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ABSTRACT

Wu, Kuang-Ru Ph.D.; Purdue University, August 2020. Hermitian—Yang-Mills Met-
rics on Hilbert Bundles and in the Space of Kahler Potentials. = Major Professor:
Léaszlé Lempert.

The two main results in this thesis have a common point: Hermitian—Yang—Mills
(HYM) metrics. In the first result, we address a Dirichlet problem for the HYM
equations in bundles of infinite rank over Riemann surfaces. The solvability has been
known since the work of Donaldson [Don92] and Coifman—Semmes [CS93], but only
for bundles of finite rank. So the novelty of our first result is to show how to deal with
infinite rank bundles. The key is an a priori estimate obtained from special feature
of the HYM equation.

In the second result, we take on the topic of the so-called “geometric quantization.”
This is a vast subject. In one of its instances the aim is to approximate the space of
Kéahler potentials by a sequence of finite dimensional spaces. The approximation of a
point or a geodesic in the space of Kahler potentials is well-known, and it has many
applications in Kahler geometry. Our second result concerns the approximation of
a Wess—Zumino—Witten type equation in the space of Kahler potentials via HYM

equations, and it is an extension of the point/geodesic approximation.



1. INTRODUCTION

We will give a summary of results in the following two sections. The detailed accounts

will be provided in later chapters.

1.1 A Dirichlet problem in noncommutative potential theory

A Hermitian metric on a line bundle can be locally represented by a scalar-valued
function. For higher rank bundles, Hermitian metrics can be represented by matrix-
valued functions, which is the origin of noncommutativity. One can push even further
by considering bundles of infinite rank. In this part of the thesis, we will focus on
bundles whose fibers are Hilbert spaces, and in particular trivial Hilbert bundles
where the situation becomes clearest.

Let (V,(-,-)) be a complex Hilbert space. Let EndV be the set of bounded linear
operators on V and End™V be the set of positive invertible elements in EndV. Let
M be a compact Riemann surface with boundary. A Hermitian metric h on the
bundle M x V — M can be represented by h.(v,w) = (P(2)v,w) where v,w € V
and P: M — End*V. If P is C?, then the curvature RF is 9(P~!0P). The Dirichlet
problem we aim to solve is to extend a given metric on 9M x V to a metric on M x V

with curvature zero. The main result is the following.

Theorem 1.1.1 Let M be a compact Riemann surface with boundary and F €
C™(OM, End*V), wherem = 0,00, or w. There exists a unique P € C™(M, End V)N
C*(M, End*V) such that R® = 0 on M, and Plsyy = F. The same is true if we

replace C™ by C*< for k a nonnegative integer and 0 < o < 1.

We mention briefly previous work when dimV < oco. Masani and Wiener solve
the Dirichlet problem over the unit disc in [WM57], with regularity weaker than con-

tinuous. In [Lem81], Lempert solves it in Holder classes. More generally in [Don92],



Donaldson solves a Dirichlet problem for the Hermitian—Yang—Mills equations over
Kaéhler manifolds with boundary, and in [CS93] Coifman and Semmes solve it over
domains in C" which are regular for the Laplacian. When the base is one dimensional,
Donaldson’s and Coifman—Semmes’ results reduce to the existence of flat Hermitian
metrics. (Coifman and Semmes also solve a Dirichlet problem for norms more gen-
eral than those coming from Hermitian metrics. See also a more recent related paper
[BCEKR20].)

Devinatz [Dev61] and Douglas [Dou66] generalize Wiener amd Masani’s result to
infinite dimensional separable V', with the base still the unit disc (see also [Hel64,
Lecture XI]). For a general V' and various regularity classes, the Dirichlet problem
over the unit disc is solved by Lempert in [Lem17]. Lempert’s proof is by the conti-
nuity method and proceeds by a global factorization of flat metrics. However, such a
factorization is not available when the base is multiply connected.

Our proof is also by the continuity method. Closedness is proved by a maximum
principle and a local holomorphic factorization of flat metrics. Openness turns out
to be harder than usual, because to deal with the linear partial differential equation
originating from the implicit function theorem, Fredholm theory is not available.
Nevertheless, the linear equation has various symmetries that we can exploit to obtain

the requisite a priori estimates. This is the main novelty in our result.

1.2 A Wess—Zumino—Witten type equation in the space of Kahler poten-

tials

Let X be a compact complex manifold of dimension n with a Kahler form w. The

space of Kahler potentials is
H, = {6 € C°(X,R) : w+i00¢ > 0},

and we will denote w + i90¢ by wg. We assume w is the curvature of some Hermitian
line bundle L. For a positive integer k, we denote by Hj the space of inner products

on H°(X, L*). Starting from a question asked by Yau [Yau87] and the work of Tian



[Tia90], Zelditch [Zel98], Catlin [Cat99], and many others, it is well-known that a
given Kahler potential ¢ € H,, can be approximated by ¢ € H,, associated with Hy
as k — 0o. Furthermore, Mabuchi [Mab87], Semmes [Sem92], and Donaldson [Don99|
discovered that H, carries a Riemannian metric which allows one to talk about ge-
ometry, especially geodesics, of H,. Thanks to Phong—Sturm [PS06], Berndtsson
[Ber13], and Darvas-Lu-Rubinstein [DLR18]|, geodesics in H,, can be approximated
by geodesics in Hy as k — oco. More generally, one may wonder if harmonic maps
into H,, can also be approximated by harmonic maps associated with H;. A version
of this was confirmed by Rubinstein-Zelditch [RZ10] when X is toric, and the maps
take values in toric Kahler metrics.

In this second part of the thesis, we focus on a Wess—Zumino-Witten (WZW)
type equation for a map from D C C™ to H,,, and we show that the solution to such
an equation can be approximated by Hermitian—Yang-Mills metrics on certain direct
image bundles. We will also see how this result recovers some of those mentioned in
the previous paragraph.

We first explain how to derive this WZW equation. The space H,, is an open subset
in the Fréchet space C°(X, R), and therefore it is a Fréchet manifold. The tangent
space TyH,, at ¢ € H,, is canonically isomorphic to C*°(X,R), and tangent bundle
TH,, is canonically isomorphic to H,, x C*(X,R) (These matters will be reviewed
more rigorously in Chapter 2). Following Mabuchi [Mab87], Semmes [Sem92], and
Donaldson [Don99|, the Mabuchi metric gy on H,, is the following. For a point
¢ € H,, and two vectors £, € TyH,, =~ C(X,R), the Mabuchi metric is

gar(€m) = /X Enel.

Let D be a bounded smooth strongly pseudoconvex domain in C™. A map d:D —
H,, will induce a map ® : D x X — R with ®(z,-) € H,, for z € D, and vice versa.
A map d:D — H., is said to be harmonic if it is a critical point of the functional
E(D) = 15 |®/|2dV where dV is the Euclidean volume form on D, @' is the tangent
map of ®, and |®'| is the Hilbert-Schmidt norm of @, measured by Mabuchi metric



gy and the Euclidean metric of D. A straightforward computation gives the harmonic
map equation:

= 1
> b s - 5yv<1>zj|2 =0, (1.2.1)
j=1

where {z;} are coordinates on D and V&, (z) is the gradient of the function ®, ()
on X with respect to the metric wg,), and [V®, (2)| is its length computed using
the metric W (z)- The functional that we are looking for, which we denote by &, is a
perturbation of the harmonic functional E above. The construction of this perturbed
functional £ is similar to that of [Don99, Section 5] (see also [Wit83]), who dealt with
one dimensional D. We will construct £ in Chapter 4 and show in Lemma 4.3.4 that
the Euler-Lagrange equation of & is

= 1 , i

D Pz = 5V = S {P:, @}, =0, (1.2.2)

j=1
where {-, -}, is the Poisson bracket on C*°(X,R) determined by the symplectic form
wg. In view of its connection with [Wit83] and following [Don99], we call the equation
(1.2.2) the WZW equation for a map ® : D — H,,.

Donaldson showed in [Don99], when m = 1, the WZW equation is equivalent to

a homogeneous complex Monge-Ampere equation. We have the following extended
equivalence for m > 1 by a similar computation. Let 7 : Dx X — X be the projection

onto X. Then the extended equivalence is
O solves (1.2.2) if and only if (i00® + 7*w)"™ A (i Y dz; Adz)™ ' =0. (1.2.3)
j=1

This suggests that the proper generality of the WZW equation is for maps from a
Kahler manifold D to H,,. Nevertheless, in this thesis we restrict to D C C™.

The next step is to construct a solution of the WZW equation, and then we will
show it can be approximated by the solutions of Hermitian—Yang—Mills equations.

We first introduce the following definition

Definition 1.2.1 We will say that a functionu : Dx X — [—00, 00) is w-subharmonic
on graphs if for any holomorphic map f from an open subset of D to X, ¥(f(z)) +

u(z, f(2)) is subharmonic, where v is a local potential of w.



This definition does not depend on the choice of v since any two local potentials
differ by a pluriharmonic function. (This definition has its origin in the works of
Slodkowski [S1o88],[S1o90b],[Slo90a], and Coifman and Semmes [CS93]; however, they
focus on functions u defined on D x V' with a vector space V' and u(z,-) are norms
or quasi-norms, whereas we consider simply functions on D x X. There is also a
notion of k-subharmonicity, see [Blo05], but it is not equivalent to subharmonicity on
graphs.)

Let v be a real-valued smooth function on 9D x X and 9D 3 z +— v(z,:) = v, €

H.,. Consider the Perron family

G, = {u € usc(D x X) : u is w-subharmonic on graphs,

and limsup u(z,z) <v(¢, z)}.
D>z—(€0D

As we will later see, the upper envelope V' = sup{u : u € G,} is a weak solution of
the WZW equation from D to H,,.

There are two maps that connect H,, and Hy, the Hilbert map Hy : H,, — H; and
the Fubini—-Study map F'Sy : Hr — H,. Their definitions will be given in Chapter 4.

The approximants are going to be the solutions of the Hermitian—Yang—Mills
equation on the bundle D x H°(X, L¥)* — D. For z € 9D, the inner product Hy(v.)
is defined on H°(X, L*), and its dual inner product H; (v,) on H°(X, L*)*. Suppose
V* is a Hermitian metric on the bundle D x H°(X, L*)* — D, and O(V*) is its
curvature, a (1,1)-form on D with values in endomorphisms of H°(X, L*)*. Let A
be the trace with respect to the Euclidean metric of D, so in general AO(V*) takes
values in endomorphisms of H°(X, L¥)*. The HYM equation is

AO(VF) =0
V*ap = Hj(v).

It has a unique solution by [Don92] and [CS93].
Denoting the dual metric by (V*)*, our main result is that the upper envelope V/

of G, is the limit of Hermitian—Yang—Mills metrics:



Theorem 1.2.1 FSi((V*)*) converges to V uniformly on D x X, as k — oo.

Now we turn to the interpretation of the upper envelope V' and its relation with
the WZW equation. The next theorem shows that V' solves the WZW equation under

a regularity assumption.

Theorem 1.2.2 If the upper envelope V' of G, is in C*(D x X), then
100V + m*w)"™ A (Y dz; Adz)" T =0,
j=1

As a result, Theorems 1.2.1 and 1.2.2 together show that the solution of the WZW
equation can be approximated by the Hermitian—Yang—Mills metrics.

We mention briefly works related to our result. If m =1, D C C is an annulus,
and v is invariant under rotation of the annulus, then Theorems 1.2.1 and 1.2.2
recover the geodesic approximation result of Phong—Sturm [PS06] and Berndtsson
[Ber13]. When X is toric, these theorems are reduced to the harmonic approximation
of Rubinstein-Zelditch [RZ10], except that C? convergence is proved in their paper.

The proof of Theorem 1.2.1 hinges on a theorem regarding the positivity of direct
image bundles. Consider a Hermitian holomorphic line bundle (F,g) — X™ over a
compact complex manifold and assume the curvature n of the metric g is positive.
We define a variant of the Hilbert map: given s € H%(X, F ® Kx), then g(s,s) is
a real-valued (n,n)-form on X, and Hilbggk, (u), for a function v : D x X — R, is

defined by

Hile®KX(u)(s,s):/ g(s,s)e_“(z").
X

Therefore the map z — Hilbpgk, (u) is a Hermitian metric on the bundle D x

HY(X,E® Kx) — D.

Theorem 1.2.3 If u is bounded and upper semicontinuous (usc) on D x X, and
n-subharmonic on graphs, then the dual metric Hilbyg . (u) is a subharmonic norm

function.



A norm function being subharmonic means the logarithm of the length of any holo-
mophic section is subharmonic.

Although Berndtsson’s theorem [Ber09] has played a crucial role in approxima-
tion theorems similar to Theorem 1.2.1 (for example [Ber13], [BK12], [DLR18], and
[DW19]), when it comes to approximating by Hermitian—Yang—Mills metrics, a sub-
harmonic analogue of Berndtsson’s theorem is desired. It is Theorem 1.2.3, where we
prove a version of positivity of direct image bundles for weights that are subharmonic
on graphs. This is perhaps the crux in this second part of the thesis. A corresponding

result on Stein manifolds can be proved easily following the proof of Theorem 1.2.3.



2. DIFFERENTIABILITY OF VECTOR-VALUED
FUNCTIONS

In this chapter we will review some facts about differentiability of functions with
values in Banach spaces or Fréchet spaces. Section 2.1 serves background for Chapter

3, and Section 2.2 for Chapter 4.

2.1 Holder classes of Banach-valued functions

Let Y be a Banach space with a norm || - ||. Let U be an open set in R". For
k=0,1,2,... and 0 < a < 1, a function f is said to be in C**(U,Y) if partial
derivatives of f up to order k exist and are continuous in U, and all the k-th partial
derivatives of f satisfy the a-Holder condition

wp 101F@) = D'f)|

< oo, for all |I| =k,
zAyel |z —y|*

where the D! f is the standard multi-index notation. Moreover, if T is a subset of
OU, a function f is said to be in C**(U UT,Y) if partial derivatives of f up to order
k exist and are continuous up to 7', and

wp 1D1@) = D1

r#yeUUT ‘l’ - y‘a

< oo, for all |I| = k.

Similarly, we define C*(U,Y) and C*(U UT,Y’) by removing the a-Hdlder condition
from above.

Let N be a compact smooth manifold, possibly with boundary. A function f is
said to be in C**(N,Y) if f is C** in charts. Fix a finite open cover {U;} of N

such that each U; is contained in a chart, we are going to equip C**(N,Y) with a



Banach algebra structure. For f in C**(N,Y’), one first computes its Holder norm

in U; using local coordinates, namely, if we ignore the coordinate map

k
! D" f(z) = D" f(y)ll
ZSLUlpllD fll+ ) sup -

=0 ¥ (1= 7FVE: [z =yl
Then || f||x,q is defined to be the sum of these local Holder norms. With a suitable
scaling it can be arranged that || - ||x« is sub-multiplicative. It is straightforward to
verify that the resulting space is indeed a Banach algebra, and we skip the verification.
Likewise, C*(N,Y’) also carries a Banach algebra structure. We set C> = (0, C*,

and also write C for C°.

2.2 Fréchet spaces, Fréchet manifolds, and C*(X,R)

In this subsection, we give a review on Fréchet spaces and Fréchet manifolds
based on [Con90],[Mil84], and [Ham82]. We begin with topological vector spaces. A
topological vector space is a vector space with a topology such that addition and scalar
multiplication are continuous. Given a vector space V and a family P of seminorms,
we can equip V with a topology by stipulating a set U C V to be open if for any
point zy € U there exist seminomrs py, ..., p, and positive numbers 1, ..., €, such that

ﬂ{x eV ipi(r —x) <&}

i=1
is in U. It is not hard to check (V) P) is a topological vector space.
Definition 2.2.1 A locally convexr space (LCS) is a topological vector space whose
topology is determined by a family P of seminorms and Npep{x : p(x) =0} =0. A
Fréchet space is a locally convex space whose topology can be induced by a translation-

wmvariant complete metric.

Let Vi and V5, be two LCS, and let U be an open subset of V;. For a map
f U — V5, we define the directional derivative of f at x € U in the direction w € V}

to be
flz +tw) — f(x)
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Ignoring the existence of the limit for a moment, we form the second directional

derivative

li t i /
[z, wr, ws) =limf(g€+ wa, W) f(%“h),
t—0 t

with w; and wy in V4. Similarly, the r-th directional derivative is

f(r)(x w w ) — lim f(Til)("L‘ + tw?";wh "‘aw’l‘—l) - f(ril)(x,wl, "'7w7‘—1)
b t—0 t

Y

with wq, ..., w, € V4.

The map f is said to be C! if f is continuous, and f’(z,w) exists and is continuous
on U x Vj. The map f is said to be C? if f is C' and f”(z,w;,w;) exists and is
continuous on U x Vi x V;. Similarly, the map f is said to be C" for a positive integer
rif fis C"' and fU)(z,wy,...w,) exists and is continuous on U x Vi x ... x V. A
map is C* if it is C" for every r.

Now we are able to define manifolds. A smooth manifold modeled on a LCS V
is a Hausdorff and regular topological space M together with a collection of homeo-
morphisms f, : V, = M, (local coordinate systems), where V, is open in V' and M,
is open in M. Moreover |J, M, = M and the transition fﬁ’ Lo f, is required to be
C. (If the model space V' is Fréchet, then M is called a Fréchet manifold).

If we are given two such smooth manifolds M; and M, modeled on LCS V; and
V5 respectively, then f : M; — Ms is called smooth if f is smooth after composing
with local coordinate systems.

A tangent vector at xg € M can be defined as an equivalence class of paths through
xo as follows. Let P; and P, be smooth maps from an open interval I to M with
P;(0) = x. Let f, :V, — M, be a local coordinate system with zo € M,. We say
that P, and P, are equivalent at ¢ = 0 if f,;'(P(t)) and f;'(P(t)) have the same
first derivative at t = 0. (It is not hard to see that if P, and P, are equivalent for
one local coordinate system then they are equivalent for all local coordinate systems).
We denote the equivalence class of a path P by [P]. The set of all such equivalence
classes of paths through z; is called the tangent space T, M. Note that f, induces a

one-to-one correspondence between V and T,,M. In fact, if f,(vo) = xo then every
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v € V corresponds to the equivalence class of the path ¢ — f,(vg + tv). So we can
equip 7},,M with a structure of LCS isomorphic to V.
The set TM = [],cp; TeM can be made into a smooth manifold, the tangent

bundle of M. It is modeled on V' x V| and local coordinate systems are

Vo xV—=TM,CTM

(u,v) = [t = folu+tv)].

A smooth vector field v on M is simply a smooth map v : M — T'M with v(x) € T, M.

Any smooth map f : My — Ms induces a map f,, : T, My — Tz M, by sending
[P] to [f o P|, and one can easily check the independence of the representative path
P. Putting together f. over x € M;, we obtain a tangent map f' : TMy — T M.
Using local coordinate systems f, on M; and gz on M, we can see the map f is
the directional derivative of ggl o f o f,. Because the map f is assumed smooth, the
tangent map f’ is smooth.

The simplest example of a smooth manifold modeled on a LCS V' is perhaps an
open subset U of V. There is a canonical local coordinate system, namely the identity
map Id : U — U C V, and so the tangent space T, U at any point x € U is canonically

isomorphic to V' by

V - T,U

v [t o+t
The tangent bundle T'U also has a canonical local coordinate system

UxV —=TU
(x,v) — [t = x + tv],
so T'U is canonically isomorphic to U x V.

The example we care the most about is the space of smooth functions from a

compact smooth manifold X to R, which we denote by C*°(X,R). We first show that
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C*>(X,R) is a Fréchet space. Fix a finite open cover {U;}1<i<mm of X so that each U;

is in a chart ;. Define seminorm p; for positive integer [ on C*°(X,R) by setting

p(f)= max sup |D'(fouy).

1<i<m, | 1|1 v Uy
7 1

These seminorms make C*°(X,R) a locally convex space, and it is metrizable with

the translation-invariant metric

1 p(f—9)
W9 =D 3Ty (7 -

The last thing to show is completeness. Suppose {f,} is a Cauchy sequence in
C>(X,R), then p(f, — f,) = 0 as p,v — oo, for every seminorm p;, and there-
fore, the sequence { D' (f,01;)}, converges uniformly on ;' (U;) for every 1 <i < m
and |I| <. So there is a global function f € C*°(X,R), and it is straightforward to
see f, converges to f. Hence C*°(X,R) is a Fréchet space.

Assume X is additionally a complex manifold with a Kéhler form w. The space
of Kéhler potentials is H,, = {¢ € C®°(X,R) : w +1i90¢ > 0}. It is an open subset in
C>=(X,R). Indeed, for a fixed point ¢y € H,, since w+idd¢py > 0 and X is compact,
we can find € > 0 such that if a function ¢ € C*(X,R) satisfies pa(¢ — ¢o) < €,
then w 4+ i00¢ = w + i00¢ + i00(¢p — ¢y) is still positive. Hence the point ¢ has a
neighborhood {¢ : pa(¢p — ¢g) < €} in H,.

The space H, as an open subset of the Fréchet space C*°(X,R) is a Fréchet
manifold. As we have discussed, the tangent space TyH,, at any point ¢ is canonically
isomorphic to C*°(X,R), and the tangent bundle TH,, is canonically isomorphic to
H, x C®(X,R).

Let Q be a domain in R™. A map ® : Q x X — R, smooth in the X-variables,
induces a map ® : Q — C®(X,R) by ®(y) = ®(y,-). Conversely, a map ® : Q —
C*(X,R) induces a map ¢ : Q2 x X — R smooth in X by setting ®(y,z) = EI\D(y)(x)
Suppose now we have a map d: 0 — C>*(X,R). Let {e;} be the canonical basis in

R™. The r-th directional derivative along {e;} is the same as the partial derivative

CI)(T)(% €iryeny eir) = CI)yil---yiT (y)’
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and it is a map from Q to C°(X,R). It is not hard to check that a map ®is C" in
our earlier definition if and only if its partial derivatives up to order r exist and are

continuous on ).

Lemma 2.2.1 A map d: 0 — C>®(X,R) is C* if and only if the corresponding

s smooth on ) x X jointly.

Proof We start with & smooth on €2 x X. By smoothness of ®, ® is continuous

on . The function ®,, induces (Ey\) : 0 — C*(X,R), which is continuous by the

smoothness of ® on €2 x X. It is easy to see

lim Dy + he;) — P(y)
h—0 h

converges to (6\)(3/) in C*°(X,R) by the definition of the seminorms p;, the mean

Yi

value theorem, and the smoothness of ®. Therefore, &Dyi = @ and ® is C'. Simi-

larly, since ®,, is smooth on €2 x X, the map (®,,), hence ZI\Dyi is C1, and so d is 2

and eventually C°.

For the converse direction, We first observe the following lemma

Lemma 2.2.2 [f F:Q— C>®(X,R) is continuous, then all partial derivatives in

the X -variables DLF are continuous on 0 x X.

Proof For (y,,z,) — (y,x) in Q x X, we need to show DLF(y,,z,) — DIF(y,z)
as ;1 — oo. The continuity of F says ﬁ(yu) — ﬁ(y) in C*°(X,R), which implies
DIF(y,,x) — DLF(y,x) uniformly in z € X. By |D!F(y,,z,) — DIF(y,z)| <
\DIF(y,,z,) — DLF(y,z,)| + |D.F(y,x,) — DIF(y, )|, the lemma follows |

Now suppose @ : © — C*(X,R) is C*°. The map EI\Dyl. : 0 = C*°(X,R) induces a
map on  x X by &\)yi (y)(x). We know

. (/Is(y + he;) — ‘T’(y) =
tiy 2R ) 5 () (2.21)

in C>*(X,R), so by the definition of the seminorms p; we have

jiy XUTRD) =D G ) ().

h—0 h
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Therefore, ®,,(y,z) = EDyi (y)(z). So far, we have shown ®,, exists and is smooth in
X; moreover, (6;) = EI\DyZ., and (gyﬂ\]) : Q — C(X,R) is continuous. Meanwhile,

the map ((ID/x\) . Q — C(X,R) is continuous by Lemma 2.2.2 and ® € C*. (Py;) is

J

C' because - -

im

h—0 h
converges to (gy;)(y) in C>(X,R) by (2.2.1). So we see if ® is C* then (6;) is
C! and @y, = (gyx\]) Apply the same idea to ®,,, we have (@:) is C'*, which
implies (fb/,:) is C? and by induction C*. All in all, (6;) and (@/;) = ;I\Dyi are C™ if
® is C*°. By Lemma 2.2.2 ® is C*°(2 x X). m

—

One final remark, from the above proof, we see that (®,,) = &;yi it ® is smooth.
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3. NONCOMMUTATIVE POTENTIAL THEORY

Let (V,(-,-)) be a complex Hilbert space, End V' the set of bounded linear operators
on V, and End *V the set of all positive invertible elements of End V. Let M be a
compact Riemann surface with boundary. On the bundle M x V — M, a Hermitian
metric h is a collection of Hermitian inner products h, on V for z € M that can be
written as h.(v,w) = (P(2)v,w) with P : M — End "V, v and w € V. Assuming
P is C?, the Chern connection of the metric is P7'OP, and its curvature RY =
O(P~'9P) = P~ (P,; — P.P7'P,)dz A dz in a chart.

We digress here to argue that a Riemann surface with boundary M automatically
gives a real analytic structure to its boundary OM (compactness is not needed here).
By definition, the transition function between boundary charts of M is holomorphic
in interior and continuous up to boundary. According to the reflection principle, such
a function is holomorphic across the boundary, and therefore real analytic up to the
boundary. In particular, the restriction of these transition functions to the boundary

endows OM with a real analytic structure. It is this analytic structure that defines

the smoothness classes in the theorem below.

Theorem 3.0.1 Let M be a compact Riemann surface with boundary and F €
C™(OM, End*V), wherem = 0,00, or w. There exists a unique P € C™(M, End V)N
C*(M, End*V) such that R® = 0 on M, and Plsyy = F. The same is true if we

replace C™ by a Holder class C*® for k a nonnegative integer and 0 < a < 1.

The space End V' with the operator norm || - ||, is a Banach space. So the spaces
Ck*(M,End V) and C**(OM,End V) are Banach algebras as defined in Chapter 2,
and C%*(M,End V) and C**(OM,End *V) are subspaces with values in End *V.
We denote by C“ the space of real analytic maps, those that can be expanded at each

point of its domain in a power series in a chart. Later on, we will use O(M, End V)
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to denote the space of holomorphic maps, those that are complex differentiable in

charts.

3.1 Preliminary lemmas

We denote the space of invertible elements in End V' by End V. The first lemma
is a standard fact in finite rank bundles, and the case of infinite rank bundles is proved

similarly.

Lemma 3.1.1 If M is a simply connected Riemann surface and P € C*(M, End V)
is flat, namely RY = 0, then P = H*H where H € O(M, End*V). If P = K*K s
also such a factorization, then H = UK, where U € EndV is unitary.

Proof This lemma is actually true for M a simply connected complex manifold, and
we will prove this general case. Fix a point a € M, we define a map ¥ : M x V —
M x V by setting ¥(z,v) equal to the parallel translation of v along a curve v from
a to z. Since M is simply-connected and RY = 0, the map V¥ is independent of the
choice of 7. For each z € M, we denote by ¥, the map v — ¥(z,v), so ¥, is in
End *V. We claim that z — ¥, is holomorphic. It suffices to show that for a fixed
v € V the map z — W¥,(v) is holomorphic. Indeed, the covariant derivative DV (v)
is zero due to parallel translation, so ¥, (v) = 0 and z + ¥, (v) is holomorphic.

Since parallel translation is an isometry, (P(a)v,w) = (P(z)V,(v), ¥,(w)) for any
v,w € V, and hence P(z) = (V;1)*P(a)¥;!. Because P(a) € End TV, we see

P(z) = (P(a)?¥ ") P(a) 20,

and the lemma follows by setting H(z) = P(a)'/?W .
If P has two factorizations P = H*H = K*K, then HK~! = H* 'K*, which is
holomorphic on one side while antiholomorphic on the other. Hence HK ~! must be

a constant operator, say U. Then U = U*~! and H = UK. [ ]
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Lemma 3.1.2 Let M be a compact Riemann surface with boundary. Let P,Q be in
C(M,End™V)YNC?*(M,End™V), and R” = R® =0. If P> Q on OM, then P > Q
on M.

Proof This is a special case of the maximum principle proved in [Lem15]. See also

Lemma 3.2 in [Lem17]. u

Lemma 3.1.3 Let M be a compact Riemann surface with boundary. Let P; be
in C(M,End*V) N C*(M,End*V), and R = 0, j € N. If Pjlop converges in
C(OM, End*V), then P; converges in C(M, End*V).

Proof Suppose the limit of Pj|sy is P. Then there exists 6 > 0 such that P(z) > 0
for z € OM. We can find j, such that |P; — P||co@ar < 0/2 for j > jo, which implies
—0/2 < Pj—P < ¢/2for j > joand z € OM. So P; > P —§/2>6/2 for j > j
and z € OM, and by Lemma 3.1.2 this is true on M. Given € > 0, we can find i
such that || P — Pj|co@ny < €0/2 for 4,5 > iy, and hence —e6/2 < P, — P; < €/2
for i,j > ip and z € OM. So for z € OM and i,j > max{ig, jo} = ko, we have
(1+¢e)P; > P, > (1 —¢)P;, and by Lemma 3.1.2 again, this is true on M. Hence
|12 — Pjllcoany < €l|Pjllcoqary for i, 5 > ko. Pj is a bounded sequence on M, and by
Lemma 3.1.2 P; is a bounded sequence on M. Therefore, P; is a Cauchy sequence
in C(M,End *V), and there exists f € C(M,End V) such that P; — f in sup-norm.
Since P; > 6/2 on M, the same holds for f, and hence f € C(M,End *V).

]

Lemma 3.1.4 Let D C C be the unit disc, H; € O(D,End*V), and H;(0) €
End*V. If HZH; converges locally uniformly to some P € C(D, End*V), then there
exists H € O(D, End V') such that H; converges, locally uniformly, to H on D.

Proof Because ||H,|> = ||H;H,| < |[H;H; — P|| + ||P|, we see H; is uniformly
bounded on any compact set. Let C, be the circle of radius r < 1 centered at the
origin, so we have supg,_||H;| < M, for some positive M,. The Cauchy estimate gives

8kHj(z) ]{Z' 1

<My
0zk I'= 2 (r — |z|)F !
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It is straightforward to check that the partial derivatives of P; := H H; are locally
uniformly equicontinuous, and by [Lem17, Proposition 2.5] these partial derivatives

converge locally uniformly. Meanwhile

L, OFP; . e, OFH; O H;
Py(0)72522(0) = (H; (0)H;(0)) 7 (0) 532 (0) = 552(0),
oFH,

and as j — oo, the first term converges, say to Ay, so lim;_,., 5 (0) = A;. Hence
|Agll < KM, /(27r*), and the power series Y -, Arz*/k! := H(z) has radius of
convergence > 1, s0 H € O(D,End V). Choose R < r, for |z] < R,

O"H; o\ MR

155 Ol = o

so Hj(z) =) 8;;? (O)Zk—]f converges uniformly to H on |z| < R. Finally, since H;(z) €
End *V and

L (=) 7H I = M H () H (=)™ | = (G Hy) () = (1P ()1

H(z) is actually in End *V.

3.2 A priori estimates

Fix a smooth positive (1, 1)-form w on M and define a map A sending (1, 1)-forms
to functions: A(¢) = —¢/w, for a (1,1)-form ¢. Locally, w = /—1gdz A dz, where g
is a positive smooth function, so if ¢ = vdz A dz locally, then A(¢) = v/—1v/g.

Fix 0 < a < 1, assume P € C>*(M,End*V) has zero curvature, i.e. flat, and

A = P7'9P. We associate the following differential operator with P:

L :0%*(M,End*V) — C*(M,End**V)
h v/ —1A(00h — A* NOh — Oh N A+ A* A h A A).

On a chart, Lh = (1/g)Lh, where

Lh=h,— P.P'h, —h.P'P.+ P.P"'hP~'P,.



19

The reason for studying L is that it is the linearization of curvature, as we shall see

in section 3.3. The main result in this section is

Theorem 3.2.1 If h € C>*(M, End*"V) and h|gy = 0, then
1A]l2,0,0r < C||Lh0,a,01

where C' = C(|| P20, || P | 0.00) -

We begin with a somewhat standard estimate.

Lemma 3.2.2 If h € C*>*(M, End*"V) and h|gy; = 0, then
17]l2.0,00 < C([|llo,as + ([ LA]]0,0,01)
where C = C(||Pll2.0, | P 0.0)-

The prominent feature of L is the following. On a simply connected open set, we

have H*PH = 1 with holomorphic H by Lemma 3.1.1, and it turns out that
1
§A(H*hH) = —H"(Lh)H.

Here A is the Laplace operator with respect to w, and we use the fact that A when
acting on functions is the same as 21/—1A00. Therefore, modulo a gauge transfor-
mation H, L is the Laplace operator, locally. In a chart, the above equality becomes
(H*hH),: = H*(Lh)H. We will exploit this to reduce Lemma 3.2.2 to the corre-
sponding estimates for scalar-valued elliptic partial differential equations.

If L had nonpositive zero order term, general theory would imply ||hljoxn <
C||Lh||o.ar, which together with Lemma 3.2.2 would give Theorem 3.2.1. However,
the zero order term of L is nonnegative. To get around this problem we first prove a

maximum principle, Lemma 3.2.3, and observe that for u € C?(M, C),
_ 1
L(u-P)=+/—1A(=00u- P +uP - R") = (—§Au)P,

as R = 0. A suitable choice of u will put us in the position of using Lemma 3.2.3,

and Theorem 3.2.1 will follow quickly.
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Proof [Proof of Lemma 3.2.2] Consider two finite open covers {U;}, {Vi} of M, such

that U;, V; are in a chart ¢; for each 4, and
(
¢i(Ui) = B(0,1)
\gzﬁ,-(\/i) = B(0,2).

(

for interior chart,

¢:(U;) = B(0,1) N H
for boundary chart, where H C C is the upper-half plane.

\sz(‘/;) = B(Ov 2) NnH

We use {U;} to define the norm on C%* (M, End*V) and {V;} on C*(M, End*"V).

Since our arguments will be local, we can assume U;,V; are already in C and
¢; is the identity. We first consider a boundary chart ¢;. As mentioned above,
(H*hH),: = H*(Lh)H, where H is a holomorphic function in the interior of this
chart with H*PH = 1. As P is C*® up to the boundary of M, so is H, according to
[Lem17, Theorem 3.7]. Consider a bounded linear functional I € (End V)* of norm
one, and apply [ to the equation obtaining [[(H*hH)|.; = I(H*(Lh)H), a scalar-
valued equation. Denote ¢;(U;) = B’ and ¢;(V;) = B”. By [GT01, Lemma 6.5 or
Corollary 6.7]

[[(H*hH ) ||2,0,80 < C([I(H"RH )0, + [[I(H*(Lh)H)[0,0,B) (3.2.1)
where C' is a uniform constant.We can get rid of [ and H to have
17 l2.0,0 < C(l|R]lo,ar + [ LRllo,,0)-
Indeed, at each point in B”,

W(H*hH)| < |H*hH|lop < [HIENPllop < Cllh]lop-
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The last inequality follows from P~! = HH*. Similarly,
[LCH(Lh)H)lo.0.57 < |1 H*(LA)H[o,0,5
<N H|3 0,57 - 1 L0057
< CIHG a5 - ILA]J0,001
< CIH|E + 1H:115) - | Lhllo,a,m

< C||Lho,a,m

The third inequality is by the definition of the C* norm on M. The last inequality
follows from H, = —P~'P,H. Therefore, the right hand side of (3.2.1) is dominated
by C(Rllo.s + [1LAlloaar), which gives C([hlloas + | Eblloasr) = NCHH) 2.0,
Let D stand for (9,,0:), and D? for (92, 8,05, 0?). Notice that ||I(H*hH)||2.0.p is

comparable with
WO REDlo,5r -+ | DUCH B o, + | DA RH o5
We obtain, for z € B,
|DI(H*hH)(z)| < C([|hlloar + ([ LA]lo.a,ar)
and then take supremum over [ of norm one to get
ID(HhH)(z)]lop < C(lIAllo.ar + [[Lhllo.0.00)-
As a consequence,

C([[Rlloae + [[Lhllo,a,nr) = |DH*RH + H*DhH + H*hDH [0 pr
> |H*DhH |05 — [|H*hDH|lo,p — || DH*hH |0 5
> [|[H*DhH ||o,5 — C||hlo,p'-
So
C(1Pllo.nr + | LAllo,a,nr) = [[H*DRH ||o,pr-

Since

|IDhlo,s < |H*DhH ||o.p/||H G50 = ||H*DhH o,/ ||Pllo,s < C||H*DhH o,
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we have

1Dhllo,sr < C(l|hllo.as + [| Lhllo,a,nr)-
We can estimate the second derivatives and their Holder norms similarly, and obtain
12ll2.0.50 < CClIAllo.ar + [1LA]0,.0n0)- (3.2.2)
We next consider an interior chart ¢;. As before [[(H*hH)|,; = [(H*(Lh)H). We
let ¢;(U;) = B’ and ¢;(V;) = B”. By [GT01, Corollary 6.3],
IDUHhH) [0, + [|D*I(H"hH) o5 + [D*I(H*hH)]a, 5
< C[IlL(H*hH) 0,57 + |l(H*(LR)H) 0,057 ]-
Using the same method as in boundary charts, we can get rid of [ and H to obtain

the same estimate (3.2.2). Hence the lemma follows. n

We next prove a maximum principle, which in turn gives rise to C° estimates.

Recall that (-,-) is the inner product of V', and denote ||v||§3(z) = (P(2)v,v).
Lemma 3.2.3 Suppose h € C?*(M, End*"V). Define

Sea(z) = sup (h(z)v,0).

lvll p2)=1
If Lh > 0, then Spp(z) is subharmonic. As a result, if additionally h is continuous
on M, then

sup SP,h = sup SP,h-

M oM
Proof First,
Spn(z) = sup (h(z)v,v) = sup (P(z)_1/2h(z)P(z)_1/2P(z)1/21), P(z)l/zw
(P(z)v,v)=1 I1P(2)" 2v||=1
= sup (P(z)"*h(z)P(2)""*u, u)

flull=1
is continuous, as the sup of a family of equicontinuous functions. Locally, we have
H*PH =1 and (H*hH),; = H*(Lh)H; furthermore, 0 < Lh = (1/g) - Lh means
Lh > 0. Since
0 < ((Lh)Hv, Hv) = ((H*hH)zv,v),
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((H*hH)v,v) is subharmonic for any v € V. Thus,
Sea(z)= swp (Wvv)=  sup  (h(zv,o) = sup (HRH(z)u,u)
(P(z)v,v)=1 (H—1v,H-1v)=1 (u,u)=1

is the sup of a family of subharmonic functions. As we already know Spj(z) is

continuous, it is subharmonic. [ |
Theorem 3.2.4 If h € C>*(M, End*"V) and h|gy = 0, then
17]lo.ar < C[Lhllo,ar
where C' = C(||P]o, |P~*||o)-
Proof Recall if u € C?(M,C), then
1
L(u-P) = (—§AU)P.

Let @ be the function vanishing on dM such that A® = 2, and let G = (P —
inf ®)||P~!|oP. Then G > 0 with L(G) = —||P~!{|oP < —1. Besides, G < C, where
C depends on ||Pllp and ||[P~Y|o. With F' = G - ||Lhllp, we have h < F on M.

Moreover,
L(h—F) = Lh— ||Lhl|lo- LG > Lh + ||Lh||o > 0.
By Lemma 3.2.3, h — F < 0 on M. Therefore,
h <G -|Lhllo < C[[Lhlfo.
Replacing h by —h, the theorem follows. [ ]

Theorem 3.2.1 is a consequence of Lemma 3.2.2 and Theorem 3.2.4.

3.3 Proof of the main theorem

We start with a regularity result.
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Lemma 3.3.1 Let P € C(M,End™V) N C*(M, End*V) be flat. If Play is CF,

C>=, or C¥, then P has the corresponding reqularity on M.

Proof By Lemma 3.1.1, P = H*H with a holomorphic map H locally, so P is
always C* in M regardless of its boundary values. Denote P|gy by F. If F € C%,
by [Lem17, Theorem 3.7] on a boundary chart P = H*H with H of class C*® up to
OM:; therefore, P is C*® up to OM. Next suppose F is C*, then by the C* result,
P is C* up to OM for any positive integer k, hence C.

Finally, suppose F' € C¥. On a boundary chart, that we identify with the upper-
half disc in C, P = H*H with H continuous up to the real axis by [Lem17, Theorem
3.7]. Since F' € C¥, it has a holomorphic extension in a neighborhood of the real axis
in the disc, so the map H**(Z)- F(z) provides H a holomorphic extension across the

real axis, and it follows that P is real analytic across the real axis. [ ]

Proof [Proof of Theorem 3.0.1] The uniqueness follows from the maximum principle
(see [Lem17, Lemma 3.2] or [Lem15]). We consider first the case F' € C* and prove
the existence by the continuity method. Fix 0 < a < 1, let ¢, = tF' + (1 — t)Id, and

If 0 < s <t then ¢y = Pslon,
T=qtel0,1] o
for some P, € C**(M,End"V), and R™ =0

We will say those ¢; “have an extension.” The goal is to show 7' = [0,1]. If so,
¢1 = F has a C?“ extension, and we can improve the regularity from C%*® to C% by
Lemma 3.3.1. Because 0 is in 7', T" is nonempty. First we prove T is closed.
Suppose T > t; — t5. For s < ¢y, we can find ¢; > s, therefore ¢; has an
extension. We have to show ¢y, extends. For brevity, we write P; instead of P.
Since Pjlonr = @1, — ¢4, Pj converges by Lemma 3.1.3, say to Py € C(M,End V),
and P |oas = ¢y,. For any interior point of M, choose a chart with image the unit
disc D in C. Thus, P; = HjHj, where H; € O(D,End*V) by Lemma 3.1.1, and
after multiplying with the unitary operator (H;(0)H;(0))/2H;"(0) we can assume
H;(0) € End*"V. By Lemma 3.1.4, there exists H holomorphic on D such that
Hj; — H locally uniformly. Hence, P, = lim H;H; = H*H on D which implies
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Py € C®(M,End V) and R = 0. By Lemma 3.3.1, P, is C%, especially C*>“ on
M. Hence, ty is in T and T is closed.
Now we prove that T is open. If ty € T' then ¢; has an extension P;, for 0 <t < t,.

Consider the smooth map

U C**(M,End V) — C*(M, End **V) x C**(OM,End "V
h = (vV=1A(hO(h~'0h)), hlo).

Then ¥ (P,,) = (0, ¢s,). We denote P, 0P, = A;, so the linearization of ¥ at P, is

C**(M,End*"V) — C*(M,End*"V) x C**(9M, End*"'V)
h— (V=1A(00h — A N Oh — Oh A Ay + A, NN Ay, hlonr).

It is here the operator in section 3.2 turns up. We will show that the linearization is
an isomorphism. Then V is a diffeomorphism in a neighborhood of P, by the implicit
function theorem, and that implies 7" is open.

To show that the linearization is an isomorphism, it suffices to prove it is bijective

because of the Open Mapping Theorem. That is, given
(fi. f2) € C°(M,End*"V) x C**(9M, End*"V'),

the equation

V—=IAN(0Oh — A} Oh — OhAy, + Aj hA,,) = fi

hlom = fa

has a unique solution. That there is at most one solution easily follows from the

(3.3.1)

maximum principle, Lemma 3.2.3 or Theorem 3.2.1. If dim V' < o0, existence follows
from uniqueness by Fredholm alternative. However, if dim V' = oo, Fredholm alter-
native is not available, because the embedding C>*(M,End V) — C*(M,End V) is
no longer compact. The way we solve (3.3.1) is again the continuity method, based

on the next lemma:
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Lemma 3.3.2 Let B,V be two Banach spaces, and {L;}o<i<1 a family of bounded
linear operators from B to V. Suppose t — L, is continuous in operator norm;

moreover, there exists a constant C such that
[z]] < C||Lyz| (3.3.2)
for any x € B and any t. Then Ly is onto if and only if Ly is onto.

Proof This is a variant of [GT01, Theorem 5.2]. Suppose L, is onto for some
s € [0,1]. By (3.3.2), L, is one-to-one, and hence the inverse L;! : V — B exists;
moreover, for y € V|

IL; 'yl < ClLsL; Myl = Cllyl.-

For t € [0,1] and y € V, we are looking for # € B such that L;x = y. The equation
Lix = y is equivalent to # = L'y + L;'(Ls, — Ly)x. Define a map T : B — B by
Tex=L'y+ L;* (L, — Ly)x. For x1, 25 € B,

1Ty — Tas|| = | (Ls — Le) (w1 — 22)[| < C|ILs — Lyl[lzy — 2.

Because of the continuity of t — L;, there exists 6 > 0 indepent of s, such that if
|s —t| < d then ||Ls — L¢|| < 1/2C. Therefore, if |s — t| < 0, then ||Tax; — Tas|| <
|z1—x2||/2, a contraction on B, and hence T has a unique fixed point. Soif [s—t| < 0,
L, is onto. By dividing [0, 1] into subintervals of length less than §, the lemma follows.

Unsurprisingly, we are going to deform our equation to the Laplace equation. The
naive way of deforming is by convex combination, but this breaks the symmetry of
our equation (after all we want to use the a priori estimates from Theorem 3.2.1). It
is here the solution set T plays its role; it tells us how to deform.

First in equation (3.3.1), f can be extended to C>*(M, End*"V). If we subtract
fo from h, we only need to consider the case of zero boundary value. In other words,

we have to show that
L : {h € C**(M,End*"V) : hlopy = 0} — C*(M, End*"V) (3.3.3)
h — v—lA(éE)h—A: A Oh — 5h/\At+A;‘ ANh A A (3.3.4)
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is surjective when t = t3. Note that L, is the Laplace operator, for Py = 1. We start

with the following lemma, which is stronger than what we need.

Lemma 3.3.3 Let k be a nonnegative integer. If t,s € [0,to] and t — s, then
|P, — Py||cx — 0, and ||[P, — P, Y| er — 0.

Proof By Lemma 3.3.1, P, € C*(M,End *V). Since P,|arr = ¢r — ¢s, P; converges
to P, in C(M,End V) by Lemma 3.1.3. For the derivatives, we do estimates on
charts and consider 0, only, as J; can be done in the same way. On an interior chart,
P, = HH,, P, = H*H where H,, H are holomorphic. As in the proof of closedness,

H, — H locally uniformly, and so do all their derivatives. Therefore,
(P). = H{(Hy). = H"H. = (Py).

locally uniformly. On a boundary chart, that again we identify with the upper-half
disc in C, we similarly have (P;), — (Ps). locally uniformly but only away from the
boundary. The convergence near the boundary can be resolved as follows. P, = H;H,
with H, continuous up to boundary of M (in the current situation, this means the
real axis of the unit disc) by [Lem17, Theorem 3.7]. Similarly, P, = H*H with H
continuous up to boundary of M. As in the proof of Lemma 3.3.1, since ¢, is C¥, it
has a holomorphic extension in a neighborhood of the real axis of the unit disc, the
map

H; 7' (2) - du(2)

provides an analytic continuation of H; across the real axis that we continue denoting
H,. For a compact set in the unit disc, consider a contour around it. By Cauchy’s
Integral Formula and the fact ||H;| has a uniform upper bound, the Bounded Con-
vergence Theorem implies that H; converges to H uniformly on this compact set, and
the same holds for derivatives of all orders. Hence, P, — P, in C* for any nonnegative
integer k, locally uniformly in this boundary chart. Therefore, we conclude the C*

convergence on M. Since C*(M,End V) is a Banach algebra, P, — P,”' in C*. =
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This lemma implies that ||L; — Ls|]| — 0 as ¢ — s, where the norm on L; is the
operator norm from (4.2). From Theorem 3.2.1 and the continuity Lemma 3.3.3, we

get the desired estimates: if h € C%*(M, End**V) and h|gp = 0, then
17|20, < C|Lihllo,a,0r

where C' is independent of ¢. Therefore, by Lemma 3.3.2 and the fact Ly = A/2 is
onto, L, is also onto, which implies the equation (3.3.1) is uniquely solvable, so T’
is open and therefore 7" = [0, 1]. This completes the proof of Theorem 3.0.1 for C*
case.

If the boundary data F is only C° it can be approximated by a sequence F}; €
C%(OM,End "V) in sup norm, for the following reason: M as a real analytic man-
ifold can be real analytically embedded in some RY by an embedding theorem of
Grauert and Morrey [Gra58] [Mor58]; F has a continuous extension to RY, which
can be approximated by polynomials P;; after composing P; with the embedding, we
have the desired F;. Each I} has a real analytic flat extension P; according to the
C¥ case. By Lemma 3.1.3, P; converges in C(M,End "V, say to P. As in the proof
of closedness, P is C? in the interior and has curvature 0.

If Fis C** or C*, the P constructed in the previous paragraph is C*, respec-
tively C> on M, by Lemma 3.3.1. [ |
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4. THE SPACE OF KAHLER POTENTIALS

Let us recall the setup from Chapter 1 and give a more detailed account. Let X be
a compact complex manifold of dimension n with a Kéhler form w. The space of

Kahler potentials is
H, = {6 € C°(X,R) : w+i0d¢ > 0},

and we will denote w + i99¢ by wy.

By the discussion in Chapter 2, the space H,, is an open subset in the Fréchet space
C>(X, R), and therefore it is a Fréchet manifold. The tangent space T,H,, at ¢ €
H,, is canonically isomorphic to C*°(X,R), and tangent bundle TH,, is canonically
isomorphic to H,, x C*°(X,R). Following Mabuchi [Mab87], Semmes [Sem92|, and
Donaldson [Don99], the Mabuchi metric gy on H,, is the following. For a point
¢ € H, and two vectors £, € TyH,, =~ C=(X,R), the Mabuchi metric is

gu(&,n) = /XSWZ-

On the right hand side £ and 7 are viewed as smooth functions on X, and we are
integrating a product of two functions.

Let D be a bounded smooth strongly pseudoconvex domain in C™. A map D :
D — H, will induce a map ® : D x X — R with &(z,-) € H,, for z € D, and
vice versa. Equipping D with the Euclidean metric and H, with Mabuchi metric,
we can compute the Hilbert—-Schmidt norm of the tangent map Cf’z :T.D — Tg,(z)’Hw
that we denote by |®.| for z € D. If {1, ..., van} is an orthonormal basis for T,D ~
R2™ then |®|2 = 23231 g (®.v;, ®.v;). The harmonic energy functional is defined
to be E(®) = I |3/ |2dV where dV is the Euclidean volume form on D. A map
d:D — H,, is said to be harmonic if it is a critical point of the harmonic energy

functional. Let {z;} be coordinates on D. For z € D, ®, (2,) is a function on X.
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We compute the gradient of ®, (z,-) with respect to the Kéhler metric wg(,) and
denote the complexified vector field on X by V@, (z). The length of this vector field
with respect to the metric wg,, is denoted by V., (2)]. A computation, as in finite
dimensions, gives that a map d:D — H., is a critical point of F if the corresponding

® satisfies the harmonic map equation:

= 1
> b - 5|V<I>Zj|2 = 0. (4.0.1)

j=1

The functional that we are looking for, which we denote by &, is a perturbation
of the harmonic functional £ above. In order to define £, we recall first the Poisson
bracket {-,-},, on C*(X,R) determined by the symplectic form wy with ¢ € H,,.
For {,n € TyH., ~ C*(X,R), the Poisson bracket {{,n}., is a smooth function on
X characterized by {£,n}. JWg = nd§ Adn A wg_l. Next we define a three-form 6 on
H.: for ¢ € H, and &1,&,& € TyH.,

081,82, €3) = gn({&1, &2}y, 63) = /X{&,fg}%ﬁgwg. (4.0.2)

This three-form 6 is d-closed (see Lemma 4.3.3 below), and therefore there is a two-
form o on H,, such that do = . (This is because H, C C*°(X,R) is convex, and
Poincare’s exactness lemma holds in Fréchet manifolds too, by the same proof as in

finite dimensions.) For a map d:D— H.,, we define
£(D) := E(D) +4¢Z/ a(®s,, ®,,)dV. (4.0.3)
—~Jp
J
We will show in Lemma 4.3.4 that the Euler-Lagrange equation of £ is
S, - Lve,r- ia,.e,)., =0 (4.0.4)
‘ 3%i 2 J 2 J) T AW ’
7=1
In view of its connection with [Wit83] and following [Don99], we call the equation
(4.0.4) the WZW equation for a map d:D— H,

Donaldson showed in [Don99], when m = 1, the WZW equation is equivalent to

a homogeneous complex Monge-Ampere equation. We have the following extended
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equivalence for m > 1 by a similar computation. Let 7 : Dx X — X be the projection

onto X. Then the extended equivalence is

® solves (4.0.4) if and only if (i00® + 7*w)"™ A (i > dz; Adz)™ ' = 0. (4.0.5)

j=1
After seeing the WZW equation, we are now trying to solve it and study properties

of the solution. Recall the definition of w-subharmonicity on graphs.

Definition 4.0.1 A function u : D x X — [—00,00) is called w-subharmonic on
graphs if for any holomorphic map f from an open subset of D to X, ¥(f(2)) +

u(z, f(z)) is subharmonic, where 1) is a local potential of w.

Let v be a real-valued smooth function on 9D x X and 0D > z — v(z,-) = v, €

‘H,,. Consider the Perron family

G, = {u € usc(D x X) : u is w-subharmonic on graphs,

and limsup u(z,z) <v((, x)}.
D>z—(€0D

As we will later see, the upper envelope V' = sup{u : v € G,} is a weak solution of the
WZW equation from D to H,. Recall the philosophy that when w is the curvature
of some Hermitian line bundle (L, h) — X, then the infinite dimensional space H,,
can be approximated by the spaces H;, of inner products on H°(X, L¥). There are
two maps going between H,, and Hy. The Hilbert map Hy : H,, — Hy is

Hi(¢)(s,s) = / h*(s,s)e *w", for ¢ € H,, and s € H*(X, LF).
X

In the other direction, the Fubini—-Study map F'Sy : Hr — H,, is
FSp(G)(x) = llog sup h*(s,s)(x), for G € Hy, and = € X.
k7 semo(x,0k),as,s)<1
An equally good name would be Bergman map, for the sup above defines the Bergman
kernel of H(X, L¥) with an inner product G.
Following the definitions from [CS93], let N} be the set of norms on H(X, L*)*.
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Definition 4.0.2 A norm function D 3> z — U, € N is said to be subharmonic if
log U,(f(2)) is subharmonic for any holomorphic function f: W C D — H°(X, L*)*.

The quantum Perron family is

GY:={D 3z — U, € Nj is subharmonic and

limsup U?Z(s) < Hj(vc)(s,s) for any s € HO(X, L¥)* },

D3z-¢€dD
where H;(v) is the inner product dual to Hi(v). A remarkable fact about the upper
envelope V* = sup{U : U € G*} is a theorem of Coifman and Semmes [CS93], which
shows that V" is not only a norm but an inner product (see [Slo90b, Corollary 2.7]

for a different proof.); moreover it solves the Hermitian—Yang—Mills equation:

AO(VF) =0 o)
V*ap = Hj(v).

Denoting the dual metric by (V*)*, our main result is that the upper envelope V/

of G, is the limit of Hermitian—Yang—Mills metrics:

Theorem 4.0.1 Let v € C*°(9D x X,R) such that v(z,-) € H,, for = € dD. If V*
is the solution of (4.0.6), then FS,((VF)*) converges to V uniformly on D x X, as

k — 0.

Now we turn to the interpretation of the upper envelope V' and its relation with
the WZW equation. The next theorem shows that V' solves the WZW equation under

a regularity assumption.

Theorem 4.0.2 If the upper envelope V of G, is in C*(D x X), then
(i00V + 7 w)" " A (1) dz Adz)™ T =0,
j=1

We expect that the converse of Theorem 4.0.2 also holds, then together with
Theorem 4.0.1 this would show that the solution of the WZW equation can be ap-

proximated by the Hermitian—Yang—Mills metrics.



33

4.1 Positivity of direct image bundles

Consider a Hermitian holomorphic line bundle (E, g) — X™ over a compact com-
plex manifold and assume the curvature 7 of the metric g is positive. For two sections

s,t € H'(X, F ® Ky), we write locally
s=oRs t=17t

where 0,7 € E and §',t' € Kx. We extend the metric g to acting on sections of
E ® Kx by setting g(s,t) = g(o,7)s’ A/, which is an (n,n)-form. It is not hard to
see this (n,n)-form is globally defined on X.

We define a variant of the Hilbert map: Hilbgg, (u), for a function v : D x X —
R, is given by

Hilb g ey (1) (5, 5) = / ols,5)e ")
X

with s € H°(X, E ® Kx). In the following, suitable assumptions will be made on
u to make sure the integral converges. Then the map D > z +— Hilbggk, (u(z,-))
defines a Hermitian metric on the bundle D x H*(X, E® Kx) — D. We will call this
metric simply Hilbggr, (v). The main result of this section is the following positivity

theorem.

Theorem 4.1.1 If u is bounded and upper semicontinuous (usc) on D x X, and
n-subharmonic on graphs, then the dual metric Hilbyg - (u) is a subharmonic norm

function.

The following approximation lemma is somewhat technical and we postpone its

proof to section 4.4.

Lemma 4.1.1 Let u be a bounded usc function on D X X, n-subharmonic on graphs.
Then for D" relatively compact open in D, there exist positive €; \y 0 and u; €

C>® (D' x X) decreasing to u such that for any holomorphic map f from an open

subset of D' to X, A(W(f(2)) +uj(z, f(2))) > ;A0 (f(2)), where n =0 locally.
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Proof [Proof of Theorem 4.1.1] Since being a subharmonic norm function is a local
property, we focus on D', a relatively compact open set in D. Take ¢; and u; as in
Lemma 4.1.1. Assuming the theorem holds for such a wu;, namely, the dual metric
Hilbpg x (u;) is a subharmonic norm function, it follows that Hilbgg . (u) is also
a subharmonic norm function because Hilbgg s (u;) decreases to Hilbpgy (u) as
J — Q.

As a result, we only need to prove the theorem for u € C*°(D’ x X) with the
property that there exists € > 0 such that for any holomorphic function f from an

open subset of D’ to X,

A((f(2)) +u(z, f(2))) > eA(Y(f(2)), where n = 199y locally. (4.1.1)

In a coordinate system €2 C C" on X, we will use Greek letters u, A for indices of
coordinates on X, and Roman letters ¢, j for indices of coordinates on D; moreover,
J" means the p-th component of f, whereas 1,5, u;;, and u,;5 mean partial derivatives
0*)0x,0%y, 0%u/0z,0%;, and 0*u/dz 0T, respectively. In this coordinate system

2 C C" on X, the inequality (4.1.1) becomes
afrof aft afA
giAZMwu)\ 6ZZ a— _Z%Ma a— +Z Uz
) o fr afH af_A
+;u“‘8z} +; e Z YA Dz Bz

In (4.1.2), choose f(z) = N (&1, &2, ..., &, )21 where N is a positive number and (&1, &2, ..., &) €
C", divide the resulting (4.1.2) by N* and send N to infinity, to obtain (¢,5 +u,5) >

(4.1.2)

£(1,5) as matrices, and hence (¢,,5 + u,,3) is positive definite.

Let L*(X, EQK x) be the space of measurable sections s whose L? norm [, g(s, s)e™ (")
is finite. Since different z will give rise to comparable L? norms, the space L*(X, F ®
Kx) does not change with z, and so we have a Hermitian Hilbert bundle D" x

L*(X,E®Kx) — D', with the metric Hilbgg, (u), which has D'x H*(X, FEQ Kx) —
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D' as a subbundle. Denote the curvature of the subbundle by © =} 0,;dz; A dzj.

By the computations in [Ber09, P. 540] we deduce
@J]s,s / K(z e =) (4.1.3)

where s € H'(X,E ® KX), and K : D' x X — R is a smooth function, given in local

coordinates on X by
K= Z = D@+ )M ugzug,);
A

here (¢ + u)™ stands for the inverse matrix of (¢ + ) i

We claim that K > 0. First notice that ¢ is independent of z, so if we denote
$(@) +u(z,2) by 6(2,2), then K = 3,(653— Sy 636™65). Fix (20, 70) € D' x X,
since the matrix (¢,3) is positive definite, we can choose local coordinates on X
around x such that (¢,) is the identity matrix at (20, 2¢), and therefore K (2o, 7o) =
>-i(055 =22 |¢j31*) (20, 20). For a holomorphic function f from an open subset of D’
to X, the subharmonicity of gzﬁ(z, f(2)) reads

Afr 0 fA
Z¢zz + quz)\ 87 + Z¢zu a qup)\ af éiz (414)

Without loss of generality, we assume (29, 7o) = (0, 0) and choose f* = — > ¢,5(0,0)z;
n (4.1.4), and it becomes Y (d;; — >, |9;3]°)(0,0) > 0. Therefore, K > 0. (See
also the remark after Lemma 4.3.1 for a slightly different proof of this claim, and an
invariant meaning of K).

As a result, (4.1.3) implies > (6,5, s) > 0, and hence the curvature of the dual

metric Hilbpg e (u) satisfies the opposite inequality; according to [CS93, Theorem

4.1], this implies Hilbpgx (u) is a subharmonic norm function. u

Now let (E, g) = (L* ® K%, h* @ w™), which is positively curved for large k since
O(h* ®w") = kw+Ricw. Note that F® Kx ~ L*. We have the following proposition
regarding the metric Hy(u) on the bundle D x H°(X, L¥). Recall that

Hi(u(z,-))(s,s) = /X hE(s,s)e Fu=Iun s € HO(X, LF).
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Proposition 4.1.2 Suppose u is a bounded usc function on D x X and with some
e € (0,1) u is (1 — e)w-subharmonic on graphs. Then there exists kg = ko(e,w),
independent of u, such that, for k > ko, the dual metric H;(u) is a subharmonic

norm. function.

Proof In order to use Theorem 4.1.1, we check if ku is (kw + Ricw)-subharmonic
on graphs. Suppose w = i90y and Ricw = i90¢ locally, then we want to see if
kv(f(2)) + o(f(2)) + ku(z, f(2)) is subharmonic for any holomorphic map f. Note
that kY + ¢ + ku = k(1 — €)Y + ku + eky + ¢, and k(1 — e)y(f(2)) + ku(z, f(2))
is subharmonic by the assumption. On the other hand, there exists ky depending
on &,w such that eky + ¢ is plurisubharmonic (psh) for k& > k. Therefore, ku
is (kw + Ricw)-subharmonic on graphs for k& > ky. By Theorem 4.1.1, the metric
Hilb} « (ku) is a subharmonic norm function for k > kq. The proposition follows since

Hilbyx (ku) = Hi(u).

4.2 Approximation by Hermitian—Yang—Mills metrics

Recall that D is in C™, and (L,h) — X" is a positive line bundle with curvature
w. A function f : X — [—00,00) is called w-psh if f is usc on X, and for any
coordinate system where w = i001, the function f+1) is psh in the local coordinates.

We denote the set of all w-psh functions by PSH(X, w).

Lemma 4.2.1 Let u be an usc function on D x X, w-subharmonic on graphs. Then
for any fized z € D, u(z,z) is w-psh on X, and for any fixred x € X, u(z,x) is

subharmonic on D.

This can be seen as a special case of an abstract theorem in [Slo90b, Section 1], whose

proof we translate to our setting.

Proof By choosing the holomorphic map f constant in the definition of w-subharmonic

on graphs, it follows immediately that u(z, z) is subharmonic in z.
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For a fixed zp € D, we want to show x — t(x) + u(zo, x) is psh in a coordinate
system on X, where 1) is a local potential of w. Without loss of generality, it suffices to
prove that C 5 A — 1(Aey) + u(0, Aeq) is subharmonic, where e; = (1,0, ...,0) € C™.
Let U = {A € C: |A —a|] < R} and h(X) harmonic on U and continuous up to

boundary. We will be done if
Y(aer) + u(0,aer) + h(a) < /\Hég}é@/}()\el) + u(0, Aep) + h(A).

Suppose the inequality is not true. By [Slo86, Lemma 4.5, there is an R-linear

function [ : C — R and b € U such that, if we denote
v(z, A) = (Xer) +u(z, Ner) + h(A) + 1(N) (4.2.1)

then
v(0,b) > v(0, ), for A\ € U — {b}.

Now define W (z, A1, ..., \p) :=v(2, A1) + ... + v(z, Ap) in a neighborhood of (0,0*) :=
(0,b,...,0) in C™ x C™. As W(0,b*) > W(0, A1, ..., \) for (Mg, ..., \p) # b%, there
exists a ball B C C™ of radius r centered at b* such that

W(0,b*) > max W.
{0}x0B

Since W is usc, there exists € > 0 such that W(z, A1,..., \) < W(0,b*), for 2| < e
and (Aj,...,\y,) € OB. Let S = r/eldem. We have W(z,b* + S(z)) < W(0,b*)
for |z| = e, which contradicts the maximum principle because W (z,b* + S(z)) =
Yo v(z,b41/ez;) is subharmonic by (4.2.1).

]

Although in the introduction the boundary data v is in C*(0D,H,,), we will
prove a lemma for a broader class of boundary data v. Let v be a continuous map

0D x X — R such that v,(-) := v(z,-) € PSH(X,w) for z € 9D. Let

G, = {u € usc(D x X) : u is w-subharmonic on graphs,and limsup u(z,z) < v((, x)}.
D>z—(€0D
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In order to study the properties of the upper envelope V of GG,,, we introduce a closely

related family. With 7 : D x X — X the projection, let

F,:={u:uePSH(D x X,7*w) and limsup u(z,z) <v({,z)}.
D>32z—(€dD

The upper envelope of F, extends to a solution U € C(D x X) of

(

(T*w + i00U)™ ™ =0 on D x X

w4+ i00U > 0on D x X

\U\anX =V,

see for example [Boul2, DW19|. Even though U is only continuous, by the work of
Bedford and Taylor [BT76, BT82] the left hand side of the first equation above can
be given sense as a Borel measure on D x X. In addition, we also need the solution
h e C(Dx X)NC?*D x X) to the Dirichlet problem (see [Aub98, P. 112, Theorem
4.17])

b+ Ah+2n=00nDx X

h|8D><X =V

Lemma 4.2.2 [f we denote the upper envelopes of G, and F,, by V and U respectively,
then U <V < h and im(, gy (z0,.00)copxx V(2,2) = v(20,20). Moreover, if v is

negative, then so is V.

Proof Unraveling the definitions of F, and G,, we see F,, C G, soUd < V. For
any u € G,, by Lemma 4.2.1, u(z,-) is w-psh for fixed z, hence A,u + 2n > 0; in
addition, wu(-, x) is subharmonic for fixed z. By the maximum principle, u < h and
hence V < h. Since U and h are both equal to v on D x X, the limit of V on 9D x X
must also be v.

For a fixed zg € X, let Hy(z) be the harmonic function on D with boundary values
v(z,xg). For u € G, we have u(z,z9) < Hy(z), and therefore V(z,zq) < Hp(z). The

second statement follows at once. [ |
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With Proposition 4.1.2 at hand, we can start to prove Theorem 4.0.1. The fol-
lowing envelope will be used in the proof: for an usc function F' on X, we introduce

P(F) :=sup{h € PSH(X,w) such that h < F'} € PSH(X,w) (see [Ber19]).

Proof [Proof of Theorem 4.0.1] Without loss of generality, we assume v < 0. Fix
§ > 1, and for z € 9D, define v = P(6v,). By [DW19, Lemma 4.9], 9D x X >
(z,2) — v°(x) is continuous. Let V° be the upper envelope of Gs. By Lemma 4.2.2,
V9 <0, and so u < 0 for u € G,s. The next step is to have a better upper bound
for u € G,5. To that end, we can look instead at max{u, c}, which is still in G5 as

9. Since max{u,c} is bounded, we will assume u is

long as the constant ¢ < minv
bounded. Moreover, u/d is w/d-subharmonic on graphs. According to Proposition
4.1.2, there exists kg = ko(0) such that for k > ko, H{(u/0) is a subharmonic norm
function. Because limsupyy, Hj (u/d) < H;(v), it follows that H;(u/§) € G* and
therefore H; (u/d) < V¥ on D and FSy(Hy(u/d)) < FSi((V*)*). By Lemma 4.2.1,
we have w +i00u(z,-)/d > (1 —1/§)w for all z € D, (90 on X). By [DW19, Lemma

4.10] (a consequence of the Ohsawa-Takegoshi extension theorem), there exist C' > 0

and ko (9) such that, for k > ko,

1 C 1

As we saw u < 0, this implies u — C'/k < FS,((V*)*); this is true for any u € G, so
we actually have V° — C'/k < FSi((V*)*). In addition, since v, + (§ — 1) infapx x (v.)

is a competitor in P(dv,),

V+(6—-1) inf (v) <V°.

ODxX
Putting things together, we conclude
V+(0—1) inf (v) — — < FS((VF)"), for k > ko(6). (4.2.2)
dDxX k

Next we claim that F'Sy((V¥)*)(x) is w-subharmonic on graphs. Some preparation
is needed. Let s be a non-vanishing holomorphic section of L¥ over an openset Y C X.

Let e 7% := h*(s,s) and s} : Y — (L*¥)* be defined by s (z)(-) = h¥(-, e*@)/25(x)) for
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r €Y. Suppose §; : Y — H°(X, L*)* is the pointwise evaluation map of s}, namely
5:(z)(0) = si(x)(o(x)) for ¢ € H°(X, L*). Then we have the following formula,
which is taken from [DW19, Lemma 4.1},

FSU(VA))(w) = - log [VA(51 ()], w € V. (423

Meanwhile, for o € H(X, L¥), e*®)/25(2)(0) = o(z)/s(z) is holomorphic, so e*?/25}

is holomorphic. Hence for any holomorphic map ¢ from an open subset of D to X

A(o(g(2)) + FSi((VF))(9(2))) = A(% log [V ((e*/%87) 0 g(2))]). (4.2.4)
By [CS93, Theorem 4.1] the Hermitian—Yang—Mills metric V* is a subharmonic norm
function, so the last term of (4.2.4) is nonnegative, which means F'Si((V¥)*)(x) is
w-subharmonic on graphs as we claimed. Further, according to the Tian—Catlin—
Zelditch asymptotic theorem or by [DW19, Lemma 4.10] an easier but cruder estimate,
FSe((VF)*lop) = FSk(Hg(v)) < v+ O(logk/k), so FS((V*)*) € Gyronogk/k) and
FS,((VF)*) <V + O(log k/k). This last inequality together with (4.2.2) concludes

the proof. [ |

It is natural to ask if V' belongs to G,. A standard approach to show the envelope
belongs to a family is to take upper regularization, and the case at hand is very similar
to Coifman and Semmes’ [CS93, Lemma 11.11], where upper regularization is taken
in the z-variables. The reason it works in their lemma is because their function in
the z-variables is a norm, but ours is not and regularization does not seem to work.
Nevertheless, with Theorem 4.0.1 one can easily show V' € G,,. It would be interesting
to prove V € (G, directly without using Theorem 4.0.1, after all G, and V can be

defined on any Kéhler manifold (X, w) without reference to a line bundle.
Corollary 4.2.3 The upper envelope V is continuous and V € G,,.

Proof The first statment is a direct consequence of Theorem 4.0.1. As to the second
statement, let ) be a local potential of w and f a holomorphic map from an open
subset of D to X. For any u € G,, ¥(f(2)) + u(z, f(2)) is subharmonic; hence
U(f(z)) + V(z, f(z)), the supremum over u € G,, is also subharmonic since V' is

continuous. By Lemma 4.2.2, it follows V € G,,. [ |
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4.3 The WZW equation

We will prove Theorem 4.0.2 and compute the Euler—Lagrange equation of &£
(4.0.3) in this section. We begin with an observation. Suppose u is a C? function on
D x X and v is a local potential of w. Consider the complex Hessian of u + v with

respect to a fixed coordinate z; in D and local coordinates x in X where ¢ is defined

(U + 77Z))Zj5j (u + ¢)z]-£1 e (u + ¢)Zji:n

Uu + T1Zj U + xr1T1 T U _I_ T1Tn
( 7.7/1) ; %‘ZJ) ( %‘0) | (43.1)
(u + w)xnzj (u + w)xnfl T (u + ¢)xﬂjﬂ
which we will denote by (u + 1);. Then
(100u + 7 w)" Tt A (i Z dzj Ndz;)™
N . (4.3.2)
=(n+1)!(m—1)! Zdet wt);( [\ ide Adz A\ idy, A day).
k=1 k=1

Lemma 4.3.1 Suppose u is a C? function on D x X and w + i00u(z,-) > 0 on X

for all z € D. Then u is w-subharmonic on graphs if and only if
(100u + ww)" A (1Y dzy Adz)" T >0,
j=1
Proof Let ¢ be a local potential of w and denote the complex Hessian of u + 1 with
respect to z; and x by (u+1);, as in the matrix (4.3.1). Due to (4.3.2), we will focus
on » 7" det(u +1);.
Let f be a holomorphic function from an open subset of D to X, then in a

coordinate system on X

AW(f(2) +ulz, f(2) =

afrdfA (9f“ afr af
Zw,u)\ 82 a— zz+zu1)\ a ZU’LM a Zuﬂ)\ 5’21 822.

LA 5A 0
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If we denote the matrix (¢35 4+ u,5) by A and the column vector (u;5) by B;, then

the above is the same as

of o 0 T Of.
§:<L48£78£>+<B“5£>+<B“5§>+UM% (4.3.3)

where the angled inner product is the usual Euclidean inner product and 0f/0z; is

the column vector (0f*/0z;). The matrix form can be further written as

of

1
— WA Bil]* + ug). (4.3.4)
Notice that

SUCIVATBI - us) = 3 (o = (4B B) = 3 (g =Ll )

deet u+Y);

p,)\ + u,u)\)

(4.3.5)
where the last equality can be deduced from Schur’s formula for determinants of block
matrices as follows (see also [Sem92] and [Ber09] for a different computation). We

examine the complex Hessian of u + 1

(u + ¢)Zj2j (U + ¢)Zj5731 e (U + w)zji‘n
(u + w)mlgj (u + ”éb)xm T (u + w>x1in
(u+1); = . . , . :
(u + ¢)x7L2j (U + ¢)$7Lj1 e (u + ¢)$7Li7L
and the Schur complement of the trailing n x n minor ((u +1),x) is precisely u;; —
Do Uin(u + )Mz, which is also equal to det(u + v);/ det((u + v),5) by Schur’s
formula, for example see [HZ05].
u is w-subharmonic on graphs if and only if (4.3.4) is nonnegative for any holo-
morphic maps f, and it is equivalent to the last term in (4.3.5) being nonnegative.

The lemma follows by (4.3.2) since the matrix (¢,5 + u,3) is positive. [

From (4.3.2) and (4.3.5), the function K in the proof of Theorem 4.1.1 has the fol-

lowing invariant expression
K min/ (m*w + i@éu}"“ A (Y5 dzy A dzy)™
(m—=Dln+1)! (w4 i0du)m A (i 31 dzy Adz;)™
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and one can see K > 0 if u is w-subharmonic on graphs.

Proof [Proof of Theorem 4.0.2] By the equality (4.3.2), the equation
100V + m*w)" A () dzy Adz)" T =0
j=1
is equivalent to » i det(y) +V); = 0, so we will prove that the upper envelope V' of
G, satisfies the latter equation.

By Corollary 4.2.3, V' is w-subharmonic on graphs, and hence V' (z, z) is w-psh on
X by Lemma 4.2.1. Take a coordinate chart €2 of X, then for ¢ > 0 and x € €2, the
function V(z, x) + ¢|z|* satisfies the assumption of Lemma 4.3.1, so _. det(¢) + V +
elz|?); > 0 and Y, det(¢p + V); > 0.

Suppose Y _.det() + V); is positive at a point p in D x X. We may assume
det(¢) + V)1 is positive at p, so it is positive in a neighborhood B of p in D x X.
For small ¢ > 0, det(v» + V + ¢|z|*); > 0 on B, then by Sylvester’s criterion for
positive matrices or a property of Schur complement for positive matrices (see [HZ05,
Theorem 1.12]) we deduce that the matrix (¢ + V + ¢|z|?); is positive on B, so the
matrix (+V); is semi-positive on B, but since det()+V); is positive on B, (¢+V);
is actually positive on B; in particular, the n x n trailing minor (¢\z + Vi) is positive
on B.

So if we pick a suitably small smooth cutoff function p supported in B, then the
function V' + p satisfies the assumption of Lemma 4.3.1 on B, and hence V + p is
w-subharmonic on graphs and is in G, which contradicts V' = sup G,. Therefore,

Zj det(w—i-V)j :O [
As in (4.0.2), for ¢ € H,, and &, &2, &3 € TyH,,, 0 on H,, is

0(&1,82,83) = gn({&1, €2}y, 63) = /X{Sl,ﬁz}%fgwg. (4.3.6)

In light of {&1, &2 }u,wi = ndfl/\dfg/\wg_l, an integration by parts shows [, {&, Eatu,Sawy =
Jx &{&. &t Wy, and therefore 0 is indeed skew-symmetric and a three form. The
rest of this section is devoted to showing that the three form 6 is d-closed, and to the

derivation of Euler-Lagrange equation of &£.
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Lemma 4.3.2 Let 8 be a k-form on H,,, and let &, ...& be vector fields on H,,, which
are constant in the canonical trivialization TH,, ~ H,, x C(X). Then

k

dB(&o, &) = D (=1V&8(E0 & &), (4.3.7)

=0

where éj means &; is to be omitted. (This formula is true if H,, C C°°(X) is replaced

by an open subset of a Fréchet space.)

Proof This is a well-known formula except there should be terms involving Lie
brackets on the right hand side, but since &; are constant vector fields, their Lie

brackets are zero. [ ]
Lemma 4.3.3 The three-form 0 is d-closed.

Proof This is similar to the derivation of the Aubin—Yau functional and the Mabuchi
energy (see e.g. [Blol3, Sectioin 4]). Consider four vector fields &, &, &3,&4 on H,,
which are constant in the canonical trivialization TH,, ~ H, x C*°(X). By Lemma

4.3.2

dO(&1,62,83,8) = §10(82,83,&4) —620(81, &3, &4) +E30(61, &2, &) —&a0(81, &2, &3). (4.3.8)

Using {&3, §a}w,wi = ndéz A dés N wg_l and %

t_owgltlgl = (n — 1)i0d&; A wg_z,

(62, E5,2) = E10(6s 0, 62) = d(O(Es &0, 8))(E) = 5| (63,8, E)(6 + 16)

dt ¢
d n
ey ‘t:o X{&;, 54}w¢+t£1 oW e,
d .
— %‘t:() /X fgndfg AN df4 A w¢+t1§1
= / EandEs A déy A (n —1)idd& Awj~?
X
- / Eandés A dés A (n— 1)i00E, Al = &6 €. Ey),
X

where the second to last equality is due to integration by parts. Because of this

symmetry in index, (4.3.8) is 0 and therefore df = 0. [ |
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Since 6 is d-closed, there exists a two-form o on H,, such that da = . For a map
d:D— H.,, the derivative ®,, = 1/2(®Pre.; — iPp ;) is a section of C ® TH,, along
®, and a(®Pz;, @) is a function on D. We define £ by

5(&\)) —|—4zZ/ ZJ, zj )dV = /‘(I)/ 2dV+4ZZ/ zw

with dV' the Euclidean volume form on D. Recall that |EI\>’ | is the Hilbert—Schmidt

norm, see page 29.

Lemma 4.3.4 The Fuler—Lagrange equation for the critical points of £ is

m

1 , i
Z ¢Zj5]' - §|v®23| - §{®5j7 QZ]'}UJ(&; = 07 (439)

=1

where V&, is the gradient of ®., with respect to the metric wg.

Proof Suppose d:D — H,, is a critical point of £. Let U be a smooth map from

D to C*°(X) with compact support. The variational equation is

d
0=—
dt lt=0

(/D|@+t@)'|2dv+4¢Z/Da((q>+t\p)zj,(q>+t\1/)zj)dv>. (4.3.10)

An extension of the computation in [Don99, Section 2| shows that the first term in

(4.3.10) is equal to

d o
— D+ tW) 2 dV = 4 P, °—2) &, )0w2dV. (4.3.11
o [1@viyeav— [ | (CIVEI =23 s bV, (310

So the remaining task is to compute the second term in (4.3.10).

We denote C*°(X,C) by C(X). Introduce A : H,, x CX(X) x CF(X) — C as
follows. If (u, &), (u,n) € Hy X CX(X) =~ CRTH,,, then A(u, &, n) = a((u,§), (u,n)).
Therefore, for fixed small t € R, a((®+1V);,, (P+1V).,) = A(P+tV, (P+1V);,, (P+
t¥).,) : D — C. By chain rule,

d
—| A(® T (D + D), (D + D))
| (4.3.12)

=dy A(®, s, @, ) (V) + dy A(D, =, . ) (V5,) + ds A(D, D=, @, )(V.),
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where di A, ds A, and d3 A are partial differentials of A. Since A is linear in the second

and the third variables, dy A(®, ®z,, @, )(Vs,) = A(P, V5, ®.,) and ds A(P, @5, P, )(V.,)

A(®, @, V. ). Hence (4.3.12) becomes
A A(®, ®s,, D, )(V) + A(D,Ts, B, ) + A(D, s, U, ). (4.3.13)

By similar computations,

8314@ VD) =dy A(D, T, D, )(B:) + A(D, Uz, . )+ A(®, ¥, P, - ), and also
Zj

8314@,@2].,\1/) —dyA(D, D, W) (B, ) + A, Dy ., ) + A(D, D, T, ).

Zj

(4.3.14)
So integration by parts gives
/ A(@, T D, )dV = —/ (dlA(q>,qf,cI>Zj)(¢>zj) +A(<1>,\1/,<1>zjzj)>dv,
b b (4.3.15)
/A(CD ., 0. )dV = —/ (GA@, @5, W)(@.,) + A(®@, @, ) )dV.
D D
Combining (4.3.13) and (4.3.15)
d
a / a((® + D)., (@ + V), )dV
=0Jp (4.3.16)

:/ A A(D, D, D, ) (W) — dy A(D, U, B, ) (D) — dy A(D, D=, W)(D., )dV.
D

For a fixed point 29 € D, ¥(z), z,(20), and ®.,(20) define three constant vector

fields on H,,, and we denote them by &;,&, and &3 respectively. By Lemma 4.3.2,

do(&r, &2, &) = §1a(&e, §3) — Lea(&1, &3) + E3a(&r, &2). Meanwhile, for constant vector
fields &1, &9, &3, the function & a(&s, &3) evaluated at u € H,, is diA(u, &, &3)(&1). So
at ®(z9) € Hu,

da(&1, 8, §3) =di A(P(20), 62, 63)(€1) — diA(P(20), 61, 63)(€2) + di A(P(20), &1, 62)(€3)

=d1 A(P(20), €2,83)(€1) — diA(P(20), 61, €3)(§2) — diA(P(20), 2, 61)(E3)-
(4.3.17)

Hence (4.3.16) becomes

/da(\I/,CI)gj,CI)Zj)dV:/ e(q/,%,@j)dvz/ /{cpzj,@j}wxpwgdv. (4.3.18)
D D DJX ®
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Finally, with (4.3.11) and (4.3.18), the variational equation (4.3.10) becomes

oz/D/X(4(Z|Vc1>z].|2_22@].5].)+4@'Z{<1>§j,q>zj}%)\ngdv, (4.3.19)
J i j

and we obtain the Euler-Lagrange equation

SVE P 2> D +i Y {Ps, .}, =0
J J J

4.4 Lemma 4.1.1

This section is mainly devoted to the proof of Lemma 4.1.1, and we will follow
closely the ideas in [BK07]. The first two lemmas, concerning smooth approximation
of continuous n-subharmonic functions, are based on Demailly’s exposition [Dem12,
Chapter I, Section 5E] of Richberg’s paper [Ric68].

Let 8 € C>®(R,R) be a nonnegative function having support in [—1,1] with
Jg0(h)dh = 1 and [, hO(h)dh = 0. For arbitrary & = (&,...,&,) € (0,00)?, the

regularized maximal function is

p
hj dhy dh
Mg(tl,...,tp) = max{tl + hl, ,tp—th}He(—J)—l—p
=1 gj 51 gp

RP

Lemma 4.4.1 Fiz a closed smooth positive (1,1)-form n on X. Let Q, CC D x X

be a locally finite open cover of D x X, ¢ be a real number, and u, € C*(§,) such
that uy(z,x) + c|z|* is n-subharmonic on graphs. Assume that there exists a family

{&a} of positive numbers such that, for all B and (z,z) € 00,
ug(z,x) + &5 < max{uq(z,z) — &, : o such that (z,2) € Q,}.

Define a function © on D x X as follows. Given (z,z) € D x X, let A = {« :
(z,2) € Qu}, €4 = (€a)aca, ua(z,x) = {us(z,2) : a € A}, and

(z,x) == M, (ua(z,2)).

Then @ is in C*(D x X) and u(z,x) + c|z|? is n-subharmonic on graphs.
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Proof As in the proof of [Dem12, Chapter I, Lemma 5.17 and Corollary 5.19], one
can deduce that for a fixed point in D x X, there exist a neighborhood V' and a finite
set I of indices a such that V' C (1 c; Q2 on which @ = Mg, (u7). As a result, by
[Dem12, Lemma 5.18 (a)], @ is smooth on D x X. Now for a holomorphic map f

from an open subset of D to X,

(2, f(2)) + 2l + ¥(f(2) = clel* + ¥ (f(2)) + M, (us(z, f(2)))
= Mg, (cl2I* + 9 (f(2) + ui(z, f(2))),

where 1 = 001, and we use [Dem12, Lemma 5.18 (d)] in the last equality; fur-
thermore, since c|z|? + ¥(f(z)) + ua(z, f(2)) is subharmonic by assumption, so is
M, (c|lzP+9(f(2))+us(z, f(2))) by [Dem12, Lemma 5.18 (a)], and therefore i+ c|z|?

is m-subharmonic on graphs. [ ]

We introduce here notation that will be used later. Let p;, po be nonnegative
radial smooth functions with support in the unit ball that have integral one in C™

—2m

and C” respectively. For € > 0, p1.(-) := ¢ *"p1(-/¢), and po. is similarly defined.
The proof of the following lemma is very similar to that of [Dem12, Chapter 1,

Theorem 5.21].

Lemma 4.4.2 Let u € C(D x X) be n-subharmonic on graphs. For any number
A > 0, there exists u € C°(D x X) such that u < 4 < u+ M\, where M depends

only on the diameter of D, and @ is (1 + A\)n-subharmonic on graphs.

Proof Let {€2,} be a locally finite open cover of D x X by relatively compact open
balls, with €, contained in coordinate patches of D x X. Choose concentric balls
Qr c Q, C Q, of radii 77 < rl, < r, and center (c,,0) in the given coordinates
(z,2) near Q,, such that Q/ still cover D x X, and 1 has a local potential v, in a

neighborhood of ,. For small £, > 0 and d, > 0, we set

ta(2,7) =((u +1a) * pe, ) (2,7) = Ya(@) + 0a(ry — |2 — cal* = |2[*) on Qo
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where *p._ is the convolution with p., 1= p1 ., p2.,. Since ¥, (z) + u(z, z) is subhar-
monic in z and psh in x by Lemma 4.2.1, the functions (¢, + u) * p., decrease to
Yo +u as €, goes to 0, locally uniformly because u is continuous. For €, and d,, small
enough, we have u, < u+ A/2 on Q,; moreover, for any holomorphic map f from an

open subset of D to X,

A(ua(z, f(2)) + ¢al(f(2))) = A((u+va) * pe,) (2, f(2) = 8al(2 = cal* + | F(2)[)
—0aA(|z = cal* +1f(2) )
> =[] = MY (f(2)),

v

where the first inequality is due to the fact (u+14)*p., is subharmonic on holomorphic
graphs, which can be verified easily using that v+ ), is subharmonic on holomorphic

graphs. So u,(z,x) + A|z|? is (1 + A\)p-subharmonic on graphs. Set

€ = O min{rg —r7?, (3 —15)/2}.

o )

Choose first d,, such that &, < \/2, and then &, so small that u < (u+1,)*p., (2, 2)—
Vol(r) < u+ &y on Q. As 0,(r? — |2 — cof® — |2]?) is < =2, on 99, and > &, on

QF we have u, < u — &, on 09, and u, > u+ &, on

o, so that the assumption in

Lemma 4.4.1 is satisfied, and the function
U(z,x) := M, (ua(z,z)), for A= {a: Q, 3 (2,2)},

is in C*°(D x X) and U(z,z) + A|z|* is (1 4+ A)p-subharmonic on graphs. By [Dem12,
Lemma 5.18 (b)], u < U < u+ A. Then the function defined by @ := U + \|z|? is

what we need. [ ]

The following lemma is proved in the same way as Lemmas 4 and 5 in [BK07].

The only issue is keeping track of uniformity.

Lemma 4.4.3 Let U,V be two open sets in C™* and F' a biholomorphic map from U

to V. Let u be usc, bounded, and subharmonic on holomorphic graphs in D x U. Let
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P1, P2, P1.51s P2.6, be defined as in the remark before Lemma 4.4.2. Define us, s, to be

the convolution
Usy 0,(2, ) = //u(z —a,x — b)p15,(a)pas, (b)dadb.
On the other hand, define
us, 5, = (wo (Idx F~"))s, 5,0 (Id x F). (4.4.1)

Then given a compact set K C D x U, there exists 6(K) > 0 such that as 6o — 0,

(u§, 5, — Us,.5,) (2, ) goes to 0 uniformly for (z,z) € K, and 6, < §(K).

Proof Define

Us,(z,x) = max _ u,
{2} B(2,65)
1
R p—— u(z, )b,

a |0B(x, 62) OB(x,62)
U52(Z,$) = /U,(Z,QT - b)pz@(b)db,

where |0B(x, d2)| is the Lebesgue measure of the sphere 0B(z, d3). Their counterparts
under Id x F~! and Id x F' as in (4.4.1) are denoted by 4, (2, z), G, (2, ), and uj (2, x)
respectively.

By Lemma 4.2.1, u(z,-) is psh in U, so us,(z, ) is a convex function of logds.

Fixing a > 1 and r > 0, choose 95 so small that 0 < llog% < 1, then by convexity
02

log a

0 < gs,(2,2) — Usy (2, ) < logé

(U (2, ) — s, (2, x)).
Since u is assumed to be bounded, it follows that for any a > 0 (for the case 1 > a > 0,
use 1/a instead), tqs,(2, ) — Us, (2, ) goes to 0 as dy — 0, locally uniformly in z and
x. Then following the same argument as in [BK07, Lemma 4], we see ﬁg’; — Ug, goes
to 0 locally uniformly in z and x, as d5 — 0.

Since u(z,-) is psh in U, 4s,(z,x) is convex in logds. By the argument [BKO07,

Lemma 5] and the fact that u is bounded, we see both s, — s, and s, — us, go to 0
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locally uniformly in z, z, as 9o — 0, and as a result, so does ug —us,. Given a compact
set K C D x U, there exists §(K) > 0 such that if (z,z) € K and (a,b) € C™ x C"
wiht |(a,b)| < 0(K), then (z + a,z +b) is still in D x U. Since (uj, 5, — s, 5,) is the

convolution of (uf, — us,) in z, we see at once the conclusion of the lemma. [

Proof [Proof of Lemma 4.1.1] Fix a finite number of charts U, DD V,, such that V,
covers X, and n has a local potential ¥, in a neighborhood of U,. For each «, let f, :
U, — C" be the coordinate map, we consider the convolution ((¢o+u)o fi1)s 5,0 fa,
which we simply denote by (¢ + u)s, 5, on D x U,. Because u added by a constant
still satisfies the same assumption in Lemma 4.1.1, we will assume u is so negative
that (o +u)s,.6, — Yo < —a for some a > 0 and all a. At the same time, we consider
the convolution of (¢, + u) under fz, namely ((¢, + u) o f/éTl)(;lﬁ2 o fz, which can be
written as

(o +u)o fo' o F 550 F o fa, (4.4.2)

if F~' = foof;'. We denote (4.4.2) by (1ha +u)} 5, (the notation is consistent with
Lemma 4.4.3 except we do not write out the identity map of D here). By Lemma

4.4.3 on D x (U, N Up)

(¢a + U’)51752 - (7705 + u)51752 = (¢O¢ + u)51,52 - (wa + U)g,@ + (wa +u— (wﬁ + u))(l;l,ég

— 1/104 - %
(4.4.3)

locally uniformly in z and z, as d5,; — 0.

Let x, be a smooth function in U, that is 0 in V,, and —1 near 0U,. We have
100X > —Cn for some constant C. For 0 < ¢ < 1, according to (4.4.3) we can find
81,09 so small that for any 3 and for any (z,z) € D’ x dUs,

3

((wﬁ + u)51,52 - 2/}5 + Xﬂ)(Z, x) < max ((wa + u)51752 — o + %Xa>(27 x),

C (2,2)€ED'xUq
where the maximum is taken over all D’ x U, that contain (z, ). Let § = min{4;, d,}.

By [Dem12, Chapter I, Lemma 5.17], the function

19
uj(z, x) = e (Yo + u)ss — Yo + axa)(z, z), (4.4.4)
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is continuous on D’ x X. Notice that u§(z,z) < —a for any 0 < ¢ < 1. Since
o(r) + u(z,x) is subharmonic in z and psh in z by Lemma 4.2.1, the function

(o + u)ss is decreasing to 1, + u as 6 — 0, and hence u5 is decreasing to

£
max  (u+ —Xa)
(z,2)ED’ xUq C

as 0 — 0. Because the maximum of x, is zero, u5 is decreasing to u as § — 0.
We already know that v, + u is subharmonic on graphs, and a straightforward
verification shows so is (¢, + u)ss. This fact together with 100X > —Cn shows, for

any holomorphic function f from an open subset of D’ to X,

A((te+ u)ss = o + Gxa) (= f(2)) 2 (-1 = A(f(2))

so u5 is (1 + €)n-subharmonic on graphs.

So far we have shown that given 1 < p € N, there exist gy € N such that, for
q > qo, the functions u§ with (¢,0) = (1/p,1/q) are in C(D’ x X), (1 + 1/p)n-
subharmonic on graphs, and decrease to u as ¢ — oo. For simplicity, we will denote
u§ with (e,8) = (1/p,1/q) by u(p,q). Let M be the constant in Lemma 4.4.2. We will

construct inductively w j,) with jy > k* and @, € C*°(D’ x X) such that
k) + 1/ 0k < W < ko) + 1/ Gk + M/ i (4.4.5)

Moreover iy, is (1+1/k)(141/ji)n-subharmonic on graphs, and w ;) + 1/ 4k + M/ ji
is less than both wg_1j, )+ 1/jk—1 and uej, )+ 1/jk-1.

Suppose that this is true at (k — 1)-th step. As ug—1, )+ 1/Je—1 and upj, )+
1/jk—1 are both greater than u, we can find j, > max{jy_1,k*} such that ug ) +
1/ji + M/ jy is less than both wp—1j, )+ 1/jk—1 and u;, ,) + 1/jk—1 by continuity
on the compact set D’ x X. Applying Lemma 4.4.2 with A = 1/j;, we find a function
iy, € C(D' x X) with

Uy T 1/ 00 < U < gy + 1/ gk + M/ i,

and 1 is (1 4+ 1/k)(1 + 1/jx)n-subharmonic on graphs. So the induction process is
true at k-th step. (One can begin the induction process with u j,) + 1/72 with ja
large enough that w( j,) +1/j2 < 0).
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One can see that @y is decreasing to u. Since @y < 0, (1 —1/k)ay is still decreasing
to u. The function (1—1/k)ay is (1—1/k%)(1+1/ji)n-subharmonic on graphs, which
is also (1 — 1/k?j;)n-subharmonic on graphs because j > k?. So (1 — 1/k)uy are the

desired approximants. [ |
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