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ABSTRACT

Huang, Chenliang Ph.D., Purdue University, August 2020. On the Gaudin and XXX
models associated to Lie superalgebras. Major Professor: Mukhin E. Professor.

We describe a reproduction procedure which, given a solution of the glm|n Gaudin

Bethe ansatz equation associated to a tensor product of polynomial modules, produces

a family P of other solutions called the population. To a population we associate a

rational pseudodifferential operator R and a superspace W of rational functions.

We show that if at least one module is typical then the population P is canonically

identified with the set of minimal factorizations of R and with the space of full

superflags in W . We conjecture that the singular eigenvectors (up to rescaling) of all

glm|n Gaudin Hamiltonians are in a bijective correspondence with certain superspaces

of rational functions.

We establish a duality of the non-periodic Gaudin model associated with super-

algebra glm|n and the non-periodic Gaudin model associated with algebra glk.

The Hamiltonians of the Gaudin models are given by expansions of a Berezinian

of an (m + n) × (m + n) matrix in the case of glm|n and of a column determinant

of a k × k matrix in the case of glk. We obtain our results by proving Capelli type

identities for both cases and comparing the results.

We study solutions of the Bethe ansatz equations of the non-homogeneous peri-

odic XXX model associated to super Yangian Y(glm|n). To a solution we associate a

rational difference operator D and a superspace of rational functions W . We show

that the set of complete factorizations of D is in canonical bijection with the va-

riety of superflags in W and that each generic superflag defines a solution of the

Bethe ansatz equation. We also give the analogous statements for the quasi-periodic

supersymmetric spin chains.
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1. INTRODUCTION

We consider the XXX and the Gaudin models associated to Lie superalgebras glm|n.

These are well-known fundamental examples of quantum integrable models. The

main questions is to describe the eigenvalues and eigenvectors of the corresponding

Hamiltonians. We make use of Bethe ansatz method to address this question.

The Hamiltonians of the XXX and the Gaudin models are naturally obtained from

the commutative subalgebras of the Yangian and the current algebra respectively,

which are called Bethe subalgebras. The Bethe subalgebras are the central objects of

our study.

Let us recall the situation in the even case (that is in the case of n = 0).

For the Gaudin models the joint eigenvalues of the Bethe subalgebra are identi-

fied with Fuchsian scalar differential operators without monodromy and prescribed

singularities, see [F04], [MV04]. Such an identification is an example of the geometric

Langlands correspondence. Alternatively, the Bethe subalgebra of the Gaudin model

acting in an irreducible finite dimensional ĝlN module, is identified with the coordi-

nate ring of scheme-theoretic intersection of Schubert cells, see [MTV09]. Moreover,

the module is identified with the co-regular representation of the coordinate ring.

The Bethe subalgebra related to the tensor product of evaluation vector representa-

tions is also related to the equivariant cohomology of a certain partial flag variety,

see [RSTV11].

For the XXX models associated to Lie algebras, the Bethe subalgebra is described

by the transfer matrices corresponding to the auxiliary representations. The eigen-

value of the transfer matrix can be obtained from the q-characters of the auxiliary

spaces by suitable substitutions of solutions of Bethe ansatz equations, see [FH15],

[FJMM17]. In this case the Bethe subalgebra (in the case of vector evaluation mod-
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ules) also can be identified with the quantum cohomology of the cotangent bundle of

a flag variety, see [GRTV13].

In this thesis we make the first steps of obtaining a similar understanding of the

Gaudin and XXX models in the supersymmetric case.

1.1 Gaudin model

We study the Gaudin model associated to tensor products of polynomial modules

over the Lie superalgebra glm|n. The main method is the Bethe ansatz; see [MVY14].

It is well-known that the Bethe ansatz method in its straightforward formulation is

incomplete – it does not provide the full set of eigenvectors of the Hamiltonians;

see [MV07]. Here, we propose a regularization of the Bethe ansatz method, drawing

our inspiration from [MV04].

In the case of Lie algebras, the regularization of the Bethe ansatz is obtained

by the identification of the spectrum of the model with opers – linear differential

operators with appropriate properties [FFR94, R16]. In the case of glm, the opers

are reduced to scalar linear differential operators of order m with polynomial kernels.

The spaces of polynomials of dimension m obtained this way are intersection points

of Schubert varieties whose data is described by the parameters of the Gaudin model.

Moreover, the action of the algebra of Gaudin Hamiltonians can be identified with

the regular representation of the scheme-theoretic intersection algebra, [MTV09].

We argue that in the case of the Lie superalgebra glm|n one should study rational

pseudodifferential operators and appropriate spaces of rational functions which we

call glm|n spaces.

Let us describe our findings in more detail. The glm|n Gaudin model depends

on the choice of a sequence of polynomial representations, each equipped with dis-

tinct complex evaluation parameters. The Bethe ansatz depends on a choice of

Borel subalgebra. Such a choice is equivalent to the choice of a parity sequence

s = (s1, . . . , sm+n), si ∈ {±1}. The highest weights of representations and the evalu-
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ation parameters are encoded into polynomials T si (see (2.9)). A solution of the Bethe

ansatz equation is represented by a sequence of monic polynomials (y1, . . . , ym+n−1),

so that the roots of yi are Bethe variables corresponding to the ith simple root (see

(4.12)).

The key ingredient is the reproduction procedure (see Theorem 2.5.2), which given

a solution of the Bethe ansatz equation (BAE) produces a family of new solutions

along a simple root. If the simple root is even, then the BAE means that the kernel

of the operator (
∂ − ln′

T si yi−1yi+1

T si+1yi

)(
∂ − ln′ yi

)
consists of polynomials. Then one shows that all tuples of the form

(y1, . . . , ỹi, . . . , ym+n−1),

where ỹi is any (generic) polynomial in the kernel of the differential operator, represent

solutions of the BAE. This gives the bosonic reproduction procedure, which was

described in [MV04].

If the simple root is odd then the BAE means that yi divides a certain explicit

polynomial N and it turns out that the tuple (y1, . . . , ỹi, . . . , ym+n−1), ỹi = N /yi,

again satisfies the BAE (if generic). This gives the fermionic reproduction procedure.

Moreover, the fermionic reproduction can be rewritten as an equality of rational

pseudodiffential operators (assuming si = 1):(
∂ − ln′

T si yi−1

yi

)(
∂ − ln′

yi+1

T si+1yi

)−1

=

(
∂ − ln′

ỹi

T s̃i yi−1

)−1(
∂ − ln′

T s̃i+1ỹi
yi+1

)
,

where s̃ = (s1, . . . , si+1, si, . . . , sm+n).

The bosonic and fermionic procedures are very different in nature. The bosonic

procedure describes a one-parameter family of solutions of the BAE. However, these

solutions are not physical: deg ỹi is large and the corresponding Bethe vector is zero on

weight grounds. The fermionic procedure produces only one new solution. Moreover,

in contrast to the bosonic case, the new BAE corresponds to a new choice of the Borel

subalgebra. If the original solution produced an eigenvector which was singular with
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respect to the original Borel subalgebra, the new solution produces the eigenvector in

the same isotypical component but singular with respect to a new Borel subalgebra.

The two eigenvectors are related by the diagonal action of glm|n.1

The most important feature of the bosonic and fermionic procedures is the con-

servation of the eigenvalues of the Gaudin Hamiltonians written in terms of the Bethe

roots (see Lemma 2.4.5). We call the set of all solutions obtained by repeated appli-

cations of the reproduction procedures a population.

We define a rational pseudodifferential operator R (see (2.22)). In the standard

parity s0 = (1, . . . , 1,−1, . . . ,−1), it has the form: R = D0̄(D1̄)−1, where D0̄, D1̄ are

scalar differential operators of orders m and n with rational coefficients, given by:

D0̄ =

(
∂ − ln′

T s0
1 y0

y1

)(
∂ − ln′

T s0
2 y1

y2

)
. . .

(
∂ − ln′

T s0
m ym−1

ym

)
,

D1̄ =

(
∂ − ln′

ym+n

T s0
m+n−1ym+n−1

)
. . .

(
∂ − ln′

ym+2

T s0
m+2ym+1

)(
∂ − ln′

ym+1

T s0
m+1ym

)
.

(Here we set y0 = ym+n = 1.) We show that R does not change under reproduction

procedures (see Theorem 2.5.3) and, moreover, if at least one weight is typical, then

the population is identified with the set of all minimal factorizations of R into linear

factors (see Theorem 2.6.9).

Then we study the space W = V ⊕ U , where V = kerD0̄, U = kerD1̄. We show

that if at least one weight is typical, then U ∩V = 0. We think of W as a superspace

of dimension m + n, with even part V and odd part U . We identify the population

with the space of all full superflags in W (see Theorem 2.6.9).

The operators D0̄ and D1̄ up to a conjugation coincide with glm and gln operators.

It follows that W consists of rational functions. In other words, W is given by a pair of

spaces of polynomials with prescribed ramification conditions linked via polynomials

ym, Tm, Tm+1. This leads us to a definition of a glm|n space (see Section 2.6.3). The

Gaudin Hamiltonians acting in tensor products of polynomial modules belong to a

1These features are reminiscent of trigonometric Gaudin models and Gaudin with quasi-periodic
boundary conditions [MV08], in which the diagonal symmetry is broken. In those cases reproduction
produces one new solution, which describes the same eigenvector (up to proportionality) but with
respect to a different Borel subalgebra.
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natural commutative algebra B(λ) of higher Gaudin Hamiltonians. We conjecture

that the joint eigenvectors of this algebra B(λ) are parametrized by glm|n spaces (see

Conjecture 2.7.1).

1.2 Duality of supersymmetric Gaudin models

Integrable models associated with finite-dimensional Lie superalgebras have been

recently receiving the much deserved attention. While most of the work is done by

physicists on the spin-chain side, the theory of the corresponding Gaudin models

is also moving forward, see [MR14], [MVY14], [HMVY19]. The duality of various

systems is another very important topic which always gets a lot of attention. Here,

we discuss the duality of the Gaudin model associated with supersymmetric glm|n

to the Gaudin model associated with even glk acting on the same bosonic-fermionic

space.

In the Lie algebra duality setting, the Lie superalgebras glm|n and glk both act on

the algebra of supersymmetric polynomials V generated by entries of the (m+n)×k

matrix (xi,a) where xi,a is even if and only if i ≤ m. Then each row is identified

with the vector representation of glk and each column with the vector representation

of glm|n. The two actions are extended to the action on the whole bosonic-fermionic

space V of supersymmetric polynomials as differential operators, where they centralize

each other, see Section 3.4.1. We chose column evaluation parameters z1, . . . , zk for

glm|n, row evaluation parameters Λ1, . . . ,Λm+n for glk and upgrade the action to the

current algebras glm|n[t] and glk[t] in V so that each row and each column becomes

an evaluation module with the corresponding evaluation parameter.

It is well known that the commuting Hamiltonians of the glk Gaudin system are

elements of Uglk[t] given by the coefficients of the column determinant of the k × k

matrix G =
(
δa,b(∂u− za)− e[k]

a,b(u)
)
, see [T06], where we chose evaluation parameters

of columns z1, . . . , zk to be the so called boundary parameters of the model.
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It is also known that the Hamiltonians of the glm|n Gaudin system are elements of

Uglm|n[t] given by the coefficients of the Berezinian of the (m+ n)× (m+ n) matrix

B =
(
δi,j(∂v − Λi)− e[m|n]

i,j (v)
)
, see [MR14], [MM15], and Section 3.3.2. Note that we

chose evaluation parameters of rows Λ1, . . . ,Λm+n to be the boundary parameters of

the model.

The column determinant cdetG is a differential operator of order k in variable u

whose coefficients are power series in u−1. The Berezinian BerB a pseudodifferential

operator in ∂−1
v whose coefficients are power series in v−1. Our main result is that after

multiplying by simple factors, coefficients of vr∂sv and of us∂ru of the two expansion

coincide as differential operators in V , see Theorem 3.4.2.

In order to prove our main result we establish two Capelli-like identities, see

Propositions 3.4.4 and 3.4.6, which give the normal ordered expansions of the cdetG

and BerB acting in V . Because of the presence of fermions, those expansions have

more terms than the original Capelli identity. However, the main feature is the same:

the quantum corrections created by non-commutativity all cancel out and the result

is the same as it would be in the supercommutative case.

The expansion of the cdetG is done by careful accounting of all terms and finding

a way to cancel or collect the terms. For the Berezinian expansion we exploit a few

tricks. Namely, we represent BerB as a Berezinian of a matrix of size (m+ n+ k)×

(m + n + k) then interchange the rows and columns to reduce the computation to

another column determinant. The key property which allows us to do it, is the super

version of Manin property of the matrices with some additional property which we

call ”affine-like”. The affine-like property guarantees the existence of various inverse

matrices and the Manin property of those inverses, see Section 3.2. In particular, we

argue that for such matrices the Berezinian can be defined via quasi-determinants,

similar to affine Manin matrices of standard parity treated in [MR14].

Our duality implies that the glm|n Gaudin model has the same remarkable proper-

ties as the glk Gaudin model, see [MTV08b]. Namely, the image of the Bethe algebra

is a Frobenius algebra, which can be identified with an appropriate scheme theoretic
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intersection of Schubert varieties in a Grassmanian. Moreover, the corresponding

phase space of the glm|n Gaudin model is a regular representation of this Frobenius

algebra. In particular, all joint eigenspaces have dimension one, see Corollary 3.4.3.

The spectrum of Gaudin Hamiltonians is found by the Bethe ansatz, see [MTV06]

for the even and [MVY14] for the supersymmetric case. Since the two sets of Hamil-

tonians actually coincide in V , we have a correspondence between solution sets of

two very different systems of the Bethe ansatz equations. Moreover, the eigenvectors

of glk model are in a natural bijection with differential operators of order k with

quasipolynomial kernels, see [MTV08b], while eigenvectors of glm|n model are con-

jecturally in a bijection with ratios of differential operators of orders m and n, and

appropriate superspaces of quasirational functions, cf. [HMVY19].

The duality of the gln and glm systems was established in [MTV09b]. The cor-

responding map between spaces of polynomials is given by an appropriate Fourier

transform and it is also identified with the bispectrality property of the KP hierarchy,

see [MTV06b]. It is important to understand this map in the supersymmetric case.

We expect that the results of this paper can be extended to the most general

duality of Gaudin models associated with glm|n and glk|l. We also expect that a

similar duality can be established in the Yangian, see [MTV08], and the quantum

setting.

The duality between gl1|1 and gl2 Gaudin models has appeared in [BBK17].

1.3 XXX model

The supersymmetric quantum spin chains were introduced back to [Kul85] in

1980s. There is a considerable renewed interests to those models, see [BR08], [BR09],

[KSZ08], [HLPRS18], [TZZ15].

We use the method of populations of solutions of the Bethe ansatz equations.

It was pioneered in [MV04] in the case of the Gaudin model and then extended to

the XXX models constructed from the Yangian associated to gln, see [MV03,MV04,
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MTV07]. We are helped by the recent work on the populations of the supersymmetric

Gaudin model [HMVY19].

Let us describe our findings in more detail. In this paper we restrict ourselves to

tensor products of evaluation polynomial glm|n-modules. Moreover, we assume that

the evaluation parameters are generic, meaning they are distinct modulo hZ where

h is the shift in the super Yangian relations. Note that such tensor products are

irreducible Y(glm|n)-modules. We also assume that at least one of the participating

glm|n-modules is typical.

The crucial observation is the reproduction procedure which given a solution of

the Bethe ansatz equation and a simple root of glm|n, produces another solution, see

Theorem 4.4.1.

The reproduction procedure along an even root is given in [MV03]. An even

component of a solution of the Bethe ansatz equation gives a polynomial solution of

a second order difference equation. The reproduction procedure amounts to trading

this solution to any other polynomial solution of the difference equation, see (4.19).

We call it the bosonic reproduction procedure.

The reproduction procedure along an odd root is different. In fact, an odd com-

ponent of a solution of the Bethe ansatz equation corresponds to a polynomial which

divides some other polynomial, see (4.20). The reproduction procedure changes the

divisor to the quotient polynomial with an appropriate shift. We call it the fermionic

reproduction procedure. The fermionic reproduction procedure looks similar to a mu-

tation in a cluster algebra.

Then the population is the set of all solutions obtained from one solution by

recursive application of the reproduction procedure.

Given a solution of the Bethe ansatz equation, we define a rational difference

operator of the form D = D0̄D−1
1̄

, where D0̄, D1̄ are linear difference operators of

orders m and n with rational coefficients, respectively, see (4.25). The operator D is

invariant under reproduction procedures and therefore it is defined for the population,

see Theorem 4.4.3. The idea of considering such an operator is found in [HMVY19]
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in the case of the Gaudin model. Such an operator in the case of tensor products of

vector representations also appears in [Tsu98] in relation to the study of T-systems

and analytic Bethe ansatz.

Kernels V = kerD0̄, U = kerD1̄ are spaces of rational functions of dimensions

m and n. Under our assumption, that at least one of the representations is typical,

we can show V ∩ U = 0, see Lemma 4.5.1. We consider superspace W = V ⊕ U .

Then we show that there are natural bijections between three objects: elements of

the population of the solutions of the Bethe ansatz equation, superflags in W , and

complete factorizations of D into products of linear difference operators and their

inverses, see Theorem 4.5.7.

Note that the Bethe ansatz equations depend on the choice of the Borel subalgebra

in glm|n. The fermionic reproductions change this choice. In general, the Borel

subalgebra is determined from the parity of the superflag or, equivalently, from the

positions of the inverse linear difference operators in a complete factorization of D.

Thus the solutions of the Bethe ansatz equations correspond to superspaces of

rational functions. It is natural to expect that all joint eigenvectors of XXX Hamilto-

nians correspond to such spaces and that there is a natural correspondence between

the eigenvectors of the transfer matrix and points of an appropriate Grassmannian.

However, the precise formulation of this correspondence is not established even in the

even case, see [MTV07].

We give a few details in the quasi-periodic case as well, see Section 4.6. In this

case we also have concepts of reproduction procedure, the population, and the rational

difference operator. Then the elements in the population are in a natural bijection

with the permutations of the distinguished flags in the space of functions of the form

f(x) = ezxr(x), where r(x) ∈ C(x) is a rational function and z ∈ C, see Theorem

4.6.4. A similar picture in the even case is described in [MV08].
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2. BETHE ANSATZ EQUATION AND RATIONAL

PSEUDODIFFERENTIAL OPERATORS

2.1 Preliminaries on glm|n

Fix m,n ∈ Z≥0. In this section, we will recall some facts about glm|n. For details

see, for example, [CW12].

2.1.1 Lie superalgebra glm|n

A vector superspace V = V0̄ ⊕ V1̄ is a Z2-graded vector space. The parity of

a homogeneous vector v is denoted by |v| ∈ Z/2Z = {0̄, 1̄}. We set (−1)0̄ = 1

and (−1)1̄ = −1. An element v in V0̄ (respectively V1̄) is called even (respectively

odd), and we write |v| = 0̄ (respectively |v| = 1̄). Let Cm|n be a complex vector

superspace, with dim(Cm|n)0̄ = m and dim(Cm|n)1̄ = n. Choose a homogeneous

basis ei, i = 1, . . . ,m + n, of Cm|n such that |ei| = 0̄, i = 1, . . . ,m, and |ei| = 1̄,

i = m+ 1, . . . ,m+ n. Set |i| = |ei|.

Let s = (s1, . . . , sm+n), si ∈ {±1}, be a sequence such that 1 occurs exactly

m times. We call such a sequence a parity sequence. We call the parity sequence

s0 = (1, . . . , 1,−1, . . . ,−1) standard. Denote the set of all parity sequences by Sm|n.

The order of Sm|n is
(
m+n
m

)
. The set Sm|n is identified with Sm+n/(Sm ×Sn), where

Sk denotes the permutation group of k letters. We fix a lifting Sm|n = Sm+n/(Sm×

Sn)→ Sm+n: for each s ∈ Sm|n, we define σs ∈ Sm+n by

σs(i) =

#{j | j ≤ i, sj = 1} if si = 1,

m+ #{j | j ≤ i, sj = −1} if si = −1.

(2.1)

Note that σs0 = id and (−1)|σs(i)| = si. (The element σs is sometimes called an

unshuffle.)
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For a parity sequence s ∈ Sm|n and i = 1, . . . ,m+ n, define numbers

s+
i = #{j | j > i, sj = 1}, s−i = #{j | j < i, sj = −1}.

We have

s+
i =

m− σs(i) if si = 1,

σs(i)− i if si = −1,

s−i =

i− σs(i) if si = 1,

σs(i)−m− 1 if si = −1.

The Lie superalgebra glm|n is spanned by eij, i, j = 1, . . . ,m+n, with |eij| = |i|+|j|,

and the superbracket is given by

[eij, ekl] = δjkeil − (−1)(|i|+|j|)(|k|+|l|)δilekj.

The universal enveloping algebra of glm|n is denoted by Uglm|n.

There is a non-degenerate invariant bilinear form ( , ) on glm|n, such that

(eab, ecd) = (−1)|a|δadδbc.

The Cartan subalgebra h of glm|n is spanned by eii, i = 1, . . . ,m + n. The weight

space h∗ is the dual space of h. Let εi, i = 1, . . . ,m + n, be a basis of h∗, such that

εi(ejj) = δij. The bilinear form ( , ) is extended to h∗ such that (εi, εj) = (−1)|i|δij.

The root system Φ is a subset of h∗ given by

Φ = {εi − εj | i, j = 1, . . . ,m+ n and i 6= j}.

A root εi − εj is called even (respectively odd), if |i| = |j| (respectively |i| 6= |j|).

2.1.2 Root systems

For each parity sequence s ∈ Sm|n, define the set of s-positive roots Φ+
s = {εσs(i)−

εσs(j) | i, j = 1, . . . ,m + n and i < j}. Define the s-positive simple roots αsi =

εσs(i) − εσs(i+1), i = 1, . . . ,m+ n− 1. Define

esij = eσs(i),σs(j), i, j = 1, . . . ,m+ n.
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The nilpotent subalgebra n+
s of glm|n (respectively n−s ) associated to s, is generated

by {esi,i+1 | i = 1, . . . ,m + n − 1} (respectively {esi+1,i | i = 1, . . . ,m + n − 1}). The

algebra n+
s (respectively n−s ) has a basis {esij | i < j} (respectively {esij | i > j}). The

Borel subalgebra associated to s, is bs = h ⊕ n+
s . We call the Borel subalgebra bs0

standard.

In what follows, many objects depend on a parity sequence s. If s is omitted from

the notation, then it means the standard parity sequence. For example, we abbreviate

n+
s0

, n−s0
, and bs0 to n+, n−, and b, respectively.

Example 2.1.1. Consider the case of gl3|3. Two possible parity sequences from S3|3

are:

s1 = (1, 1,−1,−1,−1, 1) and s2 = (1,−1, 1,−1, 1,−1). We have

σs1 =

1 2 3 4 5 6

1 2 4 5 6 3

 , σs2 =

1 2 3 4 5 6

1 4 2 5 3 6

 .

The s1-positive simple roots and s2-positive simple roots are given respectively by

(αs1
1 , α

s1
2 , α

s1
3 , α

s1
4 , α

s1
5 ) = (ε1 − ε2, ε2 − ε4, ε4 − ε5, ε5 − ε6, ε6 − ε3),

(αs2
1 , α

s2
2 , α

s2
3 , α

s2
4 , α

s2
5 ) = (ε1 − ε4, ε4 − ε2, ε2 − ε5, ε5 − ε3, ε3 − ε6).

We have

(αsi , α
s
j ) = (si + si+1)δi,j − siδi,j+1 − si+1δi+1,j.

The symmetrized Cartan matrix associated to s,
(
(αsi , α

s
j )
)m+n−1

i,j=1
, is described by the

blocks  (αsi , α
s
i ) (αsi , α

s
i+1)

(αsi+1, α
s
i ) (αsi+1, α

s
i+1)

 =

si + si+1 −si+1

−si+1 si+1 + si+2

 .
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Explicitly, this block is one of the following cases depending on (si, si+1, si+2):

(1, 1, 1) (1, 1,−1) (1,−1, 1) (−1, 1, 1) 2 −1

−1 2

 ,

 2 −1

−1 0

 ,

0 1

1 0

 ,

 0 −1

−1 2

 ,

(−1,−1,−1) (−1,−1, 1) (−1, 1,−1) (1,−1,−1)−2 1

1 −2

 ,

−2 1

1 0

 ,

 0 −1

−1 0

 ,

0 1

1 −2

 .

2.1.3 Representations of glm|n

Let V be a glm|n module. Given a parity sequence s ∈ Sm|n and a weight λ ∈ h∗,

a non-zero vector vsλ ∈ V is called an s-singular vector of weight λ if n+
s v

s
λ = 0

and hvsλ = λ(h)vsλ, for all h ∈ h. Denote the subspace of s-singular vectors by

V sing. Denote by Vλ the subspace of vectors of weight λ, Vλ = {v ∈ V | hv =

λ(h)v, for all h ∈ h}. Denote by V sing
λ the subspace of s-singular vectors of weight

λ. Denote the subspaces of s0-singular vectors and of s0-singular vectors of weight λ

by V sing and V sing
λ respectively. Let Ls(λ) be the s-highest weight irreducible module

of highest weight λ, generated by the s-singular vector vsλ. The s-singular vector

vsλ ∈ Ls(λ) is called the s-highest weight vector. Denote by

λ[s] = (λ[s],1, . . . , λ[s],m+n) =
(
λ(es11), . . . , λ(esm+n,m+n)

)
the coordinate sequence of λ associated to s. We also use the notation Ls(λ[s]) for

Ls(λ).

Example 2.1.2. The superspace Cm|n is a glm|n module with the action given by

eijek = δj,kei. We have Cm|n ∼= Ls(1, 0, . . . , 0) = Ls(εσs(1)) for any s ∈ Sm|n. The

s-highest weight vector is vsεσs(1)
= eσs(1). We call Cm|n the vector representation.

A module V is called a polynomial module if it is an irreducible submodule of

(Cm|n)⊗n for some n ∈ Z≥0. A highest weight module L(λ) with respect to the
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standard Borel subalgebra b, is a polynomial module if and only if the weight λ

satisfies λi ∈ Z≥0 for all i, λ1 ≥ · · · ≥ λm, λm+1 ≥ · · · ≥ λm+n, and λm ≥ #{i | λm+i 6=

0 | i = 1, . . . , n}. A weight λ is called a polynomial weight if L(λ) is a polynomial

module. It is known that the category of polynomial modules is a semisimple tensor

category.

Let µ = (µ1 ≥ µ2 ≥ . . . ) be a partition: µi ∈ Z≥0 and µi = 0 if i � 0. The

partition µ is called an (m|n)-hook partition if µm+1 ≤ N . Polynomial modules are

parametrized by (m|n)-hook partitions.

Let L(λ) be a polynomial module with highest weight vector vλ. Let s be a

parity sequence. Then L(λ) is isomorphic to an irreducible s-highest weight module

Ls(λs). The coordinate sequence λs[s] and the s-highest weight vector vsλ can be found

recursively as follows.

Let s[i] = (s1, . . . , si+1, si, . . . , sm+n) be the parity sequence obtained from s by

switching the i-th and (i+ 1)-st coordinates. If si 6= si+1, then we have

λs
[i]

[s[i]] = (λs[s],1, . . . , λ
s
[s],i−1, λ

s
[s],i+1 + δ, λs[s],i − δ, λs[s],i+2, . . . , λ

s
[s],m+n), (2.2)

vs
[i]

λs
[i] = (esi+1,i)

δvsλs ,

where δ = 1 if λs[s],i + λs[s],i+1 6= 0 and δ = 0 otherwise.

The following example illustrates how the coordinate sequence λs[s] can be found

from an (m|n)-hook partition, and how the s-highest weight vector vsλ is related to

the highest weight vector vλ.

Example 2.1.3. Let µ = (7, 6, 4, 3, 3) be a (3|3)-hook partition. Choose some parity

sequences:

s0 = (1, 1, 1,−1,−1,−1), s1 = (1, 1,−1,−1,−1, 1), s2 = (1,−1, 1,−1, 1,−1).

The highest weights and the highest weight vectors for those choices can be read as:
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Fig. 2.1. From (3|3)-hook partitions to highest weights

λs0

[s0] = (7, 6, 4, 2, 2, 2) λs1

[s1] = (7, 6, 3, 3, 3, 1) λs2

[s2] = (7, 4, 5, 3, 2, 2)

vs0
λs0 = vλ, vs1

λs1 = e63e53e43vλ, vs2
λs2 = e53e42e43vλ.

Another way to find λs[s] from λ is given below in Theorem 2.6.2.

Define the s-Weyl weight

ρs =
1

2

∑
α∈Φ+

s

α is even

α− 1

2

∑
β∈Φ+

s

β is odd

β.

A weight λ is called typical if (λ+ ρs0 , α) 6= 0, for any odd root α. Otherwise λ is

called atypical. The module L(λ) is typical if λ is typical and atypical otherwise. If λ is

a polynomial weight, then λ is typical if and only if λ(emm) ≥ N . Let µ = (µ1, µ2, . . . )

be the (m|n)-hook partition that parametrizes L(λ). Then L(λ) is typical if and only

if µm ≥ n. In Example 2.1.3, all weights are typical.

2.2 Rational pseudodifferential operators and flag varieties

We establish some generalities about ratios of differential operators.

2.2.1 Rational pseudodifferential operators

We recall some results from [CDSK12] and [CDSK12b].

Let K be a differential field of characteristic zero, with the derivation ∂. The main

example for this paper is the field of complex-valued rational functions K = C(x).

Consider the division ring of pseudodifferential operators K ((∂−1)). An element

A ∈ K ((∂−1)) has the form

A =
m∑

j=−∞

aj∂
j, aj ∈ K, m ∈ Z.
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One says that A has order m, ordA = m, if am 6= 0. One says that A is monic if

am = 1.

We have the following relations in K ((∂−1)):

∂∂−1 = ∂−1∂ = 1,

∂ra =
∞∑
j=0

(
r

j

)
a(j)∂r−j, a ∈ K, r ∈ Z,

where a(j) is the j-th derivative of a and a(0) = a.

All nonzero elements in K ((∂−1)) are invertible. The inverse of A is given by

A−1 = ∂−m
∞∑
r=0

(
−

−1∑
j=−∞

a−1
m aj+m∂

j
)r
a−1
m .

The algebra of differential operators K[∂] is a subring of K ((∂−1)).

Let D ∈ K[∂] be a monic differential operator. The differential operator D is

called completely factorable over K if D = d1 . . . dm, where di = ∂ − ai, ai ∈ K,

i = 1, . . . ,m.

Denote {u ∈ K | Du = 0} by kerD. Clearly, if dim (kerD) = ordD, then D is

completely factorable over K; see also Section 2.2.2.

The division subring K(∂) of K ((∂−1)), generated by K[∂], is called the division

ring of rational pseudodifferential operators and elements in K(∂) are called rational

pseudodifferential operators.

Let R be a rational pseudodifferential operator. If we can write R = D0̄D
−1
1̄

for

some D0̄, D1̄ ∈ K[∂], then this is called a fractional factorization of R. A fractional

factorization R = D0̄D
−1
1̄

is called minimal if D1̄ is monic and has the minimal

possible order.

Proposition 2.2.1 ( [CDSK12b]). Let R ∈ K(∂) be a rational pseudodifferential

operator. Then the following is true.

1. There exists a unique minimal fractional factorization of R.
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2. Let R = D0̄D
−1
1̄

be the minimal fractional factorization. If R = D̃0̄D̃
−1
1̄

is a

fractional factorization, then there exists D ∈ K[∂] such that D̃0̄ = D0̄D and

D̃1̄ = D1̄D.

3. Let R = D0̄D
−1
1̄

be a fractional factorization such that dim (kerD0̄) = ordD0̄ and

dim (kerD1̄) = ordD1̄. Then R = D0̄D
−1
1̄

is the minimal fractional factorization

of R if and only if kerD0̄ ∩ kerD1̄ = 0.

We call R an (m|n)-rational pseudodifferential operator if for the minimal frac-

tional factorization R = D0̄D
−1
1̄

we have ord(D0̄) = m and ord(D1̄) = n.

Let R be a monic (m|n)-rational pseudodifferential operator. Let s ∈ Sm|n be

a parity sequence. The form R = ds11 . . . d
sm+n

m+n , where di = ∂ − ai, ai ∈ K, i =

1, . . . ,m + n, is called the complete factorization with the parity sequence s. We

denote the set of all complete factorizations of R by F(R) and the set of all complete

factorizations of R with parity sequence s by Fs(R).

Let R1 = (∂ − a)(∂ − b)−1 and R2 = (∂ − c)−1(∂ − d) be two (1|1)-rational

pseudodifferential operators. Here a, b, c, d ∈ K, a 6= b, and c 6= d. Then R1 = R2 if

and only ifc = b+ ln′(a− b),

d = a+ ln′(a− b),
or equivalently

a = d− ln′(c− d),

b = c− ln′(c− d),

(2.3)

where ln′(f) = f ′/f stands for the logarithmic derivative.

Let R be an (m|n)-rational pseudodifferential operator. Let R = ds11 . . . d
sm+n

m+n ,

di = ∂ − ai, be a complete factorization. Suppose si 6= si+1. Then di 6= di+1. We use

equation (2.3) to construct d̃i and d̃i+1 such that dsii d
si+1

i+1 = d̃
si+1

i d̃ sii+1. That gives a

complete factorization of R = ds11 . . . d̃
si+1

i d̃ sii+1 . . . d
sm+n

m+n with the new parity sequence

s̃ = s[i] = (s1, . . . , si+1, si, . . . , sm+n).

Repeating this procedure, we obtain a canonical identification of the set Fs(R) of

complete factorizations of R with parity sequence s with the set Fs0(R) of complete

factorizations of R with parity sequence s0.
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2.2.2 Complete factorizations of rational pseudodifferential operators and

flag varieties

Let W = W0̄

⊕
W1̄ be a vector superspace with dim(W0̄) = m and dim(W1̄) = n.

A full flag in W is a chain of subspaces F = {F1 ⊂ F2 ⊂ · · · ⊂ Fm+n = W} such

that dimFi = i. Any basis {w1, . . . , wm+n} of W generates a full flag by the rule

Fi = span(w1, . . . , wi). (By basis, we mean always ordered basis.) A full flag is called

a full superflag if it is generated by a homogeneous basis. We denote by F(W ) the

set of all full superflags.

If m = 0 or n = 0, then every full flag is a full superflag. Thus, in this case F(W )

is the usual flag variety.

To a given homogeneous basis {w1, . . . , wm+n} ofW , we associate a parity sequence

s ∈ Sm|n by the rule si = (−1)|wi|, i = 1, . . . ,m + n. We say a full superflag F has

parity sequence s if it is generated by a homogenous basis associated to s. We denote

by Fs(W ) the set of all full superflags of parity s.

The following lemma is obvious.

Lemma 2.2.2. We have

F(W ) =
⊔

s∈Sm|n

Fs(W ), Fs(W ) = F (W0̄)×F (W1̄) . �

Let R be a monic (m|n)-rational pseudodifferential operator over K. Let R =

D0̄D
−1
1̄

be the minimal fractional factorization of R. Assume that dim (kerD0̄) = m,

and dim (kerD1̄) = n.

Let V = W0̄ = kerD0̄, U = W1̄ = kerD1̄, W = W0̄ ⊕W1̄.

Given a basis {v1, . . . , vm} of V , a basis {u1, . . . , un} of U , and a parity sequence

s ∈ Sm|n, define a homogeneous basis {w1, . . . , wm+n} of W by the rule wi = vs+
i +1 if

si = 1 and wi = us−i +1 if si = −1. Conversely, any homogeneous basis of W gives a

basis of V , a basis of U , and a parity sequence s.

Example 2.2.3. If s = (1,−1,−1, 1, 1,−1, 1,−1), then

{w1, . . . , w8} = {v4, u1, u2, v3, v2, u3, v1, u4}.
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Given a basis {v1, . . . , vm} of V , a basis {u1, . . . , un} of U , and a parity sequence

s ∈ Sm|n, define di = di(s, {v1, . . . , vm}, {u1, . . . , un}) = ∂ − ai where

ai = ln′
Wr (v1, v2, . . . , vs+

i +1, u1, u2, . . . , us−i )

Wr (v1, v2, . . . , vs+
i
, u1, u2, . . . , us−i )

if si = 1, (2.4)

ai = ln′
Wr (v1, v2, . . . , vs+

i
, u1, u2, . . . , us−i +1)

Wr (v1, v2, . . . , vs+
i
, u1, u2, . . . , us−i )

if si = −1, (2.5)

where the Wronskian is given by the standard formula

Wr (f1, . . . , fr) = det
(
f

(i−1)
j

)r
i,j=1

.

If two bases {v1, . . . , vm}, {ṽ1, . . . , ṽm} generate the same full flag of V and two bases

{u1, . . . , un}, {ũ1, . . . , ũn} generate the same full flag of U , then the coefficients ai

computed from vj, uj and from ṽj, ũj coincide.

Proposition 2.2.4. We have a complete decomposition of R with parity s: R =

ds11 . . . d
sm+n

m+n .

Proof. If s = s0 is standard, then the statement of the proposition is well known: see

for example the Appendix in [MV04].

Let s and s̃ differ only in positions i, i+1: sj = s̃j for j 6= i, i+1 and si = −si+1 =

−s̃i = s̃i+1. Then we have dj = d̃j for j 6= i, i + 1. In addition dsii d
si+1

i+1 = d̃ s̃i
i d̃

s̃i+1

i+1

follows from the Wronski identity

Wr
(

Wr (v1, v2, . . . , vs+
i +1, u1, u2, . . . , us−i ),Wr (v1, v2, . . . , vs+

i
, u1, u2, . . . , us−i +1)

)
= Wr (v1, v2, . . . , vs+

i +1, u1, u2, . . . , us−i +1)Wr (v1, v2, . . . , vs+
i
, u1, u2, . . . , us−i ).

We identify full superflags in W with complete factorizations of R. Namely, by

Proposition 2.2.4 we have a map: ρ : F(W )→ F(R) and ρs : Fs(W )→ Fs(R).

Proposition 2.2.5. The maps ρ, ρs are bijections.

Proof. Clearly, ρs0 is a bijiection. We have a canonical bijection between Fs(W )

and Fs0(W ). We have a canonical bijection between Fs(R) and Fs0(R). These two

bijections are compatible with ρs and ρs0 . The proposition follows.
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2.3 Bethe ansatz

We recall some facts about the Gaudin model associated to glm|n; see, for example,

[MVY14].

2.3.1 Gaudin Hamiltonians

Let (V1,. . . ,VN) be a sequence of glm|n modules. Let z = (z1, . . . , zN) be a sequence

of pairwise distinct complex numbers. Consider the tensor product V =
⊗N

k=1 Vk.

The Gaudin Hamiltonians Hr ∈ End(V ), r = 1, . . . , N , are given by

Hr =
N∑
k=1
k 6=r

∑m+n
a,b=1 e

(r)
ab e

(k)
ba (−1)|b|

zr − zk
,

where e
(k)
ab = 1⊗ · · · ⊗ 1︸ ︷︷ ︸

k−1

⊗ eab ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−k

, k = 1, . . . , N .

The proof of the following properties (which are well-known in the case of glm)

can be found in [MVY14].

Lemma 2.3.1. We have:

1. the Gaudin Hamiltonians mutually commute, [Hr,Hk] = 0, for all r, k;

2. the Gaudin Hamiltonians commute with the diagonal glM |N action, [Hk, X] = 0,

for all k and all X ∈ glm|n;

3. the sum of the Gaudin Hamiltonians is zero,
∑N

k=1Hk = 0;

4. if Vk, k = 1, . . . , N , are polynomial modules, then for generic zk, k = 1, . . . , N ,

the Gaudin Hamiltonians are diagonalizable;

5. if Vk, k = 1, . . . , N , are vector representations, then the joint spectrum of the

Gaudin Hamiltonians is simple for generic z.
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2.3.2 Bethe ansatz equation

We fix a parity sequence s ∈ Sm|n, a sequence λ = (λ(1), . . . , λ(N)) of glm|n weights,

and a sequence z = (z1, . . . , zN) of pairwise distinct complex numbers. We call

(λ(k))s the weight at the point zk with respect to s and denote it by λ(s,k). Denote

λ(s,k)(esii) = λ
(s,k)
[s],i by λ

(s,k)
i .

Let l = (l1, . . . , lm+n−1) be a sequence of non-negative integers. Define l =∑m+n−1
i=1 li. Let c : {1, . . . , l} → {1, . . . ,m+ n− 1} be the colour function,

c(j) = r, if
r−1∑
i=1

li < j ≤
r∑
i=1

li.

Let t = (t1, . . . , tl) be a collection of variables. We say that tj has colour c(j). Define

the weight at ∞ with respect to s, λ, and l by

λ(s,∞) =
N∑
k=1

λ(s,k) −
m+n−1∑
i=1

αsi li.

The Bethe ansatz equation (BAE) associated to s, z, λ, and l, is a system of

algebraic equations on variables t:

−
N∑
k=1

(λ(s,k), αsc(j))

tj − zk
+

l∑
r=1
r 6=j

(αsc(r), α
s
c(j))

tj − tr
= 0, j = 1, . . . , l. (2.6)

The BAE is a system of equations for t and we call the single equation (2.6) the Bethe

ansatz equation for t related to tj.

Note that if t is a solution of the BAE and (αsc(r), α
s
c(j)) 6= 0 for some j 6= r, then

tj 6= tr. Also if (λ(s,k), αsc(j)) 6= 0 for some k and j, then tj 6= zk.

In addition, we impose the following condition. Suppose (αsi , α
s
i ) = 0. Choose

j such that c(j) = i and consider the equation related to tj as an equation for one

variable when all variables tr with c(r) 6= i are fixed. This equation does not depend

on the choice of j. Suppose t is a solution of this equation of multiplicity a. Then

we require that the number of tj such that c(j) = i and tj = t is at most a. This

condition will be important in what follows; cf. especially Lemma 2.4.3, Theorem

2.5.2, and Conjecture 2.7.3.
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The group Sl = Sl1 × · · · ×Slm+n−1 acts on t by permuting the variables of the

same colour.

We do not distinguish between solutions of the BAE in the same Sl-orbit.

2.3.3 Weight function

Let λ(k), k = 1, . . . , N , be polynomial glm|n weights. Let vsk = vs
λ(s,k) be an s-

highest weight vector in the irreducible glm|n module L(λ(k)). Consider the tensor

product L(λ) =
⊗N

k=1 L(λ(k)). The weight function is a vector ws(z, t) in L(λ)

depending on parameters z = (z1, . . . , zN) and variables t = (t1, . . . , tl). The weight

function ws(z, t) is constructed as follows (see [MVY14]).

Let an ordered partition of {1, . . . , l} into n parts be a sequence

I = (i11, . . . , i
1
p1

; . . . ; iN1 , . . . , i
N
pN

),

where p1 + · · · + pN = l and I is a permutation of (1, . . . , l). Let P (l, N) be the set

of all such ordered partitions.

Denote F sc(r) = esc(r)+1,c(r). To each ordered partition I ∈ P (l, N), associate a

vector F sI v ∈ L(λ) and a rational function wI(z, t),

F sI v = F sc(i11) . . . F
s
c(i1p1 )v

s
1 ⊗ · · · ⊗ F sc(iN1 ) . . . F

s
c(inpN

)v
s
N ,

wI(z, t) = w{i11,...,i1p1}
(z1, t) . . . w{iN1 ,...,iNpN }

(zN , t),

where for {i1, . . . , ir} ⊂ {1, . . . , l},

w{i1,...,ir}(z, t) =
1

(ti1 − ti2) . . . (tir−1 − tir)(tir − z)
.

Define

(−1)|I| =
l∏

r=1

∏
j>r

I(j)<I(r)

(−1)|F
s
c(r)
|·|F s

c(j)
|.

Then the weight function ws(z, t) is

ws(z, t) =
∑

I∈P (l,N)

(−1)|I|wI(z, t)F
s
I v. (2.7)

We have the following theorem.
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Theorem 2.3.2 ( [MVY14]). If λ is a sequence of polynomial weights and t is a

solution of the BAE associated to s, z, λ, and l, then the vector ws(z, t) ∈ L(λ)

is a joint eigenvector of the Gaudin Hamiltonians, Hkw
s(z, t) = Ekw

s(z, t), k =

1, . . . , N , where the eigenvalues Ek are given by

Ek =
N∑
r=1
r 6=k

(
λ(s,k), λ(s,r)

)
zk − zr

+
l∑

j=1

(
λ(s,k), αsc(j)

)
tj − zk

. (2.8)

Moreover, the vector ws(z, t) belongs to (L(λ))sing

λ(s,∞).

If t is a solution of the BAE associated to s, z, λ, and l, then the value of the

weight function ws(z, t) is called a Bethe vector.

2.3.4 Polynomials representing solutions of the BAE

Fix a parity sequence s ∈ Sm|n. Let λ = (λ(1), . . . , λ(N)) be a sequence of polyno-

mial glm|n weights. Let z = (z1, . . . , zN) be a sequence of pairwise distinct complex

numbers.

Define a sequence of polynomials T s = (T s1 , . . . , T
s
m+n) associated to s, λ and z,

T si (x) =
N∏
k=1

(x− zk)λ
(s,k)
i , i = 1, . . . ,m+ n. (2.9)

Note that T si (T si+1)−sisi+1 is a polynomial for all i = 1, . . . ,m+ n.

Let l = (l1, . . . , lm+n−1) be a sequence of non-negative integers. Let t = (t1, . . . , tl)

be a solution of the BAE associated to s, z, λ, and l. Define a sequence of polynomials

y = (y1, . . . , ym+n−1) by

yi(x) =
∏

j, c(j)=i

(x− tj), i = 1, . . . ,m+ n− 1. (2.10)

We say the sequence of polynomials y represents t.

We consider each polynomial yi(x) up to a multiplication by a non-zero number.

We also do not consider zero polynomials yi(x). Thus, the sequence y defines a
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point in the direct product P(C[x])m+n−1 of m+ n− 1 copies of the projective space

associated to the vector space of polynomials in x. We also have deg yi = li.

A sequence of polynomials y is generic with respect to s, λ, and z, if it satisfies

the following conditions:

1. if sisi+1 = 1, then yi(x) has only simple roots;

2. if (αsi , α
s
j ) 6= 0 and i 6= j, then yi(x) and yj(x) have no common roots;

3. all roots of yi(x) are different from the roots of T si (x)(T si+1(x))−sisi+1 .

If y represents a solution of the BAE associated to s, z, λ, and l, then y is generic

with respect to s, λ, and z.

2.4 Reproduction procedure for gl2 and gl1|1

We recall the reproduction procedure for gl2, see [MV04], and define its analogue

for gl1|1.

2.4.1 Reproduction procedure for gl2

Consider the case of m = 2 and n = 0. We write gl2|0
∼= gl0|2

∼= gl2. Let

λ = (λ(1), . . . , λ(N)) = ((p1, q1), . . . , (pN , qN)) be a sequence of polynomial gl2 weights:

pk, qk ∈ Z, pk ≥ qk ≥ 0, k = 1, . . . , N . Let z = (z1, . . . , zN) be a sequence of pairwise

distinct complex numbers. We have

T1 =
N∏
k=1

(x− zk)pk , T2 =
N∏
k=1

(x− zk)qk .

Let p = deg T1 and q = deg T2.

Let l be a non-negative integer. Let t = (t1, . . . , tl) be a collection of variables.

The Bethe ansatz equation associated to λ, z and l, is given by

−
N∑
k=1

pk − qk
tj − zk

+
l∑

r=1
r 6=j

2

tj − tr
= 0, j = 1, . . . , l. (2.11)
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One can reformulate the BAE (2.11) and construct a family of new solutions of

the BAE as follows.

Lemma 2.4.1 ( [MV04]). Let y be a degree l polynomial generic with respect to λ

and z.

1. The polynomial y ∈ C[x] represents a solution of the BAE (2.11) associated to

λ, z and l, if and only if there exists a polynomial ỹ ∈ C[x], such that

Wr (y, ỹ) = T1T
−1
2 . (2.12)

2. If ỹ is generic, then ỹ represents a solution of the BAE associated to λ, z and

l̃, where l̃ = deg ỹ.

Explicitly, the polynomial ỹ in Lemma 2.4.1 is given by

ỹ(x) = c1y(x)

∫
T1(x)T−1

2 (x)y−2(x)dx+ c2y(x), (2.13)

where c1 is some non-zero complex number and c2 ∈ C is arbitrary. The BAE (2.11)

guarantees that the integrand has no residues and therefore ỹ is a polynomial. All but

finitely many ỹ are generic with respect to λ and z, and therefore represent solutions

of the BAE (2.11).

Thus, from the polynomial y, we construct a family of polynomials ỹ. Following

[MV04], we call this construction the gl2 reproduction procedure.

Let Py be the closure of the set containing y and all ỹ in P(C[x]). We call Py the

gl2 population originated at y. The set Py is identified with the projective line CP 1

with projective coordinates (c1 : c2).

The weight at infinity associated to λ, l, is λ(∞) = (p− l, q+ l). Assume the weight

λ(∞) is dominant, meaning 2l ≤ p− q. Then the weight at infinity associated to λ, l̃,

is

λ̃(∞) = (p− l̃, q + l̃) = (q + l − 1, p− l + 1) = s · λ(∞),



26

where s ∈ S2 is the non-trivial gl2 Weyl group element, and the dot denotes the

shifted action.

Let ỹ =
∏l̃

r=1(x−t̃r) and t̃ = (t̃1, . . . , t̃l̃). If y is generic, then by Lemma 2.4.1, t̃ is a

solution of the BAE (2.11). By Theorem 2.3.2, the value of the weight function w(z, t̃)

is a singular vector. However, λ̃(∞) is not dominant and therefore w(z, t̃) = 0 in L(λ).

So, in a gl2 population only the unique smallest degree polynomial corresponds to an

actual eigenvector in L(λ).

Consider formula (4.10) for the eigenvalues Ek of the Gaudin Hamiltonians. It is

clear that

ln′ y(zk) = ln′ ỹ(zk), k = 1, . . . , N,

which implies that the eigenvalues Ek for the solution t of the BAE are equal to those

for the solution t̃. That fact can be reformulated in the following form.

Define a differential operator

D(y) =

(
∂ − ln′

T1

y

)
(∂ − ln′ T2 y).

The operator D(y) does not depend on a choice of polynomial y in a population,

D(y) = D(ỹ).

2.4.2 Reproduction procedure for gl1|1

Consider the case of m = n = 1. We have S1|1 = {(1,−1), (−1, 1)}. Let s and

s̃ = s[1] be two different parity sequences. Let λ = (λ(1), . . . , λ(N)) be a sequence of

polynomial gl1|1 weights. For each k = 1, . . . , N , let us write λ
(s,k)
[s] = (pk, qk), where

pk, qk ∈ Z≥0 and if pk = 0 then qk = 0. Note that λ(k) is atypical if and only if it is

zero, pk = qk = 0, which happens if and only if pk + qk = 0. Let z = (z1, . . . , zN) be

a sequence of pairwise distinct complex numbers.

Let

p̃k =

qk + 1 if pk + qk 6= 0,

0 if pk + qk = 0,

q̃k =

pk − 1 if pk + qk 6= 0,

0 if pk + qk = 0.



27

Equation (2.9) becomes

T s1 =
N∏
k=1

(x− zk)pk , T s2 =
N∏
k=1

(x− zk)qk ,

T s̃1 =
N∏
k=1

pk+qk 6=0

(x− zk)qk+1 =
N∏
k=1

(x− zk)p̃k , T s̃2 =
N∏
k=1

pk+qk 6=0

(x− zk)pk−1 =
n∏
k=1

(x− zk)q̃k .

Let p = deg T s1 , q = deg T s2 . Similarly, let p̃ = deg T s̃1 , q̃ = deg T s̃2 .

Let M = #{k | pk + qk 6= 0} be the number of typical modules. Then p̃ = q +M

and q̃ = p−M .

Let l be a non-negative integer. Let t = (t1, . . . , tl) be a collection of variables.

The Bethe ansatz equation associated to s, λ, z, and l, takes the form:

N∑
k=1

pk + qk
tj − zk

= 0, j = 1, . . . , l. (2.14)

The Bethe ansatz equation (2.14) can be written in the form

ln′ (T s1 T
s
2 ) (tj) = 0.

Note that T s1 T
s
2 = T s̃1 T

s̃
2 . Thus, in the case of gl1|1, the BAEs (2.14) associated to

s and s̃ coincide.

Define a map π from non-zero rational functions C(x) to monic polynomials in

C[x] with distinct roots. For any nonzero rational function f(x), π(f)(z) = 0 if and

only if f(z) = 0 or (1/f)(z) = 0.

Example 2.4.2. We have π (x5(x− 1)4(x− 3)−1(x+ 6)−2) = x(x−1)(x−3)(x+ 6).

The polynomial π(f) is the minimal monic denominator of the rational function

ln′(f) of smallest possible degree.

We call the sequence of polynomial gl1|1 weights λ typical if at least one of the

weights λ(k) is typical. Then λ is typical if and only if p+q 6= 0. Also λ is not typical

if and only if T s1 T
s
2 = 1.

We reformulate the BAE (2.14) and construct a new solution as follows.
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Lemma 2.4.3. Let y be a polynomial of degree l. Let λ be typical.

1. The polynomial y represents a solution of the BAE (2.14) associated to s, z,

λ, and l, if and only if there exists a polynomial ỹ, such that

y · ỹ = ln′ (T s1 T
s
2 ) π(T s1 T

s
2 ). (2.15)

2. The polynomial ỹ represents a solution of the BAE (2.14) associated to s̃, z,

λ, and l̃, where l̃ = deg ỹ = M − 1− l.

From the polynomial y, we construct a unique polynomial ỹ. We call this con-

struction the gl1|1 reproduction procedure.

Let Py be the set containing y and ỹ. The set Py is called the gl1|1 population

originated at y.

The weight at infinity associated to s,λ, and l is λ
(s,∞)
[s] = (p− l, q+ l). The weight

at infinity associated to s̃,λ and l̃ is λ̃
(s̃,∞)
[s̃] = (p̃ − l̃, q̃ + l̃) = (q + l + 1, p − l − 1).

Thus we have λ(s,∞) = λ̃(s̃,∞) + αs. In particular, both y and ỹ correspond to actual

eigenvectors of the Gaudin Hamiltonians.

Remark 2.4.4. If λ is not typical, then all participating representations are one-

dimensional and the situation is trivial. In particular, we have y(x) = 1. In this case

we can define ỹ = 1. We do not discuss this case any further.

2.4.3 Motivation for gl1|1-reproduction procedure

We show that in parallel to the gl2 reproduction procedure, the eigenvalues of the

Gaudin Hamiltonians corresponding to polynomials in the same gl1|1 population are

the same.

Let y =
∏l

r=1(x− tr), ỹ =
∏l̃

r=1(x− t̃r). Let t = (t1, . . . , tl), t̃ = (t̃1, . . . , t̃l̃).

Let hk = pk + qk, k = 1, . . . , N . Let N (T ) be the monic polynomial proportional

to ln′ (T s1 T
s
2 ) π(T s1 T

s
2 ).

From Theorem 2.3.2, we have

Hkw
s(z, t) = Ekw

s(z, t)
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and

Hkw
s̃(z, t̃) = Ẽkw

s̃(z, t̃),

where

Ek = s1

N∑
r=1
r 6=k

pkpr − qkqr
zk − zr

+ s1

l∑
j=1

hk
tj − zk

, Ẽk = s̃1

N∑
r=1
r 6=k

p̃kp̃r − q̃kq̃r
zk − zr

+ s̃1

l̃∑
j=1

hk

t̃j − zk
.

(2.16)

Lemma 2.4.5. The eigenvalues Ek and Ẽk, k = 1, . . . , N , of the Gaudin Hamiltoni-

ans are the same.

Proof. Set tl+r = t̃r, r = 1, . . . , l̃.

If pk + qk = 0, then Ek = Ẽk = 0. Without loss of generality, assume pk + qk 6= 0,

k = 1, . . . ,M , M > 0, and pk + qk = 0, k = M + 1, . . . , N , and consider E1− Ẽ1. We

have

s1(E1 − Ẽ1) =
M∑
k=2

h1 + hk
z1 − zk

+
M−1∑
r=1

h1

tr − z1

. (2.17)

The polynomial N (T )(x) is

N (T )(x) =
M−1∏
k=1

(x− tk) = (h1 + · · ·+ hM)−1

M∑
k=1

hk(x− z1) . . . ̂(x− zk) . . . (x− zM).

Evaluate the function ln′(N (T )) at z1 and we have

ln′(N (T ))(z1) =
M−1∑
r=1

1

z1 − tr
=

M∑
k=2

h1 + hk
h1(z1 − zk)

.

Thus, the right-hand side of (2.17) is zero.

Corollary 2.4.6. We have es21w
s(z, t) = cws̃(z, t̃), for some non-zero constant c.

Proof. It follows from the results of [MVY14] that for generic z, the Gaudin Hamilto-

nians Hk acting in (L(λ))sing = (⊗kL(λk))sing have joint simple spectrum. Moreover,

for generic z, ws(z, t) 6= 0 and ws̃(z, t̃) 6= 0.

Therefore, ws(z, t) and ws̃(z, t̃) belong to the same irreducible two-dimensional

submodule of L(λ). Moreover, their weights are related by λ(s,∞) = λ̃(s̃,∞) + αs. The

corollary follows.
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Define a rational pseudodifferential operator:

Rs(y) =

(
∂ − s1 ln′

T s1
y

)s1
(∂ − s2 ln′(T s2 y))

s2 .

Lemma 2.4.7. If λ is typical, then Rs(y) is a (1|1)-rational pseudodifferential oper-

ator. If λ is not typical, then Rs(y) = 1.

Let λ be typical. The rational pseudodifferential operator does not depend on a

choice of a polynomial in a population: Rs(y) = Rs̃(ỹ).

Proof. The lemma is proved by a direct computation.

2.5 Reproduction procedure for glm|n

We define the reproduction procedure and populations in the general case.

2.5.1 Reproduction procedure

Let s ∈ Sm|n be a parity sequence. Let λ = (λ(1), . . . , λ(N)) be a sequence of

polynomial glm|n weights. Let z = (z1, . . . , zN) be a sequence of pairwise distinct

complex numbers. Let T s be a sequence of polynomials associated to s, λ, and z,

see (2.9). Denote π
(
T si (T si+1)−sisi+1

)
by πsi .

For i ∈ {1, . . . ,m+ n− 1}, set s[i] = (s1, . . . , si+1, si, . . . , sm+n).

Lemma 2.5.1. If si = si+1, then T s
[i]

= T s and if si 6= si+1, then

T s
[i]

= (T s1 , . . . , T
s
i+1π

s
i , T

s
i (πsi )

−1, . . . , T sm+n).

Proof. This follows from (2.2).

Let l = (l1, . . . , lm+n−1) be a sequence of nonnegative integers.

We reformulate the BAE (2.6) and construct a family of new solutions as follows.

By convention, we set y0 = ym+n = 1.

Theorem 2.5.2. Let y = (y1, . . . , ym+n−1) be a sequence of polynomials generic with

respect to s, λ, and z, such that deg yk = lk, k = 1, . . . ,m+ n− 1.
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1. The sequence y represents a solution of the BAE (2.6) associated to s, z, λ,

and l, if and only if for each i = 1, . . . ,m+ n− 1, there exists a polynomial ỹi,

such that

Wr (yi, ỹi) = T si
(
T si+1

)−1
yi−1yi+1 if si = si+1, (2.18)

yi ỹi = ln′
(
T si T

s
i+1yi−1

yi+1

)
πsi yi−1yi+1 if si 6= si+1. (2.19)

2. Let i ∈ {1, . . . ,m+ n− 1} be such that ỹi 6= 0. Then if

y[i] = (y1, . . . , ỹi, . . . , ym+n−1)

is generic with respect to s[i], λ, and z, then y[i] represents a solution of the BAE

associated to s[i], λ, z, and l[i], where l[i] = (l1, . . . , l̃i, . . . , lm+n−1), l̃i = deg ỹi.

Proof. Part (1) follows from Lemma 2.4.1 and Lemma 2.4.3.

We prove Part (2). Let yr =
∏lr

j=1(x − t
(r)
j ), r = 1, . . . ,m + n − 1, and ỹi =∏l̃i

j=1(x − t̃
(i)
j ). Let t = (t

(r)
j )j=1,...,lr

r=1,...,m+n−1 and t̃ = (t̃
(r)
j )j=1,...,l̃r

r=1,...,m+n−1, where we set

lr = l̃r, t
(r)
j = t̃

(r)
j if r 6= i. The tuple t satisfies the BAE associated to s, λ, z, and l.

We prove the Bethe ansatz equation for t̃ associated to s[i], λ, z, and l[i]. The BAE

for t̃ related to t̃
(i)
j holds by Lemma 2.4.1 and Lemma 2.4.3. The BAEs for t̃ and t

related to t
(r)
j , |r − i| > 1, are the same. We treat the non-trivial cases.

Consider the case of si = si+1. Dividing (2.18) by yiỹi and evaluating at x = t
(i±1)
j ,

we obtain
li∑
a=1

1

t
(i±1)
j − t(i)a

=

l̃i∑
a=1

1

t
(i±1)
j − t̃ (i)

a

.

Thus, the BAE for t̃ related to t
(i±1)
j follows from the BAE for t related to t

(i±1)
j .

Consider the case of si = −si+1 = 1. The argument depends on si−1, si+2.

Consider for example the case of si−1 = −si+2 = 1.

We prove the BAE for t̃ related to t
(i−1)
j :

−
N∑
k=1

λ
(s,k)
i−1 + λ

(s,k)
i+1 + δ

t
(i−1)
j − zk

+

li−2∑
r=1

−1

t
(i−1)
j − t(i−2)

r

+

l̃i∑
r=1

1

t
(i−1)
j − t̃ (i)

r

= 0, (2.20)
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where δ = 1 if λ
(s,k)
i + λ

(s,k)
i+1 6= 0 and δ = 0 otherwise.

The BAE for t related to t
(i−1)
j is

−
N∑
k=1

λ
(s,k)
i−1 − λ

(s,k)
i

t
(i−1)
j − zk

+

li−2∑
r=1

−1

t
(i−1)
j − t(i−2)

r

+

li∑
r=1

−1

t
(i−1)
j − t(i)r

+

li−1∑
r=1
r 6=j

2

t
(i−1)
j − t(i−1)

r

= 0.

(2.21)

Take the logarithmic derivative of equation (2.19) for yi and evaluate it at t
(i−1)
j .

The left-hand side is

ln′(yiỹi)
∣∣∣
x=t

(i−1)
j

=

li∑
r=1

1

t
(i−1)
j − t(i)r

+

l̃i∑
r=1

1

t
(i−1)
j − t̃ (i)

r

and the right-hand side is

ln′
(

ln′
(
T si T

s
i+1yi−1y

−1
i+1

)
πsi yi−1yi+1

)∣∣∣
x=t

(i−1)
j

=
(

ln′(T si T
s
i+1)πsi y

′
i−1yi+1

+ (πsi y
′
i−1yi+1)′ − πsi y′i−1y

′
i+1

)
/(πsi y

′
i−1yi+1)

∣∣∣
x=ti−1

j

=
N∑
k=1

λ
(s,k)
i + λ

(s,k)
i+1 + δ

t
(i−1)
j − zk

+

li−1∑
r=1
r 6=j

2

t
(i−1)
j − t(i−1)

r

.

(Note here that the t
(i−1)
j are all distinct, by the assumption that y[i] is generic.)

The difference of the right-hand side and the left-hand side is exactly the difference

between (2.20) and (2.21).

The BAE for t̃ related to t
(i+1)
j is proved by a similar computation.

All other cases are similar, we omit further details.

If si = si+1, then starting from y we construct a family of new sequences y[i],

isomorphic to C, by using (2.18). We call this construction the bosonic reproduction

procedure in i-th direction. If si 6= si+1, and T si T
s
i+1yi−1 6= cyi+1, c ∈ C×, then

starting from y we construct a single new sequence y[i] by using (2.19). We call

this construction the fermionic reproduction procedure in i-th direction. From the

definition of fermionic reproduction procedure, (y[i])[i] = y.
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If y[i] is generic with respect to s[i], λ[i], and z, then by Theorem 2.5.2, we can

apply the reproduction procedure again.

Bosonic reproduction procedures fix parity sequences, while fermionic reproduc-

tions procedures change parity sequences. Denote by

P(y,s) ⊂ (P(C[x]))m+n−1 × Sm|n

the closure of the set of all pairs (ỹ, s̃) obtained from the initial pair (y, s) by re-

peatedly applying all possible reproductions. We call P(y,s) the glm|n population of

solutions of the BAE associated to s, z, λ, and l, originated at y. By definition,

P(y,s) decomposes as a disjoint union over parity sequences,

P(y,s) =
⊔

s̃∈SM|N

P s̃(y,s), P s̃(y,s) = P(y,s) ∩
(
(P(C[x]))m+n−1 × {s̃}

)
.

2.5.2 Rational pseudodifferential operator associated to population

We define a rational pseudodifferential operator which does not change under the

reproduction procedure.

Let s ∈ Sm|n be a parity sequence. Let z = (z1, . . . , zN) be a sequence of pairwise

distinct complex numbers. Let λ = (λ(1), . . . , λ(N)) be a sequence of polynomial glm|n

weights. The sequence T s = (T s1 , . . . , T
s
m+n) is given by (2.9).

Let y = (y1, . . . , ym+n−1) be a sequence of polynomials. Recall our convention

that y0 = ym+n = 1. Define a rational pseudodifferential operator R over C(x),

Rs(y) =

(
∂ − s1 ln′

T s1 y0

y1

)s1 (
∂ − s2 ln′

T s2 y1

y2

)s2
× . . . (2.22)

×
(
∂ − sm+n ln′

T sm+nym+n−1

ym+n

)sm+n

.

The following theorem is the main result of this section.

Theorem 2.5.3. Let P be a glm|n population. Then the rational pseudodifferential

operator Rs(y) does not depend on the choice of y in P .
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Proof. We want to show(
∂ − si ln′

T si yi−1

yi

)si(
∂ − si+1 ln′

T si+1yi
yi+1

)si+1

=

(
∂ − si+1 ln′

T s
[i]

i yi−1

ỹi

)si+1
(
∂ − si ln′

T s
[i]

i+1ỹi
yi+1

)si
.

We have four cases, (si, si+1) = (±1,±1). The cases of si = si+1 are proved in [MV04].

Consider the case of si = −si+1 = 1. We want to show(
∂ − ln′

T si yi−1

yi

)(
∂ − ln′

yi+1

T si+1yi

)−1

=

(
∂ − ln′

ỹi
T si+1π

s
i yi−1

)−1(
∂ − ln′

T si (πsi )
−1ỹi

yi+1

)
.

This equation is proved by a direct computation using (2.3) and (2.19). We only note

that the rational function T si T
s
i+1yi−1y

−1
i+1 is not constant by the assumption that the

reproduction is possible.

The case of si = −si+1 = −1 is similar.

We denote the rational pseudodifferential operator corresponding to a population

P by RP .

It is known that the Gaudin Hamiltonians acting in L(λ) can be included in a

natural commutative algebra B(λ) of higher Gaudin Hamiltonians, see [MR14]. We

expect that similar to the even case, the rational pseudodifferential operator Rs(y)

encodes the eigenvalues of the algebra B(λ) acting on the Bethe vector corresponding

to y. Then, Theorem 2.5.3 would assert that the formulas for the eigenvalues of B(λ)

do not depend on the choice of y in the population.

Here we show that the eigenvalues (4.10) of the (quadratic) Gaudin Hamiltonians

do not change under the glm|n reproduction procedure. Denote the eigenvalues of the

Gaudin Hamiltonians given in (4.10) by Ek(y), k = 1, . . . , N . Note that Ek(y) is

defined only if yi(zk) 6= 0 whenever T si (T si+1)−sisi+1 vanishes at x = zk. We call such

sequences y k-admissible.
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Lemma 2.5.4. Let y = (y1, . . . , ym+n−1) be a sequence of polynomials such that there

exists a sequence of polynomials ỹ satisfying (2.18) if si = si+1 or (2.19) if si = −si+1.

Suppose that y and ỹ are k-admissible. Then Ek(y) = Ek(ỹ).

Proof. In the case of si = si+1, the lemma follows from ln′ yi(zk) = ln′ ỹi(zk), k =

1, . . . , N .

In the case of si 6= si+1, the lemma follows from taking logarithmic derivative of

the equation (2.19) for yi and evaluating at x = zk, k = 1, . . . , N , cf. proof of Lemma

2.4.5. We only note that by (2.19) the polynomial yi−1yi+1 does not vanish at zk if

TiTi+1 does and yi, ỹi do not.

2.5.3 Example of a population

In what follows, we study the structure of a population.

Consider gl2|1. We have three parity sequences, s0 = (1, 1,−1), s1 = (1,−1, 1),

and s2 = (−1, 1, 1).

Let λ = (λ(1), λ(2), λ(3)), where λ(i) = (1, 1, 0), for i = 1, 2, 3. Let z = (1, ω, ω2),

where ω is a primitive cubic root of unity. We have T = T s0 = (x3 − 1, x3 − 1, 1).

Let y = (y1, y2) = (1, 1).

1. First, apply the bosonic reproduction procedure in the first direction to y. We

have s
[1]
0 = s0, T s0 = T , and y[1] = (y

[1]
1 , y

[1]
2 ) = (x − c, 1), where c ∈ CP 1. At

c =∞, y[1] = (1, 1) = y.

2. Second, apply the fermionic reproduction procedure in the second direction to

y[1]. We have (s0)[2] = s1 and T s1 = (x3 − 1, x3 − 1, 1). We have (y[1])[2] =

(x− c, 4x3 − 3cx2 − 1).

3. Third, apply the fermionic reproduction procedure in the first direction to

(y[1])[2]. We have (s1)[1] = s2 and T s2 = ((x3 − 1)2, 1, 1). We have ((y[1])[2])[1] =

(2x4 + x, 4x3 − 3cx2 − 1).
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It is easy to check that all further reproduction procedures cannot create a new

sequence. Therefore the gl2|1-population P(1,1) is the union of three CP 1, P s0

(1,1) =

{(x − c, 1) | c ∈ CP 1}, P s1

(1,1) = {(x − c, 4x3 − 3cx2 − 1) | c ∈ CP 1}, and P s2

(1,1) =

{(2x4 + x, 4x3 − 3cx2 − 1) | c ∈ CP 1}.

We have the following representations for the rational pseudodifferential operator

of the population: RP = Rs0 = Rs1 = Rs2 :

RP =

(
∂ − 3x2

x3 − 1

)(
∂ − 3x2

x3 − 1

)
∂−1 =

(
∂ − 3x2

x3 − 1

)(
∂ − 2x3 − 3cx2 + 1

x4 − cx3 − x+ c

)
∂−1

=

(
∂ − ln′

x3 − 1

x− c

)(
∂ − ln′

4x3 − 3cx2 − 1

(x3 − 1)(x− c)

)−1(
∂ − ln′(4x3 − 3cx2 − 1)

)
=

(
∂ − ln′

2x4 + x

(x3 − 1)2

)−1(
∂ − ln′

2x4 + x

4x3 − 3cx2 − 1

)(
∂ − ln′(4x3 − 3cx2 − 1)

)
.

2.6 Populations and flag varieties

We call a sequence λ = (λ(1), . . . , λ(N)) of polynomial glm|n weights typical if

at least one of the λ(k), k = 1, . . . , N , is typical. In this section, we show that glm|n

populations associated to typical λ are isomorphic to the variety of the full superflags.

2.6.1 Polynomials πa,b

Let M = (M1 ≤ M2 ≤ · · · ≤ Mr), N = (N1 ≤ N2 ≤ · · · ≤ Nr), Mi, Ni ∈ Z,

be two generalized partitions with r parts. We say N dominates M if Ni ≥ Mi for

i = 1, . . . , r. This gives a partial ordering on the set of generalized partitions with r

parts.

For a generalized partition with r parts M , there exists a unique generalized

partition M̄ with r parts such that:

1. all parts of M̄ are distinct;

2. M̄ dominates M ; and
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3. if a generalized partition with r distinct parts M ′ dominates M , then M ′

dominates M̄ .

We call M̄ the dominant of M .

We identify multisets of integers with generalized partitions (by putting their

elements into weakly increasing order).

Example 2.6.1. Let M = {−3,−3,−3,−1, 0, 5, 5, 6}. Then

M̄ = {−3,−2,−1, 0, 1, 5, 6, 7}.

This definition is motivated by the following observation.

Let V be a d-dimensional space of functions of x meromorphic around x = z for

some z ∈ C. Then M ∈ Z is an exponent of V at z if there is a function f(x) ∈ V

such that the order of the zero at x = z is M : f(x) = (x− z)M(c+ o(x− z)), c ∈ C×.

Then V has d distinct exponents. We denote e(V, z) the set of exponents of V at z.

Let V1, . . . , Vk be spaces of functions of x meromorphic around x = z, dimVi = di.

Let M = tki=1e(Vi, z). Let V = ⊕ki=1Vi. Assume that dimV =
∑k

i=1 di. Then e(V, z)

dominates M̄ . Moreover, generically, e(V, z) = M̄ .

Let T1, . . . , Tm+n ∈ C(x) be rational functions such that Ti/Ti+1 ∈ C[x] is a

polynomial for all i = 1, . . . ,m + n − 1, i 6= m. Let τi(z) be the order of the zero of

Ti at x = z. Set

Mi(z) = τm−i+1(z) + i− 1, i = 1, . . . ,m, Ni(z) = −τm+i(z) + i− 1, i = 1, . . . , n.

We have M1(z) < M2(z) < · · · < Mm(z), N1(z) < N2(z) < · · · < Nn(z).

Let a ∈ {0, . . . ,m}, b ∈ {0, . . . , n}. Let M̄a,b = {c1(z) < · · · < ca+b(z)} be the

dominant of {M1(z), . . . ,Ma(z), N1(z), . . . , Nb(z)}. Define

da,b(z) = ab−
a+b∑
i=1

ci(z) +
a∑
i=1

Mi(z) +
b∑
i=1

Ni(z)

=

(
a+ b

2

)
−

a+b∑
i=1

ci(z) +
a∑
i=1

τm+1−i(z)−
b∑
i=1

τm+i(z).
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Note that da,b(z) ≥ 0. Moreover, for all but finitely many z we have Mi = i − 1,

Ni = i− 1, ci = i− 1, and da,b(z) = 0.

We set

πa,b =
∏
z∈C

(x− z)da,b(z). (2.23)

Note that πa,b ∈ C[x] is a polynomial.

Note that for any non-zero rational function f(x), the polynomials πa,b computed

from Ti and fTi are the same.

2.6.2 Properties of πa,b

Let λ be a sequence of polynomial glm|n weights. Let Ti = T s0
i be the correspond-

ing polynomials, see (2.9). Let πa,b be the polynomials given by (2.23).

Let s be a parity sequence. Using πa,b, the polynomials T si can be written in terms

of the Ti.

Theorem 2.6.2. We have

T si = Tσs(i)

πs+
i ,s
−
i

πs+
i +1,s−i

, if si = 1 and T si = Tσs(i)

πs+
i ,s
−
i +1

πs+
i ,s
−
i

, if si = −1.

Proof. Let s be a parity sequence such that si 6= si+1 and

s̃ = s[i] = (s1, . . . , si+1, si, . . . , sm+n).

Let a = s+
i , b = s−i + 1. By Lemma 2.5.1 it is sufficient to check

πa+1,b πa,b−1

πa,b πa+1,b−1

= π

(
TM+bTM−a

πa,b
πa+1,b−1

)
.

Since λ(k) is a polynomial glm|n-weight, the exponent of πa,b at zk, da,b(zk), is given

by

da,b(zk) =



ab if b ≤ λ
(k)
m ,

(a− 1)b+ λ
(k)
m if λ

(k)
m < b ≤ λ

(k)
m−1,

. . . . . .

λ
(k)
m + · · ·+ λ

(k)
m−a+1 if λ

(k)
m−a+1 < b.
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Thus the exponent of πa+1,b/πa,b at zk is given by

da+1,b(zk)− da,b(zk) = min{b, λ(k)
m−a}.

The exponent of (πa+1,b πa,b−1)/(πa,b πa+1,b−1) at zk is 1 if b ≤ λ
(k)
m−a and it is 0 other-

wise.

To compute the exponent of Tm+bTm−aπa,b/πa+1,b−1 at zk, introduce two extra

parameters c1, c2: λ
(k)
m−c1+1 < b− 1 = λ

(k)
m−c1 = · · · = λ

(k)
m−c2+1 < b ≤ λ

(k)
m−c2 . We have

da,b − da+1,b−1 =

1 + a− b− c2 if a ≥ c2,

−λm−a if a < c2.

Note that λ
(k)
m−a < b implies λ

(k)
m+b = 0. A direct computation gives the proof.

Let W = V ⊕U be a graded space of rational functions of dimension m+n, where

V = W0̄, U = W1̄ and dimV = m, dimU = n. For z ∈ C, define M1(z) < M2(z) <

· · · < Mm(z) and N1(z) < N2(z) < · · · < Nn(z) to be the exponents of V and U at z

respectively. Define rational functions

T Vi =
∏
z∈C

(x− z)Mm−i+1−m+i, i = 1, . . . ,m,

and

TUm+i =
∏
z∈C

(x− z)−Ni+i−1, i = 1, . . . , n.

Let πV,Ua,b be polynomials as in (2.23) computed from T Vi , T
U
m+i. The following

lemma is clear.

Lemma 2.6.3. Let v1, . . . , va ∈ V , u1, . . . , ub ∈ U . Then

Wr (v1, . . . , va, u1, . . . , ub) π
V,U
a,b T

U
m+1T

U
m+2 . . . T

U
m+b

T VmT
V
m−1 . . . T

V
m−a+1

is a polynomial.
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2.6.3 The glm|n spaces

Let W = V ⊕ U be a graded space of rational functions of dimension m + n,

where V = W0̄, U = W1̄ and dimV = m, dimU = n. For z ∈ C, let as before

M1(z) < M2(z) < · · · < Mm(z) and N1(z) < N2(z) < · · · < Nn(z) be the exponents

of V and U at z respectively.

We call W a glm|n space if the following conditions are satisfied for all z ∈ C:

1. Nn(z) ≤ n− 1;

2. if M1(z) < 0, then M2(z) ≥ 1, N1(z) = M1(z), and Ni(z) = i− 1, i = 2, . . . , n;

3. if v ∈ V , u ∈ U are not regular at z, then there exists a c ∈ C such that

(u+ cv)(z) = 0.

These conditions can be reformulated as follows. Let

pV =
∏

z,M1(z)<0

(x− z)−M1(z), pU =
∏

z,N1(z)<0

(x− z)−N1(z)

be the least common denominators. Then V̄ = pV V and Ū = pUU are spaces of

polynomials.

Lemma 2.6.4. The conditions in the definition of the glm|n space are equivalent to:

1. pU/pV is a polynomial that is relatively prime with pV ;

2. T V̄m−1/p
V and TUm+n are polynomials;

3. if T Ūm+i(z) = 0 for some i = 2, . . . , n, then (pU/pV )(z) = 0;

4. for any v ∈ V, u ∈ U , pV Wr (v, u) is regular at every zero of pV .

Proof. Let τVi (z), τ V̄i (z), τUj (z), and τ Ūj (z) be the orders of the zeroes of T Vi , T V̄i ,

TUj , and T Ūj at z. If τVm(z) < 0, then τ V̄i (z) = τVi (z) − τVm(z). If τUm+1(z) > 0, then

τ Ūj (z) = τUj (z)− τUm+1(z).
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The conditions (1) and (2) in the definition of a glm|n space are equivalent to

τUm+n(z) ≥ 0 and if τVm(z) < 0, then τVm−1(z) ≥ 0, −τUm+1(z) = τVm(z), and τUm+2(z) =

· · · = τUm+n(z) = 0. This is equivalent to the first three conditions in the lemma.

The condition (3) in the definition is equivalent to the condition (4) in the lemma

in the presence of the other conditions.

Let W = V ⊕ U be a glm|n space. Define polynomials

TWi = T Vi =
T V̄i
pV

, i = 1, . . . ,m− 1, TWm = pV T Vm = T V̄m ,

TWm+1 =
TUm+1

pV
=
pU

pV
, TWm+i = TUm+i = pUT Ūm+i, i = 2, . . . , n.

Remark 2.6.5. Note that while T V̄i , i = 1, . . . ,m, are the standard polynomials

describing the exponents of the space of polynomials pV V , our definition of T Ūm+i has

an extra minus sign. The exponents of the space of polynomials pUU are described by

a sequence of polynomials (pU/TWm+n, . . . , p
U/TWm+2, 1).

Let πWa,b be as in (2.23) computed from polynomials TWi .

Further, given a ∈ {0, 1, . . . ,m}, b ∈ {0, 1, . . . , n}, v1, . . . , va ∈ V , u1, . . . , ub ∈ U ,

define

ya,b =
Wr (v1, . . . , va, u1, . . . , ub) π

W
a,b p

V TWm+1 . . . T
W
m+b

TWm . . . TWm−a+1

.

We have

Lemma 2.6.6. The function ya,b is a polynomial.

Proof. The lemma is proved by considering orders of zeroes at each z ∈ C.

Note that Lemma 2.6.6 is stronger than Lemma 2.6.3, since ya,b has pV and not

(pV )2 in the numerator. Lemma 2.6.6 holds due to the additional assumption that

W is a glm|n space. Here, we crucially use the condition (3) in the definition of the

glm|n space.

Let λ = (λ(1), . . . , λ(n)) be a sequence of polynomial glm|n weights, z = (z1, . . . , zn)

a sequence of pairwise distinct complex numbers. Let T = (T1, . . . , Tm+n) be the
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corresponding polynomials given by (2.9). Let y represent a solution of the BAE as-

sociated to λ, z, and the standard parity sequence s0. We have the rational pseudod-

ifferential operator R(y) = D0̄(y)D−1
1̄

(y). Let V (y) = kerD0̄(y), U(y) = kerD1̄(y).

Proposition 2.6.7. If λ is typical, then W (y) = V (y) ⊕ U(y) is a glm|n space of

rational functions and TWi = Ti, i = 1, . . . ,m+ n.

Proof. Denote W (y), V (y), and U(y) by W , V , and U respectively.

Note that y1, . . . , ym−1 represents a solution of the glm BAE. Therefore, the bosonic

reproduction procedures generate a glm population and ym ·D0̄ · (ym)−1 is the differ-

ential operator associated to this population. It follows by [MV04] that V̄ = ymV is

a space of polynomials. Similarly, ym+1, . . . , ym+n−1 represents a solution of the gln

BAE and Ū = ymTm+1U is also a space of polynomials.

We have pV = ym, pU = Tm+1ym.

Since λ is typical, there exists k such that λ(k) is typical, i.e. λ
(k)
m ≥ n. Then

λ
(k)
i +m− i ≥ λ

(k)
i ≥ λ

(k)
m ≥ n > j− 1 ≥ −λ(k)

m−j + j− 1 for i = 1, . . . ,m, j = 1, . . . , n.

Therefore the spaces V and U have no exponents in common and hence V ∩ U = 0.

The only non-trivial condition in Lemma 2.6.4 is (4). The fermionic reproduction

procedure in the m-th direction (2.19) can be written as

ym ỹm = Wr (v, u)y2
mπmTm+1/Tm.

Initially, we have v(y) = Tmym−1/ym, u(y) = ym+1/(Tm+1ym). Generic u, v can

be obtained from v(y), u(y) by the bosonic reproduction procedures. Therefore, by

Theorem 2.5.2, ỹm is a polynomial for generic v, u. Since ym is relatively prime to

πmTm+1/Tm, we obtain condition (4) in Lemma 2.6.4.

Remark 2.6.8. If λ is not typical then cancellations may occur in the rational

pseudodifferential operator R(y) = D0̄(y)D−1
1̄

(y) of (2.22) and the spaces V (y) =

kerD0̄(y), U(y) = kerD1̄(y) may intersect non-trivially. Compare Lemma 2.4.7.

As an important example, consider the tensor product of N copies of the defining

representation, L(λ) = (Cm|n)N . Then T1(x) =
∏N

k=1(x − zk) and Ti(x) = 1 for
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i = 2, . . . , n + m. Thus for the vacuum solution to the BAE, i.e. y = (1, . . . , 1), we

have

D0̄(y) =

(
∂ −

N∏
k=1

1

x− zk

)
∂m−1, D1̄(y) = ∂n.

2.6.4 The generating map

Given a parity sequence s and a full superflag F ∈ Fs(W ), we define polynomials

yi(F), i = 1, . . . ,m+ n− 1, by the formula

yi(F) =

ys
+
i ,s
−
i

if si = 1,

ys+
i ,s
−
i +1 if si = −1.

That defines the generating map

βs : Fs(W )→ (P(C[x]))m+n−1, F 7→ y(F) = (y1(F), . . . , ym+n−1(F)).

Let λ = (λ1, . . . , λN) be a typical sequence of polynomial glm|n weights, z =

(z1, . . . , zN) a sequence of pairwise distinct complex numbers. Let T = (T1, . . . , Tm+n)

be the corresponding polynomials given by (2.9). Let y represent a solution of the

BAE associated to λ, z and the standard parity sequence s0.

Recall that we have the glm|n population P = Py, see Section 2.5.1, the rational

pseudodifferential operator of the population RP = R(y) = D0̄(y)(D1̄(y))−1, see

(2.22) and the glm|n space WP = V (y)⊕ U(y), see Proposition 2.6.7.

The following theorem asserts that the population P is canonically identified with

full superflags F(WP ) and the complete factorizations of the pseudodifferential oper-

ator F(RP ).

Theorem 2.6.9. For any flag F ∈ Fs(WP ), we have βs(F) ∈ P s. Moreover, the

generating map βs : Fs(WP )→ P s is a bijection. Finally, the complete factorization

ρs(F) of RP coincides with Rs(βs(F)), see (2.4), (2.5), and (2.22).

Proof. The operator Rs0
P coincides with the unique minimal fractional decomposition

of RP . Thus, for the standard parity, the theorem is proved in [MV04].
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Let y = βs(F) = (y1, . . . , ym+n−1). Lemma 2.6.6 asserts that y is a sequence of

polynomials. By Theorem 2.6.2, we have Rs(y) = ρs(F).

Let s be such that si 6= si+1. Let s̃ = s[i] = (s1, . . . , si+1, si, . . . , sm+n). Let ỹ =

βs̃(F) = (ỹ1, . . . , ỹm+n−1). A direct computation shows yr = ỹr, r = 1, . . . ,m+n− 1,

r 6= i, and yi, ỹi satisfy equation (2.19). By Theorem 2.5.3 we have Rs̃(ỹ) = ρs̃(F).

That reduces the case of any s to the case of s0.

Remark 2.6.10. Theorem 2.6.9 shows in particular that if two populations intersect,

then they coincide.

Let W be a glm|n space. Let λW be a sequence of glm|n weights and zW a sequence

of distinct complex numbers such that TWi are associated to s0,λW , zW .

Let s be a parity sequence. Consider the set of all sequences (y1, . . . , ym+n−1) ∈

βs(Fs(W )). For i = 1, . . . ,m+n− 1, let l
(s,W )
i be the minimal possible degree of the

ith polynomial yi(x) in this set.

Define

λ
(s,∞)
W =

N∑
k=1

(λ
(k)
W )s −

m+n−1∑
i=1

αsi l
(s,W )
i .

2.7 Conjectures and examples

It is well known that the Bethe ansatz in the naive form is not complete in general.

We conjecture how to overcome this problem. We also give a few examples.

2.7.1 Conjecture on Bethe vectors

Let λ = (λ(1), . . . , λ(N)) be a typical sequence of polynomial glm|n weights, z =

(z1, . . . , zN) a sequence of distinct complex numbers. Let T = (T1, . . . , Tm+n) be the

corresponding polynomials given by (2.9).

Let L(λ) = ⊗Nk=1L(λ(k)) be the corresponding glm|n module. It is known that the

Gaudin Hamiltonians acting in L(λ) can be included in a natural commutative algebra
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B(λ) of higher Gaudin Hamiltonians, see [MR14]. The algebra B(λ) commutes with

the diagonal action of glm|n.

If n = 0, it is known that the joint eigenvectors of B(λ) in L(λ)sing (up to

multiplication by a non-zero constant) are in bijective correspondence with spaces of

polynomials V , such that T Vi = Ti, see [MTV09].

Let s be a parity sequence. We have the following conjecture.

Conjecture 2.7.1. The algebra B(λ) has a simple joint spectrum in L(λ)sing. There

is a bijiective correspondence between eigenvectors of B(λ) in L(λ)sing
λ(s,∞) (up to mul-

tiplication by a non-zero constant) and the glm|n spaces of rational functions W such

that TWi = Ti and λ
(s,∞)
W = λ(s,∞). Moreover, this bijection is such that, for all

k = 1, . . . , N , the eigenvalue of the Gaudin Hamiltonian Hk is given by (4.10), where

t is represented by any k-admissible y in β(F(W )).

By simple joint spectrum we mean that if v1,v2 are eigenvectors of B(λ) and

v1 6= cv2, c ∈ C×, then there exists b ∈ B(λ) such that the eigenvalues of b on v1 and

v2 are different.

Remark 2.7.2. If the sequence of polynomial modules λ is not typical we expect that

the eigenvectors are also parameterized by pairs of spaces of rational functions V and

U of dimensions M and N with similar conditions. However, V and U can have

a non-trivial intersection (see Remark 2.6.8). Then some fermionic reproduction

procedure becomes undefined and the factorization of the rational pseudodifferential

operator (2.22) is not minimal. We do not deal with this case here.

In the case of gl1|1, Conjecture 2.7.1 simplifies as follows. We follow the notation

of Section 2.4.2. Let N (T ) = ln′(T1T2)π(T1T2).

Conjecture 2.7.3. The Gaudin Hamiltonians Hk, k = 1, . . . , N , have a simple joint

spectrum in L(λ)sing. There exists a one-to-one correspondence between the monic

divisors y of the polynomial N (T ) of degree l and the joint eigenvectors v of the

Gaudin Hamiltonians of weight (p − l, q + l) (up to multiplication by a non-zero
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constant). Moreover, this bijection is such that Hkv = Ekv, k = 1, . . . , N , where

Ek are given by (2.16).

Recall our conventions from §2.3.2 about what constitutes a solution to the Bethe

ansatz equation. With those conventions, a monic divisor of N (T ) is the same thing

as a solution to the Bethe ansatz equation, cf. Lemma 2.4.3, and in that sense

Conjecture 2.7.3 asserts that the Bethe ansatz is complete for gl1|1.

2.7.2 A gl1|1 example of double roots

Suppose all the tensor factors L(λ(k)), k = 1, . . . , N are non-trivial. In type gl1|1

that suffices to make them all typical, cf. Remark 2.4.4. Thus we have degN (T ) =

N−1. For generic z, all roots of the polynomial N (T ) are distinct, and there are 2N−1

different monic divisors of N (T ). In such a case we have a basis of Bethe eigenvectors

in L(λ)sing, in accordance with Conjecture 2.7.3. But when the polynomial N (T )

has multiple roots the number of its divisors is smaller. Then, according to Conjec-

ture 2.7.3, we should expect non-trivial Jordan blocks in the action of the Gaudin

Hamiltonians. We give an example illustrating this point.

We consider the case when N = 3. We work with the standard parity sequence.

The modules L(λ(k)), k = 1, 2, 3 are spanned by v
(k)
+ and v

(k)
− , where v

(k)
+ is the

highest weight vector with respect to s0, and v
(k)
− = e21v

(k)
+ . Denote the vector

v
(1)
i ⊗v

(2)
j ⊗v

(3)
k , i, j, k ∈ {±} by v(ijk). Let hk = pk+qk, k = 1, 2, 3. We are supposing

that hk 6= 0, k = 1, 2, 3. We have

N (T ) =(h1 + h2 + h3)x2

− (h1(z2 + z3) + h2(z1 + z3) + h3(z1 + z2))x

+ (h1z2z3 + h2z1z3 + h3z1z2). (2.24)

The weights λ(i) being polynomial means that hi ∈ Z≥1.
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The subspace L(λ)sing
(p−1,q+1) is spanned by w1 = −h2v(−++) + h1v(+−+) and w2 =

−h3v(+−+) + h2v(++−). The action of the Gaudin Hamiltonians in this subspace is

explicitly given by

H1 =
(p1p2 − q1q2

z1 − z2

+
p1p3 − q1q3

z1 − z3

)
I +

−h1+h2

z1−z2 − h3

z1−z2

− h2

z1−z3 −h1+h3

z1−z3

 ,

H2 =
(p2p1 − q2q1

z2 − z1

+
p2p3 − q2q3

z2 − z3

)
I +

−h1+h2

z2−z1
h1

z2−z3
h3

z2−z1 −h2+h3

z2−z3

 .

The discriminants of the characteristic polynomials of both of the above 2×2 matrices

coincide with the right-hand side of (2.24) up to multiplication by nonzero factors.

Therefore the polynomial N (T ) has distinct roots if and only if H1,H2 have distinct

eigenvalues, that is, if and only if the Gaudin Hamiltonians are diagonalizable.

We note that in the case of double roots of y(x), the corresponding Bethe vec-

tor is zero. Therefore an actual eigenvector should be obtained via an appropriate

derivative. It can be done in the case of gl1|1 without difficulties, but in general the

algebraic procedure is not known.

2.7.3 A gl1|1 example with non polynomial modules

Conjecture 2.7.3 may be true for arbitrary modules, not only polynomial ones if

we make the following modification. Let λ be a sequence of arbitrary gl1|1 weights.

In general L(λ) need not be completely reducible. That is, there may exist a

nonzero singular vector v ∈ L(λ)sing such that v = es21w for some w ∈ L(λ). If v

and w are eigenvectors then the eigenvalues of v and w are the same and we do not

expect to obtain a new divisor of N (T ) for v.

Conjecture 2.7.4. Consider the subspace of L(λ)sing spanned by the joint eigenvec-

tors of the Gaudin Hamiltonians Hk, k = 1, . . . , N . Quotient it by its intersection

with the image of es21. On this subquotient, the Gaudin Hamiltonians Hk, k = 1, . . . , N

have a simple joint spectrum and their joint eigenvectors of weight (p − l, q + l) (up

to multiplication by a non-zero constant) are in one-to-one correspondence with the
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monic divisors y of the polynomial N (T ) of degree l. Moreover, this bijection is such

that Hkv = Ekv, k = 1, . . . , N , where Ek are given by (2.16).

Here we give an example of a such a phenomenon. We consider the case when

N = 3. Suppose h1 + h2 + h3 = 0, that is p + q = 0. Then the polynomial N (T )

given by (2.24) is linear. In particular, we have only two divisors instead of the four

which we had in a generic situation. We denote the only root of N (T ) by t.

The subspace L(λ)(p−1,−p+1) is three dimensional. It has a basis {w, e21v(+++), v}

where w is any vector such that e12w = v(+++), and the two other vectors e21v(+++) =

v(−++) +v(+−+) +v(++−) and v = (t−z1)−1v(−++) +(t−z2)−1v(+−+) +(t−z3)−1v(++−)

are singular.

The subspace L(λ)(p−2,−p+2) is also three dimensional. It has a basis {u, e21w, e21v}

where u is any vector such that e21u = v(−−−). One can check that e21v is proportional

to e12v(−−−), and is therefore singular since e2
12 = 0.

The structure of the module can be pictured as follows:

v(+++)

w e21v(+++)

e21w

v

e21vu

v(−−−)

e12

e12∝ e12

∝ e12

e21

e21e21

e21

Fig. 2.2. Structure of the module

While the singular space L(λ)sing is four dimensional, its quotient by the image

of e21 is two dimensional and generated by the images of v(+++) and v, in accordance

with the Conjecture 2.7.4.
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Let s1 = (−1, 1) be the only non-standard parity sequence. The subspace of s1-

singular vectors has a basis {v(−−−), e21v, e21w, e21v(+++)}. Its quotient by the image

of es1
21 is generated by images of v(−−−) and e21w.

The reproduction procedure connects v(+++) with e21w and v with v(−−−). In

particular, it connects vectors with the same eigenvalues, see Lemma 2.4.5; however

the weight now changes by 2α and Corollary 2.4.6 is not true in this situation.
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3. DUALITY OF SUPERSYMMETRIC GAUDIN

MODELS

3.1 Preliminaries

3.1.1 Superspaces and superalgebras

A superalgebra is a vector superspace with an even, bilinear, associative, unital

product operation. Given superalgebras A,B, the tensor product A ⊗ B is a super-

algebra. For any homogeneous elements x, x′ ∈ A, y, y′ ∈ B, the product in the

superalgebra A⊗ B is

(x⊗ y)(x′ ⊗ y′) = (−1)|x
′||y|(xx′ ⊗ yy′).

For x ∈ A, a ∈ {1, . . . , k}, denote 1⊗(a−1) ⊗ x⊗ 1⊗(k−a) ∈ A⊗k by x(a).

3.1.2 The glm|n current algebra and the evaluation modules

Let t be an even variable. Let glm|n[t] = glm|n ⊗ C[t] be the Lie superalgebra of

glm|n valued polynomials with pointwise superbracket. We call glm|n[t] the current

algebra. Denote by Uglm|n[t] the universal enveloping algebra of glm|n[t].

We identify the Lie superalgebra glm|n with the subalgebra glm|n ⊗ 1 of constant

polynomials in glm|n[t]. Therefore any glm|n[t]-module has the canonical structure of

a glm|n-module.

The standard generators of glm|n[t] are ei,j ⊗ tr, i, j = 1, . . . ,m+ n, r ∈ Z≥0. The

superbracket is given by

(u− v)[ei,j(u), ep,q(v)] = −[ei,j, ep,q](u) + [ei,j, ep,q](v), (3.1)
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where

ei,j(v) =
∞∑
r=0

(ei,j ⊗ tr)v−r−1 (3.2)

are the formal power series.

For each z ∈ C, there exists a shift of spectral parameter automorphism ρz of

glm|n[t] sending g(v) to g(v − z) for all g ∈ glm|n. Given a glm|n[t]-module V , denote

by Vz the pull-back of V through the automorphism ρz. As glm|n-modules, V and Vz

are isomorphic by the identify map.

We have the evaluation homomorphism, ev : glm|n[t] → glm|n, ev : g(v) 7→ gv−1.

For any glm|n-module V , denote by the same letter the glm|n[t]-module, obtained by

pull-back of V through the evaluation homomorphism ev. Given a glm|n-module V

and z ∈ C, the glm|n[t]-module Vz is called an evaluation module. The action of

glm|n[t] in Vz is given by

ei,j(v)w =
ei,jw

v − z
, (3.3)

for any w ∈ V , i, j = 1, . . . ,m+ n.

Note that if λ(1), . . . , λ(k) are polynomial weights and z1, . . . , zk are pairwise dis-

tinct complex numbers, then the module ⊗ka=1L(λ(a))za is irreducible.

3.2 Berezinians of affine Manin matrices

In this section, we recall some facts about Berezinians, following [MR14]. We give

a definition of Berezinians of affine Manin matrices to arbitrary parities and study its

properties.

Let A be a superalgebra. Given a matrix A =
(
ai,j
)m+n

i,j=1
, ai,j ∈ A, with a two

sided inverse A−1, we denote the (i, j) entry of A−1 by ãi,j.
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3.2.1 Berezinian of standard parity

Let A =
(
ai,j
)m+n

i,j=1
be a matrix with a two sided inverse. The Berezinian of

standard parity of A, see [MR14], is

BerA =
( ∑
σ∈Sm

sgnσ aσ(1),1 . . . aσ(m),m

)
×
( ∑
τ∈Sn

sgn τ ãm+1,m+τ(1) . . . ãm+n,m+τ(n)

)
,

(3.4)

where Sr is the symmetric group on r letters. In the case of n = 0, the above formula

is the column determinant which we denote by cdetA. In the case of m = 0, the above

formula is the row determinant of the inverse matrix which we denote by rdet A−1.

We call A =
(
ai,j
)m+n

i,j=1
, ai,j ∈ A, a matrix of standard parity over A, if |ai,j| =

|i|+ |j|.

We call A a Manin matrix of standard parity, if A is of standard parity and

[ai,j, ap,q] = (−1)|i||j|+|i||p|+|j||p|[ap,j, ai,q], i, j, p, q = 1, . . . ,m+ n.

Many properties of even Manin matrices are known, see [CFR09]. Similar properties

can be proved in the supersymmetric case, but we need here only a couple of facts

which we extract from [MR14].

Let w be an even formal variable. We call A(w) =
(
ai,j(w)

)m+n

i,j=1
an affine matrix,

if

ai,j(w) =
∞∑
r=0

ai,j,rw
r, ai,j,r ∈ A, ai,j,0 = δi,j, i, j = 1, . . . ,m+ n.

In other words, an affine matrix is a matrix whose entries ai,j(w) ∈ A[[w]] are

formal power series in variable w and such that A(0) = I. In particular, every affine

matrix has a two sided inverse.

Given a Manin matrix A of standard parity, the matrix (1 + wA) is an affine

Manin matrix of standard parity.

Lemma 3.2.1 ( [MR14]). Let A(w) be an affine Manin matrix of standard parity.

Then the inverse matrix A−1(w) is an affine Manin matrix of standard parity.
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For an arbitrary (m + n)× (m + n) matrix A with a two sided inverse, the (i, j)

quasideterminant of A is ã−1
j,i . If ã−1

j,i does not exist in A, then the (i, j) quasideter-

minant of A is not defined. We write

ã−1
j,i =



a1,1 . . . a1,j . . . a1,m+n

. . . . . . . . . . . . . . .

ai,1 . . . ai,j . . . ai,m+n

. . . . . . . . . . . . . . .

am+n,1 . . . am+n,j . . . am+n,m+n


.

For i = 1, . . . ,m+ n, define the principal quasi-minors of A by

di(A) =


a1,1 . . . a1,i

. . . . . . . . .

ai,1 . . . ai,i

 . (3.5)

If A(w) is an affine matrix, then the principal quasi-minors di(A(w)) are well

defined for all i.

The Berezinian of Manin matrices of standard parity is computed in terms of

quasi-minors.

Theorem 3.2.2 ( [MR14]). Let A(w) be an affine Manin matrix of standard parity.

The Berezinian BerA(w) admits the quasideterminant factorization:

BerA(w) = d1(A(w)) . . .dm(A(w))× d−1
m+1(A(w)) . . . d−1

m+n(A(w)).

3.2.2 Berezinian of general parity

Fix a parity sequence s ∈ Sm|n, see Section 2.1.1. Set is = σs(i), see (2.1).

We call A =
(
ai,j
)m+n

i,j=1
, ai,j ∈ A, a matrix of parity s, if |ai,j| = |is| + |js|. Note

that 0 is both odd and even, in particular, the zero and the identity matrices are

matrices of arbitrary parity s.
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We call A a Manin matrix of parity s if A is of parity s and

[ai,j, ap,q] = (−1)|i
s||js|+|is||ps|+|js||ps|[ap,j, ai,q], i, j, p, q = 1, . . . ,m+ n.

The symmetric groups Sm+n acts on matrices and parities by the following rule.

For σ ∈ Sm+n, we set

σ(A) = σAσ−1 =
(
aσ−1(i),σ−1(j)

)m+n

i,j=1

and σ(s) = (sσ−1(1), . . . , sσ−1(m+n)).

The following lemma is straightforward.

Lemma 3.2.3. Let A be a Manin matrix of parity s. Then σ(A) is a Manin matrix

of parity σ(s).

Lemma 3.2.1 is extended to affine Manin matrices of arbitrary parities.

Lemma 3.2.4. Let A(w) be an affine Manin matrix of parity s. Then A−1(w) is an

affine Manin matrix of parity s.

Proof. There exists σ ∈ Sm+n such that σ(s) = s0. By Lemma 3.2.3, σ(A(w)) is an

affine matrix of standard parity. By Lemma 3.2.1, the matrix (σ(A(w)))−1 is an affine

Manin matrix of standard parity. We have (σ(A(w)))−1 = σ(A−1(w)). Therefore by

Lemma 3.2.3, the matrix A−1(w) = σ−1((σ(A(w)))−1) is an affine Manin matrix of

parity s.

Let A(w) be an affine Manin matrix of parity s. We define the Berezinian of

parity s of A(w) by

BersA(w) = ds11 (A(w)) . . . d
sm+n

m+n (A(w)). (3.6)

By Theorem 3.2.2, definition (3.6) coincides with definition (3.4) in the case of stan-

dard parity.

Let A(w) be an affine Manin matrix of parity s. Fix r ∈ {1, . . . ,m+ n} and con-

sider the corresponding blocks. Namely, let W (w), X(w), Y (w), Z(w) be submatrices
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of A(w) =

W (w) X(w)

Y (w) Z(w)

 of size r × r, r × (m + n − r), (m + n − r) × r, and

(m+ n− r)× (m+ n− r) respectively.

Then W (w) and Z(w) are affine Manin matrices of parities s|r and s|m+n−r, where

s|r = (s1, . . . , sr) and s|m+n−r = (sr+1, . . . , sm+n).

We have the Gauss decomposition:

A(w) =

W (w) X(w)

Y (w) Z(w)

 (3.7)

=

 1 0

Y (w)W−1(w) 1

W (w) X(w)

0 Z(w)− Y (w)W−1(w)X(w)

 .

The next proposition claims that the Gauss decomposition is compatible with the

definition of Berezinian.

Proposition 3.2.5. The matrices W (w) and Z(w) − Y (w)W−1(w)X(w) are affine

Manin matrices. We have

BersA(w) = Bers|
r

W (w)× Bers|m+n−r
(
Z(w)− Y (w)W−1(w)X(w)

)
. (3.8)

Proof. The matrix
(
Z(w)−Y (w)W−1(w)X(w)

)−1
is a submatrix of A−1(w), see (3.7).

Therefore, by Lemma 3.2.4, the matrix
(
Z(w) − Y (w)W−1(w)X(w)

)−1
is an affine

Manin matrix of parity s|m+n−r, which implies in turn that Z(w)−Y (w)W−1(w)X(w)

is an affine Manin matrix of parity s|m+n−r.

For i = r + 1, . . . ,m + n, denote by X(w)|i the submatrix of size r × (i − r)

formed by the first (i− r) columns of X(w), denote by Y (w)|i the submatrix of size

(i− r)× r formed by the first (i− r) rows of Y (w), and denote by Z(w)|ii the top left

(i− r)× (i− r) submatrix of Z(w). Similar to (3.7), we haveW (w) X(w)|i
Y (w)|i Z(w)|ii

−1

(3.9)

=

W (w) X(w)|i
0 Z(w)|ii − Y (w)|iW−1(w)X(w)|i

−1 1 0

−Y (w)|iW−1(w) 1

 .
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From the definition of principal quasi-minors, we have di(A(w)) = di(W (w)),

i = 1, . . . , r. From (3.9), we have

di(A(w)) = di−r(Z(w)− Y (w)W−1(w)X(w)), i = r + 1, . . . ,m+ n. (3.10)

Now we can prove that the action of Sm+n does not change the Berezinian.

Proposition 3.2.6. Let A(w) be an affine Manin matrix of parity s. Let σ ∈ Sm+n.

We have

BersA(w) = Berσ(s) σ(A(w)). (3.11)

Proof. It suffices to consider σ = (i, i + 1), i = 1, . . . ,m + n − 1. Moreover, it is

sufficient to show

dsii (A(w))d
si+1

i+1 (A(w)) = d
si+1

i (σ(A(w)))dsii+1(σ(A(w))).

Without losing generality we treat the case i = m+ n− 1.

Consider the block decomposition of A(w) with r = m + n − 2. In particular,

Z(w) is a 2× 2 matrix. By (3.10) with i = m+ n− 1,m+ n,

dm+n−1(A(w)) = d1(Z(w)− Y (w)W−1(w)X(w)),

dm+n(A(w)) = d2(Z(w)− Y (w)W−1(w)X(w)),

and

dm+n−1(σ(A(w))) = d1(σ̄(Z(w)− Y (w)W−1(w)X(w))),

dm+n(σ(A(w))) = d2(σ̄(Z(w)− Y (w)W−1(w)X(w))),

where σ̄ = (1, 2) ∈ S2.

Thus, the proposition is reduced to the case of 2× 2 affine Manin matrices. This

is proved by a direct computation.
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3.2.3 Affine-like Manin matrices

We extend the results on Berezinians of affine matrices to another class of matrices

which we call affine-like matrices.

Denote A((w)) the superalgebra of formal Laurent series in w with coefficients in

A,

A((w)) = {
∞∑

r=−N

brw
r, N ∈ Z, br ∈ A}.

Let A =
(
ai,j
)m+n

i,j=1
be a matrix of parity s with entries ai,j in A. We call A an

affine-like matrix of parity s if the following two conditions are met:

• for any subset a ⊂ {1, . . . ,m + n}, the matrix Aa =
(
ai,j
)
i,j∈a has a two sided

inverse with entries in A and the diagonal entries of A−1
a are invertible in A.

• there exists an injective homomorphism of superalgebras ΦA : A → A((w))

such that ai,j 7→ ai,j + δi,jw
−1.

If A is an affine-like matrix, then the principal quasi-minors di(A) are well-defined.

If A is an affine-like matrix then σ(A) is affine-like for any σ ∈ Sm+n.

Our definition is motivated by the following simple observation.

Lemma 3.2.7. If A is an affine-like matrix, then wΦA(A) = 1 + wA is an affine

matrix. Moreover, we have ΦA(A−1) = (ΦA(A))−1 and ΦA(di(A)) = di(ΦA(A)),

i = 1, . . . ,m+ n.

If A is an affine-like Manin matrix of parity s, then wΦA(A) is an affine Manin

matrix of parity s and A−1 is also an affine-like Manin matrix of parity s.

Now we can extend the definition of the Berezinian and its properties to affine-like

matrices.

Let A be an affine-like Manin matrix of parity s. Define Berezinian BersA by

formula (3.6).

Proposition 3.2.8. Propositions 3.2.5 and 3.2.6 hold for affine-like Manin matrices

of parity s.
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3.3 Bethe algebra Bm|n(Λ)

In this section we discuss Bethe subalgebras Bm|n(Λ) ⊂ Uglm|n[t]. The Bethe sub-

algebras Bm|n(Λ) are commutative and depend on parameters Λ = (Λ1, . . . ,Λm+n) ∈

Cm+n. The algebra B(λ) of higher Gaudin Hamiltonians in Section 2.7 is the image

of Bm|n(0) acting in L(λ).

3.3.1 Algebra of pseudodifferential operators

Let A be a differential superalgebra with an even derivation ∂ : A → A. For

r ∈ Z≥0, denote the r-th derivative of a ∈ A by a(r).

Let A((∂−1)) be the algebra of pseudodifferential operators. The elements of

A((∂−1)) are Laurent series in ∂−1 with coefficients in A, and the product follows

from the relations

∂∂−1 = ∂−1∂ = 1, ∂ra =
∞∑
s=0

(
r

s

)
a(s)∂

r−s, r ∈ Z, a ∈ A,

where (
r

s

)
=
r(r − 1) . . . (r − s+ 1)

s!
.

Let A[∂] ⊂ A((∂−1)) be the subalgebra of differential operators,

A[∂] = {
M∑
r=0

ar∂
r,M ∈ Z≥0, ar ∈ A}.

Consider a linear map Φ : A((∂−1))→ A[∂]((w)),

Φ :
N∑

r=−∞

ar∂
r 7→

N∑
r=−∞

ar(w
−1 + ∂)r, (3.12)

where the right hand side is expanded by the rule (w−1 + ∂)r =
∑∞

s=0

(
r
s

)
∂sw−r+s.

Lemma 3.3.1. The map Φ is an injective homomorphism of superalgebras.

Proof. For any r, the coefficient of wr in the right hand side of (3.12) is a summation

of finitely many terms.
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The coefficient of w−N in Φ(
∑N

r=−∞ ar∂
r) is aN . Therefore, Φ is injective.

For any a ∈ A, we have

Φ(∂ra) = Φ

(
∞∑
s=0

(
r

s

)
a(s)∂

r−s

)
=
∞∑
s=0

∞∑
t=0

(
r

s

)(
r − s
t

)
a(s)∂

tw−r+s+t.

Then, changing the summation indices we obtain

Φ(∂r)Φ(a) = Φ(∂r)a =
∞∑
s=0

(
r

s

)
∂sw−r+sa =

∞∑
s=0

s∑
t=0

(
r

s

)(
s

t

)
a(t)∂

s−tu−r+s = Φ(∂ra).

Therefore, the map Φ is a homomorphism of superalgebras.

3.3.2 Bethe subalgebra

Let

Am|nv = Uglm|n[t]((v−1)) =
{ N∑
r=−∞

grv
r, N ∈ Z, gr ∈ Uglm|n[t]

}
be the superalgebra of Laurent series in v−1 with coefficients in Uglm|n[t]. The algebra

Am|nv is a differential superalgebra with derivation ∂v.

Let Λ = (Λ1, . . . ,Λm+n) be a sequence of complex numbers. Consider the matrix

B(Λ) with entries in the algebra of pseudodifferential operators Am|nv ((∂−1
v )) given by

B(Λ) =
(
δi,j(∂v − Λi)− (−1)|i|ei,j(v)

)m+n

i,j=1
. (3.13)

The following lemma is checked by a straightforward computation.

Lemma 3.3.2. The matrix B(Λ) is an affine-like Manin matrix of standard parity

with the map ΦB(Λ) = Φ, see (3.12).

Consider the expansion of the Berezinian of the affine Manin matrix wΦ(B(Λ)) =

1 + wB(Λ):

Ber (1 + wB(Λ)) =
∞∑
r=0

r∑
s=0

BΛ
r,s(v)∂r−sv wr, (3.14)

where BΛ
r,s(v) ∈ Am|nv . The following fundamental result is known.
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Theorem 3.3.3 ( [MR14]). The series BΛ
r,s(v) pairwise commute,

[BΛ
r1,s1

(v1), BΛ
r2,s2

(v2)] = 0,

for all r1, s1, r2, s2.

The series BΛ
r,s(v) commute with the Cartan subalgebra h ⊂ Uglm|n,

[BΛ
r,s(v), ei,i] = 0,

for all r, s, i.

We call the commutative subalgebra generated by coefficients of series BΛ
r,s(v),

r, s ∈ Z≥0, s ≤ r, the Bethe subalgebra of Uglm|n[t] and denote it by Bm|n(Λ).

Alternatively, we can expand BerB(Λ) directly

BerB(Λ) =
m−n∑
r=−∞

BΛ
r (v)∂rv , (3.15)

where BΛ
r (v) ∈ Am|nv .

Proposition 3.3.4. The coefficients of the series BΛ
r (v), r ∈ Z≤m−n generate the

Bethe algebra Bm|n(Λ).

Proof. We have

wm−nΦ(BerB(Λ)) = wm−nBer Φ(B(Λ)) = Ber (1 + wB(Λ)),

since Φ is a homomorphism of superalgebras by Lemma 3.3.1. Moreover, Φ(a) = a,

for a ∈ Am|nv . The proposition follows.

3.4 Duality between Bm|n and Bk

In this section we show the duality between Bm|n(Λ) and Bk(z) acting in the

space of supersymmetric polynomials. The duality in the case of n = 0 is given

in [MTV09b].
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3.4.1 The duality between glm|n and glk

We start with the standard duality between glm|n and glk.

Let D be the superalgebra generated by xi,a, ∂i,a, i = 1, . . . ,m + n, a = 1, . . . , k,

with parity given by |xi,a| = |∂i,a| = |i| and the relations given by supercommutators

[xi,a, xj,b] = [∂i,a, ∂j,b] = 0, [∂i,a, xj,b] = δi,jδa,b, for all i, j, a, b.

Let V ⊂ D be the subalgebra generated by xi,a, i = 1, . . . ,m + n, a = 1, . . . , k.

Then

V = C[xi,a, i = 1, . . . ,m, a = 1, . . . , k]⊗Λ(xj,a, j = m+ 1, . . . ,m+ n, a = 1, . . . , k)

is the product of a polynomial algebra and a Grassmann algebra. We call V the space

of supersymmetric polynomials or bosonic-fermionic space. The algebra D acts on V

in the obvious way.

We have a homomorphism of superalgebras πm|n : glm|n → D given by

πm|n(e
[m|n]
i,j ) =

k∑
a=1

xi,a∂j,a, i, j = 1, . . . ,m+ n,

where we write the suffix in e
[m|n]
i,j to indicate that these are elements of glm|n. In

particular, glm|n acts on V .

For a ∈ {1, . . . , k}, let V
(a)
m|n ⊂ V be the subalgebra generated by x1,a, . . . , xm+n,a.

Then we have isomorphisms of glm|n-modules:

V
(a)
m|n =

∞⊕
d=0

L
(a)
m|n(dε1), V =

k⊗
a=1

V
(a)
m|n,

where L
(a)
m|n(dε1) is the the irreducible glm|n-module with highest weight (d, 0, . . . , 0)

and highest weight vector xd1,a. The submodule L
(a)
m|n(dε1) is spanned by all monomials

of total degree d in V
(a)
m|n.

We also have the homomorphism of superalgebras πk : glk → D given by

πk(e
[k]
a,b) =

m+n∑
i=1

xi,a∂i,b, a, b = 1, . . . , k.
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In particular, glk also acts on V .

For i ∈ {1, . . . ,m+ n}, let V
(i)
k ⊂ V be the subalgebra generated by xi,1, . . . , xi,k.

If i ≤ m, the space V
(i)
k is the polynomial ring of k variables, otherwise the space V

(i)
k

is the Grassmann algebra of k variables. Then we have isomorphisms of glk-modules:

V
(i)
k =

∞⊕
d=0

L
(i)
k (dε1), i ≤ m, V

(i)
k =

k⊕
a=0

L
(i)
k (ωa), i > m, V =

m+n⊗
i=1

V
(i)
k .

Here, L
(i)
k (dε1), i ≤ m, is the irreducible glk-module with highest weight (d, 0, . . . , 0)

and highest weight vector xdi,1. The submodule L
(i)
k (dε1) is spanned by all monomials

of total degree d in V
(i)
k . The module L

(i)
k (ωa), i > m, is the irreducible glk-module

with highest weight (1, . . . , 1︸ ︷︷ ︸
a

, 0 . . . , 0) and highest weight vector xi,1 . . . xi,a. This

submodule is spanned by all monomials of total degree a in V
(i)
k .

In particular we have the canonical identification of weight spaces:(
L

(1)
m|n(λ1ε1)⊗ · · · ⊗ L(k)

m|n(λkε1)
)

[(µ1, . . . , µm+n)]

=
(
L

(1)
k (µ1ε1)⊗ · · · ⊗ L(m)

k (µmε1)

⊗ L(m+1)
k (ωµm+1)⊗ · · · ⊗ L(m+n)

k (ωµm+n)
)

[(λ1, . . . , λk)]. (3.16)

These weight spaces are spanned by monomials in V which have total degree λa

with respect to variables x1,a, . . . , xm+n,a and total degree µi with respect to variables

xi,1, . . . , xi,k.

The standard duality between glm|n and glk is the following well-known statement.

Lemma 3.4.1. The actions of glm|n and glk on V commute. We have the isomor-

phism of glm|n ⊕ glk modules

V =
⊕

µ∈Pm,n;k

Lm|n(µ\)⊗ Lk(µ),

where Pm,n;k is the set of all (m|n)-hook partition with length at most k.
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3.4.2 The duality of Bethe algebras Bm|n(Λ) and Bk(z)

Let z = (z1, . . . , zk) and Λ = (Λ1, . . . ,Λm+n) be two sequences of complex num-

bers. We extend actions of glm|n and glk on V to the actions of the current algebras

glm|n[t] and glk[t] as follows.

Let π̂m|n : Uglm|n[t] → D and π̂k : Uglk[t] → D be homomorphisms of superalge-

bras given by

π̂m|n : e
[m|n]
i,j (v) 7→

k∑
a=1

xi,a∂j,a
v − za

, i, j = 1, . . . ,m+ n, (3.17)

π̂k : e
[k]
a,b(u) 7→

m+n∑
i=1

xi,a∂i,b
u− Λi

, a, b = 1, . . . , k. (3.18)

Then the glm|n-module V
(a)
m|n becomes evaluation glm|n[t]-module (V

(a)
m|n)za and the glk-

module V
(i)
k becomes evaluation glk[t]-module (V

(i)
k )Λi , see (3.3).

The actions of glm|n[t] and glk[t] on V do not commute anymore. However, we

prove the theorem saying that the actions of Bethe algebras Bm|n(Λ) ⊂ Uglm|n[t] and

Bk(z) ⊂ Uglk[t] on V coincide.

Recall that the Bethe algebra Bm|n(Λ) is generated by the coefficients of the

Berezinian of the matrix

B(Λ) =
(
δi,j(∂v − Λi)− (−1)|i|e

[m|n]
i,j (v)

)m+n

i,j=1
.

Similarly, the Bethe algebra Bk(z) is generated by the coefficients of the column

determinant of the matrix

G(z) =
(
δa,b(∂u − za)− e[k]

a,b(u)
)k
a,b=1

.

Theorem 3.4.2. The Bethe algebras π̂kBk(z) and π̂m|nBm|n(Λ) coincide.

Moreover, we have the following identification of generators. Suppose br,s(z,Λ),

gr,s(Λ, z) ∈ D do not depend on v, ∂v, u, ∂u, and

(v − z1) . . . (v − zk) π̂m|n BerB(Λ) =
k∑
r=0

m−n∑
s=−∞

br,s(z,Λ)vr∂sv ,

(u− Λ1) . . . (u− Λm)

(u− Λm+1) . . . (u− Λm+n)
π̂k cdetG(z) =

m−n∑
r=−∞

k∑
s=0

gr,s(Λ, z)ur∂su ,
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then

br,s(z,Λ) = gs,r(Λ, z). (3.19)

Proof. The proof of this theorem is given in Sections 3.4.3 and 3.4.4.

By Theorem 3.3.3, Bethe algebras preserve weight spaces. In particular, Theorem

3.4.2 gives an identification of action of Bethe algebras Bk(z) and Bm|n(Λ) on the

weight spaces (3.16). In particular we can now translate the known properties from

the even to supersymmetric case.

Denote the right-hand side of (3.16) by V (λ,µ). Let z = (z1, . . . , zk), za 6= zb and

Λ = (Λ1, . . . ,Λm+n), Λi 6= Λj. Denote Bm|n(z,λ,µ) the image of the Bethe algebra

Bm|n(Λ) in End(V (λ,µ)) with evaluation parameters z1, . . . , zk.

Corollary 3.4.3. We have:

1. The algebra Bm|n(z,λ,µ) is a Frobenius algebra of dimension dim(V (λ,µ)).

2. The space V (λ,µ) is a regular representation of Bm|n(z,λ,µ).

3. All eigenspaces of Bm|n(z,λ,µ) in V (λ,µ) are one dimensional.

Proof. The corollary follows from the corresponding statements for Bk(z), see The-

orem 7.1 in [MTV08b].

3.4.3 An identity of Capelli type

In this section we give an explicit expansion of π̂kcdetG(z).

Let Du = D((u−1)) be the superalgebra of Laurent series in u−1 with values

in D. The algebra Du has a derivation ∂u and Du((∂−1
u )) is the superalgebra of

pseudodifferential operators.

Let G(Λ, z) be a k × k matrix with entries in Du[∂u] ⊂ Du((∂−1
u )) given by

G(Λ, z) = π̂kG(z) =

(
δa,b(∂u − za)−

m+n∑
i=1

xi,a∂i,b
u− Λi

)k

a,b=1

.
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The matrix G(Λ, z) is a Manin matrix of parity (1, . . . , 1). We want to expand

cdetG(Λ, z). In order to do that, we introduce some notation.

The superalgebraDu((∂−1
u )) is topologically generated by xi,a, ∂i,a, u

±1, ∂±1
u . Define

an ordering on the generators such that xi,a < ∂j,b < u±1 < ∂±1
u , i, j = 1, . . . ,m + n,

a, b = 1, . . . , k, and xi,a < xj,b, ∂i,a < ∂j,b, if either a < b or a = b and i < j.

Let m be a monomial in the generators. Denote by :m: the new monomial where

all participating generators are multiplied in the increasing order and the sign is

changed by the usual supercommutativity rule. For example,

: ∂−1
u u−1∂1,1x1,1∂m+1,2xm+1,1 := −x1,1xm+1,1∂1,1∂m+1,2u

−1∂−1
u .

We call :m: the normal ordered monomial.

Let

F i
a,b =


−xi,a∂i,b(u− Λi)

−1, i = 1, . . . ,m+ n, a, b = 1, . . . , k,

∂u − za, a = 1, . . . , k, b = a, i = 0,

0, otherwise.

(3.20)

Note that in all cases F i
a,b is even and normal ordered. Every term will be given as a

product of F i
a,b in the expansion of cdetG(Λ, z).

Denote by |S| the cardinality of a set S.

Let a = {1 ≤ a1 < · · · < al ≤ k} be a subset of {1, . . . , k}, where l = #a. Let

J(a) be the set of function j : {1, . . . , k} → {0, 1, . . . ,m + n} such that j(a) = 0 if

and only if a 6∈ a and such that for any i ∈ {1, . . . ,m}, #j−1(i) ≤ 1.

We have

|J(a)| =
#a∑
s=0

(
l

s

)(
m

s

)
s! nl−s.

For j1, j2 ∈ J(a), we write j1 ∼ j2 if #j−1
1 (i) = #j−1

2 (i) for all i. Clearly, ∼ is an

equivalence relation in J(a). The cardinality of the equivalence class of j ∈ J(a) is

l!/(
∏m+n

i=m+1(#j−1(i))!).

For j ∈ J(a), j−1({1, . . . ,m + n}) = a. Therefore the symmetric group S#a

acts on the preimage j−1({1, . . . ,m + n}). Given j1 ∼ j2, there exists a unique
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permutation σj1,j2 ∈ S#a such that σj1,j2 : j−1
2 (i) → j−1

1 (i) is an increasing function

for all i = 1, . . . ,m+ n. Note that j1 ◦ σj1,j2 = j2 on a.

We also define

sgn (j1, j2) = (−1)N ,

N = #{(s, s′) | 1 ≤ s < s′ ≤ l, σj1,j2(s) < σj1,j2(s′), j2(as) > m, j2(as′) > m}.

Given j1, j2 ∈ J(a), j1 ∼ j2, define the sign

c(j1, j2) = sgn (j1, j2) sgn (σj1,j2) (−1)l.

For j ∈ J(a), set

xj = xj(a1),a1xj(a2),a2 . . . xj(al),al , ∂j = ∂j(a1),a1∂j(a2),a2 . . . ∂j(al),al .

Note that monomials xj and ∂j are normal ordered.

Now we are ready to state the main result of this section.

Proposition 3.4.4. The normal ordered expansion of the column determinant of

G(Λ, z) is given by

cdetG(Λ, z) =
∑

a⊂{1,...,k}

∑
j1,j2∈J(a)
j1∼j2

c(j1, j2)
m+n∏
i=m+1

(#j−1
2 (i))! xj1∂j2 (3.21)

×
∏

i∈j2(a)

(u− Λi)
−1
∏
a6∈a

(∂u − za).

Proof. We first assume all generators are supercommutative and show equation (3.21)

holds. Then we show that the additional terms created by non-trivial supercommu-

tation relations cancel in pairs and do not contribute to the expansion.

Recall even elements F i
a,b given in (3.20). We have the expansion

cdetG(Λ, z) =
∑
σ∈Sk

m+n∑
i1,...,ik=0

sgn (σ)F i1
σ(1),1 . . . F

ik
σ(k),k.

Now we want to normal order it.

Assume the supercommutators are all zero, [u, ∂u] = [xi,a, ∂i,a] = 0.
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For a nonzero term sgn (σ)F i1
σ(1),1 . . . F

ik
σ(k),k, let a = {a, ia 6= 0} ⊂ {1, . . . , k}. We

write the set a = {a1 < · · · < al}. Then we can rewrite our sum as follows

cdetG(Λ, z) =
k∑
l=0

∑
1≤a1<···<al≤k

∑
σ∈Sl

m+n∑
i1,...,il=1

sgn (σ)F i1
aσ(1),a1

. . . F il
aσ(l),al

∏
a, a6=a1,...,al

(∂−za).

We normal order the term corresponding to a1 < · · · < al, σ ∈ Sl, i1, . . . , il. Let

i1̄ be the number of upper indices greater than m, i1̄ = #{is > m, s = 1, . . . , l}. We

have

F i1
aσ(1),a1

. . . F il
aσ(l),al

= (−1)l+i1̄(i1̄−1)/2
xi1,aσ(1)

. . . xil,aσ(l)
∂i1,a1 . . . ∂il,al

(u− Λi1) . . . (u− Λil)
.

Note that monomial ∂i1,a1 . . . ∂il,al is normal ordered. We now observe some sim-

plifications before ordering xi1,aσ(1)
. . . xil,aσ(l)

.

Consider a term corresponding to a1 < · · · < al, σ, i1, . . . , il.

Fix an i ∈ {1, . . . ,m + n}. Let b = {s, is = i} ⊂ {1, . . . , l}. If #b = r > 1,

then we have r! terms which correspond to the same a1 < · · · < al, i1, . . . , il, and

permutations of the form τσ, where τ ∈ Sl permutes elements of as, s ∈ b, and

leaves others preserved.

If i ≤ m, then after normal ordering all these r! terms will produce the same

monomial with different signs and cancel out. On the other hand, if i > m, then after

normal ordering, all these r! terms will produce the same monomial with the same

sign and therefore can be combined.

Therefore the summands in the expansion can be reparametrized by a ⊂ {1, . . . , k}

and j1, j2 ∈ J(a), j1 ∼ j2. The correspondence is given by

a = {a1 < · · · < al}, j1(aσ(s)) = j2(as) = is, s = 1, . . . , l. (3.22)

Note that σ is not recovered from a, j1, j2. In fact, we have (#{s, is = m +

1})! . . . (#{s, is = m + n})! choices for σ, which all correspond to equal summands.

We choose one permutation, namely σj1,j2 , and multiply the corresponding term by

(#j−1
1 (m+ 1))! . . . (#j−1

1 (m+ n))!.
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So we have

cdetG(Λ, z) =
∑

a⊂{1,...,k}

∑
j1,j2∈J(a)
j1∼j2

sgn (σj1,j2) (−1)#1̄j1(#1̄j1−1)/2+#a

m+n∏
i=m+1

|j−1
2 (i)|!

×
xj2(a1),aσj1,j2 (1)

. . . xj2(a#a),aσj1,j2 (#a)
∂j2(a1),a1 . . . ∂j2(a#a),a#a

(u− Λi1) . . . (u− Λi#a
)

∏
a6∈a

(∂u − za) ,

where we denoted by #1̄j1 the cardinality of j−1
1 ({m + 1, . . . ,m + n}). We rewrite

the first indices of xi,a variables through j1, using (3.22), and then we normal order

them, getting the additional sign and arriving at (3.21).

Now we proceed to the non-commutative setting. We call the additional terms

”quantum corrections” and show that they cancel in pairs.

We normal order monomials from right to left. The induction is based on the

number of F i
a,b on the right which have been normal ordered. Namely we prove

cdetG(Λ, z) =
∑
σ∈Sk

m+n∑
i1,...,ik=0

sgn (σ)F i1
σ(1),1 · · · : F

ia
σ(a),a . . . F

ik
σ(k),k : (3.23)

by induction on a.

The basis a = k of induction is a tautology. We show the step of induction from

a = a0 to a = a0 − 1.

We use the following simple formula:

F i1
a1,b1

F i2
a2,b2

=: F i1
a1,b1

F i2
a2,b2

: −


F i2
a2,b2

(u− Λi2)−1, i1 = 0, a1 = b1, i2 6= 0,

δi1,i2δb1,a2F
i1
a1,b2

(u− Λi2)−1, i1 6= 0,

0, otherwise.

Consider a nonzero term sgn (σ)F
ia0−1

σ(a0−1),a0−1 : F
ia0

σ(a0),a0
. . . F ik

σ(k),k :. Then ia = 0

implies σ(a) = a.

We have two cases: ia0−1 6= 0 and ia0−1 = 0.
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Let ia0−1 6= 0. Then F
ia0−1

σ(a0−1),a0−1 creates at most one quantum correction. Namely,

if there exists b ∈ {a0, . . . , k} such that ia0−1 = ib, and a0 − 1 = σ(b), then such b is

unique and

sgn (σ)F
ia0−1

σ(a0−1),a0−1 :F
ia0

σ(a0),a0
. . . F ib

σ(b),b . . . F
ik
σ(k),k :

=sgn (σ) : F
ia0−1

σ(a0−1),a0−1F
ia0

σ(a0),a0
. . . F ib

σ(b),b . . . F
ik
σ(k),k :

− sgn (σ)
1

u− Λib

: F
ia0

σ(a0),a0
. . . F ib

σ(a0−1),b . . . F
ik
σ(k),k : . (3.24)

If such b does not exist then there is no quantum correction (the second term on the

right hand side is absent).

Let ia0−1 = 0. Then we possibly have many quantum corrections:

sgn (σ)F 0
a0−1,a0−1 : F

ia0

σ(a0),a0
. . . F ik

σ(k),k := sgn (σ) : F 0
a0−1,a0−1F

ia0

σ(a0),a0
. . . F ik

σ(k),k :

−sgn (σ)
k∑

a=a0
ia 6=0

1

u− Λia

: F
ia0

σ(a0),a0
. . . F ik

σ(k),k : .

(3.25)

The quantum correction in (3.24) corresponding to the term labeled by σ, i1, . . . , ik

in (3.23) cancels with the quantum correction corresponding to a = b summand in

(3.25) applied to the term in (3.23) labeled by σ(a0−1, b), {i1, . . . , ia0−2, 0, ia0 , . . . , ik}.

This proves the induction step.

The statement of induction with a = 1 proves the proposition.

3.4.4 Another identity of Capelli type

Let Dv = D((v−1)), be the superalgebra of Laurent series in v−1 with coefficients

in D. The superalgebra Dv has a derivation ∂v and we consider the superalgebra of

pseudodifferential operators Dv((∂−1
v )).

Let B(z,Λ) be a (m + n) × (m + n) matrix with entries in Dv[∂v] ⊂ Dv((∂−1
v ))

given by

B(z,Λ) = π̂m|nB(Λ) =

(
δij(∂v − Λi)−

k∑
a=1

(−1)|i|xi,a∂j,a
v − za

)m+n

i,j=1

.
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The matrix B(z,Λ) is a Manin matrix of standard parity.

Let B̂(z,Λ) be a (m+ n+ k)× (m+ n+ k) matrix given by

B̂(z,Λ) =

v − Z Dt

SX ∂v − Λ

 (3.26)

where the submatrices are Z = diag(z1, . . . , zk), Λ = diag(Λ1, . . . ,Λm+n), D =(
∂i,a
)a=1,...,k

i=1,...,m+n
, X =

(
xi,a
)a=1,...,k

i=1,...,m+n
, S = diag(1, . . . , 1︸ ︷︷ ︸

m

,−1, . . . ,−1︸ ︷︷ ︸
n

), and Dt is the

transpose of D. In particular, SX =
(
(−1)|i|xi,a

)a=1,...,k

i=1,...,m+n
.

Let Dv((∂−1
v ))((w)) be the superalgebra of Laurent series in w with coefficients in

Dv((∂−1
v )). Define the homomorphism of superalgebras

Φ̂ : Dv((∂−1
v ))→ Dv((∂−1

v ))((w)),

v 7→ v + w−1, ∂v 7→ ∂v + w−1, and g 7→ g, g ∈ D. (3.27)

Note that in our convention we first expand in positive powers of w then in powers

of ∂−1
v and then in powers of v−1, cf. (3.12). As a result, if a series is in the image

of Φ̂, then it belongs to D[v, ∂v]((w)), in other words, a coefficient of wk is always a

polynomial in ∂v and v for any k ∈ Z.

The map Φ̂ is a composition of map Φ, see (3.12) and of the shift homomorphism

v → v + w−1. Therefore, Φ̂ is a well-defined injective homomorphism.

Then, it is straightforward to check the following statement.

Lemma 3.4.5. The matrix B̂(z,Λ) is an affine-like Manin matrix of parity ŝ0 =

(1, . . . , 1︸ ︷︷ ︸
k+m

,−1, . . . ,−1︸ ︷︷ ︸
n

) with the map Φ̂.

We would like to expand and normal order the Berezinian of B(z,Λ). However, it

is sufficient to expand and normal order Berezinian of B̂(z,Λ). Indeed, by Proposition

3.2.8, we have

Berŝ0 B̂(z,Λ) = (v − z1) . . . (v − zk) BerB(z,Λ), (3.28)

cf. Corollary 2.2 of [MTV09b].

The expansion of the Berezinian of B̂(z,Λ) is given by the following proposition.
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Proposition 3.4.6. We have

Berŝ0 B̂(z,Λ) =
∑

a⊂{1,...,k}

∑
j1,j2∈J(a)
j1∼j2

c(j1, j2)
m+n∏
i=m+1

(#j−1
2 (i))! xj1∂j2 (3.29)

×
∏
a6∈a

(v − za)
∏

i∈j1(a)

(∂v − Λi)
−1 (∂v − Λ1) . . . (∂v − Λm)

(∂v − Λm+1) . . . (∂v − Λm+n)
.

Proof. Let σ ∈ Sm+n+k be defined by σ−1(a) = m+n+ a, a = 1, . . . , k, and σ−1(k+

i) = i, i = 1, . . . ,m+ n. Then

σ(B̂(z,Λ)) =

∂v − Λ SX

Dt v − Z

 .

The matrix σ(B̂(z,Λ)) is an affine-like Manin matrix of parity

s = (1, . . . , 1︸ ︷︷ ︸
m

,−1, . . . ,−1︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
k

)

with the map Φ̂. By Proposition 3.2.8, we have

Berŝ0B̂(z,Λ) = Bers σ(B̂(z,Λ)).

Using Proposition 3.2.8 once again (we use r = m+ n), we further see

Bers σ(B̂(z,Λ)) =
(∂v − Λ1) . . . (∂v − Λm)

(∂v − Λm+1) . . . (∂v − Λm+n)
cdetB′(z,Λ) ,

where B′(z,Λ) is an even matrix given by

B′(z,Λ) =
(
δa,b(v − za)−

m+n∑
i=1

(−1)|i|∂i,axi,b
∂v − Λi

)k
a,b=1

.

Next we move the factor (∂v−Λ1)...(∂v−Λm)
(∂v−Λm+1)...(∂v−Λm+n)

to the right of the column determi-

nant. Note that for i ∈ {1, . . . ,m}, a ∈ {1, . . . , k}, we have

(∂v − Λi)(v − za −
∂i,axi,a
∂v − Λi

) = (v − za −
xi,a∂i,a
∂v − Λi

)(∂v − Λi) .

Similarly, for i ∈ {m+ 1, . . . ,m+ n}, a ∈ {1, . . . , k},

1

(∂v − Λi)
(v − za +

∂i,axi,a
∂v − Λi

) = (v − za −
xi,a∂i,a
∂v − Λi

)
1

(∂v − Λi)
.
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Therefore, we have

Berŝ0 B̂(z,Λ) = cdet
(
δa,b(v − za)−

m+n∑
i=1

xi,b∂i,a
∂v − Λi

)k
a,b=1
× (∂v − Λ1) . . . (∂v − Λm)

(∂v − Λm+1) . . . (∂v − Λm+n)
.

Finally, the expansion of the above column determinant is done by a computation

similar to the one in Proposition 3.4.4.

Theorem 3.4.2 follows from Propositions 3.4.4 and 3.4.6.

We remark that the k × k column determinant cdetG(Λ, z) in Proposition 3.4.4

is also essentially a Berezinian of an (m+ n+ k)× (m+ n+ k) matrix. Namely, let

Ĝ(Λ, z) be a (m+ n+ k)× (m+ n+ k) matrix given by

Ĝ(Λ, z) =

u− Λ D

X t ∂u − Z

 .

Then Ĝ(Λ, z) is an affine-like Manin matrix of parity

s = (1, . . . , 1︸ ︷︷ ︸
m

,−1, . . . ,−1︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
k

)

with the same homomorphism of superalgebras Φ̂, see (3.27). By Proposition 3.2.8,

the Berezinian of parity s of Ĝ(Λ, z) is given by

Bers Ĝ(Λ, z) =
(u− Λ1) . . . (u− Λm)

(u− Λm+1) . . . (u− Λm+n)
cdetG(Λ, z). (3.30)
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4. BETHE ANSATZ EQUATION AND RATIONAL

DIFFERENCE OPERATORS

4.1 Rational difference operators and their factorizations

We study properties of ratios of difference operators, following the treatment of

ratios of differential operators in [CDSK12]. We also describe the relation between

the complete factorizations and the superflag varieties.

4.1.1 Rational difference operators

Fix a non-zero number h ∈ C×. Let K be the field of complex valued rational

functions K = C(x), with an automorphism τ : K→ K, (τf)(x) 7→ f(x− h).

Consider the algebra K[τ ] of difference operators where the shift operator τ satisfies

τ · f = f(x− h) · τ

for all f ∈ K. By definition, an element D ∈ K[τ ] has the form

D =
r∑
j=0

ajτ
j, aj ∈ K, r ∈ Z>0. (4.1)

The difference operator D has order r, ord D = r, if ar 6= 0. One says that D is

monic if ar = 1. We call a0 the constant term of D.

Let D ∈ K[τ ] be a difference operator of order r as in (4.1). We say a difference

operator D of order r is completely factorable over K if there exist fi ∈ K, i =

1, . . . , r, such that D = ar d1 . . . dr, where di = τ − fi. We focus on completely

factorable difference operators with non-zero constant terms a0. In this case, we

consider factorizations of the form D = a0d1 · · · dr, where di = 1 − f̃iτ , f̃i ∈ K,

i = 1, . . . , r.
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Let kerD = {u ∈ K | Du = 0} be the kernel of D. It is clear that if dim (kerD) =

ordD, then D is completely factorable over K.

Let K(τ) be the division ring generated by K[τ ]. The division ring K(τ) is called

the ring of rational difference operators. Elements in K(τ) are called rational differ-

ence operators.

A fractional factorization of a rational difference operator R is the equality R =

D0̄D−1
1̄

, where D0̄,D1̄ ∈ K[τ ]. A fractional factorization R = D0̄D−1
1̄

is called minimal

if D1̄ is monic and has the minimal possible order.

Proposition 4.1.1. Any rational difference operator R ∈ K(τ) has the following

properties.

1. There exists a unique minimal fractional factorization of R.

2. Let R = D0̄D−1
1̄

be the minimal fractional factorization. If R = D̃0̄D̃−1
1̄

is a

fractional factorization, then there exists D ∈ K[τ ] such that D̃0̄ = D0̄D and

D̃1̄ = D1̄D.

3. Let R = D0̄D−1
1̄

be a fractional factorization such that dim (kerD0̄) = ord D0̄

and dim (kerD1̄) = ord D1̄. Then R = D0̄D−1
1̄

is the minimal fractional factor-

ization of R if and only if kerD0̄ ∩ kerD1̄ = 0.

Proof. We have the analogs of [CDSK12, Proposition 2.1, Corollary 2.2, Lemma 3.2]

for difference operators. Namely, the algebra K[τ ] is right Euclidean, therefore K[τ ]

satisfies the right Ore condition and every right ideal of K[τ ] is principal. This

statement is proved similarly as [CDSK12, Proposition 3.4].

We call R an (m|n)-rational difference operator if in the minimal fractional fac-

torization R = D0̄D−1
1̄

, D0̄,D1̄ are completely factorable over K, and ord(D0̄) = m,

ord(D1̄) = n, and D0̄,D1̄ have the same non-zero constant term.

Let R be an (m|n)-rational difference operator. Note that R can also be written

in the form R = D̃−1
1̄
D̃0̄, where D̃1̄, D̃0̄ ∈ K[τ ], ord(D̃0̄) = m, and ord(D̃1̄) = n. More
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generally, let s ∈ Sm|n be a parity sequence. Then we call the form R = ds11 . . . d
sm+n

m+n ,

where di = 1− fiτ , fi ∈ K, i = 1, . . . ,m+ n, a complete factorization with the parity

sequence s. Let Fs(R) be the set of all complete factorizations of R with parity

sequence s and F(R) =
⊔
s∈Sm|n F

s(R) the set of all complete factorizations of R.

Throughout the paper, we use the following useful notation: for any i ∈ Z and

f ∈ K,

f [i] := τ i(f) = f(x− ih).

Define the discrete logarithmic derivative of a function f(x) by ln′(f) = f/f [1].

Consider two (1|1)-rational difference operators

R1 = (1− a τ)(1− b τ)−1 and R2 = (1− c τ)−1(1− d τ),

where a, b, c, d ∈ K, a 6= b, and c 6= d.

Lemma 4.1.2. We have R1 = R2 if and only ifc = b[1] ln′(a− b),

d = a[1] ln′(a− b),
or equivalently

a[1] = d/ ln′(c− d),

b[1] = c/ ln′(c− d).

�

Let R be an (m|n)-rational difference operator with a complete factorization R =

ds11 · · · d
sm+n

m+n , where di = 1 − fiτ . Suppose si 6= si+1 and di 6= di+1. Using Lemma

4.1.2, one constructs d̃i and d̃i+1 such that dsii d
si+1

i+1 = d̃
si+1

i d̃sii+1. This induces a new

complete factorization of R = ds11 · · · d̃
si+1

i d̃sii+1 · · · d
sm+n

m+n with the new parity sequence

s̃ = s[i] = (s1, . . . , si+1, si, . . . , sm+n).

Repeating this procedure, we see that there exists a canonical bijection between

the sets of complete factorizations with respect to any two parity sequences.

4.1.2 Complete factorizations and superflag varieties

Let W = W0̄ ⊕W1̄ be a vector superspace with dim(W0̄) = m and dim(W1̄) = n.

Consider a full flag F of W , F = {F1 ⊂ F2 ⊂ · · · ⊂ Fm+n = W} such that

dim(Fi) = i. A basis {w1, . . . , wm+n} of W generates the full flag F if Fi is spanned
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by w1, . . . , wi. A full flag is called a full superflag if it is generated by a homogeneous

basis. We denote by F (W ) the set of all full superflags.

To a homogeneous basis {w1, . . . , wm+n} of W , we associate the unique parity

sequence s ∈ Sm|n such that si = (−1)|wi|. We say a full superflag F has parity

sequence s if it is generated by a homogeneous basis whose parity sequence is s. We

denote by F s(W ) the set of all full superflags of parity s.

Clearly, we have

F (W ) =
⊔

s∈Sm|n

F s(W ), F s(W ) ∼= F (W0̄)×F (W1̄) .

Given a basis {v1, . . . , vm} of W0̄, a basis {u1, . . . , un} of W1̄, and a parity sequence

s ∈ Sm|n, define a homogeneous basis {w1, . . . , wm+n} of W by the rule wi = vs+
i +1

if si = 1 and wi = us−i +1 if si = −1. Conversely, any homogeneous basis of W

gives a basis of W0̄, a basis of W1̄, and a parity sequence s. We say that the basis

{w1, . . . , wm+n} is associated to {v1, . . . , vm}, {u1, . . . , un}, and s.

Define the discrete Wronskian Wr (or Casorati determinant) of g1, . . . , gr by

Wr ±(g1, . . . , gr) = det (gj[∓(i− 1)])ri,j=1 = det (gj(x± (i− 1)h))ri,j=1 .

We simply write Wr for Wr −.

Let R be an (m|n)-rational difference operator over K. Let R = D0̄D−1
1̄

be a

fractional factorization such that ord D1̄ = n and the constant term of D1̄ is 1. By

Proposition 4.1.1, such a fractional factorization of R is unique.

Let V = W0̄ = kerD0̄, U = W1̄ = kerD1̄, W = W0̄ ⊕W1̄.

Given a basis {v1, . . . , vm} of V , a basis {u1, . . . , un} of U , and a parity sequence

s ∈ Sm|n, define di = 1− fiτ , where

fi = ln′
Wr (v1, v2, . . . , vs+

i +1, u1, u2, . . . , us−i )

Wr (v1, v2, . . . , vs+
i
, u1, u2, . . . , us−i )[1]

, if si = 1,

fi = ln′
Wr (v1, v2, . . . , vs+

i
, u1, u2, . . . , us−i +1)

Wr (v1, v2, . . . , vs+
i
, u1, u2, . . . , us−i )[1]

, if si = −1.

(4.2)
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Note that if two bases {v1, . . . , vm}, {ṽ1, . . . , ṽm} generate the same full flag of V

and two bases {u1, . . . , un}, {ũ1, . . . , ũn} generate the same full flag of U , then the

coefficients fi computed from vj, uj and from ṽj, ũj are the same.

Proposition 4.1.3. We have a complete factorization of R with parity s: R =

ds11 · · · d
sm+n

m+n .

Proof. The statement for the case of s = s0 follows from [MV03].

Let s and s̃ be two parity sequences which differ only in positions i, i+1. Explicitly,

sj = s̃j for j 6= i, i + 1 and si = −si+1 = −s̃i = s̃i+1. It is clear that dj = d̃j for

j 6= i, i + 1. In addition, the equality dsii d
si+1

i+1 = d̃ s̃i
i d̃

s̃i+1

i+1 follows from the discrete

Wronskian identity, see [MV03, Lemma 9.5],

Wr
(
Wr (v1, v2, . . . , vs+

i +1, u1, u2, . . . , us−i ),Wr (v1, v2, . . . , vs+
i
, u1, u2, . . . , us−i +1)

)
= Wr (v1, v2, . . . , vs+

i +1, u1, u2, . . . , us−i +1)Wr (v1, v2, . . . , vs+
i
, u1, u2, . . . , us−i )[1].

By Proposition 4.1.3, we have maps $ : F (W ) → F(R) and $s : F s(W ) →

Fs(R).

Corollary 4.1.4. The maps $ and $s are bijections.

Thus the set of complete factorizations of R is canonically identified with the

variety of full superflags of W .

4.2 XXX model

In this section we recall the definition of the super Yangian Y(glm|n) and some

facts about the XXX model associated with Y(glm|n). Our main source is [BR08].

4.2.1 Super Yangian Y(glm|n) and transfer matrix

Let Cm|n be the complex vector superspace with dim(Cm|n
0̄

) = m and dim(Cm|n
1̄

) =

n. We choose a homogeneous basis e1, . . . , em+n of Cm|n such that |ei| = 0 for 1 6
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i 6 m and |ej| = 1 for m + 1 6 j 6 m + n. Denote by Eij ∈ End(Cm|n) the linear

operator of parity |i|+ |j| such that Eijek = δjkei for 1 6 i, j, k 6 m+ n.

The super Yangian Y(glm|n) is a unital associative algebra with generators L(k)
ij of

parity |i|+ |j|, i, j = 1, . . . ,m+ n, k ∈ Z>0.

Consider the generating series

Lij(x) =
∞∑
k=0

L(k)
ij x

−k, L(0)
ij = δij,

and combine the series into a linear operator

L(x) =
m+n∑
i,j=1

Eij ⊗ Lij(x) ∈ End(Cm|n)⊗ Y(glm|n)[[x−1]].

The defining relations of Y(glm|n) are given by

R(12)(x1 − x2)L(13)(x1)L(23)(x2) = L(23)(x2)L(13)(x1)R(12)(x1 − x2), (4.3)

where R(x) ∈ End(Cm|n ⊗ Cm|n) is the super R-matrix defined by

xR(x) = x id + h
m+n∑
i,j=1

(−1)|j|Eij ⊗ Eji.

Remark 4.2.1. Note that, for any non-zero z ∈ C×, the map Lij(x) 7→ Lij(x/z)

induces an automorphism of Y(glm|n), therefore the super Yangians Y(glm|n) defined

by different non-zero h are actually isomorphic. In particular, we can always rescale

h to 1.

The R-matrix R(x) satisfies the graded Yang-Baxter equation,

R(12)(x1 − x2)R(13)(x1)R(23)(x2) = R(23)(x2)R(13)(x1)R(12)(x1 − x2).

The super commutator relations obtained from (4.3) are explicitly given by

(x1 − x2)[Lij(x1),Lk`(x2)] = (−1)|i||k|+|`||i|+|`||k|h
(
Lkj(x2)Li`(x1)− Lkj(x1)Li`(x2)

)
= (−1)|i||j|+|`||i|+|`||j|h

(
Li`(x1)Lkj(x2)− Li`(x2)Lkj(x1)

)
.

(4.4)
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In particular, one has

[L(1)
ij ,Lk`(x)] = (−1)|i||k|+|`||i|+|`||k|h

(
δi`Lkj(x)− δkjLi`(x)

)
. (4.5)

The super Yangian Y(glm|n) is a Hopf algebra with the coproduct

∆ : Lij(x) 7→
m+n∑
k=1

(−1)(|k|+|i|)(|k|+|j|)Lik(x)⊗ Lkj(x), i, j = 1, . . . ,m+ n.

The super Yangian Y(glm|n) contains the algebra U(glm|n) as a Hopf subalgebra. The

embedding is given by the map eij 7→ (−1)|i|L(1)
ji /h for 1 6 i, j 6 m+ n. We identify

U(glm|n) with the image of this map.

The transfer matrix T (x) is defined as the supertrace of L(x),

T (x) = str(L(x)) =
m+n∑
i=1

(−1)|i|Lii(x).

It is known that the transfer matrices commute, [T (x1), T (x2)] = 0. Moreover, the

transfer matrix T (x) commutes with the subalgebra U(glm|n).

Since the transfer matrices commute, the transfer matrix can be considered as a

generating function of integrals of motion of an integrable system.

For any given complex number z ∈ C, there is an automorphism

ζz : Y(glm|n)→ Y(glm|n), Lij(x)→ Lij(x− z),

where (x− z)−1 is expanded as a power series in x−1. The evaluation homomorphism

ev : Y(glm|n)→ U(glm|n) is defined by the rule:

L(a)
ji 7→ (−1)|i|δ1aheij,

for a ∈ Z>0.

For any glm|n-module V denote by V (z) the Y(glm|n)-module obtained by pulling

back of V through the homomorphism ev◦ζz. The module V (z) is called the evaluation

module with the evaluation point z.
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Let V be a Y(glm|n)-module. Given a parity sequence s ∈ Sm|n, a non-zero vector

v ∈ V is called an s-singular vector if

Lsii(x)v = Λi(x)v, Lsij(x)v = 0, i > j,

where Λi(x) ∈ C[[x−1]] and Lsa,b(x) = Lσs(a),σs(b)(x).

Example 4.2.2. Let Lλ be an irreducible polynomial glm|n-module of highest weight

λ with highest weight vector vλ. Let z be a complex number. Then the glm|n s-singular

vector vsλ ∈ Lλ(z) is a Y(glm|n) s-singular vector. Moreover, we have

Lsii(x)vsλ =
(

1 +
si λ

s(esii)h

x− z

)
vsλ =

x− z + si λ
s(esii)h

x− z
vsλ, i = 1, 2, . . . ,m+ n. �

4.2.2 Bethe ansatz equation

We fix a parity sequence s ∈ Sm|n, a sequence λ = (λ(1), . . . , λ(p)) of polynomial

glm|n weights, and a sequence z = (z1, . . . , zp) of complex numbers. We call λ(s,k), see

Section 2.3.2, the weight at point zk with respect to s.

Let l = (l1, . . . , lm+n−1) be a sequence of non-negative integers. Define l =∑m+n−1
i=1 li. Let t = (t

(1)
1 , . . . , t

(1)
l1

; . . . ; t
(m+n−1)
1 , . . . , t

(m+n−1)
lm+n−1

) be a collection of vari-

ables. We say that t
(i)
j has color i. Define the glm|n weight at ∞ with respect to s, λ,

and l by

λ(s,∞) =

p∑
k=1

λ(s,k) −
m+n−1∑
i=1

liα
s
i .

The Bethe ansatz equation (BAE) associated to s, z, λ, and l, is a system of

algebraic equations in variables t:

p∏
k=1

t
(i)
j − zk + siλ

(s,k)
i h

t
(i)
j − zk + si+1λ

(s,k)
i+1 h

li−1∏
r=1

t
(i)
j − t

(i−1)
r + sih

t
(i)
j − t

(i−1)
r

li∏
r=1
r 6=j

t
(i)
j − t

(i)
r − sih

t
(i)
j − t

(i)
r + si+1h

li+1∏
r=1

t
(i)
j − t

(i+1)
r

t
(i)
j − t

(i+1)
r − si+1h

= 1,

(4.6)

where i = 1, . . . ,m + n− 1, j = 1, . . . , li. We call the single equation (4.6) the BAE

for t related to t
(i)
j .
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We allow the following cancellations in the BAE,

t
(i)
j − zk + siλ

(s,k)
i h

t
(i)
j − zk + si+1λ

(s,k)
i+1 h

= 1, if siλ
(s,k)
i = si+1λ

(s,k)
i+1 ;

t
(i)
j − t

(i)
r − sih

t
(i)
j − t

(i)
r + si+1h

= 1, if si = −si+1. (4.7)

After these cancellations, we consider only the solutions that do not make the re-

maining denominators in (4.6) vanish.

In addition, we impose the following condition. Suppose (αsi , α
s
i ) = 0 for some i.

Consider the BAE for t related to t
(i)
j with all t

(a)
b fixed, where a 6= i and 1 6 b 6 la,

this equation does not depend on j. Let t
(i)
0 be a solution of this equation with

multiplicity r. Then we require that the number of j such that t
(i)
j = t

(i)
0 is at most

r, c.f. Lemma 4.16, Theorem 4.4.1.

The group Sl = Sl1 × · · · ×Slm+n−1 acts on t by permuting the variables of the

same color.

We do not distinguish between solutions of the BAE in the same Sl-orbit.

Remark 4.2.3. Note that in the quasiclassical limit h→ 0, system (4.6) becomes sys-

tem (4.2) of [MVY14], which is the Bethe ansatz equation of Gaudin model associated

to glm|n.

4.2.3 Bethe vector

Let λ = (λ(1), . . . , λ(p)) be a sequence of polynomial glm|n weights. Let vsk = vs
λ(s,k)

be an s-singular vector in the irreducible glm|n-module Lλ(k) . Consider the tensor

product of evaluation modules L(λ, z) =
⊗p

k=1 Lλ(k)(zk). We also denote by L(λ)

the corresponding glm|n-module.

Let l = (l1, . . . , lm+n−1) be a collection of non-negative integers. The weight

function is a vector ws(t, z) in L(λ, z) depending on variables

t = (t
(1)
1 , . . . , t

(1)
l1

; . . . ; t
(m+n−1)
1 , . . . , t

(m+n−1)
lm+n−1

)
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and parameters z = (z1, . . . , zp). The weight function ws(t, z) is constructed as

follows, see [BR08, Section 5.2].

Set l<a = l1 + · · ·+ la−1, a = 1, . . . ,m+n. Note that l = l<m+n. Consider a series

in l variables t with coefficients in Y(glm|n):

Bsl (t) = (str12···l ⊗ id)
(
L(1,l+1)(t

(1)
1 ) · · · L(l,l+1)(t

(m+n−1)
lm+n−1

)

×R(1...l)(t)Esm+n,m+n−1
⊗lm+n−1 ⊗ · · · ⊗ Es21

⊗l1 ⊗ 1
)
,

where

R(1...l)(t) =
∏
a<b

−→∏
16j6lb

←−∏
16i6la

t
(b)
j − t

(a)
i

t
(b)
j − t

(a)
i + sbh

R(l<b+j,l<a+i)(t
(b)
j − t

(a)
i ) (4.8)

and the first product in (4.8) runs over 1 6 a < b 6 m+ n− 1.

The weight function ws(t, z) ∈ L(λ, z) is given by

ws(t, z) = Bsl (t)
(
vs1 ⊗ · · · ⊗ vsp

)
.

Example 4.2.4. Let m+ n = 2 and t = (t1, . . . , tl), then

ws(t, z) = (−1)l|2|Ls12(t1) · · · Ls12(tl)
(
vs1 ⊗ · · · ⊗ vsp

)
(4.9)

is an example of the weight function.

The following theorem is known.

Theorem 4.2.5 ( [BR08]). Suppose that λ is a sequence of polynomial glm|n weights

and t a solution of the BAE associated to s, z, λ, and l. If the vector ws(t, z) ∈

L(λ, z) is well-defined and non-zero, then ws(t, z) ∈ L(λ, z) is an eigenvector of

the transfer matrix T (x), T (x)ws(t, z) = E(x)ws(t, z), where the eigenvalue E(x) is

given by

E(x) =
m+n∑
a=1

sa

p∏
k=1

x− zk + saλ
(s,k)
a h

x− zk

la−1∏
j=1

x− t(a−1)
j + sah

x− t(a−1)
j

la∏
j=1

x− t(a)
j − sah

x− t(a)
j

. (4.10)
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Note that the eigenvalue E(x) depends on the parameters t, s, z, and λ. We drop

this dependence for our notation.

If t is a solution of the BAE associated to s, z, λ, and l, then the value of the

weight function ws(t, z) is called the Bethe vector.

We have the following standard statement regarding to Bethe vectors, c.f. [MTV06,

Proposition 6.2] and [MVY14, Theorem 4.3].

Proposition 4.2.6. The Bethe vector ws(t, z) is a glm|n s-singular vector of weight

λ(s,∞).

Proof. Clearly, the Bethe vector ws(t, z) is a vector of weight λ(s,∞). We then show

that ws(t, z) is glm|n s-singular.

We show it for the case of m = n = 1 with the standard parity s0 in Section 6. The

general case follows from a similar computation using a combination of nested Bethe

ansatz, as in [BR08, Section 4], and induction on m+n, see e.g. [MTV06, Proposition

6.2].

4.2.4 Sequences of polynomials

We use the following convenient notation. We say that a sequence z = (z1, . . . , zp)

of complex numbers is h-generic if zi − zj /∈ hZ for all 1 6 i < j 6 p.

Let λ = (λ(1), . . . , λ(p)) be a sequence of polynomial glm|n weights. Let z =

(z1, . . . , zp) be an h-generic sequence of complex numbers. Fix a parity sequence

s ∈ Sm|n.

Define a sequence of polynomials T s = (T s1 , . . . , T
s
m+n) associated to s, λ and z,

T si (x) =

p∏
k=1

λ
(s,k)
i∏
j=1

(x− zk + sijh), i = 1, . . . ,m+ n. (4.11)

Note that T si (T si+1)−sisi+1 is a polynomial for all i = 1, . . . ,m+ n− 1.

Let l = (l1, . . . , lm+n−1) be a sequence of non-negative integers.
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Let t = (t
(1)
1 , . . . , t

(1)
l1

; . . . ; t
(m+n−1)
1 , . . . , t

(m+n−1)
lm+n−1

) be a sequence of complex num-

bers. Define a sequence of polynomials y = (y1, . . . , ym+n−1) by

yi(x) =

li∏
j=1

(x− t(i)j ), i = 1, . . . ,m+ n− 1. (4.12)

We say the sequence of polynomials y represents t. We have deg yi = li.

We also set y0(x) = ym+n(x) = 1.

If t is a solution of the BAE associated to s, z, λ, and l, then the eigenvalue

E(x) of the transfer matrix T (x) acting on the Bethe vector ws(t, z), see (2.8), can

be written in terms of y and T s. Namely, we have

E(x) = Ey(x) =
m+n∑
a=1

sa
T sa

T sa [sa]

ya−1[−sa]
ya−1

ya[sa]

ya
. (4.13)

We do not consider zero polynomials yi(x) and do not distinguish between polyno-

mials yi(x) and cyi(x), c ∈ C×. Hence, a sequence y defines a point in
(
P(C[x])

)m+n−1
,

the direct product of m+n−1 copies of the projective space associated to the vector

space of polynomials.

We say that a sequence of polynomials y is generic with respect to s, λ, and z if

it satisfies the following conditions:

1. if sisi+1 = 1, then yi has only simple roots and yi has no common roots with

the polynomial yi[1];

2. the polynomial yi has no common roots with polynomials yi−1, yi−1[−si], and

yi+1[si+1];

3. all roots of yi are different from the roots of polynomial T si (T si+1)−sisi+1 ,

for i = 1, . . . ,m+ n− 1.

Not all solutions of the BAE correspond to generic sequences of polynomials. For

instance, if m = 2, n = p = 0, and l is even, then t1 = · · · = tl = 0 is a solution of

the BAE.
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4.3 Reproduction procedures for gl2 and gl1|1

In this section, we recall the reproduction procedure for the XXX model associated

to gl2 from [MV03, Section 2] and define its analogue for gl1|1. We define a rational

difference operator associated to a solution of BAE. We also show that the reproduc-

tion procedure does not alter the rational difference operator and the corresponding

eigenvalues obtained from Theorem 4.2.5.

4.3.1 Reproduction procedure for gl2.

Set m = 2 and n = 0. We have the following identifications Y(gl2|0) ∼= Y(gl0|2) ∼=

Y(gl2). Let λ = (λ(1), . . . , λ(p)) = ((a1, b1), . . . , (ap, bp)) be a sequence of polynomial

gl2 weights. We have ak, bk ∈ Z, ak > bk > 0, k = 1, . . . , p. Let z = (z1, . . . , zp) be an

h-generic sequence of complex numbers. We have

T1(x) =

p∏
k=1

ak∏
j=1

(x− zk + jh), T2(x) =

p∏
k=1

bk∏
j=1

(x− zk + jh).

Let a = deg T1 and b = deg T2.

Give a non-negative integer l and variables t = (t1, . . . , tl). The BAE associated

to λ, z, and l is simplified to

p∏
k=1

tj − zk + akh

tj − zk + bkh

l∏
i=1,i 6=j

tj − ti − h
tj − ti + h

= 1, j = 1, . . . , l. (4.14)

It is known that the BAE (4.14) can be reformulated in terms of discrete Wron-

skian. Moreover, starting from a generic solution of BAE, one can construct a family

of new solutions of the BAE in the following way.

Lemma 4.3.1 ( [MV03]). Let y be a polynomial of degree l which is generic with

respect to λ and z.

1. The polynomial y ∈ C[x] represents a solution of the BAE (4.14) associated to

λ, z and l, if and only if there exists a polynomial ỹ ∈ C[x], such that

Wr +(y, ỹ) = T1T
−1
2 . (4.15)
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2. If ỹ is generic, then ỹ represents a solution of the BAE associated to λ, z and

l̃, where l̃ = deg ỹ.

Almost all ỹ are generic with respect to λ and z, and therefore by Lemma 4.3.1

represent solutions of the BAE (4.14). Thus, from one solution of the BAE, we

obtain a family of new solutions. Following the terminology of [MV03], we call this

construction the gl2 reproduction procedure.

Let Py be the closure of the set containing y and all ỹ as in Lemma 4.3.1 in P(C[x]).

We call Py the gl2 population originated at y. The population Py can be identified

with the projective line CP1 through the correspondence c1y + c2ỹ 7→ (c1 : c2).

The weight at infinity associated to the data λ and l is given by λ(∞) = (a−l, b+l).

Suppose that the weight λ(∞) is dominant, namely 2l 6 a−b. If l̃ 6= l, then the weight

at infinity associated to λ and l̃ is

λ̃(∞) = (a− l̃, b+ l̃) = (b+ l − 1, a− l + 1) = s · λ(∞),

where s ∈ S2 is the non-trivial element in the Weyl group of gl2, and the dot denotes

the shifted action.

Let ỹ =
∏l̃

r=1(x− t̃r) and t̃ = (t̃1, . . . , t̃l̃). If y is generic, then by Lemma 4.3.1, t̃

is a solution of the BAE (4.14) with l replaced by l̃. By Proposition 4.2.6, the value

of the weight function w(t̃, z) is a singular vector. At the same time, λ̃(∞) is not

dominant and therefore w(t̃, z) = 0 in L(λ). So, in a gl2 population only the unique

polynomial (the one of the smallest degree) corresponds to an actual eigenvector in

L(λ).

The eigenvalues corresponding to the solutions y and ỹ, see (4.13), are given by

E(x) =
T1y[1]

T1[1]y
+
T2y[−1]

T2[1]y
, Ẽ(x) =

T1ỹ[1]

T1[1]ỹ
+
T2ỹ[−1]

T2[1]ỹ
.

Lemma 4.3.2. The eigenvalues E(x) and Ẽ(x) are the same.

Proof. Note that

Ẽ(x)− E(x) =
Wr +(y, ỹ)[1]

yỹ

T1

T1[1]
− Wr +(y, ỹ)

yỹ

T2

T2[1]
.
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By (4.15), we have
Wr +(y, ỹ)

Wr +(y, ỹ)[1]
=
T1T2[1]

T2T1[1]
.

Therefore the lemma follows.

This fact can be reformulated in the following form.

Define a difference operator

D(y) =
(

1− T1y[1]

T1[1]y
τ
)(

1− T2y[−1]

T2[1]y
τ
)
.

The operator D(y) does not depend on a choice of polynomial y in a population,

D(y) = D(ỹ).

4.3.2 Reproduction procedure for gl1|1.

Set m = n = 1. We have S1|1 = {(1,−1), (−1, 1)}. Let s and s̃ = s[1] be two

different parity sequences in S1|1. Let λ = (λ(1), . . . , λ(p)) be a sequence of polynomial

gl1|1 weights. For each k = 1, . . . , p, let us write (λ(k))s[s] = (ak, bk), where ak, bk ∈ Z>0

and if ak = 0 then bk = 0. Note that λ(k) is atypical if and only if ak + bk = 0. Let

z = (z1, . . . , zp) be an h-generic sequence of complex numbers.

Let

ãk =

bk + 1 if ak + bk 6= 0,

0 if ak + bk = 0,

b̃k =

ak − 1 if ak + bk 6= 0,

0 if ak + bk = 0.

Equation (4.11) becomes

T s1 =

p∏
k=1

ak∏
j=1

(x− zk + s1jh), T s2 =

p∏
k=1

bk∏
j=1

(x− zk + s2jh),

T s̃1 =

p∏
k=1

ãk∏
j=1

(x− zk + s̃1jh), T s̃2 =

p∏
k=1

b̃k∏
j=1

(x− zk + s̃2jh).

Let a = deg T s1 , b = deg T s2 . Similarly, let ã = deg T s̃1 , b̃ = deg T s̃2 . Suppose the

number of typical weights in λ is r, then ã = b+ r and b̃ = a− r.
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Let l be a non-negative integer. Let t = (t1, . . . , tl) be a collection of variables.

The Bethe ansatz equation associated to s, λ, z, and l, is given as follows,

p∏
k=1

ak+bk 6=0

tj − zk + s1akh

tj − zk + s2bkh
= 1, j = 1, . . . , l. (4.16)

The Bethe ansatz equation (4.16) can be rewritten in the form

ϕs(tj)− ψs(tj) = 0,

where

ϕs =

p∏
k=1

ak+bk 6=0

(x− zk + s1akh), ψs =

p∏
k=1

ak+bk 6=0

(x− zk + s2bkh).

Note that ϕs = ψs̃[−s1] and ψs = ϕs̃[−s1]. Thus, in the case of gl1|1, the BAEs (4.16)

associated to s and s̃ coincide up to a shift.

We call a sequence of polynomial gl1|1 weights λ typical if at least one of the

weights λ(k) is typical. Note that λ is typical if and only if a+ b 6= 0. In other words,

λ is typical if and only if T s1 T
s
2 6= 1.

The BAE (4.16) is reformulated as follows, c.f. [GLM18, equation (A.12)].

Lemma 4.3.3. Let y be a polynomial of degree l. Let λ be typical.

1. The polynomial y represents a solution of the BAE (4.16) associated to s, z,

λ, and l, if and only if there exists a polynomial ỹ, such that

y · ỹ[−s1] = ϕs − ψs. (4.17)

2. The polynomial ỹ represents a solution of the BAE (4.16) associated to s̃, z,

λ, and l̃, where l̃ = deg ỹ = r − 1− l.

For each solution y, we can construct exactly one solution ỹ. We call this con-

struction the gl1|1 reproduction procedure.

The set Py consisting of y and ỹ is called the gl1|1 population originated at y.
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The weight at infinity associated to s,λ, and l is λ
(s,∞)
[s] = (a− l, b+ l). The weight

at infinity associated to s̃,λ and l̃ is λ̃
(s̃,∞)
[s̃] = (ã − l̃, b̃ + l̃) = (b + l + 1, a − l − 1).

Thus we have λ(s,∞) = λ̃(s̃,∞) + αs. In particular, in contrast to the case of gl2, both

y and ỹ correspond to actual eigenvectors of the transfer matrix.

If λ is not typical, then all participating representations are one-dimensional,

where the situation is trivial. In particular, we have y(x) = 1. We do not discuss this

case.

4.3.3 Motivation for gl1|1 reproduction procedure

Suppose y and ỹ are in the same gl1|1 population as in Section 4.3.2. Parallel

to the gl2 reproduction procedure, we show that the eigenvalues of transfer matrix

corresponding to the Bethe vectors obtained from polynomials y and ỹ coincide.

Let y =
∏l

r=1(x − tr), ỹ =
∏l̃

r=1(x − t̃r). Let t = (t1, . . . , tl), t̃ = (t̃1, . . . , t̃l̃). By

Theorem 4.2.5 and (4.13), we have T (x)ws(t, z) = E(x)ws(t, z) and T (x)ws̃(t̃, z) =

Ẽ(x)ws̃(t̃, z), where

E(x) = s1
T s1 y[s1]

T s1 [s1]y
+ s2

T s2 y[−s2]

T s2 [s2]y
, Ẽ(x) = s̃1

T s̃1 y[s̃1]

T s̃1 [s̃1]y
+ s̃2

T s̃2 y[−s̃2]

T s̃2 [s̃2]y
. (4.18)

Lemma 4.3.4. The eigenvalues E(x) and Ẽ(x) of transfer matrix are the same.

Proof. By (4.17), we have

E(x) = s1
y[s1]

y
(ϕs − ψs)

p∏
k=1

ak+bk 6=0

(x− zk)−1 = s1y[s1]ỹ[−s1]

p∏
k=1

ak+bk 6=0

(x− zk)−1,

and

Ẽ(x) = s1
ỹ[−s1]

ỹ
(ϕs[s1]− ψs[s1])

p∏
k=1

ak+bk 6=0

(x− zk)−1 = s1y[s1]ỹ[−s1]

p∏
k=1

ak+bk 6=0

(x− zk)−1.

Therefore the lemma follows.

Define a rational difference operator:

Rs(y) =
(

1− T s1 y[s1]

T s1 [s1]y
τ
)s1(

1− T s2 y[−s2]

T s2 [s2]y
τ
)s2

.
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It is clear that Rs(y) = 1 if λ is not typical.

We have the following lemma.

Lemma 4.3.5. If λ is typical, then Rs(y) is a (1|1)-rational difference operator.

Moreover, this (1|1)-rational difference operator is independent of a choice of a poly-

nomial in a population, Rs(y) = Rs̃(ỹ).

Proof. The lemma is proved by a direct computation using Lemma 4.1.2 and Equation

(4.17).

4.4 Reproduction procedure for glm|n

We define the reproduction procedure and the populations in the general case.

4.4.1 Reproduction procedure

Let s ∈ Sm|n be a parity sequence. Let λ = (λ(1), . . . , λ(p)) be a sequence of

polynomial glm|n weights. Let z = (z1, . . . , zp) be an h-generic sequence of complex

numbers. Let T s be a sequence of polynomials associated to s, λ, and z, see (4.11).

If si 6= si+1, we also set

ϕsi =

p∏
k=1

λ
(s,k)
i +λ

(s,k)
i+1 6=0

(x− zk + siλ
(s,k)
i h), ψsi =

p∏
k=1

λ
(s,k)
i +λ

(s,k)
i+1 6=0

(x− zk + si+1λ
(s,k)
i+1 h).

Let l = (l1, . . . , lm+n−1) be a sequence of non-negative integers.

For i ∈ {1, . . . ,m+n−1}, set s[i] = (s1, . . . , si+1, si, . . . , sm+n). Set y0 = ym+n = 1.

For g1, g2 ∈ K, we also use the notation

Wr si(g1, g2) = g1g2[−si]− g2g1[−si].

We now reformulate the BAE (4.6) which allows us to construct a family of new

solutions.

Theorem 4.4.1. Let y = (y1, . . . , ym+n−1) be a sequence of polynomials generic with

respect to s, λ, and z, such that deg yk = lk, k = 1, . . . ,m+ n− 1.
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1. The sequence y represents a solution of the BAE (4.6) associated to s, z, λ,

and l, if and only if for each i = 1, . . . ,m+ n− 1, there exists a polynomial ỹi,

such that

Wr si (yi, ỹi) = T si
(
T si+1

)−1
yi−1[−si]yi+1, if si = si+1, (4.19)

yi ỹi[−si] = ϕsi yi−1[−si]yi+1 − ψsi yi−1yi+1[−si], if si 6= si+1. (4.20)

2. Let i ∈ {1, . . . ,m+n−1} be such that ỹi 6= 0. If y[i] = (y1, . . . , ỹi, . . . , ym+n−1) is

generic with respect to s[i], λ, and z, then y[i] represents a solution of the BAE

associated to s[i], λ, z, and l[i], where l[i] = (l1, . . . , l̃i, . . . , lm+n−1), l̃i = deg ỹi.

Proof. Part (i) follows from Lemmas 4.3.1 and 4.3.3.

Now we consider Part (ii). Let yr =
∏lr

j=1(x − t
(r)
j ) and ỹr =

∏l̃r
j=1(x − t̃

(r)
j ),

r = 1, . . . ,m + n − 1. Let t = (t
(r)
j )j=1,...,lr

r=1,...,m+n−1 and t̃ = (t̃
(r)
j )j=1,...,l̃r

r=1,...,m+n−1, where we

set lr = l̃r, t
(r)
j = t̃

(r)
j if r 6= i.

The sequence t satisfies the BAE associated to s, λ, z, and l. We prove that

t̃ satisfies the BAE associated to s[i], λ, z, and l[i]. Clearly, the BAEs for t̃ and t

related to t
(r)
j with |r− i| > 1 are the same. On the other hand, the BAE for t̃ related

to t̃
(i)
j holds by Lemmas 4.3.1 and 4.3.3. We only need to establish the BAE for t̃

related to t
(i−1)
j and t

(i+1)
j . We have two main cases depending on the sign of sisi+1.

Suppose si = si+1. Dividing (4.19) by yi[−si]ỹi[−si] and evaluating at x = t
(i−1)
j −

sih and x = t
(i+1)
j , we obtain

li∏
a=1

t
(i−1)
j − t(i)a

t
(i−1)
j − t(i)a − sih

=

l̃i∏
a=1

t
(i−1)
j − t̃(i)a

t
(i−1)
j − t̃(i)a − sih

,

li∏
a=1

t
(i+1)
j − t(i)a + sih

t
(i+1)
j − t(i)a

=

l̃i∏
a=1

t
(i+1)
j − t̃(i)a + sih

t
(i+1)
j − t̃(i)a

.

Thus, the BAE for t̃ related to t
(i±1)
j follows from the BAE for t related to t

(i±1)
j .

If si = −si+1, then the argument depends on si−1, si+2. Here we only treat the

case of si−1 = −si. All other cases are similar, we omit further details.
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We prove the BAE for t̃ related to t
(i−1)
j , which has the form

ϕs
[i]

i−1(t
(i−1)
j )

ψs
[i]

i−1(t
(i−1)
j )

·
yi−2(t

(i−1)
j + si−1h)

yi−2(t
(i−1)
j )

·
yi−1(t

(i−1)
j − si−1h)

yi−1(t
(i−1)
j + si+1h)

·
ỹi(t

(i−1)
j )

ỹi(t
(i−1)
j + sih)

= −1 . (4.21)

Substituting x = t
(i−1)
j − sih and x = t

(i−1)
j to (4.20) and dividing, we get

ỹi(t
(i−1)
j )

ỹi(t
(i−1)
j + sih)

= −
ψsi (t

(i−1)
j − sih)yi−1(t

(i−1)
j + si+1h)yi(t

(i−1)
j )

ϕsi (t
(i−1)
j )yi−1(t

(i−1)
j − si−1h)yi(t

(i−1)
j − sih)

. (4.22)

Changing i in (4.20) to i− 1 (recall si−1 = −si) and substituting x = t
(i−1)
j , we have

ϕsi−1(t
(i−1)
j )yi−2(t

(i−1)
j + si−1h)yi(t

(i−1)
j )

ψsi−1(t
(i−1)
j )yi−2(t

(i−1)
j )yi(t

(i−1)
j − sih)

= 1 . (4.23)

Equation (4.21) follows from (4.22), (4.23), and the equality

ϕs
[i]

i−1(t
(i−1)
j )

ψs
[i]

i−1(t
(i−1)
j )

=
ϕsi−1(t

(i−1)
j )ϕsi (t

(i−1)
j )

ψsi−1(t
(i−1)
j )ψsi (t

(i−1)
j − sih)

.

Remark 4.4.2. Suppose si 6= si+1. It is not hard to see that if ϕsi yi−1[−si]yi+1 and

ψsi yi−1yi+1[−si] in (4.20) have common roots, then y[i] is not generic with respect to

s[i], λ, and z.

If si = si+1, then starting from a solution of the BAE we construct a family of new

solutions represented by sequences y[i]. Here we use (4.19) and the parity sequence

remains unchanged. We call this construction the bosonic reproduction procedure in

i-th direction.

If ϕsi yi−1[−si]yi+1 6= ψsi yi−1yi+1[−si], then starting from a solution of the BAE

we construct a single new solution represented by y[i]. We use (4.20) and the parity

sequence changes from s to s[i]. We call this construction the fermionic reproduction

procedure in i-th direction.

From the very definition of the fermionic reproduction procedure, (y[i])[i] = y.

If y[i] is generic with respect to s[i], λ, and z, then by Theorem 4.4.1 we can apply

the reproduction procedure again.

Let

P(y,s) ⊂
(
P(C[x])

)m+n−1 × Sm|n (4.24)
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be the closure of the set of all pairs (ỹ, s̃) obtained from the initial pair (y, s) by

repeatedly applying all possible reproductions. We call P(y,s) the glm|n population of

solutions of the BAE associated to s, z, and λ , originated at y. By definition, P(y,s)

is a disjoint union over parity sequences,

P(y,s) =
⊔

s̃∈Sm|n

P s̃(y,s), P s̃(y,s) = P(y,s) ∩
((

P(C[x])
)m+n−1 × {s̃}

)
.

4.4.2 Rational difference operator associated to population

We define a rational difference operator which does not change under the repro-

duction procedure.

Let s ∈ Sm|n be a parity sequence. Let z = (z1, . . . , zp) be an h-generic sequence of

complex numbers. Let λ = (λ(1), . . . , λ(p)) be a sequence of polynomial glm|n weights.

The sequence T s = (T s1 , . . . , T
s
m+n) is given by (4.11).

Let y = (y1, . . . , ym+n−1) be a sequence of polynomials. Recall our convention

that y0 = ym+n = 1. Define a rational difference operator Rs(y) over K = C(x),

Rs(y) =
−→∏

16i6m+n

(
1− T si yi−1[−si]yi[si]

T si [si]yi−1yi
τ
)si
. (4.25)

The following theorem is the main result of this section.

Theorem 4.4.3. Let P be a glm|n population. Then the rational difference operator

Rs(y) does not depend on the choice of y in P .

Proof. We want to show(
1− T si yi−1[−si]yi[si]

T si [si]yi−1yi
τ
)si(

1−
T si+1yi[−si+1]yi+1[si+1]

T si+1[si+1]yiyi+1

τ
)si+1

=
(

1− T s
[i]

i yi−1[−si+1]ỹi[si+1]

T s
[i]

i [si+1]yi−1ỹi
τ
)si+1

(
1−

T s
[i]

i+1ỹi[−si]yi+1[si]

T s
[i]

i+1[si]ỹiyi+1

τ
)si
.

We have four cases, (si, si+1) = (±1,±1). The cases of si = si+1 are proved similarly

to Lemma 4.3.2.
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The case of si = −si+1 = 1 is similar to Lemma 4.3.5. Namely, we want to show(
1− T si yi−1[−1]yi[1]

T si [1]yi−1yi
τ
)(

1−
T si+1yi[1]yi+1[−1]

T si+1[−1]yiyi+1

τ
)−1

=
(

1− T s
[i]

i yi−1[1]ỹi[−1]

T s
[i]

i [−1]yi−1ỹi
τ
)−1(

1−
T s

[i]

i+1ỹi[−1]yi+1[1]

T s
[i]

i+1[1]ỹiyi+1

τ
)
.

This equation is proved by a direct computation using Lemma 4.1.2 and (4.20). We

only note that the following identities

T s
[i]

i

T s
[i]

i [−1]

T si+1

T si+1[1]
=

T s
[i]

i+1

T s
[i]

i+1[1]

T si [2]

T si [1]
=

p∏
k=1

λ
(s,k)
i +λ

(s,k)
i+1 6=0

x− zk − h
x− zk

are used.

The case of si = −si+1 = −1 is similar.

We denote the rational difference operator corresponding to a population P by

RP .

Remark 4.4.4. Taking the quasiclassical limit h → 0, a solution th of BAE (4.6)

tends to a solution of BAE for the Gaudin model associated to glm|n represented by a

tuple Y = (Y1, . . . ,Ym+n−1), see Remark 4.2.3. Note that τ = e−h∂x, we have

1− T si yi−1[−si]yi[si]
T si [si]yi−1yi

τ = h

(
∂x − si

(
ln

T s
i Yi−1

Yi

)′)
+O(h2),

where T s
i =

∏p
k=1(x−zk)λ

(s,k)
i , Y0 = Ym+n = 1. Ignoring the terms in O(h2) for each

factor, one gets from Rs(y) the rational pseudo-differential operator Rs(Y) defined

in [HMVY19, equation (6.5)].

The transfer matrix T (x) (associated to the vector representation) can be included

in a natural commutative algebra B generated by transfer matrices associated to other

finite dimensional representations of Y(glm|n), c.f. [KSZ08], [TZZ15]. We expect that

similar to the even case, the rational difference operator Rs(y) encodes eigenvalues of

algebra B acting on the Bethe vector corresponding to y, c.f [T06]. Then, Theorem

4.4.3 would assert that formulas for eigenvalues of B acting on L(λ, z) do not depend

on a choice of y in the population.



95

Similar to Lemmas 4.3.2 and 4.3.4, we show that formula for eigenvalue (2.8) or

(4.13) does not change under glm|n reproduction procedure.

Lemma 4.4.5. Let y = (y1, . . . , ym+n−1) be a sequence of polynomials such that there

exists a polynomial ỹi satisfying (4.19) if si = si+1 or (4.20) if si = −si+1. Then

Ey(x) = Ey[i](x), where y[i] = (y1, . . . , ỹi, . . . , ym+n−1).

Proof. The proof is similar to proofs of Lemmas 4.3.2 and 4.3.4.

4.4.3 Example of a gl2|1 population

In this section, we give an example of a population for the case of gl2|1.

Set m = 2, n = 1, and p = 3. There are three parity sequences in S2|1, namely,

s0 = (1, 1,−1), s1 = (1,−1, 1), and s2 = (−1, 1, 1).

Let λ = (λ(1), λ(2), λ(3)), where λ(i) = (1, 1, 0), for i = 1, 2, 3, in standard parity

sequence s0. Let l = (0, 0) and y = (y1, y2) = (1, 1). We also set h = 1.

Let z = (0,
√

2,−
√

2). Our choice of z is such that zi − zj /∈ hZ for i 6= j. We

have T = T s0 = (x3 + 3x2 + x − 1, x3 + 3x2 + x − 1, 1).We consider the population

P(1,1) of solutions of the BAE associated to s0, z, λ, originated at y.

1. Applying bosonic reproduction procedure in the first direction to y, we have

s
[1]
0 = s0, T s0 = T , and y

[1]
c = (y

[1]
1 , y

[1]
2 ) = (x− c, 1), where c ∈ CP1. Note that

y
[1]
∞ = (1, 1) = y.

2. We then apply fermionic reproduction procedure in the second direction to y
[1]
c .

We have (s0)[2] = s1 and T s1 = (x3 + 3x2 + x− 1, x3− 3x2 + x+ 1, 1). We have

(y[1]
c )[2] = (x− c, 4x3 − (6 + 3c)x2 + 3cx+ c+ 1).

3. Finally, apply fermionic reproduction procedure in the first direction to (y
[1]
c )[2].

We have (s1)[1] = s2 and T s2 = ((x− 1)(x− 2)(x2 − 2x− 1)(x2 − 4x+ 2), 1, 1).

We have

((y[1]
c )[2])[1] =

(
6(x− 1)4 − 9(x− 1)2 + 1, 4x3 − (6 + 3c)x2 + 3cx+ c+ 1

)
.
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It is easy to check that all further reproduction procedures cannot create a new

pair of polynomials. Therefore the gl2|1 population P(1,1) is the union of three CP1,

P s0

(1,1) = {(x−c, 1) | c ∈ CP1}, P s1

(1,1) = {(x−c, 4x3−(6+3c)x2+3cx+c+1) | c ∈ CP1},

and P s2

(1,1) = {(6(x− 1)4 − 9(x− 1)2 + 1, 4x3 − (6 + 3c)x2 + 3cx+ c+ 1) | c ∈ CP1}.

4.5 Populations and superflag varieties

In this section, we show that glm|n populations associated to typical λ are isomor-

phic to the variety of the full superflags.

4.5.1 Discrete exponents and dominants

Following [HMVY19], we introduce the following partial ordering on the set of

partitions with r parts. Let a = (a1 6 a2 6 . . . 6 ar) and b = (b1 6 b2 6 . . . 6 br),

ai, bi ∈ Z>0, be two partitions with r parts. If bi > ai for all i = 1, . . . , r, we say that

b dominates a.

For a partition a with r parts, we call the smallest partition with r distinct parts

that dominates a the dominant of a and denote it by ā = (ā1 < ā2 < · · · < ār).

Namely, the partition ā is such that ā dominates a and if a partition a′ with r distinct

parts dominates a then a′ dominates ā. The partition ā is unique.

We identify a set of non-negative integers with a partition by rearranging their

elements into weakly increasing order.

This definition is motivated by the relation of exponents for a sum of spaces

of functions to exponents of the summands. We describe this phenomenon for the

discrete exponents of spaces of functions.

Let V be an r-dimensional space of functions. Let z ∈ C be such that all functions

in V are well-defined at z − hZ. Then there exists a partition with r distinct parts

c = (c1 < · · · < cr) and a basis of {v1, · · · , vr} of V such that for i = 1, . . . , r, we have

vi(z − jh) = 0 for j = 1, . . . , ci and vi(z − (ci + 1)h) 6= 0. This sequence of integers is
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defined uniquely and will be called the sequence of discrete exponents of V at z. We

denote the set c by Ez(V ).

Let V1, . . . , Vk be spaces of functions such that the sum V =
∑k

i=1 Vi is a direct

sum. Let az = tki=1Ez(Vi), then Ez(V ) dominates āz. Moreover, for generic spaces

of functions Vi, we have the equality Ez(V ) = āz.

4.5.2 Space of rational functions associated to a solution of BAE

Let λ = (λ(1), . . . , λ(p)) be a sequence of polynomial glm|n weights. Let z =

(z1, . . . , zp) be an h-generic sequence of complex numbers.

Let y = (y1, . . . , ym+n−1) represent a solution of the BAE associated to λ, z, and

the standard parity sequence s0. Suppose further that y is generic with respect to

λ, z, s0. Recall the rational difference operator Rs0(y) = D0̄(y)D−1
1̄

(y) associated

to the population P(y,s0) generated by y, see (4.25). Let Vy = kerD0̄(y) and Uy =

kerD1̄(y).

Note that the sequence (y1, . . . , ym−1) represents a solution of the BAE associated

to the Lie algebra glm. It follows from [MV03] that one can generate a glm population

starting from (y1, . . . , ym−1) using bosonic reproduction procedures. Moreover, the

corresponding difference operator to this population is given by ym · D0̄(y) · (ym)−1.

Therefore, by [MV03, Proposition 4.7], the space ym · Vy is an m-dimensional space

of polynomials. Similarly, since (ym+1, . . . , ym+n−1) represents a solution of the BAE

associated to the Lie algebra gln, the space Tm+1[−1]ym ·Uy is an n-dimensional space

of polynomials. In particular, Vy and Uy are spaces of rational functions.

In the remainder of Section 4.5, we impose the condition that ym(zi + kh) 6= 0 for

i = 1, . . . , p and k ∈ Z.

Since z is h-generic and ym(zi + kh) 6= 0 for 1 6 i 6 p and k ∈ Z, it follows

from [MTV07, Corollary 7.5] that the sequence of discrete exponents Ezi(ym · Vy) is

given by

(
λ(i)
m < λ

(i)
m−1 + 1 < · · · < λ

(i)
m−k+1 + k − 1 < · · · < λ

(i)
1 +m− 1

)
.
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Therefore the sequence of discrete exponents E
zi+λ

(i)
m+1h

(Tm+1[−1]ym · Vy) is given by

(
λ(i)
m + λ

(i)
m+1 < λ

(i)
m−1 + λ

(i)
m+1 + 1 < · · · <

λ
(i)
m−k+1 + λ

(i)
m+1 + k − 1 < · · · < λ

(i)
1 + λ

(i)
m+1 +m− 1

)
.

Similarly, the sequence of discrete exponents E
zi+λ

(i)
m+1h

(Tm+1[−1]ym · Uy) is given by

(
0 < λ

(i)
m+1 − λ

(i)
m+2 + 1 < · · · < λ

(i)
m+1 − λ

(i)
m+k + k − 1 < · · · < λ

(i)
m+1 − λ

(i)
m+n + n− 1

)
.

Lemma 4.5.1. If λ is typical, then Vy ∩ Uy = 0.

Proof. Since λ is typical, there exists some i0 ∈ {1, . . . , p} such that λ
(i0)
m > n.

Therefore the largest discrete exponent of Tm+1[−1]ym · Uy at zi0 + λ
(i0)
m+1h is strictly

less than the smallest discrete exponent of Tm+1[−1]ym · Vy at zi0 + λ
(i0)
m+1h, namely,

λ
(i0)
m+1 − λ

(i0)
m+n + n− 1 < n+ λ

(i0)
m+1 6 λ(i0)

m + λ
(i0)
m+1.

Therefore, by the definition of discrete exponents, we have (Tm+1[−1]ym · Uy) ∩

(Tm+1[−1]ym · Vy) = 0, which completes the proof.

Therefore, by Proposition 4.1.1, the operator Rs0(y) is an (m|n)-rational differ-

ence operator.

Remark 4.5.2. If λ is not typical, then the intersection Vy ∩Uy may be non-trivial.

For example, consider the tensor product of the vector representations, namely L(λ) =

(Cm|n)⊗p, and the sequence of polynomials y = (1, . . . , 1). Then we have T1(x) =

(x − z1 + h) · · · (x − zp + h) and Ti(x) = 1 for i = 2, . . . ,m + n. Therefore for the

rational difference operator Rs0(y) = D0̄(y)D−1
1̄

(y), we have

D0̄(y) =
(

1− (x− z1 + h) · · · (x− zp + h)

(x− z1) · · · (x− zp)
τ
)

(1− τ)m−1, D1̄(y) = (1− τ)n. �

Fix a ∈ {0, 1, . . . ,m} and b ∈ {0, 1, . . . , n}. For each 1 6 i 6 p, set

Ai =
(
λ(i)
m + λ

(i)
m+1 < λ

(i)
m−1 + λ

(i)
m+1 + 1 < · · · < λ

(i)
m−a+1 + λ

(i)
m+1 + a− 1

)
,

Bi =
(
0 < λ

(i)
m+1 − λ

(i)
m+2 + 1 < · · · < λ

(i)
m+1 − λ

(i)
m+b + b− 1

)
.
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Lemma 4.5.3. If b 6 λ
(i)
m , then the dominant of Ai tBi is given by

(0 < λ
(i)
m+1 − λ

(i)
m+2 + 1 < . . . < λ

(i)
m+1 − λ

(i)
m+b + b− 1 <

λ(i)
m + λ

(i)
m+1 < · · · < λ

(i)
m−a+1 + λ

(i)
m+1 + a− 1).

If λ
(i)
m−j+1 < b 6 λ

(i)
m−j for some 1 6 j 6 a− 1, then the dominant of Ai tBi is given

by

(0 < λ
(i)
m+1 − λ

(i)
m+2 + 1 < · · · <

λ
(i)
m+1 − λ

(i)
m+b + b− 1 < λ

(i)
m+1 + b < λ

(i)
m+1 + b+ 1 < · · · <

λ
(i)
m+1 + b+ j − 1 < λ

(i)
m−j + λ

(i)
m+1 + j < · · · < λ

(i)
m−a+1 + λ

(i)
m+1 + a− 1).

If λ
(i)
m−a+1 < b, then the dominant of Ai tBi is given by

(0 < λ
(i)
m+1 − λ

(i)
m+2 + 1 < . . . < λ

(i)
m+1 − λ

(i)
m+b + b− 1 <

λ
(i)
m+1 + b < λ

(i)
m+1 + b+ 1 < · · · < λ

(i)
m+1 + b+ a− 1).

Proof. If b 6 λ
(i)
m , the statement is clear. If λ

(i)
m−j+1 < b 6 λ

(i)
m−j for some 1 6 j 6

a − 1. Let λ
(i)
m = `. Since λ(i) is a polynomial glm|n weight, we have λ

(i)
m+`+k = 0 for

k = 1, . . . , b− `. In particular, the last b− ` numbers in Bi are consecutive integers

from λ
(i)
m+1 + ` to λ

(i)
m+1 + b− 1. Adding λ

(i)
m + λ

(i)
m+1 into Bi, the dominant of the new

set is obtained by changing λ
(i)
m + λ

(i)
m+1 to λ

(i)
m+1 + b. We add the numbers of Ai one

by one (from left to right) into Bi. Inductively, adding λ
(i)
m+1 + λ

(i)
m−k+1 + k − 1, if

λ
(i)
m−k+1 < b, then the dominant is obtained by changing λ

(i)
m+1 + λ

(i)
m−k+1 + k − 1 to

λ
(i)
m+1 + b+ k − 1. Therefore the lemma follows.

4.5.3 Polynomials πa,b

Let s ∈ Sm|n be a parity sequence. Let λ = (λ(1), . . . , λ(p)) be a sequence of

polynomial glm|n weights. Let z = (z1, . . . , zp) be an h-generic sequence of complex

numbers. Let T s be a sequence of polynomials associated to s, λ, and z, see (4.11).

We set Ti = T s0
i the polynomials corresponding to the standard parity s0.
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Define polynomials πλ,za,b by

πλ,za,b (x) =

p∏
k=1

a∏
i=1

min{b,λ(k)
m−i+1}∏

j=1

(x− zk + (i+ j − a− b− 1)h). (4.26)

We often abbreviate πλ,za,b to πa,b.

The polynomials T si can be expressed in terms of Ti and πa,b. Recall that we have

s+
i =

m− σs(i), if si = 1,

σs(i)− i, if si = −1,

s−i =

i− σs(i), if si = 1,

σs(i)−m− 1, if si = −1.

(4.27)

Theorem 4.5.4. We have

T si = Tσs(i)[s
−
i ]

πs+
i ,s
−
i

πs+
i +1,s−i

[−1]
, if si = 1; T si = Tσs(i)[s

+
i ]

πs+
i ,s
−
i +1

πs+
i ,s
−
i

[1]
, if si = −1.

Proof. It is not hard to see that

λ
(s,k)
i =

λ
(k)
σs(i) −min

{
s−i , λ

(k)
σs(i)

}
, if si = 1,

λ
(k)
σs(i) + #{j | λ(k)

m−j+1 > s
−
i , j = 1, 2, . . . , s+

i }, if si = −1.

The theorem follows from a direct computation.

Note that polynomials πa,b are discrete versions of πa,b in [HMVY19, equation

(7.1)], even though our definition here is more explicit. In particular, Theorem 4.5.4

is the counterpart of [HMVY19, Theorem 7.2].

The polynomial πa,b is related to the dominants of AitBi for all 1 6 i 6 p. Write

the dominant Ai tBi of Ai tBi as

0 = c
(i)
a+b < c

(i)
a+b−1 + 1 < · · · < c

(i)
a+b−j + j < · · · < c

(i)
1 + a+ b− 1,

where c
(i)
j are computed explicitly from Lemma 4.5.3. Let z̃i = zi + λ

(i)
m+1h and set

Ti(x) =

p∏
k=1

c
(k)
i∏
j=1

(x− z̃k + jh). (4.28)

Proposition 4.5.5. We have

πa,b

a∏
j=1

Tj[j] =
a∏
i=1

(
Tm−a+i[b+ i]Tm+1[i− 1]

)
.

Proof. The lemma is obtained from Lemma 4.5.3 by a direct computation.
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4.5.4 Generating map

Recall the notation from the beginning of Section 4.5.2, where Vy = kerD0̄(y)

and Uy = kerD1̄(y).

For a ∈ {0, 1, . . . ,m}, b ∈ {0, 1, . . . , n}, v1, . . . , va ∈ Vy, u1, . . . , ub ∈ Uy, we define

the function

ya,b = Wr (v1, . . . , va, u1, . . . , ub)[1]πa,bym[a+ b]
Tm+1[a+ b− 1] · · ·Tm+b[a]

Tm[a+ b] · · ·Tm−a+1[b+ 1]
.

We impose the technical condition that ym has only simple roots and is relatively

prime to ym[k] for all non-zero integers k.

Proposition 4.5.6. The function ya,b is a polynomial.

Proof. This proposition is proved in Section 4.5.5.

In the following ,we assume that λ is typical. Set Wy = Vy ⊕ Uy. Given a parity

sequence s and a full superflag F ∈ F s(Wy) generated by a homogeneous basis

{w1, . . . , wm+n}, we define polynomials yi(F ), i = 1, . . . ,m+ n− 1, by the formula

yi(F ) =

ys
+
i ,s
−
i
, if si = 1,

ys+
i ,s
−
i +1, if si = −1,

where we choose {v1, . . . , vm} and {u1, . . . , un} such that the basis {w1, . . . , wm+n} is

associated to {v1, . . . , vm}, {u1, . . . , un}, and s, see Section 4.1.2.

Define the generating map by

βs : F s(Wy)→
(
P(C[x])

)m+n−1
, F 7→ y(F ) = (y1(F ), . . . , ym+n−1(F )).

The following theorem is our main result of this section.

Theorem 4.5.7. For any superflag F ∈ F s(Wy), we have βs(F ) ∈ P s(y,s0). More-

over, the generating map βs : F s(Wy) → P s(y,s0) is a bijection and the complete

factorization $s(F ) of Rs0(y) given by (4.2) coincides with Rs(βs(F )) given by

(4.25).
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Proof. Note that the even case of this theorem is proved in [MV03, Theorem 4.16].

Due to Theorem 4.5.4 and Proposition 4.5.6, the proof is parallel to that of [HMVY19,

Theorem 7.9].

This theorem does not rely on the technical condition imposed above Proposition

4.5.6, see Remark 4.5.10.

4.5.5 Proof of Proposition 4.5.6

We prepare several lemmas which will be used in the proof.

Lemma 4.5.8. For any v ∈ Vy, u ∈ Uy, the function Tm+1ym[1]Wr (v, u) is a polyno-

mial. In particular, if v ∈ Vy, u ∈ Uy are not regular at z, then there exists a c ∈ C

such that (u+ cv)(z − h) = 0.

Proof. The case of gl1|1 is clear. Now we assume that either m > 2 or n > 2.

If the fermionic reproduction in the m-th direction is not applicable, then we

can slightly change ym−1 or ym+1 using bosonic reproduction procedure such that

the fermionic reproduction in the m-th direction can be applied to the new tuple of

polynomials ỹ. Therefore we can assume that the fermionic reproduction in the m-th

direction is applicable to y at the beginning.

It follows from (4.2) and Theorem 4.4.1 that

Tm+1ym[1]Wr (v, u) = T
s

[m]
0

m+1ỹm[−1].

Here ỹm depends on u and v.

Initially, we have v(y) = Tmym−1[−1]/ym and u(y) = ym+1[−1]/(Tm+1[−1]ym).

Generic u and v can be obtained from y using only bosonic reproduction procedures.

Moreover, the polynomial ym never changes. Note that, by Theorem 4.4.1, ỹm is a

polynomial for generic u and v. Therefore the first part of the lemma follows.

Recall that ym has only simple zeros and ym is relatively prime to ym[1]. In

addition, none of zeros of ym belongs to the sets zk+hZ, k = 1, . . . , p. If v ∈ Vy, u ∈ Uy
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are not regular at z, then z is a root of ym. Moreover, v and u have simple pole at

x = z. The second statement follows directly from the first statement.

Suppose V is an r-dimensional space of polynomials with the sequence of discrete

exponents at z given by cr < cr−1 + 1 < · · · < cr−i + i < · · · < c1 + r − 1. Let

Ti(x) = (x− z + h) · · · (x− z + cih), i = 1, . . . , r.

The following lemma is well-known, see e.g. [MTV08, Theorem 3.3].

Lemma 4.5.9. Let f1, . . . , fi ∈ V , then Wr (f1, . . . , fi) is divisible by
∏i

j=1Tr+1−j[i−

j].

Proof of Proposition 4.5.6. It is clear that we only need to consider the case when

v1, . . . , va, u1, . . . , ub are linearly independent. The rational function ya,b can only have

poles at zi + hZ, 1 6 i 6 p, and at zeros of the product of polynomials
∏a+b

j=1 ym[j].

Denote by Wa,b the space of polynomials spanned by ṽj := Tm+1[−1]ymvj, ũk :=

Tm+1[−1]ymuk, 1 6 j 6 a and 1 6 k 6 b, then Ez̃i(Wa,b) dominates Ai tBi, where

z̃i = zi+λ
(i)
m+1h. Therefore it follows from Lemma 4.5.9 that Wr (ṽ1, . . . , ṽa, ũ1, . . . , ũb)

is divisible by
∏a+b

j=1 Tj[j − 1], where Tj are defined in (4.28). It follows from Propo-

sition 4.5.5 that the function ya,b is regular at zi + hZ, 1 6 i 6 p.

Write ym =
∏r

i=1(x − z′i + h), then by assumption z′i − z′j /∈ hZ for 1 6 i < j 6

r. It follows from [MTV07, Corollary 7.5] that Ez′i
(span〈ṽ1, . . . , ṽa〉) dominates the

partition (0 < 2 < 3 < · · · < a) with a parts and Ez′i
(span〈ũ1, . . . , ũb〉) dominates the

partition (0 < 2 < 3 < · · · < b) with b parts. Therefore it follows from Lemma 4.5.8

that Ez′i
(Wa,b) dominates the partition (0 < 2 < 3 < · · · < a + b) with a + b parts.

Hence, by Lemma 4.5.9, Wr (ṽ1, . . . , ṽa, ũ1, . . . , ũb) is divisible by
∏a+b

j=2 ym[j − 2]. In

particular, Wr (v1, . . . , va, u1, . . . , ub)ym[a+ b− 1] is regular at zeros of the product of

polynomials
∏a+b

j=1 ym[j − 1].

Remark 4.5.10. If λ is typical, the proof of Proposition 4.5.6 can be simplified as

follows. Since λ is typical, generically the reproduction procedure is applicable for all

parity sequences and all directions. Therefore, it follows from Theorem 4.4.1 that ya,b
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is a polynomial for generic v1, . . . , va, u1, . . . , ub. Hence ya,b is a polynomial for all

v1, . . . , va, u1, . . . , ub.

4.6 Quasi-periodic Case

In this section, we generalize our results to the quasi-periodic case.

4.6.1 Twisted transfer matrix and Bethe ansatz

We follow the notation in Section 4.2.2.

Let κ = (κ1, . . . , κm+n) be a sequence of complex numbers such that ehκi 6= ehκj

for 1 6 i < j 6 m+ n. Let Qκ be the diagonal matrix diag(ehκ1 , . . . , ehκm+n). Define

the twisted transfer matrix Tκ(x) by

Tκ(x) = str(QκL(x)) =
m+n∑
i=1

(−1)|i|ehκiLii(x).

It is known that the twisted transfer matrices commute, [Tκ(x1), Tκ(x2)] = 0. More-

over, Tκ(x) commutes with the subalgebra U(h).

The Bethe ansatz equation associated to s, z, λ, κ, and l is a system of algebraic

equations in variables t:

eh(κi−κi+1)

p∏
k=1

t
(i)
j − zk + siλ

(s,k)
i h

t
(i)
j − zk + si+1λ

(s,k)
i+1 h

li−1∏
r=1

t
(i)
j − t

(i−1)
r + sih

t
(i)
j − t

(i−1)
r

×
li∏
r=1
r 6=j

t
(i)
j − t

(i)
r − sih

t
(i)
j − t

(i)
r + si+1h

li+1∏
r=1

t
(i)
j − t

(i+1)
r

t
(i)
j − t

(i+1)
r − si+1h

= 1,

(4.29)

where i = 1, . . . ,m+ n− 1, j = 1, . . . , li.

After making cancellations as in (4.7), we require the solutions do not make the

remaining denominators in (4.29) vanish.

We also impose the same condition, see Section 4.2.2, for variables which cor-

respond to a simple odd root of the same color. Suppose (αsi , α
s
i ) = 0 for some i.



105

Consider the BAE for t related to t
(i)
j with all t

(a)
b fixed, where a 6= i and 1 6 b 6 la,

this equation does not depend on j. Let t
(i)
0 be a solution of this equation with mul-

tiplicity r. Then we require that the number of j such that t
(i)
j = t

(i)
0 is at most r, c.f.

Theorem 4.6.1.

Suppose that λ is a sequence of polynomial glm|n weights and t a solution of the

BAE (4.29) associated to s, z, λ, κ, and l. Similar to Theorem 4.2.5, see [BR09], if

the vector ws(t, z) ∈ L(λ, z) is well-defined and non-zero, then ws(t, z) ∈ L(λ, z) is

an eigenvector of twisted transfer matrix, Tκ(x)ws(t, z) = Eκ(x)ws(t, z), where the

eigenvalue Eκ(x) is given by

Eκ(x) =
m+n∑
a=1

sa e
hκa

p∏
k=1

x− zk + saλ
(s,k)
a h

x− zk

la−1∏
j=1

x− t(a−1)
j + sah

x− t(a−1)
j

la∏
j=1

x− t(a)
j − sah

x− t(a)
j

.

(4.30)

Let y = (y1, . . . , ym+n−1) be a sequence of polynomials representing the solution

t, then

Eκ(x) = E(y,κ)(x) =
m+n∑
a=1

sa e
hκa

T sa
T sa [sa]

ya−1[−sa]
ya−1

ya[sa]

ya
.

4.6.2 Reproduction procedure and rational difference operators

Recall the notation given at the beginning of Section 4.4.1.

Set κ[i] = (κ1, . . . , κi+1, κi, . . . , κm+n).

Theorem 4.6.1. Let y = (y1, . . . , ym+n−1) be a sequence of polynomials generic with

respect to s, λ, and z, such that deg yk = lk, k = 1, . . . ,m+ n− 1.
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1. The sequence y represents a solution of the BAE (4.29) associated to s, z, λ,

κ, and l, if and only if for each i = 1, . . . ,m + n − 1, there exists a unique

polynomial ỹi, such that

Wr si
(
yi, e

(κi−κi+1)xỹi
)

= e(κi−κi+1)xT si
(
T si+1

)−1
yi−1[−si]yi+1, if si = si+1,

(4.31)

yi ỹi[−si] = ehκiϕsi yi−1[−si]yi+1 − ehκi+1ψsi yi−1yi+1[−si], if si 6= si+1.

(4.32)

2. If y[i] = (y1, . . . , ỹi, . . . , ym+n−1) is generic with respect to s[i], λ, and z, then

y[i] represents a solution of the BAE (4.29) associated to s[i], λ, κ[i], z, and

l[i], where l[i] = (l1, . . . , l̃i, . . . , lm+n−1), l̃i = deg ỹi.

Proof. For part (i), the case of (4.31) is proved in [MV08, Theorem 7.4]. The proofs

of (4.32) in part (i) and part (ii) are similar to that of Theorem 4.4.1.

Thanks to Theorem 4.6.1, we define similarly the twisted bosonic and fermionic

reproduction procedures in i-th direction, the twisted glm|n population P (y,κ) of

solutions of the BAE associated to s, z, λ, originated at (y,κ). Here the reproduction

procedure in i-th direction sends (y,κ) to (y[i],κ[i]). Note that for both twisted

bosonic and fermionic reproduction procedures, the sequence κ is changed to κ[i].

Define a rational difference operator Rs(y,κ) over K = C(x),

Rs(y,κ) =
−→∏

16i6m+n

(
1− ehκi T

s
i yi−1[−si]yi[si]
T si [si]yi−1yi

τ
)si
. (4.33)

Theorem 4.6.2. Let P be a twisted glm|n population. Then the rational difference

operator Rs(y,κ) does not depend on a choice of (y,κ) in P .

Proof. The proof is similar to that of Theorem 4.4.3.

Proposition 4.6.3. Let y = (y1, . . . , ym+n−1) be a sequence of polynomials such that

there exists a sequence of polynomials y[i] = (y1, . . . , ỹi, . . . , ym+n−1) satisfying (4.31)

if si = si+1 or (4.32) if si = −si+1. Then E(y,κ)(x) = E(y[i],κ[i])(x).



107

Proof. The proof is similar to proofs of Lemmas 4.3.2 and 4.3.4.

Let σi be the permutation (i, i + 1) in the symmetric group Sm+n. There is a

natural action of Sm+n on the set of sequences of m+ n complex numbers. Namely,

for a sequence κ, we have σiκ = κ[i].

Theorem 4.6.4. The map P (y,κ) → Sm+nκ given by (ỹ, κ̃) 7→ κ̃ is a bijection

between the twisted population P (y,κ) and the orbit of κ under the action of sym-

metric group Sm+n. In particular, it gives a bijection between the twisted population

P (y,κ) and the symmetric group Sm+n.

Proof. The proof is similar to that of [MV08, Corollary 4.12].
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5. SUMMARY

The reproduction procedure produces a family P of other solutions called the popu-

lation with a given solutions of the glm|n Gaudin Bethe ansatz equation associated to

a tensor product of polynomial modules. We associate a rational pseudodifferential

operator R and a superspace W of rational functions to a population.

If at least one module is typical then the population P is canonically identified

with the set of minimal factorizations of R and with the space of full superflags in

W .

We also establish a duality of the non-periodic Gaudin model associated with

superalgebra glm|n and the non-periodic Gaudin model associated with algebra glk.

We conjecture that the singular eigenvectors (up to rescaling) of all glm|n Gaudin

Hamiltonians are in a bijective correspondence with certain superspaces of rational

functions.

The reproduction procedure produces a family P of other solutions called the pop-

ulation with a given solutions of the Bethe ansatz equations of the non-homogeneous

periodic XXX model associated to super Yangian Y(glm|n).

We associate a rational difference operator D and a superspace of rational func-

tions W to a population. We show that the set of complete factorizations of D is

in canonical bijection with the variety of superflags in W and that each generic su-

perflag defines a solution of the Bethe ansatz equation. We also give the analogous

statements for the quasi-periodic supersymmetric spin chains.
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6. RECOMMENDATIONS

Here are some possible future directions of research.

Conjecture 2.7.1 says the eigenvalues of the Bethe algebra Bm|n acting on the Bethe

vector v(s,y) can be found by expanding the corresponding operator RP , see (2.22).

In the glk case, this conjecture is first proved in [MTV06b] by an explicit computation.

Later, this conjecture is proved again in [MM17] by the affine Harish-Chandra map

and a theorem in [FFR94]. The theorem in [FFR94] relates the eigenvalues of the

Bethe algebra with certain Cartan algebra-valued rational functions.

The affine Harish-Chandra map in the glm|n case is known. It seems that a the-

orem similar to the one in [FFR94] should hold in the glm|n case. In order to prove

the theorem, one need to show some properties in the super Wakimoto module,

see, e.g., [IK02]. In [FFR94], the image of Bk under affine Harish-Chandra map is

isomorphic to the classical W-algebra. Recently, the supersymmetric W-algebra is

given in [MRS19], where a finite set of free generators in the case of A(n, n ± 1) is

provided. The classical supersymmetric W-algebra should be obtained by taking a

certain limit. It is interesting to see how the Bethe algebra Bm|n is related with the

classical supersymmetric W-algebra. It is also interesting to construct the classical

W-algebra in the case of A(m,n) for arbitrary m,n.

Conjecture 2.7.1 in the case of n = 0 is proved in [MTV07], which requires to

interpret the glm space as an intersection of Schubert cells. The obstacles in the glm|n

case is obvious: there is no such Grassmannian. From some examples we computed,

it seems that we need to consider a space G: each point in G is (U, V, f), where U, V

are subspaces of C[x], f ∈ C[x], such that for any u ∈ U , v ∈ V , we have f |Wr (u, v).

Conjecture 2.7.1 seems doable when V is one-dimensional, namely in the glm|1 case.
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In Theorem 3.4.2, we discover the duality between the images of Bm|n and Bk,

which suggests there should be a duality between the differential operators associated

to the glk populations and the rational pseudodifferential operators associated to the

glm|n populations. In the case of m = 0, this duality is given in [TU19]. In some

sense, [TU19] manages to expand the inverses of differential operators. Then in the

case of m 6= 0 case, we expect that a similar approach should work.

We were informed recently that certain order one pseudodifferential operators are

classified by Wilson’s Adelic Grassmannian, see [W93]. This connection may provide

another geometric object we are trying to find for the glm|n spaces.

The Weyl module associated to slm|n[t] was introduced in [CLS19] with certain

restrictions on m,n. The examples we computed for Conjecture 2.7.1 involve com-

puting the graded characters of some Weyl modules M. The glm|n[t]-module M,

roughly speaking, is a finite dimensional highest weight module generated by the

highest weight vectors v with highest glm|n weight kω1, where ω1 is the first funda-

mental glm|n weight.

In the n = 0 case, the graded character of Msing
λ , the glm singular subspaces of

weights λ, is given by a certain Kostka polynomial, see, e.g., [CL05]. It seems that

in the glm|n case, the graded character ofMsing
λ is still given by a Kostka polynomial.

The reproduction procedure for other types of lie superalgebras should be devel-

oped. In the osp(1|2) case, the reproduction procedure has some interesting phe-

nomenon: the reproduction procedure is almost the same as the one in the sl2 case.

We are still trying to associated rational pseudodifferential operators to such popu-

lations.



REFERENCES



111

REFERENCES

[BBK17] L. Banchi, D. Burgarth, and M. J. Kastoryano, Driven Quantum Dy-
namics: Will It Blend?, Phys. Rev. X, 7 (2017), 041015.

[BR08] S. Belliard, E. Ragoucy, The nested Bethe ansatz for ‘all’ closed spin
chains, J. Phys A: Math. and Theor. 41 (2008), 295202.

[BR09] S. Belliard, E. Ragoucy, The nested Bethe ansatz for ‘all’ open spin
chains with diagonal boundary conditions, J. Phys A: Math. and Theor.
42 (2009), 205203.

[CDSK12] S. Carpentier, A. De Sole and V.G. Kac, Some algebraic properties of
differential operators, J. Math. Phys. 53 (2012), no. 6, 063501, 12 pp.

[CDSK12b] S. Carpentier, A. De Sole and V.G. Kac, Rational matrix pseudodiffer-
ential operators, Selecta Math. (N.S.) 20 (2014), no. 2, 403–419.

[CFR09] A. Chervov, G. Falqui, and V. Rubtsov, Algebraic properties of Manin
matrices, I. Adv. in Appl. Math. 43 (2009), no. 3, 239–315.

[CL05] V. Chari, S. Loktev, Weyl, Demazure and fusion modules for the current
algebra of slr+1, Adv. Math. 207 (2006), no. 2, 928–960.

[CLS19] L. Calixto, J. Lemay, and A. Savage, Weyl modules for Lie superalgebras,
Proc. Amer. Math. Soc. 147 (2019), 3191-3207.

[CW12] S-J. Cheng, W. Wang, Dualities and Representations of Lie Superalge-
bras, American Mathematical Society, Providence, RI, 2012.

[F04] E. Frenkel, Opers on the projective line, flag manifolds and Bethe anzatz,
Mosc. Math. J. 4 (2004), no. 3, 655705, 783.

[FFR94] B. Feigin, E. Frenkel, and N. Reshetikhin, Gaudin model, Bethe ansatz
and critical level, Comm. Math. Phys. 166 (1994), no. 1, 27–62.

[FH15] E. Frenkel, D. Hernandez, Baxter’s relations and spectra of quantum
intergrable models, Duke Math. J. 164 (2015), no. 12, 2407–2460.

[FJMM17] B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Finite type modules and
Bethe ansatz equations, Ann. Henri Poincaré 18 (2017), no. 8, 2543–
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APPENDIX A: THE BETHE ANSATZ FOR Y(gl1|1)

In this section, we give the basics of Bethe ansatz for gl1|1 XXX model (supersym-

metric spin chains associated to gl1|1). We follow the notation of Section 4.3.2. We

also set h = 1.

Super Yangian Y(gl1|1) and its representations

Recall that for Y(gl1|1) we have

[Lii(x1),Lii(x2)] = 0, Lij(x1)Lij(x2) =
x1 − x2 − (−1)|i|

x2 − x1 − (−1)|i|
Lij(x2)Lij(x1), (1)

Lkk(x1)Lij(x2) =
x1 − x2 − (−1)|i|

x1 − x2

Lij(x2)Lkk(x1) +
(−1)|i|

x1 − x2

Lij(x1)Lkk(x2), (2)

where i 6= j and i, j, k ∈ {1, 2}.

In what follows we work with the standard parity sequence s0.

The description of finite dimensional irreducible representations of Y(gl1|1) is well

known.

Let λ = (λ1, λ2) be a gl1|1 weight, we say that λ is non-degenerate if λ1 + λ2 6= 0.

Clearly, Lλ is two-dimensional if λ is non-degenerate and one-dimensional otherwise.

Let λ = (λ(1), . . . , λ(p)) be a sequence of non-degenerate gl1|1 weights, z a sequence

of complex numbers. Let λ(k) = (ak, bk), ak, bk ∈ C,

a =

p∑
k=1

ak, b =

p∑
k=1

bk, ϕ(x) =

p∏
k=1

(x− zk + ak), ψ(x) =

p∏
k=1

(x− zk − bk).

Theorem .0.1 ( [Zha95]). Every finite dimensional irreducible representation of the

algebra Y(gl1|1) is a tensor product of evaluation Y(gl1|1)-modules up to twisting by a

one-dimensional Y(gl1|1)-module. Moreover, L(λ, z) is irreducible if and only if ϕ(x)

and ψ(x) are relatively prime.
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Clearly, the Y(gl1|1)-module L(λ, z) is irreducible if and only if zi−zj−ai−bj 6= 0

for all i 6= j. Moreover, it satisfies the binary property. Namely, L(λ, z) is irreducible

if and only if Lλ(i)(zi) ⊗ Lλ(j)(zj) is irreducible for all 1 6 i < j 6 p. Furthermore,

every finite dimensional irreducible representation of Y(gl1|1) has dimension 2r for

some non-negative integer r.

Let v
(k)
1 be the highest weight vector of Lλ(k) with respect to the standard root

system, and v
(k)
2 = e21v

(k)
1 . Then v

(k)
1 , v

(k)
2 is a basis of Lλ(k) . We use the shorthand

notation |0〉 for v
(1)
1 ⊗ · · · ⊗ v

(p)
1 .

Let Eij, i, j = 1, 2, be the linear operator in End(Lλ(k)) of parity |i|+ |j| such that

Eijv
(k)
r = δjrv

(k)
i for r = 1, 2.

The R-matrix R(x) ∈ End(Lλ(i))⊗ End(Lλ(j)) is given by

R(x) = E11 ⊗ E11 −
bi + aj + x

ai + bj − x
E22 ⊗ E22 +

bj − bi − x
ai + bj − x

E11 ⊗ E22

+
ai − aj − x
ai + bj − x

E22 ⊗ E11 −
ai + bi

ai + bj − x
E12 ⊗ E21 +

aj + bj
ai + bj − x

E21 ⊗ E12.

Clearly, Lλ(i)(zi)⊗ Lλ(j)(zj) is irreducible if and only if R(zi − zj) is well-defined and

invertible.

Define an anti-automorphism ι : Y(gl1|1) → Y(gl1|1) by the rule, ι(Lij(x)) =

(−1)|i||j|+|i|Lji(x), i, j = 1. One has ι(X1X2) = (−1)|X1||X2|ι(X2)ι(X1) for X1, X2 ∈

Y(gl1|1). Recall that T (x) = L11(x)− L22(x), therefore ι(T (x)) = T (x).

The Shapovalov form Bλ(i) on Lλ(i) is a bilinear form such that

Bλ(i)(eijw1, w2) = (−1)(|i|+|j|)|w1|Bλ(i)(w1, (−1)|i||j|+|i|ejiw2),

for all i, j and w1, w2 ∈ Lλ(i) , and Bλ(i)(v
(i)
1 , v

(i)
1 ) = 1. Explicitly, it is given by

Bλ(i)(v
(i)
1 , v

(i)
1 ) = 1, Bλ(i)(v

(i)
1 , v

(i)
2 ) = Bλ(i)(v

(i)
2 , v

(i)
1 ) = 0, Bλ(i)(v

(i)
2 , v

(i)
2 ) = −(ai + bi).

The Shapovalov forms Bλ(i) on Lλ(i) induce a bilinear form Bλ =
⊗p

k=1 Bλ(k) (following

the usual sign convention) on L(λ).

Let Rλ,z ∈ End(L(λ)) be the product of R-matrices,

Rλ,z =
−→∏

16i6p

−→∏
i<j6p

R(i,j)(zi − zj).
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Define a bilinear form Bλ,z on L(λ, z) by

Bλ,z(w1, w2) = Bλ(w1, Rλ,zw2),

for all w1, w2 ∈ L(λ, z).

One shows that, c.f. [MTV06, Section 7],

Bλ,z(|0〉, |0〉) = 1, Bλ,z(Xw1, w2) = (−1)|X||w1|Bλ,z(w1, ι(X)w2),

for all X ∈ Y(gl1|1), w1, w2 ∈ L(λ, z). In addition, if L(λ, z) is irreducible, then Bλ,z

is non-degenerate.

Bethe ansatz for gl1|1 XXX model

In this section, we study the spectrum of the transfer matrix T (x) = L11(x) −

L22(x).

Let λ = (λ(1), . . . , λ(p)) be a sequence of non-degenerate gl1|1 weights. Recall

from Section 4.3.2 that if y = (x − t1) · · · (x − tl) is a divisor of ϕ(x) − ψ(x), then

t = (t1, . . . , tl) is a solution of the BAE associated to s0, λ, z, and l.

It is convenient to renormalize the Bethe vector w(t, z) associated to t, see (4.9),:

w̃(t, z) = c0w(t, z), c0 =
l∏

i=1

p∏
k=1

(ti − zk).

The factor c0 clears up the denominators and the Bethe vector w̃(t, z) is well-defined

for all z, t.

The following theorem is well known, see e.g. [BR08].

Theorem .0.2. If the Bethe vector w̃(t, z) is non-zero, then w̃(t, z) is an eigenvector

of the transfer matrix T (x) with the corresponding eigenvalue

E(x) =
y[1]

y
(ϕ− ψ)

p∏
k=1

(x− zk)−1. (3)
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Proof. For j = 1, 2, one has the following relation,

Ljj(x)L12(t1) · · · L12(tl) = ξ(x; t)L12(t1) · · · L12(tl)Ljj(x)

+
l∑

i=1

ξi(x; t)L12(x)L12(t1) · · · L̂12(ti) · · · L12(tl)Ljj(ti).

(4)

Here the symbol L̂12(ti) means the factor L12(ti) is skipped and the functions ξ(x; t)

and ξi(x; t) are given by

ξ(x; t) =
∏

16r6l

x− tr − 1

x− tr
=
y[1]

y
,

ξi(x; t) = (−1)i−1 1

x− ti

∏
16r<i

ti − tr + 1

ti − tr

∏
i<r6l

ti − tr − 1

ti − tr
.

We have

T (x)|0〉 = (ϕ− ψ)

p∏
k=1

(x− zk)−1|0〉.

Since t is a solution of the BAE, we have c0T (ti)|0〉 = 0 for i = 1, . . . , l. Therefore it

follows from (4) that

T (x)w̃(z, t) = c0(L11(x)− L22(x))L12(t1) · · · L12(tl)|0〉

=
y[1]

y
(ϕ− ψ)

p∏
k=1

(x− zk)−1w̃(z, t).

Recall that the transfer matrix T (x) commutes with the subalgebra U(gl1|1) of

Y(gl1|1).

Proposition .0.3. The Bethe vector w̃(t, z) is gl1|1 singular.

Proof. By (4.5), one has the following relation,

[L(1)
21 ,L12(t1) · · · L12(tl)] =

l∑
i=1

νi(t)L12(t1) · · · L̂12(ti) · · · L12(tl)T (ti).
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The functions νk(t) are given by

νi(t) = (−1)i
∏

16r<i

ti − tr + 1

ti − tr

∏
i<r6l

ti − tr − 1

ti − tr
.

Note that L(1)
21 |0〉 = 0 and c0T (ti)|0〉 = 0 for i = 1, . . . , l, therefore the statement

follows.

Proposition .0.4. Suppose ϕ 6= ψ. Let t and t̃ be two different solutions of Bethe

ansatz equation associated to s0, λ, z, then the Bethe vectors w̃(t, z) and w̃(t̃, z) are

orthogonal with respect to the form Bλ,z.

Proof. Let y and ỹ represent t and t̃ respectively. Note that we have

Bλ,z(T (x)w̃(t, z), w̃(t̃, z)) = Bλ,z(w̃(t, z), T (x)w̃(t̃, z)).

It follows from Theorem .0.2 that(y[1]

y
− ỹ[1]

ỹ

)
(ϕ− ψ)

p∏
k=1

(x− zk)−1Bλ,z(w̃(t, z), w̃(t̃, z)) = 0.

Since y and ỹ are linearly independent and ϕ 6= ψ, the statement follows.

The following theorem is a particular case of [HLPRS18, Theorem 4.1] which

asserts that the square of the norm of the Bethe vector is essentially given by the

Jacobian of the BAE.

Theorem .0.5 ( [HLPRS18]). The square of the norm of the Bethe vector w̃(t, z) is

given by

Bλ,z(w̃(t, z), w̃(t, z)) = (−1)l(l−1)/2
∏

16i<j6l

(ti − tj − 1

ti − tj

)2

×
l∏

i=1

p∏
k=1

(
(ti − zk + ak)(ti − zk − bk)

) l∏
i=1

( p∑
k=1

ak + bk
(ti − zk + ak)(ti − zk − bk)

)
.

�

Theorem .0.6. Suppose a + b 6= 0. For generic z, the Bethe ansatz is complete. In

other words, there are exactly 2p−1 solutions ti, i = 1, . . . , 2p−1, to the BAE associated

to s0, λ, z, and l such that the corresponding Bethe vectors w̃(ti, z), i = 1, . . . , 2p−1,

form a basis of L(λ, z)sing.
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Proof. Since a + b 6= 0, we have deg(ϕ − ψ) = p − 1. It is not difficult to see that

dimL(λ)sing = 2p−1 and for generic z there are exactly 2p−1 distinct monic divisors

of the polynomial ϕ − ψ. Each monic divisor of ϕ − ψ corresponds to a solution

ti, i = 1, . . . , 2p−1, of BAE associated to s0, λ, z, with possibly different l. Due

to Proposition .0.3 and Theorem .0.5, the Bethe vectors w̃(ti, z) are singular and

non-zero. Moreover, it follows from Proposition .0.4 that w̃(ti, z), i = 1, . . . , 2p−1, are

linearly independent and hence form a basis of L(λ, z)sing.

Let λ(k) = (1, 0) and zk = 0 for all k = 1, . . . , p. This case is the homogeneous

super XXX model. We obtain the completeness of homogeneous super XXX model.

Let θ be a primitive p-th root of unity. Set ϑi = 1/(θi − 1), i = 1, . . . , p− 1.

Corollary .0.7. The Bethe ansatz is complete for super homogeneous XXX model.

Explicitly, the Bethe vectors form a basis of
(
(C1|1)⊗p

)sing
and the transfer matrix T (x)

acts on
(
(C1|1(0))⊗p

)sing
diagonally with simple spectrum. Moreover, the spectrum of

T (x) acting on
(
(C1|1(0))⊗p

)sing
is given by{(x− ϑi1 − 1) · · · (x− ϑil − 1)

(x− ϑi1) · · · (x− ϑil)
·(x+ 1)p − xp

xp
,

1 6 i1 < i2 < · · · < il 6 p− 1, l = 0, . . . , p− 1
}
.

Proof. Note that ϕ(x) = (x + 1)p and ψ(x) = xp. Clearly, we have ϕ − ψ = p(x −

ϑ1) · · · (x− ϑp−1). It is easy to see that ϑi− ϑj 6= 0, 1 for i 6= j and ϑi /∈ Z. Therefore

we have exactly 2p−1 distinct monic divisors

(x− ϑi1) · · · (x− ϑil), 1 6 i1 < i2 < · · · < il 6 p− 1, l = 0, . . . , p− 1,

of the polynomial ϕ−ψ and hence 2p−1 different solutions ti, i = 1, . . . , 2p−1, of BAE.

Therefore, as in Theorem .0.6, the Bethe wectors w̃(ti, z), i = 1, . . . , 2p−1, form a

basis of
(
(C1|1(0))⊗p

)sing
.
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