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ABSTRACT

Uvarov, Filipp PhD, Purdue University, August 2020. Duality of Gaudin models.
Major Professor: Vitaly Tarasov.

We consider actions of the current Lie algebras gln[t] and glk[t] on the space Pkn

of polynomials in kn anticommuting variables. The actions depend on parameters

z̄ = (z1, . . . , zk) and ᾱ = (α1, . . . , αn), respectively. We show that the images of the

Bethe algebras B
〈n〉
ᾱ ⊂ U(gln[t]) and B

〈k〉
z̄ ⊂ U(glk[t]) under these actions coincide.

To prove the statement, we use the Bethe ansatz description of eigenvectors of the

Bethe algebras via spaces of quasi-exponentials. We establish an explicit correspon-

dence between the spaces of quasi-exponentials describing eigenvectors of B
〈n〉
ᾱ and

the spaces of quasi-exponentials describing eigenvectors of B
〈k〉
z̄ .

One particular aspect of the duality of the Bethe algebras is that the Gaudin

Hamiltonians exchange with the Dynamical Hamiltonians. We study a similar re-

lation between the trigonometric Gaudin and Dynamical Hamiltonians. In trigono-

metric Gaudin model, spaces of quasi-exponentials are replaced by spaces of quasi-

polynomials. We establish an explicit correspondence between the spaces of quasi-

polynomials describing eigenvectors of the trigonometric Gaudin Hamiltonians and

the spaces of quasi-exponentials describing eigenvectors of the trigonometric Dynam-

ical Hamiltonians.

We also establish the (glk, gln)-duality for the rational, trigonometric and differ-

ence versions of Knizhnik-Zamolodchikov and Dynamical equations.
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1. INTRODUCTION

1.1 Classical (glk, gln)-duality

The classical (glk, gln)-duality plays an important role in the representation theory

and the classical invariant theory, for example, see [1], [2]. It states the following.

Let e
〈n〉
ij , i, j = 1, . . . , n, and e

〈k〉
ab , a, b = 1, . . . , k, be the standard generators of

the Lie algebras gln and glk, respectively. Define gln- and glk-actions on the space

Pkn = C[x11, . . . , xkn] of polynomials in kn commuting variables:

p〈n,k〉 : e
〈n〉
ij 7→

k∑
a=1

xai
∂

∂xaj
,

p〈k,n〉 : e
〈k〉
ab 7→

n∑
i=1

xai
∂

∂xbi
.

Then the images p〈n,k〉(U(gln)) and p〈k,n〉(U(glk)) of the universal enveloping algebras

of gln and glk, respectively, are mutual centralizers in End(Pkn), and there is an

isomorphism of gln ⊕ glk-modules

Pkn ∼=
⊕
λ

L
〈n〉
λ ⊗ L

〈k〉
λ ,

where L
〈n〉
λ and L

〈k〉
λ are the irreducible representations of gln and glk of highest

weight λ, respectively. In particular, the centers of the algebras p〈n,k〉(U(gln)) and

p〈k,n〉(U(glk)) coincide.

Instead of Pkn, one can consider the space Pkn of polynomials in kn anticommuting

variables ξ11, . . . , ξkn. Define gln- and glk-actions on the space Pkn by

π〈n,k〉 : e
〈n〉
ij 7→

k∑
a=1

ξai∂aj,

π〈k,n〉 : e
〈k〉
ab 7→

n∑
i=1

ξai∂bi,
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where ∂ai, a = 1, . . . , k, i = 1, . . . , n are left derivations, see formula (2.10) for

the definition. Then, similarly to the case of Pkn, the algebras π〈n,k〉(U(gln)) and

π〈k,n〉(U(glk)) are mutual centralizers in End(Pkn), and there is an isomorphism of

gln ⊕ glk-modules

Pkn
∼=
⊕
λ

L
〈n〉
λ ⊗ L

〈k〉
λ′ ,

where the sum runs over λ = (λ1, . . . , λn) such that λ1 6 k, and λ′ denotes the

conjugate of λ, see Section 1.7 for the definition. In particular, the centers of the

algebras π〈n,k〉(U(gln)) and π〈k,n〉(U(glk)) coincide. In this dissertation, we will focus

on the space Pkn rather than Pkn.

The pair (glk, gln) is an example of a Howe dual pair. A pair of reductive Lie

algebras (g1, g2) is called a Howe dual pair if both g1 and g2 act on Pkn or Pkn, and

the images of their universal enveloping algebras under the corresponding actions are

mutual centralizers in End(Pkn) or End(Pkn), respectively. Other examples of Howe

dual pairs include (ok, sp2n), (spk, o2n) for the space Pkn, and (ok, o2n), (spk, sp2n) for

the space Pkn, see [1] for details. It is expected that the results of this work can be

obtained for pairs other than (glk, gln). The Howe duality was originally developed as

an useful tool in the representation theory of classical Lie groups and algebras and in

the classical invariant theory, in particular, it is closely related to the famous Schur-

Weyl duality. The Howe duality is also used in the representation theory of Yangians

and twisted Yangians, see [3]. The generalization of this duality to the case of Lie

superalgebras was systematically studied in [4]. There are also analogs of Howe dual

pairs involving some infinite-dimensional Lie algebras acting on Fock spaces, see [5].

1.2 Duality of Bethe algebras

Consider the current Lie algebras gln[t] and glk[t], which are the Lie algebras

of polynomials of t with coefficients in gln and glk, respectively, with the pointwise

Lie bracket. Fix sequences of pairwise distinct complex numbers z̄ = (z1, . . . , zk)
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and ᾱ = (α1, . . . , αn). The actions π〈n,k〉 and π〈k,n〉 can be extended to gln[t]- and

glk[t]-actions, respectively, by the formulas

π
〈n,k〉
z̄ : e

〈n〉
ij ⊗ ts 7→

k∑
a=1

zsa ξai∂aj,

π
〈k,n〉
−ᾱ : e

〈k〉
ab ⊗ t

s 7→
n∑
i=1

(−αi)s ξai∂bi.

Unlike in the case of finite-dimensional Lie algebras, π
〈n,k〉
z̄ (U(gln[t])) and

π
〈k,n〉
ᾱ (U(glk[t])) do not commute in End(Pkn). But the statement about the equality

of centers above does have a generalization to the case of current Lie algebras.

It is known that a generating set of the center of U(gln) can be obtained from the

determinant appearing in the Capelli identity. A generalization of such a determinant

gives a differential operator

Dᾱ =

(
d

dx

)n
+

n∑
i=1

∞∑
j=0

Bᾱ
ijx
−j
(
d

dx

)n−i
, (1.1)

depending on the parameters ᾱ = (α1, . . . , αn), where Bᾱ
ij ∈ U(gln[t]), see Section 2.3

for details. The elements Bᾱ
ij generate a large commutative subalgebra B

〈n〉
ᾱ called the

Bethe algebra. The definition of the Bethe algebra that we use is due to D. Talalaev,

see [6].

The Bethe algebra B
〈k〉
z̄ ⊂ U(glk[t]) depending on the parameters z̄ = (z1, . . . , zk)

is defined in a similar way. One of the main results of this work is Theorem 2.4.2,

which states that the images of the Bethe algebras B
〈n〉
ᾱ and B

〈k〉
z̄ in End(Pkn) under

the actions π
〈n,k〉
z̄ and π

〈k,n〉
−ᾱ , respectively, coincide:

π
〈n,k〉
z̄ (B

〈n〉
ᾱ ) = π

〈k,n〉
−ᾱ (B

〈k〉
z̄ ).

This result was inspired by the similar duality when the Bethe algebras act on the

space Pkn of polynomials in kn commuting variables, see [7].

The Bethe algebras are important objects in the theory of quantum integrable

models. Namely, the algebras B
〈n〉
ᾱ and B

〈k〉
z̄ are closely related to the rational quan-

tum Gaudin model, see [8]. As shown in Section 2.3.3, the images of the (rational)
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Gaudin Hamiltonians Ha ∈ U(gln)⊗k, a = 1, . . . , k, under certain actions are el-

ements of π
〈n,k〉
z̄ (B

〈n〉
ᾱ ). Together with the Gaudin Hamiltonians, we are going to

consider elements Gi, i = 1, . . . , n of U(gln)⊗k called the Dynamical Hamiltonians,

whose images also belong to π
〈n,k〉
z̄ (B

〈n〉
ᾱ ). The elements H1, . . . , Hk, G1, . . . , Gn pair-

wise commute. In the proof of Theorem 2.4.2, we used the observation that under

the (glk, gln)-duality, the Gaudin and Dynamical Hamiltonians exchange, see Lemma

2.4.3 for more precise statement.

In Chapter 3, we study the (glk, gln)-duality of the trigonometric Gaudin and

Dynamical Hamiltonians. Although we are not going to discuss the Bethe algebras

for this case below, let us mention them here for the completeness of the picture. In

the case of the trigonometric Gaudin Hamiltonians, instead of the algebra U(glk[t]),

one should consider the universal enveloping algebra U(ĝlk) of the affine Lie algebra

ĝlk. The commutative algebra inside U(ĝlk) playing the role of the Bethe algebra B
〈k〉
ᾱ

was introduced recently in [9]. We will call this algebra the trigonometric Gaudin

Bethe algebra. On the other hand, the trigonometric Dynamical Hamiltonians are

related to the Yangian Y (gln). The corresponding commutative algebra inside Y (gln)

is generated by the higher transfer matrices of the XXX spin chain model, see for

example [10]. We will call this algebra the Yangian Bethe algebra. Therefore, the

ultimate goal in studying the (glk, gln)-duality related to the trigonometric Gaudin

model would be to establish the equality of images of the trigonometric Gaudin Bethe

algebra and the Yangian Bethe algebra. The results of Chapter 3 may be considered

as first steps in achieving this goal.

The (glk, gln)-duality is also expected in the case of the Bethe algebras associated

with the quantum affine algebras Uq(ĝlk) and Uq(ĝln). This duality should correspond

to the duality of the XXZ spin chain models associated with glk and gln, respectively.

To distinguish the Bethe algebras B
〈n〉
ᾱ and B

〈k〉
z̄ related to the rational Gaudin

model from the Bethe algebras for other integrable models, we will sometimes call

them the rational Gaudin Bethe algebras.
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For the convenience of a reader, we illustrate the most important relations between

objects that we introduce on diagram (1.12).

1.3 Duality for spaces of quasi-exponentials

Consider a space of functions V with a basis

{eαixpij(x)| i = 1, . . . , n, j = 1, . . . , ni},

where α1, . . . , αn are distinct complex numbers, pij(x) are polynomials such that

deg pij 6= deg pil for j 6= l. Denote by DV the monic linear differential operator of

degree dimV annihilating V . Then DV has rational coefficients.

To the space V , one can associate the data (µ̄, λ̄; ᾱ, z̄), where ᾱ = (α1, . . . , αn),

µ̄ = (µ(1), µ(2), . . . , µ(n)) is a sequence of partitions related to degrees of the poly-

nomials pij(x), z̄ = (z1, . . . , zk) is the set of poles of the coefficients of DV , and

λ̄ = (λ(1), λ(2), . . . , λ(k)) is related to the local behavior of V around these poles, see

Section 2.2 for more details. We will say that V is a space of quasi-exponentials with

the data (µ̄, λ̄; ᾱ, z̄). Denote the set of all spaces of quasi-exponentials with the fixed

data (µ̄, λ̄; ᾱ, z̄) by E(µ̄, λ̄; ᾱ, z̄).

In [11], the authors introduced a bijection T1 : E(µ̄, λ̄; ᾱ, z̄) → E(λ̄, µ̄; z̄, ᾱ) given

by

T1 : V 7→ V ‡ = ker(pDV )‡, (1.2)

where p is the least common denominator of coefficients of DV , and D 7→ D‡ is an an-

tiauthomorphism of the algebra of differential operators with polynomial coefficients

such that (
d

dx

)‡
= x, (x)‡ =

d

dx
.

The bijection T1 was introduced in relation to the (glk, gln)-duality on the space Pkn

of polynomials in kn commuting variables.
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Recall that η′ denotes the conjugate of a partition η. We will also write η̄′ if we

conjugate all partitions in the sequence η̄. In this work, we introduce a bijection

T2 : E(µ̄, λ̄; ᾱ, z̄)→ E(µ̄′, λ̄′;−ᾱ, z̄) given by

T2 : V 7→ V̌ † = ker(Ď†V ), (1.3)

where ĎV is a differential operator such that

n∏
i=1

(
d

dx
− αi

)maxj(deg pij)+1

= ĎVDV ,

and D 7→ D† is an antiautomorphism of the algebra of differential operators such that(
d

dx

)†
= − d

dx
, (b(x))† = b(x)

for any function b(x). We will call ĎV the quotient differential operator.

We study the bijection T2 because it is closely related to the (glk, gln)-duality of

the rational Gaudin Bethe algebras acting on the space Pkn. Let us briefly describe

this relation now.

Consider the subspace Pkn[l,m] ∈ Pkn of glk-weight l and gln-weight m (for

definition of a weight subspace, see Section 1.7). Both Bethe algebras B
〈n〉
ᾱ and B

〈k〉
z̄

preserve the subspace Pkn[l,m]. Denote the set of eigenspaces of π
〈n,k〉
z̄ (B

〈n〉
ᾱ ) in

Pkn[l,m] by V
[
π
〈n,k〉
z̄ (B

〈n〉
ᾱ ), l,m

]
. Similarly, let V

[
π
〈k,n〉
−ᾱ (B

〈k〉
z̄ ), l,m

]
be the set of

eigenspaces of π
〈k,n〉
−ᾱ (B

〈k〉
z̄ ) in Pkn[l,m].

The Bethe ansatz is a method of finding common eigenvectors of some commuta-

tive families of operators in the theory of quantum integrable models. In particular,

the Bethe ansatz method for the rational quamtum Gaudin model produces common

eigenvectors for the Gaudin Hamiltonians, or more generaly, common eigenvectors

for all elements of the Bethe algebra. Each eigenvector produced in such a way is

associated with a solution of a system of algebraic equations called the Bethe ansatz

equations.

A natural question is whether the Bethe ansatz gives all the eigenvectors. The

answer to this question is given by E. Mukhin, V. Tarasov and A. Varchenko in [12],
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[13], [14], and [15]. In particular, it is shown that there is a bijection between the

sets E(µ̄, λ̄; ᾱ, z̄) and V
[
π
〈n,k〉
z̄ (B

〈n〉
ᾱ ), l,m

]
, where λ̄ and µ̄ are some specific sequences

defined using l and m, respectively. We denote this bijection as L. The map L can

be regarded as an example of the geometric Langlands correspondence, see [16].

The analog of the map L for the Bethe algebra associated with glk gives a bijection

E(λ̄′, µ̄′; z̄,−ᾱ)→ V
[
π
〈k,n〉
−ᾱ (B

〈k〉
z̄ ), l,m

]
, which we denote by L′. To prove the equality

of the images of the Gaudin Bethe algebras, we showed that the following diagram

commutes:

V
[
π
〈n,k〉
z̄ (B

〈n〉
ᾱ ), l,m

]
V
[
π
〈k,n〉
−ᾱ (B

〈k〉
z̄ ), l,m

]

E(µ̄, λ̄; ᾱ, z̄) E(λ̄′, µ̄′; z̄,−ᾱ)

=

T1 ◦ T2

L L′

,

see Theorem 2.4.6 and Corollary 2.4.7. In other words, we obtained the duality on

the other side of the geometric Langlands correspondence.

To prove the commutativity of the diagram, we used the fact that the construction

of the bijection L gives an explicit relation between eigenvalues of the generators

Bᾱ
ij of the Bethe algebra and the coefficients of a differential operator annihilating

the corresponding space of quasi-exponentials, Namely, if l and m have no zero

components, and L(V ) = v ∈ V
[
π
〈n,k〉
z̄ (B

〈n〉
ᾱ ), l,m

]
, then DV is the image of the

differential operator (1.1), under the action π
〈n,k〉
z̄ and restriction to v. If l and m

have zero components, then we have to use slightly modified differential operatorDaug
V .

This helps us to express the eigenvalues of the Gaudin and Dynamical Hamiltonians

in terms of the coefficients of DV or Daug
V and check that that the relation between

the eigenvalues coming from the transformation T1 ◦T2 matches the relation coming

from the (glk, gln)-duality, see Lemma 2.2.3.

It is convenient to describe the composition T1 ◦T2 using pseudo-differential oper-

ators, see Section 2.1. In particular, it explains the relation between the maps T1 ◦T2

and T2 ◦ T1, see Proposition 2.5.10. In this description, the essential transformation
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in the definition of the map T1 ◦ T2 is to take the inverse of a pseudo-differential op-

erator. This is consistent with the (glk, gln)-duality for the Bethe algebras associated

with Lie superalgebras obtained in [17], which we will discuss more in Section 1.6.

1.4 Duality for difference operators

In Chapter 3, we study the analog of the map T1 ◦ T2 relevant to the (glk, gln)-

duality of the trigonometric Gaudin and Dynamical Hamiltonians. We start with a

space V , which has a basis of the form

{xzaqab(x) | a = 1, . . . , k, b = 1, . . . , ka},

where z1, . . . , zk are distinct complex numbers, and qab(x) are polynomials such that

deg qab(x) 6= deg qac(x) if b 6= c.

Denote K =
∑k

a=1 ka = dimV . Consider the differential operator

xKDV =
K∑
a=0

βa(x)

(
x
d

dx

)K−a
annihilating V . Then β0(x), . . . , βK(x) are rational functions. One can associate the

data (λ̄, µ̄; z̄, ᾱ) to the space V in a way similar to what we discussed above. We will

say that V is a space of quasi-polynomials with the data (λ̄, µ̄; z̄, ᾱ).

Consider an operator T defined by Tf(x) = f(x+1). Define a difference operator

SmV by

SmV = τ(pxKDV ),

where p is the least common denominator of β0(x), . . . , βK(x), and τ is a homomor-

phism such that

τ(x) = T, τ(x
d

dx
) = −x.

Using the quotient difference operator, which is analogous to the quotient differ-

ential operator, we can obtain from SmV another difference operator SmW . The kernel

W of SmW has a basis of the form

{αxi rij(x)| i = 1, . . . , n, j = 1, . . . , ni},
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where α1, . . . , αn are distinct non-zero complex numbers and rij(x) are polynomials

such that deg rij(x) 6= deg ril(x) if j 6= l.

We prove some properties of the space W , which allows one to assign the data

(µ̄′, λ̄′; ᾱ,−z̄− λ̄′1 +1) to W , where −z̄− λ̄′1 +1 = (−z1− (λ(1))′1 +1,−z2− (λ(2))′1 +1,

. . . ,−zk − (λ(k))′1 + 1), and (λ(a))′1 is the number of non-zero entries of the partition

λ(a) in the sequence λ̄. The assignment of the data (µ̄′, λ̄′; ᾱ,−z̄− λ̄′1 +1) to the space

W is different comparing to the previous cases. In particular, the set −z̄ − λ̄′1 + 1 is

smaller than the set of poles of coefficients of SmW , and the sequence λ̄′ is not related

to the local behavior of W anymore, but rather to its behavior associated to strings

of points related by integer shifts. We say that W is a space of quasi-exponentials

with the difference data (µ̄′, λ̄′; ᾱ,−z̄ − λ̄′1 + 1).

The map V 7→ W is described in a more elegant way using pseudo-difference

operators SV and SW associated to SmV and SmW , respectively. We have

SW = S−1
V . (1.4)

We relate the map V 7→ W to the (glk, gln)-duality of the trigonometric Gaudin

and Dynamical Hamiltonians. Eigenvectors of the trigonometric Gaudin Hamiltoni-

ans can be produced using the Bethe ansatz for the trigonometric quantum Gaudin

model. Since the trigonometric Dynamical Hamiltonians are related to the Yangian

Bethe algebra and to the transfer matrices generating it, their eigenvectors can be

obtained by the Bethe ansatz for the XXX spin chain model.

The Bethe ansatz method for the trigonometric Gaudin and XXX spin chain

models is less developed than for the rational Gaudin case. There are statements

that relate the spaces V and W with solutions of the Bethe ansatz equations for the

trigonometric Gaudin and XXX spin chain models, respectively, see [18]. Also, there

are explicit formulas for eigenvalues of the Hamiltonians in terms of these solutions.

But unlike in the rational Gaudin case, explicit relations between eigenvalues and

coefficients of difference operators were not written down. In Sections 3.5.2 - 3.5.5,

we obtain such relations collecting necessary results from papers [18] and [10]. Then

we check that the relation between eigenvalues coming from (1.4) matches the relation
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coming from the (glk, gln)-duality, see Theorem 3.5.10. Again, we have to treat the

case when the weights l or m have zero components in a slightly different way, see

Section 3.5.7.

Similarly to the rational Gaudin case, in the construction of the map V 7→ W ,

we used a transformation relevant to the duality of the trigonometric Gaudin and

Dynamival Hamiltonians acting on the space Pkn of polynomials in kn commuting

variables. This transformation was introduced in [19], and it defines the so-called bis-

pectral duality. One can first apply bispectral duality and then consider the quotient

difference operator, or first consider the quotient differential operator and then apply

the bispectral duality. In Section 3.4.7, we show that the result is the same for both

choices.

1.5 Duality for Knizhnik-Zamolodchikov and Dynamical equations

The differential equations(
κ
∂

∂za
−Ha(z̄, ᾱ)

)
f = 0, a = 1, . . . , k, (1.5)

where f is a Pkn-valued function of z1, . . . , zk, α1, . . . , αn, and H1(z̄, ᾱ), . . . , Hk(z̄, ᾱ)

are the Gaudin Hamiltonians, are called the rational Knizhnik-Zamolodchikov (KZ)

equations. They were first introduced as differential equations for the correlation

functions in Wess-Zumino-Novikov-Witten (WZNW) conformal field theory, see [20].

The rational KZ equations along with their trigonometric and difference analogs play

an important role in the representation theory of Lie algebras and quantum groups,

see [21].

The differential equations(
κ
∂

∂αi
−Gi(ᾱ, z̄)

)
f = 0, i = 1, . . . , n, (1.6)

where f is again a Pkn-valued function of z1, . . . , zk, α1, . . . , αn, and G1(z̄, ᾱ), . . . ,

Gn(z̄, ᾱ) are the Dynamical Hamiltonians, are called the rational differential Dynam-
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ical (DD) equations. It was proved in [22], that the rational KZ equations and rational

DD equations are compatible, see Theorem 4.1.1 for a more precise statement.

We will also consider the trigonometric (trigKZ) and quantized (qKZ) Knizhnik-

Zamolodchikov equations. The trigKZ equations are related to the trigonometric

Gaudin Hamiltonians similarly to the rational case. The qKZ equations are difference

equations of the form

Kaf(za + κ) = f(za), a = 1, . . . , k, (1.7)

where f is a Pkn-valued function of z1, . . . , zk, α1, . . . , αn, and Ka ∈ End(Pkn).

In [23] and [24], the authors introduced the trigonometric differential Dynamical

(trigDD) equations compatible with the qKZ equations and the difference Dynamical

(qDD) equations compatible with the trigKZ equations, respectively. The trigDD

equations are related to the trigonometric Dynamical Hamiltonians similarly to the

rational case. The qDD equations are difference equations of the form

Xif(αi + κ) = f(αi), i = 1, . . . , n, (1.8)

where f is a Pkn-valued function of z1, . . . , zk, α1, . . . , αn, and Xi ∈ End(Pkn).

All mentioned equations can be defined using either the Lie algebra gln or the Lie

algebra glk. In Chapter 4, we show that the Knizhnik-Zamolodchikov and Dynamical

equations exchange under the (glk, gln)-duality:

KZ←→ DD, (1.9)

trigKZ←→ trigDD, (1.10)

qKZ←→ qDD, (1.11)

see Theorem 4.2.1 for the precise statement. Similar dualities for the space Pkn were

observed in [25].

The duality for the rational (resp., trigonometric) KZ and DD equations is equiv-

alent to the duality for the rational (resp, trigonometric) Gaudin and Dynamical
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Hamiltonians. Therefore, correspondence (1.9) is related to the duality of the ratio-

nal Gaudin Bethe algebras, and correspondence (1.10) is related to the duality of the

trigonometric Gaudin and Yangian Bethe algebras.

Correspondence (1.11) is not equivalent to any results in the previous chapters,

but it is also related to the duality of the trigonometric Gaudin and Yangian Bethe

algebras. This is because the space V from the previous section gives eigenvectors

for the trigonometric Gaudin Hamiltonians, which are also eigenvectors of the glk-

versions of operators X1, . . . , Xn in formula (1.8), see [26] and [27]. Similarly, the

space W from the previous section gives eigenvectors for the trigonometric Dynamical

Hamiltonians, which are also eigenvectors of the operators K1, . . . , Kk in formula

(1.7), see [28]. Again, we refer a reader to diagram (1.12).

U(glk[t])

Rational Gaudin model

KZ and DD equations

V = 〈ezaxpa(x), a = 1, . . . , k〉

DV =
∑k

a=0 ba(x)
(
d
dx

)k−a

U(gln[t])

Rational Gaudin model

DD and KZ equations

Ṽ = 〈eαixp̃i(x), i = 1, . . . , n〉

DṼ =
∑n

i=0 b̃i(x)
(
d
dx

)n−i

U(ĝlk)

Trigonometric Gaudin model

trigKZ and qDD equations

V = 〈xzaqa(x), a = 1, . . . , k〉

xkDV =
∑k

a=0 βa(x)
(
x d
dx

)k−a

Y (gln)

XXX spin chain model

trigDD and qKZ equations

W = 〈αxi ri(x), i = 1, . . . , n〉

SW =
∑n

i=0 bi(x)T n−i

Uq(ĝlk)

XXZ spin chain model

Uq(ĝln)

XXZ spin chain model

(1.12)
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1.6 Other related dualities

In this section, we highlight some other results known in the literature, which are

related to the dualities we study.

A lot of work was done for the space Pkn of polynomials in kn commuting variables.

The equality of images of the rational Gaudin Bethe algebras acting on Pkn was proved

in [7] using a generalization of the Capelli identity. The corresponding transforms of

the spaces of quasi-exponentials and quasi-polynomials were introduced in [11] for

the rational Gaudin model and in [19] for the trigonometric Gaudin model.

The (glk, gln)-dualities of the Bethe algebras B
〈k〉
z̄ and B

〈n〉
ᾱ acting on the spaces

Pkn and Pkn are special cases of the (glk, gln)-duality of the Bethe algebras B
〈k〉
z̄ and

B
〈n|m〉
ᾱ acting on the space Pk,n|m, where B

〈n|m〉
ᾱ is the Bethe algebra associated with

the Lie superalgebra gln|m, and Pk,n|m is the space of polynomials in variables xai,

a = 1, . . . , k, i = 1, . . . ,m+ n, such that

xaixbj = (−1)|i||j|xbjxai,

where |i| = 0 if i 6 n, and |i| = 1 otherwise.

The duality between the algebras B
〈k〉
ᾱ and B

〈n|m〉
z̄ acting on Pk,n|m was established

in [17]. It was also conjectured in [29] that the eigenvectors and eigenvalues of B
〈n|m〉
z̄

are described by ratios of differential operators, which are elements of the algebra of

pseudo-differential operators. The (glk, gln|m)-duality for the Bethe algebras suggests

that there exists a correspondence between differential operators and ratios of dif-

ferential operators. This correspondence is well understood when m = 0 (”the even

case”) and when n = 0 (”the odd case”). For the even case, the correspondence is

the map T1 above. For the odd case, the correspondence is the map T1 ◦ T2 that we

study in this work, which sends the kernel of a differential operator to the kernel of

the denominator in the ratio of differential operators mentioned above. This justifies

the appearance of the inverse of a pseudo-differential operator in our construction of

the map T1 ◦ T2. The even case and the odd case are linked in a non-trivial way

when both m and n are not zero. It is therefore a challenging and interesting prob-
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lem to establish and study dualities for pseudo-differential operators describing the

eigenvectors and eigenvalues of the Bethe algebras in ”super-case”

In [30], the (glk, gln)-duality was studied for another generalization of the algebra

π
〈n,k〉
z̄ (B

〈n〉
ᾱ ). The image of the determinant used in the definition of B

〈n〉
ᾱ under the

map π
〈n,k〉
z̄ is the determinant of a matrix whose entries are rational functions with

at most simple poles at z1, . . . , zk. Also, the numbers α1, . . . , αn can be regarded as

entries of a diagonal matrix. The authors of [30] consider higher order poles at z1, . . . ,

zk, which in the dual picture corresponds to assigning a Jordan block to each αi, i = 1,

. . . , n. One can also consider this generalization as a limit of the algebra π
〈n,k〉
z̄ (B

〈n〉
ᾱ )

when αi → αj and za → zb for some i, j, a, and b. This limit is very interesting to

study, in particular, using this limit, it was shown in [31] that the monodromy of the

Bethe vectors is related to crystal bases. In our work, the results for the spaces of

quasi-exponentials and quasi-polynomials are much more general than what we need

for the duality of B
〈n〉
ᾱ and B

〈k〉
z̄ . We expect that these results are relevant to the

generalization of the Bethe algebras to higher order poles.

The (glk, gln)-duality was also studied in the context of quantum toroidal algebras,

see [32], where the authors proved that the corresponding Bethe algebras commute.

The recently established connection between quantum integrable models and

Nakajima quiver varieties became a quickly developing research area nowadays,

see [33], [34], [35], [36], and [37]. A natural question is whether the (glk, gln)-duality

is somehow reflected in the context of this connection. A possible answer to this ques-

tion involves the 3d mirror symmetry for algebraic varieties introduced in [38], [39].

In [38], the authors constructed the 3d mirror dual X ′ for the variety X = T ∗Gr(l, n),

where T ∗Gr(l, n) is the cotangent bundle of the Grassmanian Gr(l, n) of l-planes in an

n-dimensional space. The hypergeometric solutions of the trigonometric qKZ equa-

tion associated with the quantum affine algebra Uq(ĝln) can be constructed using the

K-theory of the cotangent bundles of partial flag varieties, see [40], [37]. Then the

pair (X,X ′) above gives a correspondence between the hypergeometric solutions of

the trigonometric KZ equations associated with Uq(ĝl2) and Uq(ĝln), which is believed
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to correspond to the (glk, gln)-duality for quantum affine algebras (the last duality on

diagram (1.12)).

1.7 Basic notation and conventions

In this dissertation, a partition µ = (µ1, µ2, . . . ) is an infinite nonincreasing se-

quence of nonnegative integers stabilizing at zero. Let µ′ = (µ′1, µ
′
2, . . . ) denote the

conjugate partition, that is, µ′i = #{j | µj > i}. In particular, µ′1 equals the number

of nonzero entries in µ.

The Young diagram corresponding to a partition µ = (µ1, µ2, . . . ) consists of rows

of boxes aligned by their left side, such that the top row has µ1 boxes, the next row

has µ2 boxes, and so on. An example of the Young diagram for a partition and its

conjugate is given below. Columns of the Young diagram of the conjugate partition

correspond to rows of the Young diagram of the original partition.

The general linear Lie algebra gln is a Lie algebra spanned by the elements eij,

i, j = 1, . . . , n with the Lie bracket [eij, ekl] = δjkeil−δilekj. The elements eij, i, j = 1,

. . . , n are called the standard generators of gln. A gln-module (or representation

of gln) is a vector space L endowed with a gln-action. A representation of gln is

irreducible if it does not contain an invariant subspace.
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A gln-weight is a sequence of n complex numbers. Notice that a partition with at

most n non-zero entries defines a gln-weight. We denote by (L)λ the weight subspace

of a gln-module L of weight λ = (λ1, . . . , λn), which is the subspace of all v ∈ L

such that eiiv = λiv, i = 1, . . . , n. We denote by Lλ the irreducible highest weight

gln-module of highest weight λ, which is a unique up to an isomorhism irreducible

gln-module with a vector v such that eijv = 0 for all i < j, and eiiv = λiv, i = 1, . . . ,

n.

We will often consider the Lie algebras gln and glk together. We will write the

superscripts 〈n〉 and 〈k〉 to distinguish objects associated with algebras gln and glk,

respectively. For example, e
〈n〉
ij , i, j = 1, . . . , n, are the generators of gln, and e

〈k〉
ab ,

a, b = 1, . . . , k, are the generators of glk.

All vector spaces are over the field of complex numbers if not specified otherwise.

Here are some other notations that we used throughout the text:

DV - the fundamental monic differential operator of the space V of quasi-

exponentials or quasi-polynomials.

D̄V - the fundamental regularized differential operator of the space of quasi-

polynomials V .

SmW - the fundamental monic difference operator of the space of quasi-exponentials

W .

SV and SW - the fundamental pseudo-difference operators of the space of quasi-

polynomials V and of the space of quasi-exponentials W , respectively.

S̄W - the fundamental regularized difference operator of the space of quasi-

exponentials W .

Wr(f1, . . . , fn) (resp., Wr(f1, . . . , fn)) - differential (resp., difference) Wronskian

of f1, . . . , fn.

1.8 Other notes

Chapter 2 is based on the joint paper [41] with V. Tarasov.
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Chapter 4 is based on the joint paper [42] with V. Tarasov.

The results of Chapter 3 are not published yet.
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2. DUALITY OF RATIONAL GAUDIN BETHE

ALGEBRAS

2.1 Algebra of pseudo-differential operators

The algebra of pseudo-differential operators ΨD consists of all formal series of the

form
M∑

m=−∞

K∑
k=−∞

Ckmx
k

(
d

dx

)m
,

where integers M and K can differ for different series, and Ckm are complex numbers.

One can check that the rule(
d

dx

)m
xk =

∞∑
j=0

(m)j(k)j
j!

xk−j
(
d

dx

)m−j
, m, k ∈ Z , (2.1)

where (a)i = a(a − 1)(a − 2) . . . (a − i + 1) , yields a well-defined multiplication on

ΨD. The verification of associativity is straightforward using the Chu-Vandermonde

identity:
i∑

j=1

(m− n)j
j!

· (n)i−j
(i− j)!

=
(m)i
i!

.

Lemma 2.1.1 If D =
∑M

m=−∞
∑K

k=−∞Ckm x
k(d/dx)m, with CKM 6= 0, then D is

invertible in ΨD.

Proof Define D́ by the rule 1 + D́ = C−1
KM x−KD (d/dx)−M . Then

∑∞
j=0(−1)jD́j is

a well-defined element of ΨD and the inverse of D is given by the formula:

D−1 = C−1
KM

(
d

dx

)−M ( ∞∑
j=0

(−1)jD́j

)
x−K .

We consider a formal series
∑M

m=−∞ fm(x)(d/dx)m, where all fm(x) are rational

functions, as an element of ΨD replacing each fm(x) by its Laurent series at infinity.
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In particular, we identify the algebra of linear differential operators with rational coef-

ficients and the corresponding subalgebra of ΨD. Next corollary follows immediately

from the Lemma 2.1.1.

Corollary 2.1.2 Let D =
∑M

m=−∞ fm(x)(d/dx)m, where all fm(x) are rational func-

tions regular at infinity. Then D is invertible in ΨD.

Using (2.1), one can check that for any complex numbers Ckm, the series

M∑
m=−∞

K∑
k=−∞

Ckm

(
− d

dx

)m
xk

is a well-defined element of ΨD. We define a map (·)† : ΨD→ ΨD by the rule(
M∑

m=−∞

K∑
k=−∞

Ckm x
k

(
d

dx

)m)†
=

M∑
m=−∞

K∑
k=−∞

Ckm

(
− d

dx

)m
xk.

Lemma 2.1.3 The map (·)† is an involutive antiautomorphism of ΨD.

Proof To check that (·)† is involutive, we need to verify that
((
xk(d/dx)m

)†)†
=

xk(d/dx)m. By (2.1), it reads as

∞∑
j=0

(−1)j
(k)j(m)j

j!

(
d

dx

)m−j
xk−j = xk

(
d

dx

)m
. (2.2)

The equality holds since
i∑

j=0

(−1)j

j!(i− j)!
= δi0 .

Using (2.1) and (2.2), one can check that (·)† is an antiautomorphism as well.

We also define the following involutive antiautomorphism on ΨD:(
M∑

m=−∞

K∑
k=−∞

Ckm x
k

(
d

dx

)m)‡
=

M∑
m=−∞

K∑
k=−∞

Ckm x
m

(
d

dx

)k
.

For D ∈ ΨD, we say that D† is the formal conjugate to D and D‡ is the bispectral

dual to D. Let D# =
(
D†
)‡

.

Lemma 2.1.4 The map (·)# is an automorphism on ΨD of order 4
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Proof The map (·)# is an automorphism because it is a composition of two anti-

automorphisms. Since
((
xk(d/dx)m

)#
)#

= (−x)k (−d/dx)m, the map (·)# has order

4.

2.2 Spaces of quasi-exponentials

In this dissertation, a partition µ = (µ1, µ2, . . . ) is an infinite nonincreasing se-

quence of nonnegative integers stabilizing at zero. Let µ′ = (µ′1, µ
′
2, . . . ) denote the

conjugate partition, that is, µ′i = #{j | µj > i}. In particular, µ′1 equals the number

of nonzero entries in µ.

Fix complex numbers α1, . . . , αn and nonzero partitions µ(1), . . . , µ(n). Assume

that αi 6= αj for i 6= j. Let V be a vector space of functions in one variable with a

basis {qij(x)eαix | i = 1, . . . , n, j = 1, . . . , (µ(i))′1}, where qij(x) are polynomials and

deg qij = (µ(i))′1 + µ
(i)
j − j.

Denote M ′ =
∑n

i=1(µ(i))′1 = dimV . For z ∈ C, define the sequence of exponents

of V at z as a unique sequence of integers e = {e1 > . . . > eM ′}, with the property:

for each i = 1, . . . ,M ′, there exists f ∈ V such that f(x) = (x − z)ei
(
1 + o(1)

)
as

x→ z.

We say that z ∈ C is a singular point of V if the set of exponents of V at z differs

from the set {0, . . . ,M ′−1}. A space of quasi-exponentials has finitely many singular

points.

Let z1, . . . , zk be all singular points of V and let e(a) = {e(a)
1 > . . . > e

(a)
M ′} be the set

of exponents of V at za. For each a = 1, . . . , k, define a partition λ(a) = (λ
(a)
1 , λ

(a)
2 , . . . )

as follows: e
(a)
i = M ′+ λ

(a)
i − i for i = 1, . . . ,M ′, and λ

(a)
i = 0 for i > M ′. Clearly, all

partitions λ(1), . . . , λ(k) are nonzero.

Denote the sequences (µ(1), . . . , µ(n)), (λ(1), . . . , λ(k)), (α1, . . . , αn), (z1, . . . , zk) as

µ̄, λ̄, ᾱ, z̄, respectively. We will say that V is a space of quasi-exponentials with the

data (µ̄, λ̄; ᾱ, z̄).
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For arbitrary sequences of partitions µ̄ = (µ(1), . . . , µ(n)), λ̄ = (λ(1), . . . , λ(k)),

and sequences of complex numbers ᾱ = (α1, . . . , αn), z̄ = (z1, . . . , zk), define the

data (µ̄, λ̄; ᾱ, z̄)red by removing all zero partitions from the sequences µ̄ , λ̄ and the

corresponding numbers from the sequences ᾱ , z̄. We will call the data (µ̄, λ̄; ᾱ, z̄)

reduced if (µ̄, λ̄; ᾱ, z̄) = (µ̄, λ̄; ᾱ, z̄)red.

We will say that V is a space of quasi-exponentials with the data (µ̄, λ̄; ᾱ, z̄) if V

is a space of quasi-exponentials with the data (µ̄, λ̄; ᾱ, z̄)red.

The fundamental differential operator of V is a unique monic linear differential

operator of order M ′ annihilating V . Denote the fundamental differential operator of

V by DV .

Define Daug
V = DV

∏n
i=1, µ(i)=0(d/dx − αi). We will say that the space V aug =

kerDaug
V is the augmentation of V with the data (µ̄, λ̄; ᾱ, z̄) , and the space V is the

reduction of V aug. Clearly, V =
∏n

i=1, µ(i)=0(d/dx− αi)V aug.

Lemma 2.2.1 The coefficients of DV and Daug
V are rational functions in x regular

at infinity.

The lemma will be proved in Section 2.5.5.

Recall that we identify the algebra of linear differential operators with rational

coefficients and the corresponding subalgebra of ΨD.

Let V be a space of quasi-exponentials with the data (µ̄, λ̄; ᾱ, z̄). By Lemma 2.2.1

and Corollary 2.1.2, the operator DV is an invertible element of ΨD. Consider the

following pseudo-differential operator:

D̃V = (−1)M
′
n∏
i=1

(x+ αi)
(µ(i))′1

(
D−1
V

)#
k∏
a=1

(
d

dx
− za

)λ(a)
1

. (2.3)

Clearly, D̃V depends only on the reduced data (µ̄, λ̄; ᾱ, z̄)red.

Theorem 2.2.2 The following holds:

1. D̃V is a monic differential operator of order L =
∑k

a=1 λ
(a)
1 .
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2. The vector space Ṽ = ker D̃V is a space of quasi-exponentials with the data

(λ̄′, µ̄′; z̄,−ᾱ), where µ̄′ = ((µ(1))′, . . . , (µ(n))′), λ̄′ = ((λ(1))′, . . . , (λ(k))′) and

−ᾱ = (−α1, . . . ,−αn).

3. Let bij and b̃st be the coefficients in the following expansions of Daug
V and

D̃aug
V = D̃V

∏k
a=1, λ(a)=0(d/dx− za) :

Daug
V =

M ′aug∑
i=0

∞∑
j=0

bijx
−j
(
d

dx

)M ′aug−i

, D̃aug
V =

Laug∑
s=0

∞∑
t=0

b̃stx
−t
(
d

dx

)Laug−s

.

Then there are polynomials Pst in variables rij , i = 0, . . . ,M ′
aug, j > 0, de-

pending only on the data (µ̄, λ̄; ᾱ, z̄), such that b̃st equals the value of Pst under

the substitution rij = bij for all i, j . Moreover, the coefficients of Pst are

polynomials in ᾱ, z̄.

The theorem will be proved in Section 2.5.

Let bi(x) and b̃i(x) be the coefficients of Daug
V and D̃aug

V :

Daug
V =

(
d

dx

)M ′aug

+

M ′aug∑
i=1

bi(x)

(
d

dx

)M ′aug−i

,

D̃aug
V =

(
d

dx

)Laug

+

Laug∑
a=1

b̃a(x)

(
d

dx

)Laug−a

.

By Lemma 2.2.1, bi(x) and b̃i(x) are rational functions of x. Define functions c̃i(u),

i ∈ Z>0, by the rule:

k∏
a=1
λ

(a)
1 =0

(u− za)
k∏
a=1

(u− za)λ
(a)
1

∞∑
i=0

c̃i(u)x−i = uLaug +

Laug∑
a=1

b̃a(x)uLaug−a. (2.4)

Set

ha = Resx=za

(b2
1(x)

2
− b2(x)

)
, g̃a = Resu=za

( c̃2
1(u)

2
− c̃2(u)

)
. (2.5)

We will need the following lemma:

Lemma 2.2.3 For each a = 1, . . . , k, we have

g̃a = −ha.

The Lemma will be proved in Section 2.5.6.
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2.3 Bethe algebra

2.3.1 Universal differential operator

The current algebra gln[t] = gln⊗C[t] is the Lie algebra of gln-valued polynomials

with pointwise commutator. We identify the Lie algebra gln with the subalgebra

gln ⊗ 1 of constant polynomials in gln[t].

For each g ∈ gln, let g(x) =
∑∞

s=0(g⊗ ts)x−s−1. It is a formal power series in x−1

with coefficients in gln[t].

For an n×n matrix A with possibly noncommuting entries aij, its row determinant

is

rdetA =
∑
σ∈Sn

(−1)σa1σ(1)a2σ(2) . . . anσ(n).

Let eij, i, j = 1, . . . , n, be the standard generators of the Lie algebra gln satisfying

the relations [eij, ekl] = δjkeil − δilekj. Denote by h the Cartan subalgebra of gln

spanned by the generators e11, . . . , enn.

Fix ᾱ = (α1, . . . , αn), a sequence of pairwise distinct complex numbers. Define

the universal differential operator Dᾱ by the formula

Dᾱ = rdet

((
d

dx
− αi

)
δij − eji(x)

)n
i,j=1

.

It is a differential operator in the variable x whose coefficients are formal power

series in x−1 with coefficients in U(gln[t]),

Dᾱ =

(
d

dx

)n
+

n∑
i=1

Bi(x)

(
d

dx

)n−i
, (2.6)

where

Bi(x) =
∞∑
j=0

Bijx
−j. (2.7)

and Bij ∈ U(gln[t]) for i = 1, . . . , n, j > 0. Notice that
∑n

i=0 Bi0u
n−i =

∏n
j=1(u−αj) .

Definition 2.3.1 The subalgebra Bᾱ of U(gln[t]) generated by Bij, i = 1, . . . , n,

j > 1, is called the Bethe algebra.
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The proof of the following theorem can be found in [6].

Theorem 2.3.2 The algebra Bᾱ is commutative. The algebra Bᾱ commutes with the

subalgebra U(h) ⊂ U(gln[t]).

2.3.2 Action of Bethe algebra in a tensor product of evaluation modules.

For a ∈ C, let ρa be the automorphism of gln[t] such that ρa : g(x) 7→ g(x −

a). Given a gln[t]-module M , we denote by M(a) the pullback of M through the

automorphism ρa.

Let ev : gln[t]→ gln be the evaluation homomorphism, ev : g(x) 7→ gx−1. For any

gln-module M , we denote by the same letter the gln[t]-module, obtained by pulling

M back through the evaluation homomorphism. For each a ∈ C and gln-module M ,

the gln[t]- module M(a) is called an evaluation module.

For each λ = (λ1, . . . , λn) ∈ Cn and an h-module M , we denote by (M)λ the

weight subspace of M of weight λ. Note that any partition λ with λn+1 = 0 can be

considered as an element of Cn.

Let M be a gln[t]-module. As a subalgebra of U(gln[t]), the algebra Bᾱ acts on

M . Since Bᾱ commutes with U(h), it preserves the weight subspaces (M)λ.

Given a Bᾱ-module M , a subspace H ⊂ M is called an eigenspace of Bᾱ-action

on M if there is a homomorphism ξ : Bᾱ → C such that H =
⋂
F∈Bᾱ ker

(
F − ξ(F )

)
.

Denote by Lλ the irreducible finite-dimensional gln-module with highest weight

λ. Fix µ = (µ1, . . . , µn) ∈ Zn>0, ᾱ = (α1, . . . , αn) ∈ Cn such that αi 6= αj for i 6= j,

z̄ = (z1, . . . , zk) ∈ Ck such that za 6= zb for a 6= b, and a sequence of partitions

λ̄ = (λ(1), . . . , λ(k)). Define the sequence of partitions µ̄ = (µ(1), . . . , µ(n)) setting

µ(i) = (µi, 0, 0, . . . ). The next theorem states the results from [43] that we need.

Theorem 2.3.3 Consider a tensor product Lλ̄(z̄) = Lλ(1)(z1) ⊗ . . . ⊗ Lλ(k)(zk) of

evaluation gln[t]-modules. Then the following holds.

1. Each eigenspace of the action of Bᾱ on
(
Lλ̄(z̄)

)
µ

is one-dimensional.
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2. For generic ᾱ and z̄, the action of Bᾱ on
(
Lλ̄(z̄)

)
µ

is diagonalizable.

3. Let v ∈
(
Lλ̄(z̄)

)
µ

be an eigenvector of the action of Bᾱ. Then there exist ra-

tional functions b1(x), . . . , bn(x) with Laurent series at infinity b̂1(x), . . . , b̂n(x),

respectively, such that Bi(x)v = b̂i(x)v for all i = 1, . . . , n, and the kernel of the

differential operator D = (d/dx)n +
∑n

i=1 bi(x)(d/dx)n−i is the augmentation

of a space of quasi-exponentials with the data (µ̄, λ̄; ᾱ, z̄).

4. The correspondence between eigenspaces of the action of Bᾱ on
(
Lλ̄(z̄)

)
µ

and

spaces of quasi-exponentials with the data (µ̄, λ̄; ᾱ, z̄) given in part (3) is bijec-

tive.

2.3.3 Gaudin and Dynamical Hamiltonians

For g ∈ gln, define g(a) = 1⊗(a−1)⊗ g ⊗ 1⊗(k−a) ∈ U(gln)⊗k. We will use the

same notation for an element of U(gln) and its image under the diagonal embedding

g 7→
∑k

a=1(g)(a) ∈ U(gln)⊗k. Let Ω(ab) =
∑n

i,j=1(eij)(a) (eji)(b) .

For sequences of pairwise distinct numbers ᾱ = (α1, . . . , αn) and z̄ = (z1, . . . , zk),

define the following elements of U(gln)⊗k:

Ha(z̄, ᾱ) =
n∑
i=1

αi(eii)(a) +
k∑
b=1
b 6=a

Ω(ab)

za − zb
, Gi(z̄, ᾱ) =

k∑
a=1

za(eii)(a) +
n∑
j=1
j 6=i

eijeji − eii
αi − αj

.

The elements H1(z̄, ᾱ), . . . , Hk(z̄, ᾱ) are called the Gaudin Hamiltonians. The ele-

ments G1(z̄, ᾱ), . . . , Gn(z̄, ᾱ) are called the Dynamical Hamiltonians.

Consider an algebra homomorphism evz̄ : U(gln[t])→ U(gln)⊗k, given by

evz̄ : g ⊗ ts 7→
k∑
a=1

g(a)z
s
a .

For each i = 1, . . . , n, let B̂i(x) be the image of the series Bi(x), see (2.6), under

the map evz̄. The series B̂i(x) is a formal power series in x−1 with coefficients in

U(gln)⊗k. There exists a rational function of the form
∑k

a=1

∑i
j=0 B̂ija(x − za)

−j,
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where B̂ija ∈ U(gln)⊗k, such that B̂i(x) is the Laurent series of this function as

x→∞. We will identify the series B̂i(x) and this rational function.

Let Ĉj(u), j ∈ Z>0, be rational functions in u defined by the formula

n∏
i=1

(u− αi)
∞∑
j=0

Ĉj(u)x−j = un +
n∑
i=1

B̂i(x)un−i . (2.8)

Lemma 2.3.4 The following holds:

Ha(z̄, ᾱ) = Resx=za

(B̂2
1(x)

2
− B̂2(x)

)
, Gi(z̄, ᾱ) = Resu=αi

(Ĉ2
1(u)

2
− Ĉ2(u)

)
.

(2.9)

Proof The proof is straightforward.

2.4 (glk, gln)-duality

2.4.1 (glk, gln)-duality for Bethe algebras

Let Xn be the space of polynomials in anticommuting variables ξ1, . . . , ξn. Since

ξiξj = −ξjξi for any i, j, in particular, ξ2
i = 0 for any i, the monomials ξi1 . . . ξil ,

1 6 i1 < i2 < . . . < il 6 n, form a basis of Xn.

The left derivations ∂1, . . . , ∂n on Xn are linear maps such that

∂i (ξj1 . . . ξjl) = (−1)s−1ξj1 . . . ξjs−1 ξjs+1 . . . ξjl , if i = js for some s , (2.10)

∂i (ξj1 . . . ξjl) = 0 , otherwise .

It is easy to check that ∂i∂j = −∂j∂i for any i, j, in particular, ∂2
i = 0 for any i, and

∂iξj + ξj∂i = δij for any i, j.

Define a gln-action on Xn by the rule eij 7→ ξi∂j. As a gln-module, Xn is isomorphic

to
⊕n

l=0 Lωl , where

ωl = (1, . . . , 1︸ ︷︷ ︸
l

, 0, . . . , 0) , (2.11)

and the component Lωl is spanned by the monomials of degree l.
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Notice that Xn as an algebra coincides with the exterior algebra of Cn. The

operators of left multiplication by ξ1, . . . , ξn and the left derivations ∂1, . . . , ∂n give

on Xn the irreducible representation of the Clifford algebra Cliffn.

From now on, we will consider the Lie algebras gln and glk together. We will write

superscripts 〈n〉 and 〈k〉 to distinguish objects associated with algebras gln and glk,

respectively. For example, e
〈n〉
ij , i, j = 1, . . . , n, are the generators of gln, and e

〈k〉
ab ,

a, b = 1, . . . , k, are the generators of glk.

Let Pkn be the vector space of polynomials in kn pairwise anticommuting variables

ξai, a = 1, . . . , k, i = 1, . . . , n. We have two vector space isomorphisms ψ1 : (Xn)⊗k →

Pkn and ψ2 : (Xk)
⊗n → Pkn, given by:

ψ1 : (p1 ⊗ . . .⊗ pk) 7→ p1(ξ11, . . . , ξ1n)p2(ξ21, . . . , ξ2n) . . . pk(ξk1, . . . , ξkn) , (2.12)

ψ2 : (p1 ⊗ . . .⊗ pn) 7→ p1(ξ11, . . . , ξk1)p2(ξ12, . . . , ξk2) . . . pn(ξ1n, . . . , ξkn) . (2.13)

Let ∂ai, a = 1, . . . , k, i = 1, . . . , n, be the left derivations on Pkn defined similarly

to the left derivations on Xn, see (2.10). Define actions of gln and glk on Pkn by the

formulas

e
〈n〉
ij 7→

k∑
a=1

ξai∂aj , e
〈k〉
ab 7→

n∑
i=1

ξai∂bi.

Then ψ1 and ψ2 are isomorphisms of gln- and glk-modules, respectively.

It is easy to check that gln- and glk-actions on Pkn commute. For the next

theorem, see for example [4]:

Theorem 2.4.1 The gln⊕ glk-module Pkn has the decomposition Pkn =
⊕

λ V
〈n〉
λ ⊗

V
〈k〉
λ′ , where the sum runs over λ = (λ1, . . . , λn) such that λ1 6 k.

The gln- and glk-actions on Pkn can be extended to the actions of corresponding

current Lie algebras by the formulas

e
〈n〉
ij ⊗ ts 7→

k∑
a=1

zsa ξai∂aj, (2.14)

e
〈k〉
ab ⊗ t

s 7→
n∑
i=1

(−αi)s ξai∂bi. (2.15)
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Then ψ1 and ψ2 are respective isomorphisms of the following gln[t]- and glk[t]-modules:

ψ1 : Xn(z1)⊗ Xn(z2)⊗ . . .⊗ Xn(zk)→ Pkn , (2.16)

ψ2 : Xk(−α1)⊗ Xk(−α2)⊗ . . .⊗ Xk(−αn)→ Pkn . (2.17)

The actions (2.14) and (2.15) do not commute. Nevertheless, it turns out that the

images of the subalgebras B
〈n〉
ᾱ and B

〈k〉
z̄ in End(Pkn) given by these actions coincide.

We will use Theorems 2.2.2 and 2.3.3 to show the following.

Theorem 2.4.2 Let π
〈n〉
z̄ : U(gln[t]) → End(Pkn) and π

〈k〉
−ᾱ : U(glk[t]) → End(Pkn)

be the homomorphisms defined by formulas (2.14) and (2.15), respectively. Then

π
〈n〉
z̄ (B

〈n〉
ᾱ ) = π

〈k〉
−ᾱ(B

〈k〉
z̄ ). (2.18)

Theorem 2.4.2 is proved in Section 2.4.5.

Remark 1 Let B
〈n〉
ij,ᾱ be the generators of the algebra B

〈n〉
ᾱ , cf (2.7). Here,

we indicated the dependence on ᾱ explicitly. Then we have π
〈n〉
−z̄ (B

〈n〉
ij,−ᾱ) =

(−1)n−i−jπ
〈n〉
z̄ (B

〈n〉
ij,ᾱ). Therefore π

〈n〉
−z̄ (B

〈n〉
−ᾱ) = π

〈n〉
z̄ (B

〈n〉
ᾱ ).

2.4.2 (glk, gln)-duality for Gaudin and Dynamical Hamiltonians

Define U(gln)⊗k and U(glk)
⊗n-actions on Pkn by

(e
〈n〉
ij )(a) 7→ ξai∂aj, (2.19)

(e
〈k〉
ab )(i) 7→ ξai∂bi. (2.20)

Then ψ1 and ψ2 are isomorphisms of U(gln)⊗k- and U(glk)
⊗n-modules, respectively.

In Section 2.3.3, we introduced elements Ha(z̄, ᾱ) and Gi(z̄, ᾱ) of U(gln)⊗k. We

will write them now as H
〈n,k〉
a (z̄, ᾱ), G

〈n,k〉
i (z̄, ᾱ). We will also consider analogous

elements H
〈k,n〉
i (ᾱ, z̄), G

〈k,n〉
a (ᾱ, z̄) of U(glk)

⊗n. The following result can be found

in [41]:
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Lemma 2.4.3 Let ρ〈n,k〉 : U(gln)⊗k → End(Pkn) and ρ〈k,n〉 : U(glk)
⊗n → End(Pkn)

be the homomorphisms defined by (2.19) and (2.20) respectively. Then for any i = 1,

. . . , n, and a = 1, . . . , k we have:

ρ〈n,k〉
(
H〈n,k〉a (z̄, ᾱ)

)
= −ρ〈k,n〉

(
G〈k,n〉a (−ᾱ, z̄)

)
, (2.21)

ρ〈n,k〉
(
G
〈n,k〉
i (z̄, ᾱ)

)
= ρ〈k,n〉

(
H
〈k,n〉
i (−ᾱ, z̄)

)
. (2.22)

Proof The proof is straightforward.

2.4.3 Restriction to the subspaces Pkn[l,m].

Let Zkn be the subset of all pairs (l,m) ∈ Zk>0×Zn>0 , l = (l1, . . . , lk), m = (m1,

. . . ,mn), such that la 6 n for all a, mi 6 k for all i, and
∑k

a=1 la =
∑n

i=1 mi.

For each (l,m) ∈ Zkn, denote by Pkn[l,m] ⊂ Pkn the span of all monomials

ξd11
11 . . . ξ

dk1
k1 . . . ξd1n

1n . . . ξ
dkn
kn such that

∑k
a=1 dai = mi and

∑n
i=1 dai = la. Note that

dai ∈ {0, 1} for all a, i. Clearly, we have a vector space decomposition:

Pkn =
⊕

(l,m)∈Zkn

Pkn[l,m] .

Lemma 2.4.4 For any (l,m) ∈ Zkn, the subspace Pkn[l,m] is invariant under the

actions of the algebras B
〈n〉
ᾱ and B

〈k〉
z̄ .

Proof Recall Xn =
⊕n

l=0 Lωl as a gln-module. Then by the isomorphism ψ1, see

(2.16), the gln[t]-module Pkn is the direct sum of tensor products L
〈n〉
ωl1

(z1) ⊗ . . . ⊗

L
〈n〉
ωlk

(zk), and

Pkn[l,m] = ψ1

((
L〈n〉ωl1

(z1)⊗ . . .⊗ L〈n〉ωlk (zk)
)
m

)
. (2.23)

Hence, Pkn[l,m] is invariant under the action of B
〈n〉
ᾱ , see Section 2.3.2.

Similarly, Xk =
⊕k

m=0 Lωm as a glk-module. Then by the isomorphism ψ2, see

(2.17), the glk[t]-module Pkn is the direct sum of tensor products L
〈k〉
ωm1

(−α1)⊗ . . .⊗

L
〈k〉
ωmn (−αn), and

Pkn[l,m] = ψ2

((
L〈k〉ωm1

(−α1)⊗ . . .⊗ L〈k〉ωmn (−αn)
)
l

)
. (2.24)
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Thus Pkn[l,m] is invariant under the action of B
〈k〉
z̄ .

We will prove Theorem 2.4.2 by showing that the restrictions of π
〈n〉
z̄ (B

〈n〉
ᾱ ) and

π
〈k〉
−ᾱ(B

〈k〉
z̄ ) to each subspace Pkn[l,m] coincide. We will also need the following lemma.

Lemma 2.4.5 Fix (l,m) ∈ Zkn. For generic ᾱ, z̄, the common eigenspaces of

the operators ρ〈n,k〉(H
〈n,k〉
a (z̄, ᾱ)), a = 1, . . . , k, restricted to Pkn[l,m] are one-

dimensional. Similarly, for generic ᾱ, z̄, the common eigenspaces of the operators

ρ〈k,n〉(H
〈k,n〉
i (−ᾱ, z̄)), i = 1, . . . , n, restricted to Pkn[l,m] are one-dimensional.

Proof For every monomial p ∈ Pkn, we have (e
〈n〉
ii )(a)p = ma

i (p)p and ma
i (p) ∈ Z.

Moreover, if p 6= p′, there exist i, a such that ma
i (p) 6= ma

i (p
′). Take ᾱ such

that α1, . . . , αn are linearly independent over Z. Then for the operators Ka =

ρ〈n,k〉(
∑n

i=1 αi(e
〈n〉
ii )(a)), a = 1, . . . , k, the common eigenspaces are one-dimensional.

Therefore, the common eigenspaces of the operators ρ〈n,k〉(H
〈n,k〉
a (z̄, ᾱ)) = Ka +∑

b 6=a Ω(ab)(za−zb)−1, a = 1, . . . , k, restricted to a finite-dimensional submodule of Pkn

are one-dimensional provided all the differences |za− zb| are sufficiently large. Hence,

for generic ᾱ and z̄, the common eigenspaces of the operators ρ〈n,k〉(H
〈n,k〉
a (z̄, ᾱ)),

a = 1, . . . , k, restricted to a Pkn[l,m] are one-dimensional.

The proof of the second claim is similar.

2.4.4 Spaces of quasi-exponentials and (glk, gln)-duality

Fix (l,m) ∈ Zkn, and define µ̄ = (µ(1), . . . , µ(n)), λ̄ = (λ(1), . . . , λ(k)) as follows.

If l = (l1, . . . , lk) and m = (m1, . . . ,mn), then µ(i) = (mi, 0, . . . ), i = 1, . . . , n, and

λ(a) = ωla , a = 1, . . . , k, see (2.11).

By Theorem 2.3.3 and formulas (2.23), (2.24), a space of quasi-exponentials with

the data (µ̄, λ̄; ᾱ, z̄) defined above gives rise to an eigenvector of the action π
〈n〉
z̄ of B

〈n〉
ᾱ

on Pkn[l,m]. Similarly, a space of quasi-exponentials with the data (λ̄′, µ̄′; z̄,−ᾱ)

gives rise to an eigenvector of the action π
〈k〉
−ᾱ of B

〈k〉
z̄ on Pkn[l,m]. We have the

following theorem.
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Theorem 2.4.6 Let V be a space of quasi-exponentials with the data (µ̄, λ̄; ᾱ, z̄), and

v ∈ Pkn[l,m] be the eigenvector of the action π
〈n〉
z̄ of B

〈n〉
ᾱ corresponding to V . For

the fundamental differential operator DV of the space V , define the operator D̃V by

formula (2.3), and set Ṽ = ker(D̃V ). Then, for generic ᾱ, z̄, the vector v is the

eigenvector of the action π
〈k〉
−ᾱ of B

〈k〉
z̄ corresponding to Ṽ .

Proof For each a = 1, . . . , k, let ha and g̃a be the numbers defined in formula

(2.5). Comparing formulae (2.4), (2.5), (2.8), and (2.9), and using that λ
(a)
1 = 0 or

1, we see that the vector v is an eigenvector of ρ〈n,k〉(H
〈n,k〉
a (z̄, ᾱ)) with eigenvalue ha.

Similarly, an eigenvector ṽ ∈ Pkn[l,m] of the action π
〈k〉
−ᾱ of B

〈k〉
z̄ corresponding to

Ṽ is an eigenvector of ρ〈k,n〉(G
〈k,n〉
a (−ᾱ, z̄)) with eigenvalue g̃a. Therefore, by formula

(2.21) and Lemma 2.2.3, for each a = 1, . . . , k, the vector ṽ is an eigenvector of

ρ〈n,k〉(H
〈n,k〉
a (z̄, ᾱ)) with eigenvalue ha, the same as for v. Hence, by Lemma 2.4.5, the

vector ṽ is proportional to v.

2.4.5 Proof of Theorem 2.4.2

Let B
〈n〉
ij,ᾱ, i = 1, . . . , n, j ∈ Z>0, and B

〈k〉
st,z̄, s = 1, . . . , k, t ∈ Z>0, be the generators

of the algebras B
〈n〉
ᾱ and B

〈k〉
z̄ , respectively, see (2.7).

Assume first that ᾱ and z̄ are generic. Take a common eigenvector v of π
〈n〉
z̄ (B

〈n〉
ij,ᾱ),

i = 1, . . . , n, j ∈ Z>0, corresponding to a space V of quasi-exponentials with the

data (µ̄, λ̄; ᾱ, z̄) as in Theorem 2.4.6. The eigenvalue of π
〈n〉
z̄ (B

〈n〉
ij,ᾱ) associated to v is

the coefficient bij in the expansion Daug
V =

∑n
i=0

∑∞
j=0 bijx

−j(d/dx)n−i. By Theorem

2.4.6, v is also a common eigenvector of π
〈k〉
−ᾱ(B

〈k〉
st,z̄), s = 1, . . . , k, t ∈ Z>0, and the

corresponding eigenvalue of π
〈k〉
−ᾱ(B

〈k〉
st,z̄) is the coefficient b̃st in the expansion D̃aug

V =∑k
s=0

∑∞
t=0 b̃stx

−t(d/dx)k−s, where D̃V is given by the formula (2.3). Due to Theorem

2.2.2, part (3), there exist polynomials Pst in variables rij, i = 0, . . . ,M ′, j > 0,

independent of the eigenvector v, such that b̃st are obtained by the substitution rij =

bij for all i, j, into the polynomial Pst,

b̃st = Pst({bij}). (2.25)
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By Theorem 2.3.3, part (2), the subspace Pkn[l,m] has a basis consisting of

common eigenvectors of the operators π
〈n〉
z̄ (B

〈n〉
ij,ᾱ), i = 1, . . . , n, j ∈ Z>0 . Since the

operator π
〈k〉
−ᾱ(B

〈k〉
st,z̄) is diagonal in such a basis, relation (2.25) for eigenvalues implies

the analogous relation for the operators:

π
〈k〉
−ᾱ(B

〈k〉
st,z̄) = Pst({π〈n〉z̄ (B

〈n〉
ij,ᾱ)}). (2.26)

Since the operators π
〈k〉
−ᾱ(B

〈k〉
ab,z̄), π

〈n〉
z̄ (B

〈n〉
ij,ᾱ), and the coefficients of Pst depend

polynomially on ᾱ and z̄, relation (2.26) holds for any ᾱ and z̄, and π
〈k〉
−ᾱ(B

〈k〉
z̄ ) ⊂

π
〈n〉
z̄ (B

〈n〉
ᾱ ).

Exchanging the roles of glk and gln, we obtain that π
〈n〉
−z̄ (B

〈n〉
−ᾱ) ⊂ π

〈k〉
−ᾱ(B

〈k〉
z̄ ) as well.

Since π
〈n〉
−z̄ (B

〈n〉
−ᾱ) = π

〈n〉
z̄ (B

〈n〉
ᾱ ), see the remark at the end of Section 2.4.1, Theorem

2.4.2 is proved.

Corollary 2.4.7 Theorem 2.4.6 holds for any ᾱ = (α1, . . . , αn) and z̄ = (z1, . . . , zk)

such that αi 6= αj if i 6= j and za 6= zb if a 6= b.

Proof Let V be a space of quasi-exponentials with the data (µ̄, λ̄; ᾱ, z̄), where µ̄ and

λ̄ are defined by m and l, like in Section 2.4.4. Let v ∈ Pkn[l,m] be the eigenvector

of the action π
〈n〉
z̄ of B

〈n〉
ᾱ corresponding to V . By Theorem 2.4.2, the vector v is also

an eigenvector of the action π
〈k〉
−ᾱ of B

〈k〉
z̄ . Denote by Ṽ ′ the space of quasi-exponentials

with the data (λ̄′, µ̄′; z̄,−ᾱ) corresponding to v as an eigenvector of B
〈k〉
z̄ . By Theorem

2.4.6, for generic ᾱ and z̄, we have Ṽ ′ = Ṽ . We need to prove that Ṽ ′ = Ṽ for any

ᾱ = (α1, . . . , αn) and z̄ = (z1, . . . , zk) such that αi 6= αj if i 6= j and za 6= zb if a 6= b.

Let B
〈n〉
ij,ᾱ, i = 1, . . . , n, j ∈ Z>0, and B

〈k〉
st,z̄, s = 1, . . . , k, t ∈ Z>0, be the

generators of the algebras B
〈n〉
ᾱ and B

〈k〉
z̄ , respectively, see (2.7). Then the eigen-

value of π
〈n〉
z̄ (B

〈n〉
ij,ᾱ) associated to v is the coefficient bij in the expansion Daug

V =∑n
i=0

∑∞
j=0 bijx

−j(d/dx)n−i, and the eigenvalue of π
〈k〉
−ᾱ(B

〈k〉
st,z̄) associated to v is the

coefficient b̃′st in the expansion Daug

Ṽ ′
=
∑k

s=0

∑∞
t=0 b̃

′
stx
−t(d/dx)k−s.

Consider the differential operator D̃V defined by formula (2.3), and let b̃st be the

coefficient in the expansion D̃aug
V =

∑k
s=0

∑∞
t=0 b̃stx

−t(d/dx)k−s. By Theorem 2.2.2,
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part 3, there exist polynomials Pst in variables rij, i = 0, . . . , n, j > 0, such that b̃st

are obtained by the substitution rij = bij for all i, j, into the polynomial Pst,

b̃st = Pst({bij}).

As noted in the proof of Theorem 2.4.2, the relation

π
〈k〉
−ᾱ(B

〈k〉
st,z̄) = Pst({π〈n〉z̄ (B

〈n〉
ij,ᾱ)}).

holds for any ᾱ = (α1, . . . , αn) and z̄ = (z1, . . . , zk) such that αi 6= αj if i 6= j and

za 6= zb if a 6= b. Therefore, we have

b̃′st = Pst({bij}),

which gives b̃′st = b̃st. Hence, we have Ṽ ′ = Ṽ , and the corollary is proved.

2.5 Quotient differential operator

2.5.1 Factorization of a differential operator

For any functions g1, . . . , gn, let

Wr(g1, . . . , gn) = det((g
(j−1)
i )ni,j=1)

be their Wronski determinant. Let Wri(g1, . . . , gn) be the determinant of the n × n

matrix whose j-th row is gj, g
′
j, . . . , g

(n−i−1)
j , g

(n−i+1)
j , . . . , g

(n)
j .

Consider a monic differential operator D of order n with coefficients ai(x), i = 1,

. . . , n:

D =

(
d

dx

)n
+

n∑
i=1

ai(x)

(
d

dx

)n−i
, (2.27)

and let f1, f2, . . . , fn be linearly independent solutions of the differential equation

Df = 0.

Lemma 2.5.1 The coefficients a1(x), . . . , an(x) of the differential operator D are

given by the formulas

ai(x) = (−1)i
Wri(f1, . . . , fn)

Wr(f1, . . . , fn)
, i = 1, . . . , n , (2.28)
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Moreover, for any function g, we have

Dg =
Wr(f1, . . . , fn, g)

Wr(f1, . . . , fn)
. (2.29)

Proof The equations Df1 = 0, . . . , Dfn = 0 give a linear system of equations for

the coefficients a1(x), . . . , an(x). Solving this system by Cramer’s rule yields formula

(2.28). Formula (2.29) follows from the last row expansion of the determinant in the

numerator.

Proposition 2.5.2 The differential operator D can be written in the following form:

D =

(
d

dx
− g′1
g1

)(
d

dx
− g′2
g2

)
. . .

(
d

dx
− g′n
gn

)
, (2.30)

where gn = fn, and

gi =
Wr(fn, fn−1, . . . , fi)

Wr(fn, fn−1, . . . , fi+1)
, i = 1, . . . , n− 1 . (2.31)

Proof Denote by D1 the differential operator in the right hand side of (2.5.2). By

Lemma 2.5.1, it is sufficient to prove that D1fi = 0 for all i = 1, . . . , n. We will prove

it by induction on n.

If n = 1, then g1 = f1 and D1f1 = (d/dx− f ′1/f1) f1 = 0.

Let D2 be the monic differential operator of order n− 1 whose kernel is spanned

by f2, . . . , fn. By induction assumption,

D2 =

(
d

dx
− g′2
g2

)(
d

dx
− g′3
g3

)
. . .

(
d

dx
− g′n
gn

)
.

Since D1 = (d/dx− g′1/g1)D2, we have D1fi = 0 for i = 2, . . . , n. Formula (2.29)

yields D2f1 = g1, thus D1f1 = 0 as well.

2.5.2 Formal conjugate differential operator

Given a differential operator D =
∑n

i=0 ai(x)
(
d
dx

)n−i
, define its formal conjugate

by the formula:

D†h(x) =
n∑
i=0

(
− d

dx

)n−i(
ai(x)h(x)

)
. (2.32)
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Clearly, the formal conjugation is an antihomomorphism of the algebra of linear

differential operators. In particular, if D is given by formula (2.5.2), then

D† = (−1)n
(
d

dx
+
g′n
gn

)(
d

dx
+
g′n−1

gn−1

)
. . .

(
d

dx
+
g′1
g1

)
. (2.33)

Proposition 2.5.3 Let

hi =
Wr(f1, . . . , fi−1, fi+1, . . . , fn)

Wr(f1, . . . , fn)
,

Then the functions h1, . . . , hn are linearly independent, and D†hi = 0 for all i = 1,

. . . , n.

Proof Since h1 = (−1)n−1/g1, we have D†h1 = 0 by formula (2.33).

Let σ be a permutation of {1, . . . , n}. Take a new sequence fσ(1), . . . , fσ(n) of

n linearly independent solutions of the equation Df = 0. Then similarly to the

consideration above, we get

D† = (−1)n
(
d

dx
+
g′n,σ
gn,σ

)(
d

dx
+
g′n−1,σ

gn−1,σ

)
. . .

(
d

dx
+
g′1,σ
g1,σ

)
,

cf (2.33), where gn,σ = fσ(n) and

gi,σ =
Wr(fσ(n), fσ(n−1), . . . , fσ(i))

Wr(fσ(n), fσ(n−1), . . . , fσ(i+1))
, i = 1, . . . , n− 1.

Taking σ such that σ(1) = i, we get D†hi = 0.

The linear independence of the functions h1, . . . , hn follows from the relation

Wr(h1, . . . , hn) =
(−1)n(n−1)/2

Wr(f1, . . . , fn)
. (2.34)

The proof of relation (2.34) is given in Appendix A.

2.5.3 Quotient differential operator

Let D and D̂ be monic differential operators such that kerD ⊂ ker D̂. Then there

is a differential operator Ď, such that D̂ = ĎD. For instance, it can be seen from

the factorization formula (2.30). We will call Ď the quotient differential operator.
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Let f1, f2, . . . , fn be a basis of kerD and f1, f2, . . . , fn, h1, . . . , hk be a basis of

ker D̂. Define functions ϕ1, . . . , ϕk by the formula

ϕa =
Wr(f1, . . . , fn, h1, . . . , ha−1, ha+1, . . . , hk)

Wr(f1, . . . , fn, h1, . . . , hk)
.

Proposition 2.5.4 The functions ϕ1, . . . , ϕk are linearly independent, and Ď†ϕa = 0

for all a = 1, . . . , k.

Proof Set h̃a = Dha, a = 1, . . . , k. The functions h̃1, . . . , h̃k are linearly indepen-

dent. Indeed, if there are numbers c1, . . . , ck, not all equal to zero, such that c1h̃1 +

. . . + ckh̃k = 0, then D(c1h1 + . . . + ckhk) = 0. This means that c1h1 + . . . + ckhk

belongs to the span of f1, . . . , fn contrary to the linear independence of the functions

f1, . . . , fn, h1, . . . , hk.

Formula (2.29) yields h̃i = Wr(f1, . . . , fn, hi)/Wr(f1, . . . , fn). Using identities

(A.1) and (A.4), one can check that

Wr(h̃1, . . . , h̃a−1, h̃a+1, . . . , h̃k)

Wr(h̃1, . . . , h̃k)
=

Wr(f1, . . . , fn, h1, . . . , ha−1, ha+1, . . . , hk)

Wr(f1, . . . , fn, h1, . . . , hk)
= ϕa .

Since Ďh̃a = D̂ha = 0 for all a = 1, . . . , k, the functions h̃1, . . . , h̃k form a basis of

ker Ď. Since

ϕa =
Wr(h̃1, . . . , h̃a−1, h̃a+1, . . . , h̃k)

Wr(h̃1, . . . , h̃k)
,

Proposition 2.5.4 follows from Proposition 2.5.3 applied to Ď.

2.5.4 Quotient differential operator and spaces of quasi-exponentials

Let V be a space of quasi-exponentials with the data (µ̄, λ̄; ᾱ, z̄). For Section

2.5.4, we will assume that the data (µ̄, λ̄; ᾱ, z̄) are reduced, that is, the sequences µ̄

and λ̄ do not contain zero partitions. For each i = 1, . . . , n, denote ni = (µ(i))′1 and

pi = µ
(i)
1 + ni.
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Introduce also a larger space V̂ spanned by the functions xpeαix for all i = 1, . . . ,

n, and p = 0, . . . , pi − 1. Denote

Wr(V̂ ) = Wr(eα1x, xeα1x, . . . , xp1−1eα1x, . . . , eαnx, xeαnx, . . . , xpn−1eαnx) ,

Wrij(V̂ ) = Wr( . . . , x̂jeαix, . . . ) .

The functions in the second line are the same except the function xjeαix is omitted.

Lemma 2.5.5 The following holds:

Wr(V̂ ) = e
∑n
i=1 piαix

n∏
i=1

pi−1∏
s=1

s!
∏

16i<j6n

(αj − αi)pipj , (2.35)

Wrij(V̂ ) = e
∑n
l=1(pl−δil)αlx rij(x)

n∏
l=1

pl−1∏
s=1

(l,s)6=(i,j)

s!
∏

16l<l′6n

(αl′ − αl)(pl−δli)(pl′−δl′i) , (2.36)

where rij(x) is a monic polynomial in x and deg rij = pi − j − 1.

Proof We will prove (2.35) by induction on
∑n

i=1(pi − 1) = P . For P = 0, equality

(2.35) becomes

Wr(eα1x, eα2x, . . . , eαnx) = e
∑n
i=1 αix

∏
16i<j6n

(αj − αi),

which is equivalent to the Vandermonde determinant formula.

Fix P0 ∈ Z>0. Suppose that (2.35) is true for all n and all p1, . . . , pn such that∑n
i=1(pi − 1) = P0. We will indicate the dependence of the space V̂ on p1, . . . , pn as

follows: V̂ p1,...,pn .

Fix p1, . . . , pn such that
∑n

i=1(pi − 1) = P0. For each l = 1, . . . , n, let Wr(β,l) be

the Wronski determinant obtained from Wr(V̂ p1,...,pn) by inserting the exponential eβx

after the function xpl−1eαlx. Notice that (∂/∂β)pl |β=αl Wr(β,l) = Wr(V̂ p′1,...,p
′
n), where

p′i = pi if i 6= l and p′l = pl + 1.

By the induction assumption, we have

Wr(β,l) = e
∑n
i=1(piαi+β)x

n∏
i=1

pi−1∏
s=1

s!
∏

16i<j6n

(αj − αi)pipj
l∏

i=1

(β − αi)pi
n∏

i=l+1

(αi − β)pi ,
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which gives(
∂

∂β

)pl∣∣∣∣
β=αl

Wr(β,l) = e
∑n
i=1 p

′
iαix

n∏
i=1

p′i−1∏
s=1

s!
∏

16i<j6n

(αj − αi)p
′
ip
′
j .

This proves the induction step for formula (2.35).

To prove formula (2.36), we fix i and use induction on s = pi − j − 1. The base

of induction at s = 0 is given by formula (2.35).

Fix s0 ∈ Z>0. Suppose that (2.36) is true for all n, all p1, . . . , pn, and j such that

s = s0. Fix p1, . . . , pn, and j such that pi − j − 1 = s0. Let Wr(β,i,j) be the Wronski

determinant obtained from Wrij(V̂
p1,...,pn) by inserting the exponential eβx after the

function xpi−1eαix if j 6 pi − 1 or after the function xpi−2eαix if j = pi − 1. Notice

that

(∂/∂β)pi |β=αi Wr(β,i,j) = Wrij(V̂
p′1,...,p

′
n) ,

where p′l = pl for l 6= i, p′i = pi + 1, and s′ = p′i − 1− j = s0 + 1.

By the induction assumption, we have

Wr(β,i,j) = e
∑n
l=1(pl−δil)αlx+βx rij(x)

n∏
l=1

pl−1∏
s=1

(l,s)6=(i,j)

s!
∏

16l<l′6n

(αl′ − αl)(pl−δli)(pl′−δl′i)

×
i∏
l=1

(β − αl)pl−δil
n∏

l=i+1

(αl − β)pl−δil ,

where rij(x) is a monic poynomial and deg rij(x) = pi− j− 1. The last formula gives(
∂

∂β

)pi∣∣∣∣
β=αi

Wr(β,i,j) = e
∑n
l=1(p′l−δil)αlxA(x)

n∏
l=1

p′l−1∏
s=1

(l,s)6=(i,j)

s!
∏
l<l′

(αl′ − αl)(p′l−δli)(p
′
l′−δl′i),

where A(x) is a monic polynomial and degA(x) = deg rij(x) + 1. This completes the

induction step for formula (2.36).

For each i = 1, . . . , n, set

di = {ni + µ
(i)
j − j | j = 1, . . . , ni} , dci = {0, 1, 2, . . . , pi − 1} \ di . (2.37)

Lemma 2.5.6 We have dci = {ni − (µ(i))′j + j − 1 | j = 1, . . . , µ
(i)
1 } .
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Proof Consider the Young diagram corresponding to the partition µ(i). Enumer-

ate, starting from 0, the sides of boxes in this diagram that form the bottom-right

boundary, see the picture.

Then by (2.37), the set di corresponds to the right-most sides of the rows, which

are the vertical sides of the boundary. Thus the complementary set dci corresponds

to the horizontal sides of the boundary, which are the bottom sides of the columns.

The last observation proves the lemma.

Let DV be the fundamental differential operator of V . Define D̂ =∏n
i=1 (d/dx− αi)pi . Then ker D̂ = V̂ . Therefore, kerDV ⊂ ker D̂, and there exists a

differential operator ĎV , such that D̂ = ĎVDV , see Section 2.5.3. Let V̌ † = ker Ď†.

Theorem 2.5.7 The space V̌ † is a space of quasi-exponentials with the data

(µ̄′, λ̄′;−ᾱ, z̄).

Proof The space V has a basis of the form {qij(x)eαix | i = 1, . . . , n, j = 1, . . . , ni},

where qij(x) are polynomials and deg qij = ni + µ
(i)
j − j . Then the functions xleαix,

i = 1, . . . , n, l ∈ dci , complement this basis of V to a basis of V̂ .

By Proposition 2.5.4, the space V̌ † has the following basis

Wrij(V̂ )

Wr(V̂ )
+

pi−1∑
l=j+1

Cijl
Wril(V̂ )

Wr(V̂ )
, i = 1, . . . , n , j ∈ dci , (2.38)

where Cijl are complex numbers. Then by Lemma 2.5.5, for each i, j, the correspond-

ing element of this basis has the form r̃ij(x)e−αix, where r̃ij(x) is a polynomial of

degree pi − j − 1.
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By Lemma 2.5.6, j ∈ dci if and only if j = ni− (µ(i))′l + l− 1 for some l ∈ {1, . . . ,

µ
(i)
1 } . Set q̌il(x) = r̃ij(x). Then V̌ † has a basis of the form {q̌il(x)e−αix | i = 1, . . . ,

n, l = 1, . . . , µ
(i)
1 } and

deg q̌il = deg r̃ij = µ
(i)
1 + ni − (ni − (µ(i))′l + l − 1)− 1 = µ

(i)
1 + (µ(i))′l − l . (2.39)

Recall M ′ = dimV =
∑n

i=1(µ(i))′1 . Set M = dim V̌ † =
∑n

i=1 µ
(i)
1 . We also have

dim V̂ = M ′ +M .

Fix a point z ∈ C, and let e = {e1 > . . . > eM ′} be the set of exponents of V at

z. Then there is a basis {ψ1, . . . , ψM ′} of V such that

ψi = (x− z)ei
(
1 + o(1)

)
, x→ z , (2.40)

for any i = 1, . . . ,M ′.

Set ê = { ê1 < ê2 < . . . < êM} = {0, 1, 2, . . . ,M ′+M−1}\e . By formula (2.35),

the Wronskian Wr(V̂ ) has no zeros, thus z is not a singular point of V̂ . Therefore,

there is a basis {ψ1, . . . , ψM ′ , χ1, . . . , χM} of V̂ such that

χi(x) = (x− z)êi
(
1 + o(1)

)
, x→ z , (2.41)

for any i = 1, . . . ,M .

By Proposition 2.5.4, the set{
Wr(ψ1, . . . , ψM ′ , χ1, . . . , χi−1, χi+1, . . . , χM)

Wr(ψ1, . . . , ψM ′ , χ1, . . . , χM)

∣∣∣∣ i = 1, . . . ,M

}
(2.42)

is a basis of V̌ †. Formulas (2.35), (2.40), (2.41) show that for any i = 1, . . . ,M ,

Wr(ψ1, . . . , ψM ′ , χ1, . . . , χi−1, χi+1, . . . , χM)

Wr(ψ1, . . . , ψM ′ , χ1, . . . , χM)
= Ci (x− z)M

′+M−êi−1
(
1 + o(1)

)
as x→ z, where Ci is a nonzero complex number. Therefore, the set of exponents of

V̌ † at the point z is ě† = {M ′+M − ê1−1 > . . . > M ′+M − êM −1}. In particular,

z is a singular point of V̌ † if and only if z is a singular point of V .

If a partition λ = (λ1, λ2, . . . ) corresponds to the set e, that is, λi = ei + i −M ′

for i = 1, . . . ,M ′, and λi = 0 for i > M ′, then similarly to Lemma 2.5.6, êi =



41

M ′−λ′i + i− 1, and ě†i = M ′+M − êi− 1 = λ′i +M − i. Thus the set ě† of exponents

of V̌ † at z corresponds to a partition λ′.

Recall that the data (µ̄, λ̄; ᾱ, z̄) are reduced, in particular, z̄ is the set of singular

points of V . To summarize, the consideration above shows that z̄ is the set of sin-

gular points of V̌ † as well, and V̌ † is the space of quasi-exponentials with the data

(µ̄′, λ̄′;−ᾱ, z̄). Theorem 2.5.7 is proved.

2.5.5 Proof of Theorem 2.2.2

It is sufficient to prove Theorem 2.2.2, parts (1) and (2) for the case of reduced

data (µ̄, λ̄; ᾱ, z̄). This is immediate for part (1), since M ′, L,DV and D̃V depend only

on (µ̄, λ̄; ᾱ, z̄)red. And for part (2), the following observation does the job: if (µ̄, λ̄; ᾱ,

z̄)red = (µ̄red, λ̄red; ᾱred, z̄red), then (λ̄′, µ̄′; z̄,−ᾱ)red =
(
(µ̄red)′, (λ̄red)′; z̄red,−ᾱred

)
.

Let V be a space of quasi-exponentials with the reduced data (µ̄, λ̄; ᾱ, z̄). Let

{f1, . . . , fM ′} be a basis of V and DV =
∑M ′

i=0 bi(x)(d/dx)M
′−i be the fundamental

differential operator of V . For each i = 1, . . . ,M ′, the ratio Wri(f1, . . . , fM ′)/Wr(f1,

. . . , fM ′) is a rational function of x regular at infinity. Together with Lemma 2.5.1,

this proves Lemma 2.2.1, and we can consider DV as an invertible element of ΨD.

For any i = 0, . . . ,M ′, let
∑∞

j=0 bijx
−j be the Laurent series of bi(x) at infinity.

We will refer to the functions bi(x) as coefficients of the differential operator DV , and

to bij as expansion coefficients of the differential operator DV . This terminology also

applies to any differential operator with rational coefficients.

Notice that the formal conjugation (·)† of a differential operator, introduced in

Section 2.5.2, is consistent with the formal conjugation on ΨD, introduced in Section

2.1. Recall the involutive antiautomorphism (·)‡ : ΨD → ΨD introduced in Section

2.1.
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Let D̂ =
∏n

i=1 (d/dx− αi)µ
(i)
1 +(µ(i))′1 . Denote by ĎV the quotient differential op-

erator such that D̂ = ĎVDV . Set D×V =
(∏k

a=1 (x− za)λ
(a)
1 Ď†V

)‡
. Recall the pseudo-

differential operator D̃V defined by (2.3). It is straightforward to verify that

D×V = (−1)M
n∏
i=1

(x+ αi)
µ

(i)
1 D̃V , (2.43)

where M = µ
(1)
1 + . . .+ µ

(n)
1 .

The next theorem is proved in [11].

Theorem 2.5.8 Let D be the fundamental differential operator of a space of quasi-

exponentials with the data (µ̄′, λ̄′;−ᾱ, z̄). Then the following holds.

1. The differential operator
∏k

a=1(x− za)λ
(a)
1 D has polynomial coefficients.

2. The differential operator
∏n

i=1(x+ αi)
−µ(i)

1

(∏k
a=1(x− za)λ

(a)
1 D

)‡
is monic and has order L = λ

(1)
1 + . . .+ λ

(k)
1 .

3. The kernel of
(∏k

a=1(x − za)λ
(a)
1 D

)‡
is a space of quasi-exponentials with the

data (λ̄′, µ̄′; z̄,−ᾱ).

By Theorem 2.5.7, one can apply Theorem 2.5.8 to the monic differential operator

(−1)MĎ†V . Hence, the differential operator
∏k

a=1(x − za)λ
(a)
1 Ď†V has polynomial co-

efficients and the pseudo-differential operator D×V is actually a differential operator.

Furthermore, formula (2.43) and parts (2), (3) of Theorem 2.5.8 yield parts (1) and

(2) of Theorem 2.2.2.

To prove part (3) of Theorem 2.2.2, consider a chain of transformations:

Daug
V

(1)−→ DV
(2)−→ ĎV

(3)−→ Ď†V
(4)−→

k∏
a=1

(x− za)λ
(a)
1 Ď†V

(5)−→

(5)−→ D×V
(6)−→ D̃V

(7)−→ D̃aug
V .

(2.44)

Lemma 2.5.9 For each of the transformations in chain (2.44), the expansion coef-

ficients of the transformed operator can be expressed as polynomials in the expansion

coefficients of the initial operator.
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Proof Fix β ∈ C. Let b0(x), . . . , bM ′(x), bβ0 (x), . . . , bβM ′+1(x) be the coefficients of

the differential operators DV and DV (d/dx− β):

DV =
M ′∑
i=0

bi(x)

(
d

dx

)M ′−i
, DV

(
d

dx
− β

)
=

M ′+1∑
i=0

bβi (x)

(
d

dx

)M ′+1−i

.

Then Lemma 2.5.9 for transformation (1) follows from the relations:

bi(x) =
i∑

j=0

βi−jbβj (x), i = 1, . . . ,M ′. (2.45)

Let c0(x), . . . , cM(x), and a0, . . . , aM ′+M , be the coefficients of the differential op-

erators ĎV and D̂:

ĎV =
M∑
j=0

cj(x)

(
d

dx

)M−j
, D̂ =

M ′+M∑
l=0

al

(
d

dx

)M ′+M−l
.

The coefficients a0, . . . , aM ′+M are the elementary symmetric polynomials in α1, . . . ,

αn.

Fix j = 0, . . . ,M . Equalizing the coefficients for (d/dx)M
′+M−j in both sides of

the relation D̂ = ĎVDV , we get

cj(x) = aj −
j−1∑
i=0

i∑
l=0

ci−l(x)

(
dl

dxl
bj−i(x)

)
. (2.46)

Since the function cr appears in the right-hand side of formula (2.46) only for r < j,

we can recursively express cj(x) as polynomials in bi(x) and their derivatives. This

proves the statement for transformation (2).

Let čj(x), j = 0, . . . ,M , be the coefficients of the differential operator Ď†V :

Ď†V =
M∑
j=1

čj(x)

(
d

dx

)M−j
.

Then we have čj(x) =
∑j

l=0(−1)M−l
(
(dl/dxl)cj−l(x)

)
. This proves the statement for

transformation (3).

For transformations (4), (6), and (7), the statement is obvious. For transformation

(5), the statement follows from the definition of the antiautomorphism (·)‡ that trans-

forms the coefficients of a pseudo-differential operator
∑I

i=−∞
∑J

j=−∞Cijx
i(d/dx)j by

the rule Cij 7→ Cji.
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Lemma 2.5.9 provides an algorithm for expressing the coefficients b̃st of the dif-

ferential operator D̃aug
V in item (3) of Theorem 2.2.2 via the coefficients bij of the

operator Daug
V . It is clear that this algorithm depends only on the data (µ̄, λ̄; ᾱ, z̄)

and generates polynomial expressions in bij . This proves the existence of the poly-

nomials Pst in item (3) of Theorem 2.2.2.

It is easy to see that for each transformation in chain (2.44), expressions for

expansion coefficients of the transformed operator in terms of expansion coefficients

of the initial operator are polynomials in ᾱ, z̄. For transformations (1) and (2), it

follows from relations (2.45) and (2.46), respectively. Transformations (3) and (5) do

not involve ᾱ and z̄ at all. For transformations (4) and (6), notice that multiplication

of a differential operator by the factor
∏k

a=1(x− za)λ
(a)
1 or

∏n
i=1(x+αi)

−µ(i)
1 results in

multiplication of its expansion coefficients by polynomials in z1, . . . , zk or α1, . . . , αn,

respectively. Finally, for transformation (7), notice that for any β ∈ C, multiplication

of a differential operator by (d/dx− β) from the right results in multiplication of its

expansion coefficients by polynomials in β.

Theorem 2.2.2 is proved.

2.5.6 Proof of Lemma 2.2.3

We will first prove the lemma for the case of reduced data (µ̄, λ̄; ᾱ, z̄). In this case,

the rational functions c̃i(u), i ∈ Z>0 are defined by the following formula:

k∏
a=1

(u− za)λ
(a)
1

∞∑
i=0

c̃i(u)x−i = uL +
L∑
a=1

b̃a(x)uL−a, (2.47)

where b̃a(x) are the coefficients of the differential operator D̃V = D̃aug
V .

Let č1(x), . . . , čM(x), be the coefficients of the differential operator Ď†V :

Ď†V =
M∑
i=1

či(x)

(
d

dx

)M−i
.
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Recall that D×V =
(∏k

a=1 (x− za)λ
(a)
1 Ď†V

)‡
. Then we have

D×V = (Ď†V )‡
k∏
a=1

(
d

dx
− za

)λ(a)
1

=

[
M∑
i=1

xM−iči

(
d

dx

)] k∏
a=1

(
d

dx
− za

)λ(a)
1

. (2.48)

Since D̃V =
∏n

i=1(x+ αi)
−µ(i)

1 D×V , formulae (2.47) and (2.48) give

∞∑
i=0

c̃i(u)x−i =
n∏
i=1

(x+ αi)
−µ(i)

1

[
M∑
i=1

xM−iči(u)

]
,

which yields

c̃1(u) = č1(u) + A1, c̃2 = č2(u) + A1č1(u) + A2

for some constants A1 and A2.

Using the last two formulas, it is easy to check that

Resu=za

(
c̃2

1(u)

2
− c̃2(u)

)
= Resu=za

(
č2

1(u)

2
− č2(u)

)
. (2.49)

Let a0, . . . , aM+M ′ and b0(x), . . . , bM ′(x) be the coefficients of the differential op-

erators D̂ and DV :

D̂ =
M+M ′∑
i=0

ai

(
d

dx

)M+M ′−i

, DV =
M ′∑
i=0

bi(x)

(
d

dx

)M ′−i
.

Notice that a0, . . . , aM+M ′ do not depend on x. The relation D̂ = ĎVDV gives

M+M ′∑
i=0

ai

(
d

dx

)M+M ′−i

=

[
M∑
i=0

(
− d

dx

)M−i
či(x)

][
M ′∑
j=0

bj(x)

(
d

dx

)M ′−j]
.

Writing the right hand side of the last equation in the form∑M+M ′

i=0 ãi(x)(d/dx)M+M ′−i with some functions ã0(x), . . . , ãM+M ′(x), we have

ãi(x) = ai, i = 0, . . . ,M +M ′. In particular, ã1(x) = a1 and ã2(x) = a2 give

č1 = b1(x)− a1, č2(x) = a2 − b2(x)− b1(x)(a1 − b1(x)),

respectively.

Using the last two formulas, it is easy to check that

Resx=za

(
č2

1(x)

2
− č2(x)

)
= −Resx=za

(
b2

1(x)

2
− b2(x)

)
. (2.50)
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By definition,

ha = Resx=za

(b2
1(x)

2
− b2(x)

)
, and g̃a = Resu=za

( c̃2
1(u)

2
− c̃2(u)

)
.

Therefore, formulas (2.49) and (2.50) give g̃a(x) = −ha(x) proving the lemma for the

case of reduced data.

Fix a complex number β. Let bβ0 (x), . . . , bβM ′+1(x) be the coefficients of the differ-

ential operator DV (d/dx− β):

DV

(
d

dx
− β

)
=

M ′+1∑
i=0

bβi (x)

(
d

dx

)M ′+1−i

.

It is easy to check that

bβ1 (x) = b1(x)− β, bβ2 (x) = b2 − βb1(x).

Therefore,

Resx=za

(
(bβ1 (x))2

2
− bβ2 (x)

)
= Resx=za

(
b2

1(x)

2
− b2(x)

)
. (2.51)

Formula (2.51) means that the number ha defined for the data (µ̄, λ̄; ᾱ, z̄) coincides

with the one defined for the data (µ̄, λ̄; ᾱ, z̄)red. Similarly, the number g̃a is the same

for the data (µ̄, λ̄; ᾱ, z̄) and its reduction. Therefore, the lemma holds for a non-

reduced data as well.

2.5.7 Bispectral duality and quotient differential operator

Let V be a span of functions of the form eαxp(x), where p(x) is a non-constant

polynomial. Let DV be the monic differential operator of order dimV annihilating

V . Using Lemma 2.5.1, one can show that the coefficients of V are rational functions

regular at infinity. Let q(x) be the least common denominator of the coefficients

of DV . Then the pseudo-differential operator (q(x)DV )‡ is actually a differential

operator. Define a map T1 as follows:

T1 : V 7→ ker(q(x)DV )‡.
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The map T1 was introduced in [11] in relation to the duality of the Bethe algebras

acting on the space of polynomials in commuting variables. The space T1(V ) is called

the bispectral dual of V . If V is a space of quasi-exponentials with the data (µ̄, λ̄; ᾱ, z̄),

then one can check that q(x) =
∏k

a=1(x− za)(λ(a))′1 , and by part (3) of Theorem 2.5.8,

the bispectral dual of V is a space of quasi-exponentials with the data (λ̄, µ̄; z̄, ᾱ).

Define the quotient differential operator ĎV in the same way it was defined in

Section 2.5.4. Define a map T2 as follows:

T2 : V 7→ ker Ď†V .

Let V be a space of quasi-exponentials with the data (µ̄, λ̄; ᾱ, z̄). By The-

orem 2.5.7, the space T2(V ) is a space of quasi-exponentials with the data

(µ̄′, λ̄′;−ᾱ, z̄). Therefore, the least common denominator of the coefficients of Ď†V

equals
∏k

a=1 (x− za)λ
(a)
1 , and we have T1 ◦ T2(V ) = ker

(∏k
a=1 (x− za)λ

(a)
1 Ď†V

)‡
.

Recall the differential operator D̃V defined in Section 2.2:

D̃V = (−1)M
′
n∏
i=1

(x+ αi)
(µ(i))′1

(
D−1
V

)#
k∏
a=1

(
d

dx
− za

)λ(a)
1

. (2.52)

Then by formula (2.43), we have T1 ◦ T2(V ) = ker D̃V .

Proposition 2.5.10 A function f(x) belongs to the space T1 ◦ T2(V ) if and only if

the function f(−x) belongs to the space T2 ◦ T1(V ).

Proof As was mentioned above, the least common denominator of the differen-

tial operator DV equals
∏k

a=1(x − za)
(λ(a))′1 . Therefore, the bispectral dual T1(V )

of the space V is the kernel of the differential operator
(∏k

a=1(x− za)(λ(a))′1DV

)‡
=

D‡V
∏k

a=1

(
d
dx
− za

)(λ(a))′1 .

By Theorem 2.5.8, part (2), the differential operator

Dbsp
V =

n∏
i=1

(x− αi)−(µ(i))′1D‡V

k∏
a=1

(
d

dx
− za

)(λ(a))′1
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is monic. Therefore, it is the fundamental differential operator of the space T1(V ).

Since T1(V ) is a space of quasi-exponentials with the data (λ̄, µ̄; z̄, ᾱ), similarly to

ĎV , there exists a differential operator Ďbsp
V such that

k∏
a=1

(
d

dx
− za

)λ(a)
1 +(λ(a))′1

= Ďbsp
V Dbsp

V .

We have T2 ◦ T1(V ) = ker(Ďbsp
V )†. Also, it is easy to check that

(Ďbsp
V )† =

n∏
i=1

(x− αi)(µ(i))′1

(
(D‡V )−1

)†( d

dx
− za

)λ(a)
1

. (2.53)

Since (·)‡ is an antiautomorphism of the algebra ΨD of pseudo-differential oper-

ators, we have (D‡V )−1 = (D−1
V )‡. Also, for any pseudo-differential operator D, (D‡)†

can be obtained from D# = (D†)‡ by the substitution x 7→ −x. Using this and

comparing formulae (2.52) and (2.53), we see that (Ďbsp
V )† is obtained from D̃V by

the substitution x 7→ −x. Since T1 ◦ T2(V ) = ker D̃V and T2 ◦ T1(V ) = ker(Ďbsp
V )†,

the proposition is proved.

Proposition 2.5.11 The following holds: T2
2(V ) = V

Proof Recall that the quotient differential operator ĎV satisfies the following rela-

tion:
n∏
i=1

(
d

dx
− αi

)µ(i)
1 +(µ(i))′1

= ĎVDV .

Applying (·)† to the both sides of the last formula, we get

n∏
i=1

(
d

dx
+ αi

)µ(i)
1 +(µ(i))′1

= (−1)M
′
D†V (−1)MĎ†V , (2.54)

whereM =
∑n

i=1 µ
(i)
1 andM ′ =

∑n
i=1(µ(i))′1. Relation (2.54) yields T2

2(V ) = kerDV =

V .

The proposition is proved.

Denote T• = T1 ◦ T2.
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Corollary 2.5.12 A function f(x) belongs to the space T2
•(V ) if and only if the

function f(−x) belongs to the space V .

Proof By Proposition 2.5.11, we have T−1
2 = T2. Also, it immediately follows from

the definition of the map T1 that T−1
1 = T1. Therefore, T−1

• = T2 ◦ T1. Then the

corollary follows from Proposition 2.5.10 applied to the space T•(V ).

Corollary 2.5.12 is consistent with Theorem 2.4.6 and the remark below Theorem

2.4.2. Let us explain this now.

Let v ∈ Pkn[l,m] be an eigenvector of the action π
〈n〉
z̄ of the algebra B

〈n〉
ᾱ . Let

B
〈n〉
ij,ᾱ, i = 1, . . . , n, j ∈ Z>0 be the generators of the algebra B

〈n〉
ᾱ , see formula (2.7).

Here, we indicated the dependence on ᾱ explicitly. For each i = 1, . . . , n, j ∈ Z>0,

denote by bij the eigenvalue of π
〈n〉
z̄ (B

〈n〉
ij,ᾱ) corresponding to v. Consider a differential

operator D =
(
d
dx

)n
+
∑n

i=1 bi(x)
(
d
dx

)n−i
, where for each i = 1, . . . , n, bi(x) is the

rational function whose Laurent series at infinity equals
∑∞

j=0 bijx
−j. By Theorem

2.3.3, the space V = kerD is a space of quasi-exponentials with the data (µ̄, λ̄; ᾱ, z̄),

where µ̄ and λ̄ are defined by m and l, like in Section 2.4.4.

Let
˜̃
D =

(
d
dx

)n
+
∑n

i=1

˜̃
bi(x)

(
d
dx

)n−i
be the fundamental differential operator of the

space T2
•(V ). Applying Theorem 2.4.6 and Corollary 2.4.7 two times, we get that for

each i = 1, . . . , n, the Laurent series of
˜̃
bi(x) at infinity equals

∑∞
j=0

˜̃
bijx

−j, where
˜̃
bij

is the eigenvalue of π
〈n〉
−z̄ (B

〈n〉
ij,−ᾱ) corresponding to the eigenvector v. As noted in the

remark below Theorem 2.4.2, we have π
〈n〉
−z̄ (B

〈n〉
ij,−ᾱ) = (−1)n−i−jπ

〈n〉
z̄ (B

〈n〉
ij,ᾱ). Therefore,

the differential operator
˜̃
D can be obtained from the differential operator D by the

substitution x 7→ −x. This argument establishes Corollary 2.5.12 for those spaces V ,

which describe eigenvectors of the Bethe algebra.
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3. (glK , glN)-DUALITY AND QUOTIENT DIFFERENCE

OPERATOR

3.1 Spaces of quasi-polynomials

Fix complex numbers z1, . . . , zk and nonzero partitions λ(1), . . . , λ(k). Assume that

za − zb /∈ Z for a 6= b. Let V be a vector space of functions in one variable with a

basis {xzaqab(x) | a = 1, . . . , k, b = 1, . . . , (λ(a))′1}, where qab(x) are polynomials and

deg qab = (λ(a))′1 + λ
(a)
b − b. Assume that the space V satisfies the following property:

for each a = 1, . . . , k and any b = 1, . . . , (λ(a))′1,

1. there exists a linear combination of polynomials qa1, qa2, . . . , qa(λ(a))′1
which has

a root at x = 0 of multiplicity b− 1,

2. the space V does not contain the function xza+deg qab .

Denote L′ =
∑k

a=1(λ(a))′1 = dimV . For α ∈ C∗, define the sequence of exponents

of V at α as a unique sequence of integers e = {e1 > . . . > eL′}, with the property:

for each a = 1, . . . , L′, there exists f ∈ V such that f(x) = (x − α)ea
(
1 + o(1)

)
as

x→ α.

We say that α ∈ C∗ is a singular point of V if the set of exponents of V at α

differs from the set {0, . . . , L′ − 1}. The space V has finitely many singular points.

Let α1, . . . , αn be all singular points of V and let e(i) = {e(i)
1 > . . . > e

(i)
L′ } be the set

of exponents of V at αi. For each i = 1, . . . , n, define a partition µ(i) = (µ
(i)
1 , µ

(i)
2 , . . . )

as follows: e
(i)
a = L′ + µ

(i)
a − a for a = 1, . . . , L′, and µ

(i)
a = 0 for a > L′. Clearly, all

partitions µ(1), . . . , µ(n) are nonzero.

Denote the sequences (λ(1), . . . , λ(k)), (µ(1), . . . , µ(n)), (z1, . . . , zk), (α1, . . . , αn), as

λ̄, µ̄, z̄, ᾱ, respectively. We will say that V is a space of quasi-polynomials with the

data (λ̄, µ̄; z̄, ᾱ).
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Lemma 3.1.1 Let V be a space of quasi-polynomials with the data (λ̄, µ̄; z̄, ᾱ). Then

k∑
a=1

|λ(a)| =
n∑
i=1

|µ(i)|.

Here |λ| denotes the number of boxes in the Young diagram corresponding to the

partition λ.

The lemma is proved by analyzing the order of zeros of the Wronskian of V and

its asymptotics at infinity.

The fundamental monic differential operator of V is a unique monic linear differ-

ential operator of order L′ annihilating V . Denote the fundamental monic differential

operator of V by DV .

Lemma 3.1.2 Define the functions β1(x), . . . , βL′(x) by

xL
′
DV =

(
x
d

dx

)L′
+

L′∑
a=1

βa(x)

(
x
d

dx

)L′−a
.

Then β1(x), . . . , βL′(x) are rational functions regular at infinity. Denote βa(∞) =

lim
x→∞

βa(x), nab = (λ(a))′1 + λ
(a)
b − b, a = 1, . . . , k, b = 1, . . . , (λ(a))′1. Then

uL
′
+

L′∑
a=1

βa(∞)uL
′−a =

k∏
a=1

(λ(a))′1∏
b=1

(u− za − nab). (3.1)

Proof The fact that β1(x), . . . , βL′(x) are rational functions regular at infinity fol-

lows from Proposition 2.5.1. Notice that ker
∏(λ(a))′1

b=1 (x(d/dx)− za − nab) is the span

of {xza+nab | a = 1, . . . , k, b = 1, . . . , (λ(a))′1}, which implies formula (3.1).

Lemma 3.1.3 Define

pV (x) =
n∏
i=1

(x− αi)(µ(i))′1 .

Then for each a = 1, . . . , L′, pV (x)βa(x) is a polynomial in x.

Proof The lemma follows from Proposition 2.5.1 and the following three facts that

are easy to check:
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1. For each i = 1, . . . , n, the Wronskian Wr(V ) of V has a zero at x = αi of

multiplicity (µ(i))′1.

2. Wr(V ) is regular at every point different from 0, α1, . . . , αn.

3. The functions β1(x), . . . , βL′(x) are regular at 0.

We will call the operator D̄V = pV (x)xL
′
DV the fundamental regularized differen-

tial operator of V .

3.2 Spaces of quasi-exponentials with difference data

Fix nonzero complex numbers α1, . . . , αn and non-zero partitions µ(1), . . . , µ(n).

Assume that αi 6= αj for i 6= j. Let W be a vector space of functions in one variable

with a basis {αxi rij(x) | i = 1, . . . , n, j = 1, . . . , (µ(i))′1}, where rij(x) are polynomials

and deg rij = (µ(i))′1 + µ
(i)
j − j.

Denote M ′ =
∑n

i=1(µ(i))′1 = dimW . For z ∈ C, define the sequence of discrete

exponents of W at z as a unique sequence of integers e = {e1 > . . . > eM ′}, with the

property: for each i = 1, . . . ,M ′, there exists f ∈ W such that f(z+ j) = 0 for j = 0,

. . . , ei − 1 and f(z + ei) 6= 0. We say that z ∈ C is a discrete singular point of W if

the set of exponents of W at z differs from the set {0, . . . ,M ′ − 1}.

Assume that there exists a sequence of complex numbers z̄ = (z1, . . . , zk) and a

sequence of partitions λ̄ = (λ(1), . . . , λ(k)) such that z1, . . . , zk are discrete singular

points of W , za − zb /∈ Z for a 6= b, sequence e(a) = {e(a)
1 > . . . > e

(a)
M ′} of discrete

exponents at za is given by e
(a)
i = M ′+λ

(a)
i − i for i = 1, . . . ,M ′, λ

(a)
i = 0 for i > M ′,

and
∑k

a=1 |λ(a)| =
∑n

i=1 |µ(i)|. Here |λ| denotes the number of boxes in the Young

diagram corresponding to the partition λ.

Denote the sequences (µ(1), . . . , µ(n)), (λ(1), . . . , λ(k)), (α1, . . . , αn), (z1, . . . , zk) as

µ̄, λ̄, ᾱ, z̄, respectively. We will say that W is a space of quasi-exponentials with the

difference data (µ̄, λ̄; ᾱ, z̄).
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Define an operator T acting on functions of x by the following rule:

Tf(x) = f(x+ 1).

The fundamental monic difference operator of W is a unique difference operator SmW

of the form

SmW = TM
′
+

M ′∑
i=1

bi(x)TM
′−i (3.2)

annihilating W .

The following lemma is proved similarly to Lemma 3.1.2.

Lemma 3.2.1 The coefficients bi(x) in (3.2) are rational functions regular at infinity.

Denote bi(∞) = lim
x→∞

bi(x). Then

uM
′
+

M ′∑
i=1

bi(∞)uM
′−i =

n∏
i=1

(u− αi)(µ(i))′1 .

For the proof of the following lemma, see [19].

Lemma 3.2.2 Let nab = (λ(a))′1 + λ
(a)
b − b. Define

pW (x) =
k∏
a=1

(λ(a))′1∏
b=1

(x− za − nab + (λ(a))′1).

Then for each i = 1, . . . ,M ′, pW (x)bi(x) is a polynomial in x.

We will call the operator S̄W = pW (x)SmW the fundamental regularized differential

operator of W .

3.3 Algebra of pseudo-difference operators

A pseudo-difference operator is a formal series of the form

M∑
m=−∞

K∑
k=−∞

Ckmx
kTm, (3.3)

where Ckm are some complex numbers. Using the operator relations Tmxk = (x +

m)kTm, k,m ∈ Z, and identifying (x + m)k with its Laurent series at infinity, one
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can multiply series (3.3). This multiplication is associative. Denote the algebra of

pseudo-difference operators as ΨDq.

Lemma 3.3.1 If S =
∑M

m=−∞
∑K

k=−∞Ckm x
kTm with CKM 6= 0, then S is invertible

in ΨDq.

Proof Define Ś by the rule 1 + Ś = C−1
KM x−KS T−M . Then

∑∞
j=0(−1)jŚj is a

well-defined element of ΨDq and the inverse of S is given by the formula:

S−1 = C−1
KMT

−M

(
∞∑
j=0

(−1)jŚj

)
x−K .

We consider a formal series
∑M

m=−∞ fm(x)Tm, where all fm(x) are rational func-

tions, as an element of ΨDq replacing each fm(x) by its Laurent series at infinity. In

particular, we identify the algebra of linear difference operators with rational coeffi-

cients (that is operators of the form
∑M

i=0 ai(x)TM−i where all a0(x), . . . , aM(x) are

rational functions) and the corresponding subalgebra of ΨDq.

Denote by D̄ the algebra of differential operators of the form

L∑
a=0

γa(x)(x
d

dx
)L−a

with rational coefficients γ0(x), . . . , γL(x). One can check that the assignment

τ : x
d

dx
7→ −x, x 7→ T (3.4)

defines a homomorphism of algebras τ : D̄→ ΨDq.

Let V be a space of quasi-polynomials with the data (λ̄, µ̄; z̄, ᾱ). Let D̄V ∈ D̄ be

the fundamental regularized differential operator of V , nab = (λ(a))′1 +λ
(a)
b − b, a = 1,

. . . , k, b = 1, . . . , (λ(a))′1. Define the fundamental pseudo-difference operator SV of V

by the following formula:

SV =
1∏n

i=1(T − αi)(µ(i))′1
τ(D̄V )

1∏k
a=1

∏(λ(a))′1
b=1 (−x− za − nab)

. (3.5)
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Let W be a space of quasi-exponentials with the difference data (µ̄, λ̄; ᾱ, z̄). Let

S̄W be the fundamental regularized difference operator of W . Define the fundamental

pseudo-difference operator SW of W by the following formula:

SW =
1∏k

a=1

∏(λ(a))′1
b=1 (x− za − nab + (λ(a))′1)

S̄W
1∏n

i=1(T − αi)(µ(i))′1
. (3.6)

Notice that both SV and SW have the form 1 +
∑

l,m61Clmx
lTm. Therefore, by

Lemma 3.3.1, the operators SV and SW are invertible in ΨDq.

For the data (λ̄, µ̄; z̄, ᾱ), where λ̄ = (λ(1), λ(2), . . . , λ(k)), µ̄ = (µ(1), µ(2), . . . , µ(n))

are sequences of partitions, z̄ = (z1, . . . , zk) and ᾱ = (α1, . . . , αn) are sequences of

complex numbers, denote λ̄′ = ((λ(1))′, (λ(2))′, . . . , (λ(k))′), µ̄′ = ((µ(1))′, (µ(2))′, . . . ,

(µ(n))′), −z̄ − λ̄′1 + 1 = (−z1 − (λ(1))′1 + 1,−z2 − (λ(2))′1 + 1, . . . ,−zk − (λ(k))′1 + 1).

Theorem 3.3.2 Let V be a space of quasi-polynomials with the data (λ̄, µ̄; z̄, ᾱ). Let

SV be the fundamental pseudo-difference operator of V . Then there exists a space of

quasi-exponentials W with the difference data (µ̄′, λ̄′; ᾱ,−z̄ − λ̄′1 + 1) such that

S−1
V = SW ,

where SW is the fundamental pseudo-difference operator of W .

The theorem will be proved in Section 3.4.6.

3.4 Quotient difference operator

3.4.1 Factorization of a difference operator

For any functions g1, . . . , gn, let

Wr(g1, . . . , gn) = det((T j−1gi)
n
i,j=1)

be their discrete Wronskian. It is easy to show that g1, . . . , gn are linearly independent

over the field of 1-periodic functions if and only if Wr(g1, . . . , gn) 6= 0. Let Wri(g1,



56

. . . , gn) be the determinant of the n×n matrix whose j-th row is gj, T gj, . . . , T
n−i−1gj,

T n−i+1gj, . . . , T
ngj.

Consider a monic linear difference operator S of order n with coefficients ai(x),

i = 1, . . . , n:

S = T n +
n∑
i=1

ai(x)T n−i, (3.7)

Let f1, f2, . . . , fn be solutions of the difference equation Sf = 0. Assume that f1, f2,

. . . , fn are linearly independent over the field of 1-periodic functions.

Lemma 3.4.1 The coefficients a1(x), . . . , an(x) of the difference operator S are

given by the formulas

ai(x) = (−1)i
Wri(f1, . . . , fn)

Wr(f1, . . . , fn)
, i = 1, . . . , n , (3.8)

Moreover, for any function g, we have

Sg =
Wr(f1, . . . , fn, g)

Wr(f1, . . . , fn)
. (3.9)

Proof The equations Sf1 = 0, . . . , Sfn = 0 give a linear system of equations for

the coefficients a1(x), . . . , an(x). Solving this system by Cramer’s rule yields formula

(3.8). Formula (3.9) follows from the last row expansion of the determinant in the

numerator.

Proposition 3.4.2 The difference operator S can be written in the following form:

S =

(
T − g1(x+ 1)

g1(x)

)(
T − g2(x+ 1)

g2(x)

)
. . .

(
T − gn(x+ 1)

gn(x)

)
, (3.10)

where gn = fn, and

gi =
Wr(fn, fn−1, . . . , fi)

Wr(fn, fn−1, . . . , fi+1)
, i = 1, . . . , n− 1 . (3.11)

Proposition 3.4.2 is proved similarly to Proposition 2.5.2
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3.4.2 Formal conjugate difference operator

Denote T− = T−1. Then (T−f)(x) = f(x− 1). Given a difference operator (3.7),

define its formal conjugate by the formula:

S†h(x) = (T−)nh(x) +
n∑
i=1

(T−)n−i
(
ai(x)h(x)

)
.

If a difference operator S is given by formula (3.10), then

S† =

(
T− −

gn(x+ 1)

gn(x)

)(
T− −

gn−1(x+ 1)

gn−1(x)

)
. . .

(
T− −

g1(x+ 1)

g1(x)

)
. (3.12)

Proposition 3.4.3 Let f1, f2, . . . , fn be solutions of the difference equation Sf =

0. Assume that f1, f2, . . . , fn are linearly independent over the field of 1-periodic

functions. Define

hi = T
Wr(f1, . . . , fi−1, fi+1, . . . , fn)

Wr(f1, . . . , fn)
,

Then the functions h1, . . . , hn are linearly independent over the field of 1-periodic

functions, and S†hi = 0 for all i = 1, . . . , n.

Proof Since h1 = (−1)n−1/g1(x + 1), formula (3.12) immediately gives S†h1 = 0.

To prove that S† annihilates h2, . . . , hn, one can use an argument similar to one used

in Proposition 2.5.3.

Observe that the coefficient an of the difference operator S = T n +
∑n

i=1 aiT
n−i

is not identically zero. Indeed, due to Lemma 3.4.1, an = TWr(f1, . . . , fn)/Wr(f1,

. . . , fn), and Wr(f1, . . . , fn) is not identically zero. The linear independence of the

functions h1, . . . , hn follows from the relation:

Wr(h1, . . . , hn) =
(−1)

n(n+1)
2

(an)nWr(f1, . . . , fn)
, (3.13)

The proof of relation (3.13) is given in Appendix B.
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3.4.3 Quotient difference operator

For this subsection, all vector spaces are considered over the field of 1-periodic

functions. Let S and Ŝ be linear difference operators such that kerS ⊂ ker Ŝ. Then

there is a difference operator Š such that Ŝ = ŠS. For instance, it can be seen from

the factorization formula (3.10). We will call Š the quotient difference operator.

Let f1, f2, . . . , fn be a basis of kerS and f1, f2, . . . , fn, h1, . . . , hk be a basis of

ker Ŝ. Define functions ϕ1, . . . , ϕk by the formula

ϕa = T
Wr(f1, . . . , fn, h1, . . . , ha−1, ha+1, . . . , hk)

Wr(f1, . . . , fn, h1, . . . , hk)
.

Proposition 3.4.4 The functions ϕ1, . . . , ϕk are linearly independent, and Š†ϕa = 0

for all a = 1, . . . , k.

Proof Set h̃a = Sha, a = 1, . . . , k. The functions h̃1, . . . , h̃k are linearly indepen-

dent. Indeed, if there are 1-periodic functions c1, . . . , ck, not all equal to zero, such

that c1h̃1 + . . . + ckh̃k = 0, then S(c1h1 + . . . + ckhk) = 0. This means that c1h1 +

. . .+ ckhk belongs to the span of f1, . . . , fn contrary to the linear independence of the

functions f1, . . . , fn, h1, . . . , hk.

Since Šh̃a = Ŝha = 0 for all a = 1, . . . , k and the order of Š equals k, the functions

h̃1, . . . , h̃k form a basis of ker Š. Then, by Proposition 3.4.3, the functions

T
Wr(h̃1, . . . , h̃a−1, h̃a+1, . . . , h̃k)

Wr(h̃1, . . . , h̃k)
, a = 1, . . . , k

form a basis of ker Š†.

Formula (3.9) yields h̃i = Wr(f1, . . . , fn, hi)/Wr(f1, . . . , fn). Then the proposi-

tion follows from the Wronskian identity

Wr(h̃1, . . . , h̃a−1, h̃a+1, . . . , h̃k)

Wr(h̃1, . . . , h̃k)
=

Wr(f1, . . . , fn, h1, . . . , ha−1, ha+1, . . . , hk)

Wr(f1, . . . , fn, h1, . . . , hk)
. (3.14)

The identity (3.14) can be checked in the straightforward way using formulae (B.1)

and (B.4).
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3.4.4 Quotient difference operator and spaces of quasi-exponentials

For the rest of Section 3.4, we will assume that all vector spaces are over C. For

every complex vector space W we will be dealing with, the following is true: any

subset of W is linearly independent over complex numbers if and only if it is linearly

independent over the field of 1-periodic functions. Therefore, we can apply the results

of Section 3.4.3 to W just replacing the field of 1-periodic functions by the field C.

Fix nonzero complex numbers α1, . . . , αn and nonzero partitions µ(1), . . . , µ(n).

Assume that αi 6= αj for i 6= j. For each i = 1, . . . , n, denote ni = (µ(i))′1 and

pi = µ
(i)
1 +ni. Let Ŵ be the vector space spanned by the functions αxi x

p for all i = 1,

. . . , n, and p = 0, . . . , pi − 1. Denote

Wr(Ŵ ) = Wr(αx1 , α
x
1x, . . . , α

x
1x

p1−1, . . . , αxn, α
x
nx, . . . , α

x
nx

pn−1) ,

Wij(Ŵ ) = Wr( . . . , α̂xi x
j, . . . ) .

The functions in the second line are the same except the function αxi x
j is omitted.

Lemma 3.4.5 The following holds:

Wr(Ŵ ) =
n∏
i=1

(
αpixi

pi−1∏
s=1

αsis!

) ∏
16i<j6n

(αj − αi)pipj , (3.15)

Wrij(Ŵ ) = rij(x)
n∏
l=1

α(pl−δil)x
l

pl−1∏
s=1

(l,s)6=(i,j)

αsl s!

 ∏
16l<l′6n

(αl′ −αl)(pl−δli)(pl′−δl′i) , (3.16)

where rij(x) is a monic polynomial in x and deg rij = pi − j − 1.

The Lemma is proved similarly to Lemma 2.5.5.

Denote by E(ᾱ, µ̄) the set of all vector spaces with a basis of the form {αxi qij(x) |

i = 1, . . . , n, j = 1, . . . , (µ(i))′1}, where qij(x) are some polynomials such that deg qij =

(µ(i))′1 + µ
(i)
j − j.

Consider a space W ∈ E(ᾱ, µ̄). Let SmW the fundamental monic difference operator

of W . Define Ŝ =
∏n

i=1 (T − αi)pi . Then ker Ŝ = Ŵ . Therefore, kerSmV ⊂ ker Ŝ, and

there exists a differential operator ŠW , such that Ŝ = ŠWS
m
W , see Section 3.4.3. Let

W̌ † = ker Š†W .
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Proposition 3.4.6 The space W̌ † has a basis of the form

{α−xi q̌ij(x) | i = 1, . . . , n, j = 1, . . . , µ
(i)
1 } ,

where deg q̌ij = µ
(i)
1 + (µ(i))′j − j , i = 1, . . . , n, j = 1, . . . , µ

(i)
1 .

Proof For each i = 1, . . . , n, set

di = {ni + µ
(i)
j − j | j = 1, . . . , ni} , dci = {0, 1, 2, . . . , pi − 1} \ di . (3.17)

Since the space W has a basis of the form {αxi qij(x) | i = 1, . . . , n, j = 1, . . . , ni},

where qij(x) are polynomials and deg qij = ni + µ
(i)
j − j , the functions αxi x

l, i = 1,

. . . , n, l ∈ dci , complement this basis of W to a basis of Ŵ .

By Proposition 3.4.4, the space W̌ † has the following basis

T
Wrij(Ŵ )

W(Ŵ )
+ T

pi−1∑
l=j+1

Cijl
Wril(Ŵ )

Wr(Ŵ )
, i = 1, . . . , n , j ∈ dci , (3.18)

where Cijl are complex numbers. Then by Lemma 3.4.5, for each i, j, the corre-

sponding element of this basis has the form α−xi r̃ij(x), where r̃ij(x) is a polynomial

of degree pi − j − 1.

By Lemma 2.5.6, j ∈ dci if and only if j = ni− (µ(i))′l + l− 1 for some l ∈ {1, . . . ,

µ
(i)
1 } . Set q̌il(x) = r̃ij(x). Then W̌ † has a basis of the form {α−xi q̌il(x) | i = 1, . . . ,

n, l = 1, . . . , µ
(i)
1 } and

deg q̌il = deg r̃ij = µ
(i)
1 + ni − (ni − (µ(i))′l + l − 1)− 1 = µ

(i)
1 + (µ(i))′l − l . (3.19)

Proposition 3.4.6 is proved.

Recall that M ′ =
∑n

i=1(µ(i))′1 = dimW . We also have M =
∑n

i=1 µ
(i)
1 = dim W̌ †.

For z ∈ C, define the sequence of T−-discrete exponents of W̌ † at z as a unique

sequence of integers ě = {ě1 > . . . > ěM}, with the property: for each i = 1, . . . ,M ,

there exists f ∈ W̌ † such that f(z − j) = 0 for j = 0, . . . , ěi − 1 and f(z − ěi) 6= 0.
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Proposition 3.4.7 Let e = {e1 > . . . > eM ′} be the sequence of discrete exponents of

W at some point z ∈ C. Let λ = (λ1, λ2, . . . ) be a partition such that ei = M ′+λi− i,

i = 1, . . . ,M ′ and λi = 0 for i > M ′. Then the sequence ě = {ě1 > . . . > ěM} of

T−-discrete exponents of W̌ † at z − 1 is given by ěa = M + ηa − a, a = 1, . . . ,M ,

where η = (η1, η2, . . . ) is a partition such that ηa > λ′a for all a = 1, 2, . . . .

Proof Since e = {e1 > . . . > eM ′} is the sequence of discrete exponents of W at

z ∈ C, there is a basis {ψ1, . . . , ψM ′} of W such that for each i = 1, . . . ,M ′, j = 0,

. . . , ei − 1, we have ψi(z + j) = 0 and ψi(z + ei) 6= 0.

By formula (3.15), the Wronskian Wr(Ŵ ) has no zeros, thus z is not a singular

point of Ŵ . Therefore, there is a basis {f1, f2, . . . , fM+M ′} of Ŵ such that it contains

the set {ψ1, . . . , ψM ′} and for each i = 0, . . . ,M + M ′ − 1, j = 0, . . . , i, we have

fi+1(z + j) = 0 and fi+1(z + i) 6= 0.

Consider a matrix-valued function

Fa(x) = (T jfi)i=1,...,M+M ′, i6=a
j=1,...,M+M ′−1

.

Then Fa(z) is an upper-triangular matrix with the diagonal of the form {d1, d2,

. . . , da−1, 0, 0 . . . }, where db 6= 0, b = 1, . . . , a − 1. An example with M + M ′ = 6,

a = 4 is shown below.

F4(z) =



d1 ? ? ? ?

0 d2 ? ? ?

0 0 d3 ? ?

0 0 0 0 d4

0 0 0 0 0


For every b = 0, . . . ,M+M ′−a, let Fab be an (M+M ′−b−1)× (M+M ′−b−1)

submatrix of Fa(z) located in the upper-left corner. Then Fab is also an upper-

triangular matrix with the diagonal of the form {d1, d2, . . . , da−1, 0, 0 . . . }. We have:

det
[
((T−)bFa)(z)

]
= const · det(Fab) = 0, b = 0, . . . ,M +M ′ − a− 1. (3.20)
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The relations (3.20) are illustrated by the example with M+M ′ = 6, a = 4 below.

((T−)F4)(z) =

? d1 ? ? ?

? 0 d2 ? ?

? 0 0 d3 ?

? 0 0 0 0

? 0 0 0 0




, ((T−)2F4)(z) =

? ? d1 ? ?

? ? 0 d2 ?

? ? 0 0 d3

? ? 0 0 0

? ? 0 0 0




.

(3.21)

In each matrix above, we boxed two minors, whose product gives the determinant

of the corresponding matrix. The lower-left minor in each case corresponds to the

constant in formula (3.20). The upper-right minor in det[((T−)F4)(z)] is the determi-

nant of F41 and the upper-right minor in det[((T−)2F4)(z)] is the determinant of F42.

We see that det[((T−)F4)(z)] = 0 and det[((T−)2F4)(z)] might not be zero.

Recall that e = {e1 > . . . > eM ′} is the sequence of discrete exponents of W at

z ∈ C. Set ec = {0, 1, 2, . . . ,M +M ′ − 1} \ e. By Lemma 2.5.6, we have

ec = {M ′ − λ′a + a− 1 | a = 1, . . . ,M}.

Denote eca = M ′ − λ′a + a− 1, a = 1, . . . ,M .

For each a = 1, . . . ,M +M ′, denote

Wra(Ŵ ) = detFa(x) = Wr(f1, . . . , fa−1, fa+1, . . . , fM+M ′).

By Proposition 3.4.4, the set

{
T
Wreca(Ŵ )

Wr(Ŵ )
| a = 1, . . . ,M

}
form a basis of W̌ †.

Since Wr(Ŵ ) has no zeros, relations (3.20) give

(T−)b

(
Wra(Ŵ )

Wr(Ŵ )

)
(z) = 0 b = 0, . . . ,M +M ′ − a− 1. (3.22)

Notice that M + M ′ − 1 − eca = M + M ′ − 1 −M ′ + λ′a − a + 1 = M + λ′a − a.

Therefore, formula (3.22) yields

(T−)b

(
T
Wreca(Ŵ )

Wr(Ŵ )

)
(z − 1) = 0 b = 0, . . . ,M + λ′a − a. (3.23)
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This means that the sequence ě = {ě1 > . . . > ěM} of T−-discrete exponents of W̌ † at

z− 1 is given by ěa = M + ηa− a, a = 1, . . . ,M , where η = (η1, η2, . . . ) is a partition

such that ηa > λ′a for all a = 1, 2, . . . .

Proposition 3.4.7 is proved.

3.4.5 Quotient for a difference operator with left shifts

Denote ᾱ−1 = (α−1
1 , . . . , α−1

n ). By Proposition 3.4.6, we have a map Q+ :

E(ᾱ, µ̄)→ E(ᾱ−1, µ̄′) such that

Q+ : W 7→ W̌ †.

We will also write Š†W = Q+(SmW ).

We are going to introduce a map Q− : E(ᾱ−1, µ̄′)→ E(ᾱ, µ̄) and show that Q− is

the inverse of Q+.

Consider a space W− ∈ E(ᾱ−1, µ̄′). Then dimW− =
∑n

i=1 µ
(i)
1 = M . Let SmW− be

a difference operator of the form

SmW− = (T−)M +
M∑
i=1

bi(x)(T−)M−i

annihilating W−.

Introduce a difference operator Ŝ− =
∏n

i=1(T− − αi)
pi . Then the space Ŵ− =

ker Ŝ− is spanned by the functions α−xi xp, p = 0, . . . , pi− 1. We have that W− ⊆ Ŵ−,

and there exists a difference operator ŠW− such that Ŝ− = ŠW−SW− . For instance, it

can be seen from an analog of factorization formula (3.4.2) for the operator T−.

For a difference operator S =
∑l

i=1 ai(x)(T−)l−i, define its formal conjugate S† by

the formula

S†h(x) =
l∑

i=1

T l−i
(
ai(x)h(x)

)
.

Denote Q−(SW−) = (ŠW−)†.

Proposition 3.4.8 The space ker(Q−(SW−)) belongs to the set E(ᾱ, µ̄).
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Proposition 3.4.8 is proved similarly to Proposition 3.4.6.

Due to Proposition 3.4.8, we have a map Q− : E(ᾱ−1, µ̄′) → E(ᾱ, µ̄) such that

Q− : W− 7→ ker(Q−(SW−)).

Proposition 3.4.9 For any W ∈ E(ᾱ, µ̄) and W− ∈ E(ᾱ−1, µ̄′), the following holds:

Q−(Q+SW ) = SW , Q+(Q−SW−) = SW− .

Proof Recall that Ŝ =
∏n

i=1(T − αi)pi = (Ŝ−)† and Ŝ = (Q+(SW ))†SW . We have

Ŝ− = (Ŝ)† = (SW )†Q+(SW ). (3.24)

In the relation Ŝ− = (Q−(SW−))†SW− , take W− = Q+(W ). This yields

Ŝ− = (Q−(Q+SW ))†Q+(SW ). (3.25)

Comparing formulae (3.24) and (3.25), we have Q−(Q+SW ) = SW .

The relation Q+(Q−SW−) = SW− is proved in a similar way.

Proposition 3.4.10 Fix z ∈ C. Let e = {e1 > . . . > eM ′} be the sequence of T−-

discrete exponents of W− ∈ E(ᾱ−1, µ̄′) at z−1. Let λ = (λ1, λ2, . . . ) be a partition such

that ei = M+λi−i, i = 1, . . . ,M and λi = 0 for i > M . Then the sequence ě = {ě1 >

. . . > ěM ′} of discrete exponents of Q−(W−) at z is given by ěa = M ′+ ηa− a, a = 1,

. . . ,M ′, where η = (η1, η2, . . . ) is a partition such that ηa > λ′a for all a = 1, 2, . . .

Proposition 3.4.10 is proved similarly to Proposition 3.4.7.

Corollary 3.4.11 In both Proposition 3.4.7 and Proposition 3.4.10, we have η = λ′.

Proof Consider a space W ∈ E(ᾱ, µ̄), and let partitions λ and η be like in Propo-

sition 3.4.7. By Proposition 3.4.10 applied to the space Q+(W ), the sequence

ẽ = {ẽ1 > . . . > ẽM ′} of discrete exponents of Q−(Q+(W )) at z is given by

ẽi = M ′ + νi − i, i = 1, . . . ,M ′, where νi > η′i for all i = 1, 2, . . . . By Proposi-

tion 3.4.9, we have Q−(Q+(W )) = W , thus νi = λi, i = 1, 2, . . . . Notice that ηa > λ′a

for all a = 1, 2, . . . is the same as η′i > λi for all i = 1, 2, . . . . Therefore, we have

λi 6 η′i 6 νi = λi, which yields η′i = λi, or η = λ′.

The equality η = λ′ for Proposition 3.4.10 is proved in a similar way.



65

3.4.6 Proof of Theorem 3.3.2

For any pseudo-difference operator S =
∑N

i=−∞
∑K

j=−∞Cijx
iT j, define a pseudo-

difference operator S‡ by

S‡ =
N∑

i=−∞

K∑
j=−∞

CijT
j(−x)i.

It is easy to check that (·)‡ is an involutive antiautomorphism on ΨDq.

If S is a difference operator of the form S =
∑l

i=0 ai(x)(T−)l−i, define a difference

operator S→ by

S→ =
l∑

i=0

ai(−x)T l−i.

If the coefficients a0(x), . . . , al(x) of S are rational functions, then we identify S with

the corresponding element in ΨDq, see Section 3.3. In this case, we have (S→)‡ = S†.

Let V be a space of quasi-polynomials with the data (λ̄, µ̄; z̄, ᾱ). Let D̄V be the

fundamental regularized differential operator of V . Denote S̄V = τ(D̄V ), where τ is

given by formula (3.4).

Let z̄ = (z1, . . . , zk) and λ = (λ(1), . . . , λ(k)) be the sequences in the data

(λ̄, µ̄; z̄, ᾱ). Define a sequence of complex numbers z̄+ λ̄′1 = (z1 + (λ(1))′1, z2 + (λ(2))′1,

. . . , zk + (λ(k))′1). The following theorem was proved in [19].

Theorem 3.4.12 There is a space of quasi-exponentials U with the difference data

(µ̄, λ̄; ᾱ, z̄ + λ̄′1) with the fundamental regularized difference operator S̄U such that

(S̄V )‡ = S̄U .

Let SmU be the fundamental monic difference operator of U . Since U has the

difference data (µ̄, λ̄; ᾱ, z̄ + λ̄′1), denoting nab = (λ(a))′1 + λ
(a)
b − b, a = 1, . . . , k, b = 1,

. . . , (λ(a))′1, we have

SmU =
1∏k

a=1

∏(λ(a))′1
b=1 (x− za − nab)

S̄U .
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Recall that the fundamental pseudo-difference operator SV of V is defined as

follows

SV =
1∏n

i=1(T − αi)(µ(i))′1
τ(D̄V )

1∏k
a=1

∏(λ(a))′1
b=1 (−x− za − nab)

.

Therefore,

S‡V =

(
1∏k

a=1

∏(λ(a))′1
b=1 (−x− za − nab)

)‡ (
S̄V
)‡( 1∏n

i=1(T − αi)(µ(i))′1

)‡
=

=
1∏k

a=1

∏(λ(a))′1
b=1 (x− za − nab)

S̄U
1∏n

i=1(T − αi)(µ(i))′1
=

= SmU
1∏n

i=1(T − αi)(µ(i))′1
.

Denote Q→+ (SU) = (Q+(SmU ))→. Then

n∏
i=1

(T − αi)µ
(i)
1 +(µ(i))′1 = (Q→+ (SmU ))‡SmU , (3.26)

which gives (
Q→+ (SmU )

1∏n
i=1(T − αi)µ

(i)
1

)‡(
SmU

1∏n
i=1(T − αi)(µ(i))′1

)
= 1.

Therefore,

(S‡V )−1 =

(
SmU

1∏n
i=1(T − αi)(µ(i))′1

)−1

=

(
Q→+ (SmU )

1∏n
i=1(T − αi)µ

(i)
1

)‡
,

and

S−1
V = ((S‡V )−1)‡ = Q→+ (SmU )

1∏n
i=1(T − αi)µ

(i)
1

. (3.27)

We will show now that Q→+ (U) = kerQ→+ (SmU ) is a space of quasi-exponentials with

the difference data (µ̄′, λ̄′; ᾱ,−z̄ − λ̄′1 + 1).

Since U is a space of quasi-exponentials with the difference data (µ̄, λ̄; ᾱ, z̄ + λ̄′1),

dimU =
∑n

i=1(µ(i))′1 = M ′, and for every a = 1, . . . , k, the sequence e(a) = (e
(a)
1 >

· · · > e
(a)
M ′) of discrete exponents of U at za + (λ(a))′1 is given by e

(a)
i = M ′ + λ

(a)
i − i,

i = 1, . . . ,M ′. By Proposition 3.4.7 and Corollary 3.4.11, for each a = 1, . . . , k, the

sequence of T−-discrete exponents ě(a) = (ě
(a)
1 > · · · > ě

(a)
M ′) of Q+(U) at za+(λ(a))′1−1
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is given by ě
(a)
i = M + (λ(a))′i− i, i = 1, . . . ,M . Also, By Proposition 3.4.6, Q+(U) ∈

E(ᾱ−1, µ̄′).

Notice that every function from the space Q→+ (U) is the image of a function

from Q+(U) under the transformation x 7→ −x, and vice versa. Therefore, Q→+ (U) ∈

E(ᾱ, µ̄′), and for each a = 1, . . . , k, ě(a) = (ě
(a)
1 > · · · > ě

(a)
M ′) is the sequence of discrete

exponents of Q→+ (U) at −za − (λ(a))′1 + 1. By Lemma 3.1.1, we have
∑k

a=1 |(λ(a))| =∑n
i=1 |(µ(i))|, which is the same as

∑k
a=1 |(λ(a))′| =

∑n
i=1 |(µ(i))′|. Therefore, Q→+ (U) =

kerQ→+ (SmU ) is a space of quasi-exponentials with the difference data (µ̄′, λ̄′; ᾱ,−z̄ −

λ̄′1 + 1).

Put W = Q→+ (U). Then SmW = Q→+ (SmU ) is the fundamental monic difference

operator of W . Let SW be the fundamental pseudo-difference operator of W . Then,

by definition (see formula (3.6)), SW = SmW (
∏n

i=1(T − αi)µ
(i)
1 )−1.

On the other hand, formula (3.27) gives S−1
V = SmW (

∏n
i=1(T − αi)µ

(i)
1 )−1, and we

have S−1
V = SW .

Theorem 3.3.2 is proved.

3.4.7 Quotient difference operator versus quotient differential operator

In the proof of Theorem 3.3.2, we obtained the space W using the quotient dif-

ference operator. There is another way to obtain W , which involves the quotient

differential operator.

Denote la = λ
(a)
1 + (λ(a))′1 − 1. Introduce a differential operator

D̂ =
k∏
a=1

la∏
b=0

(x
d

dx
− za − b). (3.28)

Then

V̂ = ker(D̂) = {xza+b | a = 1, . . . , k, b = 0, . . . , la}.

Let V be a space of quasi-polynomials with the data (λ̄, µ̄; z̄, ᾱ). Let DV be the

fundamental monic differential operator of V . Recall that V has a basis of the

form {xzaqab(x) | a = 1, . . . , k, b = 1, . . . , (λ(a))′1}, where qab(x) are polynomials and
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deg qab = (λ(a))′1 +λ
(a)
b − b. Therefore, V ⊂ V̂ , and there exists a differential operator

ĎV such that D̂ = ĎV x
kDV , see Section 2.5.3. Let Ď†V be the formal conjugate of

ĎV , see formula (2.32) for the definition. Denote Ũ = ker Ď†V .

We will say that V is a space of quasi-polynomials with non-degenerate terms if

it satisfies the following property: for each a = 1, . . . , k, b = 0, . . . , la, there exists

s = 1, . . . , (λ(a))′1 such that q
(b)
as (0) 6= 0.

Denote −z̄ − λ̄′1 − λ̄1 + 1 = (−z1 − (λ(1))′1 − λ
(1)
1 + 1,−z2 − (λ(2))′1 − λ

(2)
1 + 1, . . . ,

−zk − (λ(k))′1 − λ
(2)
1 + 1). We have the following theorem.

Theorem 3.4.13

1. Let V be a space of quasi-polynomials with non-degenerate terms. Then Ũ is a

space of quasi-polynomials with the data (λ̄′, µ̄′,−z̄ − λ̄′1 − λ̄1 + 1).

2. Let W̃ be the space of quasi-exponentials with the difference data (µ̄′, λ̄′; ᾱ,−z̄−

λ̄′1 + 1) such that
(
τ(D̄Ũ)

)‡
= S̄W̃ , where D̄Ũ and S̄W̃ are the fundamental

regularized differential and difference operators of Ũ and W̃ , respectively, see

Theorem 3.4.12. Let SW̃ be the fundamental pseudo-difference operator of W̃ .

Then SW̃ = S−1
V .

We will prove Theorem 3.4.13 later in the section.

Two spaces related like in Theorem 3.4.12 are called bispectral dual. Therefore,

the space U used in the proof of Theorem 3.3.2 is bispectral dual to V , and the space

W̃ in Theorem 3.4.13 is bispectral dual to Ũ . Comparing Theorem 3.4.13 and the

proof of Theorem 3.3.2, we see that taking bispectral dual U of the space V and then

using the quotient difference operator to get W is the same as first using the quotient

differential operator and then taking its bispectral dual, as illustrated on diagram

(3.29)
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V

U

Ũ

W̃ = W

bisp. dual

bisp. dualquotient of
differential
operator

quotient of
difference
operator

(3.29)

The space W from Theorem 3.3.2 is a space of quasi-exponentials with the dif-

ference data (µ̄′, λ̄′; ᾱ,−z̄ − λ̄′1 + 1). Then the fundamental regularized difference

operator S̄W of W is a difference operator with polynomial coefficients defined by

S̄W = pW (x)SmW , where

pW (x) =
k∏
a=1

λ
(a)
1∏
b=1

(x+ za + (λ(a))′1 − (λ(a))′b + b− 1), (3.30)

and SmW is the fundamental monic difference operator, see Section 3.2

Let p̃W (x) be the polynomial of minimal degree such that p̃W (x)SmW has polynomial

coefficients. We will call the space W non-degenerate if p̃W (x) = pW (x).

The following theorem is the converse of Theorem 3.4.12, and it is proved in [19].

Theorem 3.4.14 Let W be non-degenerate. Then the operator τ−1
((
S̄W
)‡)

is the

fundamental regularized differential operator of a space of quasi-polynomials with the

data (λ̄′, µ̄′,−z̄ − λ̄′1 − λ̄1 + 1).

One way to prove Theorem 3.4.13 is to obtain a basis of Ũ using Wronskians

like we did in Sections 3.4.1 - 3.4.5 for W̌ †, and in Sections 2.5.1 - 2.5.4 for V̌ †.

We are not going to follow this straightforward way, but rather we will show that

Ũ = ker τ−1
(
S̄‡W

)
and use Theorem 3.4.14. To do this we should ensure that W is

non-degenerate. In particular, we need the following proposition.

Proposition 3.4.15 Let V be the space of quasi-polynomials with non-degenerate

terms. Let W be the space of quasi-exponentials such that SW = S−1
V . Then W is

non-degenerate.
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Proof Let p̃W (x) be the polynomial of smallest degree such that p̃W (x)SmW has

polynomial coefficients. Recall that

S−1
V = SW = SmW

1∏n
i=1(T − αi)µ

(i)
1

.

Therefore p̃WS
−1
V is a pseudo-difference operator of the form

N∑
i=−∞

ai(x)T i, (3.31)

where aN , aN−1, . . . are polynomials in x. In particular, p̃WS
−1
V belongs to the image

of the injective homomorphism τ , and τ−1(p̃WS
−1
V ) is a differential operator which is

a polynomial in x(d/dx).

From the definition of SV , we get

SV

k∏
a=1

(λ(a))′1∏
b=1

(−x− za − nab) = τ(xkDV ),

which gives

p̃W (x)
k∏
a=1

(λ(a))′1∏
b=1

(−x− za − nab) = p̃W (x)S−1
V τ(xkDV ). (3.32)

Applying τ−1 to both sides of formula (3.32) we get

τ−1(p̃W (x))
k∏
a=1

(λ(a))′1∏
b=1

(x
d

dx
− za − nab) = τ−1(p̃W (x)S−1

V )xkDV .

The last formula implies that

V = ker xkDV ⊆ Ṽ = ker

τ−1(p̃W (x))
k∏
a=1

(λ(a))′1∏
b=1

(x
d

dx
− za − nab)

 . (3.33)

Denote ∆a = {0, . . . , la} \ {nab | b = 1, . . . , (λ(a))′1}. Let V1 be the span of

{xza+nab | a = 1, . . . , k, b = 1, . . . , (λ(a))′1}, and let V2 be the span of {xza+b | a = 1, . . . ,

k, b ∈ ∆a}. We have V̂ = V1

⊕
V2.
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By Lemma 2.5.6, ∆a = {(λ(a))′1 − (λ(a))′b + b− 1 | b = 1, . . . , λ
(a)
1 }. Using this, one

can check that for the polynomial pW (x) defined in formula (3.30), we have

pW (x) = (−1)L
k∏
a=1

∏
b∈∆a

(−x− za − b),

where L =
∑k

a=1 λ
(a)
1 . Therefore V2 = ker τ−1(pW (x)).

Consider the space Ṽ2 = ker τ−1(p̃W (x)). The polynomial p̃W (x) divides pW (x).

Therefore, Ṽ2 ⊆ V2, and Ṽ2 is spanned by {xza+b | a = 1, . . . , k, b ∈ ∆̃a}, where ∆̃a is

a subset of ∆a for each a = 1, . . . , k.

By definition, see formula (3.33), Ṽ = V1

⊕
Ṽ2. Therefore, Ṽ ⊆ V̂ , and Ṽ is

spanned by {xza+b | a = 1, . . . , k, b ∈ ∆′a}, where ∆′a is a subset of {0, . . . , la} for each

a = 1, . . . , k.

Suppose that p̃W (x) 6= pW (x), then for some a = 1, . . . , k, ∆′a is a proper subset

of {0, . . . , la}. But since V ⊆ Ṽ , this contradicts to the fact that V is a space of

quasi-polynomials with non-degenerate terms. Therefore, p̃W (x) = pW (x).

Proposition 3.4.15 is proved.

Proof [Proof of Theorem 3.4.13.] Let W be the space of quasi-exponentials such

that SW = S−1
V . Let S̄W be the fundamental regularized difference operator of W .

We will show that
n∏
i=1

(x− αi)µ
(i)
1 (−1)LĎ†V = τ−1

((
S̄W
)‡)

. (3.34)

Then part (1) of Theorem 3.4.13 will follow from Theorem 3.4.14.

Recall that S̄V = τ(D̄V ), where D̄V is the fundamental regularized differential

operator of V . We have xkDV =
(∏n

i=1(x− αi)(µ(i))′1

)−1

D̄V . Therefore,

τ(xkDV ) = τ

(
1∏n

i=1(x− αi)(µ(i))′1

)
τ(D̄V ) =

1∏n
i=1(T − αi)(µ(i))′1

S̄V . (3.35)

Applying the homomorphism τ to both sides of the relation D̂ = ĎV x
kDV and using

formula (3.35), we get

k∏
a=1

la∏
b=0

(−x− za − b) = τ(ĎV )
1∏n

i=1(T − αi)(µ(i))′1
S̄V . (3.36)
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Recall that ∆a = {0, . . . , la} \ {nab | b = 1, . . . , (λ(a))′1}. Then (3.36) gives

1∏k
a=1

∏
b∈∆a

(−x− za − b)
τ(ĎV )×

1∏n
i=1(T − αi)(µ(i))′1

S̄V
1∏k

a=1

∏(λ(a))′1
b=1 (−x− za − nab)

= 1,

or

S−1
V =

(−1)L

pW (x)
τ(ĎV ), (3.37)

where we used pW (x) = (−1)L
∏k

a=1

∏
b∈∆a

(−x− za − b).

By the definition of SW , see formula (3.6), and the relation SW = S−1
V , we have

S−1
V =

1

pW (x)
S̄W

1∏n
i=1(x− αi)µ

(i)
1

, (3.38)

Comparing formulae (3.38) and (3.37), we get

(−1)Lτ(ĎV )
n∏
i=1

(T − αi)µ
(i)
1 = S̄W .

Therefore,

(S̄W )‡ =
n∏
i=1

(T − αi)µ
(i)
1
(
(−1)Lτ(ĎV )

)‡
.

Since
(
τ(ĎV )

)‡
= τ(Ď†V ), the last formula implies relation (3.34).

To prove part (2) of Theorem 3.4.13, notice that relation (3.34) and Theorem

3.4.14 imply D̄Ũ = τ−1
((
S̄W
)‡)

. Therefore S̄W̃ =
(
τ(D̄Ũ)

)‡
= S̄W , and SW̃ = SW =

S−1
V .

3.5 Duality for trigonometric Gaudin and Dynamical Hamiltonians

3.5.1 (glk, gln)-duality for trigonometric Gaudin and Dynamical Hamilto-

nians

Recall from Section 2.3.3 that for any g ∈ U(glk), we denote g(i) = 1⊗(i−1)⊗ g ⊗

1⊗(n−i)∈ U(glk)
⊗n, and that we use the same notation for an element of U(glk) and

its image under the diagonal embedding g 7→
∑n

i=1(g)(i) ∈ U(glk)
⊗n. We will use
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similar notations for U(gln)⊗k. Let e
〈k〉
ab , a, b = 1, . . . , k be the standard generators of

the Lie algebra glk. For any i, j = 1, . . . , n, i 6= j, define the following elements of

U(glk)
⊗n

Ω+
(ij) =

1

2

k∑
a=1

(e〈k〉aa )(i)(e
〈k〉
aa )(j) +

∑
16a<b6k

(e
〈k〉
ab )(i)(e

〈k〉
ba )(j),

Ω−(ij) =
1

2

k∑
a=1

(e〈k〉aa )(i)(e
〈k〉
aa )(j) +

∑
16a<b6k

(e
〈k〉
ba )(i)(e

〈k〉
ab )(j).

Fix sequences of pairwise distinct complex numbers z̄ = (z1, . . . , zk) and ᾱ =

(α1, . . . , αn). For each i = 1, . . . , n, define the trigonometric Gaudin Hamiltonians

Ĥ
〈k,n〉
i (ᾱ, z̄) by the following formula:

Ĥ
〈k,n〉
i (ᾱ, z̄) =

k∑
a=1

(za −
e
〈k〉
aa

2
)(e〈k〉aa )(i) +

n∑
j=1
j 6=i

αiΩ
+
(ij) + αjΩ

−
(ij)

αi − αj
.

Let e
〈n〉
ij , i, j = 1, . . . , n be the standard generators of the Lie algebra gln. For

each i = 1, . . . , n, define the trigonometric Dynamical Hamiltonians Ĝ
〈n,k〉
i (z̄, ᾱ) by

the following formula:

Ĝ
〈n,k〉
i (z̄, ᾱ) =− (e

〈n〉
ii )2

2
+

k∑
a=1

za(e
〈n〉
ii )(a)+

+
n∑
j=1
j 6=i

αj
αi − αj

(e
〈n〉
ij e

〈n〉
ji − e

〈n〉
ii ) +

n∑
j=1

∑
16a<b6k

(e
〈n〉
ij )(a)(e

〈n〉
ji )(b).

Recall that both U(glk)
⊗n and U(gln)⊗k act on the space Pkn of polynomials in kn

pairwise anticommuting variables ξai, a = 1, . . . , k, i = 1, . . . , n. The corresponding

actions are:

ρ〈k,n〉 : (e
〈k〉
ab )(i) 7→ ξai∂bi,

ρ〈n,k〉 : (e
〈n〉
ij )(a) 7→ ξai∂aj,

where ∂ai, a = 1, . . . , k, i = 1, . . . , n are the left derivations, see Section 2.4.1.

Denote −z̄+1 = (−z1 +1, . . . ,−zk+1). The following result can be found in [42]:
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Proposition 3.5.1 . For any i = 1, . . . , n, we have

ρ〈k,n〉
(
Ĥ
〈k,n〉
i (ᾱ, z̄)

)
= −ρ〈n,k〉

(
Ĝ
〈n,k〉
i (−z̄ + 1, ᾱ)

)
.

Proof The proof is straightforward.

3.5.2 Bethe ansatz method for trigonometric Gaudin model

Let Zkn be the set defined in Section 2.4.3. Fix a pair (l,m) ∈ Zkn, where l = (l1,

. . . , lk) ∈ Zk>0, m = (m1, . . . ,mn) ∈ Zn>0. Recall that Pkn[l,m] ⊂ Pkn is the span of

all monomials ξd11
11 . . . ξ

dk1
k1 . . . ξd1n

1n . . . ξ
dkn
kn such that

∑k
a=1 dai = mi and

∑n
i=1 dai = la.

Assume that Pkn[l,m] 6= 0. We also have that

Pkn[l,m] = {p ∈ Pkn | e〈k〉aa p = lap, e
〈n〉
ii p = mip, a = 1, . . . , k, i = 1, . . . , n}.

It is easy to check that all trigonometric Gaudin and Dynamical Hamiltoni-

ans commute with elements e
〈k〉
11 , . . . , e

〈k〉
kk , e

〈n〉
11 , . . . , e

〈n〉
nn . Therefore, Ĥ

〈k,n〉
1 (ᾱ, z̄), . . . ,

Ĥ
〈k,n〉
n (ᾱ, z̄), Ĝ

〈n,k〉
1 (z̄, ᾱ), . . . , Ĝ

〈n,k〉
n (z̄, ᾱ) act on the subspace Pkn[l,m]. We will be

interested in the common eigenvectors of the Hamiltonians in the subspace Pkn[l,m].

Recall that for each m ∈ Z>0, ωm is a partition given by ωm = (1, . . . , 1, 0, 0 . . . )

with m ones. Define the sequence l0 = (l01, . . . , l
0
k) by l0a =

∑n
i=1(ωmi)a. Then

(l0,m) ∈ Zkn.

For any sequence of integers (c1, . . . , ck) and for each a = 1, . . . , k − 1, define a

transformation

ra : (c1, . . . , ck) 7→ (c1, . . . , ca − 1, ca+1 + 1, . . . , ck).

Since
∑k

a=1 la =
∑k

a=1 l
0
a =

∑n
i=1mi, there exist integers l̄1, . . . , l̄k−1 such that l =

rl̄11 . . . r
l̄k−1

k−1 l0. It is easy to check that if l̄a < 0 for some a = 1, . . . , k − 1, then

Pkn[l,m] = 0. Therefore, we can assume that l̄a > 0 for all a = 1, . . . , k − 1.

Put l̄0 = l̄k = 0. Then we have

la =
n∑
i=1

(ωmi)a + l̄a−1 − l̄a, a = 1, . . . , k.



75

Therefore

l̄a =
k∑

b=a+1

(lb −
n∑
i=1

(ωmi)b), a = 0, . . . , k − 1. (3.39)

Let t be a set of l̄1 + · · ·+ l̄k−1 variables:

t = (t
(1)
1 , . . . , t

(1)

l̄1
, t

(2)
1 , . . . , t

(2)

l̄2
, . . . , t

(k−1)
1 , . . . , t

(k−1)

l̄k−1
).

Fix sequences of pairwise distinct complex numbers z̄ = (z1, . . . , zk) and ᾱ =

(α1, . . . , αn). In [26], the authors introduced the hypergeometric solutions of the

trigonometric Knizhnik-Zamolodchikov (KZ) equations. In the case that we need, this

solution involves a certain Pkn[l,m]-valued function ϕ(t, ᾱ) and the master function:

Φ(t, ᾱ, z̄, l,m) =
∏

16i<j6n

(αi−αj)min(mi,mj)

n∏
i=1

l̄mi∏
a=1

(t(mi)a −αi)−1

n∏
i=1

α
∑mi
a=1 za+

mi
2

i C(t, z̄),

(3.40)

where C(t, z̄) is a function of t and z̄ that does not depend on ᾱ. We will not need

the explicit formula for C(t, z̄).

The following equations are called the Gaudin Bethe ansatz equations:(
Φ−1 ∂Φ

∂t
(a)
b

)
(t, ᾱ, z̄, l,m) = 0, a = 1, . . . , k − 1, b = 1, . . . , l̄a. (3.41)

We will call a solution t of the Gaudin Bethe ansatz equation (3.41) Gaudin

admissible if

t
(a)
i 6= t

(a)
j , t

(b)
i′ 6= t

(b+1)
j′ , t

(a)
i 6= αl, t

(a)
i 6= 0 (3.42)

for all a = 1, . . . , k − 1, i, j = 1, . . . , l̄a, i 6= j, b = 1, . . . , k − 2, i′ = 1, . . . , l̄b, j
′ = 1,

. . . , l̄b+1, l = 1, . . . , n.

In [27], the authors considered a certain limit of the rational KZ equations. Similar

limit for the trigonometric KZ equation gives:

Theorem 3.5.2 Let t be a Gaudin admissible solution of the Gaudin Bethe ansatz

equations (3.41). Suppose that ϕ(t, ᾱ) 6= 0. Then ϕ(t, ᾱ) is a common eigenvector

of the Gaudin Hamiltonians, and for each i = 1, . . . , n, the corresponding eigenvalue

h
〈k,n〉
i (t, ᾱ, z̄, l,m) of Ĥ

〈k,n〉
i (ᾱ, z̄) is given by

h
〈k,n〉
i (t, ᾱ, z̄, l,m) =

(
αi

∂

∂αi
ln Φ

)
(t, ᾱ, z̄ − l, l,m), (3.43)
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where z̄ − l = (z1 − l1, z2 − l2, . . . , zk − lk).

3.5.3 Spaces of quasi-polynomials and eigenvectors of trigonometric

Gaudin Hamiltonians

Fix a pair (l,m) ∈ Zkn, where l = (l1, . . . , lk) ∈ Zk>0, m = (m1, . . . ,mn) ∈ Zn>0.

Assume that Pkn[l,m] 6= 0. Define the sequence of partitions λ̄ = (λ(1), . . . , λ(k)) by

λ(a) = (la, 0, 0, . . . ), a = 1, . . . , k. Recall that for each m ∈ Z>0, ωm is a partition given

by ωm = (1, . . . , 1, 0, 0 . . . ) with m ones. Define a sequence of partitions µ̄ = (ωm1 ,

. . . , ωmn).

Let z̄ = (z1, . . . , zk) be a sequence of complex numbers such that za − zb /∈ Z

for a 6= b. Let ᾱ = (α1, . . . , αn) be a sequence of pairwise distinct non-zero complex

numbers. Let V be a space of quasi-polynomials with the data (λ̄, µ̄; z̄, ᾱ). Then V

has a basis of the form

{xz1q1(x), xz2q2(x), . . . , xzkqk(x)},

where q1(x), . . . , qk(x) are polynomials and deg qa(x) = la.

For each a = 1, . . . , k − 1, b = 1, . . . , k, define

Tb(x) =
n∏
i=1
mi>b

(x− αi),

ya(x) =
Wr(xzkqk(x), xzk−1qk−1(x), . . . , xza+1qa+1(x))∏k

b=a+1(xzb−k+bTb(x))
. (3.44)

One can check that for each a = 1, . . . , k−1, ya(x) is a polynomial of degree l̄a. The

polynomials r1(x), . . . , rn(x) can be normalized in such a way that the polynomials

y0(x), . . . , yn−1(x) are monic. Write

ya(x) =
l̄a∏
b=1

(x− t̃(a)
b ).

We will call the space V Gaudin admissible if the tuple

t̃ = (t̃
(1)
1 , . . . , t̃

(1)

l̄1
, t̃

(2)
1 , . . . , t̃

(2)

l̄2
, . . . , t̃

(k−1)
1 , . . . , t̃

(k−1)

l̄k−1
)
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satisfies conditions (3.42).

The following theorem was proved in [18].

Theorem 3.5.3 Let V be Gaudin admissible. Then t̃ is a Gaudin admisible solution

of the Gaudin Bethe ansatz equations (3.41).

Define functions β1(x), . . . , βk(x) by the following formula:

xkDV =

(
x
d

dx

)k
+

k∑
a=1

βa(x)

(
x
d

dx

)k−a
.

By Lemma 3.1.2, the functions β1(x), . . . , βk(x) are rational.

Let t̃ be the Gaudin admissible solution of the Gaudin Bethe ansatz equation

corresponding to V , like in Theorem 3.5.3. Suppose that ϕ(t̃, ᾱ) 6= 0. According to

Theorem 3.5.2, ϕ(t̃, ᾱ) is a common eigenvector of the trigonometric Gaudin Hamil-

tonians, and for each i = 1, . . . , n, the corresponding eigenvalue of Ĥ
〈k,n〉
i (ᾱ, z̄ + l) is

h
〈k,n〉
i (t̃, ᾱ, z̄ + l, l,m). We will also call ϕ(t̃, ᾱ) the Bethe vector vV corresponding to

V .

Proposition 3.5.4 The following holds

h
〈k,n〉
i (t̃, ᾱ, z̄ + l, l,m) =

1

αi
Resx=αi

(
1

2
β2

1(x)− β2(x)

)
+
m2
i

2
−mi. (3.45)

Proof For each function g of x, write ln′(g) = (ln(g))′, where (·)′ is the differentiation

with respect to x. Comparing formulae (3.44) and (2.30), we have:

DV =

(
d

dx
− ln′

(
xz1−k+1T1(x)

y1(x)

))(
d

dx
− ln′

(
xz2−k+2T2(x)y1

y2(x)

))
. . .

. . .

(
d

dx
− ln′

(
xzk−1−1Tk−1(x)yk−2(x)

yk−1(x)

))(
d

dx
− ln′ (xzkTkyk−1(x))

)
.

(3.46)

Multiplying each side of (3.46) by xk, we get

xkDV =

(
x
d

dx
− x ln′

(
T1(x)

y1(x)

)
− z1

)(
x
d

dx
− x ln′

(
T2(x)y1

y2(x)

)
− z2

)
. . .

. . .

(
x
d

dx
− x ln′ (Tkyk−1(x))− zk

)
.

(3.47)
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Put y0(x) = yk(x) = 1. For each a = 1, . . . , k, denote

Ya = −x ln′
(
Ta(x)ya−1(x)

ya(x)

)
− za.

By formula (3.47), we have

β2(x) =
∑

16a<b6k

Ya(x)Yb(x) +
k∑
a=1

xY ′a(x), β1(x) =
k∑
a=1

Ya(x). (3.48)

Since t̃ is Gaudin admissible, for each i = 1, . . . , n, a = 1, . . . , k−1, αi is not a root

of the polynomial ya(x). Also, for each i = 1, . . . , n, αi is a root of the polynomial

Ta(x) if and only if a 6 mi. Using this, we can compute:

1

αi
Resx=αi

( ∑
16a<b6k

Ya(x)Yb(x)

)
=

=
l̄a∑
b=1

αi

αi − t̃(mi)b

+

mi∑
a=1

k∑
b=1
b6=a

zb +
n∑
j=1
mj>b

αi
αi − αj

+mi(mi − 1),

(3.49)

1

αi
Resx=αi

(
k∑
a=1

xY ′a(x)

)
=
mi(mi − 1)

2
, (3.50)

1

αi
Resx=αi

1

2

(
k∑
a=1

Ya(x)

)2
 =

mi∑
a=1

k∑
b=1

zb +
n∑
j=1
mj>b

αi
αi − αj

+m2
i . (3.51)

From formulae (3.48) - (3.51), we get

1

αi
Resx=αi(

1

2
β2

1(x)− β2(x)) =

=
l̄a∑
b=1

αi

t̃
(mi)
b − αi

+

mi∑
a=1

za +
n∑
j=1
j 6=i

αi min(mi,mj)

αi − αj
− m2

i

2
+

3

2
mi.

(3.52)

On the other hand, using formula (3.40), we can compute(
αi

∂

∂αi
ln Φ

)
(t̃, ᾱ, z̄, l,m) =

=
l̄a∑
b=1

αi

t̃
(mi)
b − αi

+

mi∑
a=1

za +
n∑
j=1
j 6=i

αi min(mi,mj)

αi − αj
+
mi

2

(3.53)

Comparing formulae (3.52), (3.53), and (3.43), we get relation (3.45).
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3.5.4 Bethe ansatz method for XXX spin chain model

Fix a pair (l,m) ∈ Zkn, where l = (l1, . . . , lk) ∈ Zk>0, m = (m1, . . . ,mn) ∈ Zn>0.

Assume that Pkn[l,m] 6= 0. For each i = 0, . . . , n− 1, define

m̄i =
n∑

j=i+1

(mj −
k∑
a=1

(ωla)j). (3.54)

The numbers m̄1, . . . , m̄n−1 are the (glk, gln)-dual analogs of the numbers l̄1, . . . , l̄k−1,

see formula (3.39). Recall that non-triviality of Pkn[l,m] implies l̄a > 0, a = 0, . . . ,

k − 1. Similarly, non-triviality of Pkn[l,m] implies m̄i > 0, i = 0, . . . , n− 1.

Let t be a set of m̄1 + · · ·+ m̄n−1 variables:

t = (t
(1)
1 , . . . , t

(1)
m̄1
, t

(2)
1 , . . . , t

(2)
m̄2
, . . . , t

(n−1)
1 , . . . , t

(n−1)
m̄n−1

).

Fix sequences of pairwise distinct complex numbers z̄ = (z1, . . . , zk) and ᾱ = (α1,

. . . , αn). We have m̄0 = 0. Also, put m̄n = 0. The XXX Bethe ansatz equations is

the following system of m̄1 + · · ·+ m̄n−1 equations:

αi+1

αi
=

k∏
a=1
la=i

t
(la)
b − za + 1

t
(la)
b − za

m̄i−1∏
a=1

t
(i)
b − t

(i−1)
a + 1

t
(i)
b − t

(i−1)
a

m̄i+1∏
a=1

t
(i)
b − t

(i+1)
a

t
(i)
b − t

(i−1)
a − 1

m̄i∏
a=1
a6=b

t
(i)
b − t

(i)
a − 1

t
(i)
b − t

(i)
a + 1

,

(3.55)

where i = 1, . . . , n− 1, b = 1, . . . , m̄i.

A solution t of the XXX Bethe ansatz equations (3.55) is called XXX-admissible

if t
(i)
a 6= t

(i)
b , t

(j)
a′ 6= t

(j+1)
b′ for any i = 1, . . . , n − 1, a, b = 1, . . . , m̄i, a 6= b, j = 1, . . . ,

n− 2, a′ = 1, . . . , m̄j, b
′ = 1, . . . , m̄j+1.

For each i, j = 1, . . . , n, define

Xi(x, t, z̄, ᾱ) = αi

k∏
a=1
la>i

x− za + 1

x− za

m̄i−1∏
a=1

x− t(i−1)
a + 1

x− t(i−1)
a

m̄i∏
a=1

x− t(i)a − 1

x− t(i)a
, (3.56)

Ẽj(x, t, z̄, ᾱ) =
∑

16i1<···<ij6n

Xi1(x)Xi2(x− 1) . . .Xij(x− j + 1). (3.57)

In the last formula Xi(x) = Xi(x, t, z̄, ᾱ), i = 1, . . . , n.
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Introduce a new variable u. Consider the following polynomial in u:

E(u, x, t, z̄, ᾱ) = un +
n∑
j=1

Ẽj(x, t, z̄, ᾱ)un−i,

which is also a rational function of x regular at infinity. Let Ea(u, t, z̄, ᾱ), a ∈ Z>0 be

the coefficients of the Laurent series at infinity of E(u, x) as a function of x:

E(u, x, t, z̄, ᾱ) =
∞∑
a=0

x−aEa(u, t, z̄, ᾱ). (3.58)

In [10], a certain function ψi(t, z̄) of t called the universal weight function for the

XXX-type model was defined. This function takes values in tensor products of highest

weight gln-modules. In the case that we need, ψi(t, z̄) is a Pkn[l,m]-valued function.

If t is an XXX-admissible solution of the XXX Bethe ansatz equations (3.55), and

ψi(t, z̄) 6= 0, then ψi(t, z̄) is a common eigenvector of the higher transfer matrices for

the XXX spin chain model. Higher transfer matrices are series in x−1, whose coef-

ficients generate a large commutative subalgebra called the XXX Bethe subalgebra

inside the Yangian Y (gln). The trigonometric Dynamical Hamiltonians can be con-

sidered as elements of the XXX Bethe subalgebra, see [10, Appendix B]. In particular,

if t is an XXX-admissible solution of the XXX Bethe ansatz equations (3.55), and

ψi(t, z̄) 6= 0, then ψi(t, z̄) is a common eigenvector of the Dynamical Hamiltonians,

and the corresponding eigenvalue can be computed using [10, Proposition B.1]. We

will formulate the result in the following theorem:

Theorem 3.5.5 Let t be an XXX-admissible solution of the XXX Bethe ansatz equa-

tions (3.55). Then for each i = 1, . . . , n, we have:

Ĝ
〈n,k〉
i (z̄, ᾱ)ψi(t, z̄) = ĝ

〈n,k〉
i (t, z̄, ᾱ)ψi(t, z̄),

where

ĝ
〈n,k〉
i (t, z̄, ᾱ) = − 1

αi
Resu=αi

E2(u, t, z̄, ᾱ)∏n
j=1(u− αi)

+
n∑
j=1
j 6=i

αjmimj

αi − αj
− m2

i

2
, (3.59)

and E2(u, t, z̄, ᾱ) is the coefficient in the expansion (3.58).



81

3.5.5 Spaces of quasi-exponentials and eigenvectors of trigonometric Dy-

namical Hamiltonians

Fix a pair (l,m) ∈ Zkn, where l = (l1, . . . , lk) ∈ Zk>0, m = (m1, . . . ,mn) ∈ Zn>0.

Assume that Pkn[l,m] 6= 0. Let the data (λ̄, µ̄; z̄, ᾱ) be like in Section 3.5.3, and let

W be a space of quasi-exponentials with the difference data (µ̄′, λ̄′; ᾱ,−z̄). Then W

has a basis of the form

{αx1r1(x), αx2r2(x), . . . , αxnrn(x)},

where r1(x), . . . , rn(x) are polynomials and deg ri(x) = mi.

For each i = 1, . . . , n, define

Ti(x) =
k∏
a=1
la>i

(x+ za + la − i). (3.60)

The following lemma is a special case of Lemma 3.7 in [19]:

Lemma 3.5.6 For each i = 0, . . . , n− 1, j1, . . . , jn−i ∈ {1, . . . , n}, the functions

Wr(αxj1rj1(x), αxj2rj2(x), . . . , αxjn−irjn−i(x))∏n
l=i+1(αxjn−l+1

Tj(x))

are polynomials.

For each i = 0, . . . , n− 1, j = 1, . . . , n, define

yi(x) =
Wr(αxnrn(x), αxn−1rn−1(x), . . . , αxi+1ri+1(x))∏n

j=i+1(αxjTj(x))
, (3.61)

T̃j(x) =
k∏
a=1
la=j

(x+ za).

According to Lemma 3.5.6, the functions y0(x), . . . , yn−1(x) are polynomials.

Lemma 3.5.7 For each i = 1, . . . , n− 1, there exists a polynomial ỹi such that

Wr

(
yi(x),

αxi
αxi+1

ỹi(x)

)
=

αxi
αxi+1

T̃i(x)yi−1(x)yi+1(x+ 1). (3.62)
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Proof Set

ỹi(x) = αi+1

Wr(αxnrn(x), . . . , αxi+2ri+2(x), αxi ri(x))

αxn . . . α
x
i+2α

x
i

∏n
j=i+1(Tj(x))

, i = 1, . . . , n− 1.

By Lemma 3.62, ỹ1(x), . . . , ỹn−1(x) are polynomials, and (3.62) follows from discrete

Wronskian identities (B.1) and (B.4).

Denote ui(x) = yi(x+ i/2), i = 0, . . . , n− 1. Then equations (3.62) become

Wr

(
ui(x),

αxi
αxi+1

ỹi(x+ i/2)

)
=

αxi
αxi+1

T̃i(x+ i/2)ui−1(x+ 1/2)ui+1(x+ 1/2), (3.63)

where i = 1, . . . , n− 1.

It is easy to see that for each i = 0, . . . , n − 1, deg ui = deg yi = m̄i, where

m̄0, . . . , m̄n−1 are given by formula (3.54). In particular, deg u0 = deg y0 = 0. One

can normalize polynomials r1(x), . . . , rn(x) so that the polynomials y0(x), . . . , yn−1(x)

(and hence u0(x), . . . , un−1(x)) are monic. For each i = 1, . . . , n− 1, write

ui(x) =

m̄i∏
a=1

(x− s(i)
a ).

We will call the space W XXX-admissible if for each i = 1, . . . , n − 1, the

polynomial ui(x) has only simple roots, different from the roots of the polynomi-

als ui−1(x+ 1/2), ui+1(x+ 1/2), T̃i(x+ i/2), and ui(x+ 1).

The following theorem is a part of the Theorem 7.4 in [18]:

Theorem 3.5.8 Let W be XXX-admissible, then relations (3.63) imply

αi+1

αi
=

k∏
a=1
la=i

s
(la)
b − ža + 1/2

s
(la)
b − ža − 1/2

∏
|j−i|=1

m̄j∏
a=1

s
(i)
b − s

(j)
a + 1/2

s
(i)
b − s

(j)
a − 1/2

m̄i∏
a=1
a6=b

s
(i)
b − s

(i)
a − 1

s
(i)
b − s

(i)
a + 1

, (3.64)

where i = 1, . . . , n− 1, b = 1, . . . , m̄i, and ža = −za − la/2 + 1/2 for each a = 1, . . . ,

k.

A tuple of polynomials u1(x), . . . , un−1(x) such that relations (3.63) hold for some

polynomials ỹ1(x), . . . , ỹn−1(x) is called a fertile tuple in [18].
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Let us call the equations (3.55) the XXX Bethe ansatz equations associated to

z̄ = (z1, . . . , zk). For each i = 1, . . . , n − 1, a = 1, . . . , m̄i, set t
(i)
a = s

(i)
a − i/2.

Then, using (3.64), it easy to check that t = (t
(1)
1 , . . . , t

(n−1)
m̄n−1

) is an XXX-admissible

solution of the XXX Bethe ansatz equations associated to −z̄ − l̄ + 1̄ = (−z1 −

l1 + 1,−z2 − l2 + 1, . . . ,−zk − lk + 1). Therefore, to each XXX-admissible space of

quasi-exponentials W with the difference data (µ̄′, λ̄′; ᾱ,−z̄), corresponds a vector

vW = ψ(t,−z̄ − l̄ + 1̄) ∈ Pkn[l,m], which, provided that vW 6= 0, is an eigenvector

of the trigonometric Dynamical Hamiltonians Ĝ
〈n,k〉
1 (−z̄ − l̄ + 1̄, ᾱ), . . . , Ĝ

〈n,k〉
n (−z̄ −

l̄ + 1̄, ᾱ), and the associated eigenvalues are given by the formula (3.59), where we

should substitute za → −za − la + 1, a = 1, . . . , k. We will call vW the Bethe vector

corresponding to W .

We are now going to relate the eigenvalues of the trigonometric Dynamical Hamil-

tonians associated with eigenvector vW and the coefficients of the fundamental monic

difference operator SmW of the space W .

Let y0(x), . . . , yn−1(x), T1(x), . . . , Tn(x) be the polynomials given by (3.61) and

(3.60), respectively. Put yn(x) = 1. Define

Yi = αi
Ti(x+ 1)yi−1(x+ 1)yi(x)

Ti(x)yi−1(x)yi(x+ 1)
, i = 1, . . . , n. (3.65)

Comparing formulae (3.10), (3.11), and (3.65), we get:

SmW = (T − Y1(x))(T − Y2(x)) . . . (T − Yn(x)).

For each i = 1, . . . , n− 1, write

yi(x) =

m̄i∏
a=1

(x− t̃(i)a ).

Then we have

Yi(x) = αi

k∏
a=1
la>i

x+ za + la − i+ 1

x+ za + la − i

m̄i−1∏
a=1

x− t̃(i−1)
a + 1

x− t̃(i−1)
a

m̄i∏
a=1

x− t̃(i)a − 1

x− t̃(i)a
, i = 1, . . . , n.

Since yi(x) = ui(x− i/2), we have s
(i)
a = t̃

(i)
a − i/2, i = 1, . . . , n− 1, a = 1, . . . , m̄i.

Therefore, for the solution t = (t
(1)
1 , . . . , t

(n−1)
m̄n−1

) of the XXX Bethe ansatz equations
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corresponding to the space W , we get t
(i)
a = s

(i)
a − i/2 = t̃

(i)
a − i. Denote this solution

as t̃− i.

Comparing the last formula for Yi(x) with the formula (3.56) for Xi(x, t, z̄, ᾱ), we

have

Xi(x, t̃− i,−z̄ − l̄ + 1̄, ᾱ) = Yi(x+ i− 1). (3.66)

Let Ě1(x), . . . , Ěn(x) be the coefficients of the fundamental monic difference op-

erator SmW of the space W :

SmW = T n +
n∑
i=1

Ěi(x)T n−i.

For each i = 1, . . . , n, we have

Ěi(x) =
∑

16i1<···<ij6n

Yi1(x+ i1 − 1)Yi2(x+ i2 − 2) . . . Yij(x+ ij − j). (3.67)

Comparing formulae (3.57), (3.67), and (3.66), we get Ẽi(x, t̃− i,−z̄− l̄+ 1̄, ᾱ) =

Ěi(x). This, together with Theorem 3.5.5, proves the following:

Proposition 3.5.9 Let W be an XXX-admissible space of quasi-exponentials W with

the difference data (µ̄′, λ̄′; ᾱ,−z̄). Let vW be the Bethe vector corresponding to W .

Write the fundamental monic difference operator SmW of the space W in the following

form:

SmW =
∞∑
a=0

x−aEa(T ),

where E1(T ), E2(T ), . . . are some polynomials in T . Then we have

Ĝ
〈n,k〉
i (−z̄ − l + 1̄, ᾱ)vW = ĝ

〈n,k〉
i (−z̄ − l + 1̄, ᾱ)vW ,

where

ĝ
〈n,k〉
i (−z̄ − l + 1̄, ᾱ) = − 1

αi
Resu=αi

E2(u)∏n
j=1(u− αi)

+
n∑
j=1
j 6=i

αjmimj

αi − αj
− m2

i

2
. (3.68)
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3.5.6 Quotient difference operator and duality for trigonometric Gaudin

and Dynamical Hamiltonians

Fix a pair (l,m) ∈ Zkn, where l = (l1, . . . , lk) ∈ Zk>0, m = (m1, . . . ,mn) ∈ Zn>0.

Assume that Pkn[l,m] 6= 0. Let the data (λ̄, µ̄; z̄, ᾱ) be like in Section 3.5.3. Let V

be a Gaudin admissible space of quasi-polynomials with non-degenerate terms with

the data (λ̄, µ̄; z̄, ᾱ). Let SV be the fundamental pseudo-difference operator of V , see

Section 3.3.

By Theorem 3.3.2, S−1
V is the fundamental pseudo-difference operator SW of a

space of quasi-exponentials W with the difference data (µ̄′, λ̄′; ᾱ,−z̄). In this section,

we will relate a map V 7→ W with the (glk, gln)-duality of the trigonometric Gaudin

and Dynamical Hamiltonians.

Let vV ∈ Pkn[l,m] be the Bethe vector corresponding to V , see Section 3.5.3.

Assume that vV 6= 0. Then the vector vV is an eigenvector of the trigonometric

Gaudin Hamiltonians Ĥ
〈k,n〉
1 (ᾱ, z̄ + l), . . . , Ĥ

〈k,n〉
n (ᾱ, z̄ + l). Denote the associated

eigenvalues as ĥ
〈k,n〉
1 (ᾱ, z̄ + l), . . . , ĥ

〈k,n〉
n (ᾱ, z̄ + l), respectively.

Assume that the space W is XXX-admissible. Let vW ∈ Pkn[l,m] be the Bethe

vector corresponding to W , see Section 3.5.5. Assume that vW 6= 0. Then the vector

vW is an eigenvector of the trigonometric Dynamical Hamiltonians Ĝ
〈n,k〉
1 (−z̄−l+1̄, ᾱ),

. . . , Ĝ
〈n,k〉
n (−z̄ − l + 1̄, ᾱ). Denote the associated eigenvalues as ĝ

〈n,k〉
1 (−z̄ − l + 1̄, ᾱ),

. . . , ĝ
〈n,k〉
n (−z̄ − l + 1̄, ᾱ), respectively.

Theorem 3.5.10 The following holds:

ĥ
〈k,n〉
i (ᾱ, z̄ + l) = −ĝ〈n,k〉i (−z̄ − l + 1̄, ᾱ), i = 1, . . . , n. (3.69)

Before proving the theorem, let us discuss how it explains the relation between

the quotient difference operator and the (glk, gln)-duality. By Proposition 3.5.1, for

each i = 1, . . . , n, we have

Ĥ
〈k,n〉
i (ᾱ, z̄ + l)vW = −Ĝ〈n,k〉n (−z̄ − l + 1̄, ᾱ)vW = −ĝ〈n,k〉n (−z̄ − l + 1̄, ᾱ)vW . (3.70)
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Therefore, starting with the space V and the corresponding vector vV , we have

two different ways to obtain a common eigenvector of the trigonometric Dynamical

Hamiltonians. First, by the (glk, gln)-duality, vV is itself a common eigenvector of

the Dynamical Hamiltonians, see formula (3.70). Second, the map V 7→ W (or more

explicitly, the construction of the quotient difference operator) gives the vector vW .

Theorem 3.5.10 assures that for generic z̄, ᾱ, these two eigenvectors are the same up

to a constant.

Indeed, comparing formulae (3.69) and (3.70), we have

Ĥ
〈k,n〉
i (ᾱ, z̄ + l)vW = ĥ

〈k,n〉
i (ᾱ, z̄ + l)vW . (3.71)

Similarly to Lemma 2.4.5, one can show that for generic z̄, ᾱ, the common

eigenspaces of the operators Ĥ
〈k,n〉
1 (ᾱ, z̄+ l), . . . , Ĥ

〈k,n〉
n (ᾱ, z̄+ l) in Pkn[l,m] are one-

dimensional. Then relation (3.71) implies that vW is proportional to vV .

Proof [Proof of Theorem 3.5.10] Let D̄V be the fundamental regularized differential

operator of V . Denote S̄V = τ(D̄V ), where τ is given by formula (3.4). Let U

be the space of quasi-exponentials with the difference data (µ̄, λ̄; ᾱ, z̄ + 1̄) such that

S̄U = (S̄V )‡, where S̄U is the fundamental regularized difference operator of U , see

Theorem 3.4.12.

The space U has dimension M =
∑n

i=1 mi. By Lemma 3.2.1, the fundamental

monic difference operator SmU = TM +
∑M

i=1 bi(x)TM−i of U has rational coefficients

b1(x), . . . , bM(x), which are regular at infinity. Therefore, there exist polynomials

B0(u), B1(u), B2(u), . . . such that

SmU =
∞∑
a=0

x−aBa(T ). (3.72)

Moreover, Lemma 3.2.1 gives an explicit formula for the polynomial B0(x):

B0(u) =
n∏
i=1

(u− αi)mi . (3.73)

We have S̄U = pU(x)SmU , where pU(x) =
∏k

a=1(x − za − la), see Lemma 3.2.2. In

particular, the coefficients of the operator S̄U are polynomials in x of degree at most

k.
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Define numbers Aia, i = 1, . . . ,M , a = 1, . . . , k by S̄U =
∑M

i=1

∑k
a=1Aiax

aT i.

Then we have

SmU =
1∏k

a=1(x− za − la)

M∑
i=1

k∑
a=1

Aiax
aT i. (3.74)

Denote
∑k

a=1(za + la) = Z. Comparing formulae (3.72) and (3.74), we get

B0(u) =
M∑
i=1

Ai,ku
i, B1(u) =

M∑
i=1

(Ai,k−1 + ZAi,k)u
i,

B2(u) =
M∑
i=1

(
Ai,k−2 + ZAi,k−1 + Z2Ai,k

)
ui.

(3.75)

Since S̄V = (S̄U)‡, it holds that S̄V =
∑M

i=1

∑k
a=1 AiaT

i(−x)a. Therefore,

D̄V =
M∑
i=1

k∑
a=1

Aiax
i

(
x
d

dx

)a
(3.76)

Let DV be the fundamental monic differential operator of V . We have D̄V =

pV (x)(xkDV ), where pV (x) =
∏n

i=1(x− αi)mi , see Lemma 3.1.3. Write

xkDV =

(
x
d

dx

)k
+

k∑
a=1

βa(x)

(
x
d

dx

)k−a
. (3.77)

Then formula (3.76) gives:

βa =

∑M
i=1Ai,k−ax

i∏n
i=1(x− αi)mi

, a = 1, . . . , k. (3.78)

By Proposition 3.5.4, we have

h
〈k,n〉
i (ᾱ, z̄ + l) =

1

αi
Resx=αi

(
1

2
β2

1(x)− β2(x)

)
+
m2
i

2
−mi. (3.79)

Using formulas (3.75), (3.73), and (3.78), one can check

Resx=αi

(
1

2
β2

1(x)− β2(x)

)
= Resu=αi

(
1

2

B2
1(u)

B2
0(u)

− B2(u)

B0(u)

)
.

Therefore, formula (3.79) gives

h
〈k,n〉
i (ᾱ, z̄ + l) =

1

αi
Resu=αi

(
1

2

B2
1(u)

B2
0(u)

− B2(u)

B0(u)

)
+
m2
i

2
−mi. (3.80)
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Let W be the space of quasi-exponentials with the difference data (µ̄′, λ̄′; ᾱ,−z̄)

such that SW = S−1
V , where SV and SW are the fundamental pseudo-difference opera-

tors of V and W , respectively. Let SmW be the fundamental monic difference operator

of W . Similarly to SmU , see formula (3.72), SmW can be written in the form

SmW =
∞∑
a=0

x−aEa(T ).

If S is a difference operator of the form S =
∑l

i=0 ai(x)T l−i, define a difference

operator S← by

S← =
l∑

i=0

ai(−x)(T−)l−i.

In the proof of Theorem 3.5.10, see Section 3.4.6, the difference operator SmW was

given in terms of the quotient difference operator:

SmW = Q→+ (SmU ).

Then relation (3.26) gives

n∏
i=1

(T − αi)mi+1 = ((SmW )←)† SmU .

Since ((SmW )←)† =
∑∞

a=0 Ea(T )(−x)−a, we have

n∏
i=1

(T − αi)mi+1 =

(
∞∑
a=0

Ea(T )(−x)−a

)(
∞∑
a=0

x−aBa(T )

)
.

Writing the right hand side of the last formula in the form
∑∞

a=0 x
−aPa(T ) with

some polynomials P0(x), P1(x), P2(x), . . . and comparing it to the left hand side, we

see that Pa(u) = 0 for all a > 1, and

E0(u)B0(u) = P0(u) =
n∏
i=1

(u− αi)mi+1. (3.81)

From P1(u) = 0, we get

E0(u)B1(u)− E1(u)B0(u) = 0. (3.82)
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From P2(u) = 0, we get

E2(u)B0(u) + E0(u)B2(u) + uE ′1(u)B0(u)− uE ′0(u)B1(u)− E1(u)B1(u) = 0. (3.83)

In the last formula we used that for every polynomial P (u), we have

P (T )x−1 = x−1P (T )− x−2TP ′(T ) +
∑
a>3

x−aP̃a(T )

for some polynomials P̃3(u), P̃4(u), . . . .

Using relations (3.82) and (3.83), one can check

1

2

B2
1(u)

B2
0(u)

− B2(u)

B0(u)
= −

(
1

2

E2
1(u)

E2
0(u)

− E2(u)

E0(u)

)
+ u

(
E1(u)

E0(u)

)′
.

Therefore, formula (3.80) gives

h
〈k,n〉
i (ᾱ, z̄ + l) =− 1

αi
Resu=αi

(
1

2

E2
1(u)

E2
0(u)

− E2(u)

E0(u)

)
+

+ Resu=αi

(
u

(
E1(u)

E0(u)

)′)
+
m2
i

2
−mi.

(3.84)

Let ĝ
〈n,k〉
1 (−z̄−l+1̄, ᾱ), . . . , ĝ

〈n,k〉
n (−z̄−l+1̄, ᾱ) be the eigenvalues of the trigonomet-

ric Dynamical Hamiltonians Ĝ
〈n,k〉
1 (−z̄−l+1̄, ᾱ), . . . , Ĝ

〈n,k〉
n (−z̄−l+1̄, ᾱ), respectively,

associated with the Bethe vector vW . By Proposition 3.5.9, we have

ĝ
〈n,k〉
i (−z̄ − l + 1̄, ᾱ) = − 1

αi
Resu=αi

E2(u)∏n
j=1(u− αi)

+
n∑
j=1
j 6=i

αjmimj

αi − αj
− m2

i

2
. (3.85)

We will use again [10, Proposition B.1], which gives the following explicit formula

for the quotient E1(u)/
∏n

i=1(u− αi):

E1(u)∏n
i=1(u− αi)

=
n∑
j=1

αjmj

αj − u
. (3.86)

From formula (3.82) (or Lemma 3.2.1), we get

E0(u) =
n∏
i=1

(u− αi). (3.87)
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Using (3.86) and (3.87), we can rewrite (3.85) in the following way:

ĝ
〈n,k〉
i (−z̄ − l + 1̄, ᾱ) =

1

αi
Resu=αi

(
1

2

E2
1(u)

E2
0(u)

− E2(u)

E0(u)

)
− m2

i

2
. (3.88)

Using (3.86) and (3.87) again, we compute

1

αi
Resu=αi

(
u

(
E1(u)

E0(u)

)′)
= mi. (3.89)

Comparing formulae (3.84), (3.88), and (3.89), we get

ĥ
〈k,n〉
i (ᾱ, z̄ + l) = −ĝ〈n,k〉i (−z̄ − l + 1̄, ᾱ), i = 1, . . . , n.

Theorem 3.5.10 is proved.

3.5.7 Non-reduced data

In the previous section, we related the quotient difference operator and the

(glk, gln)-duality of the trigonometric Gaudin and Dynamical Hamiltonians acting

on the space Pkn[l,m], where l = (l1, . . . , lk) and m = (m1, . . . ,mn) are such that

la 6= 0, a = 1, . . . , k and mi 6= 0, i = 1, . . . , n. In this section, we are going to extend

this result to all nontrivial subspaces Pkn[l,m], (l,m) ∈ Zkn.

Fix l = (l1, . . . , lk) ∈ Zk>0. For each a = 1, . . . , k, let qa(x) be a polynomial of

degree la such that qa(0) 6= 0. Fix complex numbers z1, . . . , zk such that za − zb /∈ Z

if a 6= b. Denote by V the space spanned by the functions xzaqa(x), a = 1, . . . , k.

Define

V red =
k∏
a=1
la=0

(
x
d

dx
− za

)
V.

Denote k′ = dimV red. Fix α ∈ C∗. Let (e1 > · · · > ek) be the sequence of exponents

of V at α, and let (ered
1 > · · · > ered

k′ ) be the sequence of exponents of V red at α.

Lemma 3.5.11 Define a partition µ = (µ1, µ2, . . . ) by ered
a = k′ + µa − a, a = 1, . . . ,

k′, µk′+1 = 0. Then ea = k + µa − a, a = 1, . . . , k.

Conversely, if a partition µ is such that ea = k + µa − a, a = 1, . . . , k, then

µk′+1 = 0 and ered
a = k′ + µa − a, a = 1, . . . , k′.
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Proof We are going to use the Frobenius method of solving linear differential equa-

tions. It is enough to prove the lemma for the case when l1 = 0, and l2, . . . , lk are

not zero. Let DV and DV red be the monic linear differential operators of order k and

k − 1, respectively, annihilating V and V red, respectively. Then

xkDV = xk−1DV red

(
x
d

dx
− z1

)
. (3.90)

Define functions b1(x), . . . , bk(x), bred
1 (x), . . . , bred

k−1(x) by

xkDV =
k∑
a=0

ba(x)

(x− α)a

(
x
d

dx

)k−a
,

xk−1DV red =
k−1∑
a=0

bred
a (x)

(x− α)a

(
x
d

dx

)k−1−a

.

Using Lemma 2.5.1, one can check that b1(x), . . . , bk(x), bred
1 (x), . . . , bred

k−1(x) are

regular at α. Define polynomials I(r) and Ired(r) by

I(r) =
k∑
a=1

ba(α)αk−ar(r − 1)(r − 2) . . . (r − k + a+ 1),

Ired(r) =
k−1∑
a=1

bred
a (α)αk−1−ar(r − 1)(r − 2) . . . (r − k + a+ 2).

Notice that {e1, . . . , ek} is the set of roots of the polynomial I(r). Indeed, substi-

tuting a series
∑∞

i=0 Ai(x−α)i+r into the differential equation DV f = 0, and looking

at the coefficient for the lowest power of (x−α), we get I(r) = 0. Similarly, {ered
1 , . . . ,

ered
k′ } is the set of roots of the polynomial Ired(r). The polynomials I(r) and Ired(r) are

called the indical polynomials of the differential equations DV f = 0 and DV redf = 0,

respectively.

Using formula (3.90), we obtain the following relations:

ba(x) = bred
a (x)− z1(x− α)bred

a−1(x), a = 1, . . . , k, (3.91)

where we assume that bred
k (x) = 0. Relations (3.91) imply ba(α) = bred

a (α), a = 1,

. . . , k. Since DV and DV red are monic, we also have b0(x) = bred
0 (x) = 1. Therefore,

I(r) = rIred(r − 1), which implies the lemma.
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Let {α1, . . . , αn} be a set including all singular points of V . Assume that αi 6= αj

if i 6= j, and αi 6= 0 for all i = 1, . . . , n. Suppose that for each i = 1, . . . , n, the

sequence of exponents of V at αi is given by

(k, k − 1, . . . , k −mi + 1, k −mi − 1, k −mi − 2, . . . , 1, 0)

for some mi ∈ Z, 0 6 mi 6 k.

Define a sequence of partitions λ̄ = (λ(1), . . . , λ(k)) by λ(a) = (la, 0, 0, . . . ), a =

1, . . . , k. Define a sequence of partitions µ̄ = (µ(1), . . . , µ(n)) by µ(i) = (1, 1, . . . ,

1, 0, 0, . . . ) with mi ones, i = 1, . . . , n. Define sequences λ̄red, µ̄red, z̄red, and ᾱred by

removing all zero partitions from the sequences λ̄, µ̄, and removing corresponding

numbers from the sequences z̄ = (z1, . . . , zn), ᾱ = (α1, . . . , αn), respectively. We will

call the data (λ̄, µ̄; z̄, ᾱ) reduced if (λ̄, µ̄; z̄, ᾱ) = (λ̄red, µ̄red; z̄red, ᾱred), and non-reduced

otherwise.

Proposition 3.5.12 V red is a space of quasi-polynomials with the data (λ̄red, µ̄red;

z̄red, ᾱred).

Proof Recall that V is spanned by the functions xzaqa(x), a = 1, . . . , k, where q1(x),

. . . , qk(x) are polynomials such that deg qa = la, and qa(0) 6= 0, a = 1, . . . , k. Then

the space V red is spanned by the functions xza q̃a(x), a = 1, . . . , k, where

q̃b(x) =
k∏
a=1
la=0

(
x
d

dx
+ zb − za

)
qb(x) (3.92)

If lb 6= 0, then for each a in the product on the left hand side of formula (3.92), we

have zb − za /∈ Z, which yields deg q̃a(x) = deg qa(x), a = 1, . . . , k. If lb = 0, then

formula (3.92) implies q̃b(x) = 0. This shows that the space V red has a basis

{xza q̃a(x) | za is present in z̄red},

and the degrees of the polynomials q̃a(x) appearing in this basis correspond to the

sequence λ̄red.
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Notice that ᾱred is the set of all singular points of V , and the sequences of expo-

nents of V at these points correspond to the sequence µ̄red. Therefore, the proposition

follows from Lemma 3.5.11.

By Proposition 3.5.12 and Theorem 3.3.2, there is a space of quasi-exponentials

W red with the difference data ((µ̄red)′, (λ̄red)′; ᾱred,−z̄red) such that SW red = S−1
V red ,

where SW red and SV red are the fundamental pseudo-difference operators of W red and

V red, respectively. We are going to construct a space W such that

W red =
n∏
i=1
mi=0

(T − αi)W.

For this we will need the following lemma:

Lemma 3.5.13 Fix α, β ∈ C∗, and a polynomial p(x). Assume that α 6= β. Then

there exists a unique polynomial p̃(x) such that deg p̃(x) = deg p(x), and

(T − β)αxp̃(x) = αxp(x). (3.93)

Proof Relation (3.93) is the same as relation

αp̃(x+ 1)− βp̃(x) = p(x). (3.94)

Let a0, . . . , am be the coefficients of p(x): p(x) = amx
m + am−1x

m−1 + · · ·+ a1x+ a0.

Substituting a polynomial p̃(x) = ãmx
m + ãm−1x

m−1 + · · · + ã1x + ã0 into equation

(3.94) and comparing coefficients for powers of x, we get

ãm−i(α− β) = am−i − α
i−1∑
j=0

(
m− j
m− i

)
ãm−j, i = 1, . . . ,m,

which is a recursion that allows to find the numbers ã1, . . . , ãn uniquely.

For any β ∈ C∗, define a linear operator (T − β)−1 on the space spanned by all

functions of the form αxp(x), where α ∈ C∗, α 6= β, and p(x) is a polynomial, by the

formula

(T − β)−1αxp(x) = αxp̃(x),
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where p̃(x) is the polynomial from Lemma 3.5.13.

Let 1 6 i1 < i2 < · · · < il 6 n be such that mi = 0 if i = is for some s = 1, . . . , l,

and mi 6= 0 otherwise. Denote by W the space spanned by the functions

(T − αi1)−1(T − αi2)−1 . . . (T − αil)−1f, f ∈ W red, and αxi1 , . . . , α
x
il
.

Let SmW be a unique difference operator of the form T n +
∑n

i=1 bi(x)T n−i annihi-

lating W . Let Sm
W red be the fundamental monic difference operator of W red. Then we

have W = kerSmW and

SmW = SmW red

n∏
i=1
mi=0

(T − αi). (3.95)

In particular, this shows that the order of αi1 , . . . , αil in the definition of W does not

matter.

Recall that W red is a space of quasi-exponentials with the difference data

((µ̄red)′, (λ̄red)′; ᾱred,−z̄red). Then the equality deg p̃(x) = deg p(x) in Lemma 3.5.13

implies that the space W has a basis of the form

{αxi ri(x), i = 1, . . . , n},

where r1(x), . . . , rn(x) are polynomials such that deg ri(x) = mi, i = 1, . . . , n.

Fix z ∈ C. Let (ẽ1 > · · · > ẽn) be the sequence of discrete exponents of W at z.

Denote n′ = n − l = dimW red. Let (ẽred
1 > · · · > ẽred

n′ ) be the sequence of discrete

exponents of W red at z.

Lemma 3.5.14 Define a partition λ = (λ1, λ2, . . . ) by ẽred
i = n′ + λi − i, i = 1, . . . ,

n′, λn′+1 = 0. Then ẽi = n+ λi − i, i = 1, . . . , n.

Conversely, if a partition λ is such that ẽi = n+λi−i, i = 1, . . . , n, then λn′+1 = 0

and ẽred
i = n′ + λi − i, i = 1, . . . , n′.

Proof It is enough to prove the Lemma for the case m1 = 0, and m2, . . . ,mn are

not zero.
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Let f1(x), . . . , fn−1(x) be a basis of W red such that for each i = 1, . . . , n − 1,

T jfi(z) = 0, j = 0, . . . , ẽred
i − 1, and T ẽ

red
i fi(z) 6= 0. Set

f̃i(x) = (T − α1)−1fi(x)− αx−z1 (T − αi)−1fi(z), i = 1, . . . , n.

Then f̃i(x) ∈ W , (T − α1)f̃i(x) = fi(x), and f̃i(z) = 0, i = 1, . . . , n− 1.

Since T j − αj1 =
(∑j−1

s=0 α
j−1−s
1 T s

)
(T − α1), we have

T j f̃i(x) = αj1f̃i(x) +

j−1∑
s=0

αj−1−s
1 T sfi(x).

The last relation implies T j f̃i(z) = 0, j = 0, . . . , ẽred
i , and T ẽ

red
i +1f̃i(z) =

T ẽ
red
i fi(z) 6= 0.

Since {αx1 , f̃1(x), . . . , f̃n−1(x)} is a basis of W , the sequence of discrete exponents

of W at z is given by (
ẽred

1 + 1 > . . . ẽred
1 + 1 > 0

)
,

which implies the lemma.

Notice that for each a = 1, . . . , k, the sequence of discrete exponents of W red at

−za is given by

(n′, n′ − 1, . . . , n′ − la + 1, n′ − la − 1, . . . , 1, 0),

Therefore, by Lemma 3.5.14, for each a = 1, . . . , k, the sequence of discrete exponents

of W at −za is given by

(n, n− 1, . . . , n− la + 1, n− la − 1, . . . , 1, 0).

Consider the space Pkn[l,m], where l = (l1, . . . , lk) and m = (m1, . . . ,mn). One can

repeat all constructions in Section 3.5.3 for the space V . Assume that V satisfies

conditions similar to those for a Gaudin admissible space in Section 3.5.3. Then we

obtain a vector vV ∈ Pkn[l,m] such that

Ĥ
〈k,n〉
i (ᾱ, z̄ + l)vV = ĥi(ᾱ, z̄ + l)vV , i = 1, . . . , n
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for some numbers ĥ1(ᾱ, z̄ + l), . . . , ĥn(ᾱ, z̄ + l). We will assume that vV 6= 0.

Similarly, one can repeat all constructions in Section 3.5.5 for the space W . As-

sume that W satisfies conditions similar to those for an XXX-admissible space in

Section 3.5.5. Then we obtain a vector vW ∈ Pkn[l,m] such that

Ĝ
〈n,k〉
i (−z̄ − l + 1̄, ᾱ)vW = ĝi(−z̄ − l + 1̄, ᾱ)vW , i = 1, . . . , n

for some numbers ĝ1(−z̄−l+1̄, ᾱ), . . . , ĝn(−z̄−l+1̄, ᾱ). We will assume that vW 6= 0.

Theorem 3.5.15 The following holds:

ĥi(ᾱ, z̄ + l) = −ĝi(−z̄ − l + 1̄, ᾱ), i = 1, . . . , n.

Proof Define functions β0(x), . . . , βk(x), βred
0 (x), . . . , βred

k′ (x) by

xkDV =
k∑
a=0

βa(x)

(
x
d

dx

)k−a
, xk

′
DV red =

k′∑
a=0

βred
a (x)

(
x
d

dx

)k′−a
.

For each i = 1, . . . , n, we have

ĥi(ᾱ, z̄ + l) =
1

αi
Resx=αi

(
1

2
β2

1(x)− β2(x)

)
+
m2
i

2
−mi.

Define also the following numbers:

ĥred
i (ᾱ, z̄ + l) =

1

αi
Resx=αi

(
1

2
(βred

1 )2(x)− βred
2 (x)

)
+
m2
i

2
−mi.

Suppose that l1 = 0, and l2, . . . , lk are not zero. Relation (3.90) implies

β1 = βred
1 − z1, β2 = βred

2 − z1β
red
1 .

Using the last two formulas, it is easy to check that

Resx=αi

(
1

2
β2

1(x)− β2(x)

)
= Resx=αi

(
1

2
(βred

1 )2(x)− βred
2 (x)

)
. (3.96)

By induction, formula (3.96) holds for any l1, . . . , lk. Therefore, we have ĥi(ᾱ, z̄+

l) = ĥred
i (ᾱ, z̄ + l), i = 1, . . . , n.
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Define polynomials E0(u), E1(u), E2(u), . . . , Ered
0 (u), Ered

1 (u), Ered
2 (u), . . . by

SmW =
∞∑
a=0

x−aEa(T ), SmW red =
∞∑
a=0

x−aEred
a (T ).

For each i = 1, . . . , n, we have

ĝi(−z̄ − l + 1̄, ᾱ) =
1

αi
Resu=αi

(
1

2

E2
1(u)

E2
0(u)

− E2(u)

E0(u)

)
− m2

i

2
.

Define also the following numbers

ĝred
i (−z̄ − l + 1̄, ᾱ) =

1

αi
Resu=αi

(
1

2

(Ered
1 (u))2

(Ered
0 (u))2

− Ered
2 (u)

Ered
0 (u)

)
− m2

i

2
.

Using relation (3.95), we have

Ea(u) = Ered
a (u)

n∏
i=1
mi=0

(u− αi),

which implies ĝi(−z̄ − l + 1̄, ᾱ) = ĝred
i (−z̄ − l + 1̄, ᾱ), i = 1, . . . , n.

In the proof of Theorem 3.5.10, we already checked that ĥred
i (ᾱ, z̄+l) = −ĝred

i (−z̄−

l+1̄, ᾱ) for all i such thatmi 6= 0. Ifmi = 0, then ĥred
i (ᾱ, z̄+l) = ĝred

i (−z̄−l+1̄, ᾱ) = 0.

Therefore, we have ĥi(ᾱ, z̄ + l) = −ĝi(−z̄ − l + 1̄, ᾱ), i = 1, . . . , n.

Theorem 3.5.15 is proved.
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4. DUALITY FOR KNIZHNIK-ZAMOLODCHIKOV AND

DYNAMICAL EQUATIONS

4.1 KZ, qKZ, DD and qDD equations

Fix a nonzero complex number κ. Consider differential operators ∇1, . . . ,∇k

and ∇̂1, . . . , ∇̂k with coefficients in U(gln)⊗k depending on complex variables z̄ =

(z1, . . . , zk) and ᾱ = (α1, . . . , αn):

∇a(z̄, ᾱ, κ) = κ
∂

∂za
−Ha(z̄, ᾱ),

∇̂a(z̄, ᾱ, κ) = κza
∂

∂za
− Ĥa(z̄, ᾱ).

Here H1(z̄, ᾱ), . . . , Hk(z̄, ᾱ) are the Gaudin Hamiltonians defined in Section 2.3.3, and

Ĥ1(z̄, ᾱ), . . . , Ĥk(z̄, ᾱ) are the 〈n, k〉-analogs of the trigonometric Gaudin Hamiltoni-

ans Ĥ
〈k,n〉
1 (ᾱ, z̄), . . . , Ĥ

〈k,n〉
k (ᾱ, z̄) defined in Section 3.5.1

The differential equations ∇af = 0 (resp. ∇̂af = 0), a = 1, . . . , k are called the

rational (resp. trigonometric) Knizhnik-Zamolodchikov (KZ) equations.

Introduce differential operators D1, . . . , Dn and D̂1, . . . , D̂n with coefficients in

U(gln)⊗k depending on complex variables z̄ = (z1, . . . , zk) and ᾱ = (α1, . . . , αn):

Di(z̄, ᾱ, κ) = κ
∂

∂αi
−Gi(z̄, ᾱ),

D̂i(z̄, ᾱ, κ) = καi
∂

∂αi
− Ĝi(z̄, ᾱ).

Here G1(z̄, ᾱ), . . . , Gn(z̄, ᾱ) are the Dynamical Hamiltonians defined in Section 2.3.3,

and Ĝ1(z̄, ᾱ), . . . , Ĝn(z̄, ᾱ) are the trigonometric Dynamical Hamiltonians Ĝ
〈n,k〉
1 (z̄, ᾱ),

. . . , Ĝ
〈n,k〉
n (z̄, ᾱ) defined in Section 3.5.1.

The differential equations Dif = 0 (resp. D̂if = 0), i = 1, . . . , n are called the

rational (resp. trigonometric) differential dynamical (DD) equations, see [22,23].
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Let eij, i, j = 1, . . . , n be the standard generators of the Lie algebra gln. For any

finite-dimensional irreducible gln-modules L1 and L2, there is a distinguished rational

function RL1L2(t) of t with values in End(L1⊗L2) called the rational R-matrix. It is

uniquely determined by the gln-invariance

[RL1L2(t), g ⊗ 1 + 1⊗ g] = 0 for any g ∈ gln, (4.1)

the commutation relations

RL1L2(t)(teij ⊗ 1 +
n∑
l=1

eil ⊗ elj) = (teij ⊗ 1 +
n∑
l=1

elj ⊗ eil)RL1L2(t), (4.2)

and the normalization condition

RL1L2(t)v ⊗ w = v ⊗ w, (4.3)

where v and w are the highest weight vectors of L1 and L2, respectively.

Consider a k-fold tensor product L1 ⊗ · · · ⊗ Lk of gln-modules. Let Rab(t) be

an element of End(L1 ⊗ · · · ⊗ Lk) acting as RLaLb(t) on factors La and Lb, and as

identity on all other factors. Denote zab = za− zb. Consider the products K1, . . . , Kk

depending on complex variables z̄ = (z1, . . . , zk) and ᾱ = (α1, . . . , αn):

Ka(z̄, ᾱ, κ) = (Rak(zak) . . . Ra,a+1(za,a+1))−1×

×
n∏
i=1

(α−eiii )(a)R1a(z1a − κ) . . . Ra−1,a(za−1,a − κ).

Denote by Tu a difference operator acting on a function f(u) by

(Tuf)(u) = f(u+ κ).

Introduce difference operators Z1, . . . , Zk:

Za(z̄, ᾱ, κ) = Ka(z̄, ᾱ, κ)Tza .

The difference equations Zaf = 0 are called (rational) quantized Knizhnik-

Zamolodchikov (qKZ) operators.
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For any i, j = 1, . . . , n, i 6= j, introduce the series Bij(t) depending on a complex

variable t:

Bij(t) = 1 +
∞∑
s=1

esjie
s
ij

s!

s∏
b=1

(t− eii + ejj − b)−1.

The action of this series is well defined on any finite-dimensional gln-module L giving

an End(L)-valued rational function of t.

Denote αij = αi − αj. Consider the products X1, . . . , Xn depending on complex

variables z̄ = (z1, . . . , zk), and ᾱ = (α1, . . . , αn):

Xi(z̄, ᾱ, κ) = (Bin(αin) . . . Bi,i+1(αi,i+1))−1

k∏
a=1

(z−eiia )(a)B1i(α1i−κ) . . . Bi−1,i(αi−1,i−κ).

The products X1, . . . , Xn act on any k-fold tensor product L1 ⊗ · · · ⊗ Lk of finite-

dimensional gln-modules.

Introduce difference operators Q1, . . . , Qn:

Qi(z̄, ᾱ, κ) = Xi(z̄, ᾱ, κ)Tαi .

The difference equations Qif = 0 are called the (rational) difference dynamical (qDD)

equations. [24]

It is known that the introduced operators combine into three commutative fami-

lies, see [22–24] for more references.

Theorem 4.1.1 The operators ∇1, . . . ,∇k, D1, . . . , Dn pairwise commute.

Theorem 4.1.2 The operators ∇̂1, . . . , ∇̂k, Q1, . . . , Qn pairwise commute.

Theorem 4.1.3 The operators D̂1, . . . , D̂n, Z1, . . . , Zk pairwise commute.

4.2 (glk,gln)-duality

The operators ∇a, ∇̂a, Di, D̂i, Za, and Qi introduced in the previous section are

associated with the Lie algebra gln. We will write them now as ∇〈n〉a , ∇̂〈n〉a , D
〈n〉
i , D̂

〈n〉
i ,

Z
〈n〉
a , and Q

〈n〉
i , respectively. Consider also analogous operators ∇〈k〉i , ∇̂〈k〉i , D

〈k〉
a , D̂

〈k〉
a ,
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Z
〈k〉
i , and Q

〈k〉
a associated with the Lie algebra glk. Using formulas (2.19) and (2.20),

consider the action of these operators on Pkn-valued functions of z̄ = (z1, . . . , zk) and

ᾱ = (α1, . . . , αn). We will write F w G if the operators F and G act on the Pkn-

valued functions in the same way. Let us also write e
〈n〉
ij for the standard generators

of the Lie algebra gln and e
〈k〉
ab for the standard generators of the Lie algebra gl2.

Denote −ᾱ + 1 = (−α1 + 1, . . . ,−αn + 1), −z̄ + 1 = (−z1 + 1, . . . ,−zk + 1).

Theorem 4.2.1 For any i = 1, ..., n and a = 1, ..., k, the following relations hold

∇〈n〉a (z̄, ᾱ, κ) w D〈k〉a (ᾱ,−z̄,−κ), (4.4)

∇〈k〉i (ᾱ, z̄, κ) w D
〈n〉
i (z̄,−ᾱ,−κ), (4.5)

∇̂〈n〉a (z̄, ᾱ, κ) w −D̂〈k〉a (−ᾱ + 1, z̄,−κ), (4.6)

∇̂〈k〉i (ᾱ, z̄, κ) w −D̂〈n〉i (−z̄ + 1, ᾱ,−κ), (4.7)

Z〈n〉a (z̄, ᾱ, κ) w N 〈k〉a (z̄)Q〈k〉a (ᾱ,−z̄,−κ), (4.8)

Z
〈k〉
i (ᾱ, z̄, κ) w N

〈n〉
i (ᾱ)Q

〈n〉
i (z̄,−ᾱ,−κ), (4.9)

where

N
〈n〉
i (ᾱ) =

∏
16j<iC

〈n〉
ji (αji − κ)∏

i<j6nC
〈n〉
ij (αij)

, N 〈k〉a (z̄) =

∏
16b<aC

〈k〉
ba (zba − κ)∏

a<b6k C
〈k〉
ab (zab)

, (4.10)

and

C
〈n〉
ij (t) =

Γ(t+ e
〈n〉
ii + 1)Γ(t− e〈n〉jj )

Γ(t+ e
〈n〉
ii − e

〈n〉
jj + 1)Γ(t)

, C
〈k〉
ab (t) =

Γ(t+ e
〈k〉
aa + 1)Γ(t− e〈k〉bb )

Γ(t+ e
〈k〉
aa − e〈k〉bb + 1)Γ(t)

(4.11)

Proof Relations (4.4) and (4.5) follow from Lemma 2.4.3. Relations (4.6) and (4.7)

follow from Proposition 3.5.1. To check (4.8) and (4.9), we have to show that

R
〈n〉
ab (t) w C

〈k〉
ab (t)B

〈k〉
ab (−t), (4.12)

R
〈k〉
ij (t) w C

〈n〉
ij (t)B

〈n〉
ij (−t), (4.13)

We will prove relation (4.12). Relation (4.13) can be proved similarly.



102

Note, that both action of R
〈n〉
ab (t) on Pkn and action of C

〈k〉
ab (t)B

〈k〉
ab (−t) on Pkn

involve only the variables ξa1, . . . , ξan, ξb1, . . . , ξbn. Therefore, it is sufficient to prove

(4.12) for the case of k = 2, a = 1, b = 2.

The gln- module P2,n is isomorphic to Xn⊗Xn. For anym = 0, . . . , n, let L
〈n〉
m ⊂ Xn

be the highest-weight gln-module of highest weight ωm = (1, 1, . . . , 1, 0, . . . , 0), where

we have m ones and n −m zeros. Consider the submodule L
〈n〉
m1 ⊗ L

〈n〉
m2 ⊂ P2,n. We

have the following decomposition of the gln-module:

L〈n〉m1
⊗ L〈n〉m2

=

min(m1,m2)⊕
m=max(0,m1+m2−n)

L
〈n〉
λ(m). (4.14)

Here λ(m) = (2, 2, . . . , 2, 1, . . . , 1, 0, . . . , 0), where 2 repeats m times and 1 repeats

m1 +m2− 2m times. Denote by vm the highest weight vector of the summand L
〈n〉
λ(m)

given by formula (4.22).

Define the scalar product on P2,n by the rule: 〈f, f〉 = 1, if f ∈ P2,n is a nonzero

monomial, and 〈f, h〉 = 0, if f, h ∈ P2,n are two non-proportional monomials.

Lemma 4.2.2 We have 〈vm, vm〉 6= 0 for every m.

The proof is straightforward by formula (4.22).

Lemma 4.2.3 〈w1, e
〈n〉
ij w2〉 = 〈e〈n〉ji w1, w2〉 for any w1, w2 ∈ P2,n, and i, j = 1, . . . , n.

The proof is straightforward.

Corollary 4.2.4 If vectors w and w̃ belong to distinct summands of decomposition

(4.14), then 〈w, w̃〉 = 0.

Proof The summands of decomposition (4.14) are eigenspaces of the operator I〈n〉 =∑n
i,j=1 e

〈n〉
ij e

〈n〉
ji , and the corresponding eigenvalues are distinct. By Lemma 4.2.3, I〈n〉

is symmetric with respect to the scalar product 〈·, ·〉, which implies the statement.

Denote

Sij(t) = t(e
〈n〉
ij )(1) +

n∑
l=1

(e
〈n〉
il )(1)(e

〈n〉
lj )(2),
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Pij(t) = t(e
〈n〉
ij )(1) +

n∑
l=1

(e
〈n〉
lj )(1)(e

〈n〉
il )(2),

αm(t) = 〈Sm1+m2−m+1,m(t) · vm, vm−1〉, βm(t) = 〈Pm1+m2−m+1,m(t) · vm, vm−1〉.

Lemma 4.2.5 The functions αm(t) and βm(t) are nonzero, and

αm(t)

βm(t)
=
t+ 1 +m1 −m
t− 1 +m−m2

. (4.15)

The proof is given in Section 4.3.

Due to relation (4.1), for any m, there exists a scalar function ρm(t) such that

R
〈n〉
12 (t)w = ρm(t)w for any w ∈ L〈n〉λ(m).

Lemma 4.2.6 It holds that
ρm(t)

ρm−1(t)
=
αm(t)

βm(t)
. (4.16)

Proof Let us single out the term L
〈n〉
λ(m−1) in the decomposition (4.14): L

〈n〉
m1⊗L

〈n〉
m2 =

L
〈n〉
λ(m−1)

⊕
L̃. Then we can write Sm1+m2−m+1,m(t) · vm = w + w̃, where w ∈ L〈n〉λ(m−1)

and w̃ ∈ L̃. By the definition of Sm1+m2−m+1,m(t), the vector w has weight λ(m− 1).

Therefore, w = avm−1 for some scalar a. By Corollary 4.2.4, we have

αm(t) = 〈Sm1+m2−m+1,m(t) · vm, vm−1〉 = a〈vm−1, vm−1〉.

Notice that R
〈n〉
12 (t)w̃ ∈ L̃, because R-matrix R

〈n〉
12 (t) acts as a multiplication by a

scalar function on each summand of the decomposition (4.14). Then, by Corollary

4.2.4, 〈R〈n〉12 (t)w̃, vm−1〉 = 0, and

〈R〈n〉12 (t)Sm1+m2−m+1,m(t) · vm, vm−1〉 = 〈R〈n〉12 (t)w, vm−1〉 =

= ρm−1(t)a〈vm−1, vm−1〉 = ρm−1(t)αm(t).

On the other hand, relation (4.2) gives

〈R〈n〉12 (t)Sm1+m2−m+1,m(t) · vm, vm−1〉 = 〈Pm1+m2−m+1,m(t)R
〈n〉
12 (t) · vm, vm−1〉

= ρm(t)βm(t).

Thus we get αm(t)ρm−1(t) = ρm(t)βm(t), which is relation (4.16).
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By formulae (4.16), (4.15),

ρm(t) =
m∏
s=1

ρs(t)

ρs−1(t)
=

m−1∏
s=0

t+m1 − s
t−m2 + s

, (4.17)

where we used that ρ0 = 1 by the normalization condition (4.3).

Let L
〈2〉
0 , L

〈2〉
1 , and L

〈2〉
2 ⊂ X2 be the irreducible highest-weight gl2-modules of

highest weight (0, 0), (1, 0), and (1, 1), respectively. For each i = 1, . . . , n, let si be

such that si = 0, 1, or 2, and
∑n

i=1 si = m1 + m2. Consider a decomposition of the

gl2-module:

L〈2〉s1 ⊗ · · · ⊗ L
〈2〉
sn =

⊕
06m6(m1+m2)/2

L
〈2〉
(m1+m2−m,m) ⊗W

〈2〉
m ,

where W
〈2〉
m are multiplicity spaces.

Let (L
〈2〉
(m1+m2−m,m)⊗W

〈2〉
m )(m1,m2) ⊂ L

〈2〉
(m1+m2−m,m)⊗W

〈2〉
m be the subspace of weight

(m1,m2)

Lemma 4.2.7 It holds that

B
〈2〉
12 (t)|

(L
〈2〉
(m1+m2−m,m)

⊗W 〈2〉m )(m1,m2)
=

m2−1∏
s=m

t+m2 − s
t−m1 + s

, (4.18)

Proof The modules L
〈2〉
0 and L

〈2〉
2 are one-dimensional, and the elements e

〈2〉
12 , e

〈2〉
21 ,

and e
〈2〉
11 − e

〈2〉
22 act there by zero. Thus, it is enough to consider the case when si = 1

for all i = 1, . . . , n, so formula (4.18) follows from [25, formula (5.13)].

Comparing formulas (4.17), (4.18), and (4.11), we conclude:

ρm(t) = (B
〈2〉
12 (−t)C〈2〉12 (t))|

(L
〈2〉
(m1+m2−m,m)

⊗W 〈2〉m )(m1,m2)
. (4.19)

Recall that we write F w G if the operators F and G act on Pkn in the same way.

Lemma 4.2.8 For the Casimir elements I〈2〉 =
∑2

a,b=1 e
〈2〉
ab e
〈2〉
ba and I〈n〉 =∑n

i,j=1 e
〈n〉
ij e

〈n〉
ji , we have

I〈2〉 − 2
2∑

a=1

e〈2〉aa w −I〈n〉 + n

n∑
i=1

e
〈n〉
ii . (4.20)
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The proof is straightforward.

Let L
〈n〉
λ be the irreducible gln-module with the highest weight λ = (λ1, . . . , λn) ∈

Cn. It is easy to check that the element I〈n〉 acts on L
〈n〉
λ as a multiplication by

(λ, λ + ρ), where (·, ·) is the dot product, and ρ = (n − 1, n − 3, . . . , 1 − n). The

similar statement is true for the Lie algebra gl2. Using this, one can verify that

(I〈2〉 − 2
2∑

a=1

e〈2〉aa )|
L
〈2〉
(m1+m2−m,m)

⊗W 〈2〉m
= (−I〈n〉 + n

n∑
i=1

e
〈n〉
ii )|

L
〈n〉
λ(m′)

(4.21)

if and only if m = m′.

Comparing formulae (4.20) and (4.21), we get that under isomorphisms ψ1 :

(Xn)⊗2 → P2,n and ψ2 : (X2)⊗n → P2,n defined in formulas (2.12) and (2.13), the

respective images of L
〈n〉
λ(m) and L

〈2〉
(m1+m2−m,m) ⊗ W

〈2〉
m in P2,n coincide. To indicate

that, we will write L
〈n〉
λ(m) w L

〈2〉
(m1+m2−m,m) ⊗W

〈2〉
m .

Recall that (M)λ denotes the weight subspace of a module M with the weight

λ ∈ Cn. We have (L
〈n〉
m1 ⊗ L

〈n〉
m2)(s1,...,sn) w (L

〈2〉
s1 ⊗ · · · ⊗ L

〈2〉
sn )(m1,m2). Therefore,

(L
〈n〉
λ(m))(s1,...,sn) w (L

〈2〉
(m1+m2−m,m) ⊗ W

〈2〉
m )(m1,m2). Now we see that (4.19) gives us

a relation between actions of operators B
〈2〉
12 (t), C

〈2〉
12 (t), and R

〈n〉
12 (t) on one particular

submodule of P2,n proving the theorem.

4.3 Proof of Lemma 4.2.5

Let

vm =
m∏
i=1

ξ1iξ2i

∑
{ε}

ξε1,m+1ξε2,m+2 . . . ξεm1+m2−2m,m1+m2−m (4.22)

with {ε} =
{

(ε1,ε2, . . . , εm1+m2−2m) : εi = 1 or 2,
∑
i

εi = m1 −m+ 2(m2 −m)
}

. One

can easily prove that vm is a highest weight vector of weight λ(m) .

It follows from the construction of the scalar product 〈·, ·〉 that αm(t) (resp. βm(t))

equals the sum of the coefficients of those monomials presented in Sm1+m2−m+1,m(t)·vm
(resp. Pm1+m2−m+1,m(t) · vm) that also appear in vm−1. In fact, all monomials either

in Sm1+m2−m+1,m(t) · vm or in Pm1+m2−m+1,m(t) · vm appear in vm−1 as well.
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We will start with αm. Denote r = m1 + m2 −m + 1. We will write Cb
a for the

binomial coefficient
(
b
a

)
. Let us inspect what happens when we apply various terms

of Lrm(t) to vm. For the sum
n∑
l=1

(erl)(1)(elm)(2), we can assume that m 6 l < r.

If l > m, then the operator (erk)(1)(ekm)(2) will send a monomial in vm to zero if

and only if this monomial does not depend on ξ1l. That is, we look at all terms in

vm corresponding to εl−m = 1. There are Cm2−m
m1+m2−2m−1 such terms with the same

contribution (−1)m1+m2+m. We leave the details of this calculation to a reader. Under

the assumption m < l < r, there are m1 +m2 − 2m different values of l, which yield

the overall contribution (−1)m1+m2+m(m1 +m2 − 2m)Cm2−m
m1+m2−2m−1 to αm(t).

If l = m, then we have (erl)(1)(elm)(2) ·vm = (erm)(1) ·vm. Therefore, all Cm1−m
m1+m2−2m

terms in vm equally contribute (−1)m1+m2+m(m1 +m2 − 2m).

Finally, the term t(eij)(1) in Lrm(t) generates the contribution

t(−1)m1+m2+mCm1−m
m1+m2−2m to αm(t), which can be seen similarly to the case

l = m considered above.

Thus we obtained

(−1)m1+m2+mαm = (t+ 1)Cm1−m
m1+m2−2m + (m1 +m2 − 2m)Cm2−m

m1+m2−2m−1. (4.23)

The similar arguments give us

(−1)m1+m2+mβm = (t− 1)Cm1−m
m1+m2−2m − (m1 +m2 − 2m)Cm1−m

m1+m2−2m−1. (4.24)

Since

(m1 +m2 − 2m)Cm1−m
m1+m2−2m−1 = (m1 −m)Cm1−m

m1+m2−2m

and

(m1 +m2 − 2m)Cm2−m
m1+m2−2m−1 = (m2 −m)Cm1−m

m1+m2−2m,

Lemma 4.2.5 is proved.
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APPENDIX A. WRONSKIAN IDENTITIES

In this section, we will collect Wronskian identities that were used in the dissertation.

Identities (A.1) - (A.4) with proofs can also be found in [44] and in the Appendix

of [12].

Recall that for any functions f1, . . . , fn with sufficiently many derivatives, the

Wronskian Wr(f1, . . . , fn) is the determinant of the matrix (f
(j−1)
i )ni,j=1. Throughout

this section, we will assume that all functions are such that the corresponding Wron-

skians are well-defined. Using elementary column operations, it is straightforward to

check that

Wr(hf1, . . . , hfn) = hn Wr(f1, . . . , fn) for any h 6= 0, (A.1)

Wr(1, f1, . . . , fn) = Wr(f ′1, . . . , f
′
n). (A.2)

Combining formulae (A.1) and (A.2), we get

Wr(f1, . . . , fn) = fn1 Wr

((
f2

f1

)′
, . . . ,

(
fn
f1

)′)
. (A.3)

Proposition A.1 For any functions f1, . . . , fn, h1, . . . , hm, where f1 6= 0, the follow-

ing holds:

Wr(Wr(f1, . . . , fn, h1), . . . ,Wr(f1, . . . , fn, hm)) =

= (Wr(f1, . . . , fn))m−1 Wr(f1, . . . , fn, h1, . . . , hm).
(A.4)

Proof We will prove the proposition by induction on n.

Let n = 1. Denote f1 = f . Using formula (A.3), we compute

Wr(f, hi) = f 2 Wr

((
hi
f

)′)
= f 2

(
hi
f

)′
, i = 1, . . . ,m.

Therefore,

Wr(Wr(f, h1), . . . ,Wr(f, hm)) = f 2m Wr

((
h1

f

)′
, . . . ,

(
hm
f

)′)
=

= fm−1 Wr(h1, . . . , hm).
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Assume that formula (A.4) is true for some n > 1. For functions f1, . . . , fn+1, h1, . . . ,

hm, where f1 6= 0, define f̃i = (fi/f1)′, h̃j = (hj/f1)′, i = 2, . . . , n + 1, j = 1, . . . ,m.

Then we compute

Wr(Wr(f1, . . . , fn+1, h1), . . . ,Wr(f1, . . . , fn+1, hm)) =

= fm+n+2
1 Wr(Wr(f̃2, . . . , f̃n+1, h̃1), . . . ,Wr(f̃2, . . . , f̃n+1, h̃m)) =

= fm+n+2
1 (Wr(f̃2, . . . , f̃n+1))m−1 Wr(f̃2, . . . , f̃n+1, h̃1, . . . , h̃m) =

= (Wr(f1, . . . , fn+1))m−1 Wr(f1, . . . , fn+1, h1, . . . , hm).

(A.5)

Here, on the first step, we used formulas (A.1) and (A.3), on the second step, we used

the assumption hypothesis, and on the third step, we used formula (A.3) again.

Computation (A.5) proves the induction step finishing the proof of the proposition.

Let f1, f2, . . . , fn be solutions of the differential equation Df = 0, where D =

(d/dx)n +
∑n

i=1 ai(d/dx)n−i. Assume that f1, f2, . . . , fn are linearly independent. De-

fine

hi =
Wr(f1, . . . , fi−1, fi+1, . . . , fn)

Wr(f1, . . . , fn)
.

Proposition A.2 The following holds:

Wr(h1, . . . , hn) =
(−1)n(n−1)/2

Wr(f1, . . . , fn)
.

Proof Let pi = Wr(f1, . . . , fi−1, fi+1, . . . , fn). Denote by bij the ij-minor of the

matrix A = (f
(j−1)
i )ni.j=1. Then we have pi = bin and p′i = bi,n−1.

Since Dfi = 0 for any i = 1, . . . , n, we have f
(n)
i = −

∑n
l=1 alf

(n−l)
i , where the

functions a1, . . . , an do not depend on i. Using this observation, one can check that

b′i,n−j = bi,n−j−1 + (−1)jaj+1bin − a1bi,n−j.

Therefore, by induction on j, we have

p
(j)
i = bi,n−j +

j−1∑
k=0

Cjkbi,n−k , i = 1, . . . , n ,
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for certain functions Cjk that do not depend on i. Hence,

Wr(p1, . . . , pn) = det(p
(j)
i ) i=1,...,n

j=0,...,n−1
= det(bi,n−j) i=1,...,n

j=0,...,n−1

and

Wr(h1, . . . , hn) = Wr
( p1

Wr(f1, . . . , fn)
, . . . ,

pn
Wr(f1, . . . , fn)

)
=

Wr(p1, . . . , pn)

(Wr(f1, . . . , fn))n

=
det(bi,n−j)

(Wr(f1, . . . , fn))n
= (−1)n(n−1)/2 det((−1)i+j bi,j)

(Wr(f1, . . . , fn))n

= (−1)n(n−1)/2 det(A−1 detA)

(detA)n
=

(−1)n(n−1)/2

Wr(f1, . . . , fn)
.
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APPENDIX B. DISCRETE WRONSKIAN IDENTITIES

In this section, we will collect discrete Wronskian identities that were used in the

dissertation. Identities (B.1) - (B.4) with proofs can also be found in Appendix B

of [45].

Recall that T is the shift operator defined by Tf(x) = f(x + 1). Recall that for

any functions f1, . . . , fn, the discrete Wronskian Wr(f1, . . . , fn) is the determinant

of the matrix (T j−1fi)
n
i,j=1. Denote T (n)f = f(Tf)(T 2f) . . . (T n−1f). We have the

following obvious relations:

Wr(hf1, . . . , hfn) = (T (n)h)Wr(f1, . . . , fn) for any h, (B.1)

Wr(1, f1, . . . , fn) = Wr((T − 1)f1, . . . , (T − 1)fn). (B.2)

Assume that f1 6= 0. Combining formulae (B.1) and (B.2), we get

Wr(f1, f2, . . . , fn) = (T (n)f1)Wr

(
(T − 1)

f2

f1

, . . . , (T − 1)
fn
f1

)
. (B.3)

Proposition B.1 For any functions f1, . . . , fn, h1, . . . , hm, where f1 6= 0, the follow-

ing holds:

Wr(Wr(f1, . . . , fn, h1), . . . ,Wr(f1, . . . , fn, hm)) =

= (T (m−1)Wr(Tf1, . . . , T fn))Wr(f1, . . . , fn, h1, . . . , hm).
(B.4)

Proof We will prove the proposition by induction on n.

Let n = 1. Denote f1 = f . Using formula (B.3), we compute

Wr(f, hi) = (T (2)f)Wr

(
(T − 1)

hi
f

)
= (T (2)f) (T − 1)

hi
f
, i = 1, . . . ,m.



111

Therefore,

Wr(Wr(f, h1), . . . ,Wr(f, hm)) = (T (m)T (2)f)Wr

(
(T − 1)

h1

f
, . . . , (T − 1)

hm
f

)
=

= (T (m−1)Tf)(T (m+1)f)Wr

(
(T − 1)

h1

f
, . . . , (T − 1)

hm
f

)
=

= (T (m−1)Tf)Wr(h1, . . . , hm).

Assume that formula (B.4) is true for some n > 1. For functions f1, . . . , fn+1, h1, . . . ,

hm, define f̃i = (T − 1)(fi/f1), h̃j = (T − 1)(hj/f1), i = 2, . . . , n + 1, j = 1, . . . ,m.

Then we compute

Wr(Wr(f1, . . . , fn+1, h1), . . . ,Wr(f1, . . . , fn+1, hm)) =

= (T (m)T (n+2)f1)Wr(Wr(f̃2, . . . , f̃n+1, h̃1), . . . ,Wr(f̃2, . . . , f̃n+1, h̃m)) =

= (T (m)T (n+2)f1)(T (m−1)Wr(T f̃2, . . . , T f̃n+1))Wr(f̃2, . . . , f̃n+1, h̃1, . . . , h̃m) =

=
(
T (m−1)

[
(T (n+1)Tf1)Wr(T f̃2, . . . , T f̃n+1)

])
×

× (T (n+m+1)f1)Wr(f̃2, . . . , f̃n+1, h̃1, . . . , h̃m) =

= (T (m−1)Wr(Tf1, . . . , T fn+1))Wr(f1, . . . , fn+1, h1, . . . , hm).

(B.5)

Here, on the first step, we used formulas (B.1) and (B.3), on the second step, we used

the assumption hypothesis, on the third step, we used

T (m)T (n+2)f1 = (T (m−1)T (n+1)Tf1)(T (n+m+1)f1),

and on the forth step, we used formula (B.3) again.

Computation (B.5) proves the induction step finishing the proof of the Proposition.

Let f1, f2, . . . , fn be solutions of the difference equation Sf = 0, where S =

T n +
∑n

i=1 aiT
n−i. Assume that f1, f2, . . . , fn are linearly independent over the field

of 1-periodic functions. Then the function an is not identically zero, see the proof of

Proposition 3.4.3. Define

hi = T
Wr(f1, . . . , fi−1, fi+1, . . . , fn)

W(f1, . . . , fn)
,
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Proposition B.2 The following holds:

Wr(h1, . . . , hn) =
(−1)

n(n+1)
2

(an)nWr(f1, . . . , fn)
,

Proof Let pi = Wr(f1, . . . , fi−1, fi+1, . . . , fn). Denote by bij the ij-minor of the

matrix A = (T j−1fi)
n
i.j=1. Then we have Tpi = bi1.

Since Sfi = 0 for any i = 1, . . . , n, we have T nfi = −
∑n

l=1 alT
n−lfi, where the

functions a1, . . . , an do not depend on i. Using this observation, one can check that

Tbij = (−1)n−1anbi,j+1 + (−1)n−jan−j+1bi,1.

Therefore, by induction on j, we have

T jpi = (−1)(n−1)(j−1)aj−1
n bi,j +

∑
j′<j

Cj′jbi,j′ , i = 1, . . . , n, j = 1, . . . , n,

for certain functions Cj′j, which do not depend on i. Hence,

Wr(Tp1, . . . , Tpn) = det(T jpi) i=1,...,n
j=1,...,n

= (−1)
n(n−1)2

2 a
n(n−1)

2
n det((−1)i+jbi,j) i=1,...,n

j=1,...,n

and

Wr(h1, . . . , hn) = Wr
(
T

p1

detA
, . . . , T

pn
detA

)
=

Wr(Tp1, . . . , Tpn)

T (n)T detA

=
(−1)

n(n−1)2

2 a
n(n−1)

2
n det((−1)i+jbi,j)

T (n)T detA
=

(−1)
n(n−1)2

2 a
n(n−1)

2
n det(A−1 detA )

(−1)
n2(n+1)

2 a
n(n+1)

2
n (detA)n

=
(−1)

n(n+1)
2 (detA )n

(an)n(detA)n+1
=

(−1)
n(n+1)

2

(an)nWr(f1, . . . , fn)
.
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