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ABSTRACT

Wu, Kuang-Ru Ph.D., Purdue University, August 2020. Hermitian–Yang–Mills Met-
rics on Hilbert Bundles and in the Space of Kähler Potentials. Major Professor:
László Lempert.

The two main results in this thesis have a common point: Hermitian–Yang–Mills

(HYM) metrics. In the first result, we address a Dirichlet problem for the HYM

equations in bundles of infinite rank over Riemann surfaces. The solvability has been

known since the work of Donaldson [Don92] and Coifman–Semmes [CS93], but only

for bundles of finite rank. So the novelty of our first result is to show how to deal with

infinite rank bundles. The key is an a priori estimate obtained from special feature

of the HYM equation.

In the second result, we take on the topic of the so-called “geometric quantization.”

This is a vast subject. In one of its instances the aim is to approximate the space of

Kähler potentials by a sequence of finite dimensional spaces. The approximation of a

point or a geodesic in the space of Kähler potentials is well-known, and it has many

applications in Kähler geometry. Our second result concerns the approximation of

a Wess–Zumino–Witten type equation in the space of Kähler potentials via HYM

equations, and it is an extension of the point/geodesic approximation.
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1. INTRODUCTION

We will give a summary of results in the following two sections. The detailed accounts

will be provided in later chapters.

1.1 A Dirichlet problem in noncommutative potential theory

A Hermitian metric on a line bundle can be locally represented by a scalar-valued

function. For higher rank bundles, Hermitian metrics can be represented by matrix-

valued functions, which is the origin of noncommutativity. One can push even further

by considering bundles of infinite rank. In this part of the thesis, we will focus on

bundles whose fibers are Hilbert spaces, and in particular trivial Hilbert bundles

where the situation becomes clearest.

Let (V, 〈·, ·〉) be a complex Hilbert space. Let EndV be the set of bounded linear

operators on V and End+V be the set of positive invertible elements in EndV . Let

M be a compact Riemann surface with boundary. A Hermitian metric h on the

bundle M × V → M can be represented by hz(v, w) = 〈P (z)v, w〉 where v, w ∈ V

and P : M → End+V . If P is C2, then the curvature RP is ∂̄(P−1∂P ). The Dirichlet

problem we aim to solve is to extend a given metric on ∂M×V to a metric on M×V

with curvature zero. The main result is the following.

Theorem 1.1.1 Let M be a compact Riemann surface with boundary and F ∈

Cm(∂M,End +V ), where m = 0,∞, or ω. There exists a unique P ∈ Cm(M,End +V )∩

Cω(M,End +V ) such that RP = 0 on M , and P |∂M = F . The same is true if we

replace Cm by Ck,α for k a nonnegative integer and 0 < α < 1.

We mention briefly previous work when dimV < ∞. Masani and Wiener solve

the Dirichlet problem over the unit disc in [WM57], with regularity weaker than con-

tinuous. In [Lem81], Lempert solves it in Hölder classes. More generally in [Don92],
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Donaldson solves a Dirichlet problem for the Hermitian–Yang–Mills equations over

Kähler manifolds with boundary, and in [CS93] Coifman and Semmes solve it over

domains in Cn which are regular for the Laplacian. When the base is one dimensional,

Donaldson’s and Coifman–Semmes’ results reduce to the existence of flat Hermitian

metrics. (Coifman and Semmes also solve a Dirichlet problem for norms more gen-

eral than those coming from Hermitian metrics. See also a more recent related paper

[BCEKR20].)

Devinatz [Dev61] and Douglas [Dou66] generalize Wiener amd Masani’s result to

infinite dimensional separable V , with the base still the unit disc (see also [Hel64,

Lecture XI]). For a general V and various regularity classes, the Dirichlet problem

over the unit disc is solved by Lempert in [Lem17]. Lempert’s proof is by the conti-

nuity method and proceeds by a global factorization of flat metrics. However, such a

factorization is not available when the base is multiply connected.

Our proof is also by the continuity method. Closedness is proved by a maximum

principle and a local holomorphic factorization of flat metrics. Openness turns out

to be harder than usual, because to deal with the linear partial differential equation

originating from the implicit function theorem, Fredholm theory is not available.

Nevertheless, the linear equation has various symmetries that we can exploit to obtain

the requisite a priori estimates. This is the main novelty in our result.

1.2 A Wess–Zumino–Witten type equation in the space of Kähler poten-

tials

Let X be a compact complex manifold of dimension n with a Kähler form ω. The

space of Kähler potentials is

Hω = {φ ∈ C∞(X,R) : ω + i∂∂̄φ > 0},

and we will denote ω+ i∂∂̄φ by ωφ. We assume ω is the curvature of some Hermitian

line bundle L. For a positive integer k, we denote by Hk the space of inner products

on H0(X,Lk). Starting from a question asked by Yau [Yau87] and the work of Tian
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[Tia90], Zelditch [Zel98], Catlin [Cat99], and many others, it is well-known that a

given Kähler potential φ ∈ Hω can be approximated by φk ∈ Hω associated with Hk

as k →∞. Furthermore, Mabuchi [Mab87], Semmes [Sem92], and Donaldson [Don99]

discovered that Hω carries a Riemannian metric which allows one to talk about ge-

ometry, especially geodesics, of Hω. Thanks to Phong–Sturm [PS06], Berndtsson

[Ber13], and Darvas–Lu–Rubinstein [DLR18], geodesics in Hω can be approximated

by geodesics in Hk as k → ∞. More generally, one may wonder if harmonic maps

into Hω can also be approximated by harmonic maps associated with Hk. A version

of this was confirmed by Rubinstein–Zelditch [RZ10] when X is toric, and the maps

take values in toric Kähler metrics.

In this second part of the thesis, we focus on a Wess–Zumino–Witten (WZW)

type equation for a map from D ⊂ Cm to Hω, and we show that the solution to such

an equation can be approximated by Hermitian–Yang–Mills metrics on certain direct

image bundles. We will also see how this result recovers some of those mentioned in

the previous paragraph.

We first explain how to derive this WZW equation. The spaceHω is an open subset

in the Fréchet space C∞(X,R), and therefore it is a Fréchet manifold. The tangent

space TφHω at φ ∈ Hω is canonically isomorphic to C∞(X,R), and tangent bundle

THω is canonically isomorphic to Hω × C∞(X,R) (These matters will be reviewed

more rigorously in Chapter 2). Following Mabuchi [Mab87], Semmes [Sem92], and

Donaldson [Don99], the Mabuchi metric gM on Hω is the following. For a point

φ ∈ Hω and two vectors ξ, η ∈ TφHω ≈ C∞(X,R), the Mabuchi metric is

gM(ξ, η) =

∫
X

ξη ωnφ .

Let D be a bounded smooth strongly pseudoconvex domain in Cm. A map Φ̂ : D →

Hω will induce a map Φ : D ×X → R with Φ(z, ·) ∈ Hω for z ∈ D, and vice versa.

A map Φ̂ : D → Hω is said to be harmonic if it is a critical point of the functional

E(Φ̂) =
∫
D
|Φ̂′|2dV where dV is the Euclidean volume form on D, Φ̂′ is the tangent

map of Φ̂, and |Φ̂′| is the Hilbert–Schmidt norm of Φ̂′, measured by Mabuchi metric



4

gM and the Euclidean metric of D. A straightforward computation gives the harmonic

map equation:
m∑
j=1

Φzj z̄j −
1

2
|∇Φzj |2 = 0, (1.2.1)

where {zj} are coordinates on D and ∇Φzj(z) is the gradient of the function Φzj(z)

on X with respect to the metric ωΦ̂(z), and |∇Φzj(z)| is its length computed using

the metric ωΦ̂(z). The functional that we are looking for, which we denote by E , is a

perturbation of the harmonic functional E above. The construction of this perturbed

functional E is similar to that of [Don99, Section 5] (see also [Wit83]), who dealt with

one dimensional D. We will construct E in Chapter 4 and show in Lemma 4.3.4 that

the Euler–Lagrange equation of E is
m∑
j=1

Φzj z̄j −
1

2
|∇Φzj |2 −

i

2
{Φz̄j ,Φzj}ωΦ̂

= 0, (1.2.2)

where {·, ·}ω
Φ̂

is the Poisson bracket on C∞(X,R) determined by the symplectic form

ωΦ̂. In view of its connection with [Wit83] and following [Don99], we call the equation

(1.2.2) the WZW equation for a map Φ̂ : D → Hω.

Donaldson showed in [Don99], when m = 1, the WZW equation is equivalent to

a homogeneous complex Monge–Ampère equation. We have the following extended

equivalence for m ≥ 1 by a similar computation. Let π : D×X → X be the projection

onto X. Then the extended equivalence is

Φ solves (1.2.2) if and only if (i∂∂̄Φ + π∗ω)n+1 ∧ (i
m∑
j=1

dzj ∧ dz̄j)m−1 = 0. (1.2.3)

This suggests that the proper generality of the WZW equation is for maps from a

Kähler manifold D to Hω. Nevertheless, in this thesis we restrict to D ⊂ Cm.

The next step is to construct a solution of the WZW equation, and then we will

show it can be approximated by the solutions of Hermitian–Yang–Mills equations.

We first introduce the following definition

Definition 1.2.1 We will say that a function u : D×X → [−∞,∞) is ω-subharmonic

on graphs if for any holomorphic map f from an open subset of D to X, ψ(f(z)) +

u(z, f(z)) is subharmonic, where ψ is a local potential of ω.
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This definition does not depend on the choice of ψ since any two local potentials

differ by a pluriharmonic function. (This definition has its origin in the works of

Slodkowski [Slo88],[Slo90b],[Slo90a], and Coifman and Semmes [CS93]; however, they

focus on functions u defined on D × V with a vector space V and u(z, ·) are norms

or quasi-norms, whereas we consider simply functions on D × X. There is also a

notion of k-subharmonicity, see [B lo05], but it is not equivalent to subharmonicity on

graphs.)

Let v be a real-valued smooth function on ∂D ×X and ∂D 3 z 7→ v(z, ·) = vz ∈

Hω. Consider the Perron family

Gv := {u ∈ usc(D ×X) : u is ω-subharmonic on graphs,

and lim sup
D3z→ζ∈∂D

u(z, x) ≤ v(ζ, x)}.

As we will later see, the upper envelope V = sup{u : u ∈ Gv} is a weak solution of

the WZW equation from D to Hω.

There are two maps that connect Hω and Hk, the Hilbert map Hk : Hω → Hk and

the Fubini–Study map FSk : Hk → Hω. Their definitions will be given in Chapter 4.

The approximants are going to be the solutions of the Hermitian–Yang–Mills

equation on the bundle D×H0(X,Lk)∗ → D. For z ∈ ∂D, the inner product Hk(vz)

is defined on H0(X,Lk), and its dual inner product H∗k(vz) on H0(X,Lk)∗. Suppose

V k is a Hermitian metric on the bundle D × H0(X,Lk)∗ → D, and Θ(V k) is its

curvature, a (1, 1)-form on D with values in endomorphisms of H0(X,Lk)∗. Let Λ

be the trace with respect to the Euclidean metric of D, so in general ΛΘ(V k) takes

values in endomorphisms of H0(X,Lk)∗. The HYM equation isΛΘ(V k) = 0

V k|∂D = H∗k(v).

It has a unique solution by [Don92] and [CS93].

Denoting the dual metric by (V k)∗, our main result is that the upper envelope V

of Gv is the limit of Hermitian–Yang–Mills metrics:
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Theorem 1.2.1 FSk((V
k)∗) converges to V uniformly on D ×X, as k →∞.

Now we turn to the interpretation of the upper envelope V and its relation with

the WZW equation. The next theorem shows that V solves the WZW equation under

a regularity assumption.

Theorem 1.2.2 If the upper envelope V of Gv is in C2(D ×X), then

(i∂∂̄V + π∗ω)n+1 ∧ (i
m∑
j=1

dzj ∧ dz̄j)m−1 = 0.

As a result, Theorems 1.2.1 and 1.2.2 together show that the solution of the WZW

equation can be approximated by the Hermitian–Yang–Mills metrics.

We mention briefly works related to our result. If m = 1, D ⊂ C is an annulus,

and v is invariant under rotation of the annulus, then Theorems 1.2.1 and 1.2.2

recover the geodesic approximation result of Phong–Sturm [PS06] and Berndtsson

[Ber13]. When X is toric, these theorems are reduced to the harmonic approximation

of Rubinstein–Zelditch [RZ10], except that C2 convergence is proved in their paper.

The proof of Theorem 1.2.1 hinges on a theorem regarding the positivity of direct

image bundles. Consider a Hermitian holomorphic line bundle (E, g) → Xn over a

compact complex manifold and assume the curvature η of the metric g is positive.

We define a variant of the Hilbert map: given s ∈ H0(X,E ⊗ KX), then g(s, s) is

a real-valued (n, n)-form on X, and HilbE⊗KX (u), for a function u : D ×X → R, is

defined by

HilbE⊗KX (u)(s, s) =

∫
X

g(s, s)e−u(z,·).

Therefore the map z 7→ HilbE⊗KX (u) is a Hermitian metric on the bundle D ×

H0(X,E ⊗KX)→ D.

Theorem 1.2.3 If u is bounded and upper semicontinuous (usc) on D × X, and

η-subharmonic on graphs, then the dual metric Hilb∗E⊗KX (u) is a subharmonic norm

function.
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A norm function being subharmonic means the logarithm of the length of any holo-

mophic section is subharmonic.

Although Berndtsson’s theorem [Ber09] has played a crucial role in approxima-

tion theorems similar to Theorem 1.2.1 (for example [Ber13], [BK12], [DLR18], and

[DW19]), when it comes to approximating by Hermitian–Yang–Mills metrics, a sub-

harmonic analogue of Berndtsson’s theorem is desired. It is Theorem 1.2.3, where we

prove a version of positivity of direct image bundles for weights that are subharmonic

on graphs. This is perhaps the crux in this second part of the thesis. A corresponding

result on Stein manifolds can be proved easily following the proof of Theorem 1.2.3.
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2. DIFFERENTIABILITY OF VECTOR-VALUED

FUNCTIONS

In this chapter we will review some facts about differentiability of functions with

values in Banach spaces or Fréchet spaces. Section 2.1 serves background for Chapter

3, and Section 2.2 for Chapter 4.

2.1 Hölder classes of Banach-valued functions

Let Y be a Banach space with a norm ‖ · ‖. Let U be an open set in Rn. For

k = 0, 1, 2, ... and 0 < α < 1, a function f is said to be in Ck,α(U, Y ) if partial

derivatives of f up to order k exist and are continuous in U , and all the k-th partial

derivatives of f satisfy the α-Hölder condition

sup
x 6=y∈U

‖DIf(x)−DIf(y)‖
|x− y|α

<∞, for all |I| = k,

where the DIf is the standard multi-index notation. Moreover, if T is a subset of

∂U , a function f is said to be in Ck,α(U ∪T, Y ) if partial derivatives of f up to order

k exist and are continuous up to T , and

sup
x 6=y∈U∪T

‖DIf(x)−DIf(y)‖
|x− y|α

<∞, for all |I| = k.

Similarly, we define Ck(U, Y ) and Ck(U ∪ T, Y ) by removing the α-Hölder condition

from above.

Let N be a compact smooth manifold, possibly with boundary. A function f is

said to be in Ck,α(N, Y ) if f is Ck,α in charts. Fix a finite open cover {Ui} of N

such that each Ui is contained in a chart, we are going to equip Ck,α(N, Y ) with a
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Banach algebra structure. For f in Ck,α(N, Y ), one first computes its Hölder norm

in Ui using local coordinates, namely, if we ignore the coordinate map

k∑
|I|=0

sup
Ui

‖DIf‖+
∑
|I|=k

sup
x 6=y∈Ui

‖DIf(x)−DIf(y)‖
|x− y|α

.

Then ‖f‖k,α is defined to be the sum of these local Hölder norms. With a suitable

scaling it can be arranged that ‖ · ‖k,α is sub-multiplicative. It is straightforward to

verify that the resulting space is indeed a Banach algebra, and we skip the verification.

Likewise, Ck(N, Y ) also carries a Banach algebra structure. We set C∞ =
⋂
k C

k,

and also write C for C0.

2.2 Fréchet spaces, Fréchet manifolds, and C∞(X,R)

In this subsection, we give a review on Fréchet spaces and Fréchet manifolds

based on [Con90],[Mil84], and [Ham82]. We begin with topological vector spaces. A

topological vector space is a vector space with a topology such that addition and scalar

multiplication are continuous. Given a vector space V and a family P of seminorms,

we can equip V with a topology by stipulating a set U ⊂ V to be open if for any

point x0 ∈ U there exist seminomrs p1, ..., pn and positive numbers ε1, ..., εn such that

n⋂
i=1

{x ∈ V : pi(x− x0) < εi}

is in U . It is not hard to check (V,P) is a topological vector space.

Definition 2.2.1 A locally convex space (LCS) is a topological vector space whose

topology is determined by a family P of seminorms and ∩p∈P{x : p(x) = 0} = 0. A

Fréchet space is a locally convex space whose topology can be induced by a translation-

invariant complete metric.

Let V1 and V2 be two LCS, and let U be an open subset of V1. For a map

f : U → V2, we define the directional derivative of f at x ∈ U in the direction w ∈ V1

to be

f ′(x,w) = f ′x(w) = lim
t→0

f(x+ tw)− f(x)

t
.
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Ignoring the existence of the limit for a moment, we form the second directional

derivative

f ′′(x,w1, w2) = lim
t→0

f ′(x+ tw2, w1)− f ′(x,w1)

t
,

with w1 and w2 in V1. Similarly, the r-th directional derivative is

f (r)(x,w1, ..., wr) = lim
t→0

f (r−1)(x+ twr, w1, ..., wr−1)− f (r−1)(x,w1, ..., wr−1)

t
,

with w1, ..., wr ∈ V1.

The map f is said to be C1 if f is continuous, and f ′(x,w) exists and is continuous

on U × V1. The map f is said to be C2 if f is C1 and f ′′(x,w1, w2) exists and is

continuous on U ×V1×V1. Similarly, the map f is said to be Cr for a positive integer

r if f is Cr−1 and f (r)(x,w1, ...wr) exists and is continuous on U × V1 × ... × V1. A

map is C∞ if it is Cr for every r.

Now we are able to define manifolds. A smooth manifold modeled on a LCS V

is a Hausdorff and regular topological space M together with a collection of homeo-

morphisms fα : Vα →Mα (local coordinate systems), where Vα is open in V and Mα

is open in M . Moreover
⋃
αMα = M and the transition f−1

β ◦ fα is required to be

C∞. (If the model space V is Fréchet, then M is called a Fréchet manifold).

If we are given two such smooth manifolds M1 and M2, modeled on LCS V1 and

V2 respectively, then f : M1 → M2 is called smooth if f is smooth after composing

with local coordinate systems.

A tangent vector at x0 ∈M can be defined as an equivalence class of paths through

x0 as follows. Let P1 and P2 be smooth maps from an open interval I to M with

Pi(0) = x0. Let fα : Vα → Mα be a local coordinate system with x0 ∈ Mα. We say

that P1 and P2 are equivalent at t = 0 if f−1
α (P1(t)) and f−1

α (P2(t)) have the same

first derivative at t = 0. (It is not hard to see that if P1 and P2 are equivalent for

one local coordinate system then they are equivalent for all local coordinate systems).

We denote the equivalence class of a path P by [P ]. The set of all such equivalence

classes of paths through x0 is called the tangent space Tx0M . Note that fα induces a

one-to-one correspondence between V and Tx0M . In fact, if fα(v0) = x0 then every
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v ∈ V corresponds to the equivalence class of the path t 7→ fα(v0 + tv). So we can

equip Tx0M with a structure of LCS isomorphic to V .

The set TM =
∐

x∈M TxM can be made into a smooth manifold, the tangent

bundle of M . It is modeled on V × V , and local coordinate systems are

Vα × V → TMα ⊂ TM

(u, v) 7→ [t 7→ fα(u+ tv)].

A smooth vector field v on M is simply a smooth map v : M → TM with v(x) ∈ TxM .

Any smooth map f : M1 → M2 induces a map f ′x : TxM1 → Tf(x)M2 by sending

[P ] to [f ◦ P ], and one can easily check the independence of the representative path

P . Putting together f ′x over x ∈ M1, we obtain a tangent map f ′ : TM1 → TM2.

Using local coordinate systems fα on M1 and gβ on M2, we can see the map f ′x is

the directional derivative of g−1
β ◦ f ◦ fα. Because the map f is assumed smooth, the

tangent map f ′ is smooth.

The simplest example of a smooth manifold modeled on a LCS V is perhaps an

open subset U of V . There is a canonical local coordinate system, namely the identity

map Id : U → U ⊂ V , and so the tangent space TxU at any point x ∈ U is canonically

isomorphic to V by

V → TxU

v 7→ [t 7→ x+ tv].

The tangent bundle TU also has a canonical local coordinate system

U × V → TU

(x, v) 7→ [t 7→ x+ tv],

so TU is canonically isomorphic to U × V .

The example we care the most about is the space of smooth functions from a

compact smooth manifold X to R, which we denote by C∞(X,R). We first show that
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C∞(X,R) is a Fréchet space. Fix a finite open cover {Ui}1≤i≤m of X so that each Ui

is in a chart ψi. Define seminorm pl for positive integer l on C∞(X,R) by setting

pl(f) = max
1≤i≤m,|I|≤l

sup
ψ−1
i (Ui)

|DI(f ◦ ψi)|.

These seminorms make C∞(X,R) a locally convex space, and it is metrizable with

the translation-invariant metric

d(f, g) =
∑
1≤l

1

2l
pl(f − g)

1 + pl(f − g)
.

The last thing to show is completeness. Suppose {fµ} is a Cauchy sequence in

C∞(X,R), then pl(fµ − fν) → 0 as µ, ν → ∞, for every seminorm pl, and there-

fore, the sequence {DI(fµ ◦ψi)}µ converges uniformly on ψ−1
i (Ui) for every 1 ≤ i ≤ m

and |I| ≤ l. So there is a global function f ∈ C∞(X,R), and it is straightforward to

see fµ converges to f . Hence C∞(X,R) is a Fréchet space.

Assume X is additionally a complex manifold with a Kähler form ω. The space

of Kähler potentials is Hω = {φ ∈ C∞(X,R) : ω+ i∂∂̄φ > 0}. It is an open subset in

C∞(X,R). Indeed, for a fixed point φ0 ∈ Hω, since ω+ i∂∂̄φ0 > 0 and X is compact,

we can find ε > 0 such that if a function φ ∈ C∞(X,R) satisfies p2(φ − φ0) < ε,

then ω + i∂∂̄φ = ω + i∂∂̄φ0 + i∂∂̄(φ− φ0) is still positive. Hence the point φ0 has a

neighborhood {φ : p2(φ− φ0) < ε} in Hω.

The space Hω as an open subset of the Fréchet space C∞(X,R) is a Fréchet

manifold. As we have discussed, the tangent space TφHω at any point φ is canonically

isomorphic to C∞(X,R), and the tangent bundle THω is canonically isomorphic to

Hω × C∞(X,R).

Let Ω be a domain in Rm. A map Φ : Ω × X → R, smooth in the X-variables,

induces a map Φ̂ : Ω → C∞(X,R) by Φ̂(y) = Φ(y, ·). Conversely, a map Φ̂ : Ω →

C∞(X,R) induces a map Φ : Ω×X → R smooth in X by setting Φ(y, x) = Φ̂(y)(x).

Suppose now we have a map Φ̂ : Ω → C∞(X,R). Let {ei} be the canonical basis in

Rm. The r-th directional derivative along {ei} is the same as the partial derivative

Φ̂(r)(y, ei1 , ..., eir) = Φ̂yi1 ...yir
(y),



13

and it is a map from Ω to C∞(X,R). It is not hard to check that a map Φ̂ is Cr in

our earlier definition if and only if its partial derivatives up to order r exist and are

continuous on Ω.

Lemma 2.2.1 A map Φ̂ : Ω → C∞(X,R) is C∞ if and only if the corresponding Φ

is smooth on Ω×X jointly.

Proof We start with Φ smooth on Ω × X. By smoothness of Φ, Φ̂ is continuous

on Ω. The function Φyi induces (̂Φyi) : Ω → C∞(X,R), which is continuous by the

smoothness of Φ on Ω×X. It is easy to see

lim
h→0

Φ̂(y + hei)− Φ̂(y)

h

converges to (̂Φyi)(y) in C∞(X,R) by the definition of the seminorms pl, the mean

value theorem, and the smoothness of Φ. Therefore, Φ̂yi = (̂Φyi) and Φ̂ is C1. Simi-

larly, since Φyi is smooth on Ω×X, the map (̂Φyi), hence Φ̂yi is C1, and so Φ̂ is C2

and eventually C∞.

For the converse direction, We first observe the following lemma

Lemma 2.2.2 If F̂ : Ω → C∞(X,R) is continuous, then all partial derivatives in

the X-variables DI
xF are continuous on Ω×X.

Proof For (yµ, xµ) → (y, x) in Ω ×X, we need to show DI
xF (yµ, xµ) → DI

xF (y, x)

as µ → ∞. The continuity of F̂ says F̂ (yµ) → F̂ (y) in C∞(X,R), which implies

DI
xF (yµ, x) → DI

xF (y, x) uniformly in x ∈ X. By |DI
xF (yµ, xµ) − DI

xF (y, x)| ≤

|DI
xF (yµ, xµ)−DI

xF (y, xµ)|+ |DI
xF (y, xµ)−DI

xF (y, x)|, the lemma follows

Now suppose Φ̂ : Ω → C∞(X,R) is C∞. The map Φ̂yi : Ω → C∞(X,R) induces a

map on Ω×X by Φ̂yi(y)(x). We know

lim
h→0

Φ̂(y + hei)− Φ̂(y)

h
= Φ̂yi(y) (2.2.1)

in C∞(X,R), so by the definition of the seminorms pl we have

lim
h→0

Φ(y + hei, x)− Φ(y, x)

h
= Φ̂yi(y)(x).
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Therefore, Φyi(y, x) = Φ̂yi(y)(x). So far, we have shown Φyi exists and is smooth in

X; moreover, (̂Φyi) = Φ̂yi , and (̂Φyixj) : Ω → C∞(X,R) is continuous. Meanwhile,

the map (̂Φxj) : Ω→ C∞(X,R) is continuous by Lemma 2.2.2 and Φ̂ ∈ C∞. (̂Φxj) is

C1 because

lim
h→0

(̂Φxj)(y + hei)− (̂Φxj)(y)

h

converges to (̂Φyixj)(y) in C∞(X,R) by (2.2.1). So we see if Φ̂ is C∞ then (̂Φxj) is

C1 and (̂Φxj)yi = (̂Φyixj). Apply the same idea to Φ̂yi , we have (̂Φyixj) is C1, which

implies (̂Φxj) is C2 and by induction C∞. All in all, (̂Φxj) and (̂Φyi) = Φ̂yi are C∞ if

Φ̂ is C∞. By Lemma 2.2.2 Φ is C∞(Ω×X).

One final remark, from the above proof, we see that (̂Φyi) = Φ̂yi if Φ is smooth.
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3. NONCOMMUTATIVE POTENTIAL THEORY

Let (V, 〈·, ·〉) be a complex Hilbert space, EndV the set of bounded linear operators

on V , and End +V the set of all positive invertible elements of EndV . Let M be a

compact Riemann surface with boundary. On the bundle M × V →M , a Hermitian

metric h is a collection of Hermitian inner products hz on V for z ∈ M that can be

written as hz(v, w) = 〈P (z)v, w〉 with P : M → End +V , v and w ∈ V . Assuming

P is C2, the Chern connection of the metric is P−1∂P , and its curvature RP =

∂̄(P−1∂P ) = P−1(Pzz̄ − Pz̄P−1Pz)dz̄ ∧ dz in a chart.

We digress here to argue that a Riemann surface with boundary M automatically

gives a real analytic structure to its boundary ∂M (compactness is not needed here).

By definition, the transition function between boundary charts of M is holomorphic

in interior and continuous up to boundary. According to the reflection principle, such

a function is holomorphic across the boundary, and therefore real analytic up to the

boundary. In particular, the restriction of these transition functions to the boundary

endows ∂M with a real analytic structure. It is this analytic structure that defines

the smoothness classes in the theorem below.

Theorem 3.0.1 Let M be a compact Riemann surface with boundary and F ∈

Cm(∂M,End +V ), where m = 0,∞, or ω. There exists a unique P ∈ Cm(M,End +V )∩

Cω(M,End +V ) such that RP = 0 on M , and P |∂M = F . The same is true if we

replace Cm by a Hölder class Ck,α for k a nonnegative integer and 0 < α < 1.

The space EndV with the operator norm ‖ · ‖op is a Banach space. So the spaces

Ck,α(M,EndV ) and Ck,α(∂M,EndV ) are Banach algebras as defined in Chapter 2,

and Ck,α(M,End +V ) and Ck,α(∂M,End +V ) are subspaces with values in End +V .

We denote by Cω the space of real analytic maps, those that can be expanded at each

point of its domain in a power series in a chart. Later on, we will use O(M,EndV )
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to denote the space of holomorphic maps, those that are complex differentiable in

charts.

3.1 Preliminary lemmas

We denote the space of invertible elements in EndV by End×V . The first lemma

is a standard fact in finite rank bundles, and the case of infinite rank bundles is proved

similarly.

Lemma 3.1.1 If M is a simply connected Riemann surface and P ∈ C2(M,End +V )

is flat, namely RP = 0, then P = H∗H where H ∈ O(M,End ×V ). If P = K∗K is

also such a factorization, then H = UK, where U ∈ EndV is unitary.

Proof This lemma is actually true for M a simply connected complex manifold, and

we will prove this general case. Fix a point a ∈ M , we define a map Ψ : M × V →

M × V by setting Ψ(z, v) equal to the parallel translation of v along a curve γ from

a to z. Since M is simply-connected and RP = 0, the map Ψ is independent of the

choice of γ. For each z ∈ M , we denote by Ψz the map v 7→ Ψ(z, v), so Ψz is in

End×V . We claim that z 7→ Ψz is holomorphic. It suffices to show that for a fixed

v ∈ V the map z 7→ Ψz(v) is holomorphic. Indeed, the covariant derivative DΨz(v)

is zero due to parallel translation, so ∂̄Ψz(v) = 0 and z 7→ Ψz(v) is holomorphic.

Since parallel translation is an isometry, 〈P (a)v, w〉 = 〈P (z)Ψz(v),Ψz(w)〉 for any

v, w ∈ V , and hence P (z) = (Ψ−1
z )∗P (a)Ψ−1

z . Because P (a) ∈ End +V , we see

P (z) =
(
P (a)1/2Ψ−1

z

)∗
P (a)1/2Ψ−1

z ,

and the lemma follows by setting H(z) = P (a)1/2Ψ−1
z .

If P has two factorizations P = H∗H = K∗K, then HK−1 = H∗−1K∗, which is

holomorphic on one side while antiholomorphic on the other. Hence HK−1 must be

a constant operator, say U . Then U = U∗−1 and H = UK.
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Lemma 3.1.2 Let M be a compact Riemann surface with boundary. Let P,Q be in

C(M,End +V ) ∩ C2(M,End +V ), and RP = RQ = 0. If P ≥ Q on ∂M , then P ≥ Q

on M .

Proof This is a special case of the maximum principle proved in [Lem15]. See also

Lemma 3.2 in [Lem17].

Lemma 3.1.3 Let M be a compact Riemann surface with boundary. Let Pj be

in C(M,End +V ) ∩ C2(M,End +V ), and RPj = 0, j ∈ N. If Pj|∂M converges in

C(∂M,End +V ), then Pj converges in C(M,End +V ).

Proof Suppose the limit of Pj|∂M is P . Then there exists δ > 0 such that P (z) ≥ δ

for z ∈ ∂M . We can find j0 such that ‖Pj−P‖C0(∂M) < δ/2 for j ≥ j0, which implies

−δ/2 < Pj − P < δ/2 for j ≥ j0 and z ∈ ∂M . So Pj > P − δ/2 ≥ δ/2 for j ≥ j0

and z ∈ ∂M , and by Lemma 3.1.2 this is true on M . Given ε > 0, we can find i0

such that ‖Pi − Pj‖C0(∂M) < εδ/2 for i, j ≥ i0, and hence −εδ/2 < Pi − Pj < εδ/2

for i, j ≥ i0 and z ∈ ∂M . So for z ∈ ∂M and i, j ≥ max{i0, j0} := k0, we have

(1 + ε)Pj > Pi > (1 − ε)Pj, and by Lemma 3.1.2 again, this is true on M . Hence

‖Pi − Pj‖C0(M) ≤ ε‖Pj‖C0(M) for i, j ≥ k0. Pj is a bounded sequence on ∂M , and by

Lemma 3.1.2 Pj is a bounded sequence on M . Therefore, Pj is a Cauchy sequence

in C(M,End +V ), and there exists f ∈ C(M,EndV ) such that Pj → f in sup-norm.

Since Pj ≥ δ/2 on M , the same holds for f , and hence f ∈ C(M,End +V ).

Lemma 3.1.4 Let D ⊂ C be the unit disc, Hj ∈ O(D,End ×V ), and Hj(0) ∈

End +V . If H∗jHj converges locally uniformly to some P ∈ C(D,End +V ), then there

exists H ∈ O(D,End ×V ) such that Hj converges, locally uniformly, to H on D.

Proof Because ‖Hj‖2 = ‖H∗jHj‖ ≤ ‖H∗jHj − P‖ + ‖P‖, we see Hj is uniformly

bounded on any compact set. Let Cr be the circle of radius r < 1 centered at the

origin, so we have supCr ‖Hj‖ ≤Mr for some positive Mr. The Cauchy estimate gives

‖∂
kHj(z)

∂zk
‖ ≤ k!

2π
Mr

1

(r − |z|)k+1
.
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It is straightforward to check that the partial derivatives of Pj := H∗jHj are locally

uniformly equicontinuous, and by [Lem17, Proposition 2.5] these partial derivatives

converge locally uniformly. Meanwhile

Pj(0)−1/2∂
kPj
∂zk

(0) =
(
H∗j (0)Hj(0)

)−1/2
H∗j (0)

∂kHj

∂zk
(0) =

∂kHj

∂zk
(0),

and as j → ∞, the first term converges, say to Ak, so limj→∞
∂kHj
∂zk

(0) = Ak. Hence

‖Ak‖ ≤ k!Mr/(2πr
k+1), and the power series

∑∞
k=0Akz

k/k! := H(z) has radius of

convergence ≥ 1, so H ∈ O(D,EndV ). Choose R < r, for |z| ≤ R,

‖∂
kHj

∂zk
(0)

zk

k!
‖ ≤ MrR

k

2πrk+1
,

so Hj(z) =
∑ ∂kHj

∂zk
(0) z

k

k!
converges uniformly to H on |z| ≤ R. Finally, since Hj(z) ∈

End×V and

‖Hj(z)−1‖2 = ‖Hj(z)−1Hj(z)−1∗‖ = ‖(H∗jHj)
−1(z)‖ → ‖P−1(z)‖,

H(z) is actually in End×V .

3.2 A priori estimates

Fix a smooth positive (1, 1)-form ω on M and define a map Λ sending (1, 1)-forms

to functions: Λ(φ) = −φ/ω, for a (1, 1)-form φ. Locally, ω =
√
−1gdz ∧ dz̄, where g

is a positive smooth function, so if φ = vdz ∧ dz̄ locally, then Λ(φ) =
√
−1v/g.

Fix 0 < α < 1, assume P ∈ C2,α(M,End +V ) has zero curvature, i.e. flat, and

A = P−1∂P . We associate the following differential operator with P :

L :C2,α(M,End selfV ) −→ Cα(M,End selfV )

h 7−→
√
−1Λ(∂̄∂h− A∗ ∧ ∂h− ∂̄h ∧ A+ A∗ ∧ h ∧ A).

On a chart, Lh = (1/g)Lh, where

Lh = hzz̄ − Pz̄P−1hz − hz̄P−1Pz + Pz̄P
−1hP−1Pz.
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The reason for studying L is that it is the linearization of curvature, as we shall see

in section 3.3. The main result in this section is

Theorem 3.2.1 If h ∈ C2,α(M,End selfV ) and h|∂M = 0, then

‖h‖2,α,M ≤ C‖Lh‖0,α,M

where C = C(‖P‖2,α, ‖P−1‖0,α).

We begin with a somewhat standard estimate.

Lemma 3.2.2 If h ∈ C2,α(M,End selfV ) and h|∂M = 0, then

‖h‖2,α,M ≤ C(‖h‖0,M + ‖Lh‖0,α,M)

where C = C(‖P‖2,α, ‖P−1‖0,α).

The prominent feature of L is the following. On a simply connected open set, we

have H∗PH = 1 with holomorphic H by Lemma 3.1.1, and it turns out that

1

2
∆(H∗hH) = −H∗(Lh)H.

Here ∆ is the Laplace operator with respect to ω, and we use the fact that ∆ when

acting on functions is the same as 2
√
−1Λ∂̄∂. Therefore, modulo a gauge transfor-

mation H, L is the Laplace operator, locally. In a chart, the above equality becomes

(H∗hH)zz̄ = H∗(Lh)H. We will exploit this to reduce Lemma 3.2.2 to the corre-

sponding estimates for scalar-valued elliptic partial differential equations.

If L had nonpositive zero order term, general theory would imply ‖h‖0,M ≤

C‖Lh‖0,M , which together with Lemma 3.2.2 would give Theorem 3.2.1. However,

the zero order term of L is nonnegative. To get around this problem we first prove a

maximum principle, Lemma 3.2.3, and observe that for u ∈ C2(M,C),

L(u · P ) =
√
−1Λ(−∂̄∂u · P + uP ·RP ) = (−1

2
∆u)P,

as RP = 0. A suitable choice of u will put us in the position of using Lemma 3.2.3,

and Theorem 3.2.1 will follow quickly.



20

Proof [Proof of Lemma 3.2.2] Consider two finite open covers {Ui}, {Vi} of M , such

that Ui, Vi are in a chart φi for each i, and

for interior chart,

φi(Ui) = B(0, 1)

φi(Vi) = B(0, 2).

for boundary chart,

φi(Ui) = B(0, 1) ∩H

φi(Vi) = B(0, 2) ∩H
where H ⊂ C is the upper-half plane.

We use {Ui} to define the norm on C2,α(M,End selfV ) and {Vi} on Cα(M,End selfV ).

Since our arguments will be local, we can assume Ui, Vi are already in C and

φi is the identity. We first consider a boundary chart φi. As mentioned above,

(H∗hH)zz̄ = H∗(Lh)H, where H is a holomorphic function in the interior of this

chart with H∗PH = 1. As P is C2,α up to the boundary of M , so is H, according to

[Lem17, Theorem 3.7]. Consider a bounded linear functional l ∈ (EndV )∗ of norm

one, and apply l to the equation obtaining [l(H∗hH)]zz̄ = l(H∗(Lh)H), a scalar-

valued equation. Denote φi(Ui) = B′ and φi(Vi) = B′′. By [GT01, Lemma 6.5 or

Corollary 6.7]

‖l(H∗hH)‖2,α,B′ ≤ C(‖l(H∗hH)‖0,B′′ + ‖l(H∗(Lh)H)‖0,α,B′′) (3.2.1)

where C is a uniform constant.We can get rid of l and H to have

‖h‖2,α,B′ ≤ C(‖h‖0,M + ‖Lh‖0,α,M).

Indeed, at each point in B′′,

|l(H∗hH)| ≤ ‖H∗hH‖op ≤ ‖H‖2
op‖h‖op ≤ C‖h‖op.
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The last inequality follows from P−1 = HH∗. Similarly,

‖l(H∗(Lh)H)‖0,α,B′′ ≤ ‖H∗(Lh)H‖0,α,B′′

≤ ‖H‖2
0,α,B′′ · ‖Lh‖0,α,B′′

≤ C‖H‖2
0,α,B′′ · ‖Lh‖0,α,M

≤ C(‖H‖2
0 + ‖Hz‖2

0) · ‖Lh‖0,α,M

≤ C‖Lh‖0,α,M

The third inequality is by the definition of the Cα norm on M . The last inequality

follows from Hz = −P−1PzH. Therefore, the right hand side of (3.2.1) is dominated

by C(‖h‖0,M + ‖Lh‖0,α,M), which gives C(‖h‖0,M + ‖Lh‖0,α,M) ≥ ‖l(H∗hH)‖2,α,B′ .

Let D stand for (∂z, ∂z̄), and D2 for (∂2
z , ∂z∂z̄, ∂

2
z̄ ). Notice that ‖l(H∗hH)‖2,α,B′ is

comparable with

‖l(H∗hH)‖0,B′ + ‖Dl(H∗hH)‖0,B′ + ‖D2l(H∗hH)‖0,α,B′ .

We obtain, for x ∈ B′,

|Dl(H∗hH)(x)| ≤ C(‖h‖0,M + ‖Lh‖0,α,M)

and then take supremum over l of norm one to get

‖D(H∗hH)(x)‖op ≤ C(‖h‖0,M + ‖Lh‖0,α,M).

As a consequence,

C(‖h‖0,M + ‖Lh‖0,α,M) ≥ ‖DH∗hH +H∗DhH +H∗hDH‖0,B′

≥ ‖H∗DhH‖0,B′ − ‖H∗hDH‖0,B′ − ‖DH∗hH‖0,B′

≥ ‖H∗DhH‖0,B′ − C‖h‖0,B′ .

So

C(‖h‖0,M + ‖Lh‖0,α,M) ≥ ‖H∗DhH‖0,B′ .

Since

‖Dh‖0,B′ ≤ ‖H∗DhH‖0,B′‖H−1‖2
0,B′ = ‖H∗DhH‖0,B′‖P‖0,B′ ≤ C‖H∗DhH‖0,B′ ,
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we have

‖Dh‖0,B′ ≤ C(‖h‖0,M + ‖Lh‖0,α,M).

We can estimate the second derivatives and their Hölder norms similarly, and obtain

‖h‖2,α,B′ ≤ C(‖h‖0,M + ‖Lh‖0,α,M). (3.2.2)

We next consider an interior chart φi. As before [l(H∗hH)]zz̄ = l(H∗(Lh)H). We

let φi(Ui) = B′ and φi(Vi) = B′′. By [GT01, Corollary 6.3],

‖Dl(H∗hH)‖0,B′ + ‖D2l(H∗hH)‖0,B′ + [D2l(H∗hH)]α,B′

≤ C
[
‖l(H∗hH)‖0,B′′ + ‖l(H∗(Lh)H)‖0,α,B′′

]
.

Using the same method as in boundary charts, we can get rid of l and H to obtain

the same estimate (3.2.2). Hence the lemma follows.

We next prove a maximum principle, which in turn gives rise to C0 estimates.

Recall that 〈·, ·〉 is the inner product of V , and denote ‖v‖2
P (z) = 〈P (z)v, v〉.

Lemma 3.2.3 Suppose h ∈ C2(M,End selfV ). Define

SP,h(z) = sup
‖v‖P (z)=1

〈h(z)v, v〉.

If Lh ≥ 0, then SP,h(z) is subharmonic. As a result, if additionally h is continuous

on M , then

sup
M

SP,h = sup
∂M

SP,h.

Proof First,

SP,h(z) = sup
〈P (z)v,v〉=1

〈h(z)v, v〉 = sup
‖P (z)1/2v‖=1

〈P (z)−1/2h(z)P (z)−1/2P (z)1/2v, P (z)1/2v〉

= sup
‖u‖=1

〈P (z)−1/2h(z)P (z)−1/2u, u〉

is continuous, as the sup of a family of equicontinuous functions. Locally, we have

H∗PH = 1 and (H∗hH)zz̄ = H∗(Lh)H; furthermore, 0 ≤ Lh = (1/g) · Lh means

Lh ≥ 0. Since

0 ≤ 〈(Lh)Hv,Hv〉 = 〈(H∗hH)zz̄v, v〉,
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〈(H∗hH)v, v〉 is subharmonic for any v ∈ V . Thus,

SP,h(z) = sup
〈P (z)v,v〉=1

〈h(z)v, v〉 = sup
〈H−1v,H−1v〉=1

〈h(z)v, v〉 = sup
〈u,u〉=1

〈H∗hH(z)u, u〉

is the sup of a family of subharmonic functions. As we already know SP,h(z) is

continuous, it is subharmonic.

Theorem 3.2.4 If h ∈ C2,α(M,End selfV ) and h|∂M = 0, then

‖h‖0,M ≤ C‖Lh‖0,M

where C = C(‖P‖0, ‖P−1‖0).

Proof Recall if u ∈ C2(M,C), then

L(u · P ) = (−1

2
∆u)P.

Let Φ be the function vanishing on ∂M such that ∆Φ = 2, and let G = (Φ −

inf Φ)‖P−1‖0P . Then G ≥ 0 with L(G) = −‖P−1‖0P ≤ −1. Besides, G ≤ C, where

C depends on ‖P‖0 and ‖P−1‖0. With F = G · ‖Lh‖0, we have h ≤ F on ∂M .

Moreover,

L(h− F ) = Lh− ‖Lh‖0 · LG ≥ Lh+ ‖Lh‖0 ≥ 0.

By Lemma 3.2.3, h− F ≤ 0 on M . Therefore,

h ≤ G · ‖Lh‖0 ≤ C‖Lh‖0.

Replacing h by −h, the theorem follows.

Theorem 3.2.1 is a consequence of Lemma 3.2.2 and Theorem 3.2.4.

3.3 Proof of the main theorem

We start with a regularity result.



24

Lemma 3.3.1 Let P ∈ C(M,End +V ) ∩ C2(M,End +V ) be flat. If P |∂M is Ck,α,

C∞, or Cω, then P has the corresponding regularity on M .

Proof By Lemma 3.1.1, P = H∗H with a holomorphic map H locally, so P is

always Cω in M regardless of its boundary values. Denote P |∂M by F . If F ∈ Ck,α,

by [Lem17, Theorem 3.7] on a boundary chart P = H∗H with H of class Ck,α up to

∂M ; therefore, P is Ck,α up to ∂M . Next suppose F is C∞, then by the Ck,α result,

P is Ck up to ∂M for any positive integer k, hence C∞.

Finally, suppose F ∈ Cω. On a boundary chart, that we identify with the upper-

half disc in C, P = H∗H with H continuous up to the real axis by [Lem17, Theorem

3.7]. Since F ∈ Cω, it has a holomorphic extension in a neighborhood of the real axis

in the disc, so the map H∗−1(z̄) ·F (z) provides H a holomorphic extension across the

real axis, and it follows that P is real analytic across the real axis.

Proof [Proof of Theorem 3.0.1] The uniqueness follows from the maximum principle

(see [Lem17, Lemma 3.2] or [Lem15]). We consider first the case F ∈ Cω and prove

the existence by the continuity method. Fix 0 < α < 1, let φt = tF + (1− t)Id, and

T =

t ∈ [0, 1]

∣∣∣∣∣∣
If 0 ≤ s ≤ t, then φs = Ps|∂M ,

for some Ps ∈ C2,α(M,End +V ), and RPs = 0

 .

We will say those φs “have an extension.” The goal is to show T = [0, 1]. If so,

φ1 = F has a C2,α extension, and we can improve the regularity from C2,α to Cω by

Lemma 3.3.1. Because 0 is in T , T is nonempty. First we prove T is closed.

Suppose T 3 tj → t0. For s < t0, we can find tj > s, therefore φs has an

extension. We have to show φt0 extends. For brevity, we write Pj instead of Ptj .

Since Pj|∂M = φtj → φt0 , Pj converges by Lemma 3.1.3, say to P∞ ∈ C(M,End +V ),

and P∞|∂M = φt0 . For any interior point of M , choose a chart with image the unit

disc D in C. Thus, Pj = H∗jHj, where Hj ∈ O(D,End×V ) by Lemma 3.1.1, and

after multiplying with the unitary operator (H∗j (0)Hj(0))1/2H−1
j (0) we can assume

Hj(0) ∈ End +V . By Lemma 3.1.4, there exists H holomorphic on D such that

Hj → H locally uniformly. Hence, P∞ = limH∗jHj = H∗H on D which implies
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P∞ ∈ C∞(M,End +V ) and RP∞ = 0. By Lemma 3.3.1, P∞ is Cω, especially C2,α on

M . Hence, t0 is in T and T is closed.

Now we prove that T is open. If t0 ∈ T then φt has an extension Pt, for 0 ≤ t ≤ t0.

Consider the smooth map

Ψ : C2,α(M,End +V )→ Cα(M,End selfV )× C2,α(∂M,End +V )

h 7→ (
√
−1Λ(h∂̄(h−1∂h)), h|∂M).

Then Ψ(Pt0) = (0, φt0). We denote P−1
t ∂Pt = At, so the linearization of Ψ at Pt0 is

C2,α(M,End selfV )→ Cα(M,End selfV )× C2,α(∂M,End selfV )

h 7→ (
√
−1Λ(∂̄∂h− A∗t0 ∧ ∂h− ∂̄h ∧ At0 + A∗t0 ∧ h ∧ At0), h|∂M).

It is here the operator in section 3.2 turns up. We will show that the linearization is

an isomorphism. Then Ψ is a diffeomorphism in a neighborhood of Pt0 by the implicit

function theorem, and that implies T is open.

To show that the linearization is an isomorphism, it suffices to prove it is bijective

because of the Open Mapping Theorem. That is, given

(f1, f2) ∈ Cα(M,End selfV )× C2,α(∂M,End selfV ),

the equation 
√
−1Λ(∂̄∂h− A∗t0∂h− ∂̄hAt0 + A∗t0hAt0) = f1

h|∂M = f2

(3.3.1)

has a unique solution. That there is at most one solution easily follows from the

maximum principle, Lemma 3.2.3 or Theorem 3.2.1. If dimV <∞, existence follows

from uniqueness by Fredholm alternative. However, if dimV = ∞, Fredholm alter-

native is not available, because the embedding C2,α(M,EndV ) → Cα(M,EndV ) is

no longer compact. The way we solve (3.3.1) is again the continuity method, based

on the next lemma:
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Lemma 3.3.2 Let B, V be two Banach spaces, and {Lt}0≤t≤1 a family of bounded

linear operators from B to V . Suppose t 7→ Lt is continuous in operator norm;

moreover, there exists a constant C such that

‖x‖ ≤ C‖Ltx‖ (3.3.2)

for any x ∈ B and any t. Then L1 is onto if and only if L0 is onto.

Proof This is a variant of [GT01, Theorem 5.2]. Suppose Ls is onto for some

s ∈ [0, 1]. By (3.3.2), Ls is one-to-one, and hence the inverse L−1
s : V → B exists;

moreover, for y ∈ V ,

‖L−1
s y‖ ≤ C‖LsL−1

s y‖ = C‖y‖.

For t ∈ [0, 1] and y ∈ V , we are looking for x ∈ B such that Ltx = y. The equation

Ltx = y is equivalent to x = L−1
s y + L−1

s (Ls − Lt)x. Define a map T : B → B by

Tx = L−1
s y + L−1

s (Ls − Lt)x. For x1, x2 ∈ B,

‖Tx1 − Tx2‖ = ‖L−1
s (Ls − Lt)(x1 − x2)‖ ≤ C‖Ls − Lt‖‖x1 − x2‖.

Because of the continuity of t 7→ Lt, there exists δ > 0 indepent of s, such that if

|s − t| < δ then ‖Ls − Lt‖ < 1/2C. Therefore, if |s − t| < δ, then ‖Tx1 − Tx2‖ <

‖x1−x2‖/2, a contraction on B, and hence T has a unique fixed point. So if |s−t| < δ,

Lt is onto. By dividing [0, 1] into subintervals of length less than δ, the lemma follows.

Unsurprisingly, we are going to deform our equation to the Laplace equation. The

naive way of deforming is by convex combination, but this breaks the symmetry of

our equation (after all we want to use the a priori estimates from Theorem 3.2.1). It

is here the solution set T plays its role; it tells us how to deform.

First in equation (3.3.1), f2 can be extended to C2,α(M,End selfV ). If we subtract

f2 from h, we only need to consider the case of zero boundary value. In other words,

we have to show that

Lt : {h ∈ C2,α(M,End selfV ) : h|∂M = 0} → Cα(M,End selfV ) (3.3.3)

h 7→
√
−1Λ(∂̄∂h− A∗t ∧ ∂h− ∂̄h ∧ At + A∗t ∧ h ∧ At) (3.3.4)
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is surjective when t = t0. Note that L0 is the Laplace operator, for P0 = 1. We start

with the following lemma, which is stronger than what we need.

Lemma 3.3.3 Let k be a nonnegative integer. If t, s ∈ [0, t0] and t → s, then

‖Pt − Ps‖Ck → 0, and ‖Pt−1 − Ps−1‖Ck → 0.

Proof By Lemma 3.3.1, Pt ∈ Ck(M,End +V ). Since Pt|∂M = φt → φs, Pt converges

to Ps in C(M,End +V ) by Lemma 3.1.3. For the derivatives, we do estimates on

charts and consider ∂z only, as ∂z̄ can be done in the same way. On an interior chart,

Pt = H∗tHt, Ps = H∗H where Ht, H are holomorphic. As in the proof of closedness,

Ht → H locally uniformly, and so do all their derivatives. Therefore,

(Pt)z = H∗t (Ht)z → H∗Hz = (Ps)z

locally uniformly. On a boundary chart, that again we identify with the upper-half

disc in C, we similarly have (Pt)z → (Ps)z locally uniformly but only away from the

boundary. The convergence near the boundary can be resolved as follows. Pt = H∗tHt

with Ht continuous up to boundary of M (in the current situation, this means the

real axis of the unit disc) by [Lem17, Theorem 3.7]. Similarly, Ps = H∗H with H

continuous up to boundary of M . As in the proof of Lemma 3.3.1, since φt is Cω, it

has a holomorphic extension in a neighborhood of the real axis of the unit disc, the

map

H∗t
−1(z̄) · φt(z)

provides an analytic continuation of Ht across the real axis that we continue denoting

Ht. For a compact set in the unit disc, consider a contour around it. By Cauchy’s

Integral Formula and the fact ‖Ht‖ has a uniform upper bound, the Bounded Con-

vergence Theorem implies that Ht converges to H uniformly on this compact set, and

the same holds for derivatives of all orders. Hence, Pt → Ps in Ck for any nonnegative

integer k, locally uniformly in this boundary chart. Therefore, we conclude the Ck

convergence on M . Since Ck(M,EndV ) is a Banach algebra, Pt
−1 → Ps

−1 in Ck.
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This lemma implies that ‖Lt − Ls‖ → 0 as t → s, where the norm on Lt is the

operator norm from (4.2). From Theorem 3.2.1 and the continuity Lemma 3.3.3, we

get the desired estimates: if h ∈ C2,α(M,End selfV ) and h|∂M = 0, then

‖h‖2,α,M ≤ C‖Lth‖0,α,M

where C is independent of t. Therefore, by Lemma 3.3.2 and the fact L0 = ∆/2 is

onto, Lt0 is also onto, which implies the equation (3.3.1) is uniquely solvable, so T

is open and therefore T = [0, 1]. This completes the proof of Theorem 3.0.1 for Cω

case.

If the boundary data F is only C0, it can be approximated by a sequence Fj ∈

Cω(∂M,End +V ) in sup norm, for the following reason: ∂M as a real analytic man-

ifold can be real analytically embedded in some RN by an embedding theorem of

Grauert and Morrey [Gra58] [Mor58]; F has a continuous extension to RN , which

can be approximated by polynomials Pj; after composing Pj with the embedding, we

have the desired Fj. Each Fj has a real analytic flat extension Pj according to the

Cω case. By Lemma 3.1.3, Pj converges in C(M,End +V ), say to P . As in the proof

of closedness, P is C2 in the interior and has curvature 0.

If F is Ck,α or C∞, the P constructed in the previous paragraph is Ck,α, respec-

tively C∞ on M , by Lemma 3.3.1.
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4. THE SPACE OF KÄHLER POTENTIALS

Let us recall the setup from Chapter 1 and give a more detailed account. Let X be

a compact complex manifold of dimension n with a Kähler form ω. The space of

Kähler potentials is

Hω = {φ ∈ C∞(X,R) : ω + i∂∂̄φ > 0},

and we will denote ω + i∂∂̄φ by ωφ.

By the discussion in Chapter 2, the spaceHω is an open subset in the Fréchet space

C∞(X,R), and therefore it is a Fréchet manifold. The tangent space TφHω at φ ∈

Hω is canonically isomorphic to C∞(X,R), and tangent bundle THω is canonically

isomorphic to Hω × C∞(X,R). Following Mabuchi [Mab87], Semmes [Sem92], and

Donaldson [Don99], the Mabuchi metric gM on Hω is the following. For a point

φ ∈ Hω and two vectors ξ, η ∈ TφHω ≈ C∞(X,R), the Mabuchi metric is

gM(ξ, η) =

∫
X

ξη ωnφ .

On the right hand side ξ and η are viewed as smooth functions on X, and we are

integrating a product of two functions.

Let D be a bounded smooth strongly pseudoconvex domain in Cm. A map Φ̂ :

D → Hω will induce a map Φ : D × X → R with Φ(z, ·) ∈ Hω for z ∈ D, and

vice versa. Equipping D with the Euclidean metric and Hω with Mabuchi metric,

we can compute the Hilbert–Schmidt norm of the tangent map Φ̂′z : TzD → TΦ̂(z)Hω

that we denote by |Φ̂′z| for z ∈ D. If {v1, ..., v2m} is an orthonormal basis for TzD ≈

R2m, then |Φ̂′z|2 =
∑2m

j=1 gM(Φ̂′zvj, Φ̂
′
zvj). The harmonic energy functional is defined

to be E(Φ̂) =
∫
D
|Φ̂′z|2dV where dV is the Euclidean volume form on D. A map

Φ̂ : D → Hω is said to be harmonic if it is a critical point of the harmonic energy

functional. Let {zj} be coordinates on D. For z ∈ D, Φzj(z, ·) is a function on X.
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We compute the gradient of Φzj(z, ·) with respect to the Kähler metric ωΦ̂(z) and

denote the complexified vector field on X by ∇Φzj(z). The length of this vector field

with respect to the metric ωΦ̂(z) is denoted by |∇Φzj(z)|. A computation, as in finite

dimensions, gives that a map Φ̂ : D → Hω is a critical point of E if the corresponding

Φ satisfies the harmonic map equation:

m∑
j=1

Φzj z̄j −
1

2
|∇Φzj |2 = 0. (4.0.1)

The functional that we are looking for, which we denote by E , is a perturbation

of the harmonic functional E above. In order to define E , we recall first the Poisson

bracket {·, ·}ωφ on C∞(X,R) determined by the symplectic form ωφ with φ ∈ Hω.

For ξ, η ∈ TφHω ≈ C∞(X,R), the Poisson bracket {ξ, η}ωφ is a smooth function on

X characterized by {ξ, η}ωφωnφ = ndξ ∧ dη ∧ ωn−1
φ . Next we define a three-form θ on

Hω: for φ ∈ Hω and ξ1, ξ2, ξ3 ∈ TφHω,

θ(ξ1, ξ2, ξ3) := gM({ξ1, ξ2}ωφ , ξ3) =

∫
X

{ξ1, ξ2}ωφξ3ω
n
φ . (4.0.2)

This three-form θ is d-closed (see Lemma 4.3.3 below), and therefore there is a two-

form α on Hω such that dα = θ. (This is because Hω ⊂ C∞(X,R) is convex, and

Poincare’s exactness lemma holds in Fréchet manifolds too, by the same proof as in

finite dimensions.) For a map Φ̂ : D → Hω, we define

E(Φ̂) := E(Φ̂) + 4i
∑
j

∫
D

α(Φz̄j ,Φzj)dV. (4.0.3)

We will show in Lemma 4.3.4 that the Euler–Lagrange equation of E is

m∑
j=1

Φzj z̄j −
1

2
|∇Φzj |2 −

i

2
{Φz̄j ,Φzj}ωΦ̂

= 0, (4.0.4)

In view of its connection with [Wit83] and following [Don99], we call the equation

(4.0.4) the WZW equation for a map Φ̂ : D → Hω.

Donaldson showed in [Don99], when m = 1, the WZW equation is equivalent to

a homogeneous complex Monge–Ampère equation. We have the following extended
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equivalence for m ≥ 1 by a similar computation. Let π : D×X → X be the projection

onto X. Then the extended equivalence is

Φ solves (4.0.4) if and only if (i∂∂̄Φ + π∗ω)n+1 ∧ (i
m∑
j=1

dzj ∧ dz̄j)m−1 = 0. (4.0.5)

After seeing the WZW equation, we are now trying to solve it and study properties

of the solution. Recall the definition of ω-subharmonicity on graphs.

Definition 4.0.1 A function u : D × X → [−∞,∞) is called ω-subharmonic on

graphs if for any holomorphic map f from an open subset of D to X, ψ(f(z)) +

u(z, f(z)) is subharmonic, where ψ is a local potential of ω.

Let v be a real-valued smooth function on ∂D ×X and ∂D 3 z 7→ v(z, ·) = vz ∈

Hω. Consider the Perron family

Gv := {u ∈ usc(D ×X) : u is ω-subharmonic on graphs,

and lim sup
D3z→ζ∈∂D

u(z, x) ≤ v(ζ, x)}.

As we will later see, the upper envelope V = sup{u : u ∈ Gv} is a weak solution of the

WZW equation from D to Hω. Recall the philosophy that when ω is the curvature

of some Hermitian line bundle (L, h) → X, then the infinite dimensional space Hω

can be approximated by the spaces Hk of inner products on H0(X,Lk). There are

two maps going between Hω and Hk. The Hilbert map Hk : Hω → Hk is

Hk(φ)(s, s) =

∫
X

hk(s, s)e−kφωn, for φ ∈ Hω and s ∈ H0(X,Lk).

In the other direction, the Fubini–Study map FSk : Hk → Hω is

FSk(G)(x) =
1

k
log sup

s∈H0(X,Lk),G(s,s)≤1

hk(s, s)(x), for G ∈ Hk and x ∈ X.

An equally good name would be Bergman map, for the sup above defines the Bergman

kernel of H0(X,Lk) with an inner product G.

Following the definitions from [CS93], let N ∗k be the set of norms on H0(X,Lk)∗.
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Definition 4.0.2 A norm function D 3 z 7→ Uz ∈ N ∗k is said to be subharmonic if

logUz(f(z)) is subharmonic for any holomorphic function f : W ⊂ D → H0(X,Lk)∗.

The quantum Perron family is

Gk
v := {D 3 z → Uz ∈ N ∗k is subharmonic and

lim sup
D3z→ζ∈∂D

U2
z (s) ≤ H∗k(vζ)(s, s) for any s ∈ H0(X,Lk)∗ },

where H∗k(v) is the inner product dual to Hk(v). A remarkable fact about the upper

envelope V k = sup{U : U ∈ Gk
v} is a theorem of Coifman and Semmes [CS93], which

shows that V k is not only a norm but an inner product (see [Slo90b, Corollary 2.7]

for a different proof.); moreover it solves the Hermitian–Yang–Mills equation:ΛΘ(V k) = 0

V k|∂D = H∗k(v).

(4.0.6)

Denoting the dual metric by (V k)∗, our main result is that the upper envelope V

of Gv is the limit of Hermitian–Yang–Mills metrics:

Theorem 4.0.1 Let v ∈ C∞(∂D ×X,R) such that v(z, ·) ∈ Hω for z ∈ ∂D. If V k

is the solution of (4.0.6), then FSk((V
k)∗) converges to V uniformly on D × X, as

k →∞.

Now we turn to the interpretation of the upper envelope V and its relation with

the WZW equation. The next theorem shows that V solves the WZW equation under

a regularity assumption.

Theorem 4.0.2 If the upper envelope V of Gv is in C2(D ×X), then

(i∂∂̄V + π∗ω)n+1 ∧ (i
m∑
j=1

dzj ∧ dz̄j)m−1 = 0.

We expect that the converse of Theorem 4.0.2 also holds, then together with

Theorem 4.0.1 this would show that the solution of the WZW equation can be ap-

proximated by the Hermitian–Yang–Mills metrics.
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4.1 Positivity of direct image bundles

Consider a Hermitian holomorphic line bundle (E, g)→ Xn over a compact com-

plex manifold and assume the curvature η of the metric g is positive. For two sections

s, t ∈ H0(X,E ⊗KX), we write locally

s = σ ⊗ s′, t = τ ⊗ t′

where σ, τ ∈ E and s′, t′ ∈ KX . We extend the metric g to acting on sections of

E ⊗KX by setting g(s, t) = g(σ, τ)s′ ∧ t̄′, which is an (n, n)-form. It is not hard to

see this (n, n)-form is globally defined on X.

We define a variant of the Hilbert map: HilbE⊗KX (u), for a function u : D×X →

R, is given by

HilbE⊗KX (u)(s, s) =

∫
X

g(s, s)e−u(z,·)

with s ∈ H0(X,E ⊗ KX). In the following, suitable assumptions will be made on

u to make sure the integral converges. Then the map D 3 z 7→ HilbE⊗KX (u(z, ·))

defines a Hermitian metric on the bundle D×H0(X,E⊗KX)→ D. We will call this

metric simply HilbE⊗KX (u). The main result of this section is the following positivity

theorem.

Theorem 4.1.1 If u is bounded and upper semicontinuous (usc) on D × X, and

η-subharmonic on graphs, then the dual metric Hilb∗E⊗KX (u) is a subharmonic norm

function.

The following approximation lemma is somewhat technical and we postpone its

proof to section 4.4.

Lemma 4.1.1 Let u be a bounded usc function on D×X, η-subharmonic on graphs.

Then for D′ relatively compact open in D, there exist positive εj ↘ 0 and uj ∈

C∞(D′ × X) decreasing to u such that for any holomorphic map f from an open

subset of D′ to X, ∆(ψ(f(z)) + uj(z, f(z))) ≥ εj∆(ψ(f(z)), where η = i∂∂̄ψ locally.
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Proof [Proof of Theorem 4.1.1] Since being a subharmonic norm function is a local

property, we focus on D′, a relatively compact open set in D. Take εj and uj as in

Lemma 4.1.1. Assuming the theorem holds for such a uj, namely, the dual metric

Hilb∗E⊗KX (uj) is a subharmonic norm function, it follows that Hilb∗E⊗KX (u) is also

a subharmonic norm function because Hilb∗E⊗KX (uj) decreases to Hilb∗E⊗KX (u) as

j →∞.

As a result, we only need to prove the theorem for u ∈ C∞(D′ × X) with the

property that there exists ε > 0 such that for any holomorphic function f from an

open subset of D′ to X,

∆(ψ(f(z)) + u(z, f(z))) ≥ ε∆(ψ(f(z)), where η = i∂∂̄ψ locally. (4.1.1)

In a coordinate system Ω ⊂ Cn on X, we will use Greek letters µ, λ for indices of

coordinates on X, and Roman letters i, j for indices of coordinates on D; moreover,

fµ means the µ-th component of f , whereas ψµλ̄, uīi, and uiλ̄ mean partial derivatives

∂2ψ/∂xµ∂x̄λ, ∂
2u/∂zi∂z̄i, and ∂2u/∂zi∂x̄λ respectively. In this coordinate system

Ω ⊂ Cn on X, the inequality (4.1.1) becomes

ε
∑
i,λ,µ

ψµλ̄
∂fµ

∂zi

∂f̄λ

∂z̄i
≤
∑
i,λ,µ

ψµλ̄
∂fµ

∂zi

∂f̄λ

∂z̄i
+
∑
i

uīi

+
∑
i,λ

uiλ̄
∂f̄λ

∂z̄i
+
∑
i,µ

uīµ
∂fµ

∂zi
+
∑
i,λ,µ

uµλ̄
∂fµ

∂zi

∂f̄λ

∂z̄i
.

(4.1.2)

In (4.1.2), choose f(z) = N(ξ1, ξ2, ..., ξn)z1 whereN is a positive number and (ξ1, ξ2, ..., ξn) ∈

Cn, divide the resulting (4.1.2) by N2 and send N to infinity, to obtain (ψµλ̄ +uµλ̄) ≥

ε(ψµλ̄) as matrices, and hence (ψµλ̄ + uµλ̄) is positive definite.

Let L2(X,E⊗KX) be the space of measurable sections s whose L2 norm
∫
X
g(s, s)e−u(z,·)

is finite. Since different z will give rise to comparable L2 norms, the space L2(X,E⊗

KX) does not change with z, and so we have a Hermitian Hilbert bundle D′ ×

L2(X,E⊗KX)→ D′, with the metric HilbE⊗KX (u), which has D′×H0(X,E⊗KX)→
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D′ as a subbundle. Denote the curvature of the subbundle by Θ =
∑

Θjk̄dzj ∧ dzk̄.

By the computations in [Ber09, P. 540] we deduce∑
j

(Θjj̄s, s) ≥
∫
X

K(z, ·)g(s, s)e−u(z,·) (4.1.3)

where s ∈ H0(X,E ⊗KX), and K : D′×X → R is a smooth function, given in local

coordinates on X by

K =
∑
j

(ujj̄ −
∑
λ,µ

(ψ + u)λ̄µujλ̄uj̄µ);

here (ψ + u)λ̄µ stands for the inverse matrix of (ψ + u)λ̄µ.

We claim that K ≥ 0. First notice that ψ is independent of z, so if we denote

ψ(x)+u(z, x) by φ(z, x), then K =
∑

j(φjj̄−
∑

λ,µ φjλ̄φ
λ̄µφj̄µ). Fix (z0, x0) ∈ D′×X,

since the matrix (φµλ̄) is positive definite, we can choose local coordinates on X

around x0 such that (φµλ̄) is the identity matrix at (z0, x0), and therefore K(z0, x0) =∑
j(φjj̄ −

∑
λ |φjλ̄|2)(z0, x0). For a holomorphic function f from an open subset of D′

to X, the subharmonicity of φ(z, f(z)) reads∑
i

φīi +
∑
i,λ

φiλ̄
∂f̄λ

∂z̄i
+
∑
i,µ

φīµ
∂fµ

∂zi
+
∑
i,λ,µ

φµλ̄
∂fµ

∂zi

∂f̄λ

∂z̄i
≥ 0. (4.1.4)

Without loss of generality, we assume (z0, x0) = (0, 0) and choose fλ = −
∑

i φiλ̄(0, 0)zi

in (4.1.4), and it becomes
∑

j(φjj̄ −
∑

λ |φjλ̄|2)(0, 0) ≥ 0. Therefore, K ≥ 0. (See

also the remark after Lemma 4.3.1 for a slightly different proof of this claim, and an

invariant meaning of K).

As a result, (4.1.3) implies
∑

j(Θjj̄s, s) ≥ 0, and hence the curvature of the dual

metric Hilb∗E⊗KX (u) satisfies the opposite inequality; according to [CS93, Theorem

4.1], this implies Hilb∗E⊗KX (u) is a subharmonic norm function.

Now let (E, g) = (Lk ⊗K∗X , hk ⊗ ωn), which is positively curved for large k since

Θ(hk⊗ωn) = kω+Ricω. Note that E⊗KX ≈ Lk. We have the following proposition

regarding the metric Hk(u) on the bundle D ×H0(X,Lk). Recall that

Hk(u(z, ·))(s, s) =

∫
X

hk(s, s)e−ku(z,·)ωn, s ∈ H0(X,Lk).
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Proposition 4.1.2 Suppose u is a bounded usc function on D × X and with some

ε ∈ (0, 1) u is (1 − ε)ω-subharmonic on graphs. Then there exists k0 = k0(ε, ω),

independent of u, such that, for k ≥ k0, the dual metric H∗k(u) is a subharmonic

norm function.

Proof In order to use Theorem 4.1.1, we check if ku is (kω + Ricω)-subharmonic

on graphs. Suppose ω = i∂∂̄ψ and Ricω = i∂∂̄φ locally, then we want to see if

kψ(f(z)) + φ(f(z)) + ku(z, f(z)) is subharmonic for any holomorphic map f . Note

that kψ + φ + ku = k(1 − ε)ψ + ku + εkψ + φ, and k(1 − ε)ψ(f(z)) + ku(z, f(z))

is subharmonic by the assumption. On the other hand, there exists k0 depending

on ε, ω such that εkψ + φ is plurisubharmonic (psh) for k ≥ k0. Therefore, ku

is (kω + Ricω)-subharmonic on graphs for k ≥ k0. By Theorem 4.1.1, the metric

Hilb∗Lk(ku) is a subharmonic norm function for k ≥ k0. The proposition follows since

HilbLk(ku) = Hk(u).

4.2 Approximation by Hermitian–Yang–Mills metrics

Recall that D is in Cm, and (L, h)→ Xn is a positive line bundle with curvature

ω. A function f : X → [−∞,∞) is called ω-psh if f is usc on X, and for any

coordinate system where ω = i∂∂̄ψ, the function f+ψ is psh in the local coordinates.

We denote the set of all ω-psh functions by PSH(X,ω).

Lemma 4.2.1 Let u be an usc function on D×X, ω-subharmonic on graphs. Then

for any fixed z ∈ D, u(z, x) is ω-psh on X, and for any fixed x ∈ X, u(z, x) is

subharmonic on D.

This can be seen as a special case of an abstract theorem in [Slo90b, Section 1], whose

proof we translate to our setting.

Proof By choosing the holomorphic map f constant in the definition of ω-subharmonic

on graphs, it follows immediately that u(z, x) is subharmonic in z.
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For a fixed z0 ∈ D, we want to show x 7→ ψ(x) + u(z0, x) is psh in a coordinate

system on X, where ψ is a local potential of ω. Without loss of generality, it suffices to

prove that C 3 λ 7→ ψ(λe1) + u(0, λe1) is subharmonic, where e1 = (1, 0, ..., 0) ∈ Cn.

Let U = {λ ∈ C : |λ − a| < R} and h(λ) harmonic on U and continuous up to

boundary. We will be done if

ψ(ae1) + u(0, ae1) + h(a) ≤ max
λ∈∂U

ψ(λe1) + u(0, λe1) + h(λ).

Suppose the inequality is not true. By [Slo86, Lemma 4.5], there is an R-linear

function l : C→ R and b ∈ U such that, if we denote

v(z, λ) = ψ(λe1) + u(z, λe1) + h(λ) + l(λ) (4.2.1)

then

v(0, b) > v(0, λ), for λ ∈ U − {b}.

Now define W (z, λ1, ..., λm) := v(z, λ1) + ...+ v(z, λm) in a neighborhood of (0, b∗) :=

(0, b, ..., b) in Cm × Cm. As W (0, b∗) > W (0, λ1, ..., λm) for (λ1, ..., λm) 6= b∗, there

exists a ball B ⊂ Cm of radius r centered at b∗ such that

W (0, b∗) > max
{0}×∂B

W.

Since W is usc, there exists ε > 0 such that W (z, λ1, ..., λm) < W (0, b∗), for |z| ≤ ε

and (λ1, ..., λm) ∈ ∂B. Let S = r/εIdCm . We have W (z, b∗ + S(z)) < W (0, b∗)

for |z| = ε, which contradicts the maximum principle because W (z, b∗ + S(z)) =∑m
i=1 v(z, b+ r/εzi) is subharmonic by (4.2.1).

Although in the introduction the boundary data v is in C∞(∂D,Hω), we will

prove a lemma for a broader class of boundary data ν. Let ν be a continuous map

∂D ×X → R such that νz(·) := ν(z, ·) ∈ PSH(X,ω) for z ∈ ∂D. Let

Gν = {u ∈ usc(D ×X) : u is ω-subharmonic on graphs, and lim sup
D3z→ζ∈∂D

u(z, x) ≤ ν(ζ, x)}.
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In order to study the properties of the upper envelope V of Gν , we introduce a closely

related family. With π : D ×X → X the projection, let

Fν := {u : u ∈ PSH(D ×X, π∗ω) and lim sup
D3z→ζ∈∂D

u(z, x) ≤ ν(ζ, x)}.

The upper envelope of Fν extends to a solution U ∈ C(D ×X) of
(π∗ω + i∂∂̄U)n+m = 0 on D ×X

π∗ω + i∂∂̄U ≥ 0 on D ×X

U|∂D×X = ν,

see for example [Bou12, DW19]. Even though U is only continuous, by the work of

Bedford and Taylor [BT76, BT82] the left hand side of the first equation above can

be given sense as a Borel measure on D ×X. In addition, we also need the solution

h ∈ C(D ×X) ∩ C2(D ×X) to the Dirichlet problem (see [Aub98, P. 112, Theorem

4.17]) 
∑

j hjj̄ + ∆ωh+ 2n = 0 on D ×X

h|∂D×X = ν.

Lemma 4.2.2 If we denote the upper envelopes of Gν and Fν by V and U respectively,

then U ≤ V ≤ h and lim(z,x)→(z0,x0)∈∂D×X V(z, x) = ν(z0, x0). Moreover, if ν is

negative, then so is V.

Proof Unraveling the definitions of Fν and Gν , we see Fν ⊂ Gν , so U ≤ V . For

any u ∈ Gν , by Lemma 4.2.1, u(z, ·) is ω-psh for fixed z, hence ∆ωu + 2n ≥ 0; in

addition, u(·, x) is subharmonic for fixed x. By the maximum principle, u ≤ h and

hence V ≤ h. Since U and h are both equal to ν on ∂D×X, the limit of V on ∂D×X

must also be ν.

For a fixed x0 ∈ X, let H0(z) be the harmonic function on D with boundary values

ν(z, x0). For u ∈ Gν , we have u(z, x0) ≤ H0(z), and therefore V(z, x0) ≤ H0(z). The

second statement follows at once.
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With Proposition 4.1.2 at hand, we can start to prove Theorem 4.0.1. The fol-

lowing envelope will be used in the proof: for an usc function F on X, we introduce

P (F ) := sup{h ∈ PSH(X,ω) such that h ≤ F} ∈ PSH(X,ω) (see [Ber19]).

Proof [Proof of Theorem 4.0.1] Without loss of generality, we assume v ≤ 0. Fix

δ > 1, and for z ∈ ∂D, define vδz = P (δvz). By [DW19, Lemma 4.9], ∂D × X 3

(z, x) 7→ vδz(x) is continuous. Let V δ be the upper envelope of Gvδ . By Lemma 4.2.2,

V δ ≤ 0, and so u ≤ 0 for u ∈ Gvδ . The next step is to have a better upper bound

for u ∈ Gvδ . To that end, we can look instead at max{u, c}, which is still in Gvδ as

long as the constant c ≤ min vδ. Since max{u, c} is bounded, we will assume u is

bounded. Moreover, u/δ is ω/δ-subharmonic on graphs. According to Proposition

4.1.2, there exists k0 = k0(δ) such that for k ≥ k0, H∗k(u/δ) is a subharmonic norm

function. Because lim sup∂DH
∗
k(u/δ) ≤ H∗k(v), it follows that H∗k(u/δ) ∈ Gk

v and

therefore H∗k(u/δ) ≤ V k on D and FSk(Hk(u/δ)) ≤ FSk((V
k)∗). By Lemma 4.2.1,

we have ω + i∂∂̄u(z, ·)/δ ≥ (1− 1/δ)ω for all z ∈ D, (∂∂̄ on X). By [DW19, Lemma

4.10] (a consequence of the Ohsawa–Takegoshi extension theorem), there exist C > 0

and k0(δ) such that, for k ≥ k0,

1

δ
u− C

k
≤ FSk ◦Hk

(1

δ
u
)
≤ FSk((V

k)∗).

As we saw u ≤ 0, this implies u−C/k ≤ FSk((V
k)∗); this is true for any u ∈ Gvδ , so

we actually have V δ −C/k ≤ FSk((V
k)∗). In addition, since vz + (δ− 1) inf∂D×X(vz)

is a competitor in P (δvz),

V + (δ − 1) inf
∂D×X

(v) ≤ V δ.

Putting things together, we conclude

V + (δ − 1) inf
∂D×X

(v)− C

k
≤ FSk((V

k)∗), for k ≥ k0(δ). (4.2.2)

Next we claim that FSk((V
k
z )∗)(x) is ω-subharmonic on graphs. Some preparation

is needed. Let s be a non-vanishing holomorphic section of Lk over an open set Y ⊂ X.

Let e−kφ := hk(s, s) and s∗k : Y → (Lk)∗ be defined by s∗k(x)(·) = hk(·, ekφ(x)/2s(x)) for
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x ∈ Y . Suppose ŝ∗k : Y → H0(X,Lk)∗ is the pointwise evaluation map of s∗k, namely

ŝ∗k(x)(σ) := s∗k(x)(σ(x)) for σ ∈ H0(X,Lk). Then we have the following formula,

which is taken from [DW19, Lemma 4.1],

FSk((V
k
z )∗)(x) =

2

k
log
[
V k
z (ŝ∗k(x))

]
, x ∈ Y. (4.2.3)

Meanwhile, for σ ∈ H0(X,Lk), ekφ(x)/2ŝ∗k(x)(σ) = σ(x)/s(x) is holomorphic, so ekφ/2ŝ∗k

is holomorphic. Hence for any holomorphic map g from an open subset of D to X

∆
(
φ(g(z)) + FSk((V

k
z )∗)(g(z))

)
= ∆(

1

k
log
[
V k
z ((ekφ/2ŝ∗k) ◦ g(z))

]2
). (4.2.4)

By [CS93, Theorem 4.1] the Hermitian–Yang–Mills metric V k
z is a subharmonic norm

function, so the last term of (4.2.4) is nonnegative, which means FSk((V
k
z )∗)(x) is

ω-subharmonic on graphs as we claimed. Further, according to the Tian–Catlin–

Zelditch asymptotic theorem or by [DW19, Lemma 4.10] an easier but cruder estimate,

FSk((V
k)∗|∂D) = FSk(Hk(v)) ≤ v + O(log k/k), so FSk((V

k)∗) ∈ Gv+O(log k/k) and

FSk((V
k)∗) ≤ V + O(log k/k). This last inequality together with (4.2.2) concludes

the proof.

It is natural to ask if V belongs to Gv. A standard approach to show the envelope

belongs to a family is to take upper regularization, and the case at hand is very similar

to Coifman and Semmes’ [CS93, Lemma 11.11], where upper regularization is taken

in the z-variables. The reason it works in their lemma is because their function in

the x-variables is a norm, but ours is not and regularization does not seem to work.

Nevertheless, with Theorem 4.0.1 one can easily show V ∈ Gv. It would be interesting

to prove V ∈ Gv directly without using Theorem 4.0.1, after all Gv and V can be

defined on any Kähler manifold (X,ω) without reference to a line bundle.

Corollary 4.2.3 The upper envelope V is continuous and V ∈ Gv.

Proof The first statment is a direct consequence of Theorem 4.0.1. As to the second

statement, let ψ be a local potential of ω and f a holomorphic map from an open

subset of D to X. For any u ∈ Gv, ψ(f(z)) + u(z, f(z)) is subharmonic; hence

ψ(f(z)) + V (z, f(z)), the supremum over u ∈ Gv, is also subharmonic since V is

continuous. By Lemma 4.2.2, it follows V ∈ Gv.
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4.3 The WZW equation

We will prove Theorem 4.0.2 and compute the Euler–Lagrange equation of E

(4.0.3) in this section. We begin with an observation. Suppose u is a C2 function on

D ×X and ψ is a local potential of ω. Consider the complex Hessian of u + ψ with

respect to a fixed coordinate zj in D and local coordinates x in X where ψ is defined
(u+ ψ)zj z̄j (u+ ψ)zj x̄1 · · · (u+ ψ)zj x̄n

(u+ ψ)x1z̄j (u+ ψ)x1x̄1 · · · (u+ ψ)x1x̄n

...
...

. . .
...

(u+ ψ)xnz̄j (u+ ψ)xnx̄1 · · · (u+ ψ)xnx̄n

 , (4.3.1)

which we will denote by (u+ ψ)j. Then

(i∂∂̄u+ π∗ω)n+1 ∧ (i
m∑
j=1

dzj ∧ dz̄j)m−1

=(n+ 1)!(m− 1)!
m∑
j=1

det(u+ ψ)j
( m∧
k=1

idzk ∧ dz̄k ∧
n∧
k=1

idxk ∧ dx̄k
)
.

(4.3.2)

Lemma 4.3.1 Suppose u is a C2 function on D × X and ω + i∂∂̄u(z, ·) > 0 on X

for all z ∈ D. Then u is ω-subharmonic on graphs if and only if

(i∂∂̄u+ π∗ω)n+1 ∧ (i
m∑
j=1

dzj ∧ dz̄j)m−1 ≥ 0.

Proof Let ψ be a local potential of ω and denote the complex Hessian of u+ψ with

respect to zj and x by (u+ψ)j, as in the matrix (4.3.1). Due to (4.3.2), we will focus

on
∑m

j=1 det(u+ ψ)j.

Let f be a holomorphic function from an open subset of D to X, then in a

coordinate system on X

∆(ψ(f(z)) + u(z, f(z))) =∑
i,λ,µ

ψµλ̄
∂fµ

∂zi

∂f̄λ

∂z̄i
+
∑
i

uīi +
∑
i,λ

uiλ̄
∂f̄λ

∂z̄i
+
∑
i,µ

uīµ
∂fµ

∂zi
+
∑
i,λ,µ

uµλ̄
∂fµ

∂zi

∂f̄λ

∂z̄i
.
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If we denote the matrix (ψµλ̄ + uµλ̄) by A and the column vector (uiλ̄) by Bi, then

the above is the same as∑
i

(
〈A∂f
∂zi

,
∂f

∂zi
〉+ 〈Bi,

∂f

∂zi
〉+ 〈Bi,

∂f

∂zi
〉+ uīi

)
, (4.3.3)

where the angled inner product is the usual Euclidean inner product and ∂f/∂zi is

the column vector (∂fµ/∂zi). The matrix form can be further written as∑
i

(
‖
√
A
∂f

∂zi
+
√
A
−1
Bi‖2 − ‖

√
A
−1
Bi‖2 + uīi

)
. (4.3.4)

Notice that∑
i

(−‖
√
A
−1
Bi‖2 + uīi) =

∑
i

(uīi − 〈A−1Bi, Bi〉) =
∑
i

(uīi −
∑
λ,µ

uiλ̄(ψ + u)λ̄µuīµ)

=
∑
i

det(u+ ψ)i
det(ψµλ̄ + uµλ̄)

,

(4.3.5)

where the last equality can be deduced from Schur’s formula for determinants of block

matrices as follows (see also [Sem92] and [Ber09] for a different computation). We

examine the complex Hessian of u+ ψ

(u+ ψ)j =


(u+ ψ)zj z̄j (u+ ψ)zj x̄1 · · · (u+ ψ)zj x̄n

(u+ ψ)x1z̄j (u+ ψ)x1x̄1 · · · (u+ ψ)x1x̄n

...
...

. . .
...

(u+ ψ)xnz̄j (u+ ψ)xnx̄1 · · · (u+ ψ)xnx̄n

 ,

and the Schur complement of the trailing n× n minor ((u + ψ)µλ̄) is precisely ujj̄ −∑
λ,µ ujλ̄(u + ψ)λ̄µuj̄µ, which is also equal to det(u + ψ)j/ det((u + ψ)µλ̄) by Schur’s

formula, for example see [HZ05].

u is ω-subharmonic on graphs if and only if (4.3.4) is nonnegative for any holo-

morphic maps f , and it is equivalent to the last term in (4.3.5) being nonnegative.

The lemma follows by (4.3.2) since the matrix (ψµλ̄ + uµλ̄) is positive.

From (4.3.2) and (4.3.5), the function K in the proof of Theorem 4.1.1 has the fol-

lowing invariant expression

K =
m!n!

(m− 1)!(n+ 1)!

(π∗ω + i∂∂̄u)n+1 ∧ (i
∑m

j=1 dzj ∧ dz̄j)m−1

(π∗ω + i∂∂̄u)n ∧ (i
∑m

j=1 dzj ∧ dz̄j)m
,
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and one can see K ≥ 0 if u is ω-subharmonic on graphs.

Proof [Proof of Theorem 4.0.2] By the equality (4.3.2), the equation

(i∂∂̄V + π∗ω)n+1 ∧ (i
m∑
j=1

dzj ∧ dz̄j)m−1 = 0

is equivalent to
∑

j det(ψ + V )j = 0, so we will prove that the upper envelope V of

Gv satisfies the latter equation.

By Corollary 4.2.3, V is ω-subharmonic on graphs, and hence V (z, x) is ω-psh on

X by Lemma 4.2.1. Take a coordinate chart Ω of X, then for ε > 0 and x ∈ Ω, the

function V (z, x) + ε|x|2 satisfies the assumption of Lemma 4.3.1, so
∑

i det(ψ + V +

ε|x|2)i ≥ 0 and
∑

i det(ψ + V )i ≥ 0.

Suppose
∑

i det(ψ + V )i is positive at a point p in D × X. We may assume

det(ψ + V )1 is positive at p, so it is positive in a neighborhood B of p in D × X.

For small ε > 0, det(ψ + V + ε|x|2)1 > 0 on B, then by Sylvester’s criterion for

positive matrices or a property of Schur complement for positive matrices (see [HZ05,

Theorem 1.12]) we deduce that the matrix (ψ + V + ε|x|2)1 is positive on B, so the

matrix (ψ+V )1 is semi-positive on B, but since det(ψ+V )1 is positive on B, (ψ+V )1

is actually positive on B; in particular, the n×n trailing minor (ψλµ̄+Vλµ̄) is positive

on B.

So if we pick a suitably small smooth cutoff function ρ supported in B, then the

function V + ρ satisfies the assumption of Lemma 4.3.1 on B, and hence V + ρ is

ω-subharmonic on graphs and is in Gv, which contradicts V = supGv. Therefore,∑
j det(ψ + V )j = 0.

As in (4.0.2), for φ ∈ Hω and ξ1, ξ2, ξ3 ∈ TφHω, θ on Hω is

θ(ξ1, ξ2, ξ3) := gM({ξ1, ξ2}ωφ , ξ3) =

∫
X

{ξ1, ξ2}ωφξ3ω
n
φ . (4.3.6)

In light of {ξ1, ξ2}ωφωnφ = ndξ1∧dξ2∧ωn−1
φ , an integration by parts shows

∫
X
{ξ1, ξ2}ωφξ3ω

n
φ =∫

X
ξ1{ξ2, ξ3}ωφωnφ , and therefore θ is indeed skew-symmetric and a three form. The

rest of this section is devoted to showing that the three form θ is d-closed, and to the

derivation of Euler–Lagrange equation of E .
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Lemma 4.3.2 Let β be a k-form on Hω, and let ξ0, ...ξk be vector fields on Hω, which

are constant in the canonical trivialization THω ≈ Hω × C∞(X). Then

dβ(ξ0, ...ξk) =
k∑
j=0

(−1)jξjβ(ξ0, ..., ξ̂j, ..., ξk), (4.3.7)

where ξ̂j means ξj is to be omitted. (This formula is true if Hω ⊂ C∞(X) is replaced

by an open subset of a Fréchet space.)

Proof This is a well-known formula except there should be terms involving Lie

brackets on the right hand side, but since ξj are constant vector fields, their Lie

brackets are zero.

Lemma 4.3.3 The three-form θ is d-closed.

Proof This is similar to the derivation of the Aubin–Yau functional and the Mabuchi

energy (see e.g. [B lo13, Sectioin 4]). Consider four vector fields ξ1, ξ2, ξ3, ξ4 on Hω,

which are constant in the canonical trivialization THω ≈ Hω × C∞(X). By Lemma

4.3.2

dθ(ξ1, ξ2, ξ3, ξ4) = ξ1θ(ξ2, ξ3, ξ4)−ξ2θ(ξ1, ξ3, ξ4)+ξ3θ(ξ1, ξ2, ξ4)−ξ4θ(ξ1, ξ2, ξ3). (4.3.8)

Using {ξ3, ξ4}ωφωnφ = ndξ3 ∧ dξ4 ∧ ωn−1
φ and d

dt

∣∣∣
t=0
ωn−1
φ+tξ1

= (n− 1)i∂∂̄ξ1 ∧ ωn−2
φ ,

ξ1θ(ξ2, ξ3, ξ4) = ξ1θ(ξ3, ξ4, ξ2) = d(θ(ξ3, ξ4, ξ2))(ξ1) =
d

dt

∣∣∣
t=0
θ(ξ3, ξ4, ξ2)(φ+ tξ1)

=
d

dt

∣∣∣
t=0

∫
X

{ξ3, ξ4}ωφ+tξ1
ξ2ω

n
φ+tξ1

=
d

dt

∣∣∣
t=0

∫
X

ξ2ndξ3 ∧ dξ4 ∧ ωn−1
φ+tξ1

=

∫
X

ξ2ndξ3 ∧ dξ4 ∧ (n− 1)i∂∂̄ξ1 ∧ ωn−2
φ

=

∫
X

ξ1ndξ3 ∧ dξ4 ∧ (n− 1)i∂∂̄ξ2 ∧ ωn−2
φ = ξ2θ(ξ1, ξ3, ξ4),

where the second to last equality is due to integration by parts. Because of this

symmetry in index, (4.3.8) is 0 and therefore dθ = 0.
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Since θ is d-closed, there exists a two-form α on Hω such that dα = θ. For a map

Φ̂ : D → Hω, the derivative Φzj = 1/2(ΦRe zj − iΦIm zj) is a section of C⊗ THω along

Φ̂, and α(Φz̄j ,Φzj) is a function on D. We define E by

E(Φ̂) := E(Φ̂) + 4i
∑
j

∫
D

α(Φz̄j ,Φzj)dV =

∫
D

|Φ̂′|2dV + 4i
∑
j

∫
D

α(Φz̄j ,Φzj)dV,

with dV the Euclidean volume form on D. Recall that |Φ̂′| is the Hilbert–Schmidt

norm, see page 29.

Lemma 4.3.4 The Euler–Lagrange equation for the critical points of E is

m∑
j=1

Φzj z̄j −
1

2
|∇Φzj |2 −

i

2
{Φz̄j ,Φzj}ωΦ̂

= 0, (4.3.9)

where ∇Φzj is the gradient of Φzj with respect to the metric ωΦ̂.

Proof Suppose Φ̂ : D → Hω is a critical point of E . Let Ψ̂ be a smooth map from

D to C∞(X) with compact support. The variational equation is

0 =
d

dt

∣∣∣
t=0

(∫
D

|(Φ̂ + tΨ̂)′|2dV + 4i
∑
j

∫
D

α((Φ + tΨ)z̄j , (Φ + tΨ)zj)dV
)
. (4.3.10)

An extension of the computation in [Don99, Section 2] shows that the first term in

(4.3.10) is equal to

d

dt

∣∣∣
t=0

∫
D

|(Φ̂ + tΨ̂)′|2dV =

∫
D

∫
X

4(
∑
j

|∇Φzj |2 − 2
∑
j

Φzj z̄j)Ψω
n
Φ̂
dV. (4.3.11)

So the remaining task is to compute the second term in (4.3.10).

We denote C∞(X,C) by C∞C (X). Introduce A : Hω × C∞C (X) × C∞C (X) → C as

follows. If (u, ξ), (u, η) ∈ Hω×C∞C (X) ≈ C⊗THω, then A(u, ξ, η) := α((u, ξ), (u, η)).

Therefore, for fixed small t ∈ R, α((Φ+tΨ)z̄j , (Φ+tΨ)zj) = A(Φ+tΨ, (Φ+tΨ)z̄j , (Φ+

tΨ)zj) : D → C. By chain rule,

d

dt

∣∣∣
t=0
A(Φ + tΨ, (Φ + tΨ)z̄j , (Φ + tΨ)zj)

=d1A(Φ,Φz̄j ,Φzj)(Ψ) + d2A(Φ,Φz̄j ,Φzj)(Ψz̄j) + d3A(Φ,Φz̄j ,Φzj)(Ψzj),

(4.3.12)
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where d1A, d2A, and d3A are partial differentials of A. Since A is linear in the second

and the third variables, d2A(Φ,Φz̄j ,Φzj)(Ψz̄j) = A(Φ,Ψz̄j ,Φzj) and d3A(Φ,Φz̄j ,Φzj)(Ψzj) =

A(Φ,Φz̄j ,Ψzj). Hence (4.3.12) becomes

d1A(Φ,Φz̄j ,Φzj)(Ψ) + A(Φ,Ψz̄j ,Φzj) + A(Φ,Φz̄j ,Ψzj). (4.3.13)

By similar computations,

∂

∂z̄j
A(Φ,Ψ,Φzj) =d1A(Φ,Ψ,Φzj)(Φz̄j) + A(Φ,Ψz̄j ,Φzj) + A(Φ,Ψ,Φzj z̄j), and also

∂

∂zj
A(Φ,Φz̄j ,Ψ) =d1A(Φ,Φz̄j ,Ψ)(Φzj) + A(Φ,Φz̄jzj ,Ψ) + A(Φ,Φz̄j ,Ψzj).

(4.3.14)

So integration by parts gives∫
D

A(Φ,Ψz̄j ,Φzj)dV = −
∫
D

(
d1A(Φ,Ψ,Φzj)(Φz̄j) + A(Φ,Ψ,Φzj z̄j)

)
dV,∫

D

A(Φ,Φz̄j ,Ψzj)dV = −
∫
D

(
d1A(Φ,Φz̄j ,Ψ)(Φzj) + A(Φ,Φz̄jzj ,Ψ)

)
dV.

(4.3.15)

Combining (4.3.13) and (4.3.15)

d

dt

∣∣∣
t=0

∫
D

α((Φ + tΨ)z̄j , (Φ + tΨ)zj)dV

=

∫
D

d1A(Φ,Φz̄j ,Φzj)(Ψ)− d1A(Φ,Ψ,Φzj)(Φz̄j)− d1A(Φ,Φz̄j ,Ψ)(Φzj)dV.

(4.3.16)

For a fixed point z0 ∈ D, Ψ(z0),Φz̄j(z0), and Φzj(z0) define three constant vector

fields on Hω, and we denote them by ξ1, ξ2, and ξ3 respectively. By Lemma 4.3.2,

dα(ξ1, ξ2, ξ3) = ξ1α(ξ2, ξ3) − ξ2α(ξ1, ξ3) + ξ3α(ξ1, ξ2). Meanwhile, for constant vector

fields ξ1, ξ2, ξ3, the function ξ1α(ξ2, ξ3) evaluated at u ∈ Hω is d1A(u, ξ2, ξ3)(ξ1). So

at Φ(z0) ∈ Hω,

dα(ξ1, ξ2, ξ3) =d1A(Φ(z0), ξ2, ξ3)(ξ1)− d1A(Φ(z0), ξ1, ξ3)(ξ2) + d1A(Φ(z0), ξ1, ξ2)(ξ3)

=d1A(Φ(z0), ξ2, ξ3)(ξ1)− d1A(Φ(z0), ξ1, ξ3)(ξ2)− d1A(Φ(z0), ξ2, ξ1)(ξ3).

(4.3.17)

Hence (4.3.16) becomes∫
D

dα(Ψ,Φz̄j ,Φzj)dV =

∫
D

θ(Ψ,Φz̄j ,Φzj)dV =

∫
D

∫
X

{Φz̄j ,Φzj}ωΦ̂
Ψωn

Φ̂
dV. (4.3.18)
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Finally, with (4.3.11) and (4.3.18), the variational equation (4.3.10) becomes

0 =

∫
D

∫
X

(
4(
∑
j

|∇Φzj |2 − 2
∑
j

Φzj z̄j) + 4i
∑
j

{Φz̄j ,Φzj}ωΦ̂

)
Ψωn

Φ̂
dV, (4.3.19)

and we obtain the Euler–Lagrange equation∑
j

|∇Φzj |2 − 2
∑
j

Φzj z̄j + i
∑
j

{Φz̄j ,Φzj}ωΦ̂
= 0.

4.4 Lemma 4.1.1

This section is mainly devoted to the proof of Lemma 4.1.1, and we will follow

closely the ideas in [BK07]. The first two lemmas, concerning smooth approximation

of continuous η-subharmonic functions, are based on Demailly’s exposition [Dem12,

Chapter I, Section 5E] of Richberg’s paper [Ric68].

Let θ ∈ C∞(R,R) be a nonnegative function having support in [−1, 1] with∫
R θ(h)dh = 1 and

∫
R hθ(h)dh = 0. For arbitrary ξ = (ξ1, ..., ξp) ∈ (0,∞)p, the

regularized maximal function is

Mξ(t1, ..., tp) :=

∫
Rp

max{t1 + h1, ..., tp + hp}
p∏
j=1

θ(
hj
ξj

)
dh1

ξ1

...
dhp
ξp
.

Lemma 4.4.1 Fix a closed smooth positive (1, 1)-form η on X. Let Ωα ⊂⊂ D ×X

be a locally finite open cover of D × X, c be a real number, and uα ∈ C∞(Ωα) such

that uα(z, x) + c|z|2 is η-subharmonic on graphs. Assume that there exists a family

{ξα} of positive numbers such that, for all β and (z, x) ∈ ∂Ωβ,

uβ(z, x) + ξβ ≤ max{uα(z, x)− ξα : α such that (z, x) ∈ Ωα}.

Define a function ũ on D × X as follows. Given (z, x) ∈ D × X, let A = {α :

(z, x) ∈ Ωα}, ξA = (ξα)α∈A, uA(z, x) = {uα(z, x) : α ∈ A}, and

ũ(z, x) := MξA(uA(z, x)).

Then ũ is in C∞(D ×X) and ũ(z, x) + c|z|2 is η-subharmonic on graphs.
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Proof As in the proof of [Dem12, Chapter I, Lemma 5.17 and Corollary 5.19], one

can deduce that for a fixed point in D×X, there exist a neighborhood V and a finite

set I of indices α such that V ⊂
⋂
α∈I Ωα on which ũ = MξI (uI). As a result, by

[Dem12, Lemma 5.18 (a)], ũ is smooth on D × X. Now for a holomorphic map f

from an open subset of D to X,

ũ(z, f(z)) + c|z|2 + ψ(f(z)) = c|z|2 + ψ(f(z)) +MξI (uI(z, f(z)))

= MξI

(
c|z|2 + ψ(f(z)) + uI(z, f(z))

)
,

where η = i∂∂̄ψ, and we use [Dem12, Lemma 5.18 (d)] in the last equality; fur-

thermore, since c|z|2 + ψ(f(z)) + uα(z, f(z)) is subharmonic by assumption, so is

MξI (c|z|2 +ψ(f(z))+uI(z, f(z))) by [Dem12, Lemma 5.18 (a)], and therefore ũ+c|z|2

is η-subharmonic on graphs.

We introduce here notation that will be used later. Let ρ1, ρ2 be nonnegative

radial smooth functions with support in the unit ball that have integral one in Cm

and Cn respectively. For ε > 0, ρ1,ε(·) := ε−2mρ1(·/ε), and ρ2,ε is similarly defined.

The proof of the following lemma is very similar to that of [Dem12, Chapter 1,

Theorem 5.21].

Lemma 4.4.2 Let u ∈ C(D × X) be η-subharmonic on graphs. For any number

λ > 0, there exists ũ ∈ C∞(D × X) such that u ≤ ũ ≤ u + Mλ, where M depends

only on the diameter of D, and ũ is (1 + λ)η-subharmonic on graphs.

Proof Let {Ωα} be a locally finite open cover of D×X by relatively compact open

balls, with Ωα contained in coordinate patches of D × X. Choose concentric balls

Ω′′α ⊂ Ω′α ⊂ Ωα of radii r′′α < r′α < rα and center (cα, 0) in the given coordinates

(z, x) near Ωα, such that Ω′′α still cover D × X, and η has a local potential ψα in a

neighborhood of Ωα. For small εα > 0 and δα > 0, we set

uα(z, x) =
(
(u+ ψα) ∗ ρεα

)
(z, x)− ψα(x) + δα(r′2α − |z − cα|2 − |x|2) on Ωα,
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where ∗ρεα is the convolution with ρεα := ρ1,εαρ2,εα . Since ψα(x) + u(z, x) is subhar-

monic in z and psh in x by Lemma 4.2.1, the functions (ψα + u) ∗ ρεα decrease to

ψα+u as εα goes to 0, locally uniformly because u is continuous. For εα and δα small

enough, we have uα ≤ u+ λ/2 on Ωα; moreover, for any holomorphic map f from an

open subset of D to X,

∆
(
uα(z, f(z)) + ψα(f(z))

)
= ∆

(
(u+ ψα) ∗ ρεα

)
(z, f(z))− δα∆(|z − cα|2 + |f(z)|2)

≥ −δα∆(|z − cα|2 + |f(z)|2)

≥ −λ∆|z|2 − λ∆ψα(f(z)),

where the first inequality is due to the fact (u+ψα)∗ρεα is subharmonic on holomorphic

graphs, which can be verified easily using that u+ψα is subharmonic on holomorphic

graphs. So uα(z, x) + λ|z|2 is (1 + λ)η-subharmonic on graphs. Set

ξα = δα min{r′2α − r′′2α , (r2
α − r′2α )/2}.

Choose first δα such that ξα < λ/2, and then εα so small that u ≤ (u+ψα)∗ρεα(z, x)−

ψα(x) < u + ξα on Ωα. As δα(r′2α − |z − cα|2 − |x|2) is ≤ −2ξα on ∂Ωα and > ξα on

Ω′′α, we have uα < u− ξα on ∂Ωα and uα > u + ξα on Ω′′α, so that the assumption in

Lemma 4.4.1 is satisfied, and the function

U(z, x) := MξA(uA(z, x)), for A = {α: Ωα 3 (z, x)} ,

is in C∞(D×X) and U(z, x) +λ|z|2 is (1 +λ)η-subharmonic on graphs. By [Dem12,

Lemma 5.18 (b)], u ≤ U ≤ u + λ. Then the function defined by ũ := U + λ|z|2 is

what we need.

The following lemma is proved in the same way as Lemmas 4 and 5 in [BK07].

The only issue is keeping track of uniformity.

Lemma 4.4.3 Let U, V be two open sets in Cn and F a biholomorphic map from U

to V . Let u be usc, bounded, and subharmonic on holomorphic graphs in D×U . Let
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ρ1, ρ2, ρ1,δ1 , ρ2,δ2 be defined as in the remark before Lemma 4.4.2. Define uδ1,δ2 to be

the convolution

uδ1,δ2(z, x) =

∫ ∫
u(z − a, x− b)ρ1,δ1(a)ρ2,δ2(b)dadb.

On the other hand, define

uFδ1,δ2 = (u ◦ (Id× F−1))δ1,δ2 ◦ (Id× F ). (4.4.1)

Then given a compact set K ⊂ D × U , there exists δ(K) > 0 such that as δ2 → 0,

(uFδ1,δ2 − uδ1,δ2)(z, x) goes to 0 uniformly for (z, x) ∈ K, and δ1 < δ(K).

Proof Define

ûδ2(z, x) = max
{z}×B(x,δ2)

u,

ũδ2(z, x) =
1

|∂B(x, δ2)|

∫
∂B(x,δ2)

u(z, b)db,

uδ2(z, x) =

∫
u(z, x− b)ρ2,δ2(b)db,

where |∂B(x, δ2)| is the Lebesgue measure of the sphere ∂B(x, δ2). Their counterparts

under Id×F−1 and Id×F as in (4.4.1) are denoted by ûFδ2(z, x), ũFδ2(z, x), and uFδ2(z, x)

respectively.

By Lemma 4.2.1, u(z, ·) is psh in U , so ûδ2(z, x) is a convex function of log δ2.

Fixing a ≥ 1 and r > 0, choose δ2 so small that 0 ≤ log a
log r

δ2

≤ 1, then by convexity

0 ≤ ûaδ2(z, x)− ûδ2(z, x) ≤ log a

log r
δ2

(ûr(z, x)− ûδ2(z, x)).

Since u is assumed to be bounded, it follows that for any a > 0 (for the case 1 > a > 0,

use 1/a instead), ûaδ2(z, x)− ûδ2(z, x) goes to 0 as δ2 → 0, locally uniformly in z and

x. Then following the same argument as in [BK07, Lemma 4], we see ûFδ2 − ûδ2 goes

to 0 locally uniformly in z and x, as δ2 → 0.

Since u(z, ·) is psh in U , ũδ2(z, x) is convex in log δ2. By the argument [BK07,

Lemma 5] and the fact that u is bounded, we see both ûδ2 − ũδ2 and ũδ2 − uδ2 go to 0
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locally uniformly in z, x, as δ2 → 0, and as a result, so does uFδ2−uδ2 . Given a compact

set K ⊂ D × U , there exists δ(K) > 0 such that if (z, x) ∈ K and (a, b) ∈ Cm × Cn

wiht |(a, b)| < δ(K), then (z + a, x+ b) is still in D × U . Since (uFδ1,δ2 − uδ1,δ2) is the

convolution of (uFδ2 − uδ2) in z, we see at once the conclusion of the lemma.

Proof [Proof of Lemma 4.1.1] Fix a finite number of charts Uα ⊃⊃ Vα such that Vα

covers X, and η has a local potential ψα in a neighborhood of Uα. For each α, let fα :

Uα → Cn be the coordinate map, we consider the convolution ((ψα+u)◦f−1
α )δ1,δ2 ◦fα,

which we simply denote by (ψα + u)δ1,δ2 on D × Uα. Because u added by a constant

still satisfies the same assumption in Lemma 4.1.1, we will assume u is so negative

that (ψα +u)δ1,δ2 −ψα < −a for some a > 0 and all α. At the same time, we consider

the convolution of (ψα + u) under fβ, namely ((ψα + u) ◦ f−1
β )δ1,δ2 ◦ fβ, which can be

written as

((ψα + u) ◦ f−1
α ◦ F−1)δ1,δ2 ◦ F ◦ fα, (4.4.2)

if F−1 = fα ◦ f−1
β . We denote (4.4.2) by (ψα + u)Fδ1,δ2 (the notation is consistent with

Lemma 4.4.3 except we do not write out the identity map of D here). By Lemma

4.4.3 on D × (Uα ∩ Uβ)

(ψα + u)δ1,δ2 − (ψβ + u)δ1,δ2 = (ψα + u)δ1,δ2 − (ψα + u)Fδ1,δ2 + (ψα + u− (ψβ + u))Fδ1,δ2

→ ψα − ψβ
(4.4.3)

locally uniformly in z and x, as δ2, δ1 → 0.

Let χα be a smooth function in Uα that is 0 in Vα and −1 near ∂Uα. We have

i∂∂̄χα ≥ −Cη for some constant C. For 0 < ε < 1, according to (4.4.3) we can find

δ1, δ2 so small that for any β and for any (z, x) ∈ D′ × ∂Uβ,

((ψβ + u)δ1,δ2 − ψβ +
ε

C
χβ)(z, x) < max

(z,x)∈D′×Uα
((ψα + u)δ1,δ2 − ψα +

ε

C
χα)(z, x),

where the maximum is taken over all D′×Uα that contain (z, x). Let δ = min{δ1, δ2}.

By [Dem12, Chapter I, Lemma 5.17], the function

uεδ(z, x) := max
(z,x)∈D′×Uα

((ψα + u)δ,δ − ψα +
ε

C
χα)(z, x), (4.4.4)
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is continuous on D′ × X. Notice that uεδ(z, x) < −a for any 0 < ε < 1. Since

ψα(x) + u(z, x) is subharmonic in z and psh in x by Lemma 4.2.1, the function

(ψα + u)δ,δ is decreasing to ψα + u as δ → 0, and hence uεδ is decreasing to

max
(z,x)∈D′×Uα

(u+
ε

C
χα)

as δ → 0. Because the maximum of χα is zero, uεδ is decreasing to u as δ → 0.

We already know that ψα + u is subharmonic on graphs, and a straightforward

verification shows so is (ψα + u)δ,δ. This fact together with i∂∂̄χα ≥ −Cη shows, for

any holomorphic function f from an open subset of D′ to X,

∆((ψα + u)δ,δ − ψα +
ε

C
χα)(z, f(z)) ≥ (−1− ε)∆ψα(f(z)),

so uεδ is (1 + ε)η-subharmonic on graphs.

So far we have shown that given 1 < p ∈ N, there exist q0 ∈ N such that, for

q > q0, the functions uεδ with (ε, δ) = (1/p, 1/q) are in C(D′ × X), (1 + 1/p)η-

subharmonic on graphs, and decrease to u as q → ∞. For simplicity, we will denote

uεδ with (ε, δ) = (1/p, 1/q) by u(p,q). Let M be the constant in Lemma 4.4.2. We will

construct inductively u(k,jk) with jk > k2 and ũk ∈ C∞(D′ ×X) such that

u(k,jk) + 1/jk ≤ ũk ≤ u(k,jk) + 1/jk +M/jk. (4.4.5)

Moreover ũk is (1+ 1/k)(1 + 1/jk)η-subharmonic on graphs, and u(k,jk) + 1/jk +M/jk

is less than both u(k−1,jk−1) + 1/jk−1 and u(2,jk−1) + 1/jk−1.

Suppose that this is true at (k− 1)-th step. As u(k−1,jk−1) + 1/jk−1 and u(2,jk−1) +

1/jk−1 are both greater than u, we can find jk > max{jk−1, k
2} such that u(k,jk) +

1/jk +M/jk is less than both u(k−1,jk−1) + 1/jk−1 and u(2,jk−1) + 1/jk−1 by continuity

on the compact set D′×X. Applying Lemma 4.4.2 with λ = 1/jk, we find a function

ũk ∈ C∞(D′ ×X) with

u(k,jk) + 1/jk ≤ ũk ≤ u(k,jk) + 1/jk +M/jk

and ũk is (1 + 1/k)(1 + 1/jk)η-subharmonic on graphs. So the induction process is

true at k-th step. (One can begin the induction process with u(2,j2) + 1/j2 with j2

large enough that u(2,j2) + 1/j2 < 0).
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One can see that ũk is decreasing to u. Since ũk < 0, (1−1/k)ũk is still decreasing

to u. The function (1−1/k)ũk is (1−1/k2)(1+1/jk)η-subharmonic on graphs, which

is also (1− 1/k2jk)η-subharmonic on graphs because jk > k2. So (1− 1/k)ũk are the

desired approximants.
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