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ABSTRACT

Uvarov, Filipp PhD, Purdue University, August 2020. Duality of Gaudin models.
Major Professor: Vitaly Tarasov.

We consider actions of the current Lie algebras gl,[t] and gl [t] on the space Py,
of polynomials in kn anticommuting variables. The actions depend on parameters
zZ=(z1,...,2) and @ = (aq, ..., q,), respectively. We show that the images of the
Bethe algebras B ¢ Ul(gl, [t]) and B¥ ¢ U(gl,[t]) under these actions coincide.

To prove the statement, we use the Bethe ansatz description of eigenvectors of the
Bethe algebras via spaces of quasi-exponentials. We establish an explicit correspon-
dence between the spaces of quasi-exponentials describing eigenvectors of ng and
the spaces of quasi-exponentials describing eigenvectors of B;m.

One particular aspect of the duality of the Bethe algebras is that the Gaudin
Hamiltonians exchange with the Dynamical Hamiltonians. We study a similar re-
lation between the trigonometric Gaudin and Dynamical Hamiltonians. In trigono-
metric Gaudin model, spaces of quasi-exponentials are replaced by spaces of quasi-
polynomials. We establish an explicit correspondence between the spaces of quasi-
polynomials describing eigenvectors of the trigonometric Gaudin Hamiltonians and
the spaces of quasi-exponentials describing eigenvectors of the trigonometric Dynam-
ical Hamiltonians.

We also establish the (gl,, gl,,)-duality for the rational, trigonometric and differ-

ence versions of Knizhnik-Zamolodchikov and Dynamical equations.



1. INTRODUCTION
1.1 Classical (gl, g, )-duality

The classical (g, gl,,)-duality plays an important role in the representation theory
and the classical invariant theory, for example, see [1], [2]. Tt states the following.
Let e§;>, 1,7 = 1,...,n, and ei’?, a,b = 1,...,k, be the standard generators of
the Lie algebras gl, and gl,, respectively. Define gl - and gl,-actions on the space

Py = Clzq1, .. ., 1y of polynomials in kn commuting variables:

i )
(nk) . o) } : ‘
p : el] p— Lai axaj 9

k) . o) 0

Then the images p™* (U(gl,,)) and p*™ (U(gl,)) of the universal enveloping algebras
of gl,, and gl;, respectively, are mutual centralizers in End(Py,), and there is an

isomorphism of gl, & gl,-modules
P =P LY @ L),
A

where Lf\m and LE\M are the irreducible representations of gl, and gl, of highest
weight ), respectively. In particular, the centers of the algebras p™* (U(gl,)) and
pFm(U(gl,)) coincide.

Instead of Py, one can consider the space By, of polynomials in kn anticommuting

variables &11, ..., &k, Define gl - and gl -actions on the space Py, by

k
nk) . {n)
7T< ) : eij —> Z&aﬁaj,
a=1

W(k,n) : efz]l? — Zgaiabh
i=1



where Oy, a = 1,...,k, i = 1,...,n are left derivations, see formula (2.10) for
the definition. Then, similarly to the case of P,, the algebras 7{™* (U(gl,)) and
7t (U (gl,)) are mutual centralizers in End(B4,), and there is an isomorphism of
gl & gl,-modules
PBrn = @ L(Am ® L&’?,
A

where the sum runs over A = (Ag,...,\,) such that \; < k, and X denotes the
conjugate of A\, see Section 1.7 for the definition. In particular, the centers of the
algebras w™* (U(gl,,)) and 7% (U(gl,)) coincide. In this dissertation, we will focus
on the space By, rather than Py,.

The pair (gl;, gl,,) is an example of a Howe dual pair. A pair of reductive Lie
algebras (g1, go) is called a Howe dual pair if both g; and go act on Py, or By, and
the images of their universal enveloping algebras under the corresponding actions are
mutual centralizers in End(Py,) or End (B4, ), respectively. Other examples of Howe
dual pairs include (o, $ps,), (5P, 02,) for the space Py, and (0, 02,), (5Pg, 5P, ) for
the space Py, see [1] for details. It is expected that the results of this work can be
obtained for pairs other than (gl,, gl,,). The Howe duality was originally developed as
an useful tool in the representation theory of classical Lie groups and algebras and in
the classical invariant theory, in particular, it is closely related to the famous Schur-
Weyl duality. The Howe duality is also used in the representation theory of Yangians
and twisted Yangians, see [3]. The generalization of this duality to the case of Lie
superalgebras was systematically studied in [4]. There are also analogs of Howe dual

pairs involving some infinite-dimensional Lie algebras acting on Fock spaces, see [5].

1.2 Duality of Bethe algebras

Consider the current Lie algebras gl,[t] and gl,[¢t], which are the Lie algebras
of polynomials of ¢ with coefficients in gl,, and gl;,, respectively, with the pointwise

Lie bracket. Fix sequences of pairwise distinct complex numbers z = (zy,..., 2)



and @ = (ay,...,a,). The actions 7(™* and 7*™ can be extended to gl,[t]- and

gl.[t]-actions, respectively, by the formulas

k
S Y e
a=1

<—07 oF : ab ® "= Z fazabz'

Unlike in the case of finite-dimensional Lie algebras, ﬂ;n’@(U (gl,[t])) and
rm (U (glc[t])) do not commute in End(*By,). But the statement about the equality
of centers above does have a generalization to the case of current Lie algebras.

It is known that a generating set of the center of U(gl,,) can be obtained from the
determinant appearing in the Capelli identity. A generalization of such a determinant
gives a differential operator

Dy = (—) +ZZBa - (—)n l, (1.1)
i=1 j=0
depending on the parameters & = (v, ..., a,), where B € U(gl,,[t]), see Section 2.3
for details. The elements ij generate a large commutative subalgebra Bém called the
Bethe algebra. The definition of the Bethe algebra that we use is due to D. Talalaev,
see [6].

The Bethe algebra B U(gl,[t]) depending on the parameters z = (z1, ..., 2x)
is defined in a similar way. One of the main results of this work is Theorem 2.4.2,
which states that the images of the Bethe algebras Bé{m and Bi—@ in End(*By,,) under

(n,k) (k,n)

the actions 7; " and 7_2", respectively, coincide:

W§"7k>(3gﬁx>) < >(B< ))_

6c z

This result was inspired by the similar duality when the Bethe algebras act on the
space Py, of polynomials in kn commuting variables, see [7].

The Bethe algebras are important objects in the theory of quantum integrable
models. Namely, the algebras 3(@ and 32’” are closely related to the rational quan-

tum Gaudin model, see [8]. As shown in Section 2.3.3, the images of the (rational)



Gaudin Hamiltonians H, € U(gl,)®*, a = 1,...,k, under certain actions are el-
ements of ﬂén’m(fBém). Together with the Gaudin Hamiltonians, we are going to
consider elements G;, i = 1,...,n of U(gl,)®* called the Dynamical Hamiltonians,
whose images also belong to Wé"’m(Bém). The elements Hi, ..., Hy, G1,...,G, pair-
wise commute. In the proof of Theorem 2.4.2, we used the observation that under
the (gly, gl,,)-duality, the Gaudin and Dynamical Hamiltonians exchange, see Lemma
2.4.3 for more precise statement.

In Chapter 3, we study the (gl, gl,,)-duality of the trigonometric Gaudin and
Dynamical Hamiltonians. Although we are not going to discuss the Bethe algebras
for this case below, let us mention them here for the completeness of the picture. In
the case of the trigonometric Gaudin Hamiltonians, instead of the algebra U(gl,[t]),
one should consider the universal enveloping algebra U (g/[;) of the affine Lie algebra
g/[;,. The commutative algebra inside U (g/[;,) playing the role of the Bethe algebra ’Bém
was introduced recently in [9]. We will call this algebra the trigonometric Gaudin
Bethe algebra. On the other hand, the trigonometric Dynamical Hamiltonians are
related to the Yangian Y'(gl,). The corresponding commutative algebra inside Y'(gl,,)
is generated by the higher transfer matrices of the XXX spin chain model, see for
example [10]. We will call this algebra the Yangian Bethe algebra. Therefore, the
ultimate goal in studying the (gl gl,,)-duality related to the trigonometric Gaudin
model would be to establish the equality of images of the trigonometric Gaudin Bethe
algebra and the Yangian Bethe algebra. The results of Chapter 3 may be considered
as first steps in achieving this goal.

The (gl, gl,,)-duality is also expected in the case of the Bethe algebras associated
with the quantum affine algebras Uq(gT[;) and Uq(gT[;). This duality should correspond
to the duality of the XXZ spin chain models associated with gl, and gl , respectively.

To distinguish the Bethe algebras 3557) and ‘.Bém related to the rational Gaudin
model from the Bethe algebras for other integrable models, we will sometimes call

them the rational Gaudin Bethe algebras.



For the convenience of a reader, we illustrate the most important relations between

objects that we introduce on diagram (1.12).

1.3 Duality for spaces of quasi-exponentials

Consider a space of functions V' with a basis

{eaixpij(x” 1= 17"'7”7 .7: 1’...,77,1'},

where oy, ...,q, are distinct complex numbers, p;;(z) are polynomials such that
degp;; # degpy for j # I. Denote by Dy the monic linear differential operator of
degree dim V' annihilating V. Then Dy has rational coefficients.

To the space V, one can associate the data (ji, \; @, z), where & = (a1, ..., a,),
go= (pW,u® . ™) is a sequence of partitions related to degrees of the poly-
nomials p;;(z), Z = (#1,...,2) is the set of poles of the coefficients of Dy, and
A= (AW XD XF) s related to the local behavior of V' around these poles, see
Section 2.2 for more details. We will say that V' is a space of quasi-exponentials with
the data (i, \; @, Z). Denote the set of all spaces of quasi-exponentials with the fixed
data (71, \; @, 2) by &(f1, \; @, ).

In [11], the authors introduced a bijection T, : &(f1, \; @, 2) — E(N, ji; 2, &) given
by

Ty : V= V= ker(pDy ), (1.2)

where p is the least common denominator of coefficients of Dy, and D +— D% is an an-

tiauthomorphism of the algebra of differential operators with polynomial coefficients

(4 o et

The bijection T; was introduced in relation to the (gl,, gl,,)-duality on the space Py,

such that

of polynomials in kn commuting variables.



Recall that " denotes the conjugate of a partition . We will also write 77’ if we
conjugate all partitions in the sequence 7. In this work, we introduce a bijection

Ty E(j1, \;a, 2) — E(ii', N; —a, 2) given by
Ty Vs V= ker(D}), (1.3)

where Dy is a differential operator such that
n d maxj (deg p;;)+1 5
1T <d_ - ai) = Dy Dy,
o1 N

and D — DT is an antiautomorphism of the algebra of differential operators such that

for any function b(x). We will call Dy the quotient differential operator.

We study the bijection T, because it is closely related to the (g, gl,,)-duality of
the rational Gaudin Bethe algebras acting on the space By,. Let us briefly describe
this relation now.

Consider the subspace By, [l, m] € Py, of gl,-weight I and gl,-weight m (for
definition of a weight subspace, see Section 1.7). Both Bethe algebras Egﬁ and B;M
preserve the subspace Pi,[l,m]. Denote the set of eigenspaces of Wé"’M(ng) in
PBrn[l, m] by V [Wén’m(ﬁém),l,m]. Similarly, let V [W%m(B;M),l,m] be the set of
eigenspaces of 7T<_kén>(Bi—k>) in P, [l, m].

The Bethe ansatz is a method of finding common eigenvectors of some commuta-
tive families of operators in the theory of quantum integrable models. In particular,
the Bethe ansatz method for the rational quamtum Gaudin model produces common
eigenvectors for the Gaudin Hamiltonians, or more generaly, common eigenvectors
for all elements of the Bethe algebra. Each eigenvector produced in such a way is
associated with a solution of a system of algebraic equations called the Bethe ansatz
equations.

A natural question is whether the Bethe ansatz gives all the eigenvectors. The

answer to this question is given by E. Mukhin, V. Tarasov and A. Varchenko in [12],



[13], [14], and [15]. In particular, it is shown that there is a bijection between the
sets &(ji, \; @, z) and V Wén’@(Bé")), I,m|, where X and i are some specific sequences
defined using I and m, respectively. We denote this bijection as £. The map £ can
be regarded as an example of the geometric Langlands correspondence, see [16].
The analog of the map £ for the Bethe algebra associated with gl gives a bijection
EN, I 2, —a) =V [Wﬁkolém (B;M), l, m} , which we denote by £'. To prove the equality
of the images of the Gaudin Bethe algebras, we showed that the following diagram

commutes:

see Theorem 2.4.6 and Corollary 2.4.7. In other words, we obtained the duality on
the other side of the geometric Langlands correspondence.

To prove the commutativity of the diagram, we used the fact that the construction
of the bijection £ gives an explicit relation between eigenvalues of the generators
Bf‘_j of the Bethe algebra and the coefficients of a differential operator annihilating
the corresponding space of quasi-exponentials, Namely, if I and m have no zero
components, and £(V) = v € V [Wé"’m(%éw),l,m], then Dy is the image of the
differential operator (1.1), under the action W;n’w and restriction to v. If I and m
have zero components, then we have to use slightly modified differential operator Dj;®.
This helps us to express the eigenvalues of the Gaudin and Dynamical Hamiltonians
in terms of the coefficients of Dy or D" and check that that the relation between
the eigenvalues coming from the transformation %, o ¥, matches the relation coming
from the (gly, gl,,)-duality, see Lemma 2.2.3.

It is convenient to describe the composition €1 o ¥5 using pseudo-differential oper-

ators, see Section 2.1. In particular, it explains the relation between the maps % 0%y

and Ty o Ty, see Proposition 2.5.10. In this description, the essential transformation



in the definition of the map T; o Ts is to take the inverse of a pseudo-differential op-
erator. This is consistent with the (g, gl,,)-duality for the Bethe algebras associated

with Lie superalgebras obtained in [17], which we will discuss more in Section 1.6.

1.4 Duality for difference operators

In Chapter 3, we study the analog of the map T; o ¥ relevant to the (gl,, gl,,)-
duality of the trigonometric Gaudin and Dynamical Hamiltonians. We start with a

space V', which has a basis of the form
{7 qu(z) |la=1,...,k,b=1,... k},

where z1, ..., z; are distinct complex numbers, and g, (x) are polynomials such that

deg Qab('x) % deg Qac(x) if b 7£ C.
Denote K = Z’;:1 kq = dim V. Consider the differential operator

« K d K—a
Dy =Y Bu(z) (x—)
v ; dx

annihilating V. Then [y(z), ..., Bk (z) are rational functions. One can associate the
data (X, i; Z, @) to the space V in a way similar to what we discussed above. We will
say that V is a space of quasi-polynomials with the data (A, ji; Z, &).

Consider an operator 1" defined by T'f(z) = f(x+1). Define a difference operator
Sy by

‘7/n = T(prDV)a

where p is the least common denominator of 5y(z), ..., Bk(x), and 7 is a homomor-
phism such that

T(x) =T, T(%%) = —7.

Using the quotient difference operator, which is analogous to the quotient differ-
ential operator, we can obtain from Sy another difference operator Sjj;. The kernel

W of Sii has a basis of the form

{afrij(x)]i=1,...,n, j=1,...,n;},



where aq,. .., o, are distinct non-zero complex numbers and r;;(x) are polynomials
such that degr;;(z) # degry(z) if j # L.

We prove some properties of the space W, which allows one to assign the data
(1, Nya, —z—=N1+1) to W, where —z2— N, +1 = (—2z; — (AW +1, =20 — AP} +1,
oy =z — (AW 4+ 1), and (A(@)] is the number of non-zero entries of the partition
MA@ in the sequence A. The assignment of the data (&', \'; &, —Z — N1+ 1) to the space
W is different comparing to the previous cases. In particular, the set —z — X + 1 is
smaller than the set of poles of coefficients of Sjj;, and the sequence X is not related
to the local behavior of W anymore, but rather to its behavior associated to strings
of points related by integer shifts. We say that W is a space of quasi-exponentials
with the difference data (', N;a, —z — Ny + 1).

The map V' +— W is described in a more elegant way using pseudo-difference

operators Sy and Sy associated to S{' and Sjj;, respectively. We have
Sw = Sy (1.4)

We relate the map V +— W to the (gl,, gl,,)-duality of the trigonometric Gaudin
and Dynamical Hamiltonians. Eigenvectors of the trigonometric Gaudin Hamiltoni-
ans can be produced using the Bethe ansatz for the trigonometric quantum Gaudin
model. Since the trigonometric Dynamical Hamiltonians are related to the Yangian
Bethe algebra and to the transfer matrices generating it, their eigenvectors can be
obtained by the Bethe ansatz for the XXX spin chain model.

The Bethe ansatz method for the trigonometric Gaudin and XXX spin chain
models is less developed than for the rational Gaudin case. There are statements
that relate the spaces V and W with solutions of the Bethe ansatz equations for the
trigonometric Gaudin and XXX spin chain models, respectively, see [18]. Also, there
are explicit formulas for eigenvalues of the Hamiltonians in terms of these solutions.
But unlike in the rational Gaudin case, explicit relations between eigenvalues and
coefficients of difference operators were not written down. In Sections 3.5.2 - 3.5.5,
we obtain such relations collecting necessary results from papers [18] and [10]. Then

we check that the relation between eigenvalues coming from (1.4) matches the relation
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coming from the (gl,, gl,,)-duality, see Theorem 3.5.10. Again, we have to treat the
case when the weights I or m have zero components in a slightly different way, see
Section 3.5.7.

Similarly to the rational Gaudin case, in the construction of the map V — W,
we used a transformation relevant to the duality of the trigonometric Gaudin and
Dynamival Hamiltonians acting on the space Py, of polynomials in kn commuting
variables. This transformation was introduced in [19], and it defines the so-called bis-
pectral duality. One can first apply bispectral duality and then consider the quotient
difference operator, or first consider the quotient differential operator and then apply
the bispectral duality. In Section 3.4.7, we show that the result is the same for both

choices.

1.5 Duality for Knizhnik-Zamolodchikov and Dynamical equations

The differential equations

(Faaza —Ha(f,d)) f=0, a=1,...,k, (1.5)

where f is a Py,-valued function of zq, ..., 2k, a1, ..., q,, and Hi(Z,@), ..., Hx(Z, &)
are the Gaudin Hamiltonians, are called the rational Knizhnik-Zamolodchikov (KZ)
equations. They were first introduced as differential equations for the correlation
functions in Wess-Zumino-Novikov-Witten (WZNW) conformal field theory, see [20].
The rational KZ equations along with their trigonometric and difference analogs play
an important role in the representation theory of Lie algebras and quantum groups,
see [21].

The differential equations

0
(/{aai —Gi(a,z)) f=0 i=1,...,n, (1.6)
where f is again a Py,-valued function of zq,..., 2k, ai,...,q,, and G1(Z,@),...,

G, (z,@) are the Dynamical Hamiltonians, are called the rational differential Dynam-
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ical (DD) equations. It was proved in [22], that the rational KZ equations and rational
DD equations are compatible, see Theorem 4.1.1 for a more precise statement.

We will also consider the trigonometric (trigkZ) and quantized (qKZ) Knizhnik-
Zamolodchikov equations. The trigkZ equations are related to the trigonometric
Gaudin Hamiltonians similarly to the rational case. The qKZ equations are difference

equations of the form
Kof(za +K) = f(za), a=1,...k, (1.7)

where f is a Pj,-valued function of z1,..., 2k, aq, ..., ap, and K, € End(Px,).

In [23] and [24], the authors introduced the trigonometric differential Dynamical
(trigDD) equations compatible with the qKZ equations and the difference Dynamical
(qDD) equations compatible with the trigKZ equations, respectively. The trigDD
equations are related to the trigonometric Dynamical Hamiltonians similarly to the

rational case. The qDD equations are difference equations of the form
Xif(a; + k)= flag), i=1,...,n, (1.8)

where f is a Py,-valued function of z1,..., 2z, aq,...,a,, and X; € End(By,)-

All mentioned equations can be defined using either the Lie algebra gl,, or the Lie
algebra gl,. In Chapter 4, we show that the Knizhnik-Zamolodchikov and Dynamical
equations exchange under the (gl,, gl,,)-duality:

KZ +— DD, (1.9)
trigKZ <— trigDD, (1.10)
qKZ +— DD, (1.11)

see Theorem 4.2.1 for the precise statement. Similar dualities for the space P, were
observed in [25].
The duality for the rational (resp., trigonometric) KZ and DD equations is equiv-

alent to the duality for the rational (resp, trigonometric) Gaudin and Dynamical
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Hamiltonians. Therefore, correspondence (1.9) is related to the duality of the ratio-
nal Gaudin Bethe algebras, and correspondence (1.10) is related to the duality of the
trigonometric Gaudin and Yangian Bethe algebras.

Correspondence (1.11) is not equivalent to any results in the previous chapters,
but it is also related to the duality of the trigonometric Gaudin and Yangian Bethe
algebras. This is because the space V from the previous section gives eigenvectors
for the trigonometric Gaudin Hamiltonians, which are also eigenvectors of the gl,-
versions of operators X7,..., X, in formula (1.8), see [26] and [27]. Similarly, the
space W from the previous section gives eigenvectors for the trigonometric Dynamical
Hamiltonians, which are also eigenvectors of the operators Ki,..., K; in formula

(1.7), see [28]. Again, we refer a reader to diagram (1.12).

[ U (gtelt) ‘ [ Ug1, 1)

Rational Gaudin model Rational Gaudin model

A
Y

KZ and DD equations DD and KZ equations

V = (e*"py(x),a=1,..., k) V = (e®*pi(z),i=1,...,n)
k—a n 7 n—i
\ Dy = Zi:o ba() (1) ) | Dy = Y1y bi(2) (45)
Trigonometric Gaudin model XXX spin chain model

A
Y

trigKZ and qDD equations trigDD and qKZ equations

V= (z*q,(z),a=1,...,k) W = {(afri(z),i=1,...,n)

"Dy = sy Bula) (v )" Sw = iy bi(e) T
Uyat) | | vt
XXZ spin chain model J l XXZ spin chain model

(1.12)
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1.6 Other related dualities

In this section, we highlight some other results known in the literature, which are
related to the dualities we study.

A lot of work was done for the space Py, of polynomials in kn commuting variables.
The equality of images of the rational Gaudin Bethe algebras acting on Py, was proved
in [7] using a generalization of the Capelli identity. The corresponding transforms of
the spaces of quasi-exponentials and quasi-polynomials were introduced in [11] for
the rational Gaudin model and in [19] for the trigonometric Gaudin model.

The (gly, gl,,)-dualities of the Bethe algebras B;k) and ng acting on the spaces
Py, and By, are special cases of the (gl, gl,,)-duality of the Bethe algebras B;M and
B&I™) acting on the space Py, njm, where B&I™) s the Bethe algebra associated with

the Lie superalgebra gl and Py ,m is the space of polynomials in variables z;,

nlm»

a=1,...,k,1=1,...,m+ n, such that
Taimy; = (1) Wy,

where [i| = 0 if i < n, and |i| = 1 otherwise.

The duality between the algebras Bfim and Bi—”‘m acting on P, |, Was established
in [17). It was also conjectured in [29] that the eigenvectors and eigenvalues of B{"™
are described by ratios of differential operators, which are elements of the algebra of

pseudo-differential operators. The (gl;, gl,,,,,)-duality for the Bethe algebras suggests

njm)
that there exists a correspondence between differential operators and ratios of dif-
ferential operators. This correspondence is well understood when m = 0 ("the even
case”) and when n = 0 ("the odd case”). For the even case, the correspondence is
the map ¥, above. For the odd case, the correspondence is the map T; o Ty that we
study in this work, which sends the kernel of a differential operator to the kernel of
the denominator in the ratio of differential operators mentioned above. This justifies
the appearance of the inverse of a pseudo-differential operator in our construction of

the map % o ¥5. The even case and the odd case are linked in a non-trivial way

when both m and n are not zero. It is therefore a challenging and interesting prob-
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lem to establish and study dualities for pseudo-differential operators describing the
eigenvectors and eigenvalues of the Bethe algebras in ”super-case”

In [30], the (g, gl,,)-duality was studied for another generalization of the algebra
ink) (B<ﬂ)

5 &"). The image of the determinant used in the definition of Bém under the

map ﬂé"’m is the determinant of a matrix whose entries are rational functions with
at most simple poles at zq,..., z;. Also, the numbers ay, ..., «a, can be regarded as
entries of a diagonal matrix. The authors of [30] consider higher order poles at 21, ...,
2k, which in the dual picture corresponds to assigning a Jordan block to each «;, 1 =1,
...,n. One can also consider this generalization as a limit of the algebra Wé"’@(Bfim)
when a; — o and z, — 2, for some i, j,a, and b. This limit is very interesting to
study, in particular, using this limit, it was shown in [31] that the monodromy of the
Bethe vectors is related to crystal bases. In our work, the results for the spaces of
quasi-exponentials and quasi-polynomials are much more general than what we need
for the duality of BgL> and Bi—k>. We expect that these results are relevant to the
generalization of the Bethe algebras to higher order poles.

The (g, gl,,)-duality was also studied in the context of quantum toroidal algebras,
see [32], where the authors proved that the corresponding Bethe algebras commute.

The recently established connection between quantum integrable models and
Nakajima quiver varieties became a quickly developing research area nowadays,
see [33], [34], [35], [36], and [37]. A natural question is whether the (gly, gl,,)-duality
is somehow reflected in the context of this connection. A possible answer to this ques-
tion involves the 3d mirror symmetry for algebraic varieties introduced in [38], [39].
In [38], the authors constructed the 3d mirror dual X’ for the variety X = T*Gr(l, n),
where T*Gr(l, n) is the cotangent bundle of the Grassmanian Gr(l,n) of I-planes in an
n-dimensional space. The hypergeometric solutions of the trigonometric qKZ equa-
tion associated with the quantum affine algebra Uq(g/[;) can be constructed using the
K-theory of the cotangent bundles of partial flag varieties, see [40], [37]. Then the
pair (X, X’) above gives a correspondence between the hypergeometric solutions of

the trigonometric KZ equations associated with Uq(g/lg) and U, (gA[n), which is believed
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to correspond to the (gl gl,,)-duality for quantum affine algebras (the last duality on
diagram (1.12)).

1.7 Basic notation and conventions

In this dissertation, a partition g = (1, pi2, ... ) is an infinite nonincreasing se-
quence of nonnegative integers stabilizing at zero. Let p' = (p}, i, ... ) denote the
conjugate partition, that is, u; = #{j | 1y > ¢}. In particular, pj equals the number
of nonzero entries in .

The Young diagram corresponding to a partition p = (f1, fi2, . . . ) consists of rows
of boxes aligned by their left side, such that the top row has u; boxes, the next row
has o boxes, and so on. An example of the Young diagram for a partition and its
conjugate is given below. Columns of the Young diagram of the conjugate partition

correspond to rows of the Young diagram of the original partition.

/.L =(5,4,1,0,0...) /.L, =(3,22,2,1,00,...)

The general linear Lie algebra gl, is a Lie algebra spanned by the elements e,
i, =1,...,n with the Lie bracket [e;;, ex;] = d i€y —duexj. The elements e;;, i,j = 1,
...,n are called the standard generators of gl,. A gl,-module (or representation
of gl,) is a vector space L endowed with a gl -action. A representation of gl, is

irreducible if it does not contain an invariant subspace.
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A gl -weight is a sequence of n complex numbers. Notice that a partition with at
most n non-zero entries defines a gl -weight. We denote by (L), the weight subspace
of a gl,-module L of weight A = (A1,...,\,), which is the subspace of all v € L
such that e;v = \v, i« = 1,...,n. We denote by L, the irreducible highest weight
gl,-module of highest weight A\, which is a unique up to an isomorhism irreducible
gl,,-module with a vector v such that e;;u =0 for all 7 < j, and e;;v = \v, i =1,.. .,
n.

We will often consider the Lie algebras gl,, and gl together. We will write the

superscripts (n) and (k) to distinguish objects associated with algebras gl,, and gl,,

(n)
7,] Y

respectively. For example, e t,j = 1,...,n, are the generators of gl,, and eg?,
a,b=1,...,k, are the generators of gl,.

All vector spaces are over the field of complex numbers if not specified otherwise.

Here are some other notations that we used throughout the text:

Dy - the fundamental monic differential operator of the space V' of quasi-
exponentials or quasi-polynomials.

Dy - the fundamental regularized differential operator of the space of quasi-
polynomials V.

Sty - the fundamental monic difference operator of the space of quasi-exponentials
W.

Sy and Sy - the fundamental pseudo-difference operators of the space of quasi-
polynomials V' and of the space of quasi-exponentials W, respectively.

Sw - the fundamental regularized difference operator of the space of quasi-

exponentials W.

Wr(fi,..., fn) (resp., Wr(fi,..., fn)) - differential (resp., difference) Wronskian
of fi,..., fu

1.8 Other notes

Chapter 2 is based on the joint paper [41] with V. Tarasov.



Chapter 4 is based on the joint paper [42] with V. Tarasov.
The results of Chapter 3 are not published yet.

17
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2. DUALITY OF RATIONAL GAUDIN BETHE
ALGEBRAS

2.1 Algebra of pseudo-differential operators

The algebra of pseudo-differential operators W2 consists of all formal series of the
form o K«
d m
> 3 ()
m=—00 k=—0o0
where integers M and K can differ for different series, and CY,, are complex numbers.
One can check that the rule
d\" k - (m),(k); k—j d\"’
— = — — keZ 2.1
() « S () o mkez, @)
where (a); = a(a —1)(a —2)...(a —i+ 1), yields a well-defined multiplication on
U®. The verification of associativity is straightforward using the Chu-Vandermonde

identity:

Lemma 2.1.1 If D = M S ¢ a¥(d/de)™, with Cga # 0, then D is

m=—00 k=—o00

tnvertible in VY.

Proof Define D by the rule 1+ D = Cyl, 2 XD (d/dz)~™. Then Z;’io(—l)j[)j is
a well-defined element of ¥® and the inverse of D is given by the formula:

D' =Cgly, (d%) - (i(—l)j[?]) K. .

J=0

We consider a formal series Zf\f:_oo fm(z)(d/dx)™, where all f,,(x) are rational

functions, as an element of WD replacing each f,,(z) by its Laurent series at infinity.
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In particular, we identify the algebra of linear differential operators with rational coef-
ficients and the corresponding subalgebra of ¥®. Next corollary follows immediately

from the Lemma 2.1.1.

Corollary 2.1.2 Let D ="M f,.(x)(d/dz)™, where all f,,(x) are rational func-

tions reqular at infinity. Then D is invertible in UD.

Using (2.1), one can check that for any complex numbers C,,, the series

£ ()

m=—00 k=—o00

is a well-defined element of ¥®. We define a map (-)' : ¥D — UD by the rule

(5 S (d)) -5 Sa (4 -

m=—o0 k=—o0 m=—o0 k=—o0

Lemma 2.1.3 The map (-)' is an involutive antiautomorphism of UD.

T
Proof To check that (-)' is involutive, we need to verify that ((wk(d/dx)m) T) =
xk(d/dz)™. By (2.1), it reads as

i (—1) Ug)"yﬂ (%)m_j 2T = gk (%)m. (2.2)

=0
The equality holds since Z i = 61 .
= M=)
Using (2.1) and (2.2), one can check that (-)! is an antiautomorphism as well. [

We also define the following involutive antiautomorphism on ¥®:

(£ Serl@))- £ Son(e)

m=—00 k=—o0 m=—00 k=—o0

For D € U®, we say that DT is the formal conjugate to D and D* is the bispectral
dual to D. Let D* = (D)%,

Lemma 2.1.4 The map (-)* is an automorphism on ¥D of order 4
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Proof The map (-)# is an automorphism because it is a composition of two anti-
#

automorphisms. Since <(xk(d/dx)m)#> = (—x)* (=d/dz)™, the map (-)¥ has order

4.

2.2 Spaces of quasi-exponentials

In this dissertation, a partition p = (p1, fto,...) is an infinite nonincreasing se-
quence of nonnegative integers stabilizing at zero. Let y' = (u}, b, ...) denote the
conjugate partition, that is, u; = #{j | u; > i}. In particular, 4} equals the number
of nonzero entries in .

Fix complex numbers o, ...,a, and nonzero partitions p®, ..., ™. Assume
that oy # «; for 7 # j. Let V be a vector space of functions in one variable with a
basis {g;j(z)e®® | i =1,...,n,5 = 1,...,(up®)}}, where ¢;;(x) are polynomials and
deg gi; = ()} + ) = .

Denote M’ = 3" (@)} = dim V. For z € C, define the sequence of exponents
of V' at z as a unique sequence of integers e = {e; > ... > ey}, with the property:
for each ¢ = 1,..., M, there exists f € V such that f(z) = (z — 2)%(1 + o(1)) as
T =z

We say that z € C is a singular point of V' if the set of exponents of V' at z differs

from the set {0, ..., M’—1}. A space of quasi-exponentials has finitely many singular
points.
Let 21, . . ., 2, be all singular points of V and let e@ = {e{* > .. > eggj),} be the set

of exponents of V at z,. For each a = 1, ..., k, define a partition A(® = (A A )
as follows: e\ = M’ +)\§“) —ifori=1,...,M' and )\g“) =0 for i > M’. Clearly, all

i
partitions AY, ..., A*®) are nonzero.

Denote the sequences (), ..., u™), AV, ... X®) (ay, ..., an), (21,...,2) as

i, A, &, z, respectively. We will say that V' is a space of quasi-exponentials with the

data (fi, \; @, 2).
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For arbitrary sequences of partitions g = (u®,...,u™), X = (MO . AF®)
and sequences of complex numbers @ = (ay,...,@,), 2 = (z1,...,2), define the
data (fi, \; @, 2)™ by removing all zero partitions from the sequences ji, A and the

corresponding numbers from the sequences a,z. We will call the data (fi, \; @, z)

reduced if (fi, \; &, 2) = (i, \; &, 2)™9.

We will say that V is a space of quasi-exponentials with the data (i, \;&,z) if V
is a space of quasi-exponentials with the data (1, \; &, ).

The fundamental differential operator of V is a unique monic linear differential
operator of order M’ annihilating V. Denote the fundamental differential operator of
V by Dy.

Define Dy = Dy [[iL; ,w¢(d/dz — a;). We will say that the space V* =
ker Di/'® is the augmentation of V with the data (fi, \;@, %), and the space V is the
reduction of V8. Clearly, V = [[i_, ,o_o(d/dr — ;) V8.

Lemma 2.2.1 The coefficients of Dy and Dy are rational functions in x regular

at infinity.

The lemma will be proved in Section 2.5.5.

Recall that we identify the algebra of linear differential operators with rational
coefficients and the corresponding subalgebra of UD.

Let V be a space of quasi-exponentials with the data (fi, \; @&, ). By Lemma 2.2.1
and Corollary 2.1.2, the operator Dy is an invertible element of ¥®. Consider the

following pseudo-differential operator:

Dy = (—1)M H(x + o)™ (D;l)# H (% — Za> _ (2.3)

i=1 a=1

Theorem 2.2.2 The following holds:

1. Dy is a monic differential operator of order L = 25:1 Aﬁ“).
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2. The vector space V = ker lN)V 1s a space of quasi-exponentials with the data
(N, f's 2, —a), where @ = ((pV),...,(u™)), N = (AVY,...,A®)) and
—a=(—ag,...,—Qy).

3. Let by and by be the coefficients in the following expansions of D¢ and

Dy = Dy [Tazy, zer—o(d/da = 24) :

Miug oo M, —i _ Laug oo Laug—s
aug 1 aug __ t
Dy,° = E E bija™ | — , Dy, E E bzt | — .

=0 75=0 s=0 t=0

Then there are polynomials Py in variables ry;, i = 0,.. .,M;ug, j =0, de-
pending only on the data (i, \; &, ), such that byt equals the value of Py under
the substitution r;; = b;; for all i,5. Moreover, the coefficients of Py are
polynomials in @, z.

The theorem will be proved in Section 2.5.

Let bi(z) and b;(x) be the coefficients of DI and D' :

d Mg My —i
ove= (32) e X ()

_ d Laug Laug R d Lawg—a
D' = | — b, — )
(i) e ()

a=

By Lemma 2.2.1, b;(z) and b;(x) are rational functions of z. Define functions &(u),

1 € Z>g, by the rule:

k 00
H (u— z4) H(u - za)Aga) Z Gi(u)r™ = ules 4 Z ba(z)ule=e, (2.4)
)\?‘jio a=1 =0 a=1
Set
_ bi () _ Gu)
he = Resxzza( 5 b2($)>, Ja = Resy—., (T — cg(u)>. (2.5)

We will need the following lemma:
Lemma 2.2.3 For each a=1,...,k, we have
9o = —hy.

The Lemma will be proved in Section 2.5.6.
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2.3 Bethe algebra
2.3.1 Universal differential operator

The current algebra gl [t] = gl,, ® C[¢] is the Lie algebra of gl,,-valued polynomials
with pointwise commutator. We identify the Lie algebra gl, with the subalgebra
gl,, ® 1 of constant polynomials in gl,,[t].

For each g € gl,,, let g(z) => 72 (g®¢*) x5! It is a formal power series in 2!

with coefficients in gl,,[t].
For an nxn matrix A with possibly noncommuting entries a;;, its row determinant
1s

rdet A = Z (_1)(70'10(1)&20(2) -+« Qpo(n)-

UES’IL

Let e;5, 1,5 = 1,...,n, be the standard generators of the Lie algebra gl,, satisfying

the relations [e;;, ex] = 0jx€y — duerj. Denote by b the Cartan subalgebra of gl,
spanned by the generators eiq,..., €.
Fix @ = (aq,...,q,), a sequence of pairwise distinct complex numbers. Define

the universal differential operator Ds by the formula

d n
‘D@ == d t - — i (51 — i1 .
e ((dx Oé) 1T <x>>i,j:1

It is a differential operator in the variable x whose coefficients are formal power

series in ! with coefficients in U(gl,[t]),

i ()5 S5m0 () a6

where

Bi(z) = Bz (2.7)
=0
and Bj; € U(gl,[t]) fori = 1,...,n, j > 0. Notice that > 7" § Bjou" " = [[_; (u—ay).

Definition 2.3.1 The subalgebra B, of U(gl,[t]) generated by B;;, i = 1,...,n,
7 =1, 1s called the Bethe algebra.



24

The proof of the following theorem can be found in [6].

Theorem 2.3.2 The algebra Bs is commutative. The algebra Bs commutes with the

subalgebra U(h) C U(gl,,[t]).

2.3.2 Action of Bethe algebra in a tensor product of evaluation modules.

For a € C, let p, be the automorphism of gl,[¢t] such that p, : g(z) — g(z —
a). Given a gl,[t]-module M, we denote by M (a) the pullback of M through the
automorphism p,.

Let ev: gl,[t] — gl, be the evaluation homomorphism, ev : g(z) — gx~'. For any
gl,,-module M, we denote by the same letter the gl,[t|-module, obtained by pulling
M back through the evaluation homomorphism. For each a € C and gl,-module M,
the gl,[t]- module M (a) is called an evaluation module.

For each A = (Ay,...,\,) € C" and an h-module M, we denote by (M), the
weight subspace of M of weight A. Note that any partition A\ with A,,; = 0 can be
considered as an element of C”".

Let M be a gl,[t]-module. As a subalgebra of U(gl,[t]), the algebra B; acts on
M. Since B; commutes with U(h), it preserves the weight subspaces (M)).

Given a Bsz-module M, a subspace H C M is called an eigenspace of Bs-action
on M if there is a homomorphism & : B; — C such that H = (g ker(F — £(F)).

Denote by Ly the irreducible finite-dimensional gl,-module with highest weight
A Fix po= (pa, ..., pn) € 2%, a@ = (o1, ..., ) € C" such that a; # a; for i # j,
Z = (21,...,2,) € CF such that z, # 2, for a # b, and a sequence of partitions
A= (AW AR Define the sequence of partitions i = (u, ..., u™) setting
p = (1;,0,0,...). The next theorem states the results from [43] that we need.

Theorem 2.3.3 Consider a tensor product L5(Z) = Lyn)(z1) @ ... ® Lyw(zk) of
evaluation gl,[t]-modules. Then the following holds.

1. Fach eigenspace of the action of By on (L;\(Z))M s one-dimensional.
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2. For generic & and z, the action of Bg on (L;\(E))u 15 diagonalizable.

3. Letv € (L;(Z))/l be an eigenvector of the action of Bs. Then there exist ra-
tional functions by(x), ..., b,(x) with Laurent series at infinity by (x), ..., b,(z),
respectively, such that B;(xz)v = Bl(:v)v forall i =1,...,n, and the kernel of the
differential operator D = (d/dx)" + Y 1, bi(x)(d/dx)""" is the augmentation

of a space of quasi-exponentials with the data (fi, \; @, %).

4. The correspondence between eigenspaces of the action of By on (L’_\(Z))u and
spaces of quasi-exponentials with the data ([i, \; &, Z) given in part (3) is bijec-

tive.

2.3.3 Gaudin and Dynamical Hamiltonians

For g € gl,, define g = 12D @ g @ 12k ¢ U(gl )®*. We will use the
same notation for an element of U(gl,,) and its image under the diagonal embedding
g Sr_1(9)@ € Ulgl,)®". Let Qapy = 301 (€)@ (€ji)v) -

For sequences of pairwise distinct numbers & = (a4, ...,q,) and z = (21,. .., 2x),

define the following elements of U(gl,)®*:

n k k n
_ Q(ab) _ €ij€Cji — €y
Ha<Z, CL/) = Z O%'(Q’i)(a) -+ Z Z——Zb 5 Gi(z, Oé) = Z za(eii)(a) + Z h .
i= _ a a= i 1 7
1 o 1 yoi

The elements Hy(z,@),..., Hy(Z, &) are called the Gaudin Hamiltonians. The ele-
ments G1(Z, @), ...,G,(Z, @) are called the Dynamical Hamiltonians.
Consider an algebra homomorphism ev; : U(gl,,[t]) — U(gl,)®*, given by

k
evs 1 gt° — Z 9(a) %y -

a=1
For each i = 1,...,n, let B;(z) be the image of the series B;(z), see (2.6), under
the map ev;. The series R(x) is a formal power series in ! with coefficients in

U(gl,)®*. There exists a rational function of the form $*_ Z;:o B\ija(a: — 24)7,
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where Eija € Ul(gl,)®*, such that B;(z) is the Laurent series of this function as

x — oo. We will identify the series B;(z) and this rational function.

Let éj (u), j € Zsp, be rational functions in u defined by the formula

=1

[T0e =) Y Cstwa = w + 37 Biwyu. (2.8

Lemma 2.3.4 The following holds:

§2 N 2 N
Hu(z,a) = Reszzza< (@) 32<x>> . G4(%,a) = Resucn, (%“) . 02<u)) .
(2.9)
Proof The proof is straightforward. [ ]

2.4 (gl, gl,)-duality
2.4.1 (gl, gl,)-duality for Bethe algebras

Let X,, be the space of polynomials in anticommuting variables &1, ...,&,. Since
&&= =& for any 4,7, in particular, & = 0 for any 7, the monomials &, ...&,,
1< <19 <... <1 <n, form a basis of X,,.

The left derivations 0y,...,d, on X,, are linear maps such that

ai (gjl - ‘gjz) = (_1)8_153'1 ‘. 'gjs—l 5js+1 . -gjz ) if 7= js for some S, (2'10)

0; (&, -.-&,) =0, otherwise .

It is easy to check that 9;0; = —9;0; for any i, j, in particular, 9? = 0 for any 4, and
0:; + £;0; = 4,5 for any ¢, 7.

Define a gl,-action on X,, by the rule e;; — &;0;. As a gl,-module, X,, is isomorphic
to @, L, where

w =(1,...,1,0,...,0), 2.11
1= l ) (2.11)

and the component L, is spanned by the monomials of degree [.
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Notice that X, as an algebra coincides with the exterior algebra of C". The
operators of left multiplication by &;,...,&, and the left derivations 0, ..., 0, give
on X, the irreducible representation of the Clifford algebra Cliff,,.

From now on, we will consider the Lie algebras gl,, and gl, together. We will write

superscripts (n) and (k) to distinguish objects associated with algebras gl,, and gl,,
(n)

ii'v 4,7 = 1,...,n, are the generators of gl,, and k)

respectively. For example, e ab

a,b=1,...,k, are the generators of gl,.
Let By, be the vector space of polynomials in kn pairwise anticommuting variables
Caiva=1,... k,i=1,...,n. We have two vector space isomorphisms 9, : (X,)®* —

(»Blm and w2 : (:{k)(@n — mkna given by
V1 (1 @...@pk) = pr(&ans - En)p2(&or, -y &on) o Dk (ERts - - k) (2.12)

Yo (1 ® ... @pn) = P&y &e)p2(&azs - k) - Pn(&ins - Een) - (213)

Let Oy, a=1,...,k, i =1,...,n, be the left derivations on By,, defined similarly
to the left derivations on X,, see (2.10). Define actions of gl, and gl on Py, by the

formulas .
eg‘l = Z Eai0aj ey Zﬁaiabi-
a=1 i=1
Then 1, and 1y are isomorphisms of gl - and gl,-modules, respectively.

It is easy to check that gl - and gl,-actions on ‘Bj, commute. For the next

theorem, see for example [4]:

Theorem 2.4.1 The gl, @ gl,-module Py, has the decomposition P, = P, V,\<n> ®

V)\(/k>, where the sum runs over A = (\1,..., \,) such that \; < k.

The gl,,- and gl,-actions on By, can be extended to the actions of corresponding

current Lie algebras by the formulas
k
el 1 > 25 ailuj, (2.14)
a=1

ei’? Rt = Z (—t)® €aiObi- (2.15)
=1
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Then 11 and 1, are respective isomorphisms of the following gl [t]- and gl [t]-modules:

¢1 : %n(zl) & :{n(ZQ) X...RQ %n(Zk) — "Bkn s (216)

@bg : :{k<—()é1) & %k(—ag) ®...x0 %k(_@n> — ;’Bk’n . (217)

The actions (2.14) and (2.15) do not commute. Nevertheless, it turns out that the
images of the subalgebras BgL) and 3?) in End(Py,) given by these actions coincide.
We will use Theorems 2.2.2 and 2.3.3 to show the following.

Theorem 2.4.2 Let 72" : U(gl,[t]) — End(Pyn) and 7 : U(gl,[t]) — End(Brn)

a

be the homomorphisms defined by formulas (2.14) and (2.15), respectively. Then

a

n(B) = nla(BLY). (2.18)
Theorem 2.4.2 is proved in Section 2.4.5.

Remark 1 Let B\ be the generators of the algebra Bém, cf (2.7). Here,

17,0
we indicated the dependence on & explicitly.  Then we have W_Z(B-m_a) =

(=1 =ixi (BYL) . Therefore 7' (B) = ni™ (BI).

ij,00 &

2.4.2  (gl;, gl,)-duality for Gaudin and Dynamical Hamiltonians

Define U(gl,,)®* and U(gl,)®"-actions on By, by

<€§?>)(a) = faz‘aaj; (2.19)
(el @) > Eaibi (2.20)

Then v, and v, are isomorphisms of U(gl,,)®*- and U(gl, )*"-modules, respectively.

In Section 2.3.3, we introduced elements H,(z,a) and G;(z,a) of U(gl,)®*. We

will write them now as Hén’m(z, a), Gk

;7 (Z,@). We will also consider analogous

elements H"™(a,z), G¥™(a, %) of U(gl,)®". The following result can be found
in [41]:



29

Lemma 2.4.3 Let p™* : U(gl,)®* — End(Br,) and p*™ : U(gl,)®" — End(Pr,)
be the homomorphisms defined by (2.19) and (2.20) respectively. Then for any i = 1,

coon,anda=1,...,k we have:
o) (B(2,5)) = —p (GL(=a, 7)) (221)
PR (G (z,)) = pBm (HY (—a, 7)) . (2.22)
Proof The proof is straightforward. [ ]

2.4.3 Restriction to the subspaces By, [l, m|.

Let Zy, be the subset of all pairs (I, m) € Z5 ) x 22, U= (I1,...,ly), m = (my,
...,my), such that [, < n for all a, m; < k for all i, and 22:1 lo = >0 m,.

For each (I,m) € Zj,, denote by P,[l,m] C P, the span of all monomials

ﬁl. . Z’fl L g ZZ”’ such that 22:1 dei = m; and Y1 dy; = l,. Note that

* Sln
da; € {0,1} for all a,i. Clearly, we have a vector space decomposition:
mkn = @ ;fpk’n [l, m] .
(l,m)ezkn
Lemma 2.4.4 For any (I, m) € Zy,, the subspace Py, [l, m| is invariant under the

actions of the algebras Bgﬁ and 3;@.

Proof Recall X, = @, L., as a gl,-module. Then by the isomorphism ¢, see
(2.16), the gl [t]-module Py, is the direct sum of tensor products Lfffz (1) ® ... ®
Lff;i (21), and

Brall,m] = (L) (21) @ ... @ LT (21)),,,) - (2.23)

Hence, Pi,[l, m] is invariant under the action of fo;), see Section 2.3.2.

Similarly, X, = "

o Lw,, @s a glp-module. Then by the isomorphism 5, see

(2.17), the gl,[t]-module Py, is the direct sum of tensor products Lfffil (—)®...®
Lffzn(—an), and

Prnll, m] = o (LY (o) @ ... @ LY (—aw)),) - (2.24)
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Thus B, [l, m| is invariant under the action of B, [

We will prove Theorem 2.4.2 by showing that the restrictions of ™ (B{) and
(k)
T

-

(Bém) to each subspace By, [, m] coincide. We will also need the following lemma.

Lemma 2.4.5 Fiz (I,m) € Zy,. For generic &,z, the common eigenspaces of
the operators p™F) (H{"™(z,a)), a = 1,...,k, restricted to Prnll,m] are one-
dimensional. Similarly, for generic &,Zz, the common eigenspaces of the operators

p<k7”>(Hi<k’n>(—64, z)), 1 =1,...,n, restricted to Py,[l, m] are one-dimensional.

Proof For every monomial p € Py,, we have (egl))(a)p = m¢(p)p and m{(p) € Z.

Moreover, if p # p', there exist i,a such that m@(p) # m&(p’). Take & such
that aq,...,qa, are linearly independent over Z. Then for the operators K, =
pmR (3 ozi(e;m)(a)), a =1,...,k the common eigenspaces are one-dimensional.
Therefore, the common eigenspaces of the operators p<”’k>(Hén’k>(Z, a)) = K, +
Zb#a Qap)(za—2) ', a =1,..., k, restricted to a finite-dimensional submodule of Py,
are one-dimensional provided all the differences |z, — 2| are sufficiently large. Hence,
for generic @ and Z, the common eigenspaces of the operators p<”’k>(Hé"’k>(2,6z)),
a=1,...,k, restricted to a By, [l, m] are one-dimensional.

The proof of the second claim is similar. [ ]

2.4.4 Spaces of quasi-exponentials and (g, gl,,)-duality

Fix (I, m) € Zy,, and define g = (p@®, ..., u™), X = (AD ... XF®) as follows.
Ifl = (I,...,l;) and m = (my,...,m,), then u = (m;,0,...), i =1,...,n, and
MY = a=1,...,k, see (2.11).

By Theorem 2.3.3 and formulas (2.23), (2.24), a space of quasi-exponentials with
the data (ji, \; @, z) defined above gives rise to an eigenvector of the action Wém of Bém
on Py,[l,m]. Similarly, a space of quasi-exponentials with the data (X, [’; Z, —@)
gives rise to an eigenvector of the action wﬁ’“; of B§k> on Pr,[l,m|. We have the

following theorem.
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Theorem 2.4.6 Let V be a space of quasi-exponentials with the data (i, \; &, Z), and
v € Prn[l, m| be the eigenvector of the action ﬂ;m of Bém corresponding to V. For
the fundamental differential operator Dy of the space V', define the operator Dy by
formula (2.3), and set V = ker(Dy). Then, for generic a,z, the vector v is the

)

eigenvector of the action 7T<,k0% of Bék corresponding to V.

Proof For each a = 1,...,k, let h, and g, be the numbers defined in formula
(2.5). Comparing formulae (2.4), (2.5), (2.8), and (2.9), and using that A =0 or

1, we see that the vector v is an eigenvector of p<”7k>(H§"’k> (z,a)) with eigenvalue h,,.
(k)

Similarly, an eigenvector v € Py, [l, m| of the action 7% of B§k> corresponding to

V is an eigenvector of p<k’">(G§Lk’n>(—d, z)) with eigenvalue g,. Therefore, by formula
(2.21) and Lemma 2.2.3, for each a = 1,...,k, the vector ¢ is an eigenvector of
p<”7k>(Hén’k>(Z, @)) with eigenvalue h,, the same as for v. Hence, by Lemma 2.4.5, the

vector v is proportional to v. |

2.4.5 Proof of Theorem 2.4.2

Let Bi;fg, 1=1,...,n,j € Z>p, and B 5= 1,...,k, t € Z>y, be the generators

stz

of the algebras Bé—[m and Bi—k>, respectively, see (2.7).

Assume first that & and z are generic. Take a common eigenvector v of W;m (ijnz_y),
1 =1,...,n, j € Zx, corresponding to a space V of quasi-exponentials with the

data (i, \; @, 2) as in Theorem 2.4.6. The eigenvalue of W§">(B<">) associated to v is

ij,a
the coefficient b;; in the expansion Dy'® = 3% 377 b~/ (d/dx)"~". By Theorem

2.4.6, v is also a common eigenvector of wikg(B<’“> ), s=1,....k, t € Z>o, and the

st,z
k)

corresponding eigenvalue of Wi@(Bgi >5

S S0 by (d/dx)F*, where Dy is given by the formula (2.3). Due to Theorem

) is the coefficient INDSt in the expansion lN)?/ug =

2.2.2, part (3), there exist polynomials Py in variables r;;, ¢ = 0,...,M’, j > 0,
independent of the eigenvector v, such that by are obtained by the substitution r;; =

b;; for all ¢, j, into the polynomial Py,

bst = Pst({bij })- (2.25)
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By Theorem 2.3.3, part (2), the subspace By,[l, m] has a basis consisting of
(n)

common eigenvectors of the operators Wém(Bim), t=1,...,n, 7 € Z>y. Since the

operator ") (B k) ) is diagonal in such a basis, relation (2.25) for eigenvalues implies

—Q stz
the analogous relation for the operators:

7™ (BYL) = Pu({xI"(BEDY). (2.26)

st,z 17,

Since the operators W&k%(Bé];?z), 7r§">(Bi<;%), and the coefficients of Py depend

polynomially on @ and z, relation (2.26) holds for any & and z, and 7'*2(B¥)
20 (i)

z «

Exchanging the roles of gl, and gl,,, we obtain that 7T<_">(B<”>) c it (B@) as well.

Since 71'@2—)('3(11%) = W§n>(3,<3n>), see the remark at the end of Section 2.4.1, Theorem

2.4.2 is proved.

Corollary 2.4.7 Theorem 2.4.6 holds for any & = (aq,...,ap) and zZ = (21, ..., 2x)
such that a; # o if i # j and z, # 2 if a # b.

Proof Let V be a space of quasi-exponentials with the data (fi, \; &, Z), where i and
A are defined by m and I, like in Section 2.4.4. Let v € Py, [l, m] be the eigenvector

of the action Wém of Bém corresponding to V. By Theorem 2.4.2, the vector v is also

an eigenvector of the action 7r<_k§é of B§k>. Denote by V' the space of quasi-exponentials

)

with the data (X, ii’; Z, —@) corresponding to v as an eigenvector of B;k . By Theorem

2.4.6, for generic & and z, we have V' = V. We need to prove that V' =V for any
a=(ay,...,a,) and Z = (21,..., 2;) such that a; # o if i # j and z, # 2, if a # b.
Let B

17,000

1t = 1,...,n, j € Zsp, and Béf;, s = 1,...,k, t € Zso, be the
generators of the algebras Bém and Bi—k>, respectively, see (2.7). Then the eigen-
value of 7r§">(BZ<JnZ_X
Doiso 2o bijr ™ (d/dx)"", and the eigenvalue of WS%(BLE%) associated to v is the
coefficient b, in the expansion DZF = Sk S b (dfd ),

Consider the differential operator 5V defined by formula (2.3), and let Est be the

coefficient in the expansion D38 = S Ogstx_t(d/dx)k_s. By Theorem 2.2.2,

) associated to v is the coefficient b;; in the expansion D{/* =
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part 3, there exist polynomials Py in variables r;;, ¢ = 0,...,n, 7 > 0, such that gst

are obtained by the substitution r;; = b;; for all 7, j, into the polynomial P,

bst = Pst({bi;}).
As noted in the proof of Theorem 2.4.2, the relation

k k n n
M (BEY = Pu({x(BIL)Y).

17,&¢

holds for any & = (ay,...,a,) and Z = (z1,...,2;) such that o; # «a; if i # j and

Za # 2p if @ # b. Therefore, we have

b, = Pa({bij}),

which gives g’st = gst. Hence, we have V= 17, and the corollary is proved. [ |

2.5 Quotient differential operator
2.5.1 Factorization of a differential operator

For any functions ¢, ..., g,, let

Wr(gy,...,00) = det((QZ‘(j_l))ijl)

be their Wronski determinant. Let Wr;(¢1, ..., g,) be the determinant of the n x n

matrix whose j-th row is g;, gj, . .. ,g}nii*l), gj(-anl), . ,gj(.").

Consider a monic differential operator D of order n with coefficients a;(z), i = 1,

S
d n n d n—i
D=[— ; — , 2.27
() +;a<x>(dx) (2.27)
and let fi, fo,..., fn, be linearly independent solutions of the differential equation
Df =0.

Lemma 2.5.1 The coefficients ai(x),...,a,(x) of the differential operator D are

giwen by the formulas

i Wri<f17 ey fn)
Wr(fi, .o fn)

i=1,...,n, (2.28)
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Moreover, for any function g, we have

Wr(fla ) fn7g>
Dg = . 2.29
Wr(fla"'?fn) ( )
Proof The equations Df; = 0,...,Df, = 0 give a linear system of equations for
the coefficients a1 (), ..., a,(z). Solving this system by Cramer’s rule yields formula

(2.28). Formula (2.29) follows from the last row expansion of the determinant in the

numerator. [

Proposition 2.5.2 The differential operator D can be written in the following form:

d ¢ d gy d g
D=[—-—-%= — =) == 2.30
(dx gl> <dm 7> dr g, )’ ( )

where g, = fn, and

g = Wr(fnafn—la---afi)
bW (fuy faets s fir)

Proof Denote by D; the differential operator in the right hand side of (2.5.2). By

i=1,...,n—1. (2.31)

Lemma 2.5.1, it is sufficient to prove that Dy f; = 0 for alli =1,...,n. We will prove
it by induction on n.

If n =1, then ¢, = fi and D, fy = (d/dx — f{/f1) fr = 0.

Let Dy be the monic differential operator of order n — 1 whose kernel is spanned

by fs, ..., fn. By induction assumption,

d g\ (d g d g,
Dy= (L _2)(& _%5B) (L _dn)
dr  go dr g3 dr g,
Since Dy = (d/dx — g1/g1) D2, we have Dy f; =0 for i = 2,...,n. Formula (2.29)

yields Ds f1 = g1, thus Dy f; = 0 as well. [ |

2.5.2 Formal conjugate differential operator

d

Given a differential operator D = Y7 a;(z) (E)TH, define its formal conjugate

by the formula:

Dfh(z) =" (—%) : (ai(x)h(z)) . (2.32)

1=0
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(Clearly, the formal conjugation is an antihomomorphism of the algebra of linear

differential operators. In particular, if D is given by formula (2.5.2), then

d g d  Gn d g
Di=(-1)" | —+2 — L =+ 2.33

Proposition 2.5.3 Let

b Wr(f1, .o fim firns -0 )
‘ Wr(fi,..., fa) ’

Then the functions hy, ..., hy, are linearly independent, and D'h; = 0 for all i =1,

Coy M

Proof Since hy = (—=1)""1/gy, we have DTh; = 0 by formula (2.33).
Let o be a permutation of {1,...,n}. Take a new sequence f,q),..., fom) of
n linearly independent solutions of the equation Df = 0. Then similarly to the

consideration above, we get

d g d  Gn1 d g
Df=(—1)n [ = g2} (2 st} (2, Tl
( ) (dl’ - gn,a) (dl’ * In—1,0 dx * 9o ’

cf (2.33), where g, » = fo(n) and

Wr(fa(n); fU(n—l); cee 7fcr(i)>

e = Wr(fom)s fotne)s - - s fati+n) P bl
Taking o such that o(1) = i, we get D'h; = 0.
The linear independence of the functions hq, ..., h, follows from the relation
Wilhy, . hy) = 2 (2.34)
e Wr(fy, ..., fn)
The proof of relation (2.34) is given in Appendix A. u

2.5.3 Quotient differential operator

Let D and D be monic differential operators such that ker D C ker D. Then there
is a differential operator D, such that D = DD. For instance, it can be seen from

the factorization formula (2.30). We will call D the quotient differential operator.
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Let fi, fa,..., fn be a basis of ker D and fi, fo,..., fu, h1,..., hx be a basis of
ker D. Define functions ©1,- .., ¢ by the formula

V0 = Wr(fl,. . .,fn,hl,. . .7ha717ha+17 . 7hk)
¢ Wr(fla"'?fnahlv"whk) ‘
Proposition 2.5.4 The functions ¢, . . ., i are linearly independent, and Dip, = 0
foralla=1,... k.

Proof Set h, = Dh,, a = 1,...,k. The functions hi,...,hy are linearly indepen-
dent. Indeed, if there are numbers ¢y, ..., ¢, not all equal to zero, such that crhy +
...+ cihy = 0, then D(cihy + ... + cxhy) = 0. This means that cihy + ... + cphy
belongs to the span of fi,..., f, contrary to the linear independence of the functions
fiseoos frshay oo, by

Formula (2.29) vields h; = Wr(f1,..., fu,hi)/ Wr(f1,..., fn). Using identities
(A.1) and (A.4), one can check that

Wl'(ill, . -;ila—luﬁa—i-ly .. .,ilk> _ Wl'(fl, . .,fn,hl, . -,hfa—lyha-',-l; .. ,hk) _
WI'(;Ll,...7i:Lk) Wr(f17---7fn7h17"'7hk> ¢

Since Dh, = Dh, = 0 for all a = 1,..., k, the functions l~11, cee hy, form a basis of
ker D. Since

. :Wr(ﬁl,...,ha,l,haﬂ,...,hk)
¢ Wr(hy, ..., hy) ’

Proposition 2.5.4 follows from Proposition 2.5.3 applied to D. [ ]

2.5.4 Quotient differential operator and spaces of quasi-exponentials

Let V be a space of quasi-exponentials with the data (fi, \;@, z). For Section
2.5.4, we will assume that the data (fi, \; &, ) are reduced, that is, the sequences fi
and A do not contain zero partitions. For each i = 1,...,n, denote n; = (1)} and

pi =" +n;.
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Introduce also a larger space v spanned by the functions zPe®” for all i =1,...,

n,and p=0,...,p; — 1. Denote

Wr (V) Wr (e e, . gl e e gt aPrT e T)

—

Wrij(r/) = Wr(...,zdex® ... ).
The functions in the second line are the same except the function z/e®® is omitted.

Lemma 2.5.5 The following holds:

n pi—1
Wr(V) = exizres TT T s (aj — a;)PiPi | (2.35)
i=1 s=1 1<i<j<n
R n  p—1
Wl"ij(V) _ ezlzl(pl—éil)ala: Tij (x) H g! (al’ _ O{l)<pl_5li)(pl/_6l/i) , (236)
=1 s=1 _ 1<i<l'<n
(Ls)#(i,9)

where r;;(x) is a monic polynomial in x and degr;; =p; —j — 1.

Proof We will prove (2.35) by induction on ) ! ,(p; — 1) = P. For P = 0, equality
(2.35) becomes

Wr(e®1® 2% eonT) = i1 2 H (a; — ay),

which is equivalent to the Vandermonde determinant formula.

Fix Py € Z=o. Suppose that (2.35) is true for all n and all py,...,p, such that
Yor(pi —1) = Py. We will indicate the dependence of the space V on Diy. .., Pp as
follows: VPLePn,

Fix p1,...,p, such that > (p; — 1) = F,. For each I = 1,...,n, let Wr(g; be
the Wronski determinant obtained from Wr(f}pl’""p") by inserting the exponential ¢*
after the function 2”~'e**. Notice that (0/08)"|s=a, Wr(s:) = Wr(VPi-70) | where
pi=p;if i # 1 and p) =p, + 1.

By the induction assumption, we have

R | f[ (0 — 0 T8 - oo ] (as — B,
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which gives

(53)

This proves the induction step for formula (2.35).

n
Wiy = exmror [T ] o (0 — c)P¥5

B=o i=1 s=1 1<i<j<n

To prove formula (2.36), we fix i and use induction on s = p; — j — 1. The base
of induction at s = 0 is given by formula (2.35).

Fix sg € Zso. Suppose that (2.36) is true for all n, all py,...,p,, and j such that
s = sg. Fix p1,...,pn, and j such that p; — j — 1 = sy. Let Wr(g; ;) be the Wronski
determinant obtained from Wrz-j(‘/}pl""’p”) by inserting the exponential e’ after the

72€ai:p

function 2Pi~te®® if j < p; — 1 or after the function x?: if j = p; — 1. Notice

that

(0/08)" |p=as Wr(s,i.5) = Wl‘ij(‘/}p/l""’pél) ,

where pj =p, for [ #4, pi=p;+1,and ' =p, —1—j =50+ 1.

By the induction assumption, we have

n pi—1
Wr(ﬁ,i,j) — ezyzl(pz—&l)azx-i-ﬁx Tij(x) H s! (Oél/ _ al)(pl—ﬁli)(pl/—dl/i)
=1 s=1 1<I<l'<n
(1,8)#(i,5)
¢ n
X (ﬁ _ al>Pl di1 H (Oél . ﬁ)pl—6217
=1 I=i+1

where 7;;(x) is a monic poynomial and degr;;(x) = p; —j — 1. The last formula gives

(a5)

where A(z) is a monic polynomial and deg A(x) = degr;;(x)+ 1. This completes the

n Pi—l

Wr(ﬁ?ivj) = € ;L:l(pziéil)alm A(I) H
B=a; {1

/ /
s! H(al, _ al)(plﬂ;li)(?lﬁ‘;z'i)’
s=1 U

 (Le)#)
induction step for formula (2.36). u
For each i =1,...,n, set

di={ni+u —jli=1...n}, d&={0,1,2....p,—1}\d;. (237

Lemma 2.5.6 We have dj = {n; — (u(i)); +i—-1]j=1,... ”ugi)}'



39

Proof Consider the Young diagram corresponding to the partition p(?. Enumer-
ate, starting from 0, the sides of boxes in this diagram that form the bottom-right

boundary, see the picture.

Then by (2.37), the set d; corresponds to the right-most sides of the rows, which
are the vertical sides of the boundary. Thus the complementary set d; corresponds
to the horizontal sides of the boundary, which are the bottom sides of the columns.

The last observation proves the lemma. [ |

Let Dy be the fundamental differential operator of V. Define D =
[T, (d/dx — a;)”". Then ker D = V. Therefore, ker Dy C ker D, and there exists a
differential operator Dy, such that D = Dy Dy, see Section 2.5.3. Let V1 = ker D1.

Theorem 2.5.7 The space V' is a space of quasi-exponentials with the data
(', N;—a, z).
Proof The space V' has a basis of the form {g¢;;(z)e™* |i=1,...,n, j=1,...,n;},

()
J

— j. Then the functions z'e®®,

where ¢;;(x) are polynomials and degg;; = n; + p
i=1,...,n, [ €d;, complement this basis of V' to a basis of V.

By Proposition 2.5.4, the space V1 has the following basis

- pi—1 %
Wry;(V) s Co V) g ed, (239)
Wl“(V) l=j+1 WI'(V)

where Cjj; are complex numbers. Then by Lemma 2.5.5, for each ¢, j, the correspond-
ing element of this basis has the form 7;;(x)e”*®, where 7;(x) is a polynomial of

degree p; — 7 — 1.
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By Lemma 2.5.6, j € df if and only if j = n; — (u®¥)} +1—1 for some [ € {1,...,
,ugi)}. Set Gi(z) = 7i;(x). Then VT has a basis of the form {gy(z)e™®® |i=1,...,
n, | = 1,...,,u§i)} and

degqy = degry; = ,Ugi) +n; — (n; — (M(i))g +l-1)—-1= ,ugi) + (,u(i)); —1. (2.39)

Recall M' = dimV = 32" (u®). Set M = dim VT = 3" u{?. We also have
dimV = M’ + M.

Fix a point z € C, and let e = {e; > ... > ey} be the set of exponents of V' at
z. Then there is a basis {1, ...,9¥n} of V such that

Y = (z—2)%(1+0(1)), T =z, (2.40)

forany i =1,..., M.
Set e = {é1<éy<...<éy}t=10,1,2,...,M'+ M—1}\e. By formula (2.35),
the Wronskian Wr(\7) has no zeros, thus z is not a singular point of V. Therefore,

there is a basis {¢1,..., %YM, X1, -, X0} of V such that
xi(z) = (z—2)%(1+0(1)), r—z, (2.41)
foranyi=1,..., M.
By Proposition 2.5.4, the set

{Wr(¢1""7¢M’7X17"'7Xi—17Xi+17"'7XM) ‘
Wr(qu)l)"'awM’aXla"wXM)

is a basis of V. Formulas (2.35), (2.40), (2.41) show that for any i =1,..., M,

i:L”wM} (2.42)

Wl"(wl e VM Xy e ey X1y Xidds - - - XM) MM b1
Wl —— : S = C;(x — )M ™41 401
Wr(?/)l,...,@DM/’Xh,”’XM) ( ) ( ( ))

as x — z, where C}; is a nonzero complex number. Therefore, the set of exponents of
VT at the point zis &l = {M'+M —é,—1 > ... > M'+M —ép; —1}. In particular,
z is a singular point of VT if and only if z is a singular point of V.

If a partition A = (Aq, Ag,...) corresponds to the set e, that is, \; = e; +i — M’
fori = 1,...,M', and \; = 0 for ¢ > M’, then similarly to Lemma 2.5.6, é; =
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M =X +i—1,and & = M+ M —é —1 = XN+ M —i. Thus the set &' of exponents
of V1 at z corresponds to a partition \.

Recall that the data (i, \; @, Z) are reduced, in particular, z is the set of singular
points of V. To summarize, the consideration above shows that z is the set of sin-
gular points of VT as well, and VT is the space of quasi-exponentials with the data

(', N'; —a, z). Theorem 2.5.7 is proved. [ |

2.5.5 Proof of Theorem 2.2.2

It is sufficient to prove Theorem 2.2.2, parts (1) and (2) for the case of reduced
data (fi, \; &, 2). This is immediate for part (1), since M’, L, Dy and Dy depend only
on (fi, \; &, )™, And for part (2), the following observation does the job: if (i, \; &
g)red = (red, Ared; gred zred) then (N, /s 2, —a)red = ((red)!, (red); zred | —gred)

Let V be a space of quasi-exponentials with the reduced data (ﬂ,)v a,z). Let

{f1,..., far} be a basis of V and Dy = wao i(x)(d/dr)™'~* be the fundamental
differential operator of V. For each i =1,..., M’, the ratio Wr;(f1,..., far)/ Wr(f1,

., far) is a rational function of z regular at infinity. Together with Lemma 2.5.1,
this proves Lemma 2.2.1, and we can consider Dy as an invertible element of UD.

For any « = 0,...,M’, let Z;‘;O bijz~7 be the Laurent series of b;(z) at infinity.
We will refer to the functions b;(z) as coefficients of the differential operator Dy, and
to b;; as expansion coefficients of the differential operator Dy,. This terminology also
applies to any differential operator with rational coefficients.

Notice that the formal conjugation () of a differential operator, introduced in
Section 2.5.2, is consistent with the formal conjugation on U®, introduced in Section
2.1. Recall the involutive antiautomorphism (-)¥ : ¥® — ¥UD introduced in Section
2.1.
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Let D = [T, (d/dx — )“ P+ Denote by Dy the quotient differential op-
erator such that D = Dy Dy . Set Dy = (H’;:1 (x — )’\(a)DT ) . Recall the pseudo-
differential operator Dy defined by (2.3). It is straightforward to verify that

Dp = () [ (& + )" Dy, (2.43)
i=1
where M = ,ugl) + ... —i—ugn) )

The next theorem is proved in [11].

Theorem 2.5.8 Let D be the fundamental differential operator of a space of quasi-
exponentials with the data (i', N'; —a, Z). Then the following holds.

1. The differential operator Hszl(x — za)’\(la)D has polynomial coefficients.

2. The differential operator [[;_,(z + ozi)_“gi) ( 1, (z— za)A(a)D)

a=1

s monic and has order L = Aﬁ” +...+ )\gk)

3. The kernel of (Ha (= za))‘(la) D)i s a space of quasi-exponentials with the
data (N, [l Z, —@).

By Theorem 2.5.7, one can apply Theorem 2.5.8 to the monic differential operator
(=1)MD{,. Hence, the differential operator [[*_, (z — za)’\@DI/ has polynomial co-
efficients and the pseudo-differential operator Dy; is actually a differential operator.
Furthermore, formula (2.43) and parts (2), (3) of Theorem 2.5.8 yield parts (1) and
(2) of Theorem 2.2.2.

To prove part (3) of Theorem 2.2.2, consider a chain of transformations:

(1)

k
D 0 by B by B, bl O [ (a— 2 p),

a=1 (244)
©, pr O, b, O, B,
Lemma 2.5.9 For each of the transformations in chain (2.44), the expansion coef-

ficients of the transformed operator can be expressed as polynomials in the expansion

coefficients of the initial operator.
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Proof Fix f € C. Let by(z),..., b (x), bh(2),. .. ,bf\},ﬂ(:v) be the coeflicients of
the differential operators Dy and Dy (d/dx — [):

M d M’ —i d M'+1 d M'+1—i
Dy = bi(z) (%> . Dy (% - 5) =) V() (%> .
i=0 1=0

Then Lemma 2.5.9 for transformation (1) follows from the relations:

7

bi(x)=> B0 (x), i=1,... M. (2.45)
=0
Let co(x),...,cp(x), and ag, .. ., apryar, be the coefficients of the differential op-

erators Dy and D:
) M J\M-i o MM g\ MM
DV:ch(x) <%) , D= Z a (%) :
=0 1=0

The coefficients ay, ..., apy1 s are the elementary symmetric polynomials in aq, ...,
Q.

Fix j = 0,..., M. Equalizing the coefficients for (d/dz)™ *M=J in both sides of
the relation D = DVDV, we get

J-1 i
cj(x) =a; — ‘ ci—i(x) <ﬂ bj_i(x)> . (2.46)
=0 1=0

Since the function ¢, appears in the right-hand side of formula (2.46) only for r < j,
we can recursively express ¢;(x) as polynomials in b;(x) and their derivatives. This
proves the statement for transformation (2).

Let ¢;(x), 7 =0,..., M, be the coefficients of the differential operator D‘T/:

M M—j
D=3 5 (&)

Then we have ¢;(z) = Y7_(—1)M~ ((d'/da")c;—(z)). This proves the statement for
transformation (3).

For transformations (4), (6), and (7), the statement is obvious. For transformation
(5), the statement follows from the definition of the antiautomorphism (-)* that trans-
forms the coefficients of a pseudo-differential operator S7__ S/ Cjai(d/dx)’ by

j=—o00

the rule Cij — C]z |
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Lemma 2.5.9 provides an algorithm for expressing the coefficients by of the dif-
ferential operator ﬁ{a/ug in item (3) of Theorem 2.2.2 via the coefficients b;; of the
operator Dy, Tt is clear that this algorithm depends only on the data (ji, A; @, z)
and generates polynomial expressions in b;;. This proves the existence of the poly-
nomials Py in item (3) of Theorem 2.2.2.

It is easy to see that for each transformation in chain (2.44), expressions for
expansion coefficients of the transformed operator in terms of expansion coefficients
of the initial operator are polynomials in @, z. For transformations (1) and (2), it
follows from relations (2.45) and (2.46), respectively. Transformations (3) and (5) do
not involve @ and z at all. For transformations (4) and (6), notice that multiplication
of a differential operator by the factor H];:l(:p — za)A(la> or [[i,(z+ Ozi)*“gi) results in
multiplication of its expansion coefficients by polynomials in z1,..., 2, or ai,...,q,,
respectively. Finally, for transformation (7), notice that for any 8 € C, multiplication

of a differential operator by (d/dx — () from the right results in multiplication of its

expansion coefficients by polynomials in 5.
Theorem 2.2.2 is proved.

2.5.6 Proof of Lemma 2.2.3

We will first prove the lemma for the case of reduced data (fi, A; @, Z). In this case,

the rational functions ¢;(u), i € Zs( are defined by the following formula:
[Ttw— 2" ae i =ub + Y bu(w)u, (2.47)

where b, (z) are the coefficients of the differential operator Dy = ﬁﬁug.

Let & (z),...,&y(x), be the coefficients of the differential operator D,
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Recall that Dy = (Hk (x — za)’\ga>D‘T/)i. Then we have

a=1

k

§ k d Ale) J A@
Dy = (DTV)iCH (% —~ z) [Z pM—ig, (_)] }‘[1 <% - z) . (2.48)
Since Dy = [T, (z+ &i)_“gi)D‘X/, formulae (2.47) and (2.48) give
i Gilu)r™" = H (x4 o)~ i [ZxM “i(u ] ,
i=0 ;
which yields

for some constants A; and A,.

Using the last two formulas, it is easy to check that

Res,_.. (5%;“) - 62(u)) — Res,_.. (é%;“) - az(u)) . (2.49)

Let ag, ...,apnr and bo(z), ..., by () be the coefficients of the differential op-

erators D and Dy

M d M+M'—i M d M'—i
- Z i <@) ) DV:;bi(x) (@) .

i=0
Notice that ag, ..., ap+p do not depend on x. The relation D= Dy Dy gives
M+-M’ M+M'—i M M—i M’ M'—j
d d d
il == = - Ci b - -
>o(i) () | e ()]

Writing the right hand side of the last equation in the form
SOMEM G () (d/da)MHM = with some  functions do(x), . .., @y (z), we have

a;(r) =a;,i=0,...,M + M'. In particular, a;(z) = a; and as(z) = ay give
él = bl(l') — aq, éz(ZE) = ag — bg(ﬂf) — bl(x)(al — bl(l‘)),

respectively.

Using the last two formulas, it is easy to check that

Res,—., (C%(;) — 62(1:)) = — Res,—., <b%ém) — b2($)) . (2.50)
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By definition,
2

— bg(x)>, and Ja = Resy—., (Eléu) — Eg(u)>.

bi ()
2

hy, = Res:p:za<

Therefore, formulas (2.49) and (2.50) give §,(z) = —hy(z) proving the lemma for the
case of reduced data.

Fix a complex number 3. Let b (z),...,b5, +1(x) be the coefficients of the differ-
ential operator Dy (d/dx — f3):

d M'+1 5 g\ M-
Dy (%—5)— sz(x) <%) :

1=0

It is easy to check that

Vi (x) = bi(x) = B, V5(x) = by — By ().

Therefore,

B2 2(p
Res;—., ((b1(2 )" _ bg(x)) = Res,—., (blé ) _ bg(a:)) . (2.51)

Formula (2.51) means that the number h, defined for the data (ji, \; &, Z) coincides
with the one defined for the data (fi, \; @, 2)*d. Similarly, the number g, is the same
for the data (ji, \; @, 2) and its reduction. Therefore, the lemma holds for a non-

reduced data as well.

2.5.7 Bispectral duality and quotient differential operator

Let V' be a span of functions of the form e**p(z), where p(x) is a non-constant
polynomial. Let Dy be the monic differential operator of order dim V' annihilating
V. Using Lemma 2.5.1, one can show that the coefficients of V' are rational functions
regular at infinity. Let ¢(z) be the least common denominator of the coefficients
of Dy. Then the pseudo-differential operator (q(z)Dy)* is actually a differential

operator. Define a map ¥ as follows:

T, Vs ker(q(z)Dy)*.
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The map ¥; was introduced in [11] in relation to the duality of the Bethe algebras
acting on the space of polynomials in commuting variables. The space T1(V') is called
the bispectral dual of V. If V is a space of quasi-exponentials with the data (ji, \; @, 2),
then one can check that q(z) = [[F_, (z — 20) X1 and by part (3) of Theorem 2.5.8,
the bispectral dual of V is a space of quasi-exponentials with the data (X, fi; Z, @).

Define the quotient differential operator Dy in the same way it was defined in

Section 2.5.4. Define a map %5 as follows:
To: V= ker DI/.

Let V be a space of quasi-exponentials with the data (fi,\;@,2). By The-
orem 2.5.7, the space Ty(V) is a space of quasi-exponentials with the data
(', N'; —@, z). Therefore, the least common denominator of the coefficients of DI/
equals [T*_, (z — za)’\gw, and we have T; 0 Ty(V) = ker( 1, (z— za)’\ga) D‘T,)i.

Recall the differential operator l~7v defined in Section 2.2:

)\(a)

Dy = (-1)™ ﬁ(:c + )% (DY) H <— - z) . (2.52)

i=1

Then by formula (2.43), we have T; o Tp(V) = ker Dy

Proposition 2.5.10 A function f(x) belongs to the space Ty o To(V') if and only if
the function f(—x) belongs to the space Ty o Ty (V).

Proof As was mentioned above, the least common denominator of the differen-
tial operator Dy equals Hszl(:v — 2)AN™)i . Therefore, the bispectral dual T;(V)
of the space V is the kernel of the differential operator <H§:1(:c — 7)1 DV>:E =
Di H (ddx Za)(/\(”)’l‘

By Theorem 2.5.8, part (2), the differential operator

n

“ kg (A@);
b _ 2)\/
D =[x - ) D} I <d_ - )

a=1

=1
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is monic. Therefore, it is the fundamental differential operator of the space Ty (V).
Since T,(V) is a space of quasi-exponentials with the data (), fi; Z, @), similarly to

Dy, there exists a differential operator DY® such that

Erd NOROWR
11 <% —~ z) = DyPDyP.

a=1
We have T, 0 %1 (V) = ker(DyP)t. Also, it is easy to check that

n

Al
(D) = [ — )% (D))’ (di - ) | (253)

i=1

Since (-)* is an antiautomorphism of the algebra U® of pseudo-differential oper-
ators, we have (D})~! = (Dy)t. Also, for any pseudo-differential operator D, (D*)f
can be obtained from D# = (D")* by the substitution  + —x. Using this and
comparing formulae (2.52) and (2.53), we see that (DEP)! is obtained from Dy by
the substitution  — —z. Since T; 0 Tp(V) = ker Dy and Ty 0 T,(V) = ker(DYP)T,

the proposition is proved. [ |
Proposition 2.5.11 The following holds: T3(V) =V

Proof Recall that the quotient differential operator Dy satisfies the following rela-

tion:

"o D (uDy; 3
H <% — Oéi) = Dva.

=1

Applying ()T to the both sides of the last formula, we get

n d MREEPON ot -
11 (% + ai) = (=)' D{(-1)MD}, (2.54)

i=1

where M = 27" p{? and M = 37 (u®)Y,. Relation (2.54) yields T2(V) = ker Dy =
V.
The proposition is proved. [ |

Denote T, = % 0 Ts.
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Corollary 2.5.12 A function f(x) belongs to the space T2(V') if and only if the

function f(—x) belongs to the space V.

Proof By Proposition 2.5.11, we have T, = T,. Also, it immediately follows from
the definition of the map ¥; that ‘Zfl = T,. Therefore, T,;!' = Ty 0T;. Then the
corollary follows from Proposition 2.5.10 applied to the space T,(V). [ |

Corollary 2.5.12 is consistent with Theorem 2.4.6 and the remark below Theorem
2.4.2. Let us explain this now.
Let v € Py,[l, m] be an eigenvector of the action ﬂ§n> of the algebra Bén). Let

Bfﬁ@, t=1,...,n, j € Z>o be the generators of the algebra ng, see formula (2.7).
Here, we indicated the dependence on & explicitly. For each ¢ = 1,...,n, 7 € Z>,,
(n)

ij,00

operator D = ()" + " b;(z) (%)n_i, where for each i = 1,...,n, b;(z) is the

denote by b;; the eigenvalue of ﬂém(B ) corresponding to v. Consider a differential
rational function whose Laurent series at infinity equals Z;O:O bijz~7. By Theorem
2.3.3, the space V = ker D is a space of quasi-exponentials with the data (ji, \; @, 2),
where i and A are defined by m and I, like in Section 2.4.4.

Let D = (%)H+Z?:li(x) (%)n_i be the fundamental differential operator of the
space T2(V). Applying Theorem 2.4.6 and Corollary 2.4.7 two times, we get that for
each i = 1,...,n, the Laurent series of %Z(x) at infinity equals E;’;O Zijx_j , where Zij

is the eigenvalue of 7r<,ng>(B () ~) corresponding to the eigenvector v. As noted in the

17, —&
) = (—1)”_1'_]'7r§n>(B<n> ). Therefore,

remark below Theorem 2.4.2, we have 7T<n>(B ) 2 i

-z \Pij—a
the differential operator D can be obtained from the differential operator D by the
substitution x — —x. This argument establishes Corollary 2.5.12 for those spaces V/,

which describe eigenvectors of the Bethe algebra.
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3. (glg, gly)-DUALITY AND QUOTIENT DIFFERENCE
OPERATOR

3.1 Spaces of quasi-polynomials

Fix complex numbers 21, . . ., 2z, and nonzero partitions AV, ..., \*) Agsume that
2o — 2y & Z for a # b. Let V be a vector space of functions in one variable with a
basis {7 qu(z) |a=1,...,kb=1,...,(A¥)} where gu(z) are polynomials and
deg quy = (AN@)] + /\l()a) — b. Assume that the space V satisfies the following property:
foreacha=1,...,kand any b=1,..., (A@),

1. there exists a linear combination of polynomials ¢,1, qu2, - - - s Qa(A@)y, which has

a root at x = 0 of multiplicity b — 1,
2. the space V does not contain the function x*e*desde,

Denote L' = Zszl()\(“))’l = dim V. For a € C*, define the sequence of exponents
of V' at o as a unique sequence of integers e = {e; > ... > ep/}, with the property:
for each a = 1,..., L', there exists f € V such that f(z) = (z — a)®(1 + o(1)) as
r — a.

We say that a € C* is a singular point of V' if the set of exponents of V' at «
differs from the set {0,...,L" — 1}. The space V has finitely many singular points.

Let aq, ..., o, be all singular points of V and let et = {egi) > 0> e(Li,)} be the set

of exponents of V at a;. For each i = 1,...,n, define a partition pu¥ = (,ugi), ug), o)

as follows: el = I/ + ug) —afora=1,...,L and ,ug) =0 for a > L’'. Clearly, all
partitions u(l), cee ,u(”) are NONZero.
Denote the sequences (AV) ..., AXF) (@ u™)) (21, .., 2), (ag, ..., ), as

A, 1L, Z, @, respectively. We will say that V' is a space of quasi-polynomials with the
data (X, [i; 2, @).
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Lemma 3.1.1 Let V be a space of quasi-polynomials with the data (), i; 2, &@). Then

k n
DNII=2 ).
a=1 i=1

Here |\ denotes the number of boxes in the Young diagram corresponding to the

partition .

The lemma is proved by analyzing the order of zeros of the Wronskian of V' and
its asymptotics at infinity.

The fundamental monic differential operator of V is a unique monic linear differ-
ential operator of order L' annihilating V. Denote the fundamental monic differential

operator of V' by Dy .

Lemma 3.1.2 Define the functions Bi(x), ..., B (z) by

d L L d L'—a
vp _ (. % £
" Dy = (Idiﬁ) +;ﬁa(x) (xdac) :

Then py(x),...,Br(x) are rational functions regular at infinity. Denote B,(00) =

m Ba(2), nay = AV, + A" —b a=1,... k b=1,...,(A\9),. Then
T—r00

ul’ + Z Ba(co)ul'—e = H (U — 24 — Ngp)- (3.1)

Proof The fact that 8i(x),..., B (z) are rational functions regular at infinity fol-
lows from Proposition 2.5.1. Notice that ker Hl(,’:))ll(x(d/dx) — 24 — Ngp) is the span
of {x*atma |a=1,...,k,b=1,...,(A9)]}, which implies formula (3.1). u

Lemma 3.1.3 Define

n

py(z) = H(x _ ai)(u”))’l.

=1

Then for each a =1,..., L, py(x)B.(x) is a polynomial in x.

Proof The lemma follows from Proposition 2.5.1 and the following three facts that

are easy to check:
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1. For each i = 1,...,n, the Wronskian Wr(V) of V has a zero at © = «; of

multiplicity (u®)!.
2. Wr(V) is regular at every point different from 0, a, ..., .

3. The functions £1(x), ..., B (x) are regular at 0.

We will call the operator Dy = py(x)z” Dy the fundamental regularized differen-

tial operator of V.

3.2 Spaces of quasi-exponentials with difference data

Fix nonzero complex numbers aq,...,a, and non-zero partitions u(l), o ,,u(”).
Assume that o; # o for i # j. Let W be a vector space of functions in one variable
with a basis {afrj(z) |i=1,...,n,7=1,...,(p®);}, where r;;(z) are polynomials
and degry; = (u@); + p’ — 5.

Denote M’ = Z?:l(p("))’l = dimW. For z € C, define the sequence of discrete
exponents of W al z as a unique sequence of integers e = {e; > ... > ey}, with the
property: for each ¢ =1,..., M’, there exists f € W such that f(z+7) =0 for j =0,
...,e;— land f(z+e;) # 0. We say that z € C is a discrete singular point of W if
the set of exponents of W at z differs from the set {0,..., M’ —1}.

Assume that there exists a sequence of complex numbers z = (z1,...,2;) and a
sequence of partitions A = (A ... A®) such that z,...,2; are discrete singular
points of W, z, — 2z, & 7Z for a # b, sequence e®) = {eﬁ“) >0 > eg\(}),} of discrete
exponents at z, is given by eE“) = M’+)\Ea) —ifori=1,..., M, )\ga) =0 fori> M,
and Z];:l IA@] =S |u®]. Here |A] denotes the number of boxes in the Young
diagram corresponding to the partition .

Denote the sequences (™, ..., u™), (A . XF) (aq,...,0p), (21,...,2) as

i, \, a, z, respectively. We will say that W is a space of quasi-exponentials with the

difference data (i, \; &, Z).
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Define an operator T" acting on functions of x by the following rule:

Tf(x) = flz+1).

The fundamental monic difference operator of W is a unique difference operator Sy}
of the form
M/
S =T" +3 by(x)T™" (3.2)
i=1
annihilating W.

The following lemma is proved similarly to Lemma 3.1.2.

Lemma 3.2.1 The coefficients b;(x) in (3.2) are rational functions reqular at infinity.

Denote bj(co) = lim b;(z). Then
T—00

M/
uM Z bi(c0)uM' = H(u - ai)(“m)ll.
i=1 ;
For the proof of the following lemma, see [19].

Lemma 3.2.2 Let ng, = (A9)] + )\ga) —b. Define

(A@)]

pw(@) =TT T &= 20— e + X))

a=1 b=1

Then for each i =1,..., M, pw(x)b;(x) is a polynomial in x.

We will call the operator Sy = pw (2)Sm the fundamental regularized differential

operator of W.

3.3 Algebra of pseudo-difference operators

A pseudo-difference operator is a formal series of the form
M K
) CuatT™, (3.3)
m=—00 k=—o0

where C},, are some complex numbers. Using the operator relations 7"z = (x +

m)¥T™, k,m € Z, and identifying (z + m)* with its Laurent series at infinity, one
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can multiply series (3.3). This multiplication is associative. Denote the algebra of

pseudo-difference operators as ¥D,.

Lemma 3.3.1 If S = Zi\fzfoo Zfzfoo Clom TFT™ with Crepr # 0, then S is invertible
in ¥D,.

Proof Define S by the rule 1+ 8 = Cil, 2= KSTM. Then Z;’;O(—l)js’j is a

well-defined element of ¥, and the inverse of S is given by the formula:

S o W (Z(—naéﬂ‘) K.

j=0 "

We consider a formal series ™ f,.(z)T™, where all f,,(z) are rational func-
tions, as an element of U®, replacing each f,,(z) by its Laurent series at infinity. In
particular, we identify the algebra of linear difference operators with rational coeffi-
cients (that is operators of the form Zi]\iﬂ a;(2)T™M~% where all ag(),...,ay(x) are
rational functions) and the corresponding subalgebra of VD,.

Denote by ® the algebra of differential operators of the form

with rational coefficients vo(z),...,vL(z). One can check that the assignment

T = -z, x—T (3.4)

Ydr
defines a homomorphism of algebras 7: ® — vD,.

Let V be a space of quasi-polynomials with the data (X, ji; Z,&@). Let Dy € D be
the fundamental regularized differential operator of V', ng = (A®): + )\Z(,a) —b,a=1,
ook, b=1,...,(A),. Define the fundamental pseudo-difference operator Sy of V
by the following formula:

1 _ 1

Sv = (D) > .
[T (T = a) 1 I, T (2 = 20— )

(3.5)
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Let W be a space of quasi-exponentials with the difference data (fi, \; @, 2). Let
Sy be the fundamental regularized difference operator of W. Define the fundamental
pseudo-difference operator Sy, of W by the following formula:

1 - 1

Sy = __ S — _
HZ:1 Hz()i))l(ﬂ? — 24 — Ny + (A@)]) [T (T — o) s

(3.6)

Notice that both Sy and Sy, have the form 1 + thgl Clna'T™. Therefore, by
Lemma 3.3.1, the operators Sy and Sy are invertible in V3,.

For the data (X, [i; 2, @), where A = (AW A A®Y 5 = (W 5@ ™)

are sequences of partitions, Z = (z1,...,2;) and @ = («q,...,q,) are sequences of
complex numbers, denote N = ((AM) (XY . (AN @ = ((pM), (u@Y, ...,
(), ~2 = X4 1= (21— (AO)) 41, =2 = (A 41—z — (A9 1),

Theorem 3.3.2 Let V be a space of quasi-polynomials with the data (), i; 2, @). Let
Sy be the fundamental pseudo-difference operator of V. Then there exists a space of

quasi-exponentials W with the difference data (', N; &, —z — N1 + 1) such that
Syt = Sw,
where Sy is the fundamental pseudo-difference operator of W.

The theorem will be proved in Section 3.4.6.

3.4 Quotient difference operator
3.4.1 Factorization of a difference operator
For any functions gy, ..., g, let
Wr(gi,...,9n) = det((Tj_lgz‘)ijl)

be their discrete Wronskian. It is easy to show that g4, ..., g, are linearly independent

over the field of 1-periodic functions if and only if Wr(gy,...,¢9,) # 0. Let Wr;(g1,
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.., gn) be the determinant of the nxn matrix whose j-th row is g;, T'g;, ..., T" " tg;,
T g Ty,
Consider a monic linear difference operator S of order n with coefficients a;(z),
1=1,...,n .
S=T"+> ax)T", (3.7)
i=1
Let fi, fo, ..., fn be solutions of the difference equation Sf = 0. Assume that fi, fs,

..., fn are linearly independent over the field of 1-periodic functions.

Lemma 3.4.1 The coefficients ai(x),...,an(x) of the difference operator S are

giwen by the formulas

i WTi(fl, ey fn)

a;(z) = (—1) Wrih i f) | i=1,...,n, (3.8)
Moreover, for any function g, we have
Sg = Wr(fi,- -, fns9) . (3.9)
Wr(fi, ..., fa)
Proof The equations Sf; = 0,...,5f, = 0 give a linear system of equations for
the coefficients a;(z), ..., a,(x). Solving this system by Cramer’s rule yields formula

(3.8). Formula (3.9) follows from the last row expansion of the determinant in the

numerator. [ |

Proposition 3.4.2 The difference operator S can be written in the following form:
1 1 n 1

SZ<T_M> (T_M)”(T_w), (3.10)
g1(x) gn()

where g, = f,, and

g = Wr(fos fam1, -0 fi)
’ Wr(fnyfnfla-"vfi+1) ’

i=1,...,n—1. (3.11)

Proposition 3.4.2 is proved similarly to Proposition 2.5.2
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3.4.2 Formal conjugate difference operator

Denote T = T~'. Then (T_f)(z) = f(x —1). Given a difference operator (3.7),

define its formal conjugate by the formula:

n

SThiz) = (T-)"h(z) + Y (T-)"(ai(x)h(x)) .

i=1
If a difference operator S is given by formula (3.10), then
n 1 n— 1 1
g (T_M> (T _M) (T_M). (3.12)
gn(z) gn—1(z) g1(x)
Proposition 3.4.3 Let fi, fo,..., fn be solutions of the difference equation Sf =
0. Assume that fi, fo,..., fn are linearly independent over the field of 1-periodic

functions. Define

WT(fl, ey fi—la fi+1, N fn)
Wr(fi,..., fn) ’

Then the functions hq,...,h, are linearly independent over the field of 1-periodic

h; =T

functions, and STh; =0 for all i =1,...,n.

Proof Since h; = (—1)""1/gi(z + 1), formula (3.12) immediately gives STh; = 0.
To prove that ST annihilates hs, ..., h,, one can use an argument similar to one used
in Proposition 2.5.3.

Observe that the coefficient a,, of the difference operator S = T™ + >  a,7""
is not identically zero. Indeed, due to Lemma 3.4.1, a,, = TWr(f1,..., fn)/Wr(fi,
ooy Jn), and Wr(fy, ..., f,) is not identically zero. The linear independence of the

functions hq, ..., h, follows from the relation:

n(n+1)
2

Wr(hy, ... hy) = (an)ng;?vlﬂ)(fl,...,fn) , (3.13)

The proof of relation (3.13) is given in Appendix B.
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3.4.3 Quotient difference operator

For this subsection, all vector spaces are considered over the field of 1-periodic
functions. Let S and S be linear difference operators such that ker .S C ker S. Then
there is a difference operator S such that S = $S. For instance, it can be seen from
the factorization formula (3.10). We will call S the quotient difference operator.

Let fi, fa,..., fn be a basis of kerS and fi, fo,..., fn,h1,...,hr be a basis of
ker S. Define functions Y1, ..., by the formula

WT(fl,. . -;f'mh/l; . .,ha_l,ha+1,. . 7hk)
Wr(flw'wfnuhlw”ahk) .

90a:T

Proposition 3.4.4 The functions o1, . .., ¢y are linearly independent, and Stp, =0
foralla=1,... k.

Proof Set h, = Sha, a = 1,...,k. The functions hy,...,hy are linearly indepen-
dent. Indeed, if there are 1-periodic functions cq,..., ¢, not all equal to zero, such
that c1hy + ... 4+ cxhy = 0, then S(c1hy + ... 4 cghy) = 0. This means that ¢;hy +
...+ cihy belongs to the span of f1,..., f, contrary to the linear independence of the
functions fi,..., fu, b1, ..., hg.

Since Sh, = Sh, = 0 for all a = 1,...,k and the order of S equals k, the functions
hi,..., hy form a basis of ker S. Then, by Proposition 3.4.3, the functions

WT’(El, <y Ba—la ﬁa-&-l? <y hk)
Wr(izl, ce ,;Lk)

T , a=1,....k

form a basis of ker ST.
Formula (3.9) yields h; = Wr(f1, ..., fu, hi)/Wr(f1,..., fn). Then the proposi-

tion follows from the Wronskian identity

WT(;“, .. .,Bafl,i:’/aﬁlrl, .. ,ilk> _ Wr(fl, e ,fn,hl, .. '7ha717h’a+17 .. 7hk>

= = 3.14
Wr(hl,...,hk) Wr(fla"'afn7h17"'>hk) ( )

The identity (3.14) can be checked in the straightforward way using formulae (B.1)
and (B.4). n
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3.4.4 Quotient difference operator and spaces of quasi-exponentials

For the rest of Section 3.4, we will assume that all vector spaces are over C. For
every complex vector space W we will be dealing with, the following is true: any
subset of W is linearly independent over complex numbers if and only if it is linearly
independent over the field of 1-periodic functions. Therefore, we can apply the results
of Section 3.4.3 to W just replacing the field of 1-periodic functions by the field C.

Fix nonzero complex numbers aq,...,a, and nonzero partitions pu™®, ... u™.

!/

Assume that «; # a; for i # j. For each i = 1,...,n, denote n; = (u¥)} and

Di = ,ugi) +n,;. Let W be the vector space spanned by the functions a7 z? for all i =1,

...,n,and p=20,...,p; — 1. Denote

o~

Wr(W) = Wr(al,abx, ... afz”t .. o ale, ... afaPrt),

n? n

—

W (W) =Wr(... a%ad,...).
The functions in the second line are the same except the function az? is omitted.

Lemma 3.4.5 The following holds:

Wr (W) = H (ozf’m ﬁ afs!) H (a; — ag)PPs (3.15)

i=1 Ii<jsn
n Pl—l
WTU(W) = ri; (x) H al(pl*(;il)x H OéfS! H (Oél’ _ al)(mﬂizi)(m/*‘sl’i) 7 (3_16)
=1 s=1 1<I<l’<n

(L3)#()
where r;;(x) is a monic polynomial in x and degr;; =p; —j — 1.

The Lemma is proved similarly to Lemma 2.5.5.

Denote by £(a, 1) the set of all vector spaces with a basis of the form {afq;(x) |

i=1,...,n,5=1,..., (™)}, where g;;(x) are some polynomials such that deg q;; =

(@) + 1l —

Consider a space W € E(a, 1). Let S{f the fundamental monic difference operator
of W. Define S = [, (T' — o)”. Then ker S = W. Therefore, ker ST C ker 5, and
there exists a differential operator Sy, such that S = SWS{,’{}, see Section 3.4.3. Let

Wt = ker S;;V
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Proposition 3.4.6 The space W has a basis of the form
{;%Gii(z) |i=1,....n, j= 1,...,,u§i)},
where deg §;; :/Lgi)—f—(,u(i));—j, i=1,....,n,j=1,..., 1.

Proof Foreach i=1,...,n, set

di={n+p —jlj=1..n}, d={012...p-1}\d. (317

Since the space W has a basis of the form {ofg;(x) |i=1,...,n, j=1,...,n;},
(@)

J

...,n, l € dj, complement this basis of W to a basis of W,

where ¢;;(z) are polynomials and degq;; = n; + u;” — j, the functions afz!, i =1,

By Proposition 3.4.4, the space W has the following basis

Wi Wi,
pYra(v) +T Y Coy XraV) i a jeds, (3.18)
W) I=j+1 Wr (W)

where Cjj; are complex numbers. Then by Lemma 3.4.5, for each i, j, the corre-
sponding element of this basis has the form «; “7;;(z), where 7;;(x) is a polynomial
of degree p; —j — 1.

By Lemma 2.5.6, j € df if and only if j = n; — (u®¥)} +1—1 for some [ € {1,...,
V. Set gy(x) = 7ij(z). Then W has a basis of the form {a; “gy(z) | i =1,...,
n, [ = 1,...,p§i)} and

deg gy = degriy = pi +ny — (ny — (u) +1-1) = 1= pf’ + (uD); — 1. (3.19)

Proposition 3.4.6 is proved. [ ]

Recall that M’ = >"" ()] = dim W. We also have M = Y1 | 1) = dim W,
For z € C, define the sequence of T_-discrete exponents of W1 at z as a unique
sequence of integers & = {¢é; > ... > éy}, with the property: for each i =1,..., M,

there exists f € W1 such that f(z —j) =0for j =0,...,¢& — 1 and f(z — &) # 0.
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Proposition 3.4.7 Lete = {e; > ... > ey} be the sequence of discrete exponents of
W at some point z € C. Let A\ = (A1, A, ...) be a partition such that e; = M'+ \; —1,
i=1,...,M and \; = 0 for i > M'. Then the sequence & = {é& > ... > éy} of
T_-discrete exponents of W' at z — 1 is given by é, = M +n, —a, a = 1,..., M,
where n = (N1,M2, ... ) is a partition such that n, > X, for alla=1,2,....

Proof Since e = {e; > ... > ey} is the sequence of discrete exponents of W at
z € C, there is a basis {¢1,...,¥y} of W such that for each i = 1,...,M’, j = 0,
...,e; — 1, we have ¢;(z + j) = 0 and 9;(z + ;) # 0.

By formula (3.15), the Wronskian WT(W) has no zeros, thus z is not a singular
point of W, Therefore, there is a basis { f1, fo, ..., farsam } of W such that it contains
the set {¢1,..., ¥y} and for each i = 0,...,. M + M' — 1, j = 0,...,i, we have
fir1(z+j) =0and fi(z+1) #0.

Consider a matrix-valued function

Fa(x):(iji)izl ..... M+M’', i#a
j=1,.,M+M'—1

Then F,(z) is an upper-triangular matrix with the diagonal of the form {d;, ds,
coydq—1,0,0...}, where d, # 0, b=1,...;a — 1. An example with M + M' = 6,

a = 4 is shown below.
di * * * *

0 do ~ x= =%
Fy(z)=10 0 dg  *
0 0 0 0 dy
00 00 0

Forevery b=0,..., M+ M —a,let F;y bean (M+M' —b—1)x (M+M'—b—1)
submatrix of F,(z) located in the upper-left corner. Then Fj, is also an upper-

triangular matrix with the diagonal of the form {d;,ds,...,d,—1,0,0...}. We have:

det [((T-)"F,)(2)] = const - det(Fp) =0, b=0,...,M+M —a—1.  (3.20)
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The relations (3.20) are illustrated by the example with M + M’ = 6, a = 4 below.

*x|d; * * % * x|dy * *
x| 0 dy + * * x| 0 dy *
(TFE)E) = %[0 0 d | |+ (TPF)E) =] « %0 0 dy
0 0 0 0 * %0 0 O
0000 * %[0 0 0

(3.21)

In each matrix above, we boxed two minors, whose product gives the determinant
of the corresponding matrix. The lower-left minor in each case corresponds to the
constant in formula (3.20). The upper-right minor in det[((7-)F})(#)] is the determi-
nant of Fy; and the upper-right minor in det[((7T_)?F})(2)] is the determinant of F,.
We see that det[((T_)F,)(z)] = 0 and det[((T-)?F})(z)] might not be zero.

Recall that e = {e; > ... > epr} is the sequence of discrete exponents of W at

z€C. Setec=1{0,1,2,...,M + M — 1} \ e. By Lemma 2.5.6, we have
ee={M-XN+a—-1la=1,...,M}.

Denote e = M'— N +a—1,a=1,..., M.
For each a =1,..., M + M’, denote

—~

WTG(W) = det Fa(l‘) = W’I"(fl, . ,fa_l, fa+1, c. 7fM+M’)-

By Proposition 3.4.4, the set

{TM|a:1,...,M}
Wr (W)

form a basis of WT.

—~

Since Wr(W) has no zeros, relations (3.20) give

b (W ol
(T.) (WT(W))U 0 b=0,....M+M 1. (3.22)

Notice that M + M' —1—e =M+ M —1-M + XN, —a+1=M+ X, —a.
Therefore, formula (3.22) yields

(T_)b<T%>(z—l):0 b=0,....,M+ X, - a. (3.23)
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This means that the sequence & = {&; > ... > &/} of T_-discrete exponents of W1 at
z—1lisgiven by é, =M +n, —a,a=1,..., M, where n = (1,72, ...) is a partition
such that n, > A, for alla =1,2,....

Proposition 3.4.7 is proved. [ |

3.4.5 Quotient for a difference operator with left shifts

1 1 —1).

Denote a=! = (a7,...,a;, By Proposition 3.4.6, we have a map @y :

&(a, i) — &(a~t, i) such that
+ W — WT

We will also write Sf, = Q. (Si).

We are going to introduce a map Q_ : &(a~!, i) — &(a, i) and show that Q_ is
the inverse of ().

Consider a space W_ € &(a™ !, i/). Then dimW_ = "7 | pgi) = M. Let S}, be

a difference operator of the form

Sk = (T 4+ 3 bi(@) (1)

annihilating W_.

Introduce a difference operator S_ = [1-,(T- — a;)P". Then the space W =
ker S_ is spanned by the functions a; “2?, p = 0,...,p; —1. We have that W_ C /W_,
and there exists a difference operator S’W7 such that S_ = SW7 Sw_. For instance, it
can be seen from an analog of factorization formula (3.4.2) for the operator 7.

For a difference operator S = S'_ a;(z)(T-)"", define its formal conjugate ST by

the formula

STh(z) = ZTl_i(ai(x)h(a:)) :
Denote Q_(Sw_) = (Sw_)*.

Proposition 3.4.8 The space ker(Q_(Sw_)) belongs to the set E(a, fi).
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Proposition 3.4.8 is proved similarly to Proposition 3.4.6.
Due to Proposition 3.4.8, we have a map Q_ : &(a!, ') — &(a, i) such that

Q- W_ ker(Q_(Sw.)).

Proposition 3.4.9 For any W € &(a, i) and W_ € E(a™t, [i’), the following holds:
Q-(Q+Sw) = Sw, Q+(Q-_Sw._) = Sw._.
Proof Recall that S = [ (T — )P = (S_)t and S = (Q4(Sw)) Sy. We have
S = = (S TQL (Sw). (3.24)
In the relation S_ = (Q_(Sw_)) Sw._, take W_ = Q, (W). This yiclds

S_ = (Q-(Q+Sw)) Q. (Sw). (3.25)

Comparing formulae (3.24) and (3.25), we have Q_(Q+Sw) = Sw.

The relation Q4 (Q_Sw_) = Sw_ is proved in a similar way. [ |

Proposition 3.4.10 Fiz z € C. Let e = {e; > ... > epp} be the sequence of T -
discrete exponents of W_ € E(a™t, i) at z—1. Let A = (Ay, Xa, ... ) be a partition such
thate; = M+XN;—i,i=1,...,M and \; =0 fori > M. Then the sequence & = {é; >
... > ey} of discrete exponents of Q_(W_) at z is given by é, = M'+n, —a, a =1,
., M, where n = (n1,m2,...) is a partition such that n, = X, for alla =1,2,...

Proposition 3.4.10 is proved similarly to Proposition 3.4.7.

Corollary 3.4.11 In both Proposition 3.4.7 and Proposition 3.4.10, we have n = X .

Proof Consider a space W € £(a, i), and let partitions A and n be like in Propo-
sition 3.4.7. By Proposition 3.4.10 applied to the space Q. (W), the sequence
e = {é&; > ... > éy} of discrete exponents of Q_(Q,(WW)) at z is given by
& =M +v,—i,i=1,...,M where v; > n, for all i = 1,2,.... By Proposi-
tion 3.4.9, we have Q_(Q4+(W)) =W, thus v; = \;, i = 1,2,.... Notice that n, > A,
for all a = 1,2,... is the same as n; > \; for all i« = 1,2,.... Therefore, we have
Ai < 1t <y =\, which yields i = A;, or n = .

The equality n = A for Proposition 3.4.10 is proved in a similar way. [ ]
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3.4.6 Proof of Theorem 3.3.2

For any pseudo-difference operator S = Zi]\i_oo ZJI.(:_OO C;;jx'T?, define a pseudo-
difference operator S* by

1=—00 j=—00

It is easy to check that (-)* is an involutive antiautomorphism on ¥,
If S is a difference operator of the form S = Y>'_ a;(x)(T_)", define a difference

operator S~ by
l

ST = Z ai(—z)T" .

i=0
If the coefficients ag(x), ..., a;(z) of S are rational functions, then we identify S with
the corresponding element in WD, see Section 3.3. In this case, we have (S7)* = ST.

Let V be a space of quasi-polynomials with the data (), ji;Z,@). Let Dy be the
fundamental regularized differential operator of V. Denote Sy = 7(Dy ), where 7 is
given by formula (3.4).

Let 2 = (21,...,2) and A = (A®, ... A®) be the sequences in the data
(A, fi; Z,@). Define a sequence of complex numbers z + X1 = (2 + (AM)! | 25 + (A@) |

oy zr + (A®))). The following theorem was proved in [19)].

Theorem 3.4.12 There is a space of quasi-exponentials U with the difference data
(i, \; @, 2 + N1) with the fundamental regularized difference operator Sy such that

Let S{? be the fundamental monic difference operator of U. Since U has the
difference data (fi, \; @, Z + X1), denoting ng = (A@)] + )\l()“) —b,a=1,...,k, b=1,
., (M@ we have

1 _
St

Sy =
k (M)
Ha:l Hb:1 YT = 24 — Nap)
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Recall that the fundamental pseudo-difference operator Sy of V' is defined as

follows
L D 1
Sy = — —7(Dy) __ |
[T (T — o) T 17— n)
Therefore,
I i
L a \i 1
S%/ = ” (SV) ( — _ ) _
<Ha 1 Hb)\(l) ( Tr—2q — nab)) Hi:l(T - Ozi)(“( i
1 5 1
- a i U po — _
Hi:l H’()i(l))l@ — Za — Nab) [T (T = o) ()i
1

=S —
v H?=1 (T — O‘@')(“(Z)),l

Denote Q7 (Sy) = (Q+(S7}))”. Then

n

[T — ay D = (@7 (s))hsp, (3.26)

=1

which gives

1
o 1 m 1 -
<Q+ (SU ) H@ 1(T — ai)ﬂgi)> <SU H?:l(T o O‘Z’)(M(i))/l) -

1=

Therefore,

I
IN—1 m 1 - o —/aom 1
(SV) - (SU H?:l (T . Oéi)(“(i)),l) - <Q+ (SU ) H?:1 (T B ai)ugz)> )

and

Syt = ((SH) ™) = Q7 (Sp)

1
H?:l (T - ai)“(li) . (327)

We will show now that Q7 (U) = ker Q77 (S7}) is a space of quasi-exponentials with
the difference data (@', N; &, —2z — N1 + 1).
Since U is a space of quasi-exponentials with the difference data (fi, \; &, 2+ \1),

dimU = Y7 (u9); = M, and for every a = 1,...,k, the sequence e = (e;" >

- > eg\j),) of discrete exponents of U at z, + ()\(a)) is given by e; @ — M 2

7 Y

t=1,...,M'. By Proposition 3.4.7 and Corollary 3.4.11, for each a = 1, ..., k, the

sequence of T_-discrete exponents &(®) = (éga) > > éM,) of Q4+ (U) at za+()\(a )| —
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is given by éga) =M+ (AN —4 i=1,..., M. Also, By Proposition 3.4.6, Q. (U) €
Ela Y i).

Notice that every function from the space Q77 (U) is the image of a function
from @ (U) under the transformation x — —x, and vice versa. Therefore, Q7 (U) €
&(a, '), and for each a = 1,... k, & = (éﬁ“) > > ég\cf[),) is the sequence of discrete
exponents of Q7 (U) at —z, — (A@)} + 1. By Lemma 3.1.1, we have 22:1 |(A@)| =
S [(#®)], which is the same as S5 [(A@)| = 32 [(u®)'|. Therefore, Q7'(U) =
ker Q7 (Sf) is a space of quasi-exponentials with the difference data (@', N;a, —z —
N1+ 1).

Put W = Q7(U). Then Sip = Q7 (S7}) is the fundamental monic difference
operator of W. Let Sy be the fundamental pseudo-difference operator of W. Then,
by definition (see formula (3.6)), Sy = Sip ([, (T — ai)“(li))_l.

On the other hand, formula (3.27) gives S;;' = Sm ([T, (T — ai)“gi))_l, and we
have Sy,' = Sy

Theorem 3.3.2 is proved.

3.4.7 Quotient difference operator versus quotient differential operator

In the proof of Theorem 3.3.2, we obtained the space W using the quotient dif-
ference operator. There is another way to obtain W, which involves the quotient
differential operator.

Denote I, = A\ + (A@)] — 1. Introduce a differential operator
D=]] H(:pi — 2, —b). (3.28)
x
Then
Let V be a space of quasi-polynomials with the data (), [i; 2, &). Let Dy be the

fundamental monic differential operator of V. Recall that V has a basis of the

form {z%qu(x) |a=1,...,kb=1,...,(A9),} where gu(z) are polynomials and
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deg qup = (AD)] + )\l()a) —b. Therefore, V C 17, and there exists a differential operator
Dy such that D= Dya*Dy, see Section 2.5.3. Let DI/ be the formal conjugate of
Dy, see formula (2.32) for the definition. Denote U = ker DY,.

We will say that V' is a space of quasi-polynomials with non-degenerate terms if
it satisfies the following property: for each a = 1,...,k, b = 0,...,1l,, there exists
s=1,...,(A@) such that ¢\?(0) # 0.

Denote —2 — N, — Ap + 1= (—z; — ADY, =AW 41, =29 — (A®), = AP 41,
—z, — (A®))] — A 4 1). We have the following theorem.

Theorem 3.4.13

1. Let V be a space of quasi-polynomials with non-degenerate terms. Then U is a

space of quasi-polynomials with the data (N, ji', =z — N} — A\ + 1).

2. Let W be the space of quasi-exponentials with the difference data (fi', N'; &, —% —
N1+ 1) such that (T(D[]))i = Sy, where Dy and Sy are the fundamental
reqularized differential and difference operators of U and W, respectively, see
Theorem 3.4.12. Let Sy, be the fundamental pseudo-difference operator of Ww.
Then Sy = Sy

We will prove Theorem 3.4.13 later in the section.

Two spaces related like in Theorem 3.4.12 are called bispectral dual. Therefore,
the space U used in the proof of Theorem 3.3.2 is bispectral dual to V', and the space
W in Theorem 3.4.13 is bispectral dual to U. Comparing Theorem 3.4.13 and the
proof of Theorem 3.3.2, we see that taking bispectral dual U of the space V and then
using the quotient difference operator to get W is the same as first using the quotient

differential operator and then taking its bispectral dual, as illustrated on diagram

(3.29)
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quotient of
U

difference
blsly wtOr
(3.29)

4 W =W
The space W from Theorem 3.3.2 is a space of quasi-exponentials with the dif-
ference data (', \';&, —%z — N1 + 1). Then the fundamental regularized difference
operator Sy of W is a difference operator with polynomial coefficients defined by
Sw = pw(2)Si, where

pw(x) =] ﬂ(x + Za 4+ A — (A@) b —1), (3.30)

a=1 b=1
and Sy is the fundamental monic difference operator, see Section 3.2
Let pw (x) be the polynomial of minimal degree such that py (z)S}}; has polynomial
coefficients. We will call the space W non-degenerate if py (z) = pw ().

The following theorem is the converse of Theorem 3.4.12, and it is proved in [19].

Theorem 3.4.14 Let W be non-degenerate. Then the operator 71 ((Sw)i) is the
fundamental regularized differential operator of a space of quasi-polynomials with the

data (N, ii',—2 — N, — A\ +1).

One way to prove Theorem 3.4.13 is to obtain a basis of U using Wronskians
like we did in Sections 3.4.1 - 3.4.5 for W', and in Sections 2.5.1 - 2.5.4 for V.
We are not going to follow this straightforward way, but rather we will show that
U =kerr! (Sév) and use Theorem 3.4.14. To do this we should ensure that W is

non-degenerate. In particular, we need the following proposition.

Proposition 3.4.15 Let V be the space of quasi-polynomials with non-degenerate
terms. Let W be the space of quasi-ezponentials such that Sy = Sy'. Then W is

non-degenerate.
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Proof Let pw(z) be the polynomial of smallest degree such that py (z)Sj} has

polynomial coefficients. Recall that
1
[T (T = aiys”

Therefore ﬁWS;l is a pseudo-difference operator of the form

Syl = Sy = S

N
> (@)1, (3.31)
where ay,an_1,... are polynomials in x. In particular, ﬁWS;l belongs to the image

of the injective homomorphism 7, and T_l(ﬁWS;l) is a differential operator which is
a polynomial in z(d/dz).

From the definition of Sy, we get

ko (A@)]
Sy H H (=2 — 24 — Nap) = 7(x"Dy),
a=1 b=1
which gives
(@)
w@) [] (= — 24 — Nap) = Pw (x) Sy (2" Dy). (3.32)
a=1 b=1

Applying 77! to both sides of formula (3.32) we get

(A<a) ),1 d

T (pw () Hl [1 (v = 20 = ) = 7" (B (2) Sy )2 Dy
The last formula implies that
) k(A d
V =kerz*Dy CV =ker [ 77 (pw(2)) al_[l E ([B@ — Za — Nap) | - (3.33)

Denote A, = {0,...,0,} \ {na|b = 1,...,(A@),}. Let Vi be the span of
{gzatnar g =1,... k,b=1,...,(A¥),}, and let V5 be the span of {z***|a=1,...,
kb e A,}. We have V =V, @ Va.
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By Lemma 2.5.6, A, = {(A®), — (A@); +b—1[b=1,...,A\}. Using this, one
can check that for the polynomial py () defined in formula (3.30), we have
pw(r) = )t H H —r — 2, —b),
a=1beA,
where L = 3% )\ga). Therefore Va = ker 77 (py ().

Consider the space Vo = ker 7~ (y (z)). The polynomial py (x) divides py (z).
Therefore, Vo C Vi, and V, is spanned by {z*t?|a = 1,... k,b € A,}, where A, is
a subset of A, for eacha=1,... k.

By definition, see formula (3.33), V = V; @ V,. Therefore, V C 17, and V is
spanned by {x* ™ |a=1,... kb€ A/}, where Al is a subset of {0,...,l,} for each
a=1,... k.

Suppose that pw(x) # pw(z), then for some a = 1,...,k, Al is a proper subset
of {0,...,1,}. But since V C V, this contradicts to the fact that V is a space of
quasi-polynomials with non-degenerate terms. Therefore, py (z) = pw ().

Proposition 3.4.15 is proved. [ ]

Proof [Proof of Theorem 3.4.13.] Let W be the space of quasi-exponentials such
that Sy = 5‘71. Let Sy be the fundamental regularized difference operator of W.
We will show that

[T =" (=)D} =77 ((Sw)') (3.34)

Then part (1) of Theorem 3.4.13 will follow from Theorem 3.4.14.
Recall that Syy = 7(Dy), where Dy is the fundamental regularized differential
SNl
operator of V. We have x*Dy, = (H?Zl(x — ai)(“(l)M) Dy,. Therefore,

1 _ 1 _
k _ _
D) = ooy ) O = S 09

Applying the homomorphism 7 to both sides of the relation D= Dy2*Dy and using
formula (3.35), we get

ko
. 1 _

— - Sy (3.36)
}_[1 g [T (T - ai)(“( g
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Recall that A, = {0,..., 1.} \ {na |b=1,...,(A@)}}. Then (3.36) gives

1 )
T(Dv)x
Hi:l HbeAa<_x — 24— b)
1 _ 1
m 5 OV Y =1,
[T (T = ) T T (= 20— )
or
1L
sit= Sy, (3.37)

where we used py (z) = (—1)% H’;zl [Tien, (=7 — 2z, — b).

By the definition of Sy, see formula (3.6), and the relation Sy = S}, we have

I 1
pw(x)SWHn (7 — ) (3.38)

=1

Syt =

Comparing formulae (3.38) and (3.37), we get
(=1)"7(Dv) [ (T = i)
i=1

Therefore,

Since (T(Dv))i — 7(D1), the last formula implies relation (3.34).
To prove part (2) of Theorem 3.4.13, notice that relation (3.34) and Theorem
3.4.14 imply Dg = 77! <(5’W)i>. Therefore Sy, = (7'([)0))i = Sw, and S}j, = Sy =

Syt m

3.5 Duality for trigonometric Gaudin and Dynamical Hamiltonians

3.5.1 (gl gl,)-duality for trigonometric Gaudin and Dynamical Hamilto-

nians

Recall from Section 2.3.3 that for any g € U(gl,), we denote gy = 1%V g ®
12(=9 ¢ U(gl,)®", and that we use the same notation for an element of U(gl,) and

its image under the diagonal embedding ¢ — >0 (9)u) € U(gl)®". We will use
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similar notations for U(gl,,)®*. Let eff?, a,b=1,...,k be the standard generators of
the Lie algebra gl,. For any ¢,5 = 1,...,n, ¢ # 7, define the following elements of
U(glp)®"

k
1 K K By (olh)
Q=52 Do+ Do d)ole)o,
a=1 1<a<b<k
1k
_ k k (k) otk
Qe =5 D ENaelDo + D (an)nlen)o):
a=1 1<a<b<k
Fix sequences of pairwise distinct complex numbers z = (21,...,2;) and & =
(a,...,qp). For each i = 1,...,n, define the trigonometric Gaudin Hamiltonians

H*™ (&, z) by the following formula:

7

k (k) aQ+ )+ Qg
~lkn),— _ eaa % IV% G
Hi<k,>(a,z):§ (za— etk Z)+§ g (i)
J

J#z

Let ef/, 1,7 = 1,...,n be the standard generators of the Lie algebra gl,. For
each ¢ = 1,...,n, define the trigonometric Dynamical Hamiltonians G§"’k>(2, a) by

the following formula:

) (€§?>)2 : (n)
G (z,a) = — —i—Zza(& ) )+

Recall that both U(gl,)®™ and U(gl,,)®* act on the space By, of polynomials in kn
pairwise anticommuting variables &,;, a = 1,...,k, ¢ = 1,...,n. The corresponding

actions are:

n k
p<k7 ) : (e<b>)(2) = Saiabia

: <65;L>>(a) = £aiaaj7

where 0y, a=1,...,k, i=1,...,n are the left derivations, see Section 2.4.1.

Denote —z+1 = (—2z;+1,...,—z+1). The following result can be found in [42]:
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Proposition 3.5.1 . For anyi=1,...,n, we have

PR (H (@, 2)) = =p" (G (—2 4+ 1,a)).

)

Proof The proof is straightforward. [ ]

3.5.2 Bethe ansatz method for trigonometric Gaudin model

Let Zg, be the set defined in Section 2.4.3. Fix a pair (I, m) € Zy,, where I = (I,
o) € Z’;O, m = (my,...,my) € Z%,. Recall that Py, [l, m] C Py, is the span of
all monomials £/, .. ,‘f’fl L ,‘i’;” such that Zszl doi = my and > ¢ dgi = lg.

* Sln

Assume that Py, [l, m] # 0. We also have that

)

q:;kn[hm] :{pemkn|eéﬁ>p:lapa egbp:mzpa azla"'akaizlv'”?n}'

It is easy to check that all trigonometric Gaudin and Dynamical Hamiltoni-
ans commute with elements eﬁ), . ,e,i?, eﬁb), ..,ef. Therefore, f[fk’m(a, Z), ..,
a¥E" (@, z), G (z,a),..., G (2, &) act on the subspace Pya[l, m]. We will be
interested in the common eigenvectors of the Hamiltonians in the subspace Py, [l, m].

Recall that for each m € Zs, wy, is a partition given by w,, = (1,...,1,0,0...)
with m ones. Define the sequence 1y = (I7,...,1%) by 12 = > (wm;)a- Then
(lo,m) € Zyp.

For any sequence of integers (cy,...,c;) and for each a = 1,...,k — 1, define a

transformation
ro: (e1, o k)= (1, ca— 1 camr + 1,00 cp).

Since Z’;Zl l, = Zk 19 =" my, there exist integers [y, ...,l;_1 such that I =

a=1"a
ril...rikjflo. It is easy to check that if I, < 0 for some a = 1,...,k — 1, then
PBin[l, m] = 0. Therefore, we can assume that [, > 0 for alla =1,...,k — 1.

Put ly = l;, = 0. Then we have

n

la:z<wmi)a+za—1_za, azl,...,k.

i=1
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Therefore i
=Y (b= (Wm)y), a=0,... k-1 (3.39)
b=a+1 =1

Let t be a set of [; + - - - + [;,_; variables:

t= (W, DD B D Ry

A

Fix sequences of pairwise distinct complex numbers z = (z1,...,2;) and & =
(a1, ...,a,). In [26], the authors introduced the hypergeometric solutions of the
trigonometric Knizhnik-Zamolodchikov (KZ) equations. In the case that we need, this

solution involves a certain By, [l, m|-valued function ¢(¢, &) and the master function:

n lm;

ot a,zlm)= [ (ci—aymntmm) HH ) — )™ ﬁa?leZﬁ?C’(t, z),
=1 =1

1<i<ysn a=1

(3.40)
where C(t, 2) is a function of ¢t and z that does not depend on &. We will not need
the explicit formula for C(¢, z).

The following equations are called the Gaudin Bethe ansatz equations:

o ,
o122 ) pazim) =0, a=1,.. k—1b=1,.. .0 (3.41)
ot

We will call a solution ¢ of the Gaudin Bethe ansatz equation (3.41) Gaudin
admissible if
AR L A (3.42)
foralla=1,....,k—1,4,5=1,... 0, i#j,b=1,... k=29 =1,... 0, j =1,
e, I=1,... 0.
In [27], the authors considered a certain limit of the rational KZ equations. Similar

limit for the trigonometric KZ equation gives:

Theorem 3.5.2 Let t be a Gaudin admissible solution of the Gaudin Bethe ansatz
equations (3.41). Suppose that o(t,&) # 0. Then p(t,a) is a common eigenvector

of the Gaudin Hamiltonians, and for each i = 1,...,n, the corresponding eigenvalue

nEm @,z 1, m) of HM™ (%) is given by

h§k’">(t,a,2,l,m):( 83 lnCD) (t,a,z—1,1,m), (3.43)
Q
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where Z — 1= (21 — l1,20 — lo, ..., 2k — Ig,).

3.5.3 Spaces of quasi-polynomials and eigenvectors of trigonometric

Gaudin Hamiltonians

Fix a pair (I, m) € Zn, where 1 = (Iy,...,lx) € Z%,, m = (my,...,m,) € Z",.
Assume that Py, [I,m] # 0. Define the sequence of partitions A = (A, ..., AX®)) by

A9 = (1,,0,0,...),a=1,...,k Recall that for each m € Z, wy, is a partition given

by w, = (1,...,1,0,0...) with m ones. Define a sequence of partitions i = (wy,,,
ey Win, )

Let Z = (z1,...,2r) be a sequence of complex numbers such that z, — 2z, ¢ Z
for a # b. Let @ = (v, ..., a,) be a sequence of pairwise distinct non-zero complex

numbers. Let V be a space of quasi-polynomials with the data (), ji; Z,&). Then V

has a basis of the form

{z%qu(2), 2% ga (), ... 2™ g (2)},

where ¢1(z), ..., qx(z) are polynomials and deg g,(x) = .

Foreacha=1,...,k—1,b=1,..., k, define

Ty(x) = ]] (= = ai),

=

Il
—

7
ms

Wr (2 gy (), 21 g1 (), - - ., T°F ' quya (2))
[T (27T ()
One can check that foreacha = 1,...,k—1, y,(z) is a polynomial of degree [,. The

b

v

Ya(x) = (3.44)

polynomials 71 (x),...,r,(z) can be normalized in such a way that the polynomials

Yo(), ..., Yn—1(x) are monic. Write

la

va(z) = [J(= = 7).

b=1
We will call the space V' Gaudin admissible if the tuple

E= (Y, 30D O, DY)

1 9> Zl’ ,...,[k_l
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satisfies conditions (3.42).

The following theorem was proved in [18].

Theorem 3.5.3 Let V be Gaudin admissible. Then t is a Gaudin admisible solution
of the Gaudin Bethe ansatz equations (3.41).

Define functions f;(x),. .., Br(x) by the following formula:

Dy = (x%)k + i B.(2) @%)H |

By Lemma 3.1.2, the functions (), ..., Sx(z) are rational.

Let ¢t be the Gaudin admissible solution of the Gaudin Bethe ansatz equation
corresponding to V, like in Theorem 3.5.3. Suppose that ¢(t, @) # 0. According to
Theorem 3.5.2, ¢(t, @) is a common eigenvector of the trigonometric Gaudin Hamil-
tonians, and for each ¢ = 1,...,n, the corresponding eigenvalue of ﬁ;k’m(o?, zZ41)is
h§k’”> (t,a,z+1,1,m). We will also call ¢(t, @) the Bethe vector vy corresponding to
V.

Proposition 3.5.4 The following holds

2

- 1 1 ;
W@+ L m) = e, (350 - o)) + B (349

Proof For each function g of x, write In'(g) = (In(g))’, where (-)’ is the differentiation

with respect to . Comparing formulae (3.44) and (2.30), we have:

e e
(% —In/ (kallgz:igi;yk_z(x)>> (% —In’ (acszkyk_1(x))) :

Multiplying each side of (3.46) by z*, we get

o (et (B2) ) (o (B0 ).

. @«% — 2l (Teyer (2)) — zk) .
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Put yo(z) = yr(x) = 1. For each a = 1,..., k, denote
T, -
Y,=—xln (—a(x)ya 1<$)) — Zg.
Ya(T)
By formula (3.47), we have

k
Bolx) = Y Y. )+ Z wY(z), Bi(z) =) Ya(x). (3.48)
1<a<b<k a=1
Since t is Gaudin admissible, foreachi =1,...,n,a=1,...,k—1, a; is not a root
of the polynomial y,(z). Also, for each i = 1,...,n, a; is a root of the polynomial
T.(x) if and only if a < m;. Using this, we can compute:
— Resy—q,
Qo ‘
1<a<bgk
; (3.49)
Sy zz o= 1),

;Resx o (Z:py’ ) w (3.50)

1 1<
R .
L Resomar | 5 (Z Y, ( ) (3.51)
a=1 a=1 b=1
m]>b
From formulae (3.48) - (3.51), we get
1 1
Ck_i Resx:ai(Qﬁl( z) — Bo(z)) =
a; min mz,m]) m? 3 (3.52)
S RO IO DL ST e
J#%
On the other hand, using formula (3.40), we can compute
(ala% In <I>) (t,a,z,1,m) =
L (3.53)

B a; min(m;, m;) m;
- bmz) i+zza+z a; — a; + D)

b=1
]751

Comparing formulae (3.52), (3.53), and (3.43), we get relation (3.45). u
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3.5.4 Bethe ansatz method for XXX spin chain model

Fix a pair (I, m) € Zy,, where 1 = (Iy,...,ly) € Z5, m = (mq,...,m,) € Z.

Assume that By,[l,m] # 0. For each i =0,...,n — 1, define

n k
mi= Y (m; = (w,)))- (3.54)
Jj=i+1 a=1
The numbers my, . .., m,_; are the (gl;, gl,)-dual analogs of the numbers [y, ..., l;_1,

see formula (3.39). Recall that non-triviality of By, [l, m] implies [, > 0, a =0,...,
k — 1. Similarly, non-triviality of 9By, [l, m] implies m; > 0,¢=0,...,n — 1.

Let t be a set of m; + - - - + m,,_; variables:

t = (t§1)7 . t(l) th), o ,t(—Q) ’tgnfl) N 7t(_n71)).

st ¥mayo moy e

Fix sequences of pairwise distinct complex numbers z = (21,...,2;) and & = (ay,
., ). We have mg = 0. Also, put m,, = 0. The XXX Bethe ansatz equations is

the following system of mq + - - - + m,,_1 equations:

Qirl _ ﬁ tz(f)——Z“mH ) - tﬁf*lf +1 "ﬁ ‘tl(f) —’tgfﬂ) ﬁ tg@ _ g) T
oo g =z ) =l ) - - ) — ) 41
b a#b
(3.55)
Wherei:l?"wn_L bzl;...,’ﬁli.

A solution t of the XXX Bethe ansatz equations (3.55) is called XXX-admissible
if 18 £ 0 19D 24U forany i =1, n—1 ab=1,....mya#b j=1.,
n—2, a = 1,...,7’777, b = 1,...,mj+1.

For each i, = 1,...,n, define

k Mi—1 (i—1) m; (%)
rT—2z,+1 T —tg +1 T—1t, —1
Xi(x, t,z,0) = oy . — 3.56
(IE z 05) (8% ar_Il z— 2, g B tél_l) 11 _ tgz) ( )
lo>i B B
Ej(x,t.z,a)= ) Xiy (2)Xiy(x — 1) ... X, (x — j + 1). (3.57)

1<i1<-<ij<n

In the last formula X;(z) = X;(x,t,z, @), i =1,...,n.
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Introduce a new variable u. Consider the following polynomial in u:
E(u,z,t,z,a) =u" + Z Ej(:v, t,z,a)u"",
j=1
which is also a rational function of x regular at infinity. Let E,(u,¢t,Z, &), a € Z>q be

the coefficients of the Laurent series at infinity of E(u,x) as a function of x:
E(u,x,t,z,0) = Y 2 "E,(u,t,%,a). (3.58)
a=0

In [10], a certain function ;(t, z) of ¢ called the universal weight function for the
XXX-type model was defined. This function takes values in tensor products of highest
weight gl,-modules. In the case that we need, 1;(t, z) is a P, [l, m]-valued function.
If ¢t is an XXX-admissible solution of the XXX Bethe ansatz equations (3.55), and
¥i(t, 2) # 0, then v;(¢, Z) is a common eigenvector of the higher transfer matrices for

the XXX spin chain model. Higher transfer matrices are series in !

, whose coef-
ficients generate a large commutative subalgebra called the XXX Bethe subalgebra
inside the Yangian Y'(gl,)). The trigonometric Dynamical Hamiltonians can be con-
sidered as elements of the XXX Bethe subalgebra, see [10, Appendix B]. In particular,
if ¢t is an XXX-admissible solution of the XXX Bethe ansatz equations (3.55), and
¥i(t, 2) # 0, then 9;(t, Z) is a common eigenvector of the Dynamical Hamiltonians,

and the corresponding eigenvalue can be computed using [10, Proposition B.1]. We

will formulate the result in the following theorem:

Theorem 3.5.5 Lett be an XXX-admissible solution of the XXX Bethe ansatz equa-

tions (3.55). Then for each i =1,...,n, we have:

where
n 1 E 7t7 _7 = REAZ) 1 2
3 (85 6) = — L Res,_, L2Lb50) agmamy _myi. (3.59)
Q; [To(u— ) = ai—a 2
J#i

and Ey(u,t, 2z, &) is the coefficient in the expansion (3.58).
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3.5.5 Spaces of quasi-exponentials and eigenvectors of trigonometric Dy-

namical Hamiltonians

Fix a pair (I, m) € Zn, where 1 = (Iy,...,lx) € Z%,, m = (my,...,m,) € Z",.
Assume that B, [I, m] # 0. Let the data (), fi; 2, @) be like in Section 3.5.3, and let
W be a space of quasi-exponentials with the difference data (@', \'; &, —z). Then W

has a basis of the form

{airi(z), agra(2), ... agra(2)},
where r1(z), ..., ,(x) are polynomials and degr;(x) = m,.
For each 7 = 1,...,n, define
k
Tyx) = [[(= + 20 + Lo — 4). (3.60)
a=1
lo>i

The following lemma is a special case of Lemma 3.7 in [19]:

Lemma 3.5.6 Foreachi=0,....,n—1, j1,...,Jn—i € {1,...,n}, the functions

WT(O&;T]'I (-’L'), airjg (33), SRR Oé;?n,irjn—i (.Z‘))

[Iia(ag, ,, Ti(2))

are polynomials.

Foreachi=0,...,n—1,j=1,...,n, define

W . n ) x_ n— PN f 7
yz(x) _ T(anT (l’) 10_[[7; 17 (15:? «Q +1’T‘ +1(l’)), (361)
j=i+1 &5 i(2))
3 k
7y(r) = [] (2 + 20).
=
According to Lemma 3.5.6, the functions yo(x), ..., y,_1(z) are polynomials.
Lemma 3.5.7 For each1=1,...,n—1, there exists a polynomial vy; such that
o o
Wr (yi(2), =0i(z) | = —=Ti(@)yi-1(2)yir1(z + 1). (3.62)
Qi1 Qi1
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Proof Set

ii(x) = a lwr(aﬁrn(x)w-aaf+2ri+2($)7@fﬁ($))
7 — G4 = T T n )
Q- Q0 Hj:i+1(Tj ()

By Lemma 3.62, §;(z),...,¥,—1(x) are polynomials, and (3.62) follows from discrete
Wronskian identities (B.1) and (B.4). [

i=1,...,n—1.

Denote u;(x) = y;(z +i/2),i=0,...,n — 1. Then equations (3.62) become

Wr (u,(a:), O;—fgi(m + @/2)) = Of Ti(z 4 i/2)uiy (x4 1/2)usy (z + 1/2), (3.63)

i+1 it+1
where i =1,...,n— 1.

It is easy to see that for each ¢ = 0,...,n — 1, degu; = degy; = m;, where
mo, - - ., My_1 are given by formula (3.54). In particular, deguy = degyo = 0. One
can normalize polynomials 71 (), ..., r,(z) so that the polynomials yo(z), ..., yp_1(x)
(and hence ug(x), ..., u,—1(z)) are monic. For each i = 1,...,n — 1, write

ui(z) = H(x — s\,
a=1

We will call the space W XXX-admissible if for each ¢ = 1,....,n — 1, the
polynomial u;(x) has only simple roots, different from the roots of the polynomi-
als w1 (x + 1/2), uip (x + 1/2), Ti(x +i/2), and u;(x + 1).

The following theorem is a part of the Theorem 7.4 in [18]:

Theorem 3.5.8 Let W be XXX-admissible, then relations (3.63) imply

k a m; i
Qg1 :HSI() )—za+1/2 H Hsb —sa —|—1/2 )—sg)—l (3.64)
i a=1 Sl(;la — % —1/2 lj—il=1a=15 — Sa —1/2 a;éll) Sl()Z) (l) + 1

a=1

wherei=1,....n—1,b=1,...,m;, and Z, = —z, — /2 + 1/2 for eacha =1,...,
k.

A tuple of polynomials ui(x),...,u,_1(x) such that relations (3.63) hold for some
polynomials 71 (), ..., gn—1(x) is called a fertile tuple in [18].
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Let us call the equations (3.55) the XXX Bethe ansatz equations associated to
zZ = (21,...,2,). Foreachi =1,....n—1, a = 1,...,m,;, set ) = s — i/2.
Then, using (3.64), it easy to check that ¢t = (tgl), . ,tgf;ll) ) is an XXX-admissible
solution of the XXX Bethe ansatz equations associated to —2 — [ 4+ 1 = (—z; —
Lh+1,—2z—lo+1,...,—2; — I + 1). Therefore, to each XXX-admissible space of
quasi-exponentials W with the difference data (fi', \'; &, —Z), corresponds a vector
vw = Y(t,—2 — [+ 1) € Pya[l, m], which, provided that vy # 0, is an eigenvector
of the trigonometric Dynamical Hamiltonians G\ (—z — 1+ 1,@),..., G (-2 —
[ +1,a), and the associated eigenvalues are given by the formula (3.59), where we
should substitute z, - —z, — I, + 1, a=1,..., k. We will call vy the Bethe vector
corresponding to W.

We are now going to relate the eigenvalues of the trigonometric Dynamical Hamil-
tonians associated with eigenvector vy, and the coefficients of the fundamental monic
difference operator Sij; of the space W.

Let yo(x),...,yn—1(z), T1(z),...,T,(x) be the polynomials given by (3.61) and
(3.60), respectively. Put y,(x) = 1. Define

_ T4 Dyia(z + Dyi(e) n
Vim et 1...n (3.65)

Comparing formulae (3.10), (3.11), and (3.65), we get:

Sip = (T = Yi(@))(T ~ Ya(a)) ... (T - Ya(a)).

For eachi=1,...,n — 1, write
yi(x) = [ (= = #2).
a=1

Then we have

k . mi—1 (i—1) m; (1)
T+ 2z, +1l,—1+1 r—t, +1 T—ty —1
Yi(r) = o [] Ttz —i 11 — D

a a=1 — la

)
[y

o>

~
<

Since y;(z) = u;(x —i/2), we have s = ¥ —1/2,i=1,....,.n—=1,a=1,...,m;.

Therefore, for the solution t = (tgl), . ,tﬁg;_l)) of the XXX Bethe ansatz equations

1
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corresponding to the space W, we get tgi) = s((f) —i/2 = EEP — 1. Denote this solution
as t — 1.
Comparing the last formula for Y;(x) with the formula (3.56) for X;(x,t, 2z, &), we

have

Xi(w,t —i,—z—1+1,a)=Yi(z+i-—1). (3.66)
Let Ey(x),...,E,(z) be the coefficients of the fundamental monic difference op-
erator Sy of the space W:
Sip =T+ Ei(x)T"".
i=1
For each i = 1,...,n, we have
Eix)= Y  Yi(e+i—1)Yy(e+i—2)... Y (z+i— ). (3.67)
1<i1 <<i;<n
Comparing formulae (3.57), (3.67), and (3.66), we get Fj(z,t —i,—2—1+1,a) =
E;(z). This, together with Theorem 3.5.5, proves the following:

Proposition 3.5.9 Let W be an XXX-admissible space of quasi-exponentials W with
the difference data (', N; &, —%). Let vy be the Bethe vector corresponding to W.
Write the fundamental monic difference operator Siy, of the space W in the following

form:
S = a"E,(T),
a=0

where Ey(T), E5(T), ... are some polynomials in T. Then we have

where
ey _ 1 Es(u) — a;mim;  m;
g (—z—-1l+1,a)= Resu—a, == (3.68)
Q; [T (u— ) ; Q; — @ 2
JFi
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3.5.6 Quotient difference operator and duality for trigonometric Gaudin

and Dynamical Hamiltonians

Fix a pair (I, m) € Zn, where 1 = (Iy,...,lx) € Z%,, m = (my,...,m,) € Z",.
Assume that Lp,[l, m] # 0. Let the data (A, ji; 2, @) be like in Section 3.5.3. Let V
be a Gaudin admissible space of quasi-polynomials with non-degenerate terms with
the data (), fi; z,@). Let Sy be the fundamental pseudo-difference operator of V, see
Section 3.3.

By Theorem 3.3.2, S\}l is the fundamental pseudo-difference operator Sy of a
space of quasi-exponentials W with the difference data (@', '; &, —Z). In this section,
we will relate a map V' +— W with the (gl,, gl,,)-duality of the trigonometric Gaudin
and Dynamical Hamiltonians.

Let vy € Piu[l, m] be the Bethe vector corresponding to V', see Section 3.5.3.
Assume that vy, # 0. Then the vector vy is an eigenvector of the trigonometric
Gaudin Hamiltonians If[fk’m(o?, z+1),... ,Hflk’")(o_z, zZ 4+ 1). Denote the associated
eigenvalues as B§’m> (a,z+1),..., A (@, zZ + 1), respectively.

Assume that the space W is XXX-admissible. Let vy € Py,[l, m] be the Bethe

vector corresponding to W, see Section 3.5.5. Assume that vy # 0. Then the vector

),

Qi

vy is an eigenvector of the trigonometric Dynamical Hamiltonians G*Y”“) (—z—1+1,

G (—z — 1+ 1, @). Denote the associated eigenvalues as §\"" (—z — 1 + 1, @),
. ,Qén’m(—i —1+1,a), respectively.
Theorem 3.5.10 The following holds:
e a,z+1) = - (—z—1+1,a), i=1,...,n. (3.69)

Before proving the theorem, let us discuss how it explains the relation between
the quotient difference operator and the (gl;, gl,,)-duality. By Proposition 3.5.1, for

each i =1,...,n, we have

H (@2 4+ Yow = =GP (=2 =1+ Lajow = =90 (=2 =L+ Lajow. (3.70)

3 n
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Therefore, starting with the space V' and the corresponding vector vy, we have
two different ways to obtain a common eigenvector of the trigonometric Dynamical
Hamiltonians. First, by the (gl,, gl,,)-duality, vy is itself a common eigenvector of
the Dynamical Hamiltonians, see formula (3.70). Second, the map V +— W (or more
explicitly, the construction of the quotient difference operator) gives the vector vy .
Theorem 3.5.10 assures that for generic z, &, these two eigenvectors are the same up
to a constant.

Indeed, comparing formulae (3.69) and (3.70), we have

(2

Similarly to Lemma 2.4.5, one can show that for generic z,&, the common
eigenspaces of the operators f[fk’m(o_z, z+1),... ,ﬁff’m(@, zZ+1) in Py, [l, m] are one-

dimensional. Then relation (3.71) implies that vy is proportional to vy .

Proof [Proof of Theorem 3.5.10] Let Dy be the fundamental regularized differential
operator of V. Denote Sy = 7(Dy), where 7 is given by formula (3.4). Let U
be the space of quasi-exponentials with the difference data (fi, \; @,z + 1) such that
Sy = (Sy)}, where Sy is the fundamental regularized difference operator of U, see
Theorem 3.4.12.

The space U has dimension M = >  m;. By Lemma 3.2.1, the fundamental
monic difference operator Sit = T + Zf\il bi(2)T™M~% of U has rational coefficients
bi(x),...,by(x), which are regular at infinity. Therefore, there exist polynomials

Bo(u), By(u), Ba(u), ... such that
Spr=>Y_a"Bu(T). (3.72)
a=0

Moreover, Lemma 3.2.1 gives an explicit formula for the polynomial By(x):

n

Bo(u) = [ J(w— as)™. (3.73)

i=1
We have Sy = py(z)Sg?, where py(z) = [[*_,(z — 24 — l,), see Lemma 3.2.2. In
particular, the coefficients of the operator Sy are polynomials in z of degree at most

k.
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Define numbers A;,, i = 1,...,M, a = 1,...,k by Sy = Zf\il Z’;Zl AT,

Then we have
Mk

1 )
Sg = E E AT (3.74)
H];:l(x — 2a — la) i=1 a=1

Denote S2F_ (2, + l,) = Z. Comparing formulae (3.72) and (3.74), we get

M M
Bo(u) = Z Aigu',  Bi(u) = Z (Aip1 + ZAip)
= =1 (3.75)

M
By(u) = Z (Az'7k—2 +ZA; 1+ ZQAZ’,k:) u',

=1

Since Sy = (Sy)*, it holds that Sy = Zf\il Zl;:l AT (—x)%. Therefore,

Dy = ii Ao’ (z%)a (3.76)

Let Dy be the fundamental monic differential operator of V. We have Dy =

pv(x)(2*Dy), where py(z) =[]\, (z — ;)™ see Lemma 3.1.3. Write

d k k d k—a
k
Dy = ) : :
"Dy (md:v) + 2 Ba() (xda:) (3.77)
Then formula (3.76) gives:

M .
_ Z’L:l Aivk_a/xl

Bo = = - a=1,... k. (3.78)
[Tici (@ — ai)™
By Proposition 3.5.4, we have
n 1 1 2
hEm (@, % + 1) = — Resya, (553(95) - 52<x)> + % — m,. (3.79)

Using formulas (3.75), (3.73), and (3.78), one can check

Res,—q,; (%53(1’) - 52@)) = Resy—, (% gggg a gzgzD '

Therefore, formula (3.79) gives

1
R (@, 2 + 1) = — Resy_a, (

Q;

2Bj(u)  Bo(w)

1 B2(u) Bz(U)) mi (3.80)
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Let W be the space of quasi-exponentials with the difference data (@', '; &, —Z)
such that Sy = 5‘71, where Sy and Sy, are the fundamental pseudo-difference opera-
tors of V' and W, respectively. Let Sij; be the fundamental monic difference operator

of W. Similarly to Si7, see formula (3.72), Sjj; can be written in the form

= 27 "E,(T)

If S is a difference operator of the form S = "' a;(x)T", define a difference

operator S by

In the proof of Theorem 3.5.10, see Section 3.4.6, the difference operator Sjj, was

given in terms of the quotient difference operator:
Sw = QY (57)-

Then relation (3.26) gives
[T —am = (537" s

Since ((Sg) ) = 322 Eu(T)(—x)~%, we have

n

1T - )™t = (ZE ) (ix—QBa(T))

i=1

Writing the right hand side of the last formula in the form ) > 27*P,(T') with
some polynomials Py(x), Py(z), Py(z),... and comparing it to the left hand side, we
see that P,(u) =0 for all @ > 1, and

(u — o)™t (3.81)

—.

Ey(u)Bo(u) = Fo(u) =
From P (u) = 0, we get

Eo(u)Bi(u) — Ey(u)Bo(u) = 0. (3.82)
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From Py(u) = 0, we get
Es(u)Bo(u) + Eo(u)Ba(u) + uE| (u) Bo(u) — uEy(u) By (u) — Ey(u)Bi(u) = 0. (3.83)
In the last formula we used that for every polynomial P(u), we have
P(T)x™' = a7 'P(T) — 2 TP (1) + > 2 "P(T)
a>3

for some polynomials Ps(u), Py(u), . ...

Using relations (3.82) and (3.83), one can check

1Blw) Balw) (1 B2(u) Eg(U)) Y (El(u))'_

2B3(u)  Bo(w)

2E3(u)  Eolu)

Therefore, formula (3.80) gives

n 1 1 E2 E
hfk >(64,Z +1) = — — Resy=a 12(u) _ B +
a; "\2Ei(u) Ey(u) (3.84)
+R B\ o |
€Syu—a,; | U - —
‘ EQ (U) 2
Let ¢\"" (—z—1+1,@),..., 94" (=2—1+1, @) be the eigenvalues of the trigonomet-

ric Dynamical Hamiltonians G§n’k>(—2—l+1, a),. .. ,é,g"’k>(—2—l+i, @), respectively,

associated with the Bethe vector vy,. By Proposition 3.5.9, we have

§ ] | E " amem;
SR (s 14T, a) =~ Res,, — 220 Oy Mg gy
a; [To(u— ) = a—a 2

i
We will use again [10, Proposition B.1], which gives the following explicit formula

for the quotient Ej(u)/ [/, (u — a;):

Ex(u) _ i XMy (3.86)

H?:l(u - al) j=1 Oé] —u

From formula (3.82) (or Lemma 3.2.1), we get

n

Eo(u) = JJ(u — ). (3.87)

=1
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Using (3.86) and (3.87), we can rewrite (3.85) in the following way:

2 2
g o (1B Bw) m
g (—z—-1+1,a) o Resu=q, <2E§(u) Folu) 5 (3.88)

Using (3.86) and (3.87) again, we compute

i%%wG(EﬁD)=w~ (3.89)

Comparing formulae (3.84), (3.88), and (3.89), we get

W a2+ = =g (2 =1+ Ta), i=1,...n

K3 2

Theorem 3.5.10 is proved. [ |

3.5.7 Non-reduced data

In the previous section, we related the quotient difference operator and the
(gli, gl,,)-duality of the trigonometric Gaudin and Dynamical Hamiltonians acting
on the space By, [l, m], where | = (Iy,...,l;) and m = (mq,...,m,) are such that
le#0,a=1,...,kand m; # 0,7 =1,...,n. In this section, we are going to extend
this result to all nontrivial subspaces By, [l, m|, (I, m) € Zy,.

Fix I = (ly,...,lx) € Z’;O. For each @ = 1,... k, let g,(x) be a polynomial of
degree [, such that ¢,(0) # 0. Fix complex numbers zi, ..., z; such that z, — z, ¢ Z
if a # b. Denote by V' the space spanned by the functions z**q,(z), a = 1,... k.

Define i ]

yred — H <x% — za) V.

a=1
1a=0

Denote k' = dim V™. Fix a € C*. Let (e; > -+ > e;) be the sequence of exponents

of V at a, and let (e1*d > --- > e%9) be the sequence of exponents of V™4 at «.

Lemma 3.5.11 Define a partition = (g, pio,...) by e =k +p, —a, a=1,...,
E', i1 =0. Then e, =k+ g —a, a=1,... k.
Conversely, if a partition pu is such that e, = k + g —a, a = 1,...,k, then

/

1 =0and e =k +p, —a,a=1,... k.
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Proof We are going to use the Frobenius method of solving linear differential equa-
tions. It is enough to prove the lemma for the case when [y = 0, and [5, ..., are
not zero. Let Dy and Dyrea be the monic linear differential operators of order k and

k — 1, respectively, annihilating V' and V™4, respectively. Then

d
"Dy = 2" Dyjrea (x% - 21> : (3.90)

Define functions by (), ..., by(x), b*d(z), ..., 0%, (x) by

k—1 k—1—a
bred(x) d
k-1 E a
D re — - < _ — .
v Ve — (v —a) (xdx)
Using Lemma 2.5.1, one can check that bi(z),...,bg(x), 0°4(z), ..., 0% (z) are

regular at . Define polynomials I(r) and I™4(r) by

I(r) =) ba(a)a* r(r =1)(r —=2)...(r—k+a+1),
Id(r) = i ved(a)od* 0 (r —1)(r —2)...(r—k+a+2).

Notice that {ej,...,ex} is the set of roots of the polynomial I(r). Indeed, substi-
tuting a series Y .- A;(z — )" into the differential equation Dy f = 0, and looking

at the coefficient for the lowest power of (z — ), we get I(r) = 0. Similarly, {e}*d, ...,

ered} is the set of roots of the polynomial I™4(r). The polynomials I(r) and I™(r) are
called the indical polynomials of the differential equations Dy f = 0 and Dyrea f = 0,
respectively.

Using formula (3.90), we obtain the following relations:
bo(z) = b4 (x) — 21 (z — )™ (), a=1,...,k, (3.91)

where we assume that 0i°d(z) = 0. Relations (3.91) imply b,(a) = b™(a), a = 1,
..., k. Since Dy and Dy are monic, we also have by(x) = bied(x) = 1. Therefore,

I(r) = r1*d(r — 1), which implies the lemma. n
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Let {aq,...,a,} be a set including all singular points of V. Assume that a; #
if i # 7, and o; # 0 for all @ = 1,...,n. Suppose that for each ¢ = 1,... n, the

sequence of exponents of V' at «; is given by
(k,k’—l,,k—mz—l—l,k—mz—l,k—ml—Q,,1,0)

for some m; € Z, 0 < m; < k.

Define a sequence of partitions A = (A, ..., A®) by X = (1,,0,0,...), a =
1,...,k. Define a sequence of partitions i = (p,... u™) by p@ = (1,1,...,
1,0,0,...) with m; ones, i = 1,...,n. Define sequences \*¢, g4, z*d and ard by
removing all zero partitions from the sequences X\, fi, and removing corresponding
numbers from the sequences z = (z1,...,2,), @ = (aq,...,ay,), respectively. We will
call the data (), i; 2, @) reduced if (), fi; 2, @) = (A\*4, jired; zred ared) "and non-reduced

otherwise.

Proposition 3.5.12 V™ is a space of quasi-polynomials with the data (™, pred;

sred ~red
zred ared).

Proof Recall that V' is spanned by the functions z**q,(x), a = 1,..., k, where ¢;(x),
.., qx(z) are polynomials such that degq, = l,, and ¢,(0) # 0, a = 1,..., k. Then

the space V™ is spanned by the functions z*q,(z), a = 1,. .., k, where

@y(r) = H (x% + 2 — za) a() (3.92)
2=

If I, # 0, then for each a in the product on the left hand side of formula (3.92), we
have 2z, — z, ¢ 7Z, which yields deg ¢,(z) = degq.(z), a = 1,...,k. If [, = 0, then

formula (3.92) implies g,(x) = 0. This shows that the space V™ has a basis
{274, (z) | 2, is present in "I},

and the degrees of the polynomials ¢,(z) appearing in this basis correspond to the

sequence \'4.
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Notice that @™ is the set of all singular points of V', and the sequences of expo-
nents of V at these points correspond to the sequence ji**?. Therefore, the proposition

follows from Lemma 3.5.11. [ ]

By Proposition 3.5.12 and Theorem 3.3.2, there is a space of quasi-exponentials
Wred with the difference data ((i?)’, (A*4)’; a4, —z"d) such that Spyrea = S;}ed,
where Spyrea and Syrea are the fundamental pseudo-difference operators of W4 and

Vred respectively. We are going to construct a space W such that

pyred = ﬁ (T — a;)W.

i=1
m; =0

For this we will need the following lemma:

Lemma 3.5.13 Fiz o, € C*, and a polynomial p(x). Assume that o # 3. Then

there ezists a unique polynomial p(x) such that degp(x) = degp(x), and

(T = B)a"p(x) = o”p(x). (3.93)
Proof Relation (3.93) is the same as relation

ap(z + 1) = Bp(x) = p(x). (3.94)

Let ag, . .., a,, be the coefficients of p(z): p(r) = apx™ + ap_12™ '+ -+ + ayx + ao.
Substituting a polynomial p(z) = @p2™ + Gp_12™ ' + -+ - + @17 + ag into equation

(3.94) and comparing coefficients for powers of z, we get

i—1 .
~ m—7\-. .
am—i(a_ﬂ):am—i_a E ( .)am_]‘, Z=1,...,m,
=0 m —1

which is a recursion that allows to find the numbers a4, ..., @, uniquely. [ ]

For any 3 € C*, define a linear operator (T'— 3)~! on the space spanned by all
functions of the form a”p(zx), where o € C*, a # 3, and p(x) is a polynomial, by the

formula

(T = B)"'a"p(z) = a"p(w),
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where p(z) is the polynomial from Lemma 3.5.13.
Let 1 < iy <9 < --- <1 <n besuch that m; = 0 if ¢ = i, for some s =1,...,1,

and m; # 0 otherwise. Denote by W the space spanned by the functions

(T—a;) " (T—ay) ™. (T—ay)”f, feW™ and of,...,af.

U

Let St be a unique difference operator of the form 7™ + Y7  b;(z)T" " annihi-
lating W. Let S{jj..a be the fundamental monic difference operator of Wwred Then we

have W = ker Sjj; and

n

Sty = Sipwea [ [ (T — ). (3.95)
=0
In particular, this shows that the order of o, ..., ; in the definition of W does not

matter.
Recall that W™d is a space of quasi-exponentials with the difference data
((ared)’, (Ared); gred —zred)  Then the equality degp(x) = degp(r) in Lemma 3.5.13

implies that the space W has a basis of the form
{aixri(l.%i = 17 < 7n}7

where r1(z),...,r,(x) are polynomials such that degr;(x) =m;, i =1,...,n.
Fix z € C. Let (é; > --- > é,) be the sequence of discrete exponents of W' at z.
Denote n’ = n — | = dim W™ Let (e > --- > &%) be the sequence of discrete

exponents of W™ at z.

Lemma 3.5.14 Define a partition X\ = (A, \a,...) byéed =n'+ X\, —i,i=1,...,
n', A1 =0. Thené; =n+ X\, —i,i=1,...,n.
Conversely, if a partition X is such that é; = n+X\;—i,1=1,...,n, then Ay =0

and &4 =n'+ N\ —i,i=1,...,n.

Proof It is enough to prove the Lemma for the case m; = 0, and mo,...,m, are

not zero.



Let fi(z),..., fa_1(x) be a basis of W™ such that for each i = 1,...,n — 1,
Tifi(z)=0,7=0,...,&° —1, and T%" f;(z) # 0. Set

fi(x) = (T — o)) fi(w) — a8 A(T — ) M filz), i=1,...,n.

Then fi(z) € W, (T — ay) fi(x) = fi(z), and fi(z) =0,i=1,...,n— 1.
Since T9 — ol = (ZS cal ' ST$> (T — 1), we have

j—1

T fi(x) = ol filx) + ) ol 77T fi(w).

The last relation implies T7f;(z) = 0, j = 0,...,& and T4+ f(z)
i) # 0.
Since {a?, fi(x), ..., fa_i(z)} is a basis of W, the sequence of discrete exponents
of W at z is given by
@ +1>...8+1>0),

which implies the lemma. [ |

Notice that for each a = 1,...,k, the sequence of discrete exponents of W4 at

—2, is given by
(n',n—1,....n = l,+1,n —1,—1,...,1,0),

Therefore, by Lemma 3.5.14, for each a = 1, ..., k, the sequence of discrete exponents

of W at —z, is given by
nn—1,....n—l,+1,n—-10,—1,...,1,0).

Consider the space Py, [l, m], where I = (4, ...,l;) and m = (m4,...,m,). One can
repeat all constructions in Section 3.5.3 for the space V. Assume that V satisfies
conditions similar to those for a Gaudin admissible space in Section 3.5.3. Then we

obtain a vector vy € By, [l, m] such that

~ ~

B (6,7 + Doy = hi(a, 2+ Doy, i=1,....n

)
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for some numbers hy(a,z +1),. .., hn(a,z +1). We will assume that vy # 0.
Similarly, one can repeat all constructions in Section 3.5.5 for the space W. As-
sume that W satisfies conditions similar to those for an XXX-admissible space in

Section 3.5.5. Then we obtain a vector vy € By, [l, m| such that

A

for some numbers G, (—z—1+1,a),...,G.(—2—1+1,a&). We will assume that vy # 0.
Theorem 3.5.15 The following holds:

hi(@,z+1) =—gi(—z—1+1,a), i=1,...,n.

Proof Define functions By(x), ..., Be(z), 854(z), ..., Bisd(x) by
k d\F , K g\
2*Dy = ;Ba(x) (ZE%) . 2" Dyrea = ;ﬂfﬁd(:p) <m£> :
For each i = 1,...,n, we have
i@, +1) = 1 Resueo, (35810) = (o)) + 25—

Define also the following numbers:

. 1 1 2
hid(@, 2 +1) = — Resy—a, (5( red)2(z) — ;ed(a:)) +

Suppose that l; = 0, and ls, ..., [ are not zero. Relation (3.90) implies
Bi=01 =z, Bo= Bt — 2
Using the last two formulas, it is easy to check that
1 2 1 red\2 red
Reso—a, | 551(2) = B2(2) | = Resoa, | 5(6%)(2) = 6%(2) ) - (3.96)

By induction, formula (3.96) holds for any Iy, ..., ls. Therefore, we have ili(@, zZ+
D) =hYa,z4+1),i=1,...,n.
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Define polynomials Ey(u), E1(u), Ex(u), . .., EFY(u), EFY(u), ExX4(u),. .. by

St = 2 "Eo(T), Sppua =Y _ 2 "EXY(T).
a=0 a=0
For each i = 1,...,n, we have
1 1E3(u)  Eo(u) m?
9i(—z —1+1,a) = — Resy—q S — -
gi(=z =1+ 1.a) a; Bu=as (2 E2(u)  Ep(u) 2

Define also the following numbers

g (=2 —1+1,a) = — Res,—q, <_

Using relation (3.95), we have

Eqo(u) = B (u) H (u — ),

Il
—

which implies g;(—z =l + 1,a) = gF*4(-z -1+ 1,a),i=1,...,n.

In the proof of Theorem 3.5.10, we already checked that hid(a, z+1) = —grd(—z—
141, &) for all i such that m; # 0. If m; = 0, then A2 (a, z+1) = §red(—z—I+1, @) = 0.
Therefore, we have h;(a,z +1) = —gi(—z —l+1,a),i=1,...,n.

Theorem 3.5.15 is proved. [ |
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4. DUALITY FOR KNIZHNIK-ZAMOLODCHIKOV AND
DYNAMICAL EQUATIONS

4.1 KZ, gKZ, DD and qDD equations

Fix a nonzero complex number k. Consider differential operators Vi,...,Vy
and @1, e ,@k with coefficients in U(gl,)®* depending on complex variables z =
(z1,...,2k) and @ = (g, ..., Qp):

VolZ,a,k) =K 0 H,(z, &),
0z,
= 0

Here Hy(Z, &), ..., Hi(Z, @) are the Gaudin Hamiltonians defined in Section 2.3.3, and
Hy(%,@),..., Hy(z, @) are the (n, k)-analogs of the trigonometric Gaudin Hamiltoni-
ans H"" (&, 7),..., H"™ (&, z) defined in Section 3.5.1

The differential equations V,f = 0 (resp. @af =0),a=1,...,k are called the

rational (resp. trigonometric) Knizhnik-Zamolodchikov (KZ) equations.

Introduce differential operators D1,..., D, and 51, e ,Bn with coefficients in
Ul(gl,)®* depending on complex variables z = (21,...,2;) and @ = (a, ..., ap):
Di(z,a,k) =k 0 Gi(z,a)
7 » = - 8041 (2 ’ )
Di(%,a, k) = rap0 Gy(z, @)
(2 Y Y - 'Laaz (2 ? *

Here G1(z, @), ...,G,(Z,@) are the Dynamical Hamiltonians defined in Section 2.3.3,

and G4 (%, @), . .., Gy(Z, @) are the trigonometric Dynamical Hamiltonians CA?Y”C) (z,a),
.., GI"F) (2 &) defined in Section 3.5.1.

The differential equations D;f = 0 (resp. D, f=0),i=1,...,n are called the

rational (resp. trigonometric) differential dynamical (DD) equations, see [22,23].
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Let e;5, 1,7 = 1,...,n be the standard generators of the Lie algebra gl,. For any
finite-dimensional irreducible gl,-modules L; and Lo, there is a distinguished rational
function Ry, p,(t) of t with values in End(L; ® Ls) called the rational R-matrix. It is

uniquely determined by the gl -invariance
[RL1L2 (t)ag ®1+1® g] =0 for any g€ g[m (41)

the commutation relations

Rp,p,(t)(tei; @ 1+ Z eq @ eyy) = (tei; @ 1+ Z ey ® ei) R, 1,(t), (4.2)
=1 =1

and the normalization condition
Rp,(t)v@w=v®w, (4.3)

where v and w are the highest weight vectors of L and L, respectively.

Consider a k-fold tensor product L; ® --- ® Ly of gl,-modules. Let Ry(t) be
an element of End(L; ® --- ® Ly) acting as Ry, r,(t) on factors L, and Ly, and as
identity on all other factors. Denote z,, = z, — 2. Consider the products Ky,..., K}

depending on complex variables z = (z1,...,2;) and @ = (a1, ..., qp):
Ka(g, d{, /f) — (Rak-(zak) o .. Ra7a+1 (Za7a+1))_1 X

X H(O(Z_eu)(a)Rla(Zla — /‘i) PPN Rafl,a(zafl,a — K/)
Denote by T, a difference operator acting on a function f(u) by

(Tuf)(u) = flu+ k).

Introduce difference operators Z1, ..., Z:

The difference equations Z,f = 0 are called (rational) quantized Knizhnik-

Zamolodchikov (qKZ) operators.
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For any i,j = 1,...,n, i # j, introduce the series B;;(t) depending on a complex
variable t:

0o e“’fief» s
By(t) =1+ 3 [t —ei+e;—b)"
s=1 o=l

The action of this series is well defined on any finite-dimensional gl,,-module L giving
an End(L)-valued rational function of ¢.
Denote «;; = o; — ;. Consider the products X, ..., X, depending on complex

variables zZ = (z1,...,2;), and @ = (aq, ..., ap):

k
Xi(z,a, k) = (Bin(in) - .- Bijy1(@iis1)) H(deii)(a)Bli<a1i_H) . Bis1i(aii1,—k).

a=1
The products Xi,..., X, act on any k-fold tensor product L; ® --- ® L; of finite-
dimensional gl,,-modules.

Introduce difference operators @1, ..., Qy:
Qi(zZ,a, k) = Xi(Z,a,k)T,,.

The difference equations Q; f = 0 are called the (rational) difference dynamical (¢DD)
equations. [24]
It is known that the introduced operators combine into three commutative fami-

lies, see [22—24] for more references.

Theorem 4.1.1 The operators Vy,..., Vi, Dy, ..., D, pairwise commute.

Theorem 4.1.2 The operators 61, e ,%k, Q1,...,Q, pairwise commute.

~

Theorem 4.1.3 The operators 151, v Dy, 2y, .. Zy patrwise commute.

4.2 (gl,,gl,)-duality

The operators V,, @a, D;, ZA)i, Zq, and @); introduced in the previous section are

associated with the Lie algebra gl,. We will write them now as V¥, V", DI D™

7 ) 7 Y

Z™  and QZW, respectively. Consider also analogous operators VZ@, vk pk D

(2
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Zi<k>, and QY associated with the Lie algebra gl,.. Using formulas (2.19) and (2.20),
consider the action of these operators on JBy,,-valued functions of z = (z1, ..., 2z;) and
a = (ag,...,a,). We will write F' = G if the operators F' and G act on the PBy,,-
valued functions in the same way. Let us also write egl) for the standard generators

of the Lie algebra gl,, and efl]z) for the standard generators of the Lie algebra gl,.

Denote —a+1=(—ag+1,...,—a,+1), 2+ 1=(—2+1,..., =2z + 1).

Theorem 4.2.1 For anyt=1,...n and a =1, ..., k, the following relations hold

Vi (z, a,k) = D¥(a, -z, —k), (4.4)
V¥ (@, z, k) = DI (2, —a, —k), (4.5)
Vi (z,a,k) = —D®(—a+ 1,2 —k), (4.6)
V¥ (a,z,k) = =DM (=2 +1,a, —k), (4.7)
Z{M(z,a,k) = NP (2)QF (&, -2, —k), (4.8)
ZM (@, z,k) = N (@)QM (2, —a, —r), (4.9)
where
I1-; ACW(ow—/{) IT C<k>(z —K)
N,-<n>(0_4) _ higi<i Vi <n>ﬂ 7 Nék)(z) _ 1li<h<a “ba <k>ba 7 (4.10)
Hi<j<n Cy (ai) Ha<b<k Cap (Zab)
and
. T(t+e™ + D)0t — ™) i T(t+ el + DIt — ey
i) = g2 o) = b (4.11)

Tt + el — el +1)T(t) T(t+ el — e 4 1r(1)

i 7
Proof Relations (4.4) and (4.5) follow from Lemma 2.4.3. Relations (4.6) and (4.7)
follow from Proposition 3.5.1. To check (4.8) and (4.9), we have to show that

Ry (t) = CY ()BY (1), (4.12)
R¥(t) = ™) BM (1), (4.13)

ij

We will prove relation (4.12). Relation (4.13) can be proved similarly.
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Note, that both action of Rfl? (t) on Py, and action of Cé? (t)Bé?(—t) on Pr,
involve only the variables &,1, ..., m, &1, - - -, &n- Therefore, it is sufficient to prove
(4.12) for the case of k =2, a =1, b= 2.

The gl,,- module B, ,, is isomorphic to X,®X,,. Forany m = 0,...,n, let qu? cC X,
be the highest-weight gl,,-module of highest weight w,, = (1,1,...,1,0,...,0), where
we have m ones and n — m zeros. Consider the submodule Lﬁ:ff ® Lfffg C Pa,. We

have the following decomposition of the gl,-module:

min(mi,mza)

L @ LM = D Ly (4.14)

m=max(0,m1+ma—n)

Here \(m) = (2,2,...,2,1,...,1,0,...,0), where 2 repeats m times and 1 repeats
)

my + ms — 2m times. Denote by v, the highest weight vector of the summand L;’Em)

given by formula (4.22).
Define the scalar product on By, by the rule: (f, f) =1, if f € P, is a nonzero

monomial, and (f,h) =0, if f,h € P, are two non-proportional monomials.
Lemma 4.2.2 We have (Up,, vp) # 0 for every m.

The proof is straightforward by formula (4.22).

(n) (n)

Lemma 4.2.3 (wl,eij wy) = (ej wy, we) for any wy,ws € P, and i,j =1,...,n.

The proof is straightforward.

Corollary 4.2.4 If vectors w and w belong to distinct summands of decomposition

(4.14), then (w,w) = 0.

Proof The summands of decomposition (4.14) are eigenspaces of the operator I =
> iimt eg@ e§?>, and the corresponding eigenvalues are distinct. By Lemma 4.2.3, I{™

is symmetric with respect to the scalar product (-, -), which implies the statement. B

Denote

Sis(t) = tlel )y + D (eh N e @),
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n
Py(t) = e ) + (e oy (e )y
=1
am(t) = <Sm1+m27m+l,m(t) : ’Um,Um71>, Bm(t) = <Pm1+m27m+1,m(t) : Umavm71>-

Lemma 4.2.5 The functions o, (t) and B,,(t) are nonzero, and

Bu(t)  t—1+4+m—my

(4.15)

The proof is given in Section 4.3.

Due to relation (4.1), for any m, there exists a scalar function p,,(t) such that

R@(t)w = pm(t)w for any w € Lf\r(?n)'

Lemma 4.2.6 It holds that
Pm(t) am(t)

= . (4.16)

pm—l(t) /Bm(t)
Proof Let us single out the term Linzn_l) in the decomposition (4.14): Lfﬁfl) QLM =
Lf\rzzn_l) @ L. Then we can write Sy tma—m+1.m(t) - Um = w + W, where w € L;@n_l)

and @ € L. By the definition of Sy, ymy—m+1m(t), the vector w has weight A(m — 1).

Therefore, w = av,,_; for some scalar a. By Corollary 4.2.4, we have

am(t) = <Sm1+m27m+1,m(t) : Umavm71> = a<vm,1,vm,1).

Notice that RYQL) () € L, because R-matrix R@ () acts as a multiplication by a
scalar function on each summand of the decomposition (4.14). Then, by Corollary
4.2.4, (R ()@, v_1) = 0, and

<R§g)<t>sm1+mz—m+l,m(t> Uy Uo1) = <RY2Z> ()w, vm-1) =

= Pm-1(t)a{Vm 1, Vm_1) = pm—1(t)un(t).
On the other hand, relation (4.2) gives

<R$> (t)Sm1+m2—m+1,m(t) Vi, V1) = <Pm1+m2—m+1,m(t)R§T2l> (t) - Vi V1)
= pm(t)Bm(t).

Thus we get an, () pm—1(t) = pm(t)Bm(t), which is relation (4.16). u
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By formulae (4.16), (4.15),

m—1

pult) = [ L = T (4.17)

ps—1(t) cotmmats

where we used that py = 1 by the normalization condition (4.3).

Let Lé2>,L§2>, and Lf) C X5 be the irreducible highest-weight gl,-modules of
highest weight (0,0), (1,0), and (1, 1), respectively. For each i = 1,...,n, let s; be
such that s; = 0,1, or 2, and > | s; = my + mo. Consider a decomposition of the
gly-module:

e ol?= & LY, oW
o<m<(mi1+ma)/2
where W, are multiplicity spaces.
Let (L% )®W,§$>)(m17m2) c L? RW,2 be the subspace of weight

(mi4+ma—m,m (m14+ma—m,m)

(a1, ma)

Lemma 4.2.7 It holds that

t +mg — S
L@ H 2 (4.18)

Bt
12 ( )|( (mq1+mg— mm)®W (ml mg) t — mi + S

Proof The modules L ! and L are one-dimensional, and the elements e@, e§21>,

and 611 — eg act there by zero. Thus, it is enough to consider the case when s; =1

for all i =1,...,n, so formula (4.18) follows from [25, formula (5.13)]. u
Comparing formulas (4.17), (4.18), and (4.11), we conclude:

pm(t) = (BE (—1)C ()] o (4.19)

(2) .
(m1+m2 mm)®W )(m17m2)

Recall that we write F' = G if the operators F' and G act on Py, in the same way.

Lemma 4.2.8 For the Casimir elements 12 = Zi,b:l efjjeé? and IM =
>t e§?>e§?>, we have

2 n
223 e 1™ 40y el (4.20)
a=1 i=1
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The proof is straightforward.
Let Lim be the irreducible gl,-module with the highest weight A = (A1,...,\,) €
C™. It is easy to check that the element I(™ acts on L;m as a multiplication by
(A, A+ p), where (-,-) is the dot product, and p = (n — 1,n —3,...,1 —n). The

similar statement is true for the Lie algebra gl,. Using this, one can verify that
2

(I =2 el e

2
(m1+m2—m,m)®Wm

@) = (—I<n> + n26§?>)|L<{(L> ) (4.21)
i=1 "

a=1
if and only if m =m/'.
Comparing formulae (4.20) and (4.21), we get that under isomorphisms v :
(X,)%? — Pa, and ¥y 1 (X2)®" — Py, defined in formulas (2.12) and (2.13), the

respective images of Lir(bzn) and Léfgl rmy—mm) ® Wi in B, coincide. To indicate
that, we will write L{) = L® @ Wi

Recall that (M), denotes the weight subspace of a module M with the weight
A € C". We have (L,%) ® Lfﬁg)(s1 77777 o) 2 (Lg) ® - ® Lg?)(mhmz). Therefore,

n 2 2 .
(Lf\(zn))(sl 77777 o) 2 (Léwzﬁmrm’m) ® W,y)(mhm). Now we see that (4.19) gives us
a relation between actions of operators Bi? (1), Cl@ (t), and RQ (t) on one particular

submodule of 35 ,, proving the theorem. [ ]

4.3 Proof of Lemma 4.2.5

Let

Um = H€1i€2i25517m+1€€27m+2 - ~€am1+m2—2m,m1+m2—m (4.22)
i=1 {e}

with {e} = {(81782, ey Emytma—om) € = 1 or 2, Zei =my —m+2(mg — m)} One
can easily prove that v,, is a highest weight Vectmf of weight A\(m) .

It follows from the construction of the scalar product (-, -) that a,,(t) (resp. Bm(t))
equals the sum of the coefficients of those monomials presented in Sy, 4my—m+1,m(t) Vm
(resp. P, +ma—m+1.m(t) - vy) that also appear in v,,—;. In fact, all monomials either

in Sy +ma—mt1m(t) - U o8 in Py o —mt1.m(t) - U, appear in vy, as well.
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We will start with «,,. Denote r = my; + my — m + 1. We will write C’CIZ for the
binomial coefficient (2) Let us inspect what happens when we apply various terms
of Lyy(t) to vy,. For the sum i(eﬂ)(l)(elm)@), we can assume that m < [ < r.
If I > m, then the operator (e::)l(l)(ekm)(g) will send a monomial in v,, to zero if
and only if this monomial does not depend on &;;. That is, we look at all terms in
Uy, corresponding to &, = 1. There are C)?7 " , | such terms with the same
contribution (—1)"™ ™2™ Ve leave the details of this calculation to a reader. Under
the assumption m < [ < r, there are m; + mo — 2m different values of [, which yield

the overall contribution (—1)"™*"2%"(my 4 mgy — 2m)C)2 " 5 | t0 am(t).

mi—m

If I = m, then we have (e,1)1)(€im)2) Vm = (€rm)(1) - Um. Therefore, all C;7' 1",

terms in v, equally contribute (—1)™"™24™ (1 + my — 2m).
Finally, ~the term t(e;)a) 1in  Lpn(t) generates the contribution
t(=1)mtmetmo om t0 am(t), which can be seen similarly to the case

{ = m considered above.

Thus we obtained

(=1, = (4 1) Ol g + (M +my = 2m)Ce il L (4.23)

mi1+mo—2m mi1+mo—2m—1

The similar arguments give us

(—ymrmemg = (t = 1) Ot o — (M1 +mg —2m)Ct el o (4.24)
Since
(m1 +mg — 2m) fnnflfnnzfszl = (m1 —m) ;1”11;1:?272m
and
(M1 +mg —2m)C2 0 o = (me —m)C 0

Lemma 4.2.5 is proved.
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APPENDIX A. WRONSKIAN IDENTITIES

In this section, we will collect Wronskian identities that were used in the dissertation.
Identities (A.1) - (A.4) with proofs can also be found in [44] and in the Appendix
of [12].

Recall that for any functions f1,..., f, with sufficiently many derivatives, the
Wronskian Wr(fi, . .., f,) is the determinant of the matrix (f" 71))?7]4:1. Throughout
this section, we will assume that all functions are such that the corresponding Wron-
skians are well-defined. Using elementary column operations, it is straightforward to

check that
Wr(hfi,...,hfn) = K" Wr(f1,..., fn) forany h #0, (A.1)

Wr(1, f1,. .., fn) = Wr(f1, .., fr)- (A.2)

Combining formulae (A.1) and (A.2), we get

Wi o) (B)) e

Proposition A.1 For any functions fi,..., fn, h1, ..., hm, where f1 # 0, the follow-
ing holds:
WI'(WI'(fl, ey fn7 hl); Ce 7WI'(f1, Ce 7fn; hm)) =
= (Wr(fl, ceey fn))m_l Wr(fl, ey fn; hla . 7hm)

Proof We will prove the proposition by induction on n.

(A.4)

Let n = 1. Denote f; = f. Using formula (A.3), we compute

Wr(f, hi) = f>Wr ((%)I> = f? (%)/, 1=1,...,m.
Therefore,

We(WE(f, ), -, Wi, ) = 77 W ((’”‘7) o (%’“)) _

= " Wr(ha, .. B
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Assume that formula (A.4) is true for some n > 1. For functions f1,..., fui1, A1, -,
B, Where fi # 0, define f; = (fi/f1), by = (h;/f1),i=2,...,n+1,j=1,...,m.
Then we compute
Wr(Wr(f1, ..., fost, h1), oo, We(f1, oo frgt, Bm)) =
= f{”*"“ Wr(Wr(fg, e fnﬂ, ﬁl), . ,Wr(fQ, . ,an, Bm)) =
= SRV (foy o )T W (fy e fagn B =
= (Wr(f1, ..oy fart)™ Wi (f1, ooy frsts Pay ooy Bin).

(A.5)

Here, on the first step, we used formulas (A.1) and (A.3), on the second step, we used
the assumption hypothesis, and on the third step, we used formula (A.3) again.

Computation (A.5) proves the induction step finishing the proof of the proposition.

|

Let fi, fo,..., fn be solutions of the differential equation Df = 0, where D =
(d/dx)"+> 7" | a;(d/dz)" . Assume that fi, f2,..., f, are linearly independent. De-

fine

_ Wr(fi, ..., fic1, fist, -0 fn)
WI‘(fl, ce 7fn) .

Proposition A.2 The following holds:

hi

(_1)n(n71)/2

Wr(hy, ... hy) = Welh )
Proof Let p; = Wr(fy,..., fi—1, fit1,---, fa). Denote by b;; the ij-minor of the
matrix A = (fi(jfl))?'jzl. Then we have p; = b;, and p} = b; ;1.
Since Df; = 0 for any 7 = 1,...,n, we have fi(") = —> alfi(n_l), where the

functions a4, ..., a, do not depend on 7. Using this observation, one can check that
Ui j = bim—j1 + (=1) aj1bin — a1bipj.

Therefore, by induction on j, we have

j—1

P =bin+ Y Ciphink, i=1,...,n,

k=0



for certain functions Cj;, that do not depend on 7. Hence,

Wr(p1,...,pn) = det(pgj));iJL ..... n =det(bin_j)i=1,..n

109

7=0,....n—1 7=0,....,n—1
and
_ P Pn  Wr(py, ..., pa)
Wolh o) = W (Gt ) T W T

_ det(bi,n—j) _ (_1)n(n—1)/2 det((_l)l-‘r] bZ,])
(Wr(f1,..., fa))" (Wr(fr, ..o o))"
_ (_1)n(n71)/2 det(A~"det A) _ (—1)n(n=1/2
(detA>n Wr(flu"'7fn) .
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APPENDIX B. DISCRETE WRONSKIAN IDENTITIES

In this section, we will collect discrete Wronskian identities that were used in the
dissertation. Identities (B.1) - (B.4) with proofs can also be found in Appendix B
of [45].

Recall that T is the shift operator defined by T'f(z) = f(z + 1). Recall that for
any functions fi,..., f,, the discrete Wronskian Wr(f1,..., f,) is the determinant
of the matrix (T97'f;)7,_,. Denote T f = f(Tf)(T*f)...(T""f). We have the

following obvious relations:
Wr(hfy, ... hfy) = (TR)YWr(fi,..., f,) for any h, (B.1)

Wr(1, fi,o ooy fo) = Wr(T = 1) f1, ..., (T = 1) f,). (B.2)

Assume that f; # 0. Combining formulae (B.1) and (B.2), we get

E fn
oo (T 1)E)' (B.3)

Proposition B.1 For any functions fi,..., fu, h1,..., hm, where fi # 0, the follow-

Wr(f1, far - oo fo) = (T f1)Wr ((T —1)

ing holds:

Wr(Wr(fis -y fasha)s - WE(fL - fos b)) =
= (T DWr(Tfy, .., TE)WE(fry s fashas o B

Proof We will prove the proposition by induction on n.

Let n = 1. Denote f; = f. Using formula (B.3), we compute

Wr(f, hs) = (T® fYWr ((T — 1)%) = (TP f)(T - 1)%, i=1,...,m.
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Therefore,
(m) () h o
WT(WT<f7h1)7"'>Wr<f7hm>>:(T T f)WT (T—l)—,,(T— )_ =
f f
= @I W ()5 (- ) )
= (T DT HYWr(hy, ..., ).
Assume that formula (B.4) is true for some n > 1. For functions fi,..., fot1, h1,-- -,

B, define f; = (T = 1)(fi/f1), by = (T = D)(h;/f1), i =2,...,n+1,j=1,...,m.

Then we compute

WT(WT(fh LI fn—&-la hl)a cee 7WT(f17 ceey fn—i—h hm)) -
= (T(m)T(nJrz)fl)W?“(WT(fg, ey f~n+17 ill), Ce 7W7,(f2’ ey f~n+17 iLm)) =

= (T(m)T(n+2)fl)(T(m_l)WT(Tf% s 7Tfn+1))wr(f27 s 7fn+17 il/l, ey hm) = (B 5)
_ (7t [(T<”+1>Tf1)wr(Tf2,...,Tfn+1)D X '

X (T FYWr(foy ooy forts by oo o ) =
= (T OWr(Tf, . T far))Wr(frs s frasts by - ).

Here, on the first step, we used formulas (B.1) and (B.3), on the second step, we used

the assumption hypothesis, on the third step, we used
TeITE) £ = (T DTEEDT ) (T ),

and on the forth step, we used formula (B.3) again.
Computation (B.5) proves the induction step finishing the proof of the Proposition.

Let fi, fa,..., fn be solutions of the difference equation Sf = 0, where S =
T+ 30 a;T" " Assume that fi, fo, ..., f, are linearly independent over the field
of 1-periodic functions. Then the function a, is not identically zero, see the proof of
Proposition 3.4.3. Define

Wr(fh e '7fi*17fi+17 .. 7fn)
W(f17"'7fn) ’

h;y =T
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Proposition B.2 The following holds:

n(n+1)
2

B (=1)
Wr(hy, ... hy) = (@) " Wr(fi,- - fn)

Proof Let p; = Wr(fi,..., fic1, fix1,--., fn). Denote by b;; the ij-minor of the
matrix A = (7771 f;)7,_,. Then we have Tp; = b.
Since Sf; = 0 for any ¢ = 1,...,n, we have T"f; = — > ;7" f;, where the

functions ay, ..., a, do not depend on 7. Using this observation, one can check that
Tbij = (—1)”_1anbi7j+1 + (—1)”_jan_j+1bi71.
Therefore, by induction on j, we have

iji = (—1)("’1)(j71)aﬁflbi,j + Z Oj’jbi,j/ , 7= 1, oo, n, j = 1, Loy,

J'<j

for certain functions C};, which do not depend on 7. Hence,

n(n—1)2 n(n—1)

Wr(Tpy,...,Tp,) = det(ijl-)i Len=(=1)"72 a,? det((—l)”jbi’j)i:1,_,,,n

];1 ..... n Jj=1,...,n

and

P 7_Pn ) Wr(Tpy, ..., Tpn)
det A7 det A TMWT det A

n(n—1)2 n(n—1) o n(n_1)? nn=1) .
(—=1)7 7 "an * det((=1)""b;;)  (=1)" 2z an > det(A 'detA)

(n n2(n n(n+1)
TMT det A (_1)%% = (det A)n

Wr(ha, ..., ) :Wr(T

n(n+1)

(DM et A (-1
(a,)™(det A)n+t (@)™ Wr(f1y. . fn)

n(n+1)
2
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