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ABSTRACT

Smart warehouses have become more popular in these days, with Automated Guided

Vehicles (AGVs) being used for order pickups. They also allow efficient cost management with

optimized storage and retrieval. Moreover, optimization of resources in these warehouses is

essential to ensure maximum efficiency.

In this thesis, we consider a three-dimensional smart warehouse system equipped with

heterogeneous AGVs (i.e., having different speeds). We propose scheduling and placement

policies that jointly consider all the different design parameters including the scheduling decision

probabilities and storage assignment locations. In order to provide differentiated service levels,

we propose a prioritized probabilistic scheduling and placement policy to minimize a weighted

sum of mean latency and latency tail probability (LTP). Towards this goal, we first derive

closed-form expressions for the mean latency and LTP. Then, we formulate an optimization

problem to jointly optimize a weighted sum of both the mean latency and LTP. The optimization

problem is solved efficiently over the scheduling and decision variables. For a given placement of

the products, scheduling decisions of customers’ orders are solved optimally and derived in

closed forms. Evaluation results demonstrate a significant improvement of our policy (up to 32%)

as compared to the state of other algorithms, such as the Least Work Left policy and Join the

Shortest Queue policy, and other competitive baselines.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Warehouses are a crucial part of modern supply chains. They greatly influence the success

or failure of businesses [1]. While many companies attempted direct shipping to customers, there

were plenty of circumstances where it was not applicable, due to failure to reduce supplier lead

times to the levels desired by customers in a cost effective way. Thus these customers need to be

served from an inventory rather than to order [2]. Warehouses are also crucial from a cost

perspective, representing about 22% of the logistics costs in the USA and about 25% in

Europe [3].

Further, the demand of customer orders has witnessed a tremendous growth in the last

decade. With this increasing demand, price-based differentiated services and timely delivery of

products are important. Further, order picking (i.e., time required to serve an incoming request of

a customer) accounts for up to 55% of overall operating costs for a warehouse [4]. This increases

the pressure on companies and enterprises (e.g., Amazon and Walmart) to establish a more

efficient and flexible order picking system in the competitive market to gain more revenues and

achieve customer satisfaction. Smart warehouse automation represents an efficient and

competitive solution for suppliers and providers. Further, one of the performance measures

investigated in this thesis is the Latency Tail Probability (LTP) of customer orders of products,

which is defined as the probability that the latency is greater than a certain threshold. We note that

the LTP has been shown to affect the customers’ experience more than the mean, and that

motivates us to consider the tail metric.
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1.2 Our Contribution

In this thesis, we propose a novel, yet efficient, policy for optimizing the placement of the

products and scheduling the customers’ orders at the Automated Guided Vehicles (AGVs). In

contrast to many queue-based scheduling techniques such as Join the Shortest Queue (JSQ),

Power-of-d (Pow(d)), and Least Work Left (LWL), where the instantaneous queue length is

continuously tracked, our scheduling policy is independent of the instantaneous queue level and

employs only the average queue length in its decision, and thus is less complex. Further, our

policy can differentiate and provide different priority levels for the customers’ orders so that

customers in higher classes can be prioritized over others. We aim to jointly optimize the storage

assignment, minimize the average processing time of customer’s orders in the smart 3D

warehouse automation (i.e., mean latency), and reduce the latency tail probability (LTP) for the

orders of the customers. To the best of our knowledge, this work is the first to consider a joint

optimization of product placement, mean latency and LTP for customer orders for a

3-dimensional warehouse system.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 gives the related work and states

the key differences between our work and the most related work in the literature. Chapter 3

presents the system model for the problem and the key assumptions of the considered smart

warehouse system. Chapter 4 finds an upper bound on tail latency through probabilistic

scheduling and derives the mean latency expressions. Chapter 5 formulates the joint optimization

problem for the mean latency and LTP and presents our proposed algorithm. Chapter 6 shows

extended analysis for scheduling. Chapter 7 presents our numerical results, and chapters 8

concludes the thesis with the conclusions and references.
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CHAPTER 2. REVIEW OF LITERATURE

There are three categories of research topics related to our work: placement optimization,

product scheduling techniques and minimizing mean latency and latency tail probability in smart

warehouse systems.

Placement Optimization: Recently, placement optimization has received great attention to

study the performance of the rapid deployment of smart warehouse systems. Some of these

placement policies include class-based storage where higher priority products are placed closer to

the loading zone (e.g. [5], [6]). Another policy is the greedy approach, also known as the

full-turnover storage (e.g. [7], [8]), where products with the higher arrival rates are stored closest

to the loading zone. Furthermore, the product affinity-based storage tackles the pairwise

relationships between the products [9]. However, the above approaches are heuristics and

consider only one feature when optimizing the products placement. In our work, we propose an

optimal placement that jointly considers more than one aspect for product assignments, e.g., rate

of product requests and product classification.

Scheduling Techniques for Products: Different approaches have been proposed to schedule

products (or tasks in general) on different AGVs (or workers/servers). Some examples of these

approaches are V -choose-2, or Power-of-d (Pow(d)): d servers are randomly selected and then the

request is sent to the shortest AGV queue (e.g. [10]). Similar approaches like Join the Shortest

Queue (JSQ) [11] and Least-Work-Left (LWL) [12] have also been proposed in the literature.

However, these policies do not distinguish between the products and need to continuously track

the queue length of each individual AGV which increases the complexity of AGV selection.

Further, different from previous methods, our policy gives more priority to the products with

higher weights (e.g., higher arrival rates) in order to optimize the overall performance.
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Latency in Warehouse Systems: Various modeling and scheduling techniques have been

proposed for quantifying tail and mean latency in warehouse systems considering different

settings. Such techniques include fuzzy collaborative intelligence-based algorithm (e.g. [13])

which was motivated by the collaborative control theory. Also, an approach that considers the

storage assignment and the travel distance was investigated [14]. Moreover, k-means batching

was tackled [15]. Further, an approach that considers object-oriented dynamic modeling where

both production planning and inventory replenishment systems are modeled was studied [16].

Some papers tackled the tail latency for demands with high uncertainty [17]. However, in most of

these previous works, retrieval times for product pickup are assumed to be either identical or

deterministic, which might not be the case in reality. Moreover, joint optimization of both latency

tail probability and mean latency is not considered. Our framework considers both metrics when

scheduling and placing products to further improve the smart warehouse systems.
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CHAPTER 3. SYSTEM MODEL AND ASSUMPTIONS

3.1 Warehouse Description and Assumptions

Below are the basic notations used for our model along with their interpretations. All

variables listed are input variables, except for the last three. Those three variables are the decision

variables, which we aim to optimize later.

Table 3.1. Notations

Notation Name

p (Cardinality:P) Product types index

v (Cardinality:V ) AGV index

x (Cardinality:X) Rows index

y (Cardinality:Y ) Columns index

z (Cardinality:Z) Shelves index

r Fixed distance from loading zone to rows

m Fixed distance between two adjacent columns

n Fixed distance between two adjacent shelves

λp Arrival rate of product of type p

θ Tuning parameter/trade-off factor for mean and tail latency

ωp Weight of order of product p

ρv Utilization/load intensity of AGV v

αv,p Fixed/minimum time to retrieve product p via AGV v

µv Service rate at an AGV v

Sv,p Retrieval time for product p at an AGV v

Wv Waiting time at the queue of AGV v

Lv,p Latency for product p if assigned to AGV v

Sv Retrieval time at an AGV v

IDp ID of product p

qv,p Probability of product p being assigned to an AGV v (decision variable)

Sp Placement of Products (decision variable)

tv Auxiliary variable of the MGF (decision variable)

13



We consider a 3D automated warehouse system composed of shelves, rows, and columns

as depicted in Figure 1. Each row and column coordinates of each shelf can only store one type of

product. Further, any product p of a certain type can only be stored in a given location determined

by the (xp,yp,zp) coordinates. In our model, we consider differentiated classes or levels of

service for customer orders. These differentiated classes are assumed to be price-based and

depend on the agreement between the customer and the service provider(s), e.g., Amazon or

Walmart. The arrival of product orders is assumed to follow a Poisson distribution where product

p is requested with rate λp. The choice of Poisson process is common and widely used to model

random requests of online retailers (e.g. [18]).

r m

Lo
ad

in
g 

Zo
n

e 

Row 3

Column 1Row 1 

3-D View

Shelf 1

Shelf Z

Column Y
Column 1 

Row 2 

Column 2 Column 3 Column Y

Column 1Row 2 Column 2 Column 3 Column Y

Column 1 Column 2 Column 3 Column Y

Row X Column 1 Column 2 Column 3 Column Y

Row 1 

𝑛

An AGV moves in the direction of the 
upper bold arrow, towards row 𝑥, 
column 𝑦 and shelf 𝑧, retrieves the 
product, then returns in the direction 
of the lower bold arrow towards the 
loading zone 

Figure 3.1. A schematic illustrating the warehouse structure, composed of X rows, Y
columns and Z shelves. The distance from the loading zone (depot) to the rows is r,

while the spacing between the centers of two columns is m.

As depicted in Figure 3.1, the warehouse system modelled has a total number of X rows,

Y columns and Z shelves. The bold arrows represent the route of travel of the AGVs. Further, r is

the fixed distance from the loading zone to the first column whereas m is the distance between

each two columns. Such layout is widely used among major retail stores, e.g. Walmart and Target,

and have been used in previous papers that tackled warehouse systems (e.g. [19], [20], [21]).
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While this thesis assumes similar structures of warehouse systems, our framework and

analysis remain applicable to a wide range of other systems, such as those in [22] and [23]. As

part of smart warehouse automation system, pick-and-pack operations are performed using

robotics, i.e., Automated Guided Vehicles (AGVs). Hence, upon an arrival of a product request,

an AGV is assigned to serve this request. In Chapter 4, we explain our proposed scheduling

policy and show how this policy is optimized to reduce the pickup and retrieval times of the

incoming online orders. Each AGV has a different horizontal speed, Cv for AGV v, whereas the

speed of the AGV arm is assumed to be a constant (denoted by f ) for all v. We aim to optimize

the following decisions:

• The storage assignment of the products on the rows, columns and shelves

• The dispatching of the incoming product orders to the AGVs

Without loss of generality, we further consider the following assumptions:

• The horizontal and vertical distances between the rows and shelves are constant

• The distance from the loading zone to the nearest row (seen in Fig 3.1 as r) is constant

• A strict-order picking policy is considered, where each AGV can handle only one order of a

customer at a time

• There is always an availability of the inventory and the time to replenish the warehouse

system is negligible

• The arrival rates of incoming online orders λp,∀p, are assumed to be given or predicted

from historical data

• There is a limited number of AGVs and this constitutes the bottleneck operation

• A dedicated storage policy is considered, where each shelf can hold only a single type of

products

• The pick-up/deposit (P/D) time for the AGV to pick up or deposit the product can be

ignored, which is justified if the P/D time is fairly small compared to the total latency

15



• Aisles are wide enough to allow travel of multiple AGVs

• Unlike the traveled distance in y and z directions, the traveled distance in the x-direction is

not varying from one product to another and is assumed to be fixed and equal to r (as

depicted by Figure (3.1)).

3.2 Model Description

In this section, we describe our proposed model. We assume that there are P product

types. The inter-request time (time between two consecutive requests), for every product p, is

exponentially distributed with rate λp. Our objective is to dispatch the requests for each product

in such a way that a weighted sum of mean latency and LTP is minimized. The requests can be

assigned to any AGV v, where v ∈ {1,2, · · · ,V}, for service. Further, for the FCFS scenarios, the

service for a product is assumed to be non-preemptive so AGVs cannot be interrupted if they are

already in service. In order to serve a request of product p, we need to choose one AGV, v, to

serve the request. Each AGV has a different horizontal speed, denoted by Cv for AGV v.

Moreover, the arm of each AGV has a constant speed, represented by f . To provide prioritized

service levels, we propose a prioritized probabilistic scheduling and placement policy as follows.

Each order is assigned to one AGV with probability qv,p ≥ 0 for AGV v. By optimizing qv,p, ∀

v, p, the load is balanced among all AGVs. For any product p, the following condition has to be

satisfied for feasibility of scheduling process, by ensuring that each product can only be assigned

to one AGV:
V

∑
v=1

qv,p = 1 ∀p (3.1)

The selection process of AGV v is a challenging task as it needs to take into consideration

many factors including the queue of each AGV as well as the current orders that are not fully

executed yet. Besides those factors, the policy should also efficiently schedule the products such

that the mean latency and/or tail latency of products are minimized. In chapter 4, we explain our

proposed scheduling policy and show how this policy is optimized to reduce the latency of the

products.
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3.3 Retrieval Time

We assume that the retrieval time of an order of a product p at an AGV v follows a shifted

exponential distribution with two parameters (µv,αv,p) [24]. This distribution of the retrieval time

Xv,p(s) is given by the following equation:

Xv,p(s) =

µve−µv(s−αv,p) s≥ αv,p

0 s < αv,p

(3.2)

where the parameter of the distribution represents Sv,p, which is the retrieval time for

product p of an AGV v (denoted by s in the equation for simplicity), µv represents the service rate

at an AGV v and αv,p gives the fixed minimum time needed to retrieve product p using AGV v.

Note that the expected retrieval time of an order of product p is αv,p +1/µv.

We note that the value of αv,p depends on the assignment of product p. Thus, the retrieval

time depends on how close or far the product is and, hence, it scales differently according to the

product location in the warehouse. Hence, two components contribute to the retrieval time of

product p: random part and constant part. The constant part represents the minimum time of a

request for product p to be successfully received. Further, the exponential part accounts for the

variability and reliability of the AGVs and warehouse environment, and captures the randomness

that makes the retrieval time non-deterministic. Unlike the service model, which is widely

considered in the literature, our shifted exponential model gives more flexibility for better

modeling the service in reality1. Let Mv,p(tv) = E[etvSv,p] be the moment generating function of the

retrieval time of an order for product p at AGV v, Sv,p. Then, Mv,p(tv) = E[etvSv,p] is given as

Mv,p(tv) =
µv

µv− tv
eαv,ptv ∀v, p (3.3)

1In fact, we choose a shifted distribution in order to simulate general distributions. The shifted exponential distribution
is a two-parameter distribution. When the shift/fixed parameter is much larger than the random part of the retrieval
time (1/µv), it can approximate the deterministic models. In contrast, when the shift parameter is much smaller
than (1/µv), it approximates the exponential distribution. Hence, ”SExp” distribution includes the exponential and
deterministic/general distributions as special cases.

17



It remains to characterize the minimum retrieval time αv,p,∀v, p. From Figure 1, the

horizontal distance at column y, denoted as Dy, traveled by an AGV v is given by

Dy = 2[r+m(y−1)] (3.4)

where y represents the row index (or width coordinate) and m represents the distance between two

adjacent rows, and L represents the fixed distance from the loading zone/depot to the first row.

Next, we calculate the vertical distance Dz traveled by the arm of an AGV v. Similar to

Dy, we can write

Dz = 2[n(z−1)] (3.5)

where z gives the elevation of the shelf (or height coordinate), and n represents the vertical

distance between the shelves.

From (3.4) and (3.5), we can write the minimum time needed to retrieve product p using

AGV v as follows

αv,p =
Dy

Cv
+

Dz

f
(3.6)

Recall that f is the vertical speed of the AGV arm, and Cv is the horizontal speed of an

AGV v. Next, we present our proposed strategies for product placement and AGV scheduling.

18



CHAPTER 4. PROPOSED PLACEMENT AND SCHEDULING

In this section, our proposed strategies for placement and scheduling the product requests

are presented.

4.1 Probabilistic Scheduling

Dispatcher

AGV2

AGV3

AGV4

AGV1
Arriving product requests of 

𝑝 types 𝜆𝑝

Requests line up in 

queues, each queue is 

unique to one AGV 

Λ𝑣 = ෍

𝑝=1

𝑃

λ𝑝𝑞𝑣,𝑝 𝑣 = 1, … , 𝑉

Motion towards 

storage area for 

products retrieval 

Each request is assigned to 

an AGV with a probability 

𝑞𝑣,𝑝 such that:

෍

𝑣=1

𝑉

𝑞𝑣,𝑝 =1 ∀𝑝
𝑞1,𝑝

𝑞2,𝑝

𝑞3,𝑝

𝑞4,𝑝

𝜆𝑝,𝑝 = 1,…𝑃

Λ1

Λ2

Λ3

Λ4

Figure 4.1. An illustration of our proposed scheduling policy. Upon arrival of product
p, the dispatcher chooses an AGV v with probability qv,p.

We now describe our proposed scheduling policy. Upon arrival of orders at the dispatcher

(see Figure 4.1), an AGV v is chosen to serve the order. The optimal scheduling policy has to

consider the queue state of all AGVs, importance of each order, and all orders that are not fully

executed yet. While one can use a Markov decision process with multiple states, this approach is

not tractable and will result in, so-called, state explosion problem [25]. Further, this approach

does not give expressions that can be optimized to determine the real-time orders assignments and

optimal AGVs allocations.
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To overcome these issues, we propose a scheduling that jointly considers all different

design parameters including the scheduling decisions (qv,p,∀v, p) and the heterogeneity of the

AGVs. To provide prioritized service levels, we propose a prioritized probabilistic scheduling as

follows. Each AGV v has its own queue and the real-time updates in each queue are served under

First Come First Serve. An order of product p, p ∈ {1,2,3, . . . ,P}, is assigned to the queue of an

AGV v, v ∈ {1,2,3, . . . ,V}, with probability qv,p ≥ 0.

In order to retrieve a product p, we first probabilistically choose one AGV to pick-up the

product. Since the key bottleneck is the limited number of AGVs, orders have to wait in a queue

until the AGV is free. Under probabilistic scheduling, the arrival of orders at AGV v forms a

Poisson process with rate:

Λv =
P

∑
p=1

qv,pλp, ∀v (4.1)

which is the superposition of P Poisson processes each with rate qv,pλp. In chapter 6, we carry

out, under some simplified assumptions, an analysis to provide closed-form expressions for the

scheduling probabilities to gain some insight into the performance of the proposed algorithm and

its behavior under different system parameters.

4.2 Products Placement

Let ax,y,z,p be an indicator variable which is equal to 1 if product p is stored at row x,

column y and shelf z, and zero otherwise, i.e.,

ax,y,z,p =

1 if product p is stored at row x, column y and shelf z

0 otherwise
(4.2)

Since any given location can only store one product and every product is stored at one place only,

the following conditions hold true

X

∑
x=1

Y

∑
y=1

Z

∑
z=1

ax,y,z,p = 1 ∀p (4.3)
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P

∑
p=1

ax,y,z,p = 1 ∀x,y,z (4.4)

From the previous equations, and recalling that αv,p +
1
µv

is the expected retrieval time of the

shifted exponential distribution, the retrieval time of a product p, given that it is assigned to AGV

v, is then given by

E(Sv,p) =
X

∑
x=1

Y

∑
y=1

Z

∑
z=1

ax,y,z,p

(
αv,p +

1
µv

)
∀v, p (4.5)

We note that the retrieval time at an AGV v, Sv, is Sv,p with probability λpqv,p
Λv

. Hence, the

retrieval time at AGV v is given by averaging over all product types using the following equation

E(Sv) =
P

∑
p=1

λpqv,p

Λv
Sv,p ∀v (4.6)

4.3 Latency Tail Probability (LTP) and Mean Latency Characterization

In this section, we quantify the LTP and the average latency of an order for product p,

given that it is assigned to AGV v. Let Lv,p be the random sojourn time that product p needs if

assigned to AGV v. The latency tail probability of an order for product p is defined as the

probability that Lv,p is greater than or equal to δp, for a given δp and AGV v. Since evaluating

Pr(Lv,p ≥ δp) in closed form is challenging for heterogeneous settings with general service time

distribution, we derive an upper bound on LTP. This upper bound turns out to be tight as will be

shown later.

The total time for an order to be completed (total service time) depends on two

components, (i) waiting in the queue of AGV v for service, Wv, and (ii) retrieval time for an order

p, Sv,p, at AGV v. The latency Lv,p for an order of product p, served from AGV v is thus given as

Lv,p =Wv +Sv,p. (4.7)
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Note that the waiting time in the queue of AGV v is the same for all products due to the

nature of M/G/1 queue (all products are queued in one queue), however, the retrieval time

depends on the product. Hence, the proposed model differentiates between the products according

to their type, location and priority.

From Eqn. (3.3) and similar to that in (4.6), we can derive the moment generating function

of the retrieval time at an AGV v by averaging over all product types as follows, i.e.,

Mv(tv) =
P

∑
p=1

λpqv,p

Λv
Mv,p(tv) ∀v (4.8)

Since E [Sv] = M
′
v(0), by taking the first derivative of the above equation and equating to zero, we

arrive at the expected retrieval time at AGV v as follows

E [Sv] =
P

∑
p=1

λpqv,p

Λv

(
αv,p +

1
µv

)
∀v (4.9)

Further, the utilization of AGV v (denoted by ρv) is given as follows

ρv =
P

∑
p=1

λpqv,p

(
αv,p +

1
µv

)
∀v (4.10)

Having characterized the service time distribution, the moment generating function of the latency

Lv,p can be characterized using Pollaczek-Khinchine (PK) formula for M/G/1 queues, since the

request pattern is Poisson and the service time has a general distribution. This PK formula gives

us the MGF of the latency. Hence, we can write

E[etvLv,p] =
(1−ρv)tvMv,p(tv)

tv−Λv(Mv(tv)−1)
∀v, p (4.11)

Since (4.11) is a non-negative, monotonically increasing function, we can apply Markov’s

inequality to give us an upper bound for the LTP, where the numerator in the R.H.S. represents the

PK formula, as follows:

P(Lv,p ≥ δ )≤ E[etvLv,p]

etvδ
∀v, p (4.12)
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By averaging over the choice of AGVs, we arrive at an expression for the LTP of product

p as follows

P(Lp ≥ δ ) =
V

∑
v=1

qv,pP(Lv,p ≥ δ ) ∀p (4.13)

Next, we derive the average latency of product p. Since E [Lv,p] =
d(E[etvLv,p ])

dtv
|tv=0 using

equation 4.11, the expected average latency at AGV v for product p is given by taking the first

derivative of the PK formula and equating to zero, as follows:

E[Lv,p] =
ΛvE[S2

v ]

2(1−ΛvE[Sv])
+E[Sv,p] ∀v, p (4.14)

where E[S2
v ] is the second moment of the retrieval time and is calculated by averaging over all

product types as follows

E[S2
v ] =

∑
P
p=1 λpqv,pS2

v,p

Λv
∀v (4.15)

Finally, the average latency of product p is calculated by averaging Lv,p calculated in Equation

(4.14) over all AGV choices, as follows:

E[Lp] =
V

∑
v=1

qv,pE[Lv,p] ∀p (4.16)
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CHAPTER 5. OPTIMIZATION FOR MEAN LATENCY AND LTP

In this section, we first formulate our optimization problem. Then, an efficient algorithm

is proposed for solving our formulated problem, that aims to minimize the average latency and the

LTP.

5.1 Optimization Problem for Mean Latency and LTP Trade-off

Let q = {qv,p, ∀v, p}, t = {tv, ∀v} and S = {Sp, ∀p}. We consider the following joint

weighted mean latency and latency tail probability optimization problem, where the optimization

is performed over the scheduling probabilities q, the placement of products S and auxiliary

parameters t. Since this is a multi-objective optimization, the objective can be modeled as a

convex combination of the two metrics. Let θ be the trade-off factor that determines the relative

significance of tail latency and mean latency in the optimization problem, where θ ∈ [0,1].

Further, let ωp reflect the weight (or priority) of an order for product p. Hence, we can write our

objective as follows:

min
P

∑
p=1

V

∑
v=1

ωpqv,p

[
θ
(1−ρv)tvMv,p(tv)e−tvδp

tv−Λv(Mv(tv)−1)
+(1−θ)

(
ΛvE[S2

v ]

2(1−ΛvE[Sv])
+E[Sv,p]

)]
(5.1)

subject to Λv =
P

∑
p=1

λpqv,p ∀v (5.2)

Mv,p(tv) =
µv

µv− tv
eαv,ptv ∀v, p (5.3)

Mv(tv) =
P

∑
p=1

λpqv,p

Λv
Mv,p(tv) ∀v (5.4)

E(Sv) =
P

∑
p=1

λpqv,p

Λv
Sv,p ∀v (5.5)

E[S2
v ] =

P

∑
p=1

λpqv,pS2
v,p

Λv
∀v (5.6)

E[Sv,p] =
X

∑
x=1

Y

∑
y=1

Z

∑
z=1

ax,y,z,p(αv,p +
1
µv

) ∀v, p (5.7)
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ρv =
P

∑
p=1

λpqv,p

(
αv,p +

1
µv

)
∀v (5.8)

V

∑
v=1

qv,p = 1 ∀p (5.9)

X

∑
x=1

Y

∑
y=1

Z

∑
z=1

ax,y,z,p = 1 ∀p (5.10)

P

∑
p=1

ax,y,z,p = 1 ∀x,y,z (5.11)

qv,p ∈ [0,1] ∀v, p (5.12)

ax,y,z,p ∈ {0,1} ∀x,y,z, p (5.13)
P

∑
p=1

X

∑
x=1

Y

∑
y=1

Z

∑
z=1

ax,y,z,p = P (5.14)

ρv < 1 ∀v (5.15)

tv > 0 ∀v (5.16)

tv > Λv(Mv(tv)−1) (5.17)

Constraint (5.2) gives the aggregate arrival rate Λv for each AGV under given scheduling

qv,p and arrival rates λp, Constraints (5.3-5.6) define moment generating function with respect to

parameter tv, service time, and the second moment of the service time of AGV v. Constraint (5.7)

gives the retrieval time of product p, if assigned to AGV v. Constraint (5.8) gives the traffic

intensity of the AGVs, Constraints (5.9-5.14) guarantee that the scheduling and assignment

decisions are feasible, and finally, the moment generating function exists due to the constraint in

(5.17). Moreover, ρv < 1 is ensuring the stability of the warehouse system (i.e., queue length does

not blow up to infinity under given arrival rates and scheduling probabilities).
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Our policy prioritizes products according to their weights, so products with larger weights

are prioritized more to further reduce the objective and thus optimizes the overall system. The

placement of the products S helps in placing the highly prioritized products at closer locations

thus reduces the objective. Note that the optimization over the auxiliary variables t gives a tighter

bound on the weighted latency tail probability. Finally, tuning θ = 1 to θ = 0, the solution for

(5.1) spans the solutions that minimize the LTP to the ones that minimize the mean latency of

products orders. While we formulated our model generally, for our results section we have used

θ = 0 (strictly mean latency) or θ = 1 (strictly LTP), since in practice only one of the two will be

of interest.

Remark: The proposed optimization is non-convex, since constraint (5.17) is non-convex

in (q, t). Further, the product placement (S ) has integer constraints.

Next, we develop an algorithmic solution by dividing the original problem into

sub-problems that are easy to solve, then coming up with an efficient alternating optimization

algorithm to solve it.

5.2 Proposed Algorithm

The joint mean and tail latency optimization problem given above is optimized over three

sets of variables: scheduling probabilities q, product assignments S , and auxiliary parameters t.

Since the problem is non-convex, we propose an iterative algorithm to solve the problem. The

proposed algorithm divides the main problem into sub-problems, which are easier to handle. The

sub-problems are the following: Product assignment optimization which optimizes S for any

given q and t; scheduling optimization which optimizes q for a given t and the optimal S ; and,

auxiliary variables optimization which optimizes t for a given q and the optimal S . This

algorithm is summarized as follows.

1. Initialization: Initialize t and q in the feasible set.
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2. Find Optimal Product Assignment: Develop an algorithm for finding the optimal product

assignment.

3. While Objective Converges

(a) Run Scheduling Optimization using current values of t and the optimal S to get new

values of q.

(b) Run Auxiliary Variables Optimization using current values of q and the optimal S to

get new values of t.

Next, we will describe the sub-problems along with the proposed solutions for the

sub-problems.

5.2.1 Product Assignment Optimization

To solve this problem we have provided an algorithm that works as follows. First, the

products are sorted in descending order according to the ratio of (λp/IDp) ratio, where IDp is a

product ID that determines how important/critical a product is. The smaller the product ID is, the

more critical it is. Second, product with larger ratio are placed closer to the loading zone.

We prove that this placement algorithm is an optimal policy. Hence, we need only to

iterate over the other 2 decision variables, i.e., q and t. To show this optimality, we use the

concept of Adjacent Pairwise Interchange (API) on products. Since the proof of this theorem

follows directly from the proof of Theorem 11.3.1 in [26], we refer the interested reader to page

301 of the book, for a detailed treatment of this.
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To give a brief overview about the proof, we start by noting that there must be at least two

adjacent products, say product j followed by product k, such that ω j/Tj < ωk/Tk, where Tj and Tk

represents the latency for products j and k, respectively. Further, let ω j > ωk. From Eqn (4.7) and

under probabilistic scheduling, we see that all products assigned for an AGV v experience, on

average, the same waiting time (e.g., Wv) in the queue, however each product experiences different

service time. This service time depends on two parts: random part 1/µv, and fixed/deterministic

part αv,p which depends on the product location in the warehouse. Since 1/µv depends only on

the AGV v and is independent of the product type, it is easily verified that assigning the products

with higher weights closer to the loading zone (and thus lower retrieval time) will result in

minimizing the overall weighted mean latency. This is because we can always express the

retrieval time of product k as a function of the retrieval time of product j. Consider Dv, j,k=

ω j(Wv +Sv, j)+ωk(Wv +Sv,k)=ω j(Wv +Sv, j)+ωk(Wv +Sv, j +∆ j,k), where ∆ j,k represents the

excess retrieval time of product k over product j. Since ω j is strictly greater than wk by definition,

Dv, j,k is minimized by reducing Sv, j, and thus our statement holds true.Another way of showing

that the proposed placement algorithm is optimal is by noting that taking this ratio provides us

with the relevant importance of each product. Thus, products with a higher ratio possess greater

importance and intuitively should be placed in the nearest locations to the loading zone.

5.2.2 Scheduling Optimization

In order to solve this problem, we can use Successive Upper-Bound Minimization (SUM)

algorithm or project gradient descent (PGD) algorithm [27]. The key idea of SUM algorithm is

that the non-convex objective function is replaced by suitable convex approximations at which

convergence to a stationary solution of the original non-convex optimization is established. SUM

solves the approximated function efficiently and maintains feasibility in each iteration. However,

in the context of our problem, PGD algorithm is used. While the SUM algorithm provides more

accurate results than the PGD algorithm, it is complex and requires long computational times.

The PGD, on the other hand, is much simpler with slightly less accuracy. Next, we present the

pseudo-code and the optimization model for the PGD algorithm, where q is the decision variable:
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Pseudo-code

Initialize q0

For t from 0 to T −1 do:

→ Compute the gradient OqE(qt)

→Take a step in the negative direction, q̃t+1 = qt− γOqE

→Project q̃t+1
i:λ to the simplex4L satisfying ∑λ∈L q̃i:λ = 1 and 0 6 q̃i:λ 6 1

→qt+1 = Pro j4L(q̃)

end

Output :qT−1

Optimization Model

minimize
q

f (q) s.t. q ∈C

yk+1 = qk− tkO f (qk)

qk+1 = argmin
q∈C

‖yk+1−q‖

5.2.3 Auxiliary Variables Optimization

This sub-problem can be shown to be convex, and thus can be solved by the Projected

Gradient Descent Algorithm with guaranteed (linear) convergence. We now show that this

sub-problem is convex in t. We first note that inside the summations of the objective function

(5.1), only the first term depends on a single value of tv. Thus, it is enough to show that
tve−tvδ Mv(tv)

tv−Λv(Mv(tv)−1) is convex with respect to tv. Since there is only a single index v here, we ignore this

subscript for the rest of this proof. We denote

G(t) =
te−txM(t)

t−Λ(M(t)−1)
(5.18)

=
αte(β−x)t

−t2 +(α−Λ)t +Λα−Λαeβ t
(5.19)

=
αte(β−x)t

−t2 +(α−Λ)t−Λα(eβ t−1)
(5.20)
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Since the constraints in (5.2)-(5.17) are convex in t and the second derivative of G(t) can

be shown to be greater than zero, i.e., G′′(t)> 0, the objective function is convex in t.

5.3 Proposed Algorithm Convergence

We first initialize qv,p, Sp and tv ∀ v, p , such that the choice is feasible for the problem.

The t can be initialized to any value that is greater than zero (we have chosen an arbitrary value of

0.01), whereas the qv,p is initialized such that uniform assignment is achieved for each product

among the AGVs. Then, we find the optimal Sp , and do alternating minimization over qv,p and

tv. Since each sub-problem converges and the overall problem is bounded from below, the

proposed algorithm converges to a stationary point.
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CHAPTER 6. EXTENDED ANALYSIS FOR SCHEDULING

In this chapter, we provide closed-form expressions for the scheduling probabilities, under

some simplified assumptions, regardless of the type of products. This will help us have a better

understanding of how the system behaves for the proposed algorithm under a variety of system

parameters. We aim to balance the load among all AGVs so that AGVs with higher speeds are

expected to get larger portion of the total load. Hence, scheduling decisions are assumed to be

source agnostic. Below, we focus only on minimizing the LTP by choosing the optimal decisions

(qv,∀v) so that the load is optimally (or near-optimally) distributed over all AGVs. From (4.11),

we have

Pr(Lp ≥ δ )≤
V

∑
v=1

qv

etvδ

(1−ρv)tv
tv−Λv(Mv(tv)−1)

(
µve−αp,v

µv− tv

)
≤

V

∑
v=1

(1−ρv)tvMv,p(t)e−tvδ

tv−Λv(Mv(tv)−1)

=
V

∑
v=1

(1−ρv)Fv

tv−ΛvRv,p
(6.1)

where Fv = tvMv,p(t)e−tvδ and Rv = (Mv(tv)−1). Note that both E [Sv] and Mv(tv) are independent

of qv. To see that, we can write

E [Sv] =
P

∑
p=1

qvλp

∑p qvλp
Sv,p =

P

∑
p=1

λp

∑p λp
Sv,p

=
1
λ

P

∑
p=1

λpSv,p =
1
λ

Sv,p (6.2)

where λ = ∑
P
p=1 λp and Sv,p = ∑

P
p=1 λpSv,p. Similarly, we can write

Mv(tv) =
P

∑
p=1

qvλp

Λv
E
[
etvSv

]
=

P

∑
p=1

qvλp

qv ∑
P
p=1 λp

Mv(tv)
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=
P

∑
p=1

λp

λ
Mv(tv) (6.3)

Without loss of generality, we consider two AGVs only, V = 2, and later on, we will

generalize it to the scenarios where we have V > 2. Let q1 = q and hence q2 = 1−q. Hence, for

V = 2, equation (6.1) reduces to

Pr(Lp ≥ δ )≤ (1−qλS1)F1

t1−qλR1
+

(1− (1−q)λS2)F2

t2− (1−q)λR2
(6.4)

It is straightforward to prove that (6.4) is a convex function with respect to q. Therefore,

to get the optimal value of q we differentiate and equate to zero. By d Pr(Lp≥δ )
dq = 0 and

simplifying the expressions, we get

d Pr(Lp ≥ δ )

dq
=

F1R1λ −λS1F1t1
(t1−qλR1)

2 +
λS2F2t2−F2R2λ

(t2− (1−q)λR2)
2 (6.5)

Hence, √
F1

F2

R1−S1t1
R2−S2t2

=
t1−qλR1

t2− (1−q)λR2
(6.6)

By defining C(q)
1,2 =

√
F1
F2

R1−S1t1
R2−S2t2

, the optimal scheduling probability q∗ (i.e., portion of

load that goes to the first AGVs) can be written as

q∗ =
t1−C(p)

1,2 t2 +C(p)
1,2 λR2

C(p)
1,2 λR2 +λR1

(6.7)

We can show that the above formula can be written for any number of AGV as follows

q∗j =
t j−C(p)

j,− jt− j +C(p)
j,− jλR− j

C(p)
j,− jλR− j +λR j

(6.8)
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where q∗ represents the optimal scheduling probability to minimize the tail latency. We note that

C(q)
1,2 is always non-negative. Since F1 and F2 are non-negative, it is enough to show that Rv > Svtv,

for any v. To do so, we can write

Rv = Mv(tv)−1 = E[etvSv ]−1 > E[1+ tvSv]−1 = tvE[Sv] = tv( 1
µv
). Hence, C(q)

1,2 ≥ 0.

Note that for identical AGVs where t1 = t2, R1 = R2, F1 = F2, and hence C(q)
1,2 = 1, we have

q∗ = 1/2, which is intuitively expected.]

Next, for M/M/1 queues while focusing on the minimizing the mean latency, the following

formula can be derived by taking the derivative of Lv,p with respect to q and equating it to zero:

q∗∗ =
λ
√

µ1 +µ1
√

µ2−µ2
√

µ1

λ (
√

µ1 +
√

µ2)
(6.9)

where q∗∗ represents the optimal scheduling probability to minimize the average latency,

µ j, j = 1,2, is the speed of the AGV and λ = ∑
P
p=1 λp. For example, if µ1 = µ2, then q∗∗ = 1/2

which is intuitively apparent. For general number of servers, (6.9) can be written as (for AGV j)

q∗∗j =
λ
√

µ j +µ j
(
∑

V
v=1
√

µv
)
−√µ j

(
∑

V
v=1 µv

)
λ (∑V

v=1
√

µv)
(6.10)
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CHAPTER 7. NUMERICAL RESULTS

In this section, we evaluate our proposed algorithm for optimizing the two metrics of

mean latency and LTP of products. Unless otherwise explicitly stated, we set the number of

AGVs to 8, i.e., V = 8. The warehouse dimensions are assumed to be X = 30, Y = 20 and Z = 2.

We further set r = 0.01,m = 0.05,n = 0.01. Moreover, we consider three different priority

classes, where each product is assigned to one of the classes uniformly at random. Without loss of

generality, a class of lower index is prioritized over those with higher index values (i.e., class 1 is

the most important one while class 3 is the least important). The speeds of AGVs are shown in

Table 7.1. The speeds are in m/s , and values were chosen to represent realistic speeds of AGVs in

warehouses. Modelling the system with the heterogeneous speeds of the AGVs is very useful, and

can be representative of real life situations, where a warehouse is transitioning to a new

technology, which takes place gradually such that there is a mix between old AGVs with lower

speeds and newer AGVs with faster speeds. Further, it can represent a hybrid warehouse system

where humans transport loads along with the AGVs.

Table 7.1. AGV Speeds

AGV index 1 2 3 4 5 6 7 8

Speed (m/s) 2.15 1.50 1.90 2.25 1.80 2.20 1.90 2.35

We investigate our model under a wide range of parameters. While our simulation uses

these specific parameters, our analysis and results remain applicable for any setting as long as the

system maintains stable conditions under the chosen parameters.

Next we investigate our placement policy, scheduling policy and the convergence property

of our algorithm.

As for the placement policy, keeping in mind that our storage policy is a dedicated one, we

consider two baseline systems to compare with as described below:
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• Uniform Assignment (UA) Policy: In this strategy, product types are assigned to random

locations, regardless of how close or far they are to the loading zone. In other words, every

product has en equal probability of being assigned to any of the locations, in the dedicated

storage setting.

• Turnover Storage (Greedy) Policy: This policy assigns the product types with the highest

arrival rates to locations that are closest to the loading zone. More details can be found

in [8]

With respect to the scheduling policy, we compare our algorithm with the following

baselines:

• Join Shortest Queue (JSQ) Policy: In this policy, the orders of products are assigned to the

AGV with the least queue length. For detailed treatment of this policy, interested reader can

refer to [11]

• Least Work Load (LWL) Policy: This policy assigns the incoming orders to the AGV that

has the least (remaining) load (or processing time) among all the AGVs. Interested reader

can refer to [12] for further details

• Least Work Load-d LWL(d) Policy: In this policy, a set of d AGVs are chosen at random and

then orders are assigned to the AGV that has the least waiting time among those selected

• Power-of-d Pow(d) Policy: In this policy, a set of d AGVs are chosen at random and then

orders are assigned to the AGV with the least queue length among those selected. In-detail

description for this strategy can be found in [10]

• Random Assignment (RA) Policy: This policy assigns the scheduling in a random way

• Proportional-service-rate Assignments (PA) Policy: Orders of products are assigned in

proportion to the service rates of the AGVs
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7.1 Evaluation of Placement Algorithm

In this section, we evaluate our proposed placement algorithm and compare it with the

baseline polices mentioned earlier.
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Figure 7.1. Effect of arrival rate on average weighted latency
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Figure 7.2. Effect of arrival rate on weighted LTP
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Figure 7.3. Visual representation of the placement of products in the warehouse. A
black cell is corresponding to a ”zero” coordinate whereas a white cell is

corresponding to a ”one” coordinate. For instance, for p = 1, the corresponding
location is (5,2,2) for the uniform assignment. However, this product p = 1 is stored
at location (1,1,1) for the Greedy policy, and in location (2,5,1) for our optimized

assignment policy.

Figures 7.1 and 7.2 show the average weighted latency and the weighted LTP for different

arrival rates considering three placement policies. Further, a visual representation of the

distribution of the product assignment in the warehouse is plotted in 7.3. To visualize the product

placement and to better understand the effects of placement, we consider only 60 products in this

particular experiment, with a warehouse dimensions of X = 5,Y = 6,Z = 2. Several arrival rates

with multiple λb (where λb is the base arrival rate of product p) are also used. Further, we show

the optimality of our policy for both the mean latency as well as the Latency Tail Probability. For

the purpose of this, we use the optimal scheduling policy demonstrated in Chapter 6. We compare

our placement policy with the uniform and greedy placements. In greedy placement, products

with higher arrival rates are placed closer to the loading zone. We observe that our policy achieves

the lowest latency as compared to the uniform placement and the greedy, for all arrival rates, for

both the mean latency and the LTP. Further, our approach obtains 6.8%, 9.8% percentage

improvement in average latency over the greedy algorithm and uniform assignment, respectively.
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In figure 7.3, we plot a visualization view for the product placement in the warehouse

under the three different policies. The X ,Y,Z coordinates are spread out horizontally, forming a

mesh of 60×13 (i.e., 60× (X +Y +Z)) matrix. The first 5 cells represent the x-coordinate, while

cells 6 to 11 represent the y-coordinate and the last two cells (cells 12 and 13) represent the

z-coordinate. A black cell indicates that the coordinate is zero whereas a white cell has a value of

1. A certain location is determined by the tuple (x,y,z). For example, for the proposed policy, the

first product is placed at (2,5,1) while for the greedy policy the first product is assigned (1,1,1).

The aim of this figure is to provide a clear view of how the locations differ for the different

proposed placement policies. Different from the greedy policy that takes into account only the

arrival rate when assigning the products, our policy jointly considers more than one aspect when

determining the products allocation, including the arrival rates, and the importance of the

products.

7.2 Convergence of Algorithm

In this section, we will demonstrate the convergence of our proposed algorithms to a

stationary point, with the aid of multiple graphs.
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Figure 7.4. Demonstrating convergence of proposed algorithm by plotting δ versus
weighted LTP
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Figure 7.4 shows the behavior of weighted LTP versus the threshold δ (in seconds). We

observe the behavior when only t is optimized, only q is optimized and when both are optimized

(which is our proposed algorithm). Our approach finds the optimal weighted LTP by applying the

alternative optimization algorithm over our control parameters: q and t, after the optimal

placement has been plugged in. We note that this figure also represents the complementary

cumulative distribution function (ccdf) of the aforementioned policies. For example, we observe

that Pr(δ ≥ 20)≈ 0.1 for our proposed policy which is significantly lower as compared to the

other strategies.
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Figure 7.5. Demonstrating convergence of proposed algorithm by plotting iteration
number versus weighted LTP

Figure 7.5 shows the convergence of our algorithm to a stationary point. It plots the

weighted LTP for different values of δ , ranging from δ = 112 to δ = 152 with increments of 2,

while we iterate over t and q with the optimal placement plugged in. This validates the efficiency

of the proposed optimization algorithm.
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7.3 Evaluation of Scheduling Algorithm

In this section, we evaluate our proposed algorithm for the scheduling, and compare it to

some other baseline policies. For this purpose, we run simulations of the system in an online

mode, meaning that the products arrive in real time and need to be dispatched on the fly into one

of the available AGVs. The total time of our simulation is T = 2000 s. For the following figures,

we set λp = λb/(p+1), where λb is the base arrival rate and is equal to 0.3. So all the next 3

figures use simulations to demonstrate the effectiveness of our scheduling algorithm.
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Figure 7.6. Arrival rates versus weighted average latency. Solid lines represent
scheduling with the proposed optimal placement of products whereas dotted lines

represent scheduling with a uniform placement
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Effect of arrival rate of product orders on mean latency: Figure 7.6 shows the effect of

increasing the product request rates from 1.0λb to 2.9λb with an increment step of 0.1. In this

figure, we compare different scheduling strategies assuming optimal placement (solid lines) and

random placement (dashed lines). We first observe that our proposed approach consistently

performs the best among all considered approaches. In addition, at higher arrival rates, our

approach still maintains low latency as compared to the most competitive baselines, i.e., LWL and

JSQ. For instance, at the arrival rate of λb = 2.9, the proposed strategy reduces the latency by

around 50% compared to JSQ, and by over 23% compared to the LWL policy. Further, our policy

shows an improvement of around 33% as compared to the LWL without optimal placement. Note

that, unlike queue-length-based scheduling where only the queue length counts, our policy

differentiates among the different classes by prioritizing more the orders with higher

weights/priority in order to minimize the overall latency.
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Figure 7.7. δ versus weighted LTP

Effect of varying the threshold for the latency: Figure 7.7 shows the effect of varying the

threshold value on the probability of the average latency of products exceeding it. As observed,

the greater the threshold value, the less the proportion of products whose latency surpass it.

Further, our proposed algorithm consistently performs the best among others. This is because it

utilizes the resources better and accounts for both classes and arrival rates. In our policy,

higher-priority orders are prioritized, and thus their latency is minimized, resulting in an overall

decrease of the weighted latency.
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Figure 7.8. Weighted average latency for different number of AGVs

Effect of varying the number of AGVs on the mean latency: Figure 7.8 shows the effect of

increasing the number of the AGVs from 5 to 8 with an increment step of 1. As expected, the

average weighted latency decreases as the number of AGVs increases since more AGVs are

available to serve the incoming online orders. Further, our policy shows an even better

performance when the number of AGV is limited, with an 11% percentage improvement

compared to the LWL policy. For a less constrained system (higher number of AGVs), our

approach still performs best, with somewhat lower percentages. The major gain in this case,

however, is the minimum complexity and the lack of need to track the AGV queues. Hence,

overall our approach is better when it comes to both the performance and the computational cost.
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Figure 7.9. Weighted average latency for different arrival rates and classes

Figure 7.9 shows how the different classes of order requests experience different weighted

average latency. Products are divided into 3 classes (blue bars represent the first class which is the

most prioritized, red bars represent the second class, and yellow bars represents the third class

which is the least prioritized). We vary the arrival rates of all products from 2.1λ to 2.4λ and plot

the weighted average latency for each group. While weighted mean latency increases as arrival

rate increases, our algorithm assigns differentiated latency for different product sets. Class 1

always receives the minimum average latency. Hence, efficiently reducing the latency of the high

arrival rate products reduces the overall weighted average latency.
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CHAPTER 8. CONCLUSIONS AND FURTURE WORK

We carry out extensive simulations to study the performance of the developed strategy.

The system performance is measured by different objectives including the overall weighted sum

of mean latency and LTP as well as the trade-off between them. We observe that the higher the

difference in priority classes is, the more effective our policy gets. Further, at heavy loads of

customer orders and low number of AGVs, our approach achieves a higher percentage system

improvement. Further, for a less constrained system, our approach has the advantage of low

computational cost. Moreover, joint optimization of storage assignment and LTP results in greater

gains than optimizing only one parameter at a time. Hence, our framework gives important design

guidelines for designing smart warehouses to provide the desired service to the customers.

Our future work can include an end-to-end delivery to customer houses using drones, with

the inclusion of the cost of delivery. An addition that can also be introduced is a warehouse model

where the same product type is stored in different locations, and thus one or more AGV(s) can be

assigned to serve a particular order. Further, more than one warehouse can be considered to serve

the same request. Also, non-uniform unit loads along with AGVs with varying capacities can be

considered. Finally, our approach can be extended to include varying sizes of the racks, with more

added constraints to ensure products fit on desired shelves.
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