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ABSTRACT

Huang, Chenliang Ph.D., Purdue University, August 2020. On the Gaudin and XXX
models associated to Lie superalgebras. Major Professor: Mukhin E. Professor.

We describe a reproduction procedure which, given a solution of the gl . Gaudin

mln
Bethe ansatz equation associated to a tensor product of polynomial modules, produces
a family P of other solutions called the population. To a population we associate a
rational pseudodifferential operator R and a superspace W of rational functions.

We show that if at least one module is typical then the population P is canonically
identified with the set of minimal factorizations of R and with the space of full
superflags in W. We conjecture that the singular eigenvectors (up to rescaling) of all
9l,,,, Gaudin Hamiltonians are in a bijective correspondence with certain superspaces
of rational functions.

We establish a duality of the non-periodic Gaudin model associated with super-

algebra gl and the non-periodic Gaudin model associated with algebra gl,.

mln
The Hamiltonians of the Gaudin models are given by expansions of a Berezinian

of an (m + n) x (m + n) matrix in the case of gl,,,, and of a column determinant

mln
of a k x k matrix in the case of gl,. We obtain our results by proving Capelli type
identities for both cases and comparing the results.

We study solutions of the Bethe ansatz equations of the non-homogeneous peri-

odic XXX model associated to super Yangian Y(gl,,,,). To a solution we associate a

mln
rational difference operator D and a superspace of rational functions W. We show
that the set of complete factorizations of D is in canonical bijection with the va-
riety of superflags in W and that each generic superflag defines a solution of the

Bethe ansatz equation. We also give the analogous statements for the quasi-periodic

supersymmetric spin chains.



1. INTRODUCTION

We consider the XXX and the Gaudin models associated to Lie superalgebras gl,,,,,.
These are well-known fundamental examples of quantum integrable models. The
main questions is to describe the eigenvalues and eigenvectors of the corresponding
Hamiltonians. We make use of Bethe ansatz method to address this question.

The Hamiltonians of the XXX and the Gaudin models are naturally obtained from
the commutative subalgebras of the Yangian and the current algebra respectively,
which are called Bethe subalgebras. The Bethe subalgebras are the central objects of
our study.

Let us recall the situation in the even case (that is in the case of n = 0).

For the Gaudin models the joint eigenvalues of the Bethe subalgebra are identi-
fied with Fuchsian scalar differential operators without monodromy and prescribed
singularities, see [F04], [MV04]. Such an identification is an example of the geometric
Langlands correspondence. Alternatively, the Bethe subalgebra of the Gaudin model
acting in an irreducible finite dimensional EIN module, is identified with the coordi-
nate ring of scheme-theoretic intersection of Schubert cells, see [MTV09]. Moreover,
the module is identified with the co-regular representation of the coordinate ring.
The Bethe subalgebra related to the tensor product of evaluation vector representa-
tions is also related to the equivariant cohomology of a certain partial flag variety,
see [RSTV11].

For the XXX models associated to Lie algebras, the Bethe subalgebra is described
by the transfer matrices corresponding to the auxiliary representations. The eigen-
value of the transfer matrix can be obtained from the g-characters of the auxiliary
spaces by suitable substitutions of solutions of Bethe ansatz equations, see [FH15],

[FJMM17]. In this case the Bethe subalgebra (in the case of vector evaluation mod-



ules) also can be identified with the quantum cohomology of the cotangent bundle of
a flag variety, see [GRTV13].
In this thesis we make the first steps of obtaining a similar understanding of the

Gaudin and XXX models in the supersymmetric case.

1.1 Gaudin model

We study the Gaudin model associated to tensor products of polynomial modules

over the Lie superalgebra gl The main method is the Bethe ansatz; see [MVY14].

min-
It is well-known that the Bethe ansatz method in its straightforward formulation is
incomplete — it does not provide the full set of eigenvectors of the Hamiltonians;
see [MVO07]. Here, we propose a regularization of the Bethe ansatz method, drawing
our inspiration from [MV04].

In the case of Lie algebras, the regularization of the Bethe ansatz is obtained
by the identification of the spectrum of the model with opers — linear differential
operators with appropriate properties [FFR94, R16]. In the case of gl,,, the opers
are reduced to scalar linear differential operators of order m with polynomial kernels.
The spaces of polynomials of dimension m obtained this way are intersection points
of Schubert varieties whose data is described by the parameters of the Gaudin model.

Moreover, the action of the algebra of Gaudin Hamiltonians can be identified with

the regular representation of the scheme-theoretic intersection algebra, [MTV09].

We argue that in the case of the Lie superalgebra gl,,,, one should study rational
pseudodifferential operators and appropriate spaces of rational functions which we

call gl . spaces.

m|n

Let us describe our findings in more detail. The gl ,, Gaudin model depends

mln
on the choice of a sequence of polynomial representations, each equipped with dis-
tinct complex evaluation parameters. The Bethe ansatz depends on a choice of
Borel subalgebra. Such a choice is equivalent to the choice of a parity sequence

$=(S1,-+,Smsn), si € {£1}. The highest weights of representations and the evalu-



ation parameters are encoded into polynomials 77 (see (2.9)). A solution of the Bethe
ansatz equation is represented by a sequence of monic polynomials (yi, ..., Ymin_1),
so that the roots of y; are Bethe variables corresponding to the ¢th simple root (see
(4.12)).

The key ingredient is the reproduction procedure (see Theorem 2.5.2); which given
a solution of the Bethe ansatz equation (BAE) produces a family of new solutions

along a simple root. If the simple root is even, then the BAE means that the kernel

TSy 1
(8 —In’ M) (8 —In’ yi)
Ty

consists of polynomials. Then one shows that all tuples of the form

of the operator

(yla e 7@1‘7 cee 7ym+n—1);

where g; is any (generic) polynomial in the kernel of the differential operator, represent
solutions of the BAE. This gives the bosonic reproduction procedure, which was
described in [MV04].

If the simple root is odd then the BAE means that y; divides a certain explicit
polynomial A" and it turns out that the tuple (yi,.... % - Ymin-1), ¥ = N/yi,
again satisfies the BAE (if generic). This gives the fermionic reproduction procedure.
Moreover, the fermionic reproduction can be rewritten as an equality of rational

pseudodiffential operators (assuming s; = 1):

TEy— i -t U -1 T3 Ui
(8 — I’ L) (a Y h) - (a Y > (a — Y > ,
Yi Ty TFyia Yit1

where 8§ = (S1,...,Si41,Si, -+ Smin)-

The bosonic and fermionic procedures are very different in nature. The bosonic
procedure describes a one-parameter family of solutions of the BAE. However, these
solutions are not physical: degy; is large and the corresponding Bethe vector is zero on
weight grounds. The fermionic procedure produces only one new solution. Moreover,
in contrast to the bosonic case, the new BAE corresponds to a new choice of the Borel

subalgebra. If the original solution produced an eigenvector which was singular with



respect to the original Borel subalgebra, the new solution produces the eigenvector in

the same isotypical component but singular with respect to a new Borel subalgebra.

1

The two eigenvectors are related by the diagonal action of gl,,,,.

The most important feature of the bosonic and fermionic procedures is the con-
servation of the eigenvalues of the Gaudin Hamiltonians written in terms of the Bethe
roots (see Lemma 2.4.5). We call the set of all solutions obtained by repeated appli-

cations of the reproduction procedures a population.

We define a rational pseudodifferential operator R (see (2.22)). In the standard
parity so = (1,...,1,—1,...,—1), it has the form: R = Dy(D1)~!, where Dy, Dy are
scalar differential operators of orders m and n with rational coefficients, given by:

T7° T5° T30y
Dy = (8—111’—1 yO)(@—ln’—Q yl)...(@—ln’—mym 1),
Y1 Y2 Ym

Ym+n / Ym+2 o Ym
D= (09— — >...(8—lns—)<8—lns—).
! ( Tmo—ﬁ-n—lym‘Fn—l Tmo—&—2ym+1 Tmo—i—lym

(Here we set yo = Ymin = 1.) We show that R does not change under reproduction

procedures (see Theorem 2.5.3) and, moreover, if at least one weight is typical, then
the population is identified with the set of all minimal factorizations of R into linear

factors (see Theorem 2.6.9).

Then we study the space W =V & U, where V = ker Dy, U = ker D;. We show
that if at least one weight is typical, then U NV = 0. We think of W as a superspace
of dimension m + n, with even part V' and odd part U. We identify the population
with the space of all full superflags in W (see Theorem 2.6.9).

The operators D and D1 up to a conjugation coincide with gl,, and gl,, operators.
It follows that W consists of rational functions. In other words, W is given by a pair of
spaces of polynomials with prescribed ramification conditions linked via polynomials

Ym, Tomy Trmt1. This leads us to a definition of a gl,,,, space (see Section 2.6.3). The

mln

Gaudin Hamiltonians acting in tensor products of polynomial modules belong to a

!These features are reminiscent of trigonometric Gaudin models and Gaudin with quasi-periodic
boundary conditions [MVO08], in which the diagonal symmetry is broken. In those cases reproduction
produces one new solution, which describes the same eigenvector (up to proportionality) but with
respect to a different Borel subalgebra.



natural commutative algebra B(A) of higher Gaudin Hamiltonians. We conjecture

that the joint eigenvectors of this algebra B(A) are parametrized by gl spaces (see

mln

Conjecture 2.7.1).

1.2 Duality of supersymmetric Gaudin models

Integrable models associated with finite-dimensional Lie superalgebras have been
recently receiving the much deserved attention. While most of the work is done by
physicists on the spin-chain side, the theory of the corresponding Gaudin models
is also moving forward, see [MR14], [MVY14], [HMVY19]. The duality of various
systems is another very important topic which always gets a lot of attention. Here,
we discuss the duality of the Gaudin model associated with supersymmetric gl,,,,
to the Gaudin model associated with even gl acting on the same bosonic-fermionic
space.

In the Lie algebra duality setting, the Lie superalgebras gl,,,, and gl, both act on

min
the algebra of supersymmetric polynomials V' generated by entries of the (m+mn) x k
matrix (z;,) where x;, is even if and only if i < m. Then each row is identified
with the vector representation of gl, and each column with the vector representation
of gl,,;,,- The two actions are extended to the action on the whole bosonic-fermionic
space V' of supersymmetric polynomials as differential operators, where they centralize
each other, see Section 3.4.1. We chose column evaluation parameters zq, ..., 2 for
8l,)n, ToW evaluation parameters Ay, ..., Ay, for gl and upgrade the action to the
current algebras gl,,,,[t] and gl,[t] in V so that each row and each column becomes
an evaluation module with the corresponding evaluation parameter.

It is well known that the commuting Hamiltonians of the gl, Gaudin system are
elements of Ugl,[t] given by the coefficients of the column determinant of the k x k

matrix G = (84,(0u — 2a) — egdb(u)), see [T06], where we chose evaluation parameters

of columns z1, ..., z; to be the so called boundary parameters of the model.



It is also known that the Hamiltonians of the gl ., Gaudin system are elements of

min
Ugl,,1, [t] given by the coefficients of the Berezinian of the (m +n) x (m +n) matrix
B = (6;;(0, — Ay) — e%ln] (v)), see [MR14], [MM15], and Section 3.3.2. Note that we
chose evaluation parameters of rows Ay, ..., A,,, to be the boundary parameters of
the model.

The column determinant cdet GG is a differential operator of order & in variable u
whose coefficients are power series in u~!. The Berezinian Ber B a pseudodifferential
operator in ;' whose coefficients are power series in v~!. Our main result is that after
multiplying by simple factors, coefficients of v"0; and of ©*9;, of the two expansion
coincide as differential operators in V', see Theorem 3.4.2.

In order to prove our main result we establish two Capelli-like identities, see
Propositions 3.4.4 and 3.4.6, which give the normal ordered expansions of the cdet G
and Ber B acting in V. Because of the presence of fermions, those expansions have
more terms than the original Capelli identity. However, the main feature is the same:
the quantum corrections created by non-commutativity all cancel out and the result
is the same as it would be in the supercommutative case.

The expansion of the cdet G is done by careful accounting of all terms and finding
a way to cancel or collect the terms. For the Berezinian expansion we exploit a few
tricks. Namely, we represent Ber B as a Berezinian of a matrix of size (m +n + k) x
(m + n + k) then interchange the rows and columns to reduce the computation to
another column determinant. The key property which allows us to do it, is the super
version of Manin property of the matrices with some additional property which we
call ”affine-like”. The affine-like property guarantees the existence of various inverse
matrices and the Manin property of those inverses, see Section 3.2. In particular, we
argue that for such matrices the Berezinian can be defined via quasi-determinants,

similar to affine Manin matrices of standard parity treated in [MR14].

Our duality implies that the gl . Gaudin model has the same remarkable proper-

mln

ties as the gl, Gaudin model, see [MTV08b]. Namely, the image of the Bethe algebra

is a Frobenius algebra, which can be identified with an appropriate scheme theoretic



intersection of Schubert varieties in a Grassmanian. Moreover, the corresponding

phase space of the gl ., Gaudin model is a regular representation of this Frobenius

min
algebra. In particular, all joint eigenspaces have dimension one, see Corollary 3.4.3.
The spectrum of Gaudin Hamiltonians is found by the Bethe ansatz, see [MTV06]
for the even and [MVY14] for the supersymmetric case. Since the two sets of Hamil-
tonians actually coincide in V', we have a correspondence between solution sets of
two very different systems of the Bethe ansatz equations. Moreover, the eigenvectors
of gl, model are in a natural bijection with differential operators of order £ with

quasipolynomial kernels, see [MTVO08b], while eigenvectors of gl,,,, model are con-

min
jecturally in a bijection with ratios of differential operators of orders m and n, and
appropriate superspaces of quasirational functions, cf. [HMVY19].

The duality of the gl, and gl,, systems was established in [MTV09b]. The cor-
responding map between spaces of polynomials is given by an appropriate Fourier

transform and it is also identified with the bispectrality property of the KP hierarchy;,

see [MTVO0G6b]. It is important to understand this map in the supersymmetric case.

We expect that the results of this paper can be extended to the most general

duality of Gaudin models associated with gl,,,, and gl;. We also expect that a

mln
similar duality can be established in the Yangian, see [MTV08], and the quantum
setting.

The duality between gl;}; and gl, Gaudin models has appeared in [BBK17].

1.3 XXX model

The supersymmetric quantum spin chains were introduced back to [Kul85] in
1980s. There is a considerable renewed interests to those models, see [BR0S8|, [BR09],
[KSZ08], [HLPRS18|, [TZZ15].

We use the method of populations of solutions of the Bethe ansatz equations.
It was pioneered in [MVO04] in the case of the Gaudin model and then extended to
the XXX models constructed from the Yangian associated to gl,,, see [MV03, MV04,



MTV07]. We are helped by the recent work on the populations of the supersymmetric
Gaudin model [HMVY19].

Let us describe our findings in more detail. In this paper we restrict ourselves to

tensor products of evaluation polynomial gl -modules. Moreover, we assume that

m|n
the evaluation parameters are generic, meaning they are distinct modulo hZ where
h is the shift in the super Yangian relations. Note that such tensor products are

irreducible Y(gl,,,,)-modules. We also assume that at least one of the participating

min)
gl,,,,-modules is typical.

The crucial observation is the reproduction procedure which given a solution of
the Bethe ansatz equation and a simple root of gl produces another solution, see

Theorem 4.4.1.

m|n>

The reproduction procedure along an even root is given in [MV03]. An even
component of a solution of the Bethe ansatz equation gives a polynomial solution of
a second order difference equation. The reproduction procedure amounts to trading
this solution to any other polynomial solution of the difference equation, see (4.19).
We call it the bosonic reproduction procedure.

The reproduction procedure along an odd root is different. In fact, an odd com-
ponent of a solution of the Bethe ansatz equation corresponds to a polynomial which
divides some other polynomial, see (4.20). The reproduction procedure changes the
divisor to the quotient polynomial with an appropriate shift. We call it the fermionic
reproduction procedure. The fermionic reproduction procedure looks similar to a mu-
tation in a cluster algebra.

Then the population is the set of all solutions obtained from one solution by

recursive application of the reproduction procedure.

Given a solution of the Bethe ansatz equation, we define a rational difference

operator of the form D = DyD; L

where Dg, Di are linear difference operators of
orders m and n with rational coefficients, respectively, see (4.25). The operator D is
invariant under reproduction procedures and therefore it is defined for the population,

see Theorem 4.4.3. The idea of considering such an operator is found in [HMVY19]



in the case of the Gaudin model. Such an operator in the case of tensor products of
vector representations also appears in [Tsu98] in relation to the study of T-systems
and analytic Bethe ansatz.

Kernels V' = ker Dy, U = ker Dj are spaces of rational functions of dimensions
m and n. Under our assumption, that at least one of the representations is typical,
we can show V NU = 0, see Lemma 4.5.1. We consider superspace W =V ¢ U.
Then we show that there are natural bijections between three objects: elements of
the population of the solutions of the Bethe ansatz equation, superflags in W, and
complete factorizations of D into products of linear difference operators and their
inverses, see Theorem 4.5.7.

Note that the Bethe ansatz equations depend on the choice of the Borel subalgebra
in gl,,,,- The fermionic reproductions change this choice. In general, the Borel

subalgebra is determined from the parity of the superflag or, equivalently, from the

positions of the inverse linear difference operators in a complete factorization of D.

Thus the solutions of the Bethe ansatz equations correspond to superspaces of
rational functions. It is natural to expect that all joint eigenvectors of XXX Hamilto-
nians correspond to such spaces and that there is a natural correspondence between
the eigenvectors of the transfer matrix and points of an appropriate Grassmannian.
However, the precise formulation of this correspondence is not established even in the

even case, see [MTVO0T7].

We give a few details in the quasi-periodic case as well, see Section 4.6. In this
case we also have concepts of reproduction procedure, the population, and the rational
difference operator. Then the elements in the population are in a natural bijection
with the permutations of the distinguished flags in the space of functions of the form
f(z) = e**r(x), where r(z) € C(z) is a rational function and z € C, see Theorem

4.6.4. A similar picture in the even case is described in [MV0§].
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2. BETHE ANSATZ EQUATION AND RATIONAL
PSEUDODIFFERENTIAL OPERATORS

2.1 Preliminaries on gl,,

Fix m,n € Z>(. In this section, we will recall some facts about gl For details

see, for example, [CW12].

2.1.1 Lie superalgebra gl

m|n

A wector superspace V.= Vi @ Vi is a Zg-graded vector space. The parity of
a homogeneous vector v is denoted by |v| € Z/2Z = {0,1}. We set (—1)° = 1
and (—1)' = —1. An element v in Vj (respectively V;) is called even (respectively
odd), and we write |v| = 0 (respectively |v| = 1). Let C™" be a complex vector
superspace, with dim(C™"); = m and dim(C™"); = n. Choose a homogeneous
basis e;, i = 1,...,m +n, of C™" such that |e)] = 0, i = 1,...,m, and |e;| = 1,
i=m+1,...,m+n. Set |i| = |e].

Let s = (S1,--+,Sm+n), si € {£1}, be a sequence such that 1 occurs exactly
m times. We call such a sequence a parity sequence. We call the parity sequence
so=(1,...,1,—-1,...,—1) standard. Denote the set of all parity sequences by Sy, .
The order of Sy, is (mﬁtn) The set Sy, is identified with &,,,,,,/(&,, X &,,), where
S, denotes the permutation group of k letters. We fix a lifting Sy, = Gumpn/ (S X
S,) = Gpyn: for each s € Sy, we define 05 € 6,4, by

#{17 <14, s;=1} if s; =1,

0s(i) = (2.1)
mA+#{j|j<i, s;=—1} ifs=—L

Note that oy, = id and (—1)l°®l = 5, (The element o, is sometimes called an

unshuffle.)
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For a parity sequence s € Sy, and i = 1,...,m + n, define numbers

sj:#{j|j>i,sj:1}, s;:#{j|j<i,sj:—1}.
We have

m—og(i) if s; =1, i —os(i) if s, =1,

os(1) —i if 5, = —1, os(1) —m—1 ifs;=—1.

The Lie superalgebra gl,,,, is spanned by e;;, 7, j = 1,. .., m+n, with |e;;| = |i|+]j],
and the superbracket is given by

[€3j, €] = Ojwea — (_1)(‘iHljl)('k'H”)@lekj~

The universal enveloping algebra of gl is denoted by Ugl

There is a non-degenerate invariant bilinear form (, ) on gl,,,, such that

m|n»

(eaba ecd) - <_1)|a|5ad5bc-

The Cartan subalgebra b of gl,,, is spanned by e;, i = 1,...,m + n. The weight
space h* is the dual space of h. Let ¢;, i = 1,...,m + n, be a basis of h*, such that
¢i(ej;) = 0;5. The bilinear form ( , ) is extended to h* such that (e;,¢;) = (—1)l5;.

The root system ® is a subset of h* given by
O={¢—¢|i,j=1,....m+mnandi#j}

A root €; — ¢; is called even (respectively odd), if |i| = |j| (respectively |i| # |7]).

2.1.2 Root systems

For each parity sequence s € S,,,, define the set of s-positive roots ®F = {e,, ;) —
o) | . =1,...,m+mnandi < j}. Define the s-positive simple roots af =

€os(i) — €os(i+1), & = 1,...,m+mn — 1. Define

eisj = €o4(i),05(5)> ihy=1...,m+n
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The nilpotent subalgebra n of gl respectively ny) associated to s, is generated

min
by {ef;,1[71=1,...,m+n— 1} (vespectively {ef,,, |i=1,...,m +n —1}). The
algebra n} (respectively n;) has a basis {ef; | i < j} (respectively {e; | i > j}). The
Borel subalgebra associated to s, is by = h @& nf. We call the Borel subalgebra by,
standard.

In what follows, many objects depend on a parity sequence s. If s is omitted from
the notation, then it means the standard parity sequence. For example, we abbreviate

nron;

5, n,,and bg, to n™, n™, and b, respectively.

Example 2.1.1. Consider the case of gly5. Two possible parity sequences from Sy
are:
s1=(1,1,-1,-1,—-1,1) and s = (1,-1,1,-1,1,—1). We have

123 456 1 23 456

Os; = ) Osy =

1 245 6 3 1 425 36

The si-positive simple roots and ss-positive simple roots are given respectively by

81 S1 81 S1 S1 J—
(@1 y Qg s Qg™ , Oy, Qg )— (61—62762—64,64—65765—66,66—63)7

S92 82 S2 82 S2) __
(041 y Qg™ Qig™, 0", Qg )— (51—64764—62762—65765—63763—66)-

We have

(a7, a?) = (i + 8i11)0ij — 8i0ij41 — Siv10i41,5-

m+n—1

The symmetrized Cartan matriz associated to s, ((Ozf , O‘JS’))U=1

blocks

, is described by the

(af,a7) (o, i) Si + Sit1 —Sit+1

(1, 0f) (afiy,08) —Si+1  Sit1 t Sit2
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Explicitly, this block is one of the following cases depending on (s;, i1 1, Sit2):

(1,1,1) (1,1,-1) (1,-1,1) (~1,1,1)
2 _1 2 _1 0 1 0 -1
1 2) \z1 o/’ 1 0/ 1 2 )’

(-1,-1,-1) (=1,-1,1) (—1,1,-1) (1,—-1,-1)
-2 1 -2 1 0 -1 0 1
1 =2 1 0 -1 0 1 -2

2.1.3 Representations of gl

mln

Let V be a g[m‘n module. Given a parity sequence s € S,,,, and a weight A € b*,
a non-zero vector v§ € V is called an s-singular vector of weight X\ if nfv§ = 0
and hv§ = A(h)vs, for all h € h. Denote the subspace of s-singular vectors by
Veine. Denote by Vy the subspace of vectors of weight A\, V\ = {v € V | hv =
A(R)v, for all b € b}. Denote by V;"™® the subspace of s-singular vectors of weight
A. Denote the subspaces of sg-singular vectors and of sg-singular vectors of weight A
by V"9 and V"™ respectively. Let L*(\) be the s-highest weight irreducible module
of highest weight A, generated by the s-singular vector vi. The s-singular vector

vs € L*(\) is called the s-highest weight vector. Denote by

/\[3] = ()\[3]71, . ,/\[s},m-',-n) = (/\(6‘191), Cee A(efn+n,m+n))

the coordinate sequence of A associated to s. We also use the notation L*(A)) for

L*(\).

Example 2.1.2. The superspace C™" is a gl module with the action given by

mln

eijer = 0;re;. We have Ccmlr =~ 15(1,0,...,0) = L*(es 1)) for any s € Spyyn. The

s-highest weight vector is v = e 1y. We call C™™ the vector representation.

€))

A module V is called a polynomial module if it is an irreducible submodule of

(C™m)®" for some n € Zsg. A highest weight module L(\) with respect to the
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standard Borel subalgebra b, is a polynomial module if and only if the weight A
satisfies \; € Zsg foralli, \y > -+ > Ay A1 = -+ 2 Ay and Ay, > #{0 | Apyi #
0]i=1,...,n}. A weight X is called a polynomial weight if L()) is a polynomial
module. It is known that the category of polynomial modules is a semisimple tensor
category.

Let p = (1 > po > ...) be a partition: p; € Z>o and p; = 0 if i > 0. The
partition g is called an (m|n)-hook partition if p,,,1 < N. Polynomial modules are
parametrized by (m|n)-hook partitions.

Let L(A\) be a polynomial module with highest weight vector vy. Let s be a
parity sequence. Then L(\) is isomorphic to an irreducible s-highest weight module
L#()\®). The coordinate sequence Als and the s-highest weight vector v3 can be found
recursively as follows.

Let sl = (S1y+-+ySit1sSiy- -, Smin) be the parity sequence obtained from s by

switching the i-th and (i + 1)-st coordinates. If s; # s;41, then we have

sli] s s s s s s

A[s[i]} = (A[s],h cr NVsli—1 )\[s],i+1 + 57 )‘[s},i - 57 )‘[s},i+27 Tt [s},ern)? (22)
sli] s s

Uyslil = (ez’+1,z')%>\s>

where § = 1 if )\[SS]’Z, + )‘[Ss],z'+1 # 0 and 6 = 0 otherwise.
The following example illustrates how the coordinate sequence )\[SS] can be found
from an (m|n)-hook partition, and how the s-highest weight vector v is related to

the highest weight vector v,.

Example 2.1.3. Let p = (7,6,4,3,3) be a (3|3)-hook partition. Choose some parity

Sequences:
so=(1,1,1,—-1,-1,-1), s =(1,1,-1,-1,—1,1), so=(1,-1,1,—1,1,—1).

The highest weights and the highest weight vectors for those choices can be read as:
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Fig. 2.1. From (3]3)-hook partitions to highest weights
| |

TITT i
T |
Ao = (7,6,4,2,2,2) A%, = (7,6,3,3,3,1) X2, = (7,4,5,3,2,2)
Vysy = Ux, Uys, = €63€53€43V), U3, = €53€42€43V).

Another way to find )\[Ss] from A is given below in Theorem 2.6.2.
Define the s-Weyl weight

L1 1
=y 2 e 2 B

acd} pedy
o 1S even g 1s odd

A weight \ is called typical if (A + p®, ) # 0, for any odd root a.. Otherwise A is
called atypical. The module L(\) is typical if A is typical and atypical otherwise. If X is
a polynomial weight, then \ is typical if and only if A(en,) > N. Let = (u1, g2, ... )
be the (m|n)-hook partition that parametrizes L(A). Then L()) is typical if and only
if ,, > n. In Example 2.1.3, all weights are typical.

2.2 Rational pseudodifferential operators and flag varieties

We establish some generalities about ratios of differential operators.

2.2.1 Rational pseudodifferential operators

We recall some results from [CDSK12] and [CDSK12b].
Let IC be a differential field of characteristic zero, with the derivation 9. The main
example for this paper is the field of complex-valued rational functions K = C(x).

Consider the division ring of pseudodifferential operators K ((07')). An element

A€ K((071)) has the form
A=) a¥, a;€K, meL.

j=—o00
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One says that A has order m, ordA = m, if a,, # 0. One says that A is monic if
am = 1.

We have the following relations in K ((97!)):

00 t=0"19=1,
0"a = Z (T) a9 aek, rez,
; J
7=0

where a?) is the j-th derivative of @ and a(®) = a.
All nonzero elements in K ((07')) are invertible. The inverse of A is given by

-1

Alt=9m f: ( - Z a;zlaﬁm@j)rar_nl.

r=0 j=—o00

The algebra of differential operators K[d] is a subring of K ((071)).

Let D € K[0] be a monic differential operator. The differential operator D is
called completely factorable over K if D = d;...d,,, where d; = 0 — a;, a; € K,
1=1,...,m.

Denote {u € K | Du = 0} by ker D. Clearly, if dim (ker D) = ordD, then D is

completely factorable over IC; see also Section 2.2.2.

The division subring K(9) of K ((071)), generated by K[J], is called the division
ring of rational pseudodifferential operators and elements in K(0) are called rational
pseudodifferential operators.

Let R be a rational pseudodifferential operator. If we can write R = DDy ! for
some Dg, D; € K[0)], then this is called a fractional factorization of R. A fractional
factorization R = DgDy Uis called minimal if D;i is monic and has the minimal

possible order.

Proposition 2.2.1 ( [CDSK12b)). Let R € K(0) be a rational pseudodifferential

operator. Then the following is true.

1. There exists a unique minimal fractional factorization of R.
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2. Let R = D@D{l be the minimal fractional factorization. If R = 555{1 5 a
fractional factorization, then there exists D € K[0] such that 5() = DgD and

D; = D;D.

3. Let R = D()Di_1 be a fractional factorization such that dim (ker Dg) = ordDg and
dim (ker D7) = ordD;. Then R = D()DI_1 15 the minimal fractional factorization

of R if and only if ker Dy N ker Dy = 0.
O

We call R an (m|n)-rational pseudodifferential operator if for the minimal frac-
tional factorization R = DgD;" we have ord(Dg) = m and ord(Ds) = n.

Let R be a monic (m|n)-rational pseudodifferential operator. Let s € Sy, be
a parity sequence. The form R = di*...d;" ", where d; = 0 — a;, a; € K, i =
1,....,m + n, is called the complete factorization with the parity sequence s. We
denote the set of all complete factorizations of R by F(R) and the set of all complete
factorizations of R with parity sequence s by F*(R).

Let Ry = (0 —a)(@—0b)"! and Ry = (0 — ¢)"*(0 — d) be two (1|1)-rational
pseudodifferential operators. Here a,b,c,d € K, a # b, and ¢ # d. Then Ry = R, if

and only if
c=b+1n'(a—0), a=d—1n'(c—d),
or equivalently (2.3)
d=a+In'(a—0), b=c—In'(c—d),

where In'(f) = f'/f stands for the logarithmic derivative.

Sm+n
. dern )

Let R be an (m|n)-rational pseudodifferential operator. Let R = dj*..

d; = 0 — a;, be a complete factorization. Suppose s; # s;,.1. Then d; # d; 1. We use

equation (2.3) to construct d; and d;y; such that d'd’' = d*'d;:,. That gives a
complete factorization of R = d7* .. .0@8”1@1 ..dymt with the new parity sequence

s = S[z] = (81, ey Sit1, S0y sm—i—n)-
Repeating this procedure, we obtain a canonical identification of the set F*(R) of
complete factorizations of R with parity sequence s with the set F*0(R) of complete

factorizations of R with parity sequence s.
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2.2.2 Complete factorizations of rational pseudodifferential operators and

flag varieties

Let W = W5 @ Wi be a vector superspace with dim(Wp) = m and dim(W7) = n.
A full flag in W is a chain of subspaces F = {F; C 5, C --- C F,4,, = W} such
that dim F; = i. Any basis {wy,...,wyn} of W generates a full flag by the rule
F; = span(wy, ..., w;). (By basis, we mean always ordered basis.) A full flag is called
a full superflag if it is generated by a homogeneous basis. We denote by F (W) the
set of all full superflags.

If m =0 or n =0, then every full flag is a full superflag. Thus, in this case F (W)
is the usual flag variety.

To a given homogeneous basis {wy, . .., w1, } of W, we associate a parity sequence
8 € Spn by the rule s5; = (=Dl i =1,...,m+n. We say a full superflag F has
parity sequence s if it is generated by a homogenous basis associated to s. We denote
by F*(W) the set of all full superflags of parity s.

The following lemma is obvious.

Lemma 2.2.2. We have
FW)= || 72W),  F(W)=F(Ws) x F(Wr). O
$E€Smin
Let R be a monic (m|n)-rational pseudodifferential operator over K. Let R =
DDy ! be the minimal fractional factorization of R. Assume that dim (ker Dg) = m,
and dim (ker D1) = n.
Let V. =Wy =ker Dg, U = Wi =ker D1, W = W5 & Wi.

Given a basis {vy,...,v,} of V, a basis {uy,...,u,} of U, and a parity sequence
8 € Spn, define a homogeneous basis {w1, ..., Wpnin} of W by the rule w; = Vgt g if
s; = 1 and w; = ug- ., if s; = —1. Conversely, any homogeneous basis of W gives a

basis of V', a basis of U, and a parity sequence s.
Example 2.2.3. If s = (1,—1,—-1,1,1,—1,1,—1), then

{w17 .. 7w8} - {047 Uy, U2, V3, V2, U3, V1, U4}.
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Given a basis {vy,...,v,} of V, a basis {uy,...,u,} of U, and a parity sequence

8 € Spn, define d; = di(s,{vi, ..., v}, {us, ..., un}) = 0 — a; where

/Wr(vl,vg,...,vs;r+1,u1,u2,...,usi—) _
a; = In if s; =1, (2.4)
Wr (vq,vg, . .. ,vsj,ul,u%...,us;)
/Wr(vl,vg,...,vs;r,ul,u%...,usﬁ_l) _
a; = In if s, = —1, (2.5)
Wr (vy,vg, . .. ,vsj,ul,u%...,usif)

where the Wronskian is given by the standard formula

r

vw(ﬁw.wfn::mn(ﬁ“”),

3,j=1 i
If two bases {v1,...,Un}, {U1,...,0n} generate the same full flag of V' and two bases
{ug, ..., u,}, {uy,...,u,} generate the same full flag of U, then the coefficients a;

computed from v;,u; and from v, w; coincide.

Proposition 2.2.4. We have a complete decomposition of R with parity s: R =

S1 Sm-+n
&

Proof. 1f s = s is standard, then the statement of the proposition is well known: see
for example the Appendix in [MV04].

Let s and s differ only in positions i,i+1: s; = s; for j #i,i+1 and s; = —s;11 =
—5; = S;+1. Then we have d; = J] for j # i,4+ 1. In addition dj*d;\} = czgzd:i’fl
follows from the Wronski identity

Wr (Wr (V1, V25 o Vgt g, UL, Uy -y U= ), WE (U1, Vg, U, UL, U, - ,us_—+1))
= Wr (v, ve, . .. s Vgt Uty U, - - ,uS;H)Wr (v1,vg, ... Vg, Uy, U, . .. ,usf).

]

We identify full superflags in W with complete factorizations of R. Namely, by
Proposition 2.2.4 we have a map: p: F(W) — F(R) and p* : F¥(W) — F*(R).
Proposition 2.2.5. The maps p, p® are bijections.

Proof. Clearly, p® is a bijiection. We have a canonical bijection between F*(W)
and F*°(W). We have a canonical bijection between F*(R) and F*°(R). These two

bijections are compatible with p® and p*°. The proposition follows. O
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2.3 Bethe ansatz

We recall some facts about the Gaudin model associated to gl,,.; see, for example,

m|ns
IMVY14].

2.3.1 Gaudin Hamiltonians

Let (V1,...,Vi) be a sequence of gl,,,,, modules. Let 2 = (21,...,2n) be asequence
of pairwise distinct complex numbers. Consider the tensor product V = ®2V:1 Vi.

The Gaudin Hamiltonians H, € End(V), r =1,..., N, are given by

mn(r) (k) (1) 8]

N
Za,b:l €ab Cba
He=D

Rr — Rk

k=1
k#r

where e = 1@ ©1®ep®1®---®1 k=1,...,N.
—_—— —_——

k—1 n—k
The proof of the following properties (which are well-known in the case of gl,,)

can be found in [MVY14].
Lemma 2.3.1. We have:
1. the Gaudin Hamiltonians mutually commute, [H,, Hy] = 0, for all r k;

2. the Gaudin Hamiltonians commute with the diagonal gy action, [Hy, X] =0,

for all k and all X € gl

m|n7'
3. the sum of the Gaudin Hamiltonians is zero, chvzl Hi =0;

4. if Vi, k =1,..., N, are polynomial modules, then for generic zx,k =1,..., N,

the Gaudin Hamiltonians are diagonalizable;

5. if Vi, k = 1,..., N, are vector representations, then the joint spectrum of the

Gaudin Hamiltonians is simple for generic z. O
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2.3.2 Bethe ansatz equation

We fix a parity sequence s € S,|,,, a sequence X = (AD A) of gl,,,,, weights,

and a sequence z = (z1,...,zy) of pairwise distinct complex numbers. We call

(AF))® the weight at the point z, with respect to s and denote it by A, Denote
(8.k) (8 — (s,k) sk

AR (e8) /\[S] . by /\

Let I = (l1,...,lmin_1) be a sequence of non-negative integers. Define [ =

S Let e: {1, 1} = {1,...,m +n — 1} be the colour function,

r—1 r
c(j) =r if Y Li<j< ) I
=1 =1

Let t = (t1,...,t;) be a collection of variables. We say that t; has colour c¢(j). Define

the weight at oo with respect to s, A, and l by

N m+n—1

Aol = N AR N agl

k=1 i=1
The Bethe ansatz equation (BAE) associated to s, z, A, and [, is a system of

algebraic equations on variables ¢:

S

! s
—Z t_Zk )+;W:o,j:1,...,z. (2.6)
r#j

The BAE is a system of equations for ¢ and we call the single equation (2.6) the Bethe
ansatz equation for t related to t;.

Note that if ¢ is a solution of the BAE and (af,, ozf(j)) # 0 for some j # r, then
t; #t,. Also if (A&F), ;) # 0 for some k and j, then ¢; # 2.

In addition, we impose the following condition. Suppose (af,af) = 0. Choose
J such that ¢(j) = ¢ and consider the equation related to t; as an equation for one
variable when all variables ¢, with ¢(r) # i are fixed. This equation does not depend
on the choice of 5. Suppose t is a solution of this equation of multiplicity a. Then
we require that the number of ¢; such that ¢(j) = ¢ and t; = ¢ is at most a. This

condition will be important in what follows; cf. especially Lemma 2.4.3, Theorem

2.5.2, and Conjecture 2.7.3.
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The group G; = G, x --- X G, acts on t by permuting the variables of the

m+4+n—1

same colour.

We do not distinguish between solutions of the BAE in the same &;-orbit.

2.3.3 Weight function

Let A®) k& = 1,...,N, be polynomial gl weights. Let vp = v}, be an s-

highest weight vector in the irreducible gl,,, module L(A*)). Consider the tensor

mln
product L(A) = ®f€v:1 L(A®). The weight function is a vector w*(z,t) in L(X)
depending on parameters z = (z1,...,2x) and variables t = (¢,...,t;). The weight

function w*(z,t) is constructed as follows (see [MVY14]).

Let an ordered partition of {1,...,l} into n parts be a sequence
1 1. LN N
I=(iy,.. 0,550, 0,0),

where p; + -+ + py = [ and I is a permutation of (1,...,l). Let P(l, N) be the set
of all such ordered partitions.
Denote F7,) = €71 1o each ordered partition I € P(l,N), associate a

vector Ffv € L(A) and a rational function wy(z,t),

“te(ipy

wr(z,t) = w{i%,...,izl,l}(zla t).. - WeN z';VN}(ZNa t),

77777

where for {iy,...,i,} C {1,...,1},
1
(tiy —tiy) - (ti, —ti, ) (L, — 2)

Define l

S | S

=1 j>r
I(5)<I(r)

Then the weight function w®(z,t) is
w(z,t)= Y (=D)Mwr(z,t)Fjv. (2.7)
I€P(I,N)

We have the following theorem.
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Theorem 2.3.2 ( [MVY14]). If X is a sequence of polynomial weights and t is a
solution of the BAFE associated to s, z, A, and l, then the vector w®(z,t) € L(\)
is a joint eigenvector of the Gaudin Hamiltonians, Hiw®(z,t) = Eyw®(z,t), k =

1,..., N, where the eigenvalues Ej are given by

N (s,k) \(s,r) ! )\(8 k)
Ep_z:u 2 +§:( a(o. (2.8)

— 2k — Zp o t; — zp
r#k
Moreover, the vector w*(z,t) belongs to (L()\))ii(ﬁio). O

If t is a solution of the BAE associated to s, z, A, and [, then the value of the

weight function w?®(z,t) is called a Bethe vector.

2.3.4 Polynomials representing solutions of the BAE

Fix a parity sequence s € Sy,p,. Let A = (AW, ..., X)) be a sequence of polyno-

mial gl,,,, weights. Let z = (z1,...,2n) be a sequence of pairwise distinct complex
numbers.
Define a sequence of polynomials T = (T7,..., T2 ) associated to s, A and z,

N )\(sk) i
Hx—zk ,i=1,...,m+n. (2.9)

Note that T;?(T7 ,)~**+' is a polynomial for all i = 1,...,m +n.
Let L = (I, ..., lmin—1) be a sequence of non-negative integers. Let t = (t1,...,1))

be a solution of the BAE associated to s, z, A, and [. Define a sequence of polynomials

Y= (Y1, Ymin-1) by
II (x—t;),i=1,...,m+n—1 (2.10)
We say the sequence of polynomials y represents t.

We consider each polynomial y;(z) up to a multiplication by a non-zero number.

We also do not consider zero polynomials y;(z). Thus, the sequence y defines a
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point in the direct product P(C[z])™*"~! of m +n — 1 copies of the projective space

associated to the vector space of polynomials in z. We also have degy; = [;.

A sequence of polynomials y is generic with respect to s, A, and z, if it satisfies

the following conditions:
1. if ;8,41 = 1, then y;(z) has only simple roots;
2. if (of,a?) # 0 and i # j, then y;(z) and y;(x) have no common roots;
3. all roots of y;(x) are different from the roots of T;?(x) (T} (x)) %%+,

If y represents a solution of the BAE associated to s, z, A, and [, then y is generic

with respect to s, A, and z.

2.4 Reproduction procedure for gl, and gl,;

We recall the reproduction procedure for gl,, see [MV04], and define its analogue

2.4.1 Reproduction procedure for gl,

Consider the case of m = 2 and n = 0. We write gly, = gly, = gly. Let
A=W ) = ((p1,q1), ..., (pn, qn)) be a sequence of polynomial gl, weights:
PksQk €L,k > qr >0, k=1,...,N. Let z = (21,...,2x) be a sequence of pairwise

distinct complex numbers. We have

N N

T, = H(w—zk)pk, T, = H(x—zk)q’“.

k=1 k=1
Let p = deg T} and g = degT5.
Let | be a non-negative integer. Let ¢ = (t1,...,%;) be a collection of variables.

The Bethe ansatz equation associated to A, z and [, is given by

N D q l 9
k — Yk .
- + =0,j=1,...,1L (2.11)
;tj—zk ;trtr
r#j
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One can reformulate the BAE (2.11) and construct a family of new solutions of

the BAE as follows.

Lemma 2.4.1 ( [MVO04]). Let y be a degree | polynomial generic with respect to A

and z.

1. The polynomial y € Clx] represents a solution of the BAE (2.11) associated to
A, z and I, if and only if there exists a polynomial y € Clx], such that

Wr (y,7) = ThTy . (2.12)

2. If y is generic, then y represents a solution of the BAE associated to X, z and

7, where | = degy.

Explicitly, the polynomial y in Lemma 2.4.1 is given by

3(z) = cuyla) / Ty (@) Ty @)y ()de + eay(2), (2.13)

where ¢; is some non-zero complex number and ¢, € C is arbitrary. The BAE (2.11)
guarantees that the integrand has no residues and therefore y is a polynomial. All but
finitely many y are generic with respect to A and z, and therefore represent solutions
of the BAE (2.11).

Thus, from the polynomial y, we construct a family of polynomials 3. Following
IMV04], we call this construction the gl, reproduction procedure.

Let P, be the closure of the set containing y and all ¥ in P(Clx]). We call P, the
gly population originated at y. The set P, is identified with the projective line CP*
with projective coordinates (¢ : ¢2).

The weight at infinity associated to A, 1, is A(*) = (p—1,¢+1). Assume the weight
A is dominant, meaning 2! < p — q. Then the weight at infinity associated to A,Z
is

NV =(p—lg+D=(g+I-Lp—l+1) =52,
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where s € G, is the non-trivial gl, Weyl group element, and the dot denotes the
shifted action.

Lety = HE:1(x_tNr) and t = (s, ... ,thlv) If y is generic, then by Lemma 2.4.1, ¢ is a
solution of the BAE (2.11). By Theorem 2.3.2, the value of the weight function w(z, t)
is a singular vector. However, A*® is not dominant and therefore w(z, £) = 0 in L(X).
So, in a gl, population only the unique smallest degree polynomial corresponds to an
actual eigenvector in L(X).

Consider formula (4.10) for the eigenvalues Fj of the Gaudin Hamiltonians. It is

clear that

In'y(zx) =In'y(z), k=1,..., N,

which implies that the eigenvalues Fj, for the solution ¢ of the BAE are equal to those
for the solution ¢. That fact can be reformulated in the following form.
Define a differential operator
T
D(y) = <(9 —In’ —1> (0 —1In'Tyy).
Y

The operator D(y) does not depend on a choice of polynomial y in a population,

D(y) = D(y)-

2.4.2 Reproduction procedure for gl,;

Consider the case of m = n = 1. We have S;; = {(1,-1),(—1,1)}. Let s and
5 = sl be two different parity sequences. Let A = (AM ..., AV)) be a sequence of
polynomial gl;; weights. For each £ =1,..., N, let us write /\E:]’k) = (px, qx), where
Pr, @ € Z>o and if p, = 0 then g = 0. Note that A\*¥) is atypical if and only if it is
zero, pr, = qx = 0, which happens if and only if py + ¢z = 0. Let z = (21,...,2xn) be
a sequence of pairwise distinct complex numbers.

Let

_ g +1 if pp+aqp #0, _ pr—1  if pp+aq #0,
Pr = qx =
0 if pr+aq =0, 0 if pr+aq=0.



27

Equation (2.9) becomes

N N
17 H(m —zp)PF, T35 = H(:c — 2k)
k=1 k=1
N N N n
v= I G- =][@-a 1= [[ @-ar'=]]@-2"
k=1 k=1 k=1 k=1
Prt+qr#0 Pr+aqp#£0

Let p = deg T?, ¢ = deg T¥. Similarly, let p = deg T?, ¢ = deg T%.

Let M = #{k | px + qr # 0} be the number of typical modules. Then p = g+ M
and ¢ =p— M.

Let | be a non-negative integer. Let ¢ = (¢1,...,%;) be a collection of variables.
The Bethe ansatz equation associated to s, A, z, and [, takes the form:

N
Dr + qx

=0,5=1,...,L 2.14
tj_zk 7.] ) ) ( )

k=1

The Bethe ansatz equation (2.14) can be written in the form
In' (T7T3) (t;) = 0.
Note that TFT5 = T{T5. Thus, in the case of gl,);, the BAEs (2.14) associated to

s and s coincide.

Define a map 7 from non-zero rational functions C(z) to monic polynomials in

C|x] with distinct roots. For any nonzero rational function f(z), 7(f)(z) = 0 if and

only if f(z) =0or (1/f)(2) =
Example 2.4.2. We have 7 (2%(x — 1)} (x — 3) ™Yz + 6)72) = x(x — 1)(z — 3)(z +6).

The polynomial 7(f) is the minimal monic denominator of the rational function

In’(f) of smallest possible degree.

We call the sequence of polynomial gl;; weights A typical if at least one of the
weights A is typical. Then X is typical if and only if p+¢ # 0. Also X is not typical
if and only if 7775 =

We reformulate the BAE (2.14) and construct a new solution as follows.
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Lemma 2.4.3. Let y be a polynomial of degree l. Let X be typical.

1. The polynomial y represents a solution of the BAE (2.14) associated to s, z,
A, and 1, if and only if there exists a polynomial y, such that

y-§ = ' (T7T3) =(T3T3). (2.15)

2. The polynomial §y represents a solution of the BAE (2.14) associated to s, z,
A, andz wherezvzdeggzM—l—l. ]

From the polynomial y, we construct a unique polynomial y. We call this con-
struction the gly; reproduction procedure.

Let P, be the set containing y and y. The set P, is called the glij1 population
originated at y.

The weight at infinity associated to s, A, and [ is )\fj]’oo) = (p—1,q+1). The weight
at infinity associated to s, X and lis X%’OO) = (}7—7,(74:/) =@+l+1Lp—1-1).
Thus we have A& = \G) 4 o5 In particular, both y and ¥y correspond to actual

eigenvectors of the Gaudin Hamiltonians.

Remark 2.4.4. If X is not typical, then all participating representations are one-
dimensional and the situation is trivial. In particular, we have y(x) = 1. In this case

we can define y = 1. We do not discuss this case any further.

2.4.3 Motivation for gl;;-reproduction procedure

We show that in parallel to the gl, reproduction procedure, the eigenvalues of the
Gaudin Hamiltonians corresponding to polynomials in the same gl;); population are
the same.

Let y = [ (z —t.), G =]y (@ —%). Let t = (tr,.... 1), £ = (fy,.... 5.

Let hy, = pr + qx, k= 1,..., N. Let N(T) be the monic polynomial proportional
to In' (T5T$) n(TFTs).

From Theorem 2.3.2, we have

”kas(z, t) = Ekws(z, t)
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and
kag(z,f) = Ekwg(z,z),
where
AR S PrPr — Qidr !
E — s kMr k T‘+S k : E. _ kMr kYr
2k = rk a
(2.16)

Lemma 2.4.5. The eigenvalues Ey, and Ek, k=1,...,N, of the Gaudin Hamiltoni-

ans are the same.

Proof. Set ti .y =t,, 7 =1,...,1.
If pr. + ¢ = 0, then Ej), = Ek = 0. Without loss of generality, assume p; + qx # 0,
k=1,.... M, M >0,and py+q. =0, k= M+1,..., N, and consider El—El. We

have
M—1

ha

tr_zl.

M
hi + h
=> = Tl (2.17)
P

The polynomial N (T)(x) is

—

hi(x —21) ... (x —z1) ... (x — zpm).

M=

H ZL’—tk h1—|— —I—hM)_l
k=1

k=1

Evaluate the function In'(N(T)) at z; and we have

M-1 M
1 hy + hy,
In'(N(T))(z1) = =y —.
( ( ))( 1) ; 2 —t, 2 h1(21 _Zk:>
Thus, the right-hand side of (2.17) is zero. O

Corollary 2.4.6. We have e5,w®(z,t) = cw®(z,t), for some non-zero constant c.

Proof. 1t follows from the results of [MVY14] that for generic z, the Gaudin Hamilto-
nians Hj, acting in (L(X))*M& = (®;,L(A¥))%"8 have joint simple spectrum. Moreover,
for generic z, w®(z,t) # 0 and w®(z, t) # 0.

Therefore, w®(z,t) and w*(z,t) belong to the same irreducible two-dimensional
submodule of L(X). Moreover, their weights are related by A(#°) = X&) 4 o5 The

corollary follows. O
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Define a rational pseudodifferential operator:

S

R*(y) = <(9 — s 1In’ Tj) (0 — soIn'(T5y))™ .

Lemma 2.4.7. If X is typical, then R*(y) is a (1|1)-rational pseudodifferential oper-
ator. If X is not typical, then R*(y) = 1.

Let X be typical. The rational pseudodifferential operator does not depend on a
choice of a polynomial in a population: R*(y) = R3(¥).

Proof. The lemma is proved by a direct computation. O

2.5 Reproduction procedure for gl,,

We define the reproduction procedure and populations in the general case.

2.5.1 Reproduction procedure

Let s € Sy, be a parity sequence. Let A = (AD AN be a sequence of

polynomial gl weights. Let z = (z1,...,2n) be a sequence of pairwise distinct
complex numbers. Let T® be a sequence of polynomials associated to s, A, and z,
see (2.9). Denote m (T (T7,,) **+') by ms.

Foric {l,....m+n—1},set sl = (s1,..., 841,55, Smin)-
Lemma 2.5.1. If s; = s;41, then 73" = T* and if s; # Siv1, then
T = (TF, . Toamd T ™ T
Proof. This follows from (2.2). O

Let I = (Iy,...,lm+n—1) be a sequence of nonnegative integers.
We reformulate the BAE (2.6) and construct a family of new solutions as follows.

By convention, we set yo = Ymin = 1.

Theorem 2.5.2. Let y = (y1, ..., Ymin_1) be a sequence of polynomials generic with

respect to s, A, and z, such that degy, =1lx, k=1,...,m+n — 1.
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1. The sequence y represents a solution of the BAE (2.6) associated to s, z, A,

and l, if and only if for each i =1,...,m+n — 1, there exists a polynomial y;,
such that
- s (rms \—1 .
Wr (i, 0) = T7 (T3%1) vicayin i si = Siga, (2.18)
~ TFTE Y s .
Yi Y = In’ (%) T Yi-1Yiv1 U Si 7 Siv1. (2.19)
i1

2. Letie{l,...,m+n— 1} be such that y; # 0. Then if

y[i] = (yl, ey Yy 7ym+n71)

is generic with respect to s, X, and z, then y represents a solution of the BAE

associated to s, X, z, and I, where I = (I, ... ,Ti, ey lmin-1), I, = deg ;.

Proof. Part (1) follows from Lemma 2.4.1 and Lemma 2.4.3.

We prove Part (2). Let y, = Hé;l(x - t(-r)), r=1....m+n—1, and y; =

Hé Wz — ’tv.(i)). Let t = (t;r))r 77777 17;+n Land t = (j( ))i 1 l,jwn_l, where we set

L =1, ty) = N-(r) if » # i. The tuple t satisfies the BAE associated to s, X, z, and [.

We prove the Bethe ansatz equation for ¢ associated to s, X, z, and Ill. The BAE
for ¢ related to %;(i) holds by Lemma 2.4.1 and Lemma 2.4.3. The BAEs for ¢ and ¢

related to ¢; @) |r —i| > 1, are the same. We treat the non-trivial cases.

Consider the case of s; = s;41. Dividing (2.18) by 3;7; and evaluating at x = t(Zil)

we obtain

li lz‘

1 1

a=11j a=1t;  —ta :
Thus, the BAE for ¢ related to ty follows from the BAE for t related to t(lil)
Consider the case of s; = —s;.1 = 1. The argument depends on s;_ 1, S; 2.
Consider for example the case of s;_1 = —s;.0 = 1.

We prove the BAE for ¢ related to tg-i_l):

N li—2 I

)\Z N :
Z 1 (i—-1) +1 + Z (i—1) (z + Z (i— 1) 0’ (220)
k=1 ez r=1 tj _t r=1 t
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where § = 1if A £ A £ 0 and § = 0 otherwise.
The BAE for ¢ related to tjl Y s

N/\(s,k) sk)
S e
J

k=1 - t?‘
(2.21)
Take the logarithmic derivative of equation (2.19) for y; and evaluate it at t;i_l).

The left-hand side is

l; I;

t(w 1) Z (i-1)

r=1 t - t7"

In’ (yiyz

and the right-hand side is

In’ (ln (TSTH?JZ 13/z+1) T} Yi 1yl+1) gD
g

= ( ln/(ﬂsﬂil)ﬁyiflyiﬂ

+ (MY Yirn) — ny;—1y£+1)/(7rz'syz{—lyi+l) i1

=t
J

lzl

Mk +>\Z
:Z .21 +1 +Z (i—1)

r=1 t _tr
o

(Note here that the ty_l) are all distinct, by the assumption that yl is generic.)
The difference of the right-hand side and the left-hand side is exactly the difference
between (2.20) and (2.21).

The BAE for ¢ related to t§i+1) is proved by a similar computation.

All other cases are similar, we omit further details. O

If s; = s;41, then starting from y we construct a family of new sequences yl,
isomorphic to C, by using (2.18). We call this construction the bosonic reproduction
procedure in i-th direction. If s; # s;11, and TT2 1y, # cyiy1, ¢ € C*, then
starting from y we construct a single new sequence yl! by using (2.19). We call
this construction the fermionic reproduction procedure in i-th direction. From the

definition of fermionic reproduction procedure, (y) = y.
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If yll is generic with respect to s, A}, and z, then by Theorem 2.5.2, we can
apply the reproduction procedure again.
Bosonic reproduction procedures fix parity sequences, while fermionic reproduc-

tions procedures change parity sequences. Denote by
P(yvs) C (P(C[x]))m-l-n—l X Sm\n

the closure of the set of all pairs (g, 8) obtained from the initial pair (y,s) by re-
peatedly applying all possible reproductions. We call Py s) the gl population of
solutions of the BAE associated to s, z, A, and l, originated at y. By definition,

Py,s) decomposes as a disjoint union over parity sequences,

Pys = | Phey  Fluw = Pus N ((PCE])™ " x {3}).

geSM\N

2.5.2 Rational pseudodifferential operator associated to population

We define a rational pseudodifferential operator which does not change under the
reproduction procedure.

Let s € Sy, be a parity sequence. Let 2 = (21,...,2y) be a sequence of pairwise
distinct complex numbers. Let A = (A1), ..., A\(")) be a sequence of polynomial [\
weights. The sequence T® = (T7,...,T7 ) is given by (2.9).

Let y = (y1,...,Ymsn—1) be a sequence of polynomials. Recall our convention

that Yo = Ymin = 1. Define a rational pseudodifferential operator R over C(x),

TS S1 TS S2
R (y) = (8 — 51 1n’ ;;yo) (8 — 5o 10’ 2—2‘%) X ... (2.22)
TS i — Sm+n
X (8 — Sygn I’ ZminYmin-1 1) .
ym-i-n

The following theorem is the main result of this section.

Theorem 2.5.3. Let P be a gl,,,, population. Then the rational pseudodifferential

m|n

operator R*(y) does not depend on the choice of y in P.
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Proof. We want to show

T_s i Sq T§ ; Si41
(6 — s5;In" = J 1) (8 — Sip1 10’ Lly)
Yi Yit1

Ts[l] i Si+1 Ts[z] Ni Si
— (8 — S In’ %yl) (a — s ln’ Lly> .
Yi Yi+1

We have four cases, (s;, si+1) = (£1,£1). The cases of s; = s;41 are proved in [MV04].

Consider the case of s; = —s;.1 = 1. We want to show

(8 —In’ 171 yzl) (8 — In’ —y:rl )
Yi Tz‘ﬂyz‘

~ —1 1~
i T3 (7)1,
:<8—1n’—s ys ) (3—ln'—’(7r’) y)
TEamiyia Yi+1

This equation is proved by a direct computation using (2.3) and (2.19). We only note
that the rational function T#TE 1y, 1y, is not constant by the assumption that the
reproduction is possible.

The case of s; = —s;,1 = —1 is similar. O

We denote the rational pseudodifferential operator corresponding to a population

P by Rp.

It is known that the Gaudin Hamiltonians acting in L(A) can be included in a
natural commutative algebra B(A) of higher Gaudin Hamiltonians, see [MR14]. We
expect that similar to the even case, the rational pseudodifferential operator R*(y)
encodes the eigenvalues of the algebra B(\) acting on the Bethe vector corresponding
to y. Then, Theorem 2.5.3 would assert that the formulas for the eigenvalues of B(A)
do not depend on the choice of y in the population.

Here we show that the eigenvalues (4.10) of the (quadratic) Gaudin Hamiltonians

do not change under the gl reproduction procedure. Denote the eigenvalues of the

mln
Gaudin Hamiltonians given in (4.10) by Ei(y), & = 1,...,N. Note that Fi(y) is
defined only if y;(2;) # 0 whenever T°(T}5,)”%*+! vanishes at = z,. We call such

sequences y k-admissible.
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Lemma 2.5.4. Lety = (y1, ..., Ymin_1) be a sequence of polynomials such that there
exists a sequence of polynomials y satisfying (2.18) if s; = siv1 or (2.19) if s; = —s;11.

Suppose that y and y are k-admissible. Then Ei(y) = Ex(y).

Proof. In the case of s; = s;;1, the lemma follows from In'y;(2;) = In'7;(21), k =
1,...,N.

In the case of s; # s;11, the lemma follows from taking logarithmic derivative of
the equation (2.19) for y; and evaluating at x = 2z, k = 1,..., N, cf. proof of Lemma
2.4.5. We only note that by (2.19) the polynomial y; 13,11 does not vanish at z if

T;T; 1 does and y;, y; do not. O

2.5.3 Example of a population

In what follows, we study the structure of a population.

Consider gly;. We have three parity sequences, s = (1,1,-1), 81 = (1,-1,1),
and so = (—1,1,1).

Let A = (AW A@ A where A® = (1,1,0), for i = 1,2,3. Let z = (1,w,w?),
where w is a primitive cubic root of unity. We have T = T® = (23 — 1,23 — 1,1).

Let y = (y1,y2) = (1, 1).

1. First, apply the bosonic reproduction procedure in the first direction to y. We
have sb! = sg, T%0 =T, and y!) = (4!, yl) = (2 — ¢, 1), where ¢ € CP'. At

c=o0, yl=(1,1)=y.

2. Second, apply the fermionic reproduction procedure in the second direction to
ylll. We have (s0)? = s; and T*' = (2% — 1,2° — 1,1). We have (y!)Z =

(x — ¢, 423 — 3cx? — 1).

3. Third, apply the fermionic reproduction procedure in the first direction to
(yM 2. We have (s;) = sy and T = ((2® — 1)2,1,1). We have ((y!!))2)1 =
(22* + z, 42 — 3cx® — 1).
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It is easy to check that all further reproduction procedures cannot create a new
sequence. Therefore the gly-population P 1) is the union of three CcPrt, P(Sl(jl) =
{(z—c1) | ceCP}, Py = {(v —c,42° = 3ca® — 1) | c € CP'}, and P77 =
{(22* + 2,423 — 3ca? — 1) | c € CP'}.

We have the following representations for the rational pseudodifferential operator

of the population: Rp = R% = R = R%2:
3z? 3z? 322 223 — 3cx? + 1
Rp=10-— 0— o t=(0- 0— ot
= (0w ) )= ) )
51 do® — 3cx® — 1\
—(0-w? 9 — o' ser 0 —In'(42® — 3cx® — 1)
r—c (3 = 1)(z —¢)

_ , 20t \ , 22t s 5
= (8 In @17 0—lIn P p—— 0—1In'(42° — 3ex® — 1) ).

2.6 Populations and flag varieties

We call a sequence A = (A1), ..., XM of polynomial gl weights typical if

at least one of the A\®), k = 1,..., N, is typical. In this section, we show that 0l

populations associated to typical A are isomorphic to the variety of the full superflags.

2.6.1 Polynomials 7,

Let M = (My < My <--- < M,), N=(N, <Ny <---<N,), M;,N; € Z,
be two generalized partitions with r parts. We say N dominates M if N; > M, for
1 =1,...,r. This gives a partial ordering on the set of generalized partitions with r
parts.

For a generalized partition with r parts M, there exists a unique generalized

partition M with r parts such that:
1. all parts of M are distinct;

2. M dominates M and
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3. if a generalized partition with r distinct parts M’ dominates M, then M’

dominates M.

We call M the dominant of M.
We identify multisets of integers with generalized partitions (by putting their

elements into weakly increasing order).
Example 2.6.1. Let M = {-3,—-3,—-3,—1,0,5,5,6}. Then
M ={-3,-2,-1,0,1,5,6,7}.

This definition is motivated by the following observation.

Let V be a d-dimensional space of functions of x meromorphic around x = z for
some z € C. Then M € Z is an exponent of V at z if there is a function f(z) € V
such that the order of the zero at z = z is M: f(z) = (v — 2)M(c+o(x — 2)), c € C*.
Then V has d distinct exponents. We denote e(V] z) the set of exponents of V' at z.

Let Vi,..., Vi be spaces of functions of  meromorphic around x = z, dimV; = d;.
Let M =1} je(V;,2). Let V = @®F_,Vi. Assume that dimV = Zle d;. Then e(V, 2)
dominates M. Moreover, generically, e(V, z) = M.

Let Ti,...,Trusn € C(z) be rational functions such that T;/T;,; € Clz] is a
polynomial for all t = 1,...,m+mn — 1, ¢ # m. Let 7;(z) be the order of the zero of

T, at © = z. Set
Mi(z) = Tm—it1(2)+i—1,i=1,...,m, Ni(2) = —Tmyi(2)+i—1,i=1,... n.

We have M;(z) < My(2) < -+ < My, (2), Ni(2) < No(2) < -+ < Nyp(2).
Let a € {0,...,m}, b € {0,...,n}. Let My = {c1(2) < -+ < cap(2)} be the
dominant of {M;(2),..., M,(2), N1(2),..., Ny(2)}. Define

a+b a b

dap(2) =ab—Y ci(2) + > Mi(z)+ Y Ni(z)

=1 =1 =1

= (a ; b) — az%ci(z) + ngJrli(Z) - ngH(Z’)-

i=1
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Note that d,,(z) > 0. Moreover, for all but finitely many z we have M; = i — 1,
Ni=i—1¢=1—1, and d,(2) = 0.
We set

o = | [ = 2)%). (2.23)

zeC

Note that 7,;, € C[z] is a polynomial.
Note that for any non-zero rational function f(z), the polynomials 7, ; computed

from T; and f7T; are the same.

2.6.2 Properties of 7,

Let A be a sequence of polynomial gl,,,, weights. Let T; = T;*° be the correspond-

mln
ing polynomials, see (2.9). Let m,; be the polynomials given by (2.23).
Let s be a parity sequence. Using 7,5, the polynomials 7}° can be written in terms

of the T;.

Theorem 2.6.2. We have

71—3+ s,

T;s =17, (7) #a if si=1 and T‘is =1, ()
ﬂ_sj+1,s; Wsj’s'i

7

Ws;r,s;—&-l

; if S; = —1.
Proof. Let s be a parity sequence such that s; # s;1 and

= i
S:S[] :(817‘--781'—1—1781'7---,3m+n)-

Let a = s;, b=s; + 1. By Lemma 2.5.1 it is sufficient to check

Ta+1,b TTa,b—1 Ta,b
—————— =7 TypTr-a .
Tab Ta+1,b—1 Ta+1,b—1

Since A*) is a polynomial gl -weight, the exponent of Tap at 2k, dap(2k), Is given

mln
by
4
ab if b < AP
(a—1)b+ AP if AP << A®

da,b(Zk) =

\)‘57]16) +ee Af?ﬁ)—a-i-l if )‘7(7’?—a+1 <b.



39

Thus the exponent of 7,415/7ap at zx is given by

da1(z) — day(z) = min{b, A% }.

The exponent of (a1 Tap—1)/(Tap Tar16-1) at 2z is 1 if b < /\,(ﬁ),a and it is 0 other-
wise.
To compute the exponent of o pT—aTap/Tat1-1 at 2g, introduce two extra

c<b—1=x" = =W cp<A®  We have

.\ (k)
parameters cq, co: A e gt ey

m—ci1+

l+a—b—cy ifa>cy,
da,b - da+1,b71 =
—Am—a if a < co.

Note that )\fﬁ)_a < b implies )\fﬁlb = 0. A direct computation gives the proof. n

Let W =V @&U be a graded space of rational functions of dimension m +n, where
V=W5 U=W;and dimV =m, dimU = n. For z € C, define M;(z) < My(z) <
oo < My (2) and Ni(z) < Na(z) < -+ < N,(z) to be the exponents of V and U at z

respectively. Define rational functions

and
U _ —Nii—1 ; _
TmH—H(a:—z) i=1,...,n.
zeC

The following

m-41*

Let W;/bU be polynomials as in (2.23) computed from T}, TY

lemma is clear.

Lemma 2.6.3. Let vy,...,v, €V, uy,...,up, € U. Then

V.U U U U
Wr(vl,...,va,ul,...,ub)ﬂa’b FASRY A= =g
VTV %

VIV TV .

1S a polynomial. [
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2.6.3 The gl ,, spaces

mln

Let W =V @ U be a graded space of rational functions of dimension m + n,
where V = W5, U = W7 and dimV = m, dimU = n. For z € C, let as before
Mi(z) < My(2) < -+ < Mp,(z) and Ny(2) < Na(z) < --- < N,(2) be the exponents
of V and U at z respectively.

We call W a gl

min Space if the following conditions are satisfied for all z € C:

1. Nu(2) <n—1;
2. if Mi(z) <0, then My(z) > 1, Ni(z) = My(z), and Ny(z) =i —1,i=2,...,m;

3. if v € V, u € U are not regular at z, then there exists a ¢ € C such that

(u+ cv)(z) = 0.

These conditions can be reformulated as follows. Let

p'= I @-2 = 1] @-2™"O

z, M1(2)<0 z, N1(2)<0

be the least common denominators. Then V = p¥V and U = pYU are spaces of

polynomials.
Lemma 2.6.4. The conditions in the definition of the gl,,,, space are equivalent to:
1. pY/pY is a polynomial that is relatively prime with p" ;

2. TV | /p¥ and TV

man @€ polynomials;

3. if TV, ,(2) = 0 for some i =2,...,n, then (pV/p¥)(z) = 0;

4. for anyv € Viu € U, p"Wr (v,u) is reqular at every zero of pV.

Proof. Let 7Y (2), 77'(2), 77(2), and T]U(Z) be the orders of the zeroes of T\, TV,

TV, and TV at z. If 7/ (2) < 0, then 77/ (2) = 7V (z) — 7% (2). If 7Y, ,(2) > 0, then
T]U<Z) = TjU(Z) - TnU1+1(Z)‘
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The conditions (1) and (2) in the definition of a gl,,, space are equivalent to

m|n

7V, (2) > 0 and if 7V (2) < 0, then 7¥_,(2) > 0, —7‘},{“(2) = 77(2), and TT[,{JFQ(Z) =

m—+n

iU

man(2) = 0. This is equivalent to the first three conditions in the lemma.

The condition (3) in the definition is equivalent to the condition () in the lemma

in the presence of the other conditions. O

Let W =V @& U be a gl,,, space. Define polynomials

mln

TV _
ZQW:T;VZPZ‘,,¢:1,...,m—1, TV = V1V =TV,
Y v _
1% +1 _ D w U Ul .
Tm+1 = ;Lv - p_VJ Ter@' :Teri =p Tm+2'7 222,...,71,.

Remark 2.6.5. Note that while Ti‘_/, 1 = 1,...,m, are the standard polynomials
describing the exponents of the space of polynomials p¥' V', our definition of TT[ZH has
an extra minus sign. The exponents of the space of polynomials pY U are described by

a sequence of polynomials (p¥ /TW. .. ....pY /T 5, 1).

Let 77?,/1; be as in (2.23) computed from polynomials T}V
Further, given a € {0,1,...,m}, b€ {0,1,...,n}, v1,...,0, € V, uy,...,up € U,
define

y Wr(vl,...,va,ul,...,ub)wgz)va},/lV+1...T7‘r/LV+b
ab — .
Ty Ty e
We have
Lemma 2.6.6. The function y,y is a polynomial.
Proof. The lemma is proved by considering orders of zeroes at each z € C. ]

Note that Lemma 2.6.6 is stronger than Lemma 2.6.3, since y,; has p¥ and not

(p¥)? in the numerator. Lemma 2.6.6 holds due to the additional assumption that

W is a gl,,,, space. Here, we crucially use the condition (3) in the definition of the
gl Space.

Let A = (AW, ... A() be a sequence of polynomial gl weights, z = (z1,..., 2,)

a sequence of pairwise distinct complex numbers. Let T = (T1,...,T4,) be the
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corresponding polynomials given by (2.9). Let y represent a solution of the BAE as-
sociated to A, z, and the standard parity sequence so. We have the rational pseudod-

ifferential operator R(y) = D;(y)D; ' (y). Let V(y) = ker D5(y), U(y) = ker Di(y).

Proposition 2.6.7. If X\ is typical, then W(y) = V(y) & U(y) is a gl,,,, space of

mln

rational functions and T)V =T;,i=1,...,m +n.

Proof. Denote W (y), V(y), and U(y) by W, V, and U respectively.

Note that y1, ..., ym_1 represents a solution of the gl,, BAE. Therefore, the bosonic
reproduction procedures generate a gl,, population and v, - Dg - (y,,) " is the differ-
ential operator associated to this population. It follows by [MV04] that V = v,V is
a space of polynomials. Similarly, ¥,41,- .., Ymin_1 represents a solution of the gl,
BAE and U = 4,,T,,+1U is also a space of polynomials.

We have p” =y, 2¥ = Ths1Ym.

Since X is typical, there exists & such that A*) is typical, i.e. )\gi) > n. Then
MW am—i> A" >2AW >n>i-1> AW 4 j-1fori=1,...,m j=1,...,n
Therefore the spaces V' and U have no exponents in common and hence V NU = 0.

The only non-trivial condition in Lemma 2.6.4 is (/). The fermionic reproduction

procedure in the m-th direction (2.19) can be written as
Y U = W (0, W Y2 T D1 /T

Initially, we have v(y) = T¥m—1/Ym, W(Y) = Ymi1/(Tms1Ym). Generic u,v can
be obtained from v(y), u(y) by the bosonic reproduction procedures. Therefore, by
Theorem 2.5.2, 7, is a polynomial for generic v, u. Since ¥, is relatively prime to

TmTm+1/Tm, we obtain condition (4) in Lemma 2.6.4. O

Remark 2.6.8. If A is not typical then cancellations may occur in the rational
pseudodifferential operator R(y) = Dg(y)Dy'(y) of (2.22) and the spaces V(y) =
ker Dj(y), U(y) = ker Di(y) may intersect non-trivially. Compare Lemma 2.4.7.
As an important example, consider the tensor product of N copies of the defining

representation, LX) = (C™™")N. Then Ty(z) = [[oy(x — 2) and Ty(z) = 1 for
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i=2,...,n+m. Thus for the vacuum solution to the BAE, i.e. y = (1,...,1), we

have

Do(y) = (3 -1 - _1 Zk) ", Di(y) =9"

k=1
2.6.4 The generating map

Given a parity sequence s and a full superflag F € F*(W), we define polynomials
y’b(]:)a 1= 17‘-'7m+n_ 1, by the formula

yslts; lf S; = 1,
yi(F) =
Yst 511 if s, = —1.

That defines the generating map

B FI(W) = (B(CL))™™ ™, F o y(F) = WulF): - Ymsna (F)).

Let A = (A1,...,Ay) be a typical sequence of polynomial gl,,, weights, z =
(z1,...,2n) asequence of pairwise distinct complex numbers. Let T' = (T3, ..., Ty 1n)
be the corresponding polynomials given by (2.9). Let y represent a solution of the
BAE associated to A, z and the standard parity sequence s.

Recall that we have the gl,,,, population P = P, see Section 2.5.1, the rational

mln
pseudodifferential operator of the population Rp = R(y) = Dg(y)(Di(y))™", see
(2.22) and the gl,,,, space Wp =V (y) ® U(y), see Proposition 2.6.7.

The following theorem asserts that the population P is canonically identified with

full superflags F(Wp) and the complete factorizations of the pseudodifferential oper-
ator F(Rp).

Theorem 2.6.9. For any flag F € F*(Wp), we have B*(F) € P°. Moreover, the
generating map (° : F*(Wp) — P*® is a bijection. Finally, the complete factorization

p°(F) of Rp coincides with R*(5°(F)), see (2.4), (2.5), and (2.22).

Proof. The operator R} coincides with the unique minimal fractional decomposition

of Rp. Thus, for the standard parity, the theorem is proved in [MV04].
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Let y = B°(F) = (y1,- -+, Ymin—1). Lemma 2.6.6 asserts that y is a sequence of
polynomials. By Theorem 2.6.2, we have R*(y) = p*(F).

Let s be such that s; # s;.1. Let 3 = sl = (S1yevySit1ySiye-vySman). Let y =
B3(F) = W1, Umin-1). A direct computation shows y, = g, 7 =1,...,m+n—1,
r # 4, and y;, 3; satisfy equation (2.19). By Theorem 2.5.3 we have R*(y) = p°(F).

That reduces the case of any s to the case of sg. n

Remark 2.6.10. Theorem 2.6.9 shows in particular that if two populations intersect,

then they coincide.

Let W be a gl .. space. Let Ay, be a sequence of gl . weights and zy a sequence

of distinct complex numbers such that TZ-W are associated to sg, Aw, zw.

Let s be a parity sequence. Consider the set of all sequences (yi, ..., Ymin_1) €
BE(F(W)). Fori=1,..., m+n—1, let lfs’w) be the minimal possible degree of the
ith polynomial y;(x) in this set.

Define

N m+n—1

N =D ) D et

k=1 i=1
2.7 Conjectures and examples

It is well known that the Bethe ansatz in the naive form is not complete in general.

We conjecture how to overcome this problem. We also give a few examples.

2.7.1 Conjecture on Bethe vectors

Let A = (A® ... A™)) be a typical sequence of polynomial gl weights, z =

(z1,...,2n) a sequence of distinct complex numbers. Let T = (17, ..., T)4n) be the
corresponding polynomials given by (2.9).

Let L(A) = @Y_, L(A®) be the corresponding gl,, module. It is known that the

Gaudin Hamiltonians acting in L(X) can be included in a natural commutative algebra
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B(A) of higher Gaudin Hamiltonians, see [MR14]. The algebra B(A) commutes with
the diagonal action of gl,,,,.

If n = 0, it is known that the joint eigenvectors of B(A) in L(A)*™9 (up to
multiplication by a non-zero constant) are in bijective correspondence with spaces of

polynomials V', such that T}V = T}, see [MTV09].

Let s be a parity sequence. We have the following conjecture.

Conjecture 2.7.1. The algebra B(X) has a simple joint spectrum in L(X)*™9. There

sing

is a bijiective correspondence between eigenvectors of B(X) in L(A)y %,

(up to mul-

tiplication by a non-zero constant) and the gl,,,, spaces of rational functions W such

mln
that TV = T; and /\E,f}’oo) = A& Moreover, this bijection is such that, for all
k=1,...,N, the eigenvalue of the Gaudin Hamiltonian Hy, is given by (4.10), where

t is represented by any k-admissible y in S(F(W)).

By simple joint spectrum we mean that if v;,v5 are eigenvectors of B(A) and
v1 # cvg, ¢ € C*, then there exists b € B(A) such that the eigenvalues of b on v; and

vy are different.

Remark 2.7.2. [f the sequence of polynomial modules X is not typical we expect that
the eigenvectors are also parameterized by pairs of spaces of rational functions V' and
U of dimensions M and N with similar conditions. However, V and U can have
a non-trivial intersection (see Remark 2.6.8). Then some fermionic reproduction
procedure becomes undefined and the factorization of the rational pseudodifferential

operator (2.22) is not minimal. We do not deal with this case here.

In the case of gly;, Conjecture 2.7.1 simplifies as follows. We follow the notation

of Section 2.4.2. Let N (T) = In'(TyTy) 7 (TyT3).

Conjecture 2.7.3. The Gaudin Hamiltonians Hy, k =1,..., N, have a simple joint
spectrum in L(X)*™. There exists a one-to-one correspondence between the monic
divisors y of the polynomial N (T') of degree | and the joint eigenvectors v of the
Gaudin Hamiltonians of weight (p — l,q + 1) (up to multiplication by a non-zero
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constant). Moreover, this bijection is such that Hyv = Epv, k = 1,..., N, where

Ey, are given by (2.16).

Recall our conventions from §2.3.2 about what constitutes a solution to the Bethe
ansatz equation. With those conventions, a monic divisor of A (T') is the same thing
as a solution to the Bethe ansatz equation, cf. Lemma 2.4.3, and in that sense

Conjecture 2.7.3 asserts that the Bethe ansatz is complete for gly ;.

2.7.2 A gl,; example of double roots

Suppose all the tensor factors L(A®), k = 1,..., N are non-trivial. In type oly
that suffices to make them all typical, cf. Remark 2.4.4. Thus we have deg N'(T') =
N —1. For generic z, all roots of the polynomial N'(T) are distinct, and there are 2V -1
different monic divisors of N'(T). In such a case we have a basis of Bethe eigenvectors
in L(X)*™ in accordance with Conjecture 2.7.3. But when the polynomial N(T)
has multiple roots the number of its divisors is smaller. Then, according to Conjec-
ture 2.7.3, we should expect non-trivial Jordan blocks in the action of the Gaudin
Hamiltonians. We give an example illustrating this point.

We consider the case when N = 3. We work with the standard parity sequence.

The modules L(A®), k = 1,2,3 are spanned by vgf) and v(_k), where vf) is the
highest weight vector with respect to sp, and o® = eglvf). Denote the vector
vi(l) ®v](-2) ®v,(€3), i,J,k € {£} by vjr). Let hy = pr+qi, k = 1,2,3. We are supposing

that hy # 0, k = 1,2,3. We have

N(T) :(hl + hg + h3).1'2
— (hi(z2 + 23) + ho(21 + 23) + ha(21 + 22))

+ (h12223 + h221Z3 + h32122). (224)

The weights A being polynomial means that h; € Zs;.
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The subspace L()\)?;n_gl g+1) 18 spanned by wy = —hav(—iy) + hiv(4—) and wy =
—h3v—yy + hov(4—). The action of the Gaudin Hamiltonians in this subspace is
explicitly given by

_hathy  __hs

H, = <p1P2 — q192 I pip3 — CI1Q3>[ i 21— 29 Z1—72
21 — 22 21— %3 __hy  _hiths |’
21—23 21—23
PaD1 — Q21 | D2P3 — 424 e
2P1 — G241 2P3 — 4243 - -
7—[2:< + >[_|_ z2—21 Z2—23
29 — 21 29 — 23 h3 __haothg
z9—21 22—23

The discriminants of the characteristic polynomials of both of the above 2 x 2 matrices
coincide with the right-hand side of (2.24) up to multiplication by nonzero factors.
Therefore the polynomial N (T') has distinct roots if and only if Hq, Ho have distinct
eigenvalues, that is, if and only if the Gaudin Hamiltonians are diagonalizable.

We note that in the case of double roots of y(z), the corresponding Bethe vec-
tor is zero. Therefore an actual eigenvector should be obtained via an appropriate
derivative. It can be done in the case of gl; without difficulties, but in general the

algebraic procedure is not known.

2.7.3 A gl,; example with non polynomial modules

Conjecture 2.7.3 may be true for arbitrary modules, not only polynomial ones if
we make the following modification. Let A be a sequence of arbitrary gl,; weights.

In general L(A) need not be completely reducible. That is, there may exist a
nonzero singular vector v € L(A)*" such that v = €5, w for some w € L(A). If v
and w are eigenvectors then the eigenvalues of v and w are the same and we do not

expect to obtain a new divisor of N (T') for v.

Conjecture 2.7.4. Consider the subspace of L(X)*™ spanned by the joint eigenvec-
tors of the Gaudin Hamiltonians Hy, k = 1,...,N. Quotient it by its intersection
with the image of €5,. On this subquotient, the Gaudin Hamiltonians Hy, k =1,...,N
have a simple joint spectrum and their joint eigenvectors of weight (p — 1, q +1) (up

to multiplication by a non-zero constant) are in one-to-one correspondence with the
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monic diwisors y of the polynomial N'(T) of degree l. Moreover, this bijection is such

that Hyv = Exv, k=1,..., N, where E}, are given by (2.16).

Here we give an example of a such a phenomenon. We consider the case when
N = 3. Suppose hy + hy + hy = 0, that is p + ¢ = 0. Then the polynomial N (T)
given by (2.24) is linear. In particular, we have only two divisors instead of the four
which we had in a generic situation. We denote the only root of N'(T) by t.

The subspace L(A)p—1,—p+1) is three dimensional. It has a basis {w, e21v(444), v}
where w is any vector such that e;ow = v(414), and the two other vectors ez v 44) =
Umt) T UG =) F 01—y and v = (E—21) 0y + (E—22) 0 + (E—23) 1044
are singular.

The subspace L(A)(p—2,—p+2) is also three dimensional. It has a basis {u, ea1w, ea v}
where v is any vector such that es;u = v(—__y. One can check that ey v is proportional
to e12v(——_), and is therefore singular since ef, = 0.

The structure of the module can be pictured as follows:

U(4++)
/ >1+++

Ee

€1 W €21V

U(___

Fig. 2.2. Structure of the module

While the singular space L(A)*"8 is four dimensional, its quotient by the image
of g1 is two dimensional and generated by the images of v(;44) and v, in accordance

with the Conjecture 2.7.4.
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Let s; = (—1,1) be the only non-standard parity sequence. The subspace of s;-

singular vectors has a basis {v(___y, €210, e21w, €21v(441) }. Its quotient by the image
of e3] is generated by images of v(___y and ey w.
The reproduction procedure connects v 14y with es;w and v with v___). In

particular, it connects vectors with the same eigenvalues, see Lemma 2.4.5; however

the weight now changes by 2a and Corollary 2.4.6 is not true in this situation.
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3. DUALITY OF SUPERSYMMETRIC GAUDIN
MODELS

3.1 Preliminaries
3.1.1 Superspaces and superalgebras

A superalgebra is a vector superspace with an even, bilinear, associative, unital
product operation. Given superalgebras A, B, the tensor product A ® B is a super-
algebra. For any homogeneous elements z,x’ € A, y,y € B, the product in the

superalgebra A ® B is
(z@y)(@ @y) = () V(e @ yy).

Forz € A, a € {l1,...,k}, denote 12D @ r @ 192(k-2) ¢ A®k by x(@),

3.1.2 The gl ,, current algebra and the evaluation modules

min

Let t be an even variable. Let gl ,[t] = gl,,, ® C[t] be the Lie superalgebra of
gl valued polynomials with pointwise superbracket. We call gl,,, [t] the current
algebra. Denote by Ugl,,,[t] the universal enveloping algebra of gl,,,, [].

We identify the Lie superalgebra gl . with the subalgebra gl . ® 1 of constant

m|n mn

polynomials in gl,,,,[t]. Therefore any g[m|n[t]-module has the canonical structure of

mln

a gl,,,-module.

The standard generators of gl [t] are e; ; @17, 4,7 =1,...,m+n, r € Zxo. The

superbracket is given by

(u —w)lei;(w), epq(v)] = =lei;, epgl(w) + [eij, epgl(v), (3.1)
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where
o

e j(v) = Z(em @t ) (3.2)

r=0

are the formal power series.
For each z € C, there exists a shift of spectral parameter automorphism p, of
gl n[t] sending g(v) to g(v — z) for all g € gl,,,,,. Given a gl,,,[t]-module V', denote

by V. the pull-back of V' through the automorphism p,. As gl ,,,,-modules, V' and V,

m|n
are isomorphic by the identify map.

We have the evaluation homomorphism, ev : gl [t] = g, ev : g(v) = gv™".

For any gl,,,-module V', denote by the same letter the gl,,, [t]-module, obtained by

-module V

mln
pull-back of V' through the evaluation homomorphism ev. Given a gl,,,,

and z € C, the gl,,,[t]-module V; is called an evaluation module. The action of

gln[t] in V; is given by

€i ;W
e i(vw = —"—, 3.3
sy = 222 (33)
foranyweV,i,7=1,....,m+n.
Note that if AV, ..., A\*) are polynomial weights and z1,. .., z, are pairwise dis-

tinct complex numbers, then the module ®*_, L(A(@), is irreducible.

a

3.2 Berezinians of affine Manin matrices

In this section, we recall some facts about Berezinians, following [MR14]. We give
a definition of Berezinians of affine Manin matrices to arbitrary parities and study its

properties.

m+n
ij=1

Let A be a superalgebra. Given a matrix A = (a;) a;; € A, with a two

sided inverse A~!, we denote the (7,7) entry of A~* by @ ;.
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3.2.1 Berezinian of standard parity

Let A = (ai’j)miq be a matrix with a two sided inverse. The Berezinian of

i,J

standard parity of A, see [MR14], is

Ber A = ( Z SN0 Ap(1),1 - - - ao(m),m> X ( Z SENT Gyt 1,me4r(1) - - .5m+n7m+7(n)>,

oGGm TEGn
(3.4)

where G, is the symmetric group on r letters. In the case of n = 0, the above formula
is the column determinant which we denote by cdet A. In the case of m = 0, the above
formula is the row determinant of the inverse matrix which we denote by rdet A~

We call A = (ai,j)Z;J:> a;; € A, a matriz of standard parity over A, if |a; ;| =
il + 1]

We call A a Manin matrixz of standard parity, if A is of standard parity and

[ai7j7 anQ] = (_1>|’LHJ‘+‘ZHP|+|]HP‘[a’pJ7 ai,q]7 Z.7j7p7 q= 17 s, M + n.

Many properties of even Manin matrices are known, see [CFR09]. Similar properties
can be proved in the supersymmetric case, but we need here only a couple of facts
which we extract from [MR14].

Let w be an even formal variable. We call A(w) = (a; (w)):n;: an affine matriz,

if

)
r ..
(17;7]'(’[11) = E aiJWw y (17;7]'77" € A, Cli7j70 = 5i,j7 1,]) = 1, .o, —+ n.
r=0

In other words, an affine matrix is a matrix whose entries a; j(w) € A[[w]] are
formal power series in variable w and such that A(0) = I. In particular, every affine
matrix has a two sided inverse.

Given a Manin matrix A of standard parity, the matrix (1 + wA) is an affine

Manin matrix of standard parity.

Lemma 3.2.1 ( [MR14]). Let A(w) be an affine Manin matriz of standard parity.

Then the inverse matriz A=Y (w) is an affine Manin matriz of standard parity. O
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For an arbitrary (m + n) x (m + n) matrix A with a two sided inverse, the (3, j)
quasideterminant of A is Zi;}. If Zij_,il does not exist in A, then the (¢, j) quasideter-

minant of A is not defined. We write

ai e CLl,j ce a1 m+n

a;; = a; 1 c. .. Qi mn

am+n71 e am+n7j e am+n7m+n
For i =1,...,m + n, define the principal quasi-minors of A by
ari ... a1
di(A) = (3.5)
1075 I (7%

If A(w) is an affine matrix, then the principal quasi-minors d;(A(w)) are well
defined for all 7.
The Berezinian of Manin matrices of standard parity is computed in terms of

quasi-minors.

Theorem 3.2.2 ( [MR14]). Let A(w) be an affine Manin matriz of standard parity.

The Berezinian Ber A(w) admits the quasideterminant factorization:

Ber A(w) = di(A(w)) . . .du(A(w)) x d;h (A(w)) ... d;L (Aw)).

3.2.2 Berezinian of general parity

Fix a parity sequence s € Sy, see Section 2.1.1. Set i® = 0,4(1), see (2.1).

We call A = (aiJ)ern a;; € A, a matriz of parity s, if |a; ;

ij=1’

= |i®| + |7°|. Note
that 0 is both odd and even, in particular, the zero and the identity matrices are

matrices of arbitrary parity s.
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We call A a Manin matriz of parity s if A is of parity s and

— [e2117%[+12%][p*[+]5°]1p°] o _
[ai:ﬁalhq} — (_1) [a’p,jaai,q]7 %, 7,P,q9= 17-'-7m+n‘

The symmetric groups &,,,, acts on matrices and parities by the following rule.

For o € G,,.,, we set

B m+n
U(A) = O'AU ! - (ag*l(i)’gil(j))iujzl

and O'(S) = (5071(1), e ngl(m+n)).

The following lemma is straightforward.

Lemma 3.2.3. Let A be a Manin matriz of parity s. Then o(A) is a Manin matriz

of parity o(s). O
Lemma 3.2.1 is extended to affine Manin matrices of arbitrary parities.

Lemma 3.2.4. Let A(w) be an affine Manin matriz of parity s. Then A7 (w) is an

affine Manin matrix of parity s.

Proof. There exists 0 € &,,4,, such that o(s) = so. By Lemma 3.2.3, 0(A(w)) is an
affine matrix of standard parity. By Lemma 3.2.1, the matrix (o(A(w)))™" is an affine
Manin matrix of standard parity. We have (0(A(w)))™* = (A7 (w)). Therefore by
Lemma 3.2.3, the matrix A~'(w) = o7 ((¢(A(w)))™!) is an affine Manin matrix of

parity s. 0

Let A(w) be an affine Manin matrix of parity s. We define the Berezinian of
parity s of A(w) by

Ber® A(w) = d*(A(w)) ...d)mr (A(w)). (3.6)

'm4n

By Theorem 3.2.2, definition (3.6) coincides with definition (3.4) in the case of stan-

dard parity.

Let A(w) be an affine Manin matrix of parity s. Fix r € {1,...,m +n} and con-

sider the corresponding blocks. Namely, let W (w), X (w), Y (w), Z(w) be submatrices
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W(w) X(w) .
of A(w) = of size r xr,rx (m+n—r), (m+n—r)xr, and
Y(w) Z(w)
(m+n—r) x (m+n —r) respectively.
Then W (w) and Z(w) are affine Manin matrices of parities s|” and 8|,+n—r, Where

s|"=(s1,...,8:) and S|min—r = (Sra1s- - Smin)-

We have the Gauss decomposition:

W(w) X(w
A(w) = () X{w) (3.7)
Y(w) Z(w)
_ 1 0\ [ W(w) X (w)
Y (w)WHw) 1 0 Z(w) =Y (w)WHw) X (w)

The next proposition claims that the Gauss decomposition is compatible with the

definition of Berezinian.

Proposition 3.2.5. The matrices W(w) and Z(w) — Y (w)W = (w)X (w) are affine

Manin matrices. We have
Ber® A(w) = Ber®" W (w) x Ber®lm+n—r (Z(w) = Y (w)WHw) X (w)) . (3.8)

Proof. The matrix (Z(w)=Y (w)W = (w)X (w)) ! is a submatrix of A~!(w), see (3.7).
Therefore, by Lemma 3.2.4, the matrix (Z(w) — Y(w)VV_l(w)X(w))_1 is an affine
Manin matrix of parity 8|, +n_r, which implies in turn that Z(w)—Y (w)W ! (w) X (w)
is an affine Manin matrix of parity s|,in_r-

For i = r+1,...,m + n, denote by X(w)|; the submatrix of size r x (i — r)
formed by the first (i — ) columns of X (w), denote by Y (w)|* the submatrix of size
(i —r) x r formed by the first (i —r) rows of Y (w), and denote by Z(w)|: the top left

(1 —r) x (i — r) submatrix of Z(w). Similar to (3.7), we have
-1

W(w)  X(w)l;
Y()[" Z(w)l;

)

(3.9)

-1

W(w) X(w)li 1 0



From the definition of principal quasi-minors, we have d;(A(w)) = d;(W(w)),

i=1,...,r. From (3.9), we have

di(A(w)) = di_(Z(w) = Y ()W Hw)X (w)), i =7+1,...,m+n. (3.10)

Now we can prove that the action of &,,, does not change the Berezinian.

Proposition 3.2.6. Let A(w) be an affine Manin matriz of parity s. Let 0 € S,y
We have
Ber® A(w) = Ber”™® o (A(w)). (3.11)

Proof. 1t suffices to consider 0 = (i,i+ 1), i = 1,...,m +n — 1. Moreover, it is

sufficient to show
a7 (A(w))dis (Aw)) = d;" (o (A(w)))d7 (o (A(w))).

Without losing generality we treat the case i = m +n — 1.
Consider the block decomposition of A(w) with » = m + n — 2. In particular,

Z(w) is a 2 x 2 matrix. By (3.10) with i = m +n — 1, m + n,

and

i in-1(0(A(w))) = di (G (Z(w) = Y ()W~ H(w) X (w))),
dimin(0(A(w))) = d2(G(Z(w) =Y ()W (w) X (w))),

where & = (1,2) € &,.
Thus, the proposition is reduced to the case of 2 x 2 affine Manin matrices. This

is proved by a direct computation. O
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3.2.3 Affine-like Manin matrices

We extend the results on Berezinians of affine matrices to another class of matrices
which we call affine-like matrices.
Denote A((w)) the superalgebra of formal Laurent series in w with coefficients in
A7 [e%¢}
Al(w)) ={>_ bw", N €Z, b, € A}.

r=—N
Let A = (a”)znj:z be a matrix of parity s with entries a;; in A. We call A an

affine-like matriz of parity s if the following two conditions are met:

e for any subset a C {1,...,m + n}, the matrix A, = (a;;),

. has a two sided
1,J€a

inverse with entries in A and the diagonal entries of A ' are invertible in A.

e there exists an injective homomorphism of superalgebras &4 : A — A((w))

such that a; ; — a;; + 0; jw™.

If A is an affine-like matrix, then the principal quasi-minors d;(A) are well-defined.
If A is an affine-like matrix then o(A) is affine-like for any o € &, 4p,.

Our definition is motivated by the following simple observation.

Lemma 3.2.7. If A is an affine-like matriz, then w®4(A) = 1 + wA is an affine
matriz. Moreover, we have ®4(A™Y) = (PA(A))™! and ®A(d;(A)) = di(DPA(A)),
1=1,....,m+n.

If A is an affine-like Manin matriz of parity s, then w®4(A) is an affine Manin

matriz of parity s and A~ is also an affine-like Manin matrixz of parity s. O

Now we can extend the definition of the Berezinian and its properties to affine-like
matrices.

Let A be an affine-like Manin matrix of parity s. Define Berezinian Ber® A by
formula (3.6).

Proposition 3.2.8. Propositions 3.2.5 and 3.2.6 hold for affine-like Manin matrices

of parity s. O
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3.3 Bethe algebra B,,,,(A)

In this section we discuss Bethe subalgebras B,,,(A) C Ugl,,,[t]. The Bethe sub-
algebras B,,,(A) are commutative and depend on parameters A = (Ay, ..., Apyy) €
C™*". The algebra B(A) of higher Gaudin Hamiltonians in Section 2.7 is the image
of B,,,(0) acting in L(A).

3.3.1 Algebra of pseudodifferential operators

Let A be a differential superalgebra with an even derivation 9 : A — A. For
r € Z>o, denote the r-th derivative of a € A by a,.

Let A((071)) be the algebra of pseudodifferential operators. The elements of
A((071)) are Laurent series in 9~ with coefficients in A, and the product follows
from the relations

00 =00=1, 0a= 2 (Z) wod ™ r €T, ac A

where

ry _ r(r—1)...(r—s+1)
s s!
Let A[0] C A((071)) be the subalgebra of differential operators,
M
A0 ={>_a,0", M € Zzg,a, € A}.

r=0

Consider a linear map ® : A((071)) — A[9]((w)),

N N
D Z a,0" — Z a,(w 't +9)", (3.12)

r=—00 r=—00

where the right hand side is expanded by the rule (w™' +9)" = Y22 (1) 0w ™""*.
Lemma 3.3.1. The map ® is an injective homomorphism of superalgebras.
Proof. For any r, the coefficient of w” in the right hand side of (3.12) is a summation

of finitely many terms.
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The coefficient of w™ in &3> a,d") is ay. Therefore, ® is injective.

For any a € A, we have

= T _s >\ — T r—s s
CI)((()TCL) = (Z (8) a(s)é)“ ) = (S) ( " )a(s)ﬁtw + +t.
s=0 s=0 t=0

Then, changing the summation indices we obtain

() D(a) = (9 )a = i C) O w " a = f: Z (Z) (j) a0 T = B(97a).

s=0 s=0 t=0
Therefore, the map ® is a homomorphism of superalgebras. O
3.3.2 Bethe subalgebra
Let

be the superalgebra of Laurent series in v~! with coefficients in U gln[t]. The algebra
Avmln is a differential superalgebra with derivation 0,.
Let A = (Aq,...,Apin) be a sequence of complex numbers. Consider the matrix
B(A) with entries in the algebra of pseudodifferential operators Amln((dj 1)) given by
m+n

B(A) = (800, = M) = (=1)e(0)) (3.13)

2,j=1

The following lemma is checked by a straightforward computation.

Lemma 3.3.2. The matrix B(A) is an affine-like Manin matriz of standard parity
with the map ®pay = @, see (3.12). O

Consider the expansion of the Berezinian of the affine Manin matrix w®(B(A)) =
1 +wB(A):
Ber (1 + wB(A ZZB )T (3.14)

r=0 s=0

where B2, (v) € A" The following fundamental result is known.
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Theorem 3.3.3 ( [MR14]). The series B2, (v) pairwise commute,

(B2 ., (v1), B, (v2)] = 0,

71,51

for all ri,s1,73, So.

The series B;}s(v) commute with the Cartan subalgebra b C Ugl

min>’

or allr, s, 1. O]
f ) b

We call the commutative subalgebra generated by coefficients of series st(v),

7,8 € L>o, s <1, the Bethe subalgebra of Ugl,,,[t] and denote it by B, (A).

Alternatively, we can expand Ber B(A) directly

Ber B(A) = mif BA(w)or, (3.15)

r=—00

where BA(v) € A",

Proposition 3.3.4. The coefficients of the series BM(v), 1 € Z<y_n generate the
Bethe algebra B,,,(A).

Proof. We have

w™ "®(Ber B(A)) = w™ "Ber ®(B(A)) = Ber (1 + wB(A)),
since ® is a homomorphism of superalgebras by Lemma 3.3.1. Moreover, ®(a) = a,
for a € AT, The proposition follows. O
3.4 Duality between 5,,,, and B,

In this section we show the duality between B,,,(A) and B;(z) acting in the
space of supersymmetric polynomials. The duality in the case of n = 0 is given

in [MTV09b].
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3.4.1 The duality between gl ,, and gl;

mln

We start with the standard duality between gl,,,, and gl,.

Let D be the superalgebra generated by z;,,0,4,7 = 1,....m+n,a=1,... k,

with parity given by |x; .| = |0;.| = || and the relations given by supercommutators
[xi,aa xj,b] = [87L,a7 aj,b] = O, [ai,m -rj,b] = 5i,j5a,b7 for all i?j? a, b.

Let V' C D be the subalgebra generated by z;q, 1 = 1,...,m+n,a=1,... k.
Then

V=Clzig i=1...,m a=1.. kl®@ANxje j=m+1,....m+n, a=1,...,k)

is the product of a polynomial algebra and a Grassmann algebra. We call V' the space
of supersymmetric polynomials or bosonic-fermionic space. The algebra D acts on V'

in the obvious way.

We have a homomorphism of superalgebras m,, : gl,,, — D given by
7Tm|n [m|n] Zmza J,as ] - 1 m4+n
where we write the suffix in e%‘”’] to indicate that these are elements of gl,,,,. In
particular, gl,,,, acts on V.

For a € {1,...,k}, let V .. C V be the subalgebra generated by 14, ..., Zmin,a-

Then we have isomorphisms of gl,,,,,-modules:

k
Vn(”j?)l @Lff»jfn(dél)a @ \n’

d=0

where L (del) is the the irreducible gl,,,,-module with highest weight (d,0,...,0)

mln
and hlghest weight vector xl . The submodule L (del) is spanned by all monomials

of total degree d in me

We also have the homomorphism of superalgebras 7, : gl, — D given by

m-+n

= inﬂ@’b, a,b=1,... k.
=1
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In particular, gl; also acts on V.
Fori e {1,...,m+n}, let Vk(i) C V be the subalgebra generated by x;1,...,z;k.
If i < m, the space Vk(i) is the polynomial ring of k variables, otherwise the space Vk(i)

is the Grassmann algebra of k variables. Then we have isomorphisms of gl,-modules:

[e'S) k m+4n
VO =@ L), i<m, V=P L W) i>m, V=KV
d=0 a=0 i=1

Here, L,(j)(del), i < m, is the irreducible gl,-module with highest weight (d,0,...,0)
and highest weight vector z¢,. The submodule L,(f)(del) is spanned by all monomials
of total degree d in Vk(i). The module L,(;) (wq), © > m, is the irreducible gl -module
with highest weight (M,O...,O) and highest weight vector x;;...2;,. This

a

submodule is spanned by all monomials of total degree a in Vk(i).

In particular we have the canonical identification of weight spaces:

<L£i|)n()\1€1> ® - ® Lﬁfjﬁn(Aqu [(k1, - - pontn)]

= (L (mer) @+ @ L (e
L™V, V@@ L,gm”)(wumﬂ))[(xl, M) (3.16)

These weight spaces are spanned by monomials in V' which have total degree A,
with respect to variables x; 4, ..., Tpm4n,e and total degree p; with respect to variables
Lily-woy Lk

The standard duality between gl,,,, and gl is the following well-known statement.

mln

Lemma 3.4.1. The actions of gl,,,, and gl on V' commute. We have the isomor-

n

phism of gl,,,, @ gl modules

V=P Lo ® Li(n),

/"EPm,n;k

where Py, .1 s the set of all (m|n)-hook partition with length at most k. O
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3.4.2 The duality of Bethe algebras B,,,(A) and B,(2)

Let z = (21,...,2;) and A = (Ay,..., Ajuiyn) be two sequences of complex num-

bers. We extend actions of gl,,,, and gl, on V' to the actions of the current algebras

mln
ol,n[t] and gl [t] as follows.
Let ftnpn @ Ugly,,[t] — D and 7y : Ugl,[t] — D be homomorphisms of superalge-

bras given by

k
~ m|n xi,aa',a ..
7rm|n:e£’j| ](U)HZﬁ, i,j=1,...,m+n, (3.17)
a=1 a
m-+n 2 a
Tk e%(u) o Z uzi /le’ a,b=1,... k. (3.18)
i=1 !
Then the gl,,,,,-module Vn(;‘li becomes evaluation gl,,,,, [t]-module (Vn(jzl)za and the gl -

module Vk(i) becomes evaluation gl [t]-module (Vk(i)) Ass see (3.3).

The actions of gl,,,,[t] and gl [t] on V' do not commute anymore. However, we

mln
prove the theorem saying that the actions of Bethe algebras 9B,,,(A) C Ugl,,,,[t] and
Br(z) C Ugl,[t] on V coincide.

Recall that the Bethe algebra 9B,,,(A) is generated by the coefficients of the

Berezinian of the matrix

BA) = (3500, = &) — (~1)1el )"

0, y
2,7=1
Similarly, the Bethe algebra B;(z) is generated by the coefficients of the column

determinant of the matrix

N
G(2) = (8as(0u = z) —lh(w)) .
Theorem 3.4.2. The Bethe algebras m,B(z) and B (A) coincide.

Moreover, we have the following identification of generators. Suppose b, s(z, A),

grs(A, z) € D do not depend on v, 0,, u, 0y, and
k
(0= 21)... (0= 2) i Ber B(A) =) bys(z, A)0"03

(w—A1)... (u—Ay)
(U — A1) - (U — D)

7AT]€ cdet G(Z) = gr,s(Aa z)u’“@j )

r=—oo s=0
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then
brs(z,A) = g5, (A, 2). (3.19)

Proof. The proof of this theorem is given in Sections 3.4.3 and 3.4.4. [

By Theorem 3.3.3, Bethe algebras preserve weight spaces. In particular, Theorem
3.4.2 gives an identification of action of Bethe algebras B(z) and B,,,,(A) on the
weight spaces (3.16). In particular we can now translate the known properties from
the even to supersymmetric case.

Denote the right-hand side of (3.16) by V/(A, p). Let z = (21, ..., 2k), 24 # 2 and
A= (A,...,Ngn), A #Aj. Denote By, (2, A, i) the image of the Bethe algebra
B (A) in End(V(A, p)) with evaluation parameters 2y, ..., 2.

Corollary 3.4.3. We have:
1. The algebra B, (2, X, 1) is a Frobenius algebra of dimension dim(V (X, p)).
2. The space V(A, ) is a reqular representation of By (2, X, ).
3. All eigenspaces of By (2, A, ) in V(A, 1) are one dimensional.

Proof. The corollary follows from the corresponding statements for 8 (z), see The-

orem 7.1 in [MTVO08b]. O

3.4.3 An identity of Capelli type

In this section we give an explicit expansion of Tycdet G(2).

Let D, = D((u™1)) be the superalgebra of Laurent series in u~' with values
in D. The algebra D, has a derivation 9, and D,((9,')) is the superalgebra of
pseudodifferential operators.

Let G(A, z) be a k x k matrix with entries in D,[d,] C D,((9;!)) given by

m-+n k
i ia0i
G(A, 2) = G(z) = <5a,b(8u —z) =) 27— Ab>
i=1 (

a,b=1
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The matrix G(A, z) is a Manin matrix of parity (1,...,1). We want to expand

cdet G(A, z). In order to do that, we introduce some notation.

The superalgebra D, ((9; 1)) is topologically generated by x; 4, 9; o, u*!, 0='. Define
an ordering on the generators such that z;, < 9;, < u* <9, i,j=1,...,m+n,
a,b=1,... k,and z;, < 3, 0;.q < Ojp, if either a < bor a =0 and i < j.

Let m be a monomial in the generators. Denote by :m: the new monomial where

all participating generators are multiplied in the increasing order and the sign is

changed by the usual supercommutativity rule. For example,

D0 T O 101 9Tt 1 = 11T 11011 0m 100 O
We call :m: the normal ordered monomial.
Let
.
—2,0ip(u—N)™, i=1,...,m+n, a,b=1,... k,
i .
ap = § Ou — Zas a=1,...,k, b=a, i =0, (3.20)
0, otherwise.
\

Note that in all cases F, is even and normal ordered. Every term will be given as a

product of F, in the expansion of cdet G(A, z).
Denote by |S| the cardinality of a set S.

Let a = {1 <a; <--- <a <k} beasubset of {1,...,k}, where | = #a. Let
J(a) be the set of function 5 : {1,...,k} — {0,1,...,m + n} such that j(a) = 0 if
and only if a € a and such that for any i € {1,...,m}, #57'(:) < 1.

We have

#a

17 (a)] = 2; (i) (7:) sl s,

For ji,ja € J(a), we write j; ~ jo if #47 ' (i) = #45 ' (i) for all i. Clearly, ~ is an

equivalence relation in J(a). The cardinality of the equivalence class of j € J(a) is

U/ (T G @)Y

For j € J(a), 77'({1,...,m + n})

a. Therefore the symmetric group G4,
acts on the preimage j~'({1,...,m + n}). Given j; ~ j,, there exists a unique



66

permutation o, ;, € G4, such that o, j, : j; (i) — j; (i) is an increasing function
foralle=1,...,m + n. Note that j; ooj, j, = j2 on a.

We also define
sgn (j1,j2) = (=1)V,
N =#{(s,s) |1 <s<s <, 0j,;,(5) <0j,5(5), jalas) >m, ja(ay) > m}.
Given ji, jo € J(a), j1 ~ ja, define the sign
c(j1, 52) = sgn (j1, J2) sgn (05, 5,) (=1)"
For j € J(a), set
Tj = Tj(ar).aaTi(az)az - Lita)ar 95 = Ojan)arFjtaz)an -+ Ojtar).ar-

Note that monomials «; and @; are normal ordered.

Now we are ready to state the main result of this section.

Proposition 3.4.4. The normal ordered expansion of the column determinant of

G(A, z) is given by

m+n
cdet G(A,2) = Y > (o) [ i 0) =8, (3.21)
ac{l,....k} j1,j2€J(a) i=m+1
Ji~i2
X H u—A H(@u—za).
i€j2(a) ada

Proof. We first assume all generators are supercommutative and show equation (3.21)
holds. Then we show that the additional terms created by non-trivial supercommu-
tation relations cancel in pairs and do not contribute to the expansion.

Recall even elements F! up given in (3.20). We have the expansion

m—+n

cdet G(A, z) Z Z sgn (o 0(1)1 F“Ek)k

Now we want to normal order it.

Assume the supercommutators are all zero, [u, 0, = [Ti 4, ;] = 0.
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For a nonzero term sgn (o) F'} 1)1 F““k,) o let a={a,i, #0} C {1,... k}. We

write the set a = {a; < --- < ;}. Then we can rewrite our sum as follows

m+n
i1 i _
cdet G(A, z) g E E g sgn (o FU(WZ1 T H (0—2a).
=0 1<a1<-<a;<k 0€G] i1,...,5;=1 a, a#ai,...,a
We normal order the term corresponding to a; < --- < a;,0 € Gy, 4q,...,1. Let

i1 be the number of upper indices greater than m, i; = #{is > m,s=1,...,1}. We
have

i1 Fi _ (_1)l+i1(i1—1)/2 Livaoq) - - ‘xilv%(wailval - D

Ag(1),a1 """ 7 Ag(1),a1

(u—Ay) ... (u—Ay)

Note that monomial J;, 4, ... 0;, 4 is normal ordered. We now observe some sim-
plifications before ordering Titsapqy - - - Tintoq) -

Consider a term corresponding to a; < -+ < ay, 0, i1,...,1.

Fix ani € {1,....m+n}. Let b = {s, i, =4} C {1,...,1}. If #b =r > 1,
then we have r! terms which correspond to the same a; < --- < ay, i1,...,1%4, and
permutations of the form 7o, where 7 € &; permutes elements of as, s € b, and
leaves others preserved.

If i« < m, then after normal ordering all these r! terms will produce the same
monomial with different signs and cancel out. On the other hand, if 7« > m, then after
normal ordering, all these 7! terms will produce the same monomial with the same
sign and therefore can be combined.

Therefore the summands in the expansion can be reparametrized by a C {1,...,k}

and ji, 72 € J(a), j1 ~ j2. The correspondence is given by

a={a < - <a}, J1(ao(s)) = j2(as) = is, s=1,...,L (3.22)
Note that o is not recovered from a,ji,jo. In fact, we have (#{s, is = m +
L. .. (#{s, is = m + n})! choices for o, which all correspond to equal summands.

We choose one permutation, namely o}, ;,, and multiply the corresponding term by

Fi m+ D) (Fg (m+ n)L.
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So we have
. . m—+n
cdet G(A,2) = > > san(oy,y,) (—1)FathabERe TT 53|
ac{l,...,k} j1.j2€J(a) i=m+1
J1~i2
o ij(al)’anla]'z(l) e 'xj2(a#a)vadj1vjz(#a) 812(01)#11 e 'aj2(a#a)’“#a H(a )
uw — Ra)
(U — A“) RN (u — Ai#a)

ada
where we denoted by #71j; the cardinality of j; ' ({m +1,...,m +n}). We rewrite
the first indices of z;, variables through j;, using (3.22), and then we normal order

them, getting the additional sign and arriving at (3.21).

Now we proceed to the non-commutative setting. We call the additional terms
"quantum corrections” and show that they cancel in pairs.
We normal order monomials from right to left. The induction is based on the

number of F Cf’b on the right which have been normal ordered. Namely we prove

m—+n

cdet G(A,2) = > > sen(o) Fity) - Faty o Foi (3.23)

GEG, i1 yensin=0
by induction on a.
The basis a = k of induction is a tautology. We show the step of induction from
a=agtoa=ayg—1.

We use the following simple formula:

p
22 -1 S _ .
Fag,bQ( Ai2) ) i1 =0, a1 = by, iz 7& 0,
i1 i2 i1 i . i 1 .

Fahbl Fa2,bz Fa1,b1Fa2,b2 : 5’i1,i25b1,a2Fa1 b2( Aig) , 7é 0,
0, otherwise.
\

. 'L‘aofl . iaO Zk . . o
Consider a nonzero term sgn (cr)Fa(arl)ﬂr1 : FO_(QOM0 ) ..Fg(km ;. Then i, = 0

implies o(a) = a.

We have two cases: 74,1 # 0 and 44,1 = 0.
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Let i4y—1 # 0. Then F;‘Eg;l) a1 Creates at most one quantum correction. Namely,
if there exists b € {ao, ..., k} such that i,,_1 = 4, and ag — 1 = o(b), then such b is

unique and

sgn (o) Fa(zgo_il),ao—l :FU{ZEOMO o F;?b),b . F;’Ek)k :
=sgn (o) : Fa?3;i1),ao—1Fa?go),ao e F:Eb),b e Félzk)k :
1 i i i
— sgn (O’)u A E a0 Folao—1yp - Fotpyn - (3:24)

ip
If such b does not exist then there is no quantum correction (the second term on the

right hand side is absent).

Let i4,—1 = 0. Then we possibly have many quantum corrections:

sgn (o) Fp 4 001 - F;;go)’ao o F g = sen (o) Fgo_LaO_lF;‘Ego)’ao e
k ] ' ‘
—sgn (o) Z v h Felaan - ol
iarto ‘
(3.25)
The quantum correction in (3.24) corresponding to the term labeled by o, i1, . . . , i

in (3.23) cancels with the quantum correction corresponding to a = b summand in
(3.25) applied to the term in (3.23) labeled by o(ag—1,b), {i1,. .., %a0-2,0, %00, - - -, ix}-
This proves the induction step.

The statement of induction with a = 1 proves the proposition. O

3.4.4 Another identity of Capelli type

Let D, = D((v™!)), be the superalgebra of Laurent series in v~! with coefficients
in D. The superalgebra D, has a derivation 0, and we consider the superalgebra of

pseudodifferential operators D, ((9;1)).

Let B(z,A) be a (m +n) X (m + n) matrix with entries in D,[d,] C D,((9,1))
given by

k

m-+n
~ -1 sz aa'a

a=1 ij=1
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The matrix B(z, A) is a Manin matrix of standard parity.

Let B(z,A) be a (m+n+ k) x (m+n + k) matrix given by

. v—2Z D!
B(z,A) = (3.26)
SX 0,—A
where the submatrices are Z = diag(zy,...,2x), A = diag(Ay,..., Apin), D =
a=1,....,k . a=1,....,k T t -
(ai,a)l.zl 7777 i X = (xi:a)izl .... b S = diag(l,...,1,—1,...,—1), and D" is the
a:in,...,k "

transpose of D. In particular, SX = ((—1)”':Jc,~7a)i:1 e

Let D,((0;1))((w)) be the superalgebra of Laurent series in w with coefficients in

D,((9;1)). Define the homomorphism of superalgebras

(2

¢ :D,((9,1) = Du((8; ) (w)),

1

v vF+w, Oy 0, +wt, and g — g, g €D. (3.27)

Note that in our convention we first expand in positive powers of w then in powers
of 9,1 and then in powers of v, cf. (3.12). As a result, if a series is in the image
of ®, then it belongs to D[v,d,]((w)), in other words, a coefficient of w* is always a
polynomial in 0, and v for any k € Z.

The map @ is a composition of map @, see (3.12) and of the shift homomorphism
v — v+ w L. Therefore, ® is a well-defined injective homomorphism.

Then, it is straightforward to check the following statement.

Lemma 3.4.5. The matriz B(z,A) is an affine-like Manin matriz of parity §y =
(1,...,1,—1,...,—1) with the map P. O
——— e —

k+m n

We would like to expand and normal order the Berezinian of B(z, A). However, it
is sufficient to expand and normal order Berezinian of B(z, A). Indeed, by Proposition

3.2.8, we have
Ber® E(Z, A)=(v—2)...(v—z) Ber B(z,A), (3.28)

cf. Corollary 2.2 of [MTVO09b].

The expansion of the Berezinian of B (z,A) is given by the following proposition.
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Proposition 3.4.6. We have

m-+n
Ber® B(z,A)= Y Y (i) [] i) =0, (3.29)
ac{1,...,k} j1 JQEJ( a) i=m-+1
(B —AY) (D — A
X V— 2, d, — A7t ( ! )
:al;[ﬂl( )iEEJ(:a)( ) (61) - Am+1) R (av - Am-i—n)

Proof. Let 0 € &, 11 be defined by 07 (a) =m+n+a,a=1,...,k and o1 (k +
i)=14,i=1,...,m+n. Then

O, — AN SX

o(B(z,A)) =
Dt v— 7

The matrix o(B(z, A)) is an affine-like Manin matrix of parity

s=(1,...,1,-1,...,—-1,1,...,1)
—_—— —— ——

m n k

with the map ®. By Proposition 3.2.8, we have
Ber* B(z, A) = Ber® 0(B(z, A)).

Using Proposition 3.2.8 once again (we use r = m + n), we further see

@y — A1) (B — Ay
@y — A1) -~ (B0 — M)

where B’(z,A) is an even matrix given by

Ber® o(B(z,A)) = cdet B'(z,A) ,

m4+n

—1ia, .
B'(z,A) = <5a,b(v — Za) — Z %)Zb:l '

v

(By—A1)...(p—Am) . .
Next we move the factor B k)0 Ay 1O the right of the column determi

nant. Note that for i € {1,...,m}, a € {1,...,k}, we have

ai,axi,a o Ii,aai,a
(0 = A)(v = 20 = 550 = (v = 20— 520) (00— M)
Similarly, for i € {m+1,...,m+n}, a € {1,...,k},
1 </U — + ai,axi,a ) _ ('U — 0y — xz’,aai,a ) 1
(05 — Ay) C 0, - N C 0, — N (O — Ny)
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Therefore, we have

= Ti0ia )’“ (0p —Ay)...(0

- B v Am)
Ber®™ B(z, A) = cdet (5a,b(v %a) 0, — A | (0 — A

a,b=1 (av — Am+1) . +n) '

Finally, the expansion of the above column determinant is done by a computation

similar to the one in Proposition 3.4.4. O

Theorem 3.4.2 follows from Propositions 3.4.4 and 3.4.6.

We remark that the k& x k column determinant cdet G(A, z) in Proposition 3.4.4
is also essentially a Berezinian of an (m +n + k) X (m + n + k) matrix. Namely, let
G(A,z) be a (m+n+ k) x (m+ n+ k) matrix given by

N u—A D
G(A,z) =
Xt 0,—Z

Then G(A, z) is an affine-like Manin matrix of parity

s=(1,...,1,-1,...,—-1,1,...,1)
H,_/H_/Rk,_/

A

with the same homomorphism of superalgebras @, see (3.27). By Proposition 3.2.8,
the Berezinian of parity s of G(A, z) is given by

(u—~Aq) ... (u—Ay)
(u—Apy1) o (0= Apin)

Ber® G(A, z) = cdet G(A, z). (3.30)
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4. BETHE ANSATZ EQUATION AND RATIONAL
DIFFERENCE OPERATORS

4.1 Rational difference operators and their factorizations

We study properties of ratios of difference operators, following the treatment of
ratios of differential operators in [CDSK12]. We also describe the relation between

the complete factorizations and the superflag varieties.

4.1.1 Rational difference operators

Fix a non-zero number A € C*. Let K be the field of complex valued rational
functions K = C(z), with an automorphism 7 : K — K, (7f)(z) — f(x — h).

Consider the algebra K[7] of difference operators where the shift operator T satisfies

T-f=flx—h) T

for all f € K. By definition, an element D € K]r] has the form
D = Z Clej, a; S K, re Z)O- (41)
=0

The difference operator D has order r, ord D = r, if a, # 0. One says that D is
monic if a, = 1. We call ag the constant term of D.

Let D € K[7] be a difference operator of order r as in (4.1). We say a difference
operator D of order r is completely factorable over K if there exist f; € K, i =
1,...,r, such that D = a,d;...d,., where d; = 7 — f;. We focus on completely
factorable difference operators with non-zero constant terms ag. In this case, we
consider factorizations of the form D = aqd;---d,, where d; = 1 — fﬂ', ﬂ e K,

1=1,...,r.
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Let ker D = {u € K | Du = 0} be the kernel of D. It is clear that if dim (ker D) =
ord D, then D is completely factorable over K.

Let K(7) be the division ring generated by K[r]. The division ring K(7) is called
the ring of rational difference operators. Elements in K(7) are called rational differ-
ence operators.

A fractional factorization of a rational difference operator R is the equality R =
DyD; ", where D, D; € K[r]. A fractional factorization R = DgDj " is called minimal

if D7 is monic and has the minimal possible order.

Proposition 4.1.1. Any rational difference operator R € K(7) has the following

properties.
1. There ezists a unique minimal fractional factorization of R.

2. Let R = D@D{l be the minimal fractional factorization. If R = 5()5{1 s a
fractional factorization, then there exists D € K|[r] such that 75@ = DD and

D; = D;D.

3. Let R = D@Di_l be a fractional factorization such that dim (ker Dg) = ord Dy
and dim (ker D) = ord D;. Then R = D@D{l is the minimal fractional factor-
1zation of R if and only if ker Dy N ker D; = 0.

Proof. We have the analogs of [CDSK12, Proposition 2.1, Corollary 2.2, Lemma 3.2]
for difference operators. Namely, the algebra K[7] is right Euclidean, therefore K|7]
satisfies the right Ore condition and every right ideal of K[r] is principal. This
statement is proved similarly as [CDSK12, Proposition 3.4]. O]

We call R an (m|n)-rational difference operator if in the minimal fractional fac-
torization R = DDy ! Dy, D; are completely factorable over K, and ord(Dg) = m,
ord(D;) = n, and Dy, D1 have the same non-zero constant term.

Let R be an (m|n)-rational difference operator. Note that R can also be written

in the form R = 251_1255, where Dj, Dg € K[r], ord(ﬁa) = m, and ord(ﬁi) = n. More
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generally, let s € S, be a parity sequence. Then we call the form R = di* ... d, ",
where d; =1— fir, fi € K, i =1,...,m+n, a complete factorization with the parity
sequence s. Let §*(R) be the set of all complete factorizations of R with parity
sequence s and §(R) = | |, S S (R) the set of all complete factorizations of R.

Throughout the paper, we use the following useful notation: for any ¢ € Z and
fek,

fli] = 7'(f) = f(z — ih).

Define the discrete logarithmic deriative of a function f(z) by In'(f) = f/f[1].

Consider two (1]1)-rational difference operators
Ri=0—ar)(1—b7)"' and Ry=(1—c7) (1 —d7),
where a,b,c,d € K, a # b, and ¢ # d.
Lemma 4.1.2. We have Ry = R if and only if

c=>b[1]1n"(a — b), a[l] = d/In'(c — d),
or equivalently 0

d=a[l]ln'(a —b), b[1] = ¢/In’(c — d).
Let R be an (m|n)-rational difference operator with a complete factorization R =

dit---dy"r where d; = 1 — fi7. Suppose s; # s;41 and d; # d;y1. Using Lemma

m+n
4.1.2, one constructs d; and d;11 such that d;*d;}' = d;""'d;i,. This induces a new

complete factorization of R =dj'---d;""'d;", - - - d;7} with the new parity sequence
s = SM = (817 s Sitly Siy e e Sm—l—n)-
Repeating this procedure, we see that there exists a canonical bijection between

the sets of complete factorizations with respect to any two parity sequences.

4.1.2 Complete factorizations and superflag varieties

Let W = W5 @ Wi be a vector superspace with dim(W5) = m and dim(W3) = n.
Consider a full flag F of W, % = {F, C F, C .-+ C F,y, = W} such that
dim(F;) = 4. A basis {wy,...,wnn} of W generates the full flag F if F; is spanned
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by wi, ..., w;. A full flag is called a full superflag if it is generated by a homogeneous
basis. We denote by . (W) the set of all full superflags.

To a homogeneous basis {wy,...,wn1,} of W, we associate the unique parity
sequence 8 € Sy, such that s; = (=1)*l. We say a full superflag .F has parity
sequence s if it is generated by a homogeneous basis whose parity sequence is s. We
denote by .#°(W) the set of all full superflags of parity s.

Clearly, we have

FW)= || W),  FW)=F (W) x F(W).
$ESmmn
Given a basis {v1, ..., v, } of W5, a basis {uy, ..., u,} of Wi, and a parity sequence
8 € Spyjn, define a homogeneous basis {wy, ..., Wnn} of W by the rule w; = Vgt
if s; =1 and w; = Ug— 11 if s; = —1. Conversely, any homogeneous basis of W
gives a basis of Wj, a basis of Wi, and a parity sequence s. We say that the basis
{wy, ..., Wyin} is associated to {vy,...,vm}, {ur, ..., u,}, and s.

Define the discrete Wronskian Wr (or Casorati determinant) of ¢y, ..., g, by
Wr=(g1,...,9,) = det (g;[F(i — D]); =y =det (gj(z £ (i = Dh)); ;-

We simply write Wr for Wr ~.

Let R be an (m|n)-rational difference operator over K. Let R = DyD; " be a
fractional factorization such that ord D; = n and the constant term of Dj is 1. By
Proposition 4.1.1, such a fractional factorization of R is unique.

Let V=W =kerDy, U =W;i =kerD;, W =Wz d Wj.

Given a basis {v,...,v,} of V, a basis {uy,...,u,} of U, and a parity sequence

8 € Spn, define d; = 1 — f;7, where

s Wr (1,02, Vg g, U Uy e U ) '

fi=In : L if s, =1,
Wr(vl,vg,...,vsj,ul,u%...,us;) 1] 42)
, Wr (1,02, Vg U Uy U ) ‘

fi=In ! : , if s, =—1.
Wr(vl,vg,...,vsj,ul,u%...,usi— 1]
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Note that if two bases {vy,...,vm}, {01,...,0n} generate the same full flag of V/
and two bases {ui,...,u,}, {1,...,%,} generate the same full flag of U, then the

coefficients f; computed from v;,u; and from v;,%; are the same.

Proposition 4.1.3. We have a complete factorization of R with parity s: R =

S1 Sm+n
di’ - dyy

Proof. The statement for the case of s = s follows from [MV03].

Let s and s be two parity sequences which differ only in positions ¢, i+1. Explicitly,
s; = 8§ for j #4,14+1and s;, = —s;41 = —8§; = 5;341. It is clear that d; = Jj for
j # 4,1+ 1. In addition, the equality di'd;}}' = czzsczli’f ' follows from the discrete
Wronskian identity, see [MV03, Lemma 9.5],

Wr (Wr (vy, vs, . ... Vgt qs ULs Uz, - - ,usi—),Wr (v1,v9, . .. Vg, Ut Uz, - - - ,usi_ﬂ))

=Wr (v, v, .. Vg1, ULs Uz, - - ,uS;H)Wr (v1,v9, ... Vg, UL, U, -5 U -)[1]. O

By Proposition 4.1.3, we have maps w : #(W) — §(R) and @w® : F5(W) —
3°(R).

Corollary 4.1.4. The maps w and w® are bijections. [

Thus the set of complete factorizations of R is canonically identified with the

variety of full superflags of W.

4.2 XXX model

In this section we recall the definition of the super Yangian Y (gl and some

facts about the XXX model associated with Y(gl Our main source is [BROS].

m|n)

4.2.1 Super Yangian Y(gl,,,) and transfer matrix

mln

Let C™" be the complex vector superspace with dim(C%nln) =m and dim(@?'"

n. We choose a homogeneous basis ey, ..., e, of C™" such that le;] = 0 for 1 <
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i <mand |e;| =1 for m+1 < j < m+n. Denote by E;; € End(C™") the linear
operator of parity || + |j| such that E;jer, = 0,,e; for 1 < 4,5,k <m +n.

The super Yangian Y(g[m|n) is a unital associative algebra with generators EE;) of
parity |i| + [j|, 4,5 =1,....,m+n, k € Zo.

Consider the generating series
Lij(x) =Y £ £ =4,
k=0

and combine the series into a linear operator

L(z) = Ej; ® Ly(x) € End(C™") @ Y (g, [[z7]]-

3,j=1

The defining relations of Y(gl,,,) are given by

R (21 — 22) L9 (1) LB (w5) = LB () L9 (21) R (21 — 22), (4.3)

where R(z) € End(C™" @ C™") is the super R-matrix defined by

m—+n

ij=1
Remark 4.2.1. Note that, for any non-zero z € C*, the map L;j(x) — L;;(z/z)
defined

induces an automorphism of Y(gl,,,), therefore the super Yangians Y(gl,,,,)

by different non-zero h are actually isomorphic. In particular, we can always rescale

h to 1. [
The R-matrix R(z) satisfies the graded Yang-Baxter equation,
R (21 — 25) R (1) R (15) = R (20) RYD) (1)) R (21 — 5).

The super commutator relations obtained from (4.3) are explicitly given by

(w1 — 22)[Lij (1), Lae(wo)] = (=D)IFHARAE R (£, (29) Lig (1) — Lij (1) Lie(2))
= (_1)|i|\j\+|f||i|+|e||j|h(ﬁm(xl)ﬁkj(xQ) — Eif(xQ)['kj(xl))'
(4.4)
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In particular, one has
L8, Lyo(w)] = (—D)IRHEER R (5,00, () — 8 Lie()). (4.5)

The super Yangian Y (gl is a Hopf algebra with the coproduct

m\n)

m+n
A Lig(x) e Y ()DL (2) @ Lyj(z),  ij=1,...,m+n.
k=1

The super Yangian Y(gl contains the algebra U(gl as a Hopf subalgebra. The

embedding is given by the map e;; — (—1)‘i‘£§?/h for 1 < 4,7 < m+ n. We identify
U(gl,,,) with the image of this map.
The transfer matriz T (z) is defined as the supertrace of L£(x),

m+n

T(x) = str(L(x)) = > (=) Ly(x).

i=1
It is known that the transfer matrices commute, [T (z1), T (z2)] = 0. Moreover, the

transfer matrix 7 (z) commutes with the subalgebra U(gl,,,,)-

Since the transfer matrices commute, the transfer matrix can be considered as a

generating function of integrals of motion of an integrable system.

For any given complex number z € C, there is an automorphism

where (z — z)~! is expanded as a power series in 1. The evaluation homomorphism

ev: Y(gl — U(gl is defined by the rule:

ﬁ(a) — (—1)‘i|51ah€i]‘,

Jt

for a € Z~y.

For any gl,,,,,-module V' denote by V(z) the Y(gl,,,,)-module obtained by pulling

back of V' through the homomorphism evo(,. The module V' (z) is called the evaluation

module with the evaluation point z.
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Let V be a Y(gl,,,)-module. Given a parity sequence s € Sy,,,, a non-zero vector

v € V is called an s-singular vector if
L5 (x)v = Ay(x)v, Efj(iv)v =0, ©>7,
where A;(z) € C[[z~"]] and L5 ,(2) = Loy(a),0a) ().

Example 4.2.2. Let Ly be an irreducible polynomual gl ...-module of highest weight

mln

A with highest weight vector vy. Let z be a complex number. Then the gl ,, s-singular

vector vy € Lx(z) is a Y(gl,,,) s-singular vector. Moreover, we have

S; /\S(efi)h> s T—z+s5\(e)h

E?i(:v)viz(H P oS, i=1,2,...,m+n. O

T —z
4.2.2 Bethe ansatz equation

We fix a parity sequence s € Sy, a sequence A = (AWM. AP of polynomial
gl weights, and a sequence z = (z1,. .., 2p) of complex numbers. We call &) see

Section 2.3.2; the weight at point z, with respect to s.

Let I = (l1,...,lmin-1) be a sequence of non-negative integers. Define [ =
S Let t = (8, ,tl(ll); T ,tl(zl:::l)) be a collection of vari-
ables. We say that ty) has color i. Define the gl,,,,, weight at oo with respect to s, A,
and l by

P m+4n—1
Aol = N AR N o
k=1 i=1

The Bethe ansatz equation (BAE) associated to s, z, A, and l, is a system of

algebraic equations in variables &:

(4) (s,k)p  li—1 4(4) (i—1) L () (4) lita (4) (i+1)
H tj — 2+ 5N h t; —fr V+Sihl—[ th —tvr — s;h H | t; 4—tT .
ot — sy A SR eyt Y o 9 ) f sy 8 — 6 s h
7
(4.6)

where i =1,...,m+n—1,7=1,...,1;. We call the single equation (4.6) the BAFE
for t related to ty).
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We allow the following cancellations in the BAE,

ty) — 2+ si)\gs’k)h

: = 1, if Si)\gs’k) = Si+1>\£s7k);
t(l) — 2+ SZ+1)\§j_7f)h i

J
9 4 — sih
ty) — ¥+ Sit1h

== 1, if S; = —Si+1- (47)

After these cancellations, we consider only the solutions that do not make the re-
maining denominators in (4.6) vanish.

In addition, we impose the following condition. Suppose («f, af) = 0 for some i.
Consider the BAE for t related to ty) with all tl()a) fixed, where a # ¢ and 1 < b < [,

this equation does not depend on j. Let t(()i) be a solution of this equation with

multiplicity r. Then we require that the number of j such that tg»i) = t(()i) is at most

r, c.f. Lemma 4.16, Theorem 4.4.1.

The group &; = G;, x --- x &, _, acts on t by permuting the variables of the

same color.

We do not distinguish between solutions of the BAE in the same &;-orbit.

Remark 4.2.3. Note that in the quasiclassical limit h — 0, system (4.6) becomes sys-
tem (4.2) of [MVY14], which is the Bethe ansatz equation of Gaudin model associated

to gl 0

4.2.3 Bethe vector

Let A = (AW, ..., A\®)) be a sequence of polynomial gl Weights. Let vf = v

be an s-singular vector in the irreducible gl,,,,-module Lyx). Consider the tensor

product of evaluation modules L(X, z) = @Q&_, Lyw(zx). We also denote by L(\)

the corresponding gl, .. .-module.

mln
Let I = (l1,...,lmsn_1) be a collection of non-negative integers. The weight

function is a vector w®(t, z) in L(, z) depending on variables

t= (ngl), . ,t(l)‘ o ;t(mﬂl*l) t(mJF”*l))

1 g ey lm+n71
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and parameters z = (21,...,%,). The weight function w®(t,z) is constructed as
follows, see [BR08, Section 5.2].
Set ¢ =11+ -+1l,_1,a=1,...,m+n. Note that [ = [<™". Consider a series

in [ variables ¢ with coefficients in Y(gl,,,,):

lm+n—1 )

Bf(t) = (stry,. ; ®id) (L(““)(tgl)) . E(l,l+1)(t(m+n—l)

X %( )( )ESH—n m4+n— 1®lm+n_1 ® Tt ® E.231®l1 ® 1),

where

= t(“)

RUTHE D D) 4@y (4.8)

7

oI

and the first product in (4.8) runs over 1 <a<b<m+n— 1.

’:li
//\ z

+ Sbh

//\
//\

The weight function w*(t, z) € L(A, z) is given by

w(t,z) =B (t) (v @ ®v3).

p

Example 4.2.4. Let m+n =2 and t = (t,...,t), then

w(t,z) = (~1)'PIL3(0) - L) (v @ - @ ) (4.9)

p

1s an example of the weight function. O
The following theorem is known.

Theorem 4.2.5 ( [BRO8]). Suppose that X is a sequence of polynomial gl,,,,, weights

m|n
and t a solution of the BAE associated to s, z, X, and l. If the vector w®(t,z) €
L(X, z) is well-defined and non-zero, then w®(t,z) € L(X, z) is an eigenvector of

the transfer matriz T (z), T (z)w®(t, z) = E(x)w(t, z), where the eigenvalue E(x) is

given by
m+n p la (@)
$—Zk+8a Rl x—t +sah T —t;" — Sah
Sq . (4.10)
P70 | S | By | B
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Note that the eigenvalue £(x) depends on the parameters t, s, z, and A. We drop
this dependence for our notation.

If t is a solution of the BAE associated to s, z, A, and [, then the value of the
weight function w*(¢t, z) is called the Bethe vector.

We have the following standard statement regarding to Bethe vectors, c.f. [MTV06,
Proposition 6.2] and [MVY14, Theorem 4.3].

Proposition 4.2.6. The Bethe vector w*(t, z) is a gl,,,, s-singular vector of weight

mln

A(8:00),

Proof. Clearly, the Bethe vector w®(t, z) is a vector of weight A(5°°). We then show

that w*(t, z) is gl,,, s-singular.

We show it for the case of m = n = 1 with the standard parity sg in Section 6. The
general case follows from a similar computation using a combination of nested Bethe
ansatz, as in [BROS8, Section 4], and induction on m+n, see e.g. [MTV06, Proposition

6.2]. O

4.2.4 Sequences of polynomials

We use the following convenient notation. We say that a sequence z = (21, ..., 2,)
of complex numbers is h-generic if z; — z; ¢ hZ for all 1 <i < j < p.

Let A = (AW, ... A®) be a sequence of polynomial gl weights. Let z =

mln
(21,...,2p) be an h-generic sequence of complex numbers. Fix a parity sequence
s € Sm‘n.
Define a sequence of polynomials T = (T¢,...,T7 ) associated to s, A and z,
)\(s,k)
Tf(x):H (x — 2z + sijh), i=1,...,m+n. (4.11)
k=1 j=1

Note that T}?(T7 )~**+' is a polynomial for all i =1,...,m +n — L.

Let I = (Iy,...,lnsn_1) be a sequence of non-negative integers.
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Let t = (tgl), . ,tl(l)‘ L gimtn=d) t(ern*l)) be a sequence of complex num-

100 1 P lan—1
bers. Define a sequence of polynomials y = (1, -, Ymin_1) by
l; '
yi(x) = [[(x—1"), i=1,....m+n—1 (4.12)
j=1

We say the sequence of polynomials y represents t. We have degy; = ;.

We also set yo(2) = Ymin(z) = 1.

If t is a solution of the BAE associated to s, z, A, and [, then the eigenvalue
E(x) of the transfer matrix 7 (z) acting on the Bethe vector w®(t, z), see (2.8), can

be written in terms of y and T'®. Namely, we have

S

¢ (g Va1 =54] YalS4] 13
( Z Ts Sa Ya—1 Ya ' ( ‘ )

We do not consider zero polynomials y;(z) and do not distinguish between polyno-
mials y;(x) and cy;(x), ¢ € C*. Hence, a sequence y defines a point in (P(C[x]))m+n_1,
the direct product of m +n — 1 copies of the projective space associated to the vector

space of polynomials.

We say that a sequence of polynomials y is generic with respect to s, XA, and z if

it satisfies the following conditions:

1. if s;8;41 = 1, then y; has only simple roots and y; has no common roots with

the polynomial y;[1];
2. the polynomial y; has no common roots with polynomials y; 1, y;_1[—s;], and
Yit1[Siv1);
3. all roots of y; are different from the roots of polynomial T;°(T7, ;) %+,
fori=1,.... m+n—1.
Not all solutions of the BAE correspond to generic sequences of polynomials. For

instance, if m = 2, n = p = 0, and [ is even, then t; = --- = t; = 0 is a solution of

the BAE.
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4.3 Reproduction procedures for gl, and g,

In this section, we recall the reproduction procedure for the XXX model associated
to gl from [MV03, Section 2] and define its analogue for gl;;. We define a rational
difference operator associated to a solution of BAE. We also show that the reproduc-
tion procedure does not alter the rational difference operator and the corresponding

eigenvalues obtained from Theorem 4.2.5.

4.3.1 Reproduction procedure for gl,.

Set m = 2 and n = 0. We have the following identifications Y(gly) = Y(gly) =
Y(gly). Let A= (AD ... A®) = ((ay,b), ..., (ap,b,)) be a sequence of polynomial
gl, weights. We have ay, by € Z, ar, > b, >0, k=1,...,p. Let z = (21,...,2,) be an

h-generic sequence of complex numbers. We have

P ag p by
Tix) = [[ 1] — 2z +ih),  Ta(x) =[] ]](= — 2+ ih).
k=1j=1 k=1j=1
Let a = deg T} and b = degT5.
Give a non-negative integer | and variables t = (¢y,...,%;). The BAE associated
to A, z, and [ is simplified to
P l
t— h ti—ti—h
Hﬂ BTHTR 0 =1, (4.14)
iy tj — Zr + bkh i1 itj tj - ti + h

It is known that the BAE (4.14) can be reformulated in terms of discrete Wron-
skian. Moreover, starting from a generic solution of BAE, one can construct a family

of new solutions of the BAE in the following way.

Lemma 4.3.1 ( [MVO03]). Let y be a polynomial of degree | which is generic with

respect to X and z.

1. The polynomial y € Clx] represents a solution of the BAE (4.14) associated to
A, z and 1, if and only if there exists a polynomial § € C[z], such that

Wr t(y,9) = TvTy . (4.15)
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2. If y is generic, then y represents a solution of the BAFE associated to X, z and
[, where | = deg . O

Almost all § are generic with respect to A and z, and therefore by Lemma 4.3.1
represent solutions of the BAE (4.14). Thus, from one solution of the BAE, we
obtain a family of new solutions. Following the terminology of [MVO03], we call this
construction the gl, reproduction procedure.

Let P, be the closure of the set containing y and all § as in Lemma 4.3.1 in P(Clx]).
We call P, the gl, population originated at y. The population P, can be identified
with the projective line CP! through the correspondence c1y + cof = (c1 : o).

The weight at infinity associated to the data A and [ is given by A = (a—1,b+1).
Suppose that the weight A is dominant, namely 20 < a—b. If [ # [, then the weight

at infinity associated to A and [ is
A = (a—lb+D)=0b+1—-1,a—1+1)=5- A\

where s € G5 is the non-trivial element in the Weyl group of gl,, and the dot denotes
the shifted action.

Let g = Hizl(x —1,) and t = (fy,...,%). If y is generic, then by Lemma 4.3.1, ¢
is a solution of the BAE (4.14) with [ replaced by [. By Proposition 4.2.6, the value
of the weight function w(t, 2) is a singular vector. At the same time, A(>) is not
dominant and therefore w(t, z) = 0 in L(X). So, in a gl, population only the unique
polynomial (the one of the smallest degree) corresponds to an actual eigenvector in
L(N).

The eigenvalues corresponding to the solutions y and g, see (4.13), are given by

] | Twy[-1] & . Tyl
=7y T oy S

—

| Tl

£) =7y " ng

Lemma 4.3.2. The eigenvalues E(x) and &(x) are the same.

Proof. Note that
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By (4.15), we have
Wr *(y, ) _ TTy[1]
Wrt(y, )] ThL[A]

Therefore the lemma follows. O]

This fact can be reformulated in the following form.

Define a difference operator

20 = (1~ 7, ) (1~ g )

The operator D(y) does not depend on a choice of polynomial y in a population,

D(y) = D(y).

4.3.2 Reproduction procedure for gl ;.

Set m = n = 1. We have S;p = {(1,-1),(—1,1)}. Let s and § = sl be two
different parity sequences in Sy;. Let A = (AM .., AP) be a sequence of polynomial
gly; weights. For each k =1,...,p, let us write ()\(k))[ss] = (ak, bg), where ag, by, € Z>o
and if a;, = 0 then b, = 0. Note that A(*) is atypical if and only if a; 4+ by = 0. Let

z = (21,...,%,) be an h-generic sequence of complex numbers.
Let
bk+1 if ak+bk7é0, ~ ak—l if ak+bk7é0,
CNLk = bk =

Equation (4.11) becomes

P ag p by
Ty =[] — 2 +s0in), T35 =[] ][ (= — 2 + s2ih),
k=1 j=1 k=1 j=1
) p o ag ) p b
Tf:HH(as—zk+§1jh), T;:HH(x—zk+§2jh).
k=1 j=1 k=1 j=1

Let a = degT?®, b = degT¥. Similarly, let @ = degT? b = degT?. Suppose the

number of typical weights in A is r, then a = b+ r and b=a—r.
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Let | be a non-negative integer. Let ¢ = (¢1,...,%;) be a collection of variables.
The Bethe ansatz equation associated to s, A, z, and [, is given as follows,

p

£ h
I1 2 S L S (4.16)
Pl tj — 2k + Szbkh
a+br#0

The Bethe ansatz equation (4.16) can be rewritten in the form

©*(t;) — ¥5(t;) = 0,

where
p P
@® = H (z — 2z, + s1axh), YP® = H (x — 23, + s2bih).
a0 ar S0

Note that ¢* = ¢*[—s,] and ¢)® = ¢®[—s;]. Thus, in the case of gl;;, the BAEs (4.16)

associated to s and s coincide up to a shift.

We call a sequence of polynomial gly; weights A fypical if at least one of the
weights A*) is typical. Note that A is typical if and only if a +b # 0. In other words,
A is typical if and only if T77T5 # 1.

The BAE (4.16) is reformulated as follows, c.f. [GLM18, equation (A.12)].

Lemma 4.3.3. Let y be a polynomial of degree [. Let X be typical.

1. The polynomial y represents a solution of the BAE (4.16) associated to s, z,
A, and L, if and only if there exists a polynomial y, such that

Y- gl—s1] = ¢* — % (4.17)
2. The polynomial § represents a solution of the BAE (4.16) associated to 8, z,
A, andl~, whereZ:deggj:r—l—l. [

For each solution y, we can construct exactly one solution . We call this con-
struction the gly; reproduction procedure.

The set P, consisting of y and g is called the gly; population originated at y.
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The weight at infinity associated to s, A, and [ is )\Ej]’oo) = (a—1,b+1). The weight
at infinity associated to &, A and [ is 5\[(;’00) —(@a—0Lb+D)=@0+1+1a—1-1).
Thus we have A(52°) = \(3:2) 4 o In particular, in contrast to the case of gly, both
y and g correspond to actual eigenvectors of the transfer matrix.

If A is not typical, then all participating representations are one-dimensional,
where the situation is trivial. In particular, we have y(z) = 1. We do not discuss this

case.

4.3.3 Motivation for gl;; reproduction procedure

Suppose y and g are in the same gl;;; population as in Section 4.3.2. Parallel
to the gl, reproduction procedure, we show that the eigenvalues of transfer matrix
corresponding to the Bethe vectors obtained from polynomials y and g coincide.

Let y = [[_,(x —t,), § = [I_y(x — £,). Let t = (t1,....,), £ = (f1,....5). By
Theorem 4.2.5 and (4.13), we have T (2)w?(t, z) = £(x)w(t, z) and T (2)w(t, z) =
E(x)w(t, z), where

_ Tyl | T3y[—ss] s _ s Thylsl | TEy[=5)
E(x) = Telsily T Tolsly E(x) =35 15[§1]y+ Ty (4.18)

Lemma 4.3.4. The eigenvalues £(z) and E(x) of transfer matriz are the same.

Proof. By (4.17), we have

E(x) = Sly[jl] (¢* =0 [[ @—2)"=swylsilgl=s1] [] (@—2)7",

and

Therefore the lemma follows. O]

Define a rational difference operator:

w0~ B O B
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It is clear that R*(y) = 1 if A is not typical.

We have the following lemma.

Lemma 4.3.5. If X is typical, then R*(y) is a (1|1)-rational difference operator.
Moreover, this (1|1)-rational difference operator is independent of a choice of a poly-

nomial in a population, R*(y) = R*(7).

Proof. The lemma is proved by a direct computation using Lemma 4.1.2 and Equation

(4.17). O

4.4 Reproduction procedure for gl

mln

We define the reproduction procedure and the populations in the general case.

4.4.1 Reproduction procedure

Let s € Sy, be a parity sequence. Let A = (AW AP be a sequence of

polynomial gl,,,, weights. Let z = (21,...,2p) be an h-generic sequence of complex

numbers. Let T be a sequence of polynomials associated to s, A, and z, see (4.11).

If s; # s;41, we also set

P
k k
o= Il @-m+sd™n, wi= [ @-atsadilh).
k=1 k=1
AP LAl B 20 AP LAl P 20
Let I = (ly,...,lmin_1) be a sequence of non-negative integers.
Fori e {1,...,m+n—1},set sl = (s1,..., 841,55, Smen) St Yo = Ymin = L.

For g1, g0 € K, we also use the notation

Wr * (g1, 92) = 9192[_31'] - 9291[_31']-

We now reformulate the BAE (4.6) which allows us to construct a family of new

solutions.

Theorem 4.4.1. Let y = (y1, ..., Ymin_1) be a sequence of polynomials generic with

respect to s, A, and z, such that degy, =1lx, k=1,...,m+n — 1.
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1. The sequence y represents a solution of the BAE (4.6) associated to s, z, A,

and 1, if and only if for each v =1,...,m+n — 1, there exists a polynomial y;,
such that
S; ~\ _ ms s -1 . o
Wi * (y;, 9:) = T; (Tiﬂ) Vi1 =S Yit1, if 8§ = Sit1, (4.19)
Yi Uil—si] = @i yia[=silyivs — VPYi1yiva[—sil, if si # Siy1 (4.20)

2. Leti € {l1,...,m4+n—1} be such that§; # 0. If y™ = (y1, ..., Tir- - -, Yman_1) 5

generic with respect to s, X, and z, then y/ represents a solution of the BAE

associated to s, X, z, and I, where 1) = (1y, ... L, ... Lypin_1), I, = deg g;.

Proof. Part (i) follows from Lemmas 4.3.1 and 4.3.3.

Now we consider Part (ii). Let y, = Hé.’"zl(x — tgr)) and g, = lel(x — fj(r)),

r=1,....m+n—1 Lett= (t;r))i;:::f;m_l and t = (fj(r))f;j”::::hrn_l, where we
set [, = Zr,tg-r) = fj(r) if r £ .

The sequence t satisfies the BAE associated to s, A, z, and I. We prove that
t satisfies the BAE associated to s, X, z, and I[!. Clearly, the BAEs for ¢ and t
related to tg-r) with |r —i| > 1 are the same. On the other hand, the BAE for ¢ related
to fj(i) holds by Lemmas 4.3.1 and 4.3.3. We only need to establish the BAE for ¢

related to tg.i_l) and t§i+1). We have two main cases depending on the sign of s;5;11.

Suppose s; = s;11. Dividing (4.19) by y;[—s;]9:|—s:] and evaluating at = = t;i_l) -
s;h and x = tg-”l), we obtain

Thus, the BAE for ¢ related to tyil) follows from the BAE for t related to tg-iil).
If s; = —s;11, then the argument depends on s; 1, s;12. Here we only treat the

case of s;_1 = —s;. All other cases are similar, we omit further details.
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We prove the BAE for t related to t(-ifl), which has the form

) oty b sah) paa T mseh) w7
DGyl ) (@) +sh)
Substituting =z = t;i_l) — s;h and x = tgi_l) to (4.20) and dividing, we get
gty ) e = sy (570 + s Y) (422
Gty sih) (7Y = siah)u( Y — si)
Changing ¢ in (4.20) to ¢ — 1 (recall s;_1 = —s;) and substituting = = t;ifl), we have
sof,luy"”)yi otV + sahy(t")
_ — =1. (4.23)
T = i)
Equation (4.21) follows from (4.22), (4.23), and the equality
slé i—1 i—1 s/ (i—1
oty ) vt 1<t< ety )
= S ) . O
i— 1(t] ) ( )¢ ( Slh)

Remark 4.4.2. Suppose s; # s;11. It is not hard to see that if ©3y; 1[—si|yir1 and
Vi 1Yir1[—si) in (4.20) have common roots, then y! is not generic with respect to

st X\, and z.

If s; = s;41, then starting from a solution of the BAE we construct a family of new
solutions represented by sequences yl. Here we use (4.19) and the parity sequence
remains unchanged. We call this construction the bosonic reproduction procedure in
i-th direction.

If Oy 1[—silyivr # Uiy 1yiv1[—si], then starting from a solution of the BAE
we construct a single new solution represented by y. We use (4.20) and the parity
sequence changes from s to sll. We call this construction the fermionic reproduction
procedure in i-th direction.

From the very definition of the fermionic reproduction procedure, (y!1)ll = 4.

If yl is generic with respect to sl?, X, and z, then by Theorem 4.4.1 we can apply
the reproduction procedure again.

Let

m+n—1

Ply.s) C (P(Clz])) X Saln (4.24)
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be the closure of the set of all pairs (g, 8) obtained from the initial pair (y, s) by

repeatedly applying all possible reproductions. We call Py, 5) the gl,,,, population of

mln
solutions of the BAFE associated to s, z, and X , originated at y. By definition, Py
is a disjoint union over parity sequences,

Pyw= || Pher Plywy = P 0 ((BCL)) ™™ x {5}).

.§€Sm‘n

4.4.2 Rational difference operator associated to population

We define a rational difference operator which does not change under the repro-
duction procedure.

Let s € Sy, be a parity sequence. Let z = (z1,.. ., 2,) be an h-generic sequence of
complex numbers. Let A = (A1) ... A?)) be a sequence of polynomial gl

The sequence T® = (T7,...,T7 ) is given by (4.11).

weights.

m|n

Let y = (y1,...,Ymsn_1) be a sequence of polynomials. Recall our convention

that Yo = Ymen = 1. Define a rational difference operator R*(y) over K = C(z),

— TSu: 1 1—su:ls: s;
R'w)= [I (1- ’gfsl[ siluilsi] ) (4.25)
1<i<m+n Plsilyi-yi

The following theorem is the main result of this section.

Theorem 4.4.3. Let P be a gl,,,, population. Then the rational difference operator
R*(y) does not depend on the choice of y in P.

Proof. We want to show

(1 _ TPyi 1 [—silyi[si] )81' (1 _ T2 yil—sialyivi[si1] 7_) fi+1
17 [s6]yi-1ys Tii1[3i+1]yz‘yi+1
_ (1 _ Tfm yi—_l[—8i+1]ﬂi[51+1] T> Fit1 (1 _ Eﬂ?jé[—si]yiﬂ[si] T) si.
T [si1]yi 17 ﬂiq [84)TiYi1

We have four cases, (s;, s;+1) = (£1,£1). The cases of s; = s;41 are proved similarly

to Lemma 4.3.2.
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The case of s; = —s;41 = 1 is similar to Lemma 4.3.5. Namely, we want to show

TPyi—q|—1y;|1 T2 yillly;e1|—1 -1
(1_ £y 1[ ]92[]7_)(1_ z+sly[]y+1[ ]7)
T2 yi-1yi Tz+1[ yiyis1
T'»S i — 1 z_]- -1 T i 1 i 1
_ (1_ ; g 1 ]y[~ ]T> (1 +1@{ﬂ[ JYital ]T).
17 [—1]%—1% T{L[l]%‘yz‘ﬂ

This equation is proved by a direct computation using Lemma 4.1.2 and (4.20). We

only note that the following identities

Tism Tia T+1 T7[2] ﬁ r—z—h
T Tl e ) T T = 2
)\(S k)+)\(3 k);éo
are used.
The case of s; = —s;41 = —1 is similar. O

We denote the rational difference operator corresponding to a population P by

Rp.

Remark 4.4.4. Taking the quasiclassical limit h — 0, a solution ty, of BAE (4.6)

tends to a solution of BAFE for the Gaudin model associated to gl .. represented by a

mln

tuple Y = (V1. .., Ymin_1), see Remark 4.2.3. Note that T = e~"% we have

TPyia[—siyils] T2 Vi) 9
1-— T=nh @w—sl<lnT) +O<h ),

iris [Si]yi—lyi f

A(s:F)

where T;° = [[h_(x—2)N ", Yo = Vimin = 1. Ignoring the terms in O(h?) for each
factor, one gets from R*(y) the rational pseudo-differential operator R*(Y) defined
in [HMVY19, equation (6.5)]. O

The transfer matrix 7 (x) (associated to the vector representation) can be included
in a natural commutative algebra B generated by transfer matrices associated to other

finite dimensional representations of Y (gl c.f. [KSZ08], [TZZ15]. We expect that

m\n)’
similar to the even case, the rational difference operator R®(y) encodes eigenvalues of
algebra B acting on the Bethe vector corresponding to y, c.f [T06]. Then, Theorem
4.4.3 would assert that formulas for eigenvalues of B acting on L(\, z) do not depend

on a choice of y in the population.
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Similar to Lemmas 4.3.2 and 4.3.4, we show that formula for eigenvalue (2.8) or

(4.13) does not change under gl,,,, reproduction procedure.

mln

Lemma 4.4.5. Lety = (y1, ..., Ymin_1) be a sequence of polynomials such that there
exists a polynomial §; satisfying (4.19) if s; = si1 or (4.20) if s; = —s;41. Then
Ey(x) = Eym(x), where Yy =y, T Ymane1)-

Proof. The proof is similar to proofs of Lemmas 4.3.2 and 4.3.4. O

4.4.3 Example of a gl,; population

In this section, we give an example of a population for the case of gly;.

Set m = 2, n = 1, and p = 3. There are three parity sequences in Sy|;, namely,
so=(1,1,-1), 81 =(1,-1,1), and s5 = (—1,1,1).

Let A = (AW X2 A where A\@ = (1,1,0), for i = 1,2,3, in standard parity
sequence sg. Let I = (0,0) and y = (y1,92) = (1,1). We also set h = 1.

Let z = (0,2, —v/2). Our choice of z is such that z; — z; & hZ for i # j. We
have T = T = (23 + 32? + v — 1,23 + 322 + 2 — 1,1).We consider the population

P11y of solutions of the BAE associated to sg, z, A, originated at y.

1. Applying bosonic reproduction procedure in the first direction to y, we have
sgl] = 80, T =T, and y! = (ygl],yg]) = (z — ¢, 1), where ¢ € CP'. Note that
yc[}o} = (1’ 1) =Y.

2. We then apply fermionic reproduction procedure in the second direction to yE}.

We have (s9)lZ = s, and T®' = (2 + 322+ 2 —1,2° — 322 + 2+ 1,1). We have

(Y = (2 — ¢, 42® — (6 + 3¢)2® + 3cx +c+ 1).

[

3. Finally, apply fermionic reproduction procedure in the first direction to (yE])[?L
We have (1)) = sy and T** = ((z — 1)(x — 2)(2? — 22 — 1)(2% — 4z + 2),1,1).
We have

((yﬁ”)m)[” = (6@ —1)* = 9(x —1)* +1,42° — (6 + 3c)x* + 3cx 4+ c + 1).
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It is easy to check that all further reproduction procedures cannot create a new
pair of polynomials. Therefore the gl,; population Fy 1) is the union of three CP!,
Py ={@—c1)|c€ CP'}, P}y = {(v—c,42° — (6+3c)2* +3cr+c+1) | c € CP'},
and P77 = {(6(x — 1) = 9(x — 1)* + 1,42° — (6 + 3c)2* + 3cx + ¢+ 1) | c € CP'}.

4.5 Populations and superflag varieties

In this section, we show that gl . populations associated to typical A are isomor-

mln

phic to the variety of the full superflags.

4.5.1 Discrete exponents and dominants

Following [HMVY19], we introduce the following partial ordering on the set of
partitions with r parts. Let @ = (a3 < ay < ... <a,) and b= (b; < by < ... <b,),
a;, b; € Z~g, be two partitions with r parts. If b; > a; for all i = 1,...,r, we say that
b dominates a.

For a partition a with r parts, we call the smallest partition with r distinct parts
that dominates a the dominant of a and denote it by @ = (a; < ag < -+ < a).
Namely, the partition a is such that @ dominates a and if a partition a’ with r distinct
parts dominates a then a’ dominates a. The partition a is unique.

We identify a set of non-negative integers with a partition by rearranging their
elements into weakly increasing order.

This definition is motivated by the relation of exponents for a sum of spaces
of functions to exponents of the summands. We describe this phenomenon for the
discrete exponents of spaces of functions.

Let V' be an r-dimensional space of functions. Let z € C be such that all functions
in V' are well-defined at z — hZ. Then there exists a partition with r distinct parts
c=(c; <---<¢)and abasis of {vy, - ,v,.} of V such that fori = 1,...,r, we have

vi(z—jh)=0for j =1,...,¢ and v;(z — (¢; + 1)h) # 0. This sequence of integers is
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defined uniquely and will be called the sequence of discrete exponents of V' at z. We
denote the set ¢ by E,(V).

Let Vi,..., Vi be spaces of functions such that the sum V = Zle V; is a direct
sum. Let a, = US| E_(V;), then E,(V) dominates a.. Moreover, for generic spaces

of functions V;, we have the equality E.(V) = a..

4.5.2 Space of rational functions associated to a solution of BAE

Let A = (AW, ... A®) be a sequence of polynomial gl,,, weights. Let z =
(21,...,2p) be an h-generic sequence of complex numbers.

Let y = (Y1, ..., Ymin_1) represent a solution of the BAE associated to A, z, and
the standard parity sequence sg. Suppose further that y is generic with respect to
A, 2, 80. Recall the rational difference operator R*(y) = Ds(y)D; ' (y) associated
to the population P s, generated by y, see (4.25). Let V, = ker Dy(y) and U, =
ker Di(y).

Note that the sequence (y1, . .., ym_1) represents a solution of the BAE associated
to the Lie algebra gl,,. It follows from [MV03] that one can generate a gl,,, population
starting from (yi,...,Ym—1) using bosonic reproduction procedures. Moreover, the
corresponding difference operator to this population is given by 4, - Dg(y) « (ym) .
Therefore, by [MV03, Proposition 4.7], the space y,, - V;, is an m-dimensional space
of polynomials. Similarly, since (Ymi1,- - -, Ymin_1) represents a solution of the BAE
associated to the Lie algebra gl,,, the space T},,41[—1]ym, - Uy is an n-dimensional space
of polynomials. In particular, V}, and U, are spaces of rational functions.

In the remainder of Section 4.5, we impose the condition that v,,(z; + kh) # 0 for
i1=1,...,pand k € Z.

Since z is h-generic and y,,(z; + kh) # 0 for 1 < ¢ < p and k € Z, it follows
from [MTVO07, Corollary 7.5] that the sequence of discrete exponents E.,, (y,, - V4) is

given by

(Aﬁ)<)\7(7?—1+1<'~'</\£7?—1c+1+k_1<"'<)‘§i)+m_1)'
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Therefore the sequence of discrete exponents E_ @ , (Tomt1[—1]ym - Vy) is given by
g m—+1
DA <A a0 1<
)‘(l k+1+)‘m+1+k_1 <<y +/\£:L)+1+m_1)'

Similarly, the sequence of discrete exponents E (Tons1[—1]ym - Uy) is given by

A h
O<A A9 1< <X A k1< <A Y ).
Lemma 4.5.1. If A is typical, then V, N U, = 0.

Proof. Since X is typical, there exists some iy € {1,...,p} such that AW >

Therefore the largest discrete exponent of T,,41[—1y., - Uy at z;, + )\m +1h is strictly

less than the smallest discrete exponent of T}, 41[—1]ym -V, at 2, + )\m +1h namely,
)‘77210421 - )\SLO‘FH —l<n+ >‘m+1 <A+ >‘n?421

Therefore, by the definition of discrete exponents, we have (Tp,411[—1]ym - Uy) N
(Tons1[—1]ym - V3y) = 0, which completes the proof.

Therefore, by Proposition 4.1.1, the operator R*°(y) is an (m|n)-rational differ-

ence operator.

Remark 4.5.2. If A is not typical, then the intersection V, N U, may be non-trivial.
For example, consider the tensor product of the vector representations, namely L(X) =
(C™™@P and the sequence of polynomials y = (1,...,1). Then we have Ty(x) =
(x—z14+h)--(x—2,+h) and T;(z) = 1 fori =2,...,m+n. Therefore for the
rational difference operator R*(y) = Dy(y)D; ' (y), we have
(x—2z1+h)---(xr—2+h)
(z—21)---(x = 2)

Fixa € {0,1,...,m} and b € {0,1,...,n}. For each 1 <i < p, set

Dyly) = (1 - H-nm Dily) = (1-7) O

A= (00 +29 <a@ 420 pr e\ a0 o),
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Lemma 4.5.3. If b < )\5,?, then the dominant of A; LI B; is given by

O<A2 =2, +1< <A -\, 1h-1<

MDA < <AL AL a1

If )\7(7?_]-“ <b< )\;?_j for some 1 < j < a—1, then the dominant of A; Ll B; is given
by

(0<A$H—Agw+1<-~<
(4) (%) (4) (i)
Aii1 = gy TO— 1< AN F0< A +0+1 < <

M b+ —1< A0 A i< <A A a0,

If)\ | < b, then the dominant of A; U B; is given by

m—a+

(O<)\f7?+1—)\£f;)+2+1<...<)\f7?+1—)\,(7?+b+b—1<

A o< A rbr1< <At bta—1).

Proof. Tf b < A, the statement is clear. If /\m i1 <b< A9 for some 1 < j <

m—j

a—1. Let A2 = ¢. Since AO) is a polynomial gl,,,,, weight, we have AW r = 0 for

m4L+

k=1,...,b— /. In particular, the last b — £ numbers in B; are consecutive integers
from )\( a1 T to AW ma1 +0—1. Adding AW+ )\m+1 into B;, the dominant of the new
set is obtained by changing )\ + AW a1 TO /\m 41 +b. We add the numbers of A; one

by one (from left to right) into B;. Inductively, adding A" 1+ )\m w1 TR —1,if
/\7(72 p+1 < b, then the dominant is obtained by changing )\ o+ /\7(71_,{#rl +k—1to
)xfﬂ 41 + b+ k — 1. Therefore the lemma follows. O

4.5.3 Polynomials 7,

Let s € Sy, be a parity sequence. Let A = (AD .. A®) be a sequence of
polynomial gl,,,, weights. Let z = (21,...,2p) be an h-generic sequence of complex
numbers. Let T be a sequence of polynomials associated to s, A, and z, see (4.11).

We set T; = T;° the polynomials corresponding to the standard parity so.
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Define polynomials 7T:‘7’bz by

a min{b7)‘£rl:)—i+1}
mr@ =TI TI @-=+@G+ji—a-b-1)). (4.26)

k=11i=1 j=1
: A
We often abbreviate 75 to .

The polynomials 7;° can be expressed in terms of 7; and 7, ;. Recall that we have

m—og(i), if s; =1, i —os(i), if s; =1,
si = s; = (4.27)

os(i) —i, if s = —1, os(1)) —m—1, ifs;=—1.

Theorem 4.5.4. We have

7T.s'." s, . 7Ts'.*' s +1 .
T7 = T,,uls | — =, if s, =1; T2 = T,,mlsi] ———, if s; = —1.
ﬂ-s:r—f—l,s; [_1] 71-s;r,s; [1]
Proof. 1t is not hard to see that
(k) : - (k) e
AL L — min {si ’)‘as(i)}’ if s, =1,

)\(S,k) _ Us(l)
AT A #G A > s, =12,...,sf}, ifs;=—1.

)

The theorem follows from a direct computation. O

Note that polynomials m,; are discrete versions of m,; in [HMVY19, equation
(7.1)], even though our definition here is more explicit. In particular, Theorem 4.5.4
is the counterpart of [HMVY19, Theorem 7.2].

The polynomial 7, is related to the dominants of A;UB; for all 1 < ¢ < p. Write
the dominant A; U B; of A; U B; as

O:cz(zi—)i-b<cz(z?-b—1+1<.“<cz(zij-b—j+j<"'<C§i)+a+b_1a

(@)

where cji are computed explicitly from Lemma 4.5.3. Let z; = z; + )\7(7? +1h and set

(k)
p G
Ti(x) =TT - 2 + jh). (4.28)
k=1j=1
Proposition 4.5.5. We have

a

Tab H Tilil = [ (Treasilb + ] T i = 1]).

=1

Proof. The lemma is obtained from Lemma 4.5.3 by a direct computation. O]
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4.5.4 Generating map

Recall the notation from the beginning of Section 4.5.2, where V,, = ker Dj(y)
and U, = ker Dz (y).
Fora e {0,1,...,m}, b€ {0,1,...,n}, v1,...,0, € Vi, uy,...,up € Uy, we define

the function

Tla+b—1] Tpslal
Tola+6 Toaralb+ 1]

Yap = WI (01, ..., 00, U1, ..., up) [T pYmla + 0]

We impose the technical condition that y,, has only simple roots and is relatively

prime to y,,[k] for all non-zero integers k.
Proposition 4.5.6. The function y,; is a polynomial.
Proof. This proposition is proved in Section 4.5.5. ]

In the following ,we assume that A is typical. Set W, =V, ® U,. Given a parity
sequence s and a full superflag .# € F#°(W,) generated by a homogeneous basis

{wy, ..., Wnin}, we define polynomials y;(F), i =1,...,m+n — 1, by the formula

ys.ﬂsfa if S; = 17
yl(y) — 7 (3
Yst s +1> if s, =—1,
where we choose {vy,...,v,} and {uy,...,u,} such that the basis {w1, ..., Wpin} is
associated to {v1, ..., v}, {ur,...,u,}, and s, see Section 4.1.2.

Define the generating map by
s s m+n—1
B Z (W) = (PCRD)™™ . Z o y(F) = Wi(F), .. Ymina(F)).
The following theorem is our main result of this section.

Theorem 4.5.7. For any superflag F € F°5(W,), we have B°(.F) € B, so)-
over, the generating map (° : F5(W,) — P(Sy’SO) 15 a bijection and the complete
factorization w®(.F) of R*°(y) given by (4.2) coincides with R*(B°(.F)) given by

(4.25).

More-
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Proof. Note that the even case of this theorem is proved in [MV03, Theorem 4.16].
Due to Theorem 4.5.4 and Proposition 4.5.6, the proof is parallel to that of [ HMVY19,
Theorem 7.9]. O

This theorem does not rely on the technical condition imposed above Proposition

4.5.6, see Remark 4.5.10.

4.5.5 Proof of Proposition 4.5.6

We prepare several lemmas which will be used in the proof.

Lemma 4.5.8. For any v € V,,,u € Uy, the function Ty, 1ym[1|Wr (v, u) is a polyno-
mial. In particular, if v € Vy,u € Uy are not reqular at z, then there exists a c € C

such that (u+ cv)(z —h) = 0.

Proof. The case of gl is clear. Now we assume that either m > 2 or n > 2.

If the fermionic reproduction in the m-th direction is not applicable, then we
can slightly change v,,_1 or y,,11 using bosonic reproduction procedure such that
the fermionic reproduction in the m-th direction can be applied to the new tuple of
polynomials y. Therefore we can assume that the fermionic reproduction in the m-th
direction is applicable to y at the beginning.

It follows from (4.2) and Theorem 4.4.1 that

[m]

T 1Ym [ Wr (v, u) = T;‘ﬂrlg}m[—l].
Here ¢, depends on u and v.

Initially, we have v(y) = Tpym-1]—1]/ym and w(y) = Yma1[—1]/(Tmr1[—1ym)-
Generic u and v can be obtained from y using only bosonic reproduction procedures.
Moreover, the polynomial y,, never changes. Note that, by Theorem 4.4.1, y,, is a
polynomial for generic u and v. Therefore the first part of the lemma follows.

Recall that y,, has only simple zeros and vy, is relatively prime to y,,[1]. In

addition, none of zeros of y,, belongs to the sets zy,+hZ, k =1,...,p. fv e V,,uc U,
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are not regular at z, then z is a root of y,,. Moreover, v and u have simple pole at

x = z. The second statement follows directly from the first statement. O

Suppose V' is an r-dimensional space of polynomials with the sequence of discrete
exponents at z given by ¢, < ¢,_1+1 < - < ¢ ;+i < - <cp+r—1. Let
Ji(x)=(x—z+h)---(x—z+c¢h),i=1,...r.

The following lemma is well-known, see e.g. [MTV08, Theorem 3.3].

Lemma 4.5.9. Let f1,...,fi €V, then Wr (f1,..., f;) is divisible by szl Fry1-4i—
jl- O

Proof of Proposition 4.5.6. 1t is clear that we only need to consider the case when
U1, ...,0q, UL, ..., U are linearly independent. The rational function y, ; can only have
poles at z; + hZ, 1 < i < p, and at zeros of the product of polynomials Hjﬁ Ym 7]

Denote by W, the space of polynomials spanned by ©; := T}, 11 [—1]ymv;, G ==
Tir[=1ymur, 1 < j < aand 1 < k < b, then Es, (W,,;) dominates A; LI B;, where
Z = zi+/\£i)+1h. Therefore it follows from Lemma 4.5.9 that Wr (01, ..., 04, Uy, . . ., Up)
is divisible by H?ﬁ T;j — 1], where .7, are defined in (4.28). It follows from Propo-
sition 4.5.5 that the function y,; is regular at z; + hZ, 1 < ¢ < p.

Write y,, = [[;—; (% — 2 + h), then by assumption z; — 2 ¢ hZ for 1 <i < j <
r. It follows from [MTV07, Corollary 7.5] that E.,(span(dy,...,7,)) dominates the
partition (0 <2 <3 < --- < a) with a parts and E.,(span(ay, . ..,U)) dominates the
partition (0 < 2 < 3 < --- < b) with b parts. Therefore it follows from Lemma 4.5.8
that E.,(W,;) dominates the partition (0 <2 <3 < --- < a+b) with a + b parts.
Hence, by Lemma 4.5.9, Wr (&1, .., U, i1, . . ., @p) is divisible by [1%F5 ymlj — 2. In
particular, Wr (v, ..., 04, U1, ..., Up)Ym[a + b — 1] is regular at zeros of the product of

polynomials H?j ymlj — 1]. O

Remark 4.5.10. If X\ is typical, the proof of Proposition 4.5.6 can be simplified as
follows. Since X s typical, generically the reproduction procedure is applicable for all

parity sequences and all directions. Therefore, it follows from Theorem 4.4.1 that yq
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is a polynomial for generic vi,...,Vq, U1,...,up. Hence yqyp 15 a polynomial for all

Vlyenns Vg, Ulyen ., Up- ]

4.6 Quasi-periodic Case

In this section, we generalize our results to the quasi-periodic case.

4.6.1 Twisted transfer matrix and Bethe ansatz

We follow the notation in Section 4.2.2.

Let & = (K1,...,Kkmin) be a sequence of complex numbers such that e # /i
for 1 <i < j <m-+n. Let Q. be the diagonal matrix diag(e™, ..., eMm+n). Define
the twisted transfer matrix 7 (x) by

m+n

Te(x) = str(QeL(x)) = > _(=1)Mle"iLy(x).

i=1
It is known that the twisted transfer matrices commute, [T, (1), Tx(22)] = 0. More-
over, T.(x) commutes with the subalgebra U(bh).

The Bethe ansatz equation associated to s, z, A, k, and [ is a system of algebraic

equations in variables

(Ki—HKit1 f[ i —— Si)\(&k)h ﬁ ty) _ (i_l) * sih
k:1tl _Zk+51+1)‘2+1 h 2 t() — Y
l; tgz . tr _ Slh lit1 7,) (H—l)

wheret=1,... m+n—-1j=1,...,[.

After making cancellations as in (4.7), we require the solutions do not make the
remaining denominators in (4.29) vanish.

We also impose the same condition, see Section 4.2.2, for variables which cor-

respond to a simple odd root of the same color. Suppose (of,af) = 0 for some i.
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Consider the BAE for t related to tg-i) with all t,()a) fixed, where a # ¢ and 1 < b < [,

this equation does not depend on j. Let téi) be a solution of this equation with mul-

tiplicity . Then we require that the number of j such that t;i) = téi)

Theorem 4.6.1.

is at most r, c.f.

Suppose that X is a sequence of polynomial gl _,,, weights and £ a solution of the

mln
BAE (4.29) associated to s, z, A, k, and I. Similar to Theorem 4.2.5, see [BR09], if
the vector w*(t, z) € L(A, z) is well-defined and non-zero, then w*(t, z) € L(A, z) is
an eigenvector of twisted transfer matrix, 7, (z)w®(t, z) = E(v)w?(t, z), where the

eigenvalue & () is given by

m+n p la—1 la (a)
. x—zk—i—sa P, +Sah T —1; — S.h
Ex(x) = Z s, eMa H H @D H @

T — 2k — ; T —t;

a=1 k=1 j=1 J=1 J
(4.30)
Let y = (Y1,---,Ymin_1) be a sequence of polynomials representing the solution

t, then
m—+n s
Ya—1—5a) Ya[Sa]
gN (IE) Z Sq € a .

TS Sa] Ya—1 Ya

4.6.2 Reproduction procedure and rational difference operators

Recall the notation given at the beginning of Section 4.4.1.

Set K,M = (Fdl, sy K1, Ky .- 'a/iern)-

Theorem 4.6.1. Let y = (y1, ..., Ymin_1) be a sequence of polynomials generic with

respect to s, A, and z, such that degy, =lx, k=1,...,m+n — 1.
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1. The sequence y represents a solution of the BAE (4.29) associated to s, z, A,
K, and L, if and only if for each i = 1,...,m +n — 1, there exists a unique

polynomial y;, such that

S Ki—Kit1)T Ki—Kit1)Ts s 1 ;
Wr i (y“ e( i 7.+1) yz) — e( i 1+1) 7_; (7—;:+1) yifl[_si]yZ?l»la Zfsi — Si«l»l;
(4.31)

_ Lhk;

Y Gil—si) = " ofyia[— sy — €M WPy 1y [—si), if $i # Siy1-
(4.32)

2. If y = (y1, ..., ir- -, Yman_1) 18 generic with respect to s, X, and z, then
yll represents a solution of the BAE (4.29) associated to s, X, k!, z, and
1, where 10 = (I, ..., 1, .. Lpin1), i = deg §;.

Proof. For part (i), the case of (4.31) is proved in [MVO08, Theorem 7.4]. The proofs
of (4.32) in part (i) and part (ii) are similar to that of Theorem 4.4.1. O

Thanks to Theorem 4.6.1, we define similarly the twisted bosonic and fermionic

reproduction procedures in i-th direction, the twisted gl,,, population P(y, k) of

mln
solutions of the BAE associated to s, z, A, originated at (y, k). Here the reproduction
procedure in i-th direction sends (y,k) to (yll, kl1). Note that for both twisted
bosonic and fermionic reproduction procedures, the sequence & is changed to kl?.

Define a rational difference operator R*(y, k) over K = C(z),

7 Say. —c. e S;
Ry, k)= [] (1—ehﬂfﬂyz‘1[ sifuilsi] ) (4.33)
: TEs:)yi-1yi
1<i<m—+n

Theorem 4.6.2. Let P be a twisted gl ., population. Then the rational difference

mln

operator R*(y, k) does not depend on a choice of (y, k) in P.
Proof. The proof is similar to that of Theorem 4.4.3. O

Proposition 4.6.3. Let y = (y1, ..., Ymin_1) be a sequence of polynomials such that
there exists a sequence of polynomials yl = Yty s Tis -y Yman—1) Satisfying (4.31)
if i = sip1 or (4.32) if s; = —si41. Then £y x)(v) = 5(y[i]7n[i])(x).
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Proof. The proof is similar to proofs of Lemmas 4.3.2 and 4.3.4. O

Let o; be the permutation (i,i + 1) in the symmetric group &,,,. There is a
natural action of &,,., on the set of sequences of m + n complex numbers. Namely,

for a sequence K, we have o,k = K.

Theorem 4.6.4. The map P(y,k) — S,ink given by (g,K) — K is a bijection
between the twisted population P(y, k) and the orbit of k under the action of sym-
metric group Span. In particular, it gives a bijection between the twisted population

P(y, k) and the symmetric group &, 1.

Proof. The proof is similar to that of [MV08, Corollary 4.12]. ]
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5. SUMMARY

The reproduction procedure produces a family P of other solutions called the popu-

lation with a given solutions of the gl ., Gaudin Bethe ansatz equation associated to

mn
a tensor product of polynomial modules. We associate a rational pseudodifferential
operator R and a superspace W of rational functions to a population.

If at least one module is typical then the population P is canonically identified
with the set of minimal factorizations of R and with the space of full superflags in
Ww.

We also establish a duality of the non-periodic Gaudin model associated with
superalgebra gl,,,, and the non-periodic Gaudin model associated with algebra gl,.

Gaudin

min
We conjecture that the singular eigenvectors (up to rescaling) of all gl,,,,
Hamiltonians are in a bijective correspondence with certain superspaces of rational
functions.

The reproduction procedure produces a family P of other solutions called the pop-
ulation with a given solutions of the Bethe ansatz equations of the non-homogeneous
periodic XXX model associated to super Yangian Y(gl,,,)-

We associate a rational difference operator D and a superspace of rational func-
tions W to a population. We show that the set of complete factorizations of D is
in canonical bijection with the variety of superflags in W and that each generic su-

perflag defines a solution of the Bethe ansatz equation. We also give the analogous

statements for the quasi-periodic supersymmetric spin chains.
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6. RECOMMENDATIONS

Here are some possible future directions of research.

Conjecture 2.7.1 says the eigenvalues of the Bethe algebra B,,,, acting on the Bethe
vector v(s,y) can be found by expanding the corresponding operator Rp, see (2.22).
In the gl case, this conjecture is first proved in [MTV06b] by an explicit computation.
Later, this conjecture is proved again in [MM17] by the affine Harish-Chandra map
and a theorem in [FFR94]. The theorem in [FFR94| relates the eigenvalues of the
Bethe algebra with certain Cartan algebra-valued rational functions.

The affine Harish-Chandra map in the gl . case is known. It seems that a the-

mln

orem similar to the one in [FFR94] should hold in the gl,,,, case. In order to prove

min
the theorem, one need to show some properties in the super Wakimoto module,
see, e.g., [IK02]. In [FFR94], the image of Bj under affine Harish-Chandra map is
isomorphic to the classical WW-algebra. Recently, the supersymmetric W-algebra is
given in [MRS19], where a finite set of free generators in the case of A(n,n £+ 1) is
provided. The classical supersymmetric W-algebra should be obtained by taking a
certain limit. It is interesting to see how the Bethe algebra B,,), is related with the

classical supersymmetric W-algebra. It is also interesting to construct the classical

Wh-algebra in the case of A(m,n) for arbitrary m,n.

Conjecture 2.7.1 in the case of n = 0 is proved in [MTV07], which requires to
interpret the gl,,, space as an intersection of Schubert cells. The obstacles in the gl,,,
case is obvious: there is no such Grassmannian. From some examples we computed,
it seems that we need to consider a space G: each point in G is (U, V, f), where U,V
are subspaces of C[z], f € Clz], such that for any u € U, v € V| we have f|Wr (u,v).

Conjecture 2.7.1 seems doable when V' is one-dimensional, namely in the gl ,; case.

m|
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In Theorem 3.4.2, we discover the duality between the images of B, and By,
which suggests there should be a duality between the differential operators associated
to the gl populations and the rational pseudodifferential operators associated to the
gl,,, populations. In the case of m = 0, this duality is given in [TU19]. In some
sense, [TU19] manages to expand the inverses of differential operators. Then in the

case of m # (0 case, we expect that a similar approach should work.

We were informed recently that certain order one pseudodifferential operators are
classified by Wilson’s Adelic Grassmannian, see [W93]. This connection may provide

another geometric object we are trying to find for the gl .. spaces.

min

The Weyl module associated to sl,,,[t] was introduced in [CLS19] with certain
restrictions on m,n. The examples we computed for Conjecture 2.7.1 involve com-
puting the graded characters of some Weyl modules M. The gl,,,[t]-module M,
roughly speaking, is a finite dimensional highest weight module generated by the

highest weight vectors v with highest gl _,, weight kw;, where w; is the first funda-

mln

mental gl weight.

mln

In the n = 0 case, the graded character of Mi\mg, the gl,, singular subspaces of
weights A, is given by a certain Kostka polynomial, see, e.g., [CL05]. It seems that
in the gl . case, the graded character of /\/liing is still given by a Kostka polynomial.

min

The reproduction procedure for other types of lie superalgebras should be devel-
oped. In the osp(1|2) case, the reproduction procedure has some interesting phe-
nomenon: the reproduction procedure is almost the same as the one in the sl, case.
We are still trying to associated rational pseudodifferential operators to such popu-

lations.
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APPENDIX A: THE BETHE ANSATZ FOR Y(gl;)

In this section, we give the basics of Bethe ansatz for gl;;; XXX model (supersym-
metric spin chains associated to gly;). We follow the notation of Section 4.3.2. We

also set h = 1.

Super Yangian Y(gl;;) and its representations

Recall that for Y(gl;;) we have

r1 — X9 — (—1)‘”

To — X1 — (—1)‘2‘

[Lii(x1), Lii(x2)] =0, Ez’j(xl)ﬁij(xZ) =

Lij(xo)Lij(z1), (1)

oo = OO ) () +

T1 — T2 X1 — T2

where ¢ # j and 4,7,k € {1,2}.

Lyx (1) Lij(22) =

Eij<$1)£kk(x2)7 (2)

In what follows we work with the standard parity sequence s.

The description of finite dimensional irreducible representations of Y(gl;;) is well
known.

Let A = (A1, A2) be a gl weight, we say that A is non-degenerate if Ay + Ay # 0.
Clearly, L, is two-dimensional if A is non-degenerate and one-dimensional otherwise.
Let A = (AM ..., A\®)) be a sequence of non-degenerate gl weights, z a sequence
of complex numbers. Let A*) = (ay, by), ax, by € C,

p

CL:Z%, b:Zbk, go(x):H(x—zk—Fak), 1/1(x):H(x—zk—bk).

k=1 k=1
Theorem .0.1 ( [Zha95]). Every finite dimensional irreducible representation of the
algebra Y (gly;) is a tensor product of evaluation Y (gly;)-modules up to twisting by a
one-dimensional Y (gly;)-module. Moreover, L(X, z) is irreducible if and only if ¢(x)

and ¥ (x) are relatively prime.
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Clearly, the Y(gl;;)-module L(X, z) is irreducible if and only if 2; —z; —a; —b; # 0
for all i # j. Moreover, it satisfies the binary property. Namely, L(X, z) is irreducible
if and only if Ly (2;) ® Lyy (z;) is irreducible for all 1 < ¢ < j < p. Furthermore,
every finite dimensional irreducible representation of Y(gl;) has dimension 2" for

some non-negative integer r.

Let vgk) be the highest weight vector of L& with respect to the standard root
system, and vék) = eglvik). Then UYC), vék) is a basis of Lyx). We use the shorthand
notation |0) for vV @ -+ @ 0.

Let Ej;, 1,7 = 1,2, be the linear operator in End(Lyw)) of parity |i| +|j| such that
E,;jvfnk) = jrvl-(k) forr=1,2.

The R-matrix R(z) € End(Lyu)) ® End(Lyw)) is given by

b +a;+z b — b —x
R ) E,—2_3J " E R v E
(x) 1 Ekn Gtb—7 22 & 22+ai+bj—x 11 & Lo
ai—aj—x a,+bl aj—i—bj
— F Fi————F FE. —— F E.
PR 22 @ By PR 12 ® 2l+ai+bj—x 21 @ L9

Clearly, Ly (%) ® Lyt (#;) is irreducible if and only if R(z; — z;) is well-defined and
invertible.

Define an anti-automorphism ¢ : Y(gl;) — Y(gly;) by the rule, «(Ly(z)) =
(=)l L5 (), 4,5 = 1. One has (X, Xo) = (—1) %2l (X,0)(X,) for Xy, Xy €
Y(gly);). Recall that T(x) = L11(x) — La2(), therefore o(T (z)) = T ().

The Shapovalov form Byu on Ly is a bilinear form such that

By (egwn, ws) = (—1) DI B, (g, (— 1)l ),

for all 4, 7 and wy,wy € Ly, and B,\(i)(v§i), vii)) = 1. Explicitly, it is given by

Byo (v}, 01") = 1, By (0", 08") = By (v, 0}) = 0, By (v8”, 0§”) = —(a; + by).
The Shapovalov forms By« on Ly induce a bilinear form By = @Q'_, By (following

the usual sign convention) on L(A).

Let Ry . € End(L(X)) be the product of R-matrices,

—
R)‘yz = H H R(i’j) (Zz — Zj).

I<isp i<j<p
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Define a bilinear form By, on L(A, z) by
By 2 (w1, wy) = Bx(wy, R zws),

for all wy,wy € L(A, 2).
One shows that, c.f. [MTV06, Section 7],

Bix.(]0),]0) =1, B (Xwy,wy) = (=1) X1 By (wy, 1(X)w,),

for all X € Y(gl1), wi,ws € L(A, 2). In addition, if L(A, 2) is irreducible, then B .

is non-degenerate.

Bethe ansatz for gl;; XXX model

In this section, we study the spectrum of the transfer matrix 7 (x) = L1(z) —
Loo(x).

Let A = (A® ... AP) be a sequence of non-degenerate gly; weights. Recall
from Section 4.3.2 that if y = (z — 1) -+ (x — ;) is a divisor of ¢(z) — ¢(x), then
t = (t1,...,1;) is a solution of the BAE associated to sg, A, 2z, and [.

It is convenient to renormalize the Bethe vector w(t, z) associated to t, see (4.9),:

Il p
Wt z) = cou(t,z), ¢ = H [ - 2

The factor ¢q clears up the denominators and the Bethe vector w(t, z) is well-defined
for all z,t.

The following theorem is well known, see e.g. [BROS].

Theorem .0.2. If the Bethe vector w(t, z) is non-zero, then w(t, z) is an eigenvector

of the transfer matriz T (x) with the corresponding eigenvalue

£(x) = %«o Y | A 3)

k=1
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Proof. For 7 = 1,2, one has the following relation,
L;j(x)Lrg(tr) -~ Laaoty) = &(; t)ﬁm(tl) e Lig(t) Lj(z)
+ Z@ £)L1a(2) Lra(tr) -+ Lra(ts) -+~ Laa(t) Ly5(t:).
(4)

Here the symbol L’lg( ;) means the factor £15(¢;) is skipped and the functions &(z;¢)
and & (z;t) are given by

sty = [ ot vl

1<r<l T =t Yy
‘ 1 ti—t.+1 ti—t,—1
J(it) = (1) - hizbh =2
1<r<i i<r<l
We have
p
T (z)|0 H x — 2,)"10).

Since t is a solution of the BAE, we have ¢o7(¢;)|0) =0 for i = 1,...,l. Therefore it
follows from (4) that

T (x)w(2,t) = co(Lur(z) — Laa(x)) L12(t1) - - - L12(1)]0)
mgp ¢Hm—zk w(z,t).

Recall that the transfer matrix 7(r) commutes with the subalgebra U(gly;) of
Y(9[1|1)~

Proposition .0.3. The Bethe vector w(t, z) is gly; singular.

Proof. By (4.5), one has the following relation,

l

L), Loa(tr) -+~ Laa(t)] = Y () Laa(tr) -+ Lralt) -~ Laat) T (8:):

=1
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The functions v(t) are given by

i ti—t, +1 ti—t, —1

1<r<i i<r<l

Note that £8]0) = 0 and ¢oT(£)[0) = 0 for i = 1,...,l, therefore the statement
follows. 0

Proposition .0.4. Suppose ¢ # 1. Let t and t be two different solutions of Bethe
ansatz equation associated to sg, N, z, then the Bethe vectors w(t, z) and (t, z) are

orthogonal with respect to the form B ..
Proof. Let y and § represent t and £ respectively. Note that we have
By (T (2)w(t, 2),w(t, 2)) = Bx.(0(t, 2), T(2)0(t, 2)).

It follows from Theorem .0.2 that

1 g)1 E ~ ~ .
(M - M) (o —1) H(m — 2;) ' Ba(W0(t, 2),0(t, 2)) = 0.
Y Y k=1
Since y and g are linearly independent and ¢ # v, the statement follows. m

The following theorem is a particular case of [HLPRS18, Theorem 4.1] which
asserts that the square of the norm of the Bethe vector is essentially given by the

Jacobian of the BAE.

Theorem .0.5 ( [HLPRS18]). The square of the norm of the Bethe vector w(t, z) is

given by
- - B ti—t; —1\2
By.(aft. 2) ot ) = (-0 [ (il
1<i<j<l v J
XHﬁ((t'_zk‘i‘ak)(f'—Zk—bk))li[<i ay + by )
i=1 k=1 Z l i1 b1 (ti — 2k + ax)(ti — 21, — by)

O
Theorem .0.6. Suppose a + b # 0. For generic z, the Bethe ansatz is complete. In
other words, there are exactly 2°~% solutions t;, i = 1,...,2P~%, to the BAE associated

to so, N, 2, and | such that the corresponding Bethe vectors w(t;, z), i =1,...,2P7 1,

form a basis of L(\, z)%"8.
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Proof. Since a + b # 0, we have deg(¢ — 1) = p — 1. Tt is not difficult to see that
dim L(A)*™8 = 2P~ and for generic z there are exactly 2P~! distinct monic divisors
of the polynomial ¢ — 1. Each monic divisor of ¢ — 1 corresponds to a solution
t;,, i = 1,...,2°71 of BAE associated to sy, X, z, with possibly different [. Due
to Proposition .0.3 and Theorem .0.5, the Bethe vectors w(t;, z) are singular and
non-zero. Moreover, it follows from Proposition .0.4 that w(t;, z), i = 1,...,2P71 are

linearly independent and hence form a basis of L(X, z)%"8. O

Let A® = (1,0) and 2, = 0 for all k = 1,...,p. This case is the homogeneous
super XXX model. We obtain the completeness of homogeneous super XXX model.

Let 0 be a primitive p-th root of unity. Set ¥; =1/(¢°—1),i=1,...,p— 1.

Corollary .0.7. The Bethe ansatz is complete for super homogeneous XXX model.
Ezplicitly, the Bethe vectors form a basis of ((C”l)@p)smg and the transfer matriz T ()
acts on ((C1|1(0))®p)sing diagonally with simple spectrum. Moreover, the spectrum of

T (z) acting on ((C'1(0 ®p)81 & is given by

((
(Bt D)ot )) @41
EETA RS v

1<iy <ig<--<ij<p—1,1= 0,...,p—1}.

1

Proof. Note that p(z) = (z + 1) and ¢(x) = zP. Clearly, we have ¢ — ¢ = p(z —
V1) (. —9p_1). It is easy to see that ¥; —9; # 0,1 for i # j and ¥; ¢ Z. Therefore

we have exactly 2P~! distinct monic divisors
(x—04) - (x—104), 1 <iy <ig<---<y<p—1,1=0,...,p—1,

of the polynomial ¢ — and hence 2P~! different solutions ¢;, i = 1,...,2°~!, of BAE.

Therefore, as in Theorem .0.6, the Bethe wectors w(t;, 2), i = 1,...,2P7! form a

basis of ((Cl‘l(O))(@p)Sing. O
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