
BOOTSTRAPPING A PRIVATE CLOUD
by

Deepika Kaushal

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Computer and Information Technology

West Lafayette, Indiana

August 2020

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Thomas J Hacker, Chair

Department of Computer and Information Technology

Prof. Philip T Rawles

Department of Computer and Information Technology

Dr. Jin Wei-Kocsis

Department of Computer and Information Technology

Approved by:

Dr. Eric T. Matson

Head of the Graduate Program

iii

ACKNOWLEDGMENTS

I wish to gratefully acknowledge Dr. Thomas J Hacker for his continued guidance

and support throughout my research. I would like to thank Prof. Phillip Rawles and Dr.

Jin Kocsis for their insightful comments and review of my work. I am truly blessed to

have my friends and family alongside me through thick and thin.

iv

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF ABBREVIATIONS . viii

ABSTRACT . ix

CHAPTER 1. INTRODUCTION . 1

1.1 Motivation . 2

1.2 Problem Statement . 2

1.3 Significance . 3

1.4 Purpose . 4

1.5 Hypothesis . 4

1.6 Delimitation . 4

1.7 Definitions . 5

1.8 Summary . 6

CHAPTER 2. REVIEW OF LITERATURE . 7

2.1 Methodology of Review . 7

2.1.1 Cloud Computing . 7

2.1.2 Cloud Provision . 8

2.2 Background . 9

2.2.1 Network Booting . 9

2.2.2 Data link Layer Communication 10

2.3 Related Work . 12

2.4 Bare-Metal Frameworks . 12

2.4.1 Emulab . 13

2.4.2 MaaS . 13

2.4.3 Ironic . 13

2.4.4 Cobbler . 14

2.4.5 Razor . 14

2.5 Technologies . 14

2.6 Summary . 17

v

CHAPTER 3. METHODOLOGY . 18

3.1 Research Method . 18

3.2 Experimental Design . 19

3.3 Evaluation . 23

3.4 Scope . 24

3.5 Summary . 24

CHAPTER 4. IMPLEMENTATION . 25

4.1 Dnsmasq . 25

4.2 HTTP Web Service . 26

4.3 HTTP Proxy . 27

4.4 Booting in Remote Network . 28

4.4.1 VXLAN Tunnel . 29

4.4.2 VXLAN over IPSec . 30

4.4.3 Open vSwitch . 31

4.4.4 Squid on jump host . 33

4.4.5 Kickstart File . 34

4.5 Summary . 34

CHAPTER 5. RESULT AND CONCLUSION 35

5.1 Summary . 39

REFERENCES . 41

vi

LIST OF FIGURES

2.1 Default bare-metal provision . 10

2.2 VXLAN - Tunneling protocol. 11

3.1 Architecture for the study. 23

3.2 Format of encrypted packets flowing through the tunnel. 23

4.1 Dnsmasq configuration using FTP Server. 26

4.2 Configure Dnsmasq to use iPXE. 27

4.3 Build undionly.kpxe with Embedded demo.ipxe. 27

4.4 Contents of menu.ipxe. 27

4.5 Ladder Diagram for Local Boot. 28

4.6 Ladder Diagram for Remote Boot. 29

4.7 VXLAN set up on the server. 30

4.8 Creation of keys and certificates for Strongswan. 31

4.9 Swanctl.conf. 32

4.10 Encrypted frames in Etherate. 32

4.11 Commands to add Open vSwitch to the server. 33

4.12 Adding central server squid as parent in squid.conf file. 33

5.1 Command to add a delay of 14.11ms in network. 35

5.2 Time taken with Squid on jump host for eleven runs. 36

5.3 Time taken with Squid on jump host for eleven runs. 38

5.4 Bar Graph for runs without Squid on Jump host. 38

5.5 Plot of Average Time Taken (with and without Squid on jump host) 39

6 Time taken to boot (in sec) for 11 consecutive runs with Squid on the jump

host. 52

7 Time taken to boot (in sec) for 11 consecutive runs without Squid on the jump

host. 52

8 Power on virtual machine . 53

9 DHCP and iPXE in process . 53

10 Encrypted packets in tcpdump . 54

vii

11 Initial configuration using kickstart file 54

12 Installation of packages . 55

13 Loading completed . 55

viii

LIST OF ABBREVIATIONS

DHCP Dynamic Host Configuration Protocol

HaaS Hardware as a Service

IAC Infrastructure as Code

IP Internet Protocol

MaaS Metal as a Service

NFS Network File System

PXE Preboot Execution Environment

REST Representational State Transfer

TFTP Trivial File Transfer Protocol

VSFTPD Very Secure FTP Daemon

ix

ABSTRACT

Author: Kaushal, Deepika. M.S.
Institution: Purdue University
Degree Received: August 2020
Title: Bootstrapping a Private Cloud
Major Professor: Thomas J Hacker

Cloud computing allows on-demand provision, configuration and assignment of

computing resources with minimum cost and effort for users and administrators.

Managing the physical infrastructure that underlies cloud computing services relies on the

need to provision and manage bare-metal computer hardware. Hence there is a need for

quick loading of operating systems in bare-metal and virtual machines to service the

demands of users. The focus of the study is on developing a technique to load these

machines remotely, which is complicated by the fact that the machines can be present in

different Ethernet broadcast domains, physically distant from the provisioning server. The

use of available bare-metal provisioning frameworks require significant skills and time.

Moreover, there is no easily implementable standard method of booting across separate

and different Ethernet broadcast domains. This study proposes a new framework to

provision bare-metal hardware remotely using layer 2 services in a secure manner. This

framework is a composition of existing tools that can be assembled to build the

framework.

1

CHAPTER 1. INTRODUCTION

In this era of Big Data and Internet of Things, Cloud Computing has become

ubiquitous. Cloud Computing provides a number of services over the Internet varying

from Infrastructure as a Service (IaaS) to Software as a Service (SaaS) that are offered on

a metered (pay-for-use) basis. These services can be provided to cloud customers in

mainly three ways: bare-metal or physical servers, virtual machines and containers.

Bare-metal is a cloud solution where physical machines are assigned for any individual

application and hence a single operating system is used to serve end-users. A fully

dedicated hardware is configured and delivered on demand of users without any

virtualization (Kominos, Seyvet, & Vandikas, 2017). A virtual machine allows a single

machine to be used as multiple isolated systems. Containers enable virtualization by

sharing a single kernel among different virtual machines, which serves to virtualize not

the hardware level but rather at the sub-system level. Although virtualized cloud services

can satisfy most of the applications’ requirements, there are some applications which

require physical server solutions within a cloud. Both virtual machines and containers can

be used on top of bare-metal servers once the basic computing system has been installed

and configured. Thus, the first step for setting up a private cloud is to provision bare-metal

servers. Provisioning is the process of loading and installing an operating system and

initial configuration on a bare-metal server. There are a number of situations in which

bare-metal machines are used in clouds (“Introduction to Ironic”, 2019 (accessed

November 10, 2019)):

• High-performance computing clusters

• Database hosting for databases that may run poorly in a purely virtualized

environment

• Those tasks that make direct use of hardware devices

• Applications that need hardware dedicated to application for security, dependability,

performance and other regulatory requirements

2

• Cloud infrastructure that needs rapid deployment

Bare-metal servers are needed when ”consumers need to run high-performance algorithms

for short periods of time” (Venkateswaran & Sarkar, 2019, p. 1). These servers increase

power efficiency as the machines can be switched on and loaded only when needed.

Additionally if any system is compromised, the bare-metal server can be reloaded to

restore secure services. Hence their use is efficient for cybersecurity. However, it is

difficult to predict the provisioning time for bare metal. Also, pre-provisioning would lead

to idle resources running for peak demand, which will eliminate the fundamental

advantage of cloud adoption - to provision on-demand. The bare metal provisioning-time

can vary from minutes to hours, depending on technologies used by the cloud provider.

The focus of this study is to investigate the remote installation of operating systems and

initial configuration on bare metal systems as well as virtual machine platforms to provide

resources for a cloud computing system.

1.1 Motivation

The motivation for this study lies in the possibility of reducing human effort and

time for the loading process of bare-metal in remote locations. The focus is on automating

the setting up of initial architecture for a private cloud. Cloud providers spend significant

time and effort to setup the basic infrastructure for cloud environment. The aim of this

study is to minimize this effort and boot any bare metal remotely using a centralized

server.

1.2 Problem Statement

Provisioning bare-metal is a tedious and time consuming job as it requires many

steps which includes OS installation, configuration management, performance adjustment,

application installation and many other small tasks (Shiau, Sun, Tsai, Juang, Huang,

2018). Due to distributed computing nodes in cloud computing, there is a need for remote

loading because a centralized server makes administration easier and reduces energy

3

consumption (Wu, Ko, Huang, & Huang, 2013). Multi-tenancy in cloud computing

demands isolation of network traffic for security. This isolation is needed at Layer 2 (data

link layer) as Layer 3 (network layer) communication cannot be used for booting a system

remotely —i.e., outside an Ethernet broadcast domain because the client does not have its

IP address before booting. Many protocols used in booting operate at data link layer.

Moreover for other services in cloud, Layer 3 cannot be used as multiple tenants can have

same set of IP addresses within their network. The problem addressed by this study is

whether bare metal can be booted and hence operating system can be loaded remotely and

securely using Layer 2 services for cloud computing? The focus will be on security of

Layer 2 communications to ensure that appropriate operating system and applications are

installed.

There are several bare-metal provisioning frameworks including Emulab (Emulab,

2019), Ironic (Introduction to Ironic, 2019), Maas (MAAS, 2019), Cobbler (Cobbler, n.d.)

and Razor (Puppet Razor,n.d.) which seek to help providers in setting up cloud

infrastructure. But all these frameworks require significant skills and time. IT

administrators need to follow long tutorials and run various commands to get the

framework working. For instance, the installation documentation of Ironic is around 15

pages long (Chandrasekar Gibson,2014). There is no easily implementable standard

method of booting across different Ethernet broadcast domains.

1.3 Significance

Bare-metal provisioning is the first step in setting up of any cloud infrastructure.

Virtual machines and containers can be built on top of bare-metal hardware. Configuration

and installation of resources is a cumbersome and tedious process. This study is

significant as “there is not much guidance on building, operating, trouble-shooting, and

managing a secure and scalable private cloud infrastructure, especially for public

agencies” (Babar & Ramsey, 2015). The focus is on bare-metal provisioning, as existing

4

bare-metal solutions for cloud can cause delays of tens of minutes (Turk et al., 2016).

Adding, removing or upgrading servers all require some kind of hand editing which is

susceptible to errors, (John et al., 2018) so automation of this process can reduce the

potential errors to a great extent.

1.4 Purpose

The purpose of this study is to allow booting and loading of an operating system

on virtual machines or bare-metal for a private cloud remotely. There exist various

frameworks and software which can be utilized to automate this process. The aim is to

build a framework using which the system administrator needs to just run a few

commands to get the whole system up and running. By the end of this research project, a

framework will be developed to load operating system and initial configuration on

bare-metal remotely.

1.5 Hypothesis

This study aims to simplify the process of booting and loading operating system

on bare-metal. To establish a private cloud infrastructure, there is a need for secure and

private communication channel between server and client. Layer 2 is physically

controllable as it is closely linked to Layer 1 (physical layer). This opens up Layer 2 to

variety of potential attacks including unauthorized access to the network. The hypothesis

for the study is that it is possible to load operating system and initial configuration

remotely on bare-metal (or virtual machines) for private cloud in a secure way.

1.6 Delimitation

The study focuses on loading operating systems on bare-metal and virtual

machines. It does not cover containers. This study is for the initial setup of cloud

infrastructure.

5

1.7 Definitions

The ongoing research is focused on provisioning bare-metal servers for clouds. A

number of tools and technologies are being used for provisioning. Definitions of all of

these major terms/concepts central to the proposed study are discussed below:

• Bare-metal: These are devices which have no operating systems installed. “No

virtualization, the hardware is fully dedicated, delivered on demand” (Kominos et

al., 2017, p. 1).

• Containers: “A light-weight approach to isolating resources, where applications

share a common kernel”(Kominos et al., 2017, p. 1).

• Virtualization: It refers to the abstraction of physical hardware which forms large

clusters of logical units for cloud. This can be offered to users in the form of Virtual

Machines (Kominos et al., 2017).

• VirtualBox: VirtualBox is an emulation of a computer system. Multiple operating

systems can be run on a host using VirtualBox. For example, you can run windows

or Linux inside your mac (“Virtual Box Documentation”, 2019 (accessed

November 25, 2019)).

• Virtual Machine: “Traditional virtualization where the machine appears as a

self-contained computer, boots a standard OS kernel, and runs an unmodified

application process on top of a Hypervisor layer” (Kominos et al., 2017, p. 1).

6

1.8 Summary

The resources can be provided to cloud customers using virtualization or physical

servers. Hence, there is a need for bare-metal hardware on which to build a cloud

computing system. The provisioning of bare-metal can be tedious and time consuming.

Moreover, the security of communication channels is vitally important for securely

loading hardware. This study focuses on the provisioning of bare-metal for private cloud

in a secure manner.

7

CHAPTER 2. REVIEW OF LITERATURE

This chapter provides a review of the literature relevant to the problem of

bootstrapping bare-metal hardware for private clouds and briefly discusses the basic

concepts needed to understand the thesis.

2.1 Methodology of Review

The problem addressed by this study is whether bare metal can be bootstrapped

remotely using layer 2 services. Setting up a bare metal server is a cumbersome process

and usually requires human effort. The aim of this study is to minimize the human effort

and time spent in this process and hence automate the process of initial setup. Some of the

terms related to this study are discussed in subsections given below.

2.1.1 Cloud Computing

Cloud computing provides a common pool of configurable computing resources

with easy on-demand network access. These resources can comprise servers, applications,

storage, and various other services. These resources can be rapidly provisioned and

released when not required with minimal effort (Mell, Grance, et al., 2011).

Clouds can be categorized into four types on the basis of deployment: Private

cloud, Public cloud, Hybrid cloud and Community cloud. In public clouds, infrastructure

is operated on-premises of the cloud provider and can be used by external customers of

multiple organizations. A private cloud is owned and operated as a resource to which

access is restricted to authorized organizations. In case of community clouds,

organizations which have common interests share the same infrastructure. A hybrid cloud

is a combination of two or more unique cloud infrastructures instances.

In this study the focus will be on setting up the infrastructure for a private cloud,

for which secure and private communication channels are needed for remotely booting

and loading operating systems on bare-metal servers or newly created virtual machines.

8

2.1.2 Cloud Provision

The provisioning of cloud systems requires the composition of technologies that

when put together produces an operational cloud infrastructure. Bare-metal provisioning

refers to deployment of Operating System and applications on physical machines, which

includes many sub-tasks including OS deployment, installing applications, configurations,

preparation and restoration of images, and performance adjustments (Shiau, Sun, Tsai,

Juang, & Huang, 2018). In this study, the focus is on building a secure and private cloud

infrastructure, and hence using tools that allows the installation of operating systems as

well as basic configuration.

The IT administrators need to ensure that systems load appropriate operating

system images and system configuration. Instead of using a local hard drive, the use of a

server on network to provision another server is Network Booting. Cloud computing

requires the quick booting of machines depending on the demand (Vemula, 2016). Some

of the common terms which are important to understand the process of network booting

and loading operating systems are defined below:

• Dynamic Host Configuration Protocol (DHCP): Network protocol that provides IP

addresses and configuration information to devices.

• Domain Name System (DNS): Allows humans to use domain names instead of

using Internet Protocol (IP) address to address systems.

• Preboot Execution Environment (PXE): Process of booting a device remotely using

its network card. PXE uses a DHCP server to store and serve required information

such as system IP address and DNS server address.

• Intelligent Power Management Interface (IPMI): A set of computer interface

specifications for hardware-based platform management systems used to assist the

controlling and monitoring of servers.

• Trivial File Transfer Protocol (TFTP): A protocol used by servers for transferring

files to clients usually in the early stages of booting.

9

2.2 Background

Various solutions have been proposed to increase the ease of provision and

management of bare-metal systems. Some of the related topics are discussed in this

section.

2.2.1 Network Booting

The typical process for bare-metal provision is discussed in detail. A typical bare

metal provisioning process involves the steps mentioned in figure 2.1 (Chandrasekar &

Gibson, 2014):

• First, registration of available hardware that is to be loaded with bare metal

provisioning system. When any request is received by a provisioner for node

allocation, it picks a suitable node from its store and uses a power driver like IPMI

(Intelligent Power Management Interface) configured on physical machines to

power on required number of nodes.

• The nodes start to boot and transmit a DHCP Discovery request on an Ethernet

broadcast address to discover a DHCP (Dynamic Host Configuration Protocol)

/PXE (Preboot Execution Environment) server running on the provisioner on the

same Ethernet broadcast domain.

• Once this is done, a bootstrap image is downloaded on a node to be loaded from a

provisioner using TFTP (Trivial File Transfer Protocol), and nodes initiates the

download of actual OS image required.

• The guest node restarts and boots using the OS image on the hard disk and sends

acknowledgement to the bare metal provisioner.

10

Figure 2.1. Default bare-metal provision

2.2.2 Data link Layer Communication

The data link layer is the second layer in Open Systems Interconnection (OSI)

model. All the devices that run layer 2 protocol are referred as nodes. This layer provides

a communication channel among adjacent nodes in a network. For end-to-end

communication between any source and destination, data needs to be moved over these

individual links. Every Ethernet or wireless device has a unique Media Access Control

address (MAC address) which is a unique identifier for that device associated with the

Network Interface Card (NIC) of a device. Communications at layer 2 uses MAC

addresses to form and address frames carrying data. For Layer 3 IP addressing, each node

has a IP/ MAC mapping address table for all nodes in the same Local Area Network

(LAN) which is formed using Address Resolution Protocol (ARP) (Kurose & Ross,

2017).

A logical division of a network at the data link layer in which a broadcast address

(i.e. ff:ff:ff:ff:ff:ff) can be used to reach any other node in the network is called a broadcast

domain. A Virtual LAN (VLAN) can be used to segment one LAN into multiple

broadcast domains. This can be used to facilitate the communication among various nodes

11

which are not even physically located together. Though really useful, VLAN links are

insufficient for the requirements of cloud providers. Firstly, VLAN links can create up-to

4094 networks which creates limitation in the number of networks that can be used for a

cloud computing infrastructure. Cloud providers have multiple customers that are hosted

by a data center. These tenants need their own isolated network domain. Layer 3 solutions

cannot solve the issue because systems do not have assigned IP addresses before booting.

In addition to this, multiple tenants of cloud providers can use same set of IP addresses

within the network (Mahalingam et al., 2014). These issues gave rise to Virtual

Extensible LAN (VXLAN). VXLAN is a protocol that can be used to create overlay

networks of layer 2 broadcast domains over layer 3 network. ”In data centers, VXLAN is

the most commonly used protocol to create overlay networks that sit on top of the physical

network, enabling the use of a virtual network of switches, routers, firewalls, load

balancers and so on. The VXLAN protocol supports the virtualization of the data center

network and addresses the needs of multi-tenant data centers by providing the necessary

segmentation on a large scale” (What is VXLAN?, 2019). Figure 2.2 shows VXLAN as

tunneling protocol for the communication between two ethernet broadcast domains.

Figure 2.2. VXLAN - Tunneling protocol.

12

2.3 Related Work

Studies conducted in similar area are discussed briefly in this section.

Venkateswaran describes an approach using broker and inventory optimization for

”time-sensitive fulfillment of bare-metal server requests” (Venkateswaran & Sarkar,

2019). Shiau proposed and developed a novel system architecture in an open source

manner ”to support single machine backup and recovery, massive deployment of disks in a

computer, and massive deployment in large-scale computers” (Shiau et al., 2018, p.1).

”Clonezilla live”, an on-line deployment system which doesn’t require any ”tedious

installation or configuration before usage” was used by Shiau.

Bare metal solutions introduced before Turk’s work acknowledged the benefits of

network booting over local installation but they rejected it assuming that there will be

unacceptable overhead in the process (Turk et al., 2016). Turk used the approach of

separate boot and data disks, boot devices to be stored in a centralized repository. This

significantly reduced the overhead related to network boot. Hennessey used Hardware as a

Service (HaaS) for allocating physical servers in isolation (Hennessey et al., 2014). He

also proposed a new Exokernel-like layer called Hardware Isolation Layer (HIL), to allow

sharing of resources of a data center among mutually untrusting physically deployed

services (Hennessey et al., 2016).

Cloud Computing demands dynamic resource allocations. Yan uses KVM and

Open vSwitch to serve the demands of network in Cloud Computing (Pu, Deng, & Nakao,

2011). He performed the migration of virtual machines using Open vSwitch.

2.4 Bare-Metal Frameworks

There are multiple bare-metal provisioning frameworks available in the market

today. Chandrasekar gives a comparative study of these frameworks (Chandrasekar and

Gibson (2014)). The popular frameworks discussed in the paper are Emulab, Ironic,

Crowbar, Maas, Cobbler and Razor.

13

2.4.1 Emulab

”Emulab is a testbed for networked and distributed systems experimentation”

(Burtsev, Radhakrishnan, Hibler, & Lepreau, 2009). For using this bare metal

provisioning framework, Emulab needs to be pre-installed in the cluster. Emulab takes a

network topology given by user in a Network Simlulator (NS) file and allocates and

connects the required number of nodes using configured topology. Emulab has been in use

from a long time but the installation process of Emulab is quite long (Chandrasekar &

Gibson, 2014). The documentation of Emulab says that it requires significant time,

expertise and specific hardware infrastructure for installation (“Installing Emulab”, 2018

(accessed November 30, 2019)).

2.4.2 MaaS

Canonical MaaS (Metal as a Service) provides self-service provisioning of

Windows, Ubuntu, CentOS and ESXi, and turns your data center into bare-metal cloud.

MaaS manages a pool of nodes through IPMI (or another baseboard management

controller, BMC), letting you choose how you want to control power on machines. It can

also overwrite the machine’s disk space with your chosen OS images, which are cached

for quick deployment. Users can specify requirements for a machine when acquiring a

node from API/CLI. Juju which is a service and model management tool, is designed to

work with MaaS. Juju manages the services running on the machines managed by MaaS

(MAAS, 2019).

2.4.3 Ironic

Openstack is a software for controlling large pools of networking, storage and

compute resources in a datacenter through APIs with common authentication mechanisms

(“Introduction to Ironic”, 2019 (accessed November 10, 2019)). Ironic is an integrated

OpenStack project to provision bare-metal (not virtual machines). It is built using Nova

14

bare-metal driver. It manages bare-metal using the common protocols like TFTP and

PXE. Ironic integrates with the OpenStack Identity (keystone), Compute (nova), Network

(neutron), Image (glance) and Object (swift) services. To get started with Ironic, all these

services must be installed beforehand.

2.4.4 Cobbler

Cobbler is a Linux installation server for provisioning bare-metal hardware. It can

also help with managing DNS and DHCP, power management, configuration management

orchestration, package updates and much more. Cobbler supports Chef (Network

automation tool) to automate the deployment of tools. Cobbler is designed to manage a

wide variety of technologies and consequently it can be a somewhat complex system to

get started with. A quick-start guide is available for Red Hat distributions but missing for

other distributions (“Cobbler”, 2019 (accessed November 12, 2019)).

2.4.5 Razor

Razor is a provisioning, power control and management application to deploy both

virtual and bare-metal computing resources (“Puppet Razor”, 2019 (accessed November

12, 2019)). In a Razor deployment, newly added machines will PXE-boot from a special

Razor Micro-kernel image. These machines will check in, provide Razor with inventory

information and wait for further instructions. Razor consults user-created policy rules to

choose the task requirement for any new node and this node gives feedback to Razor as it

completes various steps. Razor provides plugins for integration with third party

configuration management systems such as Puppet.

2.5 Technologies

There are various tools and technologies which were studied to design the

proposed framework. Some of these are discussed below:

15

• Infrastructure as Code: The main idea is to configure and setup our infrastructure

using scripts or code instead of doing it manually. So it will minimize the human

effort required in the whole process (“Infrastructure as code: What is it? Why is it

important”, 2019 (accessed November 20, 2019)).Vagrant can be used for this

purpose. Vagrant is a tool which puts all the dependencies and their configuration

within a single, consistent and disposable environment. To use vagrant, a user

creates a Vagrantfile and vagrant will install and configure a virtual machine using

”vagrant up” command (“Introduction to Vagrant”, 2019 (accessed November 25,

2019)).

• Internet Protocol Security (IPSec): IPSec is a suite of protocols that provides

security at IP Layer. It is most commonly used to provide Virtual Private Networks

(VPN) between two locations. Mostly, Internet Key Exchange (IKE) is used with

IPSec to provide keying material (Frankel & Krishnan, 2011). Many IPSec

implementations exist today like Libreswan, Strongswan and Openswan. Among

these Strongswan has more comprehensive documentation than the others and it

supports more features. Strongswan is a multi-platform IPsec solution for

authentication and encryption mechanisms between server and clients. It can be

used efficiently to secure connections with remote networks. It uss Internet Key

Exchange protocols to establish security associations between two machines

(“Introduction to StrongSwan”, (accessed November 12, 2019)).

• iPXE: It is an Open Source network boot firmware. It enables computers with PXE

support to extend the functionality by adding boot from a web server via HTTP,

from an iSCSI SAN and by supporting many other additional features.(“iPXE Open

Source boot firmware”, 2019 (accessed November 10, 2019)).

• Jump Host: Jump Host or a Bastion Host is a critical security component in a

network. It is fortified host and is exposed to public network (Norberg, 1999).

16

• Kickstart file: A kickstart file is a text file which can provide all the configuration

information a system needs while booting ad installing process (“Kickstart

Installation”, 2020 (accessed May 15, 2020)).

• Overlay Network: To pass traffice between different virtual machines in separate

networks, VXLAN or GRE protocols can be used. These both have similar tasks to

encapsulate the traffic and differentiate between different virttual networks.

VXLAN is more recent technology than GRE. “In data centers, VXLAN is the most

commonly used protocol to create overlay networks that sit on top of the physical

network, enabling the use of a virtual network of switches, routers, firewalls, load

balancers and so on. The VXLAN protocol supports the virtualization of the data

center network and addresses the needs of multi-tenant data centers by providing the

necessary segmentation on a large scale” (“What is VXLAN?”, 2019 (accessed

November 15, 2019)).

• Secure Boot: Secure boot is a security standard which uses a keying mechanism to

make sure that a device boots using authorized software. The host processor and

secure boot device exchange encrypted messages to communicate securely (Davis,

1999).

• Switch: Switches enable communication across a network. Linux bridge can be

used as a network switch. It can be used to forward packets on routers, virtual

machines and on gateways. But Open vSwitch provides many additional features to

a simple Linux bridge. Open vSwitch is a virtual switch for virtual machine

environments in networking. It can be used to connect virtual machines within and

across different networks by creating a network bridge (“Open vSwitch?”, 2020

(accessed February 2, 2020)). It is open to programmatic control and extensions.

Most importantly, it is a distributed switch, several virtual machines running on

different hypervisors can be connected using it.

17

2.6 Summary

This chapter provided a review of the literature for the proposed study. Firstly,

cloud and its deployment models are discussed. A typical bare-metal provisioning process

and related work is given. Communication at data link layer is discussed. There are many

existing frameworks for provisioning but there is no easily implementable standard

method for booting remotely.

The review really helped in constructing the methodology of this study as the

different existing frameworks gave a clear view of all components that are needed to build

the proposed framework. It helped in planning the overall flow of the process of provision.

18

CHAPTER 3. METHODOLOGY

The goal of this study is to provide a remote private cloud infrastructure that would

allow network administrators to boot and load operating systems on bare-metal machines

that are separated from the boot server across Ethernet broadcast domains. This chapter

describes the proposed methodology for the study. It details the experimental design and

steps to be followed to build the proposed framework.

3.1 Research Method

In this study, a new framework will be developed to bootstrap a bare-metal

machine to be used as a part of a cloud infrastructure. The aim of this study is to answer

whether a bare-metal provisioning process can be automated, and if communication

across Ethernet broadcast domain at Layer 2 can be done remotely and securely. As this is

a subjective approach which involves answering these research questions based on the

results of analysis from our framework, the study is mainly qualitative. The main aim of

the study will be to minimize the human effort required in the whole process of

provisioning and to check if Layer 2 communication can be done remotely and securely

across Ethernet broadcast domains. Furthermore, the effect of using squid will be

analyzed on both the central server and the jump host. This collection and analysis of data

makes this research quantitative as well.

19

3.2 Experimental Design

There is a need for more dynamism in the provision of machines so that we can

quickly scale up machines during peak time and scale down otherwise. That is why the

plan is to use the concept of Infrastructure as Code (IAC). The idea is to use a script or

code which can be run to provision the required machines during peak time. ”The premise

is that modern tooling can treat infrastructure as if it were software and data” (Morris,

2016, p.5). Cloud computing is the biggest use-case of IAC because there is a need for

rapid installation, updates and management of infrastructure.

The plan is to establish a remote private cloud infrastructure that would allow a

remote IT administrator to quickly create a secure endpoint for loading systems using the

Vagrant and IAC approach to stand up loading points in a short time, and to direct

communications from the loaded infrastructure through the secure encrypted network link

to the central server. Vagrant, a tool which puts all the dependencies and their

configuration within a single consistent and disposable environment will be used. Once a

Vagrantfile is created, after that you just need to run ”vagrant up” command and required

operating system and packages are installed and configured for you to use irrespective of

the operating system of host machine you are using (“Introduction to Vagrant”, 2019

(accessed November 25, 2019)). The infrastructure components would be built and

defined in a vagrant file and hence can be used to create both ends of the network. For

setting up a server that can be used to boot and load clients, several packages will be used.

These packages are detailed in table 3.1.

Table 3.1.: Packages to be used

Lightpd

Role It is a very flexible, secure, fast and compliant

web-server which is optimized for high-performance

environments (“Lighttpd”, 2019 (accessed November 26,

2019)).

Expected use in the study Setup central server as a web-server for booting

20

remote machines using HTTP.

Dnsmasq

Role It is lightweight web-server and appropriate for

high-performance environments.

Expected use in the study It will be used for providing network

infrastructure. It will provide DHCP, PXE and

DNS services to the server.

Squid

Role It will be used for caching and reusing the most

frequently-requested web pages at the server

and the jump host.

Expected use in the study Squid will reduce the time required to boot

machine as all the frequently used boot files

will be cached at server and jump host.

iPXE

Role Open source network-boot firmware. Provides

additional features over standard PXE.

Expected use in the study Will be used with patches applied to support

HTTP proxy connections to allow the use

of Squid as a proxy server

Open vSwitch

Role A multilayer and distributed virtual switch

to connect virtual machines within and

across different networks.

Expected use in the study For creating a network bridge between

VXLAN and ethernet ports.

VXLAN

Role It is an overlay encapsulation protocol.

21

It allows every LAN segment to extend across

Layer 3 networks.

Expected use in the study VXLAN will be used to create both sides of

layer 2 endpoints. VXLAN tunnel will be

created over IPSec.

StrongSwan

Role Strongswan is a multi-platform IPsec (IP Security)

solution for authentication and encryption

mechanisms between a server and the clients.

Expected use in the study It will to used to create end-to-end encrypted

tunnel between local jumphost and remote

central server (“Introduction to StrongSwan”, (accessed

November 12, 2019)).

The experimental design of this study will be comprised of following tasks:

• The server will be setup using Vagrant. This server will be protected by built-in

system firewall. The plan is to first install all the required packages on server so that

it should be able to boot and load operating systems on local machines. After it is

done, remote provisioning will be handled.

• All the commands that need to be run to set up the server will be written in a

vagrantfile. In this way, this file can be sent to any system, and with one command,

the server can be set up anywhere. Basically, the infrastructure will be set up using

the code in the vagrantfile.

• Lighttpd and Dnsmasq will be installed and configured on the server. This allows

the web server to use DHCP, PXE and DNS services to boot client.

22

• The plan is to use iPXE, Open Source network boot firmware, on server by

chainloading to obtain the features of iPXE without the hassle of reflashing (“iPXE

Open Source boot firmware”, 2019 (accessed November 10, 2019)). Patches will

be applied to iPXE to support HTTP proxy connections which will allow the use of

squid as a proxy server (Chirossel, 2016 (accessed November 15, 2019)). The

bare-metal will be loaded with iPXE installed server.

• To reduce the boot and load time for the operating system, squid will be installed on

the server. After squid is configured, the log files will be checked to verify that it

caches most-frequently used files and hence, http traffic is reduced.

• At this point, the central server can boot and load operating system on virtual

machines or bare-metal in the local network. Next step is to move towards remote

loading.

• A virtual machine will be setup at remote network that will act as a jump server to

remote central server. Bare-metal or virtual machine to be booted will be put in the

same network.

• VXLAN interfaces will be created at both ends of the server and the jump host to

build a tunnel between them. There should be a Layer 3 connection between these

two ends over which VXLAN tunnel will be established.

• Strongswan will be installed and configured at both ends of the connection to ensure

that the traffic flows using VXLAN tunnel over IPSec.

• Open vSwitch will be used to create network bridges between internal and external

network ports and virtual machines. After this step, the central server and the jump

host will be able to boot a virtual machine.

• To reduce the booting time, squid will be installed on the jump host too. So the

most-frequently requested web content will be cached on the jump host too,

reducing the traffic flow between the server and the jump host.

23

Figure 3.1. Architecture for the study.

Figure 3.2. Format of encrypted packets flowing through the tunnel.

Above steps would allow a remote administrator to create endpoints in two networks

using IAC approach for communications using a secure encrypted network link to the

central server.

3.3 Evaluation

This study will be evaluated on the basis of various qualitative values. There will

be an answer to the question if communication at Layer 2 can be established remotely.

Moreover, time taken by the provisioning process will be evaluated by imposing network

delays using Network Emulator (“NetEm - Network Emulator”, 2020 (accessed May 25,

2020)). Time taken by the proposed framework will be compared with and without the use

of Squid on the jump host.

24

3.4 Scope

The study applies to all the laboratories or companies that aim to provide private

cloud to its customers. For building any cloud infrastructure, there is a need of servers

which can be provided in the form of virtualization, physical machines or containers. For

getting any one of the three mentioned options, there is a need of basic computing system.

This study aims to provide this basic computing system.

3.5 Summary

This chapter gives a brief introduction of the problem and proposal. It describes

the research method for the study and a thorough experimental design which will be

followed to build the framework. Moreover, scope, data collection and timeline for the

study is given. The results for the study will be given in the next chapter.

25

CHAPTER 4. IMPLEMENTATION

This chapter gives a detailed implementation of all the steps mentioned in the

experimental design. As discussed in the last chapter, booting is done initially in a local

network and then steps are taken to boot a virtual machine in a remote network. To use the

IAC approach, Virtual Box and Vagrant were installed on a system where the central

server needs to be setup. CentOS 7 was installed on a virtual machine with IP

192.168.33.10 using Vagrant. Command-line of the host system was used to access this

virtual machine. The central server will be protected by built-in system firewall.

4.1 Dnsmasq

To install and configure a PXE server, Dnsmasq was used which provided DNS,

TFTP server, VSFTPD server, DHCP services, and Syslinux package. Bootloaders for

network booting were provided by the Syslinux package. After editing and saving the

dnsmasq configuration file (dnsmasq.conf) according to network requirements, Syslinux

PXE bootloader and TFTP server was installed. All the bootloader files were copied to the

TFTP server path specified in the dnsmasq.conf file. The PXE server reads its

configuration from the files saved in pxelinux.cfg which must be present in TFTP server

path. The default file was added to pxelinux.cfg directory which provided the menu for

the bare-metal, while loading OS.

To add CentOS kernel and initrd files to the server, CentOS ISO image was

downloaded and mounted. The CentOS 7 bootable kernel and initrd images were made

available to TFTP server path from the DVD mounted location. To start booting in the

local network, FTP was chosen because it is really easy to set up with VSFTPD server.

All the DVD mounted content was copied to VSFTPD default server path (/var/ftp/pub).

Dnsmasq and VSFTPD were started with required firewall rules.

On the client side, the system was configured to boot from the network. The

default menu specified in pxelinux.cfg directory appeared on screen and the system loaded

OS from the PXE server.

26

Figure 4.1. Dnsmasq configuration using FTP Server.

4.2 HTTP Web Service

Minimal installation of CentOS using TFTP was done, but TFTP is slower than

HTTP. The next task was to use the HTTP for downloading all the required packages from

the internet for installation. Lighttpd was installed as a web server for HTTP requests. For

network boot, iPXE was chosen as it provides the feature of booting a system from a web

server using HTTP and many other additional features to basic PXE. iPXE could be used

by replacing PXE ROM of NIC or by chainloading. Chainloading was selected as it

allows iPXE implementation without the hassle of reflashing. Implementation of iPXE

using chainloading involved the following steps:

• Undionly.kpxe file was downloaded and placed in TFTP server directory.

• Dnsmasq was configured to hand out undionly.kpxe as the boot file to all the clients

using the command given in figure 4.1.

• After getting undionly.kpxe, the chainloaded iPXE sends a new DHCP request to

the server.

27

Figure 4.2. Configure Dnsmasq to use iPXE.

• At this point the server hands out the actual file, menu.ipxe, using which the client

will boot. The information of this file was embedded while building undionly.kpxe

using demo.ipxe file.

Figure 4.3. Build undionly.kpxe with Embedded demo.ipxe.

• Once the client receives menu.ipxe, it loads OS and boots using the information in

menu.ipxe.

Figure 4.4. Contents of menu.ipxe.

4.3 HTTP Proxy

Squid was installed and configured to be used as an HTTP proxy server to cache

images for the remote loading of the operating system. Patches were applied to iPXE to

support HTTP proxy connections which allowed the use of squid as a proxy server

(Chirossel, 2016 (accessed November 15, 2019)). By default squid listens to HTTP

requests on port 3128. In addition to it, ICP port number 3130 was added as it will be

needed to make connections with squid on jump host for remote connection.

28

Figure 4.5. Ladder Diagram for Local Boot.

The client was configured to boot from the network. After proper configuration of

squid, logs for the connection could be seen in /var/log/squid/access.log file. Squid made

the communication faster between the server and the client. At this point, the server could

boot a virtual machine in the local network.

4.4 Booting in Remote Network

To get started with remote booting, a system was set up which worked as a jump

host with IP 192.168.43.20 for the remote network. The bare-metal or virtual machine to

be loaded was set up behind this jump host. The server was on a network with subnet

192.168.33.0/24 and the jump host was set on a network with subnet 192.168.43.0/24,

both the same VirtualBox. The first requirement was that there should be a Layer 3

29

connection between the jump host and the central server. So these two machines were put

on a shared network behind 192.168.40.0/24. With the addition of routes to each other, the

server and the client were able to ping each other from 192.168.33.10 to 192.168.43.20

and vice-versa.

Figure 4.6. Ladder Diagram for Remote Boot.

4.4.1 VXLAN Tunnel

To carry Ethernet traffic over the existing Layer 3 IP network, VXLAN was used.

VXLAN interface was built to create Layer 2 endpoints on both sides. An interface named

vxlan0 was created and connections were added for jump host. The vxlan0 interface was

turned on both on the server and the jump host.

To verify that the traffic is going through VXLAN tunnel, a tool named Etherate

was used. Etherate was used with tcpdump to verify that the Layer 2 traffic is going

through the established tunnel.

30

Figure 4.7. VXLAN set up on the server.

4.4.2 VXLAN over IPSec

After setting up the VXLAN tunnel, the next step was to make the communication

secure between the server and the jump host. An end-to-end encrypted tunnel was created

using Strongswan between the jump host and the remote central server. After installing

Strongswan on both ends, a local CA certificate was generated at the server which was

used to issue end-entity certificates for the communication. X.509 standard was used to

generate the certificates. X.509 is a public key infrastructure (PKI) standard that links the

cryptographic keys to its issuers which can be an individual or an organization (“X.509

Certificate”, 2020 (accessed May 25, 2020)). So it can be used for establishing encrypted

and authenticated links between networked computers. SSL (Secure Sockets Layer) and

its successor, TLS (Transport Layer Security) can be implemented using X.509

certificates. The Strongswan pki tool was used to generate all keys and certificates. Private

keys and certificates were generated for both the server and the jump host. Swanctl, a

command-line utility was used to control, configure and monitor the connection using

Strongswan. These keys and certificates were installed in their respective swanctl

directories on both ends.

In this scenario, there are two gateways on 192.168.40.0/24 connecting two

subnets of the server and the jump host. The swanctl.conf file was configured accordingly.

This created a tunnel between the two ends. To verify that encrypted frames were

travelling between the server and the jump host, Etherate was used again with tcpdump.

Encrypted frames could be seen in the traffic flowing between these two ends. Figure 4.6

shows the tcpdump output. This creates an end-to-end encrypted tunnel using Strongswan

over VXLAN.

31

Figure 4.8. Creation of keys and certificates for Strongswan.

4.4.3 Open vSwitch

The next step was to create a network bridge between the two ports connecting

VXLAN endpoints. In addition to it, there was a need of connecting bare-metal or virtual

machine, which needs to be loaded, to the jump host. Open vSwitch was used for this

purpose. Open vSwitch named ’ovsBridge’ was added on both ends with eth1 and vxlan0

interfaces. The server was given an IP of 192.168.7.1 and the jump host was given an IP

of 192.168.7.2. The machines could now ping each other using ovsBridge. On the client

side, one virtual machine was added on the network (192.168.43.0/24) of jump host which

was configured to boot from the network. Broadcast traffic could be seen flowing between

the central server and the jump host. To allow the flow of traffic from the virtual machine

to the central server, all adaptors on the jump host were put into promiscuous mode.

Moreover, dnsmasq was configured to use ovsBridge interface for the communication.

The virtual machine could boot and load operating system at this point.

32

Figure 4.9. Swanctl.conf.

Figure 4.10. Encrypted frames in Etherate.

33

Figure 4.11. Commands to add Open vSwitch to the server.

4.4.4 Squid on jump host

To make the process of loading an operating system faster, Squid was installed on

the jump host to serve as an HTTP cache. Until now caching was only done at the central

server. Caching the most frequently used content on the jump host can make the

communication even faster. Squid was installed on the jump host which was linked to the

central server using parent links. This formed a cache hierarchy using squid. ICP port

3130 needed to be opened on both ends.

Figure 4.12. Adding central server squid as parent in squid.conf file.

After configuring squid with proper access control lists (ACL), the connection was

made with the server from the jump host. The cache.log file can be checked to verify that

the connection had been made. Once the virtual machine starts loading the operating

system, cache entries could be seen in the access.log file. In case a network administrator

wants to invalidate the Squid cache, squidclient program can be used to purge the required

object.

34

4.4.5 Kickstart File

At this point, the whole framework is ready to boot and load operating system in a

remote network. To make the process more automated, a kickstart file was handed out to

the virtual machine to be booted by the central server. Initially, a manual installation of

operating system was done. This created a file named anaconda-ks.cfg in the root

directory of the installed system. This file was copied to the central server. The path of

this file was specified in the menu.ipxe file. Whenever any system booted and installed

operating system using the menu.ipxe file, it uses this kickstart file. So there was no need

of any human input and system could boot using the information in the kickstart file.

4.5 Summary

This chapter gave a detailed explanation of all the steps followed to build the

proposed framework. A framework was successfully built that could securely boot and

load an operating system on a virtual machine (or bare-metal) in a remote network. The

use of Vagrant and the kickstart file reduced the human effort required for the whole

process. To evaluate the total cost of booting from the remote network, various delays

were imposed in the network using NetEm. NetEm is a network emulator that can be used

to add delays, packet losses, and many other characteristics to the outgoing packets

through a specified interface “NetEm - Network Emulator” (2020 (accessed May 25,

2020)). Using various NetEm delays, the time taken to boot a virtual machine was

evaluated. Initially, the time taken to boot a virtual machine with a Squid cache on the

jump host was computed. After that, the total time to boot without the Squid cache on the

jump host was computed. The results obtained from these experiments are explained in

the next chapter.

35

CHAPTER 5. RESULT AND CONCLUSION

This chapter gives the results obtained from the implementation of the proposed

framework. Firstly, the implementation confirms the hypothesis that it is possible to load

an operating system and initial configuration remotely on a virtual machine (or

bare-metal) for private cloud in a secure way. The framework created was able to boot and

load an operating system on a virtual machine, which is in a different network from the

central server. To make the whole process easier and more automated, a kickstart file was

handed out to the jump host while booting. The system reads this kickstart file while

booting and hence no further user input was required. Moreover, the use of Vagrant for

establishing both the ends of communication allowed the use of IAC approach.

After building the framework, the next step was to evaluate the effect of using

Squid on the jump host. In this study, the central server and the jump host were set up on

the same VirtualBox. So to evaluate actual latency in the network, Netem was used to

impose some real-time delays (“NetEm - Network Emulator”, 2020 (accessed May 25,

2020)). The framework was then tested for 5 different network latencies and the results

were compared. The first was the ideal one, -i.e. 0 ms delay in the network. For the actual

delays, average network delays for the past 12 months were taken for the regions given in

table 5.1 (“AT&T Global Latency”, 2020 (accessed June 8, 2020)). The average delay

across the US, Europe, and Asia Pacific was taken. Other than this, the approximate delay

between the west and the east coast of the US was taken (between Cambridge and San

Diego).

Figure 5.1. Command to add a delay of 14.11ms in network.

36

Table 5.1. Regions and delays.

Regions Regional Averages (in ms)

Cambridge to San Diego (Intra-US) 67
Across US 31
Across Europe 14.11
Across Asia Pacific 55.47

For all the five latencies mentioned, the time taken to boot and load an operating

system on a virtual machine was recorded. Initially, the framework was run with a Squid

cache on the jump host. Before imposing a new NetEm delay, the Squid cache was cleared

both on the central server and the jump host. For eleven consecutive runs (first run with a

cleared Squid cache), the results were plotted and are shown in figure 5.2. It can be seen

that the framework takes less time once the requested data had been cached after the first

run. The time taken to boot is not affected by the NetEm delays imposed.

Figure 5.2. Time taken with Squid on jump host for eleven runs.

37

Table 5.2. Average and Standard Deviation for various Delay with Squid on jump host.

NetEm Delays (ms) Average Time Taken Standard Deviation (sec)

0 5 min 58 sec 6.63
14.11 5 min 59 sec 11.48
31 6 min 5 sec 5.97
55.47 5 min 56 sec 10.29
67 6 min 3 sec 7.87

For each network latency, ten consecutive boots were run to measure the average

time needed for loading and the standard deviation was calculated to demonstrate the

impact of the Squid cache on the jump host. With 0 ms delay, the average time taken was

5 min 54 sec. While with a NetEm delay of 67 ms, the average time taken was 6 min. As

can be seen from the table 5.2, there is not a significant difference between the average

time taken by the framework for various NetEm delays. The maximum standard deviation

recorded is 11.48 sec with a delay of 14.11 ms which is not significant compared to the

total time taken by the framework.

After recording the data with Squid on the jump host, the next step was to remove

the Squid cache from the jump host. After making the necessary changes on the central

server and the jump host, tests were run with the same delays as with the Squid cache on

the jump host. Figure 5.3 gives the plot of eleven consecutive runs where the first run

represents the time taken by the framework with a cleared cache.

The average and standard deviation of the ten runs excluding the first run are given

in table 5.3. As can be seen from the figure 5.4, the average time taken by the framework

to boot and load an OS increases linearly with an increase in the network delay which is in

accordance with the Mathis equation. The R-squared value (0.9771) supports the linearity

in the data collected. The framework takes around 6 min when there is no delay in the

network and this value increases to 9 min when there is a delay of 67 ms in the network.

38

Figure 5.3. Time taken with Squid on jump host for eleven runs.

Figure 5.4. Bar Graph for runs without Squid on Jump host.

Figure 5.5 gives the comparison of average time taken by the framework with and

without Squid installed on the jump host. The figure also includes an error bar with the

standard deviation for all the experimental runs for each delay category. With Squid

running on both the server and the jump host, the NetEm delay causes negligible change

in the average time taken to boot and load an OS on the virtual machine. When there is no

Squid on the jump host, the time taken increases linearly as the NetEm delay increases.

39

Table 5.3. Average and Standard Deviation for various Delay with Squid on jump host.

NetEm Delays (ms) Average Time Taken Standard Deviation (sec)

0 6 min 21 sec 4.59
14.11 7 min 3 sec 8.22
31 8 min 12 sec 12.19
55.47 8 min 51 sec 5.94
67 9 min 18 sec 6.57

Figure 5.5. Plot of Average Time Taken (with and without Squid on jump host)

5.1 Summary

The results confirmed the hypothesis that secure booting and loading of an

operating system is possible from a remote centralized server. An IAC approach was used

with Vagrant that significantly reduced the human effort in the whole process for

configuring and creating the server and the jump host. In addition to it, various delays

were imposed in the network using NetEm to evaluate the effect of using Squid on the

40

jump host. It could be seen from the results that the Squid cache on the jump host

significantly reduced the time taken by the framework for the whole process. Thus, Squid

on the jump host significantly reduces the cost of having the central server in a remote

network.

41

REFERENCES

AT&T global latency [Computer software manual]. (2020 (accessed June 8, 2020)).

Retrieved from

https://ipnetwork.bgtmo.ip.att.net/pws/global network avgs.html

Babar, A., & Ramsey, B. (2015). Tutorial: Building secure and scalable private cloud

infrastructure with open stack. In 2015 ieee 19th international enterprise

distributed object computing workshop (pp. 166–166).

Burtsev, A., Radhakrishnan, P., Hibler, M., & Lepreau, J. (2009). Transparent checkpoints

of closed distributed systems in emulab. In Proceedings of the 4th acm european

conference on computer systems (pp. 173–186).

Chandrasekar, A., & Gibson, G. (2014). A comparative study of baremetal provisioning

frameworks. Parallel Data Laboratory, Carnegie Mellon University, Tech. Rep.

CMU-PDL-14-109.

Chirossel, O. (2016 (accessed November 15, 2019)). Http proxy support [Computer

software manual]. Retrieved from https://lists.ipxe.org/pipermail/

ipxe-devel/2016-December/005292.html

Cobbler [Computer software manual]. (2019 (accessed November 12, 2019)). Retrieved

from http://www.cobblerd.org/

Davis, D. L. (1999, August 10). Secure boot. Google Patents. (US Patent 5,937,063)

Frankel, S., & Krishnan, S. (2011). Ip security (ipsec) and internet key exchange (ike)

document roadmap. Request for Comments, 6071.

Hennessey, J., Hill, C., Denhardt, I., Viggnesh, V., Silvis, G., Krieger, O., & Desnoyers, P.

(2014). Hardware as a service-enabling dynamic, user-level bare metal

provisioning of pools of data center resources..

42

Hennessey, J., Tikale, S., Turk, A., Kaynar, E. U., Hill, C., Desnoyers, P., & Krieger, O.

(2016). Hil: Designing an exokernel for the data center. In Proceedings of the

seventh acm symposium on cloud computing (pp. 155–168).

Infrastructure as code: What is it? why is it important [Computer software manual]. (2019

(accessed November 20, 2019)). Retrieved from https://www.hashicorp.com/

resources/what-is-infrastructure-as-code/

Installing emulab [Computer software manual]. (2018 (accessed November 30, 2019)).

Retrieved from https://gitlab.flux.utah.edu/emulab/emulab-devel/

wikis/install/Introduction

Introduction to ironic [Computer software manual]. (2019 (accessed November 10,

2019)). Retrieved from

https://docs.openstack.org/ironic/6.2.1/deploy/user-guide.html/

Introduction to strongswan [Computer software manual]. ((accessed November 12,

2019)). Retrieved from https://wiki.strongswan.org/projects/

strongswan/wiki/IntroductionTostrongSwan/

Introduction to vagrant [Computer software manual]. (2019 (accessed November 25,

2019)). Retrieved from https://www.vagrantup.com/intro/index.html

ipxe open source boot firmware [Computer software manual]. (2019 (accessed November

10, 2019)). Retrieved from https://ipxe.org/

John, W., Halén, J., Cai, X., Fu, C., Holmberg, T., Katardjiev, V., . . . others (2018).

Making cloud easy: design considerations and first components of a distributed

operating system for cloud. In 10th {USENIX} workshop on hot topics in cloud

computing (hotcloud 18).

43

Kickstart installation [Computer software manual]. (2020 (accessed May 15, 2020)).

Retrieved from

https://access.redhat.com/documentation/en-us/red hat enterprise

linux/7/html/installation guide/sect-kickstart-howto

Kominos, C. G., Seyvet, N., & Vandikas, K. (2017). Bare-metal, virtual machines and

containers in openstack. In 2017 20th conference on innovations in clouds,

internet and networks (icin) (pp. 36–43).

Kurose, J. F., & Ross, K. W. (2017). Computer networking – a top-down approach

featuring the internet (7th ed.). Addison-Wesley Professional.

Lighttpd [Computer software manual]. (2019 (accessed November 26, 2019)). Retrieved

from https://www.lighttpd.net/

MAAS. (2019). https://maas.io/. ([Online; accessed 12-November-2019])

Mahalingam, M., Dutt, D. G., Duda, K., Agarwal, P., Kreeger, L., Sridhar, T., . . . Wright,

C. (2014). Virtual extensible local area network (vxlan): A framework for

overlaying virtualized layer 2 networks over layer 3 networks. RFC, 7348, 1–22.

Mell, P., Grance, T., et al. (2011). The nist definition of cloud computing.

Morris, K. (2016). Infrastructure as code: managing servers in the cloud. ” O’Reilly

Media, Inc.”.

NetEm - Network Emulator [Computer software manual]. (2020 (accessed May 25,

2020)). Retrieved from https://www.linux.org/docs/man8/tc-netem.html

Norberg, S. (1999). Building a windows nt bastion host in practice. Version.

Open vswitch? [Computer software manual]. (2020 (accessed February 2, 2020)).

Retrieved from

http://docs.openvswitch.org/en/latest/intro/what-is-ovs/

44

Pu, Y., Deng, Y., & Nakao, A. (2011). Cloud rack: Enhanced virtual topology migration

approach with open vswitch. In The international conference on information

networking 2011 (icoin2011) (pp. 160–164).

Puppet razor [Computer software manual]. (2019 (accessed November 12, 2019)).

Retrieved from

http://puppetlabs.com/solutions/next-generation-provisioning/

Shiau, S., Sun, C.-K., Tsai, Y.-C., Juang, J.-N., & Huang, C.-Y. (2018). The design and

implementation of a novel open source massive deployment system. Applied

Sciences, 8(6), 965.

Turk, A., Gudimetla, R. S., Kaynar, E. U., Hennessey, J., Tikale, S., Desnoyers, P., &

Krieger, O. (2016). An experiment on bare-metal bigdata provisioning. In 8th

{USENIX} workshop on hot topics in cloud computing (hotcloud 16).

Vemula, S. (2016). Performance evaluation of openstack deployment tools.

Venkateswaran, S., & Sarkar, S. (2019). Time-sensitive provisioning of bare metal

compute as a cloud service. In 2019 ieee 12th international conference on cloud

computing (cloud) (pp. 447–451).

Virtual box documentation [Computer software manual]. (2019 (accessed November 25,

2019)). Retrieved from

https://www.virtualbox.org/wiki/Documentation/

What is vxlan? [Computer software manual]. (2019 (accessed November 15, 2019)).

Retrieved from

https://www.juniper.net/us/en/products-services/what-is/vxlan/

45

Wu, J.-N., Ko, Y.-H., Huang, K.-M., & Huang, M.-K. (2013). Heterogeneous diskless

remote booting system on cloud operating system. In International conference on

grid and pervasive computing (pp. 114–123).

X.509 certificate [Computer software manual]. (2020 (accessed May 25, 2020)).

Retrieved from

https://www.sslauthority.com/x509-what-you-should-know/

46

APPENDIX A. VAGRANTFILE FOR CENTRAL SERVER

1 # -*- mode: ruby -*-
2 # vi: set ft=ruby :
3

4 Vagrant.configure ("2") do |config|
5 # Box Settings
6 config.vm.box = "centos /7"
7

8 # Provider Settings
9 config.vm.provider "virtualbox" do |vb|

10 vb.memory = 4096
11 vb.cpus = 4
12 # vb.gui = true
13 end
14

15 # Network Settings
16 # config.vm.network "forwarded_port", guest: 80, host: 8080
17 # config.vm.network "forwarded_port", guest: 80, host: 8080,
18 host_ip: "127.0.0.1"
19 # config.vm.network "private_network", ip: "192.168.33.10"
20 config.vm.network "private_network", ip: "192.168.33.10" ,
21 virtualbox__intnet: "intnet"
22 config.vm.network "private_network", ip: "192.168.40.10" ,
23 virtualbox__intnet: "intshared"
24

25 # config.vm.network "public_network"
26

27 # Folder Settings
28 # config.vm.synced_folder ".", "/var/www/htdocs"
29

30 #
31 # View the documentation for the provider you are using for more
32 # information on available options.
33

34 # Provision Settings
35 config.vm.provision "shell", inline: <<-SHELL
36 # Package installations
37 yum -y update
38 yum -y install dnsmasq dnsmasq -utils syslinux tftp -server tftp
39 vsftpd syslinux -tftpboot ipxe -bootimgs git xz -devel genisoimage
40 squid mod_fcgid lighttpd -fastcgi mod_fastcgi openvswitch
41 yum -y install net -tools vim wget patch epel -release tcpdump
42 yum -y install lighttpd
43 yum -y install strongswan
44

45 #iPxe configuration
46 cd /home/vagrant;
47 git clone https :// github.com/deepikakaushal39/RemoteBooting.git
48 git clone git:// github.com/ipxe/ipxe.git;
49 cd ipxe;
50 git clone https :// github.com/tjhacker/ipxehttpproxy.git;
51 yum -y group install "Development Tools"
52 patch -p1 < ipxehttpproxy/proxypatch.p;
53 cd src; touch demo.ipxe;
54 echo ’#!ipxe ’ >> demo.ipxe;

47

55 echo ’dhcp ’ >> demo.ipxe;
56 echo ’set http -proxy http ://192.168.7.2:3128 ’ >> demo.ipxe;
57 echo ’chain http ://192.168.7.1/ menu.ipxe ’ >> demo.ipxe;
58 make bin/undionly.kpxe EMBED=demo.ipxe;
59 yum -y install lighttpd;
60 mv /var/www/lighttpd/ /var/www/htdocs /;
61 cp bin/undionly.kpxe /var/www/htdocs /;cd /home/vagrant;
62 cp RemoteBooting/ks /var/www/htdocs /;
63 echo ’#!ipxe ’ >>
64 /var/www/htdocs/menu.ipxe;
65 echo ’set http -proxy http ://192.168.7.2:3128 ’ >>
66 /var/www/htdocs/menu.ipxe;
67 echo ’set base http :// mirror.centos.org/centos /7/os/x86_64 >>
68 /var/www/htdocs/menu.ipxe;
69 echo ’# shell ’ >> /var/www/htdocs/menu.ipxe
70 echo ’kernel ${base}/ images/pxeboot/vmlinuz ks=http ://192.168.7
71 .1/ks proxy=http ://192.168.7.2:3128 repo=${base}’ >> /var/www/
72 htdocs/menu.ipxe;
73 echo ’initrd ${base}/ images/pxeboot/initrd.img ’ >>
74 /var/www/htdocs/menu.ipxe
75 echo ’boot ’ >> /var/www/htdocs/menu.ipxe
76 echo "reached 1!";
77 sed -i ’s|server.document -root = server_root + "/ lighttpd "|
78 server.document -root = server_root + "/ htdocs "|g’ /etc/
79 lighttpd/lighttpd.conf;
80 sed -i ’s/server.use -ipv6 = "enable "/ server.use -ipv6 =
81 "disable"/’ /etc/lighttpd/lighttpd.conf;
82 systemctl restart lighttpd
83 sudo chmod -R 775 /var/www/htdocs;
84 sudo chmod 775 /var/www/htdocs/menu.ipxe;
85

86

87 #squid configuration
88 sed -i "s:\# cache_dir ufs /var/spool/squid 100 16 256: cache_dir
89 ufs /var/spool/squid 100000 16 256:" /etc/squid/squid.conf;
90 echo "maximum_object_size 30 GB" >> /etc/squid/squid.conf;
91 echo "acl localnet src 192.168.33.0/16" >> /etc/squid/squid.conf;
92 echo "icp_port 3130" >> /etc/squid/squid.conf;
93 echo "icp_access allow localnet" >> /etc/squid/squid.conf;
94 squid -z; sleep 5;
95 systemctl enable squid;
96 systemctl start squid;
97

98

99 #VXLAN configuration
100 sudo ip route add 192.168.43.0/24 via 192.168.40.20 dev eth2
101 sudo ip link add vxlan0 type vxlan id 7 dev eth1 dstport 8472
102 sudo bridge fdb append to 00:00:00:00:00:00 dst 192.168.43.20
103 dev vxlan0
104 sudo ip link set up dev vxlan0
105

106 #OpenvSwitch
107 yum -y install https :// repos.fedorapeople.org/repos/openstack/
108 EOL/openstack -juno/epel -7/ openvswitch -2.3.1 -2. el7.x86_64.rpm
109 systemctl enable openvswitch
110 systemctl start openvswitch
111 ovs -vsctl add -br ovsBridge
112 ovs -vsctl add -port ovsBridge eth1
113 ovs -vsctl add -port ovsBridge vxlan0
114 ifconfig ovsBridge 192.168.7.1/24

48

115

116 #dnsmasq configuration
117 dnsmasq --enable -tftp --tftp -root=/var/www/htdocs --interface=
118 ovsBridge --dhcp -range= 192.168.7.1 ,192.168.7.100 ,255.255.255.0
119 --dhcp -match=IPXEBOOT , 175 --dhcp -option =175 ,8:1:1 --dhcp -boot=
120 undionly.kpxe , 192.168.7.1 --server =8.8.4.4
121

122 #Strongswan configuration
123 yum -y install strongswan
124 systemctl start strongswan;
125 systemctl enable strongswan;
126 cd /etc/strongswan/swanctl;
127 cp /home/vagrant/RemoteBooting/serverKey.pem private
128 cp /home/vagrant/RemoteBooting/strongswanKey.pem private
129 cp /home/vagrant/RemoteBooting/strongswanCert.pem x509ca
130 cp /home/vagrant/RemoteBooting/serverCert.pem x509
131 cp /home/vagrant/RemoteBooting/clientCert.pem x509
132 cp /home/vagrant/RemoteBooting/serverSwanctl.conf swanctl.conf
133 swanctl --load -all
134 swanctl -i -c net -net
135

136 #Etherate tools
137 cd /home/vagrant
138 git clone https :// github.com/jwbensley/Etherate.git
139 cd Etherate/
140 ./ configure.sh && make
141

142 #Firewall rules
143 systemctl start firewalld
144 firewall -cmd --add -service=dns --permanent
145 firewall -cmd --add -service=dhcp --permanent
146 firewall -cmd --add -service=tftp --permanent
147 firewall -cmd --add -service=http --permanent
148 firewall -cmd --add -service=https --permanent
149 firewall -cmd --add -service=squid --permanent
150 firewall -cmd --add -masquerade --permanent
151 firewall -cmd --zone=public --list -ports
152 firewall -cmd --get -active -zones
153 firewall -cmd --add -port 3130/ udp --permanent
154 firewall -cmd --permanent --add -rich -rule=’rule protocol
155 value="esp" accept ’
156 firewall -cmd --permanent --add -rich -rule=’rule protocol
157 value="ah" accept ’
158 firewall -cmd --permanent --add -port =500/ udp
159 firewall -cmd --permanent --add -port =4500/ udp
160 firewall -cmd --permanent --add -service =" ipsec"
161 firewall -cmd --permanent --add -port =8472/ udp
162 firewall -cmd --permanent --add -port =8472/ udp --zone=dmz
163 firewall -cmd --add -interface=ovsBridge --permanent
164 firewall -cmd --add -source =192.168.7.0/24 --permanent
165 firewall -cmd --reload
166 sudo systemctl restart network
167

168 SHELL
169 # Can use different file for all shell commands too
170 end

49

APPENDIX B. VAGRANTFILE FOR JUMP HOST

1 # -*- mode: ruby -*-
2 # vi: set ft=ruby :
3

4 Vagrant.configure ("2") do |config|
5 # Box Settings
6 config.vm.box = "centos /7"
7

8 # Provider Settings
9 config.vm.provider "virtualbox" do |vb|

10 vb.memory = 4096
11 vb.cpus = 4
12 vb.customize [" modifyvm", :id , "--nicpromisc1", "allow -all"]
13 vb.customize [" modifyvm", :id , "--nicpromisc2", "allow -all"]
14 vb.customize [" modifyvm", :id , "--nicpromisc3", "allow -all"]
15 end
16

17 # Network Settings
18 # config.vm.network "forwarded_port", guest: 80, host: 8080
19 # config.vm.network "forwarded_port", guest: 80, host: 8080,
20 host_ip: "127.0.0.1"
21 #config.vm.network "private_network", ip: "192.168.33.10"
22 config.vm.network "private_network", ip: "192.168.43.20" ,
23 virtualbox__intnet: "intnet2"
24 config.vm.network "private_network", ip: "192.168.40.20" ,
25 virtualbox__intnet: "intshared"
26

27 # config.vm.network "public_network"
28

29 # Folder Settings
30 # config.vm.synced_folder ".", "/var/www/html"
31

32 #
33 # View the documentation for the provider you are using for more
34 # information on available options.
35

36 # Provision Settings
37 config.vm.provision "shell", inline: <<-SHELL
38

39 sudo ip route add 192.168.33.0/24 via 192.168.40.10 dev eth2;
40 sudo ip link add vxlan0 type vxlan id 7 dev eth1 dstport 8472;
41 sudo bridge fdb append to 00:00:00:00:00:00 dst 192.168.33.10
42 dev vxlan0;
43 sudo ip link set up dev vxlan0;
44 # sudo systemctl enable strongswan
45 # sudo systemctl start strongswan
46 # sudo swanctl --load -all
47 # sudo swanctl -i -c net -net
48

49 #OpenvSwitch
50 yum -y install https :// repos.fedorapeople.org/repos/openstack/
51 EOL/openstack -juno/epel -7/ openvswitch -2.3.1 -2. el7.x86_64.rpm
52 yum -y install net -tools
53 systemctl enable openvswitch
54 systemctl start openvswitch

50

55 ovs -vsctl add -br ovsBridge
56 ovs -vsctl add -port ovsBridge eth1
57 ovs -vsctl add -port ovsBridge vxlan0
58 ifconfig ovsBridge 192.168.7.2/24
59

60 #Squid configuration
61 yum -y install squid;
62 sed -i "s:\# cache_dir ufs /var/spool/squid 100 16 256: cache_dir
63 ufs /var/spool/squid 100000 16 256:" /etc/squid/squid.conf;
64 echo "maximum_object_size 30 GB" >> /etc/squid/squid.conf;
65 echo "acl localnet src 192.168.7.0/16" >> /etc/squid/squid.conf;
66 echo "icp_port 3130" >> /etc/squid/squid.conf;
67 echo "icp_access allow localnet" >> /etc/squid/squid.conf;
68 echo "cache_peer 192.168.7.1 parent 3128 3130 default" >>
69 /etc/squid/squid.conf
70 echo "cache_peer_domain 192.168.7.1 allow" >>
71 /etc/squid/
72 squid.conf
73 squid -z; sleep 5;
74 systemctl enable squid;
75 systemctl start squid;
76 export http_proxy=http ://192.168.7.2:3128
77 chown -R squid:squid /var/spool/squid/
78

79 #Strongswan configuration
80 yum -y install git net -tools vim wget patch epel -release tcpdump;
81 yum -y group install "Development Tools"
82 yum -y install strongswan
83 cd /home/vagrant
84 git clone https :// github.com/deepikakaushal39/RemoteBooting.git
85 systemctl start strongswan;
86 systemctl enable strongswan;
87 cd /etc/strongswan/swanctl;
88 cp /home/vagrant/RemoteBooting/clientKey.pem private
89 cp /home/vagrant/RemoteBooting/strongswanKey.pem private
90 cp /home/vagrant/RemoteBooting/strongswanCert.pem x509ca
91 cp /home/vagrant/RemoteBooting/clientCert.pem x509
92 cp /home/vagrant/RemoteBooting/serverCert.pem x509
93 cp /home/vagrant/RemoteBooting/clientswanctl.conf swanctl.conf
94 swanctl --load -all
95 swanctl -i -c net -net
96

97 #Etherate tools
98 cd /home/vagrant
99 git clone https :// github.com/jwbensley/Etherate.git

100 cd Etherate/
101 ./ configure.sh && make
102

103 SHELL
104 # Can use different file for all shell commands too
105 end

51

APPENDIX C. FILES FOR IPXE

1 #!ipxe
2

3 dhcp
4 set http -proxy http ://192.168.7.2:3128
5 chain http ://192.168.7.1/ menu.ipxe

Demo.ipxe

1 #!ipxe
2 #
3 set http -proxy http ://192.168.7.2:3128
4 set base http :// mirror.centos.org/centos /7/os/x86_64
5 # shell
6 kernel ${base}/ images/pxeboot/vmlinuz ks=http ://192.168.7.1/ ks
7 proxy=http ://192.168.7.2:3128 repo=${base}
8 initrd ${base}/ images/pxeboot/initrd.img
9 boot

Menu.ipxe

52

APPENDIX D. DATA COLLECTED FOR BOOTING TIME

Figure 6. Time taken to boot (in sec) for 11 consecutive runs with Squid on the jump host.

Figure 7. Time taken to boot (in sec) for 11 consecutive runs without Squid on the jump

host.

53

APPENDIX E. SCREENSHOTS OF PROCESS

Figure 8. Power on virtual machine

Figure 9. DHCP and iPXE in process

54

Figure 10. Encrypted packets in tcpdump

Figure 11. Initial configuration using kickstart file

55

Figure 12. Installation of packages

Figure 13. Loading completed

