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ABSTRACT

Prasad, Amritha Ph.D., Purdue University, August 2020. Heterogeneity- and Risk-
Aware Algorithms for Task Allocation To Mobile Agents. Major Professor: Shreyas
Sundaram.

In this thesis, we investigate and characterize policies for task allocation to teams

of agents in settings with heterogeneity and risk. We first consider a scenario con-

sisting of a set of heterogeneous mobile agents located at a base (or depot), and a set

of tasks dispersed over a geographic area. The agents are partitioned into different

types. The tasks are partitioned into specialized tasks that can only be done by agents

of a certain type, and generic tasks that can be done by any agent. The distances

between every pair of tasks are specified, and satisfy the triangle inequality. Given

this scenario, we address the problem of allocating these tasks among the available

agents (subject to type compatibility constraints) while minimizing the maximum

travel cost for any agent. We first look at the Heterogeneous Agent Cycle Problem

(HACP) where agents start at a common base (or depot) and need to tour the set of

tasks allocated to them before returning to the base. This problem is NP-hard, and

we give a three phase algorithm to solve this problem that provides 5-factor approx-

imation, regardless of the total number of agents and the number of agents of each

type. We also show that in the special case where there is only one agent of each type,

the algorithm has an approximation factor of 4. We then consider the Heterogeneous

Agent Path Problem (HAPP) where agents can start from arbitrary locations and

are not constrained to return to their start location. We consider two approaches to

solve HAPP, and provide a 15-approximation algorithm for HAPP.

We then look at the effect of risk on path planning by considering a scenario where

a mobile agent is required to collect measurements from a geographically dispersed
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set of sensors and return them to a base. The agent faces a risk of destruction while

traversing the environment to reach the sensors, and gets the reward for gathering

a sensor measurement only if it successfully returns to base. We call this the Single

Agent Risk Aware Task Execution (SARATE) problem. We characterize several

properties of the optimal policy for the agent based on a quantity that we term the

“reward-to-risk” ratio of the tasks. We provide the optimal policy when the risk of

destruction is sufficiently high, and evaluate several heuristic policies via simulation.

Lastly, we extend our analysis of risk-aware path planning to scenarios with mul-

tiple agents. Our analysis allows for agents to be heterogeneous. We show that the

scoring scheme is submodular when the risk is sufficiently high, and greedy algorithm

gives solutions that provide a utility that is guaranteed to be within 50% of the

optimal utility.
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1. INTRODUCTION

The reliance of humankind on robots and artificial intelligence is increasing at a rapid

pace. More processes are getting automated and we are progressively offloading more

tasks from humans to machines, saving time, effort and money. Some of the com-

mon instances that we see in our every day life includes self-service kiosks, material

handling systems, and, increasingly, self-driving cars. In applications pertaining to

environmental monitoring, reconnaissance, and search-and-rescue, there is a general

shift in focus from a single agent framework to a multi-agent framework to improve

robustness, reduce complexity and execution time. A variety of such problems have

been studied in the literature [1–4]. In such multi-agent systems, the agents cooper-

atively work towards accomplishing a common goal. The presence of multiple agents

has several advantages. More tasks can be executed in parallel resulting in faster

completion. Furthermore, the failure of one agent does not affect other agents (and

the remaining agents may still achieve the goal, albeit with degraded performance).

This is particularly useful in routing problems, where agents collectively work to min-

imize the delay in accomplishing the goal (or completing the overall task). This is

very important in applications that are time critical or where the quality of service is

defined by latency. Our focus in this thesis is on this class of routing problems, and

thus all agents that we consider will be taken to be mobile agents.

Multi-agent systems may be composed of homogeneous agents or heterogeneous

agents, i.e., the agents in the system may be similar to each other, or the agents in

the system could be dissimilar. One way the agents could be dissimilar is when the

constraints on motion of agents are different [5, 6]. Another form of heterogeneity

is one where the agents differ in their functionality. For instance, one agent may

have sensors mounted on it, while another agent might have the capacity to carry

loads. Such heterogeneity in agents is an interesting area to study, primarily because
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a variety of real world applications involve multiple requirements. For instance, an

exploration mission would require functions like collecting samples and returning to

the base, taking sensor measurements, imaging, etc. If there are multiple instances

of each of these types of requirements, there arises the problem of how to efficiently

route the available agents to all the required locations. In particular, the routing must

satisfy the functional constraint that the tasks in an agent’s route must be a type of

task that the agent is able to fulfill. This motivates the study of task allocation to

heterogeneous agents and finding routes for these agents to traverse.

Routing problems (or path planning problems) consists of the general class of

problems where given a set of locations that are to be visited, the objective is to find

the optimal route (or path) for an agent to traverse. There are several variants of

this problem studied in the literature. The variations may be due to the number of

agents present, the objective (or the definition of what is “optimal”) or the constraints

involved (such as time windows, or carrying capacity). In Chapter 2, we provide a

brief summary of various routing and path planning problems.

Another area of interest is to study these routing problems in the presence of risk.

That is, situations where there exists a chance that the agent may fail (or is lost) while

traveling or executing a task. Most real-time applications have such risks associated

with them - either inherent to the agent (for example, a system malfunction) or due to

environmental hazards (such as fire or other accidents). This is particularly important

when we are operating in hazardous or hostile environments. Some of the interesting

questions to ask here are the following. In the presence of risk, should the agents take

the same route as they did when there was no risk? How does the allocation of tasks

to an agent change under risk? Does the order in which tasks are executed matter?

In this thesis, we first consider the single agent version of this problem and look at

some of these questions, and then extend our analysis to the multi-agent case.
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1.1 Contributions

A majority of the work on the Traveling Salesperson Problem (TSP) and other

routing problems minimize the total distance of the tours. This metric is useful, for

instance, when trying to minimize the fuel cost (or the miles a vehicle is driven).

Another important metric is the latency. In case of critical missions, such as search

and rescue, one wishes to have minimal latency. To address this class of problems,

we study the Heterogeneous Agent Cycle Problem (HACP), where the objective is to

minimize the maximum cost among all agents, thus lowering the overall completion

time, while accounting for functional heterogeneity among the agents. While several

works in the literature looks at heterogeneous agents, a majority of them focuses on

heterogeneity in terms of differences in vehicle dynamics (or constraints on vehicle

motion). We provide algorithms to solve the Heterogeneous Agent Cycle Problem and

provide guarantees that the solution obtained is no worse than a factor of 5 times

the “optimal” solution, independent of the number of agents available or the number

of tasks to be executed. We also show that in the special case where all agents are

distinct, this factor reduces to 4.

We then generalize HACP to a problem we call the Heterogeneous Agent Path

Problem (HAPP). In this problem, we relax some of the restrictions that were present

in HACP, i.e., the agent’s start locations are allowed to be different (they are not

restricted to start from the base). Furthermore, since the start locations of agents

can be arbitrary, there is no requirement for the agents to rendezvous back to their

start locations. Thus, in HAPP, we find paths for agents to traverse instead of tours.

This framework allows for adaptive allocation of tasks to heterogeneous agents. When

new tasks arise, we can formulate a version of HAPP based on the current location

of agents and tasks and find a path for each agent to traverse. We provide two

approaches to solve this problem. In the first approach, we extend the work on path

planning for homogeneous agents to heterogeneous agents. We prove that, using this

approach, we can get solutions within a factor 15 of the optimal solution. In the
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second approach, we first consider a problem we call the Heterogeneous Agent Tree

Problem (HATP). In this problem, we first find trees for agents to traverse such that

all the tasks are completed (subject to agent-task compatibility constraints). We then

use the solution of HATP to find a solution for HAPP. We show that our algorithm

using this method provides solutions that perform within a factor 16 of the optimal

solution.

The above two problems study the path planning problem when there is no risk

to any agent. Our third contribution is to study the Single Agent Risk Aware Task

Execution (SARATE) problem, where we take into consideration the risk an agent

faces. We prove several key properties of the optimal policy. Specifically, for the

case where the risk is sufficiently high, we provide the optimal policy and show that

it can be found in time that is polynomially related to the size of the input. We

also provide some heuristics and evaluate their performance via simulations. Our

fourth contribution is to extend the study of risk-aware path planning to multiple

heterogeneous agents. We formulate the Multi-Agent Risk-Aware Task Allocation

(MARATA) problem, by extending the SARATE formulation to multiple agents. In

particular, we show that under sufficiently high-risk scenarios, the scoring scheme

is submodular and a greedy algorithm provides a solution that is guaranteed to be

within 50% of the optimal utility.

1.2 Outline

In Chapter 2, we provide some background on the traveling salesperson and vehicle

routing problems. In Chapter 3, we focus on a specific problem called the Hetero-

geneous Agent Cycle Problem (HACP), where we consider a framework consisting

of a set of heterogeneous agents located at a base that are required to collectively

complete a set of tasks dispersed over a geographic area and then return to the base.

Tours are found for agents so that they collectively complete all the tasks and the

maximum cost among all the agents to tour its tasks is minimized. In Chapter 4, we
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consider the generalization of HACP called the Heterogeneous Agent Path Problem

(HAPP), which caters to resilient and adaptive allocation of tasks to heterogeneous

agents. In HAPP, the agents can start from any arbitrary location and are not re-

quired to rendezvous back to their start location. Then, in Chapter 5, we consider the

effect of risk on task execution. In particular, we study the Single Agent Risk Aware

Task Execution (SARATE) problem. In this case, the agent aims to collect sensor

measurements dispersed over a geographic area, but faces a non-zero risk of failing

while it is traveling. In Chapter 6, we extend our analysis of risk-aware task alloca-

tion to multiple agents. We consider the scenario where multiple agents (that may

be heterogeneous) are available to collect the sensor measurements, and study the

Multi-Agent Risk-Aware Task Allocation (MARATA) problem. Finally, in Chapter

7, we provide a summary and some future directions for research.
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2. BACKGROUND

In this chapter, we provide some background on multi-agent systems, focusing in

particular on task allocation and routing/path planning problems. Perhaps, the most

well known routing problem is the Traveling Salesperson Problem. We discuss this

problem, and provide insight into why it is a hard problem that has attracted much

interest from the research community. A short description of the Vehicle Routing

Problem (VRP), which generalizes the TSP is then provided, followed by a short

discussion of the different objectives commonly seen for these problems. In the last

section of this chapter, we provide details of some allied problems, which are also

combinatorial in nature.

2.1 Multi-agent Systems

Multi-agent systems consist of agents and the environment they reside in. Such

systems, depending on context, may refer to software agents or can also be robots,

humans or human teams. A multi-agent system may also contain a combination of

humans and robotic agents. In this thesis, we consider robotic agents. In particu-

lar, since the focus is on finding routes for agents, the term agents refers to mobile

robotic agents. For instance, agents can be cars or Unmanned Autonomous Vehicles

(UAVs). A taxonomy of task allocation in multi-robot systems is provide by Gerkey

and Mataric in [7].

When considering multi-agent systems, the agents in the system may be homoge-

neous or heterogeneous. The agents are said to be homogeneous if all agents involved

are identical, and the agents are said to be heterogeneous otherwise. We can further

classify heterogeneous agents based on how the agents differ from each other. The

agents are structurally heterogeneous if they have different properties such as maxi-
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mum speed, turn radius, etc., but they perform the same functions. The agents are

called functionally heterogeneous if the agents inherently perform different functions.

For example, depending on the sensors mounted on a UAV, the UAV has different

capabilities and caters to different requirements.

2.2 Traveling Salesperson Problem (TSP)

The Traveling Salesperson Problem (TSP) is one of the most widely studied prob-

lem in task allocation and vehicle routing. The problem considers a salesperson who

must start from a city, visit N cities and return to his/her start location. The sales-

person may visit the cities in any order, so long as all the cities are visited. TSP asks

the following question: “Given a list of N cities and the distances between each pairs

of cities, what is the shortest route that the salesperson can take to visit all N cities

and return to the origin city?”

This problem does not scale well as the number of cities increases. There are

N ! permutations in which the salesperson can visit the N cities. For N = 3, that

corresponds to 6 permutations, but for N = 15, it is over a trillion permutations. This

is therefore a hard problem and in the theory of computational complexity, belongs

to a class of problems known as NP-hard problems (discussed in Section 2.5).

There are several variants of TSP in the literature. The metric TSP, where the

distances are assumed to satisfy the triangle inequality (discussed in Section 2.6), is

among the most well studied variants. Christofides’ algorithm [8] is a well known

algorithm to find approximate solutions to TSP. In particular, this algorithm guar-

antees to find solutions that have a tour length of at most 3
2

times the optimal tour

length. This algorithm finds a Minimum Spanning Tree (MST) [9,10], and then finds

a minimum weight perfect matching on the set of vertices with odd degree in the

MST. The union of the MST and the minimum weight perfect matching then yield

a tour on the set of cities to be visited. The cities are visited along this tour by

shortcutting (or skipping) cities that have already been visited.
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Several variants of TSP has been studied in the literature. One popular extension

is the case where multiple salespeople are present. An overview and the various ap-

plications of the Multiple Traveling Salesperson Problem is provided in [11]. Another

variant is where instead of finding a tour for the salesperson (where the salesperson

ends his tour at the start location), a path is found. This means that the salesperson

is no longer constrained to end his route at the same location as he started. This is

known as the Traveling Salesperson Path Problem and is known to be an NP-hard

problem [12]. Another class of TSP problems looks at cases with multiple salepersons,

but aims to find solutions that minimize the time to tour the set of cities. This is

captured by problems that look to find cycle (or tree or path) covers [13]. These can

also be thought of as special cases of Vehicle Routing Problems.

The Traveling Purchaser Problem (TPP) and the Vehicle Routing Problem (VRP)

are both generalizations of TSP. The traveling purchaser problem (TPP) considers

the following: “Given a list of marketplaces, the cost of travelling between different

marketplaces, and a list of available goods along with the price of each such good at

each marketplace, find the route with the minimum combined cost of purchases and

traveling, for a given list of articles.” This formulation gives a “weight” or value to

each of the marketplaces (analogous to the cities in TSP) depending on the list of

goods available at the place and their prices. Another key difference from TSP is that

not all marketplaces needs to be visited. This problem can be reduced to TSP by

setting the available goods at each market to be distinct (and non-overlapping) and

making the list of articles to be purchased such that it contains at least one item from

each market. Then, all the marketplaces have to be visited, and thus, the optimal

solution will be obtained by optimizing the TSP. A survey on TPP and its variants

is provided in [14].
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Vehicle Routing Problem (VRP) and its Variants

Vehicle Routing Problem [15], being a generalization of the Traveling Salesperson

Problem, belongs to the class of NP-hard problems. In simple terms, the problem

considers a set of vehicles and aims to optimally route these vehicles to service a

given set of customers.

Some of the common variants of VRP seen in literature are highlighted below:

• Vehicle Routing Problem with Multiple Trips (VRPMT), where the vehicles are

allowed to do more than one trip (i.e., they can visit the depot multiple times).

• Open Vehicle Routing Problem (OVRP), where vehicles are not constrained to

return to the depot.

• Vehicle Routing Problem with Pickup and Delivery (VRPPD), where commodi-

ties need to be picked up from a given set of locations and dropped off at

specified locations.

• Vehicle Routing Problem with Time Windows (VRPTW), where the deliveries

to each location must be made within certain specified time windows.

• Capacitated Vehicle Routing Problem (CVRP), where vehicles can carry no

more than a specified quantity of commodities at a given time (i.e., a capacity

constraint is imposed).

2.3 Objectives of Routing Problems

Multi-agent optimization problems may have a variety of objectives. For instance,

the objective could be optimizing the quality of a process or method; it could also be

optimizing the cost to realize a project. In the context of routing problems, the most

common objective considered is minimizing the distance travelled. If we correlate

distance travelled to the amount of fuel consumed, then this objective translates to

minimizing the fuel consumption and thus the “cost” of the route. Such objectives are
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referred to as min-sum objectives. Another approach is to minimize the time taken

to complete the tasks. If there are multiple agents involved, one could minimize

the maximum time taken by any agent to complete its mission. Such objectives

are referred to as min-max objectives (some works in the literature also refer to it

as minimax). In particular, if the application is time critical, then this metric is

extremely important (for example, in rescue operations). This is also very relevant

to applications where the quality of service is determined by the latency involved.

2.4 Related Problems in the Literature

Job scheduling Problem (JSP) is an optimization problem which aims to assign

jobs to available machines in order to optimize the latest completion time of all the

jobs. [16]. Suppose there is a set of jobs (of potentially varying processing times)

that need to be executed by a set of available machines (with potentially different

processing power). JSP tries to allocate jobs to machines so that the jobs are com-

pleted by the machines with minimum latency. This objective of minimizing the

latency in completion closely aligns with the min-max objective (if the parameter of

the min-max cost function is time).

Another closely related problem in the literature is the Orienteering Problem

(OP) [17, 18] (which is based on the sport Orienteering) where the start and end

points for the path are given along with other locations that have associated scores.

The objective is to maximize the score (by visiting associated locations), subject to

constraints on the start location, end location and travel time.

2.5 Complexity Theory

We provide a brief background on some of the aspects of complexity theory that

we use in this thesis [12]. Decision problems are the class of problems which can be

posed as a “yes” or “no” question for a given a set of inputs. The complexity class P is

defined as the set of decision problems whose answer (“yes” or “no”) can be found
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in polynomial time (i.e., the time taken to solve these problems scale polynomially

with the size of the input). The class NP consists of problems whose answer “yes” is

verifiable in polynomial time. NP-hard problems are a class of problems that are “at

least as hard as the hardest problems in NP”. More formally, a problem A is NP-hard

when every problem B in NP can be reduced in polynomial time to A.

Optimization problems are a class of problems where we aim to find the “best”

solution from the set of all feasible solutions. Since these problems do not have a

“yes” or “no” answer, by definition, they do not belong to the class NP. However,

they can still be NP-hard, if there is a polynomial time reduction from an NP-hard

decision problem to the given optimization problem. An approximation algorithm for

an optimization problem is an algorithm that efficiently finds approximate solutions

to the problem with provable guarantees on the performance of the solution with

respect to the optimal solution. In particular, an α-approximation algorithm finds

an approximate solution (in time that scales polynomially with the size of the input)

such that the approximate solution is no worse than a factor α of the optimal solution.

2.6 Assumptions

We consider task allocation and routing of agents in this thesis. Agents typically

travel in a Euclidean space. Therefore, a natural assumption to make is that the

triangle inequality holds. The triangle inequality states that for any triangle, the

sum of the lengths of any two sides must be greater than or equal to the length of

the remaining side. In our context, this implies that the direct distance between any

two points must be no longer than the distance to reach it through other points.

We consider problems with finite representations in this thesis. This means that

the values can be scaled so that they are integers. Thus, all distances and weights

considered in this thesis are taken to be non-negative integers.
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3. MIN-MAX TOURS FOR TASK ALLOCATION TO

HETEROGENEOUS AGENTS

Multi-robot systems will play a large role in a variety of modern and future appli-

cations including exploration, surveillance, search and rescue operations, cooperative

control, and operations in hazardous environments. In order to effectively utilize these

multi-robot systems, it is necessary to allocate an appropriate set of tasks to each

robot or agent in the system. Such problems have been widely considered in the liter-

ature [4,5,19–21], most typically for the case where all agents are the same. However,

future multi-robot systems are also projected to have a large amount of diversity in

terms of the capabilities of the agents, and the applications will consist of tasks that

can only be done by agents that possess certain capabilities [22–25]. We address this

problem in this chapter, namely allocating tasks efficiently to heterogeneous agents

while meeting task-agent compatibility constraints.

An overview of the work on the Traveling Salesperson Problem (TSP) with multi-

ple (homogeneous) salespersons, where the sum of the cost of tours by all salespersons

is minimized, is given in [11]. Variants of TSP with multiple depots are considered

in [26] and [27]. In [28] and [29], the case where two heterogeneous vehicles (with

associated travel costs) start from distinct initial locations and jointly visit a set of

targets is studied. As opposed to the above works that minimize the sum of the

costs of the tours, the following works focus on minimizing the maximum tour cost

incurred by any agent in a group of homogeneous agents. A tour splitting heuristic

for the k-person variant of TSP that minimizes the cost of the largest tour is given

in [30], while [31] considers the case with multiple depots. Approximation algorithms

for a problem known as the min-max tree cover problem are provided in [13, 32, 33].

While the above works consider homogeneous salespersons (or robots/agents), the re-

cent work by [5] gives a decentralized auction-based task allocation for heterogeneous
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robots (with different constraints on their motion) to minimize the total time taken

to perform all tasks. In [22], a swarm of heterogeneous robots (of different types, with

each type having different traits) is required to be distributed among a set of tasks

that require specialized capabilities. They optimize the transition rates for each type

of robot so that the desired trait distribution is reached, but do not consider travel

time between tasks. The works [34] and [35] consider task allocation to heterogeneous

agents but do not consider tours for agents to traverse as we do.

In this chapter, we combine the idea of heterogeneity in agent functionality with

that of minimizing the maximum cost incurred by any agent to tour tasks. Specifically,

consider a scenario where a set of tasks at different locations need to be executed;

however, not all tasks can be done by all agents, and certain task-agent compatibility

constraints must be satisfied. Agents are partitioned into different types based on the

capabilities of the agents. Tasks are partitioned into sets of type-specific tasks and

generic tasks, where type-specific tasks can only be performed by agents of a given

type and generic tasks can be performed by any agent. To capture this scenario, we

present the Heterogeneous Agent Cycle Problem (HACP) which aims to allocate a

set of tasks among heterogeneous agents such that the maximum time to tour the

tasks by any agent is minimized. This is an important metric, especially when the

tasks are time critical or when the quality of service is characterized by maximum

delay. Table 3.1 gives a concise overview of the literature in related multi-agent path

planning problems. The recent work by [36] considers the vehicle routing problem

with compatibility constrains, where certain tasks are constrained to be executed

only by certain agents. They provide an algorithm with an approximation factor of

2dlnne + 1 . While their notion of constraints aligns with our notion of functional

heterogeneity, our algorithm has a constant approximation factor.

The rest of this chapter is organized as follows. We start with our problem formu-

lation. We then present a naive algorithm and show that the approximation factor of

this algorithm increases linearly with the number of agents. This motivates the need

to develop better algorithms that perform well as the number of agents increase. We
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Table 3.1.
Overview of work on related multi-agent path planning problems

Objective Heterogeneity
Number

of depots
Work Description

Min-sum None
One,

multiple
[11]

Survey of various formulations

of multiple traveling salesman

problems.

Min-sum
Structurally

heterogeneous
Two [29]

Primal-dual 2-approximation

algorithm provided.

Min-sum
Structurally

heterogeneous
Multiple [19,37]

[19] provides an exact algo-

rithm using a branch and cut

algorithm. [37] provides a 2-

approximation algorithm based

on the primal-dual method.

Min-max None Multiple [38]

Provides a heuristic based on

region partitioning, and a linear

programming-based approach.

Min-max
Structurally

heterogeneous
Two [6]

Heuristics based on primal-dual

technique.

Min-max
Structurally

heterogeneous
Multiple [39]

Distributed algorithm based on

gossip communication.

Min-max
Functionally

heterogeneous
One [36,40]

Our work (published

in [40]) provides a 5-

approximation algorithm

and is discussed in this

chapter.

Min-max
Functionally

heterogeneous
Multiple [36,41]

Our work (published in

[41]) is discussed in Chap-

ter 4.
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present two such algorithms and show that these are 5-approximation algorithms for

HACP. We also show that in the special case where each of the heterogeneous agents

are distinct, the proposed algorithms haves an approximation factor of 4. The results

presented in this chapter were published in [40].

3.1 Problem Statement

Consider a set of tasks T that are to be completed by a set of k heterogeneous

agents A = {A1, A2,. . . , Ak}. Each agent is one of m types. Let f : {1, . . . , k} →

{1, . . . ,m} be a function that takes an agent number as input and outputs the type

of that agent. For each i ∈ {1, 2, . . . ,m}, let mi be the number of agents of type i,

with
∑m

i=1mi = k. Let T be composed of two broad classes of tasks: type-specific

tasks and generic tasks. Type-specific tasks can be performed only by a specific type

of agent, whereas generic tasks can be performed by any agent. Let T0 denote the set

of generic tasks and Ti, 1 ≤ i ≤ m, denote the set of type-specific tasks that can be

performed by agents of type i. Thus, T = T0 ∪ (∪mi=1Ti). Let all agents start at the

start node vs.

Consider a complete graph G = (V,E) with vertex set V = T ∪ {vs} and edge

set E = {(u, v) : u, v ∈ V, u 6= v}. Let each edge e = (u, v) ∈ E have weight d(u, v)

given by the distance between the nodes u and v. Let the direct travel cost between

two nodes be the weight of the edge connecting the two nodes in G. We assume the

distances satisfy the triangle inequality.1 The cost of executing a task is assumed to

be very small compared to travel costs and is hence neglected. A tour on a set of

nodes V ′ ⊆ V is a closed path from the start node vs through all nodes in V ′ ending

at vs. The cost of the tour is defined as the sum of weights of all edges on that tour.

Let C∗(V ′) denote the tour cost of an optimal tour on the set V ′. The objective of

the allocation problem is to partition the set of tasks T among the agents subject

1All distances and weights will be taken to be non-negative integers as we are interested in problems
that have finite representations.
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to the task-agent compatibility constraints, such that the maximum cost among all

agents to tour their allocated tasks is minimized. This is framed as follows.

Heterogeneous Agent Cycle Problem (HACP):

min
S1,S2,...,Sk⊆T

max
1≤j≤k

C∗(Sj)

subject to ∪kj=1 Sj = T, Sj ∩ Si = ∅, ∀j 6= i,

Sj = Vj ∪Rj, ∀j ∈ {1, 2, . . . , k},

Vj ⊆ Tf(j), Rj ⊆ T0,

where Sj is the task set allocated to agent Aj, 1 ≤ j ≤ k. The first constraint implies

that each task must be executed by exactly one agent. The remaining conditions

state that the task set allocated to each agent Aj is a union of type-specific tasks Vj

(which is a subset of Tf(j), where f(j) is the type of agent Aj) and generic tasks Rj

(which is a subset of T0).

Any instance of the Traveling Salesperson Problem (TSP) can be trivially reduced

to an instance of HACP by setting the number of agents k = 1 and all tasks to be

generic. Thus, the HACP is trivially NP-Hard, and has no polynomial time solution

unless P= NP. Hence, in the rest of this chapter we develop approximation algorithms

for HACP.

3.2 A Naive Algorithm for HACP

We start with the following simple algorithm to solve HACP. In this algorithm,

we first select one agent of each type. To each of these selected agents, we allocate

all the type-specific tasks associated with that agent type. All remaining tasks (i.e.,

generic tasks) are then allocated to agent A1. Each agent now computes a tour using

some approximation algorithm (e.g., Christofides’ algorithm [8]) on the set of tasks

allocated to it. Algorithm 1 describes this naive allocation.
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Algorithm 1 NaiveAllocation Algorithm

1: procedure NaiveAllocation(A, T,G)

2: For each agent type i ∈ {1, . . . ,m}, select one agent from agents of type i.

Allocate type-specific tasks Ti to this agent.

3: Allocate generic tasks T0 to agent A1.

4: Compute tour (starting and ending at node vs) for the set of tasks allocated

to each agent using an approximation algorithm.

5: Return tours for each agent.

6: end procedure

Theorem 3.2.1 Suppose the algorithm that is used to compute the tour for each

agent in line 4 of the NaiveAllocation algorithm has approximation factor α.

Then, NaiveAllocation is an αk-approximation algorithm for HACP.

Proof For 1 ≤ j ≤ k, let S∗j be the set of tasks allocated to agent Aj under the

optimal allocation for HACP. Note that S∗j ⊆ T ∀j and ∪kj=1S
∗
j = T . The set

S∗j ⊆ Tf(j) ∪R∗j where R∗j is the subset of tasks in T0 allocated to agent Aj under the

optimal allocation policy.

For 1 ≤ j ≤ k, let Sj denote the set of tasks allocated to agent Aj by NaiveAl-

location. Let C∗(·) denote the cost to optimally tour a given set of tasks (starting

and ending at vs) and let CNA(·) denote the tour costs returned by the NaiveAllo-

cation algorithm. The approximation ratio R for the NaiveAllocation algorithm

is given by

R =
max
1≤j≤k

CNA(Sj)

max
1≤j≤k

C∗(S∗j )
≤ CNA(T )

max
1≤j≤k

C∗(S∗j )

≤ αC∗(T )

max
1≤j≤k

C∗(S∗j )
≤
α(
∑k

j=1C
∗(S∗j ))

max
1≤j≤k

C∗(S∗j )
≤ αk.

The inequality CNA(T ) ≤ αC∗(T ) holds as the tour in line 4 of NaiveAllocation is

computed using an α-approximation algorithm. Also, C∗(T ) ≤
∑k

j=1C
∗(S∗j ) follows

since S∗j , 1 ≤ j ≤ k, form a partition of T and the triangle inequality holds.
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The previous theorem shows that the approximation factor of even a naive algo-

rithm as the one described above is bounded, but the bound grows linearly with the

number of agents k. This motivates us to look for better algorithms for HACP, in

particular, algorithms that perform well as the number of agents become large. We

provide two constant factor algorithms in the following section.

3.3 Constant Factor Approximation Algorithms for HACP

3.3.1 Cycle Splitting Approach

Consider an instance of HACP. In order to find an allocation of tasks to agents,

we must allocate type-specific tasks among agents of the required type and allocate

generic tasks among all agents. We approach the problem by handling these two

allocations separately.

Given a set of tasks Ti and a number k, let TaskSplitter be any algorithm that

splits the set of tasks Ti into k sub-tours {Ti1, Ti2, ..., Tik} within some factor β of the

optimal split (in the min-max sense). For example, Frederickson et. al. [30] give a

tour splitting heuristic that takes a tour T ′ on a set of locations to be visited (first

node of which is set as the start node), and a positive integer k as input and gives

a set of k subtours (starting and ending at the start node) as the output. The cost

of these subtours are within a factor of 1 + F − 1/k of the optimal min-max cost,

where F is the approximation factor of the algorithm used to generate the initial

tour T ′. We provide Algorithm 2 to allocate a given set of tasks T to a group of k

heterogeneous agents A.
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Algorithm 2 Min-Max Tour by CycleSplit Algorithm

1: procedure CycleSplit(A, T,G)

2: for each agent type i, 1 ≤ i ≤ m do

3: Find Christofides’ tour (starting and ending at vs) on the set of type-

specific tasks of type i.

4: Use TaskSplitter to get mi subtours (starting and ending at vs) on set Ti.

5: Allocate one subtour to each agent of type i.

6: end for

7: Find Christofides’ tour (starting/ending at vs) on T0.

8: Use TaskSplitter to split tour on T0 into k subtours (starting and ending at

vs), denoted by {R1, R2, . . . , Rk}.

9: Allocate subtour Rj to agent Aj, 1 ≤ j ≤ k.

10: Combine the type-specific task subtour and generic task subtour allocated

to each agent.

11: Return a tour for each agent.

12: end procedure

Theorem 3.3.1 CycleSplit is a 2β-approximation algorithm for HACP, where β

is the approximation factor of the algorithm TaskSplitter used in steps 4 and 8.

Proof For 1 ≤ j ≤ k, let S∗j be the allocation of tasks to agent Aj under an optimal

algorithm for HACP. Then, S∗j can be expressed as S∗j = V ∗j ∪ R∗j , where V ∗j is the

subset of type-specific tasks allocated to agent Aj and R∗j is the subset of generic

tasks assigned to agent Aj. Let Sj = Vj ∪ Rj be the allocation to agent Aj by

the CycleSplit algorithm, where Vj is the subset of type-specific tasks allocated

to agent Aj and Rj is the subset of generic tasks allocated to agent Aj. Let C∗(·)

denote the cost to optimally tour a given set of tasks starting and ending at node vs.

Let CTS(Rj) and CTS(Vj) denote the cost of the subtours on Rj and Vj returned by

TaskSplitter in steps 4 and 8 respectively. Let CCS(Sj) denote the cost of a tour on
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Sj returned by the CycleSplit algorithm. Thus, the approximation factor R of the

CycleSplit algorithm is given by

R =
max
1≤j≤k

CCS(Sj)

max
1≤j≤k

C∗(S∗j )
≤

max
1≤j≤k

{CTS(Vj) + CTS(Rj)}

max
1≤j≤k

C∗(S∗j )

≤
max
1≤j≤k

CTS(Vj)

max
1≤j≤k

C∗(S∗j )
+

max
1≤j≤k

CTS(Rj)

max
1≤j≤k

C∗(S∗j )

≤
max
1≤j≤k

CTS(Vj)

max
1≤j≤k

C∗(V ∗j )
+

max
1≤j≤k

CTS(Rj)

max
1≤j≤k

C∗(R∗j )
, (3.1)

where we use the facts that Sj = Vj∪Rj, S
∗
j = V ∗j ∪R∗j and that the triangle inequality

holds.

Consider a case with the same set of type-specific tasks as above, but with no

generic tasks. For this case, let V ′1 , V
′

2 , . . . , V
′
k denote the set of tasks allocated to

agents under an optimal allocation (in the min-max sense). Since the CycleSplit

algorithm allocates type-specific tasks independent of generic tasks, the allocation

under this algorithm will be V1, V2, . . . , Vk. Thus,

max
1≤j≤k

CTS(Vj) ≤ β max
1≤j≤k

C∗(V ′j ). (3.2)

The inequality above follows from the fact that TaskSplitter algorithm splits a

tour into subtours that are within a factor β of the optimal min-max cost. Next,

note that the min-max cost to optimally tour {V ′j } cannot exceed the min-max cost

to optimally tour {V ∗j }, by the optimality of the partition {V ′j }, 1 ≤ j ≤ k. Thus,

from (3.2),

max
1≤j≤k

CTS(Vj) ≤ β max
1≤j≤k

C∗(V ′j ) ≤ β max
1≤j≤k

C∗(V ∗j ). (3.3)

Using a similar procedure as before, this time comparing the allocation of a case

with no type-specific tasks against the set of all tasks, we get,

max
1≤j≤k

CTS(Rj) ≤ β max
1≤j≤k

C∗(R∗j ). (3.4)

From equations (3.1), (3.3) and (3.4), we get R ≤ 2β.
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We now refine the above bound using the (1 + F − 1
k
)-approximation algorithm

SPLITOUR2 from [30] that splits a tour (starting and ending at a start-node) on a

set of nodes into k subtours each starting and ending at the start node, where F is

the approximation factor of the algorithm used for constructing the initial tour.

Corollary 3.3.2 CycleSplit algorithm using the SPLITOUR algorithm from [30]

as TaskSplitter (in lines 4 and 8) is a (5 − 2
k
)-approximation algorithm for HACP.

In the special instance of HACP where there is one agent of each type (i.e., distinct

heterogeneous agents), CycleSplit has an approximation factor of (4− 1
k
).

Proof The algorithm SPLITOUR is a 5
2
− 1

k
factor algorithm to split a Christofides’

tour into k subtours (since Christofides provides an F = 3
2

factor approximation for

the initial tour). Equation (3.1) can be written as

R ≤

(
5

2
− 1

max
1≤i≤m

mi

)
+

(
5

2
− 1

k

)
≤ 5− 2

k
, (3.5)

where, the last inequality is obtained by upper bounding max
1≤i≤m

mi with k. In the

special case with distinct heterogeneous agents, mi = 1, ∀i. Thus max
1≤i≤m

mi = 1. The

result follows from substituting these values in equation (3.5).

Note that the CycleSplit algorithm, when using SPLITOUR as TaskSplitter in

lines 4 and 8, splits a TSP tour evenly into subtours and allocates one subtour to each

agent. This approach, when splitting the generic tasks, may not perform well when

agents have different allocations of type-specific tasks. To address this, we propose a

modified algorithm in the following section.

3.3.2 Min-Max Splitting Approach for Heterogeneous Agents

Based on the intuition gained from the CycleSplit algorithm, we propose a

modified algorithm called HeteroMinMaxCycleSplit. Instead of splitting a tour

2Frederickson, Hecht and Kim call the algorithm k-SPLITOUR in their paper; however, we refer to
it as SPLITOUR in order to avoid confusing k with the number of agents as we use it in this thesis.
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on the set of generic tasks into nearly equal segments, this algorithm allocates the

generic tasks to agents based on the cost incurred by agents to tour its type-specific

tasks. In the HeteroMinMaxCycleSplit algorithm, we allocate tasks to agents

in three phases:

• Phase 1: Type-specific task allocation

• Phase 2: Generic task allocation (accounting for Phase 1 allocation)

• Phase 3: Rebalancing tasks within agents of each type.

In Phase 1, type-specific tasks are allocated among agents of the associated type as

in CycleSplit. The generic tasks are allocated among all agents in Phase 2. Unlike

in CycleSplit, the allocation during Phase 2 tries to balance the total cost incurred

by agents by taking into account the allocation to agents after Phase 1. After Phase

2, all tasks allocated to agents of the same type can be done by all agents of that type.

Thus, in Phase 3, we try to re-balance the load among agents of type i, 1 ≤ i ≤ m.

Tasks allocated to agents of type i are pooled into a set T ′i and re-allocated among

the agents of type i by splitting the Christofides’ tour on the set T ′i (starting and

ending at vs) into mi sub-tours using SPLITOUR [30]. If min-max cost of this set

of subtours is lesser than that at the end of Phase 2 (for agents of type i), then this

allocation is adopted; otherwise, the allocation at the end of Phase 2 is retained.

We formally present the algorithm in two steps. We first give an algorithm Het-

eroCycleSplit that takes an additional input: a positive integer λ denoting the

desired upper bound for the tour length for any agent. This algorithm finds tours (if

they exist) for each agent such that the cost for each agent’s tour is less than λ. The

value of λ cannot be less than than twice the largest edge from vs to any task loca-

tion, i.e., 2 max
t∈T

d(vs, t), where d(vs, t) is the distance from vs to task t. Furthermore,

let C(·) be the cost of Christofides’ tour on the given set of tasks. Then, λ cannot

exceed max
1≤i≤k

C(Ti) +C(T0). The HeteroMinMaxCycleSplit algorithm performs

a binary search on λ, running HeteroCycleSplit in each iteration, to find the best

set of tours for the agents.
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We now provide a brief sketch of the algorithm SPLITOUR from [30] for the

purpose of applying it as the TaskSplitter algorithm. It takes as input a set of n

nodes v1, . . . , vn (with the initial node as the start node) and a positive number k.

Algorithm 3 Heterogeneous Task Split within bound λ

1: procedure HeteroCycleSplit(A, T,G, λ)

. Phase 1: Type-specific task allocation

2: for each agent type i, 1 ≤ i ≤ m do

3: Find Christofides’ tour (starting and ending at vs) on the set of type-

specific tasks of type i.

4: Use TaskSplitter to split the tour on Ti into mi subtours (starting and

ending at vs).

5: Allocate one subtour to each agent of type i.

6: end for

. Phase 2: Generic task allocation

7: Mark all agents as free. Remove all vertices in ∪mi=1Ti from G and all edges

incident on these vertices. Denote the resulting graph by G′.

8: Mark tasks in G′ as unallocated. Find Christofides’ tour H (starting and

ending at vs) on nodes in G′.

9: Consider the next unallocated task, say t, along H starting from vs. For each

free agent Aj, find cost to tour (starting and ending at vs) all tasks allocated

to it along with t appended at the end of its tour. If no free agent can add

the task to its tour without exceeding cost λ, return failure. Else, select the

agent with the minimum cost.

10: Allocate t to the selected free agent. Keep allocating unallocated tasks along

H to this agent (by appending tasks at the end of its tour successively) as

long as the agent’s tour cost does not exceed λ.

11: Remove the tasks allocated in the previous step from the set of unallocated

tasks and mark agent as busy.

12: Go to step 9 if the set of unallocated tasks is non-empty.
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. Phase 3: Rebalancing within agent types

13: for each agent type i, 1 ≤ i ≤ m do

14: Let Ai be the set of tours allocated to agents of type i after Phase 2.

15: Deallocate tasks from all agents of type i into a set T ′i . Find Christofides’

tour H ′ on T ′i ∪ {vs} (starting and ending at vs).

16: Run TaskSplitter on H ′ to get one subtour for each agent of type i. Denote

this set of tours (subtours of H ′) by A′i.
17: If min-max cost of the tours in A′i is less than the min-max cost of the

tours in Ai, allocate the tours in A′i to agents of type i (a different tour to

each agent); else, allocate the tours in Ai to agents of type i (a different

tour to each agent).

18: end for

19: Return tours for each agent.

20: end procedure

Algorithm 4 Min-Max Tour by HeteroMinMaxCycleSplit Algorithm

1: procedure HeteroMinMaxCycleSplit(A, T,G)

2: Do binary search in the interval [2 max
t∈T

d(vs, t), max
1≤i≤k

C(Ti) + C(T0)] to find

the smallest value of λ for which HeteroCycleSplit(A, T,G, λ) returns a

set of valid tours.

3: Return the set of tours returned by HeteroCycleSplit(A, T,G, λ).

4: end procedure

First, the algorithm constructs a Christofides’ tour on all the nodes. Let L be the

cost of this tour and let cmax be the maximum direct distance of any node from the

start node, i.e., cmax = max
1<i≤n

d(v1, vi). For 1 ≤ j < k, it finds the largest vertex

vp(j) along the tour such that the cost to traverse the tour from the start node to

vp(j) does not exceed j
k
(L − 2cmax) + cmax. It returns k subtours (v1, . . . , vp(1), v1),

(v1, vp(1)+1, . . . , vp(2), v1), . . ., (v1, vp(k−1)+1, . . . , vn, v1), each of which has cost less than

1
k
(L−2cmax) + 2cmax. Frederickson et. al. [30] show that if the length of the subtours
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do not exceed 1
k
(L − 2cmax) + 2cmax, then the min-max cost of the subtours is no

worse than a factor (5
2
− 1

k
) of the optimal min-max cost.

The following theorem uses the splitting heuristic summarized above to bound the

performance of our algorithm.

Theorem 3.3.3 HeteroMinMaxCycleSplit is a (5 − 2
k
)-approximation algo-

rithm for HACP with k heterogeneous agents when SPLITOUR is used as TaskSplitter

in lines 4 and 16 of HeteroCycleSplit.

Proof Let λ1 be the maximum cost among all the subtours of type-specific tasks

after line 6 (Phase 1) of the HeteroCycleSplit algorithm, i.e., λ1 = max
1≤j≤k

CTS(Vj),

where Vj denotes the set of type-specific tasks allocated to agent Aj and CTS(·)

denotes the cost associated with the subtour returned by SPLITOUR.

Running SPLITOUR on a Christofides’ tour on the set of generic tasks T0 (and

vs) to split it into k subtours will return subtours of cost no more than 1
k
(L−2cmax)+

2cmax, where L is the length (or cost) of the initial Christofides’ tour on T0 ∪ {vs},

and cmax is the maximum direct distance of any node in T0 from the start node. No

matter how each of these subtours are matched to agents (one subtour per agent),

the total min-max cost is no more than λ1 + 1
k
(L− 2cmax) + 2cmax.

Set λ to be λ1 + 1
k
(L− 2cmax) + 2cmax. Consider HeteroCycleSplit with this

value of λ. In Phase 1, HeteroCycleSplit allocates type-specific tasks to agents,

same as steps 2-6 of CycleSplit. The maximum cost of any agent’s tour after

Phase 1 is λ1. In Phase 2, HeteroCycleSplit computes a Christofides’ tour H on

the set of generic tasks and vs. The algorithm selects an agent that has minimum

cost to complete its current allocated tasks in addition to the next task along H.

The algorithm then allocates tasks along the tour H to the selected agent as long

as the cost does not exceed λ. Regardless of which agent gets selected first, the

set of tasks that are allocated to the selected agent in HeteroCycleSplit will

contain the tasks in the first subtour generated by SPLITOUR. The allocation by

HeteroCycleSplit to the first selected agent may contain more tasks than the
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first subtour of SPLITOUR, but not less. Thus, after allocating tasks to the first

agent, the number of tasks left to be allocated to the remaining k − 1 agents in

HeteroCycleSplit is no more than the number of tasks left in the k− 1 subtours

to be allocated to the remaining k − 1 agents in SPLITOUR.

Given that the set of tasks left for allocation in HeteroCycleSplit is a subset of

the set of tasks left to be allocated in SPLITOUR, they can be grouped into subtours

that each have cost at most 1
k
(L − 2cmax) + 2cmax. Thus, it is guaranteed that the

remaining tasks can be allocated to other k− 1 agents in HeteroCycleSplit algo-

rithm for the specified value of λ. Thus, by inducting on the number of agents to which

tasks have been allocated along the initial tour, the HeteroCycleSplit algorithm

is guaranteed to return a feasible solution to HACP for λ = λ1 + 1
k
(L−2cmax)+2cmax.

Since HeteroCycleSplit checks tour cost against λ before allocation of tasks to

an agent, it guarantees that the tour costs for all agents is no more than λ. The

approximation factor R is given by

R ≤ λ

max
1≤j≤k

C∗(S∗j )

=
λ1

max
1≤j≤k

C∗(S∗j )
+

1
k
(L− 2cmax) + 2cmax

max
1≤j≤k

C∗(S∗j )

≤
max
1≤j≤k

CTS(Vj)

max
1≤j≤k

C∗(V ∗j )
+

1
k
(L− 2cmax) + 2cmax

max
1≤j≤k

C∗(R∗j )
(3.6)

≤

(
5

2
− 1

max
1≤i≤m

mi

)
+

(
5

2
− 1

k

)
≤ 5− 2

k
, (3.7)

where equation (3.6) is given by the triangle inequality and the fact that V ∗j and R∗j

are subsets of S∗j (the optimal allocation to agent Aj). Equation (3.7) is obtained

from equation (3.3) and [30] (summarized prior to this theorem). Note that Phase 3

does not increase the bound on the approximation factor.

Since all tour costs are integers, given that HeteroCycleSplit returns a fea-

sible solution to HACP for λ = λ1 + 1
k
(L − 2cmax) + 2cmax, it is also guaranteed

to return a feasible solution to HACP for λ = λ1 + b 1
k
(L − 2cmax) + 2cmaxc. Het-
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eroMinMaxCycleSplit performs a binary search over λ and is guaranteed to find

the above λ for use by HeteroCycleSplit. Thus, HeteroMinMaxCycleSplit

is a (5− 2
k
)-approximation algorithm for HACP.

Corollary 3.3.4 HeteroMinMaxCycleSplit is a (4 − 1
k
)-approximation algo-

rithm for the special instance of HACP where all agents are distinct.

Proof In this instance, mi = 1, for 1 ≤ i ≤ m. The result follows from substituting

mi = 1 in equation (3.7).

From Theorem 3.3.3, we see that HeteroMinMaxCycleSplit has an approx-

imation factor of 5 regardless of the value of k. In the special instance where all

agents are distinct, we see from Corollary 3.3.4 that HeteroMinMaxCycleSplit

is a 4-approximation algorithm regardless of the value of k.

Phase 1 of HeteroCycleSplit has a time complexity O
(

m∑
i=1

ρ(Gi,mi)

)
, where

O (ρ(Gi,mi)) is the complexity of TaskSplitter to return mi tours on a graph Gi.

Phase 2 has a complexity of O(n3
0) , where n0 is the number of generic tasks (as-

sociated with finding the Christofides’ tour in step 8 [42]). Phase 3 has a com-

plexity of O(ρ(Gi ∪ G′,mi)), for each of the m agent types. Thus, the complexity

of HeteroMinMaxCycleSplit is given by O

((
m∑
i=1

ρ(Gi,mi) + n3
0 +

m∑
i=1

ρ(Gi ∪

G′,mi)

)
log
∑

e∈E(G) w(e)

)
, where the log term is due to the binary search over λ,

and w(e) is the weight of edge e. When using SPLITOUR with Christofides’ algo-

rithm as TaskSplitter, ρ(G,m) = n3 [42], where n is the number of nodes in G. This

results in an overall complexity of O(mn3 log
∑

e∈E(G) w(e)) for HeteroMinMax-

CycleSplit.

3.3.3 Examples Illustrating the Algorithms

The HeteroMinMaxCycleSplit algorithm considers the allocation of type-

specific tasks while allocating generic tasks, allowing it to outperform CycleSplit
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when the type-specific tasks are not uniformly distributed among agents. We illustrate

this through Example 3.3.5. Example 3.3.6 illustrates the benefit of Phase 3, and

shows how the reallocation in Phase 3 can improve performance.

vA

t1

vB

t2 t3

vs1 1

Fig. 3.1. Task locations in Example 3.3.5

Example 3.3.5 Consider two agents: A1 of type 1 and A2 of type 2, located at vs.

Task t1 is of type 1 and tasks t2, t3 are generic tasks, i.e., T1 = {t1}, T2 = ∅,

T0 = {t2, t3}. Task t1 is located at node vA and tasks t2 and t3 are located at node vB

as shown in Figure 3.1.

CycleSplit allocates type-specific task t1 to agent A1 and splits generic tasks

{t2, t3} among agents A1 and A2. Hence, A1 is allocated tasks {t1, t2} and A2 is

allocated {t3}. The tour costs for agents A1 and A2 are 4 and 2 respectively, Thus,

the min-max tour cost is max{4, 2} = 4.

HeteroMinMaxCycleSplit allocates type-specific task t1 to agent A1 in Phase

1. In Phase 2, generic tasks {t2, t3} are split among agents A1 and A2 based on

remaining capacity. In particular, for λ = 2, HeteroCycleSplit allocates {t1} to

agent A1 and {t2, t3} to agent A2. The min-max tour cost for the tour returned by

HeteroMinMaxCycleSplit is thus max{2, 2} = 2, which is also the optimal cost

in this case.

Example 3.3.6 Consider a scenario with two type 1 agents A1 and A2 located vs.

Let type-specific tasks T1 = {t1, t2} for type 1 agents be located at vA, which is at a

distance of 1 unit from vs as shown in Figure 3.2. Generic tasks T0 = {t3, t4} are

located at vB at a distance of 1 unit from vs.

In Phase 1, one type-specific task gets allocated to each of the agents; say t1 gets

allocated to agent A1 and t2 gets allocated to agent A2. In Phase 2, one generic
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vA

t1 t2

vB

t3 t4

vs1 1

Fig. 3.2. Task locations in Example 3.3.6

task gets allocated to each of the agents; say t3 gets allocated to agent A1 and t4 gets

allocated to agent A2. So at the end of Phase 2, both agents need to visit nodes vA

and vB.

In Phase 3, all tasks allocated in the previous phases to agents of the same type

are deallocated and redistributed amongst them. In this phase, tasks {t1, t2, t3, t4} are

pooled and SPLITOUR is run on this set. Thus, one agent gets tasks at node vA and

the other agent gets tasks at node vB. In this example, Phase 3 reduces the tour cost

from 4 to 2 for both agents, thus reducing the min-max cost by a factor of 2. Note

that in this case, the optimal tour cost is also 2.

In the following example, we illustrate the importance of step 17 of HeteroCy-

cleSplit (Algorithm 3). We provide an example where pooling the tasks allocated

to all agents of a type and reallocating them performs worse than the allocation in

Phase 2. In such cases, step 17 ensures that the better allocation is retained.

Example 3.3.7 Consider a scenario with two type 1 agents A1 and A2 located at vs.

Let T1 = {t1, t2} be the type-specific tasks for type 1 agents and let T0 = {t3, t4} be

the generic tasks. The tasks are located as shown in Figure 3.3(a). Distances between

nodes that are not directly connected are defined as the sum of distances along the

shortest path between the nodes (the graph can be considered as a road network that

the agents can traverse). Let distance between nodes vA and vB be d′ (which is the

same as the distance between nodes vC and vD). Let d, d′ � ε. Then, as ε → 0,

d′ →
√

5
2
d.

In Phase 1, type-specific task {t1} is allocated to agent A1 and {t2} is allocated

to A2. In Phase 2, generic task {t3} is allocated to A1 and {t4} is allocated to A2.
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(a) Task locations
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(b) Task allocation in Phase 1

vA
t1

vD
t3

vB
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t4

vsd/2 d/2

d d

ε

(c) Task allocation in Phase 2

vA
t1

vD
t3

vB
t2

vC
t4

vsd/2 d/2

d dd′ d′

(d) Task reallocation during Phase 3

Fig. 3.3. Task allocation in Example 3.3.7
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Thus, the allocation after Phase 2 is as shown in Figure 3.3(c). The dotted line shows

the tour for agent A1 and the dashed line shows the tour for agent A2. The min-max

cost for this set of tours is 2d+ ε. In Phase 3, tasks {t1, t2, t3, t4} are deallocated to a

set T ′1, and a Christofides’ tour H ′ (starting and ending at vs) is formed on this set.

After running TaskSplitter on H ′, tasks {t1, t2} are allocated to agent A1 and tasks

{t3, t4} are allocated to agent A2. The resulting tour is shown in Figure 3.3(d). The

min-max cost for these set of tours is d + d
2

+ d′ ≈ d + d
2

+
√

5
2
d ≈ 2.62d. Since the

new min-max cost is higher, the previous set of tours from Phase 2 (shown in Figure

3.3(c)) is retained in Phase 3 (line 17 of the HeteroCycleSplit algorithm).

3.4 Chapter Summary

In this chapter, we considered the Heterogeneous Agent Cycle Problem (HACP)

which aims to allocate tasks to heterogeneous agents subject to agent-task compat-

ibility while minimizing the maximum tour cost. We provided two approximation

algorithms to solve HACP. We first proposed a 2β-approximation algorithm Cycle-

Split, where β is the approximation factor of the algorithm used to split tours. We

then use the CycleSplit algorithm to develop a three phase (5− 2
k
)-approximation

algorithm (where k is the number of agents available) called HeteroMinMaxCy-

cleSplit that allocates tasks to agents in a “balanced” way.
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4. MIN-MAX PATHS FOR TASK ALLOCATION TO

HETEROGENEOUS AGENTS

In Chapter 3, we focused on formulating and solving HACP [40]; in this chapter, we

consider the Heterogeneous Agent Path Problem (HAPP), which generalizes HACP

by relaxing the constraints on the start and end location of tours. The objective of

HACP is to find tours for each agent that start and end at a start node (e.g., base),

such that the task-agent compatibility constraints are met, and (approximately) min-

imize the maximum cost incurred by any agent to complete its tours. In contrast, in

HAPP, we seek to find a set of paths through the tasks (where each path starts at

the current location of an agent), where the maximum length of any path is (approx-

imately) minimized. We impose no restrictions on the start/end positions of agents,

i.e., agents may start at different locations and are not required to rendezvous back

to their start location. In particular, our HAPP formulation enables adaptive and

resilient task allocation in real time, where agents are reassigned tasks due to arrival

of new tasks or due to failure of certain agents. We use two approaches to solve

HAPP, providing a 15-approximation algorithm and a 16-approximation algorithm

respectively. The results presented in this chapter were published in [41].

4.1 Problem Statement

Consider a set of tasks T that are required to be completed by a set of k heteroge-

neous agents A = {A1, A2, . . . , Ak}. Let vj denote the start node of agent Aj, j ∈ [k].

Let the set of all start nodes be denoted by D = {v1, v2, . . . , vk}. Note that all start

locations are not required to be distinct (i.e., start locations are also allowed to be

identical), to capture situations where some of the agents start at the same point. We

redefine the graph in the problem formulation of HACP in the previous chapter as
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follows. Let G = (V,E) be the complete graph with vertex set V = T ∪D and edge

set E = {(u, v) : u, v ∈ V, u 6= v}. Edge weights and travel costs are defined in the

same way as in HACP, and distances are assumed to satisfy the triangle inequality.

A path is an alternating sequence of vertices and edges which begins and ends with

vertices, such that all edges and vertices are distinct. The cost of a path is defined as

the sum of the weights of the edges in the path.

Let Sj be the set of tasks allocated to agent Aj. Let P ∗j (Sj) denote the cost of

the optimal path on the set Sj ∪ {vj} starting from the node vj. We do not impose

any restrictions on the end point of the path. The objective of the Heterogeneous

Agent Path Problem (HAPP) is to partition the set of tasks T among agents subject

to the task-agent compatibility constraints, such that the maximum path cost among

all agents to visit all their allocated tasks from their respective start locations is

minimized. The problem is framed as follows.

Heterogeneous Agent Path Problem (HAPP):

min
S1,S2,...,Sk⊆T

max
j∈[k]

P ∗j (Sj)

subject to ∪kj=1 Sj = T, Sj ∩ Si = ∅, ∀j 6= i

Sj = Vj ∪Rj, ∀j ∈ [k],

Vj ⊆ Tf(j), Rj ⊆ T0.

The constraints imply that each task must be executed by exactly one agent and

that the task set allocated to each agent Aj is a union of type-specific tasks Vj (which

is a subset of Tf(j), where f(j) is the type of agent Aj) and generic tasks Rj (which

is a subset of T0).

Any instance of the Traveling Salesperson Path Problem (TSPP) [43] can be

converted into an instance of HAPP by setting the number of agents as 1, the start

location of the salesperson as the start location of the agent, cities as task locations,

and all tasks as generic. Thus, HAPP is NP-hard.

We consider two approaches to formulate an approximation algorithm for this

problem. In the first approach, we use a solution to a problem known as the Min-



34

Max Path Cover Problem (MMPCP) [13,44,45],1 where given a set of k homogeneous

agents (with potentially different start locations) and a set of nodes (tasks) to be

covered by the agents, paths are found for each agent such that they cover all the

nodes while minimizing the maximum cost incurred by any agent. In this approach,

we extend the solution to MMPCP to a scenario with heterogeneous agents. In

the second approach, we first solve a problem called the Heterogeneous Agent Tree

Problem (HATP) and use that solution to solve HAPP. The idea behind this approach

is to use trees to find paths.

4.2 Approach 1: Extending MMPCP to HAPP

In this section we develop an algorithm that gives a solution to HAPP by utilizing

solutions to the min-max path cover problem (MMPCP). Given a weighted complete

graph G, a set of depots D, and a positive integer m, let MinMaxPathSplit(G,D,m)

be any algorithm that returns a set of m paths, each starting at a distinct node in D,

such that the maximum cost of the paths is less than some factor γ of the maximum

cost in the optimal set of paths (e.g., [45] provides such an algorithm). We now

propose the following algorithm to solve HAPP. As we did with HACP, the general

approach will be to first split the type-specific tasks into paths (Phase 1) and then

split the generic tasks into paths (Phase 2). The two types of paths are then stitched

together for each agent.

Theorem 4.2.1 The algorithm HeteroMinMaxPathSplit is a 3γ-approximation

algorithm for HAPP, where γ is the approximation factor of the MinMaxPathSplit

algorithm used in lines 4 and 8 of HeteroMinMaxPathSplit.

Proof Let Vj and Rj be the set of tasks allocated to agent Aj by MinMaxPathSplit

in lines 4 and 8 respectively. Let Pj(Vj) be the cost of the path P1
j through the nodes

in the set Vj starting at node vj, and let Pj(Rj) be the cost of the path P2
j through the

1We use the Capacitated Rooted MMPCP considered in [44], where all paths start from a distinct
node from the set of start nodes.
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Algorithm 5 Min-Max Path by HeteroMinMaxPathSplit Algorithm

1: procedure HeteroMinMaxPathSplit(A, T,G)

. Phase 1: Path through type-specific tasks

2: for each agent type i ∈ [m] do

3: Define Di = {vj|j ∈ [k], f(j) = i}. Let Gi be the weighted subgraph of G

induced by Di ∪ Ti.
4: Run MinMaxPathSplit(Gi, Di, mi) to get mi paths, each rooted at a

unique node in Di.

5: For each agent Aj of type i, assign the path starting at node vj (its start

location). Let P1
j be the path through type-specific tasks assigned to agent

Aj.

6: end for

. Phase 2: Path through generic tasks

7: Define D = {vj|j ∈ [k]}. Let G0 be the weighted subgraph of G induced by

D ∪ T0.

8: Run MinMaxPathSplit(G0, D, k) to get k paths, each rooted at a unique

node in D.

9: for each agent Aj, j ∈ [k] do

10: Assign the path starting at node vj to agent Aj, j ∈ [k]. Let P2
j be the

path through generic tasks assigned to agent Aj.

11: Join paths P1
j and P2

j (by first traversing the shorter path among the two

and then proceeding to the first node after vj in the other path) to get the

path Pj for agent Aj.

12: end for

13: Return the path for each agent.

14: end procedure
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nodes in the set Rj starting at node vj. In line 11 of HeteroMinMaxPathSplit,

paths P1
j and P2

j are joined (by first traversing the shorter of the two paths and then

proceeding to the first node after the start node in the other path) to get the path

Pj for agent Aj. Note that the cost to travel from the end of the shorter path to

the start location (i.e., first node of the longer path) cannot exceed the cost of the

shorter path, i.e., min{Pj(Vj), Pj(Rj)}. Thus, the cost of path Pj is upper bounded

by Pj(Vj) + Pj(Rj) + min{Pj(Vj), Pj(Rj)}.

Let P ∗(S∗j ) be the cost of the optimal path for agent Aj under the optimal alloca-

tion, where S∗j is the tasks allocated to agent Aj under an optimal allocation. Note

that S∗j = V ∗j ∪ R∗j , where V ∗j is the set of type-specific tasks in S∗j and R∗j is the set

of generic tasks in S∗j .

The approximation factor R̃ for HeteroMinMaxPathSplit is given by

R̃ ≤
max
j∈[k]

{
Pj(Vj) + Pj(Rj) + min{Pj(Vj), Pj(Rj)}

}
max
j∈[k]

P ∗j (S∗j )

≤
max
j∈[k]

Pj(Vj)

max
j∈[k]

P ∗j (S∗j )
+

max
j∈[k]

Pj(Rj)

max
j∈[k]

P ∗j (S∗j )
+ min

{max
j∈[k]

Pj(Vj)

max
j∈[k]

P ∗j (S∗j )
,

max
j∈[k]

Pj(Rj)

max
j∈[k]

P ∗j (S∗j )

}
(4.1)

≤
max
j∈[k]

Pj(Vj)

max
j∈[k]

P ∗j (V ∗j )
+

max
j∈[k]

Pj(Rj)

max
j∈[k]

P ∗j (R∗j )
+ min

{ max
j∈[k]

Pj(Vj)

max
j∈[k]

P ∗j (V ∗j )
,

max
j∈[k]

Pj(Rj)

max
j∈[k]

P ∗j (R∗j )

}
, (4.2)

where inequality (4.1) follows from the max-min inequality maxx miny f(x, y) ≤

miny maxx f(x, y), for any function f(x, y) [46]. Inequality (4.2) follows from the

fact that V ∗j and R∗j are subsets of S∗j and the triangle inequality holds.

Consider an instance of the problem with only the type-specific tasks. Let V ′j be

the set of tasks allocated to agent Aj by an optimal algorithm and let P ∗j (V ′j ) be the

cost of the optimal path for agent Aj through the nodes in V ′j starting from node vj.

So,

max
j∈[k]

P ∗j (V ′j ) ≤ max
j∈[k]

P ∗j (V ∗j ). (4.3)

Similarly, by considering the instance with only generic tasks, we get

max
1≤j≤k

P ∗j (R′j) ≤ max
1≤j≤k

P ∗j (R∗j ), (4.4)
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where P ∗j (R′j) is the cost of the optimal path for agent Aj from node vj through the

optimal set of tasks R′j allocated to it in the instance with only generic tasks.

MinMaxPathSplit is a γ-approximation algorithm for the homogeneous agent min-

max path problem. Combining this with equations (4.3) and (4.4), we get

max
j∈[k]

Pj(Vj) ≤ γmax
j∈[k]

P ∗j (V ′j ) ≤ γmax
j∈[k]

P ∗j (V ∗j ), (4.5)

max
j∈[k]

Pj(Rj) ≤ γmax
j∈[k]

P ∗j (R′j) ≤ γmax
j∈[k]

P ∗j (R∗j ). (4.6)

Substituting equations (4.5) and (4.6) into equation (4.2), we have R̃ ≤ γ + γ +

min{γ, γ} = 3γ.

Corollary 4.2.2 Using the 5-approximation algorithm for the min-max path cover

problem proposed in [45], HeteroMinMaxPathSplit is a 15-approximation algo-

rithm for HAPP.

Proof The proof follows by substituting γ = 5 into Theorem 4.2.1.

The time complexity of Phase 1 of Algorithm 5 is O
(

m∑
i=1

ρ̂(Gi,mi)

)
, where

O(ρ̂(Gi,mi)) is the complexity of MinMaxPathSplit that returns mi rooted paths

in Gi. Line 8 of Phase 2 has complexity O(ρ̂(G0, k)), and lines 9-12 have complex-

ity O(k). Thus, the overall complexity is O
(

m∑
i=1

ρ̂(Gi,mi) + ρ̂(G0, k) + k

)
. Using

the algorithm proposed in [45] as MinMaxPathSplit results in ρ̂(G, k) = n(|E| +

|V | log |V |) + (k3 + n2) log n, where n is the number of task nodes in G, k is the

number of agents (or start nodes) in G, |V | = n+ k is the number of nodes in G and

|E| is the number of edges in G. Thus, using this algorithm as MinMaxPathSplit,

substituting the values of ρ̂ (and doing some algebra) gives an overall complexity of

O(mn(n+ k)2 +mk3 log n).

4.3 Approach 2: Solution to HAPP Based on Trees

We now provide an alternate method to solve HAPP, where we first find min-

max trees for agents and use them as the basis to find min-max paths. A tree is an
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acyclic connected graph. The cost of the tree is defined as the sum of the weights

of the edges in the tree. Let F ∗j (Sj) denote the cost of the optimal (minimum cost)

tree on the set Sj rooted at node vj, where vj is the start node of agent Aj. We

now formulate the Heterogeneous Agent Tree Problem (HATP) as follows, where

the goal is to find an optimal allocation of tasks to agents satisfying the task-agent

compatibility constraints, such that the maximum cost among all agents to construct

a tree on the tasks allocated to them is minimized.

Heterogeneous Agent Tree Problem (HATP):

min
S1,S2,...,Sk⊆T

max
j∈[k]

F ∗j (Sj)

subject to ∪kj=1 Sj = T, Sj ∩ Si = ∅, ∀j 6= i

Sj = Vj ∪Rj, ∀j ∈ [k],

Vj ⊆ Tf(j), Rj ⊆ T0.

The existing literature on homogeneous min-max tree cover problems looks at

generating a tree cover such that the maximum cost among the trees in the tree cover

is minimized. Given a graph G = (V,E) and a set of roots R ⊂ V , the min-max

R-rooted tree cover problem aims to find a tree cover of G, such that each tree in

the tree cover has a distinct root in R. The min-max R-rooted tree cover problem

is NP-hard [32]. Let V \R denote the set of nodes in the set V but not in the set

R. Any instance of the above problem can be converted into an instance of HATP

by assigning all agent types as 1, assigning all nodes in V \R as generic tasks and

assigning the set R as the set of depots (or start nodes) D. Thus, HATP is also

NP-hard.

A 4-approximation algorithm to the homogeneous min-max R-rooted tree cover

problem, called Rooted-Tree-Cover, is provided by [32]. We make use of this algorithm

with some modifications to solve HATP. In order to explain the modification made

to Rooted-Tree-Cover and the rationale behind the modification, we provide a short

description of Rooted-Tree-Cover. The algorithm selects a bin size B (the optimal

value of B is found by a binary search) and runs on the inputs R, G, k and B, where
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G = (V,E) is an undirected weighted graph, R ⊂ V denotes the set of roots, and k

denotes the number of trees desired in the tree cover. All edges of weight more than

B are first removed from G. Next, all the root nodes are contracted to a single new

node r′; for each non-root node v, the set of edges from v to root nodes is replaced by

a single edge from v to r′, with weight equal to the smallest weight from v to any root

node. A minimum spanning tree (MST) [9,10] is constructed on the resulting graph.

A forest (i.e., a set of disjoint trees) J = {J1,J2, . . . ,J|R|} is then obtained from the

MST by un-contracting the root nodes (i.e., by splitting r′ back into the individual

root nodes, and replacing each edge (r′, v) in the MST by an edge from v to its closest

root node). At this point, we have a set of trees rooted at R; however, there is no

guarantee on the size of each tree (and indeed, some trees might be much larger than

others). Thus, the next step is to split the trees and rebalance them across the roots.

To do this, [32] provides a procedure termed “edge-decomposition” which takes

each tree Ji ∈ J (with root ri) and a number B, and returns a set of subtrees of Ji,

denoted S(i) = {Sji }, each with weight in the interval [B, 2B), along with a leftover

tree Li rooted at ri, with weight no more than B. These subtrees and leftover tree

may have nodes in common, but are edge disjoint.

Edge decomposition and splitting away of subtrees proceeds as follows. For a

node v ∈ V (Ji), let Tv denote the rooted subtrees hanging from v. Define subtree Te

comprising of Tv, the parent u of the node v and the edge e(u, v). If w(Te) < B, then

it is light; if w(Te) ∈ [B, 2B), then it is medium, and if w(Te) ≥ 2B, then it is heavy.

A subtree Te is split away from the original tree by designating it as a new part,

removing edges in Te from the original tree and keeping only those nodes and edges

in the original tree that are connected to its root node. Medium subtrees are split

away first. If every subtree is either light or heavy, let v be a heavy node such that

all its children are light. Group edges {e1, e2, . . . , ep} from v to its children until the

cumulative edge weight of the trees hanging from these edges exceeds B. Then, split

away the subtree ∪pi=1Tei . The decomposition ends when the weight of the remaining
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tree (called the leftover tree) is less than B. The subtrees may or may not contain

the root node, but the leftover tree includes the root node.

A bipartite graph is then constructed with one side as the vertex set R and

the other side representing trees in set ∪|R|i=1S
(i). An edge is present between nodes

representing root r and subtree Sij in the bipartite graph if the distance between them

is at most B. A maximum matching is performed on the bipartite graph. If all the

subtrees are matched, they are connected to the root node according to the matching

to obtain the required tree cover, else “failure” is returned for the selected value of

B, and the algorithm tries with a higher value of B. The algorithm returns a rooted

tree cover (if it is feasible) such that the cost of any tree in the tree cover does not

exceed 4B.2 A more detailed explanation of the Rooted-Tree-Cover algorithm can be

found in [32].

4.3.1 Constant Factor Algorithm for HATP

We extend now the work on homogeneous min-max tree cover problems to the case

with heterogeneous agents. As we have done with the previous algorithms, we process

type-specific tasks and generic tasks separately and then join the resulting subtrees.

Let D = {v1, . . . , vk} denote the set of start nodes of all agents and Di = {vj|j ∈

[k], f(j) = i} denote the set of start nodes of agents of type i ∈ [m]. Recall that the

number of agents of type i is mi, i ∈ [m], where m is the number of types of agents

such that
∑m

i=1 mi = k, and f(j) is a function that takes an agent number and returns

the agent type. Let vj be the start location of agent Aj, j ∈ [k]. Let G = (V,E) be the

complete graph with vertex set V = T∪D and edge set E = {(u, v) : u, v ∈ V, u 6= v}.

Edge weights are defined in the same way as before. Let wmax be the edge of maximum

weight in G. Let w(·) denote the cost of a given tree.

2Note that the trees returned by Rooted-Tree-Cover in [32] may not be node-disjoint; however, since
we are assuming that the edge weights satisfy the triangle inequality, one can simply prune the
duplicated nodes from the returned trees without increasing the cost of any tree.
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Consider a set of tasks T , and a set of start nodes D. Given the graph G = (V,E)

with V = T ∪ D, the set D, and a positive number k, let MinMaxTreeCover(G,

D, k) be any algorithm that returns k subtrees such that the maximum cost of the

subtrees is within a factor δ of the maximum cost of the optimal (min-max cost) set

of subtrees; for example, Rooted-Tree-Cover from [32] is such an algorithm. Here, we

present Algorithm 6 which builds on Rooted-Tree-Cover to cater to the problem of

meeting the type-compatibility constraints. In particular, we will first allocate type

specific tasks to the agents, and then assign generic tasks while accounting for the

existing allocations of type-specific tasks.

Within Phase 2 of Algorithm 6, lines 8-11 are the same as the steps in Rooted-Tree-

Cover (as discussed earlier in this chapter; additional details can be found in [32]).

The modification incorporated to better cater to a heterogeneous min-max framework

is captured by steps 12-14 (and the algorithm AllocateSubtreeToRoot). The

Rooted-Tree-Cover algorithm finds a maximum matching on the bipartite graph. In

contrast, we assign costs to nodes in the bipartite graph, and find two allocations.

One is the maximum matching and the second is an allocation of subtrees (in a

greedy manner) to root nodes (or agents) while taking into account the cost incurred

by the node (agent) if the subtree is allocated to it. We then find which of the two

allocations have lower min-max cost in Algorithm 7. If the former has lower weight,

and all subtrees are matched to root nodes, we return the maximum matching (as

in Rooted-Tree-Cover). However, if there is an allocation of subtrees to nodes (by

the greedy method) of lower min-max cost than the maximum matching, with cost

less than B, then we return that matching. This additional processing improves the

performance in certain scenarios, as we will illustrate shortly. In line 15 of Algorithm

6, we check if a valid allocation is returned for the selected value of B. In the last part

of the algorithm, we combine the allocation of type-specific tasks (from Phase 1) and

generic tasks (line 16). To do this, for each agent, we form an MST on all the tasks

allocated to that agent (line 17). Note that the MST is chosen as it has the minimum

cost among all trees than span all the tasks allocated to that agent. Algorithm 8
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Algorithm 6 Min-Max Tree by HeteroTreeSplit Algorithm

1: procedure HeteroTreeSplit(A, T,G,B)

. Phase 1: Type-specific task allocation

2: for each agent type i ∈ [m] do

3: Let Di = {vi|f(j) = i, j ∈ [k]}. Let Gi be the weighted subgraph of G

induced by Di ∪ Ti.
4: Run MinMaxTreeCover(Gi, Di, mi) to get mi subtrees rooted on Di. If

any node is present in multiple subtrees, prune that node from all trees

except the tree with the minimum cost.

5: For each agent Aj of type i, assign subtree with start node vj to that agent.

6: end for

. Phase 2: Generic task allocation

7: Remove nodes corresponding to type-specific tasks from G and remove the

edges incident on them. Let the resulting graph be G′ = (V ′, E ′).

8: Remove all edges with weight more than B.

9: Contract nodes in D to a single node r′ such that for all vi ∈ D and v ∈ V ′\D,

an edge (v, vi) induces an edge (v, r′), where w((v, r′)) = min
vi∈D

w((v, vi)). Con-

struct an MST rooted at r′ on the resulting graph.

10: Obtain forest {Ji, i ∈ [k]} by un-contracting root nodes in the MST (by

replacing each edge (v, r′) with an edge (v, vi), where w((v, r′)) = w((v, vi))

and vi ∈ D).

11: For each tree Ji in the forest, edge-decompose it into a set of subtrees S(i) =

{Sij} and a leftover tree Li using the procedure in [32].

12: Define the set X as nodes representing root nodes in D, and the set Y as

nodes representing subtrees in the set ∪ki=1S
(i). Let the cost associated with

each root node vj ∈ X be w(j), which is the sum of the weight of the subtree

(consisting of type-specific tasks) allocated to it in line 5 and the leftover

tree associated with it in line 11. Let w(Sij) be the cost of a subtree Sij ∈ Y .
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13: Form a weighted bipartite graph H[X, Y ] with X and Y as the two vertex

sets, where an edge exists between nodes v ∈ X and z ∈ Y if and only if the

graph contains an edge of weight at most B from the root node v to some

node in the subtree represented by z.

14: Run AllocateSubtreeToRoot(H[X, Y ], B).

15: If no valid allocation is found, return failure.

16: Else, for each agent Aj, allocate the tree consisting of the node vj ∈ D,

subtrees matched to the node vj and leftover tree (if any) containing the

root vj.

17: For each agent, find the MST on all the tasks allocated to that agent. If any

node is allocated to multiple agents, prune that node from all trees except

that of the agent with the minimum tree cost.

18: end procedure

Algorithm 7 AllocateSubtreeToRoot(H[X, Y ], B) Algorithm

1: procedure AllocateSubtreeToRoot(H[X, Y ], B)

2: Let cX(x) be the cost of a node x ∈ X, cY (y) be the cost of a node y ∈ Y ,

and ce(x, y) be the cost of an edge between them (if it exists).

3: Find a maximum matching on the bipartite graph. Let this matching

be M1. Let vx ∈ Y be the vertex matched to x ∈ X. Define cost(M1) =

maxx∈X cX(x)+cY (vx)+ce(x, vx). If no matching is found, set cost(M1) =∞.

4: Find a greedy min-max allocation as follows. Set all nodes in Y as

unallocated.

5: Select an unallocated node y ∈ Y with maximum cost cY (y). Find node

x ∈ X such that cX(x) + cY (y) + ce(x, y) is minimum. Allocate y to x, and

set it as allocated. Update cX(x)← cX(x) + cY (y) + ce(x, y).

6: Repeat step 5 until all nodes in Y are allocated. Let this allocation be M2.

7: Define cost(M2) = maxx∈X cX(x).

8: If min{cost(M1), cost(M2)} < B, return the minimum cost allocation among

M1 and M2. If not, return failure.

9: end procedure
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Algorithm 8 Min-Max Tree by HeteroMinMaxTreeSplit Algorithm

1: procedure HeteroMinMaxTreeSplit(A, T,G)

2: Do binary search for B in [0, wmax|V |] (where wmax = maxe∈E w(e)) to find

the smallest value of B for which HeteroTreeSplit(A, T,G,B) returns a

valid set of trees.

3: Return the set of trees returned by HeteroTreeSplit(A, T,G,B).

4: end procedure

performs a binary search over the range of values for B, and calls Algorithm 6 in each

iteration.

Example 4.3.1 In this example, we illustrate how the modification we introduced

in the Rooted-Tree-Cover algorithm while allocating generic tasks improves the per-

formance in certain classes of problems. Consider a scenario with four agents whose

positions are represented by the root nodes r1, r2, r3, and r4 respectively. Suppose that

after allocation of type-specific tasks (lines 2-6 of HeteroTreeSplit) and splitting

away subtrees (lines 7-12), the costs of the trees associated with each root node are 1,

100, 100, 100 respectively. Consider the bipartite graph H generated in step 13 of the

algorithm, with nodes {r1, r2, r3, r4} forming the partition X and nodes {S1, S2, S3, S4}

forming the partition Y (Figure 4.1). Recall that each Si represents a subtree consist-

ing of generic tasks (formed in steps 7-12 of the algorithm). Let the cost associated

with nodes S1, S2, S3 and S4 be 10 and let the edge cost be 1 for all edges.

The maximum matching M1 matches rj to Sj, for j ∈ [4]. The cost associ-

ated with node r1 is 12, and with nodes r2, r3 and r4 is 111. Thus, cost(M1) =

max {12, 111, 111, 111} = 111. On the other hand, the greedy min-max alloca-

tion M2 allocates all nodes in the second partition to r1. The cost associated with

r1 is 45, whereas the cost associated with r2, r3, r4 are 100. Thus, cost(M2) =

max {45, 100, 100, 100} = 100. The Rooted-Tree-Cover algorithm returns M1 whereas

the HeteroMinMaxTreeSplit algorithm returns the one with the minimum cost,

i.e., M2 when allocating generic tasks.
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Fig. 4.1. Bipartite graph H[X, Y ] with the root nodes in partition X and
the subtrees in partition Y

Theorem 4.3.2 HeteroMinMaxTreeSplit is an 8-approximation algorithm for

HATP, when using Rooted-Tree-Cover as MinMaxTreeCover in line 4 of the Het-

eroTreeSplit algorithm.

Proof Let B be the maximum cost of the trees in the tree cover returned on the set

T by HeteroMinMaxTreeSplit. Let B1 be the maximum cost of the trees in the

tree cover on type-specific tasks and let B2 be the maximum cost of the trees in the

tree cover on generic tasks returned by the HeteroMinMaxTreeSplit algorithm.

Let B∗ be the min-max cost of the optimal tree cover. Also, let B∗1 be the min-

max cost of the optimal tree cover on type-specific tasks and let B∗2 be the min-max

cost of the optimal tree cover on generic tasks. The approximation factor R̄ for

HeteroMinMaxTreeSplit is given by

R̄ =
B

B∗
≤ B1 +B2

B∗
=
B1

B∗
+
B2

B∗
≤ B1

B∗1
+
B2

B∗2
. (4.7)

Since Rooted-Tree-Cover is a 4-approximation algorithm, B1

B∗1
≤ 4. Line 14 of Het-

eroMinMaxTreeSplit (described in the AllocateSubtreeToRoot algorithm)

finds the minimum among two allocations. The first method (maximum matching)

is the same as in Rooted-Tree-Cover, and so the minimum of the two methods is no
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worse that the cost returned by Rooted-Tree-Cover. Hence, by construction, B2

B∗2
≤ 4.

Substituting these values into (4.7), R̄ ≤ 8.

Remark 4.3.3 The greedy allocation in Algorithm 7 is a heuristic that can improve

performance in practice, but does not come with a guarantee. One could consider other

modifications to the AllocateSubtreeToRoot procedure to allocate generic-task

subtrees to root nodes (while accounting for the costs of the task-specific subtrees that

are already allocated to each root node). Specifically, by viewing each root node as a

“parallel machine” and the subtrees as “jobs”, the task of allocating subtrees to roots to

minimize the maximum cost is an instance of a makespan minimization problem [47].

There are various approximation algorithms and heuristics for such problems, which

can be further leveraged in AllocateSubtreeToRoot to potentially improve the

performance of the algorithm. We leave the investigation of such modifications for

future work.

4.3.2 Using HATP to solve HAPP

In the previous section, we looked at an algorithm that finds min-max trees for

heterogeneous agents. In this section, we use it to solve the Heterogeneous Agent

Path Problem (HAPP). Let HeteroMinMaxTreeSplit(A, T,G) be a ζ-approximation

algorithm for HATP. We now present the following algorithm to solve HAPP using a

solution of HATP.

Algorithm 9 Min-Max Path by HeteroMinMaxTreeToPath Algorithm

1: procedure HeteroMinMaxTreeToPath(A, T,G)

2: Run HeteroMinMaxTreeSplit(A, T,G) to get k trees, one for each agent.

3: For each agent Aj, j ∈ [k], convert its allocated tree to a path by doubling

the edges of the tree and shortcutting edges.

4: Return the path for each agent.

5: end procedure
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Theorem 4.3.4 HeteroMinMaxTreeToPath is a 2ζ-approximation algorithm

for HAPP, where ζ is the approximation factor of HeteroMinMaxTreeSplit(A, T,G)

used in line 2 of HeteroMinMaxTreeToPath.

Proof Let Sj denote the set of tasks allocated to the agent Aj in line 2 of the

HeteroMinMaxTreeSplit(A, T,G) algorithm. Let S∗j be the set of tasks allocated to

agent Aj under the optimal allocation for HAPP. For agent Aj, j ∈ [k], let Pj(·)

be the cost of the path (starting from the start node vj of agent Aj) returned by

HeteroMinMaxTreeToPath on a given set of task nodes. Let P ∗j (·) be the cost

of the optimal path for agent Aj (starting from start node vj) on a given set of task

nodes. Let F ∗j (·) be the cost of the tree (rooted at node vj) on the set of tasks assigned

to agent Aj by HeteroMinMaxTreeSplit(A, T,G) in line 2. Without loss of generality,

we can assume that the subtrees returned by HeteroMinMaxTreeSplit(A, T,G) are

Minimum Spanning Trees (MSTs) on the given set of nodes (if not, it is trivial to

construct an MST on the set of nodes). Thus, F ∗j (·) is the cost of the MST on the set

of task nodes allocated to agent Aj rooted at the start node vj. The approximation

factor R̂ for HeteroMinMaxTreeToPath is given by

R̂ =

max
j∈[k]

Pj(Sj)

max
j∈[k]

P ∗j (S∗j )
. (4.8)

In step 3 of Algorithm 9, we double the edges of the MST and shortcut edges to find

the path through the set of tasks allocated to each agent. Thus, Pj(Sj) ≤ 2F ∗j (Sj).

Also, a path is a special instance of a tree and the MST is the tree of minimum cost

among all trees, i.e., F ∗j (S∗j ) ≤ P ∗j (S∗j ). Substituting these inequalities in (4.8), we

get

R̂ ≤
max
j∈[k]

2F ∗j (Sj)

max
j∈[k]

P ∗j (S∗j )
≤ 2

max
j∈[k]

F ∗j (Sj)

max
j∈[k]

F ∗j (S∗j )
. (4.9)

For any ζ-approximation algorithm that solves HATP,

max
j∈[k]

F ∗j (Sj) ≤ ζ max
j∈[k]

F ∗j (Ŝj) ≤ ζ max
j∈[k]

F ∗j (S∗j ), (4.10)
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where Ŝj is the optimal allocation of tasks to agent Aj for HATP. The second inequal-

ity holds as Ŝj is an optimal solution for HATP. From equations (4.9) and (4.10), we

get R̂ ≤ 2ζ.

Corollary 4.3.5 HeteroMinMaxTreeToPath is a 16-approximation algorithm

for HAPP if HeteroMinMaxTreeSplit is used in line 2.

Proof The result follows from Theorem 4.3.2 and Theorem 4.3.4.

4.4 Comparison of the approaches to solve HAPP

In Sections 4.2 and 4.3, we considered two approaches to solve HAPP. The first

approach extends the Min-Max Path Cover Problem (MMPCP), which is analogous

to the homogeneous agent version of HAPP. In particular, we showed that using

a γ-approximation algorithm to MMPCP, we get a 3γ-approximation algorithm for

HAPP. The second approach first finds tree covers for heterogeneous agents and then

converts trees to paths. In order to find an appropriate tree cover for the set of hetero-

geneous agents, we first formulated the Heterogeneous Agent Tree Problem (HATP)

and provided a constant factor approximation algorithm to solve it. We then showed

that given a ζ-approximation solution for HATP, we can find a 2ζ-approximation al-

gorithm for HAPP. Figure 4.2 shows both the approaches. Which approach is better

will depend on the quality of the available approximation algorithms for MMPCP

and HATP; in this thesis, the approach via HATP yielded a 16-factor approximation,

versus a 15-factor approximation via MMPCP.
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Fig. 4.2. Two solution approaches to HAPP

4.5 Simulations

We provide simulations of the HeteroMinMaxPathSplit algorithm for HAPP.

Simulations were carried out on an Intel(R) Core(TM) i7-6700 CPU (3.40 GHz). Task

locations were generated uniformly at random within a square defined by (x, y) ∈

[−10, 10] × [−10, 10] with the base at the origin. Figure 4.3 shows an example case

with 100 tasks (with 60 type-specific tasks and 40 generic tasks) and 6 agents where

agent A1 is of type 1, agents A2, A3 are type 2, and the remaining three agents are

type 3. The plot shows the paths generated by the HeteroMinMaxPathSplit

algorithm.
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Fig. 4.3. Output of Algorithm 5 on an instance of HAPP with 6 agents
and 100 tasks.



51

In Figure 4.4, we plot the run time versus the size of the instance. The run

times are averaged over 100 instances; the number of tasks are varied, while keeping

the number of agents and types fixed. As predicted by our complexity analysis, the

runtime grows approximately cubicly with the number of tasks.
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Fig. 4.4. Run time of Algorithm 5 for various sizes of problem instances.

4.6 Chapter Summary

In this chapter, we presented a class of task allocation problem where agents can

be heterogeneous in their functionality and the objective is to minimize the maximum

travel cost among all agents. We extended the Heterogeneous Agent Cycle Problem

(HACP) to the Heterogeneous Agent Path Problem (HAPP), where the maximum

cost of paths (instead of tours) for the set of heterogeneous agents is minimized. This

framework generalizes HACP and enables adaptive and resilient task allocation in

real-time.

We considered two approaches to solve HAPP. The first approach extended the

Min-Max Path Cover Problem (MMPCP) to HAPP by splitting HAPP into two in-

stances of MMPCP. We showed that this method yields a 3γ approximation solution

to HAPP, where γ is the approximation factor of the algorithm used to solve MM-

PCP. This approach provides a 15-approximation algorithm for HAPP. In the second

approach to solve HAPP, we first formulated the Heterogeneous Agent Tree Problem
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(HATP) and proposed a 2ζ-approximation algorithm for it, where ζ is the approxima-

tion factor of the algorithm used to find a min-max tree cover (without heterogeneity).

This gives an 8-approximation algorithm for HATP. We then converted trees to paths

to get a 16-approximation algorithm for HAPP.
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5. OPTIMAL POLICIES FOR RISK-AWARE SENSOR

DATA COLLECTION BY A MOBILE AGENT

In Chapters 3 and 4, we looked at approaches to route agents in risk-free environments.

In this chapter, we look at a scenario where the agent faces a risk of destruction

when it travels. Vast improvements in technology over the last few decades have

made the use of unmanned systems more accessible and affordable. Such systems are

now increasingly used for various application, particularly in hazardous (or hostile)

environments. In such applications, it is important to take into consideration the risk

an agent faces while operating in that environment. Even in benign (or relatively

safe) environments, there is some form of risk present, for instance, failures internal

to the agent (agent software or hardware malfunctions), environmental risks (such

as weather), etc. Thus, in this chapter, we study routing under risk. Examples of

such scenarios include reconnaissance missions in hostile territories where an agent

is required to collect tactical information, post-disaster search-and-rescue missions

where an agent is required to collect information on survivors, etc.

There is a large literature that considers path planning problems without risk to

agents [13, 19, 21, 30, 32]. There are relatively much fewer works that consider risk.

Risk-based path planning problems in the literature consider problem definitions that

consider constraint-based and stochastic risk models. Constraint-based approaches

[18, 48] model risk as cost on edges. Thus, the total risk of a path would be the sum

of the risks of the edges in that path. This approach then tries to find paths that have a

risk within a given threshold value. This formulation makes it challenging to consider

the trade-offs between task value and risk. In contrast, stochastic risk models [49,50]

represent risk as a probabilistic event that affects the outcome and tries to maximize

the expected value (or utility) of the solution. The stochastic events in these models

affect the cost of the solution but does not consider the possibility of loss of agent. In
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this chapter, we consider the problem formulation introduced in [51, 52] which looks

at attrition-based risk. Unlike the previous risk models, the attrition-based risk model

considers the potential loss of agents due to stochastic events. In particular, we focus

on the case where a single agent is required to collect sensor measurements and return

them to a base. We characterize several key properties of optimal walks for a mobile

agent under this scenario. We show that the optimal walk must consist of a set of

disjoint cycles. We then define a quantity which we call the reward-to-risk ratio. We

then characterize the properties and ordering of the cycles in an optimal walk based

on their reward-to-risk ratios. We also provide bounds on the length of the cycles in

an optimal walk. For the special case when the risk is sufficiently high, we provide the

optimal policy. We also provide three heuristics for the general case and compare their

performance through simulations. This chapter focuses on risk-aware path planning

for a single agent and the results presented in this chapter were published in [53].

We use the insights and approaches developed from this chapter to tackle the multi-

agent risk-aware formulation which has significant additional complexities (discussed

in Chapter 6).

5.1 Problem Formulation and Notation

We adopt the following formulation from [51, 52]. Consider an agent and a set

of n tasks T = {t1, t2, · · · , tn}, where each task represents a sensor reading from

the task location. Let the agent be located at a base (or start location) denoted by

vs. The tasks in T are dispersed over a geographic area, and need to be collected

and returned to the base vs. To capture this, consider a graph G = (V,E) with

vertex set V = T ∪ {vs} and edge set E = {(u, v) : u, v ∈ V, u 6= v}. Let each

edge e = (u, v) ∈ E have a weight w(e) denoting the Euclidean distance between

the nodes u and v. Note that the distances satisfy the triangle inequality. We also

assume that all distances are non-negative integers (note that rational distances can

be converted to integer distances by simply scaling all distances appropriately). The
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cost of executing a task (i.e., collecting the sensor measurement) is assumed to be

very small compared to travel costs and is hence neglected. Let each task ti ∈ T have

a positive reward ri.

Recall that a walk is an alternating sequence of vertices and edges {v0, e1, v1, e2,

. . . , ek, vk} that begins and ends with a vertex, and each edge ei satisfies ei = (vi−1, vi).

A closed walk is a walk with the same vertex as its starting and ending vertex. Note

that nodes can be visited multiple times in a walk, unlike a cycle where each node is

visited only once (except for the start node). The length of a walk is the sum of the

weights of all the edges in that walk. Given a closed walk W that starts and ends at

vs, we can break it into an ordered set of closed walks C(W ) each starting and ending

at node vs. This can be done by splitting the walk W each time we encounter the

node vs in the walk. In the special case that W visits vs only at the start and end,

the set of walks C(W ) will be a singleton set. Given an ordered set of closed walks

C(W ) = {W1,W2, . . . ,Wk}, the agent picks the first walk W1, starts from the base

vs, visits each of the nodes in the walk, and then returns to vs. If the set C(W ) has

multiple elements, the agent proceeds to do the same for the next walk W2 and so

forth, until it exhausts all the walks in C(W ).

Let the probability of survival for an agent per unit distance be defined as ψ,

0 ≤ ψ ≤ 1. Then, the probability that an agent successfully traverses a path of

length d is given by ψd. Now, consider a closed walk W and its associated set C(W ).

Let di be the length of the closed walk Wi ∈ C(W ). For the walk W1, the probability

that the agent successfully completes the walk is given by ψd1 . If the agent successfully

completes a walk and returns to the base, it receives the reward for all tasks it has

completed in the walk, otherwise it gets a zero reward. This captures the sensor

measurement collection scenario, where the measurements are received (or recorded)

only when the agent returns to the base. So, for the walk W1, the agent gets a reward

R1 =
∑

tj∈W1

rj with a probability ps(W1) = ψd1 , and zero with probability 1− ps(W1).

Note that the agent cannot get a reward for a task that has already been completed.

So, if walk W2 is successfully completed after W1 (i.e., the agent returns to vs after
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visiting all of the vertices in W2), it gets the reward for tasks in W2 that were not

present in W1. We denote this set of tasks by W2\W1. Thus, for the walk W2, the

agent gets a reward R2 =
∑

tj∈W2\W1

rj with a probability ps(W2) = ψd1×ψd2 = ψd1+d2 ,

and a reward of zero with probability 1 − ps(W2). This follows from the fact that

the agent must first successfully complete W1 before starting W2, and then must

successfully complete W2. Generalizing, for walk Wi ∈ C(W ), the agent gets a reward

Ri =


∑

tj∈Wi\∪i−1
p=1Wp

rj, for i > 1

∑
tj∈W1

rj, for i = 1,

with a probability ps(Wi) = ψd1+d2+...+di , and a reward zero with probability 1 −

ps(Wi). Thus, the expected reward of a walk Wi is given by

E0(Wi) = Riψ

i∑
j=1

dj
,

and the expected reward of an ordered set of closed walks C(W ) is given by

E0(C(W )) =
k∑
i=1

Riψ

i∑
j=1

dj
, (5.1)

where k is the number of walks in C(W ).

5.1.1 Cost of Loss of Agent

In our discussion so far, we have considered the probability of agent loss, but have

not given an associated cost yet. Let the cost of the agent be θ, i.e., if the agent

does not survive, then a loss of θ is incurred. The probability that the agent does not

survive a set of walks {W1,W2, . . . ,Wk} is given by 1 − ψ
k∑

j=1
dj

. Thus, the expected

utility (with agent cost) for a walk W can be written as

E(C(W )) =
k∑
i=1

Riψ

i∑
j=1

dj
− θ

(
1− ψ

k∑
j=1

dj

)
. (5.2)
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Note that in the special case where θ = 0 i.e., the agent is expendable, this reduces

to (5.1).

Given the start location vs, a set of tasks T to be completed, the survival probabil-

ity per unit distance ψ, and a weighted graph G = (V,E) with V = T ∪{vs}, we aim

to find a walk W ∗ (and the corresponding set of ordered closed walks C(W ∗)) that

maximizes the expected utility given by (5.2). Thus, our objective can be written as

follows.

Single Agent Risk Aware Task Execution (SARATE):

Find W ∗ ∈ arg max
W∈W

E(C(W )),

where W is the set of all walks that begin and end at the base (or start location) vs.

5.2 Characteristics of the Optimal Walks

We now provide certain properties of an optimal walk W ∗.

Proposition 5.2.1 An optimal walk for the SARATE problem consists of a set of

disjoint cycles (except at the base vs, which is common to all cycles).

Proof To prove this, it suffices to show that no task appears more than once in the

optimal walk W ∗; this would then imply that the set C(W ∗) will consist of a set of

disjoint cycles, with the exception of the base vs which appears in all cycles.

We show this in two steps. First, we prove that the optimal walk consists of

cycles. We then show that these cycles must be disjoint. Let the optimal walk be

C(W ∗) = {W ∗
1 , . . . ,W

∗
k }. We prove both steps by contradiction.

Suppose there exists at least one walk W ∗
i ∈ C(W ∗) that is not a cycle (i.e., it

has at least one task node t that is visited more than once). Construct a new walk

W ′
i from W ∗

i by omitting all visits to node t except the first one. We can see that

W ′
i has the same reward as W ∗

i , but has a shorter walk length than W ∗
i (due to the

triangle inequality). Hence, the expected reward of the walk W ′
i is higher than that
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of the walk W ∗
i . By replacing W ∗

i with W ′
i in C(W ∗), we obtain a new walk W ′ that

has higher utility than W ∗, which contradicts the optimality of C(W ∗). Thus, the

optimal walk consists of a set of cycles.

The second part can be proved by a similar argument by showing that if the

optimal cycles are not disjoint, then a set of cycles with higher expected utility can

be obtained by removing the tasks that are repeated (from all cycles except where

the task first occurs).

We now show that these cycles must be disjoint. Suppose the walks in C(W ∗) =

{W ∗
1 , . . . ,W

∗
k } are not disjoint at a node other than vs. Then there exist a pair

of walks W ∗
i and W ∗

j that have a common task node t, and i 6= j. Without loss

of generality, let i < j (meaning the walk W ∗
i is ordered before W ∗

j ). Now, if we

remove the task node from the walk W ∗
j , we get a new walk W ′

j with the same reward

as W ∗
j , but with shorter walk length. Thus, the expected reward of the walk W ′

j

is higher than that of the walk W ∗
j . Thus, we can find a set of walks C(W ′) =

{W ∗
1 , . . . ,W

∗
j−1,W

′
j ,W

∗
j+1, . . . ,W

∗
k } with a higher expected utility than C(W ∗), which

violates the assumption of optimality of C(W ∗).

Based on the above proposition, in order to solve the SARATE Problem, we need

to find the optimal way to split the set of tasks into cycles and find the order in which

these cycles are traversed, based on the survival probability ψ and the locations of

the tasks.

5.2.1 Ordering of the Cycles

In the previous section, we showed that the optimal policy consists of a set of

disjoint cycles. Even if we have a set of disjoint (except at vs) cycles, the expected

reward depends on the order in which we select the cycles, since the probability

of earning the reward from a given cycle depends on surviving all the other cycles

traversed before it. We now characterize this order for the optimal walk.
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Definition 5.2.1 Consider an ordered set of cycles C(W ) = {W1,W2, . . . ,Wk}, such

that each cycle starts and ends at node vs. Let the reward and length of each cycle

Wi ∈ C(W ) be Ri and di respectively. For each cycle Wi ∈ C(W ), define its reward-

to-risk ratio γi as

γi =
Riψ

di

1− ψdi
. (5.3)

Proposition 5.2.2 Let W ∗ be an optimal walk for the SARATE problem, with C(W ∗)

= {W ∗
1 ,W

∗
2 , . . . ,W

∗
k }, such that each cycle starts and ends at node vs, and the cycles

are disjoint (except at vs). Let Ri and di be the total reward and length, respectively,

of the cycle W ∗
i . Let the survival probability be 0 < ψ < 1. Then, the walks in the

ordered set C(W ∗) will be in non-increasing order of their reward-to-risk ratio, i.e., if

i < j, then γi ≥ γj, ∀i, j ∈ {1, . . . , k}.

Proof We prove the result by contradiction. Suppose the optimal walk W ∗ is such

that the cycles in C(W ∗) = {W ∗
1 ,W

∗
2 , . . . ,W

∗
k } do not follow a non-increasing ordering

of their reward-to-risk ratio. Then, there exists a pair of consecutive walks W ∗
i and

W ∗
i+1 such that γi < γi+1. Using the definition of γi in (5.3), we have

Riψ
di −Riψ

di+di+1 < Ri+1ψ
di+1 −Ri+1ψ

di+di+1

=⇒ Ri+1ψ
di+1 +Riψ

di+di+1 > Riψ
di +Ri+1ψ

di+di+1 . (5.4)

From (5.2), the expected utility of W ∗ is given by

E(C(W ∗)) =
k∑
i=1

Riψ

i∑
j=1

dj
− θ

(
1− ψ

k∑
j=1

dj

)
. (5.5)

Construct a new walk W ′ by swapping W ∗
i and W ∗

i+1 in C(W ∗). Thus, C(W ′) =

{W ∗
1 , . . . ,W

∗
i−1,W

∗
i+1,W

∗
i ,W

∗
i+2, . . . ,W

∗
k }. The expected utility of W ′ is given by

E(C(W ′)) = R1ψ
d1 + . . .+Ri−1ψ

i−1∑
j=1

dj

+Ri+1ψ

i−1∑
j=1

dj+di+1

+Riψ

i+1∑
j=1

dj
+Ri+2ψ

i+2∑
j=1

dj
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+ . . .+Rkψ

k∑
j=1

dj
− θ
(

1− ψ
k∑

j=1
dj)

. (5.6)

Subtracting (5.5) from (5.6), we get

E(C(W ′))− E(C(W ∗)) = Ri+1ψ

i−1∑
j=1

dj+di+1

+Riψ

i+1∑
j=1

dj
−
(
Riψ

i∑
j=1

dj
+Ri+1ψ

i+1∑
j=1

dj)
= ψ

i−1∑
j=1

dj(
Ri+1ψ

di+1 +Riψ
di+di+1

−
(
Riψ

di +Ri+1ψ
di+di+1

))
.

Now, applying (5.4), we obtain E(C(W ′))−E(C(W ∗)) > 0, which contradicts the

optimality of W ∗.

5.2.2 Skipping Tasks

Recall that the agent has a value θ that is incurred as a cost if the agent does

not survive. Thus, there may be cases where it is better to forgo certain tasks rather

than risk losing the agent to visit those tasks. We now formalize the condition under

which a subset of cycles in an ordered set of cycles will be included or omitted by the

agent.

Proposition 5.2.3 Every cycle in the optimal walk will have a reward-to-risk ratio

greater than or equal to θ.

Proof We prove by contradiction. Suppose the optimal walk C(W ∗) = {W ∗
1 ,W

∗
2 ,

. . . ,W ∗
k } contains a cycle with reward-to-risk ratio less than θ. Without loss of

generality, let this cycle be W ∗
k since the cycles are ordered such that the reward-to-

risk ratio γi ≥ γj if i < j; recall from Proposition 5.2.2 that the optimal walk satisfies

this ordering. Let Ri be the reward that can be obtained from cycle W ∗
i , and di be

its length. The expected utility for traversing C(W ∗) is given by (5.5).

Consider a set of cycles C(W ′) obtained by removing W ∗
k from C(W ∗). The ex-

pected utility for C(W ′) is given by

E(C(W ′)) =
k−1∑
i=1

Riψ

i∑
j=1

dj
− θ

(
1− ψ

k−1∑
j=1

dj

)
. (5.7)
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Subtracting (5.5) from (5.7), we get

E(C(W ′))− E(C(W ∗)) = θ
(
ψ

k−1∑
j=1

dj
− ψ

k∑
j=1

dj)
−Rkψ

k∑
j=1

dj

= ψ

k−1∑
j=1

dj(
1− ψdk

)(
θ − Rkψ

dk

1− ψdk
)

> 0,

where the last inequality follows since Rkψ
dk

1−ψdk
= γk < θ.

Thus, E(C(W ′)) > E(C(W ∗)), which contradicts the optimality of C(W ∗). Thus,

every cycle in the optimal walk will have a reward-to-risk ratio greater than or equal

to θ.

In Proposition 5.2.3, we showed that all cycles in the optimal walk will have

sufficiently high reward-to-risk ratio. We now focus on tasks rather than cycles. For

each task, we define its reward-to-risk ratio as the reward-to-risk ratio of the cycle

containing just that task. In other words, for a task t, construct a cycle Wt =

{vs, e(vs, t), t, e(t, vs), vs} and compute its reward-to-risk ratio over this cycle. If the

length of Wt is dt and reward of task t is rt, then the reward-to-risk ratio of task t is

given by γt = rtψdt

1−ψdt
.

Proposition 5.2.4 Every task with reward-to-risk ratio greater than θ will be in-

cluded in the optimal walk.

Proof We prove by contradiction. Suppose the optimal walk C(W ∗) = {W ∗
1 , . . . ,

W ∗
k } does not include a task t with reward-to-risk ratio higher than θ. Let the length

of cycle W ∗
i be di and let the reward of cycle W ∗

i be Ri, for i ∈ {1, . . . , k}. The

expected utility of W ∗ is given by (5.5).

Let the reward of task t be rt. Construct a cycle Wt = {vs, e(vs, t), t, e(t, vs), vs},

and let its length be dt. Consider the walk C(W ′) = {W ∗
1 , . . . ,W

∗
k ,Wt} obtained by

appending the cycle Wt to the optimal walk. The expected utility of this walk is

given by

E(C(W ′)) =
k∑
i=1

Riψ

i∑
j=1

dj
+ rtψ

k∑
j=1

dj+dt
− θ

(
1− ψ

k∑
j=1

dj+dt

)
. (5.8)
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Subtracting (5.5) from (5.8), we obtain (after some algebra)

E(C(W ′))− E(C(W ∗)) = ψ

k∑
j=1

dj
(1− ψdt)

( rtψ
dt

1− ψdt
− θ
)
,

which is positive since γt = rtψdt

1−ψdt
> θ. This contradicts the optimality of C(W ∗),

thus proving the result.

We have shown that any task with sufficiently high reward-to-risk ratio will be

included in the optimal walk. It is worth noting that the converse does not hold (a

task with low reward-to-risk ratio could get included as part of a cycle that has a

high reward-to-risk ratio).

We show this through the following example.

Example 5.2.1 Consider a scenario where an agent located at base vs has three tasks

{t1, t2, t3} to complete. Let the value θ of the agent be 10. Each task is located at a

distance of 100 units from the base, and the distance between tasks t2 and t3 is 1 unit

as shown in Figure 5.1. Let the probability of survival per unit distance be 0.99. The

reward of task t1 is 40 and the reward of tasks t2 and t3 are both 35. For this set of

values, γt1 = 6.1883 and γt2 = γt3 = 5.4148, i.e., the reward-to-risk ratio of each of

the tasks is less than the value of the agent. Thus, by Proposition 5.2.3, none of the

tasks are individually worth completing (the expected utility will be negative).

t1

r1 = 40

t2
r2 = 35

t3
r3 = 35vs

100
100

100
1

θ = 10, ψ = 0.99

Fig. 5.1. Task locations in Example 5.2.1

However, if we were to consider a cycle containing tasks {t2, t3}, then the reward-

to-risk ratio of this cycle is 10.7047, which is greater than the value of the agent. Note
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that in this example, the optimal walk is in fact the walk from vs through tasks t2 and

t3 back to the base vs (t1 does not get executed in the optimal walk despite having the

highest reward-to-risk ratio). Thus, tasks t2 and t3 will get executed in the optimal

walk as part of the cycle containing {t2, t3} even though their individual reward-to-risk

ratios are less than θ.

5.2.3 Bound on Length of Cycles

We now provide a result showing that the cycles in the optimal walk cannot be

too much longer than the distance from the base to the closest task in that walk and

back. In particular, we will provide an upper bound on how much longer the cycle

could be, as a function of the survival probability ψ, the rewards, and the agent cost

θ.

Definition 5.2.2 Consider an instance of the SARATE Problem, where tasks T =

{t1, . . . , tn} are to be carried out by an agent (of value θ) located at base vs. Let the

reward of task ti ∈ T be ri. Define d̄ as

d̄ = logψ

min
i∈{1,...,n}

ri

n∑
i=1

ri + θ
, (5.9)

where ψ is the probability of survival of the agent per unit distance.

Theorem 5.2.2 Consider an agent of value θ located at base vs. Let W ∗ be the

optimal walk on tasks T = {t1, . . . , tn} for this agent, with C(W ∗) = {W ∗
1 , . . . ,W

∗
k }.

Denote the length of walk W ∗
i ∈ C(W ∗) by di. Then, ∀i ∈ {1, 2, . . . , k},

di ≤ 2di,min + d̄, (5.10)

where d̄ is defined in (5.9) and di,min = min
tj∈W ∗i

d(vs, tj).

Proof We prove by contradiction. Suppose that there exists at least one walk

W ∗
i ∈ C(W ∗) such that (5.10) does not hold. Consider the first such walk. Without

loss of generality, let this walk be W ∗
1 . Then,

d1 > 2d1,min + d̄. (5.11)
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Let the reward of walk W ∗
i be Ri. The expected utility of C(W ∗) is given by (5.5).

Let tp be the task closest to vs on W ∗
1 , and let its reward be rp. Split the cycle W ∗

1

into two cycles - one cycle W ′
1 with only task node tp, and the other cycle W ′

2 with all

the other nodes in W ∗
1 (except the node tp that is closest to vs). Note that the length

of the walk W ′
1 is 2d1,min by construction. Denote the length of W ′

2 by d′1 (where

d′1 ≤ d1). Construct a new walk C(W ′) = {W ′
1,W

′
2,W

∗
2 , . . . ,W

∗
k }, by replacing W ∗

1

with W ′
1 and W ′

2. The expected utility of this walk is given by

E(C(W ′)) = rpψ
2d1,min + (R1 − rp)ψ2d1,min+d′1

+R2ψ
2d1,min+d′1+d2 + . . .+Rkψ

2d1,min+d′1+
k∑

i=2
di

− θ(1− ψ
2d1,min+d′1+

k∑
i=2

di
).

Thus,

E(C(W ′))− E(C(W ∗)) = rpψ
2d1,min

+ (R1 − rp)ψ2d1,min+d′1 +R2ψ
2d1,min+d′1+d2

+ . . .+Rkψ
2d1,min+d′1+

k∑
i=2

di
+ θψ

2d1,min+d′1+
k∑

i=2
di

−R1ψ
d1 − . . .−Rkψ

k∑
i=1

di
− θψ

k∑
i=1

di

> rpψ
2d1,min −R1ψ

d1 − . . .−Rkψ

k∑
i=1

di
− θψ

k∑
i=1

di

> rpψ
2d1,min −R1ψ

d1 − . . .−Rkψ
d1 − θψd1

≥ rpψ
2d1,min −

( n∑
i=1

ri + θ
)
ψd1

= ψ2d1,min

(
rp −

( n∑
i=1

ri + θ
)
ψd1−2d1,min

)
. (5.12)

From (5.11), since d1 − 2d1,min > d̄, we have

ψd1−2d1,min < ψd̄ =

min
i∈{1,...,n}

ri

n∑
i=1

ri + θ
(from (5.9))
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=⇒ rp ≥ min
i∈{1,...,n}

ri >
( n∑
i=1

ri + θ
)
ψd1−2d1,min

=⇒ rp −
( n∑
i=1

ri + θ
)
ψd1−2d1,min > 0.

Substituting this into (5.12), we see that E(C(W ′)) − E(C(W ∗)) > 0. This con-

tradicts the optimality of the walk W ∗, thus proving the theorem.

5.3 Optimal Walks for Sufficiently Small ψ

Based on our result in Theorem 5.2.2, we now show that when the probability of

survival of the agent (per unit distance) is very small, the optimal walk consists of

a set of cycles that each contain just a single task. We refer to these as “one-shot”

cycles as the agent covers exactly one task in each cycle. In other words, when the

agent faces a high risk of being destroyed, it is best for the agent to focus on a single

task at a time. To prove this, we will start with the following result.

Corollary 5.3.1 Consider an agent of value θ located at base vs, and a set of tasks

T = {t1, . . . , tn}, where the reward of each task ti is given by ri. Define the graph

G = (V,E) with V = T ∪ {vs}, and E = {(u, v)|u, v ∈ V, u 6= v}, where the edge

length between two nodes is given by the distance between them. Define dmin as the

shortest edge length in G. If the survival probability per unit distance ψ satisfies

ψdmin <

min
i∈{1,...,n}

ri

n∑
i=1

ri + θ
, (5.13)

then the optimal walk consists of a set of one-shot cycles.

Proof Let the optimal walk be given by the cycles C(W ∗) = {W ∗
1 ,W

∗
2 , . . . ,W

∗
k }.

Let the length of the cycle W ∗
i be given by di. We prove the result by contradiction.

Assume that at least one cycle in C(W ∗) is not a one-shot cycle. Without loss of

generality, this can be taken as W ∗
1 . Let tp be the task closest to the base vs in W ∗

1 ,

and let d1,min be its distance from vs. The cycle W ∗
1 is strictly longer than the one-

shot cycle containing tp. In particular, d1 − 2d1,min ≥ dmin as dmin is the minimum
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edge length in the graph. However, from (5.13), dmin > d̄, where d̄ is defined in

(5.9). Thus, the cycle W ∗
1 violates the condition (5.10) given in Theorem 5.2.2, and

so cannot be in the optimal walk, providing the desired contradiction.

Theorem 5.3.2 Suppose the probability of survival per unit distance satisfies (5.13).

Then, the optimal walk can be found with an algorithm whose runtime increases poly-

nomially with the number of nodes.

Proof Let T = {t1, . . . , tn} be the set of tasks to be covered by the agent located

at base vs. From Corollary 5.3.1, we know that the optimal walk consists of a set of

one-shot cycles. Form a set of one-shot cycles C(W ) = {W1, . . . ,Wn} such that Wi =

{vs, e(vs, ti), ti, e(ti, vs), vs}. Sort the cycles in non-increasing order of their reward-

to-risk ratio (defined by (5.3)), and let W ′ be the output of the sorting algorithm

(which is polynomial-time in the number of nodes ( [54])). For each cycle in W ′,

if the reward-to-risk ratio is greater than θ (the agent’s value), then by Proposition

5.2.4 and Corollary 5.3.1, that cycle will be included in the optimal walk. Else, if the

reward-to-risk ratio of a cycle in W ′ is less than θ, then by Proposition 5.2.3, that

cycle will be omitted from the optimal walk. Thus, by removing all one-shot cycles

from W ′ that have reward-to-risk ratio less than θ, we obtain the optimal solution.

5.4 Evaluation of Heuristics for SARATE

In the previous sections we characterized certain properties of the optimal solu-

tions for SARATE, and provided the optimal policy for the special case where ψ is

sufficiently small. We now investigate three heuristic algorithms for general instances

of the problem.

Sequential Greedy (SG) Algorithm: In this algorithm, the tasks are first

arranged in decreasing order of their reward-to-risk ratio. We start with no cycles.

For each task, find the gain in expected utility if the task were to be inserted into

an existing cycle (by evaluating the utility by inserting the task between each pair
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Fig. 5.2. Comparison of performance of different heuristic algorithms:
(a) Expected utility when tasks have homogeneous rewards (50) versus
heterogeneous rewards (between 1 and 99), (b) Expected utility as the
fraction of high reward tasks vary, (c) Run time as the number of tasks
vary.

of consecutive nodes in each existing cycle and choosing the best such location) or

added as a new cycle (from the base to the task and back). If the maximum gain

in expected utility is positive, then add the task to the corresponding cycle (or form

a new cycle, if that yields a larger utility). Order the formed cycles based on their

reward-to-risk ratio and keep only those cycles with reward-to-risk ratio greater than

θ.

Cycle Split (CS) Algorithm: In this algorithm, a tour is formed on the set of

all tasks and this tour is split into k cycles (each starting and ending at the base) using

the k-SPLITOUR algorithm by [30] for k ∈ {1, . . . , n}. The algorithm k-SPLITOUR

returns a set of cycles for each value of k, such that the maximum cost of any cycle

is (approximately) minimized. For each set of cycles, compute the expected utility

by ordering the cycles based on their reward-to-risk ratio and considering only those

cycles with reward-to-risk ratio greater than θ. The set of subtours with the highest

expected utility is selected. To find the initial tour in our simulations, we first found

a minimum spanning tree, doubled the edges and shortcutted them.

Markovian (MV) Algorithm: All tasks are marked active and are arranged

in non-increasing order of their reward-to-risk ratios. The task t with the highest
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reward-to-risk ratio among active tasks is selected. A cycle is formed from base to t

and back, and t is marked inactive. For each remaining active task, check if adding

that active task to this cycle increases the expected utility by inserting that task node

between every two consecutive nodes on the cycle and computing the gain in expected

utility; if so add the task t′ which maximally increases the expected utility to the cycle

(at the appropriate position) and mark it as inactive. Repeat until no more tasks

can be added to the cycle, at which point the cycle is completed. Repeat the above

steps by choosing the next active task with the highest reward-to-risk ratio, until all

tasks are inactive. Order the formed cycles based on their reward-to-risk ratio and

consider only those cycles with reward-to-risk ratio greater than θ.

We simulated the above algorithms to study their relative performance. Task

locations were generated uniformly at random within a square defined by (x, y) ∈

[−100, 100] × [−100, 100] with the base at the origin, and the survival probability

per unit distance ψ was set as 0.99. All three algorithms were run on each instance

generated. The results shown in Fig. 5.2 are averaged over 100 runs. Define tasks

with reward-to-risk ratio higher than θ as high-reward tasks. Fig. 5.2(a) compares

the performance of the policies when all 100 tasks have the same reward (set to

50) against the case where different tasks have heterogeneous rewards (generated

as integers from a discrete uniform distribution on [1, 99]). The agent value θ was

selected to be 0.001 less than the lowest reward-to-risk ratio among all tasks so that

all tasks are high-reward tasks. Fig. 5.2(b) shows the performance when the fraction

of high-reward tasks in a set of 100 tasks is varied (the rewards are generated as

integers from a discrete uniform distribution on [1, 99]). In order to set the fraction of

high-reward tasks, the tasks were arranged in decreasing order of reward-to-risk ratio

and θ was set as 0.001 less than the reward-to-risk ratio of the [nf ]th task, where n is

the number of tasks, f is the desired fraction of high-reward tasks and [·] denotes the

nearest integer function. Fig. 5.2(c) shows how the run time scales with the number

of tasks while keeping the rewards as 50 for all tasks (θ is set as 0.001 less than the

lowest reward-to-risk ratio among all tasks).
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Based on our experiments, we observe that the run times for both the Sequential

Greedy and the Markovian algorithms are relatively small (even for settings with

200 tasks), while the run time for the CycleSplit algorithm increases more rapidly.

Furthermore, the performance of the Sequential Greedy algorithm and the Markovian

algorithm are comparable in general. Sequential Greedy performs better when the

fraction of high-reward tasks is low, and the Markovian algorithm performs better

when the fraction of high-reward tasks is very high. This can be attributed to the

fact that when the fraction of high-reward tasks is low, the Markovian algorithm

(which assigns the best remaining task to the current tour) myopically assigns each

low reward task. On the other hand, when the Sequential Greedy algorithm gets

to the low-reward tasks, it evaluates the benefit of adding that task to each cycle

that has already been formed. This increases the chances that a low-reward task

would be added to a cycle that contains other tasks that are located close to that

low-reward task, thereby making the relatively low reward of that task worth the

risk. As expected, the CS algorithm does not perform as well as the the MV and SG

algorithms since CS does not explicitly consider the risk of carrying out each task,

and only finds the best way to split a given tour into subtours. Thus, we see that

heuristics that incorporate the risk into their decision-making can outperform those

that do not.

To understand how well the three algorithms perform against the optimal walk,

we implemented a brute force (BF) algorithm to consider all possible sets of disjoint

cycles for a given set of tasks. For n = 7 tasks (which is the largest number we could

evaluate due to the computational complexity of the BF algorithm), we generated 100

instances of high-reward task locations (as described above), and for each instance,

compared the performance of the three heuristics and the optimal solution provided

by BF. We found that MV performed no worse than 62.0% of the optimal and was

within 93.6% of the optimal on average, and SG was no worse than 61.8% and within

96.2% on average. In contrast, CS performed within 60.7% of the optimal on average,

but had a worst case performance of 11.8%. While this experiment only considers
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instances with a small number of nodes, it indicates that SG and MV are promising

algorithms for further investigation.
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Fig. 5.3. Comparison of performance of different algorithms to the optimal
(brute force) solution.

5.5 Chapter Summary

We considered the Single Agent Risk Aware Task Execution (SARATE) problem

where an agent is required to collect sensor measurements and return to a base, but

faces the risk of destruction as it travels. We showed several key properties of the

optimal tours for agents. In particular, we defined a quantity we call the reward-to-

risk ratio for cycles and tasks. We showed that the ordering of cycles in an optimal

walk based on the reward-to-risk ratio. We provided an upper bound on the length of

the optimal walk. For the special case where the risk is very high, we explicitly found

the optimal policy. For the general case, we provided heuristic policies and evaluated

their performance through simulations.
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6. POLICIES FOR RISK-AWARE SENSOR DATA

COLLECTION BY HETEROGENEOUS MOBILE AGENTS

In this chapter, we extend our analysis from Chapter 5 to multiple agents. Specifi-

cally, we look at a heterogeneous agent task allocation problem, where multiple agents

are available to collect the sensor measurements and return to the base. The Collec-

tion Planning Problem with Attrition Risk (CPPAR) in [51, 52] first looked at this

problem, providing a clustering based heuristic called Progressive Risk-aware Cluster-

ing (PRC). In this work, we extend the formulation for SARATE problem discussed

in Chapter 5 to multiple agents. We show that in high risk scenarios, the scoring

scheme is submodular and thus we can provide 0.5-approximation guarantee for a

greedy algorithm.

6.1 Problem Formulation and Notation

Consider a set of m agents A1, A2, . . . , Am located at a base (or start location)

vs. We allow the agents to be heterogeneous (i.e., different agents may have distinct

values and survival probabilities per unit distance travelled). Specifically, let the

value of agent Ai be denoted by θi ∈ R≥0 and let its survival probability per unit

distance be ψi ∈ (0, 1), for i ∈ {1, 2, . . . ,m}. As before, let T = {t1, t2, . . . , tn} be the

set of tasks to be executed jointly by these m agents, and let the reward obtained

for executing task ti ∈ T be given by ri ∈ R>0. Once again, we will represent the

geographic dispersion of the tasks and base via a graph G = (V,E) with V = T ∪{vs},

and E = {(u, v)|u, v ∈ V, u 6= v}, where the edge length between two nodes is given

by the distance between them.

As in the SARATE problem, we wish to allocate the tasks to the agents in such a

way as to maximize the reward from the tasks that are successfully completed, while
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balancing the risks of agent failures. In particular, we will focus on a particular class

of simultaneous dispatch policies, where all agents begin executing their specified

paths simultaneously, and each task is allocated to at most one agent.1 Let T be

the set of all such allocations of the tasks in T among the agents that satisfies the

partition policy defined above. In particular, each element A ∈ T can be written as

A = {T1, T2, . . . , Tm, T∅}, where Ti, i ∈ {1, . . . ,m} denotes the set of tasks allocated

to agent Ai and T∅ denotes the set of unallocated tasks (i.e., tasks that are omitted by

all agents). Then, for each allocation A ∈ T , we have ∪mi=1Ti∪T∅ = T , and Ti∩Tj = ∅

whenever i 6= j.

Let us consider an agent Ai and its walk through the set of tasks Ti allocated

to it. Let W(Ti) denote the set of all closed walks starting and ending at the base

vs that visit all the nodes in Ti exactly once (note that the base vs may be visited

multiple times in each walk), and does not visit nodes in Tj,∀ j 6= i. For a given walk

W ∈ W(Ti), let C(W ) = {W1, . . . ,Wp} denote the ordered set of cycles obtained by

splitting the closed walk W into cycles each time it visits the node vs. Let the sum

of the rewards of the tasks in the cycle Wi be Ri and let the length of the cycle be di.

Then, the expected utility of an agent Ai (of value θi and probability of survival per

unit distance ψi) that does the tasks in the set Ti through the set of ordered walks

C(W ), W ∈ W(Ti) is given by

Ei(C(W )) =

p∑
j=1

Rjψ

j∑
k=1

dk

i − θi

(
1− ψ

p∑
k=1

dk

i

)
. (6.1)

Note that this is the same as the utility (5.2) that we considered in the Chapter 5,

rewritten to show the explicit dependence on the index i of the agent under consid-

eration. The score obtained by an agent Ai that is allocated a set of tasks Ti in an

optimal walk would then be defined as

vi(Ti) = max
W∈W(Ti)

Ei(C(W )). (6.2)

1It is not clear at this point whether this class of policies is, in fact, optimal for the problem we are
considering, but we will restrict attention to this class in order to gain insights.
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Note, in particular, that for any given allocation Ti of tasks to agent i, the above

optimization problem is equivalent to solving the SARATE problem for that agent

(considering only the tasks in Ti). The total expected utility of all the agents is

given by the sum of the expected utilities of all the agents. Among all the possible

allocations A ∈ T , we wish to find the allocation A∗ that maximizes the sum of the

expected utilities of all the agents. Thus, the problem of interest is as follows.

Multi-Agent Risk-Aware Task Allocation (MARATA):

Find A∗ ∈ arg max
A∈T

m∑
i=1

vi(Ti). (6.3)

Remark 6.1.1 Our formulation of both MARATA and SARATE problems allows us

to handle the appearance of new tasks (at a later time). Each time an agent returns

to the base, we can find the solution to the current allocation (or execution) problem

and then give the agent an updated solution.

Remark 6.1.2 Both the SARATE and MARATA problems fall under the ST-SR-TA

class of problems based on the taxonomy for multirobot systems given in [7], i.e., each

robot (or agent) can execute one task at a time (Single-Task robot), each task can be

executed by a single robot (Single-Robot task) and each agent has a Time-extended

Assignment of tasks to be executed.

Given that we can calculate vi(Ti) for any given set of tasks Ti explicitly and in

polynomial time when the walks executed by the agent are guaranteed to be one-shot

cycles (by Theorem 5.3.2), we will make the following assumption in the rest of this

section.

Assumption 6.1.3 We will assume that for each agent Ai, i ∈ {1, 2, . . . ,m}, its

probability of survival per unit distance ψi and its value θi satisfy the condition (5.13),

i.e.,

ψdmin
i <

min
j∈{1,...,n}

rj

n∑
j=1

rj + θi

, (6.4)

where dmin is the shortest edge length in the graph G.
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This assumption (by Corollary 5.3.1) means that the risk faced by each agent is

sufficiently high that the optimal walk for each agent will be a set of one-shot cycles

through its set of assigned tasks. We will also extend the notion of the reward-to-risk

ratio of a task (Def. 5.2.1) to be agent-specific, i.e., the reward-to-risk ratio of a task

tj with respect to agent Ai is given by

rjψ
dj
i

1− ψdji
,

where dj is the round-trip distance from the base vs to task tj. Since we know that each

agent Ai will execute its assigned tasks as one-shot cycles (under Assumption 6.1.3),

and only tasks that have reward-to-risk ratio (with respect to Ai) larger than θi will be

executed by that agent (by Prop. 5.2.3), we will also make the following assumption

in the rest of this section, without loss of generality.

Assumption 6.1.4 For each task tj, j ∈ {1, 2, . . . , n}, there is some agent Ai, i ∈

{1, 2, . . . ,m} such that tj has reward-to-risk ratio (with respect to agent Ai) larger

than θi.

We start by showing that the individual agent utility functions are submodular in

such high-risk scenarios.

6.1.1 Submodularity of the Agent Utilities in High-Risk Scenarios

We start by defining the following notion for each task/agent pair.

Definition 6.1.1 Consider a task tj with reward rj and round-trip distance dj from

the base. Then, the Maximal Marginal Gain (MMG) obtained by allocating this

task to an agent Ai of value θi and probability of survival per unit distance travelled

ψi is defined as

µij = rjψ
dj
i − θi(1− ψ

dj
i ). (6.5)
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The reason for calling the above quantity the maximum marginal gain will be

apparent shortly. Using the MMG for each agent/task pair, we show that the agent

utility (6.2) can be written in an alternate form.

Lemma 6.1.5 Suppose the risk is sufficiently high so that all tasks are executed as

one-shot cycles (i.e., (6.4) is satisfied for agent Ai). Then for any set of tasks Ti, and

walk W ∈ W(Ti), the expected utility (6.1) can be written as

Ei(C(W )) =

p∑
j=1

ψ

j−1∑
k=1

dk

i µij (6.6)

where C(W ) = {W1,W2, . . . ,Wp} is the ordered set of one-shot cycles containing tasks

{t1, . . . , tp} ⊆ Ti (in that order), µij is the MMG of allocating task tj to agent Ai,

and dk denotes the round-trip distance of task tk from the base.

Proof Consider the walk W ∈ W(Ti), consisting of one-shot cycles through the

ordered set of tasks {t1, t2, . . . , tp}. Let ri be the reward and di be the round-trip

distance from the base for each task ti. Then, expanding (6.1),

Ei(C(W )) = r1ψ
d1
i + . . .+ rpψ

p∑
k=1

dk

i − θi
(

1− ψ

p∑
k=1

dk

i

)
= r1ψ

d1
i + . . .+ rpψ

p∑
k=1

dk

i − θi
(

1− ψd1
i + ψd1

i

+ . . .− ψ

p−1∑
k=1

dk

i + ψ

p−1∑
k=1

dk

i − ψ

p∑
k=1

dk

i

)
= [r1ψ

d1
i − θi(1− ψ

d1
i )] + ψd1

i [r2ψ
d2
i − θi(1− ψ

d2
i )]

+ . . .+ ψ

p−1∑
k=1

dk

i [rpψ
dp
i − θi(1− ψ

dp
i )].

Using the definition of µij from (6.5), the above equation yields (6.6).

Corollary 6.1.6 Suppose the risk is sufficiently high so that all tasks are executed

as one-shot cycles (i.e., (6.4) is satisfied for agent Ai). Consider any set of tasks

Ti ⊆ T . Let {t1, t2, . . . , tp} ⊆ Ti be the largest ordered set of tasks satisfying

r1ψ
d1
i

1− ψd1
i

≥ r2ψ
d2
i

1− ψd2
i

≥ . . . ≥ rpψ
dp
i

1− ψdpi
> θi,
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where dj is the round-trip distance from the base to task tj, for j ∈ {1, 2, . . . , p}.

Then, the utility function (6.2) can be written as

vi(Ti) =

p∑
j=1

ψ

j−1∑
k=1

dk

i µij, (6.7)

where µij is the MMG of assigning task tj to agent Ai.

Proof We note from Corollary 5.3.1 and Theorem 5.3.2 that in high-risk scenarios,

the optimal walk for agent Ai through a set of tasks Ti consists of a set of one-shot

cycles, ordered such that the corresponding tasks are in non-increasing order of their

reward-to-risk ratios. Furthermore, all tasks with reward-to-risk ratios larger than the

agent cost will be included in the optimal walk. Combining this with Lemma 6.1.5,

we obtain that the expression (6.2) is given by (6.7).

The above result shows that the utility function vi(Ti) has the form of a time-

discounted scoring scheme (described in [20]), where ψi < 1 is the discounting factor,

and
j−1∑
k=1

dk is the time taken by agent i to reach task tj in the sequence t1, t2, . . . , tp. It

was argued in [20] that such functions satisfy a property termed diminishing marginal

gain (similar to the notion of submodularity described below, but defined for ordered

sets). Here, we will show formally that the utility function is submodular in high-risk

scenarios. We start by recalling the definition of submodularity [55,56].

Definition 6.1.2 Consider a scoring scheme v(·) that takes as input a set of tasks

and outputs a positive real number (the score). This scoring scheme is submodular

if given any set of tasks T , and any tasks t, t̄ /∈ T ,

v(T ∪ {t})− v(T ) ≥ v(T ∪ {t̄, t})− v(T ∪ {t̄}). (6.8)

Proposition 6.1.1 Suppose the risk is sufficiently high so that all tasks are executed

as one-shot cycles, i.e., (6.4) holds. Then the scoring scheme provided by (6.2) is

submodular.
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Proof To show that (6.2) is submodular, we need to show that Definition 6.1.2

holds. In Corollary 6.1.6, we showed that when the risk is sufficiently high so that

all tasks are executed as one-shot cycles, the scoring scheme given by (6.2) can be

written as (6.7). Thus, it suffices to show that (6.7) is submodular. Let the set of

tasks allocated to agent Ai be Ti. Let {W1, . . . ,Wp} denote the ordered set of one-

shot cycles that maximizes the objective, where walk Wj is a one-shot cycle of length

dj consisting of task tj. Then,

vi(Ti) = µi1 + ψd1
i µi2 + . . .+ ψ

d1+...+dp−1

i µip.

Consider adding task t /∈ Ti to Ti. We assume that t is a high-reward task, since it

will not get executed otherwise, and the desired condition will hold trivially. Since all

tasks are executed as one-shot cycles, tasks t will be added as a one-shot cycle. Let t

be added as a one-shot cycle between Wk−1 and Wk (for some k ∈ {1, 2, . . . , |p|+ 1})

in order to maximize the resulting expected utility. Let dt be the round-trip distance

from the base to task t, and let µit be its MMG. Then,

vi(Ti ∪ {t}) = µi1 + ψd1
i µi2 + . . .+ ψ

d1+...+dk−2

i µi(k−1)

+ ψ
d1+...+dk−1

i µit + ψ
d1+...+dk−1+dt
i µik

+ . . .+ ψ
d1+...+dp−1+dt
i µip.

Thus, the marginal gain in adding task t to the set Ti, denoted MGt, is given by

MGt = vi(Ti ∪ {t})− vi(Ti)

= ψ
d1+...+dk−1

i µit + (ψdti − 1)(ψ
d1+...+dk−1

i µik + . . .+ ψ
d1+...+dp−1

i µip).

Similarly, consider adding a task t̄ to Ti. Let t̄ be added as a one-shot cycle between

Wl−1 and Wl (for some l ∈ {1, 2, . . . , |p| + 1}) in order to maximize the resulting

expected utility. Let dt̄ be the round-trip distance from the base to task t̄, and let µit̄

be its MMG. Then,

vi(Ti ∪ {t̄}) = µi1 + ψd1
i µi2 + . . .+ ψ

d1+...+dl−2

i µi(l−1)
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+ ψ
d1+...+dl−1

i µit̄ + ψ
d1+...+dl−1+dt̄
i µil

+ . . .+ ψ
d1+...+dp−1+dt̄
i µip.

Let us first consider the case where task t has a lower reward-to-risk ratio than t̄, and

is therefore inserted after t̄ in the ordered list, i.e., l < k. Then

vi(Ti ∪ {t, t̄}) = µi1 + ψd1
i µi2 + . . .+ ψ

d1+...+dl−2

i µi(l−1)

+ ψ
d1+...+dl−1

i µit̄ + ψdt̄i

(
ψ
d1+...+dl−1

i µil + . . .

+ ψ
d1+...+dk−2

i µi(k−1)

)
+ ψdt̄i ψ

d1+...+dk−1

i µit

+ ψdt̄+dti

(
ψ
d1+...+dk−1

i µik + . . .+ ψ
d1+...+dp−1

i µip

)
.

Thus, the marginal gain, denoted MGt,1, in adding task t to the set Ti ∪ {t̄} when t

is positioned after t̄ is given by

MGt,1 = vi(Ti ∪ {t, t̄})− vi(Ti ∪ {t̄})

= ψdt̄i ψ
d1+...+dk−1

i µit̄ + (ψdti − 1)ψdt̄i
(
ψ
d1+...+dk−1

i µik + . . .+ ψ
d1+...+dp−1

i µip
)

= ψdt̄i MGt < MGt.

Thus, the scoring function satisfies (6.8) in this case. In order to complete the proof,

we now look at the case where the task t is ordered ahead of t̄, i.e., k ≤ l. In this

case,

vi(Ti ∪ {t, t̄}) = µi1 + ψd1
i µi2 + . . .+ ψ

d1+...+dk−2

i µi(k−1)

+ ψ
d1+...+dk−1

i µit + ψdti

(
ψ
d1+...+dk−1

i µik + . . .

+ ψ
d1+...+dl−2

i µi(l−1)

)
+ ψdti ψ

d1+...+dl−1

i µit̄

+ ψdt̄+dti

(
ψ
d1+...+dl−1

i µil + . . .+ ψ
d1+...+dp−1

i µip

)
.

The marginal gain, denoted MGt,2, in adding task t to the set Ti∪{t̄} in this scenario

is given by

MGt,2 = vi(Ti ∪ {t, t̄})− vi(Ti ∪ {t̄})
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= ψ
d1+...+dk−1

i µit +
(
ψdti − 1

)(
ψ
d1+...+dk−1

i µik + . . .

+ ψ
d1+...+dl−2

i µi(l−1)

)
+
(
ψdti − 1

)(
ψ
d1+...+dl−1

i µit̄

)
+ ψdt̄i Big(ψdti − 1

)(
ψ
d1+...+dl−1

i µil + . . .+ ψ
d1+...+dp−1

i µip

)
.

Taking the difference of the two marginal gains, we get

MGt,2 −MGt =
(
ψdt − 1

) (
ψd1+...+dl−1µit̄

)
+
(
ψdt − 1

) (
ψdt̄ − 1

) (
ψd1+...+dl−1µil + . . .+ ψd1+...+dp−1µip

)
(6.9)

=
(
ψdt − 1

)︸ ︷︷ ︸
<0

ψd1+d2+...+dl−1︸ ︷︷ ︸
>0

[
µit̄ + ψdt̄

(
µil + . . .+ ψdl+dl+1+...+dp−1µip

)
−
(
µil + . . .+ ψdl+dl+1+...+dp−1µip

) ]
. (6.10)

Note that the quantity in the square brackets is simply the marginal gain of adding

task t̄ to the set of one-shot cycles W̄ = {Wl,Wl+1, . . . ,Wp}; task t̄ will be placed as

a one-shot cycle prior to Wl (as it was when being added to the full set of tasks) since

the reward-to-risk ratio of task t̄ is at least as large as that of task tl. The marginal

gain of adding t̄ to W̄ will be positive, since t̄ is a high-reward task, i.e.,

µit̄ + ψdt̄
(
µil + ψdlµi(l+1) + . . .+ ψdl+...+dp−1µip

)
>

µil + ψdlµi(l+1) + . . .+ ψdl+...+dp−1µip

Substituting this into (6.10), we see that MGt,2−MGt < 0. Thus, the scoring scheme

satisfies (6.8) in this scenario as well.

Since Ti, t and t̄ were arbitrary, the above analysis shows that the function vi(·)

is submodular in high-risk scenarios.

We showed that in the instances of our problem where the risk is sufficiently high

(so that all tasks are executed as one-shot cycles), our scoring scheme given in (6.2)

can be written as (6.7) and is submodular. It is important to note that without

the high risk assumption, tasks are no longer guaranteed to be executed as one-shot
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cycles and consequently, submodularity may not hold. We illustrate this through the

following example.

Example 6.1.7 In this example, all tasks are high-reward tasks, however the value of

ψ is chosen to be high (implying low risk). Therefore tasks are no longer guaranteed

to be executed as one-shot cycles. Consider an agent with ψ = 0.99 and θ = 40.

Consider tasks {t1, t2, t3} with rewards 20, 5 and 5 respectively located at distances

3, 4 and 5 units from the base vs as shown in Figure 6.1.

t1

r1 = 20

t2

r2 = 10

t3

r3 = 5vs

3 1 1

θ = 40, ψ = 0.99

Fig. 6.1. Task locations in Example 6.1.7

Consider the set of tasks {t1, t2}. The walk that executes both the tasks in the

same cycle maximizes the expected utility for this set of tasks when using (6.2) as

the scoring scheme. Similarly, for the set of tasks {t1, t3}, the walk that executes

both the tasks in the same cycle maximizes the expected utility. The marginal gain in

expected utility from adding t3 to the set {t1} is 3.7799. Let us now consider the set

of tasks {t1, t2, t3}. In this example, the walk that executes all three tasks in the same

cycle maximizes the expected utility (as opposed to splitting the tasks across multiple

cycles). The marginal gain in adding t3 to the set {t1, t2} is 3.9710, which is higher

than the marginal gain of adding t3 to the set {t1}. The key insight here is that the

task t3 is worth more when the agent is already visiting t2 (since the agent is already

close to t3 at that point), but is worth less if the agent is not already visiting t2. Thus

in this example, submodularity does not hold.
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6.1.2 Approximation Algorithms

Proposition 6.1.1 showed that each agent Ai’s function vi(·) is submodular under

high-risk scenarios. Furthermore, it is easy to see that vi is monotone (i.e., adding new

tasks to the argument in vi will not decrease the score), and that vi(∅) = 0. Thus, the

MARATA problem (6.3) becomes an instance of a submodular welfare problem [56]

(or, more generally, a submodular maximization problem over a partition matroid

[55]). Such problems have been widely studied in the literature on combinatorial

optimization, and there are a variety of algorithms to solve them near-optimally. For

example, the techniques in [57–59] provide solutions that are guaranteed to be within

a factor 1− 1
e

of the optimal solution to the problem.

Here, we will discuss a specific greedy algorithm that provides a looser guarantee

(namely solutions that are within a factor 1
2

of optimal), but that is extremely simple

to implement. In particular, we will first provide the general algorithm, and then

show that this algorithm has an intuitive structure when we consider the MARATA

problem with homogeneous agents.

Greedy Algorithm

As argued in [56], the submodular welfare problem admits a simple greedy algo-

rithm that guaranteed to be within a factor 1
2

of optimal. Since the MARATA problem

is an instance of the submodular welfare problem under the high risk scenario (as ar-

gued above), we present the greedy algorithm in the context of the MARATA problem

as Algorithm 10, with the following result that follows immediately from [56].

Theorem 6.1.8 Suppose that for each agent Ai, i ∈ {1, 2, . . . ,m}, its probability of

survival per unit distance ψi and its value θi satisfy the condition (6.4). Let A∗ =

{T ∗1 , T ∗2 , . . . , T ∗m, T ∗∅ } be an optimal allocation to the agents for the MARATA problem
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Algorithm 10 Greedy Algorithm for the MARATA Problem in High-Risk Scenarios

1: procedure SGA-M(A, T,G)

2: Initialize T1 = T2 = · · · = Tm = ∅.

3: Let t1, t2, . . . , tn be the set of tasks, in any order.

4: for j from 1 to n do

5: Let i ∈ {1, 2, . . . ,m} be the index of the agent for which vi(Ti∪{tj})−vi(Ti)

is largest (breaking ties arbitrarily).

6: Set Ti ← Ti ∪ {tj}.

7: end for

8: end procedure
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(6.3). Then the greedy algorithm (Algorithm 10) provides an allocation T1, T2, . . . , Tm

to agents such that
m∑
i=1

vi(Ti) ≥
1

2

m∑
i=1

vi(T
∗
i ).

The above theorem which follows from the result in [56] shows that the greedy

algorithm is guaranteed to return an allocation that has an expected utility within

50% of the optimal value. We now provide an example where the expected utility of

the greedy allocation is 61.87% of the optimal value to illustrate that this bound in

not very loose.

Example 6.1.9 Consider an instance consisting of two agents A1, A2 and two tasks

t1, t2. Let the rewards of tasks t1, t2 be 17675 and 12490 respectively, and let the

distance of each task from the base be 49. Let the probability of survival per unit

distance for A1 be 0.875, and that for A2 be 0.88455. Let the agent values of A1 and

A2 be 0.0036 and 0.075 respectively. The greedy allocation first allocates task t1 to

A1 (in a greedy manner) and then has to allocate task t2 to A2. This results in an

overall expected utility of 0.0331077. The optimal allocation for this instance is to

allocate task t1 to A2 and to allocate t2 to A1. This allocation has an expected utility

of 0.0535106. It can be seen that in this example, the ratio of utilities of the greedy

allocation to the optimal allocation is 0.6187.

We will now show that the sequence of allocations made by Algorithm 10 has

an intuitive structure when we restrict attention to homogeneous agents (i.e., with

ψ1 = ψ2 = · · · = ψm and θ1 = θ2 = · · · = θm). Note that in this case, the reward-to-

risk ratio for each task is the same across all agents. For the homogeneous scenario,

we present Algorithm 11.
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Algorithm 11 Greedy Algorithm for the MARATA Problem in High-Risk Scenarios

with Homogeneous Agents

1: procedure SGA-M(Homogeneous)(A, T,G)

2: Initialize T1 = T2 = · · · = Tm = ∅.

3: Let t1, t2, . . . , tn be the set of tasks, sorted in non-increasing order of their

reward-to-risk ratios. For j ∈ {1, 2, . . . , n}, let dj denote the round-trip

distance of task tj from the base.

4: for j from 1 to n do

5: Let i ∈ {1, 2, . . . ,m} be the index of the agent Ai for which the sum of

round-trip distances in Ti is smallest (breaking ties arbitrarily).

6: Set Ti ← Ti ∪ {tj}.

7: end for

8: end procedure

Proposition 6.1.2 Suppose that the probability of survival per unit distance ψi and

agent value θi are homogeneous across all agents (i.e., ψ1 = ψ2 = · · · = ψm and

θ1 = θ2 = · · · = θm). Furthermore, suppose that ψi and θi satisfy the condition

(6.4). Let A∗ = {T ∗1 , T ∗2 , . . . , T ∗m, T ∗∅ } be an optimal allocation to the agents for the

MARATA problem (6.3) under these assumptions. Then Algorithm 11 provides an

allocation T1, T2, . . . , Tm to agents such that

m∑
i=1

vi(Ti) ≥
1

2

m∑
i=1

vi(T
∗
i ).

Proof Since this proposition considers a special case of the scenario considered

in Theorem 6.1.8 (pertaining to homogeneous agents), we know that Algorithm 10

provides an allocation that satisfies the condition in the proposition. We will show

that Algorithm 11 is a special case of Algorithm 10 in the case of homogeneous agents.

Note that the ordering of tasks in Algorithm 10 is arbitrary, and thus we can consider

the tasks in non-increasing order of their reward-to-risk ratios. Since the agents are

homogeneous, we also note that the MMG of each task (defined in Def. 6.1.1) is

independent of the index of the agent that the task is assigned to. More specifically,



85

if we denote ψi = ψ and θi = θ for all i ∈ {1, 2, . . . ,m}, we denote the MMG of each

task tj by

µj = rjψ
dj − θ(1− ψdj).

Next, consider the quantity vi(Ti∪{tj}) for any agent Ai and task tj. Since the tasks

are being allocated in non-increasing order of their reward-to-risk ratio, and since

we are considering a high-risk scenario where all tasks will be executed as one-shot

cycles, the optimal location to add tj to the walk currently executed by agent Ai will

be after the one-shot cycles corresponding to the tasks in Ti (by Prop. 5.2.2). More

specifically, suppose W ∈ W(Ti) is the optimal walk through the set of tasks Ti, with

C(W ) = {W1,W2, . . . ,Wp}. Then, the optimal walk through the set of tasks Ti∪{tj}

will be given by W̄ , with C(W̄ ) = {W1,W2, . . . ,Wp,Wtj}, where Wtj is the one-shot

cycle containing task tj. By Lemma 6.1.5, the utility of the optimal walk W̄ is given

by

vi(Ti ∪ {tj}) = Ei(C(W̄ )) =

(
p∑
l=1

ψ

l−1∑
k=1

dk
µl

)
+ ψ

p∑
k=1

dk
µj.

Thus, we have

vi(Ti ∪ {tj})− vi(Ti) = Ei(C(W̄ ))− Ei(C(W ))

= ψ

p∑
k=1

dk
µj.

Thus, we see that the marginal gain in adding task tj to Ti decreases with the sum

of the round-trip distances of the tasks in Ti. Thus, when considering line 4 of

Algorithm 10, the agent that has the smallest sum of round-trip distances in its current

set of allocated tasks will yield the largest marginal gain when given task tj. This

yields line 4 in Algorithm 11. Thus Algorithm 11 is a special case of Algorithm 10,

and the result follows.

6.2 Simulations

To understand how the greedy allocation compares to the optimal allocation in

general, we carried out some simulations. The simulations were carried out on a
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computer with an Intel (R) Core(TM) i5-8500 (3 GHz) CPU and 16 GB RAM.

Rewards for tasks were generated randomly in the range 90000 to 100000 (from a

discrete uniform distribution), and distances were generated randomly from the range

1 to 1000. Agent values and survival probabilities were selected so that all tasks will

be executed as one-shot cycles and all tasks are high-rewards tasks. Figure 6.2 shows

the plots comparing the expected utilities and runtimes of both the allocations when

there are two agents. The x-axis shows the number of tasks allocated and the y-axis

for the first plot shows the ratio of the expected utilities of the greedy and optimal

allocation. The ratio of expected utilities was chosen as the metric as the range of

values of expected utilities varied with problem instances. The y-axis for the second

plot shows the average execution times to compute both the greedy allocation and

the optimal allocation. For each case, the values were averaged over a 100 runs.

Figures 6.3 and 6.4 shows a similar comparison for three and four agents respectively.

We can see through the simulations that the greedy algorithm (in general) returns

allocations that have expected utilities close to the optimal values. The execution time

for the greedy algorithm is very small for large instances of the problems, whereas

the execution time for finding the optimal allocation increases rapidly as the size of

the problem instance increases.
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Fig. 6.2. Comparison of performance of greedy allocation and the optimal
allocation when the number of agents is two.

Fig. 6.3. Comparison of performance of greedy allocation and the optimal
allocation when the number of agents is three.
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Fig. 6.4. Comparison of performance of greedy allocation and the optimal
allocation when the number of agents is four.

6.3 Chapter Summary

In this chapter, we considered the risk-aware scenario consisting of multiple agents

to collect the sensor measurement data, and defined the Multi-Agent Risk-Aware

Task Allocation (MARATA) problem. We showed that the optimization problem is

submodular in high-risk scenarios, and provided a greedy algorithm that returns an

allocation within 50% of the optimal expected value. We also showed some simula-

tions for the greedy allocation to understand how it compares against the optimal

allocation.
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7. SUMMARY AND FUTURE WORK

In this thesis, we looked at task allocation and routing of multiple heterogeneous

agents. We looked at problems where functionally heterogeneous agents are required

to complete tasks cooperatively while minimizing the maximum cost incurred by any

agent. We considered the Heterogeneous Agent Cycle Problem (HACP), where we

found tours for such agents located at a common start location. We provided a

5-approximation algorithm for HACP. We then considered a more general version

of HACP, which we call the Heterogeneous Agent Path Problem (HAPP). In this

problem, we relax the constraint that agents must have a common start location.

In this framework, agents may have different start locations; furthermore, since the

start locations are arbitrary, the agents are not constrained to rendezvous back to their

start locations. This allows resilient and adaptive task allocation to these agents. We

studied this problem and provided a 15-approximation algorithm.

In the second half of this thesis, we considered agent routing under “risk”. That

is, an agent faces a non-zero risk of destruction when it travels. We studied risk based

routing for a single agent by studying the Single Agent Risk Aware Task Execution

(SARATE) Problem. We characterized several key properties of the optimal policy

under such a scenario. We also provided the optimal policy under the special case

where the risk of destruction is very high. We then extended our analysis to sce-

narios with multiple agents. We show that the scoring scheme is submodular under

sufficiently high risk conditions and show that the greedy algorithm is guaranteed to

provide an allocation that has expected utility within 50% of the optimal value.
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7.1 Future Directions

The work in this thesis explores some key areas on path planning for multi-agent

systems. The following are some interesting areas for future research.

• Approximation algorithm for SARATE: The goal will be to provide algorithms

with worst case performance bounds for the SARATE Problem that was con-

sidered in Chapter 5. This is challenging as the algorithm will have to take into

consideration several factors such as the reward of a task, its associated loca-

tion, risk, the value of the agent, etc, in order to find a solution. Furthermore,

depending on these factors, some tasks may not be present in the optimal tour,

which further adds to the complexity of the problem.

• Approximation algorithm for MARATA under lower risk scenarios: Our anal-

ysis provided a solution guaranteed to be within 50% of the optimal expected

value under high risk scenarios. It would be interesting and challenging to

study the system when the risk is not high enough for the scoring scheme to be

submodular.

• Consider broader classes of policies for MARATA: In our analysis, we considered

allocations under partition policies. In the future, it would be interesting to

consider broader classes of policies where tasks may be allocated to multiple

agents for redundancy in case of agent failures or where agents are allowed to

wait to know the outcome of another agent’s tour before starting it’s own.

• Policies for SARATE and MARATA to handle a schedule of tasks: Consider a

scenario where we are given a time-extended schedule of how tasks are going to

appear. Our current analysis does not consider a task that is not yet available,

but will appear by the time the agent travels to that task location. It would be

interesting to extend the study to cater to such scenarios.
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