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ABSTRACT 

Chromosomal mechanisms of sex determination vary greatly in phylogenetically closely 

related species, indicative of rapid evolutionary rates. Sex chromosome karyotypes are generally 

conserved within families; however, many species have derived sex chromosome configurations. 

Insects display a plethora of sex chromosome systems due to rapid diversification caused by 

changes in evolutionary processes within and between species. A good example of such a system 

are insects in the blow fly family Calliphoridae. While cytogenetic studies observe that the 

karyotype in blow flies is highly conserved (five pairs of autosomal chromosomes and one pair 

sex chromosome), there is variation in sex determining mechanisms and sex chromosome structure 

within closely related species in blow flies. The evolutionary history of sex chromosomes in blow 

fly species have not been fully explored. Therefore, the objective of this research was to 

characterize the sex chromosome structures in four species of blow flies and investigate the 

selective forces which have played a role in shaping the diverse sex chromosome system observed 

in blow flies. The blow fly species used in this study are Phormia regina, Lucilia cuprina, 

Chrysomya rufifacies and Chrysomya albiceps. Phormia regina,and Lucilia cuprina have a 

heteromorphic sex chromosome system and are amphogenic (females produce both male and 

female offspring in equal ratio). In contrast, Chrysomya rufifacies and Chrysomya albiceps, have 

a homomorphic sex chromosome system, are monogenic (females produce unisexual progeny), 

have two types of females (arrhenogenic females – male producers and thelygenic females – 

female producers), and sex of the offspring is determined by the maternal genotype.  

To accomplish these tasks, a total of nine male and female individual draft genomes for 

each of the four species (including three individual draft genomes of Chrysomya rufifacies – male, 

and the two females) were sequenced and assembled providing genomic data to explore sex 

chromosome evolution in blow flies. Whole genome analysis was utilized to characterize and 

identify putative sex chromosomal sequences of the four blow fly species. Genomic evidence 

confirmed the presence of genetically differentiated sex chromosomes in P. regina and L. cuprina; 

and genetically undifferentiated sex chromosomes in C. rufifacies and C. albiceps. Furthermore, 

comparative analysis of the ancestral Dipteran sex chromosome (Muller element F in Drosophila) 

was determined to be X-linked in P. regina and L. cuprina contributing to sex chromosome 

differentiation but not sex-linked in C. rufifacies and C. albiceps. Evolutionary pressures are often 
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quantified by the ratio of substitution rates at non-synonymous (dN) and synonymous (dS) sites. 

Substitution rate ratio analysis (dN/dS) of homologous genes indicated a weaker purifying 

selection may have contributed to the loss of sex-linked genes in Muller element F genes of the 

undifferentiated sex chromosome as compared to the differentiated sex chromosome system. 

Overall, the results presented herein greatly expands our knowledge in sex chromosome evolution 

within blow flies and will reinforce the study of sex chromosome evolution in other species with 

diverse sex chromosome systems. 
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 INTRODUCTION  

1.1 Origin and Evolution of Sex Chromosomes 

Sex chromosomes are one of the main biological components that drive and facilitate 

sexual differentiation and dimorphism between sexes in eukaryotes [1, 2]. In a given species, sex 

chromosomes pairs differ between the sexes and contribute to the divergent phenotypes observed 

between males and females in behavior, morphology, and physiology [3]. For most eukaryotic 

organisms, sex is determined by the presence of heteromorphic sex chromosomes [4, 5]. The sex 

chromosomes can be XY for species with male heterogamety  (for example humans), where males 

are XY and females are XX (using an XX/XY sex-determining system ) or ZW for species with 

female heterogamety (for example birds [6], and butterflies [7]) where females are ZW and males 

are ZZ (using a ZZ/ZW sex-determining system) [4, 8-10]. Sex chromosome evolution postulates 

that heteromorphic sex chromosomes originated from a pair of ordinary homologous autosomes, 

upon which a sex-determining gene was acquired on one of the homologous chromosomes [9, 11, 

12]. Sexually antagonistic mutations which are mutations beneficial for one sex but harmful for 

the other, begin to accumulate in the region close to the newly acquired sex-determining gene 

resulting in selective pressures that favor the suppression or elimination of recombination between 

the new proto-X/Y or Z/W chromosomes [11, 12]. Onset of reduction of recombination (restriction 

of recombination) results in the accumulation of deleterious mutations in the sex-limited 

chromosome (Y/W) which begin to allow the sex chromosomes to diverge both functionally and 

morphologically. Distinct differences begin to form between the X (Z) and Y(W), with Y(W) 

degeneration due to lose of active genes, thus evolving into heteromorphic and differentiated sex 

chromosomes [12-15]. In some extreme cases, there is a continual degeneration of the Y(W), 

leading to a loss of functional genes on the Y(W) chromosome. This results in an ultimate loss of 

the Y(W) chromosome resulting to XX/X0 (ZZ//Z0) sex system (for example some mole voles 

[16], and some grasshoppers species [17]).  

The underlying biology and traditional view of sex chromosome evolution has mostly 

stemmed from a few notable well–studied model organisms, specifically humans and Drosophila 

melanogaster (the common fruit fly) [11].  The standard default theme here is the presence of X(Z) 

and Y(W) heteromorphic sex chromosomes with a differentiated Y(W) are characterized as old 
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sex chromosomes [9]. In humans, the X and Y chromosome originated ~200 – 300 million years 

ago (mya) in eutherian mammals [11, 12] while Drosophila originated ~60 mya [18]. This ‘simple’ 

design XX/XY (ZZ/ZW) does not, however, reflect the variety of sex chromosome systems present. 

The existence of homomorphic sex chromosomes proves how labile sex chromosome evolution is. 

Sex chromosomes which display low levels of differentiation are usually considered to be 

evolutionarily young and at the initial stages of evolution [19, 20]. The expectation is that they 

will eventually differentiate. For example, the homomorphic sex chromosomes of Drosophila 

miranda evolved ~1mya; meaning they are still recombining [20], and the neo-Y (chromosome 

transforming into sex chromosome) has undergone some degeneration over time and its sex 

chromosomes are in the process of differentiating [20-22].  

Examples of organisms which display homomorphic sex chromosomes include some birds 

[23, 24], snakes [25], and insects (mosquitoes of the family Culicidae) [26]. Some organisms, (for 

example snakes) are unique in that they possess variation in the level of sex chromosome 

heteromorphism [25, 27]. Snakes exhibit female heterogametic sex chromosomes (ZZ males/ZW 

females). Snakes in the families Pythonidae (pythons) and Boidae (boas) have homomorphic sex 

chromosomes where the Z and W chromosomes appear undifferentiated at the cytological level, 

while those within the family Elapidae and Viperidae have a highly degenerated W [25, 27]. In 

contrast, the Colubridae family appear to be have moderately differentiated Z and W chromosome 

karyotypes and are suggested to be at an intermediate stage of sex chromosome evolution [25, 27]. 

Mosquitoes follow a similar system. Mosquitoes in the genus Aedes and Culex (subfamily 

Culicinae) have a male determining locus located in a morphologically undifferentiated 

(homomorphic) sex chromosome [28, 29]. In contrast mosquitoes within the Anophelinae 

subfamily have fully morphologically differentiated (heteromorphic) sex chromosomes (XY) [28, 

29].  

As with most of nature, not all homomorphic sex chromosomes are young. Some bird 

species (emus [23]) and mosquito species (Aedes [29]) have old homomorphic sex chromosomes, 

which have not diverged from their ancestral state. Mapping studies show that emus sex 

chromosomes are largely homologous with only a small differentiated region [30, 31]. In contrast, 

Aedes mosquito has genetically differentiated homomorphic sex chromosomes. The differentiated 

region occurs over a much larger region than the sex determining region (~40% of the whole sex 

chromosome) [28]. It is not quite clear why there is a lack of differentiation in some lineages; 
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however, some evolutionary models have been put forth to explain possible causes. Suppression 

of recombination is one of the strategies to resolve conflict caused by the presence of sexually 

antagonistic mutations which favor either sex (sex-biased genes). It does this in order to eliminate 

deleterious effects of a sexually antagonistic allele which may be harmful to the sex it does not 

benefit [32, 33]. However, in old homomorphic systems, the selective pressure to abolish 

recombination may be eliminated due to the evolution of sex biased expression at sexually 

antagonistic alleles along the protosex chromosomes (newly evolved sex chromosome) [23].  

Other examples of the evolutionary lability of sex chromosome evolution involves the 

formation of new sex chromosomes by the translocation or fusion of a differentiated sex 

chromosome with autosomes to create neo-sex chromosomes [20, 34], or the transposition of a 

dominant sex determining gene to an autosome initiating the cycle of sex chromosome 

differentiation, from one autosome to another [1]. Drosophila miranda has recently formed new 

sex chromosomes pair (neo-sex chromosomes) due to a fusion of an autosome to the Y 

chromosome [20, 21]. The neo-Y chromosome is therefore in transition from an ordinary autosome 

into a degenerate Y chromosome. This is evidenced by the presence of non-functional genes 

containing frame-shift mutations or stop codons and other signs of degeneration such as elevated 

rates of amino acid substitutions [20, 21]. In Drosophila pseudoobscura, its X chromosome 

consists of two chromosomal arms resulting from a fusion of the ancestral X chromosome to an 

autosome which occurred ~18mya [15, 35]. Genes which were originally on the ancestral Y 

chromosome translocated to another chromosome and became autosomal by purging much of the 

repetitive DNA that had accumulated on the ancestral Y chromosome [15, 35].  

1.2 Sex Chromosome Structures  

Sex chromosomes in most eukaryotic organisms are typically morphologically and 

genetically distinct between males and females [9, 11, 36, 37]. Differentiated heteromorphic sex 

chromosomes are usually distinguishable as they differ in size, gene and repetitive sequence 

content [4, 11, 36, 38]. In both the XX/XY and ZZ/ZW sex chromosome systems, the X (Z) is 

typically large and euchromatic while the Y (W) is small and heterochromatic [9, 15]. The X 

chromosome is more often than not expected to contain a large number of genes as compared to 

the Y on the basis of its large size and is typically organized like autosomes. While the Y is 

expected to have a small number of genes due to its reduced size caused by suppressed 
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recombination [9, 15]. However, recombination still continues to take place in females sex 

chromosome (XX) resulting to the same gene density as autosomes, and a retention and 

maintenance of its original genes [15]. One of the key features that differentiates sex chromosomes 

from autosomes in a heterogametic sex chromosome system is the presence of a sex determining 

region on the heterogametic sex. In most species, the sex determining region may occur over some 

or most of the length of the heterogametic sex [11, 15, 38]. This region is characterized by a 

reduction of recombination; and also a male-limited transmission of the non-recombining segment 

[12]. The non-recombining Y, especially in eukaryotes with male heterogamety and highly 

differentiated sex chromosomes (a good example – the Y chromosome in Drosophila and in 

humans), has undergone genetic degeneration and lost many of its original genes which were 

present on the ancestral X [8, 9, 12].  

1.2.1 Degeneration on the Y (W) Chromosome Due to Reduced Recombination 

Suppression of recombination is a necessary condition for genetic divergence to begin 

between the X and Y sex chromosome [8, 9]. Lack of recombination on the Y(W) chromosome 

leads to the accumulation of deleterious mutations in most of its ancestral original genes [20, 21] 

[39]. Accumulation of deleterious mutations over a long evolutionary time subsequently 

accelerates the rate of degeneration leading to gene loss, which is usually associated with a 

simultaneous accumulation of repetitive DNA elements on the Y(W) chromosome [40]. Repetitive 

sequences such as retrotransposons, microsatellite repeats, and ribosomal DNAs has been reported 

in abundance on sex chromosomes of numerous animal and plant species [41, 42]. Richness in 

repetitive DNA sequences is involved in the heterochromatization of the Y(W) chromosome [12, 

41, 43-45] with a higher density of transposons in heterochromatic DNA vs DNA present in 

euchromatin [46].  

Analysis of DNA sequences from a young and newly evolved sex chromosome in D.  

miranda showed an enrichment of DNA insertions on the neo-Y chromosome [47]. The insertions 

were mainly transposable elements, specifically retrotransposons [20, 47, 48]. A similar 

accumulation of transposable elements has also been observed in other recently evolving Y(W) 

chromosomes systems such as plants (Silene latifolia – white campion [42, 49], Marchantia 

polymorpha –liverwort [50, 51], papaya [52], and animals (Oryzias latipes – medaka fish [53], 

Gasterosteus aculeatus – threespine stickleback [54]). This provides compelling evidence that 
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transposable elements are an early invader of newly formed Y chromosomes and are involved in 

the first step in Y chromosome degeneration. The accumulation of repetitive elements hence 

represents the early process of shaping the Y chromosome even before genes begin to degenerate 

[55].  

Transposable elements are initiators of mutations: active transposons can lead to 

deleterious mutations which may disrupt the reading frame of functional genes or introduce 

premature stop codon inactivating the gene. Inactivation of genes leads to gene decay and gene 

loss which in evolutionary time results to the reduction in size of the neo-Y(W) chromosome. 

Additionally, they can also trigger the inactivation of adjacent genes on the neo-Y [20]. Indirectly, 

transposable elements also interfere with gene expression by producing antisense transcripts of 

adjacent genes or by altering the chromatin structure of the Y chromosome [20, 56, 57]. 

1.2.2 Pseudoautosomal Region (PAR) 

Sex chromosomes in most organisms with differentiated heteromorphic sex chromosome 

systems differ from autosomal chromosomes (as mentioned earlier) [9, 58, 59]. They show 

difference in gene content, size and structure. However, in some taxa, recombination persists in 

one or more regions of the differentiated X and Y. These recombining regions are known as 

pseudoautosomal regions (PAR) [60]. Recombination and homologous pairing in this region aids 

in the maintenance of sequence homology between X and Y sex chromosome causing the PAR to 

exhibit autosomal inheritance [60-62]. Mapping studies in horse, chimpanzee, human and mice 

indicate that PAR varies in size and gene content in evolutionarily close as well as distantly related 

species [63]. 

The PAR region has been maintained for over 140 million years in eutherian mammals. 

The genes in this region escape X inactivation and are inherited in an autosomal manner more so 

than sex-linked fashion [64]. In humans, other great apes, and some other mammals such as mice, 

PAR is required for initiating and maintaining effective pairing of the X and Y chromosomes 

during segregation in male meiosis, and recombination [64]. It is thought that the X-Y pairing 

serves a critical function in spermatogenesis in mouse and humans [65, 66]. A deletion of the 

homologous region in X chromosome which mediates pairing with the Y chromosome produced 

infertile male mice [65]. A similar event was observed in humans when a male with complete 

failure of sex chromosome pairing due to a deletion in the PAR region of the X chromosome 
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caused spermatogenic development arrested at the metaphase stage in meiosis [66]. In other 

mammals, such as the marsupials, the PAR is absent and the X and Y sex chromosomes do not 

undergo homologous pairing. Absence of homologous pairing of XY chromosomes in this species 

do not appear to disrupt segregation at meiosis [64] and three homologs of the human PAR genes 

are autosomal in marsupials. It is unclear what has replaced homologous pairing recombination in 

marsupials [61, 64]. 

1.2.3 Dosage Compensation 

When species have gene-rich X chromosomes, it is important that there be regulatory 

mechanisms in place to account for dosage differences between females with two copies and males 

with one copy of the relevant genes. In highly evolved sex chromosomes, some special adaptations 

such as dosage compensation [67, 68] or meiotic sex chromosome inactivation (MSCI) [69] occur 

in order to prevent the reversal of a heteromorphic chromosome back to autosomes [12]. Dosage 

compensation is a regulatory mechanism evolved to balance the expression of X-linked and 

autosomal genes in the heterogametic sex [68, 70]. The degeneration of the Y chromosome and 

subsequent loss of gene functions causes the X chromosome to appear haploid in males differing 

from the rest of the diploid genome. This results in a detrimental imbalance for dosage sensitive 

genes between males (XY) and females (XX). Dosage compensation therefore evolved to 

compensate for dosage imbalance on the X in the heterogametic sex (XY or XO) [68, 70]. This is 

to ensure that females with two X chromosomes and males’ with only one X would have equal 

levels of gene products. In D. melanogaster, the Y chromosome is male specific however the X 

chromosome has some reproductive genes as well as other housekeeping genes essential for basic 

cellular and developmental pathways [71]. Since the level of gene products produced on the X is 

the same in the two sexes, dosage compensation process kicks in to equalize levels of gene 

products. In Drosophila, dosage compensation of X-linked genes begins early in embryogenesis 

by responding to the number of X chromosomes in the nucleus early in embryonic development 

[72]. Four genes are involved in the regulation of dosage compensation in Drosophila males: 

maleless (mle), and male-specific lethal-1, -2, -3 (msl-1, msl-2, msl-3) [68, 73]. The four genes 

are termed as the MSL complex and are essential in elevating transcription of the X chromosomes 

in males. This complex uses histone acetyltransferase MOF to cause a global hyperacetylation of 

the X-linked chromatin in order to increase gene expression by hypertranscription of genes in the 
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single X in males [73]. In females, the presence of two X chromosomes represses translation of 

the MSL preventing inappropriate dosage compensation in females. Another chromosome specific 

protein within Drosophila, Painting of fourth (Pof), has also been found to be involved in dosage 

compensation within the Drosophila lineage. It is chromosome specific to the dot chromosome 

(Muller element F) which is the Dipteran ancestral sex chromosome but subsequently reverted to 

autosome in Drosophila. Pof in D. melanogaster, colocalizes with the dosage compensation 

protein msl-3, and in D. busckii, it mediates the hypertranscription of the entire X chromosome 

exclusively in males suggesting a relationship to dosage compensation [74, 75]. A Pof ortholog in 

L. cuprina, the gene no blokes (nbl), was found to be important for X chromosome dosage 

compensation in L. cuprina as it is required for male viability and normal levels of gene expression 

of most X-linked genes. In humans, where females have two copies of a gene-rich X chromosome, 

and males have one X and a gene-poor Y chromosome, an imbalance in the expression of genes 

and can turn lethal if dosage compensation does not occur [76]. Dosage compensation involves 

silencing and inactivation of genes on one female X early in development [76]. The inactivation 

is then compensated by twofold up-regulation of genes on the active X chromosome maintaining 

a balanced dose of genes in both sexes. 

1.3 Forces That Contribute to X and Y Differentiation 

A number of molecular processes and changes occur during Y chromosome degeneration 

resulting into an accumulation of deleterious mutations which lead to gene loss and chromosome 

decay [9]. Some population genetic models have been proposed to predict decay via a variety of 

mechanisms, most of which only operate in nonrecombining regions of the chromosome [77, 78]. 

Some of these models are Muller’s ratchet, background selection, and genetic hitchhiking.  

1.3.1 Muller’s Ratchet 

Muller’s ratchet has been proposed as a potential explanation for the degeneration of Y 

chromosomes [79, 80]. Some conditions which favor Muller’s ratchet are the absence of 

recombination, presence of a finite population size, absence of back mutation, high mutation rates 

of slightly deleterious mutations and a weak purifying selection to remove new deleterious 

mutations [21, 81]. Many weakly deleterious mutations occur repeatedly in a population of 
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individuals. Muller’s ratchet proposes that due to lack of recombination, the accumulation of 

weakly harmful DNA polymorphisms in a population over many generations can lead to the 

extinction of the species [82, 83]. This would be prominent in asexual populations which do not 

undergo recombination and are doomed to accumulate deleterious mutations due to genetic drift 

and mutation which accompanies a small population [82, 84].  Muller’s ratchet has been used to 

explain the process of degeneration on the Y chromosome in D. miranda [21]. It suggests that a 

non-recombining, gene-rich Y chromosome rapidly degenerates in the initial stages but eventually 

slows down in gene decay over time after a threshold number of Y-linked genes is reached. 

Empirical evidence from D. miranda and its Y chromosome gene content seems to show 

consistency with this model [77]. 

1.3.2 Background Selection 

Background selection is another mechanism which leads to the accumulation of mildly 

deleterious mutations [15]. In this model, only Y chromosomes which are free of strongly 

deleterious mutations survive and contribute to future generations [85]. In the absence of 

recombination, Y chromosomes with strongly deleterious mutations are doomed and do not persist 

in the population. Once the deleterious mutations are removed, the population size of the Y is 

greatly reduced due to a lack of recombination. A reduced population size therefore reduces 

variation in the population and increases the rate of fixation of the mildly deleterious mutations, 

upon which over evolutionary time, leads to the degeneration of the Y chromosome [15, 85]. 

Background selection depends on high rates of deleterious mutations and predicts that regions of 

high recombination will preserve more variation. Background selection has been used to explain 

the existence of reduced variability on the Y chromosome and the dot chromosome (fourth 

chromosome) in Drosophila [86].  

1.3.3 Genetic Hitchhiking 

Genetic hitchhiking is the process by which a gene or a mutation may increase in frequency 

by virtue of being linked to a gene which is positively selected [87]. In X chromosomes, where 

recombination is present, beneficial alleles can be fixed without dragging deleterious mutations. 

However, on the Y chromosome, which is non-recombining, fixation of beneficial mutations 
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simultaneously fixes deleterious mutations which are linked. One of the factors that lead to gene 

decay and ultimately degeneration of the Y chromosome is the presence of deleterious mutations. 

Deleterious mutations on the Y chromosome can be dragged to fixation and increase in frequency 

if they are linked with other beneficial genes [88], for example, a male-determining locus. The 

hitchhiking effect is more pronounced if it is in combination with the Muller’s ratchet mechanism 

[88]. 

1.4 Sex Chromosomes in Insects 

Insects are diverse and ubiquitous – they can be found in both terrestrial and freshwater 

habitats [89]. Resultantly, their sex chromosome system varies considerably, as evidenced from a 

study of 37 species in the order Diptera which showed 12 distinct sex chromosomes configurations 

despite a relatively homogenous karyotype [1]. Most insects reproduce sexually and are 

gonochoristic – they are either male or female throughout their life [37]. However, different sex 

chromosomal systems are in existence in insects to differentiate the two sexes. For example, most 

insects of the order Diptera exhibit the most familiar form of sex chromosome system the XX/XY 

sex chromosome system [90, 91] where the male is heterogametic XY and female homogametic 

XX. (for example, the common house fly Musca domestica [92], species within the genus 

Drosophila [93, 94]). In contrast, most insects in the order Lepidoptera (for example moths and 

butterflies[7, 94]) exhibit the ZZ/ZW sex determining pathway with the female being 

heterogametic ZW and the male homogametic ZZ. Interestingly, the ZW system has also been 

observed in the family Tephritidae within Diptera however not much is known about their sex 

chromosome evolution [1, 90].  Others, such as grasshoppers, locusts [95, 96] (order Orthoptera), 

and cockroaches [97] (order Blatella), an XO sex chromosome system is observed in some species 

where the original Y chromosome of the males is completely lost and males carry a single X while 

females are XX [90]. Therefore, this diversity observed in insects provides a good model system 

for the study of sex chromosomes evolution and can be used as a good indicator of understanding 

the fluidity observed in genome evolution. 
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1.4.1 Sex Chromosomes in Diptera 

Diptera are among the most diverse insect orders. They are ubiquitous and can be found in 

nearly every habitat and all continents. They have approximately 150,000 described species. 

Diptera flies are generally divided into two groups – lower Diptera (Nematocera) and higher 

Diptera (suborder Brachycera). Brachycera includes Drosophila species and most families of 

Diptera [1]. Most of these species appear to lack chiasmata in males and a majority of the species 

possess the XX/XY sex chromosome system. However, some diverge from this ‘norm’. For 

example, some species within the family Tephritidae (which is one of two families referred to as 

fruit flies, the other being Drosophilidae) have evolved the ZZ/ZW sex chromosome systems 

diverging from the common XX/XY sex chromosome system [1, 90].  

The level of sex chromosome differentiation varies widely among species within Diptera 

[1, 98]. The most common sex system is the presence of heteromorphic sex chromosome [99], 

however, several lineages within Diptera lack heteromorphic sex chromosomes and possess 

homomorphic sex chromosomes [1]. A good example is of Megaselia scalaris (laboratory fly) of 

the family Phoridae, whose X and Y sex chromosome cannot be differentiated under the 

microscope [100]. The sex chromosomes of some species within the family Calliphoridae 

(Chrysoma rufifacies, Chrysomya albiceps, Calliphora erythrocephala) also exhibit homomorphic 

characteristics [1, 59, 101, 102]. 

Sex chromosomes play a role in sex determination in various ways within Diptera. In some 

Dipteran species exhibiting heteromorphic sex chromosomes, sex determination is usually under 

the control of a dominant male determiner (M) which is fixed and located on the heteromorphic 

pair (the Y chromosome) [98]. Its presence on the Y chromosome represses female development 

and promotes the male phenotype, for example in the Mediterranean fruit fly Ceratitis 

capitata[103] , and the blow fly Lucilia cuprina [104]. In other Dipteran species, the dominant 

male determiner (M) behaves like a transposable element and is variously located in different 

chromosomes (linkage groups). The species M. scalaris, displays this system. Both of its sexes 

carry 3 homomorphic chromosome pairs, however the dominant male determiner M behaves like 

a transposable element and moves between the three chromosomes [100]. The presence of the M 

factor within a chromosome therefore blocks female development pathway. Musca domestica is 

another species with a unique sex system. In a standard strain, the male determiner is carried on 

the Y chromosomes of a heteromorphic pair [105] while other strains the M is located on the other 
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five autosomes as well as the X chromosome [105, 106]. In the autosomal strains, both sexes 

exhibit homomorphic sex chromosomes. Other Dipteran species determine sex by the ratio of the 

X sex chromosomes to the autosome for example in the Drosophila genus [107].  In D. 

melanogaster, sex is determined by the dose of the X-linked gene sex lethal (Sxl) whereby diploid 

XX embryos develop into females and haploid XY embryos develop into males [1, 107]. 

1.4.2 Ancestral Sex Chromosome in Diptera (Muller Element F) 

Cytogenetic studies show that chromosomal gene elements among Diptera are highly 

conserved [108] and represent the basic ancestral karyotype of Diptera. The basic ancestral 

karyotype in most higher Diptera is composed of six pairs of chromosomes, five large euchromatic 

‘rod’ chromosomes which are the autosomal pairs, and one small ‘dot’ chromosome which is the 

sex chromosome [1]. In Drosophila, the autosomal chromosomes contain approximately 2000 

genes while the smaller heterochromatic dot contains ~100 genes [109, 110]. The chromosomal 

gene elements of each of the chromosomes (the five large rods and one small dot) are named 

Muller elements A through E and F, respectively [1, 108, 110]. Numerous studies have shown that 

Muller element F, which is the dot chromosome or the fourth chromosome in Drosophila 

melanogaster is the ancestral sex chromosome in Diptera [1, 108, 110, 111]. It has been sex-linked 

for over 200 million years (MY) of evolution in many higher fly families [1, 108]. However, within 

D. melanogaster, Muller element A segregates as the X chromosome [107]. Muller element F 

reverted back to autosomal in D. melanogaster, but it still features characteristics which are similar 

to an X chromosome. Increased dosage of the dot chromosome shifts intersex individuals in D. 

melanogaster  towards female development  Additionally, genes located on Muller F show a higher 

expression in female embryos during early development as compared to males, a characteristic 

similar to X-linked genes [107]. In some other Dipteran species, additional chromosomal elements 

became assimilated into the ancestral sex chromosome. Glossina morsitans (tse tse fly) is one 

example. The X chromosome of G. morsitans resulted from the incorporation of two additional 

chromosomal elements (elements A and D) to the ancestral X chromosome (element F) [1]. A 

similar event is seen in the robber fly (Holcocephala fusca) where part of muller element B is 

added to the ancestral sex chromosome Muller F. 
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1.4.3 Is Muller Element F X-linked in all Dipteran Species? 

In most species belonging to higher Diptera families, most of the genes located on Muller 

element F – which maps as the X chromosome – are X-linked [1, 112]. This was determined via a 

whole-genome sequencing study which was performed to identify X-linked genes in several 

species of Diptera families [1]. Many of the genes characterized as X-linked were located on 

Muller element F indicating that element F is part of a heteromorphic sex chromosome pair in 

several Brachycera with a degenerate Y chromosome, supporting the hypothesis that it is the 

ancestral X chromosome in higher Diptera [1]. However not all genes characterized as belonging 

to the ancestral sex chromosome are X-linked. Using sequencing technology, an X-linked gene 

would have twice as much DNA in the female as compared to the male. In contrast, the autosomal 

genes would have the same copy number in both male and female DNA. Some of the homologous 

genes in Lucilia cuprina which are characterized as Muller element F in Drosophila are X-linked 

[112, 113]. Others were found to exhibit autosomal read coverage properties suggesting that these 

genes may have reverted back to autosomes [112]. Insects with homomorphic sex chromosomes 

did not show any X-linked properties within Muller element F [114]. For example, in the blow fly 

species Calliphora erythrocephala the ancestral sex chromosome (Muller F) is not X-linked which 

supports the hypothesis that it possesses homomorphic sex chromosomes [1]. 

1.5 Sex Chromosomes in Insects 

Sex chromosome systems vary greatly in phylogenetically closely-related species and even 

within a species suggesting a rapid evolutionary rate [26], a phenomenon also observed within 

blow flies. It is hypothesized that the rapid diversification of the Calliphoridae family may be due 

to peculiar geological changes and evolutionary processes which created new niches that triggered 

an adaptive radiation [115]. The last common ancestor for blow flies (Calliphoridae) is estimated 

to be around 22 mya which was followed by a rapid radiation of the subfamily Chrysomyniae (~17 

mya) and Luciliinae sister-lineages (~16 mya) [115]. A diverse presence of sex chromosome 

systems is displayed within the family Calliphoridae.  Similar to other insects within Brachycera, 

Calliphoridae karyotype has been shown to be highly conserved, and composed of five autosomal 

pairs of chromosomes and one pair of sex chromosomes [1, 104, 116-119], with Muller element F 

as its ancestral sex chromosome [120].  
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Several blow fly species in the subfamily Chrysomyinae such as Cochliomyia hominivorax, 

Cochliomyia macellaria,, Protophormia terranova, Phormia regina, Chrysomya megacephala [59, 

117, 119] display a heteromorphic sex chromosome with a male heterogametic sex chromosome 

system where the male is XY (with a degenerated and differentiated Y chromosome); and the 

female is XX. Sex development in most blowflies is controlled via a dominant male-determining 

factor on the Y chromosome [1, 104, 121].  In L. cuprina, sex is determined by a Y-linked male-

determining gene (M) which is centered near the Y chromosome centromere [104, 116]. 

Chrysomya rufifacies and its sister species Chrysomya albiceps, despite belonging to the same 

subfamily Chrysomyinae as the blow flies listed above, exhibits homomorphic sex chromosomes 

with an X and Y which appear identical in morphology [59, 102, 122]. Furthermore, they have two 

types of females: thelygenic females (produces only female offspring) and arrhenogenic females 

(produces only male offspring). Sex determination of their offspring is independent of 

environmental factors such as temperature or diet [123, 124] and is determined by the maternal 

genotype. Mating studies hypothesize that thelygenic females are heterozygous for a dominant 

female-determiner (F/f) while both arrhenogenic females and males are homozygous (f/f) at this 

same locus [123]. The nature of this f gene is unknown [121]. Restriction of recombination in blow 

fly species with heteromorphic chromosomes (such as Cochliomyia. macellaria, L. cuprina and 

Phormia regina) may have taken place so that sexually antagonistic alleles are restricted to one 

sex. As for those that display homomorphic sex chromosomes (e.g C. rufifacies), a different 

evolutionary route may have been taken to minimize the deleterious effects introduced by sexually 

antagonistic variants thereby preserving recombination. This proposes that sexually antagonistic 

variants are thus confined to the sex it benefits [23].  

1.6 Research Aims 

Cytological karyotypes show a highly conserved blow fly karyotype among species. However, 

it also shows the presence of both homomorphic and heteromorphic sex chromosomes within the 

same family of blow flies suggesting the occurrence of a rapid evolutionary event in species within 

the same family. Apart from a few studies on the sex chromosome of the blow fly Lucilia cuprina, 

sex chromosome evolution in blow flies remains relatively understudied and has not been fully 

explored. Therefore, the goal of my dissertation is to characterize the evolutionary forces which 

contribute to the diversification of sex chromosomes in blow flies, by analyzing their genomic 
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composition. The results obtained herein will reinforce the understanding of sex chromosome 

evolution within the Calliphoridae family as well as in other dipteran species. 

A comparative genomic approach is utilized to characterize and investigate the sex 

chromosomes of four blow fly species – Phormia regina and Lucilia cuprina which possess the 

heteromorphic system, and Chrysomya rufifacies and Chrysomya albiceps with the homomorphic 

system and monogenic females. The first chapter is a general outline of the process of sex 

chromosome evolution describing how evolutionarily labile sex chromosomes are even within 

species of the same family. The second chapter presents genomic sequences and assembled 

genomes of the three sex types observed within the blow fly Chrysomya rufifacies (male, 

arrhenogenic female, and thelygenic female). The third chapter provides genomic composition and 

annotation of the putative sex chromosomes of the four blow fly species, and a characterization of 

the dipteran ancestral sex chromosome (Muller F). Lastly, the fourth chapter provides evolutionary 

inference on the forces that contribute to the divergence and differentiation of sex chromosomes 

in blow fly species. 
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 THE GENOMES OF A MONOGENIC FLY: VIEWS OF 

PRIMITIVE SEX CHROMOSOMES 

The work presented in this chapter was from a collaborative effort with other 

authors and has been submitted for publication (AA Andere, ML Pimsler, AM 

Tarone, CJ Picard.  The genomes of a monogenic fly: Views of primitive sex 

chromosomes. Under review). My contribution to this study involved performing 

all the bioinformatic analysis, generation of figures and tables, writing the initial 

drafts of the manuscript and contributing to subsequent editing thereafter. 

2.1 Abstract  

The production of male and female offspring is often determined by the presence of specific 

sex chromosomes which control sex-specific expression, and sex chromosomes evolve through 

reduced recombination and specialized gene content. Here we present the genomes of Chrysomya 

rufifacies, a monogenic blow fly (females produce female or male offspring, exclusively) by 

separately sequencing and assembling each type of female and the male. The genomes (>25X 

coverage) do not appear to have any sex-linked Muller F elements (typical for many Diptera) and 

exhibit little differentiation between groups supporting the morphological assessments of C. 

rufifacies homomorphic chromosomes. Males in this species are associated with a unimodal 

coverage distribution while females exhibit bimodal coverage distributions, suggesting a potential 

difference in genomic architecture. The presence of the individual-sex draft genomes herein 

provides new clues regarding the origination and evolution of the diverse sex-determining 

mechanisms observed within Diptera. Additional genomic analysis of sex chromosomes and sex-

determining genes of other blow flies will allow a refined evolutionary understanding of how flies 

with a typical X/Y heterogametic amphogeny (male and female offspring in similar ratios) sex 

determination systems evolved into one with a dominant factor that results in single sex progeny 

in a chromosomally monomorphic system.  

2.2 Introduction 

Animals and plants exhibit typical patterns of sex chromosomes evolution in 

heteromorphic chromosomal systems [38]. An autosome first begins to differentiate following the 
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acquisition of a sex-determining locus and this differentiation is maintained via reduced 

recombination. This can lead to initial expansion and eventual degeneration of the Y chromosome 

in X/Y systems, and similar processes happening in Z/W systems [14, 38, 125-128]. Evolutionary 

theory postulates that differentiated sex chromosomes trace their ancestry to an undifferentiated 

autosomal pair where one of the autosomal homologs acquired a sex-determining gene and 

consequently sexually antagonistic mutations arose causing reduced or eliminated recombination 

between the pair [9, 12]. Restricted recombination led to the emergence of the sex-limited 

chromosome, in this case the Y chromosome. The newly evolved sex chromosomes therefore 

diverged functionally and morphologically resulting in heteromorphic chromosomes [9, 11, 12]. 

In general, Y chromosomes contain very little genic material and the chromosome is mostly 

heterochromatic, typically due to the result of mutations, insertions and deletions, and transposable 

element activity. Of course, with every rule come the exceptions. In Diptera, the model species 

Drosophila melanogaster has heteromorphic sex chromosomes, however the ancestral Dipteran 

sex chromosome thought to be the dot or 4th chromosome, is an autosome in D. melanogaster. 

Furthermore, the D. melanogaster mode of sex determination does not depend on the presence of 

a male-determining locus on the Y chromosome, but rather dosage differences of genes on the X 

chromosome results in alternatively spliced transcripts driving the development towards either a 

male or female fate. Furthermore, fundamental differences in sex determination processes vary 

across Diptera (for a review see: [129]). For example, the mosquito Aedes aegypti, the house fly 

(Musca domestica) and Mediterranean fruit fly (Ceratitis capitata) all harbor a male determining 

factor present on the Y chromosome, following typical, non-Drosophilid tradition [130]. In 

contrast, sex determination in sciarid flies, such as Sciara ocellaris, relies upon dosage 

compensation affected by temperature-dependent paternally donated X-chromosome destruction 

[131, 132]. 

Signatures in the genome left behind from multiple evolutionary events can be used to 

decode the mystery of sex-determining systems in many living organisms [1, 133-135]. Transitions 

of sex determination mechanisms have been found to be frequent in nature among species which 

display homomorphic sex chromosomes in both sexes [136]. For example, in amphibians and 

reptilians the turnover rate of sex-determining genes and sex chromosomes is high. Approximately 

96% of amphibian species possess homomorphic sex chromosomes with a sex-determining gene 

that is easily and rapidly replaced by another gene of a different chromosome across their 
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phylogeny [137-139]. Epigenetic and environmental factors such as temperature can also play a 

role in sex determination [140]. In comparison, species with heteromorphic sex chromosomes (XY 

and ZW systems) are presumed to be highly differentiated and have reached an evolutionary end 

point with the sex-determining gene in the sex chromosome limited sex [9, 58].  

In Calyptrate flies, the most common sex chromosome system is the XX/XY system [1, 90] 

with a homogametic female XX and a heterogametic male XY. Heteromorphic sex chromosomes 

are observed in a majority of blow fly species (Diptera: Calliphoridae), with highly differentiated 

X and Y sex chromosomes in both morphology and sequence, and a Y-linked male-determining 

factor M [1, 59, 99, 121, 141]. In some Lucilia species the difference in genome sizes between the 

sexes can be > 50 Mb, representing > 7% of female genomic content [142]. However, the blow fly 

Chrysomya rufifacies, and its closest sister species Chrysomya albiceps, employ homomorphic 

(undifferentiated) sex chromosomes and both sexes have the same size genomes [59, 101, 143-

145]. Furthermore, in these monogenic species, the females produce either all female or all male 

progeny [145-147] (Figure 2.1) — a divergence from the heteromorphic (differentiated) and 

amphogenic sex chromosome system observed in other Calliphoridae [59, 148]. The genetic basis 

of monogeny in C. rufifacies has been hypothesized from mating studies, ovary and pole-cell 

transplantation and patterns of protein expression [102, 122, 146, 147]: female producing flies 

(thelygenic females) are heterozygous for a dominant female-determiner (F/f) with predetermined 

sex-determining properties while the male producing females (arrhenogenic females) and males 

are homozygous for the recessive allele (f/f) at this same locus. Sex determination in C. rufifacies 

is largely genetic and independent of environmental factors such as diet, season and temperature 

[145]. However, the molecular nature of the primary sex-determining gene(s) or locus in C. 

rufifacies remains unknown. 
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Figure 2.1. Sex determination of C. rufifacies offspring is determined by the maternal genotype. Thelygenic 

females produce only female offpsring while arrhenogenic females produce only male offspring. 

 

In this study, we present the genomic sequences and the assembled genomes of male, 

thelygenic female, and arrhenogenic female C. rufifacies for the first time. We characterize 

putative sex chromosomes and document candidate sequences which belong to the dipteran 

ancestral sex chromosome (Muller F). We also show genomic evidence that these putative sex 

chromosomes appear to be undifferentiated, unless differentiation occurs through copy number. 

These results will allow for a greater depth of evolutionary study on sex chromosomes across the 

Calliphorid species and give insight into the unique sex-determining mechanism of a monogenic 

fly.  

2.3 Methods  

2.3.1 DNA Library Preparation and Sequencing 

Pooled genomic DNA was extracted from the heads of five male-producing females 

(arrhenogenic), five female-producing females (thelygenic) and five male flies originating from a 

lab colony of Chrysomya rufifacies (see [37] for colony foundation, maintenance, and sample 

collection procedures) using the DNeasy Blood and Tissue DNA Extraction kit following the 

manufacturer’s instructions (Qiagen Inc., Valencia, CA, USA). Each extract was quantified using 

a Qubit fluorimeter (Thermo Fisher Scientific, Waltham, MA, USA) so that a total of 1 µg of 
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genomic DNA was sent to a facility for library preparation. Libraries (N = 3) were constructed 

following the TruSeq DNA Sample Preparation Guide by Illumina (Catalog #PE-940-2001. Part 

# 15005180 Rev. A, November 2010). Sequencing was performed on the three paired-end libraries 

using the Illumina HiSeq2000 sequencing platform (Illumina Inc, San Diego, CA, USA) with a 

read length of 2 x 100 bp. Both of the library preparation and sequencing was completed by the 

Purdue University Genomics Core Facility (West Lafayette, IN, USA). The three libraries were 

multiplexed on a single lane. All sequencing data produced in this study have been deposited in 

the National Center for Biotechnology Information Sequence Read Archive (NCBI SRA) and can 

be accessed under the BioProject ID PRJNA575047 and SRA accession number SRP238163.  

2.3.2 Pre-processing and Quality Trimming 

Raw reads were trimmed to eliminate low quality reads (Phred score < 20) and adapter 

sequences. On a per-library basis, overlapping pairs of reads were merged into a single sequence 

read creating longer and higher quality reads. Mismatch cost was set to 2, gap cost was set to 3, 

and the minimum score required for an alignment to be accepted for merging was set to 8. Both 

read trimming and merging were analyzed using the software CLC Genomics Workbench (CLC-

GWB v9) (Qiagen Inc.). Extraneous or contaminating DNA were filtered out by mapping the 

merged and trimmed reads to 3,006 phage (www.phantome.org, v2016-04-01) and 49,290 

bacterial genomes (www.ncbi.nlm.nih.org, downloaded on 05/2016 and 03/2017). Mitochondrial 

reads were subsequently removed by mapping the reads on to the mitochondrial genome of C. 

rufifacies (NC_019634.1). The resulting unmapped reads were thereafter used in the de novo 

assembly step.  

2.3.3 Genome Assemblies, Scaffolding and Evaluation 

De novo genome assemblies were performed on each of the three processed and quality 

filtered libraries (male, arrhenogenic female and thelygenic female) using the CLC-GWB v9 

assembler. Several iterations of the de novo assemblies were carried out with k-mer sizes ranging 

between 24 – 50 nucleotide, and bubble sizes ranging from 100 – 1000; with the intention of 

selecting the ideal assembly with optimal parameters to be used in downstream analysis. Optimal 

k-mer sizes for all three sets of libraries was determined to be 32 bp. Additionally a transcriptome 

http://www.phantome.org/
http://www.ncbi.nlm.nih.org/
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of the thelygenic female was also assembled for scaffolding purposes only, using a k-mer size of 

32 bp. For all the assemblies, a mismatch cost of 2, insertion cost of 3 and deletion cost of 3 was 

selected. Mapping parameters were set such that 50% of each read needed to have at least 90% 

identity to be included in the final mapping. Contigs from each of the three assembled draft 

genomes were scaffolded with the assistance of the assembled thelygenic transcriptome using the 

scaffolding program LRNA scaffolder [149]. This program uses transcriptome contigs to orient 

and combine genomic fragments. Calculations of the assembly statistics was done by CLC-GWB 

v9 and the genome assessment tool QUAST v3.1 [150]. Coverage mapping and subsequent variant 

detection was done by mapping reads to the assembled genomes ignoring positions with coverage 

>100,000 and ignore broken paired reads. Data were visualized using Microsoft Excel using 

frequency distributions. Universal single copy orthologs (USCOs) was used to assess 

completeness and contiguity of the assembled genomes using the Benchmarking Universal Single-

Copy Orthologs (BUSCO) v2.0.1 [151]. BUSCO measures the fraction of genes highly conserved 

in related species by mapping and identifying them using a database of orthologs (OrthoDB) from 

eukaryotes, diptera, arthropods and insects.  

2.3.4 Gene Prediction, Annotation and Ontology 

Ab initio prediction of gene and protein sequences for each of the three sex types was 

performed by the gene predicting program Maker [152] on the three draft genomes. The flag option 

‘always_complete’ in the maker_opts.ctl file was set to 1, the rest of the parameter were left at 

default settings. To infer gene predictions, expressed sequence tag (EST) evidence for gene 

transcription was obtained from the assembled thelygenic transcriptome and alternate EST 

evidence from D. melanogaster gene sequences 

(GCF_000001215.4_Release_6_plus_ISO1_MT_rna). Additional evidence was obtained from 

protein sequences of L. cuprina (GCA_001187945.1_ASM118794v1_protein), D. melanogaster 

(GCF_000001215.4_Release_6_plus_ISO1_MT_protein) and arrhenogenic female protein 

sequence (from a previous gene prediction run not published). Gene sequences which encoded 

peptide sequences ≥30 amino acids in length were filtered and preserved. RNA-seq reads from the 

thelygenic female (accession number SRX149675) were mapped onto the gene sequences 

predicted for each of the three sex types following the same mapping parameters used in the 

genome assembly process. Annotation was performed using a non-redundant arthropoda protein 
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BLAST database (BLASTp v2.2.28+) with an E-value cutoff of ≤ 1E-5 [77]. Functional 

categorization of the BLAST results was conducted using Gene Ontology (GO) via Blast2GO 

v3.3.5 [153] and summarized at level 2 into the 3 main GO categories – biological processes, 

cellular component and molecular function, using the number of sequences in each category for 

the two females and the male. KEGG map pathways [154] were extracted from the annotated 

protein sequences using default parameters in Blast2GO v3.3.5. The web platform OrthoVenn 

[155] was used to identify overlap among orthologous clusters from the predicted protein 

sequences of the two females and the males in a genome wide perspective. The predicted protein 

sequences for the thelygenic female, arrhenogenic female and the male were uploaded onto 

OrthoVenn independently in fasta format and default parameters were used to run the analysis. 

Orthologous clusters that were unique to each sex type, shared between the two females, shared 

between each of the females and the male, and common in all three were grouped together. The 

cluster classification was done according to sequence analysis data, protein similarity comparisons, 

and phylogenetic relationships [155]. OrthoVenn deduced the putative function of each 

orthologous cluster by performing a protein BLAST search against a non-redundant protein 

database in UniProt. Top hits with an e-value of <1E-5 were defined as the putative function of 

each cluster [155]. 

2.3.5 Sex Chromosome Characterization 

Putative X and Y chromosome sequences were characterized using the chromosome quotient 

approach [156] which utilizes read coverage ratios of alignment to differentiate X, Y and 

autosomal sequences. The chromosome quotient program [156] was used to align male and female 

reads onto each other’s genome (male reads independently mapped to male genome and to each 

of the female genomes, and vice versa ). A stringent aligning criterion requiring a whole read to 

map onto the reference contigs with zero mismatch was done in order to reduce the number of 

false positives that may be caused by the highly repetitive sequences from Y chromosomes with 

closely related sequences on the autosomal or X chromosomes due to duplication events [26, 156]. 

Chromosome quotients were calculated by comparing the number of alignments from female 

sequence data to male sequence data. Ideally, putative X sequences were expected to have a CQ 

ratio of 2 with X sequences characterized as those with twice as many female reads aligned as 

male, while putative Y sequences a CQ ratio of 0. Due to the presence of the two types of females 
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(thelygenic and arrhenogenic), the CQ approach was implemented on each female independently 

resulting in two sets of X and Y sequences. Male contig sequences with a CQ of less than 0.3X 

were grouped as putative Y chromosomes to accommodate repetitive Y sequences that may be 

present in both the male and female. A total of 2,195 contigs (~2 Mb from male and arrhenogenic 

female comparison) and 4,031 contigs (~4 Mb from male and thelygenic female comparison) were 

identified as putative Y chromosomal sequences (Table 2.3). The two predicted sets of putative Y 

sequences were compared to determine the proportion of overlap shared between them. Female 

contig sequences with a CQ ranging between 1.6X and 2.5X were grouped as putative X sequences. 

This CQ interval was selected to reduce false positives. A total of 23,624 contigs (~64 Mb) and 

7,448 contigs (~15 Mb) from the arrhenogenic and thelygenic female respectively, were 

categorized as putative X chromosomes. A comparative analysis of both sets of putative X 

chromosomes was performed by CD-HIT-2D-EST v4.5.6 [157, 158], to isolate a representative 

set of C. rufifacies chromosome X sequences characterized by both females, using a length 

difference cutoff and a sequence identity cutoff both of 80%. A nucleotide BLAST (BLASTn 

v2.6.0+, E-value cutoff ≤ 1E-5) was performed on the characterized sex chromosome sequences 

using a non-redundant nucleotide database [159]. Resulting BLAST results were functionally 

characterized using default parameters on Blast2GO v5.1.13 [153] and gene ontology (GO) terms 

assigned to the BLAST results. The functional categories were simplified using the GO slim 

functionality in Blast2GO and enrichment analysis using Fisher’s exact test performed on them. 

The enriched GO terms and their corresponding FDR values were summarized and categorized to 

the three GO domains: biological processes, cellular component and molecular functions; and 

visualized using default settings of the REViGO web server [160]. 

2.3.6 X-linked Muller Elements 

Coding sequences of the chromosomal gene contents (Muller elements A-F) from 

Drosophila melanogaster were downloaded from GenBank. The longest isoforms were selected 

for each gene resulting to a total of 10,488 coding sequences. They were thereafter queried against 

the assembled genomes of the male and the two females using a translated nucleotide and database 

(tBLASTx v2.6.0+, E-value cutoff ≤ 1E-5) to identify orthologous contig sequences within the 

genomes. Orthologous contig sequences were assigned as belonging to the respective Muller 

elements they segregated with. To determine which Muller elements were X-linked in C. rufifacies, 
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male and female sequence reads were aligned to the identified orthologous contig sequences using 

the CLC-GWB v9 read mapper, and the read coverages compared. To reduce false positives, 

stringent mapping parameters were used such that 100% of each read needed to have at least 80% 

identity to be included in the final mapping. The program DESeq [161] was used to identify any 

differential read coverages observed within the orthologous Muller elements to identify sequences 

with a twofold higher abundance in females than males, by calculating a Log2(M/F) coverage ratio. 

Contig sequences with a Log2 (M/F) coverage ratio within the range of -0.6 and -1.3 were 

considered to be X-linked. 

2.3.7 Repeat Sequence Analysis 

A library of all known Diptera repetitive elements was used to identify repetitive elements 

in each of the 3 genomes and the putatively characterized X and Y chromosomes using the program 

RepeatMasker v4.0.7 in default mode [162].  

2.4 Results and Discussion  

2.4.1 Sequencing and De novo Genome Assembly 

Three separate genomes (male: M, thelygenic female: TF, and arrhenogenic female: AF) 

were paired-end sequenced resulting in an average read length of 100 bp and average quality score 

of 37 following adapter sequence trimming, low quality read filtering and overlapping pairs 

merged. Approximately 0.07% (M), 0.06% (TF) and 0.11% (AF) of reads were removed as they 

were identified as either non-fly or mitochondrial reads, resulting in 8.5 X 107 (M), 1.02 X 108 

(TF), and 1.34 X 108 (AF) high-quality reads used to assemble three genomes. Initial draft genomes 

were further scaffolded using the TF C. rufifacies transcriptome as a guide [163], resulting in 

107,111 TF contigs; 114,048 AF contigs; and 109,341 M contigs (assembled metrics summarized 

in Table 2.1). To evaluate single-base accuracy of the assembled genomes and determine the 

percentage of reads used in the contig construction, each set of the processed reads were mapped 

back to their respective assembled genome. Approximately 95% of the reads from each sex type 

mapped back to the contigs with an average coverage range of 27 – 42X reads suggesting that most 

of the reads were utilized in the genome construction (Table 2.1). From a set of 1,066 Arthropoda 

and 1,658 Insecta single copy gene orthologs, approximately 93% and 91%, respectively, were 
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present in the three draft genomes (Table 2.1, Table A1). Notably, the assemblies were smaller in 

size than expected [142]; however, read mappings and BUSCO results signify largely complete 

and high quality (albeit fragmented) genome assemblies. A complete BUSCO report is detailed in 

Table A1. The assembled genomes and raw reads have been deposited in GenBank and the SRA 

(BioProject ID PRJNA575047 and SRP238163, respectively).  

 

Table 2.1. Summary of de novo genome assemblies of the AF, TF and M genomes, read mapping statistics, 

BUSCO completeness assessment results, number of predicted genes and the percent of repetitive elements 

detected in each genome 

 Arrhenogenic Female 

(AF) 

Thelygenic Female 

(TF) 

Male (M) 

No. of processed reads  134,541,815 102,695,597 85,597,908 

N50 (bp) 4,101 3,889 4,164 

Mean contig (bp) 2,588 2,606 2,638 

No. of contigs 114,048 107,111 109,341 

No. of mapped reads (%) 127,991,372  

(95.13%) 

98,025,293  

(95.45%) 

82,377,083 

(96.24%) 

Mean coverage 43X 34X 28X 

Estimated genome size (Expected: 426 

Mb [[164]) 

295,268,734 bases 

295 Mb 

279,238,173 bases 

279 Mb 

288,503,435 bases 

289 Mb 

BUSCO - complete* 993 (93.1%) 989 (92.8%) 994 (93.3%) 

Repetitive elements % 6.84% 6.61% 6.89% 

No. of predicted genes (mean length, 

bp) 

13,910 

3,345 

13,590 

3,271 

13,798 

3,233 

Predicted genes with BLAST hits (%) 93.45% 94.42% 94.22% 

* Arthropoda database of 1066 BUSCO groups. For full list, see Table A1. 

 

There are discordances between the expected genome sizes (424 Mbp, [142]) and the 

assembled genome sizes. This is not unusual if the genome has a large proportion of repetitive 

sequences or unsequenced heterochromatic regions. The sequenced-based estimate of the 

Drosophila melanogaster, a relatively small and repeat depauperate genome, have been supported 

through follow-up work [165]. Results diverge in species with larger genomes though; a previously 

assembled blow fly genome (Phormia regina, [148]) assembled close to the expected size 

(assembled larger at 550/534 Mbp vs. ~529/518 Mbp expected for the female and male 

respectively). In another example, the assembled genome size of Lucilia cuprina was 458 Mbp 

[166], smaller than the expected 665/568 Mbp for the female and male, however, a large proportion 

(57.8%) was attributed to the repetitive landscape of the genome.  

For Chrysomya rufifacies, the expected genome sizes were the same for the two sexes at 

425Mbp [142], yet the assembled genome sizes were 295, 279 and 289 Mbp for arrhenogenic 
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female, thelygenic female, and male, respectively. This amounts to roughly 150 Mbp of missing 

assembled genome. Such discrepancies are not uncommon when sequence- or molecular-based 

estimates are compared to cytometric estimates of genomes size. The genome of Arabidopsis 

thaliana was originally underestimated to be roughly 115 Mbp [167] vs. a revised/accepted 

genome size of 157 Mbp [168] based on flow cytometry. Similarly, the Lucilia cuprina genome 

size as estimated by genome sequencing was considerably smaller than the fly cytometry estimate 

[169]. A possible explanation would be the challenges of assembling a genome with a high 

proportion of repetitive elements. For example, GC content of the Arabidopsis genome sequence 

did not agree with the known GC content of the species, suggesting that GC rich repeat regions 

did not assemble well. However, this does not appear to be the case with C. rufifacies, as only <7% 

of the genome is attributed to the repetitive landscape (see results below). Another potential 

explanation for the discrepancies in genome sizes is large duplicated chromosomal segments [170, 

171]. If a/some chromosome(s) has/have duplicated, one would expect to see parts of the genome 

containing twice as much coverage as the unduplicated portions. We generated frequency 

distributions of coverage across each genome and visualized this data in Figure 2.2 with data 

represented in Table 2.2. For both the female genomes, it was obvious there were two distributions 

of data from the genome, and visually inserting a coverage cutoff, each side of the distribution was 

analyzed for coverage statistics as well as for the number of variants (Table 2.2). When considering 

each side of the distribution, it is apparent that the right skewed distribution (> coverage levels) 

are roughly 2X the coverage of the left side. Considering duplication theory, if the left side 

represents 1X and the right 2X, the approximate genome sizes would be 469 Mbp and 434 Mbp 

for arrhenogenic females and thelygenic females respectively. Another potential explanation for 

this pattern may be if there is polyploidy or underreplication in the tissues used to produce the 

genomic sequence data (for a review, see [172]). This study used heads, which are typically 

considered to lack tissues with these features [173]. It is interesting to note that each sex/type 

exhibited a different pattern of major to minor peak heights, which may be a clue in deciphering 

the sex chromosomal dynamics of the species. The assembly results reported here indicate that 

clues to the sex determination system are largely limited to the non-repetitive portions of the 

genome in this study.  
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Figure 2.2. Coverage distributions for the different genomic assemblies with coverage (x-axis) vs. the 

number of assembled contigs at each coverage. There is a clear bimodal distribution of the main component 

of the coverage distribution in females and the different types of females exhibit different ratios of major 

and minor peak heights. 

 

Table 2.2. Data associated with read mapping statistics for the distributions in Figure 2.2 

 Cruf AF Cruf TF Cruf M 

Mean Coverage (SE) 52.50 (2.14) 36.86 (1.81) 34.79 (1.28) 

Median Coverage 32.07 21.80 22.17 

Total # variants  2,826,180 2,924,285 2,198,938 

Red line delineation <32X >32X <23X >23X n/a 

# contigs 54,772 55,176 60,304 50,965 109,341 

Length of contigs (Mbp) 99 185 108 163 289 

# reads mapped 25,506,380 129,383,978 19,531,466 78,785,565 85,597,908 

# variants 1,194,952 2,631,228 838,346 3,085,939 2,198,938 

# variants/1000bp 12.0 14.0 7.7 12.7 7.8 

% SNV 81.0 78.6 81.7 78.9 79.6 

% MNV 3.8 3.6 3.4 3.5 3.6 

% Ins 6.7 8.0 6.3 7.8 7.4 

% Del 7.8 8.9 7.9 9.0 8.6 

% Replacement 0.8 0.9 0.6 0.8 0.8 

 

2.4.2 Gene Prediction and Functional Annotation 

A total of 13,590 TF, 13,910 AF and 13,798 M genes were predicted based on the 

nucleotide sequences, with approximately 80% of the predicted genes supported by TF RNA-seq 

reads (79.71% arrhenogenic female, 80.17% thelygenic female and 80.52% male). Approximately 
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94% of the predicted amino acid sequences demonstrated homology to arthropod sequences in 

GenBank with E-values less than 1E-5 (12,831 TF, 12,999 AF and 13,000 M genes). Therefore, 

approximately 6% of the predicted genes (759 TF, 911 AF and 798 M) were unique to C. rufifacies. 

As expected, calyptrate flies species were among the top hit species present in the BLASTp results 

for the three genomes, supporting phylogenetic relationships among these species. Included in the 

top hit species list were the sheep blow fly (Lucilia cuprina), the stable fly (Stomoxys calcitrans) 

the common house fly (Musca domestica), and the black blow fly (Phormia regina) [148]. In fact, 

the majority of the proteins resulted in hits to L. cuprina, C. rufifacies’ most closely related species 

in the database ( Figure B1). The number of protein sequences annotated to the different GO terms 

at hierarchical level 2 for all three GO categories is shown in Figure 2.3. GO analysis of the 

sequences with BLAST results show that the abundant GO biological processes were cellular 

process and metabolic process; within cellular component, cell and cell part were most frequent, 

while binding and catalytic activity were most prevalent molecular functions. The distribution and 

classification of the GO terms in each of the three categories is comparable to those of other 

dipteran species such as the blow fly P. regina [148], the common house fly M. domestica [92] 

and the fruit fly D. melanogaster [165].  
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Figure 2.3. Functional categorization using GO terms (biological processes, molecular function and cellular 

components) from the predicted protein sequences in the thelygenic female, arrhenogenic female and the 

male C. rufifacies 
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The top KEGG pathways [154] in all the three sex types were purine metabolism, thiamine 

metabolism and biosynthesis of antibiotics (Error! Reference source not found.), a pattern also o

bserved in the black blow fly [148]. 

 

 

Figure 2.4. KEGG biological pathways of the thelygenic female, arrhenogenic female and the male 

extracted from the KEGG component in Blast2GO [153] 
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2.4.3 Comparative Analysis of Predicted Genes  

Orthologous protein sequence clusters were identified and annotated using OrthoVenn 

[155] as seen in Figure 2.5. A total of 10,354 orthologous clusters were shared among the two 

females and the male totaling to 15,596 protein sequences shared among the three sexes with 

average lengths of ~425 amino acids/protein. Generally, paired groups shared similar clusters (AF-

M: 732 clusters; TF-M: 774 clusters, and AF-TF: 644 clusters), with a small number of unique 

clusters (TF: 17 clusters, AF: 30 clusters, M: 20 clusters; Figure 2.5,Table A2). In all three 

genomes, the average lengths of the unique protein sequences were ~160 amino acids and are 

therefore are most likely sequencing and assembly artifacts. These unique clusters were analyzed 

for enriched GO-terms (p-value < 0.05;). Unsurprisingly, the shared orthologous protein sequences 

between the two females show five clusters annotated as yolk protein genes, which is described as 

the major yolk protein of eggs used as a food source during embryogenesis in Drosophila [174], 

and typically found on X chromosome in Drosophila [175]. Due to its absence in the male genome, 

it is possible that these genes are part of a region which has differentiated from the “Y” 

chromosome, or perhaps in a region that did not assemble well, though it is unclear if these are 

just linked to a causal factor or the causal factor themselves. 

 

 

Figure 2.5. A Venn diagram produced by OrthoVenn [155] displaying the number of orthologous clusters 

of the predicted protein sequences (i) shared among the three sexes, (ii) shared between any two sexes and 

(iii) those uniquely found in each group. Cluster classification was done according to sequence analysis 

data, protein similarity comparisons, and phylogenetic relationships 
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2.4.4 Sex Chromosome Genomic Characterization  

Using read coverage ratios (chromosome quotient, CQ) to compare the male and female 

genomes and their associated reads, it is possible to isolate genomic regions that are characterized 

as differentiated, such as would be the case with sex chromosomes [1, 26, 156]. Based on flow 

cytometry measurements of genome size differences in male and females (= no difference) [164], 

it was not expected that a large portion of the genomes would be isolated using the CQ approach. 

In fact, only ~3.3 Mb and ~1.5 Mb were isolated as putative X and Y chromosome sequences 

respectively (Table 2.3), suggesting largely undifferentiated sex chromosomes. Assuming the 

isolated genomic regions are a part of a differentiated region on putative sex chromosomes, their 

annotations via BLASTn hits (E-value cutoff ≤ 1E-5) resulted in 86% of the putative X sequences 

and 29% of the putative Y sequences being annotated.  

 

Table 2.3. Characterization of candidate X and Y sequences using the chromosome quotient (CQ) approach. 

Putative X chromosomes Putative Y chromosomes 

No. of contigs Size (bp) No. of contigs Size (bp) 

650 3,305,692 1,590 1,515,034 

 

A significant portion of the sequences with BLASTn results (42.4% in the X chromosome, 

and 30.8% in the Y chromosome) corresponded to repetitive sequences. This included BAC 

sequences from Calliphora vicina achaete-scute complex, AS-C (accession numbers LN877230-

LN877235), and microsatellite clone sequences from both Chrysomya albiceps (accession 

numbers DQ478598, DQ478605) and Haematobia irritans (accession number EF629377). In Ca. 

vicina, the AS-C gene complex is flanked by repeats and transposable elements [176]. Additionally, 

within Diptera, the AS-C gene complex (which is made up of the genes achaete, scute, lethal of 

scute, and asense) is located on the X chromosomes in Drosophila and is involved in the sex-

determining pathway wherein scute is an X chromosome signaling element [177]. 

The remaining portion of putative X sequences included 16 sequences with hits on yolk 

protein genes (L. cuprina yolk protein D (ypD), yolk protein A (ypA) and yolk protein B (ypB) 

genes, accession number GU109181, and one from Calliphora erythrocephala yolk protein 3, 

accession number X7079), two sequences with a hit to the no bloke (nbl) gene (accession number 

MH173327), nine sequences corresponding to HSP70 gene (accession number HQ609501) and 2 

sequences with hits on paired box protein Pax-6-like (eyeless in Drosophila) gene (accession 
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numbers XM_023446990 and XM_023450490). Within higher Diptera, yolk protein accumulates 

in oocytes to be used during embryogenesis and development [175, 178]. Genetic and molecular 

studies in D. melanogaster and L. cuprina have shown that yp genes are specifically expressed in 

females [175, 179, 180] though in Drosophila (where there has been more work on the topic), 

there is evidence of low yp expression in males [181-183] and sperm [184]. Binding sites belonging 

to the sex-determining gene doublesex (dsx) have been found on yp genes signifying its role in sex 

specific regulation [175, 180, 185]. The presence of homologous yp sequences in C. rufifacies 

putative chromosome X sequences indicates that these genes are also female specific or female 

biased in C. rufifacies and possibly maintained on a small neo-X region of a chromosome. The 

gene no bloke (nbl) in L. cuprina [112], a homolog of D. melanogaster’s protein of fourth (pof) 

gene [74, 75] (an RNA binding protein involved in dosage compensation by targeting the ancestral 

dipteran sex chromosome (chromosome 4) and chromosome X in D. melanogaster) was one of 

the BLAST hits on 2 putative chromosome Y sequences. In both L. cuprina and D. melanogaster, 

this gene has been found to be essential in both male and female viability and fertility [74, 112].  

Homologous sequences of L. cuprina’s heat shock protein hsp70 were found in 9 sequences 

in putative chromosome Y. The promoter region of the hsp70 gene has been used in sterile insect 

technique (SIT) studies to develop molecular conditional female lethal genetic modifications [186]. 

In mammals, hsp70-Sox9 interactions have been implicated in sex determination with a complex 

formed at sites where SOX9 binds DNA [187]. A member of the family is reported as testis 

enriched in an eel [188]. In the putative Y chromosome contigs, 12.3% (57 sequences) of the 

BLASTn results had hits to the bacteria Serratia marcescens (NZ_HG326223, 

NZ_ALOV00000000, NZ_ATOH00000000). The presence of homologous sequences in C. 

rufifacies to these set of genes from the BLAST results in both the male and female putative sex 

sequences raises the possibility that a microbial genome may be involved in sex determination and 

differentiation in C. rufifacies as is seen in the isopod Armadillidium vulgare (Crustacea, Isopoda), 

where a chromosomal insertion of a Wolbachia genome drives sex determination [189], though it 

may also be possible that these are just symbiont sequences that escaped computational filters. 

Additionally, the signal could be a consequence of the sex determination system as has been 

observed in C. elegans, where lineages that self-fertilize are more sensitive to S. marcescens than 

those that outcross [190]. 
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2.4.5 Muller Element F is not X-linked in C. rufifacies   

Chromosomal gene contents, commonly known as Muller elements A to F in the genus 

Drosophila [191], are thought to be highly conserved across Diptera [1, 191]. Muller element F, 

the dot/fourth chromosome in Drosophila, is thought to be the ancestral X chromosome found in 

many major fly lineages [1, 107, 191]. Whole genomes of some non-drosophilid insect species 

which exhibit stable X-Y differentiated sex chromosomes were analyzed and it was determined 

that genes located on the Drosophila dot chromosome are X-linked in these species [1]. In 

Drosophila however, Muller F reverted back to an autosome more than 60 million years ago but 

has maintained many characteristics similar to a former X chromosome [107, 109]. Muller element 

F in most Calliphoridae segregates as the sex chromosome, and a dominant male determiner factor 

located on the Y chromosome directs differential expression of sex determining genes down the 

male path, leading to distinct structural differences [59, 119, 192]. In species in which the Muller 

element is sex-linked, one would expect to observe half as many sequencing reads to map to the 

reference sequences in males compared to females. When mapping male and female reads (both 

AF and TF) to each Muller element (A-F), less than 5% of the orthologous contig sequences 

segregated as X-linked to Muller elements (including Muller element F) (Figure 2.6, Table A3), 

confirming the high likelihood of undifferentiated sex chromosomes in C. rufifacies and 

introducing a lineage within Calliphoridae in which Muller element F is not the predominant sex-

linked element. 
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Figure 2.6. Sequence coverage analysis of C. rufifacies’s Muller element orthologs from D. melanogaster. 

The two male panels are for the male sequences mapped to each of the female genomes. As expected in a 

homomorphic sex-determining system, gene sequences in the Muller elements are not X-linked. Instead an 

autosomal characteristic sequence coverage distribution is observed in all the elements including the 

Dipteran ancestral sex chromosome Muller F (AF = arrhenogenic female, TF = thelygenic female).  

These results imply that the ancestral genes found in the Dipteran ancestral X chromosome (Muller element 

F) are not predominantly X-linked in C. rufifacies. They also suggest that the sex determination region may 

be a small region of the genome not easily detectable using coverage differentiation of euchromatic regions 

of the genome.  

 

2.4.6 Repetitive Landscape   

Repeat sequences have recently been found to be important precursors and contributors to 

eukaryotic genome’s architecture, stability, evolution and environmental adaptation [193, 194]. In 

Stomoxys calcitrans, the Muller element suspected as the sex chromosome seems to exhibit a 

distinct repeat element pattern [195]. The repetitive landscape can cause alteration of a gene’s 

function or may act as raw materials for new genes [196, 197]. The amount of repetitive DNA 

among insect species varies greatly [148, 198-200]. Some insects have greater than 50% of their 

genome occupied by repetitive elements (American cockroach, Periplaneta americana [200]) 

while others have less than 10% (Phormia regina, black blow fly [148]). The assembled portion 

of the C. rufifiacies genome has a small proportion of repetitive elements in the assembly, 
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accounting for 6.61% (18 Mb), 6.84% (20 Mb) and 6.89% (19 Mb) of the TF, AF and M assembled 

genomes, respectively (Table 2.1, Table A4). The predominant repetitive elements were simple 

repeats, which occupy approximately 4.3% (~12.5 Mb) of the C. rufifacies genomes. The 

remainder of the repetitive landscape comprised of ~0.5% of DNA retrotransposons (LTRs, LINEs 

and SINEs), ~0.2% DNA transposons (hAT, CMC, Maverick, Kolobok, Mule, P, PIF, PiggyBac, 

Sola, TcMar, Zator), ~0.7 rolling circle, ~1% low complexity regions and ~0.06% unknown 

repetitive sequences (Figure 2.7). In the characterized putative sex chromosomes, 6.17% of the X 

chromosome (~204 kb) and 2.77% of the Y chromosome (41.90 kb) were repetitive elements. As 

is the case observed in the whole genomes, simple repeats represented the highest set of repetitive 

elements in the sex chromosomes (Table A4).  

 

 

Figure 2.7. The graph shows the percentage of repeat elements composing the repetitive landscape in each 

sex type of C. rufifacies. Retrotransposons composed of SINEs, LINEs and LTRs occupied approximately 

7% of the total repeatome, while DNA transposons occupied approximately 3% of the repeatome in the 

male and male producing females and ~2% in the female producing females. Satellites and rRNA can barely 

be seen on the graph as they occupied only 0.07% and 0.05% of the repeatome respectively. Simple repeats 

were the predominant repetitive element occupying almost 65% of the whole repetitive landscape. 
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2.5 Conclusion 

Rapid diversification caused by changes in evolutionary processes has introduced variation 

in sex-determining mechanisms between and within species [1, 115, 201]. The family 

Calliphoridae is an excellent model for evaluation of sex chromosome evolution as both 

homomorphic (C. rufifacies, C. albiceps [101, 144]), and heteromorphic (L. cuprina, P.regina 

[143]) sex chromosomes are observed among closely related species. Additionally, while a 

majority of blow flies are amphogenic (females produce an equal ratio of male and female 

progeny), others, such as C. rufifacies and its sister species C. albiceps possess a distinct 

monogenic (females produce unisexual progeny [101, 122]) system, have two type of females 

(arrhenogenic and thelygenic [101, 122]) and the sex of the offspring is determined by the maternal 

genotype [122]. This may in fact be in response to selective pressures with respect to inbreeding – 

producing unisexual offspring guarantees full siblings will not mate with each other, thus resulting 

in a genetically robust population even when population numbers begin to decline. For example, 

parasitic wasps will alter the sex ratios of their offspring through a process of arrhenotoky 

(selective fertilized eggs or unfertilized eggs resulting in female or male offspring respectively 

[202]), allowing females to control the sex ratio of their offspring. Gall midges [203], Hessian flies 

[204], and certain populations of Musca domestica [205] have monogenic life histories, all of 

which is likely related to controlling for inbreeding depression, not uncommon when resources are 

scarce and unpredictable. Therefore, the presence of the individual sex draft genomes herein will 

facilitate addressing questions on the origination and evolution of the diversity of sex-determining 

mechanisms observed within Calliphoridae. Additional genomic analysis of sex chromosomes and 

sex-determining genes of other blow flies will allow a refined evolutionary history of not only the 

Calliphoridae sex system, but to more accurately predict and understand other insect systems in 

which the dominant factor producing one sex over another remains elusive.  

As calliphorids are decomposers and filth flies [206], many of this group’s adaptations 

have also resulted in their classification as agricultural pests [207] and their utility in forensic 

entomology investigations [208]. For instance, ectoparasitism emerged 6.95 million years ago in 

the obligatory parasite Cochliomyia hominivorax (screwworm fly) and 2.28 million years ago for 

the facultative parasite L. cuprina (Australian sheep blow fly) [115], with little to no understanding 

for the genetic basis of this adaptation. As for forensic utility, many of these species have evolved 

a keen sense of odor detection, useful for estimating postmortem intervals as they are capable of 
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rapidly colonize remains [209]. Genomic resources are thought to provide the basis for improving 

forensic estimates [148, 210]. The function of many Calliphoridae as decomposers of animal 

remains also means they are important nutrient recyclers [211, 212], which are becoming of greater 

interest in decomposition ecology as most previous research has been focused on autotrophic 

biomass [213]. Genetic information from such species will enhance efforts to assess evolution in 

these systems. Therefore, the addition of these draft genomes and the predicted protein-encoding 

genes will expand the taxonomic breadth of study organisms and provide unique insights into the 

molecular biology, ecology, and evolution of blow flies. This, in cooperation with genomic 

evaluations of other dipteran species, will contribute in the exploration and provision of new 

targets for pest control strategies based on controlling specific sexes. Currently, the sterile insect 

technique is still in use to control the primary screwworm fly (Co. hominivorax) in which males 

are irradiated and released into the environment. However, these mass production facilities must 

rear male and female offspring due to the reproductive biology of this species and difficulty 

differentiating between the sexes in the immature stages, resulting in production of a sex that is 

not even used and is thus discarded. Understanding the mechanism in which a single sex is 

produced, and being able to genetically modify other calliphorid species to include this switch, 

could provide both economic and agricultural benefits [214, 215].  

In conclusion, this new genome consisting of three draft genomes of two females types and 

males represent additional genomic resources of a calliphorid fly with economic, agricultural, 

forensic and medical importance. The genomes identify an important link in the study of evolution 

and diversification of sex-determining systems. We provide evidence for a loss of sex 

chromosomes, or the movement of very small components of ancestral sex chromosomes to 

autosomes, as there is little evidence for sex chromosomes in the genome (though some contigs 

identified do align with traditional sex-determining chromosomes) and no obvious pattern in 

Muller element allocation of such sites. Several interesting hypotheses regarding the sex-

determination mechanism of this species arise from this work including the role of the no blokes / 

painted on the fourth, scute, yolk proteins, and potentially inserted Serratia marcescens genes in 

this unique monogenic sex-determination system with seemingly no (or very small and possibly 

neo) sex chromosomes. Interestingly, canonical sex determination genes (transformer and Musca 

domestica male determiner) either produced truncated proteins when annotated (tra) or did not 

align (Mdmd) with our genomic scan for sex-determining elements. These results are similar to a 
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previous chromosomal staining experiments in the species that only found evidence for 

daughterless near a suspected sex-determining translocation [216], though it is worth noting that 

a full accounting of Drosophila sex determination loci was lacking at the time of that experiment. 

It is also worth noting that daughterless and scute (identified as a putative X chromosomal 

sequence here) interact in Drosophila [217], providing (along with the no blokes location on a 

putative Y chromosomal contig) some evidence that a dosage compensation-like molecular 

function [218] may be important in C. rufifacies sex determination. This hypothesized role of 

dosage compensation coincides with the observed differences in genomic coverage between males 

and females, where females exhibit two peaks in coverage and males exhibit one. Furthermore, 

eyeless (Pax-6) is known to interact with both daughterless [219] and there is some support for it 

interacting with doublesex [220] in Drosophila; deepening the original support for a role of 

daughterless in the Ch. rufifiacies sex determination system. Additional connections of identified 

targets include hsp70-Sox9 regulation of sex in some systems [187] and common co-regulation by 

Pax/Sox genes in a variety of systems [221]. Additional work on the annotation of the sex-

determining cascade of genes, as well as the identification of the master switch in Ch. rufifacies, 

will lead to invaluable and potentially wide-ranging implications across evolutionary biology. 

Although these genomes have some limitations (mostly fragmented genomes), the genomes and 

identified targets here are ideal starting points for more detailed dissections of this sex 

determination mechanism and sex chromosome evolution. 



    

 

52 

 SEX CHROMOSOME STRUCTURE IN FOUR SPECIES 

OF BLOW FLIES (DIPTERA: CALLIPHORIDAE) 

3.1 Abstract 

Sex chromosomes are evolutionarily labile and have repeatedly evolved in numerous 

eukaryotic species. The accepted evolutionary theory states that sex chromosomes were derived 

from a pair of homologous autosomes (homomorphic) which began to differentiate after the 

emergence of a sex determining gene on one of the pairs thus suppressing recombination. 

However, rapid evolution of sex chromosome systems has caused some closely related species to 

exhibit heteromorphic sex systems while others retaining or reverting back to the ancestral state of 

homomorphic sex chromosomes. One of the ways to understand the mechanisms involved in the 

rapid evolution of sex chromosomes is by characterizing and analyzing sex chromosome structures 

of closely related species which display both types of sex chromosomes. Blow flies are as such a 

good model to study sex chromosome evolutions as they have a generally conserved cytological 

karyotype but a diverse sex chromosome system. This study therefore uses genomic sequence data 

to identify and characterize putative sex chromosomes in four blow fly species: Phormia regina 

and Lucilia cuprina  which exhibit heteromorphic sex chromosomes and Chrysomya rufifacies and 

Chrysomya albiceps which have homomorphic sex chromosomes and are also monogenic with 

two types of females (arrhenogenic and theylgenic females). This study presents deduced sex 

chromosomes sequences of the four blow fly species. Genomic evidence that P. regina and L. 

cuprina have differentiated sex chromosomes while C. rufifacies and C. albiceps have 

undifferentiated sex chromosomes is presented. Moreover, the ancestral Dipteran sex chromosome 

(Muller element F in Drosophila) is highly conserved and has remained as the sex chromosome in 

some species of blowflies.  

3.2 Introduction 

In most eukaryotic organisms, sex determination is governed by diverse mechanisms which 

rapidly evolve [222]. One of these mechanisms is the sex chromosome system where a specific set 

of chromosomes carrying genes related to sexual characteristics contribute to the differentiation 

and determination of sex [2, 9, 223]. Sex chromosome systems vary considerably. Dimorphic sex 
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chromosomes are observed in diverse multicultural eukaryotes such as mammals [62, 63], insects 

[7, 10, 100], fish [41, 224, 225], birds [6, 30, 34] and even plants [44, 50, 78]. The most common 

and familiar sex chromosome system is the XX/XY sex system, which involves a homogametic 

female (XX) and a heterogametic male (XY) [9, 11]. An accepted theory of sex chromosome 

evolution postulates that sex chromosomes evolved from a pair of ordinary homologous autosomes 

after the acquisition of a sex determining region in one of the autosomes (Y), suppressing 

recombination [9]. A degenerated Y chromosome thereby emerged giving rise to morphologically 

and functionally distinct X and Y sex chromosome [9, 226]. A lack of recombination on the Y 

chromosome led to a loss of active genes, and an accumulation of sexually antagonistic variants 

on the X chromosome [227]. Based on evidence obtained from cytological karyotype analysis, 

highly differentiated sex chromosomes display an X and Y chromosome which differ in shape and 

size (large X chromosome and a small Y chromosome) [70, 226]. These chromosomes exhibit few 

signatures of their evolutionary history. Therian mammals, including humans, are an example - 

males possess a degenerated Y chromosome which contains few genes, has male specific functions 

and a sex determining gene (SRY) responsible for the male phenotype [228]. In contrast, the X 

chromosome typically resembles autosomes in gene density as it mostly maintains its original size 

and most of its ancestral gene contents [15]. However, not all species exhibit heteromorphic sex 

chromosomes. In amphibians, approximately 96% of its species possess homomorphic sex 

chromosomes where the X and Y chromosomes are almost identical with a few differences in gene 

content [138]. Homomorphic sex chromosomes are also observed in some snake species [25, 43], 

some insect species [28, 114], and even some avian species [23, 30]. Sex chromosomes which 

display low levels of differentiation are usually considered to be evolutionarily young and at the 

initial stages of evolution [19, 20] as is observed in the insect Drosophila miranda [20, 21]. The 

expectation is that they will eventually differentiate as they age. However, this theory does not 

always hold true in all the species with homomorphic sex chromosomes. Emus and the mosquitos 

in the genus Aedes possess old homomorphic sex chromosomes which have not diverged from 

their ancestral state [23, 28-31].  

The basic ancestral karyotype in many higher Diptera is composed of five large 

euchromatic chromosomes and a small heterochromatic dot chromosome [229]. The gene content 

of these chromosomes are highly conserved in Diptera and are hypothesized as syntenic in 

numerous Dipteran species [191, 229-231]. A nomenclature system proposed by Muller [229], 
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refers to the conserved chromosomal gene elements as Muller elements A – F representing each 

of the chromosomal arms [108, 229]. Despite a similar chromosomal architecture, the nature of 

sex chromosomes varies among closely related Dipteran species [91]. Musca domestica, the 

common housefly, reflects this diversity [232]. There are strains within M. domestica which follow 

the standard norm of a homogametic XX female and a heterogametic XY male containing a male 

determining gene on the Y. While other strains possess homomorphic sex chromosomes and the 

male determining gene can be located in any of the five chromosomes [105, 114].  

Muller element F which is the small dot chromosome or chromosome 4 in D. melanogaster, 

is considered as the ancestral sex chromosome in higher Diptera [1, 233]. However, it reverted 

back to autosome in the lineage leading to Drosophila [107, 234] but has maintained characteristics 

similar to an X chromosome such as its feminizing effect [107]. The size of Muller element F 

differs even across Drosophila species. In D. melanogaster, it is ~5.2 Mb while in D. ananassae 

it is >18.7 Mb [235]. The difference in size has been attributed to the presence of transposons – 

specifically long terminal repeats (LTRs) and LINE retrotransposons [235]. Despite the presence 

of a high level of repetitive elements, Muller F contains the same gene density as the other 

chromosomes [109, 110, 235], with genes located on the distal portion of its long arm which 

contains euchromatic DNA [110]. Orthologs of genes located on Muller F in D. melanogaster are 

X-linked in some non-drosophilid insect species [1, 107, 234].  

Blow flies (Calliphoridae) are ubiquitous and distributed worldwide. They are a diverse 

species and accordingly, display a diverse sex chromosome system. Their last common ancestor 

is estimated to be around 22 mya which was followed by a rapid radiation of the subfamily 

Chrysomyniae (~17 mya) and Luciliinae sister-lineages (~16 mya) [115]. Insects within the 

Calliphoridae family show a remarkably uniform karyotype composed of five pairs of large 

euchromatic autosomes and a pair of heteromorphic XX/XY sex chromosomes [59, 119, 236]. 

However, there are some blow fly species which possess homomorphic sex chromosomes (e.g C. 

rufifacies and C. albiceps) [101, 144]. It has been shown that the dot chromosome segregates as 

the X chromosome in most blow fly species as is also observed in other insects within Brachycera 

[59, 120, 192]. Rapid diversification within Calliphoridae has produced a diverse presence of sex 

chromosome systems observed even within the same subfamily [115]. For example, in the 

subfamily Chrysomyinae, a majority of the blow fly species are amphogenic, which means females 

produce both male and female offspring in the same ratio. However, there are some species which 
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are monogenic whereby two types of females exist which only produce offspring of one sex – 

arrhenogenic females (produces male offspring) and thelygenic females (produces female 

offspring) [123, 124].  

Phormia regina, C. rufifacies and C. albiceps belong to the Chrysomyinae family while L. 

cuprina belong to the Luciliinae family [237]. Phormia regina  is one of the most common blow 

fly species across North America and prefers cooler temperatures [238]. It has the most ‘normal’ 

life history with no specialized parasitic adaptations or known unique sex determination strategies. 

Lucilia cuprina, C. rufifacies and C. albiceps prefer slightly warmer climates, albeit being found 

all around the world [239]. In the United States, they are predominantly found in the southern half 

of the country [240, 241]. Blow flies within the Lucilia species have undergone adaptive 

phenotypic change on a rapid scale whereby depending on their geographic location they either 

feed on live tissue (ectoparasites) or on dead tissues (carrion) [198, 242]. In the United States, L. 

cuprina is one of the common blow flies which are the primary colonizers of human remains and 

is typically used as a forensic indicator species in estimating postmortem intervals [243]. 

Interestingly, in Australia and New Zealand, L. cuprina is almost exclusively a facultative 

ectoparasite which mainly feeds on living tissue from sheep and causes fly strike [243, 244]. While 

in South Africa, it has been known to harbor both characteristics – as a sheep parasite and as a 

carrion colonizer [239, 242]. It is hypothesized that the rapid diversification of the Calliphoridae 

family may be due to peculiar geographical changes and evolutionary processes which created 

new niches that triggered an adaptive radiation [245].  

Identification and characterization of sex chromosomes in a diverse array of non-model 

species has been made possible by new bioinformatic methods [246]. The recent explosion of next 

generation sequencing (NGS) data has made it possible to access whole genome sequences from 

a variety of organisms including non-model organisms lacking a well annotated reference genomes 

[23, 25, 156, 225]. Next generation sequencing (NGS) data has made it easier to develop and 

access less expensive strategies for identifying sex chromosome sequences. Some of the ways sex 

chromosomes are identified include a genomic coverage approach using next generation 

sequencing data to exploit differences in sex chromosome ploidy between males and females [107]; 

leveraging sex differences in gene expression to identify sex-limited transcripts from the Y 

chromosome [247], and also, utilizing restriction site-associated DNA sequencing (RAD-seq) to 

identify sex-limited loci [248]. The chromosome quotient (CQ) approach (as described by Hall et 
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al. [156]), which is one of the methods that employ genome coverage to distinguish sex 

chromosomes from autosomes, was used to characterize sex chromosomes and sex specific 

sequences in the four blow fly species used in this study. It has successfully been used to identify 

sex specific sequences and genes in the Anopheles [156] and Aedes [26] mosquitos. The CQ 

approach allows for the differentiation of X, Y and autosomal chromosomes from each other using 

read coverage ratios of alignments and is useful in characterizing differentiated sex chromosomes 

[1].  

Sex chromosomes in blow flies has not been fully explored. A few studies have been 

performed on the sex chromosome of L. cuprina [104, 112, 141, 236] however not many have 

delved into the genomic composition and characterization of blow fly sex chromosome. Therefore, 

a comparative genomic approach was utilized to analyze the genomic composition and 

characterization of the sex chromosomes of four blow fly species: P. regina, L. cuprina (both with 

heteromorphic sex chromosomes), and C. rufifacies and C. albiceps (sister species with 

homomorphic sex chromosomes and monogenic females). Additionally, the Dipteran ancestral sex 

chromosome, Muller element F, was identified and characterized in the four blow fly species.  

3.3 Methods 

3.3.1 Characterizing Putative Sex Chromosomes Using the Chromosome Quotient 

Approach and Nucleotide Blast (BLASTn) 

The chromosome quotient (CQ) approach as described by Hall et al. [156] was used to 

characterize the putative sex chromosomes in the four blow fly species. The CQ method discovered 

isolates putative sex chromosome sequences by using a stringent alignment criterion of the male 

and female reads onto each other’s genomes. The stringent settings required a whole read to map 

onto the reference contigs with zero mismatches [156]. This was done in order  to reduce the 

number of false positives which may be caused by repetitive sequences from Y chromosomes with 

closely related sequences on the autosomal or X chromosomes [156]. CQ uses the assumptions 

that (i) males and females share the same complement of autosomal sequences and are present in 

the same quantities in both sexes, (ii) females have two X chromosomes while males have only 

one, and (iii) Y sequences are only found in males [156]. This means that X chromosome 

sequences in females should be roughly twice as frequent as in males and unique Y sequences 



    

 

57 

should only be present in males. To accommodate the difference in read coverage between the 

male and female sequence data and minimize bias, CQ values were normalized to the median CQ 

of autosomal sequences, which are assumed to be one. Using a somewhat subjective approach, 

male contigs with a CQ ratio of less than 0.3 were characterized as putative Y sex chromosomes 

to accommodate repetitive Y sequences that may be present in both the male and female, while 

female contigs with a CQ ratio ranging between the arbitrary 1.6 and 2.5 were grouped as putative 

X chromosomes. This CQ interval was selected to reduce false positives. In Chrysomya rufifacies, 

the CQ approach was implemented on the data sets of the two types of females (theylgenic and 

arrhenogenic – each female independently), resulting to two sets of X and Y sequences. The two 

predicted sets of putative Y sequences were compared to determine the proportion of overlap 

shared between them. A total of 23,624 contigs (~64 Mb) and 7,448 contigs (~15 Mb) from the 

arrhenogenic and thelygenic female respectively, were categorized as putative X chromosomes. A 

comparative analysis of both sets of putative X chromosomes was performed by CD-HIT-2D-EST 

v4.5.6 [157, 158], to isolate a representative set of C. rufifacies chromosome X sequences 

characterized by both females, using a length difference cutoff and a sequence identity cutoff both 

of 80%. A nucleotide BLAST was performed on the isolated sex chromosome sequences for all 

the four blow fly species against a non-redundant nucleotide database (BLASTn v2.6.0+, E-value 

cutoff ≤ 1E-5 [159]). Gene ontology terms were extracted from the annotated sequences using 

Blast2GO v5.2.5. Enrichment analysis of the GO terms was performed using the Fishers exact test 

plugin on Blast2GO, and they were filtered using a FDR value of ≥ 1E-10. The webserver REViGO 

[160] was used to summarize and present a representative subset of the enriched terms using a 

clustering algorithm. The allowed similarity was set to 0.7 (medium) and the database of GO terms 

selected was from D. melanogaster. 

3.3.2 Muller Elements Identification (Muller F)  

Drosophila melanogaster’s chromosomal gene contents (Muller elements A-F coding 

sequences) were downloaded from GenBank (www.ncbi.nlm.nih.org, downloaded on 08/2017, 

version NC_004354.4). A total of 10,448 coding sequences of the longest isoforms representative 

of each of the gene contents were isolated and used to query both the male and female genomes of 

the four blow fly species (tBLASTx v2.6.0+, E-value ≤ 1E-5). The longest isoform was selected 

because it was the most comprehensive isoform with the largest total coding exon size. 

http://www.ncbi.nlm.nih.org/
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Orthologous sequences of the Muller elements for each sex of the four blow fly species were 

identified. Orthologous contig sequences were assigned to the respective Muller elements. To 

determine which Muller elements were X-linked in C. rufifacies, male and female sequence reads 

were aligned to the identified orthologous contig sequences using the CLC-GWB v9 read mapper, 

and the read coverages compared. To reduce false positives, stringent mapping parameters were 

used such that 100% of each read needed to have at least 80% identity to be included in the final 

mapping. The program DESeq [161] was used to identify any differential read coverages observed 

within the orthologous Muller elements to identify sequences with a twofold higher abundance in 

females than males, by calculating a Log2(M/F) coverage ratio. Contig sequences with a Log2 

(M/F) coverage ratio within the range of -0.6 and -1.3 were considered to be X-linked.  

3.3.3 Repetitive Element Annotation 

A library of all known Dipteran repetitive elements was used to identify repetitive elements 

in each of the 3 genomes and the putatively characterized X and Y chromosomes using the program 

RepeatMasker v4.0.7 in default mode [162].  

3.3.4 Data Availability 

The P. regina genomes used in this study are available from NCBI using the accessions 

GCA_001735545.1 and GCA_001735585.1 for the female and male respectively [148]. Phormia 

regina’s DNA sequenced reads are available from accessions SRR4047460 and SRR4047244. 

Lucilia cuprina and C. albiceps male and female genomes were locally assembled (unpublished) 

using the CLC genomics workbench following the protocol described in Chapter 2 which was used 

to assemble the C. rufifacies genome. DNA sequenced reads of the female L. cuprina can be 

accessed from NCBI accession number SRR1200273; those from C. rufifacies can be accessed 

from BioProject ID PRJNA575047 and SRP238163, while DNA sequenced reads for C. albiceps 

came from Brazil (unpublished). 
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3.4 Results and Discussion 

3.4.1 Characterization and Annotation of Putative Sex Chromosomes in Blow Flies 

Most blow flies with heteromorphic sex chromosomes exhibit dimorphic genomes sizes, 

with the female having a slightly larger genome than the male [148, 164]. However, some blow 

fly species with homomorphic sex chromosomes have a minimal difference in the genome sizes 

between the male and female, resultantly proposing their genomes are not dimorphic [164]. The 

genome size differences (or lack of) between male and female flies may be attributed to the sizes 

of the X and Y chromosome. Within heteromorphic sex chromosomes, the X is slightly larger than 

the Y due to a degenerated Y [9, 11, 59], while in homomorphic sex chromosomes X and Y sex 

chromosomes appear to be identical in size and exhibit few differences from each other in gene 

content. They are consequently difficult to distinguish by solely using karyotype data and read 

coverage information [1, 59, 101, 122, 144].  

Independent estimates of genome sizes in blow flies from both flow cytometry and genome 

assembly studies confirm the presence of dimorphic genome sizes in the blow fly P. regina [148, 

164] and L. cuprina [164] indicating the presence of heteromorphic (differentiated) sex 

chromosomes. Additionally, almost nearly identical genome sizes in C. rufifacies [164] were 

observed confirming the presence of homomorphic (undifferentiated) sex chromosomes. A 

difference of ~12 Mb is observed from flow cytometry measurements in the female P. regina 

(529.3 Mb) and the male (517.7 Mb), while in L. cuprina, a difference of ~100 Mb (female = 665.4 

Mb, male = 567.9 Mb) is observed between the female and male. Chrysomya rufifacies only shows 

a difference of 0.2 Mb between the female (425.8 Mb) and the male (426.0 Mb) genomes is 

observed, however, this study did not differentiate between the two types of females [164]. Flow 

cytometry studies have not yet been performed on C. albiceps however as it is closely related to 

C. rufifacies (sister species) and sometimes are misidentified as the same species [249] as they 

share very similar character states (homomorphic sex chromosomes, and unique sex determination 

system – monogeny, or presence of two types of females – arrhenogenic females and thelygenic 

females [101, 237, 249]), it can safely be assumed to contain similar genomic characteristics as C. 

rufifacies. 
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Table 3.1. Putative sex chromosomes of the four blow fly species characterized using the chromosome 

quotient approach. 

Species Putative X chromosomes Putative Y chromosomes 

 No. of contigs Size (bp) No. of contigs Size (bp) 

Chrysomya rufifacies 650 3,305,692 1,590 1,515,034 

Chrysomya albiceps 14,677 22,969,545 43,899 75,420,199 

Phormia regina 32,307 58,974,505 32,709 30,067,802 

Lucilia cuprina 6,428 16,807,791 19,531 71,063,377 

 

Putative sex chromosomes of the blow fly P. regina, L. cuprina, C. rufifacies, and C. 

albiceps were characterized using the chromosome quotient (CQ) approach. The CQ method 

identified and characterized putative X and Y sex chromosomes using read coverage ratios of male 

and female alignments as described in the methods section. CQ ratios distributed ~1 was 

characterized as autosomal sequences in both sexes, ~2 for putative X chromosome sequences, 

and ~0 for putative Y sequences. A total of 32,307 (~59 Mb) and 32,709 (~30 Mb) contig 

sequences (Table 3.1) were characterized as putative chromosome X and Y, respectively for P. 

regina, a characteristic consistent with differentiated sex chromosomes due to the presence of a 

larger X than Y chromosome. To the contrary, a total of 6,428 (~16 Mb) and 19,531 (~71 Mb) 

contig sequences in L. cuprina were characterized as putatively belonging to the X and Y 

chromosomes respectively (Table 3.1). The characterized Y chromosomal sequences are 

unexpectedly larger than the X chromosome which was not expected as L. cuprina exhibits 

differentiated sex chromosomes. The male genome used in this study was locally assembled (see 

methods) using reads sequenced from a male L. cuprina collected from Florida, USA. However, 

the female genome was assembled from reads sequenced from an Australian L. cuprina species. 

The differences in genome sizes between the male and female assembled L. cuprina genomes is 

~274 Mb, with a bigger male genome compared to the female (Table 3.1). A comparison of the 

genome qualities of the published L. cuprina [198] and our locally assembled male and female 

genomes show they are similar and have relatively good assembly qualities (Table 3.2). Therefore, 

a plausible explanation for the different sex chromosome sizes would be that the two flies are 

genotypically different due to spatial or adaptive divergence, which may have introduced bias in 

the characterization step and likely accounting for these differences. Since Australian L. cuprina 

are ectoparasites and the North American strain is primarily a carrion colonizer, adaptations in 

their respective geographical niches may have influenced their genetic makeup in order to 

successfully exploit their environments, as has been observed in cichlid fish [250-252]. It is 
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therefore a possibility that the two are different strains of L. cuprina and thus comparing their sex 

chromosomes may not give accurate data. Furthermore, the chromosome quotient approach uses 

a stringent mapping criterion, where 100% of the read has to align to the reference for it to be used 

in the female/male read quotient calculation. This may suggest that some female reads may not 

have mapped onto the male reference sequence, and characteristically those sequences improperly 

identified as male specific (putative Y sequences) contributing to the large set of sequences 

characterized as male specific. Additionally, there is an ~ 280 Mb genome size difference between 

the assembled genomes (Table 2.3), where the male genome is ~611 Mb as compared to the female 

genome of ~337 Mb. A bigger male genome may also have contributed to an improper 

characterization of putative chromosome Y sequences. 

In Chrysomya rufifacies, the CQ approach was implemented on the data sets of the two 

types of females (theylgenic and arrhenogenic – each female independently), resulting to two sets 

of X and Y sequences. A total of 2,195 contigs (~2 Mb from male and arrhenogenic female 

comparison) and 4,031 contigs (~4 Mb from male and thelygenic female comparison) were 

identified as putative Y chromosomal sequences. The two predicted sets of putative Y sequences 

were compared to determine the proportion of overlap shared between them. A total of 23,624 

contigs (~64 Mb) and 7,448 contigs (~15 Mb) from the arrhenogenic and thelygenic female 

respectively, were initially categorized as putative X chromosomes. A comparative analysis of 

both sets of putative X chromosomes was performed to isolate a representative set of C. rufifacies 

chromosome X sequences characterized by both females. Therefore, a total of 650 contig 

sequences (~3.3Mb) and 1,590 contig sequences (~1.5Mb) were characterized as putative X and 

Y sequences for C. rufifacies, respectively. As expected, only ~1.6 Mb of the sequences between 

the male and female genome was differentiated which is consistent with the presence of 

undifferentiated sex chromosomes (Table 3.1). However, in C. albiceps, a total of 14,677 (~22Mb) 

and 43,899 (~75Mb) contig sequences were identified as putative X and Y sequences for C. 

albiceps, showing a larger portion of Y sequences as compared to the X. Comparing the two 

genome sizes, male C. albiceps genome is ~21 Mb larger than the female Table 3.2). A possible 

explanation of the differences observed in the characterized sex specific sequences may be due to 

the presence of the sequenced reads obtained from different populations. Sequenced reads used in 

the assembly of the male C. albiceps genome came from two flies, one from the wild (a natural 

park) and the other a lab strain. While the sequenced reads used to assemble the female C. albiceps 
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genome came from two wild type female flies (a farm). Additionally, it is unknown what type of 

female was sequenced. It is not known whether they were both arrhenogenic, thelygenic or one of 

each. Ideally, sequenced data used for genome assemblies is preferred to be obtained from inbred 

homozygous individuals in order to avoid data complexity created by heterozygosity and allelic 

variations in sequenced individuals [253]. This may result in reads being left out of the read 

alignment step as CQ utilizes stringent mapping parameters only allowing a read to be mapped if 

it has zero mismatches with the reference contigs.  
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Table 3.2. Genome assembly statistics of the four blow fly species. This includes both locally assembled draft genomes (C. rufifacies and C. albiceps, 

L. cuprina) and the published Australian L. cuprina (*, [198]) and P. regina male and female genomes [148]. 
 Lucilia cuprina Phormia regina Chrysomya rufifacies Chrysomya albiceps 

 *Unknown 

sex 

Female Male Female Male Arrh. 

Female 

Thel. 

Female 

Male Female Male 

Assembled 

genome size 

458 Mb 

(GCA_0011

87945.1) 

337 Mb 611 Mb 550 Mb 

(GCA_00173554

5.1) 

534 Mb 

(GCA_00173558

5.1) 

295 Mb 279 Mb 289 Mb 293 Mb 315 Mb 

Flow 

cytometry 

genome size 

- 665.4 Mb 567.9 Mb 529.3 Mb 517.7 Mb 425.8 Mb 426 Mb - - 

#Contigs 74,043 130,917 88,495 192,662 187,700 114,048 107,111 109,341 172,109 159,974 

N50 (bp) 744,413 3,866 24,771 7,918 7,177 4,101 3,889 4,164 2,084  

GC content 29.3% 29.0% 29.3% 28.0% 28.0% 27.3% 27.3% 27.2% 27.6% 27.4% 

Repetitive 

Sequence 
57.80% - 10.6% 8.7% 7.3% 6.8% 6.6% 6.9% 6.9% 7.1% 

# Predicted 

Genes 
14,554  13,061 8,312 9,490 13,910 13,590 13,798 9,161 8,461 

- Denotes unavailable information.  

Flow cytometry genome sizes (Mb) data retrieved from [164] 
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Overall, more than half (~57%, ~85%, and ~86%) of the characterized putative X 

sequences in P. regina, L. cuprina, and C. rufifacies respectively had homology to sequences in 

GenBank (E-values less than 1E-5), as compared to the Y sequences (Table 3.3). However, C. 

albiceps had relatively almost the same proportion of sequences with BLASTn results in both the 

characterized X and Y sequences (~62% and ~66.8%) (Table 3.3). The gene painting of fourth 

(Pof), which codes for an RNA-binding protein that binds to chromosome 4 (dot chromosomes) in 

Drosophila, is a remnant of chromosome dosage compensation of the ancestral Drosophila species 

which had chromosome 4 as the X chromosome [74, 75] and is important for expression of 

Drosophila chromosome 4 genes. No blokes (nbl), an ortholog of Pof could be important for X 

chromosome dosage compensation in L. cuprina as it is required for normal levels of gene 

expression of most X-linked genes [112]. Nucleotide blast hits of nbl were found on the sequences 

characterized as sex chromosomes. Approximately 0.13% (76,495 bp), and 0.19% (325,520 bp), 

of the characterized putative X chromosome in P. regina and L. cuprina respectively had hits to 

the L. cuprina isolate LA07 no blokes (nbl) gene (accession number MH173327). Approximately 

0.06% (19,000 bp) and 0.42% (295,882 bp) of the characterized Y sequences from P. regina and 

L. cuprina, respectively, had hits to nbl. In the homomorphic species, characterized putative X 

chromosomes of C. rufifacies did not have any hits to the nbl gene. In the Y sequences 0.1% of 

the characterized Y sequences (1,518 bp) had homology to the nbl gene. While in C. albiceps, both 

the X and Y sequences had ~0.06% of sequences with homology to nbl. This shows that dosage 

compensation mechanism may be actively involved in P. regina and L. cuprina to ensure the same 

expression of X-linked genes on the heterogametic (XY) sex as compared to the homogametic 

(XX) sex. In C. rufifacies and C. albiceps, a small proportion of the sequences were homologous 

to the nbl gene suggesting the two species may be lacking an active dosage compensation system. 

Other nucleotide blast results of interest included yolk proteins (L. cuprina yolk protein D, A and 

B (ypD, ypA, ypB) – accession number GU109181) which are female specific proteins found in 

the oocytes of Dipteran species. Major yolk proteins are derived from vitellogenins and they 

provide nutrients for developing embryos [178, 254].  
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Table 3.3. Nucleotide Blast results (BLASTn) of the characterized putative X and Y sex 

chromosomes 

 Putative X chromosomes Putative Y chromosomes 

Blow fly species No. of 

contigs 

# contigs 

BLASTn 

hits 

%BLASTn 

hits 

No. of 

contigs 

# contigs 

BLASTn 

hits 

%BLASTn 

hits 

Phormia regina 32,307 18,254 56.5 32,709 14,237 43.5 

Lucilia cuprina 6,428 5,478 85.2 19,531 15,191 77.8 

Chrysomya rufifacies 650 559 86.0 1,590 465 29.2 

Chrysomya albiceps 14,677 9,030 61.5 43,899 29,306 66.8 

 

Gene ontology (GO) enrichment analysis showed that 11, 4 and 6 enriched GO terms 

within biological processes (BP), cellular component (CC) and molecular function (MF), 

respectively of the X sequences, were shared in all four species (FDR ≥ 1E-10, Table A5). Some 

of these enriched GO terms include reproduction, development process, response to stimuli, 

protein folding, and transporter activity. Of the Y sequences, 14 and 19 enriched GO terms within 

cellular component (CC) and molecular function (MF) (Table A6.), respectively, were shared in 

all four species. Some of the enriched GO terms include endomembrane system, translation 

regulator activity, molecular function regulator, transporter activity. A full list of the GO terms can 

be found on Table A5 and Table A6.  

3.4.1.1 Repetitive Element Analysis of Characterized X and Y Sequences  

Repetitive analysis of the predicted putative sex chromosomes showed that ~7%, ~7%, ~9% 

and ~8% of the predicted X sequences in C. rufifacies, C. albiceps, P. regina and L. cuprina, 

respectively, were occupied by repetitive sequences. Additionally, ~3%, ~8%, ~6% and ~13% in 

the same order were respectively occupied by repetitive sequences in the predicted Y sequences 

(Table A7). In both the putative X and Y sequences, simple repeats occupied the largest percentage 

of the total repeatome – between 30-70% (Figure 3.1). A study on 136 insect genomes showed that 

simple repeats (microsatellites) were mostly located in intergenic regions [255] and were 

ubiquitously distributed across the genomes which would explain their presence in the putative 

sex chromosomes. Total interspersed repeats were also in abundance (Figure 3.1). Studies have 

shown that most interspersed repeats appear to be derived from transposable elements, which are 

major components of eukaryotic genomes as they affect genome structure and evolution [256]. 

There was an almost complete absence of small RNA and satellites from all four blow fly species 
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(Figure 3.1). Within sex chromosomes, amplification of repeat sequences facilitates suppression 

of recombination which leads to genetic degradation of Y chromosomes and also, the evolution of 

heteromorphic sex chromosomes [11, 226]. Therefore, it is expected that the putative Y sex 

chromosomes display would contain a higher percentage of repetitive sequences than the X, 

especially in the heteromorphic species. However, the putative X and Y sex chromosomes in both 

the homomorphic and heteromorphic blow fly species, exhibited an almost equal distribution of 

the repetitive elements between the X and Y. One explanation would be due to the difficulty 

assembling repetitive sequences, which are therefore overlooked and left out of the assembly [257]. 

 

 

Figure 3.1. Repetitive elements distribution in putative chromosome X and Y of all four blow fly species: 

Cruf = C. rufifacies, Calb = C. albiceps, Preg = P. regina, Lcup = L. cuprina 

 



    

 

67 

3.4.2 Ancestral Dipteran Sex Chromosome – Muller Element F  

Drosophila’s fourth chromosome (also known as the dot chromosome or Muller element 

F) segregates as an X chromosome in higher Diptera (Brachycera) and has been identified as the 

ancestral sex chromosome in several fly lineages [1, 229]. Comparative mapping studies using 

differential sequence coverage approach between male and female flies showed that fly species 

with differentiated sex chromosomes exhibit an X-linked Muller element F due to the presence of 

an overrepresentation of female reads as compared to male [1]. Genes within Muller element F 

which were X-linked obtained mapped half as many male reads mapped onto them as female reads 

due to the male species having only one copy of the X chromosome as compared to two copies in 

females. In order to determine if Muller element F is widely X-linked in Calliphoridae, whole 

genome sequencing data was used to calculate the relative coverage of male and female reads in 

P. regina, L. cuprina, C. rufifacies and C. albiceps.  

Approximately 67% and 55% of the contig sequences which segregated as belonging to 

the ancestral sex chromosome Muller element F were X-linked in P. regina and L. cuprina 

respectively. This was expected as both display differentiated sex chromosomes (Figure 3.2, Table 

A4). Less than 1% of the contig sequences segregating as belonging to the autosomal Muller 

elements A, B, C, D and E were determined to be X-linked, affirming the absence of other Muller 

elements segregating as the X chromosome. This also confirms the remaining five Muller elements 

(A, B, C, D and E) have autosomal properties with the same copy number of read coverage in both 

sexes. Despite the uncharacteristic size prediction of putative X and Y sex sequences via the CQ 

approach, a similar pattern was observed in L. cuprina. Approximately 57% of contig sequences 

identified as containing gene orthologs of D. melanogaster’s Muller element F gene sequences 

were detected to be X-linked, a higher percentage than what was observed in the other autosomal 

Muller elements (Figure 3.2, Table A4).  

Undifferentiated sex chromosomes are difficult and challenging to identify due to limited 

sequence divergence between the sex chromosome pairs [1, 114]. Additionally, karyotype data 

show that they appear morphologically undifferentiable (homomorphic) [59, 101, 249]. As 

expected, C. rufifacies and C. albiceps only had ~2% and >~10%, respectively, of the contig 

sequences characterized as belonging to Muller element F as X-linked. This signifies the presence 

of undifferentiated sex chromosomes where read coverage is not enough to characterize sex 

specific sequences. These same autosomal properties were also observed in all the other five 
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Muller elements (Figure 3.2, Table A8). Since C. rufifacies and C. albiceps belong in a family 

where the reproductive system of a majority of the blow fly species in it are amphogenic and 

display heteromorphic sex chromosomes [59, 117, 119, 237], this may suggest that monogeny and 

homomorphic sex chromosomes are derived rather than a representative of an ancestral state. 

Accordingly, this may suggest that the homomorphic nature of sex chromosomes in C. albiceps 

and C. rufifacies are young and in the early stages of evolution, however, additional studies will 

be needed to confirm this conclusion. 

 

 

Figure 3.2. Muller element F, which is the ancestral sex chromosome in Dipteran species, is X-linked in 

Phormia regina and Lucilia cuprina – a characteristic expected in differentiated sex chromosomes. 

However, in C. rufifacies and C. albiceps (they have homomorphic sex chromosomes), Muller element F 

is not X-linked, suggesting undifferentiated sex chromosomes.  The orange color represents the proportion 

of putative X-linked sequences while the blue color represents putative autosomal sequences. The number 

inside the bar graphs indicate the physical number of contig sequences representative of each section. Data 

shown is generated from female flies (AF = arrhenogenic female, TF = thelygenic female). 
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Of all the X-linked contig sequences that segregated as D. melanogaster’s Muller element 

F, none of them was were found to be X-linked in all four blow fly species. However, one gene 

(the ortholog of the Drosophila gene legless (lgs)), was X-linked in three of the four blow flies 

which are P. regina, L. cuprina and C. rufifacies (AF only). Additionally, 5 other gene orthologs 

were identified as X-linked in P. regina, L. cuprina and C. albiceps (Table 3.4). Between L. 

cuprina and P. regina, a total of 34 contig sequences were found to be X-linked in both species 

(heteromorphic sex chromosomes) but not in C. rufifacies nor C. albiceps (homomorphic sex 

chromosomes). Table 3.4 provides a summary of the comparative analysis of these set of genes 

These sequences will be useful in providing insight into the evolutionary divergence of sex 

chromosome evolution in blow flies. A full list detailing the full Muller element F gene names can 

be found in Table A9.  

 

Table 3.4. The table indicates a list of D. melanogaster’s Muller element F genes whose orthologs in the 

blow flies were found to be X-linked. orthologous gene sequences of Drosophila Muller identified in contig 

sequences which segregates as Muller element F and were determined to be X-linked in each of the 

respective species. (Cruf = C. rufifacies, Calb = C. albiceps, Preg = P. regina, Lcup = L. cuprina, AF = 

arrhenogenic female, TF = thelygenic female) 
Names total D. melanogaster Muller element F gene 

Cruf AF, Lcup, Preg 1 lgs 

Calb, Lcup, Preg 5 CG33521, dpr7, Cals, pan, Arl4 

Lcup, Preg 34 

Actbeta, gw, Crk, unc-13, mav, CG1909, Kif3C, ey, ci, dati, zfh2, Thd1, 

CG33978, PlexB 4E-T, onecut, yellow-h, CG31999, MED26, CG31998, 

CG32006, Eph, CG31997, Ekar, Gyf, RhoGAP102A, bt, Sox102F, Ank, 

Asator, fd102C, CG2316, PlexA, Slip1 

Cruf TF, Preg 1 CG11155 

Calb, Preg 1 CG11076 

Calb, Lcup 1 ND-49 

Preg 14 
bip2, PMCA, myo, CG1674, Gat, Zyx, Cadps, eIF4G, toy, sv, pho, Pur-alpha, 

PIP4K, CG11360 

Lcup 4 Fuss, Syt7, CG32850, apolpp 

Cruf TF 1 JYalpha 

Calb 1 Zip102B 

 

3.4.2.1 Repetitive Element Analysis of Muller Elements in Blow Flies  

In the genus Drosophila, Muller element F (chromosome 4 in Drosophila melanogaster) 

is unique and distinct from the other autosomal chromosomes because it contains a high proportion 

of repetitive elements (specifically transposable elements) than its euchromatic counterparts, but 

also a similar gene density as the other chromosomes [109, 110, 235]. Additionally, it undergoes 
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late replication and low rates of recombination, which are properties of heterochromatic DNA. 

Heterochromatic DNA, with a generally higher transposon density than euchromatic DNA [46], 

which explains the presence of a high density of transposable elements in Drosophila’s Muller F’s 

repeatome. An analysis of repetitive sequences in the Muller elements A – F of P. regina, L. 

cuprina, C. rufifacies and C. albiceps revealed that between ~5% - 7% of each Muller element is 

occupied by repetitive elements (Table A10). The repetitive landscape shows that in all the four 

species, Muller element F generally has a higher repeat density in total interspersed repeats, and 

retroelements (specifically LINEs and LTRs, –(Figure 3.3, Table A10) as compared to the other 

autosomal Muller elements. This is consistent with what is observed in Muller F (chromosome 4) 

of D. melanogaster [109, 110, 235] whose F element contains remnants of transposable elements 

[109]. Additionally, retrotransposons have been identified as the culprit behind the substantial 

increase in size of Muller element F in D. ananassae as compared to D. melanogaster [235], which 

most of it is composed of heterochromatic DNA. Transposons play a role in targeting 

heterochromatin formation [258]. Karyotype studies have shown that the X chromosome of L. 

cuprina is typically the largest chromosome in its karyotype and appears to be heterochromatic 

with few genes [236]. Consistent with this characteristic, its Muller element F has a higher density 

in retroelements and total interspersed repeats (Figure 3.3), as compared to the other three blow 

fly species, which may explain its significantly larger size.  

 

 



    

 

 

7
1
 

 

Figure 3.3. The repetitive element landscape of Muller elements in each of the four blow fly species is shown. Within each species, Muller element 

F generally shows a higher repeat density in retroelements (specifically LINEs and LTRs – Table A6) and total interspersed repeats. 
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3.5 Conclusion 

This study utilized a comparative genomic approach in order to identify and characterize 

the sex chromosomes of four blow fly species: Phormia regina, Chrysomya rufifacies and 

Chrysomya albiceps all which belong to the Calliphoridae subfamily Chrysominae, and Lucilia 

cuprina which belongs to the Lucilinae subfamily. Results obtained from the genomic 

characterization of the sex chromosomes presents evidence that L. cuprina and P. regina do exhibit 

differentiated sex chromosomes. The chromosome quotient (CQ) approach, which exploits the 

difference in sex chromosome ploidy between males and females using next-generation 

sequencing data, successfully characterized heterogametic sex chromosomes in P. regina  

indicated by a smaller sized putative Y sequences as compared to the X. Additionally, annotation 

of the putative sex chromosomes in both P. regina and L. cuprina provided evidence of a dosage 

compensation mechanism due to the presence of the gene no blokes (nbl), which has been found 

to be important for X chromosome dosage compensation [112]. Expectedly, only a few sequences 

(~1.6 Mb) between the male and female genome of C. rufifacies was characterized as 

undifferentiated which is consistent with homogametic sex chromosomes. 

The karyotype of the most recent common ancestor of higher Diptera (Brachycera) consists 

of five gene rich autosomes (named Muller elements A – E in Drosophila) and a smaller 

heterochromatic dot chromosome (Muller element F in Drosophila) which segregates as the sex 

chromosome in several other Dipteran species and has been classified as sex-linked [1, 107, 229]. 

A homology-based approach provided evidence that the sex chromosome of blow flies is 

homologous to the Dipteran ancestral sex chromosome Muller element F. Differential male and 

female read coverage analysis on the characterized Muller elements (A – F) showed a significant 

excess of X candidate sequences mainly on Muller element F in P. regina and L. cuprina, 

classifying Muller F as sex-linked in these two species and affirming the presence of differentiated 

sex chromosomes. However, C. rufifacies and C. albiceps showed no evidence of having 

differentiated sex chromosome as none of the Muller elements, including the ancestral sex 

chromosome Muller F, were classified as sex-linked. This demonstrates that C. rufifacies and C. 

albiceps have lost their ancestral sex chromosome and Muller element F is not the sex chromosome. 

It also suggests the presence of a young sex chromosome pair which is at an early stage of evolution. 
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Instead of a whole chromosome, a small region or a single sex-determining locus could be 

differentiated between the sexes contributing to the male and female phenotype. This means that 

the X/Y chromosome pairs would still undergo recombination, have similar gene content, and 

reads from the neo Y and X would still map to each other. With a young and possibly small sex-

determining region, it is not expected that a male/female differential read coverage analysis would 

be successful in detecting differentiated sex chromosomes in these species. These results reveal 

that heteromorphic sex chromosomes are not a terminal end point in sex chromosome evolution. 

The absence of differentiated sex chromosomes within C. rufifacies and C.albiceps is unclear. 

However, the data obtained herein, open an avenue for more research to assess the unique 

evolutionary forces exposed to sex chromosomes which permit rapid sex chromosome turnover.  

Sex chromosomes in numerous non – model organisms are being identified and 

characterized by new bioinformatic methods making genetic data from diverse sex chromosome 

systems easily available for analysis in an effort to gain a principal understanding of how 

evolutionarily labile sex chromosomes are. Blow flies hold promise for understanding the nature 

and evolutionary dynamics of sex chromosomes due to the presence of such a diverse sex 

chromosome system. The data obtained from this study will therefore reinforce the understanding 

of sex chromosome evolution and further refine its evolutionary history not only within the 

Calliphoridae family but in other Dipteran species as well.  
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 ASSESSING THE GENETIC DIVERGENCE OF SEX 

CHROMOSOMES IN FOUR BLOW FLY SPECIES 

4.1 Abstract 

Heteromorphic sex chromosomes are usually thought to represent an evolutionary end 

point in sex chromosome evolution. However, the presence and preservation of homomorphic sex 

chromosomes within species in lineages dominated by differentiated sex chromosomes largely 

remains elusive. The blow fly species Chrysomya rufifacies and its sister species Chrysomya 

albiceps are such an example as they possess homomorphic sex chromosomes yet many other blow 

fly species within the same family exhibit heteromorphic sex chromosomes. The evolutionary 

forces which contribute to the diversification of sex chromosomes within blow flies is relatively 

understudied. This study therefore utilized the ratio of synonymous (dS) and nonsynonymous (dN) 

substitution rates within protein coding sequences of genes located in the ancestral dipteran sex 

chromosome (Drosophila melanogaster’s Muller element F) to provide preliminary insight into 

the evolutionary forces contributing to the divergence between homomorphic and heteromorphic 

sex chromosomes in blow flies. Muller F genes are usually X-linked in blow flies with 

differentiated heteromorphic sex chromosomes but in contrast possess autosomal properties in 

blow flies with undifferentiated homomorphic sex chromosomes. Our analysis demonstrate that 

Muller F genes within C. rufifacies and C. albiceps experienced weak selective pressures (weak 

negative selection) leading to a higher substitution rate which may contribute to the loss of sex 

chromosome properties within Muller F genes in C. rufifacies and C. abliceps; as compared to 

Lucilia cuprina and Phormia regina which possess differentiated sex chromosomes. Additionally, 

phylogenetic analysis provides some evidence that homomorphic sex chromosomes branched out 

of the most recent ancestral state and are therefore derived. The results obtained in this study will 

henceforth reinforce the understanding of sex chromosome evolution as well as offer new insight 

into the selective forces involved in the divergence of sex chromosomes within the Calliphoridae 

family.  
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4.2 Introduction 

Genomes in males and females of most eukaryotic species are largely identical, with the 

only difference arising from their sex chromosomes [164, 259]. Sex chromosomes hence play a 

central role in fostering the evolution and development of sexual dimorphism, speciation and 

adaptation [1]. In many diploid eukaryotic species, the two well-known sex chromosome systems 

constitute of male heterogamety where the male genotype is denoted as XY and the female as XX; 

and female heterogamety where the female’s genotype is ZW and the male’s is ZZ. The accepted 

evolutionary theory of sex chromosomes states that sex chromosomes evolved from a pair of 

ordinary homologous autosomes [12]. One of the pairs (the newly formed Y/W chromosome) then 

acquired a sex-determining function, which could be a male-determining region initiating 

differentiation process between the pair [9, 11]. After the acquisition of the sex determining region 

(SDR), sexually antagonistic alleles beneficial to the sex-limited sex and therefore linked to the 

SDR begin accumulating selecting for the suppression of recombination between the now newly 

formed (nascent) pair of sex chromosomes [77, 126]. The non-recombining pair (Y/W 

chromosome) resultantly accumulates deleterious mutations becoming highly heterochromatic and 

leading to an accumulation of repetitive elements and a profound level of gene loss [11, 19, 85, 

226]. Sequence divergence between the sex chromosomes is therefore catalyzed by suppression of 

recombination. In contrast, its homolog the X/Z chromosome remain functional and might evolve 

dosage compensation mechanism [67, 70, 76]. The end product therefore becomes a pair of highly 

differentiated heterogametic chromosomes which display a difference in size and gene content and 

a severely degenerated Y/Z chromosome [15]. Extreme cases lead to the continual loss of genes 

on the Y/W chromosome leading to an ultimate loss of the Y/W gene chromosome as is observed 

in the Ellobius genus of the mole voles [16].  

Studies have shown that sex chromosomes are evolutionarily labile and vary considerably 

across many eukaryotic species. These variations have been observed even among closely related 

species or populations of the same species [260]. Not all eukaryotic species exhibit differentiated 

heterogametic sex chromosomes. Exceptions to the old adage exists where some organisms have 

homomorphic sex chromosomes. Ratite birds such as emus [23, 24], mosquitos in the family 

Culicidae [26], most cold blooded vertebrates such as amphibians [137] and fishes [261], and many 

dioecious species of flowering plants [262] are examples of organisms which possess largely 

undifferentiated sex chromosomes 
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Sex chromosomes experience different evolutionary forces compared to the rest of the 

genome. Its evolution has partly been attributed to the presence of sexually antagonistic alleles. It 

has been hypothesized that sex chromosome systems which experience more sexual conflict will 

consequently undergo a rapid expansion of the non-recombining region increasing the rate of 

differentiation and degeneration of the sex-limited chromosome (Y chromosome). In the formation 

of a heterogametic sex chromosomes which is prevalent in many organisms, a male beneficial 

mutation which occurs close to a male sex determining region (or locus) has a high probability of 

spreading and being passed on to future generations even if it is highly detrimental to females. 

Linkage of the male beneficial mutation to the male determining locus increases the chances of it 

being transmitted to male offspring. The canonical model of sex chromosome evolution postulates 

that reduced recombination expands from the sex determining locus outwards [9]. Non-

recombining populations accumulate deleterious mutations at a high rate via the evolutionary 

stochastic process Muller’s ratchet [21]. Both Muller’s ratchet and genetic hitchhiking are used to 

explain the degeneration of the Y chromosome [21]. They promote the fixation of deleterious 

mutations which are linked with beneficial genes which subsequently leads to reduced levels of 

nucleotide diversity [263] and signatures of reduced adaptation at the DNA and protein sequence 

levels [264].  

Homomorphic sex chromosomes typically appear morphologically identical representing 

the assumption that they are undifferentiated. This assumption leads to the idea that these species 

have a small non-recombining region which has not spread beyond the sex determining region (or 

locus) allowing room for recombination to take place between the X and Y sex chromosomes [1]. 

The reason behind why some sex chromosomes remain largely undifferentiated is not well 

understood and remains elusive. However, a few hypotheses have been put forth to address this 

[13]. One of the accepted sex chromosome evolutionary theory proposes that sex chromosomes 

evolved from two homomorphic pairs of chromosomes. This consequently suggests that 

homomorphic sex chromosomes are by default young sex chromosomes in the early stages of 

evolving and have not yet fully degenerated [9]. However, some species have been shown to 

possess evolutionarily old homomorphic sex chromosomes, for example, frogs, emus and snakes 

[23, 25, 265] indicating that the level of differentiation should not solely be used as a predictor of 

evolutionary age.  
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Turnover of sex chromosomes (a switch in the chromosome pair recruited to determine sex) 

occur frequently in cold blooded vertebrates such as fish and frogs [265] for which most of them 

possess homomorphic sex chromosomes. Frequent sex chromosome turnovers have been 

hypothesized to have contributed to an increased rate of homomorphy in these organisms. In 

organisms which have undergone a turnover, sex chromosomes are presumptively relatively young, 

and the pair have not had time to substantially differentiate. Sex chromosome turnovers can occur 

due to the translocation or transposition of an existing male determining gene or sex-locus to an 

autosome [100, 266, 267]. For example, the fly Megasalia scalaris, whose karyotype consists of 

3 chromosome pairs, is unique in that any of the 3 chromosomes can act as the sex chromosome 

pair in different strains [100, 267]. A sex determining factor, M, has been observed to move from 

one chromosome to any of the other two chromosomes either by translocation or transposition 

[100]. The now nascent sex chromosome pair shows no sign of morphological differentiation and 

is therefore homomorphic with a low degree of molecular genetic differentiation between the neo 

X and Y chromosomes [267]. Turnovers can also occur if a new gene on an autosome acquires a 

mutation which transforms it into a sex determining gene [268]. Substitution rates between 

gametologs of X and Y sex chromosomes, coupled with phylogenetic data can be used to identify 

the age of sex chromosomes and even trace their origin [269].  

Most Dipteran flies typically have an XY sex chromosome system, and a mostly conserved 

karyotype [1, 229] of six chromosomal arms (2n = 12); five pairs of autosomes and a 

heteromorphic XX/XY sex chromosome pair . The gene contents of the chromosomes are 

designated as Muller elements A-F based on Drosophila melanogaster organization [229, 233]. 

One of the chromosomal arms, Muller element F, was identified as an ancestral X chromosome in 

many Dipteran species and considered sex-linked for over 200 million years [1, 107, 229]. Genes 

located within Muller element F are therefore expected to be X-linked. A whole genome analysis 

study within 37 species of flies identified fly species within Diptera which had genes characterized 

as belonging in Muller element F that were X-linked. This confirmed a level of conserved synteny 

of the gene elements in Muller F in Dipteran species [1]. In Drosophila melanogaster, Muller 

element F is known as the dot chromosome or chromosome 4 [107-109] however, it reverted back 

to an autosome but still features characteristics similar to an X chromosome [107]. Muller element 

A thereby became the X chromosome in D. melanogaster [107]. It is important to note that not all 

gene elements belonging to the ancestral X chromosome – Muller element F – in Dipteran species 
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are X-linked. For instance, in the blow fly Lucilia cuprina, some of the homologous genes 

characterized as Muller element F in Drosophila are X-linked within L. cuprina [112, 113], 

however, some other homologous genes lacked any X-linked properties and instead showed 

autosomal properties (same copy number of genomic reads in both male and female DNA) 

suggesting that these genes may have reverted back to autosomes [112]. Additionally, homologous 

Muller element F genes within insects exhibiting undifferentiated sex chromosomes possess 

autosomal properties as is observed in the some strains within the common house fly Musca 

domestica [114] and some other muscid flies such as the stable fly (Stomoxys calcitrans) and the 

horn fly (Haematobia irritans) [270].  

Insects within the Dipteran family Calliphoridae are excellent models to study sex 

chromosome evolution as they possess varied sex chromosome systems in phylogenetically closely 

related species [59, 143]. They have a male heterogametic sex chromosome system (male = XY 

and female = XX), including heteromorphic and homomorphic sex chromosomes [59, 120]. Due 

to a rapid diversification caused by geographical changes and evolutionary processes within 

Calliphoridae [245], a divergence of sex chromosomes occurred within closely related species. For 

example, most of the blow fly species within the subfamily Chrysomyinae are amphogenic and 

possess heteromorphic sex chromosomes [59, 120, 271]. These also includes most species within 

the Chrysomya genus such as Chrysomya megacephala, Chrysomya putoria, Chrysomya 

marginalis and Chrysomya saffranea [59, 119]. However, Chrysomya rufifacies and its sister 

species Chrysomya albiceps, both members of this subfamily, are quite unique – they are 

monogenic (sex of offspring determined by maternal genotype) [123, 124], have two types of 

females, and they exhibit homomorphic sex chromosomes [59, 102, 122].  

A variety of statistical tests to quantify selection pressures acting on protein coding 

sequences which may contribute to sequence evolution have been initiated by the advent of 

sequencing technologies [272]. The dynamics of DNA sequence evolution can be explained by 

calculating synonymous (dS) and nonsynonymous (dN) substitution rates [273]. One of the most 

widely used statistical test is the dN/dS ratio which quantifies selection pressures by comparing 

the substitution rates at synonymous sites (dS) which are presumed to be functionally silent and 

evolutionarily neutral; to the substitution rates on non-synonymous sites (dN) which are presumed 

to be non-silent sites and possibly are under strong selective pressures [272, 273]. Variable 

substitution rates may be indicative of adaptive evolution or relaxed selective constraints among 
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lineages [274]. Therefore, determining the selective forces responsible for evolution is 

fundamental as it enhances understanding what makes a species unique and also gives some insight 

into how a species may adapt into new environments [274]. Most metazoan species experience the 

‘faster-X effect’, which is the rapid evolution of protein-coding genes on the X chromosome as 

compared to the autosomal chromosomes [275] . In these instances, the dN/dS ratio of protein-

coding genes is predicted to be elevated on the X chromosome as compared to autosomes leading 

to a faster evolution rate on the X [276, 277], which may be attributed to the smaller population 

size of the X in a genome as compared to autosomal chromosomes [278]. This proposes that X-

linked genes would evolve faster in protein sequences than on autosomes due to fixation of 

recessive beneficial mutations in the hemizygous state [275], or from fixation of recessive, mildly 

deleterious mutations via genetic drift as has been observed in some birds and aphids [277, 279]. 

However, some studies have shown that not all metazoan species experience the ‘faster-X effect’. 

A comparison of protein sequence divergence (dN/dS) on the autosome vs X chromosome in the 

beetles (Tribolium) indicated an absence of a faster X-effect [280].  

Not much is known about the evolutionary forces contributing to the diversification of the 

sex chromosomes within blow flies. This study analyzed the sex chromosome evolution of four 

closely related blow fly species using a comparative genomic approach. Two of the blow fly 

species possess differentiated sex chromosomes (Phormia regina and Lucilia cuprina), while the 

other two have undifferentiated sex chromosomes (Chrysomya rufifacies and Chrysomya albiceps). 

Substitution rate analysis (dN/dS ratio) of protein coding sequences homologous to the ancestral 

sex chromosome (D. melanogaster’s Muller element F) was performed in order to examine the 

selective pressures exerted on sex chromosome systems with differentiated and undifferentiated 

sex chromosomes. 

4.3 Methods 

4.3.1 Substitution Rate Analysis 

Three orthologous sequences from the ancestral dipteran sex chromosome Muller element 

F and two autosomal genes from Muller elements D and E from Drosophila melanogaster were 

extracted from four blow fly species (Phormia regina, Lucilia cuprina, Chrysomya rufifacies, 

Chrysomya albiceps) by BLASTn and tBLASTn with an E-value cutoff ≤ 1E-10. These genes 
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were Calsyntenin I, Sox102F, Gawky (all three in Muller F); Spenito (Muller D) and Spartin 

(Muller E). Annotation of the orthologs was performed using reference coding sequences from 

Drosophila melanogaster (FlyBase [281]), Musca domestica GCA_000371365.1 and Lucilia 

cuprina GCA_001187945.1 (both downloaded from NCBI). Multiple sequence alignment of the 

annotated protein coding sequences was performed on each set using default settings via the 

MUSCLE alignment plugin within MEGA-X (Molecular Evolutionary Genetics Analysis program, 

v10.1.7 [282]). Estimation of nonsynonymous (dN) and synonymous (dS) substitution ratios 

(dN/dS) per substitution type were based on the set of codon-aligned nucleotide sequences  by 

doing a pairwise comparison of the annotated protein coding sequences for each gene in each 

species (both male and female). This was achieved using the program SNAP (Synonymous Non-

synonymous Analysis Program, v2.1.1). The significance of the dN/dS ratios observed was 

calculated using the Student’s T-test.  

4.3.2 Phylogenetic Reconstruction  

Phylogenetic analysis of the annotated protein coding gene sequences among the four blow 

fly species was reconstructed using Maximum Likelihood (ML) in MEGA-X v10.1.7 [282] 

following default settings. The phylogenetic reconstruction employed 500 rapid bootstrap 

replicates. The best-fit substitution model for the likelihood analysis was identified in MEGA and 

used for each gene as follows: calsyntenin I and gawky = TN93 + G, sox102F = HKY + G, spartin 

= T92 + G, and spenito = GTR + G; where TN93 = Tamura-Nei model, HKY = Hasegawa-

Kishino-Yano model, T92 = Tamura 3-parameter model, and GTR = General Time Reversible 

model. Three dipteran species – Drosophila melanogaster (fruit fly), Bactrocera dorsalis (oriental 

fruit fly) and Musca domestica (the common house fly) were used as outgroups in the 

reconstruction of the phylogeny trees. The outgroup sequences for each of the protein coding genes 

were downloaded from NCBI. The respective accession numbers are as follows: 

Bdor_nito_XM_019991296, Mdom_nito_XM_011293877, Dmel_nito_FBpp0308267, 

Mdom_spartin_XM_005178237, Bdor_spartin_XM_011208384, Dmel_spartin_FBpp0300977, 

Dmel_sox_NM_001272145, Mdom_sox_XM_020039069, Mdom_gw_XM_011295768, 

Bdor_gw_XM_029550231, Dmel_gw_NM_001014691, Bdor_cals1_XM_011200878, and 

Dmel_cals1_AJ289018. (nito = spenito, gw = gawky, cals1 = calsyntenin 1. Mdom = M, 

domestica, Dmel = D. melanogaster, Bdor = Bactrocera dorsalis. 
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4.4 Results and Discussion 

4.4.1 Substitution Rate Analysis 

Selection pressure among protein coding gene sequences is typically inferred by estimating 

the evolutionary rate ratio. This widely used method is performed by calculating the ratio between 

nonsynonymous substitutions (dN) and synonymous substitutions (dS) [283]. Differential male 

and female read coverage analysis on the characterized Muller element F (as described in Chapter 

3) affirmed the presence of differentiated sex chromosomes in P. regina and L. cuprina, and largely 

undifferentiated sex chromosomes in C. rufifacies and C. albiceps. In order to gain some insight 

into the evolutionary forces acting on the ancestral X chromosome, three orthologous gene 

sequences of D. melanogaster’s Muller element F, in the four blow fly species, were arbitrarily 

chosen to analyze the substitution rates within the undifferentiated and differentiated sex 

chromosomes (Table 4.1). Additionally, two orthologous gene sequences from D. melanogaster’s 

autosomal Muller elements D and E were also arbitrarily chosen for comparative purposes (Table 

4.1). Muller element F genes are expected to experience different selective pressures in a 

hemizygous sex system as is observed in differentiated sex chromosomes with a degenerated Y 

chromosome, as compared to a non-hemizygous system in a species with undifferentiated sex 

chromosomes [284]. From the differential male and female read coverage analysis in Chapter 3, 

the genes gawky and Sox102F were X-linked in both P. regina and L.cuprina while the gene 

Calsyntenin-1 was X-linked in L. cuprina, P. regina and C. albiceps. Both genes Spartin and 

Spenito were autosomal in all the blow flies (not X-linked).  

 

Table 4.1. Average substitution rate ratios (dN/dS) and their significance values, calculated via a pairwise 

comparison between orthologs belonging to blow fly species with homomorphic (C. albiceps and C. 

rufifacies) and heteromorphic sex chromosomes (P. regina and L. cuprina). 

 
  

Mean dN/dS ratio p-value 

  Gene 

Homomorphic  

(Undifferentiated sex 

chromosomes) 

Heteromorphic  

(Differentiated sex 

chromosomes) 

 

Dipteran 

ancestral sex 

chromosome 

Muller F 

Calsyntenin-1 0.6970 0.4262 *0.003841 

Sox102F 0.6485 0.5752 *3.24E-12 

Gawky 0.7151 0.6803 0.82081 

Autosomal 

chromosomes 

Muller E Spartin 0.7796 0.6862 0.51218 

Muller D Spenito 0.4657 0.4536 0.84068 

*denote significant p-values 
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The ratio of non-synonymous to synonymous substitutions (dN/dS) is a useful measure of 

denoting the natural selection acting on protein-coding genes. A dN/dS ratio < 1 indicates the 

presence of more synonymous substitutions suggesting the presence of an evolutionary pressure 

to conserve the ancestral state by removing deleterious alleles (purifying, negative selection) [272, 

273]. Moreover, a dN/dS ratio > 1 suggests an increase in non-synonymous substitutions, 

signifying an upsurge in evolutionary pressure to escape from the ancestral state (diversifying, 

positive selection) due to the evolution of new advantageous genetic variants which may serve a 

novel function [272, 273]. If the dN/dS ratio =1, it implies the presence of an equal number of 

synonymous and non-synonymous substitutions from the ancestral state to the modern versions of 

the gene sequences indicating neutral selection [272, 273]. The substitution rate values obtained 

from the pairwise comparison of the protein coding sequences of cals and sox102F gene orthologs 

in C. rufifacies and C. albiceps (undifferentiated sex chromosomes) showed a relatively higher 

dN/dS ratio (Table 4.1, Figure 4.1): average dN/dS values of 0.6970 and 0.6485, respectively) as 

compared to their counterparts in the differentiated sex chromosomes (Table 4.1, Figure 4.1) dN/dS 

values of 0.4262 and 0.5752 respectively). The differences in the substitution rates were 

statistically significant with p-values of 0.003841 and 3.24E-12 in cals and sox102F, respectively. 

The gene gawky also showed a similar pattern in the distribution of the substitution ratios (Table 

4.1, Figure 4.1) with an average dN/dS ratio of 0.7151 in C. rufifacies and C. albiceps  as compared 

to P. regina and L. cuprina (average dN/dS ratio of 0.6803). However, the results were not 

statistically significant (p-value 0.82081). This could be due to a skewed data point introduced by 

the pairwise comparison between the male and female L. cuprina. Exclusion of this data point 

produces a significant difference between the two groups (p-value 8.80747E-05). A common 

feature among these three genes is that they are X-linked in P. regina and L. cuprina (differentiated 

sex chromosomes), but are not X-linked in C. rufifacies and C.albiceps. A higher dN/dS values 

which is less than 0 but closer to 1 suggests that these genes are under a weak negative selection 

in blow fly species with undifferentiated sex chromosomes as compared to the ones with 

differentiated sex chromosomes. Since this observation occurs within protein coding gene 

sequences belonging to the ancestral sex chromosome, it provides some insight as to the almost 

absence of X-linked genes within the Muller F element in C. rufifacies and C. albiceps. Weakening 

or removal of selection which was important in the maintenance of a trait, has been observed to 

occur due to ‘relaxed selection’ in natural populations [274]. This suggests C. rufifacies and C. 



    

 

83 

albiceps may have lost the differentiated sex chromosome trait within these genes and 

consequently reverted to a homomorphic sex chromosome system. 

The plant species Silene latifolia (white campion) has recently evolved sex chromosomes 

(young sex chromosomes) and as such many of its genes still retain functional X and Y-linked 

gametologs [284, 285]. A comparative study was performed between S. latifolia and Silene 

vulgaris, a closely related species to S. latifolia, which has differentiated sex chromosomes and 

thus hemizygous X-linked genes on the male. Genes in the non-hemizygous X (S. latifolia) showed 

a significant shift to a higher dN/dS ratio while the X-linked genes on the hemizygous X (S. 

vulgaris) which has no Y-linked gametolog showed a significantly reduced dN/dS ratio [284]. This 

suggested that substitution rates in X-linked genes are affected by haploid selection in hemizygous 

males [284]. In a heteromorphic system, where the X chromosome is hemizygous in males, 

partially or completely recessive alleles on the X chromosome are more exposed to selection as 

compared to autosomes implying that slightly deleterious and recessive alleles are more efficiently 

purged on the X chromosome than on an autosome [5, 286]. In a system with undifferentiated sex 

chromosomes, the assumption is that there is continued recombination between the homologous 

sex chromosome. Therefore, recessive mutations would be shielded from selection as would 

happen in autosomes To compare the result with autosomal genes, the protein coding sequences 

of two autosomal genes from Muller elements D and E (spenito and spartin, respectively) were 

arbitrarily chosen. As shown in Table 4.1 and Figure 4.1 a pairwise comparison of the distribution 

of dN/dS values between C. rufifacies and C.albiceps (undifferentiated sex chromosomes) and P. 

regina and L. cuprina (differentiated sex chromosomes) revealed no significant difference (p-value 

spartin = 0.51218, spenito = 0.84068). This suggests that substitution rate divergence within 

autosomal genes is similar in both blow fly species with homomorphic and heteromorphic sex 

chromosomes, and highlights on the differences in how selection works on sex chromosomes 

(Muller F) and autosomes in blow flies. The results obtained were not sufficient to conclude the 

presence or absence of a faster-X effect in these blow fly species. However, it will be of interest 

for a future study to compare a faster-X effect in both a differentiated and undifferentiated sex 

chromosome system of closely related species as these four blow fly species. 
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Figure 4.1. Pairwise comparison of the synonymous (dS) and non-sysnonymous (dN) ratio (dN/dS) in gene 

orthologs of D. melanogaster’s Muller element F gene calsyntenin I (cals), gawky and sox102F between 

the male and female of the four blow fly species; and two autosomal genes spartin and spenito (nito). *Cruf 

= C. rufifacies, Preg = P. regina, Calb = C. albiceps, Lcup = L. cuprina. 
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Fig 4.1. Continued 

 

 
 

4.4.2 Phylogenetic Analysis  

A species (taxonomic) phylogenetic tree reflects actual evolutionary pathways and 

relationships among species while a gene tree typically represents evolutionary history of a set of 

orthologous genes included in a specific study [287]. Gene trees can be used to estimated species 

divergence time and ancestral population sizes however they do not necessarily follow the same 

topology as a species tree due to genetic polymorphisms, horizontal gene transfer, gene duplication 

and even gene loss [287-289]. In order to infer evolutionary relationships and identify evolutionary 

patterns present, the protein coding sequences of all the five genes were used for phylogenetic 

analysis using the maximum likelihood (ML) model. Outgroup dipteran species used in the 

analysis included the common housefly Musca domestica, the fruit fly Drosophila melanogaster, 

and the oriental fruit fly Bactrocera dorsalis. Within Calliphoridae, a rapid radiation of the 
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subfamilies Chrysomyinae and Luciliinae occurred ~17.74 and ~16.32 million years ago 

respectively, branching them from a common ancestor into the two groups [115]. Therefore in a 

phylogenetic tree based on taxonomy, P.regina groups together with both C. rufifacies and C 

albiceps as they belong to the same subfamily Chrysomyinae, while L. cuprina groups separately 

as it belongs to a different subfamily – Luciliinae [115, 290]. The phylogenetic trees of the 

analyzed Muller F genes – cals, sox102F and gw (Figure 4.2 A, B, C) show that these genes are 

closely related in L. cuprina and P. regina despite belonging in different subfamilies, while C. 

albiceps and C, rufifacies branched off and are grouped together. The data generated from the trees 

are in contrast to what is expected from a taxonomic phylogenetic tree. The distance scale bar 

located on each of the phylogenetic graphs represent the number of genetic differences 

(substitutions per site) between the sequences and how much change is reflected in the lengths of 

the horizontal branches. This means that overall, in these Muller F genes (Figure 4.2 A, B, C) 

similar selective pressures occurred on the L. cuprina and P. regina conserving Muller F as the 

sex chromosome while C. albiceps and C. rufifacies underwent an evolutionary event subsequently 

losing it as the sex chromosome. A majority of the blow fly species within the Chrysomyinae 

subfamily display differentiated sex chromosomes [59, 117, 119, 237] denoting that sex 

chromosomes in all blow flies before the derivation of the undifferentiated sex chromosomes had 

Muller F as the sex chromosome in the ancestral state. Therefore, undifferentiated sex 

chromosomes in C. rufifacies and C. albiceps are not a representative of the most recent ancestral 

state. The phylogenetic analyses of these three genes support this hypothesis. Chrysomya rufifacies 

and C. albiceps seem to have undergone genetic mutations different from L.cuprina and P. regina, 

since the split from a most recent common ancestor, as they are seen to branch out further from 

the ancestral state, and are also separately grouped.  

In comparison, the phylogenetic trees of the autosomal genes spenito (Figure 4.2 D) has 

similar topology as a taxonomic phylogenetic tree which indicates that L. cuprina is distantly 

related to P. regina, C. albiceps and C. rufifacies as it has been grouped more as an outgroup as is 

expected taxonomically [115]. For an autosomal gene, this phylogenetic relationship would be 

supported by the fact that L. cuprina belongs to a different subfamily (Luciliinae) while C. 

rufifacies, C. albiceps and P. regina all belong to the same subfamily Chrysomyinae. This also 

suggests that the gene spenito undergoes similar selection pressure as in the taxonomic tree in these 

blow fly species. In contrast, the phylogenetic tree of the autosomal gene spartin (Figure 4.2 E) 
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displays similar branching pattern to the Muller F genes which is in contrast to the taxonomic 

grouping (L, cuprina and P. regina being closely related).Sequence analysis of the dN/dS ratio in 

spartin did not however provide a statistical significance on the differences in the substitution rates 

between the differentiated and undifferentiated sex chromosome systems. Therefore, selection 

observed in this gene could be for different biological functions which are not sex related. 

Chrysomya rufifacies and albiceps contain unique features which are not common in other related 

blow fly species. For example, the larvae of both C. rufifacies and C. albiceps are referred to as 

hairy maggot in response to the presence of spines in their larvae. In contrast, other Calliphorids 

have a smooth larval morphology. Additionally, the larvae of C. rufifacies and C. albiceps have 

been observed to be predators as they feed on other dipteran larvae as alternative food sources 

[291], and are also cannibalistic in nature. Both of these traits are not common in other Calliphorid 

larvae [237].  
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Figure 4.2. Phylogeny-based analyses of substitution rates in the genes cals (A), sox (B), gw (C), nito (D) and spartin (E), calculated by maximum 

likelihood analysis. A majority of the branches received between 86-100% of bootstrap support, except one branch in the spartin (E) phylogenetic 

tree which received poor support of 47%. Abbreviations: Preg = P. regina, Lcup = L. cuprina, Cruf = C. rufifacies – AF = arrhenogenic female – TF 

= thelygenic female, Calb = C. albiceps, Mdom = M. domestica, Bdor = B. dorsalis, Dmel = D. melanogaster. The ‘M’ and ‘F’ after every 

abbreviation = Male and Female respectively.  
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4.5 Conclusion 

Changes in the genetic makeup of an organism can either shield genes or alleles from 

selection causing them to retain the original function of the genes or expose them to selective 

pressures which would relax or weaken selection. The results obtained in this study reveal that 

genes located on the ancestral sex chromosomes (Muller F) experience different selective 

pressures in blow fly species with differentiated sex chromosomes (where these genes are X-linked) 

as compared to those with largely undifferentiated sex chromosomes (where these genes are not 

X-linked). An elevated ratio of substitution rates (dN/dS) which was observed within protein 

coding sequences of genes in Muller F in C. rufifacies and C. albiceps is a characteristic 

reminiscent of adaptive evolution signifying the presence of a weaker negative selective pressure. 

A weak purifying selection within these genes, allowed genetic changes to occur in the Muller F 

genes which may have contributed to the rapid diversification observed within the sex 

chromosomes in this lineage, losing their sex chromosome trait, and departing from the most recent 

ancestral sex chromosome state (differentiated sex chromosome). Any sex chromosome 

characteristic that would have been present in the Muller F genes may have moved from this 

ancestral sex chromosome to any of the other autosomal chromosomes. Additionally, results 

obtained from the phylogenetic analysis of the Muller F genes supports the hypothesis that C. 

rufifacies and C. albiceps undifferentiated sex chromosomes are derived and branched out from 

the most recent sex chromosome ancestral state introducing a genetic difference in Muller F genes. 
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 CONCLUSION  

The extraordinary diversity of sex chromosome evolution within eukaryotes remains a 

fundamental question and a major field of research. The diversity of sex chromosomes represented 

within eukaryotes is mind-blowing and research on sex chromosome evolution has increased and 

is an active field [1, 23, 60, 224, 262, 270, 292-294]. Understanding the biology and evolution 

behind diverse sex chromosomes is therefore important because in addition to sex determination, 

sex chromosomes, play a critical role in the survival and evolution of sexually reproducing 

organisms [5, 38]. Additionally, they are involved in the process of speciation by reducing fitness 

of hybrids between species [5], and they can also be used to genetically modify specific sexes in 

the development of viable tools for pest control [295]. Many sex chromosome systems in 

eukaryotic species have proven that theoretical predictions do not always match to empirical 

evidence. For example, highly differentiated sex chromosomes and a degenerate, gene poor Y 

chromosome does not necessarily represent an evolutionary dead-end [1, 25, 28, 270]. Numerous 

eukaryotes have been under investigation in an effort to understand this unique phenomenon [1, 

25, 28, 270]. Insects within the order Diptera are one such group, as they are ubiquitous in nature 

and display a large variation in sex chromosomes [1].  

Blow flies (Diptera: Calliphoridae) are a perfect model system to study sex chromosome 

evolution as they present an array of sex chromosome systems even within phylogenetically 

closely related species [59, 119]. The presence of both a heteromorphic sex chromosome system 

(degenerated and differentiated Y and a homozygous XX female [59], and a homomorphic sex 

chromosome system – almost morphologically identical X and Y [101, 144]) provided an 

opportunity to investigate sex chromosome evolution and the respective evolutionary forces 

contributing to their divergence. The evolution of sex chromosomes and the selective pressures 

involved in their divergence is relatively understudied within blow fly species. In this dissertation, 

I used whole-genome analysis to investigate sex chromosome structure and evolution within four 

blow fly species; Lucilia cuprina and Phormia regina which exhibit heteromorphic sex 

chromosomes, and Chrysomya rufifacies and Chrysomya albiceps which are sister species and 

exhibit homomorphic sex chromosomes. Lucilia cuprina and Phormia regina are amphogenic, as 

is the case in most blow fly species [59], where female and male offspring are produced in the 

same ratio. However, Chrysomya rufifacies and C. albiceps are unique – in addition to the absence 
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of obvious sex chromosomes, females are monogenic such that sex of the offspring is determined 

by the mother’s genotype [101, 122, 144]. They have two types of females – one which produces 

exclusively male offspring (arrhenogenic females) and another which produces exclusively female 

offspring (thelygenic females) [101, 122]. Mating studies hypothesize that thelygenic females are 

heterozygous for a dominant female-determiner (F/f) while both arrhenogenic females and males 

are homozygous (f/f) at this same locus [121, 123]. Monogeny in these species could have evolved 

in order to avoid inbreeding and consequently increase the overall fitness of individuals. This 

would ensure that at worst any mating that would occur will only be of half siblings. In addition, 

to a homomorphic sex chromosome system and a unique sex determination system, the larvae of 

C. rufifacies is referred to as hairy maggot in response to the presence of spines in their larvae. 

This morphological departure from the normal ‘smooth’ larvae observed in other Calliphorids is 

purported to have occurred in order to reduce cannibalism and protect them from eating each other 

as they have been found to be cannibalistic in nature, and also avoid being preyed upon by other 

species making them powerful ecological competitors for carrion resource [237]. 

Genomic sequences and the assembled genomes of the blow fly Chrysomya rufifacies, 

specifically the male, thelygenic female (female producing females), and arrhenogenic females 

(male producing females) are presented firsthand. Additionally, the male and female genomes of 

L. cuprina and C. albiceps used in this study were also locally assembled but are currently 

unpublished. Phormia regina male and female genomes were from a previous publication [148] . 

These individual genomes have provided access to Calliphorid genomic data which will facilitate 

the investigation of diverse sex determining mechanisms and sex chromosome evolution within 

Calliphoridae. A comparative genomic analysis of the sex chromosome structures of the blow fly 

species P. regina, L. cuprina, C. rufifacies and C. albiceps was executed. Muller element analysis 

confirmed that Drosophila melanogaster’s Muller element F (dot chromosome), which is the 

ancestral dipteran sex chromosome, has remained the sex chromosome in some blow flies. 

Differential male and female read coverage analysis on genomic sequences representing Muller 

element F affirmed the presence of differentiated (heteromorphic) sex chromosomes in L. cuprina 

and P. regina; and undifferentiated (homomorphic) sex chromosomes in C. rufifacies and C. 

albiceps. This data supports previous evidence from cytological karyotypic analysis displaying 

highly differentiated sex chromosomes (an X and Y chromosome which differ in shape and size) 

in P. regina and L. cuprina; and a sex chromosome pair which appears morphologically 



    

 

92 

indistinguishable in C. rufifacies and C. albiceps [59, 101, 144]. Additionally, the specific Muller 

F genes which were established to be either X-linked (2:1 female to male read coverage) or 

autosomal (1:1 female to male read coverage) in all the four blow fly species were identified. 

Evidence of a dosage compensation system was observed in P. regina and L. cuprina as the gene 

no blokes (nbl) which is required for normal levels of gene expression of most X-linked genes in 

L. cuprina [76] was annotated in the characterized putative sex chromosomes in both species. In 

C. rufifacies and C. albiceps only a few genomic sequences aligned to the nbl gene. Since C. 

rufifacies and C. albiceps have homomorphic sex chromosomes, it is probable that dosage 

compensation does not function the same way as it does in a species with heteromorphic sex 

chromosomes.  

Finally, a close examination of genes hypothesized to be a part of the ancestral dipteran 

sex chromosome (Muller F) in the four blow fly species was performed in order to gain some 

insight into how sex chromosomes diverged causing some species to maintain a differentiated sex 

chromosome system and others to lose the ‘normal’ sex chromosome and instead develop 

undifferentiated sex chromosomes. Substitution ratio (dN/dS) analysis results revealed that 

different selection pressures were exerted on the same ancestral sex chromosome genes in 

homomorphic and heteromorphic sex chromosome system. A statistically significant lower 

substitution ratio (relatively stronger negative selection) was observed in X-linked Muller F 

protein coding sequences in the heteromorphic sex chromosome, indicating constraints such that 

emergence of deleterious alleles within the coding sequences of these genes are disfavored and 

purged. In contrast, a moderately higher dN/dS ratio (weaker negative selection) was observed in 

these same genes, which in contrast, are autosomal in a homomorphic sex chromosome system. 

This suggests partial relaxation of purifying selection on these genes in C. rufifacies and C. 

albiceps, rendering them susceptible to favorable changes (mutations) in the protein coding 

sequences. The absence of a differentiated sex chromosome system in cooperation with the 

presence of genetic changes within Muller F genes in C. rufifacies and C. albiceps provide clues 

indicating a probable loss of a ‘normal’ sex chromosome in these two species. Absence of a 

heteromorphic sex chromosome system proposes a dominant sex determining locus could be 

present within an autosomal chromosome. Consequently, this would transform the autosomes into 

a neo-sex chromosome which is in its early stages of evolution and thus not easily detected using 

differential male/female read coverage analysis. 
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One avenue of future work is to perform an analysis of single nucleotide polymorphisms 

(SNPs) in males versus females in order to gain some insight into identifying the Muller elements 

(if any) which may have recently been transformed into the neo-sex chromosomes within C. 

rufifacies and C. albiceps. The expectation is that recently formed X and Y sex chromosomes still 

share considerable homology, but due to an early X-Y differentiation, they should have an 

increased SNP density – indicative of young evolving sex chromosomes. Moreover, additional 

substitution ratio analysis on the remaining annotated Muller F genes will be needed to obtain a 

complete picture on the selection forces exerted on their protein coding genes. This would provide 

additional data to gain a robust understanding in the evolution of sex chromosomes within 

blowflies and the role of natural selection in this process.  

Sex chromosomes in numerous non – model organisms are being identified and 

characterized by new bioinformatic methods. This effort makes it possible to address some 

unanswered questions in sex chromosome evolution, as well as getting a principal understanding 

of how evolutionarily labile sex chromosomes are. Blow flies hold promise for understanding the 

nature and evolutionary dynamics of sex chromosomes. Although the understanding of sex 

chromosome evolution within blow flies is still in its infancy, this dissertation provides a 

foundational set of genomic tools to reinforce the study of sex chromosome evolution within 

Calliphoridae and other species with diverse sex chromosome systems.  
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APPENDIX A. SUPPLEMENTAL TABLES 

Table A1. BUSCO Completeness report of the male, thelygenic female and arrhenogenic females of C. 

rufifacies. Complete and single-copy means the gene ortholog has been found once as expected and is 

within 2 standard-deviations in length of the BUSCO meeting the score criteria for the alignment. Complete 

and duplicated means there's more than one copy found that meets length and score criteria. Fragmented 

means part of the gene was found but not the full length and missing means the BUSCO group was not 

found. 

Thelygenic Female Eukaryota Diptera Arthropoda Insecta 

Total BUSCO groups 303 2799 1066 1658 

Complete BUSCOs (C) 278 (91.8%) 2385 (85.2%) 989 (92.8%) 1508 (91.0%) 

Complete and single-copy BUSCOs (S) 276 (91.1%) 2362 (84.4%) 977 (91.7%) 1485 (89.6%) 

Complete and duplicated BUSCOs (D) 2 (0.7%) 23 (0.8%) 12 (1.1%) 23 (1.4%) 

Fragmented BUSCOs (F) 6 (2.0%) 130 (4.6%) 15 (1.4%) 31 (1.9%) 

Missing BUSCOs (M) 19 (6.2%) 284 (10.2%) 62 (5.8%) 119 (7.1%) 

     

Male Eukaryota Diptera Arthropoda Insecta 

Total BUSCO groups 303 2799 1066 1658 

Complete BUSCOs (C) 276 (91.1%) 2400 (85.8%) 994 (93.3%) 1518 (91.5%) 

Complete and single-copy BUSCOs (S) 273 (90.1%) 2384 (85.2%) 986 (92.5%) 1504 (90.7%) 

Complete and duplicated BUSCOs (D) 3 (1.0%) 16 (0.6%) 8 (0.8%) 14 (0.8%) 

Fragmented BUSCOs (F) 7 (2.3%) 145 (5.2%) 12 (1.1%) 24 (1.4%) 

Missing BUSCOs (M) 20 (6.6%) 254 (9.0%) 60 (5.6%) 116 (7.1%) 

     

Arrhenogenic Female Eukaryota Diptera Arthropoda Insecta 

Total BUSCO groups 303 2799 1066 1658 

Complete BUSCOs (C) 272 (89.8%) 2381 (85.0%) 993 (93.1%) 1508 (90.9%) 

Complete and single-copy BUSCOs (S) 270 (89.1%) 2366 (84.5%) 981 (92.0%) 1494 (90.1%) 

Complete and duplicated BUSCOs (D) 2 (0.7%) 15 (0.5%) 12 (1.1%) 14 (0.8%) 

Fragmented BUSCOs (F) 6 (2.0%) 138 (4.9%) 17 (1.6%) 40 (2.4%) 

Missing BUSCOs (M) 25 (8.2%) 280 (10.1%) 56 (5.3%) 110 (6.7%) 
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Table A2. Orthologous clusters of predicted protein sequences from the thelygenic female, arrhenogenic 

female and the male assemblies. The table shows the number of clusters and the total number of protein 

sequences within each cluster which is (i) unique to each group, (ii) shared between each pair, and (iii) 

shared among the three groups. Cluster classification was done according to sequence analysis data, protein 

similarity comparisons, and phylogenetic relationships (AF = arrhenogenic female, TF = thelygenic female, 

M = male). 

 Unique Clusters Total #protein sequences composing the cluster 

Thelygenic Female 17 35 

Arrhenogenic Female 30 66 

Male 20 44 

AF – TF  644 1,313 (659 TF, 654 AF) 

AF – M  732 1,490 (745 AF, 745 M) 

TF – M  774 1,567 (783 M, 784 TF) 

AF – TF – M  10,354 31,812 (10,602 AF, 10,630 TF,10,580 M) 

 

 

Table A3. Orthologous contig sequences in C. rufifacies of the chromosomal gene contents (Muller 

elements) from D. melanogaster’s Muller elements. Male vs female read coverage ratios was used to 

determine which set of orthologous Muller elements had a 2X sequence coverage (X-linked). Due to the 

presence of two types of female, read coverage ratios on the male was performed twice (AF-M and TF_M). 

 AF TF  AF-M TF-M 

Muller 

elements (D. 

melanogaster 

chromosome) 

No. of 

contigs 

with 

tBLASTx 

hits 

No. of X-

linked 

contigs 

(%) 

No. of 

contigs 

with 

tBLASTx 

hits 

No. of X-

linked 

contigs 

No. of 

contigs 

with 

tBLASTx 

hits 

No. of X-

linked 

contigs 

No. of 

contigs 

with 

tBLASTx 

hits 

No. of X-

linked 

contigs 

A (Chr X) 1,454 3 

(0.21%) 

1,454 26 

(1.79%) 

1,464 3 

(0.20%) 

1,464 16 

(1.09%) 

B (Chr 2L) 1,720 9 

(0.62%) 

1,737 28 

(1.61%) 

1,706 6 

(0.35%) 

1,706 32 

(1.88%) 

C (Chr 2R) 1,917 12 

(0.63%) 

1,913 26 

(2.40%) 

1,896 8 

(0.42%) 

1,896 29 

(1.53%) 

D (Chr 3L) 1,782 1 

(0.10%) 

1,835 45 

(2.45%) 

1,831 10 

(0.55%) 

1,831 31 

(1.69%) 

E (Chr 3R) 2,128 11 

(0.51%) 

2,131 51 

(2.39%) 

2,100 7 

(0.33%) 

2,100 32 

(1.52%) 

F (Chr 4) 77 1 

(1.30%) 

85 3 

(3.53%) 

84 0 

(0%) 

84 1 

(1.19%) 
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Table A4. A summary of the percent of the genome composed of repetitive sequences in the thelygenic 

female, arrhenogenic female and the male Chrysomya rufifacies, their copy number and the number of 

bases of each. Repetitive elements were identified using homology to known Diptera repetitive elements 

 
 Thelygenic Female Arrhenogenic Female Male 

 

 
Copy 

numbe

r 

Bases 

(bp) 

% 

Genom

e 

Copy 

numbe

r 

Bases 

(bp) 

% 

Genom

e 

Copy 

numbe

r 

Bases 

(bp) 

% 

Genom

e 

Class 1 Retrotransposons 

LTRs 

Copia 441 104,256 0.04 463 106,151 0.04 456 103,567 0.04 

Gypsy 3,958 471,065 0.17 3,816 463,860 0.16 3,532 440,356 0.15 

Pao 1,130 176,457 0.06 1,131 187,231 0.06 1,119 186,236 0.07 

LINEs 

CR1 254 22,554 0.00 264 23,764 0.01 260 23,089 0.01 

Dong-

R4 
10 706 0.00 10 721 0.00 8 553 0.00 

I 2,743 319,008 0.11 2,875 337,734 0.11 2,752 318,547 0.11 

L1 84 4,898 0.00 11 5,971 0.00 88 4,900 0.00 

L2 309 26,244 0.01 318 27,745 0.01 301 26,002 0.01 

Penelop

e 
4 260 0.00 7 356 0.00 3 148 0.00 

R1 1,273 190,621 0.07 1,350 202,744 0.07 1,343 198,440 0.07 

R2 8 1,847 0.00 8 1,869 0.00 8 1,924 0.00 

RTE 829 105,303 0.04 950 121,165 0.04 887 109,982 0.04 

SINEs tRNA 97 6,646 0.00 111 7,381 0.00 179 11,402 0.00 

Class II DNA Transposons 

Cut and 

Paste 

Transposons 

DNA 213 99,351 0.04 265 123,658 0.04 237 108,259 0.04 

CMC 911 58,029 0.02 1,020 65,497 0.02 976 61,004 0.02 

hAT 2,767 2,771 0.00 3,387 322,255 0.11 3,059 287,617 0.10 

Kolobo

k 
5 258 0.00 5 255 0.00 8 463 0.00 

Maveric

k 
173 48,891 0.02 180 47,465 0.02 191 53,806 0.02 

Merlin 0 0 0  1 59 0.00 0 0 0.00 

MULE 67 3,842 0.00 62 3,560 0.00 66 3,979 0.00 

P 245 13,844 0.01 226 12,963 0.00 236 13,848 0.01 

PIF 137 6,431 0.00 164 7,692 0.00 140 6,661 0.00 

PiggyB

ac 
21 4,161 0.00 24 4,588 0.00 23 3,970 0.00 

Sola 30 1,629 0.00 35 2,078 0.00 38 2,114 0.00 

TcMar 607 92,035 0.03 662 101,190 0.03 586 92,098 0.03 

Zator 5 364 0.00 5 353 0.00 6 416 0.00 

Rolling 

Circle 
Helitron 17,100 

1,790,55

9 
0.64 21,232 

2,269,37

1 
0.77 18,757 

1,955,08

4 
0.68 

rRNA   61 9,567 0.00 74 10,276 0.00 64 11,651 0.00 
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Table A4. Continued 

           

Satellites 
 

46 11,112 0.00 58 15,714 0.01 58 14,388 0.01 

Simple 

repeats  

234,23

0 

11,974,5

85 
4.29 

253,97

0 

12,687,1

48 
4.3 

268,13

4 

12,844,7

56 
4.45 

Low complexity 53,832 
2,766,62

8 
0.99 55,834 

2,843,97

8 
0.96 55,983 

2,821,28

2 
0.98 

Unknown 
 

1,788 151,518 0.05 2,131 186,861 0.06 1,987 166,619 0.06 

Total Repeat Content 

323,37

8 

18,465,4

40 6.61 

350,64

9 

20,191,6

53 6.84 

361,48

5 

19,873,1

61 6.89 

 

 

Table A5. A comparison of enriched Gene ontology (GO) terms within biological processes (BP), cellular 

component (CC) and molecular function (MF), respectively shared among the putative X sequences in the 

four blow fly species. 

Biological Processes 

(ChrX) 
Total Elements 

CalbX CrufX LcupX 

PregX 

 

 

 

 

 

 

 

 

  

11 reproduction 
 

developmental process 
 

cell communication 
 

cellular process 
 

signaling 
 

biological regulation 
 

cellular component organization or biogenesis 
 

response to stimulus 
 

protein folding 
 

metabolism 
 

localization 

CalbX LcupX PregX 4 multicellular organismal process 
  

reproductive process 
  

multi-organism process 
  

methylation 

CrufX LcupX 2 anatomical structure development 
  

DNA metabolism 

LcupX PregX 1 biological adhesion 

CrufX 5 cell cycle 
  

nitrogen compound transport 
  

macromolecular complex assembly 
  

response to stress 
  

homeostatic process 

CalbX 5 ribonucleoprotein complex subunit organization 
  

divalent metal ion transport 
  

multicellular organism development 
  

nucleobase-containing small molecule metabolism 
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Table A5. Continued 
   

response to toxic substance 

LcupX 5 regulation of catalytic activity 
  

ion transmembrane transport 
  

chromosome organization 
  

cellular response to DNA damage stimulus 
  

microtubule-based process 

PregX 21 anatomical structure formation involved in morphogenesis 
  

organic hydroxy compound metabolism 
  

superoxide metabolism 
  

response to endogenous stimulus 
  

regulation of protein catabolism 
  

reactive oxygen species metabolism 
  

mitochondrial transmembrane transport 
  

antibiotic metabolism 
  

cell division 
  

protein refolding 
  

system process 
  

locomotion 
  

glycosyl compound metabolism 
  

autophagy 
  

organic hydroxy compound biosynthesis 
  

growth 
  

immune system process 
  

cell wall organization or biogenesis 
  

adhesion of symbiont to host 
  

cell proliferation 
  

prenylation 

Cellular Components 

(ChrX) 
Total Elements 

CalbX CrufX LcupX 

PregX 

4 organelle 

  
membrane-enclosed lumen 

  
extracellular region 

  
membrane 

CalbX LcupX PregX 12 extracellular space 
  

organelle envelope 
  

cell junction 
  

cell projection 
  

envelope 
  

cell 
  

anchoring junction 
  

supramolecular complex 
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Table A5. Continued 
   

supramolecular fiber 
  

synapse 
  

macromolecular complex 
  

cell surface 

CrufX LcupX 1 intracellular 

CalbX LcupX 1 postsynapse 

CalbX PregX 5 apical part of cell 
  

thylakoid 
  

cell periphery 
  

coated membrane 
  

endomembrane system 

CrufX 1 endoplasmic reticulum 

CalbX 1 proteasome complex 

LcupX 1 membrane protein complex 

PregX 2 presynapse 
  

tethering complex 

Molecular Functions 

(ChrX) 
Total Elements 

CalbX CrufX LcupX 

PregX 

6 binding 

  
transporter activity 

  
translation regulator activity 

  
molecular function regulator 

  
catalytic activity 

  
structural molecule activity 

CalbX CrufX LcupX 1 enzyme regulator activity 

CalbX LcupX PregX 17 structural constituent of ribosome 
  

transcription factor activity, sequence-specific DNA binding 
  

lipid binding 
  

metal cluster binding 
  

amide binding 
  

molecular transducer activity 
  

ribonucleoprotein complex binding 
  

antioxidant activity 
  

carbohydrate binding 
  

cofactor binding 
  

drug binding 
  

electron carrier activity 
  

transcription cofactor activity 
  

peptide binding 
  

binding, bridging 
  

sulfur compound binding 
  

iron-sulfur cluster binding 
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Table A5. Continued 
 

CrufX LcupX 1 translation regulator activity, nucleic acid binding 

CalbX LcupX 4 chitin binding 
  

ion transmembrane transporter activity 
  

coenzyme binding 
  

iron ion binding 

CrufX 3 cytoskeletal protein binding 
  

transmembrane transporter activity 
  

nucleoside-triphosphatase activity 

CalbX 4 vitamin binding 
  

enzyme binding 
  

transferase activity, transferring acyl groups other than amino-acyl 

groups   
signaling receptor activity 

LcupX 3 transmembrane signaling receptor activity 
  

hydrolase activity, acting on ester bonds 
  

protein dimerization activity 

PregX 10 ATPase regulator activity 
  

sulfur compound transmembrane transporter activity 
  

peroxiredoxin activity 
  

nucleoside-triphosphate diphosphatase activity 
  

macromolecular complex binding 
  

ubiquitin binding 
  

phosphoenolpyruvate carboxykinase activity 
  

DNA topoisomerase activity 
  

manganese ion binding 
  

sequence-specific double-stranded DNA binding 
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Table A6. A comparison of enriched Gene ontology (GO) terms within biological processes (BP), cellular 

component (CC) and molecular function (MF), respectively shared among the putative Y sequences in the 

four blow fly species.  

Molecular Functions Total Elements 

CalbY CrufY LcupY 

PregY 

19 structural constituent of ribosome 

  
binding 

  
lipid binding 

  
molecular function regulator 

  
amide binding 

  
molecular transducer activity 

  
carbohydrate binding 

  
catalytic activity 

  
cofactor binding 

  
drug binding 

  
sulfur compound binding 

  
iron-sulfur cluster binding 

  
structural molecule activity 

  
transcription factor activity, sequence-specific DNA binding 

  
transporter activity 

  
metal cluster binding 

  
antioxidant activity 

  
electron carrier activity 

CalbY CrufY LcupY 1 ribonucleoprotein complex binding 

CalbY LcupY PregY 1 binding, bridging 

CrufY LcupY 5 vitamin binding 
  

ion transmembrane transporter activity 
  

transmembrane signaling receptor activity 
  

coenzyme binding 
  

enzyme regulator activity 

CalbY LcupY 2 transcription cofactor activity 
  

peptide binding 

CalbY PregY 3 sulfur compound transmembrane transporter activity 
  

macromolecular complex binding 
  

DNA topoisomerase activity 

CrufY 4 protein dimerization activity 
  

nucleoside-triphosphatase activity 
  

translation regulator activity, nucleic acid binding 
  

iron ion binding 

CalbY 7 ATPase regulator activity 
  

peroxiredoxin activity 
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Table A6. Continued 
   

nucleoside-triphosphate diphosphatase activity 
  

ubiquitin binding 
  

phosphoenolpyruvate carboxykinase activity 
  

manganese ion binding 
  

sequence-specific double-stranded DNA binding 

LcupY 3 enzyme binding 
  

transferase activity, transferring acyl groups other than amino-acyl groups 
  

magnesium ion binding 

PregY 20 chromatin binding 
  

GTP cyclohydrolase I activity 
  

oxygen binding 
  

kinase activator activity 
  

sigma factor activity 
  

deaminase activity 
  

recombinase activity 
  

polysaccharide binding 
  

histone binding 
  

glycogen debranching enzyme activity 
  

telomeric DNA binding 
  

3-hydroxyacyl-CoA dehydrogenase activity 
  

chitin binding 
  

3-phosphoshikimate 1-carboxyvinyltransferase activity 
  

neurotransmitter binding 
  

CTP synthase activity 
  

3-dehydroquinate synthase activity 
  

peptidoglycan muralytic activity 
  

potassium ion binding 
  

modified amino acid binding 

Cellular Components Total Elements 

CalbY CrufY LcupY 

PregY 

14 envelope 

  
membrane-enclosed lumen 

  
membrane 

  
cell periphery 

  
extracellular space 

  
cell projection 

  
cell 

  
endomembrane system 

  
supramolecular complex 

  
organelle 

  
supramolecular fiber 
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Table A6. Continued 
   

extracellular region 
  

macromolecular complex 
  

cell surface 

CalbY CrufY LcupY 5 cell junction 
  

anchoring junction 
  

thylakoid 
  

organelle envelope 
  

synapse 

CalbY LcupY PregY 1 coated membrane 

CrufY PregY 3 nucleoid 
  

periplasmic space 
  

cell division site 

CalbY LcupY 1 presynapse 

CalbY PregY 1 tethering complex 

CrufY 3 membrane protein complex 
  

intermediate filament cytoskeleton 
  

cell septum 

CalbY 1 apical part of cell 

LcupY 1 proteasome complex 

PregY 7 site of polarized growth 
  

spindle pole body 
  

cell tip 
  

cellular bud neck 
  

TOR complex 
  

cellular bud 
  

cytoplasmic vesicle 
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Table A7. Repetitive element landscape of the isolated putative sex chromosomal sequences in P. regina, 

L. cuprina, C. rufifacies and C. albiceps 

 Percent sequence of the characterized putative sex chromosome composed of repetitive 

elements 

Repeat elements CrufX CrufY CalbX CalbY PregX PregY LcupX LcupY 

Retroelements 0.63 0.29 0.39 0.34 1.38 0.92 0.51 1.31 

DNA transposons 0.28 0.12 0.3 0.26 0.94 0.54 0.11 0.23 

Unclassified 0.96 0.3 0.85 0.99 0.55 0.27 0.33 0.56 

Total Interspersed 

repeats 

1.87 0.71 1.54 1.58 2.87 1.73 0.95 2.1 

Small RNA 0 0 0 0.01 0.12 0.03 0.01 0 

Satellites 0 0.01 0.01 0 0.01 0.01 0.01 0.07 

Simple repeats 3.37 1.58 3.64 4.41 3.29 2.38 6.54 8.55 

Low complexity 0.93 0.46 1 0.96 1.02 0.47 0.89 0.74 

%masked 7.11 3.01 6.73 7.59 9.16 5.88 8.46 12.82 

 

 

Table A8. The table below shows the number of contig sequences containing orthologous genes of 

Drosophila melanogaster’s Muller elements. Muller element F, which is the ancestral sex chromosome in 

Dipteran species, is X-linked in Phormia regina and Lucilia cuprina – a characteristic expected in 

differentiated sex chromosomes. However, in C. rufifacies and C. albiceps, the blow fly species which 

exhibit homomorphic sex chromosomes, Muller element F is not X-linked, suggesting undifferentiated sex 

chromosomes. Data shown is generated from female flies (AF = arrhenogenic female, TF = thelygenic 

female). 

 

 

 

 

 Phormia regina Lucilia cuprina Chrysomya 

rufifacies AF 

Chrysomya 

rufifaces TF 

Chrysomya 

albiceps 

Muller 

Elements (D. 

melanogaster 

chromosome) 

No. of 

contigs 

with 

tblastN 

hits 

No. of 

X-linked 

contigs 

No. of 

contigs 

with 

tblastN 

hits 

No. of 

X-linked 

contigs 

No. of 

contigs 

with 

tblastN 

hits 

No. of 

X-

linked 

contigs 

No. of 

contigs 

with 

tblastN 

hits 

No. of 

X-

linked 

contigs 

No. of 

contigs 

with 

tblastN 

hits 

No. of 

X-linked 

contigs 

A (Chr X) 1,448 5 

(0.35%) 

1,801 117 

(6.49%) 

1,454 3 

(0.21%) 

1,454 26 

(1.79%) 

1,823 194 

(10.64%) 

B (Chr 2L) 1,687 10 

(0.59%) 

2,098 188 

(8.96%) 

1,720 9 

(0.62%) 

1,737 28 

(1.61%) 

2,150 198 

(9.21%) 

C (Chr 2R) 1,865 6 

(0.32%) 

2,284 186 

(8.14%) 

1,917 12 

(0.63%) 

1,913 26 

(2.40%) 

2,388 192 

(8.04%) 

D (Chr 3L) 1,694 9 

(0.53%) 

2,242 165 

(7.35%) 

1,782 1 

(0.10%) 

1,835 45 

(2.45%) 

2,355 208 

(8.83%) 

E (Chr 3R) 2,173 8 

(0.37%) 

2,639 184 

(6.97%) 

2,128 11 

(0.51%) 

2,131 51 

(2.39%) 

2,763 267 

(9.66%) 

F (Chr 4) 88 59 

(67.05%) 

104 57 

(54.81%) 

77 1 

(1.30%) 

85 2 

(2.35%) 

93 9 

(9.67%) 
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Table A9. A list of the X-linked orthologous Muller element F gene sequences in all four blow fly species 

Phormia regina Lucilia cuprina Chrysomya 

rufifacies (TF) 

Chrysomya 

rufifacies (AF) 

Chrysomya albiceps 

Arl4 (ADP 

ribosylation factor-

like 4) 

Arl4 (ADP 

ribosylation factor-

like 4) 

CG11155 lgs (legless) Arl4 (ADP 

ribosylation factor-

like 4) 

Cals (Calsyntenin-

1) 

Cals (Calsyntenin-

1) 

JYalpha 
 

Cals (Calsyntenin-

1) 

CG11076 CG33521 
  

CG11076 

CG33521 dpr7 (defective 

proboscis extension 

response 7) 

  
CG33521 

dpr7 (defective 

proboscis extension 

response 7) 

ND-49 (NADH 

dehydrogenase 

(ubiquinone) 49 

kDa subunit) 

  
dpr7 (defective 

proboscis extension 

response 7) 

pan (pangolin) pan (pangolin) 
  

ND-49 (NADH 

dehydrogenase 

(ubiquinone) 49 

kDa subunit) 

CG11155 lgs (legless) 
  

pan (pangolin) 

lgs (legless) 4E-T (eIF4E-

Transporter) 

  
Zip102B (Zinc/iron 

regulated 

transporter-related 

protein 102B) 

4E-T (eIF4E-

Transporter) 

Actbeta (Activin-β) 
   

Actbeta (Activin-β) Ank (Ankyrin) 
   

Ank (Ankyrin) apolpp 

(apolipophorin) 

   

Asator Asator 
   

bip2 bt (bent) 
   

bt (bent) CG1909 
   

Cadps (Calcium-

dependent secretion 

activator) 

CG2316 (ATP 

binding cassette 

subfamily D) 

   

CG11360 CG31997 
   

CG1674 CG31998 
   

CG1909 CG31999 
   

CG2316 (ATP 

binding cassette 

subfamily D) 

CG32006 
   

CG31997 CG32850 
   

CG31998 CG33978 
   

CG31999 ci (cubitus 

interruptus) 

   

CG32006 Crk (Crk oncogene) 
   

CG33978 dati (datilografo) 
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Table A9. Continued 
 

ci (cubitus 

interruptus) 

Ekar (Eye-enriched 

kainate receptor) 

   

Crk (Crk oncogene) Eph (Eph receptor 

tyrosine kinase) 

   

dati (datilografo) ey (eyeless) 
   

eIF4G (eukaryotic 

translation initiation 

factor 4G1) 

fd102C (forkhead 

domain 102C) 

   

Ekar (Eye-enriched 

kainate receptor) 

fuss (fussel) 
   

Eph (Eph receptor 

tyrosine kinase) 

gw (gawky) 
   

ey (eyeless) Gyf (Gigyf) 
   

fd102C (forkhead 

domain 102C) 

Kif3C (Kinesin 

family member 3C) 

   

Gat (GABA 

transporter) 

mav (maverick) 
   

gw (gawky) MED26 (Mediator 

complex subunit 26) 

   

Gyf (Gigyf) onecut 
   

Kif3C (Kinesin 

family member 3C) 

PlexA (Plexin A) 
   

mav (maverick) PlexB (Plexin B) 
   

MED26 (Mediator 

complex subunit 26) 

RhoGAP102A (Rho 

GTPase activating 

protein at 102A) 

   

myo (myoglianin) Slip1 (SLo 

interacting protein 

1) 

   

onecut Sox102F 
   

pho Syt7 

(Synaptotagmin 7) 

   

PIP4K 

(Phosphatidylinosit

ol 5-phosphate 4-

kinase) 

Thd1 
   

PlexA (Plexin A) unc-13 
   

PlexB (Plexin B) yellow-h 
   

PMCA (plasma 

membrane calcium 

ATPase) 

zfh2 (Zn finger 

homeodomain 2) 

   

Pur-alpha (Purine-

rich binding 

protein-α) 

    

RhoGAP102A (Rho 

GTPase activating 

protein at 102A) 
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Table A9. Continued 
 

Slip1 (Slo 

interacting protein 

1) 

    

Sox102F 
    

sv (shaven) 
    

Thd1 
    

toy (twin of eyeless) 
    

unc-13 
    

yellow-h 
    

zfh2 (Zn finger 

homeodomain 2) 

    

Zyx 
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Table A10. Repetitive element landscape of Muller elements in P. regina, L. cuprina, C. rufifacies and C. 
albiceps 

PregM MullerA MullerB MullerC MullerD MullerE MullerF 

Retroelements 0.9 0.98 1.06 1.09 0.91 1.41 

DNA transposons 0.55 0.48 0.57 0.51 0.53 0.56 

Unclassified 0.23 0.24 0.26 0.24 0.25 0.16 

Total Interspersed repeats 1.68 1.7 1.89 1.83 1.69 2.13 

Small RNA 0.08 0.07 0.07 0.06 0.05 0 

Satellites 0 0 0.01 0 0 0 

Simple repeats 3.69 3.68 3.73 3.86 3.76 3.59 

Low complexity 1.15 1.09 1.05 1.17 1.13 0.91 

       

Retroelements MullerA MullerB MullerC MullerD MullerE MullerF 

SINES 0 0 0 0 0 0 

LINES 0.62 0.67 0.68 0.75 0.59 0.89 

LTR 0.28 0.31 0.38 0.33 0.32 0.52 
 

      

Bases masked 6.58 6.54 6.74 6.92 6.63 6.63 

Rolling circles 0 0 0 0 0 0 

LcupM MullerA MullerB MullerC MullerD MullerE MullerF 

Retroelements 0.63 0.7 0.61 0.6 0.62 1.86 

DNA transposons 0.1 0.12 0.09 0.11 0.11 0.17 

Unclassified 0.27 0.32 0.28 0.29 0.32 0.65 

Total Interspersed repeats 1 1.14 0.98 1 1.05 2.68 

Small RNA 0 0.01 0 0 0 0.01 

Satellites 0.02 0.07 0.06 0.05 0.05 0.07 

Simple repeats 3.2 3.68 4.02 3.45 3.24 2.21 

Low complexity 0.37 0.39 0.36 0.37 0.39 0.31 

       

Retroelements MullerA MullerB MullerC MullerD MullerE MullerF 

SINES 0 0 0 0 0 0 

LINES 0.3 0.33 0.29 0.29 0.3 0.76 

LTR 0.33 0.37 0.32 0.3 0.32 1.1 
 

      

Bases masked 4.6 5.29 5.42 4.87 4.72 5.29 

Rolling circles 0 0 0 0 0 0 

CrufM MullerA MullerB MullerC MullerD MullerE MullerF 

Retroelements 0.4 0.46 0.44 0.49 0.4 0.8 

DNA transposons 0.12 0.18 0.18 0.16 0.15 0.17 

Unclassified 0.36 0.46 0.44 0.43 0.38 0.62 

Total Interspersed repeats 0.88 1.1 1.06 1.08 0.93 1.59 

Small RNA 0.01 0.01 0 0 0 0 
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Table A10. Continued  
 

Satellites 0 0.01 0 0 0 0 

Simple repeats 3.98 3.92 4.1 4.26 3.99 3.1 

Low complexity 1.04 0.98 0.98 1.01 1.03 0.84 
       

Retroelements MullerA MullerB MullerC MullerD MullerE MullerF 

SINES 0 0 0 0 0 0 

LINES 0.27 0.27 0.29 0.32 0.28 0.45 

LTR 0.14 0.18 0.15 0.17 0.12 0.35 

       

Bases masked 5.9 6.01 6.14 6.34 5.95 5.54 

Rolling circles 0 0 0 0 0 0 

CalbM MullerA MullerB MullerC MullerD MullerE MullerF 

Retroelements 0.46 0.4 0.4 0.47 0.38 0.74 

DNA transposons 0.14 0.19 0.18 0.18 0.15 0.13 

Unclassified 0.28 0.3 0.34 0.27 0.26 0.46 

Total Interspersed repeats 0.87 0.89 0.92 0.92 0.79 1.32 

Small RNA 0.01 0.01 0.01 0 0 0 

Satellites 0 0 0 0 0 0 

Simple repeats 3.84 3.68 3.99 4.02 3.85 3.39 

Low complexity 1.01 0.93 1 0.97 1.01 0.98 
       

Retroelements MullerA MullerB MullerC MullerD MullerE MullerF 

SINES 0 0 0 0 0 0 

LINES 0.31 0.23 0.26 0.31 0.27 0.42 

LTR 0.15 0.17 0.15 0.15 0.11 0.32 
 

      

Bases masked 5.72 5.5 5.91 5.91 5.65 5.7 

Rolling circles 0 0 0 0 0 0 
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APPENDIX B. SUPPLEMENTAL FIGURES 

 

Figure B1. Top-hit species distribution from Blast2GO for arrhenogenic female, thelygenic female and the 

male. The top hit species is the blow fly L. cuprina. The species listed are those with >10 hits. Those with 

less than the threshold are summed and grouped in the ‘Other’ category 

 


