
ATTACK-RESILIENT ADAPTIVE LOAD-BALANCING

IN DISTRIBUTED SPATIAL DATA STREAMING SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Anas Daghistani

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Walid G. Aref, Co-Chair

Computer Science Department

Dr. Arif Ghafoor, Co-Chair

School of Electrical and Computer Engineering

Dr. Charlie Hu

School of Electrical and Computer Engineering

Dr. Sunil Prabhakar

Computer Science Department

Approved by:

Dr. Dimitrios Peroulis

Head of the School Graduate Program

iii

To my parents Hazim and Dunya, for their continuous love and sacrifices.

To my wife Nada Alnoory, for her love and support.

iv

ACKNOWLEDGMENTS

All praise and thanks are due to the Almighty Allah who always guides me to the

right path and has helped me to complete this dissertation.

I am extremely grateful to my advisor, Prof. Walid Aref, for the continuous

support, enthusiasm, and guidance during my PhD. journey. His experience and our

discussions have developed my research ideas that led to this dissertation. I would like

to express my sincere gratitude to my advisor Prof. Arif Ghafoor, for his continuous

encouragement, recommendations and valuable advice. I would also like to thank the

rest of my committee members: Prof. Charlie Hu and Prof. Sunil Prabhakar, for

serving in my committee and their insightful comments.

My sincere thanks to my parents, Hazim Daghistani and Dunya Daghistani, for

their utmost love, support, and warm prayers. No words can express my gratitude to

my parents. Also, I would like to thank my brother Mustafa, and my sister Sawsan,

for their continuous love and encouragement. My deepest thanks to my beloved wife,

Nada Alnoory. Your continuous love, encouragement, and support kept me know that

there is a light at the end of the tunnel. Thank you for your patience and help during

my PhD journey.

Also, I thank my fellow labmates and friends for the stimulating discussions and

the helpful support especially: Mosab Khayat, Muhamad Felemban, Ahmed Mah-

mood, Ahmed Abdelhamid, Abdulellah Alsaheel, Thaimer Qadah, Albraa Alsaati,

Yahya Javed, Nader Alawadhi, Amgad Madkour and Tawfeeq Shawli. I would like

to extend my deepest gratitude to Prof. Saleh Basalamah for his friendship and

guidance.

I would like to thank Umm Al-Qura University and the Government of Saudi

Arabia for giving me the opportunity to continue my studies with sponsoring my

scholarship.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Organization . 7

2 RELATED WORK . 8

2.1 Spatial Data Streaming Systems . 8

2.2 Adaptive Distributed Processing Systems 9

2.3 Workload Estimations in Distributed Processing Systems 13

2.4 Security in Distributed Streaming Systems 14

2.5 Unsupervised Machine Learning . 16

3 TRIOSTAT: ONLINE WORKLOAD ESTIMATION IN DISTRIBUTED SPA-
TIAL DATA STREAMING SYSTEMS . 19

3.1 The Cost Model . 19

3.2 Collecting and Maintaining Statistics 21

3.2.1 Required Statistics . 22

3.2.2 Maintaining the Statistics . 24

3.2.3 Correctness of the Statistics . 27

3.3 Estimating the Workload . 33

4 SWARM: ADAPTIVE LOAD BALANCING IN DISTRIBUTED SPATIAL
DATA STREAMING SYSTEMS . 36

4.1 SWARM Architecture . 36

4.2 Indexing and Initialization . 39

4.2.1 The Global Index . 39

vi

Page

4.2.2 The Local Index . 42

4.3 Decentralised Adaptive Load Balancing Protocol 44

4.4 Workload Reduction by Repartitioning 48

4.4.1 Searching for the Best Subset of Partitions to Move 48

4.4.2 Searching for Best Split for a Partition to Move 49

4.5 Preserving System Integrity . 51

4.5.1 Correctness During Load Balancing 51

4.5.2 Correctness of Query Execution 52

5 GUARD: DETECTION AND RESPONSE FOR ATTACKS TARGETING
ADAPTIVE LOAD BALANCING IN DISTRIBUTED STREAMING SYS-
TEMS . 55

5.1 Malicious Attacks on Adaptive Load Balancing in Distributed Stream-
ing Systems . 55

5.1.1 The Attack Model . 56

5.2 Guard Architecture . 59

5.3 Real-Time Feature Engineering . 61

5.3.1 Collecting Raw Information about Hotspots 65

5.4 Unsupervised Attack Detector . 66

5.5 Response to Malicious Users . 72

6 EXPERIMENTS . 73

6.1 Experimental Setup . 73

6.1.1 Application and Dataset . 73

6.1.2 Cluster Setup . 74

6.2 Performance of the Online Workload Estimations 75

6.3 Performance of the Adaptive Load Balancing 80

6.3.1 Capability and Execution Latency 80

6.3.2 Reaction to Hotspots . 82

6.3.3 Overhead of the Adaptive Load Balancing 87

vii

Page

6.4 Performance of Detecting and Blocking Attacks Targeting Adaptive
Load Balancing Mechanisms . 90

6.4.1 Attack Effect on Throughput 91

6.4.2 Attack Effect on Availability . 96

6.4.3 Detection and Recovery . 98

6.4.4 Overhead of Attack Detection 101

7 CONCLUSION AND FUTURE WORK 103

7.1 Summary of Contribution . 103

7.2 Future Work . 105

REFERENCES . 107

VITA . 114

viii

LIST OF TABLES

Table Page

5.1 Description of the features used by Guard 62

ix

LIST OF FIGURES

Figure Page

1.1 Heatmap of tweets during different times 2

1.2 The effect of an attack targeting the adaptive load-balancing mechanism
of a distributed streaming system . 4

1.3 Abstract design of an attack-resilient adaptive load-balancing mechanism
for distributed spatial streaming systems 6

2.1 Adaptive load-balancing in a spatial distributed streaming system 12

3.1 Example for dividing the space into a grid of small cells 22

3.2 TrioStat statistics for partition p11 . 23

3.3 Updating partition p11’s Statistics Collectors 26

3.4 Partition with k cells (rows) . 28

3.5 Estimating the workload when partition p11 split into two sub-partitions
pa and pb . 34

4.1 The architecture of SWARM . 38

4.2 SWARM’s index for GlobalIndex machines 40

4.3 SWARM with the HashMap of m1 and m5 43

4.4 Workflow of load balancing decision . 45

4.5 Decision mechanism for load balancing . 45

4.6 Workflow of rebalancing . 47

5.1 Example of attack model on a distributed streaming system that contains
three machines. 57

5.2 Architecture of Guard and its connections with the distributed Streaming
System . 59

5.3 Flow chart for Guard’s unsupervised attack detection mechanism 68

6.1 Overhead of TrioStat in executor machines 75

6.2 Network overhead of TrioStat statistics . 76

x

Figure Page

6.3 Total Storage for the statistics while varying the number of partitions . . . 77

6.4 Total Storage for the statistics while varying the grid size 79

6.5 Capability and execution latency . 81

6.6 Uniform distribution hotspot with normal distribution data intensity . . . 82

6.7 Normal distribution hotspot with normal distribution data intensity 84

6.8 Uniform distribution hotspot with step data intensity 84

6.9 Two overlapping hotspots (H1 and H2) in different locations 85

6.10 Two consecutive hotspots (H1 and H2) in different locations 86

6.11 CPU and network utilization . 86

6.12 Overhead of SWARM operations in GlobalIndex machines 87

6.13 Overhead of SWARM operations in executor machines 88

6.14 The effect of an attack with malicious activity rate 150 queries/second on
the system’s throughput . 91

6.15 The effect of an attack with malicious activity rate 300 queries/second on
the system’s throughput . 92

6.16 The effect of an attack with malicious activity rate 600 queries/second on
the system’s throughput . 93

6.17 The effect of an attack with malicious activity rate 1200 queries/second
on the system’s throughput . 94

6.18 Average system’s throughput while varying the additional activity 95

6.19 Availability of the system while varying malicious activity 97

6.20 Average detection and blocking times while varying malicious activity . . . 98

6.21 Average detection and blocking times while varying the number of mali-
cious users involved in the attack . 99

6.22 Average recovery time after blocking the attack 100

6.23 Overhead of Guard’s operations . 101

xi

ABSTRACT

Daghistani, Anas Ph.D., Purdue University, August 2020. Attack-Resilient Adaptive
Load-Balancing in Distributed Spatial Data Streaming Systems. Major Professors:
Walid G. Aref, Arif Ghafoor.

The proliferation of GPS-enabled devices has led to the development of numerous

location-based services. These services need to process massive amounts of spatial

data in real-time with high-throughput and low response time. The current scale of

spatial data cannot be handled using centralized systems. This has led to the de-

velopment of distributed spatial streaming systems. The performance of distributed

streaming systems relies on how even the workload is distributed among their ma-

chines. However, the real-time streamed spatial data and query follow non-uniform

spatial distributions that are continuously changing over time. Therefore, Distributed

spatial streaming systems need to track the changes in the distribution of spatial data

and queries and redistribute their workload accordingly. This thesis addresses the

challenges of adapting to workload changes in distributed spatial streaming systems

to improve the performance while preserving the system’s security.

The thesis proposes TrioStat, an online workload estimation technique that relies

on a probabilistic model for estimating the cost of partitions and machines of dis-

tributed spatial streaming systems. TrioStat has a decentralised technique to collect

and maintain the required statistics in real-time with minimal overhead. In addition,

this thesis introduces SWARM, a light-weight adaptive load-balancing protocol that

continuously monitors the data and query workloads across the distributed processes

of spatial data streaming systems, and redistribute the workloads soon as perfor-

mance bottlenecks get detected. SWARM uses TrioStat to estimate the workload

of the system’s machines. Although using adaptive load-balancing techniques signif-

xii

icantly improves the performance of distributed streaming systems, they make the

system vulnerable to attacks. In this thesis, we introduce a novel attack model that

targets adaptive load-balancing mechanisms of distributed streaming systems. The

attack reduces the throughput and the availability of the system by making it stay in a

continuous state of rebalancing. The thesis proposes Guard, a component that detects

and blocks attacks that target the adaptive load balancing of distributed streaming

systems. Guard is deployed in SWARM to develop an attack-resilient adaptive load

balancing mechanism for Distributed spatial streaming systems.

1

1. INTRODUCTION

The recent growth in spatial data has been phenomenal due to the proliferation of

GPS-enabled devices, e.g., smartphones, smart watches, health monitors, and con-

nected vehicles. Also, social networks generate huge deluge of spatial data, e.g., 500

million tweets are created daily, and they can be geotagged [1]. This growth leads to

the development of location-based services, e.g., Internet search engines that return

results based on user location, self-driving cars, video games (e.g., Pokemon GO), and

ride-sharing services. Five billion Google search queries are generated every day [1].

Supporting these services places a huge demand on developing real-time, efficient, and

scalable systems for processing location-based queries. Therefore, there is a growing

demand to develop new systems that are optimized to process big spatial data instead

of using general-purpose systems that are not tunable for the needs of spatial data [2].

Distributed data streaming systems have the potential to provide real-time scal-

able solutions. There is an increasing number of spatial applications that are being

implemented using these systems. Examples include Storm [3], Twitter Heron [4], and

SparkStreaming [5]. Spatial applications require extending the capabilities of general

distributed data streaming systems to support spatial operations and spatial query

processing. In particular, spatial partitioning and indexing techniques are needed

to support efficient processing of spatial data [6–14]. Distributed spatial streaming

systems distribute the workload across machines by making each machine responsible

for some data partitions. The partitions are generated by dividing the underlying

space into spatial rectangles. Data points and queries are directed according to their

locations to the machines that handle the overlapping partitions.

Motivation A key challenge to improve the performance of a distributed system is

to ensure workload balancing across its machines. However, the workload can change

rapidly in spatial data applications. The challenge in load balancing stems from the

2

6:00 am (New York) 6:00 pm (New York)

Fig. 1.1. Heatmap of tweets during different times

fact that the spatial distributions of data and queries are skewed, and this skewness

changes with time and with users’ interests. For example, different time-zones can

lead to significant changes in the spatial distribution of the data being generated

throughout the day. In addition, a major event in a specific location can also lead

to more generation of new data and queries in the partitions that overlap this event.

Figure 1.1 illustrates heatmaps of tweets generated during one hour at various times

of the day. Notice that at 6AM (EDT), Europe and Asia are more active than the

Americas. The opposite happens at 6PM (EDT). Moreover, events related to sports,

politics, natural disaster, etc., can cause a huge change in the distribution of tweets

and queries generated as a large number of users get interested in these events.

Most of the existing cluster-based data streaming systems use static data-partitioning

schemes to distribute the workload among machines. For this purpose, a limited his-

tory of the collected data is used. However, static data-partitioning schemes are not

effective in spatial applications due to the rapid changes in spatial data and query

distributions as mentioned above. Distributed spatial streaming systems often do

not maintain a global system workload state because the data and queries are dis-

tributed across their machines. Hence, it is challenging to estimate the workload

of spatial distributed streaming systems. Existing systems, e.g., [15, 16] address the

issue of distributing the workload by using adaptive mechanisms to update the data-

partitioning plan as the workload changes. These systems use a centralized approach

3

to keep statistics and decisions about changing the plan. Deploying a new partition-

ing plan requires temporary halting the query processor until repartitioning takes

place. Therefore, the solutions in [15, 16] are not viable for distributed data stream-

ing systems because streams cannot be stopped until repartitioning takes place, and

processing should happen in real-time. Moreover, collecting and maintaining statis-

tics about the workload of every machine in a centralized machine introduces high

network, storage, and processing overheads.

The main objective of this dissertation is to introduce an efficient and secure

adaptive load-balancing mechanism for distributed spatial streaming systems. This

mechanism dynamically re-balances the workload among the system’s machines to

improve its throughput, and execution latency, while maintaining low overhead and

being resilient to attacks. The success of an adaptive load-balancing mechanism

relies on the accuracy and speed of estimating the workloads of the system’s machines.

This dissertation introduces TrioStat to address the challenges of workload

estimations in distributed spatial streaming systems. TrioStat is an online

workload estimation technique that relies on a probabilistic model to estimate the

workload of partitions and machines in a distributed spatial data streaming system.

TrioStat introduces a new statistics structure that requires minimal storage overhead.

TrioStat uses a decentralized technique to collect and maintain the required statistics

in real-time locally in each machine. Thus, TrioStat introduces negligible network

overhead. Moreover, TrioStat has an efficient algorithm to collect the statistics with

very localized overhead to process every newly received data point or query. TrioStat

enables distributed spatial data streaming systems to compare the workloads of both

the machines and the data partitions.

This dissertation introduces SWARM to addresses the challenges as-

sociated with adaptively changing the workload distribution among the

machines of a distributed spatial streaming system. SWARM is a Spatial

Workload-aware Adaptive Routing Manager. SWARM is a layer that can be in-

tegrated into any distributed data streaming system that processes spatial data.

4

0
100
200
300
400
500
600
700
800

0 2 4 6 8 10 12 14 16
Time	(Min)

No	Attack Attack

Th
ro
ug
hp

ut
(T
ho

us
an

d	
Tu

pl
es
\S
ec
)

Attack	Start

Fig. 1.2. The effect of an attack targeting the adaptive load-balancing
mechanism of a distributed streaming system

SWARM adaptively load balances the workload among the available machines. Trio-

Stat is integrated in SWARM to provide the necessary workload estimations. This

makes it possible to decentralize load balancing, maximize local decision making, and

reduce the communication overhead. SWARM proposes efficient algorithms to find

the best partitioning plan while avoiding unnecessary repartitioning. SWARM main-

tains the integrity of the system while re-balancing the system without halting the

system. SWARM is generic and does not depend on a specific spatial application.

It can be used directly with minimal changes to the code of the spatial applica-

tion. SWARM does not require prior knowledge about the distribution of data or the

queries. SWARM achieves high machine utilization. This leads to high performance,

low response time, and the handling of larger volumes of spatial data and queries.

Although using adaptive load-balancing techniques significantly improves the per-

formance of distributed streaming systems, they make the system vulnerable to at-

tacks. Attacks can be initiated using the knowledge that the system is using an

adaptive load-balancing technique to redistributes workload across the machines base

on changes of the workload. This type of attacks limits the availability and the

5

throughput of the system. Another objective of the attack can be to draw the atten-

tion of the system from focusing on serving real events. A different type of attacks on

adaptive load-balancing mechanisms tries to leak protected information to malicious

users. Figure 1.2 illustrates a timeline of the throughput of a distributed streaming

system with adaptive load-balancing. The adaptive load-balancing has been targeted

by an attack starting from Minute Five. Notice that the attack reduces the minimum

throughput by 70%.

This dissertation introduces Guard to address the challenges of detect-

ing and blocking attacks that target adaptive load-balancing mechanisms

of distributed streaming systems. The dissertation reveals a new type of attacks

that forces adaptive load-balancing mechanisms of distributed streaming systems into

a continuous state of rebalancing. Guard is a component that detects and responds

to malicious attacks on adaptive load-balancing mechanisms of distributed stream-

ing systems. The main objective of Guard is to block the attacks and make the

throughput of the system as close as possible to the throughput when there is no

attack. Guard is used to make SWARM resilient to attacks. Guard introduces new

features that are collected to characterize the behavior of the users and their rela-

tionships with hotspots. Guard collects the features with minimal overhead. Guard

adopts an unsupervised machine learning technique that uses the collected features

to detect and block the attack. Moreover, it allows Guard to differentiate between

malicious and legitimate hotspots. Guard detects and blocks malicious users even

when they coordinate in performing a single attack on the system. Guard does not

block users until it is certain that they are malicious. Guard is general in the sense

that it does not depend on a specific adaptive load-balancing mechanism nor a spe-

cific distributed streaming system. Guard requires minimal changes to the original

code of the application.

Figure 1.3 illustrates the integration of the solutions that this dissertation proposes

to develop an attack-resilient adaptive load-balancing mechanism for distributed spa-

tial streaming systems. SWARM adds a routing layer composed of multiple machines

6

SWARM

Executor Machines

Partitions Manager

Load Balancing Manager
TrioStat

Workload Estimator

Statistics Manager

Routing Machines of SWARM
Global Routing Index Load Balancing Manager

Guard

Query Stream Data Stream

Users Profiles Manager

Attacks Detector

Guard
Load Balancing

Information
Collector

Fig. 1.3. Abstract design of an attack-resilient adaptive load-balancing
mechanism for distributed spatial streaming systems

that distribute the workload among the executor machines based on a spatial index.

Moreover, SWARM, TrioStat, and Guard add local components to every executor

machine. SWARM’s component in an executor machine manages load-balancing and

the partitions that the machine holds. TrioStat collects and maintains statistics lo-

cally to provide the workload estimates that SWARM requests. SWARM adaptively

re-partitions and/or redistributes partitions based on the changes in the workload

estimates. Guard uses a separate machine to build and maintain profiles about the

users of the system and detect attacks based on the profiles. Guard receives the query

stream before forwarding it to the routing machines of SWARM. This gives Guard the

ability to collect statistics about users’ queries and to block attacks. Guard’s compo-

7

nent in an executor machine collects information about every re-balancing operation

that SWARM performs.

1.1 Organization

The rest of this dissertation is organized as follows. Chapter 2 provides relevant

background concepts and related work. A solution to the problem of online work-

load estimation for distributed spatial streaming systems (TrioStat) is presented in

Chapter 3. Chapter 4 discusses the design and the implementation of the proposed

adaptive load balancing protocol, SWARM. Chapter 5 addresses the problem of de-

tection and response for attacks targeting adaptive load-balancing mechanisms in

distributed streaming systems (Guard). Chapter 6 studies the performance of pro-

posed solutions. Chapter 7 concludes the dissertation with suggestions for future

work.

8

2. RELATED WORK

This chapter presents the work related to adaptive distributed spatial streaming sys-

tems and its security. We classify the work related into the following categories:

(1) Big data streaming systems, (2) Adaptive distributed processing systems, (3) Work-

load estimations in distributed processing systems, (4) Distributed streaming systems

security, and (5) Unsupervised machine learning.

2.1 Spatial Data Streaming Systems

Centralized spatial data streaming systems have been developed to answer spa-

tial queries over spatial streams, e.g., PLACE [17], SINA [18], SEA-CNN [19], and

Gpac [20]. However, these systems are not scalable and cannot handle the current

scale of streamed spatial data.

General-purpose big data systems provide an infrastructure to scale up the batch

and real-time processing. General-purpose big data systems are either batch-oriented

or stream-oriented. Examples of batch-oriented include Hadoop [21] and Spark [22].

Batch-oriented systems require minutes or even hours to process data and are not

suitable for real-time processing. Yahoo S4 [23], Apache Samza [24], Apache Storm [3],

Twitter Heron [4], and Spark Streaming [5] are examples of stream-oriented systems

that can process data in real-time with latencies ranging between milliseconds up to

few seconds.

Distributed stream-oriented systems can be categorized based on their processing

model into micro-batch and tuple-at-a-time systems. Spark Streaming [5], M3 [25],

Comet [26], and Google DataFlow [27] are examples of micro-batch systems that ac-

cumulate small batches of data before distributing them for processing. In contrast,

tuple-at-a-time systems process data tuple once it arrives to produce results with

9

low latency. Therefore, tuple-at-a-time systems are more suitable for real-time ap-

plications. Examples of tuple-at-a-time systems are: Apache Storm [3] and Twitter

Heron [4]. The performance of these systems relies on how evenly they distribute their

workload among their machines. Moreover, these systems are not optimized for spa-

tial data processing and are not adaptive. In this dissertation we focus on addressing

the challenges of adaptive load-balancing in tuple-at-a-time spatial systems.

To enable the scalable processing of big spatial data, several general-purpose big

data systems have been extended with spatial partitioning and indexing techniques.

e.g., [6–11, 14]. HadoopGIS [28], SATO [29], and SpatialHadoop [30] are big spatial

processing systems on top of Hadoop. LocationSpark [31], Cruncher [6], Simba [32],

SparkGIS [33] are spatial extensions to Spark. All these systems do not offer real-

time big spatial data processing. Most of the existing big spatial data streaming

systems use static data partitioning schemes to distribute the workload among ma-

chines. Zhang et al. [34] extends Storm with static spatial partitioning to enable real-

time spatial data processing. However, these techniques are not effective in spatial

applications due to the rapid changes in data and query distributions. This disserta-

tion proposes SWARM that enables adaptive spatial processing over any distributed

streaming system that works in a tuple-at-a-time systems, including Storm.

2.2 Adaptive Distributed Processing Systems

The workload of distributed streaming systems is skewed and is continuously

changing. Hence, static partitioning is not suitable for distributing the workload

among the system’s machines. This has led to the development of adaptive load-

balancing mechanisms that achieve higher throughput and lower response time. Data

Skewness has been addressed to improve the performance of distributed systems,

e.g., [35], [36], [37], [38, 39]. The work in [35] proposes an approach to detect the

degree of distribution in spatial data and choose the best partitioning strategy ac-

cordingly. However, this approach works only offline with Hadoop. Therefore, it is

10

not suitable for streaming systems, where the processing cannot be halted. Fang, et

al. [36] introduce a key-based workload partitioning strategy to rebalance the workload

with minimum migration overhead. The rebalancing problem is posed as an optimiza-

tion problem that considers the skewness and variance of the workload. SIMOIS [37]

is a distributed join system that reduces the imbalance of workload skewness by

identifying the set of workload-heavy (hotspots) keys and optimizes the join query

accordingly. PKG2 and PKG5 [38, 39] are stream partitioning schemes that evenly

distribute the received workload for each key among a limited number of the system’s

machines. The work in [36–39] focus on key-based applications. Therefore, their

techniques are not optimized to work efficiently with processing spatial data. This

dissertation has the leverage to change the spatial boundaries of partitions to dis-

tribute the workload of a hotspot. Unlike PKG2 and PKG5, our proposed solution is

not forced to distribute the workload of a hotspot over a specific number of machines.

It can distribute the workload among all executor machines, if necessary.

Several adaptive batch and streaming management systems have recently been

proposed to handle any variabilities in the underlying workload of different applica-

tions. AQWA [15] is an adaptive spatial processing system on top of Hadoop. AQWA

distributes new batches of data into HDFS files offline before starting to process the

queries. This cannot work for processing streams in real-time. Cruncher [6] is a

proposal for adaptive spatial stream processing on top of Spark. However, Cruncher

works only on micro-batch stream processing that has relatively high latency, i.e.,

seconds. However, our approach is able to adaptively process spatial data in real-

time with minimal latency. Amoeba [40,41] introduce a distributed streaming system

for general multi-dimensional workloads with adaptive rebalancing. Amoeba does not

consider real-time stream processing. STAR [42] is a distributed streaming warehouse

for spatial data that supports low-latency and up-to-date data analytical applications

by adapting to workload changes. Tornado [12,13] is a distributed in-memory stream-

ing system for spatio-textual data that extends Storm. Tornado includes an adaptive

indexing layer for dynamic re-distribution of processes across the system according to

11

changes in the data distribution and/or query workload. PS2Stream [14] is a publish-

subscriber system for spatio-textual data that supports dynamic load adjustments

to adapt to the changes of the workload. Tornado and PS2Stream are designed to

work only with spatio-textual data and continuous spatial-keyword filter queries. In

addition, they only support publish/subscribe applications, which result in removing

data points as soon as they are processed. However, our approach is more general

as it works with any spatial application. Moreover, it can work over any distributed

streaming system that processes spatial data in a tuple-at-a-time manner.

Existing adaptive load-balancing mechanisms from the literature differ in the types

of applications that they support and the models used for measuring their workload.

They distribute the workload depending on the distinctive key features of the appli-

cations they serve, e.g., spatial regions, text topics, or hash values. They are common

in the way they rebalance their workload by repartitioning the responsibilities of each

machine according to the changes in data and query workloads. All the mechanisms

monitor the workload of each machine in the system by computing, for each machine,

a score that represents the amount of data and query workload that have processed.

The rebalancing is achieved by moving some responsibilities of the machine with the

highest workload to the machine with the lowest workload. Other mechanisms move

the workload to a subset of the under-loaded machines instead of to the lowest ma-

chine alone. Most distributed streaming systems support continuous queries, and

return their results to the users in real-time. Continuous queries are queries that get

registered and stored in the system for a period of time that is predetermined by the

user. Every time a new tuple arrives, the system checks if this tuple qualifies as a

result for any of the registered continuous queries. Moving some of the workload of a

machine includes moving some of its continuous queries.

Figure 2.1 gives an example of how an adaptive load-balancing mechanism redis-

tributes the workload of a spatial distributed streaming system. The distinctive key

feature of this application is being spatial. Therefore, the adaptive load-balancing

mechanism divides the whole space (USA map) into spatial partitions among five

12

After Rebalancing

Machine
with

Highest
Load

m1

Machine
with

Lowest
Load

m2

m2

m3

m3

m3

m4

m4
m4

m2

m2

m3

m3

m3

m4

m4
m4

m2

m2

m3

m3

m3

m4

m4
m4

m2

m2

m3

m3

m3

m4

m4
m4

m2

m2

m3

m3

m3

m4

m4
m4

m2

m2

m3

m3

m3

m4

m4
m4

m2

m2

m3

m3

m3

m4

m4
m4

Before Rebalancing

m1

m5 m5

m1

m2

m5m2

m3

m3
m3

m4

m4
m4

Fig. 2.1. Adaptive load-balancing in a spatial distributed streaming sys-
tem

machines: m1, m2, m3, m4, and m5. Figure 2.1 illustrates that m1 is responsible for

only one partition. This partition includes a city that is gaining an increase in users

interests because of an event. This creates a hotspot that requires more processing

from m1 because of the increased query and data workload on this city. The adaptive

load-balancing mechanism identifies that m1 is overloaded while m5 has the lowest

workload. Hence, the adaptive load-balancing mechanism divides m1’s partition that

contains the hotspot into two partitions based on the workloads of m1 and m5. One of

the partitions is moved to m5 to evenly distribute the workload between the two ma-

chines. As long as the system is unbalanced, the adaptive load-balancing mechanism

will continue to repartition and move workloads across the machines.

Using adaptive load-balancing mechanisms increases the machine utilization, which

leads to improved throughput and execution latency. However, a new type of attacks

can target the adaptive load-balancing mechanisms to keep the system in a continuous

state of re-balancing. This type of attacks leads to lower throughput and availability

of the system. This dissertation reveals the specifications of this type of attacks.

Moreover, we proposes Guard, which can be deployed on distributed streaming sys-

tems to detect and block attacks on their adaptive load-balancing mechanisms.

13

2.3 Workload Estimations in Distributed Processing Systems

Adaptive load-balancing mechanisms improve the performance and scalability by

trying to even the workload across all machines. One obstacle is to estimate the

workload of spatial distributed streaming systems because spatial data and query

workloads are skewed and rapidly changing. Distributed spatial streaming systems

often do not maintain a global system workload state because the data and queries

are distributed across their machines. Collecting and maintaining statistics about the

workload of every machine in a centralized location introduces high network, storage,

and processing overheads.

Several techniques exist to track data changes and adapt distributed systems ac-

cordingly. Belussi, et al. [35] propose an approach for SpatialHadoop [30] to detect the

skewness degree in spatial data distribution using box-counting functions [43]. They

choose the best partitioning strategy using a heuristic sketch and the detected skew-

ness degree. However, they cannot track online changes in skewness in a distributed

streaming setup. Also, they estimate the workloads based on the data distribution

without considering the query workloads. Identifying hotspot keys in SIMOIS [37] is

performed using an exponential counting scheme. However, SIMOIS technique works

only with distributed join system. PKG2 and PKG5 [38,39] use only the key frequen-

cies as an estimate for the workload and do not consider queries. Thus, they are not

suitable for tracking changes in spatial data distribution and estimating the workload

of their partitions.

Several techniques have been proposed for efficient spatial data aggregation and

summarization. Ho, et al. [44] introduce a technique to answer range-sum queries of

the number of points in a window by maintaining prefix sums in a grid. Riedewald, et

al. [45] generalize the idea of prefix sums to count the number of rectangles (queries)

and support OLAP queries. Maintaining aggregates and summarizations for spatial

regions is challenging because the counting could result in duplicate counting of some

queries. Euler histograms [46] count rectangles that intersect a given region without

14

duplicates. Euler histograms help estimate the selectivity of spatial joins [47, 48].

AQWA [15] adaptively changes the partitioning of Hadoop [21] by maintaining statis-

tics using the prefix sum technique and a variant of the Euler histogram. AQWA

introduces a cost model to estimate both the data and query workloads. However, it

is centralized and hence is not viable for distributed streaming systems because data

and statistics are distributed on different machines.

Some distributed streaming systems use adaptive load-balancing that redistribute

the workload based on AQWA’s cost model for estimating the workload, e.g., STAR [42],

Tornado [12,13], PS2Stream [14], and Amoeba [40,41]. However, these techniques are

relatively slow when updating the statistics and updating the workload cost model

when the statistics change. The reason is that they consider only the history of

data and queries without considering how persistent these estimates could be in the

future. Most distributed streaming process data in real-time and do not store the

data for a long durations. Systems with adaptive load-balancing need a technique

that can accurately predict the workload fast with minimum network and processing

overheads. This dissertation proposes TrioStat, which estimates the workload for dis-

tributed spatial streaming systems with minimum overhead. TrioStat is applicable

to tuple-at-a-time systems that are suitable for real-time processing.

2.4 Security in Distributed Streaming Systems

Data security implies three aspects: Confidentiality, Integrity, and Availabil-

ity [49]. Confidentiality assures that confidential information is not disclosed to unau-

thorized personnel. On the other hand, integrity ensures that data do not undergo

unauthorized changes either intentionally or accidentally. Availability guarantees

that the system is functioning and data can be accessed whenever it is requested. In

this dissertation, we focus on distributed stream processing systems availability in

the presence of attacks. The availability can be ensured by providing fault-tolerance

techniques [50] and Intrusion Detection Systems (IDS) [51,52].

15

In general, fault-tolerance techniques aim at avoiding service failures in the pres-

ence of system faults [53]. There are three mechanisms of fault-tolerance in distributed

systems: (1) cold restart, (2) check-pointing, and (3) replication. Both cold restart

and check-pointing use restarting operators to correct and recover from transient fail-

ures. The restart operation can happen either directly (in case of cold restart) or via a

checkpoint (in case of check pointing restart) [54]. In replication-based fault-tolerance,

multiple instances of the same operators are running concurrently to transparently

take over processing from a faulty operator.

Huang, et al. [55] proposes AF-Stream systems that addresses the natural trade-

off between performance and fault-tolerance. In particular, AF-Stream approxi-

mates fault tolerance by mitigate backup overhead using adaptive issuing backups,

while ensuring that the errors upon failures are bounded with theoretical guarantees.

Knasmüller, et al. [56] presents the Pathfinder framework that enables functional re-

dundancy at the level of stream processing operator paths. In particular, Pathfinder

reacts to failures in the main path by switching into alternative failure-free paths.

Liu, et al. [57] proposes E-Storm, a replication-based state management system. The

objective of E-Storm is to maintain multiple back-ups for the state on multiple nodes.

Load-balancing mechanisms can be considered as a replication-based fault-tolerance

technique. Fang, et al. [58] proposes combining fault-tolerance and load-balancing

mechanisms with the objective to reduce the overall resource consummations while

keeping high-throughput, highly-available system. The workload is balanced based

on data-level strategy that considers data skewness and node failure.

On the other hand, Intrusion Detection System (IDS) is a crucial technique that

is integrated with any comprehensive security solution for high-assurance database

security. The main goal of IDS is to monitor and detect illicit accesses and malicious

actions in the system. The existing methodologies of IDS can be broadly classified into

two groups: signature-based detection and anomaly detection. In the signature-based

detection approach, IDS looks for attack patterns in access logs using data mining

techniques [59–62]. This approach works against well-known attacks. However, it

16

is incapable of detecting emerging types of attacks. On the other hand, IDS that

uses the anomaly detection approach looks for deviations in normal user behavior.

Thus, it is capable of detecting unexpected emerging attack patterns. Although IDS

can protect systems by detecting and rejecting future accesses of attackers, it is not

designed to mitigate the risk of intrusion. Moreover, IDS suffers from long detection

delay as well as high false-alarm rate that can cause negative impact on the availability

of the systems.

In this dissertation, we address the availability degradation of the distributed

streaming systems caused by attacks. The proposed methodology employs an in-

trusion detection system to detect and prevent attackers from registering malicious

queries. Several security threats to distributed streaming and load-balancing sys-

tems have been addressed in the literature. Existing security mechanisms in big data

streaming systems focus on authentication, access control, and auditing [63] to main-

tain data confidentiality. However, in big data streaming systems maintaining high

availability is critical. Work related to security attacks that compromise the avail-

ability in streaming and load-balancing systems is under-explored. Ledlie, et al. [64]

proposes an algorithm, k-choice, to balance workload in systems vulnerable to Sybil

attacks that can affect the skewness of query distribution over the workload. Kang, et

al. [65] introduces sensitivity attack, a new type of attacks on data plane systems. In

that attack, a malicious user can articulate a query to ”flip” the expected behavior of

the data plane systems (including load-balancing mechanisms in streaming systems).

2.5 Unsupervised Machine Learning

In data analysis and machine learning, unsupervised learning is a type of statistical

modeling which mainly has the objective of clustering data points into groups. Such

grouping is performed without the need of training labeled data, which distinguish

the unsupervised approach from the supervised approach. The input of unsupervised

clustering techniques is a set of n unlabeled data points that ought to be grouped

17

according to a certain similarity metric. The output of the clustering techniques is

an assignment of the n data points to a set of k clusters.

All of the clustering techniques rely, in one way or another, on a similarity metric

to define groups and groups’ members who are assumed to be similar. Some com-

mon similarity metrics used in the literature include Euclidean distance, Mahalanobis

distance, and Pearson correlation distance. Other metrics that can be used with non-

quantitative data points include Hamming distance and Jaccard distance. Choosing

the right distance metrics depends on the type of data points to be clustered and the

type of similarity to be found in a given clustering task.

There are numerous techniques to perform unsupervised clustering, which can be

categorized into nine groups [66]: partitioning-based clustering, density-based cluster-

ing, distribution-based clustering, fuzzy clustering, hierarchical clustering, clustering

based on graph theory, clustering based on grid, clustering based on fractal theory,

and model-based clustering. In partitioning-based clustering, the number of clusters

is predefined as a hyper-parameter. K-Means [67] leads this category of clustering

techniques. On the contrary, density-based clustering techniques like DBSCAN [68]

determine the number of clusters according to the number of local communities that

can be found from the density of the points in certain locations in the feature space.

Distribution-based clustering [69] assigns data points to clusters according to their

belonging to the same distribution, assuming that the whole data points came from

multiple distributions. In fuzzy clustering [70], a data point can belong to more than

one cluster, which makes the output clusters non-mutually exclusive. Hierarchical

clustering [71] allows defining clusters at different levels of granularity, starting from

a single cluster containing all data points to a level where each data point constitutes

a different cluster. When the data points and their relationships are represented by a

graph, they can be clustered using techniques such as CLICK [72]. Grid-based clus-

tering such as STING [73] relies on transforming the feature space that represents

the data points into a grid structure and cluster data points in each cell of the grid.

18

Finally, In model-based clustering [74], each cluster are assumed to have a model that

fits the data points that belong to that cluster.

K-Means [67] is one of the mostly applied unsupervised clustering techniques. As

a partitioning-based technique, K-Means requires to assign a predefined number of

clusters to appear in the output assignments, i.e., the number of partitions. This

number is used to determine the number of centroids, i.e., the clusters’ centers, which

are initially assigned randomly then are updated iteratively during the procedure of

K-means. Data points are clustered in K-means according to the distance from the

centroids measures based on one of the distance metrics aforementioned. The advan-

tage of K-Means appear in its low time complexity, simplicity, and scalability. On

the other hand, K-Means has some shortcomings, including outliers sensitivity, the

necessity of knowing the number of clusters in the data upfront, and the bad perfor-

mance in partitioning clusters within clusters. In this dissertation, we proposes an

unsupervised attack detector for detecting attacks that target adaptive load-balancing

mechanisms in distributed streaming systems. This detector uses K-Means during its

analyses to cluster users based on their behaviors.

19

3. TRIOSTAT: ONLINE WORKLOAD ESTIMATION IN

DISTRIBUTED SPATIAL DATA STREAMING SYSTEMS

This chapter introduces TrioStat, an online workload estimation technique for esti-

mating the workload of partitions and machines in a distributed spatial data stream-

ing system. TrioStat provides estimations with minimum network and storage over-

heads. The cost model that TrioStat uses to estimate workloads is presented in the

Section 3.1. Section 3.2 introduces a novel mechanism for collecting and maintaining

the required statistics for online workload estimation. Finally, Section 3.3 presents

the way TrioStat uses its statistics to efficiently provide workload estimations.

3.1 The Cost Model

Distributed spatial streaming systems divide their whole space that the applica-

tion serves into partitions. The partitions are distributed across the machines of the

system. The system rebalances the workload across its machines by repartitioning

and/or redistributing the partitions. TrioStat estimates the workload of a partition

by computing its potential processing cost on the system in relation to all other par-

titions. Moreover, the workload of a machine is estimated according to the partitions

served by the machine. TrioStat introduces a probabilistic cost model that relies on

three terms (Trio). The main factor of the cost model is the amount of data points

that are received by each partition. The cost model gives higher weight to partitions

having a high number of queries. This is because the increase of number of queries in-

dicates to an increase in the required number of query checks against every new data

point. Moreover, the cost model predicts the future workload of each partition based

on its workload history. This prediction serves as a scale factor for the overall cost

and workload of each partition. Assume that we have a distributed spatial streaming

20

system, say S, that has a set of executor machines M . Each machine m ∈ M holds

some partitions Pm, where |Pm| = nm, nm is the number of partitions in Machine m.

Each partition p ∈ Pm, locally maintains some statistics. The cost estimate C(p) of

a partition p is computed as follows:

C(p) = N(p)×Q(p)× Prob(p) (3.1)

N(p) is the number of points received by Partition p, Q(p) is the number of queries

that overlap p, and Prob(p) is the probability that new data and queries land in p.

Prob(p) depends on the amount of data and queries that arrived during the last round

of repartitioning. Note that the workload history is captured via N and Q while Prob

is a weighting factor to the cost of this history. The effect of old data can fade with

time as Section 3.2.2 discusses. Prob(p) is estimated as follow:

Prob(p) =
R(p)

R(S)
(3.2)

where R(p) and R(S) are the number of data points and queries received by p and

all of S, respectively, during the last round of repartitioning. R(S) is computed as

follows.

R(m) =
∑nm

i=1R(pi) (3.3)

R(S) =
∑|M |

i=1R(mi) (3.4)

By substituting Eqn. 3.2 into Eqn. 3.1, then:

C(p) =
N(p)Q(p)R(p)

R(S)
=
Num(C(p))

R(S)
(3.5)

where Num(C(p)) is the numerator of Partition p’s cost formula. The workload of

Machine m is computed according to the set of partitions Pm that m holds by:

C(m) =
∑nm

i=1C(pi) (3.6)

Using Eqn. 3.5,

C(m) =
N(p1)Q(p1)R(p1)

R(S)
+ · · ·+ N(pnm)Q(pnm)R(pnm)

R(S)

C(m) =

∑nm

i=1{N(pi)Q(pi)R(pi)}
R(S)

=
Num(C(m))

R(S)
(3.7)

21

where Num(C(m)) is the numerator of Machine m’s cost formula. Num(C(m)) can

be computed locally. In contrast, computing R(S) requires information from all the

machines in S. R(S) is the same for all machines, and hence it is computed once using

Eqn. 3.4 that requires only one number (R(m)) from each executor machine. Thus,

comparing and ranking the machines according to their costs is the same as comparing

and ranking them using only Num(C(m)). Moreover, computing Num(C(p)) for the

partitions of a machines is enough to compare and rank the partitions locally in their

machine by cost.

3.2 Collecting and Maintaining Statistics

Collecting statistics in distributed streaming systems is challenging because the

data arrives in high continuous volumes. Moreover, most applications need real-time

processing for each data point with minimum latency. Thus, a feasible technique for

collecting and maintaining statistics in distributed streaming systems should require

minimum number of updates. Also, each partition should maintain its statistics

locally without the need to communicate with other machines. TrioStat achieves this

by maintaining minimum local statistics that are enough to estimate the workloads of

partitions and machines using the cost model that Section 3.1 discusses. TrioStat uses

a hash table in every executor machine to link the ID of every partition in the machine

with its statistic structure. TrioStat maintains the statistics of every partition in a

simple multidimensional array in memory. The statistics of each row (or column)

is located next to each other in memory. Therefore, TrioStat can provide workload

estimations for a partition or a part of a partition fast by taking advantage of cache

prefetching. Reading the first needed statistic to compute a workload estimation from

a row (or column) result on having the remaining needed statistics in cache. The

remaining of this section discusses in details the process of collecting and maintaining

statistics in TrioStat.

22

p9
p11

p5 p6

p7

p8
p14

p13

8 cells

8
ce

lls

Fig. 3.1. Example for dividing the space into a grid of small cells

3.2.1 Required Statistics

TrioStat maintains the minimum statistics needed for using the cost model. The

whole space of the application is divided into a grid of small cells, which should

be aligned with the boundaries of the partitions. Figure 3.1 shows an example for

dividing the space into a grid of 8X8 small cells. The arrangement of cells that cover

a partition is passed to TrioStat with the partition ID of the executor machine that

holds this partition. Increasing the number of cells that divide the space results

in increasing the storage and processing overhead of TrioStat and increasing the

granularity of workload estimation. We use Partition p11 in Figures 3.1 to illustrate

how TrioStat maintains the statistics.

Systems periodically evaluate their performances and check if repartitioning could

improve the performance. Therefore, systems ask TrioStart to provide the needed

workload estimates by the end of every repartitioning round. Figure 3.2 gives the

maintained statistics in p11 after asking TrioStat to prepare the statistics and be ready

23

N: 3
Q: 3 spanQ: 0
R: 2 preSpanQ′: 0

N: 10
Q: 7 spanQ: 1
R: 5 preSpanQ′: 0

p11
Statistics

N: 2
Q: 2 spanQ: 0
R: 1 preSpanQ′: 0
N: 4
Q: 4 spanQ: 1
R: 2 preSpanQ′: 1
N: 8
Q: 5 spanQ: 2
R: 4 preSpanQ′: 1
N: 10
Q: 7 spanQ: 1
R: 5 preSpanQ′: 0

N‘, Q‘, and
spanQ‘ are in
each row and
column, which

are used during
new rounds to

collect statistics

Fig. 3.2. TrioStat statistics for partition p11

to provide workload estimations. The dots and rectangles represent the positions

of the data points and the query ranges in p11, respectively. The stars and the

gray rectangles mark the data points and the queries received in the last round of

repartitioning, respectively. p11 has a 4X2 cell matrix. The indexes of the rows start

form top to bottom, while it is from left to right for the columns. TrioStat maintains

in each row and column 5 statistics, 3 of which are cumulative. Row i’s (Column j’s)

cumulative statistics represent the total from the uppermost row (leftmost column)

until Row i (Column j), respectively. The 5 maintained statistics in each row and

column are: (1) N : the cumulative number of data points, (2) Q: the cumulative

number of queries, (3) R: the cumulative number of data points and queries received

during the last round of repartitioning, (4) spanQ: the number of queries whose

ranges span from the previous row/column, and (5) preSpanQ′: the number of queries

received during the last repartitioning round whose ranges span from the previous

row/column. To illustrate, refer to Row 3 of p11 in Figure 3.2. All cumulative

statistics reflect the objects in the first three rows. There are 8 data points (N)

24

and 5 queries (Q). Two data points and two queries are received during the last

round, hence R = 4. Two queries span from the second row (spanQ = 2). However,

only one of them is received during last round (preSpanQ′ = 1).

TrioStat uses these statistics for estimating the workload of each part of a parti-

tion. The overall statistics of a partition p (N(p), Q(p), and R(p)) are the ones in the

last row/column. The statistics are only updated at the end of every repartitioning

round to avoid the overhead of updating almost all the statistics whenever a new

data point or a query arrives. Additional three statistics, termed Statistics Collec-

tors, for each row and column are introduced, namely N ′, Q′, and spanQ′. Statistics

Collectors are used to update the statistics at the end of a round. They reduce the

number of updates per received data point or query. The next section presents how

these Statistic Collectors are updated and used for maintaining the statistics.

3.2.2 Maintaining the Statistics

TrioStat needs to have a small number of updates when receiving a data point

or query. When a new data point arrives, TrioStat updates only two of a parti-

tion’s Statistics Collectors. However, when a new query arrives, TrioStat updates the

Statistics Collectors of the rows and columns that overlap the query. Having more

statistics to update will not affect the performance because the arrival rate of data is

much higher than that of queries in distributed streaming applications.

Three Statistics Collectors, N ′, Q′, and spanQ′, are used in each row/column to

count different types of received objects during the most recent round of repartition-

ing. N ′ and Q′ count the new data points and queries, respectively. spanQ′ counts

the number of queries that their ranges span from the previous row/column. When

a new data point arrives, TrioStat increments N ′ of the row and the column contain-

ing the data point. When a new query arrives, TrioStat increments both Q′ of the

row and the column that overlap the top-left corner of the query, and spanQ′ of the

remaining rows and the columns that overlap the query.

25

To conclude a repartitioning round, TrioStat uses the Statistics Collectors to up-

date all remaining statistics as follows. Let i ≥ 0 be a row/column index. Then, the

statistics are updated as follows:

N(i) = N(i) +
∑i

j=0N
′(j)

Q(i) = Q(i) +
∑i

j=0Q
′(j)

R(i) =
∑i

j=0N
′(j) +

∑i
j=0Q

′(j)

spanQ(i) = spanQ(i) + spanQ′(i)

preSpanQ′(i) = spanQ′(i)

Algorithm 1: updateStat(PartitionID, rowOrColumn)

1 stat [][] = partitionsHashMap.get(PartitionID)

.statistics(rowOrColumn) . Multidimensional array

2 int sumN ′ = 0

3 int sumQ′ = 0

4 for i = 0 to Num of rowOrColumn in PartitionID do

5 sumN ′ += stat [N ′][i]

6 sumQ′ += stat [Q′][i]

7 stat [N ′][i] = 0 . Reset current N ′

8 stat [Q′][i] = 0 . Reset current Q′

9 stat [N][i] += sumN ′

10 stat [Q][i] += sumQ′

11 stat [preSpanQ ′][i] =stat [spanQ′][i]

12 stat [spanQ][i] += stat [spanQ′][i]

13 stat [spanQ′][i] = 0 . Reset current spanQ′

14 stat [R][i] = sumN ′ + sumQ′

15 end

26

The naive way to compute the cumulative statistics requires computing the sum-

mations from the beginning each time. Its time complexity to update the statistics

of a partition is O(k2), where k is the number of rows and columns of the partition’s

statistics. However, TrioStat utilizes the fact that the summations in the equations

can be carried out from one row/column to another. Hence, there is no need to

compute the summations from scratch each time. With only one addition, we pro-

duce the statistics of the next row/column from these of the previous row/column.

Algorithm 1 illustrates how to update the statistics of a partition by passing once

through the partition’s rows and columns. The time complexity of using Algorithm 1

to update the statistics of a partition is O(k). This algorithm runs as a separate task

in the background. Note that all Statistics Collectors are reset to 0 to be ready for

collecting the statistics of the next round of repartitioning.

N′ :1
Q′ :1
spanQ′ :0

N′ :1
Q′ :2
spanQ′ :0

p11
Statistics
Collectors
N′ :0
Q′ :1
spanQ′ :0
N′ :0
Q′ :1
spanQ′ :1
N′ :2
Q′ :0
spanQ′ :1
N′ :0
Q′ :1
spanQ′ :0

N:2
Q:2 spanQ:0
R:0 preSpanQ′:0

N:8
Q:4 spanQ:1
R:0 preSpanQ′:0

p11
Statistics

N:2
Q:1 spanQ:0
R:0 preSpanQ′:0
N:4
Q:2 spanQ:0
R:0 preSpanQ′:0
N:6
Q:3 spanQ:1
R:0 preSpanQ′:0
N:8
Q:4 spanQ:1
R:0 preSpanQ′:0

(a) At the beginning of the round (b) At the end of the round

DA

QA

QB

QC

DB

Fig. 3.3. Updating partition p11’s Statistics Collectors

Figure 3.3 illustrates the statistics of Partition p11 while receiving new data points

and queries. Figure 3.3a illustrates the positions of the data points and the ranges of

the queries in p11 at the beginning of a new repartitioning round. Also, it shows the

current state of the maintained statistics as Section 3.2.1 discusses. The Statistics

27

Collectors are all set to 0 at the beginning of the round. Figure 3.3b shows the

Statistics Collectors at the end of the round after receiving 2 new data points and 3

new queries. During the repartitioning round, the two data points DA and DB are

received first. Both data points are in the third row (Row2), but one of them is in the

first column (Col0) while the other is in the second column (Col1). Hence, N ′(Row2)

is incremented twice while N ′(Col0) and N ′(Col1) are each incremented once. Then,

Queries QA, QB, and QC arrive into p11 in this order. The upper-left corner of QA is

in the cell that overlaps Col0 and Row1. Also, the range of QA is contained within

one cell. Thus, only Q′(Row1) and Q′(Col0) are incremented. QB starts in Row0

and spans through Row1 and Row2. Thus, spanQ′(Row1) and spanQ′(Row2) are

incremented in addition to the increment of Q′(Row0) and Q′(Col1). At the end of

the round, Statistics Collectors are used to update the statistics using Algorithm 1.

The results of the updated statistics are given in Figure 3.2.

Notice that the target of TrioStat is not to count the actual number of data points

but rather to track the change in the spatial data workload. To diminish the effect of

old data gradually, the number of data points N is divided by 2 before it is updated

in each round of repartitioning. This is to reduce the effect of old data points on the

current spatial distribution. In distributed streaming systems that support historical

queries, TrioStat needs to be informed about data expiration to update N accordingly.

3.2.3 Correctness of the Statistics

In this section, we prove the correctness of the statistics that TrioStat collects

and maintains about data points and queries. To show that, we need to prove that

the maintained statistics always represent the true number of data points and queries

without any over- or under-counting.

First, we prove the correctness of the statistics for data points. Assume that we

have a partition that has k rows and only one column. This results in k cells in total

as in Figure 3.4.

28

Cell1

Cellsp

Cellk

Cellsp+1
Split Point (SP)

Fig. 3.4. Partition with k cells (rows)

Let i be the row number of a cell, where 1 ≤ i ≤ k, n(i) be the true number of

data points in celli, and N(i) be the cumulative number of data points that TrioStat

maintains in rowi. n(i) can be obtained by simply counting the number of data points

within celli. As mentioned before, the cumulative number N(i) is computed from top

to down for horizontal divisions. Therefore, N(i) can be computed as follows:

N(i) =
∑i

j=1 n(j)

In the initial case where k = 1, there is only one cell with n(1) data points, hence

N(1) = n(1). For k = 2, N(2) = n(1)+n(2). We can derive the number of data points

in cell2 as n(2) = N(2)−N(1). In general, let us assume a partition as illustrated in

Figure 3.4 that has a split point sp, where 1 <= sp <= k, that divides the partition

into two partitions, say p1 and p2. n(pi) represents the true number of data points in

Partition pi. Therefore, the number of data points in each partition can be computed

as follows:

n(p1) = n(1) + n(2) + ...+ n(sp)

∴ n(p1) =
∑sp

j=1 n(j) = N(sp)

n(p2) = n(sp+ 1) + n(sp+ 2) + ...+ n(k) =
∑k

j=sp+1 n(j)

∴ n(p2) =
∑k

j=1 n(j)−
∑sp

z=1 n(z) = N(k)−N(sp)

29

Therefore, this shows that the computed statistics, i.e., N , is equal to the true number

of data points, i.e., n. An analogous proof can be used to show that N is also correct

when dividing cells vertically, and N is cumulatively computed from left to right.

Now, we prove the correctness of the maintained statistics about queries by using

the same setup of Figure 3.4. Given the input query boundaries, we can extract the

exact count of all queries in each grid celli by maintaining four variables, namely,

qs, qe, qse and qo (s stands for start, e stands for end, se stands for start and end,

and o stands for overlap, as explained below). Let qs(i) be the number of queries

whose upper boundary intersects celli and whose lower boundary intersects another

cell. Furthermore, let qe(i) be the number of queries whose lower boundary intersects

celli and whose upper boundary intersects another cell. Let qse(i) be the number of

queries whose upper and lower boundaries intersect celli. Finally, let qo(i) be the

number of queries whose upper and lower boundaries do not intersect celli but their

ranges overlap celli. Therefore, the true number, q(i), of queries that intersect celli

is the sum of these four variables, i.e.,

q(i) = qs(i) + qe(i) + qse(i) + qo(i) (3.8)

Now, we extend the formula above to compute the true number of queries that overlap

a sub-partition, i.e., one column of cells that starts from Row u and ends in Row l > u.

Let that number of q(u, l). We need to avoid double counting of a query that overlaps

multiple cells. q(u, l) is equal to the true number of queries in Row u and only queries

that start in any row from row u+ 1 up to row l, no matter where these queries end.

For rows after u, only counting queries that start in any cell will exclude recounting

any query that span over multiple cells. Therefore, q(u, l) can be computed using the

four variables as follow:

q(u, l) = q(u) +
∑l

j=u+1(qs(j) + qse(j)) (3.9)

We need to demonstrate that the statistics gathered by TrioStat when counting

the number of queries is equal to the true number, i.e., q(u, l). Refer to Figure 3.4

30

for illustration. As in the figure, we have a partition that has k cells starting from

Cell 1 at the top down to Cell k at the bottom. To maintain query statistics, for each

Row i, where 1 ≤ i ≤ k, of a partition, TrioStat maintains only two statistics per

row, namely, Q(i) and Qspan(i). Q(i) is the cumulative number of queries from the

first row of the partition, i.e., Row 1, to Row i. Therefore, Q(i) directly represents

the number of queries that start at any row from the beginning of the partition until

Row i. Recounting of queries can happen by considering queries that only end or

overlap any of the cells as they are already counted where they started. Thus, they

are excluded from Q(i) as follows:

Q(i) =
∑i

j=1(qs(j) + qse(j)) (3.10)

Let Qspan(i) be the number of queries that extend (span) from an upper row, say

Row (i−1), to Row i. Thus, Qspan(i) represents the number of queries that overlap or

start without ending in Row (i− 1). Note that Qspan(1) will always equal 0 because

there are no queries that extend from outside the partition to the first row. Thus,

Qspan(i) can be formulated from the true numbers as follows:

Qspan(i) =

0, if i = 1

qs(i− 1) + qo(i− 1), otherwise

Although Qspan(i) depends on the variables of the previous row (i − 1) in TrioStat,

there is another equivalent way of computing Qspan(i) with the variables from Row i

that makes the proof easier to follow. Note that any query that overlap Row (i− 1)

or starts without ending in Row (i− 1) definitely extends to Row i and this query’s

range either ends at Row i or overlaps Row i and continues to the next row below

Row i. This can be reflected in the formula for calculating Qspan(i) as follows:

∵ qs(i− 1) + qo(i− 1) = qe(i) + qo(i)

∴ Qspan(i) = qe(i) + qo(i) (3.11)

This equivalent equation for calculating Qspan(i) is correct also in the case when i = 1

because both qe(1) and qo(1) are always equal 0.

31

In the initial case, i.e., when k = 1, and there is only one cell in the partition with

q(1) queries, Q(1) = qs(1) + qse(1) = q(1) and Qspan(1) = 0. This is correct because

qs(1), qe(1) and qo(1) are all equal 0 as cell1 covers the whole partition and every

query definitely starts and ends in this cell. For k = 2, using Eqns. 3.10 and 3.11, Q

and Qspan for Rows 1 and 2 are computed as follows:

Q(1) = qs(1) + qse(1)

Q(2) = Q(1) + qs(2) + qse(2)

Qspan(1) = qe(1) + qo(1) = 0

Qspan(2) = qe(2) + qo(2)

Notice that when k = 2, there are only the following three possible sub-partitions: a

partition that has cell1 only, cell2 only, or cell1 and cell2. The computation of the

true numbers can be computed using Eqn. 3.9 as follows:

q(1, 1) = q(1) = qs(1) + qe(1) + qse(1) + qo(1)

∴ = qs(1) + 0 + qse(1) + 0 = Q(1)

q(1, 2) = q(1) + qs(2) + qse(2)

= qs(1) + qe(1) + qse(1) + qo(1) + qs(2) + qse(2)

= qs(1) + 0 + qse(1) + 0 + qs(2) + qse(2)

∴ = Q(1) + qs(2) + qse(2) = Q(2)

q(2, 2) = q(2) = qs(2) + qe(2) + qse(2) + qo(2)

∴ = Q(2)−Q(1) +Qspan(2)

Note that the maintained statistics are enough to compute the true number of queries

in all possible sub-partitions when k = 2. Refer to Figure 3.4 for illustration. For

cases k > 2, assume that a partition has a split point sp, where 1 <= sp <= k, that

32

divides the partition into two sub-partitions, say p1 and p2. TrioStat’s query statistics

can be computed using the Eqns. 3.10 and 3.11 as follows:

Q(sp) =
∑sp

j=1(qs(j) + qse(j))

Q(k) =
∑k

j=1(qs(j) + qse(j))

Qspan(sp+ 1) = qo(sp+ 1) + qe(sp+ 1)

The true number of queries in the partition p1 is computed using the Eqns. 3.9 and

3.8 as follow:

q(p1) = q(1, sp) = q(1) +
∑sp

j=2(qs(j) + qse(j))

= qo(1) + qe(1) + qse(1) + qs(1) +
∑sp

j=2(qs(j) + qse(j))

= qo(1) + qe(1) +
∑sp

j=1(qs(j) + qse(j))

∴ = 0 + 0 +
∑sp

j=1(qs(j) + qse(j)) = Q(sp)

Notice that the computed statistic Q(sp) is exactly equal the true number of queries

in p1, i.e., q(p1). The true number of queries in the Partition p2 is computed as

follows:

q(p2) = q(sp+ 1, k) = q(sp+ 1) +
∑k

j=sp+2(qs(j) + qse(j))

= qo(sp+ 1) + qe(sp+ 1) + qse(sp+ 1) + qs(sp+ 1)

+
∑k

j=sp+2(qs(j) + qse(j))

= qo(sp+ 1) + qe(sp+ 1) +
∑k

j=sp+1(qs(j) + qse(j))

∴ q(p2) = Qspan(sp+ 1) +
∑k

j=sp+1(qs(j) + qse(j))

= Qspan(sp+ 1) +
∑k

j=1(qs(j) + qse(j))

−
∑sp

j=1(qs(j) + qse(j))

∴ q(p2) = Qspan(sp+ 1) +Q(k)−Q(sp)

Therefore, TrioStat’s statistics (Q and Qspan) are necessary and sufficient to compute

the true number of queries. The same proof can be used to show that TrioStat’s

33

statistics are correct by using the computed cumulative number Q from left to right

when dividing partitions vertically.

For TrioStat’s Statistic R, notice that R represents the cumulative number of the

newly received data points and queries. Thus, the proof of correctness for R is that

same as the ones for the data points and the queries proofs explained above. However,

in the proofs, QpreSpan is to used instead of Qspan, where the former represents the

span of only the new queries.

3.3 Estimating the Workload

Periodically, distributed spatial streaming systems evaluate the effectiveness of

their partitioning and workload distribution. Hence, they should inform TrioStat by

the end of every repartitioning round to prepare the statistics to be used for workload

estimations as Section 3.2 discusses. After that TrioStat becomes ready to provide

workload estimations in O(1) for partitions, part of a partition, and machines.

According to Eqn. 3.5 and Eqn. 3.7, there is no need to divide by R(S) to compare

the workload of partitions and machines because R(S) is a common factor in all

equations. Therefore, TrioStat provides the workload estimation for a Partition p

to be W (p) = Num(C(p)), and the workload estimation for a Machine m to be

W (m) = Num(C(m)). Let N(i), Q(i), R(i), spanQ(i), and preSpanQ′(i) be the

statistics of p at row (or column) index i. Also, let L be the index of the last row (or

column) of p’s statistics. TrioStat provides the workload estimation of p by using p’s

statistics as follow:

W (p) = N(L)×Q(L)×R(L)

For example, the workload estimation of Partition p11 in Figure 3.5 is, W (p11) =

10× 7× 5 = 350.

TrioStat estimates the workload of the sub-partitions that could result after split-

ting p into two sub-partitions pa and pb. Figure 3.5 shows an example of splitting

p11 vertically or horizontally. The split point (sp) is the index of the row (or col-

34

N: 3
Q: 3 spanQ: 0
R: 2 preSpanQ′: 0

N: 10
Q: 7 spanQ: 1
R: 5 preSpanQ′: 0

p11
Statistics

N: 2
Q: 2 spanQ: 0
R: 1 preSpanQ′: 0
N: 4
Q: 4 spanQ: 1
R: 2 preSpanQ′: 1
N: 8
Q: 5 spanQ: 2
R: 4 preSpanQ′: 1
N: 10
Q: 7 spanQ: 1
R: 5 preSpanQ′: 0

Split Point
(sp)

Sp
lit

 P
oi

nt

(s
p)

Fig. 3.5. Estimating the workload when partition p11 split into two sub-
partitions pa and pb

umn) where the partition is split. TrioStat uses the maintained statistics directly to

estimate the workloads of the sub-partitions as follow:

W (pa) = N(sp)×Q(sp)×R(sp)

Q(pb) = Q(L)−Q(sp) + spanQ(sp+ 1)

R(pb) = R(L)−R(sp) + preSpanQ’(sp+ 1)

W (pb) = [N(L)−N(sp)]×Q(pb)×R(pb)

For example, when P11 is split horizontally on the second row as in Figure 3.5:

W (pa) = 32, Q(pb) = 5, R(pb) = 4 and W (pb) = 120. Notice that W (p) is al-

ways greater than or equal to W (pa) + W (pb) because the queries got distributed

35

among the sub-partitions. The sum of the sub-partitions’ workload estimations is

usually smaller than the original partition’s workload estimation. This is because

the total required number of query checks against every newly received data point

is decreased. Moreover, the probability of receiving new objects can be different for

each sub-partition. The sum of the sub-partitions’ workload estimations can be equal

to the original partition’s workload estimation only when the split point (sp) cuts all

the queries of the original partition and the probability of receiving new objects is

equal for both sub-partitions.

TrioStat estimates the workload of a machine W (m) by summing the workload

estimations of the partitions that m holds. To compare the machines according to

their workloads, the machine that is going to perform the comparison should ask

all machines to share their workload estimations. Hence, TrioStat requires minimal

network overhead. Moreover, R(S) can be computed in a common machine by getting

and summing R(m) of every machine. R(S) is a useful measurement that is used to

monitor the throughput of the system because it represents the number of objects

(data points and quires) that have been served by the system during the last round

of repartitioning.

36

4. SWARM: ADAPTIVE LOAD BALANCING IN

DISTRIBUTED SPATIAL DATA STREAMING SYSTEMS

This chapter addresses the challenges of adaptive load-balancing in distributed stream-

ing systems that processes spatial data. The chapter introduces SWARM, a light-

weight adaptivity protocol that continuously monitors the data and query workloads

across the distributed processes of the spatial data streaming system, and redistribute

and rebalance the workloads soon as performance bottlenecks get detected. SWARM

is able to handle multiple query-execution and data-persistence models. A distributed

streaming system can directly use SWARM to adaptively rebalance the system’s work-

load among its machines with minimal changes to the original code of the underlying

spatial application. SWARM tracks the changes of the workload’s spatial distribution

based on the workloads estimations provided by TrioStat.

This chapter proceeds as follows. Section 4.1 introduces the architecture of

SWARM. Section 4.2 discusses the spatial indexes that are used by SWARM. Sec-

tion 4.3 explains in details SWARM’s decentralised adaptive load-balancing protocol.

Section 4.4 presents SWARM’s algorithms to find the best way to repartition the

workload when re-balancing is needed. Section 4.5 describes how SWARM preserves

system integrity while re-balancing the system.

4.1 SWARM Architecture

SWARM works with any distributed streaming system that processes spatial data

using a data processing pipeline. SWARM is designed for tuple-at-a-time systems

(e.g., Apache Storm [3]) that target milliseconds latency and not for micro-batched

systems (e.g., Spark Streaming [5]) that target sub-second latency. SWARM does

not require changing the original code of the system’s executor machines, e.g., their

37

indexes, their way of handling data or processing queries. However, the data and the

query streams should be redirected to SWARM first. To stress the performance of

the system, we assume that the maximum arrival rate of the data stream is higher

than the processing capability of the system. This means that the application is

trying to fully utilize its machines to process as much data as possible. The main

requirement for the data points is to have geo-locations, e.g., Twitter is a good source

of geo-tagged tweets that are generated every second. SWARM supports snapshot

and continuous queries. A continuous query progressively reports the query results,

mainly the data points that satisfy the query’s spatial range and its other predicates.

Some applications are interested in the recent portion of the data, e.g., the most

recent hour. This interest can be expressed as a sliding or a tumbling window. Data

expires once it exits the window. SWARM will need to update TrioStat’s statistics

accordingly.

Figure 4.1 shows the architecture of SWARM and its connections with the dis-

tributed streaming system. SWARM is composed of two layers, the routing layer

and the execution load-balancing layer. SWARM replaces the partitioning layer of

spatial streaming applications (that have a partitioning layer). SWARM is placed on

top of the original executor machines m1, · · · ,mn and directly receives the incoming

streamed data and queries. The routing layer accepts new data points and queries,

and routes them to appropriate executor machines. The routing layer has multiple

GlobalIndex machines to avoid bottlenecks. GlobalIndex machines can communicate

with each other and with any executor machine. Each GlobalIndex machine has a

spatial grid index that divides the whole space into rectangular partitions. Each

executor machine is responsible for one or more partitions. Every new data point,

say x, or query is received by only one GlobalIndex machine that uses the index to

identify the partition, say px, that spatially contains x, then routes x to px’s executor

machine. One GlobalIndex machine, termed the Coordinator, has an additional role

other than routing. Section 4.2 explains that further. Having GlobalIndex machines

reduce the processing overhead, memory usage, and communication among executor

38

m1

DataQuery

Final Output

SW
A

R
M Ro

ut
in

g
Ex

ec
ut

io
n

Partitions HashTable
Statistics Manager

Load Balancing
Manager

Partitions HashTable
Statistics Manager

Load Balancing
Manager

GlobalIndex GlobalIndex

mn

1 g
p4

p7

p8

p5 p6

Executor Machines
m5m4m3m1 m2

p4

p7

p8

p5 p6

Executor Machines
m5m4m3m1 m2

Fig. 4.1. The architecture of SWARM

machines. The reason is that data points and queries of a partition will be localized in

one executor machine. A query will not be sent to all executor machines. Also, com-

munication among executor machines to aggregate the results is reduced. SWARM

uses GlobalIndex machines to adaptively load-balance the workload among executor

machines, as in Section 4.3.

SWARM’s second layer contains load-balancing units above the system’s original

executor machines m1, · · · ,mn. Each unit has a load-balancing manager, a statistics

manager, and a HashTable to index the partitions. Each unit communicates with

all other load-balancing and GlobalIndex machines. The unit receives data points

and queries only for the partitions that are under its control. SWARM uses Trio-

Stat(introduced in Chapter 3) as its statistics manager. The unit’s statistic manager

updates its statistics given the new object, as discussed in Section 3.2. Moreover, the

39

unit uses a HashTable to identify the partition(s), say p, that overlap the received

object, as in Section 4.2. Then, the original application code in the executor machine

processes this object on p. The load-balancing manager estimates the workload cost

of its executor machine periodically using the cost model in Section 3.3 using local

statistics. It shares this cost with one GlobalIndex machine. Executor machines with

the highest and lowest workloads, say mH and mL, respectively, are identified. mH

moves part of its workload to mL, as explained in Section 4.3 and Section 4.4.

4.2 Indexing and Initialization

SWARM does not require prior knowledge about the distribution of the incoming

data or queries. Initially, SWARM divides the whole spatial area evenly among all

executor machines. This section introduces the global and local indexes used by

SWARM.

4.2.1 The Global Index

SWARM uses a 2D spatial grid index in each GlobalIndex machine to divide the

space into grid cells of a predefined size C1 × C2 (refer to Figure 4.2). This global

index replaces the partitioning index of spatial applications that have a partitioning

layer. As in Figure 4.2a, each cell points to a partition that covers this cell. A

partition has a unique ID, partition borders, and the ID of the executor machine that

handles the partition. Thus, it takes O(1) operations to route an object. Figure 4.2b

gives an example for initial configuration of the index in the GlobalIndex machines

of a system with 5 executor machines m1, · · · ,m5 and 5 partitions p1, · · · , p5. The

patterns (colours) of the partitions link them to the executor machines that control

them.

This index routes the received queries and data points to the responsible execu-

tor machine(s). However, one of the GlobalIndex machines, termed the Coordinator,

has higher responsibilities for load balancing alongside routing incoming objects. Ini-

40

p4

p4
p4

p4
p4
p4

C2

C1 (8 cells)

(b) (c)

p4

p7

p8

p5 p6

p
13

p
9

p7

p8

p5 p6

p
11 p

14

p4
p4

p4 p4

Executor ID: m2

Top: 7
Bottom: 4

Left: 4
Right: 7

(a)

Executor Machines
m5m4m3m1 m2

Fig. 4.2. SWARM’s index for GlobalIndex machines

tially, the whole space is contained in one partition. The Coordinator creates the

initial index by recursively splitting the partition with the largest area into two equal

sub-partitions, until each executor machine has one partition. The splitting can be

horizontal or vertical depending on which side length is longer. Every time a partition

is split, say p1, the sub-partitions are given new unique IDs, say p2 and p3. Splitting

of a partition stops if a resulting sub-partition is smaller than a cell. Then, the in-

dex is shared with all the GlobalIndex machines. Moreover, the Coordinator sends

the information about each partition to the executor machine responsible for that

41

partition. The Coordinator is also responsible for identifying the two machines with

highest and lowest workloads in each load-balancing round. Every round, the Coordi-

nator receives from each executor machine only two numbers that help determine the

cost of all executor machines, as explained in Section 4.3. If the Coordinator fails,

another GlobalIndex machine takes over as the new Coordinator. This prevents a

single point of failure in the system. The decision of choosing a GlobalIndex machine

to be the new Coordinator is made by using the Byzantine agreement protocol among

all executor machines.

A hotspot is a region with a large amount of queries and high probability to

receive a lot of new data and queries. Figure 4.2c gives a possible configuration of

the index when a hotspot appears in the top-right corner of the space. Each load-

balancing round, the Coordinator requests from the machine with the highest cost

to move some of its partitions’ responsibilities to the machine with the lowest cost.

As in Figure 4.2c, the hotspot leads to splitting some partitions and moving others

to different machines. An executor machine can be responsible for any number of

partitions, e.g., m3 handles 3 partitions. p13 has a hotspot, but cannot be split

because its size equals a cell’s size. Thus, SWARM has an executor machine (m4)

responsible for only p13. As the hotspot migrates, m4 might become responsible for

other partitions.

Routing a data point is fast as it overlaps only one cell. However, a range query can

overlap multiple cells. A naive algorithm for finding which partitions overlap a query

can be visiting all cells that overlap this query. Algorithm 2 efficiently determines

which partitions overlap a query. The algorithm uses SWARM’s index and partition

structure.

Algorithm 2 can skip cells by using the partitions’ borders. It adds the coordinates

of the cell that overlaps the query’s top-left corner to the checkCell stack. If the

cell’s coordinates (c) taken from checkCell overlaps the query, the cell’s partition (p)

is added to the result. Also, two cells are added to checkCell: 1) the one after the

right border of p on the same row as c, and 2) the one below the bottom border of

42

Algorithm 2: queryOverlap(Query q)

1 Stack<CellCoordinate> checkCell

2 List<Partition> result

3 indexQuery iq = mapQueryToIndex(q)

4 checkCell.push(CellCoordinate(iq.left, iq.top))

5 while !checkCell.isEmpty do

6 CellCoordinate c = checkCell.pop

7 Partition p = gridIndex[c.x][c.y]

8 if (p not in result) && (c overlaps iq)

9 checkCell.push(CellCoordinate(p.right+1, c.y))

10 checkCell.push(CellCoordinate(c.x, p.bottom-1))

11 result.add(p)

12 end

13 end

14 return result

p and on the same column as c. The algorithm recursively takes and adds cells to

checkCell until the stack is empty.

4.2.2 The Local Index

SWARM adds a local index in each executor machine. Notice that this local

index is separate from any other index used in the user’s application code. Also,

SWARM does not interfere with the application logic in any other way. For example,

a user’s application for evaluating spatio-textual queries might be using a grid index

for maintaining data points or an R-Tree index for storing continuous queries. In

other words, user applications can be used as is in executor machines while still

using SWARM for load balancing. SWARM’s new local index in executor machines

receives data points and queries from the GlobalIndex machines. Then, it identifies

43

the required partition for processing the received data points or queries, and forwards

them to the user’s application for evaluation.

SWARM adds a HashMap index to each executor machine to easily find the

required partition when processing newly received data or queries. Each executor

machine uses its HashMap to index the partitions that are under its control. The

HashMap key is PartitionID that is the unique identifier of each partition.

m1

m5

Data

Query

HashMap

Data
Queries

Statistics

•

•

•

HashMap
PartitionID

Global
Index

m2

m4

Data Queries
Statistics
•

•
•

PartitionID
P5

P5

P11

P11

P8
Data Queries
Statistics
•

•
•

P8

m3

Fig. 4.3. SWARM with the HashMap of m1 and m5

Figure 4.3 illustrates the HashMap of the executor machines m1 and m5. The

GlobalIndex machines attach to every received data point or query the PartitionID

of the partition that overlaps it. This received data point or query is routed with

the PartitionID to the executor machine that is responsible for that partition. The

HashMap of m5 contains partition p8 while m1 has partitions p5 and p11. Each time

an executor machine receives a data point or query from a GlobalIndex machine, it

directly uses the attached PartitionID with the HashMap to find the structure of

44

corresponding partition in O(1). The structure of a partition maintains its metadata

(PartitionID, position in space, and size), data points, queries, and statistics. The

partition’s data points and queries are maintained using the code of the original

application.

4.3 Decentralised Adaptive Load Balancing Protocol

SWARM adopts a lazy repartitioning mechanism to balance the workload. It does

not over-react to transient changes in the workload so as not to overwhelm the system

by excessive load balancing activities. It rebalances the workload only if rebalancing

will enhance the system’s throughput and reduce its execution latency. Each round of

load balancing, SWARM considers only the machine, say mH , with the highest cost

for workload reduction. Moreover, workload reduction can only happen by moving

some of the partitions’ responsibilities to the machine, say mL, with the lowest cost.

Most applications that use distributed streaming systems heavily depend on the

network bandwidth and connection availability between machines. One of the main

objectives of SWARM is to minimize communication. SWARM achieves this objective

by breaking the process of load balancing into stages of local decision making. The

amount of local computations increases with each stage while the number of machines

performing the computations decreases significantly. SWARM uses an asynchronous

approach for communicating and applying new partitioning plan among executor

machines. Because SWARM uses TrioStat to estimate the workloads, all workload

estimations are computed locally using the local statistics in each machine, which

minimizes the network overhead.

Figure 4.4 illustrates communications, local computations, and local decision-

making between one of the executor machines, say mi, and the Coordinator. Load

balancing is triggered periodically in all executor machines, e.g., every 15 seconds.

At the beginning, each executor updates its statistics since the last round of load

balancing using Algorithm 1. Then, the numerator part of the cost equation, i.e.,

45

Num(C(mi)), is calculated using local statistics. Num(C(mi)) is sent to the Co-

ordinator along with R(mi). The Coordinator computes R(S) using Eqn. 3.4 after

receiving Num(C(mi)) and R(mi) from all executor machines. Then, the Coordinator

decides the best load balancing action.

The Coordinator
GlobalIndex Machine

Predefined time for new
load balancing round

Calculate Num(C(mi))
Send Num(C(mi))

and R(mi)

Calculate R(S)

Receive Num(C(mi)) and R(mi)
from all Executor Machines

mi
Executor Machine

Decide if rebalancing needed

Fig. 4.4. Workflow of load balancing decision

Flip Bad Start Good Great

Decision: Do Load Balancing
if same decision

taken 𝛽 times if (R(s) > preR(s)) TrueFalse

Decision

Fig. 4.5. Decision mechanism for load balancing

Load balancing in SWARM is an iterative process. As in Figure 4.5, the decision

mechanism has five stages, and has a structure that points to the current stage, and

that stores the decision made in the previous round. In each round, the Coordinator

46

makes one of two possible load-balancing decisions, either to rebalance the workload,

or to simply do nothing. The Coordinator applies the previous load-balancing decision

each round unless the Flip Decision (leftmost) stage is reached. The leftmost stage

flips the decision and resets the stage pointer to the Start stage. Initially, the Start

(middle) stage is selected, and the previous decision is set to ”Do Nothing”.

In every load balancing round, the Coordinator moves the pointer to the right if

the throughput has enhanced (R(S) > preR(S)). Otherwise, it moves the pointer to

the left. Thus, moving to the right indicates that the overall throughput is enhancing

and the decision performed in the previous round (iteration) has proven correct. This

mechanism insures that the current decision continues to be carried over into future

rounds until it is ineffective, and in this case, it is flipped. This avoids over-reacting

to the system’s transient fluctuations in performance.

When the same decision was taken for β number of times (e.g., 20), the stage

pointer is forced to move to the Flip Decision stage. This is to avoid sticking with

one decision for a long time while this decision is making the system stay in a sub-

optimal partitioning plan, e.g., if the Coordinator decides to do nothing each round

because the throughput keeps increasing in one round and decreasing in the next.

Forcing the system to try rebalancing may lead to better throughput. Otherwise,

the decision will be flipped again to do nothing after two rounds. In most situations,

SWARM will not stay in the same workload state for a long time because the workload

is continuously changing. Hence, the value of β is not critical for the performance of

SWARM.

Figure 4.6 shows the workflow when the Coordinator decides to rebalance. It sorts

all executors based on their costs, and identifies the machine with the highest and

lowest costs, mH and mL, respectively. The Coordinator requests from mH to reduce

its workload by migrating portions of it to mL. This message contains three numbers,

the cost of mL (C(mL)), R(S), and a unique un-used partition ID that mH can use

to create new partitions, if needed. mH tries to move portions of its partitions to mL,

as discussed in Section 4.4. If mH finds partitions to move, a new background task

47

mH
Executor Machine

Search for subset
or split to move

Order to reduce workload
with C(mL), R(S), and

uniquePartitionID

mL
Executor Machine

Move partition’s
information & queries

Inform the changes to
update the index

Inform all other
GlobalIndex Machines

with the changes

The Coordinator
GlobalIndex Machine

Sort machines based on
cost & identify mH and mL

Fig. 4.6. Workflow of rebalancing

is created to send the partitions’ information and their continuous queries to mL.

mL adds these partitions and continuous queries to its workload. After the move,

mH reports the changes to the Coordinator that forwards the changes to all other

GlobalIndex machines. They update their indexes using a latch-free background task.

The cells that point to the old partition will gradually point to the new partitions that

have new unique IDs. This allows the index to concurrently route new data during

the update. Section 4.5 discusses how the integrity of data and queries’ results is

preserved while migrating the workload between machines and while updating the

index. If mH cannot find a feasible workload reduction, it informs the Coordinator.

The latter identifies the next highest workload machine and treats it as mH , and

repeats the process.

When the distribution of the workload changes, SWARM might move some old

split partitions to different machines. This may result in having an executor machine

48

controlling partitions that are adjacent, i.e., sharing a boundary. Hence, there is no

benefit in keeping them separate. Moreover, they increase the overhead of maintaining

separate small partitions. Adjacent partitions are combined using a background task

that is triggered occasionally in all executor machines, e.g., every 5 hours. Every

executor machine merges any of its partitions that form a connected rectangle. When

an executor machine finds a possible merge, it creates the larger partition using a

unique unused partition ID that it requests from the Coordinator. Then, the executor

machine reports the changes to the Coordinator that, in turn, forwards the changes

to all the other GlobalIndex machines.

4.4 Workload Reduction by Repartitioning

mH can reduce its workload in one of two ways, and applies them in this order: 1)

move a subset of its partitions to mL. 2) split one of its partitions into two, and moves

one of them to mL. First, mH tries to reduce its workload using the first technique

because it requires less overall overhead. If the first technique does not succeed,

mH tries the second technique. The search for workload reduction is performed as a

background task.

Let PmH
be the set of partitions that mH controls. The numerator part of the

partitions’ cost (Num(C(pi))) is already computed by TrioStat, where pi ∈ PmH
.

From Section 4.3, C(mL), R(S), and a new unique partition’s ID are made available to

mH . The remaining of this section discusses the challenges of each case and proposes

efficient algorithms.

4.4.1 Searching for the Best Subset of Partitions to Move

Finding the best subset of PmH
to move means that after moving this subset from

mH to mL both machines will have approximately equal costs and workloads. Let

Cmax be the maximum cost of partitions that mH can move to mL without overloading

mL. Hence, Cmax = (C(mH)− C(mL))/2. Cmax serves as a guide to ensure that the

49

new workload plan will be better than the current one. Finding a subset of the

partitions that their total costs equals Cmax will result in equal workload for mH and

mL after moving the subset. mH searches for the subset that maximizes the total cost

of the partitions to be moved without exceeding Cmax. This is a direct application of

the Subset-Sum Problem (SSP), which is a special case of the 0-1 Knapsack Problem,

where the value of each item is equal to its weight [75]. In our case, the cost of

each partition j is used as the weight of each item j in SSP and Cmax is used as the

capacity of the knapsack. Although SPP is NP-Hard, there is an Approximate Greedy

Algorithm that guarantees a worst-case performance ratio of 1
2

with a time complexity

of O(n) [75]. SWARM applies the algorithm after sorting the partitions in descending

order of their costs. This increases the time complexity to O(klog(k)), where k is the

number of partitions in mH . However, sorting can result in better performance on

average without affecting the worst-case performance. Moreover, this extra sorting

step is necessary for the splitting algorithm that might be applied if a subset is not

found. Probing larger partitions first minimizes the number of moved partitions, and

hence, reducing the amount of information to be sent through the network.

The procedure used by mH is presented in Algorithm 3, where CmL
and CmH

are

the costs of the machines with the lowest and the highest costs, respectively. mH

calls this algorithm after receiving a request from the Coordinator (with Parameters

CmL
and RS) to reduce mH ’s workload. CmH

, PmH
(controlledPartitionsList), and

the cost of each partition p in mH (Cp) are available for use in the function.

4.4.2 Searching for Best Split for a Partition to Move

If mH fails to reduce its workload using the above technique, it tries to make

mH and mL costs approximately equal using the splitting technique. mH chooses

a partition p ∈ PmH
and splits it into two sub-partitions p1 and p2. mH calculates

the expected cost difference (Cdiff) between mH and mL when p1 is moved and p2 is

50

Algorithm 3: findSubset(CmL
, RS)

1 totalMoveCost = 0

2 moveSubset = empty list of partitions

3 Cmax = (CmH
− CmL

)/2

4 Sort controlledPartitionsList based on partitions’ cost from largest to lowest

5 for each partition ”p” in controlledPartitionsList do

6 if (Cp + totalMoveCost <= Cmax)

7 totalMoveCost += Cp

8 moveSubset.add(p)

9 if (totalMoveCost == Cmax)

10 break

11 end

12 end

13 end

14 return moveSubset

kept. mH tries to find the best split point for p that will make Cdiff = 0. This is an

NP-Hard problem. Thus, we use an approximate Greedy Algorithm.

SWARM considers the partition with largest cost (p) for splitting. If mH cannot

split p because it has reached the size of one cell, mH will try splitting the next largest

partition in cost. The list of partitions in mH can be directly used since it has been

sorted during the subset technique. mH searches for the best splitting point that

results in the minimum absolute cost difference Cdiff between mH and mL. Hence,

mH considers all possible vertical and horizontal split lines in p. The algorithm used

in SWARM reduces the number of possible split lines by performing a binary search

on the rows and columns of the statistics covering p that contain all numbers needed

to calculate Cdiff. Cdiff is computed as follows:

Cdiff = [(C(mH)− C(p)) + C(p2)]− [C(mL) + C(p1)]

51

Before the search, mH already has C(mH), C(mL), and C(p). This makes the search

depends only on C(p1) and C(p2). Let sp be the statistic’s row/column index of a

split point on p. C(p1) and C(p2) can be computed using Eqn. 3.5 and the maintained

local statistics in p as follows:

C(p1) = N(sp)×Q(sp)×R(sp)/R(S)

Q(p2) = Q(p)−Q(sp) + spanQ(sp+ 1)

R(p2) = R(p)−R(sp) + preSpanQ’(sp+ 1)

C(p2) = [N(p)−N(sp)]×Q(p2)×R(p2)/R(S)

The search ends when the algorithm finds a split point that causes Cdiff = 0. Oth-

erwise, the search continues till the end and the split point that achieves minimum

absolute value of Cdiff is used. In the worst case, mH performs 4 binary searches: two

searches on horizontal splitting points while considering the moved partition p1 to be

the upper or lower sub-partition, and two searches on vertical splitting points while

considering p1 to be the right or left sub-partition.

4.5 Preserving System Integrity

4.5.1 Correctness During Load Balancing

SWARM does not stop receiving and processing new data points and queries

during the process of load balancing. The critical point of losing a data point or

processing a data point twice can happen after identifying mH and mL. mH continues

to receive and process new data points and queries while searching for workload

reduction. Moreover, if mH decides to split a partition, it continues to use the old

partition while creating the two new sub-partitions. After mH finds either a subset

of partitions or a good split, mH sends the metadata of the moved partition/s and

their continuous queries to mL. After the move, mH informs the Coordinator about

the changes. Then, the Coordinator informs the remaining GlobalIndex machines.

Whenever a GlobalIndex machine receives the new changes from mH , it runs a latch-

52

free background task that updates the index according to the changes while using

the index for routing, as discussed in Section 4.3. During the update of GlobalIndex

machines, mH forwards new incoming objects that overlap the moved partition/s to

mL. mH keeps the metadata of the moved partition/s until their data are expired and

the next load balancing round starts. Starting a new load balancing round implies

that all GlobalIndex machines have finished updating their indexes, i.e., GlobalIndex

machines route all new objects that overlap the moved partition/s to mL. This

mechanism ensures that no objects get lost or processed twice during load balancing.

4.5.2 Correctness of Query Execution

Most applications of distributed streaming systems are focused either on the cur-

rent state or some limited extended state of the data. Limited extended state could

be based on a time window (e.g., sliding or tumbling window) or based on data

item count (count window) or some storage size (e.g., predefining the size of stored

data in the window). Every distributed streaming system has a specific form of data

expiration policy. Because data will eventually expire, SWARM reduces commu-

nication overhead by not moving data. SWARM needs to know whenever data

points are expired to stop tracking on which machine they are stored and to update

the statistics. SWARM moves the partitions with only their continuous queries. In

applications that support stateful operators (e.g., aggregate operators), the state is

stored in the query not in the partition. Hence, SWARM moves the queries and their

states with the migrated partition to their new executor before redirecting the stream.

As partitions are split and are moved to other machines, SWARM keeps a record

in the metadata of every sub-partition that links the sub-partition to its previous re-

sponsible machine and its parent partition. Before moving a partition to mL, mH adds

its machine ID as the previous responsible machine and the previous PartitionID as

the parent partition to the metadata of the moved partition. mH continues to hold

parent partitions and their data until all data become expired. Splitting or moving a

53

partition multiple times before the data expires might lead to a chain of partitions,

where each of them is linked to the previous one. Mostly, the chain of partitions will

remain short because In-memory systems tend to support short windows that make

data expire quickly.

A query may only need a subset of the chain of partitions to be involved in the

final result. When a partition, say p, is to answer a query q, the machine responsible

for p will check if its parent partition, say pp, exists and needs to be involved. If pp is

found, its responsible machine is asked to process q. All involved machines send their

answers directly to the machine that has q, say mq. mq waits for the next involved

machine in the chain to send the results of q. Every involved machine consults the

next involved machine in the chain to answer q. Depending on whether an involved

partition is expired or not, there are two ways to respond: 1) If the partition is expired,

its machine acknowledges mq and the previous involved machine in the chain that the

partition is expired. Hence, the previous involved machine in the chain breaks the

chain by cleaning the record of the previous responsible machine in the metadata of

the partition and becoming the last machine in the chain. 2) If the partition is not

expired, q’s results are sent to mq. Every involved machine sends an acknowledgement

message to mq after it is done sending q results. Acknowledgement messages contain

the number of result messages that were sent and the next involved machine ID in

the chain. mq keeps track of all involved machine IDs and the status of their results.

mq produces the final output after receiving all result messages and acknowledgement

messages from every involved machine. To produce the final output, mq combines all

received answers with the answers from its partition that overlaps q.

For example, assume that a partition p1 in executor machine m1 is split into p2

and p3. m1 adds to the metadata of both p2 and p3 the previous responsible machine

m1 and the parent partition p1. m1 keeps p2 and moves p3 to m2. Now, assume

that m2 receives a query q related to p3, and it needs old data. m2 finds that the

previous responsible machine in the metadata of p3 is m1. Therefore, m2 sends q to

m1 with p1’s ID as the target parent partition. If p1 is not expired, m1 applies q on

54

p1, and sends the results to m2 and an acknowledgement message. Otherwise, m2

acknowledges that p1 is expired to break the chain of partitions associated with p3.

After receiving the acknowledgement, m2 produces the final results by combining p3’s

results with any received results.

55

5. GUARD: DETECTION AND RESPONSE FOR

ATTACKS TARGETING ADAPTIVE LOAD BALANCING

IN DISTRIBUTED STREAMING SYSTEMS

This chapter reveals a new type of attacks that forces adaptive load-balancing mech-

anisms of distributed streaming systems into a continuous state of rebalancing. Fur-

thermore, the chapter proposes Guard, a solution that detects and responses to this

new type of attacks. Guard is general as it does not depend on a specific adaptive

load-balancing mechanism nor a specific distributed streaming application. Guard

requires minimal changes form the distributed streaming application. Guard uses

an unsupervised machine learning technique to separate malicious users from normal

users based on their behaviors. Guard does not block users until it is certain that

they are malicious.

The rest of this chapter proceeds as follows. Section 5.1 presents the attack model

on adaptive load-balancing mechanisms. Section 5.2 introduces Guard’s architecture

and its main component. Section 5.3 presents Guard’s collected features of the users.

Section 5.4 discusses Guard’s unsupervised detection mechanism. Finally, Section 5.5

presents Guard’s response mechanism.

5.1 Malicious Attacks on Adaptive Load Balancing in Distributed

Streaming Systems

The performance of a distributed streaming system is directly affected by how

balanced the workload among its machines. Data and query workload of distributed

streaming systems change rapidly. Moreover, the distribution of data and queries are

skewed, and this skewness changes with time and user interest. The usage of static

load-balancing techniques does not make the system fully utilize its machines, and this

56

leads to low throughput and high response time. Therefore, various approaches have

been proposed to adaptively load balance distributed streaming systems according to

data and query workload, e.g., STAR [42], Tornado [13], Ameoba [41].

Although using adaptive load-balancing techniques significantly improves the per-

formance of distributed streaming systems, they make the system vulnerable to at-

tacks. Attacks can be initiated using the knowledge that the system is using an

adaptive load-balancing technique to redistributes workload across the machines base

on changes of the workload. This type of attacks limits the availability and the

throughput of the system. Another objective of the attack can be to draw the atten-

tion of the system from focusing on serving real events. A different type of attacks on

adaptive load-balancing mechanisms tries to leak protected information to malicious

users. The next section reviles the attack model that can be initiated on the adaptive

load-balancing mechanisms of distributed streaming systems.

5.1.1 The Attack Model

Adaptive load-balancing mechanisms in distributed streaming systems strive to

maintain a high level of availability. In this chapter, we consider a new type of attacks

that aims to limit the availability of distributed streaming systems. The essence of

the attack is to force the load-balancing mechanism into a continuous state of re-

balancing. In particular, an attacker can trigger multiple rebalancing operations by

submitting a carefully designed sequence of queries that create malicious hotspots.

In addition to reducing the system throughput and availability, this type of attacks

can divert the system from serving real major events. Moreover, the attack can be

concentrated to make the system leak protected information.

To illustrate the attack, consider the following scenario in Figure 5.1. Initially,

there are 5 registered continuous queries (Q1, Q2, Q3, Q4 and Q5) that are distributed

among three machines as illustrated in Figure 5.1(a). Assume that this query dis-

tribution among three machines, m1, m2, and m3, is balanced. In this attack, the

57

(b) (c) (d) (e)(a)

x
Q2

Q1

(f)

Q3

x

x
Q2

Q1

Q3

x

x
Q1

Q3

x

x

Q2

Q1

Q3

x

x
Q2

Q1

Q3

x

x
Q2

Q1

Q3

x
Q2

Q4

Q5

Q4

Q5

Q4

Q5

Q4

Q5

Q4

Q5

Q4

Q5

m1

m2

m3

Time

Fig. 5.1. Example of attack model on a distributed streaming system that
contains three machines.

attacker can access the data stream that is being processed by the system. Moreover,

the attacker knows the data dimensions that are used to partition and distribute the

workload in the system. The dimensions can be speculated from the queries that

the application supports, e.g., spatial location, text topics, or hash values for more

general applications.

In Figure 5.1(b), the attacker submits four malicious continuous queries (in red)

to m1. Each malicious query is submitted once and is required to be checked against

every new data tuple that it overlaps with. As a result, the system detects that m1

becomes overloaded, and decides to rebalance the workload distribution by migrating

Q2 and one of the malicious queries to m2 (Figure 5.1(c)). Thus, the attacker has

successfully created a malicious hotspot that has triggered a rebalance operation

by submitting malicious queries. The effectiveness of the malicious hotspot can be

strengthen by choosing a specific key that has a high probability to overlap with

large amount of data. For example, in a spatial application, asking about different

restaurants in Chicago have higher probability for creating a hotspot than asking

about restaurants in the middle of the ocean.

Next, the attacker terminates the malicious continuous queries as shown in Fig-

ure 5.1(d). In this case, the system has to migrate Q2 back to m1 to restore the

58

balanced state. Note that this attack has resulted in triggering two rebalance oper-

ations. If both migrated queries were malicious at Figure 5.1(c), the system would

still be in a balanced state when the attacker terminates the queries. Moving on, the

attacker submits four more queries in Figure 5.1(e) that in turn result in one more

rebalance operation (Figure 5.1(d). As long as the attacker continues to succeed in

creating malicious hotspots, the system wastes its processing cycles continuously re-

balancing. Similarly, this attack can be performed by submitting snapshot queries

instead of continuous queries. However, the successful creation of malicious hotspots

requires submitting a large number of snapshot queries with a high rate. Therefore,

creating malicious hotspots by submitting snapshot queries requires consuming higher

amounts of resources from the attacker side than by submitting continuous queries.

In contrast, it is easier to detect the attack that sends a large number of queries with

a high rate.

This attack can be also used towards data exfiltration. In particular, an adversary

can create a malicious hotspot in a region that he/she does not have access permission

to. The load-balancing mechanism is oblivious to the access-control mechanism. The

load-balancing mechanism redistributes the data and queries by moving some of them

to another machine. Meanwhile, the adversary can perform eavesdropping attack

(sniffing or snooping) on the network to exfiltrate the data.

The attack can be performed by submitting malicious queries from one machine

(user) or multiple machines (users). In the case of using one user, it is going to be

easier to detect the attacker because this user will have activity that is much higher

than normal users. On the other hand, the total activity of the attack can be hidden

by initiating a coordinated and distributed attack where every involved malicious

user contributes a little to the attack. Hence, the activity of malicious users becomes

similar to the activity of normal users. However, collectively, this group of users

perform a distributed malicious attack that is harder to detect.

59

5.2 Guard Architecture

Executor Machines

Routing Machines

Hotspot Sensors

Query Stream Data Stream

St
re

am
in

g
Sy

st
em

Query Forwarder

Unsupervised Attack Detector

Di
st

rib
ut

ed

Real-Time Feature Engineering

Query Receiver

Blocked Users

Fig. 5.2. Architecture of Guard and its connections with the distributed
Streaming System

Guard is our proposed solution to detect and respond to attacks that aim to affect

the performance of distributed streaming systems through deceiving their adaptive

load-balancing mechanisms. Guard is composed of two components that are illus-

trated in Figure 5.2 in a blue striped pattern. Guard’s first and main component is

a separate unit that contains all the detection and response processes. The second

component, termed, Hotspot Sensor, is located inside every executor machine of the

distributed streaming application. Hotspot Sensors sense that a hotspot has triggered

the rebalancing mechanism, and collect raw information about the hotspot’s queries.

Then, Hotspot Sensors send the hotspot’s raw information to the main component to

be analyzed.

60

Guard is general in the sense that it does not require changes to the load-balancing

mechanism. Guard requires the following changes to the original code of the dis-

tributed streaming application: 1) Redirecting the query stream to be sent to the

main component of Guard. 2) Adding the Hotspot Sensors to every executor ma-

chine. 3) Calling the Hotspot Sensors before rebalancing, and giving them access

to the partition containing the hotspot. 4) Whenever rebalancing happens, moved

information should be encrypted to prevent data exfiltration.

Guard’s detection mechanism is triggered periodically every detection round to

check if the system is under attack. A short detection round introduces higher over-

head on the system but it reduces the time to stop an attack as soon as one happens.

However, Guard requires the detection round to be long enough to allow the adaptive

load-balancing mechanism to identify more than one hotspot during the detection

round and re-balance the workload accordingly. For example, the detection round in

our experiments is one minute, and it allows having a maximum of three hotspots to

be re-balanced.

Guard maintains two counters, namely RoundID and HotspotID. RoundID is a

global serial number that uniquely identifies a detection round. RoundID is used to

track at which round every query were requested. Gaurd increments RoundID once a

detection round ends. HotspotID is a global serial number that uniquely identifies the

next hotspot that will trigger the adaptive load-balancing mechanism to redistribute

the workload. HotspotID is initialized to 1 and it is incremented by one every time a

hotspot’s raw information is received from Hotspot Sensors.

Refer to Figure 5.2 for illustration. Guard’s main component is composed of

multiple processes. The Query Receiver receives every query request in the query

stream, e.g., newly issued snapshot queries, requests to register new continuous quires,

and requests to terminate old continuous quires. The Query Receiver attaches to every

query request the current RoundID and a UserID. The UserID is an identification

for the user’s machine that submitted the query request. The IP address of the

machine submitting a query request is used as the UserID for the request. The

61

Query Receiver passes the queries to the Real-Time Feature Engineering and the

Query Forwarder. The Real-Time Feature Engineering is the process that builds the

feature space in real-time by collecting and analyzing raw information from the Query

Receiver and the Hotspot Sensors. At the end of every detection round, the Real-Time

Feature Engineering finalizes the features and passes them to the Unsupervised Attack

Detector. The Unsupervised Attack Detector is the main process that finds if there

is an attack on the system and detects the malicious users involved in the attack.

The Unsupervised Attack Detector uses an unsupervised machine learning technique

to cluster users based on their behaviors, their interactions with each other, and

their relationships with the created hotspots. Then, it uses a rule-based technique to

decide if there is a cluster involved in an attack on the load-balancing mechanism of

the system. The Unsupervised Attack Detector stores malicious user IDs in a hash

table, called Blocked Users. The Query Forwarder forwards the queries that it gets

from the Query Receiver to the routing machines of the distributed streaming system.

However, it only forwards user queries that are not in the Blocked Users hash table.

The Query Forwarder distributes the query messages among the routing machines by

sending them in a round-robin fashion.

5.3 Real-Time Feature Engineering

Guard’s unsupervised detection technique relies on a set of features representing

the users of the system. These features are engineered to define a space that en-

ables separating normal users from the malicious ones. As time-series, Guard collects

measurements of these features periodically every detection round as a tumbling win-

dow [76, 77]. Guard maintains the features in a hash table with UserID as the key.

Table 5.1 lists all the features used by Guard, along with a brief description of each

feature. We categorize these features into two groups according to the source of the

data used to measure them: features from raw queries and features from Hotspot

Sensors.

62

Table 5.1.: Description of the features used by Guard

ID Feature Name Description

x1 New Queries Number of requested queries by the user

during the current round

x2 Deleted Queries Number of deleted queries by the user

during the current round

x3 LRB Involvement Number of hotspots that have triggered

Load Re-Balancing during the current

round and that contain at least one of

the user’s queries

x4 LRB Contribution Number of user’s queries found in any

hotspot that has triggered re-balancing

during the current round

x5 Hotspot Seq Sum of HotspotIDs that the user has

been involved in during the current

round. This number is a compressed rep-

resentation for the sequence of hotspots

that the user has been involved in

x6 - x10 Historical features Similar to x1 - x5 but with a time fading

function that captures the measurements

of previous rounds

x11 Hotspot Seq New Sum of HotspotIDs that the user has

been involved in during all rounds with

queries requested in the same round as

the hotspot creation round

Continued on next page

63

Table 5.1.: continued from previous page

ID Feature Name Description

x12 LRB Weighted Contribution Similar to x4 but it is calculated using

weights of queries based on how old they

are. Queries requested in older rounds

have lower weights

x13 LRB Queries Rate The percentage of weighted user’s queries

found in hotspots that triggered re-

balancing during the current round (x12)

out of the faded number of all user’s

queries that have been requested during

recent rounds (x6)

x14 Avg(LRB Queries Rate) The average of x13 values of the user, for

all the rounds that have a value different

than zero

The first subset of the features is engineered from the queries requested from the

system. These queries are forwarded to the feature-engineering process by the Query

Receiver. Guard measures these features as statistics for each user in a given detection

round. These features are calculated by counting the number of new requested queries

and the number of terminated queries for each user.

The second subset of features is engineered from the information collected by the

Hotspot Sensors. These sensors collect information about the users who have queries

in the partition that contains the hotspot. Then, the sensors forward the collected

information to the Real-Time Feature Engineering that uses the data to generate

hotspot-related features. Collecting information about hotspots by Hotspot Sensors

is explained in Section 5.3.1

64

Most of the significant features are hotspot-related features. These features are

designed to enable separating normal users from both single- and multi-user coor-

dinated attacks. For example, measuring the number of times the user’s queries

appear in hotspots that have triggered rebalancing is useful to detect single-user at-

tacks. On the other hand, Guard utilizes the engineered features Hotspot Seq and

Hotspot Seq new in Table 5.1 to reduce the distance between users involved in a

multi-users coordinated attack. Their numbers are compressed representations for

the sequence of hotspots that the user has appeared on. Every time the queries of the

user appear in a hotspot, the HotspotID is added to the previous value of Hotspot Seq.

Hotspot Seq new is calculated in a similar way but it only gets updated if at least

one of the queries is requested during the same round of the hotspot. These features

allow observing similarities among users according to their behavior of causing load

rebalancing.

Feature x12 in Table 5.1 is important to differentiate between the behavior of

normal users and malicious users in relation to hotspots. It represents the weighted

number of user’s queries found in any hotspot that have triggered rebalancing during

the current round. The weight of a query depends on when it has been requested.

Queries requested on older rounds have lower weight. Let Qt be the number of users’

queries found in hotspots during the current round t. Let t− i be the ith round before

t. Feature x12 is calculated using the following equation:

Feature x12 = Qt +
Qt−1

2
+
Qt−2

4
+
Qt−3

8
+
Qt−4

16

=
4∑

i=0

Qt−i

2i
(5.1)

Notice that the rounds used in Equation 5.1 are limited to the most recent five

rounds to reduce the network overhead. Moreover, queries of older rounds have a

small weight because their denominator increases exponentially. Therefore, if queries

of older rounds are to used in Equation 5.1, their weights will not have a big effect on

the value of Feature x12. Equation 5.1 uses a weighting method similar to the fading

65

method that is explained in the next paragraph. Hence, Feature x13 in Table 5.1 is

computed by dividing x12 by the faded number of new queries (x6).

Features x1 to x5, x12, and x13 in Table 5.1 are measurements for the current

detection round. The remaining features in Table 5.1 are historical features that

capture the measurements of the previous rounds. The historical features x6 to x10

are designed to have a fading effect that signifies recent behaviors over older behaviors.

The fading is applied by halving the measurement of the previous round and adding

it to the current round’s measurement. The purpose of the historical features is to

increase the robustness of the users’ representation by including their behaviors in

previous rounds. Feature x11 is an accumulated number. Feature x14 is an averaged

number over all rounds that the user has been involved in their hotspots. Feature

x14 is useful to detect abnormal behaviors. It is important to view Feature x14 over

previous rounds to examine if the abnormality persists or if it is just noise.

The last step performed in the feature engineering process is feature normalization.

This step is essential to prepare the features for Guard’s Unsupervised Attack Detector

by ensuring equal ranges for the features. Guard uses min-max normalization [78] to

transform the features to the range from 0 to 1, refer to Equation 5.2. The normalized

features are passed to the Unsupervised Attack Detector as a multi-dimensional array.

x′ =
x−min(x)

max(x)−min(x)
(5.2)

5.3.1 Collecting Raw Information about Hotspots

For every hotspot, Hotspot Sensors create a summary that includes UserIDs of

the users that have queries in partitions containing the hotspot and a list attached to

every UserID. As mentioned in Section 5.2, Guard attaches to every query a RoundID

to determine the round of when the query was requested. The attached list breaks

down the count of the user’s queries that have been found in the hotspot based on

the queries’ RoundIDs. The attached list includes the count of the queries that have

66

been requested during the latest five rounds only. Hence, users that have requested

all their hotspot queries in rounds older than five have an empty list. Limiting the

number of rounds to five is chosen to reduce the overhead of sending large summaries.

Moreover, the count of queries that are older than five rounds do not have large effect

on the features that are calculated based on this list, as discussed in Section 5.3.

Guard’s main component maintains the true current RoundID, as shown in sec-

tion 5.2. However, e very Hotspot Sensor maintains its own current RoundID that

gets updated based on the RoundID of the newest query that the Hotspot Sensor

reads. Therefore, Guard does not add an overhead to the system to synchronize

Guard’s main component and all Hotspot Sensors. The summary gets filtered while

being sent to the Real-Time Feature Engineering to include only the five most re-

cent rounds based on the Hotspot Sensor ’s local current RoundID. While receiving

the summary, the Real-Time Feature Engineering discards the information of extra

rounds based on the true current RoundID.

5.4 Unsupervised Attack Detector

Guard’s Unsupervised Attack Detector gets triggered periodically by the end of

every detection round. The detector learns how to separate malicious users from

normal users in an unsupervised manner, i.e., without the need to be trained with

a pre-labeled data. The Unsupervised Attack Detector clusters users based on their

behaviors and interactions using the K-Means++ algorithm [79]. K-Means is a well-

known unsupervised clustering technique [80] that partitions n data points into a

desired number of clusters (K). The centroids of these clusters, i.e., initially, the K

means are assigned randomly, then they are adjusted iteratively according to the avail-

able data. Subsequently, the data points can be clustered according to their distances

from the K centroids. K-Means++ is an implementation of the traditional K-Means

with a fast technique to choose the seeds, i.e., the initial centroids that, on average,

can produce more accurate results compared to other K-Means implementations.

67

Algorithm 4: attackDetector(Users Features U)

1 Cluster SC = All Users(U) . Suspicious Cluster

2 Cluster[2] C

3 do

4 C = K-Means++(SC, 2) . Cluster SC into 2

5 if ALQR(C[0]) > ALQR(C[1])

6 SC = C[0]

7 else

8 SC = C[1]

9 end

10 sd = StandardDeviation(SC.Hotspot Seq New)

11 while sd is large

12 Cluster N = All Users(U) − SC . Normal Cluster

13 if ALQR(SC) > ALQR(N)×β

14 if SC involved in hotspots during current round

15 if SuspiciousClustersList.contains(SC)

16 BlockedUsers.addUsersOf(SC)

17 else

18 SuspiciousClustersList.add(SC)

19 end

20 else

21 No Attack

22 end

23 else

24 No Attack

25 end

68

No

Apply K-Means on SC

Cluster 1 Cluster 2

SC = the cluster with larger ALQR

Calculate SC’s standard deviation
for its users’ Hotspot_Seq_New

If Small
Yes

N = cluster of all users not in SC

NoIf ALQR(SC)>ALQR(N)*𝛃

Yes

NoIf SC involved in

Yes

recent hotspots

If SC stored before in
Suspicious Clusters List

YesNo

Add SC to
Blocked Users

Add SC to
Suspicious Clusters List

Suspicious Cluster (SC) = all users

Normalized Users Features

No Attack

its users’ Avg(LRB_Queries_Rate)
which is the cluster’s average for
For each cluster, calculate ALQR,

Fig. 5.3. Flow chart for Guard’s unsupervised attack detection mechanism

69

Algorithm 4 lists the pseudocode for Guard’s unsupervised attack detection mech-

anism. Moreover, Figure 5.3 illustrates the internal processes of the algorithm in a

flow chart. The detection mechanism starts every time the Real-Time Feature En-

gineering passes the normalized features of the users to the detection mechanism.

Guard creates a cluster, termed the Suspicious Cluster (SC) that initially includes

all users with their normalized features. Guard clusters SC into two clusters using

the K-Means++ algorithm, where its K is equal to 2, and it uses the Euclidean dis-

tance. The anomalous behavior of attackers should be detected in a variety of normal

behaviors that are not predictable with a particular training set, and this prevents

the applicability of using supervised machine learning techniques. The behavior of

normal users is always changing due to the dynamic workload of real-time streaming

applications. For example, the normal behavior of users during a worldwide event is

different than when there is only a local event. Worldwide events can lead to higher

activity rates of data, queries, and hotspots.

After SC is divided into two clusters, one of them contains only normal users

while the other cluster requires further investigation. To differentiate between the

two clusters, Guard uses a feature (ALQR) for clusters to measure the collaborative

intention of the cluster’s users to create hotspots with their new queries. ALQR of

a cluster is computed by calculating the average for the Avg(LRB Queries Rate) of

the users in the cluster. Feature Avg(LRB Queries Rate) is explained in Section 5.3.

ALQR of a cluster is the cluster’s average for its users’ percentage of weighted queries

that are found in hotspots over all queries requested during recent rounds. Recall

that queries being requested in older rounds have lower weights.

To identify the cluster that requires further investigation, Guard computes ALQR

of each of the two clusters that K-Means++ produces. For a cluster to have a small

ALQR, it means that the users of this cluster do not intend to create hotspots with

their new queries. Hence, the cluster that has smaller ALQR contains normal users.

Therefore, Guard updates SC to be the cluster with the larger ALQR. Then, Guard

calculates the standard deviation for the Hotspot Seq New feature of SC’s users. The

70

standard deviation measures the similarity of SC’s users in their involvement in the

same hotspots. Having a small standard deviation (near zero) indicates that SC’s

users has been involved many times in the creation of the same hotpots. On the

other hand, a large standard deviation means that not all of the users in SC are

coordinating to create hotspots. When SC’s standard deviation is large, SC needs

to be clustered again using K-Means++ as before. Re-clustering continues until the

standard deviation becomes near zero. If re-clustering continues until the standard

deviation reaches exactly zero, it will ensure that all the users in the final SC are

involved in the exact hotspots and no normal users will be blocked by mistake. How-

ever, this might make Guard block portion of the malicious users during one round

while leaving the remaining to be blocked in a future round. This can happen when

malicious users target a spot where a genuine hotspot is already going to form. The

hotspot might get created fast, even before all coordinated malicious users contribute

to its creation.

Multiple re-clusterings can be required in some situations when the behavior of

malicious users is similar to some normal users and more than one group represent

the behavior of normal users. In these situations, having K-Means++ to produce two

clusters will result in having normal users in one of them and a mix of normal and

malicious users in the other cluster. The best K parameter for the K-Means cannot

be known beforehand because it changes continuously as a result of the changes in

the real-time workload and the change in the behavior of users. To overcome this

issue, Guard uses the recursive way of re-clustering the users into two clusters, where

every time one of the clusters can be excluded because it contains only normal users.

After the detection algorithm exits the recursive clustering phase, SC will contain

the users that might be malicious. Guard creates a new cluster (N) that contains

all the users except the ones that are in SC. Therefore, N contains only normal

users. ALQR of N is computed to represent the average behavior of normal users in

relation to hotspots. Unlike the query activities of normal users, a large percentage

of malicious users’ query activities are found in hotspots. Thus, ALQR of a cluster

71

containing malicious users is larger than ALQR of normal users. β is a constant

factor that represents the allowed distance from the average behavior of normal users

(ALQR(N)), so that a user is considered a normal user. When ALQR(N) times β is

larger than ALQR(SC), it means that the behavior of the users in SC is within the

allowed distance from the average behavior of normal users. Thus, users of SC are

normal and there is no attack. Otherwise, it is still possible that SC contains malicious

users. Guard blocks the attacks faster for lower β assignments. However, there is a

risk to falsely consider some normal users as malicious when β is small. Notice that

ALQR of the cluster that contains the malicious users increases each time they create

a malicious hotspot. Therefore, the attacks will eventually be blocked regardless of

the value of β. Empirically, we find that setting the value of β around 3 is a good

rule of thumb.

The next check performed on SC is to make sure whether or not its users are

involved in a hotspot during the current detection round. If they are not involved,

then there is no attack. Otherwise, SC is confirmed to be a cluster of suspicious users.

Guard will either add SC to the Suspicious Clusters List or confirm that its users

are malicious if the exact cluster has been added before to the Suspicious Clusters

List in a previous round. The users that have been confirmed to be malicious are

added to the Blocked Users hash table. If any cluster in the Suspicious Clusters List

does not become suspicious again by a specific number of detection rounds, it gets

removed form the list. A different random removal time is attached to every cluster

in the Suspicious Clusters List. The lower limit for the randomly generated removal

time should allow at least 5 detection rounds to pass. The attack is guaranteed to

fail when it does not harm the system by creating consecutive hotspots with a long

time between them. The upper limit for the randomly generated removal time should

be a long time that guarantees the failure of attacks. For example, the detection

round lasts for 1 minute in our experiments, while the removal time is generated

randomly between 5 and 30 minutes. If the attacker waits 30 minutes between the

creation of consecutive malicious hotspots, the system will not stay in a continuous

72

state of rebalancing and the attack will fail. This randomization makes the detection

mechanism resilient for the attack to bypass because it makes it harder to predict

the assigned removal time for malicious users in the Suspicious Clusters List. Also, it

ensures that the Suspicious Clusters List is always short and fast to search. Adding

a cluster to the Suspicious Clusters List before blocking its users gives Guard the

ability to make sure that all the users of this cluster coordinate to perform the attack.

Therefore, Guard can significantly reduce the possibility of blocking normal users by

mistake with other malicious users.

5.5 Response to Malicious Users

Guard responds to malicious users by simply blocking their new query requests

from reaching the distributed streaming application. Guard’s Unsupervised Attack

Detector adds the IDs of malicious users that have been detected to the Blocked

Users hash table. Every time the Query Forwarder receives a new query request, it

verifies that the sender of the request is not in the Blocked Users hash table before

forwarding the request to the distributed streaming application. Furthermore, new

queries received from blocked users are discarded.

Old continuous queries of the blocked users will eventually expire and get removed

from the system. Therefore, Guard does not remove old queries of the blocked users.

The attack affects the system only when it removes old queries and adds new ones

to make the system in a continuous state of rebalancing. Therefore, the system will

recover after rebalancing its workload that includes old queries of blocked users. Not

removing blocked users’ old queries allows Guard to be general in working with any

type of distributed streaming applications. The effect of the old queries of blocked

users on the system might be reduced by developing a mechanism that asks all ex-

ecutor machines to immediately remove these queries. The feasibility to develop this

mechanism depends on the application’s implementation and whether the benefits of

finding and removing the queries justifies the added overhead.

73

6. EXPERIMENTS

This chapter presents the performance evaluations of the proposed solutions: Trio-

Stat, SWARM, and Guard. In Section 6.1, we show the details of the experimental

setups and the used application. Section 6.2 analyzes the performance of online work-

load estimations, TrioStat. Section 6.3 evaluates the performance of our adaptive

load-balancing mechanism, SWARM. Section 6.4 conducts an extensive evaluation

of Guard’s performance in detecting and blocking attacks that target adaptive load-

balancing mechanisms.

6.1 Experimental Setup

We realize TrioStat, SWARM, and Guard in Apache Storm [3]. However, the

proposed solutions can be used with any other distributed streaming systems that

process spatial data streams in tuple-at-a-time manner.

6.1.1 Application and Dataset

The application is a location-aware publish-subscribe. The input stream is geo-

tagged tweets from Twitter. Users can subscribe to get tweets in a specific spatial

range by submitting continuous range queries. A tweet is geo-tagged as a point, say

d, in space, where s qualifies for a user’s subscription, say Query q, if d lies inside q’s

spatial range. Typically, before SWARM, each query gets replicated into all executor

machines in an R*-Tree [81]. Each point is directed to only one executor machine,

and is checked against all queries using the replicated R*-Tree. All the experiments

are performed from a cold start. The grid index of SWARM and TrioStat that divides

the whole space is of size 1000 × 1000. This size allows small cities in the US to be

74

covered by multiple cells. There are one million queries that are pre-loaded to every

system. The spatial side lengths of queries are 0.16% of the side length of the whole

space (about the size of a university campus).

Experiments are performed using a real dataset from Twitter and a synthetic

query workload. The used dataset is composed of 1 Billion geotagged tweets of size

140 GB in the US. The tweets are collected from January 2014 to March 2015. The

spatial data stream is made continuous and infinite by streaming the 1 Billion tweets

repeatedly from the beginning each time they finish. The query workload is composed

of continuous range queries. The focal points of the queries are determined using the

locations of the real tweets.

6.1.2 Cluster Setup

Experiments are performed on 6 Amazon EC2 instances. Every instance runs

Apache Storm 1.0.0 over Ubuntu 18.04.2. The Nimbus of Storm and a Zookeeper

server [82] are installed in one of the instances that is of type m5.xlarge with 4 vCPU

and 16 GB of memory. The remaining five instances are of type m5.2xlarge. Every

one of the five instances has 8 vCPU and 32 GB of memory. Every instance is

divided into 8 virtual machines, where each virtual machine has one vCPU and 4

GB of memory. Hence, they create a total of 40 virtual machines. The Tweets and

queries streams are produced by 10 virtual machines that act as Storm spouts. In

Guard’s experiments, one of these virtual machines also runs Guard as it does not

require continuous processing power. The remaining 30 virtual machines are divided

as 8 routing machines (GlobalIndex in SWARM) and 22 Executor machines. The

network bandwidth of the cluster is up to 10 Gbps.

75

6.2 Performance of the Online Workload Estimations

This section presents and analyzes the performance of TrioStat. TrioStat is re-

alized in the application to provide workload estimations. In the applications, the

routing machines distribute the workload among the executor machines according to

the partitions that each machine holds. The application starts a new repartitioning

round every 15 seconds. By the end of every round, the application asks TrioStat to

update the statistics, and request from all executor machines to send their workload

estimations (W (m)) and the number of newly received objects (R(m)) to one of the

routing machines.

0.41

58

0
10
20
30
40
50
60
70

Identify	p	of	new	
object	and	collect	

statistics

Update	statistics	to	
provide	workload	

estimations

Av
er
ag
e	
O
pe

ra
tio

n	
Ti
m
e	
(𝛍

se
c	
)

Fig. 6.1. Overhead of TrioStat in executor machines

Figure 6.1 illustrates the overhead of TrioStat operations by showing the average

time each operation takes in microseconds after running the system for an hour.

Figure 6.1 illustrates that TrioStat adds 0.41 microseconds to the processing time of

a new object to identify its partition and collect statistics about it. This demonstrates

TrioStat’s success in minimizing the added overhead to the processing of each new

object. At the end of every repartitioning round, TrioStat needs 58 microseconds on

76

average to update the statistics of all the partitions that an executor machine holds.

After this update, TrioStat can estimate the workloads in O(1), as in Section 3.3.

1
10
100
1000
10000
100000
1000000
10000000
100000000

10 20 40 80 160

0

Number	of	Executor	Machines	

TrioStat AQWA	

Co
m
m
.	O

ve
rh
ea
d	
of
	S
ta
tis
tic
s	
(B
yt
es
)

Fig. 6.2. Network overhead of TrioStat statistics

Figure 6.2 gives the network overhead of TrioStat’s decentralized statistics com-

pared to AQWA’s centralized statistics approach [15]. Notice that the results are

given in logarithmic scale. AQWA’s statistics require maintaining one number per

cell to count the data points, and four numbers per cell to count the queries. The four

numbers in each cell are required to use the Euler Histogram [46] to count queries

in a partition without re-counting queries that overlap multiple cells. Thus, AQWA

collects the 5 statistics for every cell in the machine that holds the cell. By the end of

every repartitioning round, all the collected statistics should be sent to one machine

in order to be combined and used for workload estimation. Figure 6.2 compares the

two approaches by measuring the number of bytes needed to be sent to one of the

machines to monitor the performance of the system, compare the workload of all

machines, and decide accordingly if repartitioning is needed. TrioStat’s decentralized

approach outperforms the centralized approach because TrioStat requires sending

77

only two statistics per executor machine. The two numbers are the workload es-

timate of the machine (W (m)) and the number of the newly received objects by the

machine (R(m)). In contrast, the centralized approach requires sending five statis-

tics per cell in the system, i.e., five million statistics for the 1000 × 1000 grid that

divides the space. TrioStat will always outperform the centralized approach because

each machine can hold at least one cell sized partition, i.e., TrioStat’s machines will

send 2 statistics per machine while the centralized machines will send 5. However,

having every machine holds only one partition with one cell is not practical. Hence,

the grid size will be increased and that will increase the amount of statistics that the

centralized approach have to send.

0.0E+0

5.0E+6

1.0E+7

1.5E+7

2.0E+7

1 100 10000 1000000

N
um

be
r	o

f	S
ta
tis
tic
s

Number	of	Partitions

TrioStat	(Best	Case) TrioStat	(Worst	Case) AQWA

Fig. 6.3. Total Storage for the statistics while varying the number of
partitions

TrioStat requires having 8 numbers stored for every row and column of every

partition. 5 of them are for the required statistics and 3 for the statistics collectors.

Therefore, the storage that TrioStat requires is distributed across the machines ac-

cording to the distribution of the partitions. On the other hand, AQWA requires

storing a total of 10 numbers per cell. 5 of the numbers are used to collect the

78

statistics and they are stored across the machines according to the distribution of the

partitions. However, the remaining 5 numbers are all stored in a centralized machine

to aggregate the collected statistics and can be used for workload estimation. This

results in high storage overhead in one of the machines. Figure 6.3 gives the results

of analyzing the total storage that TrioStat requires for statistics in comparison to

AQWA while varying the number of partitions that divide the whole space. The

grid that divides the space is 1000 × 1000 resulting in 1 million cells. Figure 6.3

gives the number of partitions in logarithmic scale between having 1 partition and

1 million partitions (all partitions are composed of a single cell). The required stor-

age for TrioStat’s statistics depends on the number of partitions and their shapes.

Since TrioStat maintains statistics for every row and column of every partition, the

total storage of TrioStat increases with the increase in the total circumferences of

the partitions. Therefore, TrioStat requires the minimum storage when all partitions

are squares (Best Case). On the other hand, The maximum storage (Worst Case)

happens when the maximum number of partitions is of size 1 X grid side length.

There is a fast increase in the worst case of TrioStat in Figure 6.3 before having 1000

partitions (equivalent to grid side length) because all partitions can be of size 1 X

grid side length except one partition. In this worst case scenario, any increase in the

number of partitions up to 1000 will result in increasing the total circumferences of

the partitions by two times the grid side length. The increase in the worst case slows

down after having more than 1000 partitions because any split after having 1000

partitions of size 1 X grid side length results in increasing the total circumferences

of the partitions by exactly two. When the number of partitions become very large,

each partition will be formed of very few cells. In this case, TrioStat requires higher

storage than AQWA. However, it is not practical to have a large number of small

partitions in the system. This is because having a large number of small partitions

results on duplicating queries in a large number of partitions that needs to commu-

nicate to produce queries’ final results. Usually, neighboring partitions in the same

machines gets combined to reduce the overhead of query execution, which will result

79

on having medium sized partitions. Hence, having a large number of partitions that

is close to the number of cells in the grid may never happen.

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

0 1600 3200 4800 6400

N
um

be
r	o

f	S
ta
tis
tic
s

Grid	Side	Length

TrioStat	(Best	Case) TrioStat	(Worst	Case) AQWA

Fig. 6.4. Total Storage for the statistics while varying the grid size

Figure 6.4 gives the results of analyzing the total storage that TrioStat requires

for statistics in comparison to AQWA while varying the size of the grid that divides

the whole space. The grid side length varies between 100 and 6400 cells. Notice that

the number of statistics is represented in logarithmic scale. The number of partitions

is fixed to be 1000 partitions. TrioStat outperforms AQWA in all cases. The gap

between TrioStat in the best case and the worst case is small when the side length of

the grid is less than 1000 (the number of partitions) for the same reason explained in

the previous paragraph.

80

6.3 Performance of the Adaptive Load Balancing

This section presents the results of testing SWARM against 3 other approaches:

1) Replicated : New queries are replicated into all executor machines, each covering the

whole space. In contrast, a new data point is sent to only one executor machine in a

round-robin fashion. 2) Static Uniform Grid : The whole space is evenly partitioned

among all executor machines. 3) Static Grid Based on History : The partitioning

of the whole space is determined based on observing a limited history of the data

and query workloads. The whole space of Static Grid Based on History is partitioned

offline based on 400K data points and 200K queries taken from the dataset. TrioStat’s

cost model is used in the third approach with the limited history to partition the

workload. Hence, the costs of all executor machines are almost equal.

As mentioned, our cluster is composed of 40 virtual machines. 10 virtual machines

are Storm spouts that produce the tweets stream and the queries. The remaining 30

virtual machines are executor machines in the Replicated approach. In SWARM and

the other two static grid approaches, the 30 virtual machines are divided as 8 routing

machines (GlobalIndex in SWARM) and 22 Executor machines. The machines’ ratio

is chosen after conducting an empirical study. We find that a good starting ratio is

1:3 (GlobalIndexes:Executors). All the used approaches store continuous queries in

the R*-Tree index. SWARM starts a new load balancing round every 15 seconds.

6.3.1 Capability and Execution Latency

One performance measure that we use is the Units of Work measure, which is

the number of tuple checks per second against queries. Units of Work is calculated

by multiplying the number of queries in the system by the number of processed

tuples per second. We use Units of Work in place of the throughput of the system

as the former provides a fairer comparison because it reflects the overall amount of

checks (work) that is conducted by the system regardless of the selectivities of the

queries. Figure 6.5a gives the average Units of Work after running the system for

81

0

1000

2000

3000

4000

5000

0 10 20 30 40 50

Ex
ec
ut
io
n	
La
te
nc
y	
(µ

	s
ec
)

Number	of	Queries	(Millions)

Static	Grid	Based	on	History Replicated

(b)

1
0E+00

3E+11

5E+11

8E+11

1E+12

1E+12

2E+12

2E+12

0 10 20 30 40 50

0

Number	of	Queries	(Millions)

SWARM Static	Uniform	Grid

(a)

1

1.9E12

1.6E12

1.4E12

1.1E12

8.1E11

5.4E11

2.7E11

0.0E00	

U
ni
ts
	o
f	W

or
k	
(Q
ue

rie
s	X

	T
up

le
s\
Se
c)

Fig. 6.5. Capability and execution latency

an hour. SWARM outperforms the other approaches while varying the number of

continuous queries in the system. On average, SWARM achieves 200% improvement

over Static Grid Based on History. SWARM performance saturates after 32 million

queries as the system reaches its peak capacity for the used tweets distribution. The

Replicated achieves better performance than both static grid approaches between 8

and 16 million queries because of better workload distribution among the system’s

machines. However, Replicated fails to support more than 16 million queries due to

high memory overhead as all queries and indexes are replicated on all machines.

Figure 6.5b shows the average execution latency in microseconds while varying

the number of queries after running the system for an hour. SWARM achieves the

lowest average execution latency compared to other approaches. Replicated achieves

lower average execution latency than both static grid approaches. However, it fails

to support more than 16 million queries. The incremental rate of SWARM’s average

execution latency is very small compared to the other approaches. SWARM reduces

execution latency on average 4x compared to Static Grid Based on History.

82

6.3.2 Reaction to Hotspots

We use the term Hotspot to refer to a spatial region that receives a large amount

of queries and/or data points that is likely to persist for some duration of time. This

definition of a hotspots excludes spikes of heavy workloads that do not persist for

a significant duration of time. Twitter real dataset contains thousands of hotspots,

where lots of tweets overlap in location and in time. We are interested in observing

how SWARM reacts to various types of hotspots in contrast to the approaches. Hence,

several scenarios of hotspots are created by synthetically redirecting a percentage of

the data spouts to a specific location in the US. The normal Twitter dataset with

its hotspots is used at the beginning and at the end of the experiments’ time line.

By default, the locations of the data points and queries that compose a hotspot’s

are generated inside a square range with a spatial side length of 15% of the whole

space using a uniform distribution. All queries in a hotspot are instantiated during

one minute of the hotspot’s start time. This is to test how fast SWARM reacts to

extreme hotspot situations.

0E+00

5E+11

1E+12

2E+12

2E+12

3E+12

3E+12

0 10 20 30 40 50

0

Time	(Min)

SWARM Replicated Static	Uniform	Grid Static	Grid	Based	on	History

Data	Intensity
of	Hotspot
Max	40%

1M	

2M	Queries

1M	

3.0E12

2.5E12

2.0E12

1.5E12

1.0E12

5.0E11

0.0E00	

U
ni
ts
	o
f	W

or
k	
(Q
ue

rie
s	X

	T
up

le
s\
Se
c)

Fig. 6.6. Uniform distribution hotspot with normal distribution data in-
tensity

83

Every Figure from 6.6 to 6.10 shows a timeline for the average Units of Work per

minute. The axis scale of the Units of Work is the same across all experiments. The

dashed line represents the number of queries in the system. Figure 6.6 compares the

performance of all approaches with the appearance of one hotspot. The data intensity

of the hotspot follows a normal distribution (the shaded area in the figure). The

hotspot is created by redirecting up to 40% of the data spouts to the lowerleft corner of

the US. As the figure indicates, SWARM outperforms all other approaches. SWARM

achieves higher performance during the hotspot than before and after the hotspot.

SWARM’s higher performance is due to having a better chance to redistribute the

uniformly distributed hotspot. Both of the static grid approaches suffer during the

hotspot because only a small set of their executor machines become overloaded with

the hotspot. During the regular Twitter hotspots, Static Grid Based on History

achieves better performance than both Static Uniform Grid and Replicated. During

the synthetic hotspot, it has the worst performance because its partitions are pre-

determined using a limited history of Twitter’s normal dataset. The sudden increase

and drop in processing performance is due to the back-pressure of the spouts that

periodically makes the spouts try to increase the data injection rate. The performance

of all approaches return to normal after the disappearance of the hotspot.

Figure 6.7 gives the performance when the hotspot’s data points are generated

using normal distribution inside the hotspot’s region instead of using a uniform distri-

bution. The normal distribution’s variance is 20% of the hotspot’s spatial side length.

SWARM outperforms all the other approaches. SWARM has lower performance in

the case of the normal-distribution hotspot in contrast to the uniform-distribution

hotspot. The reason is that there are higher levels of spatial overlap among the data

points and the queries inside the normal distribution hotspot that makes it harder

for SWARM to find a new partitioning that distributes the workload evenly.

Figure 6.8 gives the performance when a uniform distribution hotspot appears

directly with maximum data intensity. The data intensity of the hotspot follows

a step function. Although this type of hotspots is uncommon, SWARM manages

84

0E+00

5E+11

1E+12

2E+12

2E+12

3E+12

3E+12

0 10 20 30 40 50

0

Time	(Min)

SWARM Replicated Static	Uniform	Grid Static	Grid	Based	on	History

Data	Intensity
of	Hotspot
Max	40%

1M	

2M	Queries

1M	

3.0E12

2.5E12

2.0E12

1.5E12

1.0E12

5.0E11

0.0E00	

U
ni
ts
	o
f	W

or
k	
(Q
ue

rie
s	X

	T
up

le
s\
Se
c)

Fig. 6.7. Normal distribution hotspot with normal distribution data in-
tensity

0E+00

5E+11

1E+12

2E+12

2E+12

3E+12

3E+12

0 5 10 15 20 25

0

Time	(Min)

SWARM Replicated
Static	Uniform	Grid Static	Grid	Based	on	History

Data	Intensity
of	Hotspot
Max	40%

2M	Queries

1M	

3.0E12

2.5E12

2.0E12

1.5E12

1.0E12

5.0E11

0.0E00	

U
ni
ts
	o
f	W

or
k	
(Q
ue

rie
s	X

	T
up

le
s\
Se
c)

Fig. 6.8. Uniform distribution hotspot with step data intensity

to overcome the drop in performance. SWARM experiences a sudden drop in per-

formance immediately after the hotspot starts because SWARM does not complete

redistributing the partitions while some of the machines become overloaded, and this

85

triggers a backpressure from the Storm spouts to reduce their data injection rates.

Once SWARM completes the redistribution of the partitions, the spouts’ backpressure

re-increases the data injection rate slowly.

0E+00

5E+11

1E+12

2E+12

2E+12

3E+12

3E+12

0 10 20 30 40 50

0

Time	(Min)

SWARM Replicated Static	Uniform	Grid Static	Grid	Based	on	History

Data	Intensit
of Hotspots

Max	20%	Each

1M	

2M	Queries

1M	

3.0E12

2.5E12

2.0E12

1.5E12

1.0E12

5.0E11

0.0E00	

U
ni
ts
	o
f	W

or
k	
(Q
ue

rie
s	X

	T
up

le
s\
Se
c)

Fig. 6.9. Two overlapping hotspots (H1 and H2) in different locations

Figures 6.9 and 6.10 give the results when having two concurrent hotspots in two

different locations. Hotspots H1 and H2 are located in the lowerleft and upperright

corners of the US, respectively. Each hotspot is created by redirecting up to 20% of

the data spouts, i.e., each hotspot has half the data intinsity of the hotspots in the

previous expermints. Figure 6.9 gives the performance results when the two hotspots

(H1 and H2) overlapping in time. SWARM achieves similar performance to that in

Figure 6.6. Thus, SWARM is not affected by the number of simultaneous hotspots

or their spatial locations. The intensity and distribution of the hotspots are the main

factors that affect SWARM’s rebalancing performance.

Figure 6.10 gives the performance when Hotspot H2 appears directly after Hotspot

H1 disappears. This experiment illustrates that SWARM can quickly react to the

changes in workload distribution. However, the performance of SWARM slightly

drops at the start of H2 because SWARM needs to register the new hotspot queries

as well as move some of them to other machines to rebalance the system. This slows

86

0E+00

5E+11

1E+12

2E+12

2E+12

3E+12

3E+12

0 10 20 30 40 50 60 70

0

Time	(Min)

SWARM Replicated Static	Uniform	Grid Static	Grid	Based	on	History

Data	Intensity
of Hotspot		H1

Max	20%	

Data	Intensity
of Hotspot	H2
Max	20%	

1M	

1.5M	Queries1.5M	Queries

1M	

3.0E12

2.5E12

2.0E12

1.5E12

1.0E12

5.0E11

0.0E00	

U
ni
ts
	o
f	W

or
k	
(Q
ue

rie
s	X

	T
up

le
s\
Se
c)

Fig. 6.10. Two consecutive hotspots (H1 and H2) in different locations

down the processing of the new incoming data during that time. After applying

the new partitioning plan, SWARM achieves similar performance as the performance

during Hotspot H1.

0

15

30

45

60

75

90

0 5 10 15 20 25 30 35

CP
U	
Ut
ili
za
tio

n	
(%

)

Time	(Min)

SWARM Static	Grid	Based	on	History

(a)

0

15

30

45

60

75

90

0 5 10 15 20 25 30 35

N
et
w
or
k-
In
	(%

)

Time	(Min)

(b)

AVG
MAX

MIN

Fig. 6.11. CPU and network utilization

Figure 6.11 gives the CPU and network utilization averages over 5 minutes for the

cluster’s virtual machines. Also, the minimum and the maximum utilization average

achieved by a machine is presented. The utilization is measured during the run of

87

the experiment presented in Figure 6.6. The drop in CPU and network utilization

after 10 minutes of running the experiment happens because the hotspot starts at

that moment. Figure 6.11a illustrates that SWARM’s average CPU utilization is

improved and the gap between the minimum and maximum utilized machines gets

smaller as SWARM redistributes the hotspot workload among the other underloaded

machines. For Static Grid Based on History, the overloaded machines affect the

performance of the whole system because the backpressure of the spouts makes them

reduce the injection rate to match the processing rate of the slowest machine. Before

running the experiment, we test the network utilization to estimate the network’s

achievable maximum bandwidth, which is found to be 80% of the maximum advertised

network bandwidth. Figure 6.11b illustrates that SWARM almost reaches the highest

achievable network utilization. This highlights that the bottleneck in SWARM is

moved from being in the processing power to being in the network bandwidth.

6.3.3 Overhead of the Adaptive Load Balancing

4

94

2
44

0

100

200

300

400

(1)	Route	new	
object	to	its	
executor

(2)	Update	global	
index	after	
rebalancing

(3)	Update	the	
cost	of	a	machine

(4)	Rebalancing	
decision	making		
and	calculations	

0

400

300

200

100

0

Av
er
ag
e	
O
pe

ra
tio

n	
Ti
m
e	
(𝛍

se
c	
)

Fig. 6.12. Overhead of SWARM operations in GlobalIndex machines

88

Figures 6.12 and 6.13 illustrate the overhead of SWARM operations by showing

the average time each operation takes in microseconds after running the system for

an hour. Figure 6.12 presents the operations of the GlobalIndex machines, while

Figure 6.13 presents the operations of the executor machines. Note that as we go

from operation (1) to (4) in both figures, the frequency of performing the operation

and the number of machines performing it are significantly decreased. Figure 6.12-(1)

gives the time it takes for the GlobalIndex machines to find the responsible executor

machine for a newly received object and route this object. Figure 6.12-(2) shows the

required time to update the index of a GlobalIndex machine according to a moved

subset or split. Figure 6.12-(3) and 6.12-(4) shows the operations that get executed

only in the Coordinator to receive the executors’ cost, finding if rebalancing is needed,

and identifying mH and mL.

0.41
61

374

35

0

100

200

300

400

(1)	Identify	p	of	
new	object	and	
collect	statistics

(2)	Update	
statistics	and	
send	cost

(3)	Find	subset	or	
split	to	move	and	
update	its	stat.

(4)	Update	index	
according	to	
moved	p

400

300

200

100

0

Av
er
ag
e	
O
pe

ra
tio

n	
Ti
m
e	
(𝛍

se
c	
)

Fig. 6.13. Overhead of SWARM operations in executor machines

Figure 6.13-(1) gives the time added (overhead) to the processing of a new object

to identify its partition and collect its statistics. This shows the success of SWARM

in minimizing the added overhead to the processing of each new object. At the end

of every load-balancing round, the time of Figure 6.13-(2) is needed to update the

statistics, compute the cost, and send the cost to the Coordinator. Figure 6.13-(3)

89

gives the required time for mH to find a workload reduction, update the statistics,

and move the partition(s) to mL. Figure 6.13-(4) gives the required time for mL to

receive a moved partition and update mL’s index accordingly.

90

6.4 Performance of Detecting and Blocking Attacks Targeting Adaptive

Load Balancing Mechanisms

This section presents the performance of Guard during different attack scenarios.

Guard is integrated into SWARM to protect it from attacks. SWARM decides if

rebalancing is required every 15 seconds. The duration of Guard’s detection round is

one minute. This allows a maximum of three hotspots to be re-balanced by SWARM

during a detection round.

The system is pre-loaded with 1 million continuous queries coming from 110 users.

Users’ activities consist of registering new continuous queries and terminating old

continuous queries. The default settings of the system have 100 normal users with

total activities of 600 Queries/Sec (Normal Activity) and 10 malicious users involved

in the attack with total activities of 600 Queries/Sec (Malicious Activity).

Queries of the normal users are determined based on the locations of real-tweets

as described in Section 6.1.1. This creates natural hotspots in the system based on

real Twitter activity. Real-life workloads are often skewed [83]. Normal Users’ activ-

ities are assigned to normal users using Zipf distribution [84–87]. We configure the

Zipf distribution to follow the 80/20 rule [88, 89]. This results in almost 80% of the

activities coming from 20% of normal users. It puts the system in a real-life situa-

tion where it has users with varying activity levels. To maximize the attack effect,

malicious users involved in the attack follow a uniform distribution for their mali-

cious activity. Malicious users want to maximize their activity in creating malicious

hotspots while maintaining similar activity rate as that of normal users.

At any moment of time, the system is serving on average 1 million continuous

queries because the number of new registered queries are almost equal to the number

of terminated queries. This is to eliminate the effect of serving higher or lower number

of queries on the performance of the system, to focus only on the effect of the attack.

Malicious users are responsible for 100 thousand queries when there is an attack while

normal users are responsible for 900 thousand queries. When there is no attack,

91

normal users are responsible for the whole 1 million queries. Malicious users register

their 100 thousand queries to a targeted location while removing their older queries

from the previous targeted location. Therefore, the intensity of the malicious activity

determines how fast malicious hotspots are created and how fast the targeted location

changes. The attacker chooses the location of the next malicious hotspot based on

the locations of a tweets sample taken from the current data stream.

6.4.1 Attack Effect on Throughput

0
100
200
300
400
500
600
700
800

0 5 10 15 20 25 30Th
ro
ug

hp
ut
	(T
ho

us
an

d	
Tu
pl
es
\S
ec
)

Time	(Min)

No	Attack,	150	Additional	Normal	Activity No	Attack
Normal	Activity:	600	&	Malicious	Activity:	150	Queries/Sec

Attack	Start

Attack, No	Guard Attack,	Guard

Fig. 6.14. The effect of an attack with malicious activity rate 150
queries/second on the system’s throughput

Figures 6.14, 6.15, 6.16, and 6.17 shows a timeline for the system’s throughput

in terms of thousand tweets processed per second during every minute. The figures

compare the throughput while there is an attack or no attack on the system. The

figures present the effect of the attack on the system while varying malicious activity

rates to 150, 300, 600, and 1200 queries/second, respectively. The attack starts at

Minute 5. The figures present the difference that Guard makes when there is an

92

0
100
200
300
400
500
600
700
800

0 5 10 15 20 25 30Th
ro
ug

hp
ut
	(T
ho

us
an

d	
Tu
pl
es
\S
ec
)

Time	(Min)

No	Attack,	300	Additional	Normal	Activity No	Attack
Normal	Activity:	600	&	Malicious	Activity:	300	Queries/Sec

Attack	Start

Attack, No	Guard Attack,	Guard

Fig. 6.15. The effect of an attack with malicious activity rate 300
queries/second on the system’s throughput

attack on the system. Also, they show how the system recovers from the attack after

Guard detects the malicious users and blocks them. All the figures show a common

line representing when there is no attack and the total normal users’ activity is 600

queries/second. Each sub-figure presents the results when the malicious activity is

replaced by an equivalent increase in the total normal users’ activity. This is to show

the effect of registering and terminating more queries on the system and how the

system can adapt to the hotspots that normal users create. Notice that there is a

very small decrease in the throughput when there is an extra-normal activity and no

attack. Hence, it is clear that the reason for decreasing the throughput is the way

malicious users use their extra activity, not the overhead that comes with the extra

activity.

The malicious activity in Figure 6.14 is small. Hence, the attacker does not

succeed most of the time in creating strong malicious hotspots that make the system

in a continuous state of rebalancing. Notice that Guard completely blocks the attack

93

after the creation of its second successful malicious hotspot. This complies with

Guard’s design that requires at least two malicious hotspots to be created before

blocking malicious users. Guard puts higher penalty on blocking legitimate users

than on allowing malicious users to affect the system a little longer before being sure

they are malicious and blocking them. Note that during this experiment the activity

of the malicious users are very small compared with normal users.

Increasing malicious activity to 300 queries/second in Figure 6.15 shows more

success for the attack with the absence of Guard. The attack makes the system lose

more throughput most of the time. Guard detects and blocks the attack. The system

recovers after Guard blocks the attack and follows a similar performance as the one

for the experiment without the attack.

0
100
200
300
400
500
600
700
800

0 5 10 15 20 25 30Th
ro
ug

hp
ut
	(T
ho

us
an

d	
Tu
pl
es
\S
ec
)

Time	(Min)

No	Attack,	600	Additional	Normal	Activity No	Attack
Normal	Activity:	600	&	Malicious	Activity:	600	Queries/Sec

Attack	Start

Attack, No	Guard Attack,	Guard

Fig. 6.16. The effect of an attack with malicious activity rate 600
queries/second on the system’s throughput

Figure 6.16 shows the results when malicious activity is 600 queries/second. The

increase in malicious activity decreases the throughput more on average and makes it

reaches lower minimum throughput. Note that during the experiments of Figure 6.16,

94

the activities of malicious users are similar to those of normal users that have average

activity. In this case, Guard detects and blocks the attack faster than when the

malicious activity is smaller. However, the attack achieves lower minimum throughput

for a moment of time. The reason is that higher malicious activity makes the attacker

succeed in creating more malicious hotspots during a shorter time period. Therefore,

Guard has the opportunity to collect more raw information about malicious users and

be confident to identify them.

0
100
200
300
400
500
600
700
800

0 5 10 15 20 25 30Th
ro
ug

hp
ut
	(T
ho

us
an

d	
Tu
pl
es
\S
ec
)

Time	(Min)

No	Attack,	1200	Additional	Normal	Activity No	Attack
Normal	Activity:	600	&	Malicious	Activity:	1200	Queries/Sec

Attack	Start

Attack, No	Guard Attack,	Guard

Fig. 6.17. The effect of an attack with malicious activity rate 1200
queries/second on the system’s throughput

Figure 6.17 presents the results of having the activity of the malicious users that

issue 1200 queries/second. It makes malicious users have an activity similar to that

of very active normal users. The attack succeeds during the whole experiment. It

makes the system in a continuous state of rebalancing, chasing malicious hotspots.

Guard detects all malicious users and blocks them faster than any of the attacks that

have lower malicious activity rates.

95

0

100

200

300

400

500

600

700

150 300 600 1200

0

Additional	Activity	(Queries/Sec)

Normal	Users	Only	 Guard No	Guard

Av
er
ag
e	
Th

ro
ug
hp

ut
	(T
ho

us
an

d	
Tu

pl
es
\S
ec
)

Fig. 6.18. Average system’s throughput while varying the additional ac-
tivity

Figure 6.18 presents the average throughput while varying the additional activity.

The average throughput is computed after running every experiment five times for

30 minutes each. The additional activity is added to the total normal users activity

when there is no attack. In the case when there is an attack, the additional activ-

ity is added to the malicious users activity. When there is no attack, the overhead

of registering and terminating more queries causes a small decrease in the average

throughput as the activity increases. When there is an attack and Guard is absent

from the system, the average throughput decreases as the malicious activity increases.

The increase in malicious activity leads to a faster creation of malicious hotspots that

causes the system to be in a continuous state of rebalancing. The average throughput

decreases by 18% when the malicious activity is 150 queries/second. When the mali-

cious activity is 1200 queries/second, the average throughput decreases by 48%. On

the other hand, the attack in all Guard experiments decreases the average throughput

approximately by 5%. However, when the malicious activity is 300 queries/second,

96

the average throughput decreases by 10% because the behavior of malicious users is

very similar to the behavior of average normal users that also create some genuine

hotspots. When malicious users have a similar behavior to that of normal users,

Guard allows malicious users to create more malicious hotspots to make sure they

are malicious before blocking them. Guard enhances the average throughput between

14% and 85% when there is an attack. Note that if the average throughput is com-

puted over more than 30-minute periods, it will increase when the system has Guard

and decrease when Guard is absent from the system. The reason is that the effect of

the small period before Guard blocks the attack fades with time.

To summarize Figures 6.14, 6.15, 6.16, 6.17 and 6.18, Guard succeeds in detecting

and blocking the malicious users that are involved in creating malicious hotspots.

Guard differentiates between malicious and normal users regardless of which normal

users the malicious users are similar to. As the attacker increases the malicious activ-

ity, a decreased average throughput and a lower minimum throughput are achieved.

On the other hand, Guard detects and blocks attacks faster as their malicious activ-

ity increases. Hence, Guard makes the attacker in a dilemma where increasing the

malicious activity harms the system more, however, it can risk to be detected and

blocked faster.

6.4.2 Attack Effect on Availability

Figure 6.19 is a box plot that illustrates the percentage of system’s availability

while varying malicious activity. The availability is the percentage of data that gets

processed without delay. Since the attack makes the system in a continuous state of

load-balancing, it reduces the system’s processing power of data. Hence, some data

tuples are delayed or dropped because the data stream delivers data in real-time and

cannot be slowed. Figure 6.19 shows the results in a box plot form after running each

experiment five times. The lowest point in the box plot is the minimum availability

achieved during the 30 minutes of all the five experiments while the highest point is

97

No Guard Guard

300 600 1200150

Fig. 6.19. Availability of the system while varying malicious activity

the maximum availability. The box is drawn from the lower quartile (Q1, the median

of the lower half of the dataset) to the upper quartile (Q3, the median of the upper

half of the dataset) with a horizontal line drawn in the middle to denote the median.

Also, the ”x” mark represents the average availability.

In Figure 6.19, Guard achieves around 90% average availability in all experiments.

Moreover, Guard reduces the effect of the attack on the availability to be only for

a small period of time as the sizes and positions of Guard’s boxes indicate. The

maximum availability is 100% in all the experiments because all experiments start

without the attack for five minutes. The minimum availability while having Guard is

much higher than when Guard is absent. The attack manages to reach this minimum

availability just for a moment of the experiment’s time. When Guard is absent,

Figure 6.19 shows that the attack reduces the average and the minimum availability

while increasing its malicious activity. Moreover, the time spent while the system

on low availability is increased with attacks that have higher malicious activity as

indicated by the positions of the boxes in Figure 6.19. The reason is that higher

98

malicious activity makes the attack succeed to draw more of the system processing

power towards load-balancing. Guard improves the average availability up to 86%

depending on the rate of the malicious activity. Also, Guard improves the minimum

availability that the attack achieves by 17% up to 325% depending on the malicious

activity.

6.4.3 Detection and Recovery

0

60

120

180

240

300

360

150 300 600 1200

Av
er
ag
e	
Ti
m
e	
(S
ec
)

Malicious	Activity	(Queries/Sec)

Blocking	the	attack	after	its	first	malicious	hotspot	creation
Detecting	a	malicious	hotspot

Fig. 6.20. Average detection and blocking times while varying malicious
activity

Figure 6.20 shows the average times to detect malicious hotspots and block ma-

licious users while varying malicious activity. The time for detecting malicious users

depends on the speed of Guard in detecting malicious hotspots. On average, Guard

detects malicious hotspots in 30 seconds. As mentioned, every Guard’s detection

round lasts for one minute. This indicates that Guard always identifies malicious

hotspots during the same detection round, when the hotspot has been created. Fig-

99

ure 6.20 shows the time it takes Guard to block malicious users starting from their

first malicious hotspot creation. The time to block malicious users relies on the speed

of their successful creation of malicious hotspots. The reason is that Guard requires

the raw information of at least two malicious hotspots to confirm the involvement

of malicious users. When malicious activity is low, the time between the successful

creation of two malicious hotspots increases. As malicious activity increases, Guard

blocks malicious users faster. Guard lets malicious users with low activity rates stay

in the system longer. However, their average effect on the throughput and the avail-

ability are similar to the average effect of malicious users with high activity rates that

get blocked faster.

0

60

120

180

1 10 50 90

Av
er
ag
e	
Ti
m
e	
(S
ec
)

Number	of	Malicious	Users	in	the	Attack

Blocking	the	attack	after	its	first	malicious	hotspot	creation
Detecting	a	malicious	hotspot

Fig. 6.21. Average detection and blocking times while varying the number
of malicious users involved in the attack

Figure 6.21 shows the average times to detect malicious hotspots and block the

attack while varying the number of malicious users in the attack. The malicious

activity is fixed to 600 queries/second in all experiments of this figure. Hence, the

activity of every malicious user decreases as the number of malicious users involved

100

in the attack increase. Notice that the average detection time is around 30 seconds in

all cases. Moreover, the average time to block the attack is around two minutes for

all cases. The results of Figure 6.21 indicate that the detection and blocking times

of Guard is not affected by the number of malicious users involved in the attack.

Hence, Guard’s unsupervised machine learning detector succeeds in clustering and

identifying all malicious users in the attack, regardless of their number. The rate of

the malicious activity is the main contributor to changing the detecting and blocking

times, the availability, and the throughput.

0

60

120

180

240

150 300 600 1200

Av
er
ag
e	
Re

co
ve
ry
	T
im

e	
(S
ec
)

Malicious	Activity	(Queries/Sec)

Fig. 6.22. Average recovery time after blocking the attack

During all experiments, Guard manages to detect and block all malicious users

without falsely identifying any normal users as malicious. All the experiments demon-

strate that Guard’s detector does not have any false-negatives or false-positives in

identifying malicious users. Although some normal users are added to the suspicious

list in some of the experiments, they get removed from the list on later rounds. There-

fore, Guard achieves its main objective of blocking malicious users only when being

certain that they are malicious.

101

Figure 6.22 illustrates the average recovery time that the system takes after Guard

blocks the attack while varying malicious activity. The average is computed after

running each experiment five times. The recovery time starts from the time when

the system reaches its lowest throughput due to the attack until it reaches the same

throughput of when there is no attack. Figure 6.22 shows that the average recovery

time increases with the increase in malicious activity. After Guard blocks the attack,

the malicious queries already received stay in the system until they expire. Therefor,

higher malicious activities leave higher number of queries that consume more resources

to rebalance.

6.4.4 Overhead of Attack Detection

4

1592

278

667

0

400

800

1200

1600

2000

Update	features	
based	on	a	new	
query	request

Collect	raw	
information	about	a	

new	hotspot

Update	features	of	
users	involved	in	a	

new	hotspot

Prepare	features	and	
run	the	detection	

mechanism

Av
er
ag
e	
O
pe

ra
tio

n	
Ti
m
e	
(𝛍

se
c	
)

Fig. 6.23. Overhead of Guard’s operations

Figure 6.23 illustrates the overhead of Guard’s operations by showing the average

time each operation takes in microseconds after running the system for an hour.

Guard takes 4 microseconds to collect raw information about a new query request

and to update its user’s features accordingly. This shows the success of Guard in

102

minimizing the additional overhead with the operations that happen frequently and

affect the system’s performance. Every time a new hotspot is detected by a Hotspot

Sensor, it requires approximately 1600 microseconds to collect raw information about

the hotspot. The time to collect hotspot raw information depends on the number of

queries that overlap with the hotspot. Thus, most of the time is spent to retrieve all

queries that overlap with the hotspot, which depends on the speed of the application

in accessing queries. Recall that in The experiments, the application uses R*-Tree

index. When a Hotspot Sensor sends the raw information of a new hotspot, Guard

spends 278 microseconds on average to update the features of the involved users.

Guard requires 667 microseconds on average to prepare all users’ features and to run

the unsupervised attack detector. This operation happens in Guard by the end of

every detection round.

103

7. CONCLUSION AND FUTURE WORK

In Section 7.1, the research contributions of this dissertation is summarized. The

future research work is discussed in Section 7.2.

7.1 Summary of Contribution

The research contributions of this dissertation are in the area of adaptive load-

balancing in distributed spatial streaming systems. First, we introduce TrioStat, an

online workload estimation technique that relies on a probabilistic model for estimat-

ing the workload of partitions and machines in a distributed spatial data streaming

system. We present a cost model that predicts the workload of each machine in the

future. The prediction is based on query workload and changes in the distribution of

data and queries. TrioStat introduces a new statistics structure that requires minimal

storage overhead. TrioStat uses a decentralised technique to collect and maintain the

required statistics in real-time locally in each machine. Efficient algorithm is pre-

sented to collect statistics without adding much processing overhead with the arrival

of every new data point or query. TrioStat is tested and compared against AQWA

using an application that processes a real dataset from Twitter. TrioStat enables

the application to compare the workload of its machines and data partitions with

minimal network, storage, and processing overhead. TrioStat requires sharing only

two numbers per machine to compare the machines based on their workloads and to

monitor the performance of the system.

The second contribution is to design and implement SWARM, an adaptive load-

balancing protocol for distributed spatial streaming systems that rebalance the work-

load based on the changes in workload estimations provided by TrioStat. SWARM

continuously monitors the workload across the distributed processes of the spatial

104

streaming systems. It adjusts the workload distribution as soon as performance bot-

tlenecks get detected. SWARM can be used directly with minimal changes as a black

box with any spatial application. We present a protocol that makes the process of

load balancing decentralized. This results in minimizing communications by maxi-

mizing local decision making. We introduce two Greedy algorithms for finding the

best reduction of the workload for the machine with the highest cost. The reduction

of workload can happen by either (1) finding a subset of partitions to move to the

machine with the lowest cost, or (2) splitting one of the partitions and moving one

of the sub-partitions. We present a design that insures the integrity of the system

and the correctness of the query results during load re-balancing. SWARM is tested

and compared against other static approaches using an application that processes a

real dataset from Twitter. On average, SWARM achieves 200% improvement over a

static grid approach that is partitioned based on a limited history of the workload.

Moreover, SWARM reduces execution latency on average 4x compared with the other

approaches.

The final contribution is to investigate types of attacks that target the adaptive

load-balancing mechanisms of distributed streaming applications. High intensity at-

tacks decrease the throughput and availability of the system about 50%. We proposes

Guard, a component that continuously monitors the behaviors of the users in the sys-

tem and their relationships with hotspots. Guard detects and blocks malicious users

that try to make the system in a continuous state of load-balancing. Guard is gen-

eral and requires minimal changes to the distributed streaming systems. Guard uses

an unsupervised machine learning technique to detect groups of malicious users that

coordinate in attacking the system. Guard is integrated into SWARM. The perfor-

mance of Guard in protecting SWARM is tested using an application that processes a

real dataset from Twitter while facing different attack scenarios. Guard successfully

blocks all malicious users without mistakenly blocking any normal users. The system

fully recovers after Guard blocks the attacks. Guard improves the throughput by 85%

and the availability by 86% as a result of blocking high intensity attacks. Moreover,

105

Guard reduces the minimum availability that the attacker achieves by 325%. On

average, Guard detects the creation of a malicious hotspot in 30 seconds and blocks

the attack in two minutes.

7.2 Future Work

The research presented in this dissertation can be extended into various direc-

tions. We present the following future research problems that we plan to pursue as

an extension of the work presented in this dissertation.

(1) Query-Aware Elastic Distributed Streaming System for Big Data.

As discussed in this dissertation, the amount of workload can rapidly vary with

time in some applications. Using clusters is expensive and might lead to waste of

resources during periods of low required processing. Therefore, these applications

require adding and removing resources on demand. We plan to develop an elastic

real-time distributed stream processing system that supports continuous queries over

big data. We plan to extend TrioStat’s cost model to estimate the processing power

and storage needed for a given workload. Moreover, we plan to extend SWARM

to manage hotspots by efficiently adding/removing resources and changing pro-

cessing assignments among the system’s machines according to the hotspots statistics.

(2) Adaptive Load-Balancing in Micro-Batched Distributed Spatial

Streaming Systems. The designs presented in this dissertation are suitable for

distributed streaming systems that process spatial data in tuple-at-a-time manner

(e.g., Apache Storm [3]). These systems are efficient in providing answers in real-time

with minimal execution latency. However, distributed streaming systems that process

spatial data in a micro-batch manner (e.g., Spark Streaming [5]) have different

advantages that are suitable for different types of applications. They can achieve

higher throughput, efficient fault-tolerance, and easier integration with offline data.

106

Therefore, we plan to redesign TrioStat’s cost model and its algorithm that collects

and maintains statistics to work on micro-batch distributed streaming systems.

Moreover, SWARM can be modified to support micro-batch streaming systems. We

plan to investigate the type of attacks that target micro-batch streaming systems.

REFERENCES

107

REFERENCES

[1] “Internet live stats,” https://internetlivestats.com/, 2019.

[2] M. F. Mokbel, “Thinking spatial, ACM SIGMOD Blog,” http://wp.sigmod.org/
?p=2012, 2016.

[3] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni,
J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@ twitter,” in Proceedings
of the 2014 ACM SIGMOD international conference on Management of data.
ACM, 2014, pp. 147–156.

[4] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel,
K. Ramasamy, and S. Taneja, “Twitter heron: Stream processing at scale,” in
Proceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data. ACM, 2015, pp. 239–250.

[5] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized streams:
An efficient and fault-tolerant model for stream processing on large clusters.”
HotCloud, vol. 12, pp. 10–10, 2012.

[6] A. S. Abdelhamid, M. Tang, A. M. Aly, A. R. Mahmood, T. Qadah, W. G. Aref,
and S. Basalamah, “Cruncher: Distributed in-memory processing for location-
based services,” in Data Engineering (ICDE), 2016 IEEE 32nd International
Conference on. IEEE, 2016, pp. 1406–1409.

[7] D. Choi, S. Song, B. Kim, and I. Bae, “Processing moving objects and traffic
events based on spark streaming,” in Disaster Recovery and Business Continuity
(DRBC), 2015 8th International Conference on. IEEE, 2015, pp. 4–7.

[8] Y. Lee and S. Song, “Distributed indexing methods for moving objects based
on spark stream,” International Journal of Contents, vol. 11, no. 1, pp. 69–72,
2015.

[9] G. Song, “Parallel and continuous join processing for data stream,” Ph.D. dis-
sertation, Université Paris-Saclay, 2016.

[10] Z. Yu, Y. Liu, X. Yu, and K. Q. Pu, “Scalable distributed processing of k nearest
neighbor queries over moving objects,” IEEE Transactions on Knowledge and
Data Engineering, vol. 27, no. 5, pp. 1383–1396, 2015.

[11] S. Wu, V. Kumar, K.-L. Wu, and B. C. Ooi, “Parallelizing stateful operators
in a distributed stream processing system: how, should you and how much?”
in Proceedings of the 6th ACM International Conference on Distributed Event-
Based Systems. ACM, 2012, pp. 278–289.

108

[12] A. R. Mahmood, A. M. Aly, T. Qadah, E. K. Rezig, A. Daghistani, A. Madkour,
A. S. Abdelhamid, M. S. Hassan, W. G. Aref, and S. Basalamah, “Tornado: A
distributed spatio-textual stream processing system,” PVLDB, vol. 8, no. 12, pp.
2020–2023, 2015.

[13] A. R. Mahmood, A. Daghistani, A. M. Aly, M. Tang, S. Basalamah, S. Prab-
hakar, and W. G. Aref, “Adaptive processing of spatial-keyword data over a
distributed streaming cluster,” in Proceedings of the 26th ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems. ACM,
2018, pp. 219–228.

[14] Z. Chen, G. Cong, Z. Zhang, T. Z. Fuz, and L. Chen, “Distributed pub-
lish/subscribe query processing on the spatio-textual data stream,” in Data En-
gineering (ICDE), 2017 IEEE 33rd International Conference on. IEEE, 2017,
pp. 1095–1106.

[15] A. M. Aly, A. R. Mahmood, M. S. Hassan, W. G. Aref, M. Ouzzani, H. Elmeleegy,
and T. Qadah, “Aqwa: Adaptive query workload aware partitioning of big spatial
data,” Proc. VLDB Endow., vol. 8, no. 13, pp. 2062–2073, Sep. 2015.

[16] A. M. Aly, H. Elmeleegy, Y. Qi, and W. Aref, “Kangaroo: Workload-aware pro-
cessing of range data and range queries in hadoop,” in Proceedings of the Ninth
ACM International Conference on Web Search and Data Mining, ser. WSDM
’16. New York, NY, USA: ACM, 2016, pp. 397–406.

[17] M. F. Mokbel, X. Xiong, W. G. Aref, S. E. Hambrusch, S. Prabhakar, and M. A.
Hammad, “Place: a query processor for handling real-time spatio-temporal data
streams,” in Proceedings of the Thirtieth international conference on Very large
data bases-Volume 30. VLDB Endowment, 2004, pp. 1377–1380.

[18] M. F. Mokbel, X. Xiong, and W. G. Aref, “Sina: Scalable incremental processing
of continuous queries in spatio-temporal databases,” in Proceedings of the 2004
ACM SIGMOD international conference on Management of data. ACM, 2004,
pp. 623–634.

[19] X. Xiong, M. F. Mokbel, and W. G. Aref, “Sea-cnn: Scalable processing of
continuous k-nearest neighbor queries in spatio-temporal databases,” in Data
Engineering, 2005. ICDE 2005. Proceedings. 21st International Conference on.
IEEE, 2005, pp. 643–654.

[20] M. F. Mokbel and W. G. Aref, “Gpac: generic and progressive processing of mo-
bile queries over mobile data,” in Proceedings of the 6th international conference
on Mobile data management. ACM, 2005, pp. 155–163.

[21] “Apatche Hadoop,” http://hadoop.apache.org/, 2019.

[22] “Apatche Sark,” http://spark.apache.org/, 2019.

[23] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed stream
computing platform,” in Data Mining Workshops (ICDMW), 2010 IEEE Inter-
national Conference on. IEEE, 2010, pp. 170–177.

[24] “Apatche Samza,” http://samza.apache.org/, 2019.

109

[25] A. M. Aly, A. Sallam, B. M. Gnanasekaran, L.-V. Nguyen-Dinh, W. G. Aref,
M. Ouzzani, and A. Ghafoor, “M3: Stream processing on main-memory mapre-
duce,” in 2012 IEEE 28th International Conference on Data Engineering. IEEE,
2012, pp. 1253–1256.

[26] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou, “Comet: batched
stream processing for data intensive distributed computing,” in Proceedings of
the 1st ACM symposium on Cloud computing, 2010, pp. 63–74.

[27] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt et al., “The
dataflow model: a practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing,” Proceedings of the
VLDB Endowment, vol. 8, no. 12, pp. 1792–1803, 2015.

[28] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz, “Hadoop gis: a
high performance spatial data warehousing system over mapreduce,” Proceedings
of the VLDB Endowment, vol. 6, no. 11, pp. 1009–1020, 2013.

[29] H. Vo, A. Aji, and F. Wang, “Sato: a spatial data partitioning framework for
scalable query processing,” in Proceedings of the 22nd ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems. ACM,
2014, pp. 545–548.

[30] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce framework for
spatial data,” in Data Engineering (ICDE), 2015 IEEE 31st International Con-
ference on. IEEE, 2015, pp. 1352–1363.

[31] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and W. G. Aref, “Locationspark: a
distributed in-memory data management system for big spatial data,” Proceed-
ings of the VLDB Endowment, vol. 9, no. 13, pp. 1565–1568, 2016.

[32] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient in-memory
spatial analytics,” in Proceedings of the 2016 International Conference on Man-
agement of Data. ACM, 2016, pp. 1071–1085.

[33] F. Baig, H. Vo, T. Kurc, J. Saltz, and F. Wang, “Sparkgis: Resource aware
efficient in-memory spatial query processing,” in Proceedings of the 25th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems. ACM, 2017, p. 28.

[34] F. Zhang, Y. Zheng, D. Xu, Z. Du, Y. Wang, R. Liu, and X. Ye, “Real-time
spatial queries for moving objects using storm topology,” ISPRS International
Journal of Geo-Information, vol. 5, no. 10, p. 178, 2016.

[35] A. Belussi, S. Migliorini, and A. Eldawy, “Detecting skewness of big spatial data
in spatialhadoop,” in Proceedings of the 26th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2018, pp. 432–435.

[36] J. Fang, R. Zhang, T. Z. Fu, Z. Zhang, A. Zhou, and J. Zhu, “Parallel stream
processing against workload skewness and variance,” in Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed Com-
puting, 2017, pp. 15–26.

110

[37] F. Zhang, H. Chen, and H. Jin, “Simois: A scalable distributed stream join
system with skewed workloads,” in 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), 2019, pp. 176–185.

[38] M. A. U. Nasir, G. D. F. Morales, N. Kourtellis, and M. Serafini, “When two
choices are not enough: Balancing at scale in distributed stream processing,” in
2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE,
2016, pp. 589–600.

[39] M. A. U. Nasir, G. D. F. Morales, D. Garcia-Soriano, N. Kourtellis, and M. Ser-
afini, “The power of both choices: Practical load balancing for distributed stream
processing engines,” in 2015 IEEE 31st International Conference on Data Engi-
neering. IEEE, 2015, pp. 137–148.

[40] A. Shanbhag, A. Jindal, S. Madden, J. Quiane, and A. J. Elmore, “A robust
partitioning scheme for ad-hoc query workloads,” in Proceedings of the 2017
Symposium on Cloud Computing. ACM, 2017, pp. 229–241.

[41] A. Shanbhag, A. Jindal, Y. Lu, and S. Madden, “A moeba: a shape changing
storage system for big data,” Proceedings of the VLDB Endowment, vol. 9, no. 13,
pp. 1569–1572, 2016.

[42] Z. Chen, G. Cong, and W. G. Aref, “Star: A distributed stream warehouse
system for spatial data,” in Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, 2020, pp. 2761–2764.

[43] A. Belussi and C. Faloutsos, “Self-spacial join selectivity estimation using fractal
concepts,” ACM Transactions on Information Systems (TOIS), vol. 16, no. 2,
pp. 161–201, 1998.

[44] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant, “Range queries in olap data
cubes,” ACM SIGMOD Record, vol. 26, no. 2, pp. 73–88, 1997.

[45] M. Riedewald, D. Agrawal, and A. El Abbadi, “Flexible data cubes for online
aggregation,” in International Conference on Database Theory. Springer, 2001,
pp. 159–173.

[46] R. Beigel and E. Tanin, “The geometry of browsing,” in Latin American Sym-
posium on Theoretical Informatics. Springer, 1998, pp. 331–340.

[47] N. An, Z.-Y. Yang, and A. Sivasubramaniam, “Selectivity estimation for spa-
tial joins,” in Proceedings 17th International Conference on Data Engineering.
IEEE, 2001, pp. 368–375.

[48] C. Sun, D. Agrawal, and A. El Abbadi, “Selectivity estimation for spatial joins
with geometric selections,” in International Conference on Extending Database
Technology. Springer, 2002, pp. 609–626.

[49] G. S. NIST, A. Goguen, and A. Fringa, “Risk management guide for information
technology systems,” Recommendations of the National Institute of Standards
and Technology, 2002.

[50] I. Gashi, P. Popov, and L. Strigini, “Fault tolerance via diversity for off-the-shelf
products: A study with sql database servers,” IEEE Transactions on Dependable
and Secure Computing, vol. 4, no. 4, pp. 280–294, Oct 2007.

111

[51] D. E. Denning, “An intrusion-detection model,” IEEE Transactions on software
engineering, no. 2, pp. 222–232, 1987.

[52] T. F. Lunt, “A survey of intrusion detection techniques,” Computers & Security,
vol. 12, no. 4, pp. 405–418, 1993.

[53] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and
taxonomy of dependable and secure computing,” IEEE transactions on depend-
able and secure computing, vol. 1, no. 1, pp. 11–33, 2004.

[54] H. C. Andrade, B. Gedik, and D. S. Turaga, Fundamentals of stream processing:
application design, systems, and analytics. Cambridge University Press, 2014.

[55] Q. Huang and P. P. Lee, “Toward high-performance distributed stream pro-
cessing via approximate fault tolerance,” Proceedings of the VLDB Endowment,
vol. 10, no. 3, pp. 73–84, 2016.

[56] B. Knasmüller, C. Hochreiner, and S. Schulte, “Pathfinder: Fault tolerance for
stream processing systems,” in 2019 IEEE Fifth International Conference on Big
Data Computing Service and Applications (BigDataService). IEEE, 2019, pp.
29–39.

[57] X. Liu, A. Harwood, S. Karunasekera, B. Rubinstein, and R. Buyya, “E-storm:
Replication-based state management in distributed stream processing systems,”
in 2017 46th International Conference on Parallel Processing (ICPP). IEEE,
2017, pp. 571–580.

[58] J. Fang, P. Chao, R. Zhang, and X. Zhou, “Integrating workload balancing
and fault tolerance in distributed stream processing system,” World Wide Web,
vol. 22, no. 6, pp. 2471–2496, 2019.

[59] Y. Hu and B. Panda, “A data mining approach for database intrusion detection,”
in Proceedings of the 2004 ACM symposium on Applied computing. ACM, 2004,
pp. 711–716.

[60] C. Y. Chung, M. Gertz, and K. Levitt, “Demids: A misuse detection system
for database systems,” in Integrity and Internal Control in Information Systems.
Springer, 2000, pp. 159–178.

[61] K. Ilgun, R. A. Kemmerer, and P. A. Porras, “State transition analysis: A rule-
based intrusion detection approach,” IEEE transactions on software engineering,
vol. 21, no. 3, pp. 181–199, 1995.

[62] A. Srivastava, S. Sural, and A. Majumdar, “Database intrusion detection using
weighted sequence mining,” Journal of Computers, vol. 1, no. 4, pp. 8–17, 2006.

[63] Q. Liang, J. Ren, J. Liang, B. Zhang, Y. Pi, and C. Zhao, “Security in big data,”
Security and Communication Networks, vol. 8, no. 14, pp. 2383–2385, 2015.

[64] J. Ledlie and M. Seltzer, “Distributed, secure load balancing with skew, het-
erogeneity and churn,” in Proceedings IEEE 24th Annual Joint Conference of
the IEEE Computer and Communications Societies., vol. 2. IEEE, 2005, pp.
1419–1430.

112

[65] Q. Kang, J. Xing, and A. Chen, “Automated attack discovery in data plane
systems,” in 12th {USENIX} Workshop on Cyber Security Experimentation and
Test ({CSET} 19), 2019.

[66] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,” Annals
of Data Science, vol. 2, no. 2, pp. 165–193, 2015.

[67] J. MacQueen et al., “Some methods for classification and analysis of multivariate
observations,” in Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, vol. 1, no. 14. Oakland, CA, USA, 1967, pp. 281–297.

[68] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for
discovering clusters in large spatial databases with noise.” in Kdd, vol. 96, no. 34,
1996, pp. 226–231.

[69] X. Xu, M. Ester, H.-P. Kriegel, and J. Sander, “A distribution-based clustering
algorithm for mining in large spatial databases,” in Proceedings 14th Interna-
tional Conference on Data Engineering. IEEE, 1998, pp. 324–331.

[70] J. C. Dunn, “A fuzzy relative of the isodata process and its use in detecting
compact well-separated clusters,” Journal of Cybernetics, vol. 3, no. 3, pp. 32–
57, 1973.

[71] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32, no. 3,
pp. 241–254, 1967.

[72] R. Sharan and R. Shamir, “Click: a clustering algorithm with applications to
gene expression analysis,” in Proc Int Conf Intell Syst Mol Biol, vol. 8, no. 307,
2000, p. 16.

[73] W. Wang, J. Yang, R. Muntz et al., “Sting: A statistical information grid ap-
proach to spatial data mining,” in VLDB, vol. 97, 1997, pp. 186–195.

[74] D. H. Fisher, “Knowledge acquisition via incremental conceptual clustering,”
Machine learning, vol. 2, no. 2, pp. 139–172, 1987.

[75] M. Silvano and T. Paolo, “Knapsack problems: algorithms and computer imple-
mentations,” 1990.

[76] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “Semantics and
evaluation techniques for window aggregates in data streams,” in Proceedings of
the 2005 ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’05. Association for Computing Machinery, 2005, p. 311–322.

[77] C. Fahy, S. Yang, and M. Gongora, “Ant colony stream clustering: A fast density
clustering algorithm for dynamic data streams,” IEEE Transactions on Cyber-
netics, vol. 49, no. 6, pp. 2215–2228, 2019.

[78] J. D. Kelleher, B. Mac Namee, and A. D’arcy, Fundamentals of machine learning
for predictive data analytics: algorithms, worked examples, and case studies.
MIT press, 2015.

[79] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,”
in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, ser. SODA ’07. USA: Society for Industrial and Applied Mathematics,
2007, p. 1027–1035.

113

[80] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information
theory, vol. 28, no. 2, pp. 129–137, 1982.

[81] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: An
efficient and robust access method for points and rectangles,” in Proceedings of
the 1990 ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’90. New York, NY, USA: ACM, 1990, pp. 322–331.

[82] “Apatche Zookeeper,” https://zookeeper.apache.org, 2019.

[83] C. Faloutsos, “Next generation data mining tools: power laws and self-similarity
for graphs, streams and traditional data,” in European Conference on Machine
Learning. Springer, 2003, pp. 10–15.

[84] G. K. Zipf, “Human behavior and the principle of least effort,” Addison-Wesley
Press, 1949.

[85] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet.” Glottometrics,
vol. 3, no. 1, pp. 143–150, 2002.

[86] J. Liu, S. Zhang, and Y. Ye, “Agent-based characterization of web regularities,”
in Web Intelligence. Springer, 2003, pp. 19–36.

[87] P. Barford, A. Bestavros, A. Bradley, and M. Crovella, “Changes in web client
access patterns: Characteristics and caching implications,” World Wide Web,
vol. 2, no. 1-2, pp. 15–28, 1999.

[88] M. E. Newman, “Power laws, pareto distributions and zipf’s law,” Contemporary
physics, vol. 46, no. 5, pp. 323–351, 2005.

[89] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger, “Quickly
generating billion-record synthetic databases,” in Proceedings of the 1994 ACM
SIGMOD international conference on Management of data, 1994, pp. 243–252.

VITA

114

VITA

Anas Daghistani completed his Bachelor degree in Computer Engineering from

Umm Al-Qura University (UQU), Makkah, Saudi Arabia in 2011. He received his

Master degree in Computer Science from King Abdullah University of Science and

Technology (KAUST) in 2013. He received his second Master degree in Electrical and

Computer Engineering from Purdue University, West Lafayette, IN, USA in 2019.

Before joining Purdue University in Fall 2014, he was a Teacher Assistant in the

Computer Engineering Department of UQU. His research interests include databases,

distributed systems, big data management, and database security.

