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ABSTRACT

Chang, Chia-Jung Ph.D., Purdue University, August 2020. Enhanced Target Discrim-
ination and Delay-Doppler Resolution in Chirp Radar Systems. Major Professor:
Mark R. Bell.

Target detection, estimation, and discrimination have long been important re-

search issues in the field of radar. Waveform design, analog signal processing, and

digital signal processing are some techniques that can improve the detection, esti-

mation, and discrimination ability. In this dissertation, we first address the sidelobe

suppression from the waveform design point of view. We synthesize a non-constant

modulus waveform for illumination of radar targets by applying a collection of con-

stant modulus (linear frequency modulated (LFM) waveforms with different frequency

offsets) waveforms from each transmitting array element in an antenna array, and we

show from the ambiguity function that the non-constant modulus waveform has better

performance with respect to the larger ambiguity function mainlobe-to-peak-sidelobe

ratio than this ratio of a constant modulus (LFM-only) waveform. Furthermore, from

the angular resolution point of view, the synthesized non-constant modulus waveform

also has better performance than the angular resolution of a constant modulus wave-

form at the expense of the decrease in the signal energy on targets.

Secondly, we investigate radar delay-Doppler resolution enhancement from the

digital signal processing viewpoint. We introduce the noise-target fringe analysis

technique and combine it with the coherent CLEAN algorithm to provide accurate

target parameter estimates in terms of delay, Doppler shift and intensity. Further-

more, the accuracy of target parameter estimates can be further improved by applying

weighted non-linear least squares estimation.
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Finally, we further aim for the improvement in radar delay-Doppler resolution.

Instead of using the matched filter only, we propose a hybrid filter which combines a

chirp matched filter and chirp mismatched filters. The hybrid filter output response

shows much better performance in delay and Doppler resolution compared to the chirp

matched filter output response. Thus, this hybrid filter design has better target iden-

tification capability than the original chirp matched filter. Furthermore, from a real

implementation perspective, there is no need to significantly increase the hardware

and software complexity of the radar, since we only need to mismatch the received

waveform to another chirp waveform and perform some additional non-linear pro-

cessing. Then a chirp radar system with high delay-Doppler resolution and accurate

target discrimination ability can be easily achieved.
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1. INTRODUCTION

Radar target discrimination—the ability to discern multiple target returns—has been

one of the most important issues in radar research for a long time. It determines not

only the ability of detecting multiple targets with close ranges and Doppler shifts, but

also the estimation accuracy of targets’ delays and Doppler shifts. Some performance

metrics such as the mainlobe to the peak sidelobe ratio (PSLR) of a target’s delay-

Doppler response, the delay-Doppler resolutions, and mutual interference level among

the reflected targets, are key performance indicators in radar systems. Hence, the

peak sidelobe ratio (PSLR) enhancement, much finer delay-Doppler resolutions, and

interference suppression are the main goals to achieve better target discrimination

ability.

However, when pursuing these performance metrics, some practical constraints

may limit the radar system designs, such as the size of the antenna, the permitted

signal bandwidth, the maximum power of waveform transmission, the digital signal

processing capability, and the radar system complexity. Because of these limits, the

performance of the overall radar design can be significantly affected.

In traditional pulse radar systems, an unmodulated waveform is transmitted, and

a matched filter is applied at the receiver to collect the scattered signal and extract the

reflected targets’ information such as the presence, positions, velocities and intensities.

However, the matched filter output response in the delay domain, which is determined

by the time-autocorrelation of the waveform, is a triangular shape in amplitude, which

may cause problems in discriminating two spatially close targets, especially when one

of the target returns has a much smaller amplitude than the amplitude of the other

return. Also, unmodulated pulse radar systems are prone to jamming or interference

from other radar systems, causing performance degradation in target detection and

estimation.
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To solve the poor range resolution and jamming problems in unmodulated pulse

radar systems, modulated waveforms are often applied in radar systems. Modulated

waveforms include amplitude modulations, frequency modulations, phase modula-

tions, and the mixture of these modulation techniques. The main advantage of ap-

plying modulated waveforms is that these waveforms can be compressed and then

possesses a much sharper matched filter delay output response. This property im-

proves the radar’s range resolution and discrimination ability.

However, even if finer range resolution can be achieved, for an amplitude modu-

lated waveform, the amplitude of the transmitted pulse varies with time, which may

cause power efficiency problems. The reason for this is that radar transmitters usually

employ efficient, saturated, nonlinear power amplifiers for energy efficient operation,

as the total power transmitted by most radar systems is large, so power efficiency

is important. Because of this concern, constant modulus waveforms are commonly

adopted for transmission in most of the modern radar systems.

Frequency modulated waveforms, phase modulated waveforms, and the mixture

of frequency-phase modulated waveforms belong to the class of constant modulus

waveforms, i.e., the pulse amplitude is constant in the whole duration of transmission

[1–7]. The constant modulus property allows radar transmitters to have greater power

efficiency. Linear “Chirp” radars, radars using a linear frequency modulated (LFM)

waveform for transmission, are one of the most popular and widely used types of radar

systems [1, 8–10]. Due to the both advantages of range compression and constant

waveform modulus, finer range resolution and the better power efficiency can be

achieved by using a linear chirp waveform. Thus, in this dissertation, we mainly

focus on applying linear frequency modulated waveforms (LFM) to improve the peak

sidelobe ratio (PSLR) of a target’s delay-Doppler response, improve the delay-Doppler

resolution, and suppress interference among all targets.

To improve the peak sidelobe ratio (PSLR) of a target’s matched filter delay-

Doppler response, we apply some waveform design techniques. Waveform diversity

(WD), one of the novel waveform design techniques, is a popular research topic in
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recent years [11–16], and the specific explanation of waveform diversity can be found

from the IEEE Standard 686-2008 definition [17]. In general, waveform diversity is

used to optimize the overall radar system performance in terms of some performance

metrics in certain specific scenarios. Recently, diversity waveform research for phased

array radars and MIMO radars is popular [18–21]. Furthermore, for chirp radars,

chirp diversity has also been extensively discussed [22–24]. By optimizing the chirp

waveforms, the performance in terms of the delay-Doppler resolution, the angular

resolution or the sidelobe suppression can be further improved.

However, the optimized radar waveform, which achieves some of the best per-

formance metrics, sometimes may not be easily synthesized. From the ambiguity

function point of view, we know that a thumbtack shape in the ambiguity function

for a waveform can achieve the best delay-Doppler resolution, but so far, the wave-

form having this ambiguity function can not be easily generated. Such a near optimal

waveform cannot be easily implemented in real radar systems because of limitations

and constraints in these radar systems.

Therefore, to meet the requirement of easy and practical implementations, we

select chirp radars as our system structure. We apply a linear array of transmit ele-

ments as the transmitters, and all elements transmit constant modulus waveforms, but

with different frequency offsets. We then design a non-constant modulus synthesized

waveform by summing these different constant-modulus waveforms, and then apply

matched filtering to the synthesized non-constant modulus waveform to improve the

delay-Doppler resolution. Note that Maxwell’s equations, being linear, result in the

waveform illuminating the target being the sum of phase shifted versions of each of

the constant modulus waveforms transmitted by each of the array elements. Also,

the angular resolution analysis of the non-constant modulus synthesized waveform

is provided, and it has a slight improvement in angular resolution compared to the

constant-modulus waveform.

Furthermore, concerning of the delay-Doppler resolutions enhancement issue, it is

known that the matched filter output response of a linear chirp pulse has a triangular
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envelope along the α-rotated axis (ν = ατ) in the delay-Doppler plane, where α is

the chirp rate of the chirp pulse. When any pair of targets are close enough in delay

and Doppler shift, and they have a Doppler shift difference which equals to their

delay difference multiplied by the chirp rate of the transmitted chirp waveform α,

the traditional chirp matched filter output response will have a mixed envelope made

up of two partially overlapping triangular envelopes. Furthermore, when one of the

two target returns is smaller than the other, the smaller triangular envelope may be

masked in the mixed envelope, causing a missed detection of the smaller target.

To solve the poor ridge resolution problem in chirp radars, we introduce a new

image processing technique, noise-target fringe analysis, that can effectively estimate

targets’ delay information. We also combine the concept of the coherent CLEAN

algorithm [25–28] with the noise-target fringe analysis to further estimate the Doppler

shifts and amplitudes of the targets. This target parameter estimation method has

high accuracy in target parameter estimation and then improves the ability of target

differentiation along the chirp ridges. To achieve more precise estimates, we can

further apply the Gauss-Newton optimization method to find a weighted nonlinear

least squares estimate of the target parameters, which can further improve the radar’s

target discrimination ability.

Likewise, interference suppression is also a significant radar issue. Based on the

chirp transmitter-receiver structure, we design a hybrid filter, which is combined with

the original chirp matched filter and a chirp mismatched filter, to effectively suppress

the triangular amplitude along the chirp ridge in the chirp matched filter output

response. This is quite useful for resolving two close targets which lie the line with

the slope α, the chirp rate of the transmitted chirp waveform, in the delay-Doppler

response. Therefore, by applying this hybrid filter, the resolution along the chirp

ridge as well as the range resolution can be greatly improved.
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1.1 Review of the Matched Filter and Radar Ambiguity Function

In this section, we give a brief introduction to the matched filter and the ambiguity

function. In the followings of the dissertation, we will take advantage of these concepts

to discuss the output response of the matched filter and the mismatched filter. Also,

the relationship between the ambiguity function and the delay-Doppler response will

be presented.

1.1.1 The Matched Filter

To measure the delay of a target return in a radar system, we usually apply the

matched filter. Due to the property that the maximum signal-to-noise ratio (SNR)

is achieved when the received waveform and the delayed version of the transmitted

waveform are perfectly matched, we can then extract the return signal’s delay in-

formation under the condition of the maximum SNR. Therefore, the matched filter

design is widely used in the radar receivers [8, 9, 29,30].

When the received waveform is fed into the matched filter, a delayed, conjugated

and time-reversed version of the matching template waveform is convolved with the

received waveform to generate the filter output response. When the two waveforms

are perfectly matched, the peak of the output response occurs, which also means the

maximum energy output is achieved. We can then use the time difference between the

instant of the beginning of waveform transmission and instant of the occurrence of the

peak amplitude in the output response, as well as the pulse width of the transmitted

waveform to calculate the target’s range.

We know from the matched filter that the peak amplitude of the output response

happens when the received waveform and matching template waveform are perfectly

matched. We can then use the time difference between the transmission time and the

peak matched filter output time to determine the distance between the transmitter

and the target. However, when the amplitude of the signal output response which is

close to the peak drops off too slowly, it may cause the accuracy problems in measuring
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the target’s distance due to the contribution of noise in the output response. The

total matched filter output response is constituted of the signal output response and

the noise output response. When the signal output response does not fall of quickly

around the peak, because of the randomness of the amplitude of the noise output

response, it may change the time of the occurrence of the peak of the total output

response, causing an error in the measurement of the target’s distance.

Furthermore, when the received waveform contains two targets which lie close to-

gether in range but with a great difference in the amplitude, then the output response

of the target with the larger amplitude has almost the same amplitude around the

peak, which is much larger than the peak of the output response of the target with

the smaller amplitude. Therefore, the peak of the target with the smaller amplitude

is concealed in the output response of the target with the larger amplitude, causing a

single peak only which is shown at the total output response; then the smaller target

may not be detected. This will cause a problem in resolving the two targets.

Therefore, how to design a transmitted waveform as well as a matching template

waveform to make delay response of the filter approach the thumbtack shape and

improve the accuracy and the delay-Doppler resolution problem has long been an

interesting research issue.

From the concept of the matched filter we know that the maximum attainable

signal energy is achieved when the filter impulse response is perfectly match to the

reflected signal in time. However, when the reflected signal is from a moving target,

the reflected signal is Doppler affected, causing a shift in the carrier frequency [10].

In addition, the receiver does not have any knowledge about the Doppler shift when

receiving the reflected signal, so a mismatch in Doppler happens when performing

the above mentioned matched filtering process. Such kind of mismatch in delay and

Doppler of the matched filter output is related to the Ambiguity Function of the

transmitted waveform. In the following, we briefly introduce the definition and some

important properties of the ambiguity function, as the ambiguity function will be

widely used throughout this dissertation.
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1.1.2 The Radar Ambiguity Function

The ambiguity function is the time response of a mismatched filter to the trans-

mitted signal when there is a delay mismatch of τ and a Doppler shift mismatch of

ν [10, 31–34]. In this subsection, we first provide the definition of the narrowband

radar ambiguity function (AF), and then we present some important properties of the

ambiguity function [10,35]. The ambiguity function fully shows the targets’ delay and

Doppler characteristics, and it is helpful in the design of high-resolution waveforms

in matched-filter radar systems.

Definition

Let s(t) be a finite energy, baseband transmitted waveform with the complex

envelope, where ∫ ∞
−∞
|s(t)|2dt = Es,

then the (symmetric) ambiguity function of s(t) is defined as

Γ(τ, ν) =

∫ ∞
−∞

s(t+ τ/2)s∗(t− τ/2)e−i2πνtdt. (1.1)

Alternatively, the (asymmetric) ambiguity function of s(t) is defined as

χ(τ, ν) =

∫ ∞
−∞

s(t)s∗(t− τ)e−i2πνtdt. (1.2)

In this dissertation, we primarily use the asymmetric ambiguity function χ(τ, ν) and

regard it as the main function for delay-Doppler analysis.

Now, with the definition of the ambiguity function, there are four important prop-

erties of the ambiguity function [32,33],

Property 1:

|χ(τ, ν)| ≤ |χ(0, 0)| = Es. (1.3)

Property 2: ∫ ∞
−∞

∫ ∞
−∞
|χ(τ, ν)|2dτdν = E2

s . (1.4)
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Property 3:

|χ(−τ,−ν)| = |χ(τ, ν)|. (1.5)

Property 4:

If a given complex envelope transmitted signal s(t) has an ambiguity function

χ(τ, ν), then s(t) · eiπkt2 has the ambiguity function e−iπkτ
2 · χ(τ, ν − kτ).

With these four important properties of the ambiguity function, we will provide

two examples which show the ambiguity functions of the unmodulated rectangular

pulse and the linear frequency modulated (LFM) pulse. In the rest of the dissertation,

we sometimes use name “linear chirp pulse” interchangeably with “LFM pulse”.

Ambiguity Function of an Unmodulated Rectangular Pulse

Let srect(t) be an unmodulated constant-modulus pulse of length T as follows:

srect(t) = 1[0,T ](t). (1.6)

Then, from (1.2) we know that the ambiguity function of srect(t) is

χrect(τ, ν) =

∫ ∞
−∞

srect(t)s
∗
rect(t− τ)e−i2πνtdt

=

∫ ∞
−∞

1[0,T ](t) · 1[0,T ](t− τ)e−i2πνtdt

= e−iπν(T+τ)(T − |τ |) sinc (ν(T − |τ |)) , 0 ≤ |τ | ≤ T. (1.7)

The ambiguity surface |χrect(τ, ν)|, the zero-delay cut |χrect(0, ν)|, and the zero-

Doppler cut |χrect(τ, 0)| are shown in Figures 1.1, 1.2 and 1.3.

Ambiguity Function of a Linear Frequency Modulated Pulse

Let schirp(t) be a linear frequency modulated constant-modulus pulse of length T as

follows:

schirp(t) = eiπαt
2

1[0,T ](t), (1.8)
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Fig. 1.1. Ambiguity function of an unmodulated rectangular pulse of length T .
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Fig. 1.2. Zero-delay cut of an unmodulated rectangular pulse of length T .
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Fig. 1.3. Zero-Doppler cut of an unmodulated rectangular pulse of length T .

where αt is the instantaneous frequency of the signal schirp(t). So we know that when

α is fixed, the instantaneous frequency of schirp(t) linearly changes with time. As a

result, the pulse schirp(t) is also called a linear “chirp” pulse. Here, α is the rate of

linear increase (decrease) in frequency of the signal, and it is also called “chirp rate”.

When using the above schirp(t) as the transmitted waveform, from (1.2) we know

that the ambiguity function of schirp(t) becomes

χchirp(τ, ν) =

∫ ∞
−∞

schirp(t)s∗chirp(t− τ)e−i2πνtdt

=

∫ ∞
−∞

eiπαt
2

1[0,T ](t) · e−iπα(t−τ)21[0,T ](t− τ)e−i2πνtdt

= e−iπτνe−iπ(ν−ατ)T (T − |τ |) sinc((ν − ατ)(T − |τ |)), 0 ≤ |τ | ≤ T. (1.9)

The ambiguity surface |χchirp(τ, ν)|, the zero-delay cut |χchirp(0, ν)|, and the zero-

Doppler cut |χchirp(τ, 0)| are shown in Figures 1.4, 1.5 and 1.6.
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Fig. 1.4. Ambiguity function of a chirp pulse of length T .
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Fig. 1.5. Zero-delay cut of a chirp pulse of length T .

1.2 Dissertation Outline

In this dissertation, we deal with the target discrimination issue from three dif-

ferent aspects: the sidelobe suppression by the chirp diversity, the delay-Doppler
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Fig. 1.6. Zero-Doppler cut of a chirp pulse of length T .

resolution (especially the ridge resolution) enhancement by the noise-target fringe

analysis approach, and the interference suppression by the chirp hybrid filter system.

The following is an outline of the dissertation:

In Chapter 2, we use the line array structure for waveform transmission, and

we design the frequency modulated constant modulus waveform in each transmitted

element to synthesize a non-constant modulus waveform at the target which is then re-

flected back to the receiver. Therefore, the receiver can receive a “non-constant mod-

ulus equivalent” waveform constituted by the sum of the constant-modulus waveform

from all the transmitted elements. After processing with the matched filter, better

delay-Doppler resolution and the better angular resolution can be achieved.

In Chapter 3, we deal with the chirp waveform by analyzing the phase response

(along the chirp rate-rotated axis) of the matched filter output. By applying the

noise-target fringe analysis combined with the CLEAN algorithm, target parame-

ters in terms of delays, Doppler shifts and amplitudes can be effectively estimated.

Furthermore, to achieve more accurate target parameter estimations, we can fur-
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ther apply the weighted non-linear least squares estimates, then the ability of target

discrimination can be further enhanced.

In Chapter 4, we apply the chirp waveform as the transmitted waveform, and

in the receiver, we design a hybrid filter which is composed of a matched filter and

a mismatched filter to suppress the ridge effect in the chirp delay-Doppler response

and then to enhance the delay-Doppler resolution. This is quite useful when any two

close targets lying in the line with slope α, the chirp rate of the transmitted chirp

waveform, in the delay-Doppler plane, and the target discrimination ability can be

significantly improved. In addition, the mismatched filter can be easily implemented

without further hardware deployments. Therefore, this chirp hybrid filter design may

be quite useful in enhancing the delay-Doppler resolution.

Finally, in Chapter 5, we summarize our research results and provide the conclu-

sions.
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2. DELAY-DOPPLER RESOLUTION

CHARACTERISTICS OF CONSTANT MODULUS

WAVEFORM MIMO RADAR

2.1 Introduction

Most modern radar systems transmit constant modulus (amplitude) waveforms.

The reason for this is that radar transmitters usually employ efficient saturated non-

linear power amplifiers for energy efficient operation, as the total power transmitted

by most radar systems is large, so power efficiency is important. One implication of

this is that the resulting waveforms illuminating radar targets are constant modulus

waveforms. This is true both for standard radar antennas and phased array radar

systems where identical (or phase shifted) versions of the same waveform are trans-

mitted out of each antenna element [36,37]. Because of this fact, most matched-filter

radar systems have delay-Doppler resolution dictated by the ambiguity function of

constant modulus waveforms.

One consequence of this is that in selecting a waveform with prescribed delay-

Doppler resolution characteristics, we are limited to considering only the ambiguity

functions of constant modulus waveforms in our search for a radar signal. So the

following question immediately arises : if we could transmit a non-constant modulus

waveform, would it be possible to find a waveform with a superior ambiguity function

characteristic if we did not limit ourselves to constant modulus waveforms? The

answer to this question is probably “yes”, since we would be searching over a larger

set of waveforms. However, how much better a waveform we can find in this larger

class is not clear, so answering this question would allow us to determine if there

is even any significant value in illuminating targets with a non-constant modulus

waveform as compared to a constant modulus waveform.
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Even if there is an advantage to illuminating targets with a non-constant modulus

waveform, it may appear that there is little reason to consider these advantages if we

are forced to use constant-modulus waveforms because of power amplifier constraints.

However, if we transmit different constant-modulus waveforms from the elements of

a transmit antenna array, the resulting waveforms illuminating a target in space

will in general be non-constant modulus and hence could in principle have a superior

ambiguity function compared to those corresponding to a constant modulus waveform

[11,12,16,24,38].

Because Maxwell’s equations are linear, the illuminating waveform at a point in

space will be a linear combination of phase-shifted version of the constant modu-

lus waveforms transmitted by each of the antenna elements. So in order to answer

the question of whether we can get more useful delay-Doppler responses from a col-

lection of different constant-modulus waveforms transmitted from different elements

of a transmitter array, we must determine whether or not it is possible to find a

sum of constant modulus waveforms that has a better ambiguity function—in some

sense—than any single constant modulus waveform. As we will see, this is in fact the

case.

Given that we can find a set of constant modulus waveforms whose sum has a bet-

ter ambiguity function than any single constant modulus waveform, the next question

of interest is, how does the synthesized illumination on target change with respect

to changes in the angle of interest with respect to the array [39]. For example, if

we design a set of constant modulus waveforms so that the sum of these waveforms

yields a particular waveform in the far field off boresight (at an angle of 0 degrees),

at other angles, the resulting waveforms will be different than at boresight. In fact,

each direction in the far field will have a different waveform because of the change

in phase shifts in the constant modulus component from each array element as the

direction changes. This phenomena, which has been called space-time landscaping,

provides directional information about received returns [40]. In light of this, three

important questions come to mind: First, does this change in illumination wave-
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form with direction yield additional angular resolution over a standard phased array

radar? Second, if a good illuminating waveform is achieved in a particular direction

(e.g., boresight), will the resulting waveforms in other directions have good ambiguity

functions? Third, how significant is the mutual interference of returns from directions

having different synthesized waveforms than that for the intended design direction?

Answers to these questions are important if we are to exploit this waveform synthesis

approach in an actual radar system.

2.2 Mathematical Model for The Synthesis of Non-Constant Modulus

Waveforms

In an antenna array system, a waveform on target in the far field synthesized by

2K + 1 waveforms out of each transmitted array element is shown in Figure 2.1, and

the waveform can be expressed in the following general form:

s(t) =
K∑

m=−K

sm(t). (2.1)

Then the ambiguity function of a synthesized narrowband waveform s(t) is

χs(τ, ν) =

∫
R
s(t)s∗(t− τ)e−i2πνtdt. (2.2)

In the following we will apply two cases to show the difference in terms of the am-

plitude of synthesized waveforms. In addition, we will also use the same two cases

to show the differences in delay-Doppler characteristics between constant modulus

waveforms and non-constant modulus waveforms.

2.2.1 Case 1 : Waveform Synthesized by Identical Rectangular Pulses

vs. Waveform Synthesized by Rectangular Pulses with Different

Frequency Offsets

In this case, we consider about the difference between a constant modulus wave-

form synthesized by 2K + 1 identical rectangular pulses and a non-constant modulus



17

Fig. 2.1. Transmitted antenna array structure.

waveform synthesized by 2K + 1 rectangular pulses with 2K + 1 different frequency

offsets. For the constant modulus synthesized waveform, each transmitted waveform

is

sm(t) = 1[0,T ](t), (2.3)

where T is the pulse duration. So sm(t) = 0, ∀t /∈ [0, T ]. The amplitude of the

synthesized waveform is shown in Figure 2.2. Then for the non-constant modulus

synthesized waveform, the m-th transmitted waveform is

sm(t) = ei2πC(m)f0(t− 1
2K+1

T0)1[0,T ](t), (2.4)

where f0 = 1/T0 is the pulse repetition frequency (PRF), and C(m)f0 is the frequency

offset of the m-th rectangular pulse. In fact, C(m) ∈ [−K,K], C(m) is integer, and

C(m) 6= C(n) when m 6= n. As a result, each transmitted waveform has unique

frequency offset, and the offset is different from those in other transmitted waveforms.

In the following part of this chapter, we define q = T0/(2K + 1) for brevity.

Figure 2.2 and Figure 2.3 clearly show the difference in the amplitude variation of

two synthesized waveforms, where the synthesized waveform in Figure 2.2 is constant

amplitude within the whole signal duration T ; on the other hand, the amplitude of
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the synthesized waveform in Figure 2.3 varies with time, resulting in a signal with

non-constant modulus.

0.2 0.4 0.6 0.8 1.0
t / T

0.5

1.0

1.5

2.0

S(t)

Fig. 2.2. Envelope of waveform synthesized by identical rectangular pulses.
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Fig. 2.3. Envelope of waveform synthesized by rectangular pulses with different fre-
quency offsets.

2.2.2 Case 2 : Waveform Synthesized by Identical Chirp Pulses vs. Wave-

form Synthesized by Chirp Pulses with Different Frequency Offsets

Similar to the previous case, we compare the differences between a constant mod-

ulus synthesized waveform and a non-constant modulus synthesized waveform, but
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now we change from rectangular pulses to chirp pulses in each transmitted waveform.

So, for the constant modulus synthesized waveform, each transmitted waveform is

sm(t) = eiπαt
2

1[0,T ](t), (2.5)

where α is chirp rate. As for the non-constant modulus synthesized waveform, the

m-th transmitted waveform is

sm(t) = ei2πC(m)f0(t−q)eiπαt
2

1[0,T ](t). (2.6)

Then the amplitude variations of two synthesized waveforms are the same as the

former case, i.e., Figure 2.2 and 2.3. Therefore, from the above results, we showed

that a waveform with non-constant modulus characteristic can be easily made by just

adding constant modulus waveforms together.

2.3 Ambiguity Function Analysis of Non-Constant Modulus Waveform

In this section, we use the ambiguity function analysis to the same cases above to

compare the delay-Doppler characteristics between constant modulus waveforms and

non-constant modulus waveforms.



20

2.3.1 Case 1 : Waveform Synthesized by Identical Rectangular Pulses

vs. Waveform Synthesized by Rectangular Pulses with Different

Frequency Offsets

a) Ambiguity Function Comparison

Here we investigate the ambiguity function of the above non-constant modulus

synthesized waveform on target in the far field. The ambiguity function of s(t) is

χ(τ, ν) =

∫
R
s(t)s∗(t− τ)e−i2πνtdt

=

∫
R

(
K∑

m=−K

ei2πC(m)f0(t−q)1[0,T ](t)

)
·

(
K∑

m=−K

e−i2πC(m)f0(t−τ−q)1[0,T ](t− τ)

)
e−i2πνtdt

=e−iπν(T+τ)

K∑
m=−K

ei2πC(m)f0τ · (T − |τ |) sinc(ν(T − |τ |)) · 1[0,T ](|τ |)

+ e−iπ[(C(n)−C(m))f0+ν](T+τ) ·
K∑

m=−K

K∑
n=−K,n6=m

{
ei2πC(n)f0τei2π(C(n)−C(m))f0q

· (T − |τ |) sinc (p(m,n) · (T − |τ |)) · 1[0,T ](|τ |)
}
, (2.7)

where p(m,n) = [C(n)−C(m)]f0 + ν. The first term is the auto ambiguity function

of the component pulses in the combined waveform, and the second term is the cross

ambiguity of component pulses in the combined waveform.

Figure 2.4 and Figure 2.5 are the ambiguity functions of the waveforms syn-

thesized by identical rectangular pulses and synthesized by rectangular pulses with

different frequency offsets. Figure 2.6 is the overlapped plot of the above two ambi-

guity functions. We can easily see from the figures that when (τ, ν) nears to (0, 0),

|χ(τ, ν)| is greater in non-constant modulus synthesized waveform case than in con-

stant modulus synthesized waveform case. The phenomenon indicates that in this

case, the non-constant modulus waveform has slightly wider mainlobe width than the

constant modulus waveform when we focus on small |τ |, |ν|. To compare the delay

and Doppler characteristics of constant modulus and non-constant modulus wave-
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forms more clearly, we use zero-delay cut and zero-Doppler cut by cutting through

the ambiguity function at τ = 0 and at ν = 0.

Fig. 2.4. Ambiguity function of the waveform synthesized by identical rectangular
pulses.

Fig. 2.5. Ambiguity function of the waveform synthesized by rectangular pulses with
different frequency offsets.
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Fig. 2.6. Ambiguity functions overlapped by Figure 2.4 and Figure 2.5.

b) Zero-Delay Cut Comparison

Figure 2.7 is the plot of zero-delay cut of the constant modulus synthesized wave-

form (marked in blue dash line) and the non-constant modulus synthesized waveform

(marked in orange line). The plot shows that for the non-constant modulus wave-

form, the mainlobe to peak sidelobe ratio is 39.11 dB, which is much higher than the

mainlobe to peak sidelobe ratio of constant modulus waveform, 13.26 dB. However,

in terms of the mainlobe width, the non-constant modulus waveform has slightly

wider mainlobe width than the mainlobe width of constant modulus waveform. The

mainlobe broadening effect is due to the fact that non-constant modulus waveform

can be regarded as a rectangular pulse (constant modulus) multiplied by a weighting

window, and the matched filter response in Doppler domain is the convolution of the

rectangular pulse and the weight window in frequency domain.

c) Zero-Doppler Cut Comparison

Figure 2.8 is the plot of zero-Doppler cut of the constant modulus synthesized

waveform (marked in blue dash line) and the non-constant modulus waveform syn-
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Fig. 2.7. Zero-delay cuts of the waveform synthesized by identical rectangular pulses
(blue dashed line) and the waveform synthesized by rectangular pulses with different
frequency offsets (orange line).

thesized (marked in orange line). The figure illustrates the results: 1) for small |τ |, the

non-constant modulus waveform has higher mainlobe height in delay response than

the mainlobe height of the constant modulus waveform; 2) when |τ | ≥ 0.23T , the

mainlobe height of the non-constant modulus waveform drops faster than the main-

lobe height of the constant modulus waveform. The fast drop in mainlobe height

comes from the fact that non-constant modulus waveform can be seen as a weight-

ing window multiplied by the constant modulus pulse, then the mainlobe in delay

response is compressed and can be more focused to improve the range resolution.
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Fig. 2.8. Zero-Doppler cuts of the waveform synthesized by identical rectangular
pulses (blue dashed line) and the waveform synthesized by rectangular pulses with
different frequency offsets (orange line).
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2.3.2 Case 2 : Waveform Synthesized by Identical Chirp Pulses vs. Wave-

form Synthesized by Chirp Pulses with Different Frequency Offsets

a) Ambiguity Function Comparison

Here we investigate the ambiguity function of the above non-constant modulus

synthesized waveform on target. The ambiguity function of s(t) is

χ(τ, ν) =

∫
R
s(t)s∗(t− τ)e−i2πνtdt

=

∫
R

(
K∑

m=−K

ei2πC(m)f0(t−q)eiπαt
2

1[0,T ](t)

)(
K∑

m=−K

e−i2πC(m)f0(t−τ−q)e−iπα(t−τ)21[0,T ](t− τ)

)
· e−i2πνtdt

=e−iπατ
2

e−iπ(ν−ατ)(T+τ)

K∑
m=−K

ei2πC(m)f0τ · (T − |τ |) sinc((ν − ατ)(T − |τ |)) · 1[0,T ](|τ |)

+ e−iπατ
2

e−iπ[(C(n)−C(m))f0+ν−ατ ](T+τ) ·
K∑

m=−K

K∑
n=−K,n6=m

{
ei2πC(n)f0τei2π(C(n)−C(m))f0q

· (T − |τ |) sinc((p(m,n)− ατ)(T − |τ |)) · 1[0,T ](|τ |)
}
. (2.8)

The first term is the auto ambiguity function of the component pulses in the combined

waveform, and the second term is the cross ambiguity of component pulses in the

combined waveform.

Figure 2.9 and Figure 2.10 are the ambiguity functions of the waveforms synthe-

sized by identical chirp pulses and synthesized by chirp pulses with different frequency

offsets. Figure 2.11 is the overlapped plot of the above two ambiguity functions. We

can easily see from the figures that when (τ, ν) nears to (0, 0), |χ(τ, ν)| is greater in

non-constant modulus synthesized waveform than in constant modulus synthesized

waveform. The phenomenon indicates that in this case, the non-constant modulus

waveform has slightly wider mainlobe width than the constant modulus waveform

when we focus on small |τ |, |ν|. To compare the delay and Doppler characteristics

of constant modulus and non-constant modulus waveforms more clearly, we use zero-
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delay cut and zero-Doppler cut by cutting through the ambiguity function at τ = 0

and at ν = 0.

Fig. 2.9. Ambiguity function of the waveform synthesized by identical chirp pulses
(constant modulus).

Fig. 2.10. Ambiguity function of the waveform synthesized by chirp pulses with
different frequency offsets (non-constant modulus).
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Fig. 2.11. Ambiguity function comparison of non-constant modulus synthesized wave-
form (chirps with different frequency offsets, shown in orange color) and constant
modulus waveform (identical chirps, shown in blue color).

b) Zero-Delay Cut Comparison

Figure 2.12 is the plot of zero-delay cut of the constant modulus synthesized wave-

form (marked in blue dash line) and the non-constant modulus synthesized waveform

(marked in orange line). The result shows that the mainlobe to peak sidelobe ratio of

the non-constant modulus (chirp pulses with different frequency offsets) is 39.11 dB,

which is the same as the previous case (rectangular pulses with different frequency

offsets). In addition, it is also much larger than the mainlobe to peak sidelobe ratio of

constant modulus waveform (identical chirp pluses), 13.26 dB. However, in terms of

the mainlobe width, the non-constant modulus waveform has slightly wider mainlobe

width than the mainlobe width of constant modulus waveform.

c) Zero-Doppler Cut Comparison

Figure 2.13 is the plot of zero-Doppler cut of the constant modulus synthesized

waveform (marked with the blue dashed line) and the non-constant modulus wave-

form synthesized (marked with the orange line). The figure shows that the peak
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range sidelobe of non-constant modulus synthesized waveform drops down to -32.92

dB, which is much lower than the peak range sidelobe level of constant modulus

synthesized waveform, -14.89dB.
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Fig. 2.12. Zero-delay cuts of the waveform synthesized by identical chirp pulses (blue
dashed line) and the waveform synthesized by chirp pulses with different frequency
offsets (orange line).
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Fig. 2.13. Zero-Doppler cuts of the waveform synthesized by identical chirp pulses
(blue dashed line) and the waveform synthesized by chirp pulses with different fre-
quency offsets (orange line).

Furthermore, for the consideration of time-bandwidth product, we let the non-

constant modulus waveform and the constant modulus waveform have same time-

bandwidth product, then the equivalent chirp rate of identical chirp pulses is αeq =

K/(T0T )+α. Figure 2.14 is the overlapped ambiguity functions of non-constant mod-

ulus waveform (chirp pluses with different frequency offsets) and constant modulus
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waveform (identical chirp pulses). The chirp rate is αeq. Figure 2.15 is the zero-delay

cut comparison, and Figure 2.16 is the zero-Doppler cut comparison. Apparently, the

mainlobe to peak sidelobe ratio of non-constant modulus waveform is still greater than

the mainlobe to peak sidelobe ratio of constant modulus waveform at the expense of

slightly wider mainlobe width.

Fig. 2.14. Ambiguity function comparison of the non-constant modulus synthesized
waveform (chirps with different frequency offsets, shown in orange color) and the
constant modulus waveform (identical chirp with the equivalent chirp rate αeq, shown
in green color).
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Fig. 2.15. Zero-delay cuts of the waveform synthesized by identical chirp pulses (with
chirp rate αeq, green dashed line) and the waveform synthesized by chirp pulses with
different frequency offsets (orange line).
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Fig. 2.16. Zero-Doppler cuts of the waveform synthesized by identical chirp pulses
(with chirp rate αeq, green dashed line) and the waveform synthesized by chirp pulses
with different frequency offsets (orange line).

Although the non-constant modulus waveform has better performance in terms

of the mainlobe to peak sidelobe ratio, there is a slight decrease in energy density on

target compared to the energy density of waveform synthesized by identical chirps.

This is a small disadvantage. This is due to the signal cancellation of cross ambiguity

of component pulses, resulting the energy density on target that is not as large as

when we apply the same constant modulus waveform in each transmitted element.

However, if the signal to noise ratio (SNR) is large enough, then the non-constant

modulus waveform will perform well.

2.4 Angular Resolution Analysis of Non-Constant Modulus Waveform

When the target is in a different direction, the synthesized signal at the target

is the combination of the constant modulus waveforms with different phase shifts,

causing constructive and destructive interference. Then the energy density at the

target will vary, resulting in an angular resolution issue. To improve the angular

resolution, we investigate the performance in terms of angular resolution of combined

non-constant modulus waveforms. Figure 2.17 shows that when targets are in different

directions, the transmitted signal from each transmitted antenna array element has
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different phase shifts, and the combination of each phase-shifted waveform leads to

the angular resolution issue.

Fig. 2.17. The target is off boresight, causing different phase shifts in each transmitted
waveform.

In Figure 2.17, we know that the synthesized waveform at the target with angle

θ from each transmitted array element consisting of 2K + 1 transmitters can be

expressed in the following general form:

s(t, θ) =s−K(t)e−i
2π
λ

(R−(−K λ
2

sin θ))

+ s−(K−1)(t)e
−i 2π

λ
(R−(−(K−1)λ

2
sin θ))

+ · · ·

+ s0(t)e−i
2π
λ
R

+ · · ·

+ sK−1(t)e−i
2π
λ

(R−((K−1)λ
2

sin θ))

+ sK(t)e−i
2π
λ

(R−(K λ
2

sin θ))

=e−i
2π
λ
R

K∑
m=−K

sm(t)eimπ sin θ. (2.9)

Now, assume e−i
2π
λ
R = 1 (WLOG), then we have

s(t, θ) =
K∑

m=−K

sm(t)eimπ sin θ

=
K∑

m=−K

sm(t, θ). (2.10)
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(a) θ = 0 (b) θ = π/32 (c) θ = π/16

(d) θ = π/8 (e) θ = π/4 (f) θ = π/2

Fig. 2.18. non-constant modulus synthesized waveform at different angles θ.

Just as with the previous non-constant modulus (chirp pulses with different frequency

offsets) case, we let sm(t) = ei2πC(m)f0(t−q)eiπαt
2
1[0,T ](t); then the envelopes of the syn-

thesized non-constant modulus waveform at different angles θ, i.e., s(t, θ), are shown

in Figure 2.18. Then, based on the differences at different angles with respect to array

boresight, angular resolution of s(t, θ) can be measured by finding max
τ,ν
|χ(τ, ν, 0, θ)|

at every angle θ, where

χ(τ, ν, 0, θ) =

∫
R
s(t, 0)s∗(t− τ, θ)e−i2πνtdt.
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For our non-constant modulus waveform case, we have:

χ(τ, ν, 0, θ) =

∫
R
s(t, 0)s∗(t− τ, θ)e−i2πνtdt

=

∫
R

(
K∑

m=−K

sm(t, 0)

)(
K∑

n=−K

sn(t− τ, θ)

)∗
e−i2πνtdt

=

∫
R

(
K∑

m=−K

ei2πC(m)f0(t−q)eiπαt
2

eimπ sin 01[0,T ](t)

)

·

(
K∑

n=−K

ei2πC(n)f0(t−τ−q)eiπα(t−τ)2einπ sin θ1[0,T ](t− τ)

)∗
e−i2πνtdt

=e−iπατ
2

K∑
m=−K

K∑
n=−K

{
e−inπ sin θei2πf0C(n)τei2πf0(C(n)−C(m))qe−iπ[p(m,n)−ατ ](T+τ)

· (T − |τ |) sinc((p(m,n)− ατ)(T − |τ |)) · 1[0,T ](|τ |)
}
.

Now we observe the angular resolution by plotting max
τ,ν
|χ(τ, ν, 0, θ)| with θ, where θ ∈

[0, π/4]. Three cases are compared: 1) constant modulus waveform (synthesized

by identical chirp pulses, shown in gray color) 2) non-constant modulus waveform

(synthesized by chirp pulses with the frequency offset indices order {C(m) : m =

−K,−(K − 1), · · · ,−1, 0, 1, · · · , K − 1, K} = {−1, 2,−3, 4, 0,−4, 3,−2, 1}, shown in

orange color) 3) non-constant modulus waveform (synthesized by chirp pulses with

the frequency offset indices order {C(m) : m = −K,−(K − 1), · · · ,−1, 0, 1, · · · , K −

1, K} = {−1, 2,−3, 4,−4, 3,−2, 1, 0}, shown in blue color).

From the above result we know that the frequency offset indices order arrangement

will influence the performance in terms of the angular resolution [6]. In Figure 2.19,

when the frequency offset order C(m) is properly arranged, a non-constant modulus

synthesized waveform can have slightly narrower mainlobe width than the mainlobe

width of a constant modulus waveform, then the non-constant modulus synthesized

waveform can have better angular resolution than the angular resolution of transmit-

ting identical constant modulus signal at each antenna array element.

In addition, Figure 2.19 shows the difference about the mainlobe to peak side-

lobe ratio of the three cases. For the constant modulus waveform case (gray), the
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Fig. 2.19. Angular resolution comparison: 1) constant modulus waveform (gray
dotted line) 2) non-constant modulus waveform (chirp pulses with the frequency
offset indices order {C(m) : m = −K,−(K − 1), · · · ,−1, 0, 1, · · · , K − 1, K} =
{−1, 2,−3, 4, 0,−4, 3,−2, 1}, orange dotted line) 3) non-constant modulus wave-
form (chirp pulses with the frequency offset indices order {C(m) : m = −K,−(K −
1), · · · ,−1, 0, 1, · · · , K − 1, K} = {−1, 2,−3, 4,−4, 3,−2, 1, 0}, blue dotted line).
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mainlobe to peak sidelobe ratio is 12.90 dB; for the non-constant modulus wave-

form (chirp pulses with the frequency offset indices order {C(m) : m = −K,−(K −

1), · · · ,−1, 0, 1, · · · , K−1, K} = {−1, 2,−3, 4, 0,−4, 3,−2, 1}, orange), the mainlobe

to peak sidelobe ratio is 9.80 dB; for the non-constant modulus waveform (chirp pulses

with the frequency offset indices order {C(m) : m = −K,−(K−1), · · · ,−1, 0, 1, · · · , K−

1, K} = {−1, 2,−3, 4,−4, 3,−2, 1, 0}, blue), the mainlobe to peak sidelobe ratio is

8.12 dB.

From the above results, we know that when the frequency offset order C(m) is

properly arranged, a non-constant modulus synthesized waveform can have slightly

better angular resolution than the angular resolution of a constant modulus waveform.

However, slightly lower mainlobe to peak sidelobe ratio is a penalty for using the above

non-constant modulus synthesized waveform.

2.5 Energy Density Analysis of Non-Constant Modulus Waveform

When the reflection of the waveforms by targets in directions other than the

intended direction, because the synthesized signal at the target is combined by wave-

forms with different phase shifts, it will cause some part of signal cancellations, and

some interference appears. As a result, the energy density at targets will decrease.

To investigate the energy density of the above mentioned non-constant modulus

waveform, we can find: max
τ,ν
|χ(τ, ν, θ, θ)| at any angle θ, where

χ(τ, ν, θ, θ) =

∫
R
s(t, θ)s∗(t− τ, θ)e−i2πνtdt.

For the non-constant modulus synthesized waveform,

sm(t) = ej2πC(m)f0(t−q)eiπαt
2

1[0,T ](t),
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and then

χ(τ, ν, θ, θ) =

∫
R
s(t, θ)s∗(t− τ, θ)e−i2πνtdt

=

∫
R

(
K∑

m=−K

sm(t, θ)

)(
K∑

n=−K

sn(t− τ, θ)

)∗
e−i2πνtdt

=

∫
R

(
K∑

m=−K

ei2πC(m)f0(t−q)eiπαt
2

eimπ sin θ1[0,T ](t)

)

·

(
K∑

n=−K

ei2πf0C(n)(t−τ−q)eiπα(t−τ)2einπ sin θ1[0,T ](t− τ)

)∗
e−i2πνtdt

=e−iπατ
2

K∑
m=−K

K∑
n=−K

{
ei(m−n)π sin θei2πC(n)f0τei2π(C(n)−C(m))f0qe−iπ[p(m,n)−ατ ](T+τ)

· (T − |τ |) sinc((p(m,n)− ατ) · (T − |τ |)) · 1[0,T ](|τ |)
}
.

Just as in the previous discussions, here we compare the difference in terms of en-

ergy density at targets of 1) constant modulus waveform (synthesized by identical

chirp pulses, shown in gray color), 2) non-constant modulus waveform (synthesized

by chirp pulses with the frequency offset indices order {C(m) : m = −K,−(K −

1), · · · ,−1, 0, 1, · · · , K−1, K} = {−1, 2,−3, 4, 0,−4, 3,−2, 1}, shown in orange color),

and 3) non-constant modulus waveform (synthesized by chirp pulses with the fre-

quency offset indices order {C(m) : m = −K,−(K−1), · · · ,−1, 0, 1, · · · , K−1, K} =

{−1, 2,−3, 4,−4, 3,−2, 1, 0}, shown in blue color). Each transmitted signal duration

is T , and T = 2T0/(2K + 1), where T0 is pulse repetition interval.

From Figure 2.20 we observe that the energy density at targets in different angles

is distributed more evenly in the non-constant modulus waveform case than in the

constant modulus waveform case. However, due to the signal cancellations in the non-

constant modulus synthesized waveform, the signal energy at targets is much smaller

in the non-constant modulus waveform than in the constant modulus waveform under

the consideration of same total transmitted energy.
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Fig. 2.20. Energy density comparison: 1) constant modulus waveform (gray dot-
ted line) 2) non-constant modulus waveform (chirp pulses with the frequency off-
set indices order {C(m) : m = −K,−(K − 1), · · · ,−1, 0, 1, · · · , K − 1, K} =
{−1, 2,−3, 4, 0,−4, 3,−2, 1}, orange dotted line) 3) non-constant modulus wave-
form (chirp pulses with the frequency offset indices order {C(m) : m = −K,−(K −
1), · · · ,−1, 0, 1, · · · , K − 1, K} = {−1, 2,−3, 4,−4, 3,−2, 1, 0}, blue dotted line).
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2.6 Conclusion

We have proposed an easy way to generate non-constant modulus waveforms by

summing constant modulus waveforms from each transmitted array element, and we

have shown from the ambiguity function that the performance in terms of mainlobe

to peak sidelobe ratio in zero-delay and zero-Doppler greatly increased comparing to

the delay-Doppler response of constant modulus waveform. Moreover, non-constant

modulus waveforms can be easily generated by just gating on and off each transmitter

in-sync, and the combined signal at targets is a non-constant modulus signal. In this

way, we can get rid of the mismatch loss problem, which is caused by applying the

amplitude weighting in the receiver only.

Furthermore, we proposed that non-constant modulus waveforms can have bet-

ter angular resolution than constant modulus waveforms by analyzing the ambiguity

function. When the target’s direction changes, the synthesized non-constant modulus

waveform at the target will cause the ambiguity mainlobe peak to drop down more

quickly than using the constant modulus waveform, resulting the better angular res-

olution. However, the decrease of mainlobe to peak sidelobe ratio in spatial domain

is a drawback of this non-constant modulus waveforms.

Moreover, when we synthesize the non-constant modulus waveform, if the re-

flection of the waveform by targets in directions other than the intended direction,

interference occurs. In addition, these phase-shifted waveforms are not added in-

phase, resulting in partial signal cancellation in the cross ambiguity functions, and

then the signal energy on target drops. Instead, if we let the transmitted waveforms

keep in one whole period, i.e., T = T0 (full duty), then the signal energy remains

constant at any angle θ. Figure 2.21 shows the energy density comparison of the non-

constant modulus synthesized waveform (blue dotted line) and the constant modulus

synthesized waveform (gray dotted line) when the one whole period of transmitted

waveform at each transmitter is considered. Here we can clearly observe that this

family of non-constant modulus synthesized waveforms own the ”omni-directional”
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Fig. 2.21. Energy density comparison: 1) constant modulus waveform(gray dotted
line) 2) non-constant modulus waveform (blue dotted line). The pulse duration in
each transmitted waveform is one whole period.

transmission ability, i.e., equal signal energy at any angle θ with equal distance. This

is an advantage of applying this kind of non-constant modulus waveform syntheses.

However, delay-Doppler resolution and angular resolution may be affected when

one whole period of signal transmission is considered. Figure 2.22 is the angular res-

olution comparison of the non-constant modulus synthesized waveform (blue dotted

line) and the constant modulus synthesized waveform (gray dotted line) when the

one whole period of transmitted waveform at each transmitter is considered. The

mainlobe widths are almost the same in the constant modulus waveform and the

non-constant modulus waveform, meaning that they have almost the same angu-

lar resolution; however, the mainlobe to peak sidelobe ratio is much worse in the

non-constant modulus waveform. Therefore, how to nicely pick the family of con-

stant modulus waveforms to synthesize a non-constant modulus waveform—which

has better performance in terms of delay-Doppler resolution, angular resolution, and

“omni-directional” property—is then an important issue.

In summary, in this chapter we proposed a non-constant modulus waveform gener-

ation method by simply combining different constant modulus waveform. Compared
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Fig. 2.22. Angular resolution comparison: 1) constant modulus waveform (gray
dotted line) 2) non-constant modulus waveform (chirp pulses with the frequency
offset indices order {C(m) : m = −K,−(K − 1), · · · ,−1, 0, 1, · · · , K − 1, K} =
{−1, 2,−3, 4, 0,−4, 3,−2, 1}, orange dotted line) 3) non-constant modulus wave-
form (chirp pulses with the frequency offset indices order {C(m) : m = −K,−(K −
1), · · · ,−1, 0, 1, · · · , K−1, K} = {−1, 2,−3, 4,−4, 3,−2, 1, 0}, blue dotted line). The
pulse duration in each transmitted waveform is one whole period.
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to the constant modulus waveform, the non-constant modulus waveform possesses

the advantages such as the better delay-Doppler resolutions and the better angular

resolution. However, in terms of the mainlobe to peak sidelobe ratio in spatial do-

main and the total signal energy at target, non-constant modulus waveform may have

slightly inferior performance. Therefore, these analyses and the trade-offs are helpful

in the performance assessment and the design of a radar system.
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3. IMPROVED TARGET RESOLUTION AND

PARAMETER ESTIMATION IN CHIRP RADAR

SYSTEMS

3.1 Introduction

Target discrimination—the ability to discern multiple target returns—is an impor-

tant function of radar systems. It determines not only the ability of detecting multiple

targets with close ranges and Doppler shifts, but also the estimation accuracy of tar-

gets’ delays and Doppler shifts. The linear frequency-modulated (LFM) waveform,

one kind of chirp waveform, is the most widely used radar waveform because of its

good range and Doppler resolution [8–10, 29, 35]. Because of these properties, it can

easily discriminate targets either with the same speed but different distances or with

the same distance but different speeds.

Even though the chirp waveform has good range and Doppler resolution proper-

ties separately, in some situations, the chirp waveform still has poor resolution and

cannot easily resolve targets. It is known that the matched filter output response of

a linear chirp pulse has a triangular envelope along the α-rotated axis (ν = ατ) in

the delay-Doppler plane, where α is the chirp rate of the chirp pulse. When any pair

of targets are close enough in delay and Doppler shift, and they have a Doppler shift

difference which equals to their delay difference multiplied by the chirp rate of the

transmitted chirp waveform α, the traditional chirp matched filter output response

will have a mixed envelope made up of two partially overlapping triangular envelopes.

Furthermore, when one of the two target returns is smaller than the other, the smaller

triangular envelope may be concealed in the mixed envelope, causing a missed detec-

tion of the smaller target. In this situation, the chirp matched filtering process may

not work well in detecting and resolving the two targets.
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To solve this problem, we introduce a new technique, noise-target fringe analysis,

that can effectively estimate the targets’ delay information. Moreover, we apply

the CLEAN algorithm [41] along with the above-mentioned target-delay estimate

technique to further estimate the Doppler shifts and amplitudes of the targets. This

target parameter estimation method has high accuracy in target parameter estimate

and improves the ability of target differentiation along the slope α chirp response

ridge.

Furthermore, to acquire much more accurate target parameter estimates, we apply

a Gauss-Newton algorithm [42,43], one of the weighted non-linear least squares opti-

mization methods, to further improve the estimate performance. Simulation results

show that by applying this method, we can improve the successful target parameter

estimate probability by up to 90%, which can significantly improve target discrimi-

nation.

Also, in terms of system complexity issues, the noise-target fringe analysis method

only needs to know the instantaneous phase difference of the delay-Doppler output

samples, which is the difference between the instantaneous phase of two neighboring

delay-Doppler output samples. Moreover, for the case of multiple targets lying along

a ridge line with slope α, we apply the CLEAN algorithm to pick the delay-Doppler

point with the largest amplitude response from the “whole delay-Doppler matched

filter output response-only” rather than iteratively pick the point with the largest am-

plitude from the residual responses. We only need to calculate the phase difference of

the delay-Doppler output samples on the line segment through the previous CLEAN-

selected point and with slope α from the residual delay-Doppler output responses. We

eliminate the iterative CLEAN-picking process and only pick one delay-Doppler point

in the beginning. Therefore, this target parameter estimate method is practically im-

plementable with minimal complexity. As for the Gauss-Newton optimization, it

contains matrix inversions and matrix multiplications, which may need more com-

putational power. But in some non-real time (time-tolerable) radar systems, it is



43

still valuable to implement this optimization method to pursue more accurate target

parameter estimates.

In Section 3.2 of this chapter, we formulate a mathematical model of the matched

filter output response. We then apply the chirp waveform to this model to formulate

the chirp matched filter output response used in the rest of this chapter. In Section

3.3, we demonstrate the noise-target fringe analysis method to effectively estimate

targets’ delays. In Section 3.4, we apply the weighted non-linear least squares op-

timization method to the chirp matched filter output and provide a more detailed

analysis of acquiring the least squares estimates of the target parameters. In Section

3.5, we provide the noise and signal-to-noise ratio (SNR) analyses throughout the

whole radar system. In Section 3.6, we demonstrate the target parameter estimate

system and its processing algorithm. Then in Section 3.7, we provide the performance

analysis of the target parameter estimate accuracy. Finally, we summarize the esti-

mator performance and conclude by presenting the feasibility of the target parameter

estimate approach in the non-LFM radar systems.

3.2 Mathematical Model for Matched Filter

Consider a radar system in which a waveform sTx(t) with finite duration T and

with finite energy is generated and transmitted by the radar. At the receiver, the

received waveform is the sum of all targets’ reflected waveforms (here we assume that

for target k, the delay and Doppler shift are (τk, νk), k = 1, 2, · · · , K, where K is the

total number of target returns). This can be represented as

sRecv(t) =
K∑
k=1

aksTx(t− τk)ei2πνkt, (3.1)

where the ak is the amplitude of the k-th target’s reflected waveform, τk is the delay

(two-way) of the k-th target’s reflected waveform, and νk is the Doppler shift of the

k-th target’s reflected waveform. Note that any two different targets, which are at

(τm, νm) and (τn, νn),m 6= n, can only have the same delay (τm = τn) or the same
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Doppler shift (νm = νn) because we regard two targets with the same delay and same

Doppler shift (τm = τn and νm = νn) as the same target.

As for the matched filter, the matching template waveform matched to τ -delayed,

ν-Doppler shifted is

gτν(t) = sTx(t− τ)ei2πνt. (3.2)

Then, the matched filter impulse response h̃τν(t) will be of the form

h̃τν(t) = g∗τν(T + τ − t)

= s∗Tx(T + τ − t− τ)e−i2πν(T+τ−t)

= s∗Tx(T − t)e−i2πν(T+τ−t), (3.3)

and the matched filter output at time t = T + τ will be

ÕMF(τ, ν) = sRecv(t) ∗ h̃τν(t)|t=T+τ

=

∫ ∞
−∞

sRecv(p)h̃τν(t− p)dp|t=T+τ

=

∫ ∞
−∞

sRecv(p)h̃τν(T + τ − p)dp

=

∫ ∞
−∞

∑
k

aksTx(p− τk)ei2πνkp · s∗Tx(p− τ)e−i2πνpdp

=
∑
k

ak

(∫ ∞
−∞

sTx(p− τk)s∗Tx(p− τ)e−i2π(ν−νk)pdp

)
(let p− τk = mk, p = mk + τk, and dp = dmk)

=
∑
k

ake
−i2π(ν−νk)τk

∫ ∞
−∞

sTx(mk)s
∗
Tx(mk − (τ − τk))e−i2π(ν−νk)mkdmk

=
∑
k

ake
−i2π(ν−νk)τkχs(τ − τk, ν − νk), (3.4)

where

χs(τ, ν) =

∫ ∞
−∞

sTx(t)s
∗
Tx(t− τ)e−i2πνtdt

is the ambiguity function of the waveform sTx(t). From the above equation we know

that ÕMF(τ, ν), the matched filter output response sampled at time t = T + τ , is
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the combination of weighted and phase-shifted version of (τk, νk)-shifted ambiguity

functions, where k = 1, · · · , K.

In reality, a received waveform consists of all target returns and the input noise,

i.e.,

sRecv(t) =
K∑
k=1

aksTx(t− τk)ei2πνkt + w(t), (3.5)

where w(t) is the noise at the receiver input. In this paper, we assume that w(t)

is additive white Gaussian noise with zero-mean and the two-sided power spectral

density (PSD) N0/2. Then the matched filter output is the combination of all targets’

output responses plus the noise response at the matched filter output. Hence, we can

write the whole delay-Doppler response observed at the matched filter output as

Õ(τ, ν) = ÕMF(τ, ν) +N(τ, ν)

=
K∑
k=1

ake
−i2π(ν−νk)τkχs(τ − τk, ν − νk) +N(τ, ν), (3.6)

where

N(τ, ν) = w(t) ∗ h̃τν(t) |t=T+τ

=

∫ ∞
−∞

w(p)s∗Tx(p− τ)e−i2πνpdp

is the cross ambiguity function of the noise and the transmitted waveform.

From the above we know that because all information about the target returns

are unknown, and we only have the combination of noise and all targets’ matched

filter outputs, it is very hard to differentiate all targets and effectively estimate the

distances, moving speeds and intensities of all target returns. Hence, radar target

parameter estimate has become an interesting and important research issue [44–46],

and researchers were devoted to not only finding waveforms with good delay and

Doppler resolution properties but coming up with simple and efficient algorithms to

improve target discrimination ability.

From the viewpoint of waveform design, chirp radar is one of the most prevalent

radar systems used nowadays because of its good delay-Doppler resolution and easy-
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implementation. However, chirp radars have poor resolution along the ridge with

slope α in the delay-Doppler plane, where α is the chirp rate of the chirp waveform.

This is due to the fact that the chirp ambiguity function is a rotated and sheered

version (with slope α) of the ambiguity function of an unmodulated pulse. Therefore,

when target returns are close and lying on a ridge line with slope α in the delay-

Doppler plane, we can barely differentiate these targets from the chirp matched filter

output response.

Also, an efficient algorithm to effectively provide the target estimates is also im-

portant. The CLEAN algorithm, one kind of image deconvolution method, was

first proposed and published by Jan Högbom in radio astronomy [41]. After that,

several different variations and improvements of the CLEAN algorithm were pub-

lished [25–28, 47–49]. However, the rationale of the CLEAN algorithm is the same:

we assume an image which is constituted by a number of point sources. Then the

CLEAN algorithm iteratively picks the highest value in the residual image and sub-

tract the weighted response of this point source. The weighted response is the convo-

lution of the weighted gain and the point spread function (PSF) of the observation.

The algorithm proceeds until the highest value of the image is smaller than some

assigned threshold.

In radar systems, we can regard the observed matched filter output response

as a complex image in delay and Doppler, and we apply the CLEAN algorithm to

iteratively select the highest amplitude (the position with the highest energy intensity)

in the residual matched filter output response and subtract a weighted response, which

is the delay-Doppler response centered on the CLEAN-estimated target position, as

shown in Equation (3.4). In this way, we can sequentially identify individual targets

until the noise-only response remains. In the following we use an example to show

how the CLEAN algorithm be applied in radar systems.

Figures 3.1, 3.2 and 3.3 show the residual responses Õ
(0)
Res(τ, ν), Õ

(1)
Res(τ, ν) and

Õ
(2)
Res(τ, ν) by applying the CLEAN algorithm. Here we let the initial residual response

be the matched filter delay-Doppler output responses, i.e., Õ
(0)
Res(τ, ν) = ÕMF (τ, ν).
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(a) Õ
(0)
Res(τ, ν) (b) Õ

(1)
Res(τ, ν) (c) Õ

(2)
Res(τ, ν)

Fig. 3.1. CLEAN Algorithm Residual Responses: No interference case.

Three different degree of interference (no interference, low interference and high in-

terference) are compared. Here we apply a two-target case and without noise for

simplicity. We know that when there is no interference (Figure 3.1), the CLEAN

algorithm can perfectly estimate each target’s delay, Doppler shift and amplitude,

and the resulting residual delay-Doppler response is zero everywhere. Then in low

interference case (Figure 3.2), the delay-Doppler position of the peak amplitude in the

matched filter output response and the residual responses may shift slightly, which will

cause the CLEAN algorithm to have small error in each target’s delay, Doppler shift

and amplitude estimates. In high interference case (Figure 3.3), the interference seri-

ously changes the shape of the delay-Doppler matched filter output response, which

will cause an obvious shift in delay and Doppler position of the peak amplitude in the

residual responses. Therefore, the CLEAN algorithm may not perform well in this

situation.

From the above example, we can see that the CLEAN algorithm may not be

a reliable method for target parameter estimate under high interference, especially

when the radar illumination environment has multiple targets which are close in delay

and Doppler. To achieve more accurate target parameter estimate, we introduce a

new approach which can effectively estimate targets’ delays (ranges). We call this

technique noise-target fringe analysis. Also, we combine the CLEAN algorithm with

the noise-target fringe analysis approach to further acquire targets’ Doppler shifts



48

(a) Õ
(0)
Res(τ, ν) (b) Õ

(1)
Res(τ, ν) (c) Õ

(2)
Res(τ, ν)

Fig. 3.2. CLEAN Algorithm Residual Responses: Low interference case.

(a) Õ
(0)
Res(τ, ν) (b) Õ

(1)
Res(τ, ν) (c) Õ

(2)
Res(τ, ν)

Fig. 3.3. CLEAN Algorithm Residual Responses: High interference case.
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(speeds) and intensities (amplitudes) estimates. The complete process is described as

follows:

First of all, we initialize the residual response to be the matched filter delay-

Doppler output response, i.e., Õ
(0)
Res(τ, ν) = ÕMF (τ, ν), and we apply the CLEAN al-

gorithm to pick the delay-Doppler position with the largest amplitude from Õ
(0)
Res(τ, ν),

i.e., (τ̂
CLEAN

, ν̂
CLEAN

) = arg maxτ,ν Õ
(0)
Res(τ, ν). Then, in the first iteration (n =

1), instead of directly subtracting the weighted response of the estimated target

(τ̂
CLEAN

, ν̂
CLEAN

), we apply the noise-target fringe analysis to find the edges of the

targets’ response of the leftmost and the rightmost target. Then we estimate the

delays of the leftmost and the rightmost target. After that, we extend the line seg-

ment through (τ̂
CLEAN

, ν̂
CLEAN

) and with slope α to intersect the two vertical lines at

the estimated delay values from the noise-target fringe analysis respectively. Then

the intersected points are the estimated delay-Doppler positions of the leftmost and

the rightmost target. We then sequentially subtract the weighted responses of the

two estimated target from Õ
(0)
Res(τ, ν) by comparing their amplitudes in the residual

response Õ
(0)
Res(τ, ν) to get the 1-st residual delay-Doppler output response Õ

(1)
Res(τ, ν).

Then, in n-th iteration (n > 1), we apply the noise-target fringe analysis to

Õ
(n−1)
Res (τ, ν) to find the edges of the targets’ response of the leftmost and the rightmost

target. Then, just as in the first iteration, we can estimate the delays of the leftmost

and the rightmost target, and extend the line segment through (τ̂
CLEAN

, ν̂
CLEAN

) and

with slope α to intersect the two vertical lines at the n-th estimated delay values

from the noise-target fringe analysis respectively. Then the intersected points are

the estimated delay-Doppler positions of the leftmost and the rightmost target in

the n-th iteration. Then we sequentially subtract the weighted responses of the two

estimated target by comparing their amplitudes in the (n − 1)-th residual response

Õ
(n−1)
Res (τ, ν) to get the n-th residual delay-Doppler output response Õ

(n)
Res(τ, ν). This

technique considers the targets’ amplitude response, the targets’ phase response, and

the noise response of the matched filter delay-Doppler output. Hence it can enhance

the accuracy of targets’ delay, Doppler shift and amplitude estimates.
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Finally, to further increase the accuracy of target parameter estimates, we apply

a weighted non-linear least squares optimization (Gauss-Newton algorithm). The

performance results show that this approach can effectively estimate delays, Doppler

shifts and intensities of all target returns, and it can easily differentiate close targets

which are lying along a line with slope α. Hence, the ability of target discrimination

can be further improved.

3.3 Noise-Target Fringe Analysis for Target Delay Estimates

In this section, we present the noise-target fringe analysis approach to effectively

estimate targets’ delays in chirp radar systems.

3.3.1 Derivation of Chirp Matched Filter Output Response (Phase Re-

sponse) of Multiple Targets Lying along a Line of Slope α in Delay-

Doppler Plane

In this subsection, we derive the chirp matched filter output response of multiple

targets lying along the ridge with slope α in delay-Doppler plane.

We assume that there are K targets, specified by (τk, νk, ak), where k = 1, · · ·K.

Here, τk is target k’s delay, νk is target k’s Doppler and ak is target k’s amplitude.

Then from Equation (3.4), the matched filter output response is

ÕMF(τ, ν) =
K∑
k=1

ake
−i2π(ν−νk)τkχs(τ − τk, ν − νk).

We now consider a chirp waveform

sTx(t) = eiπαt
2 · 1[0,T ](t).

The chirp matched filter output response becomes

ÕMF(τ, ν) =
K∑
k=1

{
ake
−iπ{(ν−νk)(τ+τk)+[(ν−νk)−α(τ−τk)]T} · (T − |τ − τk|)

· sinc ([(ν − νk)− α(τ − τk)] (T − |τ − τk|)) · 1[0,T ](|τ − τk|)
}
. (3.7)
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Furthermore, we assume that the K true targets lie along the line with slope α in the

delay-Doppler plane, i.e.,

(τk, νk) = (τ1 + ∆τk, ν1 + α∆τk), k = 2, · · · , K, (3.8)

so we have

(ν − νk)− α(τ − τk) = (ν − ν1)− α(τ − τ1), k = 2, · · · , K. (3.9)

With Equation (4.9) and Equation (4.10), we can further simplify Equation (4.8) to

ÕMF(τ, ν) =
K∑
k=1

{
ak (T − |τ − τk|) · e−iπ{(ν−(ν1+α∆τk))(τ+(τ1+∆τk))+[(ν−ν1)−α(τ−τ1)]T}

· sinc ([(ν − ν1)− α(τ − τ1)] (T − |τ − τk|)) · 1[0,T ](|τ − τk|)
}

=e−iπ[(ν−ν1)−α(τ−τ1)]T

K∑
k=1

{
ak (T − |τ − τk|) e−iπ(ν−ν1−α∆τk)(τ+τ1+∆τk)

· sinc ([(ν − ν1)− α(τ − τ1)] (T − |τ − τk|)) · 1[0,T ](|τ − τk|)
}
. (3.10)

Now we observe the delay-Doppler response along the line through a delay-Doppler

point (τ̂ , ν̂) and with slope α, i.e., ÕMF(τ, ατ + (ν̂ − ατ̂)). We first simplify the term

[(ν − ν1)− α(τ − τ1)] in Equation (4.12) to

[(ατ + (ν̂ − ατ̂)− ν1)− α(τ − τ1)] = (ν̂ − ν1)− α(τ̂ − τ1).

We also simplify the term (ν − ν1 − α∆τk)(τ + τ1 + ∆τk) in Equation (4.12) to

(ατ + (ν̂ − ατ̂)− ν1 − α∆τk)(τ + τ1 + ∆τk) =ατ 2 + [(ν̂ − ν1)− α(τ̂ − τ1)]τ

+ [(ν̂ − ν1)− α(τ̂ + ∆τk)](τ1 + ∆τk).
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Then we have

ÕMF(τ, ατ + (ν̂ − ατ̂))

=e−iπ[(ν̂−ν1)−α(τ̂−τ1)]T

K∑
k=1

{
ak (T − |τ − τk|) · e−iπ{ατ

2+[(ν̂−ν1)−α(τ̂−τ1)]τ+[(ν̂−ν1)−α(τ̂+∆τk)](τ1+∆τk)}

· sinc
(

[(ν̂ − ν1)− α(τ̂ − τ1)] (T − |τ − τk|)
)
· 1[0,T ](|τ − τk|)

}
=e−iπ[(ν̂−ν1)−α(τ̂−τ1)]T e−iπατ

2

e−iπ[(ν̂−ν1)−α(τ̂−τ1)]τ ·
K∑
k=1

{
e−iπ{[(ν̂−ν1)−α(τ̂+∆τk)](τ1+∆τk)}

· ak (T − |τ − τk|) sinc
(

[(ν̂ − ν1)− α(τ̂ − τ1)] (T − |τ − τk|)
)
· 1[0,T ](|τ − τk|)

}
=e−iπατ

2

e−iπ[(ν̂−ν1)−α(τ̂−τ1)](T+τ) ·
K∑
k=1

{
e−iπ[(ν̂−ν1−ατ̂)τ1+(ν̂−ν1−ατ̂−ατ1−α∆τk)∆τk]

· ak (T − |τ − τk|) sinc
(

[(ν̂ − ν1)− α(τ̂ − τ1)] (T − |τ − τk|)
)
· 1[0,T ](|τ − τk|)

}
=e−iπατ

2

e−iπ[(ν̂−ν1)−α(τ̂−τ1)](T+τ)e−iπ(ν̂−ν1−ατ̂)τ1 ·
K∑
k=1

{
e−iπ[(ν̂−ν1−ατ̂−ατ1−α∆τk)∆τk]

· ak (T − |τ − τk|) sinc
(

[(ν̂ − ν1)− α(τ̂ − τ1)] (T − |τ − τk|)
)
· 1[0,T ](|τ − τk|)

}
.

(3.11)

We know that ∆τ1 = 0, so for the two-target case, the above equation becomes

ÕMF(τ, ατ + (ν̂ − ατ̂))

=e−iπατ
2

e−iπ[(ν̂−ν1)−α(τ̂−τ1)](T+τ)e−iπ(ν̂−ν1−ατ̂)τ1

·
(
a1 (T − |τ − τ1|) sinc ([(ν̂ − ν1)− α(τ̂ − τ1)] (T − |τ − τ1|))

· 1[0,T ](|τ − τ1|)

+ a2 (T − |τ − τ2|) sinc ([(ν̂ − ν1)− α(τ̂ − τ1)] (T − |τ − τ2|))

· 1[0,T ](|τ − τ2|)e−iπ[(ν̂−ν1−ατ̂−ατ1−α∆τ2)∆τ2]
)
. (3.12)

In the following, we would like to divide Equation (3.12) into two parts and analyze

the phase responses separately. In Figure 3.4, we have the phase variation of the first

half of Equation (3.12), i.e.,

e−iπατ
2

e−iπ[(ν̂−ν1)−α(τ̂−τ1)](T+τ)e−iπ(ν̂−ν1−ατ̂)τ1 , (3.13)
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argO

MF,1τ,ατ+(ν

-ατ)

Fig. 3.4. Phase response of Equation (3.13).

which varies rapidly and with frequency −2πατ − π[(ν̂ − ν1)− α(τ̂ − τ1)].

Also, in Figure 3.5, we have the phase variation of the second half of Equation

(3.12), i.e., (
a1 (T − |τ − τ1|) sinc ([(ν̂ − ν1)− α(τ̂ − τ1)] (T − |τ − τ1|))

· 1[0,T ](|τ − τ1|)

+ a2 (T − |τ − τ2|) sinc ([(ν̂ − ν1)− α(τ̂ − τ1)] (T − |τ − τ2|))

· 1[0,T ](|τ − τ2|)e−iπ[(ν̂−ν1−ατ̂−ατ1−α∆τ2)∆τ2]
)
, (3.14)

which varies very slowly relative to the phase variation of Equation (3.13). In Equa-

tion (3.14), we can see that the first term, which relates to the first target, i.e.,

a1 (T − |τ − τ1|) sinc ([(ν̂ − ν1)− α(τ̂ − τ1)] (T − |τ − τ1|))

· 1[0,T ](|τ − τ1|),

has zero phase. And the second term,

a2 (T − |τ − τ2|) sinc ([(ν̂ − ν1)− α(τ̂ − τ1)] (T − |τ − τ2|))

· 1[0,T ](|τ − τ2|)e−iπ[(ν̂−ν1−ατ̂−ατ1−α∆τ2)∆τ2],

has phase −π[(ν̂ − ν1 − ατ̂ − ατ1 − α∆τ2)∆τ2].

Furthermore, it is worth noting that when the chosen observation point (τ̂ , ν̂) is

close to the ridge of these targets’ responses, (ν̂ − ν1)− α(τ̂ − τ1) is then very small,

which causes the sinc function to have a nearly-flat (slowly-varying) magnitude within
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each target’s response. Thus, when we apply the CLEAN algorithm to pick the first

target’s parameters (τ̂ , ν̂), it has a high probability of choosing a point (τ̂ , ν̂) that is

close to or right on the ridge, so we have the near-flat (slowly-varying) magnitude for

the sinc function.

Therefore, we know from Equation (3.14) that when τ varies, the phase varies be-

tween the phase values of the two terms, depending on their slowly-varied amplitudes.

As a result, Equation (3.14) shows slow variation in phase with respect to Equation

(3.13).
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τ / T

0.5

1.0

1.5

argO

MF,2τ,ατ+(ν

-ατ)

Fig. 3.5. Phase response of Equation (3.14).

Finally, in Figure 3.6, we have the phase variation of Equation (3.12). From
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-ατ)

Fig. 3.6. Phase response of Equation (3.12).

these figures, we know that the phase of Equation (3.13), which varies quadratically

in τ , dominates the whole phase response of Equation (3.12). Therefore, the phase

difference of Equation (3.12) linearly varies in τ .
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3.3.2 Correlation Between Two Delay-Doppler Matched Filter Outputs

Driven by Noise-Only

In this subsection, we would like to determine how the amplitude and phase of the

noise at the matched filter output vary along a line with slope α in the delay-Doppler

plane. First of all, we know that the correlation between two delay-Doppler matched

filter outputs (τ1, ν1), (τ2, ν2) driven by noise-only is

Rn̂(τ1, τ2, ν1, ν2) , E[N(τ1, ν1)N∗(τ2, ν2)]

= N0e
−i2π(ν1−ν2)τ2χs(τ1 − τ2, ν1 − ν2). (3.15)

Now, we observe two noise outputs which are along the line with slope α and through

the first point (τ1, ν1), i.e., (τ2, ν2) = (τ1 + ∆τ, ν1 + α∆τ), then we have

Rn̂(τ1, τ1 + ∆τ, ν1, ν1 + α∆τ) =N0e
−i2π[ν1−(ν1+α∆τ)](τ1+∆τ)

· χs(τ1 − (τ1 + ∆τ), ν1 − (ν1 + α∆τ))

=N0e
−i2π(−α∆τ)(τ1+∆τ)χs(−∆τ,−α∆τ)

=N0e
i2πα∆τ(τ1+∆τ)χs(−∆τ,−α∆τ).

Furthermore, for the chirp waveform, we have

χs(−∆τ,−α∆τ) =e−iπα(−∆τ)2e−iπ[−α(∆τ)−α(−∆τ)][T+(−∆τ)] · (T − | −∆τ |)

· sinc ([−α(∆τ)− α(−∆τ)] (T − | −∆τ |)) · 1[0,T ](| −∆τ |)

=e−iπα(∆τ)2(T − |∆τ |) sinc(0) · 1[0,T ](|∆τ |)

=e−iπα(∆τ)2(T − |∆τ |) · 1[0,T ](|∆τ |).

So we have the correlation between two noise outputs sampled along the line with

slope α as follows:

Rn̂(τ1, τ1 + ∆τ, ν1, ν1 + α∆τ) =N0e
i2πα∆τ(τ1+∆τ)e−iπα(∆τ)2(T − |∆τ |) · 1[0,T ](|∆τ |)

=eiπα(∆τ)2ei2πατ1∆τ ·N0(T − |∆τ |) · 1[0,T ](|∆τ |)

=eiπα(∆τ+τ1)2e−iπατ
2
1 ·N0(T − |∆τ |) · 1[0,T ](|∆τ |).

(3.16)
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From Equation (3.16), we know that when the sampling interval ∆τ is small enough,

i.e., ∆τ ≈ 0, then

Rn̂(τ1, τ1 + ∆τ, ν1, ν1 + α∆τ) =eiπα(∆τ+τ1)2e−iπατ
2
1 ·N0(T − |∆τ |) · 1[0,T ](|∆τ |)

≈eiπα(∆τ+τ1)2e−iπατ
2
1 ·N0T. (3.17)

Therefore, for any two noise outputs sampled along a line with slope α and that are

close enough in delay, the correlation approximately equals to eiπα(∆τ+τ1)2e−iπατ
2
1 ·N0T .

Furthermore, from Equation (3.15), we know that the autocorrelation of every

delay-Doppler matched filter output driven by noise-only is

Rn̂(τk, τk, νk, νk) , E[N(τk, νk)N
∗(τk, νk)]

= N0e
−i2π(νk−νk)τkχs(τk − τk, νk − νk)

= N0χs(0, 0)

= N0T, ∀k.

So the correlation coefficient is

ρn̂(τ1, τ2, ν1, ν2) =
Rn̂(τ1, τ2, ν1, ν2)√

Rn̂(τ1, τ1, ν1, ν1)
√
Rn̂(τ2, τ2, ν2, ν2)

(let τ2 = τ1 + ∆τ, ν2 = ν1 + α∆τ)

=
eiπα(∆τ+τ1)2e−iπατ

2
1 ·N0(T − |∆τ |)√

N0T
√
N0T

≈ eiπα(∆τ+τ1)2e−iπατ
2
1 ·N0T

N0T

= eiπα(∆τ+τ1)2e−iπατ
2
1 . (3.18)

Equation (3.18) tells us that two sampled noise outputs (along a line with slope α)

which are close enough in delay are highly correlated. Furthermore, it also tells us

that these noise outputs have approximately the same amplitudes and have a phase

rotation angle of πα[(∆τ+τ1)2−τ 2
1 ] [50–52]. Hence, within a region of small variations

in delay, the sampled noise outputs have close-to-constant amplitude and have phases

which quadratically vary in delay τ .
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3.3.3 Phase Dominance of Noise-Target Fringe

From Subsection 3.3.1 and 3.3.2, we know that when we observe near the center

of a target’s matched filter output ridge response, due to the much larger amplitude

of the target compared to the amplitude of output noise, the total phase is dominated

by the target’s phase. On the other hand, when we observe the response which is

close to the edge of a target’s response, due to nearly the same order of a target’s

amplitude and the amplitude of output noise, the total phase variation is decided by

both target’s phase and noise’s phase. Finally, when we observe the edge of a target’s

response, due to the absence of the target’s response, the total phase variation is then

decided by the output noise only. The above descriptions are shown in Figure 3.7,

3.8 and 3.9.

Furthermore, Figure 3.9 shows the amplitude and phase variations when τ goes

toward the edge of a target’s response (From Figure 3.9(a) to 3.9(d)). Obviously, we

can see that the phase variation of the overall response transforms from target-only

phase variation (target-phase dominated) to target-noise-combined phase variation

(phase dominance transition) and then to noise-only phase variation (noise-phase

dominated). Furthermore, both the phase of target-only and noise-only quadratically

vary in delay τ . Therefore, the overall phase variation seems to gradually change

from one quadratically-varying phase to another quadratically-varying phase. Thus,

the overall phase difference seems like from one linearly-varying phase difference to

another linearly-varying phase difference. As a result, an arc shape (non-linearity)

occurs in the phase dominance transition region of the phase difference, which is at

the edge of a target’s response. This is the reason why the arc shape occurs at the

edge of a target’s response.

3.3.4 The Noise-Target Fringe Analysis Process

From subsection 3.3.3 we know that the phase difference along a ridge line with

slope α is linear in τ , which comes from the quadratic phase variations (in delay)



58

(a) Target-only amplitude (b) Target-only phase

(c) Noise-only amplitude (d) Noise-only phase

(e) Overall amplitude (f) Overall phase

Fig. 3.7. Amplitude response and phase response along the ridge with slope α (30dB
SNR).
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Fig. 3.8. The phase response (upper figure) and the phase difference (lower figure) of
the line with slope α and through (τ1, ν1).

of the delay-Doppler response along the ridge. However, the phase difference shows

a non-linear shape (arc-shape) rather than a linear shape when we are at the edge

of a target’s response. This is due to the fact that the total amplitude and phase

dominance changes from the target to the output noise.

By experimental observation, we know that generally there are four types of arc-

shapes which can possibly occur in the phase difference result (Figure 3.10). There-
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Fig. 3.9. Amplitude and phase variations from the center to the edge of a target’s
response (from 3.9(a) to 3.9(d)).
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(a)

Type 1

(b)

Type 2

(c)

Type 3

(d)

Type 4

Fig. 3.10. Four possible types of arc-shape in the phase difference along the ridge.

fore, to find these arcs in the phase difference results, we would like to sample the

phase difference line and detect the consecutively increasing (and decreasing) in slope

to recognize as the arc positions.

In the following, we illustrate how the noise-target fringe analysis proceeds, includ-

ing the arc-shape detection. First of all, we apply the CLEAN algorithm to pick the

delay-Doppler position with the largest magnitude from the matched filter output re-

sponse, say (τ̂
CLEAN

, ν̂
CLEAN

, â
CLEAN

) (one target only). Then we sample the matched

filter output response along the line through (τ̂
CLEAN

, ν̂
CLEAN

) and with slope α. For

these observation samples, we can easily calculate their phase values, and then we

compute the phase difference and check where the arc-shape occurs. The arc-shape

detection method is quite simple: we just find the consecutively increasing or decreas-

ing in slope of the phase difference result. In this way, we can find two delay positions

with such arc-shape, say τ̂edge1 and τ̂edge2 (τ̂edge1 < τ̂edge2, WLOG), which are situated

in the edges of the leftmost and the rightmost of the targets’ delay-Doppler response.

Hence, we can estimate two targets’ delays τ̂p1 = τ̂edge1 + T and τ̂p2 = τ̂edge2 − T ,

where T is the duration of the chirp transmitted waveform.

Furthermore, we know that in moderate or high SNR situations (30dB or more),

interference among the targets’ responses dominates the whole matched filter delay-

Doppler response. And, for chirp radars, a target’s matched filter output response
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shows the triangular drop in amplitude along the ridge with slope α, and the ampli-

tude response drops quickly along other directions. Therefore, when the targets are

lying along a line with slope α, the constructive/destructive interference affects the

resulting matched filter output amplitude response, especially the amplitude response

along the ridge, which is affected the most. Because of this phenomenon, when the

CLEAN algorithm is applied for picking a peak from the chirp matched filter delay-

Doppler output response, it usually picks the target parameter with good accuracy

(not too far away from the true target parameter), or it picks the parameter (first

target) which usually lies in the vicinity of the line connecting to two true targets’

in the delay-Doppler plane. Then, with (τ̂
CLEAN

, ν̂
CLEAN

) from CLEAN, and with τ̂p1,

τ̂p2 from the phase difference observation, we can estimate the targets’ Doppler shifts

ν̂p1 = ν̂
CLEAN

+ α(τ̂p1 − τ̂CLEAN ), ν̂p2 = ν̂
CLEAN

+ α(τ̂p2 − τ̂CLEAN ). As for the ampli-

tude estimate of two targets, first we compare the amplitude at the two positions

(τ̂p1, ν̂p1, τ̂p2, ν̂p2), say |Õ(τ̂p1, ν̂p1)| and |Õ(τ̂p2, ν̂p2)|, and we pick the larger amplitude

to be the first target’s amplitude. For example, if |Õ(τ̂p1, ν̂p1)| > |Õ(τ̂p2, ν̂p2)|, then

âp1 = Õ(τ̂p1, ν̂p1), and vice versa. So here we have the estimated parameter of first

target to be (τ̂p1, ν̂p1, âp1). Then we subtract the output response of the estimated

first target from the matched filter delay-Doppler output response to get the residual

output response Õ
(1)
Res(τ, ν) (i.e., subtract the gain of this point source âp1 convolved

with the point spread function of the observation (τ̂p1, ν̂p1)). Finally, we let the am-

plitude at (τ̂p2, ν̂p2) of the residual output response be âp2. Likewise, we subtract the

weighted output response of the second estimated target from the residual output re-

sponse Õ
(1)
Res(τ, ν) to get the new residual output response Õ

(2)
Res(τ, ν). In this way, we

have the overall estimated parameter (τ̂p1, ν̂p1, âp1, τ̂p2, ν̂p2, âp2). The above example

can be generalized to multiple-target cases, and we can iteratively apply the above

approach to sequentially estimate all targets parameters (from the two sides to the

middle).
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3.3.5 A Further Note on Noise-Target Fringe Analysis

In previous sections we observe the delay-Doppler response along the line which

goes through (τ̂
CLEAN

, ν̂
CLEAN

) and is with slope α. Actually, we know that no matter

which delay-Doppler point (τk, νk) is chosen, if (τk, νk) is close to one of the true targets

or lies in the vicinity of the line connecting the two true targets, the triangular shape

of the targets’ amplitude responses still holds, so we still can find the arc-shape in the

phase difference of the observations. Therefore, once we have (τ̂
CLEAN

, ν̂
CLEAN

), we

can not only sample along the line through (τ̂
CLEAN

, ν̂
CLEAN

) but also sample along

other lines through (τ̂
CLEAN

±∆τ, ν̂
CLEAN

±∆ν) to generate different ridge samples,

where ±∆τ and ±∆ν are small bias values (small random real numbers). In this way,

we can find the arc-shape positions from the phase difference of these ridge lines to

further confirm the two targets’ delays.

3.4 Weighted Nonlinear Least Squares Optimization for Target Parame-

ter Estimates

In this section, we treat the matched filter delay-Doppler output response as a

two-dimensional equation, and we apply the Gauss-Newton optimizations to acquire

the weighted nonlinear least squares estimate of the unknown target parameters.

First, we sample at different delay-Doppler grid points from the matched filter output

response Õ(τ, ν) to get a sequence of N observations Õ(τ(1), ν(1)), Õ(τ(2), ν(2)), · · · ,

Õ(τ(N), ν(N)), where (τ(p), ν(p)) is the delay-Doppler position of the p-th observed grid

point, p = 1, · · · , N . In the following we use X = [X1, X2, · · · , XN ]T to represent the
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observations [Õ(τ(1), ν(1)), · · · , Õ(τ(N), ν(N))]
T , for brevity. Then we have the mean

of the observations

E[X] =[E[X1], E[X2], · · · , E[XN ]]T

=

[
K∑
k=1

ake
−i2π(ν(1)−νk)τkχs(τ(1) − τk, ν(1) − νk),

· · · ,
K∑
k=1

ake
−i2π(ν(N)−νk)τkχs(τ(N) − τk, ν(N) − νk)

]T
, (3.19)

which is due to the fact that E[N(τ(p), ν(p))] = 0, p = 1, · · · , N. Furthermore, the

covariance of any two observations Xp and Xq is

CXpXq = E[(Xp − E[Xp])(Xq − E[Xq])
∗]

= E[N(τ(p), ν(p))(N(τ(q), ν(q)))
∗]

= N0e
−i2π(ν(p)−ν(q))τ(q)χs(τ(p) − τ(q), ν(p) − ν(q)). (3.20)

It is worth noting that none of the elements of the covariance matrix CXX depend

on θ, the vector containing all unknown target parameter elements. Hence, the joint

probability density function of the observations is

f(X; θ) =
1√

(2π)N |CXX|
e−

1
2

(X−E[X])HC−1
XX (X−E[X]),

which has the same form as the likelihood function LX(θ).

Now, given these observations, we would like to find the maximum likelihood

estimate θ̂ML, which maximizes the likelihood function LX(θ), i.e.,

θ̂ML = arg max
θ

1√
(2π)N |CXX|

e−
1
2

(X−f(θ))HC−1
XX (X−f(θ)),

where θ̂ML = (τ̂ML1, ν̂ML1, âML1, · · · , τ̂MLK , ν̂MLK , âMLK) and f(θ) = E[X]. Now,

because CXX does not depend on the targets’ delay-Doppler positions and amplitudes,

i.e., CXX is not a function of θ, and the log function is monotonically increasing, we

can rewrite the above equation as the following

θ̂ML = arg min
θ

1

2
(X− f(θ))HC−1

XX(X− f(θ)). (3.21)
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3.4.1 Hermitian Property of Covariance Matrix CXX

From (3.20) we know that the covariance of two observations Xp and Xq is

CXpXq = N0e
−i2π(ν(p)−ν(q))τ(q)χs(τ(p) − τ(q), ν(p) − ν(q)).

Also, the covariance of Xq and Xp is

CXqXp = E[(Xq − E[Xq])(Xp − E[Xp])
∗]

= E[N(τ(q), ν(q))(N(τ(p), ν(p)))
∗]

= N0e
−i2π(ν(q)−ν(p))τ(p)χs(τ(q) − τ(p), ν(q) − ν(p)).

From the properties of the ambiguity function, we know that

χs(τ(q) − τ(p), ν(q) − ν(p)) =e−i2π(ν(p)−ν(q))(τ(p)−τ(q))χ∗s(τ(p) − τ(q), ν(p) − ν(q)),

then we can rewrite CXqXp as

CXqXp =N0e
−i2π(ν(q)−ν(p))τ(p)e−i2π(ν(p)−ν(q))(τ(p)−τ(q))χ∗s(τ(p) − τ(q), ν(p) − ν(q))

=N0e
i2π(ν(p)−ν(q))τ(q)χ∗s(τ(p) − τ(q), ν(p) − ν(q))

=C∗XpXq .

As for the diagonal elements, where p = q,

CXpXp = E[(Xp − E[Xp])(Xp − E[Xp])
∗]

= N0e
−i2π(ν(p)−ν(p))τ(p)χs(τ(p) − τ(p), ν(p) − ν(p))

= N0χs(0, 0)

= N0

∫ ∞
−∞

sTx(t)s
∗
Tx(t)dt

= N0

∫ ∞
−∞
|sTx(t)|2dt,

which are real numbers when sTx(t) is absolutely integrable. Therefore, the matrix

CXX is a Hermitian matrix.
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3.4.2 Eigen-Decomposition of Hermitian Covariance Matrix CXX

From Subsection 3.4.1 we know that CXX is a Hermitian matrix, so we can decom-

pose CXX into

CXX = V HDV

= V HD
1
2D

1
2V

= V HD
H
2 D

1
2V

= (D
1
2V )HD

1
2V , (3.22)

where D is a diagonal matrix with real diagonal elements, and V is the matrix com-

bined by the eigenvectors of CXX [53]. Note that V is a unitary matrix, i.e., V HV = I,

identity matrix. Then the maximum likelihood estimate becomes

θ̂ML = arg min
θ

1

2
(X− f(θ))HC−1

XX(X− f(θ))

= arg min
θ

1

2
(X− f(θ))H

(
V HDV

)−1
(X− f(θ))

= arg min
θ

1

2
(X− f(θ))H V −1D−1

(
V H
)−1

(X− f(θ))

= arg min
θ

1

2
(X− f(θ))H V H

(
D−

1
2

)H
D−

1
2V (X− f(θ))

= arg min
θ

1

2

(
D−

1
2V (X− f(θ))

)H (
D−

1
2V (X− f(θ))

)
, (3.23)

which is a complex-valued nonlinear least squares problem [42]. Hence, now we can

reformulate the above problem as

θ̂ML = arg min
θ

1

2
r(θ)Hr(θ),

where

r(θ) = D−
1
2V (X− f(θ)),

and l(θ) = 1/2·r(θ)Hr(θ) is a real-valued cost function. In subsections 3.4.3 and 3.4.4,

we will apply the Gauss-Newton optimization to solve this complex-valued nonlinear

least squares problem and find the weighted nonlinear least squares parameter esti-

mates.



67

3.4.3 Gradient of Cost Function l(θ)

Now let g(θ)= gradient of l(θ), which is still real-valued. Then

g(θ) =
∂l(θ)

∂θ

=



∂l(θ)
∂θ1

∂l(θ)
∂θ2

·

·

·
∂l(θ)
∂θM



=



∂(r(θ)Hr(θ))
∂θ1

∂(r(θ)Hr(θ))
∂θ2

·

·

·
∂(r(θ)Hr(θ))

∂θM



=



(
∂
∂θ1
r(θ)H

)
r(θ) + r(θ)H

(
∂
∂θ1
r(θ)

)
(

∂
∂θ2
r(θ)H

)
r(θ) + r(θ)H

(
∂
∂θ2
r(θ)

)
·

·

·(
∂

∂θM
r(θ)H

)
r(θ) + r(θ)H

(
∂

∂θM
r(θ)

)



=



(
∂
∂θ1
r(θ)H

)
r(θ) +

((
∂
∂θ1
r(θ)H

)
r(θ)

)∗(
∂
∂θ2
r(θ)H

)
r(θ) +

((
∂
∂θ2
r(θ)H

)
r(θ)

)∗
·

·

·(
∂

∂θM
r(θ)H

)
r(θ) +

((
∂

∂θM
r(θ)H

)
r(θ)

)∗


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=



2Re
((

∂
∂θ1
r(θ)H

)
r(θ)

)
2Re

((
∂
∂θ2
r(θ)H

)
r(θ)

)
·

·

·

2Re
((

∂
∂θM

r(θ)H
)
r(θ)

)


= 2Re

{(
∂

∂θ
r(θ)H

)
r(θ)

}
. (3.24)

3.4.4 Hessian Matrix of Cost Function l(θ)

Now let H(θ)= Hessian of l(θ), which is a real-valued matrix. Then

H(θ) =
∂2l(θ)

∂θ∂θT

= 2Re
(
JHJ

)
+ 2

(
M∑
m=1

r∗m
∂2rm

∂θ∂θT

)
∼= 2Re

(
JHJ

)
, (3.25)

where

J =
∂r(θ)

∂θ
.

(Since r is being minimized in the least squares sense, it is often the case that all

components rm are small). Then, by using the Gauss-Newton method, in the n-th

iteration we have the following steps,

(a) Solve H(θ(n)) · d(n) = −g(θ(n)) to get d(n).

(b) Update θ(n+1) = θ(n) + d(n).
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3.4.5 Maximum Likelihood Estimate of Unknown Target Parameters

From Subsection 3.4.2, we can view the maximum likelihood estimate of the tar-

gets’ parameters as solving the complex-valued nonlinear least squares problem,

θ̂ML = arg min
θ

1

2
r(θ)Hr(θ),

where

r(θ) = D−
1
2V (X− f(θ)).

First, we have

g(θ) = 2Re

{(
∂

∂θ
r(θ)H

)
r(θ)

}
= 2Re

{(
∂

∂θ

[
D−

1
2V (X− f(θ))

]H)
·D−

1
2V (X− f(θ))

}
= 2Re

{
∂

∂θ

[
(X− f(θ))HV HD−

H
2

]
·D−

1
2V (X− f(θ))

}
= 2Re

{
−
(
∂

∂θ
f(θ)H

)
V HD−

1
2D−

1
2V (X− f(θ))

}
= 2Re

{
−
(
∂

∂θ
f(θ)H

)
V HD−1V (X− f(θ))

}
= 2Re

{
−
(
∂

∂θ
f(θ)H

)
C−1

XX(X− f(θ))

}
, (3.26)

and

H(θ) ∼= 2Re
{
JHJ

}
= 2Re

{(
∂

∂θ

[
D−

1
2V (X− f(θ))

]H)
·
(
∂

∂θ

[
D−

1
2V (X− f(θ))

])}
= 2Re

{(
∂

∂θ

[
(X− f(θ))HV HD−

H
2

])
·D−

1
2V

(
− ∂

∂θ
f(θ)

)}
= 2Re

{(
− ∂

∂θ
f(θ)H

)
V HD−

1
2D−

1
2V

(
− ∂

∂θ
f(θ)

)}
= 2Re

{(
− ∂

∂θ
f(θ)H

)
V HD−1V

(
− ∂

∂θ
f(θ)

)}
= 2Re

{(
∂

∂θ
f(θ)H

)
C−1

XX

(
∂

∂θ
f(θ)

)}
(3.27)
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Hence, the procedure for finding θ̂ML is

(a) Solve H(θ(n)) · d(n) = −g(θ(n)) to get d(n), i.e., solve

2Re

{(
∂

∂θ
f(θ)H

)
C−1

XX

(
∂

∂θ
f(θ)

)} ∣∣∣∣
θ=θ(n)

· d(n)

= −2Re

{
−
(
∂

∂θ
f(θ)H

)
C−1

XX(X− f(θ))

} ∣∣∣∣
θ=θ(n)

.

(b) Update θ(n+1) = θ(n) + d(n). (3.28)

The initial parameter vector θ(0) can be acquired from the result of the noise-target

fringe analysis, which generally provides the close-to-the-truth target estimates.

3.4.6 Chirp Radar Systems

Now we apply the chirp waveforms in the radar system, i.e., sTx(t) = eiπαt
2 ·

1[0,T ](t), and we would like to find the gradient vector g(θ) and the Hessian matrix

H(θ). By (3.28), once we know ∂f(θ)/∂θ , we can then solve the problem and find

the weighted nonlinear least squares estimates of unknown target parameters. The

followings are the partial derivatives of f(θ) with respect to unknown parameters

τk, νk and ak, where k = 1, · · · , K.
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∂

∂τk
f(θ) =

∂

∂τk

(
K∑
k=1

ake
−i2π(ν−νk)τkχs(τ − τk, ν − νk)

)
=ake

−iπ[(ν−νk)(T+τ+τk)−αT (τ−τk)] · 1[0,T ](|τ − τk|)

·

{
(−iπ[ν − νk + αT ]) (T − |τ − τk|)

· sinc ([(ν − νk)− α(τ − τk)] [T − |τ − τk|])

+

{
± sinc ([(ν − νk)− α(τ − τk)] [T − |τ − τk|])

+ (T − |τ − τk|) ·
[

1

π
[αT ± ((ν − νk)− 2α(τ − τk))]

·
[π cos (π [(ν − νk)− α(τ − τk)] [T − |τ − τk|])

[(ν − νk)− α(τ − τk)] [T − |τ − τk|]

− sin (π [(ν − νk)− α(τ − τk)] [T − |τ − τk|])
([(ν − νk)− α(τ − τk)] [T − |τ − τk|])2

]]}}
,

∂

∂νk
f(θ) =

∂

∂νk

(
K∑
k=1

ake
−i2π(ν−νk)τkχs(τ − τk, ν − νk)

)
=ak (T − |τ − τk|) e−iπ[(ν−νk)(T+τ+τk)−αT (τ−τk)]

· 1[0,T ](|τ − τk|) ·

{
iπ(T + τ + τk)

· sinc ([(ν − νk)− α(τ − τk)] [T − |τ − τk|])

+
(|τ − τk| − T )

π

·
[
π cos (π [(ν − νk)− α(τ − τk)] [T − |τ − τk|])

[(ν − νk)− α(τ − τk)] [T − |τ − τk|]

− sin (π [(ν − νk)− α(τ − τk)] [T − |τ − τk|])
([(ν − νk)− α(τ − τk)] [T − |τ − τk|])2

]}
,
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and

∂

∂ak
f(θ) =

∂

∂ak

(
K∑
k=1

ake
−i2π(ν−νk)τkχs(τ − τk, ν − νk)

)
=e−iπ[(ν−νk)(T+τ+τk)−αT (τ−τk)] · (T − |τ − τk|)

· sinc ([(ν − νk)− α(τ − τk)] (T − |τ − τk|))

· 1[0,T ](|τ − τk|).

3.5 Signal to Noise Ratio Analysis

In this section, we focus on digital radar systems, and we show the derivations of

the first and second order statistics such as mean and variance of the delay-Doppler

matched filter output driven by complex additive white Gaussian noise (AWGN).

First of all, we assume that a vector W consists of independent and identically

distributed (i.i.d.) additive complex white Gaussian noise samples is as follows:

W = [W1,W2, · · · ,WM ], where

Wk = WR
k + iW I

k , k = 1, · · · ,M,

WR
k ∼ N [0, σ2], W I

k ∼ N [0, σ2],

WR
k ⊥⊥ WR

l , k 6= l,

W I
k ⊥⊥ W I

l , k 6= l,

WR
k ⊥⊥ W I

l , ∀k, l.

From the above, we know that each complex AWGN sample Wk has the mean

E[Wk] = E[WR
k + iW I

k ]

= E[WR
k ] + iE[W I

k ]

= 0,
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and variance

V ar[Wk] = E[(Wk − E[Wk])
2]

= E[W 2
k ]

= E[(WR
k + iW I

k )(WR
k + iW I

k )∗]

= E[WR
k W

R
k +W I

kW
I
k ]

= 2σ2.

Furthermore, the digital filtering procedure can be viewed as the discrete convo-

lution of noise samples and the digital filter samples. For a finite-energy transmitted

waveform, its matching template waveform also has finite energy, so we have the

output of the noise after the matched filtering process Y is,

Y =
N∑
k=1

akWk∆t,

where the ak are the sample values of the digital matched filter, ∆t is the sampling

interval, and N∆t = T is the duration of the matching template waveform. Note

that M > N , where N is the number of samples of the digital filter. Then the noise

output Y has mean

E[Y ] = E

[
N∑
k=1

akWk∆t

]

= ∆t
N∑
k=1

akE[Wk]

= 0,



74

and variance

V ar[Y ] = E[(Y − E[Y ])2]

= E[Y 2]

= E

[(
N∑
k=1

akWk∆t

)(
N∑
l=1

alWl∆t

)∗]

= (∆t)2

N∑
k=1

N∑
l=1

aka
∗
lE[WkW

∗
l ]

= (∆t)2

N∑
k=1

aka
∗
k · 2σ2

= (∆t)2 · 2σ2

N∑
k=1

|ak|2.

Hence, Y ∼ CN
[
0, (∆t)2 · 2σ2

∑N
k=1 |ak|2

]
. Also, we know that the additive white

Gaussian noise samples are with two-sided power spectral density (PSD) N0/2, so

σ2 = N0, and

V ar[Y ] = (∆t)2 · 2N0

N∑
k=1

|ak|2.

Furthermore, when we sample the signal at the Nyquist sampling rate, the corre-

sponding matched filter has the same sampling rate, so we have ∆t = T/N . Then

V ar[Y ] = (
T

N
)2 · 2N0

N∑
k=1

|ak|2.

By the Weak Law of Large Number [54], we know that

1

N

N∑
k=1

|Yk|2
p→ E[|Y |2],

where the Yk, k = 1, 2, · · · , N are independent and identically distributed. Therefore,

we know that for the uncorrelated Gaussian (hence independent) noise output samples

Yk (time domain samples), the average output noise power converges in probability

to E[|Y |2], which is equal to V ar[Y ].
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Now, for the transmitted signal sTx(t), we have the digital matched filter output

as follows,

Z =
N∑
k=1

sTx(k∆t)s∗Tx(k∆t)∆t

= ∆t
N∑
k=1

aka
∗
k

=
T

N

N∑
k=1

|ak|2

Note that s(k∆t) = ak, k = 1, · · · , N. Hence, the signal to noise ratio at the output

of the digital matched filter becomes

SNR =
|Z|2

E[|Y |2]

=

∑N
k=1 |ak|2

2N0

,

which equals to N/2N0 if |ak| = 1, k = 1, · · · , N.

3.6 Target Parameter Estimate System and Algorithm

In this section, we first show the whole target parameter estimate system in Figure

3.11.

Then, the complete algorithm of chirp radar target parameter estimate system is

generalized and summarized as follows (we let a point source at (τ̂ , ν̂) convolved with

the point spread function be P̃τ̂ ,ν̂(τ, ν)):

Input: matched filter delay-Doppler output Õ(τ, ν).

Output: (τ̂ (1)
LS1
, ν̂(1)

LS1
, â(1)

LS1
, τ̂ (1)

LS2
, ν̂(1)

LS2
, â(1)

LS2
, · · · ).

Initialization Õ
(0)
Res(τ, ν) = Õ(τ, ν), n = 1, threshold ε.

Step 1: Apply CLEAN to pick (τ̂
CLEAN

, ν̂
CLEAN

, â
CLEAN

) from Õ
(0)
Res(τ, ν).

while max
∣∣∣Õ(n−1)

Res (τ, ν)
∣∣∣ ≥ ε do

Step 2: Sample along the line through (τ̂
CLEAN

, ν̂
CLEAN

) and with slope α from the

response Õ
(n−1)
Res (τ, ν).
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Fig. 3.11. Target parameter estimate system.

Step 3: Generate the phase of each sample from Step 2.

Step 4: Calculate the phase difference between every two neighboring samples

from Step 3.

Step 5: Detect the positions with consecutively increasing (decreasing) in slope

from the phase difference result. The qualified positions are the edges of targets’

delay-Doppler response (τ̂
(n)
edge1 and τ̂

(n)
edge2, where τ̂

(n)
edge1 ≤ τ̂

(n)
edge2).

Step 6: Delay estimates: τ̂
(n)
p1 = τ̂

(n)
edge1 + T and τ̂

(n)
p2 = τ̂

(n)
edge2 − T.

Step 7: Doppler shift estimates: ν̂
(n)
p1 = ν̂

CLEAN
+ α(τ̂

(n)
p1 − τ̂

CLEAN
) and ν̂

(n)
p2 =

ν̂
CLEAN

+ α(τ̂
(n)
p2 − τ̂CLEAN ).

Step 8: if
∣∣∣Õ(n−1)

Res (τ̂
(n)
p1 , ν̂

(n)
p1 )
∣∣∣ ≥ ∣∣∣Õ(n−1)

Res (τ̂
(n)
p2 , ν̂

(n)
p2 )
∣∣∣ then

â
(n)
p1 = Õ

(n−1)
Res (τ̂

(n)
p1 , ν̂

(n)
p1 ),

â
(n)
p2 = Õ

(n−1)
Res (τ̂

(n)
p2 , ν̂

(n)
p2 )− â(n)

p1 · P̃τ̂ (n)p1 ,ν̂
(n)
p1

(τ̂
(n)
p2 , ν̂

(n)
p2 )

else

â
(n)
p2 = Õ

(n−1)
Res (τ̂

(n)
p2 , ν̂

(n)
p2 ),

â
(n)
p1 = Õ

(n−1)
Res (τ̂

(n)
p1 , ν̂

(n)
p1 )− â(n)

p2 · P̃τ̂ (n)p2 ,ν̂
(n)
p2

(τ̂
(n)
p1 , ν̂

(n)
p1 )

end if

Step 9: Õ
(n)
Res(τ, ν) = Õ

(n−1)
Res (τ, ν)− â(n)

p1 · P̃τ̂ (n)p1 ,ν̂
(n)
p1

(τ, ν)− â(n)
p2 · P̃τ̂ (n)p2 ,ν̂

(n)
p2

(τ, ν).
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Step 10: record (τ̂
(n)
p1 , ν̂

(n)
p1 , â

(n)
p1 , τ̂

(n)
p2 , ν̂

(n)
p2 , â

(n)
p2 ), n = n+ 1.

end while

Step 11: Apply all estimated target parameters as the initial parameters

(τ̂
(1)
p1 , ν̂

(1)
p1 , â

(1)
p1 , τ̂

(1)
p2 , ν̂

(1)
p2 , â

(1)
p2 , · · · ), then do the Gauss-Newton algorithm to find the

nonlinear least squares estimates of target parameters, (τ̂ (1)
LS1
, ν̂(1)

LS1
, â(1)

LS1
, τ̂ (1)

LS2
, ν̂(1)

LS2
, â(1)

LS2
, · · · ).

3.7 Estimator Performance

3.7.1 Case 1

The performance of the target parameter estimate system is shown in Table 3.1.

Here we apply six different cases, from 50% to 75%, which represent different per-

centages of overlap of two targets’ matched filter output response. All six cases are

under the condition that two targets lying along a ridge line with slope α. More-

over, in each case, we run the estimator 1000 times (generate 1000 different complex

AWGN input patterns), and we fix the SNR to 30dB. Then we check the probability

of successful estimate (the estimated parameters are convergent and are within the

tolerable region, i.e., |τ − τ̂pk| ≤ 0.1T and |ν − ν̂pk| ≤ α · 0.1T , or |τ − τ̂
LSk
| ≤ 0.1T

and |ν − ν̂
LSk
| ≤ α · 0.1T , ∀k).

From the performance results we know that the noise-target fringe analysis ap-

proach for target parameter estimate can have near to 90% success. Moreover, if we

regard the parameters as the initial parameters and further apply the Gauss-Newton

optimization, we can achieve above a 90% successful estimation rate.
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Table 3.1. Probability of successful parameter estimate. %Overlap means the per-
centage of overlap of two targets’ matched filter output responses. θ̂pk is the pa-
rameter vector estimated by the output of the noise-target fringe analysis, i.e.,
θ̂pk = (τ̂p1, ν̂p1, âp1, τ̂p2, ν̂p2, âp2); θ̂

LSk
is the parameter vector estimated by the output

of the Gauss-Newton algorithm, i.e., θ̂
LSk

= (τ̂
LS1
, ν̂

LS1
, â

LS1
, τ̂

LS2
, ν̂

LS2
, â

LS2
).

Parameter

Success Prob. %Overlap

50% 55% 60% 65% 70% 75%

θ̂pk 95.0% 96.5% 92.8% 88.8% 87.0% 92.8%

θ̂
LSk

97.7% 98.8% 96.0% 90.2% 92.0% 99.5%

3.7.2 Case 2

Now we consider the four-target case, i.e., four targets lie along a line with slope

α, the chirp rate of transmitted waveform. The three different scenarios are:

Scenario 1: The target parameters (normalized) are

(τ1/T, ν1T, a1) = (0, 0, 1),

(τ2/T, ν2T, a2) = (0.5, 5, 1),

(τ3/T, ν3T, a3) = (1, 10, 1),

(τ4/T, ν4T, a4) = (1.5, 15, 1).

Scenario 2: The target parameters (normalized) are

(τ1/T, ν1T, a1) = (0, 0, 1),

(τ2/T, ν2T, a2) = (0.5, 5, 0.5),

(τ3/T, ν3T, a3) = (1, 10, 0.5),

(τ4/T, ν4T, a4) = (1.5, 15, 1).
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Scenario 3: The target parameters (normalized) are

(τ1/T, ν1T, a1) = (0, 0, 0.5),

(τ2/T, ν2T, a2) = (0.5, 5, 1),

(τ3/T, ν3T, a3) = (1, 10, 1),

(τ4/T, ν4T, a4) = (1.5, 15, 0.5).

The chirp matched filter delay-Doppler output response (noise-free) corresponding to

the three scenarios are shown in Figure 3.12, 3.13 and 3.14.

Fig. 3.12. Chirp matched filter delay-Doppler output response of scenario 1.

Now, under the 30dB maximal SNR (at the matched filter output) condition, we

compare the performance of targets’ delay-Doppler estimates based on the following

metric (the waveform duration T can be ignored by setting it equal to 1):

P =
1

4

4∑
k=1

[
(τ̂k − τk)2 + (ν̂k − νk)2

]
,

which tells us the averaged squared distance between the true target’s delay-Doppler

position and the delay-Doppler position of the estimated target. The four targets’

parameters at the estimator output are reordered (according to their delay values)

before calculating the performance metric P .
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Fig. 3.13. Chirp matched filter delay-Doppler output response of scenario 2.

Fig. 3.14. Chirp matched filter delay-Doppler output response of scenario 3.

Here, two different estimators are compared: 1) the coherent CLEAN estimator,

and 2) the noise-target fringe analysis (NTFA) estimator, and in each scenario we run

the two estimators 200 times (generate 200 different complex AWGN input patterns

and then apply the input patterns to two estimators separately), and the results (200

times averaging) are shown in Table 3.2. The results show that the noise-target fringe

analysis estimator can have a more accurate delay-Doppler estimate than the coher-

ent CLEAN estimators. The large averaged squared error of the coherent CLEAN

estimator comes from the fact that it almost recognizes four targets as only three
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Table 3.2. Estimator performance comparison.

Scenario 1 Scenario 2 Scenario 3

PcoherentCLEAN 10.3132 5.38245 4.29357

PNTFA 3.12587 3.92539 2.73756

targets, i.e., two of the four targets are estimated with nearly the same delay and

Doppler value. However, the noise-target fringe analysis estimator has higher proba-

bility in discriminating all four targets, and the corresponding averaged squared error

is smaller than the averaged squared error of the coherent CLEAN estimator. In Table

3.3, we randomly pick a number of simulation results, and we can easily see that the

coherent CLEAN estimator usually regards four targets as three targets. Therefore,

the noise-target fringe analysis estimator has better ability in target separation than

the pure coherent CLEAN estimator. To get more accurate delay-Doppler estimates,

we can further apply the Gauss-Newton algorithm to get the nonlinear least squares

estimates of all target parameters.

Table 3.3.: Delay-Doppler estimates of two estimators.

j-th time pure coherent CLEAN noist-target fringe analysis

(τ̂1, ν̂1) = (0.01, 0.2) (τ̂1, ν̂1) = (0, 0.1)

(τ̂2, ν̂2) = (1, 9.94) (τ̂2, ν̂2) = (0.71, 7.2)

1 (τ̂3, ν̂3) = (1, 10.82) (τ̂3, ν̂3) = (1.12, 11.3)

(τ̂4, ν̂4) = (1.5, 15.1) (τ̂4, ν̂4) = (1.42, 14.3)

P = 6.343 P = 1.774

(τ̂1, ν̂1) = (0, 0.12) (τ̂1, ν̂1) = (−0.02,−0.08)

(τ̂2, ν̂2) = (0.5, 4.88) (τ̂2, ν̂2) = (0.86, 8.72)

2 (τ̂3, ν̂3) = (0.5, 5.74) (τ̂3, ν̂3) = (1.2, 12.12)

Continued on next page
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Table 3.3.: Delay-Doppler estimates of two estimators. (cont.)

j-th time pure coherent CLEAN noist-target fringe analysis

(τ̂4, ν̂4) = (1.51, 15.22) (τ̂4, ν̂4) = (1.49, 15.02)

P = 4.618 P = 4.626

(τ̂1, ν̂1) = (0., 0.09) (τ̂1, ν̂1) = (−0.02,−0.11)

(τ̂2, ν̂2) = (1., 9.92) (τ̂2, ν̂2) = (0.7, 7.09)

3 (τ̂3, ν̂3) = (1.01, 10.83) (τ̂3, ν̂3) = (1.02, 10.29)

(τ̂4, ν̂4) = (1.5, 15.12) (τ̂4, ν̂4) = (1.41, 14.19)

P = 6.291 P = 1.292

(τ̂1, ν̂1) = (0., 0.1) (τ̂1, ν̂1) = (0., 0.1)

(τ̂2, ν̂2) = (0.5, 4.93) (τ̂2, ν̂2) = (0.91, 9.2)

4 (τ̂3, ν̂3) = (0.51, 5.88) (τ̂3, ν̂3) = (1.22, 12.3)

(τ̂4, ν̂4) = (1.5, 15.1) (τ̂4, ν̂4) = (1.49, 15.0)

P = 4.309 P = 5.788

(τ̂1, ν̂1) = (0., 0.13) (τ̂1, ν̂1) = (0., 0.11)

(τ̂2, ν̂2) = (0.5, 5.71) (τ̂2, ν̂2) = (0.7, 7.11)

5 (τ̂3, ν̂3) = (0.51, 4.98) (τ̂3, ν̂3) = (1.25, 12.61)

(τ̂4, ν̂4) = (1.5, 15.11) (τ̂4, ν̂4) = (1.47, 14.81)

P = 6.493 P = 2.853

(τ̂1, ν̂1) = (0, 0.14) (τ̂1, ν̂1) = (0, 0.14)

(τ̂2, ν̂2) = (0.48, 5.54) (τ̂2, ν̂2) = (0.83, 8.44)

6 (τ̂3, ν̂3) = (0.5, 4.92) (τ̂3, ν̂3) = (1, 10.14)

(τ̂4, ν̂4) = (1.5, 15.11) (τ̂4, ν̂4) = (1.48, 14.94)

P = 6.594 P = 2.996

(τ̂1, ν̂1) = (0.01, 0.2) (τ̂1, ν̂1) = (0, 0.15)

(τ̂2, ν̂2) = (0.51, 4.92) (τ̂2, ν̂2) = (0.44, 4.55)

7 (τ̂3, ν̂3) = (0.59, 6.63) (τ̂3, ν̂3) = (0.49, 5.05)

(τ̂4, ν̂4) = (1.5, 15.15) (τ̂4, ν̂4) = (1.42, 14.35)

Continued on next page
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Table 3.3.: Delay-Doppler estimates of two estimators. (cont.)

j-th time pure coherent CLEAN noist-target fringe analysis

P = 2.898 P = 6.354

(τ̂1, ν̂1) = (0., 0.12) (τ̂1, ν̂1) = (0., 0.1)

(τ̂2, ν̂2) = (0.9, 9.88) (τ̂2, ν̂2) = (0.35, 3.6)

8 (τ̂3, ν̂3) = (1.01, 10) (τ̂3, ν̂3) = (0.82, 8.3)

(τ̂4, ν̂4) = (1.5, 15.1) (τ̂4, ν̂4) = (1.42, 14.3)

P = 5.999 P = 1.353

(τ̂1, ν̂1) = (0, 0.12) (τ̂1, ν̂1) = (0.06, 0.7)

(τ̂2, ν̂2) = (1, 9.86) (τ̂2, ν̂2) = (0.63, 6.4)

9 (τ̂3, ν̂3) = (1.01, 10.8) (τ̂3, ν̂3) = (0.96, 9.7)

(τ̂4, ν̂4) = (1.5, 15.1) (τ̂4, ν̂4) = (1.47, 14.8)

P = 6.133 P = 0.651

(τ̂1, ν̂1) = (0, 0.1) (τ̂1, ν̂1) = (0, 0.11)

(τ̂2, ν̂2) = (1, 10.75) (τ̂2, ν̂2) = (0.26, 2.71)

10 (τ̂3, ν̂3) = (1.01, 10.01) (τ̂3, ν̂3) = (0.48, 4.91)

(τ̂4, ν̂4) = (1.51, 15.21) (τ̂4, ν̂4) = (1.42, 14.31)

P = 8.341 P = 7.993

(τ̂1, ν̂1) = (0.01, 0.22) (τ̂1, ν̂1) = (0.06, 0.71)

(τ̂2, ν̂2) = (1, 9.9) (τ̂2, ν̂2) = (0.61, 6.2)

11 (τ̂3, ν̂3) = (1.01, 10.86) (τ̂3, ν̂3) = (0.7, 7.11)

(τ̂4, ν̂4) = (1.5, 15.11) (τ̂4, ν̂4) = (1.48, 14.91)

P = 6.264 P = 2.608

(τ̂1, ν̂1) = (0, 0.1) (τ̂1, ν̂1) = (0, 0.1)

(τ̂2, ν̂2) = (1, 9.91) (τ̂2, ν̂2) = (0.6, 6.1)

12 (τ̂3, ν̂3) = (1, 10.67) (τ̂3, ν̂3) = (1.19, 12.0)

(τ̂4, ν̂4) = (1.5, 15.1) (τ̂4, ν̂4) = (1.49, 15.0)

Continued on next page
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Table 3.3.: Delay-Doppler estimates of two estimators. (cont.)

j-th time pure coherent CLEAN noist-target fringe analysis

P = 6.206 P = 1.316

(τ̂1, ν̂1) = (0.01, 0.22) (τ̂1, ν̂1) = (0.04, 0.52)

(τ̂2, ν̂2) = (0.9, 9.84) (τ̂2, ν̂2) = (0.3, 3.12)

13 (τ̂3, ν̂3) = (1.01, 10.05) (τ̂3, ν̂3) = (0.44, 4.52)

(τ̂4, ν̂4) = (1.5, 15.11) (τ̂4, ν̂4) = (1.42, 14.32)

P = 5.912 P = 8.664

(τ̂1, ν̂1) = (0, 0.1) (τ̂1, ν̂1) = (0, 0.1)

(τ̂2, ν̂2) = (1, 10.83) (τ̂2, ν̂2) = (0.9, 9.1)

14 (τ̂3, ν̂3) = (1.01, 10.06) (τ̂3, ν̂3) = (1.22, 12.3)

(τ̂4, ν̂4) = (1.5, 15.1) (τ̂4, ν̂4) = (1.48, 14.9)

P = 8.565 P = 5.582

(τ̂1, ν̂1) = (0, 0.1) (τ̂1, ν̂1) = (0.03, 0.4)

(τ̂2, ν̂2) = (0.5, 4.79) (τ̂2, ν̂2) = (0.32, 3.3)

15 (τ̂3, ν̂3) = (0.5, 5.63) (τ̂3, ν̂3) = (0.87, 8.8)

(τ̂4, ν̂4) = (1.5, 15.11) (τ̂4, ν̂4) = (1.5, 15.1)

P = 4.853 P = 1.137

(τ̂1, ν̂1) = (0, 0.12) (τ̂1, ν̂1) = (0, 0.12)

(τ̂2, ν̂2) = (1, 9.91) (τ̂2, ν̂2) = (0.61, 6.22)

16 (τ̂3, ν̂3) = (1.01, 10.86) (τ̂3, ν̂3) = (0.88, 8.92)

(τ̂4, ν̂4) = (1.51, 15.22) (τ̂4, ν̂4) = (1.5, 15.12)

P = 6.29 P = 0.677

(τ̂1, ν̂1) = (0.01, 0.2) (τ̂1, ν̂1) = (−0.01, 0.0)

(τ̂2, ν̂2) = (0.89, 9.76) (τ̂2, ν̂2) = (0.81, 8.2)

17 (τ̂3, ν̂3) = (1.01, 10.04) (τ̂3, ν̂3) = (0.86, 8.67)

(τ̂4, ν̂4) = (1.5, 15.11) (τ̂4, ν̂4) = (1.52, 15.3)

Continued on next page
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Table 3.3.: Delay-Doppler estimates of two estimators. (cont.)

j-th time pure coherent CLEAN noist-target fringe analysis

P = 5.715 P = 3.033

(τ̂1, ν̂1) = (0, 0.11) (τ̂1, ν̂1) = (0, 0.11)

(τ̂2, ν̂2) = (1, 10) (τ̂2, ν̂2) = (0.3, 3.11)

18 (τ̂3, ν̂3) = (1.01, 10.92) (τ̂3, ν̂3) = (1.14, 11.51)

(τ̂4, ν̂4) = (1.5, 15.1) (τ̂4, ν̂4) = (1.48, 14.91)

P = 6.529 P = 1.483

(τ̂1, ν̂1) = (0, 0.12) (τ̂1, ν̂1) = (0., 0.13)

(τ̂2, ν̂2) = (0.5, 4.9) (τ̂2, ν̂2) = (0.26, 2.73)

19 (τ̂3, ν̂3) = (0.5, 5.72) (τ̂3, ν̂3) = (0.47, 4.83)

(τ̂4, ν̂4) = (1.5, 15.13) (τ̂4, ν̂4) = (1.42, 14.33)

P = 4.652 P = 8.172

(τ̂1, ν̂1) = (0, 0.11) (τ̂1, ν̂1) = (0, 0.09)

(τ̂2, ν̂2) = (1, 9.87) (τ̂2, ν̂2) = (0.74, 7.49)

20 (τ̂3, ν̂3) = (1.01, 10.82) (τ̂3, ν̂3) = (1.12, 11.29)

(τ̂4, ν̂4) = (1.5, 15.09) (τ̂4, ν̂4) = (1.42, 14.29)

P = 6.165 P = 2.113

3.8 Summary and Conclusions

In this chapter, we established a radar target parameter estimate system, which is

combined by the CLEAN algorithm, the noise-target fringe analysis and the Gauss-

Newton optimization, to achieve high accuracy of target parameter estimate and the

ability of target discrimination. Furthermore, we showed the outstanding performance

of target discrimination of the noise-target fringe analysis approach in some cases

that the chirp-matched-filtering-only can not achieve successful target discrimination.

Therefore, this target parameter estimate system can not only enhance the α-rotated

ridge resolution but achieve much better target-discrimination ability.
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Moreover, from the derivations of the matched filter delay-Doppler output re-

sponse (Equation (3.4)) and the correlation between two delay-Doppler matched fil-

ter outputs driven by AWGN input (Equation (3.15)), we know that the same phase

variation behavior exists in a target’s output response and in the output response of

noise, which depends on the ambiguity function of the matching template waveform.

Therefore, we can take advantage of the “same phase variation behavior but with

different phase offsets” properties to indicate the fringe of a target’s response and to

provide the accurate target parameter estimates. For example, based on the shape of

the ambiguity function of the matching template waveform, We can sample the highly

correlated matched filter delay-Doppler outputs and observe the phase relationship

among these output samples to find the fringe of a target’s matched filter output

response. In this way, the noise-target fringe analysis approach may be a useful tool

for target parameter estimate in frequency-modulated and phase-coded radars.
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4. CHIRP HYBRID FILTERS FOR DELAY-DOPPLER

RESOLUTION ENHANCEMENT

4.1 Introduction

Delay-Doppler resolution is one of the most important metrics for assessing the

performance of a radar system. It determines the ability of detecting targets with

close distances and Doppler shifts. Compared to an unmodulated waveform, the chirp

waveform, one kind of linear frequency modulation (LFM) waveform, has better range

and Doppler resolution. Thus, chirp waveforms have become the most widely used

waveform in radar systems.

The difference of an unmodulated rectangular pulse and a chirp pulse is that the

matched filter output response of an unmodulated rectangular pulse has a triangular

envelope in the delay axis (ν = 0); however, the matched filter output response of a

chirp pulse also has a triangular envelope but along the α-rotated axis (ν = ατ), where

α is the chirp rate of the chirp pulse. Therefore, when any pair of targets are close

enough in delay and Doppler shift, and they have a Doppler shift difference which

equals to their delay difference multiply by the chirp rate of the transmitted chirp

waveform α, the traditional chirp matched filter output response will have a mixed

envelope combined by two partially overlapping triangular envelopes. Furthermore,

when one of the two target returns is smaller, the smaller triangular envelope may

be concealed in the mixed envelope, causing a missed detection of the smaller target.

In this situation, the chirp matched filtering process may not work well in detecting

and resolving two targets.

To solve this problem, we apply a mismatched filter, which considers a chirp

waveform with chirp rate β (β 6= α) as a matching template, to change the slope

of the triangular envelope (ridge) of the filter output response. Then we combine
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the linearly-shifted delay-Doppler responses to correct all targets’ delays and Doppler

shifts. Finally, we apply some non-linear processing to the matched filter output

response and the combination of linearly-shifted mismatched filter output responses.

For each target, because there are two triangular envelopes with the same peak (tar-

get’s (τ, ν) position) but with different ridge slopes, if a non-linear processing is prop-

erly applied, any pair of targets under the above-mentioned condition can be easily

detected and resolved. Therefore, the target resolution capability can be greatly

improved.

Also, in terms of system complexity issues, the mismatched filter only changes

the matching template from the matched chirp waveform to a chirp waveform with

another chirp rate, and pre-multiplies by a continuous wave (for the eit
2
-term can-

cellation) before the filtering process. Thus, the mismatched filtering does not cause

heavy computational complexity. In addition, the transmitter is completely the same

as in a traditional chirp radar system; therefore, the mismatched filtering process

can be added to any chirp radar system without affecting the original functionality.

Figure 4.1 is whole chirp hybrid filter system structure.

Fig. 4.1. Chirp hybrid filter structure.
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4.2 Mathematical Model for Mismatched Filter

In a chirp radar system, a chirp waveform of duration T and chirp rate α of the

following form is generated and transmitted:

sTx(t) = eiπαt
2 · 1[0,T ](t). (4.1)

At the receiver, the received waveform is the combination of all targets’ reflected

waveforms (here we assume that for target k, the delay and Doppler shift are (τk, νk),

k = 1, 2, · · · . ), and it can be represented as

sRecv(t) =
∑
k

aksτkνk(t)

=
∑
k

aksTx(t− τk)ei2πνkt

=
∑
k

ake
iπα(t−τk)2 · 1[0,T ](t− τk)ei2πνkt, (4.2)

where ak is the amplitude of the k-th target’s reflected waveform, τk is the delay

(two-way) of the k-th target’s reflected waveform, and νk is the Doppler shift of the

k-th target’s reflected waveform. Note that any two different targets, which are at

(τm, νm) and (τn, νn),m 6= n, can only have the same delay (τm = τn) or the same

Doppler shift (νm = νn) because we regard two targets with the same delay and same

Doppler shift (τm = τn and νm = νn) as the same target.

Now, in traditional matched filter designs, a specific matching template g(t) =

sTx(t) is applied, and a matched filter matched to a τ -delayed, ν-Doppler shifted

version of a template signal is

gτν(t) = sTx(t− τ)ei2πνt

= eiπα(t−τ)2 · 1[0,T ](t− τ)ei2πνt, (4.3)
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and sampled at time t = T + τ . Then, the matched filter impulse response h̃τν(t) will

be of the form

h̃τν(t) = g∗τν(T + τ − t)

= s∗Tx(T + τ − t− τ)e−i2πν(T+τ−t)

= s∗Tx(T − t)e−i2πν(T+τ−t)

= e−iπα(T−t)2 · 1[0,T ](T − t)e−i2πν(T+τ−t), (4.4)

and the matched filter output at time t = T + τ will be

ÕMF(τ, ν) = sRecv(t) ∗ h̃τν(t)|t=T+τ

=

∫ ∞
−∞

sRecv(p)h̃τν(t− p)dp|t=T+τ

=

∫ ∞
−∞

sRecv(p)h̃τν(T + τ − p)dp

=

∫ ∞
−∞

∑
k

aksTx(p− τk)ei2πνkp · s∗Tx(p− τ)e−i2πνpdp

=
∑
k

ak

(∫ ∞
−∞

sTx(p− τk)s∗Tx(p− τ)e−i2π(ν−νk)pdp

)
(let p− τk = mk, p = mk + τk, and dp = dmk)

=
∑
k

ak

∫ ∞
−∞

sTx(mk)s
∗
Tx(mk − (τ − τk))e−i2π(ν−νk)(mk+τk)dmk

=
∑
k

ake
−i2π(ν−νk)τk

∫ ∞
−∞

sTx(mk)s
∗
Tx(mk − (τ − τk))e−i2π(ν−νk)mkdmk

=
∑
k

ake
−i2π(ν−νk)τkχs(τ − τk, ν − νk), (4.5)

where

χs(τ, ν) =

∫ ∞
−∞

sTx(t)s
∗
Tx(t− τ)e−i2πνtdt

is the ambiguity function of the waveform sTx(t). From the above equation we know

that ÕMF(τ, ν), the matched filter output response sampled at time t = T + τ , is

the combination of weighted and phase-shifted version of (τk, νk)-shifted ambiguity

functions, where k = 1, · · · , K. Here we let K be the total number of target returns.
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Figure 4.2 shows the matched filter output response of a chirp transmitted waveform

with chirp rate α = 54.0 and a matched filter with the same chirp waveform as the

matching template waveform (one target case). We can see that the delay-Doppler

response has a peak at the target’s true delay and Doppler shift. Furthermore, the

output response has a ridge shape with a slope α, which corresponds to the chirp rate

of the matching template waveform. Similarly, when the received signal is combined

by signals from K different distances (delays), then the resulting matched filter output

response is a linear combination of K different peak-shifted ambiguity functions, and

the k-th delay-Doppler response has a peak value at (τk, νk), which corresponds to

k-th target’s delay and Doppler shift. Also, for all K delay-Doppler responses, they

have the ridge shape with same slope α, which corresponds to the chirp rate of the

matching template waveform.

Fig. 4.2. Matched filter output response of a chirp transmitted waveform (chirp rate
α = 54.0).

This phenomenon led us to ask the questions: “What will happen to the slope

of the ridge in delay-Doppler response when applying a matching template waveform
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with a chirp rate different from the chirp rate of the transmitted waveform?”, “Is

it possible to acquire much better delay-Doppler resolution by doing some linear or

non-linear operations in both the matched filter output response and the mismatched

filter output response?”, and “If the above thought works, then how much better with

respect to delay and Doppler resolutions in this design than in the chirp matched filter

delay-Doppler response?” Based on the motivations, in the following we introduce a

mismatched filter which applies g(t) = eiπβt
2 · 1[0,T ](t), β 6= α, as a matching template

signal.

Now, when the above matching template g(t) is applied, we then have the mis-

matched filter impulse response

h̃τν,β(t) = g∗τν(T + τ − t)

= g∗(T + τ − t− τ)e−i2πν(T+τ−t)

= g∗(T − t)e−i2πν(T+τ−t)

= e−iπβ(T−t)2 · 1[0,T ](T − t)e−i2πν(T+τ−t), (4.6)

and the filter output response at time t = T + τ is

Õ(τ, ν) = sRecv(t) ∗ h̃τν,β(t)|t=T+τ

=
∑
k

ake
−iπ(βτ2−ατ2k )

∫ ∞
−∞

e−iπ(β−α)t2e−i2π[(ν−νk)−(βτ−ατk)]t · 1[0,T ](t− τk)1[0,T ](t− τ)dt.

(4.7)

From (4.7) we observe that the term e−iπ(β−α)t2 exists inside the integration, which

will destroy the ridge shape in the delay-Doppler response. So, before the mis-

matched filtering process, we can pre-multiply the integrand by eiπ(β−α)t2 to cancel
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the e−iπ(β−α)t2 term. Here we let q(t) = eiπ(β−α)t2 be the pre-multiplication waveform,

then we have

Ô(τ, ν) = [sRecv(t)q(t)] ∗ h̃τν,β(t)|t=T+τ

=
∑
k

ake
−iπ(βτ2−ατ2k )

∫ ∞
−∞

e−i2π[(ν−νk)−(βτ−ατk)]t1[0,T ](t− τk) · 1[0,T ](t− τ)dt

=
∑
k

ake
−iπ(βτ2−ατ2k )e−iπ[(ν−νk)−(βτ−ατk)](T+τ+τk) · (T − |τ − τk|)

· sinc ([(ν − νk)− (βτ − ατk)] (T − |τ − τk|)) · 1[0,T ](|τ − τk|). (4.8)

For clarity, we can write (4.8) as

Ô(τ, ν) =
∑
k

Ôτk(τ, ν),

where

Ôτk(τ, ν) = ake
−iπ(βτ2−ατ2k )e−iπ[(ν−νk)−(βτ−ατk)](T+τ+τk) · (T − |τ − τk|)

· sinc ([(ν − νk)− (βτ − ατk)] (T − |τ − τk|)) · 1[0,T ](|τ − τk|). (4.9)

We know from (4.9) that Ô(τ, ν) is composed of K delay-Doppler responses Ôτk(τ, ν),

where k = 1, · · · , K, and each Ôτk(τ, ν) has a peak value at (τk, νk + (β−α)τk) and a

ridge with slope β. However, we know that in the matched filtering process, the k-th

delay-Doppler output response, ÕMF,k(τ, ν), has a peak value at (τk, νk), which is the

k-th target’s true delay and Doppler shift. The Doppler shift bias in the mismatched

delay-Doppler response comes from the slope change of the ridge, which is due to the

usage of a different chirp rate for the matching template signal. Therefore, to recover

the mismatched output response back to the correct delay-Doppler positions, for any

fixed delay τk, we apply a linear shift to Ô(τ, ν) in Doppler axis to correct the Doppler

shift bias at the line τ = τk from νk + (β − α)τk back to νk, i.e.,

Ôνshift(τk)(τ, ν) = Ô(τ, ν + (β − α)τk). (4.10)

Then for each Ôνshift(τk)(τ, ν), the Doppler shift bias at the line τ = τk is corrected.

Now, to keep all targets lying in the correct delay-Doppler positions, we can

apply some operations to these responses Ôνshift(τk)(τ, ν), k = 1, 2, · · · . The following
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are two simple operations: i) point-wise selection of the maximum amplitude of these

responses:

Ômax{νshift(τk)}(τ, ν) = maxk

{
|Ôνshift(τk)(τ, ν)|

}
, k = 1, 2, · · · , (4.11)

and ii) summing over all Ôνshift(τk)(τ, ν), k = 1, 2, · · · . Then we get

Ô∑
k νshift(τk)(τ, ν) =

∑
k

Ôνshift(τk)(τ, ν)

=
∑
k

Ô(τ, ν + (β − α)τk). (4.12)

From the above two kinds of operations, we have the results Ômax{νshift(τk)}(τ, ν) and

Ô∑
k νshift(τk)(τ, ν), which correct all Doppler positions in the lines τ = τk, k = 1, 2, · · · .

As a result, when the targets have delays at τk, k = 1, 2, · · · , we can apply one of the

above two operations to get the targets’ true delay-Doppler positions. Furthermore,

for the targets with delay and Doppler shift at (τk, νk), k = 1, 2, · · · , the output

responses Ômax{νshift(τk)}(τ, ν) and Ô∑
k νshift(τk)(τ, ν) have peak values at (τk, νk), k =

1, 2, · · · , along with the ridges with slope β. We illustrate the two operations and

show the output responses by applying an example as follows.

Figures 4.3, 4.4, 4.5 and 4.6 show an example to illustrate the process of com-

bining correctly-shifted mismatched delay-Doppler responses. For the received wave-

form, two targets are at (τ1, ν1) = (−0.3, 0.8) and (τ2, ν2) = (0.7,−0.9), with the

corresponding amplitudes 0.75 and 1.0. The transmitted chirp waveform has chirp

rate α = 54.0, and the mismatched filter applies a matching template signal with the

chirp rate β = −66.0.

First of all, after the mismatched filtering and without any shift to the delay-

Doppler response, two peaks are nearly at (τ ∗1 , ν
∗
1) = (−0.3, 36.8) and (τ ∗2 , ν

∗
2) =

(0.7,−84.9), where ν∗k = νk + (β − α)τk, k = 1, 2. Note that the two ridges have the

same slope β = −66.0 in the delay-Doppler response. The output response is shown

in Figure 4.3.

Now, to recover all targets’ Doppler positions (in this case, we have two targets at

two different delays, τ1 = −0.3, τ2 = 0.7), first we recover target 1’s Doppler position
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Fig. 4.3. Non-shifted mismatched filter delay-Doppler response. Two peaks are at
(τ ∗1 , ν

∗
1) = (−0.3, 36.8) and (τ ∗2 , ν

∗
2) = (0.7,−84.9). The Doppler shift deviations of

two targets are caused by the chirp rate difference between the transmitted waveform
and the matching template signal.

by linear shifting the whole delay-Doppler response in Doppler axis, and the shifted

bias is −(β − α)τ1 = −36.0. By doing so, we can position target 1, which lies in

(τ ∗1 , ν
∗
1) = (−0.3, 36.8), back to the true position (τ1, ν1) = (−0.3, 0.8). Similarly, to

recover target 2’s position, we shift the whole delay-Doppler response by the bias

−(β − α)τ2 = 84.0. Then target 2’s position is corrected back to its true position

(τ2, ν2) = (0.7,−0.9). The shifted delay-Doppler responses with respect to target 1

and target 2 are shown in Figure 4.4 and 4.5.

However, from Figures 4.4 and 4.5, we can obviously see that because the linear

shift operation to a delay-Doppler response can only correct one specific Doppler axis

(τ = c, c is constant) at a time, the other targets which lie in different delays will

linearly shift to other wrong Doppler positions. As a result, when we add ν(τ1)-

shifted and ν(τ2)-shifted delay-Doppler responses together, two ghost ridges, which

come from shifting ν(τ2) to target 1 and shifting ν(τ1) to target 2, will appear.

To keep all true targets positioning in the right delay-Doppler positions, we apply

i) the combination of all ν(τk)-shifted responses or ii) point-wise selection of the
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Fig. 4.4. The shifted delay-Doppler response with respect to target 1. The target 1’s
Doppler position is correctly shifted from (τ ∗1 , ν

∗
1) = (−0.3, 36.8) back to (τ1, ν1) =

(−0.3, 0.8); however, target 2’s position also shifted from (τ ∗2 , ν
∗
2) = (0.7,−84.9) to

(τ2, ν2) = (0.7,−120.9).

Fig. 4.5. The shifted delay-Doppler response with respect to target 2. Same as
in Figure 4.4, the target 2’s Doppler position is correctly shifted from (τ ∗2 , ν

∗
2) =

(0.7,−84.9) back to (τ2, ν2) = (0.7,−0.9); however, target 1’s position also shifted
from (τ ∗1 , ν

∗
1) = (−0.3, 36.8) to (τ1, ν1) = (−0.3, 120.8).

maximum of all ν(τk)-shifted responses. In Figure 4.6(a) we add two shifted output
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(a) Sum of two shifted delay-Doppler responses

(b) Point-wise selection of the maximum of two shifted delay-Doppler responses

Fig. 4.6. (a) Sum of two shifted delay-Doppler responses (b) Point-wise selection of
the maximum of two shifted delay-Doppler responses. Two peaks are at (−0.3, 0.8)
and (0.7,−0.9), which are the two targets’ true delay-Doppler positions. In addition,
other two peaks at (−0.3, 120.8) and (0.7,−120.9) are the undesired ghost targets.

responses Ôνshift(−0.3)(τ, ν) and Ôνshift(0.7)(τ, ν). Also, in Figure 4.6(b) we point-wisely

select the maximum amplitude of the two shifted output responses Ôνshift(−0.3)(τ, ν)

and Ôνshift(0.7)(τ, ν). The results are shown in Figure 4.6.

Finally, due to the same delay and Doppler shift of each true target but with two

different slopes of ridges in the matched filter output response and in the sum (max-
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imum) of ν(τk)-shifted delay-Doppler responses, the two ridges only intersect at the

target’s true delay and Doppler shift for each target, i.e., (τk, νk), k = 1, · · · , K, K

is the total number of targets. Because of this, we can further apply some non-linear

operations such as point-wise multiplication or point-wise selection of the minimum

amplitude of the matched and the mismatched filter delay-Doppler responses. Then

all of the targets’ corresponding delay and Doppler positions can still keep high am-

plitudes, which is due to the high amplitude at (τk, νk) position in both the matched

and mismatched delay-Doppler responses. However, for positions other than (τk, νk),

only one of the two responses has higher amplitude or both responses have lower

amplitudes, so after the non-linear operations, the (τ, ν) positions without any target

have much smaller amplitudes, resulting in a better performance in terms of the larger

signal to interference ratio. The following are two kinds of simple non-linear opera-

tions: i) point-wise multiplication of the matched and the sum (point-wise maximum)

of shifted mismatched filter delay-Doppler responses:

Ômult(τ, ν) = ÕMF(τ, ν) · Ô∑
k νshift(τk)(τ, ν)

or Ômult(τ, ν) = ÕMF(τ, ν) · Ômax{νshift(τk)}(τ, ν), (4.13)

and ii) point-wise selection the minimum amplitude of the matched and the sum

(point-wise maximum) of shifted mismatched filter delay-Doppler responses:

Ômin(τ, ν) = minτ,ν

(
ÕMF(τ, ν), Ô∑

k νshift(τk)(τ, ν)
)

or Ômin(τ, ν) = minτ,ν

(
ÕMF(τ, ν), Ômax{νshift(τk)}(τ, ν)

)
. (4.14)

Continuing with the previous example, we apply the above two non-linear operations

and observe the resulting delay-Doppler responses. First, when we point-wisely multi-

ply the matched filter output response and the sum (point-wise maximum) of shifted

mismatched delay-Doppler responses, we have the resulting delay-Doppler response

shown in Figure 4.7. Also, when we point-wisely select the minimum amplitude of

the matched filter output response and the sum (point-wise maximum) of shifted mis-

matched delay-Doppler responses, we have the output delay-Doppler response shown
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Fig. 4.7. The output response of point-wise multiplication between the chirp matched
filter output response and the sum (point-wise maximum) of two shifted mismatched
delay-Doppler responses with respect to target 1 and target 2.

Fig. 4.8. The output response of point-wise selection of minimum amplitude between
the chirp matched filter output response and the sum (point-wise maximum) of two
Shifted mismatched delay-Doppler responses with respect to target 1 and target 2.
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(a) τ1-delay cut
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(b) ν1-Doppler cut

Fig. 4.9. (a) τ1-delay cut and (b) ν1-Doppler cut comparisons at target 1 ((τ1, ν1) =
(−0.3, 0.8), amplitude=0.75). The matched filter output, the point-wise multiplica-
tion output and the point-wise selection of minimum amplitude output are compared.

in Figure 4.8. From Figures 4.7 and 4.8, we know that both of the above mentioned

non-linear operations can sharpen the targets’ delay-Doppler response width due to

the operations on different ridge slopes in matched and mismatched filter output re-

sponses, thus causing much finer delay and Doppler resolutions. To further investigate

the targets’ delay-Doppler resolutions, we plot the zero-delay cut and zero-Doppler

cut with respect to target 1 and target 2 in Figure 4.9 and 4.10. Note that target

1 is at (τ1, ν1) and target 2 is at (τ2, ν2), so the zero-delay cut of target 1 is the τ1-

delay cut of the delay-Doppler response, and the zero-Doppler cut of target 1 is the

ν1-Doppler cut of the delay-Doppler response. Likewise, for target 2, the zero-delay

cut and the zero-Doppler cut are then the τ2-delay cut and the ν2-Doppler cut of the

delay-Doppler response, respectively.

From Figures 4.9(a) and 4.10(a), we see that the three schemes have the same

mainlobe width in the zero-delay cut. On the other hand, from Figures 4.9(b) and

4.10(b), we see that the point-wise multiplication and the point-wise minimum se-

lection schemes have much sharper mainlobe widths than the mainlobe width of the

matched filter in the zero-Doppler cut. Furthermore, both point-wise multiplication

scheme and point-wise minimum selection scheme have the smaller amplitudes in side-

lobes than the sidelobe amplitudes of the matched filter output, which shows higher
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(b) ν2-Doppler cut

Fig. 4.10. (a) τ2-delay cut and (b) ν2-Doppler cut comparisons at target 2 ((τ2, ν2) =
(0.7,−0.9), amplitude=1.0). The matched filter output, the point-wise multiplication
output and the point-wise selection of minimum amplitude output are compared.
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mainlobe to peak sidelobe ratio in both non-linear operation schemes. Therefore,

non-linear operations obviously can improve the targets’ delay resolution.

Even though there are advantages in terms of the improved delay-Doppler reso-

lutions by applying the non-linear operations, we observe that two peaks other than

the two true target returns show up in the delay-Doppler response in Figures 4.7 and

4.8. The two false peaks may cause problems in target detection. To further illustrate

this problem, we analyze some properties of these false peaks in the following section.

4.3 Position and Amplitude Analysis of False Targets

In this section, we discuss about how false targets are generated when doing the

above-mentioned mismatched filtering process, and we also provide detailed analyses

of the targets’ delay-Doppler positions as well as the targets’ amplitudes.

Figure 4.11 is an example showing the overlapping plot of the matched filter

output response and the sum (point-wise maximum) of shifted mismatched delay-

Doppler responses, which are from the previous two-target example. To simplify

the illustrations, we look the response from the top view and regard it as a two-

dimensional plot (without the amplitude axis of the output responses), which only

shows ridge slopes of the matched filtering response (with slope α) and ridge slopes of

the sum (point-wise maximum) of shifted mismatched filtering responses (with slope

β) in the delay-Doppler plane. Here we take a two-target case as an example. First of

all, the matched filter output response has two targets at (τ1, ν1) and (τ2, ν2) with the

slope α. Due to the limited duration of waveform transmission T and the duration

of matching correlation, the ridges in each target can be seen as a line segment, i.e.,

at target (τ1, ν1), the ridge can be seen as a line segment from (τ1 − T, ν1 − αT ) to

(τ1 + T, ν1 + αT ). Similarly, at target (τ2, ν2), the ridge can also be seen as a line

segment from (τ2 − T, ν2 − αT ) to (τ2 + T, ν2 + αT ).

As for the mismatched filtering process, the output response shows that the two

targets are at (τ1, ν1 + (β − α)τ1) and (τ2, ν2 + (β − α)τ2), both with the same slope
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Fig. 4.11. Overlapping delay-Doppler output response of the matched filter output
response and the sum (point-wise maximum) of shifted delay-Doppler responses with
respect to target 1 and target 2.

β. Here we can easily see that applying different chirp template waveform in the

mismatched filtering process will linearly shift the output response in the Doppler

domain, and the shifted value is linearly related to the delay value and the chirp

rate difference between the transmitted chirp signal and the chirp matching template

signal. Now, to recover the shifts in the Doppler of the output response, first we shift

the whole output response to match all Doppler positions at delay τ1, then the target

at (τ1, ν1) is corrected, and the other target response moves from (τ2, ν2 + (β − α)τ2)

to (τ2, ν2 +(β−α)(τ2−τ1)). Just as in the previous discussions, the ridge of the target

at (τ1, ν1) can be seen as a line segment from (τ1 − T, ν1 − βT ) to (τ1 + T, ν1 + βT ),

and the ridge of target at (τ2, ν2 + (β−α)(τ2− τ1)) can also be seen as a line segment

from (τ2 − T, ν2 + (β − α)(τ2 − τ1) − βT ) to (τ2 + T, ν2 + (β − α)(τ2 − τ1) + βT ).

Likewise, when shifting the whole output response to match all Doppler positions at
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delay τ2, the target at (τ2, ν2) is then matched, and the other target response shifts

from (τ1, ν1 + (β − α)τ1) to (τ1, ν1 + (β − α)(τ1 − τ2)). Also, the ridge of the target

at (τ2, ν2) can be seen as a line segment from (τ2 − T, ν2 − βT ) to (τ2 + T, ν2 + βT ),

and the ridge of target at (τ1, ν1 + (β−α)(τ1− τ2)) can also be seen as a line segment

from (τ1−T, ν1 +(β−α)(τ1− τ2)−βT ) to (τ1 +T, ν1 +(β−α)(τ1− τ2)+βT ). Figure

4.12 shows how these line segments are generated in the process.

In the following subsections, we provide more detailed analyses of the targets’

delay-Doppler positions and the targets’ amplitudes.

4.3.1 Discussion of False Targets’ Delay-Doppler Positions

Continuing the two-target example above, when the matched filter with chirp rate

α is applied, the two-dimensional delay-Doppler plot has two line segments centering

at (τ1, ν1), (τ2, ν2), both with slope α, which are the solid lines in Figure 4.12(a). We

can write the two line segments as

ν − ν1 = α(τ − τ1), |τ − τ1| ≤ T, (4.15)

ν − ν2 = α(τ − τ2), |τ − τ2| ≤ T. (4.16)

Likewise, when a mismatched filter with chirp rate β is applied, the two-dimensional

delay-Doppler plot has two line segments centering at (τ1, ν1 + (β − α)τ1), (τ2, ν2 +

(β−α)τ2), and both with slope β. Then after shifting to match the delay and Doppler

positions of target 1, the two-dimensional delay-Doppler plot has two line segments

centering at (τ1, ν1), (τ2, ν2 + (β − α)(τ2 − τ1)), and both with slope β. We can write

the two line segments as

ν − ν1 = β(τ − τ1), |τ − τ1| ≤ T, (4.17)

ν − ν2 = (β − α)(τ2 − τ1) + β(τ − τ2), |τ − τ2| ≤ T. (4.18)
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(a)

(b)

Fig. 4.12. Demonstrations about the linear shifting process of a mismatched filter
response. (a) the matched filter response (solid) and the non-shifted mismatched filter
response (dashed). (b) the matched filter response (solid) and two linearly-shifted
mismatched filter responses, matching to the target 1 and the target 2 respectively
(dashed).

Just as in the above process, when the mismatched output response shifts to match

target 2, we have

ν − ν1 = (β − α)(τ1 − τ2) + β(τ − τ1), |τ − τ1| ≤ T, (4.19)

ν − ν2 = β(τ − τ2), |τ − τ2| ≤ T. (4.20)
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Now we regard the line segments as lines first and solve these linear equations to

find positions of true targets and false targets. We have

eq.(4.15), (4.17) : (τ, ν) = (τ1, ν1)

eq.(4.15), (4.18) : (τ, ν) =(
τ1 +

α

α− β
(τ1 − τ2) +

1

α− β
(ν2 − ν1), ν1 +

α

α− β
(ν2 − ν1) +

α2

α− β
(τ1 − τ2)

)
eq.(4.15), (4.19) : (τ, ν) = (τ2, ν1 + α(τ2 − τ1))

eq.(4.15), (4.20) : (τ, ν) =(
τ1 +

β

α− β
(τ1 − τ2) +

1

α− β
(ν2 − ν1), ν2 +

β

α− β
(ν2 − ν1) +

αβ

α− β
(τ1 − τ2)

)
eq.(4.16), (4.17) : (τ, ν) =(
τ2 +

β

α− β
(τ2 − τ1) +

1

α− β
(ν1 − ν2), ν1 +

β

α− β
(ν1 − ν2) +

αβ

α− β
(τ2 − τ1)

)
eq.(4.16), (4.18) : (τ, ν) = (τ1, ν2 + α(τ1 − τ2))

eq.(4.16), (4.19) : (τ, ν) =(
τ2 +

α

α− β
(τ2 − τ1) +

1

α− β
(ν1 − ν2), ν2 +

α

α− β
(ν1 − ν2) +

α2

α− β
(τ2 − τ1)

)
eq.(4.16), (4.20) : (τ, ν) = (τ2, ν2). (4.21)

In general, when two targets’ delay and Doppler differences |τ1 − τ2|, |ν1 − ν2| are

moderately large, to let the false targets from the intersections of eq.(4.15), (4.19)

and eq.(4.16), (4.18) lie in the sufficiently large Doppler shift ν (out of the range of

interest), we control the chirp rate α and make |α| sufficiently large. Furthermore,

when |α| is set to be a larger value, we can also control the chirp rate of the matching

template signal β such that |α−β| is small, then the false targets from the intersections

of eq.(4.15), (4.18), eq.(4.15), (4.20), eq.(4.16), (4.17) and eq.(4.16), (4.19) can also

lie at sufficiently large Doppler shifts such that these Doppler shifts are out of the

range of interest. To further investigate the false target positions, we consider four

different cases for illustrations.
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Two Targets with the Same Delay

When two targets have the same delay but with different Doppler shifts, i.e.,

|τ2 − τ1| = 0 and |ν2 − ν1| 6= 0, the equations in (4.21) become

eq.(4.15), (4.17) : (τ, ν) = (τ1, ν1)

eq.(4.15), (4.18) : (τ, ν) =

(
τ1 +

1

α− β
(ν2 − ν1), ν1 +

α

α− β
(ν2 − ν1)

)
eq.(4.15), (4.19) : (τ, ν) = (τ1, ν1)

eq.(4.15), (4.20) : (τ, ν) =

(
τ1 +

1

α− β
(ν2 − ν1), ν2 +

β

α− β
(ν2 − ν1)

)
eq.(4.16), (4.17) : (τ, ν) =

(
τ1 +

1

α− β
(ν1 − ν2), ν1 +

β

α− β
(ν1 − ν2)

)
eq.(4.16), (4.18) : (τ, ν) = (τ1, ν2)

eq.(4.16), (4.19) : (τ, ν) =

(
τ1 +

1

α− β
(ν1 − ν2), ν2 +

α

α− β
(ν1 − ν2)

)
eq.(4.16), (4.20) : (τ, ν) = (τ1, ν2). (4.22)

Obviously, we can see that when |α|, |β| are large, and |α − β| is small, all the false

targets will lie outside the range of interest in Doppler shift, and only the true targets

will remain.
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Two Targets with the Same Doppler Shift

When two targets have the same Doppler shift but with different delays, i.e.,

|τ2 − τ1| 6= 0 and |ν2 − ν1| = 0, the equations in (4.21) become

eq.(4.15), (4.17) : (τ, ν) = (τ1, ν1)

eq.(4.15), (4.18) : (τ, ν) =

(
τ1 +

α

α− β
(τ1 − τ2), ν1 +

α2

α− β
(τ1 − τ2)

)
eq.(4.15), (4.19) : (τ, ν) = (τ2, ν1 + α(τ2 − τ1))

eq.(4.15), (4.20) : (τ, ν) =

(
τ1 +

β

α− β
(τ1 − τ2), ν1 +

αβ

α− β
(τ1 − τ2)

)
eq.(4.16), (4.17) : (τ, ν) =

(
τ2 +

β

α− β
(τ2 − τ1), ν1 +

αβ

α− β
(τ2 − τ1)

)
eq.(4.16), (4.18) : (τ, ν) = (τ1, ν1 + α(τ1 − τ2))

eq.(4.16), (4.19) : (τ, ν) =

(
τ2 +

α

α− β
(τ2 − τ1), ν1 +

α2

α− β
(τ2 − τ1)

)
eq.(4.16), (4.20) : (τ, ν) = (τ2, ν1). (4.23)

As in the previous case, when |α|, |β| are large and |α−β| is small, all the false targets

will lie outside the range of interest in Doppler shift, and only the true targets will

remain.
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Two Targets Lie in a Line with Slope β

When two targets lie in the delay-Doppler plane with slope β, i.e., the first target

is at (τ1, ν1) and the second target is at (τ1 +∆, ν1 +β∆), then the equations in (4.21)

become

eq.(4.15), (4.17) : (τ, ν) = (τ1, ν1)

eq.(4.15), (4.18) : (τ, ν) = (τ1 −∆, ν1 − α∆)

eq.(4.15), (4.19) : (τ, ν) = (τ1 + ∆, ν1 + α∆)

eq.(4.15), (4.20) : (τ, ν) = (τ1, ν1)

eq.(4.16), (4.17) : (τ, ν) = (τ1 + ∆, ν1 + β∆)

eq.(4.16), (4.18) : (τ, ν) = (τ1, ν1 + (β − α)∆)

eq.(4.16), (4.19) : (τ, ν) = (τ1 + 2∆, ν1 + (α + β)∆)

eq.(4.16), (4.20) : (τ, ν) = (τ1 + ∆, ν1 + β∆). (4.24)

In this case, there are four false targets with four different Doppler shifts, ν1 − α∆,

ν1 + α∆, ν1 + (β − α)∆, and ν1 + (β + α)∆. In general, we would like these four

false target Doppler shifts to be significantly different from target 1’s Doppler ν1 and

target 2’s Doppler ν1 + β∆ to push the false targets out of the range of interest. So,

under a specific minimum target separation requirement, ∆, we can control α, β to

let ν1+ minα,β(|α∆|, |(β − α)∆|, |(β + α)∆|) be out of the Doppler range of interest,

then the false targets can be removed.
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(a) Matched filter response (b) Sum of two shifted mismatched filter

responses

(c) Point-wise multiplication response

(zoom-out view)

(d) Point-wise minimum selection re-

sponse (zoom-out view)

(e) Point-wise multiplication response

(zoom-in view)

(f) Point-wise minimum selection re-

sponse (zoom-in view)

Fig. 4.13. An example of two targets lying in a line with slope β = −66.0.
Target 1 is at (τ1, ν1) = (0.0075749,−0.499943), and target 2 is at (τ2, ν2) =
(−0.0075749, 0.499943). The distance between the two targets is 1.0, which equals
to the signal duration T . (Note: |ddelay| = 0.0151497, |dDoppler| = 0.0151497 ∗ |β| =
0.99988)
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Two Targets Lie in a Line with Slope α

When two targets lie in the delay-Doppler plane with the slope α, i.e., the first

target is at (τ1, ν1) and the second target is at (τ1 + ∆, ν1 + α∆), then the equations

in (4.21) become

eq.(4.15), (4.17) : (τ, ν) = (τ1, ν1)

eq.(4.15), (4.18) : (τ, ν) = (τ1, ν1)

eq.(4.15), (4.19) : (τ, ν) = (τ1 + ∆, ν1 + α∆)

eq.(4.15), (4.20) : (τ, ν) = (τ1 + ∆, ν1 + α∆)

eq.(4.16), (4.17) : (τ, ν) = (τ1, ν1)

eq.(4.16), (4.18) : (τ, ν) = (τ1, ν1)

eq.(4.16), (4.19) : (τ, ν) = (τ1 + ∆, ν1 + α∆)

eq.(4.16), (4.20) : (τ, ν) = (τ1 + ∆, ν1 + α∆). (4.25)

Actually, when the two targets are at (τ1, ν1) and (τ1 + ∆, ν1 +α∆), (4.17) and (4.18)

are equivalent, (4.19) and (4.20) are also equivalent. So the intersections of all pairs of

equations are at (τ1, ν1) and (τ1+∆, ν1+α∆), corresponding to the delay and Doppler

shifts of the two true targets. Therefore, no false target is generated in this case. We

can easily see from Figure 4.14(a) that when the received waveform goes through the

matched filtering process, the delay-Doppler response has two partially overlapping

ridges with the same slope α when the two targets’ absolute delay difference |∆| < 2T .

However, from Figure 4.14(b) we see that when the received waveform goes through

the mismatched filtering process, the delay-Doppler response has two parallel ridges

with the same slope β even when the two targets’ absolute delay difference becomes

really small. Therefore, finding intersections of lines in (4.21) is reduced to finding

intersections of the three lines left, and all the intersections are the true targets’

delay-Doppler positions.

From the above four cases, we know that the positions of all false targets can

be decided by solving the linear equations in (4.21). Therefore, by appropriately
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(a) Matched filter response (b) Sum of two shifted mismatched filter

responses

(c) Point-wise multiplication response

(zoom-out view)

(d) Point-wise minimum selection re-

sponse (zoom-out view)

(e) Point-wise multiplication response

(zoom-in view)

(f) Point-wise minimum selection re-

sponse (zoom-in view)

Fig. 4.14. An example of two targets lying in a line with the slope α = 54.0.
Target 1 is at (τ1, ν1) = (0.0092576, 0.499913), and target 2 is at (τ2, ν2) =
(−0.0092576,−0.499913). The distance between the two targets is 1.0, which equals
to the signal duration T . (Note: |ddelay| = 0.0185153, |dDoppler| = 0.0185153 ∗ |α| =
0.99982)
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controlling the chirp rates of the transmitted waveform and the matching template

waveform, we can design a radar system which not only has a better resolution in

delay-Doppler response but moves false targets out of the delay-Doppler range of

interest. Especially in the last case, we can not differentiate two spatially close targets

from the chirp matched filter output response because of the partial overlap in two

targets’ response. However, the above-mentioned mismatched filter can easily solve

this problem by rotating the slope of ridges in the target output response, and the

enhanced delay-Doppler resolutions can be achieved.

4.3.2 Discussion of False Targets’ Amplitudes

From the previous derivations about the delay-Doppler responses of the chirp

matched filter and the chirp mismatched filter, we know that any target in the delay-

Doppler plane has a ridge with a slope which is equivalent to the chirp rate of the

matching template signal in the receive filter. Furthermore, the amplitude along the

ridge linearly attenuates with the delay difference, i.e., T − |τ |. Due to the waveform

duration T in a chirp pulse, the waveform correlations only has the output when

τ ∈ [−T, T ]. Moreover, target positions are the ridge intersections from the chirp

matched filter output and from the sum (point-wise maximum) of shifted mismatched

filter output responses, so a false target’s amplitude is fully decided by the delay

difference between the position of intersection and the two peaks of the intersected

ridges, and by the peak amplitudes of the two intersected ridges. To be more specific,

we assume that two true targets are at (τ1, ν1) and (τ2, ν2), and the two targets

have the corresponding peak amplitudes a1 and a2. We further assume that the two

true targets’ ridges intersect at (τ ∗, ν∗). Now, when τ ∗ lies within the delay interval

[max(τ1, τ2)− T,min(τ1, τ2) + T ], a false target will be generated, and the amplitude

of the false target is

min
(
a1(T − |τ ∗ − τ1|), a2(T − |τ ∗ − τ2|)

)
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when the point-wise selection of the minimum amplitude is applied as the non-linear

operation in the mismatched filter. Likewise, when we use the point-wise multiplica-

tion of two amplitudes to be the non-linear operation in the mismatched filter, then

the false target’s amplitude is

a1(T − |τ ∗ − τ1|) ∗ a2(T − |τ ∗ − τ2|).

In the following we apply the two target example described in section II to further

illustrate the false target’s amplitude. The point-wise selection of the minimum am-

plitude is applied as the non-linear operation in the mismatched filter.

Now we discuss the false targets’ amplitudes in the example described in section

II. Two true targets are at (τ1, ν1) = (−0.3, 0.8) and (τ2, ν2) = (0.7,−0.9), with the

corresponding amplitudes 0.75 and 1.0. The matching template in the matched filter

has the chirp rate α = 54.0, and the matching template in the mismatched filter has

the chirp rate β = −66.0. By applying the above parameters into (4.21), we have the

targets’ delay-Doppler positions as follows:

(τ, ν) = (−0.3, 0.8)

(τ, ν) = (−0.764,−24.265)

(τ, ν) = (0.7, 54.8)

(τ, ν) = (0.236, 29.735)

(τ, ν) = (0.164,−29.835)

(τ, ν) = (−0.3,−54.9)

(τ, ν) = (1.164, 24.165)

(τ, ν) = (0.7,−0.9).
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The first one and the last one are the two true targets’ delay-Doppler positions, i.e.,

(τ1, ν1) = (−0.3, 0.8) and (τ2, ν2) = (0.7,−0.9), and the other six intersections are the

false targets’ positions. Now we let

(τf1 , νf1) = (−0.764,−24.265)

(τf2 , νf2) = (0.7, 54.8)

(τf3 , νf3) = (0.236, 29.735)

(τf4 , νf4) = (0.164,−29.835)

(τf5 , νf5) = (−0.3,−54.9)

(τf6 , νf6) = (1.164, 24.165),

then for false target f1, (τf1 , νf1) = (−0.764,−24.265), which lies outside the delay

interval [max(τ1, τ2) − T,min(τ1, τ2) + T ] = [τ2 − T, τ1 + T ] = [−0.3, 0.7]. So the

intersection is the extension of the line segments, then false target f1 can not be

generated in reality. Likewise, false target f6, which lies at (τf6 , νf6) = (1.164, 24.165),

also can not be generated.

For false target f2, (τf2 , νf2) = (0.7, 54.8), and the amplitude is

|Ômin(τf2 , νf2)| = min
(

0.75(T − |τf2 − τ1|), 1.0(T − |τf2 − τ2|)
)

= min
(

0.75(T − |0.7− (−0.3)|), 1.0(T − |0.7− 0.7|)
)

= min
(

0.75(T − 1), 1.0(T − 0)
)

= min(0, 1)

= 0.
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Note that T = 1.0 is the pulse duration. Therefore, false target f2 is with amplitude

0. Likewise, for false target f5, (τf5 , νf5) = (−0.3,−54.9), the amplitude is

|Ômin(τf5 , νf5)| = min
(

0.75(T − |τf5 − τ1|), 1.0(T − |τf5 − τ2|)
)

= min
(

0.75(T − | − 0.3− (−0.3)|), 1.0(T − | − 0.3− 0.7|)
)

= min
(

0.75(T − 0), 1.0(T − 1)
)

= min(0.75, 0)

= 0.

Therefore, false target f5 also has amplitude 0.

Now, for false target f3, (τf3 , νf3) = (0.236, 29.735), and the amplitude is

|Ômin(τf3 , νf3)| = min
(

0.75(T − |τf3 − τ1|), 1.0(T − |τf3 − τ2|)
)

= min
(

0.75(T − |0.236− (−0.3)|), 1.0(T − |0.236− 0.7|)
)

= min
(

0.75(T − 0.536), 1.0(T − 0.464)
)

= min(0.348, 0.536)

= 0.348.

So false target f3 has the amplitude |Ômin(τf3 , νf3)| = 0.348. Likewise, for false target

f4, (τf4 , νf4) = (0.164,−29.835), and the amplitude is

|Ômin(τf4 , νf4)| = min
(

0.75(T − |τf4 − τ1|), 1.0(T − |τf4 − τ2|)
)

= min
(

0.75(T − |0.164− (−0.3)|), 1.0(T − |0.164− 0.7|)
)

= min
(

0.75(T − 0.464), 1.0(T − 0.536)
)

= min(0.402, 0.464)

= 0.402.

Therefore, false target f4 has the amplitude |Ômin(τf4 , νf4)| = 0.402. The positions

and amplitudes of false target f3 and f4 are shown in Figure 4.8.
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From the example we know that the false targets’ delay-Doppler positions and

the amplitudes can be fully determined once we know the true targets’ delay-Doppler

positions and the amplitudes.

4.4 Minimum Resolvable Target Separation

In this section, we would like to investigate how close the two targets can be and we

still can discriminate them. For simplicity, we discuss a two-target case only, and this

case can be extended to any pair of targets. Now, based on the difficulty in resolving

two close targets lying in the line with the slope α, the chirp rate of the transmitted

waveform, in the chirp matched delay-Doppler response, in the following we apply

the hybrid filter in this scenario to deal with this problem and see how close in delay

and Doppler the two targets can be and we still have a successful discrimination.

Figures 4.15 to 4.22 show the hybrid filter output responses with eight different

β values, 50.0, 10.0, 5.0, 1.0, −1.0, −5.0, −10.0 and −50.0. Here we let α = 10.0

be the chirp rate of the transmitted signal for all cases. Furthermore, the point-wise

selection of the minimum amplitude is applied in the nonlinear operation. And, in

each case, the responses of four different distances are compared, and the distance

between the two targets, d, is defined as

d =
√
d2

delay + d2
Doppler

=

√
(
∆τ

T
)2 + (∆νT )2. (4.26)

In Figure 4.15, β/α = 5.0, we can see that the two targets cannot be differentiated

when d = 0.125. Then in Figure 4.16, β/α = 1.0, which is the matched filter case,

the two targets can not be differentiated even when d = 1.0. Also, in Figure 4.17,

β/α = 0.5, the two targets can not be differentiated when d = 1.0. In Figure 4.18,

β/α = 0.1, the two targets can not be differentiated when d = 0.5. Also in Figure

4.19, β/α = −0.1, the two targets can not be differentiated when d = 0.5. In Figure

4.20, β/α = −0.5, the two targets can not be differentiated when d = 0.25. Then in
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Figure 4.21, β/α = −1.0, the two targets can not be differentiated when d = 0.25.

Finally, in Figure 4.22, β/α = −5.0, the two targets can be differentiated even when

d = 0.125. Table 4.1 shows the above observations.

Table 4.1. Minimum separable distance between two targets from Figures 4.15 to
4.22. Four different distances (1.0, 0.5, 0.25, 0.125) are compared.

β/α 5.0 1.0 0.5 0.1 -0.1 -0.5 -1.0 -5.0

Minimum Separable Distance 0.25 none none 1.0 1.0 0.5 0.5 0.125

From Table 4.1 we know that when α and β are with different signs and β/α gets

larger, the ability in target discrimination becomes better. Therefore, we have the

following conclusions:

I) The high delay-Doppler resolutions come from the fact that two different ridge

slopes at the same target’s delay-Doppler positions, and when the two ridge slopes

differs more, the mutual interference along the ridge gets smaller, then the target

discrimination ability can be improved.

II) No matter what the values of α and β are, when β/α gets much farther away

from 1.0, by doing the nonlinear operation then we can have much finer delay-Doppler

resolutions.

III) We can regard the unmodulated rectangular pulse as the chirp waveform with

α = 0, and it is easy to see that for any chirp waveform with the chirp rate α, the

matched filter output response has a triangular shape along the ridge of slope α, thus

causing a bad ridge resolution. We can know the bad ridge resolution comes from by

the equation 4.8.

4.5 Signal to Noise Ratio Analysis of the Mismatched Filter Output

Figure 4.1 is the chirp hybrid receiver structure combined by a matched filter

(upper part) and a mismatched filter (lower part). For the mismatched filtering
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(a) (b)

(c) (d)

Fig. 4.15. The mismatched filter output response of two targets lying in the line with
slope α = 10.0, and β = 50.0. (a) d = 1.0 (b) d = 0.5 (c) d = 0.25 (d) d = 0.125.

(a) (b)

(c) (d)

Fig. 4.16. The mismatched filter output response of two targets lying in the line with
slope α = 10.0, and β = 10.0. (a) d = 1.0 (b) d = 0.5 (c) d = 0.25 (d) d = 0.125.
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(a) (b)

(c) (d)

Fig. 4.17. The mismatched filter output response of two targets lying in the line with
slope α = 10.0, and β = 5.0. (a) d = 1.0 (b) d = 0.5 (c) d = 0.25 (d) d = 0.125.

(a) (b)

(c) (d)

Fig. 4.18. The mismatched filter output response of two targets lying in the line with
slope α = 10.0, and β = 1.0. (a) d = 1.0 (b) d = 0.5 (c) d = 0.25 (d) d = 0.125.
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(a) (b)

(c) (d)

Fig. 4.19. The mismatched filter output response of two targets lying in the line with
slope α = 10.0, and β = −1.0. (a) d = 1.0 (b) d = 0.5 (c) d = 0.25 (d) d = 0.125.

(a) (b)

(c) (d)

Fig. 4.20. The mismatched filter output response of two targets lying in the line with
slope α = 10.0, and β = −5.0. (a) d = 1.0 (b) d = 0.5 (c) d = 0.25 (d) d = 0.125.
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(a) (b)

(c) (d)

Fig. 4.21. The mismatched filter output response of two targets lying in the line with
slope α = 10.0, and β = −10.0. (a) d = 1.0 (b) d = 0.5 (c) d = 0.25 (d) d = 0.125.

(a) (b)

(c) (d)

Fig. 4.22. The mismatched filter output response of two targets lying in the line with
slope α = 10.0, and β = −50.0. (a) d = 1.0 (b) d = 0.5 (c) d = 0.25 (d) d = 0.125.
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process, we will divide it into two parts and analyze the signal-to-noise ratio at the

two outputs in the followings.

4.5.1 SNR of x(t)

Fig. 4.23. The mismatched filter output x(t).

In Figure 4.23, suppose a radar receives the signal r(t) consisting of a τ0-delayed,

ν0-Doppler shifted reflected signal sτ0ν0(t) and the wideband stationary additive white

noise n(t) [55]:

r(t) = sτ0ν0(t) + n(t), (4.27)

where

sτ0ν0(t) = sTx(t− τ0)ei2πν0t

= eiπα(t−τ0)2 · 1[0,T ](t− τ0) · ei2πν0t, (4.28)

and n(t) has the autocorrelation function

Rnn(t1, t2) = E[n(t1)n∗(t2)]

=
N0

2
δ(t1 − t2). (4.29)
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Note that sTx(t) is the transmitted chirp signal from (4.1), and∫ ∞
−∞
|sTx(t)|2dt =

∫ ∞
−∞

1[0,T ](t)dt

=

∫ T

0

12dt

= T

= Es. (4.30)

First of all, we pre-multiply the received signal r(t) by a signal q(t) to get z(t)

z(t) = r(t)q(t)

= (sτ0ν0(t) + n(t)) q(t)

= sτ0ν0(t)q(t) + n(t)q(t)

= s̃τ0ν0(t) + ñ(t), (4.31)

where

q(t) = eiπ(β−α)t2 . (4.32)

For ñ(t), the autocorrelation function is

Rññ(t1, t2) = E[ñ(t1)ñ∗(t2)]

= E[n(t1)q(t1)n∗(t2)q∗(t2)]

= E
[
n(t1)eiπ(β−α)t21n∗(t2)e−iπ(β−α)t22

]
= E

[
n(t1)n∗(t2)eiπ(β−α)(t21−t22)

]
= eiπ(β−α)[(t1+t2)(t1−t2)]E[n(t1)n∗(t2)]

= eiπ(β−α)[(t1+t2)(t1−t2)]Rnn(t1, t2)

= eiπ(β−α)[(t1+t2)(t1−t2)]N0

2
δ(t1 − t2)

=


N0

2
if t1 = t2,

0 otherwise

= Rnn(t1, t2). (4.33)
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The result shows that for the wideband stationary additive white noise n(t), multi-

plying by q(t) will not change the autocorrelation function of the noise.

Now, a matching template g(t) = eiπβt
2 · 1[0,T ](t), β 6= α is applied in the mis-

matched filter, and a τ -delayed, ν-Doppler shifted version of the template signal is

gτν(t). Furthermore, to make sure the filter can operate on all of the relevant signal

information, we sample the filter output at time t = T + τ , and then h̃τν,β(t) is

h̃τν,β(t) = g∗τν(T + τ − t)

= g∗(T + τ − t− τ)e−i2πν(T+τ−t)

= e−iπβ(T−t)2 · 1[0,T ](T − t) · e−i2πν(T+τ−t). (4.34)

In the following derivations we replace h̃τν,β(t) to be hβ(t) for brevity. Let xs(t) and

xn(t) represent the signal and noise components of x(t) after passing through the

filter hβ(t):

x(t) = z(t) ∗ hβ(t)

=

∫ ∞
−∞

hβ(l)z(t− l)dl

=

∫ ∞
−∞

hβ(l) [s̃τ0ν0(t− l) + ñ(t− l)] dl

=

∫ ∞
−∞

hβ(l)s̃τ0ν0(t− l)dl +

∫ ∞
−∞

hβ(l)ñ(t− l)dl

= xs(t) + xn(t), (4.35)

where xn(t) has the autocorrelation function Rxnxn(t1, t2):

Rxnxn(t1, t2) = E[xn(t1)x∗n(t2)]

= E

[∫ ∞
−∞

hβ(l1)ñ(t1 − l1)dl1 ·
∫ ∞
−∞

h∗β(l2)ñ∗(t2 − l2)dl2

]
= E

[∫ ∞
−∞

∫ ∞
−∞

hβ(l1)ñ(t1 − l1) · h∗β(l2)ñ∗(t2 − l2)dl1dl2

]
=

∫ ∞
−∞

∫ ∞
−∞

hβ(l1)h∗β(l2)E [ñ(t1 − l1)ñ∗(t2 − l2)] dl1dl2

=

∫ ∞
−∞

∫ ∞
−∞

hβ(l1)h∗β(l2)
N0

2
δ(t1 − t2 − (l1 − l2))dl1dl2. (4.36)
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As for the output signal xs(t),

xs(t) =

∫ ∞
−∞

hβ(l)s̃τ0ν0(t− l)dl

=

∫ ∞
−∞

hβ(t− l)s̃τ0ν0(l)dl

=

∫ ∞
−∞

hβ(t− l)sτ0ν0(l)q(l)dl

=

∫ ∞
−∞

e−iπβ(T−(t−l))21[0,T ](T − (t− l))e−i2πν(T+τ−(t−l))

· eiπα(l−τ0)21[0,T ](l − τ0)ei2πν0l · eiπ(β−α)l2dl. (4.37)

The signal-to-noise ratio of x(t) at time t is defined as

SNRt ≡
|xs(t)|2

E
[
|xn(t)|2

] . (4.38)

Now, when the delay and Doppler shift are perfectly matched, and the perfect sam-

pling time for observing the entire signal component is achieved, the maximum signal-

to-noise ratio can be achieved, i.e., when (τ, ν) = (τ0, ν0 + (β − α)τ0) and t = T + τ0,

maxSNRt = SNRT+τ0 . (4.39)

In this case, we have

xs(T + τ0) =

∫ ∞
−∞

e−iπβ(T−(T+τ0−l))2 · 1[0,T ](T − (T + τ0 − l))

· e−i2π(ν0+(β−α)τ0)(T+τ0−(T+τ0−l))eiπα(l−τ0)2 · 1[0,T ](l − τ0) · ei2πν0leiπ(β−α)l2dl

=

∫ ∞
−∞

e−iπβ(l−τ0)2 · 1[0,T ](l − τ0)e−i2π(ν0+(β−α)τ0)l

· eiπα(l−τ0)2 · 1[0,T ](l − τ0)ei2πν0leiπ(β−α)l2dl

=

∫ ∞
−∞

e−iπβ(−2τ0l+τ20 )e−i2π(β−α)τ0leiπα(−2τ0l+τ20 ) · 1[0,T ](l − τ0)dl

=e−iπ(β−α)τ20

∫ ∞
−∞

1[0,T ](l − τ0)dl

=e−iπ(β−α)τ20

∫ τ0+T

τ0

1dl

=Te−iπ(β−α)τ20 . (4.40)
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Then

|xs(T + τ0)|2 =
∣∣∣Te−iπ(β−α)τ20

∣∣∣2
= T 2

= E2
s . (4.41)

Also, from (4.36), let t1 = t2 = T + τ0, then

E
[
|xn(T + τ0)|2

]
=E[xn(T + τ0)x∗n(T + τ0)]

=

∫ ∞
−∞

∫ ∞
−∞

hβ(l1)h∗β(l2)
N0

2
δ(T + τ0 − (T + τ0)− (l1 − l2))dl1dl2

=

∫ ∞
−∞

∫ ∞
−∞

hβ(l1)h∗β(l2)
N0

2
δ(l2 − l1)dl1dl2

=
N0

2

∫ ∞
−∞

hβ(l1)h∗β(l1)dl1

=
N0

2

∫ ∞
−∞

e−iπβ(T−l1)21[0,T ](T − l1)e−i2πν(T+τ−l1)

·
(
e−iπβ(T−l1)21[0,T ](T − l1)e−i2πν(T+τ−l1)

)∗
dl1

=
N0

2

∫ ∞
−∞

1[0,T ](T − l1)dl1

=
N0

2
[(l1 + T )− l1]

=
N0

2
T

=
N0

2
Es. (4.42)

Therefore,

maxSNRt = SNRT+τ0

=
|xs(T + τ0)|2

E [|xn(T + τ0)|2]

=
E2
s

N0

2
Es

=
2Es
N0

. (4.43)

The result shows that the mismatched filter has the same maximum signal-to-noise

ratio as the maximum signal-to-noise ratio of the matched filter, 2Es/N0.
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4.5.2 Noise Analysis of the Sum of τk−shifted Responses from the Mis-

matched Filter Output

Fig. 4.24. Structure of operations of shifted mismatched filter output responses.

In Figure 4.24, to recover all delays and Doppler shifts of the mismatched output

response, Ô(τ, ν) will pass through an array of linear-shift-in-Doppler processors.

Each of the linear-shift-in-Doppler processors linearly shifts the whole delay-Doppler

output Ô(τ, ν) to match each target’s true Doppler position with respect to its delay

τk:

Ôνshift(τk)(τ, ν) = Ô(τ, ν + (β − α)τk)

= Ôs(τ, ν + (β − α)τk) + Ôn(τ, ν + (β − α)τk), ∀k. (4.44)

Then we combine all of the Doppler-corrected output responses (signal and noise) to

keep all targets lying in the correct delay-Doppler positions. Therefore, for any (τ, ν),

we have

Ô∑
k νshift(τk)(τ, ν) =

∑
k

Ôνshift(τk)(τ, ν)

=
∑
k

Ô(τ, ν + (β − α)τk)

=
∑
k

[
Ôs(τ, ν + (β − α)τk) + Ôn(τ, ν + (β − α)τk)

]
=
∑
k

Ôs(τ, ν + (β − α)τk) +
∑
k

Ôn(τ, ν + (β − α)τk), ∀k. (4.45)
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We now focus on the case where all targets lying in the same line of slope α, and

−∞ < α < ∞. In this case, any two targets do not have the same delay, so the

equation (4.45) becomes

Ô∑
k νshift(τk)(τ, ν) = Ôs(τ, ν + (β − α)τ) +

∑
k

Ôn(τ, ν + (β − α)τk), ∀k. (4.46)

In the following, for any specific k, we will demonstrate how to get Ôn(τ, ν+(β−α)τk)

from xn(t), and then we will analyze the SNR of Ô∑
k νshift(τk)(τ, ν). From (4.35), we

know that

xn(t) = ñ(t) ∗ hβ(t)

=

∫ ∞
−∞

hβ(m)ñ(t−m)dm

=

∫ ∞
−∞

hβ(m)n(t−m)q(t−m)dm

=

∫ ∞
−∞

e−iπβ(T−m)2 · 1[0,T ](T −m)e−i2πν(T+τ−m) · n(t−m)eiπ(β−α)(t−m)2dm, (4.47)

and we sample at t = T + τ , then

xn(T + τ)

=

∫ ∞
−∞

e−iπβ(T−m)2 · 1[0,T ](T −m) · e−i2πν(T+τ−m) · n(T + τ −m)eiπ(β−α)(T+τ−m)2dm

=

∫ ∞
−∞

e−iπβ(T−m)2e−i2πν(T+τ−m) · eiπ(β−α)[(T−m)2+2τ(T−m)+τ2]n(T + τ −m)1[0,T ](T −m)dm

=

∫ ∞
−∞

e−iπα(T−m)2e−i2πν[(T−m)+τ ]e−iπ(α−β)[2τ(T−m)+τ2] · n(T + τ −m) · 1[0,T ](T −m)dm

=

∫ ∞
−∞

e−iπα(T−m)2e−i2π[ν+(α−β)τ ](T−m)e−iπτ [2ν+(α−β)τ ] · n(T + τ −m) · 1[0,T ](T −m)dm

(Let l = T + τ −m, then dl = −dm)

=

∫ ∞
−∞

e−iπα(l−τ)2e−i2π[ν+(α−β)τ ](l−τ) · e−iπτ [2ν+(α−β)τ ] · n(l) · 1[0,T ](l − τ)dl. (4.48)
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Now, for any k̂, the portion of the noise at Ô∑
k νshift(τk)(τ, ν), which is contributed by

the ν(τk̂)-shifted delay-Doppler response, is Ôn(τ, ν + (β − α)τk̂). Therefore, we have

Ôn(τ, ν + (β − α)τk̂)

=

∫ ∞
−∞

e−iπα(l−τ)2e−i2π[(ν+(β−α)τk̂)+(α−β)τ ](l−τ) · e−iπτ [2(ν+(β−α)τk̂)+(α−β)τ ] · n(l) · 1[0,T ](l − τ)dl

=

∫ ∞
−∞

e−iπα(l−τ)2e−i2π[ν+(α−β)(τ−τk̂)](l−τ) · e−iπτ [2ν+(α−β)(τ−2τk̂)] · n(l) · 1[0,T ](l − τ)dl

= e−iπτ [2ν+(α−β)(τ−2τk̂)] ·
∫ ∞
−∞

e−iπα(l−τ)21[0,T ](l − τ)n(l)e−i2π[ν+(α−β)(τ−τk̂)](l−τ)dl

= e−iπ(β−α)τ2 · χsTx,n(τ, ν + (α− β)(τ − τk̂)), (4.49)

where

χsTx,n(τ, ν) =

∫ ∞
−∞

s∗Tx(t− τ)n(t)e−i2πνtdt

is the cross ambiguity function of the transmitted signal sTx(t) and noise n(t). Obvi-

ously, the noise content from the ν(τk̂)-shifted delay-Doppler response, Ôn(τ, ν+(β−

α)τk̂), is the cross ambiguity function of the transmitted signal sTx(t) and noise n(t),

sampling at the delay-Doppler position (τ, ν + (α − β)(τ − τk̂)) and multiplying by

the phase shift e−iπ(β−α)τ2 . Therefore, from Equation (4.46) and Equation (4.49) we

know that

Ô∑
k νshift(τk)(τ, ν)|t=T+τ

= Ôs(τ, ν + (β − α)τ) +
∑
k

Ôn(τ, ν + (β − α)τk)

= Ôs(τ, ν + (β − α)τ) +
∑
k

e−iπ(β−α)τ2 · χsTx,n(τ, ν + (α− β)(τ − τk))

= Ôs(τ, ν + (β − α)τ) + e−iπ(β−α)τ2
∑
k

χsTx,n(τ, ν + (α− β)(τ − τk)). (4.50)

The above result shows that the total noise output response is the sum of cross ambi-

guity functions between the transmitted signal sTx(t) and noise input n(t), sampling
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at (τ, ν+(α−β)(τ−τk)), and then multiply by the phase shift e−iπ(β−α)τ2 . Therefore,

the output SNR is

maxSNRt = SNRT+τ

=
|Ôs(τ, ν + (β − α)τ)|2

E
[
|
∑

k Ôn(τ, ν + (β − α)τk)|2
]

=
|Ôs(τ, ν + (β − α)τ)|2

E [|e−iπ(β−α)τ2
∑

k χsTx,n(τ, ν + (α− β)(τ − τk))|2]
. (4.51)

For the signal (the numerator in (4.51)), we know from (4.40) and (4.41) that the

signal has energy E2
s . As for the noise (the denominator in (4.51)), we let

n̂(τ, ν) =
∑
k

Ôn(τ, ν + (β − α)τk)

= e−iπ(β−α)τ2
∑
k

χsTx,n(τ, ν + (α− β)(τ − τk)).
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Then the correlation function is

Rn̂n̂(τ1, τ2, ν1, ν2) = E [n̂(τ1, ν1)n̂∗(τ2, ν2)]

=E

[(∑
k

Ôn(τ1, ν1 + (β − α)τk)

)(∑
j

Ôn(τ2, ν2 + (β − α)τj)

)∗]

=E

[(∑
k

Ôn(τ1, ν1 + (β − α)τk)

)(∑
j

Ô∗n(τ2, ν2 + (β − α)τj)

)]

=E

[∑
k

∑
j

Ôn(τ1, ν1 + (β − α)τk)Ô
∗
n(τ2, ν2 + (β − α)τj)

]

=
∑
k

∑
j

E
[
Ôn(τ1, ν1 + (β − α)τk)Ô

∗
n(τ2, ν2 + (β − α)τj)

]
=
∑
k

∑
j

E
[(
e−iπ(β−α)τ21χsTx,n(τ1, ν1 + (α− β)(τ1 − τk))

)
·
(
eiπ(β−α)τ22χ∗sTx,n(τ2, ν2 + (α− β)(τ2 − τj))

)]
=
∑
k

∑
j

e−iπ(β−α)(τ21−τ22 )E
[
χsTx,n(τ1, ν1 + (α− β)(τ1 − τk))χ∗sTx,n(τ2, ν2 + (α− β)(τ2 − τj))

]
=
∑
k

∑
j

e−iπ(β−α)(τ21−τ22 )E

[(∫ ∞
−∞

s∗Tx(t1 − τ1)n(t1)e−i2π[ν1+(α−β)(τ1−τk)]t1dt1

)
·
(∫ ∞
−∞

sTx(t2 − τ2)n∗(t2)ei2π[ν2+(α−β)(τ2−τj)]t2dt2

)]
=
∑
k

∑
j

e−iπ(β−α)(τ21−τ22 )

∫ ∞
−∞

∫ ∞
−∞

s∗Tx(t1 − τ1)sTx(t2 − τ2) · E[n(t1)n∗(t2)]

· e−i2π{(ν1t1−ν2t2)+(α−β)[(τ1−τk)t1−(τ2−τj)t2]}dt1dt2

=
∑
k

∑
j

e−iπ(β−α)(τ21−τ22 )

∫ ∞
−∞

∫ ∞
−∞

s∗Tx(t1 − τ1)sTx(t2 − τ2) · N0

2
δ(t1 − t2)

· e−i2π{(ν1t1−ν2t2)+(α−β)[(τ1−τk)t1−(τ2−τj)t2]}dt1dt2

(let t1 = t2 = t)

=e−iπ(β−α)(τ21−τ22 )
∑
k

∑
j

∫ ∞
−∞

s∗Tx(t− τ1)sTx(t− τ2)
N0

2
e−i2π{(ν1−ν2)t+(α−β)[τ1−τ2−(τk−τj)t]}dt

(let x = t− τ2, then t = x+ τ2, and dx = dt)

=e−iπ(β−α)(τ21−τ22 )
∑
k

∑
j

∫ ∞
−∞

sTx(x)s∗Tx(x− (τ1 − τ2))
N0

2
e−i2π{(ν1−ν2)+(α−β)[τ1−τ2−(τk−τj)]}(x+τ2)dx
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=
N0

2
e−iπ(β−α)(τ21−τ22 )

∑
k

∑
j

e−i2π{(ν1−ν2)+(α−β)[τ1−τ2−(τk−τj)]}τ2

·
∫ ∞
−∞

sTx(x)s∗Tx(x− (τ1 − τ2))e−i2π{(ν1−ν2)+(α−β)[τ1−τ2−(τk−τj)]}xdx

=
N0

2
e−iπ(β−α)(τ21−τ22 )

∑
k

∑
j

e−i2π{(ν1−ν2)+(α−β)[τ1−τ2−(τk−τj)]}τ2

· χs(τ1 − τ2, (ν1 − ν2) + (α− β)[τ1 − τ2 − (τk − τj)]), (4.52)

where

χs(τ, ν) =

∫ ∞
−∞

sTx(t)s
∗
Tx(t− τ)e−i2πνtdt.

Also, we can further divide Equation (4.52) into the auto terms and the cross terms

as follows

Rn̂n̂(τ1, τ2, ν1, ν2)

=
N0

2
e−iπ(β−α)(τ21−τ22 )

{∑
k

e−i2π[(ν1−ν2)+(α−β)(τ1−τ2)]τ2χs(τ1 − τ2, (ν1 − ν2) + (α− β)(τ1 − τ2))

+
∑
k

∑
j,j 6=k

e−i2π{(ν1−ν2)+(α−β)[τ1−τ2−(τk−τj)]}τ2χs(τ1 − τ2, (ν1 − ν2) + (α− β)[τ1 − τ2 − (τk − τj)])

}
.

(4.53)

From (4.53) we know that the correlation of n̂(τ, ν) is the coherent sum of the K

phase-shifted ambiguity functions, sampling at (τ1 − τ2, (ν1 − ν2) + (α − β)(τ1 −

τ2)), combined with the non-coherent sum of the K(K − 1) phase-shifted ambiguity

functions, sampling at (τ1 − τ2, (ν1 − ν2) + (α − β)[τ1 − τ2 − (τk − τj)]), k 6= j. Here

we assume that K Doppler axes in the delay-Doppler grids are corrected. Therefore,

to suppress the output noise and then to increase the SNR, we need to control α and

β such that |χs(τ1 − τ2, (ν1 − ν2) + (α − β)(τ1 − τ2))| remains small, then the term

of the coherent sum is small. The following is one of the simple constraints to make

|χs(τ1 − τ2, (ν1 − ν2) + (α− β)(τ1 − τ2))| small: if we let

(ν1 − ν2) + (α− β)(τ1 − τ2) 6= α(τ1 − τ2),
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which is equivalent to

(ν1 − ν2) 6= β(τ1 − τ2).

Then |χs(τ1 − τ2, (ν1 − ν2) + (α − β)(τ1 − τ2))| does not lie in the chirp ridge of the

ambiguity function, and then the amplitude is small.

Now, to compute the SNR in (4.51), we let τ1 = τ2 = τ and ν1 = ν2 = ν, then

Rn̂n̂(τ, τ, ν, ν) =
N0

2

{∑
k

χs(0, 0) +
∑
k

∑
j,j 6=k

e−i2π[(α−β)(τj−τk)]τχs(0, (α− β)(τj − τk))

}

=
N0

2

{
K · χs(0, 0) +

∑
k

∑
j,j 6=k

e−i2π[(α−β)(τj−τk)]τχs(0, (α− β)(τj − τk))

}

=
N0

2

{
K · T +

∑
k

∑
j,j 6=k

e−i2π[(α−β)(τj−τk)]τχs(0, (α− β)(τj − τk))

}
.

(4.54)

Now, from the symmetric property of the ambiguity function, we know

χs(−τ,−ν) =

∫ ∞
−∞

sTx(t)s
∗
Tx(t− (−τ))e−i2π(−ν)tdt

( Let t+ τ = m, dt = dm )

=

∫ ∞
−∞

sTx(m− τ)s∗Tx(m)e−i2π(−ν)(m−τ)dm

= e−i2πτν
[∫ ∞
−∞

sTx(m)s∗Tx(m− τ)e−i2πνmdm

]∗
= e−i2πτνχ∗s(τ, ν). (4.55)
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Then (4.54) can be further simplified to

Rn̂n̂(τ, τ, ν, ν) =
N0

2

{
K · T +

∑
k

∑
j>k

(
e−i2π[(α−β)(τj−τk)]τχs(0, (α− β)(τj − τk))

+ e−i2π[−(α−β)(τj−τk)]τχs(0,−(α− β)(τj − τk))
)}

=
N0

2

{
K · T +

∑
k

∑
j>k

(
e−i2π[(α−β)(τj−τk)]τχs(0, (α− β)(τj − τk))

+ e−i2π[−(α−β)(τj−τk)]τχ∗s(0, (α− β)(τj − τk))
)}

=
N0

2

{
K · T + 2

∑
k

∑
j>k

Re
{
e−i2π[(α−β)(τj−τk)]τχs(0, (α− β)(τj − τk))

}}
.

(4.56)

Therefore, to increase the SNR, we need to let

2
∑
k

∑
j>k

Re
{
e−i2π[(α−β)(τj−τk)]τχs(0, (α− β)(τj − τk))

}
be negative and with the maximum absolute value.

4.6 Practical Implementation of the Chirp Hybrid Filter

To practically implement the chirp hybrid filter, we first apply the noise-target

fringe analysis approach introduced in Chapter 3 to provide accurate target delay

estimates. We apply the target delay estimates to shift the mismatched filter output

responses and apply non-linear operations with the matched filter response to generate

the hybrid filter output response. The detailed description is as follows:

STEP 1: follow the target parameter estimate algorithm in Section 3.6 to acquire the

delay estimates of all targets.

STEP 2: shift the mismatched filter output response with respect to each estimated

target delay value to get the shifted mismatched filter output responses.

STEP 3: sum of all shifted mismatched filter output responses.
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STEP 4: do the non-linear operation to the matched filter output response and the

sum of shifted mismatched filter output responses to generate the hybrid filter output

response.

By doing so, we can improve the delay-Doppler resolution and the resolution along

the chirp ridge in the chirp hybrid filter output response. The whole system flow chart

is shown in Figure 4.25.

Fig. 4.25. The practical chirp hybrid filter system flow chart.

4.7 Conclusion

In this chapter, we established a chirp hybrid filter system which combines a chirp

matched filter with a chirp mismatched filter to effectively improve the delay-Doppler

resolutions. We also provided a thorough analyses of the mismatched filter output

response, the targets’ delay-Doppler positions, and the signal to noise ratio (SNR)

at the output of the mismatched filter. Furthermore, we illustrated the outstanding

target discrimination performance of the hybrid filter in some cases that the matched

filter cannot successfully discriminate targets. Therefore, this chirp hybrid filter sys-

tem can not only enhance delay-Doppler resolution but can also achieve much better

performance in target discrimination.
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5. SUMMARY AND CONCLUSIONS

In this thesis, our main goal is to improve the target discrimination ability in chirp

radar systems. We proposed three different methods to achieve the goal. First, in

Chapter 2, we designed a non-constant modulus waveform illumination at the target

by synthesizing an array of constant modulus waveforms with different frequency off-

sets. From the resulting ambiguity function analysis, it showed better delay-Doppler

sidelobe suppression performance than performance of the constant modulus wave-

form at the cost of slightly wider mainlobe width. In addition, we also showed that

the non-constant modulus waveform can have slightly better angular resolution than

the angular resolution of a constant modulus waveform but at the cost of slightly

higher peak sidelobe ratio. Furthermore, we analyzed the energy density at targets

in different angles and found that it is distributed more evenly in the non-constant

modulus waveform case than in the constant modulus waveform case. However, due

to the signal cancellations in the non-constant modulus synthesized waveform, the

signal energy at targets is much smaller in the non-constant modulus waveform than

in the constant modulus waveform under the consideration of same total transmitted

energy.

In Chapter 3, we treated the matched filter delay-Doppler output response as an

image, and we introduced the noise-target fringe analysis approach which can effec-

tively estimate targets’ delays. Moreover, we proposed an algorithm which combined

the noise-target fringe analysis with the coherent CLEAN algorithm to accurately

provide the radar target parameter estimates in terms of ranges, velocities, and ampli-

tudes. To acquire more accurate parameter estimates, we applied the Gauss-Newton

method and showed that estimation performance can be further improved. The target

estimation algorithm effectively improves the target discrimination ability.
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In Chapter 4, we established a chirp hybrid filter system to effectively improve

the delay and the Doppler resolutions. We also demonstrated the outstanding per-

formance of target discrimination of the hybrid filter in some cases that the matched

filter cannot have a successful target discrimination, which showed the superior tar-

get discrimination ability of the hybrid filtering systems. Furthermore, we derived

the maximum signal to noise ratio (SNR) at the mismatched filter output, which has

the same magnitude as the maximum SNR at the matched filter output. Finally, we

demonstrated how to apply the noise-target fringe analysis approach as the algorithm

to the chirp hybrid filter for practical implementations and to achieve much better

delay-Doppler resolution and target discrimination ability.
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