a comparison among RWGuard and other exiting ransomware de-

tection techniques with respect to monitoring, detection, and recovery strategies.

Table 2.6.: Comparison of RWGuard with existing ransomware detection mechanisms

Solution Real-time detection Benign operation/ File change Process Recovery of Recovery

with decoy encryption profiling monitoring monitoring decryption key of files

RWGuard X X X X X(partial) X(partial)

ShieldFS [31] × × × X × X

Unveil [13], CryptoDrop [16], × × X X × ×

Redemption [14]

PayBreak [32] × × × × X(partial) X(partial)

EldeRan [33] × × × X × ×

FlashGuard [15] × × × × × X

2.6 Discussion and Limitations

Novelty: To the best of our knowledge, RWGuard with the decoy technique is the first

system with very fast real-time (few milliseconds) detection capabilities. Even without

the decoy deployment, the other monitoring modules are able to minimize the damage by

identifying the ransomware processes at the time of their I/O requests. An average of 538

I/O write requests within the average detection time of 3.45 seconds shows how rapidly

a ransomware attempts to encrypt the user’s files while RWGuard exploits this property

to terminate the ransomware at an early stage. Also, whereas the existing approaches are

unable to distinguish benign file changes from malicious ones, the FCls module along with

the CFHk module is able to overcome such false positives.

31

Inevitability: Our robust decoy design makes it impossible for the ransomware to rec-

ognize a decoy file by any of its properties. The ransomware would need to install some

spyware and monitor the file activities in the system in order to determine which ones

are modified by the end-users and applications and which are executed by our decoy tool.

Moreover, obfuscation techniques can be used to make difficult for the ransomware to an-

alyze the applications in order to determine which application is the decoy generator. Our

integrated monitoring modules, PMon and FCMon, employ scrutiny on metrics that are in-

clusive of any malicious activity by the ransomware. For example, a smart ransomware that

encrypts files slowly would still be detected by the FCMon module. While the monitoring

modules DMon, PMon, and FCMon do not let a ransomware activity remain undetected

(i.e., they prevent false negatives), the FCls and CFHk modules distinguish benign file

operations from malicious ones (i.e., they prevent false positives). Hence, we argue that

independently of the intelligence of modern ransomware, RWGuard raises the evasion bar

for ransomware significantly.

File Recovery: Note that, the CFHk module monitors all (benign and ransomware)

file encryption that leverage ‘CryptoAPI’ functions. Therefore, if a ransomware leveraging

CryptoAPI library (3 of the 14 ransomware families that we have analyzed use this library)

becomes successful in encrypting a set of files before our early detection, using the hooking

mechanism, we can retrieve the parameters (including the decryption keys) of those specific

cryptographic function calls and consequently restore the encrypted files. Our experiments

(Section 2.5.4) show that the CFHk module is able to recover the files encrypted by the 3

ransomware families with a 100% success rate. The rest of the ransomware samples exper-

imented in our evaluation did not use CryptoAPI but their custom-written cryptographic li-

brary. Moreover, code obfuscation is a common technique used by the modern ransomware

families. Obfuscation strategies, such as incremental packing and unpacking, make it more

difficult to identify cryptographic primitives in the ransomware binary. While there are

techniques (e.g., [45]) that look for cryptographic operations in the process memory, we

have not incorporated those in our system due to their huge performance overhead.

32

Limitations: While the DMon module is quick in identifying a malicious process,

the PMon and FCMon modules are anomaly based and hence probabilistically bound to

miss some of the malicious activity. Also, these modules are based on the logging of IRP

calls and file activity. The time lag between logging these activities and parsing them for

anomalies provide a small window for the ransomware to perform its malicious activities

as discussed in Section 2.5.3.

2.7 Related Work

Detection techniques. Kharraz et al. [12–14] propose systems that monitor the I/O

request patterns of applications for signs of ransomware-like behaviors. Scaife et al. [16]

have designed CryptoDrop, a system that alerts users during suspicious file activity, e.g.,

tampering with a large amount of the user’s data. Sgandurra et al. [33] propose EldeRan,

a machine learning approach that monitors actions performed by applications in their first

phases of installation and checks for characteristics signs of ransomware. Lee et al. [46]

propose a ransomware prevention mechanism based on abnormal behavior analysis in a

cloud system. Cabaj et al. [47] present a software-defined networking (SDN) based de-

tection approach that utilizes the characteristics of ransomware communication. Andronio

et al. [48] propose a technique to detect Android ransomware that applies to only mobile

platforms- where applications are analyzed in-depth before they are released in any app

market. Huang et al. [49] propose a measurement framework for end-to-end of ransomware

payments. In contrast, RWGuard is the fastest solution that identifies ransomware infection

in real-time with decoy techniques, prevents malicious processes from making changes to

the files, and also determines the original intent of file changes. Bijitha et al. [50] present a

survey on ransomware detection techniques that reviews the existing solutions and validates

them using specific performance metrics.

Post-encryption techniques. Kolodenker et al. [32] propose a system, called PayBreak,

that intercepts system provided crypto functions, collects and stores the keys, and thus, can

decrypt files only for the ransomware families that use system provided crypto functions.

33

Continella et al. [31] propose the ShieldFS tool that monitors low-level file system activity

to model the system over time. Whenever a process violates these models, the affected files

are transparently rolled back. However, it requires shadowing a file whenever it is modi-

fied and thus incurs high overhead. FlashGuard, a system developed by Huang et al. [15]

leverages the fact that SSD performs out-of-place writes and thus holds the invalid pages

for up to 20 days to perform data recovery after ransomware encryption. However, this

type of recovery methods conflict with the idea of secure deletion and may result in privacy

issues and data leakage. Given the limitations of the existing post-encryption recovery tech-

niques, it is of uttermost importance that faster detection techniques be developed against

ransomware.

Decoy techniques. Decoy techniques have been previously proposed to defend against in-

sider threats [51]. Though some research work [11, 12] recommends using decoy files for

detecting ransomware, such previous work does not include any analysis on the effective-

ness of the decoy files. Randomly generated decoy files in commercial solutions (e.g., [52])

are susceptible of detection by sophisticated ransomware. Moreover, unlike RWGuard,

their decoy files are deployed during the installation process which simply leaves the files

unmodified for a long time and thus makes these files less interesting for the ransomware.

Also, it is not clear how these solutions would handle special ransomware families, e.g.,

Mamba, Petya, and Matsnu, that affect only a predefined list of system files.

Cryptographic primitives identification techniques. Discovering cryptographic primi-

tives in a given binary is another research direction where crypto-ransomware including

cryptographic operations could be identified beforehand [45, 53]. Calvet et al. [53] devel-

oped such a technique and evaluated the performance of their system on a set of known

malware samples. Lestringant et al. [54]’s approach to obtaining the similar goal leverages

graph isomorphism techniques. Although these approaches could identify cryptographic

primitives in obfuscated programs, their poor performance makes them impractical for

real-time defense even with the most recent work [45] resulting in a 5-6X slowdown in

average.

34

3. GHOSTBUSTER: A FINE-GRAINED APPROACH FOR
ANOMALY DETECTION IN FILE SYSTEM ACCESSES WITH

ENHANCED TEMPORAL USER PROFILES

3.1 Introduction

Insider threats represent a real danger for sensitive data owned and/or managed by

organizations. Data can be compromised by malicious or compromised users within an or-

ganization. As users within organizations may have access to sensitive datasets, depending

on their role or function in the organizations, data stolen or misused by either malicious or

compromised insiders may result in major losses. A notable example of an insider attack

is the breach [17] at Sony Pictures Entertainment, where one of the attackers was a for-

mer system administrator with a technical background and detailed knowledge of Sony’s

internal systems.

As discussed by Sallam et al. [55], organizations typically deploy different data pro-

tection techniques, such as authentication [56] (to verify the identity of the user trying to

access the data), access control [57] (to check whether an authenticated user has permission

to access specific data resources), and encryption (to protect the data at rest and while be-

ing transmitted across systems). Even though such techniques represent important building

blocks for comprehensive data protection solutions, alone they are unable to offer strong

protection against insider threat [4]. The reason is that insiders have permissions to ac-

cess data and often have detailed knowledge about the organization’s internal procedures,

the location of sensitive data files and weaknesses security processes. Because of the seri-

ous threats posed by insiders to organizations, specialized protection techniques have been

proposed [4, 58–61].

A key category of protection techniques is represented by anomaly detection (AD).

Such techniques can identify unusual access patterns that are often typical data accesses

35

made by malicious or compromised insiders [18, 19]. A good protection solution is thus

to deploy anomaly detection techniques alongside authentication, access control, and en-

cryption. Several AD techniques specialized for data protection have thus been proposed,

some of which are deployed at the data repository level [20, 21, 62–64] whereas others

work at the network level [65–67]. However, a significant drawback of those techniques is

that they either only protect data stored in relational databases, or mainly focus on network

level activity patterns which may not be sufficiently fine-grained to identify malicious in-

sider activities. However, as many applications store their data in file systems, it is critical

that data access anomaly detection techniques be developed for file systems.

Some proposed AD techniques for file system accesses leverage file system features,

such as file system hierarchy [68], file name, working directory, and parent directory [69].

Other AD techniques [70] rely on a file system in user-space (FUSE) to capture runtime

operations. Approaches have also been proposed specifically tailored to assure file system

integrity [71, 72]. The main limitation of such approaches is their inability to support fine-

grained monitoring of accesses to files. For example, a mechanism only monitoring the set

of files accessed by a user would not be able to detect anomalous accesses by insiders as

long as the user has the read permission on the files. For example, consider the case of an

employee of an organization that for his daily tasks accesses only 30% of the records in

a file and therefore has read permission on this file. Now, if the employee all of a sudden

accesses 90% of the file records, such access is anomalous with respect to the access pattern

expected for his daily tasks. Even though there could be reasons for such anomalous access,

it is critical that such access be promptly detected and flagged as anomalous. Another

limitation of existing AD solutions is the high false positive rates when new files or new

users added to the system [73, 74].

In this chapter, we propose an effective approach to detect anomalous file system ac-

cesses by malicious or compromised insiders. Our approach has two phases: the Profile

Creation (PC) phase and the Anomaly Detection (AD) phase. The first phase is used to

collect fine-grained information about the file accesses resulting from a user’s regular file

system activities and to create a fine-grained user profile by using a combination of dif-

36

ferent techniques. We also characterize the user profiles according to the time dimension

by extensively analyzing the timestamp of the file accesses and thus build enhanced tem-

poral user profiles. These user profiles are later used in the AD phase to monitor the file

system usage and raise alerts upon identification of anomalous file access. Unlike previous

approaches [68, 75], our AD system can classify access activities to new files dynamically

added to the system. We are also able to automatically create profiles for new users dy-

namically added to the system- independent of whether there is a role-based access control

mechanism exists in the system. We leverage unsupervised approaches to cluster the exist-

ing users and to identify the cluster for the new user.

Challenges: Unlike AD techniques for relational databases [20, 21] where SQL queries

provide a structure to represent and learn a user’s normal access patterns, in file systems

the task of representing access patterns is challenging due to the lack of semantic informa-

tion about file accesses. Moreover, the profiles need to be accurate in order to minimize

false negatives or false positives. A large number of false positives, i.e., non-anomalous

accesses classified as anomalous may disrupt the users’ normal activities and require the

intervention of security staff for further analysis of the detected anomalies. On the other

hand, a large number of false negatives, i.e., undetected anomalous accesses, undermine

data protection. The trade-off between the organizational impact of false positives and se-

curity is a significant challenge in creating useful profiles [22]. Also, an AD technique

must not significantly impact data access times. To address the issue of false positives, our

approach is based on extracting a minimal set of interesting features from the users’ block

level file access information in the PC phase. In the next step, these features are used to

build the fine-grained user profiles. In the AD phase, our solution uses a set of distance

functions to measure the difference between a user’s profile (i.e., expected behavior) and

his file accesses at runtime (i.e., observed behavior). Our performance evaluation results

show that our approach is able to identify the following types of anomalies: anomalous

access size, anomalous access frequency, and anomalous access pattern.

Contributions: Our contributions can be summarized as follows:

37

• A block level access anomaly detection mechanism, which to the best of our knowl-

edge, is the first to model users’ file access patterns at such a fine granularity.

• A set of efficient algorithms that: (1) extract relevant features from the users’ block

level access information; (2) build accurate user profiles also including temporal file

access information; and (3) identify anomalous accesses at runtime. Our algorithms

also handle new files and new users in the system without requiring the PC phase to

be run again.

• A taxonomy of types of anomalous file access and a detailed accuracy comparison of

our approach with other approaches based on this taxonomy.

• An extensive experimental evaluation of our fine-grained file system AD mechanism

on data collected from an organizations’ file repository accesses. The evaluation

demonstrates that our approach achieves an accuracy of 98.7% in detecting anomalies

while incurring an overhead of 2%.

3.2 Preliminaries

This section provides some background on the notions which are related to the rest of

the contents of the chapter, e.g., blktrace and episodes.

3.2.1 Blktrace Utility

Blktrace is a Linux kernel utility which is used to trace block layer I/O operations.

Whenever a file is accessed, blktrace fetches the access information at the block level and

denotes this access as an event. Another utility implemented in the Linux kernel which

formats these events obtained from the blktrace utility is called blkparse. Blktrace utility

has a reasonably low overhead of only 2%. Furthermore, blktrace is highly configurable

and can easily be customized to return particular events, e.g., only write operations or only

read operations. The following is an example of an event returned by blktrace:

38

8,0 0 427 8.06743 57768 I R 1729336 +32 [gedit]

Table 3.1.: Blktrace event components

427 represents the event’s sequence number

8.06743 represents the event’s timestamp

R represents a read operation

1729336 represents the sector number from where the

operation starts reading

+ 32 represents the number of sectors read, i.e., 32

sectors or 4 blocks are read including the sec-

tor number 1729336 (1 block = 4096 bytes =

= 8 sectors, 1 sector = 512 bytes)

The event components that are highlighted in the example are the ones we use for our

profiling. A brief explanation of these components is given in Table 3.1.

en	 →
sr →
ts →

b	 	 	 d	 	 	 	 	 	 	 	 	 	 	 	 	 e	 	 	 	 c	 	 	 	 g	 	 	 	 f	 	 	 	 	 	 	 	 	 	 	 	 	 a	 	 	 	 	 	 	 	 	 b h	 	 	 	 d p	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 q	 	 	 	 	 f c	 	 	 r
1	 	 	 	 2	 	 	 	 	 	 	 	 	 3	 	 	 	 	 4	 	 	 	 5	 	 	 	 6	 	 	 	 	 	 	 	 	 	 	 	 7	 	 	 	 	 	 	 	 	 8	 	 	 	 	 9	 	 	 10	 	 	 	 	 	 	 	 	 11	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 12	 	 13	 	 	 	 	 	 	 	 	 	 14	 	 15

0	 	 	 	 1	 	 	 	 2	 	 	 	 	 3	 	 	 	 4	 	 	 	 	 5	 	 	 	 6	 	 	 7	 	 	 	 	 8	 	 	 	 9	 	 	 10	 	 11	 	 12	 	 13	 	 14	 	 15	 	 16	 	 17	 18	 	 19	 	 20	 	 21	 	 22	 	 23	 24

Serial
Parallel

Figure 3.1.: Event sequence E

3.2.2 Event Sequences and Episodes

While the files are accessed in a system, blktrace collects the block level access infor-

mation from the OS kernel and returns a sequence of events. The events are ordered with

their timestamp values, and the sequence numbers are ordered as well (ascending order).

Let E be a sequence of n events: {e1, e2, . . . , en} . A blktrace event comprises of a num-

ber of attributes as discussed in Section 3.2.1. For the purpose of simplicity, we use an

example here where each event consists of only three attributes: en (name of the event); sr

(sequence number of the event); and ts (timestamp of the event). Therefore, we represent

ei, i.e., the ith event, as (eni, sri, tsi). Hence, the n events’ names are: en1, en2, . . . , enn;,

39

sequence numbers are: sr1, sr2, . . . , srn,, and the timestamps are: ts1, ts2, . . . , tsn, re-

spectively. Note that, sri ≤ sri+1, and tsi < tsi+1 for i = 1, 2, . . . , n− 1, since the events

are ordered by sequence numbers and timestamps. An event sequence consisting of n = 15

events, denoted with E, is shown in Fig. 3.1.

To identify correlations among events and to discover their patterns, we use the notion

of episode [76]. An episode is a set of events (not necessarily in a consecutive manner)

that are likely to occur together. Hence, when a user is interacting with the file system,

the episodes that frequently occur in the blktrace events represent a user’s independent

tasks. An episode is called a serial episode if the episode’s events maintain a consistent

order. Otherwise, we call the episode a parallel episode. Fig. 3.1 shows an example where

event d occurs after event b twice in the sequence which means that they are correlated.

Therefore, the b and d events generate a serial episode α = {b, d} with occurrences: {(b, 1,

1), (d, 2, 2)} and {(b, 8, 11), (d, 10, 13)}. An example of parallel episode in Fig. 3.1 can

be β = {c, f} with occurrences: {(c, 4, 5), (f, 6, 7)} and {(f, 13, 19), (c, 14, 21)}. Note

that there is no restriction on the order of the events in this episode.

Consider two serial episodes α = {a, c, d} and γ = {a, b, c, d}. Here, α becomes a

subepisode of γ since episode α’s events are nothing but a subsequence of the events in

episode γ. We represent this subepisode relation as α @ γ (also, γ is a superepisode of α).

Again, let α = {d, b, c} and γ = {a, b, c, d} be two parallel episodes. Here, episode α is a

subepisode of episode γ since episode α’s events are a subset of episode γ’s events.

Table 3.2.: Anomalous file accesses’ taxonomy along with a comparison among access

control mechanism (AC), a file level profiling approach (FLP), e.g., [68], and our fine-

grained profiling approach (FGP)

Case # Anomaly Cases Attack Model AC FLP FGP

1 Access request to a file without user permission Masquerade attack X X X

2 Anomalous clusters of file accesses Masquerade attack × X X

3 Anomalous frequency of access clusters Masquerade and insider attacks × × X

4 Anomalous access size Data harvesting attacks (insider) × × X

5 Anomalous access segment Data harvesting attacks (insider) × × X

6 Anomalous frequency of file access Data harvesting attacks (insider) × × X

40

3.3 A Taxonomy of Anomalous File Accesses

This section presents a taxonomy for different cases of anomalous file accesses. Ta-

ble 3.2 summarizes six such cases. Furthermore, based on this taxonomy, Table 3.2 com-

pares our fine-grained profiling approach with other existing approaches, i.e., we compare

how these approaches would handle such anomalous cases. The approaches in compar-

ison are: access control mechanism, a file level profiling approach (e.g., [68]) and our

fine-grained profiling approach. The columns AC, FLP, and FGP indicate the detection

capability of these approaches, respectively.

Case 1: Anomalous File Access w/o Permission. When an attacker attempts to read-

/write a file that is not accessible for the original user, this it raises this anomaly case. A

masquerader who steals the credentials of the legitimate user, e.g., by phishing attacks, and

thus logs into the system may raise this kind of anomalies since the masquerader does not

know the legitimate user’s file permissions. Note that all mechanisms in this comparison

can detect this anomaly.

Case 2: Anomalous Access Clusters. An advanced attacker who has knowledge about

the legitimate user’s file access permissions may access only those files to which the user

has permissions. However, such an attacker may not access the files in the same way

the legitimate user accesses. Therefore, the access clusters would be different. Hence,

a masquerader (possesses the legitimate user’s credential) without the knowledge of the

valid user’s file access behavior would raise this anomaly case. Note that the access control

technique only checks for access permissions and thus cannot detect this anomaly case

whereas both Gates et al. [68] and our fine-grained approach can identify this anomaly

case since these approaches monitor the legitimate user’s access clusters beforehand and

learn the profiles.

Case 3: Anomalous Frequency of Access Clusters. In many situations, this is normal

that an insider within an organization knows the access permissions of other users (espe-

cially the ones under his hierarchy) and also the files that are accessed by the legitimate

user in normal situations. When such an insider intends to steal some information while re-

41

maining within the regular file accesses, he may access a specific set of clusters repeatedly

(with the notion that the data he intends to steal can be obtained through only those set of

files). As a result, a specific set of clusters are accessed with a higher frequency which is

anomalous with respect to the normal behaviors. In order to identify this anomaly, we need

advanced temporal user profiling (details in Section 3.4.4) which is provided by only our

approach among the others in comparison.

Case 4: Anomalous Size of File Accesses. An insider within an organization who is

logged into his account may perform data harvesting attacks by reading more blocks from

a confidential file than usual while accessing the same clusters stored in his profile with

regular frequency. It is impossible to detect such data harvesting attack without deploying

a fine-grained block-level profiling approach and as shown in Table 3.2, no approach except

ours can identify such anomalies (details in Section 3.4.2).

Case 5: Anomalous Segment of File Accesses. While accessing files with regular

access sizes (to avoid the anomaly case 4 above), an insider may read unusual segments of

a file and thus perform data harvesting attack. As shown in Table 3.2, only we are able to

identify this anomaly case (details in Section 3.4.2).

Case 6: Anomalous Frequency of File Accesses. An insider who avoids detection

for anomaly cases 4 and 5 may access a file with an elevated frequency. While the other

approaches in comparison fail, our approach is able to identify this anomaly case (details

in Section 3.4.4).

3.4 Profile Creation (PC) Phase

The Profile Creation (PC) phase comprises of four different software modules as high-

lighted in Fig.3.2. Apart from these four modules, the PC phase uses the blktrace tool to

fetch the I/O requests’ queue from the kernel space. This phase runs when the user is ac-

cessing the file system during regular activities. The rest of the section describes the threat

model and the details of the four modules.

42

User	
Profiles

Profile	 	 Creation	 	 Phase

Blktrace	
Tool

User

I/O
Block	 I/O	 Layer
(request	 queue)

Block	 Level	
Profiler

Frequency	
Profiler

Access	 Cluster	
Profiler

User
Feature	
Extractor

User	 Space

Kernel	 Space

I/O

User

I/O

Figure 3.2.: Profile Creation (PC) phase architecture

Threat Model: In our threat model, we consider an adversary that intends to perform mas-

querade (cases 1, 2, and 3 in Table 3.2) and data harvesting (cases 3, 4, 5, and 6

in Table 3.2) insider attacks against a file system. We design three categories of adversary:

(1) a non-expert attacker gaining access to the file system but having no prior knowledge

of the normal file accesses by the users, (2) a medium attacker scenario where the attacker

has already made accesses and 25% of these accesses are anomalous, (3) a knowledgeable

attacker scenario where only 3% of the accesses by the attacker are anomalous. However,

the performance of our AD phase does not significantly vary with the varying adversary

scenarios (further details are given in Section 3.6). This is due to the fact that we moni-

tor each blktrace event individually and thus do not depend on the number of anomalous

blktrace events. Moreover, we compute an anomaly score for each user and compare the

score with a threshold (further details are given in Section 3.5). A user is prevented from

accessing the files only after her anomaly score exceeds the set threshold. The adversary

may plan to evade the detection by remaining within the set threshold while stealing an

insignificant amount of data, e.g., by exfiltrating only one file that the insider usually has

access to. However, our solution would still be able to detect such an exfiltration if-

• the file is generally accessed within a context (e.g., along with other related files) but

at the time of exfiltration it is accessed without any context (case 2 in Table 3.2), or

• the access size is anomalous (case 4 in Table 3.2), or

43

• the access segment is anomalous (case 5 in Table 3.2), or

• the file is accessed with anomalous frequency (case 6 in Table 3.2).

We would like however to point out that our solution, as many other security solutions,

should be used in combination with other techniques for in-depth data protection. More

specifically to have a stronger security level, in addition to our technique, one should also

deploy techniques such the ones proposed in [64, 77]. Those techniques create profiles

concerning the use of data once the user has gained access to these data. For a malicious

insider to succeed in exfiltrating the data, the insider would have to copy/move/e-mail the

data. By using techniques in [64,77], we can detect anomalies with respect to these actions.

Therefore, by combining our solution with the ones in [64, 77] one can not only detect

anomalies in the data accesses from files but also anomalies in the use of the data once

returned to the user.

We consider the operating system to be trusted. Moreover, since our AD solution runs

on the user space, we leverage the Software Guard Extensions (SGX, available with Intel

Processors) to ensure the security of the user profiles.

3.4.1 Feature Extraction (FE)

In the following, we first discuss the blktrace event features that we use for user profil-

ing.

• User ID: This is the ID (e.g., username) of the file system user which identifies him

uniquely. For each I/O request that results in an event from blktrace, the id of the

user account responsible for the I/O request is represented by this feature.

• File ID/name: Blktrace returns a sector number which is later translated to block

number and then to inode to identify the file uniquely. This feature thus represents

the id of the file. Note that if the user performs a write operation on a file, it may

change the sector numbers. Therefore, if the translation is performed at the end of

the tracing by blktrace module, it is not possible to identify the correct file names.

44

In order to address this issue, we translate sectors to the file names online, i.e., while

the blktrace module is running.

• Access type: If the I/O request resulting in the blktrace event is for a read operation,

the type feature is presented by ‘R’. For a write operation, the type feature is ‘W’.

• Access size: This feature for a blktrace event represents the number of blocks ac-

cessed as the result of the I/O request.

• Segment of file: With this feature, we aim to identify the segment of the file that

is usually accessed by the user. In other words, we identify the relative position of

the accessed blocks in the file memory. For instance, assume that a file f has 20

blocks in the memory and the first 5 blocks are accessed by an I/O operation. This

feature represents the segment as [0,0.25]. In contrast to our fine-grained approach,

the existing approaches that profile at file level can only identify if a file, which is

not accessed in a normal situation, has been accessed maliciously. Capturing the

accessed segment of a file has some advantages over capturing the block numbers

since the block numbers may change later, for example, after a write operation, or

after disk defragmentation.

• Timestamp: This feature represents the time when the I/O request has been placed.

This feature is useful to build fine-grained temporal profiles of the users.

• Sequence number: This feature is useful to identify the spatial properties of a user’s

file activities, e.g., how frequently a file is accessed among a number of I/O requests,

whether there is any other file which is accessed frequently along with a particular

file.

As mentioned earlier, the blktrace tool returns one event for each I/O request. The

FE module converts these blktrace events to E, a sequence of events. An event e ∈ E

is represented as (uid, fname, atype, sz, sg, ts, sr), where uid denotes the user id, fname

denotes the file name, atype denotes the type of the access, sz denotes the access size, sg

denotes the accessed segment of a file, ts denotes the timestamp of the event, and sr denotes

45

the event’s sequence number. Given that E consists of n events, it can be represented as

follows:

E = {e1, e2, . . . , en}

= {(uid1, fname1, atype1, sz1, sg1, ts1, sr1),

. . . , (uidn, fnamen, atypen, szn, sgn, tsn, srn)}

1: Input: E, Lts, Lsr, minSp

2: Output: C

3: m← 0

4: Cand1 ← set of distinct events

5: while Candm+1 6= ∅

6: Freqm+1 ← findFreq(E,Candm+1, Lts, Lsr,minSp)

7: m← m+ 1

8: Candm+1 ← genCand(Freqm)

9: C ← Freq1 ∪ Freq2 ∪ . . . ∪ Freqm
10: return C

Algorithm 1: Discovering access clusters C

3.4.2 Block Level Profiling (BLP)

In order to understand the user accesses at block level, this module stores a map from the

users to the files with the following features: uid, fname, sz, and sg. For each (uid, fname)

pair, this module then computes the following: the average access size szavg, maximum

access size szmax, and the standard deviation of the access sizes szsd. Moreover, this

module leverages the segment feature sg to understand whether the user accesses random

segments of the file. For instance, if ei and ej are two blktrace events that represent ac-

cesses to the same file f , the BLP module checks if sgi and sgj segments overlap in the

file memory or if the segments come from random locations of the file memory. Also,

it helps to understand whether the user is always accessing the new data appended to the

file. We use a parameter named rand bit and set it to 1 if the segments accessed from a

file are random, otherwise, this bit is set to 0. Given the set F which represents all the

files in the system, and a file f ∈ F, this component profiles a user u’s block access as

46

Bf = {szavg, szmax, szsd, rand = 0/1}. For all such files, the block level profiling is

represented as B = 〈B1, B2, . . . , B|F|〉 where |F| is the number of files in the system.

3.4.3 Access Cluster Profiling (ACP)

When a single task performed by some file system user involves accessing a number of

files, whenever the user performs that task, a specific set of files are accessed together. This

set of files form a cluster which we represent with an episode. As a result, the frequency of

such episodes essentially reflects the frequency of the corresponding tasks. We represent

such an episode ε as Cε = {ε, cf, S/P} where cf denotes the frequency of the cluster and

S/P denotes the type of the episode (i.e., serial/parallel). The episodes identified for a user

are finally stored as C = 〈Cε1, Cε2, . . . , Cεm〉 where m represents the number of episodes.

While identifying the access clusters, we enforce that the events within an episode

are not too scattered- neither in terms of the time difference nor in terms of the sequence

number difference. This ensures that we do not consider those clusters of accesses as

episodes where the events in the clusters are not related enough. To denote the maximum

time difference between the events in an episode, we use a thresholdLts. Similarly, we use a

threshold Lsr that denotes the maximum sequence number differences between two events.

For instance, two events a and b can belong to the same episode only if |tsb − tsa| < Lts

and |srb− sra| < Lsr. We use another threshold minSp (i.e., minimum support) to discard

the episodes that are not frequent. When an episode’s frequency surpasses this minimum

frequency requirement, that episode is classified as frequent.

Algorithm 1 presents the steps to compute the second component C of a user profile.

In this algorithm, the first iteration considers every unique event to be a candidate (Cand1)

itself. In the next iterations, larger candidates are computed to be considered as frequent

episodes. For instance, if the size of the frequent episodes obtained in some iteration is m

(which means the set Freqm computed from Candm using the findFreq algorithm), in

the next iteration we compute Candm+1, i.e., the set of candidates for m+ 1 size episodes

from Freqm (using the genCand algorithm).

47

Note that we have used the following Apriori [78] property to perform these computa-

tions:

Lemma 1 Let β and α be episodes s.t. α @ β. If β is frequent, α is also frequent.

Hence, we use the idea that an m + 1 size episode can be a candidate only if all of this

episode’s m size subepisodes are frequent. As a result, we avoid a number of m + 1 size

episodes (for which all of its m size subepisodes are not frequent) and reduce the overall

computation overhead by not computing frequency for those.

We describe the steps of findFreq and genCand algorithms in the following.

Frequency Computation (findFreq): Depending on the context, researchers have pro-

posed different frequency definitions, e.g., [76, 79]. However, since we want to profile the

file access frequencies by users, we use a frequency definition based on non-overlapping.

In order to understand the definition, consider an episode α with two occurrences: α1 and

α2. Now these occurrences are considered as non-overlapping if no event that belongs to

α1 appear among the events that belong to α2 and vice versa. Let α = {a, b, c} be a serial

episode, and let α1 = {(a, sra1, tsa1), (b, srb1, tsb1), (c, src1, tsc1)} and α2 = {(a, sra2,

tsa2), (b, srb2, tsb2), (c, src2, tsc2)} be two of its occurrences. The episodes α1 and α2 do

not overlap if for all events x ∈ α, srx1 < sra2 and tsx1 < tsa2, or, for all events x ∈ α,

srx2 < sra1 and tsx2 < tsa1. If E is a sequence of event such that-

E = {(b, 1, 2), (d, 2, 5), (a, 3, 6), (c, 4, 7), (f, 5, 10),

(c, 6, 12), (d, 7, 13), (c, 8, 14), (a, 9, 16), (f, 10, 20)}

for episode α = {b, d, c}, the number of overlapping occurrences are two, i.e., {(b, 1, 2),

(d, 2, 5), (c, 4, 7)}, and {(b, 1, 2), (d, 7, 13), (c, 8, 15)}. However, if we consider non-overlapping

occurrences only, only one occurrence, e.g., {(b, 1, 2), (d, 2, 5), (c, 4, 7)} could contribute

towards its frequency.

The findFreq function in Algorithm 2 is used to compute the frequency of serial

episodes. This algorithm takes E, the event sequence as input along with Candi (i.e., the

set of candidate episodes of length i), Lts, Lsr, and minSp. At the end, this algorithm

returns frequent episodes of size i, i.e., Freqi, which is a subset of Candi.

48

1: Input: E, Candi, Lts, Lsr, minSp

2: Output: Freqi

3: Freqi ← ∅

4: for each candidate episode ε ∈ Candi
5: waits(ε[1])← waits(ε[1]) ∪ (ε, 1, 0, 0) /*initialize waits list*/

6: ε.freq ← 0 /* set frequency to 0 for all candidates */

7: for each event e ∈ E

8: for each cluster automaton Aε = (ε, j, tsf , srf) ∈ waits(e)

9: if tsf = 0 & srf = 0 /* automaton at the first state */

10: tsf ← e.ts /* update first event timestamp */

11: srf ← e.sr /* update first event sequence number */

12: waits(e)← waits(e)−Aε /* remove the automaton from waits(e) list */

13: if j = L & e.ts− tsf ≤ Lts & e.sr − srf ≤ Lsr
14: j ← 1 /* reached final state of automaton, reset to first state */

15: ε.freq ← ε.freq + 1 /* increment frequency */

16: else if e.ts− tsf ≤ Lts & e.sr − srf ≤ Lsr
17: j ← j + 1 /* move to the next state */

18: else

19: j ← 1 /* e is outside of Lts or Lsr range, reset to first state */

20: waits(ε[j])← waits(ε[j]) ∪Aε /* add Aε to a new waits list */

21: for each candidate episode ε ∈ Candi
22: if ε.freq ≥ minSp

23: Freqi ← Freqi ∪ ε

24: return Freqi
Algorithm 2: Finding frequent episodes (findFreq)

S0 S1 S2 S3

b d c

Figure 3.3.: Finite state automata Aε for ε = {b, d, c}

We leverage the idea of finite state automata while identifying the frequent episodes.

For instance, let ε represents a serial episode {b, d, c}. We define an automaton Aε cor-

responding to this episode as shown in Fig. 3.3. The automaton transits from state S0

to S1 upon encountering the event b, then from state S1 to S2 with event d, and so on.

49

Episode ε’s automaton Aε is represented as (ε, j, tsf , srf) when it is ready to move to the

jth state. Here, tsf represents the timestamp of the first event in the automaton whereas

srf is the sequence number of that first event. The waits() data structure keeps track of

every candidate episode’s automaton’s next expected event. For instance, waits(e) lists all

the automata that would move to their next states with event e. Hence, upon the occurrence

of event e, all automata in waits(e) proceed to their next states. If automaton Aε = (ε,

j, tsf , srf) ∈ waits(e), ε episode will move to its jth state if it encounters an occurrence

of event e = (fnamee, atypee, sge, sze, tse, sre) and if the conditions tse − tsf ≤ Lts

and sre − srf ≤ Lsr are satisfied. If ε is a parallel episode, we use a similar algorithm

but it works a little differently from the one used for serial episodes. Each entry in the

list waits(e), is an ordered pair like, (α,j), which now indicates that there is a partial oc-

currence of parallel episode α which still needs j events of type e before it can become

a complete occurrence. For example, parallel episode α = {a, a, b, c, c} will initially have

three lists, namely, waits(a), waits(b), and waits(c), and they will have entries (α,2),

(α,1), and (α,3), respectively.

1: Input: Freqm

2: Output: Candm+1

3: Candm+1 ← ∅

4: Sm ← sort(Freqm)

5: for each episode smi ∈ Sm
6: for each episode smj ∈ Sm where j ≥ i

7: if Sm.msg[i] = Sm.msg[j]

8: for k = 1 to m

9: ζ[k]← smi[k] /* generate new candidate */

10: ζ[m+ 1]← smj [k]

11: for each α @ ζ where |α| = m

12: if α /∈ Freqm /* if any α is not frequent */

13: goto 6 /* ζ is also not frequent, start over */

14: Candm+1 ← Candm+1 ∪ ζ

15: return Candm+1

Algorithm 3: Candidate generation (genCand)

50

Candidate Generation (genCand): We use the genCand function in Algorithm 3 to

generate the parallel episode candidates. Since there is no particular order of the events in

parallel episodes, we sort the events according to their fname feature. For instance, we

store the episode ε = {d, a, f} as {a, d, f}. Each episode ε ∈ Freqm is sorted in this way

and is then stored in Sm. We perform further sorting in Sm for efficiency. For example,

episode {a, d, f} is stored after episode {a, d, e}. We denote an episode with size m

residing in the ith index of Sm as Sm[i]. Note that, if episodes Sm[i] and Sm[j] have first

m− 1 events in common, i.e., they differ only in their mth event, they belong to a maximal

similarity group which we denote as msg. We store the msg for each episode in Sm (e.g.,

Sm.msg[i] stores the index of Sm[i]’s msg’s first episode). In other words, the msg array

points to the first episode in the maximal similarity group which improves the efficiency of

the algorithm.

Computational Complexity of Automata

In the PC phase, we reduce the overhead of computing the candidate episodes’ frequen-

cies by using finite state automata. Instead of scanning all the events inE for computing the

frequency of each candidate episode, our algorithm needs to scan the events in E only once

for all the candidate episodes. Upon scanning an event e in E, all the candidate episode

automata that can accept e advance to their next states. Moreover, one candidate needs

exactly one automaton which also reduces the overhead of the AD phase.

Addition of New Files

Whenever a new file is added to the system (at runtime) that was not present during pro-

file creation, we need to classify access to this file accurately to avoid false positives/nega-

tives. In our solution, we leverage the location and type information of the new file for this

classification. The location often indicates the purpose of the file and its similarities with

the neighboring files, e.g., files under a single source code repository.

51

In the case of access to a new file, we consider the current finite state automata and

compute the distance between the new file and the file expected to be accessed. In Fig. 3.3,

consider the case that a new file g is accessed after file b, i.e, when the automata is at

state S1. Since g is a new file, we compute the distance between g and the expected file

d in terms of their distance in the file hierarchy. We identify the least common ancestor

(LCA) of these two files in the hierarchy and compute its distances from the two files in

comparison. We normalize this total distance by the worst case scenario distance where

the LCA is itself the root directory of the file system. The formula to compute the anomaly

value is the following:

anom val(g, d) =
dist(g, LCA(g, d)) + dist(d, LCA(g, d))

dist(g,ROOT) + dist(d,ROOT)
(3.1)

If the LCA for g and d is the ROOT, the anom val becomes 1 which represents that

these two files have nothing in common other than being in the same file system. On the

other hand, an insignificant anom val denotes that the files’ distance is smaller and their

probability of being similar is high. Moreover, if also the types of these files are same,

we conclude that the g and d files are similar and profile the new file at runtime which

accelerates classifying the future accesses to the new file.

Addition of New Users

Along with handling new files dynamically, it is also important that an AD system is

able to profile new users at runtime. Depending on whether the organization has a role-

based system, there are two possibilities:

1. If there exists no role-based access control in the system, we can use an unsuper-

vised learning approach [80–84] to mine the user roles. A role is primarily defined

by the permissions that are granted to the user. Therefore, when there is no semantic

information available other than the user permissions, we can use unsupervised ma-

chine learning algorithms to cluster the users that have a similar set of permissions.

Although traditional data mining algorithms aim to identify non-overlapping clus-

52

ters, in our case, we need to allow different roles (i.e., identified different clusters) to

have overlapping permissions. This distinction from traditional clustering makes the

problem of role mining more challenging. However, we leverage existing technique,

i.e., [80] to perform such role mining for a new user when there is no role-based

access control mechanism deployed in the system.

2. If a role-based access control mechanism already exists in the system, we leverage

techniques, e.g., [85], that assign a new user to an existing role or create a new role

if required.

Profiling Benign Activity Changes by the Users

Note that, the statistical fingerprint of the users’ benign activities can change and shift

(i.e., concept drift) over a period of time due to changes in user activity at the organization

or even due to some system updates. In the cases in which a role-based access control

system is deployed, we address these concept drifts of benign activities by observing if the

benign activities are changing for other users within the same role. If this is the case, we

assign a lower anomaly score for such unknown file activities. If a single user’s activities

change significantly whereas no other user under that role requests similar accesses, our

solution rapidly increases the anomaly score of that user (detailed discussion on anomaly

scores are given in Section 3.5) and the user is eventually flagged.

If there is no role-based access control system deployed, techniques that integrate su-

pervised machine learning and control theoretic model for detecting concept drift, such

as, [86], can be leveraged. We leave this as a future work. Moreover, adversarial concept

drifts that intend to avoid detection by traditional concept drift detection techniques can be

handled using solutions, e.g., [87], that leverage adversarial forethought and incorporate

the context into the drift detection task.

53

3.4.4 Frequency Profiling (FP)

For each file, this component computes the temporal and spatial frequencies of the

user’s accesses. This module uses the following features from blktrace events: uid, fname,

ts, and sr, and then computes for file f its spatial frequency, frsf , and temporal frequency,

frtf . The frequency profiling consisting of both these frequencies is accumulated as frf .

Thus the profile component is F = 〈fr1, fr2, . . . , fr|F|〉.

Finally, a user profile is formally represented as P = 〈B, C,F〉 (see Sections 3.4.2

and3.4.3 for components B and C, respectively).

Spatial frequency: To compute the spatial frequency, we first need to set an interval

(e.g., an interval of 100 file accesses, independent of time) and then count the number of

accesses to different files in that interval. We consider a sliding interval of size SI for this

purpose. While we use a fixed interval for spatial frequency, we compute enhanced tempo-

ral profiles by leveraging a multi-level profiling approach as described in the following.

Temporal frequency: Although many existing profiling approaches, e.g., [75], use a

fixed time interval approach for computing temporal frequency, we employ a multi-level

temporal profiling technique for obtaining our fine-grained user profiles. The resulting

enhanced temporal profiles not only improve the detection accuracy but also removes am-

biguity from both of the profiling and anomaly detection phases. To understand how this

multi-level time granularity approach works, let A and B be two tasks performed by the

user (the tasks represent episodes α and β, respectively).

1. A: This task is performed only on one day in a week (on any arbitrary weekday), but

is performed for 5 times on that day (i.e., with a frequency of 5).

2. B: This task is performed on each of the weekdays but the frequency for each day is

only 1.

In the following, we compare two approaches for temporal profiling: (1) fixed time interval

approach and (2) our multi-level time granularity approach.

54

Fixed Time Interval Approach

Similar to the spatial frequency computation, a simple idea for temporal frequency

could be setting a fixed interval of time, TI , and compute the frequencies in this interval.

Due to the various frequencies of different file accesses, there are also many options for

setting the time interval TI , e.g., one hour, one day, one week, or even one month. Hence,

the time granularity for the profiles can vary from very fine-grained (e.g., one minute) to

very coarse-grained (e.g., one year). For files that are accessed very frequently, one may

choose to compute the files’ access frequencies for all these granularity levels. Again, for

a file which is accessed very rarely, computing its frequency at a coarse-grained level (e.g.,

with TI = one month) could be sufficient.

Now, with this fixed time interval approach, the user tasks presented above, i.e., A and

B, would have identical frequencies when the value of TI is set to one week. In contrast, if

the value of TI is set to one day, the tasks would have different frequencies. The frequency

of task A would be 5 for an arbitrary weekday and 0 for the rest of the weekdays whereas

the frequency of task B would be 1 for all the weekdays. Now if TI is set to be one week

(because if TI is set to be one day, it would not be possible to profile task A since this

task is performed 5 times on only one weekday), there is no way of differentiating the

frequencies for the tasks A and B, and thus it creates ambiguity in the profile. This also

impacts the accuracy of the profile, e.g., this fixed time interval approach would result in a

false negative when an insider performs task A only once on a weekday.

Multi-level Time Granularity Approach

In this approach, we use a multiple granularity temporal structure, TS, instead of using

a plain time interval TI . An example of TS is the following: if a user performs a task

on all the days of only an arbitrary month of every year, the corresponding TS would

store the temporal profile as (∀Y ear, ∃Month, ∀Day). Fig. 3.4(a) and 3.4(b) represent the

TSs of tasks A and B, respectively. Let the length of time for the user logs considered in

these structures be one month. We show only three levels, i.e., months, weeks and days,

55

All [5]

[5]
[5] [5]

[5]

M[20]

W1[5] W2[5] W3[5] W4[5]

Mo[5] Tu[0] We[10] Th[0] Fr[5]

L1

L2

L3

(a)

[5]
[5] [5]

[5]

M[20]

W1[5] W2[5] W3[5] W4[5]

Mo[4] Tu[4] We[4] Th[4] Fr[4]

All [1]

L1

L2

L3

(b)

Figure 3.4.: Profiling (a) task A, and (b) task B

with the level identifiers L1, L2, and L3, respectively. According to the descriptions of

the tasks, they have identical frequencies for the levels L1 (frequency is 20 for both) and

L2 (frequency is 5 for both). The only difference in frequency they have is at level L3.

According to Fig. 3.4(a), task A is performed on different days in different weeks since this

is performed on arbitrary weekdays. To profile the arbitrary frequency of A on different

weekdays, our multi-level time granularity approach creates the following TS: (∀Month[20],

∀Week[5], ∃Day[5]). The ∀ symbol denotes for all, the ∃ symbol represents the fact that the

event exists only once, and the ’[]’ symbol denotes the exact frequency at different levels.

Again, according to Fig. 3.4(b), task B is performed on every weekday for all the weeks

considered in the experiments. Hence, the TS for this according to our multi-level time

granularity approach would be (∀Month[20], ∀Week[5], ∀Day[1]). From the above discussion,

it is evident that this approach can distinguish the different temporal frequencies of different

tasks without introducing any ambiguity unlike a naive fixed time interval approach.

We can profile even more complicated file access temporal behaviors with such multi-

level approach. Consider a scenario where a specific task is performed on Tuesday and

on Thursday with a frequency of 1 for each. Our temporal structure represents this task as

(∀Month[8], ∀Week[2], ∀Day 〈1, 5〉 [1, 1]). Note that, the numbers in 〈〉, i.e., 2 and 4, represent

Tuesday and Thursday, respectively. With ∀Day symbol before 〈2, 4〉 the temporal structure

means that for all days in 〈〉, this rule applies. Moreover, with [1, 1], the structure shows

the frequencies for the days.

56

Anomaly	 	 Detection	 	 Phase

Blktrace	
Tool

User

Block	 I/O	 Layer
(request	 queue)

Block	 Level	
Monitor

Frequency	
Monitor

Access	 Cluster	
Monitor

User
Feature	
Extractor

User	 Space

Kernel	 Space

User	
Profiles

Alert

I/O

User

Figure 3.5.: Anomaly Detection (AD) phase architecture

3.4.5 User Profiles’ Storage

A critical requirement for our solution is that the user profiles need to be securely stored

to prevent their tampering as tampered profiles may undermine our AD solution.

Access	user	profiles	with	
trusted	function

AD	Phase	Architecture

Untrusted	
Partition

Trusted	Partition

User	
Profiles

Trusted	function()
{
…….
return	comparison
with	profile;
}

Figure 3.6.: AD phase partition into trusted and untrusted parts

As our AD solution runs on the user space, in order to protect the user profiles, we

leverage the Software Guard Extensions (SGX) available with Intel Processors [88]. SGX

provides enclaves, i.e., isolated memory regions, which enable us to protect certain sensi-

tive data (user profiles) and the code that operate on this data. Security and privacy of such

enclaves are achieved by hardware support [88].

As shown in Fig. 3.6, we partition the code of our AD solution into two parts: a trusted

part, and an untrusted part. The trusted part contains the user profiles and the code portion

57

that needs to work with the user profiles. The rest of the code resides in the untrusted part.

Whenever there is a need to compare the user’s behavior with the profile, a trusted function

is called to enter the enclave, where it can access the user’s profile in plain text. Note that

the enclaves reside in an encrypted memory and they are considered trusted because they

cannot be modified after they have been built. In our setting, only the AD process can access

the enclave memory whereas all other attempts to access enclave memory from outside the

enclave are denied by the processor, even if these attempts are by some privileged users. As

soon as an enclave is maliciously modified (either by a user or a malicious software), the

CPU is able to detect it. This protects the user profiles in the enclave from being exposed

even if the application, Operating System, or BIOS are compromised.

Since enclaves are stateless, all their contents (user profiles) are lost when the enclaves

are destroyed (enclaves can be destroyed when, e.g., the system goes to sleep or if the AD

process exits). Therefore, to preserve the user profiles, we make a copy of these profiles,

encrypt them, and store them outside the enclave in the untrusted memory. Though this

copy (or, multiple copies) resides in the untrusted memory, the encryption itself provides

assurances of confidentiality, integrity, and authenticity on these user profiles.

3.5 Anomaly Detection (AD) Phase

The tasks performed by this phase’s Feature Extractor (FE) module is same as that of

the PC phase’s FE module. Note that, the User Profiles that are generated in the previous

phase are used in the AD phase as an input. The rest of the modules in the AD phase

(Fig. 3.5) monitor the user’s runtime file accesses and for each user compute a shared

parameter WAF to weigh his anomalous behaviors. If the value of WAF exceeds a set

anomaly threshold, minAnom, the user’s accesses are classified as anomalous, and his

account is flagged. The modules raise different anomaly flags for different anomalous file

access activities and update the WAF value accordingly. Note that, the AD phase does

not interrupt the normal I/O operations of the user until the WAF exceeds the set

58

threshold minAnom. A user is prevented from accessing the resources only after

WAF value becomes greater than minAnom.

3.5.1 Block Level Monitoring (BLM)

The BLM module of the AD phase monitors the sizes of accesses to the files. For a

file, if the access size is larger than the file’s corresponding szmax or if the access size

is not within the following range: [szavg + δ1 ∗ szsd, szavg − δ1 ∗ szsd] (where δ1 is an

adjustment parameter and can be any real number), the BLM module raises an anomaly

flag AF1. To determine how much a particular anomaly flag increases the value of WAF ,

we use different distance functions, for example, if the size of an access (sz) extracted from

the corresponding blktrace event is greater than the szmax value stored in the profile, we

measure the distance function as dist(AF1) = (sz−szmax
szmax

). Moreover, if the user accesses

random segments of the file while the value of rand is 0 in the user profile, anomaly flag

AF2 is used to represent this event.

3.5.2 Access Cluster Monitoring (ACM)

In this module, we use finite state automata to keep track of the access clusters (that are

discovered in the PC phase as described in Section 3.4.3). Assume that a user requests an

I/O operation for a file f to which he does not have access permission. An anomaly flagAF3

is raised in such scenarios. However, if the user has permission, the ACM module exploits

the fact that at least one automaton (access cluster) would accept the resulting blktrace event

and would move to the next state. If no automaton accepts the event, this module raises

an anomaly flag AF4. It is possible that a single event is accepted by multiple automata

and all these automata move to their next states. If the access clusters have anomalous

frequencies, the ACM module raises an anomaly flag AF5. Note that we consider only the

superepisodes for efficiency purpose. For instance, if episode {a, b, c, d} is identified as

frequent, we do not create automata for its subepisodes, e.g., {a, b} or {a, b, c} and a single

automata is created to consider the superepisode itself and also its subepisodes. In the case

59

Table 3.3.: Mapping between the anomaly cases and flags

Anomaly Case #s Anomaly Flags Module (AD phase)

1 AF3 ACM

2 AF4 ACM

3 AF5 ACM

4 AF1 BLM

5 AF2 BLM

6 AF7 FM

of a new file, we compute its distance with the existing files as described in Section 3.4.3

and use the computed anom val as an anomaly flag AF6.

3.5.3 Frequency Monitoring (FM)

If the user accesses a file f with a frequency that exceeds δ2 * frf (where δ2 is another

adjustment parameter and can be any positive real number), the FM module AF7 anomaly

flag. Note that the spatial frequency is computed over a number of accesses and this is

independent of time interval.

With the enhanced temporal profiles {T , TDS}, where the first part stores the discovered

tasks and the second part stores the tasks’ TDSs, the FM module identifies any anomaly

that do not conform with the profile. For instance, from Section 3.4.4, the TDS of task B

is (∀Month[20], ∀Week[5], ∀Day[1]). Hence, the FM module would raise an alarm if this task

is not executed on a working day or it is executed more than once on a working day. Note

that unlike other fixed time interval approaches that introduce ambiguity, our FM module

is able to monitor the A task independently. A mapping between different anomaly cases

(as presented in Section 3.3) and the anomaly flags is given in Table 3.3.

3.6 Performance Evaluation

In this section, we explain our experiment setup, present the evaluation metrics and the

performance of our AD mechanism for different anomaly cases along with a comparison

with the other existing approaches.

60

3.6.1 Experiment Setup and Evaluation Metrics

For the experiment setup, we use a file repository from Wikipedia which consists of

560 files. We run blktrace for a time length of 2 months to capture the block level accesses

by 77 users. In order to evaluate the case of new users, we use the access logs of 70 users in

the PC phase for profiling and add the remaining 7 users’ access logs at runtime. Moreover,

to measure the accuracy of the anom val computation for new files, we create 20 new files

in the system at runtime and add one access to each file (where half of the accesses are

benign and the remaining half of the accesses are malicious). The blktrace events from the

first month are used in profiling (i.e., PC phase) and blktrace events from the second month

are used in the AD phase to evaluate the performance of our anomaly detection system.

Fig. 3.7(a) shows a histogram that presents the number of blktrace events in ranges or

different number of users. For instance, 20 users among the 77 result in 8000 to 12000

blktrace events in the duration of two months. Fig. 3.7(b) shows a similar histogram with

respect to the number of users but this time presents the number f distinct files accessed

by the users instead of the number of blktrace events. For instance, 10 users among the 77

access 0-40 distinct files in the duration of two months. Note that, according to the logs

collected in our experiment, we have observed that a single file access, on average, can

result in six blktrace events.

According to our observation, the PC phase parameters Lts, Lsr, and minSp play an

important role in improving the accuracy of the AD phase. On one side, setting too small

values to these parameters results in failure to identify correlations of different accesses

whereas on the other side, setting too large values result in identification of too many cor-

relations that are not relevant. In order to make a balance, we choose Ltstobe20 minutes

and Lsr to be 10 which result in an optimal accuracy. Moreover, we set different minSp

values for different iterations of the profiling phase to accommodate different candidate

sizes.

In order to evaluate the performance of the AD phase, we synthetically generate anoma-

lous access requests (like previous work that synthetically generated datasets, e.g., [89]) for

61

0

5

10

15

20

25

4K 8K 12K 16K 20K 24K 24K+

N
um

be
r	 o

f	 u
se
rs

Number	 of	 blktrace	 events

(a)

0
2
4
6
8

10
12
14
16
18
20

40 80 120 160 200 240 240+

N
um

be
r	 o

f	 u
se
rs

Number	 of	 distinct	 files	 accessed

(b)

Figure 3.7.: Different ranges of (a) blktrace events, and (b) distinct file accesses by the

users

each anomaly case (anomaly cases 1-6 in Table 2) and inject those in the users’ file access

logs. We create four test datasets:

1. Test dataset I (TS-I): We use the access logs of the second month directly for this

test dataset to represent a benign scenario.

2. Test dataset II (TS-II): We remove only 3% of the logs in TS-I and insert blktrace

events that are anomalous with respect to the profile to represent a knowledgeable

attacker scenario.

3. Test dataset III (TS-III): We remove 25% of the logs in TS-I and insert blktrace

events that are anomalous with respect to the profile to represent a medium attacker

scenario.

4. Test dataset IV (TS-IV): In TS-IV, the access logs are generated by accessing the

files completely randomly to represent a non-expert attacker.

Note that we use our multi-level data structure approach for generating temporal user

profiles (instead of the fixed time interval approach) in all the experiment results shown

in this section. A performance comparison between these two approaches is given in

Section 3.6.3.

62

We perform our experiments with an Intel(R) Core (TM) i7-6700 CPU machine con-

sisting of two 3.40 GHz cores and 16GB memory. We use Ubuntu-14.04 as the operating

system.

140
140
140
140
140
140
140
140
140
140
140
140
140

0

0.5

1

1.5

2

2.5

3

TS-‐‑I TS-‐‑II TS-‐‑III TS-‐‑IV

FPR

FNR

0

0.5

1

1.5

2

2.5

3

3.5

TS-‐‑I TS-‐‑II TS-‐‑III TS-‐‑IV

FPR

FNR

F
P
R
	 a
n
d
F
N
R
	 (
%
)

(a)

140
140
140
140
140
140
140
140
140
140
140
140
140

95

96

97

98

99

100

TS-‐‑I TS-‐‑II TS-‐‑III TS-‐‑IV

PCS

RCL

P
C
S
an
d
	 R
C
L
(%

)

(b)

140
140
140
140
140
140
140
140
140
140
140
140
140

97

97.5

98

98.5

99

99.5

100

TS-‐‑I TS-‐‑II TS-‐‑III TS-‐‑IV

ACC

FMR

A
C
C
an
d
	 F
M
R
(%

)

(c)

Figure 3.8.: ACM module: mean (a) FPR and FNR, (b) PCS and RCL, (c) ACC and

FMR values with confidence interval of standard deviation

636
636
636
636
636
636
636
636
636
636
636
636
636

0

2

4

6

8

10

12

TS-‐‑I TS-‐‑II TS-‐‑III

δ1	 =	 1 δ1	 =	 2 δ1	 =	 3

F
P
R
	 (
%
)

(a)

636
636
636
636
636
636
636
636
636
636
636
636
636

0

5

10

15

20

25

30

TS-‐‑II TS-‐‑III TS-‐‑IV

δ1	 =	 1 δ1	 =	 2 δ1	 =	 3

FN
R
	 (%

)

(b)

636
636
636
636
636
636
636
636
636
636
636
636
636

90
91
92
93
94
95
96
97
98
99
100

TS-‐‑I TS-‐‑II TS-‐‑III TS-‐‑IV

PCS RCL ACC FMR

(c)

Figure 3.9.: BLM module: mean (a) FPR, and (b) FNR for different δ1, (c) PCS, RCL,

ACC, and FMR for δ1=2 with confidence interval of standard deviation

Metrics: A false positive (FP) arises when a benign file access is evaluated as anoma-

lous, whereas a false negative (FN) means that an anomalous file access is evaluated as a

benign access. The true positives (TP) and true negatives (TN) represent correct evaluations

of anomalous and normal accesses, respectively. The metrics we use for our performance

evaluation are given below:

• False positive rate (FPR) = FP
(FP+TN)

63

• False negative rate (FNR) = FN
(FN+TP)

• Precision (PCS) = TP
(TP+FP)

• Recall (RCL) = TP
(TP+FN)

• Accuracy (ACC) = (TP+TN)
(TP+TN+FP+FN)

• F-measure (FMR) = 2TP
(2TP+FP+FN)

46
50
48
52
44
43
40
42
44
51
47
42
40

0

5

10

15

20

25

30

35

TS-‐‑I TS-‐‑II TS-‐‑III

δ2	 =	 0.08 δ2	 =	 0.15 δ2	 =	 0.25

FP
R
	 (
%
)

(a)

43
43
43
43
43
43
43
43
43
43
43
43
43

0

5

10

15

20

25

30

35

TS-‐‑II TS-‐‑III TS-‐‑IV

δ2	 =	 0.08 δ2	 =	 0.15 δ2	 =	 0.25

FN
R
	 (%

)

(b)

43
43
43
43
43
43
43
43
43
43
43
43
43

80
82
84
86
88
90
92
94
96
98
100

TS-‐‑I TS-‐‑II TS-‐‑III TS-‐‑IV

PCS RCL ACC FMR

(c)

Figure 3.10.: FM module: mean (a) FPR, and (b) FNR for different δ2, (c) PCS, RCL,

ACC, and FMR for δ2 = 0.15 with confidence interval of standard deviation

0

0.5

1

1.5

2

2.5

3

TS-‐‑I TS-‐‑II TS-‐‑III TS-‐‑IV

FPR

FNR

(a)

-‐‑50

0

50

100

150

200

250

TS-‐‑I TS-‐‑II TS-‐‑III

FN
R
	 (%

)

80
82
84
86
88
90
92
94
96
98
100

TS-‐‑I TS-‐‑II TS-‐‑III TS-‐‑IV

PCS RCL ACC FMR

(b)

0

20

40

60

80

100

PCS RCL ACC FMR

A1:	 access	 control	 mechanism
A2:	 file	 level	 profiling	 approach
A3:	 our	 fine-‐‑grained	 AD	 technique

(c)

Figure 3.11.: Combined (a) FPR, FNR, (b) PCS, RCL, ACC, FMR of our approach,

(c) Comparison with existing techniques

64

3.6.2 Experiment Results

In this section, we classify the anomaly cases described in Section 3.3 into three sepa-

rate attack scenarios. These three scenarios present anomaly cases [1,2,3], [4,5], and [6], re-

spectively. For each attack scenario, we generate different versions of TS-II, TS-III,

and TS-IV test datasets.

ACM Module For Anomaly Cases 1-3

For this attack scenario, we generate the TS-II, TS-III, and TS-IV test datasets

so that the modified blktrace events include the following cases: I/O requests to files that the

user does not have access permissions, I/O requests to files that have no correlation among

them within a short sequence/temporal interval, and I/O requests that represent accessing

some clusters of files with elevated frequency.

As given in Table 3.3, the anomaly cases 1-3 are detected by the ACM module. The

FPR and FNR of this module are presented in Fig. 3.8(a). Note that we show the FPR

for only the test datasets TS-I, TS-II, TS-III whereas we show the FNR for only

the test datasets TS-II, TS-III, TS-IV. This is because all the events in TS-IV are

anomalous (since TS-IV is generated randomly) and thus cannot have false positives. On

the other hand, all the events in TS-I are benign (since these are taken from the original

logs) and these cannot have false negatives.

The results show that the FPR is lower than FNR for all the test datasets. This is because

the probability of no automata accepting a file access in the ACM module is negligible

since the resulting event needs only one automaton to consider the access as benign. In

contrast, if the file access in consideration is actually malicious, this may still be accepted

by an automaton of the ACM module and might not be flagged as malicious resulting in

a false negative. However, in most of the cases, the automata that accept this malicious

access would eventually fail to transit to their next states and thus identify the file access as

malicious.

65

0
1
2
3
4
5
6
7

AA0 AA1 AA2 AA3 AA4 AA5 AA6 AA7 AA8

A
no
m
al
y	
sc
or
e

Anomalous	activities	(AA)

#0 #1 #2
#3 #4 #5

Figure 3.12.: Concept drift experiments with multiple anomalous activities (previ-

ously unknown) when between 0 and 5 other users perform similar file accesses

Finally, the FPR and FNR of the ACM module (in average) are 0.38% and 1.17%,

respectively. According to our observation, the performance of the ACM module does not

vary significantly with the varying test datasets. This is due to the fact that this module

monitors each blktrace event individually and thus does not depend on the percentage of

the anomalous blktrace events in the test datasets.

The PCS and RCL values for this module are shown in Fig 3.8(b) which have an average

of 99.1% and 98.82%, respectively. The ACC and FMR values shown in Fig. 3.8(c) have

averages of 99.39% and 98.94%, respectively.

Experiment on concept drifts of benign activities: We perform this experiment for

the case when there exists a role-based access control system. Changes in activities by a

single user (within a role) raises anomaly flags as mentioned in Section 3.5. Within a role

consisting of 10 users, we show in Fig. 3.12 how the concept drifts of eight anomalous

activities (AA0 − AA8) affect the anomaly scores of the users. We show the changes in

anomaly score for a user when between 0 and 50 − 5 other users within the same role

perform similar new (i.e., previously unknown) activities. If no other user (i.e., #0 in

Fig. 3.12) performs similar new activities, the anomaly score of that user increases signifi-

cantly after eight anomalous tasks. If one other user (i.e., #1 in Fig. 3.12) performs similar

activities, the anomaly scores for both users increase at a lower rate. Finally, if five other

users (i.e., #5 in Fig. 3.12) perform similar tasks, the change in the anomaly score for all

six users become almost negligible.

66

BLM Module For Anomaly Cases 4-5

For this attack scenario, we generate the TS-II, TS-III, and TS-IV test datasets

so that the modified blktrace events include the following cases: I/O requests with anoma-

lous access sizes and I/O requests with anomalous access segments.

As given in Table 3.3, the anomaly cases 4 and 5 are detected by the BLM module.

The FPR and FNR of this module are presented in Fig. 3.9(a) and Fig. 3.9(b), respectively.

While evaluating the BLM module, we set different values to δ1: 1, 2, and 3, to observe

how this parameter impacts the results. Setting a smaller value to δ1, e.g., 1, means that the

acceptable range for the access size is reduced to [szavg + szsd, szavg − szsd] which in turn

flags a number of benign accesses as malicious resulting in a 9.66% FPR in average. In

contrast, setting a larger value to δ1, e.g., 3, means that the acceptable range for the access

size is increased to [szavg+3∗ szsd, szavg−3∗ szsd] which in turn fails to flag a number of

malicious accesses resulting in a 23.81% FNR in average. Hence, we set the value of δ1 = 2

which balances the two extreme results with high FPR and FNR, and results in 1.19% FPR

and 0.11% FNR. In contrast to the ACM module, the FPR of this module is higher than

the FNR. This is due to the fact that this module analyzes the blktrace events in a more

fine-grained level and thus in few cases flags the benign accesses as malicious. On the

other hand, this module can identify even knowledgeable attackers with fine-grained attack

models resulting in a negligible FNR. Note that some accesses in the TS-IV test dataset

conform to the access sizes stored in the profiles. Hence, while we expect all accesses

in TS-IV to be malicious (since these are generated completely randomly), we observe

some false negatives. The PCS, RCL, ACC, and FMR values for this module are shown in

Fig. 3.9(c) which have an average of 96.5%, 99.89%, 99.08%, and 98.2%, respectively.

FM Module For Anomaly Case 6

For this attack scenario, we generate the TS-II, TS-III, and TS-IV test datasets

so that the modified blktrace events include the case of I/O requests with anomalous spatial

and temporal frequencies.

67

0

20

40

60

80

100

FPR FNR PCS RCL ACC

Fixed Time Interval Approach

Multi-level Time Granularity Approach

Figure 3.13.: Results for Multi-level Temporal Profiles

As given in Table 3.3, the anomaly case 6 is detected by the FM module. The FPR

and FNR of this module are presented in Fig. 3.10(a) and Fig. 3.10(b), respectively. While

evaluating the FM module, we set different values to δ2: 0.08, 0.15, and 0.25, to observe

how this parameter impacts the results. Setting a smaller value to δ2, e.g., 0.08, means that

the acceptable range for the frequency is reduced which in turn flags a number of benign

accesses as malicious resulting in a high FPR. In contrast, setting a larger value to δ2, e.g.,

0.25, means that the acceptable range for the access size is increased which in turn fails to

flag a number of malicious accesses resulting in a high FNR. Hence, we set the value of

δ2 = 0.15 which balances the two extreme results with high FPR and FNR, and results in

3.02% FPR and 0.33% FNR. The FNR for the test dataset TS-IV is due to the same reason

as described in the previous section. The PCS, RCL, ACC, and FMR values for this module

are shown in Fig. 3.10(c) which have an average of 92.09%, 99.67%, 97.64%, and 95.57%,

respectively.

3.6.3 Multi-level Temporal Profiles

In this section, we compare the performances of the fixed time interval approach and

our multi-level time granularity approach as described in Section 3.4.4. To generate the

malicious dataset, we modify the access logs in TS-I so that it has anomalous frequency

for the tasks discovered by the ACP module. Fig. 3.13 shows the comparison between these

two temporal profiling approaches in terms of their worst case performances. It compares

68

the two approaches’ FPR, FNR, PCS, RCL, and ACC values. The results show that while

the maximum FNR for the fixed time approach is ∼ 9.3%, using the multi-level temporal

profiles decreases the worst-case performance to∼ 4.65%. This results in an increased RCL

from ∼ 90.69% to ∼ 95.34%. While the multi-level temporal profiles are able to identify

anomalous accesses that the fixed time approaches cannot (i.e., decreases FNR), the worst-

case FPR, PCS, and ACC values remain unchanged due to a case where the number of false

positives is maximum.

3.6.4 Comparison with Existing Approaches

In order to compare our solution with the other existing approaches, we build a com-

prehensive test dataset where we gather the anomalous datasets from Sections 3.6.2, 3.6.2,

and 3.6.2 each having identical numbers of anomalous logs.

Fig. 3.11(a) shows the final FPR and FNR values of our AD approach on this combined

anomalous dataset (1.53% and 0.53% in average, respectively). The PCS, RCL, ACC, and

FMR values are presented in Fig. 3.11(b) which are 95.92%, 99.46%, 98.7%, and 97.57%,

in average, respectively.

In Fig. 3.11(c), we compare among the following three mechanisms: access control

(A1), an approach that profiles at the file level (A2 [68]) and our AD solution (A3). We

compare the performance of these approaches in terms of their PCS, RCL, ACC, and FMR.

For instance, the accuracies for these approaches are: A1 : 10.82%, A2 : 21.92%, and

A3 : 98.7%. The explanation behind such huge difference is that the A1 solution can only

identify the first anomaly case, A2 can only identify the cases 1 and 2 whereas our solution

A3 is able to identify all the anomaly cases in consideration.

According to this comparison, we can conclude that even having the solutions A1 and

A2 in a combined fashion is not sufficient to identify a large variety of malicious file system

activities. Hence, more fine-grained monitoring, for instance, A3 is required to protect the

file systems from both malicious insiders and outsiders.

69

3.6.5 Overhead Analysis

The PC phase of our AD solution which builds the user profiles executes off-line and

thus does not have any impact when the users are interacting with the file system. However,

since we collect the blktrace events during the users’ regular file system activities, the only

overhead it incurs is the overhead by the blktrace tool itself which is negligible (2% [90]).

The space overhead of the PC phase necessarily depends on the time length of the data

collection and also on the volume of the file system activities by the users (if the data is

collected for a longer time, the volume of the training data naturally increases). Moreover,

as per our experiments, the space overhead for the user profiles is reasonable (< 1 MB on

average). The AD phase is executed by an independent host with an Intel(R) Core (TM)

i7-6700 CPU machine which monitors the blktrace events fetched by the blktrace tool and

checks them against the stored user profiles with the added overhead of SGX. Again, it

incurs a CPU overhead of 2% at runtime to the users.

3.7 Related Work

Most of the existing anomaly detection mechanisms have been proposed either for net-

worked systems [65–67] or for relational databases [20, 21, 62, 63]. Debar et al. [91] in-

troduce a taxonomy that defines families of intrusion-detection systems according to their

properties whereas Glass-Vanderlan et al. [92] present a survey of intrusion detection sys-

tems leveraging host data. An anomaly-based IDS for modern mobile devices is presented

by Damopoulos et al. [93]. In [94], Vrakas et al. propose a technique to protect against

spoofing attacks, e.g., masquerading and identity theft at real-time. Nguyen et al. [95]

present a technique for generic feature selection in order to perform intrusion detection.

Baracaldo et al. [96] extend the RBAC (role-based access control) model in terms of the

trust the system has on its users and also with a risk assessment process. In [97], Görnitz

et al. develop an anomaly detection methodology that achieves higher accuracy while re-

quiring less labeled data. In order to enhance the performance of anomaly detection, some

research work [98, 99] suggest building robust temporal user profiles with different time

70

granularities. Srivastava et al. [100] propose Verity where they use a block-chain network

to detect insider attacks.

In [101], Bowen et al. deploy decoys to identify insiders within an organization and

also develop a method for automatic decoy injection [102]. Gates et al. [68] propose a

method to detect information theft by insiders where they compute the correlation between

a resource/file and the users accessing that file. They leverage the file system hierarchy for

this purpose. As a result, this approach cannot handle file systems that change dynamically

(where files can be added, deleted, or moved) due to such dependency on the file system

hierarchy. Stolfo et al. [69], having similar limitations as that of Gates et al. [68] leverage

different features of the file system, e.g., file location, parent directory, current directory,

etc., to identify anomalous file system accesses. In contrast, our solution is not dependent

on the hierarchy of the file system and therefore, applies to file systems that change dynam-

ically. While the anomaly detection system by Mehnaz et al. [75] cannot profile the new

files or new users dynamically, our solution profiles the new files by computing its similar-

ity with existing neighboring files and also profiles the new users either based on their roles

or by monitoring their initial file access activities. Moreover, our approach computes multi-

level temporal profiles to decrease the false negatives whereas the approaches [68, 75] use

a fixed time interval approach to build temporal profiles.

In order to detect malicious activities from authorized insiders, Ray et al. [103] propose

a framework that utilizes an attack tree. Senator et al. [104] combine different structural and

semantic information from the file system and monitor user activity to identify anomalous

accesses learned from suspected scenarios of a malicious insider. In [105], Claycomb et

al. present a technique using directory virtualization that monitors a number of systems

deployed in an enterprise simultaneously and identifies any malicious insider activity. In

contrast, different application’s anomalous run-time operations can be detected by Huang

et al. [70]’s proposed unsupervised learning approach. For each running application, they

monitor its file access activities and create a baseline profile. These application profiles are

then utilized at runtime to measure the probability of the file access requests to be benign.

Camiña et al. [106] avoid monitoring every single file system object and thus propose a

71

task-based masquerader detector. Compared to these approaches that work at a higher level

of abstraction, our approach detects a broader set of anomalies by leveraging low-level

access information at the block level.

While our focus is on file system confidentiality, there is also some previous research

work that provides solutions for file system integrity [71,72]. I3FS [72] is such a tool that

computes the cryptographic checksums of the files, compares with the expected checksums

to validate the files’ integrity, and thus detects any malicious modifications at real-time.

72

4. PRIVACY-PRESERVING REAL-TIME ANOMALY DETECTION
USING EDGE COMPUTING

4.1 Introduction

Advances in sensors (embedded systems, IoT, etc.) and wireless technologies have en-

abled us to collect huge amounts of data which are then analyzed in real-time to support

efficient and effective decision making in many safety critical application domains, such as

home security, patient monitoring, detecting cyber attacks in nuclear power plants, etc. The

underlying technique used for such real-time decision making is anomaly detection which

allows one to identify anomalous patterns that do not conform to the expected behavior

of a system or to the expected data a system collects/generates. For instance, identifying

an emergency situation of a patient when signals from her health monitoring devices seem

anomalous or detecting anomalous trends in industrial data that are indicative of a pend-

ing system failure require effective real-time anomaly detection. Internet giants such as

Google [5], Microsoft [6] and specialized companies (e.g., Anomaly [7]) are already offer-

ing such anomaly detection as a service for real-time data or for predictive maintenance.

Motivation. Even though sensor-equipped devices are able to collect large amounts of

data, they are often unable to perform computationally intensive analytics, especially in

real-time, due to their resource-constrained nature, e.g., limited computation and storage

capabilities. Also, because sensor devices may not be equipped with comprehensive tools

for protection against failures, in many solutions [107], storing data at a cloud/edge server

is critical for minimizing data losses. In order to understand the pros and cons of such

different scenarios, we summarize the results of a case study in Table 4.1. We have used a

Raspberry Pi 3 to represent a sensor device, an Intel Core i7 machine as the edge server, and

an Amazon AWS EC2 (t2.xlarge) instance as the cloud server (the cloud server is located

in Oregon whereas the Raspberry Pi 3 and the edge server are both located in Indiana). We

73

execute a windowed Gaussian anomaly detection algorithm on a UCI Machine learning

repository [108] dataset1 consisting of 100000 data points, and record the latency and com-

munication cost for different scenarios as given in Table 4.1. In scenario 1, the Raspberry

Pi 3 is responsible for both anomaly detection computation and storage, i.e., the data does

not leave the source and thus there is no need for data encryption to preserve the privacy.

However, as mentioned above, such devices have limited computation and storage capabil-

ities and thus cannot cope with the velocity and volume of the data, respectively, while still

providing real-time support for anomaly detection. Moreover, there are many security vul-

nerabilities [109], e.g., weak credential/session management, impersonation, poor physical

security, etc., in the deployment of such devices [110] that may compromise/wipe off the

locally stored data. Though this storage limitation is solved in scenario 2 where the device

encrypts the data and sends it to the cloud, the communication latency is impractical. This

communication latency can be significantly reduced by sending the encrypted data to an

edge server as represented by scenario 3. Note that, edge servers are as untrusted as the

cloud [111, 112] and thus it is critical that the data still be encrypted if edge servers are

used instead of cloud servers for data storage. However, unfortunately, even in scenario

3, the computation latency at the device is still impractical to support real-time processing

of data acquired with high velocity. For example, if the incoming data rate (collected/gen-

erated by sensors) is 500 data points per second, the sensor can no longer catch up with

the data since in that case the maximum latency that can be practical for real-time analysis

of 100000 data points is 200 seconds. Scenario 4 represents the case where the device

transfers the data in plaintext to an edge service provider and outsources both anomaly de-

tection computation and storage tasks to the edge. Though scenario 4, opted by Google [5],

Microsoft [6], Anomaly [7], could result in low latency, it does not take privacy into ac-

count [113]. While the data in transmission could be encrypted by the underlying transport

layer protocol (e.g., SSL/TLS) to protect against man-in-the-middle attacks, the data off-

loaded to the edge remains in plaintext to support analytics. Such a solution is not adequate

for privacy-sensitive applications, such as personal health-care systems and critical indus-

1http://archive.ics.uci.edu/ml/datasets/Pseudo+Periodic+Synthetic+Time+Series

74

Table 4.1.: Case study for different scenarios.

Scenario Latency (in seconds) Communication cost (in MB) Privacy Storage

1 All computation on device (no transfer of data) 716.56 0 X ×

2 All computation on device, cloud only stores encrypted data 6590.53 25.3 X X

3 All computation on device, edge only stores encrypted data 853.57 24.9 X X

4 Both computation and storage at edge (on plaintext data) 125.48 24.9 × X

trial monitoring systems, whose data cannot be shared with an untrusted third party (i.e.,

edge/cloud). This work thus addresses the following research question: is it possible to

develop a privacy-preserving framework to enable efficient real-time anomaly detection on

sensitive, time series, streaming data by sharing the anomaly detection computation task

between the device and the edge (i.e., utilizing the computation power of the edge server

without compromising the data privacy)?

Challenges. In general, when the data is encrypted before off-loading, the edge is unable

to process the encrypted data efficiently. Most approaches based on Secure Multi-party

Computation (SMC) include complicated techniques, such as Yao’s garbled circuits [23]

and oblivious transfer, that are impractical for real-time analytics. Therefore, many ex-

isting solutions for privacy-preserving anomaly detection rely on trusted third parties or

assume the presence of non-colluding third parties, thus introducing weak links in the

security chain [24], whereas solutions that perturb data for privacy [25] are susceptible

to data reconstruction [26]. Solutions assuming co-operative anomaly detection [27] or

crowd-sourcing [28] using differential privacy do not directly apply to our scenario where

there is a single data owner willing to outsource the anomaly detection task while simul-

taneously preserving the privacy of the data. Moreover, solutions leveraging differential

privacy would require injecting a significant amount of fake data which in turn would re-

duce the utility significantly.

Proposed solution. We consider an honest but curious model for the edge, i.e., the edge

service provider follows the protocol but would like to gain knowledge about the data.

Since the edge is untrusted, we encrypt the data rather than using any other susceptible

techniques, e.g., perturbation. In order to ensure efficiency, we utilize a lightweight en-

cryption scheme, Trident, which is also semantically secure, to encrypt the data before

75

off-loading the data to the edge. Moreover, this scheme is optimized for aggregation op-

eration in the encrypted domain by the usage of a telescoping series (where partial sums

eventually have a fixed number of terms after cancellation). As a result, the scheme accel-

erates the processing of streaming encrypted data at the edge.

We leverage the windowed Gaussian anomaly detector— the most widely used anomaly

detection technique [29, 114] that computes the probability of a data being anomalous by

observing the distribution of a window of previous data points. Since this original anomaly

detection algorithm operates only on plaintext data, we design a privacy-preserving version

of this algorithm where the anomaly detection task is shared between the device and the

edge while only the insignificant portion of the computation that the edge cannot perform

(due to not having the decryption key) is carried out at the resource-constrained device. Our

framework enables privacy-preserving detection of anomalies of all three categories: point,

contextual, and collective anomalies. The proposed framework does not compromise any

utility, i.e., the accuracy of our framework is same as that of the analytics on plaintext data.

Our solution results in a latency of 145.52 seconds and communication cost of 30.9

MB for the experiment described in the case study of Table 4.1 while preserving the

privacy, and satisfying both storage and accuracy requirements simultaneously.

The contributions of this work are the following:

1. We use a lightweight, semantically secure, and aggregation optimized (optimization

is due to a telescoping series) encryption scheme dubbed as Trident.

2. We design a privacy-preserving framework that detects point, contextual, and collec-

tive anomalies in streaming large-scale data. We consider the windowed Gaussian anomaly

detector algorithm for detecting anomalies and propose a privacy-preserving version of this

algorithm. In our solution, the sensitive data is never stored in plaintext. The usage of our

lightweight Trident scheme results in practical latency and communication overhead

without compromising the accuracy of the anomaly detection process.

3. We evaluate the performance of the proposed framework in terms of privacy, ac-

curacy of the resulting model, communication cost, and latency, and compare it with a

76

baseline scenario where the data is off-loaded to the edge in plaintext and the edge per-

forms anomaly detection on plaintext data (i.e., scenario 4 in Table 4.1). We also perform

a scalability analysis to determine the performance of our approach as the size of the data

increases.

4.2 Preliminaries

4.2.1 Q Function

The Gaussian distribution has two parameters: a mean denoted by µ and a standard

deviation denoted by σ. The bell shaped curve in Figure 4.1(a) represents a Gaussian

distribution. The probability density function of a Gaussian distribution is given by: p(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2 .

µ

𝑝(𝑥)

𝑥𝑥%

(a)

0
0.5
1

1.5
2

2.5
3

3.5

1 201 401 601 801 1001 1201 1401 1601

(b)

Figure 4.1.: (a) Gaussian distribution, (b) RealAdExchange data.

The probability that a Gaussian random variable X ∼ N(σ, µ2) exceeds x0 is evaluated

as the area of the shaded region shown in Figure 4.1(a) which is computed as:

Pr(X ≥ x0) =
∫ ∞
x0

p(x)dx =

∫ ∞
x0

1

σ
√
2π
e−

(x−µ)2

2σ2 dx (4.1)

By change of variables method, we substitute y = x−µ
σ

and then equation (4.1) can be

re-written as:
Pr

(
y ≥ x0 − µ

σ

)
=

∫ ∞
(x0−µ

σ)

1√
2π
e−

y2

2 dy (4.2)

77

Here the function inside the integral is a normalized Gaussian probability density func-

tion Y ∼ N(0, 1) with µ = 0 and σ = 1. The integral on the right side of equation (4.2)

can be termed as Q-function, which is given by:

Q(z) =

∫ ∞
z

1√
2π
e−

y2

2 dy (4.3)

Hence, the relation with the Q function is:

Pr

(
y ≥ x0 − µ

σ

)
= Q

(
x0 − µ
σ

)
= Q(z)

Thus the Q function gives the area of the shaded curve in Figure 4.1(a) with the trans-

formation y = (x− µ)/σ applied to the Gaussian probability density function.

An error function represents the probability that the parameter of interest is within

a range between σ
√
2 and x/σ

√
2 and the complementary error function represents the

probability that the parameter lies outside this range. The error and the complementary

error functions are given by:

erf(z) =
2√
π

∫ z

0

e−x
2

dx

erfc(z) = 1− erf(z) = 2√
π

∫ ∞
z

e−x
2

dx (4.4)

From the limits of the integrals in equation (4.3) and (4.4) it can be concluded that

the Q function is directly related to complementary error function (erfc) by the following

relation:
Q(z) =

1

2
erfc

(
z√
2

)
(4.5)

4.2.2 Windowed Gaussian Anomaly Detector

The windowed Gaussian anomaly detector computes the anomaly score of a given data

point by computing its probability of being normal (using the Q-function as described in

Section 4.2.1) while observing the Gaussian distribution over a window of previous data

points. Since the Gaussian distribution is the assumed underlying probability model in

many applications that involve statistical analysis of data, the windowed Gaussian anomaly

detector is the most commonly used technique for anomaly detection in such data [29,

78

1: µ = 0 (mean), σ = 1 (standard deviation)

2: stepSize = s, windowSize = 6 ∗ s

3: for i = 0,. . ., m− 1 (considering m data points) do

4: DO : collects di

5: DO : transfers di to the ESP

6: z = (di−µ)
σ

7: anom[i] = 1− 1
2 erfc(

z√
2
)

8: if i > 0 then

9: sum[i] = sum[i− 1] + di

10: else

11: sum[i] = di

12: end if

13: if i > 0 & i%stepSize = 0 & i ≤ windowSize then

14: µ = sum[i]
(i+1)

15: σ =
√∑i

k=0(dk−µ)2
(i+1)

16: end if

17: if i > 0 & i%stepSize = 0 & i > windowSize then

18: µ = sum[i]−sum[i−windowSize]
windowSize

19: σ =
√∑i

k=(i−windowSize)(dk−µ)2

windowSize

20: end if

21: Append di to dataset D = {d1, d2, . . . , di−1} (for storage)

22: end for
Algorithm 4: Algorithm for windowed Gaussian anomaly detector on plaintext data.

114]. The window slides forward with a defined step size. The window and step sizes

can be tuned to achieve better accuracy for different applications. Figure 4.1(b) plots the

realAdExchange data [115] (consisting of 1643 data points including the anomalous ones,

x axis represents data indices and y axis represents data values) which represents online

advertisement clicking rates, where the metric is cost-per-click (CPC). It also shows four

windows where the windowSize is set to 200 and the stepSize is set to 33. The µ and σ

values are computed for each window sliding, i.e., each stepSize. While the sensors may

be able to store all the data points in a single window for analysis, note from Table 4.1

that the computation latency at the sensors is still impractical for real-time analysis.

79

Algorithm 4 presents the steps of windowed Gaussian anomaly detector for plaintext

data, i.e., scenario 4 in Table 4.1. The data owner DO’s sensor device (in the rest of the

document, the terms DO and device are used interchangeably) collects and sends the data

points instantly to the edge in plaintext, or, in other words, without any encryption (the

steps for the DO are shown in blue text). The edge service provider ESP computes the

anomaly score for each data point using the current µ and σ values, and recomputes these

parameters after each step size as shown in the algorithm.

4.3 Lightweight and Aggregation Optimized Encryption (TRIDENT) Scheme

In this section, we describe a lightweight and aggregation optimized encryption scheme,

Trident, designed to optimize encryption and decryption operations, and also the aggre-

gation operation in the encrypted domain (i.e., addition of a large amount of encrypted

data). We also present a security analysis of the Trident scheme in Section 4.3.4 which

assumes a probabilistic polynomial time-bounded adversary. Note that, there exists public

key additively homomorphic encryption schemes which require expensive exponentiation

operations. Since we do not need a public key, we can achieve significant performance

improvements as demonstrated in Section 4.5.2.

4.3.1 Encryption Scheme

This encryption scheme can be used over any additive group, e.g., Zρ, where ρ is a

positive integer. The scheme has three algorithms- KeyGen, EncryptData, and DecryptData

as described in the following:

KeyGen: The key generation algorithm takes as input a security parameter λ and outputs

a symmetric key k ∈ {0, 1}κ for use in the encryption and decryption steps.

EncryptData: This algorithm takes as inputs a message m, the symmetric key k, and a

nonce η ∈ {0, 1}n. Note that, a nonce is an arbitrary number that can be used only once in

a cryptographic communication. Let H : {0, 1}κ × {0, 1}n → Zρ be a cryptographic hash

80

function keyed with k which outputs Hη
k = H(k||η) for a given nonce η (here, || denotes

concatenation). The encryption of m is computed as following:

Enc(m, k, η) = m− (Hη
k −H

(η−1)
k)

For simplicity, let F (η, k) = F η
k = Hη

k – H(η−1)
k . Therefore,

Enc(m, k, η) = m− F ηk

= c

DecryptData: This algorithm takes as input a ciphertext c and key k. The decryption is

computed as following:

Dec(c, k, η) = c+ F ηk

= c+Hη
k −H

(η−1)
k

= m

The ‘+’ and ‘–’ operations in the above computations are group addition and subtraction

operations, respectively.

Note that, we handle the decimal numbers in our encryption/decryption computations

in a way similar to how we handle integers, i.e., without any further encoding, due to such

lightweight operations whereas Paillier cryptosystem requires exponentiation operations

and encoding of decimal numbers.

4.3.2 Additive Homomorphism

Let c1 and c2 be two ciphertexts of the plaintext values m1 and m2. The addition of

these two ciphertexts in the encrypted domain results in:

c1 + c2 = m1 +m2 − F η1k − F
η2
k

= CA

81

Decryption of CA is computed as follows:

Dec(CA, k, η1, η2) = CA + F η1k + F η2k

= m1 +m2

The subtraction operation outcome c1 − c2 = CS in the encrypted domain can also be

decrypted as following:

Dec(CS , k, η1, η2) = CS + F η1k − F
η2
k

= m1 −m2

4.3.3 Aggregation

Let c1, c2, · · · , cj be a set of j ciphertexts where for some η value the nonces used

are η1 = η + 1, η2 = η + 2, · · · , ηj = η + j, respectively, and we need to compute the

aggregation value. Adding all these ciphertexts results in-

c1 + . . .+ cj = m1 +Hη
k −H

(η+1)
k

+m2 +H
(η+1)
k −H(η+2)

k + . . .

+mj +H
(η+j−1)
k −H(η+j)

k

= m1 +m2 + . . .+mj +Hη
k −H

(η+j)
k

Since η and j values are known to the decryption end, the aggregation (i.e., m1 +m2 +

. . .+mj) can be simply decrypted as c1+c2 + . . . + cj – (Hη
k−H

(η+j)
k). Therefore, summa-

tion in the encrypted domain is as simple as summation in the plaintext domain. Moreover,

decryption of the sum of a large number of encrypted data leverages a telescoping series

82

and requires only two invocations of the cryptographic hash function H which makes the

aggregation in the encrypted domain a very light-weight operation.

4.3.4 Security Analysis

The security analysis is based on a game between the adversary Adv (constrained to

run in polynomial time) and the challenger Chl. As many times as the Adv would like,

it can select two plaintext messages of its own choosing and provide them to the Chl for

encryption where Chl would return a ciphertext encrypting only one of the messages. The

advantage ofAdv is determined by its probability of guessing the message that is encrypted

by Chl.

The adversary Adv selects two plaintext messages m0 and m1 and given the encryption

function Enc, the Chl computes (mb − F ηb
k) where bit b ∈ {0, 1} is chosen randomly

by Chl. Along with m0 and m1, Adv could also choose the nonce values (η0 and η1)

itself; however, it is restricted from choosing the same nonce value more than once (note

that we always choose a unique nonce for every ciphertext while utilizing Trident in

our privacy-preserving anomaly detection framework). After obtaining (mb − F ηb
k), Adv

outputs a bit b′ to guess which message the Chl has chosen to encrypt. Adv wins the game

if b′ = b and vice versa.

Note that the encryption scheme is semantically secure if for adversary Adv, Pr[b =

b′] < 1
2
+ v(n), where v(n) is some negligible function. On the other hand, Adv can

guess the correct bit with probability greater than 1
2
+ v(n) only if it can guess F ηb

k . Since

Hηb
k and Hηb−1

k are generated using a cryptographically secure pseudo-random number

generator, Hηb
k – H(ηb−1)

k = F ηb
k is also pseudo-random, and thus cannot be guessed by the

Adv. Therefore, Pr[b = b′] < 1
2
+ v(n) holds for the adversary Adv which proves the

encryption scheme to be semantically secure. �

83

4.3.5 Malleability

Note that, our Trident encryption scheme is malleable, i.e., it is possible for the

adversary to transform a ciphertext into another ciphertext which would decrypt to a related

plaintext. To prevent the adversary from exploiting this vulnerability, we can use integrity

protection techniques such as Message Authentication Code (MAC) to guard against any

tampering of the ciphertext.

4.4 Privacy-preserving Anomaly Detection Framework

In this section, we describe our privacy-preserving anomaly detection framework for

point, contextual, and collective anomalies in Sections 4.4.1, 4.4.2, and 4.4.3, respectively.

4.4.1 Privacy-preserving Point Anomaly Detection

Algorithm 4 performs point anomaly detection without providing any data privacy, i.e.,

the ESP observes all the data points in plaintext including the µ and σ values for each step

size. The privacy-preserving version of Algorithm 4 is given in Algorithm 5 (steps 1-2 from

Algorithm 4 are omitted to avoid redundancy). In this version, the sensor devices from the

DO end send the data points in an encrypted form to the ESP . Note that the ESP only

receives Ei.c (i.e., the ESP does not receive Ei.η) since the computations at the ESP end

are independent of the nonce values. Furthermore, the DO end can choose any initial value

for the nonce and increment it sequentially. For the purpose of clarity, the initial nonce

value is set to 1 in Algorithm 5. Since the edge receives the data in encrypted form, it

cannot perform arbitrary computations on the data and therefore some of the intermediate

computations for anomaly detection are performed by the device (computations at the DO

end are shown in blue text in Algorithm 5). Note that, the computations at the DO end are

infrequent (i.e., only when there is a requirement to recompute the model) and thus neither

result in significant computation latency (discussed in Section 4.5) nor significant energy

consumption.

84

1: for i = 0,. . ., m− 1 (m data points) do

2: DO : collects di

3: DO : z = (di−µ)
σ

4: DO : AnomScorei = 1 - 1
2 erfc(

z√
2
)

5: DO : Ei = Enc(di, k, i+ 1)

6: DO : sends Ei.c and AnomScorei to the ESP

7: if i > 0 then

8: enc sum[i] = enc sum[i− 1] + Ei.c

9: else

10: enc sum[i] = Ei.c

11: end if

12: if i > 0 & i%stepSize = 0 & i ≤ windowSize then

13: ESP sends enc sum[i] to DO

14: DO : sum[i] = Dec(enc sum[i], i+ 1, k)

15: DO : µ = sum[i]
(i+1)

16: DO : Eµ = Enc(µ, k, r + 1)

17: DO : sends Eµ.c to the ESP

18: ESP sends Ek.c− Eµ.c to DO for k = 0, . . . , i

19: DO : σ =
√∑i

k=0Dec(Ek.c−Eµ.c)2
(i+1)

20: end if

21: if i > 0 & i%stepSize = 0 & i > windowSize then

22: ESP sends enc sum[i], enc sum[i− windowSize] to DO

23: DO : sum[i] = Dec(enc sum[i], i+ 1, k)

24: DO : sum[i− windowSize] = Dec(enc sum [i− windowSize], i− windowSize+ 1, k)

25: DO : µ = sum[i]−sum[i−windowSize]
windowSize

26: DO : Eµ = Enc(µ, k, r + 1)

27: DO : sends Eµ.c to the ESP

28: ESP sends Ek.c− Eµ.c to DO for k = i− windowSize, . . . , i

29: DO : σ =

√∑i
k=i−windowSizeDec(Ek.c−Eµ.c)2

windowSize

30: end if

31: Append Ei.c to encrypted dataset ED = {E1, E2, . . . , Ei−1} along with its corresponding

AnomScorei (for storage)

32: end for
Algorithm 5: Privacy-preserving Algorithm for windowed Gaussian anomaly detector.

85

The DO end always possesses the current µ and σ values in the plaintext form so

that it can compute the anomaly score of a collected data point di instantly using the Q-

function in equation 4.5 (where z = di−µ
σ

). The next step for the DO is to encrypt di using

the Trident encryption scheme as described in Section 4.3.1. Finally, the DO sends

the encrypted di along with the corresponding anomaly score to the ESP . The ESP

also computes an array of summations of received encrypted values (i.e., enc sum[i] =

enc sum[i− 1] + Ei.c). Note that Trident is additively homomorphic, and therefore the

encrypted di values can be aggregated in the encrypted domain. If there is a requirement of

recomputing the µ and σ values (depending on the value of the stepSize), the ESP pro-

vides the sum value of the data points in the current window to the DO. After computing

the µ, the DO sends this updated µ in encrypted form to the ESP . The nonce for encrypt-

ing µ is randomly chosen from a previously defined range that does not overlap with the

nonces used for encrypting data values. Also, the same nonce is never used for encrypt-

ing two µ values. The ESP then returns the array of differences between the encrypted

window data points and the encrypted mean µ (the communication cost for this step can be

decreased by considering a smaller sample from the window data points and computing the

differences from µ only for the data points in the sample, as discussed later in Section 4.5).

Finally, the DO computes σ and is ready to compute the anomaly score of the next data

point with updated µ and σ values.

Figure 4.2 presents the privacy-preserving anomaly detection results on realAdExchange

data. The second plot shows the encrypted data that is sent to the ESP and used by

the ESP for the computations given in Algorithm 5. The third plot shows the anoma-

lous points detected by the algorithm (i.e., the points with anomaly score 1 and all other

points’ anomaly scores are omitted). Note that both Algorithms 4 and 5 detect the same

set of anomalies, i.e., there is no compromise with respect to accuracy when the privacy-

preserving algorithm (Algorithm 5) is used to detect the anomalies.

The symmetric key (used for both encryption and decryption operations) is never ex-

posed to the ESP . Only the DO possesses this key to encrypt the data before off-loading

86

0
1
2
3
4

1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 1501 1601

-300

-200

-100

0

100

200

300

1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 1501 1601

0

0.5

1

1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 1501 1601

Figure 4.2.: The plots show the original data, encrypted data, and the detected anoma-

lies using Algorithm 5, respectively.

to the ESP and to decrypt some intermediate values for recomputing the parameters µ and

σ when needed.

4.4.2 Privacy-preserving Contextual Anomaly Detection

In many applications, two or more data streams could be related to each other. For

instance, a sensor that measures energy consumption of electrical boxes may determine

that a particular box is consuming an anomalously high amount of energy. However, when

this anomalous event is viewed in context with the humidity/temperature data collected

by another sensor, the high energy consumption may not be anomalous at all. In such

cases, we can compute the anomaly scores in the same way as Section 4.4.1 on different

data streams individually (for example, one for energy consumption data and another for

humidity/temperature data). Finally, the ESP can determine if there is any contextual

anomaly by monitoring and comparing these anomaly scores while the privacy of both data

streams (energy and humidity) is preserved by the Trident encryption. Note that the

rules to define contextual anomalies highly depend on the nature of the application and

thus need to be set by the DO and communicated to the ESP .

87

4.4.3 Privacy-preserving Collective Anomaly Detection

Collective anomalies refer to the cases where the individual data instances may not

be anomalous by themselves but their occurrence together as a collection is anomalous

with respect to the entire data set [116]. Though in point anomaly cases the data trend

is mostly consistent in normal situations (with insignificant variation from one data point

to the next as shown in Figure 4.1(b)) and one Gaussian distribution is sufficient, in the

case of collective anomalies, multiple Gaussian distributions are more appropriate, e.g.,

see Figure 4.3(a) plotted from [117]. Evidently, there are five data models, namely D1, D2,

D3, D4, and D5, that interleave by alternating among each other with the average values

20.02, 67.88, 79.53, 31.71, and 22.4, respectively, as marked in Figure 4.3(a). The numbers

of data points that belong to these models are 2184, 168, 1344, 168, and 168, respectively.

If a single Gaussian distribution is used for modeling this dataset, the µ value would

be ∼ 42.44 while the σ value (28.08) would be unnecessarily large which would result in

misclassification of benign and anomalous data points. For example, if there is a spike of

value 80 within the first data model marked in Figure 4.3(a), i.e., when the expected value

is ∼ 20, the anomaly score of that data point would not be 1 since only a single Gaussian

distribution is considered which accepts all data points in the range [20, 80] as normal.

Therefore, it is evident that complex datasets need to be modeled with multiple Gaus-

sian distributions. In the following, we discuss different possible solutions, their limi-

tations, and finally, propose a complete solution able to detect the collective anomalies

without compromising privacy.

• Independent multiple Gaussian distributions: A simple solution could be to use com-

pletely separate Gaussian distributions with non-shared η values, i.e., each Gaussian dis-

tribution with its own η series. For instance, the dataset plotted in Figure 4.3(a) would

have 5 Gaussian distributions and their starting η values η11 , η21 , η31 , η41 , and η51 all would

be initialized to 1. However, as discussed in Section 4.3.4, the nonce η chosen for each

ciphertext has to be unique in order to ensure that the encryption scheme is semantically

secure. Gaussian distributions using far away initial points, e.g., η11 = 1, η21 = 100,000, η31

88

0

10

20

30

40

50

60

70

80

90

100

1 501 1001 1501 2001 2501 3001 3501 4001

(a)

‐300

‐200

‐100

0

100

200

300

400

1 501 1001 1501 2001 2501 3001 3501 4001

(b)

-300

-200

-100

0

100

200

300

400
Enc_Data Data

-200

-100

0

100

200

300

400

(c)

Figure 4.3.: (a) A complex dataset, (b) Plot of the encrypted data points for the

datasets D1, D2, D3, D4, and D5 consecutively with independent Gaussian distribu-

tions under unique keys, (c) First plot shows encrypted data without offsetting which

reflects the underlying plaintext data whereas the encrypted data with offsetting in

the second plot removes such underlying pattern.

89

= 200,000, etc. might seem to be a possible solution. However, in the cases where data are

generated with very high velocities, such solution would become impractical and thus fail.

Therefore, the idea of independent multiple Gaussian distributions is neither practical nor

secure.

• Multiple Gaussian distributions with unique keys: Since it is not secure to use the

same nonce twice under the same key, another possible solution is to use unique keys for

these independent Gaussian distributions. For instance, the dataset plotted in Figure 4.3(a)

could have five unique keys k1, k2, k3, k4, and k5 for the five data models, that is, D1,

D2, D3, D4, and D5, respectively, while their starting η values η11 , η21 , η31 , η41 , and η51 all

could be initialized to 1 without losing semantic security. However, we have observed that

there is a clear distinction among the encrypted data values for the five data models (e.g.,

encrypted data points from D3 have larger values than the encrypted data points from D1

which reflects the pattern of the plaintext data). Given the dissimilarity between the data

points belonging to D1 and D3, using a different key for these models further increases the

difference and thus compromises the privacy of the plaintext data. In order to demonstrate

the contrast, we extract the encrypted data points belonging to each data model and plot

them consecutively in the order D1, D2, D3, D4, and D5, as shown in Figure 4.3(b). Note

that the ESP is able to do the same since it requires to know the data model boundaries

to determine the corresponding windows (see Algorithm 5). The two rectangles marked

in Figure 4.3(b) represent the encrypted data points belonging to D1 and D3 (2184 and

1344 data points, respectively). From the plot, it is evident that the encrypted data points

do not look completely random, and when these data models interleave, the encrypted

data points reveal the pattern of the underlying plaintext data to the ESP . This is due

to the fact that though Trident is not a strictly order preserving encryption scheme, it

collectively preserves the pattern in the encrypted domain. Figure 4.3(b) also concludes

that simply using an order preserving encryption scheme to encrypt the data points cannot

be a reliable solution.

• Multiple Gaussian distributions with encrypted data offsetting and interleaving η

values: First, in order to reduce the dissimilarity among interleaving data models we: (1)

90

use a single key and (2) offset the encrypted data values of the different data models so

that the distributions of all data models are similar. Second, to ensure semantic security,

the different data models share the η values (i.e., only one sequence of η values interleave

among multiple data models).

For instance, the mean of the D1 data values is 20.02 whereas the mean of the D3 data

values is 79.53. In order to ensure indistinguishable distribution of these data models, we

offset all the encrypted data values of the D1 dataset with the value 79.53− 20.02 = 59.51.

Similarly, the encrypted data values of the D2, D4, and D5 datasets are also increased

according to their respective differences with the highest valued data model (which is D3

for this example).

To compute the sum of the encrypted data values of the current window, theESP needs

to know the boundaries of the data models. For the ease of understanding, let’s assume that

the original data series contains two distinct data models D1 and D2, where each period of

the data contains 4 data points belonging to each data model. If the window size is set to

8, the aggregation of the first 8 points of D1 (i.e., c1 + . . .+ c4 + c9 + . . .+ c12) would be

computed as follows:

m1 +H0
k −H1

k + . . .+m4 +H3
k −H4

k

+m9 +H4
k −H9

k + . . .+m12 +H11
k −H12

k

which results in m1+ . . .+m4+m9+ . . .+m12 +H0
k−H12

k , and requires the addition

of (H12
k −H0

k) for decryption. Note that, the encryption of m9 is m9 +H4
k −H9

k instead of

m9 +H8
k −H9

k to maintain the consistency between two appearances of data points from

the same data model D1.

After the sum of a window data values is computed by the ESP and is returned to

the DO, the DO first removes the offset values from the sum (the offset values are pre-

computed from the historical data, e.g., the offset value for data model D1 is 59.51) and

then decrypts the sum in order to compute the µ. The rest of the steps are similar to that

of Algorithm 5. Figure 4.3(c) shows the plots of the encrypted data points before and after

91

offsetting, respectively. Whereas the first plot reveals the underlying pattern of the plaintext

data (demonstrated by a grey shade at the background), the encrypted data in the second

plot removes such pattern with the idea of offsetting.

Although we use offsetting to ensure indistinguishable distribution, extensive differ-

ences in the standard deviations among different data models may leak the information that

one data model has higher standard deviation than the other. However, a larger ciphertext

domain can minimize such differences in the distribution since it would reduce the stan-

dard deviation gap between the data models. Therefore, by combining offsetting with a

large enough ciphertext domain, we avoid any such information leakage of the plaintext

data, even in the cases of extensive differences in the standard deviations.

4.4.4 Privacy-preserving Anomaly Detection for More Complicated Scenarios

Graph-based anomaly detection: Our proposed framework can be adapted for more com-

plicated anomaly detection scenarios, e.g., dynamic (i.e., time evolving) graph anomaly

detection algorithms that aim to identify anomalous patterns using a moving window anal-

ysis [118, 119]. For instance, let G be a graph representing communications among n =

|V (G)| entities (people in a social network, computers in a network, etc.) and an edge

(b, d) representing the communication activities (e.g., number of messages exchanged) be-

tween the entities represented by vertices b and d. Graph snapshots that have unusually

high communication activities compared to the past or that exceed a pre-defined threshold

could signal anomalous events in the graph. Our framework can detect such anomalous

events in a privacy-preserving manner where the communication activity data among enti-

ties are encrypted with Trident scheme and any anomalous activity between two entities

is detected using Algorithm 5 as described in Section 4.4.1. Also, such privacy-preserving

graph-based anomaly detection can be extended to identify local sub-regions in a graph

with excessive activities. Note that with respect to scalability, this method would scale

linearly with number of edges in the graph.

92

MaliciousESP : We consider a single, honest but curious (passive adversary model)ESP

in our solution. Though rare (so that the business reputation is not hampered), the ESP

could also be malicious and may arbitrarily deviate from the protocol which would disrupt

the correctness of the protocol. This active adversary model is out of the scope of this

work. However, practical verifiable computation techniques [120] can be leveraged where

the ESP, along with the results of the computations for which the ESP is responsible,

would append a proof that the computation has been carried out correctly.

Table 4.2.: Anomaly detection scenarios.

Scenario Edge Computation Privacy

TCN Trusted Centralized None

UDH Untrusted Distributed High

4.5 Evaluation

In this section, we first introduce our experiment setup in Section 4.5.1. Then in Sec-

tion 4.5.2, we report the results of a comparison between the Trident and Paillier en-

cryption schemes. In the subsequent subsections, we perform three sets of analysis: (i)

In Subsection 4.5.3, we evaluate the accuracy of our privacy-preserving anomaly detection

framework for different anomaly cases. (ii) In Subsection 4.5.4, we evaluate the overhead

of our privacy-preserving scenario, UDH, where the edge is untrusted and the computation

steps for anomaly detection are distributed over DO and ESP , and compare it with that of

the baseline scenario, TCN, where the device transfers its entire raw data to the edge, i.e.,

there is no privacy of the data (refer to Table 4.2). (iii) In Subsection 4.5.5, we perform a

scalability analysis to evaluate the overhead of UDH scenario with increasing dataset sizes

and compare its overhead with that of the baseline scenario TCN. Note that, since the so-

lution for privacy-preserving collective anomaly detection subsumes the solutions for

point and contextual anomaly detection, we focus on the datasets with only collective

anomalies for the experiments in this section.

93

4.5.1 Experiment Setup

For testbed experiments, we have used a Raspberry Pi 3 (CPU: 4 ARM Cortex-A53,

1.2GHz, RAM: 1GB LPDDR2 900 MHz, Networking: 10/100 Ethernet, 2.4GHz 802.11n

wireless) to represent the device at the DO end whereas the ESP end is represented by an

Intel(R) Core(TM) i7-3770 CPU machine (3.4 GHz Dual-Core, Ram: 8GB).

We implemented our solution in Python v2.7.3, where we used ZeroMQ [121] for com-

munication between the device and the edge. We present the simulation results on datasets

from Numenta Anomaly Benchmark (NAB) [122] and UCI Machine Learning Reposi-

tory [108].

µ =
1

N

10∑
i=1

(N/10∑
j=1

dij
)
, σ =

(1

N − 1

10∑
i=1

(N/10∑
j=1

(dij − µ)2
))1/2

Computing µ and σ: In order to learn these parameters initially, we use a training

dataset of N data points that does not contain any anomalous points (i.e., manually verified

before the anomaly detection system deployment). We use 10-fold cross validation, i.e.,

the training dataset is divided into 10 equal-sized non-overlapping subsets and there are 10

training executions each time using a new subset for validation and the rest 9 as training

datasets (as shown in the above equations). The µ and σ values with the lowest error

among the 10 resultant models are then used as the final parameter values. In the case of

multiple data models (e.g., the dataset in Figure 4.3(a)), the training phase recognizes the

abrupt changes between data models and computes these parameters for each data model

individually.

4.5.2 Comparison Between the Trident and Paillier Schemes

To compare the Trident scheme with the Paillier cryptosystem (which requires ex-

pensive exponentiation operations), we encrypt the data points in the dataset used in Fig-

ure 4.3(a). We vary the number of data points and compute the latency for encryption

of these data points. Figure 4.4 shows the latency difference between the two encryption

94

0.00
0.01
0.10
1.00
10.00

100.00
1000.00
10000.00

100000.00

1 2 4 8 16 32 64 128 256 512 1024 2048 4032

Ti
m
e
(in

 se
co
nd

s)
Number of data points

TRIDENT PAILLIER

Figure 4.4.: Latency comparison between Trident and Paillier.

schemes as the number of data points increases. For instance, the latency for Paillier en-

cryption with 4032 data points is ∼ 51801556 milliseconds whereas for our Trident

encryption scheme the latency is only ∼ 95 milliseconds. Moreover, the summation of

4032 encrypted data points takes only 12 milliseconds for our encryption scheme whereas

for the Paillier encryption scheme the latency is ∼ 400 milliseconds.

4.5.3 Performance Analysis

To evaluate the performance of our privacy-preserving anomaly detection algorithm

in detecting anomalies in the data, we consider four anomaly cases [123]: flat-middle,

jumps-down, jumps-up, and no-jump. Figure 4.5 plots these anomaly cases along with their

anomaly scores in Figure 4.5(a), 4.5(b), 4.5(c), and 4.5(d), respectively. These results are

obtained by setting windowSize = 200, stepSize = 50, and sampleSize = 50 (details on

sampleSize is provided in Section 4.5.4). Considering an anomaly threshold of 0.99, i.e.,

considering any data point with anomaly score > 0.99 as anomalous, the above setting

results in an accuracy of 99.97% with 99.17% precision and 100% recall for the above four

anomaly cases. Even in the cases of anomalous data points spanning over multiple data

models (e.g., in the flat-middle anomaly case, the anomalous data points span over all the

five data models), our privacy-preserving framework could identify the anomalies in the

test dataset with this high accuracy.

Varying window size: To understand the correlation between the window size and

the resultant accuracy, we vary the window size of our anomaly detection algorithm. Fig-

95

0.9
0.92
0.94
0.96
0.98

1
0

20

40

60

80

100

(a)

0

20

40

60

80

100

0.9
0.92
0.94
0.96
0.98

1

(b)

0

30

60

90

120

150

180

0.9

0.92

0.94

0.96

0.98

1

(c)

0

20

40

60

80

100

0.9

0.92

0.94

0.96

0.98

1

(d)

Figure 4.5.: Anomaly detection performance for the cases: (a) flat-middle, (b) jumps-

down, (c) jumps-up, and (d) no-jump. The plots in black color represent the plaintext

data, the plots in red represent the corresponding anomaly scores.

ure 4.6(a) presents the precision, recall, accuracy, and f-measure for ten different window

sizes {100, 90, . . . , 10} while setting the step size to 10. As it can be seen in the figure,

the performance of anomaly detection degrades with the smaller window sizes. This is due

to the fact that the models learned from a small window size (e.g., 10) are not general-

ized enough to classify the future data points with high accuracy. On the other hand, as

described in Algorithm 5, a larger window size results in higher communication overhead

since the ESP sends to the DO an array of size windowSize each time the model pa-

rameter σ is updated. In order to address this trade-off, in the next section, we introduce

the idea of sampling the window data points which results in comparable accuracy while

minimizing the communication overhead significantly.

96

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

100 90 80 70 60 50 40 30 20 10

Pe
rc

en
ta

ge

Window size

Precision
Recall
Accuracy
F measure

(a)

120

140

160

180

200

220

240

260

280

300

10 20 30 40 50

N
um

be
r

of
 a

no
m

al
ou

s
po

in
ts

re

po
rt

ed

Sample size

windowSize = 50

windowSize = 200

(b)

40%

50%

60%

70%

80%

90%

100%

10 20 30 40 50

Pe
rc

en
ta

ge

Sample size

Accuracy (200)
Accuracy (50)
F measure (200)
F measure (50)
Precision (200)
Precision (50)

(c)

Figure 4.6.: Impact on anomaly detection performance with varying window sizes and

varying sample sizes.

100

110

120

130

140

150

160

170

180

10 20 30 40 50

La
te

nc
y

(in
 se

co
nd

s)

Sample size

UDH
TCN

(a)

20

22

24

26

28

30

32

34

36

10 20 30 40 50

Co
m

m
. c

os
t (

in
 M

Bs
)

Sample size

UDH
TCN

(b)

Figure 4.7.: Comparison between TCN and UDH in terms of latency and communi-

cation cost for different sample sizes.

4.5.4 Overhead Analysis

Sampling while computing σ: While updating the σ value of the Gaussian distribution

after every step size, the ESP needs to send to the DO the array of encrypted differences

between the current µ and the current window data points. Therefore, a larger window size

results in higher overhead both in terms of latency and communication cost. However, this

additional overhead can be reduced by t times if instead of sending an array of the window

size, a smaller sample from the window data points is considered and only the differences

of those data points from the current µ value are sent to theDO. For instance, if the window

97

size is 200 and only 20 data values are sampled randomly from the window, it would result

in 10 times less overhead.

Since sampling the window data points could result in significantly improved latency

and communication cost, in order to understand the performance differences between small

window size and large window size with sampling, we compare the two window sizes 200

and 50 for the jumps-down data, while for each of these cases we sample 10, 20, 30, 40, 50

data points from the window. Figure 4.6(b) shows the numbers of anomalous points re-

ported for window sizes 200 and 50 with varying sample sizes. The jumps-down data

originally has 120 anomalies (note that the recall for both window sizes is 100%). From

the results it is evident that considering a larger window size results in less false positives,

even if the sample size is the same. For instance, with a sample size 30 (i.e., we randomly

sample 30 points from the window data points independent of the window size), the case

with windowSize = 50 results in 17.2 false positives whereas the case with windowSize

= 200 results in only 2.9 false positives in average (the average is computed by running the

experiments 10 times each). Figure 4.6(c) compares the accuracy, precision and f-measure

(we exclude recall since the recall rate is the same) of these two window sizes for the sam-

ple sizes 10, 20, 30, 40, 50. Since setting windowSize = 200 and sampleSize = 50 result

in a negligible false positive rate (as shown in Figure 4.6(b)), we chose these parameter

values in the experiments described in Section 4.5.3 and Figure 4.5.

Comparison between TCN and UDH scenarios: In order to further assess the overhead of

our privacy-preserving framework, we implemented both Algorithms 4 and 5. Algorithm 4

represents the TCN scenario where theDO off-loads its raw data to the edge and outsources

the task of anomaly detection as a whole (refer to Table 4.2). In contrast, Algorithm 5

represents the UDH scenario.

In Figure 4.7, we show the overhead comparison between the TCN and UDH scenarios

in terms of latency and communication cost for the synthetic dataset consisting of 100000

data points from the UCI Machine Learning Repository [108]. We vary the sample size

to be 50, 40, 30, 20, and 10 whereas the window and step sizes are set to 200 and 50,

respectively.

98

0
20
40
60
80

100
120
140
160
180
200

100 1000 10000 100000

La
te

nc
y

(in
 se

co
nd

s)

Size of data

Step size 10
Step size 20
Step size 50
Step size 100
Step size 200

(a)

0
5

10
15
20
25
30
35
40
45
50

100 1000 10000 100000

Co
m

m
. c

os
t (

in
 M

Bs
)

Size of data

Step size 10
Step size 20
Step size 50
Step size 100
Step size 200

(b)

Figure 4.8.: Scalability analysis for UDH in terms of latency and communication cost

for varying data and step sizes.

As shown in Figure 4.7(a), the latency for the UDH scenario increases as the sam-

ple size increases (the corresponding performances in anomaly detection are given in Fig-

ure 4.6(c)). This is due to the fact that for increasing values of the sample size, the ESP

samples more data in each model update step and thus results in higher communication

latency. For the TCN scenario, the increase rate in the latency for larger sample sizes is

slower than that of UDH. This is because in this case the ESP and DO do not need to

communicate since the ESP already has the data in plaintext. The slight increase in the

latency for the TCN scenario is due to sampling more data at the ESP end for each model

update procedure. The results for the UDH scenario in Figure 4.7(b) are consistent with

the results in Figure 4.7(a). However, for the TCN scenario, the communication cost in

Figure 4.7(b) does not change for different step sizes since for this scenario the communi-

cation cost is incurred only when the DO sends the raw data to the ESP and, therefore,

the communication cost is not impacted by the anomaly detection task at all. In this experi-

ment, i.e., for anomaly detection on 100000 data points with windowSize = 200, stepSize

= 50, and sampleSize = 50, our UDH scenario, while preserving the privacy of the data,

has a latency overhead of 15.9% and a communication cost overhead of 23.81% over the

TCN scenario whereas the TCN scenario does not consider the privacy at all. Note that,

depending on the nature of the data, the communication overhead could be as low as 6.3%

with sampleSize = 10 as shown in Figure 4.7(b).

99

4.5.5 Scalability Analysis

In order to perform the scalability analysis of our privacy-preserving anomaly detection

algorithm, we sample 100, 1000, and 10000 data points from the original 100000 points

dataset to generate datasets of different sizes. Moreover, since the stepSize requirement

for different application scenarios could be very different (i.e., the expected frequency of

updating the model) and since the value of stepSize could affect the latency and commu-

nication overhead (i.e., smaller stepSize would result in higher overhead), for the exper-

iments in this section, we vary the step size to be 10, 20, 50, 100, and 200 whereas the

window size is fixed at 200 and the sampling size is fixed at 50. We then compute the over-

heads for the UDH scenario as shown in Figure 4.8. As the size of the data increases, the

latency for anomaly detection naturally increases as shown in Figure 4.8(a). Moreover, the

latency for this UDH scenario increases as the step size decreases. This is due to the fact

that for decreasing values of the step size, the Gaussian parameters are recomputed more

frequently which increases the communication between the ESP and DO and thus results

in higher latency. For example, the latency for privacy-preserving anomaly detection on

100000 data points are ∼198.3, ∼164.6, ∼145.5, ∼134.2, and ∼128.8 seconds for the step

sizes 10, 20, 50, 100, and 200, respectively. In this experiment, we do not explicitly con-

sider the data arrival rate of the real-time data collected by some sensor, but compute the

amount of time required by our privacy-preserving framework to analyze a certain amount

of data and identify any anomalies. Here, for instance, our privacy-preserving framework

can analyze 100000 data points in∼145.5 seconds when the step size is set to 50. Note that

the latency for the TCN scenario with the identical setting is 125.5 seconds.

The communication costs for different data sizes are shown in Figure 4.8(b) which

complies with Figure 4.8(a). The communication cost incurred by our privacy-preserving

anomaly detection framework on 100000 data points are ∼ 41.7, ∼ 36.3, ∼ 30.9, ∼ 28.8,

and ∼ 27.6 MBs for the step sizes 10, 20, 50, 100, and 200, respectively. Note that the

communication cost to send the entire raw data to the ESP is ∼ 24.9 MBs, which is the

communication overhead for the baseline TCN scenario.

100

0.1

1

10

100

100 1000 10000 100000

La
te
nc
y	
(in

	se
co
nd

s)

Size	of	data

TCN	(10) UDH	(10)
TCN	(50) UDH	(50)
TCN	(200) UDH	(200)

100000 (a)

0.1

10

1000

100000

100 1000 10000 100000

Co
m
m
un

ic
at
io
n	
co
st
	(i
n	
KB

s)

Size	of	data

TCN	(10) UDH	(10)
TCN	(50) UDH	(50)
TCN	(200) UDH	(200)

(b)

Figure 4.9.: Comparison between TCN and UDH in terms of latency and communi-

cation cost for varying data and step sizes.

A detailed overhead comparison between TCN and UDH scenarios on scalability is

given in Figure 4.9. Figure 4.9(a) compares the latency of the TCN and UDH scenarios

for different data sizes and also for varying step sizes, that is, 10, 50, and 200. The latency

difference between these two scenarios increases as the step size decreases. This is due to

the fact that for the TCN scenario, the increase rate in the latency for smaller step sizes is

slower than that of UDH. This is because in this case theESP andDO do not need to com-

municate since the ESP already has the data in plaintext. The slight increase in the latency

for the TCN scenario is due to more frequent Gaussian parameters’ re-computation at the

ESP side. For instance, for the dataset with 100000 data points, the latency difference for

step size 200 is only 10.68 seconds whereas the latency difference for step size 50 is 20.02

seconds. Again, this is due to the fact that in the UDH scenario, smaller step sizes result

in more communication between the ESP and DO for more frequent Gaussian param-

eters’ re-computation. Figure 4.9(b) shows the communication cost comparison between

TCN and UDH scenarios which also reflects the results in Figure 4.9(a). Note that, for the

TCN scenario, the communication cost does not change for different step sizes since for

this scenario the communication cost is incurred only when the DO sends the raw data to

the ESP and, therefore, the communication cost is not impacted by the anomaly detection

task. Therefore, the communication cost difference between these two scenarios increases

as the step size decreases. For instance, for the dataset with 100000 data points, the com-

101

munication overhead difference for step size 200 is only 2.63 MBs whereas the difference

for step size 50 is 5.92 MBs. Note that depending on the nature of the data this overhead

could be reduced drastically even for small step sizes by further reducing the sample size

which is set at 50 for these experiments.

In summary, though the UDH scenario has higher overhead than the TCN scenario for

very small step sizes, the TCN scenario does not provide any data privacy. Moreover, in

many applications, such as in industrial data, recomputing the Gaussian parameters every

10 data points may not be required. With larger step sizes, the overhead difference be-

tween the two scenarios become insignificant whereas only the UDH scenario is privacy-

preserving.

4.5.6 Privacy Analysis

According to the techniques described in Section 4.4.3 (i.e., encrypted data offsetting

and interleaving η), the only knowledge the ESP can obtain from the encrypted data and

anomaly scores is the boundaries of different data models. However, it cannot learn which

data model has larger values (since it can only observe the encrypted data values after

offsetting) and thus cannot learn the pattern of the underlying plaintext data. Moreover,

the boundaries of different data models can be obscured by breaking down the consecutive

data points belonging to a single data model into multiple unequal parts. For example, if

there are 100 consecutive data points from a single data model, the DO could ask for the

sums of 30, 50, and 20 data points separately and add the 3 sums to compute the final

sum of the 100 data points (this would mislead the ESP to infer that there are data model

boundaries after 30, 50, and 20 data points). Also, in our framework, after computing

the anomaly scores, the DO end sends these values to the ESP in plaintext for storage.

However, if the privacy of the anomaly scores is a matter of concern (i.e., the DO does

not want the ESP to know if there is an anomaly), the DO can itself store the anomaly

scores. Due to the storage constraints at the DO end, the DO may store only the indexes

102

of the anomalous data points along with their anomaly scores. The storage overhead would

be negligible considering anomalies to be rare events.

To understand why our sequential (or, correlated) nonces preserve semantic security, it

is important to notice how we use nonces during encryption. We first concatenate the nonce

with the key which results in (k||n) and then we compute a cryptographic hash function

on this concatenation, i.e., H(k||n). Later, in the security analysis, we prove that H(k||n)

- H(k||n − 1) = F (n, k) is pseudo-random. The cryptographic hash functions and then

computing F (n, k) provides a layer of randomization on the nonces. Again, we depend on

the secrecy of the key only, and without the key k, the attacker cannot compute H() or F ()

even if the nonces are correlated.

4.6 Related Work

Although there exist approaches for anomaly detection in IoT [124,125], none of these

consider privacy. Emami-Naeini et. al [126] design a methodology to identify privacy

expectations in the IoT world. In what follows, we provide an overview of existing ap-

proaches for privacy-preserving analytics broadly classified into five categories.

Homomorphic Encryption (HE)-based strategies: Techniques in this class have the abil-

ity to perform computations directly on encrypted data and therefore require fewer interac-

tions between the ESP and DO while removing the requirement of a trusted third party.

While our Trident scheme belongs to this category as a partial homomorphic encryp-

tion (PHE) scheme, there also exist fully homomorphic encryption (FHE) schemes [127]

that support arbitrary computations on encrypted data with the trade-off that these schemes

are too complex to be used in practical applications. Several schemes [128, 129] have

been recently proposed that focus on reducing the complexity of the original FHE scheme.

However, unfortunately, such schemes still remain impractical in terms of latency and com-

munication overhead for use in large-scale and/or real-time applications. There are many

other additively homomorphic encryption schemes, e.g., [130], [131], [132], [133], [134],

and [135]. Some PHE schemes [131] may support addition and multiplication simultane-

103

ously but unfortunately are not secure enough [136]. Some recent work aim to leverage

partial homomorphic encryption schemes for different real-life applications [137].

Anonymization-based strategies: These approaches partition attributes in a given database

into two sets − those containing Personally Identifiable Information (PII) and the rest that

do not, and remove the set of PII (e.g., ‘Name’, ‘Social Security Number’). Attributes

such as “Zip code”, “Age”, “Gender”, etc. which can identify an individual when used in

combination are anonymized using techniques such as k-anonymity [138], l-diversity, etc.

However, anonymization based strategies often degrade the utility of the data for anomaly

detection [139].

Differential privacy-based strategies: Existing work that leverage differential privacy

either assume a co-operative environment for anomaly detection [27] or utilize crowd-

sourcing [28]. These assumptions do not directly apply to our scenario where there is a

single data owner willing to outsource the anomaly detection task while simultaneously

preserving the privacy of the data. Moreover, differential privacy based solutions would

require injecting a significant amount of fake data to preserve the privacy of the actual data

which in turn would reduce the utility significantly.

SMC-based strategies: These strategies use cryptographic protocols such as Yao’s gar-

bled circuits [23], secret sharing [140], etc. Most SMC-based strategies rely on peer-to-

peer communication and are usually defined in 2-party scenarios, with extension to multi-

party scenarios often resulting in significant communication overhead. Moreover, some

SMC-based techniques are exposed to several security vulnerabilities from different weak

assumptions, e.g., the assumption of a trusted third party [141].

Randomization-based strategies: These approaches are based on randomization tech-

niques, such as additive data perturbation and random subspace projection [142]. While

these approaches are fast and efficient, they do not provide strong security guarantees and

are often susceptible to attacks [26].

104

5. CONCLUSION AND FUTURE WORK

The simplest solution to defend against the ransomware is using backups. Though this

is trivial, it would not be a practical assumption when there are millions of people using

machines for personal and organizational purposes while being connected to the Internet.

Also even when the backup is in place, users may lose changes that are executed after

the most recent backup. This raises the requirement of very frequent backup procedure

which makes the assumption even more impractical. Therefore, given the size of today’s

ransomware threat, it is necessary that early ransomware detection systems be installed for

the protection of personal and organization data. In the first part of this thesis, we introduce

RWGuard that detects crypto-ransomware on a user’s machine in real-time while removing

the false positives due to the user’s benign file operations. We evaluate RWGuard against

14 most prevalent ransomware families. Our experiments show that RWGuard is effective

in early detection of ransomware with only negligible false positives (∼0.1%) and zero false

negatives while incurring an overhead of only ∼1.9%. Furthermore, RWGuard recovers

all files that are encrypted using CryptoAPI by the corresponding ransomware.

In Ghostbuster, we have proposed a technique to create fine-grained profiles of file sys-

tem users and to use these profiles for detecting anomalous accesses to file systems. We

consider that these anomalous accesses are due to the abuse of data by an insider or by

an external attacker who can gain access to the files by exploiting the vulnerabilities of

the software or by stealing credentials using different techniques, e.g., man-in-the-middle

attack, key-logging, phishing, and so on. However, we learn the normal access patterns of

the users by utilizing the block level access information from the OS kernel space and de-

tect such malicious accesses with an accuracy of 98.7%. Note that our AD mechanism can

be integrated with any existing anomaly response system [143] which would take actions

automatically when our AD mechanism detects an anomaly. Examples of such responses

include: sending an alarm to the system/security administrator, disconnecting the user, or

105

blocking the user from accessing the file. Also, note that a malicious security administra-

tor may abuse the profiles and execute different attacks including masquerading and data

harvesting. For protection against such scenarios, we consider the system to have multi-

ple administrators with separation of duty policy [144]. Furthermore, our AD mechanism

can be used to monitor accesses to the files storing the profiles (e.g., accesses by system

administrators).

In order to address the cases of anomaly detection that require outsourcing the analysis

of privacy sensitive data (e.g., health data, financial data), we design an edge computing-

based model that detects point, contextual, and collective anomalies in streaming large

scale sensor data while preserving the privacy of the data simultaneously. We consider

the windowed Gaussian anomaly detector algorithm for detecting anomalies and propose

a privacy-preserving version of this algorithm that performs anomaly detection while the

edge service provider only sees the encrypted data. In our solution, the sensitive data is

never stored in plaintext. While the storage task is outsourced to the edge service provider,

the anomaly detection task is distributed between the edge service provider and the de-

vice. We build a lightweight and aggregation optimized encryption scheme, Trident,

which results in practical latency and communication overhead without compromising the

accuracy of the anomaly detection results. Finally, we evaluate the performance of the

proposed solution in terms of accuracy of the resulting model, communication cost, and

latency, and compare it with a baseline scenario where the data is off-loaded to the edge

service provider in plaintext and the edge service provider performs anomaly detection on

plaintext data. We also perform a scalability analysis to determine the performance of our

approach as the size of the data is increased.

Future Work

Effective Anomaly Detection Systems Against a Variety of Advanced Attacks: De-

spite having various security measures deployed to counter cyber attacks such as data

breaches, we still have a long way to go before we can, as a whole, catch up with the grow-

106

ing threats of cyber crimes. While cyber attacks are becoming increasingly sophisticated

and dangerous, we, as security enthusiasts, aspire to develop effective anomaly detection

systems against a powerful class of attackers that aim to compromise data confidentiality,

integrity, and availability. For instance, in order to protect against advanced ransomware,

we plan to profile the existing encryption libraries and in real-time scan the process’s mem-

ory for similar operations so that we can recover the keys used for encryption and restore

the files. Moreover, we plan to take snapshots of the ransomware processes’ memories be-

fore terminating the processes and analyze those for traces of encryption/decryption keys.

There are also novel attacks (e.g., [145]) that demonstrate that it is possible to avoid the

generation of significant behavioral features and evade a ransomware detector by distribut-

ing the overall malware workload across a small set of cooperating processes. Also, there

could be advanced insider threats, such as, a group of insiders evading the detection by

remaining within the set threshold individually while still stealing sensitive data in a com-

bined fashion. Though such collusion attacks are less popular among insiders, this is an

intelligent way of exfiltrating sensitive information and therefore, we aim to identify these

challenging attacks in the future. Moreover, handling concept drifts in benign activities

over time when there is no role-based access control system and also, handling adversarial

concept drifts are also part of our future work.

Practical Real-Time Machine Learning over Encrypted Data: Many emerging do-

mains, such as autonomous systems and Industrial Internet of Things (IIoT) require real-

time machine learning to support automated and effective decision making. Velocity and

volume are two of the most salient features of the data generated by these emerging do-

mains, and thus must be taken care of while processing the data. While many companies

(e.g., Google, Microsoft) provide real-time analytics services, unfortunately, these services

are not compatible with applications where the data requiring such real-time analytics are

privacy-sensitive, e.g., personal healthcare systems and critical industrial monitoring sys-

tems. This is due to the shortfall that machine learning algorithms are designed to execute

on plaintext data where the privacy issues take a back seat even if the data used for training

and decision making are sensitive. Moreover, despite the privacy promises by third-party

107

service providers, due to the recent cyber attacks and massive data breaches, many indi-

viduals/organizations are understandably hesitant to share their data in plaintext with third-

parties. Therefore, our work on privacy-preserving real-time anomaly detection has several

possible extensions in terms of scalability, dealing with multiple parties, and last but not

the least incorporating other real-time machine learning requirements– as discussed in the

following:

(i) In large-scale systems such as the Industrial Internet of Things (IIoT) with thousands

of nodes deployed, the task of monitoring for anomalous trends indicative of a pending

system failure becomes reasonably complex,

(ii) This challenge is further complicated when the data is shared among multiple parties

who have a common interest in learning models and making real-time decisions from the

union of their data, e.g., multiple autonomous vehicles guiding themselves to drive without

human intervention, and

(iii) Besides anomaly detection and predictive maintenance, there are other applica-

tions such as real-time e-commerce recommendation systems where the individuals are

concerned about their data privacy and may not want to share their usage behaviors on

e-commerce sites (e.g., dating sites) in plaintext with the service providers.

In response to these emerging privacy issues, we plan to develop practical real-time

machine learning solutions over encrypted data that would simultaneously preserve the

privacy of such sensitive data.

Evaluating Privacy and Security Assurance of Machine Learning Models: While a

variety of companies are streamlining their business processes by adopting machine learn-

ing technologies and leveraging commercial ML-as-a-service APIs, it is equally important

to understand if these technologies are introducing attack vectors against the privacy of

the data on which the models were trained [146, 147]. This is because, in many cases, the

datasets used for training such models are proprietary and confidential. Part of my current

research [148] addresses and evaluates the vulnerabilities of model inversion attacks on

commercially available ML-as-a-service APIs. With the recent advancements in adversar-

ial machine learning, we also plan to evaluate the security assurance of machine learning

108

models that specifically have security applications, e.g., if an adversary with access to only

a black-box model can determine whether a target data instance (an individual, an event,

etc.) has been used for training the model (also known as membership inference attack).

The consequence of such attacks can be far more devastating when the machine learning

model has security applications, such as machine learning for intrusion detection in cyber-

physical systems. For instance, an adversary might aim to learn the malicious events an

intrusion detection system is able to detect. By querying the model of this intrusion detec-

tion system multiple times, the adversary might be able to learn those malicious events–

if the model is vulnerable to membership inference attack. This may eventually help the

adversary to design a sophisticated attack input (i.e., a malicious event) which the victim

model would classify as benign. Moreover, poisoning attacks, where the adversary is able

to inject malicious training data and manipulate the output of the trained models, have been

shown to be effective against anomaly detection models [149, 150]. These kinds of attacks

simply undermine the foundations of such models with security applications and thus need

to be investigated urgently. With our experience in intrusion detection systems, we aim

to rigorously evaluate the vulnerability of such attacks and build theoretical foundations

to decide if a particular model is vulnerable. Designing solutions that would eliminate

such privacy and security vulnerability from the models while also conserving the models’

utility is also a part of our future work.

REFERENCES

109

REFERENCES

[1] T. Fox-Brewster, “Petya or notpetya: Why the latest ran-
somware is deadlier than wannacry.” FORBES, June 2017. [On-
line]. Available: https://www.forbes.com/sites/thomasbrewster/2017/06/27/
petya-notpetya-ransomware-is-more-powerful-than-wannacry

[2] J. C. Wong and O. Solon, “Massive ransomware cyber-attack
hits nearly 100 countries around the world.” Theguardian, May.
[Online]. Available: https://www.theguardian.com/technology/2017/may/12/
global-cyber-attack-ransomware-nsa-uk-nhs

[3] H. Van Riper, “Return of the worm: A red hat analysis.” Digital Shadows, Septem-
ber 2017. [Online]. Available: https://www.digitalshadows.com/blog-and-research/
return-of-the-worm-a-red-hat-analysis/

[4] E. Bertino, Data Protection from Insider Threats, ser. Synthesis Lectures on Data
Management. San Rafael: Morgan & Claypool Publishers, 2012.

[5] Google, https://marketingplatform.google.com/about/analytics.

[6] Microsoft, https://azure.microsoft.com/en-us/solutions/architecture/
anomaly-detection-in-real-time-data-streams.

[7] Anomaly, https://anomaly.io/.

[8] “Always encrypted,” https://docs.microsoft.com/en-us/sql/relational-
databases/security/encryption/always-encrypted-database-engine, October 2019.

[9] M. I. Sarfraz, M. Nabeel, J. Cao, and E. Bertino, “Dbmask: Fine-grained access
control on encrypted relational databases,” Trans. Data Privacy, vol. 9, no. 3, p.
187–214, Dec. 2016.

[10] R. Poddar, T. Boelter, and R. A. Popa, “Arx: An encrypted database using
semantically secure encryption,” Proc. VLDB Endow., vol. 12, no. 11, p. 1664–1678,
Jul. 2019. [Online]. Available: https://doi.org/10.14778/3342263.3342641

[11] J. Lee, J. Lee, and J. Hong, “How to make efficient decoy files for ransomware
detection?” in Proceedings of the International Conference on Research in Adaptive
and Convergent Systems. New York, NY, USA: ACM, 2017, pp. 208–212.

[12] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda, “Cutting the gordian
knot: A look under the hood of ransomware attacks,” in Proceedings of the 12th
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment - Volume 9148, ser. DIMVA 2015. New York, NY, USA: Springer-
Verlag New York, Inc., 2015, pp. 3–24.

https://www.forbes.com/sites/thomasbrewster/2017/06/ 27/petya-notpetya-ransomware-is-more-powerful-than-wannacry
https://www.forbes.com/sites/thomasbrewster/2017/06/ 27/petya-notpetya-ransomware-is-more-powerful-than-wannacry
https://www.theguardian.com/technology/2017/may/12/global-cyber-attack-ransomware-nsa-uk-nhs
https://www.theguardian.com/technology/2017/may/12/global-cyber-attack-ransomware-nsa-uk-nhs
https://www.digitalshadows.com/blog-and-research/return-of-the-worm-a-red-hat-analysis/
https://www.digitalshadows.com/blog-and-research/return-of-the-worm-a-red-hat-analysis/
https://marketingplatform.google.com/about/analytics
https://azure.microsoft.com/en-us/solutions/architecture/anomaly-detection-in-real-time-data-streams
https://azure.microsoft.com/en-us/solutions/architecture/anomaly-detection-in-real-time-data-streams
https://anomaly.io/
https://doi.org/10.14778/3342263.3342641

110

[13] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda, “Unveil: A large-
scale, automated approach to detecting ransomware,” in 25th USENIX Security Sym-
posium (USENIX Security 16). Austin, TX: USENIX Association, 2016, pp. 757–
772.

[14] A. Kharraz and E. Kirda, “Redemption: Real-time protection against ransomware at
end-hosts,” in Research in Attacks, Intrusions, and Defenses, 2017, pp. 98–119.

[15] J. Huang, J. Xu, X. Xing, P. Liu, and M. K. Qureshi, “Flashguard: Leveraging in-
trinsic flash properties to defend against encryption ransomware,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, ser.
CCS ’17. New York, NY, USA: ACM, 2017, pp. 2231–2244.

[16] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler, “Cryptolock (and drop it): Stop-
ping ransomware attacks on user data,” in 2016 IEEE 36th International Conference
on Distributed Computing Systems (ICDCS), June 2016, pp. 303–312.

[17] “Security breach at sony– here’s what you need to know,”
http://www.forbes.com/sites/josephsteinberg/2014/12/11/massive-security-breach-
at-sony-heres-what-you-need -to-know/, December 2014.

[18] D. M. Andrew P. Moore, Michael Hanley, “A pattern for increased monitoring for
intellectual property theft by departing insiders,” Carnegie Mellon University, Tech.
Rep., 2012, http://www.sei.cmu.edu/reports/12tr008.pdf.

[19] A. P. Moore, M. L. Collins, D. A. Mundie, R. M. Ruefle, and D. M. McIn-
tire, “Pattern-based design of insider threat programs,” Carnegie Mellon Uni-
versity, Tech. Rep., 2014, http://resources.sei.cmu.edu/asset files/technicalnote/
2014 004 001 427430.pdf.

[20] A. Kamra, E. Terzi, and E. Bertino, “Detecting anomalous access patterns in rela-
tional databases,” The VLDB Journal, vol. 17, no. 5, pp. 1063–1077, Aug. 2008.

[21] S. R. Hussain, A. M. Sallam, and E. Bertino, “Detanom: Detecting anomalous
database transactions by insiders,” in Proceedings of the 5th ACM Conference on
Data and Application Security and Privacy, ser. CODASPY ’15, 2015, pp. 25–35.

[22] B. Juba, C. Musco, F. Long, S. Sidiroglou-douskos, and M. Rinard, “Principled
sampling for anomaly detection,” in Proceedings of the Network and Distributed
System Security Symposium, 2015.

[23] A. C.-C. Yao, “How to generate and exchange secrets,” 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science, vol. 00, pp. 162–167, 1986.

[24] X. Yi, A. Bouguettaya, D. Georgakopoulos, A. Song, and J. Willemson, “Privacy
protection for wireless medical sensor data,” IEEE Trans. on Dependable and Secure
Computing, vol. 13(3), pp. 369–380, May 2016.

[25] K. Bhaduri, M. D. Stefanski, and A. N. Srivastava, “Privacy-preserving outlier de-
tection through random nonlinear data distortion,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 41, no. 1, pp. 260–272, Feb 2011.

[26] Z. Huang, W. Du, and B. Chen, “Deriving private information from randomized
data,” in Proceedings of the 2005 ACM SIGMOD International Conference on Man-
agement of Data, ser. SIGMOD ’05. New York, NY, USA: ACM, 2005, pp. 37–48.

111

[27] J. Vaidya and C. Clifton, “Privacy-preserving outlier detection,” in Data Mining,
2004. ICDM ’04. Fourth IEEE International Conference on, Nov 2004, pp. 233–
240.

[28] M. Maruseac, G. Ghinita, B. Avci, G. Trajcevski, and P. Scheuermann, “Privacy-
preserving detection of anomalous phenomena in crowdsourced environmental sens-
ing,” in Advances in Spatial and Temporal Databases. Cham: Springer Interna-
tional Publishing, 2015, pp. 313–332.

[29] D. C. Montgomery, G. C. Runger, and N. F. Hubele, “Engineering statistics.” Wiley,
2006.

[30] A. Jayanthi, “First known ransomware attack in 1989 also targeted
healthcare.” Becker’s Hospital Review, May 2016. [Online]. Avail-
able: http://www.beckershospitalreview.com/healthcare-information-technology/
first-known-ransomware-attack-in-1989-also-targeted-healthcare.html

[31] A. Continella, A. Guagnelli, G. Zingaro, G. De Pasquale, A. Barenghi, S. Zanero,
and F. Maggi, “Shieldfs: A self-healing, ransomware-aware filesystem,” in Proceed-
ings of the 32Nd Annual Conference on Computer Security Applications, ser. AC-
SAC ’16. New York, NY, USA: ACM, 2016, pp. 336–347.

[32] E. Kolodenker, W. Koch, G. Stringhini, and M. Egele, “Paybreak: Defense against
cryptographic ransomware,” in Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, ser. ASIA CCS. New York, NY, USA:
ACM, 2017, pp. 599–611.

[33] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu, “Automated Dy-
namic Analysis of Ransomware: Benefits, Limitations and use for Detection,” ArXiv
e-prints, Sep. 2016.

[34] Kryptel. [Online]. Available: https://www.kryptel.com/products/kryptel.php

[35] M. Inc., “File system minifilter drivers,” May 2014. [Online]. Available: https:
//msdn.microsoft.com/en-us/library/windows/hardware/ff540402(v=vs.85).aspx

[36] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., 1993.

[37] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001.

[38] V. Roussev, Data Fingerprinting with Similarity Digests. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 207–226.

[39] J. Lin, “Divergence measures based on the shannon entropy,” IEEE Trans. Inf.
Theor., vol. 37, no. 1, pp. 145–151, Sep. 2006.

[40] VirusTotal. [Online]. Available: https://www.virustotal.com

[41] O. Malware. [Online]. Available: http://openmalware.org

[42] VXVault. [Online]. Available: http://vxvault.siri-urz.net/URL List.php

[43] Zelster. [Online]. Available: https://zeltser.com/malware-sample-sources/

[44] Malc0de. [Online]. Available: http://malc0de.com/rss

http://www.beckershospitalreview.com/healthcare-information-technology/first-known-ransomware-attack-in-1989-also-targeted-healthcare.html
http://www.beckershospitalreview.com/healthcare-information-technology/first-known-ransomware-attack-in-1989-also-targeted-healthcare.html
https://www.kryptel.com/products/kryptel.php
https ://msdn. microsoft .com/en- us/library/ windows/hardware/ff540402(v=vs.85).aspx
https ://msdn. microsoft .com/en- us/library/ windows/hardware/ff540402(v=vs.85).aspx
https://www.virustotal.com
http://openmalware.org
http://vxvault.siri-urz.net/URL_List.php
https://zeltser.com/malware-sample-sources/
http://malc0de.com/rss

112

[45] D. Xu, J. Ming, and D. Wu, “Cryptographic function detection in obfuscated binaries
via bit-precise symbolic loop mapping,” in Proceedings 2017 IEEE Symposium on
Security and Privacy, May 2017, pp. 129–140.

[46] J. K. Lee, S. Y. Moon, and J. H. Park, “Cloudrps: a cloud analysis based enhanced
ransomware prevention system,” The Journal of Supercomputing, vol. 73, no. 7, pp.
3065–3084, Jul 2017.

[47] K. Cabaj, M. Gregorczyk, and W. Mazurczyk, “Software-defined networking-
based crypto ransomware detection using HTTP traffic characteristics,” CoRR, vol.
abs/1611.08294, 2016.

[48] N. Andronio, S. Zanero, and F. Maggi, “Heldroid: Dissecting and detecting mobile
ransomware,” in Proceedings of the 18th International Symposium on Research in
Attacks, Intrusions, and Defenses - Volume 9404, ser. RAID. New York, NY, USA:
Springer-Verlag New York, Inc., 2015, pp. 382–404.

[49] D. Y. Huang and et al., “Tracking ransomware end-to-end,” in Proceedings of the
2018 IEEE Conference on Security and Privacy, ser. SP’18, 2018.

[50] C. V. Bijitha, R. Sukumaran, and H. V. Nath, “A survey on ransomware detection
techniques,” in Secure Knowledge Management In Artificial Intelligence Era, S. K.
Sahay, N. Goel, V. Patil, and M. Jadliwala, Eds. Singapore: Springer Singapore,
2020, pp. 55–68.

[51] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo, “Baiting inside at-
tackers using decoy documents.” Springer Berlin Heidelberg, 2009, pp. 51–70.

[52] CryptoStopper. [Online]. Available: www.watchpointdata.com/cryptostopper/

[53] J. Calvet, J. M. Fernandez, and J.-Y. Marion, “Aligot: Cryptographic function iden-
tification in obfuscated binary programs,” in Proceedings of the 2012 ACM Confer-
ence on Computer and Communications Security. New York, NY, USA: ACM,
2012, pp. 169–182.

[54] P. Lestringant, F. Guihéry, and P.-A. Fouque, “Automated identification of crypto-
graphic primitives in binary code with data flow graph isomorphism,” in Proceed-
ings of the 10th ACM Symposium on Information, Computer and Communications
Security, ser. ASIA CCS. New York, NY, USA: ACM, 2015, pp. 203–214.

[55] A. Sallam, E. Bertino, S. R. S. Hussain, D. Landers, M. Lefter, and D. Steiner, “Db-
safe—an anomaly detection system to protect databases from exfiltration attempts,”
IEEE Systems Journal, vol. 11, no. 2, pp. 483–493, 2017.

[56] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based access
control models,” Computer, vol. 29, no. 2, pp. 38–47, Feb. 1996.

[57] J. Park and R. Sandhu, “Originator control in usage control,” in Proceedings of the
3rd International Workshop on Policies for Distributed Systems and Networks (POL-
ICY’02), 2002, pp. 60–66.

[58] E. Bertino and G. Ghinita, “Towards mechanisms for detection and prevention of
data exfiltration by insiders: Keynote talk paper,” in Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security, ser. ASIACCS
’11, 2011, pp. 10–19.

www.watchpointdata.com/cryptostopper/

113

[59] “Cybersecurity watch survey: How bad is the insider threat?” Carnegie Mellon
University, Tech. Rep., 2012, http://resources.sei.cmu.edu/asset files/Presentation/
2013 017 101 57766.pdf.

[60] C. Huth and R. Ruefle, “Components and considerations in building an
insider threat program,” Carnegie Mellon University, Tech. Rep., 2013,
http://resources.sei.cmu.edu/asset files/Webinar/ 2013 018 101 69083.pdf.

[61] M. Collins, D. M. Cappelli, T. Caron, R. F. Trzeciak, and A. P. Moore, “Spotlight
on: Programmers as malicious insiders (updated and revised),” Carnegie Mellon
University, Tech. Rep., 2013, http://resources.sei.cmu.edu/asset files/WhitePaper/
2013 019 001 85232.pdf.

[62] E. Bertino, A. Kamra, and J. P. Early, “Profiling database application to detect sql
injection attacks,” in IEEE International Performance, Computing, and Communi-
cations Conference, IPCCC 2007, April 2007, pp. 449–458.

[63] S. Mathew, M. Petropoulos, H. Q. Ngo, and S. Upadhyaya, “A data-centric approach
to insider attack detection in database systems,” in Proceedings of the 13th Interna-
tional Conference on Recent Advances in Intrusion Detection, ser. RAID’10, 2010,
pp. 382–401.

[64] D. Fadolalkarim and E. Bertino, “A-pandde: Advanced provenance-based anomaly
detection of data exfiltration,” Computers Security, vol. 84, pp. 276 –
287, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167404819300823

[65] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, and E. Vazquez,
“Anomaly-based network intrusion detection: Techniques, systems and challenges,”
Computers & Security, pp. 18 – 28, 2009.

[66] M. V. Mahoney and P. K. Chan, “Learning nonstationary models of normal network
traffic for detecting novel attacks,” in Proceedings of the Eighth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, ser. KDD ’02,
2002, pp. 376–385.

[67] M. Thottan and C. Ji, “Anomaly detection in ip networks,” Signal Processing, IEEE
Transactions on, vol. 51, no. 8, pp. 2191–2204, Aug 2003.

[68] “Detecting insider information theft using features from file access logs,” in Com-
puter Security - ESORICS 2014, ser. Lecture Notes in Computer Science, vol. 8713,
2014.

[69] “Anomaly detection in computer security and an application to file system accesses,”
in Foundations of Intelligent Systems, ser. Lecture Notes in Computer Science, M.-S.
Hacid, N. Murray, Z. Raś, and S. Tsumoto, Eds., vol. 3488, 2005.

[70] L. Huang and K. Wong, “Anomaly detection by monitoring filesystem activities,” in
Proceedings of the 2011 IEEE 19th International Conference on Program Compre-
hension, ser. ICPC ’11, 2011, pp. 221–222.

[71] ZFS End-to-End Data Integrity, https://blogs.oracle.com/bonwick/entry/zfs end to
end data.

http://www.sciencedirect.com/science/article/pii/S0167404819300823
http://www.sciencedirect.com/science/article/pii/S0167404819300823
https://blogs.oracle.com/bonwick/entry/ zfs_end_to_end_data
https://blogs.oracle.com/bonwick/entry/ zfs_end_to_end_data

114

[72] S. Patil, A. Kashyap, G. Sivathanu, and E. Zadok, “Fs: An in-kernel integrity checker
and intrusion detection file system,” in Proceedings of the 18th USENIX Conference
on System Administration, ser. LISA ’04, 2004, pp. 67–78.

[73] M. B. Salem, S. Hershkop, and S. J. Stolfo, A Survey of Insider Attack Detection
Research. Boston, MA: Springer US, 2008, pp. 69–90.

[74] D. E. Denning, “An intrusion-detection model,” IEEE Trans. Softw. Eng., vol. 13,
no. 2, pp. 222–232, Feb. 1987.

[75] S. Mehnaz and E. Bertino, “Ghostbuster: A fine-grained approach for anomaly de-
tection in file system accesses,” in Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy, ser. CODASPY ’17, 2017, pp. 3–14.

[76] H. Mannila, H. Toivonen, and A. Inkeri Verkamo, “Discovery of frequent episodes
in event sequences,” Data Min. Knowl. Discov., vol. 1, no. 3, pp. 259–289, Jan. 1997.

[77] D. Fadolalkarim, A. Sallam, and E. Bertino, “Pandde: Provenance-based anomaly
detection of data exfiltration,” in Proceedings of the Sixth ACM Conference on Data
and Application Security and Privacy, ser. CODASPY ’16, 2016, pp. 267–276.

[78] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules in large
databases,” in Proceedings of the 20th International Conference on Very Large Data
Bases, ser. VLDB, 1994, pp. 487–499.

[79] S. Laxman, P. S. Sastry, and K. P. Unnikrishnan, “A fast algorithm for finding fre-
quent episodes in event streams,” in Proceedings of the 13th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, ser. KDD ’07, 2007,
pp. 410–419.

[80] J. Vaidya, V. Atluri, and J. Warner, “Roleminer: Mining roles using subset enumer-
ation,” in Proceedings of the 13th ACM Conference on Computer and Communica-
tions Security, ser. CCS, 2006, pp. 144–153.

[81] J. Vaidya, V. Atluri, and Q. Guo, “The role mining problem: Finding a minimal
descriptive set of roles,” in Proceedings of the 12th ACM Symposium on Access
Control Models and Technologies, ser. SACMAT ’07, 2007, pp. 175–184.

[82] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and J. Lobo, “Min-
ing roles with semantic meanings,” in Proceedings of the 13th ACM Symposium on
Access Control Models and Technologies, ser. SACMAT ’08, 2008, pp. 21–30.

[83] G. Cleuziou, “An extended version of the k-means method for overlapping cluster-
ing,” in 2008 19th International Conference on Pattern Recognition, Dec 2008, pp.
1–4.

[84] J. J. Whang, I. S. Dhillon, and D. F. Gleich, “Non-exhaustive, overlapping k-means,”
in Proceedings of the 2015 SIAM International Conference on Data Mining, pp.
936–944.

[85] H. Takabi and J. B. Joshi, “Stateminer: An efficient similarity-based approach for
optimal mining of role hierarchy,” in Proceedings of the 15th ACM Symposium on
Access Control Models and Technologies, ser. SACMAT ’10, 2010, pp. 55–64.

115

[86] S. Shetty, S. K. Mukkavilli, and L. H. Keel, “An integrated machine learning and
control theoretic model for mining concept-drifting data streams,” in 2011 IEEE
International Conference on Technologies for Homeland Security (HST), Nov 2011,
pp. 75–80.

[87] “Handling adversarial concept drift in streaming data,” Expert Systems with Appli-
cations, vol. 97, pp. 18 – 40, 2018.

[88] Intel R© Software Guard Extensions (Intel R© SGX), https://software.intel.com/sgx/.

[89] H. Mazzawi, G. Dalal, D. Rozenblatz, L. Ein-Dorx, M. Niniox, and O. Lavi,
“Anomaly detection in large databases using behavioral patterning,” in 2017 IEEE
33rd International Conference on Data Engineering (ICDE), April 2017, pp. 1140–
1149.

[90] Block I/O Layer Tracing using blktrace, http://smackerelofopinion.blogspot.com/2009/10/block-
io-layer-tracing-using-blktrace.html.

[91] “Towards a taxonomy of intrusion-detection systems,” Comput. Netw., vol. 31, no. 9,
pp. 805–822, Apr. 1999.

[92] T. R. Glass-Vanderlan, M. D. Iannacone, M. S. Vincent, Q. Chen, and R. A.
Bridges, “A survey of intrusion detection systems leveraging host data,” CoRR, vol.
abs/1805.06070, 2018.

[93] D. Dimitrios, M. S. A., K. Georgios, P. Maria, C. Nathan, and G. Stefanos, “Eval-
uation of anomaly-based ids for mobile devices using machine learning classifiers,”
Security and Communication Networks, vol. 5, no. 1, pp. 3–14.

[94] N. Vrakas and C. Lambrinoudakis, “An intrusion detection and prevention system
for ims and voip services,” International Journal of Information Security, vol. 12,
no. 3, pp. 201–217, Jun 2013.

[95] H. T. Nguyen, K. Franke, and S. Petrovic, “Towards a generic feature-selection mea-
sure for intrusion detection,” in Proceedings of the 2010 20th International Confer-
ence on Pattern Recognition, ser. ICPR ’10, 2010, pp. 1529–1532.

[96] N. Baracaldo and J. Joshi, “A trust-and-risk aware rbac framework: Tackling insider
threat,” in Proceedings of the 17th ACM Symposium on Access Control Models and
Technologies, 2012, pp. 167–176.

[97] N. Görnitz, M. Kloft, K. Rieck, and U. Brefeld, “Toward supervised anomaly detec-
tion,” J. Artif. Int. Res., vol. 46, no. 1, pp. 235–262, Jan. 2013.

[98] Y. Li, N. Wu, S. Wang, and S. Jajodia, “Enhancing profiles for anomaly detection
using time granularities,” J. Comput. Secur., vol. 10, no. 1-2, pp. 137–157, Jul. 2002.

[99] S. Mehnaz and E. Bertino, “Building robust temporal user profiles for anomaly de-
tection in file system accesses,” in 14th Annual Conference on Privacy, Security and
Trust (PST), 2016, pp. 207–210.

[100] S. S. Srivastava, M. Atre, S. Sharma, R. Gupta, and S. K. Shukla, “Verity:
Blockchains to detect insider attacks in dbms,” 2019.

116

[101] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo, Baiting Inside At-
tackers Using Decoy Documents. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 51–70.

[102] B. M. Bowen, V. P. Kemerlis, P. Prabhu, A. D. Keromytis, and S. J. Stolfo, “Au-
tomating the injection of believable decoys to detect snooping,” in Proceedings of
the Third ACM Conference on Wireless Network Security, ser. WiSec ’10, 2010, pp.
81–86.

[103] I. Ray and N. Poolsapassit, “Using attack trees to identify malicious attacks from
authorized insiders,” in Proceedings of the 10th European Conference on Research
in Computer Security, ser. ESORICS’05, 2005, pp. 231–246.

[104] T. E. e. a. Senator.

[105] W. Claycomb, D. Shin, and G.-J. Ahn, “Enhancing directory virtualization to detect
insider activity,” Security and Communication Networks, vol. 5, no. 8.

[106] J. B. Camiña, J. Rodrı́guez, and R. Monroy, Towards a Masquerade Detection Sys-
tem Based on User’s Tasks. Cham: Springer International Publishing, 2014, pp.
447–465.

[107] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and re-
search challenges,” Journal of Internet Services and Applications, vol. 1, no. 1, pp.
7–18, May 2010.

[108] UCI Machine Learning Repository, http://archive.ics.uci.edu/ml.

[109] “Iot attacks are getting worse and no one’s listening.” CNET.

[110] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of the internet of things:
perspectives and challenges,” Wireless Networks, vol. 20, no. 8, pp. 2481–2501, Nov
2014.

[111] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and chal-
lenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, Oct 2016.

[112] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, “Data security and privacy-
preserving in edge computing paradigm: Survey and open issues,” IEEE Access,
vol. 6, pp. 18 209–18 237, 2018.

[113] H. Takabi, J. B. Joshi, and G.-J. Ahn, “Security and privacy challenges in cloud
computing environments,” IEEE Security and Privacy Magazine, vol. 8, no. 6, pp.
24–31, Nov 2010.

[114] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield, and K. Schwan,
“Statistical techniques for online anomaly detection in data centers,” in 12th
IFIP/IEEE International Symposium on Integrated Network Management and Work-
shops, May 2011, pp. 385–392.

[115] “Realadexchange data (exchange-4 cpc results.csv),” https://github.com/numenta/
NAB/tree/master/data/realAdExchange.

[116] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
Comput. Surv., vol. 41, pp. 15:1–15:58, 2009.

http://archive.ics.uci.edu/ml
https://github.com/numenta/NAB/tree/master/data/realAdExchange
https://github.com/numenta/NAB/tree/master/data/realAdExchange

117

[117] “Artificial data with no anomaly (art daily small noise.csv),” https://github.com/
numenta/NAB/tree/master/data/artificialNoAnomaly.

[118] C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park, “Scan statistics on enron
graphs,” Computational & Mathematical Organization Theory, vol. 11, no. 3, pp.
229–247, Oct 2005.

[119] M. Mongiovı̀, P. Bogdanov, R. Ranca, E. E. Papalexakis, C. Faloutsos, and A. K.
Singh, “Netspot: Spotting significant anomalous regions on dynamic networks,” in
Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 28–36.

[120] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly practical ver-
ifiable computation,” in Proceedings of the 2013 IEEE Symposium on Security and
Privacy, May 2013, pp. 238–252.

[121] ZeroMQ, http://zeromq.org/.

[122] Numenta Anomaly Benchmark, https://github.com/numenta/NAB.

[123] “Artificial data with anomaly, note=https://github.com/numenta/nab/tree/master/
data/artificialwithanomaly,.”

[124] S. Raza, L. Wallgren, and T. Voigt, “Svelte: Real-time intrusion detection in the
internet of things,” Ad Hoc Networks, vol. 11, no. 8, pp. 2661 – 2674, 2013.

[125] D. H. Summerville, K. M. Zach, and Y. Chen, “Ultra-lightweight deep packet
anomaly detection for internet of things devices,” in 2015 IEEE 34th International
Performance Computing and Communications Conference (IPCCC), Dec 2015, pp.
1–8.

[126] P. Emami-Naeini, S. Bhagavatula, H. Habib, M. Degeling, L. Bauer, L. Cranor, and
N. Sadeh, “Privacy expectations and preferences in an IoT world,” in SOUPS ’17:
Proceedings of the 13th Symposium on Usable Privacy and Security. USENIX,
Jul. 2017.

[127] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in In Proc. STOC,
2009, pp. 169–178.

[128] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic en-
cryption without bootstrapping,” in Proceedings of the 3rd Innovations in Theoreti-
cal Computer Science Conference, ser. ITCS ’12. ACM, 2012, pp. 309–325.

[129] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully homomorphic en-
cryption over the integers with shorter public keys,” in Proceedings of the 31st An-
nual Conference on Advances in Cryptology, ser. CRYPTO’11. Springer-Verlag,
2011, pp. 487–504.

[130] P. Paillier, “Public-key cryptosystems based on composite degree residuosity
classes,” in Proceedings of the 17th International Conference on Theory and Ap-
plication of Cryptographic Techniques, ser. EUROCRYPT’99. Berlin, Heidelberg:
Springer-Verlag, 1999, pp. 223–238.

[131] J. Domingo-Ferrer, “A provably secure additive and multiplicative privacy homo-
morphism,” in Proceedings of the 5th International Conference on Information Se-
curity, ser. ISC ’02. London, UK, UK: Springer-Verlag, 2002, pp. 471–483.

https://github.com/numenta/NAB/tree/master/data/artificialNoAnomaly
https://github.com/numenta/NAB/tree/master/data/artificialNoAnomaly
http://zeromq.org/
https://github.com/numenta/NAB
https://github.com/numenta/nab/tree/master/data/artificialwithanomaly
https://github.com/numenta/nab/tree/master/data/artificialwithanomaly

118

[132] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee, A. Haeberlen, H. Singh,
A. Modi, and S. Badrinarayanan, “Big data analytics over encrypted datasets with
seabed,” in Proceedings of the 12th USENIX Conference on Operating Systems De-
sign and Implementation, ser. OSDI’16, 2016, pp. 587–602.

[133] Ningduo Peng, Guangchun Luo, Ke Qin, and Aiguo Chen, “A fast additively sym-
metric homomorphic encryption scheme for vector data,” in Proceedings 2013 Inter-
national Conference on Mechatronic Sciences, Electric Engineering and Computer
(MEC), 2013, pp. 2586–2589.

[134] P. G. Carlos Aguilar Melchor and J. Herranz, “Additively homomorphic encryption
with d-operand multiplications,” Cryptology ePrint Archive, Report 2008/378, 2008,
https://eprint.iacr.org/2008/378.

[135] A. C. . Chan, “Symmetric-key homomorphic encryption for encrypted data process-
ing,” in 2009 IEEE International Conference on Communications, 2009, pp. 1–5.

[136] D. Wagner, Cryptanalysis of an Algebraic Privacy Homomorphism. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2003, pp. 234–239.

[137] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic encryption be
practical?” in Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, ser. CCSW ’11. New York, NY, USA: ACM, 2011, pp. 113–124.

[138] L. Sweeney, “K-anonymity: A model for protecting privacy,” Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 557–570, Oct. 2002.

[139] M. Burkhart, D. Brauckhoff, and M. May, “On the utility of anonymized flow traces
for anomaly detection,” CoRR, vol. abs/0810.1655, 2008.

[140] R. L. Rivest, A. Shamir, and Y. Tauman, “How to share a secret,” Communications
of the ACM, vol. 22, no. 22, pp. 612–613, 1979.

[141] S. Yakoubov, V. Gadepally, N. Schear, E. Shen, and A. Yerukhimovich, “A survey of
cryptographic approaches to securing big-data analytics in the cloud,” in 2014 IEEE
High Performance Extreme Computing Conference (HPEC), Sept 2014, pp. 1–6.

[142] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke, “Privacy preserving min-
ing of association rules,” in Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’02. New York,
NY, USA: ACM, 2002, pp. 217–228.

[143] A. Kamra and E. Bertino, “Design and implementation of an intrusion response
system for relational databases,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 23, no. 6, pp. 875–888, June 2011.

[144] R. Simon and M. E. Zurko, “Separation of duty in role-based environments,” in
Proceedings of the 10th IEEE Workshop on Computer Security Foundations, ser.
CSFW ’97, 1997, pp. 183–.

[145] F. D. Gaspari, D. Hitaj, G. Pagnotta, L. D. Carli, and L. V. Mancini, “The naked sun:
Malicious cooperation between benign-looking processes,” 2019.

https://eprint.iacr.org/2008/378

119

[146] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit
confidence information and basic countermeasures,” in Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security, ser. CCS
’15. New York, NY, USA: ACM, 2015, pp. 1322–1333. [Online]. Available:
http://doi.acm.org/10.1145/2810103.2813677

[147] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks
against machine learning models,” in Proceedings of the IEEE Symposium on Secu-
rity and Privacy (SP), May 2017, pp. 3–18.

[148] S. Mehnaz, N. Li, and E. Bertino, “Evaluating model inversion attacks on machine
learning models (under submission).”

[149] R. Bhargava, “Adversarial anomaly detection.” PhD dissertation, Purdue University,
August 2019.

[150] R. Bhargava and C. Clifton, “Anomaly detection under poisoning attacks,” in Pro-
ceedings of the ODD v5.0: Outlier Detection De-constructed Workshop, 24th
ACM SIGKDD international conference on Knowledge Discovery and Data Min-
ing (KDD), 2018.

http://doi.acm.org/10.1145/2810103.2813677

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	A Real-time Detection System Against Cryptographic Ransomware
	A Fine-grained Approach for Anomaly Detection in File System Accesses with Enhanced Temporal User Profiles
	Data Privacy for Real-time Anomaly Detection
	Thesis Statement

	RWGUARD: A REAL-TIME DETECTION SYSTEM AGAINST CRYPTOGRAPHIC RANSOMWARE
	Introduction
	Background
	Hybrid Cryptosystem
	IRPLogger
	CryptoAPI
	Microsoft Detours Library

	RWGuard Design
	Threat Model
	Overview
	Decoy Monitoring (DMon) Module
	Process Monitoring (PMon) Module
	File Change Monitoring (FCMon) Module
	File Classification (FCls) Module
	CryptoAPI Function Hooking (CFHk) Module

	RWGuard Implementation
	IRPParser
	Decoy File Generator
	CryptoAPI Function Hooking

	Evaluation
	Experiment Dataset
	Detection Effectiveness
	Detection w/ Decoy Deployment:
	Detection w/o Decoy Deployment:

	Size of Encrypted Data
	File Recovery
	Performance Overhead
	Comparison with Existing Approaches

	Discussion and Limitations
	Related Work

	GHOSTBUSTER: A FINE-GRAINED APPROACH FOR ANOMALY DETECTION IN FILE SYSTEM ACCESSES WITH ENHANCED TEMPORAL USER PROFILES
	Introduction
	Preliminaries
	Blktrace Utility
	Event Sequences and Episodes

	A Taxonomy of Anomalous File Accesses
	Profile Creation (PC) Phase
	Feature Extraction (FE)
	Block Level Profiling (BLP)
	Access Cluster Profiling (ACP)
	Computational Complexity of Automata
	Addition of New Files
	Addition of New Users
	Profiling Benign Activity Changes by the Users

	Frequency Profiling (FP)
	Fixed Time Interval Approach
	Multi-level Time Granularity Approach

	User Profiles' Storage

	Anomaly Detection (AD) Phase
	Block Level Monitoring (BLM)
	Access Cluster Monitoring (ACM)
	Frequency Monitoring (FM)

	Performance Evaluation
	Experiment Setup and Evaluation Metrics
	Experiment Results
	ACM Module For Anomaly Cases 1-3
	BLM Module For Anomaly Cases 4-5
	FM Module For Anomaly Case 6

	Multi-level Temporal Profiles
	Comparison with Existing Approaches
	Overhead Analysis

	Related Work

	PRIVACY-PRESERVING REAL-TIME ANOMALY DETECTION USING EDGE COMPUTING
	Introduction
	Preliminaries
	Q Function
	Windowed Gaussian Anomaly Detector

	Lightweight and Aggregation Optimized Encryption (TRIDENT) Scheme
	Encryption Scheme
	Additive Homomorphism
	Aggregation
	Security Analysis
	Malleability

	Privacy-preserving Anomaly Detection Framework
	Privacy-preserving Point Anomaly Detection
	Privacy-preserving Contextual Anomaly Detection
	Privacy-preserving Collective Anomaly Detection
	Privacy-preserving Anomaly Detection for More Complicated Scenarios

	Evaluation
	Experiment Setup
	Comparison Between the Trident and Paillier Schemes
	Performance Analysis
	Overhead Analysis
	Scalability Analysis
	Privacy Analysis

	Related Work

	CONCLUSION AND FUTURE WORK
	REFERENCES

