
UTILITY OPTIMAL DECISION MAKING  

WHEN RESPONDING TO NO FAULT FOUND EVENTS  

by 

Archana Ravindran 

 

A Thesis 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Master of Science in Aeronautics and Astronautics 

 

 

School of Aeronautics and Astronautics 

West Lafayette, Indiana 

August 2020 

  

  



 2 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Karen Marais, Chair 

School of Aeronautics and Astronautics 

Dr. William A. Crossley 

School of Aeronautics and Astronautics 

Dr. C. Robert Kenley 

School of Aeronautics and Astronautics 

 

Approved by: 

Dr.  Gregory Blaisdell 

 

 

  



 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my parents 

 



 4 

ACKNOWLEDGMENTS 

I would like to thank my advisor Prof. Marais, for her guidance and encouragement. Her 

knowledge, experience and insights were elemental in this research work. She takes keen interest 

in her students’ success and motivates them through the struggles of graduate life. 

My friends in the research lab, for listening to countless iterations of my work, giving your valuable 

inputs and making the office feel like home. 

My research committee members, Prof. Crossley and Prof. Kenley for their patience, 

understanding and ideas in taking this research forward. 

Luna Burgos Moreno, who started this work before me and laid its foundation. 

Varun Sudarsanan for being my personal cheerleader and soundboard for all my research ideas 

and roadblocks. 



 5 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS .............................................................................................................. 4 

LIST OF TABLES .......................................................................................................................... 7 

LIST OF FIGURES ........................................................................................................................ 8 

LIST OF ABBREVIATIONS ....................................................................................................... 11 

ABSTRACT .................................................................................................................................. 12 

 INTRODUCTION ................................................................................................................. 13 

1.1 Literature review ............................................................................................................ 15 

1.2 Aircraft Maintenance Process ......................................................................................... 17 

1.2.1 The Maintenance Steering Group (MSG) process .................................................. 17 

1.2.2 Procedures to combat in-service / unscheduled failures ......................................... 18 

1.2.3 Reliability program within the Maintenance and Engineering (M&E) area ........... 19 

 THEORY: A VALUE AND UTILITY PERSPECTIVE OF A DECISION ........................ 22 

2.1 Prelude: Systems as Revenue Generators that experience failures ................................ 22 

2.2 A model of Net Present Value in the presence of NFFs ................................................. 25 

2.2.1 Assumptions in building the model ......................................................................... 25 

2.2.2 Modeling failure rate ............................................................................................... 27 

2.2.3 Calculating NPV using estimated failure rate ......................................................... 29 

2.2.3.1 NPV when decision is to Reboot ............................................................................ 29 

2.2.3.2 NPV when decision is to Eliminate ........................................................................ 32 

2.3 Uncertainty in NPV ........................................................................................................ 34 

2.4 Expected Utility: Quantifying DM’s attitude towards uncertainty and risk ................... 37 

2.5 Maximizing Utility in the presence of NFFs .................................................................. 42 

2.6 Summary......................................................................................................................... 44 

 Analysis and RESULTS ........................................................................................................ 45 

3.1 Input parameters for cost model ..................................................................................... 45 

3.2 Change of NPV and Expected Utility with time ............................................................ 47 

3.3 Change of NPV and Expected Utility with 𝝀𝒕𝒓𝒖𝒆......................................................... 51 

3.4 Change of NPV Discount rate, 𝒓 .................................................................................... 53 

3.5 Change of Expected Utility with risk preference ........................................................... 54 



 6 

3.6 Change of Expected Utility with change in Maximum Expected Profit (𝒙𝒎𝒂𝒙) ......... 56 

3.7 Change of NPV and Expected Utility with Cost to Eliminate and Cost to Reboot ........ 57 

3.8 Expected Utility for a range of Cost to Eliminate and Cost to Reboot .......................... 58 

3.9 Threshold Failure rate (𝝀𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅) ........................................................................... 61 

3.10 How does the decision framework help? ........................................................................ 63 

CONCLUSIONS........................................................................................................................... 66 

APPENDIX A. Convergence of Monte Carlo Simulations .......................................................... 69 

REFERENCES ............................................................................................................................. 71 

  



 7 

LIST OF TABLES 

Table 1: Baseline numbers for input parameters required for the cost model to calculate NPV and 

Expected Utility ............................................................................................................................ 45 

 

 

 

  



 8 

LIST OF FIGURES 

Figure 1: System is a revenue generating artifact with operation cost being the cost put in to run 

the system...................................................................................................................................... 23 

Figure 2: Failures require additional maintenance cost to bring the system back to its original 

functional state .............................................................................................................................. 24 

Figure 3:Failure rate estimates are updated at the end of each month using the data recorded in that 

month. The uncertainty interval reduces as more data is collected. ............................................. 28 

Figure 4: In a given time interval, j to j+1, each time a failure occurs, the system goes to a non-

functional state for a time period of 𝑡𝑅 . Additional cost during downtime (which is time 

dependent), 𝑐𝐷, and cost to reboot are put into the system to bring it back to a functional state. 30 

Figure 5: At the end of month 3, we assume the estimated failure rate along with its uncertainty 

remain same and repeat for all future months ............................................................................... 31 

Figure 6: Using the estimated future failure rates, we calculate the 𝑁𝑃𝑉𝑅 at the end of each month 

(month 3 shown here) and it has an uncertainty associated with it .............................................. 31 

Figure 7: When eliminate option is chosen, the system experiences a downtime of 𝑡𝐸 when the 

failure mode is eliminated and its associated cost, 𝑐𝐸is incurred. The downtime cost per block 

hour, 𝑐𝐷 ........................................................................................................................................ 32 

Figure 8: At the end of month 3, if decision is to eliminate, the future failure rates are zero and 

there is no uncertainty ................................................................................................................... 33 

Figure 9: 𝑁𝑃𝑉𝐸 is calculated assuming failure rate is zero in the future months and compared with 

𝑁𝑃𝑉𝑅 at the end of each month (month 3 shown here) ............................................................... 33 

Figure 10: The estimated failure rate can be far from the underlying true failure rate and this is 

more likely to happen in the initial months when we have less failure rate data recorded. The two 

concurrent data points are separated slightly on the time-axis for readability. ............................ 35 

Figure 11: Comparison of 𝑁𝑃𝑉𝑅  and 𝑁𝑃𝑉𝐸  for the two estimates and underlying failure rate 

shown in Figure 14. If the DM decides without considering the uncertainty, then it could lead to a 

non-optimal decision ..................................................................................................................... 36 

Figure 12: The expected value of this lottery is $45. The DM might accept $25 instead of choosing 

to take this lottery because they are averse to the possibility of losing $10 ................................. 38 

Figure 13: A risk-averse DM has a concave utility function and a risk-seeking DM has a convex 

utility function ............................................................................................................................... 39 

Figure 14: Cost to Reboot, 𝑐𝑅, and Cost to Eliminate, 𝑐𝐸, have a uniform distribution over their 

range of uncertainties. 𝜆 for each month in the future is Poisson distributed about the 𝜆𝑚𝑒𝑎𝑛 of 

the current month. A Monte Carlo simulation over these variables gives a distribution of Profit 

from Eliminate decision at the current decision point .................................................................. 40 



 9 

Figure 15: The Monte Carlo is repeated for the upper and lower bounds of estimated failure rate 

and we get three distributions of Profit from Eliminate decision ................................................. 41 

Figure 16: The system can take many paths depending on the decision made at each decision point. 

At the end of month 1, the DM can use 𝑁𝑃𝑉𝐸  and 𝑁𝑃𝑉𝑅  to determine the expected value 

maximizing route .......................................................................................................................... 42 

Figure 17: At the end of month 1, the DM can see the Expected Utility if they choose to Eliminate. 

If 𝐸𝑢𝑥 > 0, then Eliminate is the better decision ......................................................................... 43 

Figure 18: At the end of the first month, if the DM chooses to continue to reboot, then the NFF 

failures are recorded for another month. At the end of the month 2, we have an updated failure rate 

estimate which is used to calculate 𝑁𝑃𝑉𝐸 and 𝑁𝑃𝑉𝑅and then used to make the decision for the 

subsequent month.......................................................................................................................... 44 

Figure 19: We establish baseline results with a utility function having a constant risk aversion 

coefficient, 𝛾 = 1 and a utility of 1 is assigned to profits beyond 𝑥𝑚𝑎𝑥 = $10𝑀 ..................... 47 

Figure 20: The following NPV and Expected Utility results use the failure sequence shown in this 

figure ............................................................................................................................................. 48 

Figure 21: 𝑁𝑃𝑉𝑅 and 𝑁𝑃𝑉𝐸 are calculated using the failure sequence shown earlier. 𝑁𝑃𝑉𝐸 has a 

more gradual decrease since it does not depend on 𝜆 ................................................................... 49 

Figure 22: Over the full lifetime of the fleet, NPV reduces as the remaining life from which we 

derive value decreases. The values of 𝑁𝑃𝑉𝑅 and 𝑁𝑃𝑉𝐸  decrease by a large amount from 

beginning to end of life. The difference between the two NPVs appear small compared to the 

change across the lifetime ............................................................................................................. 49 

Figure 23: In the first year, the lower bound of 𝐸[𝑢𝑥] does not become positive, therefore the 

Eliminate is not the optimal decision in the first year .................................................................. 50 

Figure 24: Expected Utility reduces as the remaining life to recover the Cost to Eliminate reduces

....................................................................................................................................................... 51 

Figure 25: Simulated failure sequence for 𝜆𝑡𝑟𝑢𝑒 = 20 ............................................................... 52 

Figure 26: When comparing the results for 𝜆𝑡𝑟𝑢𝑒 = 20 with 𝜆𝑡𝑟𝑢𝑒 = 15, we find that for higher 

𝜆𝑡𝑟𝑢𝑒, 𝑁𝑃𝑉𝑅 is lower .................................................................................................................. 52 

Figure 27: Expected Utility increase with increase in 𝜆𝑡𝑟𝑢𝑒 ....................................................... 53 

Figure 28: The Eliminate decision have more utility in the beginning of the lifetime because there 

is more time to recover the Cost to Eliminate. Later in the system lifetime, although we are more 

certain of the failure rate estimate, Eliminate is not the optimal decision .................................... 53 

Figure 29: Higher discount rate means the value in the future are worth lesser in the present. 

Therefore, NPV is higher if discount rate is lower ....................................................................... 54 

Figure 30: We change utility function to see the effect of DM's risk attitude on decision making

....................................................................................................................................................... 55 



 10 

Figure 31: The lower bound of Expected Utility for highly risk averse DM is very low because 

DM strongly does not want loss in value ...................................................................................... 55 

Figure 32: We change the maximum expected profit, 𝑥𝑚𝑎𝑥, and see its effect on Expected Utility 

calculated ...................................................................................................................................... 56 

Figure 33: The lower bound of Expected Utility for DM who has higher Maximum expected Profit, 

𝑥𝑚𝑎𝑥, has lower Expected Utility when making a profit and higher Expected Utility when making 

a loss.............................................................................................................................................. 57 

Figure 32: 𝑁𝑃𝑉𝑅 is more sensitive to change in 𝑐𝑅 than 𝑁𝑃𝑉𝐸 is sensitive to change in 𝑐𝐸 .... 58 

Figure 33: Lower 𝑁𝑃𝑉𝑅  means there is more Profit gained from choosing to Eliminate and 

therefore more Expected Utility.................................................................................................... 58 

Figure 34: Heat map of 𝐸𝑢𝑥𝑙𝑏 for 𝜆𝑡𝑟𝑢𝑒 = 15 shows that it may decrease (month 1 to month 5) 

or increase (month 5 to month 24) in the beginning of the lifetime. Reboot yields greater expected 

NPV in all cases. ........................................................................................................................... 59 

Figure 35:  𝐸𝑢𝑥𝑙𝑏  for 𝜆𝑡𝑟𝑢𝑒 = 20 is higher than 𝜆𝑡𝑟𝑢𝑒 = 15 for all cost values in the ranges 

considered. The black line is the where 𝐸𝑢𝑥 = 0. Reboot is preferred in month 1 and 5............ 60 

Figure 36: If the DM chooses to use the mean of Expected Utility instead of its lower bound (shown 

in Figure 33), then they can make the decision earlier in the lifetime since uncertainty in estimated 

mean of failure rate is not considered ........................................................................................... 60 

Figure 37: In the beginning of life, more uncertainty in estimated failure rate leads to larger bounds 

on 𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .............................................................................................................................. 61 

Figure 38: As we approach end of life, rebooting the system for the remainder of the life provides 

more utility than incurring high Eliminate costs. Only if the failure rate is very high, eliminating 

is worthwhile. 𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 increases exponentially as we approach end of life ......................... 62 

Figure 39: 𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is higher when we account for uncertainty in costs ................................ 63 

Figure 42: The MRO collects failure data of an NFF for a long time and waits for the estimate of 

the failure rate to converge to take any action .............................................................................. 64 

Figure 43:With the decision framework, we can compare the estimated failure rate with 

𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to find optimal decision. Here, if the DM waits for too long, they can lose the 

opportunity to Eliminate and make a profit .................................................................................. 64 

Figure 44: The decision framework accounts for uncertainty and therefore, at each decision point, 

the DM can know when it is better to wait for more information. In the case shown here, at month 

5, the data is still uncertain and Reboot is optimal. Whereas at month 20, given the available data, 

Eliminate is the better decision ..................................................................................................... 65 

 

 

 

  



 11 

LIST OF ABBREVIATIONS 

ATA = Air Transport Association 

DM = Decision Maker 

LRU = Line Replaceable Unit 

MRO = Maintenance, Repair and Overhaul 

NFF = No Fault Found 

NPV = Net Present Value 

OEM = Original Equipment Manufacturer 

 

  



 12 

ABSTRACT 

No Fault Founds (NFFs) are an expensive problem faced by the airline industry. The underlying 

cause of NFFs are a major focus of research work in the field, but the dearth of consistent data is 

a roadblock faced by many decision makers. An important risk factor identified is the occurrence 

rate of NFFs. 

This research work aims to help decision makers in the Airline Maintenance, Repair and Overhaul 

teams, when faced with recurring NFFs, to make a choice based on value derived from the system 

and risk preference of the decision maker under uncertainty. The value of the aircraft fleet is laid 

out using Net Present Value at every decision point along the system life cycle while accounting 

for the uncertainty in the failure rate information. Two extreme decisions are considered for the 

decision maker to choose between: rebooting the system every time a failure occurs and results in 

an NFF which allows for it to recur while reducing uncertainty of the failure rate; or eliminating 

the failure mode which assumes that the failure does not recur and therefore completely removes 

the uncertainty. Both decisions have their associated uncertain costs that affect the NPV calculated. 

We use a Monte Carlo approach to estimate the expected profit from deciding to eliminate the 

failure mode. We make use of Expected Utility Theory to account for the risk preference of a 

decision maker under uncertainty and build an Expected Utility Maximizing decision framework. 

To conclude we give some guidance to interpret the results and understand what factors influence 

the optimal decision. We conclude that not accounting for uncertainty in estimating a failure rate 

for the future along with uncertainty in NFF costs can lead to an undesirable decision. If the 

decision maker waits too long to gather more information and reduce uncertainty, then rebooting 

the system for the remaining life could be more worthwhile than spending the large amount of 

money to Eliminate a failure mode. Finally, we conclude that, despite uncertainties in information 

of occurrence rates and costs of NFFs, an Expected Utility maximizing decision between the two 

options considered – Reboot and Eliminate – is possible given the available information. 
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 INTRODUCTION 

The Air Transport Association (ATA) has reported that 4,500 No Fault Found (NFF) events cost 

ATA member airlines $100 million annually, while also causing numerous flight delays and 

cancellations (Beniaminy & Joseph, 2002). It is estimated that 30-50% of the avionics failures in 

the aviation industry are NFF events (Khan et al., 2014). Each year, commercial airlines in the 

United States spend about $185,000/aircraft on unsuccessful attempts at replicating reported 

avionics failures (Werner, 2015). These estimates are likely conservative since there are other 

auxiliary costs of spare parts, human resource, and revenue loss due to downtime which can inflate 

the cost associated with NFFs.  

There are different definitions for what constitutes an NFF event. In the ARINC 672 report, it is 

described as “Removal of equipment from service for reasons that cannot be verified by the 

maintenance process (shop or elsewhere)” (ARINC 672, 2008). An NFF event implies that a 

failure (fault) either occurred or was reported to have occurred during a system’s use, but upon 

subsequent investigation there was either no evidence of the failure (e.g., a burnt-out circuit), or 

the failure could not be replicated (Qi et al., 2008). Such NFF events are variously referred to as 

trouble-not-identified (TNI), cannot duplicate (CND), no-trouble-found (NTF), and retest OK 

(RTOK). 

NFFs predominantly occur in electronic devices (Khan et al., 2014) and are consequently 

encountered in all industries including the automotive, avionics, telecommunications, computer, 

and consumer industries. Field returns that result in NFFs can be debilitating for the OEMs. The 

manufacturer may receive an unfavorable reputation, and replacements can be costly if the product 

is within the warranty period. In the 1980s, Ford’s engine ignition module saw a four-fold increase 

beyond the projected warranty returns for a 30-month period (Thomas et al., 2012). These returns 

were categorized as NFFs since the modules that were returned were fully functional when re-

tested. Ford later identified many failure modes that could lead to this component’s intermittent 

failure. Ford was taken to trial and was mandated to recall the module. Ford was required to extend 

the warranty of the module and cover all the replacement costs. Ford also agreed to contribute 

USD 5 million academic research towards automotive safety. 
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When a failure occurs, there are multiple maintenance strategies that can be applied to restore the 

system. The commonly employed strategy is preventive maintenance, where there is a 

predetermined maintenance schedule. For example, according to airworthiness regulations, an 

aircraft has to go through A-check maintenance depending on flight hours, cycles and calendar 

months (Kinnison & Siddiqui, 2013). This type of maintenance arises from an understanding of 

how the product functions and the wear and tear of its parts over time. Another type of maintenance 

is predictive maintenance, where the product has continuous health monitoring and/or sensors 

installed. The data collected from the sensors allow the maintenance crew to determine the 

response strategy. 

The approaches mentioned above are proactive in nature. However, maintenance is reactive in 

nature when unexpected faults occur, and the failed equipment has to be repaired or replaced after 

the failure occurs (Swanson, 2001). In the safety and cost critical airline industry, it is important 

to minimize the downtime while carrying out reactive maintenance. Diagnosing and repairing an 

avionics fault can be time consuming due to the complexity of the system. The concept of Line 

Replaceable Units (LRU) has emerged to achieve a quick turnaround time while adhering to the 

safety standards. 

For avionics, a typical reactive maintenance process of fault identification and repair starts with 

an operator (e.g., pilot) reporting an error. The maintenance technician replaces the component 

with an LRU and sends the faulty component to the repair shop. If the repair shop cannot replicate 

the reported fault, the component is tagged as an NFF and put back into stock. 

An NFF does not imply that the fault does not exist. It is a failure to detect the error and therefore 

is a deficiency in the fault-finding process. Examples of such deficiencies include the 

operator/maintenance technician not fully understanding how the part functions, incorrect or 

ambiguous fault diagnosis manual, or a lack of resources in the repair shop to detect the fault. 

NFFs can be dangerous. In September 2010, during final approach, the crew of a Bombardier Dash 

8 Q400 was so distracted by a non-functioning flight display, that they inadvertently disabled the 

autopilot and would likely have hit the ground, had the ground proximity warning not been 

activated (Werner, 2015). The same underlying problem with the input/output processor had 
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occurred on several other flights, but each time technicians were unable to replicate the problem 

on the ground. 

Even when there is no direct impact on safety, NFFs can still have significant costs, both tangible 

(e.g., decreased reliability and availability, the costs of attempting to replicate and correct the fault, 

and warranty costs) and intangible (e.g., customer perception of inadequate quality). 

In general, when failures occur, organizations are faced with a range of choices. At one extreme, 

they choose to act and remove the particular failure mode. At the other extreme, they can choose 

to repair or replace failed or faulty components. The most appropriate choice depends on several 

factors, including whether the failed component is safety critical, the impact the failure has on 

system performance, the cost and feasibility of identifying and removing the failure mode, and the 

cost and feasibility of (perhaps repeatedly) repairing failed components. There is also a tradeoff 

along the time dimension in making a choice—act early with limited information, possibly 

investing in preventing a failure that would have been infrequent, or, wait for more information, 

possibly incurring frequent costly failures. 

In the case of NFFs, these extreme choices translate into identifying and eliminating the source of 

the NFF, or to “accept” the NFF and only do what is necessary to recover from it (e.g., reboot a 

computer). What is the best choice in a given situation? Here, we present a decision framework 

based on Net Present Value and Expected Utility to aid in such decisions. 

1.1 Literature review 

The NFF phenomenon is prevalent across many industries such as the automotive, consumer 

electronics, aviation and space sectors. Research efforts addressing the NFF phenomenon have 

gained traction in the aerospace sector in the past decade (Khan et al., 2014). 

Söderholm (2007) says that “Traditionally, when an NFF event was encountered, the conclusion 

was that there was no fault present in the system”. The NFF category would not contribute to the 

failure statistics in many companies (Qi et al., 2008). But recently, this attitude towards NFFs is 

seeing a shift. Qi et al. suggest that intermittent faults are a common cause of NFF events and 

advocate for NFFs to be treated and investigated as failures to identify their root causes. They state 
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that “organizations may not understand the need or have little incentive to uncover the root cause 

of the problem encountered by the user”. 

There have been efforts to classify NFFs (Khan et al., 2014) and describe the NFF phenomenon at 

various levels of the maintenance process (Khan et al., 2017; Söderholm, 2007). In a 2007 review 

paper, Sӧderholm et al. describe the NFF phenomenon and provide possible improvements to 

prevent NFFs and reduce the consequences of NFFs on the lifecycle stages, availability of spare 

units and key stakeholders of the system. They state that an important risk aspect of the NFF is its 

frequency of occurrence. It is estimated that, in the aerospace industry, about 50 percent of LRUs 

that are removed and replaced during operation and maintenance are classified as NFF events 

(Beniaminy & Joseph, 2002; James et al., 2003; Sudolsky, 1998). 

Khan et al., (2017) focus on decision making at the operational, tactical and strategic level when 

encountered with NFFs. Compared to standardized maintenance processes, resolving NFFs require 

more control and escalation of decision making due to the high-pressure situations at the 

operational level. He goes on to suggest that a Petri net modelling of the decision process can help 

in mathematically modelling a unified framework that incorporates different scenarios and 

alternatives when faced with NFF issues. In a previous review paper, Khan (2014) implores that 

there needs to be a standardized taxonomy for the NFF phenomenon, the lack of which adds to the 

problem of sparse knowledge in the field of NFFs. They state that there is a lack of serious research 

in the direction of understanding the relationship of type of equipment, its usage and complexity 

to the rate of occurrence of NFFs.  

The body of literature mainly focuses on understanding why NFFs occur and what can be done to 

reduce their occurrence and mitigate their effect. Erkoyuncu (2016) takes a step towards narrowing 

down the major NFF cost drivers across the supply chain and build a framework to estimate the 

cost of NFF events. They interviewed industry engineers to understand the process followed in the 

industry to deal with NFFs and found that it varies from organization to organization. The study 

provides cost of an NFF but does not account for the uncertainty in the rate of NFF occurrence and 

the effect of the different decision options available to the decision maker on the overall value 

provided by a system. 
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In the current work we attempt to provide a framework for optimal decision making under 

uncertainty of NFF occurrence rates and costs. The discounted cash flow technique of Net Present 

Value (NPV) and Expected Utility Theory are used as the basis for the framework for the decision 

maker to decide between two possible choices. 

1.2 Aircraft Maintenance Process 

In order to model the failure rates and occurrence of NFF events along with the operating and 

maintenance costs, it is important to understand the maintenance process undertaken for an aircraft. 

We can then establish what process would be applicable in case of deeming a failure to be an NFF 

and the different costs that go into bringing the system back to a functional state.  

Material for this section is heavily borrowed from the books, Aviation Maintenance Management 

by Harry A. Kinnison and Leveraging Information Technology for Optimal Aircraft Maintenance, 

Repair and Overhaul (MRO) by Anant Sahay. The reader is encouraged to refer to these books for 

more information on this subject. 

1.2.1 The Maintenance Steering Group (MSG) process 

A study by United Airlines showed that only 11% of items included in the study would benefit 

from having scheduled maintenance checks. The other 89% would require other maintenance 

programs.  

A Maintenance Steering Group (MSG), formed by Airlines for America, has developed a 

handbook of requirements for scheduled maintenance procedures which has been revised over time 

and is now called MSG-3 (Air Transport Association of America [ATA], 2002). In 1968, 

representatives from various airlines formed a Maintenance Steering Group (MSG) and developed 

Handbook MSG-1, “Maintenance Evaluation and Program Development,” which included 

decision logic and inter-airline/manufacturer procedures for scheduled maintenance for the new 

Boeing 747 aircraft. This document was later modified to be universally applicable to new aircraft. 

The updated decision-logic, MSG-2, was used to develop scheduled maintenance for aircraft of 

the 1970s. The MSG-2 process classified each unit (system or component) to one of the assigned 

maintenance processes. These processes were the Hard Time (HT), On-condition (OC) and 



 18 

Condition monitoring (CM) (Kinnison & Siddiqui, 2013). Hard Time is preventive maintenance 

technique which requires component to be removed at a predetermined interval of operating time. 

On-condition is when a component’s remaining serviceability is checked periodically.  Condition 

monitoring is when failure rates and deterioration of the component are monitored for maintenance 

planning of the component.  

In 1980, the MSG-2 process was modified to adopt a task-oriented maintenance approach. The 

updated process, called MSG-3, is a task-oriented approach to decision logic. It is developed by 

the Air Transport Association and identifies scheduled maintenance tasks which allow for the 

reliability of the system to be maintained. The MSG-3 is a top-down approach and considers how 

the failure of a component affects the aircraft operation (ATA, 2002). It has two-levels of 

classification of components. The level I analysis is to assign the failure into two basic categories: 

evident and hidden to operating crew. These are further split into safety related and operationally 

related failures. In the level II analysis, the maintenance tasks required are determined using a 

question flow chart. 

Working groups for different systems on the aircraft will receive information about the system. 

This information could be the theory or operation and its modes, failure modes of each operation 

and any data collected (like failure rates). The working groups receive training which acts as a 

refresher, if a similar system exists already, or allows them to fully understand the failure modes 

of the new or updated system. The manufacturer is responsible for the training and for providing 

this information to the working groups. Once the group is sufficiently informed, they begin running 

through the logic diagrams to determine the best maintenance approach for each component, each 

operational mode and each failure mode in their assigned system. The group, using their 

knowledge and judgement, also determines at what intervals the maintenance tasks need to be 

performed. 

1.2.2 Procedures to combat in-service / unscheduled failures 

The MSG-3 approach to maintenance is used to avoid in-service failures. Equipment redundancy, 

Line Replaceable Units (LRUs) and Minimum Equipment List (MEL) are some management 

techniques used to allow failures while in-service without affecting safe and timely operation 

(Kinnison & Siddiqui, 2013). LRUs are components that are designed such that, parts which 
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experience failures commonly, can be quickly removed and replaced on the vehicle. Modern 

avionics are modular with a set of LRUs that are identical to the ones in operation and are easy to 

access, remove and replace. An LRU can have its own Built-in test equipment (BITE) and can 

consist of several Shop Replaceable Units (SRUs) (Raza & Ulanskyi, 2016). The BITE provides 

continuous testing output to indicate the health of the component. The LRUs are run-to-failure 

(which can be either permanent failures or intermittent), and these failures are recorded while in 

operation (during flight) or on the ground. LRUs that are removed from the aircraft are re-tested 

and repaired at the maintenance shop or are sent to the manufacturer to repair. An Automatic Test 

Equipment (ATE) is necessary for retesting LRUs that are dismantled and to detect a failed SRU. 

Redundancy is built into avionics systems on the aircraft to provide safe operations and sufficient 

LRUs are kept in-stock to maintain operations.  

The MEL allows for the vehicle to be in service even if some parts are inoperative, provided that 

it does not affect safety and operation of the flight. The manufacturer of the aircraft provides the 

Master Minimum Equipment List (MMEL) and the airline tailors it to suit its needs to make the 

MEL. Many MEL items have associated redundancy.  

The described maintenance strategies can be inefficient when NFFs events occur because testing 

equipment might not identify the intermittent failures and they may re-occur in the future. When 

the failure rates of components are not predictable and there is no scheduled maintenance 

procedure in place for these components, an MRO usually uses a reliability program. 

1.2.3 Reliability program within the Maintenance and Engineering (M&E) area 

The primary approach to a reliability program is to specifically address maintenance problems 

(even the ones that do not cause delays). The main functions of the reliability program are: 1. 

Monitor the performance of the vehicles and their equipment and call attention to any need for 

corrective action; 2. Monitor the effectiveness of said corrective actions; 3. Provide data to justify 

adjusting the maintenance intervals or maintenance program procedures whenever those actions 

are appropriate. The basic tasks taken up by the reliability program to feed into the functions above 

are: 
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a. Data collection – this includes flight time and cycles (since most failure/removal rates are 

based on flight hours or cycles), delays over 15 minutes (specifically the ones due to 

maintenance), unscheduled component removals (if the rate is not acceptable, investigation 

and corrective actions are undertaken), pilot reports and logbook reports, component 

failures in shop maintenance, maintenance check findings. 

b. Problem area alerting – Standard event rates are set based on past performance. An Upper 

Control Limit (UCL) is used as an alert limit. The UCL above the mean value by 1 to 3𝜎 

(standard deviations).  

c. Data display and analysis – the reliability department does a preliminary analysis of data 

before alerting the engineering department to establish its validity. 

d. Corrective action – the engineering team will investigate the problem and determine 

required redesign or required change in maintenance procedures. The team then issues an 

engineering order for implementation of the required action. This action needs to be 

approved by the Maintenance Program Review Board (MPRB) before being undertaken 

by the reliability and maintenance teams.  

e. Follow-up analysis – the reliability department continues to monitor the effect of the 

corrective action on on-alert items. The effectiveness of the corrective actions is reflected 

in decreased event rates. 

f. Data reporting – the reliability report is issued monthly and contains information on on-

alert items and items under follow-up investigation. The report is organized by fleet, this 

means each aircraft type is addressed separately in the report. 

As airlines started to grow and the volume of work undertaken by the maintenance and engineering 

teams increased, airlines identified aircraft maintenance as a non-core function (Sahay, 2012). 

Airlines started creating a separate independently operating maintenance engineering unit, either 

wholly owned subsidiaries or independent companies. These new entities, called Maintenance, 

Repair and Overhaul (MRO) organizations, either operate as profit centers for the mother airline 

or independent companies and add to their revenue by providing services to low cost carriers 

(LCC). The FAA in its documents generally assumes that maintenance of a commercial aircraft is 
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done by the department or a division of an airline. However, the current trend is for MRO 

organizations to be set up either independently or as joint ventures with airlines and OEM. 

In this research work, we assume that the airline operates and bears the cost for maintenance of its 

fleet. Therefore, the operating cost, net profit, cost of maintenance when NFF events are identified 

(such as cost of spare LRU units, redundant systems and movement of the LRU and SRU unit 

from on-ground service to repair shops and back into stock pile), are attributed to and borne by the 

airline. The collection of data for failure/removal rates, flight hours and hours of operation and 

downtime are also assumed to be tasks carried out by the M&E department of the airline. 

In the next section, we discuss the building blocks of the decision-making framework. The failure 

model for NFFs and their uncertainty, Net Present Value and Expected Utility Theory are 

discussed along with how the DM can use these to make the optimal choice. This section is 

followed by the results section in which we elaborate on the behavior of NPV and Expected Utility, 

their sensitivity to different inputs and develop a concept of threshold failure rate to help the DM 

with decision making. Section 4 concludes the work and summarizes the contributions of this 

research. 
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 THEORY: A VALUE AND UTILITY PERSPECTIVE OF A DECISION 

This section discusses the modelling approach and methodology of building the framework for 

optimal decision making with uncertain failure rates. 

We first model the fleet as a revenue generating system. We then see how failures affect the cash 

flow of this system. We make some assumptions that help build the decision framework. Using 

these assumptions, we lay out how failures are modeled for the two decisions we consider – 

Eliminate and Reboot – and how NPV is calculated for both. Following this, we explain how NPV 

can help decide between the two options, but uncertainty can lead to an undesirable choice.  

We consider three different sources of uncertainty in our work. The first is the uncertainty in failure 

rate due to imperfect knowledge of the NFFs characteristics. The other two uncertainties are costs 

required to either Reboot the system or Eliminate a failure mode. The three uncertainties are 

considered together to calculate Utility of the Eliminate option. Here we consider the risk 

preference of the DM in an attempt quantify the risk in choosing to Eliminate at a given decision 

point under the given uncertainty. 

2.1 Prelude: Systems as Revenue Generators that experience failures 

The approach builds on previous work (Marais, 2013; Marais & Saleh, 2009; Saleh & Marais, 

2006), and is based on viewing the system as a revenue generating unit (Figure 1). Value is then 

the difference between revenue and cost. For example, the revenue seat miles provided by a 

commercial passenger aircraft can be used to calculate its value, while a telecommunications 

satellites has transmitters which provide bandwidth and the value of this satellite can be calculated 

using this bandwidth. 
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Figure 1: System is a revenue generating artifact with operation cost being the cost put in to run 

the system 

Considering an aircraft as an example of a functional system, we define the operating cost as the 

cost put in by an airline to run the aircraft. It includes fuel cost, ownership cost, salary for the crew, 

and maintenance cost. Revenue is generated from ticket sales.  

We look at value of a system from the perspective of net cash flow through the system for a given 

time interval, 𝑡: 

 𝑉𝑎𝑙𝑢𝑒(𝑡) = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒(𝑡) − 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡(𝑡) (1) 

This values for all time intervals are summed over the full lifetime of the system and discounted 

to get the Net Present Value: 

 𝑁𝑃𝑉 = ∑
𝑉𝑎𝑙𝑢𝑒(𝑡)

(1 + 𝑟)𝑡

𝐸𝑛𝑑 𝑜𝑓 𝑙𝑖𝑓𝑒

𝑡=0

 (2) 

Where 𝑟 is the discount rate to account for the time value of money. 

When a failure occurs, the system goes from a functional state to a reduced functional state and 

requires some maintenance activity to bring it back to its functional state (Figure 2). Failures can 

have several impacts on profit, including direct costs like cost of new components and the 

downtime associated with the failure and subsequent repair, and indirect costs like reduced 

customer satisfaction. For example, a pilot reports a glitchy communications radio during pre-

flight inspection. The flight may have to be delayed while the event is logged and inspected. The 

airline may incur a loss in revenue due to the delay, additional operating costs (e.g. crews working 
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extra time), and manpower and material costs used to investigate the fault. The maintenance 

technician may choose to replace the component with an LRU and send the faulty component to 

the shop for testing and repair. The maintenance shop may fail to diagnose the fault and mark the 

event as an NFF and place the component back into the LRU stock pile. This chain of events will 

have a cost associated with it (for example the cost of logging the failure, cost of extra human 

resource that might have to be deployed, cost of testing and extra LRUs required) and is incurred 

each time an NFF event occurs. 

 

Figure 2: Failures require additional maintenance cost to bring the system back to its original 

functional state 

Failures tagged as NFFs can recur if left unchecked. If the NFF is associated with a component 

that is cheap, difficult to inspect, easy to replace, and does not have a safety critical function (e.g., 

a lightbulb), replacement on failure may be the best option. If a component’s failure entails 

significant downtime and cost (e.g., an aircraft empennage), but the root causes (e.g., metal fatigue) 

of the failure are difficult or impossible to eliminate, inspection and preventive maintenance may 

be the best option. And if a component’s failure entails significant and possibly frequent downtime 

and cost (e.g., a software bug), but it is possible that the root causes (e.g., incorrect specification) 

of the failure can be found, eliminating the failure mode may be the best option. 
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In this research we attempt to provide the Decision Maker (DM) with discounted cash flow 

analysis of the system for different the different maintenance strategies they choose. We consider 

a single type of NFF that occurs in a particular component and assume it has a single failure mode. 

We model the effect of recurring failures due to this NFF on the cash flow through 1) repair costs 

that are added on to the operating cost and; 2) downtime due to failures that reduces the revenue 

generated. We assume that all other scheduled and unscheduled maintenance has their own cost 

and they are all accounted for in the operating cost. We also assume that when a failure is reported, 

the aircraft experiences downtime and is no longer in a functional state and needs replacement of 

the LRU to become functional again. 

2.2 A model of Net Present Value in the presence of NFFs 

2.2.1 Assumptions in building the model 

In developing our model, we make some assumptions that help building the model of the cash flow 

of the aircraft system and keep the focus on the main argument of this work: 

Assumptions for constraining the type of NFF 

1. We consider only non-safety-critical failures. 

2. Each NFF corresponds to a single failure mode. 

3. We assume that there is no historic data of NFF failure rate available for use at the start of 

the study. 

4. The component for which the NFF problem is studied is identical or similar across the fleet 

of the airline. This assumption allows the use of a single failure rate to analyze the entire 

fleet. 

Assumption for the failure model and cash flow model 

1. Failures can be modelled as stochastic process. In particular, we assume that NFFs can be 

modeled as following a Homogenous Poisson Process (Montgomery, 2005). This 

assumption makes some of the equations easier to present but can be changed easily and 

does not affect the framework. 
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2. The airline fleet is homogenous. This assumption allows for costs to be constant across the 

fleet. 

3. Revenue, operating, repair, reboot, eliminate costs remain same for all time intervals, that 

is, we do not account for external effects on costs such as market forces. 

4. We assume the downtime and the cost during downtime are same for all failures. The cost 

to reboot and to eliminate can be different from each other. 

5. We assume that failures are reported and investigated as soon as they occur, and therefore, 

we can conflate the initial failure and subsequent NFF in our definition of downtime, reboot 

cost, and loss of revenue. 

6. We assume that the impact of all failures other than the particular mode of NFF failures 

investigated, is reflected in the nominal operating cost and revenue. 

7. Each month has 30 days, and hence each year has 360 days. 

8. The problem time horizon is finite and set to 30 years. This lifetime is in line with lifetimes 

of complex engineering systems like aircraft (BTS, 2018). 

Assumptions for the decision model 

9. We assume the time interval between two decision making points is one month. This 

assumption is in line with airline Maintenance Review Board having monthly meetings to 

discuss status of on-alert items (Kinnison & Siddiqui, 2013). It is assumed that the 

decisions to eliminate the failure mode or continue to reboot the system are made at the 

end of a month. 

10. Decisions to reboot or eliminate are made at the end of each time interval. To simplify 

calculations, we also assume that the total downtime in any given month, associated with 

either rebooting or eliminating the failure mode, is less than or equal to one month, i.e.:  

𝜆𝑖 ∙ 𝑡𝑅 ≤ Δ𝑇 𝑎𝑛𝑑 𝑡𝐸 ≤ Δ𝑇 

Where 𝜆𝑖 is the failure rate for time interval 𝑖, Δ𝑇 is the time interval between two decision 

points, 𝑡𝑅  is the downtime when rebooting and 𝑡𝐸 is the downtime when eliminating. 

11. If chosen, the eliminate option is always successful in eliminating the failure mode. 

12. The reboot option, when chosen, does not provide any knowledge about the failure mode 

except its frequency. This would imply that all the ‘learning’ we do about the failure mode 

is assumed to occur if and when eliminate option is chosen. 
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2.2.2 Modeling failure rate 

To account for cost due to NFF each time a failure is reported, we need to record the number of 

failures every month and have an estimate of failure rates for future months. In quality control, 

typically a Poisson distribution is used to model the number of failures in a product unit per unit 

time. The probability distribution function for the Homogeneous Poisson Process is given by: 

 𝑃(𝑋 = 𝑥) = 𝑒−𝜆
𝜆𝑥

𝑥!
 𝑓𝑜𝑟 𝑥 = 1, 2, 3 …  (3) 

Where 𝑋 is the number of failure events in a given time interval and 𝜆 is the expected number of 

events per time interval. 

In the absence of real recorded failure data from MRO organizations for this research, we simulate 

failure rates within reasonable ranges using available data. 

Let us assume that the given failure mode being investigated has an underlying true failure rate, 

𝜆𝑡𝑟𝑢𝑒. Using 𝜆𝑡𝑟𝑢𝑒, we generate a random failure rate for every month using the Poisson probability 

distribution. At a given decision point, 𝑗, we know the failure rates of all the past months and 

estimate the failure rate for the future using the Maximum Likelihood Estimate (MLE) of the mean 

failure rate. The MLE at decision point 𝑗, is 𝜆̂𝑗 and is the mean of the failure rates of all previous 

months (Kumar et al., 2006): 

 𝜆̂𝑗 =
1

𝑗
∙ ∑ 𝜆𝑘

𝑗

𝑘=1

 (4) 

Where 𝜆𝑘 is the number of failures across the fleet that resulted in an NFF recorded for month 𝑘. 

𝜆̂𝑗 represents the failure rate estimated for the subsequent months from decision point, 𝑗. 

The estimated failure rate will likely change as we obtain more data. Figure 3 shows an example 

of estimates over a one-year period with an underlying 𝜆𝑡𝑟𝑢𝑒 = 15. The estimated mean failure 

rates are shown with their confidence intervals. The figure also shows the simulated random 

sequence of actual failure rates at the end of each month. 
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Figure 3:Failure rate estimates are updated at the end of each month using the data recorded in 

that month. The uncertainty interval reduces as more data is collected. 

The total number of failures recorded until month 𝑗, is 𝑁𝑗: 

 𝑁𝑗 = ∑ 𝜆𝑘

𝑗

𝑘=1

 (5) 

When 𝑁𝑗 < ~100, a two-sided confidence interval for 𝜆̂𝑗 is given by (Sahai & Khurshid, 1993): 

 

𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 =  
χ2

−1 (
𝛼
2 , 2 ∙ 𝑁𝑗)

2 ∙ 𝑁𝑗 𝜆𝑗̂⁄
 

𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 =  
χ2

−1 (1 −
𝛼
2 , 2 ∙ (𝑁𝑗 + 1))

2 ∙ 𝑁𝑗 𝜆𝑗̂⁄
 

(6) 

Where, 𝜒2
−1(𝑝, 𝑣) is the inverse Chi-squared function with probability p and v degrees of freedom.  

When 𝑁𝑗 > ~100, a two-sided confidence interval for the MLE is given by (Sahai & Khurshid, 

1993): 

 

𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 =
𝑍−1 (

𝛼
2 , 𝑁𝑗 , √𝑁𝑗)

𝑁𝑗 𝜆𝑗̂⁄
 

𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 =
𝑍−1 (1 −

𝛼
2

, 𝑁𝑗𝑗
, √𝑁𝑗)

𝑁𝑗 𝜆𝑗̂⁄
 

(7) 
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Where 𝑍−1(𝑝, 𝜇, 𝜎)  is the inverse normal function with probability p, mean 𝜇 , and standard 

deviation 𝜎. 

The Poisson distribution is a skewed distribution (unlike a normal distribution, which is 

symmetric). The left tail of the distribution cuts off at zero (e.g., failure rate is zero), but the right 

tail is long (goes to infinity). When the mean of the distribution is closer to zero, the distribution 

is more skewed than if the mean were far from zero. This skewness also reflects in the confidence 

interval – the lower bound of the confidence interval is smaller than the upper bound. 

The confidence intervals for the estimated failure rates is the uncertainty in our estimates. As more 

data is gathered with each month, the uncertainty in the estimate reduces and we expect the 

estimated mean to be closer to the underlying true failure rate, 𝜆𝑡𝑟𝑢𝑒. 

2.2.3 Calculating NPV using estimated failure rate 

In this research we look at two extreme decisions that the DM can take when encountered with 

NFFs. The first type of decision is to eliminate the failure mode by understanding the root causes 

of the failure and redesigning the system such that the failure does not occur again in the given 

failure mode. This decision is one extreme of the possible decisions because it completely removes 

the possibility of any failure in the future and therefore removes the uncertainty of the failure rates. 

The other extreme of the decisions is to continue to reboot the system until the next decision point. 

Rebooting a computer when it hangs or replacing a light bulb when it goes out are examples of the 

reboot decision scenarios. In the case of an aircraft, it means we do not take any measures to 

understand what is causing the failure and continue to replace the faulty unit with an LRU in stock. 

The Reboot and Eliminate decisions have different consequences and result in different costs 

incurred and therefore give different NPVs of the system. 

2.2.3.1 NPV when decision is to Reboot 

We illustrate our approach using an example. Assume that three NFFs were logged across the fleet 

for a given month. Each time a failure is reported and an LRU is replaced, the system experiences 

some downtime of 𝑡𝑅 . During downtime, the system incurs additional downtime cost at a cost rate 

𝑐̇𝐷, (an example of these costs is the overtime pay for maintenance and ground crew). The reboot 
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cost is 𝑐𝑅. We assume that rebooting always take the same amount of time/labor and is therefore 

constant for a given NFF. Figure 4 shows the state of the system in the ‘Reboot’ scenario and its 

corresponding costs for month 𝑗. 

 

Figure 4: In a given time interval, j to j+1, each time a failure occurs, the system goes to a non-

functional state for a time period of 𝑡𝑅 . Additional cost during downtime (which is time 

dependent), 𝑐̇𝐷, and cost to reboot are put into the system to bring it back to a functional state 

Therefore, the value of the system for month 𝑗 when decision is to reboot is: 

 𝑉̂𝑅𝑗
= 𝑈̇(𝑇𝐵𝐻 − 𝜆̂𝑗𝑡𝑅) − (𝑐̇𝑂(𝑇𝐵𝐻 − 𝜆̂𝑗𝑡𝑅) + 𝜆̂𝑗𝑡𝑅𝑐𝐷̇ + 𝜆̂𝑗𝑐𝑅) (8) 

Where 𝑈̇ is the revenue per block hour for the fleet, 𝑇𝐵𝐻 is the total block hours of the fleet for the 

given month, and 𝑐̇𝑂 is the operating cost per block hour. 

We calculate NPV when rebooting, 𝑁𝑃𝑉𝑅, at a decision point by accounting for value generated 

in the months after month 𝑗: 

 𝑁𝑃𝑉̂𝑅𝑗
= ∑

𝑉̂𝑅𝑖

(1 + 𝑟)𝑖−𝑗

𝑁𝑙𝑖𝑓𝑒

𝑖=𝑗+1

 (9) 

The estimated failure rate, 𝜆̂𝑗 , is different for each month. Figure 5 shows an example of the 

estimated failure rate at decision point 3 (end of month 3) when the decision is to reboot. At 

decision point 3 we have three actual failure rates recorded for the prior months. The underlying 

failure rate, 𝜆𝑡𝑟𝑢𝑒 = 15, is also shown. The failure rate for the future months is estimated as the 

mean of the recorded failure rate. The estimated failure rate along with its uncertainty is assumed 

to be the same for all future months.  
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Figure 5: At the end of month 3, we assume the estimated failure rate along with its uncertainty 

remain same and repeat for all future months 

Using the mean, upper and lower bounds of the estimated 𝜆̂𝑗 in Equation 7 and 8, we calculate 

𝑁𝑃𝑉̂𝑅3
, which will also have its uncertainty as shown in Figure 6. 

 

Figure 6: Using the estimated future failure rates, we calculate the 𝑁𝑃𝑉𝑅 at the end of each 

month (month 3 shown here) and it has an uncertainty associated with it 
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2.2.3.2 NPV when decision is to Eliminate 

By our definition, the decision to eliminate addresses the root causes of the failure mode such that 

the failure does not occur again. Thus, the system does not experience any recurring downtime 

costs. The decision to eliminate leads to a single downtime while eliminating, 𝑡𝐸, downtime cost 

per block hour, 𝑐𝐷̇, and corresponding cost of elimination, 𝑐𝐸, which is the cost of manpower and 

resources required to understand the root causes and redesign the system. The downtime cost rates 

for both Reboot and Eliminate decisions are the same since they represent loss in revenue and 

additional costs while the system is not functional. The state of the system when eliminate option 

is chosen is shown in Figure 7. 

 

Figure 7: When eliminate option is chosen, the system experiences a downtime of 𝑡𝐸 when the 

failure mode is eliminated and its associated cost, 𝑐𝐸is incurred. The downtime cost per block 

hour, 𝑐̇𝐷 

The value of the system for month 𝑗 when the decision is to eliminate is: 

 𝑉̂𝐸 = 𝑈̇(𝑇𝐵𝐻 − 𝑡𝐸) − (𝑐̇𝑂(𝑇𝐵𝐻 − 𝑡𝐸) + 𝑡𝐸𝑐̇𝐷 + 𝑐𝐸) (10) 

We calculate NPV when the eliminate option is chosen, 𝑁𝑃𝑉𝐸, at a decision point, by accounting 

for value generated in the months after month 𝑗. This includes the estimated value from Equation 9 

and the value generated by the system in the subsequent months when it is fully functional without 

any recurring NFF failures: 

 𝑁𝑃𝑉̂𝐸𝑗
=

𝑉̂𝐸

1 + 𝑟
+ ∑

(𝑈̇ − 𝑐̇𝑂) ∗ 𝑇𝐵𝐻

(1 + 𝑟)𝑖−𝑗

𝑇𝑒𝑛𝑑

𝑖=𝑗+2

 (11) 

Figure 8 shows the same example chosen for the reboot option, but here the decision is to eliminate. 

At the end of month 3, the failure rate for the future months is zero since we assume the eliminate 

option removes the possibility of any failure in the chosen NFF failure mode. It follows that the 

failure rate is zero and has no uncertainty. 



 33 

 

Figure 8: At the end of month 3, if decision is to eliminate, the future failure rates are zero and 

there is no uncertainty 

Using Equation 9 and 10, we calculate 𝑁𝑃𝑉̂𝐸3
, which is shown in comparison with 𝑁𝑃𝑉̂𝑅3

 in 

Figure 9. 

 

Figure 9: 𝑁𝑃𝑉𝐸 is calculated assuming failure rate is zero in the future months and compared 

with 𝑁𝑃𝑉𝑅 at the end of each month (month 3 shown here) 
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2.3 Uncertainty in NPV 

Knowledge of the true underlying failure rate would be the ideal situation for a DM to make the 

correct decision at any given time. This is perfect knowledge which is unattainable but can be 

estimated given enough information. In the initial months, the mean of failure rate estimate might 

be far from the true underlying failure rate. This difference could mean that the values calculated 

for NPV are far from the true values of NPV. If the DM had perfect knowledge and knew the true 

underlying failure rate, then 𝑁𝑃𝑉𝑅 will not have uncertainty bounds. In this case, 𝑁𝑃𝑉𝐸 could be 

compared to the single certain value of 𝑁𝑃𝑉𝑅  and the decision with the higher NPV could be 

chosen. 

In the case of imperfect information, if the true failure rate is much lower than expected, then it 

could be better to keep rebooting till the end of aircraft system life without needing to incur the 

large eliminate cost. On the other hand, if the failure rate is higher than predicted, it is better to 

eliminate as soon as possible to reduce loss due to recurring reboot costs. Figure 10 shows two 

possible estimates of failure rate at the end of the first months. If in month 1, the number of failures 

recorded were 10, then the estimated failure rate for the future is 𝜆̂ = 10 with its corresponding 

confidence bounds (shown in figure as Estimate 1). If the number of failures recorded were 20, 

then the estimated failure rate for the future is 𝜆̂ = 20 with its confidence bounds (shown in figure 

as Estimate 2). Both these situations are possible realities due to the random nature of failures. 
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Figure 10: The estimated failure rate can be far from the underlying true failure rate and this is 

more likely to happen in the initial months when we have less failure rate data recorded. The two 

concurrent data points are separated slightly on the time-axis for readability. 

The NPVs calculated for the two estimates of failure rate and 𝜆𝑡𝑟𝑢𝑒 shown in Figure 10 are plotted 

in Figure 11. If 𝜆̂𝑚𝑒𝑎𝑛 = 10 (estimate 1), the mean of 𝑁𝑃𝑉𝑅 is greater than 𝑁𝑃𝑉𝐸, thus Reboot is 

the better choice if only mean values are considered. If 𝜆̂𝑚𝑒𝑎𝑛 = 20 (estimate 2), the mean of 

𝑁𝑃𝑉𝑅  is less than 𝑁𝑃𝑉𝐸  and Eliminate is the better choice, again, if only mean values are 

considered. If given perfect information (𝜆𝑡𝑟𝑢𝑒 = 15), then DM would decide to Reboot since that 

decision gives higher NPV. 
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Figure 11: Comparison of 𝑁𝑃𝑉𝑅 and 𝑁𝑃𝑉𝐸 for the two estimates and underlying failure rate 

shown in Figure 14. If the DM decides without considering the uncertainty, then it could lead to 

a non-optimal decision 
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Due to 𝑁𝑃𝑉𝐸 being within the uncertainty bounds of 𝑁𝑃𝑉𝑅, the DM might decide to wait and 

collect information to be more certain about the true failure rate but a longer wait means there is 

less time there is to less time to reap the benefits of not having NFFs and consequently, it is less 

worthwhile to eliminate. The DM needs to trade-off between the need to be certain with the need 

to maximize expected net present value. 

Further complicating the decision is the uncertainty of the cost to eliminate and the cost per reboot. 

The cost to eliminate can be difficult to estimate since the NFF failure characteristics are not 

understood and we might not know how much it costs to fully eliminate a failure mode. The cost 

per reboot, as elaborated in Erkoyuncu et al. (2016) can also be difficult to estimate since there 

might not be enough data for such an estimate and because, within an organization, there may be 

multiple stakeholders in the maintenance process – the ground crew, maintenance team, 

engineering team, OEM, airline management – interacting with the process differently. 

We incorporate these uncertainties while calculating Utility of the Eliminate decision in the next 

section and the results follow in Chapter 3. 

2.4 Expected Utility: Quantifying DM’s attitude towards uncertainty and risk 

As shown in the previous section, there is a possibility of making an undesirable choice and 

deriving less than optimal value when the decision is based on expected NPV. A DM who is highly 

averse to losing money would not choose to Eliminate when uncertainties are high since there is 

higher risk of losing value. The decision is riskier when the uncertainties are higher. Here, we use 

utility theory to incorporate the DMs attitude towards risk under the uncertainties of failure rate, 

cost to eliminate, and cost per reboot in our decision framework. 

The concept of utility is used as a measure to model the risk preference of a decision maker. 

Consider a 50-50 probability lottery option provided to the DM, where the win value is $100 and 

lose value is -$10 (Figure 12). The expected value of this lottery is 𝐸(𝑉) = 0.5 ∗ $100 + 0.5 ∗

−$10 = $45. A decision maker might be averse to the possibility of losing $10. Therefore, they 

might accept $25 instead of opting to bet on this lottery and win $100. This decision attitude is 

termed risk-averse and the risk premium in this case is $45 − $25 = $20. A risk-averse decision 

maker assigns higher utility to a profit value than what it is worth. For a risk-neutral decision 
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maker, the risk premium is $0, which means they are neither for, nor against making a loss. A risk-

seeking DM, the risk premium is negative. 

 

Figure 12: The expected value of this lottery is $45. The DM might accept $25 instead of 

choosing to take this lottery because they are averse to the possibility of losing $10 

A risk-averse DM will have a decreasing rate of utility, leading to a concave utility function (Figure 

13). A risk-seeking behavior is shown by a convex curve and a risk-neutral decision maker has a 

straight line as a risk preference function. In our work we write a utility function by using an 

exponential function with a single risk-aversion coefficient, 𝛾 (Buede & Miller, 2016). We define 

the utility function as: 

 𝑢(𝑥) =
1 − 𝑒

−𝛾(
𝑥

𝑥𝑚𝑎𝑥
)

1 − 𝑒−𝛾
 

(12) 

Where 𝛾  is the risk aversion coefficient of the utility function. At 𝑥𝑚𝑎𝑥 , the largest profit is 

expected and the utility 𝑢(𝑥𝑚𝑎𝑥) = 1 and for a profit of zero, 𝑢(0) = 0. A more risk averse DM 

will have higher risk aversion coefficient, 𝛾. 

Win

Lose

p = 0.5

(1-p) = 0.5

$100

-$10
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Figure 13: A risk-averse DM has a concave utility function and a risk-seeking DM has a convex 

utility function 

In our case, the profit a DM can make with a decision to Eliminate is the difference between 𝑁𝑃𝑉𝐸 

and 𝑁𝑃𝑉𝑅. At each decision point, we obtain a distribution for Profit from Eliminate decision, 

<𝑁𝑃𝑉𝐸 − 𝑁𝑃𝑉𝑅 >, by doing a Monte Carlo simulation with 10,000 runs over three uncertain 

variables, Cost to Eliminate (𝑐𝐸), Cost to Reboot (𝑐𝑅) and estimated failure rate (𝜆̂) (Figure 14). 

We chose to do 10,000 runs after validating that the value of 𝑁𝑃𝑉𝑅 converged within this number. 

We chose to do 10,000 Monte Carlo runs because 𝑁𝑃𝑉𝑅 was seen to converge within these runs. 

The convergence of the simulation is shown in Appendix A. 

In the absence of a good model for maintenance cost distribution, the Cost to Eliminate and Cost 

to Reboot are simulated to have a uniform distribution over a range from minimum to maximum 

possible costs. This uniform distribution is a simplifying assumption and in future can be changed 

to reflect more realistic cost uncertainty distributions. The minimum and maximum values used 

for this example are: 

$800 < 𝑐𝑅 < $3,200 

$20,000 < 𝑐𝐸 < $218,000 

Failures are Poisson distributed with mean failure rate 𝜆̂𝑚𝑒𝑎𝑛. Each Monte Carlo run calculates 

NPV using the random values generated from these three distributions. The profit value (Profit = 

< 𝑁𝑃𝑉𝐸 − 𝑁𝑃𝑉𝑅 >) calculated will also have a distribution. An example Monte Carlo simulation 
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of 10,000 runs is shown in Figure 14. The three uncertain variables and their distributions are 

shown along with the resulting Profit distribution. 

 

Figure 14: Cost to Reboot, 𝑐𝑅, and Cost to Eliminate, 𝑐𝐸, have a uniform distribution over their 

range of uncertainties. 𝜆 for each month in the future is Poisson distributed about the 𝜆̂𝑚𝑒𝑎𝑛 of 

the current month. A Monte Carlo simulation over these variables gives a distribution of Profit 

from Eliminate decision at the current decision point 

In the above example we consider only the stochastic uncertainty of failures about the estimated 

mean failure rate. We consider variation in 𝜆̂𝑚𝑒𝑎𝑛 between the upper and lower bounds of the 

confidence interval (Equation 6 and 7). We do two more Monte Carlo simulations with 10,000 

runs each using the same distributions for cost uncertainties as the previous example but with two 

different values for the failure rate, the upper bound of the 95% confidence interval of 𝜆̂ and the 

lower bound of the 95% confidence interval of 𝜆̂. 

NPVs calculated from three Monte Carlo simulations gives us three different distributions of Profit 

from Eliminate decision (Figure 15). 
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Figure 15: The Monte Carlo is repeated for the upper and lower bounds of estimated failure rate 

and we get three distributions of Profit from Eliminate decision 

The Expected Utility, 𝐸[𝑢(𝑥)], of choosing to Eliminate is then calculated using the probability 

distribution of Profit and the utility function: 

 𝐸[𝑢(𝑥)] = ∫ 𝑓(𝑥)𝑢(𝑥)𝑑𝑥
∞

−∞

 (13) 

Where 𝑓(𝑥) is the probability distribution of 𝑥; 𝑥 = < 𝑁𝑃𝑉𝐸 − 𝑁𝑃𝑉𝑅 > is the expected profit 

from the eliminate decision. 

The Utility function in this example is calculated using Equation (12) with a risk-aversion 

coefficient 𝛾 = 1, meaning that that DM is risk-averse. Drawing an analogy to Figure 12 using the 

Profit values from Figure 15 where 𝑥𝑚𝑎𝑥 = $25 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 , the assumption of 𝛾 = 1  means 

accepting a situation with 0.5 probability of Profit of 𝑥𝑚𝑎𝑥 = $25 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 and 0.5 probability of 

loss of 𝑥𝑚𝑎𝑥/2 = $12.5 𝑚𝑖𝑙𝑙𝑖𝑜𝑛  is equal to walking away from the situation and having the 

certainty of neither a loss nor a profit. 
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The three distributions of < 𝑁𝑃𝑉𝐸 − 𝑁𝑃𝑉𝑅 >  we get from the Monte Carlo are the profit 

distributions, 𝑓(𝑥). Using Equation (13) we calculate three values of 𝐸[𝑢(𝑥)] which are the mean, 

upper and lower bounds which the DM can use to make a decision. 

2.5 Maximizing Utility in the presence of NFFs 

Figure 16 shows the possible paths the system can take depending on the two decisions that a 

Decision Maker (DM) can take at the end of each month. At the beginning of the system lifetime, 

we have an unknown failure rate of faults that result in NFFs. At the end of the first month, the 

maintenance team will have recorded the number of NFF failures for that month. Using this data, 

the DM estimates a failure rate for the future months and calculates 𝑁𝑃𝑉𝑅1
, 𝑁𝑃𝑉𝐸1

 and Expected 

Utility. 

 

Figure 16: The system can take many paths depending on the decision made at each decision 

point. At the end of month 1, the DM can use 𝑁𝑃𝑉𝐸 and 𝑁𝑃𝑉𝑅 to determine the expected value 

maximizing route 

If 𝐸[𝑢(𝑥)] > 0, then Eliminate is the better decision at that decision point. In Figure 17, Expected 

utility of the Eliminate Decision is shown for month 1. If the DM considers the lower bound of 
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𝐸[𝑢(𝑥)] for the decision, then they would decide to continue to Reboot since 𝐸[𝑢(𝑥)]𝑙𝑏 < 0. If 

DM considers the upper bound or mean of Utility, then, since 𝐸[𝑢(𝑥)]𝑚𝑒𝑎𝑛 > 0 and 𝐸[𝑢(𝑥)]𝑢𝑏 >

0, eliminating is the better decision and is expected to give a profit. 

 

Figure 17: At the end of month 1, the DM can see the Expected Utility if they choose to 

Eliminate. If 𝐸[𝑢(𝑥)] > 0, then Eliminate is the better decision 

At the end of the first month, if the DM chooses to continue to reboot, then the NFF failures are 

recorded for another month. At the end of the month 2, we have an updated failure rate estimate 

which is used to calculate NPVE, NPVR and 𝐸[𝑢(𝑥)]. Expected utility is then used to make the 

decision for the subsequent month (Figure 18). If the reboot option is chosen again at this point, 

then the same process is repeated at the end of the next month.  
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Figure 18: At the end of the first month, if the DM chooses to continue to reboot, then the NFF 

failures are recorded for another month. At the end of the month 2, we have an updated failure 

rate estimate which is used to calculate 𝑁𝑃𝑉𝐸 and 𝑁𝑃𝑉𝑅and then used to make the decision for 

the subsequent month 

2.6 Summary 

We have laid out the decision framework for the two options considered – Eliminate and Reboot. 

An airline fleet is modeled as a revenue generating system. Failures are modeled as a stochastic 

Poisson process and the two decisions are assumed to have different consequences on failure rate. 

The NPV is calculated for both decisions but this NPV has uncertainty that can lead to undesirable 

decisions. There is higher risk in deciding when uncertainties are higher. The risk attitude of the 

DM is modeled using utility theory. The Expected Utility of Eliminate decision is calculated while 

accounting for uncertainties of failure rate, cost to eliminate and cost to reboot. DM can make a 

decision using the values of Expected Utility of Eliminate decision. 
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 ANALYSIS AND RESULTS 

This chapter has three parts. First, we establish a baseline result of Expected Utility and understand 

how it changes with time and underlying failure rate. We then explore the effect of Costs to Reboot 

and Eliminate on the Expected Utility and consequently on the optimal decision. We introduce a 

concept of threshold failure rate (𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ) which consolidates the results such that, under 

uncertainties of cost and failure rate, the DM can make a decision by comparing the estimated 

failure rate at the current decision point with the 𝜆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . Finally, we show how NPV and 

Expected Utility changes with change in discount rate, 𝑟, and risk aversion coefficient, 𝛾. 

3.1 Input parameters for cost model 

To calculate NPV and Expected Utility, the DM requires the necessary inputs for revenue, costs 

and failure rate. We list the required inputs in Table 1.  

Table 1: Baseline numbers for input parameters required for the cost model to calculate NPV 

and Expected Utility 

Nomenclature Value Unit Source 

Time interval - 1 Months 
Similar to industry practice (Kinnison 

& Siddiqui, 2013) 

Total lifetime 𝑇𝑒𝑛𝑑 360 Months 
Follows from our assumption of an 

aircraft’s life. 

Revenue 𝑈̇ 4,670 USD/Hour 

Calculated from the operating cost 

using an operating margin of 6%. This 

percentage of operating margin is the 

average percentage across domestic 

airlines in the first quarter of 2019, as 

published by the Bureau of 

Transportation Statistics (BTS, 2019) 

Operating cost 𝑐̇𝑂 4,400 USD/Hour 

Taken from the value for the United 

airlines fleet of A320 aircraft published 

in Belobaba et al. (2009). 

Cost during 

downtime 
𝑐̇𝐷 10,000 USD/Hour 

The Costs during Downtime are set to a 

reasonable value based on literature 
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(Erkoyuncu et al., 2016; Hölzel et al., 

2012). 

Discount factor 𝑟 5 % annually 

Our approach uses a constant rate of 

discounting for calculating NPV, which 

is the common practice for engineering 

trade studies for systems with ~30-year 

life (Kenley & Armstead, 2004). The 

annual discount rate is converted to a 

monthly rate for our model. 

Monthly fleet 

Block Hours 
𝑡𝐵𝐻  30000 Hours 

United Airlines has about 100 A320 

aircraft and the average block hours per 

day for each aircraft is 10 hours 

according to the data provided by 

MIT’s Airline Data Project (MIT, 

2018). Therefore, the total monthly 

block hours for the A320 fleet when 

assuming 30 days in a month is 30,000 

hrs. 

Downtime per 

reboot 
𝑡𝑅  0.5 Hours Set to a reasonable value. 

Downtime to 

Eliminate 
𝑡𝐸  2,000 Hours Set to a reasonable value. 

Cost to Reboot 𝑐𝑅 2,000 USD 
Set to a reasonable value and is later 

varied to see its effect. 

Cost to Eliminate 𝑐𝐸  100,000 USD 
Set to a reasonable value and later 

varied to see its effect. 

Underlying true 

Failure rate 
𝜆𝑡𝑟𝑢𝑒 15 per month 

A failure rate of 15 NFF failures/month 

is a reasonable value set based on pilot 

reported avionics errors (Kinnison & 

Siddiqui, 2013). It is later varied to see 

its effect. 

Risk aversion 

coefficient 
𝛾 1 - 

Set to a reasonable value and is later 

varied to see its effect. 

Maximum 

Expected Profit 
𝑥𝑚𝑎𝑥 10,000,000 USD 

Set to a reasonable value and is later 

varied to see its effect. 
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 For our baseline result, we assume the DM is risk averse with a constant risk aversion coefficient, 

𝛾 = 1 and Maximum Expected Profit, 𝑥𝑚𝑎𝑥 = $10 𝑚𝑖𝑙𝑙𝑖𝑜𝑛. We assign a utility of 1 to profits 

beyond this 𝑥𝑚𝑎𝑥 (Figure 19). 

 

Figure 19: We establish baseline results with a utility function having a constant risk aversion 

coefficient, 𝛾 = 1 and a utility of 1 is assigned to profits beyond 𝑥𝑚𝑎𝑥 = $10𝑀 

3.2 Change of NPV and Expected Utility with time 

We use a sequence of random failure rates simulated from a Poisson distribution about an 

underlying true failure rate of 𝜆𝑡𝑟𝑢𝑒 = 15 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠/𝑚𝑜𝑛𝑡ℎ. Figure 20 shows the failure rate 

sequence along with the estimated failure rate for each decision point in the first year of the 

analysis. 
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Figure 20: The following NPV and Expected Utility results use the failure sequence shown in 

this figure 

Figure 21 shows NPV calculated for the first year using this failure rate sequence. Figure 22 shows 

NPV calculated for the full lifetime of the aircraft fleet. We make the following observations for 

the NPV calculated: 

1. Over the course of the fleet’s life, 𝑁𝑃𝑉𝑅 and 𝑁𝑃𝑉𝐸 both gradually reduce since they are 

calculated looking forward from that point, so there is less remaining life to reap value. 

𝑁𝑃𝑉𝑠 do not have a constant rate of decrease because of discount rate accounting for time 

value of money. 

2. 𝑁𝑃𝑉𝑅 changes with change in 𝜆̂ and therefore increases or decreases from one decision 

point to the next. 𝑁𝑃𝑉𝐸 does not depend on 𝜆 and therefore gradually and monotonically 

decreases with each decision point. 

3. The confidence interval of 𝜆̂ decreases with time and consequently, the confidence interval 

of 𝑁𝑃𝑉𝑅 also becomes smaller with time. 
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Figure 21: 𝑁𝑃𝑉𝑅  and 𝑁𝑃𝑉𝐸 are calculated using the failure sequence shown earlier. 𝑁𝑃𝑉𝐸 has 

a more gradual decrease since it does not depend on 𝜆 

 

Figure 22: Over the full lifetime of the fleet, NPV reduces as the remaining life from which we 

derive value decreases. The values of 𝑁𝑃𝑉𝑅and 𝑁𝑃𝑉𝐸 decrease by a large amount from 

beginning to end of life. The difference between the two NPVs appear small compared to the 

change across the lifetime 

Figure 23 shows the Expected Utility for all the decision points in the first year. If the DM chooses 

to make a decision based on the lower bound of 𝐸[𝑢(𝑥)] then, Eliminate is not the optimal decision 

since 𝐸[𝑢(𝑥)]𝑙𝑏 is not positive for any of the decision points in the first year. If the DM chooses 
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to decide based on the mean value or upper bound of 𝐸[𝑢(𝑥)] then, the Eliminate decision is 

optimal in the first month. 

 

Figure 23: In the first year, the lower bound of 𝐸[𝑢(𝑥)] does not become positive, therefore the 

Eliminate is not the optimal decision in the first year 

Expected Utility also varies with varying 𝜆̂. If 𝜆̂ is higher, then we incur costs for more reboots per 

month and therefore 𝑁𝑃𝑉𝑅 is lower and Profit from Eliminate decision is more. If Profit is higher, 

the utility in deciding to Eliminate is higher and Expected Utility, 𝐸[𝑢(𝑥)] is more. Similar to 

𝑁𝑃𝑉𝑅, the confidence interval of 𝐸[𝑢(𝑥)] decreases with time. 

As the remaining life of the fleet reduces, Expected Utility gradually decreases (Figure 24). It is 

less worthwhile to Eliminate as time progresses as there is less time to reap the benefits of 

eliminating the failure mode or in other words, we can continue to reboot and still get more value 

than spending the large amount of eliminate cost. 
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Figure 24: Expected Utility reduces as the remaining life to recover the Cost to Eliminate 

reduces 

3.3 Change of NPV and Expected Utility with 𝝀𝒕𝒓𝒖𝒆 

If the underlying true failure rate, 𝜆𝑡𝑟𝑢𝑒, is increased to 20 (Figure 25 shows the simulated failure 

rate sequence), then we can make the following observations: 

1. 𝑁𝑃𝑉𝐸 remains the same as baseline values since it does not depend on 𝜆. 

2. Overall, 𝑁𝑃𝑉𝑅  is lower since more Reboots are needed each month (Figure 26). 

Consequently, profit from Eliminate decision is more and 𝐸[𝑢(𝑥)] is higher (Figure 27).  

3. The confidence interval of 𝐸[𝑢(𝑥)]  decreases with time. This increase in certainty, 

combined with the higher failure rate, makes 𝐸[𝑢(𝑥)]𝑙𝑏 > 0 after 12 months of collecting 

failure rate data and allows the DM to choose to Eliminate at that time. If the DM waits for 

a long time to collect more data, we have tighter confidence intervals but the 𝐸[𝑢(𝑥)] 

becomes negative again as Eliminate becomes less worthwhile. 
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Figure 25: Simulated failure sequence for 𝜆𝑡𝑟𝑢𝑒 = 20 

 

Figure 26: When comparing the results for 𝜆𝑡𝑟𝑢𝑒 = 20 with 𝜆𝑡𝑟𝑢𝑒 = 15, we find that for higher 

𝜆𝑡𝑟𝑢𝑒, 𝑁𝑃𝑉𝑅 is lower 
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Figure 27: Expected Utility increase with increase in 𝜆𝑡𝑟𝑢𝑒 

 

Figure 28: The Eliminate decision have more utility in the beginning of the lifetime because 

there is more time to recover the Cost to Eliminate. Later in the system lifetime, although we are 

more certain of the failure rate estimate, Eliminate is not the optimal decision 

3.4 Change of NPV Discount rate, 𝒓 

Discount rate accounts for the time value of money. A high discount rate means that investments 

made in the past or present grow more rapidly; conversely, payments in the future are worth less 

in the present than if the discount rate were lower. To illustrate this, we simulate NPV for different 
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discount rates and compare them. For a lower discount rate (𝑟 = 2%), we get high NPV in the 

present and for higher discount rate, we get lower NPV in the present (Figure 29). The differences 

between the NPVs calculated for different discount rates are higher initially and become smaller 

with time, because the effect of discounting increases the further into the future we look. 

 

Figure 29: Higher discount rate means the value in the future are worth lesser in the present. 

Therefore, NPV is higher if discount rate is lower 

3.5 Change of Expected Utility with risk preference 

We change the Risk Aversion coefficient to model the effect of the DM’s risk attitude on decision 

making. Figure 30 shows the utility functions for a More Risk Averse DM (𝛾 = 1), Less Risk 

Averse DM (𝛾 = 0.2) and a Risk Neutral DM (Utility function is a straight line). The Utility 

function mostly changes in the negative axis where a Loss is expected instead of Profit. A highly 

risk averse DM has very low utility for value lost (profit is negative). 
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Figure 30: We change utility function to see the effect of DM's risk attitude on decision making 

Figure 31 shows the Expected Utility calculated using the three different utility functions shown 

in Figure 30. If the Expected Profit is negative, then a Risk Averse DM will see less Expected 

Utility than a Risk Neutral DM. Conversely, if Expected Profit is positive, then a Risk Averse DM 

will see more Expected Utility than a Risk Neutral DM. 

 

Figure 31: The lower bound of Expected Utility for highly risk averse DM is very low because 

DM strongly does not want loss in value 
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3.6 Change of Expected Utility with change in Maximum Expected Profit (𝒙𝒎𝒂𝒙)  

In the Baseline simulations, we assumed that the DM expects a maximum profit of $10 million, 

above which the utility is equal to 1. We change the Maximum Expected Profit to see the effect it 

has on Expected Utility. Figure 32 shows the utility functions for the baseline 𝑥𝑚𝑎𝑥 = $10 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 

and for the new 𝑥𝑚𝑎𝑥 = $25 𝑚𝑖𝑙𝑙𝑖𝑜𝑛. Both the utility functions shown are for the same risk 

aversion coefficient 𝛾 = 1. The Utility increases if the DM expects a loss and reduces if there is a 

profit. Above 𝑥𝑚𝑎𝑥 = $25 𝑚𝑖𝑙𝑙𝑖𝑜𝑛, the utility is 1 for both functions. 

 

Figure 32: We change the maximum expected profit, 𝑥𝑚𝑎𝑥, and see its effect on Expected Utility 

calculated 

Figure 33 shows the Expected Utility calculated using the two different Maximum Expected Profit 

values. If a loss is expected, then a DM who has a higher Maximum Expected Profit, will see it 

having higher utility. Conversely, if a profit is expected, then a DM who has a higher Maximum 

Expected Profit, will see it having lower utility. 
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Figure 33: The lower bound of Expected Utility for DM who has higher Maximum expected 

Profit, 𝑥𝑚𝑎𝑥, has lower Expected Utility when making a profit and higher Expected Utility when 

making a loss 

3.7 Change of NPV and Expected Utility with Cost to Eliminate and Cost to Reboot 

If the Cost to Eliminate and Cost to Reboot are double the baseline values, (𝑐𝑅 = $4,000 𝑎𝑛𝑑 𝑐𝐸 =

$200,000), then we can make the following observations: 

1. 𝑁𝑃𝑉𝐸 and 𝑁𝑃𝑉𝑅 are lower because 𝑐𝐸 and 𝑐𝑅 are higher (Figure 34). 

2. 𝑁𝑃𝑉𝑅 is more sensitive to change in 𝑐𝑅 compared to sensitivity of 𝑁𝑃𝑉𝐸 to change in 𝑐𝐸. 

This difference in sensitivity is because the Cost to Reboot is incurred each time a failure 

occurs for all the months in the remaining life. The Cost to Eliminate is incurred just once 

when the DM decides to Eliminate. 

3. 𝐸[𝑢(𝑥)] is higher since 𝑁𝑃𝑉𝑅 is lower and Profit from Eliminate decision is higher (Figure 

35). 
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Figure 34: 𝑁𝑃𝑉𝑅  is more sensitive to change in 𝑐𝑅 than 𝑁𝑃𝑉𝐸 is sensitive to change in 𝑐𝐸 

 

Figure 35: Lower 𝑁𝑃𝑉𝑅 means there is more Profit gained from choosing to Eliminate and 

therefore more Expected Utility 

3.8 Expected Utility for a range of Cost to Eliminate and Cost to Reboot 

We extend the results in the previous section to a range of 𝑐𝑅 and 𝑐𝐸 costs. Figure 36 is a heat map 

of 𝐸[𝑢(𝑥)]𝑙𝑏  for all 𝑐𝑅  and 𝑐𝐸  costs at six decision points (month 1, 5, 10, 15 and 24). More 

negative values of 𝐸[𝑢(𝑥)]𝑙𝑏 are more red in the heat map, and more positive values are blue. 
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We make the following observations: 

1. No costs in the ranges shown yield 𝐸[𝑢(𝑥)]𝑙𝑏 > 0, therefore Eliminate is not the optimal 

decision for any of these costs. This is because, for the cost ranges simulated, the failure 

rate of 𝜆𝑡𝑟𝑢𝑒 = 15 is low enough that the Eliminate decision does not yield the expected 

utility. Eliminate is not a worthwhile choice even after waiting to reduce uncertainty till 

month 24. 

2. When Cost to eliminate is low and Cost to Reboot is high, the Eliminate decision has higher 

Profit and therefore higher Expected Utility. Conversely, for higher Cost to Eliminate and 

low Cost to Reboot, Expected Utility is lower. 

3. In the beginning of the lifetime, 𝐸[𝑢(𝑥)]𝑙𝑏 may decrease (month 1 to month 5) or increase 

(month 5 to month 24) as the estimate of failure rate is also non-monotonic with time. The 

same behavior is shown in Figure 23 and Figure 24 .  

 

Figure 36: Heat map of 𝐸[𝑢(𝑥)]𝑙𝑏 for 𝜆𝑡𝑟𝑢𝑒 = 15 shows that it may decrease (month 1 to month 

5) or increase (month 5 to month 24) in the beginning of the lifetime. Reboot yields greater 

expected NPV in all cases. 

If 𝜆𝑡𝑟𝑢𝑒 is higher, then Profit from Eliminate decision would be higher and Expected Utility is also 

higher. This is shown in Figure 37, where we plot 𝐸[𝑢(𝑥)]𝑙𝑏 for 𝜆𝑡𝑟𝑢𝑒 = 20. The black line (where 

𝐸[𝑢(𝑥)]𝑙𝑏 = 0) distinguishes the heat map into regions where Eliminate is the better decision 

(where 𝐸[𝑢(𝑥)]𝑙𝑏 > 0) or Reboot is the better decision (where 𝐸[𝑢(𝑥)]𝑙𝑏 < 0). 



 60 

 

Figure 37: 𝐸[𝑢(𝑥)]𝑙𝑏 for 𝜆𝑡𝑟𝑢𝑒 = 20 is higher than 𝜆𝑡𝑟𝑢𝑒 = 15 for all cost values in the ranges 

considered. The black line is the where 𝐸[𝑢(𝑥)] = 0. Reboot is preferred in month 1 and 5. 

𝐸[𝑢(𝑥)]𝑚𝑒𝑎𝑛 (shown in Figure 38 for 𝜆𝑡𝑟𝑢𝑒 = 15)is greater than 𝐸[𝑢(𝑥)]𝑙𝑏 and has more costs 

where it is greater than zero and Eliminate is the optimal choice. Eliminating is optimal even if the 

cost to eliminate are higher and cost to reboot are lower. If the DM chooses to use 𝐸[𝑢(𝑥)]𝑚𝑒𝑎𝑛 

to make the optimal choice, then they may be able to make the decision earlier in the lifetime since 

they are willing to accept more risk by not accounting for uncertainty in the estimate of mean 

failure rate. 

 

Figure 38: If the DM chooses to use the mean of Expected Utility instead of its lower bound 

(shown in Figure 33), then they can make the decision earlier in the lifetime since uncertainty in 

estimated mean of failure rate is not considered 
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3.9 Threshold Failure rate (𝝀̂𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅) 

We introduce the concept of threshold failure rate to provide the DM with a single parameter 

metric to make the optimal decision. At a decision point 𝑖: 

𝑖𝑓 𝜆̂𝑖 > 𝜆̂𝑖,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝑎𝑛𝑑 𝑖𝑓 𝜆̂𝑖 < 𝜆̂𝑖,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑅𝑒𝑏𝑜𝑜𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

With the baseline cost values, we find 𝜆̂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  for all decision points 𝑖. The mean, upper bound 

and lower bound of 𝜆̂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , are values of 𝜆̂  when 𝐸[𝑢(𝑥)]𝑚𝑒𝑎𝑛 = 0 , 𝐸[𝑢(𝑥)]𝑙𝑏 = 0  and 

𝐸[𝑢(𝑥)]𝑢𝑏 = 0 respectively. With greater uncertainty in the beginning of the lifetime, 𝜆̂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

also has larger bounds (Figure 39). This means if the DM uses 𝐸[𝑢(𝑥)]𝑙𝑏, then 𝜆̂𝑖 should be high 

(>25 at Month 1 for the baseline simulation) for Eliminate to become the optimal choice. With 

time, even with the lower 𝜆̂𝑖 , we get required utility from the Eliminate decision, therefore 

𝜆̂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  decreases. 

 

Figure 39: In the beginning of life, more uncertainty in estimated failure rate leads to larger 

bounds on 𝜆̂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

The uncertainty decreases as we move further into the future but there is less time to recover the 

Cost to Eliminate and rebooting becomes more worthwhile. Close to the end of the fleet’s life, it 

is better to continue to Reboot unless the failure rate is very high leading to Reboot costs becoming 
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greater than Eliminate cost. Therefore, 𝜆̂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  increases exponentially as we approach the end 

of life (Figure 40). 

 

Figure 40: As we approach end of life, rebooting the system for the remainder of the life 

provides more utility than incurring high Eliminate costs. Only if the failure rate is very high, 

eliminating is worthwhile. 𝜆̂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  increases exponentially as we approach end of life 

The 𝜆̂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  values shown above are for the case where Cost to Eliminate and Cost to Reboot 

are known for certain and the Monte Carlo simulation accounts only for the uncertainty in 

estimated failure rate. If we account for the uncertainty in costs as well, then the 𝜆̂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  is 

higher (Figure 41). Therefore, it is worthwhile to Eliminate only at higher 𝜆̂ because there is added 

uncertainty. The cost uncertainties simulated here are: 

$800 < 𝑐𝑅 < $3,200 

$20,000 < 𝑐𝐸 < $228,000 
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Figure 41: 𝜆̂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is higher when we account for uncertainty in costs 

3.10 How does the decision framework help? 

As laid out in the literature review, researchers say that organizations may not have an incentive 

to expend resources to find the root cause of an NFF. NFFs may not even be included in the MRO’s 

failure statistics. The attitude towards NFFs is slowly changing and our research is to motivate the 

MRO organizations to take a closer look at the NFF problem and incentivize the need for 

eliminating or rebooting from a monetary/business perspective in terms of profit to the 

organization. 

In Figure 42, we show a scenario where an existing MRO has been collecting failure data of an 

NFF for a long period of time. Since the number of failures vary every month, they calculate a 

running average of the failure rate and wait for the value to converge to start analyzing what action 

to take and whether it is worth investigating the root cause.  
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Figure 42: The MRO collects failure data of an NFF for a long time and waits for the estimate of 

the failure rate to converge to take any action 

With our framework, we understand that waiting too long can lead to losing the opportunity to 

make the optimal decision. In Figure 43, we compare the estimated failure rate from the data 

collected by the MRO with the 𝜆̂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . We see that, if you wait till month 100, then the 𝜆̂ <

𝜆̂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , which means Reboot is now more worthwhile. 

 

Figure 43:With the decision framework, we can compare the estimated failure rate with 

𝜆̂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to find optimal decision. Here, if the DM waits for too long, they can lose the 

opportunity to Eliminate and make a profit 
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The converse is true as well. Making a hasty decision could also be undesirable due to uncertainty. 

The decision framework accounts for this uncertainty in information of cost and failure rates. In 

Figure 44, the uncertainty bounds for 𝜆̂𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  are also plotted. If the DM decides to eliminate 

early in the lifetime, without accounting for uncertainty, then there is a possibility of a loss. From 

the data in Figure 44, at month 20, with data available from the previous months, Eliminate is the 

optimal decision. 

 

Figure 44: The decision framework accounts for uncertainty and therefore, at each decision 

point, the DM can know when it is better to wait for more information. In the case shown here, at 

month 5, the data is still uncertain and Reboot is optimal. Whereas at month 20, given the 

available data, Eliminate is the better decision 
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CONCLUSIONS 

NFFs are a costly problem, both tangibly and intangibly. Further complicating this problem is the 

uncertainty in the occurrence rates of NFFs and the cost to recover from them. This work presents 

a Net Present Value and Expected Utility based analysis to aid in optimal decision making when 

faced with No Fault Found while accounting for these uncertainties. 

The results presented are for the case of airlines that experience NFFs recurring due to a single 

failure mode in their fleet of a single aircraft type. Whether it is better to reboot or eliminate the 

NFF has a dynamism based on when the choice is made and how much information is available. 

There is value in waiting for more information and reducing uncertainty because the estimated 

failure rate might be far from the true underlying failure rate which would lead to a sub-optimal 

decision. Waiting for too long can also lead to losing the opportunity to make the optimal choice 

since it becomes less worthwhile to spend the large amount of eliminating as we approach the end 

of system life. In the initial phase of the system life, it is more worthwhile to eliminate the failure 

mode rather than continuing to reboot and incurring costs. As time progresses, we have less time 

to recover the cost of elimination and therefore it becomes more worthwhile to reboot. 

We use a discounted cash flow method of NPV to quantify value provided by an aircraft fleet when 

experiencing recurring NFF events. The two decisions considered – Eliminate and Reboot – will 

give two NPVs. We model the uncertainty of failure rate (NFF occurrence rate) and uncertainty in 

the NFF costs which give a distribution of profit made when choosing to Eliminate. We employ 

Expected Utility Theory to model the risk attitude of the DM towards uncertain profits. We get 

Expected Utility of the Eliminate decision at each decision point which helps the DM choose 

between the two options. 

We explore the change in behavior of NPV and Expected Utility with change in underlying failure 

rate, discount rate, risk attitude of the DM, Cost to Reboot and Cost to Eliminate. We find that 

NPV increases if discount rate is lower since value in the future is more worth in the present. We 

find that Expected Utility: 

• Is more if underlying failure rate is higher since Eliminate decision leads to higher profit. 



 67 

• Is more if DM is less risk averse and a loss is expected. Conversely, Expected Utility is 

lesser if DM is less risk averse and a Profit is expected. 

• Increases with increasing Cost to Reboot and increases with decreasing Cost to Eliminate, 

since both these scenarios lead to more profits when deciding to Eliminate. 

We introduce the concept of threshold failure rate estimate to provide the DM with a single 

parameter metric (given other inputs) to decide between Eliminate and Reboot. The DM can decide 

to make use of the lower bound, mean or upper bound of Expected Utility to derive the threshold 

failure rate. At the current decision point, if estimated failure rate for the future is greater than the 

threshold failure rate, then Eliminate is the optimal choice. If the estimated failure rate is less than 

the threshold value, then it is optimal to continue to Reboot. 

We find that despite the uncertainties in the costs and NFF occurrence rates, a Utility maximizing 

choice between the two options considered – Reboot and Eliminate – is possible given the 

information available. It is important to consider the uncertainties to avoid hasty decisions but 

waiting too long for more certainty in data could lead to losing the opportunity to make the optimal 

choice. 

In future work, some of these assumptions can be relaxed to expand the framework’s fidelity and 

range of application, for example: 

• Eliminating does not reduce the possibility of failure to zero. There is still some possibility 

of an NFF occurring in the component at a lower rate even after attempting to Eliminate. 

This scenario could be applicable in cases where, for example, the original NFF was found 

to be occurring because of human factors and addressing the root causes was to implement 

additional training for personnel. Here the training might be effective but may not eliminate 

the possibility of the fault occurring fully. 

• Eliminate does not need to occur within the time between two decision points and can be 

uncertain (one month in our analysis). 

• We can vary the underlying failure rate to model the component’s deterioration over time. 

• The framework can include the possibility of prior data being available before start of 

analysis or starting to collect data after some years of operation of the aircraft or fleet. 
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• The framework can include the possibility of multiple NFF processes acting at the same 

time. 

• Different stakeholders can be added to the cost model (for example, External MRO, OEMs). 

• The uniform distribution of NFF costs can be changed to a more realistic cost uncertainty 

distribution. 

Obtaining actual data from MRO organizations would help validate the decision framework built 

in this research. Using this data, we can compare values of NPV calculated with the numbers 

estimated made by airlines MRO. 
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APPENDIX A. CONVERGENCE OF MONTE CARLO SIMULATIONS 

In this work, we do 10,000 Monte Carlo runs to find Profit from deciding to Eliminate. In the 

Figure A.1, we show the convergence of the Monte Carlo runs using a running average of 𝑁𝑃𝑉𝑅 

calculated using baseline inputs (Table 1) when only the uncertainty in failure events is considered. 

The failures in the future months are Poisson distributed over the mean of estimated failure rate in 

month 1. The relative error, 𝜖, as well as the average 𝑁𝑃𝑉𝑅, seem to have converged with 10,000 

runs. 

 

Figure A.1: 𝑁𝑃𝑉𝑅 converges within 10,000 Monte Carlo runs. Here only the failure rate 

uncertainty is considered for the Monte Carlo simulations.  

In Figure A.2, we show the convergence of the Monte Carlo runs using a running average of 𝑁𝑃𝑉𝑅 

calculated using baseline inputs (Table 1) when three uncertainties are considered, i.e., uncertainty 

in Reboot cost, Eliminate cost and number of failure events in the future months. 
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Figure A.2: 𝑁𝑃𝑉𝑅 converges within 10,000 Monte Carlo runs. Here three random variables are 

used for the Monte Carlo simulations, i.e., the uncertainty in failure rate, Reboot and Eliminate 

costs. 
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