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ABSTRACT

Savvides, Savvas Ph.D., Purdue University, August 2020. Practical Confidentiality-
Preserving Data Analytics in Untrusted Clouds. Major Professor: Patrick Eugster.

Cloud computing offers a cost-efficient data analytics platform. This is enabled

by constant innovations in tools and technologies for analyzing large volumes of data

through distributed batch processing systems and real-time data through distributed

stream processing systems. However, due to the sensitive nature of data, many or-

ganizations are reluctant to analyze their data in public clouds. To address this

stalemate, both software-based and hardware-based solutions have been proposed yet

all have substantial limitations in terms of efficiency, expressiveness, and security. In

this thesis, we present solutions that enable practical and expressive confidentiality-

preserving batch and stream-based analytics. We achieve this by performing com-

putations over encrypted data using Partially Homomorphic Encryption (PHE) and

Property-Preserving Encryption (PPE) in novel ways, and by utilizing remote or

Trusted Execution Environment (TEE) based trusted services where needed.

We introduce a set of extensions and optimizations to PHE and PPE schemes and

propose the novel abstraction of Secure Data Types (SDTs) which enables the ap-

plication of PHE and PPE schemes in ways that improve performance and security.

These abstractions are leveraged to enable a set of compilation techniques making

data analytics over encrypted data more practical. When PHE alone is not expres-

sive enough to perform analytics over encrypted data, we use a novel planner engine to

decide the most efficient way of utilizing client side completion, remote re-encryption,

or trusted hardware re-encryption based on Intel Software Guard eXtensions (SGX)

to overcome the limitations of PHE. We also introduce two novel symmetric PHE

schemes that allow arithmetic operations over encrypted data. Being symmetric, our



xv

schemes are more efficient than the state-of-the-art asymmetric PHE schemes without

compromising the level of security or the range of homomorphic operations they sup-

port. We apply the aforementioned techniques in the context of batch data analytics

and demonstrate the improvements over previous systems. Finally, we present tech-

niques designed to enable the use of PHE and PPE in resource-constrained Internet

of Things (IoT) devices and demonstrate the practicality of stream processing over

encrypted data.
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1. INTRODUCTION

The advent of cloud computing has decisively changed the landscape of computing.

By making practically infinite amounts of computation and storage resources avail-

able on-demand — to individuals, small and medium size enterprises, but also large

organizations — the cloud computing paradigm has had a profound economic im-

pact, in addition to a substantial technical one. While driving the big data evolution,

the offloading of computation and storage to public clouds bears increased security

concerns [1, 2]. Hardware and software bugs can be exploited by malicious actors

who can cause applications to fail and reveal confidential information. The risks of

confidentiality breaches are only exacerbated by the multi-tenant nature of public

clouds, with benign and malicious actors sharing the same cloud resources. Even

in the absence of malicious actors, curious administrators can still leak confidential

information. In the presence of such threats, innovative solutions are needed that

allow us to utilize cloud resources without sacrificing confidentiality of data.

1.1 Preserving Confidentiality

To ensure confidentiality, data can be encrypted before sent to the cloud. Tradi-

tional data encryption preserves confidentiality of data at rest. Securing data at rest

allows users to utilize cloud storage without exposing sensitive information, but it

prevents users from making use of the compute capabilities of the cloud to carry out

data analytics. To preserve the confidentiality of data in use existing cryptographic

systems (cryptosystems) that allow meaningful operations to be performed directly

on encrypted data can be used. These cryptosystems are called homomorphic en-

cryption schemes. Fully Homomorphic Encryption (FHE) schemes allow arbitrary

computations over encrypted data. Unfortunately, despite regular advancements,



2

FHE schemes still exhibit high overhead for complex analytical queries. Instead, in

this work we use Partially Homomorphic Encryption (PHE) and Property-Preserving

Encryption (PPE) schemes that allow computations over encrypted data with respect

to some specific operations and have practical performance. PHE and PPE schemes

preserve the confidentiality of data at rest, in motion, and in use, allowing users to

utilize both the storage and the compute capabilities of the cloud, without exposing

sensitive information.

1.2 Challenges

Several confidentiality-preserving systems exist that use PHE and PPE schemes

to perform operations over encrypted data. Yet these systems suffer from a set of

drawbacks.

Firstly, existing systems largely ignore properties of individual PHE and PPE

schemes such as a) the level of security they provide, b) the performance of their

encryption, decryption, and homomorphic operations, and c) their expressiveness in

terms of the range of homomorphic operations they support. By not considering these

properties, existing systems deploy queries that are less secure and less performant.

Secondly, existing systems utilize asymmetric PHE schemes to carry out arith-

metic operations over encrypted data. The security of these schemes relies on math-

ematical problems (e.g., integer factorization) which are hard to solve for large num-

bers. Because of this fact, the ciphertext size of these schemes is large and the ho-

momorphic operations they support are computationally expensive. The asymmetric

nature of these schemes offers no benefits when computing over encrypted data, yet

it leads to less performant confidentiality-preserving data analytics.

Lastly, existing systems have mostly considered computations over encrypted data

in a database or a distributed batch processing setting but not in a stream processing

setting. Stream processing poses unique challenges when computing over encrypted

data. Furthermore, stream processing applications often use data generated by mem-
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ory constrained and computationally constrained Internet of Things (IoT) devices. A

straightforward application of PHE and PPE schemes on such end devices is unlikely

to be practical.

1.3 Contributions

In this thesis we address the aforementioned challenges and investigate ways of

performing both batch and stream cloud-based data analytics in a practical and

confidentiality-preserving manner.

We begin by introducing a set of extensions and optimizations to existing PHE

and PPE schemes (Chapter 3) making these schemes more expressive, secure, and

performant.

We then introduce a data type abstraction (Chapter 4) that captures properties

of various PHE and PPE schemes and exposes a set of programming abstractions

that can express data flow style computations that capture simple but fine-grained

information relevant to security and performance. We then describe a compiler that

leverages the above abstractions to substantially accelerate PHE- and PPE-based

query execution. We also introduce a planner engine that utilizes trusted resources

smartly to improve the performance of query execution.

Recognizing that a major source of overhead when executing queries over en-

crypted data is due to the use of asymmetric PHE schemes to carry out arithmetic

operations, we introduce two novel symmetric PHE schemes. Our proposed schemes

are more performant than their asymmetric counterparts and they retain the full

range of homomorphic operations that asymmetric schemes support while offering

the same level of security (semantic security, (IND-CPA)).

Finally, we provide implementations to existing PHE and PPE schemes designed

for use in resource-constrained IoT devices and present a secure stream abstrac-

tion through which confidentiality-preserving stream analytics can be expressed. We
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demonstrate the practicality of computations over encrypted data in applications that

use small IoT devices as the end devices of a larger stream processing system.

1.4 Thesis Statement

In this thesis we introduce methodologies for practical, confidentiality-preserving

in-cloud data analytics over encrypted data. We propose a new data type abstraction

that captures security constraints and the structure of input data and allows for more

optimized batch processing analytics, two symmetric PHE schemes that replace slower

state-of-the-art asymmetric PHE schemes, and a set of techniques that make PHE and

PPE practical on resource-constrained IoT devices and in stream processing analytics.

1.5 Thesis Roadmap

This thesis contains eight chapters. Chapter 2 presents background information

on PHE, PPE as well as on batch and stream processing data analytics frameworks.

Chapter 3 introduces a set of extensions and optimizations to existing PHE and PPE

schemes to make them more performant and more expressive. Chapter 4 proposes

the Secure Data Types (SDTs) abstraction and a distributed data analytics system

that leverages this abstraction to improve the security and performance of data ana-

lytics over encrypted data. Chapter 5 introduces two novel symmetric PHE schemes

and a distributed data analytics system that uses these schemes to achieve efficient

arithmetic operations over encrypted data. Chapter 6 demonstrates the practicality

of PHE and PPE on IoT devices and presents a stream data analytics system that

preserves confidentiality. Chapter 7 concludes this thesis and presents plans for future

work.
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2. BACKGROUND

To preserve confidentiality of sensitive data while utilizing the compute capabilities of

the cloud, we utilize security mechanisms such as Partially Homomorphic Encryption

(PHE), Property-Preserving Encryption (PPE), and Trusted Execution Environments

(TEEs). In this chapter we present background information about these mechanisms

(as well as relevant background about Fully Homomorphic Encryption (FHE) for

comparison) and put emphasis on the parts pertaining to subsequent chapters of

this thesis. In addition, we present background information about distributed batch

processing frameworks and distributed stream processing frameworks, such as Apache

Spark and Apache Storm.

2.1 Fully Homomorphic Encryption

FHE allows arbitrary operations to be performed directly over encrypted data

and therefore preserves the confidentiality of data throughout computations. Gentry

introduced the approach of FHE and a first scheme [3] that provably achieves it.

Even though FHE has been becoming more practical [4], it still exhibits cost which is

prohibitive for many complex computations. In this thesis we steer away from FHE

schemes to keep execution overheads low. We instead focus on using PHE, PPE, and

TEEs in novel ways, to improve expressiveness, performance, and security of data

analytics.

2.2 Partially Homomorphic Encryption

Unlike FHE which allows arbitrary computations over encrypted data, PHE allows

computations over encrypted data with respect to specific operations. More formally,
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a cryptosystem is said to be partially homomorphic with respect to certain operations

if it allows computations consisting in such operations on encrypted data. If E(x) and

D(x) denote the encryption and decryption functions for input data x respectively

(omitting keys for simplicity), then an encryption scheme is said to be homomorphic

with respect to operation φ if ∃ operation ψ such that

D(E(x1) ψ E(x2)) = x1 φ x2 (2.1)

An encryption scheme is said to be an Additive Homomorphic Encryption (AHE)

scheme when φ is addition “+”. Examples of AHE schemes include the Paillier [5],

Benaloh [6], Okamoto–Uchiyama [7], Naccache-Stern [8], and Damg̊ard-Jurik [9] cryp-

tosystems. Similarly, an encryption scheme is said to be a Multiplicative Homomor-

phic Encryption (MHE) scheme when φ is multiplication “×”. Examples of MHE

schemes include the ElGamal [10], and the unpadded RSA [11] cryptosystems. Other

PHE schemes include the Goldwasser-Micali cryptosystem [12] which is homomorphic

with respect to exclusive-OR (addition modulo 2) and the Sander-Young-Yung [13]

cryptosystem which is homomorphic with respect to AND (multiplication modulo 2).

Another noteworthy PHE scheme is the Boneh-Goh-Nissim cryptosystem [14] which

allows any number of additions over encrypted data and a single multiplication over

encrypted data.

Example: Paillier cryptosystem The Paillier cryptosystem [5] is a probabilistic

asymmetric AHE scheme the security of which is based on the decisional composite

residuosity assumption. Given a security parameter ε (at the time of this writing,

NIST recommends that ε is at least 2048 for “factoring modulus” related assump-

tions [15]), we generate the public and private keys of Paillier by choosing two distinct

prime numbers p and q of size ε
2

bits each and setting the modulus N to N = pq.

Then we set λ = lcm(p − 1, q − 1) where lcm denotes the least common multiplier

function. Lastly, we choose a generator g ∈ Z∗N2 such that gcd(L(gλ mod N2), N) = 1

where gcd denotes the greatest common divisor function and L is defined as:

L(x) :=
x− 1

N
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We set the public key to pk = (g,N) and the corresponding private key to sk =

(g,N, λ). Given a public key pk, and a plaintext message m, the encryption function

of Paillier is defined as follows:

Epail(pk,m) := gmrN mod N2 (2.2)

where r is a uniform random value. Given a private key sk, and a ciphertext value c

the decryption function of Paillier is defined as follows:

Dpail(sk, c) :=
L(cλ mod N2)

L(gλ mod N2)
mod N (2.3)

Given two Paillier ciphertexts c1 = gm1rN1 mod N2 and c2 = gm2rN2 mod N2, homo-

morphic addition (add) can be achieved by:

add(pk, c1, c2) := c1c2 mod N2

= gm1rN1 g
m2rN2 mod N2

= gm1+m2(r1r2)N mod N2

(2.4)

which is a valid encryption of m1 +m2. Note that the above homomorphic operation

requires the public key, pk, but not the private key, sk.

Example: ElGamal cryptosystem The ElGamal cryptosystem [10] is a proba-

bilistic asymmetric MHE scheme the security of which is based on the decisional diffie

hellman assumption. Given a security parameter ε (at the time of this writing, NIST

recommends that ε is at least 2048 for “discrete logarithm” related assumptions), we

select a generator g of an efficient cyclic group G of order N where N has a bit-length

of ε. We then select a random integer x ∈ ZN and set h = gx. We set the public key

to pk = (G, N, g, h) and the corresponding private key to sk = (G, N, g, x). Given

a public key pk and a plaintext message m, the encryption function of ElGamal is

defined as follows:

Eelg(pk,m) := (c1, c2)

= (gr mod N,mhr mod N)
(2.5)
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where r is a uniform random value. Given a private key sk and a ciphertext value

c = (c1, c2), the decryption function of ElGamal is defined as follows:

Delg(sk, c) :=
c2

cx1
mod N

=
mhr

grx
mod N

=
mgxr

grx
mod N

= m

(2.6)

Given two ElGamal ciphertexts c1 = (c1
1, c

1
2) and c2 = (c2

1, c
2
2), homomorphic multipli-

cation (mul) can be achieved by:

mul(pk, c1, c2) := (c1
1c

2
1, c

1
2c

2
2)

= (gr1gr2 ,m1h
r1m2h

r2)

= (gr1+r2 ,m1m2h
r1+r2)

(2.7)

which is a valid encryption of m1m2. Note that, just like with Paillier homomorphic

addition, the above homomorphic multiplication requires the public key, pk, but not

the private key, sk.

Secondary homomorphic operations The “primary” operations supported by

each encryption scheme require that their operands are both encrypted under the

same encryption scheme. In addition to these operations, some cryptosystems support

“secondary” operations as long as one of the operands is in plaintext form. The Paillier

cryptosystem, for example, primarily supports addition between two encrypted values

as shown in Equation 2.4, but beyond this operation, Paillier also supports addition

between an encrypted value, c1, and a plaintext value, m2 (adp: add plaintext):

adp(pk, c1,m2) := c1g
m2 mod N2

= gm1rN1 g
m2 mod N2

= gm1+m2rN1 mod N2

(2.8)
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which is a valid encryption of m1 +m2. Paillier also supports multiplication between

an encrypted value, c1, and a plaintext value, m2 (mlp: mu ltiply plaintext):

mlp(pk, c1,m2) := cm2
1 mod N2

= (gm1rN1 )m2 mod N2

= gm1m2(rm2
1 )N mod N2

(2.9)

which is a valid encryption of m1m2. Homomorphic subtraction (sub) can, therefore,

be achieved by performing an addition between the first operand and the additive

inverse (by performing a multiplication by −1) of the second operand:

sub(pk, c1, c2) := add(pk, c1,mlp(pk, c2,−1))

= gm1rN1 g
−m2(r−1

2 )N mod N2

= gm1−m2(r1r
−1
2 )N mod N2

(2.10)

which is a valid encryption of m1 −m2. Similar to Paillier, the ElGamal cryptosys-

tem supports secondary homomorphic operations. Specifically, ElGamal supports

multiplication and division (multiplication with the multiplicative inverse) between

two encrypted values and multiplication/exponentiation between an encrypted and a

plaintext value.

2.3 Property-Preserving Encryption

Another category of cryptosystems that allows computations over encrypted data

is Property-Preserving Encryption (PPE). As the name suggests, PPE schemes pre-

serve some property of the underlying plaintext which in turn can be used to perform

operations over encrypted values.

For example, deterministic (DET) encryption schemes such as AES in ECB mode

or AES in CMC mode with a zero initialization vector [16] preserve plaintext unique-

ness and hence enable equality comparisons over encrypted data. Other PPE schemes

preserve the order of underlying plaintext values and enable order comparisons such

as “<” and “>” over encrypted data. These schemes are called Order-Preserving
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Encryption (OPE) schemes, and an example of a such scheme is the order preserving

symmetric encryption scheme introduced by Boldyreava et al [17] which also hap-

pens to be a deterministic scheme. Lastly, some schemes enable text searches over

encrypted data by applying “pattern matching”, enabled by searchable encryption

(SRCH) schemes, such as the SWP scheme [18].

In the past, PPE schemes have been criticized for having low-security guaran-

tees [19–22], but recent work has introduced new PPE schemes that provide semantic

security [23].

2.4 Trusted Execution Environments

Trusted Execution Environments (TEEs) have recently gained traction for per-

forming secure computations in the cloud. TEEs are secure areas inside a CPU that

runs separately of the operating system, in an isolated environment and ensure that

the code and data loaded in their environment remain confidential and integrity pro-

tected. These security guarantees are enabled through both software and hardware

extensions in recent CPUs.

Intel Software Guard eXtensions Intel SGX [24] is a popular TEE supported

in the latest iterations of Intel’s CPUs. SGX is a set of x86-64 ISA extensions that

enable the creation of isolated areas of execution, called enclaves. Within enclaves,

operations can be performed on sensitive data in a way protected against accesses from

the outside environment, including those from the operating system and hypervisor,

since the CPU oversees accesses to the enclave memory. Attempts to access the

memory assigned to an enclave are rejected by the CPU, and enclave cache lines are

encrypted using authenticated encryption before leaving the CPU package, e.g., before

written to the main memory. This security model is stronger than earlier security

models such as ones based on trusted hypervisors because it entails a smaller TCB.

More specifically, the TCB of SGX is limited to the CPU package and the user code

that runs inside the enclave. Under this security model, the operating system and the
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hypervisor don’t need to be trusted but also a wide range of hardware attacks, such

as memory probing, are covered. Importantly, SGX supports sealing which allows for

enclave data to be stored to an untrusted memory after the data has been encrypted

using a CPU and enclave-identity specific key. SGX also supports local attestation

which allows an enclave to prove its identity to another enclave on the same machine,

after which a secure channel can be established between the enclaves, via which the

enclaves can securely communicate. Furthermore, SGX supports remote attestation

through which an enclave can prove its identity to a remote party.

2.5 Distributed Batch Processing

Distributed batch processing systems utilize multiple nodes in a cloud to enable

the processing of high-volume, repetitive data jobs with little or no user interaction.

Distributed batch processing systems are critical in most organizations because they

allow efficient execution of complex queries which are used for the organization’s

decision support and to give answers to critical business questions.

Apache Spark and Spark SQL Apache Spark is an example of a general-purpose

cloud computing engine which uses distributed collections called resilient distributed

datasets (RDDs) that can be manipulated through operations like map, filter, and

reduce. RDDs are fault-tolerant, in that the system can recover lost data using the

lineage graph of the RDDs to re-compute the lost data. They can also be explicitly

cached in memory to speed up computation. Spark also includes the DataFrame

primitive which is equivalent to a table in a relational database. DataFrames keep

track of their schema and support various relational operations that lead to more op-

timized execution. Using DataFrames, Spark SQL extends Spark with a declarative

DataFrame API to allow relational processing, offering benefits such as automatic op-

timization, and letting users write complex pipelines that mix relational and complex

analytics. Spark SQL includes a highly extensible optimizer, called Catalyst, that
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makes it easy to add composable rules, control code generation, and define extension

points.

2.6 Distributed Stream Processing

Distributed stream processing systems are designed to support applications that

require timely processing of high-volume data streams. Stream processing gives orga-

nizations the ability to quickly process large amounts of data from multiple sources,

in real-time. Oftentimes, stream data is generated through Internet of Things (IoT)

devices which are resource-constrained.

Apache Storm Apache Storm is an open-source distributed real-time stream pro-

cessing system used for processing data streams. Apache Storm processes unbounded

streams of data in a reliable manner and delivers high-end applications. Storm uses

the stream abstractions of spouts, bolts, and topologies. Spouts are input data

streams than need to be processed. Bolts are compute units that process input

streams and produce output streams. Topologies are graphs that capture the data

flow with bolts representing nodes on the graph and spouts representing edges.
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3. PRACTICAL COMPUTATIONS OVER ENCRYPTED

DATA

Many of the systems described in this thesis rely on Partially Homomorphic En-

cryption (PHE) and Property-Preserving Encryption (PPE) schemes to preserve the

confidentiality of sensitive information. Despite the fact that these schemes are more

practical than Fully Homomorphic Encryption (FHE) schemes, a straightforward ap-

plication of PHE and PPE for confidential data analytics is unlikely to be practical.

In this chapter we introduce a set of extensions to the schemes used to improve their

expressiveness, hence providing better support for computations over encrypted data.

We then explore intricate characteristics of these schemes and leverage them to enable

the application of a number of optimizations. These optimizations make the schemes

more performant in terms of the cost of their encryption and decryption functions as

well as the cost of computations over encrypted data they support. The extensions

and optimizations introduced in this chapter are then used by systems described in

subsequent chapters to make data analytics more practical and more expressive.

3.1 Synopsis

We introduce several extensions to both PHE and PPE schemes to improve the

expressiveness of operations they support and improve their performance. Here, we

first give an overview of these extensions and the purpose they serve and we describe

each in more detail in subsequent sections.

Support for negative numbers: By default, PHE schemes that allow arithmetic

operations over encrypted data do not support negative numbers. We extend

Additive Homomorphic Encryption (AHE) and Multiplicative Homomorphic
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Encryption (MHE) schemes to support encryption, decryption, and homomor-

phic operations that involve negative numbers.

Secure search constructions: String search can vary from simple exists requests

that check whether a token exists in a string to complex pattern matching. We

extend existing searchable encryption (SRCH) schemes to offer support to a

wide range of search operations over encrypted data.

Ciphertext packing: We extend AHE and MHE schemes to allow packing multiple

plaintext values into a single ciphertext, thereby, amortizing the cost of encryp-

tion and decryption functions as well as the cost of homomorphic operations

they support.

PRN pre-computation: We pre-compute and store a small number of PRNs to

speed up encryption of probabilistic encryption schemes.

Encryption caching: We enable caching of ciphertexts for deterministic encryption

schemes to speed up encryption.

Speculative encryption: We speculatively encrypt a small number of plaintext val-

ues that are likely to be needed to speed up future encryption requests.

Format-preserving encryption: Where possible, we make use of deterministic

schemes that preserve the format and size of the plaintext data when encrypting

to minimize the ciphertext size overhead and thereby, improve the performance

of operations over encrypted data.

3.2 Support for Negative Numbers

AHE schemes such as Paillier [5] and MHE schemes such as ElGamal [10] are

used in PHE-based systems to carry out arithmetic operations homomorphically over

encrypted data. By default, these encryption schemes, as well as existing PHE-based
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systems that use these schemes [25–28], do not support operations that involve neg-

ative numbers. Attempting to encrypt or decrypt a negative number under such a

scheme will lead to unexpected results. In addition, performing homomorphic oper-

ations on positive numbers that produce negative numbers, e.g., homomorphic sub-

traction, and then decrypting the result will also lead to incorrect results.

To allow these schemes to support negative numbers we introduce alternative im-

plementations for the encryption and decryption functions for both AHE and MHE

schemes. To achieve this, we leverage the fact that most asymmetric homomorphic

encryption schemes, including Paillier and ElGamal, operate on large plaintext and

ciphertext spaces. This is because the security of these cryptosystems depends on

problems that are hard to solve for large numbers such as the decisional composite

residuosity assumption for Paillier and the decisional Diffie-Hellman assumption for

ElGamal. At the time of this writing, technical standard institutions such as NIST,

recommend that cryptosystems based on these mathematical problems use a security

parameter ε of at least 2048 [15]. This results in a 2048-bit modulus, N , which corre-

sponds to a 2048-bit plaintext space (see Section 2.2 for more details). Furthermore,

since both Paillier and ElGamal have an expansion factor of 2, their resulting cipher-

text space is 4096 bits long. In comparison, the actual space required by applications

is much smaller, e.g., 32 bits for int values or 64 bits for long values.

We define a configurable parameter δ ≥ 1 that divides the plaintext space into

two distinct parts. We treat values in the range [0, bN
δ
c) as positive numbers and

values in the range [bN
δ
c, N) as negative numbers. When δ = 1 all values are treated

as positive. By default, we set δ = 2 which divides the plaintext space in two roughly

equal parts. For both Paillier and ElGamal we define encryption that can handle

negative numbers as:

Eneg(pk, x) =

E(pk, x mod N) if − dN(1− 1
δ
)e ≤ x < bN

δ
c

∅ otherwise

(3.1)

where E(pk, x) denotes the original definition of encryption that does not support

negative numbers, e.g., Equation 2.2 or Equation 2.5. Here, x mod N always returns
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Table 3.1.: Search constructions. NoDup: no duplicate tokens in ciphertext. Shuffle:

token order is randomized

Constr.
Parameters Match

NoDup Shuffle Exists Count StartsWith EndsWith Pattern

A 1 1 3 7 7 7 7

B 1 0 3 7 3 7 7

C 0 1 3 3 7 7 7

D 0 0 3 3 3 3 3

a non-negative value even for x < 0 and ∅ indicates an invalid ciphertext was returned

because input x lies outside the supported range. For both Paillier and ElGamal we

define decryption that can handle negative numbers as:

Dneg(sk, x) = ((D(sk, x) + dN(1− 1

δ
)e) mod N)− dN(1− 1

δ
)e

or equivalently, and avoiding expensive modulo computations:

Dneg(sk, x) =

D(sk, x)−N if D(sk, x) ≥ bN
δ
c

D(sk, x) otherwise.

(3.2)

where D(sk, x) denotes the original definition of decryption that does not support

negative numbers, e.g., Equation 2.3 or Equation 2.6. With the encryption and

decryption functions described above, all homomorphic operations can remain un-

changed and negative numbers will be supported.

3.3 Secure Search Constructions

SRCH schemes such as the SWP cryptosystem [18] are used to perform string

search over encrypted text. The SWP cryptosystem works by first splitting strings

into tokens, usually using whitespace as delimiter, and then encrypting each token
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separately before constructing the ciphertext that contains all encrypted tokens. We

extend this cryptosystem to accept two boolean parameters that control what kind

of match operations can be performed on ciphertexts and also affect the amount of

information that a ciphertext reveals. The first parameter, NoDup, indicates that

the resulting ciphertext should not contain duplicate tokens. When this parameter is

enabled, all duplicate tokens are removed from the plaintext before encrypting. The

second parameter, Shuffle, indicates that the order of the tokens should be shuffled

before encrypting. These parameters lead to four different search constructions as

shown in Table 3.1. The most secure construction is construction A which removes

duplicate tokens and randomizes the order of the remaining tokens before encrypting.

This construction offers near random security (leaks only the number of encrypted

tokens within the text) but only allows to check whether a token exists in the en-

crypted text. Construction B removes duplicates but does not shuffle tokens before

encryption. This retains the order of tokens after duplicates have been removed and

allows for search operations involving the order of tokens such as the StartsWith oper-

ation. Because when removing duplicates only the first instance of a token is retained,

EndsWith is not supported in construction B. Search construction C randomizes the

order of the tokens but does not remove duplicate tokens. This retains the number of

instances of each token within the encrypted text and thus enables the use of count.

Lastly, construction D neither removes duplicate tokens nor randomizes their order,

allowing matching on any pattern including any number of tokens and involving the

regex operators “.*” (any text) and “|” (or).

3.4 Ciphertext Packing

As mentioned above, the plaintext space of asymmetric encryption schemes such

as Paillier and ElGamal is significantly larger than the space needed to represent num-

bers in data analytics applications. For example, encrypting a 32-bit integer value

under Paillier or ElGamal with security parameter ε = 2048 will produce a 4096-bit
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ciphertext which has a 128× ciphertext size overhead. To reduce ciphertext size over-

head, we use a technique introduced by Ge et al. [29] to pack multiple plaintext values

into a single ciphertext. Ciphertext packing works by concatenating multiple mes-

sages into a single plaintext value before encrypting. For example, values a1, a2, ..., an

can be concatenated into a1 ◦ a2 ◦ ... ◦ an before being encrypted, where ◦ indicates

bit-string concatenation. As homomorphic operations are performed on ciphertexts,

the operations are carried out on the underlying packed values separately.

A potential issue when carrying out operations over ciphertexts that pack multiple

values are overflows, where the result of one set of packed values overflows into the

preceding one, which would lead to incorrect results. Ge et al. demonstrate packing

for AHE schemes and solve overflows by using multiple groups and keeping partial

sums per group, careful to only pack values in a way that cannot overflow. This

approach works well in a database setting assumed by Ge et al. but does not work

in a data analytics setting, including steam processing because values are generated

dynamically and cannot be known beforehand. Instead, in this work we introduce

another approach where before each packed value we include a series P of 0 bits, so

that in case of overflow, the preceding value will not be affected: P◦a1◦P◦a2◦...◦P◦an.

In the next paragraphs we demonstrate a novel approach of calculating padding bits

P for AHE and MHE schemes, we demonstrate a novel way of ciphertext packing for

MHE schemes, and introduce post-encryption packing for AHE schemes which allows

us to pack values together after they have been encrypted.

AHE packing Homomorphic addition can be carried out when ciphertexts contain

packed values because arithmetically (a1◦...◦an)+(b1◦...◦bn) = (a1+b1)◦...◦(an+bn).

To avoid overflows we calculate the total number of bits, T , that need to be allocated

for each packed item and the number of items that can be packed in a single plaintext,

I, before encrypting as follows:

T = P +M

= blog2(R(2M − 1))c+ 1,
(3.3)
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I =
⌊ ε
T

⌋
=

⌊ ε

blog2(R(2M − 1))c+ 1

⌋ (3.4)

In the above equations P is the number of padding bits needed to capture overflows,

M is the size of each message in bits (e.g., M = 32 for int values), R is the maximum

number of tuples containing packed ciphertexts that can be aggregated before padding

bits are exceeded, and ε is the security parameter of the scheme which, as discussed in

Section 2.2, dictates the size of the plaintext space (e.g., when ε = 2048 the modulus

N is a 2048 bits long value). Here, 2M − 1 is the largest possible number that can be

represented in M bits, R(2M−1) is the largest possible number after R additions, and

blog2(x)c+ 1 is the number of bits needed to represent number x. By default we set

R = 230 which means when packing 32-bit integers into a single 2048-bit plaintext we

can fit 33 items before encrypting and can perform over 1 billion operations without

exceeding the allotted padding bits. Using T as calculated above, we define encryption

of a vector containing n messages ~x = (x1, x2, ..., xn) that applies AHE packing as:

Epack
ahe (pk, ~x) := E(pk, pack(T, ~x))

= E(pk,
n∑
i=1

2(i−1)Txi)
(3.5)

where E(pk, x) denotes the original definition of the encryption function that accepts

a single integer value, e.g., Equation 2.2. We define decryption for AHE schemes that

applies unpacking as:

Dpack
ahe (sk, x) := unpack(T,D(sk, x))

= (x1, x2, ..., xn)

= ~x

(3.6)

where D(sk, x) denotes the original definition of the decryption function that returns

a single integer value, e.g., Equation 2.3 with the unpack function being the inverse

of the pack function (unpack(T, pack(T, ~x)) = ~x) that returns a vector of messages.

With the encryption and decryption functions defined above, AHE operations over
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packed ciphertexts can be performed without changing the definitions of the homo-

morphic operations.

MHE packing We also allow packing for MHE. Packing for MHE is more limited

because in multiplication each packed item of a ciphertext is multiplied with all

packed items of the other ciphertext. We, therefore, fix the number of items packed

in a plaintext to 2 (I = 2). Now, arithmetically we have (a1◦a2)×(b1◦b2) = (a1×b1)◦

(a1×b2+a2×b1)◦(a2×b2) which includes the intermediate term (a1 × b2+a2 × b1). By

ignoring the intermediate term after decryption, we get the required (a1×b1)◦(a2×b2).

We compute the total number of bits, T , allocated for each packed item as follows:

T = P +M

= blog2(2M − 1)Rc+ 1

≈ log2(2M)R

= MR,

(3.7)

where (2M − 1)R is the maximum possible number after R items of M bit-length are

multiplied together. We calculate the number of tuples, R, that can be aggregated

before overflows exceed the padding bits as follows:

R =
⌊ ε
T

⌋
− 1

≈
⌊ ε

MR

⌋
− 1⇒

R + 1 ≈ ε

MR
⇒

R(R + 1) ≈ ε

M
⇒

R ≈
⌊√M2 + 4Mε−M

2M

⌋
(3.8)

In the above equation, −1 accounts for the intermediate terms discussed above. By

replacing T with the approximation MR and solving for the positive root of the

quadratic equation we get the final term. The above equations show that when

packing 32-bit integers into a plaintext space of 2048 bits a total of R = 7 packed

ciphertexts can be multiplied together before an overflow exceeds the padding bits.
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To continue performing multiplications after this, the packed ciphertext needs to be

refreshed by being re-encrypted using a trusted node. This suggests that MHE pack-

ing is mostly useful in applications that need to perform multiplications infrequently

or when there are frequent uses of a trusted service(see Section 4.5) or frequent key

changes (see Section 6.5) as part of which the packed ciphertext can be refreshed. We

note that every homomorphic multiplication operation generates an additional inter-

mediate term in the ciphertext. In order to ignore these terms after decrypting we

extend the ciphertext of our MHE scheme to include a counter indicating how many

multiplications have been performed to generate that ciphertext. When decrypting,

this counter is used to identify how many intermediate terms need to be ignored to

get the correct result. Concretely we define encryption of MHE schemes that apply

packing of a vector ~x = (x1, x2) (as noted above, we pack exactly two items before

encryption) as:

Epack
mhe (pk, ~x) := (c, ctr)

= (E(pk, pack(T, ~x)), 0)

= (E(pk,
n∑
i=1

2(i−1)Txi), 0)

(3.9)

where E(pk, x) denotes the original definition of the encryption function, e.g., Equa-

tion 2.5 and ctr is the counter of how many intermediate terms the ciphertext contains

that is included in the ciphertext in plaintext form, and is initialy set to 0. We define

decryption that applies MHE unpacking as:

Dpack
mhe (sk, x) := trunc(unpack(T,D(sk, c)), ctr)

= trunc((x1, x2, ..., xn), ctr)

= (x1, xctr+1)

= ~x

(3.10)

In the above encryption and decryption functions, pack and unpack functions are the

same as the ones used in Equation 3.5 and Equation 3.6. The trunc function takes as

input a vector of values ~x and the ctr value and returns a vector containing the first
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and the (ctr+1)th item in the given vector, by ignoring ctr intermediate terms. We

also define homomorphic multiplication that performs multiplication of two packed

ciphertext values x1 = (c1, ctr1) and x2 = (c2, ctr2) as:

mulpack(pk, x1, x2) := (mul(pk, c1, c2), ctr1 + 1) (3.11)

The above equation shows that the original definition of mul is used on the c1 and c2

components and the counter of the first ciphertext, ctr1, is incremented and included

in the resulting ciphertext. The second ciphertext x1 is expected to contain no in-

termediate terms, i.e., ctr2 = 0. Other homomorphic operations that MHE schemes

support are similarly adjusted.

Post-encryption packing The packing techniques described above require that

multiple messages are packed together into a single plaintext before encrypted. It is

oftentimes not possible to pack messages before they are encrypted. For example,

these messages might be generated over time and not available at the moment of

encryption. It is still beneficial to pack values after they have been encrypted through

post-encryption packing, which allows multiple ciphertext to be packed together and

reduces ciphertext size and decryption times. We support post-encryption packing

for AHE schemes. To pack a vector of ciphertexts ~c = (c1, c2, ..., cn) into a single

ciphertext, we first homomorphically shift the ciphertexts appropriately and then

homomorphically add them together:

packpost(pk, T,~c) :=
n∑
i=1

mlp(pk, ci, 2
(i−1)T ) (3.12)

In the above equation, mlp denotes homomorphic multiplication between a ciphertext

and a plaintext value (see Equation 2.9), T indicates the total number of bits required

per packed item, including padding bits, as described in Equation 3.3, n ≤ I is the

number of ciphertexts in the given vector, ~c, that need to be packed together, and
∑

denotes homomorphic summation.
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3.5 PRN Pre-computation

Encryption functions of probabilistic (PHE) schemes such as Paillier [5] and El-

Gamal [10] work by first generating a large pseudorandom number (PRN) and then

carrying out computations involving the PRN and the plaintext value. As shown in

Equation 2.2 for Paillier and Equation 2.5 for ElGamal, a random value r is firstly

generated before any other computation occurs. Generating this PRN is oftentimes

the most expensive operation of the encryption function, but luckily, PRNs can be

generated independently of encryption requests and stored for later use. Further-

more, the bulk of the computations required to perform encryption can be done

before having access to the message m. To utilize PRN pre-computation and improve

the performance of encryption, we divide computations involved in encryption in two

parts. We first perform the pre-computation step, P , that computes all components

of the ciphertext that don’t require access to the message m and then define a new

encryption function Epre that utilizes the outcome of pre-computation to perform fast

encryption. For Paillier these functions are defined as follows:

Ppail(pk) := p

= rN mod N2
(3.13)

Epre
pail(pk,m) := gmp mod N2 (3.14)

where r is a uniform random value and p is the result of pre-computation. We note

that Ppail does not require access to the plaintext message m and, therefore, can be

computed and stored for later use. With pre-computation, the resulting encryption

function Epre
pail requires only a modular exponentiation and a modular multiplication,

which is much faster than the original definition of Paillier encryption in Equation 2.2.

Similarly, for ElGamal these functions are defined as follows:

Pelg(pk) := (p1, p2)

= (gr mod N, hr mod N)
(3.15)
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Epre
elg (pk,m) := (c1, c2)

= (p1,mp2 mod N)
(3.16)

where r is a uniform random value and p1, p2 are the results of pre-computation.

With pre-computation, the resulting encryption function Epre
elg requires only a modular

multiplication, which is much faster than the original definition of ElGamal encryption

in Equation 2.5.

Importantly, the PRN pre-computation optimization does not conflict with other

extensions or optimizations introduced above, e.g., support for negative numbers,

and ciphertext packing. Therefore, PRN pre-computation can be combined with

other optimizations to further improve performance.

3.6 Encryption Caching

Deterministic encryption schemes such as deterministic (DET) schemes and Order-

Preserving Encryption (OPE) schemes produce the same ciphertext for a fixed plain-

text value. To speed up encryption and decryption of deterministic encryption

schemes, we use a map that stores a fixed number of plaintext-ciphertext value pairs

and we impose an LRU policy to remove pairs once the map is full. We extend

the definitions of encryption and decryption functions for DET and OPE schemes to

first search this map to see if the plaintext-to-ciphertext key-value pair exists, and if

so return the corresponding value. Otherwise, we perform encryption/decryption as

usual.

3.7 Speculative Encryption

To further reduce encryption time overhead, we use speculative encryption, by

attempting to predict what values will need to be encrypted next. Similar to the

encryption caching optimization, we encrypt a small number of plaintext-ciphertext

value pairs proactively and store them in a fixed-sized map with an LRU eviction

policy. Speculative encryption is mostly useful in scenarios where the range of possible
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values is small, or for low entropy values. Importantly though, speculative encryption

can be used for both deterministic and probabilistic encryption schemes.

3.8 Format-Preserving Encryption

Oftentimes, data analytics queries include equality comparisons involving values

of a fixed format such as dates, timestamps, or phone numbers. To perform equality

comparisons these values need to be encrypted under a deterministic scheme. Näıvely

encrypting fixed-format values under a deterministic scheme such as AES will result

in a ciphertext which is at least the size of the block of the cryptosystem used.

To reduce ciphertext overhead, we employ format-preserving encryption. Format-

preserving encryption generates n-bits of ciphertext for n-bits of input plaintext as

long as the plaintext is smaller than the block size of the format-preserving encryption

scheme used, e.g., 128 bits. This optimization allows us to significantly reduce the

ciphertext size overhead for values that need to be encrypted under a deterministic

scheme.
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4. CONFIDENTIAL DATA ANALYTICS USING SECURE

DATA TYPES

As public clouds become more popular, there is a need to allow cloud-based data an-

alytics that preserve confidentiality of sensitive information and have practical over-

head. In this chapter we describe our novel abstraction of Secure Data Types (SDTs)

which can be used to conveniently denote constraints relevant to security as well as

fine-grain data-type information about the input data. These abstractions are then

leveraged by novel compilation techniques implemented in our system, Cuttlefish, to

execute data analytics queries in public cloud infrastructures while keeping sensitive

data confidential. Cuttlefish encrypts all sensitive data residing in the cloud and

employs Partially Homomorphic Encryption (PHE) and Property-Preserving Encryp-

tion (PPE) schemes to perform operations securely, resorting however to client-side

completion, remote re-encryption, or secure hardware-based re-encryption based on

Intel SGX when available and uses a novel planner engine to decide the most efficient

way of utilizing these trusted resources.

4.1 Overview

Over the past few years, compute clouds have emerged as cost-efficient data an-

alytics platforms for corporations and governments. Yet, many organizations still

decline to widely adopt cloud services due to severe confidentiality and privacy con-

cerns (cf. [30, 31]); and corresponding explicit regulations in certain sectors (e.g.,

healthcare and finance [32]).
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4.1.1 Challenges

To address the above issues, techniques have emerged that allow queries to be

run against data kept in clouds in an encrypted manner. Two prominent approaches

consist in (1) software-only solutions based on homomorphic encryption, and (2)

hardware-based trusted computing solutions such as Intel Software Guard eXtensions

(SGX) [24].

With the first approach, data is encrypted with specific cryptosystems which allow

computations to be performed directly on corresponding ciphertexts. Over the past

few years, many researchers have vigorously investigated Fully Homomorphic Encryp-

tion (FHE) schemes [3]. These support arbitrary computations on ciphertexts, but

incur up to 109× slowdowns [33] compared to executing computations on plaintext,

thus annulling the benefits of computing in a cloud. Despite advancements in this

area [4], FHE schemes still incur high overheads for complex computations and as a

consequence they have not gained a great momentum in practice yet.

Instead, a lot of pragmatic research has been focused on using PHE and PPE

schemes, which allow computations over encrypted data with respect to specific op-

erations as opposed to arbitrary computations, but are more practical (see Chapter 2

for background details on PHE and PPE and Chapter 3 for a set of techniques making

PHE and PPE more expressive and practical). Several systems (e.g., [25–27, 34–38])

have been proposed based on PHE and PPE. These systems use different encryption

schemes based on operations performed/supported, which leads to straightforward

limitations. For instance, to compute (x+ y)× z on ciphertexts, x and y need to be

encrypted under an Additive Homomorphic Encryption (AHE) scheme; this would

carry over to the result of their addition, rendering a subsequent multiplication by z

impossible as that requires both its operands to be available under a Multiplicative

Homomorphic Encryption (MHE). Existing PHE-based systems handle such limita-

tions in one of the following three ways: (i) abort by rejecting a corresponding query

(e.g., [25,35]); (ii) split execution by returning the computation back to the client (or
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trusted servers considered as part of the client’s domain) with intermediate encrypted

data, and completing the query there (e.g., [26,34,38]); or (iii) re-encryption by send-

ing the encrypted intermediate data to trusted servers, re-encrypting it under the de-

sired scheme, and sending it back to the cloud to continue the query (e.g., [27,28,37]).

These approaches either limit expressiveness – the extent to which a query can be

executed on encrypted data in the cloud – thus hampering performance, or make up

for expressiveness by similarly introducing overheads.

Hardware approaches (2) have been recently hailed as ushering in a new era, with

SGX garnering most attention. SGX focuses on providing isolated areas of execution

called enclaves, where data can be decrypted and computed over. While yielding a

powerful mechanism, SGX has limitations of its own, in particular making it hard for

enclaves to be used as simple drop-in replacements for other techniques. For instance,

enclaves can only (efficiently) access a limited amount of memory [39, 40]. Intel sug-

gests to use enclaves only for sensitive code/data to minimize the trusted code base

and its interfaces, in order to limit potential for bugs and thus exploits as these en-

claves become the trust anchors of larger programs [41, 42]. Consequently, programs

typically use SGX for code that omits advanced features such as automatic mem-

ory reclamation or dynamic code loading. Without dynamic code loading, enclave

codes need to be implemented as “small interpreters” in order to be able to service

other than predefined queries. Additionally, enclaves are non-trivial to set up, their

initialization itself adds runtime overhead and involves attestation through Intel.

We observe that one major impediment to satisfactory performance and expres-

siveness in data analytics across all approaches, software- or hardware-based, is that

of transparency : In the case of FHE, the goal is for arbitrary programs to be ex-

ecutable on ciphertexts at the flip of a switch. Similarly, in the case of PHE, ex-

isting systems promote unmodified query languages and computational models (e.g.,

SQL [25,26,34], MapReduce [35], PigLatin [27,36], Spark [38]), and their runtime sys-

tems execute queries pretty much line-by-line and treat individual encryption schemes

mostly as black boxes. This not only leads to sub-optimal performance but also con-
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founds security guarantees of different cryptosystems rather than reflecting them to

programmers. Finally, hardware-based approaches such as SGX promise to execute

arbitrary programs in isolated fashion, yet effectively mapping (parts of) a data an-

alytics query to something like enclaves across many compute nodes is non-trivial.

4.1.2 Contributions

In this work we thus propose to abandon transparency, and instead introduce

specifically tailored yet intuitive programming abstractions that can capture relevant

constraints on computations with respect to confidentiality. In turn, this allows data

analytics queries to be mapped effectively to both software- and hardware-based ap-

proaches for secure cloud-based execution. We introduce Cuttlefish, a system able

to perform analytical queries over encrypted data in public clouds leveraging both

PHE and SGX in a concerted fashion.

The Cuttlefish compiler uses a wealth of novel techniques leveraging our abstrac-

tions to significantly improve performance. Its planner engine demonstrates that PHE

and SGX are not necessarily competing but rather can complement each other. While

placing more emphasis on PHE for portability, Cuttlefish can leverage SGX when

present to improve system performance, while keeping the corresponding code base

very small and easily verifiable. To the best of our knowledge, Cuttlefish is the first

system that demonstrates how PHE can be combined with hardware-based isolation

to improve performance and expressiveness.

Table 4.1 shows how Cuttlefish compares with various state-of-the-art systems.

By definition, FHE [33] can express any computation but it exhibits high overhead

for complex computations. Opaque [43] can express any computation within secure

enclaves, but requires specialized hardware. CryptDB [25] and MrCrypt [35] have

limited expressiveness since they cannot handle queries for which PHE and PPE alone

can execute in full. Monomi [26] and Seabed [38] use split execution to execute part

of the query in a trusted node. While this allows for any query to be executed, the
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Table 4.1.: Comparison of Cuttlefish to state-of-the-art systems. 1By definition of

FHE. 2In-enclave computations. 3Abort on PHE limitations. 4Split execution. 5Re-

encryption. 6Planner engine to overcome PHE limitations without compromising

performance

System Expressiveness Data Constraints Specialized Hardware

FHE [33] Unlimited1 No N/a

Opaque [43] Unlimited2 No Required

CryptDB [25] Limited3 No N/a

MrCrypt [35] Limited3 No N/a

Monomi [26] Limited4 No N/a

Seabed [38] Limited4 No N/a

Crypsis [36] Limited5 No N/a

Autocrypt [37] Limited5 No N/a

Cuttlefish Unlimited6 Yes Optional

expressiveness of the part of the query deployed in the cloud is limited. Crypsis [36]

and Autocrypt [37] use re-encryption to convert from one PHE scheme to another

when the current PHE scheme does not support the operation needed. Re-encryption

alone limits expressiveness since it is computationally expensive but also because not

all conversions are secure. In comparison, Cuttlefish uses a novel planner engine

to overcome limitations of PHE without compromising performance, by more flexibly

combining spit execution as well as re-encryption as explained in Section 4.5

Concretely, Cuttlefish makes the following contributions:

Programming abstractions: Cuttlefish introduces SDTs to express data flow

style data computations. SDTs are based on well-known data types but capture

simple but fine-grained information relevant to security and encryption such as

sensitivity levels and precise ranges of values.
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Compiler: Our compiler leverages the above data types to substantially accelerate

PHE-based query execution. For instance, the Cuttlefish compiler incorpo-

rates a set of compilation techniques aiming to reduce the times and extent

of client (or trusted) platform involvement, for instance by reducing the num-

ber of required re-encryptions. In addition, it exploits intrinsic properties of

cryptosystems such as secondary homomorphic properties. Several of our query

rewriting techniques go against traditional compilation techniques in order to

address the specific constraints of PHE.

Planner engine: Based on the observation that split execution is a special case of

re-encryption at a trusted tier (e.g., clients), our planner engine automatically

decides when to complete queries at the trusted tier, or when to return to the

cloud after re-encryption, to achieve the best performance. In the latter case,

and in the presence of cloud hosts supporting SGX, our planner engine leverages

these areas to mitigate PHE limitations.

We built a prototype of Cuttlefish that runs on Apache Spark [44] and evalu-

ated it using standard benchmarks. Our results show that in contrast to previous

approaches, Cuttlefish can execute all queries of TPC-H and TPC-DS with an av-

erage overhead of 2.34× and 1.69× respectively compared to a plaintext execution.

For TPC-H, Cuttlefish improves the average overhead by 3.35× and 3.71× over

state-of-the-art systems Monomi [26] and Crypsis [36].

4.1.3 Roadmap

The rest of this chapter is structured as follows. Section 4.2 gives an overview

of the design of Cuttlefish and Section 4.3 introduces SDTs. Section 4.4 presents

our novel compilation techniques. Section 4.5 describes our planner engine and the

heuristics for re-encryption. Section 4.6 discusses the implementation of Cuttlefish

and Section 4.7 empirically evaluates Cuttlefish. Section 4.8 presents related work

and Section 4.9 concludes with final remarks.
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4.2 Cuttlefish Design

In this section, we first explain the threat model of our system and then provide

information about the system design of Cuttlefish.

4.2.1 Threat Model

Cuttlefish’s goal is to preserve data confidentiality in the presence of an Honest

but Curious (HbC) adversary. We assume the adversary has access to the cloud nodes,

and can observe data and computation, but the adversary cannot make changes in

the queries, results or data stored in the cloud. We further assume that the system

has access to a trusted service. This service can run either on some trusted client

nodes, or on some Trusted Execution Environment (TEE)-based nodes in the cloud

such as Intel SGX [24].

Cuttlefish achieves this goal by utilizing a set of encryption schemes to en-

crypt sensitive data as shown in Table 4.2. The security guarantees offered by each

of these encryption schemes vary from strong guarantees offered by probabilistic

cryptosystems, to relatively weaker guarantees such as deterministic (DET) encryp-

tion schemes which reveal duplicate values, and Order-Preserving Encryption (OPE)

schemes which reveal order of values.

Despite improvements [17, 47–51], DET and OPE schemes remain susceptible to

inference attacks such as frequency analysis attacks [22, 52]. As we discuss in sub-

sequent sections, Cuttlefish deals with this issue by allowing the programmer to

assign sensitivity levels to individual data fields and guaranteeing that a field is never

stored in the cloud unless encrypted under a cryptosystem that offers the required

security guarantees. Furthermore, in Section 4.4.6 we explain how Cuttlefish can

apply a set of compilation techniques that can further improve the security of queries

by limiting the use of less secure encryption schemes.
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Table 4.2.: Cuttlefish cryptosystems and operations they support over encrypted

data. “Type” column shows whether the cryptosystem is symmetric or asymmetric.

“Operations” column lists operations between two encrypted values and “Secondary

Operations” column lists operations between an encrypted value and a plaintext value.

“÷” denotes multiplicative inverse and “∧” denotes exponentiation.

Cryptosystem Property Type Security Operations
Secondary

Operations

AES (CBC mode) RND Sym. Probabilistic – –

AES (CMC mode [16]) DET Sym. Deterministic = –

FNR [45] DET Sym. Deterministic = –

Boldyreva et al. [46] OPE Sym. Deterministic <, > –

SWP [18] SRCH Sym. Probabilistic match –

ASHE [38] AHE Sym. Probabilistic + –

Paillier [5] AHE Asym. Probabilistic +, − +, ×

ElGamal [10] MHE Asym. Probabilistic ×, ÷ ×, ∧

4.2.2 Cuttlefish Overview

Figure 4.1 shows the high level architecture of Cuttlefish. Cuttlefish ensures

the confidentiality of computations of submitted queries by transforming them into

semantically equivalent queries that operate over encrypted data. When a user sub-

mits a query, the Cuttlefish compiler transforms it into a remote query and a local

query. The remote query which operates on encrypted data is deployed on the un-

trusted cloud. Once the remote query completes, its encrypted results are returned to

the local query executor and used as the input for the local query which decrypts the

results of the remote query and performs any remaining computations on plaintext

data before returning the final results to the user.
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Fig. 4.1.: Cuttlefish architecture

Table 4.3.: Cuttlefish compilation techniques and high level goals they achieve

Compilation technique G1 G2 G3 G4

Expression rewriting 3 3 3

Condition expansion 3 3

Selective encryption 3 3

Efficient encryption 3 3 3

Since PPE and PHE schemes allow computations with respect to certain oper-

ations, it is possible that some parts of the query cannot be executed in the cloud

without giving away sensitive information. To mitigate this limitation, Cuttlefish

utilizes a trusted re-encryption service that has access to the decryption keys. The

trusted re-encryption service would receive a small amount of data to decrypt, op-

tionally perform simple computations over the data, encrypt the result under another

cryptosystem and send the results back to the cloud service, so that computation

can proceed. Cuttlefish has two ways of realizing the trusted re-encryption service:

using hardware at the client-side or using TEE (e.g., Intel SGX) in the cloud.
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In order to improve expressiveness and general performance as well as to reduce

the amount and extent of re-encryption — applied näıvely re-encryption can induce

high overheads — Cuttlefish allows the programmer to specify fine-grained infor-

mation about the involved data through a novel abstraction called Secure Data Types

(SDTs). The Cuttlefish compiler then uses this information to apply a set of compi-

lation techniques. Table 4.3 summarizes how these techniques contribute to our high

level goals, namely by: (G1) enabling queries not previously executable in a public

cloud without sacrificing confidentiality, (G2) reducing the involvement of the trusted

service, (G3) reducing the amount of computation, and (G4) reducing the amount of

encrypted data. Below, we give an intuition of the categories of techniques, and in

later sections describe how they are used in Cuttlefish.

Expression rewriting. Cuttlefish replaces expressions that are not supported by

any of Cuttlefish’s encryption schemes with equivalent expressions that can

be performed in the cloud over encrypted data. Cuttlefish also rewrites ex-

pressions in queries in encryption-sensitive ways that reduce execution latency.

For example, (x+y)×z can be rewritten to x×z+y×z or vice versa, depending

on the encryption schemes x, y and z are encrypted under and on subsequent

operations. In addition, since Cuttlefish executes expressions over encrypted

data, the cost of recomputing common subexpressions is compounded. We

eliminate such subexpressions in our compilation phase.

Condition expansion. Cuttlefish expands conditions to improve execution per-

formance. For example, if it is known that variables x and y are non-negative

integers, we can safely rewrite x+ y > 0 to x > 0 || y > 0. The changed condi-

tion has the potential to eliminate expensive additive homomorphic encryption

for x and y and the need for re-encryption.

Selective encryption. Cuttlefish allows fields that do not contain sensitive infor-

mation to exist in plaintext in the cloud, thus supporting more homomorphic

operations and keeping the data size overhead small.
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Table 4.4.: Secure Data Types and corresponding compilation techniques they enable

Secure Data Types
Expression

Rewriting

Condition

Expansion

Selective

Encryption

Efficient

Encryption

Sensitivity level 3 3 3

Data range 3 3

Decimal accuracy 3

Uniqueness 3 3

Tokenization 3

Enumerated type 3

Composite type 3

Efficient encryption. Cuttlefish reduces the amount and size of encrypted data

by identifying situations where one field is involved in multiple operations that

can be supported by the same cryptosystem. Inversely, when the same op-

eration can be performed by multiple cryptosystems Cuttlefish selects the

cryptosystem leading to more efficient execution.

4.3 Secure Data Types

Cuttlefish utilizes a set of compilation techniques to improve the expressive-

ness and performance of queries executed on encrypted data. A cornerstone of these

techniques consists in Cuttlefish’s ability to define input data in ways not typi-

cally allowed by query languages. In particular, Cuttlefish allows the definition of:

(i) sensitivity levels, (ii) ranges and decimal accuracy for data values, (iii) uniqueness

and tokenization, (iv) enumerations and (v) composition of data types.
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Table 4.5.: Sensitivity levels and associated encryption schemes. DETU denotes de-

terministic encryption on fields with unique values

Sensitivity Level Encryption Scheme

HIGH RND, AHE, MHE, SRCH, DETU

LOW DET, OPE

NONE plaintext

These are captured by our proposed SDTs and leveraged by the Cuttlefish

compiler to substantially optimize analytical queries. Table 4.4 cross-references our

SDTs with the compilation techniques that leverage them.

4.3.1 Sensitivity Level

As previously mentioned (see Chapter 2 and Table 4.2), cryptosystems used by

Cuttlefish offer different levels of security. Cuttlefish captures this difference by

categorizing cryptosystems under the categories HIGH and LOW (and NONE) as shown

in Table 4.5. Category HIGH captures cryptosystems that are probabilistic or have no

leakage except for the length of the plaintext. We also allow deterministic schemes

to be listed under this category, but only in situations where the values of a field to

be encrypted are unique (DETU) and hence determinism does not reveal duplicate

entries. Category LOW captures encryption schemes such as DET and OPE which

reveal duplicates or order. Correspondingly, Cuttlefish allows each field of a table

(and each constant in queries) to be optionally annotated with the sensitivity level

HIGH, LOW, or NONE.

The HIGH level of sensitivity is intended for fields that hold highly sensitive values.

These fields are only allowed to exist in the untrusted cloud encrypted under a cryp-

tosystem that belongs in category HIGH. The LOW sensitivity level is intended for fields

that are less sensitive such as fields with high entropy like timestamps. These fields
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Table 4.6.: SDTs annotations

SDT annotation Description

+ | - Positive or negative numeric values

range(numA-numB) Values from numA to numB

accuracy(num) num decimal point(s) preserved

unique No duplicate values

delimiter(char) Tokens separated by char

enum{value1, value2, ...} Enumerated values

composite Composite values

must be encrypted under cryptosystems of at least LOW security. Finally, a field can be

annotated with NONE to indicate that it is a non-sensitive field (e.g., publicly available

information) and can hence reside in the cloud in its plaintext form. This distinc-

tion of sensitivity level allows Cuttlefish to be more expressive and achieve better

performance without compromising security, by enabling the selective encryption and

efficient encryption compilation techniques described in Section 4.4.

We note that the programmer does not have to specify a sensitivity level for all

fields. If no sensitivity level is explicitly assigned to a field, the default behavior is to

use an appropriate cryptosystem that supports the operation the field is involved in

(i.e., no lower than LOW). In practice, we found that it is sufficient to specify: (i) the

fields with high sensitivity so that Cuttlefish never allows those fields to exist under

a cryptosystem that does not offer high security guarantees, and (ii) the fields that do

not hold sensitive information, allowing Cuttlefish to leave those fields in plaintext

which can lead to generating queries with improved expressiveness and performance.
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4.3.2 Data Range and Decimal Accuracy

Apart from the sensitivity level, programmers can optionally provide informa-

tion about data ranges and decimal accuracy of types, helping Cuttlefish generate

more expressive and efficient queries, by simplifying and rewriting expressions and

conditions. Table 4.6 summarizes this information.

For numerical types, the programmer can specify the sign of the values of a field.

For example, x:int[+] specifies that field x holds only positive integers and similarly

x:int[-] specifies that field x holds only negative integers. For more constrained

numerical values the programmer can specify the range of values. For instance,

x:int[range(100-200)] indicates that field x holds integer values within the range

100 to 200.

For floating point numbers, the programmer can specify the number of decimal

points that need to be preserved when encrypting values. For example, the SDT

x:double[accuracy(2)] indicates that 2 decimal points need to be preserved. If the

number of decimal points to preserve is not specified, Cuttlefish truncates all deci-

mal points of the floating number making it a whole number. This is necessary since

the cryptosystems used by Cuttlefish for arithmetic operations do not support float-

ing point numbers by default. Cuttlefish uses the decimal accuracy information to

multiply the values of the field appropriately, truncating the remaining decimal points,

before encrypting.

4.3.3 Uniqueness and Tokenization

Apart from numerical types, the programmer can declare any data type as being

unique to indicate that the field does not contain duplicates, e.g., ssn:string[unique]

specifies that ssn field holds unique strings, This information allows Cuttlefish to

encrypt that field under a DET cryptosystem while preserving high security guar-

antees, as described in Table 4.5. In addition, for fields that hold string values the

programmer can specify a delimiter that separates tokens. This is particularly im-
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portant when encrypting under a searchable encryption (SRCH) cryptosystem such

as SWP, since the latter requires to split the string into individual tokens before

encrypting.

4.3.4 Enumerated Types

Fields containing a small and fixed set of values can be represented as an enumer-

ated type in Cuttlefish. This is done by declaring a field as an enum and listing the

possible values of that enum. For example, continent:enum{Africa, Antarctica,

Asia, ...}, declares field continent as an enum that can only take one of the given

values. Cuttlefish parses the given enum type into a key-value map, by assigning

a unique key to each of the given values after their order has been randomized, and

stores the map with an associated label that can be used internally to refer to this

map. Encryption of enum values is then reduced to replacing the enum value with

the corresponding enum key. The enum type is explored by the Cuttlefish compiler

to apply the efficient encryption compilation technique to reduce the encrypted data

size overhead that can ultimately lead to substantial reductions of query execution

latencies.

4.3.5 Composite Types

Oftentimes, computation is applied only to “subparts” of a value, e.g., a query may

extract only the month of a date type value and use it in subsequent computations.

Usually encryption schemes do not allow performing such operations on subparts of

an encrypted value, which can limit the query expressiveness. To allow such compu-
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tations to be performed, Cuttlefish introduces composite types. Composite types

are specified according to the following BNF syntax:

c := composite[ t s t ]

t := (num : α) | (num : α) s t

s := - | / | , |...

num := 1 | 2 | 3 | ...

where s is a delimiter and α refers to a type such as int, long, etc. with an

optional annotation as shown in Table 4.6 (except for composite – nested composite

types are not allowed). These types specify that values of a field are composed of one

or more annotation types, allowing Cuttlefish to reason about individual parts. For

example, a string of the format YYYY-MM representing a date, where YYYY is a 4 digit

number for the year and MM is a 2 digit number for the month, can be declared as

yearMonth:composite[(4:int[+])-(2:int[range(1-12)])]. By doing so, Cuttlefish

can split the input into its parts and encrypt them individually, which then allows

for more expressive queries to be generated.

4.3.6 SDTs Example

Listing 4.1 shows the table definition for a subset of fields of the Lineitem table

used in TPC-H benchmark, defined using SDTs. Line 2 declares field orderkey with

type long that holds only positive integers, and line 3 declares field linenumber spec-

ifying that each value will be a positive and unique integer. Line 4 declares tax to

be of type double with two decimal points of accuracy, and specifies that the tax

field does not hold sensitive information since it has sensitivity level NONE. Line 5

declares shipdate field as a composite type in the format YYYY-MM-DD. Line 6 declares

the field to be of enum type with four possible values, IN-PERSON, MAIL, RETURN and

COLLECT. Finally, line 7 declares quantity to be of type long and sets it as a field of
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1 TABLE Lineitem (

2 orderkey , long , [+],

3 linenumber , long , [+, unique],

4 tax , double , [accuracy (2), NONE],

5 shipdate , string ,

[composite [(4: int[+])-(2:int[range (1-12)])-

(2: int[range(1-31)])]],

6 shipinstruct , string , [enum{IN-PERSON , MAIL , RETURN ,

COLLECT}],

7 quantity , long , [HIGH])

Listing 4.1: Cuttlefish table definition with SDTs

HIGH sensitivity. Fields for which sensitivity level is not explicitly given are treated

as having a sensitivity level of no less than LOW.

4.4 Compilation

When a user submits a query for execution, Cuttlefish compiles it into a query

that operates over encrypted data. Our compiler design follows an approach similar to

Crypsis [36] to carry out this transformation. In this section we focus on describing

the set of compilation techniques our compiler applies to the query that leverage

SDTs to support more expressive and efficient queries. Being PHE-centered, our

compilation techniques are however different from standard compiler optimizations,

and in the light of re-encryption may even seem counter-intuitive.

4.4.1 Expression Rewriting

The first compilation technique that Cuttlefish employs is to rewrite expres-

sions in queries into simpler but semantically equivalent expressions. The benefits

of rewriting expressions are many-fold; from enabling the execution of queries not
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previously able to execute securely in the cloud, to improving efficiency and security

of queries, as we explain next, and in subsequent sections.

Composite-type expression simplification Cuttlefish makes use of SDT in-

formation on composite types to apply Composite-type Expression Simplification

(CES) to replace expressions that cannot be executed in the cloud over encrypted

data, hence improving expressiveness of queries. As an example, the expression

SUBSTRING(date, 0, 4) == ‘2000’ which compares the first four digits of a date to a

constant cannot be performed in the cloud since there is no encryption scheme that

supports the substring operation. By defining date as a composite type, Cuttlefish

can automatically replace the substring operation with the encrypted field that con-

tains only the year of the date, therefore rewriting the original expression to year

== ‘2000’. As another example consider the expression phone >= 123-0000000 &&

phone < 124-0000000. Declaring phone as composite[(3:int[+])-(7:int[+])] to cap-

ture the three digit area code of the phone number allows Cuttlefish to replace this

expression with the simpler area_code == 123. This simplification has more signif-

icance than just improving the efficiency of the query, which we further discuss in

Section 4.4.6.

The CES compilation technique is applied in two phases. In the first phase, the

original expression is replaced with a conjunction of sub-expressions applied to all

sub-parts of the composite type separately. In the second phase, all obsolete sub-

expressions are eliminated. As we explain in Section 4.4.5, the second phase of this

compilation technique can interleave with other techniques.

PHE-aware algebraic expression simplification Cuttlefish can rewrite ex-

pressions in a way that reduces (or eliminates altogether) the number of re-encryptions

the query requires to complete, by using PHE-aware Algebraic Expression Simplifi-

cation (PAES). For example, consider the expression (x + y) × z where x, y and z

are initially encrypted under an MHE scheme that only supports multiplication. If

approached näıvely, x and y must first be re-encrypted into an AHE scheme so that
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the two can be added together and then the result must be re-encrypted back to

an MHE scheme so that the multiplication with z can be performed. Instead, the

expression can be replaced, unconventionally, by the equivalent x × z + y × z. In

this case, x× z and y × z can be performed without re-encryptions, then the results

can be re-encrypted to an AHE scheme and added together. Therefore, by rewriting

the expression, the number of re-encryptions required was reduced from three to two.

Note that this transformation goes against traditional compiler optimizations, and

it’s indeed the opposite of solutions that propose factoring [53,54].

More generally, the compiler first applies well known expression simplification

techniques, namely, Constant Folding (CF), Algebraic Simplification (AS) and Com-

mon Sub-expression Elimination (CSE). Then, PAES is applied by exhaustively ex-

amining semantically equivalent forms of the expression after applying the distributive

property and factoring, and considering the schemes each operand of the expression

are encrypted under and the subsequent operations they are involved in, with the

objective of reducing the number of re-encryptions in the query.

4.4.2 Condition Expansion

Cuttlefish uses SDT range information it has on fields to improve the efficiency

or even remove conditions entirely from queries by applying Condition Expansion

(CE). For example, knowing that both x and y are non-negative numbers allows the

Cuttlefish compiler to expand the condition x + y > 0 to x > 0 || y > 0, and by

doing so the query does not have to perform an addition over encrypted data followed

by an expensive re-encryption. If instead, x has a range of 50-200 and y has a range

of 60-100, the expression x + y > 100 can be removed entirely since it will always

evaluate to true.

Cuttlefish assigns an initial range to all numerical fields based on their data type

and on SDT range information provided, but importantly, also statically determines

the range of a field after each arithmetic or filter operation with a constant or with
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another field with known range. CE has two general forms. Given a condition of the

form x + y > c where c is a constant and x has values in the range ax to bx, the

compiler will replace it with the condition y > c − bx && x + y > c where c − bx is

computed during compile time and embedded to the query as a constant.

Following the same logic, given the condition of the form x + y > z where x has

values in the range ax to bx, and z has values in the range az to bz, the compiler will

replace it with the condition y > az − bx && x + y > z. Once again, expanding a

condition to more clauses might seem counter-intuitive, and goes against traditional

compiler optimizations that attempt to simplify conditions by reducing the number

of clauses. The intuition here is that if the added clause of the expanded condition

evaluates to false, the query does not evaluate the subsequent clauses and avoids

unnecessary re-encryptions or more expensive homomorphic operations. These two

forms are similarly applied to conditions involving addition, subtraction, multiplica-

tion, greater than, greater than or equal, less than, and less than or equal.

4.4.3 Selective Encryption

Cuttlefish uses the sensitivity level of a field along with the operations that the

field is involved in to infer what encryption schemes it should be encrypted under. If

a field is marked as non-sensitive (NONE), Cuttlefish employs Selective Encryption

(SE) to allow that field to exist in the cloud in its plaintext form. This allows for

the secondary homomorphic operations of encryption schemes (see Section 2.2 and

Table 4.2) to become applicable which provides increased expressiveness and efficiency

in the resulting queries. For example, consider the expression (x + y) × z. Since

AHE and MHE are incompatible with each other, after the addition is performed on

encrypted data, the result must be re-encrypted under MHE before the multiplication

can be performed. Instead, if field z is a non-sensitive field and it is available in

the cloud as plaintext, the multiplication can be directly performed using Paillier’s

secondary homomorphic operation, hence avoiding an expensive re-encryption.
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SE has the added benefit of reducing the encrypted data size by not encrypting

non-sensitive fields unnecessarily while allowing those fields to be involved in opera-

tions with sensitive fields.

4.4.4 Efficient Encryption

One of the sources of overhead when computing over encrypted data stems from

the increased data size. To mitigate this, Cuttlefish employs Efficient Encryp-

tion (EE) to reduce the size of encrypted data. Firstly, Cuttlefish identifies situa-

tions where one field is involved in multiple operations. To accommodate this need,

Cuttlefish will have to encrypt the field under multiple cryptosystems. When doing

so, Cuttlefish minimizes the number of cryptosystems a field is encrypted under by

recognizing that some cryptosystems can accommodate multiple operations. For ex-

ample, the OPE scheme that Cuttlefish uses is also deterministic, which means that

a field that is involved in both equality and order operations needs only be encrypted

under the OPE scheme and can avoid having a separate deterministic encryption in

the cloud.

Another way Cuttlefish reduces encrypted data overhead is through the use of

enumerated types described in Section 4.3.4. In situations where an enumerated type

is involved in deterministic or ordering operations, instead of encrypting the input

value itself which could lead to a longer ciphertext, Cuttlefish assigns a unique

integer key to it and keeps the mapping of the value-key pairs locally so that when

decrypting results the original value can be retrieved. If the relative order of the

values is not needed (i.e., when the field is only involved in equality operations) the

key sequence is randomized to avoid giving out order information.

In some cases, an operation can be realized over encrypted data through different

cryptosystems. For example, addition can be achieved by both the Paillier and the

ASHE cryptosystem, multiplication can be achieved by ElGamal and Paillier (if one

operand is in plaintext) and equality comparison can be achieved by FNR, AES-DET
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PAESCF AS CSE CE SE EECES

Until
Convergence

Fig. 4.2.: Cuttlefish compilation techniques order. Shaded components indicate

novel compilation techniques proposed in this work.

and SWP (if one operand is a fixed constant). In such cases, Cuttlefish uses SDT

information to select the cryptosystem that is most suited for a field in terms of

security requirements and also would lead to more efficient execution. For example,

if both operands of a multiplication operation are marked as highly sensitive fields

(HIGH), the only option is to use ElGamal to encrypt both operands. Instead, if one

operand is marked as non-sensitive (NONE) and the product of the multiplication is

directly followed by an addition (e.g., x×y+z), it is more efficient to use Paillier and

its secondary homomorphic operation to carry out the multiplication, as it saves the

need to re-encrypt the product before performing the subsequent addition. In general,

Cuttlefish will always pick ASHE to perform additions over encrypted data, and use

Paillier only when the resulting sum is subsequently involved in a multiplication with

a non-sensitive value. In the latter case, Paillier is preferred to avoid re-encryption.

Since ASHE is a symmetric cryptosystem, it leads to a smaller encrypted data size

overhead and more efficient query execution.

Lastly, Cuttlefish follows the approach of previous work [26] and uses FNR [45],

a format preserving encryption which allows Cuttlefish to encrypt data under a

DET scheme with no size overhead, as long as the data fits to its 128 block size. For

longer values, Cuttlefish uses AES in CMC mode as used in CryptDB [25].
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4.4.5 Order of Compilation Techniques

Figure 4.2 shows the order in which our compilation techniques are applied to

all expressions in a query. First, Cuttlefish applies CES to simplify composite

expressions. Then the set of CF, AS, CSE, PAES and CE techniques are applied in

order. Any of the techniques in this set, can bring the expression to a form in which

another technique in the set, not previously applicable, can be applied. Therefore,

this set of techniques is applied repeatedly until the expression converges. Finally,

the Cuttlefish compiler applies SE and EE to finalize the form of the expression

and chose the best cryptosystems to use.

4.4.6 Security Considerations

Apart from allowing for more expressive and efficient queries, Cuttlefish compi-

lation techniques can also make queries more secure by reducing the use of less-secure

schemes such as OPE and DET, as we empirically demonstrate in Section 4.7.2. Sec-

tion 4.4.1 outlined an example where an expression involving the phone field was sim-

plified from an inequality comparison to an equality comparison (area_code == 123)

and therefore from requiring OPE, to requiring DET. This transformation improves

the security of the query since DET has better security guarantees than OPE. Further-

more, if the field is only involved in comparisons with a constant, the EE compilation

technique will further replace the expression with area_code.matches(‘123’). The

latter expression requires a SRCH cryptosystem, which is probabilistic and therefore

provides much better security guarantees than OPE or DET.

SDTs provide more opportunities for improving the security of queries. For in-

stance, range information can be used to replace the use of OPE with RangeMatch [49,

55,56], which reveals membership of a value to a group (range of items) but does not

allow comparison between two values. Similarly, use of OPE and DET can be replaced

with KeywordMatch [57] which allows a value to be matched to a filtering rule, but

does not allow two values to be compared to each other. We plan to add support for
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RangeMatch and KeywordMatch once their implementation becomes publicly avail-

able.

4.5 Planner Engine

When an operation cannot be executed over encrypted data, we can either use

re-encryption and continue computation in the cloud or continue computation on

the client-side over plaintext data (split execution). In this section, we first give

an intuition of where re-encryption can lead to better performance than split exe-

cution, in the case of such unsupported operations. We then describe the heuristic

the Cuttlefish planner engine uses to identify these situations. Then we describe

two different ways Cuttlefish can realize the re-encryption service and finally, we

describe a set of optimizations that reduce the cost of re-encryption.

4.5.1 Re-encryption Heuristic

To identify which of the two options will lead to better performance we start by

observing that the following hold oftentimes for analytical queries (we empirically

verify these observations in Section 4.7):

1. Queries start with a large volume of input data but the results of the query are

much smaller in size.

2. Queries over encrypted data include unsupported operations involving small

amounts of data, the results of which are then used in computations with larger

amounts of data.

3. Incurring a higher cost for re-encrypting (decrypting and encrypting afresh)

compared to split execution can be favorable because it allows a larger por-

tion of the query to be executed in the cloud (more compute resources) and

it can reduce the amount of data that needs to be shipped to the client and

subsequently decrypted with the latter option.
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On the other hand, the ability to unrestrictedly re-encrypt from one scheme to

another can allow an adversary to infer information about the underlying data. For

instance, allowing an AHE scheme to be re-encrypted to DET, allows the adversary

to repeatedly add 1 to an AHE encrypted value (e.g., using the secondary homomor-

phic operation), re-encrypt it to a DET scheme and compare it to a known DET

constant until the two match. By counting the number of steps it took before a

match, the adversary can infer the original value. Similar attacks can be performed

for any scheme that allows comparisons, e.g., OPE, DET and SRCH. To prevent data

leakage, Cuttlefish does not allow re-encryptions from a scheme that allows arith-

metic operations to one that allows comparisons over encrypted data. Restricting

re-encryption does not limit the expressiveness of queries but can cause Cuttlefish

to use split execution at an earlier stage in the query, as we describe next.

Cuttlefish stores profiles of previously executed queries that capture critical

performance characteristics, similar to the approach used by Verma et al. [58]. In

particular, we store the execution time and selectivity (ratio of input-to-output size)

at various stages of a query (we give more insight on how these stages are defined in

the algorithm below). This information is used when a new query is submitted to

generate the following estimates for each stage of the query, denoted by i:

QE
i – time estimate for executing stage i over encrypted data.

QP
i – time estimate for executing the rest of the query starting from stage i over

plaintext data.

Vi,f – size estimate (bytes) of field f at stage i.

Ef – time estimate to encrypt 1 byte of field f .

Df – time estimate to decrypt 1 byte of field f .

Steps Once the directed acyclic graph (DAG) that captures the query computation

is generated, Cuttlefish greedily considers each data flow branch of the DAG and
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identifies all operations that are not supported in the cloud i = 1...N where operation

N is the first unsupported operation and operation 1 is the last unsupported operation

in the query, which in turn defines stage i to be the portion of the query between

unsupported operation i and i− 1.

1. For each unsupported operation i, generate two sets: RencSeti represents all

fields that need to be sent to the re-encryption service in case of re-encryption,

SplitSeti all fields that need to be sent to the client in case of split execution.

2. For each unsupported operation i, estimate the cost of re-encryption step Ri as:

Ri =

||RencSeti||∑
f=1

Vi,f (Df + Ef )

or Ri =∞ if re-encryption Df → Ef is restricted, and the cost of split execution

step Si as:

Si =

||SplitSeti||∑
f=1

Vi,fDf

3. For each unsupported operation i, decide whether to use re-encryption or split

execution based on:

Ci = Min(CR
i , C

C
i )

where

CR
i = Ri +QE

i + Ci−1, CC
i = Si +QP

i

and C0 = S0 + QP
0 is the cost of sending the final results to the client and

decrypting them.

CR
i is the overall cost of performing a re-encryption at position i and is calculated

as the cost of the re-encryption step Ri added to the cost of executing stage i over

encrypted data and the cost of the previous position of Ci−1. Similarly, CC
i is the cost

of using split execution at position i, which includes the split execution step Si added
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to QP
i which is the cost of performing the rest of the query over plaintext data at the

client. The algorithm recursively estimates the cost of the query at each stage (Ci),

starting from the end of the query and moving backwards. For each unsupported

operation i, Cuttlefish chooses re-encryption if CR
i < CC

i , otherwise it uses split

execution.

4.5.2 Re-encryption Service

Cuttlefish supports two different implementations of the re-encryption service.

Client-side re-encryption In the absence of specialized hardware in the cloud,

Cuttlefish uses a remote client-side re-encryption service. In this case, data is

shipped to the remote re-encryption service for re-encryption before sent back to the

cloud.

SGX-based re-encryption If specialized hardware such as Intel SGX is available

in the cloud, Cuttlefish can employ an in-enclave SGX-based re-encryption service

to remove the need to ship data in a remote location. Importantly, not all cloud nodes

need to contain specialized hardware. Since re-encryption (when needed) constitutes

only a fraction of a query, it can easily be offloaded to a small set of nodes that sup-

port Intel SGX, while the bulk of the computation can be handled by non-specialized

nodes. This aligns well with the gradual adaptation of specialized hardware in public

clouds. Furthermore, the well-defined function of re-encryption fits Intel’s program-

ming guide suggestions [41] on how to securely use SGX well. Specifically, it allows

for a very small and easily verifiable enclave code (see Section 4.6), which keeps the

trusted component and the number of interfaces between the trusted and untrusted

components small while remaining application independent.
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4.5.3 Re-encryption Optimizations

Since encrypting and decrypting data can be costly operations, Cuttlefish uti-

lizes a set of optimizations described in Chapter 3 with the aim of reducing the overall

cost of re-encryption. Cuttlefish uses encryption caching (Section 3.6) to speed up

re-encryption to or from deterministic schemes such as DET and OPE, by storing a

map of previously re-encrypted values that contains plaintext-ciphertext value pairs.

Cuttlefish can further optimize re-encryption by speculating what values are more

likely to be re-encrypted (Section 3.7). Cuttlefish achieves this by using SDT range

information to predict the range of values that need to be re-encrypted. When this

range of values is bounded, Cuttlefish generates a small map of pre-encrypted val-

ues containing the values most likely to be requested for re-encryption. Populating

this map occurs when the re-encryption service is idle, to avoid slowing down other

re-encryption requests. Lastly, Cuttlefish uses pseudorandom number (PRN) pre-

computation (Section 3.5) and stores a small amount of pre-computed values for

Paillier (Equation 3.13) and ElGamal (Equation 3.15) whenever the re-encryption

service is idle, so that re-encryption requests can be served faster.

4.6 Implementation

Our prototype implementation of Cuttlefish1 is made up of several components

as shown in Figure 4.1. In this section we provide some details about the implemen-

tation of these components.

4.6.1 Compiler

The Cuttlefish compiler is implemented in 5500 lines of Scala code and it in-

cludes a parser, a transformation module and a metadata module. The parser parses

queries written in Apache Spark that may optionally contain secure data type infor-

1https://github.com/ssavvides/cuttlefish

https://github.com/ssavvides/cuttlefish
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mation. The transformation module is responsible for generating the remote query

that is deployed in the cloud and operates over encrypted data and the local query

that will be executed on the client side to decrypt and generate the final results.

The metadata module stores information about the state of the encrypted database

(e.g., schema of encrypted tables, encryption key ids, enum maps etc...) in the form

of XML files, which is then used by the transformation module when transforming

queries.

4.6.2 Cloud Service

The cloud service runs an unmodified Apache Spark service. Operations on en-

crypted data are implemented through the use of user-defined functions (UDFs) writ-

ten in 2200 lines of Scala code, by extending the UserDefinedFunction class.

4.6.3 Client Side Re-encryption

The client side re-encryption service is implemented as a Java server using Java

sockets. Requests for re-encryption are made through special UDFs that first establish

a connection with the re-encryption service and then send data for re-encryption.

Each Spark executor uses a dedicated connection with the re-encryption server and

in turn, the re-encryption server uses multiple threads to handle these connections.

4.6.4 SGX-based Re-encryption

SGX-based re-encryption is implemented as an Intel SGX enclave using 1100 lines

of C code, where the majority of the code (over 900 lines) accounts for the implemen-

tation of the cryptosystems and therefore this code has been well tested over the years.

To implement these cryptosystems we port a small multiple-precision arithmetic li-

brary into SGX called BigDigits [59] (version 2.6) that allows us to do big number

computations. Similarly to the client side re-encryption, re-encryption requests to



55

SGX are made through UDFs which use Java Native Interface (JNI) to access an

interface written in C which then calls the appropriate function in the enclave.

4.7 Evaluation

In this section, we empirically assess the benefits of our proposed abstractions and

techniques. We evaluate Cuttlefish on three different aspects. We first evaluate how

valuable our compilation techniques are in improving expressiveness and performance

by examining how frequently they apply in analytical queries (Section 4.7.2). We then

compare Cuttlefish to other systems to observe relative performance benefits (Sec-

tion 4.7.3). Finally, to understand the benefits of our proposed abstractions and

techniques individually, we compare the execution time of Cuttlefish to the execu-

tion on plaintext and we examine how effective each of our compilation techniques

and re-encryption heuristic are in improving performance (Section 4.7.4).

4.7.1 Experimental Setup

To evaluate Cuttlefish we use the following two standard industry adopted-

benchmarks:

1. TPC-H is a decision support benchmark comprising a set of 22 queries. These

queries are designed to have broad industry-wide relevance and be representative

of realistic decision support queries with a high degree of complexity that give

answers to critical business questions.

2. TPC-DS is an industry standard benchmark for big data decision solutions com-

prising a set of 100 queries. This benchmark models a retail product supplier,

with multiple users running interactive and data mining queries. We use a sub-

set of 19 queries that is used by an existing industry benchmark (Cloudera’s

Impala benchmark [60]) and by recent work on studying performance bottle-

necks in distributed computation frameworks [61].
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We compared Cuttlefish with other systems and evaluated individual techniques

on both benchmarks. We use TPC-H to show a comparison with other systems and

TPC-DS to show the evaluation of individual techniques.

We performed all our experiments using Amazon EC2 instances. All reported

execution times in the experiments are the average of 5 runs. We used a cluster of

20 m4.xlarge instances to represent the untrusted cloud, each with 4 virtual CPUs

and 16GB of memory. We also used a single c4.2xlarge EC2 instance with 8 virtual

CPUs and 15GB of memory as the trusted client-side node, where both the client-

side re-encryption service was hosted, and the local query is executed to decrypt and

generate the final results. To account for network latencies, we deployed the untrusted

cloud cluster in Amazon’s N. Virginia datacenter and deployed the trusted client-side

node in Amazon’s Ohio datacenter. We retain the default EC2 network throughput

for all nodes within the cloud (750Mbps for m4.xlarge instances). We use HDFS as

our storage medium with a replication factor of 3. We built the enclave running the

SGX-based re-encryption using Linux SGX SDK version 1.8.100.37739 and due to the

unavailability of Intel SGX hardware in Amazon EC2, we set the SGX mode of the

SDK to simulation. Decryption keys are passed to the enclave via a secure channel

after the enclave is initialized and remotely attested.

Similar to other PHE-based systems [25, 26, 36], we assume that data is already

encrypted and securely stored in the cloud, and hence do not include encryption

latency in our evaluations. Similarly, setting up decryption keys happens once at

the start of the cloud service and therefore our evaluation does not include enclave

initialization and attestation times.

4.7.2 Compilation Techniques Applicability

We first analyze how applicable our proposed compilation techniques are in TPC-

H and TPC-DS benchmarks. Table 4.7 shows the number of queries each compilation

technique was applicable to for both benchmarks. Expression rewriting allows for 4
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Table 4.7.: Compilation technique applicability out of a total of 22 TPC-H queries

and 19 TPC-DS queries.

Compilation Technique Number of Queries

TPC-H TPC-DS

Expression rewriting 15 6

Condition expansion 0 2

Selective encryption 7 7

Efficient encryption 22 19

queries of TPC-H and 2 queries in TPC-DS to be executed over encrypted data by

using SDT composite types to replace substring operations. In addition, composite

types allows Cuttlefish to simplify expressions as discussed in Section 4.4.1 in 12

TPC-H queries and 1 TPC-DS query. PHE-aware algebraic expression simplification

applies to 10 TPC-H queries and 4 TPC-DS queries. Overall, expression rewriting ap-

plies to 15 TPC-H queries and 6 TPC-DS queries. Condition expansion applies only

to 2 queries of TPC-DS but in those cases, the performance benefits are substantial

since it reduces the amount of data the rest of the query is computed over. Selective

encryption applies to 7 TPC-H and 7 TPC-DS queries. Crucially, selective encryption

in TPC-H has the effect of reducing the number of re-encryptions required. Before se-

lective encryption is applied, 9 TPC-H queries (Q03, Q05, Q10, Q11, Q15, Q17, Q18,

Q20 and Q22) require re-encryption to complete whereas after selective encryption

is applied, only 8 queries require re-encryption (Q17 no longer needs re-encryption).

This leads to substantial improvements in latency. Efficient encryption is a widely

applicable technique and it applies to all TPC-H and TPC-DS queries, reducing the

encrypted data size overhead. Furthermore, efficient encryption in combination with

expression rewriting, allows for 2 TPC-H fields that would otherwise require OPE,

to be replaced with SRCH and 1 field that would require DET to be replaced with
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Fig. 4.3.: Cuttlefish latency on the TPC-H benchmark compared to plaintext and

other PHE-based systems

SRCH, improving the security of 12 queries that involve those fields. Similarly, 1

TPC-DS field is changed from OPE to SRCH and another from DET to SRCH.

4.7.3 System Performance

To evaluate the performance overhead of our system, we run TPC-H and compare

the execution time of Cuttlefish with the plaintext execution and the execution

time of other PHE-based systems. We run TPC-H at scale factor 100, i.e., 100GB

of data before encryption. TPC-H data is divided across 8 tables with a total of 61

fields. We represent 5 of these fields as enum types (ship-instruction, nation-name,

region-name, order-status and ship-mode) and another 5 fields as composite types

(customer-phone, shipdate, receiptdate, commitdate and orderdate). In addition, we

mark 14 fields as positive numbers (+) and another 7 with a more strict range. Lastly,

we mark 2 fields as non-sensitive (quantity and discount). We capped the execution

time to 30 minutes for each query execution and marked queries not completed in

that time as timed out.

Plaintext represents the execution time of TPC-H over plaintext data. The

Cuttlefish-TH label denotes the execution time of Cuttlefish when trusted hard-
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ware is available in the cloud and therefore the re-encryption service used is the

SGX-based re-encryption. Cuttlefish-CS shows the execution time of Cuttlefish

but in this case a Client-Side re-encryption is utilized. Next, we include the execu-

tion time of the Monomi [26] system, which we implemented in Spark as opposed

to the proposed centralized database design (Postgres). Monomi does not support

an MHE scheme or a SRCH scheme that can handle all TPC-H queries (originally,

Monomi could not handle Q13, Q15 and Q16). Thus, we extend Monomi to use

MHE and our implementation of the SRCH scheme. Furthermore, Monomi requires

pre-computation to handle complex arithmetic expressions. We allow Monomi to

use pre-computation only in cases where doing otherwise would cause split execu-

tion to fail (i.e., split at the very beginning of the query). For a fair comparison,

we allow the same pre-computation for all evaluated systems. Lastly, we compare

Cuttlefish to Crypsis [36] which we also implemented in Spark (originally imple-

mented in Apache Pig [62, 63]). Neither Monomi or Crypsis can utilize SDTs or

apply any of our proposed compilation techniques, nor can they use our planner en-

gine. Therefore, Monomi is limited to using split execution to overcome limitations

of PHE and Crypsis is limited to näıve re-encryption. As shown in Figure 4.3, the

average overheads of Cuttlefish-TH, Cuttlefish-CS, Monomi and Crypsis across

all 22 queries, normalized to Plaintext execution time, are 2.34×, 3.05×, 7.83×, and

8.68× respectively. Cuttlefish-TH has lower overhead than Cuttlefish-CS because

the former, re-encrypts data locally using SGX enclaves in the cloud, and does not

incur network latency. The significant lower overhead of both Cuttlefish approaches

compared to Monomi and Crypsis is due to the compilation techniques enabled by

the use of SDTs which led to substantially reduced encrypted data size, less use of

re-encryption and overall more optimal query plans.
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Fig. 4.4.: Cuttlefish latency on the TPC-DS benchmark with different compilation

techniques enabled

4.7.4 Compilation Technique Performance

To evaluate the performance improvement due to each individual compilation

technique, we run 19 TPC-DS queries with different compilation techniques enabled

each time. We use a scale factor of 100 resulting to 100GB of data before encryption,

divided into 9 tables with a total of 166 fields across all tables. We selected 3 fields

(tax, coupon-amount and sale-price) that based on their name seem to not hold

sensitive information and marked them with NONE to indicate that they can remain

in plaintext form. We defined 6 fields as enum types and defined 14 fields that hold

dates, zipcodes or addresses as composite types. In addition, 22 fields were marked

as positive integers and 16 fields were assigned a more specific range, based on the

information provided in the TPC-DS data generator.

Figure 4.4 shows the results of this evaluation. The Plaintext bar indicates the exe-

cution time when executing over plaintext data. Cuttlefish-TH shows the execution

time of Cuttlefish with SGX-based re-encryption and all compilation techniques

enabled. Subsequent bars show execution times with one less compilation technique

applied. For example, -Expression rewriting indicates that expression rewriting is
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disabled, -Condition expansion indicates that in addition to expression rewriting,

condition expansion is also disabled and so on.

The average overheads of Cuttlefish-TH, -Expression rewriting, -Condition ex-

pansion, -Selective Encryption and -Efficient Encryption across all 19 queries, nor-

malized to Plaintext execution time, are 1.69×, 1.87×, 2.02×, 3.16× and 4.23× re-

spectively. Condition expansion applies only to Q34 and Q59. Q65 has an overhead of

4.88× for Cuttlefish-TH compared to Plaintext. This is because Q65 makes heavy

use of re-encryption even after all compilation techniques are applied. Q19, Q34, Q53,

Q63, Q89 and Q98 benefit significantly when Selective encryption is enabled. This

indicates that even when a very small number of fields is marked as non-sensitive

(e.g., 3 out of a total of 166, as is the case in this evaluation), Cuttlefish enables

compilation techniques that improve performance significantly.

4.8 Related Work

In this section we present an overview on closely related existing systems that

preserve confidentiality by using client side computation, PHE, or TEEs. We also

present work related to capturing data constraints and multiple sensitivity levels.

4.8.1 Solutions Based on Client Side Computation

SUNDR [64] is a network file system designed to store data securely on untrusted

servers. Clients can detect unauthorized file modifications by cryptographically veri-

fying the file system’s state. A SUNDR server is kept blind to the private keys of all

of its filesystems, essentially minimizing attacks from a compromised server. SUNDR

requires the users of a filesystem to be aware of the last operation they performed

and verify that the system is in a fork-consistent state (the committed operations

history is consistent across users) before any new operation is performed. In essence,

failures can be detected after communication between users. While SUNDR performs

comparably to NFS, it doesn’t scale well in case of large number of users.
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SPORC [65] is a framework for building collaborative applications with untrusted

servers on the cloud. SPORC’s cloud servers see only encrypted data and clients can

detect any deviation from correct operation. Similar to SUNDR, SPORC adopts the

idea of fork consistency to ensure that the fetch-modify views are consistent across

users. On top of that, SPORC applies Operational Transformation (OT) for clients

to execute concurrent operations without locking as well as for conflict resolution.

The system also supports dynamic admission control where users could modify the

access control list, even when they are disconnected to servers.

Depot [66] is a cloud storage system that minimizes trust assumptions while ensur-

ing durability and high availability. Depot enforces fork-join-causal (FJC) consistency

(nodes see updates in the right order) to guarantee data integrity. Similar to SUNDR

and SPORC, Depot is based on the assumption that the users are aware of their last

performed operation. It increases reliability by replicating both data and meta-data

associated with update history and overcomes the low availability part of the other

two systems using FJC. In all 3 systems, the client nodes can detect a failure by

detecting divergent information. Depot and SPORC can even repair such failures

by joining these forks to a sensible history. While depot performs well for reads, it

doesn’t scale well with updates.

The systems above limit the extend to which the cloud can be utilized. Cloud is

used as merely a storage system for data since computing resources cannot be utilized

without compromising security. For performing any computation involving the data,

all required data values need to be download on the client first and all computation

is performed on the client. When dealing with large volumes of data, this download

and compute model puts enormous load on the client nodes, making it an inefficient

solution.
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4.8.2 Computing Over Encrypted Data

In their pioneering work, Popa et al. [25] proposed CryptDB, a system that pro-

vides confidentiality for applications using a SQL database back-end. CryptDB works

by executing SQL queries over encrypted data using a collection of encryption schemes

and also uses a trusted proxy to analyze queries.

Monomi [26] builds off of CryptDB’s design and introduces split client/server

query execution to support more queries. In addition, Monomi proposes techniques

that improve performance for different workloads and adds a designer to automatically

choose an efficient design suitable for each workload.

AutoCrypt [37] is a tool that automatically transforms applications written in C

to applications that operate over encrypted data. With AutoCrypt, the programmer

first designates the input sources that are sensitive and then AutoCrypt uses informa-

tion flow analysis to propagate dependencies on sensitive fields and infer all sensitive

variables. Then AutoCrypt uses type inference on all operations involving sensitive

variables and assigns an encryption scheme to each such variable. AutoCrypt utilizes

a trusted hypervisor to provide a set of hypercalls that allow converting from one

homomorphic scheme to another. AutoCrypt, Uses only three crypto systems (Pail-

lier, ElGamal, Search) and therefore has limited expressiveness. Trusted hypervisor

is only used for conversions from one scheme to another. It does not allow partial

computations and therefore does not support arbitrary workloads.

Unlike Cuttlefish, the above systems do not allow Spark-style parallelization

of queries. Furthermore, they depend on data definitions provided by MySQL or

Postgres databases and do not utilize properties of encryption schemes to speed up

query execution. Instead, Cuttlefish generates more efficient queries that operate

over encrypted data by leveraging optimizations relying on specifying data ranges,

precision, or sensitivity levels.

MrCrypt [35] is a system that statically analyzes MapReduce programs to identify

the operation each data column is involved in and transform the program into one that
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operates over encrypted data, by selecting an appropriate encryption scheme for each

column. When a data column is involved in multiple operations or when sequences

of operations are applied to a same column, MrCrypt concludes that an FHE scheme

is required to carry out the computation in the cloud, noting that the system does

not currently execute such jobs at all due to lack of practical FHE schemes.

JCrypt [67] is a system similar to MrCrypt and transforms Java and MapReduce

programs into equivalent programs which perform computations over encrypted data.

JCrypt uses information flow analysis to split the variables into sensitive and non sen-

sitive ones and tries to keep the sensitive variables minimal for optimal performance.

For better expressiveness, if the same variable is used in multiple operations, the

variable is re-encrypted using a different scheme when possible.

SecureScala [68] is a domain-specific language in Scala that allows expressing se-

cure programs without requiring any cryptographic knowledge from the programmer.

Crypsis [27, 36] is a modified Pig Latin runtime that performs data flow analysis

and query transformations for Pig Latin scripts, automatically and transparently

enabling their execution on encrypted data. Unlike Cuttlefish, Crypsis does not

propose novel abstractions to allow compile-time and runtime optimization techniques

such as expression rewriting, caching/speculative re-encryption, etc. Furthermore,

Crypsis solely uses re-encryption to overcome limitations of PHE, which can lead to

increased execution times. Instead, Cuttlefish uses a planner engine to overcome

PHE limitations without compromising performance. The performance improvements

we have over Crypsis because of these techniques are evident from Section 4.7.

4.8.3 Solutions Based on Trusted Hardware

A number of recent approaches rely on specialized hardware and TEE, e.g., Intel

SGX [69] that provides a trusted area of execution to preserve data confidentiality

while computing. Haven [70] relies on hardware encrypted and integrity protected

physical memory provided by SGX to ensure application security. Cipherbase [71]
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provides an FPGA-based implementation of a trusted hardware that can be used

to run a commercial SQL database system without sacrificing data confidential-

ity. TrustedDB [72] preserves confidentiality by using a server-hosted, tamper-proof

trusted hardware in critical query processing stages.

VC3 [73] is a system that uses SGX to provide confidential and integrity protected

general purpose data processing. It focuses on MapReduce computations and retains

a small TCB by keeping most of the MapReduce framework outside the TCB. Map

and Reduce logic is executed inside enclaves while scheduling, load balancing fault

tolerance and other services run unchanged in the normal world. Map and Reduce

can optionally run with read or write integrity which is a set of run-time checks that

ensure code running inside enclaves does not read or write memory locations that leak

information or can potentially compromise the enclave isolation, e.g., writes outside

the enclave memory.

Opaque [43] is a data analytics engine built on top of Spark that uses SGX to carry

out secure computations. Opaque ensures confidentiality and integrity of computa-

tions, and prevents information leakage from access patterns by introducing a set of

oblivious operations. These operations also work in a distributed and parallel setting.

Opaque also introduces optimizations based on new query planning techniques for a

cost model that captures the behavior of these oblivious operations.

Iron [74] provides a practical implementation of functional encryption (FE) by

using SGX enclaves to achieve the same effect as FE. Iron first uses a key manager

enclave to generate a private and public key for an elliptic curve ElGamal cryp-

tosystem which is used to encrypt sensitive data. The private key is then sent to a

decryption enclave through a secure channel after the decryption enclave has been

attested. When a client is authorized to access a function f of the sensitive data, a

function enclave is initialized with a binary that applies f on the sensitive data. Once

the function enclave is attested and proves its authenticity to the decryption enclave,

the latter sends the secret key to the function enclave, which decrypts the sensitive

data first, applies f on the sensitive data and returns the result to the client.
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Gollamudi et al. [75] propose a calculus called IMPE that can be used to express

programs that leverage SGX-like enclave mechanisms. IMPE includes a security-type

system that is used to enforce confidentiality policies in the presence of a passive or

an active attacker by automatically partitioning non-enclave enabled programs into

semantically equivalent programs that execute sensitive code inside enclaves. IMPE

defines confidentiality restrictions in terms of three security levels, namely, L, H and

>. L is for public information that can be learned by the adversary, H is for sensitive

information that only trusted parties can access and > is for information that should

not exist in the system at all.

Moat [76] is a tool which verifies the confidentiality properties of applications

running on SGX. This is useful in case of vulnerabilities in the application itself,

such as the incorrect use of SGX instructions or memory safety errors, which can be

exploited to reveal information. Moat employs a flow and path-sensitive type checking

algorithm for automatically verifying whether an enclave program leaks a secret to

the adversary-visible, non-enclave memory. They also create a formal semantic model

of the interface between the programmer and the implementation of SGX along with

a relevant adversary model to better understand the contract between hardware and

software.

Sinha et al. [77] also present a methodology for designing applications that en-

ables certifying their confidentiality. The main difference between the two is that

while Moat works for all code, this system requires the application to perform all

communications through a narrowly constrained interface, compiling it with runtime

checks that aid verification, and linking it with a small runtime library that imple-

ments the interface. These constraints on user code are formalized as Information

Release Confinement (IRC), and a modular automatic verifier to check IRC is pre-

sented.

While trusted hardware can enable secure computations at practical performance

overheads, it suffers from portability deficiencies since it relies on specific hardware.

Instead, Cuttlefish can preserve confidentiality even if no specialized hardware is
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available in the cloud. In addition, SGX enclaves can only (efficiently) access a limited

amount of trusted memory [39,40]. This problem is likely exacerbated in multi-tenant

cloud environments where SGX needs to be virtualized and securely shared among

users. Currently, only static memory allocation is supported [78], meaning pages

are statically allocated and mapped to a VM when it is created, and only released

when the VM is destroyed, making trusted memory, even more so, a scarce resource.

Unlike hardware-only approaches, Cuttlefish can operate directly on encrypted data

in untrusted memory and can handle large workloads (e.g., 100s of GBs as shown in

Section 4.7) which are too big to run directly in SGX, thereby benefiting from in-

memory computations [44], and uses SGX only for re-encryption of small amounts of

data.

4.8.4 Data Constraints

Managing information flows with multiple sensitivity levels within programs has

been widely studied. Denning’s seminal work [79, 80] in the field was further formu-

lated as a type system by Volpano et.al. [81]. These systems leverage type information

with additional policy specifications to perform information flow analysis at compile

or run time to ensure that programs do not leak sensitive data. Unlike Cuttlefish,

these techniques do not use sensitivity levels to optimize query processing time. In

programming language research, similar fine grained type specifications have been ex-

plored under refinement type systems [82,83]. The primary focus in these approaches

are type inference, checking and correctness. In the context of encrypted query pro-

cessing, CryptDB [25] allows application developers to annotate the database schema,

define principals and specify access permission of each principal. Unlike Cuttlefish,

CryptDB does not utilize fine grained data type information (e.g., range, unique,

etc.) to perform optimizations.
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4.9 Conclusion

Both software- and hardware-based approaches have been proposed to support

data analytics in the public cloud while preserving data confidentiality. Both have

clear limitations, for instance in terms of expressiveness for PHE in the former case,

and in terms of lack of portability of Intel SGX in the latter case.

This chapter presented Cuttlefish, a system for confidentiality-preserving data

analytics in the cloud which relies on PHE and PPE, combined with smart re-

encryption exploiting SGX when available to overcome limitations of computing over

encrypted data. To this end, Cuttlefish leverages three key concepts: the novel ab-

straction of secure data types, a set of compilation techniques, and a planner engine

for efficient execution. We have demonstrated how these contributions in combination

allow for practical performance.
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5. CONFIDENTIAL DATA ANALYTICS USING

SYMMETRIC PARTIALLY HOMOMORPHIC

ENCRYPTION

In the two previous chapters of this thesis, we highlighted the need for data confiden-

tiality in cloud analytics and demonstrated how Partially Homomorphic Encryption

(PHE) combined with other technologies can be used to achieve that. However, de-

spite the optimizations we presented in Chapter 3 and the techniques we introduced

in Chapter 4 which enable us to use PHE schemes in clever and more efficient ways,

the overhead of asymmetric PHE schemes remains non-trivial.

In this chapter, we present two novel PHE schemes, an Additive and a Multi-

plicative Homomorphic Encryption scheme, which, unlike previous schemes, are sym-

metric. We prove the security of our schemes and show they are more efficient than

state-of-the-art asymmetric PHE schemes, without compromising the expressiveness

of homomorphic operations they support. The main intuition behind our schemes is

to trade strict ciphertext compactness for good “relative” compactness in practice,

while in turn reaping improved performance. We build a prototype system called

Symmetria that uses our proposed schemes and demonstrate its performance im-

provements over previous work. Symmetria achieves up to 7× average speedups on

standard benchmarks compared to asymmetric PHE-based systems.

5.1 Overview

Cloud computing has become ubiquitous due to its economical and practical

paradigm. Third-party clouds are nowadays used by both corporations and gov-

ernments to perform cost-effective computations. Oftentimes, these computations

require sensitive data to be moved to the cloud which places trust on the cloud
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provider. Resource sharing among multiple tenants only adds to the problem of en-

suring data confidentiality. Due to this fact, many organizations are still reluctant to

use third party clouds.

One approach being pursued to alleviate the confidentiality concerns is homomor-

phic encryption. Fully Homomorphic Encryption (FHE) allows arbitrary operations

to be performed directly over encrypted data and thus preserves the confidentiality

of data throughout computations. Gentry introduced FHE and a first cryptosys-

tem [3, 33] that provably achieves it. Though FHE has been becoming more practi-

cal [4], it still exhibits performance costs that are prohibitive for many computations.

An alternative to FHE is PHE. PHE denotes schemes that allow individual oper-

ations over encrypted data, e.g., addition, multiplication. By using multiple PHE

schemes side-by-side, many operations can be supported with practical overhead.

This is particularly true when Property-Preserving Encryption (PPE) schemes are

used, in addition to PHE. Ciphertexts of PPE schemes preserve some property of the

underlying plaintext and can be used to carry out comparisons.

Although PHE is much faster compared to FHE, its overhead remains non-trivial.

This is because most existing PHE schemes such as ElGamal [10], Benaloh [6], Pail-

lier [5], and RSA [11] are asymmetric. Asymmetric schemes use a public key to en-

crypt messages and another private key to decrypt messages and tend to fall behind

symmetric schemes in terms of performance since they have large ciphertext spaces

leading to large ciphertext size overheads. Furthermore, the homomorphic operations

of asymmetric schemes require complex computations involving arbitrary-precision

arithmetic operations.

Previous attempts to propose symmetric PHE schemes that are more performant

than their asymmetric counterparts have done so at the expense of expressiveness.

The Additively Symmetric Homomorphic Encryption (ASHE) [38] for example is a

symmetric Additive Homomorphic Encryption (AHE) scheme that enables addition

of two encrypted values. ASHE is much faster than asymmetric AHE schemes such

as Paillier but has limited expressiveness. Specifically, ASHE only supports addi-
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tion of two ciphertexts, whereas other, asymmetric, AHE schemes support addition

and subtraction between two ciphertexts or between a ciphertext and a plaintext

value, negation of a ciphertext, as well as multiplication between a ciphertext and a

plaintext.

The paucity of PHE schemes that are both performant (symmetric) and expressive

in terms of the homomorphic operations they support, forced previous PHE-based

systems to utilize multiple schemes for the same type of homomorphism. For example,

Cuttlefish [84] switches between the symmetric, more performant, ASHE scheme when

only additions are required, and falls back to the asymmetric, more computationally

expensive, Paillier scheme when additional homomorphic computations (such as the

ones described above) are required. Similarly, Cipherbase [71] uses a dual hardware

and software co-design, switching between PHE schemes and a trusted co-processor

for secure computations. While switching between schemes allows these systems to

execute queries more efficiently, having to utilize multiple schemes makes their design

less flexible due to switching overhead.

In this chapter, we thus introduce two novel symmetric encryption schemes:

1) Symmetric Additive Homomorphic Encryption (SAHE) and 2) Symmetric Mul-

tiplicative Homomorphic Encryption (SMHE) designed specifically to retain the ex-

pressiveness of state-of-the-art PHE schemes while providing improved performance

compared to previously used asymmetric PHE schemes. The main intuition behind

the design of our schemes is to trade ciphertext compactness (size remains the same

as homomorphic operations are performed) in the strict sense (i.e., qualitatively)

for good “relative” compactness in practice (quantitatively), while in turn reaping

improved performance in practice. We observe that:

1. In many scenarios ciphertext compactness (or lack thereof) has little to no effect

on performance. Many applications require arithmetic operations between a

few, fixed number of ciphertext values – in the case of relational data, one

can simply think of computations across columns for individual rows. Here
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the ciphertext size overhead added due to the lack of compactness guarantee is

bounded.

2. By applying a set of compaction techniques (see Section 5.2.4) we can limit the

ciphertext expansion in unbounded sequences of operations such as aggregations

over à priori unbounded sets of values. Examples include aggregations across

rows in relational data. As we show empirically in Section 5.5, our schemes

achieve practical overhead despite not being compact.

3. Many of the homomorphic operations our schemes support, by their nature, do

not increase the ciphertext size.

We provide formal proofs of security of our schemes and show that they satisfy

standard notions of security, i.e., semantic security under Chosen Plaintext Attack

(CPA). To the best of our knowledge, there is no symmetric AHE scheme that pre-

serves the expressiveness of existing asymmetric AHE schemes and there is no sym-

metric MHE scheme at all. Here we make a distinction between PHE and somewhat

homomorphic encryption (SWHE) [85] schemes. Symmetric SWHE schemes that

support multiplication do exist but, unlike our schemes, only allow a limited number

of operations.

We present a prototype system called Symmetria that uses our proposed schemes

SAHE and SMHE to perform arithmetic operations over encrypted data. We further

extend Symmetria to utilize a number of existing PPE schemes to allow comparisons

over encrypted data and therefore support a wider range of queries. We compare our

symmetric schemes against asymmetric schemes such as Paillier and ElGamal. We

evaluate Symmetria and demonstrate its low overhead over plaintext computations.

Symmetria achieves average speedups of 3.8× and 7× over state-of-the-art asymmetric

PHE-based systems on the standard TPC-H and TPC-DS benchmarks respectively.

In summary, in this chapter we make the following contributions:

• We propose a novel semantically secure AHE scheme called SAHE that supports

addition as well as other homomorphic operations over encrypted data.
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• We propose a novel semantically secure MHE scheme called SMHE that sup-

ports multiplication as well as other homomorphic operations over encrypted

data.

• We introduce a set of compaction techniques to limit the overhead of ciphertext

size for our proposed schemes.

• We show the design and evaluation of a system called Symmetria that uses our

proposed schemes and employs a set of query optimizations to execute queries

over encrypted data with little overhead.

In the rest of this chapter, we first describe the design of SAHE and SMHE in Sec-

tion 5.2 and then in Section 5.3 we provide an overview of Symmetria. In Section 5.4

we discuss implementation details of Symmetria. In Section 5.5 we empirically eval-

uate Symmetria and our proposed schemes. In Section 5.6 we present work related

to ours and in Section 5.7 we conclude with final remarks.

5.2 Symmetric PHE

Section 2.2 describes a set of AHE and MHE schemes such as the Paillier and

the ElGamal cryptosystems. These cryptosystems are asymmetric and their security

is based on mathematical problems that are hard to solve for large numbers. For

example, if the modulus, N , of the public key of Paillier can be factored, the security

of the cryptosystem no longer holds. For small values of N , solving this problem is

trivial and therefore sufficiently large numbers should be used. For this reason, NIST

recommends N to be at least 2048-bits long [15], making the mod N2 homomorphic

computations in Paillier 4096-bits long (see Equation 2.2 for details). Furthermore,

NIST recommends that 2048-bits keys should not be used beyond the year 2030, with

other organizations suggesting that 3072-bit long keys are already needed today [86,

87]. Oftentimes, these cryptosystems and the associated homomorphic computations

are implemented using an arbitrary-precision arithmetic library such as the GMP
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library, or the BigInteger immutable arbitrary-precision arithmetic primitive in Java.

These libraries, though highly optimized, can exhibit high overheads for computations

involving large numbers, which leads to slow homomorphic operations.

ASHE [38] is a AHE scheme which is symmetric and therefore more performant

than asymmetric PHE schemes. Unfortunately, the performance improvements of

ASHE come at the expense of expressiveness since ASHE only supports additions

between two ciphertexts, unlike the asymmetric schemes described in Section 2.2

that support a wide range of operations over encrypted data, including secondary

homomorphic operations between a ciphertext and a plaintext value.

In this section, we tackle both performance and expressiveness limitations of pre-

vious PHE schemes and we describe two novel symmetric PHE schemes that can re-

place existing asymmetric schemes such as Paillier and ElGamal used for arithmetic

operations in state-of-the-art PHE-based systems [25, 28, 84, 88, 89]. Our schemes

trade strict compactness for quantitatively good compactness in practice, which is

supported by a set of compaction techniques. These techniques allow our schemes

to achieve better performance than asymmetric schemes without sacrificing expres-

siveness, as they retain the full range of homomorphic operations of traditional PHE

schemes.

5.2.1 Symmetric AHE

Symmetric Additive Homomorphic Encryption (SAHE) is a symmetric Additive

Homomorphic Encryption scheme that allows homomorphic additions.

Scheme description SAHE is defined in the abelian additive group ZN of order

N > 1. Let F : {0, 1}n×{0, 1}n → ZN defined as Fk(x) = F (k, x) be a pseudorandom

function (PRF) mapping strings of length n to elements of ZN , where n is the security

parameter which dictates the length of the key and must be set according to the

application needs. Below we formally define the scheme ΠSAHE = (gen, enc, dec).
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gen(1n): output uniform k ∈ {0, 1}n as the symmetric key.

enc(k,m): on input key k ∈ {0, 1}n and message m ∈ ZN choose uniform r ∈ {0, 1}n

and output the ciphertext

c := 〈(m+ Fk(r)) mod N, [r],∅〉

The resulting ciphertext c is a triplet 〈v, lp, ln〉 where v is the obfuscated value, lp

is a list of identifiers (ids) each of which is used to generate a random element in

ZN and added to m, and, ln is a list of ids used to generate a random element in

ZN and subtracted from m. When initially encrypting a value m, there is only

one id added to m to get v = (m + Fk(r)) mod N and therefore lp = [r] and

ln = ∅ (empty list).

dec(k, c): on input key k ∈ {0, 1}n and ciphertext c = 〈v, lp, ln〉 output the plaintext

message

m := (v −
∑
r1∈lp

Fk(r1) +
∑
r2∈ln

Fk(r2)) mod N

Proof of security We provide proof of the security of SAHE and show that it is

secure under the assumption that Fk is a secure PRF. Note that lists lp and ln hold

ids that act as inputs to Fk and can remain in the clear as long as the key k is kept

secret.

Theorem 5.2.1 If F is a PRF, the cryptographic construction ΠSAHE is a seman-

tically secure under CPA (IND-CPA) private-key encryption scheme for messages of

ZN .

Proof We assume a Probabilistic Polynomial-Time (PPT) adversary A that at-

tempts to break the semantic security of ΠSAHE = (gen, enc, dec), for the rest of the

proof simply Π. We denote the probability of A succeeding as Pr[CPAAΠ = 1] where

CPAAΠ is the CPA indistinguishability experiment. We show that if A can break the

semantic security of Π we can construct an attacker that can distinguish a PRF F

from a truly random function f .
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We proceed by a proof by reduction by using adversary A as a subroutine to

construct a distinguisher D. D has oracle access to a functionR : {0, 1}n → ZN which

can either be a PRF or a truly random function, and the goal of D is to determine

which is the case. D emulates CPAA and when A requests the encryption of a message

m ∈ ZN , D generates a uniform string r ∈ {0, 1}n, uses the oracle to get x := R(r),

and returns the ciphertext 〈(m+x) mod N, [r],∅〉 to A. Recall that n is chosen such

that adversary A can issue a polynomial number of such encryption requests which we

denote as poly(n). This process is repeated until A outputs messages m0,m1 ∈ ZN .

In return, D chooses a uniform bit b ∈ {0, 1}, a uniform string r ∈ {0, 1}n, uses the

oracle to get x := R(r), and returns the challenge ciphertext 〈(mb+x) mod N, [r],∅〉

to A. Finally, when A outputs a bit b′ indicating a guess on what message was

encrypted, D outputs 1 if b = b′, and 0 otherwise.

Let Π̃ be a cryptographic construction same as Π but where the PRF F is replaced

with a truly random function f . Notice that if R is a PRF then x := Fk(r) and

the emulation of CPAA matches the experiment with construction Π, i.e., CPAAΠ.

Similarly, when R is a truly random function then x := f(r) and the emulation of

CPAA matches the experiment with construction Π̃, i.e., CPAA
Π̃

. Therefore, by the

assumption that Fk is a secure PRF, there exists negligible probability ε s.t.

| Pr[CPAAΠ = 1]− Pr[CPAA
Π̃

= 1] | ≤ ε (5.1)

In the case of R being a truly random function, we consider the probability

of the adversary A having received a ciphertext encrypted using the same random

string r ∈ {0, 1}n as the one used to generate the challenge ciphertext c = 〈(m +

f(r)) mod N, [r],∅〉. Note that in such event, A can infer f(r) = (c − m) mod N

and use that to determine whether the challenge cipher was generated from m1 or

m2, winning the indistinguishability game. Since A can perform poly(n) number of

encryption requests, and each encryption requires one out of a total of 2n possible

strings, such an event can occur with probability poly(n)
2n

. Therefore we have

Pr[CPAA
Π̃

= 1] ≤ 1

2
+
poly(n)

2n
. (5.2)
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Using Equation 5.1 and Equation 5.2 we get

Pr[CPAAΠ = 1] ≤ 1

2
+
poly(n)

2n
+ ε

where poly(n)
2n

+ ε is negligible and therefore the advantage of adversary A is negligible.

Homomorphic operations Next, we describe the set of homomorphic operations

ΦSAHE = (add, adp,mlp, neg, sub) of SAHE. In what follows, we use c to denote a

ciphertext (c = 〈v, lp, ln〉), c1 and c2 to denote a pair of ciphertexts (c1 = 〈v1, lp1 , ln1〉

and c2 = 〈v2, lp2 , ln2)〉 and m to denote a plaintext value. As previously mentioned,

ciphertexts are randomized and none of the operations in ΦSAHE require the use of

trapdoors.

add: This operation homomorphically adds two ciphertexts:

add(c1, c2) := 〈(v1 + v2) mod N, lp1 ∪ lp2 , ln1 ∪ ln2〉

Here ∪ indicates list concatenation.

adp: The add plaintext operation expresses a homomorphic addition between a ci-

phertext and a plaintext value:

adp(c,m) := 〈(v +m) mod N, lp, ln〉

mlp: Even though SAHE is an AHE scheme, it supports multiplication between a

ciphertext and a plaintext value through the mlp (multiply plaintext) operation:

mlp(c,m) := 〈(v ×m) mod N, l1, l2〉

where

l1, l2 =


l
|m|
n , l

|m|
p if m < 0

∅,∅ if m = 0

l
|m|
p , l

|m|
n if m > 0

(5.3)
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In the above, |m| denotes the absolute value of m and the list operation l|m|

denotes |m− 1|-fold concatenation of list l with itself. For example, if l = [r1, r2]

and m = 3 then l|m| = [r1, r2, r1, r2, r1, r2]. This example shows that the lists can

grow quickly as more homomorphic operations are performed. In Section 5.2.4

we introduce a set of compaction techniques to alleviate this concern.

neg: We define neg, the unary operation of negating an encrypted value based on the

mlp function:

neg(c) := mlp(c,−1)

= 〈−v mod N, ln, lp〉

sub: We define the subtraction operation sub based on the homomorphic operations

add and neg:

sub(c1, c2) := add(c1, neg(c2))

= 〈(v1 − v2) mod N, lp1 ∪ ln2 , ln1 ∪ lp2〉

5.2.2 Symmetric MHE

Symmetric Multiplicative Homomorphic Encryption (SMHE) is a symmetric Mul-

tiplicative Homomorphic Encryption scheme that allows homomorphic operations

with respect to multiplication.

Scheme description SMHE is defined in the abelian multiplicative group Z∗N of

order N > 1. Just like with SAHE, we assume there exists a PRF Fk(x) = F (k, x)

generating elements of Z∗N , and use a fixed generator g for the selected group order.

Below we formally define the scheme ΠSMHE = (gen, enc, dec).

gen(1n): same as SAHE gen function.
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enc(k,m): on input key k ∈ {0, 1}n and message m ∈ Z∗N choose uniform r ∈ {0, 1}n

and output the ciphertext

c := 〈(m× gFk(r)) mod N, [r],∅〉

Ciphertext c is a triplet 〈v, lp, ln〉 but for SMHE lp denotes the list of ids each

of which is used to generate a random element in Z∗N which is then raised to

the power of g and multiplied by m to generate the obfuscated value v. ln is

similar except that the generated value gFk(r) for a given r is inverted before

being multiplied by m.

dec(k, c): on input key k ∈ {0, 1}n and ciphertext c = 〈v, lp, ln〉 output the plaintext

message

m := (v ×
∏
r1∈lp

g−Fk(r1) ×
∏
r2∈ln

gFk(r2)) mod N

Proof of security Here, we prove that SMHE is secure under the assumption that

F is a secure PRF.

Theorem 5.2.2 If F is a PRF, the cryptographic construction ΠSMHE is a seman-

tically secure under CPA (IND-CPA) private-key encryption scheme for messages of

Z∗N .

Proof As the proof is similar to the one for SAHE, we only provide the parts specific

to SMHE. First, we note that since g is a generator of the group Z∗N every element in

the group can be expressed via gx for some x. Thus, assuming a truly random function

f , for uniform r, gf(r) is uniformly distributed in the group. Since g is a generator and

m ∈ Z∗N then m = gx for some x. Therefore m× gf(r) = gx× gf(r) = gx+f(r) mod N is

uniform as well. The rest of the proof proceeds in three steps like the proof for SAHE

by 1. proving that replacing f with the PRF Fk only gives the adversary negligible

advantage, 2. showing that a modified ΠSMHE scheme where Fk(r) is replaced with f

is semantically secure and 3. showing that poly(n) is the upper bound on the number

of queries that the adversary can send to the oracle of the indistinguishability game,



80

and the only way the adversary has an advantage is when the same r is used more

than once which happens only with negligible probability.

Homomorphic operations In this section, we describe the set of homomorphic

operations ΦSMHE = (mul,mlp, pow, inv, div) of SMHE.

mul: This operation denotes homomorphic multiplication:

mul(c1, c2) := 〈(v1 × v2) mod N, lp1 ∪ lp2 , ln1 ∪ ln2〉

mlp: The multiply plaintext operation denotes homomorphic multiplication between

a ciphertext and a plaintext:

mlp(c,m) := 〈(v ×m) mod N, lp, ln〉

pow: SMHE supports exponentiation between a ciphertext and a plaintext value

through the pow operation:

pow(c,m) := 〈(vm) mod N, l1, l2〉

Here l1 and l2 are computed as per Equation 5.3.

inv: The multiplicative inverse of a ciphertext can be homomorphically computed as

follows:

inv(c) := pow(c,−1)

div: Finally, homomorphic division (multiplication with the inverse) is defined as:

div(c1, c2) := mul(c1, inv(c2))

5.2.3 Security Properties

In this section, we discuss some security properties of our symmetric schemes

SAHE and SMHE.
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Statefulness So far the description of SAHE and SMHE required that we generate

a uniform id r ∈ {0, 1}l when encrypting, although the homomorphic operations and

the security of our schemes do not require r to be uniform. It is sufficient for r to

be unique across all values encrypted under the same key k. We can thus change

the enc algorithm of both of our schemes from being randomized to being stateful.

By keeping track of the last id used (for a given key k), ids can be chosen in an

incremental fashion. By default, Symmetria uses the stateful implementation of enc

for both SAHE and SMHE which leads to more regular lists of ids and make the

application of the compactness techniques described in Section 5.2.4 more effective.

Malleability and null values Similar to other PHE schemes, homomorphic oper-

ations of our schemes are a result of the schemes being malleable and, therefore, allow

some limited alterations to ciphertexts which result in predictable changes to the un-

derlying plaintexts. As a result, stronger notions of security such as IND-CCA2 are

not satisfied by our (or any previous) homomorphic schemes. Asymmetric schemes

allow the creation of any ciphertext without access to the private key since encryp-

tion only requires the public key. So far the description of our schemes permits the

creation of arbitrary ciphertexts without having access to the secret key k, despite

our schemes being symmetric. For example, for either SAHE or SMHE and for any

message 0 ≤ m < N , one can construct the ciphertext c∗ = 〈m,∅,∅〉 where the

obfuscated value of the ciphertext is set to m itself and both id lists lp and ln are

empty. As per discussion so far, c∗ is a legitimate ciphertext that once decrypted

will return the message m, i.e., dec (c∗, k) = m. Ciphertexts with both id lists

being empty can also occur by applying operations on a non-empty ciphertext. For

instance, given a SAHE ciphertext c one can perform the operation c0 = mlp(c, 0)

to get a valid (per discussion so far) ciphertext c0 of the value 0. Then, by repeated

application of adp(c0, 1) one can create a valid ciphertext for any value desired. To

address this issue we treat ciphertexts with both id lists being empty in a special way.

Given a ciphertext triplet 〈v, lp, ln〉, if both lists are empty (lp = ∅ and ln = ∅) the
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ciphertext is considered as a null ciphertext regardless of the value v. We denote

the null ciphertext of SAHE and SMHE by ∅A and ∅M respectively. Decryption

considers such ciphertexts as a special case. For both SAHE dec(∅A, k) = 0 (identity

element of ZN) and SMHE dec(∅M , k) = 1 (identity element of Z∗N), the obfuscated

value v is ignored.

5.2.4 Compaction Techniques

Ciphertexts of SAHE and SMHE are made up of three elements 〈v, lp, ln〉. The

size of v depends on the choice of N and is fixed. The size of id lists lp and ln however

can vary as homomorphic operations are performed. As lp and ln increase in size, the

memory footprint of Symmetria grows. Moreover, the performance of homomorphic

operations and decryption of ciphertexts degrades as these lists grow. To reduce

these overheads we propose a set of techniques to compact these lists. We also define

alternatives for enc and dec that leverage the techniques for improved performance.

List aggregation Ids in lists lp and ln are used to generate a random value using a

PRF Fk which in turn is used to apply an operation during encryption or decryption.

For both SAHE and SMHE, lists lp and ln describe inverse operations. For instance,

in SAHE, list lp holds ids used to generate a random value added to the message m,

and ln holds ids used to generate a random value subtracted from m. These operations

can cancel each other out, meaning that ids that appear in both lists can be safely

removed. For example, the two lists lp = [r1, r2, r3] and ln = [r1, r4] can be reduced

to lp = [r2, r3] and ln = [r4].

Id grouping Homomorphic operations of both SAHE and SMHE can lead to ids

appearing multiple times in the same id list. For example, after an mlp operation

using the SAHE scheme, each id will by copied multiple times in both id lists lp and

ln, as per Equation 5.3. To keep id lists more concise, same ids within a list can be

grouped. For example, the list of ids [r1, r1, r1, r2] can be represented as [3 : r1, r2].
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Here “3 :” indicates the cardinality of the id r1. Furthermore, subsequent additions

of the id r1 to the list do not change the list size or the overall ciphertext size and

instead, the cardinality of the id r1 is increased. This technique not only reduces

ciphertext footprint but also improves decryption performance as we describe next.

We define a function C : {0, 1}l → N which, given an id r ∈ {0, 1}l, returns the

cardinality of that id in the list, i.e., how many times that id appears in the list.

Using this function, we can change the definitions of decryption functions (dec) for

SAHE and SMHE respectively as follows:

m := (v −
∑
r1∈lp

C(r1)× Fk(r1) +
∑
r2∈ln

C(r2)× Fk(r2)) mod N

m := (v ×
∏
r1∈lp

g−C(r1)×Fk(r1) ×
∏
r2∈ln

gC(r2)×Fk(r2)) mod N

With this technique enabled, list concatenation (Equation 5.3) can be efficiently im-

plemented simply by updating id cardinalities.

Range folding Sequences of consecutive ids is another pattern appearing in id lists,

especially when ids are selected sequentially at encryption (see Section 5.2.3). These

sequences can be folded into a range of ids. E.g., consider the id list [2, 3, 4, 5, 8].

This list can be compacted to [2 − 5, 8]. In this example, subsequent additions of

the ids 1 or 6 do not increase the size of the list as these ids will simply extend the

existing range. To make this technique more effective, we generalize range folding to

fold sequences of ids of any step and not just consecutive sequences, i.e., sequences

of step 1. We have observed that in practice such patterns appear frequently, for

instance when summing over a column, even after some rows are filtered.

Telescoping To enable efficient execution of aggregation functions we use the tele-

scoping technique. Consider the case where a sizable number of ciphertexts need to be

summed. The ids of these ciphertexts can be consecutive in which case the resulting

ciphertext will be compact due to the range folding technique discussed above. Even

if this is the case, while decrypting, Fk(r) needs to be generated for each id r even if
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r is folded in a range, making decryption impractical. To avoid this, we change the

encryption functions for SAHE and SMHE respectively as follows:

c := 〈(m+ Fk(r)− Fk(r + 1)) mod N, [r], [r + 1]〉

c := 〈(m× gFk(r) × g−Fk(r+1)) mod N, [r], [r + 1]〉

Here, for each id r we generate Fk(r) and Fk(r+1) and apply inverse operations based

on these, storing r in lp and r + 1 in ln. For consecutive values of r, these operations

cancel each other out based on our list aggregation technique, making decryption

practical, at the expense of having to generate an additional pseudorandom number

(PRN) at encryption.

Integer list compression Our schemes can also benefit from compaction tech-

niques proposed in previous work. In particular, the problem of efficiently compress-

ing arrays of integers has been studied extensively [90, 91]. A requirement of such

algorithms is that the integers of the array are not random. Our lists of ids satisfy

this requirement by storing ids in non-decreasing order. Another requirement for

these algorithms to be effective is that most integers in the array are small or gaps

between them are small. These requirements are met by our schemes by choosing ids

in an incremental manner (Section 5.2.3).

5.2.5 Scheme Compactness

As SAHE and SMHE are not strictly compact each application of a homomor-

phic operation might yield a ciphertext with increased size. Here we discuss how

the compactness techniques proposed above can be applied to achieve homomorphic

operations that are (quantitatively) compact in practice. Table 5.1 outlines the con-

ditions for respective operations to retain compactness. Any homomorphic operation

is compact if it involves (a) adding an id to the lp list and the same id exists in the

ln list or vice-versa (Section 5.2.4); (b) adding an id to a list that already contains

the id (Section 5.2.4); (c) adding an id to a list that falls within an existing range
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Table 5.1.: Scheme operation compactness.

SAHE SMHE Compactness Condition

add mul Techniques Section 5.2.4, Section 5.2.4, and Section 5.2.4

adp mlp By definition

mlp pow Technique Section 5.2.4

neg inv By definition

sub div Techniques Section 5.2.4, Section 5.2.4, and Section 5.2.4

(Section 5.2.4). Some homomorphic operations of our schemes are also compact by

definition. In particular, operations involving a single ciphertext (e.g., neg, inv) as

well as operations involving a ciphertext and a plaintext value (e.g. SAHE operations

adp and mlp, SMHE operations mlp and pow) are always compact. We evaluate the

effects of (a) scheme compactness in terms of ciphertext size overhead and execution

time in Section 5.5.4 and (b) individual compaction techniques in Section 5.5.6.

5.3 Symmetria: System Design

We first explain the threat model underlying our Symmetria system and then give

an overview of its design, followed by details on how it transforms queries to operate

over encrypted data using our schemes. Lastly, we introduce query optimizations

based on the properties of our schemes applied by Symmetria at query transformation

to improve performance.

5.3.1 Symmetria Threat Model

Symmetria aims to preserve data confidentiality in the presence of a semi-honest

adversary. We assume the adversary has access to all cloud nodes and can observe data

and query executions, including any intermediate results. In addition, the adversary
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can observe data in transit between the cloud nodes and between the cloud nodes and

the trusted application driver (described below). We assume the adversary cannot

make changes to the queries, results, or data stored in the cloud, and consider integrity

and availability attacks as well as access patterns and side-channel attacks out of

scope. These attacks are orthogonal to our work and have been studied extensively

in previous works. We plan to extend Symmetria to handle such attacks as part of

our future work, using ideas from existing works [43,73,92–95].

Symmetria uses a set of PPE schemes proposed in previous work for compar-

isons over encrypted data. Some of these schemes, e.g., Order-Preserving Encryption

(OPE) and deterministic (DET), have been shown to provide lower security guar-

antees and even reveal partial plaintext [19–22]. We plan to replace these schemes

with more recent ones that offer semantic security [23] when their implementations

become public.

Another concern specific to our encryption schemes SAHE and SMHE is the in-

formation leakage due to lack of strict compactness. Specifically, an adversary that

observes the result of a query encrypted under SAHE or SMHE can infer the number

of rows used to generate the result, e.g., how many items were added together to

generate an aggregated sum. We note that an adversary that can observe the exe-

cution of queries, as well as any intermediate results (such as the adversary assumed

in this work and by many previous PHE-based systems [25–27]), can infer the above

information even when the homomorphic encryption schemes used are compact. But

for a weaker adversary that can only observe the final results of the queries, the ci-

phertext size of our schemes can reveal the number of rows used to generate the final

result. Under this weaker adversarial model, compact homomorphic schemes such

as Paillier and ElGamal hide this information. Note that in some cases, our com-

paction techniques can hide the exact number of items used to generate a ciphertext,

such as through the application of list aggregation (Section 5.2.4) and telescoping

(Section 5.2.4).
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Fig. 5.1.: Symmetria system architecture. Dashed arrows indicate setup phase. Solid

arrows indicate query execution phase.

5.3.2 Symmetria Design Overview

Figure 5.1 shows the high-level design of Symmetria which includes several com-

ponents divided between the trusted client and the untrusted cloud:

Transformation module: transforms a query designed to operate over plaintext data

to a query that operates on encrypted data to preserve data confidentiality.

Encryption module: holds the cryptographic keys, encrypts traffic sent to the cloud

and decrypts traffic received from the cloud. Also stores the crypto schema which

contains the available encryptions of each column in the database.

Application driver: deploys user-submitted queries to the cloud after they have been

transformed. Receives encrypted results from the cloud, decrypts them using the

encryption module and returns the results to the user.

Compute service: a distributed computing framework that executes the submitted

queries in the untrusted cloud. Utilizes a set of cryptographic user-defined func-

tions (UDFs) to perform operations over encrypted data.

Encrypted database: holds the encrypted data.

Symmetria operates in two phases. During the setup phase when Symmetria is

deployed, the data provider submits the plaintext data along with associated schema
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to the trusted client. The data provider also identifies operations expected to be per-

formed on each column, following the approach used in previous work [96]. Using this

information, the encryption module (1) encrypts each column under one or more en-

cryption schemes according to the operations expected for it, (2) replaces the original

column name with a random string for anonymization, and (3) uploads the encrypted

data to the cloud. The encryption module also generates and stores a crypto schema

with a mapping from each of the original column names to the resulting anonymized

ones, along with the encryption scheme used to encrypt the column.

The second phase is the query execution phase. Users of Symmetria are oblivious

of the underlying encryption strategy used to preserve data confidentiality and do not

know the structure of the encrypted database. Users, therefore, submit queries de-

signed to operate over plaintext data and assume that the database structure follows

the original schema as submitted by the data provider during setup. When a query

is submitted, the transformation module intercepts and transforms it into one that

operates over encrypted data. To transform queries Symmetria follows the approach

of previous works [27,36,68]. Firstly, the query is parsed into a logical plan which has

the form of a directed acyclic graph (DAG) with nodes representing operations, col-

umn names, or literal values, and edges representing the flow of data in the query. For

each operation in the logical plan, the transformation module considers the available

schemes the involved column(s) are encrypted under. A column can either be a data

column that exists in the encrypted database, in which case the available encryption

schemes are kept in the crypto schema, or the column is derived from previous op-

erations, in which case the lineage of the logical plan is used to derive the available

encryption schemes of the column. If one of the available encryption schemes sup-

ports the operation currently considered, then (i) the operation in the logical plan is

replaced by the equivalent homomorphic operation, (ii) the involved column names

are replaced with the (anonymized) names of the appropriately encrypted columns,

and (iii) literal values are encrypted using the same scheme that supports the opera-

tion. If none of the available encryption schemes support the operation, the query is
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split (split execution [26]) and all remaining computation in the query is performed

on the trusted client, after intermediate results are decrypted.

Once query transformation completes, the transformed query is passed to the ap-

plication driver which deploys it in the cloud. The compute service in the cloud is

an unmodified distributed computing framework able to perform homomorphic op-

erations on encrypted data by means of cryptographic UDFs. These UDFs do not

contain any sensitive information and are submitted to the compute service as part

of the deployed application. Once the query execution completes, the (intermedi-

ate) encrypted results are sent back to the trusted client, decrypted, any remaining

computation is performed, and the plaintext results are returned to the user.

5.3.3 Query Optimizations

We describe a set of optimizations, specific to SAHE and SMHE, applied to queries

by the transformation module.

Expression re-writing To improve performance for expressions involving multiple

SAHE or SMHE homomorphic operations we introduce a set of re-writing rules (see

Table 5.2 for SAHE and Table 5.3 for SMHE). The null operations category shows

rules that replace expressions with null values during query transformation. Identity

operation rules replace expressions that have no effect on the input ciphertext with

the ciphertext itself. The operation replacing category replaces one expression with

another equivalent expression with the goal of generating more uniform expressions

that can be further optimized. Addition re-ordering and multiplication re-ordering

rules re-arrange expressions to enable the application of other re-writing rules. Con-

stant folding and constant factoring rules simplify operations involving constants.

Term factoring rules replace an add operation with an mlp operation or remove an

add operation altogether and similarly, term simplification rules remove or replace a

mul operation with a pow operation.
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Our re-writing rules go against traditional compilation. As, in general, plaintext

multiplication is more expensive than addition [97], compilers replace integer multi-

plication with constants with consecutive additions or shift operations. E.g., 2× x is

replaced by x + x (verified using gcc v7.3.0, Ubuntu v18.04). In contrast, in SAHE

mlp is preferred over add as can be seen in rule category term factoring (Table 5.2);

similarly for SMHE pow is preferred over mul as shown in the rule category term

simplification (Table 5.3).

Operation pipelining A query can include expressions involving multiple homo-

morphic operations. For each operation on ciphertexts of the form c = 〈v, lp, ln〉, a

modulo arithmetic computation is performed on v and, if the operation involves two

ciphertexts, the two sets of id lists need to be merged, creating larger lists. Fur-

thermore, any associated data-structures needed to enable compaction techniques

(Section 5.2.4), e.g., data-structures used to hold cardinalities of ids, also need to be

initialized and populated to create the resulting ciphertext. Finally, depending on

the use case, the resulting ciphertext for each operation in the expression might have

to be serialized.

To avoid repeated memory allocation and the creation of objects that hold in-

termediate results Symmetria pipelines all homomorphic operations in expressions,

thereby amortizing their cost. All ciphertexts in an expression are collected and all

homomorphic operations are applied in one go so that only data-structures for final ci-

phertexts need to be created. E.g., in the expression c = add(add(add(c1, c2), c3), c4),

instead of creating intermediate ciphertexts for each add operation, all three oper-

ations are pipelined. Enough memory is pessimistically (assuming no compaction

techniques apply) allocated to hold the data of all 4 input ciphertexts c1–c4, and only

the final ciphertext object c is created and serialized.

Operation pipelining is particularly effective in aggregation functions. Instead of

deserializing and aggregating a single ciphertext value at a time into the intermediate

aggregated result, a small number of serialized ciphertexts are kept in a cache. Once
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Table 5.2.: Re-writing rules for SAHE. † indicates that order of operands is not

relevant.

Category Before After

Null operations
add(∅A,∅A), adp(∅A,m),

∅A

mlp(∅A,m), mlp(c, 0)

Identity operations
add(c,∅A)†, adp(c, 0),

c
mlp(c, 1)

Operation replacing
neg(c) mlp(c,−1)

sub(c1, c2) add(c1, neg(c2))

Addition re-ordering
add(add(c1, c2), c1)† add(add(c1, c1), c2)

add(adp(c1,m), c2)† adp(add(c1, c2),m)

Constant folding
adp(adp(c,m1),m2) adp(c,m1 +m2)

mlp(mlp(c,m1),m2) mlp(c,m1 ×m2)

Constant factoring add(mlp(c1,m),mlp(c2,m)) mlp(add(c1, c2),m)

Term factoring

add(c, c) mlp(c, 2)

add(mlp(c,m), c)† mlp(c,m+ 1)

add(mlp(c,m1),mlp(c,m2)) mlp(c,m1 +m2)

a threshold is reached, all are deserialized, aggregated together in one go as shown in

the example above, and then added to the intermediate aggregation result.

Pre-computing PRNs To encrypt a plaintext value or decrypt a ciphertext, both

SAHE and SMHE require to generate one or more PRNs using Fk(r) for a given r.

When encryption is stateful (Section 5.2.3), r is chosen in an incremental fashion and
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Table 5.3.: Re-writing rules for SMHE. † indicates that order of operands is not

relevant.

Category Before After

Null operations
mul(∅M ,∅M), mlp(∅M ,m),

∅M

pow(∅M ,m), pow(c, 0)

Identity operations
mul(c,∅M)†, mlp(c, 1),

c
pow(c, 1)

Operation replacing
inv(c) pow(c,−1)

div(c1, c2) mul(c1, inv(c2))

Multiplication re-ordering
mul(mul(c1, c2), c1)† mul(mul(c1, c1), c2)

mul(mlp(c1,m), c2)† mlp(mul(c1, c2),m)

Constant folding
mlp(mlp(c,m1),m2) mlp(c,m1 ×m2)

pow(pow(c,m1),m2) pow(c,m1 ×m2)

Term simplification

mul(c, c) pow(c, 2)

mul(pow(c,m), c)† pow(c,m+ 1)

mul(pow(c,m1), pow(c,m2)) pow(c,m1 +m2)

is therefore known before a request to encrypt a value is made. In this case, to speed

up encryption, Symmetria pre-computes and stores a small amount of such PRNs and

uses them when a value needs to be encrypted. Similarly, decryption can be sped up

by pre-computing Fk(r) if the value r is known.

Plaintext multiplication The mlp operation that allows multiplication between

a ciphertext and a plaintext value is supported by both SAHE and SMHE. At query

transformation, Symmetria chooses the most appropriate scheme for mlp depend-

ing on what other operations the corresponding column is involved in. This allows
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Symmetria to perform as much computation as possible over encrypted data in the

cloud and prevents returning to the trusted client before strictly necessary. E.g., in

the expression 2×(a+b) SAHE is used to perform the multiplication with the constant

2 as a+b involves an addition that is only supported by SAHE. On the other hand, in

the expression 2×a× b SMHE is used so the entire expression can be executed in the

cloud. If there are no conflicting operations and either of the schemes can be used,

to perform mlp, Symmetria uses SMHE as it is more performant (Section 5.5.3).

5.4 Implementation

In this section, we provide implementation details on our schemes SAHE and

SMHE, as well as our Symmetria1 system.

5.4.1 Encryption Schemes

We implemented SAHE and SMHE and all associated compaction techniques in

Java and using AES as PRF Fk. Each ciphertext triplet 〈v, lp, ln〉 includes an 8-byte

integer value v and two id lists lp and ln which are implemented using immutable ar-

rays. We use a separate hashmap to map ids to their cardinalities. To keep this map

small, we assume a default cardinality of 1 and only keep track of higher cardinali-

ties. To compress the list of ids we implemented a custom compression function that

implements the compaction technique discussed in Section 5.2.4. We further com-

press the arrays of ids as described in Section 5.2.4 using the JavaFastPFOR2 library

v0.1.12 and enable the compression codecs for differential coding, variable byte and

fast PFOR (patched frame-of-reference). To speed up serialization/deserialization we

implemented custom serialization functions for both SAHE and SMHE ciphertext ob-

jects. We also incorporate 3 PPE schemes, namely deterministic AES (ECB mode),

OPE [17, 46], and SWP [18], as well as two asymmetric PHE schemes, namely Pail-

1https://github.com/ssavvides/symmetria
2https://github.com/lemire/JavaFastPFOR.

https://github.com/ssavvides/symmetria
https://github.com/lemire/JavaFastPFOR
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lier [5] and ElGamal [10], which we use to compare against SAHE and SMHE. For

Paillier and ElGamal we use 2048-bit long keys and use the Java BigInteger class for

arbitrary-precision arithmetic computations.

5.4.2 Trusted Client

The trusted client contains the transformation module, encryption module, and

application driver, and is therefore deployed in a trusted node. We implemented

the transformation module by extending Apache Spark’s Catalyst optimizer. By de-

fault, Catalyst applies a set of transformation rules to create a logical plan out of the

query, optimize it, and turn it into an executable physical plan [98]. We created a

set of transformation rules by extending the Spark Rule[ LogicalPlan ] class and use

these rules to carry out the transformation of the query to one that operates over

encrypted data. The query optimizations proposed in Section 5.3.3 are also imple-

mented as transformation rules. We register these rules with the Catalyst optimizer

externally, i.e., without modifications to Spark, so that they are recursively applied

to all nodes of the logical plan. We implement the application driver by extending

the Spark driver. The application driver deploys the transformed query in the cloud

and receives the encrypted results. The driver loads these results into a Scala parallel

collection with default parallelization. The results are then decrypted in parallel and

any remaining computation (see Section 5.3.2) is performed in parallel before final

results are returned.

5.4.3 Untrusted Cloud

The compute service runs an unmodified Apache Spark service. To enable the

use of homomorphic operations of the schemes employed we created a Spark UDF

function for each operation. For non-aggregation operations, we created a Spark UDF

by extending the Spark UserDefinedFunction class; for aggregation functions such as
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summation and product we extend the UserDefinedAggregateFunction class. These

functions are again externally registered.

5.5 Evaluation

In this section, we evaluate the expressiveness and performance of our proposed

schemes SAHE and SMHE as well as our prototype system Symmetria. We first as-

sess the expressiveness of our schemes compared to previous schemes (Section 5.5.2).

Then, we evaluate the performance of individual operations of our schemes (Sec-

tion 5.5.3) and quantify the effect of scheme compactness compared to other compact

and non-compact schemes (Section 5.5.4). We then examine the encryption time and

ciphertext size overhead of Symmetria compared to previous systems (Section 5.5.5).

Finally, we assess the performance benefits of our proposed compaction techniques

and query optimizations (Section 5.5.6) and the overall efficiency of Symmetria by

comparing its end-to-end latency with other systems (Section 5.5.7).

5.5.1 Evaluation Setup

We conduct all our experiments on Amazon EC2. We use a cluster of 10 m5.2xlarge

(8 vCPUs, 32 GB RAM) slave nodes running Apache Spark v2.4.0 and deploy the

Spark driver on a separate m5.4xlarge (16 vCPUs, 64 GB RAM) node. The Spark

driver is assumed to be trusted and handles the decryption of the results. Decryption

is parallelized and utilizes all available CPUs on the driver. We set up Spark to deploy

a single executor per slave node with 8 tasks each (1 for each CPU) and a total of

28 GB memory. We load data into Hadoop HDFS (Hadoop v2.9.2) with replication

factor 3 and use the Apache Parquet storage format to compress data. We carry out

comparisons of primarily 3 system setups:

Plaintext setup does not use any encryption and does not offer any confidentiality

guarantees,
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Table 5.4.: Expressiveness comparison. Type indicates whether a scheme is symmetric

(sym) or asymmetric (asym).

(a) AHE

Paillier ASHE SAHE

Type asym sym sym

add 3 3 3

adp 3 7 3

mlp 3 7 3

neg 3 7 3

sub 3 7 3

(b) MHE

ElGamal SMHE

Type asym sym

mul 3 3

mlp 3 3

pow 3 3

inv 3 3

div 3 3

Symmetria utilizes our proposed schemes SAHE and SMHE to carry out arithmetic

operations over encrypted data, and

Asym utilizes the asymmetric schemes Paillier and ElGamal to carry out arithmetic

operations over encrypted data.

We use two industry-adopted benchmarks for our evaluations. 1) TPC-H is a

decision support benchmark comprising 22 queries. We use TPC-H v2.18 at a scale

of 100 which uses over 100 GB of input data. 2) TPC-DS is a benchmark for big data

decision solutions comprising 100 queries. Due to lack of space, we show the results

of 19 of the TPC-DS queries as done in previous work [60]. We use TPC-DS v2.10 at

a scale of 100 which uses 38.6 GB of plaintext input data.

Unless stated otherwise, reported execution times in our experiments are the av-

erage of 5 executions.
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Table 5.5.: Operation execution times of SAHE compared to asymmetric schemes.

All reported times are given in nanoseconds followed by the relative standard error.

Values in parentheses indicate pre-computation.

Paillier Packed Paillier SAHE

enc 17285376 ± 0.13% 880921 ± 0.11% 1321 (63) ± 1.43%

dec 16390295 ± 0.01% 781727 ± 0.01% 1202 (153) ± 4.18%

add 34807 ± 1.37% 1666 ± 1.21% 457 ± 3.10%

adp 917141 ± 2.38% 104775 ± 0.95% 71 ± 0.37%

mlp 857943 ± 2.54% – 406 ± 0.18%

neg 1370859 ± 0.07% – 397 ± 0.11%

sub 1408870 ± 0.08% – 819 ± 3.88%

5.5.2 Scheme Expressiveness

Before conducting an empirical evaluation, we first show a simple comparison of

our schemes with previous homomorphic schemes in terms of expressiveness. Table 5.4

shows the supported operations of various (a) AHE and (b) MHE schemes. As can be

seen from the table, SAHE supports all homomorphic operations that Paillier supports

though being symmetric. ASHE [38] is another AHE scheme that is symmetric like

SAHE, but unlike SAHE, it has limited expressiveness and only supports additions

between two ciphertexts (add). SMHE supports all homomorphic operations that

ElGamal supports though being symmetric. We know of no other symmetric MHE

scheme to compare against SMHE.

5.5.3 Operation Execution Times

We now examine the execution times of individual operations in the sets ΠSAHE,

ΦSAHE, ΠSMHE, and ΦSMHE. We compare these against the equivalent operations
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Table 5.6.: Operation execution times of SMHE compared to asymmetric schemes.

All reported times are given in nanoseconds followed by the relative standard error.

Values in parentheses indicate pre-computation.

ElGamal SMHE

enc 8700278 ± 0.04% 2974 (752) ± 0.29%

dec 4768193 ± 0.02% 3090 (1420) ± 0.23%

mul 25803 ± 0.16% 419 ± 0.92%

mlp 678 ± 1.17% 371 ± 0.11%

pow 505675 ± 2.53% 2856 ± 0.37%

inv 809711 ± 0.09% 3529 ± 0.24%

div 841260 ± 0.14% 4172 ± 0.25%

of the state-of-the-art asymmetric schemes Paillier and ElGamal. Paillier encryption

and its associated homomorphic operations require arbitrary-precision arithmetic op-

erations and modulo operations on the square of the public key. This means that the

length of Paillier ciphertexts are 4096 bits long. ElGamal ciphertexts are made of

two parts, each 2048 bits long. The increased ciphertext size and arbitrary-precision

arithmetic operations required to achieve the homomorphic operations of Paillier and

ElGamal lead to significant overhead. We also include a comparison against “Packed

Paillier” which implements the packing technique discussed in Section 3.4. We pack

21 plaintext values in a ciphertext and include 32 bits of padding to account for

overflows.

Table 5.5 and Table 5.6 show the results of this evaluation. This experiment was

run on a single m5.2xlarge node. We use a random 8-byte integer value as input for

the encryption operation. We use a ciphertext generated by encrypting an 8-byte

integer value for the decryption and for unary homomorphic operations. Two such

ciphertexts are used for binary homomorphic operations. Each reported execution
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time is the average of 1 million executions after 100 warm-up executions. We ob-

serve that SAHE’s encryption and decryption are 4 orders of magnitude faster than

Paillier’s. These can be made even faster by pre-computing the required PRNs as

explained in Section 5.3.3.

Packed Paillier improves the performance of encryption and decryption signifi-

cantly, but SAHE remains 2 orders of magnitude faster than Packed Paillier. Per-

forming a homomorphic addition using Paillier requires a multiplication of the two

ciphertexts modulo the square of the public key which is a 4096-bit value. This makes

homomorphic addition of SAHE 76× faster than Paillier or 4× faster than Packed

Paillier. The performance gains of other operations in ΦSAHE compared to Paillier

are even more dramatic because in Paillier these operations require exponentiation

modulo the square of the public key which is a very expensive operation. We note

that our current implementation of Packed Paillier does not support the operations

mlp, neg, and sub. Due to this limitation, we do not use Packed Paillier for the rest

of our evaluations.

We observe similar results when comparing SMHE to ElGamal. Encryption and

decryption functions of SMHE are 3 orders of magnitude faster than ElGamal. Arith-

metic operations in ΦSMHE range from 2× faster to 230× faster compared to the

equivalent operations with ElGamal.

5.5.4 Effect of Non-Compactness

Next, we examine how the lack of compactness in our schemes affects ciphertext

size and execution time and how effective our compaction techniques are in mitigating

these effects. We perform a summation involving 1 million rows and to examine how

our schemes behave when some of these rows are filtered out, we randomly sample

the rows and perform a summation over the selected rows. We measure the size of

the resulting ciphertext and the overall time taken to perform the summation as we

change the sampling size from 5% to 100%.
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Fig. 5.2.: Ciphertext size for summation of 1 million rows as sampling size (x-axes)

changes from 5% to 100%

We compare Symmetria with all techniques enabled against Asym which uses asym-

metric schemes that are compact. To examine the other extreme we also compare

Symmetria against a Strawman setup which uses a näıve construction for arithmetic

operations that encrypts individual values using the AES (CBC mode) block cipher

and performs homomorphic operations by concatenating operators and encrypted

operands. Unlike Symmetria, Strawman has no compaction techniques to limit ci-

phertext expansion.

Figure 5.2 and Figure 5.3 show the results of this evaluation. We observe that

the ciphertext size of the Strawman system setup increases linearly as the number of

rows (sampling size) increases due to lack of any form of compaction. Even worse,

its execution time increases exponentially since every subsequent addition operation

occurs on a strictly larger aggregated result.

As expected, the ciphertext size of the Asym system setup remains constant (512

bytes) since it uses Paillier (with a 2048-bit modulo resulting in 4096-bit ciphertexts)

to perform summation which is a compact scheme. Naturally, its execution time



101

0

100

200

300

400

500

5 15 25 35 45 55 65 75 85 95

Ti
m

e (
se

co
nd

s)

Sampling size (%)

Symmetria
Asym
Strawman

(a) Linear scale

0.1

1

10

100

1000

10000

5 15 25 35 45 55 65 75 85 95

Ti
m

e (
se

co
nd

s)

Sampling size (%)

Symmetria
Asym
Strawman

(b) Log scale

Fig. 5.3.: Time for summation of 1 million rows as sampling size (x-axes) changes

from 5% to 100%

increases linearly with respect to sampling size, but due to the complex modulo

operations involved in homomorphic addition the overall execution time is high.

Unlike Strawman, the compaction techniques of Symmetria keep the ciphertext size

more bounded in practice, resulting in a much lower execution time. We also note that

due to non-compactness, the ciphertext size of Symmetria is higher than that of Asym.

At 50% sampling size, half of the rows are randomly filtered out making the range

folding technique (5.2.4) less effective. Once the sampling size increases further, more

sequences of consecutive ids occur, leading to more compact ciphertexts and therefore

better execution times. At 100% selectivity, Symmetria achieves optimal compactness

with the ciphertext becoming smaller than that of Asym (50 bytes compared to 512

bytes for Asym). Despite the overall higher ciphertext size of Symmetria, the execution

time of Symmetria remains on average 30× faster than the Asym system. We further

investigate the effect of increased ciphertext size in Symmetria and the associated

network and decryption time overheads in Section 5.5.7.
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Table 5.7.: Encryption overheads. Plaintext (text) indicates uncompressed data. All

other setups use Parquet to store compressed data. Time column refers to compression

time for Plaintext, and adds encryption time for other setups.

Benchmark System Setup Size Time

TPC-H

Plaintext (text) 106.8 GB –

Plaintext 34.0 GB 2.4 min

Asym 363.7 GB 84 min

Symmetria 67.8 GB 14 min

TPC-DS

Plaintext (text) 38.6 GB –

Plaintext 15.1 GB 1.5 min

Asym 482.4 GB 228 min

Symmetria 39.7 GB 4 min

5.5.5 Encryption Overhead

Next, we assess the time needed to encrypt the input data for the TPC-H and

TPC-DS benchmarks and examine the size of the resulting encrypted data. We show

the results of this evaluation in Table 5.7. TPC-H at scale 100 generates 106.8 GB of

uncompressed data. We load this data into HDFS using the Parquet format which

generates a total of 34 GB of compressed data and takes 2.4 min to complete the

compression. We then encrypt the data using the two setups Asym and Symmetria.

Under Asym, the size of the encrypted data is 363.7 GB which is over 5× larger

than the encrypted data generated by Symmetria. In addition, Asym takes 84 min

to complete encryption compared to 14 min with Symmetria. TPC-DS uses 38.6 GB

of uncompressed data which, when compressed using Parquet, occupies 15.1 GB.

Encrypting with Asym results in 482.4 GB of encrypted data which is a size overhead of

32× compared to plaintext data. In comparison, Symmetria generates only 39.7 GB
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Fig. 5.4.: TPC-H end-to-end execution times normalized to Plaintext execution

(slowdown factor). Plaintext execution times in absolute are shown in parentheses

under the query names (x-axis). We cut the y-axis off at 40× slowdown (reporting

numbers above) to focus on details of our Symmetria solution.

of encrypted data with a size overhead of 2.6×. Encryption time with Asym takes

228 min compared to only 4 min with Symmetria.

5.5.6 Effect of Compaction Techniques

We use the TPC-H and TPC-DS benchmarks to evaluate the benefits of our pro-

posed compaction techniques and query optimizations. Figure 5.4 shows the results

of this experiment for TPC-H. To be able to evaluate secondary homomorphic oper-

ations that operate on a ciphertext value and a plaintext value such as adp and mlp

we choose 4 columns out of a total of 61 columns that do not seem to hold sensitive

data, namely the columns tax, discount, available-quantity, and supplier-quantity and

leave them in plaintext.

The Symmetria bars show the execution times of Symmetria with all compaction

techniques and query optimizations enabled, normalized to the Plaintext execu-

tion time (Plaintext execution times in absolute are shown in parentheses under

the query names (x-axis)). Each subsequent Symmetria bar shows the normalized

execution time with one less feature enabled. Specifically, Symmetria-ER shows the
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Fig. 5.5.: TPC-DS (subset) end-to-end execution times normalized to Plaintext

execution (slowdown factor). Plaintext execution times in absolute are shown in

parentheses under the query names (x-axis). We cut the y-axis off at 15× slowdown

to focus on details of our Symmetria solution.

normalized execution time when expression re-writing (Section 5.3.3) is disabled,

Symmetria-OP shows the normalized execution time when in addition to expression

re-writing, operation pipelining (Section 5.3.3) is disabled, in Symmetria-PC PFOR

compression (Section 5.2.4) is disabled and finally, in Symmetria-RC range compres-

sion (Section 5.2.4) is disabled. We keep some compaction techniques permanently

enabled — list aggregation (Section 5.2.4), id grouping (Section 5.2.4), and telescop-

ing (Section 5.2.4) — as without these techniques the id lists of ciphertexts become

too large and many of the queries time out. The average execution time overheads

compared to plaintext execution time of Symmetria, Symmetria-ER, Symmetria-OP,

Symmetria-PC and Symmetria-RC are 5.35×, 5.40×, 9.50×, 10.57×, and 11.39× re-

spectively.

Figure 5.5 shows the results of the same experiment on 19 queries of TPC-DS.

TPC-DS uses 9 input tables and a total of 166 columns. This time, we leave a

single column, sales-price, remains in plaintext allow the use of secondary homomor-

phic operations. We show the breakdown of Symmetria with some features disabled.

Expression re-writing did not apply to any of the queries. The average execution
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Fig. 5.6.: TPC-H end-to-end latency. We cut the y-axis off at 600 seconds (reporting

numbers above) to focus on details of our Symmetria solution.

time overheads compared to Plaintext execution time of Symmetria, Symmetria-OP,

Symmetria-PC and Symmetria-RC are 2.73×, 2.95×, 3.66×, and 4.45× respectively.

The gains we observe in both TPC-H and TPC-DS demonstrate the effectiveness of

our proposed techniques and optimizations.

5.5.7 Comparison to Existing Systems

Finally, we use the TPC-H and TPC-DS benchmarks to compare end-to-end ex-

ecution times of Plaintext, Asym, and Symmetria system setups, by measuring the

time from the point each query is submitted until the results are returned to the

user after having been returned to the driver and decrypted. For this evaluation,

Asym closely follows Monomi’s choice of cryptosystems [26] which we further augment

by an MHE scheme (ElGamal [10]) and a searchable encryption (SRCH) scheme

(SWP [18]), implemented in Spark instead of the proposed PostgreSQL though. The

resulting system called Monomi* uses split execution the same way as Symmetria. We

leave the same columns in plaintext as in the previous experiment for both TPC-H

and TPC-DS. For a fair comparison we leave the same columns in plaintext for the

Monomi* system setup.
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Fig. 5.7.: TPC-DS end-to-end latency. We cut the y-axis off at 120 seconds (reporting

numbers above) to focus on details of our Symmetria solution.

Figure 5.6 shows the end-to-end latency in seconds of the aforementioned systems

for TPC-H. The Plaintext system setup has an average end-to-end latency of 19.11 s

across all queries, Symmetria has a 63.29 s average end-to-end latency and Asym has

a 378.10 s average end-to-end latency. The average overhead of Symmetria compared

to Plaintext is 5.35× and the average overhead of Monomi* compared to Plaintext

is 20.39×. We further observe that for Symmetria, the bulk of the work is done in

the untrusted cloud. On average, only 1% of the overall query execution is spent on

the trusted client side. This time includes communication overhead and decryption

of final results. A notable exception is Q22 where 12.96% of the time is spent on the

client side.

Figure 5.7 shows the end-to-end latency in seconds for Plaintext, Symmetria,

and Asym systems for TPC-DS. The Plaintext system setup has an average end-to-

end latency of 3.79 s across all queries, Symmetria has a 9.30 s average end-to-end

latency and Asym has a 67.49 s average end-to-end latency. The average overhead of

Symmetria compared to Plaintext is 2.73× and the average overhead of Monomi*

compared to Plaintext is 19.16×. The average time spent on client side is only

2.12% for Symmetria.
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Overall, Symmetria with all compaction techniques and query optimizations en-

abled is on average 3.8× faster on TPC-H queries than the state-of-the-art PHE-based

systems using asymmetric schemes, and 7× faster on TPC-DS queries. This demon-

strates the practicality of our schemes SAHE and SMHE despite the lack of strict

ciphertext compactness and shows the effectiveness of our proposed optimizations.

5.6 Related Work

In this section we discuss PHE-based systems and systems based on trusted hard-

ware related to Symmetria.

5.6.1 PHE-based Systems

As mentioned in Section 4.8, several PHE-based systems have been proposed that

show how PHE can be made practical for confidentiality-preserving computations.

CryptDB [25] extends a MySQL database to enable the execution of SQL queries in

a confidentiality-preserving manner by using PHE. CryptDB uses Paillier to perform

homomorphic additions but does not support any MHE scheme so multiplications

cannot be performed.

Arx [23] is a PHE-based system that extends MongoDB to support confidentiality-

preserving database applications. Arx introduces the ArxEq and ArxRange primitives

that enable equality and range computations over data encrypted using semantically

secure encryption. We plan to extend Symmetria to support these primitives and

replace the PPE schemes currently used which offer lower security guarantees. Since

the focus of Symmetria is to demonstrate the benefits of using our symmetric PHE

schemes over asymmetric PHE schemes, in the current version of Symmetria we chose

to use PPE schemes whose implementations are publicly available.

Seabed [38] is a system built on Apache Spark that introduced ASHE. ASHE and

Seabed were designed with the goal of performing large-scale summations efficiently
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and have limited homomorphic expressiveness, as opposed to Symmetria that uses

SAHE and SMHE that support a wider range of homomorphic operations.

Several techniques have been proposed to compact ciphertexts of PHE schemes [29,

99, 100]. Most prominently, Ge and Zdonik [29] describe a technique that allows

packing multiple plaintext values into a single ciphertext, thereby amortizing the ci-

phertext size overhead. The technique applies to asymmetric AHE schemes but not

to symmetric AHE schemes or to MHE schemes. In addition, it introduces the is-

sue of overflows for aggregation functions and limits expressiveness, as homomorphic

operations cannot be performed to packed values individually, nor can some homo-

morphic operations such as multiplication with plaintext, negation, or subtraction be

performed on packed ciphertexts.

Monomi [26] is a PHE-based database system using the above-mentioned packing

technique to reduce ciphertext size overhead and accelerate summations. Similarly,

Liu et al. [101] employ packing to reduce the overheads of computing the trajectory

similarity function over encrypted data. These works, in addition to not supporting

an MHE scheme, inherit the drawbacks of the packing technique described above.

In contrast, the compaction techniques we introduce herein (Section 5.2.4) apply

to both of our proposed symmetric schemes, do not limit the expressiveness of ho-

momorphic operations, and do not suffer other drawbacks of packing multiple values

into one ciphertext.

5.6.2 Trusted Hardware-based Systems

Recently, Trusted Execution Environments (TEEs) like Intel Software Guard eX-

tensions (SGX) [24] have also gained traction for performing secure computations in

the cloud. As described in Section 4.8 works like VC3 [73], Opaque [43], and Ten-

sorScone [102], leverage SGX for ensuring data confidentiality and integrity during

computation in untrusted environments. In this work, we focus on a software-only

solution based on PHE and PPE that does not require specialized hardware and place



109

emphasis on improving the performance and expressiveness of existing PHE and PPE

based systems.

5.7 Conclusions

In this chapter, we tackle the important problem of preserving the confidential-

ity of sensitive information while executing queries on it in an untrusted cloud. We

introduce two novel symmetric PHE schemes that allow us to efficiently perform op-

erations over encrypted data. Our schemes are faster compared to existing asymmet-

ric PHE schemes and do not compromise homomorphic expressiveness. Our system

Symmetria utilizes these schemes to enable the execution of queries over encrypted

data. Symmetria achieves average speedups of 3.8× and 7× over state-of-the-art

asymmetric PHE schemes on the standard TPC-H and TPC-DS benchmarks respec-

tively.
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6. CONFIDENTIAL STREAM PROCESSING FOR THE

INTERNET OF THINGS

With the advent of the Internet of Things (IoT), billions of devices are expected to

continuously collect and process sensitive data (e.g., location, personal health factors).

Due to the limited computational capacity available on IoT devices, the current de

facto model for building IoT applications is to send the gathered data to the cloud for

computation. While building private cloud infrastructures for handling large amounts

of data streams can be expensive, using low-cost public (untrusted) cloud infrastruc-

tures for processing continuous queries including on sensitive data leads to strong

concerns over data confidentiality.

In this chapter we present C3PO, a confidentiality-preserving, continuous query

processing engine, that leverages the public cloud. The key idea is to intelligently uti-

lize Partially Homomorphic and Property-Preserving encryption to perform as many

computationally intensive operations as possible — without revealing plaintext — in

the untrusted cloud. C3PO provides a simple abstraction to the developer to hide the

complexities of 1) applying complex cryptographic primitives, 2) reasoning about the

performance of such primitives, 3) deciding which computations can be executed in

an untrusted tier, and 4) optimizing cloud resource usage. An empirical evaluation

with several benchmarks and case studies shows the feasibility of our approach. We

consider different classes of IoT end devices that differ in their computational and

memory resources (from Amazon AWS to a tiny device with Cortex-M3 micropro-

cessor) and through the use of novel optimizations we demonstrate the feasibility of

using Partially Homomorphic and Property-Preserving Encryption on IoT devices.
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6.1 Overview

The ubiquity of computing devices is driving a massive increase in the amount of

data generated by humans and machines. With the advent of the IoT, many more

billions of devices are expected to continuously collect sensitive data and compute on

it, promising improvements in various sectors. For instance, improvements in sensors

and increasingly practical wearable devices allow complex, automatic and real-time

health monitoring [103]. Such monitoring is beneficial by providing patients direct

information on their current health status, facilitating diagnosis and treatment, and

reducing costs of interventions and risks.

6.1.1 Cloud-backed IoT and Confidentiality

Due to limited storage and computation capacity available on IoT devices, the

current de facto model for building IoT applications is to send the data gathered

from physical devices to the cloud for both computation and storage. Many IoT

applications therefore leverage the cloud to compute on data streams from a large

number of devices, leading to the paradigm of Cloud of Things (CoT). For example,

in the case of smart health, health care providers can closely monitor a larger number

of patients and correlate data on a bigger scale. If privacy concerns are addressed,

individuals may be more open to sharing their data [104], which in turn is critical for

contact tracing applications and to identify pandemics or epidemics early-on.

Due to the sheer amount of streaming data, building a private cloud infrastructure

is very expensive compared to using a low cost public (untrusted) cloud infrastructure

such as Amazon EC2 or Microsoft Azure. Therefore, public clouds are typically

used for processing continuous queries including on sensitive data. Public clouds

are also preferred because of the variety of software services they provide that make

development and deployment of corresponding applications very fast. However, this

trend is fueling concerns over data confidentiality, and is becoming one of the major

factors preventing further widespread adoption of IoT solutions. These concerns
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Fig. 6.1.: IoT devices of various compute and memory capabilities supported by C3PO

represent a significant deterrent for industry domains like healthcare to adopt public

clouds.

One way to mitigate these concerns is to encrypt data at the source (i.e., IoT de-

vices), and solely use cloud infrastructure for storage purposes (e.g., Bolt [105]). Thus,

as long as encryption keys are maintained securely by consumers, the confidentiality

of their data is enforced. While this approach addresses the above confidentiality con-

cerns, all computations need to be performed in trusted environments, thus limiting

the computational capabilities of public clouds for IoT solutions.

A promising approach to overcome this bottleneck is to use homomorphic encryp-

tion and execute all operations over encrypted data. However, Fully Homomorphic

Encryption (FHE) is prohibitive in practice [3], causing significant slowdowns for

complex computations despite continuous advances [4, 33]. An alternative, practical

approach is to use less expensive Partially Homomorphic Encryption (PHE) [106]

in combination with Property-Preserving Encryption (PPE) [107] to execute specific

operations over encrypted data.

Existing solutions based on PHE and PPE have mostly focused on database and

batch processing systems. For instance, the seminal CryptDB [25] was implemented

on top of MySQL, Monomi [26] was implemented on top of the Postgres database

while Crypsis [27] was implemented in Hadoop (Apache Pig) and Cuttlefish [84], and

Symmetria [108] were implemented in Apache Spark. These database-centric and

batch processing solutions are not a good fit for many IoT applications since IoT
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applications are typically implemented as continuous queries in a stream processing

system.

In addition IoT devices can vary significantly in terms of their compute power

and memory capacity as shown in Figure 6.1. To enable devices which can be very

resource-constrained (e.g., embedded devices using the ARM Cortex-M3 CPU can

have as little as 72 MHz of processing power and 64 KB of memory) to encrypt sen-

sitive data under various PHE and PPE schemes, these schemes must be carefully

implemented and optimized.

6.1.2 Challenges

A straightforward application of PHE and PPE to existing stream processing

solutions to support computations over encrypted data is unlikely to be practical:

R1. Cryptosystems on IoT devices. IoT devices are oftentimes resource-

constrained with limited amount of processing power and memory capacities.

The ability to support PHE and PPE cryptosystems on IoT devices in an effi-

cient manner is a major concern.

R2. Complexity of cryptosystems. Dozens of PHE and PPE schemes exist,

varying by operations supported, efficiency, ciphertext size overhead, etc.; IoT

application developers such as health care app engineers do not necessarily

possess sufficient knowledge of cryptosystems and their properties to judiciously

select among these.

R3. Complexity of queries and data. Analytical continuous queries can be-

come quite complex, leading to intricate intertwining and combining of data

items throughout lengthy sequences of processing stages. Tracking of data lin-

eages becomes complex, yet it is necessary to determine which PHE or PPE

schemes need to be applied to initial input data.
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R4. Application variables & constants. Variable initialization and constant

values in queries must be carefully handled to preserve the confidentiality re-

quirements.

R5. Inherent limitations. As hinted to by their names, PHE schemes do not

support arbitrary operations. To overcome this limitation, either the query pro-

cessing can continue on the trusted client side after the intermediate results have

been decrypted or alternatively, the intermediate results can be re-encrypted to

the schemes required by subsequent operations, after which computation can

proceed in the cloud.

R6. Key compromises. With applications running continuously and potentially

indefinitely, secret keys used for encryption need to be updated periodically or

on demand (e.g., when a device such as a health monitor is compromised). Such

updates on IoT devices should be made transparently to the IoT application

and should not cause disruptions to the execution of continuous queries or lead

to missing results.
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6.1.3 C3PO

This chapter presents C3PO (Cloud-based Confidentiality-preserving Continuous

Query Processing)1, a novel managed runtime system, that leverages PHE and PPE

to provide confidentiality for IoT applications delegating online streaming jobs to

the public cloud. C3PO operates on streaming data without revealing any plaintext

information to the untrusted cloud. Figure 6.2 gives a high-level overview of the design

of C3PO. A user designs, implements, and initiates the continuous query application

that runs in the untrusted cloud, using the C3PO steam processing system. IoT

devices automatically encrypt generated data before emitting them as part of streams

for analysis. These devices can optionally be assigned to different groups for added

security as discussed in Section 6.5. Additional streams of encrypted private data

required for analysis can be sent independently from a trusted tier maintained by the

user.

In short, to perform analytics in the untrusted cloud over encrypted data while

at the same time addressing R1-R6, C3PO:

• introduces PHE and PPE optimization techniques (e.g., field masking, pre-

computation, ciphertext packing, caching and speculative encryption) to reduce

encryption time and ciphertext size overhead and provides efficient implemen-

tation of these techniques so they can run on IoT devices (R1);

• enables programmers to develop applications using the C3PO API for typical

plaintext streams and automatically transforms the application to work with

encrypted streams. Developers can focus on the application logic and not on

the details of the underlying cryptosystems, nor which specific cryptosystem

to use for each part of the application (R2, R3) or how to handle variable

initialization and constant encryption (R4);

1In the Star WarsTM saga, C-3PO is a risk-averse droid with a strong need for security and stability.
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• is capable of continuing computation in the trusted tier or re-encrypting (parts

of) a data stream to enable further computation in the public cloud if a given

sequence of computations cannot be performed due to PHE limitations (R5);

• supports transparent periodic and on-demand update of secret keys on IoT

devices and enables partitioning of data spaces (IoT groups) to reduce key

sharing (R6).

6.1.4 Contributions and Outline

In this chapter we thus make the following contributions. We

1. introduce a secure stream abstraction that gives rise to a high-level API through

which programmers can express confidentiality-preserving analytics programs

that can be executed efficiently in public clouds, without having to know the

details of underlying cryptosystems.

2. present the C3PO system that implements this API and addresses related chal-

lenges, building on the well-known Apache Storm2 system. C3PO analyzes pro-

grams written using the C3PO API and identifies computations that can be

executed purely on encrypted data and computations that, due to the limita-

tions of PHE, cannot. C3PO maximizes the amount of computation performed

in the cloud by splitting computation between the untrusted cloud and a small

number of trusted nodes (trusted tier).

3. present extensions and optimizations to existing PHE and PPE schemes to make

them more practical for use in resource-constrained devices.

4. present key management schemes that limit breaches in cases of key compro-

mises by partitioning data in an application-aware manner, and by supporting

on-the-fly key changes without disrupting the execution of continuous queries.

2http://storm.apache.org

http://storm.apache.org


117

5. propose a heuristic that analyzes resource availability and requirements and

generates a deployment profile that optimizes cloud resource usage.

6. evaluate the implementation of C3PO on multiple benchmarks and case stud-

ies. Our results indicate that C3PO can be used to express many real-world

IoT applications while ensuring confidentiality transparently and keeping low

overhead.

The remainder of this chapter is organized as follows. We present background

information on continuous queries in Section 6.2. We give an overview of our solution

in Section 6.3 including the assumed threat model and architecture of C3PO. We

present the programming model of C3PO and its runtime in Section 6.4. In Section 6.5,

we discuss key management in C3PO. We discuss implementation details of C3PO in

Section 6.6. We present our evaluation results in Section 6.7. Section 6.9 presents a

conclusion to this chapter.

6.2 Background

In this section, we discuss relevant details of systems that support continuous

queries.

6.2.1 Continuous Queries

The core abstractions offered by systems that support continuous queries are

streams, tuples, and fields. Streams are unbounded sequences of tuples. Each tu-

ple within a stream contains one or more fields with each field having an associated

name. Values of each field can be accessed by dereferencing a tuple by the field name

or the field index. Tuples in a same stream have the same set of fields (with distinct

values). The tuples in the stream are processed in a distributed fashion. Application

logic is arranged as a directed graph where vertices of the graph are computation

components and edges are streams that represent the data flow between components.



118

Source
v1

v2

v2

v3

v3

v3

v4

v4

v4

Graph vertex

n1

Task
Node in public cloud
Node in trusted domain

n2 n3

v1

v2 v3

v4

s1

Graph stream

s2

s3 s4

Fig. 6.3.: C3PO graph and tasks.

Application programmers write application logic for vertices of the graph. A subset

of these vertices are also designated as source vertices. Source vertices act as entry

points for data into the graph. Source vertices typically read data from a queue,

log file, or external subscriptions. As data is generated in real time and added to a

queue, it is picked up by source vertices and forwarded down the graph for processing

according to a grouping clause (described below).

Figure 6.3 shows an example graph with four vertices with v1 designated as the

source vertex. The figure also shows streams s1 − s4. Each vertex of the graph may

have multiple runtime instantiations called tasks. Vertex v1 has one task running on

public node n1 (a node represents a virtual or physical machine), v2 has two tasks

running on public node n1, and v3 has three tasks running on public node n2. Finally,

v4 has three tasks running on a trusted node n3. We refer to this assignment, i.e.,

the specific number of tasks per vertex, as the deployment profile of the graph.

The stream emitted by each vertex is declared explicitly in the vertex itself. Once

all vertices of the graph are designated, the graph is assembled by defining the input

stream of each vertex and specifying the grouping clause of each stream. A grouping

clause defines how tuples in a stream are partitioned among the tasks of a vertex

that receives the stream. This grouping clause is also part of the definition of the

graph and is provided by the programmer. Common grouping clauses are: a) shuffle

grouping – tuples are distributed randomly across tasks in such a way that each task
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gets an equal number of tuples, b) field grouping – tuples are partitioned according

to a designated field and distributed among tasks, and c) all grouping – the stream

is replicated across all tasks.

6.3 C3PO Design

In this section, we give an overview of C3PO’s main components. We first introduce

C3PO’s threat model and discuss some assumptions about the IoT devices used in C3PO.

We then present C3PO’s program abstractions and runtime execution flow.

6.3.1 Threat Model

The goal of C3PO is to preserve data confidentiality in the presence of a semi-honest

adversary. We assume the adversary has access to the cloud nodes and can observe

data residing in the nodes as well as the execution of applications and any generated

intermediate results. We assume that the adversary cannot make changes in the

queries, results or data stored in the cloud and consider integrity and availability

attacks to be out of scope for our system.

We also consider physical IoT device compromises out of the scope but assume that

IoT devices have a memory-protected area where secret keys can be stored and the

application logic as well as the encryption scheme implementation reside in a tamper-

proof ROM. With these security measures we first assume that IoT devices are not

compromised and focus on preserving the confidentiality of data in the untrusted

cloud. We later relax this requirement and show how encryption keys of IoT devices

can be updated in case of a compromise (Section 6.5). We assume that C3PO has

access to a limited set of trusted resources outside the cloud (e.g., where the query

results are used). As we will see shortly, this environment is leveraged to perform a

few specific computations.

C3PO preserves data confidentiality by utilizing a set of encryption schemes. As

previously mentioned, some of these encryption schemes such as OPE and DET
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schemes are deterministic and are known to provide lower security guarantees or

even reveal partial plaintext [20–22]. C3PO minimizes the security implications of

using these schemes by issuing a warning to the programmer when the application

requires to use OPE or DET, giving the option to the programmer to either deploy

the parts of the query that require OPE or DET operations on the trusted resources

at the expense of performance, or deploy the application as is, an option which could

be viable if the data requiring OPE or DET holds semi-sensitive or high entropy

information such as timestamps. As part of our future work, we plan to replace the

OPE and DET schemes C3PO currently uses with recently introduced schemes that

offer semantic security [23] as soon as their implementation becomes available.

6.3.2 Assumptions

We present the assumptions about IoT devices and their connectivity considered

in C3PO.

IoT device classes We assume that IoT devices used in C3PO are of the C2 class

or higher (see RFC7228 [109], “Classes of Constrained Devices”) with at least 50KB

of RAM and CPU operating at frequency of at least a few 10s of MHz. A large range

of IoT devices are included in this category, such as the ones shown in Figure 6.1.

In addition, we assume that IoT devices are in the E9 class of energy limitation

(RFC7228 [109], “Classes of Energy Limitation”) with no direct quantitative limita-

tions to available energy. We plan to incorporate battery-powered IoT devices with

limited energy capacity and examine the effect encryption has on battery life as part

of our future work.

Key sharing Managing encryption keys for IoT devices in a distributed setting is a

challenging problem [110,111]. With no trusted party, keys can be pre-distributed by

being hardwired into the device. Such hardwired keys can then be used to establish

new secret keys [112]. In C3PO we consider a case where all IoT devices are owned by
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a single party (for example, a healthcare provider that issues health monitoring IoT

devices). IoT devices are connected to the Internet and are capable of establishing

a secure, authenticated channel to the device owner (key manager), allowing keys to

be updated using standard protocols (TLS [113]) following the approach of previous

work [114].

6.3.3 PHE and PPE for IoT Devices

To ensure the confidentiality of data, sensitive information needs to be encrypted

at source, before sent to the public cloud for processing. Therefore, data is generated

and encrypted on IoT devices. Oftentimes, encryption of PHE and PPE schemes is a

computationally expensive operation and a straightforward use of these schemes on

IoT devices with limited resources is unlikely to be practical. In the following para-

graphs, we discuss how the set of extensions and optimizations presented in Chapter 3

can be used to reduce the time and space overhead associated with PHE and PPE

encryption, making these schemes more practical for use in resource-constrained de-

vices, thereby addressing challenge R1. C3PO uses the same encryption schemes used

in Cuttlefish (see Table 4.2) with the exception of the ASHE cryptosystem. We pro-

vide details about their implementation in Section 6.6. In Section 6.7.2, we evaluate

PHE and PPE on a range of IoT devices in the C2 class and higher (Section 6.3.2)

with the most constrained device having a 72 MHz CPU and 64 KB RAM, which

corresponds to wearable devices or embedded appliances.

Post-encryption packing C3PO uses post-encryption packing (Section 3.4) which

is particularly useful for continuous queries applications, since these applications often

retain aggregated values over long periods of time, e.g., to keep track of daily, weekly,

monthly or yearly statistics. These aggregated values can be packed together as a

single ciphertext value. We demonstrate the effect of post-encryption packing in

Section 6.7.4.
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PRN pre-computation Oftentimes IoT devices take measurements sparsely and

have plenty of idle time in between measurements. In C3PO, IoT devices use this

otherwise idle time to perform PRN pre-computation (Section 3.5) and store a small

number of pre-computed components for Paillier (Equation 3.13) and ElGamal (Equa-

tion 3.15). As shown in Section 6.7.2 pre-computation has a drastic improvement on

encryption performance.

Ciphertext caching IoT devices in C3PO use ciphertext caching (Section 3.6) to

store a map of plaintext-ciphertext value pairs for deterministic encryption schemes.

The number of items that the map can hold is configurable and adjusted depending

on the memory capacity of each IoT device.

Speculative encryption Similarly, IoT devices in C3PO use speculative encryp-

tion (Section 3.7) to encrypt and store a small number of plaintext-ciphertext value

pairs proactively, during times that IoT devices are idle. Speculative encryption is

more effective when the range of possible values is small, such as when measuring

temperature in a closed environment.

Format-preserving encryption C3PO uses format-preserving encryption (Section 3.8)

to keep the ciphertext size overhead small. Keeping the ciphertext size overhead

small leads to smaller end-to-end latency because a smaller volume of data needs to

be transmitted from the IoT devices to the cloud nodes for processing. But beyond

this, using format-preserving encryption to keep ciphertext size smaller is particularly

useful when this optimization is used in combination with the caching and speculative

encryption optimization described above. Since C3PO supports devices with as little

as 64KB of memory, having ciphertexts of smaller size allows IoT devices to retain a

larger number of cached ciphertexts in memory.
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Fig. 6.4.: C3PO execution flow

6.3.4 Program Abstractions

One of the main challenges of computing over encrypted data is that the applica-

tion developer needs to have a detailed understanding of each cryptosystem used to

encrypt fields of a stream. Adoption of PHE and even FHE for generic application

development will depend on the ease with which a programmer can incorporate the

properties offered by the cryptosystem into their regular programming tasks. C3PO

tackles this problem by offering simple programming abstractions to express and op-

erate on encrypted data streams. Fields representing sensitive data are defined using

the SecField abstraction, irrespective of the kind of operation that needs to be per-

formed on them or the underlying cryptosystem used to represent the field, thereby

relieving the programmer from the task of identifying the cryptosystem required for

the operation that needs to performed. To this end, a programmer simply annotates

the stream with the desired operation and C3PO deduces the cryptosystem that needs

to be used at the source IoT devices. We give more details about the C3PO API in

Section 6.4.

6.3.5 Execution Flow

Figure 6.4 outlines the steps followed by C3PO to set up and deploy an application

securely in an untrusted cloud. Application programmers use the C3PO API and asso-
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ciated annotations to describe a graph which contains the application logic. C3PO then

performs homomorphism analysis on the graph to generate an encryption strategy,

containing the cryptosystems required to execute the graph in a confidential manner.

The encryption strategy is then passed to the key manager that generates keys for

each cryptosystem as described in Section 6.5 and sends them to the IoT devices us-

ing a secure channel. Next, C3PO analytically identifies the number of tasks required

for different vertices and schedules the graph for execution. C3PO leverages the idea

that oftentimes users have some limited (but trusted) computing resources available.

We refer to these resources as the trusted tier. The compute resources in the cloud,

though potentially unlimited for practical purposes, are untrusted. C3PO utilizes the

trusted tier for application development and compilation and uses the cloud for the

deployment phase. In deployments that require resources from the trusted tier, C3PO

tries to minimize their usage. The deployment steps are detailed in Section 6.4.3.

6.4 C3PO Stream Processing

In this section, we describe the programming abstractions used in C3PO and explain

how these abstractions are used in addressing challenges R2-R5 and leveraged for

improving performance.

6.4.1 Programming Model

Application programmers use the abstractions provided by our C3PO Java API

to specify the C3PO graph. Each vertex in the graph is designed as a separate class

by extending the C3POVertex class. The stream emitted by each vertex is declared

explicitly in the vertex itself. Once all vertices are designed, the graph is put together

by defining the input stream of each vertex and specifying the grouping clauses.

Abstractions Next, we explain the abstractions that are new to C3PO over typical

stream processing systems such as Storm:
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C3POVertex: This base class is extended by programmers to express the computation

in a vertex of the graph. The class provides the execute() method which is invoked

by C3PO when a tuple containing SecFields arrives at a vertex for processing.

SecField: Programmers use this class to realize the abstraction of secure field that

refers to a confidential input field. Programmers can get a reference to a SecField

value in a tuple using the SecField.getField() method or by reading an encrypted

value directly from a stream.

SecOper: The secure operator class provided by C3PO allows programmers to express

standard operations such as add, subtract, multiply, divide, compare, equals,

and match. Both primary and secondary operations listed in Table 4.2 are ex-

posed through functions of the SecOper class. These functions take SecFields

(or a SecField and an int value for secondary operations) as input and return

a SecField for arithmetic operations, a Boolean value for equality comparisons and

string matching operations or an integer (-1, 0, or 1) for order comparisons.

@encOperations: Programmers can also annotate each stream with the operations

they want to perform on that stream through the @encOperations annotation.

These annotations enable our compile-time graph analysis to identify the suitable

cryptosystems for performing these operations and to apply additional performance

improvement techniques, introduced shortly in Section 6.4.2, without requiring a

modified compiler.

Example Listing 6.1 shows a code snippet used in a C3PO vertex class extend-

ing the C3POVertex class (Line 3). The code is part of a graph that keeps track

of the sum of values in different groups within a sliding window — last 60 seconds

(numSlots = 60) in this example, as indicated by Line 4. The input tuple contains

two fields: the group name and the value for that group. The code shown retrieves

the group and value fields from the input tuple (Lines 9, 10) and updates the sum

for that group’s current time slot (Line 11) with the value. Note that the annotation
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1 // Code executed when a vertex receives a tuple

2 @encOperations(operations = {"{eq}", "{sum }"})

3 public class C3POSumVertex extends C3POVertex {

4 SlotBasedSum <SecField > slidingWinGroupSums = new

SlotBasedSum <SecField >(60);

5 public void execute(Tuple tuple) {

6 //if timing tuple ...

7 emitCurrentWindowCounts(slidingWinGroupSums);

8 //else ...

9 SecField group = SecField.getField(tuple , 0);

10 SecField value = SecField.getField(tuple , 1);

11 slidingWinGroupSums.updateSum(group , getCurTimeSec (), value);

12 }

13 }

14

15 // Class that keeps track of sum of values per group in each time

slot

16 public class SlotBasedSum <T> {

17 ...

18 public void updateSum(T group , int slot , SecField value) {

19 SecField [] sums = groupSums.get(group);

20 if (sums == null) {

21 sums = new SecField[this.numSlots ];

22 groupSums.put(group , sums);

23 }

24 sums[slot] = SecOper.add(sums[slot], value);

25 }

26 }

Listing 6.1: C3PO code for finding the sum of each group in a sliding window.

@encOperations(operations = {"{eq}", "{sum}"}) in Line 2 indicates to the com-

piler that the first field of the steam is used in equality comparisons and the second

field in summing. Every time the vertex receives a timing tuple, signifying a minute
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1 public class SlotBasedSum <T> {

2 ...

3 PaillierPK publicKey = readPaillierPubKey ();

4 public void updateSum(T group , int slot , BigInteger value) {

5 BigInteger [] sums = groupSums.get(group);

6 if (sums == null) {

7 sums = new BigInteger[this.numSlots ];

8 groupSums.put(group , sums);

9 }

10 sums[slot] = (sums[slot] == null) ? value :

11 sums[slot]. multiply(value).mod(publicKey.N.pow (2));

12 }

13 }

Listing 6.2: Code for finding the sum of each group in a sliding window without C3PO

abstractions.

has elapsed (code omitted), it emits the sum of all groups in the current sliding

window (Line 7). The object maintaining the sliding window internally contains a

map and updates the group’s sum every time the updateSum() method is called using

C3PO’s SecOper.add() method (Line 24).

Listing 6.2 shows just the function updateSum() from Listing 6.1 written without

using C3PO abstractions. As can be seen, this example includes several implementa-

tion complexities and requires the programmer to a) know that Paillier is the correct

cryptosystem to use for performing additions, b) explicitly read the Paillier public

key (Line 3) which contains the generator, g and the modulus, N , and c) perform the

exact computation ψ (see. Equation 2.1) for homomorphic addition with Paillier —

multiplication modulo the square of the modulus N of the public key (Line 11) — in-

cluding handling of null values (Line 10). These implementation complexities are not

specific to summation and the Paillier cryptosystem. For example, ciphertexts of the

ElGamal cryptosystem contain two components and homomorphic multiplication of

two ciphertexts is achieved by multiplying the two components of the ciphertexts con-
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secutively to generate the encrypted result. Similarly, equality and order comparisons

over encrypted data require non-trivial computations over the ciphertexts. The C3PO

API hides all these implementation complexities from the application programmer.

6.4.2 Processing Secure Streams

We now give details on how we tackle the challenges R2-R5 introduced in Sec-

tion 6.1.2 when processing continuous queries over encrypted streams.

Identifying encryption schemes (R2, R3) This step identifies the cryptosystems

that are required for the various fields based on the operations that the application

wishes to perform on those fields. To apply these inferences, C3PO first has to iden-

tify different streams and their grouping clauses in the application logic. These can

be derived from the graph declaration provided by the application programmer as

explained in Section 6.4.1. Secondly, C3PO derives the operations performed on each

stream from program annotations (@encOperations) in each vertex class in the graph.

Once C3PO derives the distinct streams and operations to be performed on those

streams, we can proceed similarly as in our prior work [36] to infer the cryptosystems

required to execute the graph. In brief, we start by constructing an expression tree

where fields in tuples form the leaf nodes. Operations performed on those fields

form the non-leaf nodes. For C3PO graphs, we use field annotations (as specified in

Section 6.4.1) to determine the non-leaf, operator nodes. For each operator, a lookup

table identifies the cryptosystem of the operands and result of the operator. Our

goal now is to identify the cryptosystem in which all the leaf nodes (fields) should be

encrypted. This can be done by identifying the parent operator node for each leaf

node and using the lookup table to identify the type of cryptosystem required for

operands for that operator node.

Handling public streams (R3) Sometimes a program may involve plaintext data

from public streams, such as stock quotes, as part of an application logic. Even
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though this data is public it can still be used in combination with private, encrypted

streams to carry out useful computations. C3PO achieves this by allowing vertices to

receive tuples containing both encrypted (SecField) and plaintext data. Through the

use of the secondary homomorphic operations described in Section 2.2, SecFields and

plaintext data can be combined without compromising the confidentiality of sensitive

data.

Field masking (R2) Computing on encrypted data introduces the additional chal-

lenge of dealing with operands with increased sizes. For instance, an addition of two

32-bit int operands in plaintext may transform into an operation over 4096-bit en-

crypted operands in the encrypted data stream. This means a factor of 128 increase in

the operand size. Typically, in stream processing systems, the source vertex receives

all the fields in the stream, irrespective of a field being used or not. For plaintext

program graphs, this is usually not a substantial overhead and the additional com-

putation required for removing unused fields may not always offset the improvement

that is observed. When the computation happens over encrypted data, filtering out

fields has a much more significant impact because of the size of the fields. For exam-

ple, consider a stream with two fields similar to the stream used for group by...sum in

Listing 6.1. The first field is encrypted under a deterministic (DET) scheme and occu-

pies 16 bytes, and the second field is encrypted under Paillier and occupies 512 bytes.

If there is a continuous query which finds unique groups, the second field will be un-

used. Simply removing the unused field reduces the size of a tuple from 528 bytes to

16 bytes. C3PO performs this unused field removal automatically using field masking.

Since an unused field may be at any index within a tuple, if we simply drop the field,

program logic that accesses other fields using their indices may fail. To avoid this

problem, during compile time C3PO keeps track of the indices of unused fields and

appropriately adjusts all other indices that appear in program logic. To identify un-

used fields, C3PO relies on the stream annotations described in Section 6.4.1. For each

vertex, we identify fields for which no operations are specified. Our masking process
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itself is very lightweight. Since we have information about fields to be masked at com-

pile time, we update the C3PO runtime with this information. C3PO then suppresses

the emission of the masked fields.

Initialization and constants (R4) Oftentimes, application logic requires vari-

ables to be initialized to a specific value, say α. To preserve confidentiality, value α

cannot remain in plaintext and should instead be encrypted under the appropriate

cryptosystem during program compilation. To identify the appropriate cryptosys-

tem for encrypting α, C3PO first identifies the operation and the SecField that α is

used in. Then C3PO uses the @encOperations annotation to identify the cryptosystem

used to encrypt the relevant SecField and uses the same cryptosystem to encrypt α.

Similarly, C3PO encrypts any constants in the application.

Automatic re-encryption (R5) Once the analyzer determines the cryptosystems

required for each stream, it may detect situations where some operations cannot be

performed over the available cryptosystems in the cloud. This can occur if there is a

mismatch between parent and child operator nodes because they express operations

not supported by the same cryptosystem. To get around this issue, C3PO can decide

to either perform those operations in the trusted tier, or to re-encrypt the stream in

the trusted tier. For re-encryption, C3PO inserts special re-encryption vertices into

the graph and marks them so they get scheduled on the trusted tier only.

6.4.3 C3PO Scheduler

The primary responsibility of the C3PO scheduler is to decide on which host ma-

chine(s) each vertex of the graph will be executed. The C3PO scheduler is provided

with two lists of hostnames, one that lists hosts in the untrusted cloud, and another

that lists hosts in the trusted tier. The scheduler reads the graph annotation to

identify where each vertex must be executed.
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For components that need execution in a trusted tier, the scheduler sends the

appropriate class files to the worker instances running in the trusted tier. The trusted

tier workers have access to private keys that are required for encryption/decryption.

The workers in the untrusted cloud only see the encrypted data and have access only

to the public keys required to perform the homomorphic operations.

We note that the scheduler service can also run in the untrusted cloud. An attacker

can try to manipulate the scheduler in the following two ways:

(i) by trying to execute trusted vertices in the untrusted cloud, and

(ii) by trying to execute untrusted code in the trusted tier.

The former way does not compromise confidentiality since the untrusted cloud

does not possess the private keys required to reveal the plaintext data. However,

the latter can compromise confidentiality if the attacker is successful in executing

malicious code that retrieves private keys or read data when they are in plaintext

while being re-encrypted. To avoid this, a hash of the vertices to be executed in

the trusted tier is generated before deployment. When tasks are delivered to the

trusted tier for execution, the trusted tier first computes a hash of the task class, and

compares it with the hash generated before deployment. Execution proceeds only if

the hash is verified.

6.5 IoT Key Management

To reduce the risk of secret keys being compromised in continuous query applica-

tions, C3PO updates keys periodically or on demand without causing disruptions to

query executions. In this section we, thereby, address challenge R6, and describe key

management in C3PO, with particular focus on replacement and sharing of keys.
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6.5.1 Key Sharing

As mentioned in Section 6.3.2, we consider a setting where all IoT devices are

owned by a single party and managed by a trusted key manager that distributes keys

to IoT devices. In order to limit the sharing of keys across devices and over time we

employ the following techniques in C3PO:

• Key updates: allow updating encryption keys periodically (or in the event of a

key compromise) without breaking stream outputs.

• Multi-group mode: limit the number of devices that share an encryption key

by splitting devices into multiple groups, each with a different key.

• Field level key identification: ensure fields that are not part of a common oper-

ation do not share encryption keys.

6.5.2 Key Update

One of the challenges of using homomorphic encryption for IoT-based streams is

that applications are often long-lived, which increases the chance of key compromises.

To mitigate this, C3PO allows the encryption keys to be updated, periodically or

on demand. Periodic key updates could be part of a security policy. Further, if

a key has been compromised, an on-demand key update is initiated. Due to the

nature of continuous queries and because of the fact that homomorphic operations

can only be carried out on operands encrypted with the same key, key updates are not

straightforward. Therefore, we first start with an explanation of how keys are updated

in the general case and then present how to handle queries that involve computations

such as aggregated values or sliding windows. Then, we present a method that helps

reduce the number of keys that need to be updated in case of a key compromise.

General case C3PO supports key changes without disrupting the output. Usually,

all IoT devices are considered to form a single logical group, and share the same
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(a) Näıve key update. Values in cyan (x1, x2) are encrypted using key k1 and values in orange

(x3, x4, x5, x6, x7) are encrypted using key k2. Aggregate queries will be broken because the

aggregation window contains values encrypted with different keys.
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(b) Key change in C3PO. Values x3, x4, and x5 are encrypted using both old and new keys which

enables C3PO to produce continuous output.

Fig. 6.5.: Key change in continuous queries. Streams flow from left to right (rightmost

element, x1, is oldest). After x2 is emitted a key change is initiated.

keys. A direct consequence of this is that every key leak will result in all devices

needing to update their encryption keys, a problem which we address shortly with

our multi-group mode. When a key change is initiated by the key manager, each IoT

device first emits a key change marker that includes the new key identifier. When

the C3POVertex base class detects the key change marker in the stream, it creates a

new instance of the application vertex class to process the stream. Any encrypted

constants or literals involved in the computations are re-encrypted under the new

key, by invoking the trusted tier, at which point computation is moved to the new

instance and the old instance is abandoned.

Sliding window The general case described above does not consider queries that

contain computations involving older values received via the stream such as com-

putations involving a sliding window. An example of such computation would be a

query that computes the sum of the last few received items (or similarly, the sum of

a certain time interval based on timestamps). In this case, results of computations

that occurred under the previous key must be included in subsequent computations.
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C3PO follows the same process as before and the stream encrypted with the new key is

channeled into the new instance of the vertex class but this time the stream encrypted

with the old key continues processing uninterrupted. Instead, C3PO suppresses emis-

sions from the new vertex instance until the new instance contains tuples spanning

the full length of the sliding window. At this point, the old instance of the application

vertex class is discarded and the stream from the new instance is emitted. Figure 6.5

illustrates this. 6.5a shows the effect of a näıve key change in an encrypted data

stream. Values are first encrypted with key k1 and then k2. Aggregations with slid-

ing windows that span values encrypted with both keys will fail. In 6.5b, when a key

change is initiated, a specific number of values (equal to the size of the aggregation

window) are encrypted with both keys k1 and k2. This allows aggregations to preserve

semantics, i.e., avoid any disruption in output.

This solution works well as long as the sliding window is small. For large sliding

windows, or for queries with aggregation functions that span the entire duration of

the query, the above solution becomes inefficient, since for every key change, and as

long as the sliding window does not end, another stream is added. Instead, C3PO

handles this case by using the trusted tier to re-encrypt the current aggregated result

under the new key. After the re-encryption step, the query can correctly handle tuples

encrypted with new keys.

6.5.3 Multi-Group Mode

To reduce the surface of affected devices in the event of a key compromise, C3PO

introduces the multi-group mode. In this mode, IoT devices are grouped into logical

subsets and a different key is assigned to each set (where otherwise the key would be

the same). IoT devices can be grouped together based on any user-defined criteria.

Devices that are behind the same gateway usually make a good grouping. This allows

us to update the encryption keys of devices behind a specific gateway independent of

devices outside the gateway.
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1 public class C3POSumCombiner extends C3POCombiner {

2 Map <SecField , SecField > mergeMap = new HashMap <SecField ,

SecField >();

3 @override

4 public void combine(SecField group , SecField value) {

5 mergeMap.put(group , SecOper.add(mergeMap.get(group), value))

6 }

7

8 @override

9 public void emit() {

10 for (Map.Entry <SecField , SecField > entry : mergeMap.entrySet ())

11 emit(new Tuple(entry.getKey (), entry.getValue ()));

12 }

13 }

Listing 6.3: C3PO combiner implementation for aggregation in multi-group mode.

Operations across groups. At the processing end, multiple groups lead to addi-

tional tasks for C3POVertex. This is because when there are multiple groups using

different keys, C3PO cannot combine results from all groups entirely in the cloud.

In order to complete such queries, C3PO keeps track of each device group and saves

query results of each group separately. The results from each individual group are

then combined together to get the full result at the client site. Note that C3PO in-

ternally does not truly distinguish between single-group and multi-group modes; the

former is simply a special case of the latter with 1 group.

Key updates So far the discussion about key updates assumed a single logical

group containing all IoT devices. In this setting, in case of a key compromise, all

devices need to replace the compromised key with a new one. The multi-group

mode allows us to initiate key updates for any individual group. Listing 6.3 shows a

C3POCombiner implementation for the group by... sum example shown in Listing 6.1.

In multi-group mode, each stream with multiple groups is associated with a combiner
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capable of combining the results of all key groups. In this example, the combiner class

overrides the combine() and emit() functions in the C3POCombiner base class (Lines 4

and 9). The combine() function sums values corresponding to the same key group,

generates intermediate sums per group and stores them in a map with the group as

key and the sum as value of the map. Once all values per key are combined the emit()

function emits each key-value pair as a separate tuple. The receiver of these tuples (1

tuple per group) can finally compute the total sum by adding the intermediate sums

together, after decrypting them.

6.5.4 Key Identification

For operations to be performed over encrypted data, fields involved in a same

operation need to be encrypted using the same key. Inversely, fields not involved in

the same operation need not use the same key, to prevent leaking relations between

fields unnecessarily and to minimize the impact of a compromised key. For exam-

ple, to perform the operation x1 + x2 both x1 and x2 need to be encrypted under

the same cryptosystem that allows addition and using the same key, otherwise the

operation will generate the wrong result. Separately, if we also need to perform the

operation x3 + x4, then x1 and x2 need to be encrypted under the same key but x3

and x4 can be encrypted under a different key even though all four fields need to be

encrypted under an AHE scheme to carry out the addition operation. We capture

these field groupings by assigning fields into “field families” that indicate which fields

are involved in the same operations, directly or indirectly. Following this intuition

we derive two invariants that need to hold for all keys, to minimize data leaks while

preserving program correctness.

I1. Correctness Fields involved in the same kind of operations and belonging to the

same field family need to be encrypted with the same key.

I2. Security Fields involved in different kind of operations or (either or) belong to a

different field family need to be encrypted with different keys.
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Fig. 6.6.: C3PO Key management

6.5.5 Key Generation

The key manager uses key group information and the encryption strategy gen-

erated during the homomorphism analysis step of the compilation to decide how to

generate keys, as shown in Figure 6.6. It then associates a key to each field in a

manner that satisfies invariants I1 and I2 introduced above. More specifically, keys

are generated based on the equation given below:

Kc,f,g = PRPMK(c, f, g)

where PRP is a pseudo-random permutation (e.g., AES block cipher) and MK is the

master key, known only to the key manager, from which all other keys are derived.

Furthermore:

Cryptosystem c: c indicates the cryptosystem the key is used for. Since the cryptosys-

tem used indicates the operation that can be performed over encrypted data, by

invariant I2, different cryptosystems should lead to different keys.

Field family f : f indicates the field family of fields. By invariant I1 fields of the same

field family need to be encrypted under the the same key. For different field

families, C3PO uses a different f which will generate a different key, even if the

cryptosystem is the same.

Group g: g captures the group identifier to support multi-group mode. In the general

case (single-group mode), there is simply a single all-encompassing group.
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Once the keys are generated, the key manager opens a secure channel with each

IoT device and sends only the keys each device requires, according to what fields each

device generates and what group it belongs to. To keep track of what keys are sent to

each device and to be able to identify which devices need to be sent new keys during

key updates, the key manager keeps a map of key IDs per device (key metadata).

6.6 Implementation

In this section, we lay out some of the implementation details of C3PO.

6.6.1 Storm Integration

C3PO’s processes in the cloud are implemented by modifying Apache Storm. Storm

is an online, distributed computation system. Application logic in Storm is packaged

into directed graphs called topologies. Vertices of the topologies are computation com-

ponents and edges represent data flow between components. There are two types of

components in Storm: a) spouts that act as event generators, and b) bolts that capture

the program logic. In other words, spouts produce the data streams upon which the

bolts operate. Modifications to Storm are limited to implementing a new scheduler

by overriding the IScheduler interface and to the way a Storm topology is submitted

(StormSubmitter and related classes). These changes add an additional 1031 lines of

Java code to Storm. The C3PO programming interface and cryptographic classes that

allow computations over encrypted data (but do not include encryption/decryption

functions) are packaged as a separate jar library, implemented in 3633 lines of Java

code. The key manager is implemented in 900 lines of Java code and uses DTLS [115]

to establish an end-to-end secure channel with IoT devices. Key metadata are stored

in XML files and the key manager includes an XML parser to retrieve this data.
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6.6.2 Cryptosystems

Our cryptosystems including the extensions and optimizations described in Chap-

ter 3 are implemented in C3 and accessed where necessary through Java Native In-

terface (JNI). Randomized encryption (RND) is implemented using the AES [116]

cryptosystem in CBC mode with a random initialization vector. Deterministic en-

cryption (DET) is implemented using an AES pseudo-random permutation block

cipher with a variant of CMC mode [16] with a zero initialization vector. FNR [45] is

used as an alternative DET cryptosystem to preserve the format of small values. The

Boldyreva et al. [17,46] cryptosystem is used as our OPE scheme implementation. We

implement an extended version of Song et al. [18] cryptosystem as our SRCH scheme

that supports all 4 constructions described in Section 3.3.

We implement the Paillier [5] cryptosystem as our AHE scheme and follow the

approach introduced by Damg̊ard and Jurik [9] to set the generator g = N + 1 for

a more optimized implementation of encryption. We also use the Chinese Remain-

der Theorem to optimize the decryption function of Paillier. Finally, we implement

ElGamal [10] as the MHE scheme. Paillier and ElGamal require arbitrary precision

arithmetic computations as part of their encryption, decryption, and homomorphic

operations. We implement 3 different versions of Paillier and ElGamal, each using a

different arbitrary precision arithmetic library, since not all these libraries are sup-

ported on all IoT devices. We use the GMP library [117] (version 6.1.2) and its mpz

arithmetic primitive when available. Alternatively, we use the OpenSSL library [118]

(version 1.1.1) and its BIGNUM arithmetic primitive. For highly resource-constrained

devices that do not support GMP or OpenSSL we use the BigDigits library [119] (ver-

sion 2.6) and its BIGD arithmetic primitive which is a very small but less optimized

library.

3https://github.com/ssavvides/homomorphic-c

https://github.com/ssavvides/homomorphic-c
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6.7 Evaluation

In this section, we present an extensive evaluation of C3PO using standard bench-

marks and use cases. Our evaluation shows that C3PO can preserve confidentiality by

executing on encrypted data with 20−30% higher latency and around 23% reduction

in throughput.

6.7.1 Synopsis and Overview

We use several scenarios for evaluation as follows:

Encryption latency : We first assess the feasibility of using C3PO with IoT devices that

are resource-constrained, by analyzing the encryption latency of various cryp-

tosystems and associated optimizations used by C3PO on IoT devices of the C2 or

higher classes (see Section 6.3.2). These classes include IoT devices in the entire

range shown in Figure 6.1.

Smart meter analytics : We use the Smart* dataset [120] as our input together with

queries adapted from IoTBench [121] to compare the throughput of C3PO to vanilla

Storm. In this scenario volume of processed data is of primary concern. This

includes an assessment of field masking.

Heartbeat analysis : We use a heartbeat analysis application that computes individual

and group statistics. We use this application to evaluate the latency of C3PO;

query response times are critical in such healthcare applications for triggering

emergency responses in a timely manner. This includes an assessment of PRN

pre-computation and post-encryption packing.

Yahoo streaming : We also use a more generic streaming benchmark, namely Yahoo

Streaming Benchmark (YSB) [122] for further evaluating the latency of C3PO.

Latency is critical in this benchmark as the goal is to react quickly to advertise-

ments.
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Multiple groups : We use a microbenchmark to analyze the effects of C3PO’s multi-

group feature.

New York taxi statistics : Finally, we evaluate the costs of re-keying by computing

statistics over a large number of nodes (devices) based on a publicly available

data set [123] from New York taxis released under FOIL (Freedom of Information

Law).

6.7.2 Encryption Latency

To evaluate the feasibility of our approach from the point of view of the end

devices, we consider the encryption latency of various cryptosystems on different

IoT devices. We use 5 devices of different computational capabilities and memory

capacities:

2xl: Amazon AWS m5.2xlarge instance with 3.1 GHz CPU and 16 GB RAM.

Pi3: Raspberry Pi 3 Model B with Quad Core 1.2 GHz Broadcom BCM2837 CPU

and 1 GB RAM.

Pi0: Raspberry Pi Zero W with a 1 GHz 32 bit single-core CPU and 512 MB RAM.

A8: ARM Cortex-A8 with 600 MHz 32-bit microprocessor and 256 MB RAM.

M3: ARM Cortex-M3 with a 72 MHz 32-bit microprocessor and 64 KB RAM.

We evaluate 2 PPE schemes (AES and FNR) and 2 PHE schemes (ElGamal and Pail-

lier), each implemented under different libraries as explained in Section 6.6: 1) the

NTV native implementation of AES4 which is also used internally in the FNR cryp-

tosystem; 2) the OpenSSL library; 3) the GMP library; 4) the BDS BigDigits

library. We use a 128-bit block for AES and a 2048-bit modulus for Paillier and

ElGamal.

4https://github.com/kokke/tiny-AES-c

https://github.com/kokke/tiny-AES-c
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Fig. 6.7.: Encryption latency of various PPE schemes (time in microseconds) across

different IoT devices. y-axis in log scale.
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different IoT devices. y-axis in log scale.

Figure 6.7 shows the execution time for encrypting a random 128-bit string for

AES and FNR and Figure 6.8 shows the execution time for encrypting a random

32-bit int number for ElGamal and Paillier. We observe that if SSL is available, AES

and FNR encryption is very fast taking only 19 us for AES and 36 us for FNR, on

the most computationally constrained device, M3. If SSL is not available, the much
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Fig. 6.9.: Encryption latency of ElGamal and Paillier with PRN pre-computation

(time in microseconds) across different IoT devices. y-axis in log scale.

simpler but less performant NTV implementation can be used which requires 270 us

for AES and 1137 us for FNR on an M3 device.

As expected, encryption using ElGamal or Paillier is a more expensive operation,

since these are asymmetric schemes. Yet in all IoT devices that support the GMP or

the SSL libraries ElGamal and Paillier exhibit decent performance. ElGamal encryp-

tion implemented using SSL takes 3.9 ms on 2xl, 169.6 ms on Pi3, 193.8 ms on Pi0,

and 219.6 ms on A8. Corresponding times for ElGamal implemented using GMP are

slightly higher. Similarly, Paillier encrypted using SSL takes 7.3 ms on 2xl, 331.5 ms

on Pi3, 492.9 ms on Pi0, and 554.7 ms on A8. Due to luck of support for the GMP

library and the BIGNUM primitive in the versions of SSL supported in the M3 device,

ElGamal and Paillier cannot be implemented using GMP or SSL. Therefore, ElGa-

mal and Paillier encryption on the M3 device implemented using the less optimized

BigDigits library is impractical, requiring several seconds to complete. This justifies

the need for the optimizations we propose in Chapter 3.

As shown in Figures 6.9 and 6.10 our proposed optimizations improve the per-

formance of ElGamal and Paillier across all IoT devices dramatically. With PRN

pre-computation, ElGamal encryption implemented in GMP is slightly faster than
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Fig. 6.10.: Encryption latency of ElGamal and Paillier with ciphertext packing (time

in milliseconds) across different IoT devices. y-axis in log scale.

SSL and takes only 0.4 us on a 2xl device, 5 us on Pi3, 18 us on Pi0, and 18 us on

A8. Even in the worst case, ElGamal implemented using the less optimized BigDigits

library takes only 1.7 ms on the most resource-constrained device, M3. PRN pre-

computation has similar benefits for Paillier with the worst case of implementing

Paillier using BigDigits taking 41.6 ms on an M3 device. The ciphertext packing

optimization allows us to pack 2 int values in a single ElGamal ciphertext which

roughly cuts the encryption time in half (packing messages to a single plaintext itself

takes minimal time). Packing is even more effective for Paillier since we can pack

up to 33 int items in a single Paillier ciphertext. The results demonstrate that with

our proposed optimizations, encryption latency of the cryptosystems used by C3PO is

acceptable even in very resource-constrained devices.

6.7.3 Smart Meter Analytics

In this evaluation we study the throughput of C3PO by running a set of analytical

queries to analyze electricity usage of homes. We use the Smart* dataset [120] as

our input. This dataset represents electrical meter readings collected over a 24-
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Table 6.1.: Description of continuous queries used for smart meter analytics.

# Short Description Output

Q1 Number of readings
Total number of readings for a given

time window

Q2 Consumption
Sum of total resource consumption for

a given time

Q3 Peak consumption
Sorted list of aggregate consumption

per 10 s in a given window

Q4 Top consumers
List of distinct consumers, sorted by

their monthly consumption

Q5 Consumption series
Time-series of aggregate consumption

per 10 s in a given

Q6 Billing
Monthly bill for each consumer based

on time of usage

hour period at the rate of 1 reading per minute from 443 unique homes, totaling

637,526 records. Each reading is a tuple of three fields: <timestamp, meter-id,

meter-reading>. We define throughput as the number of tuples processed by the

application graph in unit time. The runtime is configured to avoid dropping tuples

by using a fixed sized queue. When the queue becomes full, the source vertices stop

emitting tuples. When slots in the queue free up, source vertices start emitting tuples

again. To measure throughput, we adapted the queries used in IoTBench [121] for

streaming systems. Details of queries are given in Table 6.1.

We used a time window of 60 s and executed the queries for at least 600 s. We ran

these queries on 4 m3.large nodes on Amazon EC2. For C3PO, one of the 4 nodes was

specified as a trusted tier node. The bandwidth of the trusted node was throttled

to 8 Mbit/s to simulate a wide area network link. The results of our evaluation are
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Fig. 6.11.: Smart meter analytics throughput

presented in Figure 6.11. Q1 simply counts the number of readings and performs at

96% throughput of plaintext stream. Queries Q2 to Q6, all perform Paillier additions

and result in a throughput of 59% to 70% compared to Storm (plaintext) throughput.

The results also show the effect of disabling field masking (C3PO-FM). For Q1, Q2,

Q3 and Q5, we are able to mask one field, resulting in an average of 7% increase in

throughput. Since queries Q4 and Q6 use all the fields in the stream, no fields could

be masked.

6.7.4 Heartbeat Analysis

Next, we study how C3PO can be used for an online health care application like a

heartbeat monitor. The end user application runs on specialized hardware (the mon-

itoring IoT device) and counts the number of heartbeats per minute. The monitoring

device uses PRN pre-computation to efficiently encrypt this value and send it to the

cloud for processing and storing. PRN pre-computation allows us to use IoT devices

with as little computational capabilities as the M3 node described above.

The graph running in the cloud keeps track of daily, weekly, monthly and yearly

statistics. We use post-encryption packing to pack these 4 values into a single cipher-

text, thereby reducing the ciphertext size by 4. The end user may request to see
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these statistics on their device, in which case the data is retrieved from the cloud,

decrypted on the monitoring device and shown to the end user. The statistics are

maintained by two vertices, a “per user” vertex (v1) and an “all users” vertex (v2).

User statistics are distributed across the multiple instances of v1. v1 also emits a

summary of its per user statistics every minute which is grouped by week, month, or

year by v2 to find the average value across all users. The client device emits a message

every time the client requests to see a specific data point, in response to which, the

requested values are retrieved. For this application, the most critical metric is the

response time, i.e., the time a user has to wait after requesting to see a metric until

the metric is displayed.

We deploy v1 and v2 on 3 m3.medium nodes in EC2 and use a single end user

device deployed on an A8 device. We measure the response time as we increase the

volume of incoming tuples to v1 and v2 by simulating additional end user devices using

an Apache Kafka queue. Each of these end user devices, including the one deployed

on the A8 node emits one tuple per minute containing an encrypted timestamp and

the encrypted number of heartbeats.

The results of this evaluation are presented in Figure 6.12 where we compare the

response time of C3PO, C3PO-PP which denotes C3PO with post-encryption packing
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disabled, and Storm. The top part of each stacked column indicates decryption over-

head. We observe that response times for C3PO when excluding decryption time are

very close to the plaintext version for up to 1500 client devices after which C3PO’s re-

sponse time degrades due to the increased load of v1 and v2 compared to the plaintext

stream running on Storm. Decryption is a significant source of overhead. In C3PO

without packing, the end user device receives and decrypts 4 4096-bit Paillier cipher-

texts containing the daily, weekly, monthly and yearly statistics. Packing reduces

that to a single ciphertext which leads to lower network overhead and significantly

lower decryption time (˜4× lower).

6.7.5 Yahoo Streaming

We use the Yahoo Streaming Benchmark (YSB) to study the latency of C3PO.

This benchmark simulates an advertising analytics use case with several advertising

campaigns, each containing several advertisements. The benchmark reads various

events from Apache Kafka, identifies the events relevant to the advertisement cam-

paign, and stores a windowed count of relevant events per campaign. The steps in

this analytical processing pipeline are as follows: a) Read an event (in JSON format)

from a Kafka queue. b) Deserialize the JSON formatted event string into individual
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event fields. c) Filter out irrelevant events, based on the event type. d) Take a pro-

jection of the relevant fields keeping the ad id and the event time. e) Join each event

with its associated campaign. This ad-to-campaign mapping information is stored in

a Redis in-memory data store. f) Take a windowed count of events per campaign and

store each window in Redis along with a timestamp of the time the window was last

updated in Redis.

The input data for this evaluation is generated using a clojure program that

generates uniformly random tuples of the following format:

<user_id:UUID, page_id:UUID, ad_id:UUID, ad_type:String,

event_type:String, event_time:Timestamp, ip_address:String>

These tuples are then sent to the Kafka queue. The results find the latency that a

particular processing system produces at a given input load. The test computes the

latency (in ms) from when the last event was emitted to Kafka for that particular

campaign window and when it was fully processed. Figure 6.13 shows the results of

running this benchmark on encrypted input data (C3PO) and plaintext data (Storm).

The results show that on average C3PO operates with only 23% higher latency than

running the same computation over plaintext data.

6.7.6 Multiple Groups

In this evaluation we look at the effectiveness of using multiple key groups as

outlined in Section 6.5. We evaluate the throughput (tuples/s) of a group by.. sum

operation with varying number of key groups. The devices emit a two field tuple

<group-name, value> and the application finds the total sum of values for each group

for every one minute time interval. A key change is initiated for one of the groups

every two minutes. The devices in the group which is changing the keys will emit

tuples encrypted in the old key and new key for a time span on one minute.

As outlined in Section 6.5, when a key change is initiated, a special key change

tuple is emitted. The C3PO worker node receives the key change notification and
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Fig. 6.14.: Effect of varying the number of key groups.

keeps track of partial results for the new key group until the next time window starts.

Figure 6.14 shows the results. The system runs at a throughput of 1763 tuples per

second when no keys are changed. If an encryption key is compromised and we

are to update the key without using multi-group mode, we have to emit all input

tuples under both the old and new key for the aggregation time window, reducing

throughput to 622 tuples per second. Multi-group mode allows us to change the key

of a specific group, reducing the impact of key changes.

In Figure 6.14, we can see that using multi-group mode, with the number of key

groups increasing to 10, throughput increases from 622 to 1466. The throughput

increases because the impact (number of tuples to be emitted under old and new key)

of an updating a key is smaller. This shows that multi-group mode is an effective

way to update encryption keys.

6.7.7 New York Taxi Statistics

The New York taxi statistics application finds the top 10 most frequent routes

during the last 30 minutes of taxi servicing. A route is represented by a starting

grid cell and an ending grid cell. The data for this application is based on a publicly
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Table 6.2.: Completion and response times for Top-10 taxi routes. In C3POa the entire

stream is emitted under same key. In C3POb the stream is emitted with a new key

every month.

System Completion Time (s) Average Response Time (ms)

Storm 8106 36.05

C3POa 10039 45.10

C3POb 10140 46.61

available taxi data set released under FOIL (Freedom of Information Law). The input

data contains the locations (latitude and longitude) of passenger pick ups and drop

offs, MD5 digests of the medallions of the taxis that picked up the passengers, and

the trip times. The dataset contains records that span over a year. Whenever the

top 10 values change, the output is appended. In other words, for every top-10 tuple

emitted, there is a specific input tuple that caused the top-10 values to be updated.

Response time is defined as the time difference between these two actions. I.e., given

a tuple t that causes the top-10 values to change from tuple top10t−1 to top10t, and

a function T (x) that gives us the time at which tuple x is emitted, response time is

T (top10t)− T (t) In order to evaluate the effect of key changes on response time, we

simulate a key change at the beginning of each month. This means that all data is

emitted with a timestamp within the first 30 minutes of every month will be encrypted

under both the old and new keys.

We deployed this application on 10 m3.large nodes in Amazon EC2. Table 6.2

summarizes the results of these runs. We can see that C3PO with no key changes

completes processing the data with only a 23.8% and 25.1% increase of completion

time and average response time respectively compared to the Storm running on a

plaintext stream. Furthermore, the increase in completion times and average response

times caused by a monthly key change are minimal (about 1%). Figure 6.15 shows the
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Fig. 6.15.: Response time of top-10 taxi route query with monthly key change

response times for the full 10,000 s run to process a year-long data with key changes

in input data every month. In this plot, we can see intermittent spikes (total of 12)

in response time for some tuples around the time a key change is in progress, but the

majority of tuples (90th percentile within 31ms and 99th percentile within 818ms)

respond with the same response time as when no change was in effect.

6.8 Related Work

In this section we overview PHE and trusted hardware based systems that provide

confidentiality in stream processing and IoT settings.

6.8.1 PHE-based Systems

Gentry introduced an implementable FHE scheme [3] which has been becoming

more practical ever since [33, 124], but is still not suited for encryption-enabled con-

tinuous query processing due to its prohibitive cost. Instead, a lot of research work

is focused on using PHE schemes to perform computations over encrypted data. Sec-

tion 4.8 has discussed several such systems.

JEDI [125] is another system, that introduces an end-to-end encryption scheme

that leverages the hierarchical resource structure of IoT systems to delegate keys in a
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decentralized manner across multi-hops. WKD-IBE and AES schemes, and assembly

level optimizations are incorporated to support embedded IoT devices.

Talos [114] is a system that encrypts and stores data specific to the IoT in a

cloud database while still allowing query processing. Talos uses TLS to encrypt

communication between end devices and cloud nodes which offers better security for

data in-transit. Talos also utilizes optimizations proposed in previous work to make

Order-Preserving Encryption (OPE) and Additive Homomorphic Encryption (AHE)

schemes more suitable for IoT devices.

None of these systems consider streaming workloads as supported by C3PO and

therefore do not address issues that arise in this setting, such as key management

to limit the effect of key compromises or efficient cloud deployments for streaming

applications.

The STYX [28, 88] system is an early version of C3PO. STYX promoted similar

programming abstractions as C3PO, but did not allow for limited key sharing in time

(updates) or space (multiple groups). C3PO makes PHE and PPE schemes applica-

ble to resource-constrained IoT devices through the use of novel optimizations and

presents additional empirical evaluation results, in particular with respect to encryp-

tion on IoT devices (and associated optimizations) and key management.

6.8.2 Trusted Hardware based Systems

Another way to enforce data confidentiality is through the use of specialized hard-

ware that provide a trusted execution environment. An approach that is gaining

popularity now is to use an Intel SGX enabled processor which offers a trusted exe-

cution environment (so-called enclaves) in which data computations can be carried

out confidentially. SGX offers hardware encrypted and integrity protected physical

memory, which allows data and code to reside in the untrusted cloud.

SecureCloud [126] shows how SGX can be used to enable secure and private exe-

cution of big data applications in the cloud.
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Havet et al. [127] describe the design of secure streams, a streaming system that

uses SGX to preserve confidentiality. Secure streams use a Lua VM running inside

SGX enclaves to capture worker and router components. Workers handle the appli-

cation logic and routers use a dispatching policy to handle message passing from one

worker to another. Each component is then wrapped in Docker containers for isola-

tion and ease of deployment. Secure streams demonstrate that a streaming system

using SGX is feasible. Instead, C3PO focuses on PHE and does not require specialized

hardware. In addition, C3PO addresses challenges such as managing keys and allows

for different deployments that improve performance.

Trusted hardware approaches are orthogonal to the PHE-approach used by C3PO

and could also be used to extend the design of C3PO by allowing secure computations to

be performed on trusted hardware in an untrusted cloud. Cuttlefish shows the benefits

of using SGX selectively, when hitting the limits of PHE (for re-encryption). Though

promising, practical overall performance of the processor for big data workloads is

yet to be ascertained and immediate widespread adoption of SGX by cloud service

providers seems unlikely in the immediate present.

6.9 Conclusions

We presented C3PO, a practical distributed stream processing system for evalu-

ating continuous queries over encrypted data streams in public clouds. C3PO makes

computations over encrypted data practical for stream processing by using a novel

API, encryption inference, automatic re-encryption, and a set of other original op-

timizations. The C3PO API allows programmers to develop secure applications with

little or no knowledge of the underlying cryptosystems. We evaluated our approach

using standard benchmarks and applications, demonstrating its applicability and per-

formance. Our evaluations show that we can meet latency requirements even with

high volumes of encrypted traffic.



155

7. CONCLUSION AND FUTURE WORK

In this chapter we summarize our work and describe future directions.

7.1 Summary

In the past decade, cloud computing has emerged as an economical and practical

alternative to in-house datacenters. But due to security concerns, many enterprises

are still averse to adopting third party clouds. To mitigate these concerns, several

authors have proposed to use Partially Homomorphic Encryption (PHE), Property-

Preserving Encryption (PPE), and Trusted Execution Environment (TEE) to achieve

practical levels of confidentiality while enabling computations in the cloud. However,

these approaches are either not performant or not versatile enough.

In this thesis, we presented extensions and optimizations to existing PHE and

PPE schemes. The extensions we introduced make computations over encrypted

data more expressive and more secure, while the optimizations we introduced make

computations over encrypted data more performant.

We then presented three systems, Cuttlefish, Symmetria, and C3PO that demon-

strate the practicality of batch and stream based data analytics in untrusted clouds

by performing computations over encrypted data. Our Cuttlefish system was built

on top of Apache Spark and introduced the abstraction of Secure Data Types that

allows an application programmer to specify intrinsic properties about the structure

and constraints of data. In turn this abstraction enables a set of compilation tech-

niques, allowing Cuttlefish to generate more optimized queries. Cuttlefish also

described the design of a planner engine that allows Cuttlefish to smartly utilize

remote and trusted hardware based re-encryption to overcome limitations of PHE.
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Our second system, Symmetria, is a PHE-based system which is also built on top

of Apache Spark. In Symmetria we introduced two novel symmetric PHE schemes,

namely, Symmetric Additive Homomorphic Encryption (SAHE) and Symmetric Mul-

tiplicative Homomorphic Encryption (SMHE). The symmetric nature of SAHE and

SMHE make them more performant than state-of-the-art asymmetric PHE schemes.

Crucially, SAHE and SMHE improve performance of arithmetic computations over

encrypted data while supporting the full range of homomorphic operations that asym-

metric PHE schemes support.

Lastly, we presented our system C3PO which demonstrated the practicality of

stream-based data analytics over encrypted data. In C3PO we introduced techniques

to make encryption on resource-constrained Internet of Things (IoT) devices under

PHE and PPE schemes more efficient. We then showed that continuous query ap-

plications can be expressed through an intuitive API without requiring application

programmers to have knowledge about specific PHE and PPE schemes.

7.2 Future Work

A hybrid model for secure data analytics This thesis has discussed a num-

ber of security mechanisms by which cloud security can be achieved, such as Fully

Homomorphic Encryption (FHE), PHE, PPE, TEE and client side computation. A

possible future direction is one that combines these and other security mechanisms

in ways that preserve confidentiality and offer improved performance. To that end, a

programming model can be defined that enables programmers to express data analyt-

ics but otherwise hides the complexities of the aforementioned mechanisms. Instead,

utilizing ideas from multi-level security, the model can allow programmers to specify

the security requirements of the input data in the form of a multi-dimensional secu-

rity lattice. These requirements can be matched to security mechanisms that satisfy

them. Whenever a program is submitted, it can be transparently transformed in such

a way that it uses different mechanisms to execute different parts, each time utilizing
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an appropriate security mechanism that satisfies the security requirements of the in-

volved data. In situations where multiple mechanisms can be used to securely execute

a part of the given program, a cost-model can be used to decide which mechanism

would lead to better performance.

A combined hardware and software approach to improve cloud security

We have mentioned throughout this thesis that the security levels of PHE and PPE

schemes varies. In particular, PHE schemes used in this work are malleable and don’t

preserve the integrity of computation. On the other hand, some PPE schemes are de-

terministic and have been shown to be vulnerable to frequency analysis and inference

attacks. We plan to propose a combined model that uses a nested solution, to im-

prove the security of computations in the cloud. More specifically, under this model,

a TEE is used to ensure the integrity and authenticity of data and computation. On

top of this, computation within a TEE enclave occurs over encrypted data using PHE

and PPE to preserve data confidentiality. This removes the need to trust the TEE

vendor to preserve the confidentiality of the data. An adversary that tries to exploit

the malleability of PHE or attempts to find access patterns in the use of PPE will be

prevented from doing so because of the security guarantees of the TEE. On the other

hand, the PHE and PPE schemes provide data confidentiality independently of the

trustworthiness of the TEE, since plaintext data is never revealed to the TEE.
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