
EFFICIENT MINIMUM CYCLE MEAN ALGORITHMS AND THEIR

APPLICATIONS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Supriyo Maji

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2020

Purdue University

West Lafayette, Indiana

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Prof. Cheng-Kok Kok, Chair

Department of Electrical and Computer Engineering

Prof. Anand Raghunathan

Department of Electrical and Computer Engineering

Prof. Byunghoo Jung

Department of Electrical and Computer Engineering

Prof. Dan Jiao

Department of Electrical and Computer Engineering

Prof. Tim Rogers

Department of Electrical and Computer Engineering

Approved by:

Prof. Dimitri Peroulis

Head of the School Graduate Program

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor Prof. Cheng-Kok Koh

for all the encouragement and help that he has provided during the course of my

PhD study. I have been fortunate to have an advisor who gave me the opportunity

to work on the project sensing my willingness to learn and think new. His patience

in building up a complete work and commitment to pursuing rigorous analysis have

helped develop in me a sense of responsibility to carry out quality and original re-

search. Under him, I never lost motivation to stay committed to PhD study all these

years.

I am also thankful to him for making me aware of the resources to improve the writ-

ing skill. That not only helped me express what I wanted to, clearly and elaborately,

in this dissertation but also shortened the time that I would have spent otherwise

on writing. My appreciation also goes to other members of my doctoral dissertation

committee, Prof. Anand Raghunathan, Prof. Byunghoo Jung, Prof. Dan Jiao, and

Prof. Tim Rogers for their feedback on research and presentation of the work, and

also for help to organize the examinations smoothly. My past research experience at

IIT Kharagpur, Synopsys (via Magma) and Qualcomm and the interactions that I

had with the co-workers there have also been instrumental in shaping my thinking

and approach to new problems.

This journey would never have been possible without the support and encourage-

ment of my mother and brother who have stayed with me through many ups and

downs of life. Above all, it is my mother, without whose perseverance and dedication

to my well being, I wouldn’t be here today at Purdue. It is because of her I have

remained steadfast in my goal to attain the highest education.

I also thank anonymous reviewers, Dr. A. Dasdan, and Dr. C. Albretch for

providing key insights to improve quality of the research presented here. Finally, I

would like to acknowledge NSF (award CCF-1527562) that has funded in part the

research in this dissertation.

TABLE OF CONTENTS

Page

LIST OF TABLES .

LIST OF FIGURES .

ABSTRACT .

1 INTRODUCTION . 1

2 MINIMUM CYCLE MEAN (MCM) ALGORITHMS 8

2.1 Minimum cycle mean (MCM) . 11

2.2 Parametric shortest path algorithms . 11

2.3 Karp’s algorithm . 13

2.4 Early termination of Karp’s algorithm (HO) 16

2.5 The proposed MCM algorithm . 21

2.5.1 Efficient π calculation . 21

2.5.2 Efficient feasibility check . 24

2.5.3 Efficient λmin calculation . 27

2.5.4 Pseudocode of the proposed MCM algorithm 32

2.6 Experimental results . 33

2.6.1 Benchmarking . 33

2.6.2 Memory usage . 35

2.6.3 Runtime performance . 37

2.6.4 Effectiveness of efficient early termination techniques 39

2.7 Analysis . 42

2.8 Conclusions . 45

3 MINIMUM BALANCE ALGORITHMS . 47

3.1 Conventional minimum balancing . 47

3.1.1 MCM calculation . 49

Page

3.1.2 Graph update operation in [3] 50

3.1.3 Graph update operation in [14] [11] 56

3.1.4 Implementations . 62

3.1.5 Data structures for cycle contraction 66

3.1.6 Floating point arithmetic in re-weighting 67

3.2 Proposed algorithm . 67

3.3 Experimental results . 71

3.4 Conclusions . 76

4 A SCALABLE BUFFER QUEUE SIZING ALGORITHM FOR LATENCY
INSENSITIVE SYSTEMS . 77

4.1 Modeling a latency insensitive system 79

4.1.1 Throughput of a latency insensitive system 84

4.2 Buffer queue sizing for performance optimization 86

4.2.1 Performance constraints . 88

4.2.2 Physical design constraints . 89

4.2.3 A binary search for the maximum throughput 90

4.2.4 A minor improvement . 91

4.3 Proposed buffer queue sizing algorithm 92

4.3.1 A new form of buffer queue sizing problem 93

4.3.2 A parametric graph and its minimum balance 95

4.3.3 An integer variant of minimum balance: Iterative reduction of
buffer queue sizes . 97

4.3.4 Illustration of the algorithm through an example 100

4.3.5 Implementation detail . 102

4.4 Proposed throughput optimization algorithm 104

4.5 Experimental results . 106

4.6 Conclusions . 115

5 SUMMARY AND FUTURE RESEARCH 116

5.1 Hartmann-Orlin’s algorithm for parametric graph 117

Page

5.2 The proposed MCM algorithm for solving the minimum balance problem118

5.3 Solving other integer linear programming problems 119

VITA . 121

REFERENCES . 122

LIST OF TABLES

Table Page

2.1 Information of graphs derived from IWLS 2005 benchmark circuits [20]. . . 39

2.2 Runtimes of YTO, HO/b and the proposed algorithm on graphs derived
from IWLS 2005 benchmark circuits [20]. 40

2.3 Improvements (%) in efficient π calculation and efficient λmin calculation
for dense random graphs. 40

2.4 Comparing three versions of early termination on the graphs from Fig. 2.7(a)
for the number of paths considered for π calculation (#paths), the traver-
sal length for cycle detection in λmin calculation (length), and the number
of rows computed (#rows). 43

2.5 Comparing three versions of early termination on the graphs from Fig. 2.7(b)
for the number of paths considered for π calculation (#paths), the traver-
sal length for cycle detection in λmin calculation (length), and the number
of rows computed (#rows). 44

3.1 IWLS 2005 benchmark circuits [20] and details of the largest strongly
connected component of each circuit graph. 71

3.2 Runtime (in sec.) of the three algorithms on IWLS 2005 circuits [20]. . . . 72

3.3 Runtimes (in sec.) of the three algorithms on random graphs [7]. 73

3.4 Runtimes (in sec.) of the three algorithms on SPRAND graphs [42]. 74

4.1 Progressive trace of the LIS from Fig. 4.1 with minimum size buffer queues,
unlimited buffer queues and optimized queues. 81

4.2 Details of lis-graphs used for the evaluation of various approaches. . . . 107

4.3 Comparing the proposed approach with MILP-based approaches for re-
laxed regional buffer constraints. 108

4.4 Comparing the proposed approach with our implementation of [22] for re-
laxed regional buffer constraints with different PREC ∈ {0.0001, 0.001, 0.01, 0.1}.
111

4.5 Comparing the proposed approach with MILP-based approaches for tight
regional buffer constraints. 112

Table Page

4.6 Using an MILP solver to solve the new buffer queue sizing problem for
relaxed regional buffer constraints. 114

4.7 Using an MILP solver to solve the new buffer queue sizing problem for
tight regional buffer constraints. 115

LIST OF FIGURES

Figure Page

1.1 An example of a sequential circuit. In sequential circuit, flip-flops or
latches are the sequential elements. Two sequential elements can be sep-
arated by combinational logic gates which have delays. For the slack
distribution problem, setup and hold time constraints can be rewritten
respectively as ti− tj ≤ wji−λji and tj− ti ≤ wij−λij to include the slack
parameter λ to be maximized without violating any timing constraint. In
a timing constraint graph, sequential cells can be represented by nodes
and the setup- and hold-time constraints between them by edges. 2

1.2 (a) Every edge in the graph has a parameter λ(e). Largest value of λ(e)
for e ∈ E(C1) is 2, since beyond that value cycle C1 is negative. (b) Given
that λ(e), e ∈ E(C1) is 2, largest value of λ(e) for e ∈ E(C2) and /∈ E(C1)
is 3, since beyond that value cycle C2 is negative. (c) Minimum-balanced
graph. 4

2.1 As λ increases, the shortest path from source node s to node v changes
the parent node of v from z to u. The shortest paths to all nodes in the
subtree of v are therefore updated and the the algorithm has to update
information for all nodes in the heap that are adjacent to the subtree. For
a node on the subtree, this requires accessing all incoming edges to the
subtree and for a node adjacent to the subtree, this requires accessing all
outgoing edges from the subtree [2] [19] [7] [37]. All adjacent edges to the
subtree are shown as red, dashed arrows. 12

2.2 A minimum-mean cycle in a graph has |V | − k edges. Node v on the
cycle has a shortest path (in bold) which contains k edges. The |V |-edge
shortest path includes the cycle. 14

2.3 Filtering of redundant k-edge shortest paths for efficient π calculation.
L1 and L2 represents the j- and j′-edge shortest paths, respectively, with
j < j′. If λmin ≤ λc, where λc is the intersection of L1 and L2, the j′-edge
path is redundant and can be pruned. 22

2.4 The minimum-mean cycle containing node v occurs in the extended path
beyond the shortest path to v. 27

Figure Page

2.5 Filtering in cycle detection using a concept presented in [18]: Any cycle
in the path of minimum-mean cycle is a minimum-mean cycle. Therefore,
there is no need to detect cycles in an extension of a path that has a
cycle detected earlier. At row k, we detect a cycle (red dotted line) by
traversing for node u. We do not have to consider cycle detection and λmin

calculation for the extended paths at ends at nodes v1 and v2. 30

2.6 Benchmarking our implementation of YTO with the implementation from [7]
[39]. The results for dense graphs are shown in (a) and (b). In (a), the
graph density |E|/|V | is varied from 5 to 900 for |V | = 1K, and in (b)
the graph size is varied by changing (|V |, |E|/|V |) from (1K, 550) to (5K,
750). The results for sparse graphs are shown in (c). In (c), |V | is var-
ied from 7.5K to 240K while |E|/|V | is fixed at 50. The implementation
from [7] [39] cannot handle large graphs as shown by the missing data in
the plot in (c). 34

2.7 Comparison of memory usage of YTO, HO-B, and the proposed MCM
algorithm. The results for dense graphs are shown in (a) and (b). In (a),
the graph density |E|/|V | is increased from 50 to 9000 for |V | = 10K, and
in (b), the graph size is varied by changing (|V |, |E|/|V |) from (10K, 5K)
to (80K, 40K). In (b), HO and the proposed algorithm have much less
memory usage compared to YTO. No memory usage is reported for YTO
at (80K, 40K) as the algorithm fails to run to completion. The results for
sparse graphs are in (c). |V | is varied from 7.5K to 480K while keeping
|E|/|V | fixed at 50. 36

2.8 Comparison of runtime performance of YTO, HO/b and the proposed
algorithm on random graphs. The graphs in (a) and (b) are dense. In
(a), the graph density |E|/|V | is varied from 50 to 9000 for |V | = 10K.
The proposed algorithm performs better than HO/b and is comparable
to YTO as the graph becomes denser. In (b), the graph size is varied by
changing (|V |, |E|/|V |) from (10K, 5K) to (80K, 40K). YTO fails for the
graph at (80K, 40K) because of its excessive memory consumption. For
sparse graphs in (c), |V | is varied from 7.5K to 480K while |E|/|V | is fixed
at 50. 38

2.9 K ′′ (the proposed algorithm) has comparable or better scaling profile than
T (YTO) for increasing graph density (a), and increasing size of dense
graph (b). The plots are obtained by scaling the actual number for K ′,
K ′′ and T with their respective average values. Average value of K ′′ is
smaller than K ′. No result is reported for YTO at (80K, 40K) since the
algorithm fails to run to completion. 46

Figure Page

3.1 (a) The conventional and (b) the proposed minimum balance algorithms.
The proposed algorithm does not require re-weighting of the entire graph
as is the case with [14] [11] [3]. It re-weights only edges adjacent to the
minimum-mean cycle, thereby reducing time complexity of the graph up-
date from Θ(|V |+ |E|) to O(|V |+ |E|). 48

3.2 The graph update operation in [3]. (a) The original graph G(V,E,w)
with minimum-mean cycle C1. (b) The weight of every edge (u, v) ∈ E
in G(V,E,w) is adjusted to w′(u, v) = w(u, v) + π[u] − π[v] in the re-
weighting process, yielding G′(V,E,w′), where π is the vector of shortest
path distances in G(V,E,w−λ∗). (c) Node v0 on C1 is the representative
node for cycle contraction. All edges in C1 are removed. After contraction,
(v0, v4) in G′ turns into a self loop (v0, v0) in G′′(V ′′, E ′′, w′) and (v0, v2)
and (v1,v2) in G′ become parallel edges in G′′. 52

3.3 Re-weighting of edges in [14] [11] in two phases. (a) The weight of every
edge (u, v) ∈ E in G(V,E,w) (see Fig. 3.2(a)) is first downshifted by λ∗,
i.e., w(u, v) − λ∗, to obtain G(V,E,w − λ∗). (b) Edges adjacent to the
minimum-mean cycle (except those on the cycle itself) are then adjusted
to yield G′(V,E,w′). An edge (u, v) originating from a node on the cycle
has an adjustment term of π[u]−π[v0], and an edge (u, v) entering a node
on the cycle has an adjustment term of −(π[v] − π[v0]), where π is the
vector of shortest path distances defined on G(V,E,w − λ∗) and node v0

is the representative node on the minimum-mean cycle C1. (c) C1 in G′ is
contracted to representative node v0 to obtain G′′(V ′′, E ′′, w′). 57

3.4 An illustration of the Schneider-Schneider minimum balance algorithm [3].
Representative nodes are colored in green. v0 is the source node. The
algorithm uses shortest distance vector π in G(V,E,w − λ∗) to re-weight
all edges. A minimum-mean cycle is collapsed into its representative node. 63

3.5 An example to illustrate the minimum balance algorithm in [14] [11]. Rep-
resentative nodes are colored in green. v0 is the source node. The algo-
rithm re-weights all edges first by downshifting the weight by λ∗ and then
adjusts the incoming and outgoing edge weights of the minimum-mean
cycle using shortest path distance π of G(V,E,w−λ∗). A minimum-mean
cycle is collapsed into its representative node. 65

3.6 (a) λ(e) for e ∈ E(C1) is 2. (b) Edges of the cycle C1 are downshifted by
2 and the parameters λ(e) are removed. (c) The edges with parameters in
C2 are downshifted and their parameters are removed to form a minimum-
balanced graph. 68

Figure Page

3.7 An example to illustrate our minimum balance algorithm. Representa-
tive nodes are colored in green. v0 is the source node. The algorithm
uses shortest distance vector π in G(V,E,w− λ∗) to adjust incoming and
outgoing edge weights of the minimum-mean cycle. 70

4.1 (a) A simple system-on-chip. Blocks 1, 2 and 3 represent circuit units.
Communication channels connect the individual units. The long intercon-
nect between the units 1 and 3 can cause timing violation. (b) A simple
wire pipelining strategy that inserts a relay station (unit 4) between units
1 and 3 can solve the timing violation problem. Relay stations are essen-
tially the clocked buffer with storage capacity [27]. 80

4.2 An example lis-graph Gl(V,E,w) [22]. The graph is constructed by nodes
that represent both circuit and relay station units. Directed edges repre-
sent communication channels that connect various units. The weights of
all outgoing edges of a relay station are 1, for other edges the weight is 0. . 83

4.3 Extended lis-graph Ge(V,Ee, we) for the example lis-graph in Fig. 4.2 [22].
Extended lis-graph is a weighted connected directed graph by adding into
its lis-graph Gl(V,E,w) a mirror edge (vj, vi) (to represent back pressure)
with weight w(vj, vi) = 1−Q(vi, vj)−w(vi, vj) for every channel (vi, vj) ∈
E. Q(vi, vj) is the buffer queue size of the communication channel (vi, vj).
In the example, all channels have minimum number of buffers (i.e. one)
except the channel (v7, v4), which has two buffers. 83

4.4 The cycle C3 (dashed edges) has no mirror edges. Its cycle mean would
therefore limit the throughput of the system [22]. Mean of the cycles C1

(i.e. v1, v2, v3, v4, v8, v1) and C2 (i.e. v1, v2, v3, v4, v5, v6, v7, v8, v1) are more
than the mean of cycle C3. Their means can be lowered by increasing
number of buffers by one for the channel (v1, v8) (bold edge), which is
actually the optimal choice for this example. 85

4.5 The graph captures the longest path constraints (4.6) and (4.8). r(vi) and
r(vj) are respectively the longest path distances to nodes i and j. 89

4.6 The graph captures the shortest path constraints (4.15) and (4.16). r(vi)
and r(vj) are respectively the shortest path distances to nodes i and j.
The directions of the edges are opposite to those in Ge and Fig. 4.5. 94

4.7 The parameterization of the graph in Fig. 4.6 by including a parameter
λp(e) on the mirror edge of channel edge e. The parameter λp(e) is to be
maximized in the minimum balance problem. 94

Figure Page

4.8 (a) Every edge in the graph has a parameter λe. Largest value of λe for
e ∈ E(C1) is 2, since beyond that value cycle C1 is negative. (b) Given
that λe = 2 for e ∈ E(C1), largest value of λe for e ∈ E(C2) and /∈ E(C1)
is 3, since beyond that value cycle C2 is negative. (c) Minimum-balanced
graph. 96

4.9 A parametric graph G
(λ∗,qm)
pe where a parameterized edge is shown with a

short vertical bar crossing the edge. (a) The minimum-mean cycle (edges
colored red) is identified. The minimum cycle mean is less than 1. The
algorithm therefore does not remove buffers from any of the channels in
the graph, and no updates to the weights of parameterized edges are per-
formed. (b) To proceed, a parameterized edge (v2, v3) in the minimum-
mean cycle corresponding to a channel with minimum number of buffers
left is un-parameterized. The MCM (from cycle v4 → v3 → v4) is now 2.4,
which allows us to remove buffers from the remaining parameterized edge
(v4, v3), which is not shown here, but will be shown in Fig. 4.10. 99

4.10 An illustration of the buffer queue sizing algorithm on the LIS in Fig. 4.1(b).

(a) A parametric graph G
(λ∗,qm)
pe where a parameterized edge is shown with

a short vertical bar crossing the edge. The table shows the qm, which are
assigned to qr, and λ∗ = 0.2. The MCM is 1.4, and the minimum-mean
cycle is shown in red. (b) A buffer is removed from each of the param-
eterized edges and the weights of the parameterized edges are updated.
Edges (v1, v2) and (v1, v4) become un-parameterized. This is the example
in Fig. 4.9. The MCM value of the current graph is 0.8, and no buffers
can be removed from any of the edges. A parameterized edge (v2, v3) in
the minimum-mean cycle (shown in red) corresponding to a channel with
minimum qr is un-parameterized to obtain a new graph shown in (c). The
MCM is 2.4, allowing us to remove two buffers from (v4, v3), which is then
un-parameterized to give the final graph in (d). The algorithm terminates
when the final graph has no more parameterized edges. The table in (d)
shows that only the channel (v2, v3) uses one additional buffer in the final
solution, while each of the remaining channels has minimum buffer queue
size of 1. 101

5.1 Showing an example of (a) fully parametric graph where all edges are
parameterized, that is a parameter λ is associated with every edge, (b)
parametric graph where not all edges have a parameter λ. 117

ABSTRACT

Maji, Supriyo PhD, Purdue University, August 2020. Efficient Minimum Cycle Mean
Algorithms And Their Applications. Major Professor: Cheng-Kok Koh.

Minimum cycle mean (MCM) is an important concept in directed graphs. From

clock period optimization, timing analysis to layout optimization, minimum cycle

mean algorithms have found widespread use in VLSI system design optimization.

With transistor size scaling to 10nm and below, complexities and size of the systems

have grown rapidly over the last decade. Scalability of the algorithms both in terms

of their runtime and memory usage is therefore important.

Among the few classical MCM algorithms, the algorithm by Young, Tarjan, and

Orlin (YTO), has been particularly popular. When implemented with a binary heap,

the YTO algorithm has the best runtime performance although it has higher asymp-

totic time complexity than Karp’s algorithm. However, as an efficient implementation

of YTO relies on data redundancy, its memory usage is higher and could be a pro-

hibitive factor in large size problems. On the other hand, a typical implementation of

Karp’s algorithm can also be memory hungry. An early termination technique from

Hartmann and Orlin (HO) can be directly applied to Karp’s algorithm to improve

its runtime performance and memory usage. Although not as efficient as YTO in

runtime, HO algorithm has much less memory usage than YTO. We propose several

improvements to HO algorithm. The proposed algorithm has comparable runtime

performance to YTO for circuit graphs and dense random graphs while being better

than HO algorithm in memory usage.

Minimum balancing of a directed graph is an application of the minimum cycle

mean algorithm. Minimum balance algorithms have been used to optimally distribute

slack for mitigating process variation induced timing violation issues in clock network.

In a conventional minimum balance algorithm, the principal subroutine is that of

finding MCM in a graph. In particular, the minimum balance algorithm iteratively

finds the minimum cycle mean and the corresponding minimum-mean cycle, and uses

the mean and cycle to update the graph by changing edge weights and reducing

the graph size. The iterations terminate when the updated graph is a single node.

Studies have shown that the bottleneck of the iterative process is the graph update

operation as previous approaches involved updating the entire graph. We propose an

improvement to the minimum balance algorithm by performing fewer changes to the

edge weights in each iteration, resulting in better efficiency.

We also apply the minimum cycle mean algorithm in latency insensitive system

design. Timing violations can occur in high performance communication links in

system-on-chips (SoCs) in the late stages of the physical design process. To address

the issues, latency insensitive systems (LISs) employ pipelining in the communication

channels through insertion of the relay stations. Although the functionality of a LIS

is robust with respect to the communication latencies, such insertion can degrade

system throughput performance. Earlier studies have shown that the proper sizing

of buffer queues after relay station insertion could eliminate such performance loss.

However, solving the problem of maximum performance buffer queue sizing requires

use of mixed integer linear programming (MILP) of which runtime is not scalable. We

formulate the problem as a parameterized graph optimization problem where for every

communication channel there is a parameterized edge with buffer counts as the edge

weight. We then use minimum cycle mean algorithm to determine from which edges

buffers can be removed safely without creating negative cycles. This is done iteratively

in the similar style as the minimum balance algorithm. Experimental results suggest

that the proposed approach is scalable. Moreover, quality of the solution is observed

to be as good as that of the MILP based approach.

1

1. INTRODUCTION

Minimum cycle mean (MCM) is an important concept in directed graphs [1] [2]. Mini-

mum cycle mean algorithms are used as subroutines in various graph algorithms [3] [4].

The concepts of minimum cycle mean and the cycle that has the minimum mean

(called minimum-mean cycle) have parallels to important parameters in VLSI sys-

tems. From clock period optimization, timing analysis to layout optimization, min-

imum cycle mean algorithms have found widespread use in sequential VLSI system

design optimization [5] [6] [7] [8] [9] [10].

For sequential circuits to operate without error, data must be processed in a syn-

chronized manner. In such circuits, the synchronization of data is governed by a

clock signal. Proper assignment of clock arrival times to each sequential element in a

sequential circuit can help run the circuit at a higher clock frequency with optimum

power budget. Deep sub-micron technology nodes already exhibit significant wire de-

lay variation, temperature fluctuation, crosstalk and jitter on signal and clock paths,

all having large impact on how much effort is needed to get the product out in time

to market. Since timing violations are the main cause of yield loss in modern VLSI

systems, a proper clock scheduling or assignment is important.

Minimum balancing of a directed graph is an application of the minimum cycle

mean algorithm. Minimum balance algorithms have been used to optimally distribute

slack for mitigating the process variation issues in sequential circuits [11] [12] [5] [13].

In conventional minimum balance algorithms [13] [14] [3], the principal subroutine is

that of finding minimum cycle mean (MCM) in a graph. In particular, the minimum

balance algorithm iteratively finds the minimum cycle mean and the corresponding

minimum-mean cycle, and uses the mean and cycle to update the graph by changing

edge weights and reducing the graph size. The iterations terminate when the updated

graph is a single node. As the transistor size scales down to 10nm or below and the

2

need for integrating more functionalities grows, there could be 100 billion transistors

in system-on-chip in near future. The graph structures that represent such systems

could also be enormous. Such growing complexities of the system representation pose

substantial challenges in achieving scalability of the design automation tools. The

efficiency of the graph algorithms both in terms of its memory usage and runtime

performance is therefore important.

Fig. 1.1.: An example of a sequential circuit. In sequential circuit, flip-flops or latches
are the sequential elements. Two sequential elements can be separated by combi-
national logic gates which have delays. For the slack distribution problem, setup
and hold time constraints can be rewritten respectively as ti − tj ≤ wji − λji and
tj− ti ≤ wij−λij to include the slack parameter λ to be maximized without violating
any timing constraint. In a timing constraint graph, sequential cells can be repre-
sented by nodes and the setup- and hold-time constraints between them by edges.

The problem of optimal distribution of slack in a clock network in sequential

circuits can be formulated as a minimum balance problem in directed graphs [11]

[12] [5] [13] [15] [16]. In a sequential circuit as shown in Fig. 1.1, we can write the

setup and hold time constraints between two sequentially adjacent flip-flops FFi and

FFj as follows. Let ti and tj be respectively the arrival times of the clock signal

to FFi and FFj; Cp the clock period; tmax
pFF and tmax

comb (tmin
pFF and tmin

comb) respectively

the longest (shortest) propagation delays through a flip-flop and the combinational

circuit between FFi and FFj; and tmax
setup and tmax

hold respectively the maximum setup

3

and hold times of a flip-flop. We define wji = CP − (tmax
pFF + tmax

comb + tmax
setup) and

wij = (tmin
pFF + tmin

comb)− tmax
hold, Then, ti − tj ≤ wji and tj − ti ≤ wij are respectively the

setup- and hold-time constraints [17]. The timing constraints of a sequential circuit

can be represented with a directed graph, known as a timing constraint graph (see

Fig. 1.1), where the nodes are the sequential elements and a timing constraint between

a pair of sequential elements is captured as a weighted directed edge between them.

For a circuit to be timing-correct, the equivalent timing constraint graph must not

have negative cycles.

Process variations in sequential circuits may change any of the propagation delays,

setup time, and hold time, and introduce a negative cycle in the timing constraint

graph of an otherwise timing-correct circuit. To make the circuit robust, sufficient

tolerance (or slack) may be added to the signal paths and clock skews. For the slack

distribution problem, we rewrite the setup and hold time constraints respectively as

ti − tj ≤ wji − λji and tj − ti ≤ wij − λij to include the slack parameter λ to be

maximized without violating any timing constraint. In other words, the slack λuv in

an edge (u, v) in the timing constraint graph allows the circuit to tolerate variations

as high as λuv in wuv without causing a timing violation.

The problem of determining the maximum timing slack λuv in each edge (u, v)

in the timing constraint graph is related to the problem of finding the minimum

balance of a directed graph, which is defined below. Consider a weighted, directed,

and strongly connected graph G(V,E,w) with node set V and edge set E. Each

edge e has an associated weight w(e), given by a weight function w : E → R and a

parameter λ(e) such that the parameterized weight of that edge is w(e)− λ(e). The

minimum balance problem is that of finding largest λ(e), e ∈ E, by simultaneously

maximizing λ(e) for all edges without creating any negative cycle [14] [11] [5].

In Fig. 4.8(a), for example, we simultaneously increase λ(e) (from −∞) for all

edges by the same amount until we get a zero weight cycle in C1. We cannot increase

λ(e) further for the edges in C1 since C1 would turn negative otherwise. Therefore,

λ(e) = 2 for e ∈ E(C1). Now, all edges have their weights reduced by 2. Moreover, all

4

Fig. 1.2.: (a) Every edge in the graph has a parameter λ(e). Largest value of λ(e)
for e ∈ E(C1) is 2, since beyond that value cycle C1 is negative. (b) Given that λ(e),
e ∈ E(C1) is 2, largest value of λ(e) for e ∈ E(C2) and /∈ E(C1) is 3, since beyond
that value cycle C2 is negative. (c) Minimum-balanced graph.

edges in C1 now lose their parameters λ(e) (see Fig. 4.8(b)). We repeat the process

of increasing λ(e) (from −∞). This time, we stop when all λ(e) is 1 and the cycle

C2 becomes a zero weight cycle. Since all the edge weights have been reduced by 2

earlier because of C1, λ(e) = 3 for e ∈ E(C2) and /∈ E(C1). Fig. 4.8(c) shows the

minimum-balanced graph where every edge (e) has got its weight downshifted by λ(e)

(from its original weight).

This example also demonstrates two main subroutines used in a conventional

minimum balance algorithm [14] [11]. The first computes the minimum cycle mean

(MCM) and finds the corresponding minimum-mean cycle. The mean of a cycle is

obtained by dividing the sum of edge weights (w(e)) by the number of edges with

parameters λ(e) in the cycle. The MCM is the minimum of all cycle means in the

graph [1] [6] and a cycle whose mean is minimum is a minimum-mean cycle. Finding

the minimum cycle mean of the graph is equivalent to finding the largest λ(e) for

which there are no negative cycles [2]. For example, the value 2 that we found for

5

λ(e) for edges e ∈ E(C1) is the MCM of G (denoted as MCM1 in Fig. 4.8(a)) and the

cycle C1 is the minimum-mean cycle.

In second chapter of the dissertation, we study few classical graph algorithms to

solve MCM problem that can also be used in a conventional minimum balance algo-

rithm [2] [14] [18] [1] [19]. The algorithm by Young, Tarjan, and Orlin (YTO) [14],

when implemented with a binary heap, has been reported to be the fastest MCM

algorithm in practice [7] even when it has higher asymptotic time complexity than

Karp’s algorithm [1] . However, as an efficient implementation of YTO relies on data

redundancy, its memory usage is higher and could be a prohibitive factor in large

size problems. On the other hand, a typical implementation of Karp’s algorithm can

also be memory hungry, thereby limiting its application to only small size problems.

An early termination technique from Hartmann and Orlin (HO) [18] can be directly

applied to Karp’s algorithm to improve its runtime performance. The early termina-

tion also allows memory to be allocated on an on-demand basis, which can reduce the

memory requirement of Karp’s algorithm. While studying these algorithms, one par-

ticularly interesting characteristic of the sequential circuits came to our observation,

that is that the cycles are usually small, made of few edges. For this reason we infer

that even though the problem in hand is quite enormous it exhibits a well-defined

structure, something to leverage on. Most importantly, this particular characteris-

tic can make early termination of Karp’s algorithm even more useful. Motivated by

this we went on to investigate the Hartman and Orlin’s algorithm [18] in-depth. In

our evaluation based on graphs constructed from IWLS 2005 benchmark circuits and

randomly generated graphs, we empirically observe that the HO algorithm (or Karp’s

algorithm with early termination technique from the HO algorithm) has much less

memory usage than YTO, but it lags behind YTO in runtime performance. We pro-

pose several improvements to the early termination technique of the HO algorithm.

While further improving its memory advantage over YTO, we significantly improve

the runtime performance of the HO algorithm to the extent that the proposed algo-

6

rithm has runtime performance that is comparable to YTO for circuit-based graphs

and for dense randomly generated graphs.

The second main subroutine in the conventional minimum balance algorithm up-

dates the graph to facilitate the determination of the remaining λ(e). For example, it

re-weights every edge in G by downshifting its weight by 2 and removing parameters

λ(e) from the edges in C1. The MCM (denoted as λ∗ in Fig. 4.8(b)) of the updated

graph is 1, with C2 being the minimum-mean cycle. To account for the downshifting

by 2, λ(e) = λ∗+ MCM1 = 3 (denoted as MCM2 in Fig. 4.8(b)) for e ∈ E(C2) and

e /∈ E(C1). It is therefore apparent how minimum balance problem can be solved by

solving the MCM problem on a series of updated graphs. One can note that the graph

update operation involves the entire graph. Thus, the graph update operation, which

has a time-complexity of Θ(V +E) [11], has been considered to be a bottleneck in the

conventional minimum balance algorithm [14]. Schneider and Schneider presented in

an earlier work [3] a different approach for updating the graph; however, the time

complexity of the graph update operation in [3] is the same as that from [14] [11].

In third chapter of the dissertation we propose an improvement to the conventional

minimum balance algorithms [14] [11] [3] where the graph update operation involves

only edges adjacent to the minimum-mean cycle; it involves the entire graph only

in the worst case. This improves the efficiency of the minimum balance algorithm.

We evaluate the conventional algorithms and the proposed algorithm using graphs

obtained from IWLS 2005 benchmark circuits [20] and graphs that are randomly

generated. We observe that our algorithm has better runtime performance compared

to the conventional minimum balance algorithms, averaging 41.20% and 31.43% run-

time reductions for circuit graphs and randomly generated graphs, respectively.

We also apply the minimum cycle mean algorithm in latency insensitive system

design. Timing violations in high performance communication links may occur in the

late stages of the physical design process of system-on-chips (SoCs). To address that,

latency insensitive systems (LISs) employ pipelining in the communication channels

through the insertion of relay stations. Although the functionality of an LIS is robust

7

with respect to the communication latencies, imbalances in relay station insertion

may degrade the throughput performance of the system [21] [22] [23]. While having

a large number of buffer queues could eliminate such performance loss, the system

may not have adequate area to accommodate these buffers. The problem of buffer

queue sizing for maximizing performance while meeting buffer area constraints has

been solved using a mixed integer linear program (MILP) formulation; however, such

an approach is not scalable [24] [25] [22]. In fourth chapter of the dissertation, we

formulate the buffer queue sizing problem as a parameterized graph optimization

problem where for every communication channel there is a parameterized edge with

buffer counts as the edge weight. We then use a minimum cycle mean algorithm to

determine from which edges buffers can be removed safely. Experimental results on

large LISs suggest that the proposed approach is scalable. Moreover, the quality of

the solutions, in terms of the throughput and the size of buffer queues, is observed to

be as good as that of the MILP based approach.

8

2. MINIMUM CYCLE MEAN (MCM) ALGORITHMS

Various applications in the design of circuits and systems require computation of

minimum cycle mean (MCM) in a directed graph [5] [6] [7] [8] [9] [10]. Some im-

portant applications are in the areas of clock network optimization, including clock

period minimization, slack optimization, and timing analysis [12] [5] [13] [35]. MCM

algorithms are also used in other graph algorithms and applications [3] [4].

Following the discussion in Chapter 1, one can realize that the calculation of the

mean of a cycle in a timing constraint graph can be done by dividing the sum of edge

weights by the number of edges in the cycle. When an edge participates in a cycle,

the (uniform) slack that all edges in that cycle could be assigned is the cycle mean.

The largest slack that an edge can be assigned in the smallest among the means of

all cycles in which it participates. Therefore, the largest (uniform) slack, denoted as

λ∗, that could be assigned to all edges in a timing constraint graph is the minimum

among the means of all cycles in a graph, or the minimum cycle mean (MCM) of a

graph [1].

There is a more general concept of a parameterized graph [2] where only some

edges are associated with the parameter λ. If edge e is not parameterized, its weight

is w(e); otherwise, the weight is w(e)− λ. In such a formulation, the mean of a cycle

is obtained by dividing the cycle weight by the number of parameterized edges in the

cycle. For this work, we assume that that all edges in a graph are parameterized, i.e.,

every edge is associated with the parameter λ.

Consider a weighted, directed, and strongly connected graph G(V,E,w), where

V is the node set, E is the edge set, and each edge e has an associated weight w(e).

Karp used dynamic programming to calculate MCM exactly in Θ(|V ||E|) time [1]

for a graph where all edges are parameterized. Karp’s algorithm maintains a table

of distances. In the table, row k records the shortest paths to all nodes (from an

9

arbitrary source node) with exactly k edges, where k can range from 0 to |V |. The

technique of relaxation is used to obtain a k-edge shortest path from a (k − 1)-edge

shortest path, which is similar to an iteration of the Bellman-Ford algorithm [36].

A typical implementation of Karp’s algorithm requires a table of size Θ(|V |2) to

store distances information for the computation of MCM. Other memory overhead is

also necessary when there is need to also determine a minimum-mean cycle (a cycle

whose mean is the minimum). As graph size becomes large, the quadratic memory

requirement can be prohibitive.

Karp and Orlin solved a series of parametric shortest path (tree) problem for MCM

calculation in O(|V ||E| log |V |) time [2]. We refer to this algorithm as KO. In this

series of shortest path trees, two consecutive trees differ by only two edges. KO uses a

binary heap to keep track of the edges that could be moved into the next iteration of

shortest-path tree. Instead of keeping track of the edges, Young, Tarjan and Orlin’s

algorithm [14] keeps track of the nodes for which its incoming edge could change in

the next iteration. We refer to this algorithm as YTO. With a Fibonacci heap, YTO

improves the amortized time complexity to O(|V ||E| + |V |2 log |V |). However, YTO

implemented with a binary heap has been reported to be the fastest MCM algorithm

in practice [37] [12] [7] [5] [13] even when it has higher asymptotic time complexity

(i.e. O(|V ||E| log |V |)) than Karp’s algorithm. Such efficiency in runtime however

comes at the expense of data redundancy. A state of the art implementation of YTO

uses both incoming and outgoing adjacency lists to store the graph information [37].

Although the two lists contain the same information, they facilitate faster update

of the binary heap. As two adjacency lists are maintained, the memory overhead of

YTO is O(|E|).

The O(|E|) overhead of YTO appears leaner than the O(|V |2) overhead of Karp’s

algorithm. However, the overhead of Karp’s algorithm could be reduced by the early

termination technique in the Hartmann and Orlin’s algorithm [18], which we refer to

as HO. While HO can also handle graphs where some edges are not parameterized, we

focus on its early termination technique that can improve the runtime performance

10

and reduce the memory overhead of Karp’s algorithm. Instead of always filling in all

|V |+1 rows of the table of distances as in Karp’s algorithm, HO may terminate earlier

by checking the feasibility of constraints in a dual formulation of the MCM problem.

In addition to improving the runtime performance, early termination also allows the

program to allocate memory on-demand, allocating new rows in the distance table

only when it could not terminate earlier. The memory usage of Karp’s algorithm can

be reduced from Θ(|V |2) to O(K|V |), where K is the total number of rows explored.

In our evaluation based on graphs constructed from IWLS 2005 benchmark cir-

cuits [20] and randomly generated graphs, we observe that HO (or Karp’s algorithm

with early termination technique from the HO algorithm) has much less memory

usage than YTO, but lags behind YTO in runtime performance. While retaining

the memory advantage of HO, we propose improvements to the early termination

technique to boost the overall runtime performance of HO.

There are three steps in the early termination technique of HO: detection of cycles,

calculation of dual vector π, and checking of feasibility condition. At row k, 0 ≤ k ≤

|V |, the detection of cycles requires traversal of up to |V | k-edge shortest paths

with a time complexity of O(k|V |). Among all detected cycles, the cycle with the

minimum mean is used to calculate the dual vector π in O(k|V |) time complexity

(see Section 2.4 for details). The checking of feasibility condition is equivalent to one

iteration of Bellman-Ford algorithm, which requires O(|E|) time complexity.

The first improvement is a filtering technique that reduces the number of k-edge

shortest paths to be traversed to detect cycles. This allows a best-case O(|V |) time

complexity of cycle detection when none of the k-edge shortest paths have to be

considered while still maintaining the same worst-case time complexity of O(k|V |).

Second, we propose a filtering technique to improve the runtime efficiency of cal-

culating the dual vector π, achieving again O(|V |) time complexity at best while

maintaining the same worst-case time complexity of O(k|V |). Third, the checking of

feasibility condition can now be carried out with O(|V |) time complexity.

11

We observe that for circuit-based graphs, the proposed algorithm has better run-

time performance than HO and produces comparable results to YTO. For random

graphs, the proposed algorithm has better runtime performance than HO and is com-

parable to YTO as the graph becomes denser. The proposed algorithm has better

memory efficiency compared to both HO and YTO algorithms.

2.1 Minimum cycle mean (MCM)

Consider a weighted, directed graph G(V,E,w) that is strongly connected. Let

w(C) =
∑

e∈C w(e) and τ(C) denote respectively total edge weight and total number

of edges of a cycle C. The cycle mean of C, denoted as λ(C), is defined as follows:

λ(C) =
w(C)

τ(C)
, (2.1)

which is the total edge weight of the cycle divided by the number of edges. The

minimum cycle mean λ∗ of G is defined as λ∗ = minC∈C(λ(C)) where C is the set of

all cycles in G. The problem of finding λ∗ is called the minimum cycle mean (MCM)

problem [1] [2].

If the graph G is not strongly connected, the minimum cycle mean can be obtained

by computing the smallest among the minimum cycle means of all strongly connected

components of the graph. In our presentation of algorithms in the following sections,

we assume that the input graph to an algorithm is strongly connected.

In the following, we first review the KO and YTO algorithms, as they represent the

fastest MCM algorithms. We then review Karp’s algorithm and the HO algorithm,

as they are similar and are the algorithms we seek to improve in this work.

2.2 Parametric shortest path algorithms

Karp and Orlin (KO) [2] proposed a parametric shortest path algorithm for the

MCM problem. Based on the observation that λ∗ is the largest (edge parameter) λ

12

Fig. 2.1.: As λ increases, the shortest path from source node s to node v changes
the parent node of v from z to u. The shortest paths to all nodes in the subtree
of v are therefore updated and the the algorithm has to update information for all
nodes in the heap that are adjacent to the subtree. For a node on the subtree, this
requires accessing all incoming edges to the subtree and for a node adjacent to the
subtree, this requires accessing all outgoing edges from the subtree [2] [19] [7] [37].
All adjacent edges to the subtree are shown as red, dashed arrows.

for which G has no negative cycles, the algorithm starts with λ = −∞ and computes

a shortest-path tree (to all other nodes) from an arbitrary source node. In each

iteration, the algorithm increments λ such that the shortest-path tree changes by

only one edge. In Fig. 2.1, for example, for a smaller λ, node v has a shortest path

through node z for the top shortest path tree whose source node is s. As λ increases,

node v acquires a new shortest path through node u, as shown in the bottom shortest

path tree. The top and bottom shortest-path trees differ by the two edges (z, v) and

(u, v). The algorithm terminates when a cycle of zero weight is detected. This cycle

is the minimum-mean cycle, or the cycle with the minimum mean.

13

Using a binary heap to keep track of the next edge to be exchanged with an

existing edge in the shortest-path tree, the algorithm runs in O(|V ||E| log |V |) time.

Young, Tarjan and Orlin’s algorithm (YTO) [14] improves the runtime complexity to

O(|V ||E| + |V |2 log |V |) (amortized) using two techniques. First, a Fibonacci heap

implementation is used to improve the amortized time complexity of heap operations.

Second, instead of keeping track of the edges to be moved into the next iteration

of shortest-path tree, the heap keeps track of the nodes for which its incoming edge

could change in the next iteration. In Fig. 2.1, for example, as the shortest path to

node v has changed, all nodes in the (shortest path) subtree of v would be updated

with the new shortest path information.

Because of the changes in the shortest paths to these nodes, the algorithm has to

update information for all nodes in the heap that are adjacent to the subtree. For

a node on the subtree, this requires accessing all incoming edges to the subtree and

for a node adjacent to the subtree, this requires accessing all outgoing edges from

the subtree [2] [19] [7] [37]. In Fig. 2.1, edges that are adjacent to the shortest path

subtree of v are shown as red dashed arrows.

To access the edges that are adjacent to the nodes in the subtree of v efficiently,

state-of-the-art implementations of YTO use both forward (outgoing) and reverse

(incoming) graphs to store the input graph information [37] [7]. As a consequence, the

memory overhead of the YTO algorithm is O(|E|). The reader may refer [14] [37] [7]

for more details of the YTO algorithm and its implementation. YTO using binary

heap has been reported to be the fastest MCM algorithm [37] [12] [7] [5] [13]. Our

implementation of YTO in this work follows the pseudocode presented in [7].

2.3 Karp’s algorithm

Karp’s dynamic programming algorithm [1] is an exact algorithm with exact

complexity bound to solve the MCM problem in a directed graph. Given a graph

G(V,E,w), any |V |-edge shortest path, i.e., a path containing exactly |V | edges,

14

must contain a cycle in it. Karp proved that a minimum-mean cycle (C) must be

present in one of the |V |-edge shortest paths from an arbitrary source. Note that C

may not be a simple cycle. In fact, if C is of length |V | − k, with 0 ≤ k ≤ |V | − 1,

there must be a node, say v on C, whose shortest path from a source node (s) has

exactly k edges, and the |V |-edge shortest path would include C (starting and ending

with v), as illustrated in Fig. 2.2. With this, Karp characterized MCM (λ∗) as:

λ∗ = min
v∈V

max
0≤k≤|V |−1

[
D|V |(v)−Dk(v)

|V | − k

]
, (2.2)

where Dk(v) is the weight of k-edge shortest path from the source node s (arbitrarily

chosen) to v. If no such path exists, Dk(v) =∞.

Fig. 2.2.: A minimum-mean cycle in a graph has |V | − k edges. Node v on the cycle
has a shortest path (in bold) which contains k edges. The |V |-edge shortest path
includes the cycle.

Karp’s algorithm uses the following recurrence to compute the entries in a table

of distances (D-table):

Dk(v) = min
(u,v)∈E

[Dk−1(u) + w(u, v)], (2.3)

for k = 1, 2, ..., |V |, with the initial conditions that D0(s) = 0 and D0(v) = ∞ for

v ∈ V − {s}. We refer to this as a vertical relaxation (see the pseudocode below)

because it uses the (k− 1)-st row to compute the k-th row of the D-table. As we are

15

typically also interested in retrieving the nodes in a cycle, a P -table is also used to

keep track of the parent of a node in all shortest paths.

Vertical Relaxation
1 vertical relaxation(G, D, P , k)
2 for each edge (u, v) ∈ E do
3 if Dk[v] > Dk−1[u] + w(u, v) then
4 Dk[v] = Dk−1[u] + w(u, v)
5 Pk[v] = u
6 end if
7 end for
8 end vertical relaxation

Karp’s algorithm is presented in the pseudocode below. We first initialize D-

and P -tables. To compute entries in the tables, we perform |V | iterations of vertical

relaxation. After that, we compute the MCM based on Eq. (2.2).

Karp’s Algorithm
Input : Directed graph G(V,E,w), a strongly connected component (SCC)
Output: Minimum cycle mean λ∗

1 /* Initialization */
2 λglobal =∞ /* global variable to store minimum cycle mean */
3 for k = 0 to |V | do
4 for each node v ∈ V do
5 Dk[v] = ∞
6 Pk[v] = −1
7 end for
8 end for
9 D0[s] = 0

10 /* D- and P -tables computation*/
11 for k = 1 to |V | do
12 vertical relaxation(G, D, P , k)
13 end for

14 /* MCM computation */
15 for each node v ∈ V do
16 if D|V |[v] 6=∞ then

17 λv = −∞
18 for k = 0 to |V | − 1 do
19 λv = max(λv , (D|V |[v]−Dk[v])/(|V | − k))

20 end for
21 λ∗ = min(λ∗, λv)
22 end if
23 end for
24 return λglobal

An iteration of vertical relaxation takes Θ(|E|) time. The total time complexity

is therefore Θ(|V ||E|). Notwithstanding the fact that the algorithm uses only one

adjacency list compared to two adjacency lists in YTO, Θ(|V |2) memory usage in

Karp’s algorithm for storing the D- and P -tables can be prohibitive for large graph

16

applications. We shall now present the early termination technique from HO in the

next Section.

2.4 Early termination of Karp’s algorithm (HO)

As we compute rows of the D-table, many cycles may appear before k reaches |V |

and one of them could be the minimum-mean cycle. A technique for early termination

of the Karp’s algorithm was proposed by Hartmann and Orlin (HO) in [18] based on

the following.

Let λmin denote the smallest cycle mean among the cycles in all k-edge shortest

paths. Consider a modified graph G(V,E,w − λmin), where each edge has its weight

reduced by mean λmin. If λmin = λ∗, a minimum-mean cycle in G(V,E,w−λmin) has a

weight of 0 and a non-minimum-mean cycle has a positive weight. In other words, the

shortest path distances from an arbitrary source to all nodes in the modified graph

are well-defined. Let π[v] denote the shortest distance from the source node to v in

this modified graph. Then, the following constraints

π[v] ≤ π[u] + w(u, v)− λmin, ∀e(u, v) ∈ E (2.4)

must be satisfied. This is the dual formulation referred to in [18], and we will refer

to π as the dual vector and Eq. (2.4) as the dual constraints.

If λmin is λ∗ and the shortest paths to all nodes are of length no greater than k,

the shortest path to any node v must be one of the j-edge shortest paths, 0 ≤ j ≤ k.

Therefore, π[·] can be computed using the expression

π[v] = min
0≤j≤k

[Dj[v]− jλmin], ∀v ∈ V, (2.5)

and they must satisfy the dual constraints.

On the other hand, if λmin > λ∗, the modified graph G(V,E,w−λmin
k) has negative

cycles that would violate some dual constraints. If some shortest paths in the modified

17

graph have path lengths greater than k, some dual constraints will also be violated.

Therefore, when all dual constraints are satisfied, all shortest paths have been found,

and as the shortest distances are well-defined, λmin = λ∗. Consequently, we can

terminate the iterative process of vertical relaxation in Karp’s algorithm.

It should now be clear that to decide whether Karp’s algorithm can terminate

at row k, the HO algorithm has to calculate λmin, the smallest cycle mean among

the cycles in all k-edge shortest paths, calculate π based on λmin, and check that all

dual constraints are feasible. The steps for the calculation of π (Eq. (2.5)) and the

feasibility check (Eq. (2.4)) are straightforward and their pseudocodes are provided

below.

πππ Calculation
1 πππ calculation(D, k, λmin)
2 for each node v∈V do
3 π[v] = ∞
4 for j = 0 to k do
5 π[v] = min(π[v], Dj [v]− j ∗ λmin)
6 end for
7 end for
8 return π
9 end πππ calculation

Feasibility Check
1 feasibility check(π, λmin)
2 for each edge e = (u, v) ∈ E do
3 if π[v] > π[u] + w(u, v)− λmin then
4 return false
5 end if
6 end for
7 return true
8 end feasibility check

The calculation of π have O(k|V |) time complexity. The feasibility check has

O(|E|) time complexity. In fact, the feasibility check of the dual constraints is equiv-

alent to the check for negative cycles in the Bellman-Ford algorithm.

We shall now focus on the calculation of λmin. This calculation requires the detec-

tion of cycles in the k-edge shortest paths. Given a k-edge shortest path, we can detect

the cycles in the path using a forward traversal (from the source node) or backward

18

(from a destination node) [18]. Hartmann and Orlin suggested several techniques

for making forward traversal efficient. It was argued that any cycle in the path of

minimum-mean cycle is a minimum-mean cycle. Therefore a forward traversal for a

path can be truncated as soon as a cycle is encountered in that path. Furthermore,

to disallow repeated visits of a shortest path that does not extend to a shortest path

of longer path length, they pruned the path from future exploration after checking

for early termination. We refer to the version of HO that uses forward traversal for

cycle detection (and the calculation of λmin) as HO/f.

In this work, we adapt the backward traversal method in [19] [38] to find a cycle

along a path. The pseudocode is provided below. Here, the variable level array stores

the cycle information during traversal. This array is initialized at the beginning of the

main MCM algorithm (see pseudocode HO Algorithm at the end of the section).

An additional array level stack makes the re-initialization of level array efficient.

λmin Calculation in a Path
1 λmin calculation in a path(D, P , k, vstart, λmin)
2 length = 0
3 v = vstart
4 j = k
5 while j ≥ 0 do
6 if level array[v] > −1 then
7 λ = (Dlevel array[v][v] − Dj [v])/(level array[v] − j)

8 λmin = min(λmin, λ)
9 break

10 end if
11 level array[v] = j
12 level stack[length] = v
13 + + length
14 v = Pj [v]
15 −− j
16 end while
17 for j = length− 1 to 0 do
18 level array[level stack[j]] = −1
19 end for
20 return λmin
21 end λmin calculation in a path

As mentioned earlier, all cycles in a k-edge shortest path that contains a minimum-

mean cycle are minimum-mean cycles [18]. Therefore, it is only necessary to detect

the first simple cycle in either forward traversal or backward traversal of the path.

Therefore, the pseudocode performs an incomplete backward traversal that terminates

19

when the first cycle is detected, with a break statement in line 8. We refer to this

version as HO/b. The pseudocode used here is almost identical to that from [19]

except that the original version does not have a break statement in line 8. In other

words, the version from [19] detects all the simple cycles along a k-edge shortest path.

The pseudocode λmin calculation in a path is called by the following pseu-

docode to compute the λmin at row k.

λmin Calculation
1 λmin calculation(D, P , k)
2 λmin = ∞
3 for each node v∈V do
4 if Dk[v] 6= ∞ then
5 λmin = λmin calculation in a path(D, P , k, v, λmin)
6 end if
7 end for
8 return λmin

9 end λmin calculation

We are now ready to present the pseudocode for early termination. To decide

whether Karp’s algorithm can terminate at row k, we have to perform λmin calculation

(for all k-edge shortest paths), π calculation, and feasibility check.

Early Termination
1 early termination(D, P , k, |V |)
2 if k is a power of 2 or k == |V | then

3 /* λmin calculation */
4 λmin = λmin calculation(D, P , k)
5 λglobal = λmin /* update λglobal */

6 /* Dual vector π calculation */
7 π = π calculation(D, k, λglobal)

8 /* Feasibility condition check */
9 return feasibility check(π, λglobal)

10 end if
11 return false
12 end early termination

Both λmin calculation and π calculation have O(k|V |) time complexity and the

feasibility check has O(|E|) time complexity. If we perform these three steps at every

row, the worst-case complexity of the Karp’s algorithm with early termination is

O(|V |3 + |V ||E|). However, with early termination performed at every power of two,

as shown in the pseudocode, the time complexity is O(|V ||E|) for both HO/f and

20

HO/b [18]. As HO/b is more compatible with the Karp’s algorithm (because of the

presence of the P -table), our focus in this work is to improve the HO/b algorithm.

The pseudocode for the HO/b algorithm, or Karp’s algorithm with early termination

from HO, is shown below.

Allocate and Initialize Dk and Pk
1 allocate and initialize Dk and Pk(k)
2 allocate memory for Dk and Pk
3 for each node v ∈ V do
4 Dk[v] = ∞
5 Pk[v] = −1
6 end for
7 end allocate and initialize Dk and Pk

HO Algorithm (Karp’s Algorithm with Early Termination)
Input : Directed graph G(V,E,w), a strongly connected component (SCC)
Output: Minimum cycle mean λ∗

1 /* Initialization */
2 λglobal = ∞ /* global variable to store minimum cycle mean */
3 for each node v ∈ V do
4 level array[v] = −1 /* global array for λmin calculation */
5 end for
6 allocate and initialize Dk and Pk(0)
7 D0[s] = 0

8 /* D- and P -tables computation*/
9 for k = 1 to |V | do

10 allocate and initialize Dk and Pk(k)
11 vertical relaxation(G, D, P , k)
12 if early termination(D, P , k, |V |) then /* λglobal updated */
13 break
14 end if
15 end for
16 return λglobal

Here, early termination allows memory to be allocated on-demand instead of a

one-time allocation of Θ(|V |2) memory at the beginning, as is the case with Karp’s

algorithm. With early termination, memory allocation for additional rows of D- and

P -table is required only when additional vertical relaxations have to take place. Such

on-demand allocation strategy reduces memory usage of Karp’s algorithm for D- and

P -tables from Θ(|V |2) to O(K|V |), where K is the total number of rows explored.

The HO/b algorithm and Karp’s algorithm have the same memory usage for storing

the graph using a single adjacency list.

21

2.5 The proposed MCM algorithm

In order to keep the same theoretical time complexity as Karp’s algorithm in the

worst case, Hartmann-Orlin suggested that early termination must be checked when

k (i.e. number of rows computed) is a power of two (say 2n with n being integer) [18].

But such an implementation would suffer if the actual number of rows, sufficient to

calculate MCM value falls close to but larger than a power of two (2n−1). The reason

being that the algorithm would continue to perform vertical relaxation row after row

until it reaches the next power of two (2n) even when the minimum-mean cycle has

already appeared. The cost of such relaxation could go up significantly, or for that

matter saving on runtime as well as memory usage could be large if the algorithm is

terminated as soon as sufficient number of rows have been computed. This is a serious

bottleneck of Hartmann-Orlin’s algorithm for large graphs since the cost of vertical

relaxation is O(|E|) for every row. However, we could not perform early termination

check at every row as the cost of early termination check at row k is O(k|V | + |E|).

Although there would be saving on vertical relaxation, the cost on early termination

would increase, negating any benefits of performing fewer vertical relaxations. We

address the issue by proposing several improvements to early termination such that

the early termination check can be performed at best in O(|V |) time. In the worst

case, the cost of early termination check at row k is O(k|V |). However, experimental

results show that it is rare that the proposed early termination check incurs O(k|V |)

worst-case time complexity.

The efficiency of the proposed early termination technique stems from improve-

ments to π calculation, feasibility check, and λmin calculation. We shall elaborate on

these improvements in the remainder of the section.

2.5.1 Efficient π calculation

Recall that λmin is the smallest cycle mean at row k and λglobal is the global variable

that stores the incumbent smallest cycle mean. When we obtain a λmin that is less

22

Fig. 2.3.: Filtering of redundant k-edge shortest paths for efficient π calculation. L1
and L2 represents the j- and j′-edge shortest paths, respectively, with j < j′. If λmin
≤ λc, where λc is the intersection of L1 and L2, the j′-edge path is redundant and
can be pruned.

than λglobal after vertical relaxation at row k, it is necessary to re-calculate the dual

vector π in the modified graph G(V,E,w − λmin). At row k, for a particular node v,

we calculate for each j-edge shortest path, 0 ≤ j ≤ k, πj[v] = Dj[v]− jλmin, and pick

the minimum among them to be π[v] (see Eq. (2.5)).

However, not all j-edge shortest paths have the potential to become the real

shortest path in the modified graph. In particular, as λmin decreases towards λ∗,

many of these paths can never be the shortest path for lower λmin. We illustrate that

in Fig. 2.3 where line L1 corresponds to πj[v] of the j-edge shortest path to v and

line L2 corresponds to the πj′ [v] of the j′-edge shortest path to v, with j′ > j. The

23

bold contour shows the dual vector π[v] = min(πj[v], πj′ [v]) as λ varies and λc is the

intersection of L1 and L2. If λmin ≤ λc, the j′-edge shortest path will never be the

shortest path in the modified graph, therefore we do not have to keep it. However it

is necessary to keep both j- and j′-edge shortest paths if λmin > λc.

Of course, there is no need to compute the intersection point λc. If πj[v] ≤ πj′ [v],

the j′-edge shortest path will not be the shortest path in any of the future modified

graphs. We call it redundant and discard it. This suggests an approach of scanning

the j-edge shortest path in increasing order of j to filter out paths that will never be

the shortest path in any of the future modified graphs, while keeping track of the index

of the incumbent shortest path, as shown in the pseudocode efficient πππ calculation.

Note that the index of a j-edge shortest path is j, the path length.

Efficient πππ Calculation
1 efficient πππ calculation(D, k, λmin)
2 for each node v∈V do
3 if Dk[v] 6= ∞ then
4 + + π stack[v]
5 π edge[π stack[v]][v] = k
6 end if
7 π[v] =∞
8 index min = −1
9 for i = 0 to π stack[v] do

10 j = π edge[i][v]
11 if π[v] > Dj [v]− j ∗ λmin then
12 π[v] = Dj [v]− j ∗ λmin

13 index min+ +
14 π edge[index min][v] = j
15 end if
16 end for
17 π stack[v] = index min
18 end for
19 return π
20 end efficient πππ calculation

In the pseudocode, π edge[·][v] stores the indices of the irredundant paths and

π stack[v] stores the highest index of valid π edge[·][v], with the assumption that

π stack[v], v ∈ V , has been assigned to −1 at the beginning of the MCM algorithm

to indicate there are no valid paths initially. In lines 3–6, if there is a k-edge shortest

path for node v, π stack[v] must be incremented to account for the new path, and

π edge[π stack[v]][v] must store the index of the new path, i.e., k.

24

The variable index min indirectly stores the index of the incumbent shortest path

in that π edge[index min][v] stores the actual index. When we find a smaller π[v],

we record the index of the shortest path that accounts for that (lines 11–15). In

other words, as we scan the current irredundant paths in the order of increasing path

length, any paths that result in a smaller π[v] are kept as irredundant paths for the

calculation of π in the future.

If the filtering is effective, each node in V has only a small number of irredundant

paths essential for π calculation, and at best the complexity is O(|V |). In the worst

case, the filtering is ineffective and at row k, each node in V has O(k) irredundant

paths. Therefore, the worst-case time complexity is still O(k|V |) at row k.

2.5.2 Efficient feasibility check

Let us re-examine the dual constraints. Eq. (2.4) effectively “asks” whether node v

can be reached from u with a shorter distance in the modified graph G(V,E,w−λmin),

where λmin is the smallest cycle mean at row k. Since π[v] and π[u] are calculated

using j-edge shortest path, 0 ≤ j ≤ k, the question becomes that of asking whether

we can get a smaller π[v] from a (k + 1)-edge shortest path.

We can obtain a (k+ 1)-edge shortest path by performing a vertical relaxation to

fill in Dk+1[·]. Assuming that λmin is still the smallest cycle mean at row k + 1, and

Eq. (2.4) is equivalent to

π[v] ≤ Dk+1[v]− (k + 1)λmin, ∀v ∈ V. (2.6)

It should be obvious that the equivalent dual constraints take only O(|V |) to evaluate

instead of O(|E|).

One may argue that the vertical relaxation still takes O(|E|) and therefore there

is no saving. However, if an early termination check fails, we would have to perform

vertical relaxation for the next row in any case. Therefore, the only wasteful O(|E|)

25

efforts is in the last early termination check that succeeds. All earlier O(|E|) efforts

account for the necessary vertical relaxations.

We shall now present the pseudocode for efficient feasibility check. Assume that

we have just completed the vertical relaxation at row k and calculated the corre-

sponding λmin. There are two possible scenarios: λmin = λglobal and λmin < λglobal,

where λglobal is a global variable to store the incumbent smallest cycle mean. The

efficient feasibility check pseudocode is called for the first scenario, assuming that

λmin 6=∞.

Efficient Feasibility Check
1 efficient feasibility check(π, D, k, λmin)
2 early termination flag = true
3 for each node v ∈ V do
4 if π[v] > Dk[v] − k ∗ λmin then
5 π[v] = Dk[v] − k ∗ λmin

6 + + π stack[v]
7 π edge[π stack[v]][v] = k
8 early termination flag = false
9 end if

10 end for
11 return early termination flag
12 end efficient feasibility check

At this point, the dual vector π stores the shortest distances to all nodes with path

length< k. Since λmin at row k−1 and row k are the same, we can apply the equivalent

dual constraints in Lines 3–8. length k found in the modified graph G(V,E,w−λmin).

Note that the right hand side of Eq. (2.6) is similar to the term that appears on the

right hand side of Eq. (2.5). We can therefore use the right hand side of Eq. (2.6) to

update the dual vector π (line 5) when there is a violation. Moreover, as the k-edge

shortest path has become the shortest path in the modified graph G(V,E,w− λmin),

we have to update π stack[v] and π edge[π stack[v]][v] accordingly in lines 6–7. As

we have to maintain the correctness of π for the next feasibility check at row k + 1,

we have to iterate through all nodes in V and cannot return false immediately

when there is a violation in the equivalent dual constraints, unlike the pseudocode

feasibility check where we immediately return false when there is a violation of

dual constraints.

26

In the second scenario, the dual vector π has to be calculated with the new λmin;

this is covered in the preceding subsection. Recall that in the HO algorithm, a

feasibility check is performed after the calculation of π. In a sense, the calculation of

π is based on rows 0 through k, and the feasibility check is based on the existence of

shortest paths of length k+1. Therefore, in the proposed MCM algorithm, we do not

perform a feasibility check after the calculation of π immediately. Rather, we will do

that after the next vertical relaxation.

Even though we have not presented improvements to efficiently calculate λmin, we

have the necessary details to present the pseudocode for efficient early termination,

which is provided below:

Efficient Early Termination
1 efficient early termination(D, P , k, λglobal)
2 /* λmin calculation */
3 λmin = efficient λmin calculation(D, P , k, λglobal)
4 if λglobal > λmin then
5 λglobal = λmin /* update λglobal */

6 /* Dual vector π calculation */
7 π = efficient π calculation(D, k, λglobal)
8 else if λmin 6=∞ then
9 /* Feasibility condition check */

10 return efficient feasibility check(π, D, k, λglobal)
11 end if
12 return false
13 end efficient early termination

This is called after a vertical relaxation to fill in row k of D- and P -tables. The

smallest cycle mean for all cycles on k-edge shortest paths are computed using the

pseudocode efficient λmin calculation, the details of which will be provided in the

next subsection. As mentioned earlier, there are two cases to be considered: λmin =

λglobal and λmin < λglobal. In the former, we perform efficient feasibility check, and

update π if necessary. In none of entries of π is updated, we can terminate the MCM

algorithm; the algorithm continues otherwise. In the latter, the algorithm cannot

terminate. It has to calculate π based on the smaller λmin and filter out redundant

shortest paths.

27

2.5.3 Efficient λmin calculation

For λmin calculation at row k, the bottleneck is in the detection of cycles in all k-

edge shortest paths. We propose three improvements to reduce the number of k-edge

shortest paths that we have to consider for cycle detection.

Fig. 2.4.: The minimum-mean cycle containing node v occurs in the extended path
beyond the shortest path to v.

2.5.3.1 Filtering based on Karp’s characterization of MCM

The first improvement is based on the characterization of MCM in [1]. Consider a

k-edge shortest path that ends with node v. If v is on the minimum-mean cycle, the

k-edge shortest path that contains that cycle is actually an extension of the shortest

path to v from s. This is illustrated in Fig. 2.4. Therefore, the parent node of v at

row k in the P -table must be the same as the parent node of v in the shortest path

from s to v. Any k-edge shortest path that does not satisfy this condition can be

ignored.

To perform this filtering, we must know the shortest path from s to every other

node. However, such information is not explicitly calculated in Karp’s algorithm or

28

in HO. While the proof of characterization of MCM in [1] relies on the shortest path,

the algorithm itself does not explicitly compute this information anywhere.

To overcome that, we can make use of the concept of a pseudo-source node. The

concept of a pseudo-source node has been used quite extensively in the past. Examples

include the solution of a system of difference constraints using the Bellman-Ford

algorithm [36], and the initialization of the shortest path tree when λ = −∞ in

YTO [14]. We first “add” a pseudo-source node to the input graph and “create”

directed edges of weight 0 from this pseudo-source node to all other nodes in the

graph. If the edge weights in the input graph are all positive, the edges from the

pseudo-source node to all other nodes in the graph are the shortest paths. If some

edge weights in the input graph are negative, we simply subtract the most negative

edge weight from all edges in the input graph to turn them non-negative. Of course,

in that case, we will have to add this offset to the computed MCM value to obtain

the true MCM.

If the source node s in Fig. 2.4 is the “added” pseudo-source node, there will also

be “directed edges” from s to other nodes in the original graph, and all these edges

are shortest paths to the respective nodes. We do not have to actually create the

pseudo-source node and its edges. Instead, we simply have to initialize the 0-th rows

of the D- and P -tables as D0[v] = 0 and P0[v] = −1 for all v ∈ V , assuming that −1

is the label of the pseudo-source node.

Given a k-edge shortest path that ends with node v, we are of course not inter-

ested to check whether Pk[v] = P0[v] because the pseudo-source node is not in the

original graph and there are no incoming edges to it. Rather, we will perform vertical

relaxation to obtain the first row of D- and P -table. For a k-edge shortest path that

ends with node v, we will check for the condition to decide whether we should perform

a backward traversal for cycle detection.

Pk[v] = P1[v]. (2.7)

29

2.5.3.2 Filtering based on λglobal

Another criterion for considering a k-edge shortest path for traversal is whether

the path can potentially yield a cycle mean that is a minimum cycle mean. Based on

the available shortest path information in sp[v], the mean of this possible cycle C is

w(C)/τ(C) = (Dk[v]−D1[v])/(k − 1). If we have the smallest cycle mean computed

so far (up to row k − 1) stored in the variable λglobal, we would traverse this k-edge

shortest path only if the mean of the potential cycle is less than λglobal:

(Dk[v]−D1[v])/(k − 1) < λglobal (2.8)

2.5.3.3 Filtering based on Hartmann-Orlin’s characterization of minimum-

mean cycle

Hartmann-Orlin argued in [18] that all cycles in a k-edge shortest path that con-

tains a minimum-mean cycle are minimum-mean cycles. Therefore, it is only nec-

essary in the backward traversal of a path to detect the first simple cycle, which is

being done in the pseudocode λmin calculation in a path.

Some of the paths where cycles have been found earlier may get extended. There-

fore, the same cycles may be detected over and over again. First, it is important

to not detect the same cycles as such detections do not help to terminate the MCM

algorithm early. Second, the extensions may result in new cycles along the path.

However, these new cycles also do not help to terminate the MCM algorithm early

as follows.

Suppose the cycle detected earlier is a minimum-mean cycle, the new cycles that

we would detect are also minimum-mean cycles. They will result in the same λmin = λ∗

(= λglobal), where λglobal is the global variable to store the incumbent smallest cycle

mean. The only reason that we have not terminated the MCM is that we have not

discovered all shortest paths. If the cycle detected earlier is not a minimum-mean

30

Fig. 2.5.: Filtering in cycle detection using a concept presented in [18]: Any cycle in
the path of minimum-mean cycle is a minimum-mean cycle. Therefore, there is no
need to detect cycles in an extension of a path that has a cycle detected earlier. At
row k, we detect a cycle (red dotted line) by traversing for node u. We do not have to
consider cycle detection and λmin calculation for the extended paths at ends at nodes
v1 and v2.

cycle, there is no reason to consider traversing the path since no cycle with minimum-

mean value can occur in that path, as argued by Hartmann-Orlin.

We can conclude that there is no reason to detect cycles along paths that are

extension of paths that contain cycles detected in the earlier backward traversals of

paths. However, if the traversal of a path has yet to detect a cycle, we must consider

its extended path for cycle detection and λmin calculation.

The example in Fig. 2.5 illustrates this filtering technique. At row k, we detect

a cycle (red dotted line) by traversing the k-edge shortest path that ends at node

u. That k-edge shortest path to u is then extended to (k + 1)-edge shortest paths,

arriving at nodes v1 and v2. We do not have to detect cycles for these two (k+1)-edge

shortest paths when we are at row k + 1. In fact, all future paths (> k + 1) that are

31

extended from the path to u do not have to be considered for cycle detection and

λmin calculation.

To implement the concept, we introduce flags detectedk[v], v ∈ V , where the

variables indicate whether cycles have been detected at a path that ends at v at row

k or earlier. If true is stored, a cycle has been detected earlier; false otherwise.

Therefore, we perform a backward traversal to detect cycles at row k for node v only

if

detectedk[v] = false. (2.9)

The filtering of k-edge shortest paths based on Eq. (2.7), Eq. (2.8), and Eq. (2.9)

is performed in line 6 of the pseudocode efficient λmin calculation.

Efficient λmin Calculation
1 efficient λmin calculation(D, P , k, λglobal)
2 λmin = λglobal
3 for each node v∈V do
4 if Dk[v] < ∞ then
5 detectedk[v] = detectedk−1[Pk[v]]
6 if Pk[v] == P1[v] and (Dk[v] − D1[v])/(k − 1) < λmin and detectedk[v] == false then
7 λmin = λmin calculation in a path(D, P , k, v, λmin)
8 end if
9 end if

10 end for
11 swap detectedk−1 and detectedk
12 return λmin

13 end efficient λmin calculation

Note that detectedk[v], v ∈ V , takes on the flag of its parent node Pk[v] in line 5 of

the pseudocode. In the pseudocode λmin calculation in a path, it may be neces-

sary to update detectedk[v] when a cycle is detected. Assuming that the pseudocode

λmin calculation in a path has access to detectedk[v], it has to set detectedk[v] to

true when a cycle is detected. The following statement has to be inserted between

line 6 and line 7 of the pseudocode λmin calculation in a path.

detectedk[v] = true

32

While it is possible to create a table of detected flags, we use only two arrays

detectedk−1[·] and detectedk[·], and exchange the two arrays at the end of the pseu-

docode efficient λmin calculation. In other words, detectedk becomes detectedk−1

and detectedk−1 serves as detectedk in the next iteration.

At best, the time complexity of efficient λmin calculation is O(|V |) because the

filtering may allow us to not traverse any k-edge shortest paths to detect cycles. Of

course, in the worst case, it will take O(k|V |) to calculate λmin at row k.

2.5.4 Pseudocode of the proposed MCM algorithm

The pseudocode of the proposed MCM algorithm is presented below.

The Proposed MCM Algorithm
Input : Directed graph G(V,E,w), a strongly connected components (SCC)
Output: Minimum cycle mean λ∗

1 /* Initialization */
2 λglobal = ∞ /* global variable to store minimum cycle mean */
3 allocate and initialize Dk and Pk(0)
4 for each node v ∈ V do
5 level array[v] = −1 /* global array for λmin calculation */
6 detectedk−1[v] = false /* global array for λmin calculation */
7 π stack[v] = −1 /* global array for π calculation */
8 Dk[v] = 0 /* pseudo-source initialization */
9 end for

10 /* D- and P -tables computation */
11 for k = 1 to |V | do
12 allocate and initialize Dk and Pk(k)
13 vertical relaxation(G, D, P , k)
14 if efficient early termination(D, P , k, λglobal) then /* λglobal updated */
15 break
16 end if
17 end for
18 return λglobal

Here, we assume that all edge weights are non-negative so that we can directly

apply the concept of pseudo-source node; otherwise, we have to transform the edge

weights to non-negative values by subtracting the most negative edge weight from all

edges and at the end, add the offset to the computed MCM value.

Similar to HO/b, we first initialize λglobal and level array. Moreover, we initial-

ize detectedk−1 and π stack. D0 and P0 are allocated and initialized, assuming the

presence of a pseudo-source node. The iterations in lines 11–17 are almost identical

33

to lines 9–15 in the HO algorithm except for one major difference. We call effi-

cient early termination here. It is important to note that the proposed algorithm

performs early termination check at every row.

2.6 Experimental results

We have implemented three algorithms: YTO, HO/b, and the proposed MCM

algorithm. All algorithms are implemented in C++ and compiled with compiler

level optimization enabled. Our implementation of YTO is similar to the pseudocode

reported in [7] that uses binary heap. These implementations are evaluated on a

standalone server, which is a Linux machine with Intel(R) Xeon(R) CPU E5-2660

(2.60GHz) and 66GB of RAM.

We evaluate the performance using IWLS 2005 benchmark circuits [20] and ran-

domly generated strongly connected directed graphs created with a technique pre-

scribed in [7] [8]. We will discuss the circuit graph creation in Section 2.6.3. To

generate a random graph using the technique in [7] [8], we first connect all nodes in a

circular manner to make the graph strongly connected. Next, two nodes are randomly

selected and connected by a directed edge. The process continues until the desired

number of edges connections are made. For the edge weight, random values within

a pre-defined range are generated and assigned. Unless mentioned otherwise, all re-

ported runtimes include everything from initializing data structures, reading graphs,

to getting the final MCM output.

2.6.1 Benchmarking

The YTO algorithm has been implemented by various groups in the past, targeting

different applications [12] [5] [13] [35] [6] [7] [8]. Dasdan et. al. [19] [7] [6] did a

comparative study of various MCM algorithms and reported YTO to be the fastest

MCM algorithm in practice [7]. The conclusion drawn in [7] was also corroborated

later by Georgiadis et. al. [37]. These studies looked at the sparse graph examples.

34

F
ig

.
2.

6.
:

B
en

ch
m

ar
k
in

g
ou

r
im

p
le

m
en

ta
ti

on
of

Y
T

O
w

it
h

th
e

im
p
le

m
en

ta
ti

on
fr

om
[7

]
[3

9]
.

T
h
e

re
su

lt
s

fo
r

d
en

se
gr

ap
h
s

ar
e

sh
ow

n
in

(a
)

an
d

(b
).

In
(a

),
th

e
gr

ap
h

d
en

si
ty
|E
|/
|V
|i

s
va

ri
ed

fr
om

5
to

90
0

fo
r
|V
|=

1K
,

an
d

in
(b

)
th

e
gr

ap
h

si
ze

is
va

ri
ed

b
y

ch
an

gi
n
g

(|V
|,
|E
|/
|V
|)

fr
om

(1
K

,
55

0)
to

(5
K

,
75

0)
.

T
h
e

re
su

lt
s

fo
r

sp
ar

se
gr

ap
h
s

ar
e

sh
ow

n
in

(c
).

In
(c

),
|V
|

is
va

ri
ed

fr
om

7.
5K

to
24

0K
w

h
il
e
|E
|/
|V
|i

s
fi
x
ed

at
50

.
T

h
e

im
p
le

m
en

ta
ti

on
fr

om
[7

]
[3

9]
ca

n
n
ot

h
an

d
le

la
rg

e
gr

ap
h
s

as
sh

ow
n

b
y

th
e

m
is

si
n
g

d
at

a
in

th
e

p
lo

t
in

(c
).

35

Dasdan [39] provided us with a working version of the YTO algorithm. This

implementation handles only graphs with integer edge weights. Even though the

integer version can still handle floating point edge weights by scaling [37], there may

be some loss in accuracy. We have also observed that the implementation from [39]

cannot handle very large graphs.

As we are interested in more general applications, we prefer a version that can

handle floating point edge weights. Consequently, we implemented a version of the

YTO algorithm that can handle floating point edge weights, and then customized it

such that it can handle integer edge weights. We compare the customized version

of our implementation against the implementation from [39]. Fig. 2.6 shows that

our version of the implementation has better runtime performance, in terms of the

total runtime and the runtime for only MCM calculation, for dense graphs in (a)

and (b) and for sparse graphs in (c). The runtime for only MCM calculation does

not include the time for reading in the graph and/or other initializations. Fig. 2.6(c)

shows that our implementation can handle larger graphs than the implementation

from [39]. Therefore, for the remainder of this section, all results reported under

YTO are obtained using the floating point version of our implementation.

2.6.2 Memory usage

We first evaluate memory usage of the three algorithms: YTO, HO/b, and the

proposed algorithm. While Karp’s algorithm uses Θ(|V |2) memory for storing infor-

mation in the D- and P -tables [1], HO/b and the proposed algorithm can be memory

efficient if memory allocation for a row in a table is done only if the algorithm has

to continue to look for more cycles. Since K, the number of rows computed in HO/b

or the proposed algorithm, is much smaller than |V | in practice, the memory usage

is reduced from Θ(|V |2) to O(K|V |). Moreover, both HO/b and the proposed al-

gorithm store only one graph structure (forward or reverse). Therefore, HO/b and

36

F
ig

.
2.

7.
:

C
om

p
ar

is
on

of
m

em
or

y
u
sa

ge
of

Y
T

O
,

H
O

-B
,

an
d

th
e

p
ro

p
os

ed
M

C
M

al
go

ri
th

m
.

T
h
e

re
su

lt
s

fo
r

d
en

se
gr

ap
h
s

ar
e

sh
ow

n
in

(a
)

an
d

(b
).

In
(a

),
th

e
gr

ap
h

d
en

si
ty
|E
|/
|V
|i

s
in

cr
ea

se
d

fr
om

50
to

90
00

fo
r
|V
|=

10
K

,
an

d
in

(b
),

th
e

gr
ap

h
si

ze
is

va
ri

ed
b
y

ch
an

gi
n
g

(|V
|,
|E
|/
|V
|)

fr
om

(1
0K

,
5K

)
to

(8
0K

,
40

K
).

In
(b

),
H

O
an

d
th

e
p
ro

p
os

ed
al

go
ri

th
m

h
av

e
m

u
ch

le
ss

m
em

or
y

u
sa

ge
co

m
p
ar

ed
to

Y
T

O
.

N
o

m
em

or
y

u
sa

ge
is

re
p

or
te

d
fo

r
Y

T
O

at
(8

0K
,

40
K

)
as

th
e

al
go

ri
th

m
fa

il
s

to
ru

n
to

co
m

p
le

ti
on

.
T

h
e

re
su

lt
s

fo
r

sp
ar

se
gr

ap
h
s

ar
e

in
(c

).
|V
|i

s
va

ri
ed

fr
om

7.
5K

to
48

0K
w

h
il
e

ke
ep

in
g
|E
|/
|V
|fi

x
ed

at
50

.

37

the proposed algorithm can be more memory-efficient than YTO, which stores both

forward (outgoing) and reverse (incoming) graph structures.

A plot of the typical memory usage of the three algorithms is shown in Fig. 2.7.

One can observe that the proposed algorithm and HO/b both consume much less

memory compared to YTO. In fact, for very large graphs, YTO fails to compute as

it runs out of memory. For this reason, there are missing data points for YTO in

Figs. 2.7, 2.8 and 2.9. We also observe (not shown here) that the implementation of

YTO from [39] uses more memory than our implementation of YTO.

We must point out that as the proposed algorithm performs early termination

check at every row, it has lower memory usage than HO/b. While its advantage over

HO/b in Fig. 2.7(a) and (b) is relatively small, the difference is evident in Fig. 2.7(c).

We have shown that the proposed algorithm is more memory-efficient than YTO.

We shall show that it does so without losing performance in runtime. In particular,

we observe that the proposed algorithm has comparable runtime to YTO for graphs

built from circuit examples as well as for dense random graphs.

2.6.3 Runtime performance

To evaluate the performance using practical circuits, timing constraint graphs

are constructed after synthesis of ISCAS89 and OpenCores designs from IWLS 2005

benchmark [20]. These designs are specified in Verilog using Synopsys tool chain

and a 32nm technology library. We decompose the graph into strongly connected

components, and apply the algorithms on these individual components. Table 2.1

provides the circuit graph information. We present runtime results for the largest

strongly connected components in Table 2.2. Our algorithm performs better than

HO/b and is comparable to YTO.

We now present results on random graphs. In Fig. 2.8(a), the density of the

graph, |E|/|V |, is varied while in Fig. 2.8(b), the graph size is varied by changing

(|V |, |E|/|V |) from (10K, 5K) to (80K, 40K). Graphs in Figs. 2.8(a) and (b) are

38

F
ig

.
2.

8.
:

C
om

p
ar

is
on

of
ru

n
ti

m
e

p
er

fo
rm

an
ce

of
Y

T
O

,
H

O
/b

an
d

th
e

p
ro

p
os

ed
al

go
ri

th
m

on
ra

n
d
om

gr
ap

h
s.

T
h
e

gr
ap

h
s

in
(a

)
an

d
(b

)
ar

e
d
en

se
.

In
(a

),
th

e
gr

ap
h

d
en

si
ty
|E
|/
|V
|i

s
va

ri
ed

fr
om

50
to

90
00

fo
r
|V
|=

10
K

.
T

h
e

p
ro

p
os

ed
al

go
ri

th
m

p
er

fo
rm

s
b

et
te

r
th

an
H

O
/b

an
d

is
co

m
p
ar

ab
le

to
Y

T
O

as
th

e
gr

ap
h

b
ec

om
es

d
en

se
r.

In
(b

),
th

e
gr

ap
h

si
ze

is
va

ri
ed

b
y

ch
an

gi
n
g

(|V
|,
|E
|/
|V
|)

fr
om

(1
0K

,
5K

)
to

(8
0K

,
40

K
).

Y
T

O
fa

il
s

fo
r

th
e

gr
ap

h
at

(8
0K

,
40

K
)

b
ec

au
se

of
it

s
ex

ce
ss

iv
e

m
em

or
y

co
n
su

m
p
ti

on
.

F
or

sp
ar

se
gr

ap
h
s

in
(c

),
|V
|i

s
va

ri
ed

fr
om

7.
5K

to
48

0K
w

h
il
e
|E
|/
|V
|i

s
fi
x
ed

at
50

.

39

Table 2.1.: Information of graphs derived from IWLS 2005 benchmark circuits [20].

Benchmark
Circuit Largest SCC

name |V | |E|

ISCAS89

s15850 104 560
s5378 136 1536
s13207 231 1194
s38584 1166 11010
s35932 1728 7480
s38417 1498 37478

OpenCores

des3 51 100
fht 34 264

vga enh 206 3758
aes cipher 525 12526

fpu 662 25796
usbf 1431 24522

ac97 ctrl 1895 18320
pci bridge32 1920 46484

dma 2087 102018
eth 8381 151484

considered dense graphs. The proposed algorithm performs better than HO/b and

is comparable to YTO. The absence of data for YTO indicates that YTO has failed

to execute because of excessive memory consumption. Fig. 2.8(c) compares runtimes

of YTO, HO/b and the proposed algorithm on sparse random graphs where |V | is

varied from 7.5K to 480K while keeping |E|/|V | fixed at 50. For sparse graphs, YTO

has the best runtime performance followed by the proposed algorithm.

2.6.4 Effectiveness of efficient early termination techniques

In Table 2.3, we show the improvements resulted from the filtering techniques

in efficient π calculation and λmin calculation. The improvements are based on the

comparisons of two variants of the proposed MCM algorithm against HO/b. The first

variant considers only the efficient π calculation and the second variant considers only

the efficient λmin calculation. All two variants perform early termination check when

40

Table 2.2.: Runtimes of YTO, HO/b and the proposed algorithm on graphs derived
from IWLS 2005 benchmark circuits [20].

Circuit Runtime (ms)

name YTO HO/b
The proposed

algorithm

s15850 0.914 1.121 1.189
s5378 2.014 2.153 2.010
s13207 1.826 1.878 1.859
s38584 9.491 18.947 11.069
s35932 8.520 15.854 5.912
s38417 23.297 32.049 23.816
des3 0.568 0.710 0.885
fht 0.678 0.717 0.722

vga enh 3.938 4.304 3.951
aes cipher 13.230 39.394 11.055

fpu 19.383 88.454 18.173
usbf 16.583 18.126 17.176

ac97 ctrl 18.112 226.274 13.832
pci bridge32 26.339 28.158 26.205

dma 52.762 58.518 50.664
eth 74.668 73.604 70.638

Table 2.3.: Improvements (%) in efficient π calculation and efficient λmin calculation
for dense random graphs.

|V | |E| % reduction in #of % reduction in traversal
paths in π calculation length in λmin calculation

10000 50000000 82.064 49.637
20000 200000000 72.759 40.897
30000 450000000 87.561 58.872
40000 800000000 79.426 55.444
50000 1250000000 64.392 49.588
60000 1800000000 83.633 50.559
70000 2450000000 47.072 86.256
80000 3200000000 46.218 61.169

k is a power of 2. On average over six set of random graphs, the filtering technique

reduces total number of paths considered for computation of the dual vector π by

41

70.39%. Efficient λmin calculation reduces total traversal length in cycle detection by

56.55%.

In reference to the discussion in Section 2.5, we now present the observed time

complexities of efficient λmin calculation and efficient π calculation. For the early

termination technique in HO/b, we consider two variants: one is to apply the early

termination check when the row number is a power of two and one is to apply the

early termination check at every row. The left most blocks of results in Table 2.4

and Table 2.5 are results from the first variant when applied to graphs in Figs. 2.7(a)

and (b), respectively. Three columns of results are included in a block: the number

of paths considered for π calculation, the traversal length for cycle detection in λmin

calculation, and the number of rows computed. The middle blocks of results in

Table 2.4 and Table 2.5 are results from the second variant. The right most blocks

of results in Table 2.4 and Table 2.5 are results from the efficient early termination

techniques from the proposed MCM algorithm.

We shall now use K ′ to denote the number of rows explored when we perform

early termination check when the row number is a power of two and K ′′ when we do

that at every row. Clearly, the middle blocks and the rightmost blocks of results have

the same K ′′ for every row. In Table 2.4 and Table 2.5, K ′′ is less than K ′ by 26.93%

and 32.38%, respectively.

The numbers of paths considered for π calculation and the traversal length when

the early termination check is performed when the row number is a power of two

are about 2K ′|V |, which matches the expectation. They are about K ′′2|V |/2 for the

early termination check from HO/b, performed at every row, which again matches

the expectation. However, when we perform efficient early termination check of the

proposed MCM algorithm at every row, the number of paths considered for π cal-

culation can be as high as 5.0K ′′|V | in Table 2.4 and 4.7K ′′|V | in Table 2.5. The

average number of paths considered is about 2.4K ′′|V |. In other words, the average

time complexity of efficient π calculation is indeed O(|V |).

42

Similarly, the traversal length for cycle detection in efficient λmin calculation can

be as high as 12.7K ′′|V | in Table 2.4 and 27.1K ′′|V | in Table 2.5. The average

traversal length is about 8.2K ′′|V |. Again, the average time complexity of efficient

λmin calculation is indeed O(|V |).

Therefore, while both efficient λmin calculation and efficient π calculation have

worst-case time complexity O(k|V |) at row k, the best-case time complexity and the

observed average time complexity are O(|V |). Recall that we have already established

that the time complexity of efficient feasibility check is O(|V |) for each row. In

other words, the efficient early termination techniques proposed in this work has the

appropriate time complexity for early termination check to be performed at every

row to reduce the number of vertical relaxations (O(|E|) for each row) and therefore

reduce the overall runtime.

2.7 Analysis

Note that the search for λ∗ happens in opposite direction in YTO and Karp’s

algorithm (or HO and the proposed algorithm). YTO works by first calculating a

shortest path tree in the graph when λ is −∞ and then maintaining it as λ increases

towards λ∗. The number of shortest path trees explored in the course of the algorithm

can be as large as |V |2. For a binary heap-based implementation, the complexity is

O(|V ||E| log |V | + |V |2 log |V |). The second term is really O(T log |V |), where T is

the number of trees explored.

On the contrary, HO algorithm can be terminated as early as afterK ′ = max(M,N)

number of rows have been computed. Here, M is the maximum length of the shortest

path in the modified graph (i.e. G(V,E,w−λ∗)) and N = Lsp +Lep where Lsp is the

length of the shortest path and Lep is the length of the extended path that contains

the cycle (see Fig. 2.4). The value of N in the proposed algorithm is smaller than

in HO algorithm because of the use of pseudo-source (see Section 2.5.3) as that re-

moves the term Lsp effectively from N . We define K ′′ to be the number of rows to be

43

T
ab

le
2.

4.
:

C
om

p
ar

in
g

th
re

e
ve

rs
io

n
s

of
ea

rl
y

te
rm

in
at

io
n

on
th

e
gr

ap
h
s

fr
om

F
ig

.
2.

7(
a)

fo
r

th
e

n
u
m

b
er

of
p
at

h
s

co
n
si

d
er

ed
fo

r
π

ca
lc

u
la

ti
on

(#
p
at

h
s)

,
th

e
tr

av
er

sa
l

le
n
gt

h
fo

r
cy

cl
e

d
et

ec
ti

on
in
λ

m
in

ca
lc

u
la

ti
on

(l
en

gt
h
),

an
d

th
e

n
u
m

b
er

of
ro

w
s

co
m

p
u
te

d
(#

ro
w

s)
.

E
ar

ly
te

rm
in

at
io

n
E

ffi
ci

en
t

ea
rl

y
te

rm
in

at
io

n
G

ra
p
h

p
ow

er
of

tw
o

ev
er

y
ro

w
ev

er
y

ro
w

w
/

fi
lt

er
in

g
|V
|(K

)
|E
|(K

)
#

p
at

h
s,

le
n
gt

h
,

#
ro

w
s

#
p
at

h
s,

le
n
gt

h
,

#
ro

w
s

#
p
at

h
s,

le
n
gt

h
,

#
ro

w
s

10
50

0
2.

58
00

00
e+

06
,

2.
52

53
80

e+
06

,
12

9
3.

23
40

00
e+

07
,

3.
15

75
44

e+
07

,
79

9.
50

10
40

e+
05

,
4.

65
82

84
e+

06
,

79
10

50
00

1.
29

00
00

e+
06

,
1.

26
00

00
e+

06
,

65
6.

24
00

00
e+

06
,

5.
94

05
05

e+
06

,
34

5.
29

12
90

e+
05

,
2.

79
95

10
e+

05
,

34
10

10
00

0
2.

58
00

00
e+

06
,

2.
54

00
00

e+
06

,
12

9
5.

88
00

00
e+

07
,

5.
77

71
05

e+
07

,
10

7
5.

38
91

26
e+

06
,

1.
35

54
20

e+
07

,
10

7
10

30
00

0
1.

24
00

00
e+

06
,

1.
26

00
00

e+
06

,
65

1.
70

00
00

e+
07

,
1.

65
22

89
e+

07
,

57
2.

05
14

47
e+

06
,

2.
26

62
74

e+
06

,
57

10
50

00
0

1.
29

00
00

e+
06

,
1.

26
00

00
e+

06
,

65
1.

53
00

00
e+

07
,

1.
48

45
03

e+
07

,
54

1.
02

75
88

e+
06

,
2.

18
95

16
e+

06
,

54
10

70
00

0
1.

29
00

00
e+

06
,

1.
26

00
00

e+
06

,
65

1.
31

60
00

e+
07

,
1.

27
47

04
e+

07
,

50
1.

12
31

83
e+

06
,

2.
46

88
51

e+
06

,
50

10
90

00
0

1.
29

00
00

e+
06

,
1.

26
00

00
e+

06
,

65
1.

07
50

00
e+

07
,

1.
03

49
01

e+
07

,
45

1.
94

02
04

e+
06

,
1.

62
86

81
e+

06
,

45

44

T
ab

le
2.

5.
:

C
om

p
ar

in
g

th
re

e
ve

rs
io

n
s

of
ea

rl
y

te
rm

in
at

io
n

on
th

e
gr

ap
h
s

fr
om

F
ig

.
2.

7(
b
)

fo
r

th
e

n
u
m

b
er

of
p
at

h
s

co
n
si

d
er

ed
fo

r
π

ca
lc

u
la

ti
on

(#
p
at

h
s)

,
th

e
tr

av
er

sa
l

le
n
gt

h
fo

r
cy

cl
e

d
et

ec
ti

on
in
λ

m
in

ca
lc

u
la

ti
on

(l
en

gt
h
),

an
d

th
e

n
u
m

b
er

of
ro

w
s

co
m

p
u
te

d
(#

ro
w

s)
.

E
ar

ly
te

rm
in

at
io

n
E

ffi
ci

en
t

ea
rl

y
te

rm
in

at
io

n
G

ra
p
h

p
ow

er
of

tw
o

ev
er

y
ro

w
ev

er
y

ro
w

w
/

fi
lt

er
in

g
|V
|(K

)
|E
|(K

)
#

p
at

h
s,

le
n
gt

h
,

#
ro

w
s

#
p
at

h
s,

le
n
gt

h
,

#
ro

w
s

#
p
at

h
s,

le
n
gt

h
,

#
ro

w
s

10
50

00
0

6.
40

00
00

e+
05

,
6.

20
00

00
e+

05
,

33
5.

22
00

00
e+

06
,

4.
95

50
19

e+
06

,
31

1.
58

45
40

e+
05

,
2.

08
44

00
e+

05
,

31
20

20
00

00
2.

58
00

00
e+

06
,

2.
52

00
00

e+
06

,
65

2.
84

20
00

e+
07

,
2.

75
49

90
e+

07
,

52
1.

07
12

92
e+

06
,

7.
67

04
00

e+
05

,
52

30
45

00
00

1.
54

50
00

e+
07

,
1.

53
00

00
e+

07
,

25
7

4.
77

63
00

e+
08

,
4.

72
57

51
e+

08
,

17
7

1.
23

62
44

e+
07

,
7.

42
13

42
e+

07
,

17
7

40
80

00
00

2.
06

00
00

e+
07

,
2.

04
00

00
e+

07
,

25
7

5.
40

96
00

e+
08

,
5.

34
62

01
e+

08
,

16
3

4.
22

96
90

e+
06

,
1.

76
63

82
e+

08
,

16
3

50
12

50
00

0
1.

29
00

00
e+

07
,

1.
27

00
00

e+
07

,
12

9
2.

72
40

00
e+

08
,

2.
67

77
50

e+
08

,
10

3
2.

44
21

02
e+

07
,

6.
13

54
49

e+
07

,
10

3
60

18
00

00
0

1.
54

80
00

e+
07

,
1.

52
40

00
e+

07
,

12
9

1.
89

24
00

e+
08

,
1.

84
83

03
e+

08
,

78
4.

61
35

51
e+

06
,

4.
62

40
26

e+
07

,
78

70
24

50
00

0
9.

03
00

00
e+

06
,

8.
82

00
00

e+
06

,
65

1.
03

53
00

e+
08

,
1.

00
13

50
e+

08
,

53
7.

69
42

04
e+

06
,

9.
61

88
50

e+
06

,
53

80
32

00
00

0
4.

12
00

00
e+

07
,

4.
08

00
00

e+
07

,
25

7
9.

05
20

00
e+

08
,

8.
93

96
00

e+
08

,
14

9
4.

58
79

66
e+

07
,

2.
24

64
21

e+
08

,
14

9

45

computed in the proposed algorithm. Computation of a row requires running vertical

relaxation. Therefore, the total time complexity for relaxation is O(K ′′(|E|)) in the

proposed algorithm. While each vertical relaxation is computationally more expen-

sive than updating a shortest path tree in YTO, K ′′ or even K ′ are typically much

smaller than T when a graph is dense for the following reason. When a graph is dense,

the longest shortest path length is likely to be small and there are likely to be many

short cycles. Therefore, K ′ or K ′′ are likely to be small. On the other hand, there are

many cycles that YTO has to explore before reaching the minimum. Consequently,

there is a good chance for the proposed algorithm to be comparable to YTO when a

graph is dense. Note that the circuit graphs are usually sparse. However, most cycles

in them are short, as each is constructed of only two nodes (two sequential elements).

The fact that most cycles in circuit graphs are short gives the proposed algorithm a

chance to compete with YTO, as we have seen in the experimental results.

Fig. 2.9 shows how T , K ′, and K ′′ scale when the graph density and graph size

are changed. The result has been normalized against the respective average values.

It is evident that the proposed algorithm has comparable or better scaling profile

than YTO. While scaling profiles of HO and the proposed algorithms appear to be

comparable, the average value of K ′′ is much smaller than K ′.

2.8 Conclusions

Memory usage and runtime performance of Karp’s MCM algorithm can be im-

proved with early termination technique from Hartmann and Orlin, which we have

referred to as HO/b in this work. We have experimentally observed on IWLS 2005

benchmark circuits and randomly generated graphs that HO/b algorithm consumes

much less memory compared to YTO. But when it comes to runtime, YTO performs

better than HO/b. We have proposed several techniques to improve the early termi-

nation check in the HO/b algorithm. These improvements allow the efficient early

termination check to be performed in O(|V |) time complexity on the average empir-

46

Fig. 2.9.: K ′′ (the proposed algorithm) has comparable or better scaling profile than
T (YTO) for increasing graph density (a), and increasing size of dense graph (b). The
plots are obtained by scaling the actual number for K ′, K ′′ and T with their respective
average values. Average value of K ′′ is smaller than K ′. No result is reported for
YTO at (80K, 40K) since the algorithm fails to run to completion.

ically. Such efficiency allows the early termination check to be performed at every

row to reduce the cost of vertical relaxation, which has a time complexity of O(|E|).

Consequently, the proposed algorithm has better runtime performance than HO/b

and produces comparable results to YTO for circuit graphs. For random graphs, the

proposed algorithm has better runtime performance than HO/b and is comparable

to YTO as the graph becomes denser, all these while improving memory usage of the

HO/b algorithm.

47

3. MINIMUM BALANCE ALGORITHMS

Minimum balancing of a directed graph is an application of the minimum cycle mean

algorithm. Minimum balance algorithms have been used to optimally distribute slack

for clock network design [11] [12] [5] [13]. In conventional minimum balance algo-

rithms [13] [14] [3], there are two main subroutines. First subroutine runs the MCM

algorithm to calculate the minimum cycle mean and also to find the corresponding

minimum-mean cycle. The second subroutine updates the entire graph by changing

the edge weights and reducing the graph size. These operations run in iterations. The

algorithm terminates when the updated graph is a single node. The graph update

operation, which has a time-complexity of Θ(V + E) [11], has been considered to be

a bottleneck in the conventional minimum balance algorithms [14]. We first discuss

these algorithms in detail.

3.1 Conventional minimum balancing

We show the flow of the conventional minimum balance algorithms in Fig. 3.1(a) [14]

[11] [3]. Two main subroutines in the algorithm are the calculation of MCM and the

graph update operation.

There are several MCM algorithms [1] [18] [2] [14] that can be used in a minimum

balance algorithm. Schneider and Schneider [3] [40], for example, used a modified

version of Karp’s minimum cycle mean algorithm [1] to solve a closely related problem,

that of maximum balancing of a graph. Both the Karp-Orlin [2] and Young-Tarjan-

Orlin [14] algorithms can not only find the minimum cycle mean, but be extended

to solve the minimum balance problem as well [14]. In particular, the Young-Tarjan-

Orlin algorithm (referred to as YTO), has been used to solve the slack distribution

problem [11] [12] [5] [13] [15] [16].

48

Fig. 3.1.: (a) The conventional and (b) the proposed minimum balance algorithms.
The proposed algorithm does not require re-weighting of the entire graph as is the
case with [14] [11] [3]. It re-weights only edges adjacent to the minimum-mean cycle,
thereby reducing time complexity of the graph update from Θ(|V |+ |E|) to O(|V |+
|E|).

After obtaining the MCM of a graph G(V,E,w), the graph update operation

involves two steps [14] [11]. Let λ∗ be the MCM of the graph G(V,E,w). In the first

step, every edge in G is re-weighted by downshifting its weight by λ∗ to obtain a new

graph G(V,E,w− λ∗). Further adjustments are made on the incoming and outgoing

edges of the minimum-mean cycle using shortest path distances (a byproduct of the

MCM subroutine). Schneider and Schneider presented in [3] a different first step for

re-weighting all edges in the graph by using the shortest path distances. The first step

of the graph update operation has a time complexity of time Θ(|V |+ |E|) [11]; it has

been considered a bottleneck in the conventional minimum balance algorithm [14].

The second step of the graph update operation contracts the minimum-mean cycle

to reduce the graph size. Moreover, during cycle contraction, some redundant edges

49

may appear. These redundant edges can be removed from the graph. Cycle contrac-

tion and redundant edge removal reduce graph size considerably. As a consequence,

subsequent iterations of MCM calculation and graph update run progressively faster.

As the cycle contraction and redundant edge removal involves only edges adjacent to

the minimum-mean cycle, the time complexity is O(|V |+ |E|).

In this work, we present an improvement to the conventional minimum balance

algorithms [14] [11] [3] where the re-weighting by downshifting as in [14] [11] or the

re-weighting by using the shortest path distances as in [3] involving the entire graph

is not required. Instead our algorithm updates only edges adjacent to the minimum-

mean cycle, as shown in Fig. 3.1(b). The graph update operation involves the entire

graph only in the worst case. Consequently, there is improvement in efficiency.

In the remainder of this section, we present the MCM calculation subroutine and

the graph update operations in a conventional minimum balance algorithm. We shall

present in Section 3.2 the proposed approach.

3.1.1 MCM calculation

For solving the MCM problem in a minimum balance algorithm, there are several

options. Karp used dynamic programming to calculate MCM exactly in Θ(|V ||E|)

time [1]. With the early termination technique introduced by Hartmann and Or-

lin [18], Karp’s algorithm can compute MCM in O(|V ||E|) time.

Young-Tarjan-Orlin [14] (YTO) algorithm solved a series of parametric shortest

path problem for MCM calculation. Based on an observation that λ∗ = MCM is the

largest (edge parameter) λ(e) for which G(V,E,w − λ∗) has no negative cycles, the

algorithm starts with λ = −∞ and computes a shortest-path tree (to all other nodes)

from an arbitrary source node. In each iteration, the algorithm increments λ(e) such

that the shortest-path tree changes by only one edge. Note that the shortest path

tree is defined based on the graph G(V,E,w−λ(e)). The algorithm terminates when

a cycle of zero weight is detected in the shortest path tree. A binary heap based

50

implementation of YTO with a time complexity O(|V ||E| log |V |) has been reported

to be the fastest MCM algorithm in practice [7] [36].

The implementation of the minimum balance algorithm in [11] using YTO (with

a binary heap) as the MCM calculation subroutine has an overall time complexity

of O(|V ||E| log |V |). On the other hand, Schneider and Schneider used a modified

version of Karp’s algorithm [1] to solve the balancing problem in O(|V |2|E|) time

complexity [3]. In this work, we have used YTO as the MCM calculation subroutine

to implement the Schneider-Schneider algorithm. Our implementation that runs in

time O(|V ||E| log |V |) can be viewed as a faster implementation of the Schneider-

Schneider algorithm.

It is important to note that these MCM algorithms produce not just the MCM

(λ∗). Each of them also identifies the corresponding minimum-mean cycle inG(V,E,w)

(or zero-weight and minimum-mean cycle in G(V,E,w−λ∗)), as well as the vector of

shortest distances of G(V,E,w − λ∗). The MCM, the corresponding minimum-mean

cycle, and the shortest distance vector all play an important role in the graph update

operation.

3.1.2 Graph update operation in [3]

The graph update operation involves two steps: the re-weighting of edges and the

contraction of a minimum-mean cycle.

3.1.2.1 Re-weighting of edges

Schneider and Schneider’s algorithm [3] re-weights every edge in the graph using

shortest path distances of the downshifted graph G(V,E,w − λ∗), as outlined in the

pseudocode re-weight G using π.

We use π[v] to denote the shortest path weight to node v from an arbitrary source

node used in the MCM algorithm. The weight of every edge (u, v) ∈ E in G(V,E,w)

(see Fig. 3.2(a)) is adjusted to w′(u, v) = w(u, v) + π[u] − π[v] in the re-weighting

51

Re-weight G using π
1 re-weight G using π(G(V,E,w), π)
2 for each edge e = (u, v) ∈ E do
3 w(u, v) = w(u, v) + π[u]− π[v]
4 end for
5 return G
6 end re-weight G using π

process, yielding G′(V,E,w′), as shown in Fig. 3.2(b). This re-weighting strategy is

similar to that of Johnson’s algorithm for the shortest path problem [36], where all

negative weights are transformed to non-negative ones. The re-weighting operation

takes Θ(|V |+ |E|) time.

3.1.2.2 Contraction of minimum-mean cycle

We now elaborate on how the minimum-mean cycle in G and the shortest-path

tree in G(V,E,w − λ∗), both provided by the MCM algorithm, allow us to contract

the cycle to produce a new graph G′′ as shown in Fig. 3.2(c). The main purpose

of cycle contraction is to reduce the graph size so that the next iteration of MCM

calculation and graph update can be more efficient. However, it is important that

the re-weighting and cycle contraction do not change the next MCM.

Let us first explain the process of cycle contraction process using Fig. 3.2. All

nodes in the minimum-mean cycle C1 are collapsed into one representative node. The

topology of the contracted graph G′′(V ′′, E ′′, w′), where V ′′ ⊂ V and E ′′ ⊂ E, can be

easily obtained: all edges that form the cycle are removed, all edges leaving nodes in

C1 now leave the representative node and all edges entering nodes in C1 now enter

the representative node. In Fig. 3.2, C1 = v0 → v1 → v4 → v0 is the minimum-mean

cycle of G and it has been collapsed into the representative node v0. For example,

consider an incoming edge (u, v) to the cycle C in G′, the edge becomes (u, c) in G′′

with c being the representative node. For an outgoing edge (u, v) from the cycle C

in G′, the edge becomes (c, v) in G′′. The edges (v1, v2) and (v3, v4) in G′ become

respectively edges (v0, v2) and (v3, v0) in G′′.

52

F
ig

.
3.

2.
:

T
h
e

gr
ap

h
u
p

d
at

e
op

er
at

io
n

in
[3

].
(a

)
T

h
e

or
ig

in
al

gr
ap

h
G

(V
,E
,w

)
w

it
h

m
in

im
u
m

-m
ea

n
cy

cl
e
C

1
.

(b
)

T
h
e

w
ei

gh
t

of
ev

er
y

ed
ge

(u
,v

)
∈
E

in
G

(V
,E
,w

)
is

ad
ju

st
ed

to
w
′ (
u
,v

)
=
w

(u
,v

)
+
π

[u
]
−
π

[v
]

in
th

e
re

-w
ei

gh
ti

n
g

p
ro

ce
ss

,
y
ie

ld
in

g
G
′ (
V
,E
,w
′)

,
w

h
er

e
π

is
th

e
ve

ct
or

of
sh

or
te

st
p
at

h
d
is

ta
n
ce

s
in
G

(V
,E
,w
−
λ
∗)

.
(c

)
N

o
d
e
v 0

on
C

1
is

th
e

re
p
re

se
n
ta

ti
ve

n
o
d
e

fo
r

cy
cl

e
co

n
tr

ac
ti

on
.

A
ll

ed
ge

s
in
C

1
ar

e
re

m
ov

ed
.

A
ft

er
co

n
tr

ac
ti

on
,

(v
0
,v

4
)

in
G
′

tu
rn

s
in

to
a

se
lf

lo
op

(v
0
,v

0
)

in
G
′′ (
V
′′ ,
E
′′ ,
w
′)

an
d

(v
0
,v

2
)

an
d

(v
1
,v

2
)

in
G
′

b
ec

om
e

p
ar

al
le

l
ed

ge
s

in
G
′′ .

53

In the process of cycle contraction, (v0, v4) in G′ has turned into a self loop (v0, v0)

in G′′(V ′′, E ′′, w′). The edges (v0, v2) and (v1,v2) on the other hand have turned into

parallel edges (v0,v2) (Fig. 3.2(c)). Self loops can be removed from the graph (of

course, we should record their corresponding cycle means). However, we must keep

the parallel edges [14] [11]. Note that if the parallel edges appear in any iteration,

they would eventually turn into self loops once the nodes involving those edges have

formed a minimum-mean cycle. Again, if we are also interested in the corresponding

cycle means, appropriate bookkeeping can be performed to record them. We observe

that the removal of self loops from the graph results in speed-up of the minimum

balance algorithm. A pseudocode for cycle contraction (with self-loop removal) is

presented below. The complexity of the operation is O(|V | + |E|) because only a

subgraph induced by the cycle contributes to the computation.

Cycle Contraction
1 cycle contraction(G(V,E,w), C, π, c)
2 /* remove edges of C and self loops from G */
3 for each edge e(u, v) ∈ E, where u ∈ V (C) and v ∈ V (C) do
4 E ← E − e
5 end for

6 /* re-direct incoming edges of C in G */
7 for each edge (u, v) ∈ E where v ∈ V (C) and v 6= c do
8 E ← E − (u, v)
9 E ← E + (u, c)

10 end for

11 /* re-direct outgoing edges of C in G */
12 for each edge (u, v) ∈ E where u ∈ V (C) and u 6= c do
13 E ← E − (u, v)
14 E ← E + (c, v)
15 end for

16 /* remove nodes of C from G */
17 for each node v ∈ V (C) and v 6= c do
18 V ← V − v
19 end for
20 return G
21 end cycle contraction

3.1.2.3 Correctness of graph update operation

We will now show that the re-weighting and cycle contraction steps in the Schneider-

Schneider algorithm preserve the MCM of the graph, i.e., the next MCM of G is the

54

same as the MCM of G′′. We first use the example in Fig. 3.2(c) to illustrate that.

Observe that the total edge weight of the cycle C2 in G′′ is

w′(C2) = w(v1, v2) + w(v2, v3) + w(v3, v4) + (π[v1]− π[v4]).

Recall that π is the vector of shortest path distances of the graph G(V,E,w − λ∗),

where λ∗ is the cycle mean of the cycle C1 (i.e. MCM1). As C1 is also a minimum-

mean cycle and a zero-weight cycle of G(V,E,w − λ∗), every pair of consecutive

nodes u and v in the cycle satisfies the condition that π[v] = π[u] + w(u, v)− λ∗ [1].

Therefore,

π[v4] = π[v1] + w(v1, v4)− λ∗,

π[v1]− π[v4] = −(w(v1, v4)− λ∗).

Since C1 is a zero-weight cycle in G(V,E,w − λ∗),

−(w(v1, v4)− λ∗) = (w(v0, v1)− λ∗) + (w(v4, v0)− λ∗).

By replacing (π[v1]− π[v4]) in w′(C2), we obtain

w′(C2) = w(v1, v2) + w(v2, v3) + w(v3, v4) +

(w(v0, v1)− λ∗) + (w(v4, v0)− λ∗),

which is the total weight of C2 in G after deducting λ∗ from the weights of edges in

C1 (and dropping the parameters from these edges). In other words, the numerator

for MCM2 remains intact, and that the next MCM does not change as a result of

contraction. The correctness of the approach relies on the fact that π is the shortest

path distance of the graph G(V,E,w−λ∗), where C1 is a zero weight cycle. However,

in the Schneider-Schneider algorithm [3], there is no need to explicitly derive the

graph G(V,E,w−λ∗); π is a byproduct of the MCM algorithm as we have mentioned

earlier.

55

We now present a more general argument that the graph update operation of the

Schneider-Schneider algorithm preserves the MCM of the graph. Again, C1 is the

minimum-mean cycle and it is a zero-weight cycle in G(V,E,w − λ∗), where λ∗ is

the cycle mean of C1. Let C2 be any cycle in G. The objective is to show that the

re-weighting of edges using π and the contraction of cycle C1 does not change the

total edge weight of C2.

Let Ps = {p1, p2, ..., pk} be the set of shared paths of C1 and C2. In Fig. 3.2,

there is only one shared path between C1 and C2, i.e., p1 = v4 → v0 → v1. Let

the originating node and ending node of a shared path pi be voi and vei , respectively.

Assume that the shared paths are ordered in the way they appear in C2, C2 is of the

form vo1
p1
; ve1 ; vo2

p2
; ve2 ; · · · ; vok

pk
; vek ; vo1, where for 1 ≤ i ≤ k, voi

pi
; vei is a

shared path and vei ; voj , where j = (i mod k) + 1, is not. Note that it is possible

that a shared path pi contains only a single node, i.e., voi = vei .

When |Ps| = 0, the proof is trivial since the net adjustment of weight by π in C2

is zero (all π cancel out in a cycle). We now consider the case when |Ps| ≥ 1. The

weight of C2 in G′′ is

w′(C2) =
∑
i=1..k

j=(i mod k)+1

w′(vei ; voj)

=
∑
i=1..k

j=(i mod k)+1

(
w(vei ; voj) + (π[vei]− π[voj])

)
.

We shall examine the second term in the right hand side of the preceding equation

more closely.

∑
i=1..k

j=(i mod k)+1

(π[vei]− π[voj])

= π[ve1]− π[vo2] + π[ve2]− π[vo3] + · · ·+ π[vek]− π[vo1]

=
∑
i=1..k

π[vei]− π[voi].

56

Now, we know that a shared path pi lies on C1. As C1 is also a minimum-

mean cycle and a zero-weight cycle of G(V,E,w − λ∗), every path p = u ; v in

the cycle satisfies the condition that π[v] = π[u] + w(p) − |p|λ∗, where |p| is the

number of edges in the path p. This is a straightforward extension from the fact

that every pair of consecutive nodes u and v in C1 satisfies the condition that π[v] =

π[u] + w(u, v)− λ∗ [1]. Therefore, for a shared path pi,

π[vei] = π[voi] + w(pi)− |pi|λ∗,

π[vei]− π[voi] = w(pi)− |pi|λ∗.

Therefore, the weight of C2 in G′′ can be re-written as

w′(C2) =
∑
i=1..k

j=(i mod k)+1

w(vei ; voj) +
∑
i=1..k

(w(pi)− |pi|λ∗) .

This is of course the weight of C2 in G after deducting λ∗ from all edges in C1 (and

dropping the parameters from these edges). Therefore, any cycle C2 in G retains the

same weight after the re-weighting and cycle contraction steps.

3.1.3 Graph update operation in [14] [11]

Let us now discuss the graph update operation for the algorithm in [14] [11]. As

before, the graph update operation involves the two steps of re-weighting of edges

and contracting the minimum-mean cycle.

3.1.3.1 Re-weighting of edges

Re-weighting in [14] [11] happens over two phases. In the first phase, every edge

in the graph is downshifted by λ∗ to obtain G(V,E,w − λ∗). We have alluded to

the downshifted graph G(V,E,w − λ∗) earlier. Here, we provide the the pseudocode

57

F
ig

.
3.

3.
:

R
e-

w
ei

gh
ti

n
g

of
ed

ge
s

in
[1

4]
[1

1]
in

tw
o

p
h
as

es
.

(a
)

T
h
e

w
ei

gh
t

of
ev

er
y

ed
ge

(u
,v

)
∈
E

in
G

(V
,E
,w

)
(s

ee
F

ig
.

3.
2(

a)
)

is
fi
rs

t
d
ow

n
sh

if
te

d
b
y
λ
∗ ,

i.
e.

,
w

(u
,v

)
−
λ
∗ ,

to
ob

ta
in
G

(V
,E
,w
−
λ
∗)

.
(b

)
E

d
ge

s
ad

ja
ce

n
t

to
th

e
m

in
im

u
m

-m
ea

n
cy

cl
e

(e
x
ce

p
t

th
os

e
on

th
e

cy
cl

e
it

se
lf

)
ar

e
th

en
ad

ju
st

ed
to

y
ie

ld
G
′ (
V
,E
,w
′)

.
A

n
ed

ge
(u
,v

)
or

ig
in

at
in

g
fr

om
a

n
o
d
e

on
th

e
cy

cl
e

h
as

an
ad

ju
st

m
en

t
te

rm
of
π

[u
]−

π
[v

0
],

an
d

an
ed

ge
(u
,v

)
en

te
ri

n
g

a
n
o
d
e

on
th

e
cy

cl
e

h
as

an
ad

ju
st

m
en

t
te

rm
of

−
(π

[v
]−

π
[v

0
])

,
w

h
er

e
π

is
th

e
ve

ct
or

of
sh

or
te

st
p
at

h
d
is

ta
n
ce

s
d
efi

n
ed

on
G

(V
,E
,w
−
λ
∗)

an
d

n
o
d
e
v 0

is
th

e
re

p
re

se
n
ta

ti
ve

n
o
d
e

on
th

e
m

in
im

u
m

-m
ea

n
cy

cl
e
C

1
.

(c
)
C

1
in
G
′

is
co

n
tr

ac
te

d
to

re
p
re

se
n
ta

ti
ve

n
o
d
e
v 0

to
ob

ta
in
G
′′ (
V
′′ ,
E
′′ ,
w
′)

.

58

re-weight G by downshifting to generate such a graph. For the graph G(V,E,w)

in Fig. 3.2, Fig. 3.3(a) shows the downshifted G(V,E,w − λ∗).

Re-weight G by downshifting
1 re-weight G by downshifting(G(V,E,w), λ∗)
2 /* re-weight every edge in G by downshifting */
3 for each edge e = (u, v) ∈ E do
4 w(e) = w(e)− λ∗
5 end for
6 end re-weight G by downshifting

Recall that after downshifting of G by λ∗, any minimum-mean cycle in G becomes

a zero-weight cycle inG(V,E,w−λ∗). Therefore, C1 in Fig. 3.3(a) is now a zero-weight

cycle. The second phase of re-weighting makes further adjustment to the weights of

edges adjacent to the minimum-mean cycle so that the cycle can be contracted in the

second step of the graph update operation. Let c be a representative node on the

minimum-mean cycle C in G(V,E,w− λ∗) and GC be a sub-graph induced by edges

that are adjacent to C, including edges on the cycle. Consider an incoming edge

(u, v) to the cycle C, the edge weight becomes w(u, v) − λ∗ − (π[v] − π[c]), where π

is the shortest path distance of the downshifted graph (i.e. G(V,E,w− λ∗)) and c is

the representative node of the cycle. For an outgoing edge (u, v) from the cycle C in

G(V,E,w−λ∗), the edge weight becomes w(u, v)−λ∗+(π[u]−π[c]). The second phase

of the re-weighting is provided in the following pseudocode re-weight GC using π.

Re-weight GC using π
1 re-weight GC using π(G(V,E,w), C, π, c)
2 /* re-weight edges in GC , subgraph induced by C, using π */
3 /* adjust weights of incoming edges of nodes in C */
4 for each edge (u, v) ∈ E(GC) where v ∈ V (C) do
5 w(u, v) = w(u, v)− (π[v]− π[c])
6 end for

7 /* adjust weights of outgoing edges of nodes in C */
8 for each edge (u, v) ∈ E(GC) where u ∈ V (C) do
9 w(u, v) = w(u, v) + (π[u]− π[c])

10 end for
11 return G
12 end re-weight GC using π

We show the updated edge weights from the second phase of re-weighting in

Fig. 3.3(b). For the example in Fig. 3.3(a), E(GC), the edges in GC , would consist

59

of C1 and the following edges: (v0, v2), (v0, v4), (v1, v2), and (v3, v4). Here, v0 is the

representative node of C1. The updated weights of edges such as (v3, v4) and (v1, v2)

are straightforward as these are “incoming” or “outgoing” edges of C1, respectively,

i.e., they are incoming or outgoing edges of some nodes on C1. For an edge (u, v)

that connects two nodes in C1, the edge weight would be effectively updated to

w′(u, v) = w(u, v)−λ∗+π[u]−π[v]. Note that the eventual adjustment of (π[u]−π[v])

is similar to the re-weighting performed in the Schneider-Schneider algorithm. The

edges in C1 and the edge (v0, v4) are updated in this manner.

Re-weight G by downshifting and using π
1 re-weight G by downshifting and using π(G, λ∗, C, π, c)
2 /* re-weight every edge in G by downshifting */
3 G = re-weight G by downshifting(G, λ∗)

4 /* re-weight edges in G around C using π */
5 G = re-weight GC using π(G, C, π, c)
6 return G
7 end re-weight G by downshifting and using π

The pseudocode re-weight G by downshifting and using π combines the two

phases of re-weighting. Altogether, the re-weighting of edges has Θ(|V | + |E|) time

complexity, same as that of the Schneider-Schneider algorithm [3].

3.1.3.2 Contraction of minimum-mean cycle

The cycle contraction process in [14] [11] is similar to that in the Schneider-

Schneider algorithm. In other words, we can use the pseudocode cycle contraction

in Section 3.1.2.2. Fig. 3.3(c) shows the graph G′′(V ′′, E ′′, w′) obtained after the graph

update operation.

3.1.3.3 Correctness of graph update operation

We now show that the total edge weight of any cycle in G′′ is the same as its

equivalent cycle in G(V,E,w− λ∗). That is because the minimum balance algorithm

by [14] [11] will look for the next MCM in G(V,E,w − λ∗). On the other hand,

60

the Schneider-Schneider algorithm [3], computes the next MCM in the graph G after

the weight of each edge in the minimum-mean cycle has been reduced by λ∗ and its

parameter dropped from the edge. While the edge weights are modified differently

in [3], the approach we take to prove the correctness of the graph update operation

by [14] [11] is remarkably similar.

As an example, we look at C2 in G(V,E,w − λ∗) and its equivalent in G′′ in

Fig. 3.3. The total weight of the equivalent C2 in G′′ is

w′(C2) = w(v1, v2)− λ∗ + w(v2, v3)− λ∗ + w(v3, v4)− λ∗ +

(π[v1]− π[v4]).

We have shown in Section 3.1.2.3 that

(π[v1]− π[v4]) = w(v0, v1)− λ∗ + w(v4, v0)− λ∗.

Therefore, w′(C2) can be re-written as

w′(C2) = w(v1, v2)− λ∗ + w(v2, v3)− λ∗ + w(v3, v4)− λ∗ +

w(v0, v1)− λ∗ + w(v4, v0)− λ∗,

which is the weight of C2 in G(V,E,w − λ∗). This example illustrates that the cycle

weight of C2 in G(V,E,w − λ∗) is preserved under the graph update operation.

We now present a more general argument that the graph update operation pre-

serves the MCM of the graph G(V,E,w−λ∗). Again, C1 is the minimum-mean cycle

and it is a zero-weight cycle in G(V,E,w−λ∗), where λ∗ is the cycle mean of C1. Let

C2 be any cycle in G. Let Ps = {p1, p2, ..., pk} be the set of shared paths of C1 and

C2. Recall the notation that the originating node and ending node of a shared path

pi are voi and vei , respectively. Assume that the shared paths are ordered in the way

they appear in C2, C2 is of the form vo1
p1
; ve1 ; vo2

p2
; ve2 ; · · · ; vok

pk
; vek ; vo1,

61

where for 1 ≤ i ≤ k, voi
pi
; vei is a shared path and vei ; voj , where j = (i mod k) + 1,

is not. Again, a shared path pi may contain only a single node, i.e., voi = vei .

When |Ps| = 0, the proof is trivial since all the edges in C2 undergo only the first

phase of the re-weighting. Therefore, the weight of C2 in G′′ is w′(C2) = w(C2) −

|C2|λ∗, which is the weight of C2 in G(V,E,w − λ∗).

We now consider the case when |Ps| ≥ 1. The weight of C2 in G′′ is

w′(C2) =
∑
i=1..k

j=(i mod k)+1

w′(vei ; voj).

The path vei ; voj , where 1 ≤ i ≤ k and j = (i mod k) + 1, originates from a node in

C1 and ends at a node in C1. The second phase of re-weighting affects only the first

and last edge of the path. Therefore, the weight of this path in G′′ is

w′(vei ; voj)

= w(vei ; voj)− |vei ; voj |λ∗ + π[vei]− π[c]− (π[voj]− π[c])

= w(vei ; voj)− |vei ; voj |λ∗ + (π[vei]− π[voj]),

where |vei ; voj | is the number of edges in the path and c is the representative node

of C1. Hence, the weight of C2 in G′′ is

w′(C2)

=
∑
i=1..k

j=(i mod k)+1

(
w(vei ; voj)− |vei ; voj |λ∗ + (π[vei]− π[voj])

)
.

As shown in Section 3.1.2.3, the last term in the right hand side of the preceding

equation can be expressed as

∑
i=1..k

j=(i mod k)+1

(π[vei]− π[voj]) =
∑
i=1..k

π[vei]− π[voi].

62

We have also shown in Section 3.1.2.3 that for a shared path pi,

π[vei]− π[voi] = w(pi)− |pi|λ∗.

Therefore, the weight of C2 in G′′ can be re-written as

w′(C2) =
∑
i=1..k

j=(i mod k)+1

(
w(vei ; voj)− |vei ; voj |λ∗

)
+
∑
i=1..k

(w(pi)− |pi|λ∗) ,

which is the weight of C2 in G(V,E,w−λ∗). Therefore, any cycle C2 in G(V,E,w−λ∗)

retains the same weight after the graph update operation.

One should now realize that the second phase of re-weighting that is performed

for edges adjacent to the minimum-mean cycle in [14] [11] is in fact to account for

the removal of edges from the graph in cycle contraction. Therefore, re-weighting and

cycle contraction indeed have no effect on the subsequent MCM of the graph except to

reduce size of the problem that the MCM subroutine has to solve. Therefore, as cycle

contraction is necessary to reduce the problem size, so is the re-weighting of edges

adjacent to the minimum-mean cycle to apply the cycle contraction. Although the

algorithm in [3] does not perform any additional re-weighting around the minimum-

mean cycle, the re-weighting of the entire graph using the shortest distance vector

implicitly takes care of the changes necessary for cycle contraction to happen.

3.1.4 Implementations

3.1.4.1 The Schneider-Schneider algorithm [3]

We first provide the pseudocode (Conventional Minimum Balance Algo-

rithm) of the Schneider-Schneider minimum balance algorithm [3] below. Although

any of the algorithms from [1] [2] [18] [41] [14] can be used for MCM calculation

63

Fig. 3.4.: An illustration of the Schneider-Schneider minimum balance algorithm [3].
Representative nodes are colored in green. v0 is the source node. The algorithm uses
shortest distance vector π in G(V,E,w−λ∗) to re-weight all edges. A minimum-mean
cycle is collapsed into its representative node.

(referred to as mcm algorithm), we have used YTO algorithm [14] [37] in our im-

plementation. Our implementation of YTO (pseudocode not shown) is similar to

that provided in [7] [38] [19], which uses binary heap. With the use of such an YTO

implementation, it is possible to limit the overall time complexity of the minimum

balance algorithm to O(|V ||E| log |V |) because there are at most |V |2 shortest path

trees to be explored in total [14]. If Karp’s algorithm [1] or the Hartmann-Orlin al-

gorithm [18] is used, the complexity will be O(|V |2|E|) because the cardinality of the

node set is reduced by at least 1 after each iteration of MCM calculation.

Again, we emphasize that the MCM algorithm returns three important parame-

ters: the MCM λ∗, the minimum-mean cycle C, and the shortest distance vector π.

Recall that π is defined in terms of the downshifted graph (i.e. G(V,E,w − λ∗)).

64

Conventional Minimum Balance Algorithm
Input : Directed graph G(V,E,w), a strongly connected component (SCC)
Output: MCMs

1 /* initialize*/
2 itr = 0
3 MCMitr = 0

4 /* run iterative process */
5 while |V | > 1 do
6 /* run MCM algorithm to compute MCM λ∗, minimum-mean cycle C,
7 shortest distance vector π in G(V,E,w − λ∗), and representative node c */
8 [λ∗, C, π, c] = mcm algorithm(G)
9 MCMitr+1 = λ∗

10 G = re-weight G using π(G, π) /* re-weight G */

11 G = cycle contraction(G, C, π, c) /* contract cycle C */

12 + + itr
13 end while

Moreover, we assume that the MCM algorithm also returns c, a representative node

of the minimum-mean cycle.

We demonstrate through an example the Schneider-Schneider algorithm. A graph

G is shown in Fig. 3.4(a). The minimum-mean cycle in G is C1 and MCM1 (i.e., λ∗) is

2. The MCM algorithm also yields the shortest distance vector π of G(V,E,w− λ∗).

The weight of every edge (u, v) ∈ E in G(V,E,w) is adjusted to w(u, v) + π[u]− π[v]

in the re-weighting process, as shown in Fig. 3.4(b). After contracting C1 onto the

representative node v2, we get G′′, as shown in Fig. 3.4(c). The minimum-mean cycle

(C2 with λ∗ = 3) is identified again in the new graph. Note that the true MCM

(i.e. MCM2) in Schneider-Schneider algorithm is obtained directly (see line 9 of the

pseudocode).

3.1.4.2 Minimum balance algorithms in [14] [11]

Let us now demonstrate through an example how the minimum balance algorithm

in [14] [11] works and present necessary changes to the pseudocode Conventional

Minimum Balance Algorithm presented earlier. A graphG is shown in Fig. 3.5(a).

The minimum-mean cycle in G is C1 and MCM1 (i.e., λ∗) is 2. Downshifting the edge

weights in G(V,E,w) by λ∗ yields the graph G(V,E,w − λ∗). Further adjustments

using π are made on G(V,E,w− λ∗) for the edges adjacent to the nodes in the cycle

65

Fig. 3.5.: An example to illustrate the minimum balance algorithm in [14] [11]. Repre-
sentative nodes are colored in green. v0 is the source node. The algorithm re-weights
all edges first by downshifting the weight by λ∗ and then adjusts the incoming and
outgoing edge weights of the minimum-mean cycle using shortest path distance π of
G(V,E,w − λ∗). A minimum-mean cycle is collapsed into its representative node.

C1 to get G′, as shown in Fig. 3.5(b). After contracting C1 onto the representative

node v2, we get G′′ (Fig. 3.5(c)). The minimum-mean cycle (C2 with λ∗ = 1) is

identified again in the new graph. Since the MCM is calculated on the downshifted

graph G′′, the true MCM2 of C2 is obtained by adding together the current λ∗ and

MCM1. Therefore, our implementation of the algorithms in [14] [11] replaces lines

9−10 of the pseudocode Conventional Minimum Balance Algorithm with the

following two lines.

66

9 MCMitr+1 = MCMitr + λ∗

10 G = re-weight G by downshifting and using π(G, λ∗, C, π, c).

3.1.5 Data structures for cycle contraction

In our implementation, a graph G(V,E,w) is implemented using two adjacency

lists; for each node u, we maintain a list of outgoing edges (u, v) ∈ E and a list

of incoming edges incoming edges (v, u) ∈ E. There are two reasons for such an

implementation. First, the state-of-the-art implementation of the YTO algorithm

uses incoming and outgoing adjacency lists [37]. Second, the two adjacency lists

facilitate efficient cycle contraction.

We shall elaborate on the steps involved in handling the outgoing edges of the

cycle; the incoming edges of the cycle can be handled similarly. First, we go through

the outgoing adjacency list of each node, except the representative node, on the

minimum-mean cycle. Each (destination) node in these outgoing adjacency lists are

stored in a temporary list if it is not a node on the cycle (as we do not want to

create self loops). Second, for each unique (destination) node in the temporary list,

we process its incoming adjacency list by replacing all (source) nodes that are on the

cycle by the representative node. Third, we traverse the outgoing adjacency list of

the representative node. All (destination) nodes that are in the cycle are removed

from the list. Last, we concatenate the temporary list with the trimmed outgoing

adjacency list to form the new outgoing adjacency list of the representative node.

We observe that such an implementation is very effective in practice. Overall,

the cycle contraction step runs several times faster than the re-weighting step. This

strengthens our argument that the bottleneck in the graph update operation as stated

in [14] is indeed due to the re-weighting of all edges in the graph.

67

3.1.6 Floating point arithmetic in re-weighting

In the two implementations of the minimum balance algorithm we have presented,

i.e., [3] and [14] [11], the steps of MCM calculation and cycle contraction are identical

and incur similar runtime cost. However, the two implementations incur different

runtime overheads in the re-weighting step.

The re-weighting of w(u, v) to w(u, v) + π[u]− π[v] in [3] involves one subtraction

and one addition operation. However, there is only one subtraction operation in

the re-weighting of w(u, v) to w(u, v) = w(u, v) − λ∗ by downshifting in [14] [11].

Therefore the re-weighting step in [3] is twice (i.e., 4|E|, considering two lists) as

costly as the cost of downshifting (i.e., 2|E|, considering two lists) in [14] [11].

However, because of the additional arithmetic operations for re-weighting edges

adjacent to the minimum-mean cycle C using π, the actual cost of re-weighting in [14]

[11] is 2(|E| + 2|E(GC)|) (considering two lists), where E(GC) is the set of edges in

GC . Since |E| is in general much larger than |E(GC)|, the algorithm in [3] is likely

to perform the graph update operation slower than the algorithm in [14] [11] as the

cycle contraction operation is identical in these algorithms. Of course, we can save

a little computational cost by not re-weighting edges forming the cycle since we are

removing them in the cycle contraction step. However, we can still conclude that

the Schneider-Schneider minimum balance algorithm [3] is likely to be slightly less

efficient than the algorithm in [14] [11].

3.2 Proposed algorithm

The flow of our proposed approach to minimum balancing is shown in Fig. 3.1(b).

The proposed minimum balance algorithm does not require re-weighting of the entire

graph as opposed to the algorithms in [3] [14] [11]. However, the re-weighting process

of edges adjacent to the minimum-mean cycle in our algorithm follows the same

strategy as in the second phase of the re-weighting step in the minimum balance

algorithm from [14] [11].

68

Fig. 3.6.: (a) λ(e) for e ∈ E(C1) is 2. (b) Edges of the cycle C1 are downshifted by
2 and the parameters λ(e) are removed. (c) The edges with parameters in C2 are
downshifted and their parameters are removed to form a minimum-balanced graph.

We will explain the proposed method in Fig. 3.6 using the same example in Fig. 4.8.

In this example, the first MCM is 2 and the first minimum-mean cycle is C1. We

downshift all edges in C1 by the MCM and remove their parameters λ(e). We refer

to such a partially downshifted graph as G̃ = G(V,E,w(C) − λ∗), where C is the

minimum-mean cycle and λ∗ is minimum cycle mean. In contrast, a fully downshifted

graph is G(V,E,w − λ∗). For example, Fig. 3.6(b) shows G̃ = G(V,E,w(C1) − 2).

(We have alluded to G̃ earlier in Section 3.1.2.3 when we presented the correctness of

the graph update operation in the Schneider-Schneider algorithm.)

For the cycle C2 in Fig. 3.6(b), the total weight is 12. Although there are five

edges, only four of them have parameters. Therefore, the mean of the cycle is 12
4

= 3.

Now, we downshift the weights of the edges in the cycle by λ∗ = 2 and drop the

parameter As the downshifting operation is limited to only edges with parameters in

the minimum-mean cycle, we can obtain the MCM directly, instead of accumulating

all MCMs computed in the previous iterations. Therefore, we can apply the MCM

algorithm to find the MCM of a graph that is partially downshifted.

69

However, directly applying the MCM algorithm on G̃ may not be efficient. Now,

we shall show that it is possible to perform contraction of zero-weight cycle in G̃.

Recall that given G, the MCM algorithm computes the MCM λ∗, its corresponding

minimum-mean cycle C, π, the shortest distance vector in G(V,E,w − λ∗), and c,

a representative node of C. C is again a zero-weight cycle in G̃. Now, we apply

the second phase of the re-weighting step in the algorithm from [14] [11] to obtain

G̃′(V,E,w′). An incoming edge (u, v) to the cycle C has a new weight w′(u, v) =

w(u, v) − (π[v] − π[c]). An outgoing edge (u, v) from the cycle C in G̃ has a new

weight w′(u, v) = w(u, v)+(π[u]−π[c]). An edge (u, v) on the cycle has a new weight

w′(u, v) = w(u, v)− λ∗ + (π[u]− π[v]).

Now, we apply the cycle contraction step to G̃′ and obtain G̃′′(V ′′, E ′′, w′). By

a similar argument as in Section 3.1.3.3, we can show that the total edge weight of

any cycle in G̃′′ has the same weight as its equivalent cycle in G̃. In other words,

we can still take advantage of cycle contraction in the proposed minimum balance

algorithm. In fact, the construction of G̃′′ does not even require the construction

of G̃. The re-weighting of edges adjacent to the minimum-weight cycle and cycle

contraction can be performed directly on G using the shortest distance vector π in

G(V,E,w − λ∗), as shown in Fig. 3.7. We reiterate that our algorithm exploits the

fact that π in G(V,E,w − λ∗) is a byproduct of the MCM algorithm.

The pseudocode of our proposed minimum balance algorithm is therefore similar to

the pseudocode Conventional Minimum Balance Algorithm presented earlier,

except that the call to re-weight G using π in line 10 is replaced by a call to

re-weight GC using π as follows:

10 G = re-weight GC using π(G, C, π, c).

To summarize, the proposed algorithm is similar to the Schneider-Schneider al-

gorithm as in both implicitly operates on G̃(V,E,w(C) − λ∗). Consequently, the

proposed algorithm calculates the true MCM values iteratively. Therefore, there is

70

Fig. 3.7.: An example to illustrate our minimum balance algorithm. Representative
nodes are colored in green. v0 is the source node. The algorithm uses shortest
distance vector π in G(V,E,w − λ∗) to adjust incoming and outgoing edge weights
of the minimum-mean cycle.

no change to line 9 of the pseudocode Conventional Minimum Balance Algo-

rithm. It is implicit because the proposed algorithm (and the Schneider-Schneider

algorithm) does not partially downshift the weights of edges in the cycle because

the cycle will be contracted. This also avoid the first phase of downshifting all edge

weights by λ∗ in the algorithm from [14] [11].

To facilitate cycle contraction, the proposed algorithm uses the re-weighting of

subgraph GC as in the algorithm from [14] [11]. This avoids the re-weighting of the

entire graph as in the Schneider-Schneider algorithm. Therefore, the graph update

operations in the algorithms from [3] [14] [11] are Θ(|V | + |E|), whereas the graph

update operation in the proposed algorithm is O(|V |+ |E|).

Given that MCM calculation and cycle contraction operations are identical in

the algorithms from [3] [14] [11] as well as the proposed algorithms, the runtime

improvement in our algorithm would essentially come from the reduced floating point

arithmetic operation in partially re-weighting the graph. There are only 4|E(GC)|

(considering two lists) floating point operations in our algorithm as opposed to 4|E|

and 2(|E|+ 2|E(C)|) operations, respectively, in [3] and in [14] [11].

71

Table 3.1.: IWLS 2005 benchmark circuits [20] and details of the largest strongly
connected component of each circuit graph.

Circuit Clock Largest SCC
Benchmark

name period (ns) |V | |E|

ISCAS89

s5378 0.7 136 1536
s13207 0.7 231 1194
s38584 1 1166 11010
s35932 1 1728 7480
s38417 1 1498 37478

OpenCores

usbf 1 1431 24522
ac97 ctrl 10 1895 18320

pci bridge32 1 1920 46484
dma 1 2087 102018
eth 2 8381 151484

3.3 Experimental results

We have implemented the minimum balance algorithm from [3], the algorithm

from [14] [11], and the proposed algorithm in C++. These implementations are

evaluated on Intel(R) Xeon(R) CPU E5-2660 2.60 GHz Linux machine with 66GB

of RAM, using graphs derived from IWLS 2005 benchmark circuits [20] and strongly

connected graphs randomly generated using a technique described in [7] [8] and with

SPRAND generator [42].

First, we compare the algorithms using ISCAS89 and OpenCores benchmarks

from IWLS 2005 [20]. A timing constraint graph is constructed after the synthesis of

a design specified in Verilog using the Synopsys tool chain and a 32nm technology

library. We decompose the graph into strongly connected components, and apply the

algorithms on these individual components. Circuit information along with the largest

strongly connected component graph details are given in Table 3.1. The runtime

results for the largest strongly connected components are presented in Table 3.2.

Here, runtimes in all columns labeled MCM include running the YTO algorithm to

calculate MCM and the necessary updates to the data structures associated with the

72

T
ab

le
3.

2.
:

R
u
n
ti

m
e

(i
n

se
c.

)
of

th
e

th
re

e
al

go
ri

th
m

s
on

IW
L

S
20

05
ci

rc
u
it

s
[2

0]
.

C
ir

cu
it

S
ch

n
ei

d
er

-S
ch

n
ei

d
er

[3
]

T
h
e

ap
p
ro

ac
h

in
[1

4]
[1

1]
O

u
r

ap
p
ro

ac
h

n
am

e
M

C
M

U
p

d
at

e
T

ot
al

M
C

M
U

p
d
at

e
T

ot
al

M
C

M
U

p
d
at

e
T

ot
al

s5
37

8
0.

00
4

0.
00

3
0.

00
7

0.
00

4
0.

00
3

0.
00

7
0.

00
4

0.
00

2
0.

00
6

s1
32

07
0.

00
5

0.
00

1
0.

00
7

0.
00

4
0.

00
1

0.
00

5
0.

00
5

0.
00

1
0.

00
6

s3
85

84
0.

06
8

0.
04

8
0.

11
8

0.
06

9
0.

04
8

0.
11

8
0.

07
0

0.
01

1
0.

08
3

s3
59

32
0.

09
4

0.
03

2
0.

12
7

0.
07

8
0.

02
3

0.
10

2
0.

07
8

0.
00

3
0.

08
2

s3
84

17
0.

35
5

0.
41

8
0.

77
9

0.
35

0
0.

40
8

0.
76

3
0.

34
7

0.
09

6
0.

44
8

u
sb
f

0.
20

3
0.

25
1

0.
45

6
0.

20
3

0.
25

1
0.

45
7

0.
20

2
0.

08
2

0.
28

6
a
c9

7
ct
rl

0.
28

7
0.

23
7

0.
52

6
0.

28
2

0.
22

4
0.

50
8

0.
27

8
0.

06
6

0.
34

5
pc
i
br
id
g
e3

2
0.

47
3

0.
59

6
1.

07
2

0.
47

4
0.

56
2

1.
03

8
0.

47
0

0.
16

4
0.

63
8

d
m
a

1.
50

4
2.

84
5

4.
35

7
1.

51
8

2.
73

4
4.

25
9

1.
51

5
0.

66
5

2.
18

7
et
h

15
.8

49
17

.9
17

33
.7

78
15

.3
26

16
.7

26
32

.0
62

15
.4

43
3.

58
2

19
.0

36

A
v
g.

ru
n
ti

m
e

1.
88

4
2.

23
5

4.
12

3
1.

83
1

2.
09

8
3.

93
2

1.
84

1
0.

46
7

2.
31

2

73

T
ab

le
3.

3.
:

R
u
n
ti

m
es

(i
n

se
c.

)
of

th
e

th
re

e
al

go
ri

th
m

s
on

ra
n
d
om

gr
ap

h
s

[7
].

G
ra

p
h

S
ch

n
ei

d
er

-S
ch

n
ei

d
er

[3
]

T
h
e

ap
p
ro

ac
h

in
[1

4]
[1

1]
O

u
r

ap
p
ro

ac
h

|V
|

|E
|

M
C

M
U

p
d
at

e
T

ot
al

M
C

M
U

p
d
at

e
T

ot
al

M
C

M
U

p
d
at

e
T

ot
al

10
00

0
30

00
0

3.
25

7
1.

45
2

4.
71

6
3.

21
0

1.
36

1
4.

57
8

3.
23

2
0.

32
1

3.
55

9
20

00
0

60
00

0
13

.1
95

5.
74

0
18

.9
50

12
.9

63
5.

21
2

18
.1

90
13

.0
31

1.
07

3
14

.1
18

30
00

0
90

00
0

30
.7

03
14

.9
36

45
.6

64
30

.2
87

13
.8

30
44

.1
40

30
.4

32
3.

16
9

33
.6

24
40

00
0

12
00

00
55

.6
58

25
.7

17
81

.4
08

54
.7

86
23

.4
39

78
.2

59
54

.3
88

4.
57

2
58

.9
91

50
00

0
15

00
00

93
.4

65
46

.0
03

13
9.

51
6

89
.0

48
37

.1
37

12
6.

23
2

87
.3

96
7.

99
5

95
.4

33
60

00
0

18
00

00
14

7.
55

7
74

.0
64

22
1.

68
3

14
9.

87
1

69
.6

01
21

9.
53

7
13

5.
73

5
14

.0
75

14
9.

86
6

70
00

0
21

00
00

22
6.

28
6

12
0.

96
9

34
7.

34
1

22
2.

80
6

10
1.

59
8

32
4.

48
9

19
5.

88
0

23
.1

13
21

9.
06

8
80

00
0

24
00

00
33

1.
81

3
20

2.
40

0
53

4.
33

9
31

9.
92

1
15

9.
92

5
47

9.
96

3
27

8.
71

8
41

.5
91

32
0.

41
3

90
00

0
27

00
00

45
2.

25
7

25
4.

46
4

70
6.

87
0

43
3.

09
9

19
5.

65
9

62
8.

90
6

36
8.

98
3

46
.0

51
41

5.
17

4
10

00
00

30
00

00
57

9.
68

0
35

0.
10

1
92

9.
96

1
60

1.
44

9
30

8.
17

9
90

9.
79

9
49

6.
54

2
71

.7
34

56
8.

44
4

A
v
g.

ru
n
ti

m
e

19
3.

38
7

10
9.

58
5

30
3.

04
5

19
1.

74
4

91
.5

94
28

3.
40

9
16

6.
43

4
21

.3
69

18
7.

86
9

74

T
ab

le
3.

4.
:

R
u
n
ti

m
es

(i
n

se
c.

)
of

th
e

th
re

e
al

go
ri

th
m

s
on

S
P

R
A

N
D

gr
ap

h
s

[4
2]

.

G
ra

p
h

S
ch

n
ei

d
er

-S
ch

n
ei

d
er

[3
]

T
h
e

ap
p
ro

ac
h

in
[1

4]
[1

1]
O

u
r

ap
p
ro

ac
h

|V
|

|E
|

M
C

M
U

p
d
at

e
T

ot
al

M
C

M
U

p
d
at

e
T

ot
al

M
C

M
U

p
d
at

e
T

ot
al

54
42

16
37

7
1.

86
0

0.
79

9
2.

66
4

1.
84

5
0.

73
1

2.
58

1
1.

88
2

0.
15

5
2.

04
4

11
05

5
33

30
8

7.
84

4
3.

45
7

11
.3

14
7.

77
5

3.
09

7
10

.8
83

7.
82

9
0.

62
4

8.
46

7
16

28
8

48
81

7
17

.7
08

8.
24

4
25

.9
72

17
.5

90
7.

52
2

25
.1

31
17

.6
85

1.
49

5
19

.2
02

21
74

9
65

22
4

31
.8

23
14

.3
60

46
.2

11
31

.6
04

13
.0

88
44

.7
18

31
.6

99
2.

19
8

33
.9

28
26

89
8

80
67

7
49

.4
19

21
.8

83
71

.3
38

50
.2

44
21

.8
94

72
.1

72
50

.1
37

3.
82

8
54

.0
04

32
10

0
96

43
7

77
.1

55
39

.4
31

11
6.

63
2

76
.2

44
35

.4
97

11
1.

78
5

76
.4

71
8.

04
4

84
.5

65
37

48
9

11
25

17
11

0.
07

5
56

.0
12

16
6.

14
5

11
0.

38
3

54
.0

91
16

4.
53

5
10

4.
49

5
11

.0
64

11
5.

61
8

42
82

6
12

84
46

15
7.

09
3

87
.2

19
24

4.
38

7
15

9.
36

0
80

.4
23

23
9.

85
8

14
3.

39
7

14
.0

19
15

7.
49

2
48

28
1

14
50

49
21

2.
36

6
12

0.
20

5
33

2.
66

3
21

2.
98

9
11

0.
66

9
32

3.
75

2
19

0.
19

9
21

.5
36

21
1.

83
1

53
56

2
16

07
87

28
0.

19
8

16
9.

59
2

44
9.

91
0

27
9.

98
1

13
4.

86
6

41
4.

95
7

25
0.

07
7

31
.3

36
28

1.
52

3

A
v
g.

ru
n
ti

m
e

94
.5

54
52

.1
20

14
6.

72
3

94
.8

02
46

.1
88

14
1.

03
7

87
.3

87
9.

43
0

96
.8

67

75

YTO algorithm. The runtimes in all columns labeled Update include re-weighting

and cycle contraction. On average over ten circuit graphs, our algorithm improves

total runtime by 43.92% and 41.20% over the Schneider-Schneider algorithm [3] and

the algorithms in [14] [11], respectively.

We also evaluate performance of the algorithms using random graphs created with

a technique in [7] [8]. To generate a random graph using the technique in [7] [8], we

first connect all the nodes in a circular manner to make the graph strongly connected.

Next, two nodes are randomly selected and connected by a directed edge. The process

continues until the desired number of edge connections are made. For the edge weight,

random values within a range similar to that in the circuit graphs are generated and

assigned. As shown in Table 3.3, our algorithm improves the total runtime. On

average over ten set of random graphs (each set having five), the improvement is about

38.01% and 33.71% over the Schneider-Schneider algorithm [3] and the algorithm

in [14] [11], respectively.

We also generate random graphs using SPRAND generator [42]. The SPRAND

generator cannot ensure that the graph with exact |V | and |E| is created; |V | and

|E| of a SPRAND graph may therefore be different from the random graph reported

in Table 3.3. On average over ten set of SPRAND generated graphs (each set having

five), our algorithm improves total runtime by 33.98% over Schneider-Schneider [3]

and 31.32% over the algorithm in [14] [11]. The runtime results for the SPRAND

graphs are presented in Table 3.4.

One can notice that the runtimes for Update in [14] [11] are somewhat better

than those of [3]. This can be attributed to the fewer arithmetic operations that

the algorithm in [14] [11] has to perform. This confirms what we presented in Sec-

tion 3.1.6.

76

3.4 Conclusions

We have proposed an improvement to conventional minimum balance algorithms

by performing fewer re-weighting of edge weights in each iteration, resulting in better

efficiency. Performance has been evaluated on circuit graphs and random graphs.

We see 42.56% and 34.26% average runtime improvements over state-of-the-art mini-

mum balance algorithms for graphs derived from IWLS 2005 benchmark circuits and

randomly generated graphs, respectively.

77

4. A SCALABLE BUFFER QUEUE SIZING ALGORITHM

FOR LATENCY INSENSITIVE SYSTEMS

High performance communication channels are usually required to connect existing

intellectual property (IP) cores together in system-on-chips (SoCs). However, as

the device feature size scales down to ten’s of nanometers, the delay of the global

interconnects can limit the system performance. Because of the difficulty in having

an accurate estimation of the global interconnect delay in early stages of the design, a

large numbers of timing violations may occur in the late stages of the physical design

process; design iterations are therefore unavoidable [21] [22] [23].

Latency insensitive design is an SoC design methodology that simplifies the as-

sembly of IP cores by reusing pre-validated and pre-designed IP cores. These IP

cores can be either soft macros, i.e., synthesizable logic blocks specified in a hardware

description language or hard macros in GDSII format. An implementation of such

a system requires the insertion of relay stations for the purpose of pipelining if the

delay is longer than the target clock period. It helps design engineers to improve sys-

tem performance, and also reduces the number of costly design iteration. However,

the system throughput can be negatively affected if relay stations are improperly

inserted [28] [23] [22] [21] [32].

By having a large number of buffer queues, such performance loss can be elim-

inated. However, the system may not have adequate area to accommodate these

buffers [22]. In [22], the authors solved a buffer queue sizing problem for throughput

optimization. By imposing constraints on the number of buffers that could be al-

lowed in specific regions, the formulation took into account important physical design

constraints such as the area and routing bottlenecks [45]. A mixed integer linear pro-

gramming (MILP) formulation was used to solve the optimization problem of buffer

queue sizing. While the proposed method was effective in obtaining an optimal solu-

78

tion (within a user-specified level of precision), its runtime was not scalable; there is

currently no known polynomial-time algorithm for solving MILP [24].

Several heuristics to address the scalability issue have been proposed to date.

In [26] [27] [28], the authors reduced the problem size by collapsing each strongly

connected component (SCC) to a node. As the approach did not explore all cycles in

a graph, it often led to a final solution that deviated considerably from an optimal

solution [26]. Approaches such as those proposed in [29] [30] [31] [32] used some form

of integer linear programming (ILP) but made approximations to reduce the problem

size. In [30], the authors assumed that the channel latency increased linearly as

the buffer capacity was increased, which might not be a reasonable assumption in

latest technology nodes. The authors in [46] developed a technique to reduce the

number of places buffers must be inserted by formulating the problem as a minimum

cost arborescence problem in directed graphs. However, to solve the throughput

optimization problem for many reduced size SCCs, they also relied on an MILP

formulation similar to that in [22] for every one of those SCCs [31] [32].

In addition to the runtime scalability issue, optimally solving an MILP problem

often requires careful formulation strategy and parameter tuning [25]; these could be

obstacles to developing a robust methodology. In [33] [34], the authors avoided the

issues of queue sizing by scheduling the activation of circuit blocks. Planning for such

schedules requires that each circuit block has knowledge about the overall system

behavior, posing additional roadblocks to the design process. Moreover, most of the

approaches can only deal with small to medium-sized problems because of the de-

pendency on solving an MILP formulation. Some critical physical design constraints

such as the limited capacities of buffer regions [22] [45] are also not addressed in most

of these approaches.

In this paper, we revisit the problem defined in [22], that of buffer queue sizing

for maximizing throughput of a latency insensitive system subject to regional buffer

constraints. Instead of solving the original MILP formulation from [22], we propose

to solve a simplified buffer queue sizing problem that can be formulated as a param-

79

eterized graph optimization problem. In this formulation, for every communication

channel there is a parameterized edge with buffer counts as the edge weight. We then

use a minimum cycle mean algorithm [1] [2] [14] [18] to determine from which edges

buffers can be removed safely. The use of a minimum cycle mean algorithm that is of

polynomial-time complexity allows us to overcome the runtime scalability issue of an

integer linear program solver. We evaluate the performance of the proposed approach

on randomly generated latency insensitive systems of various sizes. In particular, we

generate large size examples that represent the near future system complexities [47].

Experimental results suggest that the proposed approach is scalable. The quality of

the solutions produced by the proposed approach, in terms of the throughput and

the size of buffer queues, is as good as that of the MILP-based approach from [22].

The rest of the paper is organized as follows. In the next two sections, we review

the work presented in [22]. In particular, we present graph models of latency insen-

sitive systems in Section 4.1 and a throughput optimization problem through buffer

sizing in Section 4.2. We propose a simplified buffer sizing problem in Section 4.3

and present its application to the throughput optimization problem in Section 4.4.

Experimental results are detailed in Section 4.5. We conclude the paper in Section 4.6.

4.1 Modeling a latency insensitive system

A system on chip consists of many circuits units that exchange data on the commu-

nication channels [22]. Because of the long interconnect delays between circuit units

and process variation in them, timing violation is a major issue in latest technology

nodes. To take care of the timing violation, wire pipelining is a common strategy in

which a long interconnect is partitioned into short segments by inserting relay sta-

tions, which are essentially clocked buffers with capacity to store [27]. Fig. 4.1(a)

shows a simple system-on-chip made of three circuit units. The long interconnect be-

tween units 1 and 3 are divided into two shorter communication channels by a relay

station as shown in Fig. 4.1(b). While this eliminates the timing violation in the long

80

interconnect, the latency of the channel between two units may become multiple cy-

cles; mismatch in latency can therefore occur between various units [23] [22] [27] [43].

Fig. 4.1.: (a) A simple system-on-chip. Blocks 1, 2 and 3 represent circuit units.
Communication channels connect the individual units. The long interconnect between
the units 1 and 3 can cause timing violation. (b) A simple wire pipelining strategy that
inserts a relay station (unit 4) between units 1 and 3 can solve the timing violation
problem. Relay stations are essentially the clocked buffer with storage capacity [27].

Because of the latency mismatch, there can be data losses. The latency insensitive

protocol allows a system with arbitrary communication latencies between different

units to function properly. It uses a signaling scheme that directs a unit to stall

through back pressure [22] [27]. Stallability property can be realized through clock

gating for any number of clock cycles while holding its internal state [23] [27]. In a

latency insensitive system, data exchanged by the units can be marked as informative

(or valid) data and non-informative (or void) data. When any of its input data is

not available, a unit is stalled and in that situation, non-informative or void data is

supplied to the output port of the stalled unit [23] [22] [27] [43].

We shall use the system in Fig. 4.1(b) to demonstrate the stalling mechanism.

Each communication channel is associated with a queue. First, we assume that every

channel has a minimum size buffer queue, i.e., it can store only one piece of data at a

time. We show a sequence of informative and non-informative data produced by the

81

Table 4.1.: Progressive trace of the LIS from Fig. 4.1 with minimum size buffer queues,
unlimited buffer queues and optimized queues.

Cycle
Circuit/relay station unit

Minimum Unlimited Optimized
no. 1 2 3 4 1 2 3 4 1 2 3 4

1 1 1 1 τ 1 1 1 τ 1 1 1 τ
2 2 2 τ 1 2 2 τ 1 2 2 τ 1
3 3 τ 2 2 3 3 2 2 3 3 2 2
4 τ 3 3 3 4 4 3 3 4 4 3 3
5 4 4 4 τ 5 5 4 4 5 5 4 4

units 1, 2, 3, and 4 in the LIS, called progressive trace [23] [22] in Table 4.1 under the

block labeled “Minimum queues” for the first five cycles. The integer value i in the

table is the i-th piece of informative data being produced by the circuit unit when

(i− 1)-th informative data are fed into it. Relay station samples data from the input

channel at every clock cycle and passes it to the output channel. We assume that the

primary inputs can always supply data to unit 1 and the primary outputs can always

consume data produced by unit 3.

Assume that units 1, 2, and 3 have valid data at their input channels, they produce

their first informative data in the first clock cycle. On the other hand, unit 4, as a relay

station, does not have informative data in its input channel and therefore provides

non-informative data (denoted as τ) to its output channel in the first cycle. Because

of the non-informative data in the communication channel from unit 4 to unit 3, unit

3 would be stalled in clock cycle 2. In clock cycle 3, unit 2 is stalled since its output

channel is already filled with data generated by the same unit in the previous cycle

but not yet consumed by unit 3. This in turn would stall unit 1 in clock cycle 4. In

cycle 5, units 1, 2, and 3 produce the 4th piece of data while unit 4 provides non-

informative data. The behavior of the units repeats every 4 cycles. The throughput

of the LIS with minimum queues is 3/4 or 0.75 as only three sets of informative data

are generated in every four clock cycles.

82

The throughput can be restored to 1 when the communication channels have

unlimited or infinite queues. The progressive trace of such a system is shown in

Table 4.1 under the block labeled “Unlimited queues”. The behavior of the system

with unlimited queues is identical to that of the system with minimum queues in

the first two clock cycles. However, in clock cycle 3 and beyond, unit 1 and unit 2

would keep producing informative data as their output channels have infinite queue

capacity, and units 3 and 4 are always one cycle behind units 1 and 2. Other than

the first two clock cycles, the primary outputs receive one piece of informative data

every cycle.

Although infinite queues provide a sufficient condition for the throughput of a

latency insensitive system to be optimal, it is not necessary to have infinite queues

for optimal throughput. For the system in Fig. 4.1(b), the optimal throughput can

also be achieved with two queue buffers for the channel between units 2 and 3, while

other channels have minimum queues. For the purpose of synchronization, the first

stalling of unit 3 effectively screens out the non-informative data forwarded by the

relay station. If there is only one buffer in the channel between units 2 and 3, unit 2

must be stalled to prevent loss of data. However by having two buffers in the output

channel, unit 2 can now continue to produce informative data. Since unit 2 never

stalls, unit 1 also never stalls. Therefore, the behavior of this system is identical

to that of the system with unlimited queues, as shown in the progressive trace in

Table 4.1 under the block labeled “Optimized queues”.

To formally capture the relationship between throughput performance and buffer

queue sizing of a latency insensitive system, two graph models have been introduced

in [22] [43]. An LIS can be modeled by a lis-graph Gl(V,E,w), which is a weighted

connected directed graph where V is the set of all circuit and relay station units.

(vi, vj) ∈ E refers to the communication channel from unit vi to unit vj, and is called

a channel edge. w(vi, vj) ∈ {0, 1} and the weights of all outgoing edges of a relay

station unit are 1, or equivalently w(vi, vj) is 1 if vi is a relay station and 0 otherwise.

Example of an lis-graph is shown in Fig. 4.2.

83

Fig. 4.2.: An example lis-graph Gl(V,E,w) [22]. The graph is constructed by nodes
that represent both circuit and relay station units. Directed edges represent commu-
nication channels that connect various units. The weights of all outgoing edges of a
relay station are 1, for other edges the weight is 0.

Fig. 4.3.: Extended lis-graph Ge(V,Ee, we) for the example lis-graph in Fig. 4.2 [22].
Extended lis-graph is a weighted connected directed graph by adding into its lis-graph
Gl(V,E,w) a mirror edge (vj, vi) (to represent back pressure) with weight w(vj, vi) =
1−Q(vi, vj)−w(vi, vj) for every channel (vi, vj) ∈ E. Q(vi, vj) is the buffer queue size
of the communication channel (vi, vj). In the example, all channels have minimum
number of buffers (i.e. one) except the channel (v7, v4), which has two buffers.

To model the queue size of a latency insensitive system, an extended lis-graph [22]

is defined as follows. An extended lis-graph Ge(V,Ee, we) of an lis-graph Gl(V,E,w)

84

is a weighted connected directed graph by adding into its lis-graph a mirror edge

(vj, vi) (to represent back pressure) with the following weight.

w(vj, vi) = 1−Q(vi, vj)− w(vi, vj), (4.1)

for every channel (vi, vj) ∈ E. Q(vi, vj) is the buffer queue size of the communication

channel (vi, vj). For a minimum size buffer queue channel (i.e. one buffer), the mirror

edge weight is exactly the opposite of the channel edge weight, in the extended lis-

graph. Fig. 4.3 shows an extended lis-graph for the corresponding lis-graph in Fig. 4.2.

In the extended lis-graph, all channels have minimum number of buffers except the

channel (v7, v4), which has two buffers [22].

4.1.1 Throughput of a latency insensitive system

As more relay stations are added, more void data may begin to circulate in the

system, thereby degrading the throughput performance. However, the throughput

performance can be improved by allocating buffers to hold informative or valid data

already generated by the source unit but not yet consumed, as demonstrated with

the example in Fig. 4.1. A strong correlation therefore exists between the size of

buffer queues and the throughput performance as having a larger queue would allow

the system to keep producing the informative data and minimize stalling of circuit

blocks. A larger queue, however, comes at the cost of area overhead and routing

bottleneck.

In the extended lis-graph Ge, consider w(C) =
∑

e∈C w(e) and τ(C) to denote

respectively the total edge weight and total number of edges of a cycle C. The cycle

mean of C, denoted as λ(C), is defined as follows:

λ(C) =
w(C)

τ(C)
, (4.2)

85

which is the total edge weight of the cycle divided by the number of edges. The

maximum cycle mean λ∗ of Ge is defined as λ∗(Ge) = maxC∈C(λ(C)) where C is the

set of all cycles in G. The cycle which has the maximum cycle mean is the maximum-

mean cycle. (Note that for a graph that has no cycles, the maximum cycle mean is

by definition −∞ [1].) Assuming that there exists some non-negative weight cycle in

Ge, the maximum possible throughput of an LIS is [43]

1− λ∗(Ge). (4.3)

For an LIS with unlimited queues, it is possible that all cycles in Ge are negative.

In order to handle such cases, the maximum possible throughput of an LIS can be

expressed more generally as:

1−max(0, λ∗(Ge)). (4.4)

Computing the maximum cycle mean is very similar to computing the minimum cycle

mean, for which many efficient algorithms exist [1] [2] [14] [18].

Fig. 4.4.: The cycle C3 (dashed edges) has no mirror edges. Its cycle mean would
therefore limit the throughput of the system [22]. Mean of the cycles C1 (i.e.
v1, v2, v3, v4, v8, v1) and C2 (i.e. v1, v2, v3, v4, v5, v6, v7, v8, v1) are more than the mean
of cycle C3. Their means can be lowered by increasing number of buffers by one for
the channel (v1, v8) (bold edge), which is actually the optimal choice for this example.

86

4.2 Buffer queue sizing for performance optimization

The expression in (4.4) suggests that to improve the throughput performance of

an LIS, we may size the buffer queues in the communication channels of an LIS in

order to change the weights of the corresponding mirror edges, and therefore reduce

the maximum cycle mean of the corresponding Ge. Let us first analyze how far we can

push the performance of a latency insensitive system by proper buffer queue sizing.

For an LIS with unlimited queues, we can in fact express its maximum possible

throughput in terms of the maximum cycle mean of the corresponding lis-graph as

follows:

1−max(0, λ∗(Gl)), (4.5)

which is very similar to (4.4). It has been discussed in [22] that the maximum cycle

mean of an extended lis-graph can never be smaller than that of the corresponding lis-

graph. In other words, no matter how we size the buffer queues in the communication

channels of an LIS and therefore change the weights of the mirror edges in its extended

lis-graph Ge,

1−max(0, λ∗(Ge)) ≤ 1−max(0, λ∗(Gl)).

The maximum cycle mean of the lis-graph therefore imposes a performance limit that

could be reached by buffer queue sizing.

To explain this through an example, we redraw Fig. 4.3 in Fig. 4.4 where some

of the edges have been highlighted. We also note the following cycles with positive

means:

• C1 = (v1, v2, v3, v4, v8, v1), λ(C1) = 2/5 = 0.4;

• C2 = (v1, v2, v3, v4, v5, v6, v7, v8, v1), λ(C2) = 3/8 = 0.375;

87

• C3 = (v4, v5, v6, v7, v4), λ(C3) = 1/4 = 0.25;

• C4 = (v4, v5, v6, v7, v8, v4), λ(C4) = 1/5 = 0.20;

• C5 = (v1, v2, v3, v4, v7, v8, v1), λ(C5) = 1/6 = 0.167.

Out of all the preceding five cycles, C3 (dashed edges) is the only cycle without

mirror edges, i.e., this is a cycle of only channel edges and it is also present in the

lis-graph. Therefore, the maximum throughput that one could possibly get from the

system is (1− 0.25) or 0.75. There are two cycles C1 and C2 whose means are more

than the mean of the cycle C3. To improve the overall throughput, we must lower

the means of these two cycles.

For cycle C1, we can increase from one to two the buffer numbers of either channel

(v8, v4) or channel (v1, v8) to make λ(c1) = 0.2. For the cycle C2, we can increase from

one to two the number of buffers of channel (v1, v8) in order to reduce λ(C2) to 0.25.

Therefore, to lower both λ(C1) and λ(C2), we can increase either buffer queue sizes of

both (v8, v4) and (v1, v8), which will cost us two buffers, or buffer queue size of only

(v1, v8), which will cost us only one buffer. That was the motivation for the original

work on the problem of buffer queue sizing for throughput performance optimization

in [22].

The buffer queue sizing problem in [22] considered two types of constraints,

namely, the performance constraints and the physical design constraints. The perfor-

mance constraints deal with the system throughput that is to be maximized and the

physical design constraints are essentially the regional buffer constraints that restrict

the number of buffers that can be inserted in the respective regions. We first discuss

the performance constraints.

88

4.2.1 Performance constraints

Going by the definition of maximum cycle mean [3] [1], If the maximum cycle

mean (i.e. λ∗(Ge) or λ∗ in short) is subtracted from every edge in Ge, it would make

all cycles negative except the maximum-mean cycles. A maximum-mean cycle turns

into a zero-weight cycle after such subtraction.

Since there are no positive cycles in the graph, all longest path distances (from an

arbitrary source node) are valid. We can therefore write the following two constraints

respectively for a channel edge (vi, vj) and its mirror edge (vj, vi) [22].

r(vj)− r(vi) ≥ w(vi, vj)− λ∗, ∀(vi, vj) ∈ E, (4.6)

r(vi)− r(vj) +Q(vi, vj)− 1 ≥ −w(vi, vj)− λ∗,∀(vi, vj) ∈ E. (4.7)

Here, r(vi) and r(vj) are respectively the longest path distances (from an arbitrary

source node) to nodes i and j. By replacing Q(vi, vj) − 1 with q(vi, vj), we re-write

(4.7) as follows:

r(vi)− r(vj) + q(vi, vj) ≥ −w(vi, vj)− λ∗,∀(vi, vj) ∈ E, (4.8)

where q(vi, vj) is the number of buffers inserted in addition to the minimum buffer

size of 1 for channel (vi, vj). A graph that represents the longest path constraints in

(4.6) and (4.8) is shown in Fig. 4.5.

In a valid queue sizing solution, q(e) for channel edge e is a non-negative integer

value, i.e.,

q(e) ∈ Z≥,∀e ∈ E, (4.9)

89

Fig. 4.5.: The graph captures the longest path constraints (4.6) and (4.8). r(vi) and
r(vj) are respectively the longest path distances to nodes i and j.

where Z≥ is the set of non-negative integers. The constraints in (4.6) and (4.8)

involve variables that are integers (q(e)) and variables that are real (r(v)); these are

mixed-integer linear constraints.

4.2.2 Physical design constraints

As the insertion of relay stations is performed in the physical design stage, there

may be very little room available for buffer insertion. At this stage of the design, the

layout of a system is almost fixed, with only some regions reserved for buffer insertion.

Each candidate buffer region has a limited capacity and is shared by several channels

that pass through it. This is captured by the following regional buffer constraints [22]:

∑
m(e)=cbt

q(e) ≤ C(cbt),∀cbt ∈ CB, (4.10)

where CB is the set of candidate buffer regions; m : E → CB is the mapping of

channel edges to candidate buffer regions, i.e., m(e) = cbt if channel e passes through

candidate buffer region cbt; and C(cbt) is the maximum number of buffers that can

be inserted in cbt.

90

4.2.3 A binary search for the maximum throughput

In the problem of buffer queue sizing for optimizing throughput performance,

the objective is to maximize the throughput (1−max(0, λ∗)), which is equivalent to

minimize the maximum cycle mean λ∗. The mixed-integer linear program (MILP)

formulation is as follows [22]:

Minimize λ∗, (4.11)

subject to (4.6), (4.8), (4.9), and (4.10).

However, solving this formulation directly with an MILP solver has been found

to be very inefficient [22]. Instead, a binary search framework can be used as follows:

For every λ∗ under consideration in the binary search, the feasibility of the constraints

in (4.6), (4.8), (4.9), and (4.10) can be checked using an MILP solver. Instead of just

checking for the feasibility of these constraints, the binary search approach in [22]

solved the following MILP for each λ∗ under consideration in order to minimize the

cost of buffering:

Minimize
∑
e∈E

q(e), (4.12)

subject to (4.6), (4.8), (4.9), and (4.10). The approach is detailed in the pseudocode

Binary search for maximum throughput [22] below.

The binary search for λ∗ is performed within a range [λ∗min, λ
∗
max] = [λ∗(Gl), λ

∗(Ge,min)].

Here, λ∗(Gl) is the minimum possible value of λ∗, which is equivalent to the through-

put of the LIS with unlimited buffer queues, and λ∗(Ge,min) is the maximum possible

value of λ∗, which is equivalent to the throughput of the LIS with minimum buffer

queues. For every λ∗tgt under consideration in the binary search, we solve for (4.12)

subject to the constraints in (4.6), (4.8), (4.9), and (4.10) with an MILP solver. If

λ∗tgt is feasible, λ∗max is lowered to λ∗tgt as we have found a higher lower bound of the

throughput; otherwise, λ∗min is raised to λ∗tgt as we have found a more realistic up-

91

Binary search for maximum throughput ([22])
Input : Gl(V,E,w), CB, C(cbt) ∀cbt ∈ CB, m(e) ∀e ∈ E, PREC
Output: λ∗

1 /* Initialization */
2 λ∗max = λ∗(Ge,min), λ∗min = λ∗(Gl), λ

∗
tgt = λ∗min

3 /* Binary search for maximum throughput */
4 while (λ∗max − λ∗min ≥ PREC)
5 /* Call the MILP solver for buffer queue sizing */
6 solve (4.12) subject to (4.6), (4.8), (4.9), and (4.10) for the target λ∗tgt
7 if(λ∗tgt is feasible)

8 λ∗max = λ∗tgt
9 else

10 λ∗min = λ∗tgt
11 end if
12 λ∗tgt = (λ∗max + λ∗min)/2

13 end while
14 λ∗ = λ∗max

per bound of the throughput. The binary search terminates when the gap between

λ∗max and λ∗min is within the user-specified precision PREC. Although the pseudocode

does not show it, a feasible buffer sizing solution is a by-product of the optimization

process.

4.2.4 A minor improvement

One may realize that it is only important to solve the MILP formulation (4.12)

subject to (4.6), (4.8), (4.9), and (4.10) exactly when there is chance for the λ∗tgt under

consideration to be feasible. We propose a minor improvement to the binary search

framework as follows. Instead of solving an MILP, we solve a relaxed linear program

(LP) (4.12), subject to (4.6), (4.8), (4.10), and q(e) ≥ 0 ∀e ∈ E, where the last

constraint replaces the integer constraint (4.9). If the relaxed LP formulation is not

feasible for the λ∗tgt under consideration, the tighter MILP formulation is also infeasi-

ble. Only when the relaxed LP formulation is feasible for the λ∗tgt under consideration,

we attempt to solve the MILP formulation to check for its feasibility. Compared to

an MILP formulation, an LP formulation can be solved in polynomial time [24]. The

pseudocode Binary search for maximum throughput (our implementation

92

of [22]) below incorporates this improvement. Again, a feasible buffer sizing solution

is a by-product of the optimization process.

Binary search for maximum throughput (our implementation
of [22])

Input : Gl(V,E,w), CB, C(cbt) ∀cbt ∈ CB, m(e) ∀e ∈ E, PREC
Output: λ∗

1 /* Initialization */
2 λ∗max = λ∗(Ge,min), λ∗min = λ∗(Gl), λ

∗
tgt = λ∗min

3 /* Binary search for maximum throughput */
4 while (λ∗max − λ∗min ≥ PREC)
5 /* Call the LP solver for feasibility check */
6 check feasibility of λ∗tgt by solving for (4.12) subject to (4.6), (4.8), and (4.10) with q(e) ≥ 0 ∀ e ∈ E
7 if(λ∗tgt is feasible)

8 /* Call the MILP solver for buffer queue sizing */
9 solve (4.12) subject to (4.6), (4.8), (4.9), and (4.10) for the target λ∗tgt

10 if(λ∗tgt is feasible)

11 λ∗max = λ∗tgt
12 else
13 λ∗min = λ∗tgt
14 end if
15 else
16 λ∗min = λ∗tgt
17 end if
18 λ∗tgt = (λ∗max + λ∗min)/2

19 end while
20 λ∗ = λ∗max

4.3 Proposed buffer queue sizing algorithm

In the solution by [22] presented in Section 4.2.3, the main bottleneck lies in

solving the MILP formulation. There is no known polynomial time algorithm for

solving MILP [24]. In this work, we propose to solve the buffer queue sizing problem

indirectly by solving a graph optimization problem. It involves solving a different form

of buffer queue sizing problem, which is related to a graph optimization problem.

93

4.3.1 A new form of buffer queue sizing problem

Let us first present this new form of buffer sizing problem. We re-write (4.8) as

follows:

r(vi)− r(vj) ≥ −w(e)− λ∗ − q(e),∀e = (vi, vj) ∈ E. (4.13)

In this new form of buffer sizing problem, we assume that each channel e allows

at most qm(e) buffers on it, in addition to the minimum queue size of 1 buffer. In

other words, q(e) ≤ qm(e). We can therefore include qm(e) in (4.13) as follows:

r(vi)− r(vj) ≥ −w(e)− λ∗ − qm(e),∀e = (vi, vj) ∈ E. (4.14)

(4.14) basically captures the fact that at the outset we want to assign maximum

number of buffers to every channel e. As we are in general more familiar with a

shortest path formulation, we also convert the longest path formulation to a shortest

path formulation by negating (4.6) and (4.14) to obtain

r(vi)− r(vj) ≤ −w(e) + λ∗,∀e = (vi, vj) ∈ E, (4.15)

r(vj)− r(vi) ≤ w(e) + λ∗ + qm(e),∀e = (vi, vj) ∈ E. (4.16)

The variable r(v) now denotes the shortest path distance to node v instead of

the longest path distance from an arbitrary source node. A graph that represents

the shortest path constraints in (4.15) and (4.16) is shown in Fig. 4.6. As we have

negated (4.6) and (4.14) the directions of the edges are opposite of those in Fig. 4.5.

In other words, an edge (vi, vj) in Fig. 4.5 (and in Ge) becomes an edge (vj, vi) in

Fig. 4.6.

94

Fig. 4.6.: The graph captures the shortest path constraints (4.15) and (4.16). r(vi)
and r(vj) are respectively the shortest path distances to nodes i and j. The directions
of the edges are opposite to those in Ge and Fig. 4.5.

In this new form of buffer queue sizing problem, we want to remove as many

buffers from each channel edge e. Let λp(e), 0 ≤ λp(e) ≤ qm(e) and λp(e) ∈ Z≥,

denotes the number of buffers we may remove from channel edge e.

r(vj)− r(vi) ≤ w(e) + λ∗ + qm(e)− λp(e), ∀e = (vi, vj) ∈ E. (4.17)

In the new buffer queue sizing problem, we want to maximize
∑

e∈E λp(e), subject

to the constraints that 0 ≤ λp(e) ≤ qm(e), λp(e) ∈ Z≥, and shortest path con-

straints (4.15) and (4.17).

Fig. 4.7.: The parameterization of the graph in Fig. 4.6 by including a parameter
λp(e) on the mirror edge of channel edge e. The parameter λp(e) is to be maximized
in the minimum balance problem.

95

4.3.2 A parametric graph and its minimum balance

We can view the graph that models the shortest path constraints (4.15) and (4.17)

(Fig. 4.7) as a parameterization of the graph that models the shortest path con-

straints (4.15) and (4.16) (Fig. 4.6). Every mirror edge of a channel edge e has a

parameter λp(e) that is to be optimized.

For a given throughput λ∗ and the maximum buffer queue sizes of all commu-

nication channel qm(e), ∀e ∈ E, let G
(λ∗,qm)
pe (V,Epe, wpe, Eupe, wupe) denote the para-

metric graph obtained from a lis-graph Gl(V,E,w). For every channel edge (vi, vj)

in E, there is a parameterized edge (vi, vj) in Epe that has an associated weight

wpe(vi, vj) = w(vi, vj) + λ∗ + qm(vi, vj) and a parameter λp(vi, vj), such that the pa-

rameterized weight of the edge is wpe(vi, vj)−λp(vi, vj). It also has a un-parameterized

edge (vj, vi) in Eupe that has an associated weight wupe(vj, vi) = −w(vi, vj) + λ∗.

For such a parametric graph, the problem of finding the minimum balance of the

graph is related to the new buffer queue sizing problem presented in the preceding

subsection. The minimum balance problem is that of finding λp(e), e ∈ Epe, by

simultaneously maximizing λp(e) for all edges without creating any negative cycle [3]

[14].

Consider a generic parametric graph (not derived from a lis-graph) in Fig. 4.8(a),

where every edge e has a numeric weight and a parameter λe. To find the minimum

balance of the graph, i.e., the maximum λe for each edge e without inducing a negative

cycle, we find a minimum-mean cycle (the cycle that has the minimum cycle mean

or MCM) and assign the minimum cycle mean to all edges in that cycle. For a

parametric graph, the mean of a cycle is obtained by dividing the sum of edge weights

by the number of parameterized edges in the cycle, and the MCM is the minimum

of all cycle means in the graph. The minimum cycle mean of 1+2+3+3+1
5

= 2 is from

cycle C1. Therefore, λ(e) = 2 for e ∈ E(C1). Otherwise, C1 would turn negative

for larger λe. Now, all edges have their weights reduced by 2. Moreover, all edges

in C1 now lose their parameters λe since they have been found (see Fig. 4.8(b)).

96

Fig. 4.8.: (a) Every edge in the graph has a parameter λe. Largest value of λe for
e ∈ E(C1) is 2, since beyond that value cycle C1 is negative. (b) Given that λe = 2
for e ∈ E(C1), largest value of λe for e ∈ E(C2) and /∈ E(C1) is 3, since beyond that
value cycle C2 is negative. (c) Minimum-balanced graph.

Next, we find the next minimum-mean cycle C2, which has a minimum cycle mean

of 4+0+2+(−1)+(−1)
4

= 1; the denominator is 4 because four out of the five edges in C2

are parameterized. Since all the edge weights have been reduced by 2 earlier because

of C1, λe = 3 for e ∈ E(C2) and /∈ E(C1). Fig. 4.8(c) shows the minimum-balanced

graph where every edge (e) has got its weight downshifted by λe (from its original

numeric weight).

The minimum balance problem is related to the new buffer queue sizing problem as

follows. First, a valid solution to that problem, λp(e), ∀e ∈ E must satisfy the shortest

path constraints (4.15) and (4.17). In other words, a feasible assignment of λp(e) must

not introduce negative cycles in the corresponding graph in Fig. 4.7. A minimum

balance solution of the parametric graph G
(λ∗,qm)
pe meets that requirement. Second, the

minimum balance solution of the parametric graph G
(λ∗,qm)
pe simultaneously maximizes

λp(e). If λp(e) is non-negative and not larger than qm(e), the number of buffers

allocated to the channel edge e, i.e., qm(e)− λp(e) is minimized.

97

However, a conventional minimum balance solution of the parametric graphG
(λ∗,qm)
pe

may not have integer values and do not fall in the valid range [0, qm(e)]. This calls for

an integer variant of the minimum balance solution for the new buffer queue sizing

problem.

4.3.3 An integer variant of minimum balance: Iterative reduction of

buffer queue sizes

As illustrated in Fig. 4.8, a conventional process of performing minimum balance

of a parametric graph is an iterative approach that involves two main operations [3]

[14]. In each iteration, the first operation computes the minimum cycle mean [1]

[2] [14]. The second operation then subtracts the minimum cycle mean from all

parameterized edges in the graph. As a minimum-mean cycle is now a zero-weight

cycle, all parameterized edges in a minimum-mean cycle are un-parameterized. The

iterative process continues until all edges are without parameters.

In our integer-variant minimum balance algorithm, we still compute the MCM.

However, our goal is not to reduce a minimum-mean cycle to zero-weight cycle but

rather to remove buffers iteratively as much as possible from every channel without

turning any cycle negative. Let λc be the MCM computed in the current iteration

and qr(e) is the number of buffers left for the channel e. Note that the initial value of

qr(e) is qm(e). As λc is in general a real number and buffer queue sizes are integers,

the number of buffers we can remove from a channel e is only min(qr(e), bλcc).

As λc is the MCM, the following inequality is satisfied:

r(vj)− r(vi) ≤ w(e) + λ∗ + qm(e)− λc,∀e = (vi, vj) ∈ E. (4.18)

Therefore, ∀e = (vi, vj) ∈ E, the inequality below must also be satisfied:

r(vj)− r(vi) ≤ w(e) + λ∗ + qr(e)−min(qr(e), bλcc). (4.19)

98

In other words, no negative cycles are introduced in the parametric graph.

Therefore, we can decrement qr(e) and the edge weight wpe(e) by min(qr(e), bλcc).

If that results in qr(e) being zero, we have removed all buffers from the channel. In

that case, we un-parameterize the parameterized edge e = (vi, vj) in the updated

graph.

However, it is possible that min(qr(e), bλcc) is zero. That happens when λc is

less than 1. The implication of this is that we cannot remove buffers from any of the

channels in the graph, and therefore cannot update the edge weights of parameterized

edges. As there are no changes in the graph in the current iteration, the next iteration

will produce the same outcome – an MCM less than 1 and no changes in the graph.

This issue is illustrated in Fig. 4.9.

Fig. 4.9(a) is an example of a parametric graph G
(λ∗,qm)
pe after a few iterations

down the run of the algorithm. The numeric weights of all edges are shown and each

parameterized edge is shown with a short vertical bar that crosses the edge. We also

show in a table the number of buffers left for the channels, denoted by qr. Note that

a numeric value of “0” does not imply the channel has no buffers as each channel

always has a minimum buffer size of 1. The minimum-mean cycle is highlighted in

red color. As the MCM is 0.8 in the current iteration, we cannot remove any buffers

from the channels (and therefore make no changes to the graph).

To resolve this issue, a parameterized edge with the smallest qr in the minimum-

mean cycle is selected and un-parameterized. In this example, the edge (v2, v3) is

un-parameterized. What this essentially means is that, at this point, we assume that

the algorithm has reached the smallest buffer size for that channel, thereby allowing

us to un-parameterize the edge. As we have modified the graph to have one fewer

parameterized edge, the MCM in the next iteration will be higher, as demonstrated in

Fig. 4.9(b). The MCM is now 2.4, which allows us to remove buffers in the remaining

parameterized edge (v4, v3). The removal of buffers is not shown in this example, but

will be demonstrated in Fig. 4.10 in the next subsection.

99

F
ig

.
4.

9.
:

A
p
ar

am
et

ri
c

gr
ap

h
G

(λ
∗
,q
m

)
p
e

w
h
er

e
a

p
ar

am
et

er
iz

ed
ed

ge
is

sh
ow

n
w

it
h

a
sh

or
t

ve
rt

ic
al

b
ar

cr
os

si
n
g

th
e

ed
ge

.
(a

)
T

h
e

m
in

im
u
m

-m
ea

n
cy

cl
e

(e
d
ge

s
co

lo
re

d
re

d
)

is
id

en
ti

fi
ed

.
T

h
e

m
in

im
u
m

cy
cl

e
m

ea
n

is
le

ss
th

an
1.

T
h
e

al
go

ri
th

m
th

er
ef

or
e

d
o
es

n
ot

re
m

ov
e

b
u
ff

er
s

fr
om

an
y

of
th

e
ch

an
n
el

s
in

th
e

gr
ap

h
,

an
d

n
o

u
p

d
at

es
to

th
e

w
ei

gh
ts

of
p
ar

am
et

er
iz

ed
ed

ge
s

ar
e

p
er

fo
rm

ed
.

(b
)

T
o

p
ro

ce
ed

,
a

p
ar

am
et

er
iz

ed
ed

ge
(v

2
,v

3
)

in
th

e
m

in
im

u
m

-m
ea

n
cy

cl
e

co
rr

es
p

on
d
in

g
to

a
ch

an
n
el

w
it

h
m

in
im

u
m

n
u
m

b
er

of
b
u
ff

er
s

le
ft

is
u
n
-p

ar
am

et
er

iz
ed

.
T

h
e

M
C

M
(f

ro
m

cy
cl

e
v 4
→

v 3
→

v 4
)

is
n
ow

2.
4,

w
h
ic

h
al

lo
w

s
u
s

to
re

m
ov

e
b
u
ff

er
s

fr
om

th
e

re
m

ai
n
in

g
p
ar

am
et

er
iz

ed
ed

ge
(v

4
,v

3
),

w
h
ic

h
is

n
ot

sh
ow

n
h
er

e,
b
u
t

w
il
l

b
e

sh
ow

n
in

F
ig

.
4.

10
.

100

Of course, having an MCM value 1 or greater does not necessarily mean that

buffers can be removed from the channels. Whenever there is no change to the

weights of parameterized edges, i.e., no buffers are removed, we would select and

un-parameterize a parameterized edge. It is possible that there are multiple parame-

terized edges in the minimum-mean cycle with the same minimum number of buffers.

In that case, one such parameterized edge is selected randomly and un-parameterized.

4.3.4 Illustration of the algorithm through an example

Let us now illustrate the proposed algorithm through the LIS in Fig. 4.1(b). In

Fig. 4.10(a), we show the parametric graph G
(λ∗,qm)
pe , where each parameterized edge is

shown with a short vertical bar crossing the edge. The numeric weights of the edges in

the parametric graph are obtained based on the original edge weights in the lis-graph,

the respective qm(e) values in the table in Fig. 4.10(a), and λ∗ = 0.2. For example,

w(v1, v2) = 0 in the lis-graph as v1 is a circuit block; therefore, the parameterized

edge (v1, v2) has a weight of w(v1, v2) + λ∗ + qm(v1, v2) = 0 + 0.2 + 1 = 1.2, and the

un-parameterized edge (v2, v1) has a weight of −w(v1, v2) + λ∗ = 0 + 0.2 = 0.2. As v4

is a relay station, w(v4, v3) = 1 in the lis-graph; hence, the parameterized edge (v4, v3)

has a weight of w(v4, v3)+λ∗+qm(v4, v3) = 1+0.2+3 = 4.2, and the un-parameterized

edge (v3, v4) has a weight of −w(v4, v3) + λ∗ = −1 + 0.2 = −0.8.

All channels are initially assigned the maximum allowable buffers (in addition to

the minimum buffer queue size of 1), i.e., qr(e) = qm(e), ∀e ∈ E. The minimum-mean

cycle is identified using red colored edges, and the corresponding MCM is λc = 1.4.

As min(qr(e), bλcc) = 1 for each parameterized edge e, we can remove one buffer from

each channel as shown in the table in Fig. 4.10(b). The weight of each parameterized

edge is also decremented by 1 accordingly. Moreover, as there are no more buffers

left to be removed from channels (v1, v2) and (v1, v4), they are un-parameterized as

shown in the resultant graph in Fig. 4.10(b).

101

F
ig

.
4.

10
.:

A
n

il
lu

st
ra

ti
on

of
th

e
b
u
ff

er
q
u
eu

e
si

zi
n
g

al
go

ri
th

m
on

th
e

L
IS

in
F

ig
.

4.
1(

b
).

(a
)

A
p
ar

am
et

ri
c

gr
ap

h
G

(λ
∗
,q
m

)
p
e

w
h
er

e
a

p
ar

am
et

er
iz

ed
ed

ge
is

sh
ow

n
w

it
h

a
sh

or
t

ve
rt

ic
al

b
ar

cr
os

si
n
g

th
e

ed
ge

.
T

h
e

ta
b
le

sh
ow

s
th

e
q m

,
w

h
ic

h
ar

e
as

si
gn

ed
to
q r

,
an

d
λ
∗

=
0.

2.
T

h
e

M
C

M
is

1.
4,

an
d

th
e

m
in

im
u
m

-m
ea

n
cy

cl
e

is
sh

ow
n

in
re

d
.

(b
)

A
b
u
ff

er
is

re
m

ov
ed

fr
om

ea
ch

of
th

e
p
ar

am
et

er
iz

ed
ed

ge
s

an
d

th
e

w
ei

gh
ts

of
th

e
p
ar

am
et

er
iz

ed
ed

ge
s

ar
e

u
p

d
at

ed
.

E
d
ge

s
(v

1
,v

2
)

an
d

(v
1
,v

4
)

b
ec

om
e

u
n
-p

ar
am

et
er

iz
ed

.
T

h
is

is
th

e
ex

am
p
le

in
F

ig
.

4.
9.

T
h
e

M
C

M
va

lu
e

of
th

e
cu

rr
en

t
gr

ap
h

is
0.

8,
an

d
n
o

b
u
ff

er
s

ca
n

b
e

re
m

ov
ed

fr
om

an
y

of
th

e
ed

ge
s.

A
p
ar

am
et

er
iz

ed
ed

ge
(v

2
,v

3
)

in
th

e
m

in
im

u
m

-m
ea

n
cy

cl
e

(s
h
ow

n
in

re
d
)

co
rr

es
p

on
d
in

g
to

a
ch

an
n
el

w
it

h
m

in
im

u
m
q r

is
u
n
-p

ar
am

et
er

iz
ed

to
ob

ta
in

a
n
ew

gr
ap

h
sh

ow
n

in
(c

).
T

h
e

M
C

M
is

2.
4,

al
lo

w
in

g
u
s

to
re

m
ov

e
tw

o
b
u
ff

er
s

fr
om

(v
4
,v

3
),

w
h
ic

h
is

th
en

u
n
-p

ar
am

et
er

iz
ed

to
gi

ve
th

e
fi
n
al

gr
ap

h
in

(d
).

T
h
e

al
go

ri
th

m
te

rm
in

at
es

w
h
en

th
e

fi
n
al

gr
ap

h
h
as

n
o

m
or

e
p
ar

am
et

er
iz

ed
ed

ge
s.

T
h
e

ta
b
le

in
(d

)
sh

ow
s

th
at

on
ly

th
e

ch
an

n
el

(v
2
,v

3
)

u
se

s
on

e
ad

d
it

io
n
al

b
u
ff

er
in

th
e

fi
n
al

so
lu

ti
on

,
w

h
il
e

ea
ch

of
th

e
re

m
ai

n
in

g
ch

an
n
el

s
h
as

m
in

im
u
m

b
u
ff

er
q
u
eu

e
si

ze
of

1.

102

We again apply the MCM algorithm on this new graph. Since the MCM is now less

than 1, we cannot remove buffers from any of the parameterized edges. To continue

the algorithm, a parameterized edge in the minimum-mean cycle (red colored edges)

that has the lowest qr is un-parameterized. That would be the edge (v2, v3), as shown

in the resultant graph in Fig. 4.10(c). This is in fact the example shown in Fig. 4.9

(see the preceding subsection for more details).

Running the MCM algorithm again on the graph in Fig. 4.10(c) yields the MCM

of λc = 2.4. As min(qr(v4, v3), bλcc) = 2, we can decrement both qr(v4, v3) and

wpe(v4, v3) by 2. Since there are no more buffers left in this channel, (v4, v3) is un-

parameterized. The final graph is shown in Fig. 4.10(d). As there are no more

parameterized edges in the graph, the buffer sizing algorithm terminates. The final

buffer queue sizing solution inserts only one additional buffer in channel (v2, v3) (on

top of the minimum buffer queue size of 1). Each of the remaining channels has

minimum buffer queue size of 1. This is in fact the optimal cost for this example.

4.3.5 Implementation detail

The pseudocode Buffer queue sizing algorithm provides the details of the

proposed approach. Given a lis-graph, a target performance λ∗, and upper bounds on

buffer queue sizes qm, the algorithm first constructs the corresponding parameterized

graph G
(λ∗,qm)
pe (V,Epe, wpe, Eupe, wupe). Each channel e is then initialized with qr(e) =

qm(e) buffers (in addition to the minimum queue size of 1). While there exists a

parameterized edge in G
(λ∗,qm)
pe , the algorithm performs a round of MCM calculation

and graph update. An mcm algorithm is invoked to calculate the minimum cycle

mean λc and also to find the corresponding minimum-mean cycle C. The algorithm

then attempts to remove buffers and update the edge weight associated with every

parameterized edge e using min(qr(e), bλcc). When the residual buffer queue size qr(e)

of a parameterized edge e becomes 0, e is un-parameterized. If the current round of

103

Buffer queue sizing algorithm
1 buffer queue sizing(Gl(V,E,w), λ∗, qm)

2 Construct G
(λ∗,qm)
pe (V,Epe, wpe, Eupe, wupe)

3 qr = qm
4 while |Epe| > 1 do

5 [λc, C] = mcm algorithm(G
(λ∗,qm)
pe)

6 buffers removed flag = 0
7 for every edge (vi, vj) in Epe do
8 if min(qr(vi, vj), bλcc) 6= 0 do
9 buffers removed flag = 1

10 /* buffers to be removed */
11 qr(vi, vj) = qr(vi, vj)−min(qr(vi, vj), bλcc)
12 wpe(vi, vj) = wpe(vi, vj)−min(qr(vi, vj), bλcc)
13 if qr(vi, vj) == 0 do
14 /* un-parameterize the edge if no buffers left in channel */
15 Epe = Epe − (vi, vj)
16 Eupe = Eupe + (vi, vj)
17 end if
18 end if
19 end for
20 if buffers removed flag == 0 do
21 /* buffers not removed */
22 /* find a parameterized edge with lowest qr in C */
23 find (vi, vj) = argmine∈Epe∩C(qr(e))

24 /* un-parameterize the edge with lowest qr in C */
25 Epe = Epe − (vi, vj)
26 Eupe = Eupe + (vi, vj)
27 end if
28 end while
29 return qr
30 end buffer queue sizing

graph update does not remove any buffers, a parameterized edge in the minimum-

mean cycle C with the lowest residual buffer queue size qr is un-parameterized.

Although any MCM algorithms from [1] [2] [14] [18] can be used to implement

the mcm algorithm in the pseudocode, we have chosen to use the Young-Tarjan-

Orlin (YTO) algorithm from [14] because of its efficiency, as observed in [7] [37]. Our

implementation of the YTO algorithm uses binary heap and has a time complexity

of O(|V ||Eupe + Epe| log |V |) [7]. As |E| = |Eupe| = |Epe| for the initial G
(λ∗,qm)
pe , the

time complexity of mcm algorithm is effectively O(|V ||E| log |V |).

The main contributor to the time complexity of the proposed buffer queue sizing

algorithm is the iterative invocation of the mcm algorithm. As we un-parameterize

at least one parameterized edge in each iteration, the overall time complexity of the

proposed algorithm is O(|V ||E|2| log |V |).

104

4.4 Proposed throughput optimization algorithm

In the formulation of the new buffer queue sizing problem, we assume an upper

bound on the number of buffers for a channel, i.e., qm(e) for channel e. However, the

original formulation of the buffer queue sizing problem in [22] has regional constraints

of buffers, i.e., C(cbt), and not the channel constraint qm(e). In order to apply the

proposed buffer queue sizing algorithm to solve the original problem, we have to

convert regional buffer constraints to channel constraints.

We do so by solving the relaxed LP formulation presented in Section 4.2.4. Solving

for (4.12), subject to (4.6), (4.8), (4.10), and q(e) ≥ 0 ∀e ∈ E gives an non-integer

buffer solution q(e) for each channel e that satisfies the regional buffer constraints.

Of course, the non-integer buffer solution, denoted as qLP (e), from the LP for-

mulation cannot be used directly. We use the following approximation to obtain an

initial guess on qm(e) for the proposed buffer queue sizing algorithm.

qm(e) = 1 + dqLP (e)e,∀e ∈ E. (4.20)

Even though these upper bounds on the buffer queue sizes may not meet the regional

constraint of buffers, they provide a good starting point for the buffer queue sizing

algorithm to find a good residual buffer queue sizing solution qr(e). Since we start

with initial bounds qm that may be infeasible, we must check for the feasibility of the

residual buffer queue sizing solution:

∑
m(e)=cbt

qr(e) ≤ C(cbt),∀cbt ∈ CB. (4.21)

If the constraints are not satisfied, we have to lower the target throughput perfor-

mance in search for a lower-cost buffer solution that meets the regional constraints.

We are now ready to present the proposed throughput optimization algorithm

in the following pseudocode, which is still based on the binary search framework

presented in Section 4.2.

105

Proposed throughput optimization algorithm
Input : Gl(V,E,w), CB, C(cbt) ∀cbt ∈ CB, m(e) ∀e ∈ E, PREC
Output: λ∗, q(e) ∀ e ∈ E

1 /* Initialization */
2 λ∗max = λ∗(Ge,min), λ∗min = λ∗(Gl), λ

∗
tgt = λ∗min

3 /* Run binary search for maximum throughput */
4 while (λ∗max − λ∗min ≥ PREC)
5 /* Call the LP solver */
6 check feasibility of λ∗tgt and get qLP (e) by solving for (4.12) subject to (4.6), (4.8), and (4.10) with

q(e) ≥ 0 ∀ e ∈ E
7 if(λ∗tgt is feasible)

8 /* Run proposed buffer queue sizing algorithm */
9 for every channel edge e in E do

10 qm(e) = 1 + dqLP (e)e
11 end for
12 qr = buffer queue sizing(Gl, λ

∗
tgt, qm)

13 if (
∑
m(e)=cbt

qr(e) ≤ C(cbt), ∀cbt ∈ CB) /* regional buffer constraint (4.10) */

14 λ∗max = λ∗tgt
15 else
16 λ∗min = λ∗tgt
17 end if
18 else
19 λ∗min = λ∗tgt
20 end if
21 λ∗tgt = (λ∗max + λ∗min)/2

22 end while
23 λ∗ = λ∗max

We perform a binary search for the best system throughput attainable as in ap-

proach from [22]. A preliminary feasibility check of a particular λ∗tgt is performed by

solving a relaxed LP formulation, which also yields qLP if λ∗tgt is feasible for the re-

laxed problem. If λ∗tgt is feasible, the buffer queue sizing algorithm is called, using

qLP as a good guess of qm as in (4.20). If the residual buffer queue sizing solution

qr satisfies the regional buffer constraints, we have found a better throughput and

therefore, λ∗max is updated. If the relaxed LP formulation is infeasible or the resid-

ual buffer queue sizing solution does not satisfy the regional buffer constraints, we

have to update λ∗min in order to look for a lower throughput solution. The binary

search process terminates when the difference between λ∗max and λ∗min is less than a

user-specified precision level. Again, even though the pseudocode does not show it, a

buffer queue sizing solution that corresponds to the best throughput attainable is a

by-product of the optimization process.

106

Further optimization (not shown in the pseudocode) is possible to remove more

buffers from the channels. One can do so by removing a buffer from a channel (and

also making updates to its parameterized edge weight) and checking for negative

cycles using Bellman-Ford algorithm [36] or the mcm algorithm used in this work.

If there are no negative cycles, the buffer can be removed safely. This can be repeated

for every parameterized edge e that has non-zero qr(e). As the final buffer queue sizing

solution usually has a low buffer count, the runtime for this further optimization is

insignificant.

4.5 Experimental results

We have implemented the MILP-based optimization approach from [22] (Sec-

tion 4.2.3), our minor improvement to it (Section 4.2.4), and the proposed through-

put optimization algorithm (Section 4.4) in C++. In these implementations, we have

used lp solve 5.5.2.5 [48] as the MILP solver and the LP solver. These implementa-

tions are evaluated on Intel(R) Xeon(R) CPU E5-2660 2.60 GHz Linux machine with

66GB of RAM.

We consider large size examples that represent the future system complexities [47]

for the evaluation of the proposed throughput optimization algorithm against the

original MILP-based approach and improved version. We vary the number of nodes

(i.e. the number of blocks) in the latency insensitive system from 400 to 9100. For

each combination of the number of blocks, the number of communication channels,

and the number of relay stations as shown in Table 4.2, we create a lis-graph randomly.

For each lis-graph, we randomly generate two sets of regional buffer constraints. One

set of regional buffer constraints is quite relaxed in that the attainable highest system

performance is closer to that of a system with unlimited buffer queue size. The other

set of regional buffer constraints is more stringent in that the attainable highest

system performance would degrade quite significantly. We essentially use a larger

value of C(cbt) in (4.10) for the relaxed constraints compared to the tight constraints.

107

Table 4.2.: Details of lis-graphs used for the evaluation of various approaches.

Number of Number of Number of

blocks channels relay stations

LIS1 400 1600 100
LIS2 700 800 100
LIS3 1200 4800 300
LIS4 2000 8000 500
LIS5 2100 2400 300
LIS6 2800 11200 700
LIS7 3500 4000 500
LIS8 3600 14400 900
LIS9 4400 17600 1100
LIS10 4900 5600 700
LIS11 5200 20800 1300
LIS12 6000 24000 1500
LIS13 6300 7200 900
LIS14 7700 8800 1100
LIS15 9100 10400 1300

We first compare the proposed approach against the two MILP-based approaches

using lis-graphs with relaxed regional buffer constraints. The results in Table 4.3 are

obtained using PREC = 0.0001 as the level of precision to decide when to terminate

the binary search in all three approaches. The column labeled “TMQ” corresponds

to the throughput when the latency insensitive systems have minimum buffer queue

size of 1. The column labeled “TUQ” corresponds to the throughput when the latency

insensitive systems have unlimited buffer queue size. The column labeled “Nmin”

shows the minimum number of buffers a system must have. It is the same as the

number of channels in Table 4.2.

For each approach used to solve the throughput optimization problem, we show

the highest throughput performances attainable in the column labeled “TCQ”. The

numbers of additional buffers (on top of the minimum buffer queue of size 1) required

to attain the reported throughput performances are shown in the column labeled

“Nbuf”. For the two MILP-based approaches, Nbuf =
∑

e∈E q(e), whereas for the

108

T
ab

le
4.

3.
:

C
om

p
ar

in
g

th
e

p
ro

p
os

ed
ap

p
ro

ac
h

w
it

h
M

IL
P

-b
as

ed
ap

p
ro

ac
h
es

fo
r

re
la

x
ed

re
gi

on
al

b
u
ff

er
co

n
st

ra
in

ts
.

M
IL

P
-b

as
ed

T
h
e

p
ro

p
os

ed
ap

p
ro

ac
h

T
M
Q

T
U
Q

N
m
in

T
C
Q

N
bu
f

T
ex
ec

(s
ec
.)

T
ex
ec

(s
ec
.)

=
T
lp

+
T
m
il
p

T
C
Q

N
bu
f

T
ex
ec

(s
ec
.)

=

[2
2]

(O
u
r

im
p
le

m
en

ta
ti

on
of

[2
2]

)
T
lp

+
T
g
r
a
p
h

L
IS

1
0.

25
00

0.
30

77
16

00
0.

30
77

11
6.

9
1.

4
+

3.
1

0.
30

77
12

1.
4

+
4.

9
L

IS
2

0.
46

94
0.

52
00

80
0

0.
52

00
15

2.
1

1.
1

+
0.

5
0.

52
00

15
1.

1
+

4.
3

L
IS

3
0.

23
68

0.
24

14
48

00
0.

24
14

3
11

.5
7.

0
+

3.
9

0.
24

14
3

7.
3

+
6.

2
L

IS
4

0.
22

50
0.

22
86

80
00

0.
22

85
1

25
.8

19
.6

+
5.

5
0.

22
85

1
20

.0
+

4.
6

L
IS

5
0.

27
27

0.
35

19
24

00
0.

35
18

5
7.

1
4.

8
+

1.
9

0.
35

18
5

5.
0

+
4.

6
L

IS
6

0.
16

67
0.

18
52

11
20

0
0.

18
52

1
41

.6
30

.2
+

10
.4

0.
18

52
1

30
.9

+
7.

6
L

IS
7

0.
35

29
0.

44
00

40
00

0.
41

18
9

29
.8

13
.6

+
10

.8
0.

41
18

9
13

.9
+

6.
6

L
IS

8
0.

19
64

0.
22

22
14

40
0

0.
22

22
22

39
23

8.
5

86
.7

+
19

55
2.

8
0.

22
22

22
87

.3
+

7.
8

L
IS

9
0.

16
67

0.
17

65
17

60
0

0.
17

65
1

75
.7

56
.5

+
18

.0
0.

17
65

1
57

.8
+

6.
4

L
IS

10
0.

40
54

0.
44

44
56

00
0.

44
44

16
30

3.
4

29
.0

+
14

3.
3

0.
44

44
16

29
.3

+
6.

9
L

IS
11

0.
16

67
0.

22
22

20
80

0
0.

22
22

11
99

57
.7

19
3.

3
+

49
09

.7
0.

22
22

11
19

4.
3

+
8.

4
L

IS
12

0.
19

05
0.

22
39

24
00

0
0.

22
39

19
18

56
0.

7
51

8.
0

+
91

20
.4

0.
22

39
19

51
9.

6
+

11
.1

L
IS

13
0.

42
35

0.
45

24
72

00
0.

45
23

17
40

88
.1

45
.3

+
20

26
.9

0.
45

23
17

45
.7

+
10

.0
L

IS
14

0.
34

41
0.

43
21

88
00

−
−

−
−

−
−

−
−

0.
42

38
33

10
5.

2
+

8.
3

L
IS

15
0.

29
17

0.
41

04
10

40
0

−
−

−
−

−
−

−
−

0.
38

96
41

83
.5

+
14

.7

109

proposed approach, Nbuf =
∑

e∈E qr(e), based on the notation used in the respective

sections describing the approaches. The actual total number of buffers for each system

is Nmin+Nbuf =
∑

e∈E Q(e). As Nmin is same for all the three approaches, highlighting

Nbuf can more clearly demonstrate the quality of the solutions produced by the three

approaches. The two MILP-based approaches are equivalent; therefore, they share

the same “TCQ” and “Nbuf”.

The table also lists the runtimes taken to compute the solutions in the columns

labeled “Texec” for the three approaches. For the improved MILP-based approach, we

show the time taken by the LP solver, i.e., “Tlp”, and the time taken by the MILP

solvers, “Tmilp”. For the proposed approach, we show the time taken by the LP solver,

i.e., “Tlp”, and the time taken by the graph-based buffer queue sizing algorithm, i.e.,

“Tgraph”. The higher the “TCQ”. the better is the throughput; the lower the “Nbuf”,

the lower is the cost; the lower the “Texec”, the more efficient is the approach.

The two MILP-based approaches fail to produce solutions for two test cases LIS14

and LIS15, as indicted by “−−”, even after running the programs for a few days. For

the rest of test cases (LIS1–13), the solutions from the two MILP-based approaches

and the proposed approach have the same throughput performances. The buffer queue

sizing solutions have identical costs except for LIS1, where the proposed approach uses

one more buffer than the MILP-based approaches. As we may consider the solutions

that are available from the MILP-based approaches to be optimal, we observe that the

proposed approach also produces optimal throughput performances for all test cases

LIS1–13. As the regional buffer constraints are relatively relaxed, the throughput

performances for most test cases are exactly or close to TUQ (system performance

when queues are unlimited). The buffer queue sizing solutions from the proposed

approach are also close to being optimal.

The runtimes of the proposed approach remain scalable even when the size of the

lis-graph increases. On the other hand, the two MILP-based approaches see a sharp

increase in runtimes when the size of the lis-graph increases. As expected, the im-

proved MILP-based approach scales better than the original MILP-based approach

110

from [22]. Based on Table 4.3, we may conclude that the proposed throughput opti-

mization algorithm is a scalable approach in producing solutions that are optimal or

close to optimal.

In order to obtain some results for LIS14 and LIS15, we also apply the improved

MILP-based approach on these two test cases with lower precision of PREC ∈

{0.001, 0.01, 0.1}. (We use the improved MILP-based approach because it is more

scalable than the original MILP-based approach.) Even with the lower precision, we

manage to obtain solution only when PREC = 0.1, as shown in Table 4.4. The

throughput performances, TCQ, obtained by the improved MILP-based approach at

PREC = 0.1 are not as good as the throughput performances obtained by the pro-

posed approach at a higher precision of PREC = 0.0001. As the throughput perfor-

mances are lower, the corresponding buffer queue sizing solutions have fewer buffers

compared to those obtained by the proposed approach at a higher precision.

We also apply the proposed approach to LIS14 and LIS15 at lower precision of

PREC ∈ {0.001, 0.01, 0.1}. As expected, the throughput degrades at lower precision.

(Note that we report TCQ with six decimal places in Table 4.4 to show more clearly the

degradation in throughput.) We also observe in Table 4.4 that at PREC = 0.1, the

solutions from the proposed approach have the same throughput and buffering cost

as those of the MILP-based approach. Again, the proposed approach is significantly

more efficient than the improved MILP-based approach. The results for LIS14 are

also a clear indicator that the proposed buffer queue sizing algorithm is a heuristic,

as the number of buffers increases from 33 to 34 even when the throughput drops

from 0.423836 to 0.423828.

We now present results for the test cases with tight regional buffer constraints.

As in Table 4.3, Table 4.5 reports the details of the solutions produced by the three

approaches for LIS1–15 using PREC = 0.0001. All three approaches produce solu-

tions that are of the same quality, in terms of throughput TCQ and buffer counts Nbuf .

As we may assume that the MILP-based approaches are optimal, the proposed algo-

rithm manages to also obtain optimal solutions for all test cases. We also observe in

111

T
ab

le
4.

4.
:

C
om

p
ar

in
g

th
e

p
ro

p
os

ed
ap

p
ro

ac
h

w
it

h
ou

r
im

p
le

m
en

ta
ti

on
of

[2
2]

fo
r

re
la

x
ed

re
gi

on
al

b
u
ff

er
co

n
st

ra
in

ts
w

it
h

d
iff

er
en

t
P
R
E
C
∈
{0
.0

00
1,

0.
00

1,
0.

01
,0
.1
}.

O
u
r

im
p
le

m
en

ta
ti

on
of

[2
2]

T
h
e

p
ro

p
os

ed
ap

p
ro

ac
h

P
R
E
C

T
C
Q

N
bu
f

T
ex
ec

(s
ec
.)

=
T
C
Q

N
bu
f

T
ex
ec

(s
ec
.)

=
T
lp

+
T
m
il
p

T
lp

+
T
g
r
a
p
h

L
IS

14

0.
00

01
−
−

−
−

−
−

0.
42

38
36

33
10

5.
2

+
8.

3
0.

00
1

−
−

−
−

−
−

0.
42

38
36

33
10

5.
1

+
7.

8
0.

01
−
−

−
−

−
−

0.
42

38
28

34
52

.7
+

6.
7

0.
1

0.
40

62
50

14
25

.7
+

37
.5

0.
40

62
50

14
25

.9
+

3.
6

L
IS

15

0.
00

01
−
−

−
−

−
−

0.
38

95
87

41
83

.5
+

14
.7

0.
00

1
−
−

−
−

−
−

0.
38

91
60

39
57

.6
+

9.
6

0.
01

−
−

−
−

−
−

0.
38

28
12

26
30

.5
+

4.
4

0.
1

0.
38

28
12

26
30

.2
+

19
33

9.
0

0.
38

28
12

26
30

.5
+

4.
3

112

T
ab

le
4.

5.
:

C
om

p
ar

in
g

th
e

p
ro

p
os

ed
ap

p
ro

ac
h

w
it

h
M

IL
P

-b
as

ed
ap

p
ro

ac
h
es

fo
r

ti
gh

t
re

gi
on

al
b
u
ff

er
co

n
st

ra
in

ts
.

M
IL

P
-b

as
ed

T
h
e

p
ro

p
os

ed
ap

p
ro

ac
h

T
M
Q

T
U
Q

N
m
in

T
C
Q

N
bu
f

T
ex
ec

(s
ec
.)

T
ex
ec

(s
ec
.)

=
T
lp

+
T
m
il
p

T
C
Q

N
bu
f

T
ex
ec

(s
ec
.)

=

[2
2]

(O
u
r

im
p
le

m
en

ta
ti

on
of

[2
2]

)
T
lp

+
T
g
r
a
p
h

L
IS

1
0.

25
00

0.
30

77
16

00
0.

28
57

4
1.

6
1.

1
+

0.
4

0.
28

57
4

1.
2

+
3.

4
L

IS
2

0.
46

94
0.

52
00

80
0

0.
49

12
3

1.
3

0.
7

+
0.

4
0.

49
12

3
0.

9
+

6.
8

L
IS

3
0.

23
68

0.
24

14
48

00
0.

24
14

3
11

.6
7.

1
+

3.
8

0.
24

14
3

7.
4

+
6.

6
L

IS
4

0.
22

50
0.

22
86

80
00

0.
22

85
1

26
.6

20
.6

+
5.

5
0.

22
85

1
21

.1
+

4.
5

L
IS

5
0.

27
27

0.
35

19
24

00
0.

29
41

1
4.

2
3.

0
+

1.
0

0.
29

41
1

3.
2

+
5.

1
L

IS
6

0.
16

67
0.

18
52

11
20

0
0.

18
52

1
41

.0
29

.7
+

10
.5

0.
18

52
1

30
.4

+
7.

4
L

IS
7

0.
35

29
0.

44
00

40
00

0.
38

64
3

16
.8

12
.4

+
4.

0
0.

38
64

3
12

.7
+

6.
3

L
IS

8
0.

19
64

0.
22

22
14

40
0

0.
20

00
1

69
.9

52
.4

+
16

.7
0.

20
00

1
52

.9
+

6.
5

L
IS

9
0.

16
67

0.
17

65
17

60
0

0.
16

67
0

74
.9

59
.0

+
14

.8
0.

16
67

0
59

.8
+

6.
1

L
IS

10
0.

40
54

0.
44

44
56

00
0.

42
30

3
31

.7
22

.3
+

8.
7

0.
42

30
3

22
.5

+
6.

2
L

IS
11

0.
16

67
0.

22
22

20
80

0
0.

21
05

6
32

6.
3

13
2.

6
+

12
5.

6
0.

21
05

6
13

3.
1

+
8.

7
L

IS
12

0.
19

05
0.

22
39

24
00

0
0.

22
06

15
10

19
.7

44
5.

7
+

37
1.

4
0.

22
06

15
44

5.
4

+
12

.0
L

IS
13

0.
42

35
0.

45
24

72
00

0.
43

54
5

68
.7

34
.0

+
28

.3
0.

43
54

5
34

.4
+

10
.2

L
IS

14
0.

34
41

0.
43

21
88

00
0.

40
58

23
10

39
.6

70
.4

+
50

4.
9

0.
40

58
23

71
.1

+
11

.4
L

IS
15

0.
29

17
0.

41
04

10
40

0
0.

33
33

3
84

.4
58

.4
+

24
.8

0.
33

33
3

59
.2

+
9.

3

113

Table 4.5 that for very tight regional buffer constraints, it may not be always possible

to reach close to the maximum throughput performance. This can be attributed to

the fact that satisfying the regional buffer constraints would require one to sacrifice

the throughput performance as there is a direct trade-off involved.

When it comes to runtime performance, the proposed approach certainly still

scales better than the MILP-based approaches, although the advantage of the pro-

posed approach is no longer that pronounced as compared to the results in Table 4.3.

It is also interesting that the runtime performance of the MILP-based approaches for

the tight constraints (Table 4.5) is considerably better than for the relaxed constraints

(Table 4.3).

Summarizing the results from Table 4.3, Table 4.4, and Table 4.5, the proposed ap-

proach, which essentially combines an LP solver and a graph optimization algorithm,

always runs in reasonable time. Significant portion of the runtime in the proposed

approach goes to solving the LP formulation. One reason for the longer runtime is

that the LP solver is called for every target λ∗tgt, whereas the proposed graph algo-

rithm runs only when a particular λ∗tgt is found to be feasible. In fact, the runtimes for

the LP solver in the proposed approach and in the improved MILP-based approach

are similar. In other words, the scalability of the proposed approach stems from the

advantage of the graph-based optimization over an MILP solver.

One may argue that the scalability is not a direct result of switching from an

MILP formulation to a graph formulation; rather, it is the new form of buffer queue

sizing problem in Section 4.3.1 that contributes to the efficiency of the proposed

approach. Recall that we convert the regional buffer constraints proposed in the

formulation in [22] into the channel buffer constraints so that we can formulate the

buffer queue sizing problem as a parametric graph. This conversion allows us to use

an integer-variant of the minimum balance algorithm to perform buffer queue sizing.

As the MILP is a general solver that is capable of handing the new formulation in

Section 4.3.1, we present a fourth approach of throughput optimization: Instead of

calling buffer queue sizing in line 12 of the pseudocode Proposed throughput

114

Table 4.6.: Using an MILP solver to solve the new buffer queue sizing problem for
relaxed regional buffer constraints.

Texec(sec.) =
TCQ Nbuf Tlp + Tmilp

LIS1 0.3077 11 1.2 + 2.8
LIS2 0.5200 15 1.0 + 0.5
LIS3 0.2414 3 7.1 + 3.6
LIS4 0.2285 1 19.6 + 5.1
LIS5 0.3518 5 4.9 + 1.9
LIS6 0.1852 1 30.4 + 9.8
LIS7 0.4118 9 13.8 + 9.8
LIS8 0.2222 22 86.9 + 24722.9
LIS9 0.1765 1 56.7 + 16.7
LIS10 0.4444 16 29.1 + 104.0
LIS11 0.2222 11 193.5 + 4544.2
LIS12 0.2239 19 520.2 + 26816.4
LIS13 0.4523 17 45.6 + 2555.3
LIS14 −− −− −−
LIS15 −− −− −−

optimization algorithm, we use an MILP solver to solve the new form of buffer

queue sizing problem of maximizing
∑

e∈E λp(e), subject to the constraints that 0 ≤

λp(e) ≤ qm(e), λp(e) ∈ Z≥, and the shortest path constraints (4.15) and (4.17).

We present the results of this fourth approach in Table 4.6 for the relaxed re-

gional buffer constraints and Table 4.7 for the tight regional buffer constraints. For

the relaxed constraints, the fourth approach outputs the same TCQ and Nbuf as in

Table 4.3. However, the runtime in general is inferior to our implementation of [22].

For the tight constraints, the algorithm does not perform well as the throughput at-

tainable falls below the throughput reported in Table 4.5 for the other algorithms.

Therefore, it is justifiable to conclude that the parametric graph formulation of the

new buffer queue sizing problem is the main reason for the scalability of the proposed

throughput optimization algorithm.

115

Table 4.7.: Using an MILP solver to solve the new buffer queue sizing problem for
tight regional buffer constraints.

Texec(sec.) =
TCQ Nbuf Tlp + Tmilp

LIS1 0.2800 2 1.0 + 0.7
LIS2 0.4807 2 0.7 + 0.7
LIS3 0.2414 3 7.1 + 3.6
LIS4 0.2285 1 20.6 + 5.1
LIS5 0.2727 0 2.9 + 1.6
LIS6 0.1852 1 29.8 + 9.8
LIS7 0.3864 3 12.5 + 3.8
LIS8 0.2000 1 52.6 + 15.5
LIS9 0.1667 0 59.1 + 13.6
LIS10 0.4230 3 22.3 + 7.9
LIS11 0.2083 2 128.9 + 84.6
LIS12 0.2017 3 222.6 + 389.9
LIS13 0.4269 1 35.3 + 27.7
LIS14 0.3441 0 34.9 + 26.0
LIS15 0.3124 2 34.6 + 24.9

4.6 Conclusions

In latency insensitive system design, proper sizing of buffer queues can reduce

the cost of implementation while achieving the same system performance. We have

presented a parametric graph formulation of a new form of buffer queue sizing problem

and proposed an optimization approach based on an integer-variant of the minimum

balance algorithm. Experimental results show that the proposed approach scales well

while quality of the solutions obtained, in terms of system throughput attainable and

buffer queue sizes, is as good as that of the MILP-based approach.

116

5. SUMMARY AND FUTURE RESEARCH

This dissertation has explored efficient minimum cycle mean algorithms and their

applications. Particularly, in chapter 2, we have presented several techniques to im-

prove the early termination check in the Hartmann-Orlin’s (HO) algorithm. These

improvements allow the efficient early termination check to be performed in O(|V |)

time on the average empirically. Such efficiency also allows to reduce the cost of

vertical relaxation. Consequently, the proposed algorithm has better runtime perfor-

mance than HO and produces comparable results to YTO for circuit graphs and dense

random graphs. However, when it comes memory usage, the proposed algorithm is

significantly better than YTO.

Minimum balancing is an application of the minimum cycle mean algorithm. In

Chapter 3, we have proposed an improvement to the conventional minimum balance

algorithms by performing fewer re-weighting of edge weights in each iteration, result-

ing in better efficiency. We see 42.56% and 34.26% average runtime improvements

over state-of-the-art minimum balance algorithms for graphs derived from IWLS 2005

benchmark circuits and randomly generated graphs, respectively.

We have also applied the minimum cycle mean algorithm in latency insensitive

system design. In latency insensitive system design, proper sizing of buffer queues can

reduce the cost of implementation while achieving the same throughput performance.

In Chapter 4, we have presented a parametric graph formulation of a new form of

buffer queue sizing problem and proposed an optimization approach based on an

integer-variant of the minimum balance algorithm. The minimum balance algorithm

uses the minimum cycle mean algorithm as a subroutine. Experimental results show

that the proposed approach scales well while quality of the solutions in terms of

the system throughput and buffer queue sizes is as good as that of the MILP-based

approach.

117

We now present possible future research opportunities based on these works.

Fig. 5.1.: Showing an example of (a) fully parametric graph where all edges are
parameterized, that is a parameter λ is associated with every edge, (b) parametric
graph where not all edges have a parameter λ.

5.1 Hartmann-Orlin’s algorithm for parametric graph

In the problem formulation for minimum cycle mean and minimum balancing in

Chapters 2 and 3 we have assumed that all edges in the graph are parameterized (fully

parametric graph example, see Figure 5.1) that is, a parameter λ(e) is associated with

every edge e ∈ E in G(V,E,w). But there can also be situation where do not want

to maximize slack or tolerance for all the constraints. If such is the requirement,

some edges in the timing constraint graph would have just a constant value of weight

and no parameter associated with it. This generic formulation is closely related to

the parametric shortest path problem which can be solved by YTO algorithm as

efficiently as for the fully parametric case. In Chapter 4, for solving the buffer queue

sizing problem, we have in fact used the version of the YTO algorithm that can handle

parametric graphs. Remember in the extended lis-graph only the mirror edges are

parametrized. But to solve such problem with the proposed MCM algorithm, there is

a need of extra round of relaxation (which we call horizontal relaxation) to handle un-

parameterized edges. Hartmann and Orlin [18] suggest using Dijkstra’s shortest path

algorithm for horizontal relaxation, but running shortest path algorithm as many

times as vertical relaxation in a straightforward manner can be time consuming if

118

size of the un-parameterized graph is large (i.e. there are many edges without the

parameter λ). A speed-up of the horizontal relaxation is therefore necessary. To the

best of our knowledge there is no existing experimental study of the HO algorithm

on such a general problem.

5.2 The proposed MCM algorithm for solving the minimum balance

problem

Although any MCM algorithm can be used as the subroutine for MCM calculation

in the minimum balance algorithm, historically only two MCM algorithms have been

used for this purpose. While Schneider and Schneider [3] uses a modified version of

the Karp’s algorithm [1] that repeatedly calculates maximum cycle mean from scratch

on the modified graph for solving the maximum balance problem (closely related to

the minimum balancing), Young, Tarjan and Orlin [14] shows a way to continue using

the shortest path tree calculated by the YTO algorithm in the previous iteration for

the next iteration to solve the minimum balance problem. Since the algorithm does

not rebuild the shortest path tree from scratch, there is runtime benefit.

In our implementation of the minimum balance algorithm including that of the

Schneider and Schneider’s, we have used the YTO algorithm as the MCM subrou-

tine. Although it is noted that any maximum (minimum) cycle mean algorithm can

be used for solving the maximum (minimum) balance problem, Schneider and Schnei-

der’s study is mostly focused on introducing the problem itself and also on the other

subroutine that collapses a maximum/minimum mean cycle. Given the competitive

performance in runtime on circuit graphs as well as less overhead in memory usage

of the proposed MCM algorithm presented in this dissertation, we think it might be

worth exploring ways to extend the algorithm much the same way it is done with

YTO. Note that a small improvement in one MCM calculation can result in signif-

icant overall improvement when many MCM calculations are involved. Minimum

balancing does require solving MCM problem many times.

119

However for the buffer queue sizing problem, the proposed approach has to run the

MCM algorithm from scratch in every iteration, therefore one of the benefit of using

the YTO algorithm, i.e. making use of the previous shortest path tree information

for building the next tree is no more applicable. We must also take into account

the additional memory overhead of the YTO algorithm. It might be worth exploring

parameterized version of the proposed MCM algorithm to implement the proposed

buffer queue sizing approach.

5.3 Solving other integer linear programming problems

The problem of optimal slack distribution in clock network can be formulated

also as a linear programming problem [56]. Since combinatorial algorithms have been

observed to run faster for difference constraint problems [12], minimum balancing

approach for solving the slack distribution problem has been received well by the

research community. However both approaches are capable of solving the problem

optimally in polynomial time.

On the contrary, the mixed integer linear programming (MILP) formulation of

the buffer sizing problem cannot be solved optimally in reasonable time since MILP

is known to have no polynomial time algorithm. The proposed approach to buffer

sizing is scalable but it is still a heuristic technique, no optimal solution is therefore

guaranteed. The reason is that often the algorithm has to make a random choice

to prevent getting stuck. We have discussed the issue before. If the MCM value in

any iteration is below one, no changes occur in the graph and hence the algorithm

makes no progress. We resolve this by making a greedy choice since we always pick

the parameterized edge with smallest number of buffers left and un-parameterize it.

There could be multiple such edges. Notwithstanding, the quality of the solution of

the proposed approach is as good as that of the MILP based approach over a wide

range in size of latency insensitive systems as we have shown in the experimental

results.

120

We believe the unique approach that we have developed to solve the buffer sizing

problem is open for adoption in other integer linear programming problems. Particu-

larly, in applications where there are difference constraints with some parameters to

be optimized are integers, it could be worth exploring ways to apply the proposed

method. One thing to note is that the buffer sizing problem that we have solved in

this dissertation is of mixed integer linear programming type because of the presence

of both integers and real variables. The longest/shortest path distance r captures

the non-integer part in the problem since λ∗ is a real variable, while buffer number

captures the integer part. However, the approach can be extended to pure integer

linear programming problems as well.

VITA

121

VITA

Supriyo Maji obtained a Bachelor’s degree in Electronics and Telecommunication

Engineering from IIEST, Shibpur, India in 2007 and a Master’s degree in Electron-

ics and Electrical Communication Engineering from IIT, Kharagpur, India in 2011.

He worked as R&D engineer for Synopsys (via Magma) in Bangalore. He also has

experience working for Qualcomm in San Diego, HAL (SLRDC) in Hyderabad and

Mindtree Limited in Bangalore. His current research interest is in design automation

of electronic circuits.

REFERENCES

122

REFERENCES

[1] R. M. Karp, “A Characterization Of The Minimum Cycle Mean In A Diagraph,”
Discrete Mathematics 23, pp. 309–311, 1978.

[2] R. M. Karp and J. B. Orlin, “Parametric shortest path algorithms with an ap-
plication to cyclic staffing,” Discrete Applied Mathematics, vol. 3, pp. 37–45,
1981.

[3] H. Schneider and M. Schneider, “Max-Balancing Weighted Directed Graphs And
Matrix Scaling,” Mathematics of Operation Research, vol. 16, no. 1, pp. 208–222,
1991.

[4] J. Orlin and A. Sedeno-Noda, “An O(Nm) Time Algorithm for Finding the
Min Length Directed Cycle in a Graph,” in ACM-SIAM Symposium on Discrete
Algorithms, 2017.

[5] C. Albretch, B. Korte, J. Schietke, and J. Vygen, “Maximum mean weight cy-
cle in a digraph and minimizing cycle time of a logic chip,” Discrete Applied
Mathematics, pp. 103–127, 2002.

[6] A. Dasdan and R. K. Gupta, “Faster Maximum and Minimum Mean Cycle
Algorithms for System-Performance Analysis,” IEEE Transaction On Computer-
Aided Design of Integrated Circuits And Systems, vol. 17, no. 10, 1998.

[7] A. Dasdan, “Experimental Analysis of the Fastest Optimum Cycle Ratio and
Mean Algorithms,” ACM Transactions on Design Automation of Electronics Sys-
tem, vol. 9, no. 4, pp. 385–418, 2004.

[8] G. Wu and C. Chu, “A Fast Incremental Cycle Ratio Algorithm,” in International
Symposium on Physical Design, 2017, pp. 75–82.

[9] R. Lu and C.-K. Koh, “Performance analysis of latency-insensitive systems,”
IEEE Transaction On Computer-Aided Design of Integrated Circuits And Sys-
tems, vol. 25, no. 3, pp. 469–483, 2006.

[10] ——, “Performance Optimization of Latency Insensitive Systems Through Buffer
Queue Sizing of Communication Channels,” in International Conference on
Computer-Aided Design, 2003, pp. 227–231.

[11] S. Held, “Timing closure in chip design,” Ph.D. dissertation, University of Bonn,
2008.

[12] C. Albretch, B. Korte, J. Schietke, and J. Vygen, “Cycle time and slack optimiza-
tion for VLSI-chips,” in International Conference on Computer-Aided Design,
1999.

123

[13] S. Held, B. Korte, J. Massberg, M. Ringe, and J. Vygen, “Clock Scheduling
And Clocktree Construction For High Performance ASICS,” in International
Conference on Computer-Aided Design, 2003.

[14] N. E. Young, R. E. Tarjan, and J. B. Orlin, “Faster Parametric Shortest Path
and Minimum-Balance Algorithms,” Networks, vol. 21, no. 2, 1991.

[15] A. B. Kahng, S. Kang, J. Li, and J. P. D. Gyvez, “An Improved Methodology for
Resilient Design Implementation,” ACM Transactions on Design Automation of
Electronics System, vol. 20, no. 4, pp. 1–26, 2015.

[16] J.-L. Tsai, D. H. Baik, C.-P. Chen, and K. K. Saluja, “A yield improvement
methodology using pre- and post-silicon statistical clock scheduling,” in Inter-
national Conference on Computer-Aided Design, 2004.

[17] J. M. Rabaey, A. P. Chandrakasan, and B. Nikoli, Digital integrated circuits: a
design perspective. Pearson Education, 2003.

[18] M. Hartmann and J. B. Orlin, “Finding Minimum Cost to Time Ratio Cycles
with Small Integral Transit Times,” Networks, vol. 23, pp. 567–574, 1993.

[19] A. Dasdan, “An Experimental Study of Minimum Mean Cycle Algorithms,”
UCI-ICS Technical Report, 1998.

[20] C. Albrecht, “IWLS 2005 Benchmarks,” in International Workshop for Logic
Synthesis, 2005.

[21] L. P. Carloni, “From Latency-Insensitive Design to Communication-Based
System-Level Design,” Proceedings of the IEEE, vol. 103, no. 11, pp. 2133–2151,
2015.

[22] R. Lu and C.-K. Koh, “Performance Optimization Of Latency Insensitive Sys-
tems Through Buffer Queue Sizing Of Communication Channels,” in Interna-
tional Conference on Computer-Aided Design, 2003, pp. 227–231.

[23] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli, “Theory of
latency-insensitive design,” IEEE Transaction On Computer-Aided Design of
Integrated Circuits And Systems, vol. 20, no. 9, pp. 1059–1076, 2001.

[24] R. M. Karp, “Reducibility Among Combinatorial Problems,” in Complexity of
Computer Computations, Plenum Press, New York, 1972, pp. 85–103.

[25] E. Klotz and A. Newman, “Practical guidelines for solving difficult mixed inte-
ger linear programs,” Surveys in Operations Research and Management Science,
vol. 18, pp. 18–32, 2013.

[26] R. L. Collins and L. P. Carloni, “Topology-Based Performance Analysis and
Optimization of Latency-Insensitive Systems,” IEEE Transaction On Computer-
Aided Design of Integrated Circuits And Systems, vol. 27, no. 12, pp. 2277–2290,
2008.

[27] C.-H. Li and L. P. Carloni, “Leveraging Local Intra-core Information to Increase
Global Performance in Block-Based Design of Systems-on-Chip,” IEEE Trans-
action On Computer-Aided Design of Integrated Circuits And Systems, vol. 28,
no. 2, pp. 165–178, 2009.

124

[28] R. L. Collins and L. P. Carloni, “Topology-Based Optimization of Maximal Sus-
tainable Throughput in a Latency-Insensitive System,” in Design Automation
Conference, 2007, pp. 410–415.

[29] J.-D. Huang, Y.-H. Chen, and Y.-C. Ho, “Throughput Optimization for Latency-
Insensitive System with Minimal Queue Insertion,” in Asia and South Pacific
Design Automation Conference, 2011, pp. 585–590.

[30] D. Bufistov, J. Julvez, and J. Cortadella, “Performance optimization of elastic
systems using buffer resizing and buffer insertion,” in International Conference
on Computer-Aided Design, 2008, pp. 442–448.

[31] B. Xue and S. K. Shukla, “Optimization of Back Pressure and Throughput for
Latency Insensitive Systems,” in International Conference on Computer Design,
2010, pp. 45–51.

[32] B. Xue, S. K. Shukla, and S. S. Ravi, “Optimization of Latency Insensitive Sys-
tems Through Back Pressure Minimization,” IEEE Transaction of Computers,
vol. 64, no. 2, pp. 464–476, 2015.

[33] M. R. Casu and L. Macchiarulo, “A new approach to latency insensitive design,”
in Design Automation Conference, 2004, pp. 576–581.

[34] ——, “Throughput-driven foorplanning with wire pipelining,” IEEE Transaction
On Computer-Aided Design of Integrated Circuits And Systems, vol. 24, no. 5,
pp. 663–675, 2005.

[35] L. Zhang, J. S. Tsai, Y. Hu, and C. C.-P. Chen, “Convergence-Provable Statisti-
cal Timing Analysis with Level-Sensitive Latches and Feedback Loops,” in Asia
and South Pacific Design Automation Conference, 2006.

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction To
Algorithms. MIT Press, 2009.

[37] L. Georgiadis, A. V. Goldberg, R. E. Tarjan, and R. F. Wemeck, “An Experimen-
tal Study of Minimum Mean Cycle Algorithms,” in Proceedings of the Eleventh
Workshop on Algorithm Engineering and Experiments (ALENEX), 2009, pp. 1–
13.

[38] A. Dasdan, S. S. Irani, and R. K. Gupta, “Efficient Algorithms for Optimum
Cycle Mean and Optimum Cost to Time Ratio Problems,” in Design Automation
Conference, 1999.

[39] https://github.com/alidasdan.

[40] H. Schneider and M. Schneider, “Towers and cycle covers for max-balanced
graph,” Mathematics of Operation Research, vol. 73, pp. 159–170, 1990.

[41] E. Lawler, Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, New York, 1976.

[42] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest Paths Algorithms:
Theory and Experimental Evaluation,” Mathematical Programming, vol. 73, pp.
129–174, 1996.

125

[43] R. Lu and C.-K. Koh, “Performance Analysis and Efficient Implementation of
Latency Insensitive Systems,” Technical Report, TR-ECE03-06, School of Elec-
trical and Computer Engineering, Purdue University, 2003.

[44] ——, “Performance Analysis of Latency-Insensitive Systems,” IEEE Transaction
On Computer-Aided Design of Integrated Circuits And Systems, vol. 25, no. 3,
pp. 469–483, 2006.

[45] ——, “Interconnect planning with local area constrained retiming,” in Design
Automation and Test Conference, 2003, pp. 442–447.

[46] B. Xue, S. K. Shukla, and R. S. Sekharipuram, “Minimizing back pressure for
latency insensitive system synthesis,” in International Conference on Formal
Methods and Models for Co-Design, 2010, pp. 189–198.

[47] G. Reehal and M. Ismail, “A Systematic Design Methodology for Low-Power
NoCs,” IEEE Transaction On Very Large Scale Integration (VLSI) Systems,
vol. 22, no. 12, pp. 2585–1595, 2014.

[48] http://lpsolve.sourceforge.net/5.5/.

[49] B. V. Cherkassky and A. V. Goldberg, Negative-cycle detection algorithms.
Springer-Verlag, 1999.

[50] M. Chaturvedi and R. M. McConnel, “A Note On Finding Minimum Mean Cy-
cle,” Information Processing Letters, 2017.

[51] R. A. Howard, Dynamic Programming and Markov Processes. The M.I.T. Press,
Cambridge, Massachusetts, 1960.

[52] E. Moore, “The shortest path through a maze,” in International Symposium on
the Theory of Switching, 1959, pp. 285–292.

[53] N. Chandrachoodan, S. S. Bhattacharyya, and K. J. R. Liu, “Adaptive nega-
tive cycle detection in dynamic graphs,” in IEEE International Symposium on
Circuits and Systems, 2001.

[54] C.-W. A. Tsao and C.-K. Koh, “UST/DME: A clock tree router for general skew
constraints,” ACM Transactions on Design Automation of Electronics System,
vol. 7, no. 3, pp. 359–379, 2002.

[55] J. P. Fishburn, “Clock skew optimization,” IEEE Transactions on Computers,
vol. 39, no. 7, pp. 945–951, 1990.

[56] R. Ewetz and C.-K. Koh, “Scalable Construction of Clock Trees With Useful
Skew and High Timing Quality,” IEEE Transaction On Computer-Aided Design
of Integrated Circuits And Systems, vol. 38, no. 6, 2019.

[57] R.-S. Say, “Exact zero skew,” in International Conference on Computer-Aided
Design, 1991, pp. 336–339.

[58] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao, “Bounded-skew clock
and Steiner routing,” ACM Transactions on Design Automation of Electronics
System, vol. 3, no. 3, pp. 341–388, 1998.

126

[59] I. H.-R. Jiang, C.-L. Chang, and Y.-M. Yang, “INTEGRA: Fast Multi-bit Flip-
Flop Clustering for Clock Power Saving,” IEEE Transaction On Computer-Aided
Design of Integrated Circuits And Systems, vol. 31, no. 2, pp. 192–204, 2012.

[60] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli, “A method-
ology for correct-by-construction latency insensitive design,” in International
Conference on Computer-Aided Design, 1999.

[61] N. Uysal and R. Ewetz, “OCV Guided Clock Tree Topology Reconstruction,” in
Asia and South Pacific Design Automation Conference (ASP-DAC), 2018.

[62] C. Tan, R. Ewetz, and C.-K. Koh, “Clustering of Flip-Flops for Useful-Skew
Clock Tree Synthesis,” in Asia and South Pacific Design Automation Conference
(ASP-DAC), 2018.

[63] R. Ewetz, “A Clock Tree Optimization Framework with Predictable Timing
Quality,” in Design Automation Conference (DAC), 2017.

[64] R. Ewetz and C.-K. Koh, “Clock Tree Construction based on Arrival Time Con-
straints,” in International Symposium on Physical Design (ISPD), 2017.

[65] R. Ewetz, C. Tan, and C.-K. Koh, “Construction of Latency-Bounded Clock
Trees,” in International Symposium on Physical Design (ISPD), 2016.

[66] R. Ewetz and C.-K. Koh, “MCMM Clock Tree Optimization based on Slack
Redistribution Using a Reduced Slack Graph,” in Asia and South Pacific Design
Automation Conference (ASP-DAC), 2016.

[67] R. Ewetz, S. Janarthanan, and C.-K. Koh, “Construction of Reconfigurable
Clock Trees for MCMM Designs,” in Design Automation Conference (DAC),
2015.

[68] R. Ewetz and C.-K. Koh, “Useful Skew Tree Framework for Inserting Large
Safety Margins,” in International Symposium on Physical Design (ISPD), 2015.

[69] R. Ewetz, S. Janarthanan, and C.-K. Koh, “Fast Clock Skew Scheduling based
on Sparse-Graph Algorithms,” in Asia and South Pacific Design Automation
Conference (ASP-DAC), 2015.

[70] R. Ewetz and C.-K. Koh, “Local Merges for Effective Redundancy in Clock
Networks,” in International Symposium on Physical Design (ISPD), 2013.

[71] G. Wu, Y. Xu, D. Wu, M. Ragupathy, Y.-Y. Mo, and C. Chu, “Flip-flop Cluster-
ing by Weighted K-means Algorithm,” in Design Automation Conference (DAC),
2016.

[72] D. Eppstein, “Finding the k shortest paths,” SIAM J. Computing, vol. 28, no. 2,
pp. 652–673, 1998.

[73] M. R. Guthaus, W. Wilke, and R. Reis, “Revisiting Automated Physical Syn-
thesis of High-Performance Clock Networks,” ACM Transactions on Design Au-
tomation of Electronics System, vol. 18, no. 2, 2013.

[74] C.-K. Koh, J. Jain, and S. F. Cauley, Synthesis of clock and power/ground net-
works. Electronic Design Automation, Morgan Kaufmann, 2009.

127

[75] R. B. Deokar and S. S. Sapatnekar, “A Graph-theoretic Approach to ClockSkew
Optimization,” in International Symp. on Circuits and Systems (ISCAS), 1994.

[76] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical timing analy-
sis: From basic principles to state of the art,” IEEE Transaction On Computer-
Aided Design of Integrated Circuits And Systems, vol. 27, no. 4, pp. 589–607,
2008.

[77] J. P. Fishburn, “Clock skew optimization,” IEEE Transactions on Computers,
vol. 39, no. 7, pp. 945–951, 1990.

[78] G. Ramalingam and T. Reps, “On the computational complexity of incremental
algorithms,” Tech. Rep. TR-1033, Computer Sciences Department, University of
Wisconsin, Madison, 1991.

[79] R. Ewetz, S. Janarthanan, and C.-K. Koh, “Benchmark circuits for clock schedul-
ing and synthesis,” https://purr.purdue.edu/publications/1759, 2015.

[80] R. Tarjan, “Enumeration of the Elementary Circuits of a Directed Graph,” SIAM
J. Computing, vol. 2, no. 3, pp. 589–607, 1973.

[81] A. P. Hurst, P. Chong, and A. Kuehlmann, “Physical Placement Driven by
Sequential Timing Analysis,” in International Conference on Computer-Aided
Design, 2004.

